345 117 4MB
English Pages 113 Year 2019
CONFIDENTIAL B
MT6359 Design Notice (for MT6779)
V1.0 2019/07/31
History Revision V0.1
Date 2018/07/29
Author Ice Initial
V0.2
2018/10/08
Ice
V0.3
2018/11/16
Ice
CONFIDENTIAL B
Description
1. Add VS1/VS2 remote sensing constraint 2. Add BATON differential description 3. Update VSIM1/VSIM2/VIO28/VEMC, VXO22/VRFCK/VBBCK LDO layout constraint 4. Update VA09/VA12/VUSB LDO cap range 5. Update VCN33 default off 3.3V 6. Update power on/off sequence: VPU/XO_SOC/32K 7. Update PCB layout guideline 1. Update power plan with VGPU up to 1.05V, VMCH=3V, MT6360 LDO1/2/3/7 current. 2. Update “Power ON/OFF Sequence” with MT6360 power domain and VBBCK /VRFCK. 3. Add “VAUX18 Behavior in Power-off Mode” 4. Update more description about “Power Domain for I/O” 5. Update in “Layout Constraint of LDO”, “Note: For near-end Cap C1 can be removed if meet above spec.” 6. Update fig in “Controller power trace layout constraint”. 7. Update description about “Chip Placement Recommendation” 1
History Revision
Date
Author
V0.4
2019/01/10
Ice
V0.5
2019/05/15
Ice
V0.6
2019/05/31
Ice
1. Update RTC part, add the description about “How to set 32K driving”
V1.0
2019/07/31
Ice
1. Modify VIBR output voltage range from “1.2V~3.3” to “2.7V to 3.3V”.
CONFIDENTIAL B
Description 1. Add “RTC EOSC Cali Mode VXO22 Power on/off Behavior” 2. Update typo “VAXU18” to “VAUX18” 1. Add “Update Figure for Chip Placement Recommendation” 2. Update VPA Imax=1000mA (align MT6359 datasheet) 3. Update “MT6359 PMIC Part Number Notice”
2
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
3
MT6359 – General Description ▪
The MT6359 highly integrated function fulfill all power requirement in smart phone system •
Buck Converters MT6359 x 10 (VPROC1, VPROC2, VGPU11/12, VCORE, VMODEM, VPU, VPA, VS1, VS2)
•
LDOs ▪ Analog LDO ▪ Digital LDO ▪ RTC
•
*6 * 25 *1
Audio ▪ Audio Codec ▪ Audio Line Out
• • •
RTC Macro Fuel Gauge XO Control and Output
CONFIDENTIAL B
4
MT6359 + MT6360 Power Plan
AC Adaptor or USB VBUS
MT6359
MT6360
MT6360 VSYS
Charger
Current Sinks
VPA
R/G/B LEDs
Buck
ON
4.8A 0.4V ~ 1.19V
BATFET
USB Type-C
VBA T
VPROC1 4.8A 0.4V ~ 1.19V
TypeC/PD
Battery Pack
Camera Flash Current Driver
3G/LTE PA
DVDD18_DIG
CPU Little
2.8V, 2mA
VPU 2.4A 0.4V ~ 1.19V
VMODEM 4.8A 0.4V ~ 1.10V
VCORE
ON
1.8V, 10mA
VRTC VPROC2
LDO
OFF
1A 0.5V ~ 3.6V
ON
ON
Peripherals
CPU Big
VPU
Audio DL
0.55V ~ 0.85V VAUD18
ON
1.8V, 300mA
ON
MODEM 0.55V ~ 0.9V
ON
SoC 0.55V ~ 0.85V
VCAMIO
OFF
1.8V, 300mA
VCN18 VRF18
GPU 0.55V ~ 1.05V
VEFUSE
ON
VM18
2A 2.0V
ON
VCN13
ON
IO, RFE MIPI
OFF ON
VSRAM_PROC2
ON
ON ON ON
0.5V~1.29V 600m A
VSRAM_MD
ON
0.5V~1.29V 600m A
ON
MDLA 0.55V ~ 0.85V
VA09
VDRAM 1 3A
ON
0.9V, 300mA
VBBCK 1.2V, 40mA
CONFIDENTIAL B
MSDC1 (SD Card)
OFF
SD CARD
ON
OFF
OFF
RFFE
ON
USB 2.0 Audio
VAUX18
ON
AUXADC
1.84V, 50mA
VXO22
ON
DCXO
2.24V, 50mA
eM MC Vibrator
ON
RF Clock Buffer
1.6V, 25mA
VCAMAF_EXT
OFF
Camera AF
SIM1
SIM2
OFF
Finger Print
OFF
To uch Panel
1.8V, 150mA
VTP
VUSB
VRFCK OFF
1.86V, 200mA
VFP
OFF
3.07V, 200mA
VCAMA EXT1/2/3
LCD BL Driver
DDR
MT6186 RF
0.5V~1.29V 600m A
VSRAM_OTHERS
0.3V ~ 1.3V
OFF
1.86V, 200mA
VSIM2
VFE28
OFF
Camera AVDD
OFF
UFS/MMC
OFF
0.5V~1.29V 600m A
3A
IO & Sensor
1.8V, 200mA
MT6635 (WCN)
1.2V, 300mA
VSRAM_PROC1
VSIM1
Battery temp. sensor
eFuse
OFF
1.2V, 800mA
VA12
VIBR
OFF
2.8V, 50mA
LCM ON
1.3V, 350mA
VRF12
Camera IO
MT6186 RF
1.8V, 300m A
1.35V
VMDLA
OFF
2.8V, 200mA
OFF
1.8V, 300mA
VUFS
Audio UL
MT6635 (WCN)
1.8V, 600mA
VEMC
VBIF28 MT6635 (WCN)
2.8V, 200mA
3V, 800mA
OFF
1.8V, 1200mA
VIO18
ON
4.8A
2A
OFF
3V, 800mA
ON
0.40V ~ 1.19V
VS2 External Power
OFF
3V, 200mA
VMCH
0.40V ~ 1.19V
VS1 Camera Power Display Power
VCN33_2
VMC
1.86V, 1200mA
System Power
3.5V, 800mA
0.6V ~ 1.12V
VGPU12
WCN Power
RTC
VIO28
1.8V, 450mA
RF Power
VCN33_1
2.8V, 200mA
VGPU11 4.8A
3.5V, 800mA
0.6V ~ 1.12V
4.8A 0.4V ~ 1.19V
Memory/ storage
PMIC DIG
ON
LCD +/- Bias
OFF
ABB
VCAMD EXT1/2/3
OFF
VMDDR
ON
Camera DVDD
CPU-B SRAM
CPU-L SRAM
SoC SRAM
MD SRAM
SSUSB, UFS BB Clock Buffer
0.75V, 300mA
VDRAM 2 0.6V, 600mA
DDRPHY
ON LPDDR4x
5
MT6359 Buck Power Plan Circuit Type
Name VPROC1 VPROC2 VGPU11/12 VCORE VMODEM
Buck
VPU VS1 VS2 VPA
CONFIDENTIAL B
Output Voltage Range (V) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.10 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 1.86 ~ 2.20 (12.5mV/step) 1.20 ~ 1.60 (12.5mV/step) 0.50 ~ 3.60 (50mV/step)
Boot Default (V)
IOUT-MAX (mA)
ON (0.80)
4800
ON (0.80)
4800
ON (0.55)
4800 *2
ON (0.80)
4800
ON (0.85)
4800
ON (0.55)
2400
ON (2.0)
2000
ON (1.35)
2000
OFF
1000
6
MT6359 LDO Power Plan (1/4) Circuit Type
Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VFE28
2.80
OFF (2.8)
200
RFFE
VUSB
3.07
ON (3.07)
200
USB
VAUX18
1.84
ON (1.84)
50
AUXADC
VXO22
2.24
ON (2.24)
50
DCXO
VRFCK
1.60
ON (1.6)
25
DCXO
VBIF28
2.80
OFF (2.8)
50
Battery Interface
VRTC
VRTC
2.80
ON (2.8)
2
RTC
VDIG
DVDD18_DIG
1.80
ON (1.8)
10
PMIC Digital
ALDO
CONFIDENTIAL B
7
MT6359 LDO Power Plan (2/4) Circuit Type
Name VSIM1 VSIM2
DLDO
Output Voltage (V)
1.7/1.8/1.86/ 2.76/3.0/3.1 1.7/1.8/1.86/ 2.76/3.0/3.1
Boot Default (V)
IOUT-MAX (mA)
Expected use
OFF (1.86)
200
SIM
OFF (1.86)
200
SIM
VCN33_1
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VCN33_2
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VEMC
2.9/3.0/3.3
ON (3.0)
800
eMMC / UFS
VIO28
2.8/2.9/3.0/ 3.1/3.2/3.3
OFF (2.8)
200
IO & Sensor
VIBR
2.7/2.8/3/3.3
OFF (2.8)
200
Vibrator
CONFIDENTIAL B
8
MT6359 LDO Power Plan (3/4) Circuit Type
Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VEFUSE
1.80
OFF (1.8)
300
EFUSE
VAUD18
1.80
ON (1.8)
300
Audio
VCAMIO
1.80
OFF (1.8)
300
Camera IO
VM18
1.80
ON (1.8)
300
DRAM
VRF18
1.80
OFF (1.8)
450
RF
VIO18
1.80
ON (1.8)
600
IO & Sensor
VCN18
1.80
OFF (1.8)
1200
Connectivity
VUFS
1.86
ON (1.86)
1200
eMMC / UFS
SLDO1
CONFIDENTIAL B
9
MT6359 LDO Power Plan (4/4) Circuit Type
SLDO2
Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VBBCK
1.2
ON (1.2)
40
DCXO
VA09
0.9
ON (0.9)
300
AP Analog Module
VA12
1.2
ON (1.2)
300
AP Analog Module
VCN13
1.3
OFF (1.3)
350
Connectivity
ON (0.9)
600
SRAM
ON (0.9)
600
SRAM
ON (0.9)
600
SRAM
ON (0.9)
600
SRAM
OFF (1.2)
800
RF
VSRAM_PROC1 VSRAM_PROC2 VSRAM_OTHERS VSRAM_MD VRF12
CONFIDENTIAL B
0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 1.2
10
Feature List Function
MT6356
MT6358
MT6359
Buck Converter
6
9
10
LDO
31
28
31
Driver
ERM Vibrator *1
ERM Vibrator *1
ERM Vibrator *1
Audio
Audio Codec
Audio Codec
Audio Codec
Others
RTC macro
RTC macro SD_DET
RTC macro
Charger
Fuel Gauge
Fuel Gauge
Fuel Gauge
CONFIDENTIAL B
11
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
12
Power ON/OFF Sequence
by Pressing PWRKEY or Charger Plug In/Out VSYS
VSYS
DDLO
DDLO
UVLO
UVLO
delay time = 33ms
delay time = 141ms
CHRDETB
CHRDETB delay time = 42ms
delay time = 35ms
PWRKEY PWRHOLD (SW RG)
PWRKEY PWRHOLD (SW RG)
HT shutdown level (default 60⁰C)
• Release flow ▪ DCAP disable is auto reset when charger plug out
※ DCAP enable flow need follow programming guide setting CONFIDENTIAL B
23
O_off to VBAT > UVLO_on
SPAR Flow Chart PMIC exception: 1.no power on source 2.UVLO 3.BUCK OC 4.Power not good 5.Thermal shutdown 6.WDTRSTB 7.Long Press shutdown
PMIC exception occurs PMIC RSTB=0
PMIC Off state
Power on condition
SW bring up => PWRHOLD =1 => Clear SPAR power on condition
PMIC exception occurs PMIC RSTB=0
No Check SPAR function
Yes PMIC exception occurs PMIC RSTB=0
NO CONFIDENTIAL B
PMIC exception is UVLO && VBAT drop time < 0.1s/0.6s/1.6s/always on
YES
SPAR power on source set to High, keep all SPAR related RG setting
24
SPAR ▪ Feature support condition • VRTC output need coin cell or keep-alive capacitor
▪ Enabled by software • Three time settings can be selected ▪ ▪ ▪ ▪
100ms, VRTC output need coin cell or >2.2uF capacitor 0.6s, VRTC output need coin cell or >4.7uF capacitor 1.6s , VRTC output need coin cell or >22uF capacitor Min SPAR trigger condition: “duration of (VSYS 1ms VBAT
0.1/0.6/1.6sec
VRTC UVLO PWRKEY PWRHOLD
SPAR de-bounce
PWRON
RESETB CONFIDENTIAL B
25
FSOURCE, PMU_TESTMODE ▪
FSOURCE, PMU_TESTMODE • These pins should be connected to ground for normal operation.
CONFIDENTIAL B
26
Power Domain for I/O MT6359 Pin Name PWRKEY HOMEKEY RESETB CHRDETB EXT_PMIC_EN1 EXT_PMIC_EN2 EXT_PMIC_PG WDTRSTB_IN SRCLKEN_IN0 SRCLKEN_IN1 SPI_CSN SPI_CLK SPI_MOSI SPI_MISO
CONFIDENTIAL B
Power Source Ball Name DVDD18_DIG DVDD18_IO VIO18 VSYS_SMPS VSYS_SMPS VSYS_SMPS VSYS_SMPS DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC)
Power Source Domain DVDD18_DIG VIO18 VIO18 VSYS VSYS VSYS VSYS VIO18 VIO18 VIO18 VIO18 VIO18 VIO18 VIO18
Power Source Voltage 1.8V 1.8V 1.8V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V
27
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
28
BAT_ON
CONFIDENTIAL B
29
Block Diagram for Smart Battery 3-PIN Smart Battery Smart battery
VBAT
VBATXXX
SPI
▪
BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL
CPU
R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
KEY FEATURES • MIPI BIF Smart Battery • HW Battery Pack Presence / Removal Detection
CONFIDENTIAL B
30
HW Battery Presence Detection ▪ Battery presence is detected by sensing the existence of RNTC or RID resistor inside the battery pack. ▪ Dedicated comparator is used for Battery Pack Presence/ Removal Detection. • Battery pack is considered not present if BAT_ON is above 0.964*VBIF. • Interrupts are generated when detecting battery insertion or removal • Charging shall be stopped upon battery removal Parameter
Min
Typ
Max
Units
Presence Detection comparator threshold
(0.964*VBIF)-20mV
0.964*VBIF
(0.964*VBIF)+20mV
V
CONFIDENTIAL B
31
BATON: Schematics & Layout Notice Smart battery
VBAT
VBATXXX
SPI BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL
CPU
R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
C3: VBIF bypass cap (1uF)
R4: pull high resistor
VBIF need bypass cap 1uF BATON trace total capacitance : • should be smaller than 50pF with Smart battery • should be smaller than 500pF with Low cost battery CONFIDENTIAL B
RNTC: Thermistor (IN pack side)
32
R4/RNTC Selection Guide R4 // RNTC < 40KΩ Voltage of BATON pin should follow BIF Spec.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
33
Note 1: Recommended Location of NTC in Battery Pack ▪ Recommended location of NTC in battery pack • Move NTC thermistor away from P+ and P• Mount NTC thermistor to the side of PCB toward the cell 10K 1% NTC
P-
CONFIDENTIAL B
P+
34
34
Note 2: Confirm to Meet the above Specifications ▪ Violation of the above specifications will result in measurement error of battery’s temperature.
Battery will be under dangerous environment.
CONFIDENTIAL B
35
35
Safety Protection @ High Temperature ▪ Disable charger in auto power on (DCAP) condition when high temperature • Enable flow ▪ Set DCAP enable by SW when charger in and BAT temp > HT shutdown level (default 60⁰C)
• Release flow ▪ DCAP disable is auto reset when charger plug out ※ DCAP enable flow need follow programming guide setting CONFIDENTIAL B
36
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
37
Fuel Gauge
CONFIDENTIAL B
38
Fuel Gauge: Schematics & Layout Notice ▪
1 : Sense resistor Rfg should be 10mΩ±1% ,0.5W↑(depend on system max power consumption 7A-> 0.5W, 10A -> 1W) package in series with battery negative terminal to ground • •
▪ ▪
System max power consumption < 10A, Rfg is 10mΩ System max power consumption > 10A, Rfg is 5mΩ
2:Rfg should be placed near battery connector in PCB layout. 3:FGP_IC/FGN_IC should be 4mil differential traces from chip CS_N/CS_P to Rfg
MT6359
CONFIDENTIAL B
39
FGN_IC, FGP_IC: Layout Example 4mil 4mil
FGP is connected to system GND. It needs adequate amount of VIAs to system GND in order to withstand system current consumption.
FGP
FGN
FGN is connected to BATTERY GND. It needs adequate trace width to BATTERY GND In order to withstand the system current consumption
Rfg Please note that sense traces should be connected to the middle of the pads and the layout should be symmetry between FGN and FGP(Kelvin Connection).
Rfg
FGP_IC CONFIDENTIAL B
FGN_IC 40
GM3.0 Board Offset Calibration Test Point (Option)
TP1 & TP2 for system power supply ——The test point should on the main trace ,as it is used for power input point
TP2 & TP3 for GM3.0 calibration ——The test point should on the main trace ,or the width of trace to test point should not less than 40 mil as the current would be 1000mA ——The test point DO NOT draw from the trace of CS_N &CS_P
TP3 Rfg TP2
TP1 TP2
TP3
TP2
Rfg For GM3.0 For Power Supply CONFIDENTIAL B
The TP3 is on the trace between CS_N Pad to Battery GND
41
Layout Example ▪ TP should be placed on main power trace, not on current sensing trace. Current Sensing Resistor
Main Power Trace (O)
Current Sensing Trace (X) CONFIDENTIAL B
42
DC-DC
CONFIDENTIAL B
43
Buck: Schematic/Layout Notice
InputDecoupling Placement and Schematic Guide ▪
Please place CIN as close to PMIC as possible and put in shield case.
▪
GND_VBUCKs x balls(as highlight in following fig.) must connect to related input cap first, and then connect to main GND plane.
CONFIDENTIAL B
44
Buck: Schematic/Layout Notice
Output Decoupling Placement and Schematic Guide ▪
Place power inductors as closer to PMIC balls as possible and put in shield case.
▪
VBUCK_FB & GND_VBUCK_FB layout should follow PCB layout constraint.
CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #1 BUCK
Output Decoupling
VS1
1uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VS2
1uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VPA
1uH/2016
1uF + 14uF
VMODEM
0.47uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VPROC1
0.47uH/2520
(22uF/0603 *4) ~ (22uF/0603 *4 + 10uF/0603 *2)
VPROC2
0.47uH/2520
(22uF/0603 *4) ~ (22uF/0603 *4 + 10uF/0603 *2)
VCORE
0.47uH/2520
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VGPU11
0.47uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VGPU12
0.47uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
VPU
0.47uH/2016
(22uF/0603 *2) ~ (22uF/0603 *2 + 10uF/0603 *1)
Note1: for VPA out cap distribution, please refer “VPA Output Capacitance Notice” CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #2 Buck
COUT (typical value)
PDN Cap (typical value)
Total COUT Value (after derating)
VS1
22uF/0603/6.3V/X5R *2
x
≥ 16.6uF
#2
VS2
22uF/0603/6.3V/X5R *2
x
≥ 19.6uF
#3
VMODEM
22uF/0603/6.3V/X5R *2
1uF/0201/6.3V/X5R *12
≥ 20.6uF
#1
VPROC1
22uF/0603/6.3V/X5R *4
1uF/0201/6.3V/X5R *10
≥ 41.2uF
#1
VPROC2
22uF/0603/6.3V/X5R *4
1uF/0201/6.3V/X5R *8
≥ 41.2uF
#1
VCORE
22uF/0603/6.3V/X5R *2
1uF/0201/6.3V/X5R *12
≥ 20.6uF
#1
VGPU11 + VGPU12
22uF/0603/6.3V/X5R *4
1uF/0201/6.3V/X5R *10
≥ 41.2uF
#1
VPU
22uF/0603/6.3V/X5R *2
1uF/0201/6.3V/X5R *8
≥ 20.6uF
#1
Note #1: Total COUT Value @ 1V derating for AC 0.01Vrms and overall operating temperature. Note #2: Total COUT Value @ 2V for AC 0.01Vrms and overall operating temperature. Note #3: Total COUT Value @ 1.35V derating for AC 0.01Vrms and overall operating temperature.
CONFIDENTIAL B
Schematic/Layout Notice Buck Converter Input Decoupling #1
BUCK VS2
Input Capacitor Typical Vale 4.7uF/0402/6.3V/X5R
Total CIN Value (after derating) ≥ 0.84uF #1
VPA
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VMODEM
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPU
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPROC1
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPROC2
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VGPU11
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VGPU12
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VCORE
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VS1
4.7uF/0402/6.3V/X5R
≥ 0.84uF #1
Note #1: Total CIN Value @ 5V derating for AC 0.01Vrms and overall operating temperature. L_PWR1
VSYS
PMIC VSYS_BUCK
CIN 1
CONFIDENTIAL B
GND_BUCK L_GND1
ND1
Schematic/Layout Notice Buck Converter Input Decoupling #2 BUCK VS2
CIN2 (typical value) 10uF/0603/6.3V/X5R #1
CIN1 (typical value) 2.2uF/0201/6.3V/X5R #3
VPA
x
10uF/0402/6.3V/X5R
VMODEM VPU VPROC1 VPROC2 VGPU11 VGPU12 VCORE VS1
22uF/0603/6.3V/X5R
#2
22uF/0603/6.3V/X5R
#2
22uF/0603/6.3V/X5R
#2
22uF/0603/6.3V/X5R
#2
2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3 2.2uF/0201/6.3V/X5R #3
Note #1: Total CIN2 (10uF) Value ≥ 1.6uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #2: Total CIN2 (22uF) Value ≥ 3.6uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #3: Total CIN1 (2.2uF) Value ≥ 0.36uF @ 5V derating for AC 0.01Vrms and overall operating temperature. L_PWR2
VSYS
PMIC VSYS_BUCK
CIN 2
CONFIDENTIAL B
L_PWR1
CIN 1
GND_BUCK
Schematic/Layout Notice Buck Input Cap. Layout Spec. #1
▪ If CIN1=0402 size ▪ MMD spec The spec. of trace parasitic inductance from buck input cap to PMIC Ball Input Trace MT6359 Spec. for Inductance BUCK (from C to IC ball) ▪ (L_PWR1 + L_GND1) < Spec VSYS_VS1 IN1
VS1
L_PWR1
VSYS
PMIC
GND_BUCK L_GND1
CONFIDENTIAL B
GND_VPU
(L_PWR1 + L_GND1) < 2nH
VS2
VSYS_VS2 GND_VS2
(L_PWR1 + L_GND1) < 2nH
VPA
VSYS_VPA GND_VPA
(L_PWR1 + L_GND1) < 1.5nH
VMODEM
VSYS_VMODEM GND_VMODEM
(L_PWR1 + L_GND1) < 1nH
VPROC1
VSYS_VPROC1 GND_VPROC1
(L_PWR1 + L_GND1) < 1nH
VPROC2
VSYS_VPROC2 GND_VPROC2
(L_PWR1 + L_GND1) < 1nH
VCORE
VSYS_VCORE GND_VCORE
(L_PWR1 + L_GND1) < 1nH
VGPU11
VSYS_VGPU11 GND_VGPU11
(L_PWR1 + L_GND1) < 1nH
VGPU12
VSYS_VGPU12 GND_VGPU12
(L_PWR1 + L_GND1) < 1nH
VSYS_BUCK CIN 1
GND_VS1
VPU
VSYS_VPU
(L_PWR1 + L_GND1) < 2nH
Schematic/Layout Notice Buck Input Cap. Layout Spec. #2
▪ If CIN1=2.2uF/0201 ▪ MMD spec => the spec of trace parasitic inductance from CIN2 to CIN1 ▪ (L_PWR2 + L_GND2) < Spec
Buck
Input Trace (from CIN2 to CIN1)
Spec. for Inductance
VSYS_BUCKx
VS2
CIN2 to CIN1
(L_PWR2 + L_GND2) < 1.7nH
CIN2 to CIN1
(L_PWR2 + L_GND2) < 1.7nH
GND_BUCKx
VMDEM VPU
VPROC1 VPROC2
CIN2 to CIN1
(L_PWR2 + L_GND2) < 1.4nH
VGPU11 VPGU12
CIN2 to CIN1
(L_PWR2 + L_GND2) < 1.4nH
VCORE VS1
CIN2 to CIN1
(L_PWR2 + L_GND2) < 1.7nH
PMIC VSYS
L_PWR2
L_PWR1
CIN 1
L_GND2
L_GND1
L_PWR2
L_PWR1
CIN 2
VSYS_BUCKy CIN 1
GND_BUCKy L_GND2
L_GND1
CONFIDENTIAL B
Schematic/Layout Notice Layout Guide (1/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Buck input cap detail layout rule, please refer to next page. CONFIDENTIAL B
Schematic/Layout Notice Layout Guide (2/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Example 1 PMIC Buck GND ball
Example 2
Input Cap GND pad
PMIC Buck GND ball
Layer-1
Input Cap GND pad
Layer-1 GND return path
Layer-2
Layer-2 Solution 2
Solution 1
GND return path
Layer-3
Layer-3
Layer-5
Layer-5
Main-GND Layer
Main-GND Layer
CONFIDENTIAL B
Solution 2
Solution 1
Schematic/Layout Notice
Controller power trace layout constraint Bat. connector
Buck Input
GND
BAT_BUS
22uF
4mil
Buck controller power trace(VSYS_SMPS) must be use single trace connect to battery VBAT_BUS directly, and can’t merge with others. VSYS add 1Ω Resistor to VSYS_SMPS CONFIDENTIAL B
54
Schematic/Layout Notice
Layout Guide 1/5: Remote Sense Application ▪
DC/DC remote sense feedback traces are recommended using GND shielding to avoid noise coupled.
CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 2/5: Remote Sense Application ▪
DC/DC remote sense feedback & feedback_GND traces are recommended using GND shielding and differential pair to avoid noise coupled.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
56
Schematic/Layout Notice
Layout Guide 3/5: Remote Sense Application Cout1
Rc1
L1
L4
Remote pt.1
Cout2
R_remote spec (Follow MMD SPEC)
Lout
Rc2
PMIC L3
SOC
L2 Cout3
Rc3 1. 2.
Find path with lowest inductance, the remote point can be located within Coutlowest L + 1n. For example, in case of Cout1 is path with lowest inductance. • Inductance between Cout1 and Remote pt. 1 is L4, L4 must be lower than 1n (L4 < 1n). • The remote point location can be between Cout1 and Remote pt. 1. 3. Same case apply to L2 & L3 if they are lowest inductance path. 4. Above case is for multi-path, in case of single path, consider the only path as the lowest inductance path directly. CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 4/5: Remote Sense Application VOUT_FB GND_FB LX
Domain B.
+
PDN Cap.
SOC
Plane
A.
Bulk Cap. SMT Layer
Main GND
A. For GND/VOUT of PDN/Bulk cap. pads, please tie together through Plane before connected to Main GND (L8/L9 if SMT in L10, L6/L7 if SMT in L8) B. GND_FB/VOUT_FB (Fully differentially connected) trace routes directly to PDN cap. pads through short-pad at the layer PDN cap. placed, which also satisfies “Remote Sense Application Notice : Layout Guide (3)” CONFIDENTIAL B
Bucks
Schematic/Layout Notice
Layout Guide 5/5: Remote Sense Application VS1 Remote Sensing to VS1_LDO2 ball internally VS2 Remote Sensing to VS2_LDO2 ball internally Power Inductor VSYS
VSYS_VSx
VSx
COUT
PMIC ESL
ESR VSx_LDOn
CONFIDENTIAL B
Buck
LDO input ball (Direct-Sense to)
Max. ESR (mΩ)
Max. ESL (nH)
VS1
VS1_LDO2
25
4
VS2
VS2_LDO2
25
4
Schematic/Layout Notice
Buck Converter Input/Output Layout Trace Width ▪
Place Input cap, output inductor & cap. as close AP as possible
Input net name
Trace Width (mils)
Output net name
Trace Width (mils)
VSYS_VS1
50
VS1
50
VSYS_VS2
35
VS2
50
VSYS_VMODEM
48
VMODEM
105
VSYS_VPA
60
VPA
60
VSYS_VPROC1
60
VPROC1
125
VSYS_VPROC2
60
VPROC2
125
VSYS_VCORE
60
VCORE
100
VSYS_VGPU1 VSYS_VGPU2
40 40
VGPU1 VGPU2
70 70
VSYS_VPU
25
VSYS_VPU
55
CONFIDENTIAL B
Critical Component Selection Guide Power Inductor #1
•
Inductors are recommended to follow below notice. 1. Rate current of the inductor should be follow bellow table: (Inductance change within ±30% from nominal value). 2. Although small size and high efficiency are major concerns, the inductor should have low core losses and low DCR (copper wire resistance). Efficiency data in MT6359 datasheet is based on 30mΩ DCR. BUCK
Inductance (uH)
ISAT,MAX (A)
ITEMP, MAX (A)
VS1
1.0
2.6
2.0
VS2
1.0
2.6
2.0
VPA
1.0
4.0
3.4
VMODEM
0.47
4.8
4.2
VPROC1
0.47
5.5
4.8
VPROC2
0.47
5.5
4.8
VCORE
0.47
5.5
4.8
VGPU11
0.47
4.0
3.4
VGPU12
0.47
4.0
3.4
VPU
0.47
2.8
2.2
CONFIDENTIAL B
Note:ISAT: Depends on inductance saturation. ( -30% reduction from Initial L value )
61
Critical Component Selection Guide Power Inductor #2
Example:
L ≥30%
Note: 1. The inductor saturation current with 30% decreasing “must be” higher than PMIC Imax for all operation condition.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
62
VPA Output Capacitance Notice #1 Why define the output capacitor range •
Capacitor Specification Requirement •
•
Item
Typical Cap (uF)
Effective Min Cap (uF) *1
Effective Max Cap (uF) *2
Rated V (V)
Placement Location
Feedback Cap+ (Middle +PA side Cap)
1 + ~14
4.2
7.0
≥6.3
Feedback Cap Close to PMIC ; Others Close to PAs.
*1 : -30oC~85oC / DC=0.5~3.6V / AC=0.01Vrms *2 : -30oC~85oC / DC=2.5~3.6V / AC=0.01Vrms , the capacitance increased when lower DC
Device side ( recommend ~14uF)
PMIC side(1uF)
PMIC VPA
PMU_VPA
L
Feedback Cap
CONFIDENTIAL B PA side Cap
0R 0R
PA_VCC1 PA_VCC2
PA2
PA1
Middle Cap GND
1.“0R” for VCC1/VCC2 PCB routing star connection of PA 2.Replace “0R” with “PCB short PAD part” to reduce DCR when mass production
C C
Capacitor Topology
C C
▪
The updated is for dimension of capacitor don’t care that accept small than 0603 and only need to follow the absolute effective capacitance shown below table. The electrical performance also be guarantee for the previous capacitance notice. Typical total output capacitance is 1uF (Feedback)+ ~14uF (Middle +PA)
C C
▪
The PA’s transient voltage and timing are more critical ▪ Stability ,ripple and transient voltage drop issue If output capacitor is too small ▪ Stability and dynamic voltage scaling timing issue If output capacitor is too bigger
C
▪
63
VPA Output Capacitance Notice #2 ▪ Part Reference ; •
Reference ; http://ds.murata.co.jp/software/simsurfing/en-us/# Part
Part Number
Rated Voltage(V)
Part Size
1uF
GRM033R60J105MEA2
6.3
0201
10uF
GRM155R60J106ME15
6.3
0402
▪ Example for Capacitors arrangement
10uF/0402; NC/0402
PAs side Cap
1. 1uF/0201 *4 2. ≤100pF/0201 *4
1. 1uF/0201 *4 2. ≤100pF/0201 *4 0R
NC
10uF
1.0uF
0R
Middle Cap
C
0402 Size
L PA(2)
PA_VCC2
Feedback Cap
C
From PMIC
PA_VCC1
H/M PA(1)
200mΩ
Application #3 C3(≦0.5xtypical cap) => Support Multi-application
▪ Notice • Typical cap please refer design notice • DC spec is no included PCB DC drop • Trace width > 6mil
▪ Detail layout constraint please refer per project. CONFIDENTIAL B
75
Layout Constraint of LDO #5
Rough Guidelines-use from CAD Extraction w (mil) 4
w (um) 101.6
h (um) 50
t @ 1/3 oz (um) 12
L (nH) = 4.85 nH ×
len (cm) 1.27
trace inductance (nH) 4.85
trace resistance (mΩ) 198
101.6 um len h × × w 1.27 cm 50um
101.6 um len R (mΩ) = 198 mΩ × × w 1.27 cm
where w = 4mil~40mil
Parameter Dielectrically constant Conductivity CONFIDENTIAL B
Value 4.0 5.8e7 s/m
w = trace width len = trace length t = trace thickness h = dielectric height 76
Layout Constraint of VRTC ▪
VRTC: Application circuit (2 options) ▪
0.1uF
▪
0.1uF + 1.5kΩ + super cap
0.1uF cap MUST and be close to PMIC CONFIDENTIAL B
77
Layout Constraint of VREF ▪
VREF bypass cap as close as possible to PMIC
▪
GND_VREF pin must first connect to capacitor GND pin and then connect to system GND by VIA
▪
VREF cap is 100nF.
CONFIDENTIAL B
78
Layout Constraint of VIO18 ▪ Keep star-connection from PMIC VIO18_PMU to import 1.8V power domain. AP Peripheral PMIC MT6359
AVDD18_xx
VIO18_PMU
DVDD18_xx
Peripheral device I/O
CONFIDENTIAL B
79
Layout Constraint of VUSB Priority1 -The de-coupled cap should be put closed to AVDD30_AUD/ AVSS30_AUD and AVDD18_CODEC / AVSS30_AUD - The trace width should be >10mil - Connecting AVSS30_AUD to the main GND through at least one via - Connecting AVDD30_AUD from pad VUSB directly , then do a star connect from AVDD30_AUD to VUSB_PMU.
CONFIDENTIAL B
2019/8/5
80
AP ANALOG POWER PCB LAYOUT CONSTRAIN
CONFIDENTIAL B
81
AP Analog Power List Voltage
1.8V
PMIC Pin Name
VIO18
AP analog pin name AVDD18_MD, AVDD18_AP, AVDD18_WBG, AVDD18_CPU, AVDD18_PLLGP
AVDD18_USB, AVDD18_SSUSB, AVDD18_UFS, AVDD18_DDR AVDD12_PLLGP, AVDD12_UFS, AVDD12_USB, AVDD12_WBG, AVDD12_DDR
1.2V
VA12
AVDD12_MD, AVDD12_DSI
0.9V
VA09
AVDD09_UFS, AVDD09_SSUSB
3.07V
VUSB
AVDD33_USB
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
AVDD12_CSI
8/5/2019
- 82 -
AP Analog Layout Constraint
AVDD18_xxx layout constraint
Star-connection analog power group, AVDD18_SOC by short-pad on VIO18 cap. Please be sure to follow “reference design” & “PMIC MMD”
Follow PMIC MMD PMIC
IR spec.
Total path from PMIC LDO pin to AVDD power pin of AP-site
Target IR < 1% For each AVDDXX_XXX path Simulate all power pin currents at the same time CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 83 -
AP AVDD18_xxx Layout Guideline 1 Group#1: AVDD18_MD, AVDD18_AP, AVDD18_WBG, AVDD18_CPU, AVDD18_PLLGP Group#2: AVDD18_USB, AVDD18_SSUSB, AVDD18_UFS, AVDD18_DDR
Follow PMIC MMD
AVDD18_xxx1
Others …
Cnx
Group#1
AVDD18_xxx2 Cnx
VIO18_PMU
PMIC
AVDD18_xxx3
P1
Cnx
AP
AVDD18_SOC
VIO18 C1
SHORT PAD
AVDD18_xxx4 Cnx
E x ample
AVDD18_xxx5
Group#2
Notice 1. PCB drop voltage ≦ 18mV (PMIC VIO18 ball to AP AVDD18_xxx ball) 2. PCB Length/Width ≦ PCB Ratio
Cnx AVDD18_xxx6
P2
Cnx
A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e S t art
Trac e E nd
c urrent
Trac e 1
P MIC V IO18 ball
C1
0. 430A
20mil
200mil
10
0. 3oz
17. 7m
7. 6mV
Trac e 2
C1
P 1/ P 2
0. 090A
20mil
1000mil
50
0. 3oz
88. 7m
8. 0mV
Trac e 3
P 1/ P 2
A P A V DD18_ X X X ball
0. 050A
12mil
320mil
27
0. 3oz
47. 3m
2. 4mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 84 -
Pass ≦18mV
AP AVDD18_xxx Layout Guideline 2 Follow PMIC MMD AVDD18_xxx1
Others …
Cnx AVDD18_xxx2 Cnx
VIO18_PMU
PMIC
AVDD18_xxx3 Cnx
AP
VIO18 AVDD18_SOC
C1
SHORT PAD
AVDD18_xxx4
P1
Cnx AVDD18_xxx5
Notice 1. PCB drop voltage ≦ 18mV (PMIC VIO18 ball to AP AVDD18_xxx ball) 2. PCB Length/Width ≦ PCB Ratio E x ample
Cnx AVDD18_xxx6 Cnx
A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e S t art
Trac e E nd
c urrent
Trac e 1
P MIC V IO18 ball
C1
0. 430A
20mil
200mil
10
0. 3oz
17. 7m
7. 6mV
Trac e 2
C1
P1
0. 180A
40mil
1000mil
25
0. 3oz
44. 3m
8. 0mV
Trac e 3
P1
A P A V DD18_ X X X ball
0. 050A
12mil
320mil
27
0. 3oz
47. 3m
2. 4mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 85 -
Pass ≦18mV
AP AVDD12_xxx Layout Guideline 1 Group#1: AVDD12_MD, AVDD12_DSI, Group#2: AVDD12_PLLGP, AVDD12_UFS, AVDD12_USB, AVDD12_WBG, AVDD12_DDR
AVDD12_xxx1 Cnx
Group#1
PMIC
AVDD12_xxx2 Cnx P1
Cnx
AVDD12_xxx3
VA12
Group#2
C1
AP P2
AVDD12_xxx4 Cnx AVDD12_xxx5 Cnx
Notice 1. PCB drop voltage ≦ 12mV (PMIC VA12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio E x ample
AVDD12_xxx6 Cnx AVDD12_CSI Cnx A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Trac e
Trac e S t art
Trac e E nd
c urrent
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e 1
P MIC V A 12 ball
C1
0. 280A
20mil
160mil
8
0. 3oz
14. 2m
4. 0mV
Trac e 2
C1
P 1/ P 2
0. 070A
20mil
900mil
45
0. 3oz
79. 8m
5. 6mV
Trac e 3
P 1/ P 2
A P A V DD12_ X X X ball
0. 055A
12mil
300mil
25
0. 3oz
44. 3m
2. 4mV
Trac e 4
C1
A P A V DD12_ CS I
0. 140A
32mil
1000mil
31
0. 3oz
55. 4m
7. 8mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 86 -
Pass ≦12mV
AP AVDD12_xxx Layout Guideline 2 AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
VA12
AP C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx
Notice 1. PCB drop voltage ≦ 12mV (PMIC VA12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio E x ample
AVDD12_xxx6 Cnx AVDD12_CSI Cnx A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Trac e
Trac e S t art
Trac e E nd
c urrent
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e 1
P MIC V A 12 ball
C1
0. 280A
20mil
160mil
8
0. 3oz
14. 2m
4. 0mV
Trac e 2
C1
P1
0. 140A
40mil
900mil
23
0. 3oz
39. 9m
5. 6mV
Trac e 3
P1
A P A V DD12_ X X X ball
0. 055A
12mil
300mil
25
0. 3oz
44. 3m
2. 4mV
Trac e 4
C1
A P A V DD12_ CS I
0. 140A
32mil
1000mil
31
0. 3oz
55. 4m
7. 8mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 87 -
Pass ≦12mV
AP AVDD09_xxx Layout Guideline
AVDD09_UFS
Cnx
VA09
Cnx
C1
AP AVDD09_SSUSB
P1
Notice 1. PCB drop voltage ≦ 9mV (VA09 ball to AP AVDD09_xxx ball) 2. PCB Length/Width ≦ PCB Ratio E x ample
A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e S t art
Trac e E nd
c urrent
Trac e 1
V A 09 ball
C1
0. 060A
18mil
200mil
11
0. 3oz
19. 7m
1. 2mV
Trac e 2
C1
P1
0. 060A
18mil
1000mil
56
0. 3oz
98. 5m
5. 9mV
Trac e 3
P1
A P A V DD09_ X X X ball
0. 040A
8mil
200mil
25
0. 3oz
44. 3m
1. 8mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
- 88 -
Pass ≦9mV
AP AVDD33_USB Layout Guideline AP
PMIC VUSB
AVDD33_USB
Cnx C1
Notice 1. PCB drop voltage ≦ 30mV (PMIC VUSB ball to AP AVDD33_USB ball) 2. PCB Length/Width ≦ PCB Ratio E x ample
A v erage
P CB
P CB
P CB Rat io
P CB
P CB
P CB drop
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e S t art
Trac e E nd
c urrent
Trac e 1
P MIC V US B ball
C1
0. 050A
8mil
200mil
25
0. 3oz
44. 3m
2. 2mV
Trac e 2
C1
A P A V DD33_ US B ball
0. 050A
8mil
2500mil
313
0. 3oz
554. 3m
27. 7mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
8/5/2019
Pass ≦30mV - 89 -
SPI
CONFIDENTIAL B
90
Layout Constraint of PMIC SPI ▪ All traces of PMIC SPI bus should be well-shielded by nearby ground traces in the same layer, and surrounded by ground traces in n-1 and n+1 layers, and closed to each others. ▪ All traces of SPI bus should be far away from noisy sources, such as VBUS (plug-in spike), Buck switching node..etc.
▪ The max. length of SPI bus between SOC and MT6359 should be shorter than 6 inches (consider 6 inches = 1ns).
CONFIDENTIAL B
91
RTC
CONFIDENTIAL B
92
Schematics Design Notice
• • •
•
•
•
0.1uF for VRTC is a must. [A] Recommend implementing 10~100uF for VRTC. MTK recommend implement 22uF, Smaller capacity sustains shorter time. Please do not use Gold Cap. because of the time when removed the Main battery precision: +-1.5 sec every 30 sec. [B] For battery un-replaced system design, R8201(1.5K) and C8202(22uF) can be removed for eBOM optimized. [B] RTC32K_CK such as a clock signal, needs well ground shielding and try to minimize via number in PCB design.. [C]
RTC32K_CK trace length must be controlled within 2000mil.
CONFIDENTIAL B
93
How to set 32K driving ▪ Preloader API ▪ Code • Change 2369764
▪ API • void set_32K1V8_0_driving(int select); • only support 4mA/8mA
preloader/platform/mt6785/src/drivers/inc/rtc.h CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
94
How to set 32K driving File path: preloader/platform/mt6785/src/drivers/platform.c
Set 32K1V8_0 driving after pmic_init_setting(). To make sure new setting can overwrite default value
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
95
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
96
Package Outline of MT6359
CONFIDENTIAL B
97
Ballmap of MT6359 202
1
2
3
4
5
6
7
8
A
NC
VRF12
VS2
VSYS_VS2
VSYS_VPA
VPA
VSYS_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC VSYS_VPROC VSYS_VPROC A 2 1 1
B
VRF12_S
VA12
VS2
GND_VS2
GND_VPA
VPA
GND_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC 2
C
VCN13
VS2_LDO2
VA09
VSYS_SMPS
VS2_FB
GND_SMPS
VPA_FB
GND_VPU_F B
D
VSRAM_MD VS2_LDO1
E
AU_V18N
F
FLYN
G
FLYP
VSRAM_PRO VSRAM_othe EXT_PMIC_P EXT_PMIC_E EXT_PMIC_E C1 rs G N2 N1
VSRAM_PRO C2
AVSS18_AUD
RESETB
GND
GND
9
VPU_FB
PWRKEY
10
11
CHRDETB
PMU_TESTM ODE
SPI_CLK
GND
GND
GND
LDO
E
XXX
AUDIO
VSYS_VGPU1 VSYS_VGPU1 F 2 2
XXX
DCXO
SRCLKEN_IN VSYS_VGPU1 VSYS_VGPU1 VGPU11_FB G 1 1 1
XXX
STRUP/PCHR_VREF
H
XXX
AUXADC/ FGADC
RTC32K_1V8 GND_VGPU1 GND_VGPU1 GND_VGPU1 WDTRSTB_IN J _1 1_FB 1 1
XXX
Digital IO
SPI_CSN
GND
SPI_MOSI
AU_HPR
AU_REFN
AUD_NLE_M AUD_DAT_M OSI1 ISO1
GND
GND
GND
FSOURCE
AU_HPL
AUD_DAT_M AUD_CLK_M ISO0 OSI
AU_HSP
AUD_DAT_M AUD_DAT_M OSI0 ISO2
DVSS18_IO
K
AVDD18_CO DEC
HP_EINT
ACCDET
AUD_DAT_M AUD_DAT_M OSI1 OSI2
DVDD18_DIG DVDD18_IO
L
AU_VIN0_P AU_VIN0_N AU_VIN3_N AU_VIN3_P
M
AU_VIN1_P AU_VIN2_P
AU_MICBIAS AU_MICBIAS 1 2
BATADC_P
CS_P
AUXADC_VIN 1
XO_WCN
AVSS_XO_IS AU_VIN1_N AU_VIN2_N AVSS_RFCK AVSS_BBCK O
SPI_MISO
VGPU12
VPROC1_FB
RTC32K_1V8 SRCLKEN_IN _0 0
AVSS18_AUX ADC
VAUX18
VFE28
SCP_VREQ_V AO
VGPU11
VGPU12
VGPU11
GND_VCORE GND_VCORE GND_VCORE K _FB
CS_N
GND_VREF
VREF
VRTC28
VIBR
VSYSSNS
BATON
UVLO_VTH
VIO28
VCAMIO
VAUD18
VEFUSE
VM18
VS1_LDO1
VS1_LDO2
VCORE
VCORE
VS1
VS1
N
VS1_FB
GND_VS1
VSYS_VS1
P
R
XTAL1
AVSS_XO
VRFCK_1
XO_CEL
VBBCK
XO_EXT
VUSB
VSIM1
R
AVSS_XO
XTAL2
VXO22
VRFCK
XO_SOC
XO_NFC
VBIF28
VSIM2
VEMC
VCN33_1
VCN33_2
VUFS
VCN18
VRF18
VIO18
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CONFIDENTIAL B
L
VCORE_FB VSYS_VCORE VSYS_VCORE M
P
VSYS_LDO2 VSYS_LDO1
B
XXX
GND
AU_HSN
VPROC1
GND_VPROC GND_VGPU1 GND_VGPU1 D 1_FB 2 2
VPROC2_FB
HOMEKEY
GND
AVDD30_AU AVSS30_AUD D
VPROC1
16
BUCK
AUD_NLE_M AUD_SYNC_ OSI0 MOSI
J
15
XXX
AU_LOLN
AVDD18_AU D
14
GND_VPROC GND_VPROC C 1 1
AU_LOLP
AU_MICBIAS 0
13
GND_VMODE GND_VPROC VMODEM_FB M_FB 2_FB
H
N
12
98
Layout: MT6359 Power Input (1/2) VSYS Input
Routing from 22uF VSYS capacitor uses start topology to connect to each device. 1. Input for BUCK. (Fig. 2) 2. Input for LDO. (Fig. 2)
All the decoupling capacitors should be placed near MT6359. The priority is buck capacitor then decoupling capacitor of LDO. (Fig.1)
Fig. 2
Fig. 1
CONFIDENTIAL B
99
Layout: MT6359 Power Input (2/2) Layout method of MT6359 power Input for Buck GND
Fig.1
-
Buck GND balls are connected to buck capacitors close to pin with plane or trace (Trace Width > 8mil * N (ball number) + M (ball pitch)). (Fig.1~2)
-
Buck GND balls should be connected to buck capacitors first and isolated from the nearby GND trace and plane then connected to main GND at L3 (Fig.1~2).
Fig.2
MT6359
CONFIDENTIAL B
BUCK GND is isolated from nearby GND trace and plane.
100
Layout: MT6359 Buck Output (1/2) Fig.2
The buck inductors should be placed near MT6359. (Fig.1)
Fig.1
MT6359
CONFIDENTIAL B
101
Layout: MT6359 Buck Output (2/2)
Those signals are differential pairs and should be shielded by GND and far away from noise signals (Fig.1 ~ Fig.2). 1. VPROC1_FB/GND_VPROC1_FB 2. VPROC2_FB/GND_VPROC2_FB 3. VCORE_FB/GND_VCORE_FB 4. VPU_FB/GND_VPU_FB Fig. 1 5. VGPU11_FB/GND_VGPU11_FB 6. VMODEM_FB/GND_VMODEM_FB 7. VS1_FB, VS2_FB, VPA_FB
Fig. 2
CONFIDENTIAL B
102
Layout: MT6359 LDO Output (1/2)
See table. for the suggested LDO output layout.
1. Trace width≧6mil 2. Value and placement of capacitor please refer design notice Ball name VFE28 VAUX18 VBIF28 VCN33_1 VCN33_2 VIO28 VEMC VSIM1 VSIM2 VIBR VUSB VEFUSE VAUD18 VCAMIO VM18 VUFS VCN18 VRF18 VIO18 VCN13 VRF12 VA12 VA09 VSRAM_PROC1 VSRAM_PROC2 VSRAM_OTHERS VSRAM_MD
Imax 200mA 50mA 50mA 800mA 800mA 200mA 800mA 200mA 200mA 200mA 200mA 300mA 300mA 300mA 300mA 1200mA 1200mA 450mA 600mA 350mA 800mA 300mA 300mA 600mA 600mA 600mA 600mA CONFIDENTIAL B
Trace Length 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1000mil 1500mil 1500mil 900mil 1200mil 1500mil 1500mil 1500mil 1500mil 1500mil 1200mil 1200mil 1200mil 1200mil 1200mil 1200mil
Trace Width 6mil 6mil 6mil 25mil 25mil 10mil 25mil 10mil 10mil 6mil 8mil 12mil 12mil 6mil 25mil 25mil 8mil 20mil 20mil 25mil 25mil 20mil 20mil 10mil 10mil 22mil 10mil
Rpcb H=50um, 1/3 oz 400mΩ 400mΩ 400mΩ 100mΩ 100mΩ 240mΩ 100mΩ 240mΩ 240mΩ 400mΩ 300mΩ 135mΩ 200mΩ 400mΩ 60mΩ 80mΩ 300mΩ 120mΩ 120mΩ 100mΩ 100mΩ 100mΩ 100mΩ 190mΩ 190mΩ 90mΩ 190mΩ
Core power/DRAM power/AVDDxx power:
VRF18/VRF12/VRF12_S: •
Traces should be in inner layer or under shielding case.
VRF12_S:
Follow MMD/MES
VRF12_S should connect to VRF12 application
Trace width/length can adjust by application Imax
If trace is series 0Ω resister, 0Ω resister is having 0~50mΩ variation. It would be drop voltage.
103
Layout: MT6359 LDO Output (2/2)
VREF capacitor should be placed near L12/L11 pin.
DVDD18_DIG capacitor should be placed near K10 pin.
MT6359
CONFIDENTIAL B
104
Layout: Others for MT6359 Gauge
CS_P/CS_N (ball: L9/L10) should be routed as differential pairs and far away from noise signals.
MT6359 DCXO_32K
CS_P CS_N
CONFIDENTIAL B
105
MT6359 Audio PCB Layout Guide
MT6359 Audio PCB Layout Guide Please refer “ MT6779 Design Notice “
CONFIDENTIAL B
106
MT6359 AuxADC/DCXO PCB Layout Guide
MT6359 AUXADC /DCXO PCB Layout Guide Please refer “ MT6779 Design Notice “
CONFIDENTIAL B
107
Chip Placement Recommendation Following PCB layout are recommended by MTK for WLCSP (MT6359 / MT6360) 1. Opposite shield frame could not overlap package outline 2. The opposite chip (especially large chip, ex. AP & eMCP) could not overlap package outline 3. If underfill was adopted, the properties were recommended : - CTE-1 < 30 ppm/˚C, Tg > 125 ˚C
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2019/8/5
108
How to Connect for Un-usd Pin Unused Part Interface General Gauge DCXO
Pin Connection if not used EXT_PMIC_ENx Ext chip enable pin Floating HOMEKEY button with default long press function Short to GND HOMEKEY HOMEKEY button without default long press function Floating BATON Battery NTC pin for battery and its temperature sensing Pull-Low 10KΩ to GND BATADC Fuel gauge ADC input pin for monitoring battery voltage VBAT CS_N Fuel gauge ADC input pin GND CS_P Fuel gauge ADC input pin GND XO_NFC 26MHz output to NFC Floating XO_EXT 26MHz output to UFS or others Floating Pin Name
CONFIDENTIAL B
Description
109
APPENDIX
CONFIDENTIAL B
110
MT6359 PMIC Part Number Notice
Platform P/N
MT6799 MT6359P
MT6785 MT6359KP
PMIC P/N
CONFIDENTIAL B
111
Copyright © MediaTek Inc. All rights reserved.