Massanalyse: Theorie und Praxis der klassischen und der elektrochemischen Titrierverfahren [9., durchgesehene Auflage. Reprint 2020] 9783112321683, 9783112310496


252 31 23MB

German Pages 313 [340] Year 1961

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Inhalt
Literatur
Einführung und Grundbegriffe
Erster Teil: Die praktischen Grundlagen der Maßanalyse
I. Die Praxis der Volumenmessung
II. Die Maßflüssigkeiten
Zweiter Teil: Die klassischen Methoden der Maßanalyse
Erster Abschnitt: Die Oxydations- und Reduktionsanalysen
III. Oxydations- und Reduktionsvorgänge
IV. Die Manganometrie
V. Die Kaliumdichromatmethode
VI. Titrationen mit Kaliumbromat
VII. Die Jodometrie
Zweiter Abschnitt: Die Neutralisationsanalysen
VIII. Die Grundlagen der Neutralisationsanalysen
IX. Die Farbindikatoren der Neutralisationsanalyse
X. Alkalimetrie und Acidimetrie
Dritter Abschnitt: Die Fällungs- und Komplexbildungs- Analysen
XI. Die Grundlagen der Fällungsanalysen
XII. Die hydrolytischen Fällungsverfahren
XIII. Die fällungsanalytische Bestimmung des Silbers und die Argentometrie
XIV. Tüpfelanalysen
XV. Komplexometrie
Dritter Teil: Die elektrochemischen Methoden der Maßanalyse
XVI. Allgemeines über die elektrochemischen Verfahren der Maßanalyse
Erster Abschnitt: Die Konduktometrie
XVII. Theorie und Praxis der Leitfähigkeitstitration
XVIII. Anwendungsmöglichkeiten und Kurventypen konduktometrischer Titrationen
Zweiter Abschnitt: Die Potentiometrie
XIX. Die theoretischen Grundlagen der Potentiometrie
XX. Die Praxis der Potentiometrie
XXI. Beispiele für die Anwendungsmöglichkeit potentiometrischer Titrationen
Anhang: Kurzer Überblick über die Geschichte der Maßanalyse
Atomgewichte
Namenregister
Sachregister
Front matter 2
Inhaltsübersicht
Geisteswissenschaften
Naturwissenschaften
Technik
Sammlung Göschen / Bandnummernfolge
Autorenregister
Recommend Papers

Massanalyse: Theorie und Praxis der klassischen und der elektrochemischen Titrierverfahren [9., durchgesehene Auflage. Reprint 2020]
 9783112321683, 9783112310496

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

SAMMLUNG

GÖSCHEN

BAND

2217221a

MASSANALYSE THEORIE U N D PRAXIS DER KLASSISCHEN U N D DER ELEKTROCHEMISCHEN TITRIERVERFAHREN

DR. G E R H A R T

JANDER

o. P r o f e s s o r f ü r a n o r g a n i s c h e C h e m i e an der Technischen Universität Berlin-Charlottenburg und

DR. K A R L F R I E D R I C H

JAHR

o. P r o f e s s o r f ü r a n o r g a n i s c h e C h e m i e an der Freien Universität Berlin

Neunte, durchgesehene Auflage Mit 49 Figuren

WALTER DE GRUYTER & CO. v o r m a l s G. J . Gösch e n's che V e r l a g s h a n d l u n g • J . G u t t e n t a g , V e r l a g s b u c h h a n d l u n g • G e o r g R e i m e r • K a r l J . T r ü b n e r • Veit & C o m p .

BERLIN

1961

Die 9. Auflage wurde bearbeitet von Dr. rer. nat. Heinz Knoll Institut für Anorganische Chemie der Freien Universität Berlin

© Copyright 1961 by Walter de G r u y t e r & C o . , Berlin W 30. — Alle Rcchte, einschl. der Rechte der Herstellung von Photokopien und Mikrofilmen, von der Verlagshandlung vorbehalten. — Archiv-Nr. 11 02 21. — Satz und Drude: Thormann & Goetsch, Berlin-Neukölln. — Printed in Germany.

INHALT Literatur

Seite

7

Einführung und Grundbegriffe

11

Erster Teil: Die praktischen Grundlagen der Maßanalyse

15

I. Die Praxis der Volumenmessurig 1. Die M e ß g e f ä ß e 2. Eichung u n d Nachprüfung der M e ß g e f ä ß e 3. Das Reinigen und Trocknen der M e ß g e f ä ß e und Glasgeräte II. D i e Maßflüssigkeiten 1. Empirische Lösungen und Normallösungen 2. Die Bereitung u n d Einstellung der Lösungen

15 15 20

Zweiter Teil: Die klassischen Methoden der Maßanalyse Erster Abschnitt: DieOxydations- und Reduktionsanalysen

36 37

I I I . Oxydations- u n d Reduktionsvorgänge 1. Definition der Begriffe Oxydation u n d Reduktion 2. Oxydations- u n d Reduktionspotentiale IV. Die Manganometrie 1. Die Oxydationswirkung des Kaliumpermanganats 2. Die Bereitung und Einstellung der Kaliumpermanganatlösung 3. Die Bestimmung des zweiwertigen und des dreiwertigen Eisens in schwefelsaurer Lösung 4. Die Bestimmung des zweiwertigen u n d des dreiwertigen Eisens in salzsaurer Lösung 5. Die Bestimmung des Urans u n d der Phosphate 6. Die Bestimmung der Oxalate und des Calciums 7. Die Bestimmung des Wasserstoffperoxids u n d der Peroxo-disulfate 8. Die Bestimmung der Nitrite u n d der Nitrose 9. Die Bestimmung des Hydroxylamins 10. Die Bestimmung des Mangan(IV)-oxids und des Mangans in Eisen, Stahl und manganhaltigen Eisenerzen 11. Die Bestimmung des zweiwertigen Mangans V. Die Kaliumdichromatmethode 1. Die Oxydationswirkung des Kaliumdichromats. Die Schwierigkeit der E n d p u n k t s e r k e n n u n g 2. Die Bereitung der Kaliumdichromatlösung 3. Die Bestimmung des Eisens mit Kaliumhexacyanoferrat (III) als Tüpfelindikator 4. Die Bestimmung des Eisens mit Diphenylamin bzw. Natrium-N-Methyldiphenylamin-p-sulfonat als Redoxindikator

37 37 39 43 43

27 28 28 31

44 50 54 59 59 61 62 63 63 64 68 68 70 71 73

4

Inhalt Seite V I . Titrationen mit Kaliumbromat 1. Die Oxydationswirkung des Kaliumbromats 2. D i e Bereitung der KaliumbromatlÖsung 3. D i e Bestimmung des dreiwertigen Arsens und des dreiwertigen Antimons 4. D i e Bestimmung des Wismuts

74 74 75

V I I . D i e Jodometrie 1. Die Grundlagen der Jodometrie 2. Die Erkennung des Endpunktes bei jodometrischen Titrationen. Die Bereitung der Hilfslösungen 3. D i e Bereitung und Einstellung der Natriumthiosulfatlösung 4. D i e Bereitung und Einstellung der Jodlösung 5. D i e Bestimmung der Sulfide und der Sulfite 6. D i e Bestimmung des Hydrazins 7. Die Bestimmung von Verbindungen des dreiwertigen Arsens, des dreiwertigen Antimons und des zweiwertigen Zinns 8. D i e Bestimmung der Quecksilber(I)- und der Quecksilber(II)-Salze 9. D i e Bestimmung der Jodide 10. D i e Bestimmung der Chlorate, Bromate, Jodate und Perjodate 11. D i e Bestimmung des Wasserstoffperoxids, der Peroxide, Perkarbonate und Perborate 12. D i e Bestimmung der höheren Oxide 13. Die Bestimmung der Hexacyanoferrate 14. D i e Bestimmung der Cyanide und der T h i o c y a n a t e 15. D i e Bestimmung des Kupfers

77 77

Zweiter Abschnitt: Die Neutralisationsanalysen

76 76

80 83 88 90 91 91 93 94 95 96 97 102 103 104

108

V I I I . D i e Grundlagen der Neutralisationsanalysen 1. Der Neutralisationsvorgang 2. Wasserstoffionenkonzentration und Wasserstoffexponent 3. D i e Bedeutung des Ionenproduktes für den Neutralisationsvorgang; Titrationskurven 4. Stärke der Säuren und Basen 5. D i e Erscheinung der Hydrolyse

108 108 110

I X . D i e Farbindikatoren der Neutralisationsanalyse 1. D i e gebräuchlichsten Indikatoren 2. Umschlagspunkt und Umschlagsbereich 3. D i e praktische Anwendung der Indikatoren in der Neutralisationsanalyse 4. D i e Theorie der Indikatoren

123 123 126

X . Alkalimetrie und Acidimetrie 1. D i e Bereitung und Einstellung der Säuren 2. D i e Bereitung und Einstellung der Laugen 3. D i e Bestimmung starker und schwacher Basen 4. D i e Bestimmung der Karbonate, sowie die Bestimmung von Hydroxiden und Karbonaten nebeneinander 5. D i e Bestimmung von Alkalikarbonat und Alkalihydrogenkarbonat nebeneinander

142 142 147 151

112 116 119

128 132

152

Inhalt

5 Seite

6. D i e Bestimmung der vorübergehenden und der bleibenden Härte des Wassers 7. D i e Verdrängung schwacher Säuren und schwacher Basen 8. D i e Bestimmung des Ammoniaks in Ammoniumsalzen, der Salpetersäure in Nitraten und des Stickstoffgehaltes organischer Substanzen 9. D i e Bestimmung starker und schwacher Säuren. Die Gehaltsermittlung von Acetaten und Boraten 10. D i e Bestimmung mehrwertiger Säuren und saurer Salze 11. D i e Bestimmung von Salzen durch Anwendung von Ionenaustauschern

Dritter Abschnitt: Die Fällungs- und KomplexbildungsAnalysen X I . D i e Grundlagen der Fällungsanalysen 1. Der Fällungsvorgang 2. D i e Änderung der Ionenkonzentration im Verlauf einer Fällungsanalyse. D i e Titrationskurven 3. D i e Methoden der Endpunktsbestimmung XII.

D i e hydrolytischen Fällungsverfahren 1. Ihre Grundlage und ihre Bedeutung 2. D i e Bereitung und Einstellung der Kaliumpalmitatlösung 3. D i e Bestimmung der Gesamthärte und der Magnesiahärte des Wassers

X I I I . D i e fällungsanalytische Bestimmung des Silbers und die Argentometrie 1. D i e Bereitung und Einstellung der Maßlösungen 2. D i e Bestimmung des Silbers nach Gay-Lussac 3. D i e Bestimmung des Silbers und des Kupfers, der Halogenid-, Thiocyanat- und Cyanid-Ionen in saurer Lösung nach J . Volhard 4. Die Bestimmung der Halogenid-Ionen in neutralen Lösungen löslicher Halogenide nach F r . Mohr 5. D i e Bestimmung der Halogenid-, der Thiocyanat- und der Silber-Ionen nach K. F a j a n s

154 157 158 162 167 169

172 172 172 176 179 184 184 185 187 188 188 191 194 198 201

X I V . Tüpfelanalysen 1. D i e Bestimmung des Zinks mit Kaliumhexacyanoferrat (II) 2. D i e Bestimmung des Bleis mit Ammoniummolybdat . . . .

202

X V . Komplexometrie 1. D i e Bestimmung der Cyanide nach J . v. Liebig 2. D i e Grundlagen der Chelatometrie 3. D i e Bestimmung des Magnesiums und des Calciums sowie die Bestimmung der Gesamthärte des Wassers

207 208 209

203 205

214

Dritter Teil: Die elektrochemischen Methoden der Maßanalyse

220

X V I . Allgemeines über die elektrochemischen Verfahren der Maßanalyse

220

6

Inhalt

Erster Abschnitt: D i e Konduktometrie XVII. Theorie und Praxis der Leitfähigkeitstitration 1. Die Grundlagen der Leitfähigkeitstitration 2. Die Titriervorriditung 3. Die Methoden der Leitfähigkeitsmessung XVIII. Anwendungsmöglichkeiten und Kurventypen konduktometrischer Titrationen 1. Neutralisationsvorgänge 2. Konduktometrische Fällungsanalysen 3. Leitfähigkeitstitrationen in siedenden Lösungen Z w e i t e r Abschnitt: D i e Potentiometrie XIX. Die theoretischen Grundlagen der Potentiometrie 1. Die Elektrodenpotentiale und ihre Abhängigkeit von der Konzentration 2. Die Änderung des Elektrodenpotentials im Verlauf potentiometrischer Titrationen XX. Die Praxis der Potentiometrie 1. Die Meßkette ; 2. Die Potentialmessung 3. Verschiedene Methoden der praktischen Durchführung potentiometrischer Titrationen XXI. Beispiele f ü r die Anwendungsmöglichkeit potentiometrischer Titrationen 1. Fällungs- und Komplexbildungsanalysen 2. Neutralisationsanalysen 3. Oxydations- und Reduktionsanalysen

Seite 223 223 223 226 228 233 233 237 238 240 240 240 248 253 253 258 263 267 268 273 280

A n h a n g : Kurzer Überblick über die Geschichte der M a ß analyse

286

Atomgewichte

291

Namenregister

292

Sachregister

294

LITERATUR Die im Text in [ ] angegebenen Ziffern beziehen sich auf dieses Literaturverzeichnis. Auf Originalarbeiten ist im Text durch Angabe des Jahres der Veröffentlichung hingewiesen. [11 Anorganische Nomenklatur-Kommission der Internationalen Union für Reine und Angewandte Chemie (IUPAC): Richtsätze für die Nomenklatur der Anorganischen Chemie (Deutsche Fassung). Chem. Ber. Nr. 7/1959. S. XLVII—LXXXV. [2] D'Ans, J. u. E. Lax: Taschenbuch für Chemiker und Physiker. Berlin: Springer 1943 (unveränd. Neudruck 1949). [3] Asmus, E.: Einführung in die höhere Mathematik und ihre Anwendungen. 3. Aufl. Berlin: de Gruyter 1959. [4] Autenrieth, W . u. O. Keller: Quantitative chemische Analyse. 10., durchgesehene Aufl. Dresden: Th. Steinkopff 1959. [5] Beckurts, H.: Die Methoden der Maßanalyse. 2. Aufl. Braunschweig; Vieweg 1931.

Literatur

7

[6] Berl, W . G . : Physical Methods in Chemical Analysis. Bd. 1—3. New York: Academic Press 1950, 1951, 1956. [7] Berl, W . G. u. G. L u n g e : Chemisch-technische Untersuch un gsmethoden. Bd. 1—2. 8. Aufl. Berlin: Springer 1931—1934. (Darin von besonderer Bedeutung: Zintl, E . , „Elektrometrische Maßanalyse". Bd. 1. S. 403); desgl. Ergänzungswerk. Hrsg. J . D'Ans. Bd. 1—3. Berlin: Springer 1939—1940. [8] Biltz, H. u. W . Biltz: Ausführung quantitativer Analysen. 8. Aufl. bearb. von W . Fischer, Stuttgart: Hirzel 1958. [9] Bjerrum, N . : Die Theorie der alkalimetrischen und acidimetrischen Titrierungen. Stuttgart: E n k e 1914. [10] Blasius, E . : Chromatographische Methoden in der analytischen und präparativen anorganischen Chemie unter besonderer B e rüdcs ich tigung der Ionenaustauscher. Stuttgart: E n k e 1958. (Die chemische Analyse, Bd. 46. Hrsg. G . Jander.) [11] Böttger, W . : Physikalische Methoden der analytischen Chemie. Hrsg. W . Böttger. T e i l 1—3. Leipzig: Akadem. Verlagsges. T e i l l u. 3 — 1. Aufl. (1933 u. 1939), Teil 2 — 2. Aufl. (1949). [12] Britton, H . T . S . : Conductometric Analysis. London: Chapman & Hall 1934. [13] Chariot, G . et R. Gauguin: Les méthodes d'analyse des réactions en solutions. Paris: Mason & Cie 1951. [14] Classen, A . : T h e o r i e und Praxis der Maßanalyse. Leipzig: Akadem. Verlagsges. 1912. [15] Cramer, F . : Einschlußverbindungen. Berlin, Göttingen, Heidelberg: Springer 1954. [16] Drucker, C . : Messungen elektromotorischer Kräfte galvanischer Ketten mit wäßrigen Elektrolyten. Berlin: Verlag C h e m i e 1929. Abhandlungen der Deutschen Bunsengesellschaft, Nr. 10, E r gänzungsheft zu Nr. 5. [17] Ebert, L . u. L . T u b a n d : Leitfähigkeit und Übcrführungszahlen in flüssigen und festen Elektrolyten, i n : Handbuch der Experimentalphysik. Hrsg. W . Wien u. F . Harms — Elektrochemie, I . T e i l bearb. von K. Fajans Leipzig: Akadem. Verlagsges. 1932. [18] Ender, F . : Wasserstoffionenkonzentration, i n : Hoppc-Seyler-Thierfelder, Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Aufl. Hrsg. K. Lang, E . Lehnartz u. G. Siebert. Bd. 1 : Allgemeine Untersuchungsmethoden. 1. T e i l . Berlin, Göttingen, Heidelberg: Springer 1953. [19] Ender, F . : Redoxpotentiale, i n : Hoppe-Seyler-Thierfelder . . . s. [18]. [20] Eucken, A. u. E . Wieke: Grundriß der physikalischen Chemie. 10. Aufl. Leipzig: Akadem. Verlagsges. Geest & Portig 1959. [21] Falkenhagcn, H . : Elektrolyte. 2. Aufl. Leipzig: Hirzel 1953. [22] Flaschka, H . : Uber die Vorwendung von Komplexonen in der Maßanalyse, i n : Fortschr. ehem. Forsch. 3. 253—308. 1955. [23] Fresenius, W . u. G. J a n d e r : Handbuch der analytischen Chemie. Hrsg. W . Fresenius u. G. Jander. ( l . T e i l erscheint nicht.) 2 . T e i l : Qualitative Analyse, 8 Bände in 12 Bandteilen. 3. T e i l : Quantitative Analyse, 8 Bände in etwa 20 Bandteilen (noch unvollendet). — Berlin, Güttingen, Heidelberg: Springer 1940. [24] Fromherz, H . : Physikalisch-chemischcs Rechnen in Wissenschaft und Technik. 2. Aufl. Weinheim, Bergstraße: Verl. Chemie 1960. [25] Fromherz, H. u. A. King: Englische und deutsche chemische Fachausdrücke (zweisprachig). 3. neubearb. Aufl. Weinheim, Bergstraße: Verlag Chemie 1958.

8

Literatur

[26] Gutbier, A. u. L . Birckenbaeh: Praktische Anleitung zur M a ß analyse. 4. Aufl. Stuttgart: Wittwer 1924. [27] Hägg, G . : Die theoretischen Grundlagen der analytischen Chemie (deutsch, aus dem Schwedischen übersetzt von H. Baumann). Basel: Birkhäuser 1950. [28] Hammett, L . P . : Solutions of Elektrolytes. New York: McGrawHill 1936. [29] Handbuch für das Eisenhüttenlaboratorium. Hrsg. Chemikerausschuß des Vereins Deutscher Eisenhüttenleute. Bd. 1: D i e Untersuchung der nichtmetallisehen Stoffe. Bd. 2: D i e Untersuchung der metallischen Stoffe. Düsseldorf: Verlag Stahleisen m. b. H . 1939 und 1941. [30] Harms, J . : Untersuchungen über die Grundlagen der visuellen Methoden der Leitfähigkeitstitration, über die apparative Ausgestaltung des Verfahrens und die Anwendung bei analytischen Untersuchungen. Dissertation Göttingen: 1936. [31] Hein, F . : Chemische Koordinationslehre. Unveränderter Neudruck der 1. Aufl. von 1950. Leipzig: Hirzel 1957. [32] Hillerband, W . F . u. G. E . F . Lundell u . a . : Applied Inorganic Analysis. 2. Aufl. New York: Wiley & Sons 1953. [33] Hiltner, W . : Ausführung potentiometrischer Analysen. Berlin: Springer 1935. [34] Hofmann, K. A., U. Hofmann u. W . Rüdorff: Anorganische Chemie. 17. Aufl. Braunschweig: Vieweg 1960. [35] Holleman, A. F . u. E . W i b e r g : Lehrbuch der anorganischen C h e m i e . 47.—56. durchgesehene u. verb. Aufl. Berlin: de Gruyter 1960. [36] Hölzl, F . : Anleitung zur Maßanalyse. Leipzig u . W i e n : Deuticke 1933. [37] Jander, G. (Hrsg.): Neuere maßanalytische Methoden. 4. Aufl. umter Mitarbeit von E . Blasius, E . Brennecke, K. Fajans u. a. Stuttgart: E n k e l 9 5 6 . (Die chemische Analyse, Bd. 33. Hrsg. G. Jander.) [38] Jander, G. u. O. Pfundt: D i e konduktometrische Maßanalyse u. a. Anwendungen der Leitfähigkeitsmessungen auf ehem. Gebiet unter besonderer Berücksichtigung der visuellen Methode. Stuttgart: E n k e 1945 (Neuauflage in Vorbereitung). [39] Jander, G. u. H. Spandau: Kurzes Lehrbuch der anorganischen Chemie. 6. Aufl. Berlin, Göttingen, Heidelberg: Springer 1960. [40] Jander, G. u. J . Zakowski: Membranfilter, Cella- und Ultrafeinfilter. Leipzig: Akadem. Verlagsges. 1929. [41] Jones, G,, K. J . Mysels u. W . J u d a : T h e measurement of the conductance of elektrolytes. I X . T h e use of the cathode-ray-oszillograph as a detector, i n : J . Amer. ehem. Soc. 62. 2919—2922, 1940. [42] Klages, F . : Lehrbuch der organischen Chemie. 3 Bände. Berlin: de Gruyter. Bd. 1, T e i l 1, 2. Aufl. 1959, Teil 2, 1953, Bd. 2, 2. Aufl. 1957, Bd. 3, 1958. [43] Kohlrausch, F . : Praktische Physik. 20. Aufl. Hrsg. H. E b e r t u . a . Stuttgart: T e u b n e r 1955 u. 1956. [44] Kolthoff, I. M . : Konduktometrische Titrationen. Dresden u. Leipzig: T h . Steinkopff 1923. [45] Kolthoff, I. M . : Säure-Basen-Indikatoren (gleichzeitig 4. Aufl. von „Der Gebrauch von Farbindikatoren"). Berlin: Springer 1932. [46] Kolthoff, I. M . : Die Maßanalyse. B d . 1—2. 2. Aufl. Berlin: Springer 1930—1931. [47] Kolthoff, I. M. u. N. H. F u r m a n : Potentiometrie Titrations. 2. Aufl. New York: Wiley & Sons 1931. [48] Kolthoff, I. M. u. H . A . Laitinen: pH- and Elektro-Titrations. 2. Aufl. New York: Wiley & Sons 1941.

Literatur

9

[49] Kolthoff, I. M. u. E . B . Sandeil: Textbook of Quantitative Inorganic Analysis. 3. Aufl. New York: Macmillan 1952. [50] Kolthoff, I. M. u. V . A. Stenger: Volumetrie Analysis. 2. Aufl. Bd. 1—2. Bd. 3 von I. M. Kolthoff, R . Belcher u. a. New York: Interscience Publishers 1942, 1947 u. 1957. [51] Kopp, H . : Geschichte der Chemie. Neudrude der Originalausgabe. Leipzig: A. Lorentz 1931. [52] Kortüm, G . : Elektrolytlösungen. Leipzig: Akadem. Verlagsges. Geest & Portig 1941. [53] Kortüm, G . : Lehrbuch der Elektrochemie. 2., völlig neu bearb. Aufl. Weinheim, Bergstraße: Verlag Chemie 1957. [54] Kratz, L . : D i e Glaselektrode und ihre Anwendungen. Frankfurt (Main): D . Steinkopff 1950 (Bd. 59: Wiss. Forschungsberichte, Naturwissenschaftl. Reihe, Hrsg. R . Jäger). [55] Küster, F . W . , A. T h i e l u. K. Fischbeck: Logarithm!sehe Rechentafeln für Chemiker, Pharmazeuten, Mediziner und Physiker. 7 4 . - 8 3 . Aufl. Berlin: de Gruyter 1958. [56] Landolt, H. u. R. Börnstein: Physikalisch-chemische T a b e l l e n . Hrsg. W . A. Roth u. K. Scheel, 5. Aufl. Bd. 1—2 u. 3 Ergänzungsbände. Berlin: Springer 1923—1935 (6. Aufl. 1 9 5 0 . . . im Erscheinen). [57] Latimer, W . M . : T h e oxydation states of the elements and their potentials in aqueous solutions. 2. Aufl. New York: PrenticeHall I n c . 1952. [58] Leibiger, O. W . u. J . S. L e i b i g e r : German-English and EnglishGerman, Dictionary for scientists. Ann Arbor (Michigan): I . W . Edwards 1950. [59] Martell, A. E . u. M. Calvin: D i e Chemie der Metallchelatverbindungen (aus dem Englischen übersetzt von H. Spedcer). W e i n heim, Bergstraße: Verlag Chemie 1958. [60] Medicus, L . : Einleitung in die chemische Analyse. 4. B d . Kurze Anleitung zur Technisch-chemischen Analyse. 6. verb, Aufl. bearb. von H. Reuther. Dresden: T h . Steinkopff 1955. [61] v. Meyer, E . : Geschichte der Chemie. 4. Aufl. Berlin u. Leipzig: de Gruyter 1914. [62] Michaelis, L . : Oxydations- u. Reduktionspotentiale. 2. Aufl. Berlin: Springer 1933. [63] Mika, J . : D i e Methoden der Mikromaßanalyse. 2. umgearb. Aufl. Stuttgart: E n k e 1958. (Die chemische Analyse Bd. 42. Hrsg. G. Jander.) [64] Möhler, H . : Chemische Optik. Aarau: Sauerländer 1951. [65] Möhler, H . : Elektronentheorie der Chemie. Aarau: Sauerländer 1946. [66] Müller, E . : D i e elektrometrische (potentiometrische) Maßanalyse. 7. Aufl. Dresden u. Leipzig: T h . Steinkopff 1944. [67] Müller, G . - O . : Grundlagen der Stöchiometrie. Leipzig: Hirzel 1955. [68] Ostwald, W i l h . : D i e wissenschaftlichen Grundlagen der analytischen Chemie. 7. Aufl. Dresden: T h . Steinkopff 1920. [69] Ostwald, Wilh. u. R . Luther: Hand- u. Hilfsbuch zur Ausführung physikochemischer Messungen. 5. Aufl. Leipzig: Akadem. Verlagsges. 1931. [70] Proske, O. u. H. Blumenthal: Analyse der Metalle. Hrsg. ChemikerFachausschuß der Gesellschaft Deutscher Metallhütten- und Bergleute e . V . Bd. 1: Schiedsverfahren. 2. Aufl. Bd. 2: Betriebsanalysen. Berlin, Göttingen, Heidelberg: Springer 1949 und 1953. [71] Paolmg, L . : T h e Nature of the Chemical Bond and the Structure of Molecules and Crystals. 3. Aufl. London: Oxford University Press 1960. (Deutsche Übersetzung in Vorbereitung.)

10

Literatur

[72] Remy, H . : Lehrbuch der anorganischen Chemie. 10. bearb. Aufl. Bd. 1. Leipzig: Akadem. Verlagsges. Geest & Portig 1960. Bd. 2. 9. Aufl. 1959. [73] Sand, H . J. S.: Electrochemistry and Electrochemical Analysis. Bd. 3: Electrical Methods applied to Titration, Moisture Determination and pH-Measurement. L o n d o n : Blackie 1941. [74] Schmid, G.: Leitfähigkeit, in: Hoppe-Seyler-Thierfelder . . . s. [19]. [75] Schulze, W . : Allgemeine und physikalische Chemie. 5. Aufl. I.—II. Teil. Berlin: de Gruyter 1960, 1961 (III. Teil unter dem Titel „Molekülbau" 1958). [76] Schwabe, K.: Fortschritte der pH-Meßtechnik. 2. überarb. u. erw. Aufl. Berlin: VEB-Verlag Technik 1958. [77] Schwabe, K. u. G. Glöckner: Über elektromotorisches Verhalten von Glaselektroden in stark sauren Lösungen, in: Z. Elektrochem., Ber. Bunse001 ml

einer wirklich n/10 Lösung von 20° C. Der Bruch, der das theoretische Volumen im Zähler, das wirkliche im Nenner enthält, heißt N o r m a l f a k t o r oder N o r m a l i t ä t der Lösung. Durch Multiplikation mit diesem Faktor können beliebige Volumina unserer Lösung in die entsprechenden Milliliterzahlen einer wirklich normalen Lösung umgerechnet werden. Wollen wir lieber eine genau normale Lösung bereiten, so müssen wir noch die aus der obigen Tabelle zu entnehmende Milliliterzahl, im speziellen Fall unserer Kaliumbromatlösung also 1,03 ml, zu 11 unserer Lösung hinzugeben. Diese direkte Herstellung genauer Normallösungen (durch einfaches Abwägen) ist aber nur dann möglich, wenn die zum Liter aufzulösende „Titersubstanz" drei Bedingungen erfüllt. Erstens muß sie chemisch absolut rein sein, also eine ihrer chemischen Formel genau entsprechende Zusammensetzung besitzen, oder sie muß wenigstens durch einfache Operationen, wie Umkristallisieren und Trocknen leicht und sicher auf den verlangten hohen Reinheitsgrad gebracht werden können. Zweitens muß sich die Titersubstanz ohne Schwierigkeit auf der Waage genau abwägen lassen; sie darf also z. B. nicht sauerstoffempfindlich sein oder Kohlendioxid und Feuchtigkeit der umgebenden Luft „anziehen". Und drittens darf sich der chemische Wirkungswert einer frisch bereiteten Normallösung der fraglichen Titersubstanz bei längerem Aufbewahren nicht mehr ändern, wie das z. B. bei Kaliumpermanganat- und Natriumthiosulfatlösungen der Fall ist. Durch direktes Abwägen lassen sich genaue Normallösungen z. B. folgender Titersubstanzen herstellen: Kaliumdichromat, Kaliumbromat, Natriumoxalat, Natriumchlorid, Silbernitrat, Natriumkarbonat u.a. Für hohe Genauigkeitsanforderungen (Präzisionsbestimmungen) muß beim Einwägen der Auftrieb in Luft berücksichtigt werden (Atom- und Molekulargewichte sind stets für eine Wägung im Vacuum berechnet). Die in Luft abzuwägende 3 Jander-Jahr, Maßanalyse

34

Die Maßflüssigkeiten

Substanzmenge ermittelt man durch Anbringung von Korrektionsgliedem, für die es tabellarische Zusammenstellungen gibt (vgl. [55]). In allen Fällen, wo diese drei an die Titersubstanzen zu stellenden Anforderungen nicht erfüllt sind, also z. B. bei allen verdünnten Säuren und Alkalien, muß man genaue Normallösungen auf indirektem Wege bereiten, d. h. man muß zunächst durch eine rohe Einwaage eine Lösung herstellen, deren Konzentration etwas größer ist als die beabsichtigte, man muß dann den chemischen Wirkungswert der so erhaltenen Lösung durch eine geeignete Titration, „Einstellung", ermitteln (siehe unten) und schließlich so viele Milliliter Wasser hinzufügen, als zur Bereitung einer genauen Normallösung noch erforderlich sind.

Fig. 9

Dazu verwendet man praktisch den sog. „W i s l i c e n u s k o l b e n". Sein Hals ist, wie Fig. 9 zeigt, zu einer Kugel erweitert. Oberhalb und unterhalb dieser Kugel befindet sich je eine Markierung. Der Kolben faßt bis zur unteren Marke 1000 ml, bis zur oberen 1100 ml. Um diesen Kolben zur Herstellung einer Normallösung zu benutzen, bereiten wir uns also zunächst 1100 ml einer etwas zu starken (1—9%) Lösung und entnehmen dem Kolben mehrere Proben, insgesamt aber weniger als 100 ml, die wir zur Ermittlung ihres wahren Wirkungswerts benutzen. Dann entleeren wir den Kolben so weit, daß der Meniskus der Lösung genau auf die untere Marke (1000 ml) einsteht, und geben nun aus einer Bürette noch soviel Wasser hinzu, als nach dem Ergebnis der Gehaltsprüfung unserer Lösung erforderlich ist, um eine genaue Normallösung zu erhalten.

Beispiel: Es soll eine genau 0,1-n Natriumthiosulfatlösung bereitet werden. Wir wägen ungefähr 0,13 Mole Natriumthiosulfat Na2S 2 0 3 • 5 H 2 0 , also 28 g, in den Wislicenuskolben ein und füllen auf die obere Marke auf. Der Kolben enthält jetzt — die Temperatur betrage 20° C — 1100 ml. Wir füllen dann eine saubere und trockne Bürette mit unserer Lösung und titrieren nun mehrere Male je 25 ml einer Jodlösung genau bekannten Gehaltes (siehe S. 88). Wir finden so, daß durch-

Die Bereitung und Einstellung der Lösungen

35

schnittlich 24,36 ml unserer Natriumthiosulfatlösung 25 ml einer genau 0,1-n Jodlösung entsprechen. Unsere Lösung ist also zu stark. Um sie genau 0,1-normal zu machen, müssen wir ihr zu je 24,36 ml noch (25,0 — 24,36) = 0,64 ml Wasser hinzufügen, für 1000 ml also -0,64 = 26,69 ml. Zu diesem Zweck entnehmen wir dem Kolben so viel Milliliter unserer Lösung, daß der Meniskus genau auf die untere Marke einsteht, und lassen noch 26,29 ml Wasser aus einer Bürette in den Meßkolben einfließen. Die Lösung ist dann nach dem Umschütteln genau 0,1-normal. I m allgemeinen aber ist es gar nicht nötig, sich so große M ü h e mit der Herstellung einer genau 0,1-n Lösung zu machen; man arbeitet vielmehr meistens mit Lösungen, die ungefähr 1,0-n, 0,1-n oder 0,01-n sind, stellt ihre Abweichung genau fest und setzt diese später stets in Rechnung. So werden insbesondere alle Reagenzien, deren Lösungen keinen zeitlich konstanten Wirkungswert haben (Permanganat-, Thiosulfatlösungen u. a.), im allgemeinen nur als ungefähr normale Lösungen verwendet. Ihre Herstellung ist denkbar einfach: M a n wägt auf einer Handwaage ganz roh das gewünschte Äquivalentgewicht ab und füllt im Meßkolben auf das beabsichtigte Volumen auf. U m jedoch nunmehr den wahren chemischen Wirkungswert zu ermitteln, m u ß man ihren „Titer stellen". Diese „Titerstellung" oder „Einstellung" geschieht unter Zuhilfenahme sogenannter „Urtitersubstanzen", d. h. geeigneter chemischer Stoffe, die nun aber sämtliche oben an die Titersubstanzen gestellten Bedingungen mit besonderer Genauigkeit erfüllen. Sie müssen also absolut rein, leicht zu wägen und völlig haltbar sein. Besonders reine käufliche Substanzen tragen die Bezeichnung „pro analysi". Von den Lieferfirmen wird meist ein Attest über Art und Konzentration der Verunreinigungen beigegeben. D i e T i t e r s t e l l u n g wird ganz allgemein folgendermaßen vorgenommen: M a n wägt mehrere Proben der Urtitersubstanz bis auf + 0,1 mg genau ab, löst sie in Erlenmeyerkolben von 3 0 0 bis 4 0 0 ml Inhalt auf und titriert sie

36

Die klassischen Methoden der Maßanalyse

mit der einzustellenden ungefähr normalen Lösung. Aus dem bekannten Gewicht der Urtitersubstanzprobe läßt sich berechnen, wieviel Milliliter einer g e n a u e n Normallösung bis zum Äquivalenzpunkt verbraucht würden. Der Bruch, der sich aus dieser Zahl als Zähler und aus dem wirklich verbrauchten Volumen als Nenner ergibt, bezeichnet die wahre Normalität der Lösung; man nennt ihn auch ihren N o r m a l f a k t o r . Es muß hier nachdrücklich darauf hingewiesen werden, daß die Titerstellung der Lösungen mit ganz besonders großer Genauigkeit erfolgen muß, da ja jeder Fehler, der hier gemacht wird, in sämtlichen Bestimmungen wiederkehrt, die mit der fraglichen Lösung durchgeführt werden. Ein fehlerhafter Normalfaktor fälscht alle Analysen! Der Fehler, den man bei der Titerstellung macht, hängt von der Genauigkeit der benutzten Arbeitsmethode ab; er soll eine Grenze von ± 0,1% nicht überschreiten. Eine ausführliche Darstellung der methodischen Fehler findet man z.B. in [46], [82], [92], auf die hier verwiesen sei (s. S. 132).

Zweiter

Teil

Die klassischen Methoden der Maßanalyse Die Maßanalyse kann nach verschiedenen Gesichtspunkten gegliedert werden, z. B. nach der Art der Endpunktserkennung oder nach dem Charakter der chemischen Vorgänge, die den einzelnen Methoden zugrunde liegen. Die Endpunktserkennung erfolgt bei allen klassischen Methoden der Maßanalyse dadurch, daß eine deutlich sichtbare Farbänderung oder Fällung beim Äquivalenzpunkt eintritt. In den meisten Fällen muß man zu dieser Sichtbarmachung des Äquivalenzpunktes Indikatoren (s. S. 14 und 123) verwenden. In neuerer Zeit sind mehr und mehr auch physikalische Methoden in Aufnahme gekommen, die den Endpunkt in anderer Weise anzeigen (vgl. XVI, S. 220). Wir besprechen im folgenden zunächst die klassischen Methoden. Nach dem Charakter der chemischen Reaktionen, die den maßanalytischen Methoden zugrunde liegen, unterscheidet

Definition der Begriffe Oxydation und Reduktion

37

man drei große Gruppen: die Oxydations- und Reduktionsanalysen (Oxydimetrie), die Neutralisationsanalysen (Acidimétrie und Alkalimetrie) und die Fällungs- und Komplexbildungsanalysen. Aus mancherlei Gründen, die der praktische Unterricht in der Maßanalyse nahelegt, beginnen wir im folgenden Abschnitt zunächst mit der Beschreibung der Manganometrie und der anderen oxydimetrischen Methoden. Erster Abschnitt DIE OXYDATIONS- U N D REDUKTIONSANALYSEN III. Oxydations- und Reduktionsvorgänge 1. Definition der Begriffe Oxydation und Reduktion Unter „Oxydation" im engeren Sinne versteht man den diemischen Vorgang der Sauerstoffaufnahme; jeder Verbrennungsprozeß z. B. bedeutet eine Oxydation: 2 H 2 + O s = 2 H a O oder 2 CO + 0 2 = 2 C0 2 . Aber auch der Vorgang der Wasserstoffentziehung gilt als Oxydation, z. B. 2 HBr + Cl2 = Br2 + 2 HCl. Umgekehrt bedeutet die Aufnahme von Wasserstoff oder die Abgabe von Sauerstoff eine „Reduktion", z. B.: N 2 + 3 Ho = 2 NH 3 oder PbO + H 2 = Pb + H2O. Diese Reaktionen, bei denen wirklich Sauerstoff und Wasserstoff aufgenommen oder abgegeben werden, sind aber nicht die einzigen chemischen Prozesse, die als Oxydationen bzw. Reduktionen zu bezeichnen sind. Als Oxydation gilt vielmehr jeder Vorgang, der auf eine Erhöhung der Wertigkeit negativen Elementen gegenüber hinausläuft. Wenn also z. B. Phosphor(III)-chlorid in Phosphor(V)-chlorid übergeht, 0 +5—1 + 3—1 PC13 + C12 = PC15 Die sogenannte „Oxydationszahl" über dem Elementsymbol gibt die jeweilige Oxydationsstufe an; vgl. [81].

38

Oxydations- und Reduktionsvorgänge

so ist das eine Oxydation in bezug auf den Phosphor. Ebenso wird jeder Prozeß, der eine Verminderung der Wertigkeit positiven Elementen gegenüber zur Folge hat, als Oxydation bezeichnet. Wenn z. B. Mangan (IV)-chlorid in Mangan (II)-chlorid und Chlor zerfällt, so ist das eine Oxydation des gebundenen Chlors: + 4—1

+ 2 —1

0

MnCl 4 = MnCl ä + Cl 2 . Umgekehrt bezeichnet man eine Verminderung der Wertigkeit negativen oder eine Erhöhung der Wertigkeit positiven Elementen gegenüber als Reduktion. Theoretisch wird die „Wertigkeit" oder „Valenz" 1 ) eines Elements heute durch das Verhalten seiner Elektronen in der äußersten Schale gedeutet. Diese „Valenzelektronen" bestimmen das gesamte chemische Verhalten. Die Wertigkeit kann dann durch die Zahl der „abgegebenen" (positives Vorzeichen) bzw. „aufgenommenen" (negatives Vorzeichen) Elektronen definiert werden ( I o n e n - W e r tigkeit). Wenn ein stark „elektronegatives" Element mit einem Element geringerer Elektronegativität (Pauling [71]) reagiert, so nimmt die äußere Elektronenschale des negativeren Elements ein oder mehrere Elektronen auf. Reagiert z. B. Chlor mit Natrium, dann entsteht aus dem neutralen Chloratom das einfach negativ geladene Chlorid-Ion Cl~. Umgekehrt gibt die äußere Elektronenschale eines Elements geringerer Elektronegativität ein oder mehrere Elektronen ab. Bei der Reaktion von Natrium mit Chlor z. B. entsteht aus dem neutralen Natriumatom das positiv geladene Natrium-Ion Na + . So betrachtet, besteht also der Oxydationsprozeß in einer Abgabe negativer, der Reduktionsprozeß umgekehrt in einer Zuführung negativer elektrischer Ladungen (Elektronen). Wenn e ein Elektron bedeutet, so stellen die folgenden drei Gleichungen Oxydationsvorgänge dar: 1 ) Über ein Begriffssystem f ü r die „Wertigkeit" vgl. [81]. W i r d im Text dieses Buches der Ausdruck „Wertigkeit" oder „wertig" gebraucht, so ist stets die „Oxydationsstufe" gemeint.

Oxydations- und Reduktionspotentiale

39

N a — s = Na+, F e 2 + — s = Fe 3+ , 2 J - - 2 £ = Jf. Die folgenden Gleichungen beschreiben dagegen Reduktionsvorgänge: Q + £ = Fe S4 "+ £ = Fe 2+ , Sn 4f + 2 £ = Sn2+. Wenn ein Stoff unter Abgabe von Elektronen oxydiert wird, so muß zwangsläufig zu gleicher Zeit ein anderer Stoff unter Aufnahme dieser Elektronen reduziert werden (Gesetz der Elektroneutralität). Jede Oxydation eines Stoffes bedeutet gleichzeitig die Reduktion eines anderen. Die Gleichung N a + C l = N a + + Clgibt also an, daß das Natriumatom ein Elektron an das Chloratom abgegeben hat. Dadurch hat das neutrale Natriumatom eine positive Ladung erhalten, ist also oxydiert worden. Das Chloratom aber hat das Elektron und damit eine überschüssige negative Ladung aufgenommen, es ist reduziert worden. Das Chlor verhält sich gegenüber dem Natrium als „Oxydationsmittel", das Natrium gegenüber dem Chlor als „Reduktionsmittel". 2. Oxydations- und Reduktionspotentiale

Die Fähigkeit eines chemischen Stoffes, als Oxydationsoder Reduktionsmittel zu wirken, hängt, wie oben gezeigt wurde, im wesentlichen von seiner Elektronen-Affinität ab. Taucht man metallisches Zink in eine Kupfer(II)-sulfatlösung ein, so überzieht es sich mit metallischem Kupfer: Zn + Cu2+ ^ Cu + Zn2+. Der Vorgang besteht also in einer Oxydation in bezug auf das Zink und in einer Reduktion in bezug auf das Kupfer; er läßt sich in zwei Einzelprozesse auflösen, den Ubergang 1. Zn ^ Zn2+ + 2 e und 2. Cu2+ + 2 E # Cu. Ein Zinkstab, der in einer Zinksalzlösung steht, reagiert prinzipiell nach

40

Oxydations- und Reduktionsvorgänge

Gleichung 1; der Vorgang kommt aber sehr bald mit seinem (durch den unteren Pfeil der Gleichung 1 bezeichneten) Gegenprozeß ins Gleichgewicht. Dadurch, daß das metallische Zink, wenn auch nur zu einem geringen Bruchteil, als Zn 2+ in Lösung geht, lädt sich der Zinkstab schwach negativ auf. An einem Kupferstab dagegen, der in einer Kupferlösung steht, scheidet sich nach Gleichung 2 eine geringe Menge metallischen Kupfers ab; dadurch erhält der Kupferstab gegenüber seiner Lösung eine schwach positive Ladung. Die Kombination Zn (metallisdi)/Zn 2+ (gelöst) und Cu (metaIIisch)/Cu2+ (gelöst) bezeichnet man als „Halbelemente", ihre Potentiale als „Einzelpotentiale". Durch Kombination zweier Halbelemente ergeben sich die bekannten galvanischen Elemente, das Daniellelement z. B. durch Verbindung eines Kupferhalbelements mit einem Zinkhalbelement. Auch der elementare Wasserstoff nimmt gegenüber der Lösung seiner Ionen ein bestimmtes Einzelpotential an; man bespült zu diesem Zweck ein in eine Säure (HM) tauchendes, platiniertes Platinblech mit Wasserstoffgas, von dem sich ein wenig im Platin löst. Dieses an der Oberfläche mit Wasserstoffgas gesättigte Platin verhält sich dann wie ein „Wasserstoffstab". Die relative Größe der Einzelpotentiale hängt, wie später ausführlich dargelegt wird (s. XIX, S. 240), hauptsächlich von der Konzentration der Elektrolytlösungen ab, in die das betreffende Metall eintaucht; sie läßt sich experimentell dadurch ermitteln, daß man die verschiedenen Halbelemente nacheinander mit ein und demselben Halbelement als „Bezugselektrode" kombiniert und nun die verschiedenen Spannungen am Voltmeter abliest 1 ). Tabelle 3 enthält eine Reihe von Einzelpotentialen, gemessen bei 25° C gegenüber der „normalen Wasserstoffelektrode" als Bezugselektrode, die definitionsgemäß das Potential 0 hat. Die Konzentration der Lösungen beträgt hier stets ein Grammol pro Liter. l) Auf die praktische Messung und Berechnung dieser Potentiale kann hier zunächst nicht näher eingegangen w e r d e n ; siehe XIX—XX.

Oxydations- und Reduktionspotentiale

41

Diese Reihenfolge der metallischen Elemente, angeordnet nach steigenden (positiven) Einzelpotentialen, heißt die elektrochemische S p a n n u n g s r e i h e . Sie gibt uns einen brauchbaren Maßstab für die Bindungsfestigkeit der Elektronen in der äußersten Schale der Elemente. Von den in Tabelle 3 genannten Metallen z. B. gibt das Caesium am leichtesten Valenzelektronen ab, das Gold dagegen am schwersten. Tabelle Potential

Vorgang Cs ^ Ca Mg ^ AI Mn ^ Zn Fe ^

Cs+ Ca2* Mg2+ AI** Mn2* Zn2+ Fe 2 *

+ + + + + + +

e — 3,02 Volt Co 2 E — 2,87 „ Pb 2e — 2,34 „ H 3e — 1,67 „ Cu 2 E — 1,05 „ Hg 2 E — 0,76 „ Ag 2e — 0,44 „ Au

3 Vorgang - Co2* -Pb2* - H* - Cu2+ - Hg* Ag* - Au3*

Potential + 2 8 — 0,28 Volt + 2 e — 0,13 „ + 8 ± 0,00 „ + 2 e + 0,35 „ + 8 + 0,80 „ + 8 + 0,80 „ + 3 e, + 1,42 „

Ebenso wie man die Oxydations- und Reduktionskraft der Elemente durch Aufstellung einer Spannungsreihe messen und miteinander vergleichen kann, lassen sich auch alle anderen Oxydations- und Reduktionsmittel dadurch miteinander vergleichen, daß man ihre Einzelpotentiale, ihre sog. O x y d a t i o n s - u n d R e d u k t i o n s p o t e n t i a l e ermittelt. Eine blanke Platinelektrode, die in die Lösung eines Oxydations- oder Reduktionsmittels eintaucht, nimmt ein bestimmtes Potential an. Je größer die Oxydationskraft der Lösung ist, um so positiver, „edler", je stärker reduzierend die Lösung wirkt, um so negativer, „unedler" wird die Elektrode. Wenn wir also wieder die Lösungen unserer verschiedenen Oxydations- und Reduktionsmittel nacheinander gegen die gleiche, normale Wasserstoffelektrode schalten und die jeweiligen Spannungen auf dem Voltmeter ablesen, so erhalten wir z. B. die in Tabelle 4 aufgeführten Potentiale, die durch die angegebenen Oxydations- und Reduktionsvorgänge geliefert werden. Die Größe der gemessenen Spannung hängt auch

42

Oxydations- und Reduktionsvorgänge

hier wieder von den Konzentrationen der an dem Vorgang jeweils beteiligten Stoffe ab. Die in Tabelle 4 zusammengestellten Potentiale beziehen sich auf Lösungen, in denen alle an der Umsetzung teilnehmenden Ionen in einmolarer Konzentration vorliegen. Tabell e 4 Vorgang HS- + OH- :S £e S t + H * 0 + 2 E Cr2+ ^ Cr^ + e' Ti3* + HaO - TiO2* + 2 H+ + 6 Sn2+ - Sn4+ + 2 E [Fe(CN),]*" ^ [FeCCNJe]3" + e 3 J - ^ L - + 2e pe2+ ^ pe3+ g Cl- + 2 OH- ^ CIO- + H„0 + 2 e 2 Br- - Br2 (gelöst) + 2 6 J- + 3 H 2 0 - J 0 3 - + 6 H+ + 6 E 2 Cr3+ + 7 H 2 0 - Cr 2 0 7 2 - + 14 H+ 6 ë 2 Cl" ^ Cl2 (gelöst) + 2 E Br" + 3 H 2 0 - BrOs- + 6 H+ + 6 E Mn^ + 4 H 2 0 ^ MnOr + 8 H+ + 5 e Ce3+ ^ Ce4+ + e Mn0 2 (fest) + 2 H 2 0 - Mn04- + 4 H+ + 3 E

Potential — 0,48 Volt — 0,41 „ ~ 0 + 0,15 „ + 0,36 „ + 0,54 „ + 0,77 „ + 0,88 „ + 1,07 „ + 1,09 „ + 1,36 „ + 1,39 „ + 1,44 „ + 1,52 „ + 1,61 + 1,68

„ „

Die in der Tabelle 4 angeführten Reduktionsgleichungen beschreiben, im Sinne der oberen Pfeile gelesen, Oxydationsvorgänge, umgekehrt dagegen Reduktionsprozesse. Die Reduktionskraft des Titan(III)-Ions ist also z. B. größer als die des Zinn(II)-Ions, und dieses wirkt wieder stärker reduzierend als das Ion [Fe(CN) 6 ] 4 ~. Andererseits ist die Permangansäure ein stärkeres Oxydationsmittel als etwa die Bromsäure oder die hypochlorige Säure. Ebenso kommt z. B. die in der Reihe Cl 2 Br 2 -*• J 2 abnehmende Oxydationskraft der Halogene in den angegebenen Potentialwerten überzeugend zum Ausdruck. Zusammenfassend können wir sagen: Die Oxydations- oder Reduktionskraft jedes Oxydationsoder Reduktionsmittels läßt sich zahlenmäßig angeben

Die Oxydationswirkung des Kaliumpermanganats

43

durch die Größe des elektrischen Potentials, das eine in seine Lösung getauchte unangreifbare Elektrode gegenüber der normalen Wasserstoffelektrode annimmt. IV. Die Manganometrie 1. Die Oxydationswirkung des Kaliumpermanganats

Die Manganometrie verwendet die große Oxydationskraft des Permanganat-Ions (siehe Tabelle 4). Der Verlauf der Oxydationsreaktionen, die das PermanganatIon eingeht, ist aber ganz verschieden, je nachdem, ob sie sich in saurer oder in neutraler bzw. alkalischer Lösung abspielen. Die überwiegende Mehrzahl der in der Manganometrie verwerteten Oxydationswirkungen des Kaliumpermanganats werden in saurer Lösung erzielt, und zwar nach der generellen Gleichung: M n 0 4 " + 8 H + + 5 e Mn 2+ + 4 H 2 0 . Das Permanganat-Ion, in dem das Mangan die Oxydationszahl + 7 hat, wird also unter der Einwirkung von acht Wasserstoffionen und unter Aufnahme von fünf negativen Elementarladungen, die das jeweilige Reduktionsmittel liefert, zum Mangan(II)-Ion reduziert. Dabei entstehen aus je acht Wasserstoffionen je vier Moleküle Wasser. Noch einfacher beschreibt das folgende Schema den Vorgang: +7

+2

Mn+5e->-Mn, doch kommt hier die entscheidende Mitwirkung der Wasserstoffionen nicht zur Geltung. In einigen wenigen Fällen muß man die Titration mit Kaliumpermanganat in neutraler oder alkalischer Lösung vornehmen. Das gilt hauptsächlich für solche Stoffe, die, wie z. B. das Hydrazin, nur in Lösungen geringer Wasserstoffionen-Konzentration von dem Kaliumpermanganat in eindeutiger Weise oxydiert werden. In schwach sauren, neutralen und alkalischen Lösungen reagiert das Kaliumpermanganat folgendermaßen: Mn0 4 " + 4 H+ + 3 £ -> MnO» + 2 H 2 0 .

44

Die Manganometrie

Hier wird also das Permanganation, dessen Manganatom siebenfach positiv geladen ist, unter dem Einfluß von nur vier Wasserstoffionen und unter Aufnahme von nur drei Elektronen, die das Reduktionsmittel abgibt, zum Mangandioxyd reduziert, dessen Manganatom vierwertig ist. Es gilt also das Schema: +7

+4

Mn + 3 e -»- Mn. Der wirkliche Verlauf jedoch, die Kinetik der Reaktionen, die sich in Lösungen abspielen, in denen Kaliumpermanganat als Oxydationsmittel verwendet wird, ist bedeutend verwickelter, als diese Formulierungen erkennen lassen. Beispiele werden wir später (S. 47, 55, 61) kennenlernen. 2. Die Bereitung und Einstellung der Kaliumpermanganatlösung Aus den Ausführungen über die Normallösungen und über die Oxydationswirkung des Kaliumpermanganats 158 03 folgt, daß eine normale Kaliumpermanganatlösung — ^ — oder 31,606 g K M n 0 4 enthalten muß. In der Praxis verwendet man meistens n/10 Lösungen. Trotz der Reinheit des heute im Handel erhältlichen Kaliumpermanganats kann man sich aber keine genaue n/10 Lösung, etwa durch Einwägen von genau 3,1606 g K M n 0 4 und Auffüllen zum Liter bereiten. Man wägt vielmehr auf einer Tarierwaage nur ungefähr die berechnete Menge des Salzes, etwa 3,2 g, ab, löst sie in einer sauberen Flasche zu einem Liter in destilliertem Wasser auf und läßt diese Lösung etwa acht bis vierzehn Tage lang ruhig stehen. Die Bereitung einer nur ungefähr n/10 Lösung ist deshalb vorzuziehen, weil der Titer einer frisch bereiteten Permanganatlösung, auch bei noch so sorgfältiger Arbeit, in den ersten Tagen langsam abnimmt. Denn Spuren von Ammoniumsalzen, Staubteilchen und andere organische Verunreinigungen, die sich im destillierten Wasser befinden können, werden allmählich auf Kosten des Gehalts an Permanganationen oxydiert. Anstatt die Lösung längere

Die Bereitung der Kaliumpermanganatlösung

45

Zeit stehen zu lassen, kann man sie auch eine Stunde lang auf dem siedenden Wasserbad erwärmen. Dadurch wird der Oxydationsprozeß beschleunigt. Schließlich wird die Lösung durch eine sorgfältig mit Chromschwefelsäure gereinigte und danach gewaschene Glasfrittennutsche in die ebenfalls peinlich saubere, mit Glasstopfen verschließbare Vorratsflasche filtriert (kein Filtrierpapier!). Versäumt man dieses Filtrieren, so nimmt der Titer der Lösung auch weiterhin ab, da der bei der Oxydation der Staubteilchen entstandene Braunstein die Selbstzersetzung des gelösten Permanganats katalysiert, die etwa nach folgendem Sdiema vor sich gehen dürfte: 4 K M n 0 4 + 2 H 2 0 = 4 MnO a + 4 KOH + 3 0 2 . Die Vorratslösung bewahre man gegen Licht geschützt auf. Der chemische Wirkungswert der gebrauchsfertigen Kaliumpermanganatlösung muß nunmehr genau festgestellt werden, und zwar mit Hilfe geeigneter Urtitersubstanzen. Als solche dienen gut wägbare Reduktionsmittel, welche durch die Bestandteile der Luft, wie Feuchtigkeit, Sauerstoff, Kohlendioxyd usw., nicht merkbar verändert werden. In Frage kommt vor allem das Natriumoxalat, Na 2 (COO) 2 ; ferner auch noch Oxalsäure, H 2 C 2 0 4 • 2 H ä O, und chemisch reines Eisen. Die Einstellung der Kaliumpermanganatlösung mit Natriumoxalat bzw. Oxalsäure: Der Titerstellung der Kaliumpermanganatlösung mit Natriumoxalat ist auf Grund der klassischen Untersuchungen von S. P. L. Sörensen (1897—1906) bei weitem der Vorzug zu geben. Sie wird im folgenden absichtlich in allen Einzelheiten beschrieben, weil sich bei ihrer Besprechung nicht nur die für die Titerstellung von Permanganatlösungen wesentlichen Gesichtspunkte ergeben, sondern weil sich darüber hinaus auch alle die Faktoren erkennen lassen, welche bei Titerstellungen allgemein von Einfluß sein können. Die Titerstellung beruht auf folgender Reaktionsgleichung: 2 MnCV + 5 ( C 2 0 4 ) 2 - + 1 6 H + - > 2 M n 2 + + 1 0 C 0 2 + 8 H 2 0 . Die Oxydation des Oxalations zu Kohlendioxid verläuft in warmer, schwefelsaurer Lösung innerhalb relativ weiter Grenzen der Wasserstoffionen-Konzentration ohne störende Neben-

46

Die Manganometrie

reaktionen genau nach diesem Reaktionsschema. Die Vorzüge des NatriumoxaJats als Titersubstanz sind nun folgende: Es läßt sich durch Umkristallisieren leicht völlig rein, „pro analysi" entsprechend seiner Formel Na 2 C 2 0 4 erhalten, es enthält kein Kristallwasser und läßt sich gut absolut trocknen, es ist ein neutrales Salz, das weder Wasser noch Kohlendioxid noch Ammoniak anzunehmen bestrebt ist, und läßt sich daher bequem abwägen. Als Verunreinigungen des Natriumoxalats, welche von der präparativen Darstellung aus Soda und Oxalsäure dem Salz etwa noch anhaften, kommen in Frage: Feuchtigkeit, Natriumkarbonat, Natriumhydrogenoxalat, Natriumsulfat oder -chlorid. F e u c h t i g k e i t ist leicht zu entfernen durch Trocknen des Salzes im Trockenschrank bei 230°—250° C. Erst oberhalb 330° C beginnt das Natriumoxalat sich zu zersetzen: Na. 2 C 2 0 4 Na2C0 3 + CO. Eine Beimengung von Nat r i u m k a r b o n a t oder von saurem Natriumo x a l a t läßt sich durch Titration mit 0,01-n HCl bzw. N a O H unter Verwendung von Phenolphthalein als Indikator ermitteln und durch Umkristallisieren entfernen. S u l f a t e u n d C h l o r i d e lassen sieh durch geeignete Fällungsreaktionen in einer angesäuerten Auflösung von etwa 10 g des Salzes erkennen. Zur Feststellung der Abwesenheit o r g a n i s c h e r V e r u n r e i n i g u n g e n wird 1 g des Salzes mit 10 ml reiner, staubfreier, konzentrierter Schwefelsäure erhitzt. Die Schwefelsäure darf sich nicht bräunen oder gar schwarz färben. Die praktische Durchführung der Titerstellung mit Natriumoxalat gestaltet sich folgendermaßen: Zunädist wägt man drei oder vier Proben von ungefähr 0,15—0,2 g reinstem, bei 230° C im Trockenschrank getrocknetem Natriumoxalat auf der Analysenwaage, also mit einer Genauigkeit von ± 0,1 mg, ab. Dazu benutzt man ein längliches Wägeröhrchen mit aufgesetzter Glaskappe, das eine beliebige Menge der abzuwägenden Substanz enthält. Das Wägeröhrchen wird, nachdem es genau gewogen wurde, geöffnet und der Hals des Röhrchens vorsichtig tief in die Öffnung eines trockenen Weithals-Erlenmeyerkolbens (oder Philippsbechers) von etwa 400 ml Inhalt eingeführt. Durch vorsichtiges Klopfen auf das schräg gehaltene Röhrchen läßt sich erreichen, daß die gewünschte Menge der Substanz in den Kolben gleitet. Das Wägeröhrchen wird darauf verschlossen und erneut gewogen. Aus der Differenz der beiden Wägungen

Die Bereitung der Kaliumpermanganatlösung

47

ergibt sich das Gewicht der nunmehr im Kolben befindlichen Substanzprobe. Man achte jedoch bei der Operation des Einschüttens in den Kolben peinlich darauf, daß die Substanz nicht verstäubt, da sonst keine Gewähr besteht, daß sich wirklich die gesamte durch Wägung ermittelte Substanzmenge im Kolben befindet und später titriert wird. Jede Probe wird in etwa 200 ml reinem Wasser gelöst und die Lösung mit je 10 ml reiner, staubfreier Schwefelsäure (konz. Schwefelsäure wird auf das vierfache Volumen verdünnt!) angesäuert und auf 75° bis 85° C erwärmt. Nunmehr wird sie titriert, indem man die genau auf die Nullmarke eingestellte Kaliumpermanganatlösung (bei undurchsichtigen Lösungen erfolgt die Ablesung am oberen Rande des Meniskus!) unter fortwährend kreisendem Umschwenken des Erlenmeyerkolbens aus der Bürette in die heiße Natriumoxalatlösung eintropfen läßt. Man wartet vor jeder neuen Permanganatzugabe so lange, bis die Lösung sich entfärbt hat. Anfänglich nämlich findet die Oxydation des Oxalat-Ions nur träge statt. Die mitgeteilte Reaktionsgleichung gibt nur das Anfangs- und Endstadium wieder. Die Reaktion verläuft in Wirklichkeit viel komplizierter, wobei das Mangan(Il)-Ion eine nicht unwesentliche Rolle als Katalysator spielt (Skrabal, 1904). Es ist anfänglich nur spurenweise vorhanden, entsteht aber im Laufe der Titration in zunehmender Menge. Nach Zugabe einiger Milliliter kann man die Permanganatlösung etwas schneller einfließen lassen. Um den Endpunkt nicht zu überschreiten, muß sie aber gegen Ende der Titration wieder ganz langsam und vorsichtig eingetropft werden. Der Endpunkt gibt sich dadurch zu erkennen, daß die Permanganatlösung nicht mehr entfärbt wird, sondern der Lösung nunmehr eine schwache rotviolette Färbung erteilt. Die Farbintensität der Permanganat-Ionen erhellt daraus, daß — nach einer Angabe von Kolthoff [46] — noch eine 1 bis 2 • 10"5-n Permanganatlösung äußerst schwach rosa gefärbt ist. Diesem Umstand sowie der Tatsache, daß das Mangan(II)-Ion schon in mäßig verdünnten Lösungen völlig farblos erscheint, verdanken wir es, daß die Manganometrie ohne fremde Indikatorzusätze auskommt. Zur Erkennung des Endes der Reaktion ist also der überschüssige Zusatz einer gewissen kleinen Menge Permanganatlösung erforderlich. Ein Tropfen, 0,03 ml 0,1-n Permanganatlösung vermag 300 ml ungefärbter Lösung noch schwach rosa anzufärben. Bei einem Verbrauch von 20—30 ml

Die Manganometrie

48

0,1-n Permanganatlösung wäre das ein Zuviel von etwa 0,1%. Denselben zusätzlichen Verbrauch an Permanganatlösung hat man aber auch bei den späteren Titrationen, so daß er bei gewöhnlichen Bestimmungen nicht berücksichtigt zu werden braucht. Bei ganz exakten Titrationen muß dieses Zuviel unter Berücksichtigung des Volumens der vorgelegten Lösung ebenso beachtet werden wie bei der dazugehörenden Titerstellung. Die Beobachtung, daß die schwache Rosafärbung einer „austitrierten" Lösung nach einiger Zeit allmählich verschwindet, erklärt sich nicht nur aus dem Zutritt von oxydablen Staubteilchen aus der Luft, sondern auch dadurch, daß die im Lauf der Titration entstandenen Mangan(II)-Ionen ihrerseits die Permanganationen langsam reduzieren. Die Berechnung der Normalität der Kaliumpermanganatlösung auf Grund der Titrationsergebnisse geschieht in folgender Weise: Angenommen, wir hätten drei Proben von 1. 0,2718 g, 2. 0,1854 g und 3. 0,1922 g N a 2 C 2 0 4 mit unserer Kaliumpermanganatlölung titriert und 1. 40,15 ml, 2. 27,40 ml und 3. 28,47 ml bis zum Äquivalenzpunkt verbraucht. 1 ml einer genau 0,1-n Kaliumpermanganatlösung zeigt genau 1/10 Milli67 grammäquivalent Natriumoxalat, also ^0000 g = 6,7 mg N a a Q A an. Die Brüche 1.

= 40,55, 2. ^ ^ = 27,69 o, / o,1 192 2 und 3. „ _' = 28,69 geben also an, wieviele Milliliter einer 0,7

genau 0,1-n Kaliumpermanganatlösung unseren drei Proben entsprechen. In Wirklichkeit haben wir nicht 1. 40,55 ml, sondern nur 40,15 ml, 2. nicht 27,69 ml, sondern nur 27,40 ml und 3. nicht 28,69 ml, sondern nur 28,47 ml von unserer Lösung verbraucht. Sie ist also ein wenig stärker als n/10. Die

*«*• *

I § S • < » • SS-

1,010, also im Mittel 1,010, geben an, daß 1 ml unserer Kaliumpermanganatlösung 1,01 ml einer genau n/10 Lösung entsprechen; diese Zahl ist der N o r m a l f a k t o r der Titerlösung. Unsere Lösung ist also 0,101-normal. Viel weniger gut eignet sich die Oxalsäure selbst, H 2 C 2 0 4 - 2 H 2 0 , zur Einstellung der Permanganatlösungen, und

Die Bereitung der Kaliumpermanganatlösung

49

zwar erstens, weil es schwieriger ist, ein genau dem Wassergehalt der Formel entsprechendes Präparat zu erhalten, und zweitens, weil sie als Säure leicht etwa in der Laboratoriumsluft vorhandenes Ammoniak anzieht und spurenweise in Ammonoxalat übergeht. Doch wird die Verwendung der Oxalsäure häufig deswegen empfohlen, weil sie auch als Titersubstanz für Laugen benutzt werden kann. Die Einstellung mit Oxalsäure erfolgt ganz analog der Titerstellung mit Natriumoxalat; die Substanz wird in lufttrockenem Zustand verwendet. 1 ml 0,1-n Kaliumpermanganatlösung entspricht einem Zehntel Milligrammäquivalent, also | ^ g

= 6,3034mg H 2 C>0 4 -2H 2 0.

Die Einstellung der Kaliumpermanganatlösung mit chemisch reinem Eisen: Diese Methode ist sehr exakt, wenn wirklich reines Eisen zur Verfügung steht, das nach Mittasch (1928) durch thermische Zersetzung von Eisenpentakarbonyl, Fe(CO) 5 , dargestellt werden kann und auch im Handel erhältlich ist. Die Methode beruht darauf, daß metallisches Eisen unter Luftabschluß in verdünnter Schwefelsäure quantitativ zu Eisen(II)sulfat gelöst wird: Fe + 2H + = Fe 2+ + H2, das dann nach S. 50 mit Kaliumpermanganat titriert werden kann. Unter keinen Umständen darf man zur Einstellung sogenannten „Blumendraht" verwenden, den ältere Lehrbücher empfehlen. Blumendraht kann nämlich bis über 0,3% fremder Bestandteile, wie Kohlenstoff, Silicium, Phosphor und Schwefel enthalten, die sich in Schwefelsäure zum Teil zu ebenfalls oxydierbaren Verbindungen auflösen. Dadurch wird dann mehr Permanganatlösung verbraucht, als dem wahren Eisengehalt des Drahtes entspricht, und der Wirkungswert kann scheinbar über 100% der Theorie betragen! Hinzu kommt noch, daß der Carbidgehalt des Drahtes erheblichen Schwankungen unterworfen ist. Die Auflösung der abgewogenen Eisenproben in verdünnter Schwefelsäure muß zur Vermeidung .von Oxydationen unter Luftabschluß vorgenommen werden und geschieht am besten in einem Bundkölbchen mit Bunsenventil (vgl. S. 52). Die Titrierung der schwefelsauren Eisen(II)-sulfatlösung erfolgt so, wie es im folgenden Abschnitt beschrieben wird, 1 ml 4 Jander-Jahr, Maßanalyse

50

Die Manganometrie

0,1-n Kaliumpermanganatlösung zeigt ein Zehntel Milligrammäquivalent, also 5,585 mg Eisen, an. 3. Die Bestimmung des zweiwertigen und des dreiwertigen Eisens in schwefelsaurer Lösung Die Bestimmung des zweiwertigen Eisens in schwefelsaurer Lösung erfolgt nach folgendem Reaktionsschema: M n 0 4 " + 5 Fe 2+ + 8 H + = Mn 2+ + 5 Fe 3+ + 4 H 2 0 . Das Eisen(II)-Ion wird also zum Eisen(III)-Ion oxydiert. Mit dieser Methode, die sehr genaue Ergebnisse liefert, begründete Margueritte im Jahre 1846 die Manganometrie. Titration einer Eisen(II)-sulfatlösung: Man mißt so viele Milliliter der zu bestimmenden Lösung ab, daß der Verbrauch an Permanganatlösung 25 bis 40 ml beträgt, gibt 10 ml verdünnte Schwefelsäure (1 : 4) hinzu und verdünnt mit luftfreiem Wasser auf etwa 200 ml. Die Titration kann in kalter oder auch heißer Lösung vorgenommen werden. Der Endpunkt ist erreicht, wenn die Lösung noch eine Minute lang nach dem letzten Permanganatzusatz schwach orange gefärbt bleibt. Diese Farbe resultiert aus der schwach gelblichen Farbe der entstandenen Eisen(III)-Salzlösung und dem Rotviolett des überschüssigen Permanganats. Durch Zusatz von etwas Phosphorsäure lassen sich die Eisen(III)-Salze in farblose Komplexverbindungen überführen, so daß in diesem Falle nach beendeter Titration die Rosafärbung der Permanganat-Ionen erhalten bleibt. Doch ist auch ohne Phosphorsäurezusatz der Endpunkt der Titration von Eisen(II)-Salz in schwefelsaurer Lösung unschwer festzustellen. Die Berechnung des Analysenresultats soll hier, als Beispiel für die maßanalytischen Berechnungen überhaupt, mitgeteilt werden: Es seien in drei Bestimmungen gut übereinstimmende Werte erhalten, deren arithmetisches Mittel 28,65 ml betragen möge. Unsere Kaliumpermanganatlösung sei 0,101 - normal; 28,65 ml dieser Lösung entsprechen also 28,65-1,01 = 28,94 ml einer genau zehntelnormalen Lösung. 1 ml einer genau 0,1-n Kaliumpermanganatlösung zeigt Vio Milligrammäquivalent,

Die Bestimmung des Eisens in schwefelsaurer Lösung

51

-also 5,585 mg F e an; 28,94 ml entsprechen also 28,94-5,585 = 164,2 mg Eisen, die in dem zur Bestimmung verwendeten Bruchteil des Gesamtvolumens der Eisen(II)-sulfatlösung enthalten sind. Titration einer Eisen(III)-sulfatlösung: W e n n das Eisen nicht von vornherein in der zweiwertigen, sondern in der dreiwertigen F o r m vorliegt, m u ß es vor der Titration mit Kaliumpermanganat quantitativ zu Eisen(II)-Salz reduziert werden. Nur solche Reduktionsmittel sind hierzu geeignet, deren Uberschuß nach vollendeter Reduktion ohne Schwierigkeit aus der Lösung entfernt werden kann. M a n verwendet u. a. schweflige Säure, naszierenden Wasserstoff und Zinn(II)-chlorid. Die Reduktion mit s c h w e f l i g e r Säure nach der G l e i c h u n g : 2Fe3+ + + H a O - 2 F e 2 + + S 0 4 2 - + 2H+ verläuft in stärker sauren Lösungen unvollständig (Massenwirkungsgesetz!). Die Eisen(III)-Salzlösung wird daher, falls sie sauer ist, mit Sodalösung fast neutralisiert, mit überschüssiger, frisch bereiteter schwefliger Säurelösung versetzt, verdünnt und in dem durch Fig. 10 wiedergegebenen Reduktionskolben unter langsamem Durchleiten von luftfreiem Kohlendioxid eine viertel bis halbe Stunde lang zum Sieden erhitzt. Nachdem etwa 30 bis 40 ml Wasser aus dem Kolben abdestilliert sind, wird geprüft, ob der durchgeleitete Kohlendioxidstrom noch Schwefeldioxid enthält. Zu diesem Zweck wird das Ablaufrohr des Kühlers in F i g . 10 ein Kölbchen mit schwach schwefelsaurem, durch einen Tropfen 0,1-n Permanganatlösung rosa gefärbtem Wasser getaucht. Tritt keine Entfärbung mehr ein, so wird die Lösung direkt im Kolben nach Zusatz von 10 ml verdünnter Schwefelsäure mit Kaliumpermanganatlösung titriert.

52

Die Manganometrie

Die Reduktion mit naszierendem Wassers t o f f nach der Gleichung Fe 3+ + H ^ Fe 2+ + H25 ! 10~12>24

110

Die Grundlagen der Neutralisationsanalysen

Es muß hier darauf hingewiesen werden, daß ganz allgemein der nach dem Massenwirkungsgesetz für eine Reaktion,. z . B . die Dissoziation AB ^ A + + B _ formulierte Quotient j-g_j [AB]

=

K|

'

im strengen Sinne nicht eine von der Konzentration der Reaktionsteilnehmer unabhängige Konstante ist. Vielmehr spielt infolge der gegenseitigen elektrostatischen Anziehung der Ionen deren Konzentration für den Wert von K c eine wesentliche Rolle. Auch an der Reaktion nicht beteiligte Fremdionen beeinflussen die Größe von K c . Die wirkliche Konstante erhält man, wenn an Stelle der einzelnen Ionenkonzentrationen die entsprechenden I o n e n a k t i v i t ä t e n a I o n = [ c I o n H I o n in die Gleichung für K c eingesetzt werden. Der sogenannte A k t i v i t ä t s k o e f f i z i e n t f ist abhängig von der Ionenart, deren Konzentration sowie von den in der Lösung anwesenden Fremdionen. In stark verdünnten Lösungen wird f = 1, so daß in diesem Falle mit den Ionenkonzentrationen gerechnet werden kann. Weitere Einzelheiten, auf die hier nicht näher eingegangen werden kann, entnehme man ausführlicheren Lehrbüchern, z . B . [20], [62], [82] 1 ). 2. Wasserstoffionenkonzentration und Wasserstoffexponent D a s Ionenprodukt des reinen Wassers hat also b e i gewöhnlicher T e m p e r a t u r , „ Z i m m e r t e m p e r a t u r " , den Z a h lenwert 10 I n r e i n e m W a s s e r und in neutral reagierenden L ö s u n g e n ist die Konzentration der Wasserstoffionen genau gleich der Konzentration der Hydroxid-Ionen. D a nun: [ H + ] • [ O H " ] ^ 10" 1 4 ist, so gilt / [ H + ] = [ O H " ] ^ l / l O - 1 4 ^ 10- 7 . I n reinem W a s s e r und in neutral reagierenden L ö s u n g e n b e t r ä g t also die Wasserstoff- b z w . Hydroxid-Ionenkonzentration — 10 7 , mit anderen W o r t e n : 10 Millionen (10 7 ) x ) Bei allen folgenden Betrachtungen wird a i o n = [c j o n ] und K a = K c gesetzt. Diese Näherungsausdrücke gelten praktisch jedoch nur für sehr verdünnte Lösungen.

Wasserstoffionenkonzentrati~n und Wasserstoffexponent

111

Liter Wasser enthalten gerade 1 Mol Wasserstoffionen (— 1 g) und 1 Mol Hydroxid-Ionen 17 g). Saure Lösungen enthalten mehr Wasserstoffionen als Hydroxid-Ionen; für sie gilt also: [ H + ] > 1 0 " 7 > [OH"]. Alkalische Lösungen enthalten mehr Hydroxid-Ionen als Wasserstoffionen, d. h.: [OH-]>10-7>[H+], Da aber das Ionenprodukt des Wassers bei Zimmertemperatur immer denselben konstanten Wert hat, so läßt sich aus der Gleichung: [H+] • [OH"] ^ 1(T14 für jede beliebige Wasserstoffionenkonzentration die zugehörige Hydroxid-Ionenkonzentration berechnen und umgekehrt. Um alle Rechnungen und Überlegungen zu vereinfachen, operiert man heute ganz allgemein nur mit der W a s s e r s t o f f i o n e n k o n z e n t r a t i o n ; um z . B . die alkalische Reaktion einer n/10000 Natronlauge zahlenmäßig auszudrücken, gibt man also nicht an, ihre [OH ] sei 10"4, sondern man sagt, ihre [H + ] betrage -

10

14

1CT11

= -

[OH~]

- = 10~(14 4> = 1(T10.

10" 4

Einen Überblick über die [H+] in sauren und alkalischen Lösungen 0 _ -gibt 2 _ folgendes - 4 ^ - 6 _ Schema: -7_ -8_ 10_ -12_ -14 10


10

>10

Saure Lösungen \ alkalische Lösungen Neutralpunkt Lediglich eine Vereinfachung der Schreibweise und des Ausdrucks bedeutet die von Sörensen (1909) bzw. Thiel eingeführte Bezeichnung W a s s e r s t o f f e x p o n e n t bzw. S ä u r e s t u f e . Man versteht darunter den negativen dekadischen Logarithmus der [H + ], d. h. den Logarithmus ihres reziproken Wertes, und bezeichnet ihn mit p H . Es ist also: Ph = — lo8 t H + ] = +

3

lo

S [jjt-J •

Wenn z. B. [H ] = 10" -n ist, so ist p H = log

1

. = log 1 0 3 = 3 .

112

Die Grundlagen der Neutralisationsanalysen

Oder wenn [H + ]=3,7 • 10" 8 -n=10 0°g 3,7)-8. n = 10-7,43. n i s t , so gilt: p H = 7,43. Andererseits bedeutet z. B. p H = 5,8 eine [H + ] von 10—5.8_n = io + o,2-6. n = 1,59 . 10-6-n 1 ). In neutral reagierenden Lösungen ist also p H = 7, in sauren Lösungen gilt p H < 7 und in alkalischen Lösungen ist p H > 7. Je größer also der p H -Wert, um so alkalischer reagiert die Flüssigkeit, je kleiner das p H , desto saurer ist ihre Reaktion. Der Begriff des Wasserstoffexponenten bietet häufig Vorteile, wenn die Änderung der Wasserstoffionenkonzentration als Funktion irgendeiner andern Variablen graphisch aufgetragen werden soll. 3. Die Bedeutung des Ionenproduktes für den Neutralisationsvorgang; Titrationskurven W i e groß die Bedeutung des Ionenproduktes für den Neutralisationsvorgang ist, ergibt sich aus folgenden Überlegungen: D i e [H + ] einer 0,01-n Salzsäure ist 10 "2. Setzen wir bei Zimmertemperatur zu einem bestimmten Volumen dieser Lösung einen Tropfen der wäßrigen Lösung einer starken Base hinzu, so erhöhen wir dadurch die HydroxidIonenkonzentration und damit den W e r t des Ionenproduktes [H + ] • [OH~]. Dieses größere Ionenprodukt entspricht aber nicht mehr dem Gleichgewichtszustand der Lösung, und daher treten solange Wasserstoffionen und Hydroxid-Ionen nach der Gleichung:

H++OH-^H2O zu undissoziiertem Wasser zusammen, bis der ursprüngliche, dem Gleichgewicht entsprechende W e r t des Ionenproduktes 1CT14 wiederhergestellt ist. D i e Wasserstoffionenkonzentration ist aber dabei gesunken. Setzen wir mehr L a u g e hinzu, so nimmt weiterhin dauernd die relative M e n g e der Wasserstoffionen ab und die der HydroxidIonen zu, während das anfänglich überschrittene IonenHier sei daran erinnert, daß man beim Aufschlagen des Numerus zu einem negativen Wert des Logarithmus diesen erst als Summe einer positiven Zahl zwischen 0 und 1 und einer ganzen negativen Zahl darstellt.

Die Bedeutung des Ionenproduktes

113

Produkt immer wieder auf den alten Wert 1 0 1 4 zurücksinkt. Im Laufe einer solchen Titration erreichen wir schließlich einen Punkt, wo gerade die Hydroxid-Ionenkonzentration und die Wasserstoffionenkonzentration in der Lösung einander gleich geworden sind: Wir haben den Neutralpunkt mit der [H + ] = 1CT7 erreicht. Setzen wir den Laugezusatz noch weiter fort, so überwiegen mehr und mehr die Hydroxid-Ionen, d. h., die vorher saure Lösung nimmt nunmehr alkalische Reaktion an. Am Beispiel der Neutralisation einer Lösung von Chlorwasserstoffsäure mit Natronlauge soll nun im einzelnen besprochen werden, wie sich im Verlauf einer Titration, also nach jedem Reagenszusatz, die [H + ] der Lösung ändert. Dabei soll die vereinfachende Annahme gemacht werden, daß sich das Volumen der Ausgangslösung während der Titration nicht ändert. In der Praxis kommt man dieser Forderung sehr nahe, wenn man zur Titration der vorgelegten 0,01-n Salzsäure eine 1-n Natronlauge verwendet, die man einer Mikrobürette entnimmt. Tabelle 7 gibt an, wieviel ml der 1-n Natronlauge zu 100 ml 0,01-n Salzsäure jeweils hinzugegeben wurden, wieviel Äquivalenten 0,01-n NaOH diese Laugemenge entspricht, und wie groß die [H + ] bzw. das p H der Lösung nach jedem Reagenszusatz ist. Die in der Tabelle niedergelegten p i r Werte lassen sich Tabelle 7 Die zu 100 ml 0,01-n HCl zugesetzte Menge Natronlauge:

8

ml 1-n NaOH

Äquivalente Lauge auf je 100 Äquivalente der anfangs vorhandenenSäure

0,000 0,900 0,990 0,999 1,000 1,001 1,010 1,100

0,0 90,0 99,0 99,9 100,0 100,1 101,0 110,0

Jander-Jahr, Maßanalyse

t m

PH

10- 2 10- 3 10- 4 10- 5 10- 7 10-" 10" 10 10-"

2 3 4 5 7 9 10 11

114

Die Grundlagen der Neutralisationsanalysen

als Ordinaten, die zugesetzten Anteile der Natronlauge als Abszissen in ein rechtwinkliges Koordinatensystem graphisch eintragen (Fig. 17). Th

Aequi v. Pkt. 3 i* 5 6

NeuiraL-

7

pkt.

8 9 10 11

90 Aequivalente

wo 0,01-n

Na OH

rio

Fig.17

E s ergibt sich eine c h a r a k t e r i s t i s c h e , s o g . T i t r a t i o n s - , hier N e u t r a l i s a t i o n s k u r v e . Der p H -Wert der Säure nimmt bei steigendem Hydroxid-Ionenzusatz zunächst langsam, dann aber schneller und immer schneller zu und ändert sich schließlich geradezu sprunghaft, um zuletzt nur noch langsam und immer langsamer zuzunehmen. Die Kurve geht also durch einen Wendepunkt. Dieser Wendepunkt der Kurve, an dem die Zunahme der p H -Zahl den größten Wert erreicht, an dem also ein bestimmter kleiner Hydroxid-Ionenzusatz die größte prozentuale Änderung in der [H + ] der Lösung hervorruft, ist der Ä q u i v a l e n z p u n k t des Systems, so genannt, weil hier gerade so viel L a u g e hinzugegeben wurde, als zur Neutralisation der Säure nötig war, nicht mehr und nicht weniger, d.h. gerade die der Säure äquivalente Laugenmenge. E s ist das Ziel jeder Neutralisationsanalyse, möglichst genau den Äquivalenzpunkt des jeweils vorliegenden Titrationssystems zu erfassen.

Die Bedeutung des Ionenproduktes

115

Wenn wir, wie das eben beschrieben wurde, eine starke Säure mit einer starken Base (oder umgekehrt) titrieren, so fallen der Äquivalenzpunkt und der wahre Neutralpunkt — charakterisiert durch die [H + ] = 1CT7 — praktisch zusammen. Das ist aber durchaus nicht immer so. Der Äquivalenzpunkt liegt sehr häufig bei einer WasserstoffionenKonzentration oberhalb oder unterhalb 10~7. Der Äquivalenzpunkt liegt im alkalischen Gebiet, wenn wir eine schwache Säure mit einer starken Base (oder umgekehrt) versetzen. Tabelle 8 gibt z. B. die Werte für die Neutralisation einer 0,1-n Essigsäure mit Natronlauge wieder, während Fig. 18 die zugehörige graphische Darstellung bietet. Tabelle 8 Die zu 100 ml 0,1-n CH 3 COOH zugesetzte Menge Natronlauge: m l 10-n N a O H

0,000 0,100 0,500 0,900 0,990 0,998 0,999 1,000 1,001 1,002 1,010

Ä q u i v a l e n t e L a u g e auf je 100 Ä q u i v a l e n t e d e r a n fangs vorhandenenSäure

0,0 10,0 50,0 90,0 99,0 99,8 99,9 100,0 100,1 100,2 101,0

[H + ]

PH

1,32-10"3 1,60 IO"4 1,78-10"5 1,98-IO"6 1,80-10"7 3,56-10-' 1,78-IO"8 1,35-10 9 1,01-io10 5,01 -10- 11 1,01 • 10 11

2,88 3,80 4,75 5,70 6,75 7,45 7,75 8,87 10,0 10,3 11,0

Der Äquivalenzpunkt liegt hier nicht am wahren Neutralpunkt mit der [H + ] = 10"\ sondern bei der [H+] = 10~8'87, also schon deutlich im alkalischen Gebiet. Obwohl am Äquivalenzpunkt die Essigsäure und die Natronlauge in genau äquivalenten Mengen nebeneinander vorliegen, ist doch die Anzahl der Hydroxid-Ionen in der Lösung größer als die der Wasserstoffionen. Der Grund für diese Erschei-

116

Die Grundlagen der Neutralisationsanalysen

nung liegt in der „Hydrolyse" des im Verlauf der Titration entstehenden Natriumacetats. Um sie zu verstehen, müssen wir uns zunächst mit dem Begriff der Stärke der Säuren und Basen beschäftigen. Aeqaiv. Pkt.

go Aequivalente

100 0,1-n Na OH

Fig. 18

4. Stärke der Säuren und Basen

Säuren sind dadurch charakterisiert, daß sie in wäßriger Lösung in positiv geladene Wasserstoffionen (hydratisierte Protonen) und negativ geladene Anionen dissoziiert sind. Bezeichnen wir die undissoziierte Säure als HS und ihr Anion mit S", so können wir diesen Vorgang folgendermaßen formulieren: HS ^ H + + S-. Basen dagegen dissoziieren in positiv geladene Kationen und negativ geladene Hydroxid-Ionen; bezeichnen BOH die undissoziierte Base und B + ihr Kation, so gilt: BOH^B++OH". J. N. Brönsted (1924) hat als umfassendere, auch auf Reaktionen in nicht wäßrigen Lösungen anwendbare Definition vorgeschlagen, solche Substanzen als „Säuren" zu bezeichnen,

Stärke der Säuren und Basen

117

die Protonen abgeben können und entsprechend Stoffe, die mit Protonen unter Säurebildung reagieren können, „Basen" zu nennen (vgl. hierzu z. B. [82]).

Starke Säuren, wie Perchlorsäure, Salpetersäure oder die Halogenwasserstoffsäuren sind in verdünnten Lösungen praktisch vollkommen dissoziiert, ebenso die starken Basen, wie Kalilauge, Natronlauge oder Barytlauge. Schwache Säuren und schwache Basen sind dagegen nur teilweise in ihre Ionen gespalten; ihre Lösungen enthalten außer den Ionen H + und S - bzw. OH" und B+ noch mehr oder weniger große Mengen der undissoziierten Verbindungen HS bzw. BOH. Wenden wir das Massenwirkungsgesetz auf die GleichcrmsMQhtcrpcilrHnn

,

,

na

Ä

T T +

, ,,

H +S (1) j-g-j (2) [HS]""" = Kd " K,j nennen wir die Dissoziationskonstante der Säure. Sie hat für jede Säure einen ganz charakteristischen Wert. Gleichung (2) erlaubt uns auch, die Wasserstoffionenkonzentration einer schwachen Säure zu berechnen, wenn wir ihre Dissoziationskonstante und die Konzentration ihres undissoziierten Anteils HS kennen. Dann gilt nämlich: K d - [HS] ° an, so ergibt sich:

[ H ]

- - [ s - r ~

oder, da in einer reinen Säurelösung immer [H + ] = [S ], [ H + ] = j / K j • [HS]T (3) Wie man diese Gleichung zum Zweck ihrer praktischen Anwendung noch weiter umformt und wie man die Dissoziationskonstanten mißt und berechnet, kann hier nicht weiter ausgeführt werden. Wir verweisen auf ; die Lehrbücher der physikalischen Chemie und andere ausführliche Werke, z.B. [82], [92]. Hier sei nur noch gesagt, daß die Dissoziationsverhältnisse bei Basen selbstverständlich in entsprechender Weise zu behandeln sind. Die Dissoziationskonstanten der Basen und Säuren und damit die Wasserstoffionenkonzentrationen ihrer Lösung (gleicher Normalität) bilden also ein Maß für ihre Stärke bzw. Schwäche.

118

Die Grundlagen der Neutralisationsanalysen T a b e 11 e 9

Bezeichnung des Elektrolyten

Dissoziationskonstante K] , so daß also hier der Endpunkt der Titration am Auftreten und nicht an der Beendigung einer Niederschlagsbildung erkannt wird. Eine zweite Methode der Endpunktsbestimmung verwendet einen Indikator, der am Titrationsendpunkt die Farbe der Lösung verändert. Der Indikator vermag entweder mit den bei der Titration verschwindenden oder mit den infolge des Zusatzes der Maßlösung neu hinzukommenden Ionen eine deutlich gefärbte, lösliche Verbindung zu bilden, die in dem Augenblick verschwindet bzw. entsteht, wo der Äquivalenzpunkt erreicht wird. Möglichst

Die Methoden der Endpunktsbestimmung

181

im Äquivalenzpunkt muß also die Konzentration des neu hinzukommenden Ions schon so groß werden, daß sie ausreicht, um mit dem Indikator unter Bildung der gefärbten Verbindung reagieren zu können, oder es muß umgekehrt die Konzentration des verschwindenden Ions gerade im Äquivalenzpunkt schon so gering geworden sein, daß sie nicht mehr genügt, um weiterhin mit dem Indikator die gefärbte Substanz zu bilden. In beiden Fällen wird also der Endpunkt an einer Farbänderung der Lösung erkannt. Ein praktisches Beispiel für diese Art der Endpunktsermittlung bietet die Verwendung von Eisen(III)-Ionen als Endanzeiger bei der Titration der Silber-Ionen mit einer Alkalithiocyanatlösungnach Volhard (s. S. 194). Die [CNS~] einer gesättigten Lösung des schwerlöslgichen AgCNS genügt nicht, um mit den Eisen(III)-Ionen zusammen die Entstehung des dunkelroten, undissoziierten Eisenthiocyanats zu ermöglichen; erst ein geringer Überschuß an Thiocyanat-Ionen färbt die Lösung schwach rosa. Bei den hydrolytischen Fällungsverfahren dienen die bereits ausführlich besprochenen Indikatoren der Neutralisationsanalyse zur Endpunktsermittlung. Die dritte für die Durchführung von Fällungsanalysen brauchbare Methode der Endpunktserkennung benutzt Indikatoren, die mit der zugesetzten Reagenslösung einen deutlich gefärbten, schwerlöslichen Niederschlag bilden, sobald mit der Erreichung des Äquivalenzpunktes sämtliche reaktionsfähigen Ionen in der titrierten Lösung als schwerlöslicher Niederschlag ausgefällt sind, d. h. also, sobald die Möglichkeit für das Auftreten eines geringen Überschusses des Fällungsmittels gegeben ist. Als Beispiel muß hier die Verwendung von Chromat-Ionen als Endanzeiger bei der Titration der Halogenid-Ionen nach Mohr (s. S. 198) genannt werden. Sobald z. B. im Verlauf der Titration einer Natriumchloridlösung die gesamten Chlorid-Ionen als schwerlösliches Silberchlorid ausgefällt sind, vermag schon ein geringer Überschuß an Silber-Ionen zusammen mit den Chromat-Ionen das Löslichkeitsprodukt des roten,

182

Die Grundlagen der Fällungsanalysen

schwerlöslichen Silberchromats zu überschreiten. Die wichtigste Voraussetzung für die Verwendbarkeit eines solchen Indikators besteht darin, daß in der gesättigten Lösung des während der Titration ausfallenden Niederschlages (z. B. AgCl) die Konzentration derjenigen Ionen (z. B. Ag+), die mit den Indikator-Ionen (z. B. CrC)42) den zur Erkennung des Endpunktes dienenden, ebenfalls schwerlöslichen Niederschlag (z. B. Ag 2 Cr0 4 ) bilden können, nicht ausreicht, um dessen Löslichkeitsprodukt zu überschreiten. Denn anderenfalls würde der praktisch erkennbare Titrationsendpunkt noch vor dem wirklichen Äquivalenzpunkt liegen, d. h. also, der Umschlag würde zu früh eintreten. In solchen Fällen kann eine vierte Methode der Endpunktserkennung zum Ziele führen, die Tüpfelmethode. Hier wird der titrierten Lösung nach jedem neuen Zusatz der Reagenzlösung ein klarer Tropfen entnommen und auf einer geeigneten Unterlage, z. B. auf einer Porzellanplatte oder einem Blatt Filtrierpapier, mit einem Tropfen der Indikatorlösung zusammengebracht. Die Endpunktsermittlung geschieht also außerhalb der titrierten Lösung. Als Beispiel sei die Zinkbestimmung nach Schaffner (1858) angeführt: Die Zinklösung wird mit einer Natriumsulfidlösung bekannten Gehaltes titriert. Als Tüpfelindikator dient eine Kobaltsalzlösung, die mit dem der titrierten Lösung entnommenen Tropfen unter Abscheidung von schwarzem Kobaltsulfid reagiert, sobald ein geringer Überschuß an Sulfidionen vorhanden ist. Der Probetropfen darf aber keine Spur des Niederschlages (hier ZnS!) enthalten, denn sonst reagiert schon dieser mit dem Tüpfelindikator, und der Endpunkt erscheint zu früh. Mit Hilfe eines Tüpfelindikators wird auch die bereits auf S. 71 beschriebene Bestimmung der Eisen(II)-Ionen mit Kaliumdichromat durchgeführt. Dort finden sich auch Angaben über die Größe des Fehlers, den man durch die Entnahme der Probetropfen begeht. Alle Tüpfelmethoden sind umständlich und meist auch wenig genau. Man zieht daher, wo es möglich ist, die Titrationsmethoden mit direkter Endpunktsermittlung vor.

Die Methoden der Endpunktsbestimmung

183

Eine fünfte Methode der Endpunktsbestimmung wurde von K. Fajans (1921/24, vgl. z. B. [37]) angegeben: Die Benutzung der „Adsorptionsindikatoren" in der Argentometrie. Diese Methode macht sich die Adsorptionserscheinungen zunutze, die sich bei den Fällungsvorgängen sonst häufig dadurch als Fehlerquelle bemerkbar machen, daß sie das sog. „Mitreißen" fremder Bestandteile, vor allem noch unverbrauchter Titersubstanz, durch Okklusion oder Adsorption an der Oberfläche des Niederschlages verursachen. Die gebräuchlichsten Adsorptionsindikatoren sind Eosin und Fluoreszei'n. Ihre Wirkungsweise ist etwa folgende: Eine Kaliumbromidlösung werde in Gegenwart einer geringen Menge von Eosinnatrium mit Silbernitratlösung titriert. Dadurch entstehen in der rosa gefärbten Lösung kolloidale Partikel von Silberbromid, deren Oberfläche die noch in der Lösung befindlichen Bromionen adsorbiert, wodurch sie sich negativ auflädt. Sobald jedoch der Äquivalenzpunkt überschritten wird, so daß nunmehr Silber-Ionen in geringem Überschuß in der Lösung vorhanden sind, adsorbieren die kolloidalen Silberbromidteilchen Silber-Ionen. Sie laden sich also nunmehr positiv auf und sind daher imstande, die Anionen des Farbstoffs anzulagern. Hierdurch werden die Elektronenhüllen des Farbstoffes „deformiert", was als Farbänderung in Erscheinung tritt. Sobald der Äquivalenzpunkt überschritten wird, färben sich infolgedessen Niederschlag und kolloidale Lösung rotviolett. Diese Färbung verschwindet, sobald die Lösung wieder Bromid-Ionen im Überschuß enthält, und kehrt zurück, wenn wieder die Silber-Ionen überwiegen; die Erscheinung ist so lange reversibel, als noch kolloidale Silberbromidteilchen in der Lösung vorhanden sind. Ein Adsorptionsindikator ist jedoch nur dann gut geeignet, wenn er erst in unmittelbarer Nähe des Äquivalenzpunktes stark adsorbiert wird und nicht schon, wie z. B. das Eosin, falls man es statt des Fluoresze'fns zur Bestimmung der ChloridIonen verwendet, lange vor Erreichung des Endpunktes den Niederschlag anfärbt. Die Gegenwart größerer Elektrolytmengen kann dadurch stören, daß sie die Ausflockung

184

Die hydrolytischen Fällungsverfahren

des Silberhalogenidsols begünstigt; dem kann jedoch vielfach durch Verwendung eines Schutzkolloids entgegengetreten werden. Wir besprechen nun im folgenden die wichtigsten Methoden der Fällungsanalyse, und zwar zunächst die sog. „hydrolytischen Fällungsverfahren". XII. Die hydrolytischen Fällungsverfahren 1. Ihre Grundlage und Bedeutung Das allen hydrolytischen Fällungsverfahren gemeinsame Prinzip besteht darin, daß die neutral reagierende Lösung, z. B. von Zinksulfat, deren Gehalt an Kationen bestimmt werden soll, mit einer Maßlösung titriert wird, die das Alkalisalz einer sehr schwachen Säure, z. B. Natriumsulfid, enthält, deren Anionen mit den zu bestimmenden Kationen zu einer schwerlöslichen Verbindung, z. B. ZnS, zusammentreten. Solange noch ein Niederschlag ausfällt, bleibt die [H + ] der Lösung praktisch konstant. ZnS scheidet sich aus, und an die Stelle der ursprünglichen, neutralen Lösung von ZnS0 4 tritt eine solche von Na 2 S0 4 ; sobald jedoch der Äquivalenzpunkt überschritten wird, verursacht schon ein geringer Überschuß der Maßlösung infolge seiner starken Hydrolyse eine sprunghafte Abnahme der [H + ], die durch den Umschlag eines geeigneten Farbindikators, z. B. Methylrot, erkennbar gemacht werden kann. Natürlich sind auch Analysenmethoden denkbar, bei denen ein Anion mit dem stark hydrolysierten Salz einer schwachen Base titriert wird, mit deren Kation es in Form eines schwerlöslichen Niederschlages ausfällt. Doch müssen mehrere wichtige Voraussetzungen erfüllt sein, wenn derartige Titrationsmethoden zu genauen und reproduzierbaren Resultaten führen sollen. So muß erstens die zu bestimmende Lösung gegenüber dem verwendeten Indikator neutral reagieren, und es dürfen auch keine anderen Anionen schwacher Säuren (z. B. Natriumacetat!) zugegen sein, weil die Lösung sonst zu stark gepuffert ist. Zweitens muß der ausfallende Niederschlag eine absolut

Grundlage und Bedeutung

185

konstante, wohldefinierte Zusammensetzung haben, und sein Löslichkeitsprodukt muß möglichst klein sein. Und endlich muß die Maßlösung möglichst stark hydrolysieren und doch titerbeständig sein. Man findet in der Literatur eine ganze Reihe von hydrolytischen Fällungsmethoden. So ist z. B. das Natriumsulfid zur Bestimmung des Zinks, das Kaliumchromat zur Bestimmung von Barium und Blei und das Natriumkarbonat zur Titration von Blei- und Zinklösungen vorgeschlagen worden. Doch diese Fällungsverfahren haben praktisch keine Bedeutung, weil sie nicht allen oben angeführten Voraussetzungen entsprechen und somit zu ungenau sind, weil ihr Anwendungsgebiet beschränkt ist, und weil sie schließlich keinem wirklichen Bedürfnis in der Praxis entgegenkommen.Lediglich die Titrationen, die sich mit Kaliumpalmitatlösungen ausführen lassen, haben wirkliche Bedeutung erlangt. Die Palmitationen sind nämlich imstande, die Ionen der Erdalkalien und des Magnesiums als unlösliche „Seifen" auszufällen, und schon ein geringer Uberschuß der stark hydrolysierten Palmitatlösung färbt Phenolphthalein rot. Damit ergibt sich nun eine exakte und schnelle Methode zur Calcium- und Magnesiumbestimmung, die hauptsächlich in der Praxis der Trink- und Brauchwasseruntersuchung zur Ermittlung der Kalk- und Magnesiahärte (s. auch S. 156) in ausgedehntem Maße benutzt wird. Diese von C. Blacher (s. S. 187) angegebene Methode ist weit eleganter und genauer als das früher hauptsächlich verwendete Clarksche Seifenverfahren, das den gleichen chemischen Vorgang benutzt, aber den Titrationsendpunkt an der Schaumfähigkeit der überschüssigen Seifenlösung erkennen läßt. 2. Die Bereitung und Einstellung der Kaliumpalmitatlösung Man bringt in einen Meßkolben von 1 Liter Inhalt 25,6 g reinster, stearinsäurefreier Palmitinsäure und 0,1 g Phenolphthalein, gibt 5 0 0 ml reinen Propylalkohol und 300 ml

186

Die hydrolytischen Fällungsverfahren

destilliertes Wasser hinzu, und erwärmt das Gemisch auf dem Wasserbad. An Stelle des Propylalkohols kann man auch Äthylalkohol (96%) verwenden, doch scheidet die äthylalkoholische Lösung unter 15° C allmählich Palmitinsäure aus! Ferner bereitet man aus 15 g reinem Kaliumhydroxid und 100 ml warmem Äthylalkohol (96 °/o) eine alkoholische Kalilauge, die man in kleinen Anteilen so lange zur Palmitinsäurelösung hinzusetzt, bis diese völlig klar geworden und schwach rosenrot gefärbt ist. Hat man zuviel Lauge zugegeben, so entfärbt man mit einigen Tropfen 0,1-n Salzsäure und titriert, unter gutem Umschütteln, noch einmal tropfenweise bis zum Farbumschlag. Nach dem Abkühlen wird die Lösung mit Propylalkohol auf 1 Liter aufgefüllt und eventuell filtriert; sie ist etwa 0,1-normal an Kaliumpalmitat. Die Einstellung der Palmitatlösung erfolgt entweder auf eine gegen Phenolphthalein genau neutrale Lösung von Calciumchlorid, deren Calciumgehalt gravimetrisch ermittelt wurde, oder in folgender Weise auf klares, aus reinstem Ätzkalk mit kohlensäurefreiem Wasser bereitetes Kalkwasser: 10 bis 20 ml Kalkwasser werden zunächst auf etwa 100 ml verdünnt, mit 0,1-n Salzsäure gegen Phenolphthalein als Indikator bis zur eben erreichten Entfärbung titriert und aus der hierzu verbrauchten Säuremenge der Gehalt an Calciumhydroxid berechnet. Dann wird noch ein Tropfen 0,1-n Salzsäure im Uberschuß hinzugegeben. Die farblose Flüssigkeit wird nach Zusatz von 1 ml einer l%igen, alkoholischen Phenolphthaleinlösung langsam und unter kräftigem Umschütteln mit der Kaliumpalmitatlösung bis zur eben bemerkbaren Rosafärbung titriert. Wird der Titer mit einer gravimetrisch eingestellten Calciumchloridlösung ermittelt, so muß diese zunächst durch kurzes Aufkochen von Kohlensäure befreit und mit 1-n Natronlauge auf den Phenolphthalelnumschlag eingestellt werden.

Die Bestimmung der Gesamthärte des Wassers

187

3. Die Bestimmung der Gesamthärte und der Magnesiahärte des Wassers Gesamthärte: (s. S. 155) nach C.Blacher (1913): Durch Titration des kohlensäurefreien, gegen Phenolphthalein neutralen Wassers mit Kaliumpalmitatlösung werden Calcium und Magnesium als neutrale Salze der Palmitinsäure, C 1 5 H 3 1 C O O H , vollständig ausgefällt. D i e eben beginnende Rotfärbung von Phenolphthalein zeigt den Endpunkt an. Genauigkeit: Bei Härten von 0,5 bis 15 mval beträgt der Höchstfehler 0,1 mval. Oberhalb 15 mval sind die Werte zu hoch, da der Niederschlag Kaliumpalmitat „mitreißt"; man verdünnt dann die zu untersuchende Wasserprobe in geeigneter Weise. Bei sehr geringen Härtegraden verursacht die zur Erzielung des Indikatorumschlags notwendige Kaliumpalmitatmenge ebenfalls einen Mehrverbrauch. Nach J. Leick (1932) ist hier folgende Korrekturtabelle anzuwenden (Tab. 11): T a b e l l e 11 Gefundene Härte 0,15 0,25 0,35 0,45 0,55

mval mval mval mval mval

Wirkliche Härte 0,05 0,17 0,30 0,425 0,55

mval mval mval mval mval

Bei geringen Härten beträgt der Höchstfehler also maximal 0,1 mval. Neutralsalze stören praktisch nicht, ebensowenig Eisen, Aluminium, Kieselsäure und organische Bestandteile in den gewöhnlich vorkommenden Mengen. Nur Mangan, das ebenfalls als Palmitat gefällt wird, erhöht das Ergebnis; man bestimmt dann die Kalk- und Magnesiahärte nach anderen Methoden (s. S. 60 und S. 155) und erfährt durch Subtraktion ihrer Summe von dem Ergebnis der Titration nach Blacher den Mangangehalt. Praktische Durchführung: Man verwendet 100 ml der Wasserprobe, neutralisiert mit 0,1-n Salzsäure bis zur Entfärbung von Phenolphthalein, kocht die Lösung auf und gibt noch einen überschüssigen Tropfen Säure zu der erkalteten farblosen

188

Die fällungsanalytische Bestimmung des Silbers

Lösung. Dann titriert man, wie oben beschrieben, mit 0,1-n Kaliumpalmitatlösung. 1 m l 0,1-n K a l i u m p a l m i t a t l ö s u n g entspricht einer Ges a m t h ä r t e ( C a O + M g O ) v o n 0,1 m v a l in 100 m l o d e r 1 m v a l i m L i t e r (0,1 m v a l C a O = 2,8040 m g ; 0,1 mval M g O = 2,0160 mg). Magnesiahärte: nach V. F r o m b o e s e (1914): D a s C a l c i u m w i r d m i t Kaliumoxalatlösung als C a l c i u m o x a l a t ausgefällt. D a n n ermittelt m a n d i e M a g n e s i a h ä r t e , o h n e z u v o r d i e L ö s u n g z u filtrieren, d u r c h T i t r a t i o n m i t 0,1-n K a l i u m p a l m i t a t l ö s u n g . Amm o n i u m o x a l a t darf z u r F ä l l u n g des C a l c i u m s nicht verw e n d e t w e r d e n , d a A m m o n i u m s a l z e d e n U m s c h l a g des Phenolphthaleins verhindern! Praktische Durchführung: 200 ml des zu prüfenden Wassers werden nach Zugabe von Methylorange (2 Tropfen!) bis zur deutlichen Rotfärbung mit 0,1-n Salzsäure versetzt. Die Lösung wird zum Sieden erhitzt, und 5 ml einer 10%igen Kaliumoxalatlösung werden in die siedende Lösung eingetropft. Nach 2 Minuten wird diese abgekühlt, mit Phenolphthalein versetzt und mit 0,1-n Natronlauge bis zur eben beginnenden Rosafärbung neutralisiert. Nach Zugabe eines Tropfens 0,1-n Salzsäure wird die Lösung mit 0,1-n Kaliumpalmitatlösung titriert. J. Leick (1932) empfiehlt, die Magnesiahärte aus der Differenz zwischen der Gesamthärte nach Blacher und der Kalkhärte nach der manganometrischen Methode (s. S. 60) zu bestimmen. Infolge der nicht völligen Unlöslichkeit des Calciumoxalates ergibt zwar die Oxalatmethode stets ein wenig zu niedrige Werte. Der Auswaschfehler läßt sich jedoch eliminieren, wenn man den Titer der etwa 0,05-n Kaliumpermanganatlösung auf ein Kalkwasser bekannten Gehaltes unter den bei der Ermittlung der Kalkhärte später einzuhaltenden Versuchsbedingungen empirisch einstellt. XIII. D i e fällungsanalytische B e s t i m m u n g des Silbers und die Argentometrie 1. Die Bereitung und Einstellung der Maßlösungen D i e wichtigsten M e t h o d e n d e r F ä l l u n g s a n a l y s e b e r u h e n auf d e r Schwerlöslichkeit d e r S i l b e r h a l o g e n i d e u n d des Silberthiocyanats, ermöglichen also d i e B e s t i m m u n g des

Die Bereitung und Einstellung der Maßlösungen

189

Silbers mit Hilfe eingestellter Halogenid- und Thiocyanatlösungen und die Gehaltsermittlung löslicher Halogenide und Thiocyanate mit einer Silbernitratlösung bekannten Gehaltes (Argentometrie). Die Methoden der Endpunktserkennung sind bereits im XI. Kapitel kurz beschrieben worden. Zur Durchführung argentometrischer Bestimmungen sind 0,1-n Maßlösungen von Silbernitrat, Natriumchlorid und Ammonium- oder Kaliumthiocyanat erforderlich. Bereitung und Einstellung einer 0,1-n

Silbernitratlösung:

Man geht entweder von reinstem metallischem Silber oder von chemisch reinem Silbernitrat aus. Reinstes metallisches Silber (Feinsilber) ist in Form von Blech oder Draht im Handel erhältlich. Nach Richards und Wells (1908) läßt es sich auch durch Reduktion von Silbernitrat mit Ammoniumformiat rein darstellen: Die Ammoniumformiatlösung wird durch Einleiten von Ammoniak in frisch destillierte Ameisensäure bereitet; der Silberniederschlag wird ammoniakfrei ausgewaschen und schließlich im Wasserstoffstrom geschmolzen. 10,7880 g Feinsilber werden genau abgewogenen 100 ml reinster, chloridfreier Salpetersäure von der Dichte 1,20 gelöst, und die Lösung bis zur Zerstörung der salpetrigen Säure und vollständigen Entfernung der Stickoxide gekocht. Nach dem Abkühlen wird die Lösung in einen Literkolben gebracht, und dieser wird mit destilliertem Wasser genau bis zur Marke aufgefüllt. Die Lösung ist etwa halbnormal an Salpetersäure. Eine besondere Einstellung ist nicht erforderlich. Wird aber für die Bestimmungen nach Mohr eine neutrale Silbernitratlösung gebraucht, so wägt man 16,9888 g reines, bei 150° C bis zur Gewichtskonstanz getrocknetes Silbernitrat genau ab, löst es in Wasser und verdünnt die Lösung auf 1 Liter. Das verwendete Silbernitrat darf kein metallisches Silber enthalten, seine Lösung muß neutral reagieren. Es kann durch Umkristallisieren aus schwach salpetersäurehaltigem Wasser rein erhalten werden. Auch hier ist eine besondere Titerstellung nicht notwendig; doch ist es zweckmäßig, den Titer der Silbernitratlösung mit

190

Die fällungsanalytische Bestimmung des Silbers

Hilfe genau abgewogener Mengen von reinstem Natriumchlorid nach einer der später beschriebenen Methoden zu kontrollieren. Die Silbemitratlösung wird zum Schutz gegen die direkte Einwirkung des Sonnenlichtes in einer braunen Glasstöpselflasche aufbewahrt. Sie m u ß vor Staub geschützt werden. Bereitung und Einstellung einer 0,1-n Natriumchloridlösung: Zur Bereitung der Lösung dient reinstes Natriumchlorid, das man sich folgendermaßen darstellt: In eine gesättigte Lösung des reinsten käuflichen Salzes wird unter äußerer Kühlung mit Eiswasser gasförmiger Chlorwasserstoff eingeleitet. Dann scheidet sich Kochsalz aus, das mit Hilfe einer Glasfilternutsche abgesaugt und mehrmals mit wenig Eiswasser ausgewaschen wird. Das Salz wird dann bei 110° C vorgetrocknet, fein gepulvert und schließlich im elektrischen Ofen bei etwa 500° C bis zum konstanten Gewicht erhitzt; benutzt man die Leuchtgasflamme, so m u ß man den Zutritt der Verbrennungsgase zum Tiegelinhalt verhindern. Das Salz m u ß bromid-, jodid- und sulfatfrei sein, es darf kein Kalium, kein Magnesium und keine Erdalkalien enthalten. Etwa 5,85 g reinstes Natriumchlorid werden zum Liter gelöst und die erhaltene, annähernd 0,1-n Lösung auf eine genaue 0,1-n Silbernitratlösung oder auf Feinsilber eingestellt. Diese Einstellung wird nach der gleichen Methode vorgenommen, nach der später mit der Maßlösung gearbeitet werden soll, also entweder nach Gay-Lussac (S. 191) oder nach Fajans (S. 201), und möglichst unter denselben Bedingungen. Dann ergibt sich ein empirischer Normalfaktor, der (z. B. durch Berücksichtigung der Löslichkeit des Silberchlorids!) den durch die Methode bedingten Fehler in gewissem Grade ausschaltet. Bereitung und Einstellung einer 0,1-n Ammoniumthiocyanatlösung: Ammoniumthiocyanat ist hygroskopisch und zersetzt sich, wenn man es bei höheren Temperaturen zu trocknen versucht. Man stellt daher eine nur ungefähr 0,1-normale

Die Bestimmung des Silbers nach Gay-Lussac

191

Lösung her, indem man etwa 8 bis 9 g von dem möglichst trockenen und chlorfreien Salz in einem Liter Wasser auflöst.

Das verwendete Ammoniumthiocyanat muß absolut chloridfrei sein. Die Prüfung auf Chlorid wird nach Kotthoff [46] folgendermaßen durchgeführt: „200 mg Thiocyanat werden in 25 ml Wasser gelöst, mit 15 ml 4-n Schwefelsäure und dann mit so viel Permanganatlösung versetzt, bis die rotbraune Farbe bestehen bleibt (braun vom abgeschiedenen Braunstein). Dann wird im Abzug 10—-15 Minuten gekocht, bis sich alle Cyanwasserstoffsäure verflüchtigt hat, und das Volumen etwa 10—15 ml beträgt. Der Braunstein wird mit Perhydrol reduziert; nach dem Abkühlen darf mit Silbernitrat nicht mehr als eine schwache Opaleszenz entstehen."

Die Thiocyanatlösung wird nach Volhard (s. S. 194) auf 0,1-n Silbernitratlösung genau eingestellt, indem 25 ml der Silbernitratlösung mit 20 ml ausgekochter 2-n Salpetersäure und 2 bis 3 ml der salpetersauren Ammonium-eisen(Ill)-sulfat-Indikatorlösung (S. 194) versetzt, auf etwa 100 ml verdünnt und langsam, unter ständigem Umschwenken, mit der Thiocyanatlösung titriert werden, bis in der Flüssigkeit ein schwach rotbrauner Farbton eben noch dauernd bestehen bleibt. 2. Die Bestimmung des Silbers nach Cay-Lussac Diese Methode wird wegen ihrer großen Genauigkeit hauptsächlich in den Münzlaboratorien verwendet, um den Silbergehalt von Legierungen zu ermitteln. Ihr Prinzip haben wir bereits auf S. 180 kurz auseinandergesetzt: Die salpetersaure Silberlösung wird mit eingestellter Kochsalzlösung bis zum „Klarpunkt" titriert, d. h. so lange, bis auf weiteren Zusatz der Maßlösung keine neue Chlorsilberabscheidung mehr beobachtet wird. Man verwendet eine unter den Bedingungen der späteren Titrationen gegen Feinsilber oder eine Silbernitratlösung bekannten Gehaltes eingestellte Natriumchloridlösung und vermeidet so den der Methode anhaftenden, etwa 0 , 1 % betragenden Titrierfehler, der durch die Löslichkeit des Silberchlorids (L = 1,12 • 10~10) und den zur Erreichung der vollständigen Aus-

192

Die fällungsanalytische Bestimmung des Silbers

fällung eben notwendigen Überschuß an Kochsalzlösung bedingt ist. In den Münzlaboratorien werden empirische Kochsalzlösungen verwendet, und zwar sog. „normale", die in 1 Liter die zur Ausfällung von 10 g Silber erforderliche Natriumchloridmenge enthalten, und „dezime" deren Konzentration an Natriumchlorid nur Vi» derjenigen der „Normallösung" beträgt. Zur Titerstellung der „normalen" Kochsalzlösung wird stets genau 1 g Feinsilber verwendet, eine Menge also, die genau 100 ml der Lösung verbrauchen muß. Zur Analyse wägt man von der zu prüfenden Silberlegierung eine Probe ab, die möglichst genau ebenfalls 1 g Silber enthält. Für die Analyse von S i l b e r l e g i e r u n g e n ist die Kenntnis des Einflusses fremder Metalle auf die Genauigkeit der Bestimmung notwendig. Metalle, die leichtlösliche Nitrate und Chloride bilden, stören nicht. Quecksilber muß vor der Bestimmung durch Umschmelzen der Legierung im elektrischen Ofen entfernt werden. Blei darf nur spurenweise zugegen sein. Antimon und Wismut werden durch Zusatz von Weinsäure in Lösung gehalten. Enthält die Lösung mehr als ein Sechstel ihres Gewichtes an Gold, so ist sie in Salpetersäure nicht mehr vollständig löslich; man schmilzt sie dann mit einer genau abgewogenen Menge reinsten Silbers zusammen. Die Legierung wird in 10 ml chlorfreier Salpetersäure von der Dichte 1,2 gelöst, die Lösung wird zur Vertreibung der Stickoxide kurz aufgekocht. Die wieder abgekühlte salpetersaure Lösung wird (eventuell nach dem Abfiltrieren von unlöslich abgeschiedener Metazinnsäure!), wie folgt titriert. Praktische Durchführung: 25 ml der schwach sauren Silbernitratlösung werden in einer gut schließenden Glasstöpselflasche von etwa 200 ml Inhalt mit 50 ml Wasser verdünnt, 0,1-n Natriumchloridlösung wird in Anteilen von je 1, später 0,5 ml hinzugegeben und die Flasche nach jedem Zusatz fest verschlossen und kräftig geschüttelt. Sobald der Zusatz eines weiteren halben Milliliters in der über dem Niederschlag stehenden klaren Lösung keine Trübung mehr hervorruft, ist der erste, nur orientierende Vorversuch beendet. Man mißt wieder

Die Bestimmung des Silbers nach Gay-Lussac

193

25 ml ab, verdünnt mit 50 ml Wasser und gibt nun einen Milliliter weniger als das im Vorversuch verbrauchte Volumen der 0,1-n Kochsalzlösung auf einmal hinzu. Die Flüssigkeit wird wieder so lange geschüttelt, bis sich das Silberchlorid genügend zusammengeballt hat. Nach dem Absitzen des Niederschlages gibt man aus einer Mikrobürette je 0,5 ml einer 0,01-n Natriumchloridlösung, die man sich durch Verdünnen der 0,1-n Lösung vorher bereitet hat, in der Weise hinzu, daß die Lösung an der Glaswand hinunter fließt. Dann beobachtet man, solange noch nicht alles Silberchlorid ausgefällt ist, an der Oberfläche der Flüssigkeit eine deutlich sichtbare Trübung, die besonders leicht erkennbar wird, wenn man die Schüttelflasche im reflektierten Licht betrachtet. Die Flüssigkeit wird wieder geschüttelt, und mit dem Zusatz der 0,01-n Natriumchloridlösung fortgefahren, bis weitere 0,5 ml keine neue Opaleszenz mehr hervorrufen. Der letzte Reagenszusatz wird bei der Ablesung der Bürette nicht berücksichtigt. Mindestens zwei Kontrollbestimmungen sind zur Sicherung des Ergebnisses notwendig Mit der so durchgeführten Methode der Silberbestimmung ist eine Genauigkeit von 0,05% zu erreichen, wenn auf Gleichheit der Temperatur beim Einstellen und beim Gebrauch der Titerlösungen sorgfältig geachtet wird. 1 ml 0,1 -n Natriumchloridlösung entspricht Vio Milligrammäquivalent, also 10,788 mg Ag oder 16,989 mg A g N 0 3 . Bei Silberlegierungen ist das Ergebnis in Tausendsteln (Promille) anzugeben. Richards und Wells (1904/06) benutzten zur Beobachtung der Opaleszenz ein „Nephelometer": Ein starker Lichtstrahl wurde durch die Lösung geschidct und das vom Niederschlag diffus zerstreute Licht beobachtet. Zum Vergleich der in der Nähe des Äquivalenzpunktes auftretenden Trübungen dienten Standardlösungen. Dadurch konnte die Genauigkeit der Bestimmung so weit gesteigert werden, daß sie zur Revision der Atomgewichte des Chlors und des Natriums herangezogen werden konnte. Noch bequemer und genauer als mit einer Natriumchloridlösung nach der üblichen Methode läßt sich das Silber nach dem Prinzip von Gay-Lussac bestimmen, wenn man eine Kaliumbromidlösung verwendet. Reinstes chloridfreies Kaliumbromid stellt man durch vorsichtiges Schmelzen von Kaliumbromat (p. a.) in einer Platinschale her; das Bromat zersetzt sich unter 13 JanderJahr, Maßanalyse

194

Die fällungsanalytische Bestimmung des Silbers

Abgabe von Sauerstoff. Der Schmelzkuchen wird gepulvert, und das Kaliumbromid wird bis zur Gewichtskonstanz im elektrischen Ofen erhitzt. 3. Die Bestimmung des Silbers und des Kupfers, der Halogenid-, Thiocyanat- und Cyanid-Ionen in saurer Lösung nach J. Volhard Die Bestimmung des Silbers:

Weniger umständlich als das an sich äußerst genaue Verfahren von Gay-Lussac ist die von J. Volhard (1874) angegebene Methode zur Bestimmung des Silbers. Sie beruht auf der Ausfällung des schwerlöslichen Silberthiocyanats (L = 6,84 • 10"13): A g N 0 3 + NH 4 CNS = N H 4 N 0 3 + AgCNS. Ein Überschuß an Thiocyanationen wird mit Hilfe einer Eisen(III)-Salzlösung erkannt (s. S. 181): 6 NH 4 CNS + Fe 2 (S0 4 ) 3 = 2 Fe(CNS) 3 + 3 (NH 4 ) 2 S0 4 . Als Indikatorlösung dient eine kalt gesättigte Lösung von Ammonium-eisen(III)-sulfat, die mit (ausgekochter) Salpetersäure bis zum Verschwinden der Braunfärbung versetzt wird. Von dieser Lösung werden stets 2 ml für je 100 ml der zu titrierenden Lösung verwendet. Die Titration geschieht in kalter salpetersaurer Lösung. Der Säuregrad soll demjenigen einer 0,4-n Salpetersäure etwa entsprechen, geringe Schwankungen der [H + ] haben keinen Einfluß. Die Salpetersäure darf aber keine salpetrige Säure enthalten, weil diese das Thiocyanat-Ion zerstört. Handelt es sich daher um die Analyse einer Silberlegierung, so muß deren salpetersaure Lösung (s. S. 192) vor der Titration ausgekocht werden. Die Gegenwart fremder Metall-Ionen stört nicht, wenn sie leichtlösliche, dissoziierte Thiocyanate bilden und nicht allzu stark gefärbt sind. Quecksilber bildet ebenfalls ein schwerer lösliches, in Lösung undissoziiertes Thiocyanat, muß also vor der Analyse entfernt werden (s. S. 192). Liegt der Kupfergehalt einer Legierung unter 70%, so stört er nur sehr wenig. Praktische Durchführung: Sie erfolgt möglichst unter den gleichen Bedingungen, wie sie auf S. 191 f ü r die Titerstellung

Die Bestimmung des Silbers und des Kupfers

195

der Ammoniumthiocyanatlösung beschrieben sind. Das ist wichtig, weil infolge merklicher Adsorption von Silberionen an dem frisch gefällten Silberthiocyanat ein gewisser, unter gleichen Versuchsbedingungen gleichbleibender Überschuß an Thiocyanat-Ionen erforderlich ist, bevor die rote Färbung des Eisen(III)-thiocyanats auftreten kann. Die Bestimmung der Thiocyanat-Ionen und des Kupfers:

Die Thiocyanatlösung wird mit überschüssiger Silbernitratlösung versetzt und der Silbernitratüberschuß, wie beschrieben, zurücktitriert. Die direkte Titration ist nicht möglich, weil das ausfallende Silberthiocyanat Eisen(III)-thiocyanat mitreißt, so daß die Entfärbung, auf die hier titriert werden müßte, nicht exakt beobachtet werden kann. 1 ml 0,1-n Silbernitratlösung entspricht 0,1 Milligrammäquivalent, also 5,8084 mg CNS~. Eine Anwendung der argentometrischen Thiocyanatbestimmung bildet die Bestimmung des Kupfers. Kupfer(Il)-Ionen lassen sich durch schweflige Säure zu Kupfer(I)Ionen reduzieren: 2 Cu 2+ + HoO + S 0 3 2 - ^ 2 Cu + + S O / " + 2 H \ und die Kupfer(I)-Ionen fallen nach Zusatz überschüssiger Alkalithiocyanatlösung als schwerlösliches Kupfer(I)-thio cyanat aus: „ . _,. T „ ^ ' Cu + CNS~ = CuCNS. Im Filtrat des weiß (mit einem Stich ins Violette) gefärbten Niederschlages läßt sich die überschüssige Thiocyanatlösung aus dem soeben angeführten Grund n i c h t direkt mit Silbernitrat zurückmessen; man muß vielmehr überschüssige Silbernitratlösung hinzugeben und den Silberüberschuß mit Ammoniumthiocyanatlösung zurücktitrieren. Silber-, Quecksilber-, Chlorid-, Bromid-, Jodid- und Cyanid-Ionen dürfen nicht zugegen sein! In silberhaltigen Kupfererzen bestimmt man zuerst nach der hier beschriebenen Methode die Summe des Kupfer- und Silbergehaltes, sodann den Silbergehalt allein nach Gay-Lussac.

196

Die fällungsanalytische Bestimmung des Silbers

Praktische Durchführung: 50 ml der neutralen oder nur ganz schwach schwefelsauren Kupfer(II)-sulfatlösung werden mit frisch bereiteter schwefliger Säure im Überschuß (etwa 30 ml) und mit 100 ml 0,1-n Ammoniumthiocyanatlösung versetzt. Nunmehr erhitzt man die Lösung, um das überschüssige Schwefeldioxid zu vertreiben, zum Sieden. Nach dem Erkalten wird die Flüssigkeit mit dem Niederschlag quantitativ in einen Meßkolben von 250 ml Inhalt gebracht und bis zur Marke mit Wasser verdünnt. Dann schüttelt man die Lösung gut durch und filtriert sie durch ein trockenes Filter, das in einem ebenfalls trockenen Trichter liegt. Nachdem die ersten 25 ml der Lösung verworfen wurden — an dem Filter muß sich zunächst das Adsorptionsgleichgewicht einstellen —, wird der Rest der Lösung in einem trockenen Becherglas aufgefangen. Ein Fünftel der Lösung, also 50 ml, wird nun in ein Becherglas abpipettiert. Dann werden 30 ml 0,1-n Silbernitratlösung, 20 ml 2-n Salpetersäure und 2 ml Indikatorlösung zugegeben. Der Silberüberschuß wird mit 0,1-n Ammoniumthiocyanatlösung zurücktitriert. — Berechnung: Bezeichnet man mit a t das zur Ausfällung des Kupfers verwendete Volumen der (genau!) 0,1-n Thiocyanatlösung, mit b die dem 5. Teil der Lösung zugegebene 0,1-n Silbernitratlösung und mit a 2 die zur Bestimmung des Silberüberschusses verbrauchte 0,1-n Thiocyanatlösung in ml (ebenfalls in 1 / 5 der Lösung), so gibt x=an — 5 (b — a 2 ) das zur Fällung des Kupfers verbrauchte Volumen der genau 0,1-n Ammoniumthiocyanatlösung in ml an. 1 ml 0,1-n Ammoniumthiocyanatlösung entspricht 0,1 Milligrammäquivalent, also 6,354 mg Cu. Die Bestimmung der Halogenid- und der Cyanid-Ionen: J. Volhards Methode der Silberbestimmung ist vor allem deshalb sehr brauchbar, weil sie als „Restmethode" die Ermittlung des Halogengehaltes saurer Halogenidlösungen ermöglicht: Die Halogenidlösung wird mit überschüssiger Silbernitratlösung versetzt, und der Überschuß an SilberIonen wird, wie oben beschrieben, mit Ammoniumthiocyanatlösung zurücktitriert. Bromide: 25 ml der zu bestimmenden Bromidlösung werden mit 20 ml ausgekochter 2-n Salpetersäure, 2 ml Indikator-

Die Bestimmung des Silbers und des Kupfers

197

lösung und 50 ml 0,1-n Silbernitratlösung versetzt, worauf die überschüssige Silbermenge durch Titration mit 0,1-n Ammoniumthiocyanatlösung ermittelt wird. Chloride:

Die Bestimmung der Chloride kann nicht nach der einfachen, für die Bromide gültigen Vorschrift erfolgen. Man kann vielmehr das überschüssige Silbernitrat erst mit der Thiocyanatlösung titrieren, nachdem man das ausgeschiedene Silberchlorid abfiltriert hat! Anderenfalls würde der Umschlag des Indikators sehr unscharf sein, weil sich das bereits abgeschiedene Silberchlorid nach der Reaktionsgleichung: 3 AgCl + Fe(CNS) 3 ^ 3 Ag(CNS) + FeCl 3 so lange mit dem Eisen(III)-thiocyanat in das 164mal schwerer lösliche Silberthiocyanat umwandeln würde, bis das Silberchlorid und das Silberthiocyanat miteinander und mit der Lösung im Gleichgewicht ständen, die Lösung also auf 1 Thiocyanat-Ion 164 Chlorid-Ionen enthalten würde. Die zunächst erreichte Rotfärbung würde dann dauernd wieder verblassen, und ein zu hoher Verbrauch an Thiocyanatlösung, damit aber auch ein zu geringer Verbrauch an Silbernitrat für die Chloridfällung würden die Folgen sein. Die Löslichkeiten des Silberbromids und Silberthiocyanats sind dagegen nahezu gleich. Praktische Durchführung: 25 ml der zu bestimmenden, etwa zehntelnormalen Chloridlösung werden in einem Meßkolben von 100 ml Inhalt mit 0,1-n Silbernitratlösung bis zur Marke aufgefüllt. Dann wird die einige Minuten lang gut durchgeschüttelte Lösung durch ein trockenes Filter filtriert. Nachdem man die ersten 20 ml verworfen hat, fängt man die übrige Lösung in einem absolut trockenen Becherglas auf. 50 ml des Filtrats werden genau abgemessen. Darin wird der Überschuß an Silber in der bereits wiederholt beschriebenen Weise bestimmt. Da jedoch das frisch gefällte Silberchlorid Silber-Ionen adsorbiert, verbraucht man stets ein wenig zuviel Silbernitrat; praktisch hat sich ergeben, daß man von der gefundenen Choridmenge 0,7% abziehen muß, um den richtigen Wert zu erhalten.

198

Die fällungsanalytische Bestimmung des Silbers

Jodide:

Die Bestimmung wird, wie für die Bromide beschrieben, durchgeführt und liefert ausgezeichnete Werte, wenn man die Eisen(III)-Salz-Indikatorlösung erst zusetzt, nachdem durch einen Überschuß an Silbernitrat die gesamten JodidIonen bereits ausgefällt sind und die Lösung 5 Minuten lang kräftig durchgeschüttelt wurde. Anderenfalls würden die Jodid-Ionen das Eisen(III)-Salz reduzieren: 2 Fe 3 + + 2 J ~ = J 2 + 2 Fe 2 + . Cyanide:

Die Bestimmung erfolgt genau nach der für die Chloride gegebenen Vorschrift. Auch Silbercyanid adsorbiert SilberIonen, so daß man hier ebenfalls eine Korrektur von — 0,7% an der durch den Versuch ermittelten Cyanidmenge anbringen muß. 1 ml 0,1-n Silbernitratlösung entspricht 0,1 Milligrammäquivalent, also 3,5457 mg Cl~ oder 7,9916 mg Br~ oder 12,691mg J- oder 2,6018 mg CN". 4. Die Bestimmung derHalogenid-Ionen in neutralen Lösungen löslicher Halogenide nach Fr. Mohr

Als d i r e k t e Methode zur Bestimmung der HalogenidIonen ist zunächst diejenige zu nennen, die sich aus der Umkehrung des Verfahrens vonGay-Lussac(S. 191) ergibt. Ihrer Umständlichkeit halber wird sie jedoch praktisch kaum verwendet. Dagegen hat sich die Methode von Fr. Mohr (1856) sehr bewährt: Die Halogenid-Ionen werden durch Zugabe einer eingestellten Silbernitratlösung als unlösliches Silberhalogenid ausgefällt. Der Endpunkt wird mit Hilfe von Kaliumchromat als Indikator dadurch erkannt, daß ein geringer Uberschuß an Silber-Ionen zur Ausfällung eines rotbraunen Niederschlages von Silberchromat führt (s. S. 182): 2 Ag+ + C r O / - = Ag 2 Cr0 4 . Die Titration gelingt nur in neutraler Lösung: Die in sauren Lösungen beständigen Dichromat-Ionen bilden kein schwerlösliches Silbersalz. Schwach saure Lösungen müssen

Die Bestimmung der Halogenionen

199

daher mit Hilfe von Natriumhydrogenkarbonat oder Borax abgestumpft werden. Auch darf die Lösung nicht stärker alkalisch sein, da sonst auch Silberhydroxid (eventuell auch Silberkarbonat) ausfallen könnte. Vielmehr soll die [H + ] der Lösung den Wert 10" 10,5 nicht unterschreiten u n d nicht höher sein als 10"6,5. Phosphat-, Arsenat-, Sulfit- u n d Fluorid-Ionen stören. Als geeignetste Indikatorkonzentration haben sich 2 ml einer neutralen 5%igen Kaliumchromatlösung für je 100 ml der titrierten Lösung erwiesen. Die Empfindlichkeit des Indikators für Silberionen sinkt stark mit steigender Temperatur. Man darf daher nur bei Zimmertemperatur titrieren. Alle Titrationen nach Mohr müssen möglichst unter den gleichen Bedingungen bezüglich der Konzentration an Halogenid- und Chromat-Ionen durchgeführt werden, wie sie bei der Titerstellung der Silbernitratlösung herrschten, damit der zur Erreichung der ersten merkbaren Rotbraunfärbung der Lösung notwendige Überschuß an Silber-Ionen stets der gleiche bleibt. Das ist ganz besonders zu beachten bei der Bestimmung der Jodide. Denn infolge des großen Unterschiedes in der Löslichkeit des Silberjodids (L = 10"16) und des Silberchromats (L=10~ 1 2 ) ist schon ein merklicher Überschuß an Silber-Ionen notwendig, um überhaupt nur das Löslichkeitsprodukt des Silberchromats zu überschreiten. Das ergibt sich aus folgenden Überlegungen: Aus der Anwendung des Massenwirkungsgesetzes auf die Vorgänge: Ag+ + r ^ A g J und 2 Ag + + C r 0 4 2 - ^ Ag 2 Cr0 4 ergibt sich, daß das erste Silberchromat ausfällt, sobald die Jodid-Ionenkonzentration unter den durch die Beziehung [J-] _ _ LAgj _ HH« =1()_1(U5 1

l'^CrO, 10 15

U :

_ I J"

'

2

gegebenen Wert [J-] = lO" ' • ]/ [Cr0 4 -] sinkt. Ist nun (bei der üblichen Indikatorkonzentration!) [Cr0 4 2 - ] = 10-2-3, so kann also erst Silberchromat ausfallen, sobald [J - ] = 10~10-15 • V10 - 2 ' 3 d. h. = 1 0 - u ' 3 ist. Da nun [Ag + ] • [J-] = [AgJ] = 10"16, so wird [J - ] = 10 -11 - 3 erst erreicht, wenn [Ag + ] = 10 -4 ' 7 ist, also um einige Zehnerpotenzen höher liegt als am Äquivalenzpunkt mit [Ag + ] = 10 -8 ! Der praktische Titrationsendpunkt liegt natürlich bei

200

Die fällungsanalytische Bestimmung des Silbers

einem noch höheren Silber-Ionenüberschuß, so daß man unbedingt eine Silbernitratlösung benutzen muß, die unter den Bedingungen der späteren Titration auf Kaliumjodid eingestellt wurde!

Die Mohrsche Methode dient hauptsächlich zur Titration der Chlorid- und Bromid-Ionen und gibt auch in verhältnismäßig verdünnten Lösungen noch gute Resultate. Als praktische Beispiele beschreiben wir:

Die Bestimmung des Chloridgehaltes einer neutralen Natriumchloridlösung: Zu 25 ml der etwa 0,1-n Natriumchloridlösung werden 2 ml einer neutralen Kaliumchromatlösung (5%) gegeben, und die deutlich gelb gefärbte Lösung wird langsam und unter beständigem Schütteln so lange mit 0,1-n Silbernitratlösung titriert, bis die bei jedem neuen Reagenszusatz zunächst zu beobachtende Rotfärbung nicht mehr verschwindet, sondern auch noch nach einigen Minuten eben bestehen bleibt. Die Bestimmung des Chloridgehaltes eines Trink- oder Abwassers: Das p H des Wassers muß den Erfordernissen der Mohrschen Methode entsprechen. Handelt es sich um ein stark gefärbtes oder schwefelwasserstoffhaltiges Abwasser, so wird 1 Liter 5 Minuten lang mit ein wenig Permanganatlösung gekocht. Die noch rote Flüssigkeit wird mit Perhydrol entfärbt, nach dem Abkühlen wieder mit destilliertem Wasser auf 1 Liter aufgefüllt und (unter Verwerfung der ersten Anteile!) filtriert. Je 100 ml des zu prüfenden Wassers werden mit 2 ml 5%iger Kaliumchromatlösung versetzt und mit 0,01-n Silbernitratlösung (Mikrobürette!) bis zur ersten schwachen Rotbraunfärbung titriert. Dann wird mit destilliertem Wasser auf insgesamt 150 ml verdünnt. Dabei entfärben sich die Lösungen wieder. Während man nun die eine Probe als Vergleichslösung benutzt, titriert man die andere bis zum eben erkennbaren, bleibenden Umschlag zu Ende. Wenn man so arbeitet, hat man immer das gleiche Endvolumen, kann also immer dieselbe Korrektur, nämlich 0,6 ml 0,01-n Silbernitratlösung, für den notwendigen Überschuß von dem verbrauchten Volumen abziehen. Die technische Bestimmung des Reincarnallits im Rohcarnal» lit (nach Precht, 1879; vgl. auch Noll, 1913): Die Bewertung des Rohcarnallits, der als Beimengungen Steinsalz, Kieserit und Anhydrit enthält, richtet sich nach seinem Gehalt an reinem Carnallit, KCl • MgCl 2 • 6 H 2 0 , den man dadurch annähernd bestimmen kann, daß man das Rohsalz mit Alkohol extrahiert.

Die Bestimmung der Halogenidionen

201

Darin löst sich nur das Magnesiumchlorid, und man kann nun den Chloridgehalt der alkoholischen Lösung durch Titration nach Mohr ermitteln. Das untersuchte Rohsalz darf natürlich kein f r e i e s Magnesiumchlorid (Bischoffit) enthalten. In einer gut schließenden Stopfenflasche schüttelt man 10,00 g der feingepulverten Durchschnittsprobe % Stunde lang mit 100 ml wasserfreiem (!) Äthylalkohol (zur Darstellung von wasserfreiem Äthylalkohol vgl. [91]). Dann wird der alkoholische Extrakt durch ein trockenes Filter in eine verschließbare Flasche filtriert (die ersten 10 ml verwirft manl). 10 ml werden abpipettiert, mit Wasser verdünnt, mit 1 ml einer 5%Kaliumchromatlösung versetzt und mit 0,1-n Silbernitratlösung titriert. 1 ml 0,1-n Silbernitratlösung zeigt 0,01399 g reinen Carnallit an. 5. Die Bestimmung der Halogenid-, der Thiocyanat- und der Silber-Ionen nach K. Fajans Diese neue Methode der argentometrischen Halogenidbestimmungen ermittelt den Endpunkt mit Hilfe von Adsorptionsindikatoren, deren Wirkungsweise bereits auf S. 183 kurz besprochen wurde. Wir beschränken uns daher an dieser Stelle auf einige praktische Hinweise. Die Bestimmung der Bromid-, Jodid- und Thiocyanat-Ionen: Als Indikatorlösung dient eine Lösung von 1% Eosirmatrium in Wasser, von der man für je 10 ml 0,1-n Halogenidlösung 2 Tropfen verwendet. Mit dieser Lösung lassen sich Bromide, Jodide und Thiocyanate ausgezeichnet titrieren, nicht aber Chloride! Die Halogenidlösungen werden unter kräftigem Schütteln so lange titriert, bis der Niederschlag plötzlich eine deutlich rote, in 0,01-n Lösungen eine rosarote Farbe annimmt. In 0,001-n Lösungen flockt das Silberhalogenid nicht mehr aus, aber die Farbe der Lösung ändert sich am Äquivalenzpunkt scharf von Rosa nach Purpurrot. Stets wird in schwach essigsaurer Lösung titriert. Selbst äußerst verdünnte Lösungen lassen sich noch mit ausreichender Genauigkeit bestimmen. Die Bestimmung der Chlorid-Ionen: Chloridlösungen lassen sich mit Eosin nicht titrieren, weil das Silberchlorid schon bei Beginn der Titration, also bei noch ganz erheblichem Überschuß an freien Chlorid-Ionen, den Farbstoff adsorbiert. Dagegen ist eine Lösung von 0,2% Fluoreszei'nnatrium in Wasser (oder die

202

Tüpfelanalysen

gleiche Menge Fluoreszein in Alkohol) sehr brauchbar. Man verwendet stets 2 Tropfen dieses Indikators für je 10 ml der zu titrierenden, etwa 0,1-n Chloridlösung und titriert bis zur plötzlichen Hellrotfärbung des Niederschlags. Nach Kolthoff [46] kann man das Silberchlorid kolloid in Lösung halten, wenn man pro 25 ml der etwa 0,1-n Chloridlösung 5 ml 2 % i g e , chlorfreie Dextrinlösung zugibt. Dann schlägt die Farbe der Flüssigkeit am Äquivalenzpunkt scharf nach rosa um. Neutralsalze stören nicht; nur mehrwertige Ionen können, infolge ihrer stärker fällenden Wirkung auf kolloide Lösungen, die Erkennung des Endpunktes erschweren. Die titrierte Lösung muß unter allen Umständen neutral — nicht sauer — sein. Stärker verdünnte Lösungen, deren [Cl~] unter 5 -10~ 3 m sinkt, lassen sich nicht mehr genau titrieren, so daß also eine direkte Chloridbestimmung im Trinkwasser nach dieser Methode nicht möglich ist; man verwendet dafür vielmehr die Mohrsche Methode (s. S. 200). Die Bestimmung der Silber-Ionen: Die umgekehrte Titration, also eine Bestimmung der Silber-Ionen, ist möglich, wenn man einen geeigneten basischen Indikatorfarbstoff zu Hilfe nimmt. Als solcher hat sich nach Fajans und Wolff (1924) „Rhodamin 6 G", C 2 6 H 2 7 0 3 N 2 C1, bewährt. Man titriert mit eingestellter Kaliumbromidlösung und erkennt den Endpunkt an der plötzlich auftretenden Blauviolettfärbung des Silberbromids. Die Lösung soll essigsauer sein. Die Genauigkeit beträgt etwa 0 , 1 % . Schließlich sei noch darauf aufmerksam gemacht, daß die photochemische Zersetzung der Silberhalogenide durch die hier verwendeten Indikatorfarbstoffe stark sensibilisiert wird. Man soll daher alle soeben beschriebenen Titrationen ohne unnötigen Zeitverlust und möglichst nicht im direkten Sonnenlicht durchführen! X I V . Tüpfelanalysen T ü p f e l m e t h o d e n werden in den Betriebslaboratorien der Technik, und zwar hauptsächlich in H ü t t e n w e r k e n , auch heute noch verwendet, wenn e t w a E r z p r o b e n auf ihren G e h a l t an gewissen Einzelbestandteilen rasch, a b e r ausreichend genau mit Hilfe einer Fällungsreaktion untersucht werden müssen, deren E n d p u n k t in der L ö s u n g selbst aus irgendeinem G r u n d e nicht erkannt w e r d e n kann. D a s Prinzip des „ T ü p f e i n s " h a b e n wir bereits auf S. 1 8 2 kurz

Die Bestimmung des Zinks

203

besprochen. Die meist recht unbequemen Tüpfelanalysen werden heute wohl auch in technischen Betrieben mehr und mehr durch die im dritten Teil dieses Buches ausführlich besprochenen Methoden der potentiometrischen und konduktometrischen Maßanalyse verdrängt. Wir besprechen im folgenden zwei auch heute noch gebräuchliche Tüpfelmethoden zur Bestimmung des Zinks und des Bleis in ihren Erzen. 1. Die Bestimmung des Zinks mit Kaliumhexacyanoferrat(II) nach Galletti1) und Fahlberg2) Versetzt man eine schwach chlorwasserstoffsaure Lösung von Zinkchlorid tropfenweise mit einer K 4 [Fe(CN) 6 ]-Lösung bekannten Gehaltes, so beobachtet man eine milchartige Trübung der Flüssigkeit, hervorgerufen durch die gallertartige Abscheidung eines Doppelsalzes von Kaliumund Zinkhexacyanoferrat(II): 3 Z n C l 2 + 2 K 4 [Fe(CN) 6 ] = K 2 Z n 3 [ F e ( C N ) 6 ] 2 + 6 KCl. Nach dieser Reaktionsgleichung ist der Äquivalenzpunkt erreicht, wenn der Lösung zwei Drittel Mole K 4 [Fe(CN) 6 ] pro Mol Zink hinzugesetzt wurden. Da aber in der stark getrübten Flüssigkeit, deren Niederschlag sich nicht absetzt, der Endpunkt nicht an dem Ausbleiben einer weiteren Fällung erkannt werden kann, benutzt man einen Indikator, der auf [Fe(CN) 6 ] 4 ~ anspricht, also schon einen geringen Überschuß der Maßlösung erkennen läßt. Dazu kann eine Uransalzlösung dienen, die mit K 4 [Fe(CN) 6 ] die bräunliche Färbung des ausfallenden Uranyl(VI)-hexacyanoferrat(II) annimmt: [Fe(CN) e ] ^ + 2 UO a 2 + = ( U 0 2 ) 2 [Fe(CN) e ]. Da aber das frisch gefällte, gallertartige K 2 Zn 3 [Fe(CN) 6 ] 2 ebenso wie eine K 4 [Fe(CN) 6 ] -Lösung mit Uranyl(VI)-Ionen reagiert, kann man den Indikator nicht in der Lösung selbst verwenden. Man muß dieser vielmehr von Zeit zu Zeit einen klaren (!) Tropfen entnehmen und ihn auf einer geeigneten Unterlage, z. B. einer Porzellanplatte, mit einem ! ) 1864/69 2) 1874.

204

Tüpfelanalysen

Tropfen der Indikatorlösung reagieren lassen. Eine schwache Braunfärbung zeigt den Endpunkt an. Man titriert in der Wärme, um ein besseres Zusammenballen des Niederschlages zu erreichen. D i e L ö s u n g muß schwach mineralsauer sein und soll möglichst wenig F r e m d salze enthalten. Vor allem aber dürfen keinerlei Oxydationsmittel, wie Salpetersäure, Chlor, Brom oder Wasserstoffperoxid, zugegen sein, da sie die [Fe(CN) 6 ] 4 ~ oxydieren würden. In sehr verdünnten Lösungen versagt die Methode. Aus alledem folgt, daß nur dann brauchbare Ergebnisse zu erwarten sind, wenn die Einstellung der K 4 [ F e ( C N ) 6 ] - L ö s u n g und die spätere Titration unter möglichst den gleichen Bedingungen der Temperatur sowie der Konzentration an Zink, Säure, Fremdsalzen usw. vorgenommen werden. Bereitung und Einstellung der K 4 [Fe(CN) 6 ]-Lösung: Etwa 26 g K 4 [Fe(CN) 6 ] werden mit Wasser abgespült und zusammen mit 7 g Natriumsulfit (zur Verhinderung der Oxydation) in einem Wislicenuskolben gelöst. Dann wird der Kolben bis zur oberen Marke (1100 ml) aufgefüllt. Diese Lösung wird auf eine Zinklösung eingestellt, die genau 5 g Zink im Liter enthält und durch Auflösen von reinem Zink in wenig Salzsäure und Verdünnen bereitet wurde. Die Einstellung erfolgt genau, wie unten beschrieben. Die K 4 [Fe(CN) 6 ]-Lösung wird, entsprechend dem Ergebnis der Titerstellung, so verdünnt, daß 1 ml genau 5 mg Zink entspricht. Durchführung der Zinkbestimmung: 25 ml der neutralen bzw. schwach sauren Zinklösung pipettiert man in ein Becherglas, setzt 5 ml konzentrierte Salzsäure hinzu, verdünnt mit destilliertem Wasser auf ca. 200 ml und läßt nunmehr die Maßlösung in Mengen von 2 zu 2 ml unter Umrühren in die auf 50° C erwärmte Zinklösung einfließen, bis ein herausgenommener klarer Tropfen, den man auf einer Porzellanplatte mit einem Tropfen der l%igen Uranyl(VI)-acetat-Indikatorlösung zusammenbringt, eine schwache Rotbraunfärbung zeigt. Man beurteilt die Farbe nach einer halben Minute. Nun titriert man, unter fortgesetztem Tüpfeln, mit der Zinklösung zurück, bis die Braunfärbung gerade nicht mehr auftritt. Mehrere Kontrollbestimmungen sind unerläßlich. Die Genauigkeit der Bestimmung beträgt etwa 0,5%.

Die Bestimmung des Bleis

205

2. Die Bestimmung des Bleis mit Ammoniummolybdat nach Alexander1) Versetzt man die schwach essigsaure Lösung eines Bleisalzes tropfenweise mit einer Lösung des bekannten Ammoniummolybdats (richtiger: Ammoniumhexamolybdat), ( N H 4 ) 5 H M o 6 0 2 i • aq, so fällt ein weißer Niederschlag aus. E r besteht aber n i c h t aus Bleihexamolybdat, sondern aus Bleimonomolybdat. Das hat folgenden Grund: Die Ionen der Hexamolybdänsäure stehen im Gleichgewicht mit den Ionen der Monomolybdänsäure und den Wasserstoffionen: 6 Mo042- + 7 HMO60216"+3 H20. Das Gleichgewicht liegt nun zwar in schwach saurer Lösung weitgehend auf der Seite der Hexamolybdänsäure. D a aber die Blei-Ionen nur mit den Mono- und nicht mit den Hexamolybdänsäure-Ionen zusammen das Löslichkeitsprodukt überschreiten, fällt das gesamte Blei als Monomolybdat aus: Pb 2 + + M o 0 4 2 - = P b M o 0 4 . Ebenso fällt aus einer essigsauren Kaliumdichromatlösung auf Zusatz einer Bariumsalzlösung nicht Bariumdichromat, sondern Bariumchromat ausl Der Reaktionsendpunkt läßt sich nur durch Tüpfeln mit einer Tanninlösung erkennen, die sich mit einem geringen Überschuß an Molybdat-Ionen intensiv gelb färbt. Audi hier ist es notwendig, die Einstellung der Molybdatlösung und die eigentliche Bestimmung unter möglichst den gleichen Bedingungen, insbesondere der Konzentration an Blei und freier Säure, durchzuführen. Kleine Mengen von Eisen und Calcium, Kieselsäure und Zink stören nicht. Nach den Methoden der Gravimetrie wird zunächst das Blei aus dem Erz (etwa 2,5 g) extrahiert. Es liegt dann als Bleisulfat vor, das man in einer schwach essigsauren Ammoniumazetatlösung auflöst. Die Auflösung des Bleisulfats: 50 ml einer aus 300 ml konzentriertem Ammoniak, 250 ml 80%iger Essigsäure und 150 ml Wasser bereiteten, deutlich essigsauren Ammoniumacetatlösung werden in einem Meßkolben von 500 ml Inhalt auf dem Wasserbad erwärmt. Das Bleisulfat wird hineingespült und i)

1893.

206

Tüpfelanalysen

unter Umschütteln gelöst, der Kolbeninhalt wird abgekühlt und bis zur Marke mit Wasser aufgefüllt. Sollte sich die Lösung trüben, so wird noch ein wenig Essigsäure zugegeben. Man arbeitet auch hier mit einer Vergleichslösung, der man etwa den gleichen Gehalt an reinem Blei gibt, wie die Erzprobe vermutlich enthält: Das Blei wird abgewogen und in Salpetersäure gelöst, die Lösung mit 3 ml konz. Schwefelsäure versetzt und so lange erhitzt, bis keine Schwefelsäuredämpfe mehr entweichen. Das zurückbleibende Bleisulfat wird genau so in Lösung gebracht wie das Bleisulfat aus der Erzprobe. Die Bereitung der Ammoniummolybdatlösung: 9 g reines Ammoniummolybdat werden zu einem Liter gelöst. Ist die Lösung nicht ganz klar, so gibt man einige Tropfen Natronlauge zu. Durchführung der Bleibestimmung: In ein größeres Becherglas bringt man 100 ml der zu prüfenden Bleilösung und verdünnt sie mit genau 300 ml Wasser. Dann kocht man auf und läßt unter gutem Umrühren die Ammoniummolybdatlösung einfließen. Kurz vor Erreichung des Endpunktes unterbricht man den Zufluß der Molybdatlösung, läßt den Niederschlag absitzen, entnimmt dem Becherglas drei klare Tropfen und läßt sie auf einer Tüpfelplatte mit zwei Tropfen einer Tanninlösung reagieren, die zuvor durch Auflösen von 0,2 g Tannin in 50 ml Wasser unter Zugabe von 2 ml Essigsäure bereitet wurde. Man titriert nun weiter, bis sich die Tanninlösung bei der Tüpfelprobe schwach gelb färbt. In der gleichen Weise wird die Vergleichslösung titriert. Die Genauigkeit beträgt etwa 0,5%. Handelt es sich um die Untersuchung einer reinen, salpetersäurelöslichen Bleiverbindung, so braucht man nicht den Umweg über das Bleisulfat zu gehen. Man löst vielmehr das Präparat direkt in Salpetersäure, neutralisiert mit Ammoniak und säuert mit 5 ml Essigsäure an. Die Vergleichslösung muß dann ebenso bereitet werden.

Komplexometrie

207

XV. Komplexometrie Grundlegende Voraussetzung für die maßanalytische Bestimmung einer Ionenart ist die Auffindung einer geeigneten Reaktion, die zur weitgehenden Verminderung der Konzentration des zu bestimmenden Ions führt, im Idealfall Cion = 0 werden läßt. Dieses Ziel wird, wie in den vorhergehenden Kapiteln gezeigt werden konnte, bei den Oxydations-Reduktionsanalysen durch Überführung in eine andere Wertigkeitsstufe, bei der Acidimetrie und Alkalimetrie durch Bildung von wenig dissoziiertem Wasser und schließlich durch Ausfällung als schwerlösliche Verbindung bei den Methoden der Fällungsanalyse erreicht. Noch auf einem anderen Wege gelingt es, die Konzentration der zu bestimmenden Ionenart herabzusetzen, nämlich durch die Überführung in eine zwar lösliche, aber wenig dissoziierende Verbindung oder in ein beständiges komplexes Ion. Die Eigenschaft der Quecksilber(II)-Ionen, mit Halogenid-Ionen nur wenig dissoziierende Verbindungen einzugehen, hat zur Ausbildung einer als M e r c u r i m e t r i e bezeichneten maßanalytischen Bestimmungsmethode für Halogenide geführt. Zur Titration werden Lösungen von normal dissoziierenden Quecksilber(II)-SaIzen, wie Hg(N0 3 ) 2 , benutzt. Die maßanalytische Verwendung unter Komplexbildung verlaufender Reaktionen blieb lange Zeit auf die von J. v. Liebig (1851) eingeführte Cyanidbestimmung mit Lösungen von Silbersalzen beschränkt, bis es neuerdings gelungen ist, geeignete organische Verbindungen aufzufinden, die mit Metall-Ionen innere Komplexsalze (Chelate) bilden. Erst hierdurch ist aus noch zu erörternden Gründen eine breitere Anwendung von komplexometrischen Methoden in der Maßanalyse möglich geworden. Einen wesentlichen Anteil an dieser Entwicklung haben die Untersuchungen von G. Schwarzenbach [78], [79],

208

Komplexometrie 1. Die Bestimmung der Cyanide nach J. v. Liebig

Versetzt man eine schwach alkalische Alkalicyanidlösung tropfenweise mit Silbernitrat, so beobachtet man an der Eintropfstelle das Auftreten eines weißen Niederschlages von Silbercyanid, der aber beim Umrühren sofort wieder verschwindet, da das überschüssige Alkalicyanid mit dem Silbercyanid zu dem löslichen, stark komplexen Alkalidicyanoargentat(I) zusammentritt, z . B . : AgCN + KCN ^ K[Ag(CN) 2 ], Sind aber sämtliche Cyanid-Ionen in dieser Weise gebunden worden, so erzeugt der nächste Tropfen der Silberlösung eine bleibende Trübung von Silberdicyanoargentat(I) bzw. Silbercyanid: K[Ag(CN) 2 ] + AgNO a ^ K N 0 3 + Ag[Ag(CN) 2 ] Ag[Ag(CN) 2 ] ^ 2 AgCN. Das erste Auftreten einer bleibenden Trübung zeigt also, daß die Gesamtreaktion: 2 KCN + AgNO s = K N 0 3 + K [Ag(CN) 2 ] quantitativ zu Ende verlaufen ist, und für die Berechnung ist maßgebend, daß ein Mol Ag + zwei Mole CN" anzeigt. Die Titration soll, besonders gegen Ende der Bestimmung, langsam und unter dauerndem Schütteln durchgeführt werden, da das an der Eintropfstelle primär ausgeschiedene Silbercyanid bei nur noch geringem Überschuß an Alkalicyanid nur langsam in Lösung geht. Die Lösung soll ganz schwach alkalisch sein (unter 0,1-n an Lauge) und darf keine Ammoniumsalze enthalten, weil deren Gehalt an Ammoniak die Ausfällung des Silbercyanids verhindert. Die Gegenwart von Chlorid-, Bromid-, Jodid- und Thiocyanat-Ionen hat keinen störenden Einfluß auf die Anwendbarkeit der Liebigschen Methode. — Als Beispiel sei die Analyse des technischen Kaliumcyanids beschrieben. Praktische Durchführung: Mehrere Proben von etwa 0,3 g Kaliumcyanid werden genau abgewogen, in 100 ml Wasser gelöst und nach Zusatz von 2 ml 2-n Kalilauge mit 0,1-n Silbernitratlösung langsam und unter Umschütteln bis zur eben erkennbaren, bleibenden Trübung titriert. Zur Erleichterung der Endpunktserkennung stellt man das Becherglas auf eine dunkle

Die Grundlagen der Chelatometrle

209

Unterlage (z. B. schwarzes Glanzpapier). Das Ergebnis wird in % KCN umgerechnet. Enthält das technische Produkt Natriumcyanid, so kann die gefundene scheinbare Prozentzahl über 100 liegen!

1 ml 0,1-n Silbernitratlösung entspricht 0,2 Milligrammäquivalenten, also 5,4052 mg H C N oder 13,0236 mg KCN. 2. Die Grundlagen der Chelatometrie1)2) Wesentliche Voraussetzungen für die Eignung einer Reaktion zur maßanalytischen Bestimmung sind, wie schon wiederholt gezeigt werden konnte (vgl. z. B. VIII, S. 108, und XI, S. 172) die sprunghafte Abnahme der Konzentration der zu bestimmenden Ionenart im Äquivalenzpunkt und die Auffindung geeigneter Indikationsmethoden hierfür. Die Titratdon einer starken Säure mit N H 3 • aq z. B. zeigt in der graphischen -j—J—i— Darstellung der Abhängigkeit Aequivalente NH3 • aq des p H -Wertes von der zugesetzten Menge NH 3 • aq eine F i g JS sprunghafte Änderung des p H Wertes im Äquivalenzpunkt, ähnlich der auf S. 116 wiedergegebenen Figur 18. Das Gleichgewicht der Neutralisationsreaktion j^jj^ + [NH4]+ ist weitgehend nach der Seite der [NH 4 ] + verschoben, wie aus dem Wert der Gleichgewichtskonstanten K = 10~9,2S hervorgeht. Betrachten wir nun in Analogie zu der soeben beschriebenen Reaktion die Bildung z. B. des [Cu(NH 3 ) 4 ] ^-Komplexes gemäß der Gleichung Die in der angelsächsischen Fachliteratur übliche Bezeichnung „Chelatometrie" weist auf die Art der gebildeten Komplexverbindungen •— „chelate compounds" •— hin und dürfte daher der im Bereich der deutschen Sprache üblichen, viel allgemeineren Bezeichnung „Komplexometrie" vorzuziehen sein. '-) Vgl. hierzu besonders G. Schwarzenbach [78] u n d H. Flaschka [22], 14 Jander-Jahr, Maßanalyse

Komplexometrie

210 Cu

2+

+ 4NH 3 ^

[Cu(NH 3 ) 4 ] 2 +

»)

als „Neutralisation", titrieren wir also eine Kupfer(II)-Salzlösung mit Ammoniak und stellen den „MetallionenExponenten" (vgl. XI) der [Cu 2+ ] in Abhängigkeit von der zugesetzten Menge Ammoniaks graphisch dar, so sollte auf Grund des Wertes der Gleichgewichtskonstanten K = 10"12'59 ein deutlicher Sprung beim Äquivalenzpunkt Cu : NH3 = 1 : 4 zu erwarten sein. Wie Fig. 28 zeigt, ist dies jedoch nicht der Fall. Die Reaktion erfolgt nämlich schrittweise nach dem Schema Cu 2 +

+ NH 3 +NH3 +NH3 ^ [CuNH 3 ] 2 + ^ [Cu(NH 3 ) 2 ] 2 + ^ +NH3 [Cu(NH 3 ) 3 ] 2 + ^ [CU(NH 3 ) 4 ] 2 + .

Die Gleichgewiditskonstanten der Teilreaktionen betragen Kj = 10"4-13, K 2 = 10"3-48, K s = 10-2-87, K 4 = 10 2 ' n . Wie hieraus zu ersehen ist, können die Werte der Konstanten Kj bis K 3 gegenüber K 4 nicht vernachlässigt werden, eine Bildung des Komplexes in einem Schritt beim Molverhältnis Cu : NH 3 = 1 : 4 ist also nicht zu erwarten. Dies wäre nur der Fall, wenn die Verhältnisse K ^ K * K 2 /K 3 , K 3 /K 4 sehr große Werte ergeben würden, die ersten drei Stufen also im Vergleich zur vierten Stufe [Cu(NH) 3 ) 4 ] 2+ in der Lösung viel stärker dissoziiert wären. Sprünge bei den Molverhältnissen Cu : NH 3 = 1 :1, 1 : 2, 1 : 3, 1 : 4 können ebenfalls nicht auftreten, da die Gleichgewichtskonstanten nicht weit genug auseinander liegen. Die Verhältnisse sind also ganz ähnlich wie bei der Titration mehrbasischer Säuren: die Titration der zweibasischen Schwefelsäure ergibt nur einen Äquivalenzsprung, während die drei Wasserstoffatome der Orthophosphorsäure stufenweise titriert werden können (S. 167). Hier ist noch zu erwähnen, daß aus praktischen Erwägungen an Stelle der Gleichgewichtskonstanten, in diesem Falle der „Komplexbildungskonstanten", oft deren reziproker Wert, die sogenannte „Beständigkeitskonstante", angegeben wird. Kupfer(II)-Ionen liegen in wäßrigen Lösungen als Aquokomplexe vor, was aber für die folgende Betrachtung ohne Bedeutung ist.

Die Grundlagen der Chelatometrie

211

Die Beständigkeit des [Cu(NH 3 ) 4 ] 2 + z. B. ist also durch [ mit sechs koordinativ wirksamen Atomen (zwei Stickstoffatome und die einbindigen Sauerstoffatome der vier Carboxylgruppen), sowie das Dihydrat ihres Natriumsalzes. Diese Verbindungen sind z. B. unter den Handelsnamen „Komplexon", „Titriplex" oder „Idranal" erhältlich. Die Komplexbildung tritt mit den meisten mehrwertigen Kationen ohne Rücksicht auf die Wertigkeit im Verhältnis 1 : 1 ein, weshalb man in der Chelatometrie mit molaren und nicht mit normalen Maßlösungen arbeitet. Den sterischen Aufbau eines MetallAeDTE-Komplexes zeigt Fig. 30. Das Metallion als Zentralatom wird von dem Molekül der AeDTE oktaedrisch umhüllt. Die Bildung der fünfgliedrigen Chelatringe wird durch den Oktaeder-Querschnitt verdeutlicht.

Die Erkennung des Äquivalenzpunktes erfolgt bei einer SäureBasen-Titration durch Indikatoren, die auf eine Änderung des p H Wertes mit einem Farbwechsel reagieren. Ganz analog gibt es für die komplexometrischen TitratioH2C nen metallspezifische Indikatoren, wie z. B. Eriochromschwarz T, Murexid, Brenzkatechinviolett u. a., die auf eine Änderung der p M e - «?c Werte ansprechen. Diese Indikatoren bilden mit den Metall-Ionen Chelat-Komplexe, die anders gefärbt sind als die freien Indikato-

H2C-

H2C-

Fig. 30

214

Komplexometrie

ren. Der Farbumschlag beim Äquivalenzpunkt erfolgt durch den Zerfall des Metallindikatorkomplexes und das Auftreten der F a r b e des freien Indikators. Die Stabilität des Indikatorkomplexes darf natürlich nicht größer sein als die des gebildeten Komplexsalzes, muß aber wiederum groß genug sein, um einen scharfen Farbumschlag zu gewährleisten (vgl. die Titration des Calciums, unten und S. 218). Auf zwei Dinge, die bei der praktischen Anwendung der Komplexone zur Titration zu beachten sind, sei hier noch besonders aufmerksam gemacht: 1) Gemäß der Gleichung M e 2 + + [H 2 Y] 2 -^ [MeY] 2 - + 2 H + entstehen bei der Titration freie H + . Diese Reaktion kann zwar in manchen Fällen zur Bestimmung der Metalle über den Umweg der alkalimetrischen Titration der H + ausgenutzt werden, jedoch ist zu bedenken, daß mit steigender [H + ] das Gleichgewicht nach der Seite der freien Metall-Ionen hin verschoben wird, d. h. die Beständigkeit des Komplexes abnimmt. Entstehen im Verlauf der Titration Metall-Ionenkomplexe, die empfindlich gegen H + sind, muß in gepufferten Lösungen gearbeitet werden. 2) Die Komplexone reagieren mit fast allen Metall-Ionen unter Komplexbildung, sind also als Reagenz nicht spezifisch. Dies muß berücksichtigt werden, wenn verschiedene Kationen in der Lösung gleichzeitig vorhanden sind. Es gibt jedoch verschiedene Möglichkeiten, diese Schwierigkeit zu umgehen, worauf aber hier nicht eingegangen werden kann. 3. Die Bestimmung des Magnesiums und des Calciums sowie die Bestimmung der Gesamthärte des Wassers D a s Magnesium kann mit einer Lösung des Alkalisalzes der Äthylendiamintetraessigsäure und mit Eriochromschwarz T (Abkürzung: Erio-T) als Indikator direkt titriert werden. D i e Beständigkeitskonstante des Magnesium-Indikatorkomplexes ist genügend groß (K = 10 7 , M g - A e D T E Komplexonat: 108>li9), so daß am Äquivalenzpunkt ein scharfer Farbumschlag gewährleistet ist. Calcium d a g e g e n muß bei Anwendung von Erio-T durch Substitutionstitration bestimmt werden, da der Indikatorkomplex Ca-

Die Bestimmung des Magnesiums

215

Erio-T bereits eine zu kleine Beständigkeitskonstante hat (K = 10 5 . 4 , dagegen Ca-AeDTE-Komplexonat: 10 10 ™), wodurch der Farbumschlag schleppend erfolgt und der Äquivalenzpunkt nicht genau festgelegt werden kann. Man setzt in diesem Falle der zu titrierenden Lösung Magnesiumkomplexonat zu. Das Magnesium wird durch das Calcium, das einen stabileren Komplex bildet, nach der Gleichung [ M g Y ] » - + C a * ^ [CaY]^ + Mg2+ verdrängt. Die scharfe Endpunktsanzeige erfolgt dann durch die beim Zerfall des gebildeten rotgefärbten Magnesium-Erio-T-Indiktatorkomplexes entstehende blaue Stufe des freien Indikators. Die Bereitung der 0,1-m AeDTE-Maßlösung: Da die freie Säure in Wasser schwer löslich ist, geht man von dem gut löslichen Dihydrat des Natriumsalzes (im Handel sehr rein erhältlich z. B. als „Komplexem III" bzw. „Titriplex III") aus. Vom Na 2 H 2 C 10 H 12 O 8 N 2 • 2 H 2 0 (Molgew. = 372,254), das bei 80° C bis zur Gewichtskonstanz getrocknet worden ist, werden 37,2254 g genau eingewogen und zu 1 Liter in sehr reinem Wasser gelöst. Die Lösung ist genau 0,100-molar. Das Dihydrat kann auch zwischen 120° und 140° C entwässert werden. Eine 0,1-molare Lösung enthält 33,6222 g des wasserfreien Salzes in einem Liter. Bei der Einwaage muß aber die Hygroskopizität des wasserfreien Salzes beachtet werden. Eine Titerstellung ist nicht erforderlich, kann aber z. B. mit einer Calciumsalzlösung bekannten Gehaltes nach der weiter unten zu besprechenden Methode durchgeführt werden (vgl. auch H. Diehl, C. H. Goetz u. C. C. Hach, J. Amer. Water Works Assoc. 42, 40 [1950]). Die Calciumsalzlösung wird durch Auflösen von sehr reinem (p. A.) bis zur Gewichtskonstanz geglühtem Calciumkarbonat in Salzsäure (p. A.) gewonnen. Das zur Herstellung der Komplexonlösung verwendete Wasser muß äußerst rein sein, da die Komplexone mit Calcium, Magnesium und anderen (z. B. Kupfer) in Wasser eventuell noch vorhandenen Kationen reagieren. Diese Verunreinigungen können aus dem Wasser auf einfache Weise mit Hilfe eines Kationenaustauschers entfernt werden (vgl. S. 169). Die Lösung ist bei Aufbewahrung in Vorratsflaschen aus Polyäthylen oder auch aus Geräteglas, die vor der Verwendung gut ausgedämpft worden sind, monatelang haltbar. Die

216

Komplexometrie

Flaschen aus gewöhnlichem Glas eignen sich nicht, da über längere Zeit merkliche Mengen von Calcium an die Lösung abgegeben werden, wodurch der Wirkungswert der Komplexonlösung allmählich abnimmt.

Der Indikator Eriochromschwarz T (Erio-T): Das zur Gruppe der Eriochromschwarz-Farbstoffe (o, o'Dioxy-azonaphthaline) gehörige Erio-T hat die folgende Konstitution: OH

( - ) OsS

J

OH I N = N - f ^ Y ^ )

< : > i

w

no2

Das Proton der stark sauren Sulfogruppe ist in dem hier interessierenden p H -Bereich (von 7 bis 12) bereits abgespalten (abgekürzte Formel: [H 2 Ind]~). Die Farbe des Indikators ist gemäß —H+ —H+ [H 2 I n d ] - = = = [H Ind] 2 ~ ^ [Ind] 3 ~ weinrot pH = 6,3 tiefblau pH = 1 1 , 5 orange

von der H + -Konzentration abhängig. Im Bereich oberhalb p H = 6 neigt das Erio-T zur Polymerisation unter Gelbbraun-Färbung, die durch Na + , K + oder [NH 4 ] + in größerer Konzentration beschleunigt wird. Gegenwart von Aceton oder Alkohol oder erhöhte Temperatur der Lösung wirkt der Polymerisation entgegen. Dies ist neben der roten Farbe von [H 2 Ind] die der Farbe des Metall-Indikatorkomplexes sehr ähnlich ist, der Grund, weshalb der Indikator unterhalb p H = 6,5 verwendet wird. Der Farbumschlag erfolgt z. B. bei der Magnesiumtitration, gemäß folgender Gleichung: Mg 2 f + [H Ind] 2 " ^ blau

[Mg Ind] ~ + H + rot

Die Bestimmung des Magnesiums

217

Lösungen von Erio-T in Wasser oder Alkohol sind unbeständig. Dagegen wirkt Triäthanolamin als Lösungsmittel stabilisierend (durch Komplexbildung). In 15 ml Triäthanolamin und 5 ml absolutem Äthylalkohol werden 0,2 g des Farbstoffes gelöst. Die Lösung ist mindestens einen Monat lang haltbar. Der Indikator kann auch in fester Form — gemischt mit Kochsalz — der zu titrierenden Lösung zugesetzt werden. Bei seltenem Gebrauch vermeidet man so eine Zersetzung der ja nicht unbegrenzt haltbaren Lösung. Der Farbstoff wird mit Natriumchlorid (p. A.) im Verhältnis 1: 200 bis 1: 400 zu einem staubfeinem Pulver verrieben. 3 bis 7 mg Farbstoffmenge werden je 100 ml Titrationsflüssigkeit benötigt. Verschiedene Metalle, wie z. B. Co, Ni, Cu, AI, Ti bilden mit Erio-T stabilere Komplexe als mit den Komplexonen. Eine Verunreinigung der zu titrierenden Lösung mit den Kationen dieser Metalle verhindert also die Durchführung einer Titration mit Erio-T durch Blockierung des Indikators. Besonders auf die Kupferfreiheit des verwendeten dest. Wassers (Destillierapparat aus Kupfer!) muß geachtet werden. Die Bestimmung des Magnesiums: D i e T i t r a t i o n des M a g n e s i u m s m i t A e D T E u n d E r i o - T als I n d i k a t o r w i r d in alkalischer, g e p u f f e r t e r L ö s u n g (Ph = 10) d u r c h g e f ü h r t . D i e R e a k t i o n v e r l ä u f t bei diesem p H - W e r t g e m ä ß d e m Schema (s. S. 214): M g 2 + + [ H Y - ] 2 - ^ [MgY]2-+ H+. D e r Z u s a t z d e r P u f f e r l ö s u n g v e r h i n d e r t eine Beeinflussung des Gleichgewichtes d u r c h die bei d e r Reaktion f r e i w e r d e n d e n W a s s e r s t o f f i o n e n . A u ß e r d e m ist h i e r d u r c h d e r F a r b u m s c h l a g des p n - e m p f i n d l i c h e n I n d i k a t o r s v o n rot ( F a r b e des M a g n e s i u m - I n d i k a t o r k o m p l e x e s ) nach b l a u gewährleistet. Die Pufferlösung wird durch Übergießen von 70 g Ammoniumchlorid (p. A.) mit 570 ml konz. Ammoniaks (Diäite 0,90) und durch Auffüllen mit dest. Wasser zu einem Liter hergestellt. Da käufliche Ammoniaklösung meist Calcium enthält (aus dem Glas der Vorratsflaschen), stelle man die Lösung durch Einleiten von gasförmigem Ammoniak aus einer Druckflasche in reinstes Wasser her. Zweckmäßig ist es für die Darstellung, wie auch für die Aufbewahrung der Pufferlösung, Flaschen aus Polyäthylen zu verwenden.

218

Komplexometrie

In der zu titrierenden Lösung etwa vorhandene andere Erdalkali-Ionen werden mit Ammoniumkarbonat gefällt. Die ebenfalls störenden Elemente Mn, Cr, Fe, AI, Pb, Bi, Sb, Ti, Zr, Th, Seltene Erden, Ta, Ga müssen entfernt werden, z. B. durch Ausfällung als Hydroxide. Kolloid in Lösung bleibendes Eisen(III)hydroxid wird mit Na.2S als Sulfid gefällt. Co, Ni, Cu, Zn, Cd, Hg und die Platinmetalle können mit KCN „maskiert", d. h. in die Cyanidkomplexe übergeführt werden. Das Magnesium bildet mit Oxalat-Ionen einen Oxalatokomplex, der einen schleppenden Endpunkt der Titration verursacht. Praktische Durchführung: 100 ml der Lösung (saure Lösungen werden zuvor mit Natronlauge neutralisiert), die nicht mehr als 10~2 Mol/1 Magnesium enthalten soll, werden mit 2 ml Pufferlösung und 2—4 Tropfen Indikatorlösung (bzw. einer Spatelspitze Indikator-Kochsalzgemisch) versetzt und mit einer 0,1-m AeDTE-Lösung bis zum Umschlag von rot nach blau, bis zum Verschwinden der letzten rötlichen Nuance, titriert. Wegen des verhältnismäßig langsamen Ablaufs der Komplexbildungsreaktion titriere man in der Nähe des Endpunktes langsam. Eine Erwärmung zur Beschleunigung des Reaktionsablaufs ist aber nicht notwendig. Die Bestimmung kann auch als Mikro-Titration mit 0,01-m, sogar mit 0,001-m AeDTE-Lösung durchgeführt werden. 1 ml 0,1-m AeDTE entspricht 2,432 mg Mg. Die Bestimmung des Calciums: D i e G r u n d l a g e d e r T i t r a t i o n ist bereits auf S. 2 1 4 erörtert w o r d e n . D i e B e s t i m m u n g des C a l c i u m s w i r d e b e n f a l l s durch die b e r e i t s b e i d e r M a g n e s i u m b e s t i m m u n g a u f g e f ü h r t e n K a t i o n e n gestört. D i e s e sind vor d e r T i t r a t i o n zu e n t f e r n e n . E n t s p r e c h e n d d e n A u s f ü h r u n g e n auf S . 2 1 5 m u ß der zu t i t r i e r e n d e n C a l c i u m s a l z l ö s u n g d a s M a g n e s i u m komplexonat der A e D T E zugesetzt werden. Eine entsprechende L ö s u n g dieses Komplexes b e r e i t e t m a n sich folgendermaßen: Äquivalente Mengen einer Magnesiumsulfat- und einer AeDTE-Lösung werden gemischt, und durch Zugabe von Natronlauge wird ein p H -Wert zwischen 8 und 9 (Phenolphthaleinumschlag nach rot) eingestellt. Das Verhältnis Mg : AeDTE = 1 : 1 ist gegeben, wenn nach Zugabe von etwas Pufferlösung (p H = 10) zugesetztes Erio-T der Lösung eine schmutzig vio-

Die Bestimmung des Magnesiums

219

lette Färbung verleiht, die mit einem einzigen Tropfen 0,01-m AeDTE in Blau und mit einem Tropfen 0,01-m MgS0 4 in Rot umschlägt. Je nach Ausfall der Probe wird entweder AeDTEoder MgS0 4 -Lösung zugesetzt. Schließlich wird durch Auffüllen mit dest. Wasser eine 0,1-m oder 0,01-m Lösung hergestellt. Eine Titerstellung ist nicht notwendig. Praktische Durchführung: 100 ml der Lösung (saure Lösungen werden zuvor mit Natronlauge neutralisiert), die nicht mehr als 10"2 Mol/1 Calcium enthalten soll, werden mit 2 ml Pufferlösung, 1 ml 0,1-m Magnesiumkomplexonatlösung und 2 bis 4 Tropfen Indikatorlösung (bzw. einer Spatelspitze Indikator-Kochsalzgemisch) versetzt. Die Titration wird der Magnesiumbestimmung entsprechend durchgeführt. 1 ml 0,1-m AeDTE entspricht 4,008 mg Ca. Die Bestimmung der Gesamthärte des Wassers (CaO und MgO) (vgl. S. 155 und S. 187): Die Methode eignet sich f ü r die Bestimmung des Erdalkaligehaltes in Wässern beliebiger Herkunft. Ba und Sr stören und müssen abgetrennt werden. Die bereits bei der Bestimmung des Magnesiums genannten als Hydroxide fällbaren Kationen werden lediglich als Verunreinigungen in nicht allzu großen Konzentrationen in den Wässern enthalten sein u n d bei der Zugabe der Pufferlösung quantitativ ausfallen. Kolloidales Eisen(III)-hydroxid stört in kleinsten Spuren. Man fällt es mit Na 2 S aus. Die übrigen, bereits bei der Magnesiumbestimmung genannten Kationen können mit KCN „maskiert" werden. Phosphat-Ionen sollten, am bequemsten mit Hilfe eines Anionenaustauschers, vor der Titration entfernt werden. Praktische Durchführung: Die Titration wird analog der Magnesiumbestimmung mit einer 0,01-m AeDTE-Lösung durchgeführt. Ein Zusatz von Magnesiumkomplexonat wird notwendig, wenn das Wasser keine Magnesium-Ionen enthält. Der Umschlagspunkt wird schärfer, wenn man die Karbonate in der Wasserprobe durch Zugabe von Salzsäure und Aufkochen zersetzt. Nach dem Abkühlen wird die Lösung mit Natronlauge neutralisiert, dann wird wie üblich verfahren. 1 ml 0,01-m AeDTE entspricht einer Gesamthärte (CaO + MgO) von 0,02 mval in 100 ml oder 0,2mval im Liter (0,02 mval CaO = 0,5608 mg CaO;. 0,Q2 mval MgO=0 i 4032mgMgO).

220 Dritter

Teil

Die elektrochemischen Methoden der Maßanalyse XVI. Allgemeines über die elektrochemischen Verfahren der Maßanalyse Es ist schon verschiedentlich darauf hingewiesen worden, daß man allgemein bei quantitativen, analytischen Untersuchungen vor allem wegen der Kürze der Durchführungszeit volumetrischen, maßanalytischen Verfahren den Vorzug vor gravimetrischen Bestimmungen gibt. So haben sich im Laufe der Zeit die in den vorhergehenden Kapiteln beschriebenen klassischen Titrierverfahren entwickelt: Die mit Farbindikatoren arbeitende Alkalimetrie und Acidimetrie, die Manganometrie, die Jodometrie und andere mehr. Um aber den in den letzten Jahrzehnten an sie gestellten, immer mehr gesteigerten Anforderungen der wissenschaftlichen und technischen Chemie auch weiterhin entsprechen zu können, mußte sich die Maßanalyse nach neuen Mitteln umsehen, mit deren Hilfe sich das Ende einer eindeutig verlaufenden, zur analytischen Bestimmung an und für sich brauchbaren Reaktion auch in solchen Fällen sicher erkennen ließe, in denen die klassischen Titrierverfahren versagen. Man denke doch nur an zahlreiche Oxydations- oder Reduktionsreaktionen, an Fällungs- oder Komplexbildungsreaktionen, deren Beendigung noch durch keinen Indikator erkannt werden kann, oder auch an die Titration stark getrübter oder gefärbter Lösungen irgendwelcher Art. Diese Hilfsmittel bot nun die physikalische Chemie. Es sind die elektrochemischen Methoden der Maßanalyse, die in letzter Zeit immer mehr an Bedeutung gewonnen haben. Sie beruhen auf der Möglichkeit, den Endpunkt einer Titration mit Hilfe von Leitfähigkeits- oder Spannungsmessungen zu erkennen. Man unterscheidet daher die Konduktometrie oder Leitfähigkeitstitration einerseits und die Potentiometrie oder Elektrometrie andererseits.

Allgemeines über die elektrochemischen Verfahren

221

Die P o t e n t i o m e t r i e beruht auf der Spannungsänderung, die eine eingetauchte Indikatorelektrode während der Titration gegen die Lösung zeigt. Die Elektrode muß so gewählt werden, daß sie nur auf die Konzentration des Ions anspricht, das bestimmt werden soll. Es besteht also hier eine Parallele zu der Titration mit Farbindikatoren. Um z. B. eine Silbersalzlösung zu titrieren, wird man eine Silberelektrode wählen, zur Bestimmung der Wasserstoffionen-Konzentration einen von Wasserstoff umspülten Platindraht, der sich wie eine Wasserstoffelektrode verhält. Man mißt also die Änderung, die das Potential einer in die titrierte Lösung tauchenden Elektrode im Verlauf der Titration erfährt, und trägt die so erhaltenen, verschiedenen Spannungswerte in Abhängigkeit von der Reagensmenge graphisch auf (Fig. 31). Die Abszisse des Wendepunktes der erhaltenen Kurve zeigt den gesuchten Reagensverbrauch bis zum Äquivalenzpunkt an. Im zweiten Abschnitt (s. S. 248) wird hierüber noch ausführlicher gesprochen werden.

ml der Masalcaung Fig. 31

ml der Masslösung Fig. 32

Bei der L e i t f ä h i g k e i t s t i t r a t i o n o d e r K o n d u k t o m e t r i e hingegen beobachtet man die Änderung der Leitfähigkeit einer Lösung, die durch eine anteilweise zugesetzte Reagenslösung hervorgerufen wird. Die erhaltenen Werte der Leitfähigkeit — oder Proportionale davon — werden nun in Abhängigkeit von der jeweils hinzugesetzten Menge der Reagenslösung in einem rechtwinkligen Koordinatensystem dargestellt. Hierbei resultieren Kurvenzüge, wie sie durch Fig. 32 schematisch wiedergegeben

222

Allgemeines über die elektrochemischen Verfahren

sind. Die Projektion z. B. des Schnittpunktes B der Reaktionsgeraden AB mit der Geraden des Reagensüberschusses BC auf die Milliliterachse zeigt den Reagensverbrauch bis zum Äquivalenzpunkt an. Zu beachten ist dabei, daß die Leitfähigkeit sich additiv zusammensetzt aus den Einzelleitvermögen der in der Lösung vorhandenen Ionen, gleichgültig, ob diese an der Reaktion beteiligt sind oder nicht, während bei der Potentiometrie lediglich die Konzentration des Ions (bzw. der Ionen) eine Rolle spielt, auf das die Indikatorelektrode anspricht. Günstige Bedingungen für die Konduktometrie sind also dann vorhanden, wenn wenig fremde, an der Titrationsreaktion unbeteiligte Ionen vorhanden sind. Bei zu großem Fremdelektrolytgehalt sind die Leitfähigkeitsänderungen während der Titration oft so gering im Verhältnis zur Gesamtleitfähigkeit, daß die Erkennung des Endpunktes der Reaktion schwierig wird. Was die elektrochemischen Methoden vor den mit Indikatoren arbeitenden auszeichnet, ist die Tatsache, daß bei den letzteren durch den Indikatorumschlag nur ein einzelner Punkt — der Äquivalenzpunkt — im Gange der Titration angezeigt wird, während bei jenen die graphischen Darstellungen ein Bild des gesamten Titrationsverlaufes geben und alle Besonderheiten und weiteren Reaktionen erkennen lassen, soweit sie mit Änderungen der Leitfähigkeit oder der Spannung verbunden sind. So hat man sehr oft die Möglichkeit, durch eine einzige Titration mehrere Stoffe nebeneinander bzw. nacheinander zu bestimmen, wie z. B. mehrere Halogene oder mehrere verschieden starke Säuren nacheinander. Die schrittweise Verfolgung des Titrationsverlaufes sichert in solchen Fällen allermeist eine recht scharfe Erkennung des Endpunktes. Ein weiterer Vorteil ist die Möglichkeit, mit kleineren Mengen und verdünnteren Lösungen zu arbeiten, so daß sich in besonderen Fällen eine Steigerung der Meßgenauigkeit, z. B. bei mikroanalytischen Untersuchungen, ergibt. Vor allem aber ist —

Die Grundlagen der Leitfähigkeitstitration

223

worauf bereits hingewiesen wurde — eine Anzahl von Reaktionen maßanalytisch zu verwerten, deren Endpunkt durch einen Indikator bisher nicht markiert werden konnte. Erster Abschnitt DIE KONDUKTOMETRIE XVII. Theorie und Praxis der Leitfähigkeitstitration 1. Die Grundlagen der Leitfähigkeitstitration

Die Leitfähigkeitstitration benutzt die Eigenschaft wäßriger Elektrolytlösungen, den elektrischen Strom zu leiten. Diese L e i t f ä h i g k e i t beruht auf der elektrolytischen Dissoziation der gelösten Säuren, Basen und Salze, also darauf, daß diese Stoffe in wäßriger Lösung in elektrisch geladene Teilchen, die Ionen, zerfallen sind. Im elektrischen Feld wandern die Ionen (die Anionen zur positiv geladenen „Anode", die Kationen zur negativ geladenen „Kathode") und transportieren pro Grammäquivalent stets die gleiche Elektrizitätsmenge, nämlich 96 500 Coulomb, zu den Elektroden (Faradaysches Gesetz). Die Leitfähigkeit einer verdünnten Elektrolytlösung wird nun bestimmt: 1. Durch die Anzahl der Elektrizitätsträger (Ionen) in der Lösung, d. h. also durch deren Konzentration, 2. durch die Anzahl der Elementarladungen, die jedes Ion zu transportieren vermag, d. h. also durch die Ionen-Wertigkeit (vgl. S. 38), und 3. durch die „Wanderungsgeschwindigkeit" oder „Beweglichkeit" der Ionen, d. h. durch die Geschwindigkeit, gemessen in cm pro Sekunde, mit der sie in der Richtung der Kraftlinien des elektrischen Feldes fortschreiten1). Die Beweglichkeit hängt von der Natur der Ionen, von der Feldstärke und von der Viskosität des Lösungsmittels ab und wird in Wasser von 25° C bei einem Spannungsgefälle von 1 Volt je cm gemessen. Die Leitfähigkeit eines Elektrolyten ist, ! ) „Wanderungsgeschwindigkeit" bedeutet die in cm • s e c - 1 gemessene Geschwindigkeitsgröße bei beliebigem Potentialgefälle, „Ionenbeweglichkeit", die in c m 2 • sec- 1 V o l t - 1 gemessene Geschwindigkeitsgröße im Potentialgefälle 1 Volt/cm (vgl. [74]).

224

Theorie und Praxis der Leitfähigkeitstitration

da ja die Wertigkeit und in verdünnt wäßriger Lösung auch die Beweglichkeit seiner Ionen die gleichen bleiben, eine lineare Funktion seiner Konzentration bei konstanter Temperatur. Leitfähigkeitsmessungen sind gleichbedeutend mit Widerstandsmessungen, denn als Leitfähigkeit einer Substanz für den elektrischen Strom bezeichnet man den reziproken Wert seines Widerstandes: X = Der Widerstand w

ist der Länge des Leiters (1) direkt, seinem Querschnitt (q) umgekehrt proportional: w = Q • ^. Der Proportionalitätsfaktor Q wird nach Übereinkunft auf ein Leiterstück von 1 cm Länge und 1 cm2 Querschnitt bezogen und als spezifischer Widerstand bezeichnet. Sein reziproker Wert ist die s p e z i f i s c h e L e i t f ä h i g k e i t . « = — = — •—. Man q

w

q

mißt die spezifische Leitfähigkeit in reziproken Ohm1) pro cm (Q_1 cm -1 ). Für die Konduktometrie ist von besonderer Bedeutung der Begriff der Ä q u i v a l e n t l e i t f ä h i g k e i t A, d. h. der Quotient aus der spezifischen Leitfähigkeit und der Konzentration, gemessen in Grammäquivalenten pro ml (??): Also A = - (£2_1 • cm2/val). Die spezifische Leitfähigkeit strebt mit abnehmender Konzentration gegen Null, die Äquivalentleitfähigkeit jedoch gegen einen Grenzwert, A der sich additiv aus den I o n e n ä q u i v a l e n t l e i t f ä h i g k e i t e n (diese sind den I o n e n b e w e g l i c h k e i t e n proportional) des Anions (lA) und des Kations (1K) zusammensetzt: A » = 1A -f 1K. Auf einem Wege, der hier nicht besprochen werden kann, hat man die Äquivalentleitfähigkeiten der einzelnen Ionen miteinander verglichen und folgende Werte gefunden, die für 25° gelten: I n der angelsächsischen Literatur werden reziproke Ohm durch eine umgekehrte Schreibweise — Mho — bezeichnet.

Die Grundlagen der Leitfähigkeitstitration

225

T a b e l l e 12 Ionenäquivalentleitfähigkeiten (Q_1 • cm 2 ) in H2O (c = 0) bei 25° C 1 ) Kationen H + 349,6 Li + 38,7 Na+ 50,1 K+ 73,5 Rb+ 77 Cs+ 77,7 NH4h 74 Ag+ 62,2 Tl + 74

1/2 Be 2+ 1/2 Mg 2+ 1/2 Ca 2+ 1/2 Sr2+ 1/2 Ba 2+ 1/2 Zn 2+ 1/2 Cd 2+ 1/2 Pb 2+ 1/2 Mn2+ 1/2 Cu 2+ 1/2 Ni 2t

! 45 58 59 60 63,2 54 54 65 50 55,5 49

Anionen OH- 197 55 F" c i - 76,4 Br 78 77,1 J" CN- 82 CNS 66 c i o 3 - 65,3 BrOs"-56,0 Jo 3 - 41,6 NO3- 71,1

cio4jor

67 55,6 MnO„61 56 (HCOO)" (CH3COO)- 41,4 1/2 SO4279 1/2 C r 0 4 ^ 83 1/2 CO s 2 74 1/2 (C 2 0 4 ) 2 - 63 2 ) 1/2(C 4 H 4 0 6 ) 2 -552) 69 2 ) 1/3 P O / -

W i e ändert sich nun die Leitfähigkeit im Verlauf einer Titration? Als Beispiel möge die Neutralisation von Salzsäure mit Natronlauge dienen, die als Ionengleichung folgendermaßen zu formulieren ist: H + + Cl" + Na + + O H " = Na + + Cl" + H 2 0 . D i e Hydroxid-Ionen der L a u g e treten mit den Wasserstoffionen der titrierten Säure zu praktisch undissoziiertem Wasser zusammen, während die Natrium-Ionen mehr und mehr an Stelle der Wasserstoffionen treten. Am Äquivalenzpunkt sind alle in der vorgelegten Lösung ursprünglich vorhandenen Wasserstoffionen durch Natrium-Ionen ersetzt worden. D a nun, wie T a b e l l e 12 entnommen werden kann, die Natrium-Ionen eine wesentlich geringere Äquivalentleitfähigkeit (entsprechend einer geringeren Beweglichkeit) zeigen als die Wasserstoffionen, so m u ß die Gesamtleitfähigkeit der titrierten Lösungen proportional dem Fortschritt der Neutralisation mehr und mehr abnehmen. Setzt man nun über den Äquivalenzpunkt hinaus L a u g e hinzu, so findet natürlich keine weitere Verminderung, sondern vielmehr sukzessive ein Anwachsen der Leitfähigkeit statt, 1) nach H. Falkenhagen [22]. 2) bei 18° G. 15 Jander-Jahr, Maßanalyse

226

Theorie und Praxis der Leitfähigkeitstitration

denn zu der am Äquivalenzpunkt nur durch das vorhandene Natriumchlorid bedingten Leitfähigkeit treten additiv die Einzelleitfähigkeiten der jedesmal überschüssig hinzugesetzten Natrium- und Hydroxid-Ionen. Graphisch dargestellt ergibt sich ein Leitfähigkeitsverlauf, wie ihn Fig. 32, S. 221, erkennen läßt. Die Titrationskurven verlaufen geradlinig, solange die vorhandenen Ionenarten im einzelnen entweder garnicht oder quantitativ reagieren. Ein großer Vorteil für die Konduktometrie ist, wie hieraus hervorgeht, die Tatsache, daß man bei einer Titration den Äquivalenzpunkt selbst garnicht zu fassen braucht, sondern ihn durch zeichnerische Extrapolation findet. Der jeweilige Kurvencharakter eines Titrationsdiagrammes ist allgemein dadurch gekennzeichnet, daß an Stelle der verschwindenden Ionenart der vorgelegten Versuchslösung eine neue aus der Reagenslösung tritt mit größerer oder kleinerer Leitfähigkeit. Im ersteren Falle erhält man ein Steigen, im letzteren ein Fallen der Gesamtleitfähigkeit bis zum Äquivalenzpunkt. Nach Uberschreiten des Äquivalenzpunktes wird natürlich, wenn keine weiteren Reaktionen folgen, immer eine Leitfähigkeitszunahme beobachtet. Zu bemerken ist, daß möglichst für Temperaturkonstanz gesorgt werden muß, weil die Leitfähigkeit einer Salzlösung bei einer Temperaturerhöhung um 1 0 C durchschnittlich um 2 , 5 % steigt. Aber trotzdem ist nur in Ausnahmefällen die Verwendung eines Thermostaten erforderlich, weil die meisten Titrationen in wenigen Minuten beendet sind. 2. Die Titriervorrichtung Um eine konduktometrische Bestimmung durchführen zu können, bedarf man geeigneter L e i t f ä h i g k e i t s g e f ä ß e , die zur Aufnahme der zu titrierenden Flüssigkeit dienen. Es sind für gewöhnlich Glasgefäße mit platinierten Platinelektroden. Fig. 33 zeigt ein zu manchen Titrationszwecken sehr geeignetes Leitfähigkeitsgefäß. Ein

Die Titriervorrichtung

227

ähnliches Leitfähigkeitsgefäß, das jedoch unten mit einem durch Schliffstopfen verschließbaren Auslauf versehen ist, wird, kombiniert mit einem kleinen Rührer und einer Mikrobürette, durch Fig. 34 veranschaulicht. Die Größe und der Abstand der Elektroden des Leitfähigkeitsgefäßes richtet sich nach dem Widerstand, der bei der zu titrierenden Flüssigkeit zu erwarten ist. Im allgemeinen sollen die Elektroden um so größer und ihr Abstand um so kleiner sein, je schlechter die Lösung leitet. Es muß darauf geachtet werden, daß der Gefäßwiderstand gut meßbar bleibt, d. h. daß er nicht unter 30 und nicht über einigen tausend Ohm liegt. Das Platinieren der Elektroden bezweckt eine außerordentliche Vergrößerung ihrer Oberfläche. Dadurch wird einer Polarisation der Elektroden, die die Leitfähigkeitsmessung stören würde, wirksam entgegengetreten (vgl. S. 230).

Fig.33

Zum Zweck der P l a t i n i e r u n g wird das peinlich gesäuberte Gefäß mit einer Lösung von 3 g H 2 [Pt(Cl) 6 ] und 25 mg Bleiacetat in 100 ml destilliertem Wasser gefüllt. Die beiden Elektroden werden leitend verbunden und möglidist genau in die Mitte des sie trennenden Zwischenraums eine Platinhilfselektrode eingeführt. An diese als Anode und an die miteinander verbundenen Gefäßelektroden als Kathode wird eine Spannung von 4 Volt gelegt, worauf die Lösung mit Fig. 34 einer Stromdichte von höchstens 30 Milliampère pro cm 2 Elektrodenflädie (einseitig gemessen) etwa 10 Minuten lang elektrolysiert wird. Dann wird die Platinierungslösung entfernt, das Gefäß mit verdünnter Schwefelsäure gefüllt und durch nochmaliges kurzes Elektrolysieren der noch an

228

Theorie und Praxis der Leitfähigkeitstitration

den Elektroden anhaftende Rest von H2[Pt(Cl)6] entfernt. Zum Schluß wird das Leitfähigkeitsgefäß mit destilliertem Wasser gründlich gereinigt. Leitfähigkeitsgefäße sollen niemals trocken stehenbleiben, sondern, um die Wirksamkeit der Platinierung zu erhalten, bei Nichtgebrauch stets mit destilliertem Wasser gefüllt seinl Jedes Leitfähigkeitsgefäß hat eine vom Abstand und vom Querschnitt seiner Elektroden sowie von seiner Füllhöhe und von anderen Umständen abhängige W i d e r standskapazitätC.

Es ist x = - • — oder, da 1/q l w q hier nicht ausmeßbar ist: v, = - -C oder, C = x - w. C ist w der Widerstand, den ein Leitfähigkeitsgefäß haben würde, wenn es mit einer Flüssigkeit der spezifischen Leitfähigkeit 1 gefüllt wäre. Mit geeigneten Eichlösungen bekannter spezifischer Leitfähigkeit (z. B. 1-n K C l : x2ä° = 0,11173 cm"1) läßt sich die Widerstandskapazität ermitteln. Um die Widerstandskapazität der Leitfähigkeitsgefäße nicht zu verändern, dürfen einmal die Elektroden nicht zu dicht unterhalb der Flüssigkeitsoberfläche angebracht sein, andererseits ist das Volumen der zuzusetzenden Reagenslösung gering zu halten; zu 50 ml Lösung sollten insgesamt höchstens 5 ml einer relativ konzentrierten Reagensflüssigkeit hinzugegeben werden. Man bedient sich dabei vorteilhaft kleinerer Büretten, die in 0,01 ml unterteilt sind, so daß die Ablesegenauigkeit die gleiche bleibt wie bei den gewöhnlichen Titrationen mit den in 0,1 ml unterteilten Büretten von 50 ml Fassungsvermögen. 3. Die Methoden der Leitfähigkeitsmessung Die Brückenschaltung mit Telefon:

Die Leitfähigkeit einer Lösung ist der reziproke Wert ihres Widerstandes. Leitfähigkeitsmessungen sind daher gleichbedeutend mit Widerstandsmessungen, wie sie heute allgemein mit Hilfe einer Wheatstoneschen B r ü c k e n s c h a l t u n g durchgeführt werden. Ihre einfachste Form ist die Telefonmethode (Nullpunkt- oder Minimummethode), deren Schaltschema Fig. 35 zeigt.

Die Methoden der Leitfähigkeitsmessung

229

E i n I n d u k t i o n s a p p a r a t kleiner L e i s t u n g , b e i d e m Prim ä r - u n d S e k u n d ä r s p u l e nicht m i t e i n a n d e r in V e r b i n d u n g s t e h e n d ü r f e n , liefert d e n W e c h s e l s t r o m geeigneter, d. h . h ö r b a r e r F r e q u e n z f ü r die Brücke. D e r H a m m e r u n t e r brecher des I n d u k t o r i u m s m u ß möglichst leise a r b e i t e n , d a m i t eine g e n a u e E i n s t e l l u n g des T o n m i n i m u m s m ö g lich ist. P

Fig. 35

Die Verwendung von Gleichstrom für die Messung der Leitfähigkeit von Elektrolyten scheidet aus, da die Lösung dann elektrolytisch zersetzt würde. Die Anreicherung der Elektrolyseprodukte an den Elektroden würde zur Ausbildung eines Potentials, der sogenannten Polarisationsspannung führen, die der angelegten Spannung entgegengerichtet ist. Mit steigender Frequenz eines angelegten Wechselstromes und bei starker Vergrößerung der Elektrodenoberfläche (Platinierung!) nimmt die Polarisationsspannung ab. Bei sorgfältiger Platinierung der Elektroden kann die Polarisationsspannung bereits bei 50 Hz vernachlässigt werden. Die Verwendung sehr hoher Frequenzen bietet keinen weiteren Vorteil, da mit zunehmender Frequenz der störende Einfluß von Induktivitäten und Kapazitäten wächst. Gut geeignet f ü r die Telefonmethode sind Frequenzen von 1000 bis 3000 Hz. D a infolge der Überlagerung von Strömen verschiedener Frequenz bei Verwendung eines Induktionsapparates das Tonminimum oft nur schlecht zu erkennen ist, sollte für genauere Messungen ein Röhrengenerator (Tonfrequenzgenerator) als Stromquelle einem Induktorium vorgezogen werden. Dieser liefert einen „monochromatischen" Strom, d. h. einen Strom ganz bestimmter Frequenz. Außerdem läßt der Röhren-

230

Theorie und Praxis der Leitfähigkeitstitration

generator eine bequeme Regelung der an die Brücke angelegten Spannung zu, die nicht höher als 5 V sein soll. Ein zu großer Stromfluß kann zu Störungen in der Messung führen (z. B. durch Erwärmung der Elektrolytlösung).

AB ist ein Widerstandsdraht (Meßbrücke) von etwa 50 Ohm, der auf einer in mm unterteilten Latte aufgespannt (oder auf eine Walze gewickelt) und an seinen Enden mit der Stromquelle verbunden ist. Dem Strom steht außerdem noch ein zweiter Weg von A nach B zur Verfügung, nämlich durch das Leitfähigkeitsgefäß L (mit der zu untersuchenden Lösung) und durch den bekannten Vergleichswiderstand W. Als Vergleichswiderstände dienen Präzisions-Stöpselrheostaten von fünfzig bis zu einigen hundert Ohm. Der Vergleichswiderstand bleibt während ein und derselben Messung bzw. Titration konstant. Beide Stromwege verbindet die Brückenleitung PS, in der das Telefon T liegt. Sein Widerstand soll zwischen 20 und 100 Ohm liegen. S ist ein Gleitkontakt, der auf dem Brückendraht beliebig verschoben werden kann. Man wählt den Vergleichswiderstand so, daß zu Beginn der Messung der Gleitkontakt etwa in der Mitte der Brücke steht (Tonminimum). Für Leitfähigkeitstitrationen ist ein gleichbleibender Durchmesser des Brückendrahtes über seine gesamte Länge besonders wichtig, da der Gleitkontakt im Verlauf der Titration um ein beträchtliches Stück verschoben wird. Steht eine Präzisions-Meßbrücke nicht zur Verfügung, ist es zweckmäßig, den Meßdraht über seine ganze Länge durch Vergleich mit einem Präzisions-Stöpselwiderstand zu kalibrieren und eine Eichkurve aufzunehmen (vgl. [38] oder [74]). Ein Ablese- oder Einstellfehler von 1 mm am Meßdraht bedeutet bei einer Gesamtlänge von 1 m einen Fehler in der Leitfähigkeitsmessung von 0,4%.

Wird der Induktionsapparat eingeschaltet, so fließt der Strom zum Teil direkt, zum Teil aber auch über L und W von A nach B. Auch durch die Brückenleitung PTS fließt im allgemeinen ein Strom, der im Telefon ein summendes Geräusch hervorruft. Man schiebt nun den Gleitkontakt so lange hin und her, bis man einen Punkt findet, bei welchem das Telefon schweigt oder doch ein Tonminimum erkennen läßt. Durch die Brücken-

Die Methoden der Leitfähigkeitsmessung

231

leitung fließt dann praktisch kein Strom, ein Beweis dafür, daß zwischen P und S keine Spannung herrscht, bzw. daß diese Punkte gegenüber A (oder B) die gleiche Spannung haben. Dann ist der Widerstand des Brückendrahtes durch den Gleitkontakt im gleichen Verhältnis unterteilt wie der Widerstand des Stromweges über das Leitfähigkeitsgefäß und den Vergleichswiderstand durch den Punkt P, und es gilt: L/w = a/b, und der Widerstand im Leitfähigkeitsgefäß ist L = ^ • w. Sein reziproker Wert, X = l / L , ist also dem Verhältnis der Brückenwiderstände oder, bei gleichmäßig kalibriertem Meßdraht, dem Längenverhältnis der Brückenabschnitte b/a direkt proportional. Bei der Leitfähigkeitstitration wird nach jedem Reagenszusatz erneut die Leitfähigkeit der titrierten Lösung gemessen. Da man jedoch hier nur Relativwerte benötigt, kann man statt der Leitfähigkeit selbst die jeweils gemessenen Werte von b/a direkt ins Analysendiagramm eintragen. Die visuellen Methoden:

Das akustische Meßverfahren mittels Telefon hat sich für Zwecke der Titration jedoch in der Praxis kaum einbürgern können, wohl weil Beobachtungen mit dem Ohr auf die Dauer recht anstrengend und unangenehm sind und weil das dauernde Aufsuchen des Tonminimums außerdem einen absolut ruhigen Arbeitsraum voraussetzt. Ein solcher steht aber gerade in technischen Betrieben nur höchst selten zur Verfügung. Dieser Nachteil der Telefonmethode läßt sich nun durch Umstellung der Versuchsanordnung auf eine solche mit visueller Beobachtung — Ablesung eines Zeigerinstrumentes — beheben.

Für die Nullstromindikation wird an Stelle eines Telefons ein empfindliches Wechselstrom-Galvanometer oder nach Gleichrichtung des Wechselstromes ein empfindliches GleichstromGalvanometer benutzt. Neuere Meßanordnungen arbeiten mit der sehr empfindlichen, in der Rundfunktechnik als „Magisches Auge" bekannten Elektronenröhre oder benutzten Wechselstrom-Röhrenvoltmeter (s. S. 263). Für Präzisionsbestimmungen

232

Theorie und Praxis der Leitfähigkeitstitration

der Leitfähigkeit wird mit Vorteil der Kathodenstrahloszillograph eingesetzt, mit dem gleichzeitig auch Phasenlage und Sinusform des Wechselstromes geprüft werden können [41], Hierauf, wie auch auf Fehlerquellen bei Präzisionsmessungen, die hauptsächlich in nicht abgeglichenen Kapazitäten der Meßanordnung zu suchen sind, und deren Beseitigung kann hier nicht eingegangen werden (s. z. B. [17], [74]). F ü r Titrationen eignen sich besonders solche Einrichtungen, bei denen auf der Skala eines Meßinstrumentes die durch die Titration hervorgerufenen Leitfähigkeitsänderungen der vorgelegten Lösung, oder Proportionale hiervon, direkt abgelesen werden können, ohne daß nach jedem Reagenszusatz der Brückenkontakt verschoben zu werden braucht; dieser wird vielmehr vor Beginn der Titration einmalig in geeigneter Weise eingestellt. Die beim Arbeiten nach einer solchen A u s s c h l a g m e t h o d e gewonnene Zeit ist nicht unbeträchtlich, zumal alle Umrechnungen der abgelesenen W e r t e fortfallen. Die Ausschläge werden vielmehr direkt zum Zeichnen des Analysendiagramms benutzt. Allerdings sind bei Titrationen nach der Ausschlagmethode durch die Art der Messung bedingte Fehlermöglichkeiten zu berücksichtigen, die bei stromloser Brückendiagonale (PS in Fig. 35) nicht stören oder hierbei überhaupt nicht auftreten können. Einmal ist zu berücksichtigen, daß bei einer Ausschlagmessung die durch das Brückeninstrument angezeigte Stromänderung nur dann Folge einer Leitfähigkeitsänderung ist, wenn die an der Brücke liegende Spannung für die Dauer der Messung konstant ist. Zum anderen besteht bei stromdurchflossener Brückendiagonale, wie die Berechnung des durch das Anzeigeinstrument fließenden Stromes zeigt (vgl. Harms [30]), kein linearer Zusammenhang zwischen Galvanometerausschlag und Leitfähigkeitsänderung. Während die Beseitigung von Spannungsschwankungen durch geeignete elektrotechnische Maßnahmen (Eisenwasserstoff-Widerstand, magnetischer Konstanthalter, elektronische Stabilisierung) verhältnismäßig einfach und wirksam gelingt, ist es schwieriger bei optimaler AnzeigeEmpfindlichkeit über einen größeren Bereich für alle möglichen Fälle (kleine und große Leitfähigkeitsänderungen bei der Titration) eine ausreichende Linearität der Anzeige zu erreichen. Durch geeignete Dimensionierung der Brückenglieder kann

Neutralisationsvorgänge

233

diese Voraussetzung für eine Messung nach der Ausschlagmethode befriedigend genau erfüllt werden (vgl. [30]). Ein einfaches Gerät für Messungen sowohl nach der Nullpunkt- wie Ausschlagmethode haben G. Jander und O. Pfundt entwickelt (vgl. [34] und 1953). An Stelle des Telefons dient ein empfindliches Wechselstrom-Galvanometer (10~e Amp./Skalenteil) als Meßinstrument. Als Ausschlagbrücke arbeitet das Gerät über einen für die meisten Titrationen genügend großen Bereich annähernd linear. Während für Messungen nach der Nullpunktmethode verschiedene Geräte im Handel zu erhalten sind, kann für Titrationen nach der Ausschlagmethode nur noch auf das „Konduktoskop" der Firma Metrohm1) hingewiesen werden, da die von Jander und Pfundt entwickelte Ausschlagbrücke nicht mehr hergestellt wird. Das „Konduktoskop" arbeitet mit der Netzfrequenz (50 Hz). Die einem Trafo entnommene Brückenspannung von 2 V ist elektronisch stabilisiert. Die Messung erfolgt mit einem empfindlichen Röhrenvoltmeter, das die relative Änderung der Leitfähigkeit anzeigt2). Auf zahlreiche andere, in der chemischen Fachliteratur vorgeschlagene Einrichtungen für visuelle Leitfähigkeitstitrationen kann hier nur hingewiesen werden (vgl. z. B. [38], [74] und die dort angegebene Literatur). XVIII. Anwendungsmöglichkeiten und Kurventypen konduktometrischer Titrationen 1. Neutralisationsvorgänge Die Titration starker Säuren mit starken Basen ist bereits auf S . 2 2 1 und 225 behandelt und durch Fig. 32 graphisch dargestellt. Starke Säuren und starke Basen lassen sich auch bis zu sehr großen Verdünnungen herunter gegenseitig exakt konduktometrisch bestimmen. Allerdings muß man dann k o h l e n s ä u r e f r e i e Laugen und zum Verdünnen k o h l e n s ä u r e f r e i e s Wasser verwenden. Bei der graphischen Darstellung der Neutralisation von Lösungen schwacher Säuren — Cyanwasserstoffsäure, Borsäure, nicht zu verdünnte Essigsäure usw. — mit einer starken, z. B. 1-n Base erhält man einen Kurvenverlauf, wie er schematisch durch Kurve I der Fig. 36 wiedergegeben ist. Anfänglich hat die Lösung wegen der ge! ) Deutsche Metrohm, Stuttgart-Echterdingen. 2) Metrohm-Bulletin. Vol. 1, Heft 3 u. 4, (1950/51).

234

Anwendungsmöglichkeiten und Kurventypen

ringen Dissoziation der schwachen Säure eine verhältnismäßig geringe Leitfähigkeit, die infolge einer weiteren Verminderung der H + durch die Bildung von wenig dissoziierten! Wasser zu Anfang der Titration noch abnimmt, denn an Stelle der H + treten Na + , die eine viel geringere Äquivalentleitfähigkeit (vgl. S. 225, Tab. 12) haben als die

die Dissoziation der Essigsäure zurück. Erst im Laufe der Titration bildet sich allmählich so viel stark dissoziierendes Natriumacetat, daß die nunmehr durch Natrium- und Acetat-Ionen bedingte Leitfähigkeit ansteigen kann (AB). Nach dem Überschreiten des Äquivalenzpunktes findet nunmehr ein stärkeres Ansteigen der Leitfähigkeit statt (BC), weil die Hydroxid-Ionen der Base nicht weiter verbraucht werden. Die Reaktionsgerade und die Gerade des Laugenüberschusses schneiden sich unter einem stumpfen Winkel, welcher um so stumpfer ausfällt, je schwächer die zu titrierende schwache Säure ist. In der Nähe des Äquivalenzpunktes ist ein gebogenes, in der Figur gestrichelt gezeichnetes Übergangsstück vorhanden, das seinen Grund in der Hydrolyse des jeweils gebildeten Salzes hat, welche hier weder durch einen Säure- noch durch einen Laugenüberschuß hinreichend zurückgedrängt wird. Ganz analog liegen die Verhältnisse bei der Neutralisation schwacher Basen -— z. B. Ammoniak —• durch eine starke, z. B. 1-n Mineralsäure.

Neutralisationsvorgänge

235

Die Kurvenform, welche man bei der Neutralisation mittelstarker Säuren oder Basen mit starken Basen oder Säuren erhält, kann zwischen den beiden bisher besprochenen extremen Typen liegen. Das hängt jeweils ganz von den Dissoziations- und Konzentrationsverhältnissen in dei vorgelegten Lösung ab. Je schwächer und konzentrierter die vorgelegte mittelstarke Säure ist, um so mehr wird bei der Neutralisation mit starker Lauge die Kurvenform der von Fig. 36, I ähneln, je stärker und verdünnter sie aber ist, um so mehr wird die Kurvenform der Fig. 32 gleichen. Dazwischen sind mancherlei Übergangsformen mit mehr oder weniger langen gebogenen Teilstücken möglich, so daß mitunter die exakte Festlegung des Äquivalenzpunktes Schwierigkeiten bereiten kann. Aus dem bisher Mitgeteilten ergibt sich die Möglichkeit, in einer Lösung, welche eine starke und schwache Säure (z. B. Schwefelsäure und Essigsäure) oder eine starke und schwache Base nebeneinander enthält, diese beiden in einem einzigen Titrationsgang mittels starker Base oder Säure quantitativ zu bestimmen. Man erhält dann Kurvenformen von der Art der Kurve II in Fig. 36. AB zeigt die Leitfähigkeitsabnahme der Lösung an, welche durch die Neutralisation der starken Säure bedingt ist, BC die Leitfähigkeitszunahme, welche durch die nun folgende Neutralisation der schwachen Säure hervorgerufen wird, CD die stärkere Leitfähigkeitszunahme durch den Laugenüberschuß. Die Projektionen von AB und BC auf die Reagensachse geben die Anzahl ml Lauge für die Neutralisation der starken bzw. schwachen Säure an. Die Lage der Schnittpunkte B und C ist praktisch identisch mit der für die Äquivalenzpunkte zu erwartenden, wenn die Dissoziationskonstanten der beiden Säuren hinreichend voneinander verschieden sind. Andernfalls können die gestrichelt gezeichneten, gebogenen Übergangsstücke so groß werden, daß eine geradlinige Extrapolation fehlerhaft wird. Verdrängungsvorgänge: In den Lösungen von Salzen schwacher Basen mit starken Säuren (z. B. Ammonium-

236

t Anwendungsmöglichkeiten und Kurventypen

dilorid) läßt sich konduktometrisch die gebundene Base durch v e r d r ä n g e n d e T i t r a t i o n mit starken Laugen bestimmen, in den Lösungen von Salzen schwacher Säuren mit starken Basen (z. B. Natriumacetat, Kaliumcyanid usw.) die gebundene schwache Säure durch verdrängende Titration mit starker Säure. Voraussetzung für diese Möglichkeit der quantitativen Bestimmung ist, daß die Dissoziationskonstanten der schwachen Basen oder Säuren, deren Salzlösungen jeweils titriert werden sollen, genügend unterschiedlich sind von denen der starken Basen und starken Säuren, mit denen titriert wird. Die Kurvenform richtet sich bei der Verdrängungstitration von Salzen schwacher Basen nach dem Verhältnis der Äquivalentleitfähigkeiten der Kationen, bei der Verdrängungstitration von Salzen schwacher Säuren nach dem Verhältnis der Äquivalentleitfähigkeiten der Anionen. Kurve I der Fig. 37 gibt die Titration einer Ammonsalzlösung mit Natronlauge, Kurve II mit Kalilauge wieder:

ml Fig. 37

I. NH 4 + + Cl" + Na + + OH" = NH 3 + H a O + Na + + Cl', II. NH 4 + + C l - + K + + OH- = NH 3 + H 2 0 + K + + C1-. Im ersten Falle tritt an die Stelle des besser leitenden Ammoniumions das schlechter leitende Natrium-Ion, im zweiten Falle das etwa gleich gut leitende Kaliumion (vgl. Tabelle 12 auf S. 225). Man sieht hieraus sehr schön, wie man durch Wahl einer geeigneten Reagenslösung die Kurvenform beeinflussen und so einen für die Festlegung des

Konduktometrische Fällungsanalysen

237

Äquivalenzpunktes möglichst geeigneten Schnittwinkel erzielen kann. In diesem Zusammenhange sei noch einmal darauf hingewiesen, daß man auch bei der konduktometrischen Neutralisationsanalyse mit möglichst kohlensäurefreien Laugen (Ba(OH) 2 , NaOH) und Reagenslösungen arbeiten sollte; anderenfalls können nicht unerhebliche Fehler entstehen. Titriert man eine vorgelegte, karbonathaltige Lauge mit einer starken Säure, so werden zunächst ihre Hydroxid-Ionen neutralisiert, daran schließt sich die Überführung des Karbonates in das Hydrogenkarbonat, und dann wird die Kohlensäure endgültig in Freiheit gesetzt, „verdrängt". a) NaOH + HCl = NaCl + H 2 0 , b) NajCOs + HCl = N a H C 0 3 + NaCl, c) NaHCOj + HCl = H 2 C 0 3 + NaCl. Diese Vorgänge können bei der Feststellung des Äquivalenzpunktes einfach durch geradliniges Verlängern des ersten, größeren Stückes der Reaktionsgeraden und der Geraden des Säureüberschusses bis zum Schnittpunkt bei einem größeren Karbonatgehalt zu groben Fehlern Veranlassung geben. Ähnlich liegen die Verhältnisse im Falle der Neutralisation vorgelegter Säure mit karbonathaltiger Lauge. 2. Konduktometrische Fällungsanalysen Besonders wichtig ist die konduktometrische Fällungsanalyse, weil es zahlreiche analytisch verwertbare F ä l lungsreaktionen gibt, für deren Endpunktserkennung ein geeigneter Indikator fehlt. Ihre Prinzipien seien am Beispiel der Fällung der Bromionen einer vorgelegten verdünnten Natriumbromidlösung durch die Silber-Ionen einer relativ konzentrierten Maßlösung von Silberacetat erläutert: Na + + B r + Ag + + ( C H 3 C O O ) - = A g B r + Na + + ( C H 3 C O O ) - . Das entstehende Silberbromid ist praktisch unlöslich und beteiligt sich nicht an der Leitfähigkeit der Lösung. D i e Konzentration der Natrium-Ionen bleibt während der Titration praktisch konstant. Das Wesentliche ist, daß zunächst die besser leitenden Bromid-Ionen mehr und mehr verschwinden und durch schlechter leitende Acetat-Ionen ersetzt werden. Die Leitfähigkeit nimmt also bis zur be-

238

Anwendungsmöglichkeiten und Kurventypen

endeten Fällungsreaktion ab. Dann steigt sie durch den Überschuß der Reagenslösung an. Für die Genauigkeit der konduktometrischen Fällungsanalyse ist die mehr oder weniger große Löslichkeit des betreffenden Niederschlages von Bedeutung. Bei der Bildung extrem schwer löslicher Niederschläge hat der experimentell ermittelte Kurvenzug am Äquivalenzpunkt praktisch kein gebogenes Übergangsstück. Je stärker löslich der Niederschlag jedoch ist, um so länger wird auch das gebogene Übergangsstück des Kurvenzuges am Äquivalenzpunkt. Ferner muß man auf die Beschaffenheit des jeweiligen Niederschlages achten. Am günstigsten ist es, wenn er gleich seine konstante Endzusammensetzung annimmt und nicht noch nachträglich weiter mit der Mutterlauge in Reaktion tritt. Ebenso soll sich die Fällung nach dem Reagenszusatz möglichst schnell bilden und quantitativ abscheiden. Auch dürfen die Niederschläge nicht in nennenswerter Weise Adsorptionserscheinungen zeigen, Einschlüsse enthalten usw. Auf alle diese Fehlerquellen sei hier hingewiesen. 3. Leitfähigkeitstitrationen in siedenden Lösungen

Viele Fällungsreaktionen ergeben die gewünschte Endzusammensetzung des Niederschlages erst nach einigem Stehen. Konduktometrisch bemerkt man dabei, daß die nach jedem Zusatz eines Reagensanteiles sofort gemessene Leitfähigkeit der zu titrierenden Flüssigkeit noch veränderlich ist. Sie strebt im Laufe kürzerer oder längerer Zeit einem konstanten Endwert zu. Bei höheren Temperaturen jedoch stellen sich diese Endwerte in vielen Fällen wesentlich schneller ein. Die während der Titration stets gleichbleibende, aber höhere Temperatur erreicht man leicht mittels eines Dampfthermostaten. Das Leitfähigkeitsgefäß wird hierbei dauernd von reichlichen Mengen Dampf einer konstant siedenden Flüssigkeit (Aceton, Alkohol, Wasser) umspült. Auf diese Weise läßt sich z. B. das sonst schwer titrierbare Sulfat-Ion mit Bariumacetat maßanalytisch bestimmen. Die Konstanz der Leitfähigkeit ist in der Nähe von 100° C bei jedem Reagenszusatz nach

Leitfähigkeitstitrationen in siedenden Lösungen

239

längstens einer Minute erreicht. D i e Kurvenform einer solchen Titration ähnelt der Kurve Fig. 32, S . 2 2 1 . D i e ganze Bestimmung dauert nicht viel mehr als 10 Minuten. Vorbedingung ist, daß die zu titrierende Sulfatlösung, z. B. A m m o n s u l f a t l ö s u n g , neutral reagiert. Nach der Methode läßt sich auch b e q u e m der S u l f a t g e h a l t v o n T r i n k w ä s s e r n bestimmen. Eine A p p a r a t u r , welche sich bei der konduktometrischen Titration heißer Lösungen gut bewährt hat, stellt Fig. 38 dar. Der Rundkolben, der den um das Leitfähigkeitsgefäß gelegten weiten Dampfmantel mit Wasserdampf versorgt, befindet sich seitlich von dem Dampfmantel und dem Leitfähigkeitsgefäß. Dadurch wird es möglich, vom Boden des Leitfähigkeitsgefäßes aus ein während der Titration durch einen guten Schliffkonus verschlossenes Abflußrohr durch den umgebenden Dampfmantel hindurch nach außen zu führen. Durch zwei Federn aus Stahldraht wird der das Rohr verschließende Konus festgehalten. Nach der Titration läßt sich das Leitfähigkeitsgefäß durch Herunterziehen des Verschlußkonus unter Anspannen der Federn entleeren und ausspülen. Diese Anordnung erlaubt eine sehr bequeme Neufüllung des Leitfähigkeitsgefäßes durch den darüber angebrachten Rückflußkühler oder durch einen oben seitlich angebrachten Tubus. Nach beendeter Titration brauchen die einzelnen Apparateteile nicht auseinandergenommen zu werden, sondern sie bleiben zusammen; dadurch wird eine nicht unerhebliche Zeitersparnis erreicht. Der Rückflußkühler ist durch einen Glasschliff mit dem Leitfähigkeitsgefäß verbunden. Die Anordnung der Elektroden und die Art ihrer Verbindung mit der Meßapparatur sind ähnlich wie bei den in Fig. 33 und 34, S. 227 abgebildeten Leitfähigkeitsgefäßen. Der für konduktometrische Fällungstitratio-

240

Die theoretischen Grundlagen der Potentiometrie

nen in siedenden Lösungen unentbehrliche Rührer wird durch das Kühlerrohr in das Leitfähigkeitsgefäß eingeführt. Als Bürette verwendet man mit Vorteil eine nach Art der alten Gay-Lussacschen Überdruck-Büretten umgestaltete Mikrobürette, die 5 ml umfaßt und durch ein kurzes Schlauchstück mit einem seitlich in das Leitfähigkeitsgefäß führenden Kapillarrohr verbunden wird. Die Reagenslösung wird mit einem durch einen Schlauch mit der Bürette verbundenen Gummigebläse in das Leitfähigkeitsgefäß hinübergedrückt. Der Hauptvorteil dieser Überdruckbürette gegenüber einer auf das Leitfähigkeitsgefäß aufgesetzten Bürette besteht darin, daß eine allzu große Höhenausdehnung der Apparatur vermieden wird. Dadurch wird das Ablesen der Bürette erleichtert.

Zweiter Abschnitt DIE POTENTIOMETRIE XIX. Die theoretischen Grundlagen der Potentiometrie 1. Die Elektrodenpotentiale und ihre Abhängigkeit von der Konzentration

Unter O x y d a t i o n s und Reduktionsrea k t i o n e n versteht man, wie bereits im III. Kapitel S. 37 auseinandergesetzt wurde, Vorgänge, für die ein wechselseitiger Austausch elektrischer Ladungen zwischen den Reaktionsteilnehmern, dem Oxydations- und dem Reduktionsmittel, charakteristisch ist. Das Reduktionsmittel gibt Elektronen ab, das Oxydationsmittel nimmt sie auf: Reduktionsmittel ^ Oxydationsmittel + ns. Taucht man in eine Lösung, in der oxydierende und reduzierende Stoffe miteinander reagieren, eine metallische Elektrode, so findet ein der Konzentration der Reaktionsteilnehmer in der Lösung proportionaler Umsatz an der Oberfläche der Elektrode statt. Für diesen Anteil stellt also die Elektrodenoberfläche gewissermaßen das Medium dar, in dem der Elektronenaustausch stattfindet, und man beobachtet, daß die Elektrode ein meßbares und — wenn der Oxydations-Reduktionsvorgang seinen Gleichgewichtszustand erreicht hat — ein konstant bleibendes

Die Elektrodenpotentiale

241

und reproduzierbares elektrisches Potential gegenüber der Lösung annimmt. Dieses E l e k t r o d e n p o t e n t i a l wird bedingt durch die in jedem Zeitelement gerade im Austausch befindlichen, an der Elektrodenoberfläche haftenden freien Elektronen. Maßgebend für seine Größe ist also der Elektronenumsatz an der Elektrode und damit die Konzentration der an dem Oxydations- und Reduktionsvorgang beteiligten Stoffe. Umgekehrt muß daher das Elektrodenpotential Rückschlüsse auf die Konzentrationsverhältnisse der Lösung erlauben: Das ist die Grundlage der potentiometrischen oder elektrometrischen Maßanalyse! Wenn also ein Platindraht oder eine andere mit den Bestandteilen der Lösung nicht reagierende „indifferente" Edelmetallelektrode, in eine Lösung taucht, die Eisen(II)und Eisen(III)-Ionen enthält, so spielt sich an seiner Oberfläche der Vorgang F e 2 + Fes+ + £ ab, und die mit £ bezeichneten freien Elektronen laden die Oberfläche der Platinelektrode im Moment ihres Austausches gegenüber der Lösung negativ auf. Die Elektrode nimmt ein meßbares elektrisches Potential an, das einen konstanten Endwert erreicht, sobald der potentialliefernde Vorgang seinen Gleichgewichtszustand erreicht hat. Die Geschwindigkeit, mit der sich diese Gleichgewichtseinstellung vollzieht, ist natürlich von Reaktion zu Reaktion verschieden und hängt auch von den Versuchsbedingungen ab. Auch andere Oxydations- und Reduktionsvorgänge vermögen sich an einer Edelmetallelektrode ins Gleichgewicht zu setzen und ihr ein Potential zu erteilen, z. B. die Reaktion, die der Manganometrie zugrunde liegt: M n 0 4 " + 8 H + + 5 £ ^ Mn 2+ + 4 H 2 0 . Oder ein anderes Beispiel: Eine palladinierte Palladiumelektrode, die in verdünnte Salzsäure taucht, werde an ihrer Oberfläche mit gasförmigem Wasserstoff beladen. Dieser ungeladene, elementare Wasserstoff setzt sich nun mit den Wasserstoffionen der Säurelösung gemäß dem Oxydations-Reduktionsvorgang: H2 ^ 2 H + + 2 e 16 Jander-Jahr, Maßanalyse

242

Die theoretischen Grundlagen der Potentiometrie

an den Elektrodenoberflächen ins Gleichgewicht, und die Elektrode nimmt wieder gegenüber der Lösung ein meßbares Potential an. Und ebenso wie der Ladungsaustausch zwischen dem ungeladenen Wasserstoff und seinen Ionen ein potentialliefernder Oxydations-Reduktionsvorgang ist, so vermögen auch alle Gleichgewichtsreaktionen, die sich zwischen ungeladenen Metallen und ihren Ionen abspielen, z. B.: Ag^Ag+ + s Hg ^ Hg+ + £ C u ^ Cu2+ + 2 e Bi ^ Bi 3+ + 3 £ die Oberfläche metallischer Elektroden elektrisch aufzuladen. Auch hier können indifferente Edelmetallelektroden zur Verwendung kommen: ein amalgamierter Platindraht, der in eine Quecksilber(I)-Salzlösung taucht, ein verkupferter Platindraht in einer Kupfer(I)-Salzlösung oder endlich ein blanker Platindraht, der mit irgendeinem metallischen Niederschlag, z. B. Wismut, in der zugehörigen Metallsalzlösung, z. B. Wismutnitratlösung, in Berührung steht; sie alle nehmen ein Potential an, das jeweils durch den entsprechenden Oxydations-Reduktionsvorgang bestimmt wird. In allen bisher besprochenen Fällen hat die Natur des Elektrodenmetalls, da es sich ja an dem potentialliefernden Vorgang selbst nicht beteiligt, sondern lediglich das Medium für den Elektronenaustausch darstellt, keinerlei Einfluß auf das Potential: Sowohl eine Palladium- wie eine Platinelektrode nehmen, mit Wasserstoff von 1 at beladen, gegenüber der gleichen Säurelösung das gleiche Potential an. Wenn sich dagegen der Elektronenaustausch zwischen einem Metall, z. B. Silber, und seinen Ionen, z. B. SilberIonen, vollzieht, so ist eine indifferente, am eigentlichen Vorgang unbeteiligte Edelmetallelektrode nicht unbedingt erforderlich. An ihre Stelle kann dann vielmehr als guter elektrischer Leiter auch das an der Reaktion teilnehmende

Die Elektrodenpotentiale

243

Metall selbst treten: Ein in eine Silbersalzlösung tauchender Silberdraht, Stäbe von Zink oder Kupfer, die in Zinkbzw. Kupfersalzlösungen tauchen, nehmen also an ihrer Oberfläche ebenfalls Potentiale an, die durch die zugeordneten Oxydations-Reduktionsprozesse bestimmt werden. Die Elektrode hat in solch einem Spezialfall zwei scharf voneinander zu trennende Funktionen: Sie ist erstens, wie die indifferente Elektrode, das Medium f ü r den Elektronenaustausch, und ihr Metall erscheint zweitens als niedere Oxydationsstufe in der Reaktionsgleichung des potentialbestimmenden Vorgangs. Diese zweite Funktion der Elektrode hat natürlich zur Folge, daß hier ein spezifischer Einfluß des Elektrodenmaterials auf die Größe des Potentials konstatiert werden kann. Ganz allgemein wird die als Elektrodenpotential beobachtete Spannungsgröße bestimmt: 1. Durch den chemischen Vorgang, der sich an der Elektrode ins Gleichgewicht setzt, 2. durch die Temperatur, 3. durch die im Verlauf des 'Oxydations-Reduktionsprozesses ausgetauschten und in 'der Reaktionsgleichung erscheinenden Ladungen (e) und 4. durch die Konzentrationen der am Umsatz beteiligten ^Stoffe. Ihren quantitativen Ausdruck finden diese Zusammenhänge in der G l e i c h u n g v o n N e r n s t (1889), die im folgenden f ü r den besonders einfachen Fall diskutiert werden soll, daß ein Metall in die Lösung eines seiner Salze 'eintaucht, gegenüber der es nun sowohl die Rolle der Elektrode wie die des reduzierenden Agens spielt. Die Nernst:sche Formel lautet: R•T P e= ~ • In Volt. (1) n • Jb p I n diesem Ausdruck bedeutet e das Potential der Elektrode gegen die Lösung. Es soll in den folgenden Ableitungen als negativ angenommen werden und mit einem Minuszeichen gekennzeichnet werden. T ist die absolute Temperatur, R die allgemeine Gaskonstante, n die Anzahl der pro Mol ausgetauschten Elektronen (hier die Wertigkeit «des Metalls) und F die beim Austausch einer elektrischen

244

Die theoretischen Grundlagen der Potentiometrie

Elementarladung durch ein Gramm äquivalent übergeführte Elektrizitätsmenge (1 F = 1 Faraday = 96 500 Coulomb). P bedeutet die e l e k t r o l y t i s c h e L ö s u n g s t e n s i o n des Metalls, d. h. sein Bestreben, aus dem ungeladenen metallischen Zustand unter Abgabe eines Elektrons in sein positiv geladenes Ion überzugehen. Diesem Bestreben, der Druckgröße P, wirkt der o s m o t i s c h e D r u c k der Metall-Ionen in der Lösung, p, entgegen, denn der osmotische Druck ist bestrebt, die positiv geladenen Metall-Ionen als ungeladene Metallatome abzuscheiden. Ist P > p , so gehen aus dem Metall positiv geladene Ionen in Lösung, und das Metall bleibt negativ geladen zurück, ist aber umgekehrt p > P, so überträgt ein Teil der positiv geladenen Ionen in der Lösung seine Ladung auf das Metall; dieses lädt sich also positiv, die Lösung dagegen negativ auf. Es muß aber nachdrücklich darauf hingewiesen werden, daß es sich hier um Gleichgewichtsvorgänge handelt, die sehr bald zum Stillstand kommen! Der elektrolytische Lösungsdruck P ist der Konzentration der Lösung an ungeladenem Metall, C, der osmotische Druck p ihrer Metall-Ionenkonzentration, c (bzw. Aktivität, vgl. S. 10), direkt proportional. Daher gilt: P= V C und p =k2"c. Man kann also schreiben: (2)

oder:

(3)

Wenn nun ein bestimmtes Metall bei einer definierten Versuchstemperatur als Elektrode in die Lösung eines seiner Salze getaucht wird, so sind die Größen R, T, n und F, sowie definitionsgemäß auch k4 und k 2 konstant. Und da die Lösung an ungeladenem Metall sozusagen gesättigt ist, so ist auch dessen Konzentration, C, als konstant einzusetzen. Gleichung (3) läßt sich also folgendermaßen umformen:

Die Elektrodenpotentiale

245

und man erhält, wenn man die natürlichen durch die dekadischen Logarithmen ersetzt: TT.~F ' 0,4343

g

k!

j

+

n. F" ö » • 1 ° 8 c J V o l t In Gleichung (5) erscheinen sämtliche Größen des ersten Gliedes als Konstanten. Man kann daher setzen: R-T 1 . k, , n". F ' 0 , 4 3 4 3 ' l o g k ; ' C j = k o n S t - = eoDurch Einsetzen in Gleichung (5) ergibt sich: e

^e0 + (M-öi43-l0gC)V0lt

und, wenn man für die Temperatur 25° C die Größen R, T und F durch die entsprechenden Zahlenwerte ersetzt: , + ( ° f 9 - log c) Volt. (7) Diese Gleichung ist für die gesamte Potentiometrie von fundamentaler Bedeutung, denn sie gibt, abgeleitet zunächst für den Sonderfall, daß ein Metall in die Lösung eines seiner Salze eintaucht, den Zusammenhang zwischen dem Potential dieses Metalls gegenüber der Lösung und deren Metall-Ionenkonzentration (angegeben in Molen) wieder. Gleichung (7) besagt, daß die Größe des Elektrodenpotentials bei konstanter Temperatur lediglich abhängt vom Logarithmus der Ionenkonzentration (Ionenaktivität) der Lösung! Die Nernstsche Gleichung (1) läßt sich aber auch dann anwenden, wenn ein Nichtmetall, z. B. Chlor, an einer indifferenten Elektrode mit seinen negativen Ionen im Gleichgewicht steht: q + 2 £ 2 Cl" P bedeutet hier den Lösungsdruck des Nichtmetalls, also sein Bestreben, an der Oberfläche der Elektrode als Anion

246

Die theoretischen Grundlagen der Potentiometrie

in Lösung zu gehen und diese dabei positiv aufzuladen. Es gilt also: ,R T p, e = + ( ' i " In —^r) Volt. (8) \n•F px/ Der Exponent x (z. B. 2) gibt an, wieviele Ionen aus dem mehratomigen Metalloid (z. B. Cl2) entstehen. Wenn man wieder berücksichtigt, daß P der Konzentration des Metalloids (C), p derjenigen der Ionen (c) proportional ist, daß also P = k r C und p I = k2'! c:s, so kann man aus der Gleichung (8) den Ausdruck: +

0 , 4 3 4 3 < » > ableiten. C, die Konzentration des Nichtmetalls, ist aber, wenn es sich z. B. um Chlor handelt, im Gegensatz zur Konzentration des metallischen Silbers in einer Silbersalzlösung nicht konstant, sondern genau so variabel wie c, die Konzentration seiner Ionen. Audi in Gleichung (9) sind sämtliche Größen des ersten Gliedes konstant. Wir können sie in der Konstanten e 0 zusammenfassen und erhalten dann: oder für 25° C:

(^Iw 10 ^)™ 4

(10)

Aus Gleichung (11) folgt wieder, daß das Elektrodenpotential bei konstanter Temperatur von den Konzentrationen der an dem Elektronenaustausch beteiligten Stoffe logarithmisch abhängt. Die Gleichung von Nernst ist schließlich auch für alle anderen Oxydations-Reduktionsprozesse gültig, die sich in wäßriger Lösung an indifferenten Elektroden ins Gleichgewicht setzen. So bedeutet für den Vorgang Cr3+ + e ^ Cr2+ P das Bestreben der Chrom(III)-Ionen, in Chrom(II)-Ionen überzugehen und dabei die Oberfläche der indifferenten

Die Elektrodenpotentiale

247

Elektrode positiv aufzuladen; p ist der osmotische Drude der Chrom(II)-Ionen. Man erhält als Endgleichung für 25° C e = e 0 + (o,059-log Volt. Und für den Vorgang: M n 0 4 - + 8 H + + 5£ ^ Mn2+ + 4 H 2 0 gilt entsprechend: ,(0,059. [Mn0 4 - ] • [H + ] 8 \ V o l.t e = e o + [ —5¡ r • l o 6s ~ T[Mn M 2^+ ]i — Die Konzentration des Wassers, als des Lösungsmittels, ist hier praktisch konstant und geht daher mit in die Konstante e 0 ein. Ganz allgemein läßt sich das Potential einer indifferenten Elektrode, die bei 25° C in die gemischte Lösung eines Oxydations- und Reduktionsmittels eintaucht, nach der Gleichung: , /0,059 , [Ox] \ , 6 = 6 (12) ° ( n [Red.]) berechnen, in der [Ox] bzw. [Red.] die variablen Konzentrationen der auf beiden Seiten der Reaktionsgleichung am Gleichgewicht beteiligten Stoffe, angegeben in Molen pro Liter, bedeuten. Gleichung (12) zeigt wieder deutlich, daß das Elektrodenpotential eine logarithmische Funktion der Konzentration aller an dem Oxydations-Reduktionsvorgang teilnehmenden, in Lösung befindlichen Stoffe darstellt. In den angeführten Potentialgleichungen — z. B. Gleichung (7), (11), (12) — erscheint als additives Glied stets die Größe e„. Sie ist eine für jede Reaktion charakteristische Konstante, die sich leicht experimentell bestimmen läßt. Wenn man nämlich das Elektrodenpotential gegen eine Lösung mißt, in der sämtliche an der Reaktion beteiligten Stoffe die Konzentration 1 Mol/Liter besitzen, so wird in jedem Falle, da log 1 = 0 , das zweite Glied der Gleichung zum Verschwinden gebracht, und es gilt: e = e n Volt.

248

Die theoretischen Grundlagen der Potentiometrie

Man nennt daher die Größe e 0 auch das N o r m a l p o t e n t i a l des Oxydations-Reduktionsvorganges. 2. Die Änderung des Elektrodenpotentials im Verlauf potentiometrischer Titrationen

Im Verlauf jeder Titration ändert sich die Konzentration der Ionenart, deren Menge ermittelt werden soll. Wenn beispielsweise eine starke Säure mit einer starken Base titriert wird, so nimmt die [H + ] der Lösung während der Titration mehr und mehr ab und erreicht im Äquivalenzpunkt den Wert 10~7-m, d. h. also die [H + ] des reinen Wassers. Oder wenn eine Silbernitratlösung mit einer Natriumchloridlösung titriert wird, so verringert sich dauernd die [Ag+], um im Äquivalenzpunkt auf den Wert 10~5-m, die [Ag+] einer gesättigten Silberchloridlösung, herabzusinken. Wie sich im einzelnen die Ionenkonzentration im Verlauf der Titration ändert, ist bereits früher (S. 112 und S. 176) ausführlich besprochen worden: Zeichnet man die negativen Logarithmen der in der Lösung herrschenden Ionenkonzentrationen in Abhängigkeit von den jeweils zugesetzten Reagensmengen in ein rechtwinkliges Koordinatensystem ein, so erhält man eine charakteristische T i t r a t i o n s k u r v e , die sich durch einen Wendepunkt auszeichnet (vgl. Fig. 17 bis 20, S. 114 und Fig. 25 bis 27, S. 177). Der Wendepunkt der Titrationskurve ist identisch mit dem Äquivalenzpunkt, also dem Endpunkt der Titration. Nach der Nernstschen Gleichung ist das Potential einer in eine Lösung tauchenden Elektrode, an der sich ein Oxydations-Reduktionsvorgang ins Gleichgewicht setzt, direkt proportional dem Logarithmus der Konzentrationen aller an dem Gleichgewicht beteiligten Ionen. Wenn wir also in die zu titrierende Lösung eine Elektrode einführen, die auf eine im Verlauf der Titration verschwindende (oder neu hinzukommende) Ionenart „konzentrationsrichtig", d. h. der Nernstschen Gleichung entsprechend, „anspricht", so macht uns die Messung des Elektrodenpotentials nach jedem Zusatz der Reagenslösung mit der jeweiligen Ände-

Die Änderung des Elektrodenpotentials

249

rung des Logarithmus der Konzentration dieser Ionenart bekannt, und wir erhalten, wenn wir die gemessenen Potentialwerte in Abhängigkeit von den zugesetzten Millilitern der Maßlösung graphisch auftragen, einen Kurvenzug, dessen Verlauf völlig dem der besprochenen Titrationskurven gleicht. Die Potentialkurve ausgezeichnet, dessen ist also durch einen Wendepunkt Lage den Äquivalenzpunkt und damit den Titrationsendpunkt angibt. Das ist die Grundlage der potentiometrischen Maßanalyse! Als konkretes Beispiel wählen wir die Titration von 100 ml einer 0,01-n Salzsäure mit 1-n Natronlauge. Als Indikatorelektrode kann eine platinierte Platinelektrode dienen, die mit reinstem gasförmigem Wasserstoff von 1 Atmosphäre Druck bespült wird. Der in der Oberfläche der Elektrode gelöste Wasserstoff hat stets die gleiche Konzentration, so daß die Elektrode gleichsam als „Wasserstoff stab" fungiert. Für den Elektrodenvorgang H ^ H+ + E gilt also bei 25° C Gleichung (7): e = e 0 +(0,059-log [ET]) Volt. Das Normalpotential e 0 ist für die Wasserstoffelektrode definitionsgemäß ± 0.1) Wir titrieren nufi die Säurelösung und messen nach jedem Reagenszusatz das Elektrodenpotential. Wie das praktisch geschieht, werden wir im nächsten Kapitel kennenlernen. Zu Beginn der Titration ist die [H+] der 0,01-n Salzsäure 10"2 m; daher gilt: e = 0 + 0,059•(—2) Volt e = — 2 - 5 9 = — 1 1 8 Millivolt. Wir messen eine Spannung von — 1 1 8 Millivolt. Nun geben wir zunächst 0,9 ml der 1-n Lauge hinzu. Dadurch sinkt die [H+] der Lösung um eine Zehnerpotenz. Sie beträgt jetzt 10"3 m. Wir messen daher das Potential: e = — 3 - 5 9 = — 1 7 7 Millivolt. ! ) Als Vergleichselektrode (s. S. 254) dient die normale Wasserstoffelektrode.

250

Die theoretischen Grundlagen der Potentiometrie

'Geben wir weitere 0,09 ml der 1-n Lauge hinzu, so haben wir insgesamt 0,99 ml verbraucht, und die ursprünglich '0,01-n Salzsäure hat nur noch eine [H + ] von 10"4-m. Das Elektrodenpotential beträgt jetzt e = — 4 - 5 9 = — 2 3 6 Millivolt. Jedesmal also, wenn im Verlauf der Titration die ;[H + ] um eine Zehnerpotenz abnimmt, sinkt das Elektrodenpotential um 59 Millivolt! Haben wir insgesamt genau 1 ml der 1-n Natronlauge zugesetzt, so ist gerade der /Äquivalenzpunkt erreicht, die [H + ] der Lösung beträgt 10~'-m, und wir messen ein Potential von •—-7-59 = — 4 1 3 ¡Millivolt. Nach Zusatz von weiteren 0,01 ml der 1-n Lauge enthält die Lösung überschüssige Hydroxid-Ionen. Ihre [OH - ] beträgt 10" 4 -m, und da [H + ] • [OH - ] = 1 0 " 1 4 , beträgt die [H + ] = 10 J O -m. Als Elektrodenpotential finden wir daher e = — 1 0 - 5 9 = — 5 9 0 Millivolt. Beträgt der Laugenüberschuß 0,1 ml, so ergibt sich [OH ] = 10 -m, [H + ] =10 _ 1 1 -m und e = — 1 1 - 5 9 = — 6 4 9 Millivolt, und wenn die Lösung einen Uberschuß von 1 ml 0,1-n Natronlauge enthält, so ist [C>H-]=10 J -m, [H + ] = 10 1 2 -m und das Elektrodenpotential e = — 1 2 - 5 9 = —708 Millivolt. In Tabelle 13 sind die Titrationsergebnisse noch einmal übersichtlich zusammengestellt. T a b e l l e 13 Potentiometrische Titration von 100 ml 0,01-n Salzsäure mit 1-n Natronlauge mll-nNaOH 0 0,9 0,99 1,0 1,01 1,1 2,0

[H+]

io- 23 ioio- 71 io10

-io

io- 11

1Q

-12

- l o g [H+]

Potential in Millivolt

2 3 4 7 10 11 12

— 2 • 59 = — 1 1 8 — 3 • 59 = — 177 _ 4 • 59 = — 236 — 7 - 5 9 = —413 —10 • 59 = — 590 —11 • 59 = — 649 — 1 2 • 59 = — 708

Zeichnen wir die jeweils zugesetzten Milliliter der Reagenslösung als Abszissen und die zugehörigen Potentialwerte als Ordinaten in ein rechtwinkliges Koordinaten-

Die Änderung des Elektrodenpotentials

251

system ein, so erhalten wir die durch Fig. 39 wiedergegebene charakteristische Kurve, in der der Äquivalenzpunkt, also der Endpunkt der Titration, als scharf ausgeprägter Wendepunkt erscheint! Die Kurve läßt deutlich erkennen, daß die Änderung des Elektrodenpotentials bei stets gleichbleibendem Reagenszusatz (etwa immer 0,1 ml) anfangs nur gering ist, dann mehr und mehr ansteigt, im Äquivalenzpunkt ihren maximalen Wert erreicht und schließlich, nach Uberschreiten des Endpunktes, wieder mehr und mehr abnimmt. Dieser in der Nähe des Äquivalenzpunktes sprunghafte Verlauf der Potentialtitrationskurve ist charakteristisch für alle potentiometrischen Titrationen 1 MiUivoU -

118

- f l 3

-708 Q2 QU m

oe (0 (2 14

1ß 20

ml

Fig. 39

Das Ziel jeder Titration ist die Aufsuchung des Äquivalenzpunktes. Alle klassischen Titrierverfahren benutzen auffällige Farbänderungen oder Fällungsvorgänge, die in der titrierten Lösung gerade dann erkennbar werden, wenn der Endpunkt erreicht wird. Diese Endanzeige wird nötigenfalls durch den Zusatz besonderer Indikatoren erzielt. In der potentiometrischen Maßanalyse dient als Indikator das Potential einer in die titrierte Lösung tauchenden Elektrode. Diese wird daher als I n d i k a t o r e l e k t r o d e bezeichnet. Die Indikatorelektrode hat im Äquivalenzpunkt ein für jeden Vorgang charakteristisches Potential, das sog. U m s c h l a g s p o t e n t i a l bzw. Ä q u i v a l e n z p o t e n t i a l . Es beträgt z. B. für die eben angeführte Titration einer starken Säure mit einesr starken

252

Die theoretischen Grundlagen der Potentiometrie

Lauge b e i 2 5 ° C — 4 1 3 Millivolt. Um den Äquivalenzpunkt zu finden, ist es also nur notwendig, die zu untersuchende Lösung unter Beobachtung des Potentials der Indikatorelektrode so lange zu titrieren, bis gerade das Umschlagspotential erreicht ist. Diese U m s c h l a g s m e t h o d e entspricht völlig den üblichen Titrationen mit Indikatoren. Sie hat aber zur Voraussetzung, daß man das Umschlagspotential genau kennt. Da das Umschlagspotential aber nicht für alle Reaktionen genau bekannt ist und vielfach sogar stark von den Versuchsbedingungen abhängt, sich also nicht immer vollkommen reproduzieren läßt, ist die Anwendbarkeit der Umschlagsmethode nur beschränkt. Immer führt dagegen die Aufsuchung des Wendepunkts der Titrationskurve zum Ziel. Diese W e n d e p u n k t s m e t h o d e macht sich den großen Vorteil zunutze, den die elektrometrische Indizierung gegenüber der Endanzeige durch Indikatoren aufweist. Während nämlich der Indikator nur den Äquivalenzpunkt, also den Endpunkt der Titration erkennen läßt, erlaubt uns die Messung des Elektrodenpotentials, die von einem Reagenszusatz zum nächsten eintretende Konzentrationsänderung des Ions, auf das die Elektrode anspricht, zu bestimmen und damit den gesamten Titrationsverlauf in allen seinen Phasen zu registrieren. Man titriert also die zu untersuchende Lösung sukzessive mit der Maßlösung, mißt nach jedem Reagenszusatz das Elektrodenpotential und zeichnet die Ergebnisse dieser Messung, wie oben beschrieben, graphisch auf. Der Wendepunkt der so erhaltenen Potentialtitrationskurve bezeichnet den Äquivalenzpunkt und damit den Endpunkt der Titration. Die Kenntnis des Umschlagspotentials ist hier also nicht mehr erforderlich. Die Potentialtitrationskurve liefert uns gleichsam ein kinematographisches Bild von dem Ablauf der maßanalytischen Bestimmung: Alles, was bis zum Endpunkt und darüber hinaus während der Titration in der Lösung vorgeht, wird durch die graphische Darstellung gewissenhaft wiedergegeben. Auf diesem Umstand beruht ein bedeu-

Die Meßkette

253

tender, praktischer Vorzug der potentiometrischen Methode vor den klassischen Verfahren der Maßanalyse, die Möglichkeit nämlich, im Verlauf ein und derselben Titration mehrere Stoffe zugleich zu bestimmen. Diese Möglichkeit, S i m u l t a n b e s t i m m u n g e n durchzuführen, besteht immer dann, wenn die Maßlösung mit den verschiedenen Bestandteilen der titrierten Lösung nacheinander reagiert, und wenn diese Reaktionen jedesmal quantitativ zu Ende verlaufen. Die Potentialtitrationskurven weisen hier nicht nur einen, sondern mehrere „Sprünge", und demgemäß auch nicht nur einen, sondern mehrere Wendepunkte auf. Im XXI. Kapitel, S. 267, werden einige Beispiele für derartige Titrationen eingehend besprochen. Hier sei nur gesagt, daß Simultanbestimmungen verschiedener Ionenarten mit ein und demselben Fällungsreagens umso genauer werden, je verschiedener die Löslichkeitsprodukte der entsprechenden Niederschläge sind, daß die gemeinsame potentiometrische Titration mehrerer Säuren (Basen) mit ein und derselben Lauge (Säure) nur dann möglich ist, wenn sich die Dissoziationskonstanten stark unterscheiden, und daß endlich verschiedene Oxydations- bzw. Reduktionsmittel mit der Maßlösung eines Reduktions- bzw. Oxydationsmittels um so genauer in einer Operation bestimmt werden können, je mehr ihre Oxydations-Reduktionspotentiale voneinander abweichen. XX. Die Praxis der Potentiometrie 1. Die Meßkette Die erste Voraussetzung für die Durchführung einer potentiometrischen Titration ist die Möglichkeit, das Potential einer Elektrode zu messen, die in eine Elektrolytlösung taucht. Derartige Potentiale nennt man E i n z e l p o t e n t i a l e , und die Kombination Metallelektrode/ Elektrolytlösung heißt H a l b e l e m e n t . Einzelpotentiale sind direkt nicht meßbar. Man muß vielmehr, will man das Einzelpotential eines Halbelementes ermitteln, dieses mit einem zweiten Halbelement derart kombinieren,

254

Die Praxis der Potentiometrie

daß man zwischen beiden eine elektrolytisch leitende Verbindung herstellt. Dann erhält man ein galvanisches Element, eine „Kette", zwischen deren beiden Elektroden eine Spannung besteht. Diese sog. e l e k t r o m o t o r i s c h e K r a f t (EMK) des Elementes ergibt sich aus der Differenz der beiden Einzelpotentiale (ej und e 2 ): EMK = e x — e 2 . Die EMK eines galvanischen Elementes ist nun, im Gegensatz zum Einzelpotential, meßbar, und daraus ergibt sich die Möglichkeit, verschiedene Einzelpotentiale miteinander zu vergleichen, indem man sie nacheinander mit stets ein und demselben zweiten Halbelement (etwa e 2 ) kombiniert und jedesmal die E M K mißt. Setzt man nun das Einzelpotential dieses zweiten Halbelementes, der B e z u g s - oder N u l l e l e k t r o d e , willkürlich gleich Null, so wird: EMK = e 1 ; d. h., die leicht meßbaren elektromotorischen Kräfte der verschiedenen Halbelement-Kombinationen werden nun zu relativen Werten der gesuchten Einzelpotentiale. Es ist notwendig, bei Angabe eines so gemessenen Einzelpotentials hinzuzufügen, welche Bezugselektrode benutzt wurde, denn ein und dasselbe Halbelement weist gegenüber verschiedenen Bezugselektroden selbstverständlich auch verschiedene Potentialwerte auf! Durch Ubereinkunft ist als Bezugselektrode allgemein die N o r m a l w a s s e r s t o f f e l e k t r o d e gewählt worden: Eine platinierte Platinelektrode, gesättigt mit reinstem Wasserstoffgas von 1 Atmosphäre Druck, taucht in eine Säure, deren aktive [H + ] (vgl. S. 110) genau 1-m ist1). Da die Handhabung der Normalwasserstoffelektrode ziemlich umständlich und schwierig ist, werden Elektrodenpotentiale praktisch meistens gegen H i 1 f s oder V e r g l e i c h s e l e k t r o d e n gemessen, die im Gebrauch bequemer sind. Wenn es sich darum handelt, etwa für absolute Konzentrationsbestimmungen (z. B. p H Messungen) genaue Potentialwerte zu ermitteln, so ist es 1

) Diese Bedingung ist annähernd in einer 2 n - H £ S 0 4 erfüllt.

Die Meßkette

255

unerläßlich, die Potentialdifferenz der verwendeten Vergleichselektrode gegenüber der Normalwasserstoffelektrode genau zu kennen und in Rechnung zu stellen. Handelt es sich dagegen, wie bei den normalen, nach der Wendepunktsmethode durchgeführten potentiometrischen Titrationen, nur darum, die Änderung eines Elektrodenpotentials zu verfolgen (nicht dessen Absolutwert zu ermitteln!), so ist die genaue Kenntnis des Einzelpotentials nicht erforderlich. Wichtig ist nur, daß das Potential der Hilfselektrode während des gesamten Verlaufes der Messungen konstant bleibt. Als praktische Folgerung ergibt sich aus alledem für die potentiometrische Maßanalyse: Die zu titrierende Lösung wird durch Einführung einer geeignetenlndikatorelektrode zu einem Halbelement gemacht. Dieses wird durch eine elektrolytisch leitende Verbindung mit einem zweiten. Halbelement, der Vergleichselektrode, zu einem galvanischen Element — der „Titrations-" oder „Meßkette" — vereinigt, und dessen EMK wird nach jedem Reagenszusatz gemessen. Während nun das Potential der Vergleidiselektrode stets konstant bleibt, ändert sich das Potential des anderen Halbelementes, also der Indikatorelektrode im Titriergefäß, im Verlauf der Titration entsprechend der Nernstschen Formel mit der Konzentrationsänderung jener Ionenart, auf die die „Indikatorelektrode" anspricht! Zur Zusammenstellung der Meßkette sind also notwendig: Das Titrationsgefäß mit der Indikatorenelektrode, die Vergleichselektrode und der elektrolytische Stromschlüssel. Fig. 40 zeigt eine solche Meßkette in schematischer Darstellung.

Fig. 40

256

Die Praxis der Potentiometrie

Als Titrationsgefäß dient gewöhnlich ein passendes Becherglas. Es nimmt die zu titrierende Flüssigkeit auf, die durch einen kleinen, mit Elektromotor betriebenen Flügelrührer kräftig gerührt werden muß, um eine gleichmäßige Durchmischung und rasche Potentialeinstellung an der Indikatorelektrode zu gewährleisten. Die Bürette, aus der die Maßlösung zufließt, befindet sich am besten seitlich über dem Becherglas. Ihr Ausflußrohr wird zweimal abgebogen und läuft in eine Kapillare aus, die seitlich in die Lösung hineinragt. Das Titriergefäß wird ein wenig erhöht aufgebaut, um es gegebenenfalls durch eine darunter angebrachte Heizvorrichtung erwärmen zu können, vor allem aber, um es nach jeder Titration und ohne zeitraubende Änderungen am Aufbau der Apparatur auswechseln zu können. In die zu titrierende Flüssigkeit taucht die Indikatorelektrode, die für jede Titration passend gewählt sein muß. Für Oxydations- und Reduktionsreaktionen wird gewöhnlich ein mit einem Ableitungsdraht verbundenes blankes Platinblech verwendet, das vor Gebrauch kurz in warme Chromschwefelsäure getaucht und durch Abspülen mit destilliertem Wasser gereinigt wurde. Die Elektrode ist dann mit Sauerstoff beladen, was zur Folge hat, daß sich an ihr das Gleichgewicht besonders rasch einstellt. Für alle Titrationen, bei denen Silber-Ionen eine Rolle spielen, dient ein Silberblech als Indikatorelektrode. Alkalimetrische und acidimetrische Titrationen können außer mit der Wasserstoffelektrode, einem platinierten Platinblech, das mit reinstem Wasserstoff bespült wird, noch mit einer Reihe anderer Indikatorelektroden durchgeführt werden, deren wichtigste später noch besprochen werden. Als Vergleichselektrode kann in den meisten Fällen eine „ K a l o m e l e l e k t r o d e " dienen, d. h. ein Halbelement, in dem metallisches Quecksilber mit einer Queck silber(I)-chloridlösung von zwar sehr geringer, aber genau definierter und konstanter Konzentration in Berührung steht. Derartige Lösungen werden durch Sättigen von

Die Meßkette

257

Kaliumchloridlösungen verschiedener Konzentrationen mit Kalomel, Hg 2 Cl 2 , gewonnen. In n / 1 0 , 1-n oder gesättigten Kaliumchloridlösungen ist die Löslichkeit des Kalomels verschieden. Demgemäß unterscheidet man Zehntelnormal-, Normal- und gesättigte Kalomelelektroden mit verschiedenen, definierten Einzelpotentialwerten. Diese betragen, bezogen auf die normale Wasserstoffelektrode bei 2 5 ° C, für die Zehntelnormal-Kalomelelektrode + 0 , 3 3 7 6 Volt, für die Normal-Kalomelelektrode + 0 , 2 8 4 7 Volt und für die gesättigte Kalomelelektrode + 0 , 2 4 5 8 Volt. Das Vorzeichen bezeichnet — wie bei allen Einzelpotentialangaben — den Ladungssinn des Metalls (hier Hg) gegen die Lösung. Am gebräuchlichsten ist die Normal-Kalomelektrode, deren Herstellung kurz beschrieben sei: Der Boden einer kleinen weithalsigen Flasche wird in etwa 1 cm hoher Schicht mit reinem und trockenem metallischem Quecksilber bedeckt. Dann bereitet man ein innig verriebenes Gemenge von reinem Kalomel, reinem Quecksilber und ein wenig 1-n Kaliumchloridlösung, wäscht dieses Gemisch einige Male durch Dekantieren mit der 1-n Kaliumchloridlösung und schüttelt schließlich ein größeres Volumen derselben mit dem Kalomel-Quecksilberbrei. Dieser wird nun in etwa 2 mm hoher Schicht auf die Quecksilberoberfläche gebracht, die Flasche wird mit der kalomelgesättigten 1-n Kaliumchloridlösung gefüllt und mit einem doppelt gebohrten Stopfen verschlossen. Durch die eine Bohrung führt ein Glasrohr mit eingeschmolzenem Platindraht, dessen kurzes unten herausragendes Ende vollkommen in das Bodenquecksilber eintaucht. Dieses bildet, zusammen mit dem Platindraht, die Elektrode. Durch die andere Bohrung des Stopfens führt ein kurzes weites Glasrohr, das zur Aufnahme des einen Schenkels des elektrolytischen Stromschlüssels dient. Mit dem elektrolytischen Stromschlüssel werden die beiden Halbelemente — Vergleichselektrode sowie Titriergefäß mit Indikatorelektrode — kombiniert. E r besteht im einfachsten Fall aus zwei T-Stücken, die durch Gummischläuche miteinander verbunden und durch fest eingestopfte Filtrierpapierpfröpfchen an ihren freien Enden ver17

Jander-Jahr, Maßanalyse

258

Die Praxis der Potentiometrie

schlössen sind. Von diesen taucht das eine in die zu titrierende Lösung, das andere in die Vergleichselektrode. Die zur Füllung des Stromschlüssels dienende gut leitende Lösung darf weder Ionen enthalten, die im Titrationsgefäß stören, noch solche, die die Konzentrationsverhältnisse in der Vergleichselektrode ändern könnten. Man wird also den Verbindungsheber, je nach den Umständen, mit Kaliumchlorid-, Kaliumnitrat- oder Kaliumsulfatlösung füllen und ihn nur während der Titration in die Vergleichselektrode eintauchen lassen. Fig. 41 zeigt eine von Zintl und Rienäcker (1927) angegebene sehr Fig. 41 zweckmäßige Form von Vergleichselektrode und Verbindungsheber.

Vk

JL

2. Die Potentialmessung

Wie mißt man nun die EMK der Meßkette und ihre Änderung im Verlauf der Titration? Verbindet man die beiden Pole eines galvanischen Elementes, dessen innerer Widerstand Wj sei, über einen äußeren Widerstand w a direkt mit einem Galvanometer, also einem Instrument zur Messung der Stromstärke, dessen Widerstand als w g bezeichnet werden möge, so ist die EMK des Elementes e = i (w a + w g + Wj) oder E = i ( w a + w g ) + i-w i . w a und w g sind willkürlich wählbar, w ; ist meistens nicht genau bekannt. Wenn aber w a und wff sehr groß sind gegenüber w ; , so kann das Glied i-w; vernachlässigt werden, so daß die Kenntnis von Wi entbehrlich wird. Strommesser mit sehr hohem innerem Widerstand sind also zur Spannungsmessung geeignet, doch messen sie in Wirklichkeit nicht die EMK des Elementes, sondern die um das Produkt i-w, kleinere Potentialdifferenz zwischen den

Die Potentialmessung

259

Klemmschrauben des Instrumentes („Klemmenspannung"). Die Messung der EMK eines galvanischen Elementes durch direkten Anschluß an ein Galvanometer wird also um so richtigere Werte ergeben, je größer der Widerstand des Instrumentes ist. Die zur Messung gelangende Stromstärke i ist dann aber sehr gering, und noch viel geringer sind ihre Änderungen, die denEMK-Änderungen der Meßkette im Verlauf der potentiometrischen Titration proportional sind. Darum muß von einem zur direkten Potentialmessung galvanischer Elemente verwendeten Galvanometer eine sehr hohe Empfindlichkeit gefordert werden. Bietet die direkte Potentialmessung eines galvanischen Elementes schon dadurch gewisse Nachteile, daß sie seinen inneren Widerstand vernachlässigt, so ist doch ein zweiter prinzipieller Fehler, der ihr anhaftet, noch viel schwerwiegender. Das ist die Möglichkeit der Polarisation des Elementes infolge des Stromdurchgangs während der Messung. Denn auch, wenn dieser verschwindend klein ist, kann er die EMK leicht polarisierbarer Elemente, um die es sich bei den Meßketten der potentiometrischen Maßanalyse fast immer handelt, doch sehr erheblich erniedrigen, also verfälschen. Man zieht es daher im allgemeinen vor, für die EMK-Messung galvanischer Elemente, also auch der Titrationsketten, eine Methode zu verwenden, bei der im Augenblick der Messung kein Strom fließt. Will man trotz dieser Mängel die direkte Meßmethode verwenden, so kann man eine von Zintl (vgl. [7]) angegebene Anordnung benutzen: Die Titrationskette wird unter Zwischenschaltung eines Hochohmwiderstandes (2,7 -10 8 Ohm) direkt an ein Spiegelgalvanometer (Empfindlichkeit 1,2-IO" 9 Ampère) mit objektiver Ablesung angeschlossen. Das Galvanometer befindet sich auf einer Wandkonsole. Der Galvanometerspiegel wird durch eine darunter befindliche 6-Volt-Scheinwerferanlage mittels zweier total reflektierender Prismen beleuchtet. Er beleuchtet eine 1 m lange Skala, die 1,7 m unter der Konsole an der Wand befestigt ist. Durch einen dünnen Draht im Strahlengang wird im

260

Die Praxis der Potentiometrie

Lichtfleck auf der Skala ein scharfer, auch bei Tageslicht deutlich erkennbarer Schattenstrich erzeugt, der bei Stromlosigkeit in der Skalenmitte liegt. — Bei dieser Anordnung wird der Titrierzelle nach Zintl ein Strom von jnaximal 4 • KT7 Ampère entnommen, der auch leicht polarisierbare Elektroden nur noch unwesentlich beeinflussen dürfte. Vor Beginn der Titration braucht nur die Meßkette mit den zum Instrument führenden Drähten verbunden und die Spiegelbcleuchtung eingeschaltet zu werden. Gemessen wird der Fortschritt der Zeigerwanderung über die Skala mit steigendem Reagenszusatz. Die Fehlermöglichkeiten der direkten Meßmethode vermeidet vollkommen die einfache, elegante und daher weitaus am meisten benutzte Poggendorffsche Kompensationsmethode (1900). Hier wird der zu messenden EMK eine andere Spannung entgegengeschaltet, deren Größe so lange variiert wird, bis ein in dem Stromkreis befindliches Galvanometer Stromlosigkeit und damit Gleichheit der einander entgegenlaufenden Spannungen anzeigt. Man braucht also nie die zur Kompensation notwendige Spannung zu kennen: Sie ist identisch mit der gesuchten EMK! Wie die Kompensationsmethode praktisch durchgeführt wird, zeigt schematisch Fig. 42. AB ist ein Widerstandsdraht von 1000 mm Länge (15bis500hm), an dem sich der Gleitkontakt C frei verschieben läßt. Der „Gefälldraht" ist so kalibriert, daß gleiche Drahtlängen gleichen Widerstandswerten entsprechen. Er ist entweder auf einer in mm unterteilten Latte oder auf einer Walze („Walzenbrücke") mit Noniusablesung aufgespannt. An den Enden des Meßdrahtes (A und B) liegt die konstante Spannung (Ej) eines Akkumulators von nicht zu kleiner Kapazität. Frisch geladene Akkumulatoren sollen nicht benutzt werden, da sie anfänglich in ihrer Spannung nachlassen. Ein an die Klemmen des Akkumulators angelegtes Voltmeter (in Fig. 42 nicht gezeichnet) erlaubt die Kontrolle der Spannungskonstanz während der Messung. Mittels des Schleifkontaktes C lassen sich alle Spannungen zwischen 0

Die Potentialmessung

261

und 2 Volt abgreifen, und diese Spannungswerte sind stets dem Widerstand und damit auch der Länge der Strecke AC proportional. S t ist ein Stromschlüssel, der die Einund Ausschaltung des Akkumulators ermöglicht. Das Element (bei potentiometrischen Titrationen also die Meßkette), dessen unbekanntes Potential E x gemessen werden E,

Fig. 42

soll, wird über einen Taster T und über ein Zeigergalvanometer G — Empfindlichkeit etwa 10~7 Ampère pro Skalenteil; der Nullpunkt der Zeigerstellung soll in der Skalenmitte liegen (Nullinstrument) — mit dem einen Ende des Meßdrahtes (A) und mit dem Gleitkontakt (C) so verbunden, daß die Pole des Akkumulators und der Meßkette, die das gleiche Vorzeichen haben, einander entgegengeschaltet sind. Der Gleitkontakt wird dann so lange verschoben, bis der Zeiger des Galvanometers nicht mehr ausschlägt, wenn durch Niederdrücken des Tasters T der Stromkreis, in dem die Meßkette liegt, für kurze Zeit geschlossen wird. Bei dieser Brückenstellung fließt also kein Strom, ein Beweis dafür, daß der dem Meßdrahtabschnitt AC proportionale Bruchteil der Akkumulatorenspannung die gesuchte EMK der Meßkette gerade kompensiert, daß also: Ex AC Ea -

AB

262

Die Praxis der Potentiometrie

Ist nun E a , die Akkumulatorenspannung, bekannt, so läßt sich hieraus das gesuchte Potential E x leicht berechnen. Da es aber bei potentiometrischen Titrationen im allgemeinen nicht so sehr auf die genaue Kenntnis der auftretenden Potentiale, sondern vielmehr auf deren Änderung im Verlauf der Titration ankommt, so genügt es, das nach jedem Reagenszusatz veränderte Potential der Meßkette durch eine entsprechende Verschiebung des Gleitkontaktes zu kompensieren und jedesmal die Länge des Brückenabschnitts AC, die ja der gesuchten EMK proportional ist, abzulesen. Sollte sich während der Titration das Vorzeichen des Meßkettenpotentials umkehren, so ist der Akkumulator umzupolen. Im Augenblick der Messung arbeitet also die Kompensationsmethode stromlos. Bevor jedoch die richtige Stellung des Meßdrahtkontaktes gefunden ist, fließt jedesmal, wenn der Taster T kurz geschlossen wird, ein geringer Strom durch den Meßkreis. Eine geringe Polarisation der Meßkette könnte die Folge sein. Um diese zu vermeiden und auch um das empfindliche Galvanometer vor zu starken Stromstößen bei allzu falscher Stellung des Gleitkontaktes zu schützen, schaltet man noch einen sehr hohen Widerstand W in den Galvanometerkreis und verschiebt den Gleitkontakt zunächst so lange, bis der Ausschlag des jetzt ziemlich unempfindlich gemachten Instrumentes nahe bei Null liegt. Dann erst überbrückt man W durch den Schalter S2 und sucht nunmehr die genaue Nullstellung auf. Die zur Durchführung der Kompensationsmethode nötigen Apparateteile sind, in zweckmäßiger Anordnung zusammengestellt, z. B. unter der Bezeichnung „Potentiometer", in den verschiedensten Ausführungen im Handel zu haben.

Die Poggendorffsche Kompensationsmethode wird wohl stets die gebräuchlichste Potentialmeßmethode bleiben, weil sie bei großer Genauigkeit und Übersichtlichkeit noch den Vorteil hat, daß sie mit den normalen Hilfsmitteln moderner analytischer Laboratorien ohne Schwierigkeiten durchgeführt werden kann. In neuerer Zeit gewinnt aber noch eine andere Methode mehr und mehr an Bedeutung:

Verschiedene Methoden der praktischen Durchführung

263

Die Methode der direkten Potentialmessung mit Hilfe von Röhrenvoltmetern (Röhrenverstärkern). Röhrenvoltmeter sind Meßanordnungen, die die Eigenschaft der Elektronen(Radio-)Röhren benutzen, kleine Potentialänderungen ihres Gitters in leicht meßbare größere Anodenstromschwankungen umzusetzen. Die Meßkette, deren Potential bzw. Potentialänderung bestimmt werden soll, wird in den „Gitterkreis", d. h. zwischen Gitter und negatives Heizfadenende, eingeschaltet. Der Potentialänderung der Meßkette im Verlauf der Titration ist die Ladungsänderung des Gitters und damit auch die Änderung des Zeigerausschlages eines Milliamperemeters proportional, das den vom Gitter „gesteuerten" Anodenstrom mißt. Die Hauptvorzüge des Röhrenvoltmeters sind seine bei richtiger Schaltung absolut stromlose direkte Potentialmessung, die jede Elektrodenpolarisation ausschließt, sowie die Einfachheit seiner Handhabung. In den letzten Jahren ist in der Fachliteratur eine Reihe von Röhrenpotentiometern beschrieben worden, von denen verschiedene im Handel erhältlich sind (vgl. z.B. [18]). 3. Verschiedene Methoden der praktischen Durchführung potentiometrischer Titrationen

Potentiometrische Titrationen lassen sich in verschiedener Weise durchführen. Die wichtigste Methode ist die bereits mehrfach berührte Wendepunktsmethode. Hier wird die gesamte Potentialtitrationskurve aufgenommen und als Titrationsendpunkt deren Wendepunkt ermittelt. Die Reagenslösung wird in kleinen, genau gemessenen Anteilen hinzugesetzt, worauf jedesmal die Brückenabschnitte (Kompensationsmethode) bzw. Galvanometerskalenteile (direkte Potentialmessung) abgelesen und notiert werden. Selbstverständlich muß hierbei berücksichtigt werden, daß die Einstellung der Gleichgewichtspotentiale bei manchen Reaktionen nicht momentan erfolgt, sondern eine gewisse Zeit erfordert (bei brauchbaren Bestimmungsmethoden höchstens 1 min.!). Es ist zweckmäßig, beim Zusatz der Reagenslösung kurz vor und nach

264

Die Praxis der Potentiometrie

dem Endpunkt in besonders kleinen und stets gleichen „Volumschritten" vorzugehen, um den Endpunkt möglichst genau ermitteln zu können. Die Versuchsergebnisse können, wie Fig. 39 (S. 251) zeigt, in ein rechtwinkliges Koordinatensystem eingetragen werden. Die Millivolt brauchen im allgemeinen nicht erst berechnet zu werden. An ihre Stelle treten die den Potentialwerten proportionalen Brückenabschnitte bzw. Skalenteile. Der Wendepunkt der Kurve, die man dann erhält, also der Endpunkt, ist dadurch AE gekennzeichnet, daß hier der Differenzenquotient d. h. die pro Volumschritt AV beobachtete Potentialänderung AE, ihren größten Wert erreicht. Die Projektion des Wendepunktes auf die Milliliterachse ergibt das bis zum Endpunkt verbrauchte Volumen der Maßlösung. Ist der Potentialsprung in der Nähe des Wendepunktes sehr groß, die Kurve also sehr steil, so macht die Bestimmung des Wendepunktes der Potentialtitrationskurve keine Schwierigkeiten. Läßt die Kurve dagegen ein breiteres „Ubergangsgebiet" erkennen, so ist es zweckmäßiger, statt der Potentiale selbst (bzw. ihrer Proportionalwerte) die „Potentialschritte", AE, in Abhängigkeit vom Reagenszusatz aufzutragen (Fig. 43). Die einzelnen Punkte werden AE V

ml Fig. 43

verbunden und die beiden Verbindungslinien zu beiden Seiten des Äquivalenzpunktes sinngemäß verlängert. Die Projektion ihres Schnittpunktes auf die Reagensachse zeigt den Titrationsendpunkt an.

Verschiedene Methoden der praktischen Durchführung

265

Die Aufsuchung des Wendepunktes der Potentialtitrationskurve ist die sicherste Methode der Endpunktsermittlung. Sie muß daher immer dann zur Anwendung kommen, wenn eine Reaktion zum erstenmal darauf geprüft wird, ob sie sich zur Grundlage einer potentiometrischen Titration machen läßt oder nicht. Nur dann, wenn man das Umschlagspotential der Titrationsreaktion genau kennt, kann es von Vorteil sein, eine „Umschlagsmethode" zu verwenden. Das Prinzip dieser Umschlagsmethoden ist ebenfalls schon kurz erwähnt worden: Die Maßlösung wird so lange zugesetzt, bis die Indikatorelektrode gerade das Umschlagspotential zeigt. Das kann dadurch erreicht werden, daß als Vergleichselektrode eine U m s c h l a g s e l e k t r o d e benutzt wird, d. h. ein Halbelement, dessen Einzelpotential mit dem Umschlagspotential identisch ist. Mißt man nun die EMKÄnderung der aus Indikatorelektrode und Umschlagselektrode kombinierten Meßkette im Verlauf der Titration, so sinkt die Potentialdifferenz zwischen den beiden Halbelementen mehr und mehr und wird im Äquivalenzpunkt Null. Der Zeiger des Meßinstrumentes geht also, wenn man wieder gegen Ende der Titration mit kleinen gleichmäßigen Volumschritten vorgeht, am Endpunkt ruckartig durch den Nullpunkt. Jede Titrationsreaktion erfordert eine besondere Umschlagselektrode, die nur für sie verwendbar ist. Für die Bestimmung der Chlorid-Ionen mit Silbernitratlösung z. B. eignet sich eine Silberelektrode, die in eine wäßrige Silberchloridsuspension eintaucht. Zur Erhöhung der Leitfähigkeit wird noch ein die Löslichkeit nicht beeinflussender Elektrolyt •— hier Schwefelsäure — hinzugefügt. In analoger Weise kann die Herstellung der Umschlagselektroden bei allen Fällungstitrationen geschehen, vorausgesetzt, daß sich die Löslichkeit des Niederschlags mit der Zeit nicht ändert (Alterung). Für Neutralisationsreaktionen verwendet man Wasserstoffelektroden, die in Lösungen der während der Titration entstehenden Salze tauchen. Als Umschlagselektroden für Oxydations-Reduktionsreaktionen können

266

Die Praxis der Potentiometrie

Platindrähte in „austitrierten" Lösungen dienen, also in Lösungen, die gerade bis zur Erreichung des Äquivalenzpunktes titriert wurden, vorausgesetzt, daß völlig stromlos gemessen werden kann (Röhrenpotentiometer). Anderenfalls ist Polarisation zu befürchten, und man zieht es vor, unpolarisierbare Elektroden zu verwenden, wie sie für zahlreiche Reaktionen in der Fachliteratur beschrieben worden sind. Potentiometrische Titrationen mit Hilfe von Umschlagselektroden können von Vorteil sein, wenn es sich um Serienbestimmungen, also um die häufige Wiederholung ein und derselben Titration handelt. Eine andere Art der Umschlagsmethode ist die Methode der G e g e n s c h a l t u n g d e s U m s c h l a g s p o t e n t i a l s . Hier wird die Indikatorelektrode mit einer beliebigen Vergleichselektrode, z. B. mit der Normal-Kalomelelektrode zu einer Meßkette vereinigt. Über den Enden eines Brükkendrahtes von hohem Widerstand (100 Ohm) — als solcher kann ein gewöhnlicher ungeeichter Schiebewiderstand dienen — liegt die Spannung eines Akkumulators, und ein in Hundertstel Volt geteiltes Voltmeter, das an das eine Brückenende und den Gleitkontakt angeschlossen ist, erlaubt es, das auf die benutzte Vergleichselektrode (hier Normal-Kalomelelektrode) bezogene Umschlagspotential der beabsichtigten Titrationsreaktion auf der Brücke abzugreifen. Die Meßkette wird, ebenfalls am Brückenende und Gleitkontakt angeschlossen, über ein Galvanometer dem auf der Brücke abgegriffenen Umschlagspotential entgegengeschaltet (vgl. Fig. 42, S.261). Da das Potential der Meßkette zunächst vom Umschlagspotential erheblich abweicht, schlägt die Galvanometernadel bei Stromschluß aus. Im Laufe der Titration aber nähert sich das Potential der Meßkette dem Umschlagspotential, so daß die Spannungsdifferenz der einander entgegenlaufenden Ströme immer geringer wird, und der Zeigerausschlag mehr und mehr zurückgeht, um am Äquivalenzpunkt die Nullage zu erreichen. Die Methode der Gegenschaltung des Umschlagspotentials ist selbstverständlich ebenfalls nur anwendbar,

Beispiele f ü r die Anwendungsmögliclikeit

267

wenn man das Umschlagspotential genau kennt. Sie ist einfach und elegant und zeichnet sich vor allem durch die geringe Zeitdauer aus, die ihre Durchführung erfordert. Es finden sich in der Literatur noch einige andere Methoden und Möglichkeiten zur Ausführung potentiometrischer Titrationen. Ihre praktische Bedeutung ist aber nicht groß und umfassend genug, um im Rahmen dieses Buches noch berücksichtigt werden zu können. XXI. Beispiele für die Anwendungsmöglichkeit potentiometrischer Titrationen Im folgenden soll an Hand einiger charakteristischer Beispiele angedeutet werden, wie vielseitig sich potentiometrische Titrationen verwenden lassen, und welche besonderen Vorteile die elektrometrische Indizierung von Fällungs-, Komplexbildungs- und Neutralisationsreaktionen, Oxydations- und Reduktionsvorgängen vielfach bieten kann. Als Vorzüge der Potentiometrie sind vor allem zu nennen: 1. Die Möglichkeit, mehrere Stoffe im Verlauf einer einzigen Titration zu bestimmen (Simultanbestimmungen). 2. Die Möglichkeit, die Menge eines Stoffes in Gegenwart von solchen Begleitstoffen zu ermitteln, welche bei der Durchführung der Analyse nach anderen Methoden stören würden (Selektivbestimmungen). Hier ist auch die Möglichkeit der Titration trüber oder stark gefärbter Lösungen zu erwähnen. 3. Die Möglichkeit einer sehr wesentlichen Erweiterung der maßanalytischen Methoden dadurch, daß nunmehr auch Maßlösungen verwendet werden können, für die kein anderer brauchbarer Indikator bekannt ist, und endlich 4. die Möglichkeit, Mikrobestimmungen auszuführen, da die Genauigkeit vieler potentiometrischer Titrationen diejenige der entsprechenden „klassischen" Methoden beträchtlich übertrifft. Die Potentialwerte, die im folgenden angegeben werden, beziehen sich alle auf die Normal-Kalomelelektrode.

268

Beispiele für die Anwendungsmöglichkeit

1. Fällungs- und Komplexbildungsanalysen Die argentometrische Einzelbestimmung der Halogenide und des Silbers wird in schwach schwefelsaurer Lösung durchgeführt. Als Indikator dient ein Silberdraht oder ein Silberblech, als Vergleichselektrode ein Kalomelhalbelement oder eine Silberelektrode, die in eine 1-n bzw. 0,1-n Silbernitratlösung eintaucht. Es ist wichtig, nicht zu schnell zu titrieren, sondern stets die besonders in der Nähe des Äquivalenzpunktes zögernde Potentialeinstellung abzuwarten. Das gilt vor allem f ü r die Bestimmung des Jodid- u n d BromidIons, weniger f ü r die des Chlorid-Ions. Der potentialbestimmende Vorgang ist stets: Ag+ + Hal- ^ AgHal. Die beobachteten Potentialsprünge hängen daher von den Löslichkeitsprodukten der Silberhalogenide ab: L A g j = 10"16, L A g B r = 10~12 u n d L A g C 1 =10~ 1 0 , nehmen also in ihrer Größe in der genannten Reihenfolge ab. D e m g e m ä ß lassen sich Jodid- und Bromidlösungen noch bis herab zu Konzentrationen von 10 4 Grammäquivalenten J~ bzw. Br~ pro Liter genau bestimmen, während die Grenze der Genauigkeit f ü r Chloridlösungen bei 10"3 Grammäquivalenten Cl~ pro Liter liegt. Will man die Bestimmung nach einer der beiden Umschlagsmethoden durchführen, so benutze man Tabelle 14, in deren zweiter Spalte geeignete Umschlagselektroden angegeben sind, während die dritte Spalte die gegenzuschaltenden Umschlagspotentiale (18° C) nennt (vgl. [66]: T a b e l l e 14 Reaktion Ag+ + J- = AgJ

Umschlagselektrode (Halbelement)

Ag/AgJ, 0,01-n H 2 S0 4 Hg/Hg 2 C0 3 , 1-n Na 2 C0 3 Ag+ + Br- = AgBr Ag/AgBr, 0,01-n H 2 S0 4 Hg/Hg 2 C 2 0 4 , ges. Na 2 C 2 0 4 A g + + C h = AgCl Ag/AgCl, 0,01-n H 2 S0 4 Hg/Hg 2 (CH 3 COO) 2 , 1- n CH 3 COOH

Umschlagspotential + 0,04 Volt + 0,18 Volt + 0,24 Volt

Fällungs- und Komplexbildungsanalysen

269

Die gleichen Reaktionen sind natürlich auch zur Bestimmung der Silber-Ionen verwendbar. Liegt die [Ag+] der zu titrierenden Lösung über 0,001-n, so wird als Maßlösung eine Chloridlösung verwendet, die ja den Vorteil einer raschen Potentialeinstellung bietet. Verdünntere Silberlösungen werden mit Bromidlösungen titriert, weil diese noch 10"5-n Lösungen mit ausreichender Genauigkeit zu bestimmen erlauben. Die Bestimmung der Halogenid-Ionen nebeneinander möge an einem konkreten Beispiel besprochen werden: 100 ml einer Lösung, die sowohl an Jodid-Ionen als an Chlorid-Ionen 0,01-n ist, soll mit 1-n Silbernitratlösung titriert werden. Wie ändert sich die [Ag+] der Lösung im Verlauf der Titration? Das Löslichkeitsprodukt des Silberchlorids beträgt 10"10. Ist die Konzentration der ChloridIonen einer Chloridlösung, in die metallisches Silber eintaucht, [Cl~] = 10~2-n, so beträgt [Ag + ] maximal 10"8-n. Ist aber die Lösung außerdem noch 10 2 -n an Jodid-Ionen, so kann die Silber-Ionenkonzentration, da L A g J = 10 16 ist, den Wert 10~14-n nicht überschreiten. Sonst würde AgJ ausfallen. Wird nun mit Silbernitratlösung titriert, so fällt also zunächst das schwerer lösliche Silberjodid aus. W ü r d e die Lösung nur Jodid-Ionen enthalten, so würde die [Ag + ] im Verlauf der Titration entsprechend der anfangs stark ausgezogenen, später gestrichelten Kurve I (Fig. 44) ansteigen, deren Wendepunkt (Wj-) bei der [Ag + ] einer gesättigten Silberjodidlösung, 10 8 -n liegen müßte. Die Lösung ist aber auch 10~2-n an Chlorid-Ionen. Sobald daher die [Ag + ] den Wert 10~8-n erreicht hat, wird das Löslichkeitsprodukt des Silberchlorids, 10^10, überschritten, und es fällt nun so lange Silberchlorid aus, bis die [Cl~] der Lösung nicht mehr ausreicht, um L A g C 1 zu überschreiten. Die Titrationskurve verläuft also nunmehr wie die einer reinen Chloridlösung. Die [Ag + ] steigt zunächst nur langsam über den Wert 10~8-n und durchschreitet, wenn [Gl"] = [Ag+] = 10"5-n ist, den Wendepunkt W c l -, um endlich, mit dem Überschuß an Silberlösung, nur noch schwach anzusteigen. Die Kurve

270

Beispiele für die Anwendungsmöglichkeit

weist also zwei charakteristische Konzentrationssprünge auf, deren erster das E n d e der Silberjodidfällung anzeigt, während der zweite nach Ausfällung der Chlorid-Ionen beobachtet wird. Wichtig ist, daß der Endpunkt der Jodfällung nur praktisch, nicht aber theoretisch mit dem Wendepunkt W j - zusammenfällt, wie ein Blick auf Fig. 44 lehrt. J e größer und steiler also der Konzentrations- (bzw. Potential-)sprung ist, der bei einer Simultanbestimmung zweier ausfällbarer Ionen beobachtet wird, um so genauer und richtiger wird die Endpunktsermittlung für den schwerer löslichen Bestandteil.

10

2.0

ml

Fig. 44 Umgekehrt wird es um so schwieriger, zwei durch das gleiche Reagens ausfällbare Ionen in einer Titration zu bestimmen, je geringer der Löslichkeitsunterschied der ausfallenden Niederschläge ist. Das läßt Fig. 45 deutlich erkennen: Hier ist der theoretische Verlauf der Änderung der [Ag + ] einer mit 1-n Silbernitratlösung titrierten Lösung dargestellt, die sowohl an Bromid- wie an Chlorid-Ionen 0,01-n ist. Die Beendigung der Bromidfällung wird nur durch einen geringen und unscharfen Konzentrations- bzw. Potentialsprung wiedergegeben, während sich der zweite Wendepunkt, welcher der Summe beider fällbaren Ionen entspricht, gut ermitteln läßt. Die gemeinsame Bestimmung mehrerer Ionen in ein und derselben Fällungstitration läßt sidi nur dann mit Erfolg durchführen, wenn die Löslichkeiten nacheinander ausfallender Niederschläge genügend verschieden sind. In der Praxis kann sich aber noch eine Reihe weiterer Schwierigkeiten ergeben. Durdi

Fällungs- und Komplexbildungsanalysen

271

Adsorption, „Mitreißen", Entstehung von Mischkristallen und festen Lösungen fällt häufig zusammen mit dem ersten Niederschlag schon ein mit den Versuchsbedingungen wechselnder Bruchteil des zweiten aus, so daß der erste Sprung zu spät kommt oder sogar nur undeutlich in Erscheinung tritt. Das ist z. B. gerade bei dem zuletzt genannten Beispiel der Fall: Das ausfallende Silberbromid reißt beträchtliche Mengen von Silberchlorid mit! Derartige Störungen lassen sich aber manchmal durch geeignete Zusätze zur Lösung, die titriert werden soll, beseitigen oder doch auf ein Minimum beschränken. Für Simultanbestimmungen der Halogenionen hat sich z. B. ein Zusatz von 5% Bariumnitrat zur Lösung bewährt. In bariumnitrathaltigen Lösungen lassen sich also Jodid-Ionen neben Bromid-

bzw. Chlorid-Ionen gut bestimmen, während die Titration von Bromid- neben Chlorid-Ionen selbst bei günstigsten Bedingungen einen Mehrverbrauch von mindestens 1 % für die BromidIonen ergibt. Es sei noch kurz darauf hingewiesen, daß Simultanbestimmungen auch nach den Umschlagsmethoden durchgeführt werden können. Man muß dann entweder die verschiedenen Umschlagselektroden während der Titration gegeneinander auswechseln oder die verschiedenen Umschlagspotentiale nacheinander der Meßkette entgegenschalten. Die Bestimmung des Zinks als Kalium-zink-hexacyanoferrat(II) läßt sich mit Vorteil potentiometrisch durchführen. Die Reaktion, die dieser Bestimmung zugrunde liegt, ist bereits auf S. 203 besprochen worden. Für die Erkennung ihres Endpunktes steht, wenn man nicht elektrometrisch arbeitet, nur ein Tüpfelverfahren zur Verfügung.

272

Beispiele für die Anwendungsmöglichkeit

Als Indikatorelektrode kann nicht ein Zinkstab dienen, da sich metallisches Zink in Gegenwart von [Fe(CN) 6 ] 4 ~ passiviert und daher die Änderung der Zink-Ionenkonzentration nicht richtig wiedergibt. Man verwendet vielmehr eine Platinelektrode, die auf das Gleichgewicht: [Fe(CN)6]4-^[Fe(CN)6]3-+E

anspricht; die Konzentration der [Fe(CN) 6 ] 4 " ändert sich im Verlauf der Titration entsprechend dem Fortschritt des Fällungsvorganges: 3 Zn 2+ + 2 K + + 2 [ F e ( C N ) 8 ] ^ = K 2 Zn 3 [Fe(CN) 6 ] 2 . Man arbeitet am besten unter Zusatz von Kaliumsulfat, in ganz schwach salzsaurer Lösung bei einer Temperatur von 60 bis 70° C. Als Maßlösung dient eine 0,1-n K 4 [Fe(CN) 6 ]-Lösung, die im Liter außerdem noch 1 g K 3 [Fe(CN) 6 ] enthält. Natrium-, Magnesium-, Calcium- und Aluminiumsalze stören die Titration, wenn sie in größerer Menge zugegen sind. Eisen(III)Ionen, die ebenfalls stören, lassen sich durch Zusatz von Ammoniumfluorid und wenig Säure infolge Bildung komplexer Fluoro-eisen(III)-Ionen binden und dadurch unschädlich machen. Besonders wichtig ist es, während der ganzen Titration kräftig zu rühren, damit sich der zunächst ausfallende Zn 2 [Fe(CN) a ]-Niederschlag quantitativ inK 2 Zn 3 [Fe(CN) 6 ] 2 umwandeln kann. Die Methode ist auch zur Bestimmung der [Fe(CN) 6 ] 4 - verwendbar. Als Umschlagselektrode läßt sich die Kombination Hg/Hg 2 S0 4 , gesätt. K 2 S0 4 , verwenden; das Umschlagspotential beträgt in neutraler Lösung + 0 , 3 6 Volt.

Die Bestimmung der Fluorid-Ionen: Eisen(III)- und Fluorid-Ionen treten miteinander zu dem komplexen [ F e F j ] 3 " zusammen nach der Gleichung: Fe 3 + + 6 F - ^ [FeF 6 ] 3 -. Dabei sinkt die Eisen(III)-Ionenkonzentration auf einen sehr geringen Wert. Titriert man also eine Fluoridlösung mit einer Eisen(III)-chloridlösung bekannten Gehaltes, so zeigt eine platinierte Platinelektrode, die auf das Gleichgewicht F e ^ F e s + + e anspricht, einen starken Potentialanstieg, sobald die hinzugegebenen Eisen(III)-Ionen nicht mehr durch Bildung komplexer [FeF s ] 3 ~ abgefangen wer-

Neutralisationsanalysen

273

den können, d. h. also, sobald der Endpunkt erreicht ist. Um die Reaktion praktisch vollständig zu Ende verlaufen zu lassen, muß durch einen reichlichen Zusatz von Natriumchlorid und durch Zugabe von Alkohol dafür gesorgt werden, daß das [FeF e ] als schwerlösliches Na 3 [FeF 6 ] abgeschieden wird.

Die Fluoridlösung, die möglichst konzentriert sein soll (etwa 15 ml), wird zunächst in einer Platinschale gegen Methylrot genau neutralisiert, in das Titriergefäß gebracht, mit 96%igem reinem Alkohol auf das Doppelte verdünnt und mit Natriumchlorid gesättigt. Als Maßlösung dient eine frisch bereitete 0,05 bis 0,1-n Eisen(III)-chloridlösung in 10"4-n Salzsäure. Man verdrängt die Luft aus dem Titriergefäß durch einen Kohlendioxidstrom und setzt hierauf 1 mg F e S 0 4 - 7 H 2 0 der Fluoridlösung zu. Dadurch wird eine scharfe Potentialeinstellung gewährleistet. Da Eisen(II)-Salzlösungen leicht durch Luftsauerstoff oxydiert werden, wird auch während der Titration Kohlendioxid hindurchgeleitet. Der Gasstrom sorgt zugleich für ausreichende Rührung. Das Potential wird gegen eine Kalomelelektrode gemessen. Nach W. D. Treadwell und A. Köhl (1925/ 26) läßt sich nach dieser Methode noch 1 mg Fluor auf 0,05 mg genau bestimmen.

2. Neutralisationsanalysen Allgemeines: Alkalimetrische und acidimetrische Titrationen lassen sich ohne Schwierigkeiten auch potentiometrisch durchführen, doch wird man im allgemeinen die meist vollkommen ausreichenden und einfacher durchführbaren Indikatormethoden vorziehen. Nur in einigen Fällen ist die elektrometrische Bestimmung vorteilhafter, so z. B., wenn es sich um die Bestimmung gefärbter oder getrübter technischer Brühen handelt, in denen der Indikatorumschlag nur schwer erkennbar ist, oder in sehr verdünnten Lösungen, wo die Verwendung von Indikatoren nur sehr ungenaue Ergebnisse liefert. Die Potentialtitrationskurven, die bei der Titration starker Säuren und Basen miteinander, starker Säuren mit schwachen Basen und schwacher Säuren mit starken Basen auftreten, sind vollkommen identisch mit den bereits 18 Jander-Jahr, Maßanalyse

274

Beispiele für die Anwendungsmöglichkeit

früher (s. S. 114 und Fig. 17 bis 20) ausführlich besprochenen Titrationskurven. Ihr Wendepunkt ist in jedem Falle identisch mit dem Äquivalenzpunkt. Es ist daher möglich, durch eine potentiometrische Titration zu ermitteln, bei welcher [H + ] der Lösung der Äquivalenzpunkt erreicht wird und in welchem p H -Intervall der für die Titration am besten geeignete Indikator umschlagen muß. Je stärker die zu titrierende Säure oder Base ist, um so größer ist die Änderung ihrer [H + ] am Äquivalenzpunkt und damit auch der beobachtete Potentialsprung. Umgekehrt wird der Potentialsprung um so kleiner, undeutlicher und verwaschener, je schwächer die titrierte Säure oder Base ist. In solchen Fällen ist also auch die potentiometrische Bestimmung des Titrationsendpunktes nur ungenau, obwohl sie vielfach noch annähernd richtige Ergebnisse liefert, wo Indikatoren schon völlig versagen. Schwache Basen und Säuren sollten daher konduktometrisch, nicht aber potentiometrisch oder mit Indikatoren titriert werden. Die Bestimmung mehrerer Säuren oder Basen in einer Titration ist nur bei genügend großer Verschiedenheit der Dissoziationskonstanten möglich. Dabei wird zunächst die stärkere Säure neutralisiert, was sich in einem ersten Potentialsprung ausdrückt, während ein zweiter Sprung die Neutralisation der schwächeren Säure anzeigt. Grundsätzlich der gleiche Vorgang spielt sich bei der Titration mehrwertiger Säuren und Basen ab. Nur wenn die Dissoziationskonstanten der einzelnen Dissoziationsstufen stark verschieden sind, weist die Potentialtitrationskurve mehrere gesonderte Sprünge auf. Bei der Titration der Phosphorsäure mit Natronlauge an einer Wasserstoffelektrode z. B. sind zwei deutliche Potentialsprünge zu beobachten, die der ersten und zweiten Dissoziationsstufe entsprechen; die Bildung des tertiären Phosphates wird nicht mehr angezeigt. Bei der Titration der Schwefelsäure dagegen ist nur ein einziger Potentialsprung zu beobachten, der nach vollständiger Neutralisation auftritt.

Neutralisätionsanalysen

275

Indikatorelektroden:

Von einer Indikatorelektrode, die zur Durchführung von Neutralisationsanalysen verwendet werden soll, muß verlangt werden, daß sie die Änderung der [H+] der titrierten Lösung konzentrationsrichtig anzeigt. An solch einer Elektrode muß sich also ein Vorgang ins Gleichgewicht setzen, an dem Wasserstoffionen beteiligt sind. Der einfachste Vorgang dieser Art bildet die Grundlage für die Verwendung der bereits mehrfach genannten Wasserstoffelektrode: Ein Blech oder Draht aus Platin, Palladium oder Gold, zur Vergrößerung der Oberfläche mit Platin-, Palladium- oder Iridiumschwarz überzogen, taucht teilweise in die zu titrierende Lösung ein, durch die ein Strom von reinstem, unter Atmosphärendruck stehendem Wasserstoff derart hindurchgeleitet wird, daß die Elektrode dauernd mit dem Gas in Berührung kommt. Das Elektrodenpotential wird durch den Vorgang: H ^ H+ + £ bestimmt und ist gegeben durch die Beziehung (bei 25° C) e = e0 + 0,059 • log [H+] =e„—0,059 • pH Volt. Bezogen auf die normale Wasserstoffelektrode ist e0 definitionsgemäß gleich Null. Mißt man aber gegen eine normale Kalonielelektrode, so gilt e0 = —0,2847 Volt. Fig. 46 zeigt eine recht brauchbare Form der Wasserstoffelektrode. Der durch das seitlich angesetzte Rohr zugeleitete Wasserstoff tritt aus einer unter der Elektrode endigenden Kapillare aus. Er muß zuvor sorgfältig gereinigt werden und auch von den letzten Sauerstoffspuren befreit sein. Das geschieht durch Waschen mit Silbernitrat-, alkalischer Permanganat- und alkalischer Pyrogallollösung sowie durch Überleiten über Platinasbest, der sich in einem auf schwache Rotglut erhitzten Quarzxohr befindet. Das Titriergefäß muß durch einen Stopfen oder eine Flaschenkappe aus Gummi nadi außen hin abgeschlossen sein.

Da die Wasserstoffelektrode schon durch geringe Ströme polarisiert wird, kommt zur Po-

1

Fig. 46

276

Beispiele für die Anwendungsmöglichkeit

tentialmessung nur die Kompensationsmethode oder die Benutzung eines Röhrenvoltmeters in Betracht. Vor Beginn der Messungen muß die Lösung durch längeres Einleiten von Wasserstoff entlüftet und die Einstellung eines konstanten Elektrodenpotentials abgewartet werden. Die Wasserstoffelektrode ist leider nur beschränkt verwendbar, weil weder Oxydations- noch Reduktionsmittel in der zu titrierenden Lösung zugegen sein dürfen. Die Chinhydronelektrode besteht aus einem Platindraht, der in eine gesättigte, wäßrige Lösung von Chinhydron, der äquimolekularen Verbindung von Chinon, C 6 H 4 0 2 , und Hydrochinon, C 6 H 4 (OH) 2 , eintaucht. An der Elektrode stellt sich folgendes Gleichgewicht ein: C 6 H 4 ( O H ) 2 ^ C a H 4 0 2 + 2 H + + 2e. Da das Verhältnis der Konzentrationen des Chinons und Hydrochinons in der Chinhydronlösung konstant bleibt, hängt das Elektrodenpotential entsprechend der Beziehung (bei 25° C): e = e 0 — 0,059 p H = 0 , 4 1 4 — 0,059 p H Volt, bezogen auf die normale Kalomelelektrode, nur noch von der [H + ] der Lösung ab. Die zu bestimmende Lösung wird mit einigen Tropfen einer frisch bereiteten, gesättigten alkoholischen Lösung von Chinhydron versetzt und nach Einführung der Platinelektrode unter kräftigem Rühren titriert. Die Potentiale stellen sich rasch ein. Die Chinhydronelektrode ist nur zur Titration von Säuren mit Basen geeignet, da sie in allen Lösungen, deren p H über 8 liegt, nicht mehr funktioniert. Gegen Oxydations- und Reduktionsmittel ist die Chinhydronelektrode nicht ganz so empfindlich wie die Wasserstoffelektlrode.

Neuerdings hat die Glaselektrode wegen ihrer Unempfindlichkeit gegen oxydierende und reduzierende Stoffe und dank einer raschen Potentialeinstellung bei der Messung gegenüber der Wasserstoffelektrode erheblich an Bedeutung gewonnen. Die Polarisierbarkeit von Glaselektroden ist wegen ihres hohen Widerstandes gering. Die Glaselektrode (Fig. 47) besteht aus einem dicken Halsteil, an den z. B. in Kölbchenform (es sind auch Stab- und Nadel-

Neutralisationsanalysen

277

formen in Gebrauch) eine dünnwandige Membran aus einem Spezialglas (niedrig schmelzendem, natronieichem Glas) angesetzt ist. Das Kölbchen ist mit einer Lösung bekannten u n d konstanten p H -Wertes (z. B. Standard-Azetat-Puffer p H = 4,62) gefüllt u n d taucht in die zu untersuchende Lösung, deren p H W e r t unbekannt ist, ein. Zwischen den Lösungen mit verschiedener [H + ] tritt eine Potentialdifferenz auf, die mit zwei Hilfselektroden gemessen wird. W ä h r e n d die in die Bezugslösung mit bekanntem p H - W e r t tauchende Elektrode (Bezugselektrode) nicht pjj-unabhängig zu sein braucht, m u ß f ü r die Hilfselektrode in der zu messenden Lösung (Meßelektrode) selbstverständlich p H - U n a b h ä n g i g k e i t gefordert werden. Man verwendet eine gesättigte Kalomelelektrode. Die ganze Anordnung wird als „Glaselektrodenkette" bezeichnet. D i e Vorgänge, die zur Ausbildung MessBezugselektrode elektrode des Potentials einer Glaselektrode führen, unterscheiden sich grundleg e n d von den durch Elektronenaustausch b e d i n g t e n V o r g ä n g e n an d e n bisher besprochenen Indikatorelektroden. O b w o h l eine vollständige theoretische D e u t u n g d e s experimentellen Verhaltens noch nicht möglich ist, wird a n g e n o m m e n , daß permutitähnlichen Ionenaustauschvorgängen (vgl. S. 169) für die Ausbildung des Potentials eine ganz wesentliche B e d e u t u n g zukommt. Natrium-Ionen des Glases werden durch Wasserstoffionen aus den Lösungen I und II (Fig. 48) ersetzt. Hierbei bilden sich Kieselsäure-Gelschichten mit auf beiden Seiten der Glasmembran g l e i Fig..47 c h e r Wasserstoffionenkonzentration (Ak+ tivität) aus, die im Pj 1 -Bereich2—9 von der [H ] der angrenzenden Lösungen u n a b h ä n g i g ist [77]. Die Unterschiede zwischen den Potentialen der Wasserstoffionen in der Gelschicht u n d den Lösungen I u n d II ergeben dann die beiden Potentialsprünge. Schematisch sind diese Verhältnisse in der Fig. 48 (nach Kratz) dargestellt.

278

Beispiele für die Anwendungsmöglichkeit

Wie wir sehen, bildet sich eine Potentialdifferenz aus, weshalb man zur Vermeidung von Mißverständnissen besser von der„Glaselektroden-Potendialdifferenz" als vom Glaselektrodenpotential spricht. Der Potentialsprung gehorcht der Nernstschen Gleichung innerhalb bestimmter p H -Grenzen (etwa p H = 2 bis p H = 9, siehe oben), und zwar beträgt dann die Glaselektrodenpotentialdifferenz bei 25° C Ae = 0,059 • (p H x — p H b ) Volt, (1) wobei unter p H x der p H -Wert der unbekannten äußeren Lösung und p H b der bekannte p H -Wert der inneren Bezugslösung zu verstehen ist. Formel (1) gilt bei Verwendung gleicher Hilfselektroden als Bezugs- und Meßelek-

Fig. 48

trode. Wird aber für die Bezugslösung eine andere Hilfselektrode verwendet, ist für die Berechnung der EMK der Glaselektrodenkette die Potentialdifferenz der beiden Hilfselektroden Ae Hi zu berücksichtigen: Ae = Ae m + 0,059 (p H x — p H b ) Volt.

(2)

Bezüglich des Vorzeichens von Ae m , das sich stets nach der

Oxydations- und Reduktionsanalysen

279

Meßelektrode richten soll, vgl. [18]. Die Lage des Meßwertbereiches von Ae in V (bzw. mV) in Abhängigkeit vom p H -Wert kann durch Wahl des p H -Wertes der Bezugslösung sowie der Potentialdifferenz der Hilfselektrode variiert werden. Glaselektrodenpotentialdifferenzen zeigen Abweichungen von der Nernstschen Gleichung bei hohen (Alkalifehler) und niedrigen p H -Werten (Säurefehler). Nach Schwabe und Glöckner [77] hängt in Übereinstimmung mit den Vorstellungen über die Entstehung der Potentialsprünge der Alkalifehler mit einer Abnahme, der Säurefehler mit einer Zunahme der sonst konstanten WasserstoffionenKonzentration in der an Lösung I grenzenden Gelschicht zusammen.

Besonders der Alkalifehler kann beträchtliche Werte erreichen und z. B. bei der Titration mehrbasischer Säuren die Erkennung der letzten Stufe erschweren. Nach Barton und Bateson (1935) soll trotzdem die Neutralisation des dritten H + -Ions der Phosphorsäure noch zu erkennen sein. Auf weitere Einzelheiten, wie z. B. das „Asymmetriepotential", (eine Potentialdifferenz, die unerwartet bei gleichem p l r W e r t der Lösungen I und II auftritt und vermutlich mit der verschieden großen Austauschfähigkeit der beiden Glasseiten zusammenhängt), kann hier nicht näher eingegangen werden. Zum Studium, seien die zusammenfassenden Darstellungen [18], [54], [76] empfohlen. Die Potentialmessung wird wegen des hohen Widerstandes der Glaselektroden zweckmäßig mit einem Röhrenvoltmeter durchgeführt. Die Glaselektroden müssen vor der Benutzung so lange, etwa 1 bis 2 Wochen, in Wasser quellen, bis sie keinen Potentialgang mehr zeigen. Nach der Benutzung müssen die Glaselektroden sorgfältig gereinigt (mechanische und glasangreifende Reinigungsmittel sind unbedingt zu vermeiden!) und in Wasser aufbewahrt werden. Genaue Betriebsdaten und Vorschriften

280

Beispiele für die Anwendungsmöglichkeit

zur Behandlung sind käuflichen Glaselektroden stets beigefügt. 3. Oxydations- und Reduktionsanalysen Die Bestimmung von Eisen und Mangan in einer Titration läßt sich mit Kaliumpermanganatlösung durchführen. Das Eisen muß als Eisen(II)-, das Mangan als Mangan(II)-Salz vorliegen. Die Titration der Eisen(II)-Ionen in schwefelsaurer Lösung ergibt einen starken Potentialsprung nach Beendigung der Reaktion M n ( V + 5 Fe 2+ + 8 H + = Mn 2+ + 5 Fe 3+ + 4 H 2 0 . Enthält die Lösung gleichzeitig einen Uberschuß von Kaliumfluorid, so schließt sich dieser Reaktion eine zweite an, die in der Oxydation der während des ersten Vorganges entstehenden Mangan(II)-Ionen zu Mangan(III)Ionen besteht: M n 0 4 - + 4 Mn 2+ + 8 H + = 5 Mn 3+ + 4 H 2 0 . In der Potentialtitrationskurve erscheint also ein zweiter Sprung, wenn ein u m ein Viertel größeres Volumen der Permanganatlösung hinzugegeben wurde, als zur Erreichung des ersten Sprunges erforderlich war. Bezeichnet man die zur Oxydation der Eisen(II)-Ionen notwendigen ml der Permanganatlösung mit a und die bis zum zweiten Sprung erforderlichen ml mit b, so ist b = (a + a/4), wenn die zu titrierende Lösung nurEisen(II)-Ionen enthält. Sind aber von vornherein schon Mangan(II)-Ionen vorhanden, so ist die bis zum zweiten Sprung erforderliche Menge der Permanganatlösung (b) größer als (a + a/4), u n d das zur Titration der ursprünglich vorhandenen Mangan-Ionen verbrauchte Volumen der Permanganatlösung beträgt x = b — ( a + a/4) oder b — 5/4a. Für die praktische Durchführung der Bestimmung ist zu beachten, daß einerseits eine fluoridhaltige Eisen(II)-Salzlösung luftempfindlich ist und daß andererseits eine saure Fluoridlösung die Verwendung eines gläsernen Titriergefäßes ausschließt. Man arbeitet daher zweckmäßig in folgender Weise:

Oxydations- und Reduktionsanalysen

281

Als Titriergefäß dient eine Platinschale, in der sich die zunächst fluoridfreie, schwefelsaure Lösung (5 ml konz. H 2 S0 4 pro 100 ml) befindet; Indikatorelektrode ist ein Platindraht. Man titriert zunächst bei Zimmertemperatur unter Gegenschaltung des für den ersten Sprung gültigen Umschlagpotentials + 0,77 Volt. Sobald der erste Äquivalenzpunkt erreicht ist, werden 7 g Kaliumfluorid pro 100 ml Lösung hinzugegeben. Dann wird die Lösung bei 80° C nach der Wendepunktsmethode bis zum zweiten, der Mangan(II)-Ionenkonzentration entsprechenden Äquivalenzpunkt weiter titriert. Die Bestimmung von Zinn und Antimon dichromat:

mit Kalium-

Zinn(II)-Salze bzw. Antimonite lassen sich durch Kaliumdichromat in stark salzsaurer Lösung zu Zinn(IV)-Salzen bzw. Antimonaten oxydieren: Cr 2 0 7 2 - + 1 4 H + + 3 Sn2+ = 2 Cr3+ + 3 Sn4+ + 7 H 2 0 Cr 2 0 7 2 " + 8 H + + 3 [Sb0 2 ]- + 5 H 2 0 = 2Cr s + + 3 [Sb(OH) e ]. Die Erkennung des Endpunktes erfolgt potentiometrisch mit Hilfe einer Platinelektrode. Die Titration muß in Lösungen erfolgen, die 25 Volumprozente konzentrierte Salzsäure enthalten. Der Potentialsprung ist beim Zinn etwa zehnmal so groß wie beim Antimon. Selektivbestimmung des Antimons neben Zinn: Befinden sich Ionen des zweiwertigen Zinns und des dreiwertigen Antimons gemeinsam in Lösung, so ergibt die potentiometrische Titration nur einen, der Summe beider Bestandteile entsprechenden Potentialsprung. Setzt man jedoch einer zweiten Probe der Lösung einen Uberschuß von Quecksilber(II)-chlorid hinzu, so wird das zweiwertige Zinn oxydiert, g R g 2 + + Sn 2 + = H g * + Sn4+> während das dreiwertige Antimon nicht angegriffen wird. Wird nun potentiometrisch titriert, so erhält man einen Potentialsprung, der nur die Menge des Antimons anzeigt. Das schwerlösliche Quecksilber(I)-chlorid wird durch die Dichromatlösung nicht oxydiert.

282

Beispiele für die Anwendungsmöglichkeit

Die Bestimmung des Vanadins mit Cer(IV)-suIfat: Cer(IV)-sulfat ist ein starkes, vielfach sogar dem Permanganat vorzuziehendes Oxydationsmittel. Während das + 4

Permanganat-Ionje nach den Versuchsbedingungen zuMn, + 3

+2

Mn oder Mn reduziert wird, ändert sich die Wertigkeit des Cers immer nur um eine Stufe: Aus dem Cer(IV)-Ion wird das Cer(III)-Ion: Ce 4+ + s - C e 3 + . Cer(IV)-sulfatlösungen sind lange Zeit hindurch titerbeständig und weder licht- noch temperaturempfindlich. Man kann mit ihnen im Gegensatz zu Permanganatlösungen auch in stark salzsaurer Lösung titrieren. Sie sind daher maßanalytisch vielseitig verwendbar, und nur der Mangel an einem geeigneten Indikator hat sie, bevor die potentiometrische Endanzeige allgemeinere Verbreitung gefunden hat, nicht zur Geltung kommen lassen. Herstellung der Cer(IV)-sulfatlösung: Cer(III)-oxalat wird bei etwa 60° C verglüht und das verbleibende Cer(IV)-oxid längere Zeit bei 130° C mit konzentrierter Schwefelsäure behandelt. Die Lösung soll nach dem Abkühlen und Verdünnen etwa 0,1-n an Cer(IV)-sulfat, Ce(S04)2> und 1-n an Schwefelsäure sein. Von ungelöstem Cer(IV)-oxid wird abfiltriert. Es ist nicht erforderlich, daß das verwendete Cer(III)-oxalat völlig frei von anderen seltenen Erden ist. Der Titer der Cer(IV)-sulfatlösung wird bei 70° C in schwach salzsaurer Lösung gegen Natriumoxalat potentiometrisch ermittelt. Die Bestimmung des Vanadins erfolgt in heißer, stark mineralsaurer Lösung entsprechend der schematischen Formulierung: Ce 4+ + VO z+ = Ce 3+ + V 0 3 + . In saurer Lösung wird also das Vanadyl-Ion, das sich vom vierwertigen Vanadin ableitet, zum Vanadyl-Ion, dessen Vanadin fünfwertig ist, oxydiert. Ist das Vanadin ursprünglich fünfwertig, liegt es also etwa als Vanadat vor, so muß es zuvor in dem durch Fig. 10, S . 5 1 , wiedergegebenen Apparat in saurer Lösung mit Schwefeldioxidgas reduziert werden. Man beobachtet einen Potentialsprung von etwa 0,4 Volt.

Oxydations- und Reduktionsanalysen

283

Gemeinsame Bestimmung von Vanadin und Eisen: Man titriert die saure, Vanadyl(IV)- und Eisen(II)-Ionen enthaltende Lösung zunächst in der Kälte bis zum ersten Potentialsprung, der dem Gehalt an Eisen entspricht, erwärmt die Lösung auf 50° bis 6 0 ° C und titriert weiter bis zum zweiten, den Vanadingehalt anzeigenden Wendepunkt. Diese Methode ist wichtig für die Analyse vanadiumhaltiger Stahlsorten. Die Bestimmung von Kupfer und Eisen mit Chrom(II)-sulfat: Das Normalpotential des Vorgangs Cr 2 + ^Cr 3 + + s beträgt — 0,695 Volt, bezogen auf die normale Kalomelelektrode. Wäßrige Chrom(II)-Salzlösungen wirken also außerordentlich stark reduzierend. Sie übertreffen bezüglich ihres Reduktionsvermögens noch erheblich die in der potentiometrischen Maßanalyse gleichfalls viel verwendeten Titan(Ill)-chloridlösungen. Beide Reduktionsmittel sind heute für die schnelle und exakte Analyse der verschiedensten binären und ternären Legierungen nahezu unentbehrlich geworden. Herstellung der Chrom(II)-sulfatlösung: Reinstes Kaliumdichromat wird mit konzentrierter Salzsäure bis zum Aufhören der Chlorentwicklung gekocht. Die Lösung wird abgekühlt und in einem Kolben mit aufgesetztem Bunsenventil einige Stunden lang mit reinstem Zink reduziert. Wenn die Lösung nur noch rein blau gefärbt ist, wird sie durch ein mit Glaswollefilter versehenes Heberrohr mit Wasserstoffgas in überschüssige, zuvor ausgekochte Natriumacetatlösung gedrückt. Hier fällt schwerlösliches Chrom(II)-acetat aus, das in einer Wasserstoffatmosphäre etwa zehnmal durch Dekantieren mit ausgekochtemWasser bis zum Verschwinden der Chloridreaktion gewaschen und dann in ausgekochter, verdünnter Schwefelsäure gelöst wird. Diese Lösung wird, nachdem man sie hat absitzen lassen, ebenfalls unter Wasserstoffgas in die Vorratsflasche abgehebert und mit ausgekochtem Wasser verdünnt. Chrom(II)-Salzlösungen sind, ebenso wie Titan(III)-chloridlösungen, äußerst luftempfindlich. Man muß sie daher sorgfältig vor Luft geschützt aufheben und verwenden. Dazu eignet sich nach Zintl und Rienäcker (1927) die durch. Fig. 49 dargestellte Vorrichtung. Die Maßlösung befindet sich unter Wasserstoff in der Vorratsflasche C, •welche die Bürette Ä. txägt. Um

284

Beispiele für die Anwendungsmöglichkeit

diese zu füllen, schließt man die Hähne F und B und öffnet den Hahn E . Die Maßlösung steigt dann durch Ansaugen bei E und durch den Druck des bei H über eine Waschflasche angeschlossenen Kippschen Wasserstoffentwiclders durch das Rohr G in die Bürette. Ist die Bürette gefüllt, so wird E geschlossen und F geöffnet. Ein besonderer Vorteil dieser Anordnung ist der Umstand, daß die Lösung von ihrem Eintritt in die Bürette nicht mit gefetteten Hähnen in Berührung kommt. Das Bunsenventil D hat den Zweck, beim Ansaugen das Eindringen von Luft zu verhindern. Die Einstellung der Chrom(II) -sulfatlösung erfolgt am besten durch potentiometrische Titration einer Kupfer(II)-sulfatlösung bekannten Gehaltes.

iE C

Die Bestimmung des Kupfers erFig. 49 folgt bei 80° C in chloridfreier, schwefelsaurer Lösung. Selbstverständlich muß bei Luftabschluß titriert werden: Über die Öffnung des als Titriergefäß dienenden Becherglases wird eine der käuflichen Flaschenkappen aus dünnwandigem Gummi gezogen, die vorher mit verdünnter Salzsäure kurze Zeit ausgekocht und dann mit Hilfe eines Korkbohrers mit den nötigen Bohrungen für den Rührer, die Bürettenspitze und das Einlaßrohr für das indifferente Gas (von Sauerstoff befreiter Stickstoff!) versehen wurde. Auch muß die zu untersuchende Lösung vor der eigentlichen Titration vollständig von dem in ihr gelösten Luftsauerstoff befreit worden sein, weil anderenfalls Fehler von mehreren Prozenten auftreten können. Die Lösung wird daher „ v o r r e d u z i e r t", d. h. mit einigen Millilitern der Chrom(II)-sulfatlösung versetzt. Die Chrom(II)-Ionen reduzieren sofort den gelösten Sauerstoff sowie teilweise auch schon die Kupfer(II)-Ionen. Durch Zusatz eines stärkeren Oxydationsmittels aber, z. B. einiger Milliliter Kaliumbromatlösung, wird die Reduktion der Kupfer(II)-Ionen wieder rückgängig gemacht. Nun erst

Die Geschichte der Maßanalyse

285

beginnt die eigentliche Titration mit der Chrom(II)-sulfatlösung: Ein erster Potentialsprung zeigt die völlige Reduktion des zugesetzten Oxydationsmittels (hier Kaliumbromat) an, ein zweiter die vollendete Reduktion der Kupfer(II)-Ionen zu metallischem Kupfer: 2 Cr2+ + Cu2+ = 2 Cr3+ + Cu. Ein der Kupfer(I)-Stufe entsprechender Potentialsprung tritt in schwefelsaurer Lösung nur andeutungsweise auf, da sich die primär entstehenden Kupfer(I)-Ionen nach der Gleichung: 2 Cu+ = Cu + Cu2+ zu metallischem Kupfer und Kupfer(II)-Ionen disproportionieren. In Gegenwart von Chlorid-Ionen werden dagegen die Kupfer(II)-Ionen nur bis zur Kupfer(I)-Stufe reduziert! Daher stört Salzsäure bei der Titration der Kupfer(II)-Ionen mit Chrom(II)-sulfatlösung. Salpetersäure darf ihrer oxydierenden Eigenschaften wegen natürlich ebenfalls nicht zugegen sein. Die zwischen dem ersten und zweiten Potentialsprung verbrauchten Milliliter der Chrom(II)sulfatlösung geben den Gehalt der untersuchten Lösung an Kupfer(II)-Ionen an. Simultanbestimmung von Kupfer und Eisen. Die Eisen(III)- und Kupfer(II)-Ionen enthaltende schwefelsaure Lösung wird bei 80° C vorreduziert und nach Zusatz von wenig Kaliumbromatlösung mit Chrom(II)-sulfatlösung titriert. Es treten drei Potentialsprünge auf, von denen der erste die Reduktion des Bromatüberschusses, der zweite die Reduktion Fe 3+ + £ ^ Fe 2+ und der dritte die Reduktion CU2+ + 2 E ^ C U anzeigt. Etwa vorhandenes Arsen wird durch das Bromat zu Arsensäure oxydiert, mehr als 5 mg Antimon pro 500 ml Lösung verhindern das Auftreten des dritten Potentialsprunges. Die angegebene Methode erlaubt die Bestimmung des Eisens selbst in Gegenwart der zweitausendfachen Gewichtsmenge Kupfer! Soll ein Kupferkies untersucht werden, so wird er zunächst mit siedender konzentrierter Schwefelsäure unter Zusatz von Kaliumnersulfat aufgeschlossen.

286 Anhang KURZER ÜBERBLICK ÜBER DIE GESCHICHTE DER MASSANALYSE Die Benutzung maßanalytischer Verfahren zur quantitativen Untersuchung von Substanzen reicht zurück bis in das Zeitalter, in dem man begann, als wichtigste Aufgabe der chemischen Forschung die Berücksichtigung der quantitativen Verhältnisse anzusehen. Das ist das Zeitalter» welches sich an die Periode der mehr qualitativen Betrachtungsweise chemischer Vorgänge anschließt, wie sie bei den Phlogistikern (etwa 1700—1780) vorherrschte, und dessen Beginn durch den Namen L a v o i s i e r (1743 bis 1794) gekennzeichnet wird. Einer der ersten, welcher auf maßanalytischer Grundlage quantitative Bestimmungen durchführte, dürfte der französische Chemiker D e s c r o i z i l l e s (1789) gewesen sein. Er verglich den Wirkungswert chlorhaltiger Bleichflüssigkeiten untereinander, indem er Anteile derselben so lange zu einer Indigolösung bestimmten Gehaltes hinzufügte, bis diese gerade entfärbt wurde. Es waren also praktische Gesichtspunkte und Notwendigkeiten, welche die Entstehung der Chlorometrie durch Indigolösung veranlaßten. Aber die Benutzung des maßanalytischen Prinzips blieb doch zunächst mehr eine Einzelerscheinung. In ähnlicher Weise bedienten sich auch andere Forscher gelegentlich der volumetrischen Methode zur vergleichenden Bestimmung des Wertes chemischer Stoffe, z . B . V a u q u e l i n (1763—1827), der Entdecker des Chroms und Berylliums. Aber erst G a y - L u s s a c (1778—1850), dessen Name besonders wegen seiner Entdeckung der Gesetzmäßigkeiten des Temperatureinflusses auf Gasvolumina und wegen seiner Untersuchungen über die Volumenverhältnisse miteinander reagierender Gase bekannt geblieben ist, kann als der eigentliche Begründer der Maßanalyse angesehen werden. Er baute systematisch die schon vorhandenen Ansätze volumetrischer Verfahren zu brauchbaren Me-

Die Geschichte der Maßanalyse

287

thoden aus und schuf neue, um die langwierigen gravimetrischen Bestimmungsverfahren vermeiden und damit Zeit ersparen zu können. Im Jahre 1824 gab er eine Anleitung zur Chlorometrie heraus. Er verwendete zur Bestimmung chlorhaltiger Flüssigkeiten eine Lösung von arseniger Säure. Die beendete Überführung derselben in Arsensäure erkannte er an der nunmehr eintretenden Entfärbung von geringen Mengen Indigolösung. Er benutzte also die Indigolösung nur noch als Endanzeiger, aber nicht mehr wie Descroizilles als Reagenslösung. Durch seine Schrift „Essai des potasses du commerce" (1828) wurde das Gebiet der Alkalimetrie und Acidimetrie gefördert. Er stellte Mineralsäuren unter Verwendung von Lackmustinktur als Indikator zunächst auf eine Sodalösung bekannten Gehaltes ein und bestimmte dann mit ihnen die Auflösung von Proben unbekannten Sodagehaltes. Etwa im Jahre 1830 folgte eine Anleitung zur volumetrischen Bestimmung des Silbers. Durch sie setzte er an die Stelle der sog. „Kupellationsmethode" — der bis dahin bei der quantitativen Untersuchung der Münzmetalle auf ihren Silbergehalt hin allgemein angewandten Methode auf trockenem Wege — die titrimetrische Bestimmung des Silbers auf nassem Wege. Er nahm sie mit einer Kochsalzlösung vor, welche auf die Auflösung einer Münzlegierung bekannten Silbergehaltes eingestellt war. Das Ende der Titration war erreicht, wenn ein Tropfen neu hinzugesetzter Kochsalzlösung keine weitere Fällung von Silberchlorid mehr hervorrief. Gay-Lussac ist somit also auch der Begründer der titrimetrischen Fällungsanalysen. Es hat jedoch trotz der bereits erzielten guten Resultate und der Bedeutung des Mannes, welcher sich für das maßanalytische Prinzip einsetzte, noch ein weiteres Vierteljahrhundert gedauert, bis die Volumetrie allgemeine Anerkennung und Verwendung fand und im Bereich der quantitativen Analyse eine der Gravimetrie gleichsam ebenbürtige Stellung einnehmen konnte. Das geschah vor allen Dingen durch die Auffindung neuer maßanalytischer

288

Die Geschichte der Maßanalyse

Verfahren. So waren bedeutende Fortschritte erzielt, als M a r g u e r i t t e (1846) Auflösungen von Kaliumpermanganat zur Bestimmung des Eisens heranzog und damit die manganometrischen Verfahren erschloß, die später eine so weite Verbreitung gefunden haben, ferner als R . B u n s e n (1811—1902) die Bestimmung oxydierbarer und reduzierbarer Substanzen durch Verwendung einer Jodjodkaliumlösung, einer angesäuerten Kaliumjodidlösung und von schwefliger Säure lehrte und so die Voraussetzungen für die mannigfaltigen und eleganten jodometrischen Methoden gab. Damit waren also die Grundlagen für die wichtigsten Hauptabschnitte der Maßanalyse geschaffen: für die Oxydations- und Reduktionsmethoden, für die Neutralisationsverfahren und für die volumetrischen Fällungsanalysen. Bereits im Jahre 1855 konnte F r i e d r i c h M o h r (1806 bis 1879) das erste deutsche „Lehrbuch der chemisch-analytischen Titriermethode" verfassen; er stellte darin „für Chemiker, Ärzte und Pharmazeuten, Berg- und Hüttenmänner, Fabrikanten, Agronomen, Metallurgen, Münzbeamte" usw. die bis dahin bekannten Verfahren, die er großenteils auf Grund eigener Versuche verbessert hatte, systematisch zusammen und fügte ihnen viele neue Methoden hinzu. F. Mohr lehnte die bis dahin vielfach gebräuchlichen Reagenslösungen willkürlichen Gehaltes ab, setzte sich nachdrücklich für das noch heute allgemein gebräuchliche, natürliche titrimetrische System ein, das die „Normallösungen" zur Grundlage hat, und trug so zur Vereinfachung und Übersichtlichkeit bei. Sein klassisches Lehrbuch hat viele Auflagen erlebt und ist das Vorbild für zahlreiche später erschienene Lehrbücher und Leitfäden der Maßanalyse gewesen. Friedrich Mohr war ein Mann, reich an Wissen und an geistvollen Ideen. Er war z. B. schon im Jahre 1837 sehr nahe an der vollen Erkenntnis des Gesetzes von der Erhaltung der Kraft, das 1842 von R. Mayer formuliert wurde. Das eingehende Studium seines Lehrbuches der Titriermethode bringt auch heute noch Nutzen und Freude!

Die Geschichte der Maßanalyse

289

Im Laufe der späteren Jahrzehnte ist dann das Gebiet der Maßanalyse von vielen Forschern weiter bearbeitet worden, wobei sich noch zahlreiche wertvolle Neuerungen ergaben. So hat z. B. J. V o 1 h a r d (1834—1910) durch die Benutzung einer Kaliumthiocyanatlösung als Reagens und des Ammonium-eisen(III)-sulfates als Indikator den Anwendungsbereich der volumetrischen Fällungsanalysen beträchtlich erweitert. Andererseits brachte es die immer mehr in den Vordergrund tretende Behandlung chemischer Vorgänge nach der physikalisch-chemischen Seite hin und mit physikalisch-chemischen Untersuchungsmethoden mit sich, daß die Erforschung des Mechanismus der Reaktionen, auf denen die maßanalytischen Bestimmungen beruhen, große Fortschritte machte. Die theoretischen Grundlagen der Oxydations- und Reduktionsverfahren, der titrimetrischen Fällungsanalysen, der Komplexbildungsanalysen, der Neutralisationsvorgänge, der Indikatorumschläge usw. wurden entwickelt und auf den Stand der Erkenntnis gebracht, welcher in den vorhergehenden Kapiteln dieses Buches geschildert worden ist. Der Ausbau der physikalischen Chemie und ihrer Untersuchungsmethoden ist auch in anderer Hinsicht nicht ohne Einfluß auf die Maßanalyse geblieben. Zwei sowohl bei wissenschaftlich-chemischen Untersuchungen als auch in der industriellen Praxis heute bereits viel benutzte Titrierverfahren sind Meßverfahren physikalisch-chemischer Art: Die potentiometrische Maßanalyse und die Leitfähigkeitstitration. Die Elektrometrie nahm ihren Ausgang von Arbeiten, die um die Jahrhundertwende von R. B e h r e n d (1893), F. W. K ü s t e r (1899) und A. T h i e l (1900) durchgeführt worden waren. Später wurden diese Methoden von A. D u t o i t (1911) weiter gefördert. In der Zeit nach dem ersten Weltkrieg ging die Entwicklung der potentiometrischen Maßanalyse geradezu stürmisch voran. In den Instituten vieler Kulturländer beschäftigten sich — und beschäftigen sich auch heute noch —• viele namhafte Chemiker mit ihrem Ausbau und gaben zahlreiche wertvolle Neuerungen an. Die bekannteste deutsche Monographie 19

Jander-Jahr, Maßanalyse

290

Die Geschichte der Maßanalyse

über diesen Gegenstand wurde von E. M ü l l e r [66] verfaßt, welcher sich selbst in hervorragendem Maße um die Grundlagen und die weitere Entwicklung der elektrometrischen Verfahren bemüht und ihre vielseitige Verwendungsmöglichkeit überzeugend nachgewiesen hat. Die Leitfähigkeitstitration geht zurück auf Arbeiten von Fr. K o h l r a u s c h (1885), D. B e r t h e l o t (1893) und anderen. Für die Verwendung der Leitfähigkeitsmessungen für Titrationen sind besonders wertvoll geworden einige Untersuchungen von K ü s t e r (1902—1904), T h i e l (1905 bis 1909) und D u t o i t (1910). Jedoch erst in den letzten Jahrzehnten sind, hauptsächlich durch Arbeiten und monographische Darstellungen von I. M. K o l t h o f f [44], G. J a n d e r und O. P f u n d t [38], sowie H . T . S . B r i t t o n [12] und G. J o n e s (1928—1940), die Prinzipien und — durch Konstruktion zuverlässig und empfindlich arbeitender handlicher Apparaturen — die Meßverfahren der konduktometrischen Maßanalyse so weit entwickelt worden, daß sie bei wissenschaftlichen und praktischen analytischen Untersuchungen mancherlei Art mit gutem Erfolg und viel Nutzen angewendet werden können und auch zur täglichen analytischen Kontrolle in technischen Betrieben vielfach herangezogen worden sind.

Atomgewichte Atomgewichte Symbol

Aluminium Antimon Arsen Barium Beryllium Blei Bor Brom Cadmium Caesium Calcium Cer Chlor Chrom Eisen Fluor Gold Jod Kalium Kobalt Kohlenstoff Kupfer Lanthan Lithium Magnesium Mangan Molybdän

AI Sb As Ba Be Pb B Br Cd Cs Ca Ce Cl Cr Fe F Au

J

K Co C Cu La Li Mg Mn Mo

1960/611)

Atomgewicht

26,97 121,76 74,91 137,36 9,013 207,21 10,82 79,916 112,41 132,91 40,08 140,13 35,457 52,01 55,85 19,00 197,2 126,91 39,100 58,94 12,010 63,542 138,92 6,940 24,32 54,93 95,95

291

Natrium Nickel Palladium Phosphor Platin Quecksilber Bubidium Sauerstoff Schwefel Selen Silber Silicium Stickstoff Strontium Tantal Tellur Thallium Thorium Titan Uran Vanadin Wasserstoff Wismut Wolfram Zink Zinn Zirkonium

Symbol

Atomgewicht

Na Ni Pd P Pt Hg Bb O S Se Ag Si N Sr Ta Te T1 Th Ti U V H Bi W Zn Sn Zr

22,997 58,69 106,7 30,974 195,23 200,61 85,48 16,0000 32,066 78,96 107,880 28,09 14,008 87,63 180,88 127,61 204,39 232,12 47,90 238,07 50,95 1,0080 209,00 183,92 65,377 118,70 91,22

') Nach „Table des masses atomiques 1961", Beilage zum Bull. Soc. chim. F r a n c e . 1961, Heft 1.

NAMENREGISTER Alexander 205 Armstrong 138 Barton u. Bateson 278 Bateson s. Barton 278 Behrend 289 Berthelot 290 Beste s. Jander 86, 99 Beyer 138 Bjerrum 132 Bladier 185, 187 Blasius 169 Boeseken 165 Britton 290 Brode 96 Brönsted 116 Bruhns 105

Knop 69, 73 Knop u. KubelkováKnopová 73 Knorre 64 Köhl s. Treadwell 273 Kölliker 84 Galletti 203 Kohlrausch 289 Gay-Lussae 28, 180, 191, Kohlrausch u. Heyd193, 240, 286 weiller 109 Goetz 215 Kolthoff 47, 58, 62, 76, Glöckner s. Schwabe 278 83, 88, 96, 97, 102, Griffin 28 125, 137, 145, 169,191, Guldberg u. Waage 109 202, 290 Guyard 64 Kolthoff u. Sarver 70 Györy 76 Kratz 277 Faraday 223 Farsoe 98 Fischer 64 Flaschka 209 Fromboese 188

Hach 215 Haen, de 104 H a h n 100 H a m p e 64 Clark 185 Hantzsdi 132, 136 Cloëz 74 Conrath s. Reinitzer 66 Harms 231 Hehner 156 Cowles 149 Hermans 165 Cramer 81 Heydweiller s. KohlDescroizilles 286 rausdl 109 Devarda 159 Holverscheidt 101 Diefenthäler 102 Diehl 215 Incze 146 Diltey 132, 138 Duflos 94 Jander 290 Dupasquier 78 Jander u. Beste 86, 99 Dutoit 290 Jander u. P f u n d t 232 Jander u. Reeh 59 Fahlberg 203 Jones 290 F a j a n s 137, 183, 201 Kjeldahl 158, 159 Fajans u. Wolff 202 Klemm u. Wahl 56 Falkenhagen 225 Bunsen 78, 86, 97, 288

Kubelková-Knopová s. Knop 73 Küster 142, 149, 290 Lang 102 Lavoisier 286 Leick 187, 188 Liebig, von 180, 207 Low 104 Lunge 62 Manchot 55 Manchot u. Schmid 55 Manchot u. Wilhelms 55 Marc 98 M a r g u e r i t e 28, 50, 288 Michaelis 69 Mittasch 49 Mohr 14, 28, 102, 181, 198, 200, 288 Müller 102, 290

Namenregister N e m s t 243 Noll 200 Ostwald, W i . 132 Ostwald, W o . 138 Pauling 38 Pfeiffer 138 Pfundt 290 Pfundt s. Jander 232 Poggendorff 260 Prédit 200 Pregl 149

Sarver s. Kolthoff 70 Schäfer, H. 54, 55, 165 Schäfer, H. u. Sieverts 166 Schäfer, K. 132, 136 Schaffner 182 Schlösser 23, 32 Schmid s. Manchot 55 Scholder 56 Schulek 103 Schwabe u. Glöckner

293 Ulimann 98 Ulsdi 158 Vauquelin 286 Volhard 64, 88, 96, 181 191, 194, 289 W a a g e s. Guldberg 103 W a h l s. Klemm 56 Wells s. Richards 189, 193 Wilhelms s. Manchot 55 Willstätter 138 Winkler 153, 154 Witt 138 Wizinger 132, 138 Wolff s. F a j a n s 202

278 Schwarz 78 Raschig 91, 143 Schwarzenbach 207, 209 Reeh s. Jander 59 Sieverts s. Schäfer, H. Reinhardt 57 166 Reinitzer u. Conrath 66 Skrabal 47, 55 Reißaus 76 Sörensen 45, 111, 146, Richards u. Wells 189, 149 193 Zimmermann 55, 57 Stolle 91 Rienäcker s. Zintl 258, Zintl 259 283 Zintl u. Rienädcer 258, Thiel 111, 132, 142, 291 Ruff 91 283 Rupp 94, 98 Treadwell u. Köhl 273 Zulkowski 87

SACHREGISTER A b k ü r z u n g e n : arg. — argentometrisch. Best. — Bestimmung, bromat. — bromatometrisch. chelat. — chelatometrisch. dichromat. — Dichromatmethode. Eig. — Eigenschaft, jod. — jodometrisch. komplex. — komplexometrisch. kond. — konduktometrisch. konz. — konzentriert, Konzentration. Lsg. — Lösung, m a n g . — manganometrisch. Nd. — Niederschlag, neutr. — Neutralisationsmethode, organ. — organisch, pot. — potentiometrisch. T a b . — Tabelle, techn. — technisch. Verb. — Verbindung. Abwasser, Chloridgehalt, arg. n . Mohr 200 Acetat, in Alkaliacetaten, neutr. mittels Ionenaustauscher 169 —, neutr. 163 Acidimetrie 108, 142 —, Geschichte 287 —, Indikatoren 123 —, Urtitersubstanzen 150 Acidimetrische Titrationen, kond. 225, 233 , pot. 256, 273 Adsorptionsindikatoren s. Indikatoren —, Wirkungsweise 183 AeDTE-Maßlsg., Bereitung u. Einstellung 215 Äquivalent-Gewicht 29 —leitfähigkeit, Definition 224 Äquivalenz-Potential 69, 251 —punkt, Acidimetrie—Alkalimetrie 114 , Bromatometrie 75 , Chelatometrie 213 , E r k e n n u n g 14, 36, 221 , Fällungsanalysen 179 , Jodometrie 80 , Kaliumdichromatmethode 68 , Konduktometrie 222 — —, Manganometrie 47 , Potentiometrie 221 Neutralpunkt 13, 114, 119 —sprung bei der Komplexbildung 210

bei mehrbasischen Säuren 210 Äthvlendiamintetraessigsäure (AeDTE, H 4 Y), komplexbildcn-

des Reagens in der Chelatometrie 212 —, Maßlsg., Bereitung u. Einstellung 215 Aktivität 110 Aktivitätskoeffizient 110 Alizarin, Indikator, neutr. 124 Alkaliborate, Borsäuregehalt, neutr. 166 —chlorate, neutr. mittels Ionenaustauscher 172 —dicyanoargentat (I) 208 Fehler bei Glaselektroden 279 —gehalt, in Alkaliarseniten, neutr. 157 — —, in Alkaliboraten, neutr. 157 — —, in Alkalicyaniden, neutr. 157 , in Alkalihydroxiden, neutr. 151 , in Alkalikarbonaten, neutr. 152 , in Alkalitelluraten, neutr. 157 —karboeate, neutr. 153 —karbonate, neben Hydrogenkarbonat, neutr. 154 —metrie 108, 142 — —, Geschichte 287 , Indikatoren 123 , Urtitersubstanzen 143 Alkalimetrische Titrationen, kond. 225, 233 — —, pot. 256, 273 Alkalinitrate, neutr. mittels Ionenaustauscher 172 —perborate, jod. 97 —perkarbonate, jod. 97 —peroxide, jod. 97

Sachregister —phosphate, neutr. mittels Ionenaustauscher 172 , Fhosphatgehalt, mang. 59 —Salze, Alkaligehalt, neutr. 157 schwacher Säuren, neutr. 157 schwacher Säuren, Verdrängungstitration 157 —sulfide, jod. 90 —suliite, jod. 91 Alkohol, Reinigungsmittel 27 Alkohole, mehrwertige 164 Aluminiumblock n. Stock 144 Amberlite, Ionenaustauscher 170 Amidosulfonsäure, Urtitersubstanz, neutr. 150 Aminopolycarbonsäuren, Komplexbildner für Chelatometrie 212 Aminoverb., Stickstoffgehalt, neutr. 158 — , Zerstörung n. Kjeldahl 159 Ammoniak, in Ammoniumsalzen, neutr. 158 —, Destillationsmethode 158 —, Dissoziationskonstante 118 —, kond. 234 —Isg., Wägung 151 —, neutr. mit Essigsäure 119 Ammoniumacetatlsg., Reaktion 122 —chlorid, kond. durch Verdrängung 235 —chloridlsg., Reaktion 120 —eisen (III)-sulfat, Indikator für Argentometrie 181, 191, 194, 289 —formiat, Reduktionsmittel 189 —hexamolybdat 205 —Ion, Bildungsreaktion, Gleichgewichtskonst. 209 —molybdat, Maßlsg., Bereitung 206 —nitrat s. Ammonsalpeter —phosphat in Gartendünger 162 —Salze, Ammoniakgehalt, neutr. 158 , kond. durch Verdrängung 236 —sulfat, Sulfatgehalt, kond. 239 —thiocyanat, Eig. 190 , Maßlsg., Bereitung u. E i n stellung 190 , Reinheitsprüfung 191 , Urtitersubstanz 190 Ammonsalpeter, Ammoniak- bzw. Ammoniumgehalt, neutr. 160 —, Nitratgehalt, neutr. 161 — , Stickstoffgehalt, neutr. 160 Amylose 81 Analysenresultat, Berechnung 50 Anionenaustauscher 169 —, Kapazität 171

295

Anode 223 Ansaugvorrichtung für Pipetten 17 Antimon, mit Kaliumdichromat, pot. 281 Antimonite, Antimonbest., pot. 281 — neben Zinn, Selektivbest., pot. 281 — ( I I I ) , bromat. 76 — ( I I I ) , jod. 92 —oxid, bromat. 76 oxid, jod. 92 Argentometrie 188 Arsen (III), bromat. 76 —, jod. 91 —chlorid, Destillation 92 —oxid, bromat' 76 , jod. 89, 91 , Reinigung 89 , Urtitersubstanz, jod. 88 Asymmetriepotential 278 Atomgewichte (1956) 291 — von Chlor, Revision 193 — von Natrium, Revision 193 Auftriebskorrektur bei Präzisionsbest. 33 Ausdämpfen von Glasgefäßen 27 Ausschlagmethode, Leitfähigkeitsmessung 231 Austauschersäulen 170 —, Regeneration 172 Austauschkapazität, Ionenaustauscher 171 Auxochrome Gruppe 138 Barium, mit Kaliumchromat 185 Barytlauge, Dissoziation 117 —, Maßlsg., Bereitung 150 Basen. Definition n. Brönsted 117 —, Dissoziationskonstanten 118 —, Maßlsg. s. Laugen —, mehrwertige, pot. 274 —, mittelstarke, kond. 235 —, schwache, Dissoziation 117 —, —, kond. 234 —, — , neutr. 151 —, —, neutr., Indikatoren 130, 132 — , —, ineutr. mit schwachen Säuren 119, 132 —, —, neutr. mit starken Säuren 115, 132, 151 —, —, pot. 273 —, — u. schwerlösl., Verdrängung 157 —, — u. starke nebeneinander, kond. 235 —, Simultanbest., pot. 274 —, Stärke der 116

296

Sachregister

—, starke, Dissoziation 117 —, — , Dissoziationskonstante 118 — , — , kond. mit schwachen Säuren 233 —, —, kond. mit starken Säuren 221, 225, 233 —, — , neutr. 151 —, — , neutr., Indikatoren 129, 131 — , — , neutr. mit schwachen Säuren 115, 131 — , —, neutr. mit starken Säuren 113, 129, 131, 151 —> —» pot. m * t schwachen Säuren 273 — . —> pot. mit starken Säuren 273 — , Wasserstoffionenkonz. 118 Benzoesäure, Dissoziationskonstante 173 — , Urtitersubstanz, neutr. 150 Berechnungen, maßanalytische 50 Berliner Blau 71 Beständigkeitskons tarnte 210 Beweglichkeit der Ionen 223 Bezugselektrode 40, 254 Bischoffit 201 Blausäure, Dissoziation 120 Blei, n. Alexander 205 — , n. Alexander, neben Eisen, Calcium, Zink, Kieselsäure 205 —, mit Kaliumchromat 185 —, mit Natriumkarbonat 185 —dioxid, jod. 101 —erze, Bleigehalt n. Alexander 206 —salze, Bleigehalt n. Alexander 206 —sulfat, Auflösung 205 Borate, neutr. 166 Borax, krist., Alkaligehalt, neutr. 157 Borsäure, neutr. 166 — , Komplexverb, mit Polyalkoholen 165 — , Komplexverb, mit Polyalkoholen, Leitfähigkeit 166 —, kond. 233 —, neben hydrolysierbaren Salzen u. schwachen Säuren 166 —titration, Grundlagen 164 , nach Schäfer, Störung durch Eisen u. Aluminium 166 Brauchwasser, Härtebest. 156, 185, 219 — , Kalkgehalt, mang. 60 Braunstein, jod. 101 — , mang. 63 Brechweinstein, Antimongehalt, jod. 92

Brenzkatechinviolett, Indikator, chelat. 213 Bromate, arg. n . Volhard 196 —, jod. 96 Bromatometrie 74, s. auch Kaliumbromat Bromide, arg. n. Fajans 201 —, in neutr. L s g . , arg. n. Mohr 200 —, in saurer Lsg., arg. n. Volhard 196 —, kond. 237 —, pot. 268 —chloride, Simultanbest., pot. 271 —jodide, Simultanbest. pot. 271 Bromkresolpurpur, Indikator, neutr. 166 Bromometrie, Nachteile 107 Brückenschaltung, Wheatstonesche 228 Büretten 18, 19, 25 —, Ablesung 19 —, Abweichung vom wahren Volumen 26 —, Eichung 25 —, für Mikrobest. 19 —, Quetschhahn-, n. Mohr 18 —, für sauerstoffempfindliche Lsg 283 —, mit Schellbachstreifen 19 —, Uberdruckbürette n. GayLussac 240 —, Visierblende, n. Gockel 19 Bunsen, Destillationsmethode 86, 95, 97 —, —, Apparaturen 98 —, — , Fehlermöglichkeiten 98 —ventil 49, 52 Calcium — A e D T E — Komplex, Beständigkeitskonstante 215 — , Best, mit Kaliumpälmitat 185 — , chelat., Ausführung 218 —, chelat., Grundlagen 214 — , chelat., störende Ionen 218 — , mang. 59 —chlorid, Härtebildner 155 —Erio-T-Komplex, Beständigkeitskonstante 215 —hydrogenkarbonat, Härtebildner 155 —sulfat, Härtebildner 155 Carnallit 200 — , techn., Best. n. Precht 200 —, techn., Best. n. Precht, Störung durch Bischoffit 201 Cer(IV)-Salze, jod. 101

Sachregister Cer(IV)-sulfat, Maßlsg., Bereitung 282 , Maßlsg., Einstellung auf Natriumoxalat, pot. 282 , Methode 107, 282 , Oxydationswirkung 282 Chamaeleonlösung 28 Chelate 211 C h e l a t e Compounds 209 Chelateffekt 212 Chelatometrie, Grundlagen 209 —, Maßlsg. 215 Chinhydron 276 —elektrode 276 Chinoide Struktur 136, 138 Chinolingelb, Indikator, bromat. 75 Chinolinverbindungen 159 Chinon 276 Chlorate, jod. 95, 101 Chloride, arg. n. F a j a n s 201 —, arg. n . F a j a n s , Störung durch Fremdiomen 202 —, arg. n . Mohr 200 —, arg. n. Volhard 197 —, Oxydation durch Permanganat 55 —, pot. 268 —, in Trink- oder Abwasser, arg. n. Mohr 200 — Bromide, Simultanbest., pot. 271 — Jodide, Simultanbest., pot. 269 Chlorometrie 286 Chromophore Gruppen 136, 138 Chrom(II)-sulfat, Maßlsg., B e reitung u. Einstellung 283 — — Methode 107 —schwefelsaure, Reinigungsmittel 27, 68 Clarksdhes Seifenverfahren 185 Coulomb, M e ß g r ö ß e 223, 244 Cyanide, arg. n . Volhard 198 —, komplex, n . v o n Liebig 180, 208 —, — , Störung durch Ammoniumsalze 208 —, jod. 103 — n e b e n Chloriden u. Bromiden, jod. 103 — n e b e n Chloriden, Bromiden, Jodiden, T h i o c y a n a t e n , komplex. 208 — neben Sulfiden Sulfiten u. Thiosulfaten, jod. 103 Cyanverbindungen, organ., Stick stoffbest. 159 — , —, Zerstörung 159

Cyanwasserstoffsäure, 120 —, kond. 233

297 Dissoziation

Dampfthermostat 239 Daniellelement 40 Destillationsmethode n. B u n s e n , Apparaturen 98 —' — , Fehlermöglichkeiten 98 — n. Kjeldahl 158 Devardasche Legierung 159 Dichromat-Methode, Endpunktserkennung 68, 72 — , Oxydationswirkung 68 Diglycerinoborsäure 166 Dimethylgelb, Indikator, neutr. 124 Diphenylamin, Redoxindikator, Reaktionsmechanismus 70 —, Umsdilagspotential 70 Diphenylbenzidin 70 Dissoziationskonstante 117 — , Messung U.Berechnung 117,122 p-Divinylbenzol, Herstellung von Ionenaustauscher 169 Doppelbindung 138 Dowex, Ionenaustauscher 170 Druck, osmotischer 244 Düngemittel, Phosphatgehalt, mang. 59 Dulcit, Borsäurekomplex 166 Edelmetallelektrode, indifferente 241 Eichlösungen für Leitfähigkeitsg e f ä ß e 228 Eichung der M e ß g e f ä ß e 20 Einschlußverbindungen 81 Einstellung v. Normallsg. 35 Einzelpotentiale 40, 253 E i s e n , ehem. rein, Darstellung 49 —, —, als Urtitersubstanz für Manganometrie 49 —, dichromat. 71 —, —, mit Diphenylamin als Redoxindikator 73 —, —, mit Kaliumhexacyanof e r r a t ( I I I ) als Tüpfelindikator 71 —, —, mit Natrium-N-Methyldiphenylamin-p-sulfonat als Redoxindikator 73 —, —, n e b e n Wolframsäure 73 —, höhere Oxydationsstufen 55 — in Eisenerzen, mang. 57, 58 — in Eisenlegierungen, mang. 57 — in Kupfererzen, pot. 285 — in Magneteisenstein, mang. 58

298

Sachregister

—, mang., neben As, Co, Cr, Cu, P b , T i 57, 58 —, —, Störung durch Antimon 57 — mit Chrom(Il)-sulfat, pot. 283 — mit Kaliumpermanganat, pot. 280 Kupfer, Simultanbest., pot. 285 — -Mangan, Simultanbest., pot. 280 Vanadin, Simultanbest., pot. 283 —erze, Eisengehalt, mang. 57. 58 , Mangangehalt, mang. 64 —legierungen, Eisengehalt 57 Eisen(II)-hydrogenkarbonat, Härtebildner 155 —Salze, in salzs. Lsg., mang. 54, 57 , in salzs. Lsg., mang., anomaler Reaktionsverlauf 55 , in salzs. Lsg., mang., elektrochemische Erklärung 57 , in salzs. Lsg., mang., Reaktionsmechanismus 56 , in schwefeis. Lsg., mang. 12, 50, 54, 55, 57 — —, in weins. Lsg., mang. 55 —, neben Eisen(III)-salzen, in salzs. Lsg., mang. 58 —, neben Eisen(III)-salzen, in schwefeis. Lsg., mang. 54, 58 —sulfat, Maßlsg., Konstanthaltung des Titers 54 —sulfat-Methode 107 Eisen(III)-ammoniumsuIfat, Indikator, arg. 194 —Ionen, Indikator n. Volhard, arg. 181 —, Komplexverbindung mit Fluor 272 —, Komplexverbindung mit Phosphorsäure 57, 73 —, Komplexverbindung mit Salzsäure 57 —Salze, Abhängigkeit der Hydrolysekonstante 123 , in salzs. Lsg., mang. 57 , in schwefeis. Lsg., mang. 51, 52, 53, 57 , Reduktion im Jones-Reduktor 53 , Reduktion mit schwefl. Säure 51 , Reduktion mit nasc. Wasserstoff 52 , Reduktion mit Zinn(II)-chlorid 58

Eisen(IV)-Verbindungen 56 Eisen(V), labiles Zwischenprodukt n. Manchot 56 Eisen(V)-Verbindungen 56 Eisen(VI)-Verbindungen 56 Eisen-pentacarbonyl 49 —thiocynat 181 - W a s s e r s t o f f - W i d e r s t a n d 231 Elektrizitätsmenge 223, 244 Elektrochemische Verfahren der Maßanalyse, Grundlagen 220 Elektrode, Bezugs- 254 —, Chinhydron- 276 —, Edelmetall, indifferente 241 —, Glas- 276 —, Hilfs- 254 —, indifferente, Potentialberechnung 247 —, Indikator- 221, 251, 255, 256, 275 —, Kalomel- 256 —, Metall- 243 —, —, —, —, —, —,

Normalwasserstoff 40, 249, 254 Null- 254 Platinierungsvorschrift 227 Polarisation 259 Potential, Abhängigkeit 243 —, Abhängigkeit von der Konzentration 241 —, —, Änderung im Verlauf pot. Titrationen 248 —, Umschlags- 265 —, unpolarisierbare 266 —, Vergleichs- 254, 256 —, Wasserstoff- 40, 249, 254, 256, 275 —, Wirkung der Platinierung 227, 230 Elektrolyt, Leitfähigkeit 223 Elektrolytische Lösungstension 244 — Stromschlüssel 255, 257 — Zersetzung 229 Elektrometrie, Geschichte 289 — s. Potentiometrie Elektromotorische Kraft (EMK) 254 —, direkte Messung 259 Elektronegativität der E l e m e n t e 38 « - E l e k t r o n e n 139, 140 Elektronenaffinität 39 Elektronenröhre als Nullstromindikator 233 — als Verstärker 263 Elektroneutralität, Gesetz der — 39 Elemente, Galvanische 40, 254 Endpunktserkennung s. Äquivalenzpunkt Eosin, Adsorptionsindikator, arg. 183, 201

Sachregister Erdalkalien, Fällung mit Palmitatlsg. 185 —, in Wässern, chelat. 219 — perborate, jod. 97 — perkarbonate, jod. 97 — peroxide, jod. 97 Eriochromschwarz-Farb stoffe 216 Erioch romschwarz T , Indikator, chelat. 213, 216 —, Polymerisation 216 Erze, Arsengehalt, jod. 92 —, Bleigehalt n. Alexander 205 —, Eisen- u. Kupfergehalt, pot. 285 —, Kupfer- u. Silbergehalt, arg. 195 —, Mangangehalt, mang. 64 —, Zinkgehalt n. Galletti-Fahlberg 204 Essigsäure, Dissoziationskonstante 118 — , kond. 233 —, — , neben Schwefelsäure 235 —, neutr. 115, 163 —, neutr. mit Ammoniak 119 — , Wasserstoffionenkonzentration 118 Fällungstitrationen 172 —, Adsorptionsindikatoren 183 —, Endpunktsbest. 179 —, Endpunktsbest. durch gefärbte Nd. 181 —, Endpunktsbest. durch Tüpfeln 182 —, Fehlerquellen 176 — , Genauigkeit 187 —, Geschichte 287 —, Grundlagen 172 —, hydrolytische, Indikatoren 181 —, hydrolytische, Vorbedingungen 184 —, Indikatoren 180 —, kond. 237 —, kond., Fehlerquellen 238 —, pot. 268 —, Simultanbest., Fehlerquellen 270 —, Titrationskurven 176 —, Vorbedingungen 178 Fällungsvorgang 174 Faraday, Meßgröße 244 Faradaysches Gesetz 223 F a r b e , moderne Theorien 139 — u. Elektronenhülle 137 — u. Konstitution 135, 138 Farbindikatoren s. Indikatoren Farbstoffe 138 Fehler, methodische 36, 132

299

Ferromanganlegierungen, Mangangehalt, mang. 64 Ferrum reductum 159 Fluorescein, Adsorptionsindikator, arg. 183 Fluoride, pot. 272 Fructose, Borsäurekomplex 146 Galvanische Elemente 40, 254 , Polarisation 259 , Potentialmessung, direkte 259 , Widerstand, innerer 258 Gartendünger, Gesamtstickstoffgehalt, neutr. 162 Gefälldraht 260 Geräteglas 15 Gesamthärte des Wassers 155 , chelat., Ausführung 219 , chelat., Grundlagen 214 , n. Blacher 185, 187 — —, n. Blacher, Korrekturtabelle 187 , nach Blacher, neben AI, F e , S i 0 2 , organ. Bestandteilen 187 , nach Blacher, Störung durch Mangan 187 , n. Clark 185 Gitterabbaugeschwindigkeit 174 Gitteraufbaugeschwindigkeit 174 Gitterkreis 263 Glas, Ausdehnungskoeffizient, kubischer 21 Glas, J e n a e r 15 Glaselektrode 276 —, Alkalifehler 279 —, Asymmetriepotential 279 —, Aufbau 277 —, Behandlung 279 —, Nemstsche Gleichung, Gültigkeit 278 —, Potentialdiffcrenz 278 —, Potentialmessung 279 —, Säurefehler 279 —, Theorie 277 —, Vorzüge 276 Glaselektrodenkette 277 —, Bezugselektrode 277 —, Meßelektrode 277 Gleichgewichtkonstante 110, 211 — Potentiale 263 — reaktion 109 Glasgeräte, Reinigen u.Trocknen 27 Gleichstrom, Elektrolysewirkung 229 —Galvanometer 231

300

Sachregister

Gleichung von Nernst 243 Glukose, Borsäurekomplex 164 Glyzerin, Borsäurekomplex 164 Gödcelsche Visierblende 19 Grammäquivalent 28 Gummiballhandgebläse 17 Härte» bleibende des Wassers, neutr. 156 —, in neutr. Lsg., arg. in. Mohr 198 —, bleibende u. vorübergehende des Wassers 154 —, vorübergehende des Wassers, neutr. 156 —bildner im Wasser 155 —grad, deutscher 155 , französischer 155 Halbelemente 40, 253 Halogene, Oxydationskraft 42 Halogenide, arg. n. F a j a n s 201 —, arg. n. Gay-Lussac 191 — , in neutraler Lsg., arg. n. Mohr 181, 198 — , in neutraler Lsg., arg. n. Mohr, Störung durch Fremdionen 199 — , in saurer Lsg., arg. n. Volhard 196 —, pot. 268 —» — , Genauigkeitsgrenze 268 — , — , Umschlagspotential 268 — , nebeneinander, pot. 269 Halogenwasserstoffsäuren, Dissoziation 117 Harnstoff, in Gartendünger 162 Hexacyamoferrate (II), jod. n. L a n g 102 — , jod. n. Kolthoff 103 Hexacyanoferrate (III), jod. n. Mohr 102 — , jod. n. Kolthoff 102 Hexamolybdänsäure — Monomolybdänsäure, Gleichgewicht 205 Hilfselektroden 254 Höhere Oxide, jod. 97, 101 Hydrazin, jod. 91 Hydrochinon 276 Hydrolyse 116, 119 — konstante 122 Hydrolytische Fällungsverfahren 184 Hydronium-Ion 108 Hydroxide, Alkali- u. Erdalkaligehalt, neutr. 151 —, neben Karbonaten, neutr. 152 Hydroxylamin, mang. 63 Hypojodige Säure 79

Idranal, chelat. Reagenz 213 Indifferente Edelmetallelektroden 241 , Potentialberechnung 247 Indikatorbasen 133, 137 — , baso-Form 137 —, Pseudoform 137 Indikatorelektroden 221, 251, 255, 256, 275, s. auch unter „Elektrode" Indikatorelektroden: Wasserstoff— 275 Chinhydron — 276 Glas — 276 —, für Antimonbest. 281 —, für Eisen-Manganbest. 280 —, für Halogenidbest. 268 —, neutr. 275 —, für Silberbest. 268 —, für Zinkbest. 268 —, für Zinnbest. 281 Indikatoren 14 —, Adsorptions—: Eosin 183, 201 Fluorescein 183, 201 Rhodamin 6G 202 —, für Argentometrie 181 —, bromat: Methylorange 75 Methylrot 75 Chinolingelb 75 —, Chelat-Komplexe 213 —, chelat.: Eriochromschwarz T 213, 216 Murexid 213 Brenzkatechinviolett 213 —, jod., Stärkelsg. 80 —, metall spezi fische 213 —, für Neutralisationsanalysen 123, 128 —, neutr., Absorptionskurven 136 —, —, alkalische Form 127 —, —, Auswahl 129, 131 _ _ D e f . 137 —, —, Empfindlichkeit 145 —, —, F a r b e u. Konstitution 135 —, —, Grundregeln für die Anwendung 131 —, —, Lsg. 123 —, —, pH-Bereiche: Dimethylgelb (pH 2.9—4,0) 129 Methylorange (pH 3 , 0 - 4 , 4 ) 129 Kongorot (pH 3,0—5,2) 129

Sachregister Methylrot (pH 4,4—6,2) 129 Bromkresolpurpur (pH 5,2—6,8) 166 Alizarin (pH 5,5—6,8) 129 p-Nitrophenol (pH 5,0—7,0) 129 Lackmus (pH 5,0—8,0) 129 Phenolrot (pH 6,8—8,0) 145 Rosolsäure (pH 6,9—8,0) 145 Phenolphthalein (pH 8,2—10,0) 129 Thymolphthalein (pH 9,3—10,5) 129 — , —, praktische Anwendung 128 —, —, saure F o r m 127 —, —, Theorie 132 —, —, Umschlag, Theorie v. Fajans 137 —, —, Umschlag, Theorie v. Hantzsch (u. Schäfer) 135 —, —, Umschlag, Theorie v. Wi. Ostwald 133 —, —, Umschlag, Theorie v. W o . Ostwald 138 —, —, Umschlagsbereich 126 —, —, Umschlagskurven 127 —, —, Umschlagspunkt 126 Indikatorgemische, neutr., Lsg. 125 —, neutr., Umschlagspunkte: Methylorange—Indigo (pH 4,1) 125 Neutralrot—Methylenblau (pH 7,0) 125 Phenolphthalein—a— Naphtolphthalein (pH 9,6) 125 Indikatorsäuren 133, 136 —, aci-Form 136 —, Pseudoform 136 —, wahre 136 Induktionsapparat 230 Induktivitäten, störender Einfluß 230 Inkubationsperiode, bei der Permanganattitration 47, 61 Ionen, Einzelleitvermögen 222 Ionen-Äquivalentleitfähigkeit, D e f . 224 — äquivalentleitfähigkeiten, W e r t e 225 — aktivitäten 110, 245 — austauscher 169

301

— —, Austauschkapazität 171 , Formen 170 — —, Handelsnamen 170 , Regeneration 172 — —, Struktur 170 — beweglidikeit, Def. 224 — konzentration 110 — Produkt 109, 173 , Bedeutung für den Neutralisationsvorgang 112 — — des Wassers für versch. T e m p . 109 — wanderungsgeschwindigkeit, D e f . 223 — Wertigkeit 38, 223 Jenaer Glas 15 Jod, Abwägen 85 —, jod. 89 —, Maßlsg., Bereitung 88 —, —, Einstellung auf Arsen(III)oxid R8 —, —, Einstellung auf Natriumthiosulfat 84 —, Reaktion mit Natriumthiosulfat 78 —, Reinigung 85 —, Titration in alkal. Lsg. 78 —, — mit arseniger Säure 78 —, — mit Natriumsulfit 78 —, — mit Natriumthiosulfat 78 —, — mit Natriumthiosulfat, Störungen 79 —, — mit Natriumthiosulfat, Wasserstoffionenkonz. 79 —, Urtitersubstanz für Natriumthiosulfatlsg. 84 Jodate, jod. 96 Jodide, arg. n. Fajans 201 —, arg. n. Mohr 199 —, arg. n. Volhard 198 —, jod. 94 —, pot. 268 — neben Bromiden, jod. 94 — Bromide, Simultanbest., pot. 271 — Chloride, Simultanbest., pot. 269 Jodometrie, Endpunktserkennung mit organ. Lösungsmitteln 82 —, Endpunktserkennung mit Stärke 80 —, Geschichte 78, 288 —, Grundlagen 77 —, Urtitersubstanzen 84, 88 Jodometrische Titrationen, Bedeutung des Redoxpotentials 79

302

Sachregister

, Bedeutung der Wasserstoffionenkonz. 78, 80 von Reduktionsmitteln 77 von Oxydationsmitteln 78 Jodstärke 80 —, Konstitution 81 — Reaktion, Empfindlichkeit 80 Jodzahlkolben 82 Kalilauge, Dissoziation 117 —, Maßlsg. 147 Kaliumbromat, Maßlsg., Bereitung 75 , Maßlsg. Reinheitsprüfung 76 — — Methode, Endpunktserkennung 74 — —, Oxydationswirkung 74 —bromid, Darstellung v. reinstem, chloridfreiem 193 , Maßlsg. für Argentometrie 193 , Titration mit Silbernitrat 183 , Urtitersubstanz für Argentometrie 193 — Chromat, Indikator, arg. 181, 198 —Cyanid, kond. durch Verdrängungstitration 236 lsg., Reaktion 120 , techn., Gehaltsbest., komplex. 208 — dichromat, jod. 87 — —, Maßlsg., Bereitung 70 — — Methode, Endpunktserkennung 68, 72 — —, Oxydationswirkung 68 , Reinigung 71 , Urtitersubstanz für Natriumthiosulfatlsg. 84 — hexacyanoferrat(II), Maßlsg., Bereitung u. Einstellung 204 — hexacyanoferrat(III), Tüpfelindikator 69 — jodat-Methode 107 , Reinigung 85 , Urtitersubstanz für Natriumthiosulfatlsg. 84 — jodid, Jodgehalt, jod. 95 — nitrat in Gartendünger 162 — nitrit, Reinheitsprüfung, mang.62 — palmitat, Maßlsg., Bereitung u. Einstellung 185 — —, Maßlsg., Wirkungsweise 185 — permanganat, Einstellung auf ehem. reines Eisen 49 — —, Einstellung auf Natriumoxalat 45, 48

— —, Einstellung auf Oxalsäure 48 , jod. 88 , Lsg., Reinigungsmittel 27 , Maßlsg. Berechnung der Normalität 48 , Maßlsg., Bereitung u. Einstellung 44 , Maßlsg., Haltbarkeit 44 , Maßlsg., Urtitersubstanzen zur Einstellung 45 Methode, Endpunktserkennung 47 — —, Oxydationswirkung 43, 44, 45, 48, 49, , Reaktion in alkal. Lsg. 43 , Reaktion in neutraler Lsg. 43 , Reaktion in saurer Lsg. 43 , Reaktionskinetik 44, 47, 55, 61 , Selbstzersetzung 45 Titration, Inkubationsperiode 47, 61 , Urtitersubstanz für Natriumthiosulfatlsg. 84 — thiocyanatlsg. 289 — Zink-hexacyanoferrat (II), pot. 271 Kalkhärte des Wassers 60, 155 —, mang. 60 Kalkspat, Calciumgehalt, mang. 60 Kalomel-Elektrode 256 , normale, Herstellung 257 , Potentialwerte 257 —, Quecksilber(I)-Gehalt, jod. 93 Karbonate, neutr. 152 — , neben Hydrogenkarbonaten, neutr. 154 —, neben Hydroxiden, neutr. 153 —, neutrale 155 —, wasserunlösliche, neutr. 153 Karbonathärte des Wassers 155 , Best. 156 Kapazitäten, störender Einfluß 230 Kathode 223 Kathodenstrahloszillograph 232 Kationenaustauscher 169 —, Kapazität 171 Kesselspeisewasser, Härtebest., mang. 60 —, Härtebest., neutr. 155 Kesselstein 155 Kjeldahl-Bestimmung 158 — Destillationsapparat 159 Klarpunkt 180, 191 Klemmenspannung 259

Sachregister Kobaltsalze, Kobaltgehalt, neutr. durch Verdrängungstitration 157 Kochsalzlsg., empirische („dezime", „normale") 192 Kohlensäure, Dissoziationskonstante 118 —, Wasserstoffionenkonz. 118 Kompensationsmethode n. Poggendorff 260 Komplexbildende Reagenzien, Handelsnamen 213 Komplexbildung, Äquivalenzsprung 210 Komplexbildungs-Analysen, pot. 268 — konstante 210 Komplexe, Beständigkeitskonstante 210 —, Bildungskonstante 211 Komplexometrie 207 —, Indikatoren 213 —, Titration, Voraussetzungen 211 Komplexon, chelat. Reagenz 213 Komplexone, nicht spezifische Reaktion mit Metall-Ionen 214 Komplexsalze, innere 211 Konduktometrie 220, 223, s. auch Leitfähigkeitsmessung —, Äquivalenzpunkt, Festlegung 235 —, Anwendungsmöglichkeiten 233 —, Fällungsanalysen 237 —, Geschichte 290 —, Grundlagen 223 —, Leitfähigkeitsgefäße 226 —, Methoden u. Apparaturen 228 — , Neutralisationsanalysen 233 —, Prinzip 221 —, Titrationen in siedenden Lsg. 238 — , Titrationskurven, Typen 233 Konduktoskop 233 Kongorot, Indikator, neutr. 124 Krebsscherenbindung 211 Kubikzentimeter, D e f . 15 Kunstharze, Ionenaustauscher 169 Kupellationsmethode 287 Kupfer, arg. n. Volhard 195 — , arg. nach Volhard, Störung durch Fremdionen 195 — , jod. 104 —, neutr. durch Verdrängungstitration 157 — , pot. mit Chrom(II)-sulfat 284 —, pot. mit Chrom(II)-sulfat, störende Verb. 285

303

—amin-Komplexe, Bildungsreaktionen u. Gleichgewichtskonstanten 210 —aqua-Komplexe 210 — Eisen, Simultanbest., pot. 285 —erze, Eisenbest., pot. 285 , Kupfer-Eisen-Best. neben Arsen u. Antimon, pot. 285 , Silber neben Kupfer, arg. 195 — Halbelement 40 —kies, Aufschluß 285 , K u p f e r - E i s e n - B e s t , pot. 285 — Komplexbildung mit Ammoniak 210 — Komplexbildung mit Triäthylentetramin 211 —legierung, Auflösung 106 , jod. 106 , jod., Störung durch Ag, F e u. Hg 106 , jod., Wirkung von Bleiionen 106 —salze, Kupfergehalt, neutr. durch Verdrängungstitration 157 , jod. nach Bruhns 105 , jod. nach Bruhns, Nachteile 106 Kupfer(II)-salze, jod. nach de Haen-Low 104 , jod. nach de Haen-Low, Störung durch Arsen u. Eisen 105 Lösung, Einstellung auf Natriumthiosulfat 106 —tetramin-Komplex, Beständigkeit 211 —triäthylentetramin-Komplex, Aufbau 211 Komplex, Beständigkeitskonstante 212 Kurventypen, kond. Titration 233 Lackmus, Indikator, neutr. 124 Laugen, Maßlsg., Aufbewahrung unter Ausschluß von Kohlendioxid 148 —, Maßlsg., Bereitung u. Einstellung 147 —, karbonatarme 149 —, karbonatfreie, aus metallischem Natrium 149 —, kaibonatfreie, aus ö l l a u g e 149 — , Titerstellung 150 Legierungen, Antimongehalt, pot. 281 —, Arsengehalt, jod. 92

304

Sachregister

— n. Devarda 159 —, Eisen u. Vanadingehalt, pot. 282 —, Kupfergehalt, jod. 106 —, Mangangehalt, mang. 64 —, Silbergehalt, arg. n. GayLussac 194 —, Silbergehalt, arg. n. Volhard 194 —, Zinngehalt, jod. 93 —, Zinngehalt, pot. 281 Leitfähigkeit, D e f . 223 —, Ionenäquivalent-, D e f . 224 — spez., D e f . 224 Leitfähigkeitsgefäße 226 —, Eichlsg. 228 —, platinieren der Elektroden 227 —, Widerstandskapazität 228 Leitfähigkeitsmessung, Ausschlagmethode, Apparatur nach J a n der-Pfundt 233 —, —, Fehlerquellen 232 —, —, Konduktoskop 233 —, —, Linearität der Anzeige 232 —, —, Spannungskonstanz 232 — , Fehlerquellen bei Präzisionsmessungen 230 —, Frequenz des Wechselstroms 229 —, Gleichstromgalvanometer 231 —, Induktionsapparat 229 —, Kathodenstrahloszillograph 232 —, Magisches Auge 231 —, Meßbrücke 230 —, Methoden 228 —, Netzspannungsstabilisierung 232 —, Nullpunkt- oder Minimummethode 228, 230 —, Nullstromindikation durch: Gleichstromgalvanometer 231 Kathodenstrahloszillograph 232 Magisches Auge 231 Röhrenvoltmeter 231 Telefon 228 Wechselstromgalvanometer 231 —, Polarisation 229 —, Röhrenvoltmeter 231 —, Stöpselrheostat 230 —, Störung durch zu hohen Strom 230 —, Telefonmethode 228 —, Tonfrequenzgenerator 229 —, Vergleichswiderstand 230 —, visuelle Methoden 231 —, Wechselstromgalvanometer 231 —, Wheatstonesche Brückenschaltung 228

Leitfähigkeitstitration s. Konduktometrie Leitfähigkeitsverlauf 226 Leunasalpeter s. Ammonsalpeter Lewatite, Ionenaustauscher 170 Liter, Mohrsches 26 —, Mohrsches, Umrechnung in wahres Liter 27 —, wahres 15 Löslichkeit, schwerlösl. Nd. 175 Löslichkeitsprodukt 175 Lösungen, „normale" 28 —, empirische 28 Lösungsgleichgewicht 174 Lösungstension, elektrolytische 244 Magisches Auge 231 Magnesiahärte des Wassers 155 —, n. B lach er 187 —, n. Fromboese 188 —, neutr. 157 Magnesium-AeDTE-Komplex, Beständigkeitskonstante 214 Best, mit Kaliumpalmitat 185 chelat. 217 chelat., Grundlagen 214 —, Pufferlösung 217 , —, störende Ionen 218 Magnesium, neutr. 157 —chlorid, Härtebildner 155 — —, Magnesiumgehalt, neutr. 157 —hydrogenkarbonat, Härtebildner 155 —karbonat, Löslichkeit, Bedeutung für Wasserhärte 155 —komplexonatlsg., Bereitung 218 —salze, Magnesiumgehalt, neutr. 157 — —, Verdrängungstitration 157 —sulfat, Härtebildner 155 Magneteisenstein, Eisengehalt, mang. 58 —, pot. 279 Mangan, mang. s. Mangan(II)-salze —, neutr. 157 —, in Eisenerzen, Roheisen, Stahl, Ferromangan, Legierungen 64 — Eisen, Simultanbest., pot. 280 Mangan(II)-hydrogenkarbonat, Härtebildner 155 —ion, Katalysator 47 — manganite, Verhütung ihrer Bildung bei der mang. Mangan(II)-Best. 64 — —, Oxydation zu Mangan (IV) 64 — salze, mang. n. Volhard 64, 173

Sachregister , mang. n. Reinitzer u. Conrath 67 — —, mang. n. Volhard, prakt. Hinweise 66 , neutr. 157 — —, Trennung von Eisen 65 — —, Verdrängungstitration 157 Mangan(IV)-oxid, jod. 101 — —, mang. 63 Mangan(IV)-oxidhydrat, Adsorption 64 , Struktur 64 Manganometrie 43, s. auch Kaliumpermanganat —, Endpunktserkennung 47 —, Geschichte 50, 287 —, Maßlsg. 44 —, Urtitersubstanzen 45 Mannit, Borsäurekomplex 164 Maßanalyse, D e f . 12 —, elektrochem. Verfahren 220 —, Geschichte 286 —, Grundbegriffe 11 —, Grundlagen 15 —, kond. s. Konduktometrie —, pot. s. Potentiometrie —, Voraussetzungen 13 Maßanalytisdie Methoden, Gruppen 37 Massenwirkungsgesetz, kinetische Ableitung 174 — für Hydrolysegleich gewichte 122 — für Lösungsgleichgewichte 174 — für Neutralisation 109 Maßlsg. 16 —, empirische 28 —, normale 28, s. auch Normallsg. —, Titerstellung 35 Membranfilter 60 Mensuren 16 Mercurimetrie 207 Mesomerie 139 Meßbrücke, Eichung 230 —, Einstellfehler 230 —, Genauigkeitsanforderungen 230 Meßgefäße 15, 20, 27, 32 —, „auf Ausguß" 15 —, Eichung u. Nachprüfung 20, 23 —, „auf E i n g u ß " 15 —, Reimigen u. Trocknen 27 —, Temperaturangabe 20 —, Volumenangabe 20 —, Volumen bei verschied. T e m p . 32 —, Zulagetafel n. Schlösser 23 Meßkette 253, 255 20 Jander-Jahr, Maßanalyse

305

Meßkolben 16, 20, 24 —, Eichung u. Nachprüfung 20, 23 —, Temperaturfehler, Korrektur 32 — n. Wislicenus 16, 34 —, zulässiger max. Fehler 24 Meßpipetten 17 Meßzylinder 16 Metall-AeDTE-Komplex, sterischer Aufbau 213 —elektroden: Kupfer 243 Palladium 241 Platin 241 Quecksilber'242 Silber 243 Wismut 242 Zink 243 Metallionenexponent 177, 210 Methylorange, Indikator, bromat., Wirkungsweise 75 —, Indikator, neutr. 123 —, Indikator, neutr., Wirkungsweise 139 — Indigo, Indikatorgemisch, neutr. 125 Methylrot, Indikator bromat. 75 —, Indikator, neutr. 124 Mikrobürette 19 — als Überdrudcbürette 240 Milliliter, D e f . 15 Millival 155 Mineralsäurehärte des Wassers 155 , Best. 156 Mineralsäuren, neutr. 162 Mischindikatoren 125 Mörtel, Calciumbest., mang. 60 Mohrsches Liter 26 Münzmetalle, Silberbest. 287 Murexid, Indikator, chelat. 213 Natriumacetat, Hydrolyse 116 — —, kond. durch Verdrängung 236 —alkoholat, Darstellung 149 —chlorid-Lsg., neutrale, arg. n. Mohr 200 — —, Maßlsg., Bereitung u. E i n stellung 190 , Maßlsg.: dezime 192 empirische 192 normale 192 — —, Maßlsg., empirischer Normalfaktor 190 — —, reinstes, Darstellung 190 — —, Urtitersubstanz 190 —hexafluoroferrat (III) 273

306

Sachregister

— hydroxid, tcchn., G e s a m t a l k a l i gehalt, n c u t r . 151 — k a r b o n a t , B e r e i t u n g von titerr e i n e m 144 — —, Urtitersubstanz für Neutralisationsanalyse 144 — m a n g a n i t e 66 — N-Methyldiphenylamin-psulfonat, D a r s t e l l u n g 74 — Oxalat, Prüfung auf R e i n h e i t 46 — — , thermische Zersetzung 46 — — , Urtitersubstanz für M a n g a n o m e t r i e 45, 46 — — , Urtitersubstanz für Neutralisationsanalyse 146 — t e t r a t h i o n a t 78 — thiosulfat, M a ß l s g . , B e r e i t u n g 83 , M a ß l s g . , B e s t ä n d i g k e i t 83 — — , M a ß l s g . , E i n s t e l l u n g auf J o d 84 — —, M a ß l s g . , E i n s t e l l u n g auf Kaliumdichromat: n. Bunsen 86 n . K o l t h o f f 88 n . Zulkowski 87 — — , M a ß l s g . , E i n s t e l l u n g auf K a l i u m j o d a t 85 — —, M a ß l s g . , E i n s t e l l u n g auf K a l i u m p e r m a n g a n a t 88 — —, M a ß l s g . , H a l t b a r m a c h u n g 84 — —, M a ß l s g . , T i t e r ä n d e r u n g , Ursachen 83 — —, Maßlsg., Urtitersubstanzen zur E i n s t e l l u n g 84 , R e a k t i o n m i t J o d 78 , R e i n i g u n g 83 N a t r o n l a u g e , Dissoziation 117 —, K a r b o n a t g e h a l t , neutr. 153 — , M a ß l s g . 147 — , M a ß l s g . , k a r b o n a t a r m 149 —, Maßlsg., karbonatfrei: aus m e t a l l . N a t r i u m 149 aus O l l a u g e 149 —

S o d a l ö s u n g , Unterscheidung durch I n d i g o 125 N e p h e l o m e t e r 193 Nernstsche Gleichung 243 — für R e d o x v o r g ä n g e 244: für 2 C l - / C l 2 245 für C r 2 + / C r 3 + 246 für M e / M e n + 244 für M n 2 + / M n 0 4 - 247 Neutralisation(s) 108 — analysen, G r u n d l a g e n 108



—, Äquivalenzpunkt: starke S ä u r e n — starke Basen 114 schwache Säuren — starke B a s e n 115 schwache S ä u r e n — schwache B a s e n 119 , I n d i k a t o r e n 123 , k o n d . 233 , M a ß l s g . 142, 147 , pot. 273 — — , U r t i t e r s u b s t a n z e n 143, 150 , Vergleichslsg. 131 — kurve 114 , W e n d e p u n k t 119 — titration, p o t . 249 —

Vorgang

108

— w ä r m e 108 Neutralpunkt 111, 114 — Ä q u i v a l e n z p u n k t 13 — , w a h r e r 115 Neutralrot, I n d i k a t o r , n e u t r . 124 — M e t h y l e n b l a u , Indikatorgemisch, n e u t r . 125 Nickelsalze, N i c k e l g e h a l t , n e u t r . durch V e r d r ä n g u n g s t i t r a t i o n 157 Niederschlagsbildung 175 Nitrat, in A l k a l i n i t r a t e n , neutr. m i t t e l s Anionenaustauscher 172 —, Reduktion: m i t ferrum r e d u e t u m 159 m i t D e v a r d a - L e g i e r u n g 159 — , S a l p e t e r s ä u r e g e h a l t , neutr. 158 Nitrilotriessigsäure ( N T E , H 3 X ) , k o m p l e x b i l d e n d e s R e a g e n s in der C h e l a t o m e t r i e 212 Nitrite, m a n g . 62 p - N i t r o p h e n o I , Indikator, neutr. 124, 133, 135 Nitrose, N 2 0 3 - G e h a l t , m a n g . 63 N i t r o v e r b i n d u n g e n , o r g a n . , Sticks t o f f b e s t . , n e u t r . 159 — — , o r g a n . , Z e r s t ö r u n g 159 Normalfaktor, Berechnungsbeispiel 48 —, D e f i n i t i o n 33, 36, 48 — , empirischer 190 N o r m a l i t ä t , D e f . 30, 33 Normal-Kalomel-Elektrode, H e r s t e l l u n g 257 N o r m a l l s g . , B e r e i t u n g u. E i n s t e l lung 31, 35 —, D e f i n i t i o n 28, 30, 31 — , g e n a u e 33, 34 — , Geschichte 288 . — , u n g e f ä h r n o r m a l e 35 —, V o r t e i l e 30

Sachregister Normalpotential, Def. 248 —, Einzelpotentiale: 2 Cl-/Cl 2 42, 56 Fe 2 + /Fe 3 + 42, 56, 73 Kalomelelektrode 257 Mn 2 + /Mn0 4 - 42, 56 Wasserstoffelektrode 41, 249 —, T a b . 41, 42 Normalwasserstoffelcktrodc 40, 43 249, 254 Nullelektrode 254 Nullstromindikatoren s. Leitfähigkeitsmessung Oellauge 149 —, Verunreinigungen 150 Ohm, reziproke 224 Organische Säuren, "neutr. 163 — Substanzen, Stickstoffgehalt, neutr. 158 — — (stickstoffhaltig) Zerstörung 159 — Verbindungen, Eignung für Chelatometrie 212 Orthophosphorsäure s. Phosphorsäure Oscillograph als Nullstromindikator 230 Osmotischer Druck 244 Oxalate, mang. 45, 59 Oxalsäure, Dissoziationskonstante 118 —, mang. 45, 59 —, —, Inkubationsperiode 47 —, Maßlsg., neutr. 142 —, Maßlsg., neutr., Bereitung 143 —, neutr. 143, 163 — krist., Urtitersubstanz, neutr. 150 —, Wasserstoffionenkonz. 118 Oxonium-Ion 108 Oxydation(s), Def. 37 —kraft, Def. 42 —mittel, 39 —mittel, jod. 78 — Reduktion 37 — Reduktionsanalysen 37 — —, Endpunktserkennung s. Äquivalenzpunkt , pot. 280 — Reduktionspotentiale s. Redoxu. Normalpotentiale —reaktionen 37, 240 —stufe 37 — Zahl 37 Oxide, höhere, jod. 97, 101 20 E

Jander-Jahr, Maßanalyse

307

Palladiumelektrode 241 Palmitinsäure 187 Peleusball 17 Peligotrohr 100 Perborate, jod. 96 —, mang. 61 Perchlorat, in Alkaliperchloralen, neutr. mittels Anionenaustauscher 172 Perchlorsäure, Dissoziation 117 —, Maßlsg., neutr. 142 Perjodate, jod. 96 Perkarbonate, jod. 96 —, mang. 61 Permanganat, Oxydationswirkung 43 — Methode s. Kaliumpermanganat-Methode u. Manganometrie —, Reaktion in saurer u. alkalischer Lsg. 43 Permutit, Ionenaustauscher 170 Peroxide, jod. 96 —, mang. 61 Peroxy-disulfate, mang. 62 pH, Definition 111 pH-Skala 111 pH-Werte, Berechnung 111 Phenolphthalein, Indikator, neutr 124 —, Indikator, neutr., Wirkungsweise 141 — Naphtolphthale'in, Indikatorgemisch, neutr. 125 Phenolrot, Indikator, neutr. 145 Phenolschwefelsäure, Bedeutung für Stickstoffbest. 159 —, Bereitung 162 Phenylnitromethan, Indikator neutr., Farbumschlag, Theorie von Hantzsch 136 Phosphat, in Alkaliphosphaten, neutr. mittels Anionenaustauscher 172 —, mang. 59 —, primäres, sekundäres, tertiäres 167 Phosphorsäure, Dissoziationskonstanten 118, 167 —, neutr. 167 —, pot. 274, 279 —, Stufentitration 125, 131, 168, 210 —, Wasserstoffionenkonz. 118 Pipetten 17, 25 —, Ansaugvorrichtung 17 —, A u f b e w a h r u n g 18 —, Eichung, zulässiger Fehler 25

308

Sachregister

—, Nachprüfung 25 Pipettieren, Anweisung 17 —, ätzender u. giftiger F l . 17 —, Lsg. leicht flüchtiger Gase 17 Platinelektrode 241, 249 Platinieren von Elektroden 227 — von Elektroden, Wirkung 229 Poggendorffsche Kompensationsmethode 260 Polarisation bei kond. Messungen 229 — bei pot. Messungen 259 —Spannung 229 — —, Abhängigkeit von der F r e quenz 230 Polyalkohole, Borsäurekomplexe 164 Polystyrol-Harze, Ionenaustauscher 169 Potential-messung 258 , direkte 259, 263 , direkte, stromlos 263, 266 — —, n. der Kompensationsmethode 260, 263 — schritte 264 Potentiometer 262 Potentialtitrationskurven 249, 251, 252 Polentiometrie, Äquivalenzpotential 69, 251 —, Bezugselektrode 254 —, Fällungs- und Komplexbildungsanalysen 268 —, Gegenschaltung des Umschlagspotentials 266 —, Geschichte 289 —, Grundlagen 221, 240, 249 —, Hilfselektrode 254 —, Indikatorelektrode 221, 251, 255, 256 275 —, Meßkette 253, 255 —, Mikrobest. 267 —, Neutralisationsanalysen 275 —, —, Indikatorelektroden 275 —, Nullelektrode 254 —, Oxydations- u. Reduktionsanalysen 279 —, Potentialmessung 258 —, Praxis 253 —, Prinzip 221 —, Selektivbest. 267, 281 —, Simultanbest. 267, 270 —, Titrationen, Durchführung 263 —, Titrationsgefäß 256 —, Titrationskette 255 —, Umschlagselektrode 265 —, Umschlagsmethode 252, 265

—, Umschlagspotentiale 69, 251, 268, 272 —, Vergleichselektrode 254, 256 —, Vorzüge 267 —, Wendepunktsmethode 252, 263 Präzisionsbestimmungen, Korrektur des Auftriebs 33 Präzisions-Meßbrücke 230 — Stöpsehheostat 230 Proton, hydratisiertes 108, 116 Pyridin, Dissoziationskonstante 118 —, Wasserstoffionenkonz. 118 —verb. 159 Quecksilber(I)- u. (Il)-Salze, jod. 93 Quecksilber(II)-oxid, Reinheitsprüfung 147 — —, Urtitersubstanz für Neutralisationsanalyse 146 Quetschhahnbürette n. Mohr 18 Radioröhren 263 Reaktion, Gleichgewichtskonstante 110, 211 Redoxindikatoren 69. — : Diphenylamin 69 Natrium-N-Methyldiphenylamin-p-sulfonat 73 Redoxpotentiale 240, s. auch Normalpotentiale —, Änderung durch Komplexbildung 57, 75 —, Änderung durch Zusätze 57, 73 —, Berechnungsbeispiele s. Nernstsche Gleichung —, Chinhydronelektrode —, Cr 2 + 7Cr 3 + gegen Normal- Kalomelelektrode 283 —, Diphenylamin 70 —, Glaselektrode 278 —, Kalomelelektroden 257 —, T a b . 41, 42 —, Umschlagselektroden 268, 272 —, Wasserstoffelektrode gegen Normal-Kalomelelektrode 275 Redoxsystem F e 2 + / F e 5 + , Potentialänderung durch Komplexbildung 57, 75 Reduktion(s), D e f . 37 —kolben 52 —kraft, D e f . 42 —mittel 39 , jod. 77 — Oxydation 37 — Oxydationsanalysen 37

Sachregister — —, Endpunktserkennung s. Äquivalenzpunkt , pot. 280 — Oxydationspotentiale s. Redoxoder Normalpotentiale — Oxydationsreaktionen 37, 240 Reduktorbürette 54 Reincarnallit, Best, im Rohcarnallit n. Precht 200 Reinhardt-Zimmermann-Lsg. 57 Reinigungsmittel f ü r Glasgefäße 27 Resonanz 139 Restmethode 196 Rhodamin 6 G, Adsorptionsindikator, arg. 202 Röhren-Generator 229 —Potentiometer 263 —Verstärker 263 —voltmeter 231, 263, 276, 279 Roheisen, Mangangehalt, mang. 64 Rosolsäure, Indikator, neutr. 145 Rücktitration 151 Sättigungskonzentration 175 Säure(.n), Def. n . BrÖnsted 116 —, Dichtebest. 142 —, Dissoziationskonstanten 118 •—, Einfluß der Dissoziation auf Neutralisationsverlauf 118 —fehler bei Glaselektroden 278 —, konz. u. rauchende, W ä g u n g 163 —, Maßlsg., Bereitung u. Einstellung 142 —, —, Einstellung auf Natriumkarbonat mit Methylorange 144 mit Methylrot 145 mit Phenolphtalein 145 mit Phenolrot 145 mit Rosolsäure 145 —, —, Einstellung auf Natriumoxalat 146 —, —, Einstellung auf Quecksilber(Il)-oxid 146 —, mehrwertige, Äquivalenzsprung —, —, —, —, —, —, —, —, —,

210

—, neutr. 167 —, pot. 274 mittelstarke kond. 235 organ., neutr. 163 schwache, Berechnung der Wasserstoffionenkonz. 117 —, Dissoziation 117 konz. u. rauchende, W ä g u n g 163 —, neutr. 162 —, neutr., Indikatoren 130, 131

309

—, —, .neutr, mit schwachen Basen 119, 132 —, —, neutr. mit starken Basen 115, 131 pot. 273 •—, —, Verdrängung 157 —, —• u. starke, nebeneinander, kond. 235 —, Simultanbest., pot. 274 —, Stärke der 116 —, starke, Dissoziation 117 —, —, Dissoziationskonstantc 118 —, —, kond. mit Ammoniak 234 —, —, kond. mit schwachen Basen 234 —, —, kond. mit starken Basen 222, 225, 233 —, —, neutr. 162 —, —, neutr. mit Ammoniak 209 —, —, neutr., Indikatoren 129, 131 —, —, neutr. mit schwachen Basen 115, 132 —, —, neutr. mit starken Basen 114, 131 —, —, pot. mit schwachen Basen 273 —, —, pot. mit starken Basen 273 —stufe, Berechnung 111 —, Wasserstoffionenkonz. 118 Salpetrige Säure, mang. 62 Salpetersäure, Dissoziation 117 —, Maßlsg. neutr. 142 — in Nitraten, neutr. 158 — wasserfreie, Reinigungsmittel 27 Salze, Acetatbest., neutr. mittels Ionenaustauscher 169 —, Anionengehalt, neutr. mittels Ionenaustauscher 169 —, Hydrolyse 121 —, Hydrolysekonstante, Berechn u n g 122 —, neutr. mittels Ionenaustauscher 169 —, Nitratbest., neutr. mittels Ionenaustauscher 169' —, Perchloratbest., neutr. mittels Ionenaustauscher 169 —, saure, neutr. 167 —, schwacher u. schwerlöslicher Basen, Metallgehalt, neutr. durch Verdrängung 157 —, schwacher Basen u. starker Säuren, kond. durch Verdrängung 235 —, Titerstellung, neutr. mittels Ionenaustauscher 169 —, Lsg., Reaktion 121

310

Sachregister

Salzsäure, M a ß l s g . , B e r e i t u n g nach R a s c h i g 143 —, —, E i n s t e l l u n g 144 —, —, n e u t r . 142 —, n e u t r . 113 —, O x y d a t i o n d u r c h P c r m a n g a n a t 55 —, p o t . 250 S c h c l l b a c h s t r e i f e n 19 S c h u t z k o l l o i d 184 Schwefelsäure, Äquivalenzsprung 210 — n e b e n E s s i g s ä u r e , k o n d . 235 — , k o n z . u . r a u c h e n d e , W ä g u n g 163 — , M a ß l s g . , n e u t r . 142 —, p o t . 274 Schwefelwasserstoff, Dissozi ationsk o n s t a n t c 118 —, j o d . 90 —, W a s s e r s t o f f i o n e n k o n z . 118 S c h w e f l i g e S ä u r e , j o d . 91 S e i f e n , u n l ö s l i c h e 185 S e l e k t i v b e s t . 267 —, A n t i m o n n e b e n Z i n n , p o t . 281 S e l e n s ä u r e , j o d . 101 S i l b e r , a r g . n a c h F a j a n s 202 —, — n a c h G a y - L u s s a c 180, 191 —, — n a c h G a y - L u s s a c , störende B e g l e i t m e t a l l e 192 —, — i n L e g i e r u n g e n 192 —, — in M ü n z e n 191 — , — n a c h V o l h a r d 181, 194 —, — n a c h V o l h a r d , s t ö r e n d e B e g l e i t m e t a l l e 194 —, m e t . , U r t i t e r s u b s t a n z 189 p o t . 269 —, r e i n s t e s , D a r s t e l l u n g 189 — b r o m i d , L ö s l i c h k e i t s p r o d u k t 268 —chlorid, Adsorption von SilberI o n e n 197 h y d r o s o l 180 , k o l l o i d e L s g . 180, 202 — —, K o m p l e x b i l d u n g mit Salzs ä u r e 176 — —, L ö s l i c h k e i t 175 — — , L ö s l i c h k e i t in S i l b e r s a l z l s g . , B e r e c h n u n g 175 — — , L ö s l i c h k e i t s p r o d u k t 268 — —, L ö s u n g s g l c i c h g e w i c h t 174 — C h r o m a t , L ö s l i c h k e i t 182, 199 — C y a n i d 208 — —, Adsorption von Silber-Ionen 198 K o m p l e x 180 — d i e y a n o a r g e n t a t (I) 208 — e l e k t r o d e 265

— jodid,

Löslichkeitsprodukt

199,

268

— halogenide, photochemische Zersetzung u n d Sensibilisierung 202 — nitrat-Lsg., Titration mit Kochs a l z l s g . 176 — — Lsg., Titration mit Natriumj o d i d l s g . 178 — —, Mai31sg., B e r e i t u n g u n d E i n s t e l l u n g 189 — —, R e d u k t i o n m i t A m m o n i u m f o r m i a t 189 , U r t i t e r s u b s t a n z 189 — s c h i c h t b ü r c t t e 54 — t h i o e y a n a t , A d s o r p t i o n v o n Silb e r i o n e n 195 , L ö s l i c h k e i t 194 S i m u l t a n b c s t . v o n B a s e n , k o n d . 235 — v o n B a s e n , p o t . 274 — v o n B r o m i d e n u. J o d i d e n , p o t . 271 — von Chloriden u. Jodiden, pot., 271 — v o n E i s e n u . K u p f e r , p o t . 285 — v o n E i s e n u . M a n g a n , p o t . 280 — von Eisen u. V a n a d i n , pot. 283 —, F ä l l u n g s t i t r a t i o n , F e h l e r q u e l l e n 270 —, p o t . 253, 267, 270 —, — , U m s c h l a g s m e t h o d e 271 — , —, V o r a u s s e t z u n g e n 253 — v o n S ä u r e n , k o n d . 235 — v o n S ä u r e n , p o t . 274 Soda, Bereitung von titerreincr — 144 —, k a u s t i s c h e , Gesamtalkaligehalt, n e u t r . 151 — lösung — Natronlauge, Unters c h e i d u n g d u r c h I n d i g o 125 S o r b i t - B o r s ä u r e k o m p l e x 160 Spannungskonstanthalter: Eisen-Wasserstoff-Widerstand 232 e l e k t r o n i s c h e r 232 m a g n e t i s c h e r 232 Spannungsreihe, elektrochemische 41 S t ä r k e d e r S ä u r e n u . B a s e n 116 S t ä r k e l s g . , B e r e i t u n g 82 —, I n d i k a t o r in d e r J o d o m e t r i e 80 —, P i l z b i l d u n g 82 Stahllcgierungen, Mangangchalt, m a n g . 64 —, V a n a d i n g e h a l t , p o t . 282

Sachregister Steinkohle, Stickstoffgehalt, neutr. 161 S t i c k s t o f f b e s t . , i. G a r t e n d ü n g e r 162 —, i m L e u n a s a l p e t e r 160 —, in S t e i n k o h l e 161 S t i c k s t o f f g e h a l t in o r g a n . S u b s t a n z e n 158 S t ö p s e l r h e o s t a t 230 Stromschlüssel, elektrolytischcr 255, 257 Sublimat, Quecksilber(II)-gehalt, j o d . 94 S u b s t i t u t i o n s t i t r a t i o n , c h e l a t . 214 S u l f a t , k o n d . 239 S u l f i d e , lösl. u . u n l ö s l . , j o d . 90 S u l f i t e , A l k a l i , j o d . 91 T a n n i n , T ü p f e l i n d i k a t o r auf M o l y b d a t - I o n e n 205, 206 Telefonmethode, Leitfähigkeitsm e s s u n g 228 —, g e e i g n e t e F r e q u e n z e n 230 T e l l u r s ä u r e , j o d . 101 T e t r a t h i o n s ä u r e 78 T h i o c y a n a t e , a r g . n . F a j a n s 201 —, — n . V o l h a r d 195 —, — n . V o l h a r d , S t ö r u n g d u r c h F r e m d i o n e n 195 —, j o d . 103 —, n e b e n C h l o r i d e n u . B r o m i d e n , j o d . 103 —, n e b e n S u l f i d e n , S u l f i t e n , T h i o s u l f a t e n , j o d . 103 T h i o s u l f a t s. N a t r i u m t h i o s u l f a t Thymolphthalein, Indikator, neutr. 124 Titan (III)-chlorid, Maßlsg., L u f t e m p f i n d l i c h k e i t 283 M e t h o d e 107 T i t o r 12, 14 —, k o r r i g i e r t e r 145 — S t e l l u n g 35 , F e h l e r 36 — substanzen, notwendige E i g e n s c h a f t e n 33 T i t r a t i o n ( s ) - a n o r d n u n g in d e r K o n d u k t o m e t r i e 226 — — in d e r P o t e n t i o m e t r i e 255 —, d i r e k t e 151 — k e t t e 255 — k u r v e n : F ä l l u n g s v o r g ä n g e 176 k o m p l e x . 212 k o n d . 221, 233 n e u t r . 114 p o t . 221, 248 , W e n d e p u n k t 114, 248 — , R ü c k t i t r a t i o n 151

311

T i t r i e r e n , D e f i n i t i o n 12 T i t r i e r f e h l e r 132, 145 T i t r i p l e x , c h e l a t . R e a g e n z 213 T o n f r e q u e n z g e n e r a t o r 230 T o n m i n i m u m bei der Telefonm e t h o d e 230 Triäthylentetnimin, komplexb i l d e n d e s Reagens in der C h e l a t o m e t r i e 211 T r i j o d i d - I o n SO Trinkwasser, Chloridgehalt, arg. n. M o h r 200 — , H ä r t c b e s t . 156, 185 —, K a l k g e h a l t , m a n g . 60 — , S u l f a t g e h a l t , k o n d . 239 T r o c k n e n d e r G l a s g e r ä t e 27 T ü p f e l - a n a l y s e n 28, 202 — i n d i k a t o r 69, 72, 182 — m e t h o d e 72, 182 — p r o b e , G e n a u i g k e i t 72 — r e a k t i o n 68 T u r n b u l l s B l a u 71 Ubcrdruckbürette n. Gay-Lussac 240 U m s c h l a g s - b e r e i c h 127 — e l e k t r o d e ( n ) 265 — — für Neutralisationsr e a k t i o n e n 265 — — f ü r p o t . H a l o g e n i d b e s t . 265, 268 f ü r p o t . Z i n k b e s t . 272 — — f ü r R c d o x - R e a k t i o n e n 265 — m e t h o d e in d e r P o t e n t i o m e t r i e 252, 265 — p o t e n t i a l e 69, 251, 268, 272 — — , G e g e n s c h a l t u n g 266 — p u n k t 126 U r a n , m a n g . 59 U r a n y l (VI) - I o n e n , T ü p f e l i n d i k a t o r auf H e x a c y a n o f e r r a l ( I I ) 203 — S a l z e , m a n g . 59 — — , R e d u k t i o n 59 U r t i t e r s u b s t a n z e n 35, s. a u c h b e i den einzelnen maßanalytischen Methoden V a l 28 V a l e n z , D c f . 38 — e l c k t r o n e n 38 V a n a d a t e , j o d . 101 V a n a d i n s ä u r c , j o d . 101 V a n a d i n s t ä h l e , p o t . 283 Vanadin, mit Cer(IV)-sulfat. pot. 282 — - E i s e n , S i m u l t a n b c s t . , p o t . 283

312

Sachregister

Verdrängung schwacher Säuren 157 — schwacher u. schwerlöslicher Basen 157 Verdrängungstitration, kond. 235 —, — , Kurvenform 236 —, —, Voraussetzungen 236 neutr. 152, 157 Vergleichselektroden 254, 256 Vergleichswiderstand für Leitfähigkeitsmessungen 230 Visierblende, Göckclsche 19 Visuelle Methoden der Leitfähigkeitsmessung 231 Vollpipetten 17 —, zulässiger Fehler 25 Volumenmessung 15 Volumetrie 12 —, Geschichte 287 Wahres Liter 15 Walzenbrücke 230, 260 Wanderungsgeschwindigkeit der Ionen 223 Wasser, ausgekochtes für neutr. 151 —, bleibende Härte 155 , Best. 156 . für Chelatometrie, Reinheit 215 Chloridgehalt, arg. n. Mohr 200 Dissoziation 109 Gesamthärte 155 —, chelat. 219 —, n. Blacher 185, 187 —, n. Blacher neben E i s e n , Aluminium, Kieselsäure, organischen Bestandteilen 187 , n. Blacher, Korrekturtab. 187 —, n. Blacher, Störung durch Mangan 187 —, n. Clark 185 Gleichgewichtsreaktion 109 hartes 155 Ionenprodukt 109, 110 — für versch. T e m p . 109 Kalkhärte 155, 185, 188 —, mang. 60 Karbonathärte 155 -, Best. 156 Magnesiahärte 155, 188 —, n. Blacher 187 —, n. Fromboese 188 —, neutr. 157 Massenwirkungsgesetz 109 Mineralsäurehärte 155 —, Best. 156 Reinigung durch Ionenaustauscher 215

—, —, —> —, —,

Sulfatgehalt, kond. 239 vorübergehende Härte 155 — , Best. 156 weiches 155 Wasserstoff- u. HydroxidIonen-Konz. 110 Wasserdampf, Reinigungsmittel 27 Wasserstoff, Reinigung von Sauerstoffspuren 275 — elektrode 40, 249, 254, 256, 275 — —, normale 40, 254 — —, Normalpotential 249 , Polarisation 275 — — , Potential gegen NormalKalomelelektrode 275 — —, Potentialmessung 276 — —, praktische Form 275 — —, störende Verbindungen 276 — exponent 111, 177 — ionenkonzentration 110 — —, Änderung im Verlauf einer Titration 113 — —, berechnete, von Säuren u. Basen 118 — peroxid, jod. 96 — —, jod., katalytische Beschleunigung 96 — —, jod. Vorzug gegenüber mang. 97 — —, mang. 61 — —, mang., Inkubationsperiode 61 — — neben organischen Konservierungsmitteln jod. 97 — stab 40, 249 Wechselstrom-apparatur n. Jander u. Pfundt (kond.) 232 — galvanometer 231 Weißeisen, Mangangeh., mang. 67 Wendepunktsmethode, Potentiometrie 252, 263 Wertigkeit, Begriffssystem 38 —, D e f . 38 Wheatstcnesche Brückenschaltung 228 Widerstandskapazität von Leitfähigkeitsgefäßen 228 Wirkungswert von Maßlsg. 45 Wislicenuskolben 34 Wismut, Abtrennung von Arsen, Antimon, Kupfer 77 —, bromat. 76 — oxidchlorid 77 Wofatit, Ionenaustauscher 170 Wolframate, Abhängigkeit der Hydrolysekonst. 123

Sachregister Zement, Calciumbest., mang. 60 Zink, fällungstitrim. mit Natriumkarbonat 185 —, — mit Natriumsulfid n. Schaffner 182, 185 — pot. 271 —, —, Abtrennung störender Ionen 271 —, —, Umschlagselektrode 271 —, T ü p f e l m e t h o d e n. Galetti u. Fahlberg 203 —, —, Störung durch Oxydationsmittel 204 —, in Zinkerzen 203 — halbelement 40 — manganite 65 — sulfatlsg., Titration mit Natriumsulfidlsg. 184

313

Zinn, in alkalischen Lsg., jod. 93 —, jod. 92 —, pot. mit Kaliumdichromat 281 —, in sauren Lsg., jod. 93 — neben Antimonsalzen, jod. 93 — neben Bromiden, jod. 93 — neben Eisen(II)-Salzen, jod. 93 — neben Jodiden, jod. 93 — -Antimonlegierungen, Zinngehalt, jod. 93 Zinn(II)-chIoridlsg. für Reduktionszwecke, Bereitung 58 Methode 107 — Salze, jod. 93 , pot. 281 Zulagetafel n. Schlösser 24 Zurücktitrieren 151

KLAGES

Einführung in die organische Chemie Von Dr. F r i e d r i c h

Klages,

Professor der organischen

Chemie

an der Universität München Groß-Oktav.

Mit 50 Abbildungen,

25 T a b e l l e n

und 17

Raumbildern.

571 Seiten. 1961. Plastikeinband DM 28 — Im Gegensatz zu den ausführlichen Lehrbüchern der organischen Chemie, bei denen die Darstellung der tieferen Zusammenhange und Beziehungen zwischen den einzelnen Verbindungen und Verbindungsklassen im Vordergrund des Interesses steht, hat ein kurzes einführendes Lehrbuch in erster Linie die Aufgabe, die wichtigsten Substanzklassen beschreibend darzustellen, um dem Studierenden zunächst einmal die Grundlagen für das spätere eingehende

Studium

seiner Wissenschaft

zu vermitteln.

Dem-

entsprechend wurde in der vorliegenden „Einführung in die organische Chemie", die vor allem für das beginnende Chemiestudium, aber auch für diejenigen Studierenden bestimmt ist, die sich mit der Chemie als Nebenfach beschäftigen, unter Fortlassung der erst den Fortgeschrittenen interessierenden

ausführlichen

Abhandlung

auch der Konstitutionsermittlung

theoretischer

von Naturstoffen

Fragen

ein möglichst

sowie voll-

ständiges Tatsachenmaterial gebracht. Abgesehen von der etwas abweichenden Aufgabenstellung wurde die in dem großen Lehrbuch des Verfassers (Lehrbuch DM zj6,—)

der organischen

Chemie,

Zur Erhöhung der Übersichtlichkeit erlernenden

j Bände.

Groß-Oktav.

Ganzleinen.

gebrachte Stoffeinteilung im wesentlichen beibehalten.

Gesetzmäßigkeiten

sind alle wichtigen, unbedingt

durch

dreifache

Leitlinien

am

zu

linken

Seitenrand hervorgehoben. Als wichtige Neuerung wurde die in anderen Disziplinen

bereits

gebräuchliche Verwendung

zur Darstellung sterischer Probleme

von

Raumbildern

eingeführt.

W A L T E R DE G R U Y T E R & CO. • B E R L I N W 30 vormals G. J . Göschen'sche Verlagshandlung • J . Guttentag, Verlagsbuchhandlung • Georg Reimer • Karl J. Trübner • Veit & Comp.

NERDEL

Organische Chemie Ein Lehrbuch für Naturwissenschaftler, Mediziner und Techniker Von Professor D r . F r i e d r i c h N e r d c l , Technische U n i v e r s i t ä t Berlin, u n t e r M i t a r b e i t vo.n B e r n h a r d Schräder G r o ß - O k t a v . Mit 11 A b b i l d u n g e n . XVI, 160 Seiten. 1961. Plastike i n b a n d D M 16,80 Die organische C h e m i e , richtiger die P r o d u k t e d e r Biosynthese, d e r organisch-chemischen I n d u s t r i e u n d der F o r s c h u n g s l a b o r a t o r i e n , sind so vielgestaltig, d a ß o h n e sie unsere h e u t i g e Zivilisation k a u m d e n k b a r w ä r e . Diese e n g e V e r z a h n u n g mit d e m täglichen L e b e n z w i n g t auch den Nichtchemiker, sich mit gewissen B e g r i f f e n u n d G r u n d v o r s t c l l u n g e n dieser Wissenschaft vertraut z u machen. Das v o r l i e g e n d e Buch ist ein L e i t f a d e n f ü r die Vorlesung, in erster L i n i e f ü r solche S t u d e n t e n b e s t i m m t , die die C h e m i e n u r als N e b e n f a c h b e t r e i b e n . Es k a n n a b e r auch C h e m i k e r n bei ihrer ersten B e g e g n u n g m i t der organischen C h e m i e die E i n a r b e i t u n g erleichtern.

K U S T E R - T H I E L - F I S C H B E C K

Logarithmische Rechentafeln Für Chemiker, Pharmazeuten, Mediziner und Physiker B e g r ü n d e t von F . W . K ü s t e r , f o r t g e f ü h r t von A. T h i e l , n e u b e a r b e i t e t von K. F i s c h b e c k 84.—93., verbesserte u n d v e r m e h r t e A u f l a g e . Oktav. Mit 1 M a n t i s s e n t a f e l . XV, 302 Seiten. 1961. P l a s t i k e i n b a n d D M 16,80 (Arbeitsmethoden

der modernen

Naturwissenschaften)

„ D e r »Küster-Thiel' darf m i t vollem Recht Anspruch darauf e r h e b e n , im L a b o r a t o r i u m technischer o d e r rein wissenschaftlicher Richtung das n o t w e n d i g s t e u n d m e i s t g c b r a u c h t c Hilfsbuch zu sein." Praktische Chemie „. . . sind f ü r j e d e n C h e m i k e r ein f e s t s t e h e n d e r B e g r i f f . Sie sind bei j e d e r chemischen A r b e i t schlechthin u n e n t b e h r l i c h u n d aus d e m L a b o r a t o r i u m nicht m e h r w e g z u d e n k e n . " Chemie für Labor und Betrieb

W A L T E R D E G R U Y T E R & CO. * B E R L I N W 30 v o r m a l s G. J. Göschen'sche V e r l a g s h a n d l u n g • J . G u t t e n t a g , Verlagsb u c h h a n d l u n g • ' Georg R e i m e r • Karl J. T r ü b n e r • V e i t & C o m p .

MATTENHEIMER

Mikromethoden für das klinisch-chemische und biochemische Laboratorinm Von Dr. med. H e r m a n n M a t t e n h e i m e r , Asst. Professor of Biochemistry, University of Illinois, College of Medicine. Director, Tissue and Cell Biology Laboratory, Presbyterian-St. Luke's Hospital, Chicago III. USA. Privatelozent an der Freien Universität Berlin Oktav. Mit 23 Abbildungen. X I , 146 Seiten. 1961. Plastikeinband DM 16,— Die biochemische Mikroanalyse, bis vor kurzem Forschungslaboratorien vorbehalten, findet in zunehmendem Maße Eingang in Routinelaboratorien, seitdem spezielle Geräte für die Mikroanalyse fabrikmäßig hergestellt werden. Das Buch ist für das klinisch-chemische Laboratorium geschrieben, soll aber auch jedem biochemisch arbeitenden Laboratorium als Ratgeber dienen. GATTERMANIV-WIELAIMD

Die Praxis des organischen Chemikers 40. Auflage, bearbeitet von Professor Dr. T h e o d o r Wieland, Frankfurt a. M. Mit einem Kapitel über Elektronentheorie und Mesomerielehre von R o l f Huisgen Oktav. Mit 58 Abbildungen. X V I , 411 Seiten. 1961. Ganzleinen DM 26,— „Zwei Dinge sind es vor allem, welche den Gattermann von jeher so auszeichnen: Die vorzügliche Auswahl der Präparate mit ihrer klaren, auch dem Anfänger sofort verständlichen Beschreibung, und die Verbindung von Praxis und Theorie durch das „Kleingedruckte", eine wahre Fundgrube für all das, was der organisch-arbeitende Chemiker an Grundlagenwissen braucht und womit er sich dann an Hand von Lehrbüchern näher beschäftigen soll." Chemie für Labor und Betrieb NEUIVHOEFFER

Analytische Trennung und Identifizierung organischer Substanzen Für den Gebrauch in Unterrichtslaboratorien Von Professor Dr. O t t o N e u n h o e f f e r , unter Mitarbeit von Dr. H e i n z W o g g o n und Dr. G ü n t e r Lehmann Oktav. Mit 4 Abbildungen. V I I I , 116 Seiten. 1960. Ganzleinen DM 18,— „Zweifellos ist die chemische Analyse und insbesondere die organische Analyse die praktisch einzige Methode, bei der der Unterrichtende mit Sicherheit diese Beurteilung bzw. Kontrolle durchführen kann. Um dieses Ziel zu erreichen, mußte vorerst ein modernes und attraktives Lehrmittel geschaffen werden, das hier nun vorliegt." Chemische Rundschau W A L T E R DE G R U Y T E R & CO. • B E R L I N W 30 vormals G. J . Göschen'sche Verlagshandlung • J . Guttentag, Verlagsbuchhandlung • Georg Reimer • Karl J . Trübner • Veit & Comp.

GESAMTVERZEICHNIS der

SAMMLUNG GÖSCHEN

J e d e r B a n d DM 3,60 • D o p p e l b a n d DM 5,80

S t a n d J a n u a r 1961

WALTER DE GRUYTER & CO., B E R L I N W 30

Inhaltsübersicht Seite Biologie Botanik Chemie D e u t s c h e S p r a c h e und L i t e r a t u r Elektrotechnik Englisch E r d - und L ä n d e r k u n d e Geologie Germanisch Geschichte Griechisch Hebräisch H o c h - und T i e f b a u Indogermanisch Kristallographie Kunst L a n d - und F o r s t w i r t s c h a f t Lateinisch Maschinenbau Mathematik Mineralogie Musik Pädagogik Philosophie Physik Psychologie Publizistik Religionswissenschaften Romanisch Russisch Sanskrit Soziologie Statistik Technik Technologie Volkswirtschaft Vermessungswesen Wasserbau Zoologie

2

13 13 12 6 15 7 8 15 7 5 8 8 18 7 15 5 14 8 16 10 15 4 3 3 12 3 9 4 7 8 8 3 9 15 13 9 18 IT 14

Geisteswissenschaften Philosophie Einführung in die Philosophie von ff. Leisegang (281)

f . 4. Auflage. 145Seiten. 1960.

Hauptprobleme der Philosophie von G. Simmel f . 7., unveränderte Auflage. 177 Seiten. 1950. (500) Geschichte der Philosophie I : Die g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 1. Teil. Von Thaies bis Leukippos. 2., erweiterte Auflage. 135 Seiten. 1953. (857) I I : Die g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 2. T e i l . Von der Sophistik bis zum Tode Piatons. 2., stark erweiterte Auflage. 144 Seiten. 1953. (858) III: Die g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 3. T e i l . Vom Tode Piatons bis zur Alten Stoa. 2., stark erweiterte Auflage. 132 Seiten. 1954. (859) IV: Die g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 4. T e i l . Von der Alten Stoa bis zum Eklektizismus im 1. J h . v. Chr. 2., stark erweiterte Auflage. 132 Seiten. 1954. (863) V : Die P h i l o s o p h i e d e s M i t t e l a l t e r s von J. Koch. In Vorbereitung. (826) V I : Von d e r R e n a i s s a n c e b i s K a n t von K. Schilling. 234 Seiten. 1954. (394/394 a) V I I : I m m a n u e l K a n t von G. Lehmann. In Vorbereitung. (536) VIII: D i e P h i l o s o p h i e d e s 19. J a h r h u n d e r t s von G. Lehmann. 1. T e i l . 151 Seiten. 1953. (571) I X : Die P h i l o s o p h i e d e s 19. J a h r h u n d e r t s von G. Lehmann. 2. T e i l . 168 Seiten. 1953. (709) X : D i e P h i l o s o p h i e i m e r s t e n D r i t t e l d e s 20. J a h r h u n d e r t s 1. Teil von G. Lehmann. 128 Seiten. 1957. (845) X I : D i e P h i l o s o p h i e im e r s t e n D r i t t e l d e s 20. J a h r h u n d e r t s 2. Teil von G.Lehmann. 114 Seiten. 1960. (850) Die geistige Situation der Zeit (1931) von K. Jaspers. 5., unveränderter Abdruck der im Sommer 1932 bearbeiteten 5. Auflage. 211 Seiten. 1960. (-000) Erkenntnistheorie von G. Kropp. I. Teil: A l l g e m e i n e G r u n d l e g u n g . 143 Seiten. 1950. (807) Formale Logik von P. Lorenzen. 165 Seiten. 1958. (1176/1176a) Philosophisches Wörterbuch von M. Apel f . 5., völlig neubearbeitete Auflage von P. Ludz. 315 Seiten. 1958. (1031/1031 a) Philosophische Anthropologie. Menschliche Selbstdeutung in Geschichte und Gegenwart von M . Landmann. 266 Seiten. 1955. (156/156 a)

Pädagogik, Psychologie, Soziologie Geschichte der Pädagogik von Herrn. Weimer. 14.» durchgesehene und vermehrte Auflage von Heinz Weimer. 178 Seiten. 1960. (145) Therapeutische Psychologie. Ihr Weg durch die Psychoanalyse von W. M. Kranefeldt. Mit einer Einführung von C. G. Jung. 3. Auflage. 152 Seiten. 1956. (1034)

3

GEISTESWISSENSCHAFTEN Allgemeine Psychologie von Th. Erismann. 3 Bände. 2., neubearbeitete Auflage. I : G r u n d p r o b l e m e . 146 Seiten. 1958. (831) I I : G r u n d a r t e n d e s p h y s i s c h e n G e s c h e h e n s . 248 Seiten. 1959. (832/832a) I I I : P s y c h o l o g i e d e r P e r s ö n l i c h k e i t . In Vorbereitung (833) Soziologie. Geschichte und Hauptprobleme von L. von Wiese. 6. Auflage. 175 Seiten. 1960. (101) Sozialpsychologie von P. R. Hofstätter. 181 Seiten, 15 Abbildungen, 22 Tabellen. 1956. (104/104 a) Psychologie des Berufs- und Wirtschaftslebens von W. Moede f . 190 Seiten, 48 Abbildungen. 1958.(851/851 a) Industrie- und Betriebssoziologie von R. Dahrendorf. 120 Seiten. 1956. (103)

Religionswissenschaften Jesus von M. Dibelius f . 3. Auflage, mit einem Nachtrag von W. G. Kümmel. 140 Seiten. 1960. (1130) Paulus von M. Dibelius f . Nach dem Tode des Verfassers herausgegeben und zu Ende geführt von W. G. Kümmel. 2., durchgesehene Auflage. 155 Seiten. 1956. (1160) Luther von F. Lau. 151 Seiten. 1959. (1187) Melanchthon von R. Stupperich. 139 Seiten. 1960. (1190) Geschichte Israels. Von den Anfängen bis zur Zerstörung de9 Tempels (70 n. Chr.) von E. L. Ehrlich. 158 Seiten, 1 Tafel. 1958. (231/231 a) Römische Religionsgeschichte von F. Altheim. 2 Bande. 2,, umgearbeitete Auflage. I : G r u n d l a g e n u n d G r u n d b e g r i f f e . 116 Seiten. 1956. (1035) I I : Der g e s c h i c h t l i c h e A b l a u f . 164 Seiten. 1956. (1052)

Musik Musikästhetik von H. J. Moser. 180 Seiten. Mit zahlreichen Notenbeispielen. 1953. (344) Systematische Modulation von R. Hernried. 2. Auflage. 136 Seiten. Mit zahlreichen Notenbeispielen. 1950. (1094) Der polyphone Satz von E. Pepping. 2 Bände. I : D e r c a n t u s - f i r m u s - S a t z . 2. Auflage. 223 Seiten. Mit zahlreichen Notenbeispielen. 1950.(1148) I I : Ü b u n g e n i m d o p p e l t e n K o n t r a p u n k t u n d i m K a n o n . 137 Seiten. Mit zahlreichen Notenbeispielen. 1957. (1164/1164a) Allgemeine Musiklehre von H. J. Moser. 2., durchgesehene Auflage. 155 Seiten. Mit zahlreichen Notenbeispielen. 1955. (220/220a) Harmonielehre von H. J. Moser. 2 Bände. I : 109 Seiten. Mit 120 Notenbeispielen. 1954. (809) Die Musik des 19. Jahrhunderts von W. Oehlmann. 180 Seiten. 1953. (170) Die Musik des 20. Jahrhunderts von W. Oehlmann. In Vorbereitung. (171/171 a) Technik der deutschen Gesangskunst von H. J: Moser. 3., durchgesehene und verbesserte Auflage. 144 Seiten, 5 Figuren sowie Tabellen und Notenbeispiele. 1954. (576/576 a)

4

GEISTESWISSENSCHAFTEN Die Kunst des Dirigierens von H. W. von Wollershausen f . 2., vermehrte Auflage. 138 Seiten. Mit 19 Notenbeispielen. 1954. (1147) Die Technik des Klavierspiels aus dem Geiste des musikalischen Kunstwerkes von K. Schubert f. 3. Auflage. 110 Seiten. Mit Notenbeispielen. 1954. (1045)

Kunst Sülkunde von H. Weigert. 2 Bände. 3., durchgesehene und ergänzte Auflage. I : V o r z e i t , A n t i k e , M i t t e l a l t e r . 136 Seiten, 94 Abbildungen. 1958. (80) I I : S p ä t m i t t e l a l t e r u n d N e u z e i t . 150 Seiten, 88 Abbildungen. 1958. (781) Archäologie von A. Rumpf. 2 Bände. I : E i n l e i t u n g , h i s t o r i s c h e r Ü b e r b l i c k . 143 Seiten, 6 Abbildungen, 12 Tafeln. 1953. (538) I I : D i e A r c h ä o l o g e n s p r a c h e . Die antiken Reproduktionen. 136 Seiten» 7 Abbildungen, 12 Tafeln. 1956. (539)

Geschichte Einführung in die Geschichtswissenschaft von P. Kirn. 3., durchgesehene Auflage. 128 Seiten. 1959. (270) Zeitrechnung der römischen Kaiserzeit« des Mittelalters und der Neuzeit für die Jahre 1—2000 n. Chr. von H. Lietzmonn f . 3. Auflage, durchgesehen von K. Aland. 130 Seiten. 1956. (1085) Kultur der Urzeit von F. Eehn. 3 Bände. 4. Auflage der Kultur der Urzeit Bd. 1—3 von M. Hoernes. I : D i e v o r m e t a l l i s c h e n K u l t u r e n . (Die Steinzeiten Europas. Gleichartige Kulturen in anderen Erdteilen.) 172 Seiten, 48 Abbildungen. 1950. (564) II: D i e ä l t e r e n Met a l l k u l t u r e n . (Der Beginn der Metallbenutzung. Kupfer« und Bronzezeit in Europa, im Orient und in Amerika.) 160 Seiten, 67 Ab« bildungen. 1950. (565) III: D i e j ü n g e r e n M e t a l l k u l t u r e n . (Das Eisen als Kulturmetall, Hallstatt* Latene-Kultur in Europa. Das erste Auftreten des Eisens in den anderen Weltteilen.) 149 Seiten, 60 Abbildungen. 1950. (566) Vorgeschichte Europas von F. Behn. Völlig neue Bearbeitung der 7. Auflage der „Urgeschichte der Menschheit*' von M. Hoernes. 125 Seiten, 47 Abbildungen. 1949.(42) Der Eintritt der Germanen in die Geschichte von J. Haller f . 3. Auflage, durch« gesehen von //. Dannenbauer. 120 Seilen, 6 Kartenskizzen. 1957. (1117) Von den Karolingern zu den Staufern. Die altdeutsche Kaiserzeit (900—1250) von J. Haller f . 4., durchgesehene Auflage von H. Dannenbauer. 142 Seiten, 4 Karten. 1958. (1065) Von den Staufern zu den Habsburgern. Auflösung des Reichs und Emporkommen der Landesstaaten (1250—1519) von J. Htiller f . 2., durchgesehene Auflage von H. Dannenbauer. 118 Seiten, 6 Kartenskizzen. 1960. (1077) Deutsche Geschichte im Zeitalter der Reformation, der Gegenreformation und des dreißigjährigen Krieges von F. Härtung. 129 Seiten. 1951. (1105) Deutsehe Geschichte von 1648 - 1 7 4 0 . Politischer und geistiger Wiederaufbau von W. Treue. 120 Seiten. 1956. (35) Deutsche Geschichte von 1713 — 1806. Von der Schaffung des europäischen Gleichgewichts bis zu Napoleons Herrschaft von W. Treue. 168 Seiten. 1957. (39) Deutsche Geschichte von 1806 — 1890. Vom Ende des alten bis zur Höhe des neuen Reiches. Von W. Treue. 127 Seiten. 1961. (893)

5

GEISTESWISSENSCHAFTEN Deutsche Geschichte v o n 1890 big zur Gegenwart v o n W. Treue. I n V o r b e r e i t u n g . (894) Quellenkunde der Deutschen Geschichte i m Mittelalter (bis z u r M i t t e des 15. J a h r h u n d e r t s ) v o n K. Jacob f . 3 B ä n d e . I : E i n l e i t u n g . A l l g e m e i n e r T e i l . D i e Z e i t d e r K a r o l i n g e r . 6. A u f l a g e , b e a r b e i t e t v o n H. Hohenleutner. 127 S e i t e n . 1959. (279) I I : D i e K a i s e r z e i t (911—1250). 5., n e u b e a r b e i t e t e A u f l a g e v o n H. Hohenleutner. 127 S e i t e n . 1961. (280) I I I : D a s S p ä t m i t t e l a l t e r ( v o m I n t e r r e g n u m bis 1500). H e r a u s g e g e b e n v o n F. Weden. 152 S e i t e n . 1952. (284) Geschichte Englands v o n H. Preller. 2 B ä n d e . I : b i s 1 8 1 5 . 3., s t a r k u m g e a r b e i t e t e A u f l a g e . 135 S e i t e n , 7 S t a m m t a f e l n , 2 K a r t e n . 1952. (375) I I : V o n 1 8 1 5 b i s 1 9 1 0 . 2., völlig u m g e a r b e i t e t e A u f l a g e . 118 S e i t e n , 1 S t a m m « tafeL, 7 K a r t e n . 1954. (1088) Römische Geschichte v o n F . Altheim. 4 B ä n d e . 2., v e r b e s s e r t e A u f l a g e . I : B i s z u r S c h l a c h t b e i P y d n a (168 v . Chr.). 124 S e i t e n . 1956. (19) I I : B i s z u r S c h l a c h t b e i A c t i u m (31 v . Chr.). 129 S e i t e n . 1956. (677) I I I : B i s z u r S c h l a c h t a n d e r M i l v i s c h e n B r ü c k e (312 n . Chr.). 148 S e i t e n . 1958.(679) I V : B i s z u r S c h l a c h t a m Y a r m u k (636 n . Chr.). I n V o r b e r e i t u n g . (684) Geschichte der Vereinigten Staaten von Amerika v o n O. Graf zu Stoiberg'Wer nige» rode. 192 S e i t e n , 10 K a r t e n . 1956. (1051/1051 a)

Deutsche Sprache und Literatur Geschichte der Deutschen Sprache v o n H. Sperber. 3. A u f l a g e , b e s o r g t v o n W. Fleischhauer. 128 S e i t e n . 1958. (915) Deutsches Rechtschreibungswörterbuch v o n M. Gottschald f . 2., v e r b e s s e r t e A u f l a g e . 219 S e i t e n . 1953. ( 2 0 0 / 2 0 0 a ) Deutsche Wortkunde. K u l t u r g e s c h i c h t e d e s d e u t s c h e n W o r t s c h a t z e s v o n A. Schirmer. 4 . A u f l a g e v o n W. Mitzka.

123 S e i t e n . 1960. (929)

D e u t s c h e S p r a c h l e h r e v o n W. Hofstaetter.

10. A u f l a g e . Völlige U m a r b e i t u n g dej*

8. A u f l a g e . 150 S e i t e n . 1960. (20) Stimmkunde f ü r B e r u f , K u n s t u n d H e i l z w e c k e v o n H. Biehle. Redetechnik. E i n f ü h r u n g in die R h e t o r i k v o n H. Biehle.

I I I S e i t e n . 1955. (60)

115 S e i t e n . 1954. (61)

S p r e c h e n und S p r a c h p f l e g e (Die K u n s t des S p r e c h e n s ) v o n H. Feist. 2., v e r b e s s e r t e A u f l a g e . 99 S e i l e n . 25 A b b i l d u n g e n . 1952. (1122) Deutsches Dichten und Denken von der germanischen bis zur staufischen Zeit v o n H. Naumann f . (Deutsche Literaturgeschichte vom 5.—13. J a h r h u n d e r t . ) 2., v e r b e s s e r t e A u f l a g e . 166 S e i t e n . 1952. (1121) Deutsches Dichten und Denken v o m Mittelalter zur Neuzeit v o n G. Müller (1270 bis 1700). 2., d u r c h g e s e h e n e A u f l a g e . 159 S e i t e n . 1949. (1086) Deutsches Dichten und Denken von der Aufklärung bis zum Realismus (Deutsche Literaturgeschichte von 1700—1890) v o n K. Vietor f . 3., durchgesehene A u f l a g e . 159 Seiten. 1958. (1096)

6

GEISTESWISSENSCHAFTEN Der Nibelunge Not in Auswahl m i t kurzem Wörterbuch von K. Langosch. 10., durchgesehene Auflage. 164 Seiten. 1956. (1) Kudrun und Dietrich-Epen in Auswahl mit Wörterbuch von 0. L. Jiriczek. 6. Autlage, bearbeitet yon R. Wisniewski. 173 Seiten. 1957. (10) Wolfram von Eschenbach. Parzlval. Eine Auswahl mit Anmerkungen und Wörterbuch von H. Jantzen. 2. Auflage, bearbeitet von H. Kolb. 128 Seiten. 19S7. (921) Hartmann von Aue. Der arme Heinrich nebst einer. Auswahl aus der „Klage' 1 , dem „Gregorius" und den Liedern (mit einem Wörterverzeichnis) herausgegeben von F . Maurer. 96 Seiten. 1958. (18) Gottfried von Strassburg in Auswahl herausgegeben von F. Maurer. 142 Seiten. 1959. (22) Die deutschen Personennamen von M. Gottschald f . 2., verbesserte Auflage. 151 Seiten. 1955. (422) Mittelhochdeutsche Grammatik von H. de Boor und R. Wisnieicski. 2., verbesserte und ergänzte Auflage. 142 Seiten. 1960. (1108)

Indogermanisch, Germanisch Indogermanische Sprachwissenschaft von H. Krähe. 2 Bände. 3., neubearbeitete Auflage. I : E i n l e i t u n g u n d L a u t l e h r e . 106 Seiten. 1958. (59) I I : F o r m e n l e h r e . 124 Seiten. c 1959. (64) Gotisches Elementarbuch. Grammatik, Texte mit Übersetzung und Erläuterungen. Mit einer Einleitung von H. Hempel. 3. Auflage. 1961.'In Vorbereitung (79) Germanische Sprachwissenschaft von H. Krähe. 2 Bände. 4., überarbeitete Auflage. I : E i n l e i t u n g u n d L a u t l e h r e . 147 Seiten. 1960. (238) II: F o r m e n l e h r e . 4., überarbeitete Auflage. 149 Seiten. 1961. (780) Altnordisches Elementarbuch. Schrift, Sprache, Texte m i t Übersetzung und Wörterbuch von F. Ranke. 2., durchgesehene Auflage. 146 Seiten. 1949. (1115)

Englisch, Romanisch Altenglisches Elementarbuch von M. Lehnert. Einführung, Grammatik, Texte mit Übersetzung und Wörterbuch. 4., verbesserte Auflage. 178 Seilen. 1959.(1125) Historische neuenglische Laut- und Formenlehre von E. Ekuiall. 3., durchgesehene Auflage. 150 Seiten. 1956. (735) Englische Phonetik von Ii. Mut.schrnann f . 117 Seiten. 1956. (601) Englische Literaturgeschichte von F. Schubei. 4 Bände. I : D i e a l t - u n d m i t t e l e n g l i s c h e P e r i o d e . 163 Seiten. 1954. (11U) II: V o n d e r R e n a i s s a n c e b i s z u r A u f k l ä r u n g . 160 Seiten. 195b. (1116) III: R o m a n t i k u n d V i k t o r i a n is m u s. 160 Seilen. 1960. (1121) Beowulf von M. Lehnert. Eine Auswahl mit Einführung, teilweiser Übersetzung, Anmerkungen und etymologischem Wörterbuch. 3., verbesserte Auflage. 135 Seilen. 1959. (1135)

7

GEISTESWISSENSCHAFTEN S h a k e s p e a r e v o n P. Meißner f . 2. A u f l a g e , n e u b e a r b e i t e t v o n M. Lehnert. 136 S e i t e n . 1954. (1142) I t a l i e n i s c h e L i t e r a t u r g e s c h i c h t e v o n K> Voßler f . 5. A u f l a g e , n e u b e a r b e i t e t v o n A. Noyer-Weidner. I n V o r b e r e i t u n g . (125) Geschichte d e r r ö m i s c h e n L i t e r a t u r v o n L. Bieler. 2 B ä n d e . I : D i e L i t e r a t u r d e r R e p u b l i k . 160 S e i t e n . 1961. (52) I I : D i e L i t e r a t u r d e r K a i s e r z e i t . 133 S e i t e n . 1961. (866) R o m a n i s c h e S p r a c h w i s s e n s c h a f t v o n H. Lausberg. 2 B ä n d e . I : E i n l e i t u n g u n d V o k a l i s m u s . 160 S e i t e n . 1956. ( 1 2 8 / 1 2 8 a ) I I : K o n s o n a n t i s m u s . 95 S e i t e n . 1956. (250)

Griechisch, Lateinisch Griechische S p r a c h w i s s e n s c h a f t v o n W. Brandenstein. 2 Bände. I : E i n l e i t u n g , L a u t s y s t e m , E t y m o l o g i e . 160 S e i t e n . 1954. (117) I I : W o r t b i l d u n g u n d F o r m e n l e h r e . 192 S e i t e n . 1959. ( 1 1 8 / 1 1 8 a ) Geschichte der g r i e c h i s c h e n S p r a c h e . 2 B ä n d e . I : B i s z u m A u s g a n g d e r k l a s s i s c h e n Z e i t v o n 0. Hoff mann f . 3. A u f l a g e , b e a r b e i t e t v o n A. Debrunner f . 156 S e i t e n . 1953. (111) II: G r u n d f r a g e n und Grundzüge des nachklassischen Griechisch v o n A. Debrunner f . 144 S e i t e n . 1954. (114) Geschichte der griechischen L i t e r a t u r von W. Nestle. 2 B ä n d e . I : 3. A u f l a g e b e a r b . von W. Liebich. 1961. In V o r h e r e i m n g . (70) G r a m m a t i k der n e u g r i e c h i s c h e n V o l k s s p r a c h e von J. Kalitsunakis. 3., völlig neu* b e a r b e i t e t e u n d e r w e i t e r t e A u f l a g e . 1961. In V o r b e r e i t u n g . ( 7 5 6 / 7 5 6 a ) N e u g r i e c h i s c h »deutsches G e s p r ä c h s b u c h v o n J. Kalitsunakis. 2. A u f l a g e , b e a r b e i t e t v o n A. Steinmetz. 99 S e i t e n . 1960. (587)

Hebräisch, Sanskrit, Russisch H e b r ä i s c h e G r a m m a t i k v o n G. Beer f . 2 B ä n d e . 2., völlig n e u b e a r b e i t e t e A u f l a g e v o n R. Meyer. I : S c h r i f t - , L a u t - u n d F o r m e n l e h r e I . 157 S e i t e n . 1952. ( 7 6 3 / 7 6 3 a ) I I : F o r m e n l e h r e I I . S y n t a x u n d F l e x i o u s t a b e l l e n . 195 S e i t e n . 1955. ( 7 6 4 / 764 a) H e b r ä i s c h e s T e x t b u c h zu G. Beer-R. Meyer, H e b r ä i s c h e G r a m m a t i k v o n R. Meyer. 170 S e i t e n . 1960. ( 7 6 9 / 7 6 9 a ) S a n s k r i t - G r a m m a t i k v o n M. Mayrhofer. 89 S e i t e n . 1953. (1158) R u s s i s c h e G r a m m a t i k von E. Berneker f . 7., u n v e r ä n d e r t e A u f l a g e v o n M . Vaamer. 155 S e i t e n . 1961. (i>6) E i n f ü h r u n g in die slavische S p r a c h w i s s e n s c h a f t v o n II. Bräuer. 2 B ä n d e . I : E i n l e i t u n g u n d L a u t l e h r e . 1961. I n V o r b e r e i t u n g . (1191)

Erd» und Länderkunde A f r i k a v o n F. Jacger. E i n g e o g r a p h i s c h e r Ü b e r b l i c k . 2 B ä n d e . 2., u m g e a r b e i t e t e Auflage. I : D e r L e b e n s r a u m . 179 S e i t e n , 18 A b b i l d u n g e n . 1954. (910) I I : M e n s c h u n d K u l t u r . 155 S e i t e n , 6 A b b i l d u n g e n . 1954. (911) A u s t r a l i e n u n d O z e a n i e n v o n H. J . Krug. 176 Seiten» 4 6 S k i z z e n . 1953. (319)

8

GEISTESWISSENSCHAFTEN

Volkswirtschaft, Statistik, Publizistik Allgemeine Betriebswirtschafulehre v o n K. Mellerowicz. 4 B ä n d e . 10.« e r w e i t e r t e und veränderte Auflage. I : 224 S e i l e n . 1958. ( 1 0 0 8 / 1 0 0 8 a ) I I : 188 S e i t e n . 1959. ( 1 1 5 3 / 1 1 5 3 a ) I I I : 260 S e i t e n . 1959. ( 1 1 5 4 / 1 1 5 4 a ) I V : 209 S e i t e n . 1959. ( 1 1 8 6 / 1 1 8 6 a ) Diese 4 B ä n d e sind a u c h in G a n z l e i n e n ( B d . I n u r n o c h ) g e b u n d e n z u m P r e i s e v o n je DM 6,30 l i e f e r b a r . Geschichte der Volkswirtschaftslehre v o n S. Wendi. 1961. I n V o r b e r e i t u n g . (1194) Allgemeine Volkswirtschaftslehre v o n A. Paulsen. 4 B ä n d e . I : G r u n d l e g u n g , W i r t s c h a f t s k r e i s l a u f . 3., durchgesehene u n d ergänzte A u f l a g e . 148 S e i t e n . 1959. (1169) I I : H a u s h a l t e , U n t e r n e h m u n g e n , M a r k t f o r m e n . 3., n e u b e a r b e i t e t e A u f l a g e . 166 S e i t e n , 32 A b b i l d u n g e n . 1960. (1170) I I I : P r o d u k t i o n s f a k t o r e n . 3.» d u r c h g e s e h e n e A u f l a g e . 200 S e i t e n . 1961. (1171) I V : G e s a m t b e s c h ä f t i g u n g , K o n j u n k t u r e n , W a c h s t u m . 172 S e i t e n . 1960. (1172) Finanzwissenschaft v o n H. Kol ms. 4 B ä n d e . . I : G r u n d l e g u n g , ö f f e n t l i c h e A u s g a b e n . 160 S e i t e n . 1959. (148) II: E r w e r b s e i n k ü n f t e , Gebühren und Beiträge; Allgemeine Steuerl e h r e . 148 S e i t e n . 1960. (391) I I I : B e s o n d e r e S t e u e r l e h r e . I n V o r b e r e i t u n g . (776) I V : Ö f f e n t l i c h e r K r e d i t . H a u s h a l t s w e s e n . F i n a n z a u s g l e i c h . I n Vorb e r e i t u n g . (782) Finanzmathematik v o n M. Nicolas. 192 S e i t e n , 11 T a f e l n , 8 T a b e l l e n u n d 72 B e i spiele. 1959. (1183/1183 a) Industrie- und Betriebssoziologie v o n R. Dahrendorf. 120 S e i t e n . 1956. (103) WirtschafUsoziologie von F. Fürstenberg. 122 S e i t e n . 1961. (1193) Psychologie des Berufs- und Wirtschaftsleben« v o n W. Moede f . 190 S e i t e n , 48 A b b i l d u n g e n . 1958. (851/851 a) Allgemeine Methodenlehre der Statistik v o n J . Pfanzagl. 2 B ä n d e . I : Elementare Methoden u n t e r besonderer Berücksichtigung der A n w e n d u n gen in d e n W i r t s c h a f t s - u n d S o z i a l w i s s e n s c h a f t e n . 205 S e i t e n , 35 A b b i l d u n g e n . 1960. (746/746 a) I I : Höhere Methoden unter besonderer Berücksichtigung der Anwendungen in N a t u r w i s s e n s c h a f t , Medizin u n d T e c h n i k . I n V o r b e r e i t u n g . (747/747 a) Zeitungslehre v o n E. Dovifat. 2 B ä n d e . 3., n e u b e a r b e i t e t e A u f l a g e . I: Theoretische und rechtliche Grundlagen — N a c h r i c h t u n d Mein u n g — S p r a c h e u n d F o r m . 148 S e i t e n . 1955. (1039) II: R e d a k t i o n — Die S p a r t e n : Verlag u n d V e r t r i e b , W i r t s c h a f t u n d T e c h n i k , S i c h e r u n g d e r ö f f e n t l i c h e n A u f g a b e . 158 S e i t e n . 1955. (1040)

9

Naturwissenschaften Mathematik Geschichte der Mathematik von J . E. Hofmann. 3 Bände. I : V o n den A n l a n g e n bis z u m A u f t r e t e n v o n F e r m a t u n d D e s c a r t e s . 200 Seiten. 1953. (226) II: Von F e n n a l und D e s c a r t e s bis zur E r f i n d u n g des C a l c u l u s u n d b i s z u m A u s b a u d e r n e u e n M e t h o d e n . 109 Seiten. 1957. (875) III: Von den A u s e i n a n d e r s e t z u n g e n um den C a l c u l u s bis zur f r a n z ö s i s c h e n R e v o l u t i o n . 107 Seiten. 1957.(882) 7., erweiterte A u f l a g e . Mathematische Formelsammlung von F. 0. Ringleb. 320 Seiten. 40 Figuren. i960. {51,5! a) Vierstellige Tafeln und Gegenlafeln für logarilhmischrs und trigonometrische« Rechnen in zwei Farben zusammengestellt von H. Schuherl und R. liausuner. 3., nruheurbeitete Auflage von ./. Krlehoch. 158 Seiten. i960. (81) Fünfstellige Logarithmen von A. Adler. Mit mehreren graphischen Rechentafeln und häufig vorkommenden Zahlenwertcn. 3. A u f l a g e . 127 Seiten, 1 Tafel. 1959.(423) Arithmetik von P. B. Fischer f . 3. A u f l a g e von H. Rohrbach. 152 Seiten, 19 Abbildungen. 1958. (47) Höhere Algebra von H. Hasse. 2 Bände. 4., durchgesehene A u f l a g e . I : L i n e a r e G l e i c h u n g e n . 152 Seiten. 1957. (931) I I : G l e i c h u n g e n h ö h e r e n G r a d e s . 158 Seiten. 5 Figuren. 1958. (932) Aufgabensammlung zur höheren Algebra von II. Hasse und W. Klobe. 2., verbesserte und vermehrte Auflage. 181 Seiten. 1952. (1082) Elementare und klassische Algebra vorn modernen Standpunkt von W, Krull. 2 Bände. I : 2.. erweiterte Auflage. 136 Seiten. 1952. (930) I I : 132 Seiten. 1959. (933) Algebraische Kurven und Flächen von W. Burau. 28 Figuren. 1961. In Vorbereitung. (435) Einführung in die Zablentheorie von A. Scholz f . Überarbeitet und herausgegeben von B. Schoeneberg. 3. Auflage. 1961. In Vorbereitung. (1131) Formale Logik von P. Lorenzen. 165 Seiten. 1958. (1176/1176 a) Topoiogie von W. Franz. 2 B ä n d e . I : Allgemeine Topoiogie. 144 Seiten, 9 Figuren. 1960. (1181) Elemente der Funktionentheorie von K. Knopp f . 5. A u f l a g e . 144 Seiten, 23 Fig. 1959.(1109) Funktionentheorie von K. Knopp f . 2 Bände. I: Grundlagen der allgemeinen Theorie der a n a l y t i s c h e n F u n k t i o n e n . 9., neubearbeitete Auflage. 144 Seiten, 8 Figuren. 1957. (668) II: A n w e n d u n g e n und W e i t e r f ü h r u n g der a l l g e m e i n e n Theorie. 8./9. Auflage. 130 Seiten, 7 Figuren. 1955. (703) Aufgabensammlung zur Funktionentheorie von K. Knopp f . 2 Bände. 5.Auflage. I : A u f g a b e n z u r e l e m e n t a r e n F u n k t i o n e n t h e o r i e . 135 Seiten. 1957. (877) I I : A u f g a b e n z u r h ö h e r e n F u n k t i o o e n t h e o r i e . 1 5 1 Seiten. 1959. (878)

10

NATURWISSENSCHAFTEN Differential- und Integralrechnung v o n M. Barner. (Früher Witting). 4 Bände. I : G r e n z w e r t b e g r i f f , D i f f e r e n t i a l r e c h n u n g . 1961. I n V o r b e r e i t u n g . (86) Gewöhnliche Differentialgleichungen v o n C, Hoheisel. 6., n e u b e a r b e i t e t e u n d erw e i t e r t e A u f l a g e . 128 S e i t e n . 1960. (920) P a r t i e l l e D i f f e r e n t i a l g l e i c h u n g e n v o n G. Hoheisel. 4., durchgesehene Auflage. 128 S e i t e n . 1960. (1003) A u f g a b e n s a m m l u n g zu den gewöhnlichen und partiellen Differentialgleichungen v o n G. Hoheisel. 3., d u r c h g e s e h e n e u n d v e r b e s s e r t e A u f l a g e . 124 S e i t e n . 1958. (1059) Integralgleichungen v o n G. Hoheisel. 2., d u r c h g e s e h e n e A u f l a g e . 1961. I n Vorb e r e i t u n g . (1099) M e n g e n l e h r e v o n E. Kamke. 3., n e u b e a r b e i t e t e A u f l a g e . 194 S e i t e n , 6 F i g u r e n . 1955.(999/999a) Gruppentheorie v o n L. Baumgartner. 3., n e u b e a r b e i t e t e A u f l a g e . 110 S e i t e n , 3 T a f e l n . 1958. (837) E b e n e u n d s p h ä r i s c h e T r i g o n o m e t r i e v o n G. Heisenberg f . 5. A u f l a g e , d u r c h g e s e h e n v o n H. Kneser. 172 S e i t e n , bO F i g u r e n . 1957. (99) Darstellende Geometrie v o n W. Haack. 3 B ä n d e . I: Die wichtigsten D a r s t e l l u n g s m e t h o d e n . Grund« u n d A u f r i ß e b e n f l ä c h i g e r K ö r p e r . 3 . , d u r c h g e s e h e n e u n d e r g ä n z t e A u f l a g e . 113Sei» t e n , 120 A b b i l d u n g e n . 1960. (142) II: K ö r p e r mit k r u m m e n B e g r e n z u n g s f l ä c h e n . K o t i e r t e P r o j e k t i o n e n . 2., d u r c h g e s e h e n e u n d e r g ä n z t e A u f l a g e . 129 S e i t e n , 86 A b b i l dungen. 1959.(143) I I I : A x o n o m e t r i e u n d P e r s p e k t i v e . 127 S e i t e n , 100 A b b i l d u n g e n . 1957. (144) Analytische Geometrie v o n K. P. Grotemeyer. 202 S e i t e n , 73 A b b i l d u n g e n . 1958. (65/65a) Nichteuklidische Geometrie. H y p e r b o l i s c h e G e o m e t r i e der E b e n e v o n R. Baldus f . D u r c h g e s e h e n u n d h e r a u s g e g e b e n v o n F. Löbell. 3., v e r b e s s e r t e A u f l a g e . 140 S e i t e n , 70 F i g u r e n . 1953. (970) Differentialgeometrie v o n K. Strubecker ( f r ü h e r Rothe). 3 B ä n d e . I : K u r v e n t h e o r i e d e r E b e n e u n d d e s R a u m e s . 150 S e i t e n , 18 F i g u r e n . 1955. (1113/1113 a) I I : T h e o r i e d e r F l ä c h e n m e t r i k . 195 S e i t e n , 14 F i g u r e n . 1958. ( 1 1 7 9 / U 7 9 a ) I I I : T h e o r i e d e r F l ä c h e n k r ü m m u n g . 254 S e i t e n , 38 F i g u r e n . 1959. (1180/1180 a) Variationsrechnung I v o n L. Koschmieder. 2., v e r b e s s e r t e A u f l a g e . M i t 23 F i g u r e n . 1961. I n V o r b e r e i t u n g . (1074) Einführung in die konforme Abbildung v o n L. Bieberbach. 5., e r w e i t e r t e A u f l a g e . 180 S e i t e n , 42 F i g u r e n . 1956. ( 7 6 8 / 7 6 8 a ) Vektoren und Matrizen v o n S . Valentiner. 2. A u f l a g e . (9., e r w e i t e r t e A u f l a g e d e r , , V e k t o r a n a l y s i s " ) . Mit A n h a n g : A u f g a b e n z u r V e k t o r r e c h n u n g v o n H. König. 202 S e i t e n , 35 F i g u r e n . 1960. (354/354 a) Versicherungsmathematik v o n F. Böhm. 2 B ä n d e . I : E l e m e n t e d e r V e r s i c h e r u n g s r e c h n u n g . 3., v e r m e h r t e u n d verbess e r t e A u f l a g e . D u r c h g e s e h e n e r N e u d r u c k . 151 S e i t e n . 1953. (180) I I : L e b e n s v e r s i c h e r u n g s m a t h e m a t i k . E i n f ü h r u n g in die t e c h n i s c h e n G r u n d l a g e n d e r S o z i a l v e r s i c h e r u n g . 2., v e r b e s s e r t e u n d v e r m e h r t e A u f l a g e . 205 Seiten. 1953. (917/917a) Finanzmathematik v o n M . Nicolas. 192 Seiten, 11 T a f e l n , 8 T a b e l l e n u n d 72 Beispiele. 1959. ( 1 1 8 3 / 1 1 8 3 a )

11

NATURWISSENSCHAFTEN

Physik E i n f ü h r u n g in die theoretische Physik von W. Döring. 5 B ä n d e . I : M e c h a n i k . . 2., verbesserte A u f l a g e . 123 Seiten, 25 A b b i l d u n g e n . 1960. (76) I I : D a s e l e k t r o m a g n e t i s c h e F e l d . 2., verbesserte A u f l a g e . 1961. I n Vorbereitung. (77) I I I : O p t i k . 117 S e i t e n , 32 A b b i l d u n g e n . 1956. (78) I V : T h e r m o d y n a m i k . 107 S e i t e n , 9 A b b i l d u n g e n . 1956. (374) V : S t a t i s t i s c h e M e c h a n i k . 114 Seiten, 12 Abbildungen. 1957. (1017) Mechanik deformierbarer K 5 r p e r v o n M. Päsler. 199 S e i t e n , 4 8 A b b i l d u n g e n . 1960. (1189/1189a) Atomphysik von K. Bechert und Ch. Gerthsen f . 7 B ä n d e . I : A l l g e m e i n e G r u n d l a g e n . 1. T e i l . 4., durchgesehene A u f l a g e v o n A. Flammersfeld. 124 Seiten, 35 Abbildungen. 1959. (1009) I I : A l l g e m e i n e G r u n d l a g e n . 2. Teil. 4. A u f l a g e . 1961. I n Vorher. (1033) I I I : T h e o r i e d e s A t o m b a u s . 1. T e i l . 4., u m g e a r b e i t e t e A u f l a g e . 148 S e i t e n , 16 Abbildungen. 1961. In Vorbereitung ( 1 1 2 3 / 1 1 2 3 a ) I V : T h e o r i e d e s A t o m b a u s . 2. T e i l . 3., u m g e a r b e i t e t e A u f l a g e . 170 Seiten, 14 Abbildungen. 1954. ( 1 1 6 5 / 1 1 6 5 a ) Differentialgleichungen der Physik von F. Sauter. 3., durchgesehene u n d ergänzte A u f l a g e . 148 S e i l e n , 16 Figuren. 1958. (1070) Physikalische F o r m e l s a m m l u n g von G. Mahler f . N e u b e a r b e i t e t v o n K . Mahler. 10., durchgesehene A u f l a g e . 153 Seiten, 69 Figuren. 1959. (136) Physikalische A u f g a b e n s a m m l u n g von G. Mahler f . N e u b e a r b e i t e t v o n K. Mahler. Mit den E r g e b n i s s e n . 10., durchgesehene A u f l a g e . 127 S e i t e n . 1959. (243)

Chemie Geschichte der Chemie in kurzgefaßter D a r s t e l l u n g v o n G. Lockemann. 2 B ä n d e . I : V o m A l t e r t u m b i s z u r E n t d e c k u n g d e s S a u e r s t o f f s . 142 S e i t e n , 8 B i l d n i s s e . 1950. (264) I I : V o n d e r E n t d e c k u n g d e s S a u e r s t o f f s b i s z u r G e g e n w a r t . 151 S e i t e n , 16 Bildnisse. 1955. ( 2 6 5 / 2 6 5 a ) Anorganische Chemie v o n W. Klemm. 11. A u f l a g e . 185 S e i t e n , 18 A b b i l d u n g e n . 1960.(37) Organische Chemie v o n W. Schlenk. 8., erweiterte A u f l a g e . 2 7 2 S e i t e n , 16 Abbildungen. 1960. (38/38 a) Physikalische Methoden der Organischen Chemie v o n G. Kresse. 1961. In Vorbereitung. (44) Allgemeine und physikalische Chemie v o n W. Schulze. 2 B ä n d e . I : 5., durchgesehene A u f l a g e . 139 Seiten, 10 F i g u r e n . 1960. (71) I I : 5., verbesserte A u f l a g e . 178 Seiten, 37 F i g u r e n . 1961. ( 6 9 8 / 6 9 8 a ) Molekülbau. Theoretische G r u n d l a g e n und Methoden der S t r u k t u r e r m i t t l u n g von W. Schulze. 123 Seiten, 43 F i g u r e n . 1958. (786) Physikalisch-chemische R e c h e n a u f g a b e n v o n £ . Asmus. 3., v e r b e s s e r t e A u f l a g e . 96 Seiten. 1958. (445) Mafianalyse. Theorie u n d P r a x i s der klassischen u n d der e l e k t r o c h e m i s c h e n Titrier« v e r f a h r e n v o n G. Jander und K. F. Jahr. 8., durchgesehene u n d ergänzte A u f l a g e . 313 S e i t e n , 4 9 F i g u r e n . 1959. (221/221 a ) Qualitative A n a l y s e v o n H. Hofmann u. G. Jander. 308 S e i t e n , 5 A b b i l d u n g e n . 1960. (247/247 a)

12

NATURWISSENSCHAFTEN Thermochemie von W. A. Roth f . 2 v e r b e s s e r t e Auflage. 109 Seiten, 16 Figuren. 1952. (1057) Stochiometrische Aufgabensammlung von W. Bahr dt f und R. Scheer. Mit den Ergebnissen. 7., durchgesehene Auflage. 119 Seiten. 1960. (452) Elektrochemie und ihre physikalisch-chemischen Grundlagen von A. Dossier. 2 Bände. I I : 178 Seiten, 17 Abbildungen. 1950. (253)

Technologie Die Chemie der Kunststoffe von K. Hamann, unter Mitarbeit von W. Funke und H. D. Hermann. 143 Seiten. 1960. (1173) Warenkunde von K. Hassak und E. Beutel f . 2 B ä n d e . I : A n o r g a n i s c h e W a r e n s o w i e K o h l e u n d E r d ö l . 8. Auflage. Neubearbeitet von A. Kutzelnigg. 119 Seiten, 18 Figuren. 1958. (222) I I : O r g a n i s c h e W a r e n . 8. Auflage. Vollständig neubearbeitet von A. Kutzelnigg. 157 Seiten, 32 Figuren. 1959. (223) Die Fette und Öle von Th. Klug. 6., völlig neubearbeitete und verbesserte Auflage. 143 Seiten. 1961. (335) Die Seifenfabrikation von K. Braun f . 3., neubearbeitete und verbesserte A u f l a g e von Th. Klug. 116 Seiten, 18 Abbildungen. 1953. (336) Textilindustrie von A. Blümcke. I : S p i n n e r e i u n d Z w i r n e r e i . 111 Seiten, 43 Abbildungen. 1954. (184)

Biologie Einführung in die allgemeine Biologie und ihre philosophischen Grund- und Crenzfragen von M. Hartmann. 132 Seiten, 2 Abbildungen. 1956. (96) Hormone von G. Koller. 2., neubearbeitete und erweiterte Auflage. 187 Seiten, 60 Abbildungen, 19 Tabellen. 1949. (1141) Fortpflanzung im Tier- und Pflanzenreich von J . Hämmerling. 2., ergänzte Auflage. 135 Seiten, 101 Abbildungen. 1951. (1138) Geschlecht und Geschlechtsbestimmung im Tier« und Pflanzenreich von M. Hartmann. 2., verbesserte Auflage. 116 Seiten, 61 Abbildungen, 7 Tabellen. 1951. (1127) Symbiose der Tiere mit pflanzlichen Mikroorganismen von P. Buchner. 2., verbesserte und vermehrte Auflage. 130 Seiten, 121 Abbildungen. 1949.(1128) Grundriß der Allgemeinen Mikrobiologie von W, u. A. Schwartz. 2 B ä n d e . 2., verbesserte und ergänzte Auflage. I : 147 Seiten, 25 Abbildungen. 1960. (1155) I I : 142 Seiten, 29 Abbildungen. 1961. (1157)

Botanik Entwicklungsgeschichte des Pflanzenreiches von H. Heil. 2. Auflage . 138 Seiten, 94 Abbildungen, 1 Tabelle. 1950. (1137) Morphologie der Pflanzen von L. Geitler. 3., umgearbeitete Auflage . 126 Seiten, 114 Abbildungen. 1953. (141)

13

NATURWISSENSCHAFTEN Pflanzengeographie v o n L. Diels f. 5., völlig neubearbeitete A u f l a g e v o n F. Mattick. 195 S e i t e n , 2 K a r l e n . 1958. (389/389 a) D i e Laubhölzer. K u r z g e f a ß t e B e s c h r e i b u n g der in M i t t e l e u r o p a g e d e i h e n d e n L a u b b ä u m e u n d S t r ä u c h e r von F. W. Neger f u n d E. Münch f . 3., d u r c h g e s e h e n e A u f l a g e , h e r a u s g e g e b e n v o n B. Huber. 143 S e i t e n , 63 F i g u r e n , 7 T a b e l l e n . 1950.(718) D i e Nadelholzer ( K o n i f e r e n ) und übrigen Gymnospermen v o n F. W. Neger f und E. Münch f . 4. A u f l a g e , d u r c h g e s e h e n u n d e r g ä n z t v o n B. Huber. 140 S e i t e n , 75 F i g u r e n , 4 T a b e l l e n , 3 K a r l e n . 1952. (355) Pflanzenziichlung von H. Kuckuck. 2 Bände. I : G r u n d z ü g e d e r P f l a n z e n z ü c h t u n g . 3., völlig u m g e a r b e i t e t e u n d erw e i t e r t e A u f l a g e . 132 S e i t e n , 22 A b b i l d u n g e n . 1952. (1134) I I : S p e z i e l l e g a r t e n b a u l i c h e P f l a n z e n z ü c h t u n g (Züchtung von Gem ü s e , O b s t u n d B l u m e n ) . 178 S e i t e n , 27 A b b i l d u n g e n . 1957. ( 1 1 7 8 / 1 1 7 8 a )

Zoologie E n t w i c k l u n g s p h y s i o l o g i e d e r Tiere v o n F. Seidel. 2 B ä n d e . I : E i u n d F u r c h u n g . 126 S e i t e n , 29 A b b i l d u n g e n . 1953. (1162) I I : K ö r p e r g r u n d g e s t a l t u n d O r g a n b i l d u n g . 159 S e i t e n , 4 2 A b b i l d u n g e n , 1953.(1163) D a s Tierreich I: E i n z e l l e r , P r o t o z o e n v o n E. Reichenau). 115 S e i t e n , 59 A b b i l d u n g e n . 1956. (444) II: S c h w ä m m e u n d H o h l t i e r e v o n H. J. Hannemann. 95 S e i t e n , 80 A b b i l d u n g e n . 1956. (442) III: W ü r m e r . Platt-. Hohl-, Schnurwürmer, Kamptozoen, Ringelwürmer, P r o t r a c h e a t c n , B ä r t i e r c h c n , Z u n g e n w ü r m e r v o n S. Jaeckel. 114 S e i t e n , 36 A b b i l d u n g e n . 1955. (439) I V , 1 : K r e b s e v o n H. E. Gruner u n d K. Deckerl. 114 S e i t e n , 4 3 A b b i l d u n g e n . 1956. (443) I V , 2 : S p i n n e n t i e r e (Trilobitomorplien, Fühlerlose) u n d T a u s e n d f ü ß l e r v o n A. Kaesirter. 96 S e i l e n , 55 A b b i l d u n g e n . 1955. (1161) I V , 3 : I n s e k l e n v o n H. von Lengerken. 1:28 S e i t e n , 58 A b b i l d u n g e n . 1953. (594) V: W e i c h t i e r e . Urmollusken, Schnecken, Muscheln und K o p f f ü ß e r von S. Jaeckel. 92 S e i t e n , 34 A b b i l d u n g e n . 1954. (440) VI: S t a c h e l h ä u t e r . Tentakulaten, Binnenatmer und Pfeilwürmer von S . Jaeckel. 100 S e i t e n , 46 A b b i l d u n g e n . 1955. (441) V I I , 2 : F i s c h e v o n D. Lüdemann. 130 S e i t e n , 65 A b b i l d u n g e n . 1955. (356) V I I , 3 : L u r c h e ( C h o r d a t i e r e ) v o n K. Herler. 143 S e i t e n , 129 A b b i l d u n g e n . 1955. (847) V I I , 4 : K r i e c h t i e r e ( C h o r d a t i e r e ) v o n K. Herter. 200 S e i t e n , 142 A b b i l d u n g e n . 1960. (447/447 a) V I I , 5 : V ö g e l ( C h o r d a t i e r e ) v o n H.-A. Freye. 156 S e i t e n , 69 A b b i l d u n g e n . 1960. (869) V I I , 6 : S ä u g e t i e r e ( C h o r d a t i e r e ) v o n TA. Haltenorlh. I n V o r b e r e i t u n g . (282)

Land- und Forstwirtschaft Landwirtschaftliche Tierzucht. Die Z ü c h t u n g u n d H a l t u n g d e r l a n d w i r t s c h a f t l i c h e n N u t z t i e r e v o n H. Vogel. 139 S e i t e n , 11 A b b i l d u n g e n . 1952. (228)

14

NATURWISSENSCHAFTEN Kulturtechnische Bodenverbesserungen von 0 . Fauser. 2 Bände. 5.» verbesserte und vermehrte Auflage. I : A l l g e m e i n e s , E n t w ä s s e r u n g . 127 Seiten, 49 Abbildungen. 1959. (691) II: B e w ä s s e r u n g , ö d l a n d k u l t u r , U m l e g u n g . 159 Seiten, 67 Abbildungen. 1961. (692) Agrikulturehemie von K. Scharr er. 2 Bände. I : P f l a n z e n e r n ä h r u n g . 143 Seiten. 1953. (329) II: F u t t e r m i t t e l k u n d e . 192 Seiten. 1956. (330/330a)

Geologie, Mineralogie, Kristallographie Geologie von F. Lotse. 2., verbesserte Auflage. 163 Seiten, 80 Abbildungen. 1961. (13) Mineral- und Erzlagerstättenkunde von H. Huttenlocher f . 2 Bände. I : 128 Seiten. 34 Abbildungen. 1954. (1014) I I : 156 Seiten, 48 Abbildungen. 1954. (lU15/101Sa) Allgemeine Mineralogie. 10., erweiterte Auflage der „Mineralogie" von R. Braunsff bearbeitet von K. F. Chudoba. 120 Seiten, 120 Figuren, 1 Tafel, 3 Tabellen. 1958. (29) Spezielle Mineralogie. 10., erweiterte Auflage der „Mineralogie" von R.Brauns ft bearbeitet von K. F. Chudoba. 170 Seiten, 125 Figuren, 4 Tabellen. 1959. (31/31a) Petrographie (Gesteinskunde) von W. Bruhns f . Neubearbeitet von P. Ramdohr. 5., erweiterte Auflage. 141 Seiten, 10 Figuren. 1960. (173) Kristallographie von W. Bruhns f . 5. Auflage, neubearbeitet von P. Ramdohr. 109 Seiten. 164 Abbildungen. 1958. (210) Einführung in die Kristalloptik von E. Buchivald.4.,verbesserte Auflage. 138 Seiten, 121 Figuren. 1952. (619) Lötrohrprobierkunde. Mineraldiagnose mit Lötrohr- und Tüpfelreaktion. Von M. Henglein. i „ verbesserte Auflage. 91 Seiten, 11 Figuren. 1961. (483)

Technik Graphische Darstellung in Wissenschaft und Technik von M. Pirani. 3., erweiterte Auflage bearbeitet von J. Fischer unter Benutzung der von /. Runge besorgten 2. Auflage. 216 Seiten, 104 Abbildungen. 1957. (728/728 a) Technische Tabellen und Formeln von W. Müller. 5., verbesserte und erweiterte Auflage von E, Schulte. 1961. In Vorbereitung. (579)

Elektrotechnik Grundlagen der allgemeinen Elektrotechnik von O. Mohr. 2., durchgesehene Auflage. 260 Seiten, 136 Bilder, 14 Tafeln. 1961. (196'196a) Die Gleichstrommaschine von K. Humburg. 2 Bände. 2., durchgesehene Auflage. I : 102 Seiten, 59 Abbildungen. 1956. (257) II: 101 Seiten, 38 Abbildungen. 1956. (881) Die synchrone Maschine von K. Humburg. Neudruck. 109 Seiten, 78 Abbildungen. 1951. (1146) Induktionsmaschinen von F. Unger. 2., erweiterte Auflage. 142 Seiten, 49 Abbildungen. 1954. (1140)

15

TECHNIK D i e komplexe B e r e c h n u n g von Wechselstromschaltungen v o n E 2. A u f l a g e . 180 S e i t e n , 120 A b b i l d u n g e n . 1957. ( U S 6 / l l S 6 a ) Theoretische Grundlagen zur B e r e c h n u n g der Schallgerflte v o n F. 3. A u f l a g e . 144 S e i t e n , 92 A b b i l d u n g e n . 1950. (711)

H.

Meinke. Kestelring.

E i n f ü h r u n g in die Technik selbsttätiger Regelungen von W. zur Megede. 2., durchgesehene A u f l a g e . 176 S e i l e n , 86 A b b i l d u n g e n . 1961. ( 7 1 4 / 7 1 4 » ) Elektromotorische Antriebe (Grundlagen für die B e r e c h n u n g ) v o n A. Schwaiger. 3 . , n e u b e a r b e i t e t e A u f l a g e . 96 S e i t e n , 34 A b b i l d u n g e n . 1952. (827) Ü b e r s p a n n u n g e n und Ü b e r s p a n n u n g s s c h u t z von C. Frühauf. d r u c k . 122 Seiten, 9 8 A b b i l d u n g e n . 1950. (1132)

Durchgesehener Neu-

Maschinenbau Metallkunde v o n H*. Boreher$. 2 B ä n d e . I : A u f b a u d e r M e t a l l e u n d L e g i e r u n g e n . 4. A u f l a g e . 120 S e i t e n , 90 A b b i l d u n g e n , 2 Tabellen. 1959. (432) II: Eigenschaften, Grundzüge der Form- und Zustandsgebung. 3. und 4. A u f l a g e . 179 S e i t e n , 107 A b b i l d u n g e n , 10 T a b e l l e n . 1 9 5 9 . (433/433 a ) D i e W e r k s t o f f e des Maschinenbaues v o n A. Thum f u n d C . M. v. Meytenbug. 2 Bände. I : E i n f ü h r u n g i n d i e W e r k s t o f f p r ü f u n g . 2., n e u b e a r b e i t e t e A u f l a g e . 100 S e i t e n , 7 T a b e l l e n , 56 A b b i l d u n g e n . 1956. (476) I I : D i e K o n s t r u k t i o n B w e r k s t o f f e . 132 S e i t e n , 4 0 A b b i l d u n g e n . 1959. (936) D y n a m i k v o n W. Müller. 2 B ä n d e . 2., v e r b e s s e r t e A u f l a g e . I : D y n a m i k d e s E i n z e l k ö r p e r s . 128 Seiten, 48 F i g u r e n . 1952. (902) I I : S y s t e m e v o n s t a r r e n K ö r p e r n . 102 S e i t e n , 4 1 F i g u r e n . 1952. (903) Technische Schwingungslehre v o n L. Zipperer. 2 B ä n d e . 2., neubearbeitete A u f l a g e . I : A l l g e m e i n e S c h w i n g u n g s g l e i c h u n g e n , e i n f a c h e S c h w i n g e r . 120 S e i t e n , 101 A b b i l d u n g e n . 1953. (953) I I : T o r s i o n s s c h w i n g u n g e n i n M a s c h i n e n a n l a g e n . 102 S e i t e n , 59 A b bildungen. 1955. (961/961 a ) Werkzeugmaschinen f ü r Metallbearbeitung v o n K. P. Matthes. 2 B ä n d e . I : 100 S e i t e n , 27 A b b i l d u n g e n , 11 Zahlentafeln, 1 T a f e l a n h a n g . 1954. (561) II: F e r t i g u n g s t e c h n i s c h e G r u n d l a g e n der neuzeitlichen Metallb e a r b e i t u n g . 101 Seiten, 30 A b b i l d u n g e n , 5 T a f e l n . 1955. (562) T r a n s f o r m a t o r e n v o n W. Schäfer. 3., ü b e r a r b e i t e t e u n d ergänzte A u f l a g e . 130 Seit e n , 73 A b b i l d u n g e n . 1957. (952) D u Maschineiueiehnen m i t Biwfilkwiwg i n d a s Konstruieren v o n W. Tochtermann. 2 B ä n d e . 4. A u f l a g e . I : D a s M a s c h i n e n z e i c h n e n . 156 S e i t e n , 75 T a f e l n . 1950. (589) I I : A u s g e f ü h r t e K o n s t r u k t i o n s b e i s p i e l e . 130 S e i t e n , 58 T a f e l n . 1950. (590) D i e MajchJnenefoinente v o n E. A. vom Ende. 3., verbesserte A u f l a g e . 166 Seiten, 175 F i g u r e n , 9 T a f e l n . 1956. (3/3 a )

16

TECHNIK Die Maschinen der Eisenhüttenwerke von L. Engel. 156 Seiten, 95 Abbildungen. 1957.(583/583 a ) Walzwerke von H. Sedlaczek f unter Mitarbeit von F. Fischer und M. Buch. 232 Seiten, 157 Abbildungen. 1958. (580/580a) Getriebelehre von P. Crodzinski f . 2 Bände. I : G e o m e t r i s c h e G r u n d l a g e n . 3., neubearbeitete A u f l a g e von G. Lechner. 164 Seiten, 131 F i g u r e n . 1960. (1061) Gießereitechnik von H. Jungblulh. 2 Bände. I : E i s e n g i e ß e r e i . 126 Seiten, 44 Abbildungen. 1951. (1159) Die Dampfturbinen. Ihre Wirkungsweise, Berechnung und Konstruktion von C. Zietemann. 3 B ä n d e . 3., verbesserte Auflage. I : T h e o r i e d e r D a m p f t u r b i n e n . 139 Seiten, 48 Abbildungen. 1955. (274) II: Die B e r e c h n u n g der D a m p f t u r b i n e n und die K o n s t r u k t i o n der E i n z e l t e i l e . 132 Seiten, 111 Abbildungen. 1956. (715) III: Die R e g e l u n g der D a m p f t u r b i n e n , die B a u a r t e n , T u r b i n e n für S o n d e r z w c c k e , K o n d e n s a t i o n s a n l a g e n . 126 Seiten, 90 Abbildungen. 1956. (716) Verbrennungsmotoren von W. Endres. 3 B ä n d e . I: Überblick. Motor-Brennstoffe. V e r b r e n n u n g im Motor allgem e i n , i m O t t o - u n d D i e s e l - M o t o r . 153 Seiten, 57 Abbildungen. 1958. (1076/1076a) I I : D i e h e u t i g e n T y p e n d e r V e r b r e n n u n g s k r a f t m a s c h i n e . In Vorbereitung. (1184) I I I : D i e E i n z e l t e i l e d e s V e r b r e n n u n g s m o t o r s . In Vorbereitung. (1185) Autogenes Schweißen und Schneiden von H. Niese. 5. A u f l a g e , neubearbeitet von A. Küchler. 136 Seiten, 71 Figuren. 1953. (499) Die elektrischen Schweiß verfahren von H. Niese. 2. A u f l a g e , neubearbeitet von H. Dienst. 136 Seiten, 58 Abbildungen. 1955. (1020) Die Hebezeuge. Entwurf von Winden und Kranen von G. Tafel. Auflage. 176 Seiten, 230 Figuren. 1954. (114/ U 4 a )

2., verbesserte

Wasserbau Wasserkraftanlagen von A. Ludin unter Mitarbeit von W. Borkenstein. 2 Bände. I : P l a n u n g , G r u n d l a g e n u n d G r u n d z ü g e . 124 Seiten, 60 Abbildungen. 1955. (665) I I : A n o r d n u n g u n d A u s b i l d u n g d e r H a u p t b a u w e r k e . 184 Seiten, 91 Abbildungen. 1958. (6i»6/666a) Verkehrswasserbau von II. Dehne.rt. 3 B ä n d e . I : En t w u r l ' s g r u n d l a g u n , F l u ß r e g e l u n g e n . 103 Seiten, 52 Abbildungen. 1950.(SH5) I I : F l u ß k a n a l i s i c r u n g u n d S c h i f f a h r t s k a n ä l e . 94 Seiten, 60 Abbildungen. 1950. (597) I I I : S c h l e u s e n u n d H e b e w e r k e . 98 Seiten, 70 Abbildungen. 1950. (1152) Wehr- und Stauanlagen von H. Dehnen. 131 Seiten, 90 Abbildungen. 1952. (965) Talsperren von F. Tölke. 122 Seiten, 70 Abbildungen. 1953. (1044)

17

TECHNIK

Hoch- und Tiefbau Die wichtigsten Baustoffe des Hoch- und Tiefbaus von 0 . Graf f . 4., verbesserte Auflage. 131 Seiten» 63 Abbildungen. 1953. (984) Baustoffverarbeitung und Baustellenprüfung des Betons von A. Kleirtlogel. 2., neubearbeitete und erweiterte Auflage. 126 Seiten, 35 Abbildungen. 1951. (978) Festigkeitslehre. 2 Bände. I : E l a s t i z i t ä t , P l a s t i z i t ä t und F e s t i g k e i t der B a u s t o f f e und B a u t e i l e von W. Gehler f und W. Herberg. Durchgesehener und erweiterter Neudruck. 159 Seiten, 118 Abbildungen. 1952. (1144) I I : F o r m ä n d e r u n g , P l a t t e n , S t a b i l i t ä t und B r u c h h y p o t h e s e n von W. Herberg und N. Dimitrov. 187 Seiten, 94 Abbildungen. 1955. (114S/1145a) Grundlagen des Stahlbetonbaus von A. Troche. 2,, neubcarbeitetc und erweiterte Auflage. 208 Seiten, 75 Abbildungen, 17 Bcmessungstafeln, 20 Rechenbei« spiele. 1953. (1078) Statik der Baukoo9truktionen von A. Teichmann. 3 Bände. I : G r u n d l a g e n . 101 Seiton, 51 Abbildungen, 8 Formeltafeln. 1956. (119) I I : S t a t i s c h b e s t i m m t e S t a b w e r k e . 107 Seiten, 52 Abbildungen, 7 Tafeln. 1957.(120) I I I : S t a t i s c h u n b e s t i m m t e S y s t e m e . 112Seiten,34Abbildungen,7Formeltafeln. 1958.(122) Fenster, Türen, Tore aus TTolz und Metall. Eine Anleitung zu ihrer guten Gestaltung, wirtschaftlichen lleniessung und haiidwerksgerechten Konstruktion von W. IVickop f . 4.. überarbeitete uud ergänzte Auflage. 155 Seiten, 95 Abbildungen. 1955.(1092) Heizung und LUftung von W. Körting. 2 Bände. 9., neubearbeitete Auflage. I : Das W e s e n und die B e r e c h n u n g der U e i z u n g s - und L ü f t u n g s a n l a g e n . 1961. In Vorbereitung. (342) I I : D i e A u s f ü h r u n g der U e i z u n g s - und L ü f t u n g s a n l a g e n . 1961. In Vorbereitung. (343) Industrielle Kraft- und Wärmewirtschaft von F. A. F. Schmidt und A. 167 Seiten, 73 Abbildungen. 1957. (318/318a)

Beckers.

Vermessungs wesen Vermessungskunde von P. Werkmeister. 3 Bände. 1: S l ü c k v e r i n e s s i m g und N i vc II i ere n. 10., völlig neubearbeitete Auflage von W. Grossmnnti. 113 Seiten. 117 Figuren. I95H. (4