Chemische Thermodynamik: Grundlagen, Übungen, Lösungen [2. überarb. Aufl.] 9783110331073, 9783110331066

the second, expanded edition of this textbook offers an even more detailed, readable, and understandable presentation of

509 69 24MB

German Pages 564 [562] Year 2013

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Verwendete Symbole und Größen
1 Theoretische Grundlagen
1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung
1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung
1.3 Zweiter und dritter Hauptsatz der Thermodynamik, die Entropie und die kanonische Zustandsgleichung
1.4 PartiellemolareGrößen
1.5 Thermodynamische Potenziale
1.6 Thermodynamisches Gleichgewicht
1.6.1 Grundlagen und Sonderfälle
1.6.2 Thermodynamik binärer Zweiphasensysteme
1.7 HeterogeneGleichgewichte binärer Systeme
1.7.1 Einführung
1.7.2 Binäre Systeme „flüssig-flüssig“
1.7.3 Binäre Systeme „flüssig-gasförmig“
1.7.4 Binäre Systeme „flüssig-fest“
1.8 HeterogeneGleichgewichte ternärer Systeme
1.8.1 Die Darstellung der Zusammensetzung einer ternären Mischung
1.8.2 Ternäre Systeme aus drei flüssigen Komponenten
1.8.3 Ternäre Systememit festen Phasen
1.8.4 Wässrige Lösungen von zwei Salzen
2 Fragen ohne Antwort
2.1 Der Zustand eines Systems
2.2 Der nullte Hauptsatz und die thermische Zustandsgleichung der Stoffe
2.3 Der ersteHauptsatz – Energie
2.4 Entropie
2.5 Thermodynamische Potenziale, Gibbs-Helmholtz-Gleichungen und Kriterien der Verlaufsrichtung chemischer Reaktionen
2.6 Reaktionsisotherme, -isobare und -isochore
2.7 Nernst’sche Gleichung
2.8 Heterogene chemischeGleichgewichtsreaktionen
2.9 Partielle molare Größen und thermodynamisches Gleichgewicht, Phasenübergänge
2.10 Phasengleichgewichte binärer Systeme
2.11 Phasengleichgewichte ternärer Systeme
3 Fragenmit Antwort
3.1 Der Zustand eines Systems
3.2 Der nullte Hauptsatz und die thermische Zustandsgleichung der Stoffe
3.3 Der ersteHauptsatz – Energie
3.4 Entropie
3.5 Thermodynamische Potenziale, Gibbs-Helmholtz-Gleichungen und Kriterien der Verlaufsrichtung chemischer Reaktionen
3.6 Reaktionsisotherme, -isobare und -isochore
3.7 Nernst’sche Gleichung
3.8 Heterogene chemischeGleichgewichtsreaktionen
3.9 Partielle molare Größen und thermodynamisches Gleichgewicht, Phasenübergänge
3.10 Phasengleichgewichte binärer Systeme
3.11 Phasengleichgewichte ternärer Systeme
4 Aufgaben ohne Lösung
4.1 Ideale und reale Gase
4.2 Osmotischer Druck idealer Lösungen
4.3 Joule-Thomson-Effekt
4.4 Arbeit
4.4.1 Volumenarbeit
4.4.2 OsmotischeArbeit
4.4.3 Oberflächenarbeit
4.4.4 ElektrischeArbeit
4.4.5 MagnetischeArbeit
4.4.6 MechanischeArbeit
4.5 Innere Energie und Enthalpie
4.6 Kalorimetrie
4.7 Satz vonHess
4.8 Entropie
4.9 Wirkungsgrad und Leistungszahl
4.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung
4.11 Homogene chemische Gleichgewichtsreaktionen
4.11.1 Stickstoffverbindungen (N2, NH3, NOx)
4.11.2 Kohlenstoff-Verbindungen (COx,KWS undDerivate)
4.11.3 Schwefel-Verbindungen (SOx, SFx)
4.11.4 Halogenwasserstoffe
4.11.5 Redoxreaktionen
4.11.6 Säure-Base-Reaktionen
4.12 Heterogene chemischeGleichgewichtsreaktionen
4.12.1 Kohlenstoff-Verbindungen und CaSO4-Hydrate
4.12.2 Fällungsreaktionen
4.12.3 Metalloxide
4.12.4 Verteilung eines Stoffes zwischen zwei Phasen
4.13 Phasengleichgewichte und Phasensysteme
4.13.1 Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung
4.13.2 Einkomponenten-Mehrphasensysteme
4.13.3 Zweikomponenten-Zweiphasensysteme (Binäre Systeme)
4.13.4 Ternäre Systeme
4.14 Bioenergetik
4.14.1 Enzyme
4.14.2 Energieumsatz
4.14.3 Stoffwechsel
5 Lösungen
5.1 Ideale und reale Gase
5.2 Osmotischer Druck idealer Lösungen
5.3 Joule-Thomson-Effekt
5.4 Arbeit
5.4.1 Volumenarbeit
5.4.2 OsmotischeArbeit
5.4.3 Oberflächenarbeit
5.4.4 ElektrischeArbeit
5.4.5 MagnetischeArbeit
5.4.6 MechanischeArbeit
5.5 Innere Energie undEnthalpie
5.6 Kalorimetrie
5.7 Satz vonHess
5.8 Entropie
5.9 Wirkungsgrad und Leistungszahl
5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung
5.11 Homogene chemischeGleichgewichtsreaktionen
5.11.1 Stickstoffverbindungen (N2, NH3, NOx)
5.11.2 Kohlenstoff-Verbindungen (COx,KWS undDerivate)
5.11.3 Schwefel-Verbindungen (SOx, SFx)
5.11.4 Halogenwasserstoffe
5.11.5 Redoxreaktionen
5.11.6 Säure-Base-Reaktionen
5.12 Heterogene chemischeGleichgewichtsreaktionen
5.12.1 Kohlenstoff-Verbindungen und CaSO4-Hydrate
5.12.2 Fällungsreaktionen
5.12.3 Metalloxide
5.12.4 Verteilung eines Stoffes zwischen zwei Phasen
5.13 Phasengleichgewichte und Phasensysteme
5.13.1 Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung
5.13.2 Einkomponenten-Mehrphasensysteme
5.13.3 Zweikomponenten-Zweiphasensysteme (Binäre Systeme)
5.13.4 Ternäre Systeme
5.14 Bioenergetik
5.14.1 Enzyme
5.14.2 Energieumsatz
5.14.3 Stoffwechsel
6 Strukturbilder und Zyklen
Literaturverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Namenregister
Sachregister
Recommend Papers

Chemische Thermodynamik: Grundlagen, Übungen, Lösungen [2. überarb. Aufl.]
 9783110331073, 9783110331066

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Walter Schreiter

Chemische Thermodynamik Grundlagen, Übungen, Lösungen

Walter Schreiter

Chemische Thermodynamik Grundlagen, Übungen, Lösungen 2. überarbeitete und ergänzte Auflage

De Gruyter

Autor Dipl.-L. Walter Schreiter Fachberater Chemie (i. R.) Erfurt [email protected]

Das Buch enthält 223 Abbildungen und 29 Tabellen. isbn 978-3-11-033106-6 eISBN 978-3-11-033107-3 Library of Congress Cataloging-in-Publication Data A CIP Catalog record for this book has been applied for at the Library of Congress Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. © Copyright 2014 by Walter de Gruyter GmbH, Berlin/Boston Urheberrechtlich geschützt. Die Vervielfältigung der Übungsaufgaben ist nur für den eigenen Studiengebrauch gestattet. Jede weitere Verwendung bedarf der schriftlichen Zustimmung des Verlages. Projektplanung: Dr. Katharina Butsch Projektbetreuung: Nicole Karbe Herstellung: Manfred Link Satz und Illustrationen: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de Drucken/Binden: Strauss GmbH, Mörlenbach ∞ Gedruckt auf säurefreiem Papier Printed in Germany www.degruyter.com

Vorwort zur 2. Auflage

Die gute Resonanz des Buches im In-und Ausland und die damit verbundene große Nachfrage haben mich zu einer Neuauflage ermutigt. Unter Beibehaltung der bewährten Grundkonzeption und inhaltlichen Gliederung berücksichtigt sein erweitertes und vertieftes Spektrum besonders:  den Bereich der theoretischen Grundlagen (z. B.: Legendre-Transformation / Arbeit mit dem Guggenheim-Quadrat / Maxwell-Relationen / thermodynamische Ableitungen der Differenz der Molwärmen sowie deren Berechnung mit der kinetischen Gastheorie / Heizwertvergleich und -bestimmung / Phasengleichgewichte in fluiden Mischungen / . . . ),  den Austausch von Übungen mit besonderer Berücksichtigung der Pro- u. Contra-Probleme einer herkömmlichen und einer modernen Energiegewinnung und -versorgung in den Sektoren Strom, Wärme und Mobilität, und  die Neuaufnahme von noch besseren didaktisch-methodischen Zusammenstellungen und Übersichten (z.B.: Gibbsfunktionen und Fundamentalgleichungen / chemisches Potenzial , dargestellt als partielle molare Größe von U , H , F und G / . . . ). Möge auch dieses Buch für die in der 1. Auflage genannte Zielgruppe und darüber hinaus eine gute Weiterverbreitung im Studium und Beruf erfahren und dort alle Leser nachhaltig inspirieren, sobald sie es aufschlagen und darin zu lesen beginnen. Erfurt, im Dezember 2013

Walter Schreiter Diplomlehrer

Vorwort zur 1. Auflage

Die chemische Thermodynamik hat sich im Laufe der Zeit zu einer Querschnittswissenschaft entwickelt, die in allen Bereichen der Forschung und technischen Applikation gefragt ist. Sie wird von wenigen grundlegenden Observablen, Konzepten und Zusammenhängen bestimmt, die nur schwer zu vermitteln sind, besonders dann, wenn die notwendige mathematische Vorstellung und Fähigkeit der Studierenden an Grenzen stößt. Das vorliegende Lehr- und Übungsbuch zur „Chemischen Thermodynamik“ richtet sich an Leser, die  im natur- und ingenieurwissenschaftlichen Studiengang Chemie als Neben- oder Wahlfach studieren,  das höhere Lehramt für Naturwissenschaften absolvieren und praktizieren,  an Universitäten und Fachhochschulen Chemie studieren. Mit ihm kann der Leser beim Neuerwerb und Vertiefen seiner Kenntnisse das schöpferische Anwenden der thermodynamischen Konzepte und Zusammenhänge vielfältig trainieren. Förderlich dabei ist, dass der Umfang des Übungsteils parallel zur prägnanten Fassung der Theorie deutlich dominiert und die Nahtstellen der Natur- und Ingenieurwissenschaften tangiert. Das aufbereitete Lehr- und Übungsmaterial enthält 145 Fragen und 276 Aufgaben (überwiegend mehrgliedrig und komplex) mit zahlreichen Querverbindungen, Analogiebetrachtungen und expliziten Lösungen zu jeder Frage und Aufgabe. Der Leser wird damit unterstützt, die vielfältigen thermodynamischen Probleme richtig einzuordnen und sich mit diesen Problemen fächerverbindend und -integrierend auseinanderzusetzen. Dies steht im Einklang mit einem in der einschlägigen Literatur vorgeschlagenen „neuen Haus des Lernens“, in dem man  sich künftig mehr und mehr von herkömmlich einseitiger Stofforientierung eines tradierten Fächerkanons lösen wird und  fachliches Studieren und Praktizieren besser den neuen Anforderungen durch fächerübergreifendes und projektorientiertes Arbeiten anpasst. Wenn wissenschaftliche Disziplinen nur wenig über andere Fächer oder Fächergruppen wissen, regieren leicht Klischees und Vorurteile, was natürlich für beide Blickrichtungen gilt. Voraussetzung für die Lösung der Fragen und Aufgaben ist die Kenntnis der Hauptsätze der Thermodynamik und der Lehre von den Phasengleichgewichten, ferner der einfachsten Regeln der Infinitesimalrechnung. Viele komplexe Aufgaben verlangen umfassende Grundkenntnisse aus verschiedenen Stoffgebieten und Fächern. Aus lerndidaktischen Gründen erfolgt zunächst nur die Formulierung der Fragen und Aufgaben. Erst nach eigenständiger Lösung sollte die Zuhilfenahme des im folgenden Kapitel dargestellten Lösungsweges erfolgen. Das Verständnis ist ein allgemeines Problem beim Erlernen der Thermodynamik. Das Lesen mag einfach erscheinen, aber das tiefere Verstehen der Zusammenhänge erfordert Nachdenken. Es gibt bei ernsthaftem Studium keine Möglichkeit, letzteres zu umgehen. Die meisten Fragen und Aufgaben im vorliegenden Fundus hat der Autor in Seminaren und Praktika während seiner mehrjährigen Vorlesungsreihe „Physikalische Chemie“ als Fachberater erprobt, die im naturwissenschaftlichen Lehrerkreis in Thüringen ein breites Teilnehmerfeld und Fachinteresse hatten. Die übrigen wurden in der Folgezeit ergänzt oder konzeptionell neu

VIII

Vorwort zur 1. Auflage

aufgenommen (Ternäre Systeme, Bioenergetik) und gewannen deutlich an Vielfalt, Umfang und Schwierigkeitsgrad. Allen Lesern wünsche ich einen erfolgreichen Verlauf beim Studium und der weitsichtigen, fächerintegrierenden Nutzung dieses Werkes. Erfurt, im April 2010

Walter Schreiter Diplomlehrer

Inhalt

Verwendete Symbole und Größen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII 1

Theoretische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1

Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

Zweiter und dritter Hauptsatz der Thermodynamik, die Entropie und die kanonische Zustandsgleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

1.4

Partielle molare Größen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

1.5

Thermodynamische Potenziale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

1.6

Thermodynamisches Gleichgewicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Grundlagen und Sonderfälle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 Thermodynamik binärer Zweiphasensysteme . . . . . . . . . . . . . . . .

52 52 61

1.7

Heterogene Gleichgewichte binärer Systeme 1.7.1 Einführung . . . . . . . . . . . . . . . . . 1.7.2 Binäre Systeme „flüssig-flüssig“ . . . 1.7.3 Binäre Systeme „flüssig-gasförmig“ 1.7.4 Binäre Systeme „flüssig-fest“ . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

77 77 77 79 92

1.8

Heterogene Gleichgewichte ternärer Systeme . . . . . . . . . . . . . . . . . . . 1.8.1 Die Darstellung der Zusammensetzung einer ternären Mischung 1.8.2 Ternäre Systeme aus drei flüssigen Komponenten . . . . . . . . . . 1.8.3 Ternäre Systeme mit festen Phasen . . . . . . . . . . . . . . . . . . . . 1.8.4 Wässrige Lösungen von zwei Salzen . . . . . . . . . . . . . . . . . . .

. . . . .

. . . . .

. . . . .

102 102 104 109 112

1.2 1.3

2

1

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

Fragen ohne Antwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.1

Der Zustand eines Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.2

Der nullte Hauptsatz und die thermische Zustandsgleichung der Stoffe . . . . . 118

2.3

Der erste Hauptsatz – Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.4

Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.5

Thermodynamische Potenziale, Gibbs-Helmholtz-Gleichungen und Kriterien der Verlaufsrichtung chemischer Reaktionen . . . . . . . . . . . . . . . . 123

X

Inhalt

2.6

Reaktionsisotherme, -isobare und -isochore . . . . . . . . . . . . . . . . . . . . . . . 123

2.7

Nernst’sche Gleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.8

Heterogene chemische Gleichgewichtsreaktionen . . . . . . . . . . . . . . . . . . . 125

2.9

Partielle molare Größen und thermodynamisches Gleichgewicht, Phasenübergänge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2.10 Phasengleichgewichte binärer Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.11 Phasengleichgewichte ternärer Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3

Fragen mit Antwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.1

Der Zustand eines Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.2

Der nullte Hauptsatz und die thermische Zustandsgleichung der Stoffe . . . . . 143

3.3

Der erste Hauptsatz – Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.4

Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

3.5

Thermodynamische Potenziale, Gibbs-Helmholtz-Gleichungen und Kriterien der Verlaufsrichtung chemischer Reaktionen . . . . . . . . . . . . . . . . 188

3.6

Reaktionsisotherme, -isobare und -isochore . . . . . . . . . . . . . . . . . . . . . . . 193

3.7

Nernst’sche Gleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.8

Heterogene chemische Gleichgewichtsreaktionen . . . . . . . . . . . . . . . . . . . 207

3.9

Partielle molare Größen und thermodynamisches Gleichgewicht, Phasenübergänge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

3.10 Phasengleichgewichte binärer Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 223 3.11 Phasengleichgewichte ternärer Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 238 4

Aufgaben ohne Lösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 4.1

Ideale und reale Gase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

4.2

Osmotischer Druck idealer Lösungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

4.3

Joule-Thomson-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

4.4

Arbeit . . . . . . . . . . . . . . . . 4.4.1 Volumenarbeit . . . . 4.4.2 Osmotische Arbeit . 4.4.3 Oberflächenarbeit . . 4.4.4 Elektrische Arbeit . . 4.4.5 Magnetische Arbeit 4.4.6 Mechanische Arbeit

4.5

Innere Energie und Enthalpie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

4.6

Kalorimetrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

259 259 260 260 261 263 265

XI

Inhalt

4.7

Satz von Hess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

4.8

Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

4.9

Wirkungsgrad und Leistungszahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

4.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung . . . . . . 280

5

4.11 Homogene chemische Gleichgewichtsreaktionen . . . . . . . . . . 4.11.1 Stickstoffverbindungen (N2 , NH3 , NOx ) . . . . . . . . . 4.11.2 Kohlenstoff-Verbindungen (COx , KWS und Derivate) 4.11.3 Schwefel-Verbindungen (SOx , SFx ) . . . . . . . . . . . . . 4.11.4 Halogenwasserstoffe . . . . . . . . . . . . . . . . . . . . . . . 4.11.5 Redoxreaktionen . . . . . . . . . . . . . . . . . . . . . . . . . 4.11.6 Säure-Base-Reaktionen . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

281 281 286 292 293 294 297

4.12 Heterogene chemische Gleichgewichtsreaktionen . . . . . 4.12.1 Kohlenstoff-Verbindungen und CaSO4 -Hydrate 4.12.2 Fällungsreaktionen . . . . . . . . . . . . . . . . . . . . 4.12.3 Metalloxide . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.4 Verteilung eines Stoffes zwischen zwei Phasen .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

299 299 301 302 303

. . . . .

. . . . .

. . . . .

. . . . .

4.13 Phasengleichgewichte und Phasensysteme . . . . . . . . . . . . . . . . . 4.13.1 Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung . . . . . . 4.13.2 Einkomponenten-Mehrphasensysteme . . . . . . . . . . . . . . 4.13.3 Zweikomponenten-Zweiphasensysteme (Binäre Systeme) 4.13.4 Ternäre Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

305 308 310 312

4.14 Bioenergetik . . . . . . . 4.14.1 Enzyme . . . . . 4.14.2 Energieumsatz 4.14.3 Stoffwechsel .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

314 314 317 319

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . . . . 305

Lösungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 5.1

Ideale und reale Gase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

5.2

Osmotischer Druck idealer Lösungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

5.3

Joule-Thomson-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

5.4

Arbeit . . . . . . . . . . . . . . . . 5.4.1 Volumenarbeit . . . . 5.4.2 Osmotische Arbeit . 5.4.3 Oberflächenarbeit . . 5.4.4 Elektrische Arbeit . . 5.4.5 Magnetische Arbeit 5.4.6 Mechanische Arbeit

5.5

Innere Energie und Enthalpie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

5.6

Kalorimetrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

337 337 339 340 341 344 347

XII

Inhalt

5.7

Satz von Hess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

5.8

Entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

5.9

Wirkungsgrad und Leistungszahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung . . . . . . 377

6

5.11 Homogene chemische Gleichgewichtsreaktionen . . . . . . . . . . 5.11.1 Stickstoffverbindungen (N2 , NH3 , NOx ) . . . . . . . . . 5.11.2 Kohlenstoff-Verbindungen (COx , KWS und Derivate) 5.11.3 Schwefel-Verbindungen (SOx , SFx ) . . . . . . . . . . . . . 5.11.4 Halogenwasserstoffe . . . . . . . . . . . . . . . . . . . . . . . 5.11.5 Redoxreaktionen . . . . . . . . . . . . . . . . . . . . . . . . . 5.11.6 Säure-Base-Reaktionen . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

388 388 404 420 422 424 433

5.12 Heterogene chemische Gleichgewichtsreaktionen . . . . . 5.12.1 Kohlenstoff-Verbindungen und CaSO4 -Hydrate 5.12.2 Fällungsreaktionen . . . . . . . . . . . . . . . . . . . . 5.12.3 Metalloxide . . . . . . . . . . . . . . . . . . . . . . . . . 5.12.4 Verteilung eines Stoffes zwischen zwei Phasen .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

436 436 441 443 445

. . . . .

. . . . .

. . . . .

. . . . .

5.13 Phasengleichgewichte und Phasensysteme . . . . . . . . . . . . . . . . . 5.13.1 Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung . . . . . . 5.13.2 Einkomponenten-Mehrphasensysteme . . . . . . . . . . . . . . 5.13.3 Zweikomponenten-Zweiphasensysteme (Binäre Systeme) 5.13.4 Ternäre Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 448 . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

448 456 459 463

5.14 Bioenergetik . . . . . . . 5.14.1 Enzyme . . . . . 5.14.2 Energieumsatz 5.14.3 Stoffwechsel .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

468 468 478 483

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Strukturbilder und Zyklen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 Namenregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Sachregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Verwendete Symbole und Größen

A

Fläche

[m2 ]

A !  B

Affinität

[kJ  mol1 ]

B.T /

Zweiter Virialkoeffizient realer Gase

[mol  m3 ]

CV

Molare Wärmekapazität (V D const.)

[J  K1  mol1 ]

Cp D !  D E !  E

Molare Wärmekapazität (p D const.) Diffusionskoeffizient

[J  K1  mol1 ] [m2  s1 ]

Elektrische Flussdichte Elektrodenpotenzial

[C  m2 ; As  m2 ] [V]

Elektrische Feldstärke

[V  m1 ]

EA

Aktivierungsenergie

[kJ  mol1 ]

EA (E H ) Ekin.

Elektronenaffinität Kinetische Energie

[kJ  mol1 ] [1 J D 1 Nm D 1 kg  m2  s2 D 1 Ws]

F

Kraft

Œ1 N D 1 kgm  s2 

F

Faraday-Konstante

96487 As  mol1 D 26;8 Ah  mol1

Magnetische Feldstärke Gleichgewichtskonstante der Teilkonzentrationen

[A  m1 ]

!  H Kc

Magnetische Induktion (Magnetische Flussdichte)

[1 T D Vs  m2 D N  .Am/1 D Ws  A1 m2 ]

Œ.mol  dm3 /n 

Kp K

Gleichgewichtskonstante der Partialdrücke Gleichgewichtskonstante der Molenbrüche

ŒPan 

Kprot KS

Konstante der Autoprotolyse des Wassers Säurekonstante

3;24  1018 [mol  dm3 ]

KB KD KW

[mol  dm3 ] [mol  dm3 ]

Km

Basekonstante Dissoziationskonstante Ionenprodukt des Wassers (22 ı C; 1;013 bar) Michaelis-Menten-Konstante

1014 mol2  .dm3/2 [mmol  dm3 ]

M

Molare Masse

[g  mol1 ]

XIV

Verwendete Symbole und Größen

 ! M

Magnetische Volumenpolarisation

[Vs  m2 ]

NA NL

Avogadro-Konstante Loschschmidt-Konstante

6;022045  1023 mol1 2;6867775  1025 m3

p

Druck

!  P PUmmagn. pKS pH ptm Q Q

[1 Pa D 1 N  m2 D 1 kg  m1  s2 D 105 bar]

Elektrische Volumenpolarisation Ummagnetisierung Protochemisches Standardpotenzial Protochemisches Potenzial Protonenmotorische Kraft Wärmemenge (D Energie) Ladung

[As  m2 ] [W]

R

Universelle Gaskonstante

T, t

Temperatur

Tk TB Ti TSm TSd U

Kritische Temperatur Boyle-Temperatur Inversionstemperatur Gefrierpunkt (Schmelzpunkt) Siedepunkt Spannung

8;3143 J  mol1  K1 , 8314;3 Pa  dm3  mol1  K1 [1 K, x ı C D .x C 273;15/ K] [K] [K] [K] [K] [K] [V]

V

Volumen

Œdm3 D 103 m3 

Vm

[dm3  mol1 ]

Vmax W

Molares Volumen (ideales Gas, 0 ı C, 1;01325 bar) Mittleres Molvolumen einer flüssigen Mischung Maximalgeschwindigkeit der Enzymreaktion Arbeit

Wvol (Wm ) E (EMK)

molare Volumenarbeit Potenzialdifferenz (Elektromotorische Kraft)

[kJ  mol1 ] [V]

R F 0

Molare freie Standardreaktionsenergie

[kJ  mol1 ]

x G 0

Molare freie Standardreaktionsenthalpie

[kJ  mol1 ]

HHW

Heizwert (Brennstoff: s, l)

[MJ  kg1 ]

Vm

(Brennstoff: g)

[V] Œ1 J D 1 Nm D 1 Ws Œ1 C D 1 As

[dm3  mol1 ] [mol  dm3  min1 ] [1 J=1 Nm=1 Ws =1 kg  m2  s2 ]

[MJ  m3 ]

Molare Standardenthalpie [kJ  mol1 ] x Hy0 x D B; E; G; H; L; R (B Bildung, E Elektronenaffinität, G Gitter H Hydratation, L Lösung, R Reaktion)

Verwendete Symbole und Größen

y D Hydr.; Sm; Vd

(Hydr. Hydrierung, Sm Schmelzen, Vd Verdampfen)

ıIirrev.  T 1 p pH (PMK)

Entropieerzeugung Dampfdruckerniedrigung Protomotorische Kraft

[J  K1  mol1 ] [Pa]

S 0 (S 0 )

Molare Standardentropie

[J  K1  mol1 ]

R S 0

Molare Standardreaktionsentropie

[J  K1  mol1 ]

SSm TSm TSd

Molare Schmelzentropie Gefrierpunkterniedrigung Siedepunkterhöhung

[J  K1  mol1 ] [K] [K]

R U 0 a

Molare Standardreaktionsenergie van der Waals’sche-Binnendruck-Konstante realer Gase Aktivität van der Waals’sche-Eigenvolumen-Konstante realer Gase

[kJ  mol1 ]

[m3  mol1 ]

c

Spezifische Wärmekapazität

[J  K1  g1 ]

c f i k k

[mol  dm3 ] [Pa]

k

Stoffmengenkonzentration Fugazität (Effektiver Druck) van’t Hoff’scher Faktor Boltzmann-Konstante Geschwindigkeitskonstante (Reaktion 1. Ordnung) Geschwindigkeitskonstante (Reaktion 2. Ordnung) Poisson-Konstante

kk

Kryoskopische Konstante

[K  kg  mol1 ]

kE

Ebullioskopische Konstante

[K  kg  mol1 ]

kKat m n nF

Wechselzahl des Enzyms Masse Stoffmenge Stoffmenge der Formelumsätze in der Reaktionsgleichung Änderung der Molzahlen gasiger Reaktanden Weg Anzahl ausgetauschter Elektronen je Formelumsatz Isobarer Ausdehnungskoeffizient Dissoziationsgrad (Zerfallsgrad) Protolysegrad (Dissoziationsgrad)

[s1 ] [kg] [mol] [mol]

a b

k

R n s z ˛ ˛ ˛

ŒNm4  mol2  [mol  dm3 ]

1;38054  1023 J  K1 [s1 ] [s1  mol1 ]

[mol] [m]

[K1 ]

XV

XVI

Verwendete Symbole und Größen

˛ ˛U ˇ

O2 -Sättigungsgrad für Hämoglobin Umsatzgrad Reaktionsgrad (Bildungsgrad)

ˇ 

Isochorer Druckkoeffizient Aktivitätskoeffizient

[K1 ]

  () 

Isotherme Kompressibilität Molenbruch Gewichtsbruch Wellenlänge

[Pa1 ]

  " "0

Binnendruck Osmotischer Druck Isothermer Drosseleffekt Elektrische Feldkonstante

[J=(mol  dm3 )] Œ1 Pa D 105 bar [J=(mol  Pa)] Œ8;86  1012 As  .Vm/1

' ' ! #

Oberflächenspannung Dichte Fugazitätskoeffizient Thermodynamische Wahrscheinlichkeit Relative Luftfeuchte Taupunkt

[N  m1 ] [kg  m3 ]

.G/

Chemisches Potenzial

[kJ  mol1 ]

HC 0

Protonengradient Magnetische Feldkonstante Elektrisches Potenzial

[kJ  mol1 ] Œ4  107 Vs  .Am/1 [V]

K W

Elektrochemisches Potenzial Wirkungsgrad Leistungszahl (Kältemaschine) Leistungszahl (Wärmepumpe)

[J  mol1 ] [%]

@

Markierung der partiellen Ableitung einer Zustandsgröße

d

Markierung eines vollständigen (totalen) Differenzials bei der Differenzierung einer Zustandsgröße

ı

Markierung eines unvollständigen (unbestimmten) Differenzials bei der Differenzierung einer Prozessgröße (Weggröße)

[nm]

[%] [K, ı C]

1 Theoretische Grundlagen

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung Der erste und der zweite Hauptsatz bilden die Grundlagen der Thermodynamik in ihrer langen historischen Entwicklung seit etwa Mitte des 18. Jahrhunderts. Später wurde von Nernst ein wichtiges Theorem entdeckt, das gelegentlich als dritter Hauptsatz bezeichnet wird, hier soll es ausschließlich unter der Bezeichnung Nernst’scher Wärmesatz behandelt werden, weil es im Grunde genommen nicht denselben Charakter wie die eigentlichen Hauptsätze hat. Erst im 19. Jahrhundert stellte man fest, dass für einen strengen axiomatischen Aufbau der Thermodynamik ein weiterer Satz notwendig ist. Er drückt eine wichtige Erfahrungstatsache aus, die früher für so selbstverständlich gehalten wurde, dass man glaubte, sie nicht extra aussprechen zu müssen. Dieser Satz wird heute, etwas ungewöhnlich, nullter Hauptsatz genannt. Er macht eine Aussage über das thermische Gleichgewicht und besagt: Befindet sich System A im thermischen Gleichgewicht mit System B und befindet sich System C im thermischen Gleichgewicht mit System B, so befinden sich auch A und C im thermischen Gleichgewicht. Das ist nicht trivial, wie man auf den ersten Blick glauben könnte, denn wenn A der Vater von B ist und B der Vater von C, so ist A nicht der Vater von C. Es wäre trivial, wenn durch den Ausdruck „im thermischen Gleichgewicht sein“ eine Gleichheit ausgedrückt würde, denn dann ergibt sich die Richtigkeit des Satzes aus der Transitivität der Gleichheitsrelation. Unter Transitivität versteht man das Axiom der Mathematik: Sind zwei Elemente (Größen, Dinge) einem dritten gleich, dann sind sie auch untereinander gleich; aus a D b und b D c folgt a D c. Aus dem nullten Hauptsatz kann man aber schlussfolgern: Es gibt eine Größe (nämlich die Temperatur), deren Gleichheit in zwei Systemen ein Maß dafür ist, dass sich diese Systeme im thermischen Gleichgewicht befinden. Der Satz drückt einen unmittelbar experimentell nachprüfbaren Tatbestand aus. Stellen wir uns in Abb. 1.1 die drei Systeme als gasgefüllte Zylinder vor, die mit einem verschiebbaren Kolben verschlossen sind. Wir wollen annehmen, dass das mittlere System B im Vergleich zu A und C sehr groß ist. Der Gasdruck soll in allen drei Systemen gleich sein und zwar praktisch gleich dem Außendruck, wenn wir vom Gewicht des Kolbens absehen. Bringen wir nun zwei Systeme in Berührung und warten eine Weile, werden sich die Gasvolumina und damit die Kolbenstände ändern. Wenn sie sich nicht mehr ändern, sagen wir, die Systeme sind im thermischen Gleichgewicht. Beim mittleren großen System wird dabei die Volumenänderung gegenüber der in den kleinen Systemen vernachlässigbar klein sein. Wir bringen auf diese Weise A mit B und C mit B ins thermische Gleichgewicht. Dann besagt unser Satz, dass wir den Versuch mit A und C nicht mehr durchzuführen brauchen. Wenn A und C in innige Berührung

2

1 Theoretische Grundlagen

A

B

Abb. 1.1

C

Erläuterung des nullten Hauptsatzes der Thermodynamik.

gebracht werden, tritt keine Volumenänderung mehr ein. Die beiden Systeme sind schon im thermischen Gleichgewicht. Daraus können wir schließen, dass das thermische Gleichgewicht durch die Gleichheit einer thermodynamischen Zustandsgröße gekennzeichnet wird, die sich bei der Berührung zweier Systeme von selbst einstellt. Wir nennen diese Größe Temperatur. Der nullte Hauptsatz kann kurz so formuliert werden: Zwei Systeme sind im thermischen Gleichgewicht, wenn sie dieselbe Temperatur haben, oder noch kürzer: „Die Temperatur ist eine Zustandsgröße.“ Damit ist noch keine Maßeinheit für die Temperatur festgelegt worden. Es ist nur ein Kriterium dafür angegeben worden, wann zwei Temperaturen gleich oder verschieden sind. Bis hierher kann man sich im Prinzip die gewohnte Temperaturskala nach Celsius verwendet denken. Der obige Gedankenversuch bedeutet, dass sich bei dem innigen Berühren zweier Systeme die Temperatur in beiden Systemen ausgleicht, und dass sich dabei (bei konstantem Druck) das Volumen gesetzmäßig ändert. Die Temperatur ist eine Funktion der beiden anderen thermodynamischen Zustandsgrößen Druck und Volumen. Eine solche Gleichung, die für einen beliebigen Stoff eine funktionale Beziehung zwischen dem Druck p, dem Volumen v und der Temperatur t herstellt, heißt thermische Zustandsgleichung. Wir könnten den nullten Hauptsatz auch so formulieren: Für jeden Stoff existiert eine thermische Zustandsgleichung. Die Stoffe mit der einfachsten thermischen Zustandsgleichung sind die idealen Gase. Der ideale Gaszustand ist ein Grenzzustand, dem jedes Gas zustrebt, wenn sein Druck niedrig und seine Temperatur hoch genug wird, d. h. wenn sein Volumen möglichst groß wird, wenn also die Gasmoleküle eine möglichst große Entfernung voneinander haben, so dass sie sich nicht mehr gegenseitig beeinflussen können. Die thermische Zustandsgleichung idealer Gase lautet: m RT : (1.1) pv D M

3

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung

Darin bedeutet m die Masse und M die molare Masse des Gases. R ist eine universelle Konstante, die Gaskonstante. T ist die absolute Temperatur. Es gilt, wenn t die Celsiustemperatur ist: T D t C 273;15 : Die Gleichung (1.1) ist nicht von vornherein in dieser allgemeinen Form entstanden, sondern sie enthält drei empirische Gesetze: 1. Das Gesetz von Boyle-Mariotte, es lautet für dT D 0 pv D const: 2. Das Gesetz von Gay-Lussac, es lautet für dp D 0   t : v D v0  1 C 273;15

(1.2)

(1.3)

v0 bedeutet in (1.3) das Volumen bei der Temperatur t D 0 und bei dem jeweiligen konstant gehaltenen Druck. Führt man in (1.3) die obige Definition von T ein und setzt man T0 bei t D 0, lautet (1.3): v D v0 

T : T0

(1.4)

Kombiniert man (1.2) mit (1.4), erhält man pv D const: (1.5) T In (1.5) ist schon der Zusammenhang zwischen pv und T enthalten, nur die Abhängigkeit von der Masse und der Art des Gases, wie sie durch (1.1) ausgedrückt wird, fehlt noch. Leider scheint es oft üblich zu sein, die Gasgleichung nur in der Form (1.5) zu behandeln und die Form (1.1) nicht zu verwenden. Das ist bedauerlich, da die Gaskonstante R unbedingt berücksichtigt werden muss. 3. Mit dem Avogadro’schen Gesetz kommt man schließlich zur Gleichung (1.1). Es besagt: Bei gleichem Druck und gleicher Temperatur sind im gleichen Volumen gleich viele Moleküle eines idealen Gases. Die Konstante in (1.5) hängt nur von der Molekülzahl N ab und zwar ist sie ihr proportional, da sich z. B. bei Verdopplung des Volumens (bei konstantem T und p) auch die Molekülzahl verdoppelt. Der Proportionalitätsfaktor ist die Boltzmannkonstante k, die in vielen Gebieten der Physik eine große Rolle spielt. (1.5) lautet mit dem Avogadro’schen Gesetz: pv D k N : (1.6) T N ist normalerweise eine sehr große und k eine sehr kleine Zahl. Man erhält gebräuchlichere Größenordnungen, wenn man die rechte Seite von (1.6) mit der Avogadro’schen Zahl NA multipliziert und dividiert und für N=NA die Molzahl n einführt: pv m D k  NA  n D R  : (1.7) T M

4

1 Theoretische Grundlagen

(1.7) stimmt mit (1.1) überein, wenn man k  NA D R und m=M D n setzt. Für Berechnungen sind zu berücksichtigen: NA D 6;0220142  1023 mol1

(1.8)

R D 8;3143 J=.mol  K/ D 8314;3 Pa  dm3 =.mol  K/ k D 1;38065  10

23

(1.9)

J=K :

(1.10)

Führt man in (1.7) für v=n die Bezeichnung Molvolumen V ein, lautet die Gasgleichung: pV D RT :

(1.11)

Größen, die auf 1 Mol bezogen sind, werden in der Regel mit großen Buchstaben geschrieben, während für die auf eine beliebige Stoffmenge bezogenen Größen kleine Buchstaben verwendet werden. Solche Größen, wie das Volumen v, die der Molzahl bei dp D 0 und dT D 0 proportional sind, heißen extensive Zustandsgrößen. Größen, die nicht von der Stoffmenge abhängen, wie Druck und Temperatur, heißen intensive Zustandsgrößen. Unter Normalbedingungen (p D 101 325 Pa; T D 273;15 K) ist V D Vm D 22;414 dm3 =mol :

(1.12)

Leider ist es üblich, den Begriff des „Molvolumens“ mit der Zahl 22;414 dm =mol zu identifizieren, obwohl es sich dabei um ein spezielles Molvolumen, nämlich das idealer Gase unter Normalbedingungen, handelt. Das Molvolumen idealer Gase bei beliebiger Temperatur und beliebigem Druck ist 3

V D

RT : p

(1.13)

Auch für kondensierte Phasen (feste und flüssige Stoffe) lässt sich das Molvolumen angeben: V D

M '

.' W Dichte des Stoffes/ :

(1.14)

Danach ist z. B. das Molvolumen von Wasser VWasser  18 cm3 =mol. Der Vergleich mit (1.12) zeigt, dass es etwa um den Faktor 1000 kleiner ist (! 0;018 dm3 =mol) als das Molvolumen idealer Gase unter Normalbedingungen. In der unterschiedlichen Größe des Molvolumens liegt der wesentliche Unterschied zwischen kondensierten Phasen und Gasen. Oben wurde gesagt, dass (als Konsequenz des nullten Hauptsatzes) für jeden Stoff eine thermische Zustandsgleichung existiert. Hier sollen aus dieser Tatsache einige allgemeine Schlüsse gezogen werden. Für die Zustandsgleichung wollen wir die Variablen V;p und T verwenden. Die Zustandsgleichung wird üblicherweise in einer von zwei Formen geschrieben; entweder man stellt V als Funktion von p und T dar oder p als Funktion von V und T . Die dritte Möglichkeit kommt praktisch nicht vor. Diese doppelte Zahl der unabhängigen Veränderlichen (pT bzw. V T ) zieht sich durch die gesamte Thermodynamik hindurch. Da es bequemer ist, mit einer statt mit zwei Variablen zu arbeiten, wählt man als zweite im Allgemeinen diejenige, die bei dem untersuchten Vorgang konstant bleibt und nur die Rolle eines Parameters spielt. Das Variablenpaar V T wird daher bei Vorgängen gewählt, die bei konstantem Volumen (isochor) ablaufen. Das können nur Vorgänge in Systemen sein, die eine Gasphase enthalten, denn bei kondensierten Phasen lässt sich das Volumen nicht konstant halten. Weitaus häufiger sind aber in der physikalischen Chemie die Vorgänge, die bei konstantem Druck (isobar) ablaufen. In diesen Fällen wird das unabhängige Variablenpaar pT verwendet.

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung

5

Ändert sich bei einem Vorgang die Temperatur um einen kleinen Betrag dT und der Druck um dp, lässt sich die damit verbundene Änderung des Molvolumens dV näherungsweise nach     @V @V dT C dp (1.15) dV D @T p @p T ausrechnen. In der Theorie der Funktionen zweier Veränderlicher heißt dV das vollständige Differenzial der Funktion V D f .T;p/. Zwischen den beiden in (1.15) auftretenden partiellen Ableitungen besteht folgende wichtige Beziehung, der so genannte Schwarz’sche Satz:     @ @V @ @V D : (1.16) @p @T p @T @p T Dieser Satz stellt eine fast unerschöpfliche Quelle für neue thermodynamische Formeln dar. Man definiert die beiden folgenden thermischen Koeffizienten: Den isobaren Ausdehnungskoeffizienten   1 @V : ˛D V @T p Die isotherme Kompressibilität   1 @V D : V @p T Der isobare Ausdehnungskoeffizient ist ein Maß für die relative Volumenänderung bei einer Temperaturänderung um 1 K. Früher bezog man ihn auf das Anfangsvolumen V0 bei der Temperatur T0 und dem Druck p0 . Heute ist es gebräuchlicher, ihn auf das jeweilige Volumen V zu beziehen. Das ist in mancherlei Hinsicht zweckmäßiger. Der Ausdehnungskoeffizient ist im Allgemeinen positiv. Einer der seltenen Ausnahmefälle ist allgemein bekannt und praktisch äußerst wichtig: Für Wasser zwischen 0 und 4 ı C ist dieser Koeffizient negativ. Die isotherme Kompressibilität ist ein Maß für die mit einer Druckänderung verbundenen relativen Volumenänderung. Die partielle Ableitung . @V / ist immer negativ, da das Volumen @p T bei Druckzunahme ausnahmslos abnimmt. Wegen des Minuszeichens in der Definitionsgleichung der Kompressibilität ist  stets positiv. Für ideale Gase ist nach der Gasgleichung ˛D

nR 1 p  D nRT p T

und D

p  nRT



nRT pp

 D

1 : p

(1.17)

Nach der älteren Definition für ˛ hätte sich ergeben: ˛ D 1=273;15 K1 D 1=T0 . Da dieser Wert konstant ist, wird gelegentlich noch die ältere Definition von ˛ verwendet. Die Definition dieser beiden Koeffizienten ist nicht nur auf Gase, sondern auch auf beliebige Stoffe anwendbar. So ist für Flüssigkeiten und Festkörper der Ausdehnungskoeffizient etwa 101 –102 des Ausdehnungskoeffizienten idealer Gase; die Kompressibilität der kondensierten Stoffe ist dagegen 105 –106 der Kompressibilität idealer Gase. Außer der Kleinheit des Molvolumens zeigt sich noch eine weitere typische Eigenschaft kondensierter Stoffe. Sie sind praktisch inkompressibel. Nach dem Schwarz’schen Satz besteht zwischen ˛ und  folgende Beziehung, die man nach elementarer Rechnung erhält:     @˛ @ D : (1.18) @p T @T p

6

1 Theoretische Grundlagen

Mittlerer linearer Ausdehnungskoeffizient ˛ (in 106 K1 ) zwischen 0 und 100 °C.

p (bar)

b)

Aluminium Beton Chromstahl Diamant Eisen Glas Graphit Kupfer

23,1 12 10,0 1,3 11,9 9 2 16

Platin Polyamide PVC Porzellan Selen Silber Silizium Stahl

9 110 80 3 66 19 2 16

Abb. 1.2 Thermischer Ausdehnungskoeffizient ˛ a) einiger Gase in Abhängigkeit vom Druck, b) einiger Feststoffe zwischen 0 und 100 °C.

Verwendet man die thermische Zustandsgleichung in der Form p D f .T;V /, lässt sich noch ein weiterer Koeffizient, der isochore Druckkoeffizient ˇ, definieren:   1 @p : (1.19) ˇD p @T V ˇ lässt sich durch ˛ und  ausdrücken. Man erhält ˇD

1˛ : p

(1.20)

In Tabellenwerken sind deshalb nur ˛ und  für die verschiedenen Stoffe aufgeführt. Für ideale Gase ist ˇ D 1=T . Das thermische Verhalten eines Stoffes kann einerseits durch eine vollständige thermische Zustandsgleichung beschrieben werden. So verfährt man bei Gasen, gelegentlich auch bei Flüssigkeiten. Andererseits kann es durch die beiden Koeffizienten ˛ und  sowie einem Wert V0 (Volumen bei einem beliebigen Druck p0 und einer beliebigen Temperatur T0 / wiedergegeben werden. Setzt man diese Größen in (1.15) ein, zeigt die Mathematik Möglichkeiten, wie man derartige vollständige Differenziale integrieren kann. ˛ und  sind im Allgemeinen wieder Funktionen von T und p (Abb. 1.2). Dabei ist nach (1.18) die Temperaturabhängigkeit von  durch die Druckabhängigkeit von ˛ schon mitbestimmt. Um das thermische Verhalten eines beliebigen Stoffes vollständig zu beschreiben, muss man folgende Größen kennen: ˛.T;p/

.p/

V0 :

(I)

Nun soll ein weiteres Beispiel für eine thermische Zustandsgleichung bei realen Gasen behandelt werden. Das Verhalten der realen Gase (Gase unter höherem Druck und bei niedrigen Temperaturen) wird durch die van-der-Waals’sche Gleichung befriedigend wiedergegeben:  a  (1.21) p C 2  .V  b/ D RT : V

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung

7

Diese Gleichung ähnelt im Aufbau der idealen Gasgleichung. Sie unterscheidet sich von ihr nur durch die beiden Zusatzglieder a=V 2 und b, die das reale Verhalten des Gases wiedergeben. a und b sind individuelle Stoffkonstanten, die von Gas zu Gas verschieden sind und in Tabellen nachgeschlagen werden können. Für n Mole lautet Gleichung (1.21), in dem man V D v=n setzt: ! an2 (1.22) p C 2  .v  nb/ D nRT : v (1.21) lässt sich einfach nach p auflösen: a RT  2: (1.23) V b V Nach T ist (1.21) praktisch schon aufgelöst. Schwierigkeiten macht nur die Auflösung nach V . Die Gleichung ist in V kubisch. Wenn das Gas nicht allzu real ist, d. h. wenn es sich in seinem Verhalten nicht allzu stark von einem idealen Gas unterscheidet, empfiehlt sich folgendes Näherungsverfahren: Man löst nach V auf, das neben dem b steht, und erhält pD

V D

RT Cb: p C Va2

(1.24)

In dieser Gleichung kommt allerdings V auch auf der rechten Seite vor. Man setzt rechts ein V0 ein (etwa wie man es aus der idealen Gasgleichung erhalten würde) und erhält nach (1.24) links V1 . Damit geht man wieder in die rechte Seite der Gleichung ein und erhält ein V2 . Wenn das Gas nicht zu real war, dann konvergiert die Folge der V0 ;V1 ;V2 usw. gegen das wahre Molvolumen V des realen Gases. Dieses Verfahren ist ein Spezialfall des allgemeinen Iterationsverfahrens der Mathematik zur Lösung komplizierter Gleichungen. Die beiden van der Waals’schen Konstanten a und b drücken die eigentlichen realen Eigenschaften des Gases aus, nämlich die Wechselwirkung der Gasmoleküle untereinander. Dabei ist b ein Maß für das Eigenvolumen der Gasmoleküle eines Mols. Eine genaue Rechnung zeigt, dass es das 4-fache Eigenvolumen sämtlicher Gasmoleküle eines Mols ist, das so genannte Kovolumen. Wenn wir annehmen, dass die Gasmoleküle Kugeln mit dem Radius r sind, ist 4  NA  r 3 : (1.25) 3 Da jedes Gasmolekül durch sein Eigenvolumen die Bewegung der anderen Gasmoleküle behindert, steht den anderen Molekülen nur noch ein geringerer Raum zur Verfügung. Daher muss also V b in der Zustandsgleichung stehen (an Stelle von V in der idealen Gasgleichung). Das Glied a=V 2 ist ein Maß für die zwischenmolekularen Anziehungskräfte. Ihrer Natur nach sind diese Anziehungskräfte elektrischer Herkunft. Es sind Kräfte, die zwischen natürlichen oder induzierten Dipolen wirken. Der Charakter der van der Waals’schen Kräfte wurde von London aufgeklärt. Diese Kräfte wirken dort proportional r 7 (r D Entfernung zwischen den Gasmolekülen). Auf eine diesbezügliche Ableitung wird hier verzichtet. Häufig benutzt wird das Lennard-Jones-Potenzial (Abb. 1.3a)  ˘ .r / D 4" . =r /12  . =r /6 : b D 4

" und sind stoffspezifische und weitgehend temperaturunabhängige Konstanten, die experimentell, z. B. aus den Virialkoeffizienten, bestimmt werden können. Das Glied mit negativem Vorzeichen stellt die London’sche Anziehungskraft bzw. deren Potenzial dar, während die Abstoßung wegen der hohen Potenz von (1=r ) erst bei starker Annäherung wirksam wird. Man kann auch versuchen, sich ein empirisches Bild von den Abweichungen des realen

1 Theoretische Grundlagen

Abstoßung über

TB

pV

wiegt

potenzielle Energie

8

Entfernung

Anziehung überwiegt p

Abb. 1.3 a) Änderung der potenziellen Energie zweier Moleküle eines realen Gases als Funktion ihres Abstandes (Lennard-Jones-6-12-Potenzial); b) pV-p-Isothermen des realen Gases CO2 .

Gases vom Verhalten idealer Gase zu machen, indem man die Isothermen beider Gase vergleicht. Besonders instruktiv wird dieser Vergleich, wenn man die Isothermen in einem pV -p-Diagramm aufträgt (Abb. 1.3b). Diese Art der Darstellung stammt von Amagat. In einem solchen Diagramm wären die Isothermen eines idealen Gases waagerechte Geraden. Zeichnet man die Isothermen eines schwach realen Gases ein (etwa bis zu Drücken von 50 bar), erhält man näherungsweise Geraden verschiedener Steigung, die im gleichen Punkt in die pV -Achse einmünden wie die idealen Isothermen, und zwar in RT . Bei tiefen Temperaturen ist die Steigung dieser Geraden negativ, bei hohen Temperaturen positiv. Dazwischen gibt es eine Temperatur, bei der die Gerade waagerecht einmündet, bei der also bis zu relativ hohen Temperaturen das Boyle-Mariotte’sche Gesetz erfüllt ist. Diese Temperatur heißt Boyle-Temperatur TB . Auf Grund dieser empirisch gewonnenen Isothermen kommt man zu einer Zustandsgleichung der Form pV D RT C B.T /p :

(1.26)

B.T / nennt man den zweiten Virialkoeffizienten. Bei höherem Druck biegen die Isothermen in Abb. 1.3 nach oben um. Das kann dadurch wiedergegeben werden, dass man in (1.26) einen Summanden C.T /p 2 hinzufügt. C.T / ist der dritte Virialkoeffizient. Die Temperaturabhängigkeit der Virialkoeffizienten muss empirisch ermittelt werden. Auf diese Weise kann die Zustandsgleichung mit zusätzlichen Summanden weiter verfeinert und dem wirklichen Verhalten realer Gase beliebig gut angepasst werden. Auch die van der Waals’sche Gleichung lässt sich in die Virialform umschreiben. Das soll hier nur bis zum zweiten Virialkoeffizienten durchgeführt werden. Wenn man in (1.21) die Klammern links ausmultipliziert, gelangt man über ab a a C 2 zu pV  RT C bp  pV D RT C bp  V V V

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung

9

und mit 1=V D p=RT zu  a  p: (1.27) pV  RT C b  RT Aus (1.27) erhält man sofort die Boyle-Temperatur TB D a=Rb. Man könnte auch die höheren Virialkoeffizienten aus der van der Waals’schen Gleichung bestimmen. Die van der Waals’schen Konstanten a und b lassen sich aus der kritischen Temperatur Tk und dem kritischen Druck pk des betreffenden Gases berechnen: a D 0;422 

R2  Tk2 I pk

b D 0;125 

R  Tk : pk

Gleichung (1.27) bedeutet nicht, dass in jedem Fall der zweite Virialkoeffizient die Form (b  a=RT ) hat. Das ist nur ein Ausdruck für das van der Waals’sche Virial. Es sind noch andere Formeln für den zweiten Virialkoeffizienten vorgeschlagen worden, z. B. von Berthelot. Aus seiner Zustandsgleichung  a   .V  b/ D RT (1.21-1) pC TV2 folgt zunächst pV D RT C bp  und mit

ab TV 2

ab a C TV TV2

 0 ergibt sich

 a  a  RT C b  p: (1.27-1) TV RT 2 Mit (1.21) bzw. (1.27) kann man die drei Koeffizienten ˛, ˇ und  berechnen. Dabei ergibt sich, dass ˛ und ˇ bei realen Gasen nicht mehr den gleichen Wert haben (im Gegensatz zu idealen Gasen). Auch sind die Koeffizienten selbst von denen der idealen Gase verschieden. Der Leser möge die elementaren Rechnungen selbst durchführen. Es hat langer, mühsamer Untersuchungen bedurft, die Bedingungen für die Verflüssigung der Gase zu klären. Zu Beginn des 19. Jahrhunderts war es Faraday gelungen, eine Anzahl von Gasen, wie Chlor, Schwefelwasserstoff, Schwefeldioxid und Ammoniak, teils durch Drucksteigerung, teils durch Abkühlung in den flüssigen Zustand zu verwandeln. 1823 konnte er auch Kohlenstoffdioxid durch einen Druck von 37 bar bei 0 ı C verflüssigen. Trotz Anwendung sehr hoher Drücke (> 3000 bar) gelang es dagegen lange nicht Sauerstoff, Stickstoff und Wasserstoff zu verflüssigen. Die Edelgase, bei denen die Verflüssigung ebenfalls mit Schwierigkeiten verbunden ist, waren zu jener Zeit noch nicht bekannt. Aufgrund dieser Feststellungen kam man damals zu dem Schluss, dass es zwei verschiedene Arten von Gasen gäbe: pV  RT C bp 

1. Gase, die durch Druckerhöhung bzw. Temperaturerniedrigung in den flüssigen Zustand übergeführt werden können, und 2. Gase, bei denen eine Überführung in den flüssigen Zustand auf keinen Fall möglich ist. Diese Gase wurden als permanente Gase bezeichnet. Heute weiß man, dass diese Unterscheidung nicht berechtigt war. Es gilt vielmehr: Alle Gase können in den flüssigen Aggregatzustand übergeführt werden. Wenn man den durch die universelle Gasgleichung pV D nRT ausgedrückten Zusammenhang zwischen den Zustandsgrößen V , p und T graphisch darstellt, ergibt sich Abb. 1.4a.

10

1 Theoretische Grundlagen

p

p

T1 < T2 < T3

T3 T2 T1

v

Abb. 1.4

v

Isothermen eines a) idealen Gases b) des realen Gases CO2 .

Zu jeder Temperatur gehört eine Hyperbel, die für diese Temperatur den Zusammenhang zwischen V und p wiedergibt. Bei einer Verringerung der Temperatur rückt die Hyperbel dichter an den Koordinatenanfangspunkt heran. Diese Kurven heißen Isothermen des idealen Gases. In ähnlicher Weise können die Isothermen für das reale Gas Kohlenstoffdioxid gezeichnet werden (Abb. 1.4b). Solange die Temperatur genügend hoch ist, erhält man auch hier gleichseitige Hyperbeln. Bei niedrigeren Temperaturen weichen die Isothermen aber stark von dieser Form ab. Betrachtet man die Isotherme für T D 10 ı C, zeigt diese einen auf den ersten Blick recht merkwürdigen Verlauf. Es ist das Verdienst des Physikers Thomas Andrews (1813–1885), die Verhältnisse durch Untersuchungen am Kohlenstoffdioxid geklärt zu haben. Wie Abb. 1.4b zeigt, können in dem Kurvenverlauf drei Bereiche unterschieden werden: 1. In ihrem rechten Teil zeigt die Kurve, dass eine bei konstanter Temperatur durchgeführte Volumenverringerung mit einer Druckzunahme verbunden ist, die etwa dem Boyle-MariotteGesetz entspricht, d. h. die zugehörige Isotherme ist in diesem Bereich, der bis zum Punkte P reicht, mit großer Annäherung ein Hyperbelstück. 2. Wenn man vom Punkte P aus das Volumen weiter verringert, ist dies nicht mehr mit einer Druckzunahme verbunden, sondern der Druck bleibt konstant. Dies bedeutet, dass die Isotherme parallel zur Abszissenachse verläuft, bis der Punkt Q erreicht ist. In dem Gebiet zwischen P und Q geht das Gas nach und nach in den flüssigen Zustand über. Beim Erreichen des Punktes Q ist das gesamte Gas flüssig geworden. 3. Bei einer weiteren Volumenverringerung steigt der Druck stark an. Die Kurve zeigt einen entsprechend steilen Verlauf. Dies entspricht der Tatsache, dass alle Flüssigkeiten schwer zusammendrückbar sind. In Abb. 1.4b ist eine weitere Isotherme für T D 20 ı C gezeichnet. Man erkennt, dass sie einen ähnlichen Verlauf wie die Isotherme für T D 10 ı C aufweist. Der Übergang in den flüssigen Zustand erfolgt allerdings erst bei einem höheren Druck und der horizontal verlaufende Kurventeil ist kürzer. Nach einer vollständigen Verflüssigung steigt die Kurve auch hier wieder steil an. Bei einer weiteren Erhöhung der Temperatur wird der horizontale

1.1 Nullter Hauptsatz der Thermodynamik und die thermische Zustandsgleichung

11

Teil der Isothermen immer kürzer, bis er schließlich bei der Temperatur TK D 31;1 ı C zu einem Punkt K zusammenschrumpft. Die Isotherme hat jetzt nur noch einen Wendepunkt mit horizontal verlaufender Tangente. Physikalisch bedeutet dies, dass bei fortschreitender Volumenverminderung eine dauernde Drucksteigerung erfolgt, dass aber keine Verflüssigung eintritt. Bei noch höheren Temperaturen steigen die Isothermen bei Volumenverringerung dauernd an; es existiert jetzt auch keine horizontale Wendetangente mehr. Die Folge davon ist, dass das Gas durch Drucksteigerung nicht mehr verflüssigt werden kann. Das Ergebnis der Untersuchungen von Andrews war, dass Kohlenstoffdioxid nur unterhalb einer Temperatur von 31;1 ı C durch Drucksteigerung in den flüssigen Zustand überführt und dass oberhalb dieser Temperatur auch bei Anwendung größter Drücke keine Verflüssigung erreicht werden kann. Die betreffende Temperatur nennt man die kritische Temperatur Tk und den zugehörigen Druck den kritischen Druck pk . Die durch den Punkt K gehende Isotherme heißt kritische Isotherme. Die gestrichelte Kurve in Abb. 1.4b verbindet die Knickstellen der Isothermen miteinander. Man nennt diese Kurve die Grenzkurve und das von ihr eingeschlossene Gebiet das Sättigungsgebiet. Es umfasst den Bereich, in dem Flüssigkeit und Dampf nebeneinander bestehen können. Insgesamt können vier Bereiche unterschieden werden:  Bereich A umfasst das Gebiet oberhalb der kritischen Isotherme. Hier kann Kohlenstoffdioxid nur im gasförmigen Zustand existieren.  Bereich B wird von der kritischen Isotherme und dem rechten Teil der Grenzkurve begrenzt. Dieses Gebiet ist das des ungesättigten Dampfes.  Bereich C ist das oben schon erwähnte Sättigungsgebiet, in dem Flüssigkeit und gesättigter Dampf gleichzeitig vorkommen.  Bereich D wird vom linken Teil der kritischen Isotherme bis zum Punkte K und dem linken Teil der Grenzkurve begrenzt. Hier kann Kohlenstoffdioxid nur als Flüssigkeit existieren. In den Bereichen A und B ist der Stoff im gasförmigen Zustand vorhanden. Der Unterschied besteht darin, dass in dem Bereich A durch Drucksteigerung keine Verflüssigung erreicht werden kann, während dies im Bereich B möglich ist. Man hat deshalb vorgeschlagen, im Bereich A von Gasen und im Bereich B von Dämpfen zu sprechen. Die van der Waals’sche Gleichung (1.21) ist nicht nur eine Zustandsgleichung für reale Gase; sie kann auch als Zustandsgleichung von Flüssigkeiten verwendet werden. Allerdings ändern sich dann die Größenordnungen der einzelnen Glieder wesentlich. Wir betrachten einen Dampf im Gleichgewicht mit seiner flüssigen Phase. Beide haben dann den gleichen Druck und die gleiche Temperatur. Auf den Dampf kann die van der Waals’sche Gleichung, als Gleichung für reale Gase, angewendet werden. Das Molvolumen der Flüssigkeit ist aber nach dem oben Gesagten etwa um den Faktor 1000 kleiner als das Molvolumen des Dampfes, der Binnendruck also um den Faktor 106 größer. Während also beim realen Gas der Binnendruck ein kleines Korrekturglied gegenüber dem Druck p ist, wird bei Flüssigkeiten p selbst vernachlässigbar klein gegenüber dem Binnendruck und man könnte es ohne wesentlichen Verlust an Genauigkeit ganz aus der Zustandsgleichung herauslassen. Dadurch wird nochmals der Sachverhalt ausgedrückt, dass Flüssigkeiten praktisch inkompressibel sind. Außerdem folgt aus dem Größenverhältnis von p und Binnendruck, dass die Flüssigkeit praktisch nur durch den Binnendruck (der hier in der Größenordnung einiger tausend bar liegt) zusammengehalten wird und dass der Atmosphärendruck zum Zusammenhalt der Flüssigkeit nichts Wesentliches mehr beiträgt. V und b sind bei Flüssigkeiten etwa gleich groß, so dass V  b sehr klein wird.

12

1 Theoretische Grundlagen

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung Der erste Hauptsatz ist der allgemeine Energiesatz der Physik, ausgesprochen für die besonderen Bedürfnisse der chemischen Thermodynamik. Die chemische Thermodynamik spricht nun nicht von Energie schlechthin, sondern von innerer Energie U . Die innere Energie ist die Gesamtenergie des Systems, abzüglich  der kinetischen Energie seiner Schwerpunktbewegung (z. B. ist es für den Ablauf chemischer Reaktionen ohne Bedeutung, ob eine Gasreaktion in einem feststehenden Behälter oder in einem fliegenden Luftballon abläuft.)  und abzüglich seiner potenziellen Energie, soweit sie von äußeren Feldern herrührt. (Es ist für eine Lösungsreaktion unerheblich, ob das Reaktionsgefäß im Keller oder im vierten Stockwerk steht, obwohl dort die potenzielle Energie im Gravitationsfeld größer ist.) Man kann die innere Energie als Summe sämtlicher Einzelenergien aller Moleküle im System zuzüglich der potenziellen Wechselwirkungsenergien, die von den zwischenmolekularen Kräften herrühren, definieren. Der erste Hauptsatz sagt aus, wie sich diese innere Energie dadurch ändern kann, dass Energie über Grenzen des Systems hinweg strömt. Dieser Energiestrom kann in Form eines Wärmestromes ıQ in Erscheinung treten, wenn zwischen System und Umgebung eine Temperaturdifferenz besteht. Wenn diese Temperaturdifferenz differenziell klein ist, nennt man den Wärmestrom reversibel (Beim reversiblen Wärmestrom fließt die Energie unendlich langsam. Der Energiestrom kann jederzeit angehalten und durch Umkehren des Vorzeichens von T in umgekehrte Richtung geleitet werden.). Außerdem kann Energie ausgetauscht werden, indem eine Arbeit geleistet wird. Die in diesem Zusammenhang wichtigste Form einer Arbeit ist die Volumenarbeit ıW . F ıWVol. D F  ds D   A  ds D p  dV : A Sie wird z. B. geleistet, wenn sich ein Gas in einem Zylinder ausdehnt und einen Kolben in dem Zylinder nach oben schiebt. Dann gibt das Gas Energie in Form von Arbeit an die Umgebung ab. Wenn der Außendruck größer als der Innendruck ist, wird der Kolben in den Zylinder hineingeschoben. Man sagt, die Umgebung leistet an dem Gas Arbeit. Wenn der Druckunterschied zwischen dem Gasdruck und dem Außendruck differenziell klein ist, nennt man die Arbeit reversibel. Formelmäßig kann die reversible Volumenarbeit durch ıWVol. D p  dV

(1.28)

wiedergegeben werden (Abb. 1.5). Die Reversibilität der Arbeitsleistung macht sich darin bemerkbar, dass für p der Gasdruck nach der thermischen Zustandsgleichung des Gases eingesetzt werden kann. Wird das Volumen von V1 auf V2 verändert, so ergibt sich durch Einsetzen der Zustandsgleichung idealer Gase und Integration unter Annahme isothermer Arbeitsleistung für den Betrag der geleisteten Arbeit an n Molen: Z2

Z2 ıW D 

1

Z2 pdV D nRT

1

dV V

1

Œn D R n .mol/I Änderung der Molzahlen gasiger Reaktanden V2 p1 D nRT ln : W2  W1 D W D W D nRT ln V1 p2

(1.29)

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung

13

F

A

ds

p

Abb. 1.5 Zur Erläuterung der reversiblen Volumenarbeit.

Es gibt noch andere Arten von Arbeit, die das System mit der Umgebung austauschen kann, z. B.: Mechanische Arbeit ıWmech. D FE  d sE D F  cos ˛  d sE FE W KraftI

sE W WegI

˛ W eingeschlossener Winkel

Spannungsarbeit ıWS D FES  d lE FES W ZugkraftI

lE W Länge

Oberflächenarbeit ıWO D  dA W Oberflächenspannung (bzw. Grenzflächenspannung)I A W Oberfläche (bzw. Grenzfläche) Osmotische Arbeit ıWos. D   dV  W osmotischer DruckI

V W Volumen

Chemiosmotische Arbeit1 ıWATP D HC  dnATP HC W ProtonengradientI

1

nATP W Stoffmenge ATP

HC D F  E C 2;303  R  T  pH (F D Faraday-Konstante, pH D Protomotorische Kraft).

14

1 Theoretische Grundlagen

Magnetische Arbeit2 ıWmag. D HE  d.BE  V / HE W Magnetische FeldstärkeI

BE W Magnetische Flussdichte (Induktion)I

V W Volumen

3

Elektrische Arbeit

E V / ıWel. D EE  d.D EE W Elektrische FeldstärkeI

E W Elektrische FlussdichteI D

V W Volumen

Elektrochemische Arbeit ıWel./ch. D E  dQ E W Elektromotorische Kraft (EMK) D Spannung eines galvanischen ElementesI Q W elektrische Ladung Allgemein kann man schreiben: ıWrev D#i  dLi : Man nennt #i den Arbeitskoeffizienten der Arbeitsart i (intensive Größe) und Li die Arbeitskoordinate der Arbeitsart i (extensive Größe). Der erste Hauptsatz lässt sich kurz formulieren: dU D ıQ C ıW dU D ıQ  pdV :

(1.30) (1.31)

Die Formulierung des ersten Hauptsatzes in (1.30) setzt voraus, dass sich die innere Energie ausschließlich durch Arbeitsleistung und Wärmeaustausch ändern kann. An sich besteht noch eine weitere Möglichkeit: Wenn sich die Stoffmenge in dem thermodynamischen System ändert, führt jeder Teil des weggehenden Stoffes einen bestimmten Anteil an innerer Energie mit sich, andererseits bringt hinzukommender Stoff auch seine eigene spezifische innere Energie mit. Solche thermodynamischen Systeme, in denen Vorgänge mit Stoffänderung ablaufen können, heißen offene Systeme. Das Gegenteil, also die bisher behandelten Fälle, sind geschlossene Systeme. Das ist genau zu unterscheiden von abgeschlossenen Systemen. Bei abgeschlossenen Systemen wird neben dem Stoffaustausch auch der Energieaustausch mit der Umgebung unterbunden. Ist nur der Energieaustausch in Wärmeform nicht möglich, so

2

E  dB E und E E  dD E bezeichnen so genannte Arbeitsdichten. Mit B E D 0 H E CM E Die Terme H E D magnetische Volumenpolarisation; 0 D magnetische Feldkonstante) erhält man: (M ıWmag. E dB E D 0 H E2 E dH E CH E dM E DH E dM E C 0 d H DH V 2 E dB E D Bd E H E C d.H E B/ E D M E dH E C 0 d H E 2 C d.H EM E /: DH 2

3

E  dB E und E E  dD E bezeichnen so genannte Arbeitsdichten. Mit D E D "0 E E C PE Die Terme H (PE D elektrische Volumenpolarisation, "0 D elektrische Feldkonstante) erhält man: ıWel. E D E D "0 Ed E E E C Ed E PE D Ed E PE C "0 d E E2 D Ed V 2 E D E D Dd E E E C d.E E D/ E D PE d E E C "0 d E E 2 C d.E E PE /: D Ed 2

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung

15

Umgebung

Chemisches System

Stoffmenge n = m/M = cV = ϕV/M

Gebundene Energie Wärme TdS = Cx dT = δQ

Zustandsänderung Freie Energie Maximale Arbeit dF = δWVol. + dG System:

offen geschlossen abgeschlossen adiabatisch

: : : :

Stoff- und Energieaustausch nur Energieaustausch kein Austausch kein Wärmeaustausch

Abb. 1.6 Verdeutlichung des Stoff- und Energieaustausches eines chemischen Systems mit der Umgebung. (c: Stoffmengenkonzentration, C: Molwärme, F: Freie Energie, M: Molmasse, G: Freie Enthalpie, m: Masse, n: Stoffmenge, Q: Wärme, S: Entropie, T: Temperatur, V: Volumen, WVol. : Volumenarbeit, x: Variable (T, p), ': Dichte).

heißt das System adiabatisch abgeschlossen. Allgemein nennt man Vorgänge, für die ıQ D 0 ist, adiabatische Prozesse (Abb. 1.6). Offene Systeme spielen eine große Rolle bei der Anwendung der Thermodynamik auf lebende Organismen, da diese wegen ihres Stoffwechsels offene Systeme sind. Auch für die thermodynamische Berechnung von chemischen Produktionsprozessen spielen offene Systeme eine große Rolle, weil chemisch-technische Verfahren oft kontinuierlich durchgeführt werden, d. h. Ausgangsstoffe werden den Reaktoren kontinuierlich zugeführt, während gleichzeitig Fertigprodukte kontinuierlich entnommen werden. Die Theorie der offenen Systeme liegt vollständig entwickelt vor. Sie ist zusammen mit der Thermodynamik irreversibler Prozesse entstanden. Hier soll auf die offenen Systeme (mit Ausnahme beim zweiten Hauptsatz) nicht weiter eingegangen werden. Setzt man in (1.31) dV D 0 und löst nach ıQ auf, ergibt sich: ıQV D dU

.V D const./ :

(1.32)

Die Änderung der inneren Energie ist ein Maß für die bei isochoren Vorgängen ausgetauschte Wärme. Bei isochoren Reaktionen wird die Reaktionswärme bestimmt durch die Änderung der inneren Energie im Verlauf der Reaktion. Da aber (wie schon erwähnt) isobare Vorgänge bei weitem häufiger sind als isochore, ist es wünschenswert, mit einer Funktion zu arbeiten, deren Änderung bei konstantem Druck die ausgetauschte Wärme angibt. Das wird durch die Funktion H D U C pV

(1.33)

geleistet. Die Größe H nennt man Enthalpie. Um zu beweisen, dass die Änderung von H bei konstantem Druck der ausgetauschten Wärmemenge gleich ist, setzt man die nach U aufgelöste

16

1 Theoretische Grundlagen

Gleichung (1.33) in (1.31) ein; dann erhält man: dH  pdV  Vdp D ıQ  pdV :

(1.34)

Addiert man auf beiden Seiten pdV und löst nach dQ auf, ergibt sich: ıQ D dH  Vdp :

(1.35)

Setzt man hierin dp D 0, erhält man sofort die Behauptung: ıQp D dH

.p D const./ :

(1.36)

U und H sind, ebenso wie schon früher V , extensive Zustandsgrößen. Man gibt U gewöhnlich als Funktion von T und V an, H dagegen als Funktion von T und p. Jede der beiden Funktionen U D f .T;V / und H D f .T;p/ heißt kalorische Zustandsgleichung. Die beiden Formeln gehen mit der thermischen Zustandsgleichung auseinander hervor. Wegen der Bevorzugung der unabhängigen Variablen T und p ist H D f .T;p/ die wichtigere Form der kalorischen Zustandsgleichung. Man beherrscht das kalorische Verhalten eines Stoffes vollständig, wenn man dessen kalorische Zustandsgleichung kennt. Am übersichtlichsten wird wieder die Abhängigkeit von den unabhängigen Variablen, wenn man die kalorischen Zustandsgleichungen in Form vollständiger Differenziale schreibt:     @U @U dU D dT C dV (1.37) @T V @V T     @H @H dH D dT C dp : (1.38) @T p @p T

Die Bedeutung der Temperaturkoeffizienten @U und @H erkennt man, wenn man @T p @U @T V (1.32) und (1.36) berücksichtigt. Danach ist @T V die Wärmemenge, die man einem Mol des jeweiligen Stoffes .n D 1/ zuführen muss, um bei konstantem Volumen die Temperatur um 1 K zu steigern. nennt diese Größe Molwärme bei konstantem Volumen und kürzt sie mit

Man ist analog die Wärme, die man einem Mol des Stoffes .n D 1/ bei konstantem CV ab. @H @T p Druck zuführen muss, um die Temperatur um 1 K zu steigern. Das ist die Molwärme bei konstantem Druck Cp . Für ideale Gase ist Cp  CV D R :

(1.39)

Das erkennt man, wenn man in (1.33) pV durch RT ersetzt und nach T differenziert. Hierin ist die Gaskonstante in J=.mol  K/ zu verwenden. Man beachte aber, dass (1.39) nur für ideale Gase richtig ist; schon für reale Gase hat die Differenz einen anderen Wert und für kondensierte Stoffe beträgt Cp  CV nur etwa 1/10 des Wertes für ideale Gase. Für He als einatomiges ideales Gas ist z. B. R D Cp .20;78575 J=.mol  K//  CV .12;47145 J=.mol  K// D 8;3143 J=.mol  K/. Die Molwärmen der Stoffe zu kennen, ist wichtig. Aus ihren Zahlenwerten kann man Schlüsse auf die Struktur der jeweiligen Moleküle ziehen. Allerdings lässt sich praktisch nur Cp messen. Daher ist es weiter wichtig, eine Beziehung analog (1.39) zu kennen, die für einen beliebigen Aggregatzustand gültig ist. Bei Kenntnis des Molvolumens V , des isobaren Ausdehnungskoeffizienten ˛ und der isothermen Kompressibilität  kann mit (1.53) CV berechnet werden. Die Abb. 1.7 zeigt, in welchen Bereichen Werte der Molwärme für verschiedene Stoffe liegen und wie ihr Temperaturverlauf ist. Im Allgemeinen sind CV und Cp Funktionen von T und p. Mit steigendem Druck nehmen sie stets zu. Im Grenzfall idealer Gase kann CV und Cp nur eine Funktion von T sein, da Uid.Gas nicht von V und Hid.Gas nicht von p abhängen.

17

CV

6

12 11 10 9 8 7 6 5 4 3 2 1 0

CH4

CO2

5

H2S

Pb

H2O Cl2

H2

CV

Edelgase, Hg-Dampf

Ag

Cu

4

cal.

cal.

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung

Be

Fe

3 2 1

C (Diamant) 300

600

900

1200

0

T (K)

100

200

300

T (K) b

Abb. 1.7 Temperaturverlauf der Molwärmen bei p D 1 bar a) einiger Gase, b) einiger fester Elemente.

Nach Abb. 1.7a) ergeben sich im Temperaturbereich von 0 bis etwa 300 K für die Molwärmen drei Gruppen, in die sich alle Gase einordnen lassen. Bei einatomigen Gasen (z. B. Edelgase) sind die Molwärmen am kleinsten und temperaturunabhängig. Dort gilt (s. Gl. (1.39)) bei niedrigen Drücken CV D 3=2R D 3 cal=.molK/ D 12;47145 J=.molK/ bzw. Cp D 5=2R D 5 cal=.molK/ D 20;78575 J=.molK/. Die Molwärmen vieler zweiatomiger Gase betragen etwa CV D 5 cal=.molK/. Sie sind etwas von der Temperatur abhängig, nähern sich aber bei höheren Temperaturen konstanten Werten. Wasserstoff bildet eine Ausnahme, da sich zunächst ein Wert von konstant 5 cal=.molK/ findet, der unterhalb der Normaltemperatur auf 3 cal=.molK/ abfällt. Bei zweiatomigen Gasen mit großer Molmasse sowie allen drei- und mehratomigen Gasen hängen die Molwärmen stark von der Temperatur ab. Bei niedrigen Temperaturen nähern sich die Werte teils auf 5, teils auf 6 cal=.molK/. Allgemein sind die Molwärme und ihre Temperaturabhängigkeit umso größer, je größer die Anzahl der Atome im Molekül ist. Abb. 1.7b) zeigt für einige Feststoffe bei Normaldruck den Verlauf von CV in Abhängigkeit von der Temperatur. Man erkennt, dass die Molwärmen beim absoluten Nullpunkt den Wert Null haben. Von hier aus erfolgt mit steigender Temperatur nach relativ steilem Anstieg eine Abflachung der Cv - Kurve bis ein Sättigungswert erreicht ist, der bei einatomigen Feststoffen 3R D 5;96 cal=.molK/ D 24;94 J=.molK/ beträgt (Doulong-Petit’sches Gesetz). Wie oben bereits für Edelgase angedeutet, lassen sich CV und Cp eines idealen Gases mit der kinetischen Gastheorie berechnen. Die thermische Energie des Gases ist gespeichert in den verschiedenen Bewegungsformen der bei der gegebenen Temperatur angeregten Moleküle, nämlich der Translation (geradlinig fortschreitende Bewegung), der Rotation (Drehung) und der Oszillation (Schwingung). Die Zahl der Freiheitsgrade F (unabhängige Bewegungsmöglichkeiten aller Atome eines Moleküls) ergibt sich somit zu F D FT C FR C FO . Nach dem Gleichverteilungssatz enthält jeder angeregte Freiheitsgrad eines Teilchens im zeitlichen Mittel die Energie kT =2. Es ergibt sich: CV D

F RI 2

Cp D

F C2 R D CV C R I 2

Cp F C2 DkI k >1 D CV F

18

1 Theoretische Grundlagen

 Besteht die innere Energie des idealen Gases nur aus der Translationsbewegung seiner Moleküle, wie das bei einem einatomigen Gas der Fall ist, ergibt sich: 3 R R .FT C FR C FO / D .3 C 0 C 0/ D R D 12;4715 J=.molK/ 2 2 2 5 Cp D CV C R D R D 20;7858 J=.molK/ 2 Cp kD D 1;666 CV  Für ein ideales Gas mit zweiatomigen Molekülen ergibt sich: CV D

7 R R .FT C FR C FO / D .3 C 2 C Œ2  1/ D R D 29;1 J=.mol  K/ 2 2 2 9 Cp D CV C R D R D 37;414 J=.mol  K/ 2 Cp kD D 1;29 CV  Für ein ideales Gas mit dreiatomigen gewinkelten Molekülen ergibt sich: CV D

12 R R .FT C FR C FO / D .3 C 3 C Œ2  3/ D R D 49;9 J=.molK/ 2 2 2 14 R D 58;2 J=.molK/ Cp D CV C R D 2 Cp kD D 1;17 CV Im engen Zusammenhang mit den Molwärmen stehen die Heizwerte HHW von Brennstoffen, angegeben in MJ  kg1 bzw. bei Gasen in MJ  m3 . Das Prinzip ihrer Bestimmung soll kurz erwähnt werden. Dabei ist zu beachten, dass die Heizwertangaben nicht die nach der Verbrennung durch Kondensation und Abkühlung des gebildeten Wassers auf 25 ı C frei werdende Wärme enthalten. In der Praxis ergibt sich der Heizwert überschläglich nach der Formel HHW D V HSubst. .2600  mH2 O /. Die Zahl 2 600 berücksichtigt die Verdampfungsenthalpie des Wassers und die Wärmemenge, die bei seiner Abkühlung von 100 ı C auf 25 ı C frei wird. Mit mH2 O ist die Wassermenge gemeint, die sowohl bei der chemischen Umsetzung entsteht als auch bereits im unverbrannten Brennstoff vorliegt. Der Heizwert HHW fester Brennstoffe wird in einer Kalorimeteranlage (Abb. 1.8-1) bestimmt. Diese wird zunächst mit einer Testsubstanz (z. B. Benzoesäure) geeicht. Man führt dem Kalorimeter eine bestimmte Wärmemenge zu, womit der Wasserwert W des Kalorimeters errechnet wird: mTestsubst.  V HTestsubst.  .mH2 O  cH2 O / : (k: berechenbares Korrekturglied). W D T C k Er wird zur Wasserfüllung .mH2 O  cH2 O / des Kalorimeters addiert und gibt an, welche Wassermenge dieselbe Wärmemenge wie die einzelnen Teile der Apparatur aufnehmen kann Zur eigentlichen Bestimmung von HHW wird die grob eingewogene Substanzmenge in der Tablettenpresse (c) zusammen mit einem Zünddraht bekannter Masse zu einer Tablette (d) gepresst. Die genaue Wägung der fertigen Tablette ergibt nach Subtraktion der Zünddrahtmasse die Einwaage. Ausgelöst durch elektrische Zündung wird diese im Verbrennungstiegel der Kalorimeterbombe (b) mit Sauerstoff vollständig verbrannt. Man beobachtet vor, während und nach der eigentlichen Reaktion die Temperatur als Funktion der Zeit und bestimmt T durch graphische Extrapolation (e). CV D

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung Elektrode (in Verbindung mit dem O2-Rohr)

b) Beckmannthermometer Rührer

19

Elektrode

Lupe

Deckel

Ventil zum Einleiten von O2

Außenmantel

Ventil für Gasaustritt und Druckausgleich

Verbrennungstiegel mit Tablette

Bombe Wasserbad

Zünddraht

Einfüllrohr für O2 c)

e)

Brennstoff (pulv.)

d)

Temperatur [°C]

Zünddraht

∆T ∆T – 2

Vorperiode

Hauptperiode

Nachperiode

Zeit [min]

Abb. 1.8-1 Bombenkalorimeter mit Zubehör und T -Ermittlung: a) Aufbau, b) Kalorimetrische Bombe, c) Tablettenpresse, d) Brennstofftablette mit Zünddraht, e) T -Ermittlung.

Bei der rechnerischen T -Bestimmung bedient man sich eines Korrekturgliedes k, das zur Temperaturdifferenz T zwischen der letzten Messung der Vorperiode und der letzten Messung der Hauptperiode addiert wird: Tkorr. D T C k D T C .n  1/  0 C n

0

 0 2

Dauer der Hauptperiode in Minuten durchschnittliches T der Vorperiode durchschnittliches T der Nachperiode

Somit ergibt sich der Heizwert der Substanz: HHW D V HSubs.  .Q1 C Q2 / V HSubst. D

Tkorr.  .mH2 O  cH2 O C W / mSubst.

20

1 Theoretische Grundlagen

Q1 D mH2 O  HVd (Verdampfungswärme des Wassers) Q2 D mH2 O  cH2 O  T (Erwärmung des Wassers von 25 ı C auf 100 ı C) Der Heizwert HHW von Gasen lässt sich z. B. mit dem Junkerskalorimeter in der Version von 1973 des Geräteherstellers „Junkalor“ in Dessau (Abb. 1.8-2) ermitteln. Das Volumen des zu untersuchenden Gases wird mit einer Gasuhr gemessen. An sie ist ein Gasdruckregler angeschlossen. Aus ihm tritt das Gas in den Brenner. Die Verbrennungsgase streichen an konzentrisch angeordneten Zylindermänteln vorbei, wobei ein Wärmeaustausch mit dem gleichmäßig fließenden Kühlwasser stattfindet. Man misst die dem Brenner zugeführte Gasmenge V1 bei T1 und p1 , die durchgeflossene Kühlwassermenge ('H2 O  VH2 O ) und ermittelt die mittlere Temperaturdifferenz des Kühlwassers TH2 O sowie die Masse des Kondenswassers mH2 O . Die Berechnung von HHW des Gases erfolgt analog dem oben erklärten Rechengang für Feststoffe. Überlaufgefäß für konstanten Wasserdruck

Thermometer zur Bestimmung von ∆T

warmes Wasser

kaltes Wasser

Wasserzufluss Abgas Wasserabfluss Gaszufuhr

Kondenswasser gemessenes Wasser (Durchfluss)

Abb. 1.8-2

Längsschnitt durch ein Strömungskalorimeter, das Junkerskalorimeter.

Die Volumen-und Druckkoeffizienten der kalorischen Zustandsgleichung werden mit  und " abgekürzt:   @U D  (Binnendruck) @V T   @H D " (isothermer Drosseleffekt) . @p T

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung T1

21

T2

Abb. 1.9 Anordnung des Gay-Lussac-Versuches.

Der Ausdruck Binnendruck für  ist nicht zweckmäßig, da damit schon in der van der Waals’schen Gleichung a=V 2 bezeichnet wurde. Nun ist zwar bei den van der das Glied a Waals’schen Gasen @U D , aber das trifft nicht auf jede thermische Zustandsgleichung @V T V2 zu. Schon bei der Berthelot’schen Zustandsgleichung, die hier nicht weiter behandelt wird, ist das nicht mehr der Fall. Im Folgenden wird das Wort Binnendruck ausschließlich für @U @V T verwendet. Zur Bestimmung der beiden Koeffizienten  und " gibt es zwei berühmte Versuche: den Gay-Lussac- und den Joule-Thomson-Versuch. Für den Gay-Lussac-Versuch werden zwei Glaskugeln verwendet, die durch einen Hahn verbunden sind (Abb. 1.9). Die eine Glaskugel ist mit einem Gas gefüllt, die andere evakuiert. Das ganze System ist adiabatisch gegen die Umgebung abgeschlossen. Wird der Hahn geöffnet, strömt Gas in die evakuierte Kugel bis beide Gefäße gleichmäßig mit Gas gefüllt sind. Die mit der Expansion des Gases verbundene Temperaturänderung T wird gemessen. Der Versuch verläuft irreversibel, d. h. das Gas strömt freiwillig in die zweite Kugel ein, es kann sich aber niemals wieder von selbst in die erste Kugel zurückziehen. Der Versuch wird adiabatisch durchgeführt (ıQ D 0/; da das Gas in ein Vakuum ausströmt, wird auch keine Arbeit geleistet (ıW D 0/. Daher ist nach (1.30) auch dU D 0. Experimentell bestimmt werden soll der Koeffizient . Man erhält ihn aus dem vollständigen Differenzial von U (1.37), wenn man darin  und CV einführt: 

@T @V

dU D CV dT C dV   D : CV U

(1.40) (1.41)

Wird beim Gay-Lussac-Versuch T gemessen, ergibt sich eine zu  proportionale Größe. Wenn man dieses Experiment mit einem idealen Gas durchführt, bleibt T konstant und damit ist  D 0 (zweites Gay-Lussac’sches Gesetz). Mit einem van der Waals’schen Gas nimmt dagegen T ab und man erhält:   a @T D : (1.42) @V U CV  V 2

22

1 Theoretische Grundlagen

Das ist leicht anschaulich klar zu machen. Bei der adiabatischen Expansion leisten die Gasmoleküle Arbeit gegen die anziehenden van der Waals’schen Kräfte. Diese Energie kann (wegen U D const.) nur der thermischen Energie der Gasmoleküle entzogen werden; das Gas muss sich abkühlen. Dass gerade (1.42) gilt, kann schwerlich gemessen werden, da der Versuch nur relativ ungenau durchzuführen ist und eigentlich nur als ein Gedankenexperiment anzusehen ist. Wie später gezeigt werden wird, liefert aber der zweite Hauptsatz eine wichtige Formel, die gestattet  allein aus thermischen Größen zu berechnen:   @p  p D p.Tˇ  1/ : (1.43)  DT @T V Setzt man hier die van der Waals’sche Gleichung der Form   p C a=V 2 R @p D D @T V T V b ein, ergibt sich (1.42). Mit dieser Formel kann man für jedes Gas, dessen spezielle thermische Zustandsgleichung bekannt ist, das Ergebnis des Gay-Lussac-Versuches vorausberechnen. Setzt man (1.43) in (1.40) ein und wendet den Schwarz’schen Satz an, ergibt sich der Volumenkoeffizient von CV , ebenfalls ausgedrückt durch thermische Zustandsgrößen    2  @CV @p DT : (1.44) @V T @T 2 V Wendet man (1.44) auf das van der Waals’sche Gas an, ergibt sich, im Gegensatz zur Erfahrung:   @CV D 0: (1.45) @V T Hier liegt einer der großen grundsätzlichen Mängel der van der Waals’schen Gleichung. Der Joule-Thomson-Versuch wird folgendermaßen durchgeführt: Man drückt Gas mit einem Kolben in ein Glasrohr, das in der Mitte einen porösen Pfropfen (z. B. einen fest zusammengepressten Wattebausch) enthält. Nachdem das Gas durch den Pfropfen hindurchgetreten ist, schiebt es seinerseits einen Kolben vor sich her, leistet also Arbeit (Abb. 1.10). Auch hier soll wieder T gemessen werden. Nach dem Passieren des Pfropfens, hat sich der Druck des Gases verringert. Das einzusehen, bereitet oft Schwierigkeiten. Man mache es sich an folgendem Versuch klar: Wenn man mit äußerster Kraft auf eine gegen die Lippen gepresste Blumentopfscherbe pustet, dann hat die durchtretende Luft nur einen ganz geringen Druck. Prinzipiell ist das dieselbe Versuchsanordnung. Der Joule-Thomson-Versuch verläuft irreversibel. Denn wenn man den rechten Kolben wieder zurückdrücken würde, so dass das Gas nochmals den Wattebausch passieren muss, würde sein Druck sich weiter verringern. Die innere Energie bleibt bei dem Versuch nicht konstant: Zunächst wird Arbeit am Gas geleistet und anschließend wird vom Gas Energie in Form von Volumenarbeit an die Umgebung abgegeben (das Gas verschiebt den zweiten Kolben). Kennzeichnen wir alle Größen, die das Gas vor dem Passieren des Pfropfens betreffen, mit dem Index „1“ und die entsprechenden Größen nach dem Durchtritt mit „2“, ergibt sich aus dem ersten Hauptsatz U 2  U 1 D p1 V 1  p2 V 2 U 2 C p2 V 2 D U 1 C p1 V 1 H2 D H1 :

(1.46) (1.47)

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung

23

T2

T1

p1

p2

V1

V2

p1 > p2

Abb. 1.10

Anordnung des Joule-Thomson-Versuches.

Der Versuch läuft bei konstanter Enthalpie ab .dH D 0/. Da man in der Technik irreversible Entspannungsvorgänge als Drosselvorgänge bezeichnet, heißt dieser Versuch auch isenthalpischer Drosseleffekt. Mit dem vollständigen Differenzial der Enthalpie dH D CpdT C "dp erhält man für die Größe, die man letzten Endes misst,   " @T : D @p H Cp

(1.48)

(1.49)

(1.49) heißt Joule-Thomson-Koeffizient. Der Versuch gestattet die Bestimmung von ". Hier ist die Genauigkeit bei der experimentellen Durchführung wesentlich höher als beim Gay-LussacVersuch. Führt man das Experiment mit einem idealen Gas durch, so bleibt die Temperatur

konstant; damit wird " D 0. Die Enthalpie idealer Gase hängt nicht vom Druck ab: @H D @p T 0, genauso wenig wie die innere Energie idealer Gase vom Volumen abhängig ist. Dass D 0 ist, wird gelegentlich als zweites Gay-Lussac’sches Gesetz bei idealen Gasen @U @V T bezeichnet. Der zweite Hauptsatz liefert auch hier wieder eine Formel, nach der man " allein aus thermischen Daten berechnen kann:   @V "DV T  D V  .1  ˛T / : (1.50) @T p Auch diese Gleichung kann erst später bewiesen werden. (1.50) ist wenig geeignet zur Anwendung auf das van der Waals’sche Gas, da wir die van der Waals’sche Gleichung (1.21) nicht nach V auflösen können. Verwenden wir aber ihre verkürzte Form (1.27), ergibt sich:     1 @T 2a b : (1.51) D @p H Cp RT Daraus folgt, dass die Temperatur zu- oder abnehmen kann, wenn man den Joule-ThomsonVersuch mit einem van der Waals’schen Gas durchführt, je nachdem, ob die Ausgangstempe2a . Ti heißt die Inversionstemperatur. Sie ist gleich der ratur größer oder kleiner ist als Ti D Rb doppelten Boyle-Temperatur (Abb. 1.3).

24

1 Theoretische Grundlagen

Z

Eintrittsventil

Austrittsventil

~ 200 bar

Gegenstromprinzip Wärmeaustauscher

Entspannungsventil ~20 bar

V

flüssige Luft

Abb. 1.11

Schematische Darstellung der Luftverflüssigung nach Linde.

Der isenthalpische Drosseleffekt (Joule-Thomson-Effekt) hat große praktische Bedeutung für die Gasverflüssigung nach dem Linde-Verfahren (Abb. 1.11). Dabei wird das zu verflüssigende Gas wiederholt isotherm komprimiert und dann adiabatisch expandiert. TAnfang muss kleiner als Ti sein, damit das Gas bei dem Vorgang fortwährend kälter wird und schließlich kondensiert. Ti ist druckabhängig. Luft (Ti  490 K bei 1 bar) kann, ebenso wie Sauerstoff und Stickstoff, bereits bei Zimmertemperatur durch gedrosselte Entspannung abgekühlt und verflüssigt werden. Bei Wasserstoff und den Edelgasen liegen wegen der geringen zwischenmolekularen Kräfte und damit der kleinen a-Werte die Inversionstemperaturen sehr niedrig. Wasserstoff (Ti  200 K) muss daher zwecks Verflüssigung zunächst mit flüssigem Stickstoff, Helium (Ti  40 K) mit flüssigem Wasserstoff unter die Inversionstemperatur vorgekühlt werden. Luft mit einer Anfangstemperatur von 15 ı C wird z. B. durch Entspannung von 200 bar auf 1 bar um etwa 42 K abgekühlt, was sich mit der Faustregel berechnen lässt: T D

.pEnde  pAnfang /TEnde .200 bar  1 bar/  243;15 K D 41;98 K : D 4  TAnfang 4 kbar  288;15 K

25

1.2 Erster Hauptsatz der Thermodynamik und die kalorische Zustandsgleichung

Die abgekühlte Luft wird im Gegenstrom zurückgeleitet, dient dabei zunächst zur Vorkühlung komprimierter Luft und wird anschließend abermals dem Kompressor zugeführt. Die Fortsetzung dieses Kreislaufs führt schließlich zur Verflüssigung. Setzt man (1.50) in (1.48) ein und wendet den Schwarz’schen Satz an, so ergibt sich eine Formel, die die Druckabhängigkeit von Cp allein durch thermische Größen ausdrückt:    2  @Cp @V D T : (1.52) @p T @T 2 p Schon die verkürzte van der Waals’sche Gleichung führt also zu einer merklichen Druckabhängigkeit von Cp . Mit Hilfe der Formeln für  und " lässt sich auch eine thermodynamisch exakte Formel für die Differenz Cp  CV gewinnen: dU D ıQ  pdV D CV dT C dV

dH D d.U C pV / D Cp dT C "dp

p D const.

V D const.

ıQ  CV dT D .p C /dV  W dT ıQ Cp D dT p



Cp  CV  DT

@p @T

@V D .p C / @T

dU C Vdp D Cp dT C "dp Cp dT C dU D .V  "/dp  W dT ıU D CV dT V   @p Cp  CV D .V  "/ @T V

 p



 "DV T 

p V



Gl. 1.43 Cp  CV D T

@p @T



 

V

@V @T



T V˛ 

 p

Gl. 1.50 D T  ˛V  ˇp p

ˇD Cp  CV D

@V @T

2

˛ p

Gl. (1.20) (1.53)

Daraus erkennt man, dass erst am absoluten Nullpunkt Cp D CV wird. Für alle idealen Gase geht (1.53) mit p  V D n  R  T und ˛  T D   p D 1 über in Cp  CV D R

(1.39)

Erwärmen wir z. B. 1 mol eines idealen Gases, ausgehend vom gleichen Zustand, um 1 K, und zwar a) bei konstantem Volumen, b) bei konstantem Druck, so werden bei beiden Vorgängen zwei Zustände erreicht, welche sich nur durch das Volumen (bzw. den Druck), nicht jedoch durch die Temperatur unterscheiden. Die innere Energie eines idealen Gases hängt aber nur von der Temperatur, nicht vom Volumen ab (sog. 2. Gay-Lussacsches Gesetz). Nach dem 1. Hauptsatz der Thermodynamik muss dann die Summe der Arbeits- und Wärmeumsätze bei beiden Vorgängen gleich groß sein. Beim Vorgang a) erfolgt keine Arbeitsleistung, sondern nur eine Wärmeaufnahme QV D CV  T (T D 1 K). Beim Vorgang b) dagegen tritt außer der Erwärmung um 1 K noch eine Arbeitsleistung pV auf. erhalten wir für 1 mol eines  Somit   T D R T ergibt sich idealen Gases Cp T  pV D CV T . Mit V D @V @T p p daraus Cp  CV D R.

26

1 Theoretische Grundlagen

Bei der kalorischen Zustandsgleichung müssen folgende Größen bekannt sein, um das kalorische Verhalten eines reinen Stoffes vollständig zu beschreiben: C p .T / H0 :

(II)

Den Bezugswert H0 der Enthalpie für ein festes T0 und p0 braucht man, um das vollständige Differenzial der Enthalpie integrieren zu können. Der erste Hauptsatz verknüpft drei Größen miteinander: Wärme, Arbeit und innere Energie. Während die innere Energie eine thermodynamische Zustandsfunktion ist, gilt das nicht für die Arbeit und die Wärme. Das bedeutet: Ändert sich der Zustand eines Systems, dann hängt die damit verbundene Änderung der inneren Energie ausschließlich davon ab, welcher neue Zustand schließlich erreicht wird. Anders verhält es sich mit den bei der Zustandsänderung auftretenden Arbeits- und Wärmeeffekten. Sie sind abhängig von dem Weg, auf dem die Änderung durchgeführt wird. Das kann man z. B. aus Abb. 1.12 für die Volumenarbeit entnehmen.

V2

V1

V1

V2

δWKr. = – ∫padV – ∫padV Zustand 1 (p1,T1,V1)

Zustand 1

p1

T dT= 0

Weg a b p

m

pdV (ein Arbeitselement)

Zustand 2 (p2,T2,V2)

pa n

Prozess

– δWExp.

Zustand 2

p2 Weg b V a)

V b)

V1

dV

V

V V 2

Abb. 1.12 Bei einer Zustandsänderung ist die Arbeit vom Weg der Änderung abhängig. a) pa -V -Diagramm für allgemeine Übergänge eines Gases von 1 nach 2 und in einem Kreisprozess. b) p-V -Diagramm für die Darstellung der reversiblen isothermen Volumenarbeit eines idealen Gases.

Abb. 1.12a) verdeutlicht am Beispiel des pa -V -Diagramms, dass zwischen den Zuständen 1 und 2 viele verschiedene Wege möglich sind. Die Volumenänderung wird in der Weise durchgeführt, dass der äußere Druck pa in jedem Stadium des Prozesses bekannt ist. Auf dem Weg a wird offensichtlich mehr Arbeit als auf dem Weg b verrichtet, da die Fläche unter der Kurve 1-m-2 größer ist als die unter der Kurve 1-n-2. Somit ist die in einem Kreisprozess m * 1  )  2 insgesamt verrichtete Arbeit gleich der Differenz der Flächen unter den beiden Kurven. n

Sie entspricht dem gerasterten Feld. Abb. 1.12b) verdeutlicht mit einer Isothermen des p-V -Diagramms die Volumenarbeit eines idealen Gases bei der reversiblen Expansion. Der Prozess läuft als reversibler Gleichgewichtsprozess auf der Oberfläche der Zustandsgleichung von 1 nach 2 ab, wobei sich der Außendruck des Gases pa nur infinitesimal vom Druck p des Gases unterscheidet. Ein

27

1.2 2. und 3. Hauptsatz der Thermodynamik, die Entropie und die kanonische Zustandsgleichung

Arbeitselement ist durch eine Fläche veranschaulicht, deren Breite dV und deren Höhe p ist. Die Gesamtarbeit (ıWmax,rev. ) bei der Veränderung des Volumens von V1 auf V2 ist bei der Änderung des Druckes von p1 auf p2 durch die Summe aller Arbeitselemente von V R2 pdV > 0 . Sie ist ebenso groß wie die V1 zu V2 gegeben: ıWmax,rev. D ıWExp. D V1

Arbeit, die zur reversiblen isothermen Kompression des Gases zwischen denselben Volumina aufgewendet werden muss. Für 1 mol ideales Gas mit 50 %iger Druckminderung erhält man ıWmax,rev. D ıWExp. D ıWKomp. D RT ln 2. Analog verhält es sich mit den bei der Zustandsänderung auftretenden Wärmeeffekten. So kann man z. B. die Erhöhung der Temperatur von T1 nach T2 erreichen, indem man Arbeit an dem System verrichtet, oder indem man erhitzt. In historischen Versuchen bzw. Überlegungen haben J. P. Joule und J. R. v. Meyer gezeigt, dass die aufgewendete Arbeit stets in demselben Verhältnis zur aufgenommenen Wärmemenge steht. Da die Arbeit keine Zustandsgröße ist und unter bestimmten Umständen dieselbe Zustandsänderung durch Zufuhr von Wärme oder durch Verrichten von Arbeit erfolgen kann, so bedeutet dies auch: Die Wärme ist keine Zustandsgröße. In der Ausdrucksweise der Mathematik sagt man: Die Differenziale ı W und ı Q sind keine vollständigen Differenziale. Für sie gilt der Schwarz’sche Satz nicht. Wollte man das am Arbeitsdifferenzial zeigen, müsste man es in zwei Variablen so schreiben: ıW D 0dT  p.T;V /dV :

@p

(1.54)

Wendet man darauf den Schwarz’schen Satz an, müsste @T V immer 0 sein, was sicherlich nicht zutrifft, höchstens für einzelne singuläre Zustände, wie Wasser von 4 ı C. Die Arbeit ist also keine Zustandsgröße. Für ıQ ergibt sich bei idealen Gasen: RT  dV : (1.55) V Das ist offensichtlich kein vollständiges Differenzial, wie man sofort mit dem Schwarz’schen Satz nachprüft. Erst wenn (1.55) auf beiden Seiten durch T dividiert wird, trifft dies zu: ıQ D C v.T /  dT C

ıQ Cv R D dT C dV : T T V Was dahinter steckt, wird später beim zweiten Hauptsatz behandelt.

(1.56)

1.3 Zweiter und dritter Hauptsatz der Thermodynamik, die Entropie und die kanonische Zustandsgleichung Der zweite Hauptsatz der Thermodynamik sagt in seiner ursprünglichen Form aus, dass gewisse Vorgänge, die an sich denkbar sind und die mit dem ersten Hauptsatz, dem Energiesatz, vereinbar sind, trotzdem nicht in der Natur vorkommen.  Beispielsweise ist es unmöglich, dass sich ein Wärmereservoir abkühlt und gleichzeitig die Umgebung so erwärmt, dass die Wärme freiwillig von niederer zu höherer Temperatur strömt, ohne dass andere Zustandsänderungen in der Natur vor sich gehen.

28

1 Theoretische Grundlagen abgeschlossenes System geschlossenes System

Umgebung

>0

2) Entropieerzeugung 1) Entropiestrom d S =

dS < 0 exotrop

Abb. 1.13

dS > 0 endotrop

dS = 0 Gleichgewicht

Verdeutlichung des 2. Hauptsatzes der Thermodynamik.

 Auch ist es unmöglich, dass sich ein Wärmereservoir unter die Temperatur der Umgebung abkühlt und gleichzeitig eine Last gehoben wird, ohne dass andere Zustandsänderungen in der Natur eintreten. In dieser und in anderer Form wurde der zweite Hauptsatz ursprünglich von Clausius, Thomson, Planck u. a. ausgesprochen. Aus diesen Formulierungen ließ sich durch rein mathematische Analyse eine Formulierung gewinnen, die hier für die folgenden Betrachtungen zugrunde gelegt wird. Durch den zweiten Hauptsatz wird die Entropie als neue Zustandsfunktion eingeführt. Sie ist eine extensive Zustandsfunktion und wird mit S bezeichnet, wenn sie sich auf ein Mol, mit s, wenn sie sich auf eine beliebige Stoffmenge bezieht. Der 2. Hauptsatz in seiner formelmäßigen Darstellung macht eine Aussage über die Änderungsmöglichkeit der Entropie, dS . Danach kann sie sich in geschlossenen Systemen nur auf zweierlei Weise ändern (Abb. 1.13): 1. Die Entropie eines Systems nimmt ab, wenn Entropie aus dem System herausströmt, und sie nimmt zu, wenn Entropie von außen zugeführt wird. Diese Änderungsmöglichkeit der Entropie heißt Entropiestrom. Die hier nicht wiedergegebene Beziehung zwischen der Wortformulierung des zweiten Hauptsatzes und seiner formelmäßigen Darstellung zeigt, dass der Entropiestrom immer dem Wärmestrom proportional ist, der Entropiestrom in geschlossenen Systemen ist ıQ=T . 2. Die Entropie eines Systems kann sich ändern, wenn irreversible Prozesse ablaufen. Dabei kann allerdings die Entropie nur zunehmen (Entropieerzeugung!). Hier soll die Entropieerzeugung geschrieben werden: ıI=T . ıI =dt (t : Zeit) heißt auch Dissipationsfunktion. ıI ist immer positiv. Der zweite Hauptsatz lautet nunmehr: dS D

ıIirrev ıQrev C T T

.ıI  0/ :

(1.57)

1.3 2. und 3. Hauptsatz der Thermodynamik, die Entropie und die kanonische Zustandsgleichung Tab. 1.1

Möglichkeiten der Entropieänderung.

Zustandsänderung

1

adiabatisch – reversibel

Beispiel:

adiabatisch – irreversibel

Beispiel:

endotherm – reversibel

Beispiel:

endotherm – irreversibel

Beispiel:

exotherm – reversibel

Beispiel:

exotherm – irreversibel

Beispiel:

3

4

5

6

ı Q rev ı I irrev. + .ı I  0/ T T dS = 0 + 0 =0 Carnot’scher Kreisprozess mit idealer Abstraktion, Reversible Mischung zweier Gase (Abb. 1.16) dS = 0 + (+) >0 Gay-Lussac-Versuch, Joule-Thomson-Versuch, Mischen zweier Gase durch Entfernen einer Trennwand. dS = (+) + 0 >0 Verdampfen von Flüssigkeiten, Schmelzen von Feststoffen, Sublimieren von Feststoffen. dS = (+) + (+) >0 Reaktion von Thionylchlorid mit Hexaaquakobalt(II)-chlorid, Reaktion von Oktaaquabarium(II)-hydroxid mit Ammoniumthiocyanat. dS = (–) + 0 B ist oder mit anderen Worten: Der Dampf ist relativ zur flüssigen Phase immer reicher an der flüchtigeren Komponente. Geht man im Diagramm von einem Flüssigkeitsgemisch mit der Zusammensetzung xB beim Druck p1 aus und erniedrigt langsam den Druck (bei konstant gehaltener Temperatur), beginnt es bei Erreichen des Zweiphasengebietes beim Druck p2 zu verdampfen. In der Dampfphase ist, wie oben hergeleitet, die flüchtigere Komponente angereichert. Bei einer weiteren Druckerniedrigung und damit fortschreitender Verdampfung verarmt die flüssige Phase daher immer mehr an dieser Komponente. Unterhalb des Druckes p3 liegt schließlich nur noch ein Dampf mit der gleichen Zusammensetzung wie die ursprüngliche flüssige Phase vor. Die Zusammensetzungen der koexistierenden Phasen können mit Hilfe von Knotenlinien (Konoden) bei Anwendung des Hebelgesetzes bestimmt werden. Das sind zur Abszisse parallele Geraden. Bezogen auf die eingezeichnete Konode a-x-b, verhalten sich die Mengen an flüssiger und gasförmiger Phase, in die die binäre Flüssigkeit der Zusammensetzung xB bei einem Druck p zerlegt wird umgekehrt wie die zugehörigen Konodenabschnitte im Zustandsdiagramm: Menge von Flüssigkeit a Strecke xb D : Menge von Dampf b Strecke ax In Abb. 1.28b ist das zugehörige Siedediagramm [(T, -Diagramm) ausgewiesen. Die Siedelinie ist nichts anderes als eine Auftragung der Siedetemperatur des flüssigen Gemisches (bei konstantem Druck, z. B. Normaldruck) in Abhängigkeit vom Stoffmengenanteil (Molenbruch) der beiden Komponenten. Sie grenzt den Existenzbereich der homogenen flüssigen Phase nach höheren Temperaturen hin ab. Die Zusammensetzung der Dampfphase, die sich beim jeweiligen Siedepunkt im Gleichgewicht mit der entsprechenden flüssigen Mischung

82

1 Theoretische Grundlagen

befindet, wird durch die Kondensationslinie (Taulinie) angegeben. Oberhalb der Taulinie liegt eine homogene Gasphase, zwischen beiden Linien wieder das Zweiphasengebiet vor. Da von zwei flüchtigen Flüssigkeiten A und B gewöhnlich die mit dem niedrigeren Dampfdruck die höhere Siedetemperatur hat, sind im Siedediagramm jedoch die Zustandsgebiete gegenüber dem Dampfdruckdiagramm vertauscht. Die unterschiedliche Zusammensetzung von flüssiger Mischphase und koexistierendem Mischdampf im Zweiphasengebiet kann zur Stofftrennung mittels Destillation ausgenutzt werden. Bei der einfachen Destillation (Gleichstromdestillation) wird die flüssige Mischung in einem Kolben zum Sieden erhitzt, der Dampf in einem Kühler kondensiert und das entstehende Destillat in einer Vorlage aufgefangen. Die Abb. 1.28b entspricht schematisch der Darstellung des Siedediagramms für das System Wasser (A)/Methanol (B). Man erkennt, dass beim Sieden einer Mischung mit der Zusammensetzung x1 bei der Temperatur t1 zunächst ein Dampf der Zusammensetzung x3 kondensiert, in dem Methanol als flüchtigere Komponente angereichert ist. Man hat also bereits einen gewissen Trenneffekt erzielt. Die kontinuierliche Abtrennung des Kondensats in der Vorlage verhindert jedoch die Gleichgewichtseinstellung und führt zu einer Anreicherung des Wassers im Kolben, d.h., die Siedetemperatur steigt mit fortschreitender Destillation entlang der unteren Kurve. Die Zusammensetzung des Dampfes und damit auch des Kondensats verschiebt sich in gleicher Richtung auf der Taulinie. Bricht man die Destillation in der Nähe der Siedetemperatur der höher siedenden Komponente bei t2 ab, bleibt im Kolben ein Gemisch mit der Zusammensetzung x2 , (Wasser mit wenig Methanol) zurück. In der Vorlage befindet sich Methanol mit einem gegenüber x1 verringerten (jedoch gegenüber x3 erhöhten) Anteil an Wasser. Dies wird deutlicher, wenn man das Destillat mit Hilfe auswechselbarer Vorlagen in getrennten Fraktionen auffängt (fraktionierte Destillation). Die erste Fraktion hat dann tatsächlich etwa die Zusammensetzung x3 , ist also stark an Methanol angereichert. Da sie aber aus dem System abgezogen wurde, muss eine erneute Gleichgewichtseinstellung erfolgen, die die nächste, etwas weniger an Methanol angereicherte Fraktion ergibt usw. Da die mittlere Zusammensetzung aller Fraktionen der Zusammensetzung des Ausgangsgemisches entspricht, weisen die späteren Fraktionen einen höheren Anteil an der schwerer flüchtigen Komponente als das Ausgangsgemisch auf. Die fraktionierte Destillation kann man zur Verbesserung des Trenneffektes ausnutzen, indem man die einzelnen Fraktionen erneut destilliert. Die Zusammensetzung des Destillats rückt dabei entlang der Taulinie in Richtung des reinen Methanols und nach häufiger Wiederholung sind beide Komponenten weitgehend rein. Ein Nachteil ist die durch das Hebelgesetz bedingte geringe Ausbeute, so dass man die einzelnen Stufen mit immer neuem Ausgangsgemisch oft durchlaufen muss. Man fasst daher in der Praxis die langwierigen getrennten Verdampfungsund Kondensationsschritte bei der Gegenstromdestillation (oder Rektifikation) in einem Prozess zusammen. Der aufsteigende Dampf wird in einer Destillationskolonne (Abb. 1.29) im Gegenstrom am Rücklauf (Teil des zurückfließenden Kondensats) vorbeigeleitet. Es findet so ein intensiver Kontakt zwischen den Gegenstromphasen statt, was eine schnelle thermische Gleichgewichtseinstellung begünstigt. Schauen wir uns den Vorgang am Beispiel des Systems Wasser/Methanol (Abb. 1.30) genauer an: Wird das Ausgangsgemisch mit einem Stoffmengenanteil x1 an Methanol im Kolben erhitzt, siedet es bei der Temperatur t1: Am ersten Kolonnenboden kondensiert ein Teil des Dampfes zu einer Flüssigkeit gleicher Zusammensetzung x2 , welche den Boden bis zum Überlaufen auffüllt. Jeder Boden kann als isolierte Destillationseinheit angesehen werden. Da der Boden durch den Dampf ständig erwärmt wird, verdampft ein Teil des Kondensats bei der Temperatur t2 erneut und steigt weiter in der Kolonne auf. Der Anteil der flüchtigeren Komponente erhöht sich dabei im nach oben strömenden Dampf entlang der Taulinie in der Richtung x2 ! x3 ! x4 . Gleichzeitig fällt seine Kondensationstemperatur, so dass die Temperatur in der Kolonne von t1 ! t2 ! t3 abnimmt und sich der

1.7 Heterogene Gleichgewichte binärer Systeme

83

Rückflusskühler

Destillatentnahme … 3. Boden 2. Boden 1. Boden

Kolonne

Siedekolben

Abb. 1.29

Destillierkolonne.

von reinem Methanol nähert. Eine „Stufe“ im Siedediagramm, d. h. eine Kombination aus Verdampfungs-und Kondensationsschritt, bezeichnet man als theoretischen Boden. Die Zahl der theoretischen Böden (in unserem Beispiel drei) gibt die Effizienz der Destillationskolonne an. Bei einer genügenden Anzahl an Böden und damit ausreichender Trennleistung der Kolonne enthält das Destillat die niedrig siedende Komponente praktisch rein. Kolonnen für den Laboratoriumsgebrauch haben statt getrennter Böden eine Füllung mit großer Oberfläche, z.B. Ringe oder Kügelchen aus Glas. Auf deren Oberfläche finden in zunehmender Höhe der Kolonne die aufeinanderfolgenden Verdampfungs- und Kondensationsschritte statt. Die Zahl der theoretischen Böden für ein bestimmtes System kann aus dem Siedediagramm ermittelt werden, in dem man die zwischen der Ausgangszusammensetzung und der Zusammensetzung des Destillats möglichen „Gleichgewichtsstufen“ einzeichnet. Dies gilt allerdings im Prinzip nur für einen Rückfluss von 100 %. In der Praxis entspricht ein Boden daher nicht ganz einem theoretischen Boden, da das Kondensat nicht vollständig zurückfließt, sondern abgezweigt wird. Zur Ermittlung der Zahl der theoretischen Böden wird vielfach eine graphische Darstellung (Gleichgewichtsdiagramm von Dampf und binärer Flüssigkeit) benutzt (Abb. 1.31), in der die Zusammensetzung des Dampfes gegen die der Flüssigkeit aufgetragen und die Zusammensetzung der Flüssigkeit durch die Diagonale dargestellt ist. Die Kurve a0 b 0 c 0 d 0 gibt die Zusammensetzung der Dampfphase wieder. Die Abweichung der Kurve von der Diagonalen ist ein Maß für die Leichtigkeit, mit der die Trennung durch fraktionierte Destillation erreicht werden kann. Eine Flüssigkeit der Zusammensetzung a mit 20 Mol% B steht im Gleichgewicht mit einem Dampf der Zusammensetzung a0 mit 40 Mol% B; der bei Kondensation die Flüssigkeit b ergibt. Die Zusammensetzung der konjugierten Phasen kann unter den entsprechenden Punkten der Diagonalen auf der Abszisse direkt abgelesen werden. Der der Flüssigkeit a konjugierte Dampf hat die Zusammensetzung b. Der der Flüssigkeit b konjugierte Dampf hat die Zusammensetzung c usw. Will man von einer Flüssigkeit mit 20 Mol% B zu einer mit

84

1 Theoretische Grundlagen Wasser

Methanol Dampf

1

t1

Temperatur

2

t2 3

t3

Flüssigkeit

0

x1

x2

x3

x4

1

Molenbruch Methanol

Abb. 1.30

Theoretische Böden im Siedediagramm Wasser-Methanol.

90 Mol% B kommen, muss man vier aufeinanderfolgende Destillationen und Kondensationen ausführen, oder mit anderen Worten eine Kolonne mit drei theoretischen Böden benutzen, da die Oberfläche der verdampfenden Flüssigkeit selbst schon einen Boden repräsentiert. Zweite Möglichkeit: Die Komponenten A und B bilden eine Lösung mit negativer Abweichung vom Raoult’schen Gesetz (Abb. 1.32). Bei der fraktionierten Destillation entsteht immer ein azeotroper Rückstand. Oft zeigt die flüssige Mischphase gegenüber einer idealen Lösung ein abweichendes Verhalten. Die Anziehungskräfte zwischen den Molekülen beider Komponenten können z. B. größer sein als zwischen den Molekülen der gleichen Sorte (Überanziehung). Dies hat als Konsequenz, dass der Mischungsvorgang unter Wärmeentwicklung und Volumenabnahme verläuft und die Verdampfungswärme erhöht wird. Für den Gesamtdruck in der Dampfphase und damit die Siedelinie ergibt sich ein Dampfdruckminimum (Abb. 1.32a). Die Taulinie muss, genau wie bei indifferentem Verhalten, wieder unter der Siedelinie liegen. Beim Dampfdruckminimum berühren sich beide Kurven, d. h. die flüssige Mischung steht mit einem Dampf der gleichen Zusammensetzung im Gleichgewicht. Ein solches Gemisch verhält sich also wie ein reiner Stoff. Man nennt es azeotropes Gemisch oder kurz Azeotrop, die zugehörige Position im Dampfdruckdiagramm azeotropen Punkt. Im Siedediagramm (Abb. 1.32b) sind nicht nur die Zustandsgebiete gegenüber dem Dampfdruckdiagramm vertauscht, sondern aus dem Dampfdruckminimum wird auch ein Siedepunktmaximum. Das Auftreten azeotroper Punkte hat wichtige Konsequenzen für die destillative Trennung der betreffenden Gemische. Betrachten wir (Abb. 1.32b) eine flüssige Mischung mit der Zusammensetzung x1 , die bei t1 siedet. Der zugehörige Dampf ist mit der flüchtigeren Komponente B angereichert (x2 /. Wird der Dampf bei einer einfachen Destillation durch Kondensation in einer Vorlage kontinuierlich aus dem Gleichgewicht entfernt, so verschiebt sich die Zusammensetzung der zurückbleibenden Flüssigkeit entlang der Siedekurve zu höheren Stoffmengenanteilen an A (x3 /. Gleichzeitig ist die Siedetemperatur gestiegen (t2 / und auch der Unterschied in der Zusammensetzung zwischen flüssiger und gasförmiger Phase hat sich deutlich verringert. Setzt man den destillativen Prozess weiter fort, erreicht der

1.7 Heterogene Gleichgewichte binärer Systeme

100

d´ e



80 Mol-% B im Dampf

85

d b´

60

c a´

40

b

20

a

0 0

20

40

60

80

100

Mol-% B in der binären Flüssigkeit Abb. 1.31

Gleichgewichtsdiagramm von Dampf und Flüssigkeit (B: leichtflüchtigere Komponente).

Rückstand schließlich die azeotrope Zusammensetzung x4 . Siedende Flüssigkeit und Dampf bzw. Kondensat weisen dann die gleiche Zusammensetzung auf und eine weitere Trennung des Gemisches ist nicht mehr möglich. Ein Beispiel für ein solches Azeotrop stellt Salzsäure (Gemisch aus Chlorwasserstoff und Wasser) mit einem Anteil von 80 Gew% Wasser dar, die bei 108;6 ı C mit unveränderter Zusammensetzung siedet. Wird verdünnte Salzsäure in einer Porzellanschale erhitzt, verdampft überwiegend Wasser, bis der Rückstand die azeotrope Zusammensetzung erreicht hat. Eine weitere Trennung ist nicht mehr möglich, sondern es destilliert nur mehr 20 %ige Salzsäure über. Wird hingegen konzentrierte Salzsäure erhitzt, verdampft zunächst hauptsächlich Chlorwasserstoff, bis wiederum der azeotrope Punkt erreicht wird. Beide Rückstände zeigen die gleiche Konzentration an Salzsäure, wie man durch Titration mit Natronlauge leicht nachweisen kann. Gleichgültig von welcher Ausgangszusammensetzung eines Gemisches man ausgeht, eine vollständige destillative Trennung ist nicht möglich, sondern es ist stets nur einer der Stoffe rein und das azeotrope Gemisch zu gewinnen. Dritte Möglichkeit: Die Komponenten A und B bilden eine Lösung mit positiver Abweichung vom Raoult’schen Gesetz (Abb. 1.33). Bei der fraktionierten Destillation entsteht immer ein azeotropes Destillat. Ein missverträgliches Verhalten der Komponenten im flüssigen Zustand mit schwächeren Teilchenwechselwirkungen führt zu positiven Abweichungen vom Raoult’schen Gesetz. Die Anziehungskräfte zwischen den Molekülen beider Komponenten sind geringer als zwischen den Molekülen der gleichen Sorte (Unteranziehung). Dies hat zur Konsequenz, dass der Mischungsvorgang unter Wärmeverbrauch und Volumenzunahme verläuft und die Verdampfungswärme vermindert wird. Entsprechend beobachtet man ein Dampfdruckmaximum (Abb. 1.33a) bzw. ein Siedepunktminimum (Abb. 1.33b), dem ein Komponentengemisch entspricht, das bei dem gültigen Druck mit unveränderter Zusammensetzung siedet (azeotropes Verhalten). Nehmen wir (Abb. 1.33b) an, wir starten eine fraktionierte Destillation mit einem Gemisch der Zusammensetzung x1 und verfolgen die Zusammensetzung des Dampfes in der

86

1 Theoretische Grundlagen

Flüssigkeit (l)

Dampf (g) Siedelinie

azeotroper Punkt

p0 A

p0

Taulinie

B

l+g

l+

l+g

pA

Taulinie

Druck

Temperatur

Dampf (g)

g

l+g

t1

t0 A

pB

t2

Siedelinie

Flüssigkeit (l)

t0

B

x4 x3 A=1 B=0

a)

Zusammensetzung (Molenbruch)

B=1 A=0

A=1 B=0

x1

x2

Zusammensetzung (Molenbruch)

B=1 A=0

b)

Abb. 1.32 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Lösung mit negativer Abweichung vom Raoult’schen Gesetz (Beispiele: Trichlormethan/Wasser, Salzsäure/Wasser).

Kolonne. Der Anteil der höher siedenden Komponente verringert sich entlang der Taulinie in der Richtung x2 ! x3 usw. bis der azeotrope Punkt erreicht ist. Dieser kann nicht überschritten werden, d. h., am Kopf der Kolonne ist stets nur ein Kondensat der azeotropen Zusammensetzung x4 abnehmbar. Ein bekanntes, technisch relevantes Beispiel für ein solches System ist die Mischung von Ethanol und Wasser, die bei einem Alkoholgehalt von 95,6 Gew% bei 78;15 ı C unverändert siedet. Im Rückstand verbleibt schließlich reines Wasser. Zur Gewinnung von 100 %igem Alkohol setzt man dem binären Azeotrop Benzol zu, wobei sich ein ternäres Azeotrop bildet. Dieses siedet bei 64;85 ı C. Beim Kondensieren des Destillats bilden sich zwei Phasen, von denen die untere die Hauptmenge des Wassers neben wenig Ethanol enthält. Durch diese azeotrope Destillation (am besten in entsprechend konstruierten Kolonnen mit Azeotrop-Kolonnenköpfen) lässt sich das Wasser aus dem Gemisch „auskreisen“, das überschüssige Benzol kann in einer nachgeschalteten Destillation in einer Kolonne vom jetzt wasserfreien Ethanol abgetrennt werden. Da Spuren des Lösungsmittelzusatzes zurückbleiben, erfolgt die Absolutierung heute fast ausschließlich an Molekularsieben, die selektiv Wassermoleküle absorbieren. Vierte Möglichkeit: Die Komponenten A und B bilden eine Lösung mit positiver Abweichung vom Raoult’schen Gesetz und Mischungslücke (Abb. 1.34). Bei der fraktionierten Destillation entsteht immer ein trübes Destillat aus zwei flüssigen Phasen. Über den allgemeinen Verlauf der Totaldampfdrucklinie (Siedelinie) eines flüssigen binären Gemisches mit einer Mischungslücke (z. B. in Abb. 1.34a die Linie pA0 -C-D-E-pB0 ) ergibt sich aus der Gibbs’schen Phasenregel: Solange das System homogen ist, also nur eine flüssige und eine dampfförmige Phase vorhanden sind, besitzt das System zwei Freiheiten (F D K  P C 2 D 2  2 C 2 D 2), ist also bivariant. Wird die Temperatur festgelegt, so ändert sich der Dampfdruck noch mit der Zusammensetzung des Systems. Zu seiner vollständigen

1.7 Heterogene Gleichgewichte binärer Systeme

87

Flüssigkeit (l) Siedelinie

l+g

p0

azeotroper Punkt l+g

Taulinie

B

Dampf (g)

t0

A

pB

l+g

p0

Taulinie

A

l+g

Druck

Temperatur

Dampf (g)

Siedelinie

Flüssigkeit (l)

x1 A=1 B=0

a)

t0

B

pA

Zusammensetzung (Molenbruch)

B=1 A=0

A=1 B=0

x2

x3

x4

Zusammensetzung (Molenbruch)

B=1 A=0

b)

Abb. 1.33 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit positiver Abweichung vom Raoult’schen Gesetz (Beispiele: Ethanol/Wasser, Propanon/Schwefelkohlenstoff).

Bestimmung ist die Angabe von Temperatur und Zusammensetzung notwendig. Kommt aber in der Mischungslücke noch eine Phase hinzu, hat das System nur noch eine Freiheit, ist also univariant. Bei gegebener Temperatur ist das System vollständig bestimmt, der Totaldruck kann sich nicht mehr ändern, auch wenn die Totalzusammensetzung des Systems variiert. Daraus folgt, dass im Gebiet der Mischungslücke CDE die Totaldampfdrucklinie als Funktion der Totalzusammensetzung des Systems eine Parallele zur Abszisse sein muss. In Abb. 1.34b ist schematisch das zugehörige Siedediagramm dargestellt, womit nacheinander die Phasenveränderungen des Systems erklärt werden sollen, die eintreten, wenn a) bei dT D 0 jeweils ausgehend von reinem A bei t8 und bei t9 durch allmähliches Zufügen von B die Zusammensetzung geändert wird, b) das Systems entlang der Linie P-u-v0 -h abgekühlt wird, c) beim Erhitzen des Systems entlang der Linie z-y-x-L von der Totalzusammensetzung z ausgegangen wird. Zu a): Geht man bei t8 von reinem A aus, erhält man bei allmählichem Zufügen von B zunächst eine homogene Flüssigkeit mit steigendem B-Gehalt. Nach Erreichen des Punktes r wird das System heterogen unter Auftreten der neuen flüssigen Phase s. Weiterer Zusatz von B ändert die Zusammensetzung dieser beiden Phasen nicht, sondern nur ihr Mengenverhältnis nach dem Hebelgesetz, indem die Menge der Phase r immer geringer, die der Phase s immer größer wird. Nach Überschreiten der Zusammensetzung s wird das System wieder homogen. Geht man bei t9 von reinem A aus und setzt steigende Mengen B zu, bleibt das System zunächst homogen, bis im Punkte k die neue Dampfphase l aufzutreten beginnt. Weiterer Zusatz von B ändert die Zusammensetzung der flüssigen und dampfförmigen Phase nicht, sondern deren Mengenverhältnis. Im Punkte l sind nur noch verschwindende Mengen der flüssigen Phase k vorhanden. Weiterer B-Zusatz lässt das System homogen dampfförmig werden bis zu der

1 Theoretische Grundlagen

zwei flüssige Phasen

Druck

88

D

Flü

ss

E

igk

eit

Siedelinie p A0 CE p B0

f mp

Da

Flü ss igk eit mp f+ Flü ss igk eit

C

sig

lüs

Da

+F it

ke

p A0

Dampf Taulinie p A0 D p B0 A=1 B=0

a)

p 0B

B=1 A=0

Zusammensetzung (Molenbruch)

t1 t 0B

Taulinie t A0 Dt B0

igk

P

eit

Temperatur

L

t A0

mp

n

eit

t8

r F

eit D

y

igk

C

igk

h

l m

t2 Siedelinie t A0 CE t B0 t 6

E

zwei flüssige Phasen

t3

Flü ss

ss

A=1 B=0

w’ x

x’

it ke

k

ig ss

t9

w

v

Flü

v’

f+

t5

Flü

Da

x

Da

u’

mp

Dampf u

t4

b)

f+

Flü

ss

t7

s z

Zusammensetzung (Molenbruch)

G B=1 A=0

Abb. 1.34 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit Mischungslücke (Typ A).

1.7 Heterogene Gleichgewichte binärer Systeme

89

Zusammensetzung m. Jetzt beginnt wieder eine flüssige Phase n aufzutreten im Gleichgewicht mit m. Bei der Zusammensetzung n wird das System wieder homogen flüssig. Zu b): Das System bleibt bis zum Punkt u bei t4 dampfförmig, dann beginnt sich eine flüssige Phase der Zusammensetzung u0 abzuscheiden. Dampf und Flüssigkeit bleiben bei weiterer Abkühlung koexistent, indem die Flüssigkeit ihre Zusammensetzung u0 v0 ändert und gleichzeitig an Menge immer mehr zunimmt, während der Dampf seine Zusammensetzung entlang uv ändert und gleichzeitig an Menge immer mehr abnimmt. Unterhalb t5 (Punkt v0 ) verschwindet die Dampfphase vollständig, das System wird und bleibt bis zum Punkt h homogen flüssig. Zu c): Geht man durch Erhitzen des Systems von der Totalzusammensetzung z aus, liegen zwei koexistente flüssige Phasen der Zusammensetzung F und G vor, die mit steigender Temperatur sich entsprechend FC und GE ändern und schließlich bei der Siedetemperatur t3 die Werte C und E erreichen. Bei t3 tritt als neue Phase Dampf der Zusammensetzung D auf, zunächst im Gleichgewicht mit den koexistierenden flüssigen Phasen C und E. Nach der Gibbs’schen Phasenregel ist jetzt F D K  P C 2 D 2  3 C 2 D 1. Da durch den konstanten Druck schon eine Freiheit festgelegt ist, ergibt sich F D 0. Das System ist durch die konstante Zusammensetzung der beiden flüssigen Phasen und die des Dampfes vollständig bestimmt, die Temperatur kann sich nicht ändern. Das System ist nonvariant, der Punkt D wird als singulärer Punkt bezeichnet. Bei weiterer Wärmezufuhr bleibt die Siedetemperatur t3 so lange konstant, wie die beiden koexistierenden flüssigen Phasen C und E vorhanden sind. Da der Dampf der Zusammensetzung D mehr A enthält als der Zusammensetzung z entspricht, nimmt die Menge der A-reichen flüssigen Phase C immer mehr ab und wird schließlich Null. Damit ist wieder eine Freiheit vorhanden und die Temperatur kann durch die Wärmezufuhr erhöht werden. Die Zusammensetzung des Dampfes ändert sich dabei entlang Dx, die der flüssigen Phase entlang Ex0 . Bei t6 ergibt sich z. B. nach dem Hebelgesetz die Proportion: Menge des Dampfes der Zusammensetzung w Strecke x0 w0 D : 0 Menge der flüssigen Phase der Zusammensetzung w Strecke w x0 Bei der Temperatur t2 verschwindet die flüssige Phase x0 vollständig; das System wird und bleibt bis zum Punkt L (bei t1 ) homogen gasförmig. Entsprechend dem Diagramm Abb. 1.34b führt die fraktionierte Destillation beliebiger Zusammensetzungen immer zu einem Destillat, das aus zwei flüssigen Phasen besteht und nicht trennbar ist. Geht man z. B. von einer Mischung u0 aus, erhält man den Dampf u, der bei Kondensation die homogene Flüssigkeit v0 liefert. Wird diese aber weiter destilliert, so hat ihr Dampf die Zusammensetzung v und zerfällt schließlich nach weiterem Verdampfen und Kondensieren in die beiden flüssigen Phasen C und E. Da bei einem Gemisch der Zusammensetzung D der Dampf die Zusammensetzung der flüssigen Phasen hat, kann bei der fraktionierten Destillation bzw. Kondensation eine Komponente nicht rein abgetrennt werden. Ein Gemisch der Zusammensetzung zwischen C und D liefert hingegen im Rückstand reines A und ein Gemisch der Zusammensetzung zwischen D und E reines B, wobei in beiden Fällen milchig-trübe Flüssigkeiten sieden und auch kondensieren. Fünfte Möglichkeit: Die Komponenten A und B bilden eine Lösung mit positiver Abweichung vom Raoult’schen Gesetz und Mischungslücke (Abb. 1.35). Bei der fraktionierten Destillation entsteht immer ein klares Destillat. Auch hier ergibt sich aus der Gibbs’schen Phasenregel über den Verlauf der Totaldampfdrucklinie (Siedelinie) des flüssigen binären Gemisches mit Mischungslücke (Abb. 1.35a) die Linie pA0 -C-D-pB0 : Solange das System homogen ist, besitzt es zwei Freiheiten

90

1 Theoretische Grundlagen

(F D K P C2 D 22C2 D 2), es ist bivariant. Wird die Temperatur festgelegt, ändert sich der Dampfdruck noch mit der Zusammensetzung des Systems. In der Mischungslücke kommt noch eine Phase hinzu und das System wird univariant. Bei gegebener Temperatur kann sich der Totaldruck nicht mehr ändern, auch wenn die Totalzusammensetzung des Systems variiert. Im Gebiet der Mischungslücke CD ist die Totaldampfdrucklinie als Funktion der Totalzusammensetzung des Systems eine Parallele zur Abszisse. In Abb. 1.35b ist schematisch das zugehörige Siedediagramm dargestellt. Man erkennt im Vergleich zu Abb. 1.34b, dass die Zusammensetzung des Dampfes E nicht in den Bereich der Mischungslücke fällt. Wird eine Mischung, deren Zusammensetzung zwischen C und D liegt, zum Sieden erhitzt, entsteht aus der siedenden trüben Emulsion Dampf der Zusammensetzung E, der immer zu einer klaren homogenen Flüssigkeit kondensiert. Da dieses Kondensat viel reicher an B ist als die Ausgangsmischung, wird im Verlauf der Destillation die B-reichere flüssige Phase D an Menge immer mehr abnehmen und schließlich verschwinden. Dann destilliert die homogene flüssige Phase C. Man erhält bei fraktionierter Destillation im Rückstand reines A, im Destillat reines B. Geht man von einer Mischung m aus, entsteht Dampf der Zusammensetzung n, der bei der Kondensation eine trübe Emulsion aus den beiden flüssigen Phasen C und D ergibt, bei der erneuten Destillation aber Dampf der Zusammensetzung E und somit wieder ein klares Kondensat und schließlich reines B liefert, während man im Rückstand reines A erhalten wird. Ein Gemisch der Zusammensetzung u liefert Dampf der Zusammensetzung v und im Destillat schließlich reines B; die Zusammensetzung des homogenen flüssigen Rückstandes bewegt sich längs der Linie uD. Ist die Zusammensetzung D erreicht, tritt als zweite Phase C auf und die Destillation verläuft weiter wie oben geschildert. Sechste Möglichkeit: Die beiden flüssigen Komponenten A und B sind vollständig unmischbar. In Abb. 1.36a ist für das binäre System Toluol/Wasser das Dampfdruckdiagramm ausgewiesen. Man erkennt darin die Totaldampfdrucklinie (Siedelinie) als Parallele zur Abszisse. Die Mischungslücke ist somit vollkommen. Der Totaldruck P ergibt sich bei dT D 0 aus der Summe der Partialdrucke pi0 der reinen Komponenten Toluol und Wasser: 0 0 C pWasser D 436 hPa C 577 hPa D 1013 hPa : P D pToluol

Er ist unabhängig vom Mischungsverhältnis. Ein derartiges Gemisch siedet, wenn der Totaldruck Atmosphärendruck (1013 hPa) erreicht, also bei einer Temperatur, die niedriger liegt, als die Siedepunkte der reinen Komponenten. Das Siedediagramm Abb. 1.36b gibt die experimentell festgestellte Siedetemperatur mit 85 ı C an. Solange die beiden Phasen koexistieren, bleibt die Siedetemperatur konstant. Wird vorausgesetzt, dass die Gasgesetze auch für Dämpfe gelten, lässt sich die Dampfzusammensetzung bzw. die Zusammensetzung des Destillats leicht berechnen: p0  MWasser mWasser 0;26 g nWasser  MWasser 577 hPa  18 g=mol D D D Wasser D 0 mToluol nToluol  MToluol 436 hPa  92 g=mol 1g pToluol  MToluol nWasser D nToluol

0;26 mol 18 1 mol 92

D

0;0144 mol 0;0110 mol

0;0144 mol D 0;57 .0;0110 C 0;0144/ mol D 1  Wasser D 0;43 :

(1.183)

Wasser D

(1.184)

Toluol

(1.185)

91

1.7 Heterogene Gleichgewichte binärer Systeme

Flü ssig kei t

Druck

zwei flüssige Phasen

p

t A0

Flüssigkeit C

Dampf

Taulinie 0 B

m

D

Dampf + Flüssigkeit

n Dampf + Flüssigkeit

Siedelinie

E

t

C

A=1 B=0

igkei Flüss

Temperatur

Dampf Taulinie

F

a)

t 0B

G

A=1 B=0

B=1 A=0

Zusammensetzung (Molenbruch)

zwei flüssige Phasen

v

u

it gke ssi Flü

p A0

D

t

Siedelinie

B=1 A=0

Zusammensetzung (Molenbruch)

b)

Abb. 1.35 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit Mischungslücke (Typ B).

zwei flüssige Phasen (Toluol + Wasser)

Taulinie

110,8

Dampf (l)

1013 (l) +

Siedelinie l

uo

)+

l To

(l) +

100 er

Tol u

ol

W as se r

(l)

85

(l

ass +W

Siedelinie

577 Taulinie

436

Druck (hPa) 0 1

a)

χ Wasser 0,57 χ Toluol 0,43

zwei flüssige Phasen (Toluol + Wasser)

Temperatur (°C)

Dampf (l)

1 0

0 1

χ Wasser χ Toluol

0,57 0,43

b)

Abb. 1.36 Dampfdruckdiagramm a) und Siedediagramm b) zweier vollständig unmischbarer Flüssigkeiten (Beispiel: Toluol/Wasser).

1 0

92

1 Theoretische Grundlagen

Diese Destillation mit Wasser kommt in Bezug auf die Senkung des Siedepunkts der Vakuumdestillation gleich. Sie ist Grundlage der Wasserdampfdestillation, einem Trennverfahren, mit dem schwer flüchtige, in Wasser unlösliche Stoffe getrennt oder gereinigt werden können, z. B. Öle oder Aromaten. Die wasserunlösliche Probe wird dazu mit heißem Wasser in die Destillationsblase gegeben und anschließend Wasserdampf eingeleitet. Wasserdampf und die leichter flüchtigen Anteile der Probe verdampfen und gelangen gasförmig bis zum Kühler, wo sie zur Flüssigkeit kondensieren. Ist der zu reinigende Stoff nur wenig wasserlöslich, trennt er sich im Destillat als zweite Phase ab und kann durch Dekantieren und/oder Extraktion abgetrennt werden. Wie bereits oben angedeutet, liegt die Siedetemperatur des heterogenen Gemischs unter 100 ı C, weil der Gesamtdampfdruck nicht ineinander lösbarer Gemische sich aus der Summe der Partialdrücke der Komponenten ergibt und unabhängig von ihrem Molanteil ist. Dadurch steigt der Totaldampfdruck über den Dampfdruck des Wassers, der es bei 1013 hPa bei 100 ı C sieden lässt. Somit muss die Siedetemperatur unter 100 ı C liegen. Es lassen sich so empfindliche Naturstoffe mit sehr geringem Dampfdruck destillieren. Mit Gleichung (1.184) lässt sich bei Kenntnis der Dampfdrücke der Komponenten und des ermittelten Gleichgewichtsverhältnisses der Komponenten im Destillat die molare Masse der nichtwässrigen Komponente berechnen. Für MToluol , bezogen auf das besprochene System Toluol/Wasser, ergibt sich ein Wert von MToluol D

1.7.4

0 1 g  pWasser  MWasser 0 0;26 g  pToluol

D

1 g  577 hPa  18 g=mol D 91;62  92 g=mol : 0;26 g  436 hPa

Binäre Systeme „flüssig-fest“

Diese Systeme sind formal den Systemen „gasfömig-flüssig“ analog, wenn man an Stelle des Dampfes die Flüssigkeit und an Stelle von Flüssigkeiten feste Phasen setzt. Die das System kennzeichnenden Linien schließen das Gebiet ein, in dem flüssige und feste Phasen miteinander im Gleichgewicht stehen. An Stelle des Siedediagramms tritt das Schmelzdiagramm. Aus der Taulinie (Kondensationslinie) wird die Liquiduslinie, oberhalb der das System homogen flüssig ist. Aus der Siedelinie wird die Soliduslinie, unterhalb der das System fest ist. Somit kann man die Systeme „flüssig-fest“ in entsprechende Gruppen einteilen, die im Folgenden kurz angesprochen werden. Erste Möglichkeit: Beide Komponenten sind im flüssigen und festen Zustand vollständig ineinander löslich. Abb. 1.37a: Die Gleichgewichtslinien (Liquiduslinie und Soliduslinie) besitzen kein Extremum. Zwischen beiden Linien ist die feste mit der flüssigen Phase im Gleichgewicht, das System ist univariant. Oberhalb der Liquiduslinie und unterhalb der Soliduslinie besteht das System aus einer homogenen Phase, es ist bivariant. Da nur eine feste Phase auftritt, kann das System niemals nonvariant werden und besitzt somit keinen singulären Punkt. Wird der reinen Komponente B der Stoff A zugesetzt, so tritt eine Schmelzpunkterniedrigung auf, im umgekehrten Fall eine Schmelzpunkterhöhung. Analog der Regel von Konowalow enthält bei jeder Temperatur die flüssige Phase relativ mehr als die feste Phase von derjenigen Komponente, deren Zusatz den Schmelzpunkt des Systems erniedrigt. Wird die Schmelze der Zusammensetzung L und der Temperatur t1 abgekühlt, beginnt bei t2 die Kristallisation einer festen Lösung (Mischkristalle, MK) der Zusammensetzung b, die im Gleichgewicht mit der konjugierten Phase a steht. Die Strecke a-b ist eine Konode. Weiteres Abkühlen bewirkt eine Fortsetzung der Kristallisation, indem sich die Zusammensetzung der Schmelze entlang der Linie a-c-e-tA , die der festen Lösung entlang der Linie b-d-f-tA bewegt.

1.7 Heterogene Gleichgewichte binärer Systeme

S + MK x

e

x’

t4

tA

Soliduslinie

MK

Soliduslinie

A=1 a) B = 0

Zusammensetzung (Molenbruch)

tA

Liquiduslinie

tB

t3

d

f tA

Liquiduslinie

S+

b

Temperatur

Temperatur

t2

MK

x’’

S

S+

tB

Liquidusa linie

c

M

t1

MK

L S

93

MK B=1 A=0

A=1 b) B = 0

Zusammensetzung (Molenbruch)

B=1 A=0

S S+

tB

MK

MK

Temperatur A=1 c) B = 0

S+

Soliduslinie M MK

Zusammensetzung (Molenbruch)

B=1 A=0

Abb. 1.37 a) Schmelzdiagramm ohne Extremum; b) Schmelzdiagramm mit Maximum der Gleichgewichtskurve; c) Schmelzdiagramm mit Minimum der Gleichgewichtskurve.

Die Schmelze ist stets reicher an A als die MK, dabei bleibt die Totalzusammensetzung des Systems gleich L. Bei t4 verschwindet der letzte Rest der Schmelze e, es liegt nur eine feste Lösung der Zusammensetzung f vor. Das Zustandsdiagramm bildet die Grundlage für die Trennung der beiden Komponenten durch fraktionierte Kristallisation. Wenn eine Mischung der Zusammensetzung L bis zum Punkt x (t3 ) abgekühlt wird, zerfällt sie in ungefähr gleiche Mengen der Schmelze c und der festen Phase, das heißt der Mischkristalle d, wobei die Schmelze reicher an A und die feste Phase reicher an B ist als die Ausgangsmischung L. Wird nun die Schmelze c abgetrennt und bis zum Punkt x0 (t4 ) abgekühlt, zerfällt sie in noch A-reichere Schmelze e und in Mischkristalle f (e:f = fx0 :ex0 ). Bei Fortsetzung dieses Verfahrens kann man schließlich reines A gewinnen. Wird andererseits die feste Phase d bis zum Punkt x00 (t2 ) erhitzt, entsteht neben der Schmelze a die gegenüber der Ausgangsmischung L und des ersten Kristallisats d sehr viel B-reichere feste Lösung b. Die Wiederholung dieses Verfahrens führt schließlich zu reinem B.

94

1 Theoretische Grundlagen

Derartige Zustandsdiagramme treten auf bei gleicher Kristallstruktur (Gittertyp) der Komponenten (Isotopie), bei kleinen Unterschieden in den Atomradien (< 15 %) und bei ähnlichen Bindungsverhältnissen in den Komponenten (z. B. Elektronegativität, Wertigkeit). Beispiele: CuNi, CoNi, AuAg, AgClNaCl, PbCl2 PbBr2 Abb. 1.37b: Die Gleichgewichtslinien haben ein Maximum. Das Zustandsdiagramm kommt selten vor. Beide Komponenten erhöhen den Schmelzpunkt der anderen unter Ausbildung eines Maximums. Für die Zusammensetzung des Maximums ist eine Trennung durch fraktionierte Kristallisation nicht möglich. Die Mischung schmilzt und erstarrt scharf wie eine einheitliche Verbindung. Bei allen anderen Zusammensetzungen, die links und rechts vom Maximum liegen, kann durch fraktionierte Kristallisation jeweils die in der Schmelze angereicherte Komponente gewonnen werden, während aus der festen Phase nur Mischkristalle der Zusammensetzung des Maximums erhalten werden. Beispiele: Für diesen Fall kennt man nur Systeme aus der Rechts- und Linksform optisch aktiver Verbindungen. Abb. 1.37c: Die Gleichgewichtslinien haben ein Minimum. Das Zustandsdiagramm ist analog dem von Abb. 1.37b aufgebaut. Die reinen Komponenten sind diesmal aus der festen Phase bei der fraktionierten Kristallisation zu erhalten. Beispiele: CuMn, CuAu, KClKbr, Na2 CO3 K2 CO3 Zweite Möglichkeit: Beide Komponenten sind vollständig mischbar im flüssigen und nur teilweise mischbar im festen Zustand. Bei derartigen Systemen gibt es eine Temperatur, bei der drei Phasen koexistent sind, das System also invariant ist und über einen singulären Punkt verfügt. Liquidus- und Soliduslinie verlaufen diskontinuierlich. Die singulären Punkte entsprechen im System flüssig-gasförmig den Punkten D (Abb. 1.34) und E (Abb. 1.35). Entweder kann der Punkt ein eutektischer oder ein peritektischer Punkt sein. Abb. 1.38a: Dieser Diagrammtyp tritt ein, wenn die beteiligten Komponenten ein etwa gleiches Raumgitter aufweisen und die Atomdurchmesser mehr als 15 % voneinander abweichen. Das System hat einen eutektischen Punkt C, bei dem ˛-MK (A-reiche Mischkristalle) und ˇ-MK (B-reiche Mischkristalle) mit der Schmelze im Gleichgewicht sind. Die dem Eutektikum entsprechende Temperatur tE ist die niedrigste Temperatur, bei der die Schmelze existieren kann. Bei dieser verhältnismäßig niedrigen Temperatur bilden sich viele Keime, die Mischkristalle erreichen nur eine geringe Größe, es bildet sich ein feines Gefüge, ein „Eutektikum“. Für das aus dem Griechischen entlehnte Wort gibt es zwei Deutungen: „gut gebaut“ wegen des feinen Gefüges und „gut schmelzend“, weil es die Mischung mit dem niedrigsten Schmelzpunkt ist. Die Linien tA -D und tB -E heißen Soliduslinien, die Linien tA -C und tB -C sind die Liquiduslinien. Es treten zwar Mischkristalle auf, aber nicht in allen Zusammensetzungen. Eine Komponente oder beide Komponenten (Abb. 1.38a) sind fähig, in ihrem Gitter eine beschränkte Anzahl von Atomen der anderen Komponente zu beherbergen. Bei der Herstellung der Mischkristalle ist man in der Wahl der Zusammensetzung auf zwei kleine Skalenbereiche beschränkt. Der dazwischen liegende Skalenbereich der Unlöslichkeit stellt die sogenannte „Mischungslücke“ (Löslichkeitslücke) dar. Sie stimmt bei der eutektischen Temperatur tE mit der Eutektikalen DCE überein, wird aber mit fallender Temperatur breiter, weil mit sinkender Temperatur in den Kristallgittern die Lösungsfähigkeit für Fremdatome abnimmt.

1.7 Heterogene Gleichgewichte binärer Systeme

L

L’

t

tA Schmelze

D

C α-MK + Eutektikum + β-MK

q F a)

α-MK + β-MK

stRe + K lze v β-M hme m sc

u

Eutektikum

Temperatur

α-MK

tB

x

α-MK + Restschmelze

n E s α-MK + β-MK

G

Zusammensetzung

B=1

(Molenbruch)

A=0

L2

L1 tB

a b

t1 S + β-MK

Temperatur

Schmelze S c

tp

d

MK S + α-

e

f

g

β-MK

k

tA m

α-MK

α-MK + β-MK

i

h b)

tE

p

β-MK + Eutektikum + α-MK

B=0

L3

y

β-MK

A=1

t

95

A=1

Zusammensetzung

B=1

B=0

(Molenbruch)

A=0

Abb. 1.38 a) Schmelzdiagramm mit Mischungslücke und einem Eutektikum; b) Peritektisches System mit Mischungslücke der festen Komponenten.

Die gestrichelt-punktierten Markierungen sind Sättigungsgrenzen (Segregatlinien). Über die Vorgänge beim Überschreiten einer Segregatlinie (segregare = lat. abscheiden) gibt das Diagramm in Abb. 1.38a Auskunft. Kühlt man z. B. die Mischung L langsam aus dem Zustandsfeld „Schmelze“ ab, besteht das Gefüge bei Erreichen des Punktes m einheitlich aus Primär-ˇ-MK. Nach weiterem Abkühlen wird in Punkt p ein neues Feld erreicht, durch welches man waagerecht hindurchgeht bis zur nächsten Phasengrenze. Punkt q gibt die Zusammensetzung der Sekundär-˛-MK an, die nun in den Primär-ˇ-MK zu wachsen beginnen. Nach Überschreiten der Segregatlinie diffundieren die überschüssigen A-Atome, die vom B-Gitter nicht mehr in Lösung gehalten werden können, in gewisse Bereiche, verdrängen dort B-Atome von ihren Plätzen und bilden, nunmehr als A-Atome in der Überzahl,

96

1 Theoretische Grundlagen

Kristalle mit A-Gitter, in denen nur noch einige B-Atome in Lösung gehalten werden, d. h. Sekundär-˛-MK. Die verdrängten B-Atome diffundieren gleichzeitig im Austausch an die von den A-Atomen aufgegebenen Plätze. Als Zielort wählen die A-Atome beim Diffundieren bevorzugt Korngrenzen, denn dort liegen wegen der unterschiedlichen Gitterorientierung der einzelnen Körner die Atome selten im richtigen Abstand. An solchen Stellen erhöhter (potenzieller) Energie gelingt es den Atomen am leichtesten, ein neues Gitter aufzubauen. Man sagt kurz: „Es werden ˛-MK ausgeschieden“, obgleich nicht etwa irgendwelche bereits vorhandenen ˛-MK aus dem Gefüge hinausgedrängt werden; vielmehr werden sie durch Ausscheidung von A-Atomen neu im Gefüge gebildet. Und zwar geschieht das kontinuierlich mit sinkender Temperatur. Dabei geben die ausgeschiedenen ˛-MK wiederum B-Atome ab; denn auch die Lösungsfähigkeit des A-Gitters für B-Atome nimmt mit sinkender Temperatur ab. Bei Raumtemperatur besteht das Gefüge schließlich aus ˇ-MK der Zusammensetzung G und ˛-MK der Zusammensetzung F. Beim Abkühlen der Schmelze L0 kristallisieren bei u primär ebenfalls ˇ-MK. Die Schmelze zerfällt in ˇ-MK der Zusammensetzung v und in Schmelze der Zusammensetzung u. Bei weiterer Abkühlung ändert sich die Zusammensetzung der ˇ-MK entlang vE, die der Schmelze entlang uC. Ist die eutektische Temperatur tE erreicht, ist der Erstarrungsvorgang noch nicht beendet. Die Menge der noch vorhandenen Schmelze C verhält sich zu den ˇ-MK E wie die Strecke nE zu nC. Die mit den ˇ-MK im Gleichgewicht befindliche Schmelze ist aber gleichzeitig gesättigt an ˛-MK der Zusammensetzung D. Bei weiterem Wärmeentzug scheiden sich auch diese ˛-MK ab. Die Erstarrung wird in einer eutektischen Kristallisation abgeschlossen. Während dieses Vorgangs bleibt die Temperatur konstant und alle drei Phasen behalten ihre Zusammensetzung. Erst nach vollständiger Erstarrung der Schmelze beginnt bei weiterem Wärmeentzug die Temperatur wieder zu sinken und die Zusammensetzung der ˛-und ˇ-MK ändert sich entlang DF und EG. Beim Punkt s ist das Mengenverhältnis der festen Phasen p und q nach dem Hebelgesetz geregelt: Strecke ps Menge der Phase q D : Menge der Phase p Strecke qs Eine eutektische Legierung der Zusammensetzung C besteht unmittelbar nach beendeter Erstarrung aus ˛-und ˇ-MK. Beide Kristallarten scheiden mit sinkender Temperatur SekundärMK aus. Diese sind im Schliffbild aber nicht als besondere Gefügebestandteile zu erkennen, da dieses Gefüge von vornherein aus einem feinen Gemenge von ˛-und ˇ-MK besteht. Enthält dagegen eine Legierung neben Eutektikum auch Primär-MK, so sind die ausgeschiedenen Sekundär-MK im Schliffbild sichtbar. Beispiele: AgCu, PbSn, AgClCuCl, KNO3 Pb(NO3 )2 Abb. 1.38b: Bei einem derartigen System erhöht der Zusatz von B zu A bzw. ABGemischen stets den Schmelzpunkt (außer in der Mischungslücke). Im Punkt c, dem peritektischen Punkt (Umwandlungspunkt) stehen drei Phasen (Schmelze, ˛-MK, ˇ-MK) miteinander im Gleichgewicht. Ein Minimum in der Liquiduslinie tA -c-tB fehlt. Die Soliduslinien werden von den Linien tA -k-e und g-b-tB gebildet. Die Vorgänge beim Abkühlen sollen an drei Beispielen erklärt werden:  Legierung L1 : Bei Erreichen von a beginnen in der Schmelze ˇ-MK b zu wachsen. Mit sinkender Temperatur ändern die ˇ-MK ihre Zusammensetzung längs der Linie b-g, die Restschmelze längs a-c. In der waagerechten Linie cdefg lassen sich für Legierung L1 zwei

1.7 Heterogene Gleichgewichte binärer Systeme

97

Mengenverhältnisse der Phasen nach dem Hebelgesetz angeben Abstand cg: Abstand eg:

Strecke cf Menge der Phase Primär-ˇ-MK g D Menge der Phase Restschmelze c Strecke fg Menge der Phase Primär-ˇ-MK g Strecke ef D : Menge der Phase der ˛-MK e Strecke fg

Bei dieser peritektischen Temperatur tp spielt sich ein Vorgang ab, bei dem ˛-MK neu entstehen, während die Phase Restschmelze c restlos, die Phase ˇ-MK zu einem Teil verschwindet. Und zwar löst die Restschmelze zum Teil die ˇ-MK wieder auf, wobei sie außen, d. h. ringsherum, auf den Korngrenzen beginnen muss, und reichert sich dabei an Stoff B zu einer neuen Lösung mit Zusammensetzung e an, in welcher sie zu ˛-MK erstarrt. Man nennt den Vorgang eine „Peritektische Umsetzung“ und die waagerechte Linie die „Peritektikale“ (peritekein D griech. ringsherum schmelzen). Beim weiteren Abkühlen bis auf Raumtemperatur ändern die beiden Phasen (˛-MK und ˇ-MK) ihre Zusammensetzung längs den Linien e-h bzw. g-i.  Legierung L2 : Bei Erreichen der Peritektikalen besteht die Legierung L2 aus Primär-ˇ-MK g und aus Restschmelze c, beim Verlassen (nach unten) der Peritektikalen dagegen nur aus ˛-MK e. Die gesamte Legierung L2 wird von der peritektischen Reaktion erfasst und zu neuen ˛-MK umgesetzt. Man nennt die ˛-MK e daher Peritektikum und die Legierung L2 eine peritektische. Ihr Gefüge ist gröber als das Gefüge eines Eutektikums. Nach dem Diagramm besteht das Gefüge der Legierung L2 nach Abkühlen auf Raumtemperatur aus ˛-MK h und ausgeschiedenen ˇ-MK i.  Legierung L3 : Beim Erreichen und Verlassen der Peritektikalen ergeben sich nach dem Hebelgesetz zwei Mengenverhältnisse der Phasen: Abstand c-g: Abstand c-e:

Menge der Phase Primär-ˇ-MK g Strecke cd D Menge der Phase Restschmelze c Strecke dg Strecke cd Menge der Phase ˛-MK e D : Menge der Phase Restschmelze c Strecke de

Es werden bei konstanter, peritektischer Temperatur die Primär-ˇ-MK g restlos wieder aufgelöst und mit einem Teil der Schmelze zu ˛-MK e umgesetzt. Beim weiteren Abkühlen ändern die Restschmelze und die ˛-MK ihre Zusammensetzung längs den Linien c-tA bzw. e-tA . Mit Erreichen des Punktes k besteht die Legierung L3 nur aus ˛-MK k, aus denen nach Unterschreiten des Punktes m beim weiteren Abkühlen Sekundär-ˇ-MK i ausgeschieden werden. Bei Raumtemperatur besteht Legierung L3 aus Sekundär-ˇ-MK i und aus ˛-MK h. Beispiele: AuPt, FeC-Teilsystem (mit peritektische Umwandlung von Schmelze und festen ı-Fe-MK zu festen  -Fe-MK, die bei der peritektischen Temperatur von 1493 ı C und der peritektischen Zusammensetzung von 0,17 Masse% Kohlenstoff abläuft). Dritte Möglichkeit: Beide Komponenten sind im flüssigen Zustand vollständig mischbar, im festen Zustand ineinander vollständig unlöslich. Abb. 1.39a: In solchen Systemen hat die Mischungslücke eine maximale Ausdehnung. Im Punkt C stehen zwei feste und eine flüssige Phase miteinander im Gleichgewicht. Das System ist an dieser Stelle nonvariant und der Punkt C ein singulärer Punkt. Oberhalb der Liquiduslinie tA -C-tB ist das System bivariant. In den Gebieten, die durch die Flächen tA -C-D und tB C-E gekennzeichnet sind, und unterhalb der Solidusline DCE (hier gleich der Eutektikalen) ist das System univariant. Geht man von der Zusammensetzung L2 aus, beginnt bei m

98

1 Theoretische Grundlagen Schmelze S L2

d

L1

t1

tA

m

y

n x

D

o

Eutektikum

Temp.

t2

A-Krist. + Eutektikum

A=1 a) B = 0

B-Krist. + Schmelze t C E E B-Krist. + Eutektikum

Zusammensetzung (Molenbruch)

L2

S

L4

L3

c A + AB

S+B e AB + B

A=1 b) B = 0

AB = 1 Zusammensetzung (Molenbruch)

B=1 A=0

tB

d

c

b

S+B D

L1 E

tA

B=1 A=0

tB

S + AB

S+A

tB

Temp.

A-Krist. + Schmelze

S

tA

F

a S + AB2

B + AB2

Temp.

A+S A + AB2

A=1 c) B = 0

C AB2 Zusammensetzung (Molenbruch)

B=1 A=0

Abb. 1.39 a) Schmelzdiagramm mit einfachem Eutektikum; b) Schmelzdiagramm mit einfachen Eutektika u. homogen schmelzender Verbindung AB; c) Schmelzdiagramm mit einfachem Eutektikum u. inhomogen schmelzender Verbindung AB2 .

reines A primär zu kristallisieren. Bei t2 im Punkte n ist Schmelze der Zusammensetzung x im Gleichgewicht mit reinem A, wobei sich nach dem Hebelgesetz ergibt: Menge der Schmelze Strecke yn D : Menge der ausgeschiedenen Komponente A Strecke xn Im Punkt o bei der eutektischen Temperatur tE beginnt sich aus der noch vorhandenen Schmelze neben A auch reines B abzuscheiden. Aus der Schmelze der Zusammensetzung L1 mit eutektischer Zusammensetzung C kristallisieren nebeneinander die reinen Komponenten aus und bilden nach dem Erstarren das eutektische Gefüge (Eutektikum). Schmelzen anderer Zusammensetzung enthalten somit nach der Erstarrung außer dem Eutektikum noch primär abgeschiedenes A oder B. Beispiele: BiCd, AlSi, KNO3 NaNO3 , o-Phenol-p-Phenol

1.7 Heterogene Gleichgewichte binärer Systeme

99

Abb. 1.39b: Die Wechselwirkung der Komponenten hat einen solchen Grad angenommen, dass A und B eine homogen schmelzende Molekülverbindung AB bilden. Die festen Phasen bestehen aus den reinen Komponenten und der reinen Verbindung. Das Zustandsdiagramm erscheint zusammengesetzt aus zwei Diagrammen mit je einem einfachen Eutektikum, von denen das eine aus der Komponente A und der Verbindung AB, das andere aus der Verbindung AB und der Komponente B aufgebaut ist. Es treten zwei Eutektika (c und e) auf. Ein erwarteter scharfer Schnittpunkt der Kurven cd und de tritt nicht auf. Die im Gegensatz dazu auftretende Ausbildung bis zum Maximum d ist ein Maß für den Umfang der Dissoziation von AB. Der Punkt d ist der Schmelzpunkt der Verbindung AB. Er kann höher oder tiefer als die Schmelzpunkte der reinen Komponenten oder zwischen ihnen liegen. Die Punkte c, d und e sind dadurch ausgezeichnet, dass die Schmelze und das jeweilige Kristallisat dieselbe Zusammensetzung haben. Beispiele: AuSn, CaCl2 KCl Abb. 1.39c: Die Komponenten bilden eine inhomogen schmelzende Verbindung AB2 , die sich unterhalb ihres (hypothetischen) Schmelzpunktes D zersetzt. Ihr Schmelzmaximum wird nicht erreicht, es wird vielmehr durch den Linienast EtB der Liquiduslinie tA CEtB „verdeckt“. Man sagt die Verbindung schmilzt inkongruent (inhomogen), im Diagramm durch den Punkt E ausgewiesen. Die festen Phasen bestehen aus den reinen Komponenten und der reinen Verbindung. Beim Abkühlen verschiedener zusammengesetzter Schmelzen sollen bezüglich des Erstarrungsvorganges vier Fälle (L1 –L4 ) kurz erklärt werden:  Erstarrung der Schmelze L1 : Beim Punkt a beginnt die Schmelze unter Abscheidung von AB2 zu erstarren, wobei der weitere Verlauf der Veränderungen dem eines binären Systems A-AB2 entspricht.  Erstarrung der Schmelze L2 : Beim Punkt b beginnt die Schmelze unter Abscheidung von B zu erstarren. Sie verändert weiterhin entlang bE ihre Zusammensetzung und geht nach Erreichen der Horizontalen EF unter Verbrauch von B-Kristallen in die Verbindung AB2 über. Da aber die Schmelze mehr A enthält als die Verbindung AB2 , bleibt nach dem Verbrauch der B-Kristalle noch Schmelze übrig, die bei Temperatursenkung entlang EC ihre Zusammensetzung unter weiterer AB2 -Abscheidung ändert. Solange die Umwandlung Schmelze C B D AB2 andauert, besteht das System aus drei Phasen (Schmelze, AB2 und B). Nach der Phasenregel ergibt sich für F D K  P C 2 D 2  3 C 2 D 1. Diese eine Freiheit ist jedoch durch die Festlegung des Druckes schon vergeben. Das System ist während der genannten Umwandlung invariant, die Temperatur bleibt konstant. Sie sinkt erst nach völliger Umwandlung von B in AB2 weiter ab.  Erstarrung der Schmelze L3 : Die Schmelze ist B-reicher als AB2 . Beim Punkt d beginnt die Schmelze unter Abscheidung von B zu erstarren. Ist die Temperatur bis auf die Horizontale EF gesunken, wird die gesamte Schmelze unter Bildung der Verbindung AB2 verbraucht, neben der aber noch festes B vorhanden ist.  Erstarrung der Schmelze L4 : Zunächst beginnt beim Punkt c die Schmelze unter Abscheidung von B zu erstarren. Beim Erreichen der Horizontalen EF liegen aber jetzt B und Schmelze E in einer solchen Menge vor, dass beide bei der Umwandlung in AB2 vollkommen verbraucht werden. Die feste Phase besteht folglich nur aus AB2 . D ist deren hypothetischer Schmelzpunkt, E der inkongruente oder inhomogene Schmelzpunkt oder Umwandlungspunkt der Verbindung. Beispiele: NaK (D A2 B), AgClCsCl (D AB), K2 SO4 CdSO4 (D AB2 )

100

1 Theoretische Grundlagen

Vierte Möglichkeit: Beide Komponenten sind im flüssigen und festen Zustand unbegrenzt miteinander mischbar, die festen Lösungen scheiden aber bei tieferer Temperatur die reinen Komponenten in anderen Modifikationen aus. Abb. 1.40a: In diesem Fall erhält man oberhalb einer bestimmten Temperatur das schon in Abb. 1.37a dargestellte Linsendiagramm. Bei tieferen Temperaturen scheidet die feste Lösung (ˇ-MK) je nach der Zusammensetzung der Ausgangsmischung reines A oder reines B in der ˛-Form ab, d. h. es liegt ein binäres System vor, das dem mit einem einfachen Eutektikum (Abb. 1.39a) analog ist. Man spricht von einem eutektoiden System; D ist der eutektoide Punkt und die Übergangspunkte (Übergangstemperaturen) der reinen Komponenten von der ˇ-Form in die ˛-Form sind tA˛ und tB˛ . Beispiele: AlZn, Messing, Bronze, eutektoides Teilsystem des Fe-C-Diagramms mit dem Zentrum um S (D Perlitpunkt) auf der Stahlseite; Merkmal: eutektoide Reaktion/Umwandlung bei 723 ı C:  -FeMK ! ˛-FeMK C Fe3 C .D Perlit/ : Derartige Systeme gibt es auch mit beschränkter Mischungslücke, wobei an Stelle des eutektoiden Punktes auch ein peritektoider Punkt treten kann. Fünfte Möglichkeit: Die reinen Komponenten sind im flüssigen Zustand nur teilweise mischbar. Die festen Phasen bestehen aus den reinen Komponenten. Abb. 1.40b: Der rechte Teil des Systems über der Kurve tB CG entspricht einem einfachen binären System mit Eutektikum C (analog zu Abb. 1.39a). Die Kurven GC und tB C kennzeichnen das Gleichgewicht zwischen Schmelze S und reinem A bzw. reinem B. Unterhalb C liegt das Kristallgemisch von reinem A und B vor. Die Kurve FMG im linken Teil des Systems kennzeichnet die Mischungslücke der Schmelze und bei M die kritische Lösungstemperatur. Kühlt man eine Mischung der Zusammensetzung l und der Temperatur t ab, beginnt in p der Zerfall der homogenen Schmelze in zwei flüssige Phasen p und p0 . Im Punkt q haben beide flüssigen Phasen die Zusammensetzung F und G. Durch Ausscheiden von festem A wächst die Menge der Schmelze G auf Kosten von Schmelze F. Diese isotherme monotektische Reaktion Schmelze F ! A C Schmelze G führt schließlich bei Erreichen von r zur Kristallisation des Eutektikums C. Der Abkühlungsverlauf einer Mischung der Zusammensetzung l0 verläuft analog. Bei x scheidet sich reines A ab, wobei sich die Zusammensetzung der Schmelze entlang tA F bewegt. Ist F erreicht, beginnt die Abscheidung der zweiten flüssigen Phase G aus der Schmelze F unter weiterer Abscheidung von A (monotektische Reaktion). Beispiele: AlPb, AlBi, ZnPb, CuPb Sechste Möglichkeit: Lösungen im Gleichgewicht mit dem Bodenkörper. Zu den Phasengleichgewichten gehören auch die gesättigten wässrigen Lösungen, die im Gleichgewicht mit dem Bodenkörper stehen, bei denen allerdings in manchen Punkten eine andere Bezeichnungsweise üblich ist. Die vollständigen Systeme sind wegen des niedrigen Siedepunktes des Wassers im Vergleich zum Schmelzpunkt des Salzes nur unter Druck zu bestimmen. Meistens begnügt man sich mit einem Teil des Systems und zwar bis höchstens zu

101

1.7 Heterogene Gleichgewichte binärer Systeme

tB

Temperatur

S

t

S + MK S

α

tA

β

p

p’ zwei Flüssigkeiten

x

β-MK α

β-MK + Aα

y

β-MK + Bα

Temperatur

tA

l M (=OKT)

tB tA

l’

β

D

Aα + Bα A=1 B=0

B=1 A=0

Zusammensetzung (Molenbruch)

F q

z

r

A+B

A=1 B=0

a)

G

tB

A+S

Zusammensetzung (Molenbruch)

C

B+S E B=1 A=0

b)

Abb. 1.40 a) Eutektoider Zerfall der Mischkristalle; b) Mischungslücke in der Schmelze mit einer monotektischen Umwandlung.

60

B

ungesättigte Lösung

Temperatur (C°)

30

gesättigte Lösung + festes NaCl

A

0

Eis + ungesättigte Lösung

–21,2

C Eis + festes NaCl

0

23,3

50

Gew.-% NaCl

Abb. 1.41

Gleichgewichtskurven im System H2 O/NaCl.

Temperaturen des Siedepunktes der gesättigten Lösung bei Atmosphärendruck. Die Verhältnisse sollen an dem System Wasser-NaCl (Abb. 1.41) erläutert werden. Die Abbildung ist wie ein Diagramm mit einfachem Eutektikum (Abb. 1.39a) zu deuten. Entlang der Kurve AC scheidet sich die Komponente A (Eis), entlang der Kurve BC die Komponente B (NaCl  2 H2 O) aus. AC

102

1 Theoretische Grundlagen

wird gewöhnlich die Gefrierpunktkurve (Eiskurve) der wässrigen NaCl-Lösung genannt, BC gewöhnlich die Löslichkeitskurve des NaCl. Im singulären (kryohydratischen) Punkte C sind die beiden festen Phasen (Eis und NaCl  2 H2 O) und die flüssige Phase (Lösung) miteinander im Gleichgewicht. Das System ist hier mit F D 0 nonvariant. Die geschilderte Systemart bildet die Grundlage der im Laboratorium so häufig angewendeten Kältemischungen aus einem Salz, Eis und Wasser. Wenn zu Eis und Wasser bei 0 ı C Salz hinzugefügt wird, bildet sich aus dem Wasser und dem Salz eine gesättigte Lösung. Es existieren nebeneinander: Salz, Eis und gesättigte Lösung. Das ist nur möglich bei der eutektischen Temperatur; die bei Salz-Wasser-Systemen unter 0 ı C liegen muss. Wenn genügend Eis und Salz vorhanden sind, muss die Temperatur auf die des eutektischen (kryohydratischen) Punktes sinken, was durch das Schmelzen des Eises, das immer Wärme verbraucht, und durch das Auflösen des Salzes, sofern dieser Vorgang Wärme verbraucht, bewirkt wird. Solange drei Phasen vorliegen, wird die Temperatur über die niedrige Temperatur nicht ansteigen können. Ist dagegen so viel Wärme aus der Umgebung aufgenommen worden, dass alles Eis geschmolzen oder in Lösung gegangen ist, so ist eine Phase verschwunden, das System ist univariant (F D 1) geworden und die Temperatur beginnt zu steigen.

1.8 Heterogene Gleichgewichte ternärer Systeme 1.8.1

Die Darstellung der Zusammensetzung einer ternären Mischung

Für jedes Zweikomponenten-System (Binäres System) können Druck, Temperatur und Konzentration unabhängig variabel sein. Das System hat maximal, d. h. wenn nur eine Phase vorliegt, drei Freiheiten (F D K C 2  P D 2 C 2  1 D 3). Beim Dreikomponenten-System (Ternäres System) tritt noch eine weitere Konzentrationsvariable hinzu, da zwei Konzentrationsangaben notwendig sind, die Zusammensetzung eindeutig festzulegen. Ein solches System besitzt maximal vier Freiheiten. Beim Vorliegen nur einer Phase gilt nach der Phasenregel: F D K C 2  P D 3 C 2  1 D 4. Da bei Untersuchungen von Dreikomponenten-Systemen außer dem Druck (101;325 kPa) zunächst auch die Temperatur konstant gehalten wird, hat man noch mit zwei Freiheiten, den beiden Konzentrationsvariablen, zu rechnen. Wenn alle möglichen Mischungen berücksichtigt werden sollen, wählt man am zweckmäßigsten die Fläche eines gleichseitigen Dreiecks zur Darstellung der Konzentrationen.  Die reinen Komponenten A, B und C entsprechen den Ecken des Dreiecks.  Die Seiten des gleichseitigen Dreiecks entsprechen den drei binären Mischungsreihen AB, AC und BC, d. h. ein Punkt auf einer Dreieckseite gibt die Zusammensetzung des jeweiligen binären Systems an.  Die Punkte der Dreiecksebene selbst entsprechen den ternären Mischungen (Abb. 1.42). Die Darstellung der Mischungszusammensetzung im gleichseitigen Dreieck gründet sich auf folgende Eigenschaften desselben:  Die Summe der Abstände jedes Punktes im gleichseitigen Dreieck von den drei Seiten desselben ist gleich der Höhe.

103

1.8 Heterogene Gleichgewichte ternärer Systeme A

a)

A

b)

%B h b f %C

c

Q P x

R

y

e

z

%A

B

d

a

C

B

x

C

Abb. 1.42 a) Das Konzentrationsdreieck (schematisch); b) Wichtige Beziehungen im Konzentrationsdreieck (schematisch).

 Legt man durch einen beliebigen Punkt x im gleichseitigen Dreieck Parallelen zu den drei Dreieckseiten, ist die Summe ihrer Stücke xd, xe und xf gleich einer Dreieckseite. Da die drei rechtwinkligen Dreiecke axd, bxe und cxf einander ähnlich sind, gilt: xa W xb W xc D xd W xe W xf : Die Ermittlung des entsprechenden Punktes einer gegebenen Zusammensetzung der ternären Mischung ist leicht auszuführen. Die Prozentgehalte der Mischung an A, B und C seien p, q und r.  Alle Mischungen mit p% A liegen auf einer Parallelen zu der A gegenüber liegenden Seite BC . Diese Parallele schneidet von allen von A ausgehenden Geraden den Bruchteil p=100 ab. Für die Mischungen mit p% B bzw. p% C erhalten wir entsprechende Parallelen zu AC bzw. AB. Die drei Parallelen schneiden sich in einem Punkte, welcher der gegebenen Zusammensetzung der Mischung entspricht.  Teilt man die drei Dreieckseiten in 100 gleiche Teile und legt durch die Teilpunkte drei Scharen von Parallelen, so kann man den Punkt, welcher einer gegebenen Zusammensetzung in Gewichts- oder Atomprozenten entspricht sofort angeben. Man zählt entsprechend der gegebenen Prozentzahl der einzelnen Komponenten, von der dem Punkte der reinen Komponente gegenüberliegenden Seite ausgehend, die Parallelen ab. Die Abzählung für zwei Komponenten genügt, der Schnittpunkt der beiden so ermittelten Parallelen ist der gesuchte Punkt. Die Abzählung der Parallelen für die dritte Komponente kann zur Kontrolle der beiden ersten Zählungen dienen; die dritte Parallele muss durch den Schnittpunkt der beiden anderen gehen. Zwei Schnitte im Dreieck sind von besonderer Bedeutung (Abb. 1.42b):  Durch die Verbindungslinie eines beliebigen Punktes einer Dreieckseite mit der gegenüberliegenden Ecke (z. B. Ax) sind alle Gemische gekennzeichnet, die die Komponenten B und C in demselben Verhältnis enthalten.

104

1 Theoretische Grundlagen

 Durch eine Parallele zu einer Dreieckseite (z. B. yz) sind alle Gemische gekennzeichnet, die die Komponente A in demselben Anteil enthalten. Scheidet sich eine der Komponenten im reinen Zustande als Gas, Flüssigkeit oder Kristall aus der Mischung aus, muss sich die Zusammensetzung der zurückbleibenden Mischung auf einer Geraden bewegen, die durch den Zusammensetzungspunkt der Mischung und den Eckpunkt der zur Ausscheidung gelangenden Komponente geht. Der Punkt, der die Zusammensetzung der zurückbleibenden Mischung darstellt, wird sich hierbei von der betreffenden Dreiecksecke fortbewegen. Alle Punkte, die auf der Verbindungslinie (Konode) zweier ternärer Systeme der Zusammensetzungen P und Q liegen, sind Gemische dieser Systeme, deren Menge z. B. gegeben ist durch das Verhältnis RQ/RP. Der Punkt R repräsentiert also ein Gemisch der Systeme P und Q. Dabei gilt für die Mengen dieser Systeme: RQ Menge von P D : Menge von Q RP Man nennt diese Beziehung das Gesetz der geraden Verbindungslinie. Es entspricht dem Hebelgesetz des Zweikomponenten-Systems.

1.8.2

Ternäre Systeme aus drei flüssigen Komponenten

Bezüglich der teilweisen gegenseitigen Löslichkeit der Komponenten werden folgende Fälle unterschieden:  Ein Paar der drei Flüssigkeiten ist teilweise mischbar.  Zwei Paare der drei Flüssigkeiten sind teilweise mischbar.  Alle Paare der drei Flüssigkeiten sind teilweise mischbar. Ein Paar der drei Flüssigkeiten ist teilweise mischbar. Von den drei Komponenten A, B und C des Systems sollen bei der gegebenen Temperatur A und B sowie A und C vollständig miteinander mischbar sein. B und C sollen eine Mischungslücke besitzen. Dieser Sachverhalt lässt sich durch das Diagramm der Abb. 1.43 wiedergeben. Liegt zunächst nur das System aus B und C vor, gibt die Strecke bc die Mischungslücke dieser beiden Komponenten wieder. Für Zusammensetzungen links von b liegt eine ungesättigte Lösung von C in B vor, rechts von c eine von B in C. Systeme, deren Totalzusammensetzung zwischen b und c liegt, zerfallen in zwei flüssige Phasen der Zusammensetzung b und c. Durch Zusatz von A zu B und C verändert sich die Mischungslücke, sie wird kleiner und entspricht zunächst der Strecke b0 c0 , weil sich ein Teil von A in B und ein anderer Teil in C löst. Für die Mischungen AB bzw. AC ist die Mischungslücke kleiner. Würde sich A in B und C in demselben Ausmaße lösen, verliefe die neue Mischungslücke b parallel zur Strecke bc. Im vorliegenden Fall ist A in C löslicher als in B, wodurch die Asymmetrie im geometrischen Bild erklärt wird. Bei weiterem Hinzufügen von A wird die Mischungslücke immer kleiner und verschwindet schließlich. Im Punkte K haben die beiden Mischungen dieselbe Zusammensetzung, d. h. die beiden Phasen sind zu einer geworden. Der Punkt K wird kritischer Punkt genannt. Die Linie bKc, welche die Endpunkte der Konoden miteinander verbindet, heißt Binodalkurve. Sie besitzt im vorliegenden Fall ein Maximum bei M . Dieses Maximum fällt in jenen Systemen mit dem kritischen Punkt zusammen, bei denen A in den beiden konjugierten Phasen die gleiche Löslichkeit besitzt. Mischt man B und C in dem Massenverhältnis, in dem sie im kritischen Punkt vorliegen (dieses Verhältnis wird durch den Punkt E angegeben) und fügt man diesem Zweiphasensystem allmählich A zu, ist der relative Anteil aller drei Komponenten

1.8 Heterogene Gleichgewichte ternärer Systeme

105

A

M K

G

c’

x b’ B b

E

Abb. 1.43

F

C

C

Ternäres System mit Mischungslücke zwischen einem Paar der Komponenten.

durch die auf der Geraden EK liegenden Punkte gegeben. Nähert man sich so dem Punkt K, bleiben die B-haltige und die C-reiche Phase in vergleichbaren Mengen nebeneinander bestehen, bis sie sich im Punkt K miteinander vereinigen, ohne dass man dabei entscheiden könnte, welche der beiden Phasen verschwindet. Wiederholt man diesen Vorgang bei einem anderen Massenverhältnis von B und C, z. B. bei dem durch den Punkt F gegebenen, nimmt, wenn man sich dem Punkt G nähert, die B-haltige Phase kontinuierlich ab, bis sie beim Erreichen dieses Punktes völlig verschwindet und nur die C-reiche Phase zurückbleibt. Das, was bei den binären flüssigen Systemen mit Mischungslücke durch Temperatursteigerung erreicht wurde, nämlich das Verschwinden der Mischungslücke, wird hier bei konstanter Temperatur durch den A-Zusatz bewirkt, allerdings unter Übergang in ein ternäres System. Außerhalb der Binodalkurve ist das System homogen flüssig und besitzt nach der Phasenregel vier Freiheiten: P D K C 2  P D 3 C 2  1 D 4. Da zwei Freiheiten, Druck und Temperatur, festgelegt sind, hat das System tatsächlich nur zwei Freiheiten, nämlich die Konzentrationsangaben für zwei Komponenten, die das System allein bestimmen. Man kann zu einer Komponente die beiden anderen in beliebigen Mengenverhältnissen hinzufügen, ohne dass das System in zwei flüssige Phasen zerfällt, wenn nur die Totalzusammensetzung außerhalb der Binodalkurve liegt. Zur vollständigen Bestimmung des Systems sind also zwei Konzentrationsangaben notwendig. Innerhalb der Binodalkurve bKM c stehen zwei flüssige Phasen miteinander im Gleichgewicht, deren Zusammensetzungen durch die Endpunkte der jeweiligen Konoden angegeben werden. Nach der Phasenregel gilt in diesem Fall: F D K C 2  P D 3 C 2  2 D 3. Sind Druck und Temperatur festgelegt, ist nur eine Freiheit vorhanden, das System ist univariant. Eine Konzentrationsangabe, die die Lage einer der konjugierten flüssigen Phasen auf der Binodalkurve festlegt, genügt, das System zu bestimmen. Entspricht z. B. die Totalzusammensetzung des Systems dem Punkt x der Abb. 1.43, genügt eine Konzentrationsangabe, um die konjugierte flüssige Phase b0 auf der Binodalkurve zu bestimmen. Die Zusammensetzung der konjugierten Phase c0 ist durch den Schnittpunkt der durch b0 x gelegten Geraden mit der Binodalkurve gegeben. Im Übrigen gilt auch hier die Hebelbeziehung, d. h. ein Gemisch der Totalzusammensetzung x zerfällt in zwei flüssige Phasen der Zusammensetzung b0 und c0 , deren Mengen sich zueinander verhalten wie xc0 :xb0 .

106

1 Theoretische Grundlagen

A

K4

t4 K3 t3

K2 K1

t2

0 K1

A

K2

1 2

K3 K4

t1 B

C

a)

3

B

C

b)

Abb. 1.44 (schematisch). Abhängigkeit der Mischungslücke von der Temperatur; a): Raumdiagramm; b): Projektion der Binodalkurven auf das Konzentrationsdreieck.

Beispiele für derartige ternäre Systeme sind: CH3 COOHCHCl3 H2 O; CH3 COOC2 H5 C2 H5 OHH2 O; C2 H5 OHC6 H6 H2 O : Die Temperaturabhängigkeit eines Dreikomponentensystems bei konstantem Druck wird durch ein Raumdiagramm (Abb. 1.44) dargestellt, in dem man die Temperatur auf einer zur Dreiecksebene senkrechten Achse aufträgt. Das gesamte Raumdiagramm wird durch den Mantel eines Prismas abgegrenzt, dessen Grundfläche ein gleichseitiges Dreieck ist. In den zur Grundfläche parallelen Schnittebenen können die isothermen Gleichgewichtsverhältnisse dargestellt werden. Das Gleichgewicht zweier kondensierter Phasen bei konstanter Temperatur wird durch eine Kurve in der isothermen Ebene dargestellt, die der Schnittlinie dieser Ebene mit der den gesamten Koexistenzbereich dieser beiden Phasen darstellenden Raumfläche entspricht. Für verschiedene Temperaturen erhält man verschiedene Binodalkurven (Abb. 1.44). In der Regel schrumpft die Fläche unter der Binodalkurve mit steigender Temperatur, da hierbei die gegenseitige Löslichkeit erhöht wird. Bei sinkender Temperatur dehnt sich die Fläche aus, wobei es zum Schnitt mit einer gegenüberliegenden Seite kommen kann. Die gewölbte Fläche im Raumdiagramm, welche die Binodalkurven umhüllt, heißt Binodalfläche; sie grenzt ein heterogenes Gebiet des ternären Systems von dem umgebenden homogenen Gebiet ab. Die Konoden in den Mischungslücken drehen sich mit steigender Temperatur so, dass sie sich einer der Geraden BC parallelen Lage annähern, die sie im Grenzfall (Punkt K4 ) mit verschwindender Menge an A erreichen würden.

1.8 Heterogene Gleichgewichte ternärer Systeme a)

107

A

b) K2

Temperatur

t3 t2 t1 2

3

K2

K1 A B

C

B

C

Abb. 1.45 Geschlossene Mischungslücke im ternären System mit oberem und unterem kritischen Punkt (schematisch). a) Raumdiagramm, b) Konzentrationsdreieck

Im Allgemeinen verzichtet man bei der Darstellung des Temperatureinflusses auf die räumliche Darstellung und projiziert die Binodalkurven bei den verschiedenen Temperaturen auf das Konzentrationsdreieck als Grundfläche (Abb. 1.44b). Die Kurven 0, 1, 2 und 3 stellen die Projektion der Binodalkurven bei vier verschiedenen Temperaturen dar. Bei der tiefsten Temperatur (Binodalkurve 0) hat sich die Mischungslücke bis zum Schnitt mit der Seite AB ausgedehnt. Das bedeutet, dass jetzt nicht nur B und C, sondern auch A und B eine Mischungslücke besitzen. Mit steigender Temperatur wandern die kritischen Punkte auf der gestrichelten Kurve von K1 nach K4 . Im Punkte K4 ist die Mischungslücke eben verschwunden. Die zugehörige Temperatur ist aber nicht die kritische Lösungstemperatur des ternären Systems, sondern die des binären Systems BC, da im Punkt K4 kein A mehr vorhanden ist. Existiert eine Mischungslücke im ternären System, die sich mit sinkender und steigender Temperatur schließt, erhält man ein Raumdiagramm (Abb. 1.45a), dessen Projektion in das Konzentrationsdreieck (Abb. 1.45b) zu geschlossenen Kurven führt, die die Seiten nicht berühren. Die Kurven 2 und 3 repräsentieren die Projektion der Binodalkurven bei den Temperaturen t2 und t3 . Die zugehörige Temperatur des Punktes K2 ist die obere kritische Lösungstemperatur des ternären Systems. Die Binodalkurve bei t1 und K1 sind nicht eingezeichnet. Zwei Paare der drei Flüssigkeiten sind teilweise mischbar. Wenn nicht nur die Komponenten B und C eine Mischungslücke besitzen, sondern auch die Komponenten A und B, dann können zwei Binodalkurven auftreten (Abb. 1.46a). Bei einem derartigen System gibt es Mischungen der Komponenten A und C, nämlich diejenigen zwischen d und e, die bei einem Zusatz von B homogen bleiben und zwar bis zu reinem B hin. Bei allen anderen Mischungen von A und C tritt durch den Zusatz von B vorübergehend Entmischung ein. Mit sinkender Temperatur können sich die Mischungslücken schließlich überschneiden; dann ergeben die Mischungslücken beider Komponenten zusammen ein mehr oder weniger breites Band, das sich von der Seite AB bis zur Seite BC erstreckt (Abb. 1.46b). Ein solches Band kann auch entstehen, wenn nur eine Mischungslücke etwa zwischen B und C existiert und diese sich mit sinkender Temperatur bis zum Schnitt mit der Seite AB ausdehnt, etwa gemäß der Abb. 1.44 für die Binodalkurve bei der niedrigsten Temperatur. Beim

108

1 Theoretische Grundlagen

a)

b) A

A

d e

B

C

B

C

Abb. 1.46 a) Mischungslücke zwischen zwei Paaren der Komponenten (schematisch); b) System mit zwei sich überschneidenden Mischungslücken (schematisch).

Vorliegen eines solchen Bandes (Abb. 1.46b) kann man daher nicht von vornherein sagen, ob bei Temperaturerhöhung das Band in zwei oder eine Mischungslücke aufgespalten wird. Ein Beispiel für ein Diagramm der Abb. 1.46b ist das System Ethylacetat-Wasser-n-Butylalkohol bei Raumtemperatur; ein Beispiel für zwei getrennte Mischungslücken das System WasserEthanol-Bernsteinsäurenitril zwischen 13 ı C und 31 ı C. Alle Paare der drei Flüssigkeiten sind teilweise mischbar. Hier treten (Abb. 1.47a) drei getrennte Binodalkurven mit den entsprechenden Paaren konjugierter ternärer Systeme auf. Wenn die drei Mischungslücken einander überschneiden bzw. ein solches Verhalten bei sinkender Temperatur zeigen, kann ein Diagramm der Abb. 1.47b entstehen. Die freien Felder an den Spitzen des Dreiecks entsprechen homogenen, flüssigen Phasen des ternären Systems. Alle Totalzusammensetzungen des Systems innerhalb der Mischungslücke zwischen B und C, die nach dem Innern des Dreiecks zu durch die Linie EF begrenzt wird, zerfallen in zwei konjugierte flüssige Phasen des ternären Systems, deren Zusammensetzung durch die entsprechenden Punkte der Binodalkurven bE und cF bestimmt sind. Analoges gilt für die beiden anderen Mischungslücken. Fällt dagegen die Totalzusammensetzung des Systems in das Dreieck DEF, so treten drei konjugierte ternäre Phasen auf, deren Zusammensetzungen durch die Punkte D, E und F gegeben sind. Das gilt für alle Punkte innerhalb des Dreiecks DFE. Die einzige Variationsmöglichkeit liegt im Mengenverhältnis der drei flüssigen Phasen, das je nach der Lage des Punktes innerhalb des Dreiecks DEF, d. h. je nach der Totalzusammensetzung, verschieden ist. Nach der Phasenregel beträgt die Zahl der Freiheiten beim Auftreten von drei Phasen P D K C 2  P D 3 C 2  3 D 2. Da beide Freiheiten (Druck und Temperatur) schon vergeben sind, ist das System für alle Totalzusammensetzungen, die in das Dreieck DEF fallen, nonvariant. Dieser Sachverhalt findet darin seinen Ausdruck, dass die Zusammensetzung der drei im Gleichgewicht befindlichen ternären Phasen stets den Punkten D, E und F entspricht. Ein bekanntes Beispiel für ein derartiges Verhalten ist das System Wasser-Ether-Bernsteinsäurenitril. Die Mengen der drei ternären Phasen D, E und F werden durch die Schwerpunktbeziehung geregelt, die am Beispiel der Abb. 1.47b erläutert wird. Bei

109

1.8 Heterogene Gleichgewichte ternärer Systeme a)

b) A

A

D a P E

B

C

B

F

b

c

C

Abb. 1.47 a) System mit Mischungslücken zwischen drei Paaren (schematisch); b) System mit Dreiphasendreieck.

der Totalzusammensetzung P gelten für die Mengen der Phasen gemäß dieser Beziehung, die der Hebelbeziehung für binäre Systeme entspricht, folgende Proportionen: 1: 2: 3:

FWD E W (D+F) E W (E + D+F)

D D D

aD W aF aP W EP aP W aE :

Wobei die großen Buchstaben auf der linken Seite der Gleichungen Mengen der entsprechenden Phasen darstellen. Analog ergeben sich Gleichungen für die anderen möglichen Kombinationen. Das Dreieck DEF wird auch Konoden- oder Dreiphasendreieck genannt. Das Raumdiagramm hat die Gestalt dreier sich durchdringender Kegel, die in Längsrichtung durch den Mantel eines dreiseitigen Primas abgeschnitten sind.

1.8.3

Ternäre Systeme mit festen Phasen

Einführende Bemerkungen Die Diagramme von ternären Systemen mit flüssigen und festen Phasen sind unentbehrliche Hilfsmittel in der Metallurgie zum Studium von Metalllegierungen, in der Keramik zur Untersuchung der Eigenschaften verschiedener Zemente und Tonwaren und bei der Prüfung der Salzgewinnungsmöglichkeiten, z. B. aus Salzseen. Sie können kompliziert werden, besonders wenn sich binäre oder ternäre, kongruent oder inkongruent schmelzende Verbindungen mit begrenzter gegenseitiger Löslichkeit bilden. Bei den ternären Systemen hat man dieselbe Abwandlung der Grundsysteme wie bei den binären Systemen. Die meisten praktischen Fälle lassen sich als Kombination solcher Grundtypen deuten. Bei nachfolgender Erörterung soll der einfachste Fall der vollständigen Mischbarkeit der flüssigen und der vollständigen Unlöslichkeit der festen Phasen ineinander berücksichtigt werden. Mit einer Ausnahme wird nach Abb. 1.52 auch die vollständige Mischbarkeit der festen Phasen ineinander berücksichtigt.

110

1 Theoretische Grundlagen

Das Raumdiagramm Die Gleichgewichte zwischen den flüssigen und festen Phasen eines Dreikomponentensystems müssen durch eine räumliche Darstellung wiedergegeben werden. Die Konzentrationen werden durch ebene Dreieckskoordinaten festgelegt. Die Temperaturachse steht senkrecht zu der Dreiecksebene im Raum. Dadurch wird das Raummodell des ternären Systems ein dreiseitiges Prisma, in dem jede Seitenfläche einem der drei binären Systeme der Komponenten zugeordnet ist. Diese Darstellungsweise soll, wie oben erwähnt, am einfachsten System erklärt werden, in dem alle drei Komponenten A, B und C im flüssigen Zustand unbegrenzt mischbar sind, aber weder feste Lösungen (Mischkristalle) noch Verbindungen bilden (Abb. 1.48). In diesem Fall besitzt jedes Komponentenpaar (AB, AC, BC) ein binäres Eutektikum (D, E, F) wie es schon bei den Zweikomponentensystemen beschrieben wurde. Außerdem bilden alle drei Komponenten noch ein ternäres Eutektikum (G). Während im entsprechenden binären System die Primarkristallisation durch eine Kurve (Soliduskurve, Schmelzkurve, Löslichkeitskurve) dargestellt werden konnte, müssen im ternären System dafür Schmelzflächen (AEGD, CEGF und BFGD) auftreten. Wird z. B. im Bereich der homogenen Schmelze über der Fläche CEGF ein System der Totalzusammensetzung x gewählt, so wird bei allmählichem Abkühlen und Erreichen dieser Fläche im Punkt y die Kristallisation zunächst von reinem C eintreten. Dadurch wird die Schmelze C-ärmer; ihre Zusammensetzung wird sich im Raumdiagramm von C weg zur Mitte des Diagramms hin bewegen. Dabei wird, je nachdem ob in der Ausgangsmischung die Komponente B oder A überwiegt, schließlich die Linie FG oder EG erreicht. Nun beginnt neben C auch B bzw. A auszukristallisieren und die Zusammensetzung der Schmelze bewegt sich, indem sich ständig das binäre Eutektikum abscheidet, auf der Linie FG oder EG dem Punkt G zu. In diesem Punkt, dem ternären Eutektikum, scheiden sich alle drei Komponenten nebeneinander bei konstanter Temperatur ab, bis die gesamte Schmelze verbraucht, also alles erstarrt ist. Beim ternären Eutektikum sind vier Phasen miteinander im Gleichgewicht. Nach der Phasenregel gilt F D K C 2  P D 3 C 2  4 D 1, d. h., das System ist im ternären Eutektikum invariant (F D 0), da der Druck festgelegt ist. Die Abkühlungskurve dieses ternären Systems mit der Totalzusammensetzung x besitzt zwei Knickpunkte, die dem Beginn der primären sowie sekundären eutektischen Kristallisation entsprechen, und einen Haltepunkt der ternären eutektischen Kristallisation. In Abb. 1.48b sind die Mehrphasenkurven bzw. -flächen des Raumgitters auf die Grundfläche des Prismas projiziert. Die Schmelzverhältnisse des Raumgitters werden durch eine derartige Projektion wiedergegeben, wobei man die Flächen der drei binären Teilsysteme in die Grundfläche herunterklappt. Den Punkten x, y und z der Abb. 1.48a entspricht also der Punkt x der Abb. 1.48b, der die Zusammensetzung der Ausgangsmischung angibt. Erreicht die Temperatur den Punkt o0 der Abb. 1.48a, zerfällt die ursprüngliche Schmelze in die Kristalle der reinen Komponente C und die Restschmelze o, die in Abb. 1.48b mit x0 bezeichnet ist. Die Punkte x und x0 sind durch die von C0 ausgehende Gerade verbunden. Mit anderen Worten: Mit zunehmender Abscheidung von C bewegt sich die Zusammensetzung der Restschmelzen von C0 weg auf der Geraden C0 x0 . Durch die mit sinkender Temperatur vermehrte Abscheidung von C wird die Restschmelze immer reicher an A und B, bis ihre Zusammensetzung schließlich im Punkte m die Kurve E0 G0 erreicht und damit an A gesättigt ist. Bei weiterer Abkühlung scheidet sich nun neben C auch A aus. Die Zusammensetzung der Restschmelze bewegt sich bei weiterer Abkühlung auf der Kurve mG0 zum ternären Eutektikum G0 hin. Bei allen Mischungen, deren Zusammensetzungen durch Punkte im Felde C0 E0 G0 F0 gekennzeichnet sind, kristallisiert primär C. Entsprechendes gilt von den Flächen E0 A0 D0 G0 bzw. B0 D0 G0 F0 für die Komponenten A bzw. B. Bei allen Mischungen, deren Zusammensetzungen durch Punkte im Dreieck A0 G0 C0 gekennzeichnet werden, findet nach primärer

1.8 Heterogene Gleichgewichte ternärer Systeme

111

x C A

E

y o

C

A

o'

z A'

B

E'

A

F

C' x' x

m

D

D'

G

C G' F'

E'

A' D'

B'

C' G'

B

B

F'

B' a)

b)

Abb. 1.48 (schematisch). Ternäres System mit reinen festen Phasen und einer flüssigen Phase. a) Raumdiagramm; b) Projektion des Raumdiagramms auf die Grundebene (Konzentrationsebene).

Abscheidung der einen Komponente die Kristallisation des binären Eutektikums entlang der Kurve E0 G0 unter Abscheidung von A und C statt. Liegt die Anfangskonzentration dabei im Teilfeld C0 E0 G0 , so kristallisiert primär C. Liegt die Totalzusammensetzung im Teilfeld A0 E0 G, kristallisiert primär A aus. Analoges gilt von den Dreiecken C0 G0 B0 und A0 B0 G0 . Die Kristallisationsvorgänge in einem ternären System mit einem einfachen Eutektikum zeigen, dass das zugehörige Raumdiagramm aus insgesamt acht Zustandsräumen besteht, nämlich aus einem Raum der homogenen Schmelze, aus je drei Räumen der primären bzw. sekundären, eutektischen Kristallisation und aus einem Raum der vollständig erstarrten Schmelze.

Isotherme Schnitte Nachfolgend sollen einige ausgewählte Horizontalschnitte (Isotherme Schnitte) durch das Raumdiagramm der Abb. 1.48a eine Übersicht über Phasen geben, die bei einer bestimmten Temperatur koexistieren.  Liegt die Temperatur so hoch, dass das gesamte System noch flüssig ist, zeigt der Horizontalschnitt nur ein gleichseitiges Dreieck, dessen Punkte den verschiedenen Zusammensetzungen der homogenen Schmelzen entsprechen, ohne dass Phasengrenzen auftreten.  Abb. 1.49a: Isothermer Schnitt oberhalb des binären Eutektikums E, aber nach bereits einsetzender Primärkristallisation von C und A. Hier deuten die Linien mn den Schnitt der Horizontalebene mit der Fläche der Primärkristallisation von C und op den Schnitt mit der Primärkristallisationsfläche von A an. Die beiden Linien grenzen das Gebiet der homogenen Schmelze von dem Zweiphasenraum S C A bzw. S C C ab. Eine Schmelze der Totalzusammensetzung x innerhalb der Fläche Cmn zerfällt beim Abkühlen auf die Temperatur des Horizontalschnitts in die reine Komponente C und Schmelze S, deren Zusammensetzung durch den Schnittpunkt q der Geraden Cxq mit der Linie mn gegeben ist. Diese Zusammenhänge gelten für jede andere Konode der Fläche Cmn.

112

1 Theoretische Grundlagen

 Abb. 1.49b: Isothermer Schnitt durch das binäre Eutektikum E. Sachverhalt wie in Abb. 1.49a, aber jetzt schneiden sich die Kurven mn und op auf der Seite AC.  Abb. 1.49c: Isothermer Schnitt unterhalb des binären Eutektikums E, aber über dem Schmelzpunkt der Komponente B. Alle Mischungen, deren Zusammensetzungen Punkten im Feld S entsprechen, bilden eine homogene Schmelze. Jede Mischung, deren Zusammensetzung durch Punkte im Feld Cmn wiedergegeben werden kann, zerfällt in die reine Komponente C und eine Schmelze, deren Zusammensetzung durch den Schnittpunkt der zugehörigen Konode mit der Kurve mn gegeben ist. Analoges gilt für den Fall Amo. Das Feld AmC entspricht der binären eutektischen Kristallisation von A und C.  Abb. 1.49d: Isothermer Schnitt unterhalb des Schmelzpunktes der Komponente B, aber noch oberhalb des binären Eutektikums D. Ausgehend von Abb. 1.49c ist das Gebiet der primären Kristallisation von B hinzu gekommen, ebenso das Feld BnC der binären eutektischen Kristallisation von B und C.  Abb. 1.49e: Isothermer Schnitt durch das binäre Eutektikums D. Sachverhalt wie in Abb. 1.49d, aber jetzt schneiden sich die Kurven pm und no auf der Seite AB.  Abb. 1.49f: Isothermer Schnitt unterhalb der drei binären Eutektika (D, E,F,) und oberhalb des ternären Eutektikums G. Sachverhalt wie in Abb. 1.49e, aber es hat binäre eutektische Kristallisation von A und B eingesetzt.  Abb. 1.49g: Isothermer Schnitt durch das ternäre Eutektikum G. Die Felder der primären Kristallisation sind zu einer Grenzgeraden geschrumpft und die Gebiete der binären eutektischen Kristallisation berühren sich einander.

Vertikalschnitte Das Verhalten der betreffenden ternären Legierungen bzw. Mischungen beim Abkühlen kann auch durch Vertikalschnitte durch das Zustandsprisma erfolgen. Sie entsprechen den Schmelzdiagrammen binärer Systeme. Um möglichst einfache Verhältnisse zu bekommen, wählt man zur Aufstellung des Raumdiagramms die Schnitte so aus, dass die Zusammensetzung der Mischungen entweder auf einer Geraden von einer Dreieckseite zum gegenüberliegenden Eckpunkt oder auf einer Parallelen zu einer Dreieckseite liegen. Darauf soll hier nicht näher eingegangen werden, da ihre Bedeutung nicht sehr groß ist. Es bestehen wesentliche Unterschiede zwischen den Vertikalschnitten und dem analogen Diagramm binärer Systeme. So gestatten die meisten Kurven der Vertikalschnitte keine Aussage über die Zusammensetzung der im Gleichgewicht befindlichen Phasen und sind lediglich die Durchstoßpunkte der verschiedenen Konoden durch die Schnittebene. Einige Phasen mit bestimmter Zusammensetzung können nur durch Punkte außerhalb der Schnittebene charakterisiert werden. Der Leser möge sich davon selbst an einem einfachen Vertikalschnitt durch das Zustandsprisma von Abb. 1.48.a überzeugen und kann sich zusätzlich der Lösung einer formulierten Aufgabenstellung (Kap. 2.11, Frage 149) stellen. Diese Aussagen machen deutlich, dass die Horizontalschnitte weitreichendere Schlüsse auf die Form des ternären Zustandsdiagramms gestatten, als die Vertikalschnitte. Daher ist man bemüht, die Zahl der untersuchten Horizontalschnitte möglichst groß zu machen, um das ternäre Zustandsdiagramm eindeutig aufbauen zu können.

1.8.4

Wässrige Lösungen von zwei Salzen

Zu den ternären Systemen gehören auch die wässrigen Lösungen zweier Salze mit einem gemeinsamen Ion. Die Bedingung, dass die beiden Salze ein gemeinsames Ion haben, ist

1.8 Heterogene Gleichgewichte ternärer Systeme A

p o

C

m S+C

S+A

A

x

o

q

A

C S+A+C

S+C

S+A

S+A

x

q

n

S

C

p m

m

S+C

o n

S

S

c)

B

C A

C

S+A+C S+C

+C +B S

S+B

S+

S S+A+B

S+B

S+B+C

+A

n

d)

S+C

S

S o

S+A

S+A+C

S

p

C

S+A+C

m

S+A

A

C +C

A

B

+B

b)

B

n

S

a)

113

S+B

B

e)

B

f)

B

C

A S+A+C

B

S+

A+

B+

C

S+

g)

B

Abb. 1.49 Isotherme Schnitte durch das Raumdiagramm der Abb. 1.48a bei verschiedenen Temperaturen.

notwendig; andernfalls muss man mit einer vierten Komponente rechnen, da in den festen Phasen ein durch Ionenaustausch entstandenes Salz auftreten kann. Die Darstellung der Verhältnisse in einem solchen System geschieht im Konzentrationsdreieck. Das System ist prinzipiell durch ein Prisma der Abb. 1.48a darstellbar, wobei der Schmelzpunkt des Wassers sehr viel tiefer liegt als der der beiden anderen Komponenten, so dass in der Abb. 1.48a der Punkt B sehr viel tiefer liegt als A und C. Dadurch schrumpft die Fläche DBFG zugunsten der anderen Flächen der primären Kristallisation außerordentlich stark zusammen. Da man im Allgemeinen bei derartigen Systemen oberhalb 0 ı C bleibt, d. h. oberhalb des Beginns der primären Kristallisation des Wassers, treten in isotherm-isobaren Horizontalschnitten, die man hier fast ausschließlich zur Kennzeichnung des Systems heranzieht, nur die Schnittlinien der Horizontalebene mit den Flächen der primären Kristallisation

114

1 Theoretische Grundlagen

a)

b)

H2O

A

H2O

A

1

1

B C

2

2

C

B

3

D

3 4

5

S2

S1

4 6

E

S1

S2

Abb. 1.50 Isobar-isotherme Phasendiagramme wässriger Lösungen von zwei Salzen mit gemeinsamem Ion.

a)

b)

H2O

H2O Na2SO4 ⋅ 10 H2O

A

A

1 B

1

H C

3

2

2

D 3

E 4

C 4

S1

6

S2 ⋅ nH2O

S2

5

NaCl

Na2SO4

Abb. 1.51 a) Ein Salz kristallisiert wasserfrei, das andere bildet ein Hydrat; b) Das System ı NaClNa2 SO4  10 H2 O bei 25 C.

der beiden Salze auf. Diese Schnittlinien sind identisch mit den Löslichkeitskurven der Salze bzw. Bodenkörper, die in dem System auftreten können. In Abb. 1.50 sind zwei einfache Diagrammtypen für Salze dargestellt, die keine festen Lösungen (Mischkristalle) bilden. Die Punkte A und B in beiden Diagrammen geben die Zusammensetzung der gesättigten Lösungen an, in denen jeweils nur ein Salz gelöst ist. Im Diagramm der Abb. 1.50a stellt die Kurve AC das Gleichgewicht zwischen dem festen Salz S1 und seiner gesättigten Lösung dar, in der noch das Salz S2 gelöst ist. Die Kurve BC drückt das Gleichgewicht zwischen dem festen Salz S2 und seiner gesättigten, noch das gelöste

1.8 Heterogene Gleichgewichte ternärer Systeme

115

H2O A 1

B 2

K2SO4

Abb. 1.52

(NH4)2SO4

Isobar-isothermes Diagramm des Systems K2 SO4 (NH4 )2 SO4 H2 O.

Salz S1 enthaltenden Lösung aus. Diese Kurven sind die einem univarianten Gleichgewicht (F D 1) entsprechenden Löslichkeitskurven. Der jeweilige Bodenkörper besteht aus dem wasserfreien Salz, die Konoden laufen deshalb in den Punkten S1 und S2 zusammen. Der Punkt C gibt die Zusammensetzung der gesättigten Lösung an, die sich mit beiden festen Salzen im invarianten Gleichgewicht befindet (F D 0). Die Fläche 1 grenzt das Gebiet des bivarianten Gleichgewichts (F D 2) ab und entspricht der ungesättigten Lösung. Die Flächen 2 und 3 sind Bereiche univarianter Gleichgewichte (F D 1), und jeder Punkt innerhalb dieser Flächen entspricht dem Gleichgewicht der gesättigten Lösung mit dem entsprechenden Salz. Verbindet man einen gegebenen Punkt mit dem Endpunkt des Dreiecks an der Peripherie dieser Fläche, so gibt der Punkt, in dem diese Verbindungslinie die Löslichkeitskurve schneidet, die Zusammensetzung der gesättigten Lösung an. Die Fläche 4 ist der Bereich eines invarianten Gleichgewichts (F D 0); bei jeder durch die Punkte innerhalb dieser Fläche festgelegten Gesamtzusammensetzung des Systems gibt der Punkt C die Zusammensetzung der gesättigten Lösung an. Diesen Diagrammtyp (Abb. 1.50a) weist z. B. das System Na2 SO4 NaClH2 O bei Temperaturen oberhalb von 32;4 ı C auf, bei denen Natriumsulfat kein Hydrat bildet. Im Diagramm der Abb. 1.50b gibt der Punkt E die Zusammensetzung eines Doppelsalzes an und die Löslichkeitskurve CD entspricht der gesättigten Lösung dieses Salzes. Dieses System besitzt zwei invariante (F D 0) Punkte C und D, in denen sich die gesättigte Lösung im Gleichgewicht mit zwei festen Phasen befindet. Die Bereiche dieser invarianten Gleichgewichte sind durch die Flächen 5 und 6 gegeben. Die übrigen Flächen haben eine analoge Bedeutung wie im vorhergehenden Fall. Ein Beispiel dafür ist das System H2 ONH4 NO3 AgNO3 , in dem sich das Doppelsalz NH4 Ag(NO3 )2 bildet. Falls der eine Bodenkörper nicht aus dem wasserfreien Salz, sondern aus einem Hydrat S2  nH2 O besteht, so erhält man das Diagramm in Abb. 1.51a. Treten neben dem wasserfreien Salz als Bodenkörper auch dessen Hydrate auf, wie z. B. Na2 SO4 NaClH2 O bei 25 ı C, erhält man das Diagramm in Abb. 1.51b. Beide Diagramme sind ohne weitere Erläuterung verständlich. Das Diagramm eines Systems, in dem beide Salze feste Lösungen bilden (sie sind isomorph und es entstehen Mischkristalle), ist in Abb. 1.52 für das System K2 SO4 (NH4 )2 SO4 H2 O gezeigt.

116

1 Theoretische Grundlagen

Dieses System hat keinen invarianten Punkt. Die stetige Löslichkeitskurve teilt das Dreieck in zwei Bereiche. Die Fläche 1 entspricht der ungesättigten Lösung (F D 2). Die Fläche 2 stellt den Bereich der gesättigten Lösung dar, die im Gleichgewicht mit einer festen Phase steht, d. h. mit der festen Lösung der beiden Salze und ein univariantes System (F D 1) bildet. Die Schnittpunkte der in der Fläche 2 eingezeichneten Geraden mit der Grundlinie des Dreiecks und mit der Löslichkeitskurve geben die Zusammensetzung der festen und flüssigen Phase für das Massenverhältnis der Komponenten in dem System an, dessen Gesamtzusammensetzung durch die Punkte auf diesen Geraden ausgedrückt ist.

2 Fragen ohne Antwort

2.1 Der Zustand eines Systems 1

Was versteht man in der Thermodynamik unter einem System?

2

Unterscheiden Sie zwischen homogenen und heterogenen Systemen!

3

Stellen die nachfolgenden Reaktionsgemische homogene oder heterogene Systeme dar? Welche Bedeutung haben die Symbole in den Klammern? 2–   * a) Pb2+  PbS(s) (aq) C S(aq) )  * b) CuO(s) C Fe(s)  )  FeO(s) C Cu(s)  * c) N2(g) C 3 H2(g)  )  2 NH3(g)  * d) CO(NH2 )2(s) C H2 O(l) )  CO2(g) C 2 NH3(g)

4

Was sind Zustandsgrößen? Wann spricht man von Zustandsvariablen und wann von Zustandsfunktionen?

5

Wie unterscheiden sich extensive und intensive Zustandsgrößen?

6

Welche intensiven Zustandsgrößen leiten sich von extensiven ab?

7

Welche Bedeutung hat die Verwendung von Klein- und Großbuchstaben bei der Symbolisierung von Systemeigenschaften? Was bedeutet T ?

8

Welches Kriterium müssen Zustandsgrößen erfüllen?

9

Welches Kriterium müssen Prozessgrößen erfüllen?

10

Wie kann das vollständige (totale) Differenzial der Änderung einer Zustandsgröße hergeleitet werden? V D f .T;p/ soll die Gleichung V D T  p erfüllen.

11

Was besagt der Schwarz’sche Satz? Welche Bedeutung hat er bei thermodynamischen Betrachtungen von Zustandsänderungen?

12

Mit welchen Zustandsänderungen befasst sich die chemische Thermodynamik vorwiegend?

13

Grenzen Sie die chemische Thermodynamik von der klassischen und statistischen Thermodynamik ab. Welche für die Praxis wichtigen Ergebnisse liefert die thermodynamische Betrachtung chemischer Reaktionen?

118 14

2 Fragen ohne Antwort

Wie kann man mit dem Schwarz’schen Satz nachweisen, dass V , p, T , U , H , S, F und G Zustandsgrößen, Q und W aber Prozessgrößen sind?

2.2 Der nullte Hauptsatz und die thermische Zustandsgleichung der Stoffe 15

Welche Aussagen macht der nullte Hauptsatz der Thermodynamik?

16

Welche Stoffe verfügen über die einfachste thermische Zustandsgleichung?

17

Was sind die typischen Eigenschaften von idealen Gasen?

18

Was beinhaltet die Maxwell’sche Geschwindigkeitsverteilung der Gasmoleküle?

19

Leiten Sie die Gasgesetze von a) Boyle-Mariotte und b) Gay-Lussac aus dem vollständigen Differenzial dV der Funktion V D f .T;p/ her. Verdeutlichen Sie beide Gesetze grafisch. Was sagen sie aus?

20

Leiten Sie das Amonton’sche Gasgesetz aus dem vollständigen Differenzial dp der Funktion p D f .T;V / her und verdeutlichen Sie es grafisch. Was sagt das Gesetz aus?

21

Leiten Sie die thermische Zustandsgleichung für ideale Gase her. Was sagt sie aus?

22

Wie gelangt man mit der thermischen Zustandsgleichung des idealen Gases zur Festlegung des Nullpunktes der Kelvin-Temperaturskala (absoluter Nullpunkt)?

23

Welcher mathematische Zusammenhang besteht bei idealen Gasen zwischen dem isobaren Ausdehnungskoeffizienten ˛, der isothermen Kompressibilität  und dem isochoren Druckkoeffizienten ˇ? Warum sind in Tabellenbüchern in der Regel nur ˛ und  aufgeführt?

24

Eine Kugel des Stahls X8CrNi18,10 hat bei T1 D 20 ı C und 1: 013 bar den Durchmesser d1 D 10 mm. Auf welche Temperatur T2 muss sie mindestens abgekühlt werden, damit sie durch einen Ring von d2 D 9;98 mm hindurchfällt? Der isobare Ausdehnungskoeffizient des Stahls beträgt ˛ D 49;2  106 K1 .

25

Wie kann man die van der Waals’sche Zustandsgleichung für reale Gase aus derjenigen für ideale Gase .pv D nRT / plausibel machen?

26

Welche Eigenschaften muss ein Gas haben, um es verflüssigen zu können?

27

Welche Überlegungen gestatten es, die van der Waals’sche Gleichung der realen Gase auch als Zustandsgleichung von Flüssigkeiten zu verwenden?

28

Welche Aussagen lassen sich zu einer thermischen Zustandsgleichung von Feststoffen machen?

29

Warum besteht Analogie zwischen dem Druck eines Gases und dem eines gelösten Stoffes?

2.3 Der erste Hauptsatz – Energie

119

30

Nach van’t Hoff kommt der osmotische Druck  durch das fortwährende Auftreffen der gelösten Moleküle auf die semipermeable Wand zustande. Informieren Sie sich in der weiterführenden Literatur, wie sich sein Zustandekommen auch von der Seite des Lösungsmittels her ableiten lässt. Begründen Sie diese Möglichkeit.

31

Welche theoretischen Folgerungen erzielte van’t Hoff aus den Pfeffer’schen Messungen des osmotischen Druckes  bei Rohrzuckerlösungen? Schätzen Sie die erreichten -Werte ein. .760 Torr D 1;01325 bar/ Osmotischer Druck wässriger ı Rohrzuckerlösungen bei 15 C als Funktion der Konzentration

Osmotischer Druck einer 1%igen Rohrzuckerlösung als Funktion der Temperatur

Konzentration c der Lösung g Rohrzucker

Osmotischer Druck  ŒTorr

Temperatur T ŒK

Osmotischer Druck  ŒTorr

535 1016 2082 3075

280 286,9 295,2 305,2

505 525 548 544

100 g Wasser

1 2 4 6

2.3 Der erste Hauptsatz – Energie 32

Wie lautet der von dem deutschen Physiker und Physiologen Hermann von Helmholtz (1847) erkannte Energieerhaltungssatz (erster Hauptsatz)?

33

Welche Besonderheiten sind bei der Interpretation der Gleichung des ersten Hauptsatzes dU D ıQ C ıW zu beachten?

34

Warum kann es kein Perpetuum mobile erster Art geben?

35

Welche Aussagen kann man zur inneren Energie U eines Systems machen?

36

Was versteht man unter reversibler Wärme ıQrev ?

37

Was versteht man unter reversibler Arbeit ıWrev ?

38

Welche Erweiterung erfährt der Arbeitsbegriff in der Thermodynamik gegenüber der Mechanik und anderen Zweigen der physikalischen Chemie?

39

Wie lässt sich die Änderung der inneren Energie dU bestimmen?

40

Wie kann die Grundgleichung der Kalorimetrie (z. B. bei Verwendung der kalorimetrischen Bombe) hergeleitet werden?

41

Welche Überlegungen führten zur Definition der Zustandsgröße Enthalpie H ?

120

2 Fragen ohne Antwort

42

Wie lassen sich bei chemischen Reaktionen Änderungen der Enthalpie und Änderungen der inneren Energie ineinander umrechnen?

43

Mit der Funktion H D f .p;T / wird eine von zwei Formen der kalorischen Zustandsgleichung ausgedrückt. Formulieren Sie dafür das vollständige Differenzial. Was drücken die partiellen Ableitungen aus?

44

Stellen Sie die beiden Formen der kalorischen Zustandsgleichung gegenüber.

45

Wie lassen sich die Molwärmen Cp und CV bei idealen Gasen ineinander umrechnen?

46

Wie berechnet man die Änderung der inneren Energie U und der Enthalpie H eines Stoffes, wenn bei seiner Erwärmung Phasenumwandlungen auftreten?

47

Aus der Tabelle ist zu entnehmen, dass Wasser von allen Flüssigkeiten (und auch festen Stoffen) die größte spezifische Wärmekapazität hat. Wie wirkt sich diese Tatsache in der Natur aus? Wo wird sie technisch ausgenutzt? spezifische Wärmekapazität c

Stoff Ethanol Propanon Benzen Propantriol Quecksilber Tetrachlormethan Toluen ı Wasser (20 C) ı Wasser (4 C) ı Eis (0 C) Metalle, Glas Luft

48



kJ kg  K



2,43 2,13 1,72 2,43 0,14 0,84 1,72 4,18 4,19 2,09 1, reichert sich die gelöste Substanz in der Oberphase an, ist C < 1, in der Unterphase. 121

Wie erhält man einen vollständigen Überblick über das Verhalten eines chemisch einheitlichen Stoffes in seinen drei Aggregatzuständen? Man trägt in einem p-T -Diagramm (Zustandsdiagramm) den Dampf-, den Schmelz- und den Sublimationsdruck des Stoffes als Funktion der Temperatur auf. Abb. 3.25 zeigt schematisch ein solches Zustandsdiagramm. Die drei Zweige a, b und c trennen drei Gebiete voneinander, in denen nur die feste, nur die flüssige oder nur die gasförmige Phase P existiert. In diesen Gebieten können p und T innerhalb gewisser Grenzen beliebig gewählt werden. Man sagt,

222

3 Fragen mit Antwort

der Zustand hat zwei Freiheitsgrade F . Sollen zwei Phasen nebeneinander existieren, wird der Zustand durch einen Punkt auf einem der drei Zweige beschrieben, so dass nur eine Zustandsgröße frei wählbar ist; wir haben nur einen Freiheitsgrad. Der Tripelpunkt, in dem alle drei Zweige zusammenlaufen, gibt an, bei welchem Druck und welcher Temperatur alle drei Phasen nebeneinander (im Gleichgewicht) vorhanden sein können; in diesem Zustand gibt es keinen Freiheitsgrad des Systems mehr.

b

flüssig

fest

p

a

K

Tripelpunkt c gasförmig T

Abb. 3.25 Zustandsdiagramm eines chemisch einheitlichen Stoffes in seinen drei Aggregatzuständen (schematisch); a) Dampfdruckkurve, b) Schmelzkurve, c) Sublimationskurve.

Die Zahl der Freiheitsgrade ergibt sich mit der Gibbs’schen Phasenregel F D K  P C 2: Bei einem reinen Stoff (z. B. Wasser) ist die Anzahl Komponenten K D 1, also ist die Zahl der Freiheitsgrade F D 1  P C 2 D 3  P . Für die Koexistenz dreier Phasen (P D 3) ist die Zahl der Freiheitsgrade F D 0 (Tripelpunkt); für P D 2 wird F D 1, d. h., es kann entweder über den Druck oder die Temperatur willkürlich verfügt werden; für P D 1 können wegen F D 2 Druck und Temperatur frei gewählt werden. 122

Warum sind Tripelpunkte als Fundamentalpunkte der Temperaturskala besonders geeignet? Die Tripelpunkte sind im Gegensatz zum Schmelz- und Siedepunkt druckunabhängig. Zur Definition der Temperatureinheit wird der Tripelpunkt von reinem Wasser benutzt, der bei T D 273;16 K (also um 0;01 K über dem Siedepunkt bei Normaldruck) und p D 610;62 Pa liegt.

123

Was versteht man unter absoluter und relativer Luftfeuchte? Erklären Sie den Begriff Taupunkt. Als absolute Luftfeuchte f wird die Dichte des Wasserdampfes bezeichnet, die meist in Gramm je Kubikmeter gemessen wird: mD : f D V Der Partialdruck des Wasserdampfes kann einen bestimmten Maximalwert nicht übersteigen. Die Dichte des Wasserdampfes, die zu diesem maximalen Partialdruck gehört, wird (nicht

3.10 Phasengleichgewichte binärer Systeme

223

korrekt) als Sättigungsmenge fmax bezeichnet: mD .max/ : fmax D V Im Allgemeinen ist die tatsächlich vorhandene absolute Luftfeuchte geringer als die Sättigungsmenge, die temperaturabhängig ist. Der Quotient aus der absoluten Luftfeuchte und der Sättigungsmenge, wird als relative Luftfeuchte bezeichnet: #D

f mD D : fmax mD.max/

Sie wird meist in Prozenten angegeben. Bei konstanter absoluter Luftfeuchte steigt mit sinkender Temperatur die relative Luftfeuchte, da dann die Sättigungsmenge im Nenner kleiner wird. Die Temperatur , bei der auf diese Weise eine relative Luftfeuchte von 100 % erreicht wird, heißt Taupunkt. Bei dieser Temperatur beginnt die Abscheidung des überschüssigen Wasserdampfes als Tau. 124

Auf welche Weise kann sich die relative Luftfeuchte erhöhen? Die relative Luftfeuchte steigt durch Erhöhung der absoluten Luftfeuchte oder durch Abkühlung. Gilt z.B. beim Lüften eines Kellers, #Luft < #Keller so kondensiert überschüssiges Wasser der Luft an den Wänden und am Boden. Man lüftet ihn daher, wenn es außen kälter ist als innen.

125

Weshalb ist an einem nasskalten Wintertag die relative Luftfeuchte in einem Zimmer auch nach dem Lüften gering? Die kalte Winterluft kann nur wenig Wasser aufnehmen. Bei Erwärmung auf Zimmertemperatur sinkt die relative Luftfeuchte.

3.10 Phasengleichgewichte binärer Systeme 126

Wie lassen sich in binären flüssigen Systemen die Ausdehnung einer Mischungslücke und deren Temperaturabhängigkeit bestimmen? Welche Bedeutung haben kritische Lösungstemperatur und Zusammensetzung der beiden flüssigen Phasen in der Praxis? Es werden gewogene Mengen der Komponenten in einem zugeschmolzenen Glasrohr unter Schütteln bei allmählich steigender Temperatur beobachtet, bis das System homogen wird; oder man beobachtet an dem sich abkühlenden homogenen System, bei welcher Temperatur es heterogen wird. Diese Temperatur kann korrekt und relativ leicht durch das Auftreten oder Verschwinden einer Trübung erkannt werden. Diese Beobachtungen werden für verschiedene Zusammensetzungen des Systems durchgeführt. Die erhaltenen Wertepaare (Totalzusammensetzung des Systems/Temperatur) entsprechen Punkten auf der die Mischungslücke umschließenden Kurve. Kritische Lösungstemperatur und Zusammensetzung der beiden Phasen sind charakteristisch für die betreffenden Systeme und können natürlich auch zur Kennzeichnung der Komponenten dienen. So werden in der Praxis die Systeme aus Anilin und Kohlenwasserstoffen durch die Bestimmung ihrer kritischen Lösungstemperatur charakterisiert. Dabei wird die Temperatur zur Kennzeichnung benutzt, bei der das ursprünglich heterogene System

224

3 Fragen mit Antwort

aus gleichen Volumina der beiden Flüssigkeiten homogen wird. Die ermittelte Temperatur bezeichnet man als „Anilinpunkt“. 127

Beschreiben und begründen Sie an Beispielen, welchen Einfluss Fremdstoffe auf flüssige binäre Systeme im Bereich der Mischungslücke haben können? Welche Anwendbarkeit resultiert daraus? Fremdstoffe, die sich nur in einer der beiden Flüssigkeiten lösen, erhöhen die obere kritische Lösungstemperatur, vermindern also die gegenseitige Löslichkeit. So erhöhen bei Systemen aus einer polaren Komponente (z. B. Substanz mit funktioneller Gruppe) und einer unpolaren Komponente (z. B. Kohlenwasserstoff, Schwefelkohlenstoff) schon Spuren von Wasser deutlich die obere kritische Lösungstemperatur, weil sich das Wasser durch seinen Dipolcharakter in der polaren Komponente löst. Somit kann die Bestimmung der oberen kritischen Lösungstemperatur als Kriterium für die Reinheit der polaren Komponente dienen. Ist die Fremdsubstanz in beiden Flüssigkeiten des Systems löslich, wird die obere kritische Lösungstemperatur herabgesetzt, die gegenseitige Löslichkeit erhöht. Man macht davon Gebrauch bei Zusatz von Seife zu Gemischen von Phenolen oder Kresolen mit Wasser, die erst durch den Seifenzusatz bei Zimmertemperatur homogen werden und als Desinfektionsmittel wichtig sind. Werden Salze zu Systemen aus Wasser und einer organischen Substanz hinzugefügt, wird die obere kritische Lösungstemperatur erhöht, da sich das Salz nur in Wasser löst. Die gegenseitige Löslichkeit der beiden Komponenten wird vermindert. So trennt sich die Lösung von Ethanol in Wasser in zwei Schichten, wenn reichlich K2 CO3 in der ursprünglich homogenen Mischung gelöst wird. Die beiden Schichten bestehen aus einer wässrigen K2 CO3 -Lösung mit wenig Ethanol und aus Ethanol mit wenig Wasser. Man sagt: Das Ethanol ist aus seiner Lösung ausgesalzen und spricht von dem Aussalzeffekt, der für die Laboratoriumspraxis und für bestimmte technologische Verfahren wichtig ist.

128

ı

Unterhalb von 22,70 C sind Hexan C6 H14 und Perfluorhexan C6 F14 nur teilweise miteinander mischbar. Am oberen kritischen Mischungspunkt (OKT) ist ı C6 F14 D 0,37. Bei 22,0 C befinden sich zwei flüssige Phasen mit  D 0,24 bzw. ı  D 0,50 miteinander im Gleichgewicht; bei 21,5 C betragen die entsprechenden Molenbrüche  D 0,23 und  D 0,52. Skizzieren Sie das Phasendiagramm. Was kann man beobachten, wenn Perfluorhexan zu einer konstanten Menge ı ı Hexan bei a) 23 C und b) 22 C gegeben wird? a) Die Mischung enthält bei allen Zusammensetzungen eine einzige Flüssigkeitsphase. b) Wenn die Zusammensetzung mit .C6 F14 / D 0;24 erreicht ist, trennt sich die Mischung in zwei flüssige Phasen mit den Stoffmengenanteilen .C6 F14 / D 0;24 und .C6 F14 / D 0;50. Die relativen Mengen beider Phasen ändern sich (gemäß Hebelgesetz bestimmbar), bis die Zusammensetzung .C6 F14 / D 0;50 erreicht ist. Bei allen Stoffmengenanteilen von C6 F14 , die bei 22 ı C grösser als 0,50 sind, bildet die Mischung eine einzige flüssige Phase aus.

129

Welchen Zweck haben Zustandsdiagramme? Wann sind sie ideal und wann real? Aus Zustandsdiagrammen (Zustandsschaubildern) kann man ohne Mühe erkennen, was bei einer Änderung der Temperatur und des Mengenverhältnisses zwischen den Komponenten eines Systems geschieht. Je nachdem, ob es sich dabei um zwei, drei, vier usw. Komponenten handelt, spricht man von binären, ternären, quaternären usw. Zustandsdiagrammen. Die Zustandsdiagramme gelten im Allgemeinen für eine so langsame Abkühlung, dass sich bei jeder Temperatur das thermodynamische Gleichgewicht zwischen den Phasen einstellen kann. Mit

3.10 Phasengleichgewichte binärer Systeme 23,0

225

Eine Flüssigkeit

Temperatur (°C)

22,5

Zwei Flüssigkeiten

22,0

21,5 0,2

0,3 Molenbruch

0,4

0,5

(C6H14)

Abb. 3.26 Zustandsdiagramm Hexan-Perfluorhexan mit oberer kritischer Lösungstemperatur.

Erhöhung der Abkühlungsgeschwindigkeit wird aus dem Idealdiagramm ein Realdiagramm; die Linien und die zwischen ihnen eingeschlossenen Zustandsfelder verschieben sich mehr und mehr nach unten. Von dieser Möglichkeit wird z. B. beim Härten von Stahl und beim Aushärten von Aluminium Gebrauch gemacht. 130

Wie kann man für ein binäres Flüssigkeitsgemisch zum Siedediagramm gelangen? Beschreiben Sie das Prinzip einer möglichen experimentellen Verfahrensweise. Es werden bei dp D 0 von den Komponenten Mischungen verschiedener Zusammensetzung zum Sieden erhitzt und unter Rückfluss die jeweiligen Kondensationstemperaturen bestimmt, die im Gleichgewicht mit den Siedepunkten identisch sind und präziser erfasst werden können als die Siedepunkte selbst. Auf diese Weise erhält man die Siedepunkte als Funktion der Zusammensetzung, dies entspricht im Diagramm der Siedelinie. Für jedes ausgewählte Gemisch mit entsprechendem Siedepunkt muss nun noch die Zusammensetzung des Dampfes ermittelt werden. Dies geschieht durch Destillieren einer möglichst kleinen Menge des Flüssigkeitsgemisches. Die Zusammensetzung des Destillats, die identisch ist mit der des Dampfes, kann jeweils analytisch durch Bestimmung des Brechungsexponenten ermittelt werden, z. B. mittels eines Abbe’schen Refraktometers. Dadurch erhält man für jeden Siedepunkt die dazugehörige Zusammensetzung des Dampfes. Trägt man diese Werte in das Siedediagramm ein, erhält man die Taulinie (Kondensationslinie).

131

Erstellen Sie ein beschriftetes Schema für das Siedediagramm einer idealen binären Flüssigkeitsmischung, markieren Sie darin eine Konode und leiten Sie das Hebelgesetz ab. Welche Aussage macht das Gesetz? Als Konode bezeichnet man die Verbindungsgerade zweier im Gleichgewicht zueinander stehenden Phasen im Phasendiagramm. Im Falle der isobaren Zweistoffsysteme sind dies zur Abszisse parallele Geraden. Ist die chemische Gesamtzusammensetzung x des Systems bekannt, lässt sich für jede Temperatur Tx anhand der entsprechenden Konode mit dem so genannten Hebelgesetz das Mengenverhältnis der beiden koexistenten Phasen in einem

226

3 Fragen mit Antwort

x

Temperatur (°C)

b

a

Tx

Dampf D

D+F

Flüssigkeit F

x

xF A=1 B=0

Abb. 3.27

xD

Zusammensetzung

B=1 A=0

Siedediagramm eines isobaren binären Systems zur Ableitung des Hebelgesetzes.

Zweiphasengebiet abschätzen (z. B. die Menge an Dampf D und an Flüssigkeit F im Gebiet D + F der Abb. 3.27). Wenn das System eine Gesamtmenge n (z. B. in mol oder kg) aufweist, dann ergibt sich für die Menge an Komponente B: n B D n  x D nF  x F C nD  x D D nF  xF C .n  nF /  xD D nF .xF  xD / C n  xD : Daraus erhält man x  xD nF D n  xF  xD

und nD D .n  nF / D n 

xF  x : xF  xD

Somit folgt für das Verhältnis der Phasengehalte das Hebelgesetz zu nF b x  xD D : D nD xF  x a Die Mengen an flüssiger und gasförmiger Phase, in die eine binäre Flüssigkeit bei einer bestimmten Temperatur zerlegt wird, verhalten sich umgekehrt wie die zugehörigen Abszissenbzw. Konodenabschnitte im Zustandsdiagramm. 132

Magnesiumoxid und Nickeloxid sind sehr temperaturbeständig; bei genügend hohen Temperaturen schmelzen sie jedoch. Beim Erstarrungsvorgang entstehen aus der Schmelze Mischkristalle. Zeichnen Sie anhand der gegebenen Daten ein Phasendiagramm T D f (). Die Molenbrüche MgO bzw. yMgO sind von MgO in der festen bzw. flüssigen Phase gegeben: ı

T/ C

1960

2200

2400

2600

2800

MgO yMgO

0 0

0,35 0,18

0,60 0,38

0,83 0,65

1,00 1,00

3.10 Phasengleichgewichte binärer Systeme

227

Stellen Sie fest a) bei welcher Temperatur eine Mischung mit MgO D 0,30 zu schmelzen beginnt, b) welche Phasen in welchem Mengenverhältnis gebildet werden, wenn man ı einen Feststoff der Zusammensetzung MgO D 0,30 bis auf 2200 C erhitzt, c) bei welcher Temperatur eine Flüssigkeit der Zusammensetzung yMgO D 0,70 zu erstarren beginnt. a) Wenn der Festkörper der Zusammensetzung MgO D 0;3 erwärmt wird, beginnt sich die Flüssigkeit zu bilden, wenn die Soliduslinie erreicht wird. Hier ist T D 2150 ı C (Abb. 3.28). b) Der Konode bei 2200 ı C entnehmen wir die Zusammensetzung der Flüssigkeit: yMgO D 0;18 und die des Festkörpers: MgO D 0;35. Die Mengenverhältnisse beider Phasen sind durch das Hebelgesetz gegeben: nflüssig 0;05 0;35  0;30 l1 D D 0;4 : D D l2 nfest 0;30  0;18 0;12 c) Die Erstarrung beginnt bei Punkt c mit T D 2640 ı C : 2800 c

Temperatur (°C)

Flüssigkeit (l)

2400

2640

l+s l2 b

2150

a

l1

Feststoff (s)

2000 0

0,3

1,0

Molenbruch χ MgO Abb. 3.28 Schmelzdiagramm NiOMgO.

133

Erklären Sie die Begriffe homogen und heterogen bei einer Legierung. Legierungen können homogen, d. h. in dem betrachteten Materialbereich überall gleichartig, oder inhomogen (heterogen), d. h. nicht überall gleichartig, sein. Dabei bezieht sich das Wort „gleichartig“ nicht auf die Größe und Gestalt der Körner, sondern auf ihre Zusammensetzung. Eine Legierung ist homogen, wenn alle ihre Kristalle die gleiche Zusammensetzung haben, auch wenn die Kristalle sich nach Größe und Gestalt stark voneinander unterscheiden. Dagegen ist eine Legierung heterogen, wenn sie aus mindestens zwei nach ihrer Zusammensetzung verschiedenen Kristallarten besteht.

228 134

3 Fragen mit Antwort

Unterscheiden Sie zwischen Mischkristall (MK) und Kristallgemisch (KG). Wenn ein Kristall nicht aus einer einzigen, sondern aus mehreren verschiedenen Arten von Atomen besteht, dann ist er ein „Mischkristall (MK)“. Da es undenkbar ist, dass man die Atome eines Mischkristalls mechanisch voneinander trennen kann, stellen Mischkristalle, sofern sie alle gleich zusammengesetzt sind, eine einzige Phase dar. Mischkristalle werden auch als feste Lösung oder Lösung im festen Zustand bezeichnet. Dagegen besteht ein Kristallgemisch (KG) aus mindestens zwei verschiedenen Kristallarten, also aus mindestens zwei Phasen, die jede für sich betrachtet entweder Mischkristalle oder reine Kristalle darstellen. Grundsätzlich unterscheidet man zwei Arten von Mischkristallen:  Substitutions-MK – Die Fremdatome sitzen auf Gitterplätzen. – Die Anordnung der Fremdatome ist meist unregelmäßig, kann aber so regelmäßig sein, dass sie wie ein überlagertes, eigenes Gitter wirken; das nennt man „Überstruktur“. – Meistens besteht beschränkte Löslichkeit. Nur dann, wenn beide Komponenten gleichen Gittertypen angehören und ähnliche Atomdurchmesser haben, ist unbeschränkte Löslichkeit möglich.  Einlagerungs-MK – Die Fremdatome sitzen auf Zwischengitterplätzen, d. h. auf Plätzen zwischen den Atomen des Wirtgitters. – Die Anordnung der Fremdatome ist unregelmäßig. – Nur beschränkte Löslichkeit ist möglich. Die Einlagerung ist überhaupt nur möglich, wenn der Atomdurchmesser des eingelagerten Atoms klein ist im Verhältnis zum Durchmesser des Wirtgitteratoms.

135

Wann bildet sich eine Intermetallische Phase (IP), wie ist ihr Gitteraufbau und durch welche Besonderheiten zeichnet sie sich noch aus? Liegen zwei Komponenten vor, deren Affinität zueinander sehr groß ist, also die beim Kristallgemisch und bei den Mischkristallen festgelegte Grenze überschreitet, bilden diese eine Intermetallische Phase (Intermediäre Phase). Es handelt sich um  Verbindungen metallischer Elemente des Typs AxByCz, . . . , x C y C z C ; : : : ; D 1 oder um  Verbindungen metallischer Elemente mit Sauerstoff (Oxide), Stickstoff (Nitride), Kohlenstoff (Karbide) und viele andere (z. B. Sulfide, Carbonate). Beispiele: SiO2 , Si3 N4 , Fe3 C. Ihr Gitter ist immer anders als die der beteiligten Komponenten. Meistens ist es sehr kompliziert aufgebaut und hat aus diesem Grund keine oder nur wenig Gleitebenen. Dadurch kommt es, dass Intermetallische Phasen immer eine große Härte und Sprödigkeit haben. Eine Besonderheit besteht darin, dass sie sich bei der Abkühlung und Erwärmung wie ein reines Metall verhalten können. Ihre entsprechenden Kurven, z. B. die Abkühlungskurve, zeigen einen Haltepunkt. Eine weitere Besonderheit besteht in der Bezeichnungsweise. Sie ist den chemischen Verbindungen gleich, obwohl hier ein anderer Zusammenhalt der Atome untereinander vorliegt.

3.10 Phasengleichgewichte binärer Systeme

Beschreiben Sie die Verfahrensweise der Aufstellung eines Zustandsdiagramms für binäre Systeme „flüssig-fest“ mit einem zugehörigen Bild. Verfolgen Sie im Diagramm aus dem Zustandsfeld „Schmelze“ zwei Legierungen beim Abkühlen auf Raumtemperatur, interpretieren Sie ihre typischen Abkühlungskurven und zeigen Sie beispielhaft an markierten Punkten, wie das Mengenverhältnis der Komponenten und Phasen einer Legierung bestimmbar ist.

L1

L2

L3

L4

L1 A

a

S Schmelze

S + A Kr Temp

136

229

w

x

A Kr + E A 0

L3 60% B 40% A

L4 B

c z

y b

d

L2

20% B 80% A

E

40% 60%

S + B Kr e E + B Kr 0 B

Zeit

Abb. 3.29 Aufstellung eines Zustandsdiagramms durch „Thermische Analyse“; abc Liquiduslinie, adbec Soliduslinie, E Eutektikum, dbe Eutektikale, a Smp. von a, c Smp. von B.

Es gibt verschiedene Möglichkeiten ein Zustandsdiagramm aufzustellen. Das hier gewählte, einfache Diagramm, wegen der Form seiner Liquiduslinie bisweilen „V -Diagramm“ genannt, kann man ermitteln, indem man aus den Komponenten A und B einige Gemische bekannter Zusammensetzung herstellt, schmilzt und abkühlen lässt. Die markanten Punkte (Knicke, Haltepunkte) der Abkühlungskurven werden in das Schaubild projiziert. Das Verfahren heißt „Thermische Analyse“. Das zugehörige Bild in Abb. 3.29 lässt erkennen, dass nur die reinen Komponenten A und B und die eutektische Legierung der Zusammensetzung (40 % A und 60 % B) einen Erstarrungspunkt (Schmelzpunkt) haben, alle andere Legierungen dagegen ein Erstarrungsintervall. Es sollen zwei verschiedene Legierungen L1 und L3 beim Abkühlen aus dem Zustandsfeld „Schmelze S“ verfolgt werden. Dabei verfahre man nach folgender Regel: Beim Erreichen eines neuen Feldes geht man waagerecht (sofern möglich nach beiden Seiten) durch dieses neue Feld hindurch bis zum Schnittpunkt mit der nächsten Linie (Phasengrenze); er gibt die Zusammensetzung des entstehenden Kristalls an. Demnach beginnen in der Legierung L3 (Abb. 3.29) beim Erreichen der waagerechten Linie gleichzeitig reine A- und B-Kristalle zu wachsen. Es ist beachtenswert, dass der Erstarrungspunkt der Legierung durch Zusammenwirken der beiden Komponenten weit unter die Erstarrungspunkte der beiden Komponenten selbst erniedrigt wird. Bei dieser verhältnismäßig niedrigen Temperatur bilden sich viele Keime, die Kristalle erreichen nur eine geringe Größe, es bildet sich ein feines Gefüge, ein „Eutektikum“. Für das aus dem Griechischen entlehnte Wort Eutektikum gibt es zwei Deutungen: „gut gebaut“ wegen des feinen Gefüges und „gut schmelzend“, weil es die Legierung mit dem niedrigsten Schmelzpunkt ist. Solange die eutektische Schmelze zu Eutektikum, dem Kristallgemisch aus feinen A- und B-Kristallen erstarrt,

230

3 Fragen mit Antwort

wird durch die dabei freiwerdende Kristallisationswärme die Temperatur der Legierung auf konstanter Höhe gehalten. Erst wenn die ganze Schmelze verbraucht ist, sinkt die Temperatur weiter ab. In der Legierung L1 beginnen beim Erreichen des neuen Feldes reine A-Kristalle (in der Schmelze schwimmend) zu wachsen. Dadurch wird die Restschmelze prozentual reicher an B, kurz: B-reicher, so dass sie in Abb. 3.29 nach rechts rückt (wieder weg vom eben erreichten Feld und in das Feld Schmelze hinein). Damit hört das kaum begonnene Wachsen der Kristalle sofort wieder auf und setzt erst wieder ein, sobald die Restschmelze das neue Feld wieder erreicht. Tatsächlich vollzieht sich dieser Vorgang nicht wie ein stufenartiges Wechselspiel, sondern kontinuierlich: Sinkt die Temperatur, wachsen A-Kristalle und die Schmelze wird verbraucht, wobei sie B-reicher wird. Durch die frei werdende Kristallisationswärme wird die Abkühlung verzögert, die Abkühlungskurve verläuft weniger steil. Sobald die Restschmelze die waagerechte Linie und damit ein neues Feld erreicht, beginnt sie zu Eutektikum zu erstarren. Dabei wird der ganze Tiegelinhalt so lange auf konstanter Temperatur gehalten, bis er vollkommen erstarrt ist. Erst dann sinkt die Temperatur weiter ab. Offensichtlich enthält jede Legierung dieses Systems bei Erreichen der waagerechten Linie eine Restschmelze eutektischer Zusammensetzung, die zu Eutektikum erstarrt. Dementsprechend wird die waagerechte Linie „Eutektikale“ genannt. Die Menge des Eutektikums ist umso größer und die eutektische Haltezeit umso länger, je näher die Legierung der eutektischen Zusammensetzung steht. Dagegen enthalten die reinen Komponenten A und B überhaupt kein Eutektikum, sondern nur A- bzw. B-Kristalle. Sie sind keine Legierungen, sondern Grenzfälle des Systems. Das Mengenverhältnis der Komponenten und Phasen für Legierung L1 soll beispielhaft mit den markierten Punkten w, x, y und z bestimmt werden: Mengenverhältnis der Komponenten: Abstand w-z D 100 % Menge der Komponente B 18;8 % wx D D xz Menge der Phase ˛  MK b 81;2 % Mengenverhältnis der Phasen: Abstand w-y D 100 % : Menge der Phase Restschmelze y 39 % wx D D xy Menge der Phase Primär-A-Kristalle 61 % Mengenverhältnis der Komponenten für Restschmelze y: Abstand w-z D 100 % Menge der Komponente B 47;9 % wy D :D : yz Menge der Komponente A 52;1 % 137

Beschreiben Sie das Prinzip, wie aus Abb. 3.30 das Mengenverhältnis a) der Phasen von Legierung L1 bei Raumtemperatur, b) der Komponenten A und B für die ˛-MK „b“ bei Raumtemperatur und c) der Phasen von Legierung L2 bei der eutektischen Temperatur vor dem Erstarren des Eutektikums bestimmt werden kann. Wenden Sie das Prinzip an. Für jede Legierung lässt sich das Mengenverhältnis der Komponenten bzw. Phasen auf einfache Weise nach dem Gesetz der abgewandten Hebelarme (Hebelgesetz) bestimmen. Dazu setzt man den waagerechten Abstand zwischen den Komponenten bzw. Phasen gleich hundert Prozent (Abb. 3.30). Dann lassen sich die Anteile als Längen abmessen und in Prozent angeben.

3.10 Phasengleichgewichte binärer Systeme L1

231

L2

S

α

a

b

0 A

f α + β

c 20

g

α + Eutekt. + β 40

S+β

h

β + Eutekt. + α

Eutekt.

T

α+ S

60

β

i β + α 80

d

e 100 %B

Abb. 3.30 Bestimmung des Mengenverhältnisses von Komponenten bzw. Phasen mit dem Gesetz der abgewandten Hebelarme (Hebelgesetz).

138

a) Abstand b-d D 100 %

Menge der Phase ˇ-MKd 13 % bc D D cd Menge der Phase ˛-MKb 87 %

b) Abstand a-e D 100 %

Menge der Komponente B 5% ab D D be Menge der Komponente A 95 %

c) Abstand f-h D 100 %

Menge der Phase Restschmelze h 23;3 % fg D D : gh Menge der Phase Primär  ˛-MKf 76;7 %

Erklären Sie die Bezeichnung Eutektikum. Das Eutektikum ist immer ein Kristallgemisch. Es hat wie ein reines Metall in der Abkühlungskurve nur einen Haltepunkt, obwohl es eine Legierung ist. Ursache dafür ist die gleich große, gegenseitige Beeinflussung der vorhandenen Prozentsätze der Komponenten. Durch diese Wechselwirkung entsteht auch im kristallinen Zustand ein wohlgeordneter Aufbau. Davon ist die Bezeichnung Eutektikum abgeleitet; im Altgriechischen bedeutet „eutektos“ feinkörnig, wohlgeordnet.

139

Woraus wird das Eutektikum gebildet, wenn die Komponenten im flüssigen Zustand völlig und im kristallinen Zustand teilweise löslich sind? In jedem Falle ist das Eutektikum ein Kristallgemisch. Die Bestandteile dieses Gemisches aus verschiedenen Kristallarten sind unterschiedlich und hängen von dem Verhältnis der Komponenten im kristallinen Zustand ab. Liegt, wie in diesem Falle, teilweise Löslichkeit vor, besteht das Eutektikum aus zwei verschiedenen Mischkristallen. Teilweise Löslichkeit der Komponenten im kristallinen Zustand bedingt, dass die eine Atomsorte einzelne Atome der anderen Art in ihr Gitter aufnimmt. Es liegt ein Mischkristall vor. Sind aber mehr Atome der zweiten Komponente vorhanden als gelöst werden können, muss sich eine andere Mischkristallart bilden. Beide in einem bestimmten Mengenverhältnis bilden das Eutektikum.

232

Zeichnen Sie mit Hilfe der folgenden Angaben das Schmelzdiagramm des Blei-Zinn-Legierungssystems, beschriften Sie es und erstellen Sie die Abkühlungskurven L1 (10 % Sn), L2 (19,5 % Sn), L3 (30 % Sn) und L4 (61,9 % Sn). Angaben: ı

ı

 Blei erstarrt bei 327 C und bildet bei 20 C ein kubisch-flächenzentriertes Gitı ı ter, Zinn erstarrt bei 232 C und bildet bei 20 C ein tetragonal-raumzentriertes Gitter. Beide Metalle können bei hohen Temperaturen in beschränktem Maße Mischkristalle (MK) miteinander bilden.  Eine Legierungsschmelze, bestehend aus 61,9 % Zinn und 38,1 % Blei, erstarrt ı bei 183 C zu einem Eutektikum (Punkt E), das aus den ˛-MK mit 19,5 % Zinn (Punkt C) und den ˇ-MK mit 2,5 % Blei (Punkt D) besteht. Bei weiterer Abkühlung scheiden die ˛-MK sekundäre ˇ-MK und die ˇ-MK sekundäre ˛-MK aus, da sich die Aufnahmefähigkeit der MK für Fremdatome verringert. ı Bei 20 C ist dann ein sehr feines Gemenge der verschiedenen Mischkristalle entstanden.  Bei der Abkühlung verlaufen die Sättigungslinien der MK für Fremdatome unter C und D nach außen gekrümmt. ı – Eine Legierung mit z. B. 90 % Blei und 10 % Zinn besteht bei 183 C völlig ı aus ˛-MK. Bei weiterer Abkühlung wird bei etwa 130 C die Sättigungslinie geschnitten, es werden zunehmend Zinn-Ionen aus dem Gitter gedrängt, ı die ihrerseits (sekundäre) ˇ-MK bilden, so dass das Gefüge bei 20 C aus ˛-MK mit eingelagerten sekundären ˇ-MK besteht. ı – Eine Legierung mit z. B. 98,5 % Zinn und 1,5 % Blei besteht bei 183 C völlig ı aus ˇ-MK. Bei weiterer Abkühlung wird bei etwa 150 C die Sättigungslinie geschnitten, es werden zunehmend Blei-Ionen aus dem Gitter gedrängt, die ı ihrerseits (sekundäre) ˛-MK bilden, so dass das Gefüge bei 20 C aus ˇ-MK mit eingelagerten sekundären ˛-MK besteht. L1 L2

327 300

L3

L4

L1

α-MK

100

S + α-MK

α + sek. β

α + Eut. + sek. α + sek. β

S+β

Eutekt.

200 183

L2

L3

332

Schmelze S Temperatur C°

140

3 Fragen mit Antwort

β + Eut. + sek. α + sek. β

β-MK

β + sek. α

0 0 100% Pb

Abb. 3.31

19,5

61,9 38,1

Zustandsdiagramm PbSn.

97,5 100% Sn 0

Zeit

L4

3.10 Phasengleichgewichte binärer Systeme

141

233

Erläutern Sie die Unterschiede zwischen eutektischer, peritektischer, monotektischer und eutektoider Umsetzung. Geben Sie Beispiele des Vorkommens derartiger Umsetzungen an. Bei einer eutektischen Umsetzung erfolgt der Zerfall einer Schmelze bei fester Temperatur und Zusammensetzung in zwei Mischkristallarten (nonvariante Reaktion). Beispiele: AgCu, PbSn, AgClCuCl, KNO3 Pb(NO3 )2 Während der peritektischen Umsetzung erfolgt die Reaktion einer Schmelze bei fester Temperatur und Zusammensetzung mit einer Mischkristallart unter Bildung einer neuen Mischkristallart (nonvariante Reaktion). Beispiele: AuPt, FeC-Teilsystem (mit peritektische Umwandlung von Schmelze und festen ı-Fe-MK zu festen  -Fe-MK, die bei der peritektischen Temperatur von 1493 ı C und der peritektischen Zusammensetzung von 0,17 Masse-% Kohlenstoff abläuft). Während einer monotektischen Umsetzung erfolgt der Zerfall einer Schmelze S1 in eine Schmelze anderer Zusammensetzung S2 und in eine Mischkristallart bei einer Temperatur und Zusammensetzung (nonvariante Reaktion). Beispiele: AlPb, AlBi, ZnPb, CuPb Eine eutektoide Umsetzung hat nicht die Schmelze, sondern meistens eine Mischkristallart zum Ausgangszustand. Ihre Kristalle zerfallen spontan in ein Kristallgemisch, und in der Abkühlungskurve entsteht auch ein Haltepunkt. Beispiele: AlZn, Messing, Bronze, eutektoides Teilsystem des FeC-Diagramms mit dem Zentrum um Punkt S auf der Stahlseite; Merkmal: eutektoide Reaktion/Umwandlung bei 723 ı C:  -Fe-MK ! ˛-Fe-MK C Fe3 C (Perlit) Eutektische Umsetzung:

S

α+β

α

Peritektische Umsetzung:

α+S

β

α

Monotektische Umsetzung:

S1

α + S2

S2

Eutektoide Umsetzung:

γ

α+β

α

S

β

α+β α+S

S

β Mischungslücke

S1

α + S2

Abb. 3.32 Umsetzungen an Phasengrenzen bei binären Systemen „flüssig-fest.“

γ α+β

α

β

234 142

3 Fragen mit Antwort

Eisen-Kohlenstoff-Diagramm 142.1 Welcher Unterschied besteht zwischen dem metastabilen und stabilen System Eisen-Kohlenstoff (bis 6,67 % C)? Im stabilen System tritt der Kohlenstoff als Graphit auf, im metastabilen dagegen gebunden als intermetallische Phase Fe3 C (Eisenkarbid, Zementit). Außerdem enthalten beide Systeme gelösten Kohlenstoff in allen drei Modifikationsgittern des Eisens als Einlagerungsmischkristalle (˛-,  - und ı-MK). Eine einleuchtende Erklärung für die Bezeichnung stabil und metastabil findet man darin, dass der im metastabilen System durch relativ schnelle Abkühlung erstarrte Rohguss bei längerem Glühen durch Zerfall des Fe3 C zu Fe und Graphit (Temperkohle) in das System Fe-Graphit übergeht; das kann nach den allgemein gültigen Regeln einer exergonen Reaktion nur ein stabileres System sein. Die größere Bedeutung hat das metastabile System, da es die Grundlage für alle unlegierten Stähle und Eisenwerkstoffe in bezug auf Erstarrung und Wärmebehandlung ist. In dem üblicherweise gezeichneten Bereich des FeC-Diagramms bis 6,67 % C unterscheidet sich das stabile vom metastabilen System am auffälligsten durch das Wegfallen von Fe3 C und Eingliedern von Graphit. Alle anderen Linien des Zustandsdiagramms zeigen keine oder nur geringe Abweichungen (gestrichelte Linien in Abb. 3.33). 142.2 Wie verhalten sich die Modifikationsgitter des Eisens bei der Einlagerung des Kohlenstoffs zu Mischkristallen und wie werden die entstehenden Gefügebestandteile bezeichnet? Im kubisch-raumzentrierten Gitter des ˛-Fe lagern sich die C-Atome bevorzugt in den Flächen- oder Kantenmitten ein. Das ˛-Fe kann nur wenig Kohlenstoff lösen (maximal 0,02 % bei 723 ı C). Mit sinkender Temperatur geht das Lösungsvermögen gegen Null. Die so entstehenden ˛-MK werden als Gefügebestandteile mit Ferrit bezeichnet. Dieser Gefügename wurde deshalb gewählt, weil fast reines Eisen (lateinisch „ferrum“) vorliegt. Im kubisch-flächenzentrierten Gitter des  -Fe lagern sich die C-Atome bevorzugt in der Raummitte oder in den Kantenmitten ein. Das  -Fe kann maximal 2,06 % C bei 1147 ı C lösen. Mit sinkender Temperatur geht das Lösungsvermögen auf 0,8 % bei 723 ı C zurück. Die so entstehenden  -MK werden als Gefügebestandteile zu Ehren von William Chandler Roberts-Austen mit Austenit bezeichnet. Das abnehmende Lösungsvermögen sowohl der ˛-MK als auch der  -MK mit sinkender Temperatur ergibt im Zustandsdiagramm vom Maximalpunkt ausgehend je eine Sättigungslinie. Im kubisch-raumzentrierten Gitter des ı-Fe löst sich bei 1493 ı C maximal 0,1 % C und somit entstehen ı-MK. Diese haben keine praktische Bedeutung. Fe3 C (Eisenkarbid) enthält 6,67 % C, es hat einen komplizierten rhomboedrischen Gitteraufbau und ist sehr hart und spröde. Als Härteträger in den Fe-C-Legierungen wird der Gefügename Zementit verwendet. Man unterscheidet mit sinkender Entstehungstemperatur den Primär-, Sekundär- und Tertiärzementit. Der Schmelzpunkt von Fe3 C ( 1330 ı C) lässt sich nicht genau ermitteln, weil Fe3 C beim Erwärmen bereits unterhalb seiner Schmelztemperatur zerfällt. Darum wird die Liquiduslinie (Abb. 3.33) im FeFe3 C-Diagram oberhalb 4,3 % C punktiert gezeichnet. Durch Umwandlungsvorgänge im kristallinen Zustand und durch die Bildung von Fe3 C entstehen Kristallgemische verschiedener Art, die mit Eutektikum, Eutektoid und Peritektikum bezeichnet werden. In der Tabelle von Abb. 3.33 sind die verschiedenen Gefügebestandteile der FeFe3 C-Legierungen zusammengestellt, wobei auf ı-MK und das Peritektikum verzichtet wurde.

3.10 Phasengleichgewichte binärer Systeme

S + δ-MK δ-MK

1536 1493 1392

δ-MK + Aust.

A H

B Schmelze S

I

D

N S + Aust.

S + P.Z.

1153°C

Fer. + Aust.

Fer.

1147°C

C

Aust + L + S.Z.

G

M

769 700

E

O

Aust + S.Z.

P S Fer. + P P + S.Z. P

738°C 723°C

F

L + P.Z.

Ledeburit

Temperatur (°C)

Aust.

911

P + L + S.Z.

K L + P.Z. L

Q

500

235

0,8

2,06 Ma.-% Kohlenstoff

Gefügename

4,3

6,67

Phasenbezeichnung

C-Gehalt (Ma.-%)

Temperatur (°C)

Kristallart

Ferrit (Fer.)

-MK

max. 0,02 min. 0

723 20

Einlagerungs-MK

Austenit (Aust.)

-MK

max. 2,06 min. 0,8

1147 723

Einlagerungs-MK

Primärzementit (P. Z. ) Sekundärzementit (S. Z.)

unter 1330 Fe3C

6,67

Tertiärzementit (T. Z.)

unter 1147

Intermetallische Phase, Eisenkarbid

unter 723

Perlit (P)

-MK + Fe3C

0,8

723

Eutektoid (Kristallgemisch)

Ledeburit I (L) Ledeburit II

-MK + Fe3C -MK + Fe3C

0,43

1147 … 723 unter 723

Eutektikum (Kristallgemisch)

Abb. 3.33 Zustandsschaubild Eisen-Kohlenstoff; metastabiles System: FeFe3 C; gestrichelt: Abweichungen des stabilen Systems FeC.

142.3 Aus welchen Grunddiagrammen besteht das FeFe3 C-Diagramm? Welche wichtigen Gefügeumwandlungen stehen jeweils im Blickpunkt? Ein FeFe3 C-Diagramm ist selbst ein Teildiagramm des Eisen-Kohlenstoff-Diagramms, Es setzt sich zusammen (Abb. 3.34) aus: a) dem Grunddiagramm mit völliger Löslichkeit im flüssigen und mit teilweiser Löslichkeit im kristallinen Zustand mit Eutektikum. b) dem Grunddiagramm mit Eutektoid. c) dem Grunddiagramm mit Peritektikum.

236

3 Fragen mit Antwort D

A

1536

C

γ-MK

S

E

C

F

γ-MK + Fe3C

0

4,3 Ma.-% Kohlenstoff

a)

Temperatur (°C)

3

Fe

γ-M

K

1147

1147

γ-MK

1100

+

S+

Temperatur (°C)

E

S

6,67

911 α-MK

700

G γ-MK + α-MK P

723

S

α-MK + Fe3C 0,02

b)

γ-MK + Fe3C

0,8 Ma.-% Kohlenstoff

2,06

Ma.-% Kohlenstoff 0

0,1 0,17 0,3

0,5

0,8

1600

δ-MK γ-MK

1392 1300

S

A

S + δ-M

B

K

K

δ-M

Temperatur (°C)

1536 1493

H

I

S + γ-M

K

N

γ-MK

c)

Abb. 3.34 Grundsysteme des FeFe3 C-Diagramms; a) vgl. Abb. 1.38a: Vollständige Löslichkeit der Komponenten im flüssigen und teilweise Löslichkeit im festen Zustand (Mischungslücke und Eutektikum); b) vgl. Abb. 3.33: Eutektoider Zerfall der  -MK; c) vgl. Abb. 1.38b: Peritektische Umsetzung von Schmelze und ı-MK.

Das Grunddiagramm a) umfasst den größten Teil des gesamten FeFe3 C-Diagramms von etwa 0,8 % C nach rechts. Der Punkt C (4,3 % C und 1147 ı C) ist der eutektische Punkt (Ledeburitpunkt). Der Punkt E (2,06 % C und 1147 ı C) ist der maximale Sättigungspunkt der  -MK mit Kohlenstoff. Die Linie ECF (Abb. 3.33 und 3.34) wird wegen der hier ablaufenden eutektischen Reaktion Schmelze $  -MK C Fe3 C als Eutektikale bezeichnet. Aus dem Schmelzrest, der sich auf die Gleichgewichtskonzentration von 4,3 % C eingestellt hat, entsteht ein wohlgeordnetes Kristallgemisch aus  -MK und Fe3 C als Grundmasse. Dieses eutektische Gefüge wird zu Ehren von Adolf Ledebur als Ledeburit bezeichnet. Es ist als Ledeburit I beständig im Sekundärgebiet von 2,06–6,67 %C Mit sinkender Temperatur von 1147–723 ı C scheidet sich aus den  -MK des Ledeburits I Sekundärzementit an den Korngrenzen aus. Durch die  -˛-Umwandlung an der Eutektoiden bei 723 ı C entsteht bei weiterer Abkühlung aus Ledeburit I Ledeburit II. Somit ist Ledeburit II im Tertiärgebiet von 2,06–6,67 % C beständig. Er besteht aus Ferrit und Zementit (˛-Mk C Fe3 C). Das Grunddiagramm b) umfasst die linke untere Ecke des FeFe3 C-Diagramms (Stahlecke) bis etwa 2 % C nach rechts und 1147 ı C nach oben. Der Punkt S (0,8 % C und 723 ı C)

3.10 Phasengleichgewichte binärer Systeme

237

ist der eutektoide Punkt (Perlitpunkt). Der Punkt P (0,02 % C und 723 ı C) ist der maximale Sättigungspunkt der ˛-MK mit Kohlenstoff. Die Linie PSK wird wegen der hier ablaufenden eutektoiden Reaktion  -MK $ ˛-MK C Fe3 C als Eutektoide oder Perlitlinie bezeichnet. Aus dem Austenit, der sich auf die Gleichgewichtskonzentration von 0,8 % C eingestellt hat, entsteht ein wohlgeordnetes Kristallgemisch aus ˛-MK und Fe3 C. Dieses eutektoide Gefüge wird wegen des perlmutterartigen Aussehens seines Schliffbildes als Perlit bezeichnet. Im Perlitgefüge liegt Fe3 C lamellar in einer streifigen ˛-MK-Grundmasse eingebettet. Das Grunddiagramm c) umfasst die linke obere Ecke des FeFe3 C-Diagramms. Der Punkt I (0,17 % C und 1493 ı C) ist der peritektische Punkt, wo die Reaktion Schmelze C ı-MK $  -MK stattfindet. Die peritektische Umsetzung hat technisch keine Bedeutung. 142.4 Welche wichtigen Sättigungslinien sind im FeFe3 C-Diagramm vorhanden, was geben sie an und welche Gefügeveränderungen treten dort auf? Die Linie ES ist die Sättigungslinie (Linie der abnehmenden C-Löslichkeit, Entmischungslinie) für die übersättigten  -MK. Längs dieser Linie scheidet sich aus dem Austenit Kohlenstoff in Form von Sekundärzementit aus, bis sich der Austenit auf die Gleichgewichtskonzentration von 0,8 % C entmischt hat. Dieser Sekundärzementit setzt sich als Segregation (Ausscheidung) überwiegend an den Korngrenzen als Korngrenzenzementit ab. Da diese Ausscheidungen an bereits vorhandenen Korngrenzen stattfinden, steigen infolge innerer Spannungen die Härte, Sprödigkeit und Schlagempfindlichkeit solcher Eisenwerkstoffe an. Unterhalb der Linie ES von 0,8–4,3 % C tritt als Gefügebestandteil Sekundärzementit auf. Die größte Menge von .1;26=6;67/  100 % D 19;9 % entsteht bei 2,06 % C). Die Linie GOS ist die Sättigungslinie für die untersättigten  -MK. Im Konzentrationsbereich unterhalb dieser Linie scheiden sich aus den  -MK kohlenstoffarme ˛-MK aus. Die Linie GPQ ist die Sättigungslinie für die ˛-MK. Der Punkt P (0,02 % C und 723 ı C) ist der maximale Sättigungspunkt für die ˛-MK. Unterhalb 723 ı C nimmt die Lösungsfähigkeit der ˛-MK für Kohlenstoff längs der Linie PQ ab und es scheidet sich der Kohlenstoff in Form von Tertiärzementit an den Korngrenzen aus. Diese geringen Fe3 C-Ausscheidungen beeinflussen vor allem das Altern und die Ausscheidungshärtung von Stahl. 142.5 Was geschieht im FeFe3 C-Diagramm beim Überschreiten längs der Linie MOSK? Die Linie MOSK ist die magnetische Umwandlungslinie oder Curie-Linie. Da nur der Ferrit ferromagnetisch ist, nimmt die Magnetisierbarkeit mit abnehmendem Ferritgehalt ab. Der Austenit ist paramagnetisch. 142.6 Welche Einteilung der Eisenwerkstoffe in Abhängigkeit vom C-Gehalt gibt es unter Beachtung des Gefügeaufbaus? Nach dem Kohlenstoffgehalt und nach den Punkten bzw. den Gefügearten des EisenEisenkarbid-Diagramms unterteilt man sechs Eisenwerkstoff-Gruppen, die aus Abb. 3.35 ersichtlich sind: 2,06

4,3

unter-

6,67

ledeburitisches Gusseisen

0,8 perlitischer Stahl

0

über-

unter-

Ma.-% C

über-

perlitischer Stahl ledeburitisches Gusseisen Abb. 3.35 Eisenwerkstoffgruppen.

238

3 Fragen mit Antwort

142.7 Von einem Stahl mit 0,6 % C sollen die Masseprozente der Gefügebestandteile bei Raumtemperatur ermittelt werden. Ein unlegierter Stahl mit 0,6 % C hat nach Abb. 3.33 25 Ma-% Ferrit und 75 Ma-%. Perlit, was sich mit dem Hebelgesetz (Abb. 3.36) berechnen lässt: 0

0,6

0,8 Ma.-%C

u

Abb. 3.36

v

C-Gehalt des perlitischen Stahls in Ma.-%.

Ma.-% Perlit 6 u D D v Ma.-% Ferrit 2 6 u D  100 Ma.-% = 75 Ma.-% Perlit 8 2 v D  100 Ma.-% = 25 Ma.-% Ferrit 8

3.11 Phasengleichgewichte ternärer Systeme 143

Die Untersuchungsergebnisse ternärer Systeme werden meistens in einem Dreieck-Koordinatensystem (Abb. 3.37) dargestellt. Beweisen Sie, dass im gleichseitigen Dreieck a) die Summe der gezogenen Parallelen von einem beliebigen Punkt zu den drei Seiten konstant und gleich einer Dreieckseite ist, b) die Summe der Abstände jedes Punktes von den drei Seiten gleich der Höhe ist. a) h a c b h h D 0I D 0I D 0 AC a BC c AB b ! a0 C b 0 C c 0 D AB D BC D AC Begründung: Gleichseitige und ähnliche Dreiecke sin ˛ D

b)

  a c0 h 0 h b0 .a Cb 0 Cc 0 / D  AB D h : aCb Cc D a 1 C 0 C 0 D 0 .a0 Cb 0 Cc 0 / D a a a AB AB

3.11 Phasengleichgewichte ternärer Systeme

239

C c'

h

b c

c' b'

a'

A

α

a' a

c'

a'

b'

B

Abb. 3.37 Dreieck-Koordinatensystem.

144

Es ist möglich, jede beliebige Zusammensetzung des ternären Systems durch einen Punkt im gleichseitigen Dreieck zu kennzeichnen. Was repräsentiert a) ein Eckpunkt des Dreiecks, b) ein Punkt auf einer Dreieckseite und c) ein Punkt im Dreieck? Machen Sie dies in einer Zeichnung (Abb. 3.38) an Beispielen deutlich und zeigen Sie, dass zwei Schnitte im Dreieck von besonderer Bedeutung sind. a) Die Eckpunkte des Dreiecks repräsentieren die reinen Komponenten A, B und C. b) Ein Punkt auf einer Dreieckseite gibt die Zusammensetzung des jeweiligen binären Systems (AB, BC und AC) an. c) Ein Punkt im Dreieck gibt die Zusammensetzung des ternären Systems an. Tab. 3.10

Werte aus dem Dreieckkoordinatensystem Abb. 3.38. Punkt-Nr. 5 6

1

2

3

4

7

8

9

10

%A A

100 1,0

70 0,7

50 0,5

20 0,2

10 0,1

%B B

0 0

30 0,3

40 0,4

70 0,7

%C C

0 0

0 0

10 0,1

10 0,1

11

40 0,4

20 0,2

0 0

20 0,2

0 0

80 0,8

60 0,6

30 0,3

30 0,3

50 0,5

10 0,1

10 0,1

10 0,1

30 0,3

30 0,3

50 0,5

50 0,5

70 0,7

90 0,9

10 0,1

Man erkennt, dass auf einer Linie, die durch einen Eckpunkt geht, das Verhältnis der Konzentrationen der beiden anderen Komponenten konstant ist (Tab. 3.10):

240

3 Fragen mit Antwort C 10 90 0,9

0,1 10

9

7

8

χA %A

%C χC

11

0,9 90 1 A

2 10 0,1

Abb. 3.38

6

5

3

4

%B χB

10 0,1 90 0,9

B

Dreieckkoordinatensystem; Zeichnung zu Kap. 3.11, Frage 144.

Linie 1-11-6-8

%B

B

%C

C

%B %C

B C

Punkt-Nr. 11 Punkt-Nr. 6 Punkt-Nr. 8

10 30 50

0,1 0,3 0,5

10 30 50

0,1 0,3 0,5

1 1 1

1 1 1

Gleichfalls zeigt sich, dass durch eine Parallele zu einer Dreieckseite alle diejenigen Gemische gekennzeichnet sind, die die Komponente des gegenüberliegenden Eckpunkts in demselben Anteil enthalten (Tab. 3.10): %A

A

%B

B

%C

C

Parallele zu BC Für alle Punkte jeweils (9-7-4) 20 0,2 Parallele zu AC (2-6-4) Parallele zu AB (11-3-4)

145

Für alle Punkte jeweils 30 0,3 Für alle Punkte jeweils 10 0,1

Soll ein ternäres flüssiges System mit Mischungslücke zwischen einem Paar der Komponenten beschrieben werden, muss man die Binodalkurve und die Konoden kennen.

3.11 Phasengleichgewichte ternärer Systeme

241

145.1 Wie lasen sich Binodalkurve und Konoden bestimmen? 145.2 Beschreiben Sie, wie man durch Zustandsänderungen im System beim Zufügen einer Komponente den Verlauf der Binodalkurve und der Konoden verfolgen kann. 145.3 Welche praktische Bedeutung haben diese Überlegungen bei der industriellen Silbergewinnung nach dem Parkes-Verfahren. Hinweis: Es handelt sich dabei um das ternäre System PbZnAg. Von den Komponenten sind vollständig mischbar Pb und Ag einerseits und Zn und Ag andererseits, Pb und Zn sind nur teilweise ineinander löslich. 145.1: Zur Bestimmung der Binodalkurve werden z. B. zu einem Gemisch von B und C so lange kleine Mengen von A gegeben, bis das anfangs heterogene System gerade wieder homogen geworden ist. Die so ermittelte Zusammensetzung des ternären Systems entspricht dann einem Punkte der Binodalkurve. Durch Wiederholung dieses Verfahrens mit verschieden zusammengesetzten Gemischen von B und C werden mehrere Punkte der Binodalkurve und damit diese selbst erhalten. Zur Ermittlung einer Konode wird eine beliebige Mischung innerhalb der Binodalkurve herausgegriffen und nach Einstellung des Gleichgewichts eine Komponente in einer der beiden konjugierten flüssigen Phasen bestimmt. Der so ermittelte Gehalt an dieser Komponente entspricht einem Punkt der Binodalkurve, die vorher bestimmt wurde. Die Verbindungslinie dieses Punktes mit dem Punkt der ursprünglich gegebenen Zusammensetzung legt die Richtung der Konode fest, deren zweiter Schnittpunkt mit der Binodalkurve die Zusammensetzung der konjugierten Phase liefert. 145.2 (Abb. 3.39): Fügt man zu dem binären System BC der Zusammensetzung e steigende Mengen von A, bewegt sich die Gesamtzusammensetzung des Systems entlang der Geraden edA. Solange dabei das Gebiet der Mischungslücke durchschritten wird, zerfällt das System in zwei konjugierte flüssige Phasen, deren Zusammensetzungen durch die Binodalkurve und die zugehörigen Konoden gegeben sind. Man erkennt, dass die durch die Schnittlinie edA

A

M K

d

x

B

y b

f

e

c

C

Abb. 3.39 Homogenisierung im ternären System mit einer Mischungslücke durch Zusatz der Komponente A.

242

3 Fragen mit Antwort

entstehenden Konodenabschnitte auf der rechten Seite von edA immer kürzer werden. Bei steigendem A-Zusatz nimmt die Menge der B-reicheren Phase immer mehr ab, um schließlich beim Punkt d ganz zu verschwinden. Dabei wird das System homogen. Dieser Übergang des heterogenen Systems in das homogene bei A-Zusatz erfolgt dadurch, dass die eine flüssige Phase an Menge immer mehr abnimmt und schließlich ganz verschwindet. Das gilt für alle Zusammensetzungen des binären Systems aus den Komponenten B und C innerhalb der Mischungslücke bc mit Ausnahme der Zusammensetzung entsprechend dem Punkte f, dessen Verbindungslinie mit A durch den kritischen Punkt K geht. In diesem Falle verschwindet bei A-Zusatz nicht die eine flüssige Phase, sondern liegen beide flüssigen Phasen bis zuletzt vor. Der Übergang in das homogene System kommt dadurch zustande, dass die Zusammensetzung der beiden flüssigen Phasen im Punkte K schließlich identisch wird. Diese beiden Arten des Übergangs eines heterogenen Systems in ein homogenes, nämlich bei Zusatz einer dritten Komponente zu einem binären System mit Mischungslücke oder dem entsprechenden ternären System innerhalb der Binodalkurve, lassen sich beim praktischen Arbeiten daran erkennen, wie die Trennungslinie zwischen den beiden ternären Phasen ihre Lage im System bei A-Zusatz verändert. Im ersten Fall, Abnahme der Menge einer ternären Phase bis zu ihrem Verschwinden, verschiebt sich die Phasengrenze nach jedem A-Zusatz entweder nach oben oder unten und erreicht schließlich die Oberfläche des Systems oder den Boden des Gefäßes unter Homogenisierung des Systems. Im zweiten Fall verschiebt sich die Trennungslinie der beiden Phasen ebenfalls, verschwindet aber in mittlerer Höhe. Dieses Verhalten kann zur Bestimmung des kritischen Punktes dienen, in dem die letzten konjugierten ternären Phasen identisch werden. Wird der Anteil an A in dem Gemisch konstant gehalten und das Verhältnis von B und C geändert, entspricht eine solche Änderung einem Fortschreiten auf der Linie xy. Bei x liegt nur eine homogene flüssige Phase vor. Wächst nun das Verhältnis C:B, zerfällt das System in zwei flüssige Phasen, wobei die B-reichere an Menge immer mehr abnimmt. Sie verschwindet schließlich; dabei geht das System in nur eine C-reiche homogene flüssige Phase über. 145.3: Beim Schmelzen der drei Metalle Pb, Zn und Ag bilden sich zwei Schichten, von denen die eine hauptsächlich Pb, die andere hauptsächlich Zn enthält. Das Ag ist sehr viel reichlicher in der Zn-reichen Schicht löslich. Die ternären konjugierten Flüssigkeiten bilden dabei eine obere hauptsächlich Zn-haltige und Ag-reiche Schicht und eine untere hauptsächlich Pb enthaltende Ag-arme Schmelze. Die obere Schicht hat den höheren Schmelzpunkt, erstarrt daher beim Abkühlen zuerst und kann von der darunter befindlichen Schmelze leicht abgezogen werden. Nach dem Abtreiben des Bleis (Aufblasen von Luft auf die Bleischmelze unter Bildung von Bleiglätte) und dem Abdestillieren des Zn bleibt das Ag zurück. 146

Welche Voraussetzung muss erfüllt sein, um zwei praktisch nicht mischbare Flüssigkeiten durch Hinzufügen einer dritten Flüssigkeit in eine einzige flüssige Phase überführen zu können? Nennen Sie praktische Beispiele. Voraussetzung ist, dass die dritte Flüssigkeit mit beiden untereinander nicht mischbaren Flüssigkeiten mischbar ist. So kann man eine Mischung von Chloroform und Wasser durch Aceton oder Essigsäure in eine gemeinsame Lösung überführen, Wasser und Benzen durch Pyridin, Wasser und Ether durch Alkohole usw.

3.11 Phasengleichgewichte ternärer Systeme

147

243

Beschreiben Sie den Temperatureinfluss auf die Mischungslücke des ternären Systems ABC. Verwenden Sie dazu das gegebene Raumdiagramm (Abb. 3.40). Welche Veränderungen erleidet dabei die ternäre Mischung der Totalzusammensetzung P? Welche Ausgangsmischungen lassen sich beim Erwärmen homogenisieren?

K4

t4

K3

f3

ϕ

3

t3

K2

f2

ϕ

t2

2

C

K1

f1

ϕ

P

t1 A

f

1

K’4

ϕ

B

Abb. 3.40 Abhängigkeit der Mischungslücke von der Temperatur.

Im Raumdiagramm erkennt man, wie die Binodalkurve mit zunehmender Temperatur von t1 nach t3 schrumpft und schließlich bei t4 in den kritischen Punkt K4 übergeht. K4 ist die obere kritische Lösungstemperatur des binären Systems AB. Hingegen zeigt das System im ternären Bereich keine obere kritische Lösungstemperatur. Die Veränderungen, die eine ternäre Mischung der Totalzusammensetzung P und der Temperatur t1 beim Erwärmen erleidet, können an der Senkrechten im Punkt P im Raumdiagramm verfolgt werden. Bei t1 ist Zerfall in die ternären flüssigen Phasen f1 und '1 in dem auf der Konode f1 '1 ablesbaren Mengenverhältnis eingetreten. Bei der Temperatur t2 sind die konjugierten ternären Phasen durch f2 und '2 gekennzeichnet. Bei der Temperatur t3 ist die ternäre konjugierte B-reiche Phase '3 nahezu verschwunden, die A-reiche Phase f3 wird identisch mit der Ausgangsmischung. Bei weiterer Erwärmung wird das System homogen. Die kritischen Punkte der Binodalkurven sind durch die Kurve KI K2 K3 K4 miteinander verbunden. Eine Homogenisierung des Systems, bei der die beiden konjugierten Phasen miteinander identisch werden, ist beim Erwärmen nur bei solchen Ausgangsmischungen möglich, die auf der Projektion K1 K04 der Kurve K1 K4 auf die Grundebene des Prismas liegen.

244 148

3 Fragen mit Antwort

Beschreiben Sie den Temperatureinfluss auf die Mischungslücke des ternären Systems ABC. Verwenden Sie dazu das gegebene Raumdiagramm und seine Projektion auf das Konzentrationsdreieck (Abb. 3.41).

A K t4 t3 t2

P’ P 1 2 3 A

4 K P

B

C

B

r

r’

P’

s’

s

C

Abb. 3.41 Temperatureinfluss auf die Mischungslücke des ternären Systems ABC; a) Raumdiagramm; b) Konzentrationsdreieck.

Das Raumdiagramm macht deutlich, dass mit steigender Temperatur im ternären System ein Übergang von einer zunächst einseitig geschlossenen in eine allseitig geschlossene Mischungslücke erfolgt. Dies erkennt man an der Projektion, wie die Binodalkurven (z. B. 3 und 4) in geschlossene Kurven übergehen, deren Flächeninhalt mit wachsender Temperatur immer kleiner wird. Die geschlossenen Kurven besitzen zwei kritische Punkte. Ihre Verbindungslinie ist die gestrichelte Linie PKP0 . Bei einer bestimmten Temperatur schrumpft die geschlossene Binodalkurve schließlich zu einem Punkt K zusammen. Diese Temperatur ist die obere kritische Lösungstemperatur des ternären Systems. Bei den Temperaturen der Binodalkurven 1 und 2 sind die Komponenten B und C nur teilweise mischbar. Die Mischungslücken liegen zwischen r und s bzw. r0 und s0 . Bei der Temperatur, die der Binodalkurve 3 entspricht und bei der der eine kritische Punkt die Dreieckseite BC eben berührt, beginnt die vollständige Mischbarkeit von B und C im binären System. Für alle Punkte, deren Temperatur höher liegt als dem Punkt P0 entspricht, besitzen B und C keine Mischungslücke, wie z. B. für die Temperatur der Binodalkurve 4. Fügt man bei dieser Temperatur und der Zusammensetzung entsprechend dem Punkt P0 zu dem binären System BC steigende Mengen von A hinzu, bleibt das System zunächst homogen, zerfällt aber dann in zwei Flüssigkeiten, wenn der A-Zusatz so groß geworden ist, dass die Gesamtzusammensetzung des Systems in das Gebiet der Binodalkurve 4 gelangt. Ist der A-Zusatz so groß geworden, dass die Totalzusammensetzung den anderen kritischen Punkt der Binodalkurve übersteigt, wird das System wieder homogen.

3.11 Phasengleichgewichte ternärer Systeme

149

245

Für das ternäre Legierungssystem PbBiSn sind nachfolgende Hinweise und Daten gegeben:  Alle drei Komponenten sind im flüssigen Zustand unbegrenzt mischbar und bilden weder feste Lösungen (Mischkristalle) noch Verbindungen. ı ı ı  Ihre Schmelzpunkte betragen: Sn (232 C), Bi (271,3 C) und Pb (327 C).  Jedes Komponentenpaar hat ein binäres Eutektikum und alle drei Komponenten haben ein gemeinsames ternäres Eutektikum (Tabelle).  Die feste eutektische Legierung enthält feine Kristalle der drei Metalle im angegebenen Massenverhältnis. System Bi/Pb Pb/Sn Sn/Bi PbBiSn

Zusammensetzung (Ma.-%) Binäres Eutektikum Ternäres Eutektikum E (54 % Bi + 46 % Pb) F (40 % Pb + 60 % Sn) D (43 % Sn + 57 % Bi) –

– – – G (43 % Sn + 57 % Bi)

Eutektischer ı Schmelzpunkt ( C) 134 182 128 96

149.1 Erstellen und beschreiben Sie das Modell des Raumdiagramms für das System PbBiSn und projizieren Sie dieses auf die Grundfläche (Konzentrationsebene). Klappen Sie auch jede Mantelfläche der drei Teilsysteme in die Grundfläche herunter. 149.2 Beschreiben Sie mit beschrifteten Horizontalschnitten durch das Raumdiagramm die miteinander koexistierenden Phasen bei einer bestimmten Temperatur. Zur Illustration sind mit fallender Temperatur folgende vier isotherme Schnitte gefragt: a) Isothermer Schnitt oberhalb des binären Eutektikums des Systems Bi/Pb, aber nach bereits einsetzender Primärkristallisation von Pb und Bi. b) Isothermer Schnitt durch das binäre Eutektikum des Systems Bi/Pb. c) Isothermer Schnitt unterhalb der drei binären Eutektika und oberhalb des ternären Eutektikums. d) Isothermer Schnitt durch das ternäre Eutektikum. 149.1: Die Endpunkte der vertikalen Kanten des Raumdiagramms (Abb. 3.42) geben die Schmelzpunkte der reinen Komponenten an. Von diesen Punkten gehen in den Wänden des Mantels Kurven aus, die die univarianten Gleichgewichte (F D 1) der binären Systeme zwischen einer reinen festen Phase und der mit dieser Phase gesättigten binären Schmelze darstellen. Ihre Schnittpunkte geben die Schmelzpunkte und die Zusammensetzung der entsprechenden binären Eutektika an. Die gekrümmten Flächen entsprechen bivarianten Gleichgewichten (F D 2) zwischen einer reinen Komponente in der festen Phase und der mit dieser Komponente gesättigten Schmelze. Die Schnittlinien dieser Flächen zeigen die Koexistenz von zwei festen Phasen und der ternären Schmelze an (univariante Gleichgewichte). Dies sind so genannte ternäre eutektische Kurven; sie gehen von den eutektischen Punkten der Zweikomponentensysteme aus und schneiden einander im ternären eutektischen Punkt. Dieser Punkt entspricht einem invarianten (nonvarianten) Gleichgewicht (F D 0) zwischen drei festen Phasen und der ternären Schmelze.

246

3 Fragen mit Antwort c)

a)

232°

232°

Sn

Sn F 182° 128° D

0,6

χBi

χSn 271°

0,57

327°

G'

G'

0,46

Bi

Pb

χPb

Bi

Pb E 134°

232° 271° 327° 327° F 182°

271°

128°

Sn D

57 %

Bi

G

60

E 96° 134°

%

Zusammensetzung

Sn

Binäre Eutektika Pb

G' b

46 % P

Bi b)

Ternäres Eutektikum

χPb = 0,46 (Bi/Pb)

χPb = 0,33

χSn = 0,6 (Bi/Sn)

χSn = 0,155

χBi = 0,57 (Sn/Bi)

χBi = 0,515

d)

Abb. 3.42 Ternäres System PbBiSn; a) Grundfläche (Konzentrationsebene); b) Raumdiagramm; c) Projektion des Raumdiagramms auf die Grundfläche; d) Zusammensetzung.

149.2a) In Abb. 3.43a deuten die Linien mn den Schnitt der Horizontalebene mit der Fläche der Primärkristallisation von Pb und op den Schnitt mit der Primärkristallisationsfläche von Bi an. Die beiden Linien grenzen das Gebiet der homogenen Schmelze von dem Zweiphasenraum SCBi bzw. SCPb ab. Eine Schmelze der Totalzusammensetzung x innerhalb der Fläche Pbmn zerfällt beim Abkühlen auf die Temperatur des Horizontalschnitts in die reine Komponente Pb und Schmelze S, deren Zusammensetzung durch den Schnittpunkt q der Geraden Pbxq mit der Linie mn gegeben ist. Diese Zusammenhänge sind durch einige Konoden angedeutet. 149.2b) Sachverhalt wie in a), aber jetzt schneiden sich die Kurven mn und op auf der Seite Bi–Pb (Abb. 3.43b).

3.11 Phasengleichgewichte ternärer Systeme Sn

a)

Sn

b)

n

S

q

S + Pb

o

x

S + Bi

S + Bi Bi

p

m

Pb

Sn

Bi

x S + Pb

m p

Pb

Sn

d)

S

+

Bi

n +S

+S

n+

S+

Bi

S

S

Pb

Sn

+P

b

Pb

S + Bi + Pb

Bi

S+

S+

S+

Bi

+S

n S+S

n

c)

n

S

q o

247

S + Bi + Pb

Pb

Bi

Pb

Abb. 3.43 Ternäres System PbBiSn: Isotherme Horizontalschnitte durch das Raumdiagramm a) oberhalb des binären Eutektikums BiPb nach bereits einsetzender Primärkristallisation; b) durch das binäre Eutektikum des Systems BiPb; c) unterhalb der drei binären Eutektika und oberhalb des ternären Eutektikums; d) durch das ternäre Eutektikum.

149.2c) Sachverhalt zunächst wie in a) und b), dann erfolgten die Primärkristallisation von Sn und die binären eutektischen Kristallisationen von BiCPb, SnCPb und BiCSn (Abb. 3.43c). 149.2d) Die Felder der primären Kristallisation sind zu einer Grenzgeraden geschrumpft und die Gebiete der binären eutektischen Kristallisation berühren sich einander (Abb. 3.43d). 150

Für das ternäre Legierungssystem ABC sind nachfolgende Hinweise und Daten gegeben:  Es liegt vollständige Mischbarkeit der flüssigen und vollständige Unlöslichkeit der festen Phasen ineinander vor.

248

3 Fragen mit Antwort ı

ı

 Die Schmelzpunkte der reinen Komponenten betragen: A (278 C), B (338 C) ı und C (375 C).  Jedes Komponentenpaar hat ein binäres Eutektikum und alle drei Komponenten haben ein gemeinsames ternäres Eutektikum (Tabelle). System

Zusammensetzung (Ma.-%) Binäres Eutektikum Ternäres Eutektikum

AC BC AB ABC

F’ (67 % A + 33 % C) D’ (67 % B + 33 % C) E’ (38 % A + 62 % B) –

– – – G’ (60 % A, 24 % B + 16 % C)

Eutektischer ı Schmelzpunkt ( C) 240 202 370 165

150.1 Erstellen Sie das Dreieckskoordinatensystem und das Raumdiagramm. Markieren Sie darin eine – Gerade, die auf der Seite AB einen Punkt m der Zusammensetzung 38 % A und 62 % B mit dem Eckpunkt C verbindet und einen Vertikalschnitt kennzeichnet, – zwei vom Eckpunkt B0 ausgehende Konoden:  Konode B0 G0 ,  Konode, die als Verlängerung der Verbindungslinie B0 p bis zum Schnitt mit der D0 G0 -Linie verläuft. Der Punkt p hat die ternäre Zusammensetzung von 30 % A, 50 % B und 20 %C. 150.2 Geben Sie mit einem Zustandsdiagramm (bezogen auf den gekennzeichneten Vertikalschnitt durch das Raumdiagramm) das Verhalten der betreffenden Legierungen bzw. Mischungen beim Abkühlen aus der ternären Schmelze an. Welcher wesentliche Unterschied besteht zu einem analogen Diagramm binärer Systeme? Ziehen Sie auch Schlussfolgerungen auf die Form des ternären Zustandsdiagramms beim Vergleich mit Horizontalschnitten. Betrachtet man den auf der Basis des Zustandsprismas stehenden Vertikalschnitt (Abb. 3.44b), ist sofort ersichtlich, dass die senkrechte Schnittebene die Flächen der Primärkristallisation (Kurven acb) durchstößt, wobei c ein Punkt ist, an dem die eutektische Kristallisation des binären Systems BC beginnt. Der Knickpunkt c in Abb. 3.44c entspricht dem Schnittpunkt der Geraden mC in Abb. 3.44a mit der Kurve des Beginns der binären eutektischen Kristallisation D0 G0 . Aus allen Legierungen, deren Totalzusammensetzungen den Punkten der Geraden cC entsprechen, scheidet sich primär C ab. Diese Fläche der primären Kristallisation von C ist in Abb. 3.44c nach unten durch die Gerade cd von der Fläche der binären eutektischen Kristallisation von B und C abgetrennt. Bei Mischungen der Totalzusammensetzung zwischen n und c kristallisiert primär B. Die Zusammensetzung der Schmelze ändert sich daher z. B. für den Punkt p entlang der Konode Bp und erreicht schließlich die Linie cG0 , wo die Kristallisation des binären Eutektikums B und C beginnt. Bei einer Zusammensetzung der Mischung entsprechend dem Punkte n kristallisiert (Abb. 3.44a) nach der primären Ausscheidung von B das ternäre Eutektikum G0 . Für Mischungen zwischen m und c gibt in Abb. 3.44c die Kurve ac die Primärausscheidung von B, für Mischungen zwischen n und c die Kurve cf die sekundäre Abscheidung des binären Eutektikums B und C an, während Mischungen der Zusammensetzung zwischen m und n nach der Primärausscheidung von B das binäre Eutektikum von A und B abscheiden, was durch die Kurve hf in Abb. 3.44c angedeutet wird. Der Punkt f entspricht dabei dem ternären Eutektikum G0 .

3.11 Phasengleichgewichte ternärer Systeme a)

249

c)

B

C

D'

b S

n

p c S+C

a

m

c d

S+B h E'

G'

S+B+C

F'

S+ g A+B

e f A+B+C

A

m

C'

b) C D

B

A Temp. (°C)

F

B'

E G

m

n F'

D' p c

C'

G'

F' A'

Abb. 3.44 Ternäres Legierungssystem ABC a) Dreieck-Koordinatensystem mit zwei Konoden (gestrichelt) und Basislinie Cm des Vertrikalschnitts; b) Raumdiagramm mit markiertem Vertikalschnitt; c) Zustandsdiagramm zum Vertikalschnitt in b.

Ein wesentlicher Unterschied zwischen den Vertikalschnitten und dem analogen Diagramm binärer Systeme besteht darin, dass in Abb. 3.44c zwar die Kurve cb die Zusammensetzung der Schmelze im Augenblick der Primärkristallisation angibt, dass aber die anderen Kurven keine Aussage über die Zusammensetzung der im Gleichgewicht befindlichen Phasen gestatten. Die Kurven ac, hf und cf sind lediglich die Durchstoßpunkte der verschiedenen Konoden durch die Schnittebene. Die Phasen, die z. B. für Legierungen der Zusammensetzung zwischen m und n in Abb. 3.44a miteinander im Gleichgewicht stehen, nämlich die Schmelze und B bzw. das binäre Eutektikum von A und B werden durch Punkte außerhalb der Schnittebene charakterisiert.

250

3 Fragen mit Antwort

Somit machen diese Aussagen deutlich, dass die Horizontalschnitte weitreichendere Schlüsse auf die Form des ternären Zustandsdiagramms gestatten, als die Vertikalschnitte. Daher ist man bemüht, die Zahl der untersuchten Horizontalschnitte möglichst groß zu machen, um das ternäre Zustandsdiagramm eindeutig aufbauen zu können. 151

Mit gegebenem Dreiecksdiagramm (Abb. 3.45a) einer wässrigen Lösung von zwei Salzen S1 und S2 , die keine festen Lösungen (Mischkristalle) bilden, sind bei der isothermen Verdampfung des Wassers Veränderungen im ternären System zu beschreiben. Gehen Sie von homogenen Lösungen der Zusammensetzung l, l 0 und l 00 auf den gestrichelten Geraden aus.

W (H2O)

a)

l

W (H2O)

b)

l

l'

l''

A

A

l'

l''

d

C

C

e

B

f

B

g h

S1

S2

S1

j

n

m

k

S2

Abb. 3.45 Dreiecksdiagramm einer wässrigen Lösung zweier Salze S1 und S2 ; a) ohne b) mit Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser.

Geht man von einer homogenen Lösung der Zusammensetzung l aus und verdampft das Wasser isotherm, bleibt das Verhältnis der beiden Salze S1 W S2 in der sich konzentrierenden Lösung immer dasselbe, die Zusammensetzung der Lösung bewegt sich auf der Geraden ln auf die Seite S1 S2 zu. Bei d beginnt primär das Salz S1 auszukristallisieren. Die Lösung wird dadurch relativ reicher an S2 , und ihre Zusammensetzung bewegt sich bei weiterem Eindampfen auf der Kurve dB nach B zu, dabei scheidet sich kontinuierlich reines S1 ab. Hat die Totalzusammensetzung der Lösung den Punkt f erreicht, hat die Lösung die Zusammensetzung e, denn die Gerade eS1 ist eine Konode, deren Enden die Zusammensetzung der miteinander im Gleichgewicht befindlichen Phasen in der Zustandslücke AS1 B angeben. Entspricht die Totalzusammensetzung des Systems dem Punkt g, hat die Lösung die Zusammensetzung B, also die des isothermen invarianten Punktes (F D 0). Weiteres Verdampfen kann die Zusammensetzung der Lösung nicht mehr ändern, denn neben S1 kristallisiert jetzt auch S2 aus. Ist so viel Wasser isotherm verdampft, dass das System die Totalzusammensetzung h erreicht hat, hat die Lösung die Zusammensetzung B, und der Bodenkörper besteht aus einem Gemisch von S1 und S2 entsprechend dem Punkt j. Beim Punkt n ist dann das gesamte Wasser verdampft, und der Rückstand besteht aus einem Gemenge von S1 und S2 , in dem die Mengen der Salze in demselben Verhältnis vorliegen wie in der Ausgangslösung l.

3.11 Phasengleichgewichte ternärer Systeme

251

Geht man von einer homogenen Lösung der Zusammensetzung l 0 aus, sind die Erscheinungen beim isothermen Verdampfen analog. Der Unterschied besteht lediglich darin, dass sich anstelle des Salzes S1 primär das Salz S2 abscheidet, wobei die Abscheidung im Schnittpunkt der Geraden l0 k mit der Kurve BC beginnt. Geht man von einer homogenen Lösung der Zusammensetzung l 00 aus, scheiden sich im Punkt B die Stoffe S1 und S2 gleichzeitig nebeneinander ab, und zwar in demselben Verhältnis, in dem sie in der Lösung vorlagen, so dass sich die Zusammensetzung der Lösung nicht verändert. Eine derartig zusammengesetzte Lösung (l00 ) verhält sich so, als ob sie nur eine einzige Substanz enthielte. Der Punkt B bei isothermer Verdampfung eines ternären Systems entspricht dem Eutektikum bei der Abkühlung eines binären Systems. 152

Mit gegebenem Dreiecksdiagramm (Abb. 3.46) einer wässrigen Lösung von zwei Salzen S1 und S2 , die ein Doppelsalz der Zusammensetzung M und keine Mischkristalle bilden, sind bei der isothermen Verdampfung des Wassers Veränderungen im ternären System zu beschreiben, wenn von homogenen Lösungen ausgegangen wird und die Kurven AB, eB, eC und BD geschnitten werden. Welche Analogie besteht im Systemaufbau zu binären Systemen?

W (H2O)

A

S1

B

e

M

C

D

S2

Abb. 3.46 Dreiecksdiagramm einer wässrigen Lösung von zwei Salzen S1 und S2 die ein Doppelsalz bilden.

Homogene Lösungen, die bei der isothermen Verdampfung die Kurve AB oder eB schneiden, scheiden zunächst reines S1 oder reines M ab. Sie erreichen schließlich die Zusammensetzung des invarianten Punktes B (F D 0), wobei sich nun S1 und M nebeneinander abscheiden. Sind die Ausgangslösungen so zusammengesetzt, dass beim Eindampfen die Kurve eC oder DC geschnitten wird, so scheidet sich anfangs M bzw. S2 ab, wobei die Lösung den invarianten Punkt C .F D 0/ erreicht und sich jetzt M neben S2 abscheidet. Das System kann somit aus zwei Teilsystemen S1 -M-H2 O und S2 -M-H2 O aufgebaut gedacht werden. Beide aneinandergelagert entsprechen im Aufbau dem Temperatur-Konzentrations-Diagramm binärer Systeme mit stabiler Molekülverbindung.

252 153

3 Fragen mit Antwort

Mit gegebenem Dreiecksdiagramm (Abb. 3.47a) einer wässrigen Lösung von zwei Salzen S1 und S2 , die ein Doppelsalz der Zusammensetzung M und keine Mischkristalle bilden, sind bei der isothermen Verdampfung des Wassers Veränderungen im ternären System zu beschreiben, wenn von homogenen Lösungen der Zusammensetzung l und r ausgegangen wird. Erklären Sie bei Ihrer Beschreibung auch das Verhalten einer inkongruent gesättigten Lösung.

W (H2O)

a)

W (H2O)

b)

l

l A

A

r

r m

s C

C

B

B

t

D

D

n

u

S1

M

S2

S1

M

v

S2

Abb. 3.47 Dreiecksdiagramme einer wässrigen Lösung von zwei Salzen S1 und S2 (Zeichnung zu Frage 153); a) ohne b) mit Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser.

Wird aus der Lösung l das Wasser isotherm verdampft, scheidet sich im Punkt m die Komponente S1 aus (Abb. 3.47b). Dabei folgt die Zusammensetzung der Lösung der Löslichkeitskurve entlang mC, wobei sich die Zusammensetzung des gesamten Systems entlang mn ändert. Wenn die Lösung die Zusammensetzung des invarianten Punktes C .F D 0/ erreicht hat, scheidet sich das Doppelsalz M aus. Das Doppelsalz enthält die beiden Salze S1 und S2 in einem bestimmten Verhältnis und liegt, wenn das Wasser restlos verdampft ist, als Bodenkörper vor. Da sich aber schon vor Erreichung des Punktes C reines S1 abgeschieden hat, kann sich das Doppelsalz M nur unter Auflösung des vorher ausgeschiedenen reinen Salzes S1 bis zu dessen völligem Übertritt in die Lösung abscheiden. Eine Lösung, die ein derartiges Verhalten zeigt, wird als inkongruent gesättigt bezeichnet. Die Tatsache, dass sich das Salz, welches sich vor Erreichung des Punktes C abgeschieden hat, im Punkte C wieder auflösen muss, kann auch wie folgt verdeutlicht werden: Die jeweilige Zusammensetzung der festen Phase, die sich mit der invarianten Lösung C im Gleichgewicht befindet, wird durch die Konoden bestimmt, die von C aus durch die verschiedenen Punkte auf der Strecke nM gezogen werden können. Für die Totalzusammensetzung n ist der Bodenkörper reines S1 , am Ende der Verdampfung reines M. Für die Zwischenpunkte muss S1 immer mehr und mehr verschwinden, um schließlich in das reine Doppelsalz überzugehen, wenn alles Wasser verdampft ist.

3.11 Phasengleichgewichte ternärer Systeme

253

Ungesättigte Lösungen links von l verhalten sich analog, nur mit dem Unterschied, dass sich hier nicht alles S1 wieder auflöst, um M zu bilden. Nach dem vollständigen Verdampfen liegt ein Gemisch von S1 und M vor. Hat die ungesättigte Lösung die Zusammensetzung r, scheidet sich bei s zunächst reines S1 aus. Bei t tritt Wiederauflösung von S1 unter Bildung von M ein, und bei weiterem Verdampfen bewegt sich die Totalzusammensetzung der Lösung von t bis u unter gleichzeitiger Abscheidung von M und Änderung der Zusammensetzung der Lösung von C nach D. Bei D bleibt trotz weiterer Eindampfung die Zusammensetzung der Lösung konstant, indem sich gleichzeitig M und S2 abscheiden. Zum Schluss hat der Rückstand, der aus einem Gemisch von M und S2 besteht, die Totalzusammensetzung v.

4 Aufgaben ohne Lösung

4.1 Ideale und reale Gase 1

In eine kalorimetrische Bombe mit 250 cm3 Inhalt werden 5 dm3 Sauerstoff (NB) gepresst und auf 200 ı C erhitzt. Welcher Gasdruck entsteht in der Bombe (NB: 273;15 K; 1;01325 bar)?

2

In einer Gasbürette befinden sich 50 cm3 Gas von 20 ı C und 999;92 mbar. Um wie viel Grad ist die Gastemperatur gefallen, wenn das Volumen bei 1002;58 mbar nur noch 49 cm3 beträgt?

3

Wie viel ml trockenes CO2 von 18 ı C und 99;325 kPa entstehen durch Reaktion von 0;7 g CaCO3 mit Salzsäure?

4

Eine Elektrolysezelle wurde mit 125 dm3 Lösung gefüllt, die 287;5 g=dm3 wasserfreies CrO3 enthielt. Dann fand 12;5 h lang die Elektrolyse (I D 1600 A; D 0;15) statt. Berechnen Sie die Volumina der Gase, die bei 35 ı C und 1;2 bar entstanden.

5

Berechnen Sie die Masse an Sauerstoff, die sich in einer Stahlflasche mit 40;5 dm3 Inhalt befindet, wenn der Gasdruck 116;52 bar und die Gastemperatur 24 ı C betragen!

6

Eine Sauerstoffflasche von 40 Litern steht gegenüber dem äußeren Luftdruck von 100 kPa unter einem Überdruck von 2;5 MPa. Wie viel Liter Sauerstoff entweichen beim Öffnen der Flasche?

7

Bei 25 ı C und 101;3 kPa stehe in einem Autoreifen die Luft unter einem Überdruck von 280 kPa. Wie ändert sich der Reifendruck bei Abkühlung auf 10 ı C? Die Änderung des Reifenvolumens soll vernachlässigt werden.

8

Eine Stahlflasche von 10 dm3 enthält 40 g Wasserstoff. Bei welcher Temperatur erreicht der Überdruck 5 MPa?

9

Berechnen Sie die molare Masse von Helium MHelium aus seiner Dichte 'Helium 0;1785 g=dm3 bei 0 ı C und 1;01325 bar.

D

10

Berechnen Sie die mittlere Geschwindigkeit v und die Stoßfrequenz t 1 der H2 -Moleküle bei 0 ı C und 1;01325 bar. Die Dichte von H2 beträgt 'H2 D 0;0899 kg=m3 . Die mittlere freie Weglänge ist H2 D 1;13  107 m.

11

Berechnen Sie das Volumen je Liter an trockenem HCl-Gas von 38 ı C und 104 658 Pa, das von 270 cm3 14 %iger NaOH (' D 1;153 g=cm3 ) absorbiert werden kann?

12

Ein Gas mit einer Temperatur von 25 ı C ist mit Wasserdampf gesättigt. Der Dampfdruck des Wassers bei 25 ı C beträgt 0;031731 bar. Berechnen Sie den Feuchtigkeitsgehalt des Gases in Gramm pro Kubikmeter!

256

4 Aufgaben ohne Lösung

13

Die Partialvolumina von H2 O, O2 und N2 sowie die Partialdrücke von O2 und N2 sind zu berechnen. Das Gesamtvolumen beträgt 2 dm3 , der Druck 1013;25 mbar, der Partialdruck des Wasserdampfes 123;3 mbar. Zusammensetzung der Luft (Volumenanteil): 21 % O2 und 79 % N2 .

14

Um einen Airbag mit Gas zu füllen, kann man z. B. Natriumazid elektrisch zersetzen. Geben Sie die Zersetzungsgleichung an. Welche Masse Natriumazid braucht man, um einen 50-LiterBallon bei einer Temperatur von 120 ı C zu füllen? Das Gas steht im Ballon unter einem Druck von 1300 hPa.

15

In einem Kessel von 3;2 dm3 Inhalt befindet sich CO2 unter einem Druck von 307 mbar. Wie groß wird der Gesamtdruck, wenn dazu 2;4 dm3 N2 vom Druck 973 mbar und 5;8 dm3 H2 vom Druck 680 mbar gedrückt werden?

16

Berechnen Sie die Temperatur, bei der 1 mol CO2 unter einem Druck von 40 bar ein Volumen von 750 cm3 hat (a D 0;3649 Nm4 =mol2 ; b D 4;2672  105 m3 =mol).

17

Wie groß ist bei 27 ı C in einem 10-Liter-Gefäß mit 416;6 g Ethin der Druck, wenn die van-derWaals’schen Konstanten des Gases mit a D 0;4459 Nm4 =mol2 und b D 5;1363  105 m3 =mol gegeben sind? Wie groß wäre der Druck bei idealen Verhältnissen?

18

Das Backtriebmittel Hirschhornsalz ist eine Mischung aus Ammoniumhydrogencarbonat und Ammoniumcarbamat. Beim Erhitzen zerfallen beide Verbindungen. Nehmen Sie an, dass sie im Backtriebmittel mit gleichen Stoffmengen vertreten sind. Um welches Volumen vergrößert sich der Teig durch den Zerfall von 1 g Hirschhornsalz bei 180 ı C und 101;325 kPa?

19

Bei sehr hohen Temperaturen dissoziiert molekularer Wasserstoff in seine Atome. Die Gleichgewichtskonstante bei 3000 K und einem Gesamtdruck von 980 hPa beträgt Kp D 2;51  102 bar. a) Berechnen Sie den Partialdruck von atomarem Wasserstoff im Gleichgewicht. b) Berechnen Sie die Gasdichte (in kg=m3) im Gleichgewicht unter den gegebenen Bedingungen.

20

Berechnen Sie die Dichte von Luft bei 0 ı C und 1;01325 bar. Zu berücksichtigen ist die Luftzusammensetzung aus 78 % Stickstoff, 21 % Sauerstoff und 1 % Argon.

21

Die Dichtebestimmung von Luft mit der molaren Masse M =28,732 g/mol ergab bei 0 ı C und 1;013 bar den Wert ' D 1;275 kg=m3 . Berechnen Sie Gaskonstante R von Luft.

22

Wie viele Atome sind in 0;15 mol Helium enthalten?

23

Berechnen Sie die Loschmidt-Konstante NL aus den Werten von NA und Vm .

24

Berechnen Sie die mittlere Geschwindigkeit von Sauerstoffmolekülen bei einer Temperatur von 27 ı C.

25

Berechnen Sie die Dichte von Sauerstoff bei 27 ı C und 100 kPa.

26

Berechnen Sie die mittlere kinetische Energie eines Stickstoffmoleküls bei 20 ı C.

4.1 Ideale und reale Gase

257

27

Berechnen Sie bei 0 ı C und 1;01325 bar die genaue mittlere Molmasse M von Luft mit der Zusammensetzung von 78;08 mol% N2 , 20;95 mol% O2 , 0;934 mol% Ar und 0;035 mol% CO2 .

28

In einem Standzylinder sind 40 cm3 Stickstoff über Wasser bei 99;99 kPa und 20 ı C aufgefangen worden. Der Dampfdruck des Wassers beträgt bei 20 ı C 2;338 kPa. Wie viel ml trockener Stickstoff sind in dem Volumen enthalten?

29

Fugazität a) Berechnen Sie die Fugazität des gesättigten Wasserdampfes bei 155 ı C, wenn Wasserdampf bei dieser Temperatur einen Sätigungsdampfdruck von 5;433 bar und ein molares Volumen von 6,24 Liter hat. b) Welche Fugazität hat NH3 bei 155 ı C, 40;53 bar und einem molaren Volumen von 0;7696 dm3 =mol?

30

In ein Messrohr werden 20 cm3 eines Gases gefüllt. Dazu werden 80 cm3 Sauerstoff gegeben und gezündet. Nachdem sich der Ausgangsdruck und die Ausgangstemperatur wieder eingestellt haben, beobachtet man eine Volumenverminderung um 10 cm3 . Bei der Reaktion bleibt Sauerstoff übrig. Um welches der Gase Wasserstoff, Ammoniak, Kohlenstoffmonoxid, Ethen oder Methan kann es sich gehandelt haben?

31

Das beim Erhitzen von 420 g eines Salzgemisches von (NH4 )2 CO3  H2 O, FeCO3 und NaCl gebildete Gas wurde getrocknet und nahm dann bei 22 ı C und 102;1 kPa ein Volumen von 124 dm3 ein. Dieselbe Masse des Gemisches wurde mit einem Überschuss an verdünnter Salzsäure behandelt. Ein Hundertstel der entstandenen Lösung wurde mit KaliumdichromatLösung (c D 0;1 mol  dm3 ) titriert. Es ergab sich ein Titratorverbrauch von 27;2 cm3 . Berechnen Sie die Masse der einzelnen Salze.

32

In einer Druckflasche befindet sich komprimierter Sauerstoff mit dem Druck p1 D 50 bar und der Temperatur T1 D 298 K. Dann wird die halbe Masse des eingeschlossenen Gases abgelassen, wobei die Temperatur auf 289 K sinkt. Wie groß ist der Druck p2 des noch in der Flasche vorhandenen Sauerstoffs?

33

Die Dichte des Heliums bei 0 ı C und 1 mbar beträgt 1;785  104 g=cm3 . Wie groß ist die Dichte bei 200 ı C und 100 mbar?

34

Avogadro-Zahl a) Berechnen Sie mit folgenden Angaben die durchschnittliche kinetische Energie (mv 2 /2) eines Wassertropfens bei 27 ı C:  Das Wasser ist bei 27 ı C in gasförmigem Argon dispergiert. Die gebildeten kugelförmigen Tropfen sollen nicht untereinander kollidieren.  Jeder Tropfen hat einen Durchmesser von 1;0 m und eine Dichte von 1;0 g=cm3.  Die Wurzel aus dem mittleren Geschwindigkeitsquadrat wurde bei 27 ı C mit 0;5 cm=s bestimmt. b) Berechnen Sie mit folgenden Angaben die Avogadro-Zahl, ohne das ideale Gasgesetz, die allgemeine Gaskonstante und die Boltzmann-Konstante zu verwenden:  Bei Änderung der Temperatur ändern sich auch die Größe und die Geschwindigkeit des Tropfens.

258

4 Aufgaben ohne Lösung

 Die durchschnittliche kinetische Energie eines Tropfens zwischen 0 ı C und 100 ı C hängt linear von der Temperatur ab. Nehmen Sie an, dass diese Linearität auch unterhalb von 0 ı C erhalten bleibt.  Im thermischen Gleichgewicht ist die durchschnittliche kinetische Energie für alle Teilchen die gleiche, unabhängig von der Masse der Teilchen.  Die spezifische Wärmekapazität von Argongas (Atommasse 40) bei konstantem Volumen beträgt 0;31 J=.g  K/. Ekin (J)

100 T (°C)

Abb. 4.1 Abhängigkeit der kinetischen Energie von der Temperatur.

35

Acht Kerzen aus Stearinsäure, die je eine Masse von 58 g haben, werden in einem Caravan, in dem sich 19 m3 Luft befinden, verbrannt. Der Caravan hat keinen Abzug, so dass angenommen werden kann, dass kein Gasaustausch mit der Umgebung stattfindet. Die Zusammensetzung (in Volumenprozent) der Luft im Caravan vor der Verbrennung der Kerzen beträgt: Sauerstoff 21 %, Stickstoff 78 %, Argon 0,9 %. Zu Beginn betrug die Temperatur 21;0 ı C, es herrschte ein Druck von 98;0 kPa.  Geben Sie die Reaktionsgleichung für die vollständige Verbrennung von Stearinsäure an.  Bestimmen Sie den Anteil (in Volumenprozent) von Sauerstoff und Kohlenstoffdioxid nach der Verbrennung. Vernachlässigen Sie dabei den geringen Anteil von Kohlenstoffdioxid vor der Verbrennung.

36

In einer mit Luft gefüllten, aufrechten Röhre befinden sich zwei bewegliche Kolben gleicher Größe und Masse. Die Röhre ist am unteren Ende verschlossen und der untere Kolben befindet sich in einer Höhe von h D 10 cm über dem Röhrenboden. Der zweite Kolben befindet sich 10 cm über dem ersten. Der Luftdruck zwischen den Kolben entspricht dem zweifachen Atmosphärendruck und die Röhre ist nach oben offen. Auf welcher Höhe x befindet sich der untere Kolben, wenn der obere langsam an die ursprüngliche Stelle des unteren gedrückt wird? Die Reibung soll keine Rolle spielen, Luft sich wie ein ideales Gas verhalten und die Temperatur konstant bleiben

4.2 Osmotischer Druck idealer Lösungen

259

4.2 Osmotischer Druck idealer Lösungen 37

Man berechne den osmotischen Druck einer Lösung von 5 g Glukose in 100 cm3 H2 O bei 20 ı C.

38

Zur Bestimmung der Molmasse von Hämoglobin wurde von einer in einer Pergamentmembran eingeschlossenen Lösung von 4;8 g Hämoglobin in 100 cm3 Lösung bei 10 ı C der osmotischen Druck zu 71;45 mbar ermittelt. Berechnen Sie die Molmasse von Hämoglobin!

39

Eine 0,5 molare Kochsalzlösung ist zu 74,3 % dissoziiert. Wie groß ist der osmotische Druck dieser Lösung?

4.3 Joule-Thomson-Effekt 40

Berechnen Sie aus den van-der-Waals’schen Konstanten a und b (s. Tabelle) die theoretischen Werte von Ti (Inversionstemperatur), TB (Boyle-Temperatur) und Tk (kritische Temperatur) für Wasserstoff, Stickstoff, Sauerstoff und Methan. Welche Folgerungen bezüglich der Gasverflüssigung ergeben sich daraus? a

Gas H2 Wasserstoff N2 Stickstoff O2 Sauerstoff CH4 Methan C2 H2 Ethin

41

h

Nm4 mol2

i

h b 105 

0,0246 0,1381 0,1381 0,22914 0,4459

m3 mol

i

2,66 3,85 3,183 4,26 5,14

Gesucht ist der Joule-Thomson-Effekt für 1 bar Druckerniedrigung bei 0 ı C für Sauerstoff (Cp D 29;01 J=.mol  K/, a D 0;1381 Nm4 =mol2 , b D 3;1830  105 m3 =mol/.

4.4 Arbeit 4.4.1

Volumenarbeit

42

Die Elektrolyse von (angesäuertem) Wasser wird bei 25 ı C und 1 bar durchgeführt. Wie groß ist die Volumenarbeit, wenn genau 1 mol H2 O zersetzt wird?

43

Bei einer chemischen Reaktion, die unter einem Druck von 3 bar abläuft, vermindert sich das Volumen eines Systems um 1;5 m3 Berechnen Sie die Volumenarbeit.

44

Die molare Volumenarbeit für die Reaktion von Kalziumkarbid mit Wasser  * CaC2.s/ C 2 H2 O.l/ )  Ca.OH/2 .s/ C C2 H2 .g/ bei der Temperatur von 30 ı C und einem Druck von 101 325 Pa ist zu berechnen.

260

4 Aufgaben ohne Lösung

45

Es werden 10 g Magnesium bei 25 ı C und 1;2 bar in überschüssiger Salzsäure aufgelöst. Welche Volumenarbeit verrichtet das System?

46

Die Dichte von Wasser beträgt nahezu 1;0 g=cm3 , die von Eis 0;917 g=cm3 (beide bei 0 ı C und 1 bar). Welche Volumenarbeit ist mit dem Schmelzen von 1 kg Eis verbunden?

47

Zum Antrieb von Raketen setzt man u. a. Salpetersäure mit Hydrazin um. Wie groß ist die Volumenarbeit W , wenn bei 1;013 bar und 350 ı C 674 kg Hydrazin verbraucht wurden?

48

Bei einer Temperatur von 521 ı C und einem Druck von 300 kPa wird 1 mol Eisen(III)-oxid durch Wasserstoff reduziert. Wie groß ist die Volumenarbeit?

49

Auf welche Temperatur erwärmt sich 1 mol CO2 , wenn das Volumen adiabatisch auf den 5. Teil komprimiert wird? Wie groß ist dabei die aufzuwendende Volumenarbeit (k D 1;3; CV .CO2/ D 27;72 J=.mol  K/)?

50

Wie groß ist die Volumenarbeit, wenn 40,2 Liter Sauerstoff von 14 MPa auf 0;1 MPa a) isotherm und b) adiabatisch entspannt werden (k D 1;4)? Wie können die unterschiedlichen Ergebnisse von a) und b) erklärt werden?

51

0;7 mol eines idealen Gases werden bei 0 ı C bzw. 100 ı C reversibel, isotherm auf zwei Drittel des Ausgangsvolumens komprimiert, bzw. auf das 4fache Volumen expandiert. Berechnen Sie die damit verbundenen Volumenarbeiten!

4.4.2

Osmotische Arbeit

52

In ein Gefäß a mit reinem Wasser wird ein an einem Ende trichterartig erweitertes Glasrohr b getaucht (Abb. 4.2), das am erweiterten Ende mit einer semipermeablen Membrane verschlossen und bis zur Höhe c mit 1000 cm3 0,5 molarer MgCl2 -Lösung gefüllt ist. Bei konstanter Temperatur (20 ı C) dringt allmählich Wasser durch die Membran in das Trichterrohr ein, wodurch sich das Volumen der Lösung im Trichterrohr um 80 cm3 vergrößert. Bei der Höhe d kommt der Vorgang zum Stillstand. Der Dissoziationsgrad des Salzes beträgt ˛MgCl2 D 0;743. Berechnen Sie die osmotische Arbeit des Systems.

53

Wird unter gleichen Reaktionsbedingungen das Glasrohr b der Aufgabe 48 mit einem Liter 10 %iger Glukoselösung gefüllt, ergibt sich bei d eine Volumenvergrößerung von 75 cm3 . Berechnen Sie die osmotische Arbeit des Systems.

4.4.3

Oberflächenarbeit

54

Erklären Sie die Begriffe Oberflächenspannung und Oberflächenarbeit ıWo .

55

Quecksilber hat bei 0 ı C und 1;01325 bar eine Dichte von 'Hg D 13;6  103 kg=m3 und eine Oberflächenspannung von Hg D 4;7 N=m. Berechnen Sie die Oberflächenarbeit dWo , die mindestens erforderlich ist, um 1 kg Quecksilber in Kügelchen von 1 m Durchmesser zu zerteilen.

4.4 Arbeit

261

b d

c

a

Abb. 4.2 Versuchsanordnung zur Bestimmung der osmotischen Arbeit einer wässrigen Lösung.

56

Wie groß ist bei 20 ı C die Oberflächenarbeit dWo von 1 mol Wasser, das in Form von Tröpfchen mit einem Radius von 106 m vorliegt? Bei 20 ı C und 1;01325 bar hat Wasser eine Dichte von 'H2 O D 1000 kg=m3 und eine Oberflächenspannung von H2 O D 0;07258 N=m.

57

Von den vielen Möglichkeiten der Bestimmung der Oberflächenspannung kann die Blasendruckmethode verwendet werden. Dazu wird das in Abb. 4.3 gezeigte Gerät mit dem Kapillaransatz in die zu untersuchende Flüssigkeit getaucht. Man drückt durch langsames Öffnen des Gerätehahnes eine Luftblase durch die Kapillare, wodurch in der Flüssigkeit eine neue Oberfläche entsteht. Auf die Bildung der Blase sind der Innendurchmesser der Kapillare und der Druck p von Einfluss, mit dem die Luftblase aus der Kapillare gepresst wird. a) Berechnen Sie die Oberflächenspannung einer unbekannten Flüssigkeit bei 22 ı C (' D 0;7923 g=cm3 , h D 20 mm, p D 26 mm WS, r D 0;462 mm). b) Für eine Flüssigkeit ergab die Bestimmung der Oberflächenspannung bei 20 ı C den Wert D 29;252 mN=m. Für die Eintauchtiefe der Kapillare mit dem Radius r D 0;038 cm wurden 14 mm gemessen und der Überdruck der Wassersäule WS bis zum Abreißen der ersten Blase betrug 2;8 cm. Berechnen Sie die Dichte ' der Flüssigkeit. (1 mm WS D 9;81 N=m2 ; 1 N=m2 D 1 kg=.ms2/; 1 N=m D 103 mN=m D 1 J=m2 D 1 kg=s2)

4.4.4 58

Elektrische Arbeit

Zink-Kohle-Element  Berechnen Sie die elektrische Arbeit, die einem Zink-Kohle-Element entnommen wird, wenn die Spannung U D 1;5 V beträgt und eine elektrische Ladung von Q D 0;5 Ah transportiert wird.  Wie groß ist dabei die Masse Zink, die in Lösung geht?

262

4 Aufgaben ohne Lösung

h1

D 2r .p  '  g  h/ r p

h

g h '

Oberflächenspannung innerer Radius der Kapillare Druck, der die Oberflächenspannung und den hydrostatischen Druck kompensiert Erdbeschleunigung (g D 981 cm  s2 ) Eintauchtiefe der Kapillare Dichte der Flüssigkeit

Abb. 4.3 Apparatur zur Ermittlung der Oberflächenspannung nach der Blasendruckmethode.

59

Bei der technischen Gewinnung von Silber fällt dieses zunächst als Rohsilber an, das ähnlich wie Rohkupfer einer elektrochemischen Raffination unterzogen wird. Verunreinigungen des Silbers sind Gold, Zinn, Eisen, Kupfer und Platin. Die Elektrolyse wird mit 0;25 V und 1000 A durchgeführt. Nach welcher Zeit sind 10 kg Silber abgeschieden? Welche elektrische Arbeit wurde dabei verrichtet? Welche Nachteile hat das Anlegen einer höheren Spannung?

60

Elektrolytkupfer Zur Abscheidung von 1 t Elektrolytkupfer aus einer Kupfersulfatlösung bei 0;3 V wird eine elektrische Arbeit von 280 kWh benötigt. Wie groß ist die Stromausbeute?

61

Chloralkali-Elektrolyse Wie hoch sind bei der NaCl-Elektrolyse die Energiekosten für die Gewinnung von 500 m3 Chlor (Normbedingungen), wenn 1 kWh 0;20 C kostet und die Elektrolyse mit 4 V und einem Wirkungsgrad von  D 80 % abläuft?

62

Aluminiumherstellung: Rohstoff für die Herstellung von Aluminium ist Bauxit, woraus zunächst Aluminiumoxid (Korund) abgetrennt wird. Dieses wird im Gemisch mit Kryolith einer Schmelzflusselektrolyse unterzogen. Die Badtemperatur beträgt ungefähr 970 ı C, man arbeitet z. B. mit einem Strom von 130 kA. 62.1 Berechnen Sie, wie viel Energie (in kWh), wie viel Bauxit (mit 60 Ma.-% an Al2 O3 ) und wie viel Anodenmaterial Graphit dazu nötig sind. Nehmen Sie eine Elektrolysespannung von 5;0 V und eine Stromausbeute von 95 % an.  * 62.2 Berechnen Sie aus der freien Enthalpie für die Reaktion 2 Al2 O3 )  4 Al C 3 O2 , bei welcher Spannung die Schmelzflusselektrolyse theoretisch stattfinden müsste. Nutzen Sie dazu die thermodynamischen Daten der folgenden Tabelle.

4.4 Arbeit

ı

B H in kJ/mol bei 970 C ı S in J/(K  mol) bei 970 C

Al(l)

O2(g)

Al2 O3(s)

48 78

38 238

1610 98

263

62.3 Begründen Sie, warum man Aluminium nicht durch Elektrolyse einer sauren wässrigen Al3+ -Lösung herstellen kann. 62.4 Für die Temperaturabhängigkeit nachfolgender Reaktionen gelten die Gleichungen:  * 4 Al C 3 O2 ) G1 D .3351;4 C 0;6264 T=K/kJ=mol  2 Al2 O3 (T D 933 K)  * 2 CO G 2 C C O2  ) 2 D .221;06  0;17872 T=K/kJ=mol  * C C O2 ) G3 D .393;51  0;00286 T=K/kJ=mol  CO2 Berechnen Sie die Mindesttemperatur, ab der es möglich sein könnte, Aluminiumoxid mit Kohlenstoff zu reduzieren und geben Sie an, welches Kohlenstoffoxid entstünde. 63

Berechnen Sie die elektrische Arbeit, die bei 25 ı C folgender galvanischen Zelle entnommen werden kann. E 0 D 0;41 V E 0 D 0;4 V ./ Anode

64

Fe(s) =Fe2+ (aq) 0,015 M

// OH–(aq) = 21 O2 (H2 O)[Pt(s) ] pH = 9 pO2 D 0;7 bar

.C/ Kathode

Viele Elemente wie z. B. Vanadium bilden Ionen mit unterschiedlichen Oxidationszahlen. Die Standardpotenziale findet man in Tabellen: 2+  * V3+ C e– ) E 0 D 0;255 V  V(aq) (aq) 2+ + 3+ –   * [VO](aq) C 2 H(aq) C e C H2 O(l) E 0 D 0;377 V )  V(aq) 2+  * C 2 H+(aq) C e–  E0 D 1;00 V [VO2 ]+(aq) )  [VO](aq) C H2 O(l) + + 2+ – 0   * [V(OH)4 ](aq) C 2 H(aq) C e E D 1;00 V ) [VO](aq) C 3 H2 O(l)  * [V(OH)4 ]+(aq) C 4 H+(aq) C 5 e– ) C 4 H2 O(l) E 0 D 0;25 V  V(s) +  * Berechnen Sie G 0 für die Reaktion V2+  V(s) C 2 H(aq) . (aq) C H2(g) )

65

Ein Tauchsieder hat eine Leistung von 100 W. Wie lange müssen 0,2 Liter Wasser von 20 ı C in einem Thermosgefäß erwärmt werden, um zu sieden?

4.4.5 66

Magnetische Arbeit

Ein Transformator wird am allgemeinen Stromnetz betrieben. Durch die Wechselspannung und den resultierenden Wechselstrom in den Wicklungen des Transformators wird sein ferromagnetischer Kern (Eisenkern) entsprechend der Hysteresekennlinie (Hystereseschleife) ständig ummagnetisiert (Abb. 4.4). Die dabei erreichte maximale magnetische Induktion (magnetische Flussdichte) im Eisenkern beträgt B D ˙1;65 T, wofür eine magnetische Feldstärke von H  ˙1500 A=m notwendig ist. Vereinfachend wird angenommen, dass die Magnetisierung im gesamten Eisenkern gleichmäßig erfolgt. Als Eisenkern wird eine Fe-Si-Legierung ( 3;25 % Si) mit der Masse m D 250 kg und der Dichte ' D 7700 kg=m3 verwendet. Die Hystereseschleife des Eisenkerns für den beschriebenen Fall sei wie folgt gegeben:

264

4 Aufgaben ohne Lösung

 Magnetische Induktion bei fallender magnetischer Feldstärke, linke Kurve     H C 82 A=m  0;004 T B1 .H / D 1;1  arctan 100 A=m  Magnetische Induktion bei steigender magnetischer Feldstärke, rechte Kurve     H  82 A=m B2 .H / D 1;1  arctan C 0;004 T 100 A=m 2,0 1,5

Magnetische Induktion B in T

1,0 0,5 0,0 – 0,5 – 1,0 – 1,5 – 2,0 – 1500

– 1000

– 500

0

500

1000

1500

Magnetische Feldstärke H in A/m

Abb. 4.4 Hystereseschleife einer FeSi-Legierung ( 3,25 % Si).

Die von beiden Kurven eingeschlossene Fläche ist gleich der Differenz der Flächen unter den beiden Kurven und damit ein Maß für die Ummagnetisierungsarbeit. Da diese relativ klein ist, liegt ein Weichmagnet mit kleiner Koerzitivfeldstärke Hc vor. Das ist die zur Aufhebung eines remanenten Magnetismus benötigte gegenpolige magnetische Feldstärke. 66.1 Welche magnetische Arbeit je Volumeneinheit (Wmagn =V) wird beim vollständigen Durchlaufen der Hysteresekennlinie verrichtet? 66.2 Im normalen Stromnetz wird die Hysteresekennlinie 50mal pro Sekunde durchlaufen (Frequenz f D 50 Hz). Berechnen Sie die Ummagnetisierungsverluste (PUmmagn ) des Eisenkerns. 66.3 Beschreiben Sie die Erscheinung der Hysteresis. Was sind die wichtigsten Kenngrößen eines Weichmagneten? 66.4 Welche Anforderungen muss ein Transformator im Stromnetz der Industrie-und Wohnanlagen erfüllen?

4.5 Innere Energie und Enthalpie

4.4.6

265

Mechanische Arbeit

67

Was ist unter mechanischer Arbeit zu verstehen?

68

Berechnen Sie die Arbeit, die eine konstante Kraft F D 12 N entlang einer horizontalen Strecke s D 7 m verrichtet, wenn Kraft und Weg einen Winkel von a) 0ı , b) 60ı , c) 90ı , d) 145ı und e) 180ı einschließen.

69

Erklären Sie von den verschiedenen Formen der mechanischen Arbeit die Hubarbeit näher.

70

Ein Körper mit einer Masse von 200 kg wird a) direkt und b) mit Hilfe einer geneigten Ebene von 10 m Länge auf einen 2;5 m hohen Sockel gehoben. Berechnen Sie die jeweilige Arbeit. Wie unterscheiden sich die Arbeitsdiagramme der beiden Vorgänge (die Reibung werde vernachlässigt)?

4.5 Innere Energie und Enthalpie 71

Bei der Verbrennung von 1 mol Benzol (C6 H6 ) im geschlossenen Gefäß bei konstantem Volumen werden bei 25 ı C 3264 kJ frei. Wie groß ist die frei werdende Wärmemenge, wenn die Verbrennung unter konstantem Druck (1 bar) durchgeführt wird?

72

Gegeben sind die Verbrennungsenthalpien für 1 mol der folgenden Stoffe bei 25 ı C und 1 bar: Methan.g/ Propan.g/ Pentan.g/

V H D 890 kJ=mol V H D 2220 kJ=mol V H D 3511 kJ=mol

Heptan.l/ Ethen.g/ Ethin.g/

V H D 4807 kJ=mol V H D 1409 kJ=mol V H D 1308 kJ=mol

Berechnen Sie daraus die Änderungen der inneren Energie bei der Verbrennung! 73

Berechnen Sie H und U beim Schmelzen von 1 mol H2 O bei 0 ı C und 1;01325 bar. Die molaren Volumina von Eis und Wasser betragen unter diesen Bedingungen 0;0196 dm3 =mol bzw. 0;018 dm3 =mol. Die Schmelzwärme von Eis beträgt 335 J=g.

74

 * Gegeben ist H D 285;6 kJ=mol für die Reaktion H2 C 0,5 O2 )  H2 O bei 25 ı C und 1;01325 bar. Wie groß ist U ?

75

Zwischen 180 K und 310 K gilt für Cp (in J=(mol  K)) von flüssigem Schwefelkohlenstoff CS2 bei 100 kPa die folgende empirische Gleichung Cp D 77;28  2;07  102 T C 5;15  105 T2 . Wie groß ist die Enthalpieänderung H , wenn 1 mol CS2 bei 100 kPa von 180 K auf 310 K erhitzt wird?

76

Wie groß ist die Enthalpieänderung H wenn 1 mol Wasser bei 101;325 kPa von 50 ı C auf 130 ı C erwärmt wird? Die folgenden Werte sind verfügbar: H.H2 O;Vd./ D 47;3 kJ=.mol  K/, Cp(Wasser (g)) D 35;4 J=.mol  K/, Cp(Wasser (l)) D 75;0 J=.mol  K/.

266

4 Aufgaben ohne Lösung

77

 * Für die Reaktion B2 H6(g) C 3 O2(g) )  B2 O3(s) C 3 H2 O(l) ist R U 0 D 2143;2 kJ=mol. Wie groß ist die Standardbildungsenthalpie B H 0 für B2 H6 (g)? (B H 0 .B2 O3.s/ / D 1264;0 kJ=mol; B H 0 .H2 O.l/ / D 285;9 kJ=mol)

78

Zwischen 40 ı C und 60 ı C wurden für die Molwärmen des Wassers und des Wasserdampfes folgende Werte gemessen: CpWasser D 75;24 J=.mol  K/, CpWasserdampf D 35;46 J=.mol  K/. Die molare Verdampfungsenthalpie des Wassers bei 40 ı C beträgt H.H2 O;Vd/ D 43;292 kJ=mol. Wie groß ist H.H2 O;Vd/ bei 60 ı C?

79

Die molare Bildungsenthalpie von CO bei 500 ı C ist zu berechnen. Gegeben: 298 D 110;53 kJ=mol B H.CO/

Cp.C/ D .16;86 C 4;77  103  T  8;54  105  T2 / J=.mol  K/ Cp.O2 / D .29;96 C 4;18  103  T  1;67  105  T2 / J=.mol  K/ Cp.CO/ D .28;41 C 4;1  103  T  0;46  105  T2 / J=.mol  K/ 80

 * Für die Reaktionsenthalpie der Reaktion H2 O(g) )  H2(g) C 0,5 O2(g) beträgt R H D 1 241 750 J  mol bei 291 K. Die mittleren molaren Wärmekapazitäten im betrachteten Temperaturbereich sind CpH2 O D 33;56 J=.mol  K/, CpH D 28;83 J=.mol  K/ und CpO D .g/ 2.g/ 2.g/ 29;12 J=.mol  K/. Berechnen Sie R H bei 308 K.

81

Bei 293;16 K hat gasförmiges Distickstofftetroxid (N2 O4 ) eine Dissoziationsenthalpie von 57;360 kJ  mol1 . Die Dissoziationsenthalpie in einer verdünnten Lösung von N2 O4 in CCl4 beträgt 78;940 kJ  mol1 . Bei 293;15 K beträgt der Dampfdruck über flüssigem N2 O4 1013 hPa, bei 281;15 K sind es 519 hPa. Die folgenden Annahmen sind zu machen: Die Lösung von N2 O4 in CCl4 ist ideal, d. h. die Verdampfungsenthalpie von N2 O4 aus der Lösung ist genauso groß wie bei flüssigem N2 O4 . Die thermodynamischen Funktionen Enthalpie H und Entropie S sind im Bereich von 280 K bis 300 K temperaturunabhängig. a) Berechnen Sie die Verdampfungsenthalpie von N2 O4 bei 20 ı C. b) Berechnen Sie die Verdampfungsenthalpie von NO2 bei 20 ı C.

82

Eine gesättigte Lösung von Silbernitrat enthält in 1 Liter Lösung a) bei 20 ı C 0;0202 mol Salz und b) bei 60 ı C 0;0812 mol Salz gelöst. 77.1 Welchen Wert hat in a) und b) das Löslichkeitsprodukt KL ? 77.2 Wie groß ist im angegebenen Temperaturbereich die mittlere molare Lösungsenthalpie L H von Silbernitrat?

83

Beim Lösen eines Salzes spielen Gitter- und Solvatationsenergie eine Rolle. Die Gitterenergie eines Ionenkristalls lässt sich nur in Ausnahmefällen direkt experimentell bestimmen. Um trotzdem Werte für die Gitterenergie möglichst vieler salzartiger Verbindungen zu erhalten, kann sie näherungsweise nach Born und Haber aus anderen experimentellen Daten ermittelt werden. Hierfür müssen die Energietönungen aller Teilschritte des Kreisprozesses und die Bildungsenthalphie der ionischen Verbindung berücksichtigt werden. Für Kalziumfluorid CaF2

4.5 Innere Energie und Enthalpie

267

gelten die zu dessen Bildung aufgeführten Daten: Ca(s) Ca(g) Ca+(g) 1 F 2 2(g) F(g) C e– Ca(s) C F2(g)

  * )   * )   * )    * )   * )    * ) 

Ca(g) Ca+(g) C e– – Ca2+ (g) C e F(g) F–(g) CaF2(s)

H H H H H H

D C178;2 kJ=mol D C589;7 kJ=mol D C1145;0 kJ=mol D C79;0 kJ=mol D 322;0 kJ=mol D 1219;6 kJ=mol

a) Verdeutlichen Sie mit einer entsprechenden Skizze die notwendigen Schritte mit Angaben der Energiewerte und Stoffe in einem Born-Haber-Kreisprozess, wie man die Gitterenergie von Kalziumfluorid ermitteln kann! Berechnen Sie die Gitterenergie G H von Kalziumfluorid. b) Erklären Sie die Begriffe Solvatations-, Gitter- und Lösungsenthalpie. Welcher mathematische Zusammenhang besteht zwischen ihnen? 84

Titan(II)-oxid hat dieselbe Kristallstruktur wie Kochsalz. a) Zeichnen Sie eine Elementarzelle von Titan(II)-oxid. b) Die Kantenlänge der Elementarzelle beträgt 0;420 nm. Berechnen Sie die Dichte in g=cm3 . c) Berechnen Sie die Gitterenergie von Titan(II)oxid. Gegeben seien die folgenden Daten: Sublimationsenthalpie von Titan 1. Ionisierungsenergie von Titan 2. Ionisierungsenergie von Titan Bindungsenergie von Sauerstoff Elektronenaffinität von O Elektronenaffinität von O– Standardbildungsenthalpie von TiO

425 kJ=mol 658 kJ=mol 1310 kJ=mol 498 kJ=mol 141;5 kJ=mol 797;5 kJ=mol 523 kJ=mol.

d) Die Bindungsenergie für eine NN-Einfachbindung beträgt 163 kJ=mol und die für eine N N-Dreifachbindung 945 kJ=mol. Vier Stickstoffatome könnten ein tetraedrisch gebautes N4 -Molekül oder zwei N2 -Moleküle bilden. Geben Sie an, welcher Fall begünstigt ist und begründen Sie Ihre Ansicht. 85

Berechnen Sie die Gitterenergie G H von Kaliumfluorid aus den gegebenen Daten. Die Gitterenergie eines Ionenkristalles ist die bei der Bildung des Ionenkristalles aus den Einzelionen freiwerdende Energie. Sublimationsenergie von Kalium Dissoziationsenergie von Fluor Ionisierungsenergie von Kalium Elektronenaffinität von Fluor Standardbildungsenthalpie von Kaliumfluorid

86

HSubl HD HI.K/ EA.F/ B H

D 90 kJ=mol D 158 kJ=mol D 419 kJ=mol D 333 kJ=mol D 567 kJ=mol

Wie könnte man von MgO die Bildungsenthalpie B H.MgO/ unter Anwendung des Hess’schen Satzes aus den Enthalpien der Reaktion von Mg und von MgO jeweils mit Salzsäure ermitteln? a) Formulieren Sie mögliche Teilreaktionen für diesen Prozess und stellen Sie den Zusammenhang für die Berechnung von B H.MgO/ her. b) Welche kalorimetrischen Messungen müssten durchgeführt werden? Welche Daten müssten dabei vorgegeben, welche ermittelt werden?

268 87

4 Aufgaben ohne Lösung

Gegeben sind die Enthalpien (25 ı C; 1 bar) der Teilschritte bei der Bildung des Ionengitters von Magnesiumoxid: (a) Sublimationsenthalpie

Mg(s) ! Mg(g)

S H D 147;8 kJ=mol

(b) Ionisierungsenthalpie

– Mg(g) ! Mg2+ (g) C 2 e

I H D 2200 kJ=mol

O2 (g) ! O(g)

D H D 247 kJ=mol

O(g) C 2 e– ! O2– (g)

E H D 695 kJ=mol

1 2

(c) Dissoziationsenthalpie (d) Elektronenaffinität

Mg2+ (g)

(e) Gitterenthalpie

C

O2– (g)

! MgO(s)

G H D 3931 kJ=mol

Berechnen Sie die Bildungsenthalpie B H für MgO. Stellen Sie die Energiebetrachtung nach dem Born-Haber-Kreisprozess (Verknüpfung von Teilschritten einer Gesamtreaktion bei der Bildung von Ionenverbindungen) an.

4.6 Kalorimetrie 88

Berechnen Sie den Heizwert HHW einer Kohle aus den Angaben des folgenden Messprotokolls. Daten für die Bestimmung des Wasserwertes Einwaage der Testsubstanz (Benzoesäure): mSubst. D 996;00 mg Wasserfüllung des Kalorimeters: VH2 O D 2400;00 cm3 Verbrennungswärme Benzoesäure: V HSubst. D 26465;15 kJ=kg Vorperiode Zeit [min] T [°C] 0 1 2 3 4

17,662 17,652 17,641 17,632 17,622

Hauptperiode Zeit [min] T [°C] 4,5 5,0 5,5 6,0 6,5

18,53 19,37 19,712 19,742 19,747

Nachperiode Zeit [min] T [°C] 7 8 9 10 11

19,740 19,730 19,715 19,710 19,705

Daten für die Bestimmung des Heizwertes Einwaage: 1;0669 g Wassergehalt der Kohle: 11,6 % Gehalt an brennbarer Substanz: 76,6 % Wasserstoffgehalt: 5,3 % Verdampfungswärme des Wassers: 40;64 kJ=mol .3387 kJ=kg/

4.6 Kalorimetrie

Vorperiode Zeit [min] T [°C] 0 1 2 3 4

20,880 20,888 20,890 20,890 20,890

Hauptperiode Zeit [min] T [°C] 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5

21,250 21,690 22,140 22,440 22,620 22,740 22,800 22.848 22.880 22,905 22,918 22,930 22,938 22,944 22,944

269

Nachperiode Zeit [min] T [°C] 12,5 13,5 14,5 15,5 16,5 17,5 18,5

22,932 22,930 22,924 22,920 22,915 22,910 22,905

89

In einem Strömungskalorimeter nach Junkers wurden bei 22 ı C und 99;46 kPa 3 dm3 Stadtgas verbrannt und die frei werdende Wärme von 870 cm3 Kühlwasser aufgenommen ('H2 O D 1 g=cm3 ). Es ergab sich eine Temperaturdifferenz von 13;5 K und es fielen 5;08 g Kondenswasser an. Berechnen Sie den Heizwert des Stadtgases. (HV d;H2 O D 40;63 kJ=mol)

90

Gegeben sei ein perfekt wärmeisoliertes Gefäß, das zu Beginn des Versuches mit 50 g Wasser der Temperatur 20 ı C gefüllt ist. Löst man 0;025 mol des Salzes CuSO4 darin auf, steigt die Temperatur auf 28;7 ı C. In einem anderen Experiment wird dasselbe Kalorimeter mit einer anfänglichen Wassertemperatur von 22 ı C verwendet. Man löst 0;025 mol des Salzes ı CuSO4  5 H2 O. Nach der Auflösung beträgt die Wassertemperatur 21;3

C. Berechnen Sie H  * für den Hydratationsprozess CuSO4(s) C 5 H2 O )  CuSO4  5 H2 O (s) .

91

In einem Kalorimeter werden 0;5 g Phenol mit Sauerstoff vollständig verbrannt. Berechnen Sie die molare Reaktionsenthalpie aus folgenden Werten: T1 D 296 K; T2 D 298 K; Cp.H

2 O/

92

D 4;19 J=.g  K/; V .Kalorimeter-H2 O/ D 2000 cm3 :

Bei der Verbrennung von 300 cm3 Propan (23 ı C; 100;125 kPa) mit in der Abb. 4.5 angegebenen Apparatur (Wärmeverlustfaktor f D 2;17) wurde eine Temperaturdifferenz von T D27 K ermittelt. a) Welche molare Standard-Verbrennungsenthalpie V H 0 hat das Gas? b) V H 0 lässt sich auch theoretisch aus den B H 0 -Werten der Reaktanden berechnen. Beide Ergebnisse sind zu vergleichen.

93

In einem adiabatisch-isolierten Autoklaven wird ein Gemisch aus 1;5 mol Methan und Luft (VMethan W VLuft D 1 W 10) bei einer Temperatur von 25 ı C und einem Druck von 1000 hPa zur Explosion gebracht. Die Zusammensetzung der Luft soll mit 20 % Sauerstoff und 80 % Stickstoff angenommen werden. Die Verbrennungswärme von Methan zu gasigen Produkten

270

4 Aufgaben ohne Lösung

Wärmeisolation

100 g Wasser

Glaskolben: mGlas = 63,18 g c = 0,86 J/(gK)

Luft

Propan

Abb. 4.5 Versuchsanordnung zur Bestimmung der Verbrennungsenthalpie von Propan.

beträgt V U D 803 kJ=mol. Die Molwärmen betragen: CvCO2 D 64;9 J=.mol  K/, CpH2 O(g) D 32;6 J=.mol  K/, CvN2 D 25;1 J=.mol  K/. a) Geben Sie die Reaktionsgleichung für die Explosion an. b) Berechnen Sie die Endtemperatur im Autoklaven nach der Explosion. Nehmen Sie dabei vereinfachend an, dass sämtliche kalorischen Daten im entsprechenden Temperaturintervall konstant sind. c) Berechnen Sie den Enddruck im Autoklaven. 94

Berechnen Sie die spezifische Wärme einer 10 %igen Sodalösung aus den spezifischen Wärmen von Wasser (cWasser D 4;19 Jg1 K1 / und Soda (cSoda D 1;17 Jg1 K1 /.

95

Wie viel Liter Wasser von 80 ı C und wie viel Liter Wasser von 10 ı C sind zu mischen, wenn 140 Liter Wasser von 40 ı C benötigt werden? Mit steigender Temperatur (4 ı C ! 100 ı C) sinkt die Dichte ' des Wassers von 0;999973 auf 0;9583 kg=dm3.

4.6 Kalorimetrie

96

271

Bei den Verbrennungen nachfolgender Substanzen in einer kalorimetrischen Bombe wurden folgende Messwerte ermittelt: Nr. 1 2 3 4

Substanz 1-Propanol 1-Butanol 1-Pentanol Cyclohexan

Masse (g)

T (K)

0,759 0,823 0,836 0,841

2,48 2,88 3,06 3,78

Die Wärmekapazität des Kalorimeters wurde unter Standardbedingungen mit Wk.C / D 10;29 kJ=K ermittelt. a) Für je 1 Mol der Substanzen sind bei vollständiger Verbrennung V U und V H zu berechnen. b) Nehmen Sie eine graphische Auswertung: V H D f (Anzahl C-Atome in den Substanzmolekülen) vor. Abweichungen in der Darstellung sind zu erklären. 97

Die Wärmekapazität einer kalorimetrischen Anordnung beträgt 12;73 kJ=K. Man führt bei konstantem Volumen im Bombenkalorimeter eine chemische Reaktion durch und beobachtet eine Temperaturerhöhung von 1;372 K. Wie groß ist die Änderung der inneren Energie des reagierenden Systems?

98

Die Verbrennungswärme von Benzoesäure beträgt 26;47 kJ=g. Bei der Verbrennung von 1;42 g Benzoesäure im Bombenkalorimeter beobachtet man eine Temperaturerhöhung von 1;82 K. Wie groß ist die Wärmekapazität des Kalorimeters?

99

Ein Bombenkalorimeter hat die Wärmekapazität C D 20;65 kJ=K. Damit bestimmt man die Verbrennungswärmen verschiedener Stoffe. Man beobachtet dabei für die genannten Massen die angegebenen Temperaturerhöhungen: Naphthalin Glycerin Buttersäure Saccharose

(C10 H8 ) (C3 H5 (OH)3 ) (C3 H7 COOH) (C12 H22 O11 )

Masse 0;95 g 1;53 g 1;84 g 2;11 g

Temperaturerhöhung T D 1;85 K T D 1;33 K T D 2;26 K T D 1;70 K

Berechnen Sie daraus die Änderungen der inneren Energie bei der Verbrennung von 1 mol dieser Stoffe. 100

In einem Gefäß befindet sich Wasser, in dem 300 g Eis schwimmen. a) Wie hoch ist die Temperatur in beiden Substanzen? b) Wie viel Wasser von 85 ı C ist zuzugießen, damit alles Eis schmilzt? Die spezifische Schmelzenthalpie von Wasser beträgt H D 334 J=g.

101

Ein Aluminiumkalorimeter (mAl D 200 g) enthält 500 g Wasser von t1 D 20 ı C. In das Kalorimeter werden 100 g zerstoßenes Eis von t2 D 5 ı C eingebracht. Berechnen Sie die Mischungstemperatur tm . Spez. Schmelzenthalpie von Wasser: H D 334 J=g, Spez. Wärmekapazitäten: cAl D 0;9 J=.g  K/; cH2 O D 4;186 J=.g  K/; cEis D 2;1 J=.g  K/.

272 102

4 Aufgaben ohne Lösung

Von der kalorimetrisch untersuchten Reaktion  * CaC2. s/ C 2 H2 O.l/  )  Ca.OH/2.s/ C C2 H2.g/ sind folgende Werte gegeben: m.CaC2 / D 3;2 g T D 3K m.H2 O/ D 0;5 kg Cp .H2 O/ D 4;19 J=(g  K) Berechnen Sie die molare Reaktionsenthalpie!

103

Eine Verbindung Q (molare Masse 122;0 g  mol1 ) besteht aus Kohlenstoff, Wasserstoff und Sauerstoff. Davon werden 0;6 g in einem Bombenkalorimeter bei Überschuss von Sauerstoff verbrannt. Das Kalorimeter enthält anfangs 710 g Wasser bei 25 ı C. Nach der Reaktion werden 27;25 ı C gemessen. 1;5144 g CO2(g) und 0;2656 g H2 O(l) entstehen. Die Standardbildungsenthalpie von CO2(g) beträgt 393;51 kJ=mol und die von H2 O(l) 285;83 kJ=mol. Die spezifische Wärme von Wasser beträgt 4;186 J  g1 K1 . Die Änderung der Inneren Energie bei der Verbrennung beträgt R U D 3079 kJ pro mol Q. a) Bestimmen Sie die Summenformel von Q und schreiben Sie eine abgestimmte Reaktionsgleichung mit Angaben der Aggregatzustände. b) Berechnen Sie die Wärmekapazität des Kalorimeters (ohne Wasser). c) Berechnen Sie die Standardbildungsenthalpie .B H / von Q.

104

Bestimmung der Verbrennungsenthalpie von Naphthalin, Anthracen und Pentamethylbenzol. Jeweils eine Masse m der genannten Feststoffe wird mit einem Zünddraht zu einer Tablette verpresst, in eine Kalorimeterbombe mit konstantem Volumen und O2 -Atmosphäre gehängt und mittels elektrischer Zündung verbrannt. Die Verbrennung liefert als Stoffe ausschließlich H2 O(l) (B H D 285;9 kJ=mol/, CO2(g) (B H D 393;5 kJ=mol/, die Verbrennungsprodukte des Zünddrahtes, sowie die (gesamte) Verbrennungswärme Qges.. Der Zünddraht liefert dabei den konstanten Betrag von QDraht D 30;0 J. Weitere experimentelle Daten sind in der Tab. 4.1 angegeben. Alle Daten dieser Aufgabe sind auf 25 ı C bezogen, bei den Rechnungen ist ebenso zu verfahren. Tab. 4.1 Experimentelle Daten der Bestimmung von V H einiger Aromaten, m: Masse (g), Qges. : Verbrennungswärme (J). Substanz Naphthalin (C10 H8 ) Anthracen (C14 H10 ) Pentamethylbenzol (C11 H16 )

m/g

Qges. /J

0,7002 0,6653 0,6409

28 190 26 335 27 910

a) Zeichnen Sie die Strukturformeln der drei Aromaten. Stellen Sie die Reaktionsgleichungen für die drei Verbrennungsreaktionen auf. b) Berechnen Sie die molare Verbrennungsenthalpie V H der drei Aromaten. c) Bestimmen Sie die Bildungsenthalpien B H dieser Aromaten. d) Berechnen Sie die Verbrennungsenthalpien V H der drei Aromaten nach dem Inkrementsystem. Hinweis: Verbrennungsenthalpien können über so genannte Inkremente abgeschätzt werden. Dazu werden die Verbrennungsenthalpien V H .i / der einzelnen Bindungsanteile

4.7 Satz von Hess

273

eines Moleküls addiert (s. Tab. 4.2). Weiterhin muss die jeweilige Sublimationsenthalpie S H bzw. Verdampfungsenthalpie HVd des zu untersuchenden Stoffes addiert werden, um V H zu erhalten. Sublimationsenthalpien S H : Naphthalin: 66;5 kJ=mol, Anthracen: 93;4 kJ=mol, Pentamethylbenzol: 61;1 kJ=mol. Tab. 4.2

Inkremente zur Berechnung von V H für Aromaten nach dem Inkrementsystem. V H.i/ (kJ  mol 1 )

Bindung CH CC CC (2 H, 2 Reste, 2 Reste, cis) CC (1 H, 3 Reste) CC (4 Reste) sechsgliedriger Ring Ringverzweigung (1 C-Atom, das gleichzeitig in 2 Ringen liegt)

226,1 206,4 491,5 484,4 483,2 4,2 C7,2

e) Bestimmen Sie anhand der theoretischen und praktischen Enthalpiewerte für Naphthalin und Anthracen die Mesomeriestabilisierungsenergie pro -Elektron. Hinweis: Das Inkrementsystem berücksichtigt nicht, dass es so etwas wie „Mesomeriestabilisierung“ gibt. f) Ermitteln Sie den energetischen Beitrag der Hyperkonjugation pro Methylgruppe am Beispiel von Pentamethylbenzol. Hinweis: Neben der Mesomerie liefert auch die „Hyperkonjugation“ Stabilisierungsenergie. Unter Hyperkonjugation versteht man z. B. die Überlappung einer -CHBindung der Methylgruppe mit dem aromatischen -Elektronensystem im Toluol-Molekül (Abb. 4.6).

H

H H

Abb. 4.6 Hyperkonjugation einer -CH-Bindung der Methylgruppe mit dem aromatischen -Elektronensystem im Toluol-Molekül.

4.7 Satz von Hess 105

Gegeben sind die Verbrennungsenthalpien für 1 mol der folgenden Stoffe bei 25 ı C und 1;01325 bar: Kohlenstoff (s) V H D 393;1 kJ=mol Wasserstoff (g) V H D 286 kJ=mol V H D 3268 kJ=mol Benzol (l) Cyclohexan (l) V H D 3917 kJ=mol Man berechne die molare Bildungsenthalpie für a) Benzol und b) Cyclohexan.

274

4 Aufgaben ohne Lösung

106

Bei der Verbrennung von 1 g weißem bzw. rotem Phosphor werden 49,8 bzw. 48;7 kJ Wärme frei. Berechnen Sie die molare Bildungsenthalpie von rotem aus weißem Phosphor!

107

Die Lösungsenthalpien für Na2 HPO4 bzw. Na2 HPO4  2 H2 O betragen L H D 23;57 kJ=mol bzw. L H D 1;63 kJ=mol. Berechnen Sie daraus die Hydratationswärme H H für Na2 HPO4 .

108

Berechnen Sie mit den Werten der Tabelle die Verbrennungsenthalpien von Propan, n-Butan, Methanol und Essigsäure! Standardbildungsenthalpien in kJ  mol1

109

H2 O(g) H2 O(l) H2 O2(g) HCL(g) SO2(g) SO3(g) H2 S(g)

241,6 285,6 136,0 92,2 296,6 394,8 20,1

N2 O(g) NO(g) NO2(g) NH3(g) CO(g) CO2(g) O3(g)

81,5 90,3 33,8 46,1 110,4 393,1 142,1

Methan(g) Ethan(g) Propan(g) n-Butan(g) iso-Butan(g) Ethen(g)

74,8 84,6 103,7 124,6 131,5 52,5

Ethin(g) Methanol(l) Ethanol(l) Essigsäure(l) Benzol(l)

226,5 238,3 277,3 486,6 49,0

H(g) O(g) Cl(g)

217,8 247,0 C121,2

C(g) N(g) Br(g)

717,7 470,3 111,6

Welche Reaktionsenthalpien haben die folgenden Reaktionen? (Standardbildungsenthalpien s. Tab. in Aufgabe 108) a) b) c)

 * H2 S C 1;5O2 )  H2 O C SO2  * N2 O C 1;5O2 )  2 NO2  * C2 H5 OH C O2  )  CH3 COOH C H2 O

110

Berechnen Sie die Bindungsenergien für die Gasmoleküle a) HCl, b) NO, c) NH3 , d) CO und e) CO2 ! (Standardbildungsenthalpien s. Tab. in Aufgabe 108)

111

Berechnen Sie die Hydrierungswärme unter konstantem Druck bzw. bei konstantem Volumen für die Hydrierung von a) Ethin zu Ethen, b) Ethin zu Ethan bzw. c) Ethen zu Ethan! (Standardbildungsenthalpien s. Tab. in Aufgabe 108)

112

Welche Bindungsenergie entfällt auf die (CC)-Bindung im Molekül von a) Ethan, b) Propan und c) i-Butan? Der Wert für jede (CH)-Bindung soll näherungsweise mit 416 kJ=mol angenommen werden! (Standardbildungsenthalpien s. Tab. in Aufgabe 108)

4.7 Satz von Hess

113

275

Die molaren Reaktionsenthalpien für die vollständige Verbrennung von Kohlenstoff, Wasserstoff und Methan sind bekannt.  * C C O2 )  CO2  * H2 C 0;5 O2 )  H2 O.l/

R H D 393;5 kJ=mol

 * CH4 C 2 O2 )  CO2 C 2 H2 O.l/

R H D 890;7 kJ=mol

R H D 286 kJ=mol

Berechnen Sie die molare Reaktionsenthalpie für die Synthese des Methans aus Kohlenstoff und Wasserstoff. 114

 * Berechnen Sie die molare Reaktionsenthalpie für die chemische Reaktion SO3 C H2 O(l)  )  H2 SO4 . Gegeben sind:  * H2 C S.s/ C 2 O2 )  H2 SO4 .l/

R H D 811;3 kJ=mol

 * S.s/ C 1;5 O2.l/ )  SO3 .g/

R H D 446;0 kJ=mol

 * H2 C 0;5 O2  )  H2 O.l/ 115

R H D 286 kJ=mol

Wasserstoffspeicherung Sollen Metallhydride als „Wasserstofftank“ verwendet werden, muss die Wasserstoffaufnahme und -abgabe reversibel erfolgen. Insbesondere Temperatur und Druck spielen dabei eine wichtige Rolle. a) Formulieren Sie die Reaktionsgleichungen für die Wasserstoffabgabe von Magnesiumhydrid und von Dimagnesiumnickeltetrahydrid. Bei Letzterem wird eine intermetallische Phase mit dem Verhältnis n.Ni/ W n.Mg/ D 1 W 2 gebildet. Ordnen Sie allen Teilchen ihre Oxidationszahlen zu. In 2,0 1,5 1,0

Mg2NiH4

0,5 0,0

MgH2

– 0,5 – 1,0 1,60 1,65 1,70 1,75 1,80 1,85 1,90 1,95

Abb. 4.7 Wasserstoffpartialdrücke bei den Zersetzungsreaktionen von Magnesiumhydrid und Dimagnesiumnickeltetrahydrid bei verschiedenen Temperaturen.

276

4 Aufgaben ohne Lösung

b) Die Zersetzungsreaktionen wurden bei verschiedenen Temperaturen untersucht, wobei der Wasserstoffpartialdruck gemessen wurde (p0 D 1 bar) (Abb. 4.7). Bestimmen Sie mit Werten aus der Graphik die Reaktionsenthalpie der beiden Zersetzungsreaktionen. Die Reaktionsenthalpien sollen als temperaturunabhängig angenommen werden. Markieren Sie die abgelesenen Wertepaare in der Antwort! c) Wie groß ist die Bildungsenthalpie der intermetallischen Phase Mg2 Ni? Thermodynamische Daten: B H 0 .Mg2 NiH4 / D 176;0 kJ=mol.

4.8 Entropie 116

Es expandieren 3;00 mol CO2 isotherm (im thermischen Kontakt mit der Umgebung; Temperatur = 15;0 ı C) gegen einen konstanten äußeren Druck von 1;00 bar. Das Ausgangsvolumen des Gases betrug 10,0 Liter, das Endvolumen 30,0 Liter. 116.1 Wählen Sie die korrekte Aussage für die Entropieänderungen des Systems (Ssys ) und der Umgebung (Sumg ): a) Ssys > 0 Sumg D 0 b) Ssys < 0 Sumg > 0 c) Ssys > 0 Sumg < 0 d) Ssys D 0 Sumg D 0 116.2 Berechnen Sie Ssys , unter der Annahme, dass CO2 ein ideales Gas ist. 116.3 Berechnen Sie Sumg . 116.4 Berechnen Sie die Entropieänderung des Universums. Stimmt Ihre Antwort mit dem zweiten Hauptsatz überein?

117

Berechnen Sie die Entropiezunahme von 1 mol eines idealen Gases bei dessen Expansion von 100 dm3 auf 200 dm3 .

118

Wie groß ist die Entropiezunahme von 1 mol Argon, das bei konstantem Volumen von 300 K auf 600 K erwärmt wird? Vergleichen Sie das Ergebnis mit dem von Aufgabe 117.

119

Wie groß ist bei konstantem Druck Sges: beim Schmelzen von 1 kg Eis (5 ı C) zu Wasser (10 ı C)? Spez. Schmelzenthalpie HSm Eis Wasser

333,69 –

kJ

kg

Spez. Wärmekapazität cp



kJ kg  K



2,031 4,186

120

Die Verdampfungsenthalpie von Ethanol beim Siedepunkt von 351;5 K beträgt 43;5 kJ=mol. Wie groß ist die Verdampfungsentropie bei dieser Temperatur?

121

Die Schmelzenthalpie von Ethanol beim Schmelzpunkt von 156 K beträgt 4;60 kJ=mol Wie groß ist die molare Schmelzentropie bei 156 K?

122

In einem abgeschlossenen System ist Sges. bei der Erstarrung von unterkühltem Wasser von 10ı C zu berechnen.

4.8 Entropie  HSm Wasser

123



J mol



ı

TSm C

5950

Cp.s/

0



J mol  K



Cp.l/

36,9



J mol  K

277



75,3

Berechnen Sie S beim Verdampfen von 1 mol der angegebenen Flüssigkeiten: ı TSd C ŒK a) Wasser b) Essigsäure c) Diethylether d) Chloroform e) Tetrachlormethan f) Benzol

100 118 34,6 61,5 76,7 80,2

 HVd

373,15 391,15 307,75 334,65 349,85 353,35



J mol



40 606,20 31 558,80 25 951,80 29 431,71 29 898,72 30 778,80

Vergleichen Sie die errechneten S-Werte und verallgemeinern Sie! 124

Berechnen Sie S beim Erwärmen von 1 mol Wasser von 10 ı C auf C10 ı C! HSm Wasser



J mol

6012,41



Cp.s/



J mol  K



2,09 + 0,126 T

Cp.l/



J mol  K



75,3

125

Es ist bei dp D 0 die Umwandlung von 100 g Wasser (25 ı C) in Wasserdampf (110 ı C) das S zu berechnen. .cp,Wasser D 4;19 J=.g  K/, cp,Wasserdampf D 1;997 J=.g  K/, Hspez.Vd D 2257 J=g)

126

Man berechne das molare S beim Erhitzen von Wasserdampf von 150 ı C auf 200 ı C! (p D 1;013 bar, Cp Wasser D 36;87  7;93  103 T C 9;29  106 T2 molJ  K /

127

Wie groß ist S, wenn 2 mol Wasserstoff vom Zustand 1 (V D 30 dm3 , p D 2;027 bar) zum Zustand 2 (V D 100 dm3 , p D 1;013 bar) expandieren? (Cp.W/ =30;96 J=.mol  K/)

128

Wie groß ist Sges. bei der isothermen Mischung von 100 cm3 Sauerstoff mit 400 cm3 Stickstoff bei 17 ı C und 1;013 bar?

129

Die Häufigkeit der Isotope in natürlichem Blei beträgt: 1,5 % 204 Pb, 23,6 % 206 Pb, 22,6 % Pb und 52,3 % 208 Pb. Berechnen Sie die molare Mischungsentropie von natürlichem Blei.

207

130

Man berechne die Entropieänderung S, wenn 12 g Sauerstoff von 20 ı C und 1 bar auf 40 ı C abgekühlt und gleichzeitig auf 60 bar komprimiert werden! (Cp.O2 / D 29;1 J=.mol  K/)

131

Zur Bestimmung der partiellen molaren Entropien S 1 und S 2 einer binären Gasmischung wurde die mittlere molare Entropie der Mischung Sm als Funktion des Molenbruches  ermittelt. Die graphische Auswertung für 1 D 0;25 ergab Sm D 8;266 J=.mol  K/ und dSm D 0;218 D 4;36. Berechnen Sie die partiellen molaren Entropien S 1 und S 2 der d1 0;05 Gasmischung. Wie groß ist die Mischungsentropie S?

278 132

4 Aufgaben ohne Lösung

Von einer galvanischen Zelle mit Pt-Elektroden (Abb. 4.8) wurden bei zwei verschiedenen Temperaturen die EMK(E)-Werte ermittelt. a) Berechnen Sie die Änderung der Entropie im angegebenen Temperaturbereich. b) Welcher pH-Wert liegt in der Donator-Halbzelle vor? V



T (ºC) 25 75

EMK (V) 0,654 0,675

+

verd. NaOH pH = 12,3

verd. HCl

Wasserbad

Heizplatte

Abb. 4.8 Versuchsanordnung zur Bestimmung von S in der galvanischen Zelle.

4.9 Wirkungsgrad und Leistungszahl 133

Eine Carnot-Maschine arbeitet zwischen 300 K und 200 K. Sie wandelt dabei eine Wärmemenge von 80 kJ in Arbeit um. Welche Wärmemenge wird an den Wärmebehälter von 200 K abgegeben? Wie groß ist der Wirkungsgrad der Carnot-Maschine?

134

Der Wirkungsgrad einer Carnot-Maschine beträgt 1 D 40 %. Die Temperatur des kälteren Reservoirs R2 soll konstant auf T2 D 12 ı C gehalten werden. Der Wirkungsgrad der Maschine kann gesteigert werden, indem man die Temperatur T1 des wärmeren Reservoirs R1 erhöht. Um wie viel Kelvin muss die Temperatur T1 gesteigert werden, damit der Wirkungsgrad um 10 % zunimmt?

135

Berechnen Sie die Nutzleistung eines Benzinmotors, der stündlich 6;3 kg Benzin verbraucht und mit einem Wirkungsgrad von D 30 % arbeitet. Der Heizwert von Benzin beträgt H D 45;2 MJ=h.

4.9 Wirkungsgrad und Leistungszahl

279

136

Leistungszahl: a) Berechnen Sie die Leistungszahl K einer Kältemaschine, wenn die Außentemperatur 27 ı C beträgt und im Kühlraum eine Temperatur von 7 ı C gehalten werden soll. b) Eine Wärmepumpe soll ein Zimmer auf 20 ı C aufheizen, wobei die Wärme der Außenluft, deren Temperatur 0 ı C beträgt, entnommen werden soll. Berechnen Sie die Leistungszahl W der Wärmepumpe. c) Werten Sie die Ergebnisse von a und b.

137

Die Firma Lockheed (USA) betreibt seit Jahren vor der Küste von Hawaii (Pazifik) ein Versuchskraftwerk zur Untersuchung der Umwandlung von Wärme in Arbeit unter Nutzung natürlicher Bedingungen, dies allerdings ohne bekannt gemachte Bewertung. Das Funktionsprinzip des Versuchskraftwerkes ist in der Abb. 4.9 schematisch verdeutlicht: T1 = 25 °C Oberflächenwasser

NH3-Verdampfer

NH3-Pumpe

Q1 Turbine Generator

W (ΔW) Q2

NH3-Kondensator

T2 = 5 °C Tiefenwasser (300 m)

Abb. 4.9 Funktionsprinzip des Lockheed-Versuchskraftwerkes zur Umwandlung von Wärme in Arbeit.

137.1 Berechnen Sie den Wirkungsgrad Wel des Versuchskraftwerkes. 137.2 Vergleichen Sie den berechneten Wirkungsgrad von 137.1 mit den Wirkungsgraden in nachstehender Tabelle und machen Sie Aussagen zur Effektivität!

Dampfturbine Ottomotor Dieselmotor Versuchskraftwerk Lockheed Gebundene Enthalpie in Form von Adenosintriphosphat (ATP) im Betriebsstoffwechsel der Organismen (1 mol ATP D 30,6 kJ)

real

ideal

0,250,35 0,200,30 0,300,40

0,60 0,58 0,72

D 0,067

ATP

Glukose Palmitinsäure Glycerin Asparaginsäure Triglycerid der Palmitinsäure ;  0,391

0,383 0,41 0,41 0,34 0,41

280 138

4 Aufgaben ohne Lösung

Brennstoffzelle Wasserstoff hat, bezogen auf die Masse, eine größere Energiedichte als Kohlenstoff. Deshalb gab es historisch eine Entwicklung zu Brennstoffen mit höherem Wasserstoffgehalt: Kohle ! Öl ! Erdgas ! Wasserstoff. Kosteneffiziente Produktion und sichere Lagerung von Wasserstoff sind zwei Haupthürden für die erfolgreiche Einführung einer Wasserstoffwirtschaft. 138.1 Betrachten Sie einen Zylinder mit Wasserstoff bei 80 MPa und 25 ı C. Berechnen Sie die Dichte (in kg=m3) von Wasserstoff in diesem Zylinder. 138.2 Berechnen Sie das Verhältnis zwischen den gebildeten Wärmemengen, wenn gleiche Massen Wasserstoff und Kohlenstoff verbrannt werden. 138.3 Berechnen Sie die theoretische maximale Arbeit, die bei der Verbrennung von 1 kg Wasserstoff geliefert wird, (a) beim elektrischen Motor, der mit WasserstoffBrennstoffzellen arbeitet, (b) vom Wärmemotor, der zwischen 25 ı C und 300 ı C arbeitet. Wie lange und mit welchem Strom wird der elektrische Motor laufen, wenn die Brennstoffzelle mit 1 W und bei Standardpotenzialdifferenz E 0 arbeitet? S 0 (J=(mol  K)) B H 0 (kJ = mol )

H2

O2

H2 O(l)

CO2

131 0

205 0

70 286

214 394

4.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung 139

Kernbindungsenergie. 139.1 Interpretieren Sie den Begriff der Kernbindungsenergie. 139.2 Die bei der vollständigen Kernspaltung von 235 92U freigesetzte Energie E2 ist X -mal so groß wie die bei der Verbrennung der gleichen Kohlenstoffportion erhaltene Energie E1 . a) Berechnen Sie das Energieverhältnis X D E2 =E1 b) Welches Vielfache von E2 ergibt sich, auf die gleiche Masse bezogen, bei der Bildung von 42He durch Fusion von Deuterium ( 21H) und Tritium (31 He)? 139.3 Stellen Sie die Abhängigkeit der Kernbindungsenergie pro Nukleon [Ek(∅, jeNukleon) ] von der Massenzahl der angegebenen Nuklide (Tab. 4.3) graphisch dar. Welche Schlussfolgerungen für die mögliche Nutzung der Kernbindungsenergie ergeben sich daraus? 1 MeV D 1;602  1016 kJI

B HCO2 D 394 kJ=mol 1 u D 1;66053873  10

27

kg

c D 299792458 m=s 1

NA D 6;02214199  10 mol 23

139.4 Beschreiben Sie das Prinzip, wie elektrischer Strom a) aus Kohle und b) aus UranNukliden gewonnen wird. 140

Machen Sie beispielhaft deutlich, wie man neben der effizienteren Energieausnutzung und -einsparung mit Solarenergie a) heizen und b) Strom gewinnen kann.

4.11 Homogene chemische Gleichgewichtsreaktionen Tab. 4.3 Nuklid 2 1H 3 2He 3 1H 4 2He 6 3Li 7 3Li 10 5B 12 6C 16 8O 56 26Fe 89 36Kr 90 38Sr

281

Massen m und Gesamtbindungsenergien Ek einiger Nuklide und Nukleonen. m (u)

Ek (MeV)

Nuklid bzw. Nukleon

m (u)

Ek (MeV)

2,014 101 8

2,224 573

143,922 940 5

1 190,239 175

3,016 029 3

7,718 058

3,016 049 3

8,481 821

4,001 510 0

28,295 673

6,015 122

31,994

7,016 004

39,244

10,013

64,751

12,000

92,162

15,994 915

127,619

55,934 9

492,254

88,917 632

766,907 82

89,907 737

782,631 48

144 56Ba 144 54Xe 233 90Th 233 91Pa 233 92U 235 92U 238 92U 239 94Pu 239 92U 239 93Np 1 1p 1 0n

143,938 230 0

1 177,562 000

233,041 576 9

1 771,477 760

233,040 240 2

1 771,940 523

233,039 628 2

1 771,728 280

235,043 923 1

1 783,870 285

238,050 782 6

1 801,694 651

239,052 156 5

1 806,921 454

239,054 287 8

1 806,500 907

239,052 931 4

1 806,982 011

1,007 276

0

1,008 665

0

141

Erstellen Sie ein Schema, das die Wandlungskette von erneuerbarer Energie über die Station Wasserstoff bis zur Nutzenergie in den unterschiedlichen Anwendungen aufzeigt. Wonach richtet sich die Analyse der darin aufgeführten Beispiele?

142

Beschreiben Sie (evtl. mit Skizzen) das Funktionsprinzip der Brennstoffzelle sowie ihre mögliche Nutzung in einem Kraftwerk (Kraft-Wärme-Kopplung) und für die moderne Automobilindustrie (H2 -Mobilität der Zukunft).

143

Die gesicherte Stromversorgung aus einem Mix von regenerativen Energiequellen (Sonne, Wind, Wasser) wird zusammen mit einem breiten Netz von Stromtankstellen (Aufladestationen) die Elektromobilität der Zukunft tangential beflügeln. Welche Schlüsseltechnologie steht dabei unter Erfolgszwang und warum?

4.11 Homogene chemische Gleichgewichtsreaktionen 4.11.1 144

Stickstoffverbindungen (N2 , NH3 , NOx )

Für die Reaktion der Ammoniaksynthese bei stöchiometrischem Einsatz der Edukte kJ mol enthält nachstehende Tabelle die Prozentgehalte an Ammoniak im Gleichgewicht.  * 3 H2 C N2 )  2 NH3

R H D 92;4

282

4 Aufgaben ohne Lösung

Temperatur Volumenanteil an NH3 in % im Gleichgewicht bei ı C 1 bar 30 bar 100 bar 200 bar 1000 bar 200 300 400 500 600 700 800 900 1000

15,3 2,18 0,44 0,129 0,049 0,0223 0,0117 0,0069 0,0044

67,6 31,8 10,7 3,62 1,43 0,66 0,35 0,21 0,13

80,6 52,1 25,1 10,4 4,47 2,14 1,15 0,68 0,44

85,8 62,8 36,3 17,6 8,25 4,11 2,24 1,34 0,87

98,3 92,6 79,8 57,5 31,4 12,9

144.1 Stellen Sie die Daten der Tabelle graphisch dar, indem Sie den Anteil von Ammoniak im Gleichgewicht auftragen: a) bei konstanter Temperatur gegen den Druck (Isothermen), b) bei konstantem Druck gegen die Temperatur (Isobaren). Welches grundlegende Gesetz finden Sie bestätigt und was sagt es aus? 144.2 Berechnen Sie Kp und die theoretische Ausbeute NH3 bei Standardbedingungen (298;15 K und 1;01325 bar). Gehen Sie davon aus, dass sich die Gase ideal verhalten und H bzw. S konstant sind. Tab. 4.4 Molare Standardgrößen und Molwärmen [Cp D f .T /] von NH3 , N2 und H2

0 molare Standardbildungsenthalpie J 

BH 0 molare Standardentropie

S mol  K Molwärme CP molJ K



kJ mol



NH3 Ammoniak

N2 Stickstoff

H2 Wasserstoff

46,2 192,65 33,7 C29,33  104 T C21,4  106 T 2

0 191,65 27,65 C4,19  103 T

0 130,7 27,2 C37,71  104 T

144.3 Bei 298;15 K läuft die Synthesereaktion wegen der hohen Aktivierungsenergie ( 230 kJ=mol) kaum ab. Bei erhöhtem T und 100 bar beträgt NH3 D 10;4 Vol: % a) Berechnen Sie Kp und T unter diesen Bedingungen. b) Im Gegensatz zu der in a) errechneten Temperatur liegt die tatsächliche Temperatur tiefer. Warum? 144.4 Berechnen Sie die Ausbeute NH3 bei 200 ı C und 1;01325 bar. 144.5 Bei 500 ı C und 200 bar beträgt K D 0;6. Berechnen Sie NH3 . Vergleichen Sie das Ergebnis mit dem Literaturwert von 17,6 Vol.-% 145

 * Im Gasgleichgewicht der Ammoniaksynthese N2(g) C 3 H2(g) )  2 NH3(g) (n D 2) befinden sich bei 400 K und 1 bar 500 mol Wasserstoff H2 . Die Partialdrücke pi der Reaktanden betragen: p.H2 / D 0;376 bar, p.N2 / D 0;125 bar und p.NH3 / D 0;499 bar. a) Berechnen Sie die Gleichgewichtskonstante Kp , die freie molare Reaktionsenthalpie R G sowie die Stoffmengen n.N2 / und n.NH3 / .

4.11 Homogene chemische Gleichgewichtsreaktionen

283

b) Welche Richtung nimmt das System, wenn die Wasserstoffmenge bei dT D 0 und dp D 0 um 10 mol erhöht wird? Berechnen Sie die freie molare Reaktionsenthalpie R G für das sich neu einstellende Gleichgewicht. 146

In einem H2 /N2 /NH3 -System habe sich bei 410 K und einem Gesamtdruck von 1 bar das Gleichgewicht entsprechend der Gleichgewichtskonstanten Kp D 36;79 bar2 eingestellt. Es liegen dann 100 mol H2 , 500 mol N2 und 175 mol NH3 vor. Diesem System werden 10 mol N2 unter Beibehaltung der Temperatur (410 K) und des Gesamtdruckes (1 bar) zugefügt. Geben Sie zunächst ohne zu rechnen begründet an, wie das System reagieren wird. Zeigen Sie dann durch eine Rechnung, ob Ihre Angabe zutrifft oder verworfen werden muss.

147

Berechnen Sie für das Gasgleichgewicht der Ammoniaksynthese die Gleichgewichtskonstante der Molenbrüche K , die Ausbeute NH3 im Gleichgewicht, die molare freie Reaktionsenthalpie R G und die molare freie Reaktionsenergie R F , wenn Stickstoff und Wasserstoff im Volumenverhältnis 1 : 3 bei 500 ı C zur Reaktion gebracht werden? Das Gasgemisch steht unter einem Gesamtdruck von a) 105 Pa, b) 3  107 Pa, c) 6  107 Pa und d) 108 Pa. (Kp D 1;48  1015 Pa2 ). Interpretieren Sie die Ergebnisse!

148

 * Die Reaktion von NH3 mit reinem O2 nach 2 NH3(g) C 3 O2(g) )  NO(g) C NO2(g) C 3 H2 O hat bei 400 ı C und 101;325 kPa eine freie molare Reaktionsenthalpie von R G D 39;68 kJ=mol. Wie groß ist der prozentuale Umsatz von Ammoniak?

149

Zerfallsreaktion von Ammoniak Berechnen Sie für die thermische Dissoziation von Ammoniak mit den Angaben in Tab. 4.4 alle fehlenden Werte der Tab. 4.5. Gehen Sie von n D 1 mol Ammoniak bei 298 ı C und 101;325 kPa aus und interpretieren Sie die Ergebnisse mit Bezug auf das Dissoziationsgleichgewicht. Tab. 4.5 Gesuchte Größen der thermischen Dissoziation von NH3 bei verschiedenen Temperaturen und Drücken. 298,15 K (1) 1,01325 bar (2) 200 bar A B C D E F G H I J

150

R H (kJ/mol) R U (kJ/mol) W m (kJ/mol) R S (J/(mol  K)) R G (kJ/mol) R F (kJ/mol) K K p (bar) K c (mol/dm3 ) ˛(Dissoziationsgrad)

46,2 43,720 -2,479 55,282 29,718 27,238 6,216  10-6 1,26  10-3 5,05  10-5 0,00219

773,15 K (3) 1,01325 bar

(4) 200 bar

54,258 47,83 -6,4282 115,881 -35,34 -41,76 243,94 247,2 3,85 0,997

Darstellung von Stickstoff aus Ammoniak: Für die Reaktionen 150.1 und 150.2 ist jeweils die Stickstoffausbeute N2 im Gleichgewicht gefragt.

284

4 Aufgaben ohne Lösung

150.1 Beim Mischen von gesättigter NH4 Cl-Lösung mit gesättigter NaNO2 -Lösung läuft u. a.  * folgende Gasreaktion ab: 2 NH3(g) CNO(g) CNO2(g)  )  2 N2(g) C3 H2 O(g) . Bei 100 ı C und 101;325 kPa beträgt R G D 25;3 kJ=mol. Bei Standardbedingungen (25 ı C, 101 325 Pa) betragen: R G 0 D 517 kJ=mol und R H 0 D 511 kJ=mol.  * 150.2 Stickstoff erhält man auch nach 3 Cl2(g) C 2 NH3(g)  )  6 HCl(g) C N2(g) . Bei 300 ı C und 101;325 kPa beträgt R G D 28;05 kJ=mol. Bei Standardbedingungen (25 ı C, 101 325 Pa) betragen: R G 0 D 79 kJ=mol und R H 0 D 46 kJ=mol. 151

Es wird 1 mol Stickstoff N2 bei 500 ı C von 0;05 bar auf 0;1 bar isotherm komprimiert. Zu berechnen sind die Volumenarbeit W sowie Änderungen der freien molaren Enthalpie G, freien molaren Energie F , Entropie S, inneren Energie U und der Enthalpie H .

152

 * Für die Reaktion NO C 12 O2 )  NO2 sind die Gleichgewichtskonstante Kp und die freie molare Reaktionsenthalpie R G bei 398 K zu berechnen und ihre Temperaturabhängigkeit zu 0 0 begründen. R H298 = 56;4 kJ=mol R G298 = 34;8 kJ=mol Hinweis: R H ist im vorgegebenen Temperaturbereich konstant.

153

154

1  * Für die Reaktion NO2 )  NO C 2 O2 sind bei 498 K und 101 325 Pa der Reaktionsgrad ˇNO2 D 0;953042 und R H D 56;4 kJ=mol gegeben. Berechnen Sie die R G-und Kp -Werte bei 498 K und 298 K. Anmerkung: R H soll im betrachteten Temperaturbereich konstant bleiben.

Dissoziation von Stickstoff(III)-oxid N2 O3 : Bei der Dissoziation von Stickstoff(III)-oxid bei 25 ı C und 101 325 Pa enthält das Reaktionsgemisch gleiche Molmengen Stickstoff(II)-oxid NO und Stickstoff(IV)-oxid NO2 und 10 % undissoziiertes Stickstoff(III)-oxid N2 O3 . Die molare Reaktionsenthalpie beträgt R H D 40;6 kJ=mol. a) Wie groß sind der Dissoziationsgrad ˛N2 O3 , die Gleichgewichtskonstanten K und Kp , die freie molare Reaktionsenthalpie R G und die molare Reaktionsentropie R S? b) Berechnen Sie den Reaktionsgrad ˇN2 O3 und die Gleichgewichtskonstante K der Rückreaktion? c) Wie werden sich bei Druckminderung die Werte von ˛N2 O3 , K und Kp ändern?

155

N2 O4 /NO2 -Gleichgewicht:  * 155.1 Ermitteln Sie die Verlaufsrichtung der Reaktion N2 O4  )  2 NO2 (K D 0;141, 25 ı C, 1 bar), wenn a) eine isotherme Druckminderung auf p D 0;1 bar erfolgt, b) durch isobares Erwärmen (T D 65 K) der Dissoziationsgrad auf ˛.N2 O4 / D 0;627 steigt. 155.2 Berechnen Sie jeweils die Änderung des Dissoziationsgrades ˛.N2 O4 / . 155.3 Ermitteln Sie bei dp D 0 die mittlere molare Reaktionsenthalpie R H .

156

In der Gasphase befindet sich Stickstoffdioxid mit seinem Dimeren Distickstofftetroxid  * entsprechend der Gleichung N2 O4 )  2 NO2 im Gleichgewicht. Dieses Gleichgewicht wird bei 30 ı C untersucht. Dazu wird ein Rundkolben (V D 321 cm3 ) mit Schliffhahn evakuiert und gewogen: 109;9736 g. Der Kolben wird dann in einem Eisbad gekühlt und Stickstoffdioxid

4.11 Homogene chemische Gleichgewichtsreaktionen

285

wird eingeleitet. Dann wird der Kolben in ein Wasserbad von 30 ı C gebracht und nach dem Temperaturausgleich wird der Hahn vorsichtig geöffnet. Es entweicht ein braunes Gas. Wenn das Ausströmen gerade endet, wird der Hahn geschlossen und der Kolben erneut gewogen: 110;9446 g. Im Labor herrscht ein Luftdruck von 101;3 kPa. a) Geben Sie an, wie man im Labor Stickstoffdioxid NO2 herstellen kann. b) Berechnen Sie für die oben angeführte Reaktion die Gleichgewichtskonstanten Kp , Kc und K . c) Das Experiment wird bei 60 ı C wiederholt, der Kolben mit der Gleichgewichtsmischung wiegt dann 110;6820 g. Berechnen Sie die molare Reaktionsenthalpie R H und die molare  * Reaktionsentropie R S für die Reaktion N2 O4(g)  )  2 NO2(g) . Nehmen Sie dabei an, dass diese beiden Größen hier temperaturunabhängig sind. d) Begründen Sie die Vorzeichen der berechneten Werte für R H und R S mit Hilfe der Reaktionsgleichung. 157

Gefäß 1 (V D 1 dm3 ) ist mit Gefäß 2 (V D 3 dm3 ) durch einen geschlossenen Hahn verbunden. Im Gefäß 1 befinden sich 1 mol Distickstofftetroxid N2 O4 und 0;086 mol Stickstoffdioxid NO2 im Gleichgewicht, Gefäß 2 ist leer (evakuiert). Beide Gefäße befinden sich in einem Thermostaten bei 25 ı C. Der Hahn wird geöffnet, es stellt sich ein neues Gleichgewicht ein. Betrachten Sie hier alle Gase als ideal. a) Berechnen Sie die Gleichgewichtskonstante der Partialdrücke Kp im Ausgangsgleichgewicht. b) Berechnen Sie im neu eingestellten Gleichgewicht die b1 ) Stoffmengen von NO2 und N2 O4 , b2 ) Partialdrücke pi von NO2 und N2 O4 , b3 ) Gleichgewichtskonstante der Teilkonzentrationen Kc .

158

In einem Gefäß (V D 15 dm3 ) befinden sich 64;4 g eines Gemisches aus Stickstoffdioxid NO2 und Distickstofftetroxid N2 O4 . Berechnen Sie den Druck im Gefäß, wenn sich das Gleichgewicht NO2 /N2 O4 eingestellt hat a) bei 298 K b) bei 350 K. Die Daten für B H 0 und S 0 gelten für Standardbedingungen (25 ı C; 101 325 Pa). NO2 und N2 O4 sollen als ideale Gase angesehen werden. B H 0 (kJ  mol1 ) S 0 (J  mol1  K1 ) Cp (J  mol1  K1 ) NO2 N2 O4

159

33,2 9,16

240,1 304,3

37,2 77,8

Stickstoffmonoxid ist einerseits ein Grundstoff für Synthesen, andererseits ist es ein umweltschädliches Gas. Es zerstört die Ozonschicht durch katalytische Zersetzung von Ozon. a) Geben Sie an, wie Stickstoffmonoxid technisch und im Labor hergestellt wird und wozu es verwendet wird. b) Die Reaktion von Stickstoff mit Sauerstoff im Lichtbogen war früher ein großtechnisches Verfahren zur Herstellung von Stickstoffmonoxid. Zeigen Sie mit Hilfe der unten gegebenen Daten, dass diese Reaktion bei Standardbedingungen (298;15 K und 101 325 Pa) nicht freiwillig abläuft (endergonisch ist). Berechnen Sie unter diesen Bedingungen die Gleichgewichtskonstante Kp . Begründen Sie qualitativ, warum die Synthese im Lichtbogen nennenswerte Ausbeuten ergibt.

286

4 Aufgaben ohne Lösung

c) Berechnen Sie die Gleichgewichtskonstante Kp bei 1000 K, 2000 K, 3000 K, 4000 K und 5000 K. Nehmen Sie dazu vereinfachend an, dass sich die molare Reaktionsenthalpie R H und molare Reaktionsentropie R S bei den höheren Temperaturen nicht verändern. d) Berechnen Sie, wie viel Volumenprozent Stickstoffmonoxid sich bei diesen Temperaturen aus normaler Luft (20 % Sauerstoff, 80 % Stickstoff) unter Gleichgewichtsbedingungen bilden. Stellen Sie die Volumenprozente Stickstoffmonoxid als Funktion der Temperatur graphisch dar. N2 1

B H (kJ  mol ) S 0 (J  mol1  K1 ) 0

160

O2

0 191,61

NO

0 205,13

90,25 210,76

Für die thermische Dissoziation von Stickstoffmonoxid NO in seine Elemente bei 105 Pa und 725 ı C ist die Gleichgewichtskonstante K D 6  1011 . a) Wie viel Vol: -% NO, O2 und N2 liegen im Gleichgewicht vor? b) Wie groß ist der thermische Dissoziationsgrad von NO?

161

Wird Luft auf 2400 ı C erhitzt, vereinigen sich Stickstoff N2 und Sauerstoff O2 zu Stickstoffmonoxid NO. Im Gleichgewicht entstehen 2;2 Vol  -% NO. Wie groß ist die Gleichgewichtskonstante Kp ?

162

Der Zerfall von Nitrosylchlorid verläuft zwischen 150 ı C und 250 ı C homogen und nach  * einem Geschwindigkeitsgesetz 2. Ordnung: 2 NOCl2  )  NO C Cl2 . Es wurden dabei die folgenden Geschwindigkeitskonstanten bestimmt: Temperatur (ı C) k .mol1  s1 /  103

150 3,65

170 12,9

190 43,0

210 123

230 370

Ermitteln Sie die Aktivierungsenergie der Reaktion.

4.11.2 163

Kohlenstoff-Verbindungen (COx , KWS und Derivate)

CO2 /CO-Gleichgewicht: 163.1 Für die thermische Dissoziation des Kohlenstoffdioxids sind der Dissoziationsgrad ˛CO2 , die Gleichgewichtskonstante Kp und die freie molare Reaktionsenthalpie R G a) bei 1000 K und b) bei 1400 K aus B G-Werten der Reaktanden zu berechnen. 163.2 Bei 2000 K wurde ein CO2 -Zerfallsgrad von 1,58 % ermittelt. Berechnen Sie R G 2000 . 163.3 Welchen Wert hat im Temperaturbereich von 1000 K bis 2000 K die mittlere molare Reaktionsenthalpie R H ? B G1000 .kJ/mol/ B G1400 .kJ/mol/

164

CO2(g)

CO(g)

O2

395,8 396

200,6 235,9

0 0

p D 101,325 kPa

Kohlenstoffdioxid zersetzt sich bei hohen Temperaturen in geringfügigem Ausmaß in Kohlenstoffmonoxid und Sauerstoff. Der Anteil des CO2 , der sich bei einem Gleichgewichtsge-

4.11 Homogene chemische Gleichgewichtsreaktionen

287

samtdruck von 1013 hPa zersetzt hat, beträgt bei 1000 K 2;0  10-7 und bei 1400 K 1;3  104 . Betrachten Sie als Standarddruck p D 1;013  105 Pa. a) Stellen Sie die Reaktionsgleichung für die thermische Dissoziation von CO2 auf. b) Berechnen Sie Kp.1000/, Kp.1400/, R G.1000/, R H .1000/ und R S.1000/ unter der Annahme, dass die Reaktionsenthalpien im beschriebenen Temperaturintervall konstant sind. c) Wie wird sich der Bruchteil des zersetzten Kohlenstoffdioxids ändern, wenn man den Gesamtdruck auf 101;3 hPa senkt? Geben Sie zuerst eine qualitative Antwort, die Sie dann durch eine Rechnung für 1000 K beweisen. 165

 * Für die Reaktion CO C 0,5 O2 )  CO2 gilt bei 298 K und 1 bar. B G 0 .CO/ D 137;3 kJ=mol

B H 0 .CO/ D 110;5 kJ=mol

B G 0 .CO2 / D 394;4 kJ=mol

B H 0 .CO2 / D 394;5 kJ=mol

Berechnen Sie Kp bei 298 K und bei 1073 K. 166

Konvertierung des CO 166.1 Bei 900 K reagieren 60 Liter H2 O(g) mit 40 Liter CO zu je 30 Liter CO2 und H2 im Gleichgewicht. Wie groß sind Kc , Kp und K? 166.2 Ein Synthesegas enthält 50 Vol  -% H2 , 15 Vol  -% CO, 1 Vol  -% CO2 und 34 Vol  -% N2 . Daraus soll das CO zu a) 90 %, b) 95 %, c) 98 % und d) 99 % entfernt werden. Wie viel Liter H2 O(g) werden jeweils benötigt (Kc D 15 bei 600 K)? Bewerten Sie die Ergebnisse.

167

Bei der Bildung von Phosgen (Kohlenoxidchlorid, Carbonyldichlorid) stellt sich folgendes Gleichgewicht ein:  * CO.g/ C Cl2.g/ )  COCl2.g/

n D 1 :

In einem Experiment betrug der Partialdruck von Cl2 vor der Reaktion 0;666 bar und der von CO 0;533 bar. Nachdem sich das Gleichgewicht eingestellt hatte, wurde ein Gesamtdruck von 0;8 bar bestimmt. Berechnen Sie K, Kp und Kc . 168

Nickeltetracarbonyl kann man durch Überleiten von Kohlenstoffmonoxid über feinverteiltes  * Nickel bei 50 ı C herstellen (Mondprozess): Ni.s/ C 4CO.g/  )  Ni.CO/4.g/ . Umgekehrt ı zerfällt Nickeltetracarbonyl bei 250 C wieder. Auf diese Weise kann sehr reines Nickel hergestellt werden. a) Geben Sie die Oxidationszahl von Nickel in Nickeltetracarbonyl an. b) Geben Sie einen Term für die Berechnung von Kp für den Zerfall von Nickeltetracarbonyl an. Welche Einheit hat Kp? c) Auf welchen Anteil der ursprünglichen Konzentration muss die von Kohlenstoffmonoxid zurückgegangen sein, wenn die Konzentration von Nickeltetracarbonyl im Gleichgewicht halbiert ist?

169

Berechnen Sie für die Synthese von Wassergas bei stöchiometrischem Einsatz der Edukte den prozentualen Umsatz von Methan mit Wasserdampf. Die freie molare Reaktionsenthalpie bei 400 ı C und 101;325 kPa beträgt R G D 21;4 kJ=mol. Welcher Umsatz ergäbe sich bei Normbedingungen? (R G 0 D 143 kJ=mol)

288

4 Aufgaben ohne Lösung

170

Eine Möglichkeit Kohlenstoffmonoxid industriell herzustellen besteht darin, eine Mischung aus Erdgas und Wasserdampf bei 1100 ı C unter Druck über einen Nickelkatalysator zu schicken. Eine äquimolare Mischung aus Wasserdampf und Methan mit einem Gesamtdruck von 10 bar wird bei konstantem Druck bis zur Gleichgewichtseinstellung sich selbst überlassen. Die Gleichgewichtsmischung enthält 22 Vol  -% Kohlenstoffmonoxid (CO). Berechnen Sie Kp und Kc .

171

Verbrennung von Methan CH4 : Im CH4 -Gasbrenner finden die folgenden Reaktionen statt: (I) (II)

 * CH4(g) C 2O2.g/ )  CO2.g/ C 2H2 O(g)  * CH4(g) C 1;5O2.g/ )  CO.g/ C 2H2 O(g)

Die tolerierbare CO-Konzentration in der Luft beträgt 5 ppm, die maximal zulässige 50 ppm. Nehmen Sie für die Teilaufgaben 1 bis 4 an, dass die Enthalpie- und Entropiewerte temperaturunabhängig sind. 171.1 Berechnen Sie für (I) und (II) die Gleichgewichtskonstante Kp bei 1500 K. 171.2 Der Brenner wird zunächst mit einem Gemisch von Methan und soviel Luft (80 Vol  -% Stickstoff, 20 Vol  -% Sauerstoff) betrieben, dass das Volumenverhältnis von V .Methan/: V .Sauerstoff/ D 1 W 2 ist. Ermitteln Sie im Gesamtgleichgewicht von (I) und (II) bei T D 1500 K und p D 10;132530 bar a) das Stoffmengenverhältnis n.O2 / W n.CO/ , b) den Molenbruch .CO/ . 171.3 Wiederholen Sie die Berechnungen von 159.2 für den Betrieb des Brenners mit soviel Luft, dass das Volumenverhältnis von V.CH4 / W V.O2 / D 1 W 4 ist. 171.4 Berechnen Sie für 171.2 und 171.3 die CO-Konzentration (parts per million) in den Verbrennungsgasen nach vollständiger Kondensation des Wasserdampfes. Vergleichen Sie diese Werte mit der im Vorspann der Aufgabe genannten tolerierbaren COKonzentration! Hinweis: Die Zusammensetzung des Gasgemisches beim Abkühlen auf 25 ı C,soll gleich bleiben. Der Beitrag des Wasserdampfdruckes zur Zusammensetzung der Gasphase bleibt unberücksichtigt. 171.5 Bisher wurde angenommen, dass die Werte für die Enthalpie und Entropie temperaturunabhängig seien. Für genauere Berechnungen muss man aber die Wärmekapazitäten Cp mit heranziehen. Berücksichtigt man die Cp-Werte, ergibt sich für die Reaktion (I) bei 1500 K und 101 325 Pa ein G D 792;61 kJ=mol. Berechnen Sie daraus a) die in der Tabelle 4.6 fehlende Wärmekapazität von Methan, b) R H und R S für die Reaktion (I) bei 1500 K und 101 325 Pa. 172

Bei der Verbrennung von 1 mol flüssigem p-Xylol werden bei konstantem Druck und StandardBedingungen 4551;4 kJ frei. a) Geben Sie eine abgestimmte Reaktionsgleichung für diese Verbrennungsreaktion an. b) Berechnen Sie mit Hilfe der Verbrennungswärme die Standard-Bildungsenthalpie B H 0 des flüssigen p-Xylols. (Hinweis: Das Ergebnis stimmt nicht mit dem in der Tabelle angegebenen Wert überein.) c) Berechnen Sie die Standard-Reaktionsenthalpie R H 0 und Standard-Reaktionsentropie R S 0 für die Umwandlung von o-Xylol in p-Xylol in der Gasphase bei T D 500 K. Nehmen Sie dabei an, dass die Wärmekapazitäten temperaturunabhängig sind. Nutzen Sie die unten angegebenen thermodynamischen Daten.

289

4.11 Homogene chemische Gleichgewichtsreaktionen Tab. 4.6

Thermodynamische Daten der Reaktionsteilnehmer bei der Verbrennung von Methan.

Stoff Methan (g) Kohlenstoffmonoxid (g) Kohlenstoffdioxid (g) Wasser (g) Wasser (l) Stickstoff (g) Sauerstoff (g)

B H0 (kJ/mol)

S0 (J/(mol  K))

Cp (J/(mol  K))

74,8 110,5 395,5 241,8 285,8 0 0

186,3 197,7 213,7 188,8 69,9 191,6 205,1

32,6 53,1 39,8 75,3 32,2 34,4

Hinweis: Die Cp -Werte sind Mittelwerte für den Bereich von 298,15 K bis 1500 K. ı Die B H 0 - und S 0 -Werte gelten bei NB (25 C, 101 325 Pa).

d) Berechnen Sie die prozentualen Anteile der drei Xylol-Isomere in der Gleichgewichtsmischung bei T D 500 K.

o-Xylol m-Xylol p-Xylol CO2 H2 O

173

B H0 [kJ/mol]

S0 [J/(mol  K)]

Cp(l) [J/(mol  K)]

Cp(g) [J/(mol  K)]

TSd [K] (Siedetemperatur)

HVd [kJ/mol]

24,4 25,4 24,4 393,5 285,8

246,0 253,8 247,2

187,7 184,6 182,2

171,6 167,1 167,4

417,0 412,3 411,4

36,2 35,7 35,7

Für ein Experiment werden zwei Gefäße (A) und (B) verwendet, die mit einem Stempel verschlossen sind (Abb. 4.10). Gefäß A ist mit einem CO2 =H2- -Gemisch im Stoffmengenverhältnis 1:1 gefüllt, Gefäß B mit Propan. Beide Gefäße werden bei konstantem Druck auf 527 ı C erhitzt. Es stellen sich folgende Gleichgewichte ein: (A)

 * CO2.g/ C H2.g/  )  CO.g/ C H2 O.g/

(B)

 * C3 H8.g/ )  C3 H6.g/ C H2.g/

K 1 D 2;50  101 K 2 D 1;30  103 mol=dm3

Die Gleichgewichtskonstanten gelten für Konzentrationen bei 527 ı C. In beiden Gefäßen ist der Gleichgewichtsdruck gleich und der Anteil von Propan im Gefäß B beträgt 80 Vol  -%. a) Berechnen Sie die Gleichgewichtskonzentrationen der Komponenten im Gefäß B sowie den Gesamtdruck im Gleichgewichtszustand. b) Berechnen Sie die Gleichgewichtskonzentrationen der Komponenten im Gefäß A. c) In einem zweiten Teil des Experiments wird mit dem Stempel das Volumen in jedem Gefäß auf die Hälfte zusammengedrückt. Dabei soll die Temperatur konstant bleiben. Berechnen Sie den Gesamtdruck im Gleichgewicht in jedem der Gefäße. 174

0 D 32;9 kJ=mol. Ergänzen Für die Isomerisierung von Cyclopropan zu Propen ist HIsom. Sie die folgende Tabelle:

V H Œ kJ=mol B H 0 Œ kJ=mol 0

C (Graphit)

H2

Cyclpropan

394,1

286,3

2 094,4

Propen

290

4 Aufgaben ohne Lösung

A

B

Abb. 4.10 Versuchsanordnung zweier Gefäße mit Gasen (A): CO2 /H2 -Gemisch, (B): Propan.

175

Methanol kann durch Umsetzung eines Gemisches von Kohlenstoffmonoxid und Wasserstoff bei einem konstanten Druck von 250 bar erhalten werden. Gibt man die beiden Ausgangsstoffe bei einer bestimmten Temperatur im stöchiometrischen Verhältnis zusammen, bildet sich ein Gleichgewichtszustand aus, in dem sich 23 % des Wasserstoffs umgesetzt haben. Berechnen Sie die Gleichgewichtskonstante Kp .

176

In eine 500 cm3 Plastikflasche wird flüssiges Methanol gegeben. Sie wird solange geschüttelt, bis die enthaltene Luft mit Methanoldampf gesättigt ist. Der Überschuss an flüssigem Methanol wird abgelassen, die Flasche verschlossen und das Gemisch dann elektrisch gezündet. a) Geben Sie die Gleichung für die Reaktion von Methanol mit Sauerstoff an. b) Bestimmen Sie die molare Reaktionsenthalpie R H für die Reaktion in a). c) Bestimmen Sie den limitierenden Reaktionspartner in der 500 cm3 Flasche. Die Temperatur betrage 25 ı C und der herrschende Druck 1;1  105 Pa. Der Dampfdruck von Methanol bei 25 ı C beträgt 0;165  105 Pa. Die Luft enthalte 20 Vol  -% Sauerstoff und 80 Vol  -% Stickstoff. d) Berechnen Sie die bei der Reaktion in c) freigesetzte Wärme in der 500 cm3 Flasche. e) Wie groß ist die Summe der Molzahlen aller Reaktanden nach der Reaktion? f) Bestimmen Sie die Temperatur der Gase in der Flasche unter der Annahme, dass von der bei der Verbrennung freigesetzten Wärme 500 J für die Erwärmung der Gase zur Verfügung stehen. Bestimmen Sie den Druck bei dieser Temperatur. Substanz

CH3 OH(g)

CO2(g)

H2 O(g)

B H in kJ/mol

201,5

393,5

241,5

0

Die Dichte des Gasgemisches nach der Verbrennung beträgt 1;30 g=dm3 die Wärmekapazität dieser Mischung beträgt 1;01 J=.g  K). 177

Methanol kann man mit einem stöchiometrisch eingestellten Synthesegas .nCO =nH2 D 1=2/ bei 300 ı C und 107 Pa herstellen. Die Gleichgewichtskonstante hat hier den Wert von Kp D 5;58  1014 Pa2 . Die mittlere Reaktionsenthalpie beträgt R H D 90 kJ=mol. Man nutzt einen Kreisprozess aus und verwendet einen Katalysator (Cu=Zn=Al-Leg.). 177.1 Zu berechnen sind K, Kc , R G, R S, R U und die Ausbeute Methanol . 177.2 Wie verändern sich Methanol und R G, wenn a) bei dp D 0 die Temperatur auf 500 ı C erhöht wird,

4.11 Homogene chemische Gleichgewichtsreaktionen

291

b) bei dT D 0 der Druck auf 150 bar steigt, c) Normbedingungen (25 ı C, 105 Pa) gewählt werden? Die Ergebnisse sind im Vergleich zu 177.1 zu begründen. 177.3 Das Synthesegas für Methanol wird aus Wassergas (50 Vol  -% H2 , 40 Vol  -% CO, 5 Vol  -% N2 , 5 Vol  -% CO2 ) durch Konvertierung (1 bar, 450 ı C, Kat.) CO(g) C  * H2 O(g) )  CO2(g) C H2(g) hergestellt. Die Gleichgewichtskonstante für die Konvertierungsreaktion beträgt K D 4. Wie groß muss das Molverhältnis nCO /nH2 O bei der Konvertierung gewählt werden, damit für die Synthese von Methanol ein Gasgemisch mit dem Molverhältnis von nCO /nH2 D 1=2 entsteht? 178

Methanol kann durch Umsetzung eines Gemisches von Kohlenstoffmonoxid und Wasserstoff bei einem konstanten Druck von 250 bar erhalten werden. Gibt man die beiden Ausgangsstoffe bei einer bestimmten Temperatur im stöchiometrischen Verhältnis zusammen, bildet sich ein Gleichgewichtszustand aus, in dem sich 23 % des Wasserstoffs umgesetzt haben. Berechnen Sie die Partialdrücke der Reaktanden und Kp .

179

Wie viel Gramm Ethanol werden benötigt, um 12 mol Essigsäure zu 10 mol Essigsäureethylester (Ethylethanat) umzusetzen (K D 4)?

180

Wie viel mol Ethanol entstehen, wenn 3 mol Ethylethanat, 5 mol Wasser und 1 mol Essigsäure gemischt werden und sich das Gleichgewicht eingestellt hat (K D 4)?

181

Die Verseifung von Ethylethanat lässt sich mit Natronlauge nach der Gleichung –  * CH3 COOC2 H5(l) + OH–(aq) )  CH3 COO(aq) + C2 H5 OH(l) 0 realisieren. Bedeuten a und b die molaren Ausgangskonzentrationen der Edukte (a D cOH ; 0 / und x ihre Abnahme nach der Zeit, gilt die Differenzialform des kinetischen b D cEster Ansatzes: dx D k  .a  x/  .b  x/ : dt 181.1 Berechnen Sie mit den thermodynamischen Daten der Tabelle die Gleichgewichtskonstante der Verseifung unter Standardbedingungen (25 ı C, 101;325 kPa).

OH–(aq)

CH3 COOC2 H5(l) B H (kJ/mol) S0 (J/(K  mol))

479 259

0

230 10,54

CH3 COO–(aq)

C2 H5 OH(l)

486 86

277 161

181.2 In einem Becherglas wurden bei 25 ı C und 101;325 kPa je 30 cm3 0;0098 M NaOH und 0;00486 M Ethylethanat gemischt und zu verschiedenen Zeiten der pH-Wert gemessen (pH-Elektrode/Cassy). Folgende Messergebnisse wurden registriert: t(s)

0

198

273

531

866

1510

1918

2401

pH

11,99

11,95

11,94

11,89

11,86

11,81

11,78

11,76

181.2.1 Bestimmen Sie rechnerisch und graphisch die Geschwindigkeitskonstante k1 .

292

4 Aufgaben ohne Lösung

181.2.2 Bei 30 ı C und 101;325 kPa ergab die Wiederholung des Versuches eine Geschwindigkeitskonstante von k2 D 0;186 s1  mol1 . Berechnen Sie die Aktivierungsenergie EA der Verseifung. Welche Verlaufsrichtung nahm bei dieser Temperatur die Reaktion? Es wird angenommen, dass R H D const. bleibt.

4.11.3 182

Schwefel-Verbindungen (SOx , SFx )

Beim Erhitzen von Schwefeltrioxid ändert sich bei Normaldruck (101 325 Pa) durch thermische Dissoziation die Dichte des Gases: ı

Temperatur ( C)

Dichte (g/dm3 )

25 630

2,8 1,873

182.1 Es sind der Dissoziationsgrad ˛SO3 , die Gleichgewichtskonstante Kp und die freie molare Reaktionsenthalpie R G bei 630 ı C zu berechnen. 182.2 Welcher Druck bei 630 ı C müsste gewählt werden, damit ein Dissoziationsgrad von 70 % erreicht wird? 183

Berechnen Sie die prozentuale Umsetzung des in den Röstgasen enthaltenen Schwefeldioxids zu Schwefeltrioxid, wenn im Kontaktofen bei 500 ı C Schwefeldioxid und Sauerstoff a) im stöchiometrischen Verhältnis, b) im Volumenverhältnis 1:9 zur Reaktion gebracht werden. Das Gasgemisch soll jeweils unter einem Gesamtdruck von p D 101325 Pa stehen. Die Gleichgewichtskonstante beträgt Kp D 8;96  104 Pa1 . Warum entscheidet man sich in der Praxis für das Volumenverhältnis b)?

184

In einem Gefäß befinden sich 0;72 mol SO2 und 0;71 mol SO3 . Diesem Gemisch werden  * 0;49 mol NO2 zugefügt. Folgendes Gleichgewicht SO2.g/ C NO2.g/ )  SO3.g/ C NO.g/ stellt sich ein. Im Gleichgewicht liegen 0;39 mol NO(g) vor. a) Berechnen Sie die Gleichgewichtskonstante bei dieser Temperatur. b) Man bringt bei derselben Temperatur 1 mol SO2(g) in das Gefäß. Berechnen Sie die Stoffmengen aller vier Gase, die nach Einstellung des Gleichgewichts vorliegen.

185

Es gibt verschiedene Schwefelfluoride, die alle gasförmig sind, z. B. S2 F2 , SF4 , SF6 , S2 F10 . Schwefeltetrafluorid SF4 reagiert mit Fluor zu Schwefelhexafluorid SF6 als Hauptprodukt und geringen Mengen von Dischwefeldecafluorid S2 F10 . In ein Gefäß mit konstantem Volumen werden soviel SF4 und Fluor F2 eingefüllt, dass der Partialdruck von SF4 150 mbar, der von F2 90 mbar beträgt. Am Ende der Reaktion ist das gesamte Fluor F2 verbraucht und der Gesamtdruck beträgt 135 mbar. a) Berechnen Sie die Partialdrücke aller Reaktionsteilnehmer, die am Ende der Reaktion vorhanden sind. b) In Gegenwart von Feuchtigkeit ist SF4 sehr reaktiv, während SF6 nicht reagiert. Geben Sie die Reaktionsgleichungen für die Hydrolysen von (1) SF4 und (2) SF6 an. Berechnen Sie G0 für die Hydrolyse von SF6 . Erklären Sie das Reaktionsverhalten von SF6 gegenüber Wasserdampf.

4.11 Homogene chemische Gleichgewichtsreaktionen

186

Verbindung



B H0 kJ/mol



S0 J/(mol K)

SF6(g) HF(g) H2 O(g) SO3(g)

1220,5 273,3 241,8 395,7

291,5 173,8 188,8 256,8

Ermitteln Sie rechnerisch, ob die Reaktion von Thionylchlorid mit Hexaaquakobalt(II)-chlorid unter Standardbedingungen freiwillig abläuft. B H 0 ŒkJ=mol

S 0 ŒJ=.mol  K/

247 1736 325 297 92

279 343 107 248 187

SOCl2(l) [Co(H2 O)6 ]Cl2(aq) CoCl2(s) SO2(g) HCl(g)

4.11.4 187

293

Halogenwasserstoffe

 * Für die Reaktion H2.g/ C Br2.g/  )  2 HBr.g/ bei 25 ı C sind folgende Werte gegeben: B H (kJ/mol) S0 (J/(mol  K)) 0

H2(g)

Br2(l)

Br2(g)

HBr(g)

0 130,58

0 152,23

30,91 245,35

36,23 198,32

Die Werte werden als temperaturunabhängig angesehen. a) Berechnen Sie R G und Kp für die Reaktion bei 25 ı C. b) Berechnen Sie Kp für die Reaktion bei 1000 K. c) Bei einem Druck von 0;2 bar werden bei 1000 K 1 mol Wasserstoff (H2 ) und 1 mol Brom (Br2 ) zusammengebracht. Geben Sie an (in %), welcher Anteil Wasserstoff sich im Gleichgewicht nicht umgesetzt hat. d) Berechnen Sie die Siedetemperatur von Brom bei Normdruck. 188

Eine der am besten untersuchten Gasphasenreaktionen ist die Umsetzung von Wasserstoff mit  * Iod: H2 C I2  )  2 HI. Kinetische Messungen bei verschiedenen Temperaturen ergeben die Geschwindigkeitskonstanten: Temperatur (K) k1 (mol-1  s-1) k -1 (mol-1  s-1 )

400 8,37  10-12 3,25  10-14

500 2,48  10-7 1,95  10-9

600 2,38  10-4 2,97  10-6

700 3,22  10-2 5,61  10-4

800 1,27 2,85  10-2

a) Begründen Sie, ob die Reaktion exotherm oder endotherm ist. Welches Prinzip kommt dabei zur Anwendung? b) Berechnen Sie die Reaktionsenthalpie und die Reaktionsentropie der Bildung von HI unter der Annahme, dass diese Größen im betrachteten Bereich temperaturunabhängig sind. c) Berechnen Sie den Dissoziationsgrad von HI bei 600 K. Wie ändert er sich mit der Temperatur? 189

 * Für die Reaktion 2HI )  H2 CI2 gilt bei 356 ı C Kp D 0;01494. Wie groß ist Kp bei 393 ı C, wenn H D 10;97 kJ=mol beträgt?

294 190

Berechnen Sie die Gleichgewichtskonstante K und die Änderung der Gibbsenergie R G für  * die Reaktion 4 HCl C O2 )  2 Cl2 C 2 H2 O. Bei T D 1000 K und p D 1;0325 bar ist für Wasserdampf und Chlorwasserstoff der Dissoziationsgrad ˛ (homolytische Dissoziation in die Elemente) gegeben: ˛.H2 O/ D 2;48  107 bzw. ˛.HCl/ D 1;1  105 .

4.11.5 191

4 Aufgaben ohne Lösung

Redoxreaktionen

Die Erzeugung von gedruckten Schaltungen auf Leiterplatten ist durch lokal gelenktes Wegätzen des Kupfers vom Träger mit salzsaurem Wasserstoffperoxid (c D 1 mol=dm3, pH D 0) möglich. a) Zeigen Sie unter Einbeziehung einer Gleichung, welche Reaktionsart dem Ätzvorgang zugrunde liegt! b) Begründen Sie rechnerisch die Verlaufsrichtung des Ätzvorganges I) mit Darstellung des Zusammenhanges von R H 0 , R S 0 und R G 0 in einem Energiediagramm, II) mit Aussagen zum Bedingungsgefüge von E 0 , K und R G 0 . c) Ein schonenderes Ätzmittel für Kupfer ist eine schwach alkalische Na2 S2 O8 -Lösung. Begründen Sie hier gleichfalls die Verlaufsrichtung des Ätzvorganges.

B H0 (kJ/mol) S0 (J/(molK)) B G0 (kJ/mol) E0 (V) (Ox.-M)

Cu(s)

Cu2+ (aq)

H2 O(l)

H2 O2(l)

H+(aq)

SO2– 4(aq)

0 33 0

65 100 66 0,35

286 70 237

188 110 120 1,78 (pHD0)

0 0 0 0 (pHD0)

909 20 744

S2 O2– 8(aq)

1101,67 2,01

R H0 Molare Standardreaktionsenthalpie, R S0 Molare Standardreaktionsentropie, K Gleichgewichtskonstante, R G0 Freie molare Standardreaktionsenthalpie, B G0 Freie molare Standardbildungsenthalpie, T D 298,15 K, E0 Elektromotorische Kraft (EMK), Standard-Potenzialdifferenz

192

Rosten von Eisen 192.1 Beschreiben Sie unter Einbeziehung des Tropfenversuches nach Evans die Ursachen des Rostens von Eisen? 192.2 Berechnen Sie für die auslösende Teilreaktion des Rostens die Gleichgewichtskonstante und die freie molare Reaktionsenthalpie unter Standardbedingungen! 192.3 Die auslösende Teilreaktion des Rostens soll 24 h bei Standardbedingungen mit einem konstanten Strom von 0;12 A ablaufen. Berechnen Sie die Masse an Fe, die nach 24 h in Fe2+ (aq) umgewandelt wird. Es wird angenommen, dass Sauerstoff und Wasser im Überschuss vorhanden sind.

193

Marktschreierversuch In Kontakt mit Alufolie und 1 M NaCl .pH D 7/ gebrachtes Silber wird nach geraumer Zeit von schwarzbrauner Sulfidschicht ohne Silberverlust befreit. Begründen Sie die exergone Verlaufsrichtung der Reaktion.

194

0 Reduktion von MnO–4(aq) mit Fe2+ (aq) : Berechnen Sie G für die stöchiometrische Umsetzung – 2+ von MnO4(aq) mit Fe(aq) bei pH D 0 und pH D 8. Interpretieren Sie die Verlaufsrichtung der Reaktion im sauren und basischen Medium.

4.11 Homogene chemische Gleichgewichtsreaktionen

195

295

Kupfer kann Ionen des Typs Cu+ und Cu2+ bilden. Dabei gelten die folgenden Standardpotenziale (298;15 K, 1013;25 hPa, lösliche Stoffe mit c D 1 mol=dm3 /: –  +  * Cu2+  Cu(aq) (aq) C 2 e )

E10 D 0;153 V

 * Cu+(aq) C e–  )  Cu.s/

E20 D 0;522 V

–   * Cu2+  Cu.s/ (aq) C 2 e )

E30

a) Disproportioniert Cu+(aq) freiwillig in Cu(s) und Cu2+ (aq) ? Begründen Sie Ihre Aussage durch eine Rechnung. b) Berechnen Sie den Wert von E30 . 196

Für die Reaktionen 2+  * Zn.s/ C Cu2+  Zn(aq) C Cu(s) (aq) )

(I)

+  * 2Ag.s/ C Cu2+  2 Ag(aq) C Cu(s) (aq) )

(II) (III)

 * 2 H+.aq/ C 2 OH–(aq) )  2 H2 O.l/

ist mit gegebenen Standardwerten und ermittelten Messergebnissen (Tab. 4.7 bis 4.9) die Gibbs-Helmholtz-Gleichung zu bestätigen. Tab. 4.7

B H0 - und S 0 -Werte der Reaktanden von Aufgabe 196. Zn(s)

kJ

B H0 mol

S 0 molJ  K

Tab. 4.8

Cu2+ (aq)

Zn2+ (aq)

Cu(s)

Ag(s)

Ag+(aq)

H+(aq)

OH–(aq)

H2 O(l)

0

65

154

0

0

106

0

230

286

42

100

112

33

43

73

0

11

70

Kalorimetrische Messergebnisse von Aufgabe 196. Reaktion im Kalorimeter

197

Nr.

Umsatz von

T.K/

(I) (II) (III)

3

10,6 1,7 6,7

50 cm 0,2 M CuSO4 -Lsg. mit ca. 2 g Zn(pulv) 50 cm3 0,1 M AgNO3 -Lsg. mit ca. 2 g Zn(pulv) 50 cm3 1 M HCL-Lsg. mit 50 cm3 1 M NaOH

Berechnen Sie mit Hilfe der thermodynamischen Daten das Standardpotenzial E 0 (Ni=Ni2+ ). In der Praxis ist es häufig umgekehrt, man berechnet thermodynamische Größen einer Zellreaktion aus den gemessenen Werten einer entsprechenden Zelle.

B H (kJ/mol) S0 (J/(mol  K)) 0

H2(g)

H+(aq)

OH–(aq)

H2 O(l)

H3 O+(aq)

Ni(s)

Ni2+ (aq)

NiCl2(s)

0 130,68

0 0

229,99 10,79

285,83 69,91

285,83 69,91

0 31,21

63,95 159,26

316 107

296

4 Aufgaben ohne Lösung

Tab. 4.9 Potenziometrische Messergebnisse von Aufgabe 196. Reaktion in der galvanischen Zelle

198

Nr.

Anordnung

(I) (II) (III)

Zn=Zn2+ (1 M) // Cu2+ (1 M) / Cu Ag=Ag+ (0,1 M) // Cu2+ (0,05 M) / Cu

ŒPt H2 =2 H+ (1N) // 2OH– (1 M) / (H2 O) 12 O2 Pt

E (V) ı ı 25 C 85 C 1,110 0,44 0,41

1,103 0,38 0,43

Galvanische Überzüge aus metallischem Chrom können durch Elektrolyse einer Chromsäurelösung angefertigt werden. Ein Elektrolysegefäß wurde mit 100 dm3 Lösung gefüllt, die 230 g=dm3, „wasserfreie Chromsäure“ (CrO3 ) enthielt. Die Elektrolyse wurde bei einer Stromstärke von 1500 A 10 h lang durchgeführt. Die mit Chrom überzogenen Gegenstände bildeten die Kathode, die Anode veränderte sich nicht. Die Massenzunahme an der Kathode betrug 670 g, außerdem entstanden an der Kathode und an der Anode Gase. a) Berechnen Sie die prozentuale Stromausbeute für die Abscheidung von metallischem Chrom an der Kathode. b) Berechnen Sie die Volumina der Gase, die an der Kathode bzw. an der Anode entstehen (25 ı C, 1;013 bar).

199

Es werden 20 cm3 0;1 M Sn2+ -haltige Lösung potenziometrisch mit 0;2 M Fe3+ -Lösung bei 25 ı C titriert. Die entsprechenden Standardpotenziale lauten: 2+ -   * Sn4+  Sn(aq) (aq) C 2e ) 2+ -   * Fe3+  Fe(aq) (aq) C e )

E 0 D 0;154 V E 0 D 0;771 V :

Referenzelektrode ist eine Kalomelelektrode (EKalomel D 0;242 V). 199.1 Geben Sie die Gleichung für die Redoxreaktion an. Bestimmen Sie die Änderung der freien Reaktionsenthalpie im Standardzustand G 0 und die Gleichgewichtskonstante K . 199.2 Berechnen Sie die Spannung E der Zelle, a) wenn 5 cm3 der Fe3+ -Lösung zugegeben werden, b) am Äquivalenzpunkt, c) wenn 30 cm3 der Fe3+ -Lösung zugegeben werden. 200

Uran kann Ionen mit unterschiedlichen Oxidationszahlen bilden: + –  4+  * [UO2 ]2+  U(aq) C 2 H2 O(l) (aq) C 4 H(aq) C 2 e )

E10 D C0;32 V

+ –   * [UO2 ]2+  U(s) C 2 H2 O(l) (aq) C 4 H(aq) C 6 e )

E20 D 0;82 V

–  +  * [UO2 ]2+  [UO2 ](aq) (aq) C e )

E30 D C0;06 V

–  3+  * U4+  U(aq) (aq) C e )

E50 D 0;63 V

a) Zeichnen Sie ein Latimer-Diagramm und bestimmen Sie daraus EU03+ /U . Begründen Sie, welche dieser Spezies disproportionieren? Formulieren Sie die Reaktionsgleichung(en).

4.11 Homogene chemische Gleichgewichtsreaktionen

297

b) Berechnen Sie die Gleichgewichtskonstante für die Disproportionierung von U3+ . Hinweis: Latimer-Diagramme sind eine graphische Darstellung von Reduktionspotenzialen von Halbreaktionen (Halbzellen, elektrochemische Elektroden), jeweils für die verschiedenen Oxidationsstufen eines Elements. Üblicherweise steht das Element in seiner größten Oxidationszahl ganz links, nach rechts nimmt die Oxidationszahl ab. Die einzelnen Stufen sind mit Pfeilen verbunden, über denen das Reduktionspotenzial der Halbreaktion steht. Diese können sich auf Standardbedingungen (25 ı C, c D 1 mol=dm3 ) beziehen oder auf beliebige andere angegebene Bedingungen.

4.11.6

Säure-Base-Reaktionen

201

Die Dissoziationskonstante (Säurekonstante) der Essigsäure beträgt KS D 1;75  105 mol=dm3 . Berechnen Sie von einer a) 2 M, b) 1 M und c) 0;1 M Essigsäure jeweils den Dissoziationsgrad ˛. Was sagen die Ergebnisse aus?

202

Die Dissoziationskonstante (Säurekonstante) von Essigsäure in wässriger Lösung beträgt bei 10 ı C KS D 1;79  105 mol=dm3 und bei 40 ı C KS D 1;87  105 mol=dm3 . Wie groß ist im genannten Temperaturbereich die Ionisationsenthalpie (Dissoziationsenthalpie)?

203

Das Einleiten der schwachen Säure Schwefelwasserstoff in wässriges Kupfer(II)-sulfat führt in der Lösung zu einer starken Säure. Erklären Sie den scheinbaren Widerspruch zur Brönsted’ schen-Theorie!

204

Es werden 30 cm3 Ba(OH)2 -Lösung (c D 0;1 mol=dm3) zu 30 cm3 H2 SO4 (c D 0;1 mol=dm3 ) gegeben und T1 gemessen. Das Experiment wird mit je 90 cm3 wiederholt und T2 gemessen. Welche Aussage ist richtig? A) T2 D T1 C) T2 D 32  T1

205

B) T2 D 3  T1 D) T2 D 13  T1

Gegeben seien die thermodynamischen Daten:

B H0 (kJ  mol1 ) S0 (J  mol1  K1 ) B G0 (kJ  mol1 )

1

B H (kJ  mol ) S0 (J  mol1  K1 ) B G0 (kJ  mol1 ) 0

HCN(l)

HCN(g)

HCN(aq)

CN–(aq)

108,87 112,84 –

– 201,78 –

– – 111,54

146,13 104,67 –

H+(aq)

N2(g)

H2(g)

0 0 0

0 191,61 0

0 130,68 0

C(s) 0 5,74 0

T0 D 298 K

a) Berechnen Sie die freie Standardbildungsenthalpie B G 0 für HCN(l) und CN–(aq) . Begründen Sie, warum HCN(l) unter Standardbedingungen nicht in die Elemente zerfällt. b) HCN(l) siedet bei 25;7 ı C. Berechnen Sie die Verdampfungsenthalpie HVd . Wie lange muss man ein Heizgerät mit der Leistung 10 W mindestens anschließen, um 100 g HCN zu verdampfen?

298

4 Aufgaben ohne Lösung

 * c) Es wird das Dissoziationsgleichgewicht von HCN(aq) in Wasser betrachtet: HCN(aq) )  H+aq C CN–(aq) . Geben Sie den pKs-Wert (protochemisches Standardpotenzial) von HCN als Funktion von G 0 dieser Reaktion an. Berechnen Sie G 0 und pKs. d) Eine 0;05 M Lösung von NaCN in Wasser zeigt einen pH-Wert (protochemisches Potenzial) von 11,00. Berechnen Sie aus diesen Angaben erneut den pKs-Wert, und vergleichen Sie ihn mit dem in c) errechneten Wert. Wird die Henderson-Hasselbalch-Gleichung Base bestätigt? pH D pKs C lg ccSäure 206

Der Protolysegrad (Dissoziationsgrad) des Wassers beträgt bei Standardbedingungen (25 ı C, 1;01325 bar) ˛ D 1;342  108 . Damit sind die übrigen Protolysekenngrößen des Wassers zugänglich. 206.1 Ermitteln Sie mit dem ˛-Wert durch geeignete Berechnungen: (I) alle K- und pK-Werte des Wassers (Kprot , KS , KB , KD , KW , pKS , pKB , pKS , pH ), (II) R G für die Autoprotolyse des Wassers: a) unter Standardbedingungen, b) für den Fall, dass je 1 mol=dm3 H3 O+(aq) und OH–(aq) entstehen, c) bei pH-Werten von 0, 7 und 14. 206.2 KW erreicht beim Erwärmen auf 100 ı C und bei 101 325 Pa den Wert von 74  1014 mol2 =.dm3/2 . Berechnen Sie die Reaktionsenthalpie R H ! Welcher R GWert ergibt sich dann? Abkürzungen: Kprot : Konstante der Autoprotolyse; KS : Säurekonstante; KB : Basekonstante; KD : Dissoziationskonstante; KW : Ionenprodukt; pKS : protochemisches Standardpotenzial; pH : protochemisches Potenzial; ˛: Protolysegrad (Dissoziationsgrad); pH .PMK/: protomotorische Kraft

207

Begründen Sie mit Nutzung der gegebenen pKs-Werte, ob folgende denkbare S/B-Reaktionen bei 25 ı C und 1;01325 bar freiwillig ablaufen: (a) (c) (e) (g) (i)

NH+4(aq) C CH3 COO–(aq) AlCl3(aq) C NH3(aq) C6 H5 OH(s) C OH–(aq) HNO2(aq) C C6 H5 NH–(aq) NH4 Cl(s) C KOH(s)

Korrespondierende Base

Säure

Cl– HSO–4 H2 O SO2– 4 (+) NH3 CH2 COO– NO–2 C6 H5 NH– CH3 COO–

HCl H2 SO4 H3 O+ HSO–4 (+) NH3 CH2 COOH HNO2 C6 H5 NH2 CH3 COOH

(b) (d) (f) (h) (j)

HSO–4(aq) C HCO–3(aq) H2 SO4(aq) C NaCl(s) H3 O+(aq) C (+)NH3 CH2 COO(–) (aq) H2 S(g) C NO–2(aq) H2 O2 C OH–(aq) pKs

7,00 3,00 1,745 1,96 2,34 3,34 4,58 4,75

Korrespondierende Base

Säure

[Al(H2 O)5 OH]2+ HCO–3 HS– NH3 C6 H5 O– CO2– 3 HO–2 OH–

[Al(H2 O)6 ]3+ H2 CO3 H2 S NH+4 C6 H5 OH HCO–3 H2 O2 H2 O

pKs 4,97 6,36 6,99 9,25 9,90 10,33 11,65 15,745

4.12 Heterogene chemische Gleichgewichtsreaktionen

299

4.12 Heterogene chemische Gleichgewichtsreaktionen 4.12.1

Kohlenstoff-Verbindungen und CaSO4 -Hydrate

208

Branntkalk (CaO) wird technisch durch Erhitzen von Kalkstein (Kalziumkarbonat, CaCO3 ) bei 900–1000 ı C hergestellt. Bei 920 ı C beträgt die Gleichgewichtskonstante für diese Reaktion K D 1;34. Die Reaktion wird in einem Gefäß durchgeführt, in dem konstant ein Druck von 1;0  105 Pa herrscht. a) Geben Sie die Reaktionsgleichung an. b) Berechnen Sie den Kohlenstoffdioxiddruck im Gleichgewicht mit den beiden Feststoffen bei 920 ı C.

209

Kalkstein wird in großen Mengen als Rohstoff für die Bauindustrie benötigt. Der technische Prozess des Kalkbrennens ist seit dem Altertum bekannt. Bei diesem Prozess hängt der Partialdruck von CO2 , p(CO2 ), von der Temperatur ab: T (K)

800

900

1000

1100

1200

1300

p(CO2 ) (hPa)

0,50

10,0

112

800

4050

16 100

a) Berechnen Sie G für den Zerfall von Kalziumcarbonat bei jeder der angegebenen Temperaturen. b) Berechnen Sie die Enthalpieänderung H 0 und die Entropieänderung S 0 . Geben Sie an, warum man das Vorzeichen von S 0 schon aus der Reaktionsgleichung voraussagen könnte. c) Geben Sie an, oberhalb welcher Temperatur (in ı C) die Reaktion spontan verläuft (Temperatur auf 10 ı C genau). Standarddruck p0 D 1;000  105 Pa; H und S sollen nicht temperaturabhängig sein. 210

In einem Gefäß mit dem Volumen 830 dm3 befinden sich bei einer Temperatur von 1000 K die folgenden Stoffportionen: 1 mol Kohlenstoffdioxid, 0;25 mol Kalziumoxid und 0;25 mol Magnesiumoxid. Das System wird so langsam komprimiert, dass sich jedes Gleichgewicht einstellen kann. Bei 1000 K gelten folgenden Gleichgewichtskonstanten:  * CaCO3  )  CaO C CO2  * MgCO3  )  MgO C CO2

Kp1 D 2;0  104 Pa Kp2 D 4;0  104 Pa :

Zeichnen Sie den Graphen der Funktion p D f .V / und begründen Sie den Verlauf. 211

 * Für die Reaktion MgCO3(s) )  MgO(s) C CO2(g) beträgt bei 545 ı C der Dissoziationsdruck ı 110 110 Pa, bei 565 C 162 546 Pa. Zu berechnen ist die mittlere molare Reaktionsenthalpie R H .

212

Hauptbestandteil der Konstruktion von Bauwerken ist Beton. Deshalb stehen die chemischen Reaktionen seiner Produktion und Zerstörung im Blickpunkt. Beton wird aus einer Mischung von Zement, Wasser, Sand und kleinen Steinen hergestellt. Zement besteht hauptsächlich aus Kalziumsilikaten und Kalziumaluminaten, die durch Erhitzen und Mahlen aus Lehm und Kalk hergestellt werden. In einem späteren Produktionsschritt wird eine kleine Menge Gips, CaSO4  2 H2 O, zugegeben, um die nachfolgende Aushärtung des Zementes zu verbessern. Durch die erhöhten Temperaturen im letzten Produktionsschritt kann es zur Bildung von

300

4 Aufgaben ohne Lösung

unerwünschtem Hemihydrat, CaSO4  12 H2 O, kommen. Beachten Sie die folgende Reaktion: 1 1  * ŒCaSO4  2 H2 O.s/  )  ŒCaSO4  2 H2 O.s/ C 1 2 H2 O.g/ . Die folgenden thermodynamischen Daten gelten bei p D 1 bar und bei 25 ı C. a) CaSO4  2 H2 O(s) CaSO4  12 H2 O(s) H2 O(g)

B H0 (kJ  mol)

S0 (J=K  mol)

2021,0 1575,0 241,8

194,0 130,5 188,6

Berechnen Sie R H 0 (in kJ) für die Umwandlung von 1;00 kg ŒCaSO4  2 H2 O.s/ zu CaSO4  12 H2 O.s/ . Ist diese Reaktion exotherm oder endotherm? b) Berechnen Sie den Gleichgewichtsdruck (in bar) des Wasserdampfes in einem geschlossenen Gefäß, das ŒCaSO4  2H2 O.s/ , ŒCaSO4  H2 O.s/ und H2 O(g) bei 25 ı C enthält. c) Berechnen Sie die Temperatur, bei der der Gleichgewichtsdruck des Wasserdampfes im beschriebenen System von b) 1;00 bar beträgt. Nehmen Sie dabei an, dass R H und R S temperaturunabhängig sind. 213

Boudouard-Gleichgewicht Eisen ist das wichtigste Gebrauchsmetall. Bei der Erzeugung von Roheisen in Hochöfen werden oxidische Eisenerze durch Kohlenstoffmonoxid reduziert. Das benötigte Kohlenstoffmonoxid entsteht u. a. im unteren Teil des Hochofens nach dem so genannten BoudouardGleichgewicht. Das gebildete Kohlenstoffmonoxid reduziert in der Reduktionszone Eisenoxide, die an dieser Stelle aus Hämatit (Fe2 O3 ), Magnetit (Fe3 O4 ), hauptsächlich aber aus Wüstit (FeO) bestehen. a) Geben Sie eine abgestimmte Reaktionsgleichung für das Boudouard-Gleichgewicht an. b) Berechnen Sie für verschiedene Temperaturen (300 ı C, 400 ı C, . . . , 1300 ı C) die Konstante Kp für dieses Gleichgewicht. Wie viel Volumenprozent Kohlenstoffdioxid bzw. Kohlenstoffmonoxid liegen bei den jeweiligen Temperaturen bei einem Gesamtdruck von p D 102;5 kPa vor? c) Stellen Sie die Ergebnisse von b) graphisch dar. Welche Schlussfolgerungen ergeben sich daraus? d) Welche Rolle spielt das Boudouard-Gleichgewicht allgemein bei technischen Prozessen? e) Geben Sie eine abgestimmte Reaktionsgleichung für die Reduktion von Magnetit durch Kohlenstoffmonoxid an. Die Gase sind für die Berechnungen als ideale Gase anzusehen. Die folgenden Angaben gelten für 298 K und 1 bar:

Kohlenstoff Sauerstoff Kohlenstoffmonoxid Kohlenstoffdioxid ./

214

B H0 [kJ=mol]

S0 [J=(mol K)]

Cp [J=(mol K)] ./

0 0 110,53 393,51

5,74 205,14 197,67 213,74

20,47 34,42 32,62 53,13

Durchschnittswerte für den geforderten Temperaturbereich

CO-Gas wird häufig in der organischen Synthese benutzt. Es kann durch die Reaktion von CO2 mit Graphit hergestellt werden.

4.12 Heterogene chemische Gleichgewichtsreaktionen

301

a) Zeigen Sie mit Hilfe der thermodynamischen Daten, dass die Gleichgewichtskonstante bei 298;15 K kleiner als eins ist. B H0 (kJ=mol)

S0 (J=(K  mol)

393,51 110,53 –

213,75 197,67 5,74

CO2(g) CO(g) C (Graphit)

b) Bestimmen Sie die Temperatur, bei der die Reaktion die Gleichgewichtskonstante K D 1 hat. Vernachlässigen Sie die geringen Änderungen der thermodynamischen Daten. c) Die obige Reaktion a) wird zwischen CO2 und einem Überschuss von heißem Graphit bei 800 ı C und einem Gesamtdruck von 5;0 bar ausgeführt. Die Gleichgewichtskonstante Kp beträgt unter diesen Bedingungen 10,0. Berechnen Sie den Partialdruck von CO im Gleichgewicht.

4.12.2 215

Fällungsreaktionen

In Tab. 4.10 ist die unterschiedliche Löslichkeit der Niederschläge von AlCl, AgBr, AgJ und Ag2 S in Lösungen von NH3 , Na2 S2 O3 und KCN angegeben. Tab. 4.10

Löslichkeit von Silbersalzen in verschiedenen Lösungsmitteln. löslich in wässrigen Lösungen von

Niederschlag AgCl(s) AgBr(s) AgJ(s) Ag2 S(s)

NH3

Na2 S2 O3

KCN

ja ja/nein nein nein

ja ja nein nein

ja ja ja nein

Geben Sie mit Tab. 4.11 und den pKs-Werten von H2 O (15,745) und NH+4(aq) (9,25) eine Begründung. Tab. 4.11

Gleichgewichtskonstanten (KL ; Kz; pK) einiger Silberverbindungen.

Mem Xn

Löslichkeitsprodukt KL (mol/dm3 )2

Zerfallskonstante Kz (mol/dm3 )2

pK

AgCl(s) AgBr(s) AgJ(s) Ag2 S(s) [Ag(NH3 )2 ]+(aq) [Ag(S2 O3 )2 ]3– (aq) [Ag(CN)2 ]+(aq)

1,6  1010 6,3  1013 1,5  1016 7,9  1051 (mol/dm3 )3 – – –

– – – – 7,7  108 2,5  1014 2,4  1019

9,8 12,2 15,8 50,1 7,11 13,6 18,6

302

4 Aufgaben ohne Lösung

216

Erklären Sie den exergonen Verlauf des Erhärtens von Kalkmörtel sowie von Gipsbrei an der Luft.   pKS .H2 CO3 / D 6;36; pKS .HCO–3 / D 10;33; pKS .H2 O/ D 15;745

pKL .CaCO3 / D 8;3; pKL .CaSO4(Brei) / D 4;2; pKZerf Ca.H2 O/2 SO4.s/ D 9;8

217

Die Elektrodenpotenziale von Kupferionen können in einem so genannten Latimer-Diagramm dargestellt werden:Die Werte der jeweiligen Halbreaktion (Halbzelle) sind darin über den Pfeilen angegeben: Cu2+ (aq)

E 0 = 0,153 V

Cu+(aq)

E 0 = 0,521 V

Cu(s)

x

Abb. 4.11

Latimer-Diagramm von Kupfer.

a) Benutzen Sie dieses Diagramm, um x zu berechnen. b) Berechnen Sie die Gleichgewichtskonstante für die Disproportionierung von Cu+ -Ionen 2+  * nach der Gleichung 2 Cu+(aq)  )  Cu(aq) C Cu(s) . c) Nimmt man Kupfer(I)-iodid (cI  D 1 mol=dm3/ an Stelle von Cu+(aq) in das LatimerE 0 D0;147 V

Diagramm auf, ergibt sich: Cu I.aq/ ! Cu.s/ . Berechnen Sie das Löslichkeitsprodukt KL von Kupfer(I)-iodid. d) Bestimmen Sie G 0 für die Reduktion von Cu2+ (aq) -Ionen nach der Gleichung – –   * Cu2+  Cu I(s) # : (aq) C I(aq) C e ) –  * e) Berechnen Sie für die Reaktion 2 Cu2+  2 CuI(s) # + I2(s) die Gleichgewichts(aq) C 4 I(aq) ) konstante. Begründen Sie, warum darauf die Disproportionierung von Cu+ -Ionen nach b) keinen Einfluss nimmt. Beschreiben Sie die analytische Bedeutung dieser Reaktion. .EI02 =2I– D 0;535 V/.

4.12.3

Metalloxide

218

 * Für die Reaktion 3 Fe(s) C 4 H2 O(g)  )  Fe3 O4(s) C 4 H2(g) wurde bei 200 ı C zu Beginn ein Partialdruck des Wasserdampfes von pH2 O D 133;242 kPa und nach Einstellung des Gleichgewichtes ein Partialdruck des Wasserstoffs von pH2 D 127;163 kPa gemessen. a) Berechnen Sie Kp. b) Welche Masse Wasserstoff mH2 entsteht, wenn die Reaktion in einem geschlossenen Behälter von 4 dm3 Inhalt mit Wasserdampf von 300 kPa bei 200 ı C durchgeführt wird?

219

 * Für die Reaktion Fe(s) C H2 O(s)  )  FeO(s) C H2(g) beträgt bei 1000 K R G D 4933 J=mol. Wie hoch ist der Partialdruck des Wasserstoffs bei einem Gesamtdruck von p D 202 650 Pa?

220

Der Atomkern von Eisen ist der stabilste aller Elemente und reichert sich im Zentrum von roten Riesensternen an. Dort findet auch die Kernsynthese vieler lebenswichtiger Elemente (z. B. C, N, O, P, S) statt. Das führt dazu, dass Eisen unter den schweren Elementen ziemlich häufig im Universum vorkommt. Eisen ist auch auf der Erde sehr häufig. Die Technologie

4.12 Heterogene chemische Gleichgewichtsreaktionen

303

der Eisenreduktion war einer der Schlüsselschritte in der Entwicklung der menschlichen Zivilisation. Die wichtigsten Reaktionen im Hochofen sind hier zusammengefasst: .1/

 * C.s/ C O2.g/  )  CO2.g/

.2/

 * CO2.g/ C C.s/ )  2 CO.g/

R H 0 D 393;51 kJ=mol R H 0 D 172;46 kJ=mol

 * Fe2 O3.s/ C CO.g/ )  Fe.s/ C CO2.g/

.3/

R H 0 D ?

220.1 Geben Sie das Reduktionsmittel in jeder Reaktion an. 220.2 Stimmen Sie die Gleichung von Reaktion (3) ab, und berechnen Sie die Gleichgewichtskonstante der Reaktion (3) bei 1200 ı C.

B H (kJ  mol) S0 (J=(mol  K)) 0

221

Fe2 O3(s)

Fe(s)

C(s)

CO(g)

CO2(g)

824,2 87,4

– 27,28

– 5,74

– 197,674

– 213,4

Gegeben sind die Standardbildungsenthalpie von Silber(I)-oxid B H 0 D 31;05 kJ=mol und die Entropieänderung für den Zerfallsprozess R S 0 D 66;3 J=.mol  K/. Berechnen Sie die Freie Enthalpie R G für die thermische Zersetzung von Silber(I)-oxid bei 298 K. Bei welcher Temperatur ist diese Reaktion spontan? Betrachten Sie B H 0 und R S 0 als temperaturunabhängig.

4.12.4

Verteilung eines Stoffes zwischen zwei Phasen

222

Elementares Iod ist nur schlecht wasserlöslich, in der Gegenwart von Iodid-Ionen steigt die Löslichkeit im Wasser aber stark an, was auf die Bildung von Triiodid-Anionen zurückzuführen –  * ist: I2(s) C I–(aq)  )  I3(aq) . Eine bestimmte Menge I2(s) wird zusammen mit CS2 und einer wässrigen KI-Lösung der Konzentration c0.kJ / D 31;25  103 mol=dm3 bis zur Gleichgewichtseinstellung geschüttelt. Danach wird die Konzentration von I2(s) durch Titration mit Na2 S2 O3 bestimmt, in der CS2 -Phase beträgt sie 32;33 g=dm3 und in der wässrigen Lösung 1;145 g=dm3. Der Verteilungskoeffizient für I2(s) zwischen CS2 und Wasser ist 585. Berechnen Sie die Gleichgewichtskonstante für die Bildung der Triiodid-Anionen.

223

Die folgenden Daten beziehen sich auf die Verteilung der Substanz Q zwischen Benzen (Benzol) und Wasser bei 6 ı C. CB und CW sind die Gleichgewichtskonzentrationen der in Benzen bzw. Wasser vorliegenden Spezies. Nehmen Sie an, dass in Benzen nur eine Spezies von Q vorliegt, unabhängig von Konzentration und Temperatur. Konzentration (mol/dm3 )

CB

CW

0,0118 0,0478 0,0981 0,156

0,00281 0,00566 0,00812 0,0102

Zeigen Sie durch eine Rechnung, ob in Benzen monomeres oder dimeres Q vorliegt. Nehmen Sie dabei an, dass Q in Wasser monomer ist.

304

4 Aufgaben ohne Lösung

224

Der Verteilungskoeffizient von Chinon zwischen Wasser und Diethylether beträgt bei 20 ı C K D 0;326. Wie viel Gramm Chinon verbleiben in Wasser, wenn wir eine Lösung von 0;3 g=dm3 Wasser mit dem gleichen Volumen Diethylether schütteln?

225

Für Iod beträgt der Verteilungskoeffizient im System CCl4 /Wasser bei 20 ı C K D 80, im System CS2 /Wasser bei gleicher Temperatur K D 600. Welche Schlussfolgerung ergibt sich daraus für das Ausschütteln eines Stoffes aus einem Lösungsmittel mit einem zweiten Lösungsmittel?

226

Warum muss nach einem Tauchgang ein Taucher beim Aufsteigen zeitlich dosierte Zwangspausen einlegen? Belegen Sie diese Maßnahme mit der Lösung folgender Aufgabe: Ein Taucher steigt in einem Anzug, der bei 25 ı C mit Luft (80 % N2 , 20 % O2 ) gefüllt ist, bis auf eine Wassertiefe von 200 m hinunter. Welches Volumen N2 wird bei plötzlicher Dekompression je cm3 Blut, das im wesentlichen aus Wasser bestehen soll, freigesetzt? Die Henry298 Konstante für Stickstoff in Wasser bei 25 ı C beträgt: KH(N D 6;1  104 mol=.cm3  bar/. 2)

227

Leiten Sie für das schwer lösliche Salz Am Bn eine Gleichung her, die den Zusammenhang von Löslichkeit l0 und der Gleichgewichtskonstanten KL (Löslichkeitsprodukt) verdeutlicht. Wie n+ m–  * lässt sich G 0 für den Prozess Am Bn )  mA C nB berechnen?

228

2– Berechnen Sie die Löslichkeit von Bi2 S3 in a) H2 O(l) , b) in 0;2 M Bi3+ (aq) und c) in 0;2 M S(aq) ? (KL(Bi2 S3 ) D 1;6  1072 .mol=dm3 /5 )

229

Aus einem Abwasser sollen 5 g Hg+(aq) mit H2 S(g) als Sulfid gefällt werden. a) Welches Volumen H2 S(g) im Standardzustand wird benötigt? b) Welche Masse Hg2 S bleibt je Liter Abwasser gelöst? KL(Hg2 S) D 1  1045 .mol=dm3 /3

230

Gegeben sind folgende 2 Lösungen: Lösung A ist eine Portion von 500 ml einer gesättigten Magnesiumhydroxidlösung Lösung B ist eine Ammoniaklösung, die auf die folgende Weise hergestellt wurde: 25 Liter Ammoniak wurden bei 18 ı C und einem Druck von p D 1;0 bar in einer Portion Wasser vollständig gelöst, die Portion dann auf 500 ml aufgefüllt. a) Berechnen Sie die pH-Werte der Lösungen A und B. b) Welche Masse an Magnesiumhydroxid fällt aus, wenn man die beiden Lösungen A und B zusammengießt.

231

Bei der Fällungstitration werden Ionen des Titranden durch Ionen des Titrators in schwerlösliche Verbindungen [KL(Am Bn ) 109 .mol=dm3/mCn ] überführt. 231.1 Formulieren Sie die Reaktionsgleichungen für die Farbindikation der Argentometrie und der Rhodanometrie. 231.2 Die nachfolgenden Kurven der argentometrischen Halogenidbestimmung mit dem Indikator K2 CrO4(aq) wurden durch Titration von jeweils 100 ml 0;1 M NaX(aq) (X D Cl, Br, J) mit 0;1 M AgNO3(aq) erhalten. 231.2.1 Berechnen Sie den geringen Überschuss x an Ag+(aq) , der jeweils zur Feststellung des Äquivalenzpunktes Ä.AgX/ im Titranden notwendig ist.

4.13 Phasengleichgewichte und Phasensysteme

305

0,0

pAg+ (Titrand)

3,7

Ä Ag CrO 2 4

4,9

Ä

AgCl Ä AgBr

(a)

6,1 7,9

Ä

(c)

9,0

(a)

11,0

(b)

15,0

(c)

AgJ

(b)

pAg+ = −lg

cAg+ mol/dm3

Ä Aquivalenzpunkt 25˚C; 1,01325 bar

20,0 0

10,0

20,0

ml 0,1 M AgNO3 (Titrator)

Abb. 4.12 Titrationskurven für die Fällungstitration von 100 ml 0;1 M Halogenidlösung mit 0;1 M AgNO3 -Lösung.

231.2.2 Welcher Zusammenhang besteht im Kurvenverlauf zwischen KL und der Änderung von cAgC am Äquivalenzpunkt Ä? (aq)

4.13 Phasengleichgewichte und Phasensysteme 4.13.1

Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung

232

Bei 100 ı C werden 10 mol Wasserdampf reversibel zu flüssigem Wasser kondensiert. Die Verdampfungsenthalpie bei 101 325 Pa beträgt: HV d D 2;26 kJ=g. Bei diesem Phasenübergang sind die Volumenarbeit W und Änderungen von U , H , S, F und G zu berechnen.

233

Es gibt verschiedene Typen von Leuchtkörpern, bei denen Licht dadurch erzeugt wird, dass in einer mit Quecksilberdampf gefüllten Röhre eine Gasentladung erzeugt wird. Die Lichterzeugung ist optimal, wenn der Quecksilberdampfdruck (pHg / in der Gasentladungsröhre zwischen

306

4 Aufgaben ohne Lösung

1 und 4 Pa liegt. Für Hg sind bei p D 105 Pa (1 bar) gegeben: HV0d D 61 500 J=mol, Siedetemperatur: 357 ı C, Erstarrungstemperatur: 39 ı C. 233.1 Im Typ A dieser Leuchtkörper wird der Quecksilberdampf durch einen Tropfen flüssiges Quecksilber in der Röhre erzeugt. a) Berechnen Sie aus den gegebenen Angaben SVd für den Vorgang Hg(l) ! Hg(g) bei dem Druck von 1 bar. b) Berechnen Sie das Temperaturintervall, in dem eine Lampe des Typs A optimale Lichtausbeute besitzt. Berechnen Sie den Quecksilberdampfdruck in dieser Lampe bei 25 ı C. 233.2 Im Typ B dieser Leuchtkörper mit höherer Innentemperatur (Energiesparlampen) wird eine Lösung von Quecksilber in einem anderen Metall (z. B. Indium) verwendet. Für die Auflösung von flüssigem Quecksilber in flüssigem Indium, Hg(l) ! Hg(In)(l) , gilt mit L H D 9000 J=mol und dem Molenbruch Hg : L G D L H C RT ln Hg . a) Geben Sie eine Gleichung für die Änderung der Gibbs-Energie für die Verdampfung von flüssigem Quecksilber aus einer flüssigen InHg-Legierung mit Hg an, also für den Vorgang Hg(In)(l) ! Hg(g) . b) Es sei Hg D 0;03. Berechnen Sie das Temperaturintervall, in dem eine Lampe des Typs B optimale Lichtausbeute besitzt. Berechnen Sie den Quecksilberdampfdruck in einer solchen Lampe bei 25 ı C unter der Annahme, dass die Legierung bei dieser Temperatur nicht erstarrt. 233.3 Tatsächlich erstarrt die InHg-Legierung knapp unter der Erstarrungstemperatur von reinem Indium bei 156 ı C. Dann löst sich Quecksilber in dem Indiumkristall. Die intermolekularen Kräfte zwischen Quecksilber und Indium im Kristall und in der Lösung sollen als gleich angenommen werden. a) Geben Sie an und begründen Sie, ob der Quecksilberdampfdruck bei 25 ı C unter diesen Bedingungen größer, kleiner oder gleich dem in Aufgabenteil 233.2 b für diese Temperatur berechneten ist. b) Geben Sie einen Grund dafür an, warum in solchen Lampen immer Quecksilberlegierungen benutzt werden, die knapp unterhalb der Arbeitstemperatur erstarren. 233.4 Beschreiben Sie in der Quecksilber-Niederdruck-Leuchtstofflampe die Rolle und Zusammensetzung des auf der Glasinnenfläche aufgebrachten Luminophors (Leuchtstoffs). 234

Bei welcher Temperatur schmilzt Eis bei einem Druck von 100 bar. Die Dichten betragen für Wasser 0;999 g  cm3 und für Eis 0;917 g  cm3 . Die molare Schmelzenthalpie beträgt 6030 J=mol.

235

Beim Schlittschuhlaufen schmilzt durch den Druck der Kufen das Eis, wodurch eine dünne, schmierende Wasserschicht erzeugt wird. Überprüfen Sie diese Behauptung. Gehen Sie von einem 80 kg schweren Mann aus, der Schlittschuhe mit einer Kufenfläche von 200 mm 1 mm benutzt. Welchen Schmelzpunkt hat das Eis unter dem Druck dieser Kufen, wenn sich die Gewichtskraft gleichmäßig auf die Kufenfläche verteilt? Bei 101;32 kPa und 273;15 K betragen die Dichten von Eis D 0;917  103 kg  m3 und Wasser D 0;999  103 kg  m3 . Die molare Schmelzenthalpie von Eis beträgt 6030 J=mol.

4.13 Phasengleichgewichte und Phasensysteme

307

236

Bei 22 ı C beträgt der Dampfdruck des Wassers 26;434 mbar. Wie groß ist der Dampfdruck des Wassers bei 35 ı C? Die spez. Verdampfungswärme des Wassers ist mit Hsp.Vd D 2;455 kJ=g gegeben.

237

Berechnen Sie die Verdampfungswärme des Wassers aus den Werten seines Dampfdruckes. ı

Temperatur C

Dampfdruck p (mbar)

0 100

6,105 1013,25

238

Berechnen Sie die molare Verdampfungsenthalpie des Wassers bei 100 ı C aus folgenden Daten: Dampfdruck p1 D 1;01361 bar bei 100;01 ı C; Dampfdruck p2 D 1;01290 bar bei 99;99 ı C.

239

Wie groß ist die Dampfdruckerniedrigung, wenn 20 g Glukose in 100 g Wasser von 20 ı C gelöst wurden. Der Dampfdruck des Wassers bei 20 ı C beträgt p 0 D 23;385 mbar.

240

Wie groß ist der Dampfdruck einer Lösung von 8;5 g Saccharose in 80 g Wasser bei 15 ı C? Der Wasserdampfdruck beträgt bei dieser Temperatur 17;06 mbar.

241

Welchen Gehalt an Glukose (Molenbruch und Masseprozent) hat eine wässrige Lösung, wenn bei 20 ı C ein Dampfdruck von p D 23;280 mbar gemessen wurde. Der Dampfdruck des Wassers bei 20 ı C beträgt p 0 = 23;385 mbar.

242

Beim Lösen von 4;235 g einer organischen Substanz in 41 g Diethylether sinkt dessen Dampfdruck von 477;295 mbar auf 461;295 mbar. Es ist die molare Masse des gelösten Stoffes zu berechnen.

243

Bei einer Temperatur von 20 ı C wird eine absolute Luftfeuchte von f D 6;4 g=m3 gemessen. a) Berechnen Sie die relative Luftfeuchte # bei 20 ı C .fmax(1) D 17;3 g=m3 /. b) Berechnen Sie die relative Luftfeuchte # bei 10 ı C .fmax(2) D 9;4 g=m3/. c) Bei welcher Temperatur liegt der Taupunkt ?

244

Es werden 6;8 m3 Luft von 30 ı C, die mit Wasserdampf gesättigt ist .fmax(1) D 30;3 g=m3 /, auf 0 ı C abgekühlt .fmax(2) D 4;84 g=m3 /. Berechnen Sie die Masse des Kondenswassers.

245

Bei welcher Temperatur siedet eine Lösung, die in 100 g CCl4 2;5 g Schwefel gelöst enthält? (kE.CCl4 / D 5;2132 K  kg=mol, TSd;CCl4 D 76;6 ı C)

246

Bei 25 ı C wurden 25 g Naphthalin in 100 cm3 Benzen gelöst. Berechnen Sie mit den gegebenen Daten den Siedepunkt und den Schmelzpunkt der Lösung.

Benzen

kE ŒK  kg=mol

kK ŒK  kg=mol

'.25 ı C/ Œg=cm3 

TSd ŒıC

TSm ŒıC

2,64

5,01

0,88

80,12

5,49

308 247

4 Aufgaben ohne Lösung

Bei 25 ı C wurden 8;02 g Schwefel in 120 cm3 Eisessig HAc gelöst und von der Lösung der Siedepunkt TSd und Schmelzpunkt TSm ermittelt. Berechnen Sie mit den gegebenen Daten die ebullioskopische Konstante kE und die kryoskopische Konstante kK von Eisessig HAc. HAc HAc-S-Lsg.

'.25 ı C/ Œg=cm3 

TSd [ ı C]

TSm Œ ı C

1,05 –

118,1 124,2

16,6 8,9

248

Beim Lösen von 11;7 g NaCl in 100 g H2 O wurde eine Siedepunkterhöhung von TSd D 1;024 K festgestellt. Welche molare Masse hat das Salz? .kE D 0;512 K  kg=mol/

249

Bei welcher Temperatur gefriert eine Lösung, die in 100 g Wasser 11;7 g NaCl gelöst enthält? (kk.H2 O/ D 1;86 K  kg=mol, TSm;H2 O D 0 ı C)

250

Berechnen Sie den Gefrierpunkt einer Lösung TSm;Lös , die 0;244 g einer Substanz Q mit der Molmasse M D 244 g=mol in 5;85 g Benzen bei 101;325 kPa gelöst enthält. Die molare Masse von Benzen beträgt 78;02 g=mol. Bei 101;325 kPa erstarrt reines Benzen bei 5;40 ı C. Die Schmelzwärme von Benzen beträgt 9;89 kJ=mol.

251

Beim Lösen von 0;384 g Benzaldehyd in 80 g Essigsäure wurde eine Gefrierpunktserniedrigung von TSm D 0;171 K festgestellt. Welche molare Masse hat der Aldehyd? .kk(HAc) D 3;9 K  kg=mol/.

252

Das Messprotokoll einer Molmassebestimmung enthielt folgende Eintragungen: Einwaage LM (Campher): 0;03728 g; Einwaage gel. Stoff: 0;00187 g TSm(LM) D 177 ı C

TSm(Lsg) D 169 ı C

kK(LM) D 40 kgK=mol

Wie groß ist die Molmasse des gelösten Stoffes?

4.13.2 253

Einkomponenten-Mehrphasensysteme

Der Dampfdruck von flüssigem SO2 wird durch die folgende empirische Gleichung beschrieben 1425;7K lg p(l) D C 10;4435; (p in Pa) T der von festem SO2 durch die Gleichung 1871;2K C 12;7165: T a) Berechnen Sie die Koordinaten (p;T ) des Tripelpunktes, an dem gasförmiges, flüssiges und festes SO2 im Gleichgewicht stehen. b) Berechnen Sie die Siedetemperatur bei einem Druck von p D 1;013  105 Pa. c) Wie hoch ist der Gleichgewichtsdruck des Phasengleichgewichts lg p(s) D

 * .c1 / SO2.s/ )  SO2.g/  * .c2 / SO2.l/  )  SO2.g/ bei Raumtemperatur (20 ı C)?

4.13 Phasengleichgewichte und Phasensysteme

309

d) Fertigen Sie auf Grund der berechneten Daten eine grobe Skizze des Phasendiagramms von SO2 an. e) Geben Sie anhand der Skizze an, welche Phase bei Raumtemperatur und Standarddruck stabil ist. f) Geben Sie anhand der Skizze an, ob SO2 oberhalb 50 ı C sublimieren kann, ohne vorher zu schmelzen. 254

Nachfolgendes Schema zeigt das Druck-Temperatur-Phasendiagramm von CO2 (nicht maßstabsgerecht). kritische Dichte: 0,464 g/cm3

(krit. Druck) 73,83

p (bar)

fest

flüssig

5,19 1,013

gasig

– 78,5 – 56,7

31,06 (krit. Temp.)

T (°C)

Abb. 4.13 Phasendiagramm von CO2 .

254.1 Welche Aussagen sind richtig? 254.1.1 CO2 -Gas von 4;0 bar und 10 ı C wird bei konstantem Druck abgekühlt. In diesem Prozess wird es a) zunächst flüssig und dann fest oder b) fest ohne flüssig zu werden. 254.1.2 CO2 -Gas von 4;0 bar und 10 ı C wird isotherm komprimiert. In diesem Prozess wird es a) zunächst flüssig und dann fest oder b) fest ohne flüssig zu werden. 254.2 Warum lässt sich Kohlenstoffdioxid leicht verflüssigen und warum liegt sein Schmelzpunkt oberhalb des Siedepunktes? 254.3 Berechnen Sie mit Hilfe der Daten des Phasendiagramms die molare Enthalpieänderung für die Sublimation von CO2 . Leiten Sie dazu eine begründete Arbeitsgleichung her. 254.4 Wie groß ist bei 20 ı C und 1013 mbar das Volumen VCO2 , das bei der Verdampfung von 20 cm3 Trockeneis .'Tr. D 1;53 g=cm3/ entsteht? Wie groß ist die Dichte des Kohlenstoffdioxids 'CO2 bei 20 ı C und 1013 mbar? 255

Nachfolgende Abbildung zeigt das Zustandsdiagramm von CO2 . a) b) c) d)

Geben Sie an, welchen Zustand Kohlenstoffdioxid in den Gebieten A, B bzw. C annimmt. Welche Aggregatzustände kann CO2 bei Normaldruck annehmen? Auf welchen Druck muss CO2 mindestens komprimiert werden, damit es flüssig wird? Auf welche Temperatur muss man CO2 mindestens abkühlen, damit man es kondensieren kann?

310

4 Aufgaben ohne Lösung

100 A

C

p (bar)

10

1

0,1 160

Abb. 4.14

B

180

200

220 240 T (K)

260

280

300

320

Phasendiagramm von CO2 .

e) Welche Temperatur hat Trockeneis (CO2(s) /, wenn es bei normalem Druck im Gleichgewicht mit CO2(g) steht? f) Ein Feuerlöscher enthält flüssiges CO2 . Welchem Druck muss dieser bei 20 ı C mindestens standhalten? Zeichnen Sie auch relevante Linien oder Punkte in das Diagramm. g) Die CO2 -Druckflasche in einem Labor wurde mit flüssigem CO2 gefüllt angeliefert und dann vielfach benutzt. Wie kann man nach Gebrauch feststellen, wie viel CO2 noch in ihr enthalten ist?

4.13.3 256

Zweikomponenten-Zweiphasensysteme (Binäre Systeme)

Aluminium wird technisch in einer Schmelzflusselektrolyse aus Aluminiumoxid und Kryolith Na3 AlF6 hergestellt. Dabei wird ein eutektisches Gemisch verwendet, bei dem die größtmögliche Schmelzpunkterniedrigung vorliegt. Die Abhängigkeit der Schmelztemperaturen von den Stoffmengenkonzentrationen der Bestandteile einer binären Mischung kann für einen konstanten Druck in einem Schmelzdiagramm (s. Abb. 4.15) dargestellt werden. Mit Hilfe des Gibbs’schen Phasengesetzes lässt sich für jeden Punkt im Diagramm bestimmen, wie viele Parameter ohne eine Änderung im System variiert werden können Aluminiumoxid besitzt einen Schmelzpunkt von 2045 ı C, Kryolith von 1009 ı C, das eutektische Gemisch mit einem Stoffmengenanteil von 10 % Al2 O3 schmilzt bereits bei 935 ı C. 256.1 Bestimmen Sie für die eingezeichneten Punkte 1, 2, 3 und 4 die Freiheitsgrade nach dem Gibbs‘schen Phasengesetz. 256.2 Aluminium(III)-chlorid besitzt einen Schmelzpunkt von nur 192;4 ı C. Dennoch wird weitgehend darauf verzichtet, AlCl3 für die elektrochemische Al-Gewinnung zu verwenden. Geben Sie dafür eine Begründung! 256.3 Aluminiumoxid reagiert bei hohen Temperaturen mit Kohlenstoff zu Aluminiumcarbid. Aluminiumcarbid liefert bei der Hydrolyse u. a. ein Gas.

4.13 Phasengleichgewichte und Phasensysteme 2045

2000 3 Temperatur (°C)

311

Schmelze

1600

2 Schmelze + Al2O3(s)

1200 1009

1 4

800 Schmelze + 0 Na3 AlF6(s)

10

935

Al2O3(s) + Na3AlF6(s) 20

40

60

80

100

Ma-% Al2O3(s)

Abb. 4.15 Zustandsdiagramm Aluminiumoxid (AL2 O3 )-Kryolith(Na3 AlF6 ).

a) Formulieren Sie die Bildungsgleichung von Aluminiumcarbid sowie die Reaktionsgleichung der Hydrolyse! b) Berechnen Sie die Gleichgewichtskonstante der Hydrolysereaktion bei 25 ı C. Auf welcher Seite liegt das Gleichgewicht der Reaktion? c) Welche Masse Aluminiumcarbid wird benötigt, um 100 Liter des bei der Hydrolyse entstehenden Gases zu erzeugen (p D 1013 hPa, T D 298 K)? B H (kJ/mol) S0 (J/(mol  K))

Al4 C3(s)

H2 O(l)

129,2 105

285,83 69,91

Gas bei der Hydrolyse 74,8 186,26

Al(OH)3(s) 2567,0 140,2

257

Die flüchtigen Substanzen Benzol und Toluol verhalten sich ideal nach dem Raoult’schen Gesetz. Die Gleichgewichtsdampfdrücke der reinen Substanzen betragen bei T D const. 0 0 D 22 ı C; pBenzol D 80 mbar; pToluol D 20 mbar. Zeichnen Sie in das von Ihnen erstellte Dampfdruckdiagramm den Dampfdruck des Gemisches in Abhängigkeit des Molenbruches (g) und tragen Sie für die Molenbrüche des gasförmigen Benzols Benzol : 0,1; 0,25; 0,5 und 0,75 jeweils die Zusammensetzung in der Gasphase ein.

258

Destillation: Von reinem Benzol und m-Xylol sind in nachfolgender Tabelle bei verschiedenen Temperaturen die Dampfdrücke gegeben. Bei einem Druck von 101;3 kPa beträgt die Siedetemperatur von Benzol 353 K, die von m-Xylol 412 K. T in K p0Benzol in kPa p0m-Xylol in kPa

363

373

383

393

403

135,1 21,5

178,0 30,5

231,8 43,1

297,3 58,4

376,1 78,7

a) Was versteht man unter einer „idealen Mischung“? Geben Sie mindestens zwei Eigenschaften einer idealen Mischung an. Nennen Sie Bedingungen der Moleküle der unterschiedlichen Mischungspartner, die zu diesen Eigenschaften führen.

312

4 Aufgaben ohne Lösung

b) Geben Sie die nötigen Berechnungen und die Wertetabelle für die Erstellung des Siedediagramms an, das sowohl die Siedelinie (Siedetemperatur als Funktion des Molenbruchs Benzol in der flüssigen Phase) als auch die Taulinie (Kondensationstemperatur als Funktion des Molenbruchs Benzol in der Gasphase) enthält. c) Zeichnen Sie das Diagramm und geben Sie jeweils an, welche Phasen in den einzelnen Diagrammgebieten vorliegen. d) Ein Gemisch aus Benzol und m-Xylol im Massenverhältnis 1:1,5 wird auf 388 K erhitzt. Welche Zusammensetzung haben die miteinander im Gleichgewicht stehenden Phasen? e) Im Labor sollen Abfälle eines Lösemittelgemisches aus Benzol und m-Xylol, das bei 395 K siedet, durch Destillation getrennt werden. Dafür steht eine dreistufige Kolonne zur Verfügung. Mit welcher Reinheit (bezogen auf die Stoffmengen) lässt sich Benzol zurückgewinnen? Nehmen Sie an, die Zusammensetzung des Lösemittelgemisches ändere sich während der Destillation nicht. Benutzen Sie für d und e das erstellte Siedediagramm und machen Sie ggf. Ihre Lösungen darin deutlich.

4.13.4 259

Ternäre Systeme

Ihnen liegt bei konstanter Temperatur und konstantem Druck das ermittelte Phasendiagramm des ternären Systems Chloroform-Wasser-Essigsäure (Abb. 4.16) vor. CH3COOH

CHCl3

Abb. 4.16

H2O

Phasendiagramm des Dreistoffsystems „Chloroform-Wasser-Essigsäure“.

Beschreiben Sie mit Hilfe des Phasendiagramms, was a) bei der Zugabe von Essigsäure zu einer Ausgangsmischung aus Chloroform .CHCI3 D 0;6/ und Wasser .H2 O D 0;4/ und b) bei der Zugabe von Wasser zu einer Ausgangsmischung aus Chloroform .CHCI3 D 0;7/ und Essigsäure .CH3 COOH D 0;3/ geschieht! 260

Betrachten Sie das abgebildete Phasendiagramm des ternären Systems „Chloroform-WasserEssigsäure“ bei konstanter Temperatur und konstantem Druck.(Abb. 4.16) 260.1 Wie viele Phasen liegen vor, wie sind ihre jeweiligen Zusammensetzungen und ihr relatives Mengenverhältnis in einer Mischung aus 2;30 g Wasser, 9;2 g Chloroform und 3;1 g Essigsäure? Kennzeichnen Sie im Diagramm deutlich den kritischen Punkt K!

4.13 Phasengleichgewichte und Phasensysteme

313

260.2 Was beobachten Sie, wenn zu dieser Ausgangsmischung (a) Wasser und (b) Essigsäure gegeben wird? 260.3 Welche theoretische Masse Chloroform müsste der Ausgangsmischung des ternären Systems entnommen werden, damit es einphasig wird? 261

Gegeben ist das Phasendiagramm für das Dreistoffsystem „Methylchlorid-Methanol-Wasser“ bei T D 293;15 K und 101 325 Pa (Abb. 4.17). M (Methanol) 0

1

0,2

0,8

0,4

χW

0,6

0,6

χM 0,4

0,8

0,2

1

W 0 (Wasser)

0 0,2

0,4

χMC

0,6

0,8

1

MC (Methylchlorid)

Abb. 4.17 Phasendiagramm des Dreistoffsystems „Methanol-Wasser-Methylchlorid“.

261.1 Wie viele Phasen liegen vor, wie sind ihre jewiligen Zusammensetzungen und ihr relatives Mengenverhältnis in einer Mischung von 2;5 mol Wasser, 1;5 mol Methylchlorid und 1 mol Methanol? Kennzeichen Sie im Diagramm deutlich den kritischen Punkt K! 261.2 Welche Mindestmenge reinen Methanols muss dem System zugeführt werden, damit es einphasig wird? 262

Es soll das Phasenverhalten des ternären Gemisches, bestehend aus den Stoffen A, B und C untersucht werden. Die Mischungslücken sind im Phasendiagramm eingezeichnet. (Abb. 4.18) Ihre Aufgabe ist es, den Verlauf der Konoden in der unteren Mischungslücke zu bestimmen. Gegeben sind die Molmassen der Stoffe: MA D 46;0 g=mol, MB D 32;0 g=mol, MC D 56;0 g=mol. 262.1 Zunächst legen Sie eine Mischung aus 138;0 g Stoff A und 224;0 g Stoff B vor, wobei sich zwei flüssige Phasen (A-reiche ˛-Phase und B-reiche ˇ-reiche Phase) bilden. Wie groß ist das relative Mengenverhältnis der beiden Phasen in der binären Ausgangsmischung? 262.2 Sie setzen nun nacheinander zur Ausgangsmischung bestimmte Mengen an Stoff C hinzu. Jedes Mal entnehmen Sie nach Einstellung des ternären Phasengleichgewichtes eine Probe aus einer der beiden Phasen und bestimmen darin den Molenbruch von Stoff B. Die Probenmenge ist gegenüber der Gesamtmenge zu vernachlässigen. Sie nehmen folgende Daten auf:

314

4 Aufgaben ohne Lösung C 0,0

1,0

0,8

0,2

0,6

0,4

χA 0,6

χC 0,4

0,2

0,8

1,0

A

0,0 0,0

0,2

0,4

0,6

0,8

1,0

B

χB

Abb. 4.18 Phasendiagramm eines Dreistoffsystems mit zwei Mischungslücken.

Probe

Zusatz von Stoff C zur Ausgangsmischung [g]

Molenbruch von Stoff B in der Probe B

1 2 3

60 140 240

0,8 0,7 0,6

262.2.1 Zeichnen Sie ausgehend von diesen Daten die Konoden dieser Mischungslücke in das Diagramm und bestimmen Sie jeweils das relative Mengenverhältnis der beiden Phasen in der ternären Mischung? 262.2.2 Ausgehend vom letzten Datenpunkt (Probe 3) ist anzugeben, wie viel Gramm des Stoffes C mindestens zugegeben werden müssen, damit die Mischung einphasig wird. Wie viel Gramm des Stoffes C dürfen jedoch maximal zugesetzt werden, damit das Gemisch einphasig bleibt?

4.14 Bioenergetik 4.14.1 263

Enzyme

Im Stickstoffkreislauf eines Landökosystems wird Harnstoff CO(NH2 )2 aus Säugerexkreten durch Hydrolyse in die Ionen NH+4(aq) , HCO–3(aq) und OH+(aq) gespalten. Verwertbar für Produzenten und Destruenten gelangt der Stickstoff entweder direkt über NH+4 -Ionen oder indirekt erst nach deren Nitrifikation zu NO–3(aq) in den Kreislauf zurück.

4.14 Bioenergetik

315

263.1 Formulieren Sie die Bruttoreaktionsgleichungen für die Hydrolyse von Harnstoff und die Nitrifikation von NH+4 -Ionen. Verdeutlichen Sie mit Berechnungen die Verlaufsrichtung beider Reaktionen. Welche Rolle spielen dabei die Enzyme? CO(NH2 )2(s)

H2 O(aq)

NH+4(aq)

CO2– 3(aq)

NO–3(aq)

333 105 

286 70 15,745

132 113 9,25

677 57 10,33

205 109 1,37

B H0 (kJ/mol) S0 (J/(mol  K)) pKS (Säureexponent)

263.2 Machen Sie mit einer Skizze grundsätzliche Aussagen zum Stickstoffkreislauf in einem Landökosystem. 263.3 Welche Stellung nehmen Enzyme beim Zusammenspiel der Wirkstoffe (Enzyme, Hormone, Vitamine) im Stoffwechsel der Organismen ein? 264

Ein Maß für die Affinität des Enzyms E zu seinem Substrat S und damit für seine katalytische Aktivität ist die Dissoziationskonstante Km des sich bildenden Enzym-Substrat-Komplexes ES. Auch die Maximalgeschwindigkeit Vmax wird bei der Bewertung verwendet. 264.1 Auf welcher Grundlage basiert die Bestimmung von Km und Vmax nach MichaelisMenten, Lineweaver und Burk? Welche Maßeinheiten haben diese Größen? 264.2 Leiten Sie reaktionskinetisch das Michaelis-Menten-Grenzgesetz ab und zeigen Sie, wie man damit zum Lineweaver-Burk-Diagramm gelangt.

265

Bei der Durchführung der enzymatischen Hydrolyse von Harnstoff (s. Abb. 4.19) ergaben sich die in der Tabelle angegebenen Messergebnisse: ı

Zeit

c0S D0,1 %

60 120 180 240 300

0,89 1,33 1,75 2,15 2,61

Stromstärke mA (30 C) c0S D0,3 % c0S D0,5 % c0S D0,7 % 1,26 1,97 2,74 3,49 4,22

1,28 2,25 3,15 4,08 4,85

1,37 2,36 3,24 4,26 5,12

c0S D1 % 1,39 2,40 3,32 4,35 5,42

265.1 Gefragt sind die Michaelis-Menten-Konstante Km , die Maximalgeschwindigkeit Vmax , 0;1 sowie der Standard-pHdie Geschwindigkeitskonstante k0;1 , die Halbwertszeit t1=2 Wert der Enzymreaktion. 265.2 Die Wiederholung der Versuchsreihen bei p D const. D 101 325 Pa in Abhängigkeit von der Temperatur lieferte folgende Ergebnisse: ı

Km (mmol/dm3 ) k0,1 (s1 )

ı

40 C

50 C

24,13 5,32  10-3

24,94 6,52  10-3

Berechnen Sie mit den Ergebnissen von 239.1 und 239.2 im Bereich 30 ı C ! 40 ı C die Aktivierungsenergie EA für die ES-Bildung und die Dissoziationsenthalpie D H für den ES-Zerfall. 265.3 Welche Schlussfolgerungen ergeben sich aus den Ergebnissen von 265.1 und 265.2?

316

4 Aufgaben ohne Lösung 6V

mA

~

ı

Die Probelösung je Versuchsreihe (T D 30 C, p D 101 325 Pa) besteht aus 60 ml Lösung 1 und 3 ml Lösung 2. ı

Pt

 Man misst bei const. 30 C über 5 Minuten alle 60 Sekunden die Stromstärke I und bestimmt aus dem Lineweaver-Burk-Diagramm Km und Vmax  Lösung 1: 60 mg Urease in 30 ml H2 O suspendiert  Lösung 2: Harnstofflösung 0,1 % < c0S < 1 %

Pt

Probelösung

Abb. 4.19 Versuchsanordnung zur Bestimmung der Michaelis-Menten-Konstante Km von Urease.

266

Die Hydrolyse von Acetyl-L-Tryptophanamid wird durch Chymotrypsin katalysiert. Man findet folgende Abhängigkeit der Anfangsgeschwindigkeit V von der Substratkonzentration CS : CS (mmol/dm3 )

0,5

1,0

2,0

4,0

7,0

0,085

0,161

0,278

0,470

0,630

10,0 0,720

15,0 0,810

V (mmol/(dm3  min))

266.1 Bestimmen Sie aus dem Lineweaver-Burk-Diagramm Km und Vmax ! 266.2 Das D-Isomere hemmt die Hydrolyse des L-Isomeren. Bei Wiederholung der obigen Versuchsreihe mit gleichmolarem Gemisch aus der L- und D-Form von AcetylTryptophanamid findet man für die gleichen Gesamtkonzentrationen an Substrat: 0,057

0,108

0,196

0,330

0,470

0,570

0,680

V (mmol/(dm3  min))

Entscheiden Sie anhand des Lineweaver-Burk-Diagramms, welcher Typ von Enzymhemmung vorliegt. 267

Bei einem Versuch mit der Enzymkonzentration cE(ges.) D 1;0  109 mol=dm3 wurden die Anfangsgeschwindigkeiten V0 in Abhängigkeit von der Anfangskonzentration des Substrats cS0 ermittelt: c0S  106 mol/dm3 V0  105 mol/(dm3  min)

3,0 1,06

5,0 1,55

10 2,37

20 3,21

Fertigen Sie die Lineweaver-Burk-Darstellung an und ermitteln Sie die Michaeliskonstante Km und die Geschwindigkeitskonstante k3 . 268

Bei einer enzymatischen Reaktion wurde eine Michaeliskonstante von Km D 1;5  105 mol=dm3 bestimmt. Die Anfangskonzentration an Substrat betrug 3  105 mol=dm3 . Berechnen Sie den Anteil von Enzymmolekülen .fES /, die Substrat gebunden haben.

4.14 Bioenergetik

317

269

Die katalytische Effizienz eines Enzyms wird durch die katalytische Konstante kkat (auch Wechselzahl genannt) wiedergegeben. Die Zahl gibt die Anzahl von Substratmolekülen an, die bei vollständiger Sättigung des Enzyms mit Substrat pro Zeiteinheit in das Produkt umgewandelt wird. Das Enzym Pepsin (M D 41 977 g=mol) spaltet die Peptidbindung in Proteinen. In 10 cm3 Lösung waren 109 g Pepsin gelöst. Es wurde eine maximale Reaktionsgeschwindigkeit von Vmax D 7;15  1011 mol=.dm3  min/ ermittelt. Berechnen Sie die Wechselzahl von Pepsin in s1 .

270

Das Enzym Phosphoglucomutase katalysiert die Umwandlung von Glukose-1-phosphat in Glukose-6-phosphat. Bei 37 ı C und pH D 7 enthält die Gleichgewichtsmischung 5,4 % Glukose-1-phosphat. Berechnen Sie die Gleichgewichtskonstante Kc und die Änderung der freien molaren Enthalpie R G der Reaktion!

271

Am Ende der ersten Phase der Glykolyse katalysiert die Triosephosphatisomerase die reversible Umwandlung von Dihydroxyacetonphosphat zu Glycerinaldehyd-3-phosphat. Bei 37 ı C beträgt R G D 7;66 kJ=mol. Gesucht sind die Konzentrationen und Molprozente beider Reaktanden im Gleichgewicht.

272

Die Gleichgewichtskonstante für die Bildung des Dipeptids zwischen Alanin und Glycin beträgt bei 38 ı C Kc D 1;25  103 . Nach enzymatischer Hydrolyse des Dipeptids mit 100 cm3 Wasser (Dichte: 1 kg=m3) wird eine Konzentration an Alanin von 0;1 mol=dm3 festgestellt. Wie groß ist der prozentuale Umsatz des Dipeptids? Hat das Enzym Einfluss auf die Alaninkonzentration?

273

Der Bombardierkäfer bekämpft seine Feinde, indem er sie mit einer Lösung von Chinon beschießt. Diese Lösung wird durch eine explosionsartig ablaufende Reaktion erzeugt:  * C6 H4 .OH/2.aq/ C H2 O2.l/ )  C6 H4 O2.aq/ C 2 H2 O.l/ : a) Konstruieren Sie aus folgenden Daten eine Reaktionsfolge, aus der R H 0 für diese Reaktion berechnet werden kann.  * C6 H4 .OH/2.aq/ )  C6 H4 O2.aq/ C H2.g/

H 0 D C177;4 kJ=mol

 * H2.g/ C O2.g/  )  H2 O2.l/

H 0 D 191;2 kJ=mol

 * H2.g/ C 12 O2.g/ )  H2 O.g/

H 0 D 241;8 kJ=mol

 * H2 O.g/  )  H2 O.l/

H 0 D 43;8 kJ=mol

Berechnen Sie R H 0 . b) Informieren Sie sich in weiterführender Literatur über den Schussapparat des Laufkäfers. Beschreiben Sie Bau und Funktion des Apparates.

4.14.2

Energieumsatz

274

Welche Energieumsatzgrößen werden beim lebenden Organismus unterschieden und was drücken sie aus?

275

Beschreiben Sie, wie der Energieumsatz des Organismus direkt und indirekt gemessen werden kann.

318 276

4 Aufgaben ohne Lösung

Berechnen Sie für Glukose, Stearinsäureglycerinester und Alanin jeweils den Brennwert .kJ=g/ ; das kalorische Äquivalent .kJ=L .O2 )) und den Respiratorischen Quotienten RQ (n.CO2 /=n.O2 /). Berücksichtigen Sie, dass bei der Verbrennung von 1 mol Alanin 3 mol O2 verbraucht und 0;5 mol Harnstoff gebildet werden. Glukose

B G (kJ/mol) 0

277

Alanin

Harnstoff

Wasser

(s)

Stearinsäureglycerinester (s)

(s)

(s)

(l)

Kohlenstoffdioxid (g)

910

69 778

2232,1

197

237

394

In einer kalorimetrischen Anordnung (Abb. 4.20) werden bei 25 ı C 30 Minuten lang 9;2 g Mehlwürmer gehalten und eine Abnahme des Sauerstoffvolumens von 1;6 cm3 beobachtet. Es soll angenommen werden, dass lediglich Glukose veratmet wurde.

Glasrohr mit Skalierung

Wasserfaden

Wasserbad

Mehlwürmer Gitter Natronkalk CaO/NaOH-Gemisch

Abb. 4.20

Kalorimetrische Bestimmung des Energieumsatzes bei Mehlwürmern.

a) Erläutern Sie Aufbau und Funktionsprinzip der kalorimetrischen Anordnung. b) Berechnen Sie den Energieumsatz QAnsatz der eingesetzten Mehlwürmer je Stunde. c) Berechnen Sie je Tag und kg Biomasse den Energieumsatz Q(d,kg) 278

In einem Kalorimeter besonderer Konstruktion befindet sich ein kleines Versuchstier (weiße Maus) mit einer Körpermasse von 21 g. Die Masse des Kalorimeterwassers beträgt 500 g. Die O2 -Zufuhr und die Absorption von freigesetztem CO2 und H2 O werden geregelt. Bei Abbruch des Versuches nach 30 Minuten wurde im Kalorimeterwasser ein Temperaturanstieg von 3;2 K gemessen. a) Entwerfen Sie eine Skizze, aus der Konstruktion und Funktion des Kalorimeters ablesbar sind. b) Berechnen Sie den Energieumsatz Q (Ansatz des Versuchstieres je Stunde). c) Berechnen Sie je Tag und kg Biomasse den Energieumsatz Q(d,kg) .

279

Eine 70 kg schwere männliche Versuchsperson atmet Luft (25 ı C; 1 bar) aus einem Vorratsgefäß (Spirometer). Die ausgeatmete Luft wird über einen CO2 -Absorber wieder zurück geleitet. Nach 5 Minuten wird der Versuch abgebrochen und ein Schreiber registriert im Spirometer eine Sauerstoffabnahme von 1,2 Liter.

4.14 Bioenergetik

319

a) Beschreiben Sie an Hand einer beschrifteten Skizze das Funktionsprinzip des Spirometers. Tragen Sie mögliche Nachteile dieser Methode zur Grundumsatzbestimmung vor! Welche Informationen liefern die Aufzeichnungen durch einen Schreiber? b) Berechnen Sie den Grundumsatz QAnsatz der Versuchsperson je Stunde. Legen Sie dabei einen respiratorischen Quotienten von RQ D 0;85 zugrunde, den man aus vielen Messungen als Mittelwert für normale Ernährungsbedingungen (Mischkost) gewonnenen hat. c) Berechnen Sie je Tag und kg Körpergewicht den Grundumsatz Q(d,kg) . 280

Es ist der Zusammenhang zwischen Grundumsatz und Körpergröße gefragt. a) Überprüfen Sie mit der folgenden Tabelle an zwei Beispielen, ob eine lineare Proportionalität zwischen dem Energieumsatz des Tieres und seiner Körpergröße besteht. b) Tragen Sie die jeweils auf 1 kg bezogenen Energiewerte gegen die logarithmierte Masse des Tieres auf. Beschreiben und erklären Sie den Graphen.

281

Organismus

Körpermasse in kg

Weiße Maus Weiße Ratte Kaninchen Hund Mensch Rind Elefant

0,021 0,400 2,600 14,000 65,000 600,000 3672,000

15 139 490 2030 6907 50650 205110

Die Deutsche Gesellschaft für Ernährung (DGE) empfiehlt zur Zusammensetzung der Nahrung, dass 15 % der Energie durch Eiweiß, 30 % durch Fett und 55 % durch Kohlenhydrate aufgenommen werden. Insgesamt sollten Männer täglich 10 500 kJ und Frauen 8800 kJ aufnehmen. Wie viel Gramm an Eiweiß, Fetten und Kohlenhydraten sollte man täglich zu sich nehmen, wenn die physiologischen Brennwerte für Eiweiß (17 kJ=g), für Fette (38;9 kJ=g) und für Kohlenhydrate (17;2 kJ=g) berücksichtigt werden?

4.14.3 282

umgesetzte Energiemenge in kJ/24 h

Stoffwechsel

ATP4– /ADP3– -System Im Intermediärstoffwechsel (Metabolismus) laufen sowohl abbauende (katabole) als auch aufbauende (anabole) Vorgänge über eine Sequenz hintereinander geschalteter, enzymkatalysierter Reaktionen ab, bei denen insbesondere phosphorylierte Verbindungen durch Hydrolyse (Dephosphorylierung) unterschiedliche Beträge an freier Enthalpie liefern. Bemerkenswert ist (s. Abb. 4.21), dass dabei einige phosphathaltige Verbindungen mehr freie Enthalpie liefern als Adenosintriphosphat (ATP4– ), andere dagegen weniger. Zu erklärende Vergleichsbeispiele sollen sein: a) Phosphoenolpyruvat3– , b) Adenosintriphosphat (ATP4– ), c) Glukose-6-phosphat.

4 Aufgaben ohne Lösung

Donator1 X – P + H2O

Akzeptor1 X + P

ΔG 0 (kJ/mol)

Phosphoenolpyruvat3– + H2O

Pyruvat1– + HPO2– 4

−61,79 2,55 ⋅ 1010 −10,41

1,3-Diphosphoglycerat4 – + H2O

3-Phosphoglycerat2–

ATP4 – + H2O

H AMP2– + HP2O37 –

+ HPO2– 4 +

KHydr.

pKHydr.

−49,46

2,14 ⋅ 108 −8,33 1,16 ⋅ 106 −6,063 1,4 ⋅ 105 −5,21

ATP4 – + H2O

H ADP3 – + HPO2– 4

−36 −30,56

Glukose-1-phosphat2 – + H2O

Glukose + HPO2– 4

−20,93

3,35 ⋅ 103 −3,52

Fruktose-1,6-diphosphat 4 – + H2O

Fruktose-6-phosphat2 – + HPO2– 4

−16,36

5,69 ⋅ 102 −2,76

Fruktose-6-phosphat2 – + H2O

Fruktose + HPO2– 4

−15,91

4,78 ⋅ 102 −2,68

Glukose-6-phosphat2 – + H2O

Glukose + HPO2– 4

−13,82

2,13 ⋅ 102 −2,33

Glycerin-1-phosphat2 – + H2O

Glycerin + HPO2– 4

−9,21

3,56 ⋅ 101 −1,55

+

Dephosphorylierung

Phosphorylierung

320

Abb. 4.21 Thermodynamische Skala der Hydrolyse einiger phosporylierter Verbindungen (pH D 7, ı 37 C, 1 bar, c D 1 mol/dm3 , Mg2+ (aq) im Überschuss).

282.1 Begründen Sie, warum bei den Metaboliten a), b) und c) die Abspaltung der terminalen 0 Phosphatgruppe HPO24 unterschiedliche negative Werte an G bzw. pKHydr ergibt. 282.2 Begründen Sie, welche besondere Rolle das ATP4– /ADP3– -System im Intermediärstoffwechsel übernehmen kann. 282.3 Zeigen Sie mit Einbeziehung eines Schemas, das Reaktionsgleichungen und eine Rechnung enthält, wie das ATP4– /ADP3– -System die Reaktion von 1,3-Diphosphoglycerat4– zu 3-Phosphoglycerat2– (unter Mitwirkung von Phosphoglyceratkinase) mit der Reaktion von Fruktose-6-phosphat zu Fruktose-1,6-diphosphat (unter Mitwirkung von Phosphofruktokinase) innerhalb der Reaktionsfolge der Glykolyse (s. Kap. 6, Abb. 6.1) exergon verbinden kann. 282.4 Auf welche typischen Molekülarten kann ATP4– seine energiereiche Phosphatgruppe übertragen und wodurch wird das unterstützt?

Mobilisierung von Acetyl S-CoA und des Citrat-Zyklus Das in Abb. 4.22 dargestellte Schema des aeroben Katabolismus bezeichnet die Hauptetappen und chemischen Zwischenglieder bei der Mobilisierung von Acetyl S-CoA und des Citrat-Zyklus (Zitronensäure-, Tricarbonsäure-, Krebszyklus) mit Endprodukten. Ausgangspunkt ist das im Verlauf der extrazellulären Verdauung entstandene Gemisch von Grundbausteinen (Monomeren) der aufgenommenen Nährstoffe.

4.14 Bioenergetik

321

Hexosen

Fettsäuren Glycerin (1a) β R CH2 CH2 COOH 2P ADP (4a) 2 ATP H2O 2 ADP ATP H2O (4b) (2) (3) ATP CoA SH 2H 2H Pyro2H AMP NH3 Pyruvat (BTS) phosphat P-P R-CO∼S-CoA Ribose- Pantothen- Cysteamin (1b) H2O 3-phosphat säure – N CH2 CH2 S CoA SH 2H H 2H Adenin 2H CO2 (5) CoA SH Acetyl∼S-CoA

Aminosäuren

O

H

(6)

CH3 C∼S CoA

2H

Oxalacetat H O 2

Citrat

H2O

Energiereiche Bindung

Isocitrat Malat Citrat-Zyklus H2O Fumarat

CO2

2H

α-Ketoglutarat CO2 2H

2H Succinat ATP

GTP

ADP

GDT

Succinyl∼SCoA-SH CoA

(1a) (1b) (2) (3) (4a) (4b) (5) (6)

Glykolyse Oxidative Decarboxylierung Oxidative Desaminierung Transmainierung zu Ketosäuren des Citrat-Zyklus (z.B. durch das Coenzym Pyridoxinphosphat) Glycerinabbau β-Oxidation (in mehreren Durchgängen) Bausteine von Coenzym A (CoA-SH) Acetyl∼S-CoA (aktivierte Essigsäure) Thioester von BTS

P

Säure-Anionen ohne Ladungen Citrat Isocitrat α-Ketoglutarat Succinat

Citronensäure Iso-Citronensäure α-Ketoglutarsäure Bernsteinsäure

Succinyl~S-CoA Fumarat Malat Oxalacetat

Thioester der Bernsteinsäure Fumarsäure Äpfelsäure Oxalessigsäure

BTS Brenztraubensäure GTP Guanosintriphosphat GDP Guanosindiphosphat

Abb. 4.22 Wege der Mobilisierung von Acetyl S-CoA und des Citrat-Zyklus mit Endprodukten.

Teil A: Abbau von Kohlenhydraten 283

Endprodukt des ersten Abschnitts der intrazellulären Glukosespaltung, der als Glykolyse (Abb. 4.22 (1a)) bezeichnet wird, ist bei allen Organismen Pyruvat (Anion der Brenztraubensäure). Dies wird ausführlich durch die Reaktionsfolge (s. Kap. 6, Abb. 6.1) gezeigt. Ermitteln und beschreiben Sie den energieliefernden Schritt der Glykolyse.

322

4 Aufgaben ohne Lösung

284

Pyruvat wird in einer Initialreaktion (Abb. 4.22 (1b)) für den Einstieg in den nachfolgenden Citrat-Zyklus (s. Kap. 6, Abb. 6.2 und Abb. 6.6) zum energiereichen Acetyl S-CoA oxidativ decarboxyliert. Die Gleichgewichtskonstante beträgt Kp D 7;4  1010 Pa. Für die Reaktion ist die Mitwirkung eines Multienzymkomplexes erforderlich. Seine wichtigsten Coenzyme sind NAD+ NADP+ (Kap. 6, Abb. 6.4) und Coenzym A, das an seinem Reaktionszentrum eine SH-Gruppe besitzt und Acetylgruppen in Form eines Thio-Esters übertragen kann (s. Kap. 6, Abb. 6.6). Formulieren Sie die Reaktionsgleichung und berechnen Sie die freie Standardreaktionsenthalpie R G 0 . Bewerten Sie das Ergebnis.

285

Welche Reaktion des Citrat-Zyklus ist energetisch mit der Initialreaktion (1b) in Abb. 4.22 vergleichbar und warum?

286

In der letzten Reaktion des Citrat-Zyklus katalysiert die NAD-abhängige MalatDehydrogenase die Oxidation von Malat2– zu Oxalacetat2– . Die Reaktion ist endergonisch (R G 0 D C29;7 kJ=mol), läuft aber trotzdem ohne Schwierigkeiten ab. Warum?

287

Fassen Sie die Reaktionsprodukte zusammen, die bei einem Durchgang durch den CitratZyklus auftreten.

288

Wie kann die vom Citrat-Zyklus katalysierte Gesamtreaktion in eine Gleichung gefasst werden? Was sagt die Gleichung aus?

289

Im Vergleich zu den Aerobiern können zahlreiche primitive Lebewesen, besonders Einzeller, ohne Sauerstoffzufuhr existieren. Man nennt sie daher Anaerobier. Bei ihnen stimmt die erste Phase des Glukoseabbaus mit der Reaktionsfolge der Glykolyse (Abb. 4.22 (1a)) überein. Dann trennen sich ihre Wege. Aus der Fülle der realisierten Möglichkeiten seien herausgegriffen: alkoholische Gärung und Milchsäuregärung. a) Formulieren Sie für beide Gärungsarten die Bilanzgleichung ausgehend von Glukose und berechnen Sie den Wirkungsgrad der Speicherung an freier Enthalpie in Form von ATP4– ( ATP ). Machen Sie prinzipielle Aussagen zum biochemischen Ablauf und zur Bedeutung beider Gärungsarten.

0

B G (kJ/mol)

Glukose (s)

Ethanol (l)

Milchsäure (l)

CO2

910

174

553,5

394

b) Begründen Sie, warum gärende Organismen pro Zeiteinheit und Gewichtseinheit ihres Körpers eine wesentlich größere Glukosemasse umsetzen als atmende Lebewesen. c) Wie kann der gemeinsame Reaktionsweg (Abb. 4.22 (1a)) von Gärung und Atmung begründet werden?

Teil B: Abbau von Fetten Die Fettspaltung beginnt mit der Verdauung im Darm. Lipasen hydrolysieren jeweils ein Fettmolekül zu einem Glycerinmolekül und drei Fettsäuremolekülen. Der weitere Abbau in den Zellen erfolgt dann zweigleisig: Glycerinabbau ! (Abb. 4.22 (4a)), Fettsäureabbau ! (Abb. 4.22 (4b)). 290

Machen Sie mit Reaktionsgleichungen deutlich, wie der Glycerinabbau beginnt und an welcher Stelle seine Fortsetzung auf vorhandenen Abbauwegen erfolgt.

4.14 Bioenergetik

291

323

Der durch mehrere Enzyme katalysierte Fettsäureabbau wird ˇ-Oxidation genannt, da im Verlauf der Fettsäurespaltung eine ˇ-Hydroxysäure auftritt. Er lässt sich vereinfacht durch folgenden Reaktionszyklus darstellen (Abb. 4.23):

O β R CH2 CH2 C OH Fettsäure

0

CoA SH

ATP4–

H2O

H+ AMP2– + HP2O3– 7

Citrat-Zyklus

O R CH2 CH2 C

O



O

S CoA



R' C

CH3 C



S CoA

S CoA FAD

4

CoA SH

1 β-Oxidation der Fettsäuren (1 Durchgang) O

FADH2

O

O R CH CH C





R C CH2 C

S CoA

NADH/H+

S CoA

2

3

H2O OH

R C CH2 C S CoA H



NAD+

O

Abb. 4.23 Fettsäureabbau durch ˇ-Oxidation.

Beschreiben Sie die für einen Durchgang gekennzeichneten Stufen des Fettsäureabbaus. 292

Wieso liefert ein 1 mol Fett viel mehr ATP4– als 1 mol Glukose?

293

Berechnen Sie für den vollständigen Abbau von 1 mol Stearinsäure die freie Enthalpie, die unter Standardbedingungen als energiereiche Phosphatbindung in Form von ATP4– gewonnen wird.

294

Auf welche Weise können aus Glukose Glycerin und Fettsäuren entstehen?

295

Schreiben Sie die Reaktionsfolge für den Aufbau von Buttersäure im Fettstoffwechsel auf.

324

4 Aufgaben ohne Lösung

Teil C: Abbau von Proteinen Die bei der Proteinverdauung im Darm durch hydrolytische Spaltung gebildeten Aminosäuren gelangen mit Blut und Lymphe in die Körperzellen. Bei den katabolen Reaktionen wird ihr Kohlenstoffskelett durch Verzahnung mit dem Citrat-Zyklus [Abb. 4.22 (2) + (3)] zu CO2 und H2 O oxidiert. Die Aminogruppen werden in Harnstoff oder in andere Ausscheidungsprodukte umgewandelt. 296

Beschreiben Sie, wie Alanin (2-Aminopropansäure) über Weg (2) der Abb. 4.22 sein Kohlenstoffskelett abbaut und dabei freie Enthalpie in Form von ATP4– speichert. Wie viel Mole ATP4– sind nötig, wenn seine NH2 -Gruppe in Harnstoff umgewandelt wird (s. Kap. 6, Abb. 6.9)? Formulieren Sie die Summengleichung des Harnstoffzyklus und bewerten Sie seine Energetik.

297

Bei einer Transaminierung (Abb. 4.22 (3)) wirkt ein Enzym, z. B. Pyridoxalphosphat (Derivat von Vitamin B6 , Formel s. Kap. 6, Abb. 6.8), als Aminogruppenüberträger von ˛-Aminosäuren auf ˛-Ketosäuren. Dabei pendelt das Enzym zwischen der Aldehyd- und der aminierten Form. Derartige katalysierte Reaktionen sind leicht reversibel, der Wert ihrer Gleichgewichtskonstanten ist etwa 1 (! G 0  0 kJ=mol). Zeigen Sie mit Reaktionsgleichungen, wie auf diese Weise die Aminogruppe von Glutamat2 auf Oxalacetat2 übertragen wird. Wie kann das desaminierte Glutamat2 weiter abgebaut werden?

298

Atmungskette Die im Vor- und Hauptfeld des Citrat-Zyklus frei gewordenen Wasserstoffatome bzw. deren Elektronen (gebunden an NAD+ und FAD) werden in einer vielstufigen ReduktionsOxidations-Folge (D Atmungskette) von Enzym zu Enzym und schließlich zum Sauerstoff weitergereicht, wobei sie jeweils ein kleines Energiepaket abgeben. Bei der Oxidation von NADH=H+ (FADH2 ) ermöglichen drei (zwei) dieser Energiepakete den Aufbau von je einem ATP4– -Molekül (D oxidative Phosphorylierung). Die Abbildung 4.24 zeigt ein Diagramm, in dem die Standard-Redoxpotenziale von Elektronenüberträgern (Carrier) der Atmungskette und die Richtung des Elektronentransports angegeben sind. a) Berechnen Sie den Wirkungsgrad ATP der von NADH=H+ ausgehenden oxidativen Phosphorylierung. b) Erstellen Sie die Summengleichung für die oxidative Phosphorylierung von einem Molekül FADH2 . c) Machen Sie in Strukturformelausschnitten deutlich, wie die prosthetischen Gruppen (NAD+ , NADP+ , Ubichinon, FAD, FMN, Cytochrom) der Carrier in der Elektronentransportkette zwischen einem reduzierten und einem oxidierten Zustand hin und her pendeln. d) In der Abbildung 4.25 ist schematisch die als Chemiosmose bezeichnete Kopplung von Atmungskette und oxidativer Phosphorylierung in der Mitochondrienmembran dargestellt. Leiten Sie daraus Vorstellungen über den Mechanismus der Energiekopplung ab.

299

ATP-Bilanz Im Betriebsstoffwechsel des lebenden Organismus wird ein Teil der freigesetzten freien Reaktionsenthalpie in Form von ATP4– (30;6 kJ pro Mol ATP) gebunden und dient u. a. als biochemischer Treibstoff für die Muskelarbeit. Der andere Teil wird als Wärmeenergie frei und sorgt u. a. für die Aufrechterhaltung der Körpertemperatur. Formulieren Sie unter Einbeziehung der ATP-Bilanz die Gesamtgleichungen für die biologische Oxidation von

325

– 0,315

Substrat-H2

4.14 Bioenergetik

NADH/H+ FAD

E 0 Redoxpotenzial (V)

NAD+ FAD FMN Q

NAD+

Flavoprotein

ATP4 – 0,0

O

FMN

Nikotinamid-Adenin-Dinukleotid Flavin-Adenin-Dinukleotid Flavin-Mono-Nukleotid Coenzym Q (Ubichinon)

O FADH2

Fe3+

Q

FMNH2

OH

2 Cytochrom b

ATP4 –

Fe3+

OH Fe2+

+0,26

2 H+

2 Cytochrom c/c (1) Fe3+ Fe2+

2 Cytochrom a/a (3)

ATP4 –

1 2

O2

Fe2+

H2O

+0,815

O2–

Elektronenübergang

Abb. 4.24 Schema der Atmungskette (aus Karlson, P., Biochemie, Thieme Verlag 1986, verändert).

a) Glukose, b) Palmitinsäure, c) Glycerin, d) Triglycerid der Palmitinsäure und e) Asparaginsäure. Berechnen Sie den Wirkungsgrad ATP ! 0

V G (kJ/mol)

300

a)

b)

c)

d)

e)

2876

9781

1650

30 993

1180

Gasaustausch Lunge/Blut Bei der Atmung kommt es zu einem Gasaustausch zwischen der Luft in der Lunge und dem Blut. Für anstehende Berechnungen gelten folgende Angaben:  Das normale Atemzugsvolumen AZV eines Erwachsenen im Ruhezustand beträgt etwa 500 cm3 Luft pro Atemzug. Die Atemfrequenz soll 15 Züge pro Minute betragen.  Die Luft (78 % N2 , 21 % O2 , 1 % Edelgase) wird als ideales Gas betrachtet.  Ein Hämoglobinmolekül Hb kann bis zu 4 O2 -Moleküle transportieren. In einem Liter Blut sind 150 g Hämoglobin enthalten. Hämoglobin hat eine Molmasse von 64 500 g=mol.  Die Dissoziation von Hb(O2 )n gehorcht nach Hill folgender Gleichung:  * Hb.O2 /n )  Hb C n O2

KD

ŒHb  ŒO2 n D 8;15  105 ŒHb.O2 /n 

n D 2;80 :

326

4 Aufgaben ohne Lösung

H+

H+ H+

Intermembranraum

H+ Enzymkomplex III (Cyt b)

2e-

eCyt c 2

Mitochondrienmatrix

ATPH+ Synthase

Komplex I (FMN) Q 2e-

innere Mitochondrienmembran

Enzymkomplex IV (Cyt a)

2e2 H+ + 1/2 O2

NADH / H+

NAD+

H2O H+ + ADP3- + HPO42-

Atmungskette

H+

ATP4- + H2O H+ H+

Abb. 4.25 Schema der Chemiosmose in den Mitochondrien (aus Campbell, Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000, verändert).

 Der Sättigungsgrad ˛ (bei p D1 bar) gibt den Anteil der besetzten sauerstoffbindenden Hb-Zentren an und ist definiert als: .pO2 /n pO(venöses Blut) D 0;0533 barI ˛D 2 .pO2 /n C K pO(arterielles Blut) D 0;133 bar: 2

a) Berechnen Sie die Masse Sauerstoff (in g), die bei Normdruck (1 bar) pro Minute in die Lunge gelangt. b) Welche Annahmen fließen bei a) in die Modellvorstellung eines idealen Gases ein? c) Berechnen Sie den Sättigungsgrad für Hämoglobin in arteriellem und venösem Blut. d) Berechnen Sie mit Hilfe des Sättigungsgrades ˛ das O2 -Volumen, das in einem Liter arteriellem Blut gespeichert werden kann (Körpertemperatur 37 ı C und 1 bar). e) Wie viel Prozent des in d) errechneten Volumens an O2 werden im Körper abgegeben? f) Ein Erwachsener (70 kg) benötigt pro Tag im Durchschnitt 7100 kJ Energie. Bei einer Fettverbrennung entstehen pro Mol Sauerstoff etwa 421 kJ Energie. Berechnen Sie die Pumpleistung des Herzens in Liter pro Minute unter der Annahme, dass die gesamte Energie durch Fettverbrennung gewonnen wird. 301

Interpretieren Sie den menschlichen Blutdruck (z. B. 130/90), seine Messbarkeit und Klassifizierung?

4.14 Bioenergetik

302

327

Hämoglobin Jede der vier Hämgruppen (Hm) des Hämoglobins (Hb) kann Sauerstoff an einer Koordinationsstelle des Fe2+ binden. Dabei bildet sich ein Hm-O2 -Komplex. Reaktion (2):

 * Hm C O2  )  Hm  O2

Kohlenstoffmonoxid ergibt bei seiner Bindung an Hm einen Hm-CO-Komplex Reaktion (1)

 * Hm C CO )  Hm  CO

CO ist giftig, weil es stärker an Hm bindet als O2 . Die Gleichgewichtskonstante K1 ist 104 mal größer als die Gleichgewichtskonstante K2 . Benutzen Sie den Zusammenhang zwischen der Gleichgewichtskonstanten K und der Freien Standardenthalpie G 0 , um den Unterschied zwischen den G 0 -Werten der Reaktionen (1) und (2) zu berechnen. 303

Photosynthese In der Biosphäre gehören die „photoautotrophen“ Organismen (grüne Pflanzen) zu den Primärproduzenten. Sie nutzen das Sonnenlicht zur Synthese von körpereigenen, energiereichen und entropiearmen Stoffen (Kohlenhydrate, Lipide, Proteine u. a. organische Substanzen) aus körperfremden, energiearmen und entropiereichen Stoffen (CO2 sowie H2 O und Mineralstoffe). Empfangsantennen für die Strahlung der Sonne sind vor allem spezifische Typen von Chlorophyllmolekülen, die mit ihrer langen Phytylgruppe (C20 H39 –) in den Thylakoidmembranen (gestapelt zu Grana) der Chloroplasten verankert sind. Man nennt diese endergonische Synthesereaktion deshalb Photosynthese. Als sogenannte Assimilation ist sie die großartigste Redoxreaktion der Erde, welche direkt oder indirekt fast die gesamte Welt des Lebendigen ernährt. Das Schema in der Abbildung 4.26 zeigt von ihr das Beziehungsgefüge der Lichtreaktion in den Thylakoiden und der Dunkelreaktion (Calvin-Zyklus) im Stroma. Licht h⋅ν

6 CO2

12 H2O 12 NADP+

12 (H+ ADP3–) 24 HPO42–

*

Photosystem II P680 Elektronentransportkette Photosystem I P700 24 H2O 24 ATP4–

6 Rib.-1,5biphosphat

*

12 NADPH/H+

6 O2

12 3-Phophoglycerat Calvin-Zyklus

12 Glyc.-ald.3-phospaht

6 H2O C6H12O6

12 H2O + 6 CO2

C6H12O6 + 6 O2 + 6 H2O

(* 6 ATP werden im Calvin-Zyklus nicht benötigt)

Abb. 4.26 Übersichtsschema und Formelbilanz der Photosynthese.

ΔG 0 = 2876 KJ/mol

328

4 Aufgaben ohne Lösung

303.1 Welche Wechselwirkung besteht zwischen Chlorophyll (einschließlich seiner wichtigsten Hilfspigmente) und Licht? 303.2 Beschreiben Sie den Aufbau, die Arten und Funktion von Photosystemen (lichtsammelnden Antennenkomplexen) in der Thylakoidmembran der Chloroplasten. 303.3 Wie kann der hypothetische Ablauf der Lichtreaktion schematisch verdeutlicht und darin eine markierte Schrittfolge des Elektronentransports bei der Synthese von NADPH=H+ und ATP4– interpretiert werden? 303.4 Welche Vorstellungen hat man vom Mechanismus der Chemiosmose in den Chloroplasten? Erörtern Sie Gemeinsamkeiten und Unterschiede im Vergleich zur Chemiosmose in Mitochondrien. 303.5 Wie erfolgt im Calvin-Zyklus die Umwandlung des Kohlenstoffdioxids zu Glukose? 303.6 Erstellen Sie eine formelmäßige Gesamtbilanz sowie ein Schema zur Energietransformation der Photosynthese. 303.7 Berechnen Sie den thermodynamischen Wirkungsgrad der Photosynthese. Wie bewerten Experten das Ergebnis? 303.8 Welche Rolle spielt die Photosynthese im Biozyklus der Erde? Begründen Sie, welchen Gefahrenquellen dieser Zyklus gegenwärtig ausgesetzt ist?

5 Lösungen

5.1 Ideale und reale Gase 1

pO2 D

2

T2 D TEnde

3

5 dm3  1;01325 bar  473;15 K V 0  p0  T D D 35;103 bar T0  V 273;15 K  0;25 dm3

V 2 p2 T 1 49 cm3  1002;58 mbar  293;15 K D 288;05 K D V 1  p1 50 cm3  999;92 mbar D 293;15 K  288;05 K D 5;1 K

 * CaCO3 C 2 HCl )  CaCl2 C H2 O C CO2 22414 cm3  0;7 g D 156;898 cm3 100 g 101;325 kPa  156;898 cm3  291;15 K D 170;605 cm3 D 273;15 K  99;325 kPa

VCO2 .NB/ D VCO2 4

5

6

+  * Redoxreaktion: CrO2–  Cr(s) CH2(g) C2 O2(g) Ladung: Q D I  t D 7;2  107 As. 4(aq) C2 H(aq) )

Q  .1  / D 317;14 mol z F Q D 186;55 mol D zF

nH2 RT D 6;77 m3 p nO RT D 3;98 m3 D 2 p

./

nH2 D

VH2 D

.C/

nO2

VO2

mO2 D

g 40;5 dm3  116;52  105 Pa  32 mol V p M D  297;15 K D 6112;29 g  dm3 RT 8314;3 Pa mol  K

Der Druck p1 in der Flasche ergibt sich als Summe aus Überdruck und Luftdruck: p1 D .2;5 C 0;1/ MPa D 2;6 MPa : Nach dem Entweichen steht das Gas unter dem Luftdruck p2 D 0;1 MPa und hat nach pV D const: das Volumen V2 D

p1 V 1 D 1040 dm3 : p2

Da das Volumen V1 D 40 dm3 in der Flasche zurückbleibt, entweichen 1000 dm3 .

330 7

5 Lösungen

Der Druck p1 im Reifen ergibt sich als Summe aus Überdruck und Luftdruck: p1 D .280 C 101;3/kPa D 381;3 kPa : Nach dem Abkühlen von T1 D 298;15 K auf T2 D 263;15 K steht nach p=T D const: das Gas unter dem Druck p1 T 2 381;3 kPa  263;15 K p2 D D 336;54 kPa : D T1 298;15 K Der Überdruck im Reifen bei 10 ı C beträgt damit p D .336;54  101;3/ kPa D 235;24 kPa. Bei der Abkühlung verringert sich also der Reifendruck um 44;76 kPa.

5  106 Pa  10 dm3  2 g=mol pV M D D 300;7 K mR 40 g  8314;3 Pa  dm3 =mol  K

.27;6 ı C/

8

T D

9

MHelium D 'Helium  Vm D 0;1785 g=dm3  22;41383 dm3 =mol D 4;001 g=mol s

10

vH2 D

3RT D MH2

s

km m 3p D 1838;37 D 6618;13 'H2 s h

Beachte: 1 J D 1 Nm D 1 Ws D 103 gm2 =s2 ; 1 Pa D 1 N=m2 D 1 kg=.ms2/; R D 8;3143 J=.mol  K/   vH 1 D 2 D 1;627  1010 s1 t H2 H2 ! je Sek. erfährt jedes Molekül 1;627  1010 Zusammenstöße.

11

m14% NaOH D '  V D 311;31 g VHCl

12

m100% NaOH D

311;31  14 D 43;58 g 100

 dm3  311;15 K 43;58 g  8314;3 Pa mRT mol  K D D 26;93 dm3 D g M p 40 mol  104 658 Pa

Der Teildruck des Wassers in 1 m3 Gas entspricht dem Druck, den der Wasserdampf hätte, wenn er allein den Raum von 1 m3 ausfüllte. Zur Berechnung der Wassermenge ergibt sich: mD

g 1000 dm3  3173;07 Pa  18 mol V  p  MH2 O D  dm3  298;15 K D 23;04 g RT 8314;3 Pa mol  K

f mH2 O D 23;04 g  m3

5.1 Ideale und reale Gase

13

2  123;3 D 0;243 dm3 VO2 C VN2 D V  VH2 O D 1;757 dm3 1013;3 D 1;757  0;21 D 0;369 dm3

VH2 O D VO2

.1013;3  123;3/  0;369 D 186;9 mbar 1;757 D 1013;3  123;3  186;9 D 703;1 mbar

VN2 D 1;757  0;79 D 1;388 dm3 pN2

14

nCO2 D

pO2 D

130 000 Pa  50  103 m3 pV D 1;99 mol D RT 8;3143 Pa  m3  K1 mol1  393 K D 2=3  nN2  MNaN3 D 1;327 mol  65;02 g=mol D 86;26 g

 * 2NaN3 )  2 Na C 3 N2 mNaN3 D nNaN3  MNaN3

15

nN2 D

30 700 Pa  3;2 dm3 pV D  dm3  273;15 K D 0;0432575 mol RT 8314;3  Pa mol  K

97 300 Pa  2;4 dm3  dm3  273;15 K D 0;102825 mol 8314;3  Pa mol  K 68 000 Pa  5;8 dm3 nH2 D  dm3  273;15 K D 0;173664 mol 8314;3  Pa mol  K  dm3  273;15 K 0;319746 mol  8314;3 Pa nges.  R  T mol  K D D 226 924;84 Pa pges. D 3;2 dm3 3;2 dm3 pges. D 2;26925 bar nN2 D

16

T D D

pC

n2 a V2



 .V  nb/

nR 40  10 C 5

12  0;3649 .0;75  103 /2



N=m2  .0;75  103  1  4;2672  105 / m3

.1  8;3143/ Nm=K

D 395;483 K D 122;33 ı C

17

331

416;6 g D 16;0 mol I T D 273;15 C 27 D 300;15 K I 26;04 g=mol   na RT D 32;09 bar  p D n V  nb V 2 nD

Bei idealen Verhältnissen ergäbe sich ein Druck von p D

n V

V D 0;01 m3

 RT D 40;33 bar.

332 18

5 Lösungen

1 mol Hirschhornsalz D 79;06 g NH4 HCO3 C78;08 g NH4 CO2 NH2 D 157;14 g Durch Zerfall von 1 g Hirschhornsalz nach den Gleichungen NH4 HCO3 .s/ ! NH3 .g/ C CO2 .g/ C H2 O.g/ NH4 CO2 NH2 .s/ ! 2 NH3 .g/ C CO2 .g/ entstehen n D 6  1=157;14 mol Gase, wodurch sich mit der allgemeinen Zustandsgleichung idealer Gase ein den Teig vergrößerndes Volumen ergibt: V D

19

a)

6  1=157;14 mol  8314;3 Pa  dm3  453;15 K nRT D D 1;42 dm3 : p 101 325 Pa  mol  K

 * H2  )  2H pH C pH2 D pges. Kp D

pH2 pH2

mit pges. D 0;98 bar eingesetzt ergibt pH2 C 0;0251  pH  .0;98  0;0251/ D 0 pH D 0;144 bar b)

pH2 D pges:  pH D 0;836 bar Die Stoffmengen verhalten sich wie die Partialdrucke. Damit ergibt sich für die mittlere molare Masse von Wasserstoff: .0;144  1;008 C 0;836  2;016/ g=mol D 1;87 g=mol : M D 0;98 Setzt man M in die allgemeine Zustandsgleichung der Gase ein, erhält man die Gasdichte: 'D

m pM 98 000 Pa  1;87 g=mol D D V RT 8314;3 Pa  dm3 =.mol  K/  3000 K

D 7;35  103

20

g kg D 7;35  103 3 : 3 dm m

MLuft D 0;78  28 g=mol C 0;21  32 g=mol C 0;01  40 g=mol D 29 g=mol 'D

M 29 g=mol D 1293;83 g=m3 D 1;294 kg=m3 D Vm 0;0224138 m3 =mol

21

'D

nM pM m D D I V V RT

22

N D NA  n D 6;022045  1023 mol1  0;15 mol D 903 307  1017

RD

pM D 8;35726 J=.mol  K/ ' T

5.1 Ideale und reale Gase

23

NL D

NA 6;022045  1023 mol1 D 2;687  1025 m3 D Vm 0;0224138 m3 =mol

r

s 3 NA kT D M

3  6;02  1023  1;38  300;15  103 g  m2  K  mol m D 485;906 23 2 10  32  mol  s K  g s

24

vD

25

'D

26

Ekin D

27

M D Œ.28;014  0;7808/ C .31;998  0;2095/ C .39;95  0;00349/ C .44;008  0;00035/ g=mol D 28;732 g=mol

28

333

M p 32 g  105  Pa  mol  K  mol1 g m kg D D D 1;27 3 D 1;27 3 3 V RT 8314;3  303;15  Pa  dm  K dm m 3RT 3  8;3143 J=.mol  K/  293;15 K D D 6;07  1021 J 2  NA 2  6;023  1023 mol1

Der Partialdruck des Stickstoffs beträgt pN D 99: 99  2;338 D 97;652 kPa. Somit ergibt sich für das Partialvolumen des Stickstoffs VN D

97;652 kPa  40 cm3 pN V D D 39;065 cm3 : p 99;99 kPa

Das Volumen des trockenen Stickstoffs beträgt 39;065 cm3 . 29

30

a) f D

.5;433 Pa/2  6;24 dm3 =mol p2 p 2 Vm D D D 517419 Pa D 5;174 bar pi d RT 8314;3 Pa  dm3 =.mol  K/  428;15 K

b) f D

.4;053  106 Pa/2  0;7696 dm3 =mol p2 p 2 Vm D D 3593340 Pa D 35;933 bar D pi d RT 8314;3 Pa  dm3 =.mol  K/  423;15 K

Es wird V jeweils für T > 100 ı C bzw. T < 100 ı C angegeben V > 100 ı C

V < 100 ı C

 * 2 H2 C O2  )  2 H2 O 20

10

.cm3 /

20

upDelt aV D 10 cm3

bzw. V D 30 cm3

(möglich)  * 4 NH3 C 3 O2 )  2 N2 C 6 H2 O 20

15

10

30

.cm3 /

V D C5 cm3

bzw. V D 25 cm3

 * 4 NH3 C 7 O2 )  4 NO2 C 6 H2 O 20

35

20

30

.cm3 /

V D 5 cm3

bzw.

V D 35 cm3

334

5 Lösungen

 * 2 CO C O2 )  2 CO2 20

10

20

.cm3 /

V D 10 cm3 (möglich)

.cm3 /

V D 0 cm3

bzw. V D 40 cm3

.cm3 /

V D 0 cm3

bzw. V D 40 cm3

 * C2 H4 C 3 O2  )  2 CO2 C 2 H2 O 20

60

40

40

 * CH4 C 2 O2 )  CO2 C 2 H2 O 20 31

40

20

40

Eisencarbonat zerfällt nach:  * FeCO3.s/ )  FeO.s/ C CO2.g/ Ammoniumcarbonathydrat zerfällt nach:  * Œ.NH4 /2 CO3  H2 O(s) )  2 NH3.g/ C CO2.g/ C 2 H2 O.g/ Kochsalz zerfällt nicht Gesamtstoffmenge der entstandenen Gase: nD

102 100 Pa  124 dm3 pV D D 5;159 mol RT 8314;3 Pa  dm3 =.mol  K/  295;15 K

Titration: + 3+ 3+  * 6 Fe2+ C Cr2 O2–  6 Fe C 2 Cr C 7 H2 O 7 C 14 H(aq) )

Stoffmenge Dichromat in einer Probe: Stoffmenge Eisen in einer Probe: Gesamtstoffmenge Eisen: Gesamtmasse Eisencarbonat: Stoffmenge des Gases aus Ammoniumcarbonathydrat: Stoffmenge Ammoniumcarbonathydrat: Gesamtmasse Ammoniumcarbonathydrat: Gesamtmasse Kochsalz:

32

27;2  103 dm3  0;1 mol=dm3 D 2;72  103 mol 2;72  103 mol  6 D 1;632  102 mol 1;632  102 mol  100 D 1;632 mol 1;632 mol  115;86 g=mol D 189;1 g 5;16 mol  1;63 mol D 3;53 mol 3;53 mol W 3 D 1;176 mol 1;176 mol  114;11 g=mol D 134;2 g 420 g  189;1 g  134;2 g D 96;7 g

n  R  T1 p1 V D n R  T2 p2 2 V

p1  T 2 50 bar  289 K D 24;25 bar p2 D D 2  T1 2  298 K

33

T1  V 2 T1  '1 p1 D D p2 T2  V 1 T2  '2 p2  T1  '1 100 mbar  273;15 K  1;785  104 g=cm3 D 1;03  102 g=cm3 '2 D D p1  T 2 1 mbar  473;15 K

5.1 Ideale und reale Gase

34

335

a) VKugel  'H2 O  v 2 m 2 v D 2 2 4 6 3    .0;5  10 m/  103 kg=m3  .0;5  102 m=s/2 D 3 2 2 21 kg  m D 6;54  1021 J D 6;54  10 s2

Ekin D Ekin

b) Die durchschnittliche kinetische Energie der Argonatome ist die gleiche wie die der Wassertropfen. Bei 0 K ist Ekin D 0. Wegen der Linearität gilt Ekin D a  T . Dabei ist a die kinetische Energie eines Ar-Atoms: Ekin 6;54  1021 J D D 2;18  1023 J=K T 300 K Somit sind in 1 g Ar N Atome enthalten: aD

N D

cAr 0;31 J=.g  K/ D D 1;42  1022 g1 a 2;18  1023 J=K

In 1 mol Ar sind dann enthalten: NA D N  MAr D 1;42  1022 g1  40 g=mol D 5;68  1023 mol1 35

a)  * C17 H35 COOH.s/ C 26 O2.g/  )  18 CO2.g/ C 18 H2 O(l) b) Es werden 8  58 g D 464 g Stearinsäure verbrannt. Mit M.C17 H35 COOH/ D 284 g=mol sind das 1;63 mol. Diese verbrauchen bei der Verbrennung 26  1;63 mol D 42;4 mol Sauerstoff. Dabei werden 18  1;63 mol D 29;3 mol Kohlenstoffdioxid frei. Mit der allgemeinen Gasgleichung ergeben sich die anfänglich vorhandenen Stoffmengen: pV RT D 3;99 m3

nD VO2

nO2 D 160 mol

98  103  Vi mol 8;3143  294 D 14;84 m3

nD VN2

nN2 D 594;9 mol

Vol: -% Gas.i /  19 m3 100 % D 0;17 m3

Vi D VAr

nAr D 6;9 mol

Nach der Verbrennung liegen die folgenden Gasmengen vor: nO2 D 117;6 mol nN2 D 594;9 mol nAr D 6;9 mol nCO2 D 29;3 mol Bei idealen Gasen gilt: Volumenprozente D Stoffmengenprozente. Gesamtstoffmenge D 748;7 mol. nO2 D 15;7 Vol  -% nN2 D 97;5 Vol  -% 36

nAr D 0;9 Vol  -% nCO2 D 3;9 Vol  -%

Im Gleichgewicht verschiebt sich der untere Kolben auf eine Höhe x über dem Boden der Röhre: 3h 2h C1D hx x

x 2  6hx C 3h2 D 0 x 2  60x C 300 D 0

x1 D 5;5 cm

x2 D 54;5 cm (entfällt)

336

5 Lösungen

5.2 Osmotischer Druck idealer Lösungen D

37

 dm3  293;15 K 5 g  8314;3 Pa mRT mol  K D D 676 474;34 Pa D 6;6763 bar g V M 0;1 dm3  180;15 mol

M Hämoglobin

38

 dm3  283;15 K 4;8 g  8314;3 Pa mRT g mol  K D D D 15 815;4  V 7145 Pa  0;1 dm3 mol

NaCl(aq) 0,5 0,3715 0,1285

39

A

 * ) 

Na+(aq)

C

Cl–(aq)

(mol) (mol) Gl. (mol) P n(diss) D 0;8715 mol Die Stoffmenge n des gelösten Stoffes NaCl ist mit dem van’t Hoff’schen Faktor P n(Diss) 0;8715 mol iD P D D 1;743 0;5 mol n(ohne Diss) 0,3715 0,3715

0,3715 0,3715

zu multiplizieren. Für den osmotischen Druck ergibt sich dann der Wert von 1;743  0;5 mol  8314;3 Pa  dm3 =.mol  K/  291;15 K i nRT D V 1 dm3 D 2 109 647;41 Pa D 21;0965 bar :

D

5.3 Joule-Thomson-Effekt 40

Gas

h a4 i h b 3 i Nm m 10-5  mol mol2

H2 Wasserstoff N2 Stickstoff O2 Sauerstoff CH4 Methan C2 H2 Ethin

0,0246 0,1381 0,1381 0,22914 0,4459

Ti D

2a D 2TB I bR

2,66 3,85 3,183 4,26 5,14

TK D

4  Ti W 27

5.4 Arbeit

Ti (K)

( C)

TB (K)

( C)

221,8 851,0 1047,6 1294,0 2086,8

51,5 577,8 774,45 1020,85 1813,65

110,9 425,5 523,8 647,0 1043,4

162,25 152,35 250,65 373,85 770,25

Gas H2 Wasserstoff N2 Stickstoff O2 Sauerstoff CH4 Methan C2 H2 Ethin

ı

ı

TK (K)

337

ı

( C)

32,85 240,3 126,07 147,1 155,2 117,9 191,7 81,4 309,2 36,0

Alle Gase können ohne Vorkühlung verflüssigt werden, wenn ihre thermische Inversionstemperatur Ti oberhalb der Zimmertemperatur liegt. Für Wasserstoff trifft dies nicht zu. Er muss auf mindestens 51;5 ı C vorgekühlt werden, um durch Anwendung des Joule-Thomson-Effektes eine weitere Abkühlung zu erreichen. In der Praxis erwies es sich allerdings als notwendig, ihn auf etwa 80 ı C vorzukühlen. 

41

    Z2 Z2 1 1 2a 2a  b I   b  dp I D dT D Cp RT Cp RT H 1 1   p 2a T D  b Cp RT !  3  1  105 mol  K m 2  0;1381 5 T D  3;183  10 D 0;31 K  3 29;01 m 8;3143  273;15 mol @T @p



5.4 Arbeit 5.4.1 42

Volumenarbeit

Aus W D p  V folgt W D p 

R nRT D R nRT : p

Es werden R n D 1;5 mol Knallgas gebildet (1 mol H2 und 0;5 mol O2 ): W D 1;5 mol  8;3143 J=.mol  K/  298;15 K D 3718;4 J D 3;718 kJ :

43

W D p  V D 3  105 Pa  .1;5/ m3 D 4;5  105 Nm D 450 kJ

44

Wm D nRT ; n D

R n D1 nF Wm D 1  8;3143 J=.mol  K/  303;15 K D 2520;48 J=mol D 2;52 kJ=mol

338

5 Lösungen

 * Mg.s/ C 2 HCl.aq/ )  MgCl2.s/ C H2.g/

45

10 D 0;41 mol 24;31 R n  R  T 0;41 mol  8314;3 Pa  dm3 =.mol  K/  303;15 K V D D D 8;612 dm3 p 1;2  105 Pa

R n D

W D p  V D 1;2  105 N=m2  8;612  103 m3 D 1033;44 Nm D 1033;44 J 46

Mit V D

m '

ergibt sich VWasser D 1000 cm3 und VEis D 1091 cm3 . Damit erhält man für die Volumenarbeit W D 1.91/ bar  cm3 D 105  91  106 N  m2  m3 D 9;1 J :

 * 4 HNO3.l/ C 5 N2 H4.g/  )  7 N2.g/ C 12 H2 O(g)

47

R n 14 mol 674 000 g D 2;8 nHydrazin D D 21 032;27 mol D nF 5 mol 32;046 g=mol W D n  R  T  nHydrazin D 2;8  8;3143 J=.mol  K/  623;15 K  21 032;27 mol

n D

D 3;05  108 J

 * Fe2 O3.s/ C 3 H2.g/ )  Fe(s) C 3 H2 O(g)

48

n D 0 ! W D 0  R  T D 0

T2 D T1

49



V1 V2

k1

T2 D 273;15 K  50;3 D 442;7 K D 169;5 ı C "

dU D ıW D n  CV  dT  W D n  CV  T1

W D n  CV  .T2  T1 /

W D n  CV  T1

#

k1

1

   T2 442;7 K 1  1 D 1 mol  27;72 J=.mol  K/  273;15 K  T1 273;15 K

D 4700 J 50

V1 V2

a) V2 p1 p1 D nRT ln D p1 V1 ln V1 p2 p2 14 6 2 3 W D 14  10 N=m  0;0402 m  ln D 2;78  106 Nm.J/ 0;1 W D nRT ln

5.4 Arbeit

339

2 k1 C k 2 b) Mit W D n  CV  .T2  T1 /, Cp  C v D R , CVp D k, T D p und nR D pT1 V1 1 T1 p1 erhält man für die Volumenarbeit: 2 3 "  k1 #   0;4 p2 k p1 V 1 14  106 N=m2  0;0402 m3 4 0;1 1;4  W D 1 D  15 k1 p1 0;4 14 D 1;06  106 Nm.J/ Erklärung der Ergebnisse: Bei a) wird Wärme aus der Umgebung aufgenommen, die zusätzlich in mechanische Arbeit umgewandelt wird. Deshalb ist hier der Betrag der mechanischen Arbeit größer als bei b). 51

Aus ıW D p  dV erhält man durch Integration in den Grenzen V1 und V2 ZV2 W D nRT 

dV V2 D nRT ln : V V1

V1

Für die Komprimierung ergibt sich 2 D 644;6 J 3 2 W D 0;7  8;3143  373;15  ln D 880;6 J : 3

bei 0 ı C

W D 0;7  8;3143  273;15  ln

bei 100 ı C Für die Expansion ergibt sich

4 D 2203;8 J 1 4 W D 0;7  8;3143  373;15  ln D 3010;7 J : 1

bei 0 ı C

W D 0;7  8;3143  273;15  ln

bei 100 ı C

5.4.2 52

A ! Gl.:

Osmotische Arbeit MgCl2(aq) 0,5 0,3715 0,1285

  * ) 

Mg2+ (aq)

C

0,3715 0,3715

2 Cl–(aq) 0,743 0,743

P

n(diss)

(mol) (mol) (mol) D 1;243 mol

Die Stoffmenge n des gelösten Stoffes wird mit dem van’t Hoff’schen Faktor i multipliziert P 1;243 mol n(Diss) D D 2;486 : iD P 0;5 mol n(ohne Diss) Man erhält damit den osmotischen Druck  D

2;486  0;5 mol  8314;3 Pa  dm3 =.mol  K/  293;15 K i nRT D V 1 dm3 D 3 029 609;947 Pa D 30;3 bar

340

5 Lösungen

und schließlich die osmotische Arbeit WOs : WOs D   V D 3 029 609;947 N=m2  8  105 m3 D 242;37 Nm.J/ : 53

Da Glukose nicht dissoziiert ist, ist der van’t Hoff’sche Faktor i D 1 D

 dm3  293;15 K 1  100 g  8314;3 Pa i mRT mol  K D D 1 352 948;68 Pa D 13;53 bar g V M 1 dm3  180;15 mol

WOs D   V D 1 352 948;68 N=m2  7;5  105 m3 D 101;47 Nm.J/

5.4.3 54

Oberflächenarbeit

Unter der Oberflächenspannung versteht man die Grenzflächenspannung von Flüssigkeiten gegenüber der Dampfphase bzw. Luft. Innerhalb der Flüssigkeit wirken auf ein Molekül von allen Richtungen her die gleichen Anziehungskräfte benachbarter Moleküle ein, so dass die Resultierende gleich Null ist. Bei den Molekülen in der Flüssigkeitsoberfläche werden aber diese Kräfte durch die Gasphase nicht kompensiert. Die Moleküle werden in das Innere der Flüssigkeit gezogen, die dadurch längs ihrer gesamten Oberfläche durch bedeutende Kräfte zusammengedrückt wird. Diese Kräfte wirken so, dass die Zahl der Moleküle in der Oberfläche möglichst klein bleibt. Sie müssen überwunden werden, wenn man die Oberfläche vergrößern will. Die Oberfläche einer Flüssigkeitsmenge mit gegebenem Volumen ist dann am kleinsten, wenn sie die Gestalt einer Kugel hat. Die Kräfte, die einer Vergrößerung der Oberfläche entgegenwirken, werden als Oberflächenspannung mit dem Symbol bezeichnet. Sie wirken senkrecht zur Längeneinheit in der Oberfläche der Flüssigkeit und sind hier nach allen Richtungen gleich groß. Zu einer Vergrößerung der Oberfläche muss eine Oberflächenarbeit ıWO aufgewendet werden. Sie ist gleich dem Produkt aus Oberflächenspannung und Flächenzuwachs dA ıWO D  dA :

55

WO D  .A2  A1 / A2 D

KugelOberfl. 

mHg 'Hg

KugelVolumen

D

3mHg 4 r 2 mHg 1 kg  3  D D 6 4 3 'Hg r 'Hg 0;5  10 m  13;6  103 kg  m3 r 3

D 441;18 m2 WO   A2 WO  4;7 N  m1  441;18 m2 D 2073;55 Nm.J/ 56

WO D  .A2  A1 / A2 D

KugelOberfl. 

mH O 2 'H O 2

KugelVolumen

D

3mH2 O 4 r 2 mH2 O 0;018016 kg  3  D D 6 m  103 kg  m3 4 3 ' r ' 1  10 r H2 O H2 O 3

D 54;048 m2 WO   A2

WO  0;07258 N  m1  54;048 m2 D 3;923 Nm.J/

5.4 Arbeit

57

58

a) D

4;62  104 m  .26  9;81  792;3  9;81  0;02/ N=m2 r  .p  '  g  h/ D 2 2 D 0;02301 N=m

b) ' D

N=m 28  9;81 N=m2  2  0;029252 p  2 0;00038 m r D D 879;002 kg=m3 D 0;879 g=cm3 gh 9;81 m=s2  0: 014 m

5.4.4

Elektrische Arbeit

a)

Q D I t

b) mZn D

59

341

Wel. D U  Q

QM zF

mZn D

Wel. D 1;5 V  0;5 Ah D 0;75 Wh

0;5 Ah  65;39 g=mol D 0;61 g 2  26;8 Ah=mol

I t D nz F 92;6 mol  1  96 487 As=mol nz F D D 8934;6962 s D 2;48 h tD I 1000 A Wel. D U  I  t I Wel. D 0;25 V  1000 A  2;48 h D 620;46 Wh D 0;620 kWh Zum Zwecke der elektrochemischen Raffination vergießt man das Rohsilber zu etwa 1 cm starken Anodenplatten, die in einer als Elektrolyt dienenden salpetersauren Silbernitratlösung mit Kathoden aus dünn gewalztem Feinsilberblech zusammengeschaltet werden (Abb. 5.1). Bei der Elektrolyse gehen an der Anode Ag und die Verunreinigungen an Cu, Fe und Sn in Lösung, während vorhandenes Au und Pt elementar abfallen und zusammen mit anderen Resten den „Anodenschlamm“ bilden. Man wählt dabei die Spannung so niedrig (U D 0;25 V), dass sich an der Kathode nur Ag+ -Ionen entladen können. Eine höhere Spannung hat folgende Nachteile:  Es besteht die Gefahr der Abscheidung von metallischen Verunreinigungen, da deren Zersetzungsspannung überschritten wird. e+



+ Ag+ Cu2+ Fe2+ Sn2+

NO–3 NO–3

Ag+ Ag+

NO–3

NO–3 Au, Pt

Anodenschlamm

Abb. 5.1 Schematische Darstellung der elektrolytischen Silberraffination.

342

5 Lösungen

 Die Ag-Abscheidung erfolgt nicht regelmäßig und führt zur Bildung von Schwammsilber.  Es entstehen höhere Kosten, da sich der elektrische Arbeitsaufwand erhöht. Auch bei U D 0;25 V erfolgt die Ag-Abscheidung nicht in Form eines glatten, zusammenhängenden Überzugs, sondern in Form loser, verästelter Kristalle. Deshalb sind zur Vermeidung eines zwischen Anode und Kathode auftretenden Kurzschlusses scherenförmige Abstreifer vorhanden, die sich während der Elektrolyse hin und her bewegen und die Silberkristalle in einen Einsatzkasten abstreifen. Das so gewonnene „Feinsilber“ ist 99.6–99.9 %ig. Der Anodenschlamm wird zur Gewinnung der enthaltenden Edelmetalle genutzt.

60

D

61

mF z M  0;3 V  106 g  96 487 As=mol  2 D 0;904 D 63;55 g=mol  280  3;6  106 V  As

Wel. D U  Q D U  I  t U mF z M  Wel.

Wel. D U  I  t

I t D

I t D

V F z Vm 

U V F z Vm  4 V  500 m3  96 487 As=mol  2 Wel. D D 2;1524  1010 Ws D 5978;84 kWh 0;022414 m3 =mol  0;8 Kosten D 5978;84 kWh  0;2 C=kWh D 1195;77 C Wel. D

62

62.1: mF z M  5 V  106 g  96 487 As=mol  3 U mF z D D D 5;647  1010 Ws M  26;98 g=mol  0;95 D 15 686;1 kWh

Wel. D U  I  t Wel.

I t D

 * 2 Al2 O3 C 6 C )  4 Al C 6 CO 0;5 mol 1;5 mol 1 mol m(Al2 O für 1 t Al) D

0;6  106 g  26: 98 g=mol D 317 536;3 g D 0;3175 t 0;5  101;96 g=mol

m(Bauxit für 1 t Al) D .0;3175 t/1 D 3;149 t m(Graphit für 1 t Al) D

1;5  12 g=mol  106 g D 667 160;9 g  0;67 t 26;98 g=mol

5.4 Arbeit

343

62.2:  * 2 Al2 O3  )  4 Al C 3 O2 X X R H D B H.Prod./  B H(Ed.) D 3526 kJ=mol X X S.Prod./  S(Ed.) D 830 J=.mol  K/ R S D R G D R H  T  R S D 3526 kJ=mol  1243;15 K  0;83 kJ=.mol  K/ D 2494;19 kJ=mol 2494;19  103 J=mol V  As G  103 D D 2;154 D 2;15 V 4zF 4  3  96 487 As=mol As Spannung(Elektrolyse) D 2;15 V E D 

62.3: 0 Wegen des stark negativen Standardpotenzials von Aluminium .EAl=Al 3C D 1;66 V/ bildet sich an der Kathode nicht Aluminium sondern Wasserstoff. 62.4: Es kommen die beiden folgenden Reaktionen in Frage: I II

 * 2 Al2 O3 C 6 C )  4 Al C 6 CO   * 2 Al2 O3 C 3 C )  4 Al C 3 CO2

mit mit

GI D 3  G2  G1 GII D 3  G3  G1 .

Damit GI < 0 wird, muss gelten: 3  .221;06  0;17872  TI =K/kJ=mol  .3351;4 C 0;6264  TI =K/kJ=mol < 0 2688;22 < 1;16256  TI TI > 2312;3 K D 2039;15 ı C Die Darstellung von Al ist aber dennoch nicht möglich, weil sich bei dieser Temperatur Aluminiumcarbid bildet. Damit GII < 0 wird, muss gelten: 3  .393;51  0;00286  TII =K/kJ=mol  .3351;4 C 0;6264  TII =K/kJ=mol < 0 2170;87 < 0;63498  TII TII > 3419 K D 3145;85 ı C Bei dieser Temperatur bildet sich in Anwesenheit von Kohlenstoff kein CO.

63

2+ –  * Fe(s) C 0;5 O2 C H2 O  )  Fe(aq) C 2 OH(aq) 0 0 E 0 D EKath  EAn D 0;4 V  .0;41 V/ D 0;81 V

E D E 0 

2 cFe2+  cOH – RT (aq) (aq)  ln zF pO0;5 2

0;015  1010 8;3143  298;15 V  ln D 0;81 V  D 1;158 V 2  96 487 0;70;5

344

5 Lösungen

Wel. D z  F  E D 2  96 487

64

kJ As  1;158 V D 223;464 mol mol

 * Man muss das Standardpotenzial E 0 für V2+ C 2 e–  )  V berechnen, denn die Standardpotenziale sind bezogen auf die Standardwasserstoffelektrode mit E 0 D 0 V: 1,00

0,337

– 0,255

x

– 0,25

0 .1;00 C 0;337  0;255 C 2x/ V D 5  .0;25/ V x D E(V D 1;17 V 2+ =V) 0 G 0 D z  F  E(V D 2  96 487 As=mol  .1;17 V/ D 225;78 J=mol 2+ =V)

65

Wel. D U  I  t D m  cH2 O  T m  cH2 O  T 200 g  4;186 J=.gK/  80 K D D 669;76 s D 11;2 min tD U I 100 J=s

5.4.5 66

Magnetische Arbeit

B2 .H / D 1;1  arctan B1 .H / D 1;1  arctan

A H  82 m A 100 m A H C 82 m A 100 m

!

! C 0;004 T

!

!  0;004 T

66.1: Ansatz: Nach den Ausführungen von S. 14, Fußnote 2 ergibt sich bei der Hysterese (Kreisprozess) die magnetische Arbeit als Gesamtfeldenergie-Änderung: H I Z I I I ıWmagn. D HdB D BdH D  BdH D  M dH D HdM V Wmagn. D V

Hyst.

Z BdH

oder

Hyst.

Z

Wmagn. D

BdH  V

(Fläche zwischen Hysteresekurven)

Hyst.

Die Integration im mathematisch positiven Sinne ist der Gegenuhrzeigersinn und damit H ist das H H R Integral BdH negativ und somit  BdH positiv. Man setzt daher Hyst. BdH D  BdH .

5.4 Arbeit

345

Einsetzen der Formeln und Integration: Wmagn. D V

1500 Z

1500

    H C 82 1;1  arctan  0;004 dH 100

1500 Z



 1;1  arctan

 1500

H  82 100



 C 0;004 dH

1 Hinweise: Z 1 C B B arctan xdx D x  arctan x   ln.1 C x 2 / C C C C B 2 A @ H C 82 dx 1 Dx D ! dH D 100dx 100 dH 100 " #1500    ! Wmagn. H C82 H C82 H C 82 2 D 110   arctan 55  ln 1C 0;004  H V 100 100 100 1500 " #1500    2! H 82 H 82 H 82  arctan 55  ln 1C  110  C0;004  H 100 100 100 0

1500

Ergebnis: Wmagn. Ws J D 518;7 3 D 518;7 3 V m m 66.2: Zum einmaligen Durchlaufen der Hysteresekennlinie muss folgende magnetische Arbeit verrichtet werden: Ansatz:

Z

Wmagn. D

B.H /dH  V D

Wmagn. V V

Hyst.

Einsetzen der Werte: W  s 250 kg Wmagn. D 518;7 3  m 7700 kg3 m

Ergebnis: Wmagn. D 16;84 W  s D 16;84 J Damit berechnen sich die Ummagnetisierungsverluste des Eisenkerns: Ansatz: PUmmagn. D f  Wmagn. Einsetzen der Werte: PUmmagn. D 50 Hz  16;84 W  s

346

5 Lösungen

Ergebnis: PUmmagn. D 842 W 66.3: Der Ferromagnetismus ist eine komplexe Eigenschaft und hängt vom Bau der Atome und ihrer Anordnung im Kristall ab. Innerhalb eines Kristalls stellt sich eine einheitliche Ausrichtung der Atomarmagnete, die so genannte Magnetisierungsrichtung ein (abhängig von der Art des Gitters). Bei einem ferromagnetischen Stoff (z. B. Fe, Co, Ni) kommen auf Grund der Vielzahl der Kristalle alle Richtungen gleich oft vor, so dass er nach außen zunächst unmagnetisch wirkt. Bei Einwirkung eines Magnetfeldes H auf den Werkstoff drehen sich die Atomarmagnete aus ihrer ursprünglichen Lage heraus und schwenken in die Richtung des angelegten Magnetfeldes ein. Mit steigender Feldstärke H steigt die Zahl der einschwenkenden Atomarmagnete, d. h. die Magnetisierung B (magnetische Induktion) des Werkstoffes wird in Richtung des angelegten Magnetfeldes größer. Dieser Prozess ist beendet, wenn alle Atomarmagnete ausgerichtet sind (Sättigungsinduktion BS ). Der Werkstoff ist magnetisch gesättigt. Die dazu notwendige Stärke des Magnetfeldes ist die Sättigungsfeldstärke HS . Wird das Magnetfeld abgeschaltet, bleibt auf Grund innerer Wechselwirkungskräfte eine mehr oder weniger große Zahl von Atomarmagneten in der ursprünglichen Richtung des Magnetfeldes ausgerichtet. Im Werkstoff verbleibt eine Restmagnetisierung Br (remanente Induktion, Remanenz), die durch die Einwirkung eines magnetischen Gegenfeldes abgebaut werden kann. Die dazu notwendige Feldstärke nennt man Koerzitivfeldstärke Hc . Nach dem Ein- und Ausschalten des magnetischen Feldes befindet sich der Werkstoff nicht wieder im Ausgangszustand. Man nennt eine solche Erscheinung Hysteresis (Abb. 5.2). Die wichtigsten Kenngrößen eines weichmagnetischen Werkstoffes sind: Anfangspermeabilität i , Maximalpermeabilität m , Sättigungsinduktion BS und die Ummagnetisierungsverluste PUmmagn. .

B (T)

Neu

kur

ve

Bs Br

0 Bs Sättigungsinduktion Br Remanenz HS Sättigungsfeldstärke Hc Koerzitivfeldstärke Hc

0 H (A / m)

Hs

Abb. 5.2 Vollständige Hystereseschleife eines Ferromagneten.

5.4 Arbeit

347

66.4: Industrie- und Wohnanlagennetztransformatoren, die mit der Leitungsfrequenz 50 Hertz arbeiten, sind für hohe Spannungen und Ströme konstruiert. Bekanntlich erfordert die leistungsfähige Stromübermittlung einen Transformator, der die Spannung (mehrere tausend Volt) am Kraftwerk erhöht und die Stromstärke entsprechend erniedrigt. Da die Energieverluste in der Leitung proportional zum Quadrat von Strom mal Leitungswiderstand sind, werden in Überlandleitungen Hochspannungen und geringe Ströme angestrebt, um die Verluste niedrig zu halten. Am Empfangspunkt reduzieren Transformatoren die Spannung und erhöhen die Stromstärke. Die Höhe der elektrischen Spannung in Haushalten und in der Industrie liegt meist zwischen 220 und 240 Volt. Netztransformatoren müssen effizient arbeiten und dürfen während des Transformationsprozesses möglichst wenig Energie in Form von Wärme abgeben. Ein hoher Wirkungsgrad wird durch spezielle Stahllegierungen zur Kopplung der induzierten Magnetfelder zwischen Primär- und Sekundärwicklungen erreicht. Selbst Verluste von 0,5 % der übertragenen Energie in einem großen Transformator erzeugen enorme Wärmemengen, die spezielle Kühlanlagen erfordern. Typische Netztransformatoren sind in versiegelten Behältern untergebracht und enthalten Öl oder andere Kühlmittel (z. B. Chlorbiphenyle), um die Wärme auf äußere Kühloberflächen zu leiten.

5.4.6 67

Mechanische Arbeit

In der Mechanik wird das Wort Arbeit (Abb. 5.3) nur verwendet, wenn eine Kraft (oder auch die Resultierende aus mehreren Kräften) so auf einen Körper einwirkt, dass dieser unter Einwirkung der Kraft einen Weg zurücklegt. Man setzt fest, dass die Arbeit W sowohl zum Betrag F der wirkenden Kraft als auch zum Betrag s des Weges, auf dem die Kraft wirkt, proportional ist. In Abb. 5.3a liegt insofern ein Sonderfall vor, als Kraft und Weg gleiche Richtung haben. Im Allgemeinen trifft dies nicht zu. In Abb. 5.3b liegt zwischen Kraftrichtung und Richtung des Weges der Winkel ˛. In Wegrichtung ist somit nur die Kraftkomponente Fs D F  cos ˛ wirksam, und nur diese geht in die Definition der mechanischen Arbeit ein. Somit gelten folgende Definitionen: W D F  cos ˛  s W D FS  s Mechanische Arbeit bei konstanter Kraft

(5.1)

Die verrichtete Arbeit lässt sich, wie in Abb. 5.3a und b, gezeigt wird, anschaulich in einem F; s-Diagramm darstellen. Sie erscheint als Fläche, die sich über s von der Abszissenachse bis zur Kurve erstreckt. In (5.1) ist eine konstante Kraft vorausgesetzt. Für den allgemeineren Fall, dass eine vom Weg abhängige Kraft F D F.s/ wirkt (Abb. 5.3c), unterteilen wir den Weg in Wegelemente s und bilden zunächst für jedes Wegelement das Arbeitselement W D F.s/  cos ˛  s. Für s ! 0 ergibt sich die gesamte Arbeit als Grenzwert der Summe aller Arbeitselemente: Zs2 F.s/  cos ˛  ds

W D

(5.2)

s1

Die mechanische Arbeit ist somit das Wegintegral der Kraft. Es ist zu beachten, dass die Arbeit eine skalare Größe ist, obwohl die in das Produkt eingehenden Größen Kraft und Weg Vektorgrößen sind.

348

5 Lösungen WL

1) F

V

α

2)

V

WL

Fs

α

FN

F Fs

s

F = F (s)

s

10

A

W = FS ⋅s

1

5 s (m)

a)

A

W = FS ⋅cos α

s1

Δs1 Δs3 Δs5 s (m)

s (m) b)

s2

F1

F (N)

F (N)

F (N)

3)

c)

Abb. 5.3 Zur Definition der mechanischen Arbeit. a) konst. Kraft und Weg in gleicher Richtung (V: Vektor); b) schräg zur Wegrichtung angreifende Kraft (WL: Wirkungslinie der Kraft), 1) Situation, 2) Zerlegung der Kraft F in FS D F  cos ˛ und FN D F  sin ˛, 3) Diagramm der verrichteten Arbeit; c) Arbeit bei wegabhängiger Kraft. Die Fläche A ist der Grenzwert der Summe aus den Rechtecken FV  sV zwischen s1 und s2 .

68

W D F  s  cos ˛ Bei a) und b) wird dem System Arbeit zugeführt. Bei c) ist die Arbeit Null, weil Wegrichtung und Kraftrichtung ein Winkel /2 bilden. Bei d) und e) wird dem System Arbeit abgeführt. Das System verrichtet Arbeit. a) W D 84 Nm d) W D 68;81 Nm

69

b) W D 42 Nm e) W D 84 Nm

c) W D 0

Ein auf der Erdoberfläche befindlicher Körper mit der Masse m soll mit konstanter Geschwindigkeit um die Höhe h gehoben werden. Dazu muss gegen die nach unten auf den Körper wirkende Gewichtskraft FG D m  g eine Arbeit verrichtet werden. Die hierzu erforderliche, nach oben gerichtete Kraft F muss den gleichen Betrag wie FG haben, d. h., es muss gelten: F D FG D m  g :

5.4 Arbeit

349

Es wird weiter vorausgesetzt, dass die Hubhöhe h so klein gegenüber dem Erdradius ist, dass die Gewichtskraft FG als konstant betrachtet werden kann. Für die verrichtete Hubarbeit gilt dann: W D F h D mg h:

(5.3)

Wenn der Körper auf einer geneigten Ebene mit konstanter Geschwindigkeit reibungsfrei um die Strecke h gehoben wird, muss zur Bestimmung der Arbeit die Gewichtskraft FG in zwei Komponenten zerlegt werden, von denen die eine parallel (FG.1/ ) und die andere senkrecht (FG.2/ ) zur geneigten Ebene verläuft. Für diese Komponenten gilt: FG.1/ D FG  sin ˛

und FG.2/ D FG  cos ˛ :

Bei einer Hebung längs der geneigten Ebene ist nur gegen die Komponente FG.1/ Arbeit zu verrichten. Wenn man den zurückgelegten Weg mit s bezeichnet, gilt für die Arbeit: W D FG.1/  s D FG  sin ˛ D m  g  sin ˛  s :

s

h

FG(1)

(5.4)

h

α

FG

FG(2)

α

Abb. 5.4 Zur Hubarbeit bei der geneigten Ebene.

Aus Abb. 5.4 ersieht man weiter, dass sin ˛ D gelangt man wieder zu Gleichung (5.3):

h s

ist. Setzt man diesen Wert in (5.4) ein,

W D mg h: Somit ist es gleichgültig, ob die Hebung senkrecht zur Erdoberfläche oder längs einer geneigten Ebene erfolgt. Wenn man die bei den dargelegten Vorgängen erforderlichen Kräfte und die zurückgelegten Wege vergleicht, ergibt sich Folgendes: Hebung senkrecht zur Erdoberfläche Hebung längs einer geneigten Ebene

Kraft mg m  g  sin ˛

Weg h h= sin ˛

Arbeit mgh mgh

Man kann die Hubarbeit auch zeichnerisch ermitteln. Dazu wird in einem rechtwinkligen Koordinatensystem die Kraft F als Funktion der Hubhöhe h dargestellt. Diese Darstellung ist im vorliegenden Falle besonders einfach, weil die Kraft während der ganzen Hebung konstant bleibt.

350 70

5 Lösungen

a C b): W D mgh D 200 kg  9;80665 ms2  2;5 m D 4903;325 .kg  ms2 m/ D 4903;325 Nm D 4903;325 J oder b): sin ˛ D 2;5=10 D 0;25 W D m  g  sin ˛  h= sin ˛ D 200 kg  9;80665 ms2  0;25  2;5 m=0;25 D 4903;325 J Es ergeben sich verschiedene Rechtecke gleicher Fläche (Abb. 5.5).

1961,33 Kraft (N)

Kraft (N)

4903,325 N m

4903,3325

4903,325 N m

2,5 Weg(m)

10 Weg(m)

Abb. 5.5 Arbeitsdiagramme zu Aufgabe 70.

5.5 Innere Energie und Enthalpie 71

 * Aus der Reaktionsgleichung C6 H6 C7;5 O2  )  6 CO2 C 3 H2 O folgt, dass 7;5 mol Sauerstoff verschwinden und 6 mol Kohlenstoffdioxid entstehen. Es gilt n D 1;5 (Benzol und Wasser sind bei 25 ı C flüssig), und man erhält aus H D U C nRT H D .3264  1;5  8;3143  103  298;15/ kJ  mol1 D 3267;72 kJ  mol1 :

72

Aus der jeweiligen Reaktionsgleichung ergibt mit n D

Änderung der Molzahlen gasiger Reaktanden R n.mol/ D nF .mol/ Stoffmenge der Formelumsätze entsprechend der Reaktionsgleichung RG

5.5 Innere Energie und Enthalpie

351

R U D R H  nRT die Änderung der inneren Energie:

73

 * CH4(g) C 2 O2(g)  )  CO2(g) C 2 H2 O(l)

n D 2

U D 885;04 kJ=mol

 * C3 H8.g/ C 5 O2.g/  )  3 CO2.g/ C 4 H2 O(l)

n D 3

U D 2227;45 kJ=mol

 * C5 H12(g) C 8 O2.g/ )  5 CO2.g/ C 6 H2 O(l)

n D 4

U D 3520;92 kJ=mol

 * C7 H16.l/ C 11 O2.g/ )  7 CO2.g/ C 8 H2 O(l)

n D 4

U D 4816;92 kJ=mol

 * C2 H4.g/ C 3 O2.g/  )  2 CO2.g/ C 2 H2 O(l)

n D 2

U D 1414 kJ=mol

 * C2 H2.g/ C 2,5 O2.g/ )  2 CO2.g/ C H2 O(l)

n D 1;5

U D 1311;72 kJ=mol

W D pV D 1;01325  105 Nm2  .0;018  0;0196/  103 m3 =mol D 0;162 J=mol H D 18 g=mol  335 J=g D 6030 J=mol U D H C W D 6030 C 0;162 D 6030;162 J=mol

74

75

U D H  nRT D 285;6 kJ=mol  .1;5  0;0083143 kJ=.mol  K/  298;15 K/ D 281;88 kJ=mol

310 Z H D .a C bT C cT 2 /dT D ŒaT C 1=2bT 2 C 1=3T 3 310 180 180

2;07  102 5;15  105 .3102  1802 / C .3103  1803 / 2 3 D 1046;4  659;295 C 411;296 D 9798;4 J

D 77;28.310  180/ 

373;15 Z

76

H D

403;15 Z

Cp.H2 O; l / dT CH.H2 O;Vd./ C 323;15

373;15

373;15 Z

D

403;15 Z

75 dT C47 300 C 323;15

D 48 362;4 J

373;15

35;4 dT

Cp.H2 O;g/ dT

352 77

5 Lösungen

n D 4 R H D R U C nRT D 2134;2 kJ=mol  Œ4  8;3143  103 kJ=.mol  K/  298;15 K D 2144;12 kJ=mol B H 0 .B2 H6 / D R H C B H 0 .B2 O3.s/ / C 3  B H .H2 O(l) / D 2144;12 kJ=mol1264 kJ=mol C 3  .285;9 kJ=mol/ D 22;42 kJ=mol 

78

@.HVd / @T

 D Cp p

HH333 D Œ43 292 C .333;15  313;15/  .35;46  75;24/ J=mol D 42 496;4 J=mol 2 O;Vd

79

1  * C(s) C O2(g) )  CO(g) 2   @.B H / D Cp D ˛ C ˇ  T C   T 2 @T p 773;15 Z

B H

773

D B H

298

C

.˛ C ˇ  T C   T 2 /dT

298;15

ˇ B H 773 D 110 530 C ˛  .773;15  298;15/ C  .773;152  298;152 / 2   1 1    773;15 298;15 29;96 D 3;43 2 4;18  103 ˇ D 4;1  103  .4;77  103 C / D 2;76  103 2 1;67  105 / D 8;915  105  D 0;46  105  .8;54  105  2 ˛ D 28;41  .16;86 C

B H 773 D .110 530  1629;25  702;237 C 1837;03/ J=mol D 111 024 J=mol

80

308 Z Z308 d.H / D CpdT 291

1 Cp D CpH2.g/ C CpO2(g)  CpH2 O(g) 2

291

D 9;83 J=.mol  K/ 308 Z Z308 d.H / D 9;83dT 291

H308 D H291 C 9;83  17 D 241 750 C 167;11

291

D 241 917;11 J  mol1

5.5 Innere Energie und Enthalpie

81

N2O4 (g)

353

2 NO2 (g)

ΔH1

ΔH3

2 ΔH2

ΔH4 N2O4 (Lösung)

2 NO2 (Lösung)

Abb. 5.6 Born-Haber-Kreisprozess, dargestellt mit Enthalpiewerten von Stickstoff(IV)-oxid.

a): Für die Reaktion N2 O4(Lösung) ! N2 O4(g) ist ebenso wie für N2 O4(l) ! N2 O4(g) die Gleichgewichtskonstante Kp D pN2 O4 . Es ist   1 519 R  ln p 8;3143  ln 1013 1 Kp1 H 1 p2  ! H3 D  1 ln D  D  1 1 Kp2 R T1 T2  T12  293;15 T1 281;15 D 38;189 kJ  mol1 b): 1 1  .H4 C H3 C H1 / D  .78;94 C 38;189 C 57;36/ 2 2 D 8;3045 kJ  mol1

H2 D

82

lAgNO3 D

q

KL.AgNO / D 3

p cAg+  cNO–3

82.1: KL20 D 0;02022 D 4;08  104 mol2  .dm3 /2 KL60 D 0;08122 D 6;59  103 mol2  .dm3 /2 l 20 D 0;0202 mol=dm3 82.2: 

d ln lAgNO3 dT

 D p

L H D

l 60 D 0;0812 mol=dm3

L H RT 2 ln 0;0812  8;3143 0;0202 1 293;15



1 333;15

D 28 241;9

kJ J D 28;242 mol mol

354 83

5 Lösungen

a): Ca (s) + F2 (g) 178,2

–1219

2 (79)

Gitterenergie

Ca(g) + 2F(g) 589,7

CaF2(s)

2 (–322)

Ca+(g) + 2F –(g)

1145

2+ Ca(g) + 2F –(g)

Abb. 5.7 Schema des Born-Haber-Kreisprozesses für die Berechnung der Gitterenthalpie von Kalziumfluorid.

Die Gitterenergie von Kalziumfluorid beträgt: G H D .1145  589;7 C 644  178;2  158  1219;6/ kJ=mol D 2646;5 kJ=mol b): Die Solvatationsenergie wird im Falle von Wasser als Lösungsmittel auch als Hydratationsenthalpie H H bezeichnet und ist die Energie, die durch elektrostatische Wechselwirkung der Wassermoleküle mit den geladenen Ionen freigesetzt wird. Die Gitterenthalpie ist diejenige Energie, die abgegeben wird, wenn entgegengesetzt geladene Ionen sich aus unendlicher Entfernung nähern und einen Kristall bilden. Sie sagt etwas über die Bindungsstärke zwischen den Ionen im Festkörper aus. Die Summe von Gitter- und Hydratationsenthalpie ist die Lösungsenthalpie L H D H H  G H : 84

a): s. Abb. 5.8 (1) b): Die Elementarzelle enthält 4 Sauerstoff- und 4 Titanionen 4  .16 C 47;87/ g=mol m D D 5;73 g=cm3 'D V 6;022  1023 mol1  .0;42  107 cm/3 c): Nach Born und Haber (s. Abb. 5.8 (2)) ergibt sich: G H D .1310  797;5  658 C 141;5  425  249  523/ kJ=mol G H D 3821 kJ=mol

5.5 Innere Energie und Enthalpie (1)

(2)

355

O2–

Ti(s) + O2 (g)

–523

TiO(s)

425

Gitterenergie

Ti (g) + O(g) 658 –141,5

Ti+(g) + O–(g)

1310 + 797,5

2– Ti2+ (g)+ O(g)

Abb. 5.8 Elementarzelle (1) und Schema zur Berechnung der Gitterenthalpie (2) von Titan(II)-oxid.

d): Es müssen die beiden Reaktionen 1) 4 N ! N4 und 2) 4 N ! 2 N2 verglichen werden: H1 D 6  163 kJ=mol D 978 kJ=mol H2 D 2  945 kJ=mol D 1890 kJ=mol

S1 < 0 S2 < 0 :

Man kann annehmen, dass S1 < S2 ist, da die Entropie bei der Umwandlung von 4 in 1 Teilchen stärker abnimmt als bei der Umwandlung von 4 in 2 Teilchen. G1 D 978 kJ=mol  TS G2 D 1890 kJ=mol  TS G2  G1 D 912 kJ=mol  T  .S2  S1 / < 0 G2 < G1 ! Reaktion 2) ist bevorzugt :

356 85

5 Lösungen

K(s) + 0,5 F2 (g)

90

–567

KF(s)

– 0,5 (158)

K(g) + F(g)

Gitterenergie

419 – 333

K+(g) + F –(g)

Abb. 5.9 Born-Haber-Kreisprozess zur Bildung des Ionengitters von Kaliumfluorid.

G H D 419 kJ=mol C 333 kJ=mol  90 kJ=mol  79 kJ=mol  567 kJ=mol G H D 822 kJ=mol 86

a): 2 Mg C 4 HCl 2 MgO C 4 HCl 2 H2 C O2 2 Mg C O2

  * )    * )    * )   * ) 

2 MgCl2 C 2 H2 2 MgCl2 C 2 H2 O 2 H2 O(l) 2 MgO

H1 H2 H3 B H.MgO/

B H.MgO/ D H1 C H3  H2 0 H3 D B HWasser D 286 kJ=mol B H.MgO/ D H1  H2  286 kJ=mol

b): Kalorimetrische Bestimmung von H1 und H2 :  Bereitstellung: Kalorimetergefäß mit Thermometer und Rührer  Bestimmung des Wasserwertes C des Kalorimeters  Vorgaben für Versuch 1: V.1 M HCl/ ; mMg (oxidfrei) ; c(1 M HCl)  c.H2 O/ D 4;186 J=.gK/ Versuch 2: V(1 M HCl) ; mMgO ; c(1 M HCl)  c.H2 O/ D 4;186 J=.gK/  Bestimmung von T in beiden Versuchen und Berechnung von H1 und H2 in kJ=mol  Berechnung von B H.MgO/ 87

Nach dem Satz von Hess gilt: X B H D HTeilschritte D .147;8 C 2200 C 247 C 695  3931/ kJ=mol D 641;2 kJ=mol :

5.6 Kalorimetrie

357

Die Darstellung mit dem Born-Haber-Kreisprozess (Abb. 5.10) ergibt: Mg(s) + 0,5 O2 (g)

(a) + (c)

ΔB H = – 641,2 kJ/mol

Mg O(s)

Mg(g) + O(g)

(b) + (d)

(e)

2– Mg2+ (g) + O (g)

Abb. 5.10 Born-Haber-Kreisprozess zur Bildung des Ionengitters von Magnesiumoxid.

5.6 Kalorimetrie 88

Berechnung des Wasserwertes

 0 2 .0;01  0;008/ K D 0;009 K D .2  1/  0;008 K C 2 Tkorr D T C k D .19;747  17;622/ K C 0;009 K D 2;134 K mSubst.  V HSubst.  .mH2 O  cH2 O / W D Tkorr 0;996 g  26465;15 J=g  .2400 g  4;186 J=.g  K// D 2;134 K D 2305;66 J=K

k D .n  1/  0 C

Berechnung des Heizwertes

 0 .0;003  0;005/ K D .7  1/  0;005 K C D 0;026 K 2 2 Tkorr. D T C k D .22;94  20;898/ K C 0;026 K D 2;076 K Tkorr.  .mH2 O  cH2 O C W / V HSubst. D mSubst. 2;076 K  .2400  4;186 C 2305;66/ J=K D D 24034;939 J=g 1;0669 g

k D .n  1/  0 C

76;6%  1;069 g 11;6 %  1;069 g D 0;1237 g Brennbare Substanz: D 0;8173 g 100 % 100 % 18 g  0;0433 g 5;3 %  0;8173 g D 0;0433 g Reakionswasser: D 0;3899 g Wasserstoff: 100 % 2g Gesamtwasser: mH2 O D 0;3899 g C 0;1237 g D 0;5136 g

Feuchtigkeit:

358

5 Lösungen

Die Wärmemenge Q1 der Verdampfung des Wassers beträgt: Q1 D mH2 O  HVd D 0;5136 kg  .3387 kJ=kg/ D 1739;56 kJ Die Wärmemenge Q2 der Erwärmung des Wassers von 25 ı C auf 100 ı C beträgt: Q2 D mH2 O  cH2 O  T D 0;5136 kg  4;186 kJ=.kgK/  75 K D 161;245 kJ Q D Q1 C Q2 D 1900;81 kJ Somit ergibt sich ein Heizwert der Kohle von HHW D V HSubs.  Q D Œ24;035  1;9 MJ=kg D 22;135 MJ=kg  22 MJ=kg : Mit der Überschlagsformel ergäbe sich ein Heizwert der Kohle von: HHW D V HSubst.  .2 600  mH2 O / D 23987;7 J=g  .2600  0;5136/ J=g D 22652;34J=g  22;7MJ=kg

89

V 1  p1  T 2 3 dm3  99;46 kPa  273;15 K D 2;725 dm3 D T 1  p2 295;15 K  101;325 kPa 'H O  VH2 O  cH2 O  T Verbrennungsenthalpie V H(Gas) D 2 V2 3 1 g=cm  870 cm3  4;186 J=.g  K/  13;5 K D 2;725 dm3 3 D 18042 J=dm D 18042 kJ=m3 Die Wärmemenge Q1 zum Kondensieren des Wassers beträgt Volumenkorrektur V2 D

Q1 D mH2 O  HVd D 5;08  103 kg  .2257;2 kJ=kg/ D 11;47 kJ Die Wärmemenge Q2 der Abkühlung des Wassers von 100 ı C auf 25 ı C beträgt Q2 D mH2 O  cH2 O  T D 5;08  103 kg  4;186 kJ=.kgK/  75 K D 1;595 kJ Q D Q1 C Q2 D 13;065 kJ HHW D V H(Gas)  Q D Œ18;042  .0;013065/ MJ=m3 D 18;0289 MJ=m3 Mit der Überschlagsformel wird der errechnete Heizwert bestätigt: HHW D V H(Gas)  .2 600  mH2 O / D 18042 kJ=m3  .2600  0;00508/ kJ=kg D 18028;8 kJ=m3 D 18;0288 MJ=m3

5.6 Kalorimetrie

50  4;186  8;7 m  c  T D D 72 836;4 J=mol D 72;84 kJ=mol n 0;025 50  4;186  .0;7/ m  c  T L H.2/ D  D D 5860;4 J=mol D 5;86 kJ=mol n 0;025 H H D L H.1/  L H.2/ D 78;7 kJ=mol

L H.1/ D 

90

kJ/mol

–72,84 –78,7

5,86

Abb. 5.11

R H D 

91

92

Energiediagramm des Hydratationsprozesses von Kupfersulfat.

mH2 O  cp.H2 O/  T  MPhenol

mPhenol 2000 g  4;19 J=.g  K/  2 K  94 g=mol R H D  D 3150;9 kJ=mol 0;5 g a): 100 125 Pa  0;3 dm3 p V D 0;0122 mol D RT 8314;3 Pa  dm3  mol1 K1  296;15 K .ŒmH2 O  cH2 O  C ŒmGlas  cGlas /  T V H 0 D f  nPropan .Œ100  4;186 C Œ63;18  0;86/  27 D 2;17  0;0122 J kJ D 2 271 249;9 D 2271 mol mol

nPropan D

b):

B H

C3 H8(g) 104

C

5 O2(g) 0

 * ) 

.kJ=mol/ X 0 0 V H 0 D B HProd B HEd D 2046 kJ=mol

3 CO2(g) 394

C

4 H2 O(g) 242

359

360

5 Lösungen

Vergleich:  Beide Ergebnisse liegen relativ eng beieinander  Messfehler  Reinheitsgrad von technischem Propan setzt Grenzen! 93

a):  * CH4 C 2 O2  )  CO2 C 2 H2 O b): Neben 1;5 mol Methan liegen 15 mol Luft (3 mol O2 C 12 mol N2 ) im Gemisch vor, also genau die zur vollständigen Umwandlung benötigte Sauerstoffmenge. Bei dieser Umwandlung entsteht eine Wärmemenge von Q D 1;5  803 D 1204;5 kJ. Erwärmt werden damit  1;5 mol CO2 : Wärmeverbrauch von 1;5  64;9 J=K  T  3;0 mol H2 O: Wärmeverbrauch von 3;0  32;6 J=K  T  12 mol N2 : Wärmeverbrauch von 12  25;1 J=K  T . Somit ergibt sich mit T  .1;5  64;9 C 3;0  32;6 C 12  25;1/ J=K D 1204;5  103 J ein Wert von T D 2427 K : Die Endtemperatur im Autoklaven beträgt T.Ende/ D 2 452 ı C.2725;15 K/. c): Da Volumen und auch die Gesamtstoffmenge konstant sind, ergibt sich der Enddruck im Autoklaven zu: pEnde D

94 95

p1  T 2 1  103 hPa  2725;15 K D 9140;2 hPa : D T1 298;15 K

cLös D cWasser C cSoda D .0;9  4;19/ C .0;1  1;17/ D 3;9 J=.gK/ Haben zwei Körper verschiedene Temperaturen ti (ı C) und stehen sie miteinander in Berührung, gibt der Körper höherer Temperatur t1 so lange Wärme an den Körper tieferer Temperatur t2 ab, bis die Temperaturen beider Körper gleich der Mischungstemperatur tm sind. Die Wärmeabgabe Q1 des Körpers höherer Temperatur ist dabei gleich der Wärmeaufnahme Q2 des Körpers tieferer Temperatur. Aus dem Ansatz Q1 D Q2 folgt mit Q D c  m  t und m D '  V die Gleichung für den Wärmeaustausch c1  '1  V1 .t1  tm / D c2  '2  V2  .tm  t2 / : Daraus wird mit c1  c2 , '1  '2 und V D V1 C V2 die Berechnung möglich für V1 D

V .tm  t2 / 140 dm3  30 K D 60 dm3 D t1  t2 70 K

und V2 D V  V1 D 140 dm3  60 dm3 D 80 dm3 :

5.6 Kalorimetrie

96

361

a): 1 2 3 4

C C C C

C3 H7 OH C4 H9 OH C5 H11 OH C6 H12

9 2

O2 6 O2 15 O2 2 9 O2

m=M  V U D C  T I Nr. 1 2 3 4

m

T

[g]

[K]

0,759 0,823 0,836 0,841

2,48 2,88 3,06 3,78



M g mol

60 74 88 84



n

 * )   * )   * )   * ) 

3 CO2 4 CO2 5 CO2 6 CO2

C C C C

4 H2 O 5 H2 O 6 H2 O 6 H2 O

C D 10;29 kJ=K V U=

V H=V U C nRT kJ

.V H/ kJ

mol

mol

mol

2017,328 2664,647 3314,463 3884,995

2011,131 2657,210 3305,781 3877,558

646,1 648,6 571,8

[dm3 ] 2,5 3,0 3,5 3,0

C  T  M kJ m

b):

Δ VU kJ/mol

4000

3000

2000

3

4 5 Anzahl C-Atome

6

Abb. 5.12 Grafische Darstellung der Funktion v H D f (Anzahl der C-Atome) bei primären Alkanolen und Cyclohexan.

Die 3 Alkanole unterscheiden sich energetisch um je eine CH2 -Gruppe mit  647;3 kJ=mol. C6 H12 ist ein cyclischer Kohlenwasserstoff und besteht aus nur 6 CH2 -Gruppen:  6  .647;325/ D 3884 kJ=mol Sein Ringsystem ist relativ stabil und spannungsarm. 97

Die vom Kalorimeter aufgenommene Wärmemenge ist Q D C  T D 12;73 kJ=K  1;372 K D 17;47 kJ :

362

5 Lösungen

Also gilt U D 17;47 kJ : 26;47  1;42 kJ  g kJ Q D D 20;65 T 1;82 g  K K

98

C D

99

Man erhält C  T  M ; m also z. B. für Naphthalin U D 

U D 

20;65  1;85  128 kJ  K1  K  gmol1 D 5147;3 kJ=mol 0;95 g

(g)

TM M U=  C  m (K) (g/mol) (kJ/mol)

0,95 1,53 1,84 2,11

1,85 1,33 2,26 1,70

m Naphthalin Glycerin Buttersäure Saccharose

100

T

128 92 88 342

5147,3 1651,5 2232,0 5690

a): 0 ıC b): Aus H  mEis D mWasser  c  T ergibt sich mWasser D

101

334 J=g  300 g H  mEis D D 281;7 g : c  T 4;185 J=.g  K/  85 K

(1) Das Kalorimeter gibt bis zur Mischungstemperatur tm die Wärmemenge Q1 D cAl  mAl  .t1  tm / ab. (2) Die Wasserfüllung gibt die Wärmemenge Q2 D cH2 O  mH2 O  .t1  tm / ab. (3) Das Eis muss bis t0 D 0 ı C mit Q3 D mEis  cEis  .t0  t2 / erwärmt werden. (4) Das Eis wird mit Q4 D H  mEis geschmolzen. (5) Das Schmelzwasser wird mit Q5 D cH2 O  mH2 O  .tm  t0 / auf die Mischungstemperatur tm erwärmt. (6) Die Energiebilanz lautet Q1 C Q2 D Q3 C Q4 C Q5 . Nach Einsetzen von (1) bis (5) in (6) ergibt die Mischungstemperatur: .cAl mAl C cH2 O mH2 O /  .t1  tm / D mEis bcEis .t0  t2 / C H C cH2 O  .tm  t0 /c .cAl mAl C cH2 O mH2 O /  t1  mEis bcEis .t0  t2 / C H  cH2 O  t0 c : tm D cAl mAl C cH2 O mH2 O C cH2 O mEis tm D

Œ.0;9  200/ C .4;186  500/  20  100Œ2;1.0 C 5/ C 334  .4;186  0/ D 4;1 ı C : .0;9  200/ C .4;186  500/ C .4;186  100/

5.6 Kalorimetrie

mH2 O  cp.H2 O/  T  MCaC2 mCaC2 500 g  4;19 J=.g  K/  3 K  64;1 g=mol D 125;9 kJ=mol R H D  3;2 g R H D 

102

103

a): 1;5144  .12=44/ 0;2656  .2=18/ : 12 1 D 0,0344 : 0,0295 D 7 : 6 Mit M D 122 g=mol ergibt sich die Summenformel C7 H6 O2 . n.C/ W n.H/ W n.O/

=

: : :

0;1575 16 0;00984 =  2 2

 * 2 C7 H6 O2.s/ C 15 O2.g/  )  14 CO2.g/ C 6 H2 O.l/ b): n.Q/ D

0;6 g D 4;918  103 mol 122 g=mol

QV D n.Q/  R U D 4;918  103 mol  .3 079 000/ J=mol D 15 142;5 J 15 142;5 J QV D D 6730 J=K Cges: D T 2;25 K CH2 O.l/ D mH2 O.l/  cH2 O.l/ D 710 g  4;186 J=.gK/ D 2972;06 J=K CKalorimeter D Cges:  CH2 O.l/ D 6730 J=K  2972;06 J=K D 3757;94 J=K c): n.Gas/ D 7  15=2 D 0;5 R H D R U C RT  nGas D 3079 kJ=mol C 0;0083143 kJ=.mol  K/  298;15 K  .0;5/ D 3077;76 kJ=mol B H.Q/ D 7  B H.CO2 / C 3  B H.H2 O;l/  R H D 7  .393;51/ kJ=mol C 3  .285;83/ kJ=mol C 3077;76 kJ=mol D 531;78 kJ=mol

363

364 104

5 Lösungen

a): Naphthalin

Anthracen

Pentamethylbenzol H CH3

H3C

CH3 CH3

(oder mesomere Strukturen)

10 CO2(g) C 4 H2 O(l)

C14 H10(s) C 16;5 O2(g)

 * )   * ) 

C11 H16(s) C 15 O2(g)

  * ) 

11 CO2(g) C 8 H2 O(l)

Naphthalin:

C10 H8(s) C 12 O2(g)

Anthracen: Pentamethylbenzol:

H3C

14 CO2(g) C 5 H2 O(l)

b): V H D V U C nRT .Qges:  QDraht / V U D nSubstanz .Qges:  QDraht /  MSubstanz V H D C nRT mSubstanz Naphthalin:

 .28 190 C 30/  128;164 C .2  8;3143  298;15/ V H D 0;7002 D 5 159 339;8 J=mol D 5159;34 kJ=mol

Anthracen:



 .26 335 C 30/  178;22 C .2;5  8;3143  298;15/ 0;6653 D 7 052 758;372 J=mol D 7052;758 kJ=mol 

V H D

Pentamethylbenzol:   .27 910 C 30/  148;24 V H D C .4  8;3143  298;15/ 0;6409 D 6 458 552;239 J=mol D 6458;55 kJ=mol c): X B HProdukte B HSubst. D V HSubst. C

B HNaphthalin D 5159;34 kJ=mol C .393;5  10/ C .285;9  4/ kJ=mol D 80;74 kJ=mol

B HAnthracen D 7052;758 kJ=mol C .393;5  14/ C .285;9  5/ kJ=mol D 114;258 kJ=mol



B HPentamethylbenzol D 6458;55 kJ=mol C .393;5  11/ C .285;9  8/ kJ=mol D 157;15 kJ=mol

5.6 Kalorimetrie

365

d): Naphthalin CH (226,1 kJ/mol) CC (206,4 kJ/mol) CC(2 R) (491,5 kJ/mol) CC(3 R) (484,4 kJ/mol) CC(4 R)r (483,2 kJ/mol) 6-Ring (4,2 kJ/mol) Verzw. r (C7,2 kJ/mol) S H (kJ/mol) V H (kJ/mol)

mesomeres Naphthalin

Anthracen

mesomeres Anthracen

Pentamethylbenzol

8

8

10

10

16

6

6

9

9

8

4

3

4

3



2

2

4

1

1



1



2

2

2

3

3

1

2

2

4

4

66,5 5423,9

66,5 5418,0

93,4 7427,0

93,4 7421,1



– 61,1 6662,7

Mittelwert V H (Naphthalin) D 5420;95 kJ=mol .5423;9=  5418;0/ Mittelwert V H (Anthracen) D 7424;05 kJ=mol .7427;0=  7421;1/ V H (Pentamethylbenzol) D 6662;7 kJ=mol e): Naphthalin weist praktisch eine um 261;016 J=mol positivere Verbrennungsenthalpie auf als es das Inkrementsystem ergibt. Dieser Betrag liegt in der Mesomeriestabilisierung begründet, und zwar von 26;1 kJ=mol je -Elektron. Bei Anthracen beträgt der Enthalpieunterschied 371;292 kJ=mol, also 26;5 kJ=mol je Elektron. Es kann von einer Mesomeriestabilisierung von ungefähr 26;3 kJ=mol je -Elektron ausgegangen werden. f): Bei Pentamethylbenzol beträgt der Unterschied zwischen theoretischer und praktischer Verbrennungsenthalpie 204;15 kJ=mol, obwohl für 6-Elektronen nur ein Mesomeriebeitrag von 26;3 kJ=mol  6 D 157;8 kJ=mol zu erwarten wäre. Die Differenz (46;35 kJ=mol) ist auf Hyperkonjugation mit 5 Methylgruppen zurückzuführen (9;27 kJ=mol Stabilisierung je hyperkonjugierter Methylgruppe, siehe Abb. 5.13).

H

H H

Abb. 5.13 Hyperkonjugation einer -CH-Bindung der Methylgruppe mit dem aromatischen -Elektronensystem im Toluol-Molekül.

366

5 Lösungen

5.7 Satz von Hess B H D

105

X

V HEdukte 

X

V HProdukte

a)  * 6 C C 3 H2 )  C6 H12 B H D 3216;6  .3268/ D 51;4 kJ=mol b)  * 6 C C 6 H2  )  C6 H12 B H D 4074;6  .3917/ D 157;6 kJ=mol Die Bildung von Benzol aus den Elementen würde endotherm, die von Cyclohexan exotherm verlaufen. 106

Pweiß Prot

V HD

H  M 49;8 kJ  30;97 g=mol H D D D 1542;3 kJ=mol n m 1g 48;7 kJ  30;97 g=mol D 1508;24 kJ=mol D 1g

 * )  Prot X X B H D V HEdukte  V HProdukte D 1542;3  .1508;24/ D 34;06 kJ=mol Pweiß

Die Bildungsenthalpie von rotem Phosor aus weißem Phosphor beträgt 34;06 kJ=mol.

107

108

 * Na2 HPO4 C 2 H2 O )  Na2 HPO4  2H2 O H H gesucht X X H H D L H Edukte  L HProdukte D 23;57  .1;63/ D 25;2 kJ=mol Propan: 3C C 4 H2 4.285;6/ V H .kJ=mol/ 3.393;1/ 1179;3 1142;4 ? X X B H D V HEdukte  V HProdukte

  * ) 

C3 H8 B H D 103;7 kJ=mol gesucht

V HPropan D 103;7  1179;3  1142;4 D 2218 kJ=mol n-Butan:

4C C 5 H2 5.285;6/? V H .kJ=mol/ 4.393;1/ 1572;4 1428

 * ) 

C4 H10 gesucht

V H.n-Butan/ D 124;6  1572;4  1428 D 2875;8 kJ=mol

B H D 124;6 kJ=mol

5.7 Satz von Hess

Methanol:

CO C 2 H2 0 B H .kJ=mol/ 110;4 2.285;6/ V H .kJ=mol/ 282;7

 * ) 

CH3 OH 238;3 gesucht

367

R H D gesucht

R H D 238;3  .110;4/ D 127;9 kJ=mol V HMethanol D 127;9  282;7  571;2 D 726 kJ=mol Essigsäure: 2 CO C 2 H2 0 B H .kJ=mol/ 2.110;4/ 2.285;6/ V H .kJ=mol/ 2.282;7/

  * ) 

CH3 COOH 486 gesucht

R H D gesucht

R H D 486;6  .220;8/ D 265;8 kJ=mol V HEssigsäure D 265;8  565;4  571;2 D 870;8 kJ=mol

109

a) R H D 285;6  296;6 C 20;1 D 562;1 kJ=mol b) R H D 2.33;8/  81;5 D 13;9 kJ=mol c) R H D 486;6  285;6 C 277;3 D 494;9 kJ=mol

110

HBindung D

X

B HEdukte 

X

B HProdukte

a) H D 121;2 C 217;8 C 92;2 D 431;2 kJ=mol b) H D 247 C 470;3  90;3 D 627 kJ=mol c) H D 3.217;8/ C 470;3 C 46;1 D 1169;8 kJ=mol .3 NH-Bindungen/ 389;9 kJ=mol (1 NH-Bindung) d) H D 247 C 717;7 C 110;4 D 1075;1 kJ=mol e) H D 2.247/ C 717;7 C 393;1 D 1604;8 kJ=mol (2 CO-Bindungen) 802;4 kJ=mol (1 CO-Bindung)

111

HHydr: D

X

B HProdukte 

X

B HEdukte

a) HHydr: D 52;5  226;5 D 174 kJ=mol b) HHydr: D 84;6  226;5 D 311;1 kJ=mol c) HHydr: D 84;6  52;5 D 137;1 kJ=mol

368 112

5 Lösungen

a) B H .kJ=mol/

!

C2 H6(g) 84;6

2 C(g) 717,7

C

6 H(g) 217,8

R H D 6.217;8/ C 2.717;7/  .84;6/ D 2826;8 kJ=mol R H  .6  416/ D 330;8 kJ=mol C C D 1 b) B H .kJ=mol/

!

C3 H8(g) 103;7

3 C(g) 717,7

C

8 H(g) 217,8

R H D 8.217;8/ C 3.717;7/  .103;7/ D 3999;2 kJ=mol R H  .8  416/ D 335;6 kJ=mol C C D 2 c) B H .kJ=mol/

CH3 CH(CH3 )CH3(g) 131;5

!

C

4 C(g) 717,7

10 H(g) 217,8

R H D 10.217;8/ C 4.717;7/  .131;5/ D 5180;3 kJ=mol R H  .10  416/ D 340;1 kJ=mol C C D 3 Es sei darauf hingewiesen, dass zwar in Propan und iso-Butan alle CC-Bindungen, nicht aber alle CH-Bindungen gleichwertig sind. Auch für die 6 gleichen CH-Bindungen des Ethans kann nur näherungsweise der Wert von Methan angenommen werden. 113

114

115

CO2

R H D 393;5 kJ=mol

CO2 C 2 H2 O(l)

 * )    * )

2 O2 C CH4

R H D 890;7 kJ=mol

2 H2 C O2 P C C 2 H2

  * )   * ) 

2 H2 O(l)

R H D 572 kJ=mol

CH4

R H D 74;8 kJ=mol

C C O2

H2 SO4(l)

R H D 811;3 kJ=mol

SO3(g)

 * )   * ) 

S(s) C 1,5 O2(l)

R H D 446;0 kJ=mol

H2 O(l) P SO3 C H2 O(l)

  * )    * )

H2 C 0,5 O2

R H D 286 kJ=mol

H2 SO4

R H D 79;3 kJ=mol

H2 C S(s) C 2 O2

a): C2 1 MgH2(s)

0  * ) 

Mg(s)

b): Für MgH2 -Zersetzung: Kp D

C

0

C2 0  1

H2(g)

Mg2 NiH4(s)

p p0

Für Mg2 NiH4 -Zersetzung: Kp D

p2 p02

0  * ) 

0

Mg2 Ni(s)

0 C

2 H2(g)

5.7 Satz von Hess

369

2,0 1,5 Mg2NiH4

1,0 MgH2

0,5 0,0 – 0,5 –1,0 1,60

1,65

1,70

1,75

1,80

1,85

1,90

1,95

T

MgH4 (1000 K /T; ln p /p0): (T; p /p0):

(1,65 ; 1,60) (606K ; 4,95)

Mg2NiH4 (1000 K /T; ln p /p0): (T ; p /p0):

(1,875 ; – 0,5) (533K ; 0,607)

(1,65 ; 1,95) (1,875 ; 0,05) (606K ; 7,03) (533K ; 1,05)

Abb. 5.14 Wasserstoffpartialdruck bei den Zersetzungsreaktionen von Magnesiumhydrid und Dimagnesiumnickeltetrahydrid in Abhängigkeit von der Temperatur; mit Angabe verschiedener Wertepaare.

p: Gleichgewichtsdruck von Wasserstoff; p0 : 1 bar 1 R  ln Kp d ln Kp R H Kp2 D !  H D R 1 dT RT 2  T1 T 2

1

Abgelesene Wertepaare (Abb. 5.14):

MgH2 W

R H D

4;95 8;314  ln 0;607

0 Mg2 NiH4 W

R H D @

1 533



1 606 2

7;03 8;314  ln 1;05 2 1 533



1 606

!

 J=mol D

1 A J=mol D

c):  * Mg2 NiH4(s)  )  Mg2 Ni(s) C 2 H2(g)  * 2 Mg(s) C Ni(s) C 2 H2(g)  )  Mg2 NiH4(s) P  * Mg 2 Mg(s) C Ni(s)  ) 2 Ni(s)

17;45 2;26  104





31;62 2;26  104

J=mol D 77 209;8 J=mol  J=mol D 139 912 J=mol

R H1

=

139;9 kJ=mol

R H2

=

176;0 kJ=mol

R H

=

36;1 kJ=mol

370

5 Lösungen

5.8 Entropie 116

116.1: Antwort 1c ist richtig. 116.2: Da Ssys unabhängig vom Weg ist, kann sie auch für die isotherme reversible Expansion berechnet werden: Ssys D n  R  ln.VEnde=VAnfang / D 3 mol  8;3143 J=.mol  K/  ln 30=10 Ssys D 27;4 J=K 116.3: Bei dT D 0 ist dU D 0. Nach dem 1. HS ist dann Q D paußen  V D 105 N=m2  0;02 m3 D 2  103 J und es ergibt sich Sumg D 

2  103 J Q D D 6;94 J=K : T 288;15 K

116.4: Suniv. D Ssys. C Sumg. D 27;4 J=K  6;94 J=K D 20;46 J=K Das stimmt mit dem 2. Hauptsatz überein.

117 118

S D nR ln

V2 200 dm3 D 1 mol  8;3143 J=.mol  K/  ln D 5;76 J=K V1 100 dm3

Argon ist ein einatomiges Gas mit C v D n  ZT2 S D

3 R , unabhängig von T . 2

Cv dT T

T1

S D 1 mol  1;5  8;3143 J=.mol  K/  ln

600 K D 8;64 J=K : 300 K

Der Vergleich dieses Ergebnisses mit dem von Aufgabe 110 ergibt, dass die Verdoppelung von T die Entropie eines idealen Gases etwas stärker erhöht als die Verdoppelung von V .

5.8 Entropie

371

119 System abgeschlossen Umgebung + 10°C S- Zunahme von Eis

ΔSI

1 kg Eis – 5°C

S- Abnahme der Umgebung

ΔSII

Eis T1 = 268,15 K

ΔS1

ΔSI (irreversibel)

(rev.)

Wasser T3 = 283,15 K

(rev.)

ΔS2

Eis T2 = 273,15 K

(rev.)

ΔS3

Wasser T2 = 273,15 K

Abb. 5.15 Schema zur Berechnung von S beim Schmelzen von Eis.

SI D S1 C S2 C S3 T2 HSm T3 D mEis  cEis  ln C C mWasser  cWasser  ln T1 T2 T2 kJ D 1;411 K HUmgebung T3 .mEis  cEis  .T2  T1 //  .HS m.Ei s/  mEis /  .mWasser  cWasser  .T3  T2 // D T3 kJ D 1;362 K

SII D

Sges. D SI C S2 D 0;049

kJ K

120

S D

HVd TSd

S D

43 500 J=mol D 123;76 J=.mol  K/ 351;5 K

121

S D

HSm TSm

S D

4600 J=mol D 29;5 J=.mol  K/ 156 K

372

5 Lösungen

122 ΔSirrev/Umg. ΔSirrev/System

Wasser –10°C

(1)

ΔSrev

ΔSrev

Erwärmen

Abkühlen

ΔSrev Erstarren

Wasser 0°C

Abb. 5.16

Eis –10°C

(3)

Eis 0°C

(2)

Schema zur Berechnung von S bei der Erstarrung von unterkühltem Wasser.

Sirrev./System D Srev.:1/ C Srev.:2/ C Srev.:3/ 273;15 Z

D Cp(l) 

H dT C C Cp(S)  T 273;15

263;15

263;15 Z

dT T

273;15

5950 263;15 273;15 C C 36;9  ln D 75;3  ln 263;15 273;15 273;15 D 2;81  21;8  1;38 D 20;35 J=.mol  K/ 263;15 Z



dT D 5950 C .36;9  75;3/  .10/

H 263;15 D H 273;15 C Cp  273;1

D 5566 J=mol 263;15 HErst C5566 D D 21;15 J=.mol  K/ 263;15 263;15 D Sirrev.System C Sirrev./Umgeb D 20;35 C 21;15 D 0;80 J=.mol  K/

Sirrev./Umg. D Sgesamt

123

SVd. D

S molJ  K

HVd TSd a)

b)

c)

d)

e)

f)

108,82

80,68

84,33

87,94

87,11

85,5

S hat für alle nicht assoziierenden Flüssigkeiten etwa den gleichen Wert (Trouton’sche Regel!).

5.8 Entropie 273;15 Z 

124

S D

0;126T 2;09 C T T



263;15

HSm dT C C Cp  TSm

283;15 Z

373

dT T

273;15

6012;41 283;15 273;15 C 0;126  .273;15  263;15/ C C 75;3  ln S D 2;09  ln 263;15 273;15 273;15 S D 26;06 J=.mol  K/

125

nWasser  CpWasser D mWasser  cWasser HVd D MWasser  Hspez Vd D 40 626 J=mol T2 HVd T2 S D mWasser  cWasser  ln C nWasser  C mWasser  cWasserdampf  ln T1 TSd T1 383;15 373;15 40 626 C 5;55  C 100  1;997 ln S D 100  4;19  ln 298;15 373;15 373;15 S D 94;02 C 604;25 C 5;28 D 703;55 J=K

473;15 Z

126

S D 423;15

473;15 Z 

Cp dT D T

36;87  7;93  103 C 9;29  106 T T

 dT

423;15

D 4;12  0;4 C 0;21 S D 3;93 J=.mol  K/

127

128

129

  T2 T2 p2 p2 V 2 S D n  Cp ln  R  ln D T1 p1 T1 p1 V 1   p2 V 2 p2 D 2  .15;8 C 5;79/ D 43;18 J=K S D n  Cp  ln  R  ln p1 V 1 p1 pV 101 325  104 nO2 D D 4;2  103 mol nN2 D 4  nO2 D 1;68  102 mol RT 8;3143  290;15     500 500 C nN2  R  ln D 0;0562 C 0;03117 S D nO2  R  ln 100 400 S D 0;08737 J=K nD

      100 100 100 S D 0;015  R  ln C 0;236  R  ln C 0;226  R  ln 1;5 23;6 22;6   100 C 0;523  R  ln 52;3 D 8;97 J=.mol  K/

374

nO2 D 12=32 D 0;375 mol     60 233;15 T2 p2  8;3143  ln D 0;375  29;18 ln  R  ln S D nO2  Cp ln T1 p1 293;15 1 S D 15;27 J=K

130

131

5 Lösungen

Man differenziert die Gibbs-Duhem’sche Gleichung Sm D S 1 1 C S 2 2 nach 1 zu dSm D S1  S2 d1 und erhält: S 1 D Sm C 2  S2 D

dSm D 8;266 C 0;75  4;36 D 11;536 J=.mol  K/ d1

Sm  .S 1  1 / 8;266  .11;563  0;25/ D 7;176 J=.mol  K/ D 2 0;75

S D S 1 C S 2 D 11;536 C 7;176 D 18;712 J=.mol  K/ Donator

132

./

(Pt) H2 =2 H

Anode a)

Akzeptor +



0

E (V) @.E/ @T

//

1 2

0

 D p

O2 (H2 O)=2 OH– (Pt) 0,4

.C/ Kathode

S I zF

.E/  z  F 0;021 V  2  96 487 As S D D D 81;05 J=.mol  K/ T 50 K  mol b) + –  * H2(g) C 0,5 O2(g) C H2 O(l) )  2 H(aq) C 2 OH(aq) 0;05916 2 –/ E D E 0  lg.cH2+  cOH 2 E D 0;654 V I E 0 D 0;4 V I cOH– D 0;02 mol=dm3 2.0;654  04/ C lg.0;02/2 I cH+ D 2;54  103 mol=dm3 I lg cH2+ D 0;05916

5.9 Wirkungsgrad und Leistungszahl 133

T1  T2 Q1  Q2 D T1 Q1 Q1 D 240 kJ Q2 D 160 kJ D

D

80 300  200 1 D D 200 Q1 3

pH D 2;59

5.9 Wirkungsgrad und Leistungszahl

134

375

Es gilt 1 D

T1  T2 T1

oder T1 D

T2 : 1  1

Entsprechend ergibt sich für den erhöhten Wirkungsgrad 2 D 50 % W T1 D

T2 : 1  2

Dann ist T D

PD

135

136

285;15 K  0;1 T2 T2 T2 . 2  1 / D D 95;05  95 K :  D 1  2 1  1 .1  1 /.1  2 / 0;6  0;5

0;3  6;3 kg  45;2 MJ=kg mH D t 1h J MJ D 23 730 D 23 730 W D 23;73 kW D 85;428 h s

a): K D

T2 280;15 K D D 14;01 T1  T2 300;15 K  280;15 K

W D

T1 293;15 K D D 14;66 T1  T2 293;15 K  273;15 K

b):

c): Eine solche Kühlung (a) bzw. Heizung (b) arbeitet überaus günstig. Dies kommt daher, weil die gelieferte Wärmeenergie Q1 erheblich größer als Q2 ist. Die in (a) und (b) errechneten Leistungszahlen werden in der Praxis nicht erreicht, weil die Berechnung sich auf eine ideale Kühlmaschine bzw. Wärmepumpe, in der nur reversible Prozesse ablaufen, bezieht. Obwohl die praktisch realisierbaren Leistungszahlen niedriger liegen, sind sie immer noch wesentlich besser, als bei den traditionellen Kühlungs- bzw. Heizungsverfahren. 137

137.1: In den Tropen besteht zwischen dem Oberflächenwasser (25 ı C) und dem Wasser in 300 m Tiefe (5 ı C) ein beachtlicher Temperaturunterschied (20 K). D

W Q1  Q2 T1  T2 20 K D 0;067 D D D Q1 Q1 T1 298 K

137.2: In der Realität erreicht keine technische Maschine/Anlage den relativ hohen Wirkungsgrad ATP des lebenden höheren Organismus. Bei den genannten Temperaturen des Versuchskraftwerkes beträgt der maximale Wirkungsgrad lediglich 0,067. Dafür fallen jedoch die Kosten für den Brennstoff weg. Es ist klar, dass über den Nutzen der verschiedenen Möglichkeiten zur Energieerzeugung nicht auf Grund thermodynamischer Überlegungen allein entschieden werden kann, sondern dass dabei auch geographische, technologische, ökonomische, ökologische und politische Faktoren eine Rolle spielen.

376 138

5 Lösungen

138.1: nM pM m D D V V RT 80  106 Pa  2 g=mol D 64;6 g=dm3 D 64;6 kg=m3 'D 8314;3 Pa  dm3 =.mol  K/  298 K 'D

138.2:  * H2 C 0,5 O2 )  H2 O(l)

V H 0 D 286 kJ=mol D 143 kJ=g Wasserstoff

 * C(s) C O2 )  CO2

V H 0 D 394 kJ=mol D 32;8 kJ=g Kohlenstoff

V H 0 -Verhältnis D

143 D 4;36 32;8

138.3: a): R S 0 D

X

0 SProd 

X

0 SEd D .70  131  102;5/ J=.mol  K/ D 163;5 J=.mol  K/

R G 0 D V H 0  TR S 0 D 286 kJ=mol C .298  0;1635/ kJ=mol D 237;3 kJ=mol D 118;64 kJ=g Wmax D R G 0  mH2 D 118;64  103 kJ=kg  1 kg D 118;64  103 kJ D 1;1864  108 Ws D 32;96 kWh G 0 D zFE 0 I

E 0 D

237 300 V  As=mol G 0 D D 1;23 V zF 2  96 487 As=mol

1;1864  108 Ws Wmax D D 32 955;6 h D 1373;15 d 1W 1W 1W D 0;813 A ID 1;23 V tD

b): D1

298 K Tkalt D 0;48 D1 Theiss 573 K

Wmax D V H 0  mH2  D 143  103 kJ=kg  1 kg  0;48 D 6;864  104 kJ D 19;07 kWh Wmax (131.3a) 1;723 32;96 kWh D D Wmax (131.3b) 19;07 kWh 1

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung

377

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung 139

Kernbindungsenergie. 139.1 Die Kernbindungsenergie ist die Energiemenge, die frei wird, wenn sich Nukleonen zu einem Atomkern verbinden. Dies ist nach der Einsteinschen Beziehung E D m  c 2 mit einem Massendefekt verbunden. Der Zusammenhalt der Nukleonen wird durch Kernkräfte gewährleistet. Dies sind die stärksten bekannten Wechselwirkungskräfte überhaupt. Die Abstoßungskräfte zwischen den Nukleonen werden durch sie überkompensiert. Die Reichweite der Kernkräfte ist jedoch auf etwa 5  1013 cm beschränkt, darüber hinaus nehmen sie exponentiell mit der Entfernung vom Kern ab. Die Wechselwirkungskräfte zwischen den Nukleonen werden nach Yukawa (jap. Physiker) durch Austausch sog. -Mesonen erklärt, welche nur während des Austausches existieren. Durch Mesonenabgabe wird ein Proton in ein Neutron umgewandelt und umgekehert:  n C p ! p C n. 139.2 a) Verbrennung von Kohlenstoff: C(s) C O2(g) ! CO2(g) E1 D V H D 394 kJ=mol D 3;28  104 kJ=kg D 2;047  1020 MeV=kg 1 Kernspaltung: 235 ! 92U C 0n 

89 36Kr

1 C 144 56Ba C 3 0n

m D mPr  mEd D 235;867 u  236;053 u D 0:18602 u E2 D m  u  c 2 D 0:18602 u  1;66053873  1027 kg=u  .299792458/2 m2 =s2 D 2;7762  1011 kgm2=.s2 Kern/ D 2;7762  1014 kJ=Kern D 173;296 MeV=Kern D 1;67187  1010 kJ=mol D 7;11433  1010 kJ=kg D 4;441  1026 MeV=kg X D

E2 7;11433  1010 kJ=kg D 2;169  106 D E1 3;28  104 kJ=kg

139.2 b) Kernfusion: 21H C 31H ! 42He C 10n m D mPr  mEd D 5;01018 u  5;03019 u D 0;02002 u E D m  u  c 2 D 0;02002 u  1;66053873  1027 kg=u  2997924582 m2 =s2 D 2;98782  1012 kgm2 =.s2 Kern/ D 2;98782  1015 kJ=Kern D 18;65 MeV=Kern D 1;79931  109 kJ=mol D 4;49827  1011 kJ=kg D 2;808  1027 MeV=kg Faktor D

E 4;49827  1011 kJ=kg D D 6;323 E2 7;11433  1010 kJ=kg

139.3 Die graphische Darstellung macht deutlich, dass die mittlere Bindungsenergie pro Nukleon, die in den leichteren Nukliden (z. B. Ek.;;je Nukl./ von 21H D 1;11 MeV) geringer ist als in den schwereren, schon bei mittleren Massenzahlen das Maximum erreicht (z. B. Ek.;;je Nukl./ von 56 26Fe D 8;79 MeV). Zu höheren Massenzahlen fällt sie wieder ab (z. B. Ek.;;je Nukl./ von 235 92U D 7;59 MeV). Dabei vergrößern sich zwar

378

5 Lösungen

mit zunehmender Nukleonenzahl die Kernkräfte, aber das p/n-Zahlenverhältnis ändert sich deutlich zugunsten der Protonen p. Deren abstoßende Wirkungen lockern den Zusammenhalt zwischen den Kernteilchen, wodurch die Kerne an Stabilität verlieren. Sie versuchen durch die Aussendung und/oder Umwandlung von Kernbausteinen in einen stabileren Zustand zu kommen, wobei gleichzeitig eine Elementumwandlung stattfindet (Radioaktivität). 9 16

O

56 12

4

7

He

233

Fe

89

Kr

90

Sr

C

144

Ba

144

U

U 238

Xe 233

Th Pa

B

6

U

239 233

10

235

Pu 239 U 239 Np

Kernspa

7

Li Li

ltung

6

5

n

4 3

3 3

H He

2 2

2 1

0 0

Kernfusio

Mittlere Bindungsenergie pro Nukleon in MeV

8

H

H 30

60

90

120 150 Massenzahl

180

210

240

270

Abb. 5.17 Graphische Darstellung der mittleren Kernbindungsenergie der Elemente als Funktion der Massenzahl

Somit ergeben sich für die Nutzung der Kernbindungsenergie zwei grundsätzliche Möglichkeiten: 1.

Freisetzung von Energie durch einen Massendefekt, der bei der Spaltung schwerer Kerne in mittelschwere Kerne mit größerer Bindungsenergie pro Nukleon auftritt 233 239 (Prinzip der Kernspaltung, z.B. von 235 92U, 92U, 94Pu). So betrugen im Jahre 1997 in der EU die prozentualen Kernenergie-Anteile an der gesamten Netto-Stromenergie wie folgt (si/Quelle: Verband der Elektrizitätswirtschaft VDEW): F 78 %

B 60 %

S 46 %

E 32 %

D 31 %

Fin 30 %

GB 29 %

NL 3%

Nach Angaben der IAEA (Atomic Energy Agency) vom 21. Jan. 2013 sind weltweit 437 KKW (Kernkraftwerke) in 30 Ländern in Betrieb, jedoch wird der Mythos von der angeblich sicheren Atomkraft zunehmend mit der Forderung nach generellem Ausstieg aus der Energiegewinnung durch Kernspaltung diskutiert, was den Einstieg in alternative Formen der Energieerzeugung bedeutet. Das Erdbeben, der Tsunami und die Atomkatastrophe in Japan 2011, aber auch die Katastrophe von Tschernobyl 1986 und

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung

379

andere Ereignisse sind dafür tiefgreifende Vorwarnungen. Ein Super-GAU ist überall dort möglich, wo Kernkraftwerke betrieben werden. Die absolut sichere Technik gibt es nicht, denn alle technischen Anlagen sind von Menschen geplant und gebaut, werden von ihnen betrieben, gewartet und überwacht, wobei Fehler nicht vollends vermeidbar sind. Außerdem stellt die nicht gelöste Entsorgung des Atommülls für die nächsten Generationen ein enormes Sicherheits- und Finanzproblem dar. In Deutschland wurde daher die Realisierung einer nachhaltigen Energieversorgung in den Sektoren Strom, Wärme und Mobilität mit „Erneuerbaren Energien“ (Solarenergie, Windkraft, Wasserkraft, Biomasse,. . . ) schon seit den 1980er Jahren (oft sehr umstritten) verfolgt. Im Juni 2011 beschloss seine Bundesregierung den endgültigen Atomausstieg bis 2022 und leitete so die Energiewende ein. Der Umbau der Energieversorgung soll bis 2050  80 % „Erneuerbare Energien“ bei Strom und Wärme erreichen. Das Vorhaben ist weltweit einzigartig. Dabei auftretende Probleme können nur gelöst werden im Spannungsfeld (einschließlich temporärer Prioritätensetzung) zwischen Forschung, Politik, Industrie und Gesellschaft, nämlich     2.

einer Forschung, die bereit ist, interdisziplinär nach innovativen Technologien zu suchen, einer Politik, die durch Vorgaben Anreize für die industrielle Umsetzung neuer Technologien schafft, einer Industrie, die diese Technologien auf den Markt bringt, und einer Gesellschaft, die bereit ist, in ihrem Konsumverhalten die Fragen des Klimaschutzes zu berücksichtigen.

Freisetzung von Kernbindungsenergie durch den auftretenden Massendefekt beim Verschmelzen von sehr leichten Kernen (Prinzip der Kernfusion) Die Energiegewinnung aus einer Kernfusion, für die die größten Erwartungen in Bezug auf eine maßgebliche Minderung der Sicherheits- und Entsorgungsprobleme geweckt werden, ist technisch mit großen Hürden und Problemen verbunden, da ein einfaches Beschießen der Teilchen wegen der zu geringen Wirkungsquerschnitte nicht zur Reaktion ausreicht. Die Kerne müssen in einem geringen Volumen längere Zeit die Möglichkeit haben, miteinander in Kontakt zu kommen. Um die starken elektrostatischen Abstoßungskräfte zu überwinden und Fusionsstöße zu erreichen, sind Temperaturen um 108 K sowie ausreichende Dichte und Einschlußzeit des entstehenden Plasmas im Reaktionsraum notwendig. Das Plasma muss durch starke Magnetfelder gebündelt und auf engem Raum zusammengehalten werden. Auch zeigte sich, dass zur Fusion vornehmlich die Umsetzung 21H C 31H ! 42He C 10n geeignet ist. Als Fusionsbrennstoff werden also Deuterium D ( 21H) und das radioaktive Tritium T ( 31H) benötigt. Letzteres kommt in der Natur nur in Spuren vor und muss daher durch Kernumwandlung gewonnen werden: 73Li C 10n ! 31H C 42He C 10n. Die unkontrollierte Kernfusion ist in der SU beim Bau der Wasserstoffbombe („ZarBombe“) mißbraucht worden. Mit einer Uranbombe als Reaktionsauslöser erreichte man bei ihr die zur Zündung erforderliche Temperatur. Der Abwurf erfolgte am 30. 06. 1961 auf der Insel Nowaja Semlja. Die Sprengkraft betrug  55 MT TNTÄquivalent ( 4000-mal stärker als die der Hiroshima-Bombe vom 06. 08. 1945).

139.4 a) Kohlekraftwerk Die Kohle wird in Dampfkesselanlagen verbrannt, und zwar entweder in Stücken bestimmter Größe entsprechend der Feuerungsanlage oder nach voraufgegangener Vermahlung als Kohlenstaub. Die Feuergase umspülen die Röhren der Kesselanlage, geben ihre Restwärme in Wasser- und Luftvorwärmern ab und entweichen nach Entstaubung

380

5 Lösungen N2 NH3

CO2 Rauchgasreinigung Entschwefelung SO2 + CaCO3 + 2 H2 O + 0,5 O2

CaCO3

Staub

Gips

CaSO4 · 2H2 O + CO2 Gips

Entstickung 3 NO2 + 4 NH3

3,5 N2 + 6 H2 O Generator

Dampf

Dampferzeuger

Kühlwasser Dampfturbine

Kohlemühle Kohle

Wasser Luft

Kondensator

Pumpe Asche

Abb. 5.18 Schema eines Kohlekraftwerkes

(in Abscheidern oder Elektrofiltern), Entschwefelung und Entstickung durch Schornsteine mit natürlichem oder künstlichem Zug. Temperatur und Zusammensetzung der Rauchgase werden ständig überprüft, ebenso Dampfdruck und Dampftemperatur. Je höher beide liegen, um so höher kann der Carnotsche Wirkungsgrad sein; die Grenze ist die Widerstandsfähigkeit des Materials. Man bevorzugt Dampfkessel mit Höchstdrücken bis zu 125 bar und 800 ı C. Vom Dampfkessel strömt der Dampf in die Dampfturbinen. Durch den Druck auf die Turbinenschaufeln wird die Turbine in Rotation versetzt. In dem mit der Turbine gekoppelten Generator wird der Strom erzeugt. 139.4 b) Kernkraftwerk (KKW) mit Leichtwasserreaktor 1 Bei der Kernspaltung von 235 92U in den Brennelementen dringt ein Neutron 0n in einen Urankern ein, wodurch dieser vollends instabil wird und sich unter Freisetzung 144 von 3 10n in zwei Teilstücke ( 89 36Kr; 56Ba) spaltet. Diese Kerne werden voneinander fortgeschleudert, und ihre Bewegungsenergie überträgt sich durch Abbremsen als Wärmeenergie auf einen Wasserkreislauf. Sein Wasser (Kühlmittel) kann direkt zu Dampf umgewandelt werden (Siedewasserreaktor) oder bei hohem Druck über einen Wärmetauscher in einem zweiten Wasserkreislauf Dampf erzeugen (Druckwasserreaktor, s. Abb. 5.19). Der Wasserdampf treibt eine Turbine, die ihrerseits zum Antrieb eines stromerzeugenden Generators dient. Nach Abgabe seiner Arbeitsfähigkeit wird der Dampf durch Kühlung in einem Kondensator wieder verflüssigt und anschließend als „Speisewasser“ von neuem erhitzt. Die Brennelemente sind ständig von Wasser umgeben. Es dient der Abfuhr der Wärmeenergie und bremst die Geschwindigkeit der freien Neutronen, die bei der Kernspaltung entstehen. Diese Moderatorfunktion des Wassers ist für den Reaktorbetrieb physikalisch unerlässlich, da nur gebremste Neutronen 10n in die Atomkerne des Urans 235 92U eindringen und deren Spaltung veranlassen können. Ohne Wasser würde die Kettenreaktion abbrechen. Der Reaktor muss

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung

381

demnach so gesteuert werden, dass die nutzbare Zahl der Neutronen gerade der Zahl der Spaltprozesse entspricht. Im unterkritischen Fall wird er verlöschen, bei überkritischem Betrieb kommt es zur Explosion. Zur Steuerung befinden sich in den Brennelementen Steuerstäbe, die mehr oder minder tief zwischen die Brennstäbe eingefahren werden können. Die Steuerstäbe enthalten ein Material (z. B. Boral: Al-BC3 -Leg.), dessen 105B die Eigenschaft hat, Neutronenstrahlung abzufangen ( 10n C 105B ! 73Li C 42He), bevor sie die Brennstäbe erreicht. Das entstehende 73Li gelangt in das Kühlmittel. Je weniger Neutronen für die Auslösung von Spaltvorgängen zur Verfügung stehen, desto geringer ist die Wärmeproduktion des Reaktors. Um den Reaktor abzuschalten, werden alle Steuerstäbe vollständig in die Brennelemente eingefahren.

Generator R

Wärme-

R

austauscher

R

Dampf Kühlwasser Dampfturbine

B

B

B

B

Pumpe

H2O Pumpe

Kondensator Wasser

Abb. 5.19 Schema eines Kernkraftwerkes mit Druckwasserreaktor, H2 O D Moderator, B D Brennstäbe, R D Regelstäbe

Kernkraftwerke (KKW) mit steuerbarem Hochtemperaturreaktor verwenden ku235 gelige, 232 90Th-haltige 92U-Brennelemente mit einer Graphithülle (Moderator) und als Kühlmittel inertes Helium. Bei der hohen Reaktortemperatur ensteht gleichzeitig spaltˇ

ˇ

233 232 232 bares 233 ! 233 ! 233 92U durch 90Th-Umsetzung: 90Th(n; )90 Th  91Pa  92U. Mit diesem Reaktorkonzept erhält man im Vergleich zum Druckwasserreaktor eine wesentliche Steigerung des thermischen Wirkungsgrades, was sich aus der um ca. 500 ı C bis 700 ı C höheren Austrittstemperatur T2 des Kühlmittels, nämlich  800 bis 1000 ı C, ergibt. KKW mit einem schnellen Brutreaktor ermöglichen es, die Vorkommen von Natururan, welches zu  99;3 % aus nicht spaltbarem 238 92U bestehen und nur  0;7 % 238 spaltbares 235 92U enthalten, effizienter auszunutzen. Das nicht spaltbare Nuklid 92U, das für energiereiche (schnelle) Neutronen einen hohen Einfangsquerschnitt verfügt, wird für den Brennprozess überschüssig in das spaltbare Nuklid 239 94Pu (Brutstoff) umgeˇ

ˇ

239 ! 239 ! 239 wandelt: 238 93Np  94Pu (Brutprozess). Der „Brüter“ arbeitet ohne 92U(n; ) 92U  erforderlichen Moderator, aber mit Na als Kühlmittel. Im großtechnischen Umgang bestehen jedoch auch in der Brütertechnik mit 239 94Pu erhebliche Risiken, das verglichen mit 235 U wesentlich gesundheitsgefährlicher ist, und dem Kühlmittel Na, das im Kontakt 92 mit Luft oder Wasser unter großer Hitzeentwicklung heftig reagiert und Brände auslösen kann.

382 140

140

5 Lösungen

Ohne auf Annehmlichkeiten zu verzichten, ist eine effizientere Energieausnutzung und Energieeinsparung im Immobilienbereich vielfältig möglich durch:  Nutzung von Sonne, Wasser und Wind (Regenerative Energien) zur Strom- und Wärmeerzeugung,  Verbesserung der Wärmedämmung im und am ganzen Haus,  Anschaffung moderner Haushaltsgeräte mit wenig Stromverbrauch,  Heizungsmodernisierung und-wartung  Energiesparlampen, richtiges Haushalten mit Warmwasser, raumgerechtes Heizen, richtiges Lüften a) Heizen mit Solarenergie Solaranlage mit Vakuumröhren-Kollektoren (AkoTec GmbH Brand-Erbisdorf) Sehr aktuell ist der Sonnenkollektor aus luftleeren Glasröhren mit einer wasserfesten Antireflexions-Schicht. Das Glas umhüllt einen Kupferabsorber, der zusammen mit einem Wärmeleitrohr vom Sonnenlicht erhitzt wird. Durchströmendes kaltes Wasser nimmt die Absorberwärme auf und verlässt auf dem Wege zum Wärmespeicher der Hausheizung die Vakuumröhre mit Temperaturen bis zu 100 ı C. Vorteile des Vakuumkollektors sind:  hohe Erträge durch Vakuumisolierung und Ausnutzung der diffusen und schrägen Einstrahlung über einen sogenannten CPC-Spiegel (Compo und Parabolic Concentrator) und den runden Vakuumröhrenabsorber.  hohe Temperaturen auch bei ungünstiger Witterung. Besonders bei Niedrigenergiehäusern empfiehlt sich zusätzlich eine kontrollierte Wohnraumlüftung und Wärmerückgewinnung. Dabei können die Fenster ständig geschlossen bleiben, weil Ventilatoren für die notwendige Menge Frischluft sorgen. Zugleich leitet man die Abluft an einem Wärmetauscher vorbei, der ihre Wärme an die hereinströmende Frischluft überträgt. Man kombiniert den Wärmetauscher mit einer Wärmepumpe, um mit der Energie der Abluft die Frischluft auf das gewünschte Temperaturniveau zu bringen. Sonnenenergie in der Thermobatterie (GmbH Rawema Countertrade, Bautzen) Zwischen den aus Edelstahl gefertigten Röhren der Thermobatterie, lagert als Latentwärmespeicher kristallines Natriumacetat-Trihydrat (CH3 COONa  3 H2 O). In den Röhren befindet sich der Wärmetauscher Wasser, der über die Solaranlage (z. B. Vakuumröhren-Kollektor) durch Erwärmen auf bis zu 100 ı C die Energie aufnimmt, die das Salz (TSm D 58 ı C) in eine übersättigte Lösung von ca. 80 ı C endotherm aufschmilzt: [CH3 COONa  3 H2 O](s) ! CH3 COO–(aq) C Na+(aq) : Ein Teil der eingebrachten Energie geht im anschließenden Abkühlungsprozess verloren bzw. kann für die Warmwassergewinnung genutzt werden. Insofern reagiert die Thermobatterie wie ein konventioneller Warmwasserspeicher. Der weitaus größere Teil der Energie – ca. 2=3 – kann jedoch zeitlich unbegrenzt gespeichert werden. Das liegt in der Besonderheit des Speichermediums Natriumacetat-Trihydrat begründet, das beim Abkühlen im metastabilen Zustand (CH3 COO(aq.) C Na+(aq.) ) flüssig bleibt. Diese latente Wärmeenergie wird erst dann freigesetzt, wenn ein Auslöseimpuls gegeben wird, z.B. über einen Magneten, der eine Feder auseinander zieht. Daran entstehende „aktive Stellen“ wirken als Kristallisationskeime. Diese können Ionen binden, die erste Kristallstrukturen bilden, aus denen heraus Kristallwachstum einsetzt. Dabei entwickelt sich eine Temperatur in Höhe von ca. 58 ı C, die über einen Wärmetauscher zu Heizzwecken genutzt werden kann: CH3 COO–(aq.) C Na+(aq.) ! [CH3 COONa  3 H2 O](s)

exotherm

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung

383

Die Ionen bauen zunächst das Ionengitter auf. Simultan nehmen Wassermoleküle in den Zwischenräumen des Ionengitters festgelegte Plätze ein, wobei sie auch ihre Dipole exakt ausrichten. Die Wassermoleküle bilden sozusagen ein Gitter im Kristallgitter. Die Anzahl der Wassermoleküle pro Formeleinheit ist genau definiert. In unserem Beispiel sind es drei. Ein Teil der bei diesem Vorgang freigesetzten latenten Wärme ist die Kristallisationswärme des Salzes. Allerdings erklärt diese allein nicht die starke Wärmetönung der Kristallbildung. Wichtig für die kräftige Erwärmung ist auch die parallel ablaufende, stark exotherme Bildung des Wassermolekül-Gitters. Eine in der Praxis übliche Thermobatterie-Anlage mit z. B. 80 Speicherbehältern stellt latent und zuverlässig kontrollierbar 8 kWh (2;88  104 kJ) zur Verfügung und basiert auf der Idee, dass jeder Latentwärmespeicher im Jahreszyklus 3-4-mal aufgeschmolzen und wieder ausgelöst werden kann. Solar-Eis-Speicher (Isocal GmbH, Friedrichshafen) Er speichert unterirdisch Sonnenwärme und nutzt darüber hinaus auch die beim Gefrieren von Wasser freiwerdende Erstarrungsenthalpie. Der tonnenschwere Behälter unter der Erde (Erdspeicher), in dem sich ein patentiertes System aus Rohren und Anschlüssen befindet, wird einmal mit Leitungswasser gefüllt (ca. 12 m3 ) und dient danach als regenerierbarer Wärmespeicher. Während des Heizungsbetriebes wird diesem Wärmespeicher über Rohrleitungen ständig Wärme entzogen, und zwar über eine im Gebäude installierte Wärmepumpe. Zwischen den Rohren des Erdspeichers beginnt sich von innen nach außen bei 0 ı C Eis zu bilden. Für die Wärmepumpe ist diese Temperatur eine durchaus akzeptable Arbeitstemperatur. In ihr zirkuliert eine leicht siedende Flüssigkeit [Arbeitsmittel A407 (TSd D 42 ı C)] die bei 0 ı C als Gas vorliegt. Das Gas kann verdichtet werden. Dabei wird Wärme frei, die zum Betreiben der Hausheizung genutzt werden kann. Beim Gefrieren des Wassers im Erdspeicher erhält die Wärmepumpe noch eine Energiezugabe durch freiwerdende Erstarrungsenthalpie (H D 333;69 kJ=kg D 18538;3 kJ=mol). Um diesen Energiegewinn möglichst oft zu nutzen, muss man das Eis wieder tauen, um es erneut gefrieren zu können. Deshalb ist der Erdspeicher mit einem auf dem Dach installierten Solarkollektor verbunden, dessen Absorber Sonnenlicht in Wärme umwandelt und diese an einen ihn durchfließenden Wärmeträger (Glykol/WasserGemisch) abgibt. Dieser leitet die Wärme an den Erdspeicher zum Auftauen des Eises weiter. In der Praxis wird somit das Erdspeicherwasser nicht vollständig vereisen können, weil die Solarwärme das Eis immer wieder zum Schmelzen bringt. Im Sommer dagegen erwärmt sich das Erdspeicherwasser auf ca. 20 ı C. Natürlich funktioniert die Wärmepumpe nicht ohne elektrische Antriebsenergie, da ihr Verdichter (Kompressor) mit Strom angetrieben wird. Für 1 kWh elektrische Antriebsenergie liefert sie aber  3 kWh D 1;08  104 kJ Wärmeenergie zur Hausheizung oder Warmwasserbereitung. Das clevere System hat sogar einen weiteren Vorteil, denn wenn am Ende der Heizperiode 12 m3 Wasser zu Eis gefroren sind, hat man einen Energiespeicher, der lange hält und im Sommer Kühlung liefern kann. Sonnenkonzentrator Sein speziell gefertigtes Spiegelsystem bündelt Sonnenstrahlen. So konzentriert treffen sie auf einen Absorber, in dessen Innerem sich ein Vakuumröhrensystem befindet. Dort fließt eine Trägerflüssigkeit, die auf  100 ı C erwärmt werden kann. Sie gibt die Wärme an den Warmwasserkreislauf des Hauses ab. So kann die Wärme für die Heizung und die Warmwasserversorgung genutzt werden. Eine elektronische Steuerung der Spiegel nach dem Tageslauf der Sonne (auch bei bedecktem Himmel) sorgt sowohl für die optimale Ausrichtung der Spiegel auf die Sonne als auch für die optimale Konzentration des Sonnenlichts auf den Wärmetauscher.

384

5 Lösungen

Bisher wurden 2 Arten von Spiegelsystemen bekannt: 1. Linearspiegel-System (Isomorph GmbH , Bamberg/Oberfranken) 2. Gewölbtspiegel-System „Sunbag“ (Fa. T. Langenbeck, Grieben b. Tangerhütte) Solar-Luftkollektor (www.trubadu.de/Shop) Eine Möglichkeit, mit Sonnenenergie Heizkosten zu sparen, bieten sogenannte Warmluftkollektoren. Hinter der transparenten Abdeckung der Konstruktion befindet sich ein mit Solarlack geschwärztes Aluminiumblech, das bei Sonneneinstrahlung heiß wird. Ein Stutzen saugt zugleich Luft an, die durch eine Röhre in den oberen Bereich des Kollektors gelangt. Von dort aus strömt sie durch Spaltöffnungen nach unten. Dabei heizt sich die Luft entlang des heißen Bleches auf und wird schließlich von einem Lüfter ins Haus geblasen. Für den elektrischen Strom, der zum Betrieb des Lüfters benötigt wird, sorgt eine Photovoltaikplatte, die in die Anlage integriert ist. Ein Temperaturdifferenzregler sorgt dafür, dass der Lüfter nur dann angeschaltet wird, wenn die Kollektortemperatur höher ist als die Innenraumtemperatur. 140

b) Strom aus Solarenergie mit einer Photovoltaikanlage auf dem Dach Eine gleichmäßig dem Licht ausgesetzte Photovoltaikanlage ist die eleganteste Art, die Sonnenenergie in Strom zu verwandeln. Der Wirkungsgrad ihrer 0;3 mm dünnen Solarzellen, wovon in einem Gehäuse mit transparenter Abdeckung jeweils viele zu einem „Modul“ in Serie zusammengeschaltet sind, liegt theoretisch bei  43 %, in der Praxis bei 18 %. Um Verluste durch Reflexion des Lichts zu vermindern, sind die Solarzellen mit einer dünnen Schicht Titanoxid überzogen, die ihnen ihr charakteristisches blaues Aussehen verleiht. In jeder Solarzelle baut sich im Grenzbereich zwischen der mit Phosphor n-dotierten und der mit Bor p-dotierten Si-Zone ein (inneres) elektrisches Feld auf (Abb. 5.20). Fällt nun Licht auf diesen np-Übergangsbereich, löst die Energie der Photonen (E D h  ) Elektronen aus ihrer Bindung, erzeugt also freie Elektronen und Löcher ˚. Man nennt dies den Sperrschicht-Fotoeffekt. Unter dem Einfluss des inneren Feldes wandern die Elektronen auf die n-dotierte, die Löcher ˚ auf die p-dotierte Seite. Dadurch entsteht eine dem inneren Feld entgegen gerichtete „Fotospannung“, die man über Kontakte abgreifen kann. So erhält man einen Plus- und einen Minuspol wie bei einer Batterie. Schließt man einen Verbraucher an, fließt Strom.

Licht

+

– +

– +

– +

– +

– +

– +

– +

– +

– +

– +

– +

– +













+

+

+

+

+

+



+



p-Leiter I + – Stromerzeugung

Grenzschicht

+

+

R +



+ + –

n-Leiter +







Rekombination + – + –

+



+



+



+





Abb. 5.20

„Innenleben“ einer Solarzelle (Quelle: Frauenhofer Institut für solare Energiesysteme)

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung

385

Die Solarzelle funktioniert sozusagen wie eine umgekehrte Diode, die unter dem Einfluss von Licht elektrischen Strom abgibt, statt an eine Spannung angeschlossen zu sein und diese gleichzurichten. Für eine Photovoltaikanlage bestehen bislang hohe Herstellungskosten in Verbindung mit der relativ geringen „Leistungsdichte“ der Sonnenstrahlung ( 1 kW=m2), was in sonnenreichen Gegenden eine jährlich nutzbare Leistung von ca. 2200 kW=m2 (in unseren Breiten ca. 1000 kW=m2) bedeutet. Somit ist viel Fläche erforderlich, um photovoltaisch größere Leistungen zu erzielen. Auch die im Tages- wie im Jahreszyklus sehr unregelmäßig anfallende Solarstrommenge gilt es zu berücksichtigen. Mit Sicherheit wird sich aber der Wirkungsgrad von Solarzellen erheblich ( 15 %) verbessern lassen, z. B. durch sogenannte Tandemoder Trippelzellen, bei denen zwei oder drei Dünnschicht-Solarzellen mit unterschiedlicher Spektralempfindlichkeit übereinander liegen. 141

Erneuerbare Energie

Solarzellen Windkraft Wasserkraft Biomasse

Strom

Elektolyse H2O – ~ Wechselrichter

Wasserstoff

H2-Tank direkter Einsatz von H2

Anwendungen Brennstoffzelle Stromerzeuger Heizkessel Gasmotor Tankstelle Chemische Industrie

Strom Strom Wärme Kraft Fahrzeugantrieb Chemische Produkte

Trafo

In der schematischen Übersicht verbergen sich viele Energiewandlungen mit teilweise ungünstigen Wirkungsgraden. Der Leser kann jedoch an den genannten anwendungsorientierten Beispielen leicht analysieren, unter welchen Bedingungen die technischen Prozesse trotzdem sinnvoll sind und welche Alternativen für die Erzeugung von Nutzenergie in Betracht kommen. So kann H2 mit CO2 katalytisch in einem exergonen Prozess methanisiert werden (R G 0 D  * 115 kJ=mol): 4 H2 C CO2 )  CH4 C 2 H2 O(g) . Dafür mögliche Kohlenstoffdioxidquellen sind mit fossilen und biogenen Energieträgern befeuerte Kraftwerke, Biogasanlagen, Industrieprozesse und eine Direktabscheidung aus der Umgebungsluft. CH4 kann bis zu 100 % an jeder beliebigen Stelle ins Erdgasnetz eingespeist oder in Gasspeichern gelagert werden (Power-to-Gas-Technologie ). Bei Bedarf kann seine chemische Energie in unterschiedlichen Arten von Gaskraftwerken und Kraft-Wärme-Kopplungsanlagen rückverstromt werden. Grundsätzlich ist aber die Umstellung auf erneuerbare Energien kein Problem, das in den Energiequellen liegt, zumal Wind und Sonne ausreichend vorhanden sind. Für den Fall länger anhaltender Perioden mit Schwachwind oder geringer Sonnenscheindauer bedarf es lediglich entsprechende Lageenergiespeicher (D Stromspeicher für große Strommengen). Sie speichern Energie aufgrund des Umstandes, dass Objekte daran gehindert werden, dem natürlichen Lauf der Gravitationswirkung zu folgen. Wird ein Fluss durch eine Staumauer an seinem direkten Weg entlang der Gravitationswirkung gehindert, staut sich die Lageenergie des Wassers, die seit Jahrhunderten für die Energiegewinnung genutzt wird, indem der Weg der Gravitationswirkung über eine Turbine geleitet wird. Nach dem gleichen Prinzip arbeiten Pumpspeicherkraftwerke. Eine Fortentwicklung davon könnte ein vorgeschlagenes, zur Zeit noch hypothetisches Projekt von Prof. Heindl (Hochschule Furtwangen, Deutschland) sein, bei dem die Lageenergie in einem Felszylinder aus Granit (r  500 m), gespeichert wird. Starke, elektrisch angetriebene Pumpen pressen Wasser unter den Fels, wodurch dieser hydraulisch

386

5 Lösungen

angehoben wird. Bei Strombedarf wird das Wasser unter dem Fels abgelassen und durch eine Turbine geleitet ( 2000 GWh Kapazität). 142

In Abb. 5.21a) ist beispielhaft eine AFC-Brennstoffzelle dargestellt, bestehend aus zwei porösen Elektroden und dem Elektrolyten. Die Anode wird mit dem Brennstoff Wasserstoff und die Kathode mit Sauerstoff versorgt, der Elektrolyt KOH verbindet die beiden Elektroden miteinander. Durch den Elektronenfluss kann im äußeren Stromkreis Arbeit verrichtet werden. Der Ladungstransport in der Brennstoffzelle wird durch die Ionenbewegung im Elektrolyten realisiert. Die theoretisch mögliche Spannung einer Einzelzelle bei 25 ı C und 101;325 kPa beträgt 0;059 V 2 lg.cH2C  cOH  / D 0;4 V C 0;059 V  .pH C 14  pH/ D 1;226 V 2 In der betrieblichen Praxis werden nur etwa 0,6 bis 0;9 V Zellenspannung erreicht, weil Verluste (Überspannungen) durch Reaktionshemmungen, Innenwiderstände oder eine ungenügende Gasdiffusion auftreten. Um höhere Spannungen und Leistungen zu erzielen, fügt man die einzelnen Zellen in Serien- oder Parallelschaltung sandwichartig zu Stapeln („stacks“) zusammen. Alle Arten von Brennstoffzellen erzeugen nicht nur Strom, sondern auch Wärme, die abgeführt werden muss. Damit sind stationäre Brennstoffzellensysteme für die Kraft-WärmeKopplung prädestiniert. Sie eignen sich jedoch auch für den mobilen Einsatz zum Antrieb von Fahrzeugen (Brennstoffzellenfahrzeuge). In beiden Fällen verwendet man vor allem die „Polymer-Elektrolyt-Membran-Brennstoffzelle (PEMFC)“. Deren Herzstück ist die MembranElektroden-Einheit: Die Elektroden sind speziell behandelte Kohlenstoffmatten, an denen fein verteiltes Platin (0,1–1 mg=cm2 ) als Katalysator abgeschieden ist. Die Matten sind mit einer in die porösen Elektrodenstrukturen hineinragenden Polymermembran (ionenleitend) heiß verpresst. Die wesentlichen Komponenten eines PEMFC-Blockheizkraftwerkes mit Erdgas sind der Abb. 5.21b) zu entnehmen. Sein elektrischer Wirkungsgrad beträgt el. D 40 %, der thermische bis zu th: D 45%, so dass die Energie zu 85 % ausgenutzt wird. Im Reformer wird das aus  90 % CH4 bestehende Erdgas mit überhitztem Wasserdampf vermischt und katalytisch bei etwa 800 ı C zu Wasserstoff und Kohlenstoffmonoxid umgesetzt:  * CH4 C H2 O )  3 H2 C CO. Das Kohlenstoffmonoxid reagiert dann im Konverter an einem Katalysator bei etwa 250 ı C mit Wasserdampf zu Wasserstoff und Kohlenstoffdioxid: CO C  * H2 O )  H2 C CO2 . Dieses Prozessgas wird kontinuierlich der Brennstoffzelle zugeführt. In der Automobilindustrie wird auch der Brennstoffzellenantrieb als eine umweltgerechte Alternative zum Verbrennungsmotor angesehen (Abb. 5.21c). Die benötigte elektrische Energie aus den Energieträgern (Brennstoffen) wird durch eine Brennstoffzelle erzeugt und direkt in Elektromotoren in Bewegung umgewandelt oder zeitweise in einer Traktionsbatterie (z. B. Lithium-Ionen-Batterie) zwischengespeichert. Berechnungen haben gezeigt, dass mit Wasserstoff betriebene PEM-Brennstoffzellen-Systeme bei Volllast einen Wirkungsgrad bis zu 60 % erreichen können. Dieser steigt bei Teillast (bei 20 % Belastung) sogar bis auf 70 % an. Der Wirkungsgrad eines Dieselmotors, der selbst bei optimaler Last nur etwa 33 % beträgt, fällt dagegen unter Teillast auf etwa 17 % ab. Hier liegt ein wichtiger Vorteil des Brennstoffzellenantriebs für den Verkehr. Derzeit gibt es zwei Entwicklungsrichtungen hinsichtlich des Brennstoffs, der in Frage kommt. Zum einen wird der direkte Einsatz von Wasserstoff vorgesehen. Zum anderen favorisieren verschiedene Automobilhersteller die Erzeugung des Wasserstoffs mittels eines Reformierungsprozesses aus Methanol: E D E 0 

 * CH3 OH C H2 O  )  3 H2 C CO2 :

5.10 Atomkraft und ihre Alternativen im Spektrum der Energieerzeugung a)

Verbraucher

ηel. = 60 – 70 % Brennstoff (Wasserstoff)

Oxidant (Sauerstoff)

Anode e– – Donator

Kathode e– – Akzeptator

KOH 25 %

1 O (H O) H2 / 2H+ // 2OH– / – 2 2 2 0 + 0,4 (pH = 14) E0 (V) (pH = 0) 1 ∑ H2 + – O 2 2

H2O

∆ R G0 = – 237,3 kJ / mol

∆ E = 1,226 V

b) Luft/Sauerstoff

ηges. = 85 % Wasserdampf

Erdgas (90 % CH4)

Reformer + Gasaufbereitung

T = 120 °C ηel. = 40% Brennstoffzelle (PEMFC)

wasserstoffreiches Gas

Wärme

Gleichstrom

Wechselrichter

Wechselstrom

ηth. = 45 % Nutzwärmeauskopplung

Sensordaten c) Steuerungselektronik Luft

Batterie

ηel. = 60 – 70 %

(1)

H2Tank

Brennstoffzelle (PEMFC)120°

(2)

MethanolTank

H2 Reformer

Elektromotor

oder

Abb. 5.21 Brennstoffzelle Aufbau und Anwendung a) Schema einer AFC-Zelle (Alkaline Fuel Cell), b) Schema eines Brennstoffzellen-Kraftwerks mit externer Reformierung des Brenngases, c) Funktionsprinzip eines Kfz mit Brennstoffzellen-/ Elektroantrieb (aus IZE C HEA Frf./M. und CD-ROM-BMW Group: H2 -Mobilität, verändert)

387

388 143

5 Lösungen

Die Schlüsseltechnologie für die emissionsfreie Mobilität der Zukunft ist die Batterie. Ob PKW oder Nutzfahrzeuge mit elektrischen Antriebskomponenten langfristig erfolgreich sein werden, hängt entscheidend von der Leistungsfähigkeit, Betriebssicherheit und Wirtschaftlichkeit des Stromspeichers ab. Dies gilt für Hybrid-Antriebe ebenso wie für Brennstoffzellen- und Batteriefahrzeuge mit oder ohne Range Extender (Reichweitenerhöher mit kraftstoffbetriebenen Stromgeneratoren). Bisher verwendete Batterietypen sind zu groß, zu schwer, zu leistungsschwach und zu teuer. Damit sind sie nur eingeschränkt alltagstauglich und wirtschaftlich unattraktiv für den Hersteller und erst recht für den Kunden. Der Spareffekt rechnet sich damit nicht, ganz anders aber die Lithium-Ionen-Batterien mit Lithiumeisenphosphat LiFePO4 als (C)Pol und Lix nC (Graphit mit eingelagerten Li-Atomen zwischen den Graphitebenen) als ()Pol. Sie stehen für den Trend „klein–leicht–leistungsstark–sicher“. Zwischen den Polen einer Zelle befindet sich als Transportmedium für Li+ -Ionen ein Elektrolyt. Zur Vermeidung eines Kurzschlusses sind die Pole durch einen mikroporösen Separator getrennt, der für Li+ -Ionen permeabel ist. Der Strom erreicht die Pole der Zelle durch elektrisch leitende Schichten [Al (C); Cu ()]. Beim Ladevorgang werden am (C)Pol Fe2+ -Ionen zu Fe3+ -Ionen oxidiert und Li+ -Ionen wandern durch den Separator zum ()Pol, wo sie reduziert werden. Das aufgeladene galvanische Element (s. Zeilendiagramm) verfügt über eine theoretische Zellenspannung von E 0 D 0;77 V  .3;04 V/ D 3;81 V, wenn die gebräuchlichen 0 0 zugrunde gelegt werden. In der Praxis erhält Standard-Redoxpotenziale ELi/Li + und E + Fe2 /Fe+3 man eine Zellenspannung von E  3;65 V. e– -Donator ./ Anode

0

E (V)

Li=Li+ 3;04

e– -Akzeptor +3

+2

// FePO4 =FePO–4 (Li+ ) 0,77

.C/ Kathode

Weitere Kennwerte dieses LiFePO4 -Akkus sind: Aktionsradius: 500 km, Leistungsdichte 3 kW=kg, Ladezeit: 20 min, Ladezyklen: 5 000, Lebensdauer: 10–15 a, Wirkungsgrad  95 % Eine Weiterentwicklung mit teilweise noch besseren Kennwerten ist die „nanoSafe Battery“ von der Fa Altair (www.altairnano.com.), bei der die übliche Graphitanode (Lix nC) durch eine mit Nanopartikeln aufgebaute Li-Titanat-Anode (Li4 Ti5 O12 ) ersetzt ist. Besonders nennenswert sind Einsetzbarkeit : 35 ı C bis C75 ı C, Ladezeit: 10 min, Ladezyklen: 15 000, Leistungsdichte:  4 kW=kg bei einer Energiedichte von 70–90 Wh=kg, Lebensdauer: 10–15 a und der Wirkungsgrad:  95 %.

5.11 Homogene chemische Gleichgewichtsreaktionen 5.11.1 144

Stickstoffverbindungen (N2 , NH3 , NOx )

144.1: Es wird das Gesetz vom Prinzip des kleinsten Zwangs nach Le Chatelier bestätigt. Es beinhaltet folgende qualitative Formulierung: Wenn bei einem umkehrbaren Vorgang das Gleichgewicht durch Temperatur-, Druck- oder Mengenänderung gestört wird, dann sucht das (chemische) System diesem Zwang auszuweichen, d. h. es reagiert so, dass der ausgeübte Zwang möglichst klein wird. Auf die Ammoniaksynthese bei stöchiometrischem Einsatz der Edukte bezogen gilt:

5.11 Homogene chemische Gleichgewichtsreaktionen

200°C

1000 bar 200 bar

300°C

80

100 bar NH3 (%)

400°C NH3 (%)

389

50 500°C

30 bar

600°C

20

1 bar

700°C 100

500 bar

a)

100

1000

500 (°C)

b)

1000

Abb. 5.22 Anteile von Ammoniak im Gleichgewicht; a) in Abhängigkeit vom Druck (Isothermen), b) in Abhängigkeit von der Temperatur (Isobaren).

 Mit steigendem Druck ist die Reaktion begünstigt, bei der das reagierende Gemisch dem angewandtem Druck durch Volumenverminderung „ausweichen“ kann (Hinreaktion). ! Aussage gilt für jede Isotherme in Abb. 5.22a.  Mit steigender Temperatur ist die Reaktion begünstigt, bei der das reagierende Gemisch dem Zwang (Temperaturerhöhung) durch Energieverbrauch „ausweichen“ kann (endotherme Rückreaktion). ! Aussage gilt für jede Isobare in Abb. 5.22b. 144.2:

X ı ı B H(Prod)  B H(Ed) D 92;4 kJ=mol X X ı ı S(Prod)  S(Ed) D 196;35 J=.molK/ R S ı D

R H ı D

X

R G ı D R H ı  298;15 K  R S ı D 33;86 kJ=mol ln K D

33860 R G ı D D 13;66 I RT 8;3143  298;15

K D 8;6  105

Kp D K  p n D K  .1;01325 bar/2 D 8;38  105 bar2 C

N2(g) Gl.:

.1  x/ mol

3.1  x/ mol

2 NH3(g) 2x mol

n D 2 X xi D .4  2x/ mol

2x  100 % 4x  .4  2x/ D 8;6  105 I x D 0;971 mol I NH3 D D 94;36 % 27  .1  x/4 4  2x 2

MWG: K D

 * 3 H2(g)  )  2

390

5 Lösungen

144.3:

2x mol  100 % D 10;4 %I .4  2x/ mol

a)

b)

x D 0;1884

4x 2  .4  2x/2 Kp1 D K1  p n D  .100 bar/2 D 1;6  105 bar2 27  .1  x/4   R H 1 1 Kp1 T1 D 882;4 K .609;25 ı C/ D   ln Kp R 298;15 K T1 Die Annahmen in der Rechnung a) entsprechen nicht den Gegebenheiten. Der Literaturwert von T beträgt 500 ı C. H und S sind im gegebenen Temperaturbereich nicht konstant. Ferner verhalten sich die Gase bei p D 100 bar nicht ideal, wodurch die durchgeführte Berechnung ungenau wird.

144.4:

ZT R H.T / D R H.298;15/ C

Cp  dT

T D 473;15 K

298;15

Cp Da C bT C cT 2 a D 41;85 J=.mol  K/ b D 96;37  104 J=.mol  K2 / c D 42;8  106 J=.mol  K3 / Cp D41;85 J=.mol  K/96;37  104T J=.mol  K2 / C42;8  106 T2 J=.mol  K3 / R H.T / D 99241;1 J=mol Z T R S.T / D R S.298;15/ C

298;15

Cp dT D 214;47 J=.mol  K/ T

R G.T / D R H.T /  T  R S.T / D 2235;38 J=mol 2235;38 R G.T / D D 0;568 I K D 0;566 I ln K D RT 8;3143  473;15 2x  100 % 4x 2  .4  2x/2 D 16;88 % K D D 0;566 I x D 0;2888 mol I NH3 D 4  2x 27  .1  x/4 4x 2  .4  2x/2 2x  100 % D 17;23 % I x D 0;294 mol I NH3 D 4  2x 27  .1  x/4 Das Ergebnis kommt dem Literaturwert von 17,6 Vol.-% NH3 nahe. 144.5: K D 0;6 D

145

a): Kp D

2 pNH

3

pH3  pN2 2

D

0;4992 bar2 D 37;47 bar2 0;3763 bar3  0;125 bar

K D Kp  p 2 D 37;47 bar2  12 bar2 D 37;47 R G D RT ln K D 8;3143 J=.mol  K/  400 K  ln 37;47 D 12 050;9 J=mol D 12;051kJ=mol

5.11 Homogene chemische Gleichgewichtsreaktionen

391

nH2  pN2 500 mol  0;125 bar D 166;2 mol D pH2 0;376 bar nH  pNH3 500 mol  0;499 bar D 664 mol D 2 D pH2 0;376 bar

nN2 D nNH3

pges: D pH2 C pN2 C pNH3 D 1 bar nges: D 1330;2 mol b): nges. D1340;2 mol. Durch die Zugabe von Wasserstoff ändern sich alle Partialdrücke. nN2  pges. 166 mol  1 bar D 0;124 bar D nges: 1340;2 mol nH  pges. 510 mol  1 bar D 0;381 bar pH2 D 2 D nges: 1340;2 mol nNH3  pges. 664 mol  1 bar pNH3 D D D 0;495 bar nges: 1340;2 mol ! 2 pNH 3 0 2 R G D R G C RT ln p pN2  pH32 pN2 D

D 12 050;9 J=mol



0;4952 bar2 C 8;3143 J=.mol  K/  400 K  ln  12 bar2 0;124 bar  0;3813 bar3 D 158;3 J=mol



Die Reaktion verläuft in Richtung der Produkte, der Bildung von NH3 . 146

Man könnte argumentieren, dass nach dem Prinzip von Le Chatelier bei Zugabe eines Eduktes (N2 ) das System in Richtung des Produkts (NH3 ) (nach rechts) reagiert, aber das Prinzip von Le Chatelier erlaubt bei dieser Störung des Gleichgewichts keine intuitive Aussage über die Reaktion des Systems, da sich alle drei beteiligten Partialdrucke in unterschiedlicher Weise verändern. nN  pges. 510 mol  1 bar pN2 D 2 D 0;649 bar D nges: 785 mol nH  pges. 100 mol  1 bar D 0;1274 bar pH2 D 2 D nges: 785 mol nNH3  pges. 175 mol  1 bar D 0;223 bar pNH3 D D nges: 785 mol Kpneu D

2 pNH 3

pH3  pN2 2

D

0;2232 bar2 D 37;06 bar2 > Kp 0;12743 bar3  0;649 bar

R G 0 D RT ln.Kp  p 2 / D 8;3143 J=.mol  K/  410 K  ln.36;79 bar2  12 bar2 / D 12 289;7 J=mol R G D R G 0 C RT ln

2 pNH 3

pN2  pH3

2

R G D 12 289;7 J=mol

n  pges:

392

5 Lösungen



0;2232 bar2 C 8;3143 J=.mol  K/  410 K  ln  12 bar2 0;649 bar  0;12743 bar3 R G D 12 289;7 J=mol C 12 314;26 J=mol D 24;56 J=mol



Das System reagiert in Richtung der Edukte. R G wird positiv. 147

Gl.:

C

N2(g) .1  x/ mol

  * ) 

3 H2(g) 3.1  x/ mol

2 NH3(g) 2x mol

n D 2 P xi D .4  2x/ mol

Kp D K  p n 2x Kp D

2 .42x/ 3.1x/ 3 .1x/

 .42x/ .42x/ 2

 p 2

p 8x  4x 27Kp  p D .1  x/2

2  107 Pa1  p.x 2  2x C 1/ D 8x  4x 2

a) p D 105 Pa

b) p D 3  107 Pa

c) p D 6  107 Pa

d) p D 108 Pa

1,48  105 0,00249 mol

1,332 0,3675 mol

5,328 0,5 mol

14,8 0,59 mol

0,125 %

22,52 %

33,33 %

48,02 %

71,5 kJ/mol 84,37 kJ/mol

1,843 kJ/mol 11,022 kJ/mol

10,75 kJ/mol 2,11 kJ/mol

17,3 kJ/mol 4,44 kJ/mol

K D Kp  p2 x 2x  100 %

NH3 D 4  2x R G D RT ln K R F D R G  nRT

dT D 0 ; p " W K " ; NH3 " ; R G # R F #

148

ln K D

G RT

x D 0;845

Gl.:

39 680 1  x 5 D 7;09 K D 1;2  103 D  8;3143  673;15 4 1x 2x  100 % D 84;5 % D 2

ln K D

NH3

1 NH3

149

 * ) 

1=2 N2

1˛

A.1/ : B.1/ C C.1/ : D.1/ : E.1/ : F.1/ :

Hinreaktion ist begünstigt

R H D

C 3=2 H2

1=2˛ X

B HProd. 

n D 1 nG D .1 C ˛/

3=2˛ X

B HEd. D C46;2

J Wm D nRT D 2478;938 mol   X X J R S D SProd.  SEd. D C99;225 mol  K kJ R G D R H  T  R S D C16;616 mol kJ R F D R G C Wm D R U  T  R S D C14;137 mol R U D R H C Wm D C43;721

kJ mol

kJ mol

5.11 Homogene chemische Gleichgewichtsreaktionen R G RT

G.1/ :

K D e 

H.1/ :

Kp D K  p n D 1;24  103 bar  p n mol Kc D K  D 5;02  105 3 RT dm r 27 ˛2 K D ˛ D 0;0307  16 1  ˛ 2

I.1/ : J.1/ :



E.4/ :

@.F / @V

200 R F773



D.4/ :

D 1;2274  103

 D V D nRT  T

1 p

200 R G773 D 35 340 C 1  R  773;15  ln



F.4/ :

@.G/ @p

@.S/ @p

200 R S773

393



200 D 1;366 kJ=mol 1;01325

V2 p1 D V p2 1 T 200 D 41 760 C 1  R  773;15  ln 1;01325 D 7785;96 J=mol D 7;79 kJ=mol D p D nRT 

 D T

1 I V

1 V D nR  T p

D 115;881  nR  ln

200 D 71;939 J=.mol  K/ 1;01325

R H D R G C T  R S A.4/ :

200 R H773 D 1366 C .773;15  71;939/ D 54 253;5 J=mol D 54;253 kJ=mol

R U D R F C T  R S B.4/ :

200 R U773 D 7790 C .773;15  71;939/ D 47 830 J=mol D 47;83 kJ=mol

C.4/ :

Wm D nRT Wm D nR  773;15 D 6428;2 J=mol K D e

R G RT

G.4/ :

K D e R  773;15 D 1;237

H.4/ :

Kp D K  p n Kp D 1;237  200 bar D 247;4 bar

1366

394

5 Lösungen

 p n RT ! 200  105 mol Kc D 1;237  D 3;89 3 8314;3  773;15 dm Kc D K 

I.4/ :

r J.4/ :

1;237 D

˛2 27  16 1  ˛ 2

Ergebnisse

˛ D 0;698

298,15 K

773,15 K

(1) 1,01325 bar (2) 200 bar (3) 1,01325 bar (4) 200 bar A B C D E F G H I J

R H (kJ/mol) R U (kJ/mol) Wm (kJ/mol) R S (J/(mol  K)) R G (kJ/mol) R F (kJ/mol) K Kp (bar) Kc (mol/dm3 ) ˛(Dissoziationsgrad)

46,2 43,721 2,479 99,225 16,616 14,137 1,23  103 1,24  103 5,02  105 0,0307

46,2 43,720 2,479 55,282 29,718 27,238 6,216  106 1,26  103 5,05  105 0,00219

54,258 47,83 6,4282 115,881 35,34 41,76 243,94 247,2 3,85 0,997

1,01325 bar

54,253 47,83 6,4282 71,939 1,366 7,79 1,237 247,3 3,89 0,698

200 bar

dH (dU ) dH (dU ) 89,6

29,6

dH (dU ) dG (dF ) (kJ/mol)

dH (dU ) dG (dF ) (kJ/mol)

dG (dF )

T1

T2

T2

T1

T (K)

T (K) 1,01325 bar

200 bar

dH(T ) – dG(T ) = dU(T ) – dF(T ) = T2 – dS(T ) = 89,6 kJ/mol

55,6 kJ/mol

dH(T ) – dG(T ) = dU(T ) – dF(T ) = T1 – dS(T ) = 29,6 kJ/mol

16,5 kJ/mol

2 1

Abb. 5.23

2 1

55,6

16,5 dG (dF )

2 1

2 1

2 1

Temperaturabhängigkeit der Zustandsgrößen U, H, F und G von Aufgabe 149.

5.11 Homogene chemische Gleichgewichtsreaktionen

dp D 0    

395

T "

das Gleichgewicht verschiebt sich nach rechts die Werte von H , U , K, Kp, Kc , ˛ und S werden positiver die Werte von G und F werden negativer die molare Expansionsarbeit Wm steigt

Mit zunehmender Temperatur steigt stetig die Entropie und damit vergrößern sich die Differenzen dH  dG und dU  dF . dT D 0    

p"

das Gleichgewicht verschiebt sich nach links die Werte von G und F werden positiver die Werte von K, ˛ und S werden negativer die Werte von H , U , Wm , Kp und Kc bleiben konstant.

Mit zunehmendem Druck sinkt stetig die Entropie und damit verkleinern sich die Differenzen dH  dG und dU  dF . 150

150.1: 25 300 27 D 8;155 K D 3;5  103 D 4 8;3143  373;15 .1  x/  .4 C x/ 2x  100 % D 33;3 % x D 0;8 N2 D .4 C x/ ln K D

150.2: 28 050 432  x 7 D 5;89 K D 3;6  102 D 8;3143  573;15 .1  x/5  .5 C 2x/2 x  100 % D 10;94 % x D 0;7 N2 D .5 C 2x/ ln K D

 151

@G @p



 DV

T

@F @V

 D p

G D F D W D nRT ln 

@S @p

 D T

nR V D T p

ıW D p  dV

T

J 0;1 p2 D 4455;69 D 1  8;3143  773;15  ln p1 0;05 mol S D nR ln

p2 J 0;1 D 5;763 D 1  8;3143  ln p1 0;05 mol  K

H D U D 0 Probe: H D G C T  S D 4455;69 C 773;15  .5;763/ D 0 U D F C T  S D 4455;69 C 773;15  .5;763/ D 0

396

5 Lösungen

n D 0;5

152

R G 0 D 14;04 RT K298 D 1;26  106 Kp 298 D K298  p n D 3;98  103 Pa1=2   1 R H 1 398 298  D 8;32 ln K D ln K  R 398 298 3 2  @ TR G 5 D R H 4 K398 D 4;11  103 Kp 398 D 13 Pa1=2 @T T2 p   1 398  .34 800/ 1 398  398  .56 400/   D 27 551;7 J=mol R G D 298 298 398 ln K298 D 

oder R G D RT ln K

R G 398 D R  398  ln K398 D 27 531;64 J=mol

exotherm

exotherm

1 ln Kp

ΔG

-R lnK 1 ΔG = – R lnK ⋅ T

Kp

T

Abb. 5.24

C

1/T

Temperaturabhängigkeit von G und Kp.

T ": Kp #, R G " Die endotherme Reaktion wird begünstigt. 153

NO2 Gl.: 1  ˛ K498 D

  * ) 

NO C 0,5 O2 ˛

0;5˛

n D 0;5 X ˛i D 1 C 0;5˛

˛  .0;5˛/0;5 D 7;379  103 .1 C 0;5˛/0;5  .1  ˛/

˛ D .1ˇ/ D 0;046958

Kp498 D K498  p n D 2;333 Pa0;5

R G 498 D RT 498 ln K498 D 20 326;87 J=mol " # @ TR G H R D @T T2 p   1 1 298  20 326;87  298  56 400   D 34 814;07 J=mol R G 298 D 498 498 298

5.11 Homogene chemische Gleichgewichtsreaktionen

397

R G 298 D 14;044 T  298 D 7;96  107 Kp298 D K298  p n D 2;5  104 Pa0;5

ln K298 D K298

154

a):

N2 O3(g)

 * ) 

Gl.: 1  ˛

NO2(g) C NO(g) ˛

˛

n D 1 P ˛i D 1 C ˛

.1˛/  100 % D 10 % .1C˛/ ˛ D 0;81818

˛2 D 2;025 1  ˛2 R G D RT ln K D 1;75 kJ=mol K D

Kp D K  p n D 2;052  105 Pa R S D

R H  R G D 0;142 kJ=.mol  K/ T

b): ˇN2 O3 D 1  ˛N2 O3 D 0;1818 K(Rück) D .K/1 D 0;494 oder K(Rück) D

Œ1  .1  ˇ/2  D 0;494 .1  ˇ/2

c): V >0

p #! K " ;˛ " 155

Kp D const (nur T -abhängig) K ist p- und T -abhängig

155.1: 0 R G1298 bar D R G D nRT ln 0;141 D 4856;17 J=mol

a) 

@ .G/ @p

 T

Gl.:

N2 O4 1˛

Z0;1 d.G/ D nRT

G 0

0;1 G D G 0 C nRT ln 1 b)

G Z

n  RT D V D p

 * ) 

1

G D 4856;17 C nRT ln 2 NO2 2˛

1 dp p

0;1 D 851;7 J=mol 1

n D 1 .1 C ˛/

Kp D K  p 1 D 0;141 bar K338 1 bar D

4˛ 2 D 2;59 G1338 bar D nRT ln K D 2675;6 J=mol 1  ˛2

398

5 Lösungen

155.2: K298 1 bar D 0;141 D

4˛ 2 1  ˛2

˛1298 bar D 0;185

a) K298 0;1 bar D e

851;7 RT

D 1;41 D

4˛ 2 1  ˛2

298 ˛0;1 bar D 0;51 ˛ D 0;325

b) ˛1338 bar D 0;627 ˛ D 0;442 dT D 0 ; p # W K " ;˛ " ;R G # dp D 0 ; T " W K " ;˛ " ;R G #

Hinreaktion ist begünstigt Hinreaktion ist begünstigt

155.3:   2;59 ln 0;141 R H @ ln K D H D D 60 996 J=mol  61 kJ=mol oder 2 1 1 @T RT  338;15 p 298;15 " # 338 298  G  G @ G H 338;15 298;15 T D H D 1 D 60 996 J=mol  61 kJ=mol 1 @T T2  338;15 298;15 p

156

a): Kupfer C konz. Salpetersäure: 2+  * Cu C 2 NO–3 C 4 H+ )  Cu C 2 NO2 C 2 H2 O :

Es gibt einige andere Möglichkeiten, z. B. Natriumnitrit C Salzsäure: –  * 3 NO–2 C 2 H+  )  NO3 C 2 NO C H2 O

 * 2 NO C O2  )  2 NO2 :

b): Berechnung der K-Werte bei T D 303 K: mges: D 110;9446 g  109;9736 g D 0;9710 g nges: D

101 300 Pa  0;321 dm3 pV D 0;0129 mol D RT 8314;3 Pa  dm3  mol1  K1  303 K

nNO2 C nN2 O4 D 0,0129 46;068nNO2 C 92;136nN2O4 D 0,971 ! nNO2 D 0;004707 mol I

nN2 O4 D 0;008201 mol

Berechnung der K-Werte bei T D 333 K: mges: D 0;7084 g nges: D 0;01175 mol nNO2 D 0;00809 mol I nN2 O4 D 0;003655 mol

5.11 Homogene chemische Gleichgewichtsreaktionen

Gl.

 * ) 

N2 O4(g) 0,003655

K D

399

n D 1 P ni D 0;01175 mol

2 NO2(g) 0,00809 (mol)

0;00809 2

2NO

2

N2 O4

0;01175

D 0;003655 D 1;5239 0;01175

Kp D K  p n D 1;5239  101 300 Pa D 154 371;07 Pa  Kc D Kp 

1 RT

n

D 154 371;07 Pa 

1 8314;3 Pa  dm3  mol1  K1  333 K

D 5;58  102 mol  dm3 c): R H d ln Kp D dT RT 2 21 212;22 303 R ln Kp ln 154  8;3143 J  mol1 K1 Kp 371;07 D 55 501;417 J  mol1 R H D  1 333 1 D  1 1   T1 T2 303 K 333 K R G.303 K/ D RT  ln K.303 K/ D 8;3143 J  mol1 K1  303 K  ln 0;2094 D 3938;84 J  mol1 R G.333 K/ D RT  ln K.333 K/ D 8;3143 J  mol1 K1  333 K  ln 1;5239 D 1166;36 J  mol1   .3938;84 C 55 501;417/ J  mol1 G.303 K/  H D R S D  303 K 303 K D 170;174 J  mol1 K1   .1166;36 C 55 501;417/ J  mol1 G.333 K/  H D R S D  333 K 333 K D 170;174 J  mol1  K1 d): R H > 0, da zur Teilung von N2 O4 Energie benötigt wird (endotherme Reaktion!). R S > 0, da sich bei der Reaktion die Teilchenzahl erhöht. 157

(1) Ausgangsgleichgewicht (2) Endgleichgewicht

N2 O4(g) 1 mol .1  x/ mol

 * ) 

2 NO2(g) 0,086 mol .0;086 C 2x/ mol

n D 1 P D 1;086 mol Pn i ni D 1;086 mol

400

5 Lösungen

a): (1) Ausgangsgleichgewicht 1 mol  8314;3 Pa  dm3 =.mol  K/  298 K nRT D D 2;48  106 Pa V 1 dm3 0;086 mol  8314;3 Pa  dm3 =.mol  K/  298 K D 2;1  105 Pa pNO2 D 1 dm3 2 pNO .2;1  105 Pa/2 2 D 17;8  103 Pa Kp D D pN2 O4 2;48  106 Pa pN2 O4 D

b1 ): (2) Endgleichgewicht pN2 O4 D Kp D

.1  x/  8314;3  298 .0;086 C 2x/  8314;3  298 Pa pNO2 D Pa 4 4 1 0 2 2 2

2 pNO 2

pN2 O4

D@

.0;086C2x/ 8314;3 298 42 .1x/  8314;3  298 4

A Pa D 17;8  103 Pa

! .0;086 C 2x/2 Kc D 7;184  10 mol=dm D mol=dm3 x1 D 0;040044 mol 4  .1  x/ x2 D 0;133228 mol (entfällt) n.N2 O4 / D .1  x/ mol D 0;96 mol 3

3

n.NO2 / D .0;086 C 2x/ mol D 0;167 mol b2 ): 0;96 mol  8314;3 Pa  dm3 =.mol  K/  298 K nRT D D 5;95  105 Pa V 4 dm3 0;167 mol  8314;3 Pa  dm3 =.mol  K/  298 K D D 1;034  105 Pa 4 dm3

pN2 O4 D pNO2 b3 ):



Kc D Kp 

1 RT

n

D 17;8  103 Pa 

1 8314;3 Pa  dm3 =.mol  K/  298 K

D 7;18  103 mol  dm3

158

 * 2 NO2.g/  )  N2 O4.g/ a): Aus den Tabellenwerten erhält man K: R H D .9160  66 400/ J  mol1 D 57 240 J  mol1 R S D .304;3  480;2/ J  mol1  K1 D 175;9 J  mol1 K1

5.11 Homogene chemische Gleichgewichtsreaktionen

401

R G D R H  T  R S D 57 240 J  mol1 C .298  175;9/ J  mol1 D 4821;8 J  mol1 K D e 

R G D RT  ln K

R G RT

4821;8

D e 8;3143  298 D e 1;9461 D 7

Mit dem MWG ergibt sich nges.  * )  N2 O4(g)

2 NO2(g) Gl.: .1;4  2x/ mol

x mol

x  .1;4  x/ .1;4  2x/2

K D 7 D

n D 1

X

ni D .1;4  x/ mol nNO2.g/ D

64;4 g D 1;4 mol 46 g  mol1

x1 D 0;83 mol entfällt x2 D 0;57 mol nges. D 0;26 mol NO2 C 0;57 mol N2 O4 D 0;83 mol

Mit der Zustandsgleichung idealer Gase ergibt sich pges. : nges:  R  T 0;83 mol  8314;3 Pa  dm3 =.mol  K/  298 K D V 15 dm3 D 137 097;3 Pa D 1;371 bar

pges: D

b): Aus den Tabellenwerten erhält man K: Cp D .77;8  2  37;2/ D 3;4 J=.mol  K/ 

@.R H / @T

H 

350

 D Cp

H

350

D H

298

Z350 C Cp dT

p

298

D 57 240 J=mol C 3;4  52 J=mol D 57 063;2 J=mol

@.R S/ @T

 p

Cp D T

350 Z

R S

350

D R S

298

C Cp

dT T

298

350 D 175;35 J=.mol  K/ R S D 175;9 J=.mol  K/ C 3;4  ln 298 R G D R H  T  R S D 57 063;2 J  mol1 C .350  175;35/ J  mol1 350

D 4309;3 J  mol1 R G D RT  ln K Mit dem MWG ergibt sich nges. : K D 0;22744 D

x  .1;4  x/ .1;4  2x/2

x1 D 1;2065 mol entfällt x2 D 0;1935 mol nges. D 1;013 mol NO2 C 0;1935 mol N2 O4 D 1;2065 mol

402

5 Lösungen

Mit der Zustandsgleichung idealer Gase ergibt sich pges. : nges:  R  T 1;2065 mol  8314;3 Pa  dm3 =.mol  K/  350 K D V 15 dm3 D 234 061;4 Pa D 2;34 bar

pges: D

159

a): „Ammoniakverbrennung“:  * 4 NH3 C 5 O2 )  4 NO C 6 H2 O Verwendung zur Herstellung von Salpetersäure:  * 2 NO C O2  )  2 NO2   * 2 NO2 ) N2 O4 oxidative Umsetzung mit Wasser  * 2 N2 O4 C 2 H2 O C O2 )  4 HNO3 im Labor Umsetzung von verdünnter Salpetersäure mit Kupfer (oder Quecksilber) 2+  * 3 Cu C 2 NO–3 C 8 H+  )  2 NO C 3 Cu C 4 H2 O 2+  * (6 Hg C 2 NO–3 C 8 H+  )  2NO C 3 Hg2 C 4 H2 O)

 * b): N2 C O2 )  2 NO n D 0 R H D 180;5 kJ=mol R S D 24;78 J=.mol  K/ R G D 180;5  .298;15  0;02478/ D 173;1 kJ=mol K D Kp D e 

R G RT

173 100

D e 8;3143  298;15 D e 69;83 D 4;716  1031

Die Reaktion ist genau dann endergonisch, wenn R G > 0 ist. Dies trifft zu. Bei großem R G ist Kp klein, das Gleichgewicht liegt links. Da R S > 0 ist, wird R G mit steigender Temperatur kleiner, damit Kp größer und das Gleichgewicht verschiebt sich nach rechts d. h. es ergeben sich bessere Ausbeuten. c):

T .K/ R G D 180 500 J=mol .T  24;78/ J=mol K D Kp D e

R G RT

1000

2000

3000

4000

5000

155 720

130 940

106 160

81 380

56 600

7;34  109 3;8  104 1;42  102 8;65  102 25;6  102

d): Da sich bei der Reaktion die Teilchenzahl nicht ändert, ist die Summe der Abnahme der Partialdrucke von N2 und O2 gleich der Zunahme des Partialdrucks von NO. Da Kp unabhängig vom Druck ist, kann hier ohne Einschränkung der Allgemeinheit pges. D 1 bar angenommen werden.

5.11 Homogene chemische Gleichgewichtsreaktionen

N2 + O2 Gl.: .0;8  x/ mol .0;2  x/ mol Kp D

 * ) 

403

2 NO 2x mol

4x 2 .0;8  x/.0;2  x/

T .K/

1000 1;71  10

x.mol/

2000 5

3;85  10

3000 3

2;21  10

NO .Vol:-%/ D 2x  100 % 3;43  103 7;70  101

4000 2

4;94  10

4,43

5000 2

9,89

7;59  102 15,2

16 14

Volumen% NO

12 10 8 6 4 2 0 0

1000

2000

3000

4000

5000

6000

Temperatur (K) Abb. 5.25 Volumen% NO der Luft in Abhängigkeit von der Temperatur.

160

a): n D 0  * )  N2(g)

2 NO(g) Gl.:

.1  2x/ mol

O2 D N2 D

x mol 6  1011 D

x2 .12x/2

x D 0;4999  0;5 mol

0;4999 mol  100 Vol  -%  50 Vol  -% NO  0 Vol  -% 1 mol

b): ˛D

x mol

+ O2(g)

2x D 0: 9998  1 1

404

5 Lösungen

n D 0

161

A

! Gl.:

KD 162

Kp D Kc D K D K C

N2(g) 0;8 mol 0;011 mol 0;789 mol

  * ) 

O2(g) 0;2 mol 0;011 mol 0;189 mol

2 NO(g) 0 mol 0;022 mol 0;022 mol

0;0222 D 3;25  103 0;789  0;189

Rechnerische Lösung: Zk2

EA d ln k D dT RT 2

ln k D k1

R  ln EA D 1  T1

k2 k1 1 T2

D

ZT2

EA R

dT T2

T1

370  103 0;0083143 kJ=.mol  K/  ln 3;65  103 D 102;1 kJ=mol 1 1  423 K 503 K

Graphische Lösung: 14 13 1/T (K–1) ⋅ 103 2,36 1

1

8,20

2,16

2,07

1,99

9,46

10,7

11,7

12,8

1

ln k

2,26

ln k

11 ln k = ln A 10

abgelesene Punkte: (1,97 / 13) und (2,3 / 9)

9

K

EA = 100,8 kJ/mol

0 0 2,0

2,1

2,2

2,3

2,4

1/T (K–1) ⋅ 103

Abb. 5.26

5.11.2 163

Temperaturabhängigkeit der Zerfallsgeschwindigkeit von Nitrosylchlorid.

Kohlenstoff-Verbindungen (COx , KWS und Derivate)

163.1: R G1000 D 200;6 C 395;8 D 195;2 kJ=mol R G1400 D 235;9 C 396 D 160;1 kJ=mol

5.11 Homogene chemische Gleichgewichtsreaktionen

R G1000 D 23;48 I R  1000 Kp D 2;03  108 Pa0;5

K D 6;365  1011 I

ln K1000 D 

R G1400 D 13;7543 I R  1400 Kp D 3;384  104 Pa0;5 ln K1400 D 

Gl.:

CO2(g) 1˛

 * ) 

CO(g) ˛

C

K D 1;063  106 I

0,5 O2(g) 0;5˛

n D 0;5 P ˛i D 1 C 0;5˛

3

˛2 0;50;5  ˛ 1;5 D p 1 0;5 .1  ˛/  .1 C 0;5˛/ 2  .1  ˛/  1 C ˛2 2 3 q ˛2 ˛1 ! K D p ˛ D 3 2  K2 2 q q 3 ˛1000 D 2  K2 D 2  107 ˛1400 D 3 2  K2 D 1;31  104 K D

163.2:

1;5 ˛CO 0;01581;5 D 1;4  103 K D p 2 D 20;5 2 R G 2000 D 8;3143 J=.mol  K/  2000 K  ln 1;4  103 D 109 271;24 J=mol  109;3 kJ=mol

163.3: 3 2  @ G T 5 D H 4 @T T2 p

271 200  195  109 2000 1000 H D 1 1  2000 1000 140;5645 D D 281 129J=mol  281;1 kJ=mol 5  104 164

a) b) Gl.:

CO2(g) 1˛

 * ) 

CO(g) ˛

C

0,5 O2(g) 0;5˛

n D 0;5 P ˛i D 1 C 0;5˛

3

K D

0;50;5  ˛ 1;5 ˛2 D p 0;5 .1  ˛/  .1 C 0;5˛/ 2  .1  ˛/  1 C

1;5 ˛1000 .2  107 /1;5 K1000 D p D 6;32  1011 D 20;5 2 1;5 ˛1400 .1;3  104 /1;5 K1400 D p D 1  106 D 20;5 2

3

˛ 2

12

˛2 ˛1 ! K D p 2

405

406

5 Lösungen

Kp1000 D 6;32  1011  .101 300/0;5 Pa0;5 D 2;013  108 Pa0;5 Kp1400 D 1  106  .101 300/0;5 Pa0;5 D 3;34  104 Pa0;5 R G 1000 D 8;3143 J=.mol  K/  1000 K  ln 6;32  1011 D 195 259 J=mol  195;3 kJ=mol   K1400 H 1 1 ln D   K1000 R 1400 1000 K1400 1  106 ln 1000  R ln 6;32 K  1011  8;3141 H D  1 D 1 1 1  1000  1000 1400 1400 D 281 388;455 J=.mol  K/  281;4 kJ=mol S D

.281;4  195;3/kJ=mol H  G D D 86;1 J=.mol  K/ T 1000 K

c): Da es sich um eine Reaktion mit Teilchenvermehrung handelt, kann man mit einer Verlagerung des Gleichgewichts nach rechts, also einer Zunahme des Bruchteils des zersetzten Kohlenstoffdioxids rechnen. Somit ist mit fallendem Druck die Reaktion begünstigt, bei der das System dem Druck durch Volumenvermehrung „ausweichen“ kann (Hinreaktion). Es wird das Gesetz vom Prinzip des kleinsten Zwangs nach Le Chatelier bestätigt. Bei T D const. D 1000 K und fallendem Gesamtdruck von 1013 hPa auf 101;3 hPa erhöht sich ˛CO2 von 2  107 auf 4;315  107 : s s 2 8 /2 Pa 3 2  Kp 3 2  .2;013  10 D ˛D D 4;315  107 4 p .1;013  10 /Pa 165

 * CO C O2 )  CO2 n D 0;5 R G D 394;4  .137;3/ D 257;1 kJ=mol R H D 394;5  .110;5/ D 284 kJ=mol 257 100 D 103;73 K D 1;12  1045 R G D RT  ln K ln K D 8;3143  298 Kp D K  p 0;5 D 1;12  1045  .1 bar/0;5 D 1;12  1045  bar0;5 H d ln K D dT RT 2 ln K1073 D 103;73 

284 000  8;3143



1 1  1073 298



0;5

Kp D 1;24  109  .1 bar/0;5 D 1;24  109 bar 298 K

Kp (bar

–0,5

)

1073 K

1,12  10

45

1,24  109

D 20;94 K D 1;24  109

5.11 Homogene chemische Gleichgewichtsreaktionen

C

CO(g)

166

166.1: Gl.: KD

30

H2 O(g)

 * ) 

10

30  30 D3 30  10

CO2.g/

C

30

407

H2.g/ 3

(Liter)

n D 0 ! Kc D Kp D K D 3

166.2: xCO2  xH2 D 15 xCO  xH2 O Im Gl. CO(g) (Liter) H2 O(g) (Liter) CO2(g) (Liter) H2(g) (Liter) x (H2 O) (Liter) a 1;5 x  13;50 14;50 63;50 54;4 b 0;75 x  14;25 15;25 64;25 101;3 c 0;30 x  14;70 15;70 64;70 240;4 d 0;15 x  14;85 15;85 64;85 471;7 Eine 90 %ige CO-Entfernung mit Nutzung eines Kreisprozesses ist ratsam, da die Kosten für die Erzeugung von Wasserdampf zu berücksichtigen sind.   * CO(g) C Cl2.g/ )  COCl2.g/ Gl.: .0;533  x/ bar .0;666  x/ bar x bar 0;134 bar 0;267 bar 0;399 bar

167

Kp D

n D 1 0;8 bar D .1;199x/ bar x D 0;399 bar

0;399 bar D 11;15 bar1 0;134 bar  0;267 bar

K D Kp  p D 11;15 bar1  0;8 bar D 8;92  Kc D Kp 

1 RT

1

D 11;15  105 Pa1  8314;3 Pa  dm3 =.mol  K/  298;15 K D 2;764  1012 dm3 =mol 168

a): Oxidationszahl = 0 b): Kp D c): Kp D

4 pCO

pNi.CO/4

Einheit von Kp: bar3

4 x 4 pCO bar3 0;5pNi.CO/4

Da Kp konstant ist, ergibt sich x4 x D 0;84 0;5 d. h. die CO-Konzentration ist um den Faktor 0,84 kleiner geworden, auf 84 % des ursprünglichen Wertes zurückgegangen. 1D

408 169

5 Lösungen

bei 400 ı C ln K D

21 400 D 3;824 K D 45;77 8;3143  673;15

  * C H2 O(g) CH4(g) )  CO(g) C 3 H2(g) Gl.: .1  x/ mol .1  x/ mol x mol 3x mol 45;77 D

27x 4 4  .1  x 2 /2

x D 0;83 mol

n D 2 P xi D .2 C 2x/ mol 83 % Umsatz

bei 25 ı C ln K D 170

143 000 D 57;7 K D 8;85  1026 8;3143  298;15

H2 O(g) C CH4(g) Gl.: .1  x/ mol .1  x/ mol CO D 22 % D K D

x  100 % I 2 C 2x 27x 4

  * ) 

x  0 mol (kein Umsatz)

CO(g) C 3 H2(g) x mol 3x mol

n D 2 P ni D .2 C 2x/ mol

x D 0;786 mol

.2 C 2x/2  .1  x/2

D 17;57

Kp D K  p n D 15;57  .10 bar/2 D 1757 bar2 2   p n 106 Pa Kc D K  D 17;57  RT 8314;3 Pa  dm3  mol1  K1  1373 K D 0;135 .mol=dm3/ 171

171.1: (I)

2

X 0 0 B H.Prod/  B H.Ed/ D 804: 3 kJ=mol X X 0 0 S.Prod/  S.Ed/ D 5;2 J=.mol  K/ R S 0 D R H 0 D

X

R G 0 D R H 0  T  R S 0 D 802;750 kJ=mol R G 0 D 323;828 RT   R H 0 1 1 ln K D ln K0   0 D 63;862 R T T ln K0 D

K D Kp D 5;43  1027

.n D 0/

5.11 Homogene chemische Gleichgewichtsreaktionen

409

(II) R H 0 D 519;3 kJ=mol R S 0 D 81;35 J=.mol  K/ R G 0 D 543;554 kJ=mol ln K0 D 219;27 ln K D ln K0 

R H 0 R



1 1  0 T T

 D 51;422

K D 2;15  1022 0;5

Kp D K  p 0;5 D 2;164  1023 kPa

.n D 0;5/

171.2: Aus RG (I)RG(II) wird RG(III) (RG = Reaktionsgleichung) a): Gl.:

CO2 .1  x/ mol

 * ) 

CO x mol

C

0,5 O2 0;5x mol

K.II/ D 3;96  106 K.III/ D K.I/ X xi D .1 C 0;5x/ mol 0;5x 0;5  x 1;5 D 3;96  106 .1 C 0;5x/0;5  .1  x/ x1

!

xD

q 3

2  .3;96  106 /2 D 3;15  104 mol

Stoffmengenverhältnis n O2 1 D n.CO/ 2 b):

 * 2 H2 O C 8 N2 C CO2 )  CO C 0,5 O2 C 2 H2 O C 8 N2 Gl.: 2  2x 8  8x 1x x 0;5x 2x 8x P xi D 11 C 0;5x 0;50;5  x 1;5

ohne N2 und H2 O

MWG !

.11 C 0;5x/0;5  .1  x/ !

0;5  x 3 .11 C 0;5x/ .1  x/2

D K.III) D K2 .III)

410

5 Lösungen

für x  1 ! !

0;5  x 3 D K2 .III) D .3;96  106 /2 11 s 2 3 K  11  7  104 xD 0;5

Molenbruch xCO D

7;4  104 x D D 6;36  105 .11 C 0;5x/ .11 C 3;5  104 /

171.3:

 * C CO2 ) C 2 H2 O C 16 N2 2 H2 O C 16 N2  CO C 0,5 O2 Gl.: 2  2x 16  16x 1x x 2 C 0;5x 2x 16x P xi D 21 C 0;5x x  .2 C 0;5x/0;5

ohne N2 und H2 O

MWG ! ! K.III) D p

x

.21 C 0;5x/0;5  .1  x/ x 2  .2 C 0;5x/ .21 C 0;5x/ .1  x/2

D K.III) D K2 .III)

p .2 C 0;5x/

.21 C 0;5x/  .1  x/ p x 2 6 für x  1 ! 3;96  10 D p 21

x D 1;28  105

Molenbruch CO D

1;28  105 x D 6: 095  107 D .21 C 0;5x/ 21 C 0;64  105

171.4: x D 7  104 V.CH4 / W V.O2 / D 1 W 2 x D 77;8  106 D 77;8 ppm xCO D .11  2/ C 0;5x oberhalb der maximal zulässigen CO-Konzentration V.CH4 / W V.O2 / D 1 W 4 x D 1;28  105 x D 0;6  106 D 0;67 ppm xCO D .21  2/ C 0;5x unterhalb der maximal zulässigen CO-Konzentration

5.11 Homogene chemische Gleichgewichtsreaktionen

411

171.5: a) R G T D R H T  T  R S T



R H T D R H 0 C R Cp  .T  T 0 / R S T D R S 0 C R Cp  ln R Cp D D

T T0

 @.H / D R Cp @T p   @.S/ R Cp D @T T p

R G T  R H 0 C T  R S 0 .T  T 0 /  T  ln TT0 792 610 C 804 300 C 1500  .5;2/ 1500 .1500  298;15/  1500  ln 298;15

 * CH4 C 2 O2  )  CO2 C 2 H2 O CpŒJ=.mol  K/ 34,4 53,1 39,8

D 3;1844 J=.mol  K/

R Cp

J=.mol  K/

Cp.CH4 / D 63;9  R Cp D 67;08 J=.mol  K/ b)

R S T D R S 0 C R Cp  ln

T 1500 D 5;2  3;1844  ln 0 298;15 T

D 10;345 J=.mol  K/ R H T D R H 0 C R Cp  .T  T 0 / D 804 300  3;1844  .1500  298;15/ D 808;127 J=mol 172

a):

 * C8 H10 C 10;5 O2  )  8 CO2 C 5 H2 O :

b): 0 : Berechnung der Standard-Bildungsenthalpie B H(p-Xylol) X 0 0 D R H 0  B HProd. B H(p-Xylol)

D 4551;4 C 8 .393;5/ C 5 .285;8/ D 25;6 kJ=mol c): Berechnung der Bildungsenthalpien B H.500 K/ der gasförmigen Xylole, z. B. für o-Xylol: ZTSd B H.500 K/ D B H.298 K/ C Cp.l/  298

Z500 dT C HVd. C Cp.g/  dT : TSd

B H.o-Xylol/ D .24;4 C 22;34 C 36;2 C 14;24/ kJ=mol D 48;4 kJ=mol

412

5 Lösungen

Berechnung der Entropien S.500 K/ der gasförmigen Xylole, z. B. für o-Xylol: ZTSd S.500 K/ D S.298 K/ C Cp.l/

dT HVd. C CCp(g) T TSd

298

Z500

dT : T

TSd

S.o-Xylol/ D .246 C 63;0 C 86;8 C 31;1/J=.mol  K/ D 426;9 J=.mol  K/

o-Xylol (g) m-Xylol (g) p-Xylol (g)

B H(500 K) [kJ/mol]

S(500 K) [J/(mol  K)]

48,4 46,0 46,8

426,9 432,6 425,3

Berechnung von R H.500 K/ und R S.500 K/ der Isomerisierungsreaktionen: o-Xylol ! p-Xylol: R H.500 K/ D 46;8  48;4 D 1;6 kJ=mol R S.500 K/ D 425;3  426;9 D 1;6 J=.mol  K/ m-Xylol ! p-Xylol: R H.500 K/ D 46;8  46;0 D 0;8 kJ=mol R S.500 K/ D 425;3  432;6 D 7;3 J=.mol  K/ d): Berechnung von I G.500 K/ für die Isomerisierungen: o-Xylol ! p-Xylol: I G.500 K/ D R H.500 K/  500 K  R S.500 K/ D 0;8 kJ=mol m-Xylol ! p-Xylol: I G.500 K/ D R H.500 K/  500 K  R S.500 K/ D 4;5 kJ=mol Berechnung der Gleichgewichtskonstanten für die Isomerisierungen: K.orto!para/ D e 

R G RT

K.meta!par a/ D e 

D e 8;3143  500 D 1;21

R G RT

800

4500

D e 8;3143  500 D 0;34

Resultierende Zusammensetzung der Gleichgewichtsmischung bei 500 K: p-Xylol: 21 % 173

o-Xylol: 17;36 % :

m-Xylol: 61;64 %

a): Die Gleichgewichtskonzentrationen der einzelnen Komponenten betragen im Gefäß B: Gl.:

C3 H8(g) 0;8cB

  * ) 

C3 H6(g) 0;1cB

K2 D 1;3  103 mol=dm3 D c.C3 H8 / D 0;0832 mol=dm3

C

H2(g) 0;1cB

n D 1 P cB.i / D 1;0  cB mol=dm3

.0;100  cB /2 I cB D 0;104 mol=dm3 0;800  cB c.C3 H6 / D c.H2 / D 0;0104 mol=dm3

5.11 Homogene chemische Gleichgewichtsreaktionen

413

Der Gesamtdruck pB im Gleichgewichtszustand ergibt sich zu: n pB D  R  T D cB  R  T V pB D 0;104 mol=dm3  8314;3 Pa  dm3 .mol  K/  800 K D 691 749;8 Pa D 691;75 kPa b): Wenn pB D pA ist, dann gilt auch cB D cA .  * CO2(g) C H2(g)  C H2 O(g) )  CO(g) cA 0;052  cA 0;052  cA Gl.: cA K1 D 0;25 D

.0;052  cA /2 I 2 cA

n D 0 P cA.i / D 0;104 mol=dm3

cA D 3;47  102 mol=dm3

Somit betragen die Gleichgewichtskonzentrationen der Komponenten im Gefäß A: c.CO2 / D c.H2 / D 3;47  102 mol=dm3

c.CO/ D c.H2 O/ D 1;73  102 mol=dm3

c): Durch die Verringerung des Volumens steigt der Druck. Im Gefäß A ändert sich das Verhälntis der Komponenten im Gleichgewicht nicht, da bei der Reaktion die Gesamtzahl der Teilchen gleich bleibt. Deshalb verdoppelt sich der Gesamtgleichgewichtsdruck:  D 2pA D 2  691;75 kPa D 1383;5 kPa pA

In Gefäß B bewirkt die Druckerhöhung eine Gleichgewichtsverschiebung in die Richtung, in der die Teilchenzahl geringer wird (Rückreaktion).   * )  C3 H6(g) C H2(g) 2  0;0832 2  0;0104 2  0;0104 Gl.: 0;1664Cx 0;0208x 0;0208x C3 H8(g)

K2 D 1;3  103 D

(mol=dm3 ) (mol=dm3 )

.0;052  x/2 I .0;208  x/  .0;1664 C x/

P

x.i / D .0;208x/ mol=dm3

x D 0;0141 mol=dm3

Mit cB D .0;208  x/ D 0;1949 mol=dm3 erhält man den Gesamtdruck pB im Gleichgewicht: n pB D  R  T D cB  R  T V D 0;1949 mol=dm3  8314;3 Pa  dm3  mol1  K1  800 K D 1 296 365;7 Pa D 1296;4 kPa 174

V HPropen D V HCyclopropan  HIsomerisierung D 2061;5 kJ=mol B HCyclopropan D 3  V H(C) C 3  V H.H2 /  V HCyclopropan D 53;2 kJ=mol B HPropen D 3  V H(C) C 3  V H.H2 /  V HPropen D 20;3 kJ=mol

414

5 Lösungen C (Graphit)

H2

Cyclpropan

Propen

394,1 0

286,3 0

2 094,4 53,2

2 061,5 20,3

V H ŒkJ/mol B H0 ŒkJ/mol 0

175

A ! Gl.: K D

CO(g) 1 mol 0;23 mol 0;77 mol CH3 OH CO  2H2

C

D

2 H2(g) 2 mol 0;46 mol 1;54 mol

  * ) 

CH3 OH(g) 0 mol 0;23 mol 0;23 mol

n D 2 P

D 2;54 mol

0;33  2542 D 0;8126 1;542  0;77

Kp D K  p n D 0;8126  .250 bar/2 D 1;3  105 bar2

176

a):  * 2 CH3 OH.g/ C 3 O2.g/  )  2 CO2.g/ C 3 H2 O.g/ b): R H D 787  724;5 C 403 kJ=mol D 1108;5 kJ=mol c): 0;165  105 N=m2  500  106 m3 p V D D 0;00333 mol RT 8;3143 Nm=.mol  K/  298;15 K .1;1  0;165/  105 N=m2  0;2  500  106 m3 p  V nO2 D D D 0;00377 mol RT 8;3143 Nm=.mol  K/  298;15 K 1;5 nMeth. > nO2 Sauerstoff ist der limitierende Reaktionspartner

nMeth. D

d): H D e): nN2 nCO2 nH2 O nCH3 OH

1108;5 kJ=mol  0;00377 mol D 1;39kJ=mol 3 mol D 4  nO2 D 2=3  nO2 D 4=3  nO2 D 3;33  103  nCO2 nges:

D D D D D

15;08  103 mol 2;51  103 mol 5;03  103 mol 0;82  103 mol 23;44  103 mol

f): Q D 'Gase  V  cGase  T 500 J Q D D 761;6 K T D 'Gase  VFlasche  cGase 1;3 g=dm3  0;5 dm3  1;01 J=.g  K/

5.11 Homogene chemische Gleichgewichtsreaktionen

TFlasche D T C 298;15 K D 1059;8 K

415

.786;7 ı C/

nges.  R  T 23;44  103 mol  8;3143 Nm=.mol  K/  1059;8 K D VFlasche 500  106 m3 D 4;13  105 N=m2 D 4;13  105 Pa

pFlasche D

177

177.1: Gl.:

CO(g) .1  x/ mol

C

2 H2(g) .2  2x/ mol

 * ) 

CH3 OH(g) x mol

n D 2 P xi D .3  2x/ mol

Kp 5;58  1014 D D 5;58 n p .107 /2     RT 2 5;58  .8314;3/2  .573;15/2 mol 2 Kc D K  D D 1;267 p dm3 1014

K D

R G D RT ln K D 8;3143  573;15  ln 5;58 D 8192;52 R S D 

J kJ D 8;193 mol mol

.8;193 C 90/ kJ .R G  R H / D D 0;143 T 573;15 mol  K

R U D R H  nRT D 90 C 2  0;0083143  573;15 D 80;47 K D 5;58 D

kJ mol

x  .3  2x/2

.2  2x/2 .1  x/ x mol  100 % D 29;28 % Methanol D x D 0;554 mol .3  2x/ mol

177.2:   a: 1 1 R H .T 2/ .T 1/   D 3;1664 D ln K C ln K R 573;15 773;15 KT .2/ D 0;0422 K.T 2/ D 0;0422 D

x  .3  2x/2

.2  2x/2 .1  x/ x mol  100 % 2/ D 0;614 % .T x D 0;0182 mol Methanol D .3  2x/ mol kJ R G .T 2/ D R  773;15 K  ln K.T 2/ D 20;347 mol b:

p .p 2/ 150 D 8192;52  2  8;3143  573;15  ln 100 p .p 1/ kJ J D 12;057 D 12 056;88 mol mol

R G .p 2/ D R G .p 1/ C nRT ln

416

5 Lösungen

R G .p2/ D 2;53 RT x  .3  2x/2 K.T 2/ D 12;55 D .2  2x/2 .1  x/ x mol  100 % 2/ D 40;04 % .p x D 0;667 mol Methanol D .3  2x/ mol ln K.p 2/ D

c: bei 25 ı C und 107 Pa: ln Kp D ln 5;58  10

14

90 000   8;3143



1 1  573;15 298;15

 D 13;097

Kp D 2;05  106 Pa2 bei 25 ı C und 105 Pa: K D

2;05  106 Pa2 D 2;05  104 .105 /2 Pa2

R G D 8;3143  298;15  ln 2;05  104 D 24;611 kJ=mol x  .3  2x/2

D 2;05  104

.2  2x/2 .1  x/

x D 0;976 mol Methanol D

x mol  100 % D 93;13 % .3  2x/ mol

Die Ergebnisse für die exotherme unter Volumenabnahme stattfindende Reaktion bestätigen das Gesetz von Le Chatelier: a) dp D 0 T " : K # , Methanol # , R G " Rückreaktion ist begünstigt b) dT D 0 p " : K " , Methanol " , R G # Hinreaktion ist begünstigt c) T #25 ı C p "1 bar : K "" , Methanol "" , R G ## Hinreaktion ist begünstigt, aber kinetisch stark gehemmt 177.3: CO(g)

 * )  CO2(g) + H2(g)

Gl.: 40  x

yx

5Cx

50 C x

30

y  10

15

60

4D

178

C H2 O(g)

15  60 30  .y  10/

y D 17;5

nCO 40 2;29 mol D D nH2 O 17;5 1 mol

  * CO C 2 H2 )  CH3 OH Gl.: .1  x/ mol .2  2x/ mol x mol 0;77 mol

1;54 mol

n D 0 nCO 40  x 1 D D nH2 2 50 C x

0;23 mol

n D 2 P xi D .3  2x/ mol x D 0;23 mol D 2;54 mol

x D 10

5.11 Homogene chemische Gleichgewichtsreaktionen

417

0;23  250 bar D 22;64 bar 2;54 0;77  250 bar D 75;79 bar pCO D 2;54 1;54  250 bar D 151;57 bar pH2 D 2;54 pCH3 OH Kp D D 1;3  105 bar2 pCO  pH2 2 pMethanol D

179

n D 0 Gl.:

CH3 COOH(l) .x  10/ mol

C

C2 H5 OH(l) 2 mol

 * ) 

CH3 COOC2 H5(l) 10 mol

C

H2 O(l) 10 mol

  * ) 

CH3 COOC2 H5(l) .3  x/ mol

C

H2 O(l) 5  x mol

10  10 D4 x D 22;5 mol 2 .x  10/ mEthanol D nEthanol  MEthanol mEthanol D 22;5 mol  46 g=mol D 1035 g

KD

180

n D 0 Gl.: KD

181

CH3 COOH(l) .1 C x/ mol

C

C2 H5 OH(l) x mol

.3  x/  .5  x/ D 4 x1 D 1 mol I x .1 C x/

x2 D 5 mol (entfällt)

181.1: R H 0 D .277  486 C 230 C 479/ kJ=mol D 54 kJ=mol R S 0 D .161 C 86 C 10;54  259/ J=.mol  K/ D 1;46 J=.mol  K/ R G 0 D 54 000 J=mol C .298;15  1;46/ J=mol D 53 564;7 J=mol 53 564;7 J=mol D 21;608 ! K D 2;42  109 ln K D .8;3143  298;15/ J=mol 181.2.1: x: Abnahme von c0 der Edukte nach der Zeit t a: c0 .NaOH/ D 0;00980 mol=dm3 b: c0 .Ester/ D 0;00486 mol=dm

.pH D 11;99/

3

Sind a und b die molaren Ausgangskonzentrationen der Edukte Ester (E) und Natronlauge (N ) und wird mit x ihre Abnahme nach der Zeit t bezeichnet, d. h. der in der Zeit t umgesetzte Betrag, gilt dx D k.a  x/.b  x/ : dt

(5.5)

418

5 Lösungen

Aus (5.5) erhält man zunächst die Gleichung dx D kdt ; .a  x/.b  x/

(5.6)

die nach Zerlegung in Partialbrüche integriert werden kann. Es soll sein   N E C dx D kdt : ax bx

(5.7)

Gleichung (5.7) gilt, wenn 1 1 und N D ba ab ist. Somit ergibt sich   1 1 C dx D kdt : .b  a/ .a  x/ .a  b/.b  x/ ED

(5.8)

(5.9)

Die Integration von (5.9) führt zu ln.a  x/ ln.b  x/  D kt C C ; ba ab wobei C die Integrationskonstante ist. Für t D 0 ist auch x D 0, so dass gilt 

(5.10)

ln a ln b  ; ab ab und somit wird aus (5.10) C D

1 a ln.a  x/  ln.b  x/ D kt C ln ab ab b ax 1 a 1 ln D kt C ln ab bx ab b b.a  x/ 1 ln : kt D a  b a.b  x/

(5.11)

Aus Gleichung (5.11) wird unter Übergang zu den dekadischen Logarithmen kD

b.a  x/ 2;303 lg : t .a  b/ a.b  x/

(5.12)

Beim Auftragen von lg b.ax/ gegen t erhält man eine Gerade, deren Neigung, mit a.bx/ multipliziert, den Wert von k liefert. pH

0 178 273 531 866 1510 1918 2401

11,99 11,95 11,94 11,89 11,86 11,81 11,78 11,76

x

a–x

b–x

(mol/dm3 )

(mol/dm3 )

(mol/dm3 )

0 0,00088 0,00109 0,00204 0,00256 0,00334 0,00377 0,00405

0,0098 0,00892 0,00871 0,00762 0,00724 0,00645 0,00603 0,00575

0,00486 0,00398 0,00377 0,00297 0,00230 0,00152 0,00108 0,00089

lg

b(a–x) a(b–x)

– 0,0412 0,0640 0,1208 0,1934 0,3231 0,4423 0,5466

b(a–x) 2,303 k1 D  lg a(b–x) i h t(a–b) s1  mol1 – 0,108 0,103 0,106 0,106 0,102 0,109 0108

2;303 .ab/

5.11 Homogene chemische Gleichgewichtsreaktionen

419

;K1 D 0;106 s1  mol1

b (a – x) a (b – x)

0,6

0,547

0,3

0

800

1600

2400

t (s)

Abb. 5.27 Graphische Ermittlung der Geschwindigkeitskonstanten der Verseifung von Ethylethanat.

Die Neigung der Geraden ist 0;547 D 0;0002277 ; 2400 s woraus sich ergibt: k1 D

0;0002277 s1  2;303 D 0;106 s1  mol1 .0;0098  0;00486/ mol

181.2.2: EA d ln k D dT RT 2 ln kk2  R ln 0;186  8;3143 J=.mol  K/ 0;106 EA D 1 1 1 D 1 1  T2  303;15 T1 298;15 K K EA D 84;513 kJ=mol   R H 1 1  ln K2 D ln K1 C  R T1 T2     1 1 54 000   D 21;25 ln K2 D 21;608  8;3143 K1 298;15 K 303;15 K

R H d ln K D dT RT 2

R G 303;15 D 21;25  .8;3143  303;15/ J=mol D 53 560;2 J=mol Der Wert von R G wurde um 4;5 J=mol positiver. Die exotherme Reaktion verlagerte sich somit in Richtung der Edukte.

420

5 Lösungen

5.11.3 182

182.1:

Gl.:

Schwefel-Verbindungen (SOx , SFx ) SO3(g)

 * ) 

SO2(g)

1˛

C

˛

n D 0;5 2;8  1;873 ˛D D 0;331 2;8 P ˛i D 1 C 0;5˛

0;5 O2(g) 0;5 ˛

0;50;5  ˛ 1;5 D 0;186 .1  ˛/  .1 C 0;5˛/0;5 R G D RT ln K D 12;63 kJ=mol K D

Kp D K  p n D 59;207 Pa0;5 182.2: .1  ˛/  .1 C 0;5˛/0;5 1 D Kp  D 49;834 Pa0;5 K 0;50;5  ˛ 1;5 p D 2483;47 Pa  41-fache Drucksenkung!

˛ D 0;7

p 0;5 D Kp 

K D Kp  p 1 D 8;96  104 Pa1  101 325 Pa D 90;74

183

a): Gl.:

C

SO2(g) .2  2x/ mol

O2(g) .1  x/ mol

  * ) 

2 SO3(g) 2x mol

n D 1 P xi D .3  x/ mol

4x 2  .3  x/

D 90;74 x D 0;758 mol .2  2x/2  .1  x/ .2x/ mol  100 % D 75;8 % Umsatz 2 mol

K D

b): Gl.:

SO2(g) .1  2x/ mol

C

O2(g) .9  x/ mol

  * ) 

2 SO3(g) 2x mol

n D 1 P xi D .10  x/ mol

4x 2  .10  x/

D 90;74 x1 D 0;45 mol x2 D 0;56 x3 D 8;9 .1  2x/2  .9  x/ .2x/ mol  100 % D 90 % Umsatz 1 mol p Entscheidung für b): Aus pSO3 pO2 folgt, dass ein leicht realisierbarer Luftüberschuss die SO3 -Ausbeute erhöht. Ein höherer Druck bei der Arbeitstemperatur des Katalysators ( 500 ı C) ist technisch aufwendiger. K D

184

a):

 * SO2(g) C NO2(g) C NO(g) )  SO3(g) Gl.: .0;72  x/ mol .0;49  x/ mol .0;71 C x/ mol x mol K D Kp D Kc D

1;1 mol  0;39 mol D 13 0;33 mol  0;1 mol

n D 0 x D 0;39 mol

5.11 Homogene chemische Gleichgewichtsreaktionen

b):

421

  * SO2(g) C NO2(g) C NO(g) )  SO3(g) Gl.: .1;33  x/ mol .0;1  x/ mol .1;1 C x/ mol .0;39 C x/ mol .1;1 C x/ mol  .0;39 C x/ mol D 13 .1;33  x/ mol  .0;1  x/ mol x1 D 1;6 mol entfällt x2 D 0;0675 mol

K D Kp D Kc D

Somit ergeben sich im Gleichgewicht die Stoffmengen aller vier Gase: Gl.: 185

SO2(g) 1;2625 mol

C

NO2(g) 0;0325 mol

  * ) 

SO3(g) 1;1675 mol

C

NO(g) 0;4575 mol

a): Es laufen die folgenden Reaktionen ab:  * SF4 C F2 )  SF6 ;  * 2 SF4 C F2 )  S2 F10 : Ist x der Partialdruck von SF4 , y der von SF6 , und z der von S2 F10 nach der Reaktion, dann erhält man das Gleichungssystem x C y C z D 135 mbar x C y C 2z D 150 mbar y C z D 90 mbar : Seine Auflösung liefert die Partialdrücke x.SF4 / D 45 mbar; z.S2 F10 / D 15 mbar.

y.SF6 / D 75 mbar;

b): (1)

 * SF4 C 2 H2 O )  SO2 C 4 HF

 * SF6 C 3 H2 O )  SO3 C 6 HF X X R H D B HProd.  B HEd. D 395;7  1639;8 C 1220;5 C 725;4 (2)

D 89;6 kJ=mol X X R S D SProd.  SEd. D256;8 C 1042;8  291;5  566;4 D 441;7 J=.mol  K/ R G D R H  T  R S D 89;6  298;15  0;4417 D 221;3 kJ=mol Entgegen der praktischen Erfahrung müsste die Reaktion (2) wegen G < 0 freiwillig ablaufen. Es muss demnach eine reaktionskinetische Hemmung vorliegen. Im unpolaren SF6 ist das S-Atom durch F-Atome abgeschirmt. SF4 hat dagegen ein freies Elektronenpaar. 186

 * [Co(H2 O)6 ]Cl2(s) C 6 SOCl2(l) )  CoCl2(s) C 6 SO2(g) C 12 HCl(g) Die Reaktion ist endotherm (R H 0 D 7 kJ=mol), endotrop (R S 0 D 1822 J=.mol K/) und exergon (R G 0 D 536 kJ=mol, K D 8;03  1093 ). Im roten Komplexsalz [Co(H2 O)6 ]Cl2(s) befindet sich das Komplexion im „high-spin-Zustand“ mit nur geringer Kristallfeldstabilisierungsenergie (CSF D 8Dq C 2P ), so dass SOCl2 aus dem Ligandenfeld das Wasser leicht entziehen kann. Es entsteht blaues CoCl2(s) und ein starker Temperaturabfall ist feststellbar.

422

5 Lösungen

Die Gase sind mit Farbindikatoren nachweisbar: ! farblose Lösung HSO 3(aq) C Malachitgrün(aq)  H3 OC C Cl C Bromthymolblau(aq) ! gelbe Lösung (aq/ (aq/ In beiden Farbstoffmolekülen ist die Kette der konjugierten Doppelbindungen (CH)n zu einem ausgedehnten mesomeren 10-Elektronensytem ausgebildet. Dieses wird durch Reaktion mit HSO–3(aq) bzw. H3 O+(aq) aufgespalten und es setzt eine hypsochrome Lichtabsorption mit Farbumschlag ein.

5.11.4 187

Halogenwasserstoffe

a): R H D .72;46  30;91/ kJ  mol1 D 103;37 kJ  mol1 R S D .396;64  245;35  103;58/ J  mol1  K1 D 20;7 J  mol1  K1 R G D R H  T  R S D 103 370 J  mol1  .298  20;7/ J  mol1 D 109 538;6 J  mol1 R G D RT  ln K wegen n D 0 Kp D e



R G RT

De

109 538;6

 8;3143  298

De

44;21

ist K D Kp

D 1;59  1019

  R H 1 1 ln Kp2 D ln Kp1    R T2 T1   1 103 370 1   D 14;922 ln Kp2 D 44;21 C 8;3143 1000 298

H b): d ln Kp D dT RT 2

Kp2 D 3;024  106

c): A ! Gl.:

H2.g/ 1 x 1x

2;024  106 D

C

Br2.g/ 1 x 1x

  * ) 

2 HBr.g/ 0 2x 2x

n D 0 (mol) (mol) (mol)

4x 2 .1  x/2

x1 D 1;00141 mol (entfällt!); x2 D0;9986 mol; d. h. 0,14 % H2 haben sich nicht umgesetzt. d):  * Bei der Siedetemperatur ist die Umwandlung Br2(l)  )  Br2(g) reversibel, d. h. G D 0. G D H  T  S 0 D H  T  .S.Br2 ;g/  S.Br2 ;l/ / T D

30 910 J  mol1 H D D 331;94 K D 58;8 ı C .S.Br2 ;g/  S.Br2 ;l/ / .245;35  152;23/ J  mol1  K1

5.11 Homogene chemische Gleichgewichtsreaktionen

188

423

a): VGleichgewicht D VHin  VRück D 0 dc HI D k1  c H2  c I2 VHin D 2dt dc HI VRück D D k 1  c 2HI 2dt k1 c 2HI Kc D K D D k 1 c H2  c I2 Temperatur (K)

400

500

K (1)

257,54

127,2

600

700

80,1

800

57,4

44,6

Die Gleichgewichtskonstante nimmt mit steigender Temperatur ab, folglich handelt es sich um eine exotherme Reaktion (Prinzip von Le Chatelier). b): Die Temperaturabhängigkeit der Gleichgewichtskonstante ist durch die van’t Hoff’sche Reaktionsisobare gegeben: H d ln K D dT RT 2 44;6 2 R  ln K 8;3143 J=.mol  K/  ln 257;54 K1 H D  1 D  1  T11  4001 K T2 800 K D 11 662;91 J=molD 11;66 kJ=mol Mit G D RT ln K und S D Temperatur (K) G (kJ/mol) S (J  K1  mol1 )

400

500

18,5 17,09

20,1 16,9

H  G ergeben sich die Tabellenwerte: T 600

700

21,9 17,06

23,6 17,05

800 25,3 17,04

Es resultiert ein mittlerer Wert für die Reaktionsentropie von S D 17;03 J  K1  mol1 . c): Gl.

2 HI 1  2˛

  * ) 

1 ˛2 D K 4  .1  ˛/2

189

ln

H2 ˛

C

I2 ˛

˛600 D 0;183 ˛800 D 0;23

Kp 10 970 J=mol D 0;01494 8;3143 J=.mol  K/



7!

1 1  666;15 629;15

T "˛"

 

1 K

Kp D 0;0168

424 190

5 Lösungen

(1)  * ) 

2 H2 O 2  2˛ K.1/ D (2)

K.2/ D

C

4˛ 3 .2 C ˛/  .2  2˛/2  * ) 

2 HCl 2  2˛

2 H2 2˛

H2 ˛

˛2 .2  2˛/2

C

n D 1 P ˛i D 2 C ˛

O2 ˛

D 7;63  1021

D 3;03  1011

Kp.1/ D K.1/  p 1 D 7;73  1021 bar

n D 0

Cl2 ˛

˛ D 2;48  107

˛ D 1;1  105

Kp.2/ D K.2/  p 0 D 3;07  1011

 * 4 HCl C O2 )  2 Cl2 C 2 H2 O

K D .K.1/ /1  .K2 /2

K D 1;3106  1020  9;1809  1022 D 0;122 R G D R  T  ln K D 8;3143 J=.mol  K/  1000 K  ln 0;12 D 17 628;51 J=mol D 17;5 kJ=mol

5.11.5 191

Redoxreaktionen

a): 2+  * Cu(s) C H2 O2(aq) C 2 H+(aq)  )  Cu(aq) C 2 H2 O(l)

Es liegt mit Änderung der Oxidationszahlen eine Redoxreaktion vor. b):

X 0 0 B HProdukte  B HEdukte D 319 kJ=mol X X 0 0 SProdukte  SEdukte D 103 J.mol K/ R S 0 D

R H 0 D

X

R G 0 D R H 0  T  R S 0 D 349;709 kJ=mol E 0 D 1;78 V  0;35 V D 1: 34 V ln K D 

R G 0 D 141: 074 K D 1: 85  1061 RT

(I):

Aussage: E 0 > 0 ! K > 1 ! R G 0 < 0

(II):

Diagramm: siehe Abb. 5.28

c): 2C 2  * Cu(s) C S2 O2  Cu.aq/ C 2 SO4(l) 8.aq/ )

.exergon/

5.11 Homogene chemische Gleichgewichtsreaktionen

425

–TΔRS 0 0 Energie

ΔRG 0 ΔRH 0

Abb. 5.28 Energiediagramm des Ätzvorganges von Kupfer mit salzsaurem Wasserstoffperoxid.

Es liegt mit Änderung der Oxidationszahlen eine Redoxreaktion vor. X X 0 0 R G 0 D B GProdukte  B GEdukte D 320;33 kJ=mol R G 0 D 129;222 K D 1;32  1056 RT E 0 D 2;01 V  0;35 V D 1;66 V ln K D 

E 0 > 0 192

!

K>1

!

R G 0 < 0

.erxergon/

192.1: Das Rosten des Eisens unter dem Einfluss der Atmosphäre in ihrer Gesamtheit (Sauerstoff, Wasser, Temperatur, Sonnenstrahlung, Salze, aggressive Gase und Stäube in Industrieatmosphäre usw.) ist ein komplizierter Vorgang, der durch die Reaktion 2+ –  * Fe(s) C 0,5 O2(g) C H2 O(l)  )  Fe(aq) C 2 OH(aq)

ausgelöst wird. Zunächst entstehendes Fe(OH)2 ist nur in Abwesenheit von Sauerstoff beständig. An der Luft geht es in rotes Fe2 O3  H2 O oder FeO(OH) über. FeO(OH) existiert in 2 Modifikationen, als Goethit (˛-FeO(OH)) und als Lepidokrokit ( -FeO(OH)). Beide Modifikationen sind die Hauptbestandteile des Rostes. Nachdem die erste dünne Korrosionshaut entstanden ist, wächst die Schichtdicke. Wie dieses Wachstum verläuft, hängt vom Milieu ab. Mit wachsender Schichtdicke sinkt die Sauerstoffkonzentration an der Phasengrenze Metall/Oxidfilm. Dadurch entstehen Korrosionsphasen mit von innen nach außen ansteigender Oxidationsstufe, z. B. Fe ! FeO ! Fe3 O4 !  -Fe2 O3 ! ˛-FeO(OH) oder Fe ! Fe(OH)2 ! Fe(OH)2  2 H2 O ! Fe3 O4 !  -Fe2 O3 Als primäre Phasen beobachtet man häufig Magnetit (Fe3 O4 ) und Hydromagnetit, ein Gefüge aus Fe3 O4 und partiell oxidiertem Fe(OH)2 . In trockener Luft bildet sich bevorzugt  -Fe2 O3 , in feuchter Luft ˛-FeO(OH) und  -Fe2 O3 (Abb. 5.30). In Meeresluft kann unter dem Einfluss von Chloridionen ˇ-FeO(OH) entstehen.

426

5 Lösungen Luft

Cl– Fe3+

Fe3+

O2

O2 OH



Rost

Fe

2+

Fe

2+

Rost

α – FeO(OH)

Fe3+



OH

Fe

blassrot

γ - FeO(OH)

Fe2+

Fe

braun + OH–

blau

Abb. 5.29

+ O2

+Fe(OH)2

– H2O

– H2O

Fe(OH)2

Fe3O4

Abb. 5.30 Beim Rosten entstehende Hauptphasen.

Tropfenversuch von Evans.

Die räumliche Trennung von Metallauflösung und Elektronenverbrauch konnte Evans durch den so genannten Tropfenversuch verdeutlichen (Abb. 5.29). Hierbei bringt man auf eine gesäuberte und entfettete Eisenoberfläche einen Tropfen einer Kochsalzlösung, die rotes Blutlaugensalz, K3 [Fe(CN)6 ], und etwas Phenolphthalein enthält. Die Tropfenmitte färbt sich blau, weil hier Eisen aufgelöst wird und Fe2+ zu löslichem Berliner Blau, KFe[Fe(CN)6 ] reagiert. Am Tropfenrand werden Hydroxidionen gebildet, was an der Rotfärbung des Indikators zu erkennen ist. Durch den Luftsauerstoff wird Fe2+ zu Fe3+ oxidiert. Fe3+ - und OH– -Ionen reagieren zu Rost, der sich zwischen den Zonen der beiden Teilreaktionen ablagert (brauner Ring). Die Gesamtreaktion kann formuliert werden:  * 4 Fe(OH)2 C 0,5 O2 )  2 FeO C Fe2 O3 C 4 H2 O  * 5 Fe(OH)2 )  2 FeO(OH) C Fe3 O4 C 4 H2 O :

oder

192.2: Auslösende Teilreaktion: 2+ –  * Fe(s) C 0,5 O2 C H2 O )  Fe(aq) C 2 OH(aq)

Donator ./ Anode

Fe=Fe2+ (aq) 0

E (V)

0;41

Akzeptor // 2 OH–(aq) = 12 O2 (H2 O) 0,4

.C/ Kathode

5.11 Homogene chemische Gleichgewichtsreaktionen

427

E 0 D 0;81 V 0;05916 V  lg K 2 R G 0 D R  T  ln K D 156;3 kJ=mol

G 0 D z  F  E 0 K D 2;42  1027

E 0 D 0;81 V D

192.3: Q D I  t D 0;12 A  24  3600 s D 10 368 As 10 368 As Q D D 0;053727 mol nFe D z F 2  96 487 As=mol mFe D nFe  MFe D 0;053727 mol  55;85 g=mol D 3 g

193

3+  * Al(s) C 3 Ag+(aq)  )  Al(aq) C 3 Ag(s)

G D 712;1 kJ=mol

V e–

Reaktion +





Al3+

Al

S2– OH– Cl– Na+ Ag+ H+

Ag +

1 M NaCl

E ph=7 (V)

Al S2– 2OH– 2Cl–

Al3+ + 3e– S + 2e– 0,5 O2 + H2O + 2e– Cl2 + 2e–

–1,66 – 0,51 0,814 1,36

LD

Ag+ + e– 2H+ + 2e– Na+ + e–

Ag H2 Na

0,80 – 0,41 – 2,71

OD

Abb. 5.31 Marktschreierversuch.

Al hat an der Anode den größten Lösungsdruck LD (Tendenz zur e– -Abgabe). An der Kathode haben Ag+ -Ionen der Sulfidschicht den größten osmotischen Druck OD (Tendenz zur e– -Aufnahme). Für eine exergone Verlaufsrichtung muss R G 0 < 0 gelten. ! E 0 D 0;8 C 1;66 D 2;46 V R G 0 D z  F  E 0 D 712;1 kJ=mol

194

+ – 3+ 2+  * 5 Fe2+  5 Fe(aq) C 4 H2 O(l) C Mn(aq) (aq) C 8 H(aq) C MnO4(aq) )

Donator ./ Anode

3+ Fe2+ (aq) =Fe(aq) 0

E (V)

Akzeptor //

MnO–4(aq) (8 H+(aq) )=Mn2+ (aq) (4 H2 O)

.C/

1,51

Kathode

0,77 ı

E D 0;74 V

428

5 Lösungen

E 0 D 0;74 V

   cPro RT  ln G D z  F  E 0  zF cEd

pH = 0: cH+ D 1 mol=dm3

   1 0;05916 V  lg 8 G D 5  96 487 As=mol  0;74  5 1 D 351;3 kJ=mol (exergon!)

pH = 8: cH+ D 108 mol=dm3

   1 0;05916  lg V G D 5  96 487 As=mol  0;74  5 .108 /8 D 8;321 kJ=mol (endergon!)

In alkalischer Lösung (pH = 8) endet die Reduktion von MnO–4(aq) bei Oxidationsstufe +4 – 3+ –  * 3 Fe2+  3 Fe(aq) C 4 OH(aq) C MnO2(s) (aq) C MnO4(aq) C 2 H2 O(l) )

Donator ./ Anode

Akzeptor

MnO2 (4 OH–(aq) )=MnO–4(aq) (2 H2 O(I) ) 0

E (V)

3+ // Fe2+ (aq) =Fe(aq)

0,59

E 0 D 0;18 V cOH D 106 mol=dm3 " G D 3  96 487 As=mol  0;18 

0,77

.106 /4 0;05916  lg 3 1

.C/ Kathode

!# V

D 84;9 kJ=mol (exergon!) 195

a): 2+  * Man zerlegt die Reaktion 2 Cu+  )  Cu C Cu bezogen auf die Standardwasserstoffelektrode (Wasserstoffhalbzelle) in zwei Einzelreaktionen und berechnet jeweils G. Dann fügt man die Einzelreaktionen zusammen und überprüft, ob das dafür berechnete AGgesamt < 0 ist. 2+ 1  * .1/ Cu+ C H+  )  Cu C 2 H2

G.1/ D zFE 0 D 1 F  0;153 V D 14;76 kJ=mol

+ 0  * .2/ Cu+ C 12 H2  )  Cu C H G.2/ D zFE D 1 F  0;522 V D 50;37 kJ=mol Ggesamt D G.1/ C G.2/ D 35;6 kJ=mol < 0 ! Die Reaktion kann freiwillig ablaufen.

5.11 Homogene chemische Gleichgewichtsreaktionen

429

b):  * Auch die Reaktion Cu2+ C 2 e– )  Cu lässt sich aus zwei Einzelreaktionen zusammensetzen. + +  * .1/ Cu2+ C 12 H2 )  Cu C H

G.1/ D zFE 0 D 1 F  0;153 V D 14;76 kJ=mol

+ 0  * .2/ Cu+ C 12 H2 )  Cu C H G.2/ D zFE D 1 F  0;522 V D 50;37 kJ=mol Ggesamt D G.1/ C G.2/ D 65;13 kJ=mol Ggesamt .65 130/J=mol 65 130 V  As=mol D D D 0;3375 V E30 D zF 2  96 487 As=mol 2  96 487 As=mol

196

(1) Berechnung von R H 0 ;R S 0 und R G 0 mit Standardwerten der Tabelle 4.6:

R H D 0

X

0 B HProd



X

0 B HEd

(I)

(II)

(III)

219,000

147,000

56,000

0,021

0,193

0,081

225,300

89,500

80,150

(kJ/mol) X X S 0Prod  S 0Ed R S 0 D (J/(mol  K) R G 0 D R H 0  TR S 0 (kJ/mol)

(2) Berechnung von R H;R S und R G mit Messergebnissen der Tabellen 4.8 und 4.9: (I)

mH2 O  cp (Wasser)  T nProdukt

(II)

(III)

(kJ/mol)

50  4,19  10,6 0,01 D 222,07

50  4,19  2 0,005  2 D 142,00

100  4,19  6,7 0,05 D 56,15

.E/  z  F T (kJ/(mol  K)

0,007  2  96 487 60  1000 D 0,0225

0,06  2  96 487 60  1000 D 0,193

0,021  2  96 487 50  1000 D 0,08032

R G D z  F  E298,15 (kJ/mol)

2  96 487  1,11 D 214,200

2  96 487  0,44 D 84,910

2  96 487  0,41 D 79,119

R H D 

R S D







(3) Bestätigung der Gibbs-Helmholtz-Gleichung mit Ergebnissen von (2) bei 25 ı C:

(I) (II) (III)

R G 0 (kJ/mol)

D

R H 0 (kJ/mol)



TR S 0 (kJ/mol)

214,200  84,910  79,119

  

222,07 142,00  56,15

  

(  6,71) (  57,54) ( C 24,17)

  

215,90  84,52  80,32

430 197

5 Lösungen

Zeilendiagramm der galvanischen Zelle: Donator Ni(s) =Ni2+ (aq)

./ E0 (V)

Anode

Akzeptor // 2 H+(aq) =H2(g)

?

0

.C/ Kathode

Gesamtreaktion der Zelle: C

Ni(s)

2 H+(aq)

 * ) 

Ni2+ (aq)

C

H2(g)

B H 0 .kJ=mol/

0

0

63;95

0

S 0 .J  mol1  K1 /

31,21

0

159;26

130,68

R H 0 D 63;95 kJ=mol R S 0 D .159;26 C 130;68  31;21/ J=.mol  K/ D 59;79 J=.mol  K/ R G 0 D R H 0  T  R S 0 D 63 950 J=mol  Œ298;15 K  59;79 J=.mol  K/ D 46 123;61 J=mol R G 0 D z  F  E 0 I

0 0 E 0 D E20H+ /H2  ENi/Ni 2+ D 0  E Ni/Ni2+

0 R G 0 D z  F  .ENi/Ni 2+ / 0 ENi/Ni 2+ D

198

a): Kathode:

46 123;61 VAs=mol R G 0 D D 0;239 V zF 2  96 487 As=mol

+ –   * CrO2–  Cr(s) C 4 H2 O(l) 4(aq) C 8 H(aq) C 6 e )

Ladung: Q D U  I D 1500 A  10  3600 s D 54  106 As Q D nz F 54  106 As D 93;28 mol 6  96 487 As=mol D nCr  MCr D 93;28 mol  52 g=mol D 4850;56 g

nCr D mCr

Tatsächlich wurden 670 g Cr abgeschieden. Damit beträgt die Stromausbeute Strom D

670 g  100 % D 13;813 % : 4850;56 g

b):  * Eine weitere Reaktion an der Kathode ist: 2 H3 O+(aq) C 2 e– )  2 H2 O(l) C H2(g) An dieser Reaktion sind die nicht an der Chromabscheidung verantwortlichen Elektronen beteiligt. Es ergibt sich somit 54  106 .100  13;81/  D 241;19 mol 2  96 487 100 n  R  T 241;19 mol  8314;3 Pa  dm3 =.mol  K/  298 K D D 5899;182 dm3  5;9 m3 VH2 D p 101 300 Pa nH2 D

5.11 Homogene chemische Gleichgewichtsreaktionen

Anode:

431

 * 4 OH–(aq) )  2 H2 O(l) C O2(g) C 4 e–

54  106 mol D 139;92 mol 4  96 487 n  R  T 139;92 mol  8314;3 Pa  dm3 =.mol  K/  298 K D D 3422;25 dm3 D 3;42 m3 VO2 D p 101 300 Pa nO2 D

199

199.1: 4C 2C  * Sn2C C 2 Fe3C  Sn.aq/ C 2 Fe.aq/ .aq/ .aq/ )

E 0 D 0;771  0;154 D 0;617 V G 0 D z  F  E 0 D 2  96 487 As=mol  0;617 V D 119 065 Ws=mol  119 kJ=mol G 0

K D e  R  T D e 8;3143  298 D 7;42  1020 119 065

199.2: a): ı 4+  ESn2+ E D EKalomel (aq) /Sn(aq) 0 4+ D E 2+ ESn2+ Sn (aq) /Sn(aq)

4+ (aq) /Sn(aq)

C

cSn4+ RT (aq)  ln z F cSn2+ (aq)

8;3143  298  ln 13 E D 0;242 V  0;154 V C 2  96 487 V

! D 0;102 V

b): Am Äquivalenzpunkt gilt: D 0;5  cFe2+ cSn4+ (aq) (aq) D 0;5  cFe3+ cSn2+ (aq) (aq)

!

3 cFe 3+ 1 (aq) D 3 K cFe2+ (aq)

0 3+ E D EKalomel  EFe2+ (aq) /Fe(aq) 3+ D EFe2+ (aq) /Fe(aq)

0 EFe 2+ 3+ (aq) /Fe(aq)

!

RT  ln C zF

cFe3+ (aq) cFe2+ (aq)

s D

3

1 K

s 3

1 K

8;3143  298 V  ln E D 0;242 V  0;771 V C 1  96 487

s 3

1 7;42  1020

! D 0;118 V

432

5 Lösungen

c): Jenseits des Äquivalenzpunktes gilt: cFe3+ (aq) D 0;5 cFe2+ (aq) E D

ı EKalomel



0 EFe 2+ 3+ (aq) /Fe(aq)

cFe3+ RT (aq) C  ln zF cFe2+ (aq)

!

  8;3143  298 V  ln 0;5 D 0;511 V E D 0;242 V  0;771 V C 1  96 487 200

a): 0,32 V

4 UO2 52+(aq)

0,06 V

4 UO2 5+(aq)

y

U4+ (aq)

– 0,63 V

U3+ (aq)

x

U(s)

– 0,82 V

Abb. 5.32

Latimer-Diagramm für Uran.

2  0;32 V C .0;63 V/ C 3x D 6  .0;82 V/ x D 1;64 V EU0+3 /U D 1;64 V 0;06 V C y D 2  0;32 V y D 0;58 V Verallgemeinert man die Gleichung für G 0 bezogen auf das Latimer-Diagramm, ergibt sich

G 0 D z  F  E 0 (rechts)  E 0 (links) : Die Disproportionierung ist dann ein freiwillig ablaufender Vorgang, wenn gilt: G 0 < 0. Nach diesem Kriterium disproportioniert nur [UO2 ]+(aq) (0;06 V < 0;58 V): 4+ 2+  * 2 [UO2 ]+(aq) C 4 H+(aq)  )  U(aq) C [UO2 ](aq) C 2 H2 O(l)

b): 4+  * 4 U3+  3 U(aq) C U(s) (aq) )

G 0 D z  F  E 0 (rechts)  E 0 (links)

G 0 D 3  96 487 As=mol  Œ1;64 VC0;63 V D 292 355;61 J=mol ln K D

292 355;61 G 0 D D 117;937 RT 8;3143  298;15

K D 6;03  1052

5.11 Homogene chemische Gleichgewichtsreaktionen

5.11.6

433

Säure-Base-Reaktionen

– +  * CH3 COOH(l) C H2 O(l) )  CH3 COO(aq) C H3 O(aq)

201

Gl.: .1  ˛/c0

˛c0

˛c0

˛D

cGleichgewicht.mol=dm3 / c D 3 cAusgang.mol=dm / c0

n c0 D V ˛ 2  c0 ˛2  n ! K D 1˛ .1  ˛/V a) ˛ D 0;002954 b) ˛ D 0;004175 c) ˛ D 0;0131

KD

Schlussfolgerung: Mit zunehmender Verdünnung steigt der Dissoziationsgrad ˛. Das Ostwald’sche Verdünnungsgesetz wird bestätigt.

202

ln

H 0 1;87  105 D 5 8;3143 J=.mol  K/ 1;79  10



1 1  313;15 283;15

 

1 K

H 0 D 1074;44 J=mol

203

2– +  * .1/ H2 S(g) C 2 H2 O(l)  )  S(aq) C 2 H3 O(aq)

.2/ CuS(s)

2+ 2–  * )  Cu(aq) C S(aq)

pKs D 23;41 pKL D 40;10 16;69

Die Fällungsreaktion (2) entzieht der Säure-Base-Reaktion (1) S2– -Ionen. R G wird negativ. R G 0 D 16;69  2;303  R  T D 92 282 J=mol  92;3 kJ=mol 204

Richtig ist Aussage A)

205

a): Berechnung von B G 0 : 2 C(s) C H2(g) C N2(g) ! 2 HCN(l) B H 0 D 108;87 kJ  mol1

B S 0 D 54;0 J  K1  mol1

B G 0 D 124;98 kJ  mol1 2 C(s) C H2(g) C N2(g) ! H+(aq) C CN–(aq) B H 0 D 146;13 kJ  mol1

B S 0 D 62;2 J  K1  mol1

B G 0 D 164;47 kJ  mol1 Thermodynamisch ist wegen B G 0 > 0 nicht die Bildung, sondern der Zerfall von HCN(l) begünstigt. Der Zerfall ist aber kinetisch gehemmt, weil dazu bei 25 ı C die Aktivierungsenergie nicht aufgebracht wird. b): Das Verdampfen ist ein reversibler Vorgang, die Gesamtänderung der Entropie (System und Umgebung) ist gleich Null. Die Umgebung gibt die Wärmemenge HVd auf das System ab.

434

5 Lösungen

Definiert man TV d als Verdampfungstemperatur, ergibt sich: SUmg. D 

HVd TVd

0 SSystem D SHCN(l) SHCN (g)



HVd 0 0 CSHCN SHCN D0 (l) (g) TVd

Da TVd kaum von 298;15 K abweicht, können die Tabellenwerte benutzt werden: 0 0 HVd D .SHCN  SHCN /  TVd (l) (g)

HVd D .112;8  201;78/J  mol1  K1  298;7 K D 26 566;378 J=mol  26;6 kJ=mol Beim Verdampfen wird elektrische Energie in Verdampfungswärme HVd umgewandelt: Wel. D U  I  t D n  HVd tD

100 g  26 566;378 Ws  mol1 m  HVd D 9839;40 s  2;73 h D M U I 27 g  mol1  10 W

c): G 0 D RT  ln K D RT  ln 10pK s D 2;3026  pKs  R  T pKs D

.164;67  111;54/ kJ  mol1 G 0 D 9;31 D 2;3026  R  T 2;3026  0;0083143 kJ  mol1  K1  298;15

d): In einer wässrigen Lösung liegt das folgende Gleichgewicht vor: CN–(aq)

C

H2 O(l)

  * ) 

HCN(l)

C

OH–(aq)

A

0,05

0

107

(mol  dm3 )

! Gl.:

0,001 0,049

0,001 0,001

0,001 0,001

(mol  dm3 ) (mol  dm3 )

106 .mol  dm3 /2 D 2;0408  105 mol  dm3 0;049 mol  dm3 1014 .mol  dm3 /2 KS D D 4;9  1010 mol  dm3 2;0408  105 mol  dm3 lg Ks pKs D  D 9;31 mol  dm3

KB D

Dieser Wert stimmt mit dem aus (c) überein. Die Henderson-Hasselbalch-Gleichung wird bestätigt: pH D pKs C lg 206

206.1: (I)

cCN– cBase D pKs C lg cSäure cHCN

pH D 9;31 C lg

0;049 mol  dm3 D 11 0;001 mol  dm3

c x + –  * H2 O(l) C H2 O(l) ) ˛ D 0 D D 1;342  108  H3 O(aq) C OH(aq) 1 P c Gl.: 1  x x x Xi D 1 C x x 2 x2 1Cx MWG KS D KB D KD D 1x D D 1;8  1016 mol=dm3 2 1  x 1Cx

5.11 Homogene chemische Gleichgewichtsreaktionen

s KD D˛ 1 C KD

xD

KW D KS  cH2 O D 1;8  1016 mol=dm3  55;55 mol=dm3 D 1014 .mol  dm3 /2 KProt D

KW cH22 O

D

1014 .mol  dm3 /2 D 3;24  1018 55;55 .mol  dm3 /2

KS D 15;745 mol=dm3 pKB .H2 O/ D 14  pKs D 1;745 pKS .H2 O/ D  lg

pKS .Autoprolyse/ D pKS .H2 O/  pKB .H2 O/ D 17;49 pH .Autoprolyse/ D pKS C lg

c.H3 O+ /  c.OH– / 11 D 17;49 C lg D 14 2 c .H2 O/ 55;552

(Henderson-Hasselbalch) (IIa) R G 0 D RT ln KProt D pKS  2;3026  R  T D 99 829;223 J=mol (IIb) 1 mol=dm3  1 mol=dm3 55;552 .mol=dm3/2 D pH  2;3026  RT D 79 912;027 J=mol

R G D R G 0 C RT ln

(IIc) R G D R G 0 C RT ln 206.2: H d ln KW D dT RT 2 H D

KW D0 55;552

 G  @ T H D @T T2 p

ln 74  8;3143 J=.mol  K/ 1 1 D 53 083;740 J=mol 1  373;15 298;15 K

  373;15  998 829;223 1 1  373;15  53 083;74   298;15 298;15 373;15 D 111 588;358 J=mol

R G 373;15 D

435

436 207

5 Lösungen

Für einen exergonen Verlauf ist nach R G 0 D pK  2;303  R  T < 0 ein negativer pK-Wert erforderlich:  pKs (a) (c) (e) (g) (i)

pKs

9,25  4,75 4,97  9,25 9,90  15,745 3,34  4,58 9,25  15,745

D 4,5 D 4,28 D 5,845 D 1,24 D 6,45

(b) (d) (f) (h) (j)

pKs > 0

!

G 0 > 0

pKs < 0

!

G 0 < 0

1,96  6,36 D 4,4 3,0  (  7,0) D 4,0 1,745  0,176 D 1,92 6,99  3,34 D 3,65 11,65  15,745 D 4,095

! ! !

endergon: (a), (h) exergon: (d), weil HCl leicht flüchtig ist exergon: (b), (c), (e), (f), (g), (i), (j)

5.12 Heterogene chemische Gleichgewichtsreaktionen 5.12.1 208

Kohlenstoff-Verbindungen und CaSO4 -Hydrate

 * a): CaCO3(s)  )  CaO(s) C CO2(g) b): K D

.pCO2 /Gl. Kp D 0 p p0

.pCO2 /Gl. D K  p 0 D 1;34  1  105 Pa D 1;34  105 Pa D 1;34 bar 209

 * a): CaCO3(s) )  CaO(s) C CO2(g) Kp D p.CO2 / po D 1  105 Pa K D Kp=po T (K) Kp (Pa) K G (kJ/mol)

800 50 5  104 50,556

900 1000 0,01 34,460

1000 11 200 0,112 18,202

1100 80 000 0,8 2,041

1200 405 000 4,05 13,955

G D RT ln K 1300 1 610 000 16,1 30,035

b): Die in a) erhaltenen Wertepaare (G;T ) liegen auf einer Geraden mit negativem Anstieg. Somit können S und H unabhängig von der Temperatur betrachtet werden. Schon aus der Reaktionsgleichung mit n D C1 resultiert ein positives S, weil ein Gas entsteht und sich die Teilchenzahl erhöht, also die Unordnung (Entropie) steigt. c): Die Reaktion ist spontan, wenn gilt: G D 0;162  T C 180;1 < 0 kJ=mol   180;1 K D 1111;73 K .838;6 ı C/ T > 0;162 Reaktion verläuft ab  840 ı C spontan.

5.12 Heterogene chemische Gleichgewichtsreaktionen

437

40

ΔG (kJ/mol)

–32,4

20

200

0 800

900

1000

1100

T (K)

Abb. 5.33 Temperaturabhängigkeit von G beim Kalkbrennen.

Der Anfangsdruck beträgt: nRT 1  mol  8314;3 Pa  dm3  mol1  K1  1000 K D V 830 dm3 D 10 017;23 Pa  1  104 Pa

pCO2 D

Mit dem Gesetz von Boyle-Mariotte P  V D const. ergibt sich der Graph der Funktion p D f .V /: VCO2 (dm3) PCO

830

555

416

277

200

166

138

118

1

1,5

2

3

4

5

6

7

2

(104 Pa) 7 nCO = 1mol 2 = 1000 K T

6 5

2

PCO (104 Pa)

210

4 3 2 1 0

0

500 VCO (dm3)

1000

2

Abb. 5.34 Druckabhängigkeit der Karbonatbildung von CaO und MgO bei 1000 K.

438

5 Lösungen

Solange der CO2 -Druck nicht den Wert p D 2;0  104 Pa .D Kp1 / erreicht, findet keine Reaktion zwischen CaO und CO2 statt. Bei p D 2;0  104 Pa reagiert CO2 mit CaO zu CaCO3 , bis alles CaO umgewandelt ist. Die analoge Überlegung gilt für MgO bei p D 4;0  104 Pa.

110 110 162 546 D 1;0867 K2 D D 1;6042 101 325 101 325 2 R ln K ln 1;6042  8;3143 K 1;0867 D 111 663;8 J=mol R H D 1 1 1 D 1 1  T2  838;15 T1 818;15

K1 D

211

212

a): R H D 1575 kJ=mol C 1;5  .241;8 kJ=mol/  .2021 kJ=mol/ D 83;3 kJ=mol 1000 g m D D 5;808 mol nD M 172;18 g=mol n  R H D 5;808 mol  83;3 kJ=mol D 483;81 kJ endotherme Reaktion b): R S D 130;5 J=.mol  K/ C 1;5  188;6 J=.mol  K/  194 J=.mol  K/ D 219;4 J=.mol  K/ R G D R H  T  R S D 83 300 J=mol  298;15 K  219;4 J=.mol  K// D 17 885;89 J=mol 17 885;89 J=mol R G D D 7;21523 K D 7;353  104 ln K D RT 8;3143 J=.mol  K/  298;15 K Kp D K  p n D 7;353  104  11;5 bar D pH2 O D 7;035  104 bar c): KD

pH O 2 p0

D 11 bar bar D1

R G D RT ln K ! R G D RT ln 1 D 0 R H  R G 83 300 J=mol  0 T D D D 379;7 K D 106;6 ı C R S 219;4 J=.mol  K/ 213

a):  * C(s) C CO2,(g)  )  2 CO(g) b):

p0 D 100 kPa

X 0 0 B HProdukte  B HEdukte D 172;45 J=.mol  K/ X X 0 0 SProdukte  SEdukte D 175;86 J=.mol  K/ R S 0 D X X Cp Edukte D 8;36 J=.mol  K/ Cp D CpProdukte 

R H 0 D

X

n D 1

5.12 Heterogene chemische Gleichgewichtsreaktionen

439

Berechnung für T D 573 K .300 ı C/: R H D R H 0 C Cp  T D 172 450 J=mol C Œ8;36  .573  298/ J=mol D 170 151 J=mol D 170;151 kJ=mol T T0

R S D R S 0 C Cp  ln

D 175;86 J=.mol  K/  8;36 J=.mol  K/  ln

573 K D 170;4 J=.mol  K/ 298 K

R G D R H  T  R S D 170 151 J=mol  .573  170;4/J=mol D 72 511;8 J=mol D 72;512 kJ=mol K D e 

R G 0 RT

72 511;8

D e  8;3143  573 D 2;45  107

Kp D K  p0n D 2;45  107  100 kPa D 2;45  105 kPa Kp D

2 2 pCO pCO D pCO2 pges.  pCO

!

2 pCO C Kp  pCO  Kp  pges. D 0

2 C 2;45  105 pCO  2;45  105  102;5 D 0 pCO pCO D 0;051 kPa

Vol: -% CO D

pCO  100 % 0;051  100 % D D 0;049 102;5 102;5

Für die übrigen Temperaturen (400 ı C, 500 ı C, . . . , 1300 ı C) erfolgt eine analoge Berechnung. Die Ergebnisse sind in der Tabelle angegeben: T ı ( C)

H [kJ/mol]

S [J/(mol  K)]

G [kJ/mol]

K

Kp [kPa]

pCO [kPa]

CO [Vol.-%]

300 400 500 600 700 800 900 1000 1100 1200 1300

170,151 169,315 168,479 167,643 166,807 165,971 165,135 164,299 163,463 162,627 161,791

170,40 169,05 167,89 166,87 165,97 165,15 164,41 163,72 163,09 162,50 161,96

72,512 55,54 38,66 21,97 5,32 11,24 27,72 44,12 60,46 76,74 92,97

2,45  107 4,88  105 2,43  103 4,85  102 0,520 1,26 17,2 64,6 2  102 5,26  102 1,22  103

2,45  105 4,88  103 0,243 4,85 52,0 1,26  102 1,720  103 6,46  103 2  104 5,26  104 1,22  105

0,051 0,705 4,87 20,01 51,49 66,94 97,03 100,90 101,98 102,30 102,41

0,049 0,69 4,75 19,5 50,2 65,3 94,7 98,4 99,5 99,8 99,9

c):  * Die Reaktion C C CO2 )  2 CO führt bei jeder Temperatur zu einem bestimmten Gleichgewicht, das unter dem Namen „Boudouard-Gleichgewicht“ bekannt ist. Und zwar verschiebt sich das Gleichgewicht, da es sich um eine endotherme mit Volumenvermehrung verbundene Reaktion handelt, mit steigender (fallender) Temperatur und fallendem (steigendem) Druck nach rechts (links). Bei Atmosphärendruck entsprechen den verwendeten Temperaturen die berechneten Volumenprozente von Kohlenstoffmonoxid und Kohlenstoffdioxid im Gleichgewicht (vgl. Abb. 5.35).

440

5 Lösungen

100

Volumen % CO

80 60 40 20 0

200

Abb. 5.35

400

600 800 Temperatur in °C

1000

1200

Boudouard-Gleichgewicht.

Wie daraus hervorgeht, liegt das Gleichgewicht bei 400 ı C praktisch ganz auf der Seite des Kohlenstoffdioxids und bei 1000 ı C praktisch ganz auf der Seite des Kohlenstoffmonoxids. Daher erhält man bei der Umsetzung von überschüssigem Koks mit Luft bei tiefen Temperaturen vorwiegend CO2 , bei hohen Temperaturen vorwiegend CO. Bei Verwendung eines Luftüberschusses (völlige Verbrennung des Kohlenstoffs zu Oxiden) wird das Verhältnis von Kohlenstoffmonoxid zu Kohlenstoffdioxid infolge der Abwesenheit von freiem Kohlenstoff naturgemäß nicht mehr durch das Boudouard-Gleichgewicht, sondern durch das Dissoziati1  * onsgleichgewicht des Kohlenstoffdioxids CO2 )  CO C 2 O2 bedingt. Da in diesem Falle das Gleichgewicht auch bei hohen Temperaturen ganz auf der linken Seite liegt, erhält man hier auch bei hohen Temperaturen praktisch nur CO2 . d): Das Boudouard-Gleichgewicht spielt ganz allgemein bei allen technischen Prozessen eine Rolle, bei denen Sauerstoffverbindungen mit überschüssiger Kohle reduziert werden. Lässt sich also z. B. ein Metalloxid bei verhältnismäßig niedriger Temperatur reduzieren, wird in der Haupt * sache Kohlenstoffdioxid entstehen: 2 MeO C C )  2 Me C CO2 , während eine nur bei hohen Temperaturen durchführbare Reduktion hauptsächlich zur Bildung von Kohlenstoffmonoxid  * führt: MeO C C  )  Me C CO. Bei mittleren Temperaturen (etwa bei der Reduktion von Eisenoxiden im Hochofen) erhält man Gemische von Kohlenstoffmonoxid und Kohlenstoffdioxid. Berücksichtigen muss man allerdings, dass mit fallender Temperatur die Einstellung des  * Gleichgewichtes C C CO2  )  2 CO nur bei Gegenwart von Katalysatoren noch mit genügender Geschwindigkeit erfolgt. Bei Zimmertemperatur ist die Reaktionsgeschwindigkeit bereits so gering, dass das Kohlenstoffmonoxid als metastabiler Stoff vollkommen beständig ist. e):  * Fe3 O4(s) C 4 CO(g) )  3 Fe(s) C 4 CO2(g) 214

a): X 0 0 B HProdukte  B HEdukte D 172;45 kJ=mol X X 0 0 R S 0 D SProdukte  SEdukte D 175;86 J=.mol  K/ R H 0 D

X

5.12 Heterogene chemische Gleichgewichtsreaktionen

441

 R G 0 D  R H 0  T0   R S 0 D 172 450 J=mol  .298;15  175;86/J=mol D 120 017;34 J=mol D 120 kJ=mol Wegen R G 0 D RT ln K > 0 ist K < 1. b): KD1

R G D RT ln K ! R G D RT ln 1 D 0 172 450 J=mol  0 R H  R G D D 980;61 K D 707;46 ı C T D R S 175;86 J=.mol  K/ c): CO2(g) Gl.: .1x/ mol

  * )  2 CO(g) P 2x mol ni D .1Cx/ mol

C C(s)

n D 1

K D

Kp 10 bar D2 D p n 51 bar

.2x/2  .1 C x/ 4x 2 I x D 0;58 mol D 2 .1 C x/  .1  x/ 1  x2     2  0;58 pCO 2x D CO I pCO D p  CO D p  D 5 bar  D 3;67 bar p 1Cx 1;58

K D 2 D

5.12.2 215

Fällungsreaktionen

Für einen exergonen Verlauf der Nd-Auflösung ist nach R G 0 D pK  2;303  R  T < 0 ein negativer pK-Wert erforderlich: Niederschlag pK bei der Reaktion mit der Lösung von Na2 S2 O3 KCN NH3 AgCl(s) AgBr(s) AgJ(s) Ag2 S(s)

2,69 (3,8) 5,09 (1,4) 8,69 42,99

3,8 1,4 2,2 36,5

8,8 6,4 2,8 32,2

Die exergone Löslichkeit von AgCl(s) in NH3(aq) lässt sich durch Addition von pK D 2;69 (Tab.) und pK D 6;5 (S/B-Reaktion von NH3(g) mit H2 O(l) ) erklären: X pK D C2;69  6;5 D 3;8 : Analog gilt dies für die Löslichkeit von AgBr(s) in NH3(aq) : X pK D C5;09  6;5 D 1;41 :

442 216

5 Lösungen

Erhärten von Kalkmörtel: Die OH– -Ionen des wässrigen CaO bilden mit Kohlensäure der 2+ Luft CO2– 3 -Ionen [(1) und (2)], die von Ca(aq) gefällt werden (3). Das Wasser verdampft. –  * .1/ H2 CO3(aq) C OH–(aq) )  HCO3(aq) C H2 O(l)

.2/ .3/

2–  * C OH–(aq) )  CO3(aq) 2+ 2–  * CaCO3(s) )  Ca(aq) C CO3(aq)

HCO–3(aq)

C H2 O(l)

pKs D 9;385 pKs D 5;345 pKL D 8;3 P pK D 23;1

R G D 23;1  2;303  R  T D 131;9 kJ=mol Erhärten von Gipsbrei: Beim Anrühren von Gips entstehen Ca2+ -Ionen (1), die beim Erstarren (2) gefällt werden. 2+ 2–  * .1/ CaSO4(Brei)  )  Ca(aq) C SO4(aq)

pKL D 4;2

2+ 2–  * .2/ [Ca(H2 O)2 ]SO4(s) )  Ca(aq) C 2 H2 O(l) C SO4(aq)

pKZerf. D 9;8 P pK D 5;6

R G D 5;6  2;303  R  T D 28;2 kJ=mol 217

a): 2x D 0;153 V C 0;521 V x D 0;337 V b): 2+ –  * Cu+(aq)  )  Cu(aq) C e

G10 D 1 F  .0;153 V/ D 14 762;511 J=mol

 * Cu+(aq) C e– )  Cu(s)

G20 D 1 F  0;521 V D 50 269;727 J=mol

X

2+  * 2 Cu+(aq  )  Cu(aq C Cu(s)

ln K D

G 0 D G10 C G20 D 35 507;216 J=mol

35 507;216 G 0 D D 14;32 K D 1;66  106 RT 8;3143  298;15

c): Durch Vergleich der Latimer-Diagramme erhält man 0;147 V D 0;521 V C ln K D

RT ln K 1F

0;668  96 487 D 26 8;3143  298;15

K D 5;1  1012

KL D K  .c/n D 5;1  1012  .1 mol=dm3/2 D 5;1  1012 .mol=dm3 /2 :

5.12 Heterogene chemische Gleichgewichtsreaktionen

443

d): –  +  * Cu2+  Cu(aq) (aq) C e )

G 0 D 1  F  0;153 V D 14 762;511 J=mol

 * Cu+(aq) C I–(aq) )  CuI(s)

G 0 D RT ln K D 64 456;04 kJ=mol

X

– –   * Cu2+  CuI(s) (aq) C I(aq) C e )

G 0 D 79 218;55 J=mol

e): – –   * 2 Cu2+  2 CuI(s) (aq) C 2 I(aq) C 2 e )

G 0 D 2  79 218;55 D 158 437;1 J=mol

2 I–(aq)

 * )  I2(s) C 2 e

G D 2 F  .0;535 V/ 0



D 103 241;09 J=mol X

–  * 2 Cu2+  2 CuI(s) (aq) C 4 I(aq) )

ln K D

#

CI2.s/

G 0 D 55 196;01 J=mol

55 196;01 G 0 D D 22;67 RT 8;3143  298;15

K D 4;7  109 Aus dem hohen K-Wert folgt, dass das Gleichgewicht so weit auf der Produktseite liegt, dass die Disproportionierung von Cu+ -Ionen nach b) keine Rolle spielt und diese Reaktion für die iodometrische Bestimmung von Cu2+ -Ionen benutzt werden kann. Das dabei ausgeschiedene Iod gibt der an sich weißen CuI-Fällung eine braune Farbe und kann mit eingestellter Thiosulfatlösung titriert werden, wobei Thiosulfat zu Tetrathionat oxidiert wird: – 2–  * I2(s) C 2 S2 O2–  2 I(aq) C S4 O6(aq) : 3(aq) )

Das Auftreten bzw. Verschwinden von elementarem Iod im Äquivalenzpunkt wird durch Zugabe einer Lösung aus löslicher Stärke, die mit elementarem Iod eine tiefblaue Einschlussverbindung (Clathrat) bildet, besonders deutlich. Die Farbreaktion ist recht empfindlich, Konzentrationen bis zu 105 mol=dm3 an Iod sind noch zu erkennen. Die hohe Empfindlichkeit der Iodstärkereaktion ist an die gleichzeitige Anwesenheit von Iodidionen gebunden und das ist hier der Fall.

5.12.3 218

Metalloxide

a): A: !: Gl.: Kp D

3 Fe(s) 133 242 Pa 127 163 Pa 6079 Pa pH4

2

pH42 O

C

4 H2 O(g)

  * ) 

127 163 Pa 127 163 Pa 4

D

127 1634 Pa 60794 Pa4

Fe3 O4(s)

D 191 476

C

4 H2(g)

444

5 Lösungen

b): Mit 1

und .pH2 O /GL D .pH2 /GL  Kp  4

.pH2 /GL D .p  pH2 O /GL ergibt sich

1

pGL D .pH2 O /GL C .pH2 /GL  Kp  4 bzw. .pH2 /GL D

pGL Œ1 C Kp

1 4



D

300 000 Pa D 286 312;82 Pa : 1 C 0;047805

Mit der Zustandsgleichung der Gase pV D

m M

 RT erhält man

.pH2 /GL  V  MH2 286 312;82 N=m2  0;004 m3  2;016 g=mol D RT 8;3143 J=.mol  K/  473;15 K D 0;587 g :

mH2 D

219

220

R G 4933 J=mol D RT 8;3143 J=.mol  K/  1000 K pH2 Kp D 1;81 D pH2 O Kp pH2 D Kp  pH2 O D Kp  .p  pH2 / D p  1 C Kp 1;81 D 130 533 Pa pH2 D 202 650 Pa  2;81 ln Kp D

220.1 .1/ C

.2/ C

.3/ CO

220.2  * .3/ Fe2 O3(s) C 3 CO(g) )  2 Fe(s) C 3 CO2(g) 0 B HCO D 0;5  .172;46  393;51/kJ=mol D 110;525 kJ=mol X X 0 0 0 R H.3/ D B HProd  B HEd

0 R S.3/

D .1180;53 C 331;575 C 824;2/kJ=mol D 24;8 kJ=mol X X 0 0 D SProd  SEd D .54;56 C 641;22  87;4  593;022/J=.mol  K/ D 15;36 J=.mol  K/

R G 0 D R H 0  T  R S 0 D 24;8 kJ=mol  .1473;15  0;01536/kJ=mol D 47;43 kJ=mol 



R G

K D e RT K D 48;06



De





47 430 8;3143 1473;15





D e3;872

5.12 Heterogene chemische Gleichgewichtsreaktionen

221

445

1  * Ag2 O.s/ )  2 Ag.s/ C 2 O2.g/

R H 0 D C31;05 kJ=mol R S 0 D 66;3 J=.K  mol/ G 0 D H 0  T0  S 0 R G D 31 050 J=mol  .29 866;3/ J=mol D 11 292;6 J=mol Bei 298 K ist die Reaktion endergonisch. Erst wenn R G < 0 ist, wird die Reaktion spontan. Dies ist bei T  195;2 ı C der Fall: T D

5.12.4 222

R H  R G 31 050 J=mol  O D D 468;33 K D 195;2 ı C R S 66;3 J=.mol  K/

Verteilung eines Stoffes zwischen zwei Phasen

Für die Konzentrationen von I2 in der organischen und der wässrigen Phase gilt nach dem Nernst’schen Verteilungssatz: KD

c.I2 in CS2 / D 585 I c.I2 in H2 O/

MI2 D 253;8 g=mol

Da Iod in der organischen Phase nur in molekularer Form vorliegt, lassen sich die Konzentrationen von I2 in den beiden Phasen berechnen: 32;33 g=dm3 D 0;127 mol=dm3 253;8 g=mol 0;127 mol=dm3 D 2;18  104 mol=dm3 c.I2 in H2 O/ D 585 Die gemessene Iod-Konzentration im Wasser setzt sich aus I2 und I–3 zusammen: c.I2 in CS2 / D

1;145 g=dm3  2;18  104 mol=dm3 D 4;29  103 mol=dm3 253;8 g=mol c.I– in H2 O/ D c0 .kJ/  c.I–3 in H2 O/ c.I–3 in H2 O/ D

D 3;125  102 mol=dm3  4;29  103 mol=dm3 D 2;7  102 mol=dm3 Die Gleichgewichtskonstante für die Bildung der Triiodid-Anionen beträgt: KD

4;29  103 mol=dm3 c.I–3 in H2 O/ D c.I in H2 O/  c.I2 in H2 O/ 2;7  102 mol=dm3  2;18  104 mol=dm3 –

D 7;29  102 dm3 =mol 223

CB (mol=dm3) 0,0118 0,0478 0,0981 0,156 0,00281 0,00566 0,00812 0,0102 CW (mol=dm3 ) 8,44 12,1 15,3 falls monomer: CB /CW 4,20 2 1;49 103 1;49 103 1;49 103 1;50 103 falls p dimer: CB /CW (oder CB =CW 38,6 38,6 38,6 38,7) Nur für die dimere Alternative ergibt sich eine Konstante. Q liegt in Benzen dimer vor.

446 224

5 Lösungen

Das Konzentrationsmaß spielt keine Rolle, da es nur auf das Verhältnis ankommt. Es gilt also: K D 0;326 D

x 0;3  x

x D 0;074

Es verbleiben 0;074 g Chinon in der wässrigen Lösung. 225

Die Konzentrationen des Iods verhalten sich im System CCl4 /Wasser wie 80:1, im System CS2 /Wasser wie 600:1. Daraus ergibt sich die wichtige Schlussfolgerung, dass man zum Ausschütteln immer ein System mit hohem Verteilungskoeffizienten benutzt. Iod ist also aus Wasser nach Möglichkeit mit Kohlenstoffdisulfid auszuschütteln. Der hohe Verteilungskoeffizient des Systems CS2 /Wasser ermöglicht es, schon bei einmaligem Ausschütteln gleicher 1 der Ausgangsmenge Volumen CS2 und Wasser die Iodkonzentration im Wasser auf 600 herabzusetzen.

226

Je tiefer man abtaucht, umso höher wird der Druck des Wassers auf den Körper. Die Lunge wird zusammengedrückt und um überhaupt noch atmen zu können, braucht man Druckluft. Durch den hohen Atemluftdruck beim Tauchen in großer Tiefe gelangt nach dem Henryschen Gesetz cN2 (Lös.) D KH  pN2 vermehrt Stickstoff ins Blut und ins Gewebe. Erfolgt beim Auftauchen der Druckausgleich zu rasch, kann das Blut den eingelagerten Stickstoff nicht schnell genug wieder abbauen. Er bildet Blasen, die Adern und Gewebe schädigen. Die Folgen können sein: Übelkeit, Kopf- und Gelenkschmerzen, Atemnot, eine gefährliche Gefäßverstopfung und sogar der Tod. Taucher legen daher beim Aufsteigen zeitlich dosierte Zwangspausen ein. Je tiefer der Tauchgang, je länger der so genannte „Dekompressions-Stopp“. Das Ergebnis der Aufgabe bestätigt den beschriebenen Sachverhalt:  Der Druck in 200 m Tiefe beträgt: p D 200 m  1000 kg=m3  9;81 m=s2 D 1;962  106 Pa D 19;62 bar.  Bei plötzlicher Dekompression ergibt sich die Änderung des Partialdruckes von Stickstoff: p.N2 / D 0;8  .19;62 bar  1;01325 bar/ D 14;89 bar.  Das freigesetzte Volumen N2 je cm3 Blut (Gewebe) beträgt: 298  p.N2 / D 0;222 cm3 cN2 D KH .N / 2

cAnC

cBm n K mCn L KL D .l0  m/m  .l0  n/n I l0 D mm  nn KL G 0 D RT ln Kth D RT ln . mol=dm3 /mCn KL(Am Bn ) D cAmnC  cBnm I

227

l0 D

D m r

r

228

KL D 1;7  1015 mol=dm3 ; KL D 1;6  1072 .mol=dm3/5 33  22 2 3 2 3 b) KL D cBi l1 D 7;07  1036 mol=dm3 3C  cS2 D .2  l1 /  .3  l0 C 0;2/ ; a)

l0 D

5

2 3 2 3 c) KL D cBi l2 D 1;2  1024 mol=dm3 3C  cS2 D .2  l0 C 0;2/  .3  l2 / ;

229

a)

 * 2 Hg+(aq) C S2–  Hg2 S(s) ; (aq) )

m

VH2 S D

C Hg(aq)

n

C Hg(aq)

 nH2 S  Vm 3  MHgC D 0;28 dm (aq)

5.12 Heterogene chemische Gleichgewichtsreaktionen

b) l0.Hg2 S/ D

q 3

KL 22

447

D 6;321  1016 mol=dm3

mHg2 S D l0.Hg2 S/  V(Lös)  M.Hg2 S/ D 2;73  1013 g 230

a) Lsg. A: 3

 11;26  * D 5;5  1012 .mol=dm3 / Mg2C  Mg.OH/2(s) I KL[Mg(OH)2 ] D 10 (aq) C 2 OH(aq) ) r 3 KL l0ŒMg.OH/2 D D 1;112  104 mol=dm3 I cOH D 2  l0 D 2;224  104 mol=dm3 I 22 cOH pH D pKw C lg D 10;35 mol=dm3 Lsg. B:

105 Pa  25 dm3 pV D D 1;0328 mol RT 8314;3 Pa  dm3 =.mol  K/  291;15 K nNH3 0 cNH D D 2;066 mol=dm3 3 0;5 dm3 C   * NH3 C H2 O  )  NH4 C OH

nNH3 D

0 Gl.: cNH  cOH 3

cOH

2 0 cOH  C KB  cOH  KB  cNH D 0 I 3

cOH D 5;78  103 mol=dm3 I

cOH KB D 10.pK wpK s/ D 104;79

D 1;622  105 mol=dm3 q 0 pH D pKw C lg KB  cNH D 11;76 3

b) In Lsg. A: cMg2C D l0 D 1;112  104 mol=dm3 nMg2C D cMg2C  V D 1;112  104 mol=dm3  0;5 dm3 D 5;56  105 mol Im Lösungsgemisch sinkt nMg2C auf den Wert von: cMg2C D

KL 5;5  1012 .mol=dm3 /3 D .2  l0 C cOH (Zusatz) /2 .2;224  104 mol=dm3 C 5;78  103 mol=dm3/2

D 1;527  107 mol=dm3 nMg2C D cMg2C  V D 1;527  107 mol=dm3  1 dm3 D 1;527  107 mol Damit beträgt die ausfallende Masse von Magnesiumhydroxid mŒMg.OH/2 D n  MŒMg.OH/2 D 5;545  105 mol  54310 mg=mol D 3;011 mg 231

231.1: Argentometrie: Bestimmung von Halogenid X–(aq) mit dem Titrator AgNO3(aq) : C  * 2 AgC  Ag2 CrO4(s) C 2 K(aq) (aq) C K2 CrO4(aq) )

rotbraun

448

5 Lösungen

Rhodanometrie: Bestimmung von Ag+(aq) mit dem Titrator NH4 SCN(aq) : Es reagiert ein geringfügiger Titratorüberschuss mit Fe3+ (aq) nach Fällung von AgSCN(s) : C 2  * 3 SCN  ŒFe.SCN/3 .H2 O/3 (aq) C NH4(aq) C 2 SO4(aq) (aq) C FeNH4 .SO4 /2 C 3 H2 O )

rot 231.2.1: KL(AgCl)

D .104;9 mol=dm3 /2

KL(AgBr)

D .106;1 mol=dm3 /2

KL(AgJ)

D .107;9 mol=dm3 /2

KL(Ag2 CrO4 ) D .103;7 mol=dm3 /2  0;5  103;7 mol=dm3 D 3;97  1012 mol=dm3 x C cAgC .AgX/ D cAgC .Ag

2 CrO4 /

D 2l0.Ag2 CrO4 / D 2  104 mol=dm3

(a) x D 2  104 mol=dm3  1;26  105 mol=dm3 D 1;87  104 mol=dm3 (b) x D 2  104 mol=dm3  7;94  107 mol=dm3 D 1;99  104 mol=dm3 (c) x D 2  104 mol=dm3  1;225  108 mol=dm3 D 1;999  104 mol=dm3 231.2.2: Je kleiner das Löslichkeitsprodukt KL(AgX) ist, desto größer ist der cAgC -Sprung am Äquivalenzpunkt Ä.

5.13 Phasengleichgewichte und Phasensysteme 5.13.1

232

Phasenübergänge, Siedepunkterhöhung, Gefrierpunkterniedrigung, Molmassebestimmung

W D nRT D .10/  8;3143  373;15 D 31 024;8 J D 31;03 kJ H D n  HVd D 10 mol  .2;26 kJ=g/ D 10 mol  .40;68 kJ=mol/ D 406;8 kJ U D H C nRT D 406;8 C 31;025 D 375;77 kJ 406;8 H D D 1;0902 kJ=K S D T 373;15 F D U  TS D 375;77 C .373;15  1;0902/ D 31;03 kJ G D H  TS D 406;8  .406/ D 0 Probe: U D Qrev C W H C W D T  S C F  G 406;8 C 31;03 D 406;8 C 31;03  0 375;77 D 375;77

5.13 Phasengleichgewichte und Phasensysteme

233

0 233.1a): GVd D HVd  T  SVd

S Z Verd

ZpHg d.S/ D R 

0 SVerd

449

dp p

p0

0 SVd D SVd  R  ln

pHg p0

pHg p0 Bei der Siedetemperatur besteht zwischen Flüssigkeit und Gas ein Gleichgewicht, d. h. hier ist für die Reaktion Hg(l) ! Hg(g) G D 0. Bei der Siedetemperatur ist der Dampfdruck gleich dem Außendruck, hier also 1 bar. pHg 0 0 HVd  T  SVd C RT  ln 0 D 0 p 1 bar 0 D0 C 8;3143 J=.mol  K/  630 K  ln 61 500 J=mol  630 K  SVd 1 bar 0 SVd D 97;62 J=.mol  K/ 0 0 GVd D HVd  T  SVd C RT  ln

233.1b): 61 500 J=mol  T  97;62 J=.mol  K/ C 8;3143 J=.mol  K/  T  ln pHg D 1 Pa

!

T1 D 318;1 K .45;1 ı C/

pHg D 4 Pa

!

T2 D 338;3 K .65;3 ı C/

pHg D0 105 Pa

Bei 25 ı C (298 K) ergibt sich pHg D 0;21 Pa : 233.2a): G(Lös.)

G(Verd.)

Hg.ln/(l) ! Hg(l) ! Hg(g) G D L G C G(Vd) L G D L H 0  RT ln Hg 0 0 GVd D HVd  T  SVd C RT  ln

pHg 0 0 G D CHVd  L H 0  RT ln Hg  T  SVd C RT  ln 0 p   pHg G D 70 500 J=mol  T  R  ln Hg C 97;62 J=.mol  K/  R  ln 0 p

pHg p0

450

5 Lösungen

233.2b):

 pHg  0 D 70 500 J=mol  T  R  ln 0;03 C 97;62 J=.mol  K/  R  ln 5 10 Pa pHg D 1 Pa ! T1 D 429;4 K .156;4 ı C/ pHg D 4 Pa

!

T2 D 461;9 K .188;9 ı C/

Bei 25 ı C (298 K) ergibt sich pHg D 1;64  104 Pa : 233.3a): Man betrachtet den gesamten Vorgang bestehend aus den in Verbindung stehenden Gleichgewichten  *  *  * Legierung(s) )  Legierung(l) )  Hg(l) )  Hg(g) : Da das erste Gleichgewicht ganz auf der linken Seite liegt, wird der tatsächliche Dampfdruck niedriger sein. 233.3b): Bei der Zerstörung solcher Lampen wird kaum flüssiges Hg freigesetzt. 233.4: Seit vielen Jahrzehnten hat sich der Einsatz der Gasentladungsröhren mit Luminophoren wegen ihrer größeren Lichtintensität und vorteilhafteren Wirtschaftlichkeit gegenüber den Glühlampen bewährt. Die durch Gasanregung erzeugte ultraviolette Strahlung wird durch geeignete Luminophore in sichtbares Licht übertragen. Diese Stoffe führen die aufgenommene Energie nicht oder nicht vollständig ihrer thermischen Energie zu, sondern strahlen sie direkt als elektromagnetische Strahlung in mehr oder weniger kurzer Zeit aus. Der Anregungsprozess und der Emissionsprozess können zeitlich verzögert sein. Derartige Lumineszenzphänomene unterteilt man in Fluoreszenz und Phosphoreszenz, was auf dem vereinfachten Termschema mit Titelhintergrund in Abb. 5.36 dargestellt ist. Die temperaturabhängige langzeitige Lumineszenz ist die Phosphoreszenz. Sie ist nur möglich nach einem verbotenen Übergang (ISC) aus einem Singulettzustand (mit gepaarten Elektronenspins) in einen Triplettzustand (mit zwei spin-ungepaarten Elektronen). Daher sind die Geschwindigkeitskonstanten von Phosphoreszenzvorgängen um mindestens zwei Größenordnungen kleiner als die Geschwindigkeitskonstanten von Fluoreszenzprozessen. Lässt man die eigentlich unterscheidenden Merkmale in den Lumineszenzprozessen außer acht und betrachtet nur die Zeit zwischen Anregung und Emission, so ist die Fluoreszenz gegenüber der Phosphoreszenz durch kurze Verzögerungszeiten charakterisiert, etwa 108 Sekunden. In der Quecksilber-Niederdrucklampe wird ein großer Prozentsatz der aufgenommenen Leistung als UV-Strahlung bei 253;7 nm abgestrahlt. Die damit angeregten Emissionsspektren der Luminophore erstrecken sich je nach Leuchtstofftyp vom mittleren UV bis über den gesamten Bereich des sichtbaren Spektrums. Bisher erlangten sauerstoffdominierende Luminophore (Phosphate, Silikate, Borate, Wolframate und Aluminate) an Bedeutung, unter ihnen besonders Kalziumhalophosphat Ca5 .PO4 /3 (F,Cl), das zur Lumineszenzfähigkeit durch Antimon allein oder durch Antimon und Mangan aktiviert wird. Seine Herstellung erfolgt in einer Festkörperreaktion bei ca. 1100 ı C im Glühofen, wozu ein von R. Nagy und N. J. Bloomfield patentierter Glühansatz mit

5.13 Phasengleichgewichte und Phasensysteme S2 Schwinungsrelaxation

451

S: Singulett-Zustand (low spin) T: Triplett-Zustand (high spin)

S1*** Indizes: 0 = Grundzustand, S1** 1 (erster), 2 (zweiter) angeregter Zustand S1* Gerade Pfeile: Strahlungsabsorption oder -emission Wellenlinien: strahlungslose Übergänge

T1

IC (internal conversion): Übergänge zwischen Zuständen gleicher Multiplizität, aber unterschiedlicher Anregungsund Schwingungsniveaus

IC

Phospohoreszenz

IC

Fluoreszenz

Absorption

ISC

S1

S0*** S0** ISC (intersystem crossing): Singulett-Triplett-Übergang. S0* Das heißt ein normalerweise verbotener Übergang mit Spinumkehrung S0

Abb. 5.36 Vereinfachtes Termschema zur Veranschaulichung von Fluoreszenz- und Phosphoreszenzprozessen nach Anregung durch Strahlungsabsorption.

definiertem Massenverhältnis der Komponenten CaHPO4 , CaCO3 , Sb2 O3 , MnCO3 , CaCl2 und CaF2 erforderlich ist. Für die Ausbildung des Grundgitters (Apatit) dienen Kalziumphosphat und Kalziumkarbonat. Durch Variation des Mangangehaltes und in geringem Maße auch durch Veränderung des Fluor/Chlor-Verhältnisses kann dieser Leuchtstoff blaues, kalt-weißes oder warm-weißes Licht emittieren. Der Lumineszenzmechanismus wird stark vereinfacht so erklärt, dass die UV-Strahlung der Quecksilberentladung durch das Antimon absorbiert wird, das dann mit einem Maximum bei 480 nm emittiert. Ein Teil der vom Antimon absorbierten Anregungsenergie wird durch einen so genannten Resonanzprozess auf die Manganzentren übertragen und ermöglicht deren Lumineszenz bei etwa 570 nm. 234

Am Schmelzpunkt liegt das Gleichgewicht zwischen fester und flüssiger Phase vor. Da es sich hier um reine Phasen handelt, fallen die Indizes in Gleichung ((1.141); Kap. 1) fort und die rechte Seite wird Null. Man erhält .S 0  S/dT D .V 0  V /dT oder .S(l)  S(s) /dT D .V(l)  V(s) /dp :

(5.13)

Bei Anwendung der Clausius-Clapeyron’schen Gleichung ((1.177); Kap. 1) geht (5.13) mit der Schmelzentropie .S(l)  5(s) / D

HSm TSm

452

5 Lösungen

über in HSm  dT D .V(l)  V(s) /dp TSm bzw. dT D

TSm  .V(l)  V(s) /  dp : HSm

(5.14)

Gleichung (5.14) drückt die Druckabhängigkeit des Schmelzpunktes aus. Wird darin der Differenzialquotient durch den Differenzenquotient ersetzt, erhält man beim Einsetzen der gegebenen Größen unter Berücksichtigung der Umrechnung dm3  bar D 103 m3  101 325 N  m2 D 101;325 Nm D 101;325 J: 3 18 18 273;15 K  0;999 TSm  .V(l)  V(s) /p  103  0;917  103 dm  .100  1/ bar D T D HSm 6030 J 273;15 K  .0;0180180;01963 / dm3  99 bar D 0;73 K D 59;526 dm3  bar Das Eis schmilzt bei 0;73 ı C. 235

Die Druckerhöhung unter den Kufen beträgt: p D

mg kg 80 kg  9;80665 m  s2 D D 3;92  106 D 3;92  106 Pa : A 0;2 m  0;001 m m  s2

Bei Anwendung der Clausius-Clapeyron’schen Gleichung T D

TSm  .V(l)  V(s) /  p HSm

ergibt sich unter Berücksichtigung der Umrechnung dm3  bar D 103 m3  101 325 N  m2 D 101;325 Nm D 101;325 J: 3 18 18 273;15 K  0;999  103  0;917  103 dm  39;2 bar T D 6030 J 273;15 K  .0;018018  0;01963/ dm3  39;2 bar D 0;29 K : D 59;526 dm3  bar Da die Kufen der Schlittschuhe in Wirklichkeit nicht plan sondern konkav sind, ist ihre tatsächliche Berührungsfläche nur ein Zehntel bis ein Hundertstel der Fläche. Dadurch steigt die Druckerhöhung unter den Kufen entsprechend an. Beim Schlittschuhlaufen schmilzt also das Eis durch den Druck der Kufen, wodurch eine dünne, schmierende Wasserschicht erzeugt wird.

236

HVd d ln p D dT RT 2

HVd D HspVd  MH2 O D 44;19 kJ=mol   1 HVd 1   ln p2 D ln p1 C R T1 T2

5.13 Phasengleichgewichte und Phasensysteme

ln p2 D ln 26;434 mbar C

44 190 K 8;3143



453

 1 1  K1 D 4;026 mbar 295;15 308;15

p2 D 56;04 mbar

237

HVd D 238

2  R J=.mol  K/ ln p p1 D 1  T12 1=K T1

d ln p HVd D I dT RT 2

HVd

ln 1013;25  8;3143 6;105 1 273;15



1 373;15

D 43 319;7 J=mol

Die Volumina von 1 mol Wasser betragen: V(l) D 0;018 dm3 =mol V(g) D

1 mol  8314;3 Pa  dm3  373;15 K nRT D D 30;62 dm3 : p 101 325 Pa  mol  K

Für das Phasengleichgewicht reiner Stoffe (hier Wasser) erhält man bei Anwendung der Clausius-Clapeyron’schen Gleichung ((1.177); Kap. 1) aus .S(g)  S(l) /dT D .V(g)  V(l) /dp : mit der Verdampfungsentropie .S(g)  S(l) / D

HVd TSd

die Gleichung HVd dT D .V(g)  V(l) /dp TSd

bzw.

HVd D TSd  .V(g)  V(l) /

dp : dT

Wird darin der Differenzialquotient durch den Differenzenquotient ersetzt, erhält man beim Einsetzen der gegebenen und berechneten Größen unter Berücksichtigung der Umrechnung dm3  bar D 103 m3  101 325 N  m2 D 101;325 Nm D 101;325 J:   p2  p1 HVd D TSd  .V(g)  V(l) /  T1  T2   1;01361  1;0129 bar dm3  D 373;15 K  .30;62  0;018/ mol 373;16  373;14 K D 405;379

J dm3  bar D 41 075;03 : mol mol

Der tatsächliche Wert der Verdampfungsenthalpie des Wassers beträgt 40 722 J=mol. Die Abweichung beruht auf die Anwendung des Differenzenquotienten und der Annahme, dass das Dampfvolumen nach der allgemeinen Zustandsgleichung der idealen Gase berechenbar ist.

239

p D

n2 0;1111 mol  23;385 mbar D 0;4585 mbar  p0 D n1 C n2 .0;1111 C 5;5555/ mol

454

n2 D

240

pLös.

8;5 g 80 g D 0;025 mol Saccharose I n1 D D 4;44 mol Wasser 342 g=mol 18 g=mol   n2  p0 D 16;14 mbar D p0  n1 C n2

p0  p .23;385  23;280 /mbar p D 4;49  103 I D D Gl I Gl D 23;385 mbar p0 p0 nGl D 4;49  103 Gl D nGl C nH2 O 1 mol 1 mol 180 g D D D .1 C nH2 O /mol .1 C 221;717/mol .180 C 3990;906/g 180  100 % D 4;316 % cGl D 4070;906

241

242

5 Lösungen

Mit p D p  p 0 (Dampfdruckerniedrigung) und dem Molenbruch 2 des gelösten Stoffes erhält man: p n2 n2 m2 M1 2 D 0 D  D n1 C n2 n1 m1 M2 p M2 D

243

477;295 mbar  4;235 g  74 g=mol p 0 m2 M1 D D 228;02 g=mol m1 p 41 g  16 mbar

a): #D

f fmax.1/

D

6;4 g=m3 D 0;37 .37 %/ 17;3 g=m3

D

6;4 g=m3 D 0;68 .68 %/ 9;4 g=m3

b): #D

f fmax.2/

c): Für den Taupunkt gilt die Temperatur , bei der eine relative Luftfeuchte von 100 % erreicht wird. Dies ist laut Tabelle 5.1 bei 4 ı C der Fall. #D

f fmax.3/

D

6;4 g=m3 D 1 .100 %/ 6;4 g=m3

244

m D V .fmax.1/  fmax.2/ / D 6;8 g.30;3  4;84 / g=m3 D 173;128 g

245

TSd,Lös D TSd,CCl4 C TSd D TSd,CCl4 C kE.CCl4 /  cS TSd,Lös D 349;75 K C .5;213 K  kg=mol  0;78 mol=kg/ D 353;82 K .80;67 ı C/

5.13 Phasengleichgewichte und Phasensysteme Tab. 5.1 ı

455

Luftfeuchte und Partialdruck des Wasserdampfes. ı

T ( C)

fmax (g/m3 )

p (kPa)

T ( C)

fmax (g/m3 )

p (kPa)

5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

3,24 3,51 3,81 4,13 4,47 4,84 5,2 5,6 6,0 6,4 6,8 7,3 7,8 8,3 8,8 9,4

0,401 0,437 0,476 0,517 0,563 0,611 0,653 0,707 0,760 0,813 0,867 0,933 1,000 1,067 1,147 1,227

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 30

10,0 10,7 11,4 12,1 12,8 13,6 14,5 15,4 16,3 17,3 18,3 19,4 20,6 21,8 23,0 30,3

1,31 1,40 1,49 1,60 1,71 1,81 1,93 2,07 2,20 2,33 2,48 2,64 2,81 2,99 3,17 4,24

 25  1000 mol=kg D 2;219 mol=kg 88  128 TSdLös D TSd(Benz) C .kE(Benz)  c/ D 86 ı C I 

246

cD

TSmLös D TSm(Benz)  .kK(Benz)  c / D 5;7 ı C



 8;02  1000 mol=kg D 1;984 mol=kg 126  32;07 K  kg K  kg TSdLös  TSd(HAc) TSm(HAc)  TSmLös D 3;075 D 3;831 kE(HAc) D I kK(HAc) D c mol c mol

247

cD

248

Mgel.St. D

249

TSm,Lös D TSm,H2 O  TSm D TSm,H2 O  kk.H2 O/  cNaCl

mgel.St.  kE 11;7 g  512 K  g=mol D D 58;44 g=mol mLM  TSd 100 g  1;024 K

TSm,Lös D 273;15 K  .1;860 K  kg=mol  2 mol=kg/ D 269;43 K .3;72 ı C/ 250

Die Gefrierpunkterniedrigung TSm für eine ideal verdünnte Lösung ist gegeben durch die Formel: TSm D TSm,LM  TSm,Lös D

2  gel.St. R  TSm,LM

HSm.LM

:

Dabei ist TSm,Lös der Gefrierpunkt der Lösung, TSm,LM der Gefrierpunkt des Lösungsmittels, HSm,LM die Schmelzwärme des Lösungsmittels und gel.St. der Molenbruch des gelösten Stoffes Q.

456

5 Lösungen

Molenbruch von Q: Q D

2  Q R  TSm,LM

8;3143  278;552  1;32  102 K D 0;861 K HSm,LM 9;89  103 D .5;4  0;861/ ı C D 4;54 ı C

TSm D TSm.Lös

0;244=244 D 1;32  102 0;244=244 C 5;85=78 D

251

Mgel.St. D

mgel.St.  kk 0;384 g  3900 K  g=mol D 109;5 g=mol D mLM  TSm 80 g  0;171 K

252

Mgel.St. D

kK(LM)  mgel.St. 40  103 g  K=mol  0;00187 g D D 250;8 g=mol mLM  .TSm,LM  TSm Lös / 0;03728 g  .450;15  442;15/ K

5.13.2 253

Einkomponenten-Mehrphasensysteme

a): Am Tripelpunkt ist 1871;2 K 1425;7 K C 10;4435 D C 12;7165 T T T D 196 K lg p D 3;1695 p D 1477;4 Pa

p(l) D p(s)

b): p(l) D 1;013  105 Pa

lg 1;013  105 D

T D 262;18 K .10;97 ı C/

1425;7 K C 10;4435 T

c): In die entsprechenden Gleichungen eingesetzt ergibt sich .c1 / .c2 /

1871;2 K C 12;7165 p(s) D 21;4  105 Pa 293 K 1425;7 K C 10;4435 p(l) D 3;78  105 Pa : lg p(l) D 293 K lg p(s) D

5.13 Phasengleichgewichte und Phasensysteme

457

d):

Tripelpunkt

T = 196 K p = 0,01477 bar

Siedepunkt

T = 262,18 K

Kritischer Punkt

T = 430,35 K p = 77,7 bar

20

Druck (bar)

15

10

SO2 fest SO2 flüssig

5 SO2 gasförmig 0 200

220 240 260 Temperatur (K)

280

300

Abb. 5.37 Zustandsdiagramm SO2 .

e): gasförmig (Punkt 293 K/1,000  105 Pa eingezeichnet) f): 50 ı C ) 223 K > T (Tripelpunkt). Hier wird beim Verdampfen immer erst der Bereich erreicht, in dem die flüssige Phase stabil ist, so dass Sublimieren nicht möglich ist. 254

254.1.1.: Antwort 254.1.1b) ist richtig. 254.1.2.: Antwort 254.1.2a) ist richtig. 254.2.: Kohlenstoffdioxid lässt sich leicht verflüssigen, da seine kritische Temperatur (31;06 ı C) relativ hoch liegt (kritischer Druck 73;83 bar, kritische Dichte 0: 464 g=cm3 ). So kann man es z. B. bei 0 ı C (20 ı C) schon durch einen Druck von 34;7 bar (55;4 bar) zu einer farblosen, leichtbeweglichen Flüssigkeit verdichten. Kühlt man flüssiges Kohlenstoffdioxid in einem geschlossenen Glasgefäß ab, erstarrt es zu einer eisähnlichen Masse, welche bei 56;7 ı C unter einem Eigendruck von 5;19 bar schmilzt. Bei Atmosphärendruck sublimiert festes Kohlenstoffdioxid bei 78: 5 ı C (' D 1;56 g=cm3/, ohne zu schmelzen. Dass der Schmelzpunkt höher liegt als der Siedepunkt (Sublimationspunkt), hängt damit zusammen, dass sich gemäß des Phasendiagramms die Dampfdrucklinien des festen und flüssigen CO2 erst bei 5;19 bar schneiden (Schmelzpunkt), so dass der Druck von 1;013 bar (Siedepunkt) schon vorher beim festen CO2 erreicht wird (Sublimation).

458

5 Lösungen

254.3.: Für einen Phasenübergang unter Gleichgewichtsbedingungen ist S D H =T , weshalb die allgemeinste Form der Gleichung von Clausius und Clapeyron S dp D dT V auch in folgender Form geschrieben werden kann: H dp D : dT T  V Die Integration dieser Gleichung liefert einen expliziten Ausdruck für die P; T -Kurve des Phasenübergangs. Für das Gleichgewicht zwischen einem Feststoff und seinem Dampf gilt dann: dp HSubl D : dT T  .Vg  V(s) / Hierin ist HSubl die Sublimationsenthalpie. Bei der Anwendung dieser Gleichung kann das Volumen des Feststoffes V.s/ in guter Näherung gegen das Dampfvolumen V(g) vernachlässigt werden und mit Betrachtung des Dampfes als ideales Gas (V(g) D RT =p) ergibt sich: dp HSubl D dT T  .RT =p/

oder

1 dp HSubl D p dT RT 2

oder

d ln p HSubl : D dT RT 2

In dem zu betrachtenden Temperaturbereich zwischen 78;5 und 56;7 ı C darf HSubl als konstant angesehen werden. Die Integration der Gleichung führt schließlich zur Lösung der Teilaufgabe:   1 p2 HSubl 1  ln : D  p1 R T1 T2 HSubl

5;19 2 R  ln p 8;3143  ln 1;013 p1 D 1 D 1 D 26 253;4 J=mol : 1  T12  216;45 T1 194;65

254.4.: Die Masse des Trockeneises beträgt: m D 'Tr  V D 1;53 g=cm3  20 cm3 D 30;6 g : Die Stoffmenge ist dann: nTr D

30;6 g m D D 0;695 mol : M 44 g=mol

Aus der allgemeinen Gasgleichung folgt: V D

nRT 0;695 mol  8314;3 Pa  dm3 =.mol  K/  293;15 K D p 101 300 Pa D 16;7221 dm3 D 16;722  103 cm3 :

Für die Dichte des Kohlenstoffdioxids ergibt sich 'CO2 D

30;6 g m D D 1;83  103 g=cm3 : V 16;722  103 cm3

5.13 Phasengleichgewichte und Phasensysteme

459

255

100

C (flüssig)

f) A (fest)

10 c) p (bar)

f)

d)

B (gasförmig) b)

1 e) 0.1 160

180

200

220

240 T (K)

260

280

300

320

Abb. 5.38 Phasendiagramm von CO2 mit Kenzeichnung der Phasen A, B und C.

a): b): c): d): e): f): g):

A: fest B: gasförmig C: flüssig fest und gasförmig abgelesen: 5;1 bar (exakt: 5;19 bar) abgelesen: 304 K (exakt: 304 K) abgelesen: 194 K (exakt: 194;7 K) abgelesen: 61 bar (exakt: 57;5 bar) Anders als bei einer Sauerstoffflasche lässt sich der Verbrauch nicht an einem Druckabfall ablesen, da der Dampfdruck des flüssigen Kohlenstoffdioxids bei Zimmertemperatur konstant ist. Die noch vorhandene Menge CO2 lässt sich durch Wägung und Vergleich mit dem Leergewicht der Flasche feststellen.

5.13.3 256

Zweikomponenten-Zweiphasensysteme (Binäre Systeme)

256.1: F DKP C1 Punkt 1 2 3 4

.dp D 0/

Phasen P 3 (festes Al2 O3 , festes Na3 AlF6 , Schmelze) 2 (festes Na3 AlF6 , Schmelze) 1 (Schmelze) 2 (festes Na3 AlF6 , festes Eutektikum)

Komponenten K

Freiheiten F

2 2 2 2

0 1 2 1

460

5 Lösungen

256.2: Aluminiumchlorid AlCl3 muss als Grenzfall zwischen Molekül- und Ionenverbindung angesehen werden. Im festen Zustand bildet es farblose, hexagonale Kristalle mit einem Ionengitter, in dem das Al3+ -Ion 6fach durch Cl– -Ionen koordiniert ist. Beim Schmelzen bricht das Ionengitter unter Bildung des Dimeren Cl2 AlCl2 AlCl2 zusammen, in dem das Aluminiumatom tetraedrisch koordiniert ist. Da dieses kovalent aufgebaut ist, leitet flüssiges Aluminiumchlorid den elektrischen Strom nur schlecht. 256.3a):  * 2 Al2 O3 C 9 C )  Al4 C3 C 6 CO  * Al4 C3 C 12 H2 O )  3 CH4 C 4 Al.OH/3 256.3b):



H D .224;4  10 268/  .129;2  3429;96/ kJ=mol D 6933;24 kJ=mol

S D .558;78 C 560;8/  .105 C 838;92/ J=.mol  K/ D 175;66 J=.mol  K/ G D .6933;24  .298;15  0;17566/ kJ=mol D 6985;61 kJ=mol 6 985 610 G D D 2818;02 ln K D RT 8;3143  298;15 K D e 2818;02 D 101223;84 D 6;918  101223

Der sehr stark negative G-Wert zeigt, dass das Gleichgewicht auf der Seite der Produkte liegt. 256.3c): 1;013  105 N=m2  0;1 m3 p V D D 4;086 mol RT 8;3143 Nm=.mol  K/  298;15 K 4;086 mol  143;956 g=mol D 196;06 g mAl4 C3 D 3

nD

257

Die Zusammensetzung der Gasphase ergibt sich durch den Quotienten aus dem Partialdruck pA der Komponente A (Benzol) und dem Gesamtdampfdruck PGesamt . Der Partialdruck der / Komponente A ist für ideale Lösungen gleich dem Molenbruch .l A der Komponente A 0 multipliziert mit dem Dampfdruck pA der reinen Komponente A bei dieser Temperatur: (g)

Benzol D (l) Benzol  (g)

Benzol (g)

Benzol (g)

Benzol (g)

Benzol

0 pBenzol

(l) 0 0 .(l) Benzol  pBenzol / C .Toluol  pToluol / 80 mbar D 0;31 D 0;1  .0;1  80 mbar/ C .0;9  20 mbar/ 80 mbar D 0;25  D 0;57 .0;25  80 mbar/ C .0;75  20 mbar/ 80 mbar D 0;8 D 0;5  .0;5  80 mbar/ C .0;5  20 mbar/ 80 mbar D 0;92 D 0;75  .0;75  80 mbar/ C .0;25  20 mbar/

5.13 Phasengleichgewichte und Phasensysteme

461

80 Siedelinie

0,92

60

Gesamtdruck Pges. (mbar)

0,8

40

0,57 Taulinie

0,31 20

0 0,0

0,25

0,5

0,75

1,0

χ (l) Benzol χ (g) Benzol

Abb. 5.39 Dampfdruckdiagramm Benzol-Toluol.

258

a): Bei der Herstellung einer idealen Mischung treten keine Mischungseffekte auf, d. h. das Volumen der Mischung ist die Summe der Einzelvolumina der Mischungsbestandteile, das gleiche gilt für die „Innere Energie“, es treten also keine Mischungsenthalpien auf. Der Dampfdruck einer idealen Mischung ist die Summe der Einzeldampfdrücke (Raoult’sches Gesetz). Damit das der Fall ist, müssen die Wechselwirkungsenergien der verschiedenen Teilchen untereinander gleich dem arithmetischen Mittel der Wechselwirkungsenergien zwischen den gleichartigen Teilchen sein. b): Um die Siedelinie zu erhalten, muss berechnet werden, welche Zusammensetzung die flüssige Phase für die verschiedenen Temperaturen haben muss, damit die Summe der Partialdrücke der Komponenten Benzol ŒpBenzol .T / und m-Xylol ŒpXylol .T / den Gesamtdruck Pges. D 101;3 kPa ergibt: 0 0  Benzol / C .pXylol  Xylol / Pges. D pBenzol C pXylol D .pBenzol 0 0 Pges. D .pBenzol  Benzol / C pXylol  Œ1  Benzol 

(l) Benzol D

0 Pges.  pXylol 0 0 pBenzol  pXylol

D

0 101;3 kPa  pXylol 0 0 pBenzol  pXylol

462

5 Lösungen

Die Kondensationslinie gibt die Zusammensetzung des Dampfes über der flüssigen Phase bei einer bestimmten Temperatur an: (g)

pBenzol D Pges.  Benzol (g)

Benzol D

p0 p0  (l)  (l) pBenzol D Benzol Benzol D Benzol Benzol : Pges. Pges. 101;3 kPa

T (K)

Benzol in der Flüssigkeit

Benzol in der Gasphase

353 363 373 383 393 403 412

1,00 0,70 0,48 0,31 0,18 0,08 0

1,00 0,93 0,84 0,71 0,53 0,28 0

c): 420 Gas

410 Gas

Temperatur in K

400 e)

+ Fl

üss

igke

it

390

Taulinie

380 370 Flüssigkeit 360 (l) d) χBenzol

350 0,0

Abb. 5.40

0,2

Siedelinie

d) χ Benzol

0,4 Molfraktion Benzol

(g) d) χBenzol

0,6

e)

0,8

1,0

Siedediagramm Benzol–m-Xylol.

d): Benzol D

nBenzol D nBenzol C nXylol

1 MBenzol 1 MBenzol

C

1;5 MXylol

D

1 78;1 g=mol 1 78;1 g=mol

C

1;5 106;15 g=mol

D 0;475 :

Wird dieses Gemisch auf 388 K erhitzt, erreicht man das Zweiphasengebiet und es liegen Flüssigkeit und Gasphase unterschiedlicher Zusammensetzung im Gleichgewicht vor. Die Molenbrüche können aus dem Phasendiagramm abgelesen werden: (g)

(l) Benzol D 0;24 Benzol D 0;63 :

5.13 Phasengleichgewichte und Phasensysteme

463

e): Der Molenbruch von Benzol lässt sich aus der Zeichnung ablesen, wenn die den drei Kolonnenböden entsprechenden Siede- und Kondensationsvorgänge in das Diagramm eingezeichnet wurden: Benzol nach der Destillation D 0;97 Xylol nach der Destillation D 0;03 : Das entspricht einer Reinheit von 97 % bezogen auf die Stoffmengen.

5.13.4 259

Ternäre Systeme

a) Die Ausgangsmischung besteht aus zwei flüssigen Phasen im relativen Mengenverhältnis 1,44 zugunsten der wasserarmen Phase. Bei Zusatz von Essigsäure entsteht eine ternäre Mischung, deren Zusammensetzung sich entlang der Verbindungslinie zur Dreieckspitze E bewegt. Bei E D 0;36 tritt das System aus dem Zweiphasengebiet in das Einphasengebiet ein. Dies entspricht dem Punkt a (Abb. 5.41). b) Die binäre Ausgangsmischung besteht aus einer flüssigen Phase mit den Molenbrüchen der Komponenten c D 0;7 und E D 0;3. Bei Zusatz von Wasser entsteht eine ternäre Mischung, deren Zusammensetzung sich entlang der Verbindungslinie zur Dreieckspitze W bewegt. Nach Erreichen des Punktes b (W D 0;12, C D 0;88, E D 0;26) tritt das System aus dem Einphasengebiet in das Zweiphasengebiet ein. Beim Überschreiten des Punktes c (W D 0;82, C D 0;18, E D 0;05) wird das System wieder einphasig (Abb. 5.41). E (CH3COOH)

χC χE a 0,7

b

c C (CHCl3)

0,4

χW

W (H2O)

Abb. 5.41 Phasendiagramm des ternären Systems Chloroform-Wasser-Essigsäure mit Lösungen zu Aufgabe 259.

464 260

5 Lösungen

260.1 Die Zusammensetzung (Chloroform CHCl3 , Wasser H2 O, Essigsäure CH3 COOH) entspricht den Stoffmengen: 9;2 g 2;3 g m m D D 0;077 mol nH2 O D D D 0;128 mol M 119;4 g=mol M 18;02 g=mol 3;1 g m D D 0;051 mol : nCH3 COOH D M 60;5 g=mol

nCHCl3

Daraus ergeben sich die Molenbrüche: nCHCl3 nH O 0;077 mol 0;128 mol D D 0;3 H2 O D 2 D D 0;50 nges. 0;256 mol nges. 0;256 mol nCH3 COOH 0;051 mol CH3 COOH D D 0;20 : D nges. 0;256 mol

CHCl3 D

Der zu dieser Zusammensetzung gehörende Punkt P im Phasendiagramm (Abb. 5.42) ist der Schnittpunkt der Linie aPE mit der dritten Konode (v. o.). Er liegt im Zweiphasengebiet. Die Zusammensetzungen der beiden Phasen sind durch die Schnittpunkte der Konode mit der Phasengrenzlinie (Binodalkurve) des Zweiphasengebietes gegeben: C D 0;82 I C D 0;17 I

W D 0;07 I W D 0;61 I

E D 0;12 und E D 0;22 :

Das Mengenverhältnis beträgt nach dem Hebelgesetz 3,6 zugunsten der chloroformarmen Phase. E (CH3COOH)

0,3

χC

χE d b

K

P

e 0,2

c

C (CHCl3)

0,5

χW

a

W (H2O)

Abb. 5.42 Phasendiagramm des ternären Systems Chloroform-Wasser-Essigsäure mit Lösungen zu Aufgabe 260.

5.13 Phasengleichgewichte und Phasensysteme

465

260.2 a) Bei Zugabe von Wasser zu der gegebenen Mischung bewegt sich das System entlang der Linie dPcW in Richtung Dreieckspitze von Wasser mit W D 1 und das Zweiphasengebiet geht in ein Einphasengebiet über, wenn W D 0;78 ist. Dies entspricht dem Punkt c. Das relative verhältnis von Chloroform und Essigsäure zueinander bleibt hierbei in jedem Punkt konstant (Abb. 5.42). b) Bei der Zugabe von Essigsäure zu der gegebenen Mischung bewegt sich das System entlang der Linie aPbE in Richtung Dreieckspitze von Essigsäure mit E D 1 und das Zweiphasengebiet geht in ein Einphasengebiet über, wenn E D 0;33 ist. Dies entspricht dem Punkt b. Das relative Verhältnis von Chloroform und Wasser zueinander bleibt hierbei in jedem Punkt konstant (Abb. 5.42). 260.3 Durch Entnahme von Cloroform aus der Ausgangsmischung wird beim Schnittpunkt e das ternäre System einphasig. Der Molenbruch von Chloroform sinkt auf den Wert von c D 0;17 (Abb. 5.42). Damit ergibt sich die zu entnehmende theoretische Masse Chloroform: c D

nc I nges.  nc

0;17 D

nc mol I .0;256 C nc / mol

nc D 0;0372 mol

mc D nc  Mc D .0;077  0;0372/ mol  119;4 g=mol D 4;75 g 261

261.1 Der zur Ausgangszusammensetzung gehörende Punkt P im Phasendiagramm (Abb. 5.43) liegt im Zweiphasengebiet. Er ist durch den Schnittpunkt der Linie McPd mit der zweiten Konode (v. u.) gegeben: nW 2;5 mol D 0;5 I D nges. 5 mol nM 1 mol M D D 0;2 D nges. 5 mol

W D

MC D

nMC 1;5 mol D 0;3 I D nges. 5 mol

Die Zusammensetzung der beiden Phasen sind durch die Schnittpunkte a und b der Konode mit der Phasengrenzlinie (Binodalkurve) gegeben: W D 0;69 I W D 0;03 I

MC D 0;03 I MC D 0;93 I

M D 0;28 und M D 0;05 :

Das relative Mengenverhältnis beträgt nach dem Hebelgesetz: Strecke bP Menge wasserreiche Phase a D D 2;33 Menge wasserarme Phase b Strecke aP 261.2 Die Mindestmenge reinen Methanols, die das System enthalten muss, damit es einphasig wird, ergibt sich aus dem Molenbruch M D 0;41 im Punkt c: M D

nM I nges. C nM

0;41 D

nM mol I .5 C nM / mol

nM D 3;475 mol :

466

5 Lösungen M (Methanol) 0 1

0,2

χW

0,8

0,6

0,4

χM c

0,6

0,4

K a P

0,8

0,2

b d

1 0

0,2

W (Wasser)

0 0,4

0,6

0,8

1

MC (Methylchlorid)

χMC

Abb. 5.43 Phasendiagramm des ternären Systems Methylchlorid-Methanol-Wasser mit Lösungen zu Aufgabe 261.

Da die Ausgangsmischung des ternären Systems bereits 1 mol Methanol enthält, muss ein weiterer Zusatz von 2;475 mol .D 79;2 g/ Methanol erfolgen. 262

262.1 Das relative Mengenverhältnis beträgt nach dem Hebelgesetz: Menge ˇ  Phase (c) Strecke ab D D 3;0 : Menge ˛  Phase (a) Strecke bc (vgl. Abb. 5.44). 262.2.1 Die in der Tabelle gegebenen B -Werte resultieren aus der jeweiligen Gehaltsbestimmung und sind Punkte (f, i, l) auf der Binodalkurve. Sie werden zusammen mit den berechneten Molenbrüchen c (e, h, k) der drei ternären Ausgangsgemische in das Diagramm eingetragen. Ihre Verbindungslinien (fe, ih, lk) liefern in der Verlängerung bis zum zweiten Schnittpunkt (d, g, j) mit der Binodalkurve die Konoden (fd, ig, lj). Der zweite Schnittpunkt gibt jeweils die Zusammensetzung der konjugierten Phase .A / an (vgl. Abb. 5.44). Gemisch 1: (! Berechnung Punkt e) 138 g D 3 mol ; 46 g=mol D 11;07 mol

nA D nges.

nB D

224 g 60 g D 7 mol ; nC D D 1;07 mol 32 g=mol 56 g=mol

5.13 Phasengleichgewichte und Phasensysteme

467

C 0 1

0,8

0,2

0,4

χA

0,6

n

χC

0,6

k

j

i

e

d 1 0

l

h

g

0,8

0,4

m

f b

a 0,2

A

0,4

0,2

0,6

c 0,8

0 1

B

χB

Abb. 5.44 Phasendiagramm des ternären Systems A-B-C mit Lösungen zu Aufgabe 262.

C D

nC 1;07 mol D D 0;097  0;1 nges. 11;07 mol

 B D 0;63 ; A D 0;27

Gemisch 2: (! Berechnung Punkt h) nA D 3 mol ; C D

nB D 7 mol ;

nC D

nC 2;5 mol D D 0;2 nges. 12;5 mol

140 g D 2;5 mol nges. D 12;5 mol 56 g=mol

 B D 0;56 ; A D 0;24

Gemisch 3: (! Berechnung Punkt k) nA D 3 mol ; C D

nB D 7 mol ;

nC 4;3 mol D 0;3 D nges. 14;3 mol

nC D

240 g D 4;3 mol nges. D 14;3 mol 56 g=mol

 B D 0;49 ; A D 0;21

Das relative Mengenverhältnis der beiden Phasen in der ternären Mischung bleibt jeweils konstant: Menge ˇ  Phase D 3;0 : Menge ˛  Phase

468

5 Lösungen

262.2.2 Ausgehend vom letzten Datenpunkt (Probe 3 mit nC D 4;3 mol und nges. D 14;3 mol) sind mindestens 470 g des Stoffes C zuzugeben, damit im Diagramm der Punkt m (C D 0;37) erreicht und die Mischung einphasig wird: nC C D nges. C nC nC mol 0;37 D mol I nC D 8;4 mol I mC D nC  MC D 8;04  56 g=mol D 470 g : nges. C nC Damit jedoch das System einphasig bleibt und im Diagramm der Punkt n (C D 0;6) nicht überschritten wird, dürfen maximal 1201;1 g des Stoffes C zur Probe 3 zugesetzt werden (vgl. Abb. 5.44): 0;6 D

nC mol I .nges. C nC / mol

nC D 21;45 mol I

mC D nC  MC D 21;45  56 g=mol D 1201;2 g

5.14 Bioenergetik 5.14.1 263

Enzyme

263.1 Hydrolyse von Harnstoff: (I) + 2–  * CO(NH2 )2(s) C 2 H2 O(l)  )  2 NH4(aq) C CO3(aq) B H 0 .kJ=mol/ 333 286 132 677 R H 0 D 36 kJ=mol S 0 .J=.mol  k//

105

70

113

57 R S 0 D 76 J=.mol  k/



0 R G(l) D 36  298;15  .0;076/ D 13;34 kJ=mol (II) – –  * CO2–  HCO3(aq) C OH(aq) 3(aq) C H2 O(aq) )

pKs

– CO2– 3 =HCO3 10;33

==

H2 O=OH– 15;745

R GII0 D pKS  2;303RT D 5;415  2;303  8;3143  298;15 D 30 914 J=mol X

+ – –  * CO(NH2 )2(s) C 3 H2 O(l) )  2 NH4(aq) C HCO3(aq) C OH(aq)

0 R Ggesamt D 44;3 kJ=mol K D e

R G RT

D 5;77  107

5.14 Bioenergetik

469

Nitrifikation von NH+4 -Ionen: – +  * NH+4(aq) C 2 O2 )  NO3(aq) C H2 O C 2 H B H 0 .kJ=mol/ 132 0 205 286 0 R H 0 D 359 kJ=mol

S 0 .J=.mol  K//

113

0

109

70

0

R S 0 D 152 J=.mol  k/

R G

0 D 359  298;15  .0;0152/ D 354;5 kJ=mol K D e RT D 1;28  1062 : R G(l)

Beide Reaktionen sind exergon, aber kinetisch gehemmt. Deshalb sind zur Herabsetzung ihrer hohen Aktivierungsenergie Enzyme als Biokatalysatoren erforderlich. Die Harnstoffhydrolyse wird durch Urease, ein Nickel enthaltendes Enzym, katalysiert, welches besonders in Bakterien und Pilzen weit verbreitet ist. Das aktive Zentrum von Urease ist perfekt für Harnstoff strukturiert, was die hohe Substratspezifität erklärt. Harnstoff wird dabei zu Ammoniak und Carbamidsäure (H2 NCOOH) umgesetzt, die spontan in Ammoniak und Kohlenstoffdioxid zerfällt. Daraus entstehen in wässriger Lösung die Ionen NH+4(aq) , HCO–3(aq) und OH–(aq) . Letztlich findet die gleiche Reaktion statt, die bei der alkalischen Hydrolyse von Harnstoff im Reagenzglas abläuft. Auch hier verdrängt ein OH-Ion (bzw. ein Wassermolekül) ein Ammoniakmolekül. Nur ist bei der Urease die sterische Ausrichtung im aktiven Zentrum so optimal, dass alle Bindungen simultan gelockert werden und damit die Aktivierungsenergie bedeutend verringert wird. Deshalb ist die enzymatische Reaktion um den Faktor 1014 schneller als die unkatalysierte. Die Nitrifikation verläuft in zwei durch Oxigenasen katalysierten Schritten, für die vor allem zwei spezialisierte chemoautotrophe Bakteriengattungen verantwortlich sind:  Nitrosomonas oxidiert NH+4(aq) zu NO–2(aq) .  Nitrobacter oxidiert NO–2(aq) weiter zu NO–3(aq) . 263.2 Im Kreislauf des Stickstoffs (Abb. 5.45) besteht eine hohe biochemische Parallelität zwischen der N2 -Speicherung bei Pflanzen (Destruenten-Saprophagen-Nahrungskette) und der N2 -Ausscheidung bei Tieren (Phytophagen-Zoophagen-Nahrungskette). Säugetiere setzen das beim Abbau von Aminosäuren freiwerdende Zellgift Ammoniak (Desaminierung) in der Leber zu Harnstoff um (Harnstoffzyklus, s. Kap. 6, Abb. 6.9), der mit dem Harn ausgeschieden wird. Ammoniak wird aber auch für Aminierungs- und Transaminierungszwecke bei der Synthese von Aminosäuren im Eiweißstoffwechsel benötigt. Ausgeschiedener Harnstoff wird von einer großen Zahl von Bakterienarten durch das Enzym Urease in Ammoniak und Kohlenstoffdioxid gespalten. Ammoniak NH3 wird von ihnen als N2 -Quelle genutzt oder gelangt über die Nitrifikation zurück in den Kreislauf. In grünen Pflanzen gebundener Stickstoff (Proteine, Kernsäuren, seltene Aminosäuren, Aminozucker) wird nur bei deren Tod durch mikrobielle Zersetzung mit anschließender Nitrifikation zurückgeführt. 263.3 Abb. 5.46 soll zeigen, dass der Stoffwechsel selbst unmittelbar nur von den Enzymen gesteuert wird. Dagegen greifen die Hormone nicht direkt ein, sie „knipsen“ nur die im Augenblick „richtigen“ Enzyme an oder aus. Hormone und Enzyme gehen beide substanziell aus dem Stoffwechsel hervor, der sich somit durch Rückkopplung selbst steuert. Vitamine müssen mit der Nahrung aufgenommen werden. Ihr Herstellungspatent mit der dafür notwendigen Enzymausstattung hat der tierische und menschliche Organismus im Laufe der Evolution verloren.

470

5 Lösungen

N2 N2O NO

Dentrifikation

NO2– anorganische Düngung

NO3–

Nitrifikation

Produzenten

Symbiose

N2-Bindung

NO2–

NH4+ NH3

Phytophage Ammonifikation Destruenten

Zoophage

Bestandsabfall Saprophage

organische Düngung

Bakterien Harnsäure Harnstoff

Abb. 5.45

Kreislauf des Stickstoffs.

Hormone Vitamine

Enzyme

Nahrung

Stoffwechsel substanzielle Verbindung

Abb. 5.46

Ausscheidung

Steuerung

Rolle der Enzyme, Hormone und Vitamine im Stoffwechsel.

verschiedene Bakterien- und Blaualgenarten

5.14 Bioenergetik

264.1 Exergone biochemische Reaktionen sind häufig reaktionskinetisch gehemmt und benötigen einen Katalysator, der die hohe Aktivierungsenergie EA durch Bildung eines kurzlebigen Enzym-Substrat-Komplexes ES herabsetzen und die Reaktion unter Bildung der Produkte P und Regenerierung des Enzyms E beschleunigen kann. Bietet man einer konstanten Menge Enzym E (z. B. Urease) steigende Mengen Substrat S (z. B. Harnstoff) an, erreicht die Reaktion im steady state die Maximalgeschwindigkeit Vmax . Die Geschwindigkeit V in Abhängigkeit von der Substratkonzentration cS lässt sich durch Zeit-Umsatz-Messungen von geeigneten Größen (pH, Stromstärke I, Leitfähigkeit , Farbe) bestimmen. Man erhält eine Substratsättigungskurve, die der Michaelis-Menten-Gleichung gehorcht: Km D cS  VVmax 1 : In ihrer graphischen Darstellung (Abb. 5.47) ist Km wegen V D V max bei cS !1 als Substratkonzentration bei Vmax =2 definiert und leicht ablesbar. S+E ES S

ES

sehr schnell

E + P1 + P2 + P3

sehr langam, V -bestimmend Vmax

P1 + P2 + P3 S V

264

471

E

ES

P1 + P2 + P3 Km

CS

Abb. 5.47 Enzymkinetik.

Die Aufnahme einer Sättigungskurve und die hinreichend genaue Ermittlung des Geschwindigkeitsmaximalwertes erfordern viele Messpunkte. Wenn außerdem bei größeren Substratkonzentrationen eine Enzymhemmung auftritt, entspricht die maximale Reaktionsgeschwindigkeit nicht dem Zustand der Sättigung des Enzyms. Beide Nachteile werden vermieden, wenn zur Bestimmung von Km und Vmax nach Lineweaver und Burk die Michaelis-MentenGleichung linearisiert und die reziproke Geschwindigkeit 1=V gegen die reziproke Substratkonzentration 1=cS aufgetragen wird. Es ergibt sich eine Gerade (Abb. 5.48) mit dem Anstieg Km =Vmax, die bei 1=Vmax die Ordinate und bei 1=Km die Abszisse schneidet. Je kleiner also die Konstante Km ist, desto größer ist die Affinität des Enzyms zu seinem Substrat. Maßeinheiten: Km : mmol=dm3 bzw. mol=dm3; Vmax : mmol=.dm3  s/ bzw. mol=.dm3  s/.

472

5 Lösungen

264.2 E

+

k1

S

k3

ES

k2

A

GL

C E0

C S0

0

C ES

C ES

C ES

C E0 – C ES C S0 – C ES (C S0

C ES

>> C ES )

– MWG

P1 + P2 + P3 + E

Km =

V = k3 ⋅ CES

=

C0 ⋅ C

E S CES = _

Km + CS

Linearisierung des Michaelis-Menten-Grenzgesetzes

1/V

Lineweaver-Burk-Diagramm

Km Vmax

Michaelis-Menten-Grenzgesetzes

1/CS

Abb. 5.48

(5.15)

Herleitung des Michaelis-Menten-Grenzgesetzes und das Lineweaver-Burk-Diagramm.

5.14 Bioenergetik

265

473

265.1 c0S = 0,1 % V (mA / 300 s)

c0S = 0,3 %

0,0086

1 V 1 c0S

c0S = 0,5 %

0,0141

c0S = 0,7 %

0,0162

116,3

70,9

61,7

10

3,3

5

0,0171 58,5 1,43

c0S = 1 % 0,0180 12,5 1

100

Km Vmax 50

Vmax = 0,021mA / 300 s

5

–1/Km = – 6,75

10

3

Km = 0,418 % = 24,67 mmol/dm

Abb. 5.49 Lineweaver-Burk-Diagramm der Aktivitätsbestimmung von Urease.

2;61 1 ln D 3;59  103 s1 300 s 0;89 ln 2 ln 2 D 303;15 D D 193;08 s 3;59  103 k

303;15 k0;1 D

t1=2

0;1

1  pKW C pKS(NH+ 4)  pKB(CO2–3 ) 2 D 14 C 9;25  3;67 D 9;79

pH(NB) D

(pKW : Exponent des Ionenproduktes von Wasser, pKS : Säureexponent, pKB : Baseexponent) 265.2 EA d ln k0;1 D dT RT 2

 10 s  8;3143 J ln 5;32 mol  K 3;59  103 s1 D 1 1  313;15 K 303;15 K 3 1

EA

D 31 044;4 J  mol1

474

5 Lösungen

D H d ln Km D dT RT 2

ln 0;02413  8;3143 0;02467 D H D 1 1  313;15 303;15 D 1746;86 J=mol

265.3 Für die Ureaseaktivität resultierende Schlussfolgerungen sind:  Das Enzym Urease kann als Biokatalysator die Aktivierungsenergie EA von Harnstoff durch Bildung eines reaktionsfähigen Enzym-Substrat-Komplexes ES herabsetzen. Im Temperaturbereich von 30 ı C ! 40 ı C beträgt der Wert von EA D 31;04 kJ  mol1 .  Das Optimum der Ureaseaktivität bezogen auf das Substrat Harnstoff stellt sich bei  40 ı C mit der Kenngröße Km D 24;13 mmol=dm3 ein.  Bei höheren Temperaturen vergrößern sich die Km -Werte wieder, was im Einklang mit einer verminderten Enzymaktivität steht. Mögliche Ursachen sind: 1. Die Konformation des Enzymeiweißes ändert sich mit T - und pH-Anstieg. 2. Die Ausbildung des stereospezifischen ES-Komplexes ist erschwert. 3. Das exotherme Hydrolysegleichgewicht verlagert sich. 266

266.1 siehe Abb. 5.50. 1/V

mmol Km = 9 _ 3

mit Hemmstoff

dm

H2N

O C H C N C CH3

mmol Km = 5,5 _ 3 dm

H O CH2

Km steigt Vmax const. 0,9

N H (Hemmstoff) Acetyl-D-Tryptophanamid NH2

O

O H

1/c

NH2 C

+ H2O

CH2

N H (Hemmstoff) Acetyl-L-Tryptophanamid

Abb. 5.50

mmol dm3 ⋅ min

– 0,18 – 0,105

O

C H3C C N C H

Vmax = 1,11

H2 N C H +

CH2

N H L-Tryptophanamid

H3C

C OH O

Ethansäure

Lineweaver-Burk-Diagramm zur Aufgabe 266 und deren Lösungen.

5.14 Bioenergetik

475

266.2 Es liegt eine kompetitive Hemmung (Verdrängungshemmung) vor. Ein dem Substrat ähnliches Molekül (Inhibitor D Hemmstoff) blockiert das aktive Zentrum des Enzyms. Substrat und Inhibitor konkurrieren (Abb. 5.50).

267

Vmax D k3  c.Eges. /

k3 D

Vmax c.Eges. /

D

5  105 mol.dm3  min/ D 5  104 min1 1;0  109 mol=dm3

1/V (10 4 dm3min/mol)

2

1/Vmax

Vmax = 5 ⋅ 10 –5 mol/(dm3min)

– 0,9

1/CS (105 dm3/mol)

–1/Km Km = 1,1 ⋅ 10 –5 mol/dm3

Abb. 5.51 Lineweaver-Burk-Diagramm zur Aufgabe 267.

268

Die Michaeliskonstante Km gibt den Wert für die Substratkonzentration an, bei der die Reaktionsgeschwindigkeit V der halbmaximalen Reaktionsgeschwindigkeit Vmax /2 entspricht. Dementsprechend ermöglicht die Kenntnis von Km gemäß fES D V0 =Vmax die Ermittlung der prozentualen Anteile der besetzten Zentren für die einzelnen Substratkonzentrationen. fES D

269

cS0 V0 D Vmax Km C cS0

Vmax D kKat  c.Eges. /

3  105 mol=dm3 D 0;67 C 3  105 mol=dm3

1;5  105 mol=dm3

.kKat D k3 / 9

10 g D 2;38  1012 mol=dm3 0;01 dm3  41 977 g=mol Vmax 7;15  1011 mol=.dm3  min/ D D D 30 min1 D 0;5 s1 c.Eges. / 2;38  1012 mol=dm3

c.Eges. / D kKat

fES D

476

5 Lösungen

 * Glukose1phosphat )  Glukose6phosphat

270

5;4 94;6 D 17;518 Kc D K D 5;4 R G D RT ln 17;518 D 7;38 kJ=mol Gl.:

271

n D 0 I

94;6

n D 0 K D e

G RT

x D 0;0488 I

7660 J=mol

D e .8;3143  310;15/ J=mol D 0;05127 D

x I 1x

4;88 Mol-% Prod. D Mol-% Ed. 95;12

 * Alanylglycin C H2 O  )  Alanin C Glycin

272

Gl.:

x  0;01

5;545

0;01

0;01

n D 0 .mol=100 cm3 /

cAla  cGly 1 D Kc cDipept.  cH2 O 0;012 mol2 .x  0;01/ mol  5;545 mol x D 0;01 0;01  100 % D 100 % D 0;01

800 D

Der errechnete 100 %ige Umsatz des Dipeptids ist praktisch nicht erreichbar. Das Enzym hat nur Einfluss auf die Geschwindigkeit der Hydrolyse. 273

a):  * C6 H4 (OH)2(aq) C H2 O2(l)  )  C6 H4 (OH)2(aq) C H2(g) C O2(g) H 0 D C191;2 kJ=mol  * C6 H4 (OH)2(aq) C H2(g) C O2(g)  )  C6 H4 O2(aq) C 2 H2(g) C O2(g) H 0 D C177;4 kJ=mol  * C6 H4 O2(aq) C 2 H2(g) C O2(g) )  C6 H4 O2(aq) C 2 H2 O(g) H 0 D 483;6 kJ=mol  * C6 H4 O2(aq) C 2 H2 O(g) )  C6 H4 O2(aq) C 2 H2 O(l) H 0 D 87;6 kJ=mol  * C6 H4 (OH)2(aq) C H2 O2(l)  )  C6 H4 O2(aq) C 2 H2 O(l) R H 0 D 202;6 kJ=mol

5.14 Bioenergetik

477

Sammelblase

Drüse OH + H2O2 OH Öffnungsmuskel

Enzymdrüsen

Verschlussklappe

Explosionskammer

O + 2 H2O O

Abb. 5.52 „Schussapparat“ des Bombardierkäfers (aus Biologie heute S. II, Schroedel-Verlag, 1995, verändert).

b): Wissenschaftler haben den in Südeuropa lebenden Bombardierkäfer beobachtet, der über eine einzigartige Form der Abwehr von Fressfeinden verfügt: Diese Laufkäferart sondert mit einem hörbaren Knall ein Sekret aus dem Hinterleib ab. Es riecht iodartig und ist schleimhautreizend. Bombardierkäfer besitzen einen besonderen „Schussapparat“ (Abb. 5.52), der aus mehreren Kammern und Drüsen besteht. In zwei Drüsen entsteht ein Gemisch aus Hydrochinon und 23 %igem Wasserstoffperoxid. Von den beiden Drüsenbeuteln führt ein Kanal zu einer Sammelblase. Hier wird das Sekret gespeichert. Die Sammelblase ist von der sich anschließenden Explosionskammer durch eine Verschlussklappe abgetrennt. Die durch Chitin verstärkte Wand dieser Kammer ist mit Drüsen besetzt, die die Enzyme Katalase und Peroxidase absondern. Wird ein Käfer gereizt, wird die Verschlussklappe der Sammelblase geöffnet und das Sekretgemisch in die Explosionskammer gepresst. Unter Einwirkung der Enzyme wird Wasserstoffperoxid zu Wasser und Sauerstoff zersetzt und Hydrochinon zu Chinon oxidiert. Die exotherme

478

5 Lösungen

Reaktion bewirkt einen steigenden Gasdruck, der das gelbe bis violette Chinon nach außen schleudert.

5.14.2 274

Energieumsatz

Es sind dies in der Reihenfolge zunehmender Größe der Erhaltungs-, der Grund- und der Tätigkeitsumsatz. Auf zellulärer Ebene entspricht dem Grundumsatz der Bereitschaftsumsatz. Grundumsatz: Das ist der Energieumsatz, der morgens, nüchtern, liegend und in völliger Entspannung bei Körpertemperatur der Umgebung gemessen wird. Weil sich auch in Ruhe einige Zellen, z. B. der Herzmuskel oder das Gehirn, ständig im Tätigkeitsumsatz befinden, ist der Grundumsatz nicht gleich der Summe der Bereitschaftsumsätze aller Zellen. Man wählt deshalb die Bedingungen zur Messung des Grundumsatzes so, dass sich möglichst viele Zellen im Zustand des Bereitschaftsumsatzes befinden. Tätigkeitsumsatz: Das ist der Energieumsatz bei körperlicher Arbeit. In den Zellen läuft neben dem normalen Zellstoffwechsel die Neusynthese von Eiweißstoffen ab oder Muskelzellen der Skelettmuskulatur kontrahieren sich. Erhaltungsumsatz: Er ist der minimale Energieumsatz, bei dem der Organismus gerade noch überlebt. Die Körperzellen zeigen keine aktive Syntheseleistung. Die Energie wird lediglich zur Aufrechterhaltung der Zellstrukturen benötigt. Wird auch der Erhaltungsumsatz unterschritten, kommt es zum Zelltod und damit zur irreversiblen Schädigung und zum Ausfall lebenswichtiger Organe wie Herzmuskel und Atemmuskulatur.

275

Zur Messung des Energieumsatzes gibt es zwei verschiedene Verfahren. Man kann entweder direkt die Wärmeabgabe messen (direkte Kalorimetrie), oder der Energieumsatz wird über die verbrauchte Sauerstoffmenge indirekt bestimmt (indirekte Kalorimetrie). Direkte Kalorimetrie: Dabei werden alle Energieumsätze im Körper über die Wärmeabgabe gemessen. Dies ist deshalb möglich, weil alle Energieformen, auch die chemische Energie der Nährstoffe, schließlich in Wärme überführt werden. Bei der Messung des Energieumsatzes wird ein Versuchstier in einen abgeschlossenen Raum gebracht, bei dem die Wärmeabgabe genau kontrolliert werden kann. Der Ansatz für die Berechnung lautet:     mH2 O  cH2 O  T kJ kg  kJ=.kg  K/  K=h D : (5.16) ; QAnsatz D mTier kg kg  h Geräte zur direkten Kalorimetrie am Menschen, etwa zur Bestimmung des Grundumsatzes, sind außerordentlich aufwendig. Man hat deshalb nach einfacheren Verfahren gesucht. Indirekte Kalorimetrie: Man geht davon aus, dass bei der biologischen Oxidation im Körper zwischen der oxidierten Substanzmenge an Kohlenhydraten, Fetten und Eiweißen und der dabei verbrauchten Sauerstoffmenge eine stöchiometrische Beziehung besteht. Für die drei Nährstoffgruppen sind zugänglich:  die kalorischen Äquivalente (kJ je Liter O2 ),  die Respiratorischen Quotienten RQ D n.CO2 /=n.O2 /,  die Brennwerte (kJ je Gramm), wobei physikalische und physiologische Brennwerte nur bei Kohlenhydraten und Fetten gleich sind, da Eiweiße nur bis zum Harnstoff abgebaut werden. Zu beachten ist, dass der RQ von der chemischen Zusammensetzung der Stoffe abhängig und für jede der drei Nährstoffgruppen charakteristisch ist:

5.14 Bioenergetik physikalischer Brennwert (kJ/g)

physiologischer Brennwert (kJ/g)

17 39 24

17 39 17

Kohlenhydrate Fette Eiweiße

479

 Kohlenhydrate, deren Moleküle sehr sauerstoffreich sind, benötigen zum oxidativen Abbau weniger O2 . Ihr RQ liegt bei 1,0.  Fette enthalten vergleichsweise wenig Sauerstoff im Molekül, es muss also zur Oxidation mehr O2 durch die Atmung hinzu geliefert werden. Ihr RQ liegt bei 0,7.  Eiweißstoffe nehmen mit einem RQ von 0,85 eine Mittelstellung ein. Der Hauptanteil am Energieumsatz wird durch die Verbrennung von wechselnden Mengen Kohlenhydraten und Fetten aufgebracht. Eiweißstoffe spielen eine geringe Rolle. Man kann bei der Berechnung des Energieumsatzes den Eiweißanteil deshalb vernachlässigen. Unter diesen Bedingungen geht der RQ nur noch auf Schwankungen im Kohlenhydrat- und Fettanteil in der Nahrung zurück. Damit ist es möglich, jedem RO zwischen 0,7 und 1,0 ein bestimmtes kalorisches Äquivalent zuzuordnen: RQ Kalorisches Äquivalent (kJ / L(O2 ))

1

0,9

0,85

0,8

0,7

21,16

20,66

20,41

20,15

19,65

Aus den Zahlenwerten geht hervor, dass eine Abnahme des RQ um 0,1 einer Abnahme des kalorischen Äquivalents um 0;50 kJ gleichzusetzen ist. Somit kann man den Energieumsatz Q eines Organismus berechnen, wenn man die Sauerstoffaufnahme in L(O2 )=h bestimmt und das kalorische Äquivalent des jeweiligen RQ in kJ =L(O2 ) einsetzt:     VO2  kal. Äquiv. L=h  kJ=L kJ QAnsatz D D (5.17) mAnsatz kg h=K  g Zur Bestimmung des Energieumsatzes beim Menschen verzichtet man auf die Messung des RQ. Man legt aus praktischen Gründen einen aus vielen Messungen gewonnenen Mittelwert von 0,85 zugrunde. Zur Berechnung des Energieumsatzes muss dann nur noch der Sauerstoffverbrauch pro Zeiteinheit gemessen und mit 20,41 (dem Wert des kalorischen Äquivalents beim RQ 0,85) multipliziert werden. 276

V G 0 D

X

0 B GProdukte 

X

0 B GEdukte

 * Glukose: C6 H12 O6 C 6 O2 )  6 CO2 C 6 H2 O  * Stearinsäureglycerinester: C57 H110O6 C 81,5 O2 )  57 CO2 C 55 H2 O  * Alanin: C3 H7 O2 N C 3 O2  )  2,5 CO2 C 2,5 H2 O C 0,5 N2 H4 CO

480

5 Lösungen V G0

277

M

O2 Verbrauch (L)

Brennwert

(kJ/mol)

(g/mol)

(kJ/g)

kalorisches Äquivalent (kJ/L(O2 ))

RQ

Glukose C6 H12 O6

2876

180

6  22,4 D 134,4

2876/180 D 15,98

2876/134,4 D 21,4

6/6 D1

Stearinsäureglycerinester C57 H110 O6 Alanin C3 H7 O2 N

34 285

880

81,5  22,4 D 1825,6

34 285/880 D 38,96

34 285/1825,6 D 18,78

57/81,5 D 0,7

1309,22

89

3  22,4 D 67,2

1309,22/89 D 14,71

1309,22/67,2 D 19,48

2,5/3 D 0,83

D n(CO2 )/n(O2 )

a): Das Untersuchungsgefäß wird in ein Wasserbad gestellt, dadurch ist die Einstellung und Konstanthaltung der gewünschten Versuchstemperatur möglich. Durch die Unterlage aus Natronkalk (CaO/NaOH-Gemisch) wird das von den Mehlwürmern freigesetzte Kohlenstoffdioxid absorbiert, so dass die im Versuchsgefäß auftretenden Druck- bzw. Volumenänderungen allein auf den Verbrauch von Sauerstoff zurückzuführen sind. Die diesbezüglichen Volumenänderungen werden mit Hilfe des Glasrohres und des beweglichen Wasserfadens erfasst. Das Prinzip der Messung besteht darin, dass der Sauerstoffverbrauch über die umgesetzte Stoffmenge mit der freigesetzten Energiemenge in einem stöchiometrischen Zusammenhang steht. b):

C6 H12 O6 C 6 O2

  * ) 

0 B G (kJ=mol) 910 X X 0 0 R G 0 D B GProdukte  B GEdukte 0

6 CO2 C 6 H2 O 394

237

R G 0 D .C910  2364  1422/ kJ=mol D 2876 kJ=mol kal. Äquiv. D

0 R GGlukose-Verbr. 2876 kJ=mol D 19;593 kJ=dm3 D 298 6  24;465 dm3 =mol nO2  Vm

VO2  kal. Äquiv. 0;0032 dm3 =h  19;593 kJ=dm3 D mAnsatz 0;0092 kg D 6;815 kJ=.h  kg/

QAnsatz D

c): Q.d;kg/ D QAnsatz  24 h=d 

1000 g D 17 778;3 kJ=.d  kg/ 9;2 g

5.14 Bioenergetik

278

481

a):

Wasser Wärmeisolation Versuchstier

Absorption H2O CO2

O2

Abb. 5.53 Kalorimetrische Bestimmung des Energieumsatzes einer Maus.

b): mH2 O  cH2 O  T 0;5 kg  4;186  103 kJ=.kg  K/  .3;2  2/ K=h D mTier 0;021 kg D 0;6379 kJ=.kg  h/

QAnsatz D

c): Q.d;kg/ D QAnsatz  24 h=d  279

1000 g D 729;03 kJ=.d  kg/ 21 g

a): Bei der vereinfachten Methode zur Grundumsatzbestimmung kann die in Abb. 5.54 schematisch ausgewiesene Apparatur eingesetzt werden. Es handelt sich um ein geschlossenes System, d. h. der Versuchsperson steht für die Atmung eine bestimmte Menge Luft (oder ein Luft-Sauerstoffgemisch) zur Verfügung. Diese Luft entnimmt sie über ein Mundstück und einen Atemschlauch dem angeschlossenen Gasometer (Spirometer). Diesem Gasometergefäß wird auch die ausgeatmete Luft zugeführt. In einem Absorptionsgefäß wird das Kohlenstoffdioxid gebunden, so dass die abschließend registrierte Volumenänderung einen Rückschluss auf den Sauerstoffverbrauch zulässt. Bei dieser Methode wird ein gemittelter Erfahrungswert für den RQ zugrunde gelegt, der RQ selbst wird experimentell nicht bestimmt, d. h. die ausgeatmete CO2 -Menge wird nicht gemessen. Somit ist durchaus vorstellbar, dass der tatsächliche Grundumsatz vom gemessenen mehr oder weniger abweicht. Durch den Schreiber wird zum einen jede Ein- und Ausatmung erfasst, zum anderen erfasst der Schreiber die allmähliche Volumenabnahme im Spirometer.

482

5 Lösungen

Inspiration Luft

Ventil

Mundstück

Exspiration Schreiber 3 2 1

Flüssigkeit Spirometer

CO2Absorption

Abb. 5.54

Funktionsprinzip des Spirometers.

rotierende Trommel

b): Bei einem RQ von 0,85 entspricht 1 dm3 Sauerstoff 20;41 kJ [Kalorisches Äquivalent]. VO2  kal. Äquiv. .1;2  1;2/ dm3 =h  20;41 kJ=dm3 D mAnsatz 70 kg D 4;199 kJ=.h  kg/

QAnsatz D

Die Versuchsperson hat einen Grundumsatz von Q = 7054;32 kJ/d. Das entspricht einer Tagesleistung von 7054;32 kJ 7 054 320 J J Arbeit D D D 81;65 D 81;65 W Zeit 24 h 86 400 s s c): Q.d;kg/ D 4;199 kJ=.h  kg/  24 h=d D 100;8 kJ=.d  kg/ 280

a): Von der Maus zur Ratte steigt die Körpermasse um den Faktor 20, die umgesetzte Energiemenge um den Faktor 9. Beim Vergleich von Mensch und Rind erhält man die Faktoren 10 und 7. Die vermutete lineare Proportionalität existiert offensichtlich nicht (Abb. 5.55). b): Man bezieht für den Abtrag auf der y-Achse die umgesetzten Energiemengen jeweils auf 1 kg Körpermasse und erhält in kJ/(d  kg) die Werte: 714; 347; 188; 145; 106; 84: 56. Bei sehr kleinen Säugern ist der auf 1 kg Körpermasse bezogene Energieumsatz deutlich höher als bei mittelgroßen und sehr viel höher als bei großen Säugern (Abb. 5.55). Man kann es auch anders formulieren: Mit kleiner werdender Körpermasse nimmt der auf 1 kg Körpermasse bezogene Energieumsatz überproportional zu. Folgende Erklärung sei hier vorgestellt: Kleine Tiere haben eine im Verhältnis zur wärmeproduzierenden Körpermasse relativ große wärmeabgebende Körperoberfläche. Die relativ hohen Wärmeverluste können

5.14 Bioenergetik

483

800 Weiße Maus 700

Energieumsatz in kJ/kg ⋅ 24 Std.

600 500 400 Weiße Ratte 300 200

Kaninchen

Hund Hausrind

100

Mensch Elefant 0

10

102

103

104

105

106

107

Körpermasse in g

Abb. 5.55 Energieumsatz in kJ/kg in Abhängigkeit von der Körpermasse in g.

nur durch eine erhöhte Stoffwechselaktivität ausgeglichen werden. Damit hängt zusammen, dass die Stoffwechselintensität vergleichbarer Gewebe bei kleinen Säugern größer ist. Zudem findet man bei kleinen Säugetieren einen höheren Anteil von stoffwechselintensiven Geweben wie Niere, Gehirn und Leber.

281

Männer 10 500 kJ/d Eiweiß Fette Kohlenhydrate

5.14.3 282

15 % 30 % 55 %

1575 kJ 3150 kJ 5575 kJ

Frauen 8800 kJ/d  93 g  81 g  336 g

1320 kJ 2640 kJ 4840 kJ

 78 g  68 g  281 g

Stoffwechsel

282.1: Die Antwort auf diese Frage liegt in den Eigenschaften des Substrats und der Reaktionsprodukte begründet, denn die freie Enthalpie der Hydrolyse unter Standardbedingungen ist ein Maß für die Differenz zwischen der freien Enthalpie der Edukte und derjenigen der Produkte. b) ATP4– ist ein Nucleotid. Der Zucker Ribose ist am C-Atom 1 mit der Stickstoffbase Adenin kondensiert und am C-Atom 5 mit Orthophosphorsäure verestert. An den Phosphatrest sind

484

5 Lösungen

zwei weitere Moleküle (H3 PO4 ) durch Kondensation angehängt. Das ATP4– -Molekül verfügt bei pH = 7,0 über nahe beieinander liegende negative Ladungen, die sich gegenseitig stark abstoßen. NH 2 N HC N –O

O–

O–

P∼O

P ∼ O P O CH2 O O

O

C

C C

N

O–

N

H2O

+

O

HPO2– 4

O H

H

OH

OH

H

H

OH

ATP 4 –

CH

+

P O CH2 O

N

N

O–

H OH

H+ + ADP 3–

Adenosintriphosphat

Abb. 5.56

H+ –O P ∼ O

H

H

C

N O–

C

C

HC

CH

O H

NH 2 N

P 2–

Adenosindiphosphat

Phosphat

Spaltung von Adenosintriphosphat in Adenosindiphosphat und Phosphat.

Wenn die endständige Phosphatbindung hydrolysiert wird, vermindern sich diese Abstoßungsvorgänge etwas. Die beiden resultierenden Produkte, nämlich die Anionen HPO2– 4 und ADP3– sind negativ geladen und besitzen daher wegen der gegenseitigen Abstoßung ihrer Ladungen eine nur geringe Neigung, sich wieder aneinander anzulagern. Daher vereinigen 4– sich auch ADP3– und HPO2– 4 nicht ohne weiteres wieder zu der Form von ATP . Der 4– 0 zweite Grund, der zu einem relativ großen negativen G -Wert der ATP -Hydrolyse beiträgt, besteht darin, dass die beiden Produkte ADP3– und HPO2– 4 durch Mesomeriestabilisierung eine neue energieärmere Anordnung der Elektronen erhalten, was dazu führt, dass sie sehr viel weniger freie Enthalpie besitzen, als sie aufweisen würden, wenn sie noch in der Form des ATP4– vereint wären. ATP4– kann auch unter Abspaltung einer Diphosphatgruppe (HP2 O3– 7 ) hydrolysieren: NH 2 N HC N –O

O–

O–

P∼O

P ∼ O P O CH2

O

O

C

C C

N

O– O

+

O H

H OH

OH

N

N

HC

CH

N O–

H2O

H+ –O

C C

C

N +

P O CH2 O

H

H

NH 2

O H

H

OH

OH

H

N CH HP2O3– 7

H

ATP 4 –

H+ + AMP 2–

P – P 3–

Adenosintriphosphat

Adenosinmonophosphat

Diphosphat

Abb. 5.57

Spaltung von Adenosintriphosphat in Adenosinmonophosphat und Diphosphat.

c) Im Gegensatz zu b) besitzt bei der Hydrolyse von Glukose-6-phosphat ein Produkt (Glukose) keine Nettoladung. Da sich Glukose und freies Phosphat (HPO2– 4 ) nicht gegenseitig elektrostatisch abstoßen, haben sie eine größere Tendenz, sich wieder zu vereinigen.

5.14 Bioenergetik CH2OPO32–

CH2OH

O H

H OH

+

OH

H2O

OH H

O H

H

H

HO

485

H

HO

OH

HPO2– 4

+

OH H

Glukose-6-phosphat

OH

Glukose

Abb. 5.58 Spaltung von Glukose-6-Phosphat in Glukose und Phosphat.

a) Im Phosphoenolpyruvat3 ist das zweite C-Atom durch die polarisierende Wirkung seiner Nachbarn (-I Effekt: D CH2 ; -M Effekt: COO– ; PO2– 4 ) sehr stark elektrophil. Als Lewis-Säure kann daher Phosphoenolpyruvat3 mit dem nukleophilen Partner Wasser (Lewis-Base) einen lockeren, energiereichen Lewis-Säure-Base-Komplex bilden, der sich 4– unter Freisetzung von Enthalpie zu Pyruvat und HPO2– 4 stabilisiert. Gegenüber ATP drückt 0 sich dies in noch negativeren Werten von G und pKHydr aus. O– CH2 C C

OH O

O –O

P

+

O–

H2O

CH2 C

O–

O CH3 C

C

O– C

O

+

HPO2– 4

O

O

Phosphoenolpyruvat

Enolpyruvat

Pyruvat

Hydrogenphosphat

Abb. 5.59 Spaltung von Phosphoenolpyruvat in Pyruvat und Phosphat.

282.2: ATP4– besitzt innerhalb der thermodynamischen Skala einen mittleren pKHydr -Wert, obgleich es als energiereiches Phosphat angesehen wird (Abb. 4.21, Kap. 4). Die Funktion des ATP4– /ADP3– -Systems besteht darin, als notwendiger Zwischenträger zu dienen, der Phosphatgruppen von Substanzen am oberen Ende der Skala auf Akzeptormoleküle am unteren Ende der Skala übertragen kann. ATP4– kann als gemeinsames Zwischenprodukt energieliefernde (exergone) Reaktionen mit energieverbrauchenden (endergonen) verbinden. Im Verlaufe kataboler Reaktionen werden energiereiche Phosphatverbindungen auf Kosten der Energie gebildet, die beim Abbau zellulärer Nährstoffe freigesetzt wird. Diese Stoffe 3– übertragen ihre Phosphatgruppen (HPO2– 4 ) und damit ihre Energie auf ADP . Das so ge4– bildete ATP überträgt seine endständige Phosphatgruppe und damit seine Energie auf ein Akzeptormolekül, dessen Energieinhalt dadurch ansteigt. Diese Vorgänge sind in Abb. 5.60 dargestellt, in denen X-P den Donator einer energiereichen Phosphatgruppe (HPO2– 4 ) (D P) für

486

5 Lösungen

H+ ADP3– (DADP) darstellt, Y den Akzeptor einer Phosphatgruppe vom ATP4– (DATP) und E1 und E2 spezifische phosphatübertragende Enzyme: E1 Donator 1 + ADP

Akzeptor 1 + ATP

X–P

X P ΔpK1 = pK1 – pKATP

Donator 1 Akzeptor 1

X–P

/

X

//

Halbzelle 1

ADP

/

ΔG10 = 2,303 ⋅ ΔpK1 ⋅ R ⋅T

ATP

Halbzelle ATP-ADP

E2 ATP +

Y

ADP + Y – P

Akzeptor 2

Donator 2

P ΔpK2 = pKATP – pK2 Akzeptor 2 Donator 2

ATP

/

ADP

//

Halbzelle ATP-ADP

Abb. 5.60

Y

ΔG20 = 2,303 ⋅ ΔpK2 ⋅ R ⋅T

/ Y–P Halbzelle 2

Halbzellen des ATP4 /ADP3 -Systems.

Im Intermediärstoffwechsel findet die direkte Reaktion zwischen denkbaren korrespondierenden Halbzellen X-P/X und Y/Y-P i. d. R. nicht statt (kinetische Hemmung, Zeit- und Ortfaktoren), ist aber bei energetischen Betrachtungen einer Sequenz von hintereinandergeschalteten Reaktionen durchaus von Bedeutung:

Donator 1 + Akzeptor 2 X–P

E1

Akzeptor 1 + Donator2

E2

Y

X

Y–P

P

Halbzelle 1

ΔpKges. = pKXP – X – pKYP – Y

Donator 1 / Akzeptor 1 // Akzeptor 2 / Donator 2 X–P

X

Y P

Abb. 5.61

Y–P Halbzelle 2

ATP4 /ADP3 -System.

= pKXP – X < pKYP – Y 0 ΔGges. = 2,303 ⋅ ΔpKges. ⋅ R ⋅T

= ΔG10 + ΔG20

5.14 Bioenergetik

487

282.3: 1,3-Diphosphoglycerat (3)

Fruktose-1,6-diphosphat 6CH

CH2OPO2– 3

HCOH (1)

C O

ΔpK(1) = – 8,33 + 5,12 = – 3,21 0 = – 3,21 ⋅ 2,303 ⋅ 8,3143 J/(mol ⋅ K) ⋅ 310,15 K ΔG(1)

= – 19063,2 J/mol

CH2OPO2– 3

O

H+ ADP 3–

OPO2– 3

OPO2– 3

2

H

HO

OH

H

H

Phosphoglyceratkinase

Phosphofruktokinase

OH

ΔpK(2) = – 5,12 + 2,76 = – 2,36 0 = – 2,36 ⋅ 2,303 ⋅ 8,3143 J/(mol ⋅ K) ⋅ 310,15 K ΔG(2)

= – 14015,3 J/mol

CH2OPO2–3

6 (3)

CH2OPO2– 3

COO–

3-Phosphoglycerat

CH2OH

O

ATP 4 –

HCOH

H

HO

H ΔpK

= – 8,33 + 2,76 = – 5,57

OH OH

0 = – 5,57 ⋅ 2,303 ⋅ 8,3143 J/(mol ⋅ K) ⋅ 310,15 K ΔGges

= – 33,078 kJ/mol

H

Fruktose-6-phosphat

0 = ΔG 0 + ΔG 0 = – 33,078 kJ/mol ΔGges (1) (2)

Abb. 5.62 ATP4 /ADP3 -System als Bindeglied zwischen der Reaktion von 1,3-Diphosphoglycerat zu 3-Phosphoglycerat und der Reaktion von Fruktose-6-phosphat zu Fruktose-1,6-diphosphat.

282.4: 4– Die Übertragung des Phosphatrestes (HPO2– erfolgt i. d. R. auf Moleküle mit 4 ) von ATP Hydroxyl-, Carboxyl- oder Aminogruppen. Sie wird von spezifischen Enzymen (ihr Proteinanteil heißt Apoenzym) katalysiert, die ATP4– bzw. ADP3– als Cosubstrat (! reversibel ablösbarer Nichtproteinanteil, auch Coenzym genannt) verwenden und meist als Kinasen bezeichnet werden. Apoenzym und Coenzym bilden zusammen das Holoenzym. Nur dieses ist wirksam. 283

284

Die Oxidation von Glycerinaldehyd-3-phosphat zu 1,3-Biphosphoglycerat bildet den energieliefernden Schritt der Glykolyse. Die Energie wird jedoch nicht als Wärme frei, sondern das energiereiche, doppelt phosphorylierte Oxidationsprodukt überträgt anschließend einen 3– 4– Phosphatrest (HPO2– 4 ) auf ADP , so dass die Oxidationsenergie nun größtenteils in ATP gespeichert ist. O  * CH3 CCOO– H+ C HSCoA C NAD+  )  Pyruvat–

O CH3 CSCoA C NADH=H+ C CO2 AcetylSCoA

488

5 Lösungen



Kp R G D R  T  ln p 0

n 

D .0;0083143  298;15/ kJ=mol  ln

7;4  1010 Pa 105 Pa

1

D 33;5 kJ=mol Der hohe negative R G 0 -Wert zeigt, dass diese Reaktion in der intakten Zelle praktisch irreversibel verläuft. 285

Vergleichbar mit der Initialreaktion (1b) ist die oxidative Decarboxylierung von ˛-Ketoglutarat2 unter Bildung von energiereichem Succinyl SCoA und CO2 , bei der gleichfalls ein R G 0 -Wert von 33;5 kJ=mol ermittelt wurde und die den nachfolgenden Reaktionen einen Energieschub versetzt. COO–

COO–

CH2 CH2

CH2 +

+ CoA – SH + NAD

CH2

+ CO2 + NADH/H+

C O

C O

COO–

S CoA

α- Ketoglutarat 2–

Succinyl~S-CoA

Abb. 5.63

Umsetzung von ˛-Keto-glutarat2 zu Succinyl SCoA.

286

Die Reaktion verläuft trotzdem in der Zelle ohne Schwierigkeiten in Richtung zum Oxalacetat2– , weil die Reaktionsprodukte Oxalacetat2– und NADH=H+ durch weitere Reaktionsschritte in Richtung Citrat3– und weiter schnell entfernt werden (Abb. 5.64).

287

Zwei Kohlenstoffatome erscheinen als Kohlenstoffdioxid und zwar äquivalent zu den beiden Kohlenstoffatomen der Acetylgruppe, die in den Zyklus eingetreten ist; sie sind aber nicht mit ihnen identisch. Vier Paare Wasserstoffatome werden durch enzymatische Dehydrogenierung gewonnen. Davon dienen drei Paare dazu, NAD+ zu reduzieren, und ein Paar wird zur Reduktion des FAD (Flavin-Adenin-Dinukleotid) der Succinat-Dehydrogenase (s. Kap. 6, Abb. 6.5) verwendet. Schließlich werden alle diese Wasserstoffatome zu H+ ionisiert und die dabei abgespaltenen Elektronen werden nach ihrem Transport durch die Atmungskette vom Sauerstoff gebunden.

288

Die Gleichung lautet: CH3 COOH C 2 H2 O ! 2 CO2 C 8 H. Aus ihr und dem Schema im Vorspann (Abb. 4.22) geht hervor, dass weder molekularer Sauerstoff oder anorganisches Phosphat noch ATP4– direkt an den Vorgängen des Citrat-Zyklus teilnehmen. Es tritt keine Nettoentnahme von Oxalacetat2– auf. Ein Molekül davon reicht aus, um die Oxidation von unendlich vielen Essigsäuremolekülen (als Acetyl SCoA) durchzuführen. Ungeachtet dieser Feststellung, ist intermediär eine enzymatisch katalysierte Nachlieferung von Oxalacetat2– durch Pyruvat-Carboxylierung garantiert.

5.14 Bioenergetik

489

Initialreaktion (1b)

Acetyl~S–CoA COO– HO

NADH/H+ NAD+

COO–

CoA–SH

O C

CH CH2

CH2

COO–

COO–

Malat 2–

COO– CH2 HO C COO– CH2

H2O

Oxalacetat 2–

COO– Citrat 3–

Abb. 5.64 Initialreaktion und Schrittfolge des Citrat-Zyklus mit exergoner Wirkung auf die endergone Oxidation von Malat2– zu Oxalacetat 2– .

289

a): Alkoholische Gärung Bilanzgleichung: ! 2 C2 H5 OH C 2 CO2 C 2 ATP4– C 2 H2 O C6 H12 O6 C 2 (H+ =ADP3– ) C 2 HPO2– 4  Wirkungsgrad: C6 H12 O6 ! 2 C2 H5 OH C 2 CO2 X X 0 0 R G10 D B GProd.  B GEd. D .1136  910/ kJ=mol D 226 kJ=mol 2 (H+ =ADP3– ) C 2 HPO2– ! 2 ATP4– C 2 H2 O 4  R G20 D C61;12 kJ=mol 61;12 kJ=mol D 0;27 ATP D 226 kJ=mol Aus der Reaktionsfolge der Glykolyse (Kap. 4, Abb. 4.22(1a) und Kap. 6, Abb. 6.1) geht hervor, dass aus einem Mol Glukose zunächst zwei Mole Pyruvat– , zwei Mole NADH=H+ und zwei Mole ATP4– entstehen. Hefen können nun mit Hilfe des Enzyms Pyruvat-Decarboxylase folgende Reaktion katalysieren: O Enzym

CH3 CCOO– H+ ! CH3 CHO C CO2 Pyruvat– Ethanal Das Ethanal wird anschließend durch NADH=H+ zu Ethanol reduziert: CH3 CHO C NADH=H+ ! Ethanal

CH3 CH2 OH C NAD+ Ethanol

490

5 Lösungen

Aus der Reaktion von Pyruvat– zu Ethanol ergibt sich für die Zelle eine Wiedergewinnung von NAD+ und damit die weitere Möglichkeit zur ATP4– -Synthese. Denn wenn die Atmungskette nicht abläuft, wird der an das Coenzym gebundene Wasserstoff nicht oxidiert, er würde das Coenzym in Form von NADH=H+ auf Dauer blockieren. Die alkoholische Gärung durch Hefepilze dient zum Bierbrauen und zur Branntweinherstellung. Da Ethanol ein Zellgift ist, wird es ausgeschieden und reichert sich in der gärenden Mischung an. Bei einer Konzentration von ca. 18 Vol  -% Ethanol hört die Gärung von selbst auf, da der Alkohol die Zellen zu schädigen beginnt. Milchsäuregärung Bilanzgleichung: ! 2 CH3 CHOHCOOH C 2 ATP4– C2 H2 O C6 H12 O6 C2 (H+ =ADP3– )C2 HPO2– 4  Wirkungsgrad: C6 H12 O6 ! 2 CH3 CHOHCOOH X X 0 0 B GProd.  B GEd. D .1107  910/ kJ=mol D 197 kJ=mol R G10 D 2 (H+ =ADP3– ) C 2 HPO2– ! 2 ATP4– C 2 H2 O 4  R G20 D C61;12 kJ=mol 61;12 kJ=mol D 0;31 ATP D 197 kJ=mol Einige Bakterienarten, deren bekannteste die allgegenwärtigen Milchsäurebakterien sind, lösen das Problem der NAD+ -Regenerierung anders als die Hefepilze: Sie reduzieren das Pyruvat– mit NADH=H+ unmittelbar zu Lactat– (Anion der Milchsäure), ohne dass CO2 als Abfallprodukt entsteht: O CH3 CCOO– H+ C NADH=H+ ! CH3 CHOHCOO– H+ C NAD+ Pyrovat– Lactat– Auch hier wird das Endprodukt ins Nährmedium ausgeschieden. Dies macht sich der Mensch z. B. bei der Herstellung von Sauerteig, gesäuerten Milcherzeugnissen (Buttermilch, Yoghurt), Sauerkraut und eingelegten, sauren Bohnen zu Nutze. In den beiden letztgenannten Fällen hat man es nicht nur auf den sauren Geschmack abgesehen, sondern auch auf eine Konservierung. Die Erfahrung lehrt nämlich, dass viele Bakterien, die unsere Lebensmittel durch Fäulnis verderben, in saurem Milieu nicht existieren können. Auch die Aufbewahrung von vitaminreichem Grünfutter in Silos beruht auf der Milchsäurekonservierung. Menschliche Muskelzellen erzeugen ATP4– durch Milchsäuregärung, wenn Sauerstoff knapp ist. Eine solche Anaerobiose tritt z. B. bei anstrengender körperlicher Arbeit auf, wenn die Sauerstoffversorgung der Muskeln durch das Blut nicht mehr mit dem ATP-Verbrauch Schritt halten kann. Unter solchen Bedingungen stellen die Zellen sich von der aeroben Zellatmung auf Gärung um. Das Lactat– , das sich als Produkt ansammelt, kann Muskelerschöpfung und Muskelkater verursachen, aber es wird allmählich vom Blut abtransportiert und zur Leber befördert. Die Leberzellen setzen das Lactat– wieder zu Pyruvat– um. Neuere Erkenntnisse über die Ursache von Muskelkater gehen allerdings von Mikroverletzungen im Muskel beim Bremsen und Beschleunigen von Bewegungen (insbesondere mit schlechter Koordination) aus. Durch Überlastung entstehen in den Sarkomeren der Muskelfasern kleine Risse. Resultierende Entzündungen führen durch Eindringen von Wasser

5.14 Bioenergetik

491

zum Anschwellen des Muskels mit Dehnungsschmerzen. Nachdem sich der Lactatspiegel längst normalisiert hat, stellen sich diese jedoch erst nach etwa 12 bis 24 Stunden ein, wenn die bei den Mikrorissen entstandenen Abfallprodukte aus dem Muskel befördert werden und dort mit den Nervenzellen in Kontakt kommen. b): Die Zelle kann durch Veratmung von 1 mol Glukose 36 mol ATP4+ aufbauen, während bei der Gärung nur 2 mol ATP4– entstehen. Zur Deckung seines Energiebedarfs muss ein gärendes Lebewesen demnach wesentlich mehr Glukose umsetzen als ein atmendes. c): Die Glykolyse ist ein gemeinsamer Reaktionsweg von Gärung und Zellatmung. Diese Gemeinsamkeit hat ihre Grundlage in der biologischen Evolution der Organismen auf der Erde. Deren Uratmosphäre bestand wahrscheinlich aus Wasserstoff, Methan, Ammoniak und Wasserdampf. Deshalb konnten sich zunächst nur Anaerobier entwickeln. Die ersten Prokaryoten (kernlose Zellen) stellten ATP4– vermutlich schon durch Glykolyse her, lange bevor die Erdatmosphäre Sauerstoff enthielt. Die ältesten bekannten Fossilien von Bakterien sind über 3,5 Milliarden Jahre alt, aber nennenswerte Mengen von Sauerstoff sammelten sich in der Atmosphäre vermutlich erst vor etwa 2,5 Milliarden Jahren an. Fossilfunden zufolge hatten sich zu jener Zeit die Cyanobakterien entwickelt; diese geben als Nebenprodukt der Photosynthese Sauerstoff ab. Die ersten Prokaryoten müssen ihr ATP4– also ausschließlich durch Glykolyse gewonnen haben, für die kein Sauerstoff erforderlich war. Außerdem ist die Glykolyse der am weitesten verbreitete Stoffwechselweg, und das legt die Vermutung nahe, dass sie sich in der Geschichte des Lebens bereits sehr frühzeitig entwickelt hat. Auch die Tatsache, dass sie im Cytosol (löslicher Teil des Cytoplasmas) abläuft, weist auf ein hohes stammesgeschichtliches Alter hin; dieser Stoffwechselweg erfordert nicht die membranumhüllten Organellen der Eukaryotenzellen (kernhaltige Zellen), die erst etwa zwei Milliarden Jahre nach den ersten Prokaryoten entstanden. Die Glykolyse ist somit ein Erbstück aus dem Stoffwechsel der allerersten Zellen, das heute weiterhin an der Gärung mitwirkt und als erstes Stadium beim Abbau organischer Moleküle durch die Zellatmung dient . 290

(s. Abb 5.65) Die nächsten Reaktionsschritte sind mit denen des Kohlenhydratabbaus identisch (Kap. 6, Abb. 6.1 und 6.2). P = HPO2– 4 H CH2OH CHOH

ATP4– ADP3–H+ CH2OH

NAD+

NADH/H+

CHOH O∼ P

CH2OH

CH2

Glycerin

Glycerin-3-phosphat

CH2OH C O CH2

O C

H C OH O∼ P

CH2 O∼ P

Dihydroxyaceton- Glycerin-aldehydphosphat 3-phosphat

Abb. 5.65 Abbau von Glycerin zu Glycerin-aldehyd-3-phosphat.

492 291

5 Lösungen

(s. Abb. 4.23): (0) Die freie Fettsäure wird zunächst durch Veresterung mit CoA-SH unter Bildung des entsprechenden Acyl S-CoA-Esters aktiviert und von einem Lotsen (Acyl-Carnitin-Ester) unter Verbrauch von 1 mol ATP4– zur inneren Mitochondrienmatrix transportiert. Dort folgen vier enzymatische Stufen unter Abspaltung eines Acetyl SCoA-Restes: (1) Oxidation der C-Atome 2 und 3 durch die FAD-abhängige Dehydrogenase, (2) Enzymatische Wasseranlagerung an die resultierende 2,3-trans-Doppelbindung, (3) Oxidation des resultierenden ˇAcyl SCoA durch eine NAD+ abhängige Dehydrogenase und (4) Enzymatische Spaltung des gebildeten ˇKet oacyl SCoA zur Bildung von Acetyl SCoA und dem um zwei C-Atome verkürzten Fettsäure S-CoA-Ester. Der verkürzte Fettsäure SCoAEster kann dann erneut den Zyklus durchlaufen. Ergebnisse:    

In einem Durchgang werden je 1 mol NADH=H+ und 1 mol FADH2 gebildet. In einem Durchgang wird jeweils 1 mol Acetyl SCoA gebildet. In einem Durchgang wird jeweils 1 mol ATP4– gespalten. Nach einem Durchgang folgt ein zweiter, dann ein dritter usw., bis die Fettsäure vollständig in Acetyl SCoA gespalten wurde. Natürliche Fettsäuren haben in der Regel eine gerade Anzahl von C-Atomen.

292

Kohlenhydratmoleküle befinden sich in einem höheren Oxidationszustand als die relativ sauerstoffarmen Fettmoleküle. Z. B. ist die Oxidationszahl eines mittelständigen C-Atoms der Glukose ˙0, die eines mittelständigen C-Atoms im Alkanrest einer Fettsäure-2. Demnach kann bei der Oxidation eines Fettmoleküls bedeutend mehr Energie gewonnen werden als bei der Oxidation eines Glukosemoleküls. Außerdem sind Fettmoleküle größer als Glukosemoleküle, sie besitzen mehr oxidierbare Atome.

293

Stearinsäure hat 18 C-Atome. Sie durchläuft den ˇ-Oxidationszyklus insgesamt achtmal. Dabei entstehen 9 Acetyl SCoA, 8 NADH=H+ und 8 FADH2 . Es liefern 9 Acetyl SCoA beim oxidativen Abbau im Citrat-Zyklus 9ATP4 C 9  3NADH=HC C 9FADH2 . Es liefern 35 NADH=H+ in der Atmungskette 3  35 D 105ATP4 . Es liefern 17 FADH2 in der Atmungskette 2  17 D 34 ATP4– . 1 ATP4– wird zur Bildung von Stearyl S-CoA am Start verbraucht. .9 C 105 C 34  1/ ATP 4– D 147 ATP 4– () gespeicherte freie Enthalpie von 4492;32 kJ=mol Stearinsäure als energiereiche Phosphatbindungen in der Form von ATP4– )

294

Beim glykolytischen Glukoseabbau entstehen die Zwischenprodukte Dihydroxyacetonphosphat und Glycerinaldehyd-3-phosphat. Beide lassen sich zu Glycerin reduzieren. Endprodukt der Glykolyse ist Brenztraubensäure. Bei deren oxidativer Decarboxylierung und Reaktion mit CoA entsteht Acetyl SCoA. Durch Umkehrung der Vorgänge bei der ˇ-Oxidation können aus mehreren Acetyl SCoA-Molekülen schrittweise Fettsäuremoleküle synthetisiert werden.

5.14 Bioenergetik

295

493

Die Reaktionsfolge ergibt sich aus der Umkehrung der ˇ-Oxidation (vergl. Abb. 4.23).

O β CH3 CH2 CH2 C OH Buttersäure

CoA SH

ATP4–

H2O

H+ AMP2– HP2O3– 7 O O



O

CH3 CH2 CH2 C

CH3 C

S CoA



CH3 C



S CoA

S CoA FAD

CoA SH FADH2 O

O

O CH3 CH CH C





CH3 C CH2 C

S CoA

S CoA

NADH/H+

H2O OH

NAD+



O CH3 C CH2 C S CoA H

Abb. 5.66 Aufbau von Buttersäure.

296

Die aus Alanin durch oxidative Desaminierung gebildete Brenztraubensäure gelangt als Acetyl SCoA in den Citrat-Zyklus. Hier erfolgt der weitere Abbau des Acetylrestes unter Bildung von CO2 und Wasserstoffatomen (gebunden an NAD+ und FAD). In der nachfolgenden Atmungskette erfolgt ein Transport von Elektronenäquivalenten dieser Wasserstoffatome zu molekularem Sauerstoff, ein Vorgang, der durch Chemiosmose mit einer Phosphorylierung von ADP3– gekoppelt ist. Bilanz: Die Schrittfolge bis Acetyl SCoA erzeugt 2 NADH=H+ , der weitere Abbau im Citrat-Zyklus liefert 1 ATP, 3 NADH=H+ und 1 FADH2 . Es liefern 5 NADH=H+ in der Atmungskette 3  5 D 15 ATP4– . Es liefert 1 FADH2 in der Atmungskette 1  2 D 2 ATP4– . 2 ATP4– werden für den Abbau der Alanin-Aminogruppe im Harnstoffzyklus (s. Kap. 6, Abb. 6.9) benötigt. 2 weitere energiereiche Phosphatbindungen sind für die Einschleusung von Aspartat2– in den Zyklus erforderlich. Somit ergeben sich 1 C 15 C 2  2 D 16 ATP4 (D 489;6 kJ=mol).

494

5 Lösungen NADH/H+ NAD+

CH3 CH COOH

CH3 C COOH

NH2

NH + H2O

CH3 C COOH + NH3 O

Abb. 5.67

Oxidative Desaminierung von Alanin.

Summengleichung des Harnstoffzyklus:  * 2 NH3 C CO2 C 3 ATP4– C H2 O )  + 2– 3– CO(NH2 )2 C 2 (H+ ADP3– ) C2 HPO2– 4 C (H AMP ) C HP2 O7

Pyrophosphat3–

Harnstoff 2– –  * HP2 O3–  HPO4 C H2 PO4 7 C H2 O )

Pyrophosphat3– Die Bildung von 1 Molekül Harnstoff benötigt, da das gebildete Pyrophosphat3– hydrolysiert wird, letzten Endes 4 energiereiche Phosphat-Bindungen. 297

In unserem Beispiel wird aus Glutamat2– durch Transaminierung ˛-Ketoglutarat2– , das ebenfalls in den Citrat-Zyklus gelangen und weiter abgebaut werden kann. Die Summengleichung lautet: COO–

COO– COO–

H2N C H CH2

+

C

O

Enzym

C

COO–

O

CH2

+

H2N C H

CH2

CH2

CH2

CH2

COO–

COO–

COO–

COO–

Glutamat 2–

Abb. 5.68

Oxalacetat 2–

α-Ketoglutarat 2–

Aspartat 2–

Transaminierung von Glutamat2 zu ˛-Ketoglutarat2 .

Das Enzym wirkt dabei als Überträger der Aminogruppe (Abb. 5.69). Am elektrophilen C-Atom von Pyridoxalphosphat2– lagert sich das Stickstoffatom der ˛Aminosäure unter Wasserabspaltung nukleophil an. Es bildet sich ein lockerer Lewis-Säure/ Base-Komplex (Schiffsche Base, Azomethin, Imin), der unter Wasseraufnahme und Mesomeriestabilisierung in Pyridoxaminphosphat2– und ˛-Ketosäure zerfällt (Abb. 5.70). Das aminierte Enzym kann nun die NH2 -Gruppe auf eine andere ˛-Ketosäure übertragen und wieder die Aldehydform annehmen.

5.14 Bioenergetik α-Ketoglutarat 2–

Glutamat 2–

COO–



COO

C

H2N C H

H

O

CH2

CH2

CH2

CH2

COO–

COO–

O

C HO CH3

495

CH2NH2 CH2OPO2– 3

Transaminierung

+

N

CH2OPO2– 3

HO CH3

+

N

H

H

Pyridoxalphosphat

Pyridoxaminphosphat 2–

2–

COO–

COO–

H2N C H

C

O

CH2

CH2

COO–

COO–

Aspartat 2–

Oxalacetat 2–

Abb. 5.69 Funktion des Pyridoxalphosphats 2– bei der Transaminierung.

298

a): Die Gesamtreaktion der von NADH=H+ ausgehenden oxidativen Phosphorylierung ergibt sich als Summe von (I) und (II): + 3–  4– 0  * D C91;68 kJ=mol 3 HPO2–  3 ATP C 3 H2 O G(I) 4 C (3 H =ADP ) ) + 1 + 0  * (II) NADH=H C 2 O2 ) G(II) D 218;06 kJ=mol  NAD C H2 O

(I)

+ 3– 1 + 4–  * NADH=H+ C 3 HPO2–  NAD C 3 ATP C 4 H2 O 4 C 3 (H =ADP ) C 2 O2 ) 0 G D 126;38 kJ=mol

Der Wirkungsgrad ergibt sich zu ATP D

0 G(I) 0 G(II)

:

0 G(I) D 3  30;56 kJ=mol D 91;68 kJ=mol (Bildung von 3 Mol ATP4– ) 0 errechnet sich aus E 0 der elektrochemischen Zelle: G(II)

Donator ./

Akzeptor

NADH=H =NAD +

0

Anode E (V)

0;315

+

//

1 2

O2 (H2 O)=2 OH– C0;815

.C/ Kathode

496

5 Lösungen α-Aminosäure

H

R

+

C O

–H

H

R

H

N C COOH

C

CH2OPO2– 3

H 3C

CH2OPO2– 3

HO H3C

+

N

H

C N

C COOH

H

H HO

R

H

N C COOH

H3C

+

N

H

CH2OPO2– 3

HO

H

+

N H

Pyridoxalphosphat 2–

Schiffsche Base

H2O H H

C NH2 CH2OPO2– 3

HO H3C

R +

O C COO–

+

N H

Pyridoxaminphosphat 2–

Abb. 5.70

α-Ketosäure

Reaktionsmechanismus der Transaminierung.

0 0 E 0 D EKathode  EAnode D 1;13 V

G 0 D z  F  E 0 D 2  96 487 As=mol  1;13 V D 218 060;62 Ws=mol.J=mol/  218 kJ=mol 91;68 kJ=mol D 0;42 .42 %/ ATP D 218 kJ=mol + 3– 1 4–  * b): FADH2 C 2 HPO2–  FAD C 2 ATP C 3 H2 O 4 C 2 (H =ADP ) C 2 O2 ) G 0 D C61;12 kJ=mol

497

5.14 Bioenergetik

c): H+

Nikotinamid-Ring H

H

O C NH2

N

+ 2H (H– + H+) Reduktion N

(+)

R NADH/H+ NADPH/H+

O

OH

C C

CH3OC

C

O C NH2

R Nikotinamid-Adenin-Dinukleotid NAD+ Nikotinamid-Adenin-Dinukleotid-Phosphat NADP+

CH3OC

H

C C

CH

C

R

+ 2H Reduktion

C

CH3OC

C

CH3OC

C

Isoalloxazin-Ring von FAD und FMN O N

H 3C

N

CH 3

C

R

C OH Ubihydrochinon

O Ubichinon

H3C

C

+ 2H (2H+ + 2e–) Reduktion

NH

N

O H N

H3C

NH

H3C

O

N R

R Flavin-Adenin-Dinukleotid FAD Flavin-Mono-Nukleotid FMN Cytochrom c

O

N H

FADH2 FMNH2

Die 4 N-Atome und das an sie gebundene Fe-Atom liegen in einer Ebene des 16-gliedrigen Porphinrings, der durch 9 konjugierte Doppelbindungen mesomeriestabilisiert ist. X und Y bezeichnen Proteingruppen. X

HC

X

CH

Oxidation – e–

N NH

Fe2+ HN N HC Y

HC

CH N NH

CH

+ e– Reduktion

Fe3+ HN N HC

CH

Y

Abb. 5.71 Redoxzustände der prosthetischen Gruppen (NAD+ , NADP+ , Ubichinon, FAD, FMN und Cytochrom c) von Carriern der Elektronentransportkette (Atmungskette).

498

5 Lösungen

d): Die Atmungskette synthetisiert selbst kein ATP4– . Sie hat vielmehr die Funktion, den Elektronenfluss vom NADH=H+ beziehungsweise FADH2 zum molekularen Sauerstoff zu ermöglichen und diesen großen Energiesprung in eine Kaskade kleinerer Stufen zu zerlegen (Abb. 5.72). Dadurch wird die Energie in kontrollierbaren und für die Zelle verwertbaren Mengen freigesetzt. – 0,4 NADH/H+

NAD+

Succinat –2 (+0,031 V)

2e–

FADH2

2e–

Komplex II

2e–

ATP4 –

2e– Q

Coenzym Q 2e–

Fumarat –2

ATP4 –

2e– + 0,4

Cyt C Cytochrom c (+0,235 V) 2e–

H+ /ADP3– HPO2– 4 H2O

Komplex IV ΔE 0 = 0,580 V ΔG 0 = – 112 kJ/mol

+ 0,6

ATP4 –

2e–

+ 0,8 2 H+ + _12 O2

Abb. 5.72

(+0,045 V)

H+ /ADP3– HPO2– 4 H2O

Komplex III ΔE 0 = 0,190 V ΔG = – 36,7 kJ/mol

+ 0,2

(– 0,315 V) H+ /ADP3– HPO2– 4 H2O

Komplex I ΔE 0 = 0,36 V ΔG 0 = – 69,5 kJ/mol

– 0,2

0

2e–

H2O

(+0,815 V)

Kaskade kleiner Energiestufen in der Atmungskette.

Der lineare mitochondriale Elektronentransport verläuft über die redoxaktiven Cofaktoren/ prosthetischen Gruppen der Proteinkomplexe mit steigenden Redoxpotenzialen vom Redoxpaar NADH=H+ =NAD+ (E 0 D 0;315 V) zum Redoxpaar O2 =H2 O (E 0 D C0;815 V). Dadurch kann die Potenzialdifferenz von E 0 D C1;13 V in drei Teilschritten in Höhe von 360 mV, 190 mV und 580 mV für den jeweiligen Aufbau eines ausreichenden Protonengradienten (HC ) und damit für die Synthesearbeit von ATP4– (ıWATP ) bereit gestellt werden. Wie das Mitochondrium diesen Elektronentransport an die ATP4– -Synthese koppelt wird schematisch in Kap. 4, Abb. 4.25 veranschaulicht: Das NADH=H+ trägt die energiereichen Elektronen, die den Substratmolekülen im Vor- und Hauptfeld des Citrat-Zyklus entzogen wurden, zur Atmungskette, die in die innere Mitochondrienmembran eingebettet ist. Der helle Pfeil im Schema zeigt den Weg der Elektronen bis zum „unteren“ Ende der Kette, wo sie auf Sauerstoff übertragen werden und Wasser entsteht. Die meisten Elektronenüberträger in der Kette sind zu vier Enzymkomplexen zusammengefasst (Komplex II: FAD ! Fe  S fehlt). Ubichinon (Q) und Cytochrom c gelten als mobile

5.14 Bioenergetik

499

Elektronentransporter zwischen Komplex I und III bzw. III und IV. Während ein solcher Komplex Elektronen aufnimmt und dann wieder abgibt, pumpt er Protonen (H+ ) aus der Mitochondrienmatrix in den Intermembranraum. Die aus den Nährstoffen gewonnene Energie wird also in eine protonenmotorische Kraft ptm umgesetzt, die sich ergibt zu: HC

.z  F  E C 2;303  R  T  pH / D D E59 mV  pH ŒV F F .T D 298 ı C, z D 1 und F D 96 487 As=mol/

pt m D

Die Protonen vollenden ihren Kreislauf, indem sie ihrem Konzentrationsgradienten folgend durch einen H+ -Kanal in der ATP4– -Synthase fließen, die als Protein-Enzymkomplex auch in der Membran liegt. Die ATP4– -Synthase arbeitet wie eine Mühle, die mit dem exergonischen Fluss von H+ die ATP4– -Synthese antreibt. Sie nutzt also den Protonengradienten (HC ), um ADP3– =H+ zu ATP4– zu phosphorylieren. Diesen Vorgang nennt man oxidative Phosphorylierung, weil er durch die Oxidation (Elektronenverlust) von Substratmolekülen angetrieben wird, mit Sauerstoff als finalem Elektronenakzeptor. Den Mechanismus dieser Energiekopplung bezeichnet man als Chemiosmose, weil chemische Energie aus Redoxreaktionen zum Aufbau des Protonengradienten (HC ) verwendet und damit ATP-Synthesearbeit ıWATP D HC  dnATP in der Einheit J geleistet wird . 299

a) Abbau von Glukose (6 C-Atome): Glykolyse und Citrat-Zyklus liefern 4 ATP4– . Die Oxidation von 10 NADH=H+ und 2 FADH2 setzt 30 C 4 D 34 ATP4– frei. 2 ATP4– werden für den NADH=H+ -Transport in die Mitochondrien benötigt. Somit ergeben sich 4 C 34  2 D 36 ATP4– (= 1101;6 kJ=mol). 4–  * C6 H12 O6 C 6 O2 C 36 (H+ ADP3– ) C 36 HPO2–  6 CO2 C 6 H2 O C 36 ATP 4 )

GR0 D 2876 kJ=mol I R G.ATP/ 1101;6 D D 0;383 ATP D R G.Glukose/ 2876 Freisetzung von Wärme: 61,7 % b) Abbau von Palmitinsäure (PS, 16 C-Atome): Für ihre Aktivierung wird 1 ATP4– benötigt. Sie durchläuft 7mal den ˇ-Oxidationszyklus. Dabei entstehen 8 AcetylCoA, 7 NADH=H+ und 7 FADH2 .  Es liefern 8 AcetylCoA beim oxidativen Abbau im Citrat-Zyklus 8 ATP4– , 8 FADH2 und 24 NADH=H+ .  Es liefern 15 FADH2 in der Atmungskette 2  15 D 30 ATP4– .  Es liefern 31 NADH=H+ in der Atmungskette 3  31 D 93 ATP4– . Somit ergeben sich 8 C 93 C 30  1 D 130 ATP4– (= 3978 kJ=mol). C15 H31 COOH C 23 O2 C 130 (H+ ADP3– ) C 130 HPO2– 4 4–   * )  16 CO2 C 16 H2 O C 130 ATP

GR0 D 9781 kJ=mol I R G.ATP/ 3978 D 0;407 ATP D D R G.PS./ 9781 Freisetzung von Wärme: 59,3 %

500

5 Lösungen

c) Abbau von Glycerin (3 C-Atome): Die Bildung von Glycerinaldedehyd-3-phosphat benötigt 1 ATP4– und liefert 1 NADH=H+ . Im weiteren Verlauf der Glykolyse und im Citrat-Zyklus entstehen 3 ATP4– , 5 NADH=H+ und 1 FADH2 .  Es liefern 6 NADH=H+ in der Atmungskette 3  6 D 18 ATP4– .  Es liefert 1 FADH2 in der Atmungskette 1  2 D 2 ATP4– . Somit ergeben sich 1 C 3 C 18 C 2 D 22 ATP4– (D 673 kJ=mol). 4–  * C3 H8 O3 C 3;5 O2 C 22 (H+ ADP3– ) C 22 HPO2–  3 CO2 C 4 H2 O C 22 ATP 4 )

R G 0 D 1650 kJ=molI R G.ATP/ 673 D D 0;41 ATP D R G.Glycerin/ 1650 Freisetzung von Wärme: 59 % d) Abbau von Triglycerid der Palmitinsäure TGP (51 C-Atome): Abbau von 3 mol Palmitinsäure und 1 mol Glycerin liefern 412 ATP4– (D 12 607;2 kJ=mol). 4–  * C51 H98 O6 C72;5 O2 C412 (H+ ADP3– )C412 HPO2–  51 CO2 C49 H2 OC412 ATP 4 )

R G 0 D 30 993 kJ=molI R G.ATP/ 12 607;2 D 0;41 ATP D D R G.TGP/ 30 993 Freisetzung von Wärme: 59 % e) Abbau von Asparaginsäure (4 C-Atome, 1 NH2 -Gruppe): Die oxidative Desaminierung zu Oxalessigsäure erzeugt 1 NADH=H+ , der weitere Abbau im Citrat-Zyklus liefert 1 ATP4– , 3 NADH=H+ und 1 FADH2 .  Es liefern 4 NADH=H+ in der Atmungskette 3  4 D 12 ATP4– .  Es liefert 1 FADH2 in der Atmungskette 1  2 D 2 ATP4– .  2 ATP4– werden für den Abbau der Aminogruppe im Harnstoffzyklus benötigt (für 1 Mol Harnstoff wird bei Umsatz von 2 mol NH3 die Energie von 4 energiereichen Phosphatbindungen verbraucht (s. Kap. 6, Abb. 6.9)). Somit ergeben sich 1 C 12 C 2  2 D 13 ATP4– (D 397;8kJ=mol). HOOCCH2 CHNH2 COOH C 3 O2 C 15 (H+ ADP3– ) C 15 HPO2– 4 4–   * )  4 CO2 C 2 H2 O C NH3 C 15 ATP

2 NH3 C CO2 C 3 ADP4– C 2 H2 O + 3– 2– + 2– 3–   * )  CO(NH2 )2 C 2 (H ADP ) C 2 HPO4 C (H ADP ) C HP2 O7 Harnstoff Pyrophosphat 2   * HP2 O3  HPO4 C H2 PO4 7 C H2 O ) Pyrophosphat

5.14 Bioenergetik

R G 0 D 1180 kJ=mol I R G.ATP/ 397;8 D 0;337 ATP D D R G.Asparaginsäure/ 1180 Freisetzung von Wärme: 66,3 % 300

a): V D 0;21  15  0;5 dm3 D 1;575 dm3 O2 105 Pa  1;575 dm3 nV D D 0;061 mol O2 RT 8314;3 Pa  dm3 =.mol  K/  310 K m D n  M D 0;061 mol  32 g=mol D 1;952 g O2 nD

b): Gasteilchen ohne Eigenvolumen, keine zwischenmolekulare Kräfte c): ˛ven D

.pO2 =1 bar/n 0;05332;8 D D 0;77 n 2;8 .pO2 =1 bar/ C KD 0;0533 C 8;15  105

˛art D

0;1332;8 D 0;977 0;1332;8 C 8;15  105

d): cOart2 D cHb  4  ˛art D VOart2 D

150 g=dm3  4  0;977 D 9;09  103 mol=dm3 64 500 g=mol nart O2  R  T

p 9;09  103 mol  8314;3 Pa  dm3 =.mol  K/  310 K D D 0;234 dm3 105 Pa

e): D cHb  4  ˛ven cOven 2 150 g=dm3  4  0;77 D 7;16  103 mol=dm3 64 500 g=mol cOart  cOven x D 2 art 2  100 % cO D

2

9;09  103  7;16  103  100 % D 21;23 % xD 9;09  103

501

502

5 Lösungen

f): 7100 kJ=d D 16;86  17 mol=d 421 kJ=mol Verbrauch (O2 ) Pumpleistung D Lieferung (O2 ) 17 mol=d 17 mol=d D art ven D 3 cO2  cO2 .9;09  10  7;16  103/ mol=dm3

Verbrauch (O2 ) D

D 8;81  103 dm3 =d D 6;12 dm3 =min 301

Im Herzen sorgen durch koordiniertertes Öffnen und Schließen vier Bioventile (zwei Segelund zwei Taschenklappen) dafür, dass das Blut nur in eine Richtung fließt. Der Blutdruck ist der Druck in den Schlagadern (Arterien) des Körperkreislaufs. Bei jedem Herzschlag schwankt er zwischen einem maximalen (systolischen) Wert und einem minimalen (diastolischen) Wert. Die Blutwellen sind als Pulsschlag spürbar, z. B. am Handgelenk. Bei der klassischen Blutdruckmessung (Sphygmanometrie und Auskultation) wird eine Blutdruckmanschette, die mit einem Manometer verbundenen ist, um den Oberarm gelegt und aufgepumpt. Dabei wird die Arterie so weit zugeschnürt, bis das Blut darin nicht mehr weiter fließen kann. Durch Ablassen der Luft vermindert sich der Druck in der Manschette, und das Herz presst ab einem bestimmten Druck wieder Blut in die zusammengedrückte Arterie. Mit einem Stethoskop, das in der Ellenbeuge über der Arterie aufsitzt, können Strömungsgeräusche abgehört werden, die aufgrund der Strömungsbeschleunigung des Blutes an der Verengung der Schlagader durch die Manschette entstehen. Bezogen auf die Angabe 130/90 heißt das:  Das erste hörbare Geräusch , wenn sich das Herz zusammenzieht und Blut in die Gefäße pumpt, markiert an der Anzeige den systolischen Wert 130 mm Hg (17;3 kPa). Bei diesem Druck schafft unser Kreislauf den Gegendruck der Manschette zu überwinden.  Das Verschwinden des Geräusches markiert den diastolischen Wert von 90 mm Hg (12 kPa). Ab diesem Wert fließt das Blut ohne Behinderung durch die Arterie. Er kennzeichnet den Ruhedruck der Gefäße während der Erschlaffungsphase des Herzens und gibt Aufschluss darüber, wie gut deren Windkesselfunktion ausgeprägt ist. Tabelle : Klassifizierung des menschlichen Blutdrucks Blutdruck systolisch diastolisch (mm Hg bzw. Torr) (mm Hg bzw. Torr) Ideal Normal Hoch normal Bluthochdruck (Hypertonie)

302

G10 D RT ln K1

120 < 130 130–139  140

G20 D RT ln K2

G20  G10 D RT ln 303

80 < 85 85–89  90

K1 104 D 22;82 kJ D 8;3143  298  ln K2 1

303.1: Als farbige Verbindung muss Chlorophyll im sichtbaren Bereich des Spektrums Lichtanteile absorbieren. So zeigt denn auch das Absorptionsspektrum dunkle Zonen bei 420 bis 455 nm

5.14 Bioenergetik absorbierte nm Spektralfarbe 400

10–16 10–15 10–14 10–13 10–12 10–11 10–10 10–9 10–8 10–7 10–6 10–5 10–4 10–3 10–2 10–1 1 10 102 103 104

Violett Gammastrahlen Röntgenstrahlen

503

reflektierte Komplementärfarbe

gelbgrün

440 Blau

gelb

480 490 Grünblau 500 Blaugrün

orange rot

Grün

purpur

Ultraviolett UV Infrarot (IR) 560 Mikrowellen Radarwellen UKW KW MW LW

Gelbgrün 580 Gelb 595 Orange 605

violett blau grünblau

Rot

blaugrün

Radiowellen 300 MHz 3 MHz 30 MHz

700

Abb. 5.73 Skala der elektromagnetischen Wellen.

453

rel. Absorption

430 662 642

a b 400

500 600 Wellenlänge in nm

700

Abb. 5.74 Absorptionsspektrum von Chlorophyll a und b in Ether.

(blau) und bei 640 bis 665 nm (rot). Grünes und dunkelrotes Licht hingegen wird so gut wie gar nicht verschluckt, daher die grüne Farbe der Verbindung (Abb. 5.73, 5.74). Wichtig für die Anordnung des Chlorophylls in den Chloroplasten ist sein polarer Charakter. Während der lange Phytylrest lipophil (fettlöslich) ist, hat der Porphyrinring schwach hydrophile Eigenschaften. Für die Absorption im sichtbaren und langwelligen UV-Bereich sind besonders die -Elektronen von neun konjugiert verfügbaren Doppelbindungen des 16-gliedrigen Porphyrinrings verantwortlich, die ein ausgedehntes mesomeres System bilden (s. Kap. 6, Abb. 6.7). Sie werden dabei auf ein höheres Energieniveau (Anregungszustand) gehoben, wo sie sich jedoch nur kurze Zeit aufhalten. Bei ihrer Rückkehr in den Grundzustand können sie die aufgenommene Anregungsenergie teils als Wärme, teils als Fluoreszenzstrahlung wieder abgeben. Wir alle kennen letzteren Effekt von den Farben der Verkehrsschilder her, denen Fluoreszenzstoffe beigemischt sind, so dass sie selbst bei geringer Anstrahlung hell aufleuchten.

504

5 Lösungen

Zum Betrieb der endergonischen Photosynthese wäre die Umwandlung der eingefangenen Sonnenenergie in Wärme bzw. Fluoreszenzstrahlung denkbar ungeeignet. Vielmehr kommt es hier darauf an, die absorbierten Lichtquanten in Form von chemischer Energie festzuhalten. Zwar ist nur das Chlorophyll(a) unmittelbar an den Lichtreaktionen beteiligt, aber auch andere Pigmente können Licht absorbieren und die Energie dann auf das Chlorophyll(a) übertragen, das die Lichtreaktionen in Gang setzt. Eines dieser Hilfspigmente oder „akzessorischen Pigmente“ ist das Chlorophyll(b), das sich nur geringfügig vom Chlorophyll(a) unterscheidet (Ersatz einer Methylgruppe durch eine Aldehydgruppe im Pyrrolring II). Dieser minimale Strukturunterschied reicht jedoch aus, um den beiden Pigmenten etwas unterschiedliche Absorptionsspektren und damit auch verschiedene Farben zu verleihen. Chlorophyll(a) ist blaugrün, Chlorophyll(b) dagegen gelbgrün. Absorbiert das Chlorophyll(b) ein Photon des Sonnenlichts, überträgt es die Energie auf das Chlorophyll(a), das sich dann genauso verhält, als habe es das Photon direkt aus dem Sonnenlicht aufgenommen. Weiterhin befinden sich in den Chloroplasten die Carotinoide (Polyenfarbstoffe mit einem mesomeren 22-e– -System), eine Familie von Hilfspigmenten in verschiedenen Farbvarianten von gelb und orange. Diese Moleküle sind zusammen mit den beiden Chlorophylltypen in die Thylakoidmembran eingelagert. Carotinoide können Lichtwellenlängen absorbieren, die das Chlorophyll nicht aufnimmt, wodurch sich das Spektrum der Farben verbreitert, das zur Photosynthese genutzt werden kann. 303.2: Ein Photosystem besteht aus mehreren hundert „Antennenpigmente“ (Chlorophyll(a)-, Chlorophyll(b)- und Carotinoidmoleküle (Abb. 5.75)). Chlorophyll a im Reaktionszentrum

primärer Elektronenakzeptor e– Reaktionszentrum

h⋅ν

Abb. 5.75 Photosystem (Lichtsammeleinheit) (aus Campbell, N. A., Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000).

Wenn eines dieser Pigmente ein Photon absorbiert, wird dessen Energie zum nächsten Pigment weitergeleitet, bis sie zwei bestimmte Chlorophyll(a)-Moleküle erreicht, die im Reaktionszentrum des Photosystems liegen. Hier befindet sich ein weiteres Molekül, der primäre Elektronenakzeptor. An ihn verliert das Chlorophyll(a)-Paar in einer Redoxreaktion eines seiner -Elektronen. Diese Reaktion läuft ab, wenn Licht das Elektron auf ein höheres

505

5.14 Bioenergetik

Energieniveau hebt und der primäre Elektronenakzeptor es einfängt, bevor es im Chlorophyllmolekül wieder in den Grundzustand zurückkehren kann. Die Thylakoidmembran ist mit zwei Typen von Photosystemen besetzt. Sie werden in der Reihenfolge ihrer Entdeckung als Photosystem I und Photosystem II bezeichnet. Jedes von ihnen besitzt ein charakteristisches Reaktionszentrum mit einem typischen primären Elektronenakzeptor und einem Chlorophyll(a)-Paar, das mit spezifischen Proteinen assoziiert ist. Das Chlorophyll-Paar im Reaktionszentrum des Photosystems I heißt P700, weil es Licht mit 700 nm Wellenlänge am besten absorbiert. Das Pigment im Reaktionszentrum des Photosystems II wird P680 genannt, denn das Maximum seines Absorptionsspektrums liegt bei 680 nm. P700 und P680 bestehen aus völlig gleich gebauten Chlorophyll(a)-Molekülen; die Bindung an unterschiedliche Proteine in der Thylakoidmembran beeinflusst jedoch ihre Elektronenverteilung, was einen geringfügigen Unterschied im Lichtabsorptionsverhalten ergibt. prim. Akzeptor I

–0,6

(6) NADPH/H+

–0,4

Elektrodenpotential, V

–0,2

NADP+ 2H+

(7) Verbindungsweg

e–

e– Reductase

Ferredoxin

e–

e–

e–

e–

2HPO42– 2H+ 2ADP3–

(5)

0,0 +0,2

2ATP4– 2H2O



+0,4

P700

+0,6

Photosystem I

+0,8 +1,0

(4)

Plastochinon

e– Cytb 563 e–

(3) te ket Cytf ort p s n Plastotra en cyanin n o ktr Ele

prim. Akzeptor II

e– e– (1)



1 2 O2

e– P680 e–

H2O (2) 2H+

Photosystem II

Abb. 5.76 Hypothetischer Ablauf der Lichtreaktion (aus Lehninger, GK Biochemie, W. de Gruyter Verlag Berlin, 1985, verändert).

303.3: siehe Abb. 5.76: (1) Wenn das Photosystem II Licht absorbiert, werden im Reaktionszentrum die auf ein höheres Energieniveau gebrachten Elektronen des Chlorophylldimers P680 vom primären Elektronenakzeptor eingefangen. Pro P680-Chlorophyll wird ein Elektron abgegeben. Das so

506

5 Lösungen

oxidierte Chlorophyll wird dabei zu einem starken Oxidationsmittel, indem es bestrebt ist, seine Elektronenlücken wieder zu schließen. (2) Ein wasserspaltender Enzymkomplex entzieht einem Wassermolekül zwei Elektronen und überträgt sie auf die beiden P680-Moleküle, wo sie die nach der Absorption der Lichtenergie verlorengegangenen Elektronen ersetzen. Diese lichtinduzierte Wasserspaltung wird als Pho+ 1  * tolyse bezeichnet: H2 O  )  2 H C 2 e– C 2 O2 . Sie setzt in der Photosynthese das O2 frei. (3) Die angeregten Elektronen fließen über eine Elektronentransportkette (Plastochinon Pq, Cytochrom b, Cytochrom f, Plastocyanin Pc) vom primären Elektronenakzeptor des Photosystems II zum Photosystem I. Diese Kette ähnelt stark derjenigen in der Zellatmung. (4) Wenn die Elektronen die Energiekaskade der Transportkette passieren, nutzt die Thylakoidmembran ihren exergonischen Fluss zur Produktion von ATP4– (Chemiomose). Diese Art der ATP-Synthese nennt man nichtzyklische Photophosphorylierung, weil sie von Lichtenergie angetrieben wird. Das gebildete ATP4– liefert Energie für die Zuckerproduktion im Calvin-Zyklus, dem zweiten Abschnitt der Photosynthese. (5) Wenn die Elektronen das untere Energieniveau der Transportkette erreichen, füllen sie Elektronenlücken im P700 auf, dem Chlorophyll(a)-Paar im Reaktionszentrum des Photosystems I. Sie ersetzen dort die Elektronen, welche die Lichtenergie vom P700 zum primären Elektronenakzeptor des Photosystems I getrieben hat. (6) Der primäre Elektronenakzeptor des Photosystems I gibt die angeregten Elektronen an Ferredoxin (Fd) weiter. Dann überträgt das Enzym NADP-Reductase die Elektronen von +  * Fd auf NADP+ : NADP+ C 2 H+ C 2 e– )  NADPH=H . Durch diese Reaktion werden die + energiereichen Elektronen im NADPH=H gespeichert, jenem Molekül, welches im CalvinZyklus das Reduktionsmittel für die Zuckersynthese darstellt. (7) Dieser cyclische Elektronenfluss (Abb. 5.76, gestrichelter Verbindungsweg) kann nur durch den Effekt erkannt werden, den er auslöst, nämlich durch die Phosphorylierung von ADP3– zu ATP4– . Wenn isolierte Chloroplasten in Abwesenheit eines Elektronendonators oder -akzeptors belichtet werden, findet keine Anhäufung von NADPH/H+ statt. Trotzdem kann die Bildung von ATP4– nachgewiesen werden. Man hat aus diesem Befund geschlossen, dass die für die Phosphorylierung von ADP3– benötigte Energie vom Licht stammen und dass die Phosphorylierung an einen Elektronenfluss „gekoppelt“ sein muss. Dieser muss vom angeregten Chlorophyll entlang einer Kette von Elektronenüberträgern so ablaufen, dass die Elektronen in die „Elektronen-Löcher“ zurückkehren, die im Chlorophyll nach der Anregung entstanden sind. Dieser Rückfluss wird durch einen „Kurzschluss“ ermöglicht, so dass die Elektronen vom Photosystem I zum Chlorophyll(a) direkt zurückkehren und nicht zum NADP+ weitergeleitet werden. Man nimmt an, dass der cyclische Elektronenfluss und die cyclische Photophosphorylierung dann stattfinden, wenn die Pflanzenzelle reichlich mit Reduktionsäquivalenten in Form von NADPH=H+ ausgestattet ist, jedoch zusätzliches ATP4– für ihren Stoffwechsel benötigt. Der Vorgang ähnelt auffallend der oxidativen Phosphorylierung. Die folgende Gleichung fasst die Photolyse des Wassers und die Bildung des Reduktionsmittels NADPH=H+ als „Hillreaktion“ (nach Robert Hill, 1937) zusammen: + 1  * H2 O C NADP+ C 2h  v  )  NADPH=H C 2 O2 :

Wird auch die Phosphorylierung von ADP3– zu ATP4– berücksichtigt, ergibt sich das Bilanzschema der Lichtreaktion: 2h  v C H2 O C NADP+ C 2 (H+ =ADP3– ) C 2 HPO2– 4 + 4– 1  * )  NADPH=H C 2 O2 C 2 ATP C 2 H2 O :

5.14 Bioenergetik

507

303.4: Die Thylakoidmembran mit ihrer besonderen Ausstattung an Proteinen wandelt Lichtenergie in die im NADPH=H+ und ATP4– gespeicherte chemische Energie um, wobei Sauerstoff als Nebenprodukt anfällt.

Stroma Photosystem I

Photosystem II h⋅ν

h⋅ν

Cytochromkomplex

2H+

Fd e–

e– e– e–

P680 O2

e–

2H+

2H+

2H+

Thylakoidmembran

Stroma

e–

Reductase

P700 Pq

H2 O

e–

H+ e–

NADP+

H+

NADPH/H+

Pc

CalvinZyklus

Thylakoidinnenraum

ATPSynthase

H+ + ADP3- + HPO42-

2H+

ATP4- + H2O

Abb. 5.77 Schema der Chemiosmose in den Chloroplasten (aus Campbell, N. A., Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000, verändert).

Während die Elektronen in den Redoxreaktionen von einer Station zur nächsten wandern, werden die aus dem Stroma abgezogenen Protonen im Thylakoidinnenraum angereichert, so dass sie dort Energie in Form der protonenmotorischen Kraft (pt m D HC =F ) speichern. Zu dieser Protonenverschiebung tragen folgende Schritte bei (Abb. 5.77):  Auf der dem Thylakoidinnenraum zugewandten Seite der Membran wird Wasser vom Photosystem II in Protonen und molekularen Sauerstoff gespalten;  Während Plastochinon (Pq) Elektronen zum Cytochromkomplex verschiebt, werden Protonen durch die Membran befördert und im Stroma nimmt NADP+ bei der Reduktion zu NADPH=H+ Protonen auf.  Die Diffusion der H+ -Ionen vom Thylakoidinnenraum ins Stroma (entsprechend ihrem Konzentrationsgefälle) hält das „Rad“ der ATP4– -Synthese in Schwung. Gemeinsamkeiten (Abb. 5.78):  Chloroplasten und Mitochondrien erzeugen ATP4– durch den gleichen grundlegenden Mechanismus: die Chemiosmose.

508

5 Lösungen

 Eine in die Membran integrierte Elektronentransportkette pumpt Protonen durch diese Membran und gleichzeitig durchlaufen Elektronen eine Energiekaskade hin zu immer elektronegativeren Transportmolekülen.  Die Elektronentransportkette wandelt im Verlauf von Redoxreaktionen freigesetzte chemische Energie in protonenmotorische Kraft (ptm) um, in potenzielle Energie, die sich aus dem H+ -Gradienten HC bei T D 298 ı C, z D 1 und F D 96 487 As=mol ergibt zu: pt m D

HC F

.z  F  E C 2;303  R  TpH / D E59 mV  pH ŒV F

D

 In dieselbe Membran ist ein ATP4– -Synthase-Komplex eingelagert, der die durch ptm getriebene Diffusion der Protonen mit der Phosphorylierung von ADP3– koppelt.  Einige Elektronenüberträger, so die eisenhaltigen Proteine aus der Familie der Cytochrome, sind sich in Chloroplasten und Mitochondrien sehr ähnlich. Auch die ATP4– -SynthaseKomplexe der beiden Organellentypen ähneln sich stark.

Chloroplast

Mitochondrium

Intermembranraum

hohe H+Konzentration + +

H+

Diffusion

+ + + +

+ +

– – – –

– –

Thylakoidinnenraum

Elektronentransportkette

Membran – –

ATP-Synthase niedrige H+-

Matrix

Stroma

Konzentration

H+ + ADP3- + HPO42-

ATP4 + H2O H+

Abb. 5.78

Vergleich der Chemiosmose in Mitochondrien und Chloroplasten.

Unterschiede (Abb. 5.78):  In den Mitochondrien werden bei der oxidativen Phosphorylierung die energiereichen Elektronen, welche die Transportkette durchlaufen, den Nährstoffmolekülen durch Oxidation entzogen. Mitochondrien übertragen also chemische Energie von den Nährstoffmolekülen auf ATP4– . Chloroplasten brauchen bei der Photophosphorylierung keine Nährstoffe, um ATP4– zu erzeugen; ihre Photosysteme fangen Lichtenergie ein und heben mit ihrer Hilfe

5.14 Bioenergetik

509

die Elektronen energetisch an den Anfang der Transportkette. Chloroplasten wandeln somit Lichtenergie in chemische Energie um.  Die Innenmembran der Mitochondrien pumpt Protonen aus der Matrix in den Intermembranraum und baut eine protonenmotorische Kraft (ptm) auf. Wenn die Protonen, getrieben von dieser Kraft, durch die ATP4– -Synthase-Komplexe zurückdiffundieren, wird auf der Matrixseite der Membran ATP4– durch Phosphorylierung von ADP3– gebildet. In Chloroplasten pumpt die Thylakoidmembran Protonen vom Stroma in den Thylakoidinnenraum. Auch hier diffundieren die Protonen durch die membrangebundene ATP4– -Synthase wieder zurück, und dabei wird auf der dem Stroma zugewandten Membranseite ADP3– zu ATP4– phosphoryliert. 303.5: In der Dunkelreaktion, die im Stroma der Chloroplasten abläuft, erfolgt mit Hilfe des bei der Photolyse des Wassers gewonnenen Wasserstoffs (gebunden als NADPH/H+ ) die Umwandlung des Kohlenstoffdioxids zu Glukose. Der Vorgang ließe sich durch folgendes Reaktionschema darstellen: +  * 6 CO2 C 6 NADPH=H+  )  C6 H12 O6 C 6 NADP C 3 O2 :

Da jedoch der photosynthetisch gebildete Sauerstoff ausschließlich aus dem Wasser stammt + (experimenteller Beweis durch H18 2 O), wird auch der anfallende Sauerstoff durch NADPH=H zu Wasser reduziert und es ergibt sich: +  * 6 CO2 C 12 NADPH=H+  )  C6 H12 O6 C 6 H2 O C 12 NADP :

Natürlich setzt sich die Gesamtreaktion aus vielen enzymatisch katalysierten Einzelschritten zusammen, deren Aufklärung dem Amerikaner Calvin und seinen Mitarbeitern gelang. Die Aufeinanderfolge der Zwischenprodukte der Dunkelreaktion kann in einem Kreisprozess, bestehend aus drei Phasen, beschrieben werden (Abb. 5.79, 5.80): 1. Carboxylierende Phase (Kohlenstoff-Fixierung): Durch Bindung von CO2 an den Akzeptor Ribulose-l,5-bisphosphat (RuBP), durch das Enzym RuBP-Carboxylase (Rubisco) bildet sich eine Verbindung mit sechs Kohlenstoffatomen. Diese ist unbeständig und zerfällt in zwei Moleküle 3-Phosphoglycerat. 2. Reduzierende Phase: Die 3-Phosphoglycerinsäure wird unter Mitwirkung von ATP4– und NADPH/H+ (aus der Lichtreaktion) zu Glycerinaldehyd-3-phosphat reduziert. Anschließend können sich zwei Moleküle Triose zu einem Molekül Hexose vereinigen. Zuerst entsteht Fructose-l,6-bisphosphat, das sich unter Phosphatabspaltung in Glukose umwandelt. 3. Regenerierende Phase: Rückbildung des Kohlenstoffdioxidakzeptors Ribulose-1,5-bisphosphat aus Glycerinaldehyd3-phosphat über viele Zwischenverbindungen. Im Calvin-Zyklus entstehen somit aus 6 mol Kohlenstoffdioxid und 6 mol Ribulose-1,5bisphosphat 1 mol Glukose und wieder 6 mol Ribulose-1,5-bisphosphat. Aufgrund von Abb. 5.80 lässt sich das anfangs aufgestellte Reaktionsschema (Abb. 4.26) bestätigen und vervollständigen. Wie man sieht, werden zur Synthese von 1 mol Glukose einschließlich der Regeneration des Ribulose-1,5-bisphosphat 18 mol ATP4– gebraucht, die aus der Photophosphorylierung stammen:

510

5 Lösungen O∼PO2– 3

H2C

H C OH

Enzym +

CO2

C HO

H C OH

O∼PO2– 3

C OH

H2O

C O

H2C

Ribulose-1,5biphosphat

H2C

hypothetisches Zwischenprodukt

C

H2C OH

HC OH H2C

O∼PO2– 3

C O H2C

O∼PO2– 3

Glycerinaldehyd- Dihydroxy3-phosphat acetonphosphat

Abb. 5.79

Aldoladdition (Aldolase)

O O∼PO2– 3

C

2 NADPH/H+

2 NADP+

2 HC OH

O∼PO2– 3

O∼PO2– 3

H2C

3-Phosphoglycerat

∼O CH PO2– 2 3

HO C H H H

C O H C OH H2C

1,3-Biphosphoglycerat

O∼PO2– 3

C O O

2 H+ 2 ATP4– 2 ADP3 – + 2 HPO42–

O∼PO2– 3

H2C H

COO– 2 HC OH

H C OH

O∼PO2– 3

H2C

H2C

O

C O

O∼PO2– 3

Fruktose-1,6biphosphat

+ H2O – HPO2– 4

H2C OH

O C H HO C H C C OH OH H

Fruktose-6-phosphat

CH2OPO2– 3 OH

H OH

H

H

OH

OH

HO

CH2OH

– HPO2– 4

OH

H

+ H2O

OH

H

H

OH

HO

Glukose-6-phosphat

OH

Glukose

Reaktionsfolge von Phase 1 und 2 im Calvin-Zyklus.

6 CO2 C 12 NADPH=H+ C 18 ATP4– C 12 H2 O + 2– + 3–   * )  C6 H12 O6 C 12 NADP C 18 HPO4 C 18 (H =ATP )

303.6: Zur formelmäßigen Aufstellung der Gesamtbilanz der Photosynthese wird zunächst das Reaktionsschema für die Lichtreaktion so eingerichtet, dass 12 NADPH=H+ gebildet werden: 12 H2 O C 12 NADP+ C 24 (H+ =ADP3– ) C 24 HPO2– 4 + 4–   * )  12 NADPH=H C 24 ATP C 24 H2 O C 6 O2 :

Von den 24 ATP4– werden im Calvin-Zyklus nur 18 gebraucht. Zieht man daher 6 ATP4– aus dem Reaktionsschema heraus, ergibt sich: ! Lichtreaktion: .1/ 12 H2 O C 12 NADP+ C 18 (H+ =ADP3– ) C 18 HPO2– 4 .2/ 6 (H+ =ADP3– ) C 6 HPO2– 4

+ 4–   * )  12 NADPH=H C 18 ATP C 18 H2 O C 6 O2 4–   * )  6 ATP C 6 H2 O

! Dunkelreaktion: .3/ 6 CO2 C 12 NADPH=H+ C 18 ATP4– C 12 H2 O + 2– + 3–  * )  C6 H12 O6 C12 NADP C18 HPO4 C18 (H =ATP )

! Gesamtreaktion:  * .1/ C .3/ 12 H2 O C 6 CO2  )  C6 H12 O6 C 6 H2 O C 6 O2 .

G 0 D 2876 kJ=mol :

Da der gesamte freiwerdende Sauerstoff aus dem Wasser stammt, muss auf der Seite der Edukte von 12 H2 O ausgegangen werden. Außerdem werden bei der Synthese von 1 mol Glukose noch

5.14 Bioenergetik

511

6 CO2 3-Phosphoglycerat

Carboxylase 12 C3

Ribulose-1,5-biphosphat

12 ATP4– 12 H2O 12 HPO2– 4

6 C5

12 H+ 12 ADP3 –

6 HPO2– 4 6 H+ 6 ADP3 –

isch

6 H2O

vi ele Zw

6 ATP4 –

12 C3

1,3-Biphosphoglycerat

en

12 NADPH/H+

stu

fe

n

Glycerinaldehyd-3phosphat

12 NADP+

10 C3 12 C3

Glycerinaldehyd-3-phosphat

1 C6 Glukose

Abb. 5.80 Calvin-Zyklus: Bildung von Glukose und Regeneration von Ribulose-1,5-bisphosphat.

6 mol ATP4– gebildet (2), die anderweitig genutzt werden können. Es sei aber nochmals darauf hingewiesen, dass der Mechanismus der Lichtreaktion hypothetischen Charakter hat, so dass die Richtigkeit der ATP4– -Bilanz nicht ganz sicher ist. Ein Schema zur Energietransformation der Photosynthese zeigt Abb. 5.81. 303.7: Zur Bestimmung des thermodynamischen Wirkungsgrad der Photosynthese ist es notwendig zu wissen, wie viel Mol Lichtquanten (h  v) eine Zelle während der Photosynthese für die Bildung von einem Mol Glukose benötigt. Obgleich solche Experimente mit großen Schwierigkeiten verbunden sind, stimmen die meisten Untersucher darin überein, dass 48 mol Quanten gebraucht werden. Wegen der Beteiligung von P700 bei der Photosynthese, das bei 700 nm absorbiert, scheint es sinnvoll, für die Berechnung des Wirkungsgrades den dieser Wellenlänge zugehörigen Energiewert E zu verwenden. Die Energie von Lichtquanten (= Photonen) ist deren Wellenlänge  umgekehrt proportional. Sie entsteht in der Sonne durch Kernfusion von Wasserstoffatomen zu Heliumatomen und Positronen. Diese Reaktion kann summarisch folgendermaßen ausgedrückt werden: 4 H11 ! 42He C 2 e+ C h  v :

512

5 Lösungen Licht Energie Lichtabsorption Kollektorpigmente

AnregungsEnergie

Photochemischer Effekt LadungsEnergie Elektronentransfer Elektronentransportsysteme

Protonen- und Elektronentransfer Membranvesikel

Redoxpotenzial Elektrochemische Energie

Membrangradient Elektrochemische Energie

Elektronentransfer

Protonentransfer Phosphattransfer ATP-SYNTHASE

chemische Bindungsenergie

NADPH/H+

ATP 4– Glukose

Abb. 5.81

Schema der Energietransformation der Photosynthese.

Der molare Energiewert E für die von P700 absorbierte Wellenlänge 700 nm ist: c 2;998  108 m=s 1  6;022  1023 mol E D h  v  NA D h  NA D 6;6256  1034 Js   700  109 m E D 170;883 kJ=mol (h: Planck’sches Wirkungsquantum, v: Frequenz, c Lichtgeschwindigkeit, NA : AvogadroKonstante) Die Änderung der freien molaren Standardenthalpie für die Synthese von Glukose aus Kohlenstoffdioxid und Wasser kann mit dem Satz von Hess berechnet werden: 6 CO2 C 6 H2 O C 48 (h  v) B G .kJ=mol/ 394 237 X X 0 0 B GProdukte  B GEdukte R G 0 D 0

  * ) 

C6 H12 O6 C 6 O2 910

R G 0 D .910 C 2364 C 1422/ kJ=mol D C2876 kJ=mol

0

5.14 Bioenergetik

513

Damit errechnet sich ein thermodynamischer Wirkungsgrad der Photosynthese: Photosynth. D

2876 kJ=mol 2876 kJ=mol D D 0;35 : 48  170;883 kJ=mol 8202;384 kJ=mol

Geht man davon aus, dass bei 700 nm 8 Lichtquanten nötig sind, um 1 mol Sauerstoff freizusetzen und um 2 Mole NADPH=H+ und 4  1 D 3 Mole ATP4– zu liefern, die anschließend benötigt werden, um 1 Mol Kohlenstoffdioxid zu reduzieren, ergibt sich der Wirkungsgrad wie folgt: ! Energieangebot: E1 D 8  170;883kJ=mol D 1367;064kJ=mol ! Energieverbrauch: Transport von 4 e– C 4 H+ : E2 D 2.z  F  E 0 / D 4  96 487 As=mol  1;13 V D 436;12kJ=mol Verbrauch von 3 ATP4 : E3 D 3  30;56 kJ=mol D 91;68 kJ=mol E2 C E3 .436;12 C 91;68/ kJ=mol D 0;386 D Photosynth. D E1 1367;064 kJ=mol Der Wirkungsgrad der Photosynthese ist in der Natur sehr viel geringer, als die nach den molekularen Vorgängen berechneten Zahlen vermuten lassen. Aus dem Ausmaß der Kohlenstoff-Fixierung haben Experten berechnet, dass z. B. von einem Kornfeld nur etwa 1–2 % der Sonnenenergie verwertet werden können, die in das Feld eingestrahlt wird. Zuckerrohr sei dagegen wesentlich effektiver. Es kann bis zu 8 % der eingefangenen Lichtmenge in die Form organischer Produkte überführen. 303.8: Der Biozyklus (Kreislauf des Lebens) lässt sich stark vereinfacht mit nachstehendem Schema (Abb. 5.82) erfassen. Darin wird die Photosynthese als „Transformator“ der Umwandlung von Sonnenenergie in chemische Energie ausgewiesen, wovon direkt die Produzenten und indirekt die Konsumenten und Destruenten (Reduzenten) profitieren. Seit Satelliten und Raumschiffe die Erde vom Weltraum aus als Ganzes zeigen, ist uns die Einmaligkeit und Verletzlichkeit unseres Planeten bewusst geworden. Staunend entdecken wir auf den Fotos die bläulich schimmernde Atmosphäre. Dieser Schutzschild ist so dünn wie vergleichsweise der feuchte Film aus Morgentau um einen Apfel. Er schafft erst die Bedingungen für alle die Kreisläufe, die Leben auf der Erde ermöglichen. Die Grundbausteine Luft, Wasser und Boden bestimmen den Biozyklus: Die Luft, die wir zum Atmen brauchen, besteht aus etwa 78 % Stickstoff, 21 % Sauerstoff, 0,97 % Edelgasen und 0,03 % Kohlenstoffdioxid. Jede wesentliche Veränderung dieser Anteile würde uns direkt oder indirekt töten. Dabei sorgt das Kohlenstoffdioxid in der Atmosphäre dafür, dass von der vom Erdball in das All reflektierten Sonnenstrahlung soviel zurückgehalten wird, dass die Erde inmitten des eiskalten Weltraums ein „Treibhaus“ mit einer Durchschnittstemperatur von etwa 15 ı C bleibt. Das Wasser ist unentbehrlicher Bestandteil des Biozyklus. Es ist unser wichtigstes „Lebensmittel“ und zugleich Lebensraum vieler Tiere und Pflanzen. Alles auf der Erde verfügbare Wasser befindet sich in einem ständigen Kreislauf von Verdunstung und Niederschlag. Was wir unter Boden im engeren Sinne verstehen, ist die nicht scharf abgrenzbare, in der Regel nur wenige Dezimeter dicke oberste Schicht der Erdoberfläche. Sie besteht aus lockerem, durchwurzeltem Verwitterungsmaterial und ist eine von Leben strotzende Wunderwelt für sich. 100 und mehr Jahre vergehen, bis sich ein Zentimeter neuen Bodens durch Verwitterung aus ursprünglichem Felsgestein gebildet hat. Aber er kann in kürzester Zeit auch wieder zerstört werden, z. B. durch Abtrag, Versiegelung und Schadstoffeintrag.

514

5 Lösungen Lichtenergie

Produzenten Grüne Pflanzen

Photosynthese Chem. Energie Anorg. Verb. H2O, CO2

Org. Verb., Sauerstoff C6H12O6, O2

Gärung, Atmung Destruenten Bakterien, Pilze

Atmung, Verbrennung

Konsumenten Tiere, Menschen

Wärme, Nutzenergie

Abb. 5.82

Biozyklus.

Die komplizierten Lebenserhaltungssysteme der Erde werden immer besser verstanden, und man weiß, dass darin schon kleine Veränderungen (Luft-, Wasser-, Boden-, Energiehaushalt) das Gesamtsystem gefährden. In die empfindlichen Kreisläufe des Lebens hat der Mensch schon früh eingegriffen: Er hat Bäume gerodet, um zu siedeln, Holz verbrannt, um sich zu wärmen, Flüsse umgeleitet, um Felder zu bewässern. Aber erst mit der Industrialisierung und dem explosionsartigen Wachstum der Bevölkerung haben diese Eingriffe Größenordnungen angenommen, die Atmosphäre und Klima verändern und damit die Lebensgrundlagen als Ganzes gefährden. Alles, was wir dem Planeten Erde antun, trifft uns selbst, zumindest aber die kommenden Generationen. Für unser Leben und das Überleben der Menschheit muss daher und darüber hinaus die strikte Beachtung folgender, unausweichlicher Notwendigkeiten mit nachstehender Prioritätenreihung garantiert werden:  Erhaltung einer lebensfähigen Biosphäre, einschließlich der erforderlichen Qualität von Luft, Wasser und Boden,  ausreichende Quantität und Qualität der menschlichen Ernährung,  menschliche Gesundheit (Vorsorge und Heilung),  Achtung der Menschenwürde in jeder weiteren Hinsicht,  Artenschutz (einschließlich Verbesserungen im Tierschutz sowie eindeutige Festlegung von Züchtungszielen und -grenzen).

6 Strukturbilder und Zyklen

HO

–O

CH2

OH

Pyruvat –

Glucose

C O

OH

HO

O C

O

CH3

OH ATP ADP O

P

–O

CH2

O C

O OH HO

C OH

Enolpyruvat –

Glucose - 6 - phosphat

CH2

OH OH

ATP ADP

P

O

CH2

H2C

O

–O

OH

HO

C

Phospho - enol pyruvat –

Fructose - 6 - phosphat OH

O P

C O

OH

CH2

ATP

H2O

ADP H2C O



P

O

2- Phosphoglycerat –

C O Fructose - 1,6 - biphosphat

HO C H

C O

H

H C O H

O C

H2C

OH

H C OH H2C O

P H

H2C O

P

O

C O

H C OH

H2C OH

H2C O

Dihydroxyaceton - phosphat

P O

C

NAD+ H3PO4

H2C O NADH/H

Abb. 6.1 Glykolyse (Emden-Meyerhof-Abbau).

O

H C OH H2C O

P ADP

1,3 - Biphosphoglycerat

P = 2H+PO2– 3

O C

H C OH P

Glycerinaldehyd3 - phosphat

Glykolyse (Emden-Meyerhof-Abbau)



O C

ATP = ADP 4 –

P

ATP 3 - Phosphoglycerat –

ADP = ADP 3 –H+

P

516

6 Strukturbilder und Zyklen S CoA C

O

CH3

H2O + Acetyl-CoA CoA

SH

COO–

COO– O

CH2

C

HO C COO–

CH2

NADH/H+

CH2

COO–

NAD+

Citrat

Oxalacetat 2–

3–

CH2 HC COO–

COO– HO

Isocitrat 3–

Malat 2–

CH

COO–

H2O

COO–

HO CH COO–

CH2

H2O

CO2

Citratzyklus

COO–

NAD+

Fumarat 2–

COO–

COO–

CH2

CoA SH

CH

CH2

Succinat 2–

HC

FAD

COO–

COO–

CH2

FADH2

HPO42–

CoA SH

CH2 COO–

CH2

NAD+

CH2

NADH/H+

C O

GTP

S CoA

GDT

Succinyl-CoA ADP ATP

Abb. 6.2 Citrat-Zyklus. N O –



O P O O

O



O

O

D-Ribose

P O CH2

O

O

(4)

N

O H

H

OH

OH

H

GTP = GTP4 –

Guanin



P O

H

GDP = GDP3 –H+

Abb. 6.3 Guanosintriphosphat.

α- Ketoglutarat 2–

C O

COO–

COO–

NADH/H+

N

H

N N

H

H

CO2

6 Strukturbilder und Zyklen

517

Nicotinsäureamid H

O C NH2

Phosphat O HO

P O CH2 (4)

N (+)

O H

H

OH

OH

H

Nicotinsäureamidribose-phosphat

H

O

NADP+

β-Ribose

H

Adenin-β-ribose 2,5-diphosphat

N

HO

P O CH2 O

(4)

N

O H

N

H

N

H

Phosphat H

N Adenin

H O PO3H2

OH

β-Rib.-2.ph Oxidation – 2 H – (2 H+ + 2 e–)

NADPH/H+ H

H+

Reduktion + 2 H + (2 H+ + 2 e–)

O

H

C NH2 O HO

P O CH2 (4)

N

O H

H

OH

OH

H

H

O

N

HO

P O CH2 O

(4)

H

H

N

H H

OH

N

N

O H

NADPH/H+

H

N

O PO3H2

Abb. 6.4 Nikotinsäureamid-adenin-dinukleotid-phosphat (NADPC / NADPH/HC /.

518

6 Strukturbilder und Zyklen

Flavin O H 3C

N NH N

H 3C

N

Flavin-adenin-dinucleotid FAD O

CH2 H

H C OH Ribose

AMP

N

H C OH Phosphat H C OH

O

CH2 O

P



O O

O Riboflavinphosphat

P O CH2 β-Ribose N O O (4) H H H Phosphat H OH

Oxidation – 2 H – (2 H+ + 2 e–) H

N

H



N N

OH

Adenin

Reduktion + 2 H + (2 H+ + 2 e–)

O

H 3C

N

H 3C

N

N

CH2

H

NH FADH2

O

H

H C OH N

H C OH H C OH

O

CH2 O

P



O O

O

P O CH2 O

(4)

N

O H

H

OH

OH

H

Abb. 6.5 Flavin-adenin-dinukleotid (FAD).

N



H

N N

H

6 Strukturbilder und Zyklen Coenzym A-SH Pantothensäure; N-(2,4-dihydroxy-3,3-dimethyl-butyryl )-β-alanin β-Alanin

2,4-Dihydroxy-3,3dimethyl-butansäure O HO

P

CH3 H O H O

CH2

C

C

C

N

O H CH2 CH2 C

CH3 OH

Cysteamin (2-Aminoethanthiol )

Adenin N

O

N P O

CH2

O

(4)

CH2 CH2 SH

NH2

Pyrophosphat

HO

N

N N

O H

H

O

OH

H

H

+ BTS – CO2 – 2 H Ox. Decarboxylierung

Ribose-3-phosphat HO

P OH O

O HO

P

CH3 H O H O

CH2

C

C

C

N

O H CH2 CH2 C

N

O CH2 CH2 S

C CH3

CH3 OH

Acetyl-S-CoA NH2 O

N

N N

HO

P O

CH2

O

(4)

O H

H

O

OH

H

HO

N

H

P OH O

Abb. 6.6 Coenzym ASH / Acetyl SCoA.

519

520

6 Strukturbilder und Zyklen

Chlorophyll a CH3 C

CH

O CH3

N Mg2+

N

O H C C20H39 O C CH2 CH2 Phytylpropanat H CH C C

O

O

C H

C C N II C C C2H5

N C III C C C

CH3 O C

C18H18

C

C I

CH3 H C IV

(18)-Annulen

CH CH2

C CH

Chlorophyll b

CH CH3 (Hist.)

Methylmethanat

NH–

Häm CH3 C

CH3 H C IV

H2C

CH CH2

C CH

HOOC

C I

HOOC

C

H2C

CH CH3

N Fe2+

N

H C HOOC H2C H2C Propanat CH

N

CH3 H2C

CH H2C H

C C

C

N

H

CH C 3

II

N C

III

C CH3

O C

CH2NH2

+ N

H Pyridoxalphosphat

C

C C

C CH C CH

Bindung von Sauerstoff an Häm-Molekül

Abb. 6.7 Chlorophyll a und b/Häm.

H3C

Fe2+ N

CH

C C

C N

O2

CH

C

CH2OPO2– 3

C2H5

CH

CH3

Propanat

HO

C N

C

C2H5

HOOC H2C H2C

H

C C

C C C

N

2–

HO H3C

CH2OPO3 + N

H Pyridoxaminphosphat

Abb. 6.8 Pyridoxalphosphat/Pyridoxaminphosphat.

CH3 CH2

521

6 Strukturbilder und Zyklen Protein

Aminosäuren H2O NAD+ + Ketosäuren H NH2 Kohlendioxid O C O – NADH/H+ Amoniak 2 ATP4– H2O O C OH 2 H+ Carbamidsäure 2– + NH2 2 ADP3– HPO4 NH2 O C Carbamidphosphat 2– NH2 R NH2 O C O PO2– Harnstoff 3 Ornithin NH2 H2O

HPO2– 4

H

H

Harnstoffzyklus

R N C NH

R N C O

NH2

NH2

Arginin

Citrullin COO– H2N CH CH2

COO

ATP4–

R N C N CH

CH

NH2

CH

CH2 COO–

COO–

+ HP2O3– 7

H2O NAD+

COO–

COO–

CHOH

C O

CH2

CH2 –

COO

Malat 2–

Abb. 6.9 Harnstoffzyklus.

NADH/H+ NAD+

Aspartat 2–

H+ AMP2–

Argininosuccinat 2–

Fumarat 2–

H2O

COO–

COO–

H



COO–

Oxalacetat 2–

NH3 NADH/H+

Literaturverzeichnis

[1] Atkins, P. W., Physikalische Chemie, Verlag Chemie,Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 2002 [2] Becker, R., Theorie der Wärme, Springer-Verlag, Berlin, Heidelberg, New York, 1985 [3] Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, Wiley-VCH, 1985 [4] Campbell, N. A., Biologie, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, 2000 [5] Chemie in unserer Zeit, 24. Jahrg., 1990, Nr. 5, Seite 229, verändert [6] Engel, T. und Reid, P., Physikalische Chemie. Pearson Studium, 2006,W Verlagsgesellschaft mbH, München, 1998 [7] Enzyklopädie Atom, Bibliographisches Institut Leipzig, 1978 [8] Gmehling, I. ; Kolbe, B., Thermodynamik. VCH, Weinheim 1992 [9] Gottstein, G., Physikalische Grundlagen der Metallkunde, Springer-Verlag, 1998 [10] HEA-e. V., Arbeitskreis Schulinformation Energie, Frankfurt/Main, 1998 [11] Heliocentris Energiesysteme GmbH, Brennstoffzellen-Technologie, Berlin, 1997 [12] IZE, Basiswissen-Informationen (110, 119, 127, 129, 131), Frankfurt/Main, 1998 [13] Karlson, P., Biochemie für Naturwissenschaftler, Georg Thieme Verlag, Stuttgart, 1986 [14] Landau, L. D. und Lifschitz, E. M., Lehrbuch der theoretischen Physik, Akademie Verlag GmbH, Berlin, 1990 [15] Lehninger, A. L., Grundkurs Biochemie, Walter de Gruyter, Berlin, New York, 1985 [16] Nagy, R. und Bloomfield, Kalziumhalophosphat-Luminophor, Deutsche Patentschrift 851236, 1952 [17] Predel, B., Heterogene Gleichgewichte, Steinkopf-Verlag, Darmstadt, 1982 [18] Prigogine, I. und Defay, R., Chemische Thermodynamik, Deutscher Verlag Leipzig, 1972 [19] Sandler, S. I., Chemical and Engineering Thermodynamics, Wiley, NewYork, 1989 [20] Stephan, K. und Mayinger, F., Thermodynamik, Grundlagen und technische Anwendungen, Springer-Verlag, 1999 [21] Wagner, W., Chemische Thermodynamik, Akademie Verlag, Berlin,1982 [22] Wasserstoff-Mobilität, © BMW Group, CD-ROM, 2001 [23] Wedler, G., Lehrbuch der Physikalischen Chemie, Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 1997 [24] http://atom.kaeri.re.kr/ton/nuc7.html Table of Nuclides [25] http://de.wikipedia.org/wiki/Lithium-Eisenphosphat-Akkumulator [26] www.chemie.huberlin.de/ernsting/lectures/thermo_modul/

524 [27] [28] [29] [30] [31] [32]

6 Strukturbilder und Zyklen

www.chemie1.uni-rostock.de/pci/Heintz www.ipn.uni-kiel.de/aktuell, Wettbewerbe www.lageenergiespeicher.de, Hochschule Furtwangen www.mdr.de/erfindungen 16316.html www.tafelwerk-interaktiv, Cornelsen / Volk und Wissen Verlag, 2005 Zachmann, H. G., Mathematik für Chemiker, Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 2004

Abbildungsverzeichnis

1.1 1.2

Erläuterung des nullten Hauptsatzes der Thermodynamik. . . . . . . . . . . Thermischer Ausdehnungskoeffizient ˛ a) einiger Gase in Abhängigkeit vom Druck, b) einiger Feststoffe zwischen 0 und 100 °C. . . . . . . . . . . . . . 1.3 a) Änderung der potenziellen Energie zweier Moleküle eines realen Gases als Funktion ihres Abstandes (Lennard-Jones-6-12-Potenzial); b) pV -pIsothermen des realen Gases CO2 . . . . . . . . . . . . . . . . . . . . . . . 1.4 Isothermen eines a) idealen Gases b) des realen Gases CO2 . . . . . . . . . . 1.5 Zur Erläuterung der reversiblen Volumenarbeit. . . . . . . . . . . . . . . . 1.6 Verdeutlichung des Stoff- und Energieaustausches eines chemischen Systems mit der Umgebung. (c: Stoffmengenkonzentration, C : Molwärme, F : Freie Energie, M : Molmasse, G: Freie Enthalpie, m: Masse, n: Stoffmenge, Q: Wärme, S: Entropie, T : Temperatur, V : Volumen, WVol. : Volumenarbeit, x: Variable (T; p), ': Dichte). . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Temperaturverlauf der Molwärmen bei p D 1 bar a) einiger Gase, b) einiger fester Elemente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8-1 Bombenkalorimeter mit Zubehör und T -Ermittlung: a) Aufbau, b) Kalorimetrische Bombe, c) Tablettenpresse, d) Brennstofftablette mit Zünddraht, e) T -Ermittlung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8-2 Längsschnitt durch ein Strömungskalorimeter, das Junkerskalorimeter. . . . 1.9 Anordnung des Gay-Lussac-Versuches. . . . . . . . . . . . . . . . . . . . 1.10 Anordnung des Joule-Thomson-Versuches. . . . . . . . . . . . . . . . . . 1.11 Schematische Darstellung der Luftverflüssigung nach Linde. . . . . . . . . 1.12 Bei einer Zustandsänderung ist die Arbeit vom Weg der Änderung abhängig. a) pa -V -Diagramm für allgemeine Übergänge eines Gases von 1 nach 2 und in einem Kreisprozess. b) p-V -Diagramm für die Darstellung der reversiblen isothermen Volumenarbeit eines idealen Gases. . . . . . . . . . . . . . . . 1.13 Verdeutlichung des 2. Hauptsatzes der Thermodynamik. . . . . . . . . . . 1.14 Entropie des Wassers in Abhängigkeit von der Temperatur. . . . . . . . . . 1.15 Beispiel einer S-Berechnung. . . . . . . . . . . . . . . . . . . . . . . . 1.16 a) Isobare Mischung zweier idealer Gase; b) isentrope Durchmischung zweier idealer Gase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.17 Graphische Bestimmung der partiellen Molvolumina eines binären Gemisches. 1.18 Integrale Lösungswärme von KI bei 25 ı C aufgetragen gegen die Verdünnung. 1.19 Anschauliche Darstellung der Legendre-Transformation. . . . . . . . . . . 1.20 Änderung der Zustandsgrößen S, F , G und A in Abhängigkeit vom Umsatzgrad ˛. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.21 Binäres System p-Nitrophenol/m-Nitrophenol. . . . . . . . . . . . . . . . . 1.22 Siedepunkterhöhung TSd und Gefrierpunkterniedrigung TSm bei Lösungen (p Dampfdruckerniedrigung). . . . . . . . . . . . . . . . . . . . . . . .

2 6

8 10 13

15 17

19 20 21 23 24

26 28 35 36 37 42 43 49 54 68 70

526

Abbildungsverzeichnis

1.23 Bestimmung der a) Gefrierpunkterniedrigung TSm und b) der Siedepunkterhöhung TSd nach Beckmann. Hinweis: Mit dem Beckmann-Thermometer können nur Temperaturdifferenzen bestimmt werden, dafür aber mit einer Ablesegenauigkeit von 0,01 K (mit Lupe sogar 0,001 K). . . . . . . . . . . 1.24 Temperaturabhängigkeit des Dampfdrucks einer reinen Flüssigkeit. . . . . . 1.25 Gleichgewichtszustand des Einstoffsystems „flüssiges Wasser – Wasserdampf“, .a D b/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.26 Zustandsdiagramm des Wassers. . . . . . . . . . . . . . . . . . . . . . . . 1.27 Binäre Systeme „flüssig-flüssig“ (Zusammensetzung D Molenbruch  der Komponenten A und B). . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.28 Dampfdruckdiagramm a) und zugehöriges Siedediagramm b) einer idealen flüssigen Mischung (Beispiele: Wasser/Methanol, m-Xylol/Benzol, 2-Methylpropan-1-ol/2-Methylpropan-2-ol, Ethylchlorid/Benzol). . . . . . 1.29 Destillierkolonne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.30 Theoretische Böden im Siedediagramm Wasser-Methanol. . . . . . . . . . 1.31 Gleichgewichtsdiagramm von Dampf und Flüssigkeit (B: leichtflüchtigere Komponente). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.32 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Lösung mit negativer Abweichung vom Raoult’schen Gesetz (Beispiele: Trichlormethan/Wasser, Salzsäure/Wasser). . . . . . . . . . . . . . . . . . . . . . . 1.33 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit positiver Abweichung vom Raoult’schen Gesetz (Beispiele: Ethanol/Wasser, Propanon/Schwefelkohlenstoff). . . . . . . . . . . . . . . . . . 1.34 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit Mischungslücke (Typ A). . . . . . . . . . . . . . . . . . . . . . 1.35 Dampfdruckdiagramm a) und Siedediagramm b) einer flüssigen binären Mischung mit Mischungslücke (Typ B). . . . . . . . . . . . . . . . . . . . . . 1.36 Dampfdruckdiagramm a) und Siedediagramm b) zweier vollständig unmischbarer Flüssigkeiten (Beispiel: Toluol/Wasser). . . . . . . . . . . . . . . . . 1.37 a) Schmelzdiagramm ohne Extremum; b) Schmelzdiagramm mit Maximum der Gleichgewichtskurve; c) Schmelzdiagramm mit Minimum der Gleichgewichtskurve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.38 a) Schmelzdiagramm mit Mischungslücke und einem Eutektikum; b) Peritektisches System mit Mischungslücke der festen Komponenten. . . . . . . . . 1.39 a) Schmelzdiagramm mit einfachem Eutektikum; b) Schmelzdiagramm mit einfachen Eutektika u. homogen schmelzender Verbindung AB; c) Schmelzdiagramm mit einfachem Eutektikum u. inhomogen schmelzender Verbindung AB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.40 a) Eutektoider Zerfall der Mischkristalle; b) Mischungslücke in der Schmelze mit einer monotektischen Umwandlung. . . . . . . . . . . . . . . . . . . . 1.41 Gleichgewichtskurven im System H2 O/NaCl. . . . . . . . . . . . . . . . . 1.42 a) Das Konzentrationsdreieck (schematisch); b) Wichtige Beziehungen im Konzentrationsdreieck (schematisch). . . . . . . . . . . . . . . . . . . . . 1.43 Ternäres System mit Mischungslücke zwischen einem Paar der Komponenten. 1.44 (schematisch). Abhängigkeit der Mischungslücke von der Temperatur; a): Raumdiagramm; b): Projektion der Binodalkurven auf das Konzentrationsdreieck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.45 Geschlossene Mischungslücke im ternären System mit oberem und unterem kritischen Punkt (schematisch). a) Raumdiagramm, b) Konzentrationsdreieck

71 73 73 74 78

80 83 84 85

86

87 88 91 91

93 95

98 101 101 103 105

106 107

Abbildungsverzeichnis

1.46 a) Mischungslücke zwischen zwei Paaren der Komponenten (schematisch); b) System mit zwei sich überschneidenden Mischungslücken (schematisch). 1.47 a) System mit Mischungslücken zwischen drei Paaren (schematisch); b) System mit Dreiphasendreieck. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.48 (schematisch). Ternäres System mit reinen festen Phasen und einer flüssigen Phase. a) Raumdiagramm; b) Projektion des Raumdiagramms auf die Grundebene (Konzentrationsebene). . . . . . . . . . . . . . . . . . . . . . . . . . 1.49 Isotherme Schnitte durch das Raumdiagramm der Abb. 1.48a bei verschiedenen Temperaturen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.50 Isobar-isotherme Phasendiagramme wässriger Lösungen von zwei Salzen mit gemeinsamem Ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.51 a) Ein Salz kristallisiert wasserfrei, das andere bildet ein Hydrat; b) Das System NaClNa2 SO4  10 H2 O bei 25 ı C. . . . . . . . . . . . . . . . . . . . . . 1.52 Isobar-isothermes Diagramm des Systems K2 SO4 (NH4 )2 SO4 H2 O. . . . 2.1 2.2 2.3 2.4

2.5 2.6

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Bestimmung des Mengenverhältnisses von Komponenten bzw. Phasen mit dem Gesetz der abgewandten Hebelarme (Hebelgesetz). . . . . . . . . . . . . . Abhängigkeit der Mischungslücke von der Temperatur. . . . . . . . . . . . Temperatureinfluss auf die Mischungslücke des ternären Systems ABC; a) Raumdiagramm; b) Konzentrationsdreieck. . . . . . . . . . . . . . . . . Dreiecksdiagramm einer wässrigen Lösung zweier Salze S1 und S2 ohne Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dreiecksdiagramm einer wässrigen Lösung von zwei Salzen S1 und S2 . . . Dreiecksdiagramm einer wässrigen Lösung von zwei Salzen S1 und S2 ohne Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repräsentation des totalen Differenzials dV im VpT -Raum. . . . . . . . . Änderung der Zustandsgröße z auf zwei verschiedenen Wegen (a und b) in der x; y-Ebene von Zustand 1 nach 2. . . . . . . . . . . . . . . . . . . . . . . Sonderfälle der polytropen Zustandsänderung. . . . . . . . . . . . . . . . . Verteilung der Geschwindigkeit von Molekülen bei verschiedenen Temperaturen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grafische Darstellung des Gesetzes nach Boyle-Mariotte. . . . . . . . . . . Grafische Darstellung des Gesetzes nach Gay-Lussac. . . . . . . . . . . . . Grafische Darstellung des Gesetzes nach Amonton. . . . . . . . . . . . . . Schrittfolge der Ableitung der thermischen Zustandsgleichung für ideale Gase. Gasgesetz und absoluter Nullpunkt. . . . . . . . . . . . . . . . . . . . . . a) Wirkung der Anziehungskräfte des Lösungsmittels auf gelöste Teilchen; b) Zustandekommen des osmotischen Druckes. . . . . . . . . . . . . . . . Pfeffer’sche Zelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p-V -Diagramm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dichteanomalie des Wassers. . . . . . . . . . . . . . . . . . . . . . . . . . Vier Möglichkeiten für molare Reaktionswärme und molare Volumenarbeit bei chemischen Reaktionen. . . . . . . . . . . . . . . . . . . . . . . . . . . . a) Energieschema einer Wärmeenergiemaschine; Q1 von der Maschine aufgenommene Wärme; Q2 von ihr abgegebene Wärme; W mechanische Arbeit; b) Kreisprozess nach Carnot: I–II isotherme Expansion; II–III adiabatische Expansion; III–IV isotherme Kompression; IV–I adiabatische Kompression.

527 108 109

111 113 114 114 115 128 130 131

133 133

134 138 138 140 145 146 147 148 148 150 153 154 158 165 170

171

528 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25

3.26 3.27 3.28 3.29

3.30 3.31 3.32 3.33 3.34

3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42

3.43

Abbildungsverzeichnis

Bedeutsame Konstruktionen einer rückwärts laufenden Carnot-Maschine. . Lebende Systeme und zweiter Hauptsatz. . . . . . . . . . . . . . . . . . . Van’t Hoff’scher Gleichgewichtskasten. . . . . . . . . . . . . . . . . . . . Grafik zur Herleitung der Reaktionsisotherme aus den isothermen Druckkoeffizienten der freien Enthalpie. . . . . . . . . . . . . . . . . . . . . . . . . . Versuchsanordnung zur Bestimmung des Ionenproduktes von Wasser. . . . Thermodynamische Herleitung der van’t Hoff’schen Reaktionsisobaren. . . Reaktionskinetische Herleitung der van’t Hoff’schen Reaktionsisobaren. . . Versuchsanordnung zur Herleitung der Nernst’schen-Gleichung. . . . . . . Vm -2 -Diagramm zur Ermittlung der partiellen Molvolumina. . . . . . . . Zustandsdiagramm eines chemisch einheitlichen Stoffes in seinen drei Aggregatzuständen (schematisch); a) Dampfdruckkurve, b) Schmelzkurve, c) Sublimationskurve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zustandsdiagramm Hexan-Perfluorhexan mit oberer kritischer Lösungstemperatur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Siedediagramm eines isobaren binären Systems zur Ableitung des Hebelgesetzes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schmelzdiagramm NiOMgO. . . . . . . . . . . . . . . . . . . . . . . . . Aufstellung eines Zustandsdiagramms durch „Thermische Analyse“; abc Liquiduslinie, adbec Soliduslinie, E Eutektikum, dbe Eutektikale, a Smp. von a, c Smp. von B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bestimmung des Mengenverhältnisses von Komponenten bzw. Phasen mit dem Gesetz der abgewandten Hebelarme (Hebelgesetz). . . . . . . . . . . . . . Zustandsdiagramm PbSn. . . . . . . . . . . . . . . . . . . . . . . . . . . Umsetzungen an Phasengrenzen bei binären Systemen „flüssig-fest.“ . . . . Zustandsschaubild Eisen-Kohlenstoff; metastabiles System: FeFe3 C; gestrichelt: Abweichungen des stabilen Systems FeC. . . . . . . . . . . . . . . Grundsysteme des FeFe3 C-Diagramms; a) vgl. Abb. 1.38a: Vollständige Löslichkeit der Komponenten im flüssigen und teilweise Löslichkeit im festen Zustand (Mischungslücke und Eutektikum); b) vgl. Abb. 3.33: Eutektoider Zerfall der  -MK; c) vgl. Abb. 1.38b: Peritektische Umsetzung von Schmelze und ı-MK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eisenwerkstoffgruppen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-Gehalt des perlitischen Stahls in Ma.-%. . . . . . . . . . . . . . . . . . . Dreieck-Koordinatensystem. . . . . . . . . . . . . . . . . . . . . . . . . . Dreieckkoordinatensystem; Zeichnung zu Kap. 3.11, Frage 144. . . . . . . Homogenisierung im ternären System mit einer Mischungslücke durch Zusatz der Komponente A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abhängigkeit der Mischungslücke von der Temperatur. . . . . . . . . . . . Temperatureinfluss auf die Mischungslücke des ternären Systems ABC; a) Raumdiagramm; b) Konzentrationsdreieck. . . . . . . . . . . . . . . . . Ternäres System PbBiSn; a) Grundfläche (Konzentrationsebene); b) Raumdiagramm; c) Projektion des Raumdiagramms auf die Grundfläche; d) Zusammensetzung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ternäres System PbBiSn: Isotherme Horizontalschnitte durch das Raumdiagramm; a) oberhalb des binären Eutektikums BiPb nach bereits einsetzender Primärkristallisation; b) durch das binäre Eutektikum des Systems BiPb; c) unterhalb der drei binären Eutektika und oberhalb des ternären Eutektikums; d) durch das ternäre Eutektikum. . . . . . . . . . . . . . . . . . . . . . . .

174 182 197 198 201 202 204 207 212

222 225 226 227

229 231 232 233 235

236 237 238 239 240 241 243 244

246

247

Abbildungsverzeichnis

3.44 Ternäres Legierungssystem ABC; a) Dreieck-Koordinatensystem mit zwei Konoden (gestrichelt) und Basislinie Cm des Vertrikalschnitts; b) Raumdiagramm mit markiertem Vertikalschnitt; c) Zustandsdiagramm zum Vertikalschnitt in b. 3.45 Dreiecksdiagramm einer wässrigen Lösung zweier Salze S1 und S2 ; a) ohne b) mit Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.46 Dreiecksdiagramm einer wässrigen Lösung von zwei Salzen S1 und S2 die ein Doppelsalz bilden. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.47 Dreiecksdiagramme einer wässrigen Lösung von zwei Salzen S1 und S2 (Zeichnung zu Frage 153); a) ohne b) mit Kennzeichnung der Veränderungen bei der isothermen Verdampfung von Wasser. . . . . . . . . . . . . . . . . 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26

Abhängigkeit der kinetischen Energie von der Temperatur. . . . . . . . . . Versuchsanordnung zur Bestimmung der osmotischen Arbeit einer wässrigen Lösung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apparatur zur Ermittlung der Oberflächenspannung nach der Blasendruckmethode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hystereseschleife einer FeSi-Legierung ( 3,25 % Si). . . . . . . . . . . Versuchsanordnung zur Bestimmung der Verbrennungsenthalpie von Propan. Hyperkonjugation einer -CH-Bindung der Methylgruppe mit dem aromatischen -Elektronensystem im Toluol-Molekül. . . . . . . . . . . . . . . . Wasserstoffpartialdrücke bei den Zersetzungsreaktionen von Magnesiumhydrid und Dimagnesiumnickeltetrahydrid bei verschiedenen Temperaturen. . Versuchsanordnung zur Bestimmung von S in der galvanischen Zelle. . . Funktionsprinzip des Lockheed-Versuchskraftwerkes zur Umwandlung von Wärme in Arbeit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Versuchsanordnung zweier Gefäße mit Gasen (A): CO2 /H2 -Gemisch, (B): Propan. . . . . . . . . . . . . . . . . . . . . . Latimer-Diagramm von Kupfer. . . . . . . . . . . . . . . . . . . . . . . . Titrationskurven für die Fällungstitration von 100 ml 0;1 M Halogenidlösung mit 0;1 M AgNO3 -Lösung. . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm von CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm von CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . Zustandsdiagramm Aluminiumoxid (AL2 O3 )-Kryolith(Na3 AlF6 ). . . . . . Phasendiagramm des Dreistoffsystems „Chloroform-Wasser-Essigsäure“. . Phasendiagramm des Dreistoffsystems „Methanol-Wasser-Methylchlorid“. . Phasendiagramm eines Dreistoffsystems mit zwei Mischungslücken. . . . . Versuchsanordnung zur Bestimmung der Michaelis-Menten-Konstante Km von Urease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kalorimetrische Bestimmung des Energieumsatzes bei Mehlwürmern. . . . Thermodynamische Skala der Hydrolyse einiger phosporylierter Verbindungen (pH D 7, 37 ı C, 1 bar, c = 1 mol=dm3 , Mg2+ (aq) im Überschuss). . . . . . . . Wege der Mobilisierung von Acetyl S-CoA und des Citrat-Zyklus mit Endprodukten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fettsäureabbau durch ˇ-Oxidation. . . . . . . . . . . . . . . . . . . . . . . Schema der Atmungskette (aus Karlson, P., Biochemie, Thieme Verlag 1986, verändert). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schema der Chemiosmose in den Mitochondrien (aus Campbell, Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000, verändert). . . . . . . . Übersichtsschema und Formelbilanz der Photosynthese. . . . . . . . . . . .

529

249

250 251

252 258 261 262 264 270 273 275 278 279 290 302 305 309 310 311 312 313 314 316 318 320 321 323 325 326 327

530 5.1 5.2 5.3

5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14

5.15 5.16 5.17 5.18 5.19 5.20 5.21

5.22 5.23 5.24 5.25 5.26 5.27 5.28

Abbildungsverzeichnis

Schematische Darstellung der elektrolytischen Silberraffination. . . . . . . Vollständige Hystereseschleife eines Ferromagneten. . . . . . . . . . . . . Zur Definition der mechanischen Arbeit. a) konst. Kraft und Weg in gleicher Richtung (V : Vektor); b) schräg zur Wegrichtung angreifende Kraft (WL: Wirkungslinie der Kraft), 1) Situation, 2) Zerlegung der Kraft F in FS D F  cos ˛ und FN D F  sin ˛, 3) Diagramm der verrichteten Arbeit; c) Arbeit bei wegabhängiger Kraft. Die Fläche A ist der Grenzwert der Summe aus den Rechtecken FV  sV zwischen s1 und s2 . . . . . . . . . . . . . . . . . . . Zur Hubarbeit bei der geneigten Ebene. . . . . . . . . . . . . . . . . . . . Arbeitsdiagramme zu Aufgabe 70. . . . . . . . . . . . . . . . . . . . . . . Born-Haber-Kreisprozess, dargestellt mit Enthalpiewerten von Stickstoff(IV)oxid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schema des Born-Haber-Kreisprozesses für die Berechnung der Gitterenthalpie von Kalziumfluorid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elementarzelle (1) und Schema zur Berechnung der Gitterenthalpie (2) von Titan(II)-oxid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Born-Haber-Kreisprozess zur Bildung des Ionengitters von Kaliumfluorid. . Born-Haber-Kreisprozess zur Bildung des Ionengitters von Magnesiumoxid. Energiediagramm des Hydratationsprozesses von Kupfersulfat. . . . . . . . Grafische Darstellung der Funktion v H D f (Anzahl der C-Atome) bei primären Alkanolen und Cyclohexan. . . . . . . . . . . . . . . . . . . . . Hyperkonjugation einer -CH-Bindung der Methylgruppe mit dem aromatischen -Elektronensystem im Toluol-Molekül. . . . . . . . . . . . . . . . Wasserstoffpartialdruck bei den Zersetzungsreaktionen von Magnesiumhydrid und Dimagnesiumnickeltetrahydrid in Abhängigkeit von der Temperatur; mit Angabe verschiedener Wertepaare. . . . . . . . . . . . . . . . . . . . . . . Schema zur Berechnung von S beim Schmelzen von Eis. . . . . . . . . . Schema zur Berechnung von S bei der Erstarrung von unterkühltem Wasser. Graphische Darstellung der mittleren Kernbindungsenergie der Elemente als Funktion der Massenzahl . . . . . . . . . . . . . . . . . . . . . . . . . . . Schema eines Kohlekraftwerkes . . . . . . . . . . . . . . . . . . . . . . . Schema eines Kernkraftwerkes mit Druckwasserreaktor, H2 O D Moderator, B D Brennstäbe, R D Regelstäbe . . . . . . . . . . . . . . . . . . . . . . . „Innenleben“ einer Solarzelle (Quelle: Frauenhofer Institut für solare Energiesysteme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brennstoffzelle Aufbau und Anwendung a) Schema einer AFC-Zelle (Alkaline Fuel Cell), b) Schema eines Brennstoffzellen-Kraftwerks mit externer Reformierung des Brenngases, c) Funktionsprinzip eines Kfz mit Brennstoffzellen-/ Elektroantrieb (aus IZE C HEA Frf./M. und CD-ROM-BMW Group: H2 Mobilität, verändert) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anteile von Ammoniak im Gleichgewicht; a) in Abhängigkeit vom Druck (Isothermen), b) in Abhängigkeit von der Temperatur (Isobaren). . . . . . . Temperaturabhängigkeit der Zustandsgrößen U , H , F und G. . . . . . . . Temperaturabhängigkeit von G und Kp. . . . . . . . . . . . . . . . . . . Volumen% NO der Luft in Abhängigkeit von der Temperatur. . . . . . . . . Temperaturabhängigkeit der Zerfallsgeschwindigkeit von Nitrosylchlorid. . Graphische Ermittlung der Geschwindigkeitskonstanten der Verseifung von Ethylethanat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energiediagramm des Ätzvorganges von Kupfer mit salzsaurem Wasserstoffperoxid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

341 346

348 349 350 353 354 355 356 357 359 361 365

369 371 372 378 380 381 384

387 389 394 396 403 404 419 425

Abbildungsverzeichnis

5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.60 5.61 5.62

5.63 5.64 5.65 5.66 5.67 5.68 5.69

Tropfenversuch von Evans. . . . . . . . . . . . . . . . . . . . . . . . . . . Beim Rosten entstehende Hauptphasen. . . . . . . . . . . . . . . . . . . . Marktschreierversuch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Latimer-Diagramm für Uran. . . . . . . . . . . . . . . . . . . . . . . . . . Temperaturabhängigkeit von G beim Kalkbrennen. . . . . . . . . . . . . Druckabhängigkeit der Karbonatbildung von CaO und MgO bei 1000 K. . . Boudouard-Gleichgewicht. . . . . . . . . . . . . . . . . . . . . . . . . . . Vereinfachtes Termschema zur Veranschaulichung von Fluoreszenz- und Phosphoreszenzprozessen nach Anregung durch Strahlungsabsorption. . . . . . Zustandsdiagramm SO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm von CO2 mit Kenzeichnung der Phasen A, B und C. . . . Dampfdruckdiagramm Benzol-Toluol. . . . . . . . . . . . . . . . . . . . . Siedediagramm Benzol–m-Xylol. . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm des ternären Systems Chloroform-Wasser-Essigsäure mit Lösungen zu Aufgabe 259. . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm des ternären Systems Chloroform-Wasser-Essigsäure mit Lösungen zu Aufgabe 260. . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm des ternären Systems Methylchlorid-Methanol-Wasser mit Lösungen zu Aufgabe 261. . . . . . . . . . . . . . . . . . . . . . . . . . . Phasendiagramm des ternären Systems A-B-C mit Lösungen zu Aufgabe 262. Kreislauf des Stickstoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . Rolle der Enzyme, Hormone und Vitamine im Stoffwechsel. . . . . . . . . Enzymkinetik. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Herleitung des Michaelis-Menten-Grenzgesetzes und das Lineweaver-BurkDiagramm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lineweaver-Burk-Diagramm der Aktivitätsbestimmung von Urease. . . . . Lineweaver-Burk-Diagramm zur Aufgabe 266 und deren Lösungen. . . . . Lineweaver-Burk-Diagramm zur Aufgabe 267. . . . . . . . . . . . . . . . „Schussapparat“ des Bombardierkäfers (aus Biologie heute S. II, SchroedelVerlag, 1995, verändert). . . . . . . . . . . . . . . . . . . . . . . . . . . . Kalorimetrische Bestimmung des Energieumsatzes einer Maus. . . . . . . . Funktionsprinzip des Spirometers. . . . . . . . . . . . . . . . . . . . . . . Energieumsatz in kJ/kg in Abhängigkeit von der Körpermasse in g. . . . . . Spaltung von Adenosintriphosphat in Adenosindiphosphat und Phosphat. . Spaltung von Adenosintriphosphat in Adenosinmonophosphat und Diphosphat. Spaltung von Glukose-6-Phosphat in Glukose und Phosphat. . . . . . . . . Spaltung von Phosphoenolpyruvat in Pyruvat und Phosphat. . . . . . . . . Halbzellen des ATP4 /ADP3 -Systems. . . . . . . . . . . . . . . . . . . . ATP4 /ADP3 -System. . . . . . . . . . . . . . . . . . . . . . . . . . . . ATP4 /ADP3 -System als Bindeglied zwischen der Reaktion von 1,3-Diphosphoglycerat zu 3-Phosphoglycerat und der Reaktion von Fruktose-6-phosphat zu Fruktose-1,6-diphosphat. . . . . . . . . . . . . . . Umsetzung von ˛-Keto-glutarat2 zu Succinyl SCoA. . . . . . . . . . . Initialreaktion und Schrittfolge des Citrat-Zyklus mit exergoner Wirkung auf die endergone Oxidation von Malat2 zu Oxalacetat2 . . . . . . . . . . . Abbau von Glycerin zu Glycerin-aldehyd-3-phosphat. . . . . . . . . . . . . Aufbau von Buttersäure. . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidative Desaminierung von Alanin. . . . . . . . . . . . . . . . . . . . . Transaminierung von Glutamat2 zu ˛-Ketoglutarat2 . . . . . . . . . . . . Funktion des Pyridoxalphosphats2 bei der Transaminierung. . . . . . . .

531 426 426 427 432 437 437 440 451 457 459 461 462 463 464 466 467 470 470 471 472 473 474 475 477 481 482 483 484 484 485 485 486 486

487 488 489 491 493 494 494 495

532

Abbildungsverzeichnis

5.70 Reaktionsmechanismus der Transaminierung. . . . . . . . . . . . . . . . . 5.71 Redoxzustände der prosthetischen Gruppen (NAD+ , NADP+ , Ubichinon, FAD, FMN und Cytochrom c) von Carriern der Elektronentransportkette (Atmungskette). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.72 Kaskade kleiner Energiestufen in der Atmungskette. . . . . . . . . . . . . . 5.73 Skala der elektromagnetischen Wellen. . . . . . . . . . . . . . . . . . . . . 5.74 Absorptionsspektrum von Chlorophyll a und b in Ether. . . . . . . . . . . . 5.75 Photosystem (Lichtsammeleinheit) (aus Campbell, N. A., Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000). . . . . . . . . . . . . . . . . . . 5.76 Hypothetischer Ablauf der Lichtreaktion (aus Lehninger, GK Biochemie, W. de Gruyter Verlag Berlin, 1985, verändert). . . . . . . . . . . . . . . . . 5.77 Schema der Chemiosmose in den Chloroplasten (aus Campbell, N. A., Biologie, Spektrum Akademischer Verlag, Heidelberg, 2000, verändert). . . . . . 5.78 Vergleich der Chemiosmose in Mitochondrien und Chloroplasten. . . . . . 5.79 Reaktionsfolge von Phase 1 und 2 im Calvin-Zyklus. . . . . . . . . . . . . 5.80 Calvin-Zyklus: Bildung von Glukose und Regeneration von Ribulose-1,5bisphosphat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.81 Schema der Energietransformation der Photosynthese. . . . . . . . . . . . 5.82 Biozyklus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9

Glykolyse (Emden-Meyerhof-Abbau). . . . . . . . . . . Citrat-Zyklus. . . . . . . . . . . . . . . . . . . . . . . . Guanosintriphosphat. . . . . . . . . . . . . . . . . . . . Nikotinsäureamid-adenin-dinukleotid-phosphat (NADPC Flavin-adenin-dinukleotid (FAD). . . . . . . . . . . . . Coenzym ASH / Acetyl SCoA. . . . . . . . . . . . Chlorophyll a und b/Häm. . . . . . . . . . . . . . . . . Pyridoxalphosphat/Pyridoxaminphosphat. . . . . . . . . Harnstoffzyklus. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . / NADPH/HC /. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

496

497 498 503 503 504 505 507 508 510 511 512 514 515 516 516 517 518 519 520 520 521

Tabellenverzeichnis

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Möglichkeiten der Entropieänderung. . . . . . . . . . . . . . . . . . . . . Beispiele für Legendre-Transformationen: Einführung von a) z D 2  x 1 in y.x/ D ln x 2 ; b) T .S;p/ in H .S;p/; [n D 0] . . . . . . . . . . . . . . . Thermodynamische Potenziale (Gibbsfunktionen) und Fundamentalgleichungen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mittlere Aktivitätskoeffizienten starker Elektrolyte bei 25 ı C in Abhängigkeit von der Konzentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperaturfixpunkte zur Kalibrierung der Kelvin-Skala. . . . . . . . . . . Temperaturabhängigkeit des Sättigungsdampfdruckes von Wasser. . . . . . Verfügbare Freiheitsgrade im Einkomponentensystem Wasser nach dem Gibbs’schen Phasengesetz. . . . . . . . . . . . . . . . . . . . . . . . . . .

Kritische Temperaturen TK für verschiedene Gase. . . . . . . . . . . . . . Osmotischer Druck wässriger Rohrzuckerlösungen bei 15 ı C als Funktion der Konzentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Osmotischer Druck einer 1 %igen Rohrzuckerlösung als Funktion der Temperatur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Auswertung Tab. 3.2, Osmotischer Druck wässriger Rohrzuckerlösungen bei 15 ı C als Funktion der Konzentration. . . . . . . . . . . . . . . . . . . . . 3.5 Auswertung Tab. 3.3, Osmotischer Druck einer 1 %igen Rohrzuckerlösung als Funktion der Temperatur. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Arbeit in Systemen, dargestellt als Produkt aus einem intensiven und einem extensiven Faktor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Koeffizienten von Formen der kalorischen Zustandsgleichung. . . . . . . . 3.8 Spezifische Wärmekapazitäten verschiedener Stoffe. . . . . . . . . . . . . . 3.9 Umrechnungen der Gleichgewichtskonstanten Kc, Kp und K. Vm muss auf die jeweiligen p; T -Bedingungen umgerechnet werden. . . . . . . . . . . . 3.10 Werte aus dem Dreieckkoordinatensystem Abb. 3.38. . . . . . . . . . . . . 3.1 3.2

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Experimentelle Daten der Bestimmung von V H einiger Aromaten, m: Masse (g), Qges.: Verbrennungswärme (J). . . . . . . . . . . . . . . . . Inkremente zur Berechnung von V H für Aromaten nach dem Inkrementsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Massen m und Gesamtbindungsenergien Ek einiger Nuklide und Nukleonen. Molare Standardgrößen und Molwärmen [Cp D f .T /] von NH3 , N2 und H2 Gesuchte Größen der thermischen Dissoziation von NH3 bei verschiedenen Temperaturen und Drücken. . . . . . . . . . . . . . . . . . . . . . . . . . Thermodynamische Daten der Reaktionsteilnehmer bei der Verbrennung von Methan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B H 0 - und S 0 -Werte der Reaktanden von Aufgabe 196. . . . . . . . . . . Kalorimetrische Messergebnisse von Aufgabe 196. . . . . . . . . . . . . . Potenziometrische Messergebnisse von Aufgabe 196. . . . . . . . . . . . .

29 51 52 59 75 75 76 152 155 155 156 156 160 163 164 195 239 272 273 281 282 283 289 295 295 296

534

Tabellenverzeichnis

4.10 Löslichkeit von Silbersalzen in verschiedenen Lösungsmitteln. . . . . . . . 4.11 Gleichgewichtskonstanten (KL ; Kz; pK) einiger Silberverbindungen. . . .

301 301

5.1

455

Luftfeuchte und Partialdruck des Wasserdampfes. . . . . . . . . . . . . . .

Namenregister

Abbe 225 Amonton  118, 147, 187 Andrews  10, 11 Arrhenius 204 Avogadro  3, 56, 134, 144, 257 Berthelot  9, 21 Bloomfield 450 Boltzmann  3, 35 Born  266, 353 Boyle  3, 8, 118, 146, 151, 259 Boudouard  125, 209, 300, 439 Burk  315, 471, 531 Calvin  327, 506 ff, 511, Carnot  29, 121, 169 ff, 278, 380 Le Chatelier  388, 391, 406 Celsius  2, 3, 74, 143 Clapeyron  63, 72, 451 ff Clausius  22, 63, 72, 180, 451 ff Coulomb 56 Curie 237 Dewar 135 Duhem  40 ff, 53, 59, 125, 211 ff, 374

Jones  7 f Joule  22 f, 27, 137, 151, 259, 336 Junkers  20, 269 Kelvin  74 f, 136, 150, 176 Kirchhoff  121, 168 Konowalow  81, 92 Latimer  296 f, 302, 432 Ledebur 236 Legendre  49 ff Lennard  7 f Linde 24 Lineweaver  315 ff, 471 ff London 7 Mariotte  3, 118, 146, 148 ff, 177 Maxwell  32, 147 f, 145, 186 Menten  195, 315 f, 471 f Meyer 27 Michaelis  195, 315 f, 471 f Nagy 450 Nernst  1, 34, 56, 200 f, 205, 207, 214, 221

Fahrenheit 74 Faraday  9, 56, 160, 193

Parkes  130, 241 Pfeffer  119, 154 f Pictet  30 f, 34, 71 Planck  28, 34, 123, 184, 187, 512 Poisson  33, 121 f, 169, 177, 179

Galvani  14, 45, 193, 201, 263, 278, 388 Gay-Lussac  3, 21, 118, 146 ff, 187 Gibbs  32, 40 ff, 45, 50, 76 ff, 123, 188 Guldberg  124, 193 Guggenheim  47, 50

Raoult  60, 69, 79 f, 84 ff, 220, 311, 461 Reaumur 74 Richard 30 Roberts-Austen 234 Roozeboom 40

Haber  266 ff, 354 ff, 530 f Hasselbalch  200, 298, 434 f Helmholtz  46, 57, 119, 123 ff, 188 ff Henderson  200, 298, 434 Henry  220, 304, 446 Hess  34, 166, 267, 273, 366 Hill  325, 506 van‘t Hoff  59 f, 154 f, 197, 202 ff, 220

Schröder  62, 66 f Schwarz  5, 27, 48, 138 f, 141 f

Evans  294, 426, 531

Thomson  21 ff, 28, 151, 259, 336 Trouton  30 f, 34, 71,372 Waage  124, 193

Sachregister

Acetyl-S-CoA  321, 489 Acyl-Carnitin-Ester 492 β-Acyl-S-CoA 492 Adenosinmonophosphat (AMP2–)  320, 484 Adenosindiphosphat (ADP3–)  320, 484 Adenosintriphosphat (ATP4–)  279, 319, 84 ATP4– / ADP3--System 319 ATP4–-Synthase  499, 508 ATP4– -Bilanz, katabolische  324 – von Alanin  324, 493 – von Asparaginsäure  325, 500 – von Glukose  325, 499 – von Glycerin  325, 500 – von Palmitinsäure  325, 499 – von Stearinsäure  323, 492 – des Triglycerids der Palmitinsäure  325, 500 – der alkoholischen Gärung  322, 489 – der Milchsäuregärung  322, 490 Adiabate (Abb. 3.15b)  121, 171, 172, 177 Aerobier  323, 491 Adsorption 155 Affinität  54, 228, 267, 315 Airbag 256 Aktivität  58, 194, 221 f – Koeffizient der -  58 f – Urease-  474 Aluminiumcarbid  310, 311, 343 Aluminium(III)-chlorid 310 Aluminiumoxid  262, 310 f Aminierung  324, 469, 494 ff α-Aminosäure  324, 469, 494, 496 Anaerobier  322, 491 Anaerobiose 490 Analyse, thermische  229 Annulen 520 – (18)-  520 Antipode, optische  80 Anomalie 121 – des Wassers  121, 165 Anziehungskraft  7, 58 – Coulombsche  56 – van-der-Waalssche  7, 22, 151 – Londonsche  7 Äquivalent, kalorisches  318, 478, 479 ff Arbeit 13, 15, 44, 160 – adiabatische  44 – chemiosmotische  13, 160

– elektrische  14, 45, 160, 206, 261, 341 – elektrochemische  14, 160 – magnetische (Abb. 4.4)  14, 160, 263, 344 – maximale (freie Energie, Abb. 1.6)  15, 38, 44, 46, 52, 190, 280 , – mechanische (Abb. 5.3 + 5.4)  13, 160, 265, 347 – Nutz- (freie Enthalpie)  15, 38, 45, 52, 172, 190 – Oberflächen-  13, 160, 260 f, 340 – osmotische (Abb. 4.2)  13, 160, 260, 339 – Spannungs-  13 – Volumen- (Abb. 1.5)  12, 13, 26, 160, 170, 259, 337 ff Arbeitsdiagramm (Abb. 1.12 + 3.15 + 5.5)  44, 170, 265, 350 Arbeitsdichte 14 Arbeitsdifferenzial  27, 143 Arbeitselement 26 Arbeitskoeffizient 14 Arbeitskoordinate 14 Arrhenius-Gleichung 204 Aspartat2–  493, 494, 495, 521 Assimilation, photoautotrophe  327 Assoziation 34 Atemzugvolumen (AZV)  325 Atmungskette  324, 325, 326 Ausdehnungskoeffizient, isobarer (Abb. 1.2)  5, 118, 147, 150 – des Stahls [X8CrNi18,10]  118, 150 Austenit (Abb. 3.34)  234, 235 , 237 – γ-Fe-MK 236 Azeotrop 84 – binäres (Abb. 1.32)  86 – ternäres  86 Azomethin 494 Binnendruck  11, 18, 20, 21, 151, 157, 163 Binodalkurve (Abb. 1.27A-3 + 1.43 + 1.44)  78, 106 f, 145, 240, 243, 464 ff Biozyklus (Abb. 5.82)  176, 328, 513 f Bioenergetik  314 ff 1,3-Biphosphoglycerat4– (Abb. 5.79 + 5.80 + 6.1)  487, 510, 511, 515 Biosphäre  327, 514 Blutdruck  326, 502 Brenztraubensäure  321 f, 492

538   

Sachregister

Boltzmann 3 – -Gleichung  35 – -Konstante  3, 36, 257 Bombardierkäfer (Abb. 5.52) 317, 477 Bombenkalorimeter (Abb. 1.8-1) 19, 271  ff Born-Haber-Kreisprozess (Abb. 5.6 + 5.7 + 5.9 + 5.10)  267, 353, 354, 357 Boudouard-Gleichgewicht (Abb. 5.35)  125, 209, 300, 439 f Brechzahl 135 Brennstoffzelle (Abb 5.21)  280, 385 – AFC  387 – PEMFC  387 – -Kraftwerk  387 – -Elektroantrieb  387, 388 Brennwert 318 – der Nährstoffe  319, 478 f Buttersäure (Abb. 5.66)  271, 323, 362, 493 Carbamidsäure (Abb. 6.9)  469 Carboxylierung 488 – Pyruvat-  488 Carnot-Kreisprozess (Abb. 3.15)  121, 170, 171 f – Wärmekraftmaschine  175 – Wirkungsgrad  121, 172 ff – rückwärts laufender (Abb. 3.16)  175 (s. u. Kraftwärmemaschine) Carotinoid 504 Carrier (Abb. 4.24 + 5.71)  324, 497 Le Chatelier-Gesetz  388 f, 391, 406 Chemiosmose  324, 328, 499 – im Chloroplast (Abb. 5.77 + 5.78)  507, 328 – im Mitochondrium (Abb. 4.25 + 5.78)  324, 326, 328 Chlorophyll (Abb. 5.74 + 5.75 + 6.7)  327 , 328, 502, 504 Chloroplast (Abb. 5.77 + 5.78)  327, 328, 506 f, 508 Chymotrypsin 316 Citratzyklus (Abb. 4.22 + 6.2)  321, 516 – Initialreaktion des -  322, 488, 489 Clathrat 443 Clausius-Clapeyronsche-Gleichung  63, 72 Co-A-SH (Abb. 4.22 + 6,6)  321, 519 Cyclopropan  289, 413 – -Isomerisierung  289, 413 Cytochrom (Abb. 4.24 + 5.71 + 5.77)  324, 497, 498, 506 Cytosol 491 Dampfdruck  55, 72 – -erniedrigung  55, 62 f, 70 – -wässriger Saccharose  307, 454 – Temperaturabhängigkeit  72

Dampfdruckdiagramm (Abb. 1.28 + 1.32 bis 1.36 + 5.39)  80, 82, 84, 87, 88, 91, 217, 311, 461 – Siedelinie  80, 86, 87, 88, 91 – Taulinie  80, 86, 87, 88, 91 – azeotroper Punkt (Abb. 1.30 + 1.31)  86, 87 Decarboxylierung, oxidative  321, 488, 492 – von Pyruvat– (Abb. 6.6)  489 – von α-Ketoglutarat2– 321, 488 – Decarboxylase  489, 456 Dehydrogenase  322, 488, 492 Dephosphorylierung 319 – von Metaboliten (Abb. 4.21)  320 Desaminierung, oxidative  321, 493 f, 500 Destillation  62, 69 f, 72, 80, 82 – einfache  82 – fraktionierte  80, 82 – rektifizierende (Abb. 1.29)  82 – im Vakuum  72 – mit Wasserdampf  92 – Trennfaktor der -  62, 69, 71 f Destillierkolonne (Abb. 129)  83 – Boden der –  83 Destruent (Abb. 5.46 + 5.82)  314, 469, 470 , 514 Dewar-Gefäß 151 Differenzial  5, 16, 21 – unvollständiges  27 – vollständiges (totales)  5, 16, 21, 26, 32 Diffusion  55, 218, 507 Dihydroxyacetonphosphat2– (Abb. 5.79)  317, 491, 492 1,3-Diphosphoglycerat4– (Abb. 5.62)  320 Disproportionierung  297, 302, 432, 443 Dissipation 28 – Energie- (Abb. 3.17)  181 Dissoziationsgrad  58, 60, 124, 196, 283, 284, 297, 394, 433 Dissoziationsdruck  125, 208, 299 Dreiecksdiagramm 132 – der wässrigen Lösung von zwei Salzen (Abb. 2.4 bis 2.6)  132 f., 250 Dreieckskoordinatensystem 132 – Legierung A-B-C  132, 248 – Legierung Pb-Bi-Sn (Abb. 3.43)  131, 218, 235 Dreikomponenten-System (s. u. Phasengleichgewicht) Drosseleffekt, isothermer  162 Druckkoeffizient, isochorer  6, 118, 150, Druck, kritischer  10, 457 Druck, osmotischer  13, 119, 155, 160, 259, 317 – p/π-Analogie  108, 153

Sachregister    Einkomponenten-Dreiphasen-System  (s. u. Phasengleichgewicht) Einkomponenten-Zweiphasen-Systems  (s. u. Phasengleichgewicht) Eisen-Kohlenstoff-Diagramm  129, 234 Eisen-Eisenkarbid-Diagramm (Abb. 3.33)  235 ff. – Grunddiagramme des - (Abb. 234)  235 ff – Umwandlungs- und Sättigungslinien  236, 237 – Curie-Linie  237 Elektrode, elektrochemische 207 – Ag / Ag+  56 f, 58 – Zn / Zn2+ 126 – (Pt) H2 / 2H+ (Abb. 4.8)  278, 374 – (Pt) 0,5 O2 (H2O) / 20 H– 374 Elektrodenpotenzial 302 Elektrolyt 58 – schwacher  60 – starker  59 Elektrolyse  255, 259, 262, 296 – im Schmelzfluss von Al2O3/Na3AlF6  262, 310 – wässriger Cloralkalilösung  262 – der Metallraffination (Ag)  341 – einer Chromsäurelösung  296 Elektronenakzeptor 499, 504 – der Lichtreaktion (Photosynthese)  504 f Elektronentransportkette  324 f, 327, 497, 505, 508 – der Atmung (Abb. 4.26 + 5.71)  324, 327 f, 497 – der Photosynthese (Abb. 5.76 + 5.78)  505 f , 508 Emulsion 90 Energie  12, 14, 16 – Aktivierungs- 124, 201, 204, 282, 286, 292, 315 – Bindungs-  122, 167, 179 – freie (Abb. 1.6)  15, 38, 44, 46, 52, 123, 136, 188 – gebundene (Abb. 1.6)  15, 47, 279 – innere  12, 14, 18 – kinetische  12, 72, 122, 147, 158, 164, 179, 256, 258, 335 – potenzielle  8, 12, 122, 157 Energieumsatz des Organismus  317, 478 – Grund-  319, 478, 481 – Tätigkeits-  478 – Erhaltungs- 478 Erneuerbare Energie  379, 385 – Wandlungskette über H2 385 – - Methanisierung v. H2 385 – - Power-to-Gas-Technologie  385 Enolpyruvat– (Abb. 6.1)  485, 515 Enthalpie  15, 23 – Bildungs-  30, 166, 167, 266 – Bindungs-  122, 179

539

– freie molare (Gibbs-Potenzial)  15, 38, 45, 52, 61, 123, 136, 189, 190, 193, 197 f – Dissoziations-  266, 268, 297, 315 – Gitter-  44, 166, 169, 268, 354 – Hydratations-  44, 166, 169, 354 – Lösungs-  44, 121, 166, 168, 266 – Mischungs-  42 – Reaktions-  121, 166, 167, 168 – Solvatations-  44 – Verbrennungs- (Abb. 4.5)  166, 265, 269, 272 – Verdampfungs-  18, 273, 276, 297, 307 – Verdünnungs-  43 Entmischungstemperatur, kritische (s. u. Lösungstemperatur, kritische) Entropie (Abb. 1.13)  27 f, 174 – -änderung (Tab. 1.1)  29 ff, 181, 276 – -berechnung  36, 174 – -konstante  34 – als Maß der Irreversibilität  35 – als Maß der Unordnung  35, 122, 183 – als Pfeil der Zeit  35, 183 – produzierte (erzeugte)  28, 170 – transportierte (-strom)  28, 170 – Mischungs- (Abb. 1.15)  36, 38, 277 – Standard-  34, 183, 282 Enzym (Abb. 5.46 + 5.47)  195, 314, 468, 470 – Holo-  487 – Apo-  487 – Co- (Abb. 6.6)  322, 325, 414, 487 – -affinität  315, 471 – -hemmung, kompetitive  475 Enzym-Substrat-Komplex (Abb. 5.47)  315, 471, 474 – Dissoziationskonstante (Km, Abb. 4.19)  316 – Wechselzahl (kkat )  317 – Vmax der ES-Bildung (Abb. 5.47)  471 Enzymreaktion (Auswahl)  315 – Hydrolyse von Acetyl-L-Tryptophanamid  316 – Hydrolyse von Harnstoff (Abb. 4.19)  315, 468 – Nitrifikation von NH+4(aq)  315, 469 – Spaltung der Peptidbindung  317 – Umwandlung v. Dihydroxyacetonphosphat2– zu Glycerinaldehyd-3-phosphat2– 317 – Umwandlung von Glukose-l-phosphat2– in Glukose-6-phosphat2– 317 – Zersetzung von H2O2 (Abb. 5.52)  317, 477 – Oxidation von Hydrochinon (Abb. 5.52)  476, 477 – Umsetzung von 1,3-Diphosphoglycerat4– zu 3- Phosphoglycerat2– (Abb. 4.21 + 5.62)  320, 487 – Umsetzung von Fruktose-6-phosphat2– zu Fruktose-1,6-diphosphat4– (Abb. 4.21 + 5.62)  320, 487

540   

Sachregister

Essigsäure, aktivierte (s. u. Acetyl-S-CoA) Eukaryot 491 Eutektikale (Abb. 1.38)  94 – Punkt, eutektischer  94 Eutektikum 86 – binäres (Abb. 1.38 bis 1.40 + Abb. 3.29 bis 3.31)  95, 98, 101, 229, 231, 2232 – ternäres  110, 131, 132, 245, 248 Eutektoide (Abb. 3.34b)  100, 223, 236 – Punkt, eutektoider  237 Evans-Tropfenversuch (Abb. 5.29)  294, 425 f Evolution, biologische (Abb. 3.17)  181, 469, 491 Fällungstitration 304 – Argentometrie (Abb. 4.12)  304 – - Halogenidbestimmung  447 – Rhodanometrie  304 – - Ag-Bestimmung  448 FCKW 176 Ferredoxin (Abb. 5.76)  505, 506 Ferrit (Abb. 3.33)  234 f. Fettsäureabbau  322, 492 – β-Oxidation (Abb. 4.23)  323, 492 – Fettverbrennung  326, 500 – Pumpleistung des Herzens bei -  326, 502 Flavin-Adenin-Dinukleotid FAD (Abb. 4.24 + 5.71 + 6.5)  325, 497, 518 Flavin-Mononukleotid FMN, (Abb. 4.24 + 5.71) 497 Fließgleichgewicht (Abb. 3.17)  181, 182 Flussdichte  14, 160 – elektrische  14, 160 – magnetische (Induktion)  14, 150, 263 Fruktose-6-phosphat2– (Abb. 4.21 + 5.62 + 5.79)  321, 487, 510 Fruktose-1,6-diphosphat4– (Abb. 4.21)  320, 487 Fugazität  60, 257, 333 – Koeffizient der -  60 Fumarat2– (Abb. 4.22 + 6.2 + 6.9)  321, 516 , 521 Galvani-Element (-Zelle, -Kette, Abb. 3.20 + 3.23 + 4.8)  14, 47, 201, 207, 278 – Potenzialdifferenz ∆E  193, 200, 280, 294, 498 Gärung  323, 489 f, 491, 514 – alkoholische  323, 489 – Milchsäure-  323, 490 Gas, ideales  2 ff, 255, 329, – Eigenschaften des -  2, 17, 27, 141, 144, 163 – p-V-Isotherme (Abb. 1.4a)  10 Gas, reales  6 f, 255, 329, 141, 151 – Kovolumen der Moleküle  7 – Lennard-Jones-Potenzial (Abb. 1.3a)  8

– p-V-Isotherrne des - (Abb. 1.4b)  10 – pV-p-Isotherme des - (Abb. 1.3b)  8 Gasgesetz  3, 63 – Amonton (Abb. 3.7)  118, 147, 187 – Avogadro  3, 144 f, 149, 257 – Berthelot  9 – Boyle-Mariotte (Abb. 3.5)  3, 118, 146, 149, 187, 437 – Gay-Lussac  3, 21 f, 25, 118, 146 ff, 187 – van-der-Waals  6, 151, 256 Gaskonstante  3, 16, 143 f, 256 Gastheorie, kinetische  17, 144 – Faktor der Impulsänderung  144 – Freiheitsgrad  144 – Geschwindigkeitsverteilung der Moleküle (Abb. 3.4) 145 Gasverflüssigung (Abb. 1.4 + 1.11)  10, 21, 24, 118, 151 – von CO2 nach Andrews  10 f – Linde-Verfahren  24 Gay-Lussac-Versuch (Abb. 1.9)  21 Gefrierpunkterniedrigung (Abb. 1.23a)  60 , 62, 66, 71 (s. u. Schmelzpunktdepression) Gefügeumwandlung  129, 135 Gewichtsbruch 65 Gibbssche Fundamentalgleichung  32, 45, 46, 185 Gibbssches Phasengesetz  76 f, 216, 310 – Herleitung  126, 216 – Freiheitsgrad (Tab. 1.7)  76, 217, 222, 310 Gibbs-Potenzial (s. u. Potenzial, thermodynamisches) Gibbs-Duhemsche Gleichung  40, 53, 59, 125, 211 ff Gibbs-Helmholtzsche Gleichung  46, 57, 123, 188 f, 191 f, 203, 295, 429 Gips  299, 302, 380, 432 Gleichgewicht, thermodynamisches  53 ff, 125, 210 – Bedingungen  53 ff – Sonderfälle  55 ff Gleichgewichtskonstante  194, 195, 472 – der Teil-Aktivitäten  194 – der Teil-Konzentrationen  194, 195 – der Partialdrücke  194, 195 – der Teil-Molenbrüche  194, 195 – der Dissoziation des ES-Komplexes (Abb. 5.48)  472 f – der Protolyse  124, 201, 298, 434 f – der Fällungsreaktion  301, 302, 304, 446 Gleichgewichtsreaktion, homogen-chemische (Auswahl)  281 ff, 388 ff – mit Halogenwasserstoff (HX)  293 ff, 422 ff – mit C-Verbindung (COx , KW und Derivate)  286 ff, 404 ff

Sachregister    – mit N-Verbindung (NH3, NOx , NOCI)  281 ff, 388 ff – mit S-Verbindung (SOx, SFx)  292 ff, 420 ff – protolytische  297 ff, 433 ff – redoxchemische (Al, Ag, Cr, Cu, Fe, H2, H2O2, Mn, Ni, O2, U, Zn )  294 ff, 424 ff Gleichgewichtsreaktion, heterogen-chemische (Auswahl)  125 ff, 207 ff, 299 ff , 436 ff – einer Fällung (Ag-halogenid, Ag2S, CaCO3, CuI, CaSO4·2H2O)  135, 125, 208, 301 ff, 441 ff – mit C- bzw. S-Verbindung (CO32-, SO42-, Boudouard- u.Wassergas-Gleichgewicht)  125, 299 ff, 436 ff – mit Metalloxid (FeO, Fe2O3, Fe3O4 , Ag2O)  302 ff, 443 ff – von I2 in CS2/KI(aq)-Gemisch  303, 445 – von Q in C6H6/H2O-Gemisch  303, 445 – des Zerfalls von NH4HS(aq)  125, 209 Glukose  480, 485, 515 – -1-phosphat2– (Abb. 4.21)  320 – -6-phosphat2– (Abb. 4.21)  320 , 485, 515 Glutamat2– (Abb. 5.68 + 5.69)  324, 494 f Glycerin (Abb. 4.22)  271, 500 – -abbau (Abb. 4.22(4a) + 5.65)  321, 491, 500 – -aldehyd-3-phosphat2– (Abb. 5.79 + 6.1)  317, 487, 491, 511, 515 – -1-phosphat2– (Abb. 4.21)  320 Glykolyse (Abb. 4.22(1a)+6.1)  321, 487, 491, 515 Gravitation  12, 158 f, 385 Grenzflächenspannung  13, 340 Granum (Abb. 5.78)  327, 508 Größe, partielle molare  38 ff, 50 ff, 125 ff, 210 ff – des Volumens  39 f, 64, 112, 213 – der Energie  50 – der Enthalpie  41 f, 50 – der Entropie  57, 66 – der freien Energie  50 – der freien Enthalpie  50 – chemisches Potenzial μ (Tab. 1.3)  50, 52 Guanosintriphosphat (Abb. 4.22 + 6.3)  321, 516 Guggenheim-Quadrat  47, 50 – Ablesen der 1. part. Ableitung einer Zustandsfunktion 48 – Ablesen einer Maxwell-Relation  48 Gusseisen 237 Häm (Hm, Abb. 6.7)  259, 325, 520 – Hm·O2  325, 327 – Hm·CO  327 Hämoglobin  259, 325 f, 327, 336, 520 Hämatit 300

541

Harnstoff  314 f, 468 ff, 470 – -hydrolyse (Abb. 4.19 + 5.45)  315 f, 468 ff – -zyklus (Abb. 6.9)  494, 521 Hauptsatz, thermodynamischer  1, 12, 27 – nullter (Abb. 1.1)  1 ff, 118 f, 143 ff – erster (Abb. 1.6)  12 ff, 14, 15 ff, 119 ff, 156 ff – zweiter (Abb. 1.13 + 3.17, Tab.1.1)  27 ff, 29, 122 ff, 181 ff – dritter  1, 27, 34, 184 Hebelgesetz (Abb. 3.30)  79, 81, 87, 89, 96, 104, 128, 231, 464 ff – Ableitung des - (Abb. 3.27)  225 f. Heizen mit Solarenergie  280, 382 – Solar-Eis-Speicher  383 – Solar-Luftkollektor  384 – Sonnenkonzentrator  383 – - Gewölbtspiegel  384 – - Linearspiegel  384 – Thermobatterie  382 – Vakuumröhren-Kollektor  382 Heizwert 18 – Definition  18 – Bestimmung (Abb. 1.8-1 + 1.8-2)  18 ff, 20 Henderson-Hasselbalch-Gleichung  200, 298, 434 , 435 Hess  34, 121, 166, 273, 267, 356, 366, 512 – Wärmesatz von -  166 Hill 325 – -gleichung  325 – -reaktion  506 Hirschhornsalz  256, 332 van`t Hoff  59 f, 197, 202, 204 – -Faktor  59 f, 336, 339, 340 – -Gesetz des osmotischen Druckes  62, 64, 119, 126, 154 f, 220 – -Gleichgewichtskasten (Abb. 3.18)  197 – -Reaktionsisobare (Abb. 3.21 + 3.22)  124, 203 ff, 423 – -Reaktionsisochore 124, 205 – - Reaktionsisotherme, MWG (Abb. 318)  197 f Hyperkonjugation (Abb. 4.6 + 5.13)  273, 365 Hysteresis  264, 346 – -Schleife eines Ferromagneten (Abb. 4.4 + 5.2)  264, 346 – weichmagnetische Kenngrößen  346 I-Effekt 485 Imin 494 Induktion, magnetische  346 Inhibitor 475 Inkrement (Tab. 4.2)  272, 365 Isocitrat (Abb. 4.22 + 6.2)  321, 516 Integrabilitätsbedingung 48 Intermediärstoffwechsel  319 f, 486 f Inversionstemperatur  23, 151, 259, 337

542   

Sachregister

Ionenwolke 58 Irreversibilität  29, 35 Isentrope (Abb. 1.16 + 3.3)  37, 121, 140, 172, 184, Isobare (Abb. 3.3 + 5.22)  140, 389 Isotherme (Abb. 1.12 + 1.3b+1.4 + 3.3 + 3.15 + 5.22)  8, 10, 140, 171, 389 Iterationsverfahren 7 Joule-Thomson-Versuch (Abb. 1.9)  21 – isothermer Drosseleffekt  20, 162 – Bsp.-Rechnung  259, 337 Kalkmörtel  302, 442 Kalorimetrie  119, 268 ff, 357 ff – mit Bombenkalorimeter (Abb. 1.8-1)  19, 271 ff – mit Junkerskalorimeter (Abb. 18-2)  20 – Grundgleichung der –  119, 161 – direkte  478 – indirekte  478 Kältemaschine (s. u. Kraftwärmemaschine) Katalase 477 Kettenreaktion 176 Kernbindungsenergie  280, 377 – als Funktion der MZ (Abb. 5.17)  378 – Nutzung der -  378 ff – - Kernspaltung  378 – - Kernfusion  379 – - - Wasserstoffbombe („Zar-Bombe“)  379 – Mythos Atomkraft  378 Kernkraftwerk (KKW) mit  380 – Leichtwasserreaktor  380 – -Siedewasserreaktor  380 – -Druckwasserreaktor (Abb. 519)  381 – Hochtemperaturreaktor  381 – schnellem Brutreaktor  381 β-Ketoacyl-S-CoA 492 α-Ketosäure (Abb. 5.68 + 5.69 + 6.9)  494 , 495 – α-Keto-glutarat2–  494, 495 Kirchhoff-Gleichung  121, 168 Koerzitivfeldstärke 346 Komponente  39 ff, 50, 57, 67 Kompressibilität, isotherme  5, 16, 118, 150 Konode  81, 92, 104, 107, 115, 127, 130, 225 Konodendreieck 109 Konowalow-Regel  81, 92 Konsument (Abb. 5.82)  513, 514 Konzentrationsdreieck, ternäres System (Abb. 1.42 + 1.44 + 2.3 + 3.41)  103, 106, 131, 244 – Schnitte im - (Abb. 1.42b)  103 – kritischer Punkt bei teilweiser Mischbarkeit 104

Kohlekraftwerk (Abb. 518)  379 f – Rauchgasreinigung  380 Konvektion 135 Konvertierungsgleichgewicht  125, 209 f, 287, 291 Kraft  13, 14, 159 – elektromotorische (∆E, EMK)  14, 159, 160, 294 – Gravitations-  159 – protomotorische (∆pH, PMK)  13, 160 – protonenmotorische (ptm)  499, 507, 508, 509 – Zug-  13 Kraft-Wärme-Kopplung  281, 385, 386 Kraftwärmemaschine (Abb. 3.16)  174 f, 175, – Kältemaschine  121, 173 f., 174, 176, 177 – Wärmepumpe  121, 173 f, 174 f, – Leistungszahl der -  121, 173, 175, 176 f, 278 f, 374 Kristallgemisch (s. u. Legierungsstruktur) Kristallisation  92, 93, – eutektische  96, 100, 110, 111 – fraktionierte  93 Kryolith (Abb. 4.15)  262, 310 f Kupfer(II)-hexacyanoferrat(II) 154 Lactat- 490 Lageenergiespeicher 385 – Pumpspeicherkraftwerk  385 – in einem Felszylinder aus Granit  385 Latimer-Diagramm (Abb. 4.11 + 5.32)  296, 297, 302, 432, 442 Ledeburit (Abb. 3.33 + 3.35)  235, 236 , 237 Legendre –Transformation  49 – Darstellung  49 f – Beispiele (Tab. 1.2)  51 f Legierungsstruktur 213 – aus Mischkristallen (MK)  92, 93, 228 – -Überstruktur  228 – aus einem Kristallgemisch (KG)  228 – mit intermetallischer Phase (IP)  228 Lewis-Säure-Base-Komplex  485, 494 – elektrophiler Reaktand (Säure)  485 – nukleophiler Reaktand (Base)  485 Lineweaver-Burk  315, 472 – -Diagramm (Abb. 5.48 bis 5.51)  472 ff – -Gleichung  472 Lipase 322 Lithium-Ionen-Batterie  386, 388 – nanoSafe Battery  388 Loschmidt-Konstante 144 Lösung 41 – homogene  77 – heterogene  77 – inkongruent gesättigte  134, 252

Sachregister    – im Gleichgewicht mit dem Bodenkörper (Abb. 1.41) 100 – Eiskurve  101 f – Löslichkeitskurve  102 – kryohydratischer (singularer ) Punkt  102 Lösungsvorgang 44 – Druckabhängigkeit  62, 65 Lösungstemperatur, kritische (KT = CST, Abb. 1.25) 78 – obere (OKT)  78, 90, 116, 210 – untere (UKT)  78 Luftfeuchte  126, 222, 307, 454 – Taupunkt  222, 307, 454 Luftverflüssigung 24 – nach Linde  24 Lumineszenz  450 f – Fluoreszenz  450, 503 – Phosphoreszenz  450 – Termschema (Abb. 5.36)  451 Luminophor (Leuchtstoff)  306, 450 f – Kalziumhalophosphat, Ca5(PO4)3 (F,Cl)  450 Magnetit  300, 425 Malat2– (Abb. 6.2)  321, 322, 489, 516 M-Effekt 485 Marktschreierversuch (Abb. 5.31)  294, 427 Massenwirkungsgesetz (MWG)  123 f, 193, 197 – kinetische Herleitung  123, 193, 194 – thermodynamische Herleitung (Abb. 3.18)  124, 126, 197, 215 Maxwell  32, 118, 145 – - Geschwindigkeitsverteilung der Gasmoleküle (Abb. 3.4)  118, 145 – - Relation  32, 47 f, 123, 139, 186 f Mesomeriestabilisierung  273, 365, 484, 494 Metabolismus  319 f Metabolit, phosphathaltiger  320 – -Hydrolyseskala (Abb. 4.21)  320 Michaelis-Menten  195, 315 f, 471 f – - Grenzgesetz (Abb. 5.48)  315, 472 – - Konstante (Abb. 4.19)  315 f, 471 f Mischphase  39, 40, 61, 125 – ideale  39, 57 – reale  40, 58 Mischungslücke  67, 78 – flüssige, binäre (Abb. 1.34 + 1.35)  88, 91 – feste, binäre (Abb. 1.38 bis 1.41)  95, 98, 101 – flüssige, ternäre (Abb. 1.43 bis 1.47)  105–109 Mitochondrium (Abb. 5.78)  498, 508 Modifikationsgitter  129, 234 f Molenbruch 38 Molalität 59 Molekularsieb 86

543

Molekülverbindung 99 – homogen schmelzende (Abb. 1.39b)  98 – inhomogen schmelzende (Abb. 1.39c)  98 Molmasse 64 – - Bestimmung  64, 69, 257, 259, 308 Molwärme (Abb. 1.7)  16, 17 – bei konstantem Druck (Cp)  16 – bei konstantem Volumen (CV) 16 – bei idealen Gasen  17 – - Berechnung mit kinetischer Gastheorie  17 f – - Poissonkonstante k  17 f, 122, 179 – - Druck-und Volumenabhängigkeit  33 – Herleitung der Differenz Cp – CV  25, 33 – CV-Berechnung von Ethanol  122, 180 Mondprozess 287 Muskelkater 490 MOSK-Linie  129, 237 Natriumazid  256, 331 Nernst  1, 34, 58, 124, 184, 205 – - Gleichung (Abb. 3.23)  58, 124, 126, 200, 205, 207, 214 – - Verteilungssatz  126, 221, 445 ff – - Wärmesatz  34, 184 Nikotinamid-Adenin-Dinukleotid (NAD+) 324, 325, 487 ff, 490 ff, 497 Nikotinamid-Adenin-Dinukleotid-Phosphat (NADP+, Abb. 4.26 + 6.4)  327, 497, 517 NADP-Reductase (Abb. 5.76 + 5.77)  505, 507 Normalbedingung 4 Nitrifikation (Abb. 5.45)  314, 469, 470 Nitrobacter 469 Nitrosomonas 469 Nucleotid 483 Nullpunkt, absoluter  118, 150 – Unerreichbarkeit  122, 184 Oszillation 17 Oberflächenspannung  13, 160, 260, 340 – Bestimmung mit Blasendruckmethode (Abb. 4.3)  261, 262, 341 Osmose (Abb. 3.10)  64, 126, 153, 206, 218 Oxalacetat2– (Abb. 4.22 + 5.64 + 5.68 + 5.69 + 6.3)  321, 494, 495, 516 Oxigenase 469 Ozongürtel der Erde  176 – FCKW-Wirksamkeit  176 Parkes-Verfahren  130, 241 – Pb/ Zn /Ag-System  241, 242 Pepsin  317, 475 Peritektikum (Abb. 1.38 + 3.34c)  95, 236 – Peritektikale  97 – Punkt, peritektischer  94 Perlit (Abb. 3.33)  100, 233, 235, 237

544   

Sachregister

Peroxidase 477 Perpetuum mobile  119, 122 – erster Art  119, 157 – zweiter Art  122, 181 Pfeffersche Zelle (Abb. 3.11)  154 Phosgen  287, 407 Pictet-Troutonsche Regel  30, 31, 34 Pigment, akzessorisches  504 Phase 72 – intermetallische  127, 228 – koexistierende (konjugierte)  81, 83 , 92 Phasengleichgewicht (Auswahl)  77, 129, 223, 238, 305 – im Einkomponenten-Dreiphasen- System  74, 222 – ein reiner Stoff (schematisch, Abb. 3.25)  222 – H2O (Abb. 1.26)  74 – SO2 (Abb. 5.37)  457 – CO2 (Abb. 4.13 + 4.14 + 5.38)  309, 310, 459 – im Einkomponenten-Zweiphasen- System  308, 456 – H2O (Abb. 1.25)  73 – Hg  306 f, 449 f – im Zweikomponenten-Zweiphasen- System  310, 459 – Grundlagen (s. u. System, binäres)  77 – Al2O3 / Na3A1F6 (Abb. 4.15)  311 – Benzol / Toluol (Abb. 5.39)  461 – Benzol / m-Xylol (Abb. 5.40)  462 – Fe / C (Abb. 3.33)  235 – Hexan / Perflourhexan (Abb. 3.26)  225 – NiO / MgO (Abb. 3.28)  227 – Pb / Sn (Abb. 3.31)  232 – H2O / NaC1 (Abb. 1.41)  101 – im Dreikomponenten-System 312, 463 – Grundlagen (s. u. System, ternäres)  102 ff – CH3COOH / CHCl3/H2O (Abb. 4.16 + 5.41)  312 f, 463 f – CH3Cl / CH3OH / H2O (Abb. 4.17 + 5.43)  313, 4.65 ff – A/B/C (Abb. 3.44 + 5.44)  247 ff, 466 ff – Pb/Bi/Sn (Abb. 3.42)  131, 245 ff – Pb/Zn/Ag  130, 242 Phosphatgruppe, terminale  320 , 483 ff Phosphoenolpyruvat3– (Abb. 4.21 + 6.1)  320, 515 Phosphofruktokinase (Abb. 5.62)  320, 487 Phosphoglucomutase  317, 476 3-Phosphoglycerat2– (Abb. 6.1)  515 2-Phosphoglycerat2– (Abb. 6.1)  515 Phosphoglyceratkinase (Abb. 5.62)  320, 487 Phosphorylierung, oxidative  324, 499, – von Metaboliten (Abb. 4.21)  320

Photophosphorylierung 506 – nichtzyklische  506 – zyklische (Abb. 5.76)  505, 506 Photolyse des Wassers  506, 509 – in der Hill-Reaktion  506 Photosynthese (Abb. 4.26)  327 ff, 504, 510 f – Lichtreaktion (Abb. 5.76)  505 f – Calvin-Zyklus (Abb. 4.26 + 5.79 + 5.80)  327, 510, 511 Photosystem (Abb. 4.26 + 5.75 + 576)  327, 504 f Photovoltaikanlage 384 – Solarzelle (Abb. 5.20)  384 ff – - Sperrschicht-Fotoeffekt  384 – - Tandem- und Trippelzellen  385 Pictet-Troutonsche Regel  30 Plastochinon (Abb. 5.76 + 5.77)  505, 507 Plastocyan (Abb. 5.76)  505 Poisson-Gleichung  121, 169, 179 – Herleitung der -  121, 177 f. – Bsp.-Rechnung  18 f, 122, 179 Potenzial 47 – chemisches (μ, Tab.1.3)  50, 52, 55 – elektrochemisches  56 – Elektroden- (Einzel-, Grenzflächen- oder Halbzellen-)  56, 58, 207, 215 – protochemisches  298 – elektrisches  56 – Lennard-Jones- (Abb. 1.3a)  8 – thermodynamisches (Tab. 1.3)  44 ff, 52 – - freie Energie (max. Arbeit, Abb. 1.6)  15, 44, 47, 123, 188 – - freie Enthalpie (Nutzarbeit, Gibbs-Potenzial)  15, 45, 46, 47, 52, 54, 123 Prokaryot 491 Punkt, singulärer (Abb. 134)  89 Pyridoxalphosphat2– (Abb. 5.69 + 5.70 + 6.8)  495 f, 520 Pyridoxaminphosphat2– (Abb. 5.69 + 5.70 + 6.8)  495 f, 520 Pyrophosphat3– (Abb. 4.22 + 6.6)  321, 494, 519 Pyruvatl– (Abb. 4.22 + 6.1)  321, 515 Quecksilber-Niederdruck-Leuchtstofflampe  306, 450 f – Typ A  306, 449 – Typ B (Energiesparlampe)  306, 449 Quotient, respiratorischer  318, 478 Range Extender  388 Raoultsches Gesetz  62, 63 Raumdiagramm, ternäres System (Abb. 1.44 + 1.48)  106, 111 – isothermer Schnitt durch das - (Abb. 1.49)  111 f

Sachregister    – Vertikalschnitt durch das - (Abb. 3.44)  132, 248, 249 Reaktion ( Abb. 3.14)  170 – endotherme  170 – endergonische (Abb. 1.20)  54 – endotrope (Abb. 1.13)  28 – exotherme  170 – exergonische (Abb. 1.20)  54 – exotrope (Abb. 1.13)  28 – Verlaufsrichtung (Abb. 1.20)  54, 123, 188, 192 Reaktionsgrad  124, 196 Reaktionsisobare (Abb. 3.21 + 3.22)  124, 202, 204, 423 Reaktionsisochore 205 Reaktionsisotherme (Abb. 3.19)  198, 215 Rektifikation 82 – Kolonne der - (Abb. 1.29)  82, 83 – Gleichgewichtsdiagramm (Dampf und Flüssigkeit, Abb. 1.31)  85 Ribulose-1,5-biphosphat4– (RuBP, Abb. 5.79 + 5.80)  509, 510, 511 – -Carboxylase (Rubisco)  509 Richardsche Regel  30 Rotation 17 Rosten (Abb. 5.29 + 5.30)  294, 425 f Schiffsche Base  494 Schrödersche Gleichung  62, 66, 67 Schmelzdiagramm 92 – Ermittlung (Abb. 3.29)  229 – Liquiduslinie (Abb. 1.37)  92 – Soliduslinie(Abb. 1.37)  92 – Extremum (Abb. 1.37b, c)  93 – Segregatlinie (Abb. 1.38)  95 – Umsatz an Phasengrenze (Abb. 3.32)  233 – eutektischer (Abb. 1.38a+1.39 + 3.33)  95, 98, 235 – peritektischer (Abb. 3.34c)  236 – monotektischer (Abb. 1.40b)  101 – eutektoider (Abb. 1.40a +3.34b)  101, 236 Schmelzpunkt  62, 66, 74 – hypothetischer (Abb. 1.39c)  98, 99 Schmelzpunktdepression (Abb. 1.22)  62, 66 – Bestimmung nach Beckmann (Abb. 1.23a)  71 – Berechnung nach Schröder  66 – von H2O durch NaCI-Zusatz  308, 455 Schwarzscher Satz (Abb. 3.1 + 3.2)  5,27, 48, 117, 137 ff , 141 ff Siedediagramm (Abb. 1.28 + 1.32 bis 1.36)  80, 86, 87, 88,91 – Ermittlung  127, 225 – Siedelinie (Abb1.28 + 1.32 bis 1.36)  80, 86, 87, 88, 91

545

– Taulinie (Abb1.28 + 1.32 bis 1.36)  80, 86, 87, 88, 91 – azeotroper Punkt (Abb. 1.32 + 1.33)  86 , 87 Siedepunkterhöhung (Abb. 1.22)  62, 69, 70 – Bestimmung nach Beckmann (Abb. 1.23b)  71 – Berechnung nach Schröder  69 – von CC14 durch S-Zusatz  307, 455 Spirometer (Abb. 5.54)  482 Standardzustand 166 Stearyl-S-CoA 492 Stahl (Abb. 3.35 + 3.36)  6, 118, 129, 150, 237, 238 Stickstoffkreislauf, schematisch (Abb. 5.45)  314 f, 470 – Destruenten-Saprophagen-Nahrungskette  469 – Phytophagen-Zoophagen-Nahrungskette  469 – Harnstoffspaltung  315, 468 – Nitrifikation von (Abb. 5.45)  314, 315 , 469 Stoffverteilung zwischen zwei Phasen  126, 220, 303 ff, 445 ff – Henrysches Gesetz  220, 446 – - Tauchgang eines Tauchers  304, 446 – Löslichkeitsprodukt  221, 304, 446 – - Löslichkeit  221, 304, 446 – Nernst- Verteilung  120, 221, 303, 445, Stroma (Abb. 5.77 + 5.78)  507, 509 Succinat-Dehydrogenase 488 Succinyl-S-CoA (Abb. 6.2)  516 System, binäres  77 – flüssig-flüssig (Abb. 1.27)  78 – flüssig-gasförmig (Abb. 1.28 + 1.30 + 1.32 bis 1.36)  80, 84, 86 bis 91 – flüssig-fest (Abb. 1.37 bis 1.41)  93 bis 101 System, ternäres  102 – aus drei flüssigen Komponenten (Abb. 1.43 bis 1.47)  104, 105 bis 109 – mit festen Phasen (Abb. 148 + 149)  109, 111, 113 – von zwei gelösten Salzen in Wasser (Abb. 1.50 bis 1.52)  112, 114, 115 System, thermodynamisches (Abb. 1.6)  15, 135 – abgeschlossenes  14, 15, 28, 29, 122, 135, 182 – adiabatisches (Tab.1.1)  15, 21, 29, 36,53, 121, 177 – geschlossenes  15, 28, 55, 135, 481 – offenes  15, 38, 122, 135, 181 Taupunkt  126, 222, 307,454 Temperatur 2 – Boyle-  8, 9 – Celsius-  74 – Fahrenheit-  74 – Kelvin-  74, 118, 136, 147, 150, 176 – Reaumur-  74

546   

Sachregister

– kritische (Tab.3.1)  9, 11, 151, 152 – Inversions-  23, 151, 259, 336 f Temperkohle 234 Thermodynamik  1, 12, 27, 38, 44, 52 – chemische  1, 30, 52, 117, 139 – klassische (s.a. Hauptsatz der -)  1, 27, 117, 140 – statistische 35, 47, 117, 140 Thionylchlorid  29, 293, 421 – Reaktion mit Hexaaquakobalt(II)-chlorid  29, 293, 421 Transformator 347 – Netztrafo  347 Translation 17 Transaminierung (Abb. 4.22 (3) +5.68 + 5.70)  321, 494, 496 Triosephosphatisomerase  317, 476 Transitivität 1 Tripelpunkt (Abb. 1.26 + 3.25, Tab.1.5)  75, 126, 222, 308, 456 Trennfaktor  62, 69, 71 Trockeneis  309, 310, 458 Thylakoidmembran (Abb. 5.77 + 5.78)  507, 508 Ubichinon (Abb. 5.71)  324, 325, 497 Ubihydrochinon (Abb. 5.71)  497 Umsatzgrad (Abb. 1.20)  54 Umwandlung von Energieformen  122, 179 Urease (Abb. 4.19 + 5.49)  316, 469 f, 473 f Uran-Nuklide  280, 296, 377 ff, 380 ff Verteilung eines Stoffes  126, 220 Verdrängungshemmung 475 Verspiegelung 135 Vitamin (Abb. 5.46)  315, 324, 470 Volumen  2, 3, 4 – Ko-  7 – Mol-  4,39 f, 125 – partielles molares (Abb. 3.24)  63, 210, 211, 212, 213 – - einer Methanol-Wasser-Mischung  213 Volumenpolarisation  14, 160 – magnetische  14, 160 – elektrische  14, 160 Wahrscheinlichkeit, thermodynamische  35 f. Wasser (Abb 1.24 bis 1.26 ; Tab. 1.7)  72 f, 74, 76, 298 – Anomalie von - (Abb. 3.13)  121, 165 – Protolysekenngrößen von -  298, 434 Wassergasgleichgewicht  125, 209, 287, 408 Wärmekapazität  120, 136, 163 – molare (Tab.3.7)  136, 157, 162, 163 – spezifische (Tab.3.7)  120, 136, 163

Wärmekraftmaschine (Carnot-Maschine, Abb. 3.15 + 3.16)  171, 175 – Wirkungsgrad  121, 172 – - Lockheed-Versuchskraftwerk (Abb. 4.9)  279, 375 Wärmepumpe (Abb. 3.16)  121, 173 f, 175 – Arbeitsmittel  121, 175, 383 – Leistungszahl  173, 175 f, 177, 279, 375 Weichmagnet 346 Weltgeschehen, entropisches  122, 182 – Wärmetod  182 Wirkstoff (Abb. 5.46)  315, 469 Wirkungsgrad, bioenergetischer  499 – der Zellatmung  499 – der alkoholischen Gärung  489 – der Michsäuregärung  490 – der Photosynthese  511 ff Wüstit 300 Zement 299 Zementit (Abb. 3.33)  234 f Zustand, thermodynamischer  117, 135 Zustandsänderung (Abb. 1.12 + 1.6 + 3.3)  15, 26, 140 – adiabatische  15, 140 – isobare  140 – isochore  140 – polytrope  140 Zustandsgleichung  2, 5, 6, 16, 187 – thermische  2, 6 – kalorische  16, 161 – kanonische  34, 123, 187 Zustandsfunktion  117, 136, 156 Zustandsgröße  2 ,4, 115, 118, 136 – molare  136 – thermische  47, 50 – spezifische  136 – extensive  4, 136 – intensive  4, 136 Zustandsvariable 136 Zustandssumme  47, 140