1,221 90 4MB
English Pages 116 Year 2020
CONFIDENTIAL B
MT6359 Design Notice
V0.7
History Revision
Date 2019/04/01
Author Mark Initial
2019/05/06
Mark
2019/05/30
Mark
V0.1
CONFIDENTIAL B
Description
Page4 Update Power plan Page5 VMODEM buck for VRF09, VPU buck for VDIGRF Page8 VM18 change to default on 1.8V Page9 Change VA09/VSARM PROC1/VSRAM PROC2/VSARM Others/VSRAM MD LDO boot default voltage and application Page44 Change decoupling values Page45 Change Cout and PDN cap values Page58/59 Change trace width and inductor Itemp./Isat. Max. of Buck Page68 Change LDO application of SRAM_LDOs/VA09 Page80/86 Change VSRAM_xPU to SRAM CORE Page106 Add UFS2.5/UFS3.0 Power configuration Page3/4 Change IC’s Part number Page8/9 Update VPA Imax=1000mA(align MT6359 datasheet) and VPU buck Vboot Page 84/90 add VBBCK_PMU to AP AVDD12_CKBUF_UFS constraint Page 48/49 Revise Cout cap range and Capacitance Page72 Adjust VA09 LDO cap range Page112 Add “Update Figure for Chip Placement Recommendation” Page16 Add power on/off sequence 1
History Revision
Date
Author
V0.2
2019/08/01
Mark
V0.3
2019/10/22
CONFIDENTIAL B
the block diagram
Mark
Description Page113 Add IC package layout recommendation Page14 VSRAM_PROC2 boot up voltage change to 0.9V Page 11/14 VRFCK/VBBCK boot up voltage change to 1.24V Page64 VGPU for VCORE inductor Itemp. change to 4.7A Add Notice for inductor selection guide Page73/74/76/77 VCN13/VXO22/VBBCK cap range update Page9 Power plan typo update Page60/62 Update Couts ESL constraint Page 114 Update MT6359PP/B to MT6359VPP/B Page 17 Revise Power on/off sequence and add +/-20% tolerance Page63 Update VDIGRF Trace width
Page5 Update PMIC change comparison table for VXO22/VRFCK/VBBCK Page11/14 Update VXO22/VRFCK/VBBCK IMAX Page12 Update VIBR output voltage setting Page51 Update MT6359P Cin capacitor notice Page103 Add MT6359VPP MES layout constraint Page104 Update VRF18 trace length and Rpcb Page113 Update MT6359VPP for MT6883 platform
2
History Revision
Date
Author
V0.4
2020/01/15
Mark
V0.5
2020/05/08
Mark
Page11/63 Update Vs1 IMAX Page50 Update VPA cap range
V0.6
2020/05/10
Mark
Page50 Update cap range
V0.7
2020/05/20
Mark
Page38 Update R4/RNTC selection notice Page79/96 Update VRTC selection noted
CONFIDENTIAL B
Description Page17 Update some power rail power off sequence from 0.1ms to 0.2ms Page13 Update VEMC setting for 2.5V Page111 BATON Short to GND while RU=NC, Pull-Low 10KΩ to GND while RU exist
3
Content ▪ ▪ ▪ ▪ ▪ ▪
Feature comparison MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
4
Power plan comparison MT6359PP/B Buck (PWRAP)
MT6360PP Buck (I2C) MT6315PP/B Buck (SPMI) MT6315QP/B Buck (SPMI)
MT6315RP/B Buck (SPMI)
PMIC MT6359 ball name Buck VPROC1 VPROC2 VCORE VPU VPA VS1 VS2 VMODEM
P90
Helio 5G
Power-plan
Power-plan
CPU-B CPU-L CORE VPU VPA VS1 VS2 MODEM
APU DLA VRF13 VDIGRF VPA VS1 VS2 VRF09
VGPU11+VGPU12
GPU
CORE
BUCK1 BUCK2 CH1 CH2 CH4 CH3 CH1 CH2 CH4 CH3 CH1 CH2 CH3 CH4
MDLA LP4x_VDD2
LP4x_VDD2 LP4x_VDDQ
MT6691SVP/A MT6691OTP/A
PMIC MT6359 ball name VM18 VCAMIO VAUD18 VA09 VA12 MT6359PP/B VCN13 LDO VSRAM_MD (PWRAP) VSRAM_PROC1 VSRAM_PROC2
CPU-B CPU-L GPU VSRAM_CORE
MT6360PP LDO (I2C)
MODEM NR SRAM_MD VMDDR USB3.0 1.2V MT6680P/A
CONFIDENTIAL B
P90
Helio 5G
Power-plan
Power-plan
LDO LP4x_VDD1 Camera IO Camera IO Audio, 1.8V Audio, 1.8V AP analog 0.9V VSRAM_DIGRF AP analog 1.2V AP analog 1.2V WCN, 1.3V WCN, 1.3V VSRAM_MD VSRAM_APU VSRAM_CPUB VSRAM_CPUB VSRAM_CPUL VSRAM_CPUL
VSRAM_Others
VSRAM_CORE
VSRAM_GPU
VRF12
RF12
AP analog 1.2V
Fingerprint
Fingerprint
Touch panel
Touch panel
AP MSDC
AP MSDC
SD card
SD card
LDO1 (VFP) (150mA) LDO2 (VTP) (200mA) LDO3 (VMC) (200mA) LDO5 (VMCH) (800mA) LDO6 (AP_VMDDR) (300mA) LDO7 (LP4x_VDDQ) (600mA)
VMDDR
VDDQ
VMDDR_EN LP4x_VDD1
PMIC change comparison table PMICs
Ext. Buck/LDO Interface Buck Phase UFS DRAM power MT6359 VCORE buck
P90
Helio 5G
MT6359 (MT6359P/A) MT6360 (MT6360P)
MT6359 (MT6359PP/B) MT6360 (MT6360PP) MT6315*3 (MT6315PP/B, MT6315QP/B, MT6315RP/B)
N/A
MT6691SVP/A (EMI VMDDR) MT6680P/A (VDD1) MT6691OTP/A (UFS3.0 1.2V) (Option)
PWRAP+I2C
PWRAP+I2C+SPMI
12
24
Only support UFS2.1 power
Support UFS2.1/UFS3.0 power
2×16-bit LPDDR4X at 1866 MHz
4x 16-bit LPDDR4X at 2133 MHz
Max voltage up to 1.19V
Max voltage up to 1.3V
MT6359 VA09 LDO
Support min. voltage 0.9V
Support min. voltage 0.85V
MT6359 VRF12 LDO
Default off for RFIC 1.2V power
Default on for AP 1.2V analog power
MT6359 VEMC LDO
No HW trapping
HW trapping 3.0V/2.55V
MT6359 VXO22
IMAX 50mA
IMAX 25mA
MT6359 VRFCK
Default voltage 1.6V, IMAX 40mA
Default voltage 1.24V, IMAX 10mA
IMAX 40mA
IMAX 10mA
MT6359 VBBCK CONFIDENTIAL B
6
PMIC change comparison table P90
Helio 5G
MT6360 HW trapping
RG:000, HW trapping short to VDDA
RG:001, HW trapping short 1.8M to gnd
MT6360 Buck1 IMAX
3A
4A
MT6360 Buck1 inductor (Fsw)
0.33uH (2.4Mhz) for VMDLA
0.24uH (2.72Mhz) for VDD2
MT6360 Buck2 inductor (Fsw)
0.33uH (2.4Mhz) for VDD2
0.47uH (2.4Mhz) for VDDQ
MT6360 LDO6
0.75V for VMDDRPHY
NC
MT6360 LDO7
0.6V for VDDQ
1.8V for VMDDRPHY Enable
N/A
MT6315 for CPU/GPU/MD power
MT6315
CONFIDENTIAL B
7
Content ▪ ▪ ▪ ▪ ▪ ▪
Feature comparison MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
8
MT6359 – General Description ▪
The MT6359 highly integrated function fulfill all power requirement in smart phone system •
Buck Converters MT6359 x 10 (VCORE, APU, DLA, VS1, VS2, RF09, RF13, DIGRF )
•
LDOs ▪ Analog LDO ▪ Digital LDO ▪ RTC
•
*6 * 25 *1
Audio ▪ Audio Codec ▪ Audio Line Out
• • • •
RTC Macro Fuel Gauge XO Control and Output Ext. LDOs/Buck ▪ MT6680 (EMI_VDD1) ▪ MT6691 (EMI_VMDDR)
CONFIDENTIAL B
9
MT6359 + MT6360+MT6315 Power Plan AC Adaptor or USB VBUS
MT6359
MT6315
MT6360
VSYS
MT6360 Current Sinks
USB TypeC
TypeC/ PD
VPA
R/G/B LEDs
OFF
1.0A
Buck
DVDD18_DIG
3G/LTE PA
ON
1.8V, 10mA
0.5V~3.6V
PMIC DIG
VCN33_1 VCN33_2
VPROC1
BATFET
ON
4.8A 0.4V~1.193V
VBAT LDO
VPROC2
APU 0.55V~0.8V
VRTC
ON
0.75V/4.8A
VAUX18
VCORE DLA 0.55~0.725V 0.55V~0.8V
ON
0.7V/2.4A
ON
1.84V, 50mA
VXO22 VPU Battery Pack
ON
2.24V, 50mA
VRFCK
0.9V/4.8A
VRF09
0.4V~1.1V
ON
MT6680
OFF
VAUD18
VRF13
VGPU11
RF Power
4.8A 0.4V~1.19V
VCAMIO ON
WCN Power
OFF
1.8V, 300mA
VCN18
VCORE 0.55~0.725V
VGPU12
ON
1.8V, 300mA
0.4V ~ 1.193V
Memory/ storage
OFF
1.8V,1 200mA
VRF18
4.8A 0.4V~1.19V
ON
1.8V, 600mA
Camera Power Display Power
VEFUSE VS1 2.5A 2.0V
DCXO
OFF
1.8V, 300mA
ON VUFS
ON
1.86V, 1200mA
External Power
VM18
RF Clock Buffer
LDO3
LDO5 VEMC
DDR Audio UL
2.8V, 200mA
VIBR VSIM1 Camera IO
OFF
MT6635/31 (WCN)
VRF18
1.8V, 150mA
IO RFFE MIPI
1.8V, 200mA
eFuse UFS/ MMC
LDO2
MT6359 Buck : 8* 1-PH+1* 2-PH LDO : 30
VS2 2.5A
VRF12
MT6360
OFF
MT6635 (WCN)
ON ON
1.2V, 300mA
VA09
BUCK : 2 LDO : 6
OFF
VBBCK
2.8V, 200mA
VSRAM_PROC2
ON
BB Clock Buffer
ON
CPUB_ SRAM
ON
CPUL_ SRAM
ON
GPU_ SRAM
0.4V~1.193V 600mA
VSRAM_OTHERS
External
0.4V~1.193V 600mA
VSRAM_MD VDRAM2
VDRAM1
RFFE
OFF OFF
OFF
3.07V, 200mA
USB 2.0 Audio
Vibrator SIM1
SIM2
OFF
Finger Print
OFF
Touch Panel
6315-3(MODEM) 2-Phase IP
ON
ON
0.8V/10A
ON VSW
CPU-B
0.75V/15A
0.55V~1.0V
VSW3
ON
0.8V/5A
ON
0.8V/5A
CPU-L 0.55V~0.9V
VSW4 0.85V/5A
ON
MODEM
NR
SRAM_ MD
6315-2 (GPU & SRAM_CORE) 3-Phase IP
ON VSW
GPU
0.75V/15A
0.55V~0.85V
APU_SRAM
LPDDR4x
Buck2 (6360) 0.6V/3A
Buck1 (6360)
0.4V~1.193V 600mA
ON
Battery temp. sensor
eMMC
3-Phase IP
VSW3
0.4V~1.193V 600mA
BUCK: 12-PH
ON
VUSB ON
6315-1(CPU-B & CPU-L)
ABB1 VSRAM_DI GRF
1.2V, 300mA
VSRAM_PROC1
LCM
SD CARD
ABB2
ON
0.9V, 300mA
MT6315*3
BUCK: 2 + BL/LCM LDO: 9 CONFIDENTIAL B
Camera DVDD
1.20V, 800mA
VA12
OFF
VFE28
VSW1~2 OFF
1.3V, 450mA
ON
1.35V
LCM
ON
1/2/3
VCN13
OFF
2.8V, 50mA
MSDC1
1.8V, 200mA
VCAMD
OFF
LCD +/- Bias
Camera AVDD
Sensor
(SD Card)
1.86V, 200mA
LDO1
CAM AF
VBIF28 OFF
1.86V, 200mA
VSIM2
OFF
LCD BL Driver OFF
2.95V, 800mA
3V, 800mA
OFF
1.8V, 450mA
Peripherals
VIO18
System Power
VIO28
OFF
VCAMA Ext. 1/2/3
MT6635 (WCN)
3.3~3.6V, 800mA
2.8V, 200mA
ON
1.8V 1000mA
VCORE 1.3V/4.8A
OFF
3V, 200mA
1.24V, 25mA
OFF
AUXADC
VDIGRF
0.4V ~ 1.193V
VMODEM
RTC
VCAMAF
0.4V ~ 1.193V
Flash Current Driver
ON
2.8V, 2mA
OFF
3.3~3.6V, 800mA
MT6691 0.75V/2A
ON LPDDR4x
DDRPHY VSW3 0.85V/5A
1.125V/4A LDO7 (EN pin)
ON
ON
SRAM CORE 0.75V
10
MT6359 Buck Power Plan Circuit Type
Buck
Buck Name (Application name) VPROC1 (DVDD_APU) VPROC2 (DVDD_DLA) VGPU11/12 (DVDD_CORE) VCORE (VRF13_PMU) VMODEM (VRF09_PMU) VPU (VDIGRF_PMU) VS1 (VS1_PMU) VS2 (VS2_PMU) VPA (VPA_PMU)
CONFIDENTIAL B
Output Voltage Range (V) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.50 ~ 1.3 (6.25mV/step) 0.40 ~ 1.10 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 1.86 ~ 2.20 (12.5mV/step) 1.20 ~ 1.60 (12.5mV/step) 0.50 ~ 3.60 (50mV/step)
Boot Default (V)
IOUT-MAX (mA)
ON (0.75)
4800
ON (0.75)
4800
ON (0.725)
4800 *2
OFF
4800
OFF
4800
ON (0.7)
2400
ON (2.0)
2200
ON (1.35)
2500
OFF
1000
11
MT6359 LDO Power Plan (1/4) Circuit Type
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VFE28
2.80
OFF (2.8)
200
RFFE
VUSB
3.07
ON (3.07)
200
USB
VAUX18
1.84
ON (1.84)
50
AUXADC
VXO22
2.24
ON (2.24)
25
DCXO
VRFCK
1.24
ON (1.24)
10
DCXO
VBIF28
2.80
OFF (2.8)
50
Battery Interface
VRTC
VRTC
2.80
ON (2.8)
2
RTC
VDIG
DVDD18_DIG
1.80
ON (1.8)
10
PMIC Digital
ALDO
CONFIDENTIAL B
12
MT6359 LDO Power Plan (2/4) Circuit Type
LDO Name VSIM1 VSIM2
DLDO
Output Voltage (V)
1.7/1.8/1.86/ 2.76/3.0/3.1 1.7/1.8/1.86/ 2.76/3.0/3.1
Boot Default (V)
IOUT-MAX (mA)
Expected use
OFF (1.86)
200
SIM
OFF (1.86)
200
SIM
VCN33_1
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VCN33_2
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VEMC
2.5/2.9/3.0/3.3
ON (3.0)
800
eMMC / UFS
VIO28
2.8/2.9/3.0/ 3.1/3.2/3.3
OFF (2.8)
200
IO & Sensor
VIBR
2.7/2.8/3/3.3
OFF (2.8)
200
Vibrator
CONFIDENTIAL B
13
MT6359 LDO Power Plan (3/4) Circuit Type
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VEFUSE
1.80
OFF (1.8)
300
EFUSE
VAUD18
1.80
ON (1.8)
300
Audio
VCAMIO
1.80
OFF (1.8)
300
Camera IO
VM18
1.80
ON (1.8)
300
NA
VRF18
1.80
OFF (1.8)
450
RF
VIO18
1.80
ON (1.8)
600
IO & Sensor
VCN18
1.80
OFF (1.8)
1200
Connectivity
VUFS
1.86
ON (1.86)
1200
eMMC / UFS
SLDO1
CONFIDENTIAL B
14
MT6359 LDO Power Plan (4/4) Circuit Type
SLDO2
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VBBCK
1.2
ON (1.2)
10
DCXO
VA09
0.85
ON (0.85)
300
DIGRF SRAM (VRF0P85_MEM_PMU)
VA12
1.2
ON (1.2)
300
AP Analog Module
VCN13
1.3
OFF (1.3)
350
Connectivity
ON (0.85)
600
CPUB SRAM
ON (0.9)
600
CPUL SRAM
ON (0.85)
600
GPU SARM
ON (0.85)
600
APU SRAM
ON (1.2)
800
AP Analog Module
VSRAM_PROC1 VSRAM_PROC2 VSRAM_OTHERS VSRAM_MD VRF12
CONFIDENTIAL B
0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 0.50 ~ 1.29 (6.25mV/step) 1.2
15
Feature List Function
MT6356
MT6358
MT6359
Buck Converter
6
9
10
LDO
31
28
31
Driver
ERM Vibrator *1
ERM Vibrator *1
ERM Vibrator *1
Audio
Audio Codec
Audio Codec
Audio Codec
Others
RTC macro
RTC macro SD_DET
RTC macro
Fuel Gauge
Fuel Gauge
Fuel Gauge
Fuel Gauge
CONFIDENTIAL B
16
Content ▪ ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
17
Power ON/OFF Sequence
by Pressing PWRKEY or Charger Plug In/Out VSYS
VSYS
DDLO
DDLO
UVLO
UVLO
delay time = 33ms
delay time = 141ms
CHRDETB
CHRDETB delay time = 42ms
delay time = 35ms
PWRKEY PWRHOLD (SW RG)
PWRKEY PWRHOLD (SW RG)
Clear SPAR power on condition
PMIC exception occurs PMIC RSTB=0
No Check SPAR function
Yes PMIC exception occurs PMIC RSTB=0
NO CONFIDENTIAL B
PMIC exception is UVLO && VBAT drop time < 0.1s/0.6s/1.6s/always on
YES
SPAR power on source set to High, keep all SPAR related RG setting
29
SPAR ▪ Feature support condition • VRTC output need coin cell or keep-alive capacitor
▪ Enabled by software • Three time settings can be selected ▪ ▪ ▪ ▪
100ms, VRTC output need coin cell or >2.2uF capacitor 0.6s, VRTC output need coin cell or >4.7uF capacitor 1.6s , VRTC output need coin cell or >22uF capacitor Min SPAR trigger condition: “duration of (VSYS 1ms VBAT
0.1/0.6/1.6sec
VRTC UVLO PWRKEY PWRHOLD
SPAR de-bounce
PWRON
RESETB CONFIDENTIAL B
30
FSOURCE, PMU_TESTMODE ▪
FSOURCE, PMU_TESTMODE • These pins should be connected to ground for normal operation.
PMIC PMU_TESTMODE FSOURCE
CONFIDENTIAL B
31
Power Domain for I/O MT6359 Pin Name PWRKEY HOMEKEY RESETB CHRDETB EXT_PMIC_EN1 EXT_PMIC_EN2 EXT_PMIC_PG WDTRSTB_IN SRCLKEN_IN0 SRCLKEN_IN1 SPI_CSN SPI_CLK SPI_MOSI SPI_MISO
CONFIDENTIAL B
Power Source Ball Name DVDD18_DIG DVDD18_IO VIO18 VSYS_SMPS VSYS_SMPS VSYS_SMPS VSYS_SMPS DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC)
Power Source Domain DVDD18_DIG VIO18 VIO18 VSYS VSYS VSYS VSYS VIO18 VIO18 VIO18 VIO18 VIO18 VIO18 VIO18
Power Source Voltage 1.8V 1.8V 1.8V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V
32
Content ▪ ▪ ▪ ▪ ▪ ▪
Feature comparison MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
33
BAT_ON
CONFIDENTIAL B
34
Block Diagram for Smart Battery 3-PIN Smart Battery Smart battery
VBAT
VBATXXX
SPI
▪
BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL
CPU
R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
KEY FEATURES • MIPI BIF Smart Battery • HW Battery Pack Presence / Removal Detection
CONFIDENTIAL B
35
HW Battery Presence Detection ▪ Battery presence is detected by sensing the existence of RNTC or RID resistor inside the battery pack. ▪ Dedicated comparator is used for Battery Pack Presence/ Removal Detection. • Battery pack is considered not present if BAT_ON is above 0.964*VBIF. • Interrupts are generated when detecting battery insertion or removal • Charging shall be stopped upon battery removal Parameter
Min
Typ
Max
Units
Presence Detection comparator threshold
(0.964*VBIF)-20mV
0.964*VBIF
(0.964*VBIF)+20mV
V
CONFIDENTIAL B
36
BATON: Schematics & Layout Notice Smart battery
VBAT
VBATXXX
SPI BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL
CPU
R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
C3: VBIF bypass cap (1uF)
R4: pull high resistor
VBIF need bypass cap 1uF BATON trace total capacitance : • should be smaller than 50pF with Smart battery • should be smaller than 500pF with Low cost battery CONFIDENTIAL B
RNTC: Thermistor (IN pack side)
37
R4/RNTC Selection Guide • Should Limit selection of R4 // RNTC < 40KΩ for getting more stable voltage after ADC settled • BATON noted that VOH should over 1.1V once using BIF battery
Voltage of BATON pin should follow BIF Spec.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2020/5/25
38
Note 1: Recommended Location of NTC in Battery Pack ▪ Recommended location of NTC in battery pack • Move NTC thermistor away from P+ and P• Mount NTC thermistor to the side of PCB toward the cell 10K 1% NTC
P-
CONFIDENTIAL B
P+
39
39
Note 2: Confirm to Meet the above Specifications ▪ Violation of the above specifications will result in measurement error of battery’s temperature.
Battery will be under dangerous environment.
CONFIDENTIAL B
40
40
Content ▪ ▪ ▪ ▪ ▪ ▪
Feature comparison MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
41
Fuel Gauge
CONFIDENTIAL B
42
Fuel Gauge: Schematics & Layout Notice ▪
1 : Sense resistor Rfg should be ±1% ,0.5W↑(depend on system max power consumption 7A-> 0.5W, 10A -> 1W) package in series with battery negative terminal to ground • •
▪ ▪
System max power consumption < 10A, Rfg is 10mΩ System max power consumption > 10A, Rfg is 5mΩ
2:Rfg should be placed near battery connector in PCB layout. 3:FGP_IC/FGN_IC should be 4mil differential traces from chip CS_N/CS_P to Rfg
MT6359
CONFIDENTIAL B
43
FGN_IC, FGP_IC: Layout Example 4mil 4mil
FGP is connected to system GND. It needs adequate amount of VIAs to system GND in order to withstand system current consumption.
FGP
FGN
FGN is connected to BATTERY GND. It needs adequate trace width to BATTERY GND In order to withstand the system current consumption
Rfg Please note that sense traces should be connected to the middle of the pads and the layout should be symmetry between FGN and FGP(Kelvin Connection).
Rfg
FGP_IC CONFIDENTIAL B
FGN_IC 44
GM3.0 Board Offset Calibration Test Point (Option)
TP1 & TP2 for system power supply ——The test point should on the main trace ,as it is used for power input point
TP2 & TP3 for GM3.0 calibration ——The test point should on the main trace ,or the width of trace to test point should not less than 40 mil as the current would be 1000mA ——The test point DO NOT draw from the trace of CS_N &CS_P
TP3 Rfg TP2
TP1 TP2
TP3
TP2
Rfg For GM3.0 For Power Supply CONFIDENTIAL B
The TP3 is on the trace between CS_N Pad to Battery GND
45
Layout Example ▪ TP should be placed on main power trace, not on current sensing trace. Current Sensing Resistor
Main Power Trace (O)
Current Sensing Trace (X) CONFIDENTIAL B
46
DC-DC
CONFIDENTIAL B
47
Buck: Schematic/Layout Notice
InputDecoupling Placement and Schematic Guide ▪
Please place CIN as close to PMIC as possible and put in shield case.
▪
GND_VBUCKs x balls(as highlight in following fig.) must connect to related input cap first, and then connect to main GND plane.
CONFIDENTIAL B
48
Buck: Schematic/Layout Notice
Output Decoupling Placement and Schematic Guide ▪
Place power inductors as closer to PMIC balls as possible and put in shield case.
▪
VBUCK_FB & GND_VBUCK_FB layout should follow PCB layout constraint.
CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #1 BUCK
Application
Inductor
Total COUT Range
VS1
VS1
1uH/2016
(22uF*2) ~ (47uF + 10uF)
VS2
VS2
1uH/2016
(22uF*2) ~ (47uF + 10uF)
VPA
VPA
1uH/2016
Follow VPA notice
VMODEM
VRF09
1uH/2016
(22uF) ~ (22uF+10uF)
VPROC1
APU
0.24uH/1608
(22uF*3) ~ (47uF + 22uF + 10uF)
VPROC2
DLA
0.24uH/1608
(22uF*3) ~ (47uF + 22uF + 10uF)
VCORE
VRF13
1uH/2016
(22uF) ~ (22uF+10uF)
VGPU11 VGPU12 VPU
VCORE VDIGRF
0.24uH/2016 0.24uH/2016 1uH/2016
(22uF*5) ~ (47uF*2+22uF*1 + 10uF) (22uF) ~ (22uF+10uF)
Note1: for VPA out cap distribution, please refer “VPA Output Capacitance Notice”
CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #2 Buck
Application
PMIC COUT (typical value)
PDN Cap (typical value)
Total COUT Value (after derating)
VS1
VS1
47uF/0603/6.3V/X5R *1
x
≥ 20.6uF
#2
VS2
VS2
47uF/0603/6.3V/X5R *1
x
≥ 20.6uF
#3
VMODEM
VRF09
22uF/0603/6.3V/X5R *1
0.1uF *10
≥ 10.3uF
#1
VPROC1
APU
4.3uF*2
≥ 30.9uF
#1
VPROC2
DLA
4.3uF*2
≥ 30.9uF
#1
VCORE
VRF13
22uF/0603/6.3V/X5R *1
0.1uF*6
≥ 10.3uF
#1
VGPU
VCORE
47uF/0603/6.3V/X5R *2 22uF/0603/6.3V/X5R *1
4.3uF*2+1uF*4
≥ 51.5uF
#1
VPU
VDIGRF
22uF/0603/6.3V/X5R *1
0.1uF*2
≥ 10.3uF
#1
47uF/0603/6.3V/X5R *1+ 22uF/0603/6.3V/X5R *1 47uF/0603/6.3V/X5R *1+ 22uF/0603/6.3V/X5R *1
Note #1: Total COUT Value @ 1V derating for AC 0.01Vrms and overall operating temperature. Note #2: Total COUT Value @ 2V for AC 0.01Vrms and overall operating temperature. Note #3: Total COUT Value @ 1.35V derating for AC 0.01Vrms and overall operating temperature.
CONFIDENTIAL B
Schematic/Layout Notice Buck Converter Input Decoupling
MT6359’s BUCK VPA VS2 VMODEM VPU VPROC1 VPROC2 VGPU11 VGPU12 VCORE VS1
CIN2 (typical value) -
10uF/0402/6.3V/X5R *2pcs #1 #4 #5
CIN1 (typical value) 10uF/0402/6.3V/X5R #1 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4 2.2uF/6.3V/X5R #2 #3 #4
Note #1: Total CIN2 (10uF) Value ≥ 1.6uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #2: CIN1 (2.2uF) can be 0402 size or 0201 size. Note #3: Total CIN1 (2.2uF) Value ≥ 0.36uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #4: CIN2 can be NC while CIN1 be 2.2uF/0402 Note #5: CIN2 should be closed to MT6359 VSYS_XX pin within a 10mm distance
CONFIDENTIAL B
Schematic/Layout Notice Buck Input Cap. Layout Spec. #1
▪ If CIN1=0402 size ▪ MMD spec The spec. of trace parasitic inductance from buck input cap to PMIC Ball Input Trace MT6359 Spec. for Inductance BUCK (from C to IC ball) ▪ (L_PWR1 + L_GND1) < Spec VSYS_VS1 IN1
VS1
L_PWR1
VSYS
PMIC
GND_BUCK L_GND1
CONFIDENTIAL B
GND_VPU
(L_PWR1 + L_GND1) < 2nH
VS2
VSYS_VS2 GND_VS2
(L_PWR1 + L_GND1) < 2nH
VPA
VSYS_VPA GND_VPA
(L_PWR1 + L_GND1) < 1.5nH
VMODEM
VSYS_VMODEM GND_VMODEM
(L_PWR1 + L_GND1) < 1nH
VPROC1
VSYS_VPROC1 GND_VPROC1
(L_PWR1 + L_GND1) < 1nH
VPROC2
VSYS_VPROC2 GND_VPROC2
(L_PWR1 + L_GND1) < 1nH
VCORE
VSYS_VCORE GND_VCORE
(L_PWR1 + L_GND1) < 1nH
VGPU11
VSYS_VGPU11 GND_VGPU11
(L_PWR1 + L_GND1) < 1nH
VGPU12
VSYS_VGPU12 GND_VGPU12
(L_PWR1 + L_GND1) < 1nH
VSYS_BUCK CIN 1
GND_VS1
VPU
VSYS_VPU
(L_PWR1 + L_GND1) < 2nH
Schematic/Layout Notice Layout Guide (1/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Buck input cap detail layout rule, please refer to next page. CONFIDENTIAL B
Schematic/Layout Notice Layout Guide (2/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Example 1 PMIC Buck GND ball
Example 2
Input Cap GND pad
PMIC Buck GND ball
Layer-1
Input Cap GND pad
Layer-1 GND return path
Layer-2
Layer-2 Solution 2
Solution 1
GND return path
Layer-3
Layer-3
Layer-5
Layer-5
Main-GND Layer
Main-GND Layer
CONFIDENTIAL B
Solution 2
Solution 1
Schematic/Layout Notice
Controller power trace layout constraint Bat. connector
Buck Input
GND
BAT_BUS
22uF
4mil
Buck controller power trace(VSYS_SMPS) must be use single trace connect to battery VBAT_BUS directly, and can’t merge with others. VSYS add 1Ω+/-5% Resistor to VSYS_SMPS CONFIDENTIAL B
56
Schematic/Layout Notice
Layout Guide 1/5: Remote Sense Application ▪
DC/DC remote sense feedback traces are recommended using GND shielding to avoid noise coupled.
CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 2/5: Remote Sense Application ▪
DC/DC remote sense feedback & feedback_GND traces are recommended using GND shielding and differential pair to avoid noise coupled.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2020/5/25
58
Schematic/Layout Notice
Layout Guide 3/5: Remote Sense Application Cout1
Rc1
L1
L4
Remote pt.1
Cout2
R_remote spec (Follow MMD SPEC)
Lout
Rc2
PMIC L3
SOC
L2 Cout3
Rc3 1. 2.
Find path with lowest inductance, the remote point can be located within Coutlowest L + 1n. For example, in case of Cout1 is path with lowest inductance. • Inductance between Cout1 and Remote pt. 1 is L4, L4 must be lower than 1n (L4 < 1n). • The remote point location can be between Cout1 and Remote pt. 1. 3. Same case apply to L2 & L3 if they are lowest inductance path. 4. Above case is for multi-path, in case of single path, consider the only path as the lowest inductance path directly. 5. Inductance between Cout1 and other Cout(Cout2/Cout3) must be lower than 1.5n(L1+L2 6mil
▪ Detail layout constraint please refer per project. CONFIDENTIAL B
77
Layout Constraint of LDO #5
Rough Guidelines-use from CAD Extraction w (mil) 4
w (um) 101.6
h (um) 50
t @ 1/3 oz (um) 12
L (nH) = 4.85 nH ×
len (cm) 1.27
trace inductance (nH) 4.85
trace resistance (mΩ) 198
101.6 um len h × × w 1.27 cm 50um
101.6 um len R (mΩ) = 198 mΩ × × w 1.27 cm
where w = 4mil~40mil
Parameter Dielectrically constant Conductivity CONFIDENTIAL B
Value 4.0 5.8e7 s/m
w = trace width len = trace length t = trace thickness h = dielectric height 78
Layout Constraint of VRTC ▪
VRTC: Application circuit (2 options) ▪
0.1uF
▪
0.1uF + 1.5kΩ + super cap
0.1uF cap MUST and be close to PMIC Noted: Follow Ref. Vcoin=22uF if customers don’t want FG re-define initial SOC at the scenario below
CONFIDENTIAL B
Scenario: Plug in charger then press power key over 15sec. Due to sub-PMIC would disable power MOS between VBAT to VSYS and stop charging, VRTC would drop at Vcoin=0.1uF after VSYS decreased. After that, FG will re-define initial SOC due to RTC disappeared
79
Layout Constraint of VREF ▪
VREF bypass cap as close as possible to PMIC
▪
GND_VREF pin must first connect to capacitor GND pin and then connect to system GND by VIA
▪
VREF cap is 100nF.
CONFIDENTIAL B
80
Layout Constraint of VIO18 ▪ Keep star-connection from PMIC VIO18_PMU to import 1.8V power domain. AP Peripheral PMIC MT6359
AVDD18_xx
VIO18_PMU
DVDD18_xx
Peripheral device I/O
CONFIDENTIAL B
81
Layout Constraint of VUSB Priority1 -The de-coupled cap should be put closed to AVDD30_AUD/ AVSS30_AUD and AVDD18_CODEC / AVSS30_AUD - The trace width should be >10mil - Connecting AVSS30_AUD to the main GND through at least one via - Connecting AVDD30_AUD from pad VUSB directly , then do a star connect from AVDD30_AUD to VUSB_PMU.
CONFIDENTIAL B
2020/5/25
82
AP ANALOG POWER PCB LAYOUT CONSTRAIN
CONFIDENTIAL B
83
AP Analog Power List Voltage
PMIC Pin Name
AP analog pin name
VIO18
AVDD18_USB AVDD18_APPLLGP AVDD18_MDPLLGP AVDD18_UFS AVDD18_CKSQ AVDD18_DRF AVDD18_WBG AVDD18_DPTX
1.8V
VIO18
VA12
AVDD12_CSI AVDD12_APPLLGP AVDD12_UFS AVDD12_WBG
1.2V
VA12_ABB1_PMU
1.2V
VRF12
AVDD12_SSUSB AVDD12_CKSQ AVDD12_DRF AVDD12_DRF (Columbus) AVDD12_DSI AVDD12_MDPLLGP AVDD12_USB AVDD12_DPTX AVDD12_DDR
1.2V
VA12_ABB2_PMU
1.2V
VBBCK
AVDD12_CKBUF_UFS
1.2V
VBBCK_PMU
0.75V
VSRAM_CORE
AVDD04_DSI
0.75V
VSRAM_CORE
1.8V
1.2V
3.07V
VUSB
CONFIDENTIAL B
AVDD33_USB 3.07V Copyright © MediaTek Inc. All rights reserved.
5/25/2020
VUSB
- 84 -
AP Analog Layout Constraint
AVDD18_xxx layout constraint
Star-connection analog power group, AVDD18_SOC by short-pad on VIO18 cap. Please be sure to follow “reference design” & “PMIC MMD”
Follow PMIC MMD PMIC
IR spec.
Total path from PMIC LDO pin to AVDD power pin of AP-site
Target IR < 2% For each AVDDXX_XXX path Simulate all power pin currents at the same time CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 85 -
AP AVDD18_xxx Layout Guideline 1 Follow PMIC MMD AVDD18_xxx1
Others …
Cnx AVDD18_xxx2 Cnx
VIO18_PMU
PMIC
AVDD18_xxx3 Cnx
AP
VIO18 AVDD18_SOC
C1
SHORT PAD
AVDD18_xxx4
P1
Cnx AVDD18_xxx5
Notice 1. PCB drop voltage ≦ 36mV (PMIC VIO18 ball to AP AVDD18_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example
Cnx AVDD18_xxx6 Cnx
Trace End
Average current
Trace 1 PMIC VIO18 ball
C1
0.600A
20mil
180mil
9
0.3oz
16.0m
9.6mV
Trace 2
C1
P1
0.070A
12mil
1100mil
92
0.3oz
162.6m
11.4mV
Trace 3
P1
AP AVDD18_XXX ball
0.030A
8mil
300mil
38
0.3oz
66.5m
2.0mV
Trace
Trace Start
CONFIDENTIAL B
PCB Width
PCB Length
PCB Ratio Length/Width
Copyright © MediaTek Inc. All rights reserved.
PCB PCB PCB drop Thickness Resister voltage
5/25/2020
- 86 -
Pass ≦36mV
AP VA12 AVDD12_xxx Layout Guideline Follow PMIC MMD AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VA12 C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx
Notice 1. PCB drop voltage ≦ 24mV (PMIC VA12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace
Trace Start
Trace End
AVDD12_xxx6 Cnx
Average PCB current Width
PCB Length
PCB Ratio Length/Width
PCB Thickness
PCB Resister
PCB drop voltage
Trace 1 PMIC VA12 ball
C1
0.250A
24mil
240mil
10
0.3oz
17.7m
4.4mV
Trace 2
C1
P1
0.250A
24mil
800mil
33
0.3oz
59.1m
14.8mV
Trace 3
P1
AP AVDD12_XXX ball
0.140A
12mil
200mil
17
0.3oz
29.6m
4.1mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 87 -
Pass ≦24mV
AP VRF12 AVDD12_xxx Layout Guideline Follow PMIC MMD
AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VRF12 C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx AVDD12_xxx6 Cnx
Notice 1. PCB drop voltage ≦ 24mV (PMIC VRF12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Ex ample
Cnx
AVDD12_DRF
RF
P2
Av erage
PCB
PCB
PCB Rat io
PCB
PCB
PCB drop v olt age
Trac e
Trac e St art
Trac e End
c urrent
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
Trac e 1
PMIC VRF12 ball
C1
0. 250A
24mil
240mil
10
0. 3oz
17. 7m
4. 4mV
Trac e 2
C1
P1
0. 200A
24mil
800mil
33
0. 3oz
59. 1m
11. 8mV
Trac e 3
P1
AP AVDD12_ XXX ball
0. 050A
8mil
200mil
25
0. 3oz
44. 3m
2. 2mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 88 -
Pass ≦24mV
AP VRF12 AVDD12_xxx Layout Guideline Follow PMIC MMD
AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VRF12 C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx AVDD12_xxx6 Cnx
Notice 1. PCB drop voltage ≦ 24mV (PMIC VRF12 ball to RF AVDD12_DRF ball) 2. PCB Length/Width ≦ PCB Ratio Ex ample
Cnx
AVDD12_DRF
RF
P2
Av erage
PCB
PCB
PCB Rat io
PCB
PCB
PCB drop
Widt h
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e St art
Trac e End
c urrent
Trac e 1
PMIC VRF12 ball
C1
0. 250A
24mil
240mil
10
0. 3oz
17. 7m
4. 4mV
Trac e 2
C1
P2
0. 050A
8mil
800mil
100
0. 3oz
177. 4m
8. 9mV
Trac e 3
P1
RF AVDD12_ DRF ball
0. 050A
8mil
200mil
25
0. 3oz
44. 3m
2. 2mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 89 -
Pass ≦24mV
AP AVDD12_CKBUF_UFS Layout Guideline
Follow PMIC MMD
VBBCK
AVDD12_CKBU F_UFS
Cnx
AP
C1 P1
Notice 1. PCB drop voltage ≦ 24mV (VBBCK ball to AP AVDD12_CKBUF_UFS ball) 2. PCB Length/Width ≦ PCB Ratio Example
Average PCB current Width
PCB Length
PCB Ratio Length/Width
PCB Thickness
PCB Resister
PCB drop voltage
Trace
Trace Start
Trace End
Trace 1
PMIC VBBCK
C1
0.020A
8mil
240mil
30
0.3oz
53.2m
1.1mV
Trace 2
C1
P2
0.020A
8mil
800mil
100
0.3oz
177.4m
3.5mV
Trace 3
P1
AP AVDD12_XXX ball
0.020A
8mil
200mil
25
0.3oz
44.3m
0.9mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 90 -
Pass ≦24mV
AP AVDD04_DSI Layout Guideline Follow PMIC MMD
Others …
SRAM_CORE
AVDD04_xxx
Cnx
AP AVDD04_xxx
Cnx
C1 P1
Notice 1. PCB drop voltage ≦ 15mV (SRAM_CORE ball to AVDD04_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Ex ample
Av erage
PCB
PCB
PCB Rat io
PCB
PCB
PCB drop
Lengt h
Lengt h/ Widt h
Thic k nes s
Res is t er
v olt age
Trac e
Trac e St art
Trac e End
c urrent
Widt h
Trac e 1
SRAM CORE ball
C1
0. 500A
20mil
180mil
9
0. 3oz
16. 0m
8. 0mV
Trac e 2
C1
P1
0. 040A
12mil
1000mil
83
0. 3oz
147. 8m
5. 9mV
Trac e 3
P1
AP AVDD04_ XXX ball
0. 040A
8mil
120mil
15
0. 3oz
26. 6m
1. 1mV
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 91 -
Pass ≦15mV
AP AVDD33_USB Layout Guideline Follow PMIC MMD
AP
PMIC VUSB
AVDD33_USB
Cnx C1
Notice 1. PCB drop voltage ≦ 30mV (PMIC VUSB ball to AP AVDD33_USB ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace
Trace Start
Trace 1 PMIC VUSB ball Trace 2
C1
CONFIDENTIAL B
Trace End
Average PCB current Width
PCB Length
PCB Ratio Length/Width
PCB Thickness
PCB Resister
PCB drop voltage
C1
0.050A
8mil
200mil
25
0.3oz
44.3m
2.2mV
AP AVDD33_USB ball
0.050A
8mil
2500mil
313
0.3oz
554.3m
27.7mV
Copyright © MediaTek Inc. All rights reserved.
5/25/2020
- 92 Pass ≦30mV
SPI
CONFIDENTIAL B
93
Layout Constraint of PMIC SPI ▪ All traces of PMIC SPI bus should be well-shielded by nearby ground traces in the same layer, and surrounded by ground traces in n-1 and n+1 layers, and closed to each others. ▪ All traces of SPI bus should be far away from noisy sources, such as VBUS (plug-in spike), Buck switching node..etc.
▪ The max. length of SPI bus between SOC and MT6359 should be shorter than 6 inches (consider 6 inches = 1ns).
CONFIDENTIAL B
94
RTC
CONFIDENTIAL B
95
Schematics Design Notice •
RTC32K_CK trace length must be controlled within 2000mil.
[A] [B]
[C] • • •
• •
0.1uF for VRTC is a must. [A] Recommend implementing 10~100uF for VRTC. MTK recommend implement 22uF, Smaller capacity sustains shorter time. Please do not use Gold Cap. because of the time when removed the Main battery precision: +-1.5 sec every 30 sec. [B] For battery un-replaced system design, R8201(1.5K) and C8202(22uF) can be removed for eBOM optimized. [B] RTC32K_CK such as a clock signal, needs well ground shielding. [C] Noted: Follow Ref. Vcoin=22uF if customers don’t want FG re-define initial SOC at the scenario below
Scenario: Plug in charger then press power key over 15sec. Due to sub-PMIC would disable power MOS between VBAT to VSYS and stop charging, CONFIDENTIAL B 96 VRTC would drop at Vcoin=0.1uF after VSYS decreased. fine initial SOC due to RTC disappeared
Content ▪ ▪ ▪ ▪ ▪ ▪
Feature comparison MT6359 Introduction Function Description Reference Design Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
97
Package Outline of MT6359PP
CONFIDENTIAL B
98
Ballmap of MT6359PP 202
1
2
3
4
5
6
7
8
A
NC
VRF12
VS2
VSYS_VS2
VSYS_VPA
VPA
VSYS_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC VSYS_VPROC VSYS_VPROC A 2 1 1
B
VRF12_S
VA12
VS2
GND_VS2
GND_VPA
VPA
GND_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC 2
C
VCN13
VS2_LDO2
VA09
VSYS_SMPS
VS2_FB
GND_SMPS
VPA_FB
GND_VPU_F B
D
VSRAM_MD VS2_LDO1
E
AU_V18N
F
FLYN
G
FLYP
VSRAM_PRO VSRAM_othe EXT_PMIC_P EXT_PMIC_E EXT_PMIC_E C1 rs G N2 N1
VSRAM_PRO C2
AVSS18_AUD
RESETB
GND
GND
9
VPU_FB
PWRKEY
10
11
CHRDETB
PMU_TESTM ODE
SPI_CLK
GND
GND
GND
LDO
E
XXX
AUDIO
VSYS_VGPU1 VSYS_VGPU1 F 2 2
XXX
DCXO
SRCLKEN_IN VSYS_VGPU1 VSYS_VGPU1 VGPU11_FB G 1 1 1
XXX
STRUP/PCHR_VREF
H
XXX
AUXADC/ FGADC
RTC32K_1V8 GND_VGPU1 GND_VGPU1 GND_VGPU1 WDTRSTB_IN J _1 1_FB 1 1
XXX
Digital IO
SPI_CSN
GND
SPI_MOSI
AU_HPR
AU_REFN
AUD_NLE_M AUD_DAT_M OSI1 ISO1
GND
GND
GND
FSOURCE
AU_HPL
AUD_DAT_M AUD_CLK_M ISO0 OSI
AU_HSP
AUD_DAT_M AUD_DAT_M OSI0 ISO2
DVSS18_IO
K
AVDD18_CO DEC
HP_EINT
ACCDET
AUD_DAT_M AUD_DAT_M OSI1 OSI2
DVDD18_DIG DVDD18_IO
L
AU_VIN0_P AU_VIN0_N AU_VIN3_N AU_VIN3_P
M
AU_VIN1_P AU_VIN2_P
AU_MICBIAS AU_MICBIAS 1 2
BATADC_P
CS_P
AUXADC_VIN 1
XO_WCN
AVSS_XO_IS AU_VIN1_N AU_VIN2_N AVSS_RFCK AVSS_BBCK O
SPI_MISO
VGPU12
VPROC1_FB
RTC32K_1V8 SRCLKEN_IN _0 0
AVSS18_AUX ADC
VAUX18
VFE28
SCP_VREQ_V AO
VGPU11
VGPU12
VGPU11
GND_VCORE GND_VCORE GND_VCORE K _FB
CS_N
GND_VREF
VREF
VRTC28
VIBR
VSYSSNS
BATON
UVLO_VTH
VIO28
VCAMIO
VAUD18
VEFUSE
VM18
VS1_LDO1
VS1_LDO2
VCORE
VCORE
VS1
VS1
N
VS1_FB
GND_VS1
VSYS_VS1
P
R
XTAL1
AVSS_XO
VRFCK_1
XO_CEL
VBBCK
XO_EXT
VUSB
VSIM1
R
AVSS_XO
XTAL2
VXO22
VRFCK
XO_SOC
XO_NFC
VBIF28
VSIM2
VEMC
VCN33_1
VCN33_2
VUFS
VCN18
VRF18
VIO18
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CONFIDENTIAL B
L
VCORE_FB VSYS_VCORE VSYS_VCORE M
P
VSYS_LDO2 VSYS_LDO1
B
XXX
GND
AU_HSN
VPROC1
GND_VPROC GND_VGPU1 GND_VGPU1 D 1_FB 2 2
VPROC2_FB
HOMEKEY
GND
AVDD30_AU AVSS30_AUD D
VPROC1
16
BUCK
AUD_NLE_M AUD_SYNC_ OSI0 MOSI
J
15
XXX
AU_LOLN
AVDD18_AU D
14
GND_VPROC GND_VPROC C 1 1
AU_LOLP
AU_MICBIAS 0
13
GND_VMODE GND_VPROC VMODEM_FB M_FB 2_FB
H
N
12
99
Layout: MT6359PP Power Input (1/2) VSYS Input
Routing from 22uF VSYS capacitor uses start topology to connect to each device. 1. Input for BUCK. (Fig. 2) 2. Input for LDO. (Fig. 2)
All the decoupling capacitors should be placed near MT6359. The priority is buck capacitor then decoupling capacitor of LDO. (Fig.1)
Fig. 2
Fig. 1
CONFIDENTIAL B
100
Layout: MT6359PP Power Input (2/2) Layout method of MT6359PP power Input for Buck GND
Fig.1
-
Buck GND balls are connected to buck capacitors close to pin with plane or trace (Trace Width > 8mil * N (ball number) + M (ball pitch)). (Fig.1~2)
-
Buck GND balls should be connected to buck capacitors first and isolated from the nearby GND trace and plane then connected to main GND at L3 (Fig.1~2).
Fig.2
MT6359
CONFIDENTIAL B
BUCK GND is isolated from nearby GND trace and plane.
101
Layout: MT6359PP Buck Output (1/2) Fig.2
The buck inductors should be placed near MT6359PP. (Fig.1)
Fig.1
MT6359
CONFIDENTIAL B
102
Layout: MT6359PP Buck Output (2/2)
Those signals are differential pairs and should be shielded by GND and far away from noise signals (Fig.1 ~ Fig.2). 1. VPROC1_FB/GND_VPROC1_FB 2. VPROC2_FB/GND_VPROC2_FB 3. VCORE_FB/GND_VCORE_FB 4. VPU_FB/GND_VPU_FB Fig. 1 5. VGPU11_FB/GND_VGPU11_FB 6. VMODEM_FB/GND_VMODEM_FB 7. VS1_FB, VS2_FB, VPA_FB
Fig. 2
CONFIDENTIAL B
103
Layout: MT6359 Buck Output ▪
Layout guideline for MES simulation.
MT6359
Application
Resistance (PMIC to SoC power ball)
VSRAM_PROC1
DVDD_SRAM_PROC_B
≤ 100 mΩ
VSRAM_PROC2
DVDD_SRAM_PROC_L
≤ 100 mΩ
VSRAM_OTHERS
DVDD_SRAM_GPU
≤ 90 mΩ
VSRAM_MD
DVDD_SRAM_APU
≤ 90 mΩ
VPROC1
DVDD_APU
≤ 23 mΩ
VPROC2
DVDD_DLA
≤ 27 mΩ
VGPU11/VGPU12
DVDD_CORE
≤ 7.5 mΩ
EXT_PWR for VDD1
VDD1_EMI
≤ 11 mΩ
CONFIDENTIAL B
104
Layout: MT6359PP LDO Output (1/2)
See table. for the suggested LDO output layout.
1. Trace width≧6mil 2. Value and placement of capacitor please refer design notice Ball name VFE28 VAUX18 VBIF28 VCN33_1 VCN33_2 VIO28 VEMC VSIM1 VSIM2 VIBR VUSB VEFUSE VAUD18 VCAMIO VM18 VUFS VCN18 VRF18 VIO18 VCN13 VRF12 VA12 VA09
Imax 200mA 50mA 50mA 800mA 800mA 200mA 800mA 200mA 200mA 200mA 200mA 300mA 300mA 300mA 300mA 1200mA 1200mA 450mA 600mA 350mA 800mA 300mA 300mA
CONFIDENTIAL B
Trace Length 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1000mil 1500mil 1500mil 900mil 1200mil 1500mil 1200mil 1500mil 1500mil 1500mil 1200mil 1200mil
Trace Width 6mil 6mil 6mil 25mil 25mil 10mil 25mil 10mil 10mil 6mil 8mil 12mil 12mil 6mil 25mil 25mil 8mil 20mil 20mil 25mil 25mil 20mil 20mil
Rpcb H=50um, 1/3 oz 400mΩ 400mΩ 400mΩ 100mΩ 100mΩ 240mΩ 100mΩ 240mΩ 240mΩ 400mΩ 300mΩ 135mΩ 200mΩ 400mΩ 60mΩ 80mΩ 300mΩ 100mΩ 120mΩ 100mΩ 100mΩ 100mΩ 100mΩ
Core power/DRAM power/AVDDxx power:
VRF18/VRF12/VRF12_S: •
Traces should be in inner layer or under shielding case.
VRF12_S:
Follow MMD/MES
VRF12_S should connect to VRF12 application
Trace width/length can adjust by application Imax
If trace is series 0Ω resister, 0Ω resister is having 0~50mΩ variation. It would be drop voltage.
105
Layout: MT6359PP LDO Output (2/2)
VREF capacitor should be placed near L12/L11 pin.
DVDD18_DIG capacitor should be placed near K10 pin.
MT6359PP
CONFIDENTIAL B
106
Layout: Others for MT6359 Gauge
CS_P/CS_N (ball: L9/L10) should be routed as differential pairs and far away from noise signals.
MT6359PP DCXO_32K
CS_P CS_N
CONFIDENTIAL B
107
MT6359 Audio PCB Layout Guide
MT6359 Audio PCB Layout Guide Please refer “ MT6883 Design Notice “
CONFIDENTIAL B
108
MT6359 AuxADC/DCXO PCB Layout Guide
MT6359 AUXADC /DCXO PCB Layout Guide Please refer “ MT6883 Design Notice “
CONFIDENTIAL B
109
Chip Placement Recommendation Following PCB layout are recommended by MTK for WLCSP 1. Opposite shield frame could not overlap package outline. 2. The opposite chip (especially large chip, ex. AP & eMCP) could not overlap package outline. 3. Underfill is suggested to adopt - Recommended property: CTE-1 < 30 ppm/˚C, Tg > 125 ˚C.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2020/5/25
110
How to Connect for Un-usd Pin Unused Part
Pin Name
Pin Connection if not used
Description
Interface
EXT_PMIC_ENx Ext chip enable pin HOMEKEY button with default long press function HOMEKEY HOMEKEY button without default long press function
Floating Short to GND Floating
General
BATON
Battery NTC pin for battery and its temperature sensing
1. Short to GND while RU=NC 2. Pull-Low 10KΩ to GND while RU exist
BATADC CS_N CS_P XO_NFC XO_EXT
Fuel gauge ADC input pin for monitoring battery voltage Fuel gauge ADC input pin Fuel gauge ADC input pin 26MHz output to NFC 26MHz output to UFS or others
VBAT GND GND Floating Floating
Gauge DCXO
CONFIDENTIAL B
111
UFS2.1 / UFS3.0 Power configuration UFS long term power plan required 2.5V/3.0V 1. PMIC VEMC LDO add 2.5V/3.0V HW trapping for UFS2.0/UFS3.0 2. UFS3.0 needs 1.2V requirement should find ext. Buck/LDO and needs VIO18 enable for satisfied UFS sequence 3. UFS sequence: a. Power on sequence: 1.8V(VUFS18) 1.2V(Ext.) 3.0V(VEMC) b. Power off sequence: 3.0V(VEMC) 1.2V (Ext.) 1.8V(VUFS18)
CONFIDENTIAL B
112
Chip Placement Recommendation Following PCB layout are recommended by MTK for WLCSP (MT6359 / MT6360/MT6315) 1. Opposite shield frame could not overlap package balls 2. The opposite chip (especially large chip, ex. AP & eMCP) could not overlap package balls 3. If underfill was adopted, the properties were recommended : - CTE-1 < 30 ppm/˚C, Tg > 125 ˚C
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2020/5/25
113
MT6359 PMIC Part Number Notice
Platform P/N
MT6799 MT6359P
MT6785 MT6359KP
MT6883 MT6359VPP
PMIC P/N
CONFIDENTIAL B
114
Copyright © MediaTek Inc. All rights reserved.