414 68 4MB
English Pages 111 Year 2020
CONFIDENTIAL B
MT6359 Design Notice (for MT6853)
V0.2 2020/05/20
History Revision V0.1
V0.2
Date 2020/04/10 Initial
Description
1. Page 45 update “Buck Converter Output Decoupling #2” 2. Page 80 update “AP Analog Power List” 2020/05/20 3. Page 94, 95 delete “How to set 32K driving” 4. Page 92, 93 update “RTC”
CONFIDENTIAL B
Content ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
MT6359 – General Description ▪
The MT6359 highly integrated function fulfill all power requirement in smart phone system •
Buck Converters MT6359 x 10 (VCORE, VGPU, VRF09, VS1, VS2, VPROC_L, VPROC_B(x2), DIGRF, VPA)
•
LDOs ▪ Analog LDO ▪ Digital LDO ▪ RTC
•
*6 * 25 *1
Audio ▪ Audio Codec ▪ Audio Line Out
• • • •
RTC Macro Fuel Gauge XO Control and Output Ext. LDO ▪ RT9078 (RFIO18)
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
3
MT6359 + MT6360+MT6315 Power Plan MT6359VNP/NP
AC Adaptor or USB VBUS
MT6359
MT6360UP / A
MT6315NP/B
MT6360
MT6315
MT6360 VSYS
Charger
Current Sinks
VPA
R/G/B LEDs
1A 0.5V ~ 3.4V
VPROC1
LDO
ON
4.8A 0.4V ~ 1.19V
BATFET
USB Type-C
OFF
VBAT
TypeC/PD
VPROC2 4.8A 0.4V ~ 1.19V
VPU Battery Pack
Camera Flash Current Driver
2.4A 0.4V ~ 1.19V
VMODEM 4.8A 0.5V ~ 1.10V
VCORE
ON
CPU-L 1.8V, 300mA
ON
RF_DIG
VCAMIO
OFF
1.8V, 300mA
OFF
RF RF09
VCN18 VRF18
ON
CORE
OFF
1.8V, 1200mA
OFF
1.8V, 450mA
VIO18
ON
1.8V, 600mA
ON
CPU-B
VEFUSE
OFF
1.8V, 300mA
VUFS
VS1
ON
ON
VM18
ON
1.8V, 300mA
VRFCK
Peripherals
2A
RTC
VCN33_1
VCN33_2 :2.8
VCN13
ON
Audio UL
3V, 200mA
LDO3 LDO5
Camera IO
3V, 800mA
MT6631 (WCN)
3V, 800mA
RF
2.8V, 200mA
VEMC VIBR VSIM1 IO, AVDD
1.86V, 200mA
eFuse
1.86V, 200mA
UFS/MMC
1.8V, 150mA
LPDDR4x
1.8V, 200mA
VSIM2 LDO1
LDO2
RF RFIO_18
OFF
VBIF28 MT6631 (WCN)
2.8V, 800mA
2.8V, 200mA
RF Clock Buffer
OFF
3.3V, 800mA
Audio DL
ON
1.8V, 300mA
Camera Power Display Power VS2
PMIC DIG
ON
1.24V, 10mA
RT9078
System Power
ON
1.86V, 1200mA 2A 2.0V
WCN Power
ON
2.8V, 2mA
VAUD18
9.6A
RF Power
ON
1.8V, 10mA
VRTC
GPU
0.4V ~ 1.19V
Memory/ storage
DVDD18_DIG
VIO28
4.8A 0.4V ~ 1.3V
VGPU11 //VGPU12
3G/LTE PA
OFF
2.8V, 50mA
VFE28
OFF
2.8V, 200mA
OFF
IO & Sensor
OFF
MSDC1 (SD Car d)
OFF
SD CARD
ON OFF
OFF OFF OFF OFF
VUSB
ON
3.07V, 200mA
VAUX18
ON
1.84V, 50mA
VXO22
ON
2.24V, 50mA
Battery temp. sensor
RFFE USB 2.0 Audio AUXADC DCXO
eMMC Vibrator VCAMAF_EXT
OFF
Camera AF
SIM1 SIM2
VCAMA EXT1/2/3
Finger Print
LCD BL Driver
Touch Panel
OFF
Camera AVDD
OFF LCM
LCD +/- Bias
VCAMD EXT1/2/3
OFF
OFF
Camera DVDD
OFF
1.3V, 350mA
1.35V
External Power
VRF12
ON
1.2V, 800mA
RF ABB
VA12
MT6315NP/B VBUCK4
1.2V, 300mA
ON SRAM_MD
5A
VBUCK2 //VBUCK1
ON
10A
BUCK3
ON
MODEM (MD+NR)
VSRAM_PROC1 0.5V~1.29V 600mA
VSRAM_PROC2
ON
ON
0.5V~1.29V 600mA
VSRAM_OTHERS
5A
ON
ON
0.5V~1.29V 600mA
APU
VSRAM_MD
ON
0.5V~1.29V 600mA
VA09
ON
0.85V, 300mA
VBBCK
ON
1.2V, 10mA
LDO6
ON
0.75V, 300mA
CONFIDENTIAL B
VBUCK1 3A / 1.125V
ON
VBUCK2
OFF
LDO7 0.6V, 600mA
RF
ABB CPU-B SRAM
CPU-L SRAM
OTHER SRAM
GPU SRAM
RFDIG SRAM
BB Clock Buffer DDRPHY VMDDR
ON
LPDDR4x
4
MT6359 Buck Power Plan Circuit Type
Buck
Buck Name (Application name) VPROC1 (DVDD_GPU) VPROC2 (DVDD_PROC_L) VGPU11+12 (DVDD_PROC_B) VCORE (DVDD_CORE) VMODEM (VRF09_PMU) VPU (VDIGRF_PMU) VS1 (VS1_PMU) VS2 (VS2_PMU) VPA (VPA_PMU)
CONFIDENTIAL B
Output Voltage Range (V) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.19 (6.25mV/step) 0.40 ~ 1.3 (6.25mV/step) 0.50 ~ 1.10 (6.25mV/step) 0.40 ~ 1.19 (12.5mV/step) 1.86 ~ 2.20 (12.5mV/step) 1.20 ~ 1.50 (12.5mV/step) 0.50 ~ 3.40 (50mV/step)
Boot Default (V)
IOUT-MAX (mA)
ON (0.75)
4800
ON (0.75)
4800
ON (0.75)
4800 *2
ON (0.75)
4800
OFF
4800
ON (0.7)
2400
ON (2.0)
2200
ON (1.35)
2500
OFF
1000
Copyright © MediaTek Inc. All rights reserved.
5
MT6359 LDO Power Plan (1/4) Circuit Type
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VFE28
2.80
OFF (2.8)
200
RFFE
VUSB
3.07
ON (3.07)
200
USB
VAUX18
1.84
ON (1.84)
50
AUXADC
VXO22
2.24
ON (2.24)
25
DCXO
VBIF28
2.80
OFF (2.8)
50
Battery Interface
VRTC
VRTC
2.80
ON (2.8)
2
RTC
VDIG
DVDD18_DIG
1.80
ON (1.8)
10
PMIC Digital
ALDO
CONFIDENTIAL B
MT6359 LDO Power Plan (2/4) Circuit Type
LDO Name VSIM1 VSIM2
DLDO
Output Voltage (V)
1.7/1.8/1.86/ 2.76/3.0/3.1 1.7/1.8/1.86/ 2.76/3.0/3.1
Boot Default (V)
IOUT-MAX (mA)
Expected use
OFF (1.86)
200
SIM
OFF (1.86)
200
SIM
VCN33_1
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VCN33_2
3.3/3.4/3.5/3.6
OFF (3.3)
800
Connectivity
VEMC
2.55/2.9/3.0/3.3
ON (3.0)
800
eMMC / UFS
VIO28
2.8/2.9/3.0/ 3.1/3.2/3.3
OFF (2.8)
200
IO & Sensor
VIBR
2.7/2.8/3/3.3
OFF (2.8)
200
Vibrator
CONFIDENTIAL B
MT6359 LDO Power Plan (3/4) Circuit Type
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VEFUSE
1.80
OFF (1.8)
300
EFUSE
VAUD18
1.80
ON (1.8)
300
Audio
VCAMIO
1.80
OFF (1.8)
300
Camera IO
VM18
1.80
ON (1.8)
300
DRAM
VRF18
1.80
OFF (1.8)
450
RF
VIO18
1.80
ON (1.8)
600
IO & Sensor
VCN18
1.80
OFF (1.8)
1200
Connectivity
VUFS
1.86
ON (1.86)
1200
eMMC / UFS
VRFCK
1.40 @ boot 1.60 @ work
ON (1.4)
10
DCXO
VBBCK
1.24
ON (1.24)
10
DCXO
SLDO1
DCXO LDO
CONFIDENTIAL B
MT6359 LDO Power Plan (4/4) Circuit Type
LDO Name
Output Voltage (V)
Boot Default (V)
IOUT-MAX (mA)
Expected use
VA09
0.85
ON (0.85)
300
DIGRF SRAM (VRF0P85_MEM_PMU)
VA12
1.2
ON (1.2)
300
AP Analog Module
VCN13
1.3
OFF (1.3)
350
Connectivity
ON (0.85)
600
CPUB SRAM
ON (0.85)
600
CPUL SRAM
ON (0.75)
600
OTHERS SRAM
ON (0.85)
600
GPU SRAM
ON (1.2)
800
AP Analog Module
VSRAM_PROC1 SLDO2 VSRAM_PROC2 VSRAM_OTHERS VSRAM_MD VRF12
CONFIDENTIAL B
0.60 ~ 1.2 (6.25mV/step) 0.60 ~ 1.2 (6.25mV/step) 0.60 ~ 1.2 (6.25mV/step) 0.60 ~ 1.2 (6.25mV/step) 1.2
Feature List Function
MT6356
MT6358
MT6359
Buck Converter
6
9
10
LDO
31
28
31
Driver
ERM Vibrator *1
ERM Vibrator *1
ERM Vibrator *1
Audio
Audio Codec
Audio Codec
Audio Codec
Others
RTC macro
RTC macro SD_DET
RTC macro
Charger
Fuel Gauge
Fuel Gauge
Fuel Gauge
CONFIDENTIAL B
Content ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
Power ON/OFF Sequence
by Pressing PWRKEY or Charger Plug In/Out VSYS
VSYS
DDLO
DDLO
UVLO
UVLO
delay time = 33ms
delay time = 141ms
CHRDETB
CHRDETB delay time = 42ms
delay time = 35ms
PWRKEY PWRHOLD (SW RG)
PWRKEY PWRHOLD (SW RG)
10mA •
VAUX18 continuous power on to accumulate system power consumption.
GM3.0 is disabled, VAUX18 follow normal power-off sequence. RESETB
VAUX18
Note: all the timing spec variation : ±20%
500ms
If IBAT>10mA
If IBAT 150 ℃ PMU HW shutdown
CONFIDENTIAL B
DCAP
Safety Protection when High Temperature ▪ Disable charger in auto power on (DCAP) condition when high temperature • Enable flow ▪ Set DCAP enable by SW when charger in and BAT temp > HT shutdown level (default 60⁰C)
• Release flow ▪ DCAP disable is auto reset when charger plug out
※ DCAP enable flow need follow programming guide setting CONFIDENTIAL B
SPAR Flow Chart PMIC exception: 1.no power on source 2.UVLO 3.BUCK OC 4.Power not good 5.Thermal shutdown 6.WDTRSTB 7.Long Press shutdown
PMIC exception occurs PMIC RSTB=0
PMIC Off state
Power on condition
SW bring up => PWRHOLD =1 => Clear SPAR power on condition
PMIC exception occurs PMIC RSTB=0
No Check SPAR function
Yes PMIC exception occurs PMIC RSTB=0
NO
CONFIDENTIAL B
PMIC exception is UVLO && VBAT drop time < 0.1s/0.6s/1.6s/always on VBAT drop time = VBAT < UVLO_off to VBAT > UVLO_on
YES
SPAR power on source set to High, keep all SPAR related RG setting
SPAR ▪ Feature support condition • VRTC output need coin cell or keep-alive capacitor
▪ Enabled by software • Three time settings can be selected ▪ ▪ ▪ ▪
100ms, VRTC output need coin cell or >2.2uF capacitor 0.6s, VRTC output need coin cell or >4.7uF capacitor 1.6s , VRTC output need coin cell or >22uF capacitor Min SPAR trigger condition: “duration of (VSYS 1ms VBAT
0.1/0.6/1.6sec
VRTC UVLO PWRKEY PWRHOLD
SPAR de-bounce
PWRON
RESETB CONFIDENTIAL B
FSOURCE, PMU_TESTMODE ▪
FSOURCE, PMU_TESTMODE • These pins should be connected to ground for normal operation.
PMIC PMU_TESTMODE
FSOURCE
CONFIDENTIAL B
Power Domain for I/O MT6359 Pin Name PWRKEY HOMEKEY RESETB CHRDETB EXT_PMIC_EN1 EXT_PMIC_EN2 EXT_PMIC_PG WDTRSTB_IN SRCLKEN_IN0 SRCLKEN_IN1 SPI_CSN SPI_CLK SPI_MOSI SPI_MISO
CONFIDENTIAL B
Power Source Ball Name DVDD18_DIG DVDD18_IO VIO18 VSYS_SMPS VSYS_SMPS VSYS_SMPS VSYS_SMPS DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC) DVDD18_IORT (SoC)
Power Source Domain DVDD18_DIG VIO18 VIO18 VSYS VSYS VSYS VSYS VIO18 VIO18 VIO18 VIO18 VIO18 VIO18 VIO18
Power Source Voltage 1.8V 1.8V 1.8V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 3.1V ~ 5.0V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V
Content ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
BAT_ON
CONFIDENTIAL B
Block Diagram for Smart Battery 3-PIN Smart Battery Smart battery
VBAT
VBATXXX
SPI
▪
BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
KEY FEATURES • MIPI BIF Smart Battery • HW Battery Pack Presence / Removal Detection
CONFIDENTIAL B
CPU
HW Battery Presence Detection ▪ Battery presence is detected by sensing the existence of RNTC or RID resistor inside the battery pack. ▪ Dedicated comparator is used for Battery Pack Presence/ Removal Detection. • Battery pack is considered not present if BAT_ON is above 0.964*VBIF. • Interrupts are generated when detecting battery insertion or removal • Charging shall be stopped upon battery removal Parameter
Min
Typ
Max
Units
Presence Detection comparator threshold
(0.964*VBIF)-20mV
0.964*VBIF
(0.964*VBIF)+20mV
V
CONFIDENTIAL B
BATON: Schematics & Layout Notice Smart battery
VBAT
VBATXXX
SPI BAT Presence Detection
BIF
BATON
MIPI BIF Module
RNTC
Secondary Slave
BIF
Secondary Slave
C3
BCL
CPU
R4
Secondary Slave
BIF
Battery cell
BIF
VBIF28
Primary Slave
AP
PMIC
SRCLKEN_IN
GND
C3: VBIF bypass cap (1uF)
R4: pull high resistor
VBIF need bypass cap 1uF BATON trace total capacitance : • should be smaller than 50pF with Smart battery • should be smaller than 500pF with Low cost battery CONFIDENTIAL B
RNTC: Thermistor (IN pack side)
R4/RNTC Selection Guide • Should Limit selection of R4 // RNTC < 40KΩ for getting more stable voltage after ADC settled • BATON noted that VOH should over 1.1V once using BIF battery
Voltage of BATON pin should follow BIF Spec.
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.
2020/5/25
32
Note 1: Recommended Location of NTC in Battery Pack ▪ Recommended location of NTC in battery pack • Move NTC thermistor away from P+ and P• Mount NTC thermistor to the side of PCB toward the cell 10K 1% NTC
P-
CONFIDENTIAL B
P+
33
Note 2: Confirm to Meet the above Specifications ▪ Violation of the above specifications will result in measurement error of battery’s temperature.
Battery will be under dangerous environment.
CONFIDENTIAL B
34
Content ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
Fuel Gauge
CONFIDENTIAL B
Fuel Gauge: Schematics & Layout Notice ▪
1 : Sense resistor Rfg should be ±1% ,0.5W↑(depend on system max power consumption 7A-> 0.5W, 10A -> 1W) package in series with battery negative terminal to ground
▪ ▪
2:Rfg should be placed near battery connector in PCB layout. 3:FGP_IC/FGN_IC should be 4mil differential traces from chip CS_N/CS_P to Rfg
MT6359
CONFIDENTIAL B
FGN_IC, FGP_IC: Layout Example 4mil 4mil
FGP is connected to system GND. It needs adequate amount of VIAs to system GND in order to withstand system current consumption.
FGP
FGN
FGN is connected to BATTERY GND. It needs adequate trace width to BATTERY GND In order to withstand the system current consumption
Rfg Please note that sense traces should be connected to the middle of the pads and the layout should be symmetry between FGN and FGP(Kelvin Connection).
Rfg
FGP_IC CONFIDENTIAL B
FGN_IC
GM3.0 Board Offset Calibration Test Point (Option)
TP1 & TP2 for system power supply ——The test point should on the main trace ,as it is used for power input point
TP2 & TP3 for GM3.0 calibration ——The test point should on the main trace ,or the width of trace to test point should not less than 40 mil as the current would be 1000mA ——The test point DO NOT draw from the trace of CS_N &CS_P
TP3 Rfg TP2
TP1 TP2
TP3
TP2
Rfg For GM3.0 For Power Supply CONFIDENTIAL B
The TP3 is on the trace between CS_N Pad to Battery GND
Layout Example ▪ TP should be placed on main power trace, not on current sensing trace. Current Sensing Resistor
Current Sensing Trace (X) CONFIDENTIAL B
Main Power Trace (O)
DC-DC
CONFIDENTIAL B
Buck: Schematic/Layout Notice
Input Decoupling Placement and Schematic Guide ▪
Please place CIN as close to PMIC as possible and put in shield case.
▪
GND_VBUCKs x balls(as highlight in following fig.) must connect to related input cap first, and then connect to main GND plane.
CONFIDENTIAL B
Buck: Schematic/Layout Notice
Output Decoupling Placement and Schematic Guide ▪
Place power inductors as closer to PMIC balls as possible and put in shield case.
▪
VBUCK_FB & GND_VBUCK_FB layout should follow PCB layout constraint.
CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #1 BUCK
Application
Inductor
Total COUT Range
VS1
VS1
1uH/2016
(22uF*2) ~ (47uF+10uF)
VS2
VS2
1uH/2016
(22uF*2) ~ (47uF+10uF)
VPA
VPA
1uH/2016
1uF + 14uF
VMODEM
VRF09
1uH/2016
(22uF) ~ (22uF+10uF)
VPROC1
VGPU
0.24uH/2016
(22uF*4) ~ (22uF*4 + 10uF*2)
VPROC2
VPROC_L
0.24uH/2016
(22uF*3) ~ (22uF*3 + 10uF*2)
VCORE
VCORE
0.24uH/2016
(22uF*4+10uF) ~ (22uF*4 + 10uF*2)
VGPU11
VGPU12 VPU
VPROC_B VDIGRF
0.24uH/2016
0.24uH/2016 1uH/2016
(22uF*4) ~ (22uF*4 + 10uF*3) (22uF) ~ (22uF+10uF)
Note1: for VPA out cap distribution, please refer “VPA Output Capacitance Notice”
CONFIDENTIAL B
Schematic/Layout Notice
Buck Converter Output Decoupling #2 Buck
Application
PMIC COUT (typical value)
PDN Cap (typical value)
Total COUT Value (after derating)
VS1
VS1
22uF/0603/6.3V/X5R *2
x
≥ 20.6uF
#2
VS2
VS2
22uF/0603/6.3V/X5R *2
x
≥ 20.6uF
#3
VMODEM
VRF09
22uF/0603/6.3V/X5R *1
Reference Design SCH.
≥ 10.3uF
#1
VPROC1
VGPU
22uF/0603/6.3V/X5R *4
Reference Design SCH.
≥ 41.2uF #1
VPROC2
VPROC_L
22uF/0603/6.3V/X5R *3
Reference Design SCH.
≥ 30.9uF #1
VCORE
VCORE
22uF/0603/6.3V/X5R *4
Reference Design SCH.
≥ 46.5uF
#1
VGPU
VPROC_B
22uF/0603/6.3V/X5R *3
Reference Design SCH.
≥ 41.2uF
#1
VPU
VDIGRF
22uF/0603/6.3V/X5R *1
Reference Design SCH.
≥ 10.3uF
#1
Note #1: Total COUT Value @ 1V derating for AC 0.01Vrms and overall operating temperature. Note #2: Total COUT Value @ 2V for AC 0.01Vrms and overall operating temperature. Note #3: Total COUT Value @ 1.35V derating for AC 0.01Vrms and overall operating temperature.
CONFIDENTIAL B
Schematic/Layout Notice Buck Converter Input Decoupling #1
MT6359’s BUCK VPA VS2 VMODEM VPU VPROC1 VPROC2 VGPU11 VGPU12 VCORE VS1
CIN2 (typical value) -
10uF/0402/6.3V/X5R *2pcs #1 #4
CIN1 (typical value) 10uF/0402/6.3V/X5R #1 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3 2.2uF/6.3V/X5R #2 #3
Note #1: Total CIN2 (10uF/0402) Value ≥ 1.6uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #2: CIN1 (2.2uF) can be 0402 size or 0201 size. Note #3: Total CIN1 (2.2uF) Value ≥ 0.36uF @ 5V derating for AC 0.01Vrms and overall operating temperature. Note #4: CIN2 should be closed to MT6359 VSYS_XX pin and follow layout spec. in page 51.
CONFIDENTIAL B
Schematic/Layout Notice Buck Converter Input Decoupling #2
BUCK VPA
Input Capacitor Typical Vale 10uF/0402/6.3V/X5R
Total CIN Value (after derating) ≥ 1.7uF #1
VS2
4.7uF/0402/6.3V/X5R
≥ 0.84uF #1
VMODEM
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPU
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPROC1
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VPROC2
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VGPU11
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VGPU12
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VCORE
10uF/0402/6.3V/X5R
≥ 1.7uF #1
VS1
4.7uF/0402/6.3V/X5R
≥ 0.84uF #1
Note #1: Total CIN Value @ 5V derating for AC 0.01Vrms and overall operating temperature. L_PWR1
VSYS
PMIC VSYS_BUCK
CIN 1
GND_BUCK L_GND1
CONFIDENTIAL B
Schematic/Layout Notice Buck Input Cap. Layout Spec. #1
▪ MMD spec The spec. of trace parasitic inductance from buck input cap Input Trace to PMIC Ball MT6359 Spec. for Inductance BUCK (from C to IC ball) ▪ (L_PWR1 + L_GND1) < Spec VSYS_VS1 IN1
VS1
L_PWR1
VSYS
PMIC
GND_BUCK L_GND1
CONFIDENTIAL B
(L_PWR1 + L_GND1) ≤ 2nH
VS2
VSYS_VS2 GND_VS2
(L_PWR1 + L_GND1) ≤ 2nH
VPA
VSYS_VPA GND_VPA
(L_PWR1 + L_GND1) ≤ 1.5nH
VMODEM
VSYS_VMODEM GND_VMODEM
(L_PWR1 + L_GND1) ≤ 1nH
VPROC1
VSYS_VPROC1 GND_VPROC1
(L_PWR1 + L_GND1) ≤ 1nH
VPROC2
VSYS_VPROC2 GND_VPROC2
(L_PWR1 + L_GND1) ≤ 1nH
VCORE
VSYS_VCORE GND_VCORE
(L_PWR1 + L_GND1) ≤ 1nH
VGPU11
VSYS_VGPU11 GND_VGPU11
(L_PWR1 + L_GND1) ≤ 1nH
VGPU12
VSYS_VGPU12 GND_VGPU12
(L_PWR1 + L_GND1) ≤ 1nH
VPU
VSYS_VPU GND_VPU
(L_PWR1 + L_GND1) ≤ 2nH
VSYS_BUCK CIN 1
GND_VS1
Schematic/Layout Notice Buck Input Cap. Layout Spec. #2
▪ MMD spec the spec of trace parasitic inductance from CIN2 to CIN1 ▪ (L_PWR2 + L_GND2) < Spec
VSYS
L_PWR2
L_PWR1
PMIC VSYS_BUCK1
CIN 1
GND_BUCK1 L_GND2
L_GND1
CIN 2
L_PWR2
L_PWR1
VSYS_BUCKn CIN 1
GND_BUCKn L_GND2
L_GND1
CONFIDENTIAL B
MT6359 Buck Name
Input Trace (from CIN2 to CIN1)
Spec. for Inductance
VS1 VS2 VPU VPROC2
CIN2 to CIN1
(L_PWR2 + L_GND2) ≤ 1.7nH
VGPU11 VGPU12 VMODEM VCORE VPROC1
CIN2 to CIN1
(L_PWR2 + L_GND2) ≤ 1.4nH
Schematic/Layout Notice Buck Input Cap. Layout Spec. #3
▪ MMD spec the spec of trace parasitic inductance from CIN3 to CIN2 ▪ (L_PWR3 + L_GND3) < Spec VSYS
Sub-PMIC
L_PWR3
PMIC
L_PWR2
L_PWR1
VSYS
VSYS_BUCKx CIN 3
CIN 2
CIN 1
GND
GND_BUCKx L_GND3
CONFIDENTIAL B
L_GND2
L_GND1
Input Trace (from CIN3 to CIN2)
Spec. for Inductance
CIN3 to CIN2
(L_PWR3 + L_GND3) ≤ 2.5nH
Schematic/Layout Notice Layout Guide (1/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Buck input cap detail layout rule, please refer to next page. CONFIDENTIAL B
Schematic/Layout Notice Layout Guide (2/2)
▪
Inductance need to follow application notice that has components selection guide.
▪
Placement, layout and schematic need to follow checklist.
Example 1 PMIC Buck GND ball
Example 2
Input Cap GND pad
PMIC Buck GND ball
Layer-1
Input Cap GND pad
Layer-1 GND return path
Layer-2
Layer-2 Solution 2
Solution 1
GND return path
Layer-3
Layer-3
Layer-5
Layer-5
Main-GND Layer
Main-GND Layer
CONFIDENTIAL B
Solution 2
Solution 1
Schematic/Layout Notice
Controller power trace layout constraint Bat. connector
Buck Input
GND
BAT_BUS
22uF
4mil
Buck controller power trace(VSYS_SMPS) must be use single trace connect to battery VBAT_BUS directly, and can’t merge with others. VSYS add 1Ω+/-5% Resistor to VSYS_SMPS CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 1/5: Remote Sense Application ▪
DC/DC remote sense feedback traces are recommended using GND shielding to avoid noise coupled.
CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 2/5: Remote Sense Application ▪
DC/DC remote sense feedback & feedback_GND traces are recommended using GND shielding and differential pair to avoid noise coupled.
CONFIDENTIAL B
Schematic/Layout Notice
Layout Guide 3/5: Remote Sense Application Cout1
Rc1
L1
L4
Remote pt.1
Cout2
R_remote spec (Follow MMD SPEC)
Lout
Rc2
PMIC L3
SOC
L2 Cout3
Rc3 1. 2.
Find path with lowest inductance, the remote point can be located within Coutlowest L + 1n. For example, in case of Cout1 is path with lowest inductance. • Inductance between Cout1 and Remote pt. 1 is L4, L4 must be lower than 1n (L4 < 1n). • The remote point location can be between Cout1 and Remote pt. 1. 3. Same case apply to L2 & L3 if they are lowest inductance path. 4. Above case is for multi-path, in case of single path, consider the only path as the lowest inductance path directly. 5. Inductance between Cout1 and other Cout(Cout2/Cout3) must be lower than 1.5n (L1+L2 6mil
▪ Detail layout constraint please refer per project. CONFIDENTIAL B
Layout Constraint of LDO #5
Rough Guidelines-use from CAD Extraction w (mil) 4
w (um) 101.6
h (um) 50
t @ 1/3 oz (um) 12
L (nH) = 4.85 nH ×
len (cm) 1.27
trace inductance (nH) 4.85
trace resistance (mΩ) 198
101.6 um len h × × w 1.27 cm 50um
101.6 um len R (mΩ) = 198 mΩ × × w 1.27 cm
where w = 4mil~40mil
Parameter Dielectrically constant Conductivity CONFIDENTIAL B
Value 4.0 5.8e7 s/m
w = trace width len = trace length t = trace thickness h = dielectric height
Layout Constraint of VREF ▪
VREF bypass cap as close as possible to PMIC
▪
GND_VREF pin must first connect to capacitor GND pin and then connect to system GND by VIA
▪
VREF cap is 100nF.
CONFIDENTIAL B
Layout Constraint of VIO18 ▪ Keep star-connection from PMIC VIO18_PMU to import 1.8V power domain. AP Peripheral PMIC MT6359
AVDD18_xx
VIO18_PMU
DVDD18_xx
Peripheral device I/O
CONFIDENTIAL B
Layout Constraint of VUSB Priority1 -The de-coupled cap should be put closed to AVDD30_AUD/ AVSS30_AUD and AVDD18_CODEC / AVSS30_AUD - The trace width should be >10mil - Connecting AVSS30_AUD to the main GND through at least one via - Connecting AVDD30_AUD from pad VUSB directly , then do a star connect from AVDD30_AUD to VUSB_PMU.
CONFIDENTIAL B
AP ANALOG POWER PCB LAYOUT CONSTRAINT
CONFIDENTIAL B
AP Analog Power List Voltage
PMIC Pin Name
AP analog pin name
VIO18
AVDD18_USB AVDD18_APPLLGP AVDD18_MDPLLGP AVDD18_UFS AVDD18_CKSQ AVDD18_DRF AVDD18_WBG
VIO18_PMU_AVDD
VA12
AVDD12_CSI AVDD12_APPLLGP AVDD12_UFS AVDD12_WBG
VA12_ABB1_PMU
1.2V
VRF12
AVDD12_SSUSB AVDD12_CKSQ AVDD12_DRF AVDD12_DRF ( RF IC ) AVDD12_DSI AVDD12_MDPLLGP AVDD12_GPPLLGP AVDD12_USB AVDD12_DDR
VA12_ABB2_PMU
1.2V
VBBCK
AVDD12_CKBUF_UFS
VBBCK_PMU
0.75V
VSRAM_OTHERS
AVDD04_DSI
DVDD_VSRAM_OTHERS
3.07V
VUSB
AVDD33_USB
VUSB_PMU
1.8V
1.2V
CONFIDENTIAL B
AP Analog Layout Constraint
AVDD18_xxx layout constraint
Star-connection analog power group, AVDD18_SOC by short-pad on VIO18 cap. Please be sure to follow “reference design” & “PMIC MMD”
Follow PMIC MMD PMIC
IR spec.
Total path from PMIC LDO pin to AVDD power pin of AP-site
Target IR < 2% For each AVDDXX_XXX path Simulate all power pin currents at the same time CONFIDENTIAL B
AP AVDD18_xxx Layout Guideline 1 Follow MMD AVDD18_xxx1
Others …
Cnx AVDD18_xxx2 Cnx
VIO18_PMU
PMIC
AVDD18_xxx3 Cnx
AP
VIO18 AVDD18_SOC
C1
SHORT PAD
P1
AVDD18_xxx5
Notice 1. PCB drop voltage ≦ 36mV (PMIC VIO18 ball to AP AVDD18_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace 1 Trace 2 Trace 3
Trace Start PMIC VIO18 ball C1 P1
Trace End C1 P1 AP AVDD18_XXX ball
CONFIDENTIAL B
AVDD18_xxx4 Cnx Cnx AVDD18_xxx6 Cnx
Average current 0.600A 0.150A 0.040A
PCB Width 20mil 12mil 8mil
PCB Length 180mil 1100mil 300mil
PCB Ratio Length/Width 9 92 38
PCB PCB PCB drop Thickness Resister voltage 0.3oz 16.0mΩ 9.6mV 0.3oz 162.6mΩ 24.4mV 0.3oz 66.5mΩ 2.7mV
Pass ≦36mV
AP VA12 AVDD12_xxx Layout Guideline Follow MMD AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VA12 C1 P1
AVDD12_xxx4 Cnx AVDD12_xxx5 Cnx
Notice 1. PCB drop voltage ≦ 24mV (PMIC VA12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace 1 Trace 2 Trace 3
Trace Start PMIC VA12 ball C1 P1
Trace End C1 P1 AP AVDD12_XXX ball
CONFIDENTIAL B
AVDD12_xxx6 Cnx
Average current 0.250A 0.250A 0.140A
PCB Width 24mil 24mil 12mil
PCB Length 240mil 800mil 200mil
PCB Ratio Length/Width 10 33 17
PCB Thickness 0.3oz 0.3oz 0.3oz
PCB Resister 17.7mΩ 59.1mΩ 29.6mΩ
PCB drop voltage 4.4mV 14.8mV 4.1mV
Pass ≦24mV
AP VRF12 AVDD12_xxx Layout Guideline Follow MMD
AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VRF12 C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx AVDD12_xxx6 Cnx
Notice 1. PCB drop voltage ≦ 24mV (PMIC VRF12 ball to AP AVDD12_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace Start Trace End Trace 1 PMIC VRF12 ball C1 Trace 2 C1 P1 Trace 3 P1 AP AVDD12_XXX ball CONFIDENTIAL B
Average PCB PCB current Width Length 0.250A 24mil 240mil 0.200A 24mil 800mil 0.050A 8mil 200mil
Cnx
AVDD12_DRF
RF
P2
PCB Ratio Length/Width 10 33 25
PCB Thickness 0.3oz 0.3oz 0.3oz
PCB Resister 17.7mΩ 59.1mΩ 44.3mΩ
PCB drop voltage 4.4mV 11.8mV 2.2mV
Pass ≦24mV
AP VRF12 AVDD12_xxx Layout Guideline Follow MMD
AVDD12_xxx1 Cnx AVDD12_xxx2 Cnx
PMIC
Cnx
AVDD12_xxx3
AP
VRF12 C1
AVDD12_xxx4
P1
Cnx AVDD12_xxx5 Cnx AVDD12_xxx6 Cnx
Cnx P2
Notice: refer to RF IC design notice
CONFIDENTIAL B
AVDD12_DRF
RF
AP AVDD12_CKBUF_UFS Layout Guideline Follow MMD
VBBCK
Cnx
AVDD12_CKBUF_UFS
AP C1
P1
Notice 1. PCB drop voltage ≦ 24mV (VBBCK ball to AP AVDD12_CKBUF_UFS ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace 1 Trace 2 Trace 3
Trace Start PMIC VBBCK C1 P1
Trace End C1 P2 AP AVDD12_XXX ball
CONFIDENTIAL B
Average PCB PCB current Width Length 0.020A 8mil 240mil 0.020A 8mil 800mil 0.020A 8mil 200mil
PCB Ratio Length/Width 30 100 25
PCB Thickness 0.3oz 0.3oz 0.3oz
PCB Resister 53.2mΩ 177.4mΩ 44.3mΩ
PCB drop voltage 1.1mV 3.5mV 0.9mV
Pass ≦24mV
AP AVDD04_DSI Layout Guideline Follow MMD Others
VSRAM_OTHERS Cnx Cnx
C1
AVDD04_xxx
AP AVDD04_xxx
P1
Notice 1. PCB drop voltage ≦ 15mV (VSRAM_OTHERS ball to AP AVDD04_xxx ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace 1 Trace 2
Trace Start C1 P1
CONFIDENTIAL B
Trace End P1 AP AVDD04_XXX ball
Average current 0.040A 0.040A
PCB PCB PCB Ratio PCB Width Length Length/Width Thickness 12mil 1000mil 83 0.3oz 8mil 120mil 15 0.3oz
PCB Resister 147.8mΩ 26.6mΩ
PCB drop voltage 5.9mV 1.1mV
Pass ≦15mV
AP AVDD33_USB Layout Guideline AP
PMIC VUSB
Cnx
AVDD33_USB
C1
Notice 1. PCB drop voltage ≦ 60mV (PMIC VUSB ball to AP AVDD33_USB ball) 2. PCB Length/Width ≦ PCB Ratio Example Trace Trace Start Trace 1 PMIC VUSB ball Trace 2 C1
Trace End C1 AP AVDD33_USB ball
CONFIDENTIAL B
Average PCB PCB current Width Length 0.060A 8mil 200mil 0.050A 8mil 2500mil
PCB Ratio Length/Width 25 313
PCB Thickness 0.3oz 0.3oz
PCB Resister 44.3mΩ 554.3mΩ
PCB drop voltage 2.7mV 27.7mV
Pass ≦60mV
SPI
CONFIDENTIAL B
Layout Constraint of PMIC SPI ▪ All traces of PMIC SPI bus should be well-shielded by nearby ground traces in the same layer, and surrounded by ground traces in n-1 and n+1 layers, and closed to each others. ▪ All traces of SPI bus should be far away from noisy sources, such as VBUS (plug-in spike), Buck switching node..etc.
▪ The max. length of SPI bus between SOC and MT6359 should be shorter than 6 inches (consider 6 inches = 1ns).
CONFIDENTIAL B
RTC
CONFIDENTIAL B
Layout Constraint of VRTC ▪
VRTC: Application circuit (2 options) ▪
0.1uF
▪
0.1uF + 1.5kΩ + super cap
0.1uF cap MUST and be close to PMIC Noted: Follow Ref. Vcoin=22uF if customers don’t want FG re-define initial SOC at the scenario below
CONFIDENTIAL B
Scenario: Plug in charger then press power key over 15sec. Due to sub-PMIC would disable power MOS between VBAT to VSYS and stop charging, VRTC would drop at Vcoin=0.1uF after VSYS decreased. After that, FG will re-define initial SOC due to RTC disappeared
92
Schematics Design Notice •
RTC32K_CK trace length must be controlled within 2000mil.
[A] [B]
[C] • • •
• •
0.1uF for VRTC is a must. [A] Recommend implementing 10~100uF for VRTC. MTK recommend implement 22uF, Smaller capacity sustains shorter time. Please do not use Gold Cap. because of the time when removed the Main battery precision: +-1.5 sec every 30 sec. [B] For battery un-replaced system design, R8201(1.5K) and C8202(22uF) can be removed for eBOM optimized. [B] RTC32K_CK such as a clock signal, needs well ground shielding. [C] Noted: Follow Ref. Vcoin=22uF if customers don’t want FG re-define initial SOC at the scenario below
Scenario: Plug in charger then press power key over 15sec. Due to sub-PMIC would disable power MOS between VBAT to VSYS and stop charging, CONFIDENTIAL B 93 VRTC would drop at Vcoin=0.1uF after VSYS decreased. fine initial SOC due to RTC disappeared
Content ▪ ▪ ▪ ▪
MT6359 Introduction Function Description Function Block Notice PCB Layout Guideline
CONFIDENTIAL B
Package Outline of MT6359
CONFIDENTIAL B
Ballmap of MT6359 202
1
2
3
4
5
6
7
8
A
NC
VRF12
VS2
VSYS_VS2
VSYS_VPA
VPA
VSYS_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC VSYS_VPROC VSYS_VPROC A 2 1 1
B
VRF12_S
VA12
VS2
GND_VS2
GND_VPA
VPA
GND_VPU
VPU
GND_VMODE VSYS_VMOD VSYS_VPROC VMODEM M EM 2
VPROC2
GND_VPROC 2
C
VCN13
VS2_LDO2
VA09
VSYS_SMPS
VS2_FB
GND_SMPS
VPA_FB
GND_VPU_F B
D
VSRAM_MD VS2_LDO1
E
AU_V18N
F
FLYN
G
FLYP
VSRAM_PRO VSRAM_othe EXT_PMIC_P EXT_PMIC_E EXT_PMIC_E C1 rs G N2 N1
VSRAM_PRO C2
AVSS18_AUD
RESETB
GND
GND
9
VPU_FB
PWRKEY
10
11
CHRDETB
PMU_TESTM ODE
SPI_CLK
GND
GND
GND
LDO
E
XXX
AUDIO
VSYS_VGPU1 VSYS_VGPU1 F 2 2
XXX
DCXO
SRCLKEN_IN VSYS_VGPU1 VSYS_VGPU1 VGPU11_FB G 1 1 1
XXX
STRUP/PCHR_VREF
H
XXX
AUXADC/ FGADC
RTC32K_1V8 GND_VGPU1 GND_VGPU1 GND_VGPU1 WDTRSTB_IN J _1 1_FB 1 1
XXX
Digital IO
SPI_CSN
GND
SPI_MOSI
AU_HPR
AU_REFN
AUD_NLE_M AUD_DAT_M OSI1 ISO1
GND
GND
GND
FSOURCE
AU_HPL
AUD_DAT_M AUD_CLK_M ISO0 OSI
AU_HSP
AUD_DAT_M AUD_DAT_M OSI0 ISO2
DVSS18_IO
K
AVDD18_CO DEC
HP_EINT
ACCDET
AUD_DAT_M AUD_DAT_M OSI1 OSI2
DVDD18_DIG DVDD18_IO
L
AU_VIN0_P AU_VIN0_N AU_VIN3_N AU_VIN3_P
M
AU_VIN1_P AU_VIN2_P
AU_MICBIAS AU_MICBIAS 1 2
BATADC_P
CS_P
AUXADC_VIN 1
XO_WCN
AVSS_XO_IS AU_VIN1_N AU_VIN2_N AVSS_RFCK AVSS_BBCK O
SPI_MISO
VGPU12
VPROC1_FB
RTC32K_1V8 SRCLKEN_IN _0 0
AVSS18_AUX ADC
VAUX18
VFE28
SCP_VREQ_V AO
VGPU11
VGPU12
VGPU11
GND_VCORE GND_VCORE GND_VCORE K _FB
CS_N
GND_VREF
VREF
VRTC28
VIBR
VSYSSNS
BATON
UVLO_VTH
VIO28
VCAMIO
VAUD18
VEFUSE
VM18
VS1_LDO1
VS1_LDO2
VCORE
VCORE
VS1
VS1
N
VS1_FB
GND_VS1
VSYS_VS1
P
R
XTAL1
AVSS_XO
VRFCK_1
XO_CEL
VBBCK
XO_EXT
VUSB
VSIM1
R
AVSS_XO
XTAL2
VXO22
VRFCK
XO_SOC
XO_NFC
VBIF28
VSIM2
VEMC
VCN33_1
VCN33_2
VUFS
VCN18
VRF18
VIO18
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CONFIDENTIAL B
L
VCORE_FB VSYS_VCORE VSYS_VCORE M
P
VSYS_LDO2 VSYS_LDO1
B
XXX
GND
AU_HSN
VPROC1
GND_VPROC GND_VGPU1 GND_VGPU1 D 1_FB 2 2
VPROC2_FB
HOMEKEY
GND
AVDD30_AU AVSS30_AUD D
VPROC1
16
BUCK
AUD_NLE_M AUD_SYNC_ OSI0 MOSI
J
15
XXX
AU_LOLN
AVDD18_AU D
14
GND_VPROC GND_VPROC C 1 1
AU_LOLP
AU_MICBIAS 0
13
GND_VMODE GND_VPROC VMODEM_FB M_FB 2_FB
H
N
12
Layout: MT6359 Power Input (1/2) VSYS Input
Routing from 22uF VSYS capacitor uses start topology to connect to each device. 1. Input for BUCK. (Fig. 2) 2. Input for LDO. (Fig. 2)
All the decoupling capacitors should be placed near MT6359. The priority is buck capacitor then decoupling capacitor of LDO. (Fig.1)
Fig. 1
MT6359
CONFIDENTIAL B
Fig. 2
Layout: MT6359 Power Input (2/2) Layout method of MT6359 power Input for Buck GND
Fig.1
-
Buck GND balls are connected to buck capacitors close to pin with plane or trace (Trace Width > 8mil * N (ball number) + M (ball pitch)). (Fig.1~2)
-
Buck GND balls should be connected to buck capacitors first and isolated from the nearby GND trace and plane then connected to main GND at L3 (Fig.1~2).
Fig.2
MT6359
CONFIDENTIAL B
BUCK GND is isolated from nearby GND trace and plane.
Layout: MT6359 Buck Output (1/2) Fig.2
The buck inductors should be placed near MT6359. (Fig.1)
Fig.1
MT6359
CONFIDENTIAL B
Layout: MT6359 Buck Output (2/2)
Those signals are differential pairs and should be shielded by GND and far away from noise signals (Fig.1 ~ Fig.2). 1. VPROC1_FB/GND_VPROC1_FB 2. VPROC2_FB/GND_VPROC2_FB 3. VCORE_FB/GND_VCORE_FB 4. VPU_FB/GND_VPU_FB Fig. 1 5. VGPU11_FB/GND_VGPU11_FB 6. VMODEM_FB/GND_VMODEM_FB 7. VS1_FB, VS2_FB, VPA_FB
Fig. 2
CONFIDENTIAL B
Layout: MT6359 Buck/LDO Output ▪
Layout guideline for MES simulation.
MT6359
Application
Resistance (PMIC to SoC power ball)
VSRAM_PROC1
DVDD_SRAM_PROC_B
≤ 75 mΩ
VSRAM_PROC2
DVDD_SRAM_PROC_L
≤ 110 mΩ
VSRAM_OTHERS
DVDD_SRAM_OTHERS
≤ 85 mΩ
VSRAM_MD
DVDD_SRAM_GPU
≤ 110 mΩ
VPROC1
DVDD_GPU
≤ 18 mΩ
VPROC2
DVDD_PROC_L
≤ 24 mΩ
VCORE
DVDD_CORE
≤ 16 mΩ
VGPU11 // VGPU12
DVDD_PROC_B
≤ 14 mΩ
CONFIDENTIAL B
Layout: MT6359 LDO Output (1/2)
See table. for the suggested LDO output layout.
1. Trace width≧6mil 2. Value and placement of capacitor please refer design notice Ball name VFE28 VAUX18 VBIF28 VCN33_1 VCN33_2 VIO28 VEMC VSIM1 VSIM2 VIBR VUSB VEFUSE VAUD18 VCAMIO VM18 VUFS VCN18 VRF18 VIO18 VCN13 VRF12 VA12 VA09
Imax 200mA 50mA 50mA 800mA 800mA 200mA 800mA 200mA 200mA 200mA 200mA 300mA 300mA 300mA 300mA 1200mA 1200mA 450mA 600mA 350mA 800mA 300mA 300mA
CONFIDENTIAL B
Trace Length 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1500mil 1000mil 1500mil 1500mil 900mil 1200mil 1500mil 1500mil 1500mil 1500mil 1500mil 1200mil 1200mil
Trace Width 6mil 6mil 6mil 25mil 25mil 10mil 25mil 10mil 10mil 6mil 8mil 12mil 12mil 6mil 25mil 25mil 8mil 20mil 20mil 25mil 25mil 20mil 20mil
Rpcb H=50um, 1/3 oz 400mΩ 400mΩ 400mΩ 100mΩ 100mΩ 240mΩ 100mΩ 240mΩ 240mΩ 400mΩ 300mΩ 135mΩ 200mΩ 400mΩ 60mΩ 80mΩ 300mΩ 120mΩ 120mΩ 100mΩ 100mΩ 100mΩ 100mΩ
Core power/DRAM power/AVDDxx power:
VRF18/VRF12/VRF12_S: •
Traces should be in inner layer or under shielding case.
VRF12_S:
Follow MMD/MES
VRF12_S should connect to VRF12 application
Trace width/length can adjust by application Imax
If trace is series 0Ω resister, 0Ω resister is having 0~50mΩ variation. It would be drop voltage.
Layout: MT6359 LDO Output (2/2)
VREF capacitor should be placed near L12/L11 pin.
DVDD18_DIG capacitor should be placed near K10 pin.
MT6359
CONFIDENTIAL B
Layout: Others for MT6359 Gauge
CS_P/CS_N (ball: L9/L10) should be routed as differential pairs and far away from noise signals.
MT6359 DCXO_32K
CS_P CS_N
CONFIDENTIAL B
MT6359 Audio PCB Layout Guide
MT6359 Audio PCB Layout Guide Please refer “MT6853_Baseband_Design_Notice“
CONFIDENTIAL B
MT6359 AuxADC/DCXO PCB Layout Guide
MT6359 AUXADC /DCXO PCB Layout Guide Please refer “MT6853_Baseband_Design_Notice“
CONFIDENTIAL B
Chip Placement Recommendation Following PCB layout are recommended by MTK for WLCSP (MT6359 / MT6315 / MT6360) WLCSP 請注意週邊的 IC 1. Opposite shield frame could not overlap package balls
2. The opposite chip (especially large chip, ex. AP & eMCP) could not overlap package balls 3. If underfill was adopted, the properties were recommended : - CTE-1 < 30 ppm/˚C, Tg > 125 ˚C
CONFIDENTIAL B
How to Connect for Un-used Pin Unused Part Interface
General
Gauge DCXO
Pin Connection if not used EXT_PMIC_ENx Ext chip enable pin Floating HOMEKEY button with default long press function Short to GND HOMEKEY HOMEKEY button without default long press function Floating 1. Short to GND while RU=NC BATON Battery NTC pin for battery and its temperature sensing 2. Pull-Low 10KΩ to GND while RU exist BATADC Fuel gauge ADC input pin for monitoring battery voltage VBAT CS_N Fuel gauge ADC input pin GND CS_P Fuel gauge ADC input pin GND XO_NFC 26MHz output to NFC Floating XO_EXT 26MHz output to UFS or others Floating Pin Name
CONFIDENTIAL B
Description
UFS2.1 / UFS3.0 Power configuration UFS long term power plan required 2.5V/3.0V 1. PMIC VEMC LDO add 2.5V/3.0V HW trapping for UFS2.0/UFS3.0 2. UFS3.0 needs 1.2V requirement should find ext. Buck/LDO and needs VIO18 enable for satisfied UFS sequence 3. UFS sequence: a. Power on sequence: 1.8V(VUFS18) 1.2V(Ext.) 3.0V(VEMC) b. Power off sequence: 3.0V(VEMC) 1.2V (Ext.) 1.8V(VUFS18)
CONFIDENTIAL B
Copyright © MediaTek Inc. All rights reserved.