113 26 28MB
English Pages 745 [774] Year 2023
Yoshiyuki Kawazoe Takeshi Kanomata Ryunosuke Note
High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure A Supplement to Landolt-Börnstein IV/22 Series
MATERIALS.SPRINGER.COM
High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure
Yoshiyuki Kawazoe • Takeshi Kanomata • Ryunosuke Note
High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure A Supplement to Landolt-Bo¨rnstein IV/22 Series
With 354 Figures and 9 Tables
Yoshiyuki Kawazoe Tohoku University Sendai, Japan
Takeshi Kanomata Sendai, Japan
Ryunosuke Note Miyagi-gun, Japan
ISBN 978-3-662-64592-5 ISBN 978-3-662-64593-2 (eBook) https://doi.org/10.1007/978-3-662-64593-2 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany
Preface
Pressure is one of the important independent variables with temperature which are able to control the state of condensed materials. The essential effect of pressure application is to change both the volume of material or atomic distance between constituent elements in the condensed materials and then their electronic state. Various physical properties of condensed materials change with the change of electronic states by application of pressure. Among the effects of pressure for physical properties of condensed materials, the most remarkable pressure effect is the occurrence of pressure–induced new phase as seen in structural transformation, magnetic and electric phase transition and then insulator–metal transitions induced by pressure application. In the early twentieth century, P. W. Bridgman (a Nobel prize winner 1946) have at first developed the high-pressure generation apparatuses, established the experimental method for research of physical properties of solids under high pressure, and measured the compressibility of many materials, pressure effects on electrical resistance, and studied phase transformation induced by pressure. After Bridgman, the development of various kinds of pressure generation apparatus using solids as compressing medium made it possible for us to study solid-state physics under wide pressure and temperature ranges. In particular, the development of a miniature diamond anvil in the 1970s has extended the experimental ranges of pressures up to 50 GPa and also of the temperatures from super low temperature to those of a few thousand degrees. On the other hand, measurement methods of various kinds of physical properties under high pressure also were greatly developed in the last three decades, and then measurements of magnetization, magnetic susceptibility, electric resistance, magnetoresistance, Hall effect, a dielectric constant, ND, X-ray diffraction, specific heat, thermal expansion, ultrasonic measurements, and Mössbauer effect under pressure become possible and a large number of results have been published on the solid-state physics under high pressure. In the field of magnetism, it was well known earlier that the volume of a ferromagnet changes with the increase of intrinsic magnetization by application of magnetic field after saturation. This volume effect was measured as the forced volume magnetostriction. And also, as the temperature is increased through the Curie temperature, the loss of intrinsic magnetization has an effect on the volume which shows up as an abnormal thermal expansion. This shows that the occurrence v
vi
Preface
of intrinsic magnetization causes the volume change of ferromagnet, which is called spontaneous volume magnetostriction. These effects have been called magnetovolume effects and are used to estimate the volume dependence of intrinsic magnetization or interaction between magnetic ions. As reciprocals of magnetovolume effect, the application of pressure on a ferromagnet induces the change of magnetization and magnetic transition temperature. Because of the difficulty of pressure generation and magnetic measurements under pressure, there were a few reports about the pressure effect on magnetic properties formerly. But the technique of pressure generation and magnetic measurements under pressure developed rapidly after the 1970s. They enable us not only to measure magnetization under pressure up to 50 GPa, but to carry out even the measurements of various micro-magnetic properties, for example, NMR, neutron diffraction, Mössbauer effect, etc. And then the recent results of observations of magnetic phase transitions under pressure revealed that various kinds of magnetic states (magnetic structures) are induced even in a kind of magnetic material by pressure application. At present, the temperature-pressure magnetic phase diagrams have been reported for many magnetically ordered materials: pure metals, ordered or disordered alloys, oxides, and compounds. In the field of superconductivity, research on superconductivity under pressure has made also much progress in superconducting heavy fermion compounds, oxides, and organic compounds since the 1970s. At present, it is also found that a lot of non-superconducting materials under normal pressure transform into superconductors under high pressure. In particular, it was a quite surprising fact that even pure iron metal was found to become superconducting at temperatures below 2 K at pressures between 15 and 30 GPa in the non-magnetic hcp phase and then many non-superconducting materials to become superconducting by application of extreme high pressure of several tens of GPa. It is expected in the field of solid-state physics that the occurrence of new magnetic and superconductive phases by pressure application and clarification of its mechanism will make a great contribution to the development of magnetism and superconductivity research. May 2023
The Editors
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
Part I
MO-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
MnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
Fe1-xO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
Mg1-xFexO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
CoO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
CuO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
EuO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
Part II
MO2-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
α-CrO2
..................................................
51
UO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
Part III
.............................
59
V2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
...................................................
66
ζ-Mn2O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
69
α-Fe2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
γ-Fe2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
Part IV
M3O4-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
Mn3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
85
Cr2O3
M2O3-type Compounds
vii
viii
Contents
Fe3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88
Co3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98
Part V
M7O13-type Compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
V7O13
...................................................
103
Part VI V8O15 Part VII
M8O15-type Compound
............................
107
...................................................
109
MOX (X=F, Cl, Br)-type Compounds . . . . . . . . . . . . . . . . . .
113
TiOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
115
...................................................
116
TiOBr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120
VOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
123
FeOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124
Part VIII
127
TiOCl
MM’O2-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . .........................
129
NaxCoO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
CuCrO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
CuFeO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
143
..................................................
150
2H-AgFeO2 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
153
3R-AgFeO2 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
158
Part IX
161
LiMnO2 (Synthesized Under Pressure)
SrFeO2
MM’(MoO4)2-type Compound . . . . . . . . . . . . . . . . . . . . . . .
RbFe(MoO4)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
163
Part X
167
MM’O2.5-type Compound . . . . . . . . . . . . . . . . . . . . . . . . . . .
La1-xSrxCuO2.5 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . .
169
Part XI
173
MM’O3-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . .........................
175
NaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
178
MgVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
180
NaOsO3 (Synthesized Under Pressure)
Contents
ix
........................
182
K0.84OsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .
184
.........................
186
CaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
190
Ca1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
194
Ca1-xYxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
197
CaMn1-xRuxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200
CaFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
205
.........................
210
CaRuO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
213
Pv-CaRhO3 (Perovskite-Type) (Synthesized Under Pressure) . . . . . . . .
216
pPv-CaRhO3 (Post-perovskite-Type) (Synthesized Under Pressure) . . .
218
.........................
221
CaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
224
CaPtO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
228
ScVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .
231
ScCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
234
.........................
238
ScFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
240
ScRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
243
...........................
246
CrBO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .
249
MnCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
252
.........................
256
MnVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
260
MnCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
263
MnGeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
265
.........................
268
MnSnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
271
MnTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
275
MgMnO3 (Synthesized Under Pressure)
CaCrO3 (Synthesized Under Pressure)
CaCoO3 (Synthesized Under Pressure)
CaOsO3 (Synthesized Under Pressure)
ScMnO3 (Synthesized Under Pressure)
VBO3 (Synthesized Under Pressure)
MnTiO3 (Synthesized Under Pressure)
MnSeO3 (Synthesized Under Pressure)
x
Contents
FeBO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
278
FeCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
287
Mg1-xFexSiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .
292
..................................................
297
FeGeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
301
CoCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
303
..........................
306
CoMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
308
CoSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
310
CoTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
313
NiVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .
315
NiCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
317
.........................
319
NiSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
322
NiTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
325
CuMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
328
CuGeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
330
CuSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
338
CuTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
341
ZnMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
344
GaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
346
SrCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
350
......................
353
C-SrMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
356
....................
360
SrFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
363
SrFe1-xCoxO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .
368
SrCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
371
Sr1-xYxCoO3-δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
375
SrRuO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
379
FeTiO3
CoVO3 (Synthesized Under Pressure)
NiMnO3 (Synthesized Under Pressure)
6H-SrMnO3 (Synthesized Under Pressure)
Sr1-xBaxMnO3 (Synthesized Under Pressure)
Contents
xi
Sr1-xLaxRuO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
384
SrRu1-xCrxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
388
SrRu1-xMnxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
392
SrRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
395
SrOsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
397
SrIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .
400
SrIr0.8Sn0.2O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .
403
YTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
405
YVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
408
YCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
411
YMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
414
..........................
419
YNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .
422
InCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
425
.........................
428
(In1-xMnx)MnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . .
431
(In1-xMx)MO3 (x 5 0.143; M 5 Fe0.5Mn0.5) (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
433
....................
436
InRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
439
6H-BaCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
442
BaMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
445
BaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
447
......................
449
BaOsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
452
9M-BaIrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
455
5M-BaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
459
..................................................
461
LaVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
464
LaCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
467
YCoO3 (Synthesized Under Pressure)
InMnO3 (Synthesized Under Pressure)
InMn1-xGaxO3 (Synthesized Under Pressure)
3C-BaRuO3 (Synthesized Under Pressure)
LaTiO3
xii
Contents
LaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
471
............................................
475
La1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
481
La2/3(Ca1-xSrx)1/3MnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
487
La1-x-yYyCaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
490
............................................
493
LaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
497
La1/3Sr2/3FeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
502
............................................
506
LaCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
508
La1-xCaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
513
La1-xSrxCoO3-δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
519
La1-xBaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
529
CeVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
533
PrVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
535
.................................................
538
Pr1-xNaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
541
Pr1-xCaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
544
Pr1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
549
PrFeO3
..................................................
554
PrNiO3
..................................................
558
Nd1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
563
NdFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
568
Nd1-xBaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
574
NdNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
578
NdRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
583
..................................................
585
SmMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
588
Sm0.2Ca0.8Mn1-xRuxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
591
............................................
594
La1-xCaxMnO3
La1-xBaxMnO3
La0.5Ba0.5FeO3
PrMnO3
SmVO3
Sm1-xSrxMnO3
Contents
xiii
Sm0.5Ba0.5MnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
599
SmNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
601
EuTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
604
EuVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
607
Eu1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
610
EuFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
615
.........................
619
EuNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
622
..................................................
627
GdFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
630
GdNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
633
o-GdInO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .
636
TbVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
638
TbMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
641
.........................
645
DyVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
648
.........................
652
DyNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
654
........................
656
...............................................
658
o-HoMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
661
HoCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
664
HoNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
667
ErCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
669
o-ErMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .
672
ErFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674
o-TmMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
677
.................................................
680
o-YbMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .
683
LuVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
686
EuCoO3 (Synthesized Under Pressure)
GdVO3
TbCoO3 (Synthesized Under Pressure)
DyCoO3 (Synthesized Under Pressure)
o-DyInO3 (Synthesized Under Pressure) h-HoMnO3
TmFeO3
xiv
Contents
...............................................
689
.......................
692
LuFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
695
.........................
699
LuNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
702
LuRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
706
TlCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
708
.........................
710
TlFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
713
TlNiO3 (Synthesized Under Pressure)
..........................
716
PbVO3 (Synthesized Under Pressure)
..........................
719
PbCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
723
PbMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .
726
PbFe0.5V0.5O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .
729
PbNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
731
.........................
734
BiCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
737
BiCr0.5Ni0.5O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .
740
....................
742
.........................
744
h-LuMnO3
o-LuMnO3 (Synthesized Under Pressure)
LuCoO3 (Synthesized Under Pressure)
TlMnO3 (Synthesized Under Pressure)
PbRuO3 (Synthesized Under Pressure)
Bi0.5Pb0.5CrO3 (Synthesized Under Pressure) BiMnO3 (Synthesized Under Pressure)
BiMn1-xMxO3 (M5Al, Sc, Cr, Fe, and Ga; 0≤x≤0.2) (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 BiFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
756
BiCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
764
..........................
768
Bi1-xLaxNiO3 (0≤x≤0.5) (Synthesized Under Pressure) . . . . . . . . . . . . .
773
BiRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .
777
BiNiO3 (Synthesized Under Pressure)
Introduction
General Remarks The subject of this volume is to present both the numerical and graphical data on the various magnetic properties of materials under pressure. In general, most of the socalled magnetic materials are materials which contain the iron group 3d elements and rare earth 4f elements as magnetic atoms. In LB IV/22A, we compiled the data for magnetic properties under pressure of magnetic single metals, disordered and ordered alloys and compounds, which contain 3d elements as magnetic atoms, except 3d metal oxides. In this volume, we compile the data for magnetic properties under pressure of transition metal binary oxides MmOn [M: transition metals, O: oxygen, m, n: 1~15], MXO [M: transition metals, X: F, Cl, Br, O: oxygen], and MM0 On [M: transition metals, M0 : transition metals or non-transition metal elements, O: oxygen, n = 2, 2.5, 3] ternary oxides, which are parts of vast accumulation of data for magnetic oxides together with those for various multicomponent magnetic oxides compiled in a subsequent volume. Compiled oxides MmOn are arranged in order of a subscript ordinal number m and n. The data are presented for each oxide in the order of name of oxides, texts (tables), and figures. The numerical data are compiled in the table which consists of four blocks, I–IV, with the contents as shown below. Name of compiled oxides I Crystallographic data at normal pressure Crystal structure, space group, lattice constants, [reference] Example: Fe3O4 Cubic, Fd3m, a ¼ 8.3970 Å, [94OD] Crystal structure, space group, and lattice parameters are quoted from referred literature.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_1
1
2
Introduction
II Elastic properties The elastic properties (compressibility and bulk modulus) are briefly given. Furthermore, the information of the pressure-induced structural transition is given. III Magnetic properties at normal pressure Basic magnetic properties (magnetic moments, magnetization, magnetic transition temperatures, magnetic structure, etc.) are briefly given. IV Magnetic properties under pressure Pressure derivative or pressure coefficient of magnetic properties is given numerically for each material. And pressure dependence of magnetic properties and magnetic phase diagrams are also given graphically in figure. References and additional literatures: References are arranged in order of published date and numbered consecutively for each material.
On the Selection of the Data As well known, the data-compiling principle in the Landolt-Börnstein series is to choose the best reliable values from many available experimental data and give them in the table. The present compilation is done according to this principle as much as possible. In this compilation, the presently available data are listed for numerical data in each literature. In some cases in which graphical data are given, but the numerical data are not given in the literature, the numerical values of magnetic properties are taken from the analytical data given as figures. Numerical data obtained in such a way are marked with * on its right shoulder. On the other hand, the graphical data (figures) take a lot of printed pages unlike the numerical data. In order to avoid the increase of printed pages, the figures which seem more reasonable from the viewpoint of the author are selected and presented.
List of Symbols Symbol a, b, c B B0 B00
Unit Å G, T bar, Pa
Quantity Lattice parameters Magnetic induction Bulk modulus Pressure derivative of B0
Bhf Cg Cm Cp d
G, T cm3 K g1 cm3 K mol1 J mol1 K1 Å
Magnetic hyperfine field (or hyperfine field) Curie constant per gram Curie constant per mole Specific heat Atomic distance (continued)
List of Symbols Symbol Ea Eac Eg f H HA Hcr Hdc HE Hi Hhf IR kB K1
Lm p pc peff
Unit erg cm3, J m3 eV eV Hz Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Å J K1, erg K1 erg cm3 erg g1, J m3 J f.u.1, K f.u.1 V A1 s bar, Pa, atm bar, Pa μB/M μB/f.u.
pm pM pr psm psM QS R S T TC Tc TCG TCO TCS Tf TISP Tm TMO
μB/f.u. μB/M μB μB/f.u. μB/M mm s1 Ω K, C K K K K K K K K K
3 Quantity Magnetocrystalline anisotropy energy Activation energy Energy gap Frequency Magnetic field, also given as μ0H in tesla (T) Anisotropy field Coercive force dc magnetic field Exchange bias field Internal magnetic field Magnetic hyperfine field (or hyperfine field) Ionic radius Boltzmann constant Anisotropy constant
Mutual inductance Pressure Critical pressure Effective magnetic moment per ion M derived from Curie-Weiss law Effective magnetic moment per formula unit derived from Curie-Weiss law Magnetic moment per formula unit Magnetic moment per ion M Remanent magnetic moment Spontaneous, saturation magnetic moment per formula unit Spontaneous, saturation magnetic moment per ion M Quadrupole splitting Electrical resistance (or resistance) Spin quantum number Temperature Curie temperature Critical temperature Cluster glass transition temperature Charge-ordering transition temperature Spin-canting transition temperature Spin glass freezing temperature Incommensurate spin-Peierls transition temperature Magnetic transition temperature Morin temperature (continued)
4 Symbol TMI TN TOO TSO TSP TSR Tst Tt TV v V W x, y, z xc α, β, γ αt δ δCS δIS ΔSP ε θ θD θp κ a, κ b, κ c, κv κ th μB ρ σ
σr σs ϕ χg χm
Introduction Unit K K K K K K K K K cm s1 Å3, cm3, m3 eV
deg V K1 mm s1 mm s1 eV deg, rad K K Pa1, bar1 W m1 K1 J T1, erg G1 Ω cm G cm3 g1 A m2 kg1 V s m kg1 G cm3 g1 G cm3 g1 deg, rad cm3 g1 cm3 mol1
Quantity Metal-insulator transition temperature Néel temperature Orbital ordering transition temperature Spin ordering transition temperature Spin-Peierls (SP) transition temperature Spin reorientation temperature Structural transition temperature Magnetic order-order transition temperature Verwey transition temperature Velocity (Unit cell) volume Bandwidth Concentration Critical concentration Angles Thermoelectric power Oxygen deficit Center shift Isomer shift Spin-Peierls gap Dielectric constant Angle Debye temperature Paramagnetic Curie temperature Compressibility Thermal conductivity Bohr magneton Electrical resistivity Magnetization per unit mass
Remanent magnetization per unit mass Spontaneous, saturation magnetization per unit mass Angle Magnetic susceptibility per gram Magnetic susceptibility per mole
List of Abbreviations
5
Definitions, Units, and Conversion Factors In the SI, units are given for both defining relations of the magnetization, B = μ0(H + M) and B = μ0H + M, respectively. μ0 = 4π107 V s A1 m1, A: molar mass, ρ: mass density. Quantity B H M
P
σ
σm
χ
χν
χg
χm
cgs/emu G = (erg cm3)1/2 1G≙ 1 Oe = (erg cm3)1/2 1 Oe ≙ B = H + 4πM G 1G≙ P = MV G cm3 1 G cm3 ≙ σ = M/ρ G cm3 g1 1 G cm3 g1 ≙ σ m = σA G cm3 mol1 1 G cm3 mol1 ≙ P = χH cm3 1 cm3 ≙ χ ν = χ/V cm3 cm3 1 cm3 cm3 ≙ χ g = χ ν/ρ cm3 g1 1 cm3 g1 ≙ χm = χg A cm3 mol1 1 cm3 mol1 ≙
SI T = V s m2 104 T A m1 103/4π A m1 B = μ0(H + M) A m1 103 A m1 P = MV A m2 103 A m2 σ = M/ρ A m2 kg1 1 A m2 kg1 σ m = σA A m2 mol1 103 A m2 mol1 P = χH m3 4π106 m3 χ ν = χ/V m3 m3 4π m3 m3 χ g = χ ν/ρ m3 kg1 4π103 m3 kg1 χm = χg A m3 mol1 4π106 m3 mol1
B = μ0H + M T 4π104 T P = MV Vsm 4π1010 V s m σ = M/ρ V s m kg1 4π107 V s m kg1 σ m = σA V s m mol1 4π1010 V s m mol1 P = χμ0H m3 4π106 m3 χ ν = χ/V m3 m3 4π m3 m3 χ g = χ ν/ρ m3 kg1 4π103 m3 kg1 χm = χg A m3 mol1 4π106 m3 mol1
List of Abbreviations ac AD AF AFE AFI
Alternating current Angle-dispersive Antiferromagnetic (state) Antiferroelectric (state) Antiferromagnetic insulator (state) (continued)
6 AFM CAF CD CE CG CGI CMR COI C-OO C-SO CS CSI C-SDW CW DAC DAF dc DM DSC DTA ED EPR F FC FCW FE FI FM G-OO G-SO Hel Hex HP HS HT I IC IC-SDW IS LN LP LS LT M MI
Introduction Antiferromagnetic metal (state) Canted antiferromagnetic (state) Charge disproportionation Charge-exchange Cluster glass (state) Cluster glass insulating (state) Colossal magnetoresistance Charge order insulating (state) C-type orbital ordering (state) C-type (antiferromagnetic) spin ordering (state) Canted spin (state) Canted spin (antiferromagnetic) insulating (state) Commensurate spin density wave (state) Curie-Weiss Diamond anvil cell Dimerized-antiferromagnetic (state) Direct current Diamagnetic (state) Differential scanning calorimetry Differential thermal analysis Energy-dispersive Electron paramagnetic resonance Ferromagnetic (state) Field cooling (process) Field cooled warming (process) Ferroelectric (state) Ferromagnetic insulating (state) Ferromagnetic metallic (state) G-type orbital ordering (state) G-type (antiferromagnetic) spin ordering (state) Helimagnetic (state) Hexagonal High pressure High spin (state) High temperature Insulating (state) Incommensurate helimagnetic (state) Incommensurate spin density wave (state) Intermediate spin (state) LiNbO3-type Low pressure Low spin (state) Low temperature Metallic (state) Metal-insulator (continued)
List of Abbreviations MO MS NCD NMR np (=NP) NPD Ortho P PCD PE PI PM P-NFL pPv PS Pv QCP R RIXS RXES SC SDW SG SGI UAF XAS XES XMCD XRD ZFC ZFCW μSR
7 Magnetic ordered (state) Mössbauer spectroscopy Non-charge disproportionation Nuclear magnetic resonance Normal pressure Neutron powder diffraction Orthorhombic Paramagnetic (state) Piston-cylinder device Paraelectric (state) Paramagnetic insulating (state) Paramagnetic metallic (state) Percolated non-Fermi-liquid (state) Post-perovskite Phase separation Perovskite Quantum critical pint Rare earth element Resonant inelastic X-ray scattering Resonant X-ray emission spectroscopy Semiconducting (state) Spin density wave Spin-glass (state) Spin-glass insulating (state) Uniform-antiferromagnetic state X-ray absorption spectroscopy X-ray emission spectroscopy X-ray magnetic circular dichroism X-ray diffraction (pattern) Zero-field cooling (process) Zero-field cooled warming (process) Muon spin resonance
Part I MO-type Compounds
MnO
Crystallographic Data at Normal Pressure Crystal structure: Cubic Space group: Fm3m Lattice parameters: a ¼ 4.446 Å [66CD]
Elastic Properties The compound MnO undergoes the pressure-induced structural transition from a paramagnetic (P) NaCl (B1) structure to an antiferromagnetic (AF) rhombohedral structure (rhombohedral distorted B1, dB1) at 30 GPa, to a paramagnetic B8-type structure at 90 GPa, and to a diamagnetic (DM) B8-type structure at 1055 GPa at 300 K (see Fig. MnO-3) [05YMK]. See also Refs. [98KYS], [00KYS], and [00S] for the pressure-induced structural transition of MnO. See Ref. [70M] for an exchange striction effect in MnO. (1) Bulk modulus Compound MnO (B1 phase)
B0 [GPa] 155.2 2.5
B00 4(fixed)
Pressure range [GPa] 0 and p > pc. [09SKK]
128 Fe3O4
Temperature T [K]
126
124
122 TV heating TV cooling
120
118 0
0.5
1
1.5
2
Pressure p [kbar]
Fig. Fe3O4-3 Uniaxial strain dependence of the Verwey transition temperature TV of Fe3O4 on heating and cooling for the [110] direction. TV was defined as a midpoint of the jump in magnetization. [07NKK]
92
Fe3O4
0.259
0
0.258
Pressure p [GPa] 3 4 2
1
5
6
Fe3O4
u (oxygen)
0.257 u
0.256 0.255
squares: [06KRS] (closed: 300 K, open: 130 K) circles: [02WAR] (1 bar, 130 K)
0.254 0.253 Magnetic moments pA, pB [PB]
6 5
pA (tetrahedral (A) site)
4 magnetic moments
3
squares: [06KRS] (closed: 300 K, open: 130 K) circles: [02WAR] (1 bar, 130 K)
2 –3
pB (octahedral (B) site)
–4 0
1
2 3 4 Pressure p [GPa]
5
6
Fig. Fe3O4-4 Pressure dependence of the fractional atomic coordinate u of oxygen (upper) and the magnetic moments (lower) at Fe3O4 at 300 K and 130 K. [06KRS]
'K1/K1×102
5 0 –5 –10 –15 0
1
2
3 4 5 6 7 Pressure p [kbar]
8
9
10
Fig. Fe3O4-5 Pressure change of the first-order magnetic anisotropy constant K1 of some ferrites at room temperature: Li0.5Fe2.5O4 (open squares), NiFe2O4 (open triangles), and Fe3O4 (open circles). [68SK]
0.28
93
0.68
Fe3O4
Fe3O4
0.67 dCSB [mm s–1]
0.26 0.24 0.22
0.66 0.65 0.64 0.63
(a)
0.25
0.00
0.20 0.15
QSB [mm s–1]
–0.02 –0.04 –0.06 –0.08
0.10 0.05 0.00 –0.05
(c) –0.10
–0.10
492
470
490
486 484
460 455 450
482
478
(d)
465
488
480
(b)
0.62
0.20 0.02
HhfB [kOe]
Hyperfine field HhfA [kOe]
Quadrupole splitting QSA [mm s–1]
Center shift dCSA [mm s–1]
Magnetic Properties Under Pressure
445
(e) 0
5 10 15 Pressure p [GPa]
(f) 0
5 10 15 Pressure p [GPa]
Fig. Fe3O4-6 Pressure dependence of the hyperfine interaction parameters of the A and B sites at room temperature for Fe3O4: (a) and (b) the center shift, δCS; (c) and (d) the quadrupole splitting, QS; (e) and (f) the magnetic hyperfine fields, Hhf. The open and closed circles indicate the B1 and B2 sites, respectively. [06KIK]
94
Fe3O4
Fe3O4
Temperature T [K]
150 Cubic ( ) - metallic -
100
Distorted-cubic ( ) - insulator -
50 0
TV (p)
5 10 Pressure p [GPa]
15
Fig. Fe3O4-7 Pressure versus temperature phase diagram of Fe3O4 in the 50–150 K and 0–12 GPa range encompassing the two structural/electronic phases, where TV means the Verwey transition temperature. All the distorted-cubic points (open circles) are within the insulating phase determined by conductance measurements [02MTT]. [06RPX]
Symbols and Abbreviations Short form TN TMO θ ϕ R
Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance
References [55W] Waldron, R.D.: Phys. Rev. 99 (1955) 1727. [67SK] Sawaoka, A., Kawai, N.: Phys. Lett. 24A (1967) 503. [68S1] Samara, G.A.: Phys. Rev. Lett. 21 (1968) 795. [68S2] Schult, V.A.: Z. Geophys. 34 (1968) 505. [68SK] Sawaoka, A., Kawai, N.: J. Phys. Soc. Jpn. 25 (1968) 133. [69S] Samara, G.A.: Bull. Am. Phys. Soc. 14 (1969) 308. [69SG] Samara, G.A., Giardini, A.A.: Phys. Rev. 186 (1969) 577. [70S] Schult, A.: Earth Planet. Sci. Lett. 10 (1970) 81. [74HDD] Halasa, N.A., DePasquali, G., Drickamer, H.G.: Phys. Rev. B 10 (1974) 154. [74MTB] Mao, H.-K., Takahashi, T., Bassett, W.A., Kinsland, G.L., Merrill, L.: J. Geophys. Res. 79 (1974) 1165. [77WB] Wilburn, D.R., Bassett, W.A.: High Temp.- High Press. 9 (1977) 35. [78EA] Evans, B.J., Amthauer, G.: Phys. Chem. Miner. 3 (1978) 66.
References
95
[79KMK] Kakudate, Y., Mori, N., Kino, Y.: J. Magn. Magn. Mater. 12 (1979) 22. [81F] Fleet, M.E.: Acta Crystallogr. B 37 (1981) 917. [82IKS] Iizumi, M., Koetzle, T.F., Shirane, G., Chikazumi, S., Matsui, M., Todo, S.: Acta Crystallogr. B38 (1982) 2121. [85ABS] Aragón, R., Buttrey, D.J., Shepherd, J.P., Honig, J.M.: Phys. Rev. B 31 (1985) 430. [86FHH] Finger, L.W., Hazen, R.M., Hofmeister, A.M.: Phys. Chem. Miner. 13 (1986) 215. [86HB] Huang, E., Bassett, W.A.: J. Geophys. Res. 91 (1986) 4697. [86NMM] Nakagiri, N., Manghnani, M.H., Ming, L.C., Kimura, S.: Phys. Chem. Miner. 13 (1986) 238. [87EP] Evans, B.J., Pan, L.-S.: J. Appl. Phys. 61 (1987) 4352. [90T] Tamura, S.: J. Phys. Soc. Jpn. 59 (1990) 4462. [94N] Nasu, S.: Hyperfine Interact. 90 (1994) 59. [94OD] O’Neill, H.St.C., Dollase, W.A.: Phys. Chem. Miner. 20 (1994) 541. [94PNW] Pasternak, M.P., Nasu, S., Wada, K., Endo, S.: Phys. Rev. B 50 (1994) 6446. [94RMS] Ramasesha, S.K., Mohan, M., Singh, A.K., Honig, J.M., Rao, C.N.R.: Phys. Rev. B 50 (1994) 13789. [95GO] Gerward, L., Olsen, J.S.: Appl. Radiat. Isot. 46 (1995) 553. [96RHP1] Rozenberg, G.Kh., Hearne, G.R., Pasternak, M.P., Metcalf, P.A., Honig, J.M.: High Pressure Science and Technology, ed. W.A. Trzeciakowski (World Scientific, Singapore, 1996) p. 454. [96RHP2] Rozenberg, G.Kh., Hearne, G.R., Pasternak, M.P., Metcalf, P.A., Honig, J.M.: Phys. Rev. B 53 (1996) 6482. [99FFM] Fei, Y., Frost, D.J., Mao, H.-K., Prewitt, C.T., Häusermann, D.: Am. Mineral. 84 (1999) 203. [00HSF] Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M., Häusermann, D.: Am. Mineral. 85 (2000) 514. [00SBH] Schwenk, H., Bareiter, S., Hinkel, C., Lüthi, B., Kakol, Z., Koslowski, A., Honig, J.M.: Eur. Phys. J. B 13 (2000) 491. [01TTK] Todo, S., Takeshita, N., Kanehara, T., Mori, T., Môri, N.: J. Appl. Phys. 89 (2001) 7347. [01WAR] Wright, J.P., Attfield, J.P., Radaelli, P.G.: Phys. Rev. Lett. 87 (2001) 266401. [02KMO] Kuriki, A., Moritomo, Y., Ohishi, Y., Kato, K., Nishibori, E., Takata, M., Sakata, M., Hamada, N., Todo, S., Mori, N., Shimomura, O., Nakamura, A.: J. Phys. Soc. Jpn. 71 (2002) 3092. [02MTT] Môri, N., Todo, S., Takeshita, N., Mori, T., Akishige, Y.: Physica B 312-313 (2002) 686. [02WAR] Wright, J.P., Attfield, J.P., Radaelli, P.G.: Phys. Rev. B 66 (2002) 214422. [03DDM] Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C., Rozenberg, G. Kh., Ahuja, R., Osorio-Guillen, J.M., Dmitriev, V., Weber, H.-P., Le Bihan, T., Johansson, B.: J. Phys.: Condens. Mat. 15 (2003) 7697. [03PXR] Pasternak, M.P., Xu, W.M., Rozenberg, G.Kh., Taylor, R.D., Jeanloz, R.: J. Magn. Magn. Mater. 265 (2003) L107. [04LSA] Lazor, P., Shebanova, O.N., Annersten, H.: J. Geophys. Res. 109 (2004) B05201. [04MBI] Mathon, O., Baudelet, F., Itié, J.-P., Pasternak, S., Polian, A., Pascarelli, S.: J. Synchrotron Radiat. 11 (2004) 423. [04PXR] Pasternak, M.P., Xu, W.M., Rozenberg, G.Kh., Taylor, R.D., Jeanloz, R.: J. Phys. Chem. Solids 65 (2004) 1531. [04RJ] Reichmann, H.J., Jacobsen, S.D.: Am. Mineral. 89 (2004) 1061. [04XMR] Xu, W.M., Machavariani, G. Yu., Rozenberg, G.Kh., Pasternak, M.P.: Phys. Rev. B 70 (2004) 174106. [05GAC] Gasparov, L.V., Arenas, D., Choi, K.-Y., Güntherodt, G., Berger, H., Forro, L., Margaritondo, G., Struzhkin, V.V., Hemley, R.: J. Appl. Phys. 97 (2005) 10A922. [05WZK] Wiecheć, A., Zach, R., Kąkol, Z., Tarnawski, Z., Kozłowski, A., Honig, J.M.: Physica B 359-361 (2005) 1342. [06KIK] Kobayashi, H., Isogai, I., Kamimura, T., Hamada, N., Onodera, H., Todo, S., Môri, N.: Phys. Rev. B 73 (2006) 104110.
96
Fe3O4
[06KRS] Klotz, S., Rousse, G., Strässle, Th., Bull, C.L., Guthrie, M.: Phys. Rev. B 74 (2006) 012410. [06PT] Pasternak, M.P., Taylor, R.D.: Hyperfine Interact. 170 (2006) 15. [06RPX] Rozenberg, G. Kh., Pasternak, M.P., Xu, W.M., Amiel, Y., Hanfland, M., Amboage, M., Taylor, R.D., Jeanloz, R.: Phys. Rev. Lett. 96 (2006) 045705. [07GKB] Gatta, G.D., Kantor, I., Boffa Ballaran, T., Dubrovinsky, L., McCammon, C.: Phys. Chem. Miner. 34 (2007) 627. [07HTY] Hosoya, T., Takahasi, H., Yamada, D., Todo, S.: J. Phys. Soc. Jpn. 76 (2007) Suppl. A, p.108. [07NKK] Nagasawa, Y., Kosaka, M., Katano, S., Môri, N., Todo, S., Uwatoko, Y.: J. Phys. Soc. Jpn. 76 (2007) Suppl. A, p.110. [07RAX] Rozenberg, G. Kh., Amiel, Y., Xu, W.M., Pasternak, M.P., Jeanloz, R., Hanfland, M., Taylor, R.D.: Phys. Rev. B 75 (2007) 020102(R). [08DHO] Ding, Y., Haskel, D., Ovchinnikov, S.G., Tseng, Y.-C., Orlov, Y.S., Lang, J.C., Mao, H.k.: Phys. Rev. Lett. 100 (2008) 045508. [08KSS] Klotz, S., Steinle-Neumann, G., Strässle, Th., Philippe, J., Hansen, Th., Wenzel, M.J.: Phys. Rev. B 77 (2008) 012411. [08SKT] Spałek, J., Kozłowski, A., Tarnawski, Z., Kąkol, Z., Fukami, Y., Ono, F., Zach, R., Spalek, L.J., Honig, J.M.: Phys. Rev. B 78 (2008) 100401(R). [09SCG] Subías, G., Cuartero, V., García, J., Blasco, J., Mathon, O., Pascarelli, S.: J. Phys.: Conf. Ser. 190 (2009) 012089. [09SKK] Spałek, J., Kozłowski, A., Kąkol, Z., Tarnawski, Z., Fukami, Y., Ono, F., Zach, R., Spalek, L.J., Honig, J.M.: Physica B 404 (2009) 2894. [09SWF] Schollenbruch, K., Woodland, A.B., Frost, D.J., Langenhorst, F.: High Press. Res. 29 (2009) 520. [10BPM] Baudelet, F., Pascarelli, S., Mathon, O., Itié, J.-P., Polian, A., Chervin, J.-C.: Phys. Rev. B 82 (2010) 140412(R). [11SWF] Schollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T., Langenhorst, F.: Am. Mineral. 96 (2011) 820. [12EBS] Ebad-Allah, J., Baldassarre, L., Sing, M., Claessen, R., Brabers, V.A.M., Kuntscher, C.A.: J. Appl. Phys. 112 (2012) 073524. [12GMD] Glazyrin, K., McCammon, C., Dubrovinsky, L., Merlini, M., Schollenbruch, K., Woodland, A., Hanfland, M.: Am. Mineral. 97 (2012) 128. [12GSP] Gasparov, L., Shirshikova, Z., Pekarek, T.M., Blackburn, J., Struzhkin, V., Gavriliuk, A., Rueckamp, R., Berger, H.: J. Appl. Phys. 112 (2012) 043510. [13YKN] Yamanaka, T., Kyono, A., Nakamoto, Y., Meng, Y., Kharlamova, S., Struzhkin, V.V., Mao, H.-K.: Am. Mineral. 98 (2013) 736. [14LWZ] Lin, J.-F., Wu, J., Zhu, J., Mao, Z., Said, A.H., Leu, B.M., Cheng, J., Uwatoko, Y., Jin, C., Zhou, J.: Sci. Rep. 4 (2014) 6282. [16MGB] Muramatsu, T., Gasparov, L.V., Berger, H., Hemley, R.J., Struzhkin, V.V.: J. Appl. Phys. 119 (2016) 135903. [16RF] Ricolleau, A., Fei, Y.: Am. Mineral. 101 (2016) 719. [17GXN] Greenberg, E., Xu, W.M., Nikolaevsky, M., Bykova, E., Garbarino, G., Glazyrin, K., Merkel, D.G., Dubrovinsky, L., Pasternak, M.P., Rozenberg, G.Kh.: Phys. Rev. B 95 (2017) 195150.
Additional Literatures [66B] Bloch, D.: J. Phys. Chem. Solids 27 (1966) 881. [68AK] Anderson, D.L., Kanamori, H.: J. Geophys. Res. 73 (1968) 6477. [70WSL] Wayne, R.C., Samara, G.A., Lefever, R.A.: J. Appl. Phys. 41 (1970) 633. [75SGN] Syono, Y., Goto, T., Nakai, J., Nakagawa, Y.: Proceedings of the 4th International Conference on High Pressure, Kyoto 1974, 1975, p.466.
References
97
[79SKK] Siratori, K., Kita, E., Kaji, G., Tasaki, A., Kimura, S., Shindo, I., Kohn, K.: J. Phys. Soc. Jpn. 47 (1979) 1779. [86HB] Huang, E., Bassett, W.A.: J. Geophys. Res. 91 (1986) 4697. [93AGS] Aragón, R., Gehring, P.M., Shapiro, S.M.: Phys. Rev. Lett. 70 (1993) 1635. [97MW] Morris, E.R., Williams, Q.: J. Geophys. Res. 102 (1997) 18139. [98BST] Berry, F.J., Skinner, S., Thomas, M.F.: J. Phys.: Condens. Mat. 10 (1998) 215. [99BWK] Brabers, J.H.V.J., Walz, F., Kronmüller, H.: J. Phys.: Condens. Mat. 11 (1999) 3679. [00BWK] Brabers, J.H.V.J., Walz, F., Kronmüller, H.: J. Phys.: Condens. Mat. 12 (2000) 5437. [03SL] Shebanova, O.N., Lazor, P.: J. Chem. Phys. 119 (2003) 6100. [04GLC] Gilder, S.A., LeGoff, M., Chervin, J.-C., Peyronneau, J.: Geophys. Res. Lett. 31 (2004) L10612. [04GS] García, J., Subías, G.: J. Phys.: Condens. Mat. 16 (2004) R145. [06NLJ] Nazarenko, E., Lorenzo, J.E., Joly, Y., Hodeau, J.L., Mannix, D., Marin, C.: Phys. Rev. Lett. 97 (2006) 056403. [07AB] Aplesnin, S.S., Barinov, G.I.: Phys. Solid State 49 (2007) 1949. [07FSS] Friák, M., Schindlmayr, A., Scheffler, M.: New J. Phys. 9 (2007) 5. [07ŻWZ] Żukrowski, J., Wiecheć, A., Zach, R., Tabiś, W., Tarnawski, Z., Król, G., Kim-Ngan, N.-T.H., Kąkol, Z., Kozłowski, A.: J. Alloys Compd. 442 (2007) 219. [08OST1] Ovsyannikov, S.V., Shchennikov, V.V., Todo, S., Uwatoko, Y.: J. Phys.: Condens. Mat. 20 (2008) 172201. [08OST2] Ovsyannikov, S.V., Shchennikov, V.V., Todo, S., Uwatoko, Y.: High Press. Res. 28 (2008) 601. [09EBS] Ebad-Allah, J., Baldassarre, L., Sing, M., Claessen, R., Brabers, V.A.M., Kuntscher, C.A.: High Press. Res. 29 (2009) 500. [12JCL] Ju, S., Cai, T.-Y., Lu, H.-S., Gong, C.-D.: J. Am. Chem. Soc. 134 (2012) 13780. [12SWA] Senn, M.S., Wright, J.P., Attfield, J.P.: Nature 481 (2012) 173. [13BMB] Bengtson, A., Morgan, D., Becker, U.: Phys. Rev. B 87 (2013) 155141. [13HPB] Hoesch, M., Piekarz, P., Bosak, A., Le Tacon, M., Krisch, M., Kozłowski, A., Oleś, A.M., Parlinski, K.: Phys. Rev. Lett. 110 (2013) 207204. [13S] Siberchicot, B.: J. Magn. Magn. Mater. 335 (2013) 86. [15WPN] Weerasinghe, G.L., Pickard, C.J., Needs, R.J.: J. Phys.: Condens. Mat. 27 (2015) 455501.
Co3O4
Crystallographic Data at Normal Pressure Crystal structure: Cubic (normal spinel-type) Space group: Fd3m Lattice parameters: a ¼ 8.0841(5) Å [13HM] See also Ref. [73SH] for the crystallographic properties.
Elastic Properties The cubic phase of Co3O4 remains within the pressure range up to 42.1 GPa [12BPZ]. See Refs. [12BPZ] and [13HM] for the pressure-induced structural phase transition. (1) Bulk modulus Compound Co3O4
B0 [GPa] 189 5
B00 6.3 0.3
Pressure range [GPa] 1.4–42.1
Reference [12BPZ]
See Ref. [13HM] for the linear compressibility. See also Ref. [13HM] for the bulk modulus.
Magnetic Properties at Normal Pressure Co3O4 is a magnetic semiconductor. At normal conditions, Co3O4 is a cubic spinel with high-spin Co2+ ions in the tetrahedral (A) sites and low-spin Co3+ ions in the octahedral (B) sites. This compound undergoes a magnetic transition from a paramagnetic state to a long-range ordered antiferromagnetic state at the Néel temperature TN © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_18
98
Magnetic Properties Under Pressure
99
of 30 K with decreasing temperature [12BPZ]. See also Refs. [64R], [07ISN], and [09ISN] for the magnetic structure of Co3O4.
Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN Compound Co3O4
dTN/dp [K GPa1] 2.2*
TN [K] 30.4
Reference [09ISN]
Néel temperature TN [K]
(2) Pressure dependence of the muon-spin precession frequencies of zero field (ZF)-μ+SR spectra Pressure dependence of the frequencies of the two cosine oscillatory signals at 8 K for Co3O4 is shown in Fig. Co3O4-2. Both frequencies are almost independent of applied pressure [09ISN]. 34 Co3O4 33 32 31 30
0
0.5
1
1.5
Pressure p [GPa]
Fig. Co3O4-1 Pressure dependence of the Néel temperature TN for Co3O4. [09ISN] 80
Frequency [MHz]
Co3O4
60
40 ZF-PSR, 8 K 0
0.5
1
1.5
Pressure p [GPa]
Fig. Co3O4-2 Pressure dependence of two spontaneous muon-spin precession frequencies of zero field (ZF)-μ+SR spectra for Co3O4. [09ISN]
100
Co3O4
Symbols and Abbreviations Short form TN TMO θ ϕ R
Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance
References [64R] Roth, W.L.: J. Phys. Chem. Solids 25 (1964) 1. [73SH] Smith, W.L., Hobson, A.D.: Acta Crystallogr. B 29 (1973) 362. [07ISN] Ikedo, Y., Sugiyama, J., Nozaki, H., Itahara, H., Brewer, J.H., Ansaldo, E.J., Morris, G.D., Andreica, D., Amato, A.: Phys. Rev. B 75 (2007) 054424. [09ISN] Ikedo, Y., Sugiyama, J., Nozaki, H., Mukai, K., Itahara, H., Russo, P.L., Andreica, D., Amato, A.: Physica B 404 (2009) 652. [12BPZ] Bai, L., Pravica, M., Zhao, Y., Park, C., Meng, Y., Sinogeikin, S.V., Shen, G.: J. Phys.: Condens. Mat. 24 (2012) 435401. [13HM] Hirai, S., Mao, W.L.: Appl. Phys. Lett. 102 (2013) 041912.
Additional Literatures [58C] Cossee, P.: J. Inorg. Nucl. Chem. 8 (1958) 483. [66K] Kamimura, H.: J. Phys. Soc. Jpn. 21 (1966) 484. [66MKK] Miyatani, K., Kohn, K., Kamimura, H., Iida, S.: J. Phys. Soc. Jpn. 21 (1966) 464. [69KKA] Kündig, W., Kobelt, M., Appel, H., Constabaris, G., Lindquist, R.H.: J. Phys. Chem. Solids 30 (1969) 819. [82KKP] Khriplovich, L.M., Kholopov, E.V., Paukov, I.E.: J. Chem. Thermodynamics 14 (1982) 207. [11CWS] Chen, J., Wu, X., Selloni, A.: Phys. Rev. B 83 (2011) 245204. [15KLY] Kaewmaraya, T., Luo, W., Yang, X., Panigrahi, P., Ahuja, R.: Phys. Chem. Chem. Phys. 17 (2015) 19957.
Part V M7O13-type Compound
V7O13
Crystallographic Data at Normal Pressure Crystal structure: Triclinic Space group: P1 [76HMT] Lattice parameters: a ¼ 5.439 Å, b ¼ 7.005 Å, c ¼ 35.516 Å, α ¼ 40.9 , β ¼ 72.6 , and γ ¼ 109.0 [76HMT]
Magnetic Properties at Normal Pressure V7O13 is metallic at all temperatures. This compound undergoes a paramagneticantiferromagnetic transition at the Néel temperature TN of ~43 K [03UKM]. See also Refs. [73KKO], [74GRR], [79NGK], [82GSN], and [90CTG] for the magnetic properties.
Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN Compound V7O13
TN [K] 44*
dTN/dp [K kbar1] 0.75
Reference [90CTG]
See also Refs. [03UKM] and [13KCN] for the pressure dependence of TN.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_19
103
104
V7O13 50
Néel temperature TN [K]
Metal 40 30
AF Metal
20 V7O13
10 0 0
5
10
15
20
Pressure p [kbar]
Fig. V7O13-1 Pressure dependence of the Néel temperature TN for V7O13. [90CTG]
400 V7O13
TN3/2 [K3/2]
300
200
100
0 0
1
2 3 Pressure p [GPa]
4
Fig. V7O13-2 Pressure dependence of the Néel temperature TN for V7O13, plotted as TN3/2 versus pressure. [03UKM]
References
105
Symbols and Abbreviations Short form TN TMO θ ϕ R
Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance
References [73KKO] Kachi, S., Kosuge, K., Okinaka, H.: J. Solid State Chem. 6 (1973) 258. [74GRR] Gossard, A.C., Remeika, J.P., Rice, T.M., Yasuoka, H., Kosuge, K., Kachi, S.: Phys. Rev. B 9 (1974) 1230. [76HMT] Horiuchi, H., Morimoto, N., Tokonami, M.: J. Solid State Chem. 17 (1976) 407. [79NGK] Nagata, S., Griffing, B.F., Khattak, G.D., Keesom, P.H.: J. Appl. Phys. 50 (1979) 7575. [82GSN] Griffing, B.F., Shivashankar, S.A., Nagata, S., Faile, S.P., Honig, J.M.: Phys. Rev. B 25 (1982) 1703. [90CTG] Canfield, P.C., Thompson, J.D., Gruner, G.: Phys. Rev. B 41 (1990) 4850. [03UKM] Ueda, H., Kitazawa, K., Matsumoto, T., Takagi, H.: Solid State Commun. 125 (2003) 83. [13KCN] Kim, S.K., Colombier, E., Ni, N., Bud’ko, S.L., Canfield, P.C.: Phys. Rev. B 87 (2013) 115140.
Part VI M8O15-type Compound
V8O15
Crystallographic Data at Normal Pressure Crystal structure: Triclinic Space group: P1 [03KS] Lattice parameters: a ¼ 5.43 Å, b ¼ 6.99 Å, c ¼ 40.765 Å, α ¼ 40.89 , β ¼ 72.64 , and γ ¼ 109.00 [03KS] See also Refs. [71HTM] and [13AC] for the crystallographic properties.
Magnetic Properties at Normal Pressure V8O15 has the lowest metal–insulator (MI) transition temperature TMI ≈ 69 K among the Magnéli series except for V7O13 [03UKM]. See Ref. [79NGK] for the magnetic properties.
Magnetic Properties Under Pressure (1) The phase diagram of V8O15 is shown in Figs. V8O15-1 and V8O15-2. As shown in Fig. V8O15-1, an antiferromagnetic state appears at pressures greater than 9 kbar.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_20
109
110
V8O15 100
Temperature T [K]
80
PM
60
40
20
0
AFM
V8O15
0
5
10
15
20
Pressure p [kbar]
Fig. V8O15-1 Pressure versus temperature phase diagram for V8O15. Squares and triangles represent the metal–insulator (MI) transition and the paramagnetic–antiferromagnetic transition temperatures, respectively. PM and AFM denote the paramagnetic metal and the antiferromagnetic metal phases, respectively. [90CTG]
Temperature T [K]
100 V8O15
80 60 40 PI
PM
20 AFM
0 0
1
2
3
4
Pressure p [GPa]
Fig. V8O15-2 Pressure versus temperature phase diagram for V8O15. In the figure, PI and PM mean the paramagnetic insulator and paramagnetic metal phases, respectively. AFM represents the antiferromagnetic metal phase. [03UKM]
Symbols and Abbreviations Short form TN TMO θ ϕ R
Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance
References
111
References [71HTM] Horiuchi, H., Tokonami, M., Morimoto, N., Nagasawa, K., Bando, Y., Takada, T.: Mater. Res. Bull. 6 (1971) 833. [79NGK] Nagata, S., Griffing, B.F., Khattak, G.D., Keesom, P.H.: J. Appl. Phys. 50 (1979) 7575. [90CTG] Canfield, P.C., Thompson, J.D., Gruner, G.: Physica B 163 (1990) 191. [03KS] Katzke, H., Schlögl, R.: Z. Kristallogr. 218 (2003) 432. [03UKM] Ueda, H., Kitazawa, K., Matsumoto, T., Takagi, H.: Solid State Commun. 125 (2003) 83. [13AC] Allred, J.M., Cava, R.J.: J. Solid State Chem. 198 (2013) 10.
Additional Literatures [71N] Nagasawa, K.: Mater. Res. Bull. 6 (1971) 853. [13KCN] Kim, S.K., Colombier, E., Ni, N., Bud’ko, S.L., Canfield, P.C.: Phys. Rev. B 87 (2013) 115140.
Part VII MOX (X=F, Cl, Br)-type Compounds
TiOF (Synthesized Under Pressure)
The rutile-type compound TiOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 1200 C [67CS].
Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P4/mnm Lattice parameters: a ¼ 4.651 Å and c ¼ 3.013 Å [67CS]
Magnetic Properties at Normal Pressure TiOF is semiconducting and antiferromagnetic. The value of the electrical resistivity ρ at 298 K is 45 Ωcm [67CS].
Symbols and Abbreviations Short form ρ
Full form electrical resistivity
Reference [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_21
115
TiOCl
Crystallographic Data at Normal Pressure Crystal structure: Orthorhombic Space group: Pmmn Lattice parameters: a ¼ 3.789(1) Å, b ¼ 3.365(1) Å, and c ¼ 8.060(3) Å [03KBM] See also Refs. [03SMC], [05HHK], [05SSP], [06KSB], [06SSP], [07AMC], [07FLA], [08FTM], [08KPH], [08SSS], [09BRP], [10BRP], [10ESS], [10PHF], and [14ZWB] for the crystallographic properties of the FeOCl-type compound TiOCl.
Elastic Properties The lattice parameters at room temperature decrease with increasing pressure. Above the critical pressure pc ≈ 15 GPa, the X-ray diffraction patterns can no longer be described by a single phase, but a good fit of the data only be achieved by assuming the coexistence of two phase, namely, the orthorhombic phase (space group: Pmmn) and a monoclinic phase (space group: P21/m) [10KKH]. See Refs. [08FTM], [08KPH], [09BRP], [09KEP], [10BRP], [10ESS], [10KKH], and [10PHF] for the structural properties under pressure. (1) Bulk modulus Compound TiOCl (low-pressure phase)
B0 [GPa] 26 3
B00 10 1
Pressure range [GPa] 0–18
Reference [08FTM]
See also Refs. [08KPH], [09BRP], [10BRP], and [10PHF] for the elastic properties. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_22
116
Magnetic Properties Under Pressure
117
Magnetic Properties at Normal Pressure TiOCl is composed of chains of Ti ions. At TSP ¼ 66 K, this system shows a first-order phase transition with a doubling of the cell along the Ti chains (b axis) to a low temperature monoclinic P21/m phase. Below TSP, a spin singlet dimerization of the lattice opens up to a magnetic gap (a spin-Peierls scenario). Moreover, there is a secondorder phase transition at TISP ¼ 91 K corresponding to an incommensurate dimerized state due to frustrated interchain interactions [09BRP]. See also [03KBM], [03SMC], [05LCV], [05RBK], [07FLA], [10BRP], and [11AMN] for the magnetic properties. See Refs. [05HHK], [05HSS], [07HSG], and [08CGC] for the electronic properties.
Magnetic Properties Under Pressure 1) Pressure dependence of the commensurate spin-Peierls (SP) transition temperature TSP Compound TiOCl
d lnTSP/dp [GPa1] 2.88 101
TSP [K] ~66(1)
Reference [09BRP]
(2) Pressure dependence of the incommensurate SP transition temperature TISP Compound TiOCl
d lnTISP/dp [GPa1] 3.64 101
TISP [K] ~91(1)
Reference [09BRP]
TiOCl T(p)/T(p=0)
Magnetic susceptibility cm [cm3 mol–1]
See also Refs. [06KFP], [08FTM], [08KPH], [09KEP], [10BRP], [10KKH], and [10PHF] for the magnetic and electronic properties under pressure.
8.0×10–4
1.3
TSP
1.1 1.0 0.0
7.2×10–4
TISP
1.2
0.2
TISP
TSP
0.4 0.6 0.8 p [GPa]
1.0
6.4×10–4 60
80
100
120
Temperature T [K]
Fig. TiOCl-1 Temperature dependence of the magnetic susceptibility χ m at some representative pressures (from left to right: 0, 0.25, 0.43, 0.6, 0.7, and 0.97 GPa) for TiOCl. The curves are slightly vertically displaced for clarity. The inset shows the pressure dependence of the commensurate spinPeierls (SP) transition temperature TSP and the incommensurate SP transition temperature TISP for TiOCl. [09BRP]
118
TiOCl
Symbols and Abbreviations Short form pc B0 TSP TISP χm T p
Full form critical pressure bulk modulus commensurate spin-Peierls transition temperature incommensurate spin-Peierls transition temperature magnetic susceptibility temperature pressure
References [03KBM] Kataev, V., Baier, J., Möller, A., Jongen, L., Meyer, G., Freimuth, A.: Phys. Rev. B 68 (2003) 140405(R). [03SMC] Seidel, A., Marianetti, C.A., Chou, F.C., Ceder, G., Lee, P.A.: Phys. Rev. B 67 (2003) 020405(R). [05HHK] Hemberger, J., Hoinkis, M., Klemm, M., Sing, M., Claessen, R., Horn, S., Loidl, A.: Phys. Rev. B 72 (2005) 012420. [05HSS] Hoinkis, M., Sing, M., Schäfer, J., Klemm, M., Horn, S., Benthien, H., Jeckelmann, E., Saha-Dasgupta, T., Pisani, L., Valentí, R., Claessen, R.: Phys. Rev. B 72 (2005) 125127. [05LCV] Lemmens, P., Choi, K.Y., Valentí, R., Saha-Dasgupta, T., Abel, E., Lee, Y.S., Chou, F.C.: New J. Phys. 7 (2005)74. [05RBK] Rückamp, R., Baier, J., Kriener, M., Haverkort, M.W., Lorenz, T., Uhrig, G.S., Jongen, L., Möller, A., Meyer, G., Grüninger, M.: Phys. Rev. Lett. 95 (2005) 097203. [05SSP] Shaz, M., van Smaalen, S., Palatinus, L., Hoinkis, M., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 71 (2005) 100405 (R). [06KFP] Kuntscher, C.A., Frank, S., Pashkin, A., Hoinkis, M., Klemm, M., Sing, M., Horn, S., Claessen, R.: Phys. Rev. B 74 (2006) 184402. [06KSB] Krimmel, A., Strempfer, J., Bohnenbuck, B., Keimer, B., Hoinkis, M., Klemm, M., Horn, S., Loidl, A., Sing, M., Claessen, R., v. Zimmermann, M.: Phys. Rev. B 73 (2006) 172413. [06SSP] Schönleber, A., van Smaalen, S., Palatinus, L.: Phys. Rev. B 73 (2006) 214410. [07AMC] Abel, E.T., Matan, K., Chou, F.C., Isaacs, E.D., Moncton, D.E., Sinn, H., Alatas, A., Lee, Y.S.: Phys. Rev. B 76 (2007) 214304. [07FLA] Fausti, D., Lummen, T.T.A., Angelescu, C., Macovez, R., Luzon, J., Broer, R., Rudolf, P., van Loosdrecht, P.H.M., Tristan, N., Büchner, B., van Smaalen, S., Möller, A., Meyer, G., Taetz, T.: Phys. Rev. B 75 (2007) 245114. [07HSG] Hoinkis, M., Sing, M., Glawion, S., Pisani, L., Valentí, R., van Smaalen, S., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 75 (2007) 245124. [08CGC] Clancy, J.P., Gaulin, B.D., Castellan, J.P., Rule, K.C., Chou, F.C.: Phys. Rev. B 78 (2008) 014433. [08FTM] Forthaus, M.K., Taetz, T., Möller, A., Abd-Elmeguid, M.M.: Phys. Rev. B 77 (2008) 165121. [08KPH] Kuntscher, C.A., Pashkin, A., Hoffmann, H., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: Phys. Rev. B 78 (2008) 035106. [08SSS] Schönleber, A., Shcheka, G., van Smaalen, S.: Phys. Rev. B 77 (2008) 094117.
References
119
[09BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., Khomskii, D.I., Abd-Elmeguid, M.M., López-Quintela, M.A., Rivas, J.: Phys. Rev. Lett. 102 (2009) 056406. [09KEP] Kuntscher, C.A., Ebad-Allah, J., Pashkin, A., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: High Press. Res. 29 (2009) 509. [10BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., López-Quintela, M.A., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1069. [10ESS] Ebad-Allah, J., Schönleber, A., van Smaalen, S., Hanfland, M., Klemm, M., Horn, S., Glawion, S., Sing, M., Claessen, R., Kuntscher, C.A.: Phys. Rev. B 82 (2010) 134117. [10KKH] Kuntscher, C.A., Klemm, M., Horn, S., Sing, M., Claessen, R.: Eur. Phys. J. Special Topics 180 (2010) 29. [10PHF] Prodi, A., Helton, J.S., Feng, Y., Lee, Y.S.: Phys. Rev. B 81 (2010) 201103(R). [11AMN] Aczel, A.A., MacDougall, G.J., Ning, F.L., Rodriguez, J.A., Saha, S.R., Chou, F.C., Imai, T., Luke, G.M.: Phys. Rev. B 83 (2011) 134411. [14ZWB] Zhang, J., Wölfel, A., Bykov, M., Schönleber, A., van Smaalen, S., Kremer, R.K., Williamson, H.L.: Phys. Rev. B 90 (2014) 014415.
Additional Literatures [93BW] Beynon, R.J., Wilson, J.A.: J. Phys.: Condens. Mat. 5 (1993) 1983. [95KKH] Kim, S.-H., Kang, J.-K., Hwang, S., Kim, H.: Bull. Korean Chem. Soc. 16 (1995) 299. [04CDK] Caimi, G., Degiorgi, L., Kovaleva, N.N., Lemmens, P., Chou, F.C.: Phys. Rev. B 69 (2004) 125108. [04SVR] Saha-Dasgupta, T., Valentí, R., Rosner, H., Gros, C.: Europhys. Lett. 67 (2004) 63. [05PV] Pisani, L., Valentí, R.: Phys. Rev. B 71 (2005) 180409(R). [05RBH] Rückamp, R., Benckiser, E., Haverkort, M.W., Roth, H., Lorenz, T., Freimuth, A., Jongen, L., Möller, A., Meyer, G., Reutler, P., Büchner, B., Revcolevschi, A., Cheong, S.-W., Sekar, C., Krabbes, G., Grüninger, M.: New J. Phys. 7 (2005) 144. [05SLV] Saha-Dasgupta, T., Lichtenstein, A., Valentí, R.: Phys. Rev. B 71 (2005) 153108. [07PVM] Pisani, L., Valentí, R., Montanari, B., Harrison, N.M.: Phys. Rev. B 76 (2007) 235126. [08ZJV1] Zhang, Y.-Z., Jeschke, H.O., Valentí, R.: Phys. Rev. Lett. 101 (2008) 136406. [08ZJV2] Zhang, Y.-Z., Jeschke, H.O., Valentí, R.: Phys. Rev. B 78 (2008) 205104. [09MD] Mastrogiuseppe, D., Dobry, A.: Phys. Rev. B 79 (2009) 134430. [10PPB] Piñeiro, A., Pardo, V., Baldomir, D., Blanco-Canosa, S., Rivadulla, F., Arias, J.E., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1072. [10ZFJ] Zhang, Y.-Z., Foyevtsova, K., Jeschke, H.O., Schmidt, M.U., Valentí, R.: Phys. Rev. Lett. 104 (2010) 146402. [10ZOJ] Zhang, Y.-Z., Opahle, I., Jeschke, H.O., Valentí, R.: J. Phys.: Condens. Mat. 22 (2010) 164208.
TiOBr
Crystallographic Data at Normal Pressure Crystal structure: FeOCl-type: Orthorhombic Space group: Pmmn Lattice parameters: a ¼ 3.785 Å, b ¼ 3.485 Å, and c ¼ 8.525 Å [10BRP] See also Refs. [05PSS], [05SMK], [05SPS], [07FLA], and [07KFP] for the crystallographic properties of the FeOCl-type compound TiOBr.
Elastic Properties Above ~12 GPa, TiOBr undergoes a pressure-induced structural transition from the orthorhombic Pmmn phase to a monoclinic P21/m phase at room temperature [10BRP]. See also Refs. [07KFP], [08KPH], and [10KKH] for the structural properties under pressure. (1) Bulk modulus Compound TiOBr (low-pressure phase)
B0 [GPa] 33.7 0.8
B00 6.9 0.3
Pressure range [GPa] 12.4*
Reference [08KPH]
Magnetic Properties at Normal Pressure TiOBr possesses two successive phase transition. At TSP ¼ 27 K, this compound undergoes a first-order phase transition to a spin-Peierls (SP) state with a dimerization of the chains of Ti atoms along the b axis and a doubling of the unit cell. Furthermore, © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_23
120
Magnetic Properties Under Pressure
121
an intermediate phase for the temperature range TSP < T < TISP ¼ 47 K is found, whose nature is established as an incommensurate modulated structure with a one-dimensional modulation in monoclinic symmetry [08KPH]. See also Refs. [05KKS], [05LCV], [05SPS], [07FLA], [07HSG], and [10KKH] for the magnetic properties.
Magnetic Properties Under Pressure (1) Pressure dependence of the spin-Peierls (SP) transition temperature TSP Compound TiOBr TiOBr
dTSP/dp [Kkbar1] 1.0* 1.00(2)
TSP [K] 27.5*
Reference [07FLA] [10BRP]
(2) Pressure dependence of the incommensurate spin-Peierls transition temperature TISP dTISP/dp [K kbar1] 2.18(3)
Compound TiOBr
Reference [10BRP]
TSP(p)/TSP(p=0)
1.4 TSP TiOBr TISP TiOBr TSP TiOCl TISP TiOCl
1.3 1.2 1.1 1.0 0
2
4 6 Pressure p [GPa]
8
10
Fig. TiOBr-1 Normalized pressure dependence of both spin-Peierls transition temperature TSP and incommensurate spin-Peierls transition temperature TISP for TiOCl and TiOBr. [10BRP]
122
TiOBr
Symbols and Abbreviations Short form B0 TSP TISP p
Full form bulk modulus commensurate spin-Peierls transition temperature incommensurate spin-Peierls transition temperature pressure
References [05KKS] Kato, C., Kobayashi, Y., Sato, M.: J. Phys. Soc. Jpn. 74 (2005) 473. [05LCV] Lemmens, P., Choi, K.Y., Valentí, R., Saha-Dasgupta, T., Abel, E., Lee, Y.S., Chou, F.C.: New J. Phys. 7 (2005) 74. [05PSS] Palatinus, L., Schönleber, A., van Smaalen, S.: Acta Crystallogr. C 61 (2005) i47. [05SMK] Sasaki, T., Mizumaki, M., Kato, K., Watabe, Y., Nishihata, Y., Takata, M., Akimitsu, J.: J. Phys. Soc. Jpn. 74 (2005) 2185. [05SPS] van Smaalen, S., Palatinus, L., Schönleber, A.: Phys. Rev. B 72 (2005) 020105(R). [07FLA] Fausti, D., Lummen, T.T.A., Angelescu, C., Macovez, R., Luzon, J., Broer, R., Rudolf, P., van Loosdrecht, P.H.M., Tristan, N., Büchner, B., van Smaalen, S., Möller, A., Meyer, G., Taetz, T.: Phys. Rev. B 75 (2007) 245114. [07HSG] Hoinkis, M., Sing, M., Glawion, S., Pisani, L., Valentí, R., van Smaalen, S., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 75 (2007) 245124. [07KFP] Kuntscher, C.A., Frank, S., Pashkin, A., Hoffmann, H., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Klemm, M., Sing, M., Horn, S., Claessen, R.: Phys. Rev. B 76 (2007) 241101(R). [08KPH] Kuntscher, C.A., Pashkin, A., Hoffmann, H., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: Phys. Rev. B 78 (2008) 035106. [10BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., López-Quintela, M.A., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1069. [10KKH] Kuntscher, C.A., Klemm, M., Horn, S., Sing, M., Claessen, R.: Eur. Phys. J. Special Topics 180 (2010) 29.
Additional Literatures [93BW] Beynon, R.J., Wilson, J.A.: J. Phys.: Condens. Mat. 5 (1993) 1983. [04CDL] Caimi, G., Degiorgi, L., Lemmens, P., Chou, F.C.: J. Phys.: Condens. Mat. 16 (2004) 5583. [09KEP] Kuntscher, C.A., Ebad-Allah, J., Pashkin, A., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: High Press. Res. 29 (2009) 509. [10CGC] Clancy, J.P., Gaulin, B.D., Chou, F.C.: Phys. Rev. B 81 (2010) 024411.
VOF (Synthesized Under Pressure)
The rutile-type compound VOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 1000 C [67CS].
Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P4/mnm [67CS] Lattice parameters: a ¼ 4.618 Å and c ¼ 3.011 Å [67CS]
Magnetic Properties at Normal Pressure VOF is semiconducting and antiferromagnetic. The value of the electrical resistivity ρ at 298 K is 68 Ωcm [67CS].
Symbols and Abbreviations Short form ρ
Full form electrical resistivity
Reference [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_24
123
FeOF (Synthesized Under Pressure)
The rutile-type compound FeOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 995 C [67CS].
Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P42/mnm [73VMD] Lattice parameters: a ¼ 4.662 Å and c ¼ 3.043 Å [67CS] See also Refs. [65HPC], [66CP1], [73VMD], [00BWT], and [14TAR] for the crystallographic properties.
Magnetic Properties at Normal Pressure FeOF is antiferromagnetic below the Néel temperature TN of 315 10 K [66CP1]. Each Fe atom of FeOF has eight near Fe neighbors with antiparallel spins. The spin value corresponds to Fe3+ [66CP2].
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_25
124
125 Magnetic hyperfine field Hhf [kOe]
References
500
FeOF
0
100
200
300
Temperature T [K]
Fig. FeOF-1 Temperature dependence of the magnetic hyperfine field Hhf at normal pressure for FeOF. [66CP1]
Symbols and Abbreviations Short form TN Hhf T
Full form Néel temperature magnetic hyperfine field temperature
References [65HPC] Hagenmuller, P., Portier, J., Cadiou, J., De Pape, R.: Compt. Rend. 260 (1965) 4768. [66CP1] Chappert, J., Portier, J.: Solid State Commun. 4 (1966) 185. [66CP2] Chappert, J., Portier, J.: Solid State Commun. 4 (1966) 395. [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765. [73VMD] Vlasse, M., Massies, J.C., Demazeau, G.: J. Solid State Chem. 8 (1973) 109. [00BWT] Brink, F.J., Withers, R.L., Thompson, J.G.: J. Solid State Chem. 155 (2000) 359. [14TAR] Tobias, G., Armand, M., Rousse, G., Tarascon, J-M., Canadell, E., Palacín, M.R., Recham, N.: Solid State Sci. 38 (2014) 55.
Additional Literatures [73P] Pausewang, von G.: Z. anorg. allg. Chem. 409 (1973) 45. [13CHO] Chevrier, V.L., Hautier, G., Ong, S.P., Doe, R.E., Ceder, G.: Phys. Rev. B 87 (2013) 094118.
Part VIII MM’O2-type Compounds
LiMnO2 (Synthesized Under Pressure)
Tetragonal and cubic phases of LixMn1-xO with x ~ 0.5 were synthesized from the orthorhombic LiMnO2 (o-LiMnO2: normal pressure phase) powder by a highpressure technique at 4–6 GPa and 900–1200 C [01SNH]. Table 1 gives compounds obtained by the high-pressure synthesis. See also Ref. [87HC] for the sample preparation. Table 1 Compounds obtained by high-pressure synthesis, where t*-LiMnO2 and c-LiMnO2 mean the tetragonal and cubic phases, respectively [01SNH] Preparation condition Pressure [GPa] 0.0001 2 4 5 6 5 5 5
Temperature [ C] 800 1000 1000 1000 1000 900 1100 1200
Obtained compounds (composition of starting material; x in LixMn1-xO) x ¼ 0.47 x ¼ 0.52 x ¼ 0.55 o-LiMnO2 o-LiMnO2 o-LiMnO2 o-LiMnO2 o-LiMnO2 + t*-LiMnO2 t*-LiMnO2 c-LiMnO2 c-LiMnO2 t*-LiMnO2 t*-LiMnO2 t*-LiMnO2 t*-LiMnO2
Crystallographic Data at Normal Pressure (1) t*-LiMnO2 [01SNH] Crystal structure: Tetragonal (LiInO2-type) Space group: I41/amd Lattice parameters: a ¼ 4.1919 Å and c ¼ 8.2469 Å (Li0.93Mn1.07O2) © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_26
129
130
LiMnO2 (Synthesized Under Pressure)
(2) c-LiMnO2 [01SNH] Crystal structure: Cubic (LiTiO2-type) Space group: Fm3m Lattice parameters: a ¼ 4.157 Å (Li0.52Mn0.48O) and a ¼ 4.166 Å (Li0.55Mn0.45O)
Magnetic Properties at Normal Pressure Figure LiMnO2-1 (a) and (b) show the temperature dependence of the magnetic susceptibility χ g and χ g1 for t*-LiMnO2 prepared at 5 GPa and 1200 C. As seen in Fig. LiMnO2-1(a), the χ g versus T curves exhibits a broad maximum around 280 K, suggesting that the Mn magnetic moments order antiferromagnetically below the Néel temperature TN of 280 K. With further decrease of temperature, χ g increases abruptly at about 65 K [01SNH]. Figure LiMnO2-2 shows the temperature dependence of χ g of c-LiMnO2 for zerofield cooling (ZFC) and field cooling (FC) modes. As shown in the figure, χ ZFC for the ZFC mode makes a sharp maximum at 45 K. With decreasing temperature, χ ZFC decreases steeply. On the other hand, in the case of FC mode, χ FC is almost constant below 45 K. Thus, c-LiMnO2 is found to be a spin-glass below 45 K [01SNH]. 0.0004 t *-LiMnO2
cg [ cm3g–1]
0.0003
Li0.47Mn0.53O 5 GPa, 1200°C
0.0002
Field cool H=100 Oe H=10 kOe
(a)
0.0001 0
cg–1 [g cm–3]
20000 15000 10000 TN
5000
(b) 0
0
100
200
300
400
Temperature T [K]
Fig. LiMnO2-1 Temperature dependence of (a) the magnetic susceptibility χ g and (b) the inverse magnetic susceptibility χ g1 for t*-LiMnO2 prepared at 5 GPa and 1200 C. [01SNH]
References
131
Magnetic susceptibility cg [cm3 g–1]
0.0002 c-LiMnO2 Li0.52Mn0.48O 5 GPa, 1000°C
0.00018 0.00016 0.00014
H=100 Oe ZFC FC
0.00012 0.0001 0
20
40
60
80
100
Temperature T [K]
Fig. LiMnO2-2 Temperature dependence of the magnetic susceptibility χ g measured both in the field cooling (FC) mode and the zero-field cooling (ZFC) mode for c-LiMnO2. The compound c-LiMnO2 was prepared at 5 GPa and 1000 C. [01SNH]
Symbols and Abbreviations Short form χg χg1 T TN H FC ZFC
Full form magnetic susceptibility inverse magnetic susceptibility temperature Néel temperature magnetic field field cooling zero field cooling
References [87HC] Hewston, T.A., Chamberland, B.L.: J. Phys. Chem. Solids 48 (1987) 97. [01SNH] Sugiyama, J., Noritake, T., Hioki, T., Itoh, T., Hosomi, T., Yamauchi, H.; Mater. Sci. Eng. B 84 (2001) 224.
NaxCoO2
Crystallographic Data at Normal Pressure The crystal structure of NaxCoO2 depends on the concentration x (see Fig. NaxCoO2-1). The H1 phase occurs from Na concentration x ¼ 0.3 to 0.75 with the exception of x ¼ 0.5, which has orthorhombic symmetry (O1 phase). The H2 phase occurs from Na concentration x ¼ 0.75 to 0.82. The H3 phase occurs at higher Na concentration (Na1CoO2). See Fig. NaxCoO2-1 for the compositional stability regions of the four NaxCoO2 phases [11PIC]. See Refs [73FMR], [96BD], [04HFP], [04HKC], [04ZFX], and [11PIC] for the crystallographic properties. (1) H1 phase Crystal structure: Hexagonal. Space group: P63/mmc Lattice parameters: a ¼ 2.82438(6) Å and c ¼ 11.0046(3) Å (x ¼ 0.63) [04HFP] (2) H2 phase Crystal structure: Hexagonal Space group: P63/mmc Lattice parameters: a ¼ 2.836(3) Å and c ¼ 10.810(2) Å (x ¼ 0.79) [11PIC] (3) O1 phase Crystal structure: Orthorhombic Space group: Pnmm Lattice parameters: a ¼ 4.87618(5) Å, b ¼ 5.63053(9) Å, and c ¼ 11.1298(2)Å (x ¼ 0.5) [04HFL] See also Ref. [06WAF] for the structural properties of the O1 phase.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_27
132
Magnetic Properties Under Pressure
133
Elastic Properties See Refs. [07SYS], [07ZSZ], and [09GNB] for the structural properties of NaxCoO2 under high pressure. (1) Bulk modulus Compound Na0.5CoO2 Na2/3CoO2 Na0.75CoO2
B0 [GPa] 112 2.3 136 18 103 5 100 4
B00 2.3 0.1 3.2 2.9 4.2 (R.T.) 4.6 (20 K)
Pressure range [GPa] 0–47 0–11.4* 0–40* 0–25.8*
Reference [07SYS] [12PPD] [09KRP] [09KRP]
See Refs. [03PLM], [07ZSZ], and [11PIC] for the elastic properties.
Magnetic Properties at Normal Pressure Magnetic susceptibility data for compounds with 0.5 x 0.7 show Curie-Weiss behavior with a negative paramagnetic Curie temperature. No long-range magnetic ordering is observed for the compounds with x 0.7. The compounds with 0.75 x 0.9 show the antiferromagnetic order below ~20 K (see Fig. NaxCoO2-2) [05BMB]. See also Refs. [03MUN], [03SIB], [04BBC], [04BCT], [04CMA], [04LWL], [04SBA1], [04SBA2], [04STT], [05HBC], [05WPB], and [05YMK] for the magnetic properties of NaxCoO2 (0.6 x 0.9). Whereas, Na0.5CoO2 with the O1 structure displays a long-range magnetic order with the Néel temperature of 86 K and undergoes a metal–insulator transition at TMI ~ 53 K [06BLA]. See also Refs. [04FWW], [04HFL], [05MBB], [05YMK], and [06GOC] for the magnetic properties of Na0.5CoO2.
Magnetic Properties Under Pressure (1) Pressure dependence of the magnetic transition temperature Tm Figures NaxCoO2-3 and NaxCoO2-4 show the pressure dependence of Tm for the sample with x ¼ 0.7 and 0.75, respectively. The Tm increases with pressure for both compounds. See Refs. [07MMK] and [08GMN] for the pressure dependence of the transition temperature of Na0.5CoO2 (x ¼ 0.5). Compound Na0.7CoO2 Na0.75CoO2
Tm [K] 22.0 0.2 22.1*
(dTm/dp)p ! 0 [K kbar1] 0.44 0.03 0.25
Reference [06WPB] [06SKL]
134
NaxCoO2
H2 H2+H3
H1
11.2
c H1+H2
H3
2.86
11.0 O1 10.8
2.84
10.6
a
2.82 0.3
0.4
0.5
0.6
0.7
0.8
0.9
Lattice parameter c [Å]
Lattice parameter a [Å]
11.4 H1
2.88
10.4 1.0
x in NaxCoO2
Magnetic transition temperature Tm [K]
Fig. NaxCoO2-1 Composition dependence of the lattice parameters at normal pressure of the four NaxCoO2 phases, designated as H1, H2, H3, and O1. The H1, H2, and H3 have the hexagonal structure. The O1 phase is the orthorhombic insulating phase at Na0.5CoO2. [04HFP]
40 single crystal polycrystal
NaxCoO2 30
paramagnetic 20 C-SDW
IC-SDW
10
0 0.5
0.6
0.7
0.8
0.9
1
Na concentration x
Fig. NaxCoO2-2 Phase diagram of NaxCoO2 under normal pressure. C- and IC-SDW mean the commensurate and incommensurate spin density wave states, respectively. The point at x ¼ 1 is extrapolated from the data on the related compound LiCoO2 [98TO]. [04SBA1]
Magnetic transition temperature Tm [K]
Magnetic Properties Under Pressure
25.5
135
Na0.7CoO2
25.0 24.5 24.0 23.5 23.0
Run 1 Crystal 1 Run 2 Crystal 1 Run 1 Crystal 2
22.5 22.0 21.5
0
2
4
6
8
10
Pressure p [kbar]
Magnetic transition temperature Tm [K]
Fig. NaxCoO2-3 Pressure dependence of the magnetic transition temperature Tm for two Na0.7CoO2 crystals. [06WPB]
Na0.75CoO2 24
23
22
0
2
4
6
8
10
Pressure p [kbar]
Fig. NaxCoO2-4 Pressure dependence of the magnetic transition temperature Tm for Na0.75CoO2. [06SKL]
NaxCoO2 Néel temperature TN [K] and metal – insulator transition temperature TMI [K]
136 100 : run #1 : run #2
TN
80
60 TMI
Na0.5CoO2
40 0
1
2
3
4
5
Pressure p [GPa]
Fig. NaxCoO2-5 Pressure dependence of the Néel temperature TN and the metal–insulator transition temperature TMI for Na0.5CoO2. [07MMK]
Symbols and Abbreviations Short form x B0 Tm p TN TMI a, b, c C-SDW IC-SDW
Full form concentration bulk modulus magnetic transition temperature pressure Néel temperature metal–insulator transition temperature lattice parameters commensurate spin density wave state incommensurate spin density wave state
References [73FMR] Fouassier, C., Matejka, G., Reau, J.-M., Hagenmuller, P.: J. Solid State Chem. 6 (1973) 532. [96BD] Balsys, R.J., Davis, R.L.: Solid State Ionics, 93 (1996) 279. [98TO] Tomeno, I., Oguchi, M.: J. Phys. Soc. Jpn. 67 (1998) 318. [03MUN] Motohashi, T., Ueda, R., Naujalis, E., Tojo, T., Terasaki, I., Atake, T., Karppinen, M., Yamauchi, H.: Phys. Rev. B 67 (2003) 064406. [03PLM] Park, S., Lee, Y., Moodenbaugh, A., Vogt, T.: Phys. Rev. B 68 (2003) 180505(R). [03SIB] Sugiyama, J., Itahara, H., Brewer, J.H., Ansaldo, E.J., Motohashi, T., Karppinen, M., Yamauchi, H.: Phys. Rev. B 67 (2003) 214420. [04BBC] Bayrakci, S.P., Bernhard, C., Chen, D.P., Keimer, B., Kremer, R.K., Lemmens, P., Lin, C.T., Niedermayer, C., Strempfer, J.: Phys. Rev. B 69 (2004) 100410(R). [04BCT] Boothroyd, A.T., Coldea, R., Tennant, D.A., Prabhakaran, D., Helme, L.M., Frost, C.D.: Phys. Rev. Lett. 92 (2004) 197201. [04CMA] Carretta, P., Mariani, M., Azzoni, C.B., Mozzati, M.C., Bradarić, I., Savić, I., Feher, A., Šebek, J.: Phys. Rev. B 70 (2004) 024409.
References
137
[04FWW] Foo, M.L., Wang, Y., Watauchi, S., Zandbergen, H.W., He, T., Cava, R.J., Ong, N.P.: Phys. Rev. Lett. 92 (2004) 247001. [04HFL] Huang, Q., Foo, M.L., Lynn, J.W., Zandbergen, H.W., Lawes, G., Wang, Y., Toby, B.H., Ramirez, A.P., Ong, N.P., Cava, R.J.: J. Phys.: Condens. Mat. 16 (2004) 5803. [04HFP] Huang, Q., Foo, M.L., Pascal jr, R.A., Lynn, J.W., Toby, B.H., He, T., Zandbergen, H.W., Cava, R.J.: Phys. Rev. B 70 (2004) 184110. [04HKC] Huang, Q., Khaykovich, B., Chou, F.C., Cho, J.H., Lynn, J.W., Lee, Y.S.: Phys. Rev. B 70 (2004) 134115. [04LWL] Luo, J.L., Wang, N.L., Liu, G.T., Wu, D., Jing, X.N., Hu, F., Xiang, T.: Phys. Rev. Lett. 93 (2004) 187203. [04SBA1] Sugiyama, J., Brewer, J.H., Ansaldo, E.J., Itahara, H., Tani, T., Mikami, M., Mori, Y., Sasaki, T., Hébert, S., Maignan, A.: Phys. Rev. Lett. 92 (2004) 017602. [04SBA2] Sugiyama, J., Brewer, J.H., Ansaldo, E.J., Hitti, B., Mikami, M., Mori, Y., Sasaki, T.: Phys. Rev. B 69 (2004) 214423. [04STT] Sakurai, H., Tsujii, N., Takayama-Muromachi, E.: J. Phys. Soc. Jpn. 73 (2004) 2393. [04ZFX] Zandbergen, H.W., Foo, M., Xu, Q., Kumar, V., Cava, R.J.: Phys. Rev. B 70 (2004) 024101. [05BMB] Bayrakci, S.P., Mirebeau, I., Bourges, P., Sidis, Y., Enderle, M., Mesot, J., Chen, D.P., Lin, C.T., Keimer, B.: Phys. Rev. Lett. 94 (2005) 157205. [05HBC] Helme, L.M., Boothroyd, A.T., Coldea, R., Prabhakaran, D., Tennant, D.A., Hiess, A., Kulda, J.: Phys. Rev. Lett. 94 (2005) 157206. [05MBB] Mendels, P., Bono, D., Bobroff, J., Collin, G., Colson, D., Blanchard, N., Alloul, H., Mukhamedshin, I., Bert, F., Amato, A., Hillier, A.D.: Phys. Rev. Lett. 94 (2005) 136403. [05WPB] Wooldridge, J., Paul, D McK., Balakrishnan, G., Lees, M.R.: J. Phys.: Condens. Mat. 17 (2005) 707. [05YMK] Yokoi, M., Moyoshi, T., Kobayashi, Y., Soda, M., Yasui, Y., Sato, M., Kakurai, K.: J. Phys. Soc. Jpn. 74 (2005) 3046. [06BLA] Bobroff, J., Lang, G., Alloul, H., Blanchard, N., Collin, G.: Phys. Rev. Lett. 96 (2006) 107201. [06GOC] Gašparović, G., Ott, R.A., Cho, J.-H., Chou, F.C., Chu, Y., Lynn, J.W., Lee, Y.S.: Phys. Rev. Lett. 96 (2006) 046403. [06SKL] Sushko, Y.V., Korneta, O.B., Leontsev, S.O., Jin, R., Sales, B.C., Mandrus, D.: J. Low Temp. Phys. 142 (2006) 573. [06WAF] Williams, A.J., Attfield, J.P., Foo, M.L., Viciu, L., Cava, R.J.: Phys. Rev. B 73 (2006) 134401. [06WPB] Wooldridge, J., Paul, MCK.D., Balakrishnan, G., Lees, M.R.: J. Phys.: Condens. Mat. 18 (2006) 4731. [07MMK] Miyoshi, K., Miura, M., Kondo, H., Takeuchi, J.:J. Magn. Magn. Mater. 310 (2007) 901. [07SYS] Sun, L., Yi, W., Shi, Y., Li, J., Li, Y., Li, X., Liu, J.: J. Phys.: Condens. Mat. 19 (2007) 425238. [07ZSZ] Zhang, F.X., Saxena, S.K., Zha, C.S.: J. Solid State Chem. 180 (2007) 1759. [08GMN] Garbarino, G., Monteverde, M., Núñez-Regueiro, M., Acha, C., Foo, M.L., Cava, R.J.: Phys. Rev. B 77 (2008) 064105. [09GNB] Garbarino, G., Núñez Regueiro, M., Bouvier, P., Crichton, W.A., Mezouar, M., Lejay, P., Armand, M., Foo, M.L., Cava, R.J.: J. Phys.: Conf. Ser. 150 (2009) 042039. [09KRP] Kumar, R.S., Rekhi, S., Prabhakaran, D., Somayazulu, M., Kim, E., Cook, J.D., Stemmler, T., Boothroyd, A.T., Chance, M.R., Cornelius, A.L.: Solid State Commun. 149 (2009) 1712. [11PIC] Popescu, C., Itie, J.-P., Congedutti, A., Lagarde, P., Flank, A.-M., Pinsard-Gaudart, L., Dragoe, N.: Phys. Rev. B 84 (2011) 224120. [12PPD] Popescu, C., Pinsard-Gaudart, L., Dragoe, N.: J. Appl. Phys. 112 (2012) 053503.
138
NaxCoO2
Additional Literatures [99RGG] Ray, R., Ghoshray, A., Ghoshray, K., Nakamura, S.: Phys. Rev. B 59 (1999) 9454. [03MYM] Mikami, M., Yoshimura, M., Mori, Y., Sasaki, T., Funahashi, R., Shikano, M.: Jpn. J. Appl. Phys. 42 (2003) 7383. [03WRC] Wang, Y., Ragado, N.S., Cava, R.J., Ong, N.P.: Nature 423 (2003) 425. [04GRP] Gavilano, J.L., Rau, D., Pedrini, B., Hinderer, J., Ott, H.R., Kazakov, S.M., Karpinski, J.: Phys. Rev. B 69 (2004) 100404(R). [04MMF] Miyoshi, K., Morikuni, E., Fujiwara, K., Takeuchi, J., Hamasaki, T.: Phys. Rev. B 69 (2004) 132412. [16GMB] Galeski, S., Mattenberger, K., Batlogg, B.: Phys. Rev. B 94 (2016) 140402(R).
CuCrO2
Crystallographic Data at Normal Pressure Crystal structure: Rhombohedral Space group: R3m Lattice parameters: a ¼ 2.9760(1) Å and c ¼ 17.1104(6) Å (hexagonal setting) [09PDM] See also Ref. [91AD] for the crystallographic properties.
Elastic Properties (1) Compressibility Compound CuCrO2
κ a [GPa1] 8.90(6) 103
κ c [GPa1] 1.26(1) 103
Reference [14GMP]
Pressure range [GPa] 0–20.3*
Reference [14GMP]
(2) Bulk modulus Compound CuCrO2
B0 [GPa] 156.7(2.8)
B00 5.3(0.5)
See also Ref. [13AMK] for the elastic properties.
Magnetic Properties at Normal Pressure Delafossite CuCrO2 becomes antiferromagnetic below the Néel temperature TN of ~24 K. The effective magnetic moment peff and the paramagnetic Curie temperature are 3.88 μB and 199 K, respectively [86DWA]. The value of peff is very close to © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_28
139
140
CuCrO2
the theoretical value of 3.87 for Cr3+. The magnetic order is in the form of an incommensurate proper-screw spiral with a propagation vector of the magnetic moments of (τ, τ, 0), where τ ¼ 0.329 [13EPF]. See also Refs. [12PHK] and [16SSK] for the magnetic properties. See Refs. [90KKA], [09PDM], [09SKK], [10KNO], [10PDM], [10SKK], [11FHP], [12FEP], and [13EPF] for the neutron diffraction studies. See Ref. [08SOT] for a spin-driven ferroelectricity.
Magnetic Properties Under Pressure Pressure versus temperature phase diagram is shown in Fig. CuCrO2-1. The TN increases with pressure. See also Ref. [11OT] for the pressure dependence of TN. 50 230
P + PE
210
Temperature T [K]
40
190 170 150
30
130 110
20 AF + FE
AF + (AFE)
90 70 50 30 10 0
10 2
4 6 8 Pressure p [GPa]
Electric polarization P [µC m–2]
250
10
Fig. CuCrO2-1 Pressure versus temperature phase diagram with the contour plot of amplitude of spontaneous polarization along [110] (P110). P, PE, AF, FE, and AFE denote paramagnetic, paraelectric, antiferromagnetic, ferroelectric, and possible antiferroelectric phases, respectively. [13AMK]
References
141
Symbols and Abbreviations Short form B0 TN peff μB τ P PE AF FE AFE P T p
Full form bulk modulus Néel temperature effective magnetic moment Bohr magneton magnetic moment paramagnetic phase paraelectric phase antiferromagnetic phase ferroelectric phase possible antiferroelectric phase electric polarization temperature pressure
References [86DWA] Doumerc, J.-P., Wichainchai, A., Ammar, A., Pouchard, M., Hagenmuller, P.: Mater. Res. Bull. 21 (1986) 745. [90KKA] Kadowaki, H., Kikuchi, H., Ajiro, Y.: J. Phys.: Condens. Mat. 2 (1990) 4485. [91AD] Angelov, S., Doumerc, J.P.: Solid State Commun. 77 (1991) 213. [08SOT] Seki, S., Onose, Y., Tokura, Y.: Phys. Rev. Lett. 101 (2008) 067204. [09PDM] Poienar, M., Damay, F., Martin, C., Hardy, V., Maignan, A., André, G.: Phys. Rev. B 79 (2009) 014412. [09SKK] Soda, M., Kimura, K., Kimura, T., Matsuura, M., Hirota, K.: J. Phys. Soc. Jpn. 78 (2009) 124703. [10KNO] Kajimoto, R., Nakajima, K., Ohira-Kawamura, S., Inamura, Y., Kakurai, K., Arai, M., Hokazono, T., Oozono, S., Okuda, T.: J. Phys. Soc. Jpn. 79 (2010) 123705. [10PDM] Poienar, M., Damay, F., Martin, C., Robert, J., Petit, S.: Phys. Rev. B 81 (2010) 104411. [10SKK] Soda, M., Kimura, K., Kimura, T., Hirota, K.: Phys. Rev. B 81 (2010) 100406 (R). [11FHP] Frontzek, M., Haraldsen, J.T., Podlesnyak, A., Matsuda, M., Christianson, A.D., Fishman, R.S., Sefat, A.S., Qiu, Y., Copley, J.R.D., Barilo, S., Shiryaev, S.V., Ehlers, G.: Phys. Rev. B 84 (2011) 094448. [11OT] Okuda, T., Takeshita, N.: J. Phys. Soc. Jpn. 80 (2011) 074711. [12FEP] Frontzek, M., Ehlers, G., Podlesnyak, A., Cao, H., Matsuda, M., Zaharko, O., Aliouane, N., Barilo, S., Shiryaev, S.V.: J. Phys.: Condens. Mat. 24 (2012) 016004. [12PHK] Poienar, M., Hardy, V., Kundys, B., Singh, K., Maignan, A., Damay, F., Martin, C.: J. Solid State Chem. 185 (2012) 56. [13AMK] Aoyama, T., Miyake, A., Kagayama, T., Shimizu, K., Kimura, T.: Phys. Rev. B 87 (2013) 094401. [13EPF] Ehlers, G., Podlesnyak, A.A., Frontzek, M., Freitas, R.S., Ghivelder, L., Gardner, J.S., Shiryaev, S.V., Barilo, S.: J. Phys.: Condens. Mat. 25 (2013) 496009. [14GMP] Garg, A.B., Mishra, A.K., Pandey, K.K., Sharma, S.M.: J. Appl. Phys. 116 (2014) 133514. [16SSK] Sakhratov, Yu.A., Svistov, L.E., Kuhns, P.L., Zhou, H.D., Reyes, A.P.: Phys. Rev. B 94 (2016) 094410.
142
CuCrO2
Additional Literatures [00SSM] Shimode, M., Sasaki, M., Mukaida, K.: J. Solid State Chem. 151 (2000) 16. [05OJH] Okuda, T., Jufuku, N., Hidaka, S., Terada, N.: Phys. Rev. B 72 (2005) 144403. [06SMB] Sheets, W.C., Mugnier, E., Barnabé, A., Marks, T.J., Poeppelmeier, K.R.: Chem. Mater. 18 (2006) 7. [07OOB] Okuda, T., Onoe, T., Beppu, Y., Terada, N., Doi, T., Miyasaka, S., Tokura, Y.: J. Magn. Magn. Mater. 310 (2007) 890. [08KNO] Kimura, K., Nakamura, H., Ohgushi, K., Kimura, T.: Phys. Rev. B 78 (2008) 140401(R). [08OBF] Okuda, T., Beppu, Y., Fujii, Y., Onoe, T., Terada, N., Miyasaka, S.: Phys. Rev. B 77 (2008) 134423. [09APB] Arnold, T., Payne, D.J., Bourlange, A., Hu, J.P., Egdell, R.G., Piper, L.F.J, Colakerol, L., De Masi, A., Glans, P.-A., Learmonth, T., Smith, K.E., Guo, J., Scanlon, D.O., Walsh, A., Morgan, B.J., Watson, G.W.: Phys. Rev. B 79 (2009) 075102. [09KNK] Kimura, K., Nakamura, H., Kimura, S., Hagiwara, M., Kimura, T.: Phys. Rev. Lett. 103 (2009) 107201. [09KON] Kimura, K., Otani, T., Nakamura, H., Wakabayashi, Y., Kimura, T.: J. Phys. Soc. Jpn. 78 (2009) 113710. [09OKU] Okuda, T., Kishimoto, T., Uto, K., Hokazono, T., Onose, Y., Tokura, Y., Kajimoto, R., Matsuda, M.: J. Phys. Soc. Jpn. 78 (2009) 013604. [10YOK] Yamaguchi, H., Ohtomo, S., Kimura, S., Hagiwara, M., Kimura, K., Kimura, T., Okuda, T., Kindo, K.: Phys. Rev. B 81 (2010) 033104. [11OUS] Okuda, T., Uto, K., Seki, S., Onose, Y., Tokura, Y., Kajimoto, R., Matsuda, M.: J. Phys. Soc. Jpn. 80 (2011) 014711.
CuFeO2
Crystallographic Data at Normal Pressure Crystal structure: Rhombohedral Space group: R3m Lattice parameters: a ¼ 3.036(1) Å and c ¼ 17.171 (9) Å (hexagonal setting) [95ZHT] See also Ref. [96ZHT1] for the crystallographic properties. The antiferromagnetic transition in CuFeO2 (delafossite) are accompanied simultaneously by structural transitions from hexagonal (space group: R3m) to monoclinic (space group: C2/m) [06YRH]. See also Refs. [06TMO] and [06TTT] for the crystallographic properties at low temperatures.
Elastic Properties High-pressure X-ray diffraction studies show that the low-pressure R3m phase is stable up to 18 GPa [10XRP]. See Ref. [13NIT] for the uniaxial pressure effect on the spin-driven lattice distortions. (1) Bulk modulus Compound CuFO2
B0 [GPa] 156.5 2.4
B00 2.6 0.6
Pressure range [GPa] 0–10.1*
Reference [96ZHT2]
See also Refs. [97ZHK] and [10XRP] for the elastic properties.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_29
143
144
CuFeO2
Magnetic Properties at Normal Pressure CuFeO2 exhibits two successive antiferromagnetic phase transitions at TN1 ¼ 14 K and TN2 ¼ 11 K. The low temperature phase has a collinear four sublattice (4SL) structure (""##)(T TN2) with the magnetic moments along the c-axis, whereas the intermediate temperature phase (TN2 T TN1) is a partially disordered (PD) phase with the sinusoidally amplitude-modulated magnetic structure with magnetic moments along the c-axis [06TTT]. The neutron diffraction measurements show that the magnetic moment of Fe3+ extrapolated to T ¼ 0 K is (4.20 0.10) μB [06YRH]. The temperature dependence of the magnetic susceptibility obeys the Curie-Weiss law above 150 K. The effective magnetic moment peff and the paramagnetic Curie temperature θp are 5.64 μB and 67 K, respectively [93MYT]. See also Ref. [86DWA] for the values of peff and θp. See also Refs. [98MKU] and [14TKM] for the magnetic properties.
Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN TN1 [K] 12.5*
TN2 [K] 8.6*
dTN1/dp [K GPa1] 1
dTN2/dp [K GPa1] 1
Reference [04TMT]
(2) Pressure dependence of hyperfine interaction parameters Figure CuFeO2-2 shows the Mössbauer spectra of CuFeO2 at normal pressure. In the spectra at 5 K and 10 K, long-range magnetic order of the 4-sublattice (4SL) phase is observed with remnants of the magnetic-ordered (“5-sublattice”) phase (5SL). See Ref. [04XPT] for the detail of the 4SL and 5SL phases. Figure CuFeO2-3 shows the Mössbauer spectra recorded at 19 GPa at several temperatures, where TN reaches ~38 K. At 19 GPa, the 4SL phase vanishes leaving only the 5SL phase. The hyperfine field parameters at various pressures are summarized in Table 1. See also Refs. [10RPX], [10XRP], and [16XHP] for the Mössbauer spectra of CuFeO2 under high pressure. Table 1 The hyperfine interaction parameters of Cu57FeO2. δIS and QS mean the isomer shift and the quadrupole splitting, respectively. The hyperfine fields Hhf1 and Hhf2 correspond to the 4SL and 5SL phases, respectively [04XPT] p [GPa] δIS [mm/s]a QS [mm/s] Bhf1(T