121 32 22MB
English Pages 461 [471] Year 1982
Lecture Notes in Mathematics For information about Vols. 1-700, please contact your bookseller or Springer-Verlag. Vol. 701: Functional Analysis Methods in Numerical Analysis, Pro· ceedings, 1977. Edited by M. Zuhair Nashed. VII, 333 pages. 1979. Vol. 702: Yuri N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations. IX, 14 7 pages. 1979. Vol. 703: Equadiff IV, Proceedings, 1977. Edited by J. Fabera. XIX, 441 pages. 1979. Vol. 704: Computing Methods in Applied Sciences and Engineering, 1977, I. Proceedings, 1977. Edited by R. Glowinski and J. L. Lions. VI, 391 pages. 1979. Vol. 705: 0. Forster und K. Knorr, Konstruktion verseller Familien kompakter komplexer Riiume. VII, 141 Seiten. 197g, Vol. 706: Probability Measures on Groups, Proceedings, 1978. Edited by H. Heyer. XIII, 348 pages. 1979. Vol. 707: R. Zielke, Discontinuous Ceby~ev Systems. VI, 111 pages. 1979. Vol. 708: J. P. Jouanolou, Equations de Pfaff algebriques. V, 255 pages. 1979. Vol. 709: Probability in Banach Spaces II. Proceedings, 1978. Edited by A. Beck. V, 205 pages. 1979. Vol. 710: Seminaire Bourbaki vol. 1977/78, Exposes 507-524. IV, 328 pages. 1979. Vol. 711: Asymptotic Analysis. Edited by F. Verhulst. V, 240 pages. 1979. Vol. 712: Equations Differentielles et Systemes de Pfaff dans le Champ Complexe. Edite parR. Gerard et J.-P. Ramis. V, 364 pages. 1979. Vol. 713: Seminaire de Theorie du Potential, Paris No.4. Edite par F. Hirsch et G. Mokobodzki. VII, 281 pages. 1979. Vol. 714: J. Jacod, Calcul Stochastique et Problemas de Martingales. X, 539 pages. 1979. Vol. 715: lnder Bir S. Passi, Group Rings and Their Augmentation Ideals. VI, 137 pages. 1979. Vol. 716: M. A. Scheunert, The Theory of Lie Superalgebras. X, 271 pages. 1979. Vol. 717: Grosser, Bidualriiume und Vervollstiindigungen von Ba· nachmoduln.lll, 209 pages. 1979. Vol. 718: J. Ferrante and C. W. Rackoff, The Computational Complexity of Logical Theories. X, 243 pages. 1979. Vol. 719: Categorial Topology, Proceedings, 1978. Edited by H. Herrlich and G. PreuB. XII, 420 pages. 1979. Vol. 720: E. Dubinsky, The Structure of Nuclear Frechet Spaces. V, 187 pages. 1979. Vol. 721: Seminaire de Probabilites XIII. Proceedings, Strasbourg, 1g77/78. Edite par C. Dellacherie, P. A. Meyer et M. Weil. VII, 647 pages. 1979. Vol. 722: Topology of Low-Dimensional Manifolds. Proceedings, 1977. Edited by R. Fenn. VI, 154 pages. 1979. Vol. 723: W. Brandal, Commutative Rings whose Finitely Generated Modules Decompose. II, 116 pages. 1979. Vol. 724: D. Griffeath, Additive and Cancellative Interacting Particle Systems. V, 108 pages. 1979.
Vol. 729: Ergodic Theory. Proceedings, 1978. Edited by M. Denker and K. Jacobs. XII, 209 pages. 197g_ Vol. 730: Functional Differential Equations and Approximation of Fixed Points. Proceedings, 1978. Edited by H.·O. Peitgen and H.·O. Walther. XV, 503 pages. 1979. Vol. 731: Y. Nakagami and M. Takesaki, Duality for Crossed Products of von Neumann Algebras. IX, 139 pages. 1979. Vol. 732: Algebraic Geometry. Proceedings, 1978. Edited by K. l.l!Jn· sled. IV, 658 pages. 1g7g, Vol. 733: F. Bloom, Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations. XII, 206 pages. 1979. Vol. 734: Ring Theory, Waterloo, 1978. Proceedings, 1g79. Edited by D. Handelman and J. Lawrence. XI, 352 pages. 1979. Vol. 735: B. Aupetit, Proprietes Spectrales des Algebras de Banach. XII, 1g2 pages. 1979. Vol. 736: E. Behrends, M·Structure and the Banach·Stone Theorem. X, 217 pages. 1979. Vol. 737: Volterra Equations. Proceedings 1g79. Edited by S.·O. Londen and 0. J. Staffans. VIII, 314 pages. 1979. Vol. 738: P. E. Conner, Differentiable Periodic Maps. 2nd edition, IV, 181 pages. 197g_ ·Vol. 73g: Analyse Harmoniquesur les Groupes de Lie II. Proceedings, 1g76-78. Edited by P. Eymard et al. VI, 646 pages. 1979. Vol. 740: Seminaire d'Aigebre Paul Dubreil. Proceedings, 1977-78. Edited by M.·P. Malliavin. V, 456 pages. 197g, Vol. 741: Algebraic Topology, Waterloo 1978. Proceedings. Edited by P. Hoffman and V. Snaith. XI, 655 pages. 197g. Vol. 742: K. Clancey, Seminormal Operators. VII, 125 pages. 1g79, Vol. 743: Romanian-Finnish Seminar on Complex Analysis. Pro· ceedings, 1976. Edited by C. Andreian Cazacu et al. XVI, 713 pages. 1g79. Vol. 7 44: I. Reiner and K. W. Roggenkamp, Integral Representations. VIII, 275 pages. 1979. Vol. 745: D. K. Haley, Equational Compactness in Rings. Ill, 167 pages. 1g79. Vol. 746: P. Hoffman, r·Rings and Wreath Product Representations. V, 148 pages. 1g7g_ Vol. 747: Complex Analysis, Joensuu 1g18. Proceedings, 1g78. Edited by I. Laine, 0. Lehto and T. Sorvali. XV, 450 pages. 1g79. Vol. 748: Combinatorial Mathematics VI. Proceedings, 1978. Edited by A. F. Horadamand W. D. Wallis. IX, 206 pages. 1g79. Vol. 74g: V. Girault and P.·A. Raviart, Finite Element Approximation of the Navier·Stokes Equations. VII, 200 pages. 1979. Vol. 750: J. C. Jantzen, Moduln mit einem hochsten Gewicht. Ill, 195 Seiten. 197g_ Vol. 751: Number Theory, Carbondale 1979. Proceedings. Edited by M. B. Nathanson. V, 342 pages. 1979. Vol. 752: M. Barr, *·Autonomous Categories. VI, 140 pages. 1g79. Vol. 753: Applications of Sheaves. Proceedings, 1977. Edited by M. Fourman, C. Mulvey and D. Scott. XIV, 779 pages. 1979. Vol. 754: 0. A. Laudal, Formal Moduli of Algebraic Structures. Ill, 161 pages. 1g7g,
Vol. 725: Algebras d'Operateurs. Proceedings, 1978. Edite par P. de Ia Harpe. VII, 309 pages. 1979.
Vol. 755: Global Analysis. Proceedings, 1978. Edited by M. Grmela and J. E. Marsden. VII, 377 pages. 1979.
Vol. 726: Y.·C. Wong, Schwartz Spaces, Nuclear Spaces and Tensor Products. VI, 418 pages. 1979.
Vol. 756: H. 0. Cordes, Elliptic Pseudo· Differential Operators - An Abstract Theory. IX, 331 pages. 1g7g,
Vol. 727: Y. Saito, Spectral Representations for Schrodinger Opera· tors With Long·Range Potentials. V, 149 pages. 1979.
Vol. 757: Smoothing Techniques for Curve Estimation. Proceedings, 1g7g_ Edited by Th. Gasser and M. Rosenblatt. V, 245 pages. 1979.
Vol. 728: Non-Commutative Harmonic Analysis. Proceedings, 1978. Edited by J. Carmona and M. Vergne. V, 244 pages. 1g79.
Vol. 758: C. Na.sta.sescu and F. Van Oystaeyen; Graded and Filtered Rings and Modules. X, 148 pages. 1979.
continuation on page 465
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
924
Seminaire d'Alqebre Paul Dubreil et Marie-Paule Malliavin Proceedings, Paris 1981 (34eme Annee)
Edite par M.-P. Malliavin
Springer-Verlag Berlin Heidelberg New York 1982
Editeur
Marie-Paule Malliavin Universite Pierre et Marie Curie, Mathematiques 10, rue Saint Louis en 1'lIe, 75004 Paris, France
AMS Subject Classifications (1980): 12L10, 13C15, 13H15, 14F05, 14J05, 14L05, 14M15, 14M17, 16A08, 16A12, 16A15, 16A26, 16A27, 16A33, 16A46, 16A48, 16A54, 16A55, 16A62, 16A64, 16A68, 17B1O, 17B35, 18G1O, 18G40, 20F28, 55R40, 58G07.
ISBN 3-540-11496-3 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-11496-3 Springer-Verlag New York Heidelberg Berlin
CIP-Kurztitelaufnahme der Deutschen Bibliothek Serninaire d'Alqebre Paul Dubreil et Marie-Paule Malliavin: Proceedings/Seminaire d'Alqebre Paul Dubreil et Marie-Paule Malliavin. Berlin; Heidelberg; New York Springer 34. Paris 1981: (34eme annee), -1982. (Lecture notes in mathematics; Vol. 924) ISBN 3-540-11496-3 (Berlin, Heidelberg, New York) ISBN 0-387-11496-3 (New York, Heidelberg, Berlin) NE: GT
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1982 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
Liste des auteurs L.L. Avramov p. 376 - D. Bartels p. 385 - H. Bass p. 311 - J.E. Bjork p.415 - W. Borho p , 52 - D.L. Costa p , 401 - P.. Fossum p. 261 - S. Gelfand p. I J.M. Goursaud p. 323 - T. Levasseur p. 174 - R.
MacPherson p.
- 11. P. !Iall iavin
p , 158 et p , 168 - G. llaury p , 185 - G. Mislin p. 297 - S. llontgomery p , 357 J.L. Pascaud p. 323 - J.L. Roque p. 242 - D. Salles p. 245 - P.F. Smith p. 198 J.T. Stafford p. 73 - F. Taha p. 90 - J. Valette p. 323 - E. Wexler-Kreindler p.144.
*
TABLE DES !1ATIERES
S. GELFAND et R.
MacPHERSON - Verma modules and Schubert cells : a dictionary
W. BORHO - Invariant dimension and restricted extension of noetherian rings
51
J.T. STAFFORD - Generating modules efficiently over non commutative rings
72
F. TARA - Algebres simples centrales sur les corps ultra-produits de corps p-adiques
89
M. ZAYED - Caracterisation des algebres de representation finie sur des corps algebriquement clos
129
S. YAMMINE - Ideaux primitifs dans les algebres universelles
148
M.P. lfALLIAVIN - Ultra-produits d l a l geb r es de Lie
157
M.P. lfALLIAVIN - Grade et theoreme d'intersection en algebre non commutative (Erratum)
167
IV
T. LEVASSEUR - Sur la dimension de Krull de l'algebre enveloppante d'une algebre de Lie semi-simple G. MAURY - Un theoreme de l'ideal P.F.
173
a
gauche principal dans certains anneaux
184 197
SllITH- The Artin-Rees property
J.L. ROQUE - Etude d'une classe d'algebres artiniennes locales non commutatives 241
*
R. FOSSUM - Decompositions revisited
261
G. MISLIN - Classes caracteristiques pour les representations de
groupes
discrets
296
H. BASS - Automorphismes de
et de groupes de type fini
J.M. GOURSAUD, J.L. PASCAUD et J. VALETTE - Sur les travaux de V.K. Kharchenko S.
310 322
- Trace functions and affine fixed rings for groups acting on 356
non-commutative rings L.L. AVRAMOV - Invariants d'un groupe fini, engendre par des pseudo-reflexions, operant sur
375
un a n n e a u local
D. BARTELS - On non-normality of affine quasi-homogeneous
* 400
D.L. COSTA - Semi-normality and projective modules J.E. BJORK - On the maximal number noetherian rings
elements in ideals of 413
v D. SALLES - Dimensions pures de
423
modules
E. WEXLER-KREINDLER - Anneaux filtres complets et suites spectrales associees
442
publie avec Ie concours de l'Universite Pierre et Marie Curie Ia Premiere Section de l'Ecole Pratique des Hautes Etudes
*
* *
PREVIOUS VOLUMES OF THE "SEMINAIRE PAUL DUBREIL" l"ERE PUBLISHED IN THE LECTURE 795
(1979)
NOTES, VOLUMES 586 (1976), 641
and 867 (1980).
(1977),
740
(1978),
VERMA MODULES AND SCHUBERT CELLS A DICTIONARY by Sergei GELFAND and Robert MacPHERSON
Preface
This paper was completed in June, 1980. Since that time there has been marked development in the subject. Most notably, a beautiful proof of the Kazhdan-Lusztig conjecture has been found by Beilinson and Bernstein
and by Brylinski and Kashiwara (BKJ. We have indicated
some of these further developments by adding notes marked with an asterisk
*. The proof of the Kazhdan-Lusztig conjecture has much in common
with the ideas of this paper. It proceeds by establishing an equivalence of categories between an algebraic category including Verma modules as objects, and a topological category including intersection homology sheaves of Schubert varieties as objects. However, as explained in the note on page 36", the dictionary from topology to algebra arrising from this equivalence
of categories is different from the one proposed in this paper. Never the less, we believethere is still somemerit in the point
of view we present here. Several predictions we made on the basis of this dictionary have been substantiated. One is our conjecture 2.10 which has been proved by Deligne, Gabber, Beilinson, and Bernstein (LDBBj ,[GM4J). Another is the fact that the decomposition of the coherent continuation of a projective module to the wall of a Weyl chamber parallels the decomposition of the projection of an intersection homology sheaf of a Schubert variety in
G/B
to
G/p
(See the note on page 35).
It would be very interesting to find a unification of the point of view presented here and that of [BB] and [BK].
2
Introduction In [KLI] and [KL2], Kazhdan and Lusztig made a remarkable conjecture that relates properties of certain infinite dimensional representations of a semisimple Lie algebra with those of singularities of Schubert cells in a generalized flag manifold. This paper represents an attempt to understand the source of this relation. Being a preliminary draft, this paper contains almost no proofs. Let
G be a semi-simple Lie group with Lie algebra
two rather different categories associated to the category of
There are
G. One is a subcategory of
0 modules of highest weight of Bernstein, Gelfand, and
Gelfand (see § 3.5). The other is a category of complexes of sheaves on a generalized flag manifold for
G (see § 2.1). One relation between these two
categories is the Kazhdan-Lusztig conjecture which asserts that the multiplicities of a simple module in the Jordan-Holder series of a Verma module is the dimension of the stalk homology of the complex of sheaves that gives the middle intersection homology groups of Goresky-Mac Pherson. But it appears that these categories have much more in common. This paper contains a dictionary which puts some of these common features in a more or less organized form. We should mention two things we could not do. First we do not know how to construct a complex of sheaves from a g-module or vice versa. Second (which may well be implied by the first) we cannot prove the Kazhdan-
. conjecture . * • Although we could not find a direct relat10n . between Luszt1g the category of sheaves and the category of
G-modules we have found an
indirect relation in the form of a functor from each of them to a third category (see § 2.12, § 2.18, § 3.13). This enables us to find a topological analogue (see § 2.8) for the method of "walking through the walls of a Weyl
*
The Kazhdan-Lusztig conjectures have now been proved (see preface).
3
chamber (or coherent continuation) that was extensively used in representation theory ([BG], [Sch] , [VI])' We have learned that D. Kazhdan has found several similar results.
In the other direction, we were able to refine the original KazhdanLusztig conjecture by showing a Liealgebra interpretation of the complete Poincare polynomial of intersection homology sheaf (and not only of its value at the point
q
I , as in [KLI]).
*
§l contains notations and preliminary known results both from algebra and topology. §Z describes the topological side of the dictionary. §3 does the same for Lie algebras. We tried to arrange the material in more or less parallel form. For each result we use the notation (
§3.6) to indicate
where its counterpart may be found on the other side. We have stated some results which are fairly trivial when the parallelism with the other side was interesting. §4 contains the final comparison of the two sides of the dictionary and some remarks. Some readers may
to begin with this section.
§S contains some examples and tables.
Acknowledgements.
The authors would like to thank J. Bernstein, P. Deligne,
I.Gelfand, M. Goresky, D. Kazhdan, G. Lusztig, and D. Vogan for useful discussions on the subject of this paper. The second author would like to thank the Academy of Sciences of the U.S.S.R. and the American Academy of Sciences for support of this research through their exchange program.
*
Gabber and Joseph also found this refined conjecture (see [GJ]).
4
§l. Notations, conventions and preliminary results.
1.1.
Let
G be a complex semi-simple Lie group with Lie algebra
The
following data will be fixed throughout this paper. h
is a Cartan subalgebra of is a set of positive roots for the root system
Z
is the corresponding set of simple roots.
P
1S
of
h
in
half the sum of all the positive roots. is the nilpotent subalgebra of
(r e sp , n
generated by
root vectors corresponding to positive (resp. negative) roots. is the anti-involution (i.e. that is the identity on
h
2
1
identity. l[XY]
and transforms
to
[lY,lX]
n
is the
W is the Weyl group of corresponding reflection. £(w) generators
o
W acts from the left.
is the length function on a
, a E Z •
is the unique element of
W
o
W corresponding to the set of
W of maximal length; £(w
h* is the dual vector space to
is the bilinear form on 1S
and
non-negative integers
>
0
h*
induced from the killing form on if and only if
(X E
YE Z
ljJ- v
-
ljJ
A , not on
1.4. Schubert cells. Let root let
X
y
H be the Cartan subgroup of
For a subset G , generated by Denote by
Ac I
B and all
Hand
y
we denote by
X
peA)
the parabolic subgroup of
, a E A , so that
-a
be the dimension of
as a complex manifold
,where
combinations of roots in
6+(A)
B be
X , Y E 6+ .
P(0); B , P(I) ; G
the generalized flag manifold
card (6+'b+ (A»
h . For any
be the corresponding one-parameter subgroup. Also let
the Borel subgroup generated by
(A ') ->-
G, corresponding to
G/P(A) (d(A)
Let
d (A)
is equal to
is the set of positive roots that are linear
A). For
A' c A denote by
n(A',A)
the projection
(A)
For each C(w,A) ; B wowP(A)
w E W , define a Schubert cell
C(w,A) c
by
Summarize the properties of Schubert cells in the
following proposition :
Proposition. C(w,A) ; C(v,A)
if
-1
w
v
lies in
W(A) , and they are disjoint
otherwise. (So there is a one to one correspondence between Schubert cells in
(A») .
W' (A)
and the
7
The Schubert cells form a Whitney stratification of
¢(A) . In
particular the closure of a Schubert cell is a union of Schubert cells (axiom of the frontier). If C(w,A) c C(v,A)
Let
and
if and only if
w
ware in
TI(A',A)
to
TI(A,A')
C(w',A')
WI (A) , then
v
>
A' c A , w E Wl(A) , and
w-lw' E W(A) . Then of
v
w' E Wl(A') . Suppose that
C(w',A')
=
C(W,A) . Moreover, the restriction
is a fibration with a
2(d(A')-d(A)-2(w')+2(w»
=L
(real) dimensional open ball as a fiber. In particular, taking
A
see that
22(w')
C(w' ,A')
Suppose
is a cell in
A' c A and
¢(A')
of (real) codimension
w E Wl(A) . Then
!T(A',A)
-1---
we
C(w,A') .
C(w,A)
1.5. Sheaves. Let
X be a topological space. We denote by
of sheaves of vector spaces over the complex numbers on a sheaf is
S
=x
S
on an open set
. A sheaf
the sheaficiation Then
=
S
U c X is
SeX)
the category
X
The value of
, the stalk of
is called a constant sheaf with value
of the presheaf that takes the value
V for all connected
S
at
V if
x E X S
is
V on all open sets.
U. The constant sheaf with value
is called !(X)
We denote by
DbS(X)
the doubly bounded derived category of
(See [H] , [Vel]) . Thus an object
S·
of
DbS(X)
SeX).
is a sheaf of cochain
complexes
where i «
i (U)
.
i+l (U)
i (U)
{ •••
••. }
a complex vector space and
0 . A morphism from
S·
to
T'
in
i ( U)
DbS(X)
o
for
i» 0
and
is determined by a diagram
8
of chain-maps
t\
s' where
indicates a quasi-isomorphism, i.e.
on all homology groups of all stalks. If then the morphism is an isomorphism in
There are functors
I
'
q
induces an isomorphism
is also a quasi-isomorphism
nbs (x )
!!.i, and
f
from
S·
to
T
T
I
s (X)
I
(D)
...._--,_ _
is the complex that is
other dimensions. D
in dimension zero and zero in all
is the sheafification of the presheaf
• The translation functor
from
nbS(X)
to itself shifts the
(!
numbering of all chain complexes:
Proposition.
T
is characterized up to equivalences in
properties
!!.i (.!.(D)
The category
·e nbs (X)
if
i
if
i I- 0
by the
0
is a triangulated category
distinguished triangle denoted by
nbS(X)
([Vel] )
The
9 h
SeX) ..;;"'
_
S(Y)
f*
The functor
f*
called the pullback is defined as follows : if
5
Y is an etale map giving the sheaf
f*S
=
T
is given by the etale map
T
S
on
Y
([6], p. 110) then
X such that the following square
is a fiber square
5
The functor
f!
' called pushforward with proper supports, is defined
as follows ([Ve2], p.3) support is proper over
The functors and
Rf!
is those sections in
whose
U
f*
and
f!
determine right derived functors
Rf*
10
0 .
3) Dual support condition 2n-i
IC' (V»x f O}
dimt{x E Vi for all
0
Here, with respect to the directed system of neighborhoods x
, (Hi IC' (V»
=
x
(Hi IC' (V» x =c -
where
Hi c
lim Hi(U) ->
xEU lim Hi(U) c + xEU
denotes cohomology with compact supports.
U of
12
The sheaves of chain complexes
characterized by this
proposition are called intersection homology sheaves. They were constructed first in geometric topology in
then in algebraic geometrv in
[D]
(see [KL2]) . These constructions are proved to coincide in [GM3] . If is compact, then the hypercohomology groups of homology groups, satisfv Poincare duality: the numbers are equal.
V
IC'(V) , called intersection .
and the (2n-l)
Betti
13
§2. Topology 2.1.
Let
that
¢(A)
, the set of simple roots. Recall (§1.4)
A be a subset of
denotes the associated generalized flag manifold and
c(w) : C(w,A)4¢(A)
are the inclusions of the Schubert cells of
¢(A).
Definition. The category Chains (A) is the full subcategory of (where
¢(A)
is considered with its classical topology) whose objects
S
satisfy the following three conditions : I. Finiteness.
sional over
all
For
i
His'
is
zero if
3. Constructibility and all
1S
i E:
i
2.2.
§2.2
are all finite dimen-
is odd.
a constant sheaf on
CCw,A)
for all
;Z
Examples of objects in Chains of
HiS'
a;
2. Evenness.
w E: wI CA)
,the stalks of
(A)
are the cell sheaves
and the intersection, homology sheaves
IC'Cw,A)
of §2.5 •
Definition. For any
wE: Wi (A)
The stalk at
P
of
a;
if
o
otherwise
, the cell-sheaf i
Rc(w)!I[a;(C(w,A»].
is
H
p E: C(w,A)
is
and
i
0
Proposition.
A.
A)
The cell sheaf
lies in Chains
(A)
14
6. (
3.66)
have
the
The cell sheaves
, w E WI (A)
property that for any exact triangle in
Chains (A)
[I]
R'
I either
R'
Proof of o
v* H R'
6. -+
or
0
qi
T'
tll
0
.
Cell-sheaves have this property because by constructibility 0
is either zero or surjective.
H
from the long exact sequence in cohomology that
Then by evenness we find
R'or I
has no cohomology
and hence is quasi-isomorphic to zero,
2.3
( ...... 3.9)
of elements in
Proposition, filtration
Let
WI(A)
Suppose S = S· -0
::>
A be given. Let us choose a numbering in such a way that
S· S'
=1
J
::> ••• ::>
S· = 0 n
Let
C(w,A)
into
dew) ¢(A)
i > j
r
.
such that
S'/S' in =i =i+l k objects of the form T C(w.,A)
k
Proof.
implies
is in Chains (A). Then there exists a canonical
quasi-isomorphic to a direct sum of various
w. > W.
w1, •.. ,w
==
for
be the inclusion of the complement of the closure of , Then
satisfies the conditions of the
proposition.
15
2,4
We define the Grothendieck group of the category Chains (A) ,
K(Chains (A))
,to be the Abelian group generated by quasi-isomorphism
classes of objecm in
A subject to the relation
[R'] + [T']
[5']
whenever we have a triangle
[I]
(
We denote by
the equivalence class of
[5']
in
5'
K(A) .
I
For any Abelian group linear combinations ji E J , 7Z[q,q
-I
Ljiwi
]
J
we denote by
of elements
JW (A) I
Wi E W (A)
the group of formal
with coeficients
denotes the group of integral Laurent polynomials in
q
under addition ,
Corollary (
A.
3,8)
The Grothendieck group 2n T
rated by all sheaves
6.
K(Chains (A))
I , w E W (A) ,
There is an isomorphism k
K(Chains (A))
which takes to L P . w w 1/2 of the stalk cohomology of q
2.5.
n E 7Z
for
is the free Abelian group gene-
Let
c(w) : C(w,A) c
Schubert cell
C(w,A).
->
7Z[q,q-l]
Wi
(A)
where
s'
P is the Poincare polynomial in w at any point in C(w,A)
be the inclusion of the closure of the
16
Definition. c(w)!
( - - . . 3.66)
IC' (C(w,A»
IC'(w,A)
(w,A)
is an object in Chains (A) : finiteness is true of
A =
for any
V ; evenness was proved by Kazhdan and Lusztig
and it follows in general by applying
([GM3])
[KL2]
of §2.8 ; and
constructibility follows from the fact that homeomorphisms
is
(See §1.6)
algebraic variety when
The intersection homology sheaf
is
and the homeomorphism group of
invariant under
C(w,A)
is trans i-
tive on the Schubert cells .
2.6. v
and
The Kazhdan-Lusztig polynomial, w of
WI (A)
[IC'(w,A)]
(See §2.4) plicity of
V,w
, depending on two elements
l: P ·v v VW o ,wwo
denotes the class of
IC'(w,A)
In other words, the coeficient of 2n T C(vw ,A)
=
We say an element e=P.w+
[IC'(w,A)]
q
in n
in
in the composition series of
0
-r
The element
(q )
,is defined by
[IC'(w,A)] where
P
e
of
l W] (A)
Z>:[q,q
]
K(Chains (A» is the multi-
P v,w
=IC' (ww
0
,A)
has leading term
p·w if
l: P'v v>w v
has leading term
l·w. This follows from §1.6
property 1 .
2.7.
Proposition. (--,,3.6r). The intersection homology sheaf
IC'(w,A)
is indecomposable.
Proof.
Let
® ...
IC'(w,A) =
summands. Since
[IC'(w,A)]
also has leading term
],w
$
be a decomposition into indecomposable
has leading term Then this
R =i
]'w
for some
i
[R ]
=i satisfies all the axioms of §1.6
17
for
2.8.
c(w)! IC' (C(w,A»
Let
A and
and hence equals
A'
be two subsets of
IC'(w,A)
L:
.
Then we have a fiber square of
filtrations
(AnA')
TI(MA"/ (A')
/',AUA')
We have
Rrr(AnA',A')! Rrr(AnA' ,A)*
Definition.
Rrr(A' ,AUA')* Rrr(A,AUA')!
from
3.9) . The functor 1S
to
given by Rrr(AnA' ,A')! Rrr(AnA' ,A)*
2.9.
(see §1.5) .
Rrr(A' ,AUA') * Rrr(A,AUA')!
Properties of
A.
defines a functor
is the identity functor
Ii.
B.
Suppose
AnA' CAli c AUA'
r.
Suppose
A c A'
Chains (A')
from Chains (A) to Chains (A')
Then
,A') -F (A,A") ;
transforms cell sheaves in 1(A), to cell sheaves in Chains (A'). More precisely, if wE W .s;.(w,A)
Then
18
1 v = w(W(A) n W (A'»
where
and
n = 2(d(A) - d(A') - lew) +
. !(A,A')
does not in general transform indecomposable objects to indecomposable objects.
A.
Suppose
A
A' . Then
!(A,A')
transforms indecomposable
objects in Chains (A) to indecomposable objects in Chains (A') . In particular if
wE W1(A)
,then IC' (w,A')
!(A A') !(A,A')
never takes cell sheaves to cell sheaves unless
E. W(A')
Suppose
n WI(A)
A c A' . Let
of length
!(A,A')
=
A'
be the number of elements of
m n
d(A) - d(A') - n . Then
!(A' ,A") 0 !(A,A')
»(A o
n AI)
ej>(Am_ 1 n Am)
\/\/ \/\ ..
and hence the fiber product
*This conjecture has been proved by Deligne, Gabber, Beilinson and Bernstein [DBB] (the map f must be proper). This implies conjecture 2.10. See (GM4] for some general consequences of this result.
20 which maps to
C(w,A)
C
¢(A
m)
. This mapping denoted by
is a resolution of singularities of the Schubert variety
TT :
X({A. })
-+
C(w,A)
C(w,A) . It is
called the canonical resolution associated to the resolution data . In case all sets
AI'"
A have one element, it is the Demazure resolution [Dm]. m_ 1
We give two alternative characterizations of the sheaf
IC'(w,A)
which would follow from conjecture 2.10.
A.
( ...... 3.10 a) . IC' (w,A)
is the unique indecomposable
C (wo,A
K(Chains (A»
direct summand of ding term
whose class in
has lea-
I .w
6. R
o)
IC'(w,A)
is the unique indecomposable direct summand of
whose class in
TT!
K(Chains (A»
(In fact
I·w .
has leading term lI:(X({A.}».)
In many cases resolution data can be found for which is indecomposable. This happens when
X({A i})
R
. =a:(X({A.}» L
TT,
is a small resolution
(see [GM3]) . An example is given in §5.4.
2.12. Definition. S(¢(A»
The category Sheaves (A) is the full subcategory of
whose objects
S
I) Finiteness.
satisfy the conditions :
All stalks of
2) Constructibility all
c(w)* S
S
are finite dimensional over
is a constant sheaf on
wEWI(A)
Definition.
( . . . . . . 3.13). The total homology functor
: Chains (A)
+
Sheaves (A)
is defined by
C(w,A)
a:. for
21
2.13.
A.
Properties of the functor
H(A) .
takes exact triangles in Chains (A)
[I]
-
£(v,A)
->-
a
Then this extension is nontrivial if and only if
2.17.
wand
--+
Let
A be a subset of
L. The category
{a}
y(v,w)
Att(A)
of attaching schemes
is defined as follows : An object of
A is a pair of data w E WI (A)
complex vector space for each E(v)
->-
E(w)
v,w E WI (A)
for each
v
such that
V = to + t 1
A morphism for each
tn
+ ••• +
v E W'(A)
{E(v),e(v,w)}
+
E(w) =
E(v)
e(v,w)
E' (v)
e'(v,w)
*
= So
{E'(v),e' (v,w)}
+
sl
+ •.. +
is a map E(v)
sn
W
+
E'(v)
1
E' (w)
J (A) : Sheaves
and (y(w,v)t
The contravariant functor
gories between Sheaves (A)
E(w)
)
, e(v,w) = (y(w,v»t to the sheaf
is the vector space dual of
Proposition.
v
w . These data are
such that the obvious diagrams commute:
There is a contravariant functor
the data
->-
W , then
1
2.18.
is a
E(w)
is a linear map
and e(v,w)
subject to the commutativity restriction: whenever and
where
{E(w),e(v,w)}
and
J(A)
Att(A)oP.
which assigns S . (Here (S(w»
is the adjoint of
*
y(w,v).)
gives an equivalence of cate-
24
Proof.
We will construct the inverse functor
Given an attaching scheme
{E(w),e(v,w)}
J(A)-I
Att(A)
and an open set
Sheaves (A).
Uc
,
we de-
fine T(U)
{E(w) IC(w,A) nUt 0}
=
That is,
T(U)
comes equipped with maps
meets U)
such that the diagrams
E(w)
1
T(U)
(whenever
C(w,A)
E(v) e(v,w)
T(U)
E(w)
commute (whenever property. If
v
W)
U' c U then
so there is a unique map from
E(w)
and
T(U)
is the universal vector space with this
{E(w) !C(w,A) n U' t 0} c {E(w) !C(w,A) nUt 0}
T(U,U') : T(U)
--+
by the universal property of
the sheafification of the presheaf
P
T(U') commuting
T(U). Now
with the maps
J(A)-I {E(w),e(vw)}
whose value
is
is
T(U) * and
whose restriction map P(U' ,U)
2.19.
Let
A and
A'
G(A,A') Given an object
be subsets of Att(A)
{E(w), e(v,w)}
--+
L.
Att(A')
in Att(A)
G(A,A') {E(w),e(v,w)} = {E' (w),e'(v,w)}
Case 1 : A pew) = w W(A') n WI(A) coset
w WI(A').)
A' . Define (i.e. pew)
We will define a functor
, we describe
first in two special cases.
p : WI(A')
--+
WI(A)
by
is the element of minimal length in the
25
Then if
w E Wi (A'),
E' (w)
if
v
e' (v,w)
-+ w,
Case 2: pew)
w W(A)
n
E(p(w»)
{Che i.dent
Lty i f
otherwise
e(p(v),p(w»
A c A': Define similarly
p
= pew)
p(v)
WI (A) -;. WI (A' )
by
WI (A') •
Then if
wEWI(A'),
if
v -;.
E' (w)
e' (v,w)
W
E(v) $ -I vEp (w)
e(v',w') L;..I v'Ep (v) -I w'Ep (w) -+
General case
for arbitrary
G(A,A' )
2.20.
Proposition.
A,A'
,we define
C L
G(An AT ,A') G (A,An AT)
There is an evident definition of The functor
w'
G(A,A')
For any
G(A,A')
on morphisms of
satisfies formal properties similar to §2.9.
two subsets
A and
A'
diagram of categories and functors is commutative
1
1
> Sheaves
Sheaves (A)
H(A'j
H(A)
Att(A)
Att(A)
G(A,A')
>-
Att(A')
(A' )
of
L
,the following
26 In the special case of
G(A,L)
formula for the total cohomology of a sheaf
,this proposition reduces to a S
in Sheaves (A) .
(fJ
wE WI (A)
If
S
is a constant sheaf, this is the usual formula deduced by regarding
U C(w,A)
as a
C-W
decomposition of
with even dimensional cells.
27
3. Algebra Let
3. I.
n be an orbit of W
unique element of
n
'J!
--+
XE
n
an inclusion
'J!, X E n we have
X with
f('J!)
M(X)
C
= X('J!,X)
M(X+) f(X)
for a
X('J!,X) E
unique
Definition. for
be the
lying in the closure of the positive (resp. negative)
Weyl chamber. Let us fix for each Then for any
(resp. L)
. Let
'J!
--+
The characteristic elements
Y(X,'J!) E
X are defined by \ (X('J!,X»
being the anti-involution of §I.I . 3.2.
Lemma.
XI = (/)1
--+
If (/)2
XI
= 'J!I
--+
--+ ••• --+
'J!2
--+ ..• --+
(/)k = X2
and
'J!k
' then
The proof is obvious.
3.3.
Proposition.
Let
is the unique element in
Proof.
Let
'J!
--+
U(n ) -+
Then up to a constant multiple, of weight
Y('J!,X)
with the property
M(X)
and let ( , )
be
M(X)
M coincides with the kernel of the bilinear form
It is easy to see that the weight space by
X-'J!
M be the maximal proper submodule in
the Jantzen bilinear form on Then
X
f('J!) = X('J!,X) f(X) • Now for
XE
M'J!
(,)
(See [J],1.6).
is one dimensional and generated of the weight
.p-X it is clear
28 that
Xf(X)
lies in the kernel of Jantzen form if and only if
3.4.
Proposition.
16).
Suppose
l/J
X and
--+
1X(M(X)l/J)
M is an ext en-
sion
o
M(X)
--+
--+
M --+ M(l/J)
--+ 0
Y(X,l/J)(Ml/J) f {a}
Then this extension is non-trivial if and only if
U(Ec_) - free modules.
3.5.
We will consider
modules
a
VE
with the
following property (F) V is free as a
Definition.
a
Definition.
For a
3.6.
module.
U(Ec _)
is the full subcategory of
W-orbit n
*z:
in
a
we let
whose objects satisfy (F)
a en)
be
a
n
a(n)
.
Examples. X En, the Verma module
A)
If
6)
The Verma modules
either (
V
=
0
--+
or
V'
2.5)
If
--+
M(X)
--+
V'
a_en)
--+
a_en)
0
O. X En, the projective module
P(x) is not in
V
lies in
M(X) , X En, are characterized
by the property that for any exact sequence in
o
M(X)
a
is indecomposable in unless
X
P(X)
lies in
a_en)
is in the negative Weyl chamber •
a (n)
0
29 3.7.
Let
of elements in
Proposition. {O}
= Vo
C
Q in such a way that
C
Xi [> Xj
implies
XI' ... 'X n
i.:: j
V E 0_ (Q) . Then there exists a unique filtration
Let
VI
Q be given. Let us choose a numbering
•••
C
V n
sum of several copies of
= V such that V/V i_ 1 is isomorphic to a direct M(Xi) .
Proof. Define Vi as the of XI_P Xi-p . It is easy to see that these V , ... ,V
V generated by the weight spaces
V.
satisfy the conditions of the
1
proposition.
3.8. Corollary. gory
O_(Q)
K(O_(Q»
The Grothendieck group
is the free Abelian group generated by all
M(X)
of the cateX En.
for
So there is an isomorphism
where
3.9. Then
A = )K(Q)
which takes
The functors F(Q,Q')
F(Q,Q') . Let
to
Q and
is the projective functor
the following property respectively, and let W(Q)w+ • Then
M(wL)
F(Q,Q')
Let
and
w+
I.WW
o
Q'
be two orbits of
O(Q)
--+
O(Q')
W in
*
determined by
be maximal elements of
Q and
Q'
W be the (unique) minimal element in the set is the indecomposable projective functor such that
F(Q,Q') M(X+) = P(W) . (See [BG] for the definition and properties of projective functors, in particular :
Proposition. projective modules in
F(Q,Q')
O(Q')
takes projective modules in
O(Q)
to
30 3.10.
Properties of
F(n,n')
A. F(n,n') defines a functor from 6. If }f{(n) =}f{(n') B. Suppose
,then
F(n,n')
is an equivalence of categories
}f{(n) n}f{(n') c}f{(n") c}f{(n) U }f{(n')
then
F(n",n') F(n,n") = F(n,n').
r.
Suppose }f{(n) c}f{(n') • Then
to Verma modules in
O_(n')
elements in
n'
nand
F(n,n')
More precisely, if
respectively, and if
F(n,n') M(w X ) where
transforms Verma modules in
M(v
X_
and
° (n)
are minimal
wE Wi (}f{(n»
, then
) does not in general transform
v =
indecomposable objects to indecomposable objects.
A.
Suppose }f{ (n)
in
O_(n) to indecomposable objects in O_(n') . In particular, if
:::>
}f{(n') . Then
are minimal elements in F(n,n') P(w
F(n, n')
nand
n'
transforms indecomposable obj ects
respectively and
x_ and
wE W'Q+Kn», then
X )
F(n,n')
never takes Verma modules to Verma modules unless }f{(n) =}f{(n')
E.
nand
Let
W(A) c W(A') .
n
be two orbits with
Id
}f{. F(A,A')
Proof.
so that
Then F(n' ,n) F(D,n')
where
A =}f{(n) c A' =}f{(n')
[W(A')
is the identity functor in
°
W(A)] Id (n').
is an exact functor.
All of these properties (aside from the first one in
from [BG] , especially theorem 3.4.
A )
follow easily
31
We
3.lOa.
give a well-known characterization of the indecomposable projec-
tive modules
P(lji)
Proposition.
Suppose
let
in terms of the projective functors
lji E
A = )f{ (Q) , and let
weight in
Q to
lji
)f{(Qo), •.• ,)f{(Qm) weight in
Q
o
whose class in
3.11.
Let
w E WI (A)
Then
P(lji)
K(O (Q))
lji
W orbits
Qo, •.. ,Qm
C(w,A) . Let
X+
so that
be the dominant
is the unique indecomposable direct summand of
has leading term I'w . X E h*
and
. Define the vector space
V[X]
by
VX-p/U(g){ V1jJ-p} n VX-p - 1jJC>X 1jJ'h
It is easy to see that
V{X)
Lemma.
and
V E O_(Q)
of proposition 3.7 so that
3.12.
W orbit containing
be the element that takes the antidominant
is resolution data for
V[X]
dim V[Xi] = n
Q be the
. Let
• Choose a sequence of
VEO(Q)
Let
*
F(Q,Q') ( ....... 2. I IA).
may be different from zero only if
0 = V o VJV i_
1
C
VI c
.•.
C
XE Q •
V = V be the filtration n
= M(Xi) $ ... @ M(Xi)
(n
i
times) . Then
i
Proposition.
Let
characteristic element
V E O_(Q) Y(1jJ,x)
and
X, 1jJ E Q with
1jJ --+ X • Then the
defines a linear transformation
Y(1jJ,x) : V(1jJ) --+ V(X) The proposition follows easily from propositions 3.3 and 3.7.
3.13. ( ....... 2.12, 2.18) . Let and let
x_
Q be a
be the minimal element in
W orbit in Q.
*
with
A =)f{(Q)
32 Let
Att(A)
be the corresponding attaching category (See §2.17).
Proposition. wE WI (A)
The map V'IMrl" {E(w), e (v, w)}
and
e(v,w) = Y(v X_,w X_)
defines a functor
3.14.
a(Q) : V_(Q)
--+
for
where
E(w) = V[w
v,w E wI (A)
x_l for
with
v
--+
w
Att(A)
Properties of the functor
A.
a(Q)
is an exact functor.
6.
a(Q)
induces an isomorphism of Grothendieck groups.
B.
a(Q)
is not an equivalence of categories.
In particular it does not preserve indecomposability.
3.15.
Let
Q and
Q'
Proposition.
be two
W orbits with
A
>K(Q)
and
A' =>K(Q') .
The following diagram of categories and functors
is commutative :
0_ (Q)
F(Q,Q')
atOll
0_ (Q')
1
Att(A)
a(Q')
Att(A')
G(A,A') (where
G(Q,Q')
is defined in §2.19)
It is enough to prove this for two cases: A
At
and
A
A' .
In the first case it is easy. In the second case one has to use some properties of characteristic elements.
33
3.16. In [J] ,ch.5, Jantzen defined a filtration of a verma module M(X) by If-submodules
We will formulate conjectures about the relationship of this filtration with the Kazhdan - Lusztig polynomials of §2.6
Let in
Let
Definition.
be an A
W-orbit
and [KLI]
in
and
x_
be the minimal element
.
I
For
wI ' w E W (A), 2
the simple module
L(W
of the Verma module
3.17. Proposition.
I
X_)
M(w
(i)
2
let
m (wI ,w i 2)
in the quotient
be the multiplicity of
Mi/M + i 1
of Jantzen's filtration
X_) .
m i(w l,w 2)
(iii) m (w,w) o
does not depend on
=
I ; m (w,w) i
=
0
only on
for
i
>
0
The proof of the first part of this proposition is rather complicated and relies on the behavior functors
F
)
with
}f{
=
of Jantzen's filtration under projective }f{
. Parts (ii) and (iii) are easy.
3.18. Definition. (of the Jantzen polynomial) . Let of
and
be elements
WI(A) . Define
3.19. wo
wI
Let
P w
(q)
be the Kazhdan - Lusztig polynomial for
WI(A). Let
l,w2
be the unique maximal element in WI(A) (under the ordering
).
34
is a poly-
Conjecture. (improved Kazhdan - Lusztig conjecture). nomial in
q
,and
(*)
J w
Remark. For
q
=
I
w
I' 2 (*)
(q)
becomes usual Kazhdan - Lusztig conjecture,
see [K-LI] , (1.56)
3.20.
We cannot prove,of course, conjecture 3.19. The strongest evidence for
this conjecture is that it agrees with properties of Jantzen filtration from [J] , Satz5.3.
Namely, one can prove the following result. Let
Also for any
wEWI(A)
let
few)
be the set of all
WI
E WI (A)
with the properties (i)
WI
-) (ii) w
NI.
Suppose M = m +••• + 1R
(ii).
For each 1
for some positive
k, N = N n m.R is essential submodule of i
i
m.R and thus without loss of generality we can suppose that M is cyclic and M = mR.
Let E = {rEO R : mr e N}.
Then E is a right ideal of Rand
E (lIn, EI for some positive integer n. MIn
Thus N n MIn
=0
NI
and hence
= O. (ii)
=*
(iii).
Define
=' {T : T is a submodule of M and N n T = NI}. Then NI e:.. 1 and let N = m1R +••• + m n_1R.
because (i) holds.
By
induction on n we can assume 00
n
() Nl
n=l Let k be any positive integer.
Let
M= M/Nlk,
k
m = m + NI • n
n
= by (i).
= O.
(4 )
For every integer s
k
Then
-m I s n s=l n
= o
Thus
But k was arbitrarily chosen, so that
n 00
MIs
=
s=l by (4).
o
Thus (ii) holds.
In general, we pass to the ring R I• finitely generated right Rr-module.
Let M r
=
RR
1•
Then M is a
It can easily be checked that rR
r
has the intersection property and hence
This just means that (ii) holds.
This completes the proof.
A module M is an essential extension of a module N if N is an essential submodule of M. 2.5
Theorem
p.274 Theorem 2.60).
Let R be a right Noetherian
ring with Jacobson J such that R/J is an Artinian ring.
Then the following
210 statements are equivalent. (i)
J has the AR property.
n n=l MJn = 0 00
(ii)
(iii)
for every finitely generated right R-module M.
Every finitely generated essential extension of an Artinian right
R-module is Artinian. Proof.
(i)
(ii).
(ii)
(iii).
By Theorems 2.2 and 2.4, or directly. Let N be an essential submodule of the finitely
generated right R-module M and suppose N is Artinian. chain
N (\ MJ
N "i1J2
•••
must terminate and so there exists k such
that
n MJn 00
s Thus MJ
k
Then the descending
n=l
= o,
= 0 and hence 1·1 is Ar-ti.n i an ,
(iii)
(i).
Let N be an essential submodule of a finitely generated
right R-module M such that NJ = O. Artinian by (iii). integer t.
Then N is Artinian and hence M is
Thus M has finite length and MJ
t
= 0 for some positive
By Theorem 2.1 J has the AR property.
I.M. Musson (see(§, p.105») has shown that there exist right and left Noetherian domains with non-Artinian cyclic essential extensions of irreducible modules. 2.5
Lemma.
IJ
JI.
Let I and J be ideals of a ring R such that J
Suppose that J and I/J have the AR property.
I and
Then I has the
AR property. Proof.
Let M be a finitely generated right R-module and N an essential
submodule of M such that NI = O. some k
1.
Then NJ = O.
k By Theorem 2.1 MJ = 0 for
We prove by induction on k that some power of I annihilates M.
211
If k
=1
then this follows because I/J has the AR property.
and let V But MlsJ
MJl
MI 2s
i.e.
= {XE:- M : s
xJ
VIs
= o,
k-1
= a}.
=0
so that MIs
Then VIs
=0
for some s
s V and hence (Mls)I
Suppose k > 1 1 by induction.
= 0,
By Theorem 2.1 I has the AR property.
Let R be a ring and I an ideal of R.
Then I has the
if
for every submodule N of a Noetherian right R-module M there exists a positive integer k such that
equivalently, for every essential submodule N of a Noetherian right R-module M with NI
=0
there exists a positive integer k such that Ml
(see the proof of Theorem 2.1). if "AR" is replaced by "nAR".
k
=0
It is clear that Lemma 2.6 remains true The next result is due to
and
Gabriel (.;J). 2.7
Theorem.
Let I be an ideal of a ring Rand c a central element
of R such that c e 1.
Then I has the nAR property if and only if IIRc has
the nAR property. Proof.
The necessity is obvious.
the nAR property.
Let N be an essential submodule of a Noetherian right
R-module M such that NI (m
e
= O.
for some positive integer m. Mc
Then Nc
= O.
Define f: M + M by f(m)
= me
Then f is an endomorphism of the Noetherian module M and so
M).
ker f
i.e.
Conversely, suppose that liRe has
m
= O.
Thus J
n im
fm = 0
But N
= Rc has
kerf and hence im
= 0,
the nAR property (Theorem 2.1) and the
result follows by Lemma 2.6. An ideal I of a ring R is polycentral (or has a centralizing generators) provided there is a finite chain of ideals
of
212 such that for each 1
n, the ideal I./I. 1 is generated by a finite
j
J
collection of central elements of R/I. 1. J-
2.8
Corollary.
J-
The theorem gives at once:
Any polycentral ideal has the nAR property.
In
particular polycentral ideals of right Noetherian rings have the AR property. 2.9
Theorem.
For any polycentral ideal I of a ring R the following
are equivalent: (i) (ii) Proof.
I has the finite intersection property. I has the AR property. (ii)
(i).
(i) ==} (ii). radical of R. not.
See the remarks after Theorem 2.2. Suppose first that I is contained in the Jacobson
We prove that I is a Noetherian right R-module.
Suppose
Let E be a right ideal of R chosen maximal with respect to the
properties E
I and E is not finitely generated.
Then E
I.
Without
loss of generality, because I is pOlycentral, we can choose a central element c E. I with c I E.
Then E + cR is a finitely generated right ideal.
Let F = {rE. R : cr E.E}.
Then F is a right ideal of Rand E
F.
Thus
we can copy the proof of Theorem 1.8 (ii) to conclude that E is finitely generated, a contradiction.
Thus I
R
Let G be a right ideal of R.
is Noetherian.
Then G (\ I is a submodule of the
Noetherian right R-module I and hence Corollary 2.8 gives (G
n
I) (\
I. In
for some positive integer n, i.e.
It follows that I has the AR property.
(G
n I) I
213
In general, pass to the ring R (Lemma 2.3). I
Since IR
I
is poly-
central, has the finite intersection property and is contained in the Jacobson radical of R it follows that IR has the AR property. I I be a right ideal of R.
Let H
By passing to R we see that there exists a I
positive integer m such that Hn Let h e; H
n r".
r"
{rE.R : r(la)E. HI
for some a in I}.
Then h(1b)E. HI for some b in I and thus h e; hb+HI = HI.
It follows that I has the AR property. Let R be the polynomial ring S[x] for some ring S.
CorollaEY.
2.10
Suppose that the ideal Rx has the finite intersection property.
Then S is
a right Noetherian ring. Proof. 3.
By Theorems 2.9 and 1.7.
Group rings Let J be a ring and G a multiplicative group.
collection of formal sums
Let JG denote the
l: a x
XE. G x
where a £J and a x x
t
0 for at most a finite collection of elements x in G.
Define l:axx = l:bxX x x
if and only if
l:a x + l:b x = l:(a + b )x, x x x x x x x (l:a x)(l:b x) = LC x x x x x x x where c
x
Then JG is a ring called a
= l: ab(xEG). yz=x y z ring.
ax = bx and
(XE
G),
214
JG + J
Define a mapping
x
Then
x
by x ) = I:a • x x
is an epimorphism with kernel
= {I:axx
I:a
x
x
x
=
O}
=
I: (x-l)JG, xe G
and g is called the augmentation ideal of JG. If J is a commutative ring then the map x to an anti-automorphism of JG.
x- 1 (x a G) of G extends
Thus JG is right Noetherian if and only if
it is left Noetherian and we say simply that JG is a Noetherian ring. A group G is polycyclic provided there exists a finite chain of subgroups (5 )
such that for each 1 is cyclic.
If
i
n, G is a normal subgroup of Gi and G i/G i_1 i-1
2S. and :J.. are group classes then an
G with a normal subgroup N such that N is an
group is a group and G/N a b.-group.
Polycyclic-by-finite groups are precisely the groups G such that there exists a chain (5) with each factor G./G. 1 cyclic or finite (1 1 1-
i
.
n).
The number of factors G./G. 1 which are infinite cyclic is an invariant 1 1of the group called the Hirsch number which we shall denote by h(G).
The
next result is due to Hall (11, Theorem 1). I'J
3.1
Theorem.
Let R be a ring which is generated by a subring S and
a polycyclic-by-finite group G such that x-ls x e: S for all s in S and x in G.
If S is right Noetherian then so is R.
Proof. (1
i
Let G have a series (5) with factors G./G. 1 cyclic or finite 1 1n).
The proof is by induction on n, the case n
=0
being clear.
215
Suppose n > 0 and let H Hand S.
Let T be the subring of R generated by
By induction on nTis a right Noetherian ring.
=m
1 and let Z denote the centre of N. AR property.
Also by the first part
If
Suppose
R has the
R has the AR property and clearly
because Z is the centre of N n R
R
=
R
s
R
=
R
R.
Thus by Lemma 2.6 g R has the AR property. 3.4 G
Let J be a ring which contains the rational field Q and
Lemma.
a polycyclic-by-finite group such that
for some a in Proof.
gJ.
Then
G
nco
gn = {r e n=l=
JG :
r(l-a) =
0
is finite-by-nilpotent.
For each positive integer n define
Then D is a normal subgroup of G and n (6)
for all n
1.
Here
[Dn .GJ denotes the subgroup generated by all
tators
with x in D , y in G. n
To see why (6) holds observe that
[x,yJ - 1 = x- 1y 1(xy_yx)
=
- (y-l)(x-l)} g
n+l
commu-
217
provided
XE.
D yEO. G. n•
Consider the chain
Since h(G) is finite there exists a positive integer m such that Dm/Dm+1 is a torsion group. (x
-1 k )
e Dm+ l'
Let Xc D •
There exists k
m
k
Suppose x e. D l' m+
1 such that x\, D + or m 1
Then
-
1
to- g
m+1
and since x - le. gm we have k ( x-1 ) c g
Thus x - 1 E. g,m+l and
X
Dm+l'
m+l
•
It follows that D m
Let y
= Dm+1•
We can suppose
Then
D •
m
n co
gn n=l =
y - 1
and so (y-l)(l-a) = 0 for some a
E.
g'
It follows that y has finite order.
Thus D is torsion group and hence is finite. m
3.5
Theorem.
(ii) (iii) (iv) (v) Proof.
m
Let K be a field of ch1racteristic zero and G a poly-
cyclic-by-finite group. (i)
By (6) G/D is nilpotent.
Then the following statement are equivalent.
G is finite-by-nilpotent. g has the AR property. Every ideal of KG has the AR property.
£
is polycentral.
Every ideal of KG is polycentral. (iii)
(ii), (v)
Lemma 3.4 and Theorem 2.2. Corollaries 2.8 and 3.2.
(iv) are trivial. (v) ==}
(ii)
(L) follows by
(iii). (iv) ==9 (ii) follow by
Finally (i)
(v) by
218
Theorem 3.3 is still true if K is replaced by the ring Z of rational integers provided (i) is replaced by (i)' G is nilpotent. For a group G, and prime p a subgroup H is a p-group if every element has finite order coprime to p. normal subgroups 3.5
N
By 0 I(G) we shall mean the intersection of all
such that GIN has no non-trivial normal pi-subgroup.
Theorem.
Let K be a field of characteristic p
polycyclic-by-finite group.
(i) (ii) (iii) Proof.
p
> 0
and G a
Then the following statements are equivalent.
G/O I(G) is an extension of a nilpotent group by a finite p-group. p
g is polycentral. Every ideal of KG is polycentral. See (23).
'"
The argument of Lemma 3.4 shows that is J is a ring of characteristic p > 0 and G a finite group such that ee
n
n=i -
={re
JG
r( i-a)
=0
for some a (;; g,}
then G is an extension of a p'_group by a p-group.
A group G is called
p-nilpotent (p a prime) if every finite homomorphic image is an extension of a 3.5
by a p-group. Theorem.
Let K be a field of characteristic p > 0 and G a poly-
cyclic-by-finite group. (i) (ii)
(iii)
Then the following statements are equivalent.
G is p-nilpotent.
.! has
the AR property.
Every ideal of KG has the AR property.
219
Proof.
(L)
(H) follows by
(i)
(Hi) by (?j).
Note that for any polycyclic-by-finite group G, there exists a p-nilpotent normal subgroup N of finite index in G.
Of course. for fields
K and polycyclic-by-finite groups G. Theorem 3.1 gives that the AR and fAR properties coincide.
For other groups the situation is rather
different. Let K be a field of characteristic p
Theorem.
3. 6
Abelian group.
0 and G an
Then a necessary and sufficient condition for
to have
the AR property is that either (i)
p
=0
and G is an extension of a finitely generated group by
a torsion group, or (ii)
p
> 0
and G is an extension of a finitely generated group by a
pI_groUp. This theorem can be contrasted with Let
Theorem.
3.7
Abelian group.
K
be a field of characteristic p >,
0
and
Then a necessary and sufficient condition for
G
an
to have
the fAR property is that either (i)
p
=
(ii)
p
> 0
0, or
and for every finitely generated subgroup N of G the group
GIN has no p-elements of infinite p-height. The proofs of Theorems 3.6 and 3.7 can be found in (?7) and respectively. of p.
By a p-element we mean an element with finite order a power
An element y has infinite p-height if
n (D
yE n
where GP
n
= {x p : x e G}.
n=l
n
GP
Finally we note the following result.
220
3.8
Theorem.
Let K be a field and G any group.
Then g has the fAR
property if and only if g has the finite intersection property. =:
Proof. 4.
See (28). ""
Localization We have seen that if an ideal I of a ring R has the AR property then
R satisfies the right are condition with respect to T where T = {1-a : a a L}, Recall that C(I) is the set of elements c in R such that whenever rEo R, cr s, I or r c e I implies r
e,
1.
He are interested in conditions under whi.ch
R satisfies the right are condition with respect to e(I). 4.1
J
Let I be an ideal of a ring Rand J an ideal such that
Lemma.
I and J has the AR property.
Then R satisfies the right are condition
with respect to c(I) i f and only if R/Jn satisfies the right are condition with respect to C(I/Jn) for all positive integers n , Proof.
The necessity is clear.
Conversely, suppose that R/J
the right are condition with respect to C(I/Jn) for all n >, 1. c E C(I).
n
satisfies
Let
There exists k >, 1 such that (cR + cR)
n
Jk
(rR + cR)J.
But there exist r'£ R, c'E C(I) such that rc'- cr'E Jk and so rc'- cr' = ra + cb for some a,b E. J.
Then r(c'- a) = c(r'+ b)
and c/ - a E C( I).
It follows that R satisfies the right are condition with
respect to C(I). 1±.2
Lemma.
Let I be an ideal of a right Noetherian ring R and a a
221
central element of R such that a
I.
If R/Ra satisfies the right Ore
condition with respect to C(I/Ra) then R satisfies the right Ore condition with respect to C(I). Proof.
Let r e R, ce.C(l). rC
where J
= Ra.
R, CkE. C(l).
k
1EC(I)
I
-
cr
1
E.
such that
J
Let k be a positive integer and suppose rC
for some r
Then there exist rl .R, C
k
- cr
J
k
k
Suppose se:.R satisfies k
= sa • There exist s/E R, c/e. C(I) such that sc /-
for some t E. R.
CS'
=
ta
Then rc k c /- crk c l
k = (cs ' + t a Ia
=
and so
= where c k+1
= ckc /
.
k C(I), r k +1 = r k c / + s/a •
The result follows by
Corollary 2.8 and Lemma 4.1. 4.3
Let Q be a polycentral semiprime ideal of a right
Theorem.
Noetherian ring R.
Then R satisfies the right Ore condition with respect
to C(Q). Proof.
Let Co
= O.
c • • • • • c be a finite set of elements in Q such that 1 n
The result is proved by induction on n.
If n
=0
apply Goldie's Theorem
222 (9, Theorem 4.1).
induction R/Rc C(Q/Rc
1
Suppose n > 1.
Then c
1
is a central element and by
satisfies the right Ore condition with respect to
By Lemma 4.2 R satisfies the right Ore condition with respect
l).
to C(Q). 4.4
Let R be a right Noetherian ring such that every prime
Lemma.
ideal has the AR property. Proof.
Then every ideal of R has the AR property.
Suppose the result is false and let I be an ideal chosen
maximal with respect to not having the AR property.
Then I is not prime
and hence there exist ideals A, B, each property containing I, such that AB
I.
Let E be a right ideal of R.
By the choice of I both A and B
have the AR property.
Thus there exists n >, 1 such that
and there exists m
such that
>, 1
EA Let k
= max{m,n}.
n
m B
Then E
(EA)B = E(AB)
n
I
k
s
EI.
EI.
It follows that I has the AR property.
This contradiction proves the result. 4.5
Example.
Let K be a field and K[[x]] the ring of formal power
series in an indeterminate x.
Let R be the subring of the ring of 2 x 2
upper triangular matrices over K[[x]] consisting of all matrices of the form g(x)l
with f'(x L, g(x )
K[ [x]J •
Then R is right (but not left) Noetherian and
has only two prime ideals M > P where
g(X)J xf'(x )
: f ( x L, g(x)c;: K[[xJJ
}
223 and
Note that RIM
= K and
p2
= O.
Then every ideal of R has the AR property
but R does not satisfy the right Ore condition with respect to C(P). To check that H has the AR property let E be a right ideal of R. Without loss of generality we can suppose that E N the submodule of S
Let S = K[[xJJ and
S defined by
(g(x), h(x»E. N
i f and only if
Then N is an S-submodule of S $ S.
for some t
M.
1 (Theorem 1.1).
Lc roo
g(X
J
hf x )
e E.
But S is a Noetherian ring and hence
Then
E
n !'It +l
=
{x E R :
EM n.
Thus M has the AR property. Let
Then
CE
C(p) and P
rx E cR}.
Thus R does not satisfy the rightOre condition with respect to C(p). The above example is essentially due to A.W. Chatters
If I is
an ideal of a ring R such that I has the AR property then to check whether R satisfies the right Ore condition with respect to C(I) it can be supposed that I is nilpotent (Lemma 4.1). Question 3.
Let R be a (right and left) Noetherian ring and N the
224 maximal nilpotent ideal of R.
Does R satisfy the right are condition with
respect to C(N)? In Question 3 we can suppose without loss of generality that N2 because of the following result of Cozzens and Sandomierski 4.6
Theorem.
Theorem 2.4).
Let Q be a semiprime ideal of a right Noetherian ring R Q and R/I 2 satisfies the right are condition
and I an ideal such that I with respect to C(Q/I2). respect to C(Q/I 4.7
=a
n)
Corollary.
Then R/I n satisfies the right are condition with
for all positive integers n. Let Q be a semiprime ideal of a right Noetherian ring
R and I an ideal such that I
Q, I has the AR property and R/I 2 satisfies
the right are condition with respect to C(Q/I2).
Then R satisfies the
right are condition with respect to C(Q). Proof.
By Lemma 4.1 and Theorem 4.6. Let R be a right Noetherian ring and N the maximal nilpotent ideal of
R.
Note that N is a semiprime ideal of R Define L
= {r
R: cre.N 2
for some c in C(N)}
and K = {r Eo R : rc Then K is an ideal of R. c
1,C2,CE.C(N)
E.
N2
for some c in C(N)} •
for suppose r,r
1,r2
0
p
. (We note that most of the formulas
2 , but to avoid having to write the special
=
p = 2 , we delay the discussion of this case to the end of this
cases when paper). Let
A
=
k [[ X ]]
and set
A
l I X]]
k
'I
!(X
q)
where
'I
pe . Then
m induces a
ring homomorphism
A
A
'I
'I
III
A
'I
given by
+ J (X
III
1 +
o .
X+ X
G
so this map is well defined. In
III
A
'I
let
X+ X
X . Since char
G
X + 1, then
S
p , we get
o
X)q
G
k
x
S - 1 , and
It follows that :
A
Hence we conclude that
'I
k [Z!q Z]
is the group ring
Z!q Z
where
is written
multiplicatively with generator 0 , and the map m is just the Hop f algebra map for a group ring. Let
denote the (full) subcategory of
''I
such that
a
q
=
0 . Then
l-
consisting of those pairs (M,a)
is just the category of
A -modules of finite 'I
type. Just as before we construct the representation ring of by Re(k)
or better
(where
A
'I
and denote it
q = pe). He want to find a presentation of
Al mkv i s t r-Fo s sum ]
as a ring. This is solved essentially in
and we
review the results here. Much of the formalities is similar to the characteristic zero case.
For the next few pages we work only with k [[X]] !(X
r)
for
r
=
A -modules. Let 'I
1,2, ... '1 • The'se form a complete set of representatives
for the isomorphism classes of indeconposable group
R'l(k)
Fossum])
is free on the generators
A -oodules. Hence as an abelian q
[V I] , ... , [V] q
Green (c f c] Al.rnkv i s t-:
and others have determined the multiplication tables for these repre-
sentatives. It is seen that the virtual modules
271 [V p+ 1 J
genrate
Re(k)
as a
[V e-I p
Thus in
I - [V
+1
e R )
Re(k) (or
xo
the images in
e-I
I -I
let
and Capital letters
p
when
q = p
i
will denote variables with corresponding small letters
e R . For each
i
>0
set
[V i-I I , wi th w0
w.
i.
2
It follows from Greens formulas that
=
1
P
The results in
in
w.
i.
[Almkvist-Fossum I are given below.
Proposition 2.1
The map Z [X , ... ,X o
e-'
I] --;,. Re(k)
X.
given by
x.
has
kernel generated by the polynomials F.(X , ... ,X.) := (X. - 2 \1.) V (X.) i.
where
H.
defines the polynomials
(The polynomials
inductively.
V (X) have been defined in the previous section). p
We want to find
"better" generators and relations. Note that the polynomials
Vr(X) are even if
r
z
is odd. Hence if
(Z
is a
2
=
I), then
The isomorphism above implies that
I Re (k ) : Re-I(k) [X e_ 1 (and note that
w
e-I E
Re- I (k». Let
I(X
Y
e-]
2w) V (X ) e-I p e-I '
e-I-
= w
e-r l
X
e-I
e I as a variable over R - .
Then w 1 (Y 1 - 2) V (Y I ) • eep e-
But
w _ e 1
is a unit, so
272
Corollary 2.2.
There is a ring homomorphism
which is a surjection with
by the elements
(Y. - 2) V (Y.) l P l
Now set
W(X)
Lemma 2.3
V (X) - V p
p-
The elements
The elements
1 (X)
for
and let
u. l
w ( Yo ) w (Y) j
w. l
[V r ]
V (y ) V (Y
pop
p
i=O,I, ... ,e-1.
•••
) w( Yi-l
••• V (y
p
1)
r-
for
l'
;;;'
I .
1)
The main result of this section follows from Corollary 2.2. Theorem 2.4
(e
times).
z [Yo"'" Ye-1l / «Yo -2) Vp (Y0 ), ••. (Ye- j-2) VP (Ye- 1)'
Remark
These calculations hold for the multiplicative group law
any group law on
k , where char
k
p
and
Cj = p
e
then
m(X,Y). If F is induces a ring
F
homomorphism (denoted by F) k [[ X]] /
Hence the catorgory truct the ring
R;(k)
is also closed under the for
F
q (X )
product, so we may cons-
just as was done in the case
likely that these rings are independent of
F
=
m . It seems
F. I hope to return to this in a
later paper. See also Section 5 . (Aded in proof : These rings are independent of Later. However the A-operations depend of
F, a result that will appear
F, as is seen is Section 5).
273 §
3
Consequences
In this section we draw consequences of the main result in the last section. Theorem 3.1
Let
C be a commutative
Hom Alg
Proof
(Re(k) ,C) =
{(r 0'
This follows immediately since Hal'! Alg
Theorem 3.2
Suppose
C
HomAlg
is a reduced {R
e
Z-algebra.'l'hen ••• ,
R
r e-I)
EO
e C
1 = (R ) l8Ie
e
(r -2) V .(r.) e p 1
and
(A,C) x Hom Alg
(B,C)
Zip Z- algebra. Then
{c EO C : c 2 = 4 } e
(k) , C )
2 { ( co' ... , c e-l) : c i
Proof
We first need an expansion of the polynomials
Lemma 3.3.
V (X) r
V (X) about
The Taylor series expansion of
X
r
4 }
about 2
r-I
r )(X_2)n I t+ 2n+l
V (X)
r
Proof
Since
n=o
(l-XT+T 2 ) - 1
I
r=o 1 - XT + T
2
V
r r+ 1 (X) T
(l - T) 2 - (X - 2) T = (l - T) 2
we get
(l - (X - 2)
T ) (T-=-T) 2
Hence (l - T)
-2
(l
T
(X- 2)
n=o
I
r=o
-I
- (X - 2) - - ) (l-T/
Now expand the terms involving
I n=o
T
o }.
n
r"
- - 2 ( +1) (I-T) n
to get
(X- 2)n (2n+ r + I) Tn+r ) r
X
2.
is given by
274
and then change the order of summation, summing over
s=o
n=o
Another formula follows by setting (I
Lemma 3.4
- oT) (I -
V + ( 0+ 0
-I
r 1
0-
1
T).
Proof
Hence -I
p-I
(X - 2)2 (X+2)---Y-
-
From Lemma 3.4
(mod p).
we get ( 0 -0 0- 0
Now
X = 0 +0X
2
1
-I P
D
)
(0 -0
-I
-1 -
-I
)
. Therefore
4 = (0 +0
-
. Then
or+l _ 0 -(r+l)
) =
0- 0
V (X) p
1
X = 0 + 0-
,,-I Corollary 3.5
n+r to get
-1 2
)
- 4
( 0 -0
This congruence I first found in
-I 2 )
[Renaud J , where some of the results of this
section are suggested, in particular he proves theorem 3.2 for place of
in
N
Re(k).
Now theorem 3.2 follows from theorem 3.1
Just as in
[Renaud]
and Corollary 3.5.
it is possible to study the idempotents of
(i.e. invert 2). It should be mentioned that in have the
[V ] - [V p
I 2 (l+w
l)
and
p-
el =
1] • So in
I
2(1 -
RI (k) we get
Re(k)
I
R(2) I R(2)e l
RI(k)
RI(k)
= Z[X]/ (X-2) V (X)
z[l] we get two idempotents 2
wI)' Then letting z[
I
2]
I I R(2) e l x R(2) e 2 I I R(2/ e2 R(2)
I
=: R(2)
where, of course I R(2) e 2
P
I I R(2) / e J R(2)
we
275 (The subscript (Z) denotes the base change to
I
z[z]). So we want to consider the
rings :
z
Lemma 3.6
[X] I( (X-Z) V (X), 1 + V (X) - V I (X» p
p
The ideals
«X-Z)V(X),I+V(X)-V p
p
p-
I(X»
(X-Z)(Vo;i(X) + V _-__ L.-
z
Z
«X-Z) Vp(X), 1+ Vp_I(X) -Vp(X»
Proof
=
(X,Z) (Vp+ 1 (X) - Vp_I(X».
-z-
2
This is proved by using relations involving the elements
Corollary 3.7
-
[ZI
Z
,X]
I «X-Z) (Vp+I(X) +
-
Note that
r
n
Z
(X - Z , V 1 (X) p+ -Z-
Z
- Vp_I(X».
Z[;,X]
-Z-
Z
The ideal (X,Z)
Vr(X) ± V (X). r_ 1
(X»
-Z-
Proof
and
p-
I
[Z,X] is the whole ring. + Vp- I(X»
(X - Z ,p). Hence we get the cartesien
-Z-
square I
R(Z) e 1
I z! Z,X] I (Vp+ I (X) + V
?
t z[
Exam?les
Let p
l ]
?
Z
1
-Z-
E:=}
Zip Z
3. Then I
R(Z)
(Z
[X]/(X-2)(X+I»(Z) x 11:(2)'
Z
(X»
276
Let
p
7 . Then I
R(2) Modulo
=
(
Z[X]/(X-2)(X
3
+X
P , the elements look like
+
Vp+ I (X)
\,-1 (X)
- (X
V _ (X) p 1
-
-i-
-2-
2
- 2X-I)2 x
p-I -22)
(z[X]/(X
3
-x 2 -2X+I»2'
(nod p)
p-I
V + (X) p
2 Corollary 3.8
1
R
I
2-
(nod p) .
(X + 2)
2-
0+1
p-I
(Z/pZ [X] I (X - 2)""'2
B Z/pZ
) x
(Z/pZ
[X] I (X+2)2)
Z
We now apply this to
e, R using theorem 3.2 (A x B)
Corollary 3.9
Re(k)
B
C
=
(A
B
and the relation
C) x (B
B
B (Z/p7.) Z
0+ I
zip
z [ Xo,x l , ... 'X e
] I (X -2) o
2
p+I
- -2-
, ..• , (X -2) e-r
(This oeans (;) copies of the
Corollary 3.10
[Renaud]
.
Re(k)
rings of the form
=
z/pz
' ••• Ue-I ]
(truncated polynomial rings), where char k
B
z
5 , q
=
53. Then
U.
1.
x.1.
, (X +2) e_ r
p-I p-I -2-2, .. , (X ) e_I+2)
that follows).
is the ring product of r
Z/pz ([ U0' U I
Example
C).
Iu 0
o
r , ••• ,
± 2 •
Ue-I
e_ 1
)
2
e
local
277 §
4
Induction, Restriction and inclusion
In this section we assume A is a field of characteristic
p
>0
. As noted
nl
is the category of A [[xll -modules of finite length. Let eEN and set o e P 12. e = {M E ' 1..: x 11 = 0 } . Then /)L e is isomorphic to the category of e e+1 e p p denote the A [I X)] / (X ) -modules. Let f : A [I X II / (X )-----3'> A [[ X J] / (XI' Frobenius map given by : f
(0:
:=
(X»
0:
p (X ) .
This is an injection. It is clear that the diagram A
us n F
A
/(X
1
q)
f
>-A
pq)
I I X II / (X IF
I I x, YJ] / (Xq, y q )
[[ X,Y]] /(X
pq, pq y
)
is commutative. We get induced maps on the representation rings
and
e+1 ----?>- R F (A)
Ind :
defined by where
C
Res(M) = M considered as a module through A [[X ]l /(X
=
a B-module through
f
pq), and
A [[xl] /(X
B C
II
f
and
Ind (M)
=
C II
,
B
q)
and where
C
M is a C-module through
C
is considered to be
B
q) pq) A [[X l] / (X ----?>-A [[X II /(X
There is also a quotient map
1
the inclusion defining For
F
=
e U
e
-1t +)
and the inclusion
as a subring of
which defines
Inc: a;CA) ---7
e+ R 1. This function has been considered before.
m and the presentation given in
§
2 , the maps
Ind
and
exp lica ted. Proposition 4.1
The maps
Res
and
Ind
are given on elements by
Res
can be
278
vp (x 0)
r (x I ' ... ,x e) .
In particular Res Ind Proof
Consider
Res
p. Id.
=
first. It is clearly a ring homomorphism, so it is necessary
to determine its action on the generators with image
x
p
Suppose
The action of 1 ,x,
e
V i p -I
••
X
n-l
x through modulo
x
n
V n
A
f
It s n
is by
x
n
/(X ) , considered as an
p
0
x'e,
Then
Let
A
[I Xl)
nx
q
))/(X )
pq
/ (X
) -module
be the elements
eo,el,···,e n_ l
Apply this to the modules
e.
t.
of the algebra. Let xE A
xi
V
i
p +1
and
to get Res (V i p
+1
Res (V Res (x , ) = x _ i. i 1
Hence
V
)
P
i-I
p
V i-I -) P
)
Clearly
(p-I) V
EB
+1
V i P
(p-) )
ED
Res (V2)
while
i
so
2 VI
Res (x 0)
2 . (The res-
triction map can be made quite explicit : s = s
Let
+ sl p
0
for
Res (V,) I t fo
=
B ---7Ind V ---3'>0 r
x
B !!II A A
pq).
B to get:
A-modules. Tensor this with
o --3'>B But
A
k [[X]] !(X
pr
B • Hence
Ind V
r
vpr • Thus to establish
the formula it is enough to show that if R(k)
V r
then
in
R(k) • These
follow from a much more general formula. Lemma 4.2
[V
Suppose
[V
k
sp +r
Proof
For
r .;;; p
k
and
p
>s
;;. 1 • Then
k
sp -r
r
=
s
we have
=
[V k
[V k
P -1
P +1
x
]
k
bv definition.
Hence the formula is true for these values. Then the general result follows from Green's multiplication formulas. Suppose that [V
k
] - [V
sp +r
plr
Then
k
sp -r
by induction where
Vr!p = q(X
o'
Hence the result follows in general,
again by a mildly complication induction argument. Corollary 4. 3 Proof
Since
the theorem.
[V. k] p
Vk p
k ) . Ind (V1 ' t h i s follows by
k
applications of the result in
280
Table 4.4.
We list the polynomials giving the representations
characteristic 3 and Char k
VI
to
V 2S
VI
to
V 27
in
in characteristic 5 .
3
VI V 2
V
s
Yo
X2_1
/-1
X +X o I
2 yo+(Yo-Yo-I)Y 1
I+XoX I
1+(v
0
V 3 V 4
X
0
=
U
0
Xl
2-2)v "I
V 6
2 (Yo-I)Y I
2_1) V = X X +(X 7 o I I
2 2 (Y o-2)y l+y l-1
2_I)+X V = X (X o I I 8
Yo(YI-I)+(Yo-Yo-I)YI
V 9 V 10 VIi
2
- I) (X7-] )
2 yo-yo-l U
0
x02-x 0 -1
Y 1
YI = V6-VS+V 1
"0
2
0
2 ul=yl-yl-I
V - V 7 6
2
2
=(Yo-I)(yl-l)
V9-V8
=
uou]
2 2 2 = (Yo-I)(Yj+(y l-I)Y2 + Yo(Y1-Y -I)
2-X 2-1) (X -1)(X + (Xo-i)X + (X7- 1) +X o 0 I 1 oX2
Y = u IX2 2 ou
V I2 V I3
(Xo+X I)X 2 + XoXI+1
V I4
(I +XoX )X + X +X I 2 o I
V I5
(I+X jX
V I6
(XoXI+(X7-1»X2+XO
V I7
1)+X (X o(X7I)X 2+1
V I8 V I9
2)
I) (X7- 1)X2 + X2_1 1)+X (X o(X7I)X 2 2
[The remaining relations for Y o'Y 1'Y 2
are left for masochists l
281
V ZI
(X;-I) (XIX
+
Z
V ZZ
+ (l+XoXI)X
V Z3
+ (Xo+XI)X
V Z4
Z
Z
+ X + XI o
+ XoX + I I
+ X Z) + (X;-Xo)(Xi- l) + (Xo-i)XI+XoX Z
V
zs
V = Xo(Xi- l) + XI + X Z6
z +(Xo(Xi- l)
+
V Z7
Char k
=
5
4
Z
(Y +I)Y I o-3y o
4 Z 3 (Yo - 3y + I) (yj-Zy l) o
3 V = Yo-Zy 4 o V
s
=
4
Z
4 Z 4 Z (y 0 -3y 0 + I) (y I - 3y I + I) .
Y o-3Y o+1
U
V = V + 7 3 Va
= VZ +
Vg
= VI
U
o
Yo Y I
(i-I) 0
3 + (Yo-Zy
U
0
o)
=
U
o Y1
= Vg
Z + (y I- Z)
VIZ
= Va
+ Yo (i-2)
V
I3
= V7
Z Z + (Yo-I) (yl-Z)
I4
= V6
3 + (Yo-Zy
o)
- V
4 3 3vZ Yo - Yo - • 0 + Zy 0 + I
YI
VII
V
= V
054
Z (yl-Z)
4
Z
.. Yo - 4y 0 + Z
V21
3 V I 3 + Youo(YI- 3YI)
V
4 2 VI S+Yo(YI- 4YI+2)
VIS
2 3 V12 + (y 0 -1) u o(y l-3y l)
V 23
2 4 2 V17 + (yo-I)(y l- 4y l+2)
V
3 3 VII + (Yo-2yo) u o(y l-3y l)
V 25
3 4 2 V16 + (Yo - 2y o) (YI - 4YI+ 2) .
I6
V
§
4 V19 + (y I -
3 V + u 0 (y I - 3y I ) 14
V
I7
I9
5
n
A-structures on the representation rings
In this
section the
A-structures on the representations rings are studied. It is seen
that different formal group laws give different Let
+ 2)
A be a commutative ring. Let
HI (A)
A-struc tures.
denote the ring whose underlyinf, additive
abelian group is the set of formal power series of the form
1+
I
i=1
a. Ti""A[[T]], 1
with multiplication as the operation, and formal inverse as the negative. The operation is still denoted by juxtaposition. The multiplication in the ring is too difficult to write in general. However, denoting it by
n
i=1
(l+aiT)
E
(
n
n
(I+b.T)) J
j=1
i,j
the formula:
(I+a. b. T) J
1
will uniquely define the operation. So in fact (I + T)
f (T)
E
f (T)
,
and
I +T
is the identity element.
Let
A be a commutative ring. An abelian group homomorphism (A,+)
is called a
A-structure on
A. Since for each I +
a
A-structure on
;;:. (HI (A) ,.)
I
i=1
A.(a)T
a
E
A , the element
i
1
A is given by a family of functions
A.
1
A ------'7 A such that
283 A (a) 0
A. (0) A1 (a)
0 a
=
n
I
A (a+b) n The ring
A with
::>=0
A-structure
AT
for all
a E A
for all
i > 0
for all
aEA
(b) , for all A (a) A n-p p is called a
*-ring if
a,b E A and all
AT
n
is a ring homomor-
ph i sm,
Example
Let
AT
Z
--:»1-1 1 (I:)
be given by
Then
Suppose that
k
finite length
is a field and
F
is a formal group law on
and
r
(resp. : the symmetric power homomorphic image of
(resp. : of Sr(V)
of
S;(V»
is the exterior power
V as a vector soace. Each is a
V"r = V "k':- '''k V. The vector spaces are given a
-module structure by making these surjections F-equivariant.
F
a , then r
I
i=1 r
I
i=1 If
F
m, then
V,
SF(V) , as follows:
The underlying vector space of
If
V be a
k [[xl] -module. Define the symmetric and exterior powers of
denoted by
Example
k . Let
vj ... (Xvi)···v r
k [[ X]]
284 Proposition 5.1
Let
k
be a field and
F
a formal croup law on
k
(assumed
commutative as always). Then the maps AF
T
defined by :=
are
A-structures on
a A-structure on Proof
and
n=o
RF(k).
R;(k)
char k
for each
=
p
>0
, then each of these restricts to
e? 0
It is sufficient to show that r
!I. r
F
(V
N
101)
\B
p=o
and similarly for the symmetric powers. The isomorphism is described explicitly for
r
=
2 . The general case follows by the associativity of the group law
The map
We want to show that
where
zl = vI + wI '
(using the fact that
z2 =
V
F(X,Y)
z
+
z .
W
So compare the two formulas
F(Y,X).). First,
Now
(Xz I!I. zZ) = XW !l.w + (XvI N W2 - v 2 N Xw I) + Xv I !I.v Z • I Z i j 9, (Zj !I.XZ ) and 9, (X Z I !I. X Z 2) • It is seen that the terms in Z
(This is just to say that the decompositions
Similarly for !I. 2 (w) are:
F •
285 r
A r (V
(9
W)
"'"
(9
p=o are q
x
F-equivariant). Thus the maps given are V
=0
, then
q X
ArF(V)
=0
A-structures. It is clear that if
and similarly for the symmetric powers. Hence the
coefficients of the power series defining the arguments are in In the case they are
char k
R;(k). This shows that the 0 , these
=
are each in
a;(k)
if
A-structures restrict.
A-structures have been examined in
§ I.
In fact
A-ring structures; they satisfy the identifies
(V)
So the
and
AT
and
0T
0
( V)
I.
structures are essentially the same (one is the inverse
of the other). The situation in case
char k
=p
> 0
there is an extensive study of the
is quite different. In
[Almkvist-Fossurn] on
A-structures
RI (k). Further m
papers by Akmkvist (see references) have delved more deeply into this problem for
RI(k). In particular they are not m
Problems 5.2 : Let a)
chark
= p>O and let F be a formal group law on k
For each indecomposable
V determine the decompositions :
A;CV) S;(V) b)
For each indecomposable ,\
c)
Determine
d)
Determine when
holds.
(V)
A-ring structures.
(9
5>0
=
(9
s>o
£(F ,r, s) V s m(F, r , s) V s
V determine rational function expression
.Eill. q(T)
where
q (T)
E
[T 1
•
286
The complexity of these problems is shown by the examples in the next section. In the remainder of this section, some general results, which may help in giving a partial solution to some of these problems, are given for the multiplicative formal group law
m, the problem that
I
first attacked.
Several preliminary results are recalled. (In what follows the indexing by m is usually dropped. It is almost always assumed that the group ted by an element Koszul complexes
T , is operating. The field
Let
k
Z/Q71
has characteristic
be a finite dimensional vector space over
V
p
F
or
, genera-
> 0).
k. Consider
the complexes
and
with maps given by the formulas j
e. (vI !l ... !l J
V.
J
18l
s)
\' (-1) s-I L s=1
( ' VIll
•••
,A, r. v 1l s
•••
'v) tv . J
18l
v s
s
and d.(e J
18l
vl .•• v.) J
(Note that these maps are
F-equivariant for any
F
).
These complexes are exact (they are the graded parts of the Koszul complex giving the free resolution of (p,r)
= I,
k
as an
S '(V) -module) and they are split exact in case
since: r , Id
for each Proposition 5.2
The power series
287
Proof
r T
The coefficient of r
I
in this power series is
(-I)j (Ar-j(V)
j=o
and this is zero if
sj(V» k
(p,r)
I
.
Another useful result concerns the decompositions of the induced modules. Proposition 5.3
the ideal generated by the elements
[V
Corollary 5.4.
r
If
pr]
A q(V
pr
provided
are in the ideal generated by [ V ] P
Ind (V
k
and
and the fact that
is
in
pe •
)
(q,p)
1 •
V pr
Aq - 1 (Vpr )
Res \>I) k
Aq(V
pr
)
are direct summands of
V
Dr
sq-I (V ) pr
respectively.
Another useful result relates
Res
Proposition 5.5.
the following hold
Proof
0
This follows from the relation (Ind V) a t·)
and
pr
for
p
I , then the elements
and
Proof
p
Prop. 4. I.
This follows directly from
Proof
[V ] = [V (X )]
The principal ideal eenerated by
For any
V
with the tensor functors.
Res (A q (V»
A q (Res V)
Res (S q (V) )
sq
(Res V) .
The underlying vector spaces are the same for the modules on each side of
the equalities. And the action of Corollary 5.6
The diagrams
X is eiven by
xP
in both cases.
288 AT Re+! (k)
Res
)
I (Re+ 1(k) )
)
1
°T
1
AT
-------»
Re(k)
°T
>
(Res)
Tl (Re(k»
1
commute. As an example, consider
AT(V
9
1)
in chark =3 • Then write A = L a.(T) [V. T(V4) j=1 J J
I
We conclude that :
+ +
Here the
aj(T)
have non-negative integer coefficients. Now
Res (V 4)
and (I
Since no coefficient in Hence
a
4(T)
+ 2a
S(T)
T(I+T)2
= T(I+T)2
2
2
+ [V2 I T+T ) (I +T) .
is as big as • Thus
a
4(0)
3, we get =
as(O)
=0
a
6
=
0 • Likewise
"s =0.
So our two equations
are :
T(I +T) 2 •
289 I , we get a (0) l
=
o .
and
I
Calculation with the second equation yields
where Then using these in the first equation yields
2n + m
n + Ztn
2 • Hence
n
2 •
= 0,
m
So :
as (T) 2 4 I + T + T , which implies that
Thus
=
This implies that
I + [V 4 J T +
/l2(V)=V 4 I
The similar computation for
The coefficient of
3 T
is
V 6
7V 2
[ VI
6)
Vs 1 T
2
+
a
[ V4
ffi
yields;
ffi
2 V ; This implies that 3
where There are two possible solutions to this set of equations
2(T)
1
=
0
4 3 T + T
Hence
=
I •
290 A quick calculation shows 1\3 (V6) m 1\3 (V 6) a
-
V 6
ill
V 2
V 6
(jJ
2V 7
Ell
This shows that the 0-structures induced on
V 7
Re(k)
are indeed different for these
two different formal group laws. And it raises more questions than it answers. We hope to return to these problems later. Finally we derive a result that should have great possibilities in determining decompositions. Before doing so we need some additional notation. We suppose q = pe V pq
and that
is a multiplicative generator for the group
T
have a basis
on which the generator
Z/pq Z . Let
acts as a cycle
T
permutation ; so that
T(X ) = Xi + l
for
i
and
T
We suppose also that pq i I e.1 = x - -
'
so
(X
V
pq
) = Xl
S • (V
pq-r-
=k[e,e1,···,e o pq- I ] '
1)'
291
and each has kernel generated by the linear forms (eo, ..• ,e
Let
Y. := X. X. i.
So
Y.
p-l
n
for
Tqr(X.)
1,2, .•. , q
TY.
Y
i
Sp(V
Hence the submodule of k [y1, ... ,Y ] q
Let
Proposition 5.7
pq
)
Proof
S' (V
given by
q
(0) .
are alGebraically independent and form a regular se-
pq-r-l
r+l
for
)
,,;;;
(p-l)q.
"'/pq Z-equivariant homomorphisms Zi variab les ,
q
X.
v
1+r ,,;;; (p-l) q , then
If
a)
Consider the
a
is isomorphic to
denote the subalgebra spanned by these elements.
The elements
quence on
and
q
spanned by the
n b)
Call this ideal
Note that
r,
r=o
i
r).
----? Z.
for
i
I
(0)
(p-I)q ,
and
o ,,;;; r
it is sufficient to show that
• The image of
Y.
under this map is
site
is the Frobenius which is an injection. So it is sufficient to show that Ker
a
q
,,;;; p-l
l(p_l)q .
i.
I
(p-l)q
n
. Hence the compo-
292 The one basis relation is r
I
j=o since It
for
s
>
0 •
follows that
x and hence
Ker ct
q
c
-x
r+tq
E
r
I
(p-l)q
I(p_l)q • Since both ideals are prime ideals of the same
height (by a Krull dimension argument), they must be equal. This proves (a) • Statement (b) follows immediately, since the length of :
is finite (it is isomorphic to is generated by
pq
k [ZI, .•. ,Zq] /(Zf, •••
and since this ideal
homogeneous elements, they form a regular
k [Xl" •• ,X pq ]
-sequence. But any regular sequence of homogeneous elements remains regular under is a regular sequence on
k [Xl'" .,X pq ].
There are two consequences to draw from this result. Coro llary 5.8
The algebra
k [YI, ••• ,Y
is free (but of infinite rank).
Proof
q]
This follows immediately from
Corollary 5.9
Suppose
n
regarded as a graded module over
k [Xl" •• ,Xpq ]
>q
Then
summand isomorphic to
[Bourbaki Alg. de Lie, .•• ]. Spr (V) n
contains a
'E./ pq
Z
direct
Or in other words : Sr(V) q
Ell
as a direct sum decomposition. Proof shown in
The module
Spr(V) n
[Almkvist-Fossum]
is the that
pr
th
Sr(V) q
homogeneous component of is a direct summand of
S· (V ). I t was n
Spr(V
pq
), where
293 Sr(V) q
was identified as the r
th
is graded in two ways; with deg Y i deg Y = P i
=
I
when considered as an
when considered as a subring of
o --7 I is exact as
homogeneous component of
s
n
S'(V
pq
».
Spr (V ) --7 Spr (V ) pq pq
k [Y1"."Y q ]
(which
Z/qZ-algebra and
The sequence: Spr (V ) --7 0 n S· (V ) pq
Z/pq Z-modules (where Is is the kernel of
S' (V n
».
Since
o the component
as a direct summand.
Of course the modules bed in
Sr(V) q
[Almkvist-Fossum]
have decompositions that have been explicity descri-
• I fuel that these techniques should be extremely useful,
but have not been able to exploit them fully. §
7
Characteristic
p
=
2
In this section, some of the calculations from Sections 2 and 3 that do not apply in case
char (k)
and the elements
=
2
are made. In any case the multiplications of Green apply
[V.
still generate the algebras. So we can state
the next result. Proposition 7.1
(where the
w.i.
Suppose
char k = 2 • Then
are the preimages of
)
.
The elements w. =[V .]-[V . ] are 2-unipotents so the generators Can be changed to the next result, also just as before.
and we get the
294
Proposition 7.2
In case
char (k)
2 , then
=
The next corollary also follows immediately. Corollary 7.3
Let
C be a commutative ring.
Then
Zc • }
=
If
1/2 E C , then this set is exactly the set of idempotents in
in
C, then this is just the 2-nilpotents in
Corollary 7.4
In particular if
Suppose
C
C
is a
2 = 0
Then
in
C , then
Re(k)
l8!
Z
local ring. (Compare Since
[Renaud] and his references)
(71.[X ]/«X-2)X»
Z[ l] 2
l8!
Z
Re(k)
l8!
Z
Z[ l] 2
71.[
l] 2
( 71.[
In general the square RI(k)
71. X 1--+0
x
:j:
2
\V Z
is cartesian.
\V -----'00> Z/2Z
] )
Z[ I] 2
x 2
e
2
C
71./2Z - algebra.
is a local ring "lith
C . If
,
it follows that
C
is a
0
295 References
AU1KVIST G. and
R. FOSSUI1
This seminaire. Lecture
Notes in l1athematics
nO 641, Springer. HAZEWINKEL 11.
groups and Applications London
RENAUD
J.e.
New York, San Francisco, Londm
Academic Press 1978.
The characters and structure of a class of modular representations algebras of cyclic pgroups. J. Austral. l1ath. Soc. (Ser A) 26, 410 418 (1978).
ROBERT FOSSUI1 University of Illinois Department of l1athematics 1409 W. Green St. URBANA, ILLINOIS 61801, USA l1ai 1981.
CLASSES CARACTERISTIQUES POUR LES REPRESENTATIONS DE
GROUPES DISCRETS
par Guido Mislin
Introduction Soient
K
un corps de nornbres et
C
K-representation d'un groupe fini groupes
GL. (K) , j
Les classes de Chern
c
m
(p )
E
vectoriel complexe plat sur
une
BG
sont definies comrne
a
P , qui est une fibre
(l'espace classifiant du
G). Nous designons par
borne pour l'ordre des
c
m
(P)
,
P
EK(m)
la meilleure
parcourant toutes les
representations de tous les groupes finis
K-
G. Ces bornes
permettent d'obtenir l'ordre precis des classes de
Chern universelles
=
GL(K)
G (GL(K) est la reunion des
2m H
classes de Chern du fibre associe
EK(m)
+
1 , pour les inclusions habituelles).
]
groupe discret
P : G
c
m
E
H2m
;Z)
dans le cas ou
est l'anneau des entiers dans un corps de nombres
qui n'est pas formellement reel. Les valeurs explicites donnees ici pour les nombres
EK(m)
ont ete obtenues en collaboration
avec B. Eckmann; on trouve les details concernant les sections 2 et 3 dans
.
Dans la section 4 nous considerons la con-
jecture suivante concernant la fonction zeta nornbres
K.
sK
du corps de
297
Conjecture:
EK(m)
((*): Voir la note
sK(l-m) E
a
pour tout entier
m
>
1 .
la fin de cet expose.)
Rappels sur les fibres plats
§ 1
Soient
un
X
CW-complexe
X. Alors
complexe sur
connexe et
un fibre vectoriel
est classifie par une classe d'homo-
topie
ou
j
note la dimension des fibres. Le fibre
s'il est associe
a
un fibre principal
a
est dit plat
groupe structural dis-
cret; cela peut s'exprimer par une factorisation de
(a une
homotopie pres) de la maniere suivante:
B GL ,
X
.>.
]
/
( p
G
-+
o ]n
c (p )
GL (K)
m
a
pour tout
et tout groupe fini
G}
alors
Il est facile
a
voir que la borne superieure
EK(m)
est la
meme que celle determinee par Grothendieck [6J dans un cadre plus general. De meme, la borne inferieure correspond
a
une
borne obtenue par Soule [10]. Ces deux bornes different au plus d'un facteur 2. Pour
nous avons le resultat suivant.
301
Theoreme 1: Soit
KC
un corps de nombres. La meilleure borne
pour l'ordre des classes de Chern sentations
p: G
GL(K)
+
c
K-repre-
des
(p)
est donne par si
EK(m)
est impair ou si
m
K
n'est pas formellement reel
EK(m)
1 ---
2"
EK(m)
m
si
EK(m)
K
est pair et
formellement reel.
La demonstration derive d'une analyse des des
rn
K-representations
2-groupes, en particulier des groupes cycliques, diedraux,
semi-diedraux et quaternioniens.
§ 3
a
Applications
Soient comme avant K-representation,
a
la cohornologie des groupes arithmetiques
G K
un groupe fini et
c
p'
tout
1
p $
:
G
+
GLj+l
e(K)
,
I
GL.
J
(K)
une
une representation c
. Comme
m
(p)
=
c
m
(p')
pour
est un diviseur de Icm(e)
l'ordre de la classe universelle Icm(e)
a
est equivalente
(K)
on en deduit que
D'autre part
+
est un anneau de Dedekind)
=
qui se factorise par m
G
:
un corps de nombres. 11 est facile
voir (en utilisant que
que
p
divise
c
m
EK(m)
(e)
E:
H
2m
d'apres
I ,
(GL (19"); :l)
[6] .
En utilisant
le Theoreme 1 on a:
Theoreme 2: L'ordre de
c
rn
(e)
E:
H
2m
(GL(e);:J)
, m > 0 , est s o i.t;
302
soit le
EK(m)
; il est
corps des fractions
Soit
p
si
K
de
m
est impair ou si
n'est pas formellement reel.
un nombre premier. 11 est clair que la partie
EK(m)p
est un multiple de
p-primaire
. Le lemme suivant donne une
condition suffisante pour l'egalite de ces deux nombres. On designe par
Lemme 3:
CD
Si
p
la reunion de tous les corps cyclotomiques
00
K A
CD
p
, alors la partie
00
p-primaire
EK(m)p
est donnee par
ECZ!(m)p
cas p = 2 ou si K
m
EK(m)2 =
si
est impair; et
K
est formellement reel
EK(m)2
si
m
est pair et
n'est pas formellement reel.
Ce lemme se deduit du fait que
Kp a
K A
entraine
p
Gal(K a/K)
p
p
pour tout
a > 0
On observe que si le nombre premier de
K
la condition
criminant de
p
a
K
n
p
a
=
p
ne divise le discriminant
est satisfait, car le dis-
est, au signe pres, une puissance de
p.
303
Considerons comme exemple Ie cas d'un corps quadratique L'intersection K (\
P
K
= K ,
00
K
n
p
est alors
00
K
ou
K .
Lorsque
est un sous-corps quadratique de
Rappelons que les sous-corps quadratiques de
p
00
p
00
sont donnes
par
cas
p
impair:
(corps de (_1)p-1 /2 p)
discriminant
cas
p
!D(/-l)
2
,
!D(/-2)
,
discriminants
Corollaire 4: Q(/-l)
,
Soi t
Q(M)
,
(corps de
!D(I2)
-4, -8 et 8
respectivement).
un corps quadra tique different de
K
et
Q(/2)
Q(
!(_1)p- 1/ 2 p)
,
p
etant un
nombre premier. Alors
f l2E!D(m)
si
m
est impair ou
, si
m
est pair et
On peut aussi sans peine calculer
EK(m)
K K
reel
imaginaire
pour les corps quadra-
tiques exclus dans ce corollaire. Le theoreme suivant, qui est plus precis que le r e s u Lt.a t; de Ch. Thomas dans consequence du calcul de ([5J) m de
EK(m)
m
Bm1m , ou les
Bm 1/30
, pour
m
>
0
Eq,) (m) = 2 , pour pair (le denominateur
sont les nombres de Bernoulli: etc.).
est une
pour tout corps quadratique
et des formules etablies dans [4]:
impair, et = den(B 1m)
[i i},
K
304 Theoreme 5: C K
Soient
un corps quadratique imaginaire
l'anneau des entiers de
universelles si
(a)
KC
m
c
m
E H
(& )
2m
K. L'ordre des classes de Chern
(GL (6 ) ;
est impair,
c
m
et
(6')
est alors cornrne suit: est d'ordre 2
avec les ex-
ceptions suivantes: (a) 1 :
si tout
2m m p si
(b)
m est
, p
o (p-l) ,
-
pour
pair
to, 24
c
l'ordre de
(8)
est
p-primaire de
c
l'ordre de pour
m
m
est
(&)
m = 2 , 240 pour
-
3 (4)
2pm
p
et (au
.
m
)
=
den(B 12m)
m = 4
m
etc.).
Relations avec la fonction
Soient Si
est d'ordre 4
(V)
un nornbre premier
designe la partie
(c.a.d.
§ 4
+
2n l
n K
si
(a) 2
, c
K
K
KC
un corps de nornbres et
sK
sa fonction zeta
n'est pas totalement reel, on sait que
tout entier
n > 1
SK(I-n) = 0
pour
tier pair
n > 0
que on a pour
K =
Dans le cas n
au
impair> 1 , et
K
sK(I-n) = 0
pour
est totalement reel,
sK(I-n)
E
pour un en-
("Theoreme de Siegel"). Par un theoreme class iet
m
>
0
pair
m (-1)
2
(B
m
1m)
11 suit alors de notre description de
que
305
pour tout entier
Theoreme 6: Soit
Demonstration:
K C
11 suffit de considerer le cas ou
on trouve 2TIpa(p)
a(p)
K(2)
=
E
K(2) ,; 2}
max I o I (K a p
,; 2}
a
p
E = rrpa(p) K(2) est
r = (K: CD)
E
max {p a I (K a : K)
EK (2 ) p
K)
. Serre a montre dans
toujours un entier
• On en deduit que
E
K
est totale-
•
=
0 mod 2 r
§ 3J que
, ou
E
K(2)
et
plus claire si on rappelle le resultat de Serre K
.
et, par consequence
La relation entre le denominateur de
corps
1
>
un corps de nombres. Alors
ment reel. Dans ce cas
Si on pose
m
E K(2)
devient
(pour un
de nombres totalement reel):
Pour les autres valeurs de
la situation reste assez
mysterieuse. Rappelons tout d'abord un autre resultat de Serre (nous designons par
a(p)
les entiers
localises en
(p)
):
306
Lemma 7: m
>
0
Soit
K
est pair et si
rm 2
2-r
Corollaire 8: entier
un corps de nombres totalement reel. Si
m
>
1
r =
I:; K (l-m)
Soit
, on a
(2)
E:
KC
un corps de nombres. Alors, pour tout
,
Comme on l'a vu, on peut supposer que totalement reel et
m
r = (K:
on a
=
2Ym
2
est au
[5J)
(cf.
Si on pose
E (m) 2 K
pair. Dans ce cas
K
r
2
2
2-r
2 . Par consequence,
K (m) 2 est un multiple entier de la partie 2-primaire de 2-r rm 2 , d'ou Ie resultat, d'apres Ie Lemme 7 . E
Dans Ie cas au l'extension
K
de
est abelienne, on peut uti-
liser Ie theoreme suivant de Coates et Lichtenbaum [2J.
Theoreme 9:
Soit
K
un corps de nombres totalement reel qui
est une extension abelienne de p
Si
m
designe un nombre premier impair, alors
w(p) (K) m
I:;K(l-m)
E:
>
0
est pair et si
307
Les nombres Soit
K
(K)
sont definis comme suit ([2)):
un corps de nombres arbitraire et K . Soit
algebrique de
w(p) m
d'ordre une pUissance de On considere
w(p) (J
ments de
comme
m
E
p
K (p
K
une cloture
le group des racines de l'unite
un nombre premier arbitraire).
Gal (K/K)-module par l'action
Gal (K/K)
et
X
E
. Le nombre des ele-
w(p) fixes par cette action est note m
w (p)
m
(K)
Un calcule simple montre que II w (p) (K) m p
pour tout corps de nombre EK(m)
[5J
dans
avec celie de
En particulier, si w(p) (K) = E. (m) m
.K
K
p
p
(on compare la description de w (p) m
(K)
dans [10J).
est un nombre premier impair, on a
En utilisant le Theoreme 9 et le Corollaire 8
on en deduit:
Theorerne 10:
Si
K C
pour tout entier
m >
(jJ
,
est une extension abelienne finie de
alors
a .
308
Bibliographie
1
Charney, R.M.: Homology stability of
GL of a Deden kind domain. Bull. Amer. Math. Soc. 1(2), 428431, 1979
2
Coates, J. et Lichtenbaum, S.: On
£adic zeta functions.
Annals of Math. 98, 498550 (1973) 3
Deligne, P. et Sullivan, D.: Fibres vectoriels complexes
a
groupe structural discret. C.R. Acad. Sc.
Paris, t. 281, Serie A, 4
10811083 (1975)
Eckmann, B. et Mislin, G.: Rational representations of finite groups and their Euler class. Math. Ann. 245, 4554
5
(1979)
Eckmann, B. et Mislin, G.: Chern classes of representa tions of finite groups
6
(a paraitre)
Grothendieck, A.: Classes de Chern et representations lineaires des groupes discrets. Dans: Dix exposes sur la cohomologie des schemas. Amsterdam: NorthHolland 1968
7
Milnor, J.W. et Stasheff, J.D.: Characteristic classes. Annals of Math. Studies 76
8
Serre, J.P.: Cohomologie des groupes discrets. Annals of Math. Studies 70, 77169
9
(1974)
(1971)
Serre, J.P.: Congruence formes modulaires (d'apres H.P.F. SWinnertonDyer). Seminaire Bourbaki 1971/1972; Springer Lecture Notes in Math. Vol. 317, 319338
309
10
Soule,
c.:
Classes de torsion dans la cohomologie des
groupes arithmetiques. C.R. Acad. Sc. Paris, t. 284, Serie A, 1009-1011 (1977) 11
Thomas, Ch.: Characteristic classes of respresentations over imaginary quadratic fields. Springer Lecture Notes in Math. Vol. 788, 471-481
Eidg. Techn. Hochschule Mathematikdepartement CH - 8092 ZUrich SUISSE
(*)
Le Theoreme 9 K
a
ete demontre par P. Cassou-Nogues pour
un corps de nombres totalement reel arbitraire
(voir: "Valeurs aux entiers negatifs des fonctions et fonctions
p-adiques"; Inventiones math. 51,
29-59 (1979), Theoreme 17). Il suit alors de notre Corollaire 8 que entier
m > 1 .
EK(m)
est un entier pour tout
AUTOMORPHISMES DE SCHEMAS ET DE GROUPES DE TYPE FINI par Hyman Bass *
1. INTRODUCTION.
Commen cons avec un p rob I eme auquel on peut appliquer les methodes de cr i.t.e s ici.
I
Soit
une surface compacte orientable de genre M = g
'II
0
(Home om
des classes d ' isotopie des homeomo rpb i srre s :
g. 1e groupe :
(")) l
I
-+
I
j oue un role important dans la
topologie des varietes de dimension 3 , aussi bien que dans la theorie des surfaces de Riemann (cf , [B]). Son etude est d'une surprenante d i f f i cul te . On sait que
M
g
est de presentation finie, et on a des renseignements assez precis sur ses sousgroupes finis. Recemment
E. Grossman [E.G] a montre que
M
g
est residuellement
fini, autrement dit que l'intersection de ses sous-groupes d'indice fini est triviale. Sa demonstration repose sur des arguments combinatoires assez penibles. Nous allons presenter une autre methode pour demontrer que et, en
meme
temps, que
M
g
M
g
est residuellement fini
est virtuellement sans torsion, autrement dit qu'il
possede un sous-groupe d'indice fini sans torsion.
Soit
*
rg
Ie groupe fondamental de
I.
II admet une presentation :
II s'agit d'un travail [B-1] fait en collaboration avec Alex 1ubotzky.
311 Un
homdomo rph i sme
h:
I
automorphismes interieurs de
+
f
I g
determine une c1asse d' automorphismes modulo les c ' es t-a-dire un element de :
Cet element ne depend que de la classe d'isotopie de M
g
+
h , d ' oil un homomorphisme:
rr g)
Out
D' ap r es un theoreme c1assique de Nielsen (cL [B], Th. I. 4), phisme. II nous suffit donc de demontrer que
Out
crg )
Ct
est un isomor-
est residuellement fini et
virtuellement sans torsion.
Considerons plus generalement, un groupe presentations affine
Hom (f,GLn(E))
forment, de
Rn(f) , sur laquelle opere Ie groupe
Le quotient algebrique de R (0
n
par
f
de type fini quelconque. Ses renaturelle, une variete algebrique
GLn(E)
par conjugaison. Soit
GL (D::) • C' est une var i.e t e affine ou on peut n
distinguer les classes des representations semi-simples de relle de Out (f)
Aut (f) sur
sur
Sn(f) ,
R (I') n
a
Theoreme. - Soient fini d'automorphismes de
Sn(f)
f . L'operation natu-
defini t, par passage au quotient, une operation de
laquelle on peut appliquer Ie theoreme suivant :
V une variete algebrique sur
V
Alors
E et
G un groupe de type
G est residuellement fini et virtuellement
sans torsion.
Corollaire. - Avec les notations ci-dessus, si Sn(f) • alors tout sous-groupe de type fini de
Out (f)
Out (f)
opere fidelement sur
est residuellement fini et
virtuellement sans torsion.
C'est a l'aide de ce corollaire, que nous montrons cue
M (O.Ona
g;;> 2 • Notons
la partie de
R 2(f)
injectifs et d'image un sous-groupe discret co-compact de l'image de
dans
S2(f) ,Evidemment
et
{ I}
o
I' 1
.;. , de sorte
formee des
p
qui sont
SL (R) • On note 2
et
sont invariants par
Aut (f ) g
L'application : 7
fg de
7
ad
g)
PSL2 (R) ad
ad
ou
p : r
0
ad
g)
g
7
PGL
definit une application surjective:
2(E)
est forme de tous les homomorphismes injectifs :
d'images discretes et cocompactes (cf. [P]) • Le quotient
g)
par l'action de conjugaison de
l'application: (p) r-+ (ad Riemann "marquee" de genre
0
p) • L'espace g •
APE
PGL (ffi) 2
element "general" d'ordre 2 si Si
P E
g
=
p
de
par
parametrise les surfaces de correspond
Lg
=
HI adpr ,
et l'on
g
sait que :
qui est un groupe fini d'ordre
g)
est l'image de
ad
rrg)
ad
84(g-l) (cf. [L.G,]) , En fait on sait que pour un on a
Aut(L
p)
=
{I} si
g;;> 3
et
Aut(L
p)
est
2 , il est facile de voir que: NpGL (E)(adpf) 2
=
NpGL (R)(adPf) 2
Mac beath et Singermann [M.S] ont demontre que l'indice [NpGL (R)(adpf) : adpf))] est "en general" egal a 1 pour
s > 3 et a 2 pour
g
2
=
2 • II s 'ensuit que Outer ) g
320
opere fidelement sur
pour
g
3 , et avec un noyau
g = Z . D'apres le Corollaire du theoreme du nOl , Out(f) g
g
de Grossman, disant que
est residuellement fini, pour trouver un sous-
groupe d i s t i.ngue sur
SZ(f) ; done
M d'indice f i.n i tel que M, et aussi
g = Z
est residuellement fini
et virtuellement sans torsion si Out(fZ)
3 . Pour
N d'ordre Z pour
Mn N
=
on peut invoquer le resultat
{I}. Alors
M opere f i.de l.erren t
Out(f ) , sont virtuellement sans torsion. g
L. Bers m'a signale la demonstration suivante du fait que
Out(f ) = M g
g
est
virtuellement sans torsion. D'apres un theoreme de Nielsen, tout element d'ordre fini de
M g
sousgroupe
fixe au moins un point de G d'indice fini de
M
g
ad
. 11 suffit done de produire un
qui opere librement sur
ad
g) • On prend:
G
Si
s
E
G fixe un point
(adp)
Lp
phisme de la surface de Riemann d'ordre 3 de la Jacobienne de tel
s
Lp
de
ad
,et
s
definit un automor-
opere trivialement sur les points
est l'identite.
0
H. Bass and Alex Lubotzky, Automorphisms of groups and of schemes of finite type,
[B]
s
D'apres un resultat de Serre [J.P.S.] , un
REFERENCES [BL]
,alors
a
paraitre.
J.So Birman, The algebraic structure of mapping class groups, in Discrete groups and automorphic functions, Ed. W.J. Harvey, Acad. Press (1977) 163198.
[L.G.]
L. Greenberg, Fini teness theorems for Fuchsian and Kleinian groups, in Discrete groups and automorphic functions, Ed. W.J. Harvey, Acad. Press (1977) .
[E.G.]
E. Grossman,
On
the residual finiteness of certain mapping class groups,
Jour. London Math. Soc. 9 (1974) 160164. [A.G.]
A. Grothendieck (avec la collaboration de J. Dieudonne) Elements de geometrie algebrique IV (Troisieme partie), Publ. I.HoE.S. 28 (1966)
0
321
[M.S. ]
A.M. Macbeath and D. Singerman, Spaces of subgroups and Tei.chmiil Ler space, Proc London Math. Soc. 31 (1975) 211-256.
[P.l
S.J. Patterson, On the cohomology of Fuchsian groups, Glasgow Math. Jour. 16 (1975) 123-140.
[J.-P.S. )J.-P. Serre, Rigidite du foncteur de Jacobi d'echelon
a [J .S.]
n
3 , Appendice
l'expose 17 de A. Grothendieck, Sem. H. Cartan 13(1960/61).
J. Smith, On products of profinite groups, Illinois Jour. Math. 13 (1969) 680-688 .
SUR LES TRAVAUX DE V.K. KHARCHENKO par J.M. Goursaud, J.L. Pascaud et J. Valette
Le but de cet expose est de donner une nouvelle presentation des principaux resultats obtenus par V.K. Kharchenko dans la theorie des actions de groupes sur des anneaux semi-premiers. Si fini d'automorphismes d'un anne au semi-premier
G
est un groupe
R,dans [5J V.K. Kharchenko
a
introduit la notion d'automorphisme interieur generalise l'anneau de quotients de Martindale groupe une C-algebre de type fini une trace dans Ie cas ou cas ou
R
S
de centre
au
Best semi-premiere,ce qui arrive dans Ie
Dans une premiere partie on decompose l'anneau G
C, et associe
B, lui permettant ainsi de definir
est sans IG!-torsion, et dans Ie cas ou
stables par
l'aide de
S
Rest reduit. en produit d'anneaux
sur lesquels les automorphismes interieurs generalises de
G sont des automorphismes interieurs au sens classique. Dans une seconde partie on montre que la connaissance de l'auto-injectivite de l'etude de
B ® C
B
facilite la definition de traces de
S
B
dans
et SG.
Enfin dans la derniere partie, on presente les theoremes de V.K.ronrrheruw concernant les relations entre
R
et
G R
en propos ant des demonstrations
plus concises. Sur ce sUjet on pourra egalement consulter les exposes de J. Fisher et J. Osterburg [4J , S. Montgomery [9J , A. Page [10J.
323
1.- NOTATIONS ET DEFINITIONS. 1) Pour un anne au unitaire - Z(R)
le
j(R)
R, on note de
l'ideal singulier a gauche de
- pour une partie de
R,
X
de
R,
CR(X)
R le centralisateur dans
R
X.
2) Soit
G
un groupe
- pour
a
E
d'automorphismes de l'anneau R
et
g
- pour une partie de f Ln i
E
G r
ag
X
de
R
de s Lqne l'image
de
et un sous-groupe
R. a H
par
g ,
de
G
Rest H-invariante si pour tout
x
on
t,
{x
E
X
- une partie et tout
h c H ,
- Ixi - pour
x
h
X
de
X
EX,
designe le cardinal de a
E
E
R
X,
on appelle trace de a
l' element tr a
=
Lag gEG
E
G
R
11.- L'ANNEAU DE QUOTIENTS DE MARTINDALE Dans toute la suite on supposera que R est un anneau Rappelons pour commencer la definition de l'anneau maximal de gauche de l'enveloppe injective
R, note
a
QMax(R)
gauche de l'anneau
ainsi un A-R-bimodule; on a alors la De f
Lnd, tion
. Pour cela considerons E
Hom ( E, E) AA A
R,
A
= HomR(E,E)
;
E
devient
324 Des renseignements plus precis sur
Q
Max
sont fournis par
(R)
la proposition suivante.
PROPOSITION 2.1.-
b)
a) QMax (R)
Q
Max
En fait on QMax(A)
Definition
{x
E
E , If b
E
(R)
A , Rb = 0 ==> xb = O}.
utilise aussi frequemment une autre caracterisation
necessitant la definition suivante
Un sous-R-module If
E
R
C-) QMax (R)
de
plunge dan6
D
b c A r Db
Si
de
QMax(R)
est dit dense si
o .
designe l'ensemble des ideaux
a
gauche denses de
R
on
a
THEOREME 2.2.-
Pour plus de renseignements sur
a
QMax(R)
[7] .
De meme si on considere l'ensemble R
on pourra se reporter
des ideaux bilateres de
d'annulateur nul (c'est-a-dire essentiels), on peut considerer l'anneau
de quotients de Martindale a gauche
S
=
lim ->
IE;!
Hom(I,R)
[lJ.
325
S ee {x E Q (R) Max
j
,
a un
On a
PROPOSITION 2.3.-
iJ.>omoJtplUJ.,me
U
ReS c QMax (R)
Ix c R}
I Ejt
Cet anne au possede une propriete faible d'injectivite donnee par Ie
SoU
LEMME 2.4.-
homomaJtplUJ.,me bhnadule pOM
de
tout
M
un
sc-modiu:e.
de
aioM i l
R -;
Uemel'lt
b
soit non nul,
l'annulateur dans T ill Ann ljJ(t+u)
R
=
T E$
;
(t)
Montrons que Soi t et
un
etemel'lt
s EStel.
tel que
de
I
I (b)
que:
(b)
de f Ln t s sorrs un morphisme
ljJ
et
=
S
et
Ib
-1 (R) n R de
bs
T ill Ann
tel que
R ; comme
o. R
T
Alors par
D'apres la definition de
tel que
ljJ(a) = as pour a ET ill Ann
R
coincide avec la multiplication M
et
M
T
u EAnn
de
un element de R
T
bun element de
I
a
un element de
droite par
s
S R
T
sur
M
tels que : Ib c R
I (b) CR.
Alors
'rI
i EI et
ib E cj> icj>(b)
Par consequent
=
-1
(R) n R
d'un ideal
I
et
I(cj>(b)-bs) = 0
Les elements de de
3
T
ibs .
Dorenavant on notera R
b
est nul, on a
s
MU un
M.
s i : t ET
-1 (R) n R
I E
il existe un element
un
: M ..... S
tel que
(M) non nul. Soient
S
s ,
a gauche ewte
de
On suppose (b)
de
C
C
cj>(b)
bs .
Ie centre de
S
• appele centro ide de
proviennent des homomorphismes de R-R-bimodules
dans
R.
326
De plus
a
chaque sous-R-R-bimodule
central
=
eM(x+y)
si
x
s
et
XEM
On verifie immediatement que
Pour tout
S , est associe un idempotent
c defini par
de
ve r i f Lant; : V
M de
eM
est le plus petit idempotent central
X E M
E
S
on pose
r
e
e
s
RsR
On obtient alors comme consequences
a)
PROPOSITION 2.5.-
Von
c
soiis-ci-modur».
b)
de
S
est: un C.Mp!.l
un element de
2
2
=
0
!.l,.l
ex. M
= 2
definie par
Rc
2
=c
ic(s) (l-e
s l)
E
=
jc(S) 0
et
donc
c' I
e
I
est bien definie car
2
est donne par la multiplication par un element
b) Soient
est un sous-R-R- bimodule
is (c ) c is (c) ; donc d I apr e s le lemme precedent
montre que
On verifie facilement que
es;
A
C-{O} . Alors
et l'application
(is(c )c)
nut.
S
[2J .
d) c
c
de.
jc(S)
c) c
a) Soit
[lJ .
1
qui verifie c
2
=c c ' .
C •
sic(s)
=
=
E
c'
et
. Par definition de s
=
e
l
,
o et
eIs
0 .
c) c etant regulier il suffit de montrer que pour tout ideal essentiel de C
de la forme
a
C.
Puisque par
J
=
$
Ce, l
f(e,) = e f Le . ) l
=
l
f(e
i)
i
l
l
e
i)
, tout morphisme
f : J -+ C
on peut definir une application
se prolonge
¢: eSe, -+ S l
; elle verifie les hypotheses du lemme 2.4. II existe
327 done
SES
tel que pour tout
($
ceil (xs-sx)
d)
si
Si
R
R
est premier,
e
xs
=
S
est premier done
sx
(d'apres b»
=
eixs
: s C
eisx. II en resulte
appartient
SOUS-ANNEAUX DE
anne au de
c
d'annulateur
J
•
C.
S. un anneau commutatif regulier injectif,
B
un sur
tels que
C
1)
C
a
est un corps.
est un idempotent non trivial de
J
Soient
c est eontenu dans
2) B
a
et
=
n'est pas premier, il contient un ideal bilatere
non nul
III.-
=0
XES, f(eix)
Z(B)
est un C-module de type fini engendre par
(x
i)1Sisn
et
sous-C-module singulier nul. 3) B
est semi-premier.
II est facile de voir que
LEMME 3.1.-
B
B
est un module projectif de type fini.
v.,:t un artrl.eau lti2.gU-UVt.
Montrons que pour tout ideal maximal un anneau regulier.
done un anneau artinien. Si J
(i,j)
Biro
B
de carre nul. On a alors . Comme
n'appartenant pas
C
a
de
B/m Best
C,
B/m B est un elm - espace veetoriel de dimension
finie engendre par les classes des elements
ideal
m
X.
1.
(lSiSn) .
tel que
B
est
n'est pas regulier il contient un p avec J = L C/m y i i=l
est regulier il existe un idempotent m
Biro
e
de
C
328
o
i,j ,k,l
\I
par consequent l'ideal
L Beyi i
dit notre hypothese sur
B
LEMME 3.2.
Si
rv.,;t un ide.a1.
I
est un ideal de carr e nul, ce qui contre-
a gauche.
de.
rv.,f.,
B, I
ne
Pour demon t re r ce resultat il suffit de montrer que Soit
m
un ideal maximal de
vectoriel
I
Blm B
1
Soit
z1""
m
e
tel que la codimention
i
I+mB soit minimale. On suppose mB
m
Ell B/m B
au
(1f)
,z.e. une base du
elm espace vectoriel
B(1f)
I
ef
I
... ,ez
appartenant
a
B
Alors dans
I . Soient
B/m
1
a
B/m
e/m 1 espace vectoriel et
de Donc
e
1
l
I
engendrent
il existe un element x
potent tel que
i ,
l
n'appartenant pas
a
m
en tant que emodule
.
etant essentiel dans
de
elm espace
B/m B (1f)
tel que les elements et
0 •
f
e
1,
du
I ne
non nul. On a alors
11 existe alors un idempotent central non nul
ez
i
es t: un
fi
=
1
et
=
a/m a f 1
1
=
x
= x(lf)e
un idem
avec
et
un ideal maximal de
B (l-f)
est engendre par
B/m B f 1
est contenu dans x
=
appartient
a
I l en resulte
non nul
e
ne contenant
comme
Par definition m 1 ce qui contredit le choix
0
I
m 1
0
f
et
e
I
•
329
PROPOSITION 3.3.-
a dAaite
un
B
et
a gauche.
une
d'Azumaya. a) Montrons que
Best auto-injectif
suffit de montrer que tout morphisme I
de
B
dans
B
$
=
e a)
C
et
C
B
; la restriction de
a
D'ou
a
appartient
f(x)
etant regulier, il
a
gauche essentiel InC
es t un
f
a
Ce
$
est un homomorphisme de
a
en un endomorphisme
a
9
de
C
dans
B
sous-module singulier nul
Best C-injectif.
I , f(eax)
=
o.
e x g ( l ) et
a
xg(l) . [11, theoreme 5.5.7J , il suffit de verifier que pour tout
ideal maximal
m
engendre par
de
Z
(B)
(xi) 1 upp0f.>e. que.
f.>U/t
es« JteguUe.Jt -tnje.c.t-t6 et: que. le. f.,OUf.,-module. f.>-tnguUe.Jt ess: nul. MOM d
e.wte. des -tde.mpote.n;tJ., oJt:thogonaux
1 = e + ... +e
C
o
e.t
n
le. noyau de.
de.
jc(Z)
eo"'. ,en
que. pOU/t c.haque.
i
C Z
de.
(osisn)
c.anon-
e
a de.ux
r
s £
so.c: ..lnvaJUan.t pan:
te.l que.
e..t
a
fEE,
G; il
H
•
les
337 (Le. On remarque d'abord que: a) si dans E on a 2 m g5,e g g alors on a e5,e = e · 5,... 5, e (m est l'ordre de
g
GIN)
dans f
1
:5, f ,
f
donc 1
EE
=
e
e
g
b) si
tel que
f
fi
1
=
fEE (f
0
Dans l'ensemble des idempotents de nombre
k
(5,IG/NI)
supposer que
(ii) Soit
£,
,
fEE
b) il existerait
f
f
1
£
g2
f
h g2 gk , ••. ,f 1,f 1,f1 1
le definition de
1
gk
tel que
f
g2
g2
f
1
:5, £
a
g i. H
On con s i.de r-e
a
fg
1,g2, ... ,gk g EG \
k
U
a
E
d' apz e s b) il existe fEE, f 5: £
et on suppose
car •
H
1
i
st(f)
tel que
alors il existe
convient).
a
e
et dont le
deux orthogonaux est maximum,
a
H
fh 1
maximal et on peut
deux orthogonaux. tel que
hEH
f;r. fh
d'apres
et puisque
0
f
gk 1
:5, e
gk
deux orthogonaux ce qui contredirait
H
k • En consequence
i=l
Puisque
a
sont deux
seraient deux
suppose l' existence de
f-ffg
inferieurs
S' il existait
:5, f
On remarque que
(i)
, ••• ,£
fh1 < - £
5: e
E
f;r. fg
de stabilisateur
£
f:5, £
=
1
de conjugues deux
on considere un element
et
st(f)
ne sont pas congrus modulo H
et on
g. H. 1
fEE , f.:5, f,f
g2
, ••. ,f
maximum. Si on avait
et d I apre s a)
£
verifiant
gi k >
ffg
=
0 •
soient orthogonaux
i
on en dedu i r a Lt;
-1 gog f(l-f - que G
1
= n 1+ ... +n t
comme gJtoupe d' automOltphAAmv., de
..• ,n
f.>OYlt
S de
t
E
e.t teif.> que h.t Ort sn
i
'
f.>O.tt
(G) inn
un f.>OM-gJtoupe c-oYlhtitue d' automOltphAAmv., .tYlteJUeW1.J.> deMYiM par:
des e.temen;v., .tnVeM.tb.tv., de SoH
g1 = 1
g2, •.•,gn
Soient
i
un systeme de representants de
G modulo N .
les elements de ce systeme qui appartiennent k
On a
sn
C
Lee
l=1
a
Ginn
. Le lemme 3.4 entratne l'existence d'idempotents
gl
tels que
.1
t L n i i=1
o Si
est non nul, Ie lemme 3.10 montre que l'automorphisme
coincide sur Soi t g
ou
g
= hg 1
avec un automorphisme interieur.
G , tel que Sur
g
n.1.
oeO • Il existe
on a
hEN
tels que
et
g(x)
yE;,xE;,
On a donc g
gl
Puisque
g.t
Sn
y
•
est interieur au sens classique sur Sn i '
est interieur au sens classique sur
groupe d'automorphismes de
-1 -1
i,
Sn
(G) inn
i
et si on considere
G comme
est un sous-groupe constitue
d'automorphismes interieurs au sens classique.
•
342
V.- TRACES. Ce sont les elements de On definit sur
S
une structure de
B @ a-module
a
gauche en posant
C
s b.
Puisque
B(R;G)
classique, lateur
a
sG
= Cs(sG)
et puisque, lorsque
= CS(B(R;G»
droite dans
B
est interieur au sens
a
, dans ce cas on est amene o
@
G
B
de l'ideal
a
gauche
C
etudier l'annu-
B e
E
bEB
B(1
@
b-b
@
=
1)
C
0
B @ B (1 @x -x @1) qui est le noyau de l'homomorphisme g g
E
gEG
0 B e B _IJ_> B - - > 0 C
E a.
@
b . .-.....;> E a. b.
1) Dans ce paragraphe
B
injectif con tenant dans son centre C
tel que
B
designera un anne au regulier autoZ
un anneau regulier auto-injectif
soit un C-module projectif de type fini. Notons que
o
B @B C
etant auto-injectif et r(ker IJ)
de type fini,
lr(ker IJ)
= ker
et
IJ
n'est pas nul. On se propose de montrer le
THEOREME 5.1.-
r(ker IJ)
PROPOSITION 5.2.-
En
Be
r(ker IJ) Soit
libre.
ker IJ
e6t
B 03> C
a.
d!toUe.
u a galLc.he..
e6t de
M un sous-Be-module de type fini d'un Be-module
B etant regulier et
type fini,
ut un anne..au c.oh0te.J1.:t
13
Be
etant un B-module
a
a
droite
droite projectif de
M est un B-module projectif. Done pour toute suite exacte
343
o
+ M' +
(Be)m + M + 0
de
M'
Be-modules,
est un B-module de type fini
done un Be-module de type fini.
•
de
B
et
te1.J.> que
hypothe-6v.. que
En effet
et
B
r(ker 11)
du cent4e
deux
LEMME 5.3.- Soient
et:
C
CE.
(i = 1,2)
v..t Lsomonph». au pfwdui;t
r(ker III
et
est contenu dans o
est isomorphe
a
BE.
.i.
•
BE.
LEMME 5.4.- Ii -6u66U de. pftouveJ[. .e.e. theMeme. .e.OMqUe.
Le couple de
(Z,C)
on peut supposer que
3.5 et 5.3,
D' apr e s les lemmes
verifie les memes hypotheses que
ker(Z @ Z + Z)
B
est engendre par un element
v..t commu.t.a..t£6.
Best Z-libre. (B,C); l'annulateur
u . On considere alors
C o
Le morphisme naturel d I anneaux
fait que
B
@
o
B
est un
=
B e B Z
. En utilisant Le
Z @ Z-module libre, on verifie aisement que
C
ker 8
0
8 : B e B + C
C
E
B@B
Z Z
C
(l0z-z01)
et que si
a
appartient
a r(ker
11)
on a D'autre part
B
etant une Z-algebre separable, Ie noyau de
o
B @ B + B Z
est engendre par un idempotent 1-e . Soit
'1
B
@
o
B
tel que
8('1) =e
C
il en resulte (b 0 1 - 1 0 b) T 1
a
=
'1 a
ker 8
= et
T1
ua
1
. Enfin quel que soit
T 1u E: r (kezu)
b eB
•
Z
344 LEMME 5.5.-
Le.
eAt vnai. -6-
B 0
C
B --> 0 • Pour tout
droite
fEE'
on
C
pose
V
11 est immediat que les applications • Soi t o " , f = f2
un element de
Tr
s)
f
sont des traces.
f
et
B
G/H
*
( (f 0 1 ).T
SES
e
$
ef
e E E'
tel que (e 01)
T
soit de longueur minimale. On peut ecrire (e01lT =
n 1: a.0b. i=1
1: a.B = Be = 1: B b.
nul, il en resulte que pour tout
i
, f Bb
est nul et done que
i
est nul ce qui est impossible. II existe done
a EB
f e
tel que
(e01)T(10fa) '" 0 • On a alors
o '"
=
(e 0 1) T (1 0 fa)
Comme tout
sait
e'
e' E E'
$
e
f a b l::-
e . Pasons pour
s ES Tr , f ( s) e ,
=
11 est immediat que
LEMME 5.7.-
« e'
0
eX
f
1)
Tre',f
T
*
(1 0 fa)
G/H ,
s)
e
est une trace.
un eleme..u: non rtUl de. s
So.i..e..u: a
non rtul de. s. On f 1
m 1: a.0fab. i=l
que.
rB(a)
=
(1-f
1)B
du.i..gne..u: /tupe.wve.me..u: des
2
eX M un sous-modui». eX rB(M)
de.
B
=
(1-f
eX de.
2)B
OU
Z (B)
non oJt.:thogonaux. AtOM
pour: .:tout e
pOUlt .:tou..:t
I
E:
3'
o
E
E , e
0 it
tU.:t
$ 0
ef f ,.i..l 1 2
0 '" a Tr (1M) e
exist»:
.:tel que.
347 D'apres la remarque 1)
de longueur minimum
s
e'
e
et tout
k
il existe
(ef
1
e f
e'f 1
1
des definitions de
f
2
et
f
, e:"':e
tel que
o
(ef
soit
10f2)T
m
lT
l: ef a 0b 1 k kf 2 k=1
et
1
eEE'
bkf 2e'
2,
e' E E ,
ne sont pas nuls. Compte-tenu
pour tout
aTr e (x) =a[ef 1 (T*X) f 2J+a[e (T*X) J
pour tout
x E 1M
on a
:
G/H*
m e = a\:1
G/H*
n
e.
m Par definition de plus pour tout elements
o >' I: v j
v. J
g
et
m
et
H
,
f.
e
t. J
f e
de
1
'
l: Caef 1ak k=1
la somme
est directe ; de
est nul. En consequence [3.15J il existe des
g
R
tels que
o
. a ef 1a 1t. = d. = Cl e J )
= I: v j
jaef 1akt j
(1'Tre(J( (resp.
Soit
I: vjaTre(IM) = ClIMb j
etait nul, on en dedu.i r a.i.t;
(1M)
COROLLAIRE 5.8.-
e.t
done
O>'f = f
o '" Tr e (( ()/; n DR) J)
2EZ(B)
tel que pour tout il existe
G
(JUn ROll c (Jt.n D nR
tel que
J £::; tel que
on ait Tr (J e
c
o. n
G) D nR •
rB(()l;nRO) = (1-f)B Tr (J (an RO» e
IJ!-)
c f1L n RG
et
'" 0
11 existe Comme
Tr (JD) cD. e
e £: E'
Tr (x) e
•
348
VI.- LES THEOREMES.
M!.mi - pltemieJt. De. ptlL6 J.:,i
THEOREME 6.1.G R a)
pltem-a:te.uJt dans S
B
(l-f)B
ideal
de
a
=
1: Y x
g g
droi te de
B: il est essentiel
B. II existe done un ideal essentiel
tel que pour tout
a (l-f)
G•
de. R
G)
[3.2J. Si on considere des elements g
et
Rb •
{b E B ; ab E B}
dans un facteur direct dans
a
sont invariants donc nuls. II suffit d'appliquer Ie
un element de
On cons i de re
on ait
I
a
G Tre(I) C R
tel que
THEOREME 6.2. [5, theorem
e.y
G-J.:,,{mple. a1..oM
B
i C
eia(l-f)
Yg
de
EB
d'oii i l resulte I
= 1: g
e. 't , x
tels que pour tout
=
g
EB
i
(l-f) B
soit de lonm . En particulier fa i. 1: gueur minimum: fe @ 1., = 1: @ b l k k=2 k=l G Soit J E tel que l'on ait Tr (J) C R ; alors on obtient f T- 0 ; soit
tel que
e
\I x
E
J
a Tr (x) - Tr (x) a e e
o
fe 0 1 • r
349
m Or
afa
t
1
n +
E
k=2
k=m+l
il existerait
a
n +
E
appartienne
tels que
B; on aurait
0 = fal+fa2c2+ ... +famcm
ce qui est impossible. Comme a = ae '" 0
dans la demonstration du lemme 5.7, il existe on en deduf, t tion de
: e
e
el
e . En consequence
1) Supposons d'abord que Soit f
1
eo
= f
Soit
e et
un f.,otU>-R-RG-b-i.module de S • It
M
M = RaR
G
et
2
I E 1" tel que
Tr (I) e
C
G
R
et l'ensemble de ces idempotents Se
o
de l'ideal bilatere
donc nul de sorte qu' il existe E aI bk
k
C
r
B
(M)
= (1-f) B
B(a)=(I-f)B.
= 1 il existe
E v. a Tr (I) j J e
dans
r
ez
M
. On reprend les notations et la demonstration de 5.7 avec
f f
•
I = B .
e:t f = f2 E B :te.1-6 que Jf c
J E.1
tel que
ce qui contredit la defini-
e b = 0 a 1
et
THEOREME 6.3.[5,lemma 5J • Soil
ew:te
dans le cas contraire,
akc
E
k=1
e L
k
C
il existe
est cofinal dans = {a ERn Se
o
aI'f
m E ex I' Bkb k k=1
0
; 3 I
0'" a ELI n ... n L m
I' E j'
tel que
m E alb k k=1
C
tel que
M
M • Coinpte-tenu de la remarque 2)
e f
elk ERn Se
: Be f 0
a
et
E e E
L'annulateur
a Iabkc M}
I E j" m E Bb k k=1
m E I'B c r k k=1
M .
o
d'oll
tels que Le.
est
350 L'ensemble des bilatere J =
aEL verifie
etant cofinal, l'annulateur dans
3 I a E 1"
L = {a ERn sef ; RaI
L
eo
+ 1 (l-e
a
0
f)
1
(ou
a
et
1
0
e
c R)
f
Bf
L
aEM J
a
appartient
a ..1
et
Jf eM.
2) Dans Ie cas general on considere l'ideal et
de l'ideal
a I f eM} est nul. En consequence
E l'
0
sef
, J f a 5:: RaRG a
E.1'
direct
Bf
existe un ideal essentiel
B
(a.l = (l-f )B a
Cet ideal est essentiel dans un facteur
On verifie aisement que
o
avec r
a
de
Ceo
$
f = f
. De plus d'apres [3.2J , il
o
tel que pour tout
C
i
on ait
i
i
on peut associer
en effet il existe
alors si
Ej'
J'
a
n
de
verifie J' a
J.e.f 5:: L J' Sn f 5:: a a n n
L J
a
f n
13 cJ n
a
L J. e.
B
a
n
c
n
J. E:t
tel que
J. e . f c M
tels que e. f = 13 f + .•. +13 f 1 a n i an. 1
et si J.=J' a
1
n ... n J' a
on obtient n.
I1 est, clair que l'on peut supposer
M
n
E l'
et verifie
Jf eM.
•
On dispose d'un theoreme analogue pour les sous-RG-R-bimodules de
THEOREME 6.4. [S,theorem
7J
S .
le
on on a
a) POUlt tou.:t
I E$,I
b)
I 1E.1'1
POUlt
c.) (R.:f )
tou.:t G
es«
1
a '5 1
G In R
u. ewte a (RG)5
J E
1
j" tel que
J c RI
1
351
a) Soit que
o
I-f
J E j" b) r
f2 EZ(B)G
f
(II) = (I-f) B
c) Soit
avec
fEZ (B)
J E.1
,
PROPOSITION 6.5.G R
que
cG
=
est nul G
(R ) -r 0'1
de f i n.i
SJ..
G R
et
t,
I
est un produit de corps et
un ideal de
B
I
a
RI
3'
E
a
0 •
(I-f) I c R
tel que I c RI 1 . gauche
Comrne
1
et
RI
(Rj') G
1
•
e;.,t G -
est regulier, Ie theoreme 6.4 montre
I
est egal
C . Comrne
a
C . Par suite
est un anne au semi-simple. si ct
est
•
SJ.. G.
es« C.OYL6:tUue. d'acdomoJtph.J...6me;., de.Mn..L6 paJ!.
:Lnn
S
GIG.
:Lnn
G. R
tel que
=
et donc
des e.ie.me.nt6 J..nveMJ..bie;., de. :Lnn
E.:t
(1-f)
est engendre par un idempotent invariant
qui est central dans
PROPOSITION 6.6.-
e:,>
G) (I nR (1-f)
un ideal essentiel de
B
invariant,
et
()(, l'ideal
un element de
cG = c G/ N
est un corps. Soit
I
se prolonge
ess: pftemJ..eJt, B
est premier et
eEE'
et il existe
est non nul,
C
(l-f)B • Il suffit de montrer
• Il existe
est nul et par suite que
contient
Comrne
I-f
un element de
at
B(RI 1)
= Tre(JI) (1-f) c
O;tTre(JI (1-f»
Le lemrne 5.7 montre que
que
r
Dans Le cas contraire il existe
tel que
B
tel que
•
Supposons qu'il existe supposer que
G
g
;t
1
E
GIG.
:Lnn
est engendre par Ginn
x-exterieur sur et
G. R :Lnn . On peut
g . II existe donc
o ;t
G.
XES a nn o
352 tel que l'on ait : G.
\I s E S a nn
En particulier
G. S lnn
de f
o
Soit
f
EI
I E.1'
g
Puisque
g
ae;t
0
m
G. S lnn
G. S lnn f
est trivial sur
tel que la longueur
f
dans
de
done au centre
associe
a
x
o
. En consequence si S
et
(e' f I8l 1) . T
e'
c(f)
un
soi t minimale
XEI
est X-exterieur sur tel que
a I b
1
=
R
et que
fa
1'
E k;t1
il existe
•
ce qui est impossible.
0
(cf. question 15 de [4J).
at un
PROPOSITION 6.7. [5, lemma 11J .
v...6entie1. daM
R
v...6 entie1. dans
RG
Soit
D
un ideal
idempotent de
B
,
a
at. n
R
G
gauche
v..,t
un ideal
;t 0
tel que
fB
'r
de E
(e.). d'idempotents de C tels que l lEI
\I i
Soit
J
i
J
G. (e'f I8l 1).T*IcR lnn, on obtient
veri fie \I
=
l'idempotent central de
designe la couverture centrale de
element de si
o
G. CS(S lnn)
est invariant et
c(f)
a
x
sx
E:J
tel que
J.e. l
l
E
R •
a
a
(a
qauch»: (flv..p. it
tel que dtn D = 0 • Soit r
B
f
(M n RD) . 11 existe une famille
un
353 Soit
E JieiM i
N
effet soit
a E
I l existe
J.e.a r,
et soit
x
E Jieia-{o}
ax = a x e. E M.
B
(N n RD)
B
= fB
En effet
n RD) e fB
(N
d'apres la definition de
x EN n RD
Pour tout
a
En
.i,
r
r
i
()U
J.e. ax e J.e.M.
On a alors
et si
I l existe
()(,
a E R
a
est un sous-module essentiel de
N
N'
-
,0
si
R est de Cohen-Macauly, Ie premier coefficient non-nul apparait pour
i ; dim R, et sa valeur est appelee Ie type
t(R)
de
R, la condition
t(R)
caracterisant les anneaux de Gorenstein (iv) la serie de Poincare de
i
R:
0
qui est un polynome si et seulement si
Rest regulier
(v) la serie de Hilbert-Samuel de ;
.L.
R
-R /PR p P - P P
R /pR
est separable.
Pest ramifi§, et on sait que l'ensemble des G ramifies sur R est Ie ferme de Spec R, egal au
support du module des differentielles de Kahler Jt / RG. En particulier, un ideal R definissant cet ensemble est la differente definie comme etant l'ideal de Fitting des mineurs maximaux d'une presentation de JL / RG . (Pour une R exposition detail lee de la theorie locale de la ramification nous renvoyons au
[IIJ).
cours de Scheja et Storch
Dans ce nume r o on se contente d ' enoncer Le principal r e su l tat de [2]. On a besoin d'un lemme, qui dans Ie cas complet est une consequence d'un resultat plus precis, demontre dans [10, pp.8-9J. Lemme (2.1)
[2, (12)J
caracteristique de Alors
h
elements
Soi t
h
un automorphisme de
k ; on suppose en plus que
h(x)-x, quand
x
parcourt
premier 11 la caracteristique de sur l'anneau local dans
R, d ' ordre fini premier 11 la
induit l'identite sur
est une pseudo-reflexion si et seulement si l'ideal
R. Soit
9
H engendre par des pseudo-reflexsions,
k,
H
G operant generiquement sans inertie
l'ensemble des pseudo-reflexions contenues dans
l'ensemble des ideaux de
R, qui sont H-stables et ne sont pas contenus
","HR. Alors on ales egalites : G) Q.(R/R =
k.
engendre par les
R, est principal et non-nul.
Theoreme (2.2) ((2, (4)J) On suppose
G,
h
n
E.e
b
380
Remarque (2.3). En suivant
la demonstration donnee dans [21, on voit que
l'egalite de gauche reste vraie sans supposer que
H
est engendre par des
pseudo-reflexions, si les conditions suivantes sont satisfaites : (i) premier a la caracteristique de inertie
(ii) Rest
k, et
G opere sur
RG-libre de rang
R
IHI
est
generiquement sans
Jel ; et (iii)
est d'intersection
complete.
,w
En reprennant un exemple de [9], soit 6-ieme de l'unite (6 f
une racine g(X)
=
Rest
lJJ X, g(Y)
Y, H
k), g
( g ) . Alors
= G
le k-automorphisme defini par 6 2] G R k[X , y est r egu Li e r , done
RG-libre de rang 6, et
est d'intersection
complete. On voit, par la remarque precedente OU directement, que G) = (XSY)R. D'autre part, comme est donne dans la base evidente 2 par la matrice diag(lJJ ,w, 1) , la seule pseudo-reflexion de G est
D(R/R
l'element
h
=
g
3
et
(XY)R, done l'egalite de droite n'est plus assuree
=
par ces conditions. 3. ANNEAUX DE BUCHSBAUM. 11 est bien connu que la propriete d'etre de Cohen-Macaulay descend de H
R , pour tout groupe fini
dont l'ordre est inversible dans
H
k
R
[6J. Nous
allons retrouver ce resultat, dans le cadre plus general des anneaux de Buchsbaum, introduits dans [14] par la propriete que pour tout systeme de parametres xl"" ,x k de R, la difference de la longueur et de la multiplicite reste constante ; cette valeur independante de x est appelee l'invariant
i(R)
de
R, et on a
i(R)90
avec l'egalite caracterisant les
anneaux de Cohen-Macaulay. Proposition (3.1) Soit (i) Si (ii) Si
R H
G un groupe fini d'automorphismes de l'anneau local
soit premier a la caracteristique de G est un anneau de Buchsbaum, R l'est aussi, et
tel que l'ordre de
H
=
est engendre par des pseudo-reflexions, et
G
R,
k. i(R)
opere sur
R
generiquement sans inertie, on a i(R) Demonstration. (i) Soit
xl""
D' ap r e s [12J, pour voir que
groupes d 'homologie sont annu l e s par /WI
H. (K)
H
1
H
IHli(R
=
un systeme arbitraire de parametres de
,x d
R
G).
est de Buchsbaum, il suffit de montrer que les • H R sur Xl"" ,x
du complexe de Koszul de
pour tout
sur un systeme de prametres de
i
1. Comme
R, on a deja
K IlJ H R -
d
est un complexe de Koszul
R H. (K IlJ H R) = 0 1 R
pour
I.
381
H R __:>R
1
L. g(x) s'etend a une gEH section de l'inclusion canonique K '--) K H R, qui commute aux differentielles, H. car elles sont donnees par des matrices a co:fficients dans R On obtient donc f:
Or l'operateur de Reynolds
que la suite exacte de
(f(x) = IHI-
RH-modules :
donne en homologie de Koszul les isomorphismes de RH-modules H.(K 1
donc
H
R
fll
1
H.(K 1
H T).
R
H D'une part on voit que annule l'homologie de Koszul de R et de H R est un anneau de Buchsbaum et T est un RH-module de Buchsbaum.
T,
D'autre part, comme on a d
(_l)i-l t
i=l
H. (K 1
H R) , R
= R/hn montre que la longueur d'un H,:: R voit que
et comme l'egalite etre.calculee sur (3.3)
R
i(R) = i(R
H)
R module peut
+ i(T)
ce qui demontre (i) pour G H. Pour passer au cas general il suffit, puisque H R G H R est RG-libre de rang IG/RI et AlI = IM R (e g , (2,(7)1), d'appliquer i
Ie lemme suivant :
---+ (B,1L)
(3.4). Soit est A-plat et et dans ce cas
Alors
B A K = K
A
B
commutatif :
'
A est de Buchsbaum si et seulement si
B
B l'est,
i(A) = i(B). A K
Demonstration. Soit generateurs de
un homomorphisme local, pour lequel
Ie complexe de Koszul de A sur un systeme minimal de . A A 1(K) , et posons H =.H HomA(K ,A). D'apres nos hypotheses i A) B) A) Hi(K = Hi(K B = H1(K et on a un diagramme
AIm- -
A
H. (K
A)
Hi (K
A)
1 (A)
(A)
B!:! Hi (K
B B
B)
1 (B)
ou l'isomorphisme des modules de cohomologie locale vient de la platitude
382 i
i
Ext (A) M B = lim Ext (A/rttl n A) M B B A A -;> , A -----, A que la s ur j e c t i v i t e de lp est equivalente
i B, B)
a
celle
de
i H (B). On voit 1t epB (descente
fidelement plate), et cette propriete caracterise les anneaux de Buchsbaum (13J. D'autre part, en calculant i(A) comme dans
(3.2), on obtient
(ii). D'apres Ie lemme on peut supposer
G
i(A)
H, et comme
=
i(B).
Rest d'apres
(1.2) RH-libre de rang IHI, on a Ie resultat par (3.3).
Exemple (3.5). Soit
R
l'anneau gradue
3 4 4 3 k[x , X Y, Xy , y ] du cone sur la
quartique gauche. II n'existe pas de groupe
H engendre par des pseudo-reflexions,
operant par
R, tel
dans
k-automorphismes homogenes sur
k. En effet,
R
que
est un domaine de Buchsbaum avec
lHI soit inversible i(R)
=
I, et on conclut
par (3.1 i i )
Bibliographie [1]
L.L. AVRAMOV, Homology of local flat extensions and complete intersection defects, Math. Ann.
(2)
(1977), 27-37.
L.L. AVRAMOV, Pseudo-reflectilln group actions on local rings, Nagoya Math. J. (to appear)
(3)
N. BOURBAKI, Groupes et algebres de Lie, chapitre V, §.5, Hermann, Paris,
1968. [4]
C. CHEVALLEY, Invariants of finite groups generated by pseudo-reflections, Amer. J. Math. 67 (1955), 778-782.
(5]
H.-B. FOXBY and A. THORUP, Minimal injective resolutions
under flat base
change, Proc. Amer. Math. Soc. 67 (1977), 27-31. [6]
M. HOCHSTER and J.A. EAGON,
Cohen-Macaulay rings, invariant theory, and the
generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1056 [7]
C. LECH, Inequalities related to certain couples of local rings, Acta. Math. 112 (1964), 69-89.
383 [8J
£9]
H. MATSUMURA, Commutative Algebra, Benjamin-Cummings, New-York, 1980 E. PLATTE und U. STORCH, Invariante ragu La r e Differential- formen auf Gorenstein Algebren, Math. Z. 157 (1977), 1-11
[10]
J.-P. SERRE, Groupes finis d'automorphismes d'anneaux locaux reguliers, Colloque d'Algebre E.N.S.J.F., 1967.
[11]
G. SCHEJA und U. STORCH, Lokale Venzweigungstheorie, Schriftenreiche Hath. Inst. Univ. Fribourg/Suisse, nOS, 1974.
[12]
P. SCHENZEL, Applications of dualizing complexes to Buchsbaum rings, Adv. in Math. (to appear).
[13]
J. STlJCKRAD, Kohomologische Char ak t e r i s ierung von Buchsbaum-Hodules, Math. Nach r ,
[I 4]
265-272.
J. STUCKRAD und V. VOGEL, Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendung
auf ein Problem der Multiplizitatstheorie, J. Math.
Kyoto Univ. 13 (1973), 513-528.
ON NONNORMALITY OF AFFINE QUASI-HOMOGENEOUS SL(2,a)-VARIETIES Dina Bartels
Introduction: By an affine quasi-homogeneous Sl(2,cr)-variety we will mean an affine algebraic variety with regular Sl(2,cr)-action containing a dense orbit. The normal affine quasi-homogeneous Sl(2,cr)varieties have been classified up to Sl(2,cr)-isomorphism by Popov [11]
. We were interested to know, whether orbit-closures
in simple Sl(2,cr)-modules, in particular those orbit-closures containing zero, are normal. For instance, Kraft and procesi [8] have shown that for the adjoint module "of
all orbit-
closures are normal. It is known that in simple Sl(2,cr)-modules all orbit-closures of dimension less than three are normal. Special examples of non-normal three-dimensional orbit-closures were given by Popov [11J
, Kraft and Hesselink [4] , using
various types of arguments. The aim of this paper is to introduce a new method, which is sufficient to show in general that for simple Sl(2,cr)-modules all three-dimensional orbit-closures containing zero are not normal. Let us mention furthermore that Luna and Vust [9] have classified up to Sl(2,cr)-isomorphism all normal quasi-homogeneous, but not necessarily affine, Sl(2,cr)-varieties. I would like to thank W.Borho for several discussions and hints.
385
O.
Notations
We denote by
G
the group
such that
[ ac db]
ad-bc=1
of complex 2x2 matrices . Throughout the paper, we use the
following symbols to denote some special subgroups of B
is the Borel-subgroup of matrices
B
is the Borel-subgroup of matrices
u
is the unipotent subgroup of matrices
U
is the unipotent subgroup of matrices
T
is the subgroup of diagonal matrices
N(T) is the normalizer of matrices 'em
T
[g
n
G, consisting of
o
[6
is the cyclic subgroup of matrices
Rn
[6 ]
[t 011
is the semidirect product
By
in
G
i;m: 1 .
such that
em ·u
we denote the complex vector-space of all binary n-forms
with complex coefficients. For a particular such form
f , we
use the notation a
as polynomial in
X
and
Y . The group
v
E«: G
acts on
Rn
by
386
1.
Orbit-closures in finite-dimensional G-modules
1.1
By an (affine) G-variety we will mean an affine algebraic
variety on which space on which
G G
acts regularly. A G-module is a vector-
acts linearly. The following fact is easy
and well-known [10J.
Theorem:
For every (affine) G-variety there exists a closed
G-equivariant embedding into some finite-dimensional G-module.
From representation theory of
G
it is well-known that
1)
every finite-dimensional G-module is semisimple,
2)
every simple G-module is isomorphic to some
Definition:
R
n
A G-variety is called quasi-homogeneous, if it
contains a dense orbit.
The subject of this paper is to study quasi-homogeneous G-varieties. As a consequence of the facts listed above, it is equivalent to study closures of G-orbits ina G-module V=Rn
1.2
$ ... $
1
Rn
for any numbers n , ... ,n r . 1
r
Let us recall the structure of closures of G-orbits in
finite-dimensional G-modules as described by Popov in Let
Gf
denote an orbit, generated by
f , and let
[12j . Gf
denote
its closure. We will distinguish six types, according to the dimension of
Gf
and the structure of the boundary
Gf'Gf
These are listed in the following table. In addition, the stabilizer
G f
of the generator
f
(up to G-isomorphism)
387
is given in the last column, where we use the notations introduced in section O.
dim Gf
-Gf ....Gf
0
¢
G
I'
a)
2
¢
T or N(T)
b)
2
3
a)
3
b)
3
type 2a)
c)
3
type 2b)
type 1)
I
1.3
Gf
type 1)={0}
U
m
for some m
any finite subgroup of G
¢
em
em
for some m for some m
For our subsequent considerations orbit-closures of
type 3c) will be of special interest. Let us make some suitable choice for the generator
f
of the dense orbit in this
case.
As a consequence of the Hilbert-Mumford-criterion,
f
can be
chosen such that
as explained in [llJ. Moreover, cyclic stabilizer
f
can be chosen such that the of order
is the cyclic group
m
R $ ... $ R , say f=f ... $f these special r n n 1$ l r for each i=l, .. ,r assumptions on f amount to choosing f.ER l n
For an
f
in
i
as follows: n , (i) n. n.-v v f.= Zl a (l)X l Y l V v· v=O (i) with a =0 i f m)'n.-2v v
l
or i f
388
For each nonzero v
(i)
such that
OSk < i
n.+1] [
(Remark: zero for
v and IT
l
k. l
the maximal number
is
. Note that by the above assumptions
that
k.>O
The number
for at least one
k.
l
max
,where
l
n.
.i,
l
k. l
n,
is defined to be
l
l
Gf
in the
[llJ ).
Regular functions on orbits and their closures
For an algebraic variety
Gum
7f let
denote its ring of
regular functions. An affine algebraic variety pletely determined by
closure
?J is com-
SO, taking the algebraic point for an orbit-
of view here, we will consider the ring
2.1
i
f.={O}, is the "height" of the variety
terminology of
2.
we denote by
f.
Gf.
First we will state some general results concerning the
regular functions on G-varieties.
(All these results are valid
for any reductive linear algebraic group).
Let
?J be any G-variety, then
g(F(v)):=F(g
Proposition:
-1
v)
If
for every
G
acts on
vE 'l.t, F E(JHV)
7.J is a G-variety, then
(5)
Schanuel's example.
(5)
Suppose a£A\A is chosen so that the conductor
(4)
C =(A : A [a])
of A in A [a]
is not a radical
ideal of A Ca]
. Since
C is the largest common ideal of A and A [a] we may choose b"I]""""'l;\A. Sayb
n"
C.
Since C is an ideal of A raJ
'
b
m
for all m
406 Let
n
o
be the
smallest integer such that
n-I
and d = b
'A,
0
I f B is a
(4)"9(3).
suppose
but d 2 ,
A is not
for
d 3 E A contradicting
A
subring of
seminormal and
Let B = A
bme,\
m". no· Then
no'
(5).
containing A,
then +BA=+7\Ar'lB.
let aE. +XA'-A. B,
• Then +BA
so for
each prime
ideal P of A
there is a unique prime ideal Q of B lying over P and the map k(P) _
C
k(Q)
(A:B)
F
C
is an isomorphism.
is not a
radical
0 since B is a
We shall now show that
ideal
in B,
contradicting
finite A-module,
and C
Let P be a prime ideal of A minimal over C, of B lying over P.
ideal
f
in B and since CA P P Now if C is a of PB
Q,
CAp
Q
phismk(P) -+ k(Q), which
Ap '
radical
= QB
Then CA Ap
ideal,
also.
t
(A
p Bp
CAp
PAp
p
Q.
: Bp)
is
and
(I,).
A since A
#
B.
let Q be the prime the conductor
of Ap
also have that Bp = B • Q since QB
Q
is
the radical
We now have from
an isomorphism,
the
isomor-
and hence Ap
= Bp '
is false. (After Gilmer-Heitmann)
A[X I , ••• ,
Xn]-module,
polynomials. ring
and
But we
Thus PAp = QB
Ap/PA p -+ BQ/PA
p
f
the conductor
Let
{C
Since
B is
a
malization
C
t
} be the finite
+'BB.
Ais seminormal.
Let A
o
rank one projective
set
of coefficients occup-
let B be the subring of A generated by c
finitely generated
finite in tegral closure
a
then P is determined by an idempotent matrix
I , ... ,
in the matrix and
.If P i s
13,
2-algebra,
and hence
= +'!lB.
It
it
from A
and A o
and
o
,... ,c
t'
is noetherian with
the same is
true of the seminor-
is possible to see that Aoc;;,A,since
The matrix which defines P also defines a
projective Po
r ark
i
satisfies the hypotheses
therefore P is extended
of theorem I,
from A.
soP
o
is of
is extended
407 III - Seminormality and projective modules over polynomial rings. Theorem 6 allied with the methodology of Lequain-Simis now permits
to extend the Serre conjecture a bit farther,
US
and in a way
which brings seminormality into play. Theorem 7. [7, (i) (ii)
A
Thm.2J Let A be an integral domain such that
is a Prufer domain,
Spec
(A ) p
and
is finite for all P6 Spec(A).
Then finitely generated projective A [Xl"'" extended,
if and only if A is seminormal.
Sketch of proof. are extended,
modules converse tegral
-modules are
If finitely generated projective A [X]", then A is seminormal by theorem 6. To
show the
we apply the Lequain-Simis methodology to the class
domains
is clear from
A
satisfying
(ii)
that
is less easy,
(LS
(i),(ii)
.0)
but follows
and
of in-
(iii) A is seminormal.
l;. .
holds in
-
(LS.l)
It
is easy to verify.
from well-known facts
about Prufer
domains. Let us now verify (LS.3)
if Af.
e.
is quasi-local,
by generated projective A [Xl-modules are free. finite Serre
and as
By
(ii)
then finite-
Spec
(A)
is
in the proof of theorem 5 we have by the theorem of
that every projective A [X]-module has
an ideal and F free.
But A is seminormal,
the form IEDF
so by theorem 6 I
with I is exten-
ded and hence is principal. The following immediate corollary to theorem 7 seems to have been known to several authors. Corollary. finitely
If A is a one-dimensional Noetherian domain,
generated p r o j ective A [Xl""
if and only if A is seminormal.
then
XJ -modules are extended for
408 This result applies to algebraic curves. (For a precise interpretation of seminormality in algebraic curves the reader should consult Davis's ever,
enlightening paper
US}
since Pedrini
domain
A = K
isomorphism,
IV To
so A is
result.
+ Z2
-
x2
is limited
to curves,
it
YZ)
has
but NKo(A)
Pic(A
10.
(NKo(A)
Swan completes
is
refer
to Traverso's
seminormality as T-seminor-
Gilmer and Heitmann gave further
for any reduced ring A,
for Pic(A)
weaker
-+
Pic(A [XI"'"
Xn] )
to be an isomorphism.
and hence T-seminormal, with Pic(A) Thus for
reduced rings
In
to its own total quo-+
Pic(A
[xl, ..
,X
n])
T-seminormality is formally
than the condition on the Picard groups. Swan gives
the following elegant definition of seminormality.
A c c mmu t e t i.v e ring A is seminormal if whenever b, there
They
T-seminormality is a necessary
they constructed a reduced ring A equal
not surjective.
in
by redefining seminormality.
showed
ring,
exists a
A such that a 2=b and a 3=
Let us first pose be A and b 2=O.
>
the waters more
on the relation between T-seminormality and Pic.
tient
the c o k e r
with a refinement of Traverso's
US
information
addition
an
This situation has recently been resolved by
In addition to theorem 6,
condition
[xll
the picture.
is a result which muddies
in a remarkable way
that
how-
the two-dimensional affine
But with the apparently disparate circumstances
Let us henceforth ma l i ty ,
(y3
seminormal,
theorem 6 holds,
[19J
has shown that
theorem 6 provides
than it clearsthem. Swan
The result
Seminormality and Pic
be sure,
original which
[x,y,z]/
[9].)
note that A seminormal Then b 2= b 3=
0 and
so
c Eo A satisfy b 3= c 2
c. implies A reduced. there
For sup-
is an aE A with a 2=b,
409 Then which implies that It is fairly easy to see that if Q(A)
is a product of fields,
then A is seminormal if and only if it is T-seminormal.
agree in all situations hypothesized in theorem 6,
definitions
all situations of consequence vis-a-vis following
theorem of Swan
Traverso's
Thus the two
theorem. (A
Theorem 8.
r ed
[19J
the Picard group.
i;e. in
And so the
provides the ultimate version of n i Lr a d i c a l ) •
denotes A modulo its
Let A be a commutative ring.
The following are equi-
valent. I)
pic (A) ->- Pic (A
[XI'"
2)
Pic (A) ->- Pic (A [XI])
,X n])
is an isomorphism for
I
is an isomorphism.
3) Ar e d is seminormal.
v -
Related results.
Here we shall compile a list of results related to those above. Anderson tegral
[IJ
has studied the question of when,
domain
A
I
for a g r: aded in-
$ ... , the natural monomorphism Pic(A o ) + Pic(A)
is an isomorphism. He has obtained the following result. Theorem 9. For
a graded integral domain,
A is seminormal
if and only if A
Pic(A ) ->- Pic (A) O
o
is seminormal and
is an isomorphism.
This has the interesting corollary that for A seminormal with Pic(A
if and only if Pic(A) o)
->-Pic(A)
O.
an isomorphism,
a field, A is
Anderson also gives an example but neither A nor A
By using the theory of divisorial ideals, ved the next
o
o
seminormal.
[16J
has pro-
theorem.
Theorem 10. Let A be an integral domain.
Then A is integrally
closed if and only if every rank one reflexive A [X] -module is extended
410
This puts theorem 6 in greater perspective. It is an inxeresting formal is s em i n o r ma L,
consequence of theorem 8
was given in the case when Q(A)
[81
In
then so is A [x]
that
A
a direct proof of this
is absolutely flat.
That proof
result s t emmed
from the following quite general result. Theorem II. A [XJ
is
be rings.
Let A£ B
If A is
(2,3)-closed in B,
then
( 2 • 3 ) - c1 0 sed in B [X]
(In Swan's formulation of seminormality. A(2,3)-closed equivalent to
A seminormal in B [19,
Thm
so theorem
2.5J
in B is
II
shows
that "A seminormal in BI! extends to polynomial rings.) Proof. closed
in B,
and suppose also
Weshall refer butf¢A
[X]
are commutative rings with A (2,3)-
Suppose that A £ B
that A [x]
to any polynomial f(X)
is not
B [X]
(2,3)-closed
such that f2,
in B [X].
f3'-A
[x]
as a counterexample.
A minimal counter example is a counter-example f=a + .•. +a X o n such that (ii)
(i)
f
has minimal degree n
aMong all counter examples and
among all counter examples of degree n,
string of coefficients in A (i.e. every counterexample at By our assumption
counter
o
.... ,
a
f
has
is not
(2,3)-closed
initial
Note that
i_ 16A,
least has a EA since A is o
that A [x]
the longest
(2,3)-closed in B. in B [x]
, minimal
examp I e s ex i st.
Let f=a and a i
a
n
¢ A.
If
o+'
.. +anx
n
be a minimal counterexample with a
r f. A and ra
i
E A,
then rf E A [x]
o"
.,ai_IEA
. For otherwise rf
would again be a counterexample and would violate the minimality of f. The coefficient of Xi in f2 2aoai
A.
likewise,
It follows
is 2a a.+ terms o
in A and hence
from the preceding p a ra r r a p h that 2a
the coefficientof xi in f3
is 3a 2 a. o
+ terms
of
A [x]
in A and so
411
3a; f G A[X] . Now consider the_ polynomial. g(X)£B(X] defined by 2 f (X) 2 - 2a f (X) + a2 6 A[X] and x (X) f(X) - a . X g (X) 2 o 0 0 g 3 2f(X) 3 X g(X)3 f(X)3 -3a f(X)2 + 3a - a t A [X] and hence g2 o 0 0 g3e A [X] f
.
But deg g(X)< deg f(X),
+ Xg(X) : A
=
We say
[X]) a
so g(X)E. A [X]
In much the same way
show that A n r o o t
closed
r
This was done in
[8J
.
in B if A
that
theorem 11
in B implies A [X]
Recently
Hatkins
Band b £ B,
but
He
has
shown that
that for
implies
the
[21J has
same for
[12J
then
A
for
and As a n u n a [X]
for all primes p.
in B [X]. the stabili-
power
series
A n r o o t; r
or
(2,3)-closed
in B [[X]]
remark that
p-seminormality,
of Hamann ring,
we
A [[X]]
one can
studied formal
bnE A
is not n-root closed in II [[X]]
with A absolutely flat,
Finally, called
[[X]]
7
was
n-root closed
ty of such closure conditions under formation of rings.
Then
contradiction.
that A is n-root closed
implies bE A.
.
i
n
each [2J
[19J
Swan also defined a notion
integer p .
He
by proving that
t
asn
generalized result
if A is
any reduced
is A-invariant if and only if A is p-seminormal The reader
is referred to
for
a discussion
this r esu It. References
(1]
D.F. T.
Dl
Anderson,
Asanuma,
Seminormal graded rings,
to appear.
D-algebras which are D-stably equivalent to D [X],
preprint. H.
Bass,
Torsion free and
projective modules,
A.M.S.
102(1962),319_327. H.
Bass,
Algebraic K-Theory,
H.
Bass and M.P.
Murthy,
Benjamin,
N.Y.,
1968.
Grothendieck groups and Picard groups of
412
abelian group rings, Ann. of Math. 86 (1967), 16-73. [6] J. Brewer and D. Costa, Projective modules over polynomial rings,
J.
Brewer and D.
pol yn om i a I [8J
J.
sure
Costa,
J.
r in g s,
Brewer,
D.
Pure App.
J.
Alg.
13
(1978),
some non-Notherian 157-163.
Seminormality and projective modules over
AI g e bra 58
Costa and K.
in polynomial rings
(1 979),
Mc Crimmon,
208 - 21 6 • Seminormality and root
and algebraic curves,
J.
c Lo
>
Algebra 58 (1979\
217-226.
[9]
E.
Davis,
A.M.S.
[IOJ
S.
68
Endo,
Japan 15
VI]
R.
On the geometric
(1963),
16
Heitmann,
(1980),
[12J E.
Hamann,
OJ)
Lequain and A.
Lindel,
C.
Pedrini,
On a On
J. Qu e r r e , 64 (1980),
On pic R
J.
Pure App.
the K
o
for R seminormal,
R
Alg.
18
(1980),
Spinger Lecture Notes nO 342,
Seminormality,
[19] R.G.
Swan,
On seminormality,
1973,
Pure
,X
n]
preprint. in
92-108.
over polynomial rings,
J.Algebra
Inv.
Math.
to appear. p r e p r i n t. •
Seminormality and Picard group,
(1970),
J.
165-172.
Ld e a ux divisoriels d'un anneau de p o l y n Sm e s , 270-284.
Traverso,
Soc.
(X] , J. Algebra 35 (1975) ,1-16.
of certain polynomial extensions,
Rush,
24
[X]
conjecture of Quillen and Suslin,
[18] D.E.
Pisa,
Math.
Proj ective modules over R [Xl'"
D. Quillen, Projective modules 36 (1976), 167-171.
C.
J.
251-264.
Simis,
Prufer domain,
H.
over polynomial rings,
The R-invariance of
K-theory II,
[161
Proc.
339-352.
Gilmer and R.
R a
seminormality,
(1978),1-5. Projective modules
Ap p , Alg.
Y.
interpretation of
Ann.
585-595.
[2l] J. Watkins, Root and integral closure for
R [[xn
'
preprint.
Scuola Norm. Sup.
On the maximal number of
elements in
ideals of noetherian rings By Jan-Erik Bjork
Introduction Let
R be a commutative noetherian ring and let ot be an ideal of
R. In
[I) G. Valla introduced the following concept: 0.1 Definition. A subset fat" .ad every h:mogeneous form in coefficients in I/,. •
R[x ... l
of
o:
is called on-independent if
vanishing at
(a ... a l
k)
has all its
Thi s leads to: 0.2 Definition. Put
sup(/Il.)
sup [k
0
3 a k-tuple of al-independent
elements} Following a recent work by N.V. Trung we are going to determine for each given ideal ell.
of a commutative noetherian ring
sup(tt)
R. So except for some
minor modifications the proof of the Main Theorem below is contained in [5]. Before it can be announced we need some notations. They are introduced in Section
2 below, while the proof of the Main Theorem is carried out in the
subsequent sections. 0.3 Remark. In [3, p.35] it was proved that the following inequalities hold for every ideal tT. : grade (Dz..) the ideal
sup(tl.)
1:
ht(t1l.)
where
ht
denotes the height of
or equivalently the Krull dimension of the R-module
414
I. Statement of the Main Theorem Let us first observe that
f
general, if ring
decreases under localisations. In
is a prime ideal of
R
which contains (Jl. R f
Ot generates the ideal
where
Ot then we get the local
and wi th these notations we
have. sup (OLR" )
I. I Lemma. sup (DZ..) Proof. Let
fa) .. .
r sDlxO(
akl
R" [xI"
in
be
It is then sufficient to prove that
IJI.R" -independent. To show this we consider some hanogeneous form
they are also
lilt 1= 0( I + ... + 0( k =
.xk]- so here ()(= (o() •• 'O(k) are multi-indices and m for some fixed integer m.
t
Suppose now that
l)(
a
so that all the coefficients Since
sOle Ol
and then
lit.
[a) ... a
R,.
tsc:(
are
(1f.
k} for all
ex
e
R, .
in the ring
= 0
and in addition
R
Then we can find
r
Ol
(ts",)a
-independent it follows that
= 0
tso( e
(Jl.
in for all
elL
are
which proves that
-independent. 1.2 The
cot1!pletion
know that that rJi. R
of the local ring
Rp
is faithfully flat over
f -independent elements are
R
rt
can also be introduced. We
and using this fact it is easily seen
Rp
!L
-independent which together with
Lemma I.) gives.
1.3 Lemma.
hold for all f2dl.
SUP(t'tRp
This inequality will ve used to prove the Main Theorem. Before it is announced we shall need another definition. 1.4 The ideals
define the sets
). Given an ideal
U.
U. (£)
1-
1-
for each
t z I
Of course, if
then
I,
of
some noetherian ring
S
we
by :
0
appears as an ideal of
S
and considered
as an S-module it has a Krull dimension. This exp lains the definition of the sets
U i (.« ) • I t is easily seen that
they increase. Finally, if
U. (I/. ) 1-
Kr.dim(S) =0
1.5 Main Theorem. For a given ideal
sup (dt)
=
inf [inf
f
Ui
(bL
are ideals of
bl. of a ring
)f.bL: fJ
S
and of course
Us (J(,)
is finite then R
= S
holds.
we have
f: Ass
The proof requires several steps. In Section 2 we prove the easy part, namely
415
the inequality
, the opposite inequality is more involved and to prove it we
need several preliminary results in Section 3, while the actual construction of tt-independent elements is carried out in Section 4.
2. An upper bound of sup
)
Given an ideal
x
sup (dl. Rf»
for all
in a ring
f
in
R
we have already seen that
Ass
Theorem follows from the result below- applied to the ideals
2.1 Proposition. Let
S
sup (i7/.)
Therefore the inequali ty
be a local ring and let
I,
c
in the Main
PtR;'
S
be an ideal. Then
sup(£H:inf{i20: Proof. Let
kz O
and assume that
. We must prove that
sup(l.)
is
To do this we begin with some preliminary observations.
Uk (I:. )
Proof of Sub lemma I. Firs t, the ideal xI ••.
Now we can choose
It follows easily that Kr.dim(£wUk(A))L), and then all pairs ht(f / f)
d. We shall assume that
d
2
(pcl
f
with
e Ass (R/ IJL )
here.
For the construction we shall need Sub lemma . To each pair
ht(f/tp)
=
I
and
1
contained in
Uf :
r« roo
contains
f
that
and then
as above there exis ts a prime
and hence there exis t
r
0
i
n
so that
1
shows that
1
is not
which is outs ide
f
of the ideal
f'" so
I. I t remains only to see that we can choose
also holds. This follows because
shows that there exist infinitely many primes fESpec(R)\V(tt)
a
f"
'
we find a minimal prime divisor
ht(f /tp)
f e Spec (R) \ V(d!.)
(Jer o
and; ¢Uf:
so the defini tion of
F' 0
Given such an element
(tp, 0 f
x Ass (R »
422 dim(R)
for all
t? 1.
References
[1]
Valla, G., Elementi independenti rispetto ad un ideale. Rend. Sem. Mat. Univ. Padova 44 (1970), 339-354.
[2]
Eisenbud, D., Herrmann, M., Vogel W., Remarks on regular sequences, Nagoya Math. Journ. 67 (1977), 117-180.
[3]
Barshay, J., Generalised analytic independence, Proc. AMS
(4)
Zariski, 0., Samuel P., Commutative Algebra, vol.2
(5]
Trung, N.V. Generalised analytic independence. To appear. Preprint from
(1976), 32-36.
institute of Math. 208 D Dei Can, Hanoi.
[6]
Valla, G., Remarks on generalised analytic independence. Math. Proc. Cambridge Phil. Soc.
DIMENSIONS PURES DE
MODULES
par Danielle SALLES
INTRODUCTION. foncteur
Depuis la definition en 1961, par J.E. Roos des derives du
Fm, de nombreux auteurs (en particulier Barbara Osofsky (I) et
Christian Jensen (2))
se sont attaches a
ou les anneaux pour lesquels les derives de
les systemes projectifs 1im
s'annulent pour des entiers in-
ferieurs ou egaux a un en tier n , Un article recent de C.U. Jensen ("Dimensions cohomologiques reliees aux foncteur
lim i" a paraftre aux Proceedings du Se mi.na i-
3) ?
n
On sait
(8)
dimension pure globale. s'ils
existent ce seront donc des anneaux de grande dimension glob ale et de petite dimension faible.
(9) qu'on peut construire des anneaux
Barbara Osofsky a
de valuation ayant une aussi grande dimension globale que l'on veut. Ces anneaux
a
sont de dimension faible
1 ; ce sont donc de bons exemples d'anneaux ayant
une grande dimension pure globale. cidessous ces resultats : dim
P gL dim
Absol. plat
weak dim. n
n
n
n
>n
Valuation
PROPOSITION 6. Soient
quelconque et
C
A
K
P
o
Hom (F, GJ
+
F
>
nr l
uri anne au, G un A-module injectif, F un A-module
-+
0
une suite 8xacte Hom (P, OJ
Hom (K, GJ
Hom (P,G)
Horn (K,G)
la suite 0
est une suite sci.ndee de modules Montrons que la suite
CD
o
-+
Hom (F,G)
+
0
428 est pure. Elle est exacte car
G
est injectif. Elle est pure si et seulement si
la suite Hom (P,G) 0 R -> Horn (K,G) 0 R -> 0
0-> Horn (F,G) 0R est exacte pour tout
A-module
R
de presentation finie (car les limites induc-
tives commutent aux suites exactes et aux produits tensoriels.). La suite
o est exacte car
-> Horn (R,K) -> Hom (R,P) -> Horn (R,F) -> 0
R
etant de presentation finie est pur projectif. La suite
o ->-Hom(Hom(R,F) est exacte car
G
,G) -+Hom(Hom(R,P) ,G) ->-Hom(Hom(R,K) ,G) ->- 0
est injectif.
On sait que
G
etant injectif et
Horn (Horn (R,F) ,G)
m
Les suites
et
G etant injectif, tion 1)5 Horn (F,G)
CD
pour tout
sont isomorphes, donc la suite
Horn (F,G)
et
Horn (P,G)
F.
CD
est pure.
sont pur-injectifs (proposi-
est pur-injectif et sous-module pur d'un pur injectif, il en
PROPOSITION 7. Soient
Hom (E, F)
etant de presentation finie, on a
Hom (F,G) 0 R
est donc facteur direct et la suite
al ox-e
R
est un
A
CD
est s c i nde e .
un anneau coherent, F
A module plat pour tout module
un E
A module injectif sous module pur d 'un
injectif· Preuve:
SaitO -> E - , P -> R
injectif. Montrons tout d'abord que
a
qu'il est plat vis 0-+ D->-
etant coherent,
-+
une sui te exacte pure au
Horn (P,F)
P
es t
est plat. II suffit de montrer
vis des modules de presentation finie. Soit donc
une presentation finie/ou D
0
Best projectif/de
C. L'anneau
A
est de presentation finie. II nous suffit de montrer que la
suite
o
-+
Horn (P,F) 0 D
est exacte, soit encore, puisque
Horn (P,F) 0 B -+ Hom (P,F) 0 C ->- n
D, B et C
sont de presentation finie et que
F
429 est injeetif, que la suite isomorphe :
o --
Hom (Hom(D,P) ,F)
Hom (Hom (B,P) ,F) -- Hom (Hom (C,P) ,F) -- 0
--+
est exaete. Le module
o
F
etant injeetif, il suffit de montrer que
--+
Hom (C,P)
Hom (B,P)
--+
est exaete;ee qui est verifie ear Nous avons vu (prop. 4)
Hom (A,P)
--+
0
--+
E
--+
0
Hom (P,F)
Pest injeetif que si
--+
P
--+
R
--+
0
--+
0
est done plat. est une suite
pure, la suite
o --+ est seindee, done
Hom (R,F)
Hom (E,F)
--+
et
Rappelons qu'un module Ext! (M,F)
=
0
F
Fest dit
A
FP
sont plats. FP
injeetif s'il verifie
M de presentation finie.
un anne au coherent,
son enve l oppe injective, al.o re
Preuve : Les modules
Hom (E,F)
--+
Hom (R,F)
pour tout module
COROLLAIRE 8. Soient tif,
Hom (P,F)
Hom (E, F)
E
un
A-module
FP injec-
est plat.
injeetifs sont purs dans taus les modules qui
les eontiennent.
PROPOSITION 9. Soient
A
un anne au,
F
un
A-module pur-injectif,
G uri
A-module injectif, al.ove :
e
E}
module pur de type fini
E
V
(Hom (F, G)
2) Si,
isomorphe
a
est isomorphe
a
Hom (Hom (E,F},G)
pour tout sous
d'un module de presentation finie.
de plus, I 'anneau
A
est coherent, al ore
Torn (Hom (F, G),E)
est
Hom (Extn(E,F),G).
Preuve : I) Rappelons que eet isomorphisme est toujours verifie quand
eonque et
E
de presentation finie (6). Soit
0
--+
E
P
--+
F
R--+o
est quelune
430 suite exacte pure nie. Puisque
E
OU
est l'injection canonique et
est de type fini,
P
est de presentation fi-
R
est de presentation finie.
-->
Hom (P,F) -+ Hom (E,F) -+ 0
Fest
pur injectif, la suite
o est exacte et
G
-+ Hom (R,F)
etant injectif, 1a suite:
O-+Hom(Hom(E,F) ,G) est exacte et isomorphe
o
--+
a
Hom(Hom(P,F) ,G)
Hom(Hom(R,F) ,G)
0
la suite exacte :
Hom (F, G) 0 E --+ Hom (F, G) 0 P
Hom (F, G) 0 R
0
car les deux derniers termes des deux suites sont isomorphes. On a donc : Hom (Hom (E,F),G)
Hom (F,G) 0 E.
2) On termine comme dans (4) en prenant une resolution projective de et en calculant l'homo1ogie des complexes induits. En effet tion tinie
E
est de presenta-
comme sous-module d'un module de presentation finie car
A
est co-
herent.
PROPOSITION 10.
Soient
A
anne au,
W1
A-module pur projectit; alors pour tout n n n Pext (E g F,G) et Pext (E, Hom (F,G))
Preuve
.
E et: G deux A-modules, F un
JV
les
A-modules
sont isomorphes.
Soient
une resolution pure injective du module ...
--+ L
P
...
G,
et
-+
une resolution pure projective du module E. Hom (L 0F,Q ) isomorphe P q
Considerons Ie bi-complexe
a
Hom (L ,Hom (F,Q )). P q
Calcul des suites spectra1es convergentes associees 1) Cal cuI de l'homo1ogie quand Pext P (E, Hom (F,
q
Qq ))
est fixe
a
ce bi-complexe on obtient
E
431
or
Q q done:
etant pur injectif,
est pur-injectif (prop. I) il reste
Hom (F,Q ) q
Hom (E, Hom (F,Q ))
Hom (E 0 F, Q ) q
q
dont l'homologie en
q
est
Pext
q
(E @ F,G).
2) Cal cui de l'homologie quand
Pext or
L
p
q
(L
p
0 F,G)
P
etant pur-projectif ainsi que
(prop. 2)
F,
L
dont l'homologie en au bi-complexe
p
pest
0 F,G)
@F
p
donc on obtient Hom (L
on obtient
est fixe
est un module pur-projectif
Hom (L , Hom (F,G)) P
Pext P (E, Hom (F,G)). Les suites spectrales associees
Hom (L
@ F,Qq) degenerent donc en les isomorphismes p n n Pext (E 0 F,G) Pext (E, Hom (F,G)).
COROLLAIRE 10. Bis. Soient
F un
/i-modul.e pur projectif et
G un
A-
moduZe aZors p, i dim Hom (F, G)
THEOREME 11. Soient
A
pure-projective egale
p. i
un anneau,
a s,
E
dim G.
G
un
un A-module,
un
F
/c-modul.e
A-module plat de dimension pure
projective finie r. Alors et 2) pp. dim E Preuve
@
F
,< r-re,
Par recurrence sur
une resolution pure injective de -+L
G
s
a) Faisons
s
=
I.
et
P
une resolution projective de E (elle est pure projective car (prop. 3).
Soient
E
est plat)
de
432 F
etant de dimension pure projective egale
a
il existe une suite
exacte pure :
CD sont pur-projectifs. Appliquons
a
cette suite exacte Ie foncteur
F
o
et F Pour
L
p
il vient I
0-+ Hom(F,G) -+ Hom(Fo,G) car
Hom (.,G)
Hom(FlG) -+ Pext (F,G) -+ 0
sont pur-projectifs.
l p
fixe, appliquons a cette suite exacte Ie foncteur
Hom(L ,.). p
etant projectif on obtient la suite exacte : 0-+ Hom(L ,Hom(F,G»
-+ Hom(L ,Horn(F ,G»
p
p
0
-+ .• ,
1
Hom(L ,Hom(Fj,G»-+ Hom(L ,Pext (F,G»-+ 0 p
p
CD
Reprenons la suite exacte On
et appliquons lui Ie foncteur (L
obtient :
P
@.) .
0-+ L @ F) -+ L e F -+ L @ F -+ O. p 0 P P Appliquons
a
cette suite exacte pure Ie foncteur
Hom (. ,G)
on obtient
la suite exacte :
o
(3)
-+
Hom (L
-+ Hom (L car
L
P
e F
0
et
P
p
@ F,G) @
-+
Hom (L
P
@ F ,G) -+ 0
I
Fl,G) -+Pext (L @F,G) - - 0 p
sont pur-projectifs.
Les isomorphismes des 3 premiers termes des suites exactes prolongent aux derives ; on a Hom (L , Pext
l
(F,G»
p
Pext ) (L
P
"" F, G) .
'I
car
i
(L
F
p
@ F,G) = 0
Pext P (E, Hom (F,G»
est
p
0 F,G) -
et
Hom (L , Pextl(F,G» p
pest:
Recapitulation
l
(F,G».
Les termes de la suite spectrale de ler terme
q
des que
>
1
et on a :
"E Pq
Pext P (E, Pextq(F,G»
"E Pq
0
2
2
si
quand
est de dimension
est fixe sont donc
Pext P (E, Pext
sont reduits a 0
(L
@ F,G)
P
pextl(L dont l'homologie en
1
I.
Les termes restants quand
dont l'homologie en
Pext
(F,G»
=> Pextn(E @ F,G)
434 Remarquons que puisque
E
est plat, il revient au meme d'ecrire
"E Pq = Ext P (E, Pext
q
2
En particulier, si a lorsque
E
(F,G))
Pext
n
(E 0 F,G).
est de dimension pure projective egale a
r
on
n = r+2 Pllxt
r+1
(E, Pext
1
pext r+ 2 (E, Horn PExt Done si
Pext F
r+2
r
(E, Pext
o
(E 0 F,G)
(F,G))
}
0
(F,G))
0
2(F,G))
0
on a aussi pour tout
i r+2-i Pllxt (E,Pext (F,G))=O
pour tout G. On obtient ainsi et
est un module de dimension pure projective egale a
module plat de dimension pure projective finie pure projective au plus egale a
r+1
p.p. dim E 0 F
i,
r
alors
E 0 F
E
un
est de dimension
c'est-a-dire p.p. dim E+I.
La suite spectrale precedente mon tre de plus que Pext
r
(E, Pext
1
(il suffit de remarquer que lorsque p = r q
et est egale
(F ,G)) n = r+l
b) Supposons qu'elle est uraie en
Pext
Soit
F
r
(E, Pext
s- 1
s-I
(H,G))
o
n'est non nulle qu'en
z:
(s>I), alors : Pext
r+ s- I
-+ F
alors
-+F
s
H
(E 0 H,G)
®
s-l.
un module de dimension pure projective
une resolution pure projective de F. Appelons -+ F -+ 0
(E 0 F ,G)
s = r,
H de dimension pure-projective
o
F
r+l
EPq 2
a
La proposition est done vraie en
pour tout module
Pext
o
s
et soit
-+F-+O
Ie noyau du morphisme
H est de dimension pure projective (s-I) et verifie
("0
435 F
o
est pur projectif donc la suite exacte pure O-+H-+F
montre que
Pexts(F,G)
Pext
o
s- I
-+F-+O
(H,G),
O-+H@E-+F
est exacte donc
Pext
r+s
d'autre part la suite
@E.-+F@£-+O
o
(E @ F,G)
Pext
r+s-I
(E @ H,G), l'isomorphisme
devient : Pext
r
(E, Pext
S
Pext r+ s (E 0 F, G)
(F,G))
ce qui termine Ia recurrence. La technique de recurrence est la meme pour montrer que pp. dim E @ F ( pp. dim E + pp. dim F.
PROPOSITION 12. Soient A un anneau (Ga) ae./N un systeme proiject i.]: de modules plats et pUI'-injectifs dont les morphismes inteI'mediaiI'es sont sUI'jectifs.
AloI's la dimension pUI'e-injective de
Preuve
lim G a a,,-W
est infeI'ieuI'e ou egale
a 1.
Soient
une resolution pure projective de
o -+
lim G -+
-
455
gr ILx
gr d
o
X
gr
1
LX o
d:t
n+1
)
La filtration du complexe filtre separe et complet
etant decroissante, on
peut lui associer une suite spectrale de cohomologie [4, ch. XI, §.8) de la maniere X suivante. A IL nous associons le A-module a droite gradue,
(tous les elements de
A
etant de degre
0), filtre par la filtration exhaustive
et separee Ell
r
'o'p&lN
n61N
, defini par
et muni du f-morphisme differentiel pour tout cohomologie
'fE.Lx n H (.;t )
et pour tout
(A
n EIN.
2
=
0).
A(lf) = d*(lf} , n a droite de
Le A-module
du A-module differentiel gradue f i.Lt.re
:t
est muni de la
filtration quotient F
et le gradue associe
(1)
P
H (,;t)
a
gr(H(':&))
(F
P
Ker Ii +
rm t:.)
cette filtration est F
Ell
p6/N
qui est un gr A-module
=
a
P
FP +
a
Ker Ii + 1m 1 Kera + Imli
droite gradue et un A-module
a
droite bigradue.
Posons le resultat suivant evident.
Lemme 3.1 Les A-modules gradues et bigradues filtres suivants sont isomorphes H('&)::!
Ell
Ext;(M,I)
gr
H(.,l;)::!
nc/N
Ell
n f
gr Ext (M, I)
nc.1N
le deuxieme isomorphisme etant aussi un isomorphisme de
r
gr A-modules
a
droite
gradues.
Notation:
;. -p), on pose, en omettant parfois d'ecrire
les indices pour
q = n-p ,ou d*:
(2)
On aura la decomposition directe
457 zp,q
et de
k
q=-p des cocycles
(Zp , q ) k
k (B
merre
pour (Zp)
k&IN'
respectivement. Les suites
et
r
sont decroissantes et celles des cobornes
k k6IN
croissantes. On a les inclusions
p,q \6IN'
et les egalites BP,q
X p+q
IX>
U
BP,q k
la derniere, en vertu de l'egalite
BP,q
(3)
tion de
("lIm d
OD
k=o
p+l pour
k
Puisque la filtra-
est separee, on deduit enfin
r;
zp,q
(4)
co
Posons pour tout
k'lN
zp,q k
k=o et tout
p E f'I, n = p+q
0,
zp,q + F P+ 1 LX
c:
p+q
k
BP,q + F P + 1L X k p+q
k
E{
p=o
On aura alors /I)
, \>'k lOIN, 'fp SIN.
$
q=-p De meme, pour tout
p, tout
p-l zk+l
k
et tout
q, on a
ZP+l,q-l k+l p+k,q-k+l
Bk + 1
BP = 4 F P + 1.t . On pose o Preuve de b) On a par la proposition 3.2
Preuve de a)
: Evident, puisque
Ker gr A rm gr A
H(gd)
et, d'autre part,
X
(Ker gr d l)/Im gr p p+q+ P
co
Ker gr
$
n=o
1m
gr
a 0
grA.
458 ce qui prouve bJ et l'egalite
6k
Defini tion de x
E
x
,b )
° °
x E.Zp,q
: Pour tout
classe de
H(E
1
k
'
on pose
modulo
classe de d;+q+l (x)
modulo
+
J p,q
Alors
0
est bien de f i n.i , rp+k,q-k+l r p,q 0 et est une k ok k k k application differentielle de Eko Les arguments standards de modularite (2] et
0"
les proprietes enoncees au debut conduisent aux isomorphismes zp,q + F p+l L x p+q Ker $p,q '" k+l k - BP,q + p+l x F L k p+q I
Sp-k,q+k-l :! m k
Preuve de eJ
+ F P + 1 L;, p,q BP,q + F p+l L x k p,q k+l
On va ealculer le module limite EQDo Pour tout k, E k FP ;;t Alors pour p et q, p+q n z, o , done de
°
est un sous-faeteur de
F
est un sous-faeteuY de
x
p
F
Lp + q
p+l
x
° °
On considere 1a suite de sous-modules
L
p+q
BP,q.,.. BP,q,. BP,qr 1 ... 2 '" 3
Zp,qczp,qc FP =. . ....r zp,qc 3 - 2 - 1 -
dont l'image dans
gr
p
LX
p+q
LX
p+q
est la suite croissante
LX
ou