113 84 20MB
English Pages 746 [375] Year 1978
Lecture Notes in Mathematics For information about Vols. 1-431, please contact your bookseller or Springer-Verlag. Vol. 432: R. P. Pflug, Holomorphiegebiete, pseudokonvexe Gebiete und das Levi-Problem. VI, 210 Seiten. 1975. Vol. 433: W. G. Faris, Self-Adjoint Operators. VII, 115 pages. 1975. Vol. 434: P. Brenner, V. Thomee, and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems. II, 154 pages. 1975. Vol. 435: C. F. Dunk I and D. E. Ramirez, Representations of Commutative Semitopological Semigroups. VI, 181 pages. 1975. Vol. 436: L.Auslanderand R. Tolimieri,Abelian HarmonicAnalysis, Theta Functions and Function Algebras on a Nilmanifold. V, g9 pages. 1975. Vol. 437: D. W. Masser, Elliptic Functions and Transcendence. XIV, 143 pages. 1975.
Vol. 460: 0. Loos, Jordan Pairs. XVI, 218 pages. 1g75. Vol. 461: Computational Mechanics. Proceedings 1974. Edited by J. T. Oden. VII, 328 pages. 1975. Vol. 462: P. Gerard in, Construction de Series Discretes p-adiques. •Sur les series discretes non ramifiees des grouJOies n'>ductifs deployes p·adiques•. Ill, 180 pages. 1975. Vol. 463: H.-H. Kuo, Gaussian Measures in Banach Spaces. VI, 224 pages. 1975. Vol. 464: C. Rockland, Hypoellipticity and Eigenvalue Asymptotics. Ill, 1 71 pages. 1g75. Vol. 465: Seminairede Probabilites IX. Proceedings 1g73174. Edite par P. A. Meyer. IV, 59g pages. 1975. Vol. 466: Non-Commutative Harmonic Analysis. Proceedings 197 4. Edited by J. Carmona, J. Dixmier and M. Vergne. VI, 231 pages. 1975.
Vol. 438: Geometric Topology. Proceedings 1974. Edited by L. C. Glaser and T. B. Rushing. X, 459 pages. 1975.
Vol. 467: M. R. Essen, The Cos n.l Theorem. With a paper by Christer Borell. VII, 112 pages. 1975. Vol. 468: Dynamical Systems- Warwick 1g74. Proceedings 1973/74. Edited by A Manning. X. 405 pages. 1975.
Vol. 439: K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces. XIX, 278 pages. 197~
Vol. 469: E. Binz, Continuous Convergence on C(X). IX. 140 pages. 1975.
Vol. 440: R. K. Getoor, Markov Processes: Ray Processes and Right Processes. V, 118 pages. 1975.
Vol. 4 70: R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Ill, 108 pages. 1975.
Vol. 441: N. Jacobson, PI-Algebras. An Introduction. V, 115 pages. 1975.
Vol. 4 71: R. S. Hamilton, Harmonic Maps of Manifolds with Boundary. Ill, 168 pages. 1975.
Vol. 442: C. H. Wilcox, Scattering Theory for the d'Aiembert Equation in Exterior Domains. Ill, 184 pages. 1975.
Vol. 4 72: Probability-Winter School. Proceedings 1975. Edited by Z. Ciesielski, K. Urbanik, and W. A. Woyczyriski. VI, 283 pages. 1975.
Vol. 443: M. Lazard, Commutative Formal Groups. II, 236 pages. 1975. Vol. 444: F. van Oystaeyen, Prime Spectra in Non-Commutative Algebra V, 128 pages. 1975. Vol. 445: Model Theory and Topoi. Edited by F. W. Lawvere, C. Maurer, and G. C. Wraith. Ill, 354 pages. 1975. Vol. 446: Partial Differential Equations and Related Topics. Proceedings 1974. Edited by J. A. Goldstein. IV, 389 pages. 1975. Vol. 447: S. Toledo, Tableau Systems for First Order Number Theory and Certain Higher Order Theories. Ill, 339 pages. 1975.
Vol. 473: D. Burghelea, R. Lashof, and.M. Rothenberg, Groups of Automorphisms of Manifolds. (with an appendix by E. Pedersen) VII, 156 pages. 1975. Vol. 474: Seminaire Pierre Lelong (Analyse) Annee 1973/74. Edite par P. Lelong. VI, 182 pages. 1975. Vol. 475: Repartition Modulo 1. Actes du Colloque de MarseilleLuminy, 4 au 7 Juin 1974. Edite par G. Rauzy. V, 258 pages. 1975. 1975. Vol. 4 76: Modular Functions of One Variable IV. Proceedings 1972. Edited by B. J. Birch and W. Kuyk. V, 151 pages. 1975.
Vol. 448: Spectral Theory and Differential Equations. Proceedings 1974. Edited by W. N. Everitt. XII, 321 pages. 1975.
Vol. 477: Optimization and Optimal Control. Proceedings 1974. ·Edited by R. Bulirsch, W. Oettli, and J. Stoer. VII, 294 pages. 1975.
Vol. 449: Hyperfunctions and Theoretical Physics. Proceedings 1973. Edited by F. Pham.IV, 218 pages. 1975.
Vol. 4 78: G. Schober, Univalent Functions - Selected Topics. V, 200 pages. 1975.
Vol. 450: Algebra and Logic. Proceedi(lgs 1974. Edited by J. N. Crossley. VIII, 307 pages. 1975.
Vol. 479: S.D. Fisher and J. W. Jerome, Minimum Norm Extremals in Function Spaces. With Applications to Classical and Modern Analysis. VIII, 209 pages. 1975.
Vol. 451: Probabilistic Methods in Differential Equations. Proceedings 1974. Edited by M. A Pinsky. VII, 162 pages. 1975. Vol. 452: Combinatorial Mathematics Ill. Proceedings 1974. Edited by Anne Penfold Street and W. D. Wallis. IX, 233 pages. 1975. Vol. 453: Logic Colloquium. Symposium on Logic Held at Boston, 1972-73. Edited by R. Parikh. IV, 251 pages. 1975. Vol. 454: J. Hirschfeld and W. H. Wheeler, Forcing, Arithmetic, Division Rings. VII, 266 pages. 1975. Vol. 455: H. Kraft, Kommutative algebraische Gruppen und Ringe. Ill, 163 Seiten. 1975. Vol. 456: R. M. Fossum, P. A Griffith, and I. Reiten, Trivial Extensions of Abelian Categories. Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. XI, 122 pages. 1975. Vol. 457: Fractional Calculus and Its Applications. Proceedings 1974. Edited by B. Ross. VI, 381 pages. 1975. Vol. 458: P. Walters, Ergodic Theory - Introductory Lectures. VI, 1g8 pages. 1g75. Vol. 45g; Fourier Integral Operators and Partial Differential Equations. Proceedings 1g74. Edited by J. Chazarain. VI, 372 pages. 1975.
Vol. 480: X. M. Fernique, J. P. Conze et J. Gani, Ecole d'Ete de Probabilites de Saint-Flour IV-1974. Edite par P.·l. Hennequin. XI, 293 pages. 1975. Vol. 481: M. de Guzman, Differentiation of Integrals in Rn. XII, 226 pages. 19.75. Vol. 482: Fonctions de Plusieurs Variables Complexes II. Seminaire Franc;:ois Norguet 1974-1975.1X, 367 pages. 1975. Vol. 483: R. D. M. Accola, Riemann Surfaces, Theta Functions, and Abelian Automorphisms Groups. Ill, 105 pages. 1975. Vol. 484: Differential Topology and Geometry. Proceedings 1974. Edited by G. P. Joubert, R. P. Moussu, and R. H. Roussarie. IX, 287 pages. 1975. Vol. 485: J. Diestel, Geometry of Banach Spaces - Selected Topics. XI, 282 pages. 1975. Vol. 486: S. Stratila and D. Voiculescu, Representations of AFAigebras and of the Group U (oo). IX, 169 pages. 1975. Vol. 487: H. M. Reimann und T. Rychener, Funktionen beschrankter mittlerer Oszillation. VI, 141 Seiten. 1975. Vol. 488: Representations of Algebras, Ottawa 1974. Proceedings 1g74. Edited by V. Dlab and P. Gabriel. XII, 378 pages. 1975.
continuation on page 371
Lecture Notes in Mathematics Edited by A. Oold and B. Eckmann
641
Serninaire d'Algebre Paul Dubreil Proceedings, Paris 1976-1977 (30eme Annee)
Edite par M. P. Malliavin
Springer-Verlag Berlin Heidelberg New York 1978
Editor Marie-Paule Malliavin Universite Pierre et Marie Curie 10, rue Saint Louis en Pile 75004 Paris, France
AMS Subject Classifications (1970): 12H20. 13020. 13F20, 13G05. 13H20. 14K20. 16L20. 16A02, 16A26. 16A46. 16A60. 16A62, 16A66 16A72.17B20, 18H15. 20C20, 22E20
ISBN 3-540-08665-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-08665-X Springer-Verlag New York Heidelberg Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting. re-use of illustrations. broadcasting, reproduction by photocopying machine or similar means. and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use. a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.
© by Springer-Verlag Berlin Heidelberg 1978 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
Liste des Auteurs G. Almkvist p. I G. Barou p. 252 - J.C. Me Connel p. 189 - F. Couchot p. 198R. Fossum p. I-G. Krause p. 209 - L. Lesieur p. 220 A. Levy-Bruhl-Laperriere p. 163 - U. Oberst p. 112 - M. Paugam p. 298 H. Popp p. 281 - G. Procesi p. 128 - J. Querre p. 358 - H. Rahbar-Rochandel p. 339 I. Reiner p. 145 E. Wexler-Kreindler p. 235.
TABLE DES MATIERES G. ALMKVIST et R. FOSSUM Decomposition of exterior and symmetric powers of indecomposable ?/pZ-modules in characteristic p and relations to invariants U. OBERST The use of representations in the invariant theory of not necessarily reductive groups C. PROCESI Les Bases de Hodge dans la theorie des invariants I. REINER Integral representations of finite groups
112 128 145
A. LEVY-BRUHL-LAPERRIERE Spectre du de Rham Hodge sur l'espace projectif complexe
163
J.C. Mc CONNEL The global dimension of rings of differential operators F. COUCHOT Sous-modules purs et modules de type cofini G. KRAUSE Some recent developments in the theory of noetherian rings L. LESIEUR Conditions noetheriennes dans l'anneau de polynomes de Ore A{X,r,cll E. WEXLER-KREINDLER Proprietes de transfert des extensions d'Ore
189 198 209 220 235
G. BAROU Cohomologie locale des algebres enveloppantes d'Algebres de Lie nilpotentes
252
H. POPP Recent developments in the classification theory of algebraic varieties
281
M. PAUGAM Sur les invariants homologiques des anneaux locaux noetheriens un cal cuI de Ja cinquieme deflection E 5 H. RAHBAR-ROCHANDEL Relations entre la serie de Betti d'un anne au local de Gorenstein et celle de I' anne au R/Socle R
298 R 339
J. QUERRE
358
Intersectionsd'anneaux integres (II)
III
DECOMPOSITION OF EXTERIOR
AND SYMMETRIC POWERS OF
INDECOMPOSABLE Z/pZ-MODULES IN CHARACTERISTIC P AND RELATIONS TO INVARIANTS
Gert Almkvist
(Lund) and
Robert Fossum (Copenhagen/Urbana).
This survey represents the extent of our
workon the decomposition
of exterior and symmetric powers of indecomposable characteristic p.
7/pm7-modules in
the relations of these decompositions to invariant
theory. relations to combinatorial theory and suggestions for future investigation.
It is a neighborhood of a lecture given by the second
author at Seminaire d'Algebre
Paul
l'Institut Henri Poincare in January.
Dubreil
at
1977. Therefore it contains
many more results and complete details of proofs. The research was started when the second author. Griffith tried to prove that the action of ring
k[Xo, •••• xnJ. with
char k=p
together with
on the power series
gave a factorial ring of invari-
ants. Because the decomposition of the graded components could be easily calculated (see chapter 111,3). the class group could be calculated and then it was shown to be zero.
Thusit was assumed
that similar techniques could the used in general. But first the decompositions, that is the structure of the homogeneous components should be calculated. The table in 111.4 was calculated by hand (over many cups of coffee in Treno's in Urbana) and discover the general
did not help to
a letter to Almkvist
Fossum pose4 the problem of decomposition.
in late 1975.
Immediately
Almkvist
solved the problem, using the fact that the representation ring is a
2
'it-ring (which it isn' t).
But enough of the techniques of
theory can be used to push
11
-ring
through the decompositions for
In
the summer of 1976 Stanley wrote to Fossum that the decompositions seemed to involve coefficients of Gaussian polynomials. This suggested further comparisons, which resulted in the general Valby Bodega theorem which allows
the change of basis in the representation ring
and thus permits the calculation of the number of components of a given dimension that appear in a decomposition from the coefficients of the Gaussian polynomials. Further months of calculations by the first author has led to the many interesting relations centered on the Hilbert series of the ring of invariants. In what follows we give an outline of the contents of these notes, chapter by chapter. Chapter I. In this chapter the basic concepts are introduced. The indecomposable
are determined (here, as always, k
is a field of characteristic R
p > 0)
and the representation ring
is defined and studied. In our mind the most usefuld result
in this chapter is the Valby Bodega theorem (Proposition 1.1.7.) that relates decompositions to Adam's operations (see also Problem VI.3.9) in the representation ring R
Also the several isomorphic
representations are given in the second section. Chapter II. This is the chapter that contains what we need from the classical theory of representations of the symmetric group. There is a meta-theorem (Proposition 11.2.3) that relates elements in the representation ring to exact sequences, and this is a key in going from characteristic zero to characteristic
p"7 O. We discuss
'A-rings
and the various families of symmetric functions. In the last section we define and give what properties are needed of the homogeneous Gaussian polynomials. Chapter III. This is the main chapter, in which we demonstrate the decompositions of the exterior and symmetric powers of the indecomposable
Z/pZ-modules. In chapter I we defined generalized
binomial coefficients of indecomposable chapter we show : !,./(V ) n
= (
v
n) r
V
2
In this
3
and
for
0,< r+n+1
p
where
V is an indecomposable k of dimension n include a table that illustrates the decompositions.
n. We
Chapter IV. In this chapter we repeat, for the reader's benefit, the calculations that show that the rings of invariants are generally not Cohen-Macaulay. This involves calculation of a principal homogeneous bundle. Chapter V.
This chapter, the longest and most difficult, is
devoted to the study of the dimension of the homogeneous components of the rings of invariants. We first define the Hilbert series, provide some examples and begin the calculations • Then the series "for large
p" are discussed. The Hilbert series for small dimensional
representations are calculated, as well as those for large dimensional representations. In one section Fourier series and integrals are used to express these Hilbert series. Results concerning counting of partitions are obtained. And counter-examples to a conjecture of Stanley concerning the Hilbert series of factorial rings are mentioned. Chapter VI. Examples and problems conclude this survey. A list of notation used precedes the list of references. However we list here those notations that are not introduced. Always p denotes a prime integer. As almost all t:heorems are true for all primes, we do not distinguish between the even and odd prime integers. We just note here that if a theorem is not The field
k
true for
p-2, it is quite
will be understood to have characteristic
Throughout the paper we denote the cyclic group with a generator notation, if
'!lIpm'lZ.
by
V m p
, and written multiplicatively. The other
not standard, is found in the list of notation.
References to a result within m, ncIN
obvious p.
a chapter are of the form
while a reference in chapter III to result
ms n
m.n
in
chapter I is written I.m.n. The bibliography or list of references is arranged alphabetically by author and then by year of publication. References are of the form (Gauss (1777D the year of publication.
they are indicated by letters 1777 a, We would
to indicate the author and
If there are two papers in the same year
1777 b, etc.
like to thank all of those who have contributed in one
3
4
way or another to this work. A. H-B. Foxby. R.
Melin, T. Claesson, P. Griffith,
Stanley, H. Diamond, C.
Curtis and I. Reiner have
given hints and suggestions along the way. Many people have listened to various versions of some of this work and have offered tions that have been helpful. Also tisk institut
sugges-
Universitets matema-
was kind enough to invite Fossum to Copenhagen for
one year at a time when the work in this are a was most active, and therefore he was able to communicate very efficiently with Almkvist We both thank our respective university for encouragement (Lund and Illinois). Fossum has been supported during the summers by the United States National Science Foundation. And a portion of visit to
Denmark
his
was supported by the Danish Statens Naturvidenska-
belige
He appreciates this support.
Finally we wish to thank Professor M.P. Malliavin who suggested this survey and kept asking for a manuscript. Thus we had to stop finding new Hilbert series and decompositions and had to writing what we
start
know.
This material is connected to many diverse areas of mathematics .... many with which we are not familiar. For example it has been suggested, and there are many indications that it might be
true,
that
there is a close connection between these decompositions and representations of the symmetric groups in characteristic apologize to those whose results
p 70. We
we have inadvertently rediscovered
But we are also interested in learning of other work that is closely connected with these results. Table of contents O.
Introduction
I.
Indecomposable
and the representation ring
I.
Indecomposable representations and the reprentation ring.
2.
Bases for representations.
II. Representations of the symmetric group in characteristic zero. I.
Partitions, representations and symmetric functions.
2.
Schur functions.
3.
;l. -operations and
11
-rings.
4. Gaussian polynomials and symmetric functions. III. Decompositions I.
The decomposition of exterior powers.
2. The decomposition of symmetric powers. 3. The decomposition of symmetric powers of
4
V m p
5
4. Tables. IV. The geometry of the group action. I. The rings S'(V + ) are usually not Cohen-Macambly. n l 2. These ring are factorial.
3. Related results. V.
Number of invariants and Hilbert series. I. Hilbert series and Molien'stheorem.
2. The number of invariants when
p
is large.
3. Computation of the Hilbert series for 4. Fourier series and
n=l, 2, 3,4.
definite integrals ; a formula for
Ht(S·(Vn+I)YP). 5. Symmetry of the Hilbert series
a conjecture of Stanley.
VI. Examples and problems. I. Examples in small dimensions. 2.
Bertin's example.
3. Problems. VII. Notation. VIII. References Gert Almkvist (Lund/Sverige) Robert Fossum Norges grunnlovsdag 1977 "It you can't stand your analyst,
see your local algebraist" GA 1976.
I.
AND THE REPRESENTATION RING
INDECOMPOSABLE
Z/pmZ-MODULES
1. Indecomposable representations and the representation ring. A
representation of
vector space
V
over
p
k
mover
k
is a finite dimensional
together with a group homomorphism
Ppm ---')GLk(V). This is the same as to say that generated module over the group ring
p
indecomposable if it is not the direct sum of two is irreducible if there is no proper Proposition 1.1. a) the b)
If
V:fk[T]/(T-I)n k[T] V
:= n
k [T]/
(T_I)n k [T)
V
k)7 m-modules.
k)) m-r s u bm o d u Le ,
is
p
It
p
ring kl1 m';;ik(T]/(T-l)P V
is a finitely
kv m . The representation is
m
p
k[T].
indecomposable representation,
n = dim V, k is indecomposable.
c) The indecomposable
5
V m p
, and is both free and
then
6
injective as
a
klJ m-module. p
d) isomorphism) is
only irreducible
VI
a) The group ring Define and
k [T]
kvm p
m
m-module (up to
is generated as a
k-algebra by
by extending T - - - ) Since char k .. P m p m .. I, the element (T-I)P is in the kernel. Hence there is
a surjection k
p
k,
k[T]!(T-l)pm k[TJ --)klo' m • Comparing dimensions over p
yields that it is an isomorphism. c) The ring
is a local quasi-frobenius a r>
k[T]!(T-l)pm k[T)
tin k-algebra with maximal ideal generated by the image of
T-I
Hence V m : .. kV m is free (Obvious) and injective. p p d) It is clear that k-;::k[T]!(T-l) k[Tl is irreducible as a
kV m-module. Suppose p
Then the socle of a kY m-submodule. P
Soc(V) .. (dim dim
V,
V
is a finite dimensional
by definition
If
V
Soc (V)
is irreducible, then
V
V .. Soc(V). But
p
V = 1. k b) We prove slightly more than b).
kyp m-module
kV m-module. p
Hom m (k,V), is k Vp
ask." m-mo d u 1 e s • Hence
Soc(V».v.
k Soc(V) .. dim
k
=
In fact we prove that a
decomposes into as many indecomposables as
dim Soc(V). First, since kVpm is a local ring and artinian, k any cyclic module (i.e. one of the form kY is indecomposable. p is Each ideal is of the form (T_.)n and hence each V p
indecomposable. Now As
Soc (V)---->V
Soc (V)" (T-. )n-l n
V
n
is essential whenever
injective enveloppe of
V
V
n
and is one dimensional. is of finite type, the
is determined by the injective enveloppe
Soc (k» m) c---., kY m is essential and p p is injective and indecomposable, it is seen that
of its soc Le , As kYpm
VI
Suppose there is an injection maximal essential extension of V(V.)
is a direct summand of
V. V.
with respect to the property that as to say that
wnv
l
.. 0).
VIG.-> V. Let in
V(V denote the I) V. Then the claim is that
Suppose
W
wnv(VI)"
is maximal in
o.
Then the composition
(This is the same V(VI)e.-?v-->V!W
is an injection. Furthermore it is essential, since By the maximality of
V(V.)
V
Soc(V!W)£::'V
it is a surjection. Hence
V(V.)
I• is a
direct summand. As a corollary, the module if Hence
V
is indecomposable if and only
But then there is an embedding V -->k»m" E(V I). r p V = (T_I)r kV m, But (T-I) kl.? m V m p p p -r QED. 6
7
In
the last paragraph above we have used the fact that the
Yp m-representation is isomorphic to the original representation. For as Y m-modules there is an isomorphism p
k-linear dual of a
k Vpm
Hom (kV pm • k) k
and hence Hom )1 m (V. k
Homk(V.k)
p
for each
ky m-module V.
Then it follows
p
Homk (V n' k) as
that
Vn
kv m-modules. p
The representation ring of
ky m
is defined to be the free
p
abelian group on the isomorphism classes finite type. modulo the relations V
V·
It V".
[V]
=
[V)
Denote this abel ian group by
Corollary 1.2.
of
Lv')
+ p
klJ m-modules of
[v"]
p
provided
m,
is free on the elements
Rk)1 m p
VI'" •• V pm
QED
The ring structure in
RkVpm
is induced by
'k'
So
V.W ; = V 'k W. (We omit any kind of symbols to denote the classes of a representation notation
V.W
and
confusion. Likwise
"[V]
+
[W]"
in
Proposition 1.3.
V
in
ek
V
V+W
W
p
m. And we interchange freely the
for the product. This should cause no
means
V
W
$
as modules or
RkV m) , p :
the ring
RkV m p
is generated
Vp O+ 1 • Vpl+ I' Vp2+1.· ... Vpm-I+ I A proof of this proposition depends upon obtaining the decomposition of the tensor products this paper. However in [Rally (1969)]
to demonstrate the proposition.
(The history of the decomposition of to us.
e
V This is not done in m' the multiplication table below. which is found
permits us
Ve
e
V is not clear m It seems that Littlewood knew the decomposition constants.
Also Green. Srinivasan. and Rally have discussed them. That the V ii p +
generate the representation algebra is explicity mentioned
in [Srinivasan (1964)J
• See also the papers by Re n a u d , )
7
8 MULTIPLICATION TABLE k S:7p,
If
then write
s = s
p
k
+ sl
k
with
algorithm. The following decompositions hold for each I
a)
If
k ssp ,
b)
If
s
V k
p-
I I a)
k
I 'V
k4 m-I
then =
s
(sl-I) V k P+s-sl
k
s 6 P , then
If
V k
P +
I
III V
V k
(s-I) V k
i
p +S
S
P
< (p-I) pk, then
b) I f
pk "X i
: The map
induces
'll[Xo •••.• Xm_1J - - ' )
Rj.I
p
m
induced
!?.x.
isomorphism RV m p
: It is easy to check that both rings have the same rank as modules. Hence it this follows
enough to show that the map is surjective. But
(say by induction on lots of things. for example
m)
from the formulas in the mutiplication table. QED
For future reference we need a few other relations. The first of 9
10
V
these gives the basis relation beteween the s
and the
Vi' 0
s
-s
+ Po for arbitrary o (The name is after the place where the
i .(. p •
result was proved). Proposition 1.7.
RV • In
be an element in
--
f(t) -
N
-
L:.
b. J
j=-N
b
(Valby. Bodega's Theorem). Let
j
t
7J. [t,t
P
=
b . -J
N
b
o
2:
+
where the coefficients
-I
b.
j - j (Po + Po ) =
P
1 ) The integer 2) d
Proof
=
p
P
-I
are determined as follows
IJ
=1
N+I
N
p-I
- 2:.
b. J
j =1
For
1 for --p-I
cD
2:
+ 2
expand the
2P
Then
dy
{ -,
V))
d).l
It -I]
([t])
dy
b. J
function
'l1.
j
j. T_hen
for all
J
j
b.(u + u- ) J 10 I o
polynomial
consider the
]
greatest integer in
ring
o
N
L j=1
j =1
Set
in the ---
+
and
j c j}
j =1
we have
s
-s
Po + Po p -p Po + Po
while Hence
r; r: +
P =
=
p-l
= (f o (V
p
- V
+
p_ 2)
-(p-l)
fo
V
-
2
-I (Po + Po )
)
(V
p_ 1
- V
-
p-2 -(p-2) (fo + po ) •
p_ 3)
2 (V p - V I)' p-
By induction one gets the formula 2kp+t
0·8. ) for all
fo
i
with
-(2kp+t> + Po
t
= Po
+
-t
Po
os/!.t2p.
For suppose we have this formula for -I fo + fo to get 2kp+f+1 Po
=
t+l
Po
-(2kp+f+l)
+
1'0
+
fo
-(t+l)
some k,
e.
Then multiply by
2kp+e-1 -(2kp+e-l) + Po + fo
I!-l
+ Po
10
II If
,
O(e
then the two terms on the right of each side of the
equality sign are equal, by assumption. Zkp-I
= Z (k-I) P + (Zp-I).
-(Zkp+l) + u Zp - 1 +
Zkp+1 +
fo
fo
+
-(p+s)
b
+
o
p s +
.1il-
-(p-s) Po
r
N = ZKp + L b.(p
j=1
Po
J
j
with
-j + Po ) = b
0
0, then
while the right hand side is
Zp-I + - (Zp-I) -I Po Po = Po + Po
But
fo
Now write
-(Zp-I)
fo
10
-I + Po ).
e=
If
So the left hand side is
0'
for
OJ: L 'Zp.
s
since in general,
p,
Then
-I Zp-I - (Zp-I) + b l (Po + Po )+ ••. +b Zp_ 1 (Po + Po )
0
+
o
s
k S K
(where it is assumed that
+
Zp-I
I:
£=1
K
(L k=o
b
Zkp+t
(foe
)
=
b. J
rearranging terms to get
+ u
-l
10
for
0
j'7 N). We continue by
)
Using the relations e.
fo
+
+
-t
fo
P:
P
Z(V
P
V ) p-l
-
and V
p- f+ I
-
V
p- f-l
for
Ile"p-Z
and finally Zp-l -(Zp-I) Po + Fo
Vz
we can write this as (b
0
+ Z
t
k=1
b
Zk p)
K
+ 2
L
k-o
b 2 k p+ p (V p
-
+
p-I
L e= I
Vp- I) +
K
(L k=o
b Zk p+
e.
)
e
(V + I
K
t.=1
(L k=o 11
b2kp+p+e)
-V
e_l)
(V p-e+ I - Vp- f-l )
IZ where j)=
1
d Y+ 1 =
ta
for
[Cb Zk P+ Y - bZkp+)J+Z) + p-Z
CbZCk+l)p-lJ - b z ck+ I)P-clI+z)l
and
dp
tCbCZk+I)P-I
+ ZbCZk+l)p + b(Zk+l)P+I)'
What remains is to show that these are exactly the coefficients of the
series as claimed.
L
f(t)
-I
N
L j =-N
f(t)
b. J
t
j -I
N+I
t
f(t)
t
fCt)
L:.
j=-N+l -
t-
I
b J. 1 t
J
N-I =
j
b_
L
j=-CN+l)
t
N- 1
N
b
1 (t-t )
and
f or
+ b
t
N
N+l
+ = 0 N Z
•
we
,
can write this as
N+l fCt} =
g = [N+ -zpI
L.
j=-CN+l)
J
co N+l '" LC ''"'" Cb k=-g t=-CN+I) To
j
Thus
N_ 1
Now conS1. d er,
b j+ 1 t
f Ct )
+ b Since
and hence
b.
j =-N t
Now
N
(b'_l
-
J
b
J.+ 1
j•
.
,the expans10n
e_1
-
be+l)
P t Zk +
show I} we must consider the coefficients of
in this series.
t
)
Since in general
12
e)
•
t
j
for
I
j$ p-I
13 «J
=1
Therefore
r:
N
2:.
+
b.
J
P
dim
(L.
Vd»
b
+ 2
a
follows.
+ 2
a
It extends to a map 2 Po + I = 0). Hence
P
i:
b.
J
, while
)ld V
from which the formula for
b.
J
j =!
L
j =I
L lJ=!
d V VV)
V=l
p
N
b
j ))
induced by
RlJ dim);Z
show 2) we consider the augmentation
QED
Two other relations are needed. Lemma! .8.
: a) For each
Po - Po
(Po -
n
-n
b) is
1'0
l!.
unique element
)'V n
r,s
n in
with RV
p
!$n'p, the element
fpo) .
are integers such that
For a) n
-n
Po - Po
rs ,< p ,
then there in
such that
RlJ
P
•
consider the factorization -I n-r l n-3 -(n-!) {ro - Po )(Po + Po +"'+Po ). The second term is
13
)
14 just
V For b) consider the factorization n. -rs r -r r(s-I) r(s-3) -r(s-I) Po = (Po - Po )(1'0 + Po +"'+Po ). Then we get
rs Po V
V
rs
(r(s-I) -r(s-I) r(s-3) Po + Po + Po
r
+
-r(s-3)+ ) Po ....
Hence (V
- V ) + (V r(s-I)-I ds-3)+1
ds-I)+I
QED. Remark 1.9. On
-I
(Po - Po
lized.
=
) Wn
define elements
Rp
nP-n
Po - Po
. Then for
W
n
0"-
for all n
n
we have
by
V • If
W n
n
W = - V_ The statement b) above can then be generan n , etc. So for example - V W 2V - V = 2V ' W p+ I p-2 p p+ 2 p p_ 1
s/p+2, for example, then
W
This allows us to define,
for integers
If
p
divides
s
(uniquely) m,n,
W
p+2
the generelized
binomial coefficients
in
R)). P
We now digress slighty to consider the maps on the representation
vm p
algebras induced by the homomorphisms Suppose
m z- n
jJm _ _,>vn
and
p
generated by the image of
---> RV p m
R)1 n P
is the usual surjection. We
p
get a homomorphism (surjection)
n
_:>vn. p
kv m - - - ) ky n p
whose kernel
p
1.S
(T-I)p. This yields an injection
which is just
1J. [j(.0,)l.1'···' )l.n-I ,)en""
:zz. ("o,)LI , .••
RV m p
')C.m-IJ
That is, an (indecomposable) V m-module is considered as a p
,; m-module. p
More interesting is the case Y m p
F(X)
klJ n p
m< n
=
j.J
p
Let
m, Then the k
= IF
P
and we consider the injection
j)
p
map
so that
n-m
Let
F
y m p
n,m
generate
p
n
p
is given
the Frobenius map F :
)l.p is the identity. The map on k-algebras (n-m) pn-m induced is just F ()L) = X ,the
iteration of Frobenius in the sense that
14
;,In
kV m p
=
(n-m)
k[T]/(T-I)pm
th
and
15
kLJ n p
k(S]/(S-I)P
n
and
(for example by induction on RF(n-m) is given by
RF(n-m)
n-m
= sP
F(T)
n-m)
that the induced map
Rvp m
Rvp n
(X.) = 2
It is not difficult to show
if
0
n-m-l
and
RF(n-m)()C. .) =)C.
for i-n+m V m - - ) V n is The cokernel of p
RiJ n-rm p
-_>
R\f n p
RF(n-m)
J.)
p
p
,., RV m
n-m • We get
whose composition is the augmenta-
p
dim: RV n-m -> 7l. c--> Rv m • We notice, using the
tion map
p
p
polynomials in Proposition 1.6, that (in case
2. Bases
m=n-I).
representations.
For future use we record here several different methods for writing the action of
(j on V n+ 1 a) The regular representation
(in case
n+l"* p ) ,
We know that
we can take as basis the elements
.
u.
cr·ui = u i + I' the subscript to be read modulo 0
0
0
0
0
0
0
0
U 0
V m p
oSi':'pm-J pm.
0
n+J
«(J"
(CJ" _I)e.J
e j _ 1 . Hence
(q-_I)n-j+1 = (V"-J)n-(j-I)
Homa;(W(V), W(V'» that takes isomorphisms to isomorphisms. Example l.4 a) If W = a with trivial action, then th the r symmetric pouer of V. the
r
th
b)
If
w=a:
with alternating action,
exterior power of c) If
Suppose that
W=a:S
r,
and that
of
W(T)
are among these monomials.
symmetric function.
I , ••• ,
1' ...
defined
,5
n) --;> W
WeAr
m
I' ••• '
i
n
=
T:V----')V
1- - )
Hence the eigen-
Tr(W(T»
is a
7.Z
If
n"¥m,
[lSI' ... ' -e
then mJ we get
m)' Hence there is a uniquely
corresponding to
W
21
RS
r
8 r• V
r , Clearly it is a
... ,l;m)'
:zz.[lI,., •.• , li
.
r
So
of degree
Call it
under the homomorphism W
1
1
sum of monomia ls in
W(V)
Then the eigenvalues
[s 1....
W
values
"r(V),
W(V)
the group ring itself, then
is a diagonal operator with eigenvalues T'r 6t Id are the monomials
fo
then
= Sr (V),
V.
has a basis
V
W(V)
•
22 Denote this map bS sym(W
•
I
sym RS A It is seen that r• r r: sym WI + sym W so indeed it is a group homomorphism. 2
W 2)
Suppose
1
embedding
2".,
is a partition of
,I ) r
which induces a map
)( S 1 ----" S r r
RS
I
r, There is an
)( , •• lC RS I
I
- - ' ) RS r
r
(induction from the subgroup). There are also maps for each All
I
x , •• )( A
lr
-
induced by mUltiplication -
- ,> Ar•
A calculation shows that the diagram ind
_ _ _ _ _) A
r
is commutative. If
W
is the alternating representation, then
W(V)
=
as
= a r, An easy calculation is the alternating representation on SI. ' then
we observed in example 1.4. Then sym(W) shows that,
if
WI. 1
sym (ind W .. ,)(W ) = 1X r 1 .Ir Hence sym
r
1
3
11
... a
sym is a surjection. r is a bijection.
1r
= mult (symIX ••• Xsym
1
(WI X ••• )(W I 1 r 1 r
».
By Proposition 1.1. we conclude that
Theorem 1.5.
: The map sym RS _ _') A is an isomorphism of r r: r abelian groups which preserves the products that
commutes. The set
QED RS
is also a ring,
r
structure on
A
on
A
RS
r
and
r r
so sym can be used to induce a ring r Furthermore there are inner product structures that
sym
r
preserves.
22
23 There are several other ways to set the map
sym
discussed in the next section.
2. Schur functions, Let
=
I
irreducible representations.
(II, ••• ,I
minant
forall s gn
crE:S
be a partition of
r)
I'''''!;r) is alternating
=
:
.
det
I
i,j.$r =
(In paet one can define the alternating character
r
by
Z sgn
r. The Vandermonde deter-
for
that is
Sr
These will be
r•
cr
Define the polynomial I . +jI det (i;.rJ+I ) It is clear that V('l;I'''''!;r)
r) divides
is alternating and that
... ,J;r)
in the polynomial ring
(In fact [Mitchell (1881)] cients of
vIeS 1, ...
simple proof of Since
V
and
I"'"
Sr)
VI
r
are non negative. A
are alternating, the polynomial
Vr/V
is
r. is the (unique) function
Definition 2.1. The Schur function A
has proved that coeffi-
result appears in [Evans and Isaacs (1976B
symmetric and homogeneous of degree
in
for
given by eI(i)
=
Vr(i
r)
in
laI
Since the symmetric polynomials can be written in terms of the
a
I• n
II span Ar ,each "r J II =r Let I' denote the partition
< 0 set an = 0 and set a o I. The next result relates the Schur functions to the other functions. of
r
c o n j ugate to
L,
For each
The identities are known as the JacobiTrudi identities.
23
24 Proposition 2.2.
II I
If
then
= r
and 1 Yet anotner way to get these functions
'X.
If
S r ------"J
lJ!
is via the map sym
i s a character and
matrix with entries from a
'!is
det-x.(aij)
( a .. )
define
The ordinary determinant is just
J.J
a1,cr(l)
'}:.«(j) r
r ,
an
r•
r )( r
••• ar,Q'(r)'
where alt is the alt alternating character, while the so-called permanent is det where
det
triv is the trivial character.
X
Now suppose of
Sr
is a character arising from a representation
W
0
s
s2 sym
r
(W) =
I
rT
det)L
s
WI
partition
is an irreducible
111=
r ,
s
r
0
r-l
r-2
s I
r-l
representation corresponding to a
then
We can put a partial order on
RS
O:Sr-module is greater than zero,
there is a
s
r-) s
a
.
trJ.V
Then [Knutson, for example} s
If
square
ItS -module
W such that
r
r
by saying that the class of that is
X
= W.
):"0
Since
if and only if RS
r
abelian group based on the indecomposables, an element if and only if, when
X. =
are the indecomposables,
2:.
[1/ =r
WI
where
then the integers
There is an inner product on ;>1. The inverse is given by Then we get the split exact sequence. 0--)
W(n,I)-- Q:Sn+1 lD(CS
25
n
It
--)
It
- - ? O.
26 Apply this to a vector space
o
V,
to get an exact sequence
->W(n,I)(V) - 7 (ltS n+ 1 i«:S
=
But a(v)
( 0,
o
Sn(V) 8
which is split exact. The map one :
Proposition 2.3. A
!
V __) Sn+ I (V ) .i. s the o b ir o u s
relation among elements
corresponds with
r
a
split
2Z[(rl)-I]
sequence
lli
positive
Z2«r!)
-I
]Sr-modules
and conversely.
As another example, consider the relation r
j
L
o
(for
r .,. I) ,
=0
S.x S . Since a. h . sym (Ind J r-J alt l!l triv), where alt J r-J r Sr is the alternating and triv is the trivial representation respecin
Ar.
tIvely. Then we get the split exact sequence
o -_>alt
-_,>InGl
Sr_I x SI 5 r _ 2x 52 (alt@triv)-->IndS(alt(»triv)--') Sr r
----; Ind
SIX Sr_1 (alt GD triv) S r
Apply this to a free
2Z [(r!)
-->
-I
] -module
triv ---" 0 • V
to get a split exact
sequence
of
ZL[(rl)-I] -modules.
and the Define by
In this case it is possible to write the maps
splitting maps. d.
J
: /l,j(V) l!l Sr- j(V)-7 II.j - 1 l!l sr-j+I(V)
d. «vI'" J
.. 1\ V
•
J
)8w)
26
27 and define e by
L
. (u III v l " ' v .) r-J r-J 8
(u"
v =1
long, but straight forward
"» )
course
d
r+ 1
= 0 .. do
e
and
calculat ion, shows that d.
J
=
rId.
o
Hence the sequence splits whenever Further applications of this
Sr-j-I (V)
.. 'V r _ j
lJ vI"
o
(Of
(0
r- j e
Then
. : A j (V) 8 sr-j (V) _ _' ,.J+I (V) "'
r- J
r
is invertible.
principle
will be given in the next
section.
3.
-operations Suppose
R
-rings
in a commutative ring. A family
-operations on
R
A=
{'Ail
i f lN
of 0-
is a family of functions R _ _)R
satisfying the following
=
?io(x)
'AI (x ) = x
all
x R
all
xeR
z:.
i
I'l(x+y) =
'Aj(x)
'Ai-j(y)
all
x, yEO: R.
j=o In the formal power series ring
one can consider the formal
power series
. This
Let
tlo (R)
=
of
R
The three operations above are equivalent to :
[u:J]
I + t IR 1ft]
:
R
is a subgroup of the group of units
U,o (R)
is a group homomorphism. Sayan element )
=
0
x £R
for all
as sums of elements of
has j ::> O.
?! -rank
n
if
while
If we could wri te all elements of
R
-rank I and if the product of an element
27
28 of
'>.
';\ -rank 1 were again of p ( x y)
-rank 1, then we could
and
e efupu t e
We can formalize this.
In the ring
19
. . . t;m]
1) [t]
['1 ... ·•
tz
'Y\n
der the element
consi-
oD
IT
+S'Il'),t) =
(I
i.j=1
J
i.
[One takes finite products
TT 1
E;, "],
+
(I
J
nm
L.
t )
}) =0
that
[SI ... ·' l;m"
IT
The product
Thus
v
-')
11 ... ·,
11 , ....
Z
1)
Thus there is a well defined element in the limit]
--')
the elements
(S, 1 ) t
n
and notes that under the projections Z
py
I ,j
Pv
(1
S.
+
(s."])
Soo and so
is invariant under
J
are invariant and hence
pv(';'1)6A lI
A
there is a unique polynomial Z [SI . . . . 'S)). TJ . . . . . TyJ
pI/ .
such that
Pv
(5'1)
p
,;
Ca ICs), ••• ,a V(s),a I(1).···,ajJ(1»·
course we could express the symmetric functions.
in terms of the other bases for
We will not do this. as we do not need these
expressions for our purposes.] Definition 3.1.
Suppose
get) = I + bIt + b with
g
= ]
f(t)
2
+ ... 2t is defined by
z
+ a]t + azt + •••
are in
The
and
ii-product of
f
I!/}
f(t) II get)
v
L-
=0
This product is commutative.associative.with
I+t
as unit.
Furthermore (f(t) 19 (g(t).h(t» Thus The product
=
(f(t) 8 h(t».(g(t) I
h(t».
is a commutative ring with unit. 1( '
is also expandable in
TT
( ... ('
(I
-'
(3.8.) we get
L.
(3.9 )
II 1= 1>
29
e
I
in (3.6.). Then
k
I
30
The identity
L.
(S ,.." )
hp
is one form of the
e ( $' )
r
Irl
Cauchy Formula. Another form is given by
These formulas can be given another interpretation. Consider the ring
B
Define
'Ai:
S l..).
all
ted over
B
by
a
7J.
= .--m lim
by
'An(a
1 ,
=
I +Sit
(so
rk
5i =
Consider the subring of
:A
and all the
:;z [a l, ••• ,a m
consider the
'At(!;i)
? -ring.
is a
l -ring. Clearly
a A
B----+ B
Then
I for
B
genera-
-operations. Then this is again
= an so this ring contains l) and in fact is equal to A. Suppose we
8-product
co
n
(1
+
i, j =1
5.1 .lJ'I.t). /J
Then we get, on the one hand
and on the other, from
co
(L
L V
(3.10),
=0
e
111=»
I,
the expression
(5)
Hence (3.11. )
This is another form of Cauchy's Formula. Using the principle
in Proposition 2.3.,
these formulas can be
transformed to exact sequences. Proposition 3.12. there
free
:
!:..!l
E,F
be free
7Z[ S r (V )) ,. e S (V Hence we can write a
The element n
larger diagram of
k
n+ I). 0 -modules with exact columns and injections
n
on the left 0
0
1
sr-I (V
(2.3. )
Sr(V
.j, n+1
1
n+ l)
t t
sr (V ) n 0
)
N?
sr-I +p (V e?
N?
N?
n+
j
0
,
)
Sr+p(V
t
n+1
)
sr+p(V ) n
L 0
As a consequence of 2.1. and 2.2. we get that 41
Cok(N?)
is a free
42 -module for
n+l=p. Using this plus induction (decreasing) we get
Proposition 2.4. kJ.' -module of rank Proof.
» is a free n+1 for all nand r.
sr+p(V
'>
In diagram 2.3. we get an exact sequence of cokernels
o Since then
The Cok(Sr(V I) N? -n+ -I f r+p+n r+n } p l( n ) - ( n )
and
F]
F
FI _ _» F
F
_ _,>F
2
_ _:>
3
o.
are free (by induction starting at
2
n+lap)
is also free (again use that free is equivalent to
3 injective).
Q.E.D.
Corollary 2.5. Let
r-kp+r o
o is exact with
SrO(V F
with )
n+ l
a free
0,
Nk?
S r (Vn+I) _ _')F _ _,>0
Consequently the decomposition of Sr (V
use (11.2.4) base changed to For
Then
kv -module of rank
on the decomposition of
Proposition 2.6.
< p.
0
n+ k.
r < p , in
0
Sr(V
I) for
r
S (V n+ l ) • Proof. We go by induction on
R
0
) depends only n+1 r < p . For thus we can
I)
[p]
Gn+r,r(P
-I
r. By 11(2.4)
we have
,p) there is a split
exact sequence
r
r-I
A
(Vn+I)IllS
1
1
r-I
r (Vn+I)...,s (Vn+IHO
By corollary 11.4.8. there is an equality r r-V) (XY) ( 2 G (X,Y) Gn+V,v(X,Y) • O.
C (-d
v-o
Hence in
RtJ
we have
Therefore (_l)r Sr(V n+]) +
r-]
(-l)
v
.
Gn+l,r-V(r
_I
'f.) Gn+ V , I/ ( p
-I
,p)
= 0
by the induction hypothesis. But from the first formula we get l r-I v -I -I (_I)r Gn+r,r(P- ,p) + (I) Gn+l,r-P(P 'f) 'f)-O
L
JJ - 0
42
43 ) .. G (u- I u) as desired. n+1 n+r.r I " We note some unusual corollaries before going on.
Hence
Sr(V
Corollary 2.7. (a) Sr(V (b) Sr(V (1:1
I )
n+ l) n+ l)
.... ,....
The following isomorphisms of I\r (V
n+ r)
n S (V r+ I )
kV -modules hold
for
n+r
for
I I
Q.E.D.
p. n+ I
s r+ I
p P
Vn+ 1 'lil Sn(V 2)
Proof : We have the following equalities
r -I S (V n+ l) • Gn+r.r(p ,p) .. Then
(b ')
Remark 2.8.
is a result of
Ar (V n+ r)
.. Gn+r,n(P
(b) applied with
: This last isomorphism
-I
n
,p) .. S (V r+ I).
ral.
Q.E.D.
is well known and very
useful in characteristic zero. To see how it is obtained, consider the group
GL(2,k)
operating on k tu,vJ • A binary n (n n-I n n-Z 2 n aou + I) alu v + (2) a v + •.• +anv • 2u of all binary n-forms is a vector space of
n-form can be written So the space Sn(V )
z
dimension of
n+l. The action of
GL(Z.k)
Mu •
I)(
U
on
Sn(V
+ 't v
and
2). Mv·
GL(Z,k)
Suppose
induces an
action
r-. u+ 8 v • Then
••• n
n
n n-I r +(I)(aoQ( o+a l
+ ••• + (a o So
V 2
and
.. ao(Olu+Yv)n + n n n-r l .(aoOl +(I)alQ{ (!+ ..
on
M·
n-i l
nn-"2/" n-rl «;( n-I 0+(1)0< ol3+')u v
n v n le vn-I n 0 + ••. + an 0 ) v + ( I) a I 0 r
n-I,.(" 1 n n n-e l M(ao, .... an) .. «aoOl.+(I)a l(;( (?>+ •• ).(a o(;( o+all"S+"')"'" a lf n- I S + ••• +a ¥ n-I). n 1
In particular take
cr (a o
.
u
n
Then we have
n-2 n n-I v+ .•• +a v ) + (n) a u v + (n) a u n l 2 2 I
(u+v)n-2 v 2 + ••• +a v n ao(ufv)n + (n) a l (u+v)n-I v + (n) a n 2 I 2 a ou
n
n-I 2 n n + (I)(ao+al)u v + (2 )(a o + \ I )
43
a
1
+ a
2)u
n-2
v
2
44 n 3 3 n-3 3 n n + (3)(a o + (I)a l + (2) a v + ••• +(a + (I)a l+· •• +a n) v 2+a 3)u o
"
, the general term being n
(aj) .. a o + a + l basis of the dual space
a ••• +a .. Suppose 2+ n J Homk(S (V with 2).k) contragredient representation then gives k L:.
I t is easy to check that
Hence So
( O.
As before we consider the surjections induced by
eo
Sr(Vpm)
> Sr(Vpm_ l)
Then we get the exact sequences
0 _ _> Sr-I (V m)
e
? o
p
47
48 Proposition 3.4. of rank
as a
k» m-module. p
Proof
In this case
Sr(V m)
r
10.1
(mod
p). the modules
S
r-l
(V p m)
p
sequence above splits. Proposition 3.5. If where
and
are both free and hence injective. by 3.2. Hence the exact
r
F is a free p
-m
r
while
S
Sr(V m) : p
0 p
[
Proof : In case
Q.E.D. (mod p). then
m-module of rank
( p m-2+r) _ (p m-r l -l+r/ p) r rip
=0
rip
(mod p), the module
Sr-I(V m)
is injective
p
(V m-l) • G. Hence again the sequence preceeding
Proposition 3.4. SPlitsPand the image of submodule of
1 Sr-l(V m), being a p
G. splits to give the result.
Q.E.D.
Proposition Sr(V
1II
p -
I) :::
denotes the of a rank that can be determined. is injective, it contains the injective ). Since Sr-l(V ) _ s(r-l)/p(V m-l) • G. pm pm p the statement of the proposition follows. Q.E.D.
Proof.
: As
envelope
of
Remark 3.7.
Sr(V m) sr-Y(V
It is possible. using these types of arguments. to
show that Sr(V m t) p -
is a free r
kl.' m-module for
t+l. t+2':",P-l
Free,for
r
(mod
rand
t
in the ranges
p), and that
Sr(V m t) p -
0
t X
is a principal homogeneous
S'(V
r
W x(X) the abelian group scheme of Witt vectors of n, over OX' By [Serre 1956 • Prop. 13] , the sequences for
the Frobenius
F F-I
Wn,X
--,>0
induces an exact sequence I
F-I
I
H (X,W m, X) - ' > H (X,W m, X)
53
54 But nr+l. Note n,r that bn,r .. br,n by 111,2.7. Define
We compute this function for
1Pr ( t ) .. lim 4>r(t),
Note that
Itlnr+I). Observe that cr,_j(n) b
= -
r,n
c .(n). r,J rn+1 )
j=1
We want to compute
c . (n) r,J
The generating function for the Gaussian polynomials
(11.4.5)
gives
.., .. L
n=o
.
"\ (L c .(n)sJtn) j r,J
L n"o co
n. c .(n)t These f .(t) S are in a Sense r,J r,J r,J f .·s we can duals to the Gaussian polynomials. Once we know the r,J compute
where
f
.t o ..
b
r,n
t
n
..
f
j_1
We are going to do induction from and f
. (t)
r,J
r
to
r+2, so we compute f l ' (t) ,J
.(t).
2,J
Lemma 2.1. The function Proof.As
(l-st)(J-s the result.
f
.(t) .. t 1, J
1-t)
Corollary 2.2. The function
j -1
•
1- s.t
L
co
s
I -s-I t ..
I
t j - I
(sL s-j) we get QED QED
Lemma 2.3. The function
and hence
66
67
Proof. As s- s
co
-I
1 v 2v+1 -(2V+O = ---t (s -s )the result 2 l-t v=o
follows.
QED
Now we get the formula for larger mula. Define
f
r
by using a recursion for-
. '=f r"-J' r,j
Proposition 2.4. The recursion formula:
Set
i -
where
Then co
2
f
(I-t ) f , n r qr+'"
t-j + t
-q')
L--
j =q+ 1
f
r-2
tj oJ
QED The usefulness of this formula is limited by the difficulties arising when Lemma 2.5. Let
i- rV r=3
and
,
v change signs.
=
Then
t
j -I
and !":q+1 )t -t 3q+1 'lt t
q-t 3q+ 2 q+3
-t
3q+3
t=2
and QED
Remark 2.6. By computing
f 3,i appear in the decomposition of
we know how many components of S3(V
means that there will never be a V 2 3 S (V + n l)
for al': n , For example n+ l) in the decomposition of
•
Lemma 2.7. Let
r-4. Then
f4,i-O
if
67
i
68 and Hence W .. (l-t+t 2)/(I_t)2(I_t 2)(I_t 3) .. (l+t 3)/(I_t)(I_t 2)2(I_t 3). 4(t) QED
we could struggle in this way to compute fS,i and f 6,i but it would be very long and boring. By summing up the "tails" we can get both 1/I and 1/1 with little further work.
s
6
Define, for all U
Note that
.(t)"'
r,J
j
I
f
Ur,-J.=U r,J+ • I
recursion formula
2.4
Proposition 2.8. (a)
.(t).
, since
. --f .• Using the r,-J r,J we get the next result. if
f
Ur,o .. Ur,1 "' Wr(t). t
I -!
UtI
vi .
U
(b)
(c) As
2, the functions
E
r- 2,
•
-rv
r-2,rv
QED
an example of the usefulness of this result we compute, once
again, 1/I3(t). Since
fl,j"'t
j -I
and 1/I1(t)-(I-t)
-I
, we have
and and (l-t
2
CD
H
3(t) .. 1/I1(t) +
2-
v-I
1= CD
- (I-t)-I + (I-t)-I
v-I
The functions WS(t) and
1/I6(t)
can be computed as well. In
order to save space and to avoid boring,completely,we reader, we list the results below.
68
69 Theorem 2.9.
The following identities hold.
3 $(t) .. I+t 4 (l_t)(I_t2)2(I_t3) l+t2+3t3+3t4+5t5+4t6+6t7+6t8+4t9+5tIO+3tll+3tI2+tI3+tl5 2)(I-t 4)(I-t 6)(I-t 8) (l-t)(I-t
QED
.. fn=o
For the coefficients in
we
have the following special cases : b
I,n
..
b 2 , n .. b
3,n
2n+3+(-I)n 4
.. 2n
2+8n+9 16
.. [n+2] 2
+ _3(_I)n + -I n) ( in +(-i) 16
[(n+2)2 8
(2. 10)
8
if
[ (n+2)2 ] + I if 8 b
4,n
..
4
In
85 + 2n 3+15n2+42n + 3 ( I ) n + 2 0. n_>. 2 n +1 ) 144 72 16 9(1->')
3
2
_ I + L 2n +15n +42n 72
where>.
The explicit expressions for
b 3,n
and
=e
2U i 3
b 4,n
(needed later)
are found by solving the difference equations gotten from
$3
and
$4' The calculations are omitted. Theorem 2.11. The function $r(t) with denominator of the Proof. We go by induction from
is a rational function over
2
TI(I-t Vi). r-2
to
69
r , the cases
r-I,2
are
70 done. So assume that
f
where r-2, qj r I + J of terms of the type taql +b/ N
nation over 7t of ( I - t Vi) , s . We want to show that
f
.
way. Then we are done since summing the
is a linear combiwhere N is a product
can be written in the same f
form for ljJr(t).
. 's r,l
yields the desired
Recall the formula from the proof of 2.4. q
00
:l-
J
0< 9.
L.. p
Proof. By Proposition 4.7 'IT
lim
m"'''''
J
we have
(I+cos) 'I'
gn 'I'
slnp.p
d.p
-'IT
ee
Both the Dirichlet kernels
sin (2m+l)p.p .. 1 + 2 sinp.p
L
cos 2vp.p
v -I""
_ _1_ (1+2 "" l-t 2
the Poisson kernel
involve only even cosine terms. Hence the same is true for ( ) sin(2m+1 )p.p sinp.p gn 'I' so the term inVOlving
cos.pgn(.p) integrates to zero. Thus
'IT
- lim
nr+""
As
J
gn ('I')
sin(2m+l)p.p sinp.p d.p.
-'11"
gn(O) - 8 n ( W) . we get. from Lemma 4.8 that p-I 'V
J"
4> n (t) .. -
p
L
81
and
in
82 As
it follows that a
I
p
p-I
L
(l_e\llJt)-I) \I--k
e_
where
To finish the proof we show that
'"
¢2k(t) - ¢2k(t) \I=q \I IT (I-a e ) \I--q unity different from I and p-2q+l, we get
Noting that
'"
¢2k(t) -
I
p(J-t)
is a
th
p-
root of
n+1 +
Hence (polynomial of degree at most 2(q-k As
2(q-k)
a
p - n -
(J-t P)¢2k(t) ..
».
and as
l-t:+ + polynomial of degree 1 p(J-t)
by Proposition 1.9, and as
¢2k(t)
and
'"¢2k(t)
p - n -
I
agree modulo
tP ,
it is seen that these two pQlynomials on the right of the two expres-v sions must be the same. Hence tn(t) .. tn(t) when n is even QED Already this result takes the shape of Molien's Theorem 1.4. It is possible to formulate this more precisely . Whether or not this is accidental is unknown to us - it seems unlikely that it is. Corollary 4.11.
G
be the matrix group (over
with
p
elements generated by
o
e
(n-Z)1Ti p
82
n even
83
Then
n
(e )
-
H (S'(V
t
n+ I
)vp) .. p-I
)"
gEe det(l-gt}
This follows directly from 4.10.
QED
Using the Gaussian polynomials we can get yet another formulation
of
the result. Corollary 4.12. Let
n" 2k. Then
L
aEjJ
p p-n-I
I
p(l_t)n+1
Furthermore, with I
-
(1 0
.....
+
j-o
denotin& the number of partitions
AjJ(n,j)
II I -
1.) such that J
n
and
II I II ..
u , we ge t
f
• (a I /2 a -1/2) - p A (n , j) n+J.n· v-o k.J-vP
G
c ... J
G . ( a 1/2 ,ex. -1/2) n+J.n
and
a
Proof. These results follow from 11.4. In fact
As
(a
( Cl 1/ 2 , Cl-1/2) .. G • n+J.n
.n¥-a-n.:t1 iz1--a ---.r) i +I 2 ) ••• (a h
_n
(aL-a Z) ••• (a
# I
(where
.. G (1/2 n+j.n a.
Furthermore we get
G
n+j.n
(
a.
1/2
-- I
l-t P
.0.
-1/2) .. 0
p-n-I "0
1/2
-a
-1/2
-p .0.
if a
)
it follows that
I
a
if
-1/2)
and
p-nE;;; j
n+l.
"'-.
6
I I 4 8 18
1 I 3 6 12
....-20 32 49 73 102
141 190 252 325 414
r-
32
-s-s 94 163 268
382 582 783 1082 1417 1816 2310
94 TABLE OF
v H (S'(V
t
p-s+1
)
p)=
H (S'(V
t
p-s+1
)\lp)
(l-t)S-1 I
where Ws(t) is given below
2 3
+ t2
4
+ t
5
+ 2t
6
+ 2t 2 + t
7
+ 3t
8
+ 3t 2 + 5t
9
+ 4t
2 2 + 4 t
2
2
4
+ 3t 4 + t 6 4
+ t
6
+ 8t 4 + 4t 6 + t 8
10
+ 4t 2 + 12t 4 + 5t 6 + t 8
II
+ 5t
12
+ 5t
13
+ 6t
14
+ 6t
IS
+ 7t
2 2 2
+ 18t + 24t + 33t
4 4 4
+ 18t + 32t + 58t
6 + 8 5t + tlO 6
+ 13t
8
+ tlO
l0 l2 6 + 8 + t 33t + 6t
2 + 4 10 + t l2 43t + 94t 6 + 73t 8 + 18t 2
+ 55t
4
+ 163t
6
+ 163t
8
+ 55t
lO
+ 7t
l2
+ t
l4
Example 5, 10, To see how the second table is obtained from the first we do the calculation for
4l p - 12 (t)
-
4l p _ 12 ( t )
(l-t)11 I { p (l-t)P
I --P
l-t
By the proposition } + -I-
l-t P
I:
2r+ j -II
The polynomial under the summation is denoted by
If
P >
a
(12) 2 /4 - 36. then
cients from the table for
b
n.r
n,r
a
,t 2 r 2r oJ
WI 2(t), Then
- b • so we read off the coeffin.r to get the desired result,
94
95 5.11. It is seen that p-s
is even. If
For
s-2.4.6
s>6
and
.p_s(t) p-s
is symmetric if and only if
odd. then
Ws(t)
is not symmetric.
it is easily checked directly.
considering the case
n-2.3 •••• 6
it seems that
This cannot be demonstrated by using the fact that
and then integrating and sending not commute with the operation
p
00
t -+ t-
I
•
since the operations do (Even the wrong sign
appears if this is attempted). The validity of the formula would have the following consequence : Let
00
1/1 (t) -
n
when
Lr-o
H(r)t
r
H(r) • Ar k(r,2k)
where
n · 2k. Then H(-r) - H(r-2k-l)
if
r > 2k+1
H(-r) - 0
if
r -
and
1.2 •••• 2k.
VI. Examples and problems. In this chapter we study the examples in small dimension. we prove that
depth(S'(V
blems.
\I
4)
=
4)
and consider many of the open pro-
3
1. Examples in small dimension.
In this section we study the invariants of the operation of result
v
p
S'(V
on
VI' V2, V3• Since is trivial. we obtain the immediate
VI
v
p • S'(V I) I) Slightly more interesting is the action on V2. Proposition 1.1. In degree
S'(V
2' and an invariant
v
p
there is an invariant UlaN
of degree
and
v S'(V 2) p - k (uo.uIJ
95
p
uo·x o
such that
of
96 (Consequently
uo'u,
are algebraically independent and this is a
polynomial ring). Proof. Clearly
U
o
aX
is invariant. Also
0
p-r l . N a X,(X,+X o)(X,+2X o) ... (X,+(p-')X o ) a j!odJ(X,)
+,
is invariant. Since Sr(V V for 2) t exactly one invariant in each dimension up to
we know there is r and as u is o
p-'
invariant, we see that it is the only one. Then
Sp(V ) 2
Vp (i:l V I ' So there are two invariants that are
a
linearly independent. As
u
and
l
must span the invariants in degree It is clear that
since
T P - uoT -
u
l
are linearly independent they p.
is a system of parameters and that
a
is a separable polynomial over
0
k(uo'u ) . l
The remainder of the proof is clear, either by counting dimension or by looking at Galois extensions. Proposition 1.2. In S'(V
v 3)
p
M a
ul
such that
a
xP I
- Xp-IX 0
v
p a k [uo,u"M,Nj 3) are related by one equation
uo,u"M,N
invariants I
p-I 2 N" rao n (X 2+2rX I+r X0 )
X2I - X2 X0 S'(V
there are
The elements
+ terms of the form
i+2j .. 2p).
Proof. These elements are invariant if we take the group action to be
o(X
2)
O(X I)
a
X + 2X + X 2 I o
a
XI + X o
It is clear that Consider and
P XPx 2 0
uo,ul,V
are algebraically independent. and note that those terms involving
vanish and that
divides the result.
96
97 \I
As
=
dim S'(V ) .. dim S'(V ) p 3 3 system of parameters in S'(V
3
and as
uo,u
and N form a l they are algebraically independent
3), (which it must be by our assumption that
If the ring
k[W
irreducible, the extension xP I
up-Ix 0
I
[j!!]
\l acts on V3) p 2 ] k[W , W and T - j!!2 I 2,W 3 k[uo,ul,N,M] is normal, Consider
with
I,W 2,W 3] is normal, Hence k
- M
j!!2
E
k(uo,ul,N,M), We know that
=
0
and
X2 .. X'o
-
Xo
,
X2 o
Thu.s and so
[k(X o'XI'X 2)
Hence
k(uo,ul,N,H) .. k(X o'X I,X 2)
k(uo,ul,N,M)]';; p
As
k[ Xo'XI'X2] is integral over is normal, it follows that
\l p
k[ uo,ul'N ,H]
and this last
ring
QED
The only case where it is possible to study
S'(V
4)
is treated
in the next section.
2, Bertin's Example. In this section we study what we call Bertin's example [Bertin (1967)], Let
k
be a field with
V be the regular representation of 4 factor V Suppose 3,
char(k) '" 2
and let
2/42, with indecomposable
and
The action of a generator 0 of
is, as usual,
Proposition 2,1, The following elements are S'(V
4)
and
S'(V
3)
respectively,
97
invariants in
98
v\
:-X\
v 2:-X2(X2+X\)
- - - -2 - v 3:=X 3X1 (X 3+X\)+X2(X2+X\)
u3:=X3Xo+X2X\+X2(X2+Xo) y\ 2
2
Y2:=X3Xo+X2X\+X2X\(X2+Xo) u4:=N:-X3(X3+X2)(X3+X\)(X3+X2+X\+Xo)
v
4:=X3(X3+X2)
(X 3+X\) (X 3+X2+X\)
Y3:=X3(X3+X\)X\(X\+Xo)+X2(X2+Xo)u3 22 2 2 224 y 4 :=X 3{ X3Xo +X2X\X o (X 2+X\+Xo)+X\ (X\+X o)+X 3X\ (X 2Xo +Xt+Xo)+X o } 2 4 +X2X\(X2+X\)(X2Xt+Xo)+X\(X\+Xo) Proof, A direct calculation shows that each of the elements is invariant,
QED
Let the homomorphism S'(V -+ S'(V be denoted by 4) 3) Its kernel is the principal ideal generated by the invariant
Xo
It then follows that
x
o
S'(V )
Proposition 2,2. The ring one relation v
4
n
S'(V )Z/47J _ X S'(V )71/4Z
404
S'(V ) 'Z / 4Z . k[v ,v ' V ' V ] 1 2 3 4 3
with the
2 2 3 + (v\v • 0 + (v\v 3 2)v 3 4+v 2)
Proof. It is clear, almost by observation, that the elements v\,v
form a system of parameters in k[X\,X 2,X3]· S'(V 3) 2,v 4 Hence the algebra k[v\,v has Krull dimension 3, In fact 2,v 4] k[X\,x is integral over k[v\,v with 2,X3] 2,v 4]
.
v\ Xl -2 + X v\X 2 + v 2 = 0 2 2 -2 + -4 X + (v\+v (v\v 2)X3 + v 4 2)X 3 3
and
another proof that k[v\,v
.
0
k[v\,v has Krull dimension 3, Therefore 2,v 4) is isomorphic to a ring of polynomials in the three
2,v 4} variables v\,v
2,v4,
The relation
98
99
T
2
2
+ (v\V
3
+ (V\V a f(T) is irreducible by Eisenstein's 4+V2) 2)T criterion applied to the prime ideal (v It is also easy to 2,v 4). check that the ring k[v\,v
is normal. As
2,v 3,v4]
'" a
k[v\,v
a
k(X\,X
2,v4][T]/(f(T»
and
we see that Hence k(v\,v 2,v 3,v 4) and as
k[v),v
k[v
l,v 2,v 3,v 4)
We now write the images of
.. k[X
I
-
- ) ?/./4:r
2,X 3
k[X),x , X3] 2
is normal with
2,v3,V 4]
it follows that
-
,X2,X3)7J/47J
u \ " " " 4 ' in
these algebra generators.
'1
a
integral over it
S'(V 3)
QED
in terms of
3 vI
)'2 .. v lv 2
2 )'3 .. v\v 3 + v 2 2 5 '14 a v\v 3 + vI
U .. v 4 4 Thus the image of the algebra S'(V
3)7J/4r
2
k[ u l,u 2,u 3,u 4,y) "2"3'Y4]
2 v), v 2' vI' v lv 2' v lv 3,v lv 3
is generated by
3
in and
Let D denote this algebra. Also let
Then B [v Since
3]
dimB" 3, the ring
.. k[vl'v B
2,v 3,v 4]
is also a complete intersection, but
is not normal. Proposition 2.3. The ring of invariants ] S ' ( V ) 7J / 4 7J .. k[ u l ,u 2,u 3,u 4'YI 'Y2'Y3'Y4 4
and depth
.. 3.
99
100
Proof. The ring
k[v
"D + DV + Dv We want to show l.v 2.v 3.v 4] I 3. f is in the ring generated by u ••••• y4. We l is homogeneous and that it is of least degree not
that each invariant can suppose in
f
k!u l •••.• y4]
element
XI
Consider its image
in
S'(V
has image
4)
I
vI
in in
k[v l.v 2.v
S'(V
2
3)
The
3.v 4] while
in S·(V Thus there are X3(X3+X I)X\ + XZ(XZ+X\) has image v 3). 3 homogeneous elements do' d d in k[ u I' ••.• y 4] and a homogel• 3 neous
g
in
S'(V
f
Since term
"
d
such that the invariant
4
o
deg g < deg f. Xog
we can assume that
g E k[u ••••• y4] l a to f
can be omitted. Now apply the generator
2
• so the to get
2
o " a(f)-f " (dl+dZ(X3+X3Xo+X\+X2Xo»Xo Hence
" O.
dl +
Apply cr
" O.
dl + and then s ub s t r a c t
Hence
d
Z"
to get
to get
,
d]" O. Therefore
and so
0
k]
U
I···· 'Y4]
We now have the following data : a) depth
S· (V )71/4'1 4
=
I + depth D.
= B c S(V 3 )Z/4Z = B[ v 3] c) depthBB " depth B[ v 3] = 3 .
b) D
c D[ VI]
d) depthDB " depthBB " 3 Consider the long exact sequence of local cohomology at the irrelevant maximal ideal
o Since
.....
..... depthDB
=
of
D
Hm(B/D)
3 ..... ••• ..... HitCB/D) .....
.....
3. we get that
0 for
100
i,&3. Hence
o.
101
But B
B • D + Dv in
D
l•
BID·
hence
en
=
where
=
{f : fBCD}
is the conductor of
{fED: fv lED} 2
So we calculate Clearly the elements vI' v 2• 2 v and v are in Ct. The Ld e a.I g e n e r a t e d by lv 3 lv 3 elements is contained in the ideal vlB + v of B. As (v l.v 2.v 4) 2B is a regular sequence in B. no power of v is contained in 4 vlB + v 2B and hence no power of v is contained in the ideal gene4 rated by these elements in D. Now we show that no power of v is 4 contained in For suppose vrvI E Now deg(vrvI) = 4r + I. A general monomial in D of the form
Ct.
_e 2 _f _e _f 2 3 3 "z u 3 YI Y2 u 4
_f 4 _eS
Y3
Y4
has degree
2(e + 3(e + 4(e ' Therefore any 4+f 4)+Se S 2+f 2) 3+f 3) expression homogeneous of degree 4r+1 would have at least one of
e 3.f different from zero. But then vI would divide this 3.eS r expression in B and would imply that v E vlB + v 2B. 4 We now continue by showing that
v
4
w in
pose that there is a homogeneous
is regular on D
such that
Write
v
DIG:.. Supwv E D. 4 I
2 3 2 t w· terms in (vI.v2vI.vlv2.vlv3.vlv3)D + constant v 4
which we can do since
2
(v\ ••••• v
ideal. Then v
implies Hence Therefore
4
wv
I
E D.
E
4)
generated the irrelevant maximal
D
a contradiction,
depthDD/GL = depthDB/D > I. depthDD> 2. Since D. s·(v depth S'(V ) 2 / 4 Z >3 4
=
But
4)a/4a /(X o
) we get
(1+2t 3+t 4)/(I_t)l_t 2)2(I_t
4)
by Proposition V.I.9. and as mentioned. by [Stanley (to appear)], the ring
S·(V4)7/4Z.Which is factorial,
cannot be Gorenstein. and
hence not Cohen-Macaulay. So depth S'(V
4)Z/4Z
< dim S'(V 4) - I 101
=3
102 Remark 2.4. This method for calculating the depth of this ring clearly cannot be used by sane humans. The number of invariants of degree 5 in the Bertin example is 14. The 7 invariant generators of degree at most 4 give. 14 monomials of degree 5. But there is one relation:
u l Y3 + u 2 Y2 + u YI - O. This relation can be used to 3
show that
is not Cohen-Macaulay - for
(u!'u
2,u 3,u 4) is a maximal l,u 2,u4) regular sequence. In any case. there must then be at least one "new" is clearly a system of parameters. While
(u
invariant of degree 5. This one was found by many hours of hand calculations. Many more hours have been spent trying to find the ideal of relations. Computations can proceed as follows, + t + 3t 2 + 5t 3 + IOt 4 + 14t 5 + 22t 6 + 30t 7 +
-
+ 43t
8
+ 55t 9 + 73t
lO
+
«I_t)(I_t 2)2(I_t 3)2(I_t 4)2(I_t 5»-1 • I + t + 3t 2 + 5t 3 + IOt 4 + l0 + ••. + 15t 5 + 26t 6 + 38t 7 + 60t 8 + 85t 9 + 125t So the (number of monomials in the generators) (number of invariants) lO + ••• t 5 + 4t 6 + 8t 7 + 17t 8 + 30t 9 + 52t There is one relation of degree 5 which gets repeated in the higher degrees, so at least one takes these away by multiplying
h
t
by
t
to get excess of monomials over
3t 6 + 5t 7 + 12t 8 + ZOt 9 + 38t
invariants - relations
10
+ •••
generated by one of degree 5 Hence there are 3 relations of degree 6. There are 2 2 2 Y2+UtU3Y2+uZu3+ulu4
0 Z
4
3
2 2
=
0
+ 5t 9 + 8t
lO
YtY2+ulu3Y2+uIY4+uluZY2+u2u3+ulu3+UtUZYI+UtYt+ulu2 2
3
2 Z
3
YI+UtUZYI+UtYZ+UtU3+u2
=
0
Take these away to get the series
2t 7 + 3t
8
There are two relations of degree 7. These start with
102
+ •..
5
103 Then we get the series so there is one more relation of degree 8, and that should be enough But we have completed the main part of the computations - sufficient to show that
depth{Bertin)· 3, and we don't care to do any more.
Remark 2.5. By Corollary{2.7) of [ Fossum,Foxby, Gri ff i th and Reiten (1975») (which is due really to Hartshorne and Ogus) we conclude that there is a prime ideal P in S'{V such that ht{P) = 3 4 and for localization, • 2 This holds since
S'{V)a/4a 4
cannot be Gorenstein and Serre
condition (S3) + Factorial, would imply the hypotheses of Corollary (2.7) of [Fossum, Foxby, Griffith and Reiten (1975»)
3. Problems. In this section we list problems that appear naturally. Problem 3.1. What are the ..c!ecompositions of for the indecomposable
n>p ?
Problem 3.2. The representation rings and
and
Ar (V ) n
v p -modules Rv m p
Rv
have
A-operations,
is close enough to being a A-ring so that the decompop sitions of Ar{v ) can be accomplished. What properties, short n
of being a A-ring, but stronger than admitting RV p m
A-operations, does
enjoy? [ This was suggested by Rentschler) •
is the relation between decompositions of Prob 1e m 3. 3. Ar{V Sr{V + and repreSentations of the symmetric n), n 1) characteristic p? Problem 3.4. Compute Problem 3.5. Are the completions -
S'{V
V m
n+ I
) p
factorial? It was
this question that started us on our investigation of the decompositions. As seen in Chapter IV, the decomposition of
m) allow m p the computation of the divisor class group Cl{S'{V pm) p ) • O. It was hoped that the decomposition would be of use for the other indecomposables. As yet this hasn't helped.
103
v
104 Problem 3.6. Sr(V
n+ l)
Is there a formal relation between decompositions of
and semi-invariants of Schur [Schur. Satz 2.21] 1
Problem 3.7. Does the Hilbert series of a graded algebra give any information about its depth 1 (Partial answer - probably not because a (Hilbert) series can be the Hilbert series for a Cohen-Macaulay ring and a non-Cohen-Macau1ay ring). Problem 3.8. What is the generalization to
RV pm
of the Va1by
Bodega Theorem 1 Problem 3.9. Work out the Adam's operations for the representation ring.
(We started. but they did not fit directly into the subject
matter. The elements
+
are Adam's operations. for example).
Problem 3.10. What are the combinatorial properties of the triangles of numbers in
III.4? V m
Problem 3.11. Show that the Hilbert series Ht(S'{V ) p ) n+ l m-I +2. symmetric provided n is odd and n ;;. p Problem 3.12.
•
(See V.5.11).!.!
is not
1
v m
S'(V +1) P Cohen-Macaulay 1 In particular n v m Cohen-Macaulay 1 and S'{V m 2) p
p +
Problem 3.14. Is there a factorial local ring Cohen-Macaulay. dim A
=
5
A
with
and which satisfies Serre's
A S3
not condi-
tion 1 Problem 3.15. It is shown in Chapter III that '"• Free for r+n· p-l. Show that S r (V n+ l)
4. Final remarks.
S r (V for
) '" • Free(BV s n+ 1 r+n· p-2.
(July 1977). After the handwritten version of this
paper was completed we found that Sylvester and Franklin. a century ago. computed
for
n=I.2 .... 10
and
12
Sylvester (1973)
There it is the "counting function" of the covariants tiants") of a binary form of degree
n
•
(or "differen-
(in characteristic zero).
This (remarkable 1) coincidence will be the subject of a forthcoming paper.
104
105
Problem 3.12 has been solved by R.P. Stanley (private communication) but the result was used by Sylvester in his computations, so certainly known to him.
VII. Notation. In this chapter is listed, in order of appearance, the notation used in the manuscript, with chapter and section references : Standard notation 'Z
Integers.
N
Positive integers.
No
Nonnegative integers. Field of rational,
IP (V)
real and complex numbers.
nV :
Projective variety of lines through space V. Direct sum of n copies of V.
v0 n :
Tensor product of
vn
V
An tpn
nspace over
Projective
k
th n
An(V) n
S (V)
a
copies of
in the vector
V.
Sn
Affine
k
n
o
k.
nspace over
k.
exterior power of V. n
Sym (V)
th : n
Symmetric power of
V.
T,U,V,X,Y : Indeterminates (sometimes multiindexed). Chapter O. Vp m
=
a
'Z/prn'Z : The cyclic group of order
p
rn •
Generator of
Chapter I. Rk V p rn : Representation ring of
v p rn '
Chap ter II. Sr
The symmetric group acting on
r
letters (11,1) (II, I)
1I I
=
I I + 1 2 + •• + In
(II, I)
105
106
(II. 4) Symmetric polynomials of degree
Ar a
r
hr kr s 7
th r-
elementary symmetric polynomial
th r-
complete symmetric function.
(II.5)
th r-
monomial symmetric function.
(II.5)
(II. 4)
(II. 6)
r f
(II.4)
r
l = 2[f- ]
(11.7)
w{V) :
(II. B)
sym
{II. 9)
r:
eI
Ith
I
Partition conjugate to
I
Schur function.
(11.11) (11.11)
I
A-ring : Section 3 A-operations : Section 3 Gn,r (X,Y): Homogeneous Gaussian Polynomial.
(11.25)
Chapter IV. 'm{B) : Groups of units of
B.
(IV.7)
Chapter V. H. (A)
The Hilbert function
Ht{A)
The Hilbert series
B ---'t B G k (tJ
i=o
A
k
B is given by a
is
(it)-1 di(b)ti , tP=O •
In this situation the following assertions are equivalent (i)
« operates reductively on B
(ii)
There is a
z B
with
d(z)
If (i) and (ii) are satisfied, the element
zP
is invariant and the map
C (ZJ/
G is linearly reductive. If
G is too if and only if
X is linearly
X/G is affine ••
A special case of the second half of the preceding corollary is due to BialynickiBirula (BBJ. This corollary can also be proven by applying Serre's criterion for affinity to
X/G
since the existence of
X/G as algebraic k-scheme is known a
priori.
119
-9II - Proofs I only give outlines of the proofs. The details will appear in a forth-coming paper in the J. of Alg. The situation and notations are those from part
I.
The following two lemmas are used for reduction purposes. (2.1) Lemma: Let
kC.t be a field extension. Then
if and only if
G operates reductively on
The preceding lemma is applied with Let
N :g G be a normal k-subgroup of
(2.2) Lemma: The group operate reductively on
G B
.t
B
G • Then
operates on
B
k. fiB
if and only if
N resp. G/N
N
B.4
In characteristic zero every k-group is smooth, in positive characteristic every k-group is an extension of a smooth by a finite k-group LD-GrJ , Exp. XVII, Prop. 3.1, p. 625. Since both theorems
A and B are known for finite k-groups
(see e.g. (D-GaJ, III. 2, 6.1) the preceding lemmas permit the reduction of the proofs to the essential case of a smooth k-group over an algebraically closed field.
(2.3) Proof of theorem A : (iii) ====+ (ii)
This is a special case of the theorem
of faithfully flat descent (see e.g. CD-GaJ, 111.4 , 6.3). One has only to notice that
a
(G,B)-module
V gives rise to the G-scheme
Sp(B
$
V)
over
X. The
details are due to Voigt (VoJ. (ii) ===f. (iii)
Since the functors
are adjoint to each other and hence quasi-inverse equivalences under the assumption (ii), in particular faithfully flat. The map Xx G
B 0: (-) is faithfully exact, and hence CeB C (inj, A) : B I&C B B 0: A , induced from
X x X : (x,s)r----t (x,xs), is bijective since
120
B
.n
an algebraic closure of
operates reductively on resp.
G operates reductively on
is
-10-
G(_)
is bijective and
and
B 0 A are considered
(G,B)- modules in a suitable way.
as
(i)
G(_) in
B
is an equivalence. Here
---+ (ii), (iii) This is the difficult part of the proof. Since
is an equivalence if and only if (G,B)
But
B is a projective generator of finite type
B is obviously of finite type and by (i) projective. Hence
one need only show that for every non-zero G
V = HomG,B (B,V)
assume that
(G,B)-module
V the C-module
is non-zero too. After the reductions mentioned above I may
G is smooth and
k
is algebraically closed. By indirect proof and
noetherian induotion I may further assume that the statements (ii) and (iii) are valid for all pairs of
B, but not for
where (G,B)
runs over the non-zero G-invariant ideals
itseld. However since
an open dense G-invariant subset
G operates free on
U' of X and a morphism
braic, but not necessarily affine k-schemes such that pal G-bundle [D-GroJ, Exp. V, Th. 8.1. Since Let then Then
V be a non-empty, open,
U
¢
X one has
U
is G-invariant and non-zero since
Gv
2V
f
X • Then the ideal U
f ¢.
This implies
=
GV
f
0
=
is a princiU' and V'
p,-1 (V).
X this implies
G-invariant ideal and
rX
GV = GeV/(O :
by induction hypothesis
B (w.l.o.g.) 0
since
G(_)
C = GB over
'I?"( (0 : V))
and thus
V)V) f
V is a non-zero
The finite 0eneration of
= (X-U)red
h with
since
is a
is exact on
then
¢ = Supp(V/SV) = Supp(V) () '\?"(b) U
V' and U :
V , then by induction hypothesis
(G,
(G,B)-Mod. If, on the contrary, V
Since
V'
V be a non-zero (G,B)-module, of finite type over
0 . If
non-zero
there is
V is a principal G-bundle of affine k-schemes. By construction resp.
assumption on
Let then
p' :
X is non-empty, so are
subset of
B
p' : U' ---t V' of alge-
0
(0: V)
since
1\
(X-U)
(tr= zero set)
0 • But then again
(0: V)
is a non-zero
(G,B/(O: V)) - module. k
will be dealt with in the proof of
theorem B .Il
121
-11-
(2.4) Proof of theorem B : I shall only indicate the proof for the finite generation of C. The proof of the fact that
Y is the quotient of
X by G in the cate-
gory of kschemes and of the other properties is inspired by that of the corresponding result for linearly reductive groups and proceeds along the same lines (see (MumJ, Th. 1.1). Assume first that theorem
G operates freely on
A are satisfied. The kalgebra
B
so that the equivalent conditions of
A is of finite presentation, the same
holds for the Balgebra
B '3: B B '3: A . Since C C B is faithfully flat this C B is a CAlgebra of finite presentation too (])..Gal, 1.3, 1.4. Thus B
implies that
is faithfully flat and of finite presentation over
C ,end of finite type over
by assumption. These data imply the finite generation of
Cover k
k
by (DGroJ,
Exp. V, Prop. 9.1. In particular, by remark (1.6), C is of finite type over
kif G
is unipotent. For arbitrary
G and not necessarily free operation let
N
G be a normal
ksubgroup. Then
Moreover
ration over pairs
GIN) operate reductively on B (resp. NB). Hence the finite gene
N k
of the invariant ring for the pair
(N,B) and
(G/N,N
B) .
(G,B)
follows from that for the
This argument is used three times with
N or GIN finite
or unipotent where the finite generation holds by CDGal, 111.2 , 6.1 ,Crespo the above argument). For there is a finite normal subgroup If
G is smooth then the 1component
is finite. If cal of where
G then
G is smooth and connected and G/R u (G)
N such that
GIN is smooth. GIGO
GO of G is smooth and connected and (G)
denotes the unipotent radi
is reductive. Thus one reduces the problem to the case
G is reductive. Modulo Haboush's theorem CHab) , finite generation of the
invariant ring in this case is due to Nagate
e s g , (FogJ,
rn.
5.56).11
III Nonaffine quotients of nonaffine algebraic schemes This part is new and was not mentioned during my talk in Paris. I indicate how the theorems of the first section can be generalized to the nonaffine case. The results are inspired by the corresponding theorems for linearly reductive groups, due to Mumford (MumJ, Ch.I, §4. 122
-12The following k
remain in force throughout this section. As in section I ,
denotes a field of arbitrary characteristic,
a k-group with affine algebra
A
=
A(G). Let
k
an algebraic closur9 of
neither necessarily affine nor separated. The sheaf of k-algebras on denoted by If
OX' Let
k and G
X be an algebraic k-scheme which is X is as usual
V: X x G ---+ X be an operation of G on X from the right.
X is affine and if
G operates reductively on
I shall also speak of a reductive operation of
A(X)
(compare section I) then
G Q£ X • Theorem A (1.5) of I can
then be generalized to the following result.
(3.1) Theorem: Situation as above. If the operation of
G on X is free, the fol-
lowing assertions are equivalent : p: X--+ Y with group
(i) There is a principal bundle
Y and a faithfully flat morphism pr ': X x G
p
such that
p: X x G
G, i.e. a k-scheme X and
induce an isomorphism
(v, pr ) :
X x
X x X
Y
X = \J U. of X by affine, open, G-invariant i£I l G operates reductively.
(ii) There is a covering subschemes
U. l
on which
If (i) and (ii) are satisfied, then
Y is algebraic, p
is affine and
is exact in the category of all locally ringed spaces. In particular is a universal geometric quotient of
p: X---+ Y
X by G in the sense of Mumford (Mum),
DeL 0.7 .11
Condition (ii) of the preceding theorem keeps its meaning if the operation is not necessarily free, and gives rise to the next result.
(3.2) Theorem: Situation as above. Let affine, G-invariant subschemes i E I . Let
Pi: Ui theorem B (1.7).
(i)
Vi
X=
such that
U
U be a covering of X by open, ie:I i G operates reductively on the U. ,
be the quotient of
Assume that in addition the following condition is satisfied
123
l
in the sense of
(3.3) For all i,j _ I U.nu.
=
J
1
the subset
is open in
1
1
p: X---+ Y of
Y is algebraic and
(Mum], Def. 0.7). Moreover mersive. The sets
p(U.)
Y and
are open in
1
X by G exists (cumpare
is affine and universally sub-
p
p-1 p(u.).
U. 1
1
(ii) The condition (3.3) of (i) is satisfied if for all 1
:
and
1
J
1
Then a universal categorical quotient
p.
U./G
p.(U.f'\U.).
U.
V. = U./G
1
1
1
is surjective or, equivalently, if Then the morphism
p
is I
is even a geometric quotient, i.e. if Pi
induces a bijection
the morphism U. x G (p,pr») U. xU. 1
1
u.
1
V.
1
1
from (i) is also a universal geometric quotient.O
For the next result I need the notion of G-linearized °X-module.(Mum] , Ch. I, §3 . Consider the groupoid of k-schemes
Xx Gx G
Let
y be a quasi-coherent
OX-module. A G-linearization of
is an isomorphism
0XXG-modules which satisfies the cocycle condition (X x r) * (F)
If
Y
pr*(y)
F :
of
X.
P.
X = Sp(B)
(pr
=
is affine the equivalence
1,
2)*(F) (r x G)* (F)
V..........-+ '" V between B-modules and quasi-
coherent OX-modules induces an equivalence between
(G,B)-modules and G-linearized
quasicoherent 0X-modules. This is due to the fact that a the B-module
A: V ---+ V
V is given by a comultiplication
linear w.r.t. the diagonal
Ii: B
B
(G,B)-module structure on
A , Le. by a
V G: (B G: A) ---+ V G: A = V G: • • (B B,a B,lnJ i.e. by an
Ox x F
which is semi-
B G: A -linear map
e:
A) ,
map
r
V G: (B B,A
#'
e: A)
,.,
= r* (V) ---+ V G:
B,inj
124
(B G: A)
pr* (if)
-14In particular, in the affine case a G-linearized invertible OX-module is just a (G,B)-module which is projective of rank one as B-module. V: X x G
In the non-affine case the operation A(V) : A(X) which is a G-algebra structure on of global sections of Ox-module then V
X induces a comultiplication
A(X x G)
A(X). Here
=
A(X) :
A(X) & A =
ox(X)
denotes the k-algebra
OX' Similarly, if 1. is a G-linea.rized quasi-coherent
F: \1*(1.)
pr*(1.)
induces
(G,A(X»-module structure on
[J
= 1.(X) via V
= 1.(X)
(x x G)
\1*(1.)
1.(X)
&
A=V
s
A
(see (Mum], p, 32).
= \J u.
is a covering as in theorem (3.2) then the modules V(U.) i I l l (G,A(U.»-modules and the restriction maps V(U.) are rr-linear,
If moreover are
X
l
-
i.e. A-colinear. Since
V(x)c 1T V(U.) :
-
when
If
i -
l
i
l
I
(v
=
(v I
I
is a G-submodule and
te 1!(X)
1! is an invertible Ox-module and
x(..ft) : Here
l
X is algebraic I assume I finite w.l.o.g. Then
!tx e 1 xr-x 1m 1x
t(x)
[x
EX;
let
01.
t(x)
.
(3.4) Theorem - Situation a.s above. 1et 1! be a G-linea.rized invertible Ox-module, and let
z,
[te G1!(x)
; X(..t)
rates reductively on Assume that ample and (i)
is affine (and of course G-invariant) and X(t)
G ope-
l .
X is covered by the
X(t), t
£. . (In particular then 1! is
X is quasiprojective).
The covering
X
= U [X(t) ; ..te 11 satisfies the conditions, in particular
(3.3), of theorem (3.2), hence a universal categorical quotient exists, p is affine and universally submersive and
125
p
Y is algebraic.
X---. y
-15-
=
= Sp(GA(X(t)))
Moreover
p(X(t))
and
= p-1 p(X(!)).
(ii)
X(t)
There is a unique invertible
is an open, affine subscheme of
0y-submodule
= GA(X(£)) (.tlx(,t)) G1(X(t))
=
c. 1(X(t))
=
of
p*(1)
y
with
G [A(X(.f,)) (tlx(..e))J
p* (1) (p(x(t))).
G-linearized Ox-modules.
(iii) For .(61:, is ample and
y
G1 (X) = one has is quasiprojective.H
(3.5) Main application: Let 1
-e. =-N on
V
n:;o.1
[D
yet)
p(x(t))
which is affine. Thus
be a G-linearized invertible OX-module and
GL@n(X)·,X(D) -
is affine and
G operates reductively
X(!)].
Let
be the set of "semi-stable points of X L". This is an open subscheme of Ss of X. Since X is algebraic, x (1) is covered by finitely many L , i
l.
= 1, ... ,r. Since X(J.,.) = l.
I assume w.l.o.g. that
1&N1xSS(1)
t.
l.
l.
G &N L (X) -
for all
l.
.
for the same
is a G-linearized invertible module on
N-.1 , i = 1 , ••• ,r . Then SS(1) X which satisfies the
hypothesis of the preceding theorem. Hence the universal categorical quotient
eXists, p
is affine and universally submersive and
SS(1)/G X
is quasi-projective .•
(3.6) Corollary: If the equivalent assertions of theorem (3.1) hold true, the following assertions are equivalent : (i)
Y = X/G is
(ii)
There is a G-linearized invertible OX-module 1
126
such that
X
= XS S(1).
-16(iii)
£ i- J
There is a G-linearized invertible OX-module
1
such that
X = U[X(t)
where
x(t)
is affine and
G operates reductively on
These equivalent conditions are satisfied if
G is a k-subgroup of a k-group
X and X/G denotes the homogeneous space.1I
Literature
[
BB]
[n-
Ga]
[D-Gro]
Bialynicki-Birula - On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582 M. Demazure and P. Gabriel - "Groupes algebriques" , Masson, Paris, North-Holland, Amsterdam, 1970 M. Demazure and A-Grothendieck - "Schemas en groupes I and II", Lecture Notes in Mathematics N° 151, 152, Springer Verlag 1970
[Fog
J
1. Fogarty - "Invariant theory" - Mathematics Lecture Notes, W.A. Benjamin,
[Hab
]
W.I. Haboush - Reductive groups are semi-reductive, Ann. Math. 102 (1975) 67-84
[Mum
]
D. Mumford - "Geometric invariant theory", Erg. d. Math. 34, Springer 1965
[Nag
J
M. Nagata - "Lectures on the fourtheenth problem of Hilbert", Tata Institute Bombay 1965
[Ses
]
C.S. Seshadri - Mumford's conjecture for Gt(2) and applications, in "Algebraic Geometry", Oxford University Press 1969
[vo
]
D. Voigt - Endliche algebraische Gruppen, Habilitationsschrift, Bonn 1975.
Inc. 1969
Manuscrit regu le 10 Janvier 1977 M. Ulrich OBERST Institut fUr Mathematik Universitat Innsbruck Innrain 52 A - 6020 Insbruck
127
LES BASES DE HODGE DANS LA THEORIE DES INVARIANTS
by
Claudio PROCESI
§I - The Grassman variety The theory of combinatorial bases in invariant theory has its origins buried in the invariant theory of last century. The main starting point is the study of the Grassman variety and more precisely the quadratic equations satisfied by its coordinates, in the canonical projective embedding. Let therefore
V be a vector space of dimension
n
over a field
in fact, as it will be clear, we can work always over the integers) and k-th exterior power. We select a basis f\
e.
/I
••.
««,
e
, ••• , e n k of 1\ V •
(i " i " ••• js
jk
We then apply the quadratic equation relative to this pair of Plucker coordinates and to the
k+l
indices
is .•. i k
to replace the product
JI
Jk
I
jl .•• js . The net result of this equation is
by a sum of similar products which are necessa-
rily lower in the lexicographical ordering. In fact: jl.:.jZ V&l- 2 by contraction on the given indices but we have also a map : V&l- 2 ----:> v lilm given tensoring (in the two given indices) by the invariant element 1lii Vlil2 corresponding to the form. The result is a map 1:'.. : V&l ----:> V&l If G is the group of the form I we have &l Theorem 5.2 - EndG(V )
is generated but the elements
1:::..
and the symmetric
group.
One can give a
(somewhat obscure) description of this ring (the Brauer-Weyl
algebra) by standard bases.
References [11
c.
De Concini, C. Procesi - A characteristic free approach to invariant theoryAdvances in r1ath. 21, 330-354
143
(1976)
-17P. Doubilet, G.C. Rota, J. Stein - On the foundation of Combinatorial theory Vol IX , pp. 185-216. Studies in Applied Mathematics Vol 53
(1974)
W.V.D. Hodge - Some enumerative results in the theory of forms, Proc Cambridge Philos. Soc. 39
(1943) - 22-30
J. Igusa - On the arithmetic normality of the Grassmann variety - Proc. Nat.
Acad. Sc. U.S.A.
40
(1954), 309-313
H. Weyl - The classical groups. Princeton Univ. Press, Princeton, N.J.,
Manuscrit
144
1946
Ie 14 Fevrier 1977
INTEGRAL REPRESENTATIONS OF FINITE GROUPS
Irving REINER
Introduction Let
G be a finite group, and
ZG
its integral group ring. By a
ZG-lattice we mean a left ZG-module which is finitely generated and projective as Z-module. A basic problem in given a group
theory of integral representations is as follows
G, classify (up to isomorphism) all ZG-lattices. It is easily seen
that every lattice is expressible as a finite direct sum of indecomposable lattices, though usually not in a unique way, since the Krull-Schmidt Theorem need not hold true for ZG-lattices. The basic problem may be split into three parts : I) For which groups
G is the number
n(ZG)
of isomophism
classes of
indecomposable ZG-lattices finite ? II) When
n(ZG)
is finite, determine a full set of indecomposable
ZG-lattices. III) When are two direct sums of indecomposable lattices isomorphic ? The solution to (I) has been known for many years (see the discussion in
[2, Chapter XI]), and is as follows Theorem - There are finitely many isomorphism classes of indecomposable ZG-lattices if and only if for each rational prime of
G are cyclic of order
p
dividing IGI, the Sylow p-subgroups
p or p2
Jacobinski t6J has generalized this result to the case of RG-lattices, where
R is the ring of algebraic integers in a number field. 145
-2Problem (II) is much harder, and its solution usually requires knowledge of ideal class groups in algebraic number fields, as well as congruence properties of units in such fields. The problem has been solved only for the following few cases i) G cyclic of prime order
iii) G metacyclic of order p
2
,
(see(2
2p , where
ii) G dihedral of order
iv) G cyclic of order
p
is prime t9J
p
pq , where , where
P
Chapter xI], or (3J,[12J)
p,q
are prime [ll]
is prime (see [14]-[16J).
To complete the list, we mention the work of Nazarova{lOJ, who solved problem (II) for the case where though
n(ZG)
G is an elementary abelian (2,2) group, even
is infinite for this case. She also treated the case where
the alternating group
G is
A
4
We turn finally to the most difficult problem (III), which is almost untouched. For cyclic groups of prime order, the solution has been known for many years (see (3.2) below) ; the problem has also been solved for case ii) above. In this article, we shall describe the solution of (II) and (III) for cyclic groups of order
p2; detailed calculations may be found in [16].
Let us recall the definition of genus : two ZG-lattices same genus (notation : M V N) if their p-adic completions
M, N are in the
M and N p
p
are
ZpG-isomorphic for each prime p dividing IGI. In trying to classify ZG-Iattices up to isomorphism, one usually begins by giving a full set of genus invariants. One must then find additional invariants which distinguish the isomorphism classes within a fixed genus. Often, these additional invariants are ideal classes of some kind. In the cases considered below, we shall find an invariant lying in some factor group of the group of units in some finite ring. Furthermore, a Legendre symbol will also appear as a possible invariant of a ZG-Iattice.
§l - Extensions of lattices Throughout, let
R denote a Dedekind ring whose quotient field
K is an
algebraic number field ; let A be an R-order in a finite dimensional semisimple K-algebra A • For each maximal ideal P of R , let denote the P-adic completion of R , and A the completion of A , etc ••. We may choose a finite nonP empty set SeA) of P's , such that A is a maximal Rp -order in for each p 146
-3-
p ¢ S(/\). (For example, when II. is an integral group ring choose for
S( /\)
a II. -lattice, let
RG , it suffices to
any set which includes all prime ideal divisors of IGl). For End/\(M)
denote its ring of
group of /\-automorphisms of
/I. -endo1llOrphisms, and
M, acting from the left on
denote the external direct sum of
n
copies of
M. We use
M
Aut,,(M) the M(n) to
M
Let us begin with a simple lemma (see (IJ or [5J) (1.1) Lemma - For
S.
].
i I , Z , let
E Ext/\I (N.,;) determine a ]. ].
Then
XI
Xz
if and only if :
M and N be 1\ -modules, and let i i 1\ -module Xi . Assume that Hom" (M I ,NZ)
for some 1\-iso1llOrphisms
(1.2) Corollary - Let let
Ii
M,N
A -modules
be
determine a
l
for some
(1.3)
Let us call
and
51
fied, and write
1\ -module
such that Xi
Then
'6:
M I
MZ '
$:
NI -;: NZ
Hom/\(M,N) - 0 . For XI
i
1,2,
Xz if and only if :
6 Aut" (M) ,
strongly equivalent when condition (1.3) is satis-
'z . The isomorphism classes of extensions of
thus in bijection with the strong equivalence classes in the orbits of
o.
under the actions of
For each maximal ideal
I
N by Mare
Extl\(N,M) , that is, with
Aut/\(M) and Aut,,(N) .
P of R , we have
The right hand expression is zero for each
P t
s ( A), since for such P we know
that
Ap is a maximal order, and thus the Ap-Iattice Np is Ap-projective. This I shows that ExtA(N,M) is a torsion R-module, whose torsion occurs only at the
primes
p in S( 1\). It follows at once that if I '" Ext,,(N,M) =
M' V M and
N' V N , then
Ext...I. cNI,M')
Indeed, we may give such an isomorphism explicitly, as follows
1\ -exact sequences
Lemma (see [13, (Z7.1))), we can find
o -")
M
M'
T
by Roiter's
0
o
,¥' ----7' N I --'-+ N __ U __ 0
147
-4in which both
T
P
and U
induces an isomorphism (J .4)
are zero for each
p
t :
,
(41, '1')
P 6 S (1\). The pair
(N,M)
then
(N' ,M')
which we shall call a standard isomorphism We wish to show that under certain mild hypotheses, the strong equivalence classes in
I
ExtA(N,M)
depend only on the genera
called an Eichler lattice if (see (13, (38.1)J). When R
EndA(K
M)
of
M and N . A
A -lattice M is
satisfies the Eichler condition over
is the ring of all algebraic integers in
Eichler lattice if and only if no simple component of definite quaternion algebra. Certainly
EndA(K
M)
R
K, M is an is a totally
M is an Eichler lattice whenever
End,,(M)
is a matrix ring over a commutative ring. The following result is established in t161:
(J .5) Theorem - Let
and let
, 12
N be Eichler
M
M'V M , N' " N Let (N,M) Then
t
such that
1\
Hom,,(M,N)
,
be a standard isomorphism as in (1.4) and let
Thus there is a bijection between the strong equivalence classes in and those in
0
I
Ext" (N,M)
(N' ,M').
This result shows that, under suitable hypotheses, there are as many isomorphism classes of extensions of
N by M as are of
N' by M' . We conjecture that
this same result holds even when HomA(M,N) f 0 , and whether or not Mana N are Eichler lattices. As an easy consequence of the above theorem, we obtain
(1.6) Corollary - Let
M and N be Eichler lattices for which
let
Mi V M, N V N, i = 1,2 , ... , r . For each i determine an extension X. of
i , let
HomA(M,N) 1.
0, and
E Ext"I(N.,M.) 1.
1.
1.
be a standard isomorphism as in (1.4), for invariants of the
'" -lattice
I 4-i4Sr • Then a full set of isomorphism
Xl \& ••• \& X
r
are as follows
148
-5i) The isomorphism classes of
Ell M.
ii) The strong equivalence class of the matrix diag (t 1 ( in
, ••• , t ( lr) )
r
under the actions of
GL(r,A) and
GL(r,r), where
A = EndJ\(N)
End"(M)
§2 - Exchange formulas the notation of §I ; by an R-Iattice we mean a finitely generated
Keep
projective R-module. Steinitz's Theorem (see (2 , Chapter IIIJ) gives the structure of R-Iattices :
Theorem - Each R-Iattice of fractionalR-ideals its
in
K . A full set of isomorphism invariants of
n , and the ideal class of the product
is called the Steinitz class of
••• GL
M).
n
+
+
M is isomorphic to an external direct sum
Mare
. (This ideal class
A special case of this theorem gives
This formula is easily generalized to the case of
II -la t t i ce s , where"
is an
R-order, and we obtain (see t13) or t17J) (2. I) Proposition - Let
L,M,N
A-lattices in the same genus. Then M Ell N
for some
L'
Now let
in the genus of
L .
M and N be arbitrary
If
the left on tension class
L Gl L'
A-lattices; the ring
X is an extension of
E Ext(N,M), and if
E End,,(M),
A-lattice which corresponds to the element
¥
p
Eo Aut
1\
p
(Mp)
for all
PES ( " )
149
acts from
then we shall denote by
)fJ co Ext(N,M).
condition (2.2)
Endll(M)
N by M corresponding to the exIf
¥
lIX
satisfies the
the
-6-
'6 X is in the same genus as X. The method of proof
then it is easily seen that
of (2. 1) then yields (see (16J) :
(2.3) Exchange Formula - Let
X and Y
N by M , and let l
satisfy condition (2.2). Then
End,,(M)
be
f\ -lattices which are extensions of
X ED llY
Similarly, we obtain (2.4) Absorption Formula - Under the above hypotheses, we have
The preceding results show at once that the Krull-Schmidt Theorem need not hold true for
1\ -lattices, and that usually "cancellation" is not possible. The
proofs of (2.1)-(2.4) are elementary, and depend only on the "Strong Approximation Theorem" in algebraic number fields. There is a much deeper version of (2.1), due originally to Roiter (181, and proved in a different manner by Jacobinski (7] (see also tI7J). Roiter's result is as follows:
(2.5) Theorem - Let
Land M be
f\ -lattices in the same genus, and let
F
be any
faithful'" A-lattice. Then L ED F
for some
§3 -
F'
in the genus of
p
F
be prime, and let
h.
z txJI (xp
=
J
e". J
M ED F'
Cyclic p-groups Let
where
';t
j -
1)
,
R. J
pj
is the cyclotomic polynomial of order is a primitive
integers in the field
pj-th root of
K. J
=
J
lover Q , so Thus
This means that no non zero element of
R.
J
R. J
Then
R.
J
';t Z
(w. '], where J
is the ring of all algebraic
is a Dedekind ring, and Steinitz's
1\ can annihilate
150
F
•
-7Theorem gives the structure of R.-lattices. J
G is a cyclic group of order
If
• For
j
=
O,I,Z,
viewed also as a
R j
Now let
[m £
o --. N
MIL. Here, L
=
is a
to classify all 2G-lattices RZ-lattices (Note that
(x
p
with the ring
' and so each Rj-module may be
M be any M
ZG
,we may identify
-
AZ-lattice, and set
I) m
hz-exact sequence
(3. I)
where
z
is a factor ring of
L =
Then there is a
p
L
----+
M ---"t N
hI-lattice, and
----+
0
N an RI-lattice. Thus, in order
M, we must classify all
AI-lattices
L, and all
N, and then determine all strong equivalence classes in HomZG(L,N)
=0
in the present case, so Corollary (j.2) applies here).
By Steinitz's Theorem, the RZ-lattice RZ-ideals. The isomorphism invariants of
N is a direct sum of fractional
N are its RZ-rank and its Steinitz
class. On the other hand, the structure of the
AI-lattice
L
is known from the
results of Diederichsen and Reiner (see (Z, Chapter XI]), and can be described in the following manner : both viewed as
Z and R j are factor rings of AI' so they may be Aj-lattices. For each fractional Rj-ideal , viewed as Aj-lattice,
we have (Z,.&) rt Z I
where
Z=
zjpz
(Z,-G: ; I)
Let
ie z ,
to the extension class
E (0(; )
brevity. It turns out that isomorphism class of
(3. Z) Theorem - Every
)
denote the extension of
and let us denote
(Z,o(;. ; I)
Z by
corresponding E (-e. )
is always in the same genus as
depends only on the ideal class of
AI-lattice
..e.
by
L
e&-
Al
,
for and that the
Then one has :
is isomorphic to an external direct sum
(a) • 'pI • +"j+'"
where the are the integers
are fractional RI-ideals. A full set of isomorphism invariants of L a,b,c
(which determine the genus of
the product
,
)
-I r) denotes an Z) Z Z' r extension of R with class (l, '7I ) Z Ell iiI , using the isomorphism Z by Z Ell "I
Here, (z
,
Similar definitions apply to the other cases in (4.1).
156
P
13We may then determine all indecomposable ZG-Iattices by calculating all lattices in the genus of each of the lattices listed in (4.1). This calculation depends on determining strong equivalence classes of matrices (set [16J for details), and we shall need some additional notation in order to state the results. Let
Uk be the group defined in (3.7) ; if
morphic image of of
u(R ) , where
R
=
RI/p R
I I . We may therefore choose a subset
R
I of representatives of the factor group
and
0 $ k "p-I, then u(R )
I Uk of u(R
I
Uk is a homo-
denotes the group of units
such that Uk is a full set I) AI It is easily seen that each u E Uk
Uk
may be chosen to satisfy the condition that
=I
u
(mod '?\), where
x
ZC.'lI1/('l\p-I), 'h I -t.:l . Likewise, U is a factor group of u( I)' and I l -p . I (mod we may pick a full set of representatives Up 1n u( such that u
R
for each
u G
=
ITp
Finally, let
(4.Z) Theorem - Let
n
0
be some fixed quadratic nonresidue mod p .
range over a full set of representatives of the
hI
ideal classes of R I, over the h ideal classes of R . The following is Z Z a full list of indecomposable ZG-Iattices (up to isomorphism) : i)
Z,..c, Ec-e.) ,;m + a n_ 1
est caracterisee par a
(mi"'"
avec
0, chaque representation
exactement une fois (voir [I] page 161).
170
"
intervenant
- 9
IT' I sR-(n-1 ,a:)
PI sHn-] ,a:) Done
P
restreinte a
sR-(n-I,a:) se decompose en somme de representations
irreductibles de poids dominant :
La mUltiplicite de la representation irreductible de dominant
m; 2]+ ••• +
dis tincts
B. Etude de
dans
n_2
pls2(n-I,a:)
est egale au nombre d'entiers
tels que
k
c'est-a-dire
2
s2(n-l,a:) de poids
k
a+j avec
a
P (a:) n- I P - (a:) est, en tant que variete differentieIIe,
L'espace projectif complexe isomorphe au quotient de
n I
SU(n,a:) par
S(U
1
x
l,a:) sous-groupe de
SU(n,«) des
matrices de Ia forme
avec
L'algebre de Lie de Xa:
= s(u l
S(U
1
N
U(n-I,a:).
x Un_l,a:), s(u j x un-I ,a:),a pour complexifiee
x un_l,a:)
n-r l
= sR-(n-I,a:)
a:
a:(
Notons que Ie centre de I'algebre de Lie
I
e
i=l
- (n-l) e nn).
ii
n-l
est
a:(
I
e.. r
i=1
i.
(n--L) e
nn
)•
On a
n-I
sMn,a:) ou
!Pa:
est Ie
=
Xa: $fa:
=
1Ja: $
{.IJ=I
a:
a:-espace vectoriel engendre par
171
n-l
e.
+
In {e.
J,n
I a:
j=1 }
U
{e
e .L nJ
.},
n,J
s
j
n-I.
-
On a
=
10 -
en-I,n-l-(n-I) e nn). La representation
adjointe de
sur
est definie par: g
Adg
--.;>
Adg(h)
[g,h]
gh - hg
d'oil ici e
[ek,Q,
,
J ek,n
j n]
e .] nJ
n-Z
[ 1:
n-Z [
1:
n-I
1:
i=1
1:
i=1
.
e ..
-
(n-i l ) e
e ..
-
(n-i l ) e
n-] [
n,)I, n-Z
( 1:
=)1,. 1, i+l)' e j n] J
A. (e .. - e.
i=1
[
-
Ai (e i i
i=]
e
J
On voit que
-
) , e .] nJ
nn
nn
n e. In
,
- n e nj '
e .] nJ
agit sur
e. In
)1,. J
, e. ] In
Ai (e i i - e i+ 1 ,i+l»
i=1
en une representation somme directe de
deux representations irreductibles e.
de poids dominant
e
de poids dominant
J,n
Vz
sur -)I,.
poids sont
e
Vz
a Dz'
n
n,j
)1,1+" .+ )l,i_1 + \+1+" .+ )I,n-I
On voit que tion par
e
,
e n-I,n-I -(n-l) e nn )
V
et sur
z
par la multiplication par
I
(les autres poids sont
)1,1+"'+ )l,n_Z(les autres i
n-Z).
agit sur
Vj
-no De plus
par la multiplica-
-* 11
1
est egale
On a done
PROPOSITION 11.5
Si
e.
In
et
vZ =
e . ; la representation nJ -
se decompose en somme direete de deux representations qui sont les suivantes :
172
0
PI et DZ
- II -
agit sur minant
£1
et sur
V 2
VI
comme la representation irreductible de poids do-
comme la representation irreductible de poids dominant
.(e j j+ •.. + en_l,n_I-(n-l) e nn) agit sur comme
VI
comme
n Id
et sur
V2
-n Id.
C. Spectre de En utilisant les resultats du theoreme 1.8 ; nous sommes amenes les representations irreductibles contient l'une des
W ..
p
de
telles que
Or l'algebre de Lie
a
p[s(u(l)
rechercher x
u(n-I))
est la complexifiee de
Dans ce cas, il y a bijection entre les representations de un espace vectoriel complexe et les representations de
dans
dans ce meme es-
pace vectoriel considere comme espace vectoriel reel (voir [9], VIII 9). II nous suffit done de rechercher les representations l'une des
de
p
iii'
PROPOSITION 11.6. Une representation irreductible
a
lorsqu'on la restreint
!
qui contiennent
p
et contient
e l 1+"'+ en_l,n_j-(n-I) e nn
de
n
n 1d
3, contient
lorsqu'on la restreint
si et seulement si son poids dominant est de la
forme k n £j
k E fN*
*
kErn. H
Dans Ie premier cas la multiplicite de
p
dimension de l'espace de la representation de xieme cas la multiplicite de
pest
2
Preuve : La representation irreductible U 1
lorsqu'on la restreint
a
dans P
est
)
de
kn
«(I +k)n-J)) ; dans Ie deun-l
et sa dimension est p
est
(l+kn) «k+l)n-2). n-2
contient la representation
; elle a un poids dominant de la forme 173
- 12 -
a
)(,1
(d'apres la proposition 11.4) ; e 11+ " , + en_1,n_l-(n-l) e n,n
est un element de
1 "a l.gebre ab e l i enne maximale de
,+
o
{j
definie au II.A. ,.
e
1I
+"
e
n-r l , n-l
-(n-l)e
nn
agit done dans ehaque sous-espaee de poids par une eonstante. Les poids de la representation irreduetible de a)(,J
st(n,[) de po ids dominant
sont de la forme : INn - 1
= a - k _
k
n 1
si
a - k
Si
a
=
n- 1
bn
de oultipliete
n_ 1
(n-I)
n = n, alors
avee
b E
a - k _ n . n 1
a = (k
n_ 1+l)
on sait que
n
d'ou
a
O[n].
a)(,J - k()(,l - )(,2)
est un poids de
pour (voir [4]
Done
bn Q,j
(b-l) (Q,j - )(,2) est de multiplicite I. II en est de meme de )(,
n
est l'element de
page 119),
)
ou
O(2,n)
w qui permute Q,2 et Q,n'
On a alors e
= bn
- (b-l)
(b-l) (n-l)
n-l,n-l
bn - (b l ) n r
De meme les poids de la representation de a t
l
+ Q,2
sont de la forme
174
n
-
done
a
O[n] ,
sQ,(n,[) de poids dominant
p
-
13 -
n-I I) E IN • ( k •••• k I • rr-
=a
+
I-k
n
n-I
a :=
d'ou
=
I [n ], Si
a>, I, ail + i cite
n
pour
2
- k(i
0.(.
1
I [ri ] , c'est-ii-dire s i
a-
- i )
=
bn-I
avec
bE IN* •
est un poids de cette representation de mu1tip1i-
2
= a-I done l est poids de mu1tip1icite I. 11 en est de meme de l
i , i
+
2
a - (n-l) - b' - b'(n-I)
a - (n-I) - bn
bn - I-n+l - b'n = (b-b'-I) n pour
b'
= b+2
on a 1e resultat.
La mu1tiplicite de
H
est egale ii la multip1icite de G c'est-ii-dire, d'apres 1a proposition 11.4, a :
dans
kn
p
dans
pour
p
de poids dominant
kn i]
pour
p
de poids dominant
kn
- i] + i 2 •
Ca1culons la dimension de la representation de kn
en uti1isant une formule de Weyl (voir [4] page ]39) : 1a dimension de la
representation de poids dominant
A est
II (A + a >0 IT
a > 0 ou a
est une racine et ou Or pour
s
0
0 vaut
0 =2I
o,a)
(0, a)
est 1a demi-somme des racines positives.
les racines positives sont {i.
et
de poids dominant
n
I
i=l
-
(n-2i+l) £.
J
,
I .$ i
< j ;( n}
Done :
175
- 14 !I
a > 0
(kn £] + 6,a)
(kn £1 + 6, £
!I
!I (6,a) a > 0
- £.)
1
]
I M,E), la famille i A est filtrante decroissante et i?r N fOJ. D'apres la proposition 1* i de (1) ,3iEI tel que N. = foj . Comme E est un cogenerateur on en d8duit
modules de type fini de M
que
M
M
l
= M. • l
Rappelons les definitions suivantes Definition 1.2 - Soient
A un anne au ,
M
A-module
a gauche.
On dit que
M est
lineairement compact (9), (resp. semi-compact) si toute famille filtrante decroissante
(x.+M.). I,oupourtout i,xl.E.M et l l l E (resp. l'annulateur dans M d'un ideal a gauche de
estunsous-moduledeM A), a une intersection non
vide. Definition 1.3 - On dit
A-module
fp-injectif) si pour tout A-module
=0
a
gauche
M est absolument pur de presentation finie on a
(6)).
(voir
Un A-module
a
a gauche
gauche
M est injectif si et seulement si
M est fp-injectif
et semi-compact. Voir (6) et (4).
2 - Sous-modules purs Definition 2.1 - Soient A-modules
a gauche.
A un anne au , 0--,> N..-l4 M "'""""'l'P ---..,0
On dit que cette suite est
199
une suite exacte de exacte (ou bien que
-3u
est universellement iniectif, ou bien que
pour tout A-module
a droi te
Q la suite
N est un sous-module pur de
0
Q Iil: N A
est exacte.
Proposition 2.1 - Soient
Q Iil: M
A un anneau cOillillutatif,
Q
A
@
A
A-algebre (non necessairement commutative),
(S) : 0
0
M
P
0
E un cogenerateur pour la
categorie des A-modules, B N
M) si
P
une sui te exacte de B-modules
a gauche.
Alors
les conditions suivantes sont equivalentes : 1) la suite
(S)
est universellement exacte
2) la suite
Hom A(P,E)--7 HomA(M,E)
a droite
suite scindee de B-modules 3) Pour tout B-module
o --'t
a gauche
HomB(F,M)
F
par
est une
de presentation finie, la suite
HomB(F,P) --'t
°
est exacte.
Demonstratjon - Voir la proposition 9.1 de (5) en rempla9ant Q/-Z
°
HomA(N,E)
Z par
A et
E.
Definition 2.2 - Soient
A un anneau, N un A-module
a gauche.
pur iniectif, si pour toute suite universellement exacte
HomA(u,N)
On dit que
0---7
Nest
M_ M"---70 ,
est surjectif. Alors tout produit de modules pur-injectifs et tout fac-
teur direct d'un module pur-injectif est un module pur-injectif.
Proposition 2.2 - Soient
A un anneau cOillillutatif, E un cogenerateur iniectif pour
la categorie des A-modules, B
Ynf
A-algebre, N yn B-module
a)
N est un sous-module pur de
b)
N est pur-injegtif si et seulement si
tel que
N soit facteur direct de
Theoreme 2.3 -
b) si
Alors :
HomA(HomA(N,E) ,E) il
existe un B-module
a
droite
M. Alors :
est de type fini,
P
HomA(p,E).(Voir (5) proposition
A un anneau cOillillutatif semi-local, M Yll A-module,
sous-module pur de a) si 14
a gauche.
N l ' est aussi
M est de presentation finie, N est facteur direct de
200
M.
N Yll
-4Demonstration - Soient
les ideaux maximaux de
D'apres la proposition 2.1, HomA(N,E)
est facteur direct de
quant la proposition 1.1, on en deduit que si Si
MIN
sition 2.1 3°), Nest facteur direct de
=
n
HomA(M,E). En appli-
M est de
M est de presentation finie, alors
Theoreme 2.4 - Soit
A, E
fini, N l'est aussi.
l'est aussi. D'apres la propo-
M.
A un anneau commutatif. Alors tout A-module est un sous-
module pur d'un produit de modules de type cofini et pur-injectifs.
Pour montrer ce theoreme nous avons besoin du lemme suivant. Lemme - Soient A-modules
A un anneau, (M., 4'.. ).
a -gauche,
l
(M,4'.).
I
llE
Jl l;:;'
@
I
--
ker =(t:> lnt(A)/lnt(A)
f"\
lnt(A)
n Intt:(A) )/«'2::? () Int(A)/< C7{)
(:-1 , 't:'(t. ) = pour tout et t:'(r) = r In ,n • On a ?:cr = 0- e ,t:(K) t K , car x e-(K). Sur K on definit 1 la t:'-derivation interieure S(y) = , pour tout yE.K. Soit E Le o
plus petit sous-corps de et les [YiR,'xo'J pour tout 'l:(E)s.E
et
J'
K, contenant
k , les
et tout
,s
n'est pas interieure, car
xi ' i
.
1 , les
Alors E
LXi 0 ,
E
et que par ccne equen tEl: t
quasi-simple.
244
1
(voir (3)).
Les lemmes suivants permettent de montrer que Ie couple hypotheses du theoreme 3 sur Le corps
'
S(E)s.E,
verifie les
:'l:,SJ
est
-11Lemme 9 - Soit
,
entier 10
aEi:K
. On suppose
qu'il existe un entier
, ou
at 1Y=t' 1 Ya n n-J,
-lll. aEoE verifie t:(a)
Remarque - Le centre de
E
est
j = a
a
S (a)
et
a
d'ou l'egalite
,
tel que pour tout aEk
et
alors
.
.
a6 k
d ne sont interieurs et par
k, puisque ni
le tMoreme 1, Z(E)e.Fix(e/KerC»
,
N>O
k = Z(E).
§4 - Extensions d'Ore d'ordres dans des anneaux artiniens
a gauche
On sait qu'un anneau de polyn8mes sur un ordre dans un anneau artinien est un ordre dans un anneau artinien (16). Nous allons exposer quelques resultats dfis A.V.
et (13»
s'agit des extensions
qui montrent que ce
A tt
a
reste vrai lorsqu'il
A est un anneau semi-simple ou plus genera-
ou
a
lement un ordre dans un anneau artinien
gauche et
un endomorphisme injectif
A. A la fin du paragraphe nous donnons un exemple d'extension d'Ore d'anneau
de
semi-simple, qui verifie la condition 5° du theoreme de classification. On considere un anneau semi-simple
A, qu'on decompose en somme directe
d'ideaux bilateres minimaux. (Pour les questions concernant ces anneaux, voir (2». Soi t
!J?> l' eriaemb Le fini, de cardinal
On designe par bijection
l'intervalle
q:
designe par
(1
m, des Ld eaux bilateres maru.maux de
d3. Posons Cf(i) l'idempotent de
Proposition 4 -.§.ill
rn • Une
,m1 dans = B.
alors
1
santes simples E .. ,E 1,· k
bilatere et
t..e k
R =
,telle que
B.
1
=
m
i=1
0
Z (A) ,
A
son centre et
une suite exacte de A-modules a gauche.
I 4& C-Ass Al1}
I EC-AsSAM' }
un sous-module
est vide
M est
M est
H
f I II
Alors l' ensemble
A-module a gauche
est un anneau noetherien a _gauche,
diviseurs de zero dans
soit
A
es t contenu dans la reunion des ens em-
£InZ(A),
IEC-ASSAH"}
un ideal a gauche central-premier associe aM. 11 existe donc N de H
isomorphe a
M"; done
xC; Nil f(M'),
, un element tel que
X" 0
st
A/I .
un so us-rmod ul.e de
IEC-AsSAH"
annulateurs d ' elements non nuls de
N i\ f (11') = (0), Nest isomorphe a Supposons
Nof(H')" 0
et soit
AnnA x soit maximal dans l'ensemble des
N 1'\ f (M'). Alors
gauche central-premier et central-associe a
M'
JAnnA (x)
est un ideal a
et on verifie que
I "Z (A) = J" Z (A) •
Lemme 1.9 - Soit
A
un anneau noetherien a gauche, M un A-module de type fininon
=
M: (0) = M S M S •.• M = M , o l m est un ideal a gauche central-premier
nul. Alors i l existe une suite de sous-A-modules de telle que de
Mi/M
i- l A. De plus, si
tlnZ{A),
A/J
i Z{A)
IEC-AsSAM]
'
, oil
i designe Ie centre de
est contenu dans
culier l'ensemble !InZ(A),
J
I EC-ASSAM]
A, lfensemble
fJ "Z{A) i est f i.n i ,
254
i = 1 , .•• , m] • En parti-
-4J resulte du lemme 6 de (15J. D'apres 1.6, i IE c-AssAI1 es t contenu dans la reunion des ensembles
Preuve - L'existence des I' ensemble [111 Z(A)
J
tI"Z(A),
IEC-Ass A A/Jd pour i est l'annulateur de la classe de
J.
1.
a
ideal x
tel que i tout element a
J
AnnA(x)
du centre de
done s i et seulement s i, i
1"\
r
dans ri
o
x modulo J
si et seulement si
i On a done fI" Z(A),
• Pour i axE J ' i A/JJ
Z(A)J, d'ou Ie r es u.l t.a.t ,
1,r 2
, ••• ,r
I.
dans A/I
m
I
un ideal
On a pour
est un A-homomorphisme. si
A
o
ri bE;I o
Proposition 1. 11 - Soit
on a
a
A un anneau noetherien
A
non contenue
a
gauche par
Done la multiplication
a, bE A : (ario -ria)bEI
precedent est injectif.
gauche.
gauche central premier d'un anneau
i Min [i , r ¢ IJ . Alors la multiplication o i est un A-homomorphisme injectif.
par
rio
a
une famille centralisante d'elements de
Preuve -
b
:
I ; done I' homomorphisme
gauche et
M un
M est injectif si et seulement si il verifie la condition sui-
vante : quel que soit l'ideal
a
gauche central-premier
1
II est bien evidemment que l'ideal
a
a
I I reste
forment un systeme centralisant. Soit
I
6.= r·
u - u r. I
(r· u
et soit
I et n
1
...
-
i,
Yl"Y-Z"" 'Yl?
k, que
n
• Lorsque k=l , Ie resultat
Gv k-l
.
verifier que, pour l'ordre lexicographique,
-r.
d'entiers compris entre
. A tout
et on pose
et Le r e s u l.t a t d emout r e pour Gv k est engendre par les
les
r .
Gv
k
k
gauche
y .... = r·
A= r·
.• , . )
. On va montrer, par recurrence sur
est un systeme de generateurs centralisant de
y""
Lei, (E A (M) )
de generateurs de
(. I" . O
est une suite exac t e de A-modules
gauche de longueur finie, la suite de groupes abeliens : 0= Extn-I(M',A)_ Extn(M",A) _Extn(M,A) --;>Extn(M',A) _;:.0
est exac t e ; d'ou I.e r e s ul t a t ll c
Dans la suite, on notera
AMod
la categorie des A-modules
a
gauche,
f (resp. AMOdlf) celle des A-modules a gauche de type fini (resp. de lonMod A gueur finie) et Ab la categorie des groupes abeliens.
Lemme 3.3 -
a
tr
gauche annule par
s;: de
A un anneau, m6M
Alk--.+ M en posant
aeA
xET(M)
T
=
T(A/jj)
=
,
on definit
On verifie facilement que fonctorialite de
:to
(x)] (m) = T( lfl (x) pour tout A-module a gauche M, m) on definit un morphisme fonctoriel T =*HomA(-,T(A»o
($ (M) definit, grace
A, on a
(P",,) suivante :
(y)]
Preuve - Pour tout A-module
suivant, oil
. On a
un foncteur additif contravariant de
gauche
(y) = a ((T(lfl
designe Ie morphisme
et
J
modulo
un ideal bilatere d'un anneau
(P oo ) Pour tout A-module
mEM
E
une resolution injective minimale de
('I)
o --'> HomA(A/ Ax,
tion injective du
H
"!'t'
A/xA-module
M/xH Preuve
o
M et
ni dans
do(E o »
M une A-module
d
o non diviseur de zero dans
conserve les monomor-
AMod
A un anne au local,
gauche. Soit
A; alors
x
£
A E1)
HomA(A/Ax, do(E o»
un element du centre de
d1
>
...
est une resolu-
lequel est isomorphe
a
La demonstration est la meme que dans Ie cas commutatif [4J.
Ext i (A/Ax, M) A HomA(A/Ax, E j) pour Puisque
pour
0
i
, la suite (x) est exacte en
D'autre part la suite
etant exacte, il en est de meme de : 0
_HomA(A/Ax, E E
A,
E 1)
D'ou l'exactitude de la suite (x). Puisque, pour
2). est l'enveloppe injective de
d
(E
) , i_ 1
,
il resulte de 4.5 que
i i- 1 HomA(A/Ax, E est enveloppe injective du A/Ax-module i) Verifions que Ie morphisme nature I de A/Ax-modules :
HomA(A/Ax, 1m d
i- 1).
Cf: di - 1 (HomA(AJAx, HomA(A/Ax, 1 (E est un isomorphisme i- 1» If est evidemment injectif ; montrons qu'il est surjectif. Soit gE Hom (A/Ax, d (E ; alors g de f i.n i.t un element g,,-Hom (AJAx, Ei) et A i- 1 i- 1» A = ker d . Par suite on a : di(g) = d a g = 0 car 1m g S d i- 1(E i- J) i i gEker d = Lm d et i l existe fEHomA(A/Ax, E J) tel que: g = di_J(f) i_ i i 1
267
-17-
d'ou
\.f(di_l(f)
=
g. Par consequent (;0) est une resolution injective minimal
de son premier terme. Enfin, puisque
x
est non diviseur de zero dans
est non diviseur de zero dans l'enveloppe injective
M, il
de M . De plus, Eo
un A-module divisible et
x
etant non diviseur de zero dans
et la multiplication par
x
est un automorphisme de
E
etant
A, on a : Eo
xE
o
o
Considerons Ie diagramme du serpent dans la categorie des A-modules 0
Hom (A/Ax , do(E o» A
0
1
d_
0 --'l> M
1
l
d
E
il d (E ) o 0
0
0
xl
xl
w
d_
0 --'l> M
-b
1
d
'> E0
M/x11
0
xl 0
l>
1
pl
--':>
do(E o)
--;:>
'> 0
1 0
do (Eo» es t l'isomorphisme d ' identification : HomA II en resulte un isomorphisme de A (et done de A/Ax)-module oil
i
'I' : HomA(A/Ax, d (E » o
Corollaire 4.7 - Soit
0
';f
M/xM .11
A un anneau local dont Ie radical
une famille centralisante, M un A-module a gauche, x de
A non diviseur de zero dans
A ni dans
A/xA Pi (M/xM)
=
Ann (Eo) (x) , do
est engendre par un element du centre
M. On a alors :
A Pi+l (M).
Preuve - Soit
o ----'.l>
Eo
M
une resolution injective minimal de
E1 M; alors : 6l N. l
N est somme directe de module du type EA(A/I) ou I est un ideal a i gauche de A, central-premier, inter-irreductible et distinct de . Soit
ou
un ideal zero dans x eI
a
gauche central premier; si A/I
ni dans
EA(A/I)
x
I , alors
x
et par suite: HomA(A/Ax, EA(A/I»
alors par 4.5, HomA(A/Ax, EA(A/I»
I
n'est pas diviseur de 0; si
E (A/I). Enfin, toujours par 4.5, A/Ax
268
-18-
HomA(A!Ax, E A(A!'lJ1,»
E (A!'ll\,). On a done pour A/Ax
HomA(A/Ax, Ei) = AnnE. (x) =
A
A
Pi(M) HomA(Ax' EA(A!'lIt»)J
[(jj
Mi
(jj
1.
ou
M est somme directe de A/Ax-modules de la forme HomA(A/Ax, EA(A/I» i est un ideal a gauche de A, central-premier i.n t.er-r Lr r educ t.Lb Le , tel que
et
I f
que
; pour conclure que
I/Ax
a
est un ideal
=
""1.
gauche de
(M/xM)
'1.-1
A/Ax
il suffit done de verifier
central-premier, inter-irreductible et
distinct de
et d'appliquer 4.6. II est evident que
irreductible si
I
classes modulo
[r 1
sons que
I/Ax f
l'est et que
est central-premier. Soit
rI,
r I,
Ax, soit , ••• ,
Puisque
x E: I , on a
lisante
x, r
,r
rpJ $:
r.1. E
,r p
I/Ax
I f
si
Verifions que
a EA , et
done
aEI
a
A
I/Ax
dont les
, forment une famille centralisante. Suppo-
I = I/Ax e t; posons 1. 0 = ti, i=l, ... ,p , r rt 13 . i i si et seulement si r.1. E I . Done la famille centra-
, ... , r
l
Soit
est inter-
une famille d'elements de
p
ou I x s, I
n'est pas contenue dans I et p la classe de a modulo Ax. Si r i -a o
-aE>I.1I
etparsuite
.s
= Min [i , r Ii o i I , on a r i a e I ;
i E
0
Remarque - Dans Ie cas ou tout ideal bilatere de l'anneau
A admet un systeme
de generateur centralisant, on peut dans la demonstration precedente simplifier la preuve du fait que
I/Ax
donnee en 1.3. En effet
A
est central-premier. En utilisant la caracterisation A/Ax
possede la meme propriete que done
Proposition 4.8 - Soit radical
et
a
A
Si
aoubEI n
et de
gauche. Alors :
i : V1(M) =
, M), dimension du
i
A/m -espace vectoriel a gauche 2) Si
et
A un anne au local regulier de dimension
M un A-module
1) Quelque soit
aoubSI
Ext (A/'lI1., M) ; A
p1
M est de type fini,
est fini pour tout
(M)
i
Preuve - La demonstration est une adaptation du cas commutatif (4) . Considerons une resolution injective minimale de
M d
ou type
E
i
=
[(jj
A
Pi(M)
EA(A/I), I
(jj
N i
etant un ideal
tible et distinct de
m ;
o
et ou
a
N i gauche de
pour un tel ideal
est somme directe de modules de A I
269
I
central-premier inter-irreducon a: txEA/I
I 'lI\x =
oJ
= (0)
-19en effet, soit
r
une famille centralisante de generateurs de et, p puisque I " Ill\, , on peut poser i o = Min i , i = I, ... , P , r.IT J, I] ; alors s i a E A et 'In a.: I on a r i aEI; d'ou, pu i sque I est central-premier, l
, ... , r
t
o
a E I ; (remarquons que, dans Le cas oil tout ideal b i l at.e r e de l' anne au
A
est
engendre par un systeme centralisant, on peut pour demontrer la precedente assertion utiliser la caracterisation 1.3). II resulte de ce qui precede, que, si l'ideal
a
\li !xEEA(A/trrj,)
directe de
a
A/trn,
I
I\ll.x = OJ = (0). On a done
tx/;EA(A!I) = ffi
gauche central-premier IlII.x
\li copies de Done
0].
=
Ill\, ,
alors :
= [XEE i tm. x = 03 HomA(A/trn., E est somme i) qui est, d'apres 4.5, isomorphe
RomA(A/m,
Par consequent
RomA(A//ln,
J-li = dimA!'l1I.
que, pour tout
est distinct de
HomA(A!IlI\, E
Posons
i).
E_ 1 = H et demont rons
di : HomA(A!'ln, Ei)
l'application
HomA(A/'Il\,
I)
a l'aide de d i , est nulle. Soit xEiROmA(A/'l1\, Ei). Puisque est l'enveloppe injective de d I) il resulte de 4.5, que l'injection i_ 1 A canonique RomA(A/Iln, d (E » Rom (;m' E est un isomorphisme. 11 en i_ 1 i_ I i) A resulte aisement que d. (x) = 0 Considerons la suite de A/on - espaces de t i n i e
l
vectoriels
o Pour (ker Pour
i
Hom (A/'M" A
H) r.
1 , les A/ "m. -espaces vee toriels
d) / (Lm
Ext (A/rm., H) A sont isomorphes.
I) = Hom (A!1Jn, ,
A
i =0 , Le fait que
d
o
= 0
entraine que
et
est un isomorphisme.
2) D'apres la proposition 2 de [153, les A-modules a gauche A. Tor n-l (A/I\ll., M) sont isomorphes. Soit :
et
une resolution projective de type fini de A-modules l
A/I\ll. Cil Pi A et des
M)
M. Alors pour tout
i
i
Ext (A!1f'II, ,M) A
les
sont de type fini et il en est done de meme des (A!",.. , 11).11
Definition 4.9 - Un A-module
a
gauche
M est cofini si son enveloppe injective
est somme directe fini d'enveloppes injectives de modules simples. La proposition suivante est la proposition 3.19 de (21J • Proposition 4.10 - Soit
H un
a
gauche. Les conditions suivantes sont
eq uivalentes :
270
-20i) le module
M est cofini ;
ii) tout systeme inverse de sous-module non nuls de
M admet une inter-
section non nulle. La proposition suivante est Ie theoreme 3.21 de [21) Proposition 4.11
a
M un A-module
.
gauche. Les proprietes suivantes sont
equivalentes : i) Le module
M est artinien
ii) Tout quotient de
Theoreme 4.12 - Soit
M est cofini.
A un anneau local dont Ie radical
est engendre par
un systeme centralisant. Alors l'enveloppe injective du A-module a gauche est artinienne. Preuve - On adapte la demonstration du theoreme 4.3 de [2IJ. Notons
a
loppe injective du A-module
. On supposera que
gauche
artinien et on en deduira une contradiction. Soit bilateres Gv de A pas vide puisque
AnnE(0v)
tels que AnnE(O)
E
E
est suppose non artinien. L'anneau
I) Montrons que
ef.
A etant
10.
un element maximal, soit
f
et
AI rrrv
Ilfl,
, on a
•
est isomorphe au A/'P -module
EAI,p (Aj'YYlt)
l'enve-
l'ensemble des ideaux
est extension essentielle du module simple done 'Itt (;
E
n'est pas
n'est pas artinien ; cet ensemble n'est
noetherien a gauche, l'ensemble Comme
E
AnnE l'
L'extension de A/1P -modules
est evidemment essentielle. D'autre part injectif ; en effet soit
J
un ideal
a
AnnE
f
gauche de
es t un AIl' -module
Alf
et
f: J _AnnE
un A/f -homomorphisme. Alors l'homomorphisme de A-modules
f: J
prolonge en un A-homomorphisme : g : A/f
x cAlf
done
g(x)"AnnEf>
qui prolonge
bilatere non nul de
f'1
E . Mais si
l'
se
on a
est un A/1P -homomorphisme
. Par suite
g: A/f --4AnnEf'
A __ A/f
la surjection canonique et soit ;fr un ideal
f
2) Soit
E
A/f
; alors
Q, . D'apres la maxi.maLi t e de
artinien. Posons
E'
AnnE -module
E'/N
o
$
P EA/f
(Aim)
est Soc [EA!f (A!tm,)J =
Par consequent
,
. Soc(E'/N
centralisante et que que
r
SOC(E'/N
f ""
o)
,
= 0 . Puisque
A/f
; d'ou :
272
p .
A/lIfl..
est engendre par une famille
on peut trouver un element
appartient au centre de l'anneau o)
,
$
,
r E mt
Alors un tel element
r "" 0 tel r annule
-22Soc(E'/N
D'autre part, puis que A/
1>
-rnodul.e
)
£
AnnE'/N (r )
o appartient au centre de
r
bilatere non nul de
O
A/f (r.A/
A/f
est un ideal
, r.A/.p
D'apres Ie point 2) de la demonstration, Ie
f ) N
est artinien. Posons :
=fXE ...
M. Alors : A
Pi (M)
EA(AI'!r.)] ED Ni
N est somme directe de modules du type EA(A/I) ou I est un ideal a i gauche de A, inter-irreductible, central-premier et distinct de . Puisque,
ou
pour un tel
I
on a
=
(0)
et que
=
d'apres 2.6, on en deduit que:
A
D'apres 4.8, Pi (M) Done
est fini et d'apres 4.12, Ie module
est artinien pour tout
i
et il en est de meme de
273
est artinien. i
H'!Y\,(M) •
-23-
v - Annulation des foncteurs Defini tion 5.1 - Soi t
A un anneau local r e gu l i.e r de radical
A-module a gauche. On appelle profondeur de plus petit entier
Lemme 5.2 - Soit et
M est infinie.
A un anneau local regulier de radical
M un A-module
a
i
o ,
M)
o
ExtA(N,M)
pour tout A-module
a
M est de type fini, la profondeur de
M est infinie si et s eu l.e-:
M; (0)
3) Si
Preuve
n
N de longueur finie 2) Si
ment si
et de dimension
gauche
1) Si
gauche
M) # 0; sinon on
s'il existe, tel que
dira que la profondeur de
'WI- , M un
M (en. notation: profA M) Ie
M est de type fini non nul on a
n .
1) II suffit de proceder par recurrence sur la longueur de
2) D'apres la proposition 2 de (15], Ie A-module est isomorphe a
a
gauche
N • n
Ext (A!%,M) A ,M) ; 0 , il resulte du lemme de Nakayama que
. Si
M; (0). 3) Posons
p; profA (M). D'apres 2), on a . D'apres la proposip-] A Ext M) ; (0) et Tor n-p+ A sont isomorphes. Considerons une suite exacte de A-modules : tion 2 de [15J les A-modules a gauche
o --l> ou les
Pi
S
--;>
P n- p-]
... __ Po --i> M __,>0
sont projectifs de type fini. Alors
A
TorI (A!rm. ,S) ; (0)
e t d ' ap r es
Ie corollaire 2 de la proposition 5, nO 2, §3 chapitre II de [5J, Ie A-module est libre ; d'ou
dh
MoE-n-p . Pour prouver l'egalite
A par l'absurde et on suppose que jective de type fini de
o Puisque
M:
-----';>
A
a
o
d'ou (loc.cit) On a done
n".
A un anneau local regulier de radical my
gauche. On a profA(M)
Ie second membre etant
co
on raisonne
P n-p-I - ; . ...
A Tor (A!1lI1 ,P n-rp-r 1) 0 on a Tor n-p (A!fIr< ,M) M) 0 ce qui contredit la definition de p
Theoreme 5.3 -
M ; n-p
i
S
A . II existe done une resolution pro-
A]
profA M + dh A M
A-module
dh
dh
Inf ; 0
p
,
(M) # 0
pour tout
274
i
et
M un
-24- II suffi t de prouver, pour un entier tions suivantes : i)
o
(M)
pour tout
ii) profA
a
m
ii) on procede par recurrence sur
demontrer. Supposons
l'hypothese :
(M) = 0
= 0
*
.
Pour prouver i) rien
i
m 0 , I' equivalence des condi-
si
m>]
pour
i< m-I
m. Si
et Ie resultat prouve pour
i < m , on de dui.t que
e t si
m=O, il n'y a m-I . Alors de
prof A (M)" m-r l . Par suite
N est de longueur finie. Soit
k-s k '
;
m-' l (A/ IlJlk ' , M) de i e d e I a sur j. ec-: I , app 1"i c a t i.on : Extm-' l (A/ lilt k , ) M e du u i.t A . . / k' / k . . . . t i.on c anorn.que : A rm __ A lln- , est t nj e c t i ve . Pu i sq ue m-I m-I k nr-I
(M) = Itm.ExtA
H'lllo
(A!trn-, M)
Verifions que i
on a: Ext A
m et tout A-module de longueur finie
pour
i
(A/trfl"
On a done
m et pour tout entier
M) = 0 ;.d'ou
d'ou
pour
=
N . En particulier
k z- O . Done
(M)
=
i ou
1;(k)
o
lim T(K )
Alors
k, il existe
on a
k'
"Ifkk ' :
un A-homomorphisme. Il en
--l>
resulte un homomorphisme de groupes abeliens
D'ou un systeme inductif de groupes abeliens,; on notera
'¥k
Ie morphisme
canonique : --'l>
lim!;> T(M r ) r
Soit que
x
=
x
d'ou
e
lim::> T(M r ) ; il existe un entier r Cornme on a "'I'k 'lfk?:(k) = 0
x
=
"ilk
("\
0
et un element il en resulte que
'I' t:(k) k)
Ext A/ zA(-' M).
k'
Si
, on note
(j.,
Y'kk'
L'ideal
:
a
Az
k'
a.
A/zA-morphisme canonique :
tel
=0
0
b) On applique Ie resultat precedent
j
k 6 1\ If -e(k).k
X
l'anneau --;>
A
zA
et au foncteur
Q,k : Az
Ie
Q,k
verifie la propriete d'Artin-Rees. Done, si
m est un
k] m ] . r '>0 , t.' I .. z, en t i.e exa's d t e es ent i' e rs k l ' k 2"'" tels que '. r- - z "(A, Co_rom w ....m-2 k2 m-] C "" z fI &, S G" z, •..• Notons 'l:; (m) = Sup 'l.m , k] ,k 2 , ..•
!.
On a, alors
A z ()
x Az !:;(i,m • z d ' oii
x
e G"m
e t , puisque D' oii
Theoreme 5.]0 - Soit radical, x],x
Go G.Jm • z . Done, s i x " (j,?::(m) : Az , on a
.•• ,x 2, n
"Jm't;(m)
z
est non diviseur de zero dans 0
A, xA
.11
A un anneau local r e gu l i e r , de dimension
£a..m
n , on,
une suite centralisante A-reguliere engendrant qn et
277
,
-27xI ,_ .. , xm , M un A-module Ii gauche de K-dimension finie
l'ideal b i.Lat.ere de Soit entier
A engendre par
on a
i > s
"
0
Preuve - On raisonne par recurrence sur pour
(0)
demontre pour
m-j
et
m
0 , on a G,
s e-O
(0)
d' oil
et Le resultat
et raisonnons par recurrence sur
suffit d'appliquer 5.6. Supposons s
m. Si
; d'oille resultat. Supposons
modules de K-dimension au plus
s . Alors pour tout
s . pour
s
0 , il
et l e r e s ul t a t demontre pour les
s'< s . Chaque sous-module de
M etant deK-dimension
M etant limite directe de ses sous-modules de type fini on se
ramene, Ii l'aide de 2.11, au cas oil M est de type fini. Alors il existe une
M:
suite de sous-modules de (0)
telle que
M
o
A/l
M/M _
I central-premier de j
j
c. M c. ••• C M = M r
I
, j = 1 , .•• , r , oil
I
est un ideal Ii gauche
j
A. On peut done se ramener au cas au
un ideal Ii gauche central-premier de
A, avec
K-dim A/I
sant l'hypothese de recurrence sur la K-dimension. Soit dans
Le
centre
Z(A) de A de I' ideal
I I)
Z (A),
M
A/I
=s S
I
etant
, ceci en utili-
Ie complementaire
qui est un ideal premier de
Z (A).
Considerons la suite exacte de A-modules
et ou
K est Ie conoyau de la fleche
A/I
H i
de recurrence sur la K-dimension, on a : HGJ (N) sous-module de type fini
plication par si
i
xl
et
On a donc xl E I
si
xl
¢ I
et oil
i'l): s , pour tout (K)
0
pour
XjE I . Si
xl
i I
s la
H est, d'apres 5.8, un isomorphisme. Donc la multi-
xI dans
(H)
est, pour tout
yEHExt i AlxIA ( xIA +Gi., k
I" k
i (A -:K Q.
lim
278
i Ext A/
A , XIA xjA+ G-k
-28-
A=
L' anneau
A/x IA es t r egu Li e r et u,
e s t erigend r e les
=
m-] premiers
elements d'une suite centralisante A-reguliefe engendrant le radical de On a
W
G,
G,
pour
A.
k
+ Ax l = --...,--Axl
-k
donc par hypothese de recurrence sur
(AlI)
=
i ( Ext A/ x jA
k
A
k
xlA + Gc.,
A ' I)
m on a
=0
i:> s . D' ou le r es ul, tat. •
Corollaire 5. II - Soit
A un anneau local regulier, M un A-module
a
gauche
non nul de type fini. Alors on a :
Preuve
On a :
(M) ". 0
p
0
;.0
I
;.0
K
2 K >0
2/b]
--;.. >0
a
Structure of
2
algebraic surface of general type
2, I
elliptic surface of general type
X
0
0
2
4
0
2, 1,0
J
0
0
2
3
0
J
I
0
0
0
0
2
2, 1,0
0
fo
0
0
0
I
2
Enriques surface
fo
0
I
2
0
2
hyperelliptic surface
or 0 0
0
I
I
0
1
0
0
I
2
elliptic surface (Type VIl ) o (I?I X pI oder (I? 2
1
2
0
2
elliptic surface
2q
l-q 0 m
0
for all
for some
V by m
xCV) 00
if
Pm
=
m>O
Then Iitaka's theorem states (cf. (9] bf (23], theorem 6.11).
Theorem] - Let
V ba an algebraic variety of Kodaira dimension
smooth projective varieties f :
and W*
. There exist
and a surjective proper morphism
which satisfy the following conditions:
(4) For an algebraic definition and the universal properties of
283
O ; dimq;Ho(V,;tIlhn) ?
:
map
p '>
V which is unique in the birational
sense, with algebraic varieties of Kodaira dimension
on a smooth projective variety
m with
4>mi (V)
, m
1J
and for
!\lm f, (P)
m
6INCt,V),
(f o (P), ... , fN(P»,
£, -dimension of
IN(t , V) , if
V is
lNet ,V) f. f/J
IN(t ,V) ; f/J •
t. -dimension
of the sheaf
associated to
D is
X(D,V).
A theorem analogous to Theorem I holds for the
;f, -dimension (cf. (23J, §5 for
details) •
(5)
A fibre space is a morphism g: X of reduced projective varieties which is (proper and) surjective and has connected fibres.
284
-5Next, Iitaka's theorem suggests that we divide the algebraic varieties of a fixed dimension into 4 classes as follows. I) Varieties with
dim V , called varieties of general type or hyperbolic
xCV)
type ; 2) Algebraic varieties with
dim V > xCV)
3) Algebraic varieties with
xCV)
o ,
I ;
called varieties of parabolic type ;
4) Algebraic varieties with
, called varieties of elliptic type.
The birational investigation of the varieties of class 2) reduces by the theorem of Iitaka to the study of fibre spaces of algebraic varieties with a variety of Kodaira dimension
0
as general fibre.
The Albanese map is essential for the study of the classes 1), 3) and 4). The following facts concerning the structure of the Albanese map are of interest. Proposition I - For a (smooth and projective) variety irreducible components of the general fibre of
V of general type, the
V
(V)
are also of
general type. Concerning the Albanese map of varieties
V of Kodaira dimension
0 , i.e. of
class 2), Iitaka and Ueno have suggested (cf. £23), p. 130). Conjecture K ; If V is of parabolic type, the Albanese map c(; V Alb (V) n surjective and has connected fibres. Horeover, the fibre space (; V is birationally equivalent in the etale topology to a fibre bundle over whose fibre and structure group are an algebraic manifold and automorphism group
Aut (F)
of
S
of parabolic type
K
n
is known to hold for
is a relatively minimal projective surface of Kodaira dimension 0,
then if the irregularity an isomorphism. I f
q(S)
of
q (S) = I ,S
S equals 2 ,S
is an abelian variety and
is
0 W be a surjective morphism of projective smooth C n,m algebraic varieties over with connected fibres, i.e. or: V W is a fibre Conjecture space. Let
where
V
w
n
=
dim V , m
dim W . Then
is the general fibre of 11 .
Let
Conjecture
C and Proposition 2 immediately imply the following statement n,m V be a projective variety of elliptic type with irregularity q(V» 0 .
Let
V
(V----;.W
W be the fibre space associated to the Albanese map is the Stein factorization of the morphism
0(:
V __ Alb (V) .
V --t.{(V)). The general
fibre of
V --4 W is of elliptic type. Therefore, if C n,m algebraic varieties of elliptic type is reduced to
holds, the study of
I)
the study of algebraic varieties with irregularity
2)
the study of fibre spaces whose general fibre is of elliptic type.
It is interesting to note that Conjecture More precisely, if
C n,m type, the Albanese map
holds and
n,ffi
is related to Conjecture
lS
n
surjective and an irreducible compo-
is of parabolic type.
We indicate a proof of this fact. Consider the fibre space to the Albanese map. Then since
=
V ---+ W associated
0 , it is not difficult to show by the
adjunc tion formula (cf. (23J, §6) that the general fibre of variety of Kodaira dimension
K
V is a projective variety of parabolic
V
nent of the general fibre of
C
0;
Also
)l,(W)
0,)s"-)
I Ho (V,.I'l.V(log(D».
The quotient
Alb(V)
=
considered as a Lie group is
the Albanese of
V. The Albanese map
point
P e V along a path in
06 V
to
.J:
V
is related to the Albanese of
Deligne's theory (2J implies that where
r
=
q(V) - q(V)
=
V
: V _ _!>
P Alb(V)
is obtained by integration from a fixed
1----+
ill (V)
£
O
w, we H (\7,
(D» .
V by the exact sequence of groups r
K
bl(V) - bl(V). Thus
is a torus of dimension
ill (V)
r,
carries the structure of a
quasi abelian variety, i.e. is a group variety which is an extension of an abelian variety by a torus. (cf. (12J for details). The universal properties of
0 ,
+ 1 • Alors
i) i l existe
AGZ
1(E),
BE.Z
n_1
(E)
verifiant
ii) il existe des elements a , ••• ,a 6 m 1 n ""((_1)j+1 D + a
T (K) ir 1 2T1 2'()
j(B p' I x(l) (B» est un anne au local noet.he r i en de dimension 1. Suivant [6J '
Ia
(Lemme 2-1). en posant
{IO
P
n(B
p'
E: x(l)
(A)
I ;i '"'
A E x(l) (A)}
IJO'E: x(1) (B» = n (i.
361
pip
E:
p)
- 5 -
B}l- est done un anneau generalise de fractions de anne au de Krull done
B
it
A, qui est un
est aus s i un anne au de Krull. Suivant l e lennne 2, B*
est un anneau no e t he r i en avec dim B·I/-
2. Evidennnent, B Ie =