Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin: Proceedings, Paris 1986 0387186905, 9780387186900


119 32 19MB

English Pages [329] Year 1987

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin: Proceedings, Paris 1986
 0387186905, 9780387186900

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann

1296 M.-P Malliavin (Ed.)

Serninaire d'Algebre

Paul Dubreil et Marie-Paule Malliavin

Proceedings, Paris 1986

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann

1296 M.-P Malliavin (Ed.)

Serninaire d'Algebre

Paul Dubreil et Marie-Paule Malliavin

Proceedings, Paris 1986

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Editeur

Marie-Paule Malliavin Universite Pierre et Marie Curie, Mathernatiques 10, rue Saint Louis en 1'lIe, 75004 Paris, France

Mathematics Subject Classification (1980): 12H05, 12L 10, 13C 15, 13H 10, 14005, 14H20, 14M 17, 15A33, 16A08, 16A 10, 16A 18, 16A34, 16A60, 16A64, 22E30, 43A85, 58G07 ISBN 3·540·18690·5 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-18690-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9,1965, in its version of June 24,1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1987 Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140·543210

III

Li ste des auteurs. K.Adjamagbo p . 1 - Y.Andre p. 28 - M. van den Bergh p, 228 M.Brion p, 177 - A.Debiard p, 42 - A.van den Essen p. 125 J.van Geel p. 193 - C.R.Hajarnavis p. 235 - J.Herzog p. 214 G.Krause p. 261 - B.Roux p. 276 • J.T.Stafford p. 247 S.P.Smith p. 158 - M.Zayed p. 312

TABLE DES TITRES K.ADJAMAGBO - Synthese de 1a Theorie du determinant sur un anneau finement f i l t r e ..........•.••..•.•.....••..••....•• 1 V.ANDRE - Quatre descriptions des groupes de Galois differentiels 28 A.DEBIARD - Systeme differentie1 hypergeometrique et parties radiales des operateurs invariants des espaces symetriques de type BC p .........••••..••.. " . . • ••• ••• .••• 42 A.Van den ESSEN - Modules with regular singularities over filtered rings and al.gebraic micro-localization ....•.•.•••.. 125 S.P.SMITH - Curves. differential operators and finite dimensional algebras •..............................•...•...•••• 158

* M.BRION - Sur 1 'image de 1 'application moment .........•••.••••• 177 J.van GEEL - Maximal orders over curves .......•....•......•••.. 193 J.HERZOG - Linear Cohen-Macaulay modules on integral quadrics 214

*

M.van den BERGH - Regular rings of dimension three .........•••• 228 C.R.HAJARNAVIS - Homological and Cohen-Macaulay properties in non-commutative noetherian rings ...•...•••.•.•••.•• 235 J.T.STAFFORD - Global dimension of semi-prime noetherian rings •• 247 261 G.KRAUSE - Chaines d'ideaux annulateurs d'un anneau noetherien B.ROUX - Anneaux de valuation discrete complets scindes. non commutatifs. en caracteristique zero ......•..•..••. 276 M.ZAYED - Ultra produits et modules sans facteurs directs de type fin i •.••.............................••...••.••..•. 312

IV

PREVIOUS VOLUMES OF THE "SEMINAIRE PAUL DUBREIL" WERE PUBLISHED IN THE LECTURE NOTES, VOLUMES 586 867

(1980), 924

(1976), 641

(1977), 740 (1978), 795

(1981), 1029 (1982), 1146

(1983-84)

(1979)

and 1220 (1985).

I

SYNTHESE DE LA THEORIE DU DETERHINANT SUR UN ANNEAU FINEY-ENT FILTRE

Kossivi ADJAHAGBO Universite de Paris VI, U.E.R. 47, U.A. 761

O. INTRODUCTION Nous presentons ici une synthese de nos resultats concernant "le determinant sur un anne au finement filtre", dans le prolongement de ceux de Jean Dieudonne concernant "les determinants sur un corps non commutatif" [12]. Dans cette synthese, nous nous sommes efforces de trouver le point de vue le plus "simple et concis" pour presenter les notions et resultats dont nous sommes tributaires, dans l'espoir que cet effort favorisera la comprehension mutuelle et meme la collaboration entre les specialistes des diverses disciplines mathematiques au carre four desquelles nous nous situons,

a

savoir l' a.lgebre non commutative, la

geometrie algebrique, la K-theorie algebrique et les equations aux derivees partielles. Pour les preuves des resultats originaux presentes ici, nous renvoyons les lecteurs Ln t e r e s s e s

a

[5] ou [ 6] .

Cette presentation a fait l'objet de deux exposes au Seminaire d'Algebre de l'Universite de Paris VI, en octobre 1984 puis en 1985, ainsi que d'un autre au Colloque de Mathematiques de l'Universite Catholique de Nijmegen (Pays-Bas) en avril 1986.

2

Qu'il nous soit done permis de remercier ici Madame Ie Professeur M.P. Malliavin pour l'interet qu'elle a porte

a

notre travail et pour

qu'elle nous a donnee d'exposer et de publier les resultats obtenus, Monsieur Ie Professeur A. Van Den Essen pour la fructueuse collaboration nee de mon invitation

a

Nijmegen sur son initiative,

ainsi que Monsieur Ie Professeur J. Vaillant pour ses constants encouragements qui nous ont permis de developper la presente theorie. Le plan que nous allons suivre est Ie suivant 1. Le concept du determinant. 2. L'ideal caracteristique d'un module de t.f. sur un anneau f.f. 3. Sur les matrices inversibles

a

coefficients dans un anne au

f.f.

4. Sur la K-theorie des anneaux f.f .

5. Sur les operateurs differentiels matriciels localement injectifs. 6. Sur les operateurs differentiels matriciels localement bijectifs.

3

1. LE CONCEPT DU DETERHINANT 1.1. Notation Par anneau nous entendrons unifere dont l'unite est notee Si

A

1.

est un anneau, nous noterons :

A*

A\ {O}

A*

{elements inversibles de A},

M (A) m,n

,

{matrices a

m

lignes et a

colonnes a coefficients

n

dans A}, M

n,n

(A),

(M (A»*, n

{matrices elementaires E M* (A)},

fh(A)

n

u

M(A)

n >

* (A)

0

u

M

n >

0

Si

a E M (A) nous noterons m,n de la colonne j de a.

Si

K

i

et

K, * c'est-a-dire

l'abelianise du groupe

IT

l'application canonique de

K

lJ

est un corps, nous noterons

K' K

a .. le coefficient de la ligne

le monoide

K'

K* dans

U {a} dont

0

K',

est un element absorbant.

1.2. Le determinant de Dieudonne Si K

est un corps, d'apres J. Dieudonne [12], il existe une

application unique de (i) Vn

E

IN* det

(if)

va

E

K

M(K)

,

M(K) dans

V(a,b)

a.b

,

(iii) Vn E N*, Va

E

det det

K

M (K)2 n

Mn(K) i=l K

n E IN*, detKIMn(K)

notee

det

telle que :

K,

,

K a.detKb

= 0 a

n IT IT

Si

K,

Iai j

r; H* (K)

o

pour

1

-
1.

(L (I-1)

.r M' oM)

est alors une

appele "la resolution libre canonique de

sont deux

R-modules, on appelle "groupe d'exten-

N", et on note

d 'homolog ie du complexe

(Hom (L R

(ExtR(M,N), ExtR(M,N)-f)

un , N),

Ie groupe

Hom (f M' N), Hom (oM' N) ) . R R

Pour toute resolution projective (P,f,o) (ExtR(M,N), ExtR(M,N)-f)

M".

de

M, Ie groupe gradue

est alros isomorphe au groupe d'homologie

du complexe (HomR(p,N), HomR(f,N), HomR(o,N».

= ExtR(M,N)-f(n)

On note habituellement entier

n. On a ainsi

o

ExtR(M,N)

=

pour tout

pour tout entier

{a}

n

< 0, et

= HomR(M,N).

6.2. Definition des operateurs differentiels matriciels localement bijectifs Dans toute la suite nous utiliserons les notations de Soient

m

et

n

que l'operateur differentiel matriciel

og

ment (resp. formellement) bijectif si pour tout tion

n

A Ix :



+

m



.

-n

(resp. Alx : O£

5.1.

a E M (D ) . Nous dirons m,n "n A : + est analytique-

des entiers positifs, et

+

-m

O£)

x

de

r/, l'applica-

est bijectif.

6.3. Theoreme de bijectivite locale Soient Dr/-module

m

et

n

des en tiers positifs

An/Am.a.

a E M (D ) m,n "n

,

et

M

Ie

Les propositions suivantes sont equivalentes (1)

L'Operateur differentiel matriciel

a

On r/

+

am r/

est analytique-

a

On r/

+

am r/

est formellement

ment localement bijectif. (2) L'operateur differentiel matriciel localement bijectif. (3) m = n

et

pour tout

x

E

r/,

Ext

D

(Mix, O£)

{O}.

(Mix, O£)

{O}.

£

(4) m = n

et

pour tout

x E r/, Ext

D

£

25

m

16.

n

et

vcar M ==

(6)

m == n

et

iCar p M == gr p D .

(7)

m

et

det p a

(5)

n

(8)

m

n

et

(9)

m

n

et

rz

Ie

}1

(gr

rz * F Drz)

{O} •

a E M*n (Die) •

6.4. Remarques Le theoreme de bijectivite locale resulte du theoreme d'inversibilite de matrices 3.1 et du theoreme d'injectivite locale 5.4, ce dernier resultant lui­meme du theoreme classique de cauchy­Kowaleska. On peut deduire egalement Ie theoreme de bijectivite locale d'un theoreme de P. Schapira et M. Kashiwara ([ 13], 10.1.5)

I

comme l'a

indique ce premier lorsque la question de la bijectivite locale nous a ete posee par S. Mizohata en avril 1984, et comme nous l'avons explique dans [3] .

26

BIBLIOGRAPHIE [1]

K. ADJAMAGBO, Determinant sur des anneaux filtres, C.R.A.S., t.293, serie I, Paris, 1981, p.447-449.

[ 2]

, Theoremes d'indice pour les systemes generaux d'equations differentielles lineaires, dans Equations aux derivees partielles hyperbolio.ues et holomorphes, J. Vaillant ed., Hermann, 1984, p.134-165.

3]

, Sur les systemes lineaires d'equations aux derivees partielles localement inversibles, C.R.A.S., t.299, Serie I, n017, Paris, 1984, p.863-866.

[ 4]

, Sur la calculabilite des determinants de matrices d'operateurs differentiels, dans Actes du Colloque d'algebre 1985, Universite de Rennes.

[ 5]

, Theorie des determinants sur un domaine de Ore ou sur un anneau finement filtre, These, Universite de Paris VI

(a paraitre) . , The determinant over a finely filtered ring (a

6] paraltre) . [7]

J. -E. BJORK, Rings of differential operators, North-Holland Mat herna t Lo a L Library, Vol. 21, 1979.

[8]

N. BOURBAKI, Algebre commutative, chap. 7, Hermann, Paris, 1979.

[ 9J

, Groupes et algebres de Lie, Chap. 1,Hermann, Paris, 1960.

[10] [ 11]

, Algebre, chap. 10, Masson, Paris, 1980. M. DAVIS, E. WEYUKER, Computability, complexity and langages, Computer Science and applied Mathematics, Academic Press, 1983.

[12]

J. DIEUDONNE, Les determinants sur un corps non commutatif, Bull. Soc. Math. Fr., 71, 1943, p.27-45.

[ 13]

M. KASHIWARA, P. SCHAPIRA, Microlocal study of sheaves, Asterisque, 128, 1985.

[ 14]

J. MILNOR, Introduction to Algebraic K-theory, Annals of Mathematics Studies, n072, Princeton, 1971.

27

[15]

Higher Algebraic K-theory I, dans Algebraic K-theory I, Lecture-Notes in Mathematics, 341, Springer-Verlag 1973, p.77-139.

[ 16)

M. SATO, M. KASHIWARA, T. KAWAI, Hyperfunctions and pseudodifferential operators, Lecture Notes in Mathematics, 287, 1973, p.264-S24.

[17]

M. SATO, M. KASHIWARA, The determinant of matrices of pseudodofferential equations, Proc. Japon Acad., 51, 1975, p.17-19.

[ 18]

, Algebre locale. Multiplicites, Lectures Notes in Mathematics, 11, Springer-Verlag, 1965.

[ 19]

Microlocalisation algebrique, dans Seminaire d'Algebre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math., 1146, Springer, 1985, p.299-316.

[20]

A. SUSLIN, On the structure of the special linear group over polynomial rings, devant paraitre dans Izvestia Acad. Nauk. U.S.S.R.

[21]

A. VAND DEN ESSEN, Algebraic Microlocalization, dans Communications in Algebra, 14, 1986, p.971-1000.

QUATRE DESCRIPTIONS DES GROUPES DE GALOIS DIFFERENTIELS

Yves Andre U.A.763

du C.N.R.S.

Institut Poincare II, rue P. et M. Curie 75231 PARIS

Ce texte reproduit presque fidelement, mais sans demonstration, les exposes des 13 et 20 Octobre 1986, et presente quelques aspects -tour

a

tour algebriques, arithmetiques, topologiques et geometriques- de la

theorie de Galois des vectoriels

a

connexion integrable ; dans une

autre terminologie, il s'agit de proprietes galoisiennes generiques des

D-modules

O-coherents. Les preuves seront exposees ailleurs [1]

I. INTRODUCTION 1. Image classique

Soit

k

(Picard-Vessiot)

un sous-corps de

posons

K

k(x). On considere une

equation differentielle lineaire homogene (*)

au

y(n)

+ gn-1 y(n-l) + ... + goY = 0 ,

l'on suppose que les elements

Ainsi la place nulle de

K

Y1,·· "Y n

K=

de

(*)

dans

gi

de

K

n'ont pas de pole en

est ordinaire, et il existe

n

O.

solutions

k[[x]], lineairement independantes sur

I (n-1) F = K(Y 1""'Yn'Y 1""'Yn ) de k«x» est stable sous la derivation a = d/dx. Le groupe de Galois differentiel clas-

Le sous-corps ique de

F/K

est Ie groupe

AutaF/K

des automorphismes de

F

qui

k.

29

fixent

K

et commutent

de f Ln L sur

a

a

c'est un sous-groupe algebrique de GL n,

k,

Lorsque

k

K, ce qui

est algebriquement clos, on a

fournit une correspondance galoisienne. Exemples

quadratures

Y'

1.1)

gY

envoie

Y = exp f x g. Tout o E AutaF/K 1 * 0 ou aY 1 ' a E k ,done AutaF/K est (];m

adrnet la solution

sur un multiple

JIl p ' Faisons

k = Ql

et

Y 1

alors

g =

3 (l+x)

ce qui viole la correspondance precedente. On peut la retablir en adjoignant e 2 i IT/3 a k. 1.2)

Y" _ (g'/g)Y'

Y2 = f

x o g. Tout

done

Aut P/K = (];a

o

adrnet les solutions independantes

AutaP/K

0

ou

0

envoie

Y

2

sur

Y

+ exY

2

Yl

avec

1

1,

ex

k

dans ce cas.

1.3) On dit qu'une equation (*) est resoluble par quadratures, et que I' extension correspondante peuvent

F/K

est de

si ses solutions

construites en iterant les procedes

dents, i.e. formation de equivaut

a:

AutaF/K

et

exp

1.1) et 1.2)

prece-

On montre que cette condition

est resoluble (pour

k

algebriquement clos).

2. Critique La definition

AutaF/K

n'est pas satisfaisante, et

a

plusieurs

egards : 2.1) Le cas particulier

Y'

- 3(i+x) Y = 0

ci-dessus suggere que Ie

" v r ai" groupe de Galois differentiel devrait pe k

Aut

=

Ql.

aF/K=l

n'

est que Ie groupe des points de

2.2) La definition depend (s=O

fi13

a

et que Ie grou-

fi13

a

valeurs dans

priori du choix de la place ordinaire

ci-dessus) et de la construction de solutions. On souhaiterait

une definition

a

partir des seules donnees

K/k

et

(*).

2.3) La definition, posee dans Ie cadre (delicat) de l'algebre differentielle, ne tire pas assez parti de la linearite de (*). La definition que nous utiliserons, inspiree de la dualite tannakienne [16], est une variante de celIe de [10]

; elle est intrinseque

30

et ramene l'algebre differentielle issue d' equations aux derivees partielles lineaires, neaire.

un systeme integrable d' de l'algebre multili-

a

3. Le groupe de Galois differentiel "intrinseque". Soit

k

un corps de caracteristique nulle et

de type fini dans laquelle Der(K/k)

k

l'algebre de Lie des derivations de

Ie

K/k

une extension

est algebriquement ferme. On note K

annulant

k, et

K­espace dual. Soit

MIC la categorie des K­vectoriels K/ k a connexion integrable : un objet !: = (M, v) est forme d' un K­espace vectoriel de dimension finie M et d' une application 1

k­lineaire v: M M@ verifiant la regIe de Leibniz et telle que l'application K­lineaire deduite de v (et notee encore v) Der(K/k)

EndkM

soit un morphisme

d'

algebre de Lie; un morphisme

de

MIC est une application K­lineaire qui commute aux connexions, K/k si bien que MICK/ est une categorie k­lineaire. k Pour Ie formalisme des connexions integrables, on renvoie le lecteur

aux premiers paragraphes de [8J. Soit M E ob MIC On note M la plus petite sous­categorie K/ k. pleine de MIC contenant l'objet et stable par @, 0, A et K/k sous­obj ets. On note la plus petite sous­categorie pleine de MICK/k contenant M et stable par dualite ( )Y, c'est une petite categorie abelienne dont on note l'ensemble des elements , de ses objets pour lesquels

v,

=

0

(tenseurs horizontaux) .

Definition : Le groupe de Galois differentiel sateur dahs des objets de p61ynomiales de GL (cf (101) M Autrement dit

(M)

G (M) est Ie stabiligal dans les diverses representations

est Ie plus grand sous­schema en groupes

ferme de GL qui stabilise les sous­K­vectoriels M les constructions standard 0, A sur M.

v­stables dans

reprenons le cas particulier suivant 1.1 : k = ill, 1 est le a­ 3 O+x) = . On verifie que Gg a l (M) K- groupe algebrique llr Dans le but de simplifier l'expositioI'!, nous

Exemple M

=

K

:

ill (x) , v (0)

31

supposerons desormais que le degre de transcendance de

K/k

est au

plus un. 4. Descriptions a) Algebriques. Dans la suite, Fix(.)

designe Ie fixateur dans

GL

M

de (.). On montre que 4.1)

G 1 (M) = ga V' et = Fix(M)

xK(G g a l (M)) So it Soit

si Ie groupe des caracteres

K-rationnels

est fini.

K le complete de K en une place rationnelle ordinaire s. s F la K-algebre engendree par HomV' (KS,d}) (le k-espace

des solutions locales de

(M,

¥'

M), sur laquelle l'action de

Der(K/k) se

prolonge naturellement ; Ie lien entre les paragraphes 1 et 3

est

donne par l'isomorphisme 4.2}

G

ga

1 (M)

(i< s )

AutDer(K/k} (F/K)

b} Arithmetique. On peut reduire nombre premier

Ks

M modulo

p, pour presque tout

p, faisant apparaitre l'operateur de

II existe un groupe

Gcurv(M)

p-courbure

(voir §III) dont l'algebre de Lie est

minimale vis-a-vis de la propriete de contenir (apres reduction mod. p)

les

pour presque tout

ture de N. Katz [10]

4.3)

o lIM} Gga

2

p. Dans ce contexte, la conjec-

s'ecrit :

Gcurv(M),

ou l'exposant nul designe la composante neutre. L'inclusion

est facile

l'egalite est verifiee lorsque

CO

est resoluble (voir §IV) • c} Topologique. On suppose

k =

normale de corps de fractions

;

K, et

soient s

A

une

k-algebre integre

une place de

Gmono(M,s} l'adherence de Zariski de l'image de

gal

A. On note

IT l (A,s)

dans

V' ). La correspondance de Riemann-Hilbert donne pour GL((M @ K s) regulier (fuchsien)

M

32

d)

Geometrique. On suppose ici que

M est la cohomologie de De Rham

* HDR(X) d'une variete complete lisse sur

K i munie de la connexion de

Gauss-Manin V. On propose la conjecture suivante : G;al (M)

4.5}

G;al (N)

n'

§VIII}, et

DO

M,

l'ensemble des cycles de Hodge absolus sur

X

(voir

la composante neutre du groupe derive.

c:

L'inclusion Fix(M h. a )

de

est trivial.

Mh. a

On a note

N

si pour aucun facteur

est toujours verifiee. On montre l'egalite lorsque abelien, pour la fibre reduite modulo l'ideal maximal

d'une place de bonne reduction

s.

ga l(M)

II. G

1. Fonctorialites.

Boit

1.1}

Gg a l (M)

M. Alors Ie morphisme naturel

N E ob

sur

G (N) • gal

1.2) A toute extension des scalaires

objet 1.3)

kIM de Boit

GL M

MIC /k I' On a Kk,

K /k

une extension de

k'/k G (k I M) ga l

GL N

est associee G

ga

1 (M)

e

K

envoie

a M

un

Kk I .

"corps de fonctions". D'apres Katz

[ 101, on a un isomorphisme sur les composantes neutres :

GOgal associe

(M}@v .. ' " O G O ( M ) '

gal

K

a M

K'

, ou

MK"

designe l'objet de

MICK'/k

par extension de la base.

De plus, il existe

K'/K

eg a l

, ) soit connexe. (La K preuve utilise la description topologique et la reduction mod.p). Inversement, s L on part un objet

ResK'/KN

d'

tel que

un objet

(N,vI K) de

(M

N de

MICK'/k' on lui associe

MICK/ k ,et on a : (N})

e

K'.

K

2. Le probleme des sous-espaces stables.

Tout sous-espace GLM

v-stable d'une representation polynomiale de

est, par definition, stable sous

G liM) ga

; la reciproque est

33

=

fausse. A titre de contrexemple, soit module a connexion triviale , et soit dans

(l,9,)

avec

@

9,

E K \

L

k , Alors

1

(K , d : K

le

la droite engendree par Lest fixee par

mais n'est pas un objet de

1

Le probleme vient de ce que la categorie des representations de Gg a l (M)

est

K-lineaire, contrairement

a

M

: Les assertions suivantes sont equivalentes i) Gg a l (M)

agit homothetiquement sur

M,

ii) End M est trivial (i.e. somme de

M

iii)

dans

est somme directe de sous-objets de rang un tous isomorphes,

et sont impliquees par : iv)

M est le plus petit objet de

sous

M con tenant une droite

L

stable

(M) •

s

si Gg a l (M) et seulement s'il est combinaison lineaire a coefficients dans K V• d'elements de M On en tire la description 1.4.1. On deduit de la qu'un tenseur

III.

E @ 0 M

est fixe par

(M)

On considere de nouveau l'equation differentielle (*),

1.

ou l' on suppose que forme

d'

Lorsque

p

l/m] (x). On peut aussi l' ecrire sous la

E

8Y + GY

O.

est un nombre premier ne divisant pas

reduire (*) modulo coefficients dans La

gi

un systeme differentie1

m, on peut

p, d'ou une equation differentie1le (*)p IT

P

a

(x'

I

= {d/dx + G)p mod. p , est un operateur lineai-

p-courbure

re (et non differentiel). E1le se calcule par recurrence [ 10] G(l)

D'apres P. Cartier, IF'p (x) ,

(*)

=

G, G{k+l)

p

8G(k) + G.G{k)

o

(*)

p

,

=

G{p)

mod. p.

est entierement soluble dans

(Grothendieck) : 5i = 0 pour presque tout p, alors p est entierement soluble par des fonctions a1gebriques sur m{x).

34

Pour plus de precisions, on renvoie le lecteur aux articles de Katz [8] [ 9] .

2. L'algebre de Lie de Katz Par epaississement de

5 cu r v M

=

de The k $

-+

[lO]IX.

' on entend la donnee (M,V) E Ob MIC K/ k

un sous-anneau de type fini sur

Spec

Ik

une

Ik-variete lisse, de corps de fonctions

satisfaisant a

IK

((\

k =

Ik un module localement libre

(IM,V)

IK

K, et

a

connexion integrable sur

$

avec (IM,W) @ Spec K = (M,V).

s

Un epaississement permet de reduire modulo Apparaissent les 1jJ

pour presque tout

p.

p-courbures:

:IM@IF-+IM@

p

p

p

*

1 @ F abs (r/$ @ IF

IF P

p

)

,

donnees par

Soit M l'ensemble des sous K-vectoriels V d'objets de -curv tels qu'il existe un epaississement avec 1jJ (D) V e W mod.p pour

M,

p

presque tout p. lrcurv(M)

=

l:"

Stab

e End M.

Lie Gga 1 (M) • La conjecture de Grothendieck mentionnee plus haut equivaut au cas particulier):c

=

(14)

(Mc u r v ) =

O.

Reciproquement (voir [lO)X), si la conjecture de Grothendieck est satisfaite pour tout objet de

M,

il en est de meme de celle de Katz.

3. Le probleme de sous-espaces stables. Soit

we

M

-curv

V , d'objets de

des applications tout

la categorie dont les objets sont des quotients V/W,

p

Mc u r v

et dont les morphismes

K-lineaires commutant aux

p

V/W -+ V'/W'

sont

p-courbures pour presque

apres epaississement et reduction modulo

p.

35 Theoreme 1.

a

est equivalente

la categorie

representations d'un sous schema en groupe i) Gcurv(M)

RePK Gcurv(M) des

ferrne de

GL verifiant M

est connexe,

ii) Lie Gcurv(M) iii) G (M) curv

5curv(M)

est un sous-groupe normal de

Ggal(M).

11 suit de ce theoreme une bijection entre les sous-espaces des

representations polynomiales de

Mc u r v

part, et les objets de

GL stables par M d'autre part.

Gcurv(M) d'une

,(I -curv

Cette difference notable avec categorie

11 vient de ce que 2 K-lineaire (contrairement a

est une

Modulo ce theoreme, la conjecture de Katz se reecrit comme en

IV. COMPARAISON DE

GO gal

ET

1.4.3.

G curv

1. Le critere d' algebricite de Chudno iTski [21 •

Soit

en

Hypotheses : i) Uniformisation :

f (x)

avec

d'ordre fini

U i U

i

-

meromorphe sur =

(2)

= U

0

o.

, xi =

(u ) -

i=l, •.. ,j

J(n) ::>I(n} for all n E

I

Choose Po E G(J(N».

So Q(n,N}p

o

I O. Put

p := gr(R)PO' By lemma 2.18 below we get (*)

Q(n,N(P}} # 0

all n E

implying Ep(M} I 0, whence p ::> J(M}

(by prop. 2.11). Since M is

holonomic this gives p::> p' for some P' E G(J(M»

with htpl

lJ • So A

htp > lJ . Now observe that p is involutive and homogeneous by th.2.16 and A lemma 2.12, so htp .::..

lJ

A

. Consequently htp

Then (2.16) gives 2(n,N(p}} So N E

as desired!

=0

= lJ

A

implying p

=

P' E G(J (M)) .

for all n > some nO' contradicting (*).

148

Lemma 2.18. Let

Po

P

E Spec(grO(R)),

:= gr(R)P

O.

Then

PE

Spec(gr(R)) and

the canonical morphism of grO(R)-modules.

Q(n,N) + Q(n,N(p))

can be extended uniquely to a gr (R)

o

X: of grO(R)

Po

Q(n,N)

Po

Po

-morphism

+ Q(n,N(p))

-modules and is an isomorphism.

For the proof of this lemma, which is based on the properties 1°, 2° mentioned in §1, we refer to [4], lemma 4.10.

The algebraic analogon of theorem 2.9; the general case. Let A be a filtered ring with filtration FA satisfying the conditions a) and b)

above and let M E

As before we have EX(A[X]) and EX(M[X]). The

crucial result linking the general case with the E-ring case is:

Proposition 2.19. M is an A-module with R.S. iff EX(M[X]) is an EX(A[X])module with R.S.

Proof. i) Suppose FM is very good on M. Then one easily verifies that FM[X] is very good on M[X]. Hence

LX (FM)

is very good on E (M[X]) by prop. 2.8.

X

ii) Conversely, suppose F is a very good filtration on EX(M[X]). By Cor. 1.9 G(F)

(=(j

-1

(Fn))nEZ) is good on M. We show now:

J(M) C Ann gr(M) i.e. G(F) is very good. Therefore let ala) E J(M), say veal = k E Z and m E G(F) (n) = j-l(F ) i.e. n

¢X(m) E F



We must show: am E G(F)

However, ala) E J(M)

(n+k-l)

i.e. ¢(a)¢x(m) E F

n+ k- 1.

implies T .- ¢(X)-(k-l)¢(a) E J(EX(M[X])) and VeT)

i.e. T E Since F is very good and ¢x(m) E F

n

we get

149

so

X

(m) E F

k l' as desired. n+ -

We also need to know how holonomic modules behave under M + Ex (M[X]) •

Proposition 2.20.

([4], Cor. 6.10). There is equivalence between

i) M is a holonomic A-module iff EX(M[X]) is a holonomic E (A[X])-module X ii)

=

X

(A[X])'

This result follows from the following fact:

(2.21) If J(M) J(EX(M[X]»

e

where p.

=

= Pi n...n Pr n... n

P;

- --1 gr(A)[X,X

]p.

=

Proposition 2.22. VA

= sup pEl

htp, I

(the minimal prime decomposition of J(M»

then

is the minimal prime decomposition of J(EX(M[X]», and furthermore htp;

([4], prop. 6.11)

e

htp., all i.

(A[X]) iff

=

= VA'

where

X

the set of all involutive primes in gr(A) •

Corollary 2.23. If

=

VA' then M is holonomic iff Ex(M[X]) is holonomic.

Now we can state the announced analogon of theorem 2.9:

Theorem 2.24. Suppose

=

VA' Let M be a holonomic A-module.

Then there is equivalence between: i) M is an A-module with R.S. ii)

E

P

(M)

is an Ep(A)-module with R,S'

I

for all p

iii) Ep(M) is an Ep(A)-modUle with R.S., for all p

Spec(gr(A».

E

G(J(M».

Proof. i) + ii) follows from prop. 2.8.ii) + iii) is obVious, so it remains to prove iii) + i). If so by prop. 2.19 we get

P

E G(J(M»

then Ep(M) is an Ep(A)-module with R.S.

150

(2.25)

EX(Ep(M) [X])

is an E (E (A) [X])-module with R.S., all p E G(J). X P -

We have to prove M is an A-module with R.S., so by prop. 2.19 we must show

(2.26)

EX(M[X])

is an E (A[X])-module with R.S. X --

By Cor. 2.23 EX(M[X])

is a holonomic Ex(A[x])-mOdule, so we can use tho 2.14

of the E-ring case to prove (2.26) E'1(E

X(M[X]))

i.e. it suffices to prove that

is an EO] (Ex(A[X]»-module withR.S. for allO]EG(J(Ex(M[X]»).

Observe that by (2.21) the elements of G(J(EX(H[X]») are all of the form pe (= p gr(A)[x,X-

1])

for some p E G(J(M). SO it suffices to prove:

(2.27)

To make the link with (2.25) consider --1 gr(Ep(A))[X,X ]

o(S)

p

-1

- --1 gr(A)[X,X ]

and put

P

:=

O(Sp)

-1

-

--1

gr(A)[X,X

]p.

Then p is a prime ideal in gr(EX(Ep(A) [X]») and from (2.25) and the implication i) + ii) we get

(2.28)

E (E (E (M)[X]»)

""

P

X

P

is an E (E (E (A) [X]»-module with R.S. "" X P

P

for all p E G(J(M».

Finally using the following lemma,(2.28) implies (2.27):

Lemma 2.29. i) There is an isomorphism of filtered rings

y : Epe(Ex(A[X]»

': E (E (E (A) [X]»

""

P

X

p

ii) There is an isomorphism of filtered E e(E (A[X]»-modules

p

y

X

151

We refer to [4], lemma 6.15 for the proof.

Proof of theorem 2.16. i) Let

Po E

G(J(N». It suffices to prove

Therefore put and grO(Ep(R»

p:

gr(R)P

O'

Po

is involutive in grO(R).

By lemma 2.18 (with N=R) the rings grO(R)

Po

are isomorphic. We identify them. The Poisson product on

grO(R) can be extended to grO(R)

Po

and equals the Poisson product on

gro(Ep{R» . I f pogr (R)

o

Po

i.e.

Po

is involutive in grO(R)p

o

is involutive. However J := J(N)

J(n)

Po

then the contracted ideal in grO(R) J(n) for all n

nO hence

J(Q(n,N(p»)(by lemma 2.18)

J(N(P»

.

So it suffices to prove

J(N(P»

is involutive in grO(Ep(R».

Furthermore, since

Po

E G{J{N»

= G(J{n»

ifn>

-

"o'

Q{n,N)

Po

isagrO{R)

Po

-module

of finite length, so by lemma 2.18 we get

Q(n,N(p»

is a gro{Ep(R»-mOdUle of finite length.

Therefore we may replace the triple (N,M,(Mn)n) by (N(P) ,Ep{N),

(M»n)

and can additionaly assume: ii) Q{n,N) is a grO{R)-module of finite length, for all n

nO'

Since left multiplication by s-l gives an injection of Q(n+l,N) into Q(n,N) (see the proof of tho 2.15) we conclude there exists n multiplication by s n

n

1•

-1

Putting N{k)

1

nO such that left

gives an isomorphism of Q(n+l,N) onto Q(n,N) for all := N -1

n

this gives N(n) = s-l N(n+l)+N(n-l).

Put A := R u := s +R_ E A, M' := N{n+l)/N(n-l). Then u is a central 2 O/R_2, 2 R /R Q(n+l,N) M'/uM' and uM' Ker M'. element in A with u = 0, A/uA + 0 -1' u

152

Finally uA

§3.

J (n+l)

KeruA, whence J

J(M'/uM') is involutive by [6], Th.II.

A CONSTRUCTION OF REDUCED FILTRATIONS

The main result of this section (theorem 3.1) gives a new characterization of A-modules M with regular singularities along J(M) which enables us to construct reduced filtrations from generators of the A-module and generators of its characteristic ideal.

Theorem 3.1. There is equivalence between i) M has regular singularities along J(M). ii) For every m

E

M and every D

E

A with

E

o(D)

J(M) there exists p

E

such that p-l

(3.2)

DPm

E E

A«p-i) (r-l))D

im,

where r

.- v(D).

i=O More precisely, let m ... ,m generate the A-module M and O(D l),···,O(Dq) l l, the ideal J(M). Suppose ii) is satisfied, so there exists p E (3.2) holds for all D , all m Then the filtration j t.

r (n)

.=

such that

r on M defined by

1 E E t=l j d

is a reduced filtration on M.

Lemma 3.2. Let M = Am and 0 iDE A with v(D) filtration on M such that DF*M C n

F M n

E A(n-(r-l)i)D i=O

iM

=

rEz.

z.

1M all n E

F*M is a good

Suppo Then

defines a good filtration on M.

Proof. By prop. 1.8 it suffices to prove that (F M) and (F*M) are equivalent

n

First, m

E

F* M for some nO nO

E

E

M. O+r-l . ( l)M implying A(n-(r-l)i)D im C F* M whence rq n+n O

More general Dim E F*

Z, so Dm

n

DF* M C F* nO n

FMC F* M, all n E Z. Secondly, F*M = E A(n-v.)m. for some m. E M, n n+n O i=l n v. E Z. There exists

Co

E Z such that m. E F

Co

Mall i, whence

153

A(n-v.)m. C F

,...,

n+cO-v

M. Let nO := max CO-Vi' then

F

C

i

Corollary 3.3. Situation as in lemma 3.2. There exists N N

im, i) F M = E A(n-(r-1)i)D all n n i=O N N+1m ii) D E E A( (N+1-i) (r-1) )Dim. i=O

E

Proof. i) There exist m ... ,m q 1,

N

J

E

E A(v.-(r-1)i)D J i=O

M, v

im,

z.

O

E

such that

E z.

1,

So m , E F M. Hence there exist N E J v. J m.

E

M, all n n+n

... ,v

q

EZ

such that FnM

EA(n-v.)m .. J J

with

all j.

So N

F M n

E A(n-v.)m. J J

C

E A(n-(r-1)i)D i=O

im

C

F M n

as desired. ii) Take n := (r-1) (N+1). Then 1 N+ 1m D

E

co

E

E A(n-(r-1)i)D i=O

A(O)

im

A(n-(r-1) (N+1)) gives

F M n

N

(by i))

N

E A(n- (r-1) i)Dim i=O

E A( (N+1-i) (r-1) )Dim. i=O

To prove theorem 3.1 we use the strongly filtered ring AX := A[X,X filtration (A (n)) defined by A .(n)

X

X

= EA(n-i)X i,

-1

] with

and the filtered Ax-module

-1

i

M := M[X,X ] with filtration given by M (n) = EM .X Observe that X X i. M @MX Furthermore one easily verifies: if (M ) is good on M, then n x - --1 - --1 (Mx(n)) is good on M = gr(A) [x,x ], gr(M = gr(M) [X,X ] which x; x) - --1 = J(M) [x,x ] (cf.§l). implies J(M X) Proof of theorem 3.1. i) + ii) Let m

E

M and D

E

A with o(D)

E

J(M), v(D)

=

r

E

Z. Since M has

R.S. there exists a good filtration FM on M such that DFnM C F n

E

Z. Put M*

=

Am. Since FA is noetherian, the filtration F*M = M*

is good on M* and satisfies (3.2)

n+r_ 1M

(with p=N+1).

C

all

n FM

Then apply Cor. 3.3 which gives

154

ii)

+

i) Assume ii) is satisfied. Consider the filtration f' as defined in

theorem 3.1. It is obviously good, so it remains to show Df'(n) c f'(n+v(D)-l) for all DE A with O(D) E J(M). Since the O(D ) , ... ,O(D 1

- ( r • -1)

suffices to check this for each D .. Put T. := X By i)

+

ii) there exists p E

J

J

J

q)

generate J(M) it

D.; r. := v(D.). J J J

such that (3.2) holds for all D

j,

all m t

hence all j,t.

(3.4)

Observe that J(M)

=

(O(D ) , ... ,O(D » ) implies J(M 1

q

X)

(0 (T 1) , ••• ,0 (T q) )

hence A (0)T X

The involutivity of J (M (3.5)

l r ,T ] E p

X

implies that

A (O)T. + AX(O),

l;

q

X)

+ ... + A (O)T

1

X

J

e;I

q

+ AX(O).

is a Lie-algebra so

all p,q.

It is not difficult to verify that (3.4) and (3.5) imply

j

is an AX (0) -module of finite type with AXM By prop. 2.4. f'x(n)

:

Ax(n)M

O

O

=

and

0;} MO C

MO'

defines a reduced filtration on M so in X'

particular

(3.6)

T.f' (n) J X

f'X(n),

C

all n,j

Observe that

l;

t

Using M x

l;

j

0(X)

AS, perhaps, suggested by (e) A

j9(X)

.

THEOREM

(c)

be a curve.

k-algebra and is right and left noetherian. Although J9(X)

(a)

X

= 8(X)

or

,

A

= t9:x,x

, the key to understandingJ9(A)

is to compare

,vIA)

and fl)(A)

for

where A denotes

the integral closure of A in Fract A , its field of fractions. Def i.ne £)(A,A)

{D

E

E(A) I D (f)

E

A

for all

f

E A:}



This is a non-zero right ideal of .fj (A) and a left ideal of .,t)(A) Since 08(A)

is a simple, hereditary ring

progenerator in where and

T

T

Mod- .,D(A)

.v(A,A)

is necessarily a

. Thus we have ,£!(A) :: End rf)(A)J)(A,A)

is Morita equivalent to



The relation between

=

T

J)(A)

depends on the fact that they have a common left ideal, name-

ly J)(A,A). A key lemma is that 9(A)

T

i f and only i f J}(A,A)'f A=A ,

161

where

denotes the linear span of all

D E .f)(A,A) and

D(f)

such that

f EA. It is these observations which are exploited

to obtain the above results. Through part understand

JB

(e)

(X)

of Theorem 3

we can, in a sense, say that we

completely when

is simple. So from now on we

concentrate on what happens when JD(X)

is not simple. However, there

is one question still of interest when

is simple; give a pro-

cedure for obtaining generators for that J7(X)

, or find the least

n

such

is generated by differential operators of order < n

To understand

J)(X)

tv

when

n : X

+

X

is not injective one is led

to prove. THEOREM 4 [6]. The factor

J)(X)

H(X)

constains a unique minimal non­zero ideal J (X)

:= J9(X)/J(X)

is a finite dimensional

k­algebra,

and H(X) = $x ESingxHx is a direct sum of algebras Hx one for each singular point x . The structure of H depends only on the local x Eig£ &x,x . In fact Jlx,x has a unique minimal non­zero ideal JX,x and H =e'b /J . x x I X ,xX The relationship between the ideal structure of J9(X) submodule structure of

is illustrated by

THEOREM 5 [6]. Consider &' (X) (a)

Y(X)

(b)

and the

as a

J)(X)

­module. Then

has Hni te length has a unique simple submodule, namely

J (X) • !9'(X)

C (X)

=

cD (X, X)* &(X)

19'(X) /J (X) .

then

C (X)

is a faithful

H (X) ­module;

(c)

If

(d)

C(X) $x SingxCx is a direct sum of local algebras, one for each singular point of X

(e)

Cx

c

=

X, x /J X, x . [1;X, x

(Z

tr(X)

and is a faithful

Clearly one would like to dimensional algebras H and x note that, since H and C x x from Theorem 3 that H and x It is not difficult to observe then kl

C(X)

Hx:---"-'-== ­module

understand the structure of the finite C ' and so H(X) and C(X) . First x depend only on &X ' it will follow ,x -1 Cx are zero precisely when # IT (x)=l.

that if is a homomorphic image of

k[t1,···,tJ /(f1, ... ,f r)

, ... ,t]/(f1, ... ,f­r ,8f./8t.) because J(X).(9'(X) con t adn s vthe n J conductor of &(X) in f)-t:X) and the image of each 8 f t belongs i/8 j to the conductor

162

§ 3. THE ALGEBRAS

H x

.AND

x

In this section A = (JX,x

and we set

C

x

is a curve with a unique singular point B = A

and

0

x,

This section is a collection of

and C We H x x the ring Hx may be either 0 , or M (k ) n k , or the ring of lower triangular

examples illustratins some of the possibilities for will give examples where of

n

n

x

matrices over k

0

0

2 x 2 matrices , or (k' k) In these examples Cx is respectively n), 0, /(t /(t 2) , and k[s,tl/(s,t)2 We have no general re0

0

sult, but these examples do give some clues as to what should be expected in general. We denote the maximal ideal of

A

by

ring with Jacobson radical denoted -1

# IT

o

Bv [ 6, § 7.4] a (t)

x

if and only if

there exists

and

Bt . If bEB we shall write

cor-

is a local ring.

&x,x

t E

B

if and only if

2 E DerkB

such that

It is an easy exercise to see that this forces

1

and

=0

H

(x) = 1 , we may rephrase this as

PROPOSITION 1.

is a semi-local

The maximal ideals of

rr- 1 (x ) . Since

respond to the points

m. B

DerkB

Ba,

a (b)

b'

We shall assume in all the examples we construct that

IT

N

X

X

is unramified at all points. The reason for this restriction is because we can make use of the following result to simplify the calculations. THEOREM 2 (WoC.Brown [3J )

IV

X

HIT

Thus we have , locally J)(A) examples where

Hx

Mn(k)

in

eX,x If I

Proof. Since # valent , so J) (B ,A) I = JJ(B,A) k .

H x

is unramified at all points

*

B . But

= B[a]

# rr-

1

(x )

>

1 , J7(A) A/I

n

=

4"

vX,x '

and

B '" A . However, I ::. k

First we construct

0

1

.

1 . Let I denote the conductor

is a maximal ideal of

n- 1 (x ) t

*

J)(B)

The easiest case is

PROPOSITION 3. Suppose that of

X

J9(X)

then a8(X)

then

H x '" k

.

are not Morita equi,A)

is now a faithful

whence Hx-moduleo Hence

c

163

This explains [6 , Theorem 4.4] since under the hypotheses of that

GX ,x ' since II ,x which is a product of fields.

theorem one must have I a maximal ideal of a looal ring contained in

&.X

,x II

is

It is possible for H to equal k without the hypothesis of x Proposition 3 being satisfied. Indeed, if J7(B,A) *B is a maximal ideal of

A

then

H

k . This is illustrated by the following

x

EXAMPLE 4 [6, § 5.7] Take X = /AI , and /J'('X) = kI t] . Define X by 2(t-l) 4(t-l)k[t] 4(t-llk[tl 19'(X) k + kt + t . The conductor is t which is not a maximal ideal of

&(X)

. It is shown in [6]

J) (B ,A) * B = !!! , the unique maximal ideal of fJ: unique singular point of Hx-module so

with

X

Hz

X)

.

Again

x ,x

AI J3 (B ,A)

(here * B

x

that is the

is a faithful

k

This example may be understood as follows . Let X' be the curve 2k[tl 9(X') = k + t . We have a factorisation of IT as X'

X

i) (X' ,X)

with

:::J

Hence J3

the conductor of PIDPJSITION 5. §;x.,x

t

n =

injective. Hence 2(t-ll k+t B'(X'} and 2(t-l)J7(X,X') 2 t (t-l) J7 (X') . Thus cD (X,X) :::J 0\9 (X' ,X)J7(}"X ') :J t . 2 * crIX) .=: t (t-l) &'(X') =!!! . The is that is- injective, and

fJ(X)

J3(X,X'}*

= &(X')

8' (X)

and

• However,

in et(X'}

SUpp?se that # n

e-X,x

&'(X) =

is a maximal ideal of 8(X) . -1

(x) > 1. SUpp?se that the Jacobson radical of n n+l' and that fk.x ,x = k+kt+ •.•+kt +t cY. .x • Then - Hx '" Mn+1 (k) x

Proof. Let !!! be the maximal ideal of A = . Then Theor-sm 2,!Jj (A) c ri3 (B) . The sarne argument as [ 6 , Lemna 5.3] J)(B,A)

tn+l $(B) , whence C = A/tn+lB

is a faithful

x

result will follow i f we can show that

= tB, and by shows that

H -rrodul.e , Thus , the

x

is a simple Hx-rocdule, or equiva-

is generated by 1 , and that n+ A/t I B is a simple 37 (A) -m:xlule n) it will suffice to show that there exists D E J) (A) such that D(t = 1 . we proceed to show that D := (t8 - 1) ... (t8 - n) 8n belongs to /}(A) ; since n) (-I)n(nl) -2D(t = 1 this will canplete the proof of the Proposition.

lently is a simple E(A)-m:xlule. Notice that n kt is an essential A-subrrodule . Thus, to show

Since !f) (B) =B [ d] we have DE J:) (B) . The action of D on A annihilates nk + kt + ... + kt 1 , so it rrmafns to shaw that D* (Btn+l) C Btn +! . First, notin ce that 8 * (Btn+ 1) Bt . Secondly, notice that, for all j-E:N, j) (ta -j) * (Bt C Btj+l . Hence (t8 - n) ..• (t8 -1) * (Bt) C Btn+ 1 and thus

n+l n+l D* (Bt ) C Bt

and

1 . Suppose that the Jacobson radical of &-x where

yE

IX

is

ex, x \ t &- x, x

tB'x

IX

,and

,Q.nd that f):x y

IX

= k + kt + kty + t

is not a unit. Then

Hx

2

k 0

()

(kl.k)

X,x

0

165

Proof. The argument is very similar to that in Proposition 6. One 2,e(B) computes li(t 2B) = B + Bta + B(ta l)a + t , checks that 1,t,ty,ta ED(A) and that their images in H are linearly indepenx dent. And finally one shows that if D v(ya ­ l)a + uta belongs to 2 £J(A) with u,v E B , then D E kta + t £1(B) ; where Hx is spanned by 1,t,ty,ta these elements on

and the result follows by considering the action of A/t 2B . 0

This completes the list of examples stated at the beginning of , and this section. Notice in the examples where H is M2 ( k ) x 2 is (k 0) that C is isomorphic to k[t] l(t ) in both cases x k k Cx Z ex,x/I where I is the conductor of &x,x . In particular, kno­ wing

Cx and &X II ,x

does not determine

Hx

In the above examples H is always an indecomposable algebra, in x the sense that H cannot be written a direct product of two non­zero x subalgebras. More generally we have PROPOSITION algebra.

X., and any

x EX, H x

is an indecomposable

Proof. Suppose

H is a direct product of non­zero subalgebras. x Then there exist non­zero central orthogonal idempotents e,f EH x

with

1

tion of

=

e + f

Cx

as a

C = HxeC x e HxfC . However, this decomposix x J7x,x­module is also a decomposition of Cx as an

Then

and hence as a

Cx­module

But

o

hence indecomposable. Hence either possibility contradicts the fact that

Cx

is a local algebra,

or fC x = 0 • But, either is a faithful Hx­module. 0

§ 4.CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS AND THE SPACE OF

POLYNOMIAL SOLUTIONS. Let

J3

= J)(R)

R

be the polynomial ring in two variables, and C[x, y, a , d] the ring of differential operators on R x y

=

Let D E.f} and set S (f EO RID (f) o}, the space of polynomial solutions. Observe that if P,Q EJ) with DP = QD , and f E S then P(f) E S

also. Define, the idealiser ofc1)D,

This is a subring of J9, containing

li(,l)D) = {p E,vIDP e.J)D}.

as a two sided ideal. The

above observation says that S is a left it is annihilated by.l)D , so S is a left

li($D)­module. Furthermore li(J)D)/J7D­module.

166

Let

0: J)-+J) be the anti-automorphism given by

o (x )

8etting 0 (D) Thus

8

0 ( d x)

d ' X

=

x

=

0 (y)

DO , we have

=

0 ($'D)

=

ay

=

DO J)

0 (d y )

f.Q' = Q(f)

for

Q' E

= II. (DO£> ) . OJ7-module lI(D°j1)/D by

II (D°J))

where

Now consider for example, the case where D

=

d y

23 -

d X

+ dX)

023 D = Y - x

• Then

y .

, and 0 (II (cf) D))

can be given the structure of right

defining

=

D

=

Q = o(Q'). d 2 -

y

ax 3

(resp.

023 (resp. D = Y - x + x)

and the space of polynomial solutions is a right where g = y2 _ x 3 (resp. g = y2 _ x 3 + x ) . But by [6, § 1.6) II(gJ))/gJ) "$(R/gR) = g

E

a: [x, y)

Thus

8

J)(C)

where

C

is the curve defined by

is a right E(c) -module . We will show below

(for both the given examples, and more generally whenever is injective) that cribe all of action of whence

8

8

is a simple right

on

1. Je(C)

8

-+

C

and the

8 . In the given examples it is clear that

1 E 8,

. 80 the problem of describing all polynomial so-

lutions of the differential equation ask for a description of 2.2 , that )9(C)

C

J)(C)-module. Thus to des-

we need know only one non-zero element of

iJ(C)

=

8

n :

J) (C)

D(f) =

a

leads us naturally to

(for example, once we know by Theorem

is finitely generated, we want to know the genera-

tors) and a description of the action of i)(C)

on

8 .

The procedure we shall adopt in order to describe all of be to first describe

f)(C)

(through its relationship with

8 , will

93 (C)

as

outlined in Theorem 2.3)

and thence to obtain a description of 3 2 and so act on 8 . For example in the case D = ay - a. x , 2,t 3) we have = a:[t and as in [6, Remark 3.12) , 2 3 2 :fJ(C) = a: [ t ,t ,td ,t a ,(td - 1) d,t -1 (td - 2) a) and (after the detai2 led considerations below) t a gives rise to the element Q = 2Xd + 3Yd 2 E II (,pD) and t -1 (td - 2) a gives rise to the eleII

(J7D) /

£>D

y

ment

P

that

8

X

4x 2 a + 12xyd + 9y2d 2 - 2x E II (£)D) It will be shown x y x a:[P) .1 + Qa:[P). 1 and thus we obtain all elements of 8

by starting with

1 E 8 and acting by

Q,P

as follows. Thp diagram

indicates how solutions are obtained from previous ones by applying P and Q (we ignore scalar multiples, so although Q(x 3 + 3y2) = 24xy we just write

j y

x 3 + 3y2

g.

3 3 2 P Q

x

j: Y

.. xy

xy) 4

. 2 P

5

--·x -x y

-x y+y

2 2

Y

--L. .... -;- •...

167

One can continue to apply

P

Q

and

to obtain more solutions, and

Proposition 6 below shows that one will in this way obtain a basis for

a: Ix,y]

{f E

I (8/

- 8}) (f)

= O}

.

Two points should be observed. First, to find elements such as P, Q E

:n: (iJ D)

simply by computing inside

:P

seems an impossibly dif-

ficult task • Even if one can find elements of

TI(J)D)

one needs to

know whether one has found enough elements to generate all of TI(gJD)/J9D

(hence the importance of Theorem 2.2

saying that J)(C) is

finitely generated , and hence the importance of trying to obtain a

.

procedure to find generators of

J'(C»

polynomial solutions belong to

1.j1(C)

Secondly, to know that all (in the case when II:

is injective) one needs to show (as we do below) that right

S

E+

C

is a simple

(C)-module.

It is no problem to extend the above analysis to the more general situation described in the following Proposition. First note that there is a natural anti-automorphism a on the ring n) £)(A a:[t l, •.. ,t .•. ,d where d j = d/dt n] j n,8 l, a (t.) 0(8. ) 8. t. for all j J J J J PROPOSITION 1 . Let contained in Set J') = J)(R) sider

R • :

and thus

a: [ t l' ... , tnl

, and let

J

be an ideal of

• Then

S

S = {f E HID (f) = 0

TI( a (J 33) ) -submodule annihilated by

is a left

TI( a (J9))/a (JJ) S

- -.....

TI(Ji)/J:J)"'JJ(A)

may be given the structure of a right

As a

is isomorphic to :J)(A,A/r.E.)

Proof. It is straightforward computation to see that TI( a (Jr!3» -submodule of ,f}(A)

-x

for all

There is an anti-automorphism

right .$ (A) -modUle, S

phism

R

. Set A (t l, ... ,t R/J, an

R

given by

R, annihilated by a (J j:)

is of course induced by TI(Ji)/J$7 is just [6,

S

is an

• The anti-isomor-

a , and the fact that

§ 1.6] . Thus it remains to prove the

final asertion. Apply the left exact functor $R( exact sequence of

R-modules

0--+ J

-+

, R/(t1, ... ,t R-+ A-+ 0

to the short n) to obtain the exact

sequence 0 - .t'R (A,R/ (t l, •.. , t n) ) - - J?R (R,R/ (t l, .•. ,t n) ) --+ J';)R (J ,R/ (t l, ... , t n)).

168

Thus ,f)A(A,A!!:i2)

='

j)R(A,R!(t1, .. ·,t n » {Q E,iJIQJ

Now consider

=

S

t 1J9+···+trr}ft 1J:'+···+t n J) . + ... +Jf)0n . By definition

S C R

{p E.f) III (J

.v) p

J)A (A,A!!:i2)

-+

It is clear that

+... +

j) 0 1

Through the anti-isomorphism Let 'It : S

, S

,1-

£J (A) -module map, let (p +»3 + ... +173 J 1 n

e E II (

(J

(J

S "'!lJ (A,A!!:i2)

5

S , and

E

and

,

d

(P)

+ t

='

d

E

E(A)

(e(e) + Jj71

'It

Suppose

for

1

JJ +

••• + t j)j .] n

(J

(e)

+ J"t1]== 'It

(s) .d.

as required .

A

Remark. It is easier to consider S

as a left

and

this is what we shall do in practice. That is ,QD(A)OP tified with

j)(Ar:ra1ule.

. Then

j}»

[ 11

Thus

is made into a right

is a vector space isomorphism. To see that

'It

that

='

an}! j) ;) 1+ ..• + fJ ;) n .

:J]

be defined by

is a right s

J= O}

='

will be iden-

and the action of this ring on

U(a(Ji»)!a (JJ)

S

will be obtained through the restriction of the usual action of differential operators on PROPOSITION 2. Let

n : '" C

-+

R C

='

[[x,yl

be an irreducible

C is injective. Let

£!(A,A!!:i2) Proof. Let By Theorem 2.3 ,

m

be a waximal ideal of

is a simple right

A

affine curve, such that

J)(A)

-module.

denote the integral closure of

.D(A)

and

;@(A)

A ==

A

in Fract

A .

are Morita equivalent. The proge-

nerators giving the Morita equivalence are

j9(A,A) and

p(A,A). Con-

sider the following natural maps obtained by taking composition of differential operators :

169

Since

J)(A,A)

given by composition is an isomor-

-+

phism, the above map is also an isomorphism. In particular, jJ (A,A/!!!) corresponds to

under the Morita equivalence. Hence to prove

the result, it is enough to show that

is a simple right

3)(A) -module. However, by Proposition 4 below, is the unique maximal ideal of .11(A,A/!!!')

A

$A(A,A/!!!') where

containing

m'

!!!. By [6, § 1.3e J,

, and this is a simple right .$(A)-module [6,

§l.4g J • Hence the result.

0

The next two results are required to complete the proof of Proposition 4.2. LEMMA 3.

A

ble variety ideal of

\!!l

A e m

C

\!!l

I

1

N

be

A-modules, and

ker (u : A \!!l k A

J

A

k

m. Hence

a - a

and

o , then for all

Write cation map. As {1

M

A . If

ments of

be the co-ordinate ring of an affine irreduci-

&(X)

X. Let

m0 A + J

a

!!!'

A

-+

a maximal

n

A)

where

Jl

is generated as a

is generated as an ideal by

J

m} • In particular, J C A \!!l m + m . Thus In C A mn + m '" A and A I!> E

o .

As

mN "" 0 , if G E Hom (M,N) then k In.G(M) (A Qll !!!n) .G(M) AG(!!!nM), and G(!!!n+1M)

=0

dition that

if and only if

e

PROPOSITION 4. reducible curve

A , and {!!!Ie I Ie E A} is an isomorphism

In+1. G

=o ,

A

A C

r

and also l8>

A + In.

Thus

D

=

be the co-ordinate tV

C , and set

B = &(C)

Let

of an affine ir-

m m . Then there

s , 0 leE.j3B(B,B/!!!Ie}

the direct sum. Define

Qll

which is precisely the con-

n(M,N) .

Proof. For each Ie , fix an If, for each

is the multipli-

k-algebra by ele-

A-module isomorphism then write L

Gte) = LIe'PleGte •

te

'{!

Ie : B/!!!Ie -+ A/!!!

Gte for the element in

170

First

is a map to

8 A c: .BB (B that

::.

because each

(B

whence

.p A 8 A E $lA (B

. I t is clear

is a rightJB(B)-module map. However, a word of warning is re-

quired : cl!(B) thatJ7

means

97 B (B , B)

not JJA(B,B)

so

B(B,B)

To see that

, and one must observe

really is a right J}(B)-module.

is injective, first observe that $A

is

a direct sum of non-isomorphic simple right J7(B)-modules [6,Corollary 4.3

and § 1.4g]

contained in since

E\ = 0

Hence i f

ke r

But if 8,\ EkeI'

0 } .

That this is now the injective envelope of =

follows from [Bourbaki, Algebre Homo-

logique, § 1, Ex. 29-32 I . That an earlier proof of this result could

171 o

be replaced by this reference was pointed out in [8].

We now return to the examples at the beginning of this section. In fact we will first discuss the example where

=

a 2 - a 3 (the other y x example is somewhat simpler since the corresponding curve is non-singu0

lar, and we shall comment on that in the remarks at the end of this section) 2xa PROPOSITION 3. Set Then

tn .

S = C

Proof. Set

=

0

1

+

g = y

A = C[x,y)/g[[x,y)

a 2 - a 3 y x

Q[ [p)

2

- x

and

3

, so

where

m

E : A

x

-

-

2a 2) a , Q = t We view P,Q as elements of 2,t 3) c CI:[ t) . Since 'J3 (A) " II (g:I1) with A = [[t we can find elements PI,Q' E lI(g which map to P and Q respectively. Such Set

t-1(ta

P

-

-

elements are p'

Q'

4x a 2 + 12ya a + x x y 2ya + 3x 2a x y

Notice that

P

O(PI), Q

=

o(Q')



Hence to prove the Proposition it is sufficient to show

=

+ E.[[P)Q • Recall that

a} . n n+1 We identify £) A with Hom[ Set j 'j3 = {.t [o j 2n+1, j -f 1} . This is a basis for

s:

=

{Epjl0.2.j.2.n} U kPjO!2.2.j.2.n+1} • Check that

scalar multiple) n+1

=

basis to

Ak

. EP (t J ) = 07k,j

is

and

AkA

j

_

Set (up to a non-zero

EP Q(t ) - 02k-1,j

Hence

(up to non-zero scalar multiples) the dual

13. In particular, it follows that o

172

Remarks (1). Proposition 6 allows one to routinely produce a basis for

S; in fact the proof essentially shows that

z.

{pj(1) Ij.-:O} U {QPj(1)!j

2} gives a basis for

S

this verifies

the claims made at the start of this section. (2). The elements as follows. We have in t8 E £l(A)

satisfies

P'

and

= [[t 2,t 3]

A

(t8) (y)

3y ,

=

Q'

(t8) (x)

.2)-submodule of M. Hence the conclusion.

[)

We will next show that when ble

f E (9(8\2)

C , the curve defined by an irreduci2)f/ 19(1A &VA 2 ) is simple

, is non-singular, the module

(this is certainly well known, but we cannot find a proof to refer the reader to)

• To do this, first observe that

f-'R/R

C

R

submodule, is annihilated by J)f , and is therefore an module. However, there is an isomorphism of II:(£1f) /J3f tjJ

:

TI(o&f)

TI(fJ}) /f:fJ ; this isomorphism is obtained from

+

TI(fJ) fO

given by

=

O'f

tjJ

(0)

for

by [6, § , .6] , it follows that

0

0' E:

where

TI(.@f) R/R

TIlBf)-

k-algebras

ce

ment satisfying point is

is an

TI (Ei) /J)f-

0 EJ7is the unique ele-

Thus, as

lI(fJ)) /f[ff-".J)(C)

is a left E(C)-module. The

174

f- 1R/R

PROPOSITION 2. As a left

=

R/fR

with its natural

is

structure.

Proof. Easy.

[J

*

o

THEOREM 3. Let a curve C. If J}(A 2 ) -module-:-

C

f E

be an irreducible polynomial defining

Proof. First we show that 2 -1 (A i , f

Clearly -1

f

ff

=

-2

and

d

that

:P (A2)

y

C

for each

zero submodule of 9)(A

e- (A2)

1

2)/

&(A

&(C)

8'(A

0

completes the proof of the fact

M M

is simple, we need only show that every noncontains f- 1 Pick 0 m EM, and consider

2)

f'

*

Thus

0

* af- 1

2 E f- 1 &'(A 2) / Ct(A j

with

• Consider

is a simple

because

C

is non-sin-

f- 1 E B(A 2) .af- 1 .

[J

(1) The above proof gives a very explicit argument as to

generates

f/ &(A

af- 1

as a left J'(C)-module. As such it is isomorphic to

. However, &(C)

1

2)

. Clearly this contains an element of the form

a E f-

g(A

. f- 1 = M

Now to see that 2).m

2)f/

is a simple

-f f- 2 a (f-1) = - f y f- 2 and x' y 2)f. is non-singular, 1 E &(A 2)f + + &(A

ax (f-1)

f- 2 E J9(A 2) .f- 1

f-n

to

M = g(A

contains

• Since

Thus we obtain

f/ 8(/A 2)

is non-singular then

2)

. Later we shall show that

is a simple

JJvAh -module f- 1

tive. Hence in that case also

whenever

generates

&(A

n: C ... C is injec2)f/

. However,

our proof will not explain in such an explicit manner, why f- n

E

.f- 1 . Hence it is an interesting question (interesting for

this author, anyway) to find in some explicit cases (for example, f

=

y2 - x 3 ) operators (2)

D

n

It is clear that all the above arguments work in grea-

ter generality. That is, if

o

*

f E

B'(X)

such

X

is a non-singular variety and

an irreducible polynomial defining a hypersurface

then similar considerations (to the above) apply to I9'(X) f/ 19'(X) J) (X) -module.

Y c X, as a

175

THEOREM 4. Let a curve

0

*

f E

be an irreducible polynomial defining

n:

C. Suppose that

rJ

C

C

is injective. Then

is a simple $ (/A2) -rnodu Le ,

0'(173) f/ 8'(/A2)

Sketch of Proof. The goal is to show that each II (Ef n) -module, where

is a simple left low at once that

Rf/R

is a simple left

It is clear that for However, on

JI(£'fn) /

J3 f n

n ElN, f-nR/R

f-nR/R, R =

IJ = J3(/A2)

It will then fol-

b -module.

is a left

II (J) fn) / oVfn-module.

"" oV(R/fnR), the ring of differential operators

R/fnR, and it is easy to see that as a left d9(R/f

f-nR/R R/fnR

is isomorphic to

nR)-module,

R/fnR. Hence the aim is to show that

is a simple )3(D/f nR)-module for all

is precisely Theorem 2.3 in [6]

,

above. For

n > 1

n E

• The case

n

=

1

we must extend the results

. This is done in [7] , and here we just sketch the main steps

of the argument. There is an inclusion of algebras n R/f n R:::; R/fRQPkk[z]/(z)

such that

n

R/f R

n ) :::; \.7(C)@kk[z] "" 9'(C)QP [ z]/(z /(z n) :::;Fract(R/r kk

is of finite codimension in

,..,.,

n

Nt

) , and

the induced map on the spectra is bijective. One observes that

and this latter algebra is Morita equivalent to

J9(C) .

One therefore

can apply the same ideas as in [6 , §§2,3] to show that, if

J7( e'(C)

(t)

then .,E)(R/fnR)

[z] / (zn) , R/fnR) ...

(e- (C) 0kk [z] /

is Morita equivalent to J7(8{C) @ k l z l / (zn»

of the bijectivity of the map on the spectra , by imitating the proof of

Essen [8].

(t)

. Because

can be

, Theorem 3.4J . Then, from the Morita

equivalence it follows that R/fnR is a simple .9(R/f nR) -module. Theorem 4

(zn) ) =R/fnR

is a simple ring, and hence 0

has been obtained independently by van Doorn and van den

176

REF ERE N C E S [1]

I.N. BERNSTEIN. - Analytic continuation of generalized functions with respectto a parameter, Functional Analysis and its Applications, 6, 1972, 26-40.

[2]

I.N. BERNSTEIN, I.M. GELFAND and S.I. GELFAND. - Differential Operators on the Cubic Cone, Russian Math. Surveys, 27, 1972, 169-174.

[3] W.C. BROWN. - A note on higher derivations and ordinary points of curves, Rocky Mountain J. Math., 14, 1984, 397-402 [4] A. GROTHENDIECK. - Elements de Geometrie Algebrique IV, Inst.des Hautes Etudes Sci., Publ. Math.,n c 32, 1967. [5] A. SEIDENBERG. - Derivations and Integral Closure, Pacific J. Hath., 16, 1966, 167-173. [6]

S.P. SMITH and J.T. STAFFORD. - Differential Operators on an Affine Curve, University of Warwick, preprint, 1985.

[7]

S. P. SMITH. - The silrple i3 -mx1ule associated to the intersection horrology complex for a class of plane curves, University of Warwick, preprint, 1986.

[8]

A.van den ESSEN and R.van IXXlRN. - J) -mx1ules with support on a curve, Univern

sity of Nijmegen, preprint, 1986.

SUR L'IMAGE DE L'APPLICATION MOMENT Michel BRION Laboratoire de Mathematiques, Institut Fourier Boite Postale 74 , 38402 - SAINT-MARTIN-d'HERES CEDEX

1. Introduction Soient G un groupe algebrique reductif connexe et M I'espace d'une representation rationnelle, de dimension finie, de G (Ie corps de base etant algabriquement clos). Soit X une sous-variete fermee, irreductible et stable par G , de l'espace projectif P(M) assode aM. Dans [Kl], F. Kirwan construit une stratification de X en soua-varietes localement fermees, stables par G , qui lui permet dans certains cas de calculer les nombres de Betti du "quotient" XI/G. Lorsque k = C, cette stratification est definie a l'aide de l'''application moment", associee a. l'action sur P(M) d'un sous-groupe compact maximal de G (cf. [Kl] Part I, et [N]). Une autre definition de la stratification, valable pour un corps quelconque, utilise la theorie de l'instabilite (cf. [H], [K1] part II; pour un expose d'ensemble, voir [Bru]). Le but de ce travail est d'abord de donner une troisieme definition de X, lorsque k est de caracteristique nulle. On commence par associer a X un polytope convexe C(X); si X designs le cone affine sur X, un point de C(X) peut s'interpreter comme un covariant de X, c'est-a-dire un morphisme equivariant de X dans un G-module simple (pour une definition precise, voir 2.1). Lorsque k = C, on montre que C(X) s'identifie a l'intersection de p,(X), oii p, est I'application moment, et d'une "chambre de Weyl". On retrouve ainsi sans peine les proprietes de l'image de p, (cf. [N], Appendix; [GS], I et II; [K2]). On definit la strate de X indexee par {3, comme l'ensemble des x E X tels que {3 soit Ie point Ie plus proche de 0 dans le polytope convexe C(G.x) [ou G.x est l'adherence de la G-orbite de x dans X). Tout covariant associe au point Ie plus proche de 0 dans C(X), envoie X sur Ie cone des vecteurs primitifs d'un G-module simple; on retrouve ainsi un resultat de Bogomolov (cf. [Bo], §4). Dans la troisieme partie de ce travail, on redemontre sans trop de mal certains resultats de Kirwan (cE. [Kl], §11 a. 13) a l'aide de l'approche esquissee precedemment, et on generalise l'un d'entre eux au cas oii X n'est pas forcement lisse : la strate de X indexee par {3 est fibree sur I'espace homogene G/ P(3, oii P(3 est un sons-groupe parabolique de G , canoniquement assode a. {3. Dans la quatrieme partie, on montre comment le theorems de "structure locale" de [BLV] permet de decrire la forme du polytope convexe C(X) au voisinage d'un de ses points. On indique Ie role joue par les orbites ferrnees de G dans X, dans l'allure de C(X). Enfin, dans la cinquieme partie, on se restreint au cas ou un sous-groupe de Borel de G a une orbite ouverte dans X. Une telle G-variete X est dite "spherique".

178

Si k = C, les G-varietes spheriques sont caracterisees par Ie fait que toute fibre de l'application moment est contenue dans une orbite du sous-groupe compact maximal de G. Ce sont les analogues algebriques des "espaces sans multiplicite" de [GS], III. En outre, on peut considerer une variete spherique comme un plongement d'un espace homogene spherique au sens de [BLV]. Le polytope convexe C(X) est lie a la theorie des plongements due a Luna et Vust (cf. [LV]). Ce point de vue sera developpe ulterieurement.

Ces notes ont leur origine dans I'etude de l'ouvrage [K1] entreprise par Ie groupe de travail dalgebre et geometrie a. Grenoble pendant Ie premier semestre 1985-86. Je remercie tous les membres de ce groupe de travail, et en premier lieu D. Luna, pour leur interet et leurs encouragements. Je remercie egalement I'Univeraite d'Utrecht pour son hospit alit.e, et J. Duiatermaat, G. Heckman, T. Springer pour des conversations utiles.

2. Polytope convexe associe

a une

G-variete projective

2.1. Soit G un groupe algebrique reductif connexe sur un corps k algebriquement clos de caracteristique nulle. On choisit un sous-groupe de Borel B de G; on note U le radical unipotent de B, et T un tore maximal de B . Soit P++ l'ensemble des poids dominants de G (pour ce choix de B et T); c'est un sous-monoide du groupe X(T) des caracteres de T . Pour chaque 7r E P++, on choisit un G-module simple M", de plus grand poids 7r, avec un vecteur propre X" de B dans M". Soit C" = G· X" I'adherence de la G-orbite de X" dans M". Alors C" = G . X" U {O} est Ie cone des vecteurs primitifs de M". On note x" l'image de X" dans P(M,,); alors e" = G . x" est l'unique orbite fermee de G dans P(M,,), et Ie groupe d'isotropie P" de x" dans G , est un sons-groupe parabolique de G. Pour tout 7r E P++, on note Ie G-module dual de M", et x' Ie plus grand poids de Si Wo est l'element de plus grande longueur du groupe de Weyl W de (G,T), on a x' = -wo(7r). Pour tout x E V = X(T) C9z Q, on note encore x' l'image de x par -woo Soient M un G-module rationnel de dimension finie, et X une sous-variete ferrnee, irreductible et stable par G , de l'espace projectif P(M) associe a M. Soit X Ie cone affine de M associe a X. Pour tout x E X, on note un point de X au-dessus de x . Soient k[X] l'algebre des fonctions regulieres sur Ie cone X, et k[X]n l'espace vectoriel des elements homogenes de degre n de k[X]. Chaque k[X]n est un G-module rationnel de dimension finie, donc se decompose en somme directe de termes isomorphes a m",n copies de M", ou m",n E N. Si m",n # 0, alors tout G-morphisme non nul 'P : M" -+ k[X]n definit un morphisme Gequivariant : X -+ homogene de degre n : si x E X et m EM", on a

x

(x)(m)

= 'P(m)(x). Un

tel morphisme est appele "covariant de degre n"j par

la suite, on exlura le cas trivial n

= O.

DEFINITION. SoU C(X) Ie sous-ensemble de V = X(T) 0z Q forme des 7r In tels que m,,',n # 0 [c'est-e-dite que k[X]n contienne un sous-module isomorphe a au encore qu'il existe un covariant : X -+ M" de degre n).

179

PROPOSITION. C(X) est l'enveloppe convexe d'un nombre fini de points du Q-espace vectoriel V.

Demonstration. - Notons A I'algebre des fonctions regulieres sur X, invariantes par Ie unipotent maximal U de a . Alors A. est une sous-algebre graduee de k[X], stable par T (puisque T normalise U). De plus, les poids de T dans A sont tous dominants, done A est graduee par le monoide P++ X N, et dimA,..,n = m,..,n pour tout (1I",n) E P++ X N. II est bien eonnu (cf. par exemple [Kr], Satz 3.3.2) que A est une k-algebre integre de type fini. On peut done ehoisir un systeme de generateurs de A , tel que ehaque P, soit un vecteur propre de T (de poids 11", E P++), et soit homogene (de degre > 0). Montrons que C(X) est l'enveloppe convexe des , (1 :5 i :5 r). En effet :

n,

> 0 tel que n{3 E P++ et m n {3' ,n {:} il existe un entier n > 0 tel que n{3 E P++ et A n {3' ,n {:} il existe un entier n > 0 tel que n{3 E P ++

(3 E C(X) {} il existe un entier n

i= 0 i= 0

et un rnonome en les P, dont le degre est n, et le poids est n{3'

{:} il existe (a1 ••• a r) E N" tel que tous les {3' = a111"1 + ... + a r1l"r aln1

+ '" + arnr

{:} {3 est dans I 'enveloppe eonvexe des

1I"U ni

a,

ne sont pas nuls et

(1 :5 i :5 r).

La proposition est demontree, COROLLAIRE (de la demonstration).

II existe un ouvert de Zariski Xo de X tel que pour tout z E Xo, on (ou . x designe l'adMrence de la a-orbite de x). (ii) L'ensemble des C(Y) (ou Y parcourt toutes les sous-varietes Iermees, irreductibles, stables par a, de X) est lini. (i)

ait C(X)

= C(a· x)

Demonstration. (i) Conservons les notations de la demonstration precedente. Soit X o l'ensemble des x E X tels que P,(x) i= 0 pour tout i E [1,r]. Pour tout z E X o, on dispose d'une fonction reguliere invariante par U sur . z, non nulle, homogene de degre ni, et veeteur propre de T de poids 1I"i, done '!rUni E C(a· x). D'autre part, il est clair que C(a· x) c C(X), d'ou l'egalite cherchee, (ii) resulte immediatement de (i) par recurrence sur la dimension de X .

EXEMPLES. a) Formes quedretiques. -

Soit a = SL(r, k) operant sur l'espaee vectoriel M des formes quadratiques en r variables. Soient W1 •• , W r-1 les poids fondamentaux de a , i.e. est le poids dominant du a-module A'k r • Alors M est simple,

w,

de plus grand poids 2W r-1' D'apres [V2], proposition 1, l'algebre k[M]U est engendree par des veeteurs propres de T , homogenes, de degree et poids : (1, 2wt), (2, 2W2) ... (r 1,2wr - I) , (r,O). Soit X = P(M) : alors C(X) est l'enveloppe convexe de 0 et des points 2W r - i pour 1

:5 i :5 r

1. En particulier, les sommets de C(X) ne sont pas tous

dans P++ (eontrairement remarque).

a. ee

qui se passe si

a est

un tore; d. 4.2, deuxieme

180

Soit Y une sous-variete ferrnee, stable par G, de X . II existe un entier Y soit l'ensemble des formes quadratiques de rang au plus p. On

p E [1, r] tel que

en deduit que C(Y) est I'enveloppe convexe des que Wo

= 0).

t

pour 1 :::;

i:::; p

(on convient

b) n-uples de vecteurs. On prend toujours pour G Ie groupe S L(r, k), et on fait operer G sur la somme directe M de n copies de k r [ou n est un entier positif). Soit X = P(M). Pour tout pEN, on a :

= SPM

SP(k r 0 k n )

oii G opere trivialement sur k", La decomposition de en G-modules simples s'effectue a. I'aide des "foncteurs de Schur" SA associes aux partitions X de p . Rappelons (cf. par exemple [D]) que si >.. = (al"'" a.) ou al 2:: ... 2:: a. > 0 et al + ... + a. = p, alors : • SAk r

= 0 pour s > r

• SAk r est Ie G-module simple de plus haut poids (al - a2)wI a3)w2 + ... + a.w. pour s :::; r.

+ (a2 -

De plus, SP(k r 0 k n ) est la somme directe des (SAk r ) 18> (SAk n ) pour toutes les partitions >.. de p. On en deduit facilement que C(X} est l'enveloppe convexe des points W2 Wn W2 Wr-l ( ) WI,-, ... , - (pourn

t'

X(T)QIlzR=V R

---->

U

U

ou /s.'(TKl est l'ensemble des points fixes de T K dans Ii'. On peut done considerer C(X) C comme plonge dans t', lui-meme plonge dans Ii'. PROPOSITION. -

C(X) est l'ensemble des points rationnels de

Demonstration. - Soient 11" E P++ et n un entier strictement positif, Rappelons que Cn: designe l'orbite fermee de G dans P(Mn:)' Definissons un plongement G-equivariant de X X C; dans p(snM x Mn:) [ou snM est la nieme puissance symetrique de M) par la composition X x c; P(M) x P(M,..) p(snM) X P(M,..) p(snMQIlM,..) ou i est l'inclusion; vest le plongement de Veronese P(M) -+ p(snM); e est le plongement de Segre. D'apres un resultat dfi a Mumford (cf. [N], Appendix), les conditions suivantes sont equivalentes :

(i) E p,(X) ; (ii) la sous-variete Xx C,.. de p(sn MQIlM,,) contient des points semi-stables. Notons Xn le cone affine de snM au-dessus de X c p(snM), et Y Ie cone affine de S" M QIl M,.. au-dessus de Y = X x C,... La condition (ii) equivaut au fait

qu'il existe des fonctions regulieres G-invariantes non constantes sur Y, c'est-a-dire qu'il existe un entier m > 0 tel que =1= O. Or

k[Y]m '::: k[Xn]m

QIl

k[C,..]m '::: k[X]mn

En outre, le G-module k[C,..]m est isomorphe Theorem 2). Done

d'ou

=1=

0

{:>

a

QIl

M:nlr

k[C,..]m. (cf. par exemple [PV],

k[X]mn contient un G-sous-module isornorphe a M m,.. ·

On conclut que : la proposition. COROLLAIRE

E p,(X)

{:>

il existe m

>0

tel que

(cf. [GS] I et II; [K2]i [N:, Appendix).

E C(X), d'ou

p,(X)

est

l'envelopp.e convexe d 'un nombre fini de points rationnels de VR. 2.3. scalaire

On revient au cas d'un corps quelconque. On choisit un produit VxV---+Q

(x, y)

---+

x· y

invariant par le groupe de Weyl de T , et on note I II la norme associee. Le polytope convexe C(X) possede un unique point le plus proche de l'origine (pour la norme II II); soit (J ce point. On peut trouver un entier n > 0 tel que n(J E P++ et que k[X]n contienne un sous-module isomorphe a M n[3l ; on peut donc choisir un covariant cT? : -+ M n [3, de degre n .

X

182

de

PROPOSITION. Pour tout choix de n et est le cone Gnp des vecteurs primitifs de Mnp.

comme ci-dessus, l'image

Demonstration. - Comme est non nul et Gnp \ {o} est une seule orbite de G, il suffit de montrer que I'image de est contenue dans Gn /3 ' Notons Y l'adherence dans Mnp de l'image de c'est un cone ferme de Mnp, stable par G, done Y :> Gnp (en effet l'image Y de Y \ {o} dans P(Mnp) contient I'unique or bite fermee Gnp de G dans P(Mp)). D'autre part, pour tout pEN, le G-module k[GnPl p est isomorphe a M;nP (cf. [VI], loc. cit.]. II suffit done de montrer que k[Y]p est isomorphe a M;nP pour tout pEN. Soit h,p) E P++ x N tel que k[Y]p contienne un sous-G-module isomorphe On a alors un covariant 1/J : Y -> MP"I de degre p, d'oii un covariant 1/J 0 : X -> MP"I de degre rip, Par suite = ; E C(X), done 11;11 ;::: 11,811 par definition de ,8.

a M;"I'

D'autre part, M;"I est isomorphe a un sons-module de k[Y]p, done aussi Par suite, SP Mnp contient un sous-module isomorphe a de k[MnP]p = SP Mp"l' On en deduit (cf. par exemple [Bou], §7, proposition 9 et exercice 18) que Ilnll :5 Ilpn,8ll, avec egalite si et seulement si "I = n,8 j de plus Ie G-module M pn/3 figure avec multipllcite 1 dans SPMnp. On peut done conclure que "I = n,8, et que krY]p est isomorphe a M;nP , d'ou Ia proposition. C OROLLAIRE (Bogomolov). Boit Z une variete affine, sur laquelle G opere regulierement avec un point fixe. On suppose que toute Eonction reguliere, invariante par G , sur Z, est constante (i.e. que Zest Iottuee de points instables). 11 existe alors un 7f E P++ \ {o) et un Grrnorphisme surjectii ie : Z -> G'!r' Demonstration. On peut choisir une G-immersion fermee i : Z -> M au M est un G-module rationnel de dimension finie, et ou 0 E i(Z). Faisons operer k" sur M par homotheties, et no tons X I'adherence de k*i(Z) dans M . La proposition precedente fournit un 7r E P++ et un G-morphisme homogene surjectif :X --> G'!r' Comme k*i(Z) est dense dans X, la restriction de a i(Z) n'est pas nulle. Enfin, comme G1r \ (o} est une seule orbite de G et que = 0, Ia restriction de a i(Z) est surjective, done 0 i convient.

3. Stratification 3.1. Redeflnissons maintenant la stratification de X. Pour tout x E X, notons G· x l'adherence de la G-orbite de x . Pour tout,8 E V+, soit Sp I'ensemble des x E X tels que ,8 soit Ie point le plus proche de 0 dans C(G· x). Si k = C, on retrouve la stratification de X definie a I'aide de I'application moment (cf. 2.2 et

[Kl] §6). Soit 8 l'ensemble des ,8 E V+ tels que Sp ne soit pas vide. D'apres le corollaire 2.1, (ii), l'ensemble 8 est fini ; en outre, il est clair que les Sp , (,8 E B) forment une partition de X. Remarquons que So est l'ensemble des points semistables de X. En effet : x E So {:} a E C(G' x) {:} le cone affine sur G· x possede une fonction reguliere, invariante par G, et non constante.

183

PROPOSITION (cf. [K1l, Lemma 12.16). -

U

8(3-8(3c

Pour tout (3 E 8, on a:

8"{.

11"111>11(311

Autrement dit, /3 est Ie point Ie plus proche de

a dans G(8(3).

Demonstration. - Soit x E S(3 - 8(3. Posons Y = G· x; soit "I Ie point Ie plus proche de l'origine dans C(Y). Choisissons un entier n > 0 tel que n"l E P++, et un covariant cI> : Y --+ M n "{ de degre n; alors cI>(x) n'est pas nul. Prolongeons cI> en un covariant cI>' : X --+ M n "{ de degre n . Comme xES(3 ,il existe y E 8(3 tel que cI>'(Y) =1= o. Done "I = E C(G· y), d'ou 11"111 11/311 car y E 8(3. Comme x 8(3, on a meme 11"111 > 11/311, d'ou la proposition. COROLLAIRE. Les 8(3 (/3 E 8) forment une partition (linie) de X en sous-vexietes localement Iettnees, stables par G.

Demonstration. -

II est clair que

8(3=S(3-(

U

8"{),

11"111>11(311 et on deduit immediatement de la proposition que UU"{II >11(311 8"{ est ferme dans X. Done chaque 8(3 est une sous-variete localement fermee de X. Les autres assertions sont evidentes. 3.2. Rappelons que pour tout tt E P++, on note G1r l'image dans P(M1r ) des vecteurs primitifs de M 1r , et P1r le groupe d'isotropie du point fixe X 1r de B dans G1r • On a G1r = G· X 1r G/ P1r • Soit /3 E V+; alors le groupe P n(3 ne depend pas de l'entier n tel que n/3 E P ++, et on peut definir P(3 = P n(3' Si on considere /3 comme un caractere virtuel de T, alors P(3 est l'ensemble des 9 E G tels que /3(t)g/3(t)-l "ait une limite quand t --+ 0" (cf. [H]).

L'enonce suivant signifie que chaque strate 8(3 est fibree sur G / P(3. PROPOSITION . Soit /3 E 8. On peut trouver un en tier n > 0 tel que n/3 E P ++, et un G-morphisme

0 tel

n/3 E P++, no tons l'ensemble des x E 8(3 tels qu'il existe un covariant cI> : X --+ M n (3 de degre n avec cI>(x) =1= o. Demonstration. -

LEMME. (i)

Cheque

est ouvert dans 8(3.

(ii) 8(3 est Ia reunion des (iii)

C

pour n E N.

pour tout (r, s) tel que r divise s.

Demonstration du lemme. -

(i) est clair.

(ii) Soit x E 8(3 : en appliquant la un covariant cI> :

X --+ M n(3 de

ala variete G . x, on trouve

degre n, envoyant G· x sur

Gn (3 ' Done

cI>(x)

=1=

o.

184

(iii) Soit x E ::f O. Posons Y

Choisissons un covariant

:

X

M rf3 tel que

G . x : alors .k[Y]r contient un vecteur propre de B , de poids r{3' (c/. 2.1). Puisque r divise 8, on peut done trouver un vecteur propre de B, de poids 8{3', dans k[Y]s; d'ou un covariant X M sf3 de degre 8, non nul sur Y. Comme Y est l'adherence de G· z , on voit que n'est pas nul, i.e. x E S(s) f3

Fin de la demonstration de la proposition. du lemme qu'on peut choisir n tel que Sf3 =

On deduit immediatement Soit E la somme des sous-

a L'inclusion E c k[X]n fournit un GE' homogene de degre n, d'ou une application rationnelle,

G­modules de k[X]n isomorphes morphisme 1/J :

X

notee encore 1/J : X P(E'). Par construction, 1/J est definie sur Sf3. Soit G I'image dans P(E') des vecteurs primitifs de E' (i.e. des vecteurs propres d'un sous­groupe de Borel de G). Soit p la multiplicite de dans E . L'isomorphisme de G­modules E' M n f3 ® k P (ou G opere trivialement sur kP) induit un Gisomorphisme G Gnf3 X P(k P ) . D'apres la proposition 2.3, I'image de Sf3 par 1/J cst une sous­G­variete de G, sur laquelle G opere non trivialement. On prend alors pour


EXEMPLES.

a) Formes quadratiques en trois variables. - On considers G = S L{3, k) operant sur l'espace vectoriel M des formes quadratiques en trois variables, et on prend X = P(M) (cE. l'exemple 2.2 a)). Alors X est un plongement de SL(3,k)/SO(3,k), et G a une orbite fermee Y dans X ,telle que

I

o

I

I

=

2Wl'

191

b). On prend toujours G = SL(3,k). Soient M = k 3 ED (k 3 )' , et P(M). Alors X est un plongement de SL(3,k)!SL(2,k), avec deux orbites

X fermees YI = P(k 3 ) et Y2 la figure suivante :

= P(k 3 ) ' , dont

les "poids" sont

\C(X) II I II

II

I

WI

et

W2.

On obtient

192

References IA) [BLV] [Bo]

[Bou] [Br I] [Br 2]

[Bru]

[D] (GS I et II]

IGS III]

[H] [K 11 [K 2]

IKr] [LV)

[N] [Vin]

[V 1]

[V

21

[PV]

M.F. ATIYAH. Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14 (1982), 1-15. M. BRION, D. LUNA, TH. VUST. Espaces homogenes spheriques, Invent. Math., 84 (1986), 617-632. Holomorphic tensors and vector bundles on projective varieties, F •A. B OGOMOLOV. Math. USSR Izv., 13 (1979), 499-556. Groupes et algebres de Lie, Chapitre VIII, C.C.L.S. Paris, 1975. N. BOURBAKI. M. BRION. Invariants d'un so us-groupe unipotent maximal d'un groupe semi-simple, Ann. Inst. Fourier (Grenoble), 33 (1983), 1-27. Quelques proprietes des espaces hornogenes spheriques, Manuscripta M. BRION. Math. , 55 (1986), 191-198. A. BRUGUIERES. Proprietes de convexise de l'application moment, Expose au seminaire Bourbaki, novembre, 1985. J. D IEUDONNE. - Schur functors and group representations, dans: Tableaux de Young et foncteurs de Schur en algebre et geornetr'ie, Asterisque, (1981), 87-88. V. G UILLEMIN et S. STERNBERG. Convexity properties of the moment mapping, Invent. Math. , 67 (1982), 491-513 et 77 (1984), 533-546. Multiplicity-free spaces, J. Differential V. GUILLEMIN et S. STERNBERG. Geom., 19 (1984), 31-56. W.H. HESSELINK. Uniform instability in reductive groups, J. Reine Angew. Math., 304 (1978), 74-96. F. KIRWAN. Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Mathematical Notes, 31, 1984. F. KIRWAN. Convexity properties of the moment mapping III, Invent. Math., 77 (1984), 547-552. H. KRAFT. - GeometrischeMethoden in der Invariantentheorie, Vieweg(BraunschweigWiesbaden), 1985. D. LUNA, TH. VUST. Plongements d'espaces homogenes, Comment. Math. Helv., 58 (1983), 186-245. A stratification of the nullcone via the moment map, Amer. J. Math., 106 L. NESS. (1984), 1281-1330. E.B. VINBERG. Complexite d'actions de groupes reductifs, (en russel. Functional Anal. Appl., 20 (1986), 1-13. TH. VUST. Operations de groupes reductifs dans un type de cones presque hornogenes, Bull. Soc. Math. France, 102 (1974), 317-333. TH. VUST. - Sur les invariants des groupes classiques, Ann. Inst. Fourier (Grenoble), 26 (1976), 1-31. V.L. POPOV, E.B. VINBERG. On a class of quasi-homogeneous varieties, Math. USSR Isv., 6 (1972), 743-758.

MAXIMAL ORDERS OVER CURVES Jan VAN GEEL State University of Ghent. (With an appendix by P. Salberger)

In my talk for the

Dubreil-Malliavin ", I dis-

cussed some result obtained by M. Denert and myself, on maximal and hereditary orders in central simple algebras over global functionfields. It is possible to give a "geometric" interpretation of these results,

[DJ .

especially of the cancellation theorem given in [DVGl] and

This

interpretation is based on Witt's Riemann-Roch theorem for central simple algebras over functionfields. In this paper I describe this geometric approach. In section 3 it is shown how one can use Witt's result to obtain some partial results on orders in central simple algebras over functionfields. The main reason to pursue this approach is that it enables us to obtain results beyond the

case. In

an appendix Per Salberger gives a geometric result from which the above mentioned cancellation theorem follows for quaternion algebras. I am grateful to J.L

for many discussions on the sub-

ject, the proof of the stable norm theorem (originally due to Swan) given here (proposition 2.1) results from these discussions. I am also in dept to M. Denert and P. Sal berger for analogous reasons. The author wishes to thank the university of Paris-Sud (Orsay) for the hospitality and the NFWO for financial support.

194

1. SHEAVES OF ORDERS.

Let C be a complete, geometrical integral, regular curve over a perfect field k. Consider a central simple algebra A over the function field k(C). A maximal 0c - order 0A is a sheaf of maximal orders in A, i.e. f(V,OA) is a maximal f(U,Oc) - order for every affine open set V in C.

Let x be a (closed) point on C, then 0c we denote its maximal ideal with m

x'

,x is a discrete valuation ring

For 0A a max. 0c - order, 0A,x

is a max. 0C,x - order with maximal ideal denoted by M x' The degree

[0,H,X 1M x : 0c ,x 1m X ]

A,r

0c,xlmx: k]

x is the relative residue class degree of

f x is the degree of x and -

which is also relatively minimal.

Thus by the theorem and the corollary above we see that if

js an inte-

hO(Or)=l and Pc XA the k ­ point then P lies on a smooth fibre Xz of X I Z. The

gral 0A ­ ideal of degree ­2 with to

k ­ points of X z correspond bijectively to the integral A ­ ideals isomorphic to

If on the other hand hO(Or)=2 for Or' the right order of which is equivalent to the fact that P lies Then by the theory of Brzezinski, cf. from X

A

then 0ApOr

on a smooth fibre of X/C.

[8J, we know that Xr is obtained

by first blowing up P and then blowing down the proper trans-

form of the fibre at XfllC containing P. But hO(Or)= 2 so X r Ie js a Chatelet bundle, i.e. there is a quadratic extension k' I k such that ->-

c

x k '

has a section. Now it is easy to see that the divisor

of 2 conjugated non­intersecting lines, providing the sections of ->-

-X ­K y

XA

c

is the transform of a divisor in the linear system

x k'

on X., consisting of 2 conjugated lines intersecting in P, i.e. II

to a singular fibre of XA over Z. Hence we have: Theorem A.7

0A

0c

pointA

@ 0C(-I)

m 0C(-2)

a gijgc-

ot XA/Z containing k-pointA and th2

tion ggtwggn thg ot

m 0c(-l)

l2tt 0A ­ ideal6 ot to

ot XA/Z and k ­ pointA ot Xf\IZ.

with hO(Or) to

­2 in Q.

k -

2 lie on thg

with hO(Or) = 1 lie on

212

Finally, let us mention that the situation when r simpler. Then the linear system

1=1

and g(OA) > 2 is

-KX - Xy contains at most one effec-

tive divisor. This divisor can either be a smooth k - curve isomorphic to

or a union of 2 intersecting and conjugated lines (compare with and the k - points (resp. k - point) of this divisor corres-

pond(s) to one isomorphism class of integral A - ideals of The other isomorphism classes (i.e, those with

= 1)

-2.

consist of

single A - ideals.

References.

[0]

M. Denert, Orders, in non Eichler algebras over global

functionfields, haVing the cancellation property, To appear. [DVGl]

M. Denert, J. Van Geel, Cancellation property for orders in non Eichler division algebras over global functionfields,

J. retne angew. Math. 368 (1986), 165-171. [DVG2]

M. Denert, J. Van Geel, The Classnumber of hereditary orders in non Eichler algebras over global functionfields, To appear.

[H]

R.

Hartshorne, Algebraic Geometry, Springer Verlag, Berlin -

Heidelberg

1977.

LR]

I.

[Sa]

P. Salberger, K-theory of orders and their Brauer-Severi

Reiner, Maximal Orders, London 1975.

schemes, Thesis Goteborg 1985. [Swl]

R. Swan, Strong approximation and locally free modules, in

Ring theory and Algebra III, ed. B. McDonald, Marcel Dekker, New York 1980 [Sw2 ]

R. Swan, Projective modules over binary polyhedral groups,

J. reine angew. Math. 342 (1983), 66-172.

[v]

M. Van Den Bergh, Algebraic subfields and splitting fields of division algebras over function fields, Thesis Antwerp 1985.

[VV]

M. Van Den Bergh, J. Van Geel, Algebraic elements in division algebras over function fields of curves, Israel J. of Math.,

52,no 1-2,1985, 33-45.

lid

E. Witt, Riemann-Rochser satz and Z-functionen in Hypercomplexen, Math. Ann. 110, 1934, 12-28.

213

References added in the appendix.

M. Artin, Left Ideals in Maximal Orders, Springer LN 917, 1982, 194-210.

[BJ

J.

Brzezinski, Brauer-Severi schemes of orders,Springer LN 1142,

1985, 18-49.

nt,

V. Iskovskih, Birational properties of surfaces of degree 4 in Mat. Sb.(N.S.),88 (1972), 31-37.(=Math. USSR-Sb. Vo1.17 (1972) no 1,30-36.). V. Iskovskih, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR ser Mat.43 (1979), 19-43.(=Math. USSR-Izv. 14 (1980), 17-39.),

Ghent,Octobre 1986. State University of Ghent Seminar of Algebra and Functional analysis. Galglaan, 2 B-9000 Belgium.

GHENT

LINEAR COHEN-MACAULAY MODULES ON INTEGRAL QUADRICS J.HERZl. Thus a linear MCM-module over S has the projective A-resolution

o It

follows

-+

Zl(M)0A(-l) R

from

this

-+

ZO(M)0A R

resolution

-+

M

that

-+

0 M

is

in

fact

a

cohen-Macaulay module. The main goal of this paper is to prove the following

Theorem 1: Let R be the ring of integers of an algebraic number Field. Then For each integer number

of

isomorphism

classes

of

there exists only a Finite linear

MCM-modules

of

rank

m

over S.

This Theorem implies a result on matrix factorizations which in fact is equivalent to Theorem 1 if R is factorial. Let Em denote the unit matrix of size m, Eisenbud

[5]

According to D.

one calls an equation QE where a and (3 are m=a(3, square matrices with linear forms (elements of A as coeffil)

216

cients, a matrix factorization (of size m) of Q. Two such factorizations QE

are called equivalent, if there exist matri-

m

ces S,TEGI(miR) such that a'=SaT ization

-1

-1

, and

.

• A matr1x factor-

is called decomposable if there exist matrix factor

izations

and

g2]i

such that

is equivalent to

otherwise it is called indecomposable.

Now Theorem 1 implies

Theorem 1': Let Q be a quadratic the

ring of

integer

form with coefficients in

integers of an algebraic number

field.

Then for any

there exist only a finite number of equivalence clas-

ses of matrix factorizations of size m of the quadratic form Q.

We will prove these Theorems by applying the methods introduced in (2], where we proved similar (but stronger)

results for

quadratic forms with coefficients in a field. On the one hand we consider the category

of linear MCM-mo-

dules. The linear MCM-modules are naturally graded with all generators in degree o. Thus we define the morphisms in

to be the

linear homogeneous maps of degree O. On the other hand we consider the even part Co (Q)

of the Clifford algebra C(Q).

that Co(Q) is a (free) R-order of R-rank 2 category

of

Co (Q) -modules which

generated as R-modules.

are

n- 1.

It turns out

We denote by

R-torsionfree

and

the

finitely

217

Theorem 2: The category of Linear MCM-moduLes

and the cate-

gory A of CO(Q)-moduLes (which are finiteLy generated over Rand O R-torsionfree) are equivaLent.

Theorem 1 is an immediate consequence of Theorem 2 and the Jordan-Zassenhaus Theorem ([10] and [4], Theorem (79.1». We shall which establishes

see in Proposition 3 that the functor the

equivalence

of

the

categories,

has

the

property

that

for all So it suffices to show that there exist only finitely many isomorphism classes of Co(Q)-modules of a given R-rank.

But this

follows from the Jordan-Zassenhaus Theorem, since, as Q is non-degenerate,

the tensorproduct K0C (Q) O

is a

semi-simple K-algebra,

R

see [6].

Before we define the functor

::£-+"«0 we show

(following the

ideas of D.Eisenbud in [5]) how the linear MCM-modules are relatad to matrix factorizations.

proposition 1: a) compLex 0

-+

homogeneous

Linear MCM-moduLe with

Z1 (M)0A(-1) S ZO(M)0A -+ M homomorphism

Q.id Z (M)0A=a{3.

o

Let M be a

Moreover,

-+

{3:Z0(M)0A(-2) (Coker{3) (1)

-+

o.

Then

there

Z1 (M)0A(-1)

is again a

Linear

exists a such

Linear

that

MCM-mo-

duLe.

b) Given (finiteLy generated) torsionfree R-moduLes NO and N and I, homogeneous homomorphisms N 10A(-1) R

S N00A R

and N 00A(-2) R

N10A(-1) R

218

such that Q.id

then Cokera is a linear MCM-module.

No

Proof: a) Since M is an S-module we get a commutative diagram

where lemma

0

ZO(M)@A(-2)

0

Zl (M)0A(-1)

S a

Zo(M)@A !id

ZO(M)@S !E. M

ZO(M)0A

is the natural induced homomorphism. we

see

that

and

using

0 0

Applying the snake b)

it

follows

that

is a linear MCM-module. N1@A(-1) S NO@A

b) Let M=Cokera, then clearly 0 the linear complex of M. In fact, a equation Q' idN @A

o

M

0 is

is injective because of the



Thus it remains to be shown that M is R-torsion-free. equation

Q' idN o

implies

where

Q'id N

and

'fI

(i)

1

denotes the i -th twist of the homogeneous map exchange the role of a

The

'fl.

Hence we may

and show instead that

is

R-torsionfree. In the above commutative diagram, if we replace the Zi(M) by the Ni we obtain as before Suppose we know already that S is R-torsionfree, then, as R is a Dedekind ring and No is R-torsionfree,

N and hence also 00S

is R-torsionfree. Now we show that S is R-torsionfree. Let s S, r R, r#O, such that rs=O.

If a A is a representative for s then ra=Qh for some

polynomial h A. Let

be a prime ideal of R. We denote by v

ation, and for f A, seen that

V

v

XV we set v

the

valu-

(f)=min{v (a )}. It is easily v v

for all f,g A.

219

Applying this rule to the equation ra=Qh, we get for

all

since

Q

is

primitive.

But

this

implies that h=rh' for some h' A, and therefore a=Qh', and s=o.

Corollary:

The

isomorphism

cl.asses

of

l.inear

MeM-modul.es

M

over S=A/Q, for which the homogeneous components M are free R-mo-

i

dul.es, correspond bijectivel.y to the equival.ence cl.asses of matrix factorizations of Q.

The Corollary shows in parti.cular that,

in fact,

implies Theorem l' and is equivalent to Theorem l'

Theorem 1

if R is fac-

torial.

Proof

of

the

MCM-module M for

Corollary:

The

linear

complex

of

a

linear

which the homogeneous

components M are free i R-modules is an A-free resolution of M. Having chosen bases for ZO(M) and Zl(M), the equation Q·id z

o

yields a matrix fac-

torization of Q. Conversely, Proposition 1),b) shows that a matrix factorization of Q yields a linear MCM-module. It is clear that this correspondance establishes a bijection between the

isomorphism classes

of

linear MCM-modules

and

the

equivalence classes of matrix factorizations of Q.

We now briefly describe the Clifford algebra C(Q) associated

. Q. Let F=A* be the R-dual of the free R-module A w1th . dual w1th 1 l . ei=x * for 1=1, . bas1s ... ,n, and let T=T(F) be the tensor algebra of i

220

F.

The Clifford aLgebra C(Q)

of Q is the quotient algebra TjI,

where I is the two-sided ideal of T which is generated by the elements X=

x F.

Here

we

have

set

n 2: x e .• i=l l l

Q(x):=Q(x1, ... ,xn)

for

i

Proposition 2:

a)

C(Q)

is a

7l.j2Z-graded aLgebra,

decomposes as R-moduLe into a direct for

c.L

L i,j {O,l}

one

has

that

is,

sum CO(Q)lDC 1 (Q), such that where k {O,l} and

k=i+jmod2. b)

CO(Q) and C1(Q) are free R-moduLes with bases j even} and j odd} respectiveLy.

c) The composition of the naturaL maps and C(Q)

is an injection,

is generated by the image of F in C1(Q)

(which we identi-

fy with F).

Proof: a) and c) follow immediately from b). It thus suffices to prove b). elements

The defining ideal of C(Q)

2

ei-a

for i=l, ... ,n, and ii Using these relations we see that

certainly contains the

e.e.+e.e.-a.. l J

J l

lJ

for

is a system of genera-

tors for the R-module C(Q). We will write Q* if we consider Q as a quadratic form with coefficients in the quotient field K of R. Then

and under this isomorphism

is mapped onto a

R

basis of C(Q*), as one knows for Clifford algebras over fields, see [6]. But then

must have been an R-basis for C(Q) as well.

221

We denote by A the category of Z/2Z-graded C(Q)-modules which as R-modules are finitely generated and torsionfree. Our next aim is to define functors Definition

and

of

Let

then

we

set

and

To explain the action of C(Q) on ZO(M)$Zl(M) it suffices to define the multiplication by elements of F, since F generates C (Q) . Given two R-modules MO,M

1

and a

free R-module G,

there are

natural isomorphisms

C*)

R

Thus to the homogeneous components Zl(M) Zl(M)@A1 of a and

P

oZO(M)@A

ZoCM) and F@ZoCM)

R

Zl(M),

R

which define the multiplication on

x

*)

and 1 correspond R-modules homomorphisms

F@ZlCM)

It follows 2m=x(xm)=Q(x)m

a

R

easily

from

by the elements of F.

the

identities

for all x F and

Q-id=ap=pa,

so that in fact

that has a

C(Q)-module structure. Finally, maps 'PO:ZO(M)

a morphism 'P:M

M'

in

ZO(M) and 'P1:Z1(M)

induces unique R-linear Zl(M), and we set

It is easily seen that the so defined

A is a

functor. Definition of

Let N=No@N1 A. The multiplications with ele-

ments of F define maps F@N

R O

phisms (*), we obtain maps NO

N and F@N 1 R 1 N1@A

R 1

and N 1

NO- Using the isomorNO@A

R 1,

which can be

uniquely extended to homogeneous A-linear maps NO@A(-l)

R

N1@A and

R

222 a

N -+ N such that Q-id O (ii)

Let

M

be a maximal ideal of

be a maximal we have

r.

in inj.

is an Artinian regular in

RI

dim

[X

M

Suppose that

+ . . + xnR

1R

(quasi-Frobenius)

R/l x

1R

now that

+ ... +XnR




R.

Now R

Thus

nR] is

n+ 1 k';; n

is a maximal k the ideal MI [ xl R + ... +XkR] which is regular in

RI

X

X

+ ... + XkR

1R .;; k

(R/l)

Is

1R

+ ... + xkR J contains Since

where pd.

denotes the

we have a short exact sequen-

R

n

Thus

k

n

Thus

.;; rank

Let

S

be a

is integral over a say.

x

(M)

Ext

n

R

(S,R) M

0

for each

n

and since

and

is minimal (or by 6.1),

is

By assumption, M

R

1R+

the image of

by the generalised principal ideal theorem

Thus (i)

...+X

[X

Extn(R/l,R) .... Extn(S,R) .... R R ExtRn(R/l,R) o since pd. R/l k < n

n+1 (Y,R). Now R n+1 Ext (Y,R) 0 since r. inj. dim. R which is a contradiction. Therefore over

[1,2.2]

RI

simple right R-module and let central subring,

contains a

By [1,2.2J ,

r.

inj.

of length dim.

RI

annRS

M is a maximal ideal [X

1R

n

+ ... + xnR

o

So R/[ xl R + ... + x R is a simple is a Quasi-Frobenius ring. Now S n RI [ xl R + . . . + x n R ] module so we may assume S c RI [ X 1R + ... + x n R] Therefore Now 0 where R* HomR*(S,R*) RI X 1 R + ... + x n R] by 2.1

"

Thus

R

k

This gives

.... Ext

maximal ideal of

, . . . ,x

" " ,x

I

(R/l)

1,x 2

Then by

contradiction.

3.1,

Let

n

and so

However,

which is a

and let x

>

k

0

in M, in the ring RI [ xl R + ... + x k R 1 does not contain the image of an element of a

R

is injectively homogenous.

o

240 4.2.

PROPOSITI,ON. Let

R

be a right Noetherian ring integral over a central subring Z

Let

be a

in

If

R

homogeneous t.h e n so is the ring R*= R/(Zk

1.=1

r.

inj.

dim.

inj.

dim.

x R)

Moreover

i

R-k,

Clearly i t is enough to check this for

Proof r.

R* = r.

inj.

dim R = n

right

r.

Then

R*-module.

Then by

inj.

2. 1 Ext

D

result follows.

is right injectively

R

dim R*

n

since by

[1 , 1.4] ,

242

r.

inj.

dim.

R(:";;

n

we have r.

[ 11 , 2 . 7 ]

. Thus as in

i

1+.,,+i p

= n

1

O'i

O'i

2

P

(

[ et cela pour tout couple d' elements Pour une haute 0 -deri vation

.L

0' (a) Lsps n p si pn , et

a

et

b

de

{J

n,p

(b)

n, avec KJ.

ou

{J

n

i >0 , r

)

(on) de K, 11 faut "adapter" la formule cr-

0

dessus, en y apportant une legere modification (modification due au « decalage » d'indices : 0 = 0' 1 ' n n+

pour tout

3.2. Pour tout automorphisme 0 yation de K

K toute suite

telle que, pour tout

«$»

et

pour tous 6

pour tout 3 . 3.

n = i

0

(0) n n

n

':': ,+r i+l=

En [7), I I ,

(

0 d'applications additives de

on (ab) = 0

n-j

0

0

r 1 r2

avec

r

s

Ce qui donne ceci :

K , on peut appeller

1

aE" K, bE" K,

i , U1

de

n , nE" N).

0

> :­.

K dans

au ($$)

r i+ 1 )

nous avions considere des suites serielles de longueur ... ,(fk)'

Mais, iei, plutot que de parler de hautes finie ({fl' {f2' derivations "de longueur finie", on parlera de "segments de hautes bis derivations", comme en (5 ], § 0: une suite finie (0 0 ... , Ok) 0, 1, d'applieations additives de K dans K (au sera dite segment de 00-deriyation verifiee pour tout

si, et seulement si, l'egalite n

«$»

de (3.2) est

tel que

3.3.1. Toutes les notions ou definitions concernant les hautes se transferent de

evidente aux segments de hautes rr-derivations. Par

exemple : -- un segment (0 ) de haute {J-derivation est trivial si n

0 = 0 pour n

285

-- (on)O(n(k tel que

est un segment de haute

I

fondamentale s'1l est

:= 0 pour tout n non multiple de ll:. Et on detin1t l'indice n numerique, et Ie premier terme non trivial d 'un seEf11!lBDt non trivial de haute fondamentale, exactement comme on l'a fait pour une

S

haute

fondamentale non tr1v1ale.

a

Pu1sque l'on s'interessera 1ci uniquement fondamentales (y

n

)

= (0

-1

nx

des hautes 00-derivations

(0), il sera sou vent naturel de traiter avec la suite n ). Et il est utile d'ecr1re la formule expr1mant ¥ (ab), n

b1en que cette formule ne s01t pas plus simple que celIe donnant 0 (ab): n

3.4. S01t = 0 un automorph1sme periodique de K , de periode IT • 0 -1 Soit (S ) une haute SO-derivation fondamentale, et not one Y = S n ml: n pour tout n I n 0 Alors Y = id , et, pour tout n , nn 0 K «&JJ pour taus Lie: K , bE: K , (ab) = Yi Yn ou

r n0

et

Yn

pour tout

rn = i

i , D1

3.4.1 Et si

L

>

Y

(

avec

r

e

... 11¥

r2

ire+1

I

rill:

(&&)

r i 11:+ 1

)

est un segment de haute 00-derivation fondamentale

tel que

alors l'application

pour tout

r1

r 1+... +r i 11:+ 1 : n-i

n

tel que

1

nlt: ( k

3.4.2. Reciproquement, si

Y n

S

-1

possede la propriete «&))

nll:

au

(resp.

famille d'applications additives de

K dans

est une

K telle que

YO

que la condition «&JJ soit verifiee pour tout

n,

alors la famille

dafin1e en posant :

[resp.

(om)O(m(kre J

resp.

= 1d K

Snre = Y pour tout n, n s O [resp. n { S = 0 lorsque m n'est pas multiple de re m

est une haute

[resp. un segment de haute]

et ],

et

l1-derivation fondamentale.

Dans ce qui suit, on utilise souvent les suites (Y

et il est done n), commode de disposer d'une terminologie specifique designant ces suites: 3.4.3. DEFINITION. On appelle d'applicat1ons addit1ves de

l1-differen1ielle de K dans

K

I

K toute suite

telle que

et que la condition «&» de (3.4) soit satisfaite pour tout Et on dira qu'une suite finie dans

K est un segment de suite

¥O

= idK

n. n;l.

d'appl1cations additives de si

YO = id

K

K

et s1 la

286

condition «&» de (3.4) est verifiee pour tout

n

tel que

3.4.4. La suite (¥ ) definie en (3.4) a partir d'une haute n

fondamentale (on) sera appelee la suite

associee

De

la suite (0 ) definie en (3.4.2) m rentielle sera appelee la haute

a

la suite

Et on emploira Ie

a

a

(on)

partir d'une suite fondamentale associee

vocabulaire pour la correspondan-

ce indiquee en (3.4.1) et (3.4.2) entre segments de hautes fondamentales et segments de suites Conventions de notations n

toute famille si

k

ecrite simplement

est un entier fixe (k>O), toute famille n

sera notee simplement 3.4.5. Comme en en (3.2),

n

[5

bi s]

, la famille

des applications definies

cs s », sera dite famille des tteres de 1a haute 00­derivation n

De

la famille (r i)O\Hn definie en (3.4), (&&) , sera dite fa111ille des tteres de la suite . n La formule de definition de [ resp. de r montre que : i

n

,

ne depend que de 0 , 0 1, 0 fn ne depend que de [ resp. i et qu'en particul1er : 3.5.

3.6.

n n

n+1

on+1 = 0

[ resp.

r nn =

sn­i

( Cf , alJss 1' ( 5bis J ,

, Y­ n i

Yl'

(f

ml:

(O,S))

= id K

(cf .

rs bi s ]

I

(0.6»

3.7. Etant donne un segment de haute 00­derivation (on)O\n\k ' 1a formuIe

($$)

n

de (3.2) permet de definir la famille des iteres de ce segment, soit (cf. (3.5»

. De

on peut M,finir la famille des iteres

([n) d'un segment de suite i O\i\n\k+i



3.8. Soit (on) une haute 00­derivation de