144 22 58MB
English Pages [1087]
R. T. Pardasani · P. Pardasani Authors A. Gupta Editor
Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3 A Supplement to Landolt-Börnstein II/31 Series
MATERIALS.SPRINGER.COM
Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3
A. Gupta Editor
Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3 A Supplement to Landolt-Bo¨rnstein II/31 Series R. T. Pardasani • P. Pardasani Authors
Editor A. Gupta Delhi, India Authors R. T. Pardasani Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandar Sindri, Ajmer, India
P. Pardasani Department of Chemistry University of Rajasthan Jaipur, India
ISBN 978-3-662-62469-2 ISBN 978-3-662-62470-8 (eBook) https://doi.org/10.1007/978-3-662-62470-8 © Springer-Verlag GmbH Germany, part of Springer Nature 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany
Preface
In continuation to our efforts to update the magnetic susceptibility data of paramagnetic compounds, a new volume is presented herewith covering literature from 2001 to 2010. Since most of the researches these days consult the literature online, a new pattern has been introduced. All the magnetic properties of each individual substance are listed as a single document which is self-explainable and allowing search in respect of substance name, synonyms, common vocabulary, and even structure. It is hoped that the new pattern will facilitate greater accessibility of magnetic data and enhance the use of Landolt-Börnstein. The editor wishes to express her thanks to the authors R.T. Pardasani and Pushpa Pardasani for this excellent volume. The encouraging support of Michael Klinge, Sharon George, Antje Endemann and the whole production team from Springer is gratefully acknowledged. August 2020 New Delhi
A. Gupta
v
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part I
1
Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Magnetic properties of nickel(II) tellurite complex . . . . . . . . . . . . . . . .
17
Magnetic properties of nickel(II) complex with chelating resin containing tridentate Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
...........
21
Magnetic properties of nickel(II) fluoride complex with imidazole . . . .
24
Magnetic properties of thiodiacetato complex of nickel(II) . . . . . . . . . .
26
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-alanine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-phenylalanine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-trytophan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
Magnetic properties of nickel(II) complex with polystyrene supported tridentate Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
Magnetic properties of nickel(II) chloro complex with N-nicotinoylN0 -thiobenzoyl hydrazine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
Magnetic properties of potassium oxo nickelate complex
0
Magnetic properties of nickel(II) complex with N-nicotinoyl-N thiobenzoyl hydrazine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Magnetic properties of nickel(II) complex with 8-(2-azothiazolyl)7-hydroxy-4-methylcoumarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
Magnetic properties of nickel(II) complex with 8-(2-azobenzothiazolyl)-7-hydroxy- 4-methylcoumarin . . . . . . . . . . . . .
42 vii
viii
Contents
Magnetic properties of mixed ligand nickel(II) with 2-phenyl-3(benzylimino)1, 2-dihydroquinazolin-4(3H)-one, phenanthroline and thiocyanate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
Magnetic properties of nickel(II) chloro complex with cis-3,7-dimethyl-2, 6-octadienthiosemicarbazone . . . . . . . . . . . . . . . . . .
46
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
Magnetic properties of nickel(II) bromide adduct with substituted acenaphthene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54
Magnetic properties of nickel(II) acetato complex with 5-(phenylazo)- 2-thiohydantoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
Magnetic properties of nickel(II) acetato complex with 5-(2-hydroxy-phenylazo)- 2-thiohydantoin . . . . . . . . . . . . . . . . . . . . . . .
58
Magnetic properties of nickel(II) complex with antibiotic drug, dicluxacillin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 2,20 -bipyridine . . . . . . . . . . . . . . . . . . . . . . . . . .
62
Magnetic properties of mononuclear nickel(II) complex with dicyanamide and triethylenetetramine . . . . . . . . . . . . . . . . . . . . . . . . . .
64
Magnetic properties of mononuclear nickel(II) complex derived from a hexadentate Schiff-base ligand . . . . . . . . . . . . . . . . . . . . . . . . . .
67
Magnetic properties of 3D helical dicyanamide nickel(II) complex containing polyamine ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
Magnetic properties of nickel(II) complex with N-monofunctionalized tetraazamacrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
Magnetic properties of nickel(II) coordination polymer-containing dicyanamide and 4,40 -bipyridine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
Magnetic properties of mononuclear nickel(II) complex with 3,5-pyrazoledicarboxylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76
Magnetic properties of mononuclear nickel(II) anionic complex with 3, 5-pyrazoledicarboxylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
Contents
ix
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4(3H)-one, ethylenediamine and azide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4(3H)-one, phenanthroline and azide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl- 3-(benzylimino)1,2-dihydroquinazolin- 4(3H)-one, ethylenediamine and thiocyanate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and phenanthroline . . . . . . . . . . . . . . . . . . . . . . . . . .
86
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 1,8-diaminonaphthalene . . . . . . . . . . . . . . . . . .
88
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 5-nitro-1,10-phenanthroline . . . . . . . . . . . . . . . .
90
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 2-(aminomethyl)-pyridine . . . . . . . . . . . . . . . . .
92
Magnetic properties of nickel(II) complex with o-iminobenzoquinone and substituted amine ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and p-N-methylpyridinium α–nitronyl nitroxide cation . . . . . . . . . . . . .
97
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and m-N-methylpyridinium α–nitronyl nitroxide cation . . . . . . . . . . . .
99
Magnetic properties of nickel(II) complex with pyridine-substituted nitronyl nitroxide radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
Magnetic properties of nickel(II) complex with o-iminobenzosemiquinone and substituted amine ligands . . . . . . . . . . .
104
Magnetic properties of mixed ligand complex of Ni(II) with tetramethylethylenediamine and nitroxide radical (K2N,N mode) . . . . .
107
Magnetic properties of mixed ligand complex of Ni(II) with tetramethylethylenediamine and nitroxide radical (K2N,O mode)
....
110
Magnetic properties of nickel(II) complex with 1,4,8,11-tetraazacyclotetra-decane and tetracyanoquinodimethane . . . .
113
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands . . . . . . . . . . . . . .
115
Magnetic properties of nickel(II) complex with tetraazamacrocycle and two tetracyanoquinodimethane anion-radical ligands . . . . . . . . . .
117
x
Contents
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands . . . . . . . . . . . . . .
119
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands . . . . . . . . . . . . . .
121
Magnetic properties of nickel(II) complex with nitronyl nitroxide substituted thiazole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
123
Magnetic properties of racemic nickel(II) complex with pyridine-2-aldoxime and 2,20 -bipyridine . . . . . . . . . . . . . . . . . . . . . . . .
126
Magnetic properties of racemic nickel(II) complex with pyridine-2-aldoxime and 1,10-phenanthroline . . . . . . . . . . . . . . . . . . . .
129
Magnetic properties of an ion-pair compound consisting of 1-(40 -Br- benzyl)pyridinium cation and 2-thioxo-1,3-dithion4,5-dithiolatonickalate(II) anion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
Magnetic properties of an ion-pair nickel maleonitrile dithiolate complex anion with substituted pyridinium cation . . . . . . . . . . . . . . . .
136
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
141
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
143
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145
Magnetic properties of binuclear nickel(II) complex with dicyanamide and dipropylenetriamine . . . . . . . . . . . . . . . . . . . . . . . . . .
147
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and dimethylsulfoxide . . . . . . . . . .
150
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and pyridine . . . . . . . . . . . . . . . . . .
152
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and water . . . . . . . . . . . . . . . . . . . .
154
Magnetic properties of μ-oxalato bridged binuclear nickel(II) complex with 1,8-bis(2-pyridyl)-3,6-dithiaoctane . . . . . . . . . . . . . . . . . .
156
Magnetic properties of μ-oxalato bridged binuclear nickel(II) complex with 1,8-bis(2-pyridyl)-3,6-dithiaoctane . . . . . . . . . . . . . . . . . .
159
Magnetic properties of nickel(II) complex with a Schiff-base . . . . . . . .
162
Contents
xi
Magnetic properties of nickel(II) complex with a Schiff-base . . . . . . . .
164
Magnetic properties of nickel(II) complex with 2-[20 -hydroxybenzalidene-50 -(400 -phenyl, 200 -thiazolylazo)]phenol . . . . . . . . . . . . . . . .
166
Magnetic properties of nickel(II) complex with 2-[20 -hydroxybenzalidene-50 -(400 -phenyl-200 -thiazolylazo)]benzoic acid . . . . . . . . . . . .
168
Magnetic properties of binuclear nickel(II) complex with tetraazamacro-cyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
170
Magnetic properties of trichloroacetato bridged binuclear nickel(II) complex with Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . .
173
Magnetic properties of nickel(II) complex with tetraazacyclotetradecane and dicyanamide . . . . . . . . . . . . . . . . . . . . . .
176
Magnetic properties of binuclear nickel(II) complex with pentadentate Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
178
Magnetic properties of azido bridged binuclear nickel(II) complex derived from a hexadentate Schiff-base ligand . . . . . . . . . . . . . . . . . . .
180
Magnetic properties of nickel(II) complex with oxime-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
183
Magnetic properties of nickel(II) complex with oximethiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
185
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-alanine) . . . . . . . . . . . . . . . . . . . . . . . . . . .
187
Magnetic properties of ion-pair complex, having diethylenetriamine nickel(II) cation and tetracyanonickelate anion . . . . . . . . . . . . . . . . . . .
190
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-phenylalaninato) . . . . . . . . . . . . . . . . . . . . .
193
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-histinato) . . . . . . . . . . . . . . . . . . . . . . . . . . .
195
Magnetic properties of mixed ligand dinickel(II) complex with thiodiglycolic acid and ethylenediamine . . . . . . . . . . . . . . . . . . . . . . . . .
198
Magnetic properties of binuclear nickel(II) cluster stabilized by pivalate ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201
Magnetic properties of bimetallic nickel(II)(host)-barium(II)(guest) complex with polyether ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
204
Magnetic properties of oxo-bridged hetero-binuclear, Ni(II)-Co(II) complex with compartmental Schiff-base . . . . . . . . . . . . . . . . . . . . . . . .
207
xii
Contents
Magnetic properties of hybrid materials containing organometallic cations (cobaltocenium) and 3-D anionic nickel dicyanamide . . . . . . . .
209
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylethyl)oxamide dianion and dimethyl-bipyridine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
211
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylmethyl)oxamide dianion and 5-nitrophenanthroline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
214
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylmethyl)oxamide dianion and phenanthroline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217
Magnetic properties of heterobimetallic Ni(II)-Cu(II) complex with bis(2-hydroxy- 1-naphthaldehyde)malonoyldihydrazone . . . . . . . . . . . .
220
Magnetic properties of trinuclear nickel(II) complex with 1,3,5-benzenetricarboxylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
222
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand . . . . . . . . . . . . . . . . . . . . . . . . . .
225
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand . . . . . . . . . . . . . . . . . . . . . . . . . .
227
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand . . . . . . . . . . . . . . . . . . . . . . . . . .
229
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand . . . . . . . . . . . . . . . . . . . . . . . . . .
232
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand . . . . . . . . . . . . . . . . . . . . . . . . . .
234
Magnetic properties of linear trinuclear nickel(II) complex with 4-amino-3, 5-dimethyl-1,2,4-triazole . . . . . . . . . . . . . . . . . . . . . . . . . . . .
236
..........
239
Magnetic properties of nickel complex of crown thioether
Magnetic properties of ion-pair complex of 2,6-bis(pyrazol-3yl)pyridine nickel(II) cation and trioxalatochromate(III) anion
......
241
Magnetic properties of trinuclear, cyano-bridged, hetero-bimetallic (Cu-Ni) complex with piperazine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
244
Magnetic properties of nickel(II) complex with benzenehexacarboxylic acid (mellitic acid) . . . . . . . . . . . . . . . . . . . . . . .
247
Magnetic properties of tetranuclear nickel(II) butterfly complex stabilized by pivalate ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
250
Contents
xiii
Magnetic properties of tetranuclear heterocubane nickel(II) cluster stabilized by pivalate ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
253
II
Magnetic properties of tetranuclear Ni2 Mn2 complex with N-(2-hydroxymethylphenyl)salicylideneimine . . . . . . . . . . . . . . . . . . . .
256
Magnetic properties of tetrametallic Ni2-Fe2 macrocyclic framework constructed from ferrocenedicarboxylate and bipyridine . . . . . . . . . . .
259
Magnetic properties of a polymeric complex of nickel(II) with 2,6-dimethylbenzo[1,2-d:4,5-d0 ]diimidazole . . . . . . . . . . . . . . . . . . . . . .
262
Magnetic properties of nickel(II) 1-D chain composed of nickel(II) cation and nickel(II) anionic building blocks . . . . . . . . . . . . . . . . . . . . .
265
Magnetic properties of μ-aqua-dinuclear nickel(II) 1-D chain with 3, 5-pyrazoledicarboxylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
268
Magnetic properties of nickel(II) complex with 4-pyridyl-substituted nitronyl nitroxide radical and 1,4-dicarboxy-2, 5-dicarboxylatobenzene dianion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
271
Magnetic properties of heterobimetallic, polymeric Ni(II)-Cu(II) complex with N-(3-hydroxypropyl)ethane-1,2-diamine . . . . . . . . . . . . .
274
Magnetic properties of polynuclear nickel(II) complex with dicyanamide and triethylenetetramine . . . . . . . . . . . . . . . . . . . . . . . . . .
277
Magnetic properties of two-dimensional, dipyrazine bridged Ni(II) polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
280
Magnetic properties of nickel(II) tetraamine phthalocyanine . . . . . . . .
283
Magnetic properties of nickle(II) phthalocyanine polymer . . . . . . . . . .
285
Magnetic properties of a three-dimensional polymeric Ni(II) complex with 5-nitroisophthalate and 1,3-di(4-pyridyl)propane . . . . . .
288
Magnetic properties of dicyanamide bridged nickel(II) complex with tetraazacyclotetradecane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
291
Magnetic properties of μ1,3-azido bridged nickel(II) compound with macrocyclic ligand having perchlorate counter anion . . . . . . . . . . . . . .
294
Magnetic properties of μ1,3-azido bridged nickel(II) compound with macrocyclic ligand having hexafluorophosphate counter anion . . . . . .
297
Magnetic properties of nicotinic acid bridged nickel polymer . . . . . . . .
300
Magnetic properties of ion-pair complex containing substituted isoquinolinium cation and nickel(III)-malconitriledithiolate anion . . . .
303
Magnetic properties of ion-pair complex containing substituted quinolinium cation and nickel(III)-malconitriledithiolate anion . . . . . .
306
xiv
Contents
Magnetic properties of nickel(II)-azide pyrimidine complex . . . . . . . . .
309
Magnetic properties of ion-pair complex: nickel(II) complex cation with cyclam ligand and cobalt(II) complex anion with maleonitriledithiolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
311
Magnetic properties of nickel(II) thiocyanate complex with nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
313
Magnetic properties of ion-pair complex: nickel(II) complex cation with macrocyclic ligand and cobalt(II) complex anion with maleonitriledithiolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
315
Magnetic properties of ion-pair complex: nickel(II) complex cation with macrocyclic ligand and nickel(II) complex anion with maleonitriledithiolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
318
Magnetic properties of ion-pair complex: ethyl-pyridinium substituted verdazyl radical cation and nickel(II) dithiolate anion . . . . . . . . . . . . .
320
Magnetic properties of ion-pair complex having macrocyclic nickel(II) cation and tetrachlorocobaltate(II) anion . . . . . . . . . . . . . . . . . . . . . . . .
322
Magnetic properties of nickel(II) chloro complex with tetradentate [N4] macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324
Magnetic properties of nickel(II) nitrato complex with tetradentate [N4] macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
326
Magnetic properties of nickel(II) sulphato complex with tetradentate [N4] macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
328
Magnetic properties of nickel(II) chloro complex with 12-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
330
Magnetic properties of nickel(II) nitrato complex with 12-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
332
Magnetic properties of nickel(II) thiocyanato complex with 12-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
334
Magnetic properties of nickel(II) complex with 1-acetophenonethiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
336
Magnetic properties of nickel(II) complex with 1-acetophenone-4-ethyl-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . .
338
Magnetic properties of nickel(II) complex with 1-salicylaldehydethiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . .
340
Magnetic properties of nickel(II) complex with 1-salicylaldehyde-4-ethyl- thiosemicarbazone . . . . . . . . . . . . . . . . . . . .
342
Contents
xv
Magnetic properties of nickel(II) complex with 1-salicylaldehyde-4-phenyl- thiosemicarbazone . . . . . . . . . . . . . . . . . . .
344
Magnetic properties of nickel(II) complex with 1-salicylaldehyde-4-p-chloro-phenylthiosemicarbazone . . . . . . . . . . . . .
346
Magnetic properties of nickel(II) complex with 1-(2-hydroxy-4-methoxybenzophenone)-4-phenylthiosemicarbazone . . .
348
Magnetic properties of nickel(II) complex with 1-benzophenonethiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . .
350
Magnetic properties of nickel(II) complex with Schiff-base . . . . . . . . . .
352
Magnetic properties of nickel(II) chloride complex with nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
354
Magnetic properties of nickel(II) nitrate complex with nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
356
Magnetic properties of mixed ligand nickel(II) complex with bis(phenylimine) Schiff-base and 2-aminopyridine . . . . . . . . . . . . . . . .
358
Magnetic properties of mixed ligand nickel(II) complex with bis(phenylimine) Schiff-base and 2-aminopyridine . . . . . . . . . . . . . . . .
360
Magnetic properties of nickel(II) complex with 2-tert-butyl-aminomethylpyridine- 6-carboxylic acid methyl ester
....
362
Magnetic properties of nickel(II) complex with Schiff-base . . . . . . . . . .
364
Magnetic properties of nickel(II) complex with piroxicam and alanine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
366
Magnetic properties of μ-pyrazine bridged nickel(II) complex . . . . . . .
368
Magnetic properties of nickel(II) complex with cyclobutane-substituted Schiff-base ligand . . . . . . . . . . . . . . . . . . . . . . .
371
Magnetic properties of nickel(II) complex with 6-(2-pyridylazo)-3-acetamidophenol . . . . . . . . . . . . . . . . . . . . . . . . . . . .
373
Magnetic properties of nickel(II) complex with Schiff-base . . . . . . . . . .
375
Magnetic properties of nickel(II) complex with 2-(1-indazolyl)-benzothiazole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
377
Magnetic properties of nickel(II) complex with 14-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
379
Magnetic properties of nickel(II) complex with acetophenone oxaloyl-dihydrazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
381
xvi
Contents
Magnetic properties of nickel(II) complex with 4-hydroxyacetophenone oxaloyldihydrazone . . . . . . . . . . . . . . . . . . . . .
383
Magnetic properties of nickel(II) complex with phthalhydroxamic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
385
Magnetic properties of nickel(II) complex with di(3,5-dichlorophenyl)- carbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
387
Magnetic properties of nickel(II) thiocyanato complex with 1-salicyloyl- 4-benzoyl-3-thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . .
389
Magnetic properties of nickel(II) chloro complex with 1-salicyloyl-4-benzoyl- 3-thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . .
391
Magnetic properties of nickel(II) thiocyanato(-N) complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
393
Magnetic properties of nickel(II) thiocyanato(-N) complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
395
Magnetic properties of nickel(II) thiocyanato(-N) complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
397
Magnetic properties of nickel(II) thiocyanato(-N) complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
399
Magnetic properties of nickel(II) chloro complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
401
Magnetic properties of nickel(II) chloro complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
403
Magnetic properties of nickel(II) bromo complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
405
Magnetic properties of nickel(II) chloro complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
407
Magnetic properties of nickel(II) bromo complex with imidazole-derived ligand having an amide group . . . . . . . . . . . . . . . . .
410
Magnetic properties of nickel(II) complex with thiazole Schiff-base . . .
413
Magnetic properties of nickel(II) complex with β-ketoamine . . . . . . . . .
415
Magnetic properties of 2,20 -bipyridine adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
417
Magnetic properties of 1,10-phenanthroline adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
419
Magnetic properties of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . .
421
Contents
xvii
Magnetic properties of 2,20 -bipyridine adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
423
Magnetic properties of 1,10-phenanthroline adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
425
Magnetic properties of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . .
427
Magnetic properties of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . .
429
Magnetic properties of 2,20 -bipyridine adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
431
Magnetic properties of 1,10-phenanthroline adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
433
Magnetic properties of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . .
435
0
Magnetic properties of 2,2 -bipyridine adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
437
Magnetic properties of 1,10-phenanthroline adduct of nickel(II) β-ketoiminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439
Magnetic properties of nickel(II) chloro complex with 1,2-(diimino-40 -antipyrinyl)-1,2-diphenylethane . . . . . . . . . . . . . . . . . . .
441
Magnetic properties of nickel(II) acetato complex with 1,2-(diimino-40 -antipyrinyl)-1,2-diphenylethane . . . . . . . . . . . . . . . . . . .
443
Magnetic properties of nickel(II) complex with Schiff-base . . . . . . . . . .
445
Magnetic properties of mixed ligand nickel(II) complex with N,N0 -dimethylethylenediamine and saccharine . . . . . . . . . . . . . . . . . . .
447
Magnetic properties of mixed ligand nickel(II) complex with N,N-dimethylethylenediamine and saccharin . . . . . . . . . . . . . . . . . . . . .
449
Magnetic properties of nickel(II) chloro complex with 4-(2-pyridyl)-1-diacetylmonoxime-3-thiosemicarbazone
............
451
Magnetic properties of nickel(II) acetato complex with 4-(2-pyridyl)-1-diacetylmonoxime-3-thiosemicarbazone
............
453
Magnetic properties of nickel(II) complex with quinoxaline-2-carboxaldehydesemicarbazone . . . . . . . . . . . . . . . . . . . .
455
Magnetic properties of nickel(II) complex with quinoxaline-2-carboxaldene- 2-furfurylamine . . . . . . . . . . . . . . . . . . . .
457
Magnetic properties of nickel(II) complex with Schiff-base ligand containing cyclobutane and thiazole . . . . . . . . . . . . . . . . . . . . . . . . . . . .
459
xviii
Contents
Magnetic properties of nickel(II) complex with Schiff-base ligand containing cyclobutane and thiazole . . . . . . . . . . . . . . . . . . . . . . . . . . . .
461
Magnetic properties of nickel(II) complex with S-(methyl)-N4-phenyl-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . .
463
Magnetic properties of nickel(II) complex with S-(ethyl)-N4-phenyl-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . .
465
Magnetic properties of nickel(II) complex with S-(n-propyl)-N4-phenyl-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . .
467
Magnetic properties of nickel(II) complex with S-(benzyl)-N4-phenyl-thiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . .
469
Magnetic properties of nickel(II) complex with 4-hydroxyacetophenone-4-aminobenzoylhydrazone
...............
471
Magnetic properties of nickel(II) complex with N,N0 -bis(4-antipyryl-methylidene)-ethylenediamine perchlorate salt . . .
473
Magnetic properties of nickel(II) complex with N,N0 -bis(4-antipyryl-methylidene)-ethylenediamine nitrate salt
......
475
.....
477
Magnetic properties of nickel(II) complex with N,N0 -bis(4-antipyryl-methylidene)-ethylenediamine bromide salt . . . . .
479
Magnetic properties of nickel(II) complex with N,N0 -bis(4-antipyryl-methylidene)-ethylenediamine iodide salt . . . . . . .
481
Magnetic properties of nickel(II) complex with Schiff-base derived from pyrimidine-2-thione . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
483
Magnetic properties of nickel(II) chloro complex with heterocyclic Schiff-base derived from pyrimidine-2-one and 3-hydroxysalicylaldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
485
Magnetic properties of nickel(II) chloro complex with nitrogen donor macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
487
Magnetic properties of nickel(II) nitrato complex with nitrogen donor macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
489
Magnetic properties of nickel(II) acetato complex with nitrogen donor macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
491
Magnetic properties of nickel(II) sulphato complex with nitrogen donor macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
493
Magnetic properties of nickel(II) complex with N,N0 -bis(4-antipyryl-methylidene)-ethylenediamine chloride salt
Contents
xix
Magnetic properties of nickel(II) chloro complex with 14-membered Schiff-base macrocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
495
Magnetic properties of nickel(II) chloro complex with 14-membered Schiff-base macrocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
497
Magnetic properties of nickel(II) chloro complex with 14-membered Schiff-base macrocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
499
Magnetic properties of mixed ligand complex of nickel(II) with pyridine-2,3-dicarboxylic acid and hydrazine . . . . . . . . . . . . . . . . . . . .
501
Magnetic properties of mixed ligand complex of nickel(II) with pyridine-2, 5-dicarboxylic acid and hydrazine . . . . . . . . . . . . . . . . . . . .
503
Magnetic properties of mixed ligand complex of nickel(II) with 5-chloro-salicylidene-p-anisidine and bis-(benzylidene)ethylenediamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
505
Magnetic properties of mixed ligand complex of nickel(II) with 5-bromo-salicylidene-p-anisidine and bis-(benzylidene)ethylenediamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
507
Magnetic properties of nickel(II) perchlorato complex with 2,3-dimethyl- 4-formyl(benzhydrazide)-1-phenyl-3-pyrazolin-5-one . . .
509
Magnetic properties of nickel(II) nitrato complex with 2,3-dimethyl-4-formyl(benzhydrazide)-1-phenyl-3-pyrazolin-5-one . . . .
511
Magnetic properties of nickel(II) chloro complex with 2,3-dimethyl-4-formyl-(benzhydrazide)-1-phenyl-3-pyrazolin5-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
513
Magnetic properties of nickel(II) bromo complex with 2,3-dimethyl-4-formyl-(benzhydrazide)-1-phenyl-3-pyrazolin5-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
515
Magnetic properties of nickel(II) iodo complex with 2,3-dimethyl-4-formyl-(benzhydrazide)-1-phenyl-3-pyrazolin5-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
517
Magnetic properties of nickel(II) complex with heterocyclic Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
519
Magnetic properties of nickel(II) mixed ligand complex with Schiff-bases containing NO and NN donor atoms . . . . . . . . . . . . . . . . .
521
Magnetic properties of binuclear nickel(II) complex bridged by azo-2,20 -bipyridine ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
523
Magnetic properties of nickel(II) chloride complex with 2-acetylnaphtho[2,1-b]-furan oxime . . . . . . . . . . . . . . . . . . . . . . . . . . . .
526
xx
Contents
Magnetic properties of nickel(II) complex with 2-benzoylnaphtho[2,1-b]-furan oxime . . . . . . . . . . . . . . . . . . . . . . . . . .
528
Magnetic properties of nickel(II) chloro complex with hexaaza[17]-paracyclophane (Schiff-base) . . . . . . . . . . . . . . . . . . . . . . .
530
Magnetic properties of nickel(II) nitrato complex with hexaaza[17]-paracyclophane (Schiff-base) . . . . . . . . . . . . . . . . . . . . . . .
532
Magnetic properties of nickel(II) complex with 2-(thiomethyl-20 -benzimidazolyl)-benzimidazole
..................
534
Magnetic properties of nickel(II) bromo complex with 2-(thiomethyl-20 -benzimidazolyl)-benzimidazole . . . . . . . . . . . . . . . . . .
536
Magnetic properties of nickel(II) complex with Schiff-base derived from methylthiosemicarbazone and coumarin . . . . . . . . . . . . .
538
Magnetic properties of nickel(II) complex with Schiff-base derived from methylthiosemicarbazone and coumarin . . . . . . . . . . . . .
540
Magnetic properties of nickel(II) complex with Schiff-base derived from benzyl and triethylenetetraamine . . . . . . . . . . . . . . . . . . .
542
Magnetic properties of nickel(II) complex with {N,N0 -2,20 bis(aminoethyl)- methylamine-bis- (3-carboxysalicylaldimine)} . . . . . . .
544
Magnetic properties of nickel(II) complex with benzoylhydrazone of ω-bromoacetoacetanilide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
546
Magnetic properties of nickel(II) complex with salicylhydrazone of ω-bromoacetoacetanilide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
548
Magnetic properties of nickel(II) complex with methyliminoisonitroso-2-acetylnaphthalene . . . . . . . . . . . . . . . . . . . . . .
550
Magnetic properties of nickel(II) complex with benzyliminoisonitroso-2-acetylnaphthalene . . . . . . . . . . . . . . . . . . . . . .
552
Magnetic properties of mixed ligand nickel(II) complex with diethyldithiocarbamate and pyridine . . . . . . . . . . . . . . . . . . . . . . . . . . .
554
Magnetic properties of mixed ligand nickel(II) complex with diphenyldithiocarbamate and pyridine . . . . . . . . . . . . . . . . . . . . . . . . .
556
Magnetic properties of nickel(II) complex with sulfasalazine . . . . . . . .
558
.....
560
Magnetic properties of nickel(II) complex with 12-membered tetraaza macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
562
Magnetic properties of nickel(II) complex with 14-membered tetraaza macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
564
Magnetic properties of nickel(II) bis complex with sulfasalazine
Contents
xxi
Magnetic properties of nickel(II) acetato complex with 2,5-hexanedione bis-(isonicotinylhydrazone) . . . . . . . . . . . . . . . . . . . . .
566
Magnetic properties of nickel(II) nitrato complex with macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
568
Magnetic properties of nickel(II) acetato complex with macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
570
Magnetic properties of nickel(II) complex with Schiff-base derived from 4-phenylthiazole-2-semicarbazide . . . . . . . . . . . . . . . . . . .
572
Magnetic properties of nickel(II) complex with Schiff-base derived from 4-phenylthiazole-2-semicarbazide . . . . . . . . . . . . . . . . . . .
574
Magnetic properties of nickel(II) complex with Schiff-base derived from 4-phenylthiazole-2-semicarbazide . . . . . . . . . . . . . . . . . . .
576
Magnetic properties of nickel(II) complex with 3,5-N,N0 -[2,20 -bis-thienylmethylidene]-diaminotolulene . . . . . . . . . . . . .
578
Magnetic properties of nickel(II) complex with 2-amino4-benzamido-thiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
580
Magnetic properties of binuclear nickel(II) complex with binucleating ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
582
Magnetic properties of dimeric nickel(II) complex with 1-acetophenone-4-phenylthiosemicarbazone . . . . . . . . . . . . . . . . . . . . .
584
Magnetic properties of dimeric nickel(II) complex with 1-acetophenone-4-p-chloro- phenylthiosemicarbazone . . . . . . . . . . . . . .
586
Magnetic properties of dimeric nickel(II) complex with 1-(2-hydroxy-4-methoxybenzophenone)-4-pchlorophenylthiosemicarbazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
588
Magnetic properties of binuclear nickel(II) acetato complex with N,N,N0 N0 -tetrakis-[(1-ethyl-2-benzimidiazolyl)-methyl]2hydroxy-1,3-diaminopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
590
Magnetic properties of binuclear nickel(II) propionate complex with N,N,N0 N0 -tetrakis-[(1-ethyl-2-benzimidiazolyl)-methyl]2hydroxy-1,3-diaminopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
592
Magnetic properties of binuclear nickel(II) chloroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidiazolyl)-methyl]2hydroxy-1,3-diaminopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
594
Magnetic properties of binuclear nickel(II) trichloroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidiazolyl)-methyl]2hydroxy-1,3-diaminopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
596
xxii
Contents
Magnetic properties of binuclear nickel(II) trifluoroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy1,3-diaminopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
598
Magnetic properties of binuclear nickel(II) acetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy-1,3diaminopropane and urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
600
Magnetic properties of binuclear nickel(II) propionato complex with N,N,N0 N0 -tetrakis-[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy-1,3diaminopropane and urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
603
Magnetic properties of binuclear nickel(II) chloroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy1,3-diaminopropane and urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
605
Magnetic properties of binuclear nickel(II) trichloroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy1,3-diaminopropane and urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
608
Magnetic properties of binuclear nickel(II) trifluoroacetato complex with N,N,N0 N0 -tetrakis[(1-ethyl-2-benzimidazolyl)-methyl]2-hydroxy1,3-diaminopropane and urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
610
Magnetic properties of phosphate bridged nickel(II) complex with phosphodiester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
613
Magnetic properties of binuclear nickel(II) complex with Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
616
Magnetic properties of binuclear nickel(II) chloro complex with 28-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
618
Magnetic properties of binuclear nickel(II) bromo complex with 28-membered macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
620
Magnetic properties of dimeric nickel(II) complex with salicylaldazine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
622
Magnetic properties of nickel(II) complex with Schiff-base derived from 5-(20 -thiazolylazo)salicylaldehyde and 2-aminophenol . . .
624
Magnetic properties of binuclear nickel(II) nitrato complex with heterocyclic azine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
626
Magnetic properties of binuclear nickel(II) chloro complex with heterocyclic azine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
628
Magnetic properties of binuclear nickel(II) perchlorato complex with heterocyclic azine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
630
Magnetic properties of dinickel(II) complex with dithiocarbamate . . . .
632
Contents
xxiii
Magnetic properties of binuclear nickel(II) complex with cyclodiphosphazane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
634
Magnetic properties of binuclear nickel(II) complex with cyclodiphosphazane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
637
Magnetic properties of homo-binuclear di-μ2-alkoxo bridged nickel(III) complex with Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . .
640
Magnetic properties of binuclear nickel(II) complex with N-benzoyl-N0 -(2-hydroxyphenyl)-thiocarbamide . . . . . . . . . . . . . . . . . .
642
Magnetic properties of mixed ligand binuclear nickel(II) complex with N-benzoyl-N0 -(2-hydroxyphenyl)-thiocarbamide and pyridine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
644
Magnetic properties of mixed ligand binuclear nickel(II) complex with N-benzoyl-N0 -(2-hydroxyphenyl)-thiocarbamide and α-picoline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
646
Magnetic properties of mixed ligand binuclear nickel(II) complex with N-benzoyl-N0 -(2-hydroxyphenyl)-thiocarbamide and β-picoline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
648
Magnetic properties of mixed ligand binuclear nickel(II) complex with N-benzoyl-N0 -(2-hydroxyphenyl)-thiocarbamide and Υ-picoline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
650
Magnetic properties of bimetallic, Ni2 complex with ferrocene-bridged bis-(pyridines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
652
Magnetic properties of dinuclear nickel(II) complex with O-bridged urea and phenol-containing Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . .
655
Magnetic properties of dinuclear nickel(II) complex bridged by azo-2,20 -bipyridine ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
658
Magnetic properties of μ-acetato-di-μ-phenolato heterobimetallic, Ni-Co complex with dinucleating macrocyclic ligand . . . . . . . . . . . . . .
661
Magnetic properties of hetero-metallic, binuclear Ni(II)-Cu(II) chloro complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . .
664
Magnetic properties of hetero-binuclear nickel(II)-copper(II) complex with 5-nitroindazole and ethylenediamine . . . . . . . . . . . . . . . .
666
Magnetic properties of hetero-metallic, dinuclear nickel(II)oxouranyl(VI) nitrato complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
668
Magnetic properties of homometallic, trinuclear nickel(II) chloro complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . .
670
xxiv
Contents
Magnetic properties of homometallic, trinuclear nickel(II) perchlorate complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . .
672
Magnetic properties of trinuclear nickel(II) complex with macrocycle ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674
Magnetic properties of heterometallic, trinuclear dinickel(II)manganese(II) chloro complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
676
Magnetic properties of heterometallic, trinuclear dinickel(II)-iron(III) chloro complex with nickel(II) Schiff-base complex as ligand . . . . . . . .
678
Magnetic properties of hetero-metallic, trinuclear dinickel(II)cobalt(II) chloride complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
680
Magnetic properties of hetero-metallic, trinuclear dinickel(II)cobalt(II) perchlorate complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
682
Magnetic properties of hetero-metallic, trinuclear dinickel(II)cerium(III) nitrato complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
684
Magnetic properties of hetero-metallic, trinuclear dinickel(II)thorium(IV) nitrato complex with nickel(II) Schiff-base complex as ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
686
Magnetic properties of tetranuclear nickel(II) complex with O-bridged urea and phenol-containing Schiff-base . . . . . . . . . . . . . . . .
688
Magnetic properties of polymeric nickel(II) complex with 2,4-dihydroxy-5-acetylaceto-phenone . . . . . . . . . . . . . . . . . . . . . . . . . . .
691
Magnetic properties of polymeric nickel(II) complex with 2,4-dihydroxy-5-acetylaceto-phenonedioxime . . . . . . . . . . . . . . . . . . . .
693
Magnetic properties of nickel(II) complex with acetophenone4-amino-benzoylhydrazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
695
Magnetic properties of polymeric mixed ligand complex of nickel(II) with pyridine-2,4-dicarboxylic acid and hydrazine . . . . . . . .
697
Magnetic properties of polymeric mixed ligand complex of nickel(II) with pyridine-2,6-dicarboxylic acid and hydrazine . . . . . . . .
700
Magnetic properties of polymeric nickel(II) complex with benzofuro-2-carboxy-[40 -methylphenyl]thiosemicarbazide
..........
702
Magnetic properties of polymeric nickel(II) complex with benzofuro-2-carboxy-[40 -methoxylphenyl]thiosemicarbazide . . . . . . . . .
704
Contents
xxv
Magnetic properties of polymeric nickel(II) complex with benzofuro-2-carboxy- [40 -bromophenyl]thiosemicarbazide . . . . . . . . . .
706
Magnetic properties of nickel(II) complex with N-picolinoyl-N0 2-furanthiocarbohydride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
708
Part II
711
Pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of oxo-bridged hetero-binuclear, Pd(II)-Co(II) complex with compartmental Schiff-base . . . . . . . . . . . . . . . . . . . . . . . .
713
Part III
715
Pt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of platinum(II) complex with o-pyridyl nitronyl nitroxide radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
717
Magnetic properties of platinum(II) complex with p-pyridyl-nitronyl nitroxide radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
720
Magnetic properties of platinum maleonitriledithiolate complex anion with substituted pyridinium cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
723
Part IV
727
Ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of cerium(III) chloro complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
729
Magnetic properties of cerium salt of silicomolybdate heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
731
Magnetic properties of cerium salt of silicomolybdate cobalt heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
733
Magnetic properties of cerium salt of silicomolybdate nickel heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
735
Magnetic properties of cerium(III) nitrato complex with hexadentate macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
737
Magnetic properties of cerium(III) complex with 2-nitrate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
739
Magnetic properties of cerium(III) complex with bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
741
Magnetic properties of mixed ligand cerium(III) complex with 2-amino-pyridine and bis-salicylatothiosemicarbazide . . . . . . . . . . . . .
743
Magnetic properties of mixed ligand cerium(III) complex with 2-amino-pyridine and bis-salicylatothiosemicarbazide . . . . . . . . . . . . .
745
xxvi
Contents
Magnetic properties of mixed ligand complex of cerium(III) with oxalate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . . . . . .
747
Magnetic properties of mixed ligand complex of cerium(III) with oxalate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . . . . . .
749
Magnetic properties of mixed ligand complex of cerium(III) with oxalate, nitrate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . .
751
Magnetic properties of mixed ligand complex of cerium(III) with oxalate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . . . . . .
753
Magnetic properties of cerium(III) complex with arylidene Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
755
Magnetic properties of cerium(III) complex with arylidene Schiff-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
757
Magnetic properties of cerium(III) complex with thiocarbohydrazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
759
Magnetic properties of 6H-perovskite, quaternary oxide of barium-cerium-irridium Ba3CeIr2O9 . . . . . . . . . . . . . . . . . . . . . . . . . . .
761
Magnetic properties of cerium germanium antimonide . . . . . . . . . . . . .
764
Magnetic properties of dimeric mixed ligand cerium(III) complex with oxalate and bis-salicylatothiosemicarbazide . . . . . . . . . . . . . . . . . .
767
Magnetic properties of cerium(III) complex with thiosemicarbazone . .
769
Magnetic properties of cerium(III) complex with semicarbazone . . . . .
771
Part V
773
Pr
..............................................
Magnetic properties of praseodymium(III) chloro complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
775
Magnetic properties of praseodymium(III) trans-2-butenoate polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
778
Magnetic properties of praseodymium-copper complex with nitrilotriacetic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
781
Magnetic properties of tetranuclear praseodymium(III)-copper(II) complex with macrocyclic oxamide . . . . . . . . . . . . . . . . . . . . . . . . . . . .
784
Magnetic properties of praseodymium salt of silicomolybdate heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
787
Magnetic properties of praseodymium salt of silicomolybdate cobalt heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
789
Contents
xxvii
Magnetic properties of praseodymium salt of silicomolybdate nickel heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
791
Magnetic properties of ternary praseodymium ruthenium gallide (with a high gallium content) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
793
Magnetic properties of double perovskite A2LnMO6; barium-praseodymium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . .
796
Magnetic properties of 6H-perovskite, quaternary oxide of barium-praseodymium-irridium Ba3PrIr2O9 . . . . . . . . . . . . . . . . . . . . .
798
Magnetic properties of terbium germanium antimonide . . . . . . . . . . . .
801
Magnetic properties of praseodymium(III) complex with 5-aminosalicylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
804
Magnetic properties of heterotrimetallic derivative of praseodymium(III) containing nonaisopropoxidezirconate ligand
....
807
Magnetic properties of heterotrimetallic derivative of praseodymium(III) containing nonaisopropoxidezirconate ligand
....
810
Part VI
Nd
.............................................
813
Magnetic properties of neodymium(III) chloro complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
815
Magnetic properties of crotonato bridged dinuclear neodymium(III) aqua complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
818
Magnetic properties of heteronuclear copper-neodymium unsaturated carboxylate complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
821
Magnetic properties of neodymium(II) complex with 1,3,5-benzenetricarboxylate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
824
Magnetic properties of neodymium salt of silicomolybdate heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
827
Magnetic properties of neodymium salt of silicomolybdate cobalt heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
829
Magnetic properties of neodymium salt of silicomolybdate nickel heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
831
Magnetic properties of neodymium(III) nitrato complex with hexadentate macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
833
Magnetic properties of neodymium(III) chloro complex with hexadentate macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
835
xxviii
Contents
Magnetic properties of double perovskite A2LnMO6; barium-neodymium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . .
837
Magnetic properties of double perovskite of neodymium, gallium and manganese, Nd2GaMnO6 . . . . . . . . . . . . . . . . . . . . . . . . . .
839
Magnetic properties of neodymium germanium antimonide . . . . . . . . .
841
Magnetic properties of neodymium(III) complex with 5-aminosalicylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
844
Magnetic properties of heterotrimetallic derivative of neodymium(III) containing nonaisopropoxidezirconate ligand . . . . . . .
846
Magnetic properties of heterotrimetallic derivative of neodymium(III) containing nonaisopropoxidezirconate ligand . . . . . . .
849
Part VII
853
Sm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of samarium(III) nitrato complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
855
Magnetic properties of first Sm-Ni heterometallic complex of picolinic acid ligand showing basket weave topology . . . . . . . . . . . . . . .
858
Magnetic properties of samarium salt of silicomolybdate heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
861
Magnetic properties of samarium salt of silicomolybdate cobalt heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
863
Magnetic properties of samarium salt of silicomolybdate nickel heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
865
Magnetic properties of samarium germanium antimonide . . . . . . . . . .
867
Magnetic properties of samarium(III) chloro complex with hexadentate macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
869
Magnetic properties of samarium(III) complex with 5-aminosalicylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
871
Part VIII
873
Eu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of europium(II) nitridoborate . . . . . . . . . . . . . . . .
875
Magnetic properties of lithium-europium nitridoborate . . . . . . . . . . . .
878
III
III
Magnetic properties of tetranuclear (Fe -Eu ) cluster assembled by carboxylate ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
881
Magnetic properties of europium-ytterbium nitridosilicate . . . . . . . . . .
884
..................
887
Magnetic properties of europium(III) chromate
Contents
xxix
Magnetic properties of europium(III) chloro complex with hexadentate macrocyclic ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
890
Magnetic properties of europium(III) complex with 5-aminosalicylic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
892
Part IX
895
Gd
.............................................
Magnetic properties of gadolinium(III) nitrato complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
897
Magnetic properties of crotonato bridged dinuclear gadolinium(III) aqua complex as 2,20 -dipyridylamine adduct . . . . . . . .
899
Magnetic properties of crotonato bridged dinuclear godalinium(III) complex with 2,20 -bipyridine . . . . . . . . . . . . . . . . . . . .
902
Magnetic properties of cyano-bridged, gadolinium(III)-iron(III) complex with o-phenanthroline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
905
Magnetic properties of cyano-bridged gadolinium(III)-tungstate(V) bimetallic assembly with N,N-dimethylformamide . . . . . . . . . . . . . . . .
908
Magnetic properties of heteronuclear CuIIGdIII complex with the hexadentate Schiff-base compartmental ligand . . . . . . . . . . . . . . . . . . .
912
Magnetic properties of copper(II)-gadolinium(II) complex with Schiff-base ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
915
Magnetic properties of gadolinium-copper complex with nitrilotriacetic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
918
Magnetic properties of tetranuclear bimetallic (FeIII-GdIII)2 complex with 1,2-bis-(3-methoxysalicylidene)aminoethane . . . . . . . . . . . . . . . . .
921
Magnetic properties of heterometallic gadolinium-copper, Gd2Cu3 complex with ortho-phenylenebis(oxamate) . . . . . . . . . . . . . . .
924
Magnetic properties of gadolinium salt of silicomolybdate heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
927
Magnetic properties of gadolinium salt of silicomolybdate cobalt heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
929
Magnetic properties of gadolinium salt of silicomolybdate nickel heteropoly blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
931
Magnetic properties of double perovskite A2LnMO6; strontium-gadolinium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . .
933
Magnetic properties of double perovskite A2LnMO6; barium-gadolinium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . .
935
xxx
Contents
Magnetic properties of double 6H-perovskite; barium-gadoliniumdiruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
937
Magnetic properties of perovskite, quaternary oxide of barium-gadolinium-molybdenum Ba3Gd2MoO9 . . . . . . . . . . . . . . . . . .
939
Magnetic properties of perovskite, quaternary oxide of barium-gadolinium-tungsten oxide Ba3Gd2WO9 . . . . . . . . . . . . . . . . . .
942
Magnetic properties of gadolinium germanium antimonide . . . . . . . . .
944
Part X
947
Tb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of terbium-copper complex with nitrilotriacetic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
949
Magnetic properties of mixed ligand bimetallic, heteronuclear complex of terbium(III)-zinc(II) with α–methylacrylic acid and bipyridine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
952
Magnetic properties of double perovskite A2LnMO6; strontium-terbium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . .
955
Magnetic properties of perovskite, quaternary oxide of barium-terbium-tungsten Ba3Tb2WO9 . . . . . . . . . . . . . . . . . . . . . . . . .
957
Part XI
959
Dy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of dysprosium(III) nitrato complex with 2-(3-coumarinyl)-imidazo[1,2-a]pyridine . . . . . . . . . . . . . . . . . . . . . . . .
961
Magnetic properties of dysprosium(III) trans-2-butenoate polymer . . .
963
Magnetic properties of double perovskite A2LnMO6; strontium-dysprosium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . .
966
Magnetic properties of perovskite, quaternary oxide of barium-dysprosium-molybdenum Ba3Dy2MoO9 . . . . . . . . . . . . . . . . . .
968
Magnetic properties of perovskite, quaternary oxide of barium-dysprosium-tungsten Ba3Dy2WO9 . . . . . . . . . . . . . . . . . . . . . . .
971
Part XII
973
Ho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic properties of holmium copper phosphide . . . . . . . . . . . . . . . .
975
Magnetic properties of holmium copper arsenide . . . . . . . . . . . . . . . . .
978
Magnetic properties of crotonato bridged dinuclear holmium(III) aqua complex as 2,20 -dipyridylamine adduct . . . . . . . . . .
981
Magnetic properties of crotonato bridged dinuclear holmium(III) complex 2,20 -bipyridine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
984
Contents
xxxi
.....
987
Magnetic properties of double perovskite A2LnMO6; strontium-holmium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . .
990
Magnetic properties of double perovskite A2LnMO6; barium-holmium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
992
Magnetic properties of double 6H-perovskite; barium-holmiumdiruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
994
Magnetic properties of perovskite, quaternary oxide of barium-holmium-molybdenum oxide Ba3Ho2MoO9 . . . . . . . . . . . . . . .
996
Magnetic properties of perovskite, quaternary oxide of barium-holmium-tungsten Ba3Ho2WO9 . . . . . . . . . . . . . . . . . . . . . . . . .
999
Magnetic properties of holmium(III) trans-2-butenoate polymer
Magnetic properties of heterotrimetallic derivative of holmium(III) containing nonaisopropoxidezirconate ligand . . . . . . . . . . . . . . . . . . . . 1001 Part XIII
Er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1005
Magnetic properties of erbium-copper complex with nitrilotriacetic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 Magnetic properties of double perovskite A2LnMO6; strontium-erbium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 Magnetic properties of double perovskite A2LnMO6; barium-erbium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012 Magnetic properties of double 6H-perovskite; bariumerbium-diruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 Magnetic properties of perovskite, quaternary oxide of barium-erbium-molybdenum Ba3Er2MoO9 . . . . . . . . . . . . . . . . . . . . . . 1016 Magnetic properties of perovskite, quaternary oxide barium-erbium-tungsten Ba3Er2WO9 . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 Part XIV
Tm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1021
Magnetic properties of diphenyl hydrazine bridged binuclear complex of thullium(III) iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Magnetic properties of double perovskite A2LnMO6; strontium-thulium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 Magnetic properties of double perovskite A2LnMO6; barium-thulium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 Magnetic properties of double 6H-perovskite; barium-thuliumdiruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
xxxii
Contents
Magnetic properties of perovskite, quaternary oxide of barium-thulium-molybdenum Ba3Tm2MoO9 . . . . . . . . . . . . . . . . . . . . . 1031 Magnetic properties of perovskite, quaternary oxide of barium-thulium-tungsten Ba3Tm2WO9 . . . . . . . . . . . . . . . . . . . . . . . . . 1034 Part XV
Yb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1037
Magnetic properties of barium-ytterbium nitridosilicate . . . . . . . . . . . . 1039 Magnetic properties of strontium-ytterbium nitridosilicate . . . . . . . . . . 1042 Magnetic properties of double perovskite A2LnMO6; strontium-ytterbium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 Magnetic properties of double perovskite A2LnMO6; barium-ytterbium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 Magnetic properties of double 6H-perovskite; barium-ytterbium-diruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 Magnetic properties of perovskite, quaternary oxide of barium-ytterbium-molybdenum Ba3Yb2MoO9 . . . . . . . . . . . . . . . . . . . 1051 Magnetic properties of perovskite, quaternary oxide of barium-ytterbium-tungsten Ba3Yb2WO9 . . . . . . . . . . . . . . . . . . . . . . . . 1054 Part XVI
Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1057
Magnetic properties of double perovskite A2LnMO6; strontium-lutetium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 Magnetic properties of double perovskite A2LnMO6; barium-lutetium-ruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 Magnetic properties of double 6H-perovskite; barium-lutetium-diruthenium oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Part XVII
Th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1065
Magnetic properties of disubstituted-cyclopentadienyl thorium complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Part XVIII
U
............................................
1069
Magnetic properties of heterobimetallic UO2(VI)-Cu(II) complex with bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone . . . 1071 Magnetic properties of oxo-bridged hetero-binuclear, UO2(VI)-Co(II) complex with compartmental Schiff-base . . . . . . . . . . . 1073
Contents
xxxiii
Magnetic properties of binuclear mixed metal, U(VI)-Mn(II) complex with o-cresolphthalein ligand . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Magnetic properties of binuclear mixed metal, U(VI)-Co(II) complex with o-cresolphthalein ligand . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 Magnetic properties of binuclear mixed metal, U(VI)-Cu(II) complex with o-cresolphthalein ligand . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
Introduction
General Remarks With present four supplement Volumes, which compliment to and extend the “Magnetic Susceptibility Data” which was published as a new volume II/31A titled “Magnetic Properties of Paramagnetic Compounds” in 2012 [1]. A new pattern is being introduced to facilitate the search of magnetic data in online mode. The literature covered here shall be for the period 2001–2010. During this decade, within the field of magnetochemistry, there has been continuing and growing interest in the design and characterisation of polymeric materials. The 1D, 2D or 3D new materials have been formed through various bridging ligands such as azido [2a], pyrazine [2b], bipyridines [2b], nitrosyl nitroxide [2c, 2d], etc. Single-molecule magnetic materials have also been reported and their low-temperature magnetic behaviour studied [3]. Many studies on ion-pair complexes (donor-acceptor system) have also been conducted since the discovery of metamagnetism in such compounds [4a, 4b]. Spincrossover phenomenon also continues to be an attractive area of study [5a, 5b]. Perhaps the most striking feature has been the application of gadolium(III) complexes as a contrast enhancing agent for MRI [6]. In addition, these compounds have also stimulated theoretical investigations. The susceptibility data have again been mostly reported at room temperature and the studies down to 0.0 K have oftenly been reported in the form of figures (as curves of χ M vs. T or μeff vs. T or χ MT vs. T). Throughout the volume the data have been reported in CGS units, commonly abbreviated as cgs or cgs-emu and represented as cm3 mol1. The SI units wherever reported have been changed into the cgs units by the following conversion factor: χ M SI m3 mol1 ¼ 4π 106 χ M cgs cm3 mol1 The sign convention used throughout this volume is that negative value of J signifies antiferromagnetic coupling i.e. where the ground state has minimum multiplicity. All over the files ‘c’ after numbers stands for corrected value of © Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_1
1
2
Introduction
magnetic moment and paramagnetic susceptibility after making diamagnetic corrections.
Organization of Files With the objective to collate the enormous amount of information on magnetic susceptibility parameters of a very large number of a variety of skeletons and present it in a form that can readily be retrieved and used, a new pattern is being introduced with volumes II/31B–I keeping in view that now a majority of research groups look at the scientific data electronically. All the magnetic properties of each individual substance are being documented as a single file and every single document is selfexplainable. Each file is comprised of Title of the document listing searchable and common vocabulary as well as synonyms, Name of the substance according to IUPAC system and its abbreviated formula, CAS-number (wherever available), Gross formula, Properties – listing all properties reported using a standard SpringerMaterials term (see next section) and the Structure – a completely drawn structure of the molecule and/or ligand as well as a separate molefile of the compound is provided to allow even structure searches. The magnetic data have been presented in the form of table. It is followed by additional remarks such as susceptibility equations, exchange parameters, etc. and figures with captions showing curves of χ M vs. T or μeff vs. T or χ MT vs. T, wherever appropriate. Temperature and pH dependence, if reported, is indicated in the remarks column. As far as possible the reference is made to the original literature. The files are listed under their central metal ion or atom (transition metal, lanthanide or actinide). The transition elements are listed by the group in which they occur in the periodic table starting with Group IV (Ti, Zr, Hf) and proceeding until Group I (Cu, Ag, Au) followed by lanthanides and actinides. (Cu and lanthanides and actinides are published in volume II/31C.)
SpringerMaterials Term All the properties and their symbols described in this volume are listed below using a standard vocabulary: a, b, c [Å] B BJ (x) c C Cm [emu K mol1] D, E [cm1] e g
Lattice parameters Magnetic induction Brillouin function Concentration Curie constant Molar Curie constant Constants of spin Hamiltonian describing zero field splitting parameters Electron charge Spectroscopic splitting factor or Lande factor (continued)
SpringerMaterials Term g||, g⊥ H [G] H HDVV J, J12, Jij J J k L M [G emu/ cm3 ¼ G] m (M ) N Nα [emu mol1] pm (μB or μeff) S T [K] Tc To TIP t2g, eg V ZFS ZJ0
α β δ ζnd [cm1] Θp [K] ΘN or TN [K] ΘC or TC [K] σ κ [emu/cm3] λ [cm1] μB or β χA χ g [emu/g] χ M [emu/mol] χp χs
3
Spectroscopic splitting factor parallel and perpendicular to the principal magnetic axis Applied magnetic field Hamiltonian Heisenberg-Dirac-van Vleck model Exchange integral Exchange energy, value quoted as J/k in [K], J/hc in [cm1] or J/T in multiples of k Total angular momentum Boltzmann constant Total orbital angular momentum Magnetic moment per unit volume ¼ magnetization Electron mass Molecular weight Avogadro number Temperature-independent paramagnetism (TIP) per mole Effective magnetic moment per molecule in Bohr magnetons Total spin angular momentum Temperature (in degrees Kelvin) Critical temperature of phase transition Effective spin-exchange temperature Temperature-independent paramagnetism Subshells of d electrons in octahedral field Molecular volume Zero-field splitting Z is the number of nearest neighbor J0 is exchange integral for the magnetic interaction between nearest neighbor chains TIP per molecule Bohr magneton Percentage monomeric impurity Spin-orbit coupling constant for single d electron Paramagnetic Curie constant (Weiss constant) Néel temperature Ferromagnetic Curie temperature Spontaneous magnetic moment Volume susceptibility Spin-orbit coupling constant for the ground state Bohr magneton Magnetic susceptibility per gram-atom (average atomic susceptibility) Magnetic susceptibility per gram (specific susceptibility) Magnetic susceptibility per mole (molar susceptibility) Pauli susceptibility Spin susceptibility (continued)
4 χ ||, χ ⊥ [emu/mol] χ MT [emu K/mol]
Introduction Principal molar susceptibilities parallel and perpendicular to the principal magnetic axis Product of molar magnetic susceptibility with temperature
Experimental Methods for Determination of Magnetic Susceptibility Various methods/instruments used for the precise measurement of the magnetic susceptibility are listed below: Abbreviation a.c. Evans Faraday Gouy Johnson Matthey NMR Pend. SQUID Tors. VSM
Description of method Alternate current mutual inductance bridge method Evans balance Faraday method Gouy method or Pascal method Johnson Matthey balance Nuclear magnetic resonance method Pendulum magnetometer Superconducting quantum interference device Torsional balance with electromagnetic compensation Vibrating-sample magnetometer
Ref. [7] [8] [9–12] [13–17] [18, 19] [20] [21] [22] [23, 24] [25, 26]
Their general description is given in the standard books [27–29]. With the aim to remove confusion and ambiguity concerning various previously reported magnetic parameters for commonly used magnetic susceptibility calibrant HgCo(NCS)4 Nelson and ter Haar [30] have measured for the first time single-crystal magnetic susceptibility data for HgCo(NCS)4 on SQUID magnetometer. The measurements have been carried out in the temperature range 1.7–300 K and utilized in conjection with powder data; also collected for the first time on a single magnetometer and throughout the tewmperature range 1.7–300 K. It is demonstrated that temperatureindependent paramgnetism, zero-field splitting, and magnetic exchange are all required in order to account for the observed magnetic behavior.
Theoretical Aspects of Paramagnetic Susceptibility Magnets have fascinated mankind since the discovery of iron metal by Hittites some 3500 years ago. The compounds that exhibit magnetism are inorganic solids and molecule-based organic materials. The number of different magnetic behaviours that can be observed in a solid is fairly large and indeed the tree of magnetism can be divided into many branches. Nevertheless, six classes are of particular importance, namely diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimagnetism, and metamagnetism (see Fig. 1) [31].
Theoretical Aspects of Paramagnetic Susceptibility
5
Fig. 1 Field dependence of various magnetic phenomena
The origin of paramagnetism is the spin and orbital angular momentum possessed by extra-nuclear electrons. All substances when placed in a magnetic field of strength H exhibit magnetic moment M given by M ¼ χH, where χ, the proportionality constant, is the magnetic susceptibility [28, 29, 32]. In open-shell paramagnetic compounds the induced moment is aligned parallel to the field and susceptibility may be expressed by the equation: χ¼
NgμB JBJ ðxÞ H
ð1Þ
where BJ(x) is the Brillouin function: BJ ð x Þ ¼
h i ð2J þ 1Þx 2J þ 1 1 x ctnh ctnh 2J 2J 2J 2J
ð2Þ
For non-interacting independent spins the susceptibility is inversely proportional to the temperature and is given by Curie law: χM ¼
M NJ ðJ þ 1Þg2 μ2B Nμ2eff C ffi ¼ ¼ H T 3kT 3kT
ð3Þ
where N is Avogadro’s number, g is the Lande factor (the ratio of magnetic moment to angular momentum), μB is the Bohr magneton, k is the Boltzmann constant, J ¼ total angular momentum ¼ S + L, x ¼ gJμBB/kT, and C is the Curie constant per mole. The Curie law is followed by many magnetically dilute substances. However, a second-order contribution to paramagnetic susceptibility, the temperatureindependent paramagnetism (TIP), Nα, should also be taken into consideration.
6
Introduction
Thus closed-shell diamagnetic compounds have their induced moments aligned antiparallel to the field and possess a temperature-independent negative susceptibility. Hence the molar susceptibility corrected for the diamagnetism may be given by the equation: χ corr M ¼
Nμ2eff þ Nα 3kT
ð4Þ
However, a large number of data have been reported in terms of temperatureindependent effective magnetic moment term: μeff ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi 3χk=NT ¼ 2:84 χ M T ¼ g SðS þ 1ÞμB
ð5Þ
S is the resultant spin quantum number. For substances which are not magnetically dilute, the temperature dependence of susceptibility is often expressed by the Curie-Weiss law: χM ¼
Nμ2 C ¼ eff T Θp 3k T Θp
ð6Þ
The constant Θp is known as paramagnetic Curie temperature or Weiss constant and is readily obtained by plotting 1/χ M against T. For free ions, two limiting cases exist. If the multiplet separation hν is large compared to kT, only the lowest energy level is populated and the effective magnetic moment is given by: μeff ¼ g
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi J ðJ þ 1ÞμB
ð7Þ
On the other hand, if hν is small compared to kT, all multiplet levels are equally populated and μeff ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4SðS þ 1Þ þ LðL þ 1ÞμB
ð8Þ
where L and J are total orbital and angular quantum momentum, respectively. This is the general equation for transition metal ions. When the ground states of transition metal ions are S states, L ¼ 0, there will be orbital quenching and μeff ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4SðS þ 1ÞμB
ð9Þ
Unlike transition metal ions the magnetic moments of lanthanide ions (Ln3+) are not effected by the ligand field. The 4f electrons are so well screened that they are least effected by external influences. At sufficiently low temperature the spins may order. The last four types of magnetic behaviours are thus characterized by the cooperative behavior of the spins. In ferromagnetism, the individual spins can be either all identical or different
Theoretical Aspects of Paramagnetic Susceptibility
7
Fig. 2 Different magnetic behaviours: (a) ferromagnetism, (b) antiferromagnetism, and (c) ferrimagnetism
from each other but the coupling is such that they are all parallel to each other in the ordered face (Fig. 2a). Then a spontaneous magnetization at zero applied field occurs with characteristic saturation moment Ms in a finite applied field and can be calculated by Eq. (10): Ms ¼ NgSμB
ð10Þ
In both antiferromagnetism and ferrimagnetism there are at least two kinds of different spins that are coupled antiparallel to each other. When the two different spins have identical moments, the magnetization of the two sublattices cancel, and antiferromagnetism results (Fig. 2b). There is no net moment in zero applied field and the susceptibility is anisotropic below the Néel temperature. On the contrary, ferrimagnetism occurs when the antiferromagnetically aligned spins have differing local moments resulting in incomplete cancellation of the parallel and antiparallel spin sublattices leading to reduced, but non-zero, moment (Fig. 2c). The saturation magnetization for a ferrimagnet may be calculated from Eq. (11) or (12) depending if complete cancellation of sublattices magnetic moments arises from differences in g or S, respectively [33]. Ms ¼ N ΔgSμB
ð11Þ
Ms ¼ NgΔSμB
ð12Þ
8
Introduction
For ferromagnetic interaction Θp > 0 and for antiferromagnetic interaction Θp < 0 above Curie and Néel temperatures, respectively, and the effective magnetic moment can be calculated by the equation: μeff ¼ 2:84
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi χ M T Θp
ð13Þ
With respect to the magnetic susceptibility of an antiferromagnet two situations can arise: (i) The applied magnetic field is perpendicular to the axis of the spin χ⊥ ¼
2MA 1 φ¼ αAB H
ð14Þ
and the magnetic susceptibility is thus independent of the field. (ii) The applied magnetic field is parallel to the axis of the spin χk ¼
Mk H
ð15Þ
And hence at T ¼ 0 K, χ || ¼ 0, and at T ¼ TN (or ΘN), χ || ¼ χ ⊥, where TN ¼ Néel temperature Application of a magnetic field to a ferromganet leads to alignment of the ferromagnetic domains and M(H ) exhibits hysteresis behavior. Metamagnetism is the field dependent transformation from an antiferromagnetic state to a high moment ferromagnetic state. In order to describe interaction between two spins S1 and S2, it is customary to refer to a coupling constant defined by the spin Hamiltonian, H ¼ J ðS1 S2 Þ where J is the energy separation between a singlet and a triplet [28, 32]. The centers characterized by the spins S1 and S2 may interact with each other through a weak binding interaction. If the orbitals containing the unpaired electron(s) in the two centres are orthogonal to each other, then Hund’s rule keeps the spins parallel to each other and the parallel coupling between the two arises while if they have non-zero overlap, antiparallel alignment is favoured. The two spin centres may be also well separated from each other provided that intervening spin paired centres can transmit interaction through different superexchange mechanisms. The molar susceptibilities of the antiferromagnetically coupled dn–dm dimers are calculated by using Van Vleck equation [34]: χM ¼
10 þ 2 exp ð2J=kT Þ Ng 2 β2 kT 5 þ 3 exp ð2J=kT Þ þ exp fð3J þ 3jÞ=kT g
ð16Þ
Theoretical Aspects of Paramagnetic Susceptibility
9
In simple cases, for example, in copper binuclear complexes, where for both metal ions S ¼ ½, the magnetic susceptibility per metal atom may be obtained from Bleaney-Blowers equation: χA ¼
3 exp ð2J=kT Þ χ M Ng 2 β2 ¼ þ Nα 2 3kT 3 exp ð2J=kT Þ þ 1
ð17Þ
or by the modified Bleaney-Blowers equation which includes a magnetic exchange parameter (Θ) between binuclear units [35, 36]: χA ¼
3 exp ð2J=kT Þ χM Ng 2 β2 ¼ þ Nα 2 3kðT ΘÞ 3 exp ð2J=kT Þ þ 1
ð18Þ
Two models based on Heisenberg Hamiltonian are available for the theoretical analysis of antiparamagnetic exchange linear chain manganese (II) compounds [37]: (i) The scaling method of Wagner and Friedberg:
χM ¼
Ng2 β2 SðS þ 1Þ 1 þ U 3kT 1U
ð19Þ
where U ¼ cothK 1/K and K ¼ 2JS(S + 1)/kT, and (ii) The interpolation scheme developed by Weng:
χM ¼
Ng 2 β2 A þ BX 2 kT 1 þ CX þ DX 3
ð20Þ
for S ¼ 5/2, A ¼ 2.9167, B ¼ 208.04, C ¼ 15.543, D ¼ 2707.2 and X ¼ |J|/kT. For heterobinuclear complexes, different quantitative models have been developed to interpret the magnetic behavior. Thus for MnIICuII chain complex MnCu (pbaoH)(H2O)3, SMn (5/2) has been assumed as semi-quantum spin and SCu (½) is pure quantum spin [38]. The approximate spin Hamiltonian is: H ¼ J
N X
S2i ðS2i1 þ S2iþ1 Þ þ gβH ðS2i1 þ S2i Þ
ð21Þ
i¼1
with S2i1 ¼ SMn, S2i ¼ SCu and S2N+1 ¼ Si. The local gMn and gCu factors are assumed to be isotropic and equal and the susceptibility has been fitted to the expression (22) with X ¼ |J|/kT. ðg2 =4Þ 4:75 1:62370X þ 2:05042X2 4:52588X3 8:64256X4 χMT ¼ ð22Þ 1 þ 0:77968X 1:56527X2 1:57333X3 0:11666X4:5
10
Introduction
The magnetic susceptibility expression for the S1 ¼ 3/2 S2 ¼ 1/2 system based on Heisenberg model H ¼ 2J ðS1 S2 Þ was derived by Pei et al. [39] and has been modified as Eq. (23) introducing a parameter Θ to correct for the contribution from an intermolecular magnetic interaction [40]: χM ¼
Ng 2 β2 10 þ 2 exp ð4J=kT Þ þ Nα kðT ΘÞ 5 þ 3 exp ð4J=kT Þ
ð23Þ
The theoretical susceptibility for triangular trinuclear complexes such as [Cu3(tmen)3(NCS)3](ClO4)3∙1.5H2O, S ¼ ½ ½ ½ system [32, 41] has been calculated according to the equation: χA ¼
Ng2 β2 1 þ 10 exp ð3J=kT Þ þ Nα 12kT 1 þ 2 exp ð3J=kT Þ
ð24Þ
On the contrary, the susceptibility data for radical adducts such as Mn(F6acac)2(tempo)2 [42] can be well represented by a symmetrical three spin (1=2 5=2 1=2) system: χM
35 7 2 0 2 5x þ x þ x þ 42x5 2 Ng β ¼ kT 4x7 þ 6 x2 þ x0 2 þ 8x5 2 2
ð25Þ
x ¼ exp(J/kT) and x0 ¼ exp(J0 /kT), where J ¼ (Mn-radical) coupling and J0 ¼ (radical-radical) coupling constant. The magnetic susceptibility for linear heterometallic trinuclear system [43] such as NiII-MII-NiII has been analysed based on H ¼ 2J (SNi2∙SM1 + SNi3∙SM1) using Van-Vleck equation and have been worked out for Mn (S ¼ 5/2) (Eq. 26): Ng 2 β2 A þ Nα 4kT B A ¼ 10 þ 165expð17J =kT Þ þ 84expð8J =kT Þ þ 35expðJ =kT Þ þ 10expð4J =kT Þ þexpð7J =kT Þ þ 84expð12J =kT Þ þ 35expð5J =kT Þ þ 35expð7J =kT Þ B ¼ 2 þ 5expð17J =kT Þ þ 4expð8J =kT Þ þ 3expðJ =kT Þ þ 2expð4J =kT Þ þexpð7J =kT Þ þ 4expð12J =kT Þ þ 3expð5J =kT Þ þ 3expð7J =kT Þ (26)
χM ¼
and Co (S ¼ 3/2) (Eq. 27):
Theoretical Aspects of Paramagnetic Susceptibility
11
Ng 2 β2 A þ Nα 4kT B A ¼ 10 þ 84expð8J =kT Þ þ 35expðJ =kT Þ þ 10expð4J =kT Þ þ expð7J =kT Þ þ35expð5J =kT Þ þ expð3J =kT Þ þ 10expð2J =kT Þ B ¼ 2 þ 4expð8J =kT Þ þ 3expðJ =kT Þ þ 2expð4J =kT Þ þ expð7J =kT Þ þ3expð5J =kT Þ þ expð3J =kT Þ þ 2expð2J =kT Þ (27)
χM ¼
The magnetic data for thermally induced spin state transitions can be interpreted in terms of the thermal equilibrium K
low spin $ high spin: The equilibrium constant, ¼ ½½highspin lowspin , can be determined [44] by the extraction of mole fractions, Nls and Nhs, of low-spin and high-spin species from the value of the magnetic moment at a particular temperature according to the expression:
μ2eff ¼ N hs μ2hs þ N ls μ2ls
ð28Þ
For the derivation of the magnetic susceptibility equation for the homometallic tetranuclear system, three exchange integrals should be taken into consideration, J, J0 , J00 . Based on the Heisenberg model and by the use of Van Vleck equation [45] and assuming that one or two of the exchange integral is negligibly small, the magnetic susceptibility equation per metal for the tetranuclear system is given by: χA ¼
exp ð4J=kT Þ þ 2 exp ð2J=kT Þ þ 5 Ng2 β2 þ Nα 2kT exp ð6J=kT Þ þ 3 exp ð4J=kT Þ þ 57 exp ð2J=kT Þ þ 5 ð29Þ
For high-nuclearity clusters, the complexity of the system leaves an uncertainty in the interpretation of the magnetic data, illustrating an inherent weakness in the capability of the theoretical methods to deal with such systems. For mixed-valence compounds magnetic behavior has been analysed from the perspective of the Kambe model [46] for trimers exhibiting isotropic exchange (J12 ¼ J13 ¼ J23 ¼ J ) (Eq. 30) or anisotropic exchange (J12 ¼ J13 ¼ J, J23 ¼ J') (Eq. 31) [47]: χM ¼ χM ¼
Ng 2 β2 1 þ 5 exp ð3J=2kT Þ 4kT 1 þ exp ð3J=2kT Þ
ð30Þ
Ng2 β2 exp ð3J 0 =2kT Þ þ exp ð4J þ J 0 =2kT Þ þ 10 exp ð2J þ J 0 =2kT Þ 4kT exp ð3J 0 =2kT Þ þ exp ð4J þ J 0 =2kT Þ þ 2 exp ð2J þ J 0 =2kT Þ ð31Þ
12
Introduction
However, in case of MnII-MnIII mixed oxidation state clusters, a general spin-spin interaction model allowing for dissimilar coupling between MnII-MnIII pairs could not be constructed by using Kambe method for isotropic spin Hamiltonian and a detailed analysis is discussed by Hendrickson and co-workers [48, 49] for [Mn6O2(O2CPh)10(Py)2(MeCN)2] 2MeCN and [Mn9O4(O2CPh)8(sal)4(salH)2(Py)4] clusters. For a linear chain polymer like [Cu(dien)(OAc)]n(ClO4)n] [50] magnetic properties could be explained by Heisenberg linear-chain model Hamiltonian: H ex ¼ 2J
N X
Si Siþ1
ð32Þ
i¼1
where J is the interchain-exchange coupling constant and the summation is over all members of the chain based on Baker et al. model [51], the equation for a S ¼ ½ ferromagnetic chain is:
1 þ a1 K þ a2 K 2 þ a3 K 3 þ a4 K 4 þ a5 K 5 χc ¼ 1 þ b1 K þ b2 K 2 þ b3 K 3 þ b4 K 4
2=3 ð33Þ
where K ¼ J/2kT, and ai and bi are expansion coefficients. Taking into account the interchain exchange by addition of a mean field correlation term, the susceptibility can then be calculated from the equation: χ¼
χc 1 2zJ 0 χ c =Ng 2 β2
ð34Þ
J0 is the interchain-exchange coupling energy and z is the number of nearest neighbours. For most of the trivalent rare earth ions the 2S+1LJ free-ion ground state is well separated in energy from the excited state such that only this ground state is thermally populated at room temperature and below [52]. In the free-ion approximation the molar magnetic susceptibility for a mononuclear species is then given by χ ðJ Þ ¼
Ng 2J β2 J ðJ þ 1Þ 2Nβ2 ðgJ 1ÞðgJ 2Þ þ 3λ 3kT
ð35Þ
where T is the temperature and gj is the Zeeman factor gJ ¼ 3=2 þ ½SðS þ 1Þ LðL þ 1Þ=2J ðJ þ 1Þ L being the orbital quantum number.
ð36Þ
References
13
References 1. R.T. Pardasani, P. Pardasani, in Magnetic Properties of Paramagnetic Compounds, LandoltBörnstein New Series, ed. by R. R. Gupta, A. Gupta, vol. II/31A, (Springer, Berlin/ Heidelberg/New York, 2012) 2. (a) H. Nunez, E. Escriva, J. Server-Carrio, A. Sancho, J. Garcia-Lozano, L. Soto, Inorg. Chim. Acta 324, 117 (2001); (b) Y. Rodriguez-Martin, C. Ruiz-Perez, J. Sanchiz, F. Lloret, M. Julve, Inorg. Chim. Acta 318, 159 (2001); (c) L.-Y. Wang, Z.-L. Liu, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, Inorg. Chem. Commun. 6, 630 (2003); (d) R. Gonzalez, F. Romero, D. Luneau, D. Armentano, G. De Munno, C. Kremer, F. Lloret, M. Julve, J. Faus, Inorg. Chim. Acta 358, 3995 (2005) 3. M. Moragues-Canovas, M. Helliwell, L. Ricard, E. Riviere, W. Wernsdorfer, E. Brechin, T. Mallah, Eur. J. Inorg. Chem., 2219 (2004) 4. (a) C. Faulmann, E. Riviere, S. Dorbes, F. Senocq, E. Coronado, P. Cassoux, Eur. J. Inorg. Chem., 2880 (2003); (b) T. Akutagawa, K. Matsuura, S. Nishihara, S.-i. Noro, T. Nakamura, Eur. J. Inorg. Chem. 3271 (2005) 5. C. Faulmann, S. Dorbes, B.G. de Bonneval, G. Molnar, A. Bousseksou, C.J. Gomez-Garcia, E. Coronado, L. Valade, Eur. J. Inorg. Chem., 3261 (2005) 6. P. Rosa, A. Debay, L. Capes, G. Chastanet, A. Bousseksou, P. LeFloch, J.-F. Letard, Eur. J. Inorg. Chem., 3017 (2004) 7. A. Van der Bilt, K.O. Joung, R.L. Carlin, L. De Jongh, J. Phys. Rev. B 22, 1259 (1980) 8. D.F. Evans, G.V. Fazakerley, R.F. Philips, J. Chem. Soc. A, 1931 (1971) 9. M. Faraday, Exptl. Res. London 7, 27 (1855) 10. L.F. Bates, Modern Magnetism, 3rd edn. (Cambridge University Press, London, 1951) 11. J. Josephsen, E. Pedersen, Inorg. Chem. 16, 2534 (1977) 12. E. Pedersen, Acta Chem. Scand. 26, 333 (1972) 13. L.G. Gouy, Compt. Rend. 109, 935 (1889) 14. S.S. Bhatnagar, K.N. Mathur, Physical Principles and Applications of Magnetochemistry (Macmillan, London, 1935) 15. P.W. Selwood, Magnetochemistry, 2nd edn. (Interscience, New York, 1951) 16. R.S. Nyholm, Quart. Rev., 377 (1953) 17. L.N. Mulay, Magnetic Susceptibility (Interscience, New York, 1966) 18. A.R. Wills, P.G. Edwards, J. Chem. Soc. Dalton Trans. 1253 (1989) 19. L.-Y. Chung, E.C. Constable, M.S. Khan, J. Lewis, Inorg. Chim. Acta 185, 93 (1991) 20. D.F. Evans, J. Chem. Soc., 2003 (1959) 21. J.C. Bernier, P. Poix, Actual. Chim. 2, 7 (1978) 22. J.S. Philo, W.M. Fairbank, Rev. Sci. Instrum. 48, 1529 (1977) 23. F.E. Mabbs, D.J. Marchin, Magnetism and Transition Metal Complexes (Chapman and Hall, London, 1975) 24. M. Suzuki, T. Sugisawa, A. Uehara, Bull. Chem. Soc. Jpn. 63, 1115 (1990) 25. D.B. Brown, V.H. Crawford, J.W. Hall, W.E. Hatfield, J. Phys. Chem. 81, 1303 (1977) 26. J.S. Haynes, K.W. Oliver, S.J. Rettig, R.C. Thompson, J. Trotter, Can. J. Chem. 62, 891 (1984) 27. E. König, in Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Landolt-Börnstein New Series, ed. by K. H. Hellwege, A. M. Hellwege, vol. II/2, (Springer, Berlin/Heidelberg, 1966), pp. 1–20 28. D.C. Mattis, The Theory of Magnetism, vol I (Springer, New York, 1981) 29. R.L. Carlin, Magnetochemistry (Springer, Berlin, 1986) 30. D. Nelson, L.W. ter Haar, Inorg. Chem. 32, 182 (1993) 31. A. Caneschi, D. Gatteschi, R. Sessoli, Acc. Chem. Res. 22, 392 (1989) 32. E.A. Boudreaux, L.N. Muley, Theory and Applications of Molecular Paramagnetism (WileyInterscience, New York, 1976) 33. J.S. Miller, A.J. Epstein, W.M. Reiff, Acc. Chem. Res. 21, 114 (1988) 34. F.J. Feher, J.F. Walzer, Inorg. Chem. 29, 1604 (1990)
14
Introduction
35. L. Daizheng, Z.J. Zhong, H. Okawa, S. Kida, Inorg. Chim. Acta 118, 21 (1986) 36. E. Spodine, A.M. Atria, V. Calvo, J. Manzur, M.T. Garland, O. Pena, M. Sergent, J. Chem. Soc. Dalton Trans. 2707 (1991) 37. W.V. Cicha, J.S. Haynes, K.W. Oliver, S.J. Rettig, R.C. Thompson, J. Trotter, Can. J. Chem. 63, 1055 (1985) 38. O. Kahn, Y. Pei, M. Verdagaur, J.-P. Renard, J. Sletten, J. Am. Chem. Soc. 110, 782 (1988) 39. Y. Pei, Y. Journaux, O. Kahn, A. Dei, D. Gatteschi, J. Chem. Soc. Chem. Commun., 1300 (1986) 40. Z.J. Zhong, H. Okawa, N. Matsumoto, H. Sakiyama, S. Kida, J. Chem. Soc. Dalton Trans., 497 (1991) 41. Y. Nakao, H. Nakamura, W. Mori, T. Sakurai, S. Suzuki, A. Nakahara, Bull. Chem. Soc. Jpn. 59, 2755 (1986) 42. M.H. Dickman, L.C. Porter, R.J. Doedens, Inorg. Chem. 25, 2595 (1986) 43. C. Fukuhara, K. Tsuneyoshi, N. Matsumoto, S. Kida, M. Mikuriya, M. Mori, J. Chem. Soc. Dalton Trans., 3473 (1990) 44. A.T. Baker, H.A. Goodwin, Aust. J. Chem. 38, 851 (1985) 45. M. Handa, A. Handa, Z.J. Zhong, H. Okawa, S. Kida, Inorg. Chim. Acta 101, 39 (1985) 46. K. Kambe, J. Phys. Soc. Jpn. 5, 48 (1950) 47. P.K. Bharadwaj, E. John, C.-L. Xie, D. Zhang, D.N. Hendrickson, J.A. Potenza, H.J. Schugar, Inorg. Chem. 25, 4541 (1986) 48. A.R. Schake, J.B. Vincent, Q. Li, P.D.W. Boyd, K. Folting, J.C. Huffman, D.N. Hendrickson, G. Christou, Inorg. Chem. 28, 1915 (1989) 49. C. Christmas, J.B. Vincent, H.-R. Chang, J.C. Huffman, G. Christou, D.N. Hendrickson, J. Am. Chem. Soc. 110, 823 (1988) 50. D.K. Towle, S.K. Hoffmann, W.E. Hartfield, P. Singh, P. Chaudhuri, Inorg. Chem. 27, 394 (1988) 51. G.A. Baker, G.S. Rushbrooke, H.E. Gilbert, Phys. Rev. 135, A1272 (1964) 52. M. Andruh, E. Bakalbassis, O. Kahn, J.C. Trombe, P. Porcher, Inorg. Chem. 32, 1616 (1993)
Part I Ni
Magnetic properties of nickel(II) tellurite complex
Substance Tris(2,20 -bipyridine)nickel(II) tellurite hexahydrate; [Ni(bipy)3]TeO3.6H2O
Gross Formula C30H36N6NiO9Te
Properties Molar magnetic moment
Structure [Ni(bipy)3]TeO3.6H2O;
bipy ¼ 2,20 -bipyridine N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_2
17
18
Magnetic properties of nickel(II) tellurite complex
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 2.84
ΘP [K] –
Method Gouy
Remarks Octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference C. Gupta, R.K. Gautam, Indian J. Chem. 41A, 763 (2002)
Magnetic properties of nickel(II) complex with chelating resin containing tridentate Schiff-base
Substance Nickel(II) complex with chelating resin containing tridentate Schiff-base; [Ni(L)].3dmf
Gross Formula C27H36N4NiO7
Properties Gram magnetic susceptibility, molar magnetic susceptibility and molar magnetic moment
Structure [Ni(L)].3dmf;
LH2 ¼ polystyrene-anchored Schiff-base; C6H5 H C C O n
dmf ¼ dimethylformamide H
H3C N CH 3 O
O OH
H
HO CH2 N CH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_3
19
20
Magnetic properties of nickel(II) complex with chelating resin containing. . .
Data T [K] RT
χg [106 emu/g] –943
χM [10–6 emu/mol] 3895
pm or μeff [μB] 3.05
ΘP [K] –
Method Gouy
Remarks Octahedral structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) presence of polymer backbone prevents Ni-Ni interaction in polystyreneanchored compound and this leads to a magnetically dilute environment around metal ions
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference A. Syamal, D. Kumar, A.K. Singh, P.K. Gupta, Jaipal, I.K. Sharma, Indian J. Chem. 41A, 1385 (2002)
Magnetic properties of potassium oxo nickelate complex
Substance Potassium di(oxo)nickelate(II); K2[NiO2]
Gross Formula K2NiO2
Properties Molar magnetic moment and Weiss constant
Structure K2[NiO2]
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_4
21
22
Magnetic properties of potassium oxo nickelate complex
Data χM pm or μeff T χg [K] [106 emu/g] [10–6 emu/mol] [μB] 300 – – 3.3
ΘP [K] Method Remarks –26 SQUID Linear complex, high-spin Ni2+ (d8)with 3πg ground state
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
250 3 200
150 2
100
50
0 0
50
100
150
200
250
Effective magnetic moment meff [mB]
Inverse molar susceptibility xM–1 [mol cm–3]
(i) plot of χ M–1 versus T and μeff versus T is shown in Fig. 1 (ii) Curie-Weiss law is obeyed with : θ ¼ –26 K (iii) antiferromagnetic interactions indicated
1 300
Temperature T [K]
Fig. 1 K2[NiO2]. Temperature dependence of χ M–1 and μeff. The dotted lines represent the calculated data using the parameter set described in the text
Reference
23
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A. Moller, Z. Anorg. Allg. Chem. 628, 77 (2002)
Magnetic properties of nickel(II) fluoride complex with imidazole
Substance Hexa(imidazole)nickel(II) fluoride pentahydrate; [Ni(im)6]F2.5H2O
Gross Formula C18H34F2N12NiO5
Properties Molar magnetic moment
Structure imH ¼ imidazole N
[Ni(im)6]F2.4H2O; NH
H N
N N
N Ni HN
F2. 5H2O
N
N N
N H
NH
NH
HN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_5
24
Reference
25
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.0
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference M. Arif, S. Nazir, M.S. Iqbal, S. Anjum, Inorg. Chim. Acta 362, 1624 (2009)
Remarks Octahedral
Magnetic properties of thiodiacetato complex of nickel(II)
Substance Triaqua(thiodiacetato)nickel(II) monohydrate; [Ni(tda)(H2O)3].H2O
Gross Formula C4H12NiO8S
Properties Molar magnetic moment
Structure [Ni(tda)(H2O)3].H2O;
H2tda ¼ thiodiacetic acid HOOC C H2
S
C COOH H2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_6
26
Reference
27
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol1] [μB] RT – – 3.28 – – Nickel exhibits an octahedral geometry T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference C. Alarcon-Payer, T. Pivetta, D. Choquesillo-Lazarte, J.M. Gonzalez-Perez, G. Crisponi, A. Castineiras, J. Niclos-Gutierrez, Inorg. Chem. Commun. 7, 1277 (2004)
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-alanine
Substance L-Alaninatotriaquacytidinenickel(II) chloride; [Ni(cyt)( L -ala)(H2O)3]Cl
Gross Formula C12H25ClN4NiO10
Properties Molar magnetic moment
Structure [Ni(cyt)(L-ala)(H2O)3]Cl;
cyt ¼ cytidine;
L-alaH ¼ L-alanine O
NH2
H3C
N HO
N
O
OH NH2
O OH OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_7
28
Reference
29
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.27
ΘP [K] Method Remarks – Faraday μeff value indicated the presence of two unpaired electrons
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) high-spin, d8 system with octahedral geometry
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P.R. Reddy, A.M. Reddy, Indian J. Chem. 41A, 2083 (2002)
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-phenylalanine
Substance Diaquachlorocytidine-L-phenylalaninatonickel(II); [Ni(cyt)(L-pha)(H2O)2Cl]
Gross Formula C18H27ClN4NiO9
Properties Molar magnetic moment
Structure [Ni(cyt)(L-pha)(H2O)2Cl];
cyt ¼ cytidine;
L-phaH ¼ L-phenylalanine O
NH2 N HO
N
OH O
NH2
O OH OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_8
30
Reference
31
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.07
ΘP [K] Method Remarks – Faraday μeff value indicated the presence of two unpaired electrons
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) high-spin, d8 system with octahedral geometry
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P.R. Reddy, A.M. Reddy, Indian J. Chem. 41A, 2083 (2002)
Magnetic properties of mixed ligand complex of nickel(II) with cytidine and L-trytophan
Substance Diaquachlorocytidine-L-trytophanatonickel(II); [Ni(cyt)(L-trypt)(H2O)2Cl]
Gross Formula C20H28ClN5NiO14
Properties Molar magnetic moment
Structure [Ni(cyt)(L-trypt)(H2O)2Cl];
cyt ¼ cytidine;
L-tryptH ¼ L-tryptophan NH2
O
N HO
N
OH NH2
O
O
N H
OH OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_9
32
Reference
33
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.35
ΘP [K] Method Remarks – Faraday μeff value indicated the presence of two unpaired electrons
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) high-spin, d8 system with octahedral geometry
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. R. Reddy, A.M. Reddy, Indian J. Chem. 41A, 2083 (2002)
Magnetic properties of nickel(II) complex with polystyrene supported tridentate Schiff-base
Substance Nickel(II) complex with polystyrene supported tridentate Schiff-base; [Ni(L)].3dmf
Gross Formula C31H37N5NiO8
Properties Molar magnetic susceptibility and molar magnetic moment
Structure [Ni(L)].3dmf;
H2L ¼ polystyrene supported Schiff-base obtained from 3-formylsalicylic acid and 2-furoic acid hydrazide; C6H5 O
C C O H n OH O C H
O
N NH
dmf ¼ dimethylformamide O H
N
CH3 CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_10
34
Reference
35
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 293 – 4328 3.15 – Gouy Magnetically dilute, octahedral structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference D. Kumar, P.K. Gupta, A. Syamal, Indian J. Chem. 41A, 2494 (2002)
Magnetic properties of nickel(II) chloro complex with N-nicotinoyl-N0 -thiobenzoyl hydrazine
Substance Dichloro-bis(N-nicotinoyl-N0 -thiobenzoyl hydrazine)nickel(II); [Ni(ntb)2Cl2]
Gross Formula C26H22Cl2N6NiO2S2
Properties Molar magnetic moment
Structure ntb ¼ N-nicotinoyl-N0 -thiobenzoyl-hydrazine
[Ni(ntb)2Cl2]; Cl
H N
Ph S
O
Ni
O
Cl
N H N
N
S
N H
H N
Ph
N H
H N O
S
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_11
36
Reference
37
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.90
ΘP [K] –
Method –
Remarks Tetrahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference N.K. Singh, S.B. Singh, D.K. Singh, V.B. Chauhan, Indian J. Chem. 42A, 2767 (2003)
Magnetic properties of nickel(II) complex with N-nicotinoyl-N0 -thiobenzoyl hydrazine
Substance Diaqua-(N-nicotinoyl-N0 -thiobenzoyl hydrazino)nickel(II); [Ni(ntb-2H)(H2O)2]
Gross Formula C13H13N3NiO3S
Properties Molar magnetic moment
Structure [Ni(ntb-2H)(H2O)2]; OH2 HN
N
C
OH2 C
N
N
S
O
Ni O
ntb ¼ N-nicotinoyl-N0 -thiobenzoyl-hydrazine
N
N OH2 C
O
SH
Ni O
N H
Ph
H N
Ph S
N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_12
38
Reference
39
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 2.83
ΘP [K] –
Method –
Remarks Octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference N.K. Singh, S.B. Singh, D.K. Singh, V.B. Chauhan, Indian J. Chem. 42A, 2767 (2003)
Magnetic properties of nickel(II) complex with 8-(2-azothiazolyl)-7-hydroxy-4methylcoumarin
Substance Diaqua-bis[8-(2-azothiazolyl)-7-oxo-4-methylcoumarin]nickel(II) monohydrate; [Ni(L)2(H2O)2].H2O
Gross Formula C26H22N6NiO9S2
Properties Molar magnetic moment
Structure HL ¼ 8-(2-azothiazolyl)-7-hydroxy4-methylcoumarin
[Ni(L)2(H2O)2].H2O; CH3
N H2O
O
O
O N
Ni
N N
S
OH2
S
N O
N
N
S O
O
N HO
N O
O
CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_13
40
Reference
41
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 3.10
ΘP [K] Method Remarks – Gouy Octahedral environment around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference P.P. Hankare, S.R. Naravane, V.M. Bhuse, S.D. Delekar, A.H. Jagtap, Indian J. Chem. 43A, 1464 (2004)
Magnetic properties of nickel(II) complex with 8-(2-azobenzothiazolyl)-7-hydroxy4-methylcoumarin
Substance Diaqua-bis[8-(2-azobenzothiazolyl)-7-oxo-4-methylcoumarin]nickel(II) monohydrate; [Ni(L)2(H2O)2].H2O
Gross Formula C34H26N6NiO9S2
Properties Molar magnetic moment
Structure [Ni(L)2(H2O)2].H2O;
HL ¼ 8-(2-azobenzothiazolyl)-7-hydroxy4-methylcoumarin N
S N HO
N O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_14
42
Reference
43
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 3.22
ΘP [K] Method Remarks – Gouy Octahedral environment around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference P.P. Hankare, S.R. Naravane, V.M. Bhuse, S.D. Delekar, A.H. Jagtap, Indian J. Chem. 43A, 1464 (2004)
Magnetic properties of mixed ligand nickel(II) with 2-phenyl-3-(benzylimino)1, 2-dihydroquinazolin-4(3H)-one, phenanthroline and thiocyanate
Substance 1,10-Phenanthroline[2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4(3H)-one] dithiocyanatonickel(II); [Ni(L)(phen)(NCS)2]
Gross Formula C35H25N7NiOS2
Properties Molar magnetic moment
Structure [Ni(L)(phen)(NCS)2]; O HN
N
N
NCS Ni NCS
N
L ¼ 2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4 (3H)-one; O
N
N N H
N C6H5
phen ¼ 1,10-phenanthroline N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_15
44
Reference
45
Data T [K] RT
χg [106 emu/g] –
χM [cm3 K mol1] –
pm or μeff [μB] 2.98
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference V.A. Sawant, B.A. Yamgar, S.S. Chavan, Trans. Met. Chem. 35, 357 (2010)
Remarks Octahedral
Magnetic properties of nickel(II) chloro complex with cis-3,7-dimethyl-2, 6-octadienthiosemicarbazone
Substance Dichloro-bis(cis-3,7-dimethyl-2,6-octadienthiosemicarbazone)nickel(II); [NiCl2(cdotsc)2]
Gross Formula C22H38Cl2N6NiS2
Properties Molar magnetic moment
Structure cdotsc ¼ cis-3,7-dimethyl-2, 6-octadienthiosemicarbazone
[NiCl2(cdotsc)2]; H3 C
NH2 C S CH3 NH H C N
Cl Ni
NH2 S C H3C HN H N C
Cl CH3
CH3
H3 C
S
CH3 H
C
N
C
NH2
NH
CH3
CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_16
46
Reference
47
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.2
ΘP [K] –
Method Gouy
Remarks Octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference R. Sharma, A.K. Bansal, M. Nagar, Indian J. Chem. 44A, 2255 (2005)
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate
Substance trans-Bis(3-acetylpyridine)-bis(2, 4-di-tert-butylphenyl-4-methoxyphenyldithiophosphonato-S,S0 )nickel(II); [Ni(L)2(L1)2]
Gross Formula C56H70N2NiO6P2S4
Properties Molar magnetic moment
Structure L ¼ 2,4-di-tert-butylphenyl-p-methoxyphenyldithiophosphonate;
[Ni(L)2(L1)2]; O Me
MeO S
P
tBu
S
N Ni
tBu
S
tBu
O
u
S P
S OMe
Me
tB
u
P
N
tBu
tB
S
MeO
L1 ¼ 3-acetylpyridine O Me N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_17
48
Reference
49
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.14
ΘP [K] –
Method Johnson Mathey
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Johnson Matthey
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Johnson Matthey balance
Reference M. Karakus, P. Lonnecke, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 630, 1249 (2004)
Remarks Octahedral
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate
Substance trans-Bis(3-acetylpyridine)-bis(O-isopropyl-4-methoxyphenyldithiophosphonatoS,S0 )nickel(II); [Ni(L)2(L1)2]
Gross Formula C34H42N2NiO6P2S4
Properties Molar magnetic moment
Structure L ¼ O-isopropyl-p-methoxyphenyldithiophosphonate;
[Ni(L)2(L1)2]; O
iPrO
S
P
S
N Ni N
S S
P
P
OiPr
S
MeO
L1 ¼ 3-acetylpyridine O
OMe
Me
S
PrO Me
OMe
Me
O
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_18
50
Reference
51
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.04
ΘP [K] –
Method Johnson Mathey
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Johnson Matthey
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Johnson Matthey balance
Reference M. Karakus, P. Lonnecke, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 630, 1249 (2004)
Remarks Octahedral
Magnetic properties of nickel(II) complex with p-methoxyphenyldithio-phosphonate
Substance trans-Bis(3-acetylpyridine)-bis(O-ethyl-4-methoxyphenyldithiophosphonato-S,S0 ) nickel(II); [Ni(L)2(L1)2]
Gross Formula C32H38N2NiO6P2S4
Properties Molar magnetic moment
Structure L ¼ O-ethyl-p-methoxyphenyldithiophosphonate;
[Ni(L)2(L1)2]; O MeO S
P
S
EtO
N Ni N
Me
S
S
EtO P
Me
P
OEt
S
MeO
S
L ¼ 3-acetylpyridine 1
OMe
O
Me
O
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_19
52
Reference
53
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.15
ΘP [K] –
Method Johnson Mathey
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Johnson Matthey
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Johnson Matthey balance
Reference M. Karakus, P. Lonnecke, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 630, 1249 (2004)
Remarks Octahedral
Magnetic properties of nickel(II) bromide adduct with substituted acenaphthene
Substance Nickel(II) bromide adduct with bis(N, N’-dimesitylimino)acenaphthene; NiBr2.L
Gross Formula C30H28Br2N2Ni
Properties Molar magnetic susceptibility and molar magnetic moment
Structure NiBr2.L;
L ¼ bis(N,N0 -dimesitylimino)acenaphthene
N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_20
54
Reference
55
Data T [K] 291
χg [106 emu/g] –
χM [106 emu/mol] 3730
pm or μeff [μB] 2.96
ΘP [K] –
Method Gouy
Remarks Tetrahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant) F: Field strength
Additional Remark (i) presence of two unpaired electron / molecule indicated
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Fernandes, A. Soares, F. Lemos, M.A.N.D.A. Lemos, J.F. Mano, R.J. Maldanis, M.D. Rausch, J.C.W. Chien, M.M. Marques, J. Organomet. Chem. 690, 895 (2005)
Magnetic properties of nickel(II) acetato complex with 5-(phenylazo)2-thiohydantoin
Substance Diacetatodiaqua-[5-(phenylazo)-2-thiohydantoin]nickel(II) dihydrate; [Ni(L)(OAc)2(H2O)2].2H2O
Gross Formula C13H22N4NiO9S
Properties Molar magnetic moment
Structure [Ni(L)(OAc)2(H2O)2].2H2O;
L ¼ 5-(phenylazo)-2-thiohydantoin O N
S
H N
N
N H
O
N OAc
OH2
Ni OAc
.2H2O
N H
N
N H S
OH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_21
56
Reference
57
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.05
ΘP [K] –
Method Gouy
Remarks Octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta. 414, 105 (2004)
Magnetic properties of nickel(II) acetato complex with 5-(2-hydroxy-phenylazo)2-thiohydantoin
Substance Nickel(II) acetato complex with 5-(2-hydroxy-phenylazo)-2-thiohydantoin; [Ni(L)(OAc)2(H2O)].2H2O
Gross Formula C11H17N4NiO7S
Properties Molar magnetic moment
Structure [Ni(L)(OAc)2(H2O)].2H2O; O AcO N
OAc Ni N
O
OH2
L ¼ 5-(2-hydroxyphenylazo)-2-thiohydantoin OH
NH N H
S
.2H2O
N
O
N
N H H
N
S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_22
58
Reference
59
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 2.84
ΘP [K] –
Method Remarks Gouy Square-pyramidal geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta. 414, 105 (2004)
Magnetic properties of nickel(II) complex with antibiotic drug, dicluxacillin
Substance Triaquachloro(dicluxacillinato)nickel(II) dihemihydrate; [Ni(dc)Cl(H2O)3].2.5H2O
Gross Formula C19H27Cl3N3NiO10.5S
Properties Molar magnetic moment
Structure [Ni(dc)Cl(H2O)3].2.5H2O;
Hdc ¼ dicluxacillin Cl
N
O
CH3 NH H S
Cl O O
CH3
N HO
CH3 O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_23
60
Reference
61
Data T [K] –
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.6
ΘP [K] –
Method Faraday
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference G.C. Mohamed, Spectrochim. Acta. 57A, 1643 (2001)
Remarks Octahedral
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 2,20 -bipyridine
Substance Aqua-(2,20 -bipyridine)thiodiglycolatonickel(II) tetrahydrate; [Ni(tdga)(bipy)(H2O)].4H2O
Gross Formula C14H22N2NiO9S
Properties Molar magnetic moment
Structure [Ni(tdga)(bipy)(H2O)].4H2O;
H2tdga ¼ thiodiglycolic acid; HO
OH
S O
bipy ¼ 2,20 -bipyridine
O
N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_24
62
Reference
63
Data χM pm or μeff T χg [K] [106 emu/g] [103 emu/mol] [μB] RT – – 3.20
ΘP [K] Method Remarks – Faraday Coordination around Ni(II) is distorted octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of mononuclear nickel(II) complex with dicyanamide and triethylenetetramine
Substance Bis(dicyanamido)triethylenetetraminenickel(II); [Ni(teta){N(CN)2}2]
Gross Formula C10H18N10Ni
Properties Molar magnetic moment
Structure [Ni(teta){N(CN)2}2];
teta ¼ triethylenetetramine NH HN NH2
H 2N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_25
64
Additional Remarks
65
Data χM T χg [106 emu/g] [106 emu/mol] [K] 80–10 – –
pm or μeff [μB] 2.76
ΘP [K] –
Method SQUID
Remarks Octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of μeff is shown in Fig. 1 (ii) Curie-Weiss law is obeyed (80-10K) (iii) μeff decreases with lowering temperature as a consequence of zero-field splitting (D): D/hc ¼ 4 cm1 4
3
Effective magnetic moment meff [mB]
Effective magnetic moment meff [mB]
Fig. 1 [Ni(teta){N (CN)2}2]. Temperature dependence of μeff; inset shows the low-temperature window. The open circles correspond to the experimental data whereas full points and solid lines correspond to the fitted data
2
1
3.5
3.0
2.5 2
4 6 8 10 12 14 Temperature T [K]
0 0
10
20
50 40 30 Temperature T [K]
60
70
80
66
Magnetic properties of mononuclear nickel(II) complex with dicyanamide and. . .
Symbols and Abbreviations Short form T χg χM pm μeff D ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Boca, M. Boca, M. Gembicky, L. Jager, C. Wagner, H. Fuess, Polyhedron 23, 2337 (2004)
Magnetic properties of mononuclear nickel(II) complex derived from a hexadentate Schiff-base ligand
Substance Mononuclear nickel(II) complex derived from a hexadentate Schiff-base ligand; [Ni(L)](NO3)2
Gross Formula C32H36N8NiO6
Properties Product of molar magnetic susceptibility with temperature
Structure [Ni(L)](NO3)2;
L ¼ Schiff-base ligand prepared from the reaction of 2-benzoylpyridine with N,N'-bis(3-aminopropyl) ethylenediamine N N
H N
N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_26
67
68
Magnetic properties of mononuclear nickel(II) complex derived from a. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] 296 – 1.04 –
ΘP [K] Method Remarks – SQUID Distorted octahedral environment around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) χ MT value is close to the spin-only value expected for Ni(II) compound comprising a 3A2 electronic state with g¼2
Symbols and Abbreviations Short form T χg χM pm μeff g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromi, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358, 3362 (2005)
Magnetic properties of 3D helical dicyanamide nickel(II) complex containing polyamine ligand
Substance Bis-μ-(dicyanamido)tetramethylethylenediaminenickel(II); [Ni(tmeda)(dca)2]
Gross Formula C10H16N8Ni
Properties Weiss constant
Structure [Ni(tmeda)(dca)2];
dca ¼ dicyanamide anion; N C
N
C N
tmeda ¼ tetramethylethylenediamine Me2N
NMe2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_27
69
Magnetic properties of 3D helical dicyanamide nickel(II) complex. . .
70
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-2 – – –
ΘP [K] Method Remarks +3.8 – Helical structure, distorted octahedral geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
300
2.5
250
2.0
200 1.5 150 1.0 100 0.5
50 0 0
50
100 150 200 250 Temperature T [K]
300
0.0 350
Product of molar susceptibility with temperature xMT [cm–3 K mol–1]
xM–1 [mol cm–3]
Inverse molar susceptibility
(i) plot of χ MT and χ M1 versus T is shown in Fig. 1 (ii) χ M obeys Curie-Weiss law with: C ¼ 1.12 cm3 K mol1 θ ¼ +3.8 K (iii) C value is consistent with the spin only value of Ni(II) ion (iv) small +ve value of θ suggests a possible weak ferromagnetic interaction between Ni(II) ions
Fig. 1 [Ni(tmeda)(dca)2]. Temperature dependence of χ MT and χ M1. The solid line represents the calculated curve.
Reference
71
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant)
Reference J. Luo, X.-G. Zhou, S. Gao, L.-H. Weng, Z.-H. Shao, C.-M. Zhang, Y.-R. Li, J. Zhang, R.-F. Cai, Inorg. Chem. Commun. 7, 669 (2004)
Magnetic properties of nickel(II) complex with N-monofunctionalized tetraazamacrocyclic ligand
Substance [N{2-oxo-3-formyl-5-bromobenzyl}-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecanenickel(II) perchlorate monohydrate; [NiL](ClO4).H2O
Gross Formula C20H42ClN4NiO7
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_28
72
Reference
73
Structure HL ¼ [N{2-hydroxy-3-formyl-5-bromobenzyl}5,5,7,12,12,14-hexamethyl-1,4,8, 11-tetracyclotetradecane
[NiL](ClO4).H2O; Br
N
NH
O
Br
O
[ClO 4].H2O
N NH
Ni HN
OH O
NH
H N NH
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.35
ΘP [K] Method Remarks – – High-spin, d8 distorted trigonalbipyramidal geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference N. Sengottuvelan, D. Saravanakumar, M. Kandaswamy, Inorg. Chem. Commun. 8, 297 (2005)
Magnetic properties of nickel(II) coordination polymer-containing dicyanamide and 4,40 -bipyridine
Substance 4,40 -Bipyridine-bis(dicyananmido)nickel(II); [Ni(dca)2(bipy)]
Gross Formula C14H8N8Ni
Properties Molar magnetic moment and Weiss constant
Structure [Ni(dca)2(bipy)];
bipy ¼ 4,40 bipyridine; N
dca ¼ dicyamide anion [N(CN)2]
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_29
74
Reference
75
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 295 – – 3.07 2.0 SQUID dca ligand bridge the octahedral metal to form 3D-network T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) Curie-Weiss behavior (300-2 K), with: C ¼ 1.17 cm3 K mol1
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P. Jensen, S.R. Batten, B. Moubaraki, K.S. Murray, J. Chem. Soc. Dalton Trans. 3712 (2002)
Magnetic properties of mononuclear nickel(II) complex with 3,5-pyrazoledicarboxylic acid
Substance Tetraaqua-(hydrogen-3,5-pyrazoledicarboxylato)nickel(II); [Ni(Hdcp)(H2O)4]
Gross Formula C10H20N4Ni2O16
Properties Weiss constant and exchange energy
Structure [Ni(Hdcp)(H2O)4];
H3dcp ¼ 3,5-pyrazoledicarboxylic acid HOOC N N H
COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_30
76
Reference
77
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-1.8 – – –
ΘP [K] Method Remarks 0.8 SQUID Distorted octahedral environment around Ni(II) ion
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss behavior (300-1.8 K) with: C ¼ 1.27 cm3 K mol1 g ¼ 2.25 θ ¼ 0.8 K (ii) susceptibility modeled with zero-field splitting term (D) and Hamiltonian: H ¼ DS 2 Z þ gμB HS (iii) a good-fit obtained with: D/kB ¼ + 13 K (iv) large value of D suggests weak antiferromagnetic interactions between monomers
Symbols and Abbreviations Short form T χg χM pm μeff g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P. King, R. Clerac, C.E. Anson, A.K. Powell, J. Chem. Soc. Dalton Trans. 852 (2004)
Magnetic properties of mononuclear nickel(II) anionic complex with 3, 5-pyrazoledicarboxylic acid
Substance Nickel(II) anionic complex with 3,5-pyrazoledicarboxylic acid; Na2(μ-H2O)2(H2O)8[Ni((Hdcp)2(H2O)2]
Gross Formula C10H28N4Na2NiO2
Properties Weiss constant
Structure Na2(μ-H2O)2(H2O)8[Ni((Hdcp)2(H2O)2];
H3dcp ¼ 3,5-pyrazoledicarboxylic acid HOOC COOH N N H
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_31
78
Reference
79
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-1.8 – – –
ΘP [K] Method Remarks 1.29 SQUID Distorted octahedral environment around Ni(II) ion
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss behavior (300-1.8 K) with: C ¼ 1.27 cm3 K mol1 g ¼ 2.25 θ ¼ 1.29 K (ii) susceptibility modeled with zero-field splitting term (D) and Hamiltonian: H ¼ DS 2 Z þ gμB HS (iii) a good-fit obtained with: D=kB ¼ þ13 K (iv) large value of D suggest weak antiferromagnetic interactions between monomers
Symbols and Abbreviations Short form T χg χM pm μeff g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P. King, R. Clerac, C.E. Anson, A.K. Powell, J. Chem. Soc. Dalton Trans. 852 (2004)
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl-3(benzylimino)1,2-dihydroquinazolin-4(3H)one, ethylenediamine and azide
Substance Bis(azido)ethylenediamine[2-phenyl-3-(benzylamino)1,2-dihydroquinazolin-4 (3H)-one]nickel(II); [Ni(L)(en)(N3)2]
Gross Formula C23H25N11NiO
Properties Molar magnetic moment
Structure [Ni(L)(en)(N3)2]; O HN
N
N
N3 Ni N3
H2 N N H2
L ¼ 2-phenyl-3-(benzylimino)1, 2-dihydroquinazolin-4(3H)one;
en ¼ ethylenediamine H 2N
NH2
O N N H
N C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_32
80
Reference
81
Data T [K] RT
χg [106 emu/g] –
χM [106 cmu/mol1] –
pm or μeff [μB] 2.88
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference V.A. Sawant, B.A. Yamgar, S.S. Chavan, Transition Met. Chem. 35, 357 (2010)
Remarks Octahedral
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl-3(benzylimino)1,2-dihydroquinazolin-4(3H)one, phenanthroline and azide
Substance Bis(azido)1,10-phenanthroline[2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4 (3H)-one]nickel(II); [Ni(L)(phen)(N3)2]
Gross Formula C33H25N11NiO
Properties Molar magnetic moment
Structure [Ni(L)(phen)(N3)2]; O HN
N
N3 Ni
N
N3
N N
L ¼ 2-phenyl-3-(benzylimino) phen ¼ 1,10-phenanthroline 1,2-dihydroquinazolin-4 (3H)-one; N
O N N H
N
N C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_33
82
Reference
83
Data T [K] RT
χg [106 emu/g] –
χM [106 cmu/mol1] –
pm or μeff [μB] 2.87
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference V.A. Sawant, B.A. Yamgar, S.S. Chavan, Transition Met. Chem. 35, 357 (2010)
Remarks Octahedral
Magnetic properties of mixed ligand nickel(II) complex with 2-phenyl3-(benzylimino)1,2-dihydroquinazolin4(3H)-one, ethylenediamine and thiocyanate
Substance Ethylenediamine[2-phenyl-3-(benzylimino)1,2-dihydroquinazolin-4(3H)-one] dithiocyanatonickel(II); [Ni(L)(en)(NCS)2]
Gross Formula C25H25N7NiOS2
Properties Molar magnetic moment
Structure [Ni(L)(en)(NCS)2]; O HN
N
N
NCS Ni NCS
H2 N N H2
L ¼ 2-phenyl-3-(benzylimino)1, 2-dihydroquinazolin-4(3H)one;
en ¼ ethylenediamine H2N
NH2
O N N H
N C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_34
84
Reference
85
Data T [K] RT
χg [106 emu/g] –
χM [106 cmu/mol1] –
pm or μeff [μB] 2.92
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference V.A. Sawant, B.A. Yamgar, S.S. Chavan, Transition Met. Chem. 35, 357 (2010)
Remarks Octahedral
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and phenanthroline
Substance Aqua-(1,10-phenanthroline)thiodiglycolatonickel(II); [Ni(tdga)(phen)(H2O)]
Gross Formula C16H14N2NiO5S
Properties Molar magnetic moment
Structure [Ni(tdga)(phen)(H2O)];
H2tdga ¼ thiodiglycolic acid; HO
S O
phen ¼ phenanthroline
OH O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_35
N
N
86
Reference
87
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.28
ΘP [K] Method Remarks – Faraday Coordination around Ni(II) is distorted octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 1,8-diaminonaphthalene
Substance Aqua-(1,8-diaminonaphthalene)thiodiglycolatonickel(II); [Ni(tdga)( 1,8-dan)(H2O)]
Gross Formula C14H16N2NiO5S
Properties Molar magnetic moment
Structure [Ni(tdga)(1,8-dan)(H2O)];
H2tdga ¼ thiodiglycolic acid; HO
OH
S O
O
1,8-dan ¼ 1,8-diaminonaphthalene NH2 NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_36
88
Reference
89
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.16
ΘP [K] Method Remarks – Faraday Coordination around Ni(II) is distorted octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 5-nitro-1,10-phenanthroline
Substance Aqua-(5-nitro-1,10-phenanthroline)thiodiglycolatonickel(II); [Ni(tdga)(5-NO2-phen)(H2O)]
Gross Formula C16H13N3NiO7S
Properties Molar magnetic moment
Structure [Ni(tdga)(5-NO2-phen)(H2O)];
H2tdga ¼ thiodiglycolic acid; HO
OH
S O
O
5-NO2-phen ¼ 5-nitro-1,10-phenanthroline O2N
N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_37
90
Reference
91
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.23
ΘP [K] Method Remarks – Faraday Coordination around Ni(II) is distorted octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of mixed ligand nickel(II) complex with thiodiglycolic acid and 2-(aminomethyl)-pyridine
Substance Aqua-[2-(aminomethyl)-pyridine]thiodiglycolatonickel(II); [Ni(tdga)(ampy)(H2O)]
Gross Formula C10H14N2NiO5S
Properties Molar magnetic moment
Structure [Ni(tdga)(ampy)(H2O)]; H2tdga ¼ thiodiglycolic acid; HO
ampy ¼ 2-(aminomethyl)pyridine OH
S O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_38
N
CH2NH2
92
Reference
93
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.12
ΘP [K] Method Remarks – Faraday Coordination around Ni(II) is distorted octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Faraday method
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of nickel(II) complex with o-iminobenzoquinone and substituted amine ligands
Substance [Tris(2-aminethyl)amine]-o-iminobenzoquinonenickel(II) hexafluorophosphate; [Ni(tren)(L)](PF6)2
Gross Formula C26H43F12N5NiOP2
Properties Molar magnetic moment
Structure [Ni(tren)(L)](PF6)2;
tren ¼ tris(2-aminethyl) amine;
L ¼ 4,6-di-t-butyl-o-Nphenyliminobenzoquinone C(CH3)3 O
N NH2
NH2 NH2
(H3C)3C
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_39
94
Additional Remarks
95
Data T [K] 290
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.1
ΘP [K] –
Method SQUID
Remarks Octahedral, d8 Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence (290-2 K) of μeff is shown in Fig. 1 (ii) complex possesses an S¼1 ground state, other parameters being: D ¼ 3.0+2 cm1 (zero-field splitting energy) gibq ¼ 2.16
Fig. 1 [Ni(tren)(L)](PF6)2. Temperature dependence of μeff. Solid line represents bestfit by using parameters given in the text
96
Magnetic properties of nickel(II) complex with o-iminobenzoquinone. . .
Symbols and Abbreviations Short form T χg χM pm μeff D g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference K.S. Min, T. Weyhermuller, K. Weighardt, J. Chem, Soc. Dalton Trans., 1126 (2003)
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and p-Nmethylpyridinium α–nitronyl nitroxide cation
Substance Di( p-N-methylpyridinim-α-nitronylnitroxide)bis(1,2,5-thiadiazole-3,4-dithiolato) nickelate(II); ( p-mpynn2)[Ni(tdas)2]
Gross Formula C30H38N10NiO4S6
Properties Weiss constant
Structure ( p-mpynn2)[Ni(tdas)2];
p-mpynn ¼ p-N-methylpyridinium-α-nitronyl nitroxide O N
N CH3
N O
H2tadas ¼ 1,2,5-thiadiazole-3,4-dithiol S
N N
SH SH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_40
97
98
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–2 – – –
ΘP [K] Method Remarks 3.1 SQUID Cation forms dimer and the anion is sandwitched by a pair of dimers
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M decreases with decreasing temperature, indicating antiferromagnetic interactions within the radicals (ii) magnetic data analyzed by Curie-Weiss law, with: C ¼ 0.376 cm3 K mol1 θ ¼ 3.1 K
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference T. Okuno, K. Kuwamoto, W. Fujita, K. Awaga, W. Nakanishi, Polyhedron 22, 2311 (2003)
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and m-Nmethylpyridinium α–nitronyl nitroxide cation
Substance Di(m-N-methylpyridinium-α-nitronylnitroxide)bis(1,2,5-thiadiazole-3,4-dithiolato) nickelate(II); (m-mpynn2)[Ni(tdas)2]
Gross Formula C30H38N10NiO4S6
Properties Weiss constant and exchange energy
Structure (m-mpynn2)[Ni(tdas)2];
m-mpynn ¼ m-N-methylpyridinium-α-nitronyl nitroxide
O
N
N
O
N CH3
H2tdas ¼ 1,2,5-thiadiazole-3,4-dithiol S
N
SH
N
SH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_41
99
100
Magnetic properties of ion-pair complex of nickel(II) dithiolate anion and. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-2 – – –
ΘP [K] Method Remarks 6.4 SQUID Cation forms dimer and the anion is sandwitched by a pair of dimers
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M decreases with decreasing temperature, indicating antiferromagnetic interactions within the radicals (ii) magnetic data analyzed by modified singlet-triplet model; best fit parameters being: J/kB ¼ 3.3 K (intradimer interactions) C ¼ 0.736 cm3 K mol1 Θ ¼ 6.4 K
Symbols and Abbreviations Short form T χg χM pm μeff J C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference T. Okuno, K. Kuwamoto, W. Fujita, K. Awaga, W. Nakanishi, Polyhedron 22, 2311 (2003)
Magnetic properties of nickel(II) complex with pyridine-substituted nitronyl nitroxide radical
Substance Nickel(II) complex with pyridine-substituted nitronyl nitroxide radical; [Ni(L)(pda)(H2O)].MeOH.H2O
Gross Formula C20H29N4NiO9
Properties Molar magnetic moment and exchange energy
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_42
101
Magnetic properties of nickel(II) complex with pyridine-substituted. . .
102
Structure [Ni(L)(pda)(H2O)].MeOH.H2O; C(9)
C(8)
L ¼ 2-(20 -pyridyl)-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide
C(11) C(7) C(10)
O(4)
N
C(12)
O(1)
C(13) C(14)
N(2) O(3)
N(1)
C(15)
C(6)
C(16) O(2) C(17) C(5)
O N
N
O
N(4) Ni(1)
C(4)
C(18) C(19)
N(3) O(5)
C(3) C(1)
O(6)
H2pba ¼ 2, 6-pyridine dicarboxylic acid
O(7)
HO
C(2)
OH
N O
O
Data T [K] RT 30
χM χg [106 emu/g] [106 emu/mol] – – –
pm or μeff ΘP [μB] [K] 3.23 – 1.90-1.88
Method Remarks SQUID Octahedral Ni(II),1-D chain by H-bonding
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M and μeff is shown in Fig. 1 (ii) a plateau at 30 K indicates that only the double ground state is thermally populated at low temperature (iii) χ M data analyzed by appropriate equation: " 2 # 2 N β g1=2 þ 10g3=2 exp ð3J=KT Þ χM ¼ 4KT 2 þ exp ð2J=KT Þ where gs (S ¼ 1/2, 3/2) are related to local g factor by g1/2 ¼ (4gNi – gL)/3, and g3/2 ¼ (2gNi+gL)/3 (iv) least-squares fitting of the data yielded: J ¼ 54.3 cm1 gNi ¼ 2.16 gL ¼ 2.0
0.10
0
50
100
150
200
250
300 3.5
0.08 3.0 0.06 2.5
0.04 0.02
2.0
0.00 0
50
100
150
200
250
Effective magnetic moment meff [mB]
Fig. 1 [Ni(L)(pda)(H2O)]. MeOH.H2O. Temperature dependence of χ M and μeff
103
Molar susceptibility xM [cm3 mol–1]
Reference
300
Temperature T [K]
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference C.-X. Zhang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, B. Zhao, Transition Met. Chem. 28, 621 (2003)
Magnetic properties of nickel(II) complex with o-iminobenzosemiquinone and substituted amine ligands
Substance [Tris(2-aminethyl)amine]-o-iminobenzosemiquinonatonickel(II) perchlorate; [Ni(tren)(L)]ClO4
Gross Formula C26H43ClN5NiO5
Properties Molar magnetic moment and exchange energy
Structure [Ni(tren)(L)]ClO4;
tren ¼ tris(2-aminethyl)amine; N NH2
NH2 NH2
L ¼ 4,6-di-t-butyl-o-(N-phenylimino)benzoquinonate radical anion C(CH3)3 O (H3C)3C
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_43
104
Additional Remarks
105
Data T [K] 290
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.8
ΘP [K] –
Method SQUID
Remarks Octahedral, Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Fig. 1 [Ni(tren)(L)]ClO4. Temperature dependence of μeff. Solid line represents bestfit by using parameters given in the text
Effective magnetic moment meff [mB]
(i) temperature dependence (290-2 K) of μeff is shown in Fig. 1 (ii) complex possesses an S¼3/2 ground state (iii) strong-intramolecular ferromagnetic coupling between a Ni(II) ion (SNi¼1) and an o-iminobenzosemi-quinonate (1-) π radical (Srad¼1/2), with: J ¼ 2.00 cm1 gNi ¼ 2.09 grad ¼ 2.0 (fixed) D ¼ 19+5 cm1 (zero-field splitting energy)
4
3
2
1 0
50
100 150 200 Temperature T [K]
250
Magnetic properties of nickel(II) complex with. . .
106
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID S
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device spin state
Reference K.S. Min, T. Weyhermuller, K. Weighardt, J. Chem. Soc. Dalton Trans., 1126 (2003)
Magnetic properties of mixed ligand complex of Ni(II) with tetramethylethylenediamine and nitroxide radical (K2N,N mode)
Substance Acetylacetonato-N,N,N0 N0 -tetramethylethylenediamine 2-(2-pyridyl)4,4,5, 5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-K2N,N)nickel(II) hexafluorophosphate; [Ni(acac)(tmen)(L)]PF6
Gross Formula C23H39F6N5NiO3P
Properties Weiss constant and exchange energy
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_44
107
108
Magnetic properties of mixed ligand complex of Ni(II) with. . .
Structure [Ni(acac)(tmen)(L)]PF6;
tmen ¼ tetramethylethylenediamine; H3C
N
N
H3C
CH3 CH3
L ¼ 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1Himidazol-1-oxy N O N
N
acacH ¼ acetylacetone O
O
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-2 – – –
ΘP [K] Method Remarks 0.84 SQUID Five membered chelated complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of temperature (300-2 K) dependence of χ MT is shown in Fig. 1 (ii) χ M data indicate a ferromagnetic interaction between Ni(II) and nitroxide radical, with: J ¼ 98.3 cm1 g ¼ 2.18
Reference
109
Fig. 1 [Ni(acac)(tmen)(L)] PF6. Temperature dependence of χ MT
2
xMT [cm3 K mol–1]
Product of molar susceptibility with temperature
2.5
1.5
1
0.5
0 0
100
200
Temperature T [K]
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Tsukahara, T. Kamatani, T. Suzuki, S. Kaizaki, J. Chem, Soc. Dalton Trans., 1276 (2003)
300
Magnetic properties of mixed ligand complex of Ni(II) with tetramethylethylenediamine and nitroxide radical (K2N,O mode)
Substance Acetylacetonato-N,N,N0 N0 -tetramethylethylenediamine 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-K2N,O)nickel(II) hexafluorophosphate; [Ni(acac)(tmen)(L)]PF6
Gross Formula C23H39F6N5NiO3P
Properties Weiss constant and exchange energy
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_45
110
Additional Remarks
111
Structure [Ni(acac)(tmen)(L)]PF6;
L ¼ 2-(2-pyridyl)-4,4,5,5-tetramethyl-4, 5-dihydro-1H-imidazol-1-oxy N O N
N
tmen ¼ tetramethylethylenediamine; H 3C H 3C
N
N
CH3 CH3
acacH ¼ acetylacetone O
O
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–2 – – –
ΘP [K] Method Remarks 0.570 SQUID First example of nitroxide radical ligand coordinated to Ni(II) as an six-membered didentate chelate with K2N,O mode
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of temperature (300-2 K) dependence of χ MT is shown in Fig. 1 (ii) χ M data indicate an antiferromagnetic interaction between Ni(II) and nitroxide radical, with: J ¼ 135 cm1 g ¼ 2.14
112
Magnetic properties of mixed ligand complex of Ni(II) with. . .
Fig. 1 [Ni(acac)(tmen)(L)] PF6. Temperature dependence of χ MT
2
xMT [cm3 K mol–1]
Product of molar susceptibility with temperature
2.5
1.5
1
0.5
0 0
100
200
Temperature T [K]
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Tsukahara, T. Kamatani, T. Suzuki, S. Kaizaki, J. Chem, Soc. Dalton Trans., 1276 (2003)
300
Magnetic properties of nickel(II) complex with 1,4,8,11-tetraazacyclotetra-decane and tetracyanoquinodimethane
Substance Nickel(II) complex with 1,4,8,11-tetraazacyclotetra-decane and tetracyanoquinodimethane ligands; [Ni(L)(tcnq)2](tcnq)
Gross Formula C46H36N16Ni
Properties Exchange energy
Structure [Ni(L)(tcnq)2](tcnq); L ¼ 1,4,8,11-tetraazacyclotetra-decane; NH HN NH HN –
tcnq ¼ tetracyanoquinodimethane anion radical NC
CN
NC
CN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_46
113
114
Magnetic properties of nickel(II) complex with. . .
Data T [K] 300–2
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) strong antiferromagnetic coupling observed with: J ¼ 172 cm1 D ¼ 7.35 cm1 (zero-field splitting parameter) gNi ¼ 2.29
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Ballester, A. Gutierrez, M.F. Perpinan, A.E. Sanchez, M.T. Azcondo, M.J. Gonzalez, Inorg. Chim. Acta 357, 1054 (2004)
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands
Substance Nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anionradical ligands; [Ni(L)(tcnq)2](tcnq).MeOH
Gross Formula C45H36N16NiO
Properties Exchange energy
Structure [Ni(L)(tcnq)2](tcnq).MeOH;
L ¼ 1,4,7,10-tetraazacyclododecane; NH HN NH HN –
tcnq ¼ tetracyanoquinodimethane anion radical NC
CN
NC
CN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_47
115
Magnetic properties of nickel(II) complex with tetraazamacrocycle and. . .
116
Data T [K] 300-2
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M data analyzed by appropriate equation with: J ¼ 463 cm1 D ¼ 3.12 cm1 (zero-field splitting parameter) gNi ¼ 2.18 (ii) strong antiferromagnetic coupling observed
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Ballester, A. Gutierrez, M.F. Perpinan, A.E. Sanchez, M.T. Azcondo, M.J. Gonzalez, Inorg. Chim. Acta 357, 1054 (2004)
Magnetic properties of nickel(II) complex with tetraazamacrocycle and two tetracyanoquinodimethane anion-radical ligands
Substance Nickel(II) complex with 1,4,7,10-tetraazacyclododecane and tetracyanoquinodimethane anion-radical ligands; [Ni(L)(tcnq)2]
Gross Formula C32H28N12Ni
Properties Exchange energy
Structure [Ni(L)(tcnq)2];
L ¼ 1,4,7,10-tetraazacyclododecane; NH HN NH HN –
tcnq ¼ tetracyanoquinodimethane anion radical NC
CN
NC
CN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_48
117
118
Magnetic properties of nickel(II) complex with tetraazamacrocycle and two. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–2 – – –
ΘP [K] Method Remarks – SQUID Chain structure with six coordinated alternating metal and (tcnq)22- anions
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) >25 K, Curie-Weiss law obeyed (ii) analysis of χ M data through appropriate equation taking into account the singleion anisotropy, gave best-fit parameters: D ¼ 2.65 cm1 (zero-field splitting) gNi ¼ 2.16
Symbols and Abbreviations Short form T χg χM pm μeff D g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Ballester, A. Gutierrez, M.F. Perpinan, A.E. Sanchez, M.T. Azcondo, M.J. Gonzalez, Inorg. Chim. Acta 357, 1054 (2004)
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands
Substance Nickel(II) complex with 1,4,8,12-tetraazacyclopentadecane and tetracyanoquinodimethane anion radical; [Ni(L)(tcnq)2]
Gross Formula C35H34N12Ni
Properties Exchange energy
Structure [Ni(L)(tcnq)2];
L ¼ 1,4,8,12-tetraazacyclopentadecane; NH HN NH HN –
tcnq ¼ tetracyanoquinodimethane anion radical NC
CN
NC
CN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_49
119
120
Magnetic properties of nickel(II) complex with tetraazamacrocycle and. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300-2 – – –
ΘP [K] Method Remarks – SQUID Chain structure with six coordinated alternating metal and (tcnq)22- anions
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) analysis of χ M data through appropriate equation taking into account the singleion anisotropy, gave best-fit parameters: D ¼ 4.69 cm1 (zero-field splitting parameter) gNi ¼ 2.16
Symbols and Abbreviations Short form T χg χM pm μeff D g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Ballester, A. Gutierrez, M.F. Perpinan, A.E. Sanchez, M.T. Azcondo, M.J. Gonzalez, Inorg. Chim. Acta 357, 1054 (2004)
Magnetic properties of nickel(II) complex with tetraazamacrocycle and tetracyanoquinodimethane anion-radical ligands
Substance Nickel(II) complex with tetraazamacrocycle and three tetracyanoquinodimethane anion-radical ligands; [Ni(L)(tcnq)2](tcnq)
Gross Formula C47H38N16Ni
Properties Exchange energy
Structure [Ni(L)(tcnq)2](tcnq);
L ¼ 1,4,8,12-tetraazacyclopentadecane; NH HN NH HN –
tcnq ¼ tetracyanoquinodimethane anion radical NC
CN
NC
CN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_50
121
Magnetic properties of nickel(II) complex with tetraazamacrocycle and. . .
122
Data T [K] 300-2
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M data analyzed by appropriate equation with: J ¼ 235 cm1 D ¼ 5.62 cm1 (zero-field splitting parameter) gNi ¼ 2.07 (ii) strong antiferromagnetic interactions observed
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Ballester, A. Gutierrez, M.F. Perpinan, A.E. Sanchez, M.T. Azcondo, M.J. Gonzalez, Inorg. Chim. Acta 357, 1054 (2004)
Magnetic properties of nickel(II) complex with nitronyl nitroxide substituted thiazole
Substance Nickel(II) complex with nitronyl nitroxide substituted thiazole; [Ni(nit-2-thz)3]
Gross Formula C30H42Cl2N9NiO14S3
Properties Molar magnetic moment and exchange energy
Structure [Ni(nit-2-thz)3];
nit-2-thz ¼ 2-(20 -thiazole)-4,4,5,5-tetramethylimidazoline1-oxyl-3-oxide O N
S
N
N
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_51
123
124
Magnetic properties of nickel(II) complex with nitronyl nitroxide. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.79
ΘP [K] Method Remarks – – 1-D chain structure, Ni(II) has distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of μeff and χ M is shown in Fig. 1 (ii) analysis of χ M data through appropriate equation yielded: J ¼ 70.85 cm1 (antiferromagnetic coupling between Ni(II) ion and radical) g ¼ 2.29 zJ' ¼ 3.9 cm1 (ferromagnetic coupling between radicals) Fig. 1 [Ni(nit-2thz)3]. Temperature dependence of μeff (○) and χ M (□) and their corresponding theoretical curves (solid lines).
Reference
125
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference L.-Y. Wang, L.-F. Ma, Z.-H. Jiang, D.-Z. Liao, S.-P. Yan, Inorg. Chim. Acta 358, 820 (2005)
Magnetic properties of racemic nickel(II) complex with pyridine-2-aldoxime and 2,20 -bipyridine
Substance racemic-2,20 -Bipyridine-bis(pyridine-2-aldoximato)nickel(II); [Ni(pao)2(bipy)]
Gross Formula C22H18N6NiO2
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni(pao)2(bipy)];
Hpao ¼ pyridine-2-aldoxime;
bipy ¼ 2,20 -bipyridine N
N
C H
N
OH
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_52
126
Additional Remarks
127
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] 300 – 1.05 –
ΘP [K] Method Remarks – SQUID Compound has a chiral center (racemic form prepared), Ni(II) in distorted octahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ MT is shown in Fig. 1 (ii) χ M1 obeys Curie-Weiss law, with: C ¼ 1.05 cm3 K mol1 (iii) magnetic measurements revealed a paramagnetic S ¼ 1 spin state, with: D/kB ¼ 1.74 K (1.21 cm1) g ¼ 2.30
xMT [cm3 K mol–1] temperature
Product of molar susceptibility with
1.3 1.2 1.1 1 0.9 0.8
0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Ni(pao)2(bipy)]. Temperature dependence of χ MT. The solid line represents a simulation curve obtained using parameters described in the text
128
Magnetic properties of racemic nickel(II) complex with pyridine-2-aldoxime. . .
Symbols and Abbreviations Short form T χg χM pm μeff D g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H. Miyasaka, S. Furukawa, S. Yanagida, K.-i. Sugiura, M. Yamashita, Inorg. Chim. Acta 357, 1619 (2004)
Magnetic properties of racemic nickel(II) complex with pyridine-2-aldoxime and 1,10-phenanthroline
Substance racemic-1,100 -Phenanthroline-bis(pyridine-2-aldoximato)nickel(II); [Ni(pao)2(phen)]
Gross Formula C24H18N6NiO2
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni(pao)2(phen)];
Hpao ¼ pyridine-2-aldoxime;
phen ¼ 1,10-phenanthroline N
N
C H
N
N
OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_53
129
130
Magnetic properties of racemic nickel(II) complex with. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] 300 – 1.15 –
ΘP [K] Method Remarks – SQUID Compound has a chiral center (racemic form prepared), Ni(II) in distorted octahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ MT is shown in Fig. 1 (ii) χ M1 obeys Curie-Weiss law, with: C ¼ 1.15 cm3 K mol1 (iii) magnetic measurements revealed a paramagnetic S ¼ 1 spin state, with: D/kB ¼ 2.28 K (1.21 cm1) g ¼ 2.41
xMT [cm3 K mol–1] temperature
Product of molar susceptibility with
1.3 1.2 1.1 1 0.9 0.8
0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Ni(pao)2(phen)]. Temperature dependence of χ MT. The solid line represents a simulation curve obtained using parameters described in the text
Reference
131
Symbols and Abbreviations Short form T χg χM pm μeff D g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H. Miyasaka, S. Furukawa, S. Yanagida, K.-i. Sugiura, M. Yamashita, Inorg. Chim. Acta 357, 1619 (2004)
Magnetic properties of an ion-pair compound consisting of 1-(40 -Br- benzyl) pyridinium cation and 2-thioxo-1,3-dithion4,5-dithiolatonickalate(II) anion
Substance 1-(40 -Bromobenzyl)pyridinium 2-thioxo-1,3-dithion-4,5-dithiolatonickalate(II); [Br-bzpy][Ni(dmit)2]
Gross Formula C18H11BrNNiS10
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and exchange energy
Structure [Br-bzpy][Ni(dmit)2];
[Br-bzpy]+ ¼ 1-(40 -bromobenzyl)pyridiniumcation; Br N
dmit2 ¼ 2-thioxo-1,3-dithion-4,5-dithiolate anion S
S
S
S
S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_54
132
Additional Remarks
133
Data T [K] 16.5 2
χg [106 emu/g] – –
χM pm or μeff [106 emu/mol] [μB] 6730 – 4070
ΘP [K] Method Remarks – – The anions stack into dimers, which further construct into two-leg ladder
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ M versus T and χ MT versus T is shown in Fig. 1 (ii) χ M data (>45 K) analyzed using a dimer model expression (1) and (2): χM ¼
χdimer 1 zJ =Ng2 β2 χdimer þ CT þ χ0 0
ð1Þ
Ng2 μ2B ð2Þ :ð3 þ exp ðΔ=kB T ÞÞ1 KB T in Equation (1), first term is a contribution from a dimer of S ¼ 1/2 in Equation (2), Δ ¼ 2|J| is the energy gap between singular and triplet spin state (zero field splitting parameters C/T ¼ contribution from magnetic impurity χ 0 ¼ sum of diamagnetic and possible Van Vleck paramagnetic parts χdimer ¼
(iii) the best-fit data above 45 K to Equation (1) gives rise to: Δ/kB ¼ 36.1 K zJ ¼ 0.91 K (intramolecular interaction) C ¼ 3.2 103 cm3 K mol1 χ 0 ¼ 40 106 cm3 mol1 g ¼ 2.0 (fixed)
Magnetic properties of an ion-pair compound consisting of 1-(40 -Br-. . .
Molar susceptibility xM 10–3 [cm3 mol–1]
134
8.4 7.2 6.0 4.8 3.6 2.4 1.2 50
temperature xMT 10–1 [cm3 K mol–1]
100 150 200 Temperature T [K]
250
300
1.2 d(cmT)dT/ (102) cm3 mol–1
Product of molar susceptibility with
0
1.0 TN = 10.9 K
0.8 0.6 0.4 0.2 0.0
0
25
50
100
75
T/K
0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 [Br-bzpy][Ni(dmit)2]. Temperature dependence of χ M and χ MT. The solid line shows the theoretically reproduced curve with the best-fit parameters described in the text
Symbols and Abbreviations Short form T χg χM pm μeff g C ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Lande factor Curie constant paramagnetic Curie constant (Weiss constant)
Reference
Reference Y. Chen, G. Liu, Y. Song, H. Xu, X. Ren, Q. Meng, Polyhedron 24, 2269 (2005)
135
Magnetic properties of an ion-pair nickel maleonitrile dithiolate complex anion with substituted pyridinium cation
Substance 1-(40 -Bromobenzyl)-4-aminopyridinium bis(maleonitriledithiolatonickelate(III); [BrbzpyNH2][Ni(mnt)2]
Gross Formula C20H12BrN6NiS4
Properties Product of molar magnetic susceptibility with temperature
Structure [BrbzpyNH2][Ni(mnt)2];
[BrbzpyNH2]+ ¼ 1-(40 -bromobenzyl)4-aminopyridinium cation H2N
(mnt)
2
N
H2 C
Br
¼ maleonitriledithiolate anion NC
S
NC
S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_55
136
Additional Remarks
137
Data T [K] 300 130
χM [106 emu/g] – –
χ MT pm or μeff [cm3 K mol1] [μB] 0.135 – 0.268
ΘP [K] Method Remarks – – Cation and anions form a completely segregated uniform stacking column
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T is shown in Fig. 1 (ii) magnetic behavior (300-130 K) is indicative of weak ferromagnetic coupling between Ni(III) ions in the 1D Chain (iii) complex exhibits a switching from paramagnetism in high-temperature (HT) phase to diamagnetism in the low-temperature (LT) phase
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
0.30 0.25 0.20 0.15 0.10 0.05 0.00 0
50
100 150 200 Temperature T [K]
Fig. 1 [BrbzpyNH2][Ni(mnt)2]. Temperature dependence of χ MT
250
300
138
Magnetic properties of an ion-pair nickel maleonitrile dithiolate complex. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference C.-L. Ni, D.-B. Dang, Y.-Z. Li, Z.-R. Yuan, Z.-P. Ni, Z.-F. Tian, Q.-J. Meng, Inorg. Chem. Commun. 7, 1034 (2004)
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Substance Diperchlorato-[N-N0 -p-xylenebis(cyclencyclam)]dinickel(II,II) perchlorate monoethanolate; [Ni2L(ClO4)2](ClO4)2.EtOH
Gross Formula C28H56Cl4N8Ni2O17
Properties Molar magnetic susceptibility
Structure [Ni2L(ClO4)2](ClO4)2.EtOH;
L ¼ N-N0 -p-xylenebis(cyclencyclam) NH HN NH HN NH
N
HN
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_56
139
140
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [103 cm3/mol1] [μB] RT – 4600 – – – Ni(II) ion (in calm carity) is square-planar and diamagnetic while (in cylen carity) octahedral and paramagnetic T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference M. Soibinet, I. Dechamps-Olivier, E. Guillon, J.-O. Barbier, M. Aplincourt, F. Chuburu, M. LeBaccon, H. Handel, Polyhedron 24, 143 (2005)
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Substance Tetrachloro-[N-N0 -m-xylenebis(cyclam)]dinickel(II,II); [Ni2(L)Cl4]
Gross Formula C28H54Cl4N8Ni2
Properties Molar magnetic susceptibility
Structure [Ni2(L)Cl4];
L ¼ N-N0 -m-xylenebis(cyclam) NH HN
NH HN
NH
N
N
HN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_57
141
142
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [103 cm3/mol1] [μB] RT – 7670 – – – Two d8 Ni(II) ions are held in an octahedral geometry T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference M. Soibinet, I. Dechamps-Olivier, E. Guillon, J.-O. Barbier, M. Aplincourt, F. Chuburu, M. LeBaccon, H. Handel, Polyhedron 24, 143 (2005)
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Substance Tetraperchlorato-[N-N0 -p-xylenebis(cyclen)]dinickel(II,II)monoethanolate; [Ni2L(ClO4)4].EtOH
Gross Formula C26H52Cl4N8Ni2O17
Properties Molar magnetic susceptibility
Structure [Ni2L(ClO4)4].EtOH;
L ¼ N-N0 -p-xylenebis(cyclen) NH HN NH HN NH
N
HN
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_58
143
144
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [103 cm3/mol1] [μB] RT – 7160 – – – Two d8 Ni(II) ions are held in an octahedral geometry T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) no strong interaction between the two metal centers
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference M. Soibinet, I. Dechamps-Olivier, E. Guillon, J.-O. Barbier, M. Aplincourt, F. Chuburu, M. LeBaccon, H. Handel, Polyhedron 24, 143 (2005)
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Substance Tetraperchlorato-[N-N0 -m-xylenebis(cyclen)]dinickel(II,II)monoethanolate; [Ni2L(ClO4)4].EtOH
Gross Formula C26H52Cl4N8Ni2O17
Properties Molar magnetic susceptibility
Structure [Ni2L(ClO4)4].EtOH; H ClO4 ClO4
N
N Ni N
H
L ¼ N-N0 -m-xylenebis(cyclen) NH HN
NH HN
NH
N
N
HN
H N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_59
145
146
Magnetic properties of binuclear nickel(II) complex of bis-tetraazamacrocycles
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – 7793 –
ΘP [K] Method Remarks – – Two d8 Ni(II) ions are held in an octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) no strong interaction between the two metal centers
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference M. Soibinet, I. Dechamps-Olivier, E. Guillon, J.-O. Barbier, M. Aplincourt, F. Chuburu, M. LeBaccon, H. Handel, Polyhedron 24, 143 (2005)
Magnetic properties of binuclear nickel(II) complex with dicyanamide and dipropylenetriamine
Substance Tetrakis(dicyanamido)-bis(dipropylenetriamine)dinickel(II); [Ni2(dpt)2{N(CN)2}4]
Gross Formula C20H34N18Ni2
Properties Exchange energy
Structure [Ni2(dpt)2{N(CN)2}4];
dpt ¼ dipropylenetriamine H2N
NH NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_60
147
148
Magnetic properties of binuclear nickel(II) complex with dicyanamide and. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] 80–0 – – –
ΘP [K] Method Remarks – SQUID Binuclear, octahedral coordination around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of μeff is shown in Fig. 1 (ii) weak antiferromagnetic coupling is observed, with: JNi-Ni/hc ¼ 0.577 cm1 gNi ¼ 2.122 DNi/hc ¼ +2.58 cm1 DNi-Ni/hc ¼ 2.58 cm1 5
4 Effective magnetic moment meff [mB]
Effective magnetic moment meff [mB]
Fig. 1 [Ni2(dpt)2{N (CN)2}4]. Temperature dependence of μeff; inset shows the low-temperature window. The open circles correspond to the experimental data whereas full points and solid lines correspond to the fitted data.
3
2
4.5
4.0
3.5 2
1
0
10
20
30
4 6 8 10 12 14 Temperature T [K]
40
50
Temperature T [K]
60
70
80
Reference
149
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Boca, M. Boca, M. Gembicky, L. Jager, C. Wagner, H. Fuess, Polyhedron 23, 2337 (2004)
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and dimethylsulfoxide
Substance Nickel(II) complex with nitrilo-tris(methylphosphonic) acid and dimethylsulfoxide; [Ni(HL)(dmso)]2.2dmso
Gross Formula C50H68N2Ni2O16P6S4
Properties Molar magnetic moment
Structure [Ni(HL)(dmso)]2.2dmso;
H3L ¼ nitrilo-tris(methylphosphonic) acid; OH P CH2 O 3
dmso ¼ dimethylsulfoxide
N
O S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_61
150
Reference
151
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.48
ΘP [K] Method Remarks – – Dimeric, Ni having distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ϱ J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic impurity exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference F. Cecconi, C.A. Ghilardi, P. Gili, S. Midollini, P.A.L. Luis, A.D. Lozano-Gorrin, A. Orlandini, Inorg. Chim. Acta 319, 67 (2001)
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and pyridine
Substance Nickel(II) complex with nitrilo-tris(methylphosphonic) acid and pyridine; [Ni(HL)(py)]2.py
Gross Formula C57H59N5Ni2O12P6
Properties Molar magnetic moment
Structure [Ni(HL)(py)]2.py;
H3L ¼ nitrilo-tris(methylphosphonic) acid; OH P CH2 O 3
py ¼ pyridine N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_62
152
Reference
153
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.42
ΘP [K] Method Remarks – – Dimeric, Ni having distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference F. Cecconi, C.A. Ghilardi, P. Gili, S. Midollini, P.A.L. Luis, A.D. Lozano-Gorrin, A. Orlandini, Inorg. Chim. Acta 319, 67 (2001)
Magnetic properties of nickel(II) complex with nitrilo-tris(methylphosphonic) acid and water
Substance Nickel(II) complex with nitrilo-tris(methylphosphonic) acid and water; [Ni(HL)(H2O)]2.6H2O
Gross Formula C42H60N2Ni2O20P6
Properties Molar magnetic moment
Structure [Ni(HL)(H2O)]2.6H2O;
H3L ¼ nitrilo-tris(methylphosphonic) acid OH P O
CH2 3
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_63
154
Reference
155
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.40
ΘP [K] Method Remarks – – Dimeric, Ni having distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference F. Cecconi, C.A. Ghilardi, P. Gili, S. Midollini, P.A.L. Luis, A.D. Lozano-Gorrin, A. Orlandini, Inorg. Chim. Acta 319, 67 (2001)
Magnetic properties of m-oxalato bridged binuclear nickel(II) complex with 1,8-bis (2-pyridyl)-3,6-dithiaoctane
Substance μ-Oxalato-bis{[1,8-bis(2-pyridyl)-3,6-dithiaoctane]nickel(II)} nitrate dihydrate; [{Ni(bpdto)}2(μ-ox)](NO3)2.2H2O
Gross Formula C34H44N6Ni2O12S4
Properties Exchange energy
Structure [{Ni(bpdto)}2(μ-ox)](NO3)2.2H2O;
bpdto ¼ 1,8-bis(2-pyridyl)-3,6-dithiaoctane; N S S
N
ox ¼ oxalate anion O
O
O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_64
156
Additional Remarks
157
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 299–5.0 – – –
ΘP [K] Method Remarks – SQUID Binuclear, distorted octahedral environment around each nickel atom
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M is shown in Fig. 1 (ii) antiferromagnetic interactions observed (iii) χ M data analysed by Bleaney-Bowers equation; best-fit parameters obtained are: J ¼ 40.9 cm1 g ¼ 2.26 ϱ ¼ 0.016% (percentage paramagnetic impurities) 0,018 0,016 Molar susceptibility xM [cm3 mol–1]
Fig. 1 [{Ni(bpdto)}2(μ-ox)] (NO3)2.2H2O. Temperature dependence of χ M. The continuous line shows a theoretical fit to the experimental data
0,014 0,012 0,010 0,008 0,006 0,004 0,002 0
50
100 150 200 Temperature T [K]
250
300
158
Magnetic properties of m-oxalato bridged binuclear nickel(II). . .
Symbols and Abbreviations Short form T χg χM pm μeff ϱ J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic impurity exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A. Castineiras, R. Dominguez, L. Gomez-Rodriguez, J. Borras, Z. Anorg. Allg. Chem. 629, 1096 (2003)
Magnetic properties of m-oxalato bridged binuclear nickel(II) complex with 1,8-bis (2-pyridyl)-3,6-dithiaoctane
Substance μ-Oxalato-bis{[1,8-bis(2-pyridyl)-3,6-dithiaoctane]nickel(II)} perchlorate; [{Ni(bpdto)}2(μ-ox)](ClO4)2
Gross Formula C34H40Cl2N4Ni2O12S4
Properties Exchange energy
Structure [{Ni(bpdto)}2(μ-ox)](ClO4)2;
bpdto ¼ 1,8-bis(2-pyridyl)-3,6-dithiaoctane; N
S S
N
ox ¼ oxalate anion O
O
O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_65
159
Magnetic properties of m-oxalato bridged binuclear nickel(II). . .
160
Data T [K] 299–5.0
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Binuclear
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M is shown in Fig. 1 (ii) antiferromagnetic interactions observed (iii) χ M data analysed by Bleaney-Bowers equation; best-fit parameters obtained are: J ¼ 37.8 cm1 g ¼ 2.14 ϱ ¼ 0.15% (percentage paramagnetic impurities) 0,018 0,016 Molar susceptibility xM [cm3 mol–1]
Fig. 1 [{Ni(bpdto)}2(μ-ox)] (ClO4)2. Temperature dependence of χ M. The continuous line shows a theoretical fit to the experimental data
0,014 0,012 0,010 0,008 0,006 0,004 0,002 0
50
100 150 200 Temperature T [K]
250
300
Reference
161
Symbols and Abbreviations Short form T χg χM pm μeff ϱ J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic impurity exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A. Castineiras, R. Dominguez, L. Gomez-Rodriguez, J. Borras, Z. Anorg. Allg. Chem. 629, 1096 (2003)
Magnetic properties of nickel(II) complex with a Schiff-base
Substance Nickel(II) complex with Schiff-base derived from 50 -(20 -thiazolylazo)salicylaldehyde and p-methoxyaniline; [Ni2L2Cl2]
Gross Formula C34H26Cl2N8Ni2O4S2
Properties Molar magnetic moment
Structure [Ni2L2Cl2]; H
N S
Cl Ni
H3CO
O O
N C
OCH3
N
N N
H
HL ¼ Schiff-base derived from 50 -(20 -thiazolylazo)salicylaldehyde and p-methoxyaniline N
Ni
Cl
N N
S N
S
N N
N
OMe
OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_66
162
Reference
163
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol]] [μB] RT – – 3.70 – Gouy Linear, dimeric, tetrahedral geometry around Ni(II) T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference P.P. Hankare, L.V. Gavali, V.M. Bhuse, S.D. Delekar, R.S. Rokade, Indian J. Chem. 43A, 2578 (2004)
Magnetic properties of nickel(II) complex with a Schiff-base
Substance Nickel(II) complex with Schiff-base; [Ni(L)(H2O)2]2
Gross Formula C20H26Cl2N4Ni2O6S4
Properties Molar magnetic moment
Structure [Ni(L)(H2O)2]2; S N
OH2
O H2O
N
Ni
Ni
OH2 O
OH2 S
H2L ¼ Schiff-base obtained by the condensation of 2-hydroxy-5-chloroacetophenone and S-methyldithiocarbazate Cl
S N OH
N H
Cl S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_67
SH N
N
S
OH
164
Reference
165
Data χM pm or μeff ΘP T χg [K] [K] [106 emu/g] [106 emu/mol]] [μB] RT – – 2.86 –
Method Remarks Gouy Dimeric, octahedral geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference J.T. Makode, A.S. Aswar, Indian J. Chem. 43A, 2120 (2004)
Magnetic properties of nickel(II) complex with 2-[20 -hydroxy-benzalidene50 -(400 -phenyl, 200 -thiazolylazo)]phenol
Substance Di{diaqua-2[20 -oxo-benzalidene-50 -(400 -phenyl-200 -thiazolylazo)]phenolatonickel(II)}; [Ni(L)(H2O)2]2
Gross Formula C44H36N8Ni2O8S2
Properties Molar magnetic moment
Structure H2L ¼ 2-[20 -hydroxy-benzalidene-50 -(400 -phenyl200 -thiazolylazo)]phenol
[Ni(L)(H2O)2]2; C6H5
N S
N
H2O
H2O O Ni
N
O OH2 H
N
N S
N N
H C OH
O
N HO
OH2
Ni
O
C6H5
H
N
N
N
S N
C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_68
166
Reference
167
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 298 – – 3.02 – Gouy Dimeric structure, Ni(II) in an octahedral environment T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference P.P. Hankare, S.S. Chavan, Indian J. Chem. 42A, 540 (2003)
Magnetic properties of nickel(II) complex with 2-[20 -hydroxy-benzalidene50 -(400 -phenyl-200 -thiazolylazo)]benzoic acid
Substance Di{diaqua-2[20 -oxo-salicylidene-50 -(400 -phenyl-200 -thiazolylazo)]benzoatonickel(II)}; [Ni(L)(H2O)2]2
Gross Formula C46H36N8Ni2O10S2
Properties Molar magnetic moment
Structure H2L ¼ 2-[20 -hydroxy-benzalidene-50 -(400 -phenyl200 -thiazolylazo)]benzoic acid
[Ni(L)(H2O)2]2; C6H5
N S
N
H2O O Ni
H2O COO N
H
N
COO
N S
N N
H C
N
OH HO
OH2
Ni
O OH2 H
C6H5 N
N
N
O
S N
C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_69
168
Reference
169
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 298 – – 3.08 – Gouy Dimeric structure, Ni(II) in an octahedral environment T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference P. P. Hankare, S.S. Chavan, Indian J. Chem. 42A, 540 (2003)
Magnetic properties of binuclear nickel(II) complex with tetraazamacro-cyclic ligand
Substance μ-(1,7,11,17-Tetraaza-2,6,12,16-tetraoxacycloeicosane)-μ(aqua)-bis[acetylacetonatoethanolnickel(II) tetraphenylborate; {(μ-(L)(μ-H2O)[Ni(acac)(EtOH)]2}(BPh4)2
Gross Formula C74H96B2N4Ni2O11
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature
Structure {(μ-(L)(μ-H2O)[Ni(acac)(EtOH)]2}(BPh4)2; O N acac Ni N EtOH O
O H2 acac N O Ni HOEt
N O
L ¼ 1,7,11,17-tetraaza-2,6,12, 16-tetraoxacycloeicosane; O NH
O HN
NH O
HN O
acacH ¼ acetylacetone O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_70
170
Additional Remark
171
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] RT – 0.95 2.8/Ni2
ΘP [K] Method Remarks – – Dication of the complex contains two independent octahedral Ni(II) centers
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) temperature dependence of χ M is shown in Fig. 1
1.1 1.0 temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
Fig. 1 {(μ-(L)(μ-H2O)[Ni (acac)(EtOH)]2}(BPh4)2. Temperature dependence of χ MT
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0
50
100 150 200 Temperature T [K]
250
300
172
Magnetic properties of binuclear nickel(II) complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference M.A. Novak, P.F. Prado, M.V. de Rangel e Silva, J.M.S. Shakle, M.G.F. Vaz, J.L. Wardell, S.M.S.V. Wardell, Inorg. Chim. Acta 358, 941 (2005)
Magnetic properties of trichloroacetato bridged binuclear nickel(II) complex with Schiff-base
Substance Trichloroacetato bridged binuclear nickel(II) complex with Schiff-base; [(MeOH)(L)Ni(μ-OOCCCl3)2Ni(L)(Cl3CCOO)]
Gross Formula C27H34Cl6N4Ni2O7
Properties Molar magnetic susceptibility, product of molar magnetic susceptibility with temperature and exchange energy
Structure [(MeOH)(L)Ni(μ-OOCCCl3)2Ni(L)(Cl3CCOO)];
HL ¼ tridentate Schiff-base obtained by the condensation of salicylaldehyde with N, N-dimethyl ethylenediamine OH N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_71
NMe2
173
Magnetic properties of trichloroacetato bridged binuclear nickel(II). . .
174
Data T [K] 300 17 2
χM [106 emu/g] – 5780 2530
χ MT pm or μeff [cm3 K mol1] [μB] 2.62 – – –
ΘP [K] Method Remarks – SQUID Binuclear, with two acetate bridges, Ni(II) in an octahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Product of molar susceptibility with temperature MT [cm3 K mol–1]
(i) temperature dependence of χ M andχ MT (inset) is shown in Fig. 1 (ii) χ M measurements reveal an antiferromagnetic intradimer interaction with: J ¼ 11.98 cm1 g ¼ 2.24
0,05
3.0 2.5 2.0
x
Molar susceptibility xM [cm3 mol–1]
0,06
0,04
1.5 1.0 0.5
0,03
0.0 0
0,02
50
100 150 200 250 Temperature T [K]
300
0,01 0
50
100
150
200
250
300
Temperature T [K] Fig. 1 [(MeOH)(L)Ni(μ-OOCCCl3)2Ni(L)(Cl3CCOO)]. Temperature dependence of χ M and χ MT (inset)
Reference
175
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S.K. Dey, M.-S. El Fallah, J. Ribas, T. Matsushita, V. Gramlich, S. Mitra, Inorg. Chim. Acta 357, 1517 (2004)
Magnetic properties of nickel(II) complex with tetraazacyclotetradecane and dicyanamide
Substance Nickel(II) complex with tetraazacyclotetradecane and dicyanamide; [Ni(meso-cth)][Ni(meso-cth)(dca)2](ClO4)2
Gross Formula C36H72Cl2N14Ni2O8
Properties Product of molar magnetic susceptibility with temperature
Structure [Ni(meso-cth)][Ni(meso-cth)(dca)2](ClO4)2;
meso-cth ¼ meso-5,5,7,12,12, 14-hexamethyl-1,4,8,11tetraazacyclotetradecane; NH HN NH HN
dca ¼ dicyanamide anion N
C
N
C
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_72
176
Reference
177
Data T [K] 300–10 2
χg [106 emu/g] – –
χ MT pm or μeff ΘP [K] Method Remarks [cm3 K mol1] [μB] 1.12 – – SQUID The compound coexists in 0.7 two different types of Ni(II) mononuclear units, cationic square-planar and neutral octahedral
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M data fitted through Van-Vleck equation, best-fit parameters obtained are: D ¼ 3.9 cm1 (zero-field splitting) g ¼ 2.13 (ii) magnetic behaviour agrees with that expected for isolated octahedral Ni(II) ions with zero-field splitting
Symbols and Abbreviations Short form T χg χM pm μeff D g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference E. Colacio, I.B. Maimoun, R. Kivekas, R. Sillanpaa, J. Suarez-Varela, Inorg. Chim. Acta 357, 1465 (2004)
Magnetic properties of binuclear nickel(II) complex with pentadentate Schiff-base
Substance Binuclear nickel(II) complex with pentadentate Schiff-base; [Ni2L2(N3)2](ClO4)2
Gross Formula C56H54Cl2N16Ni2O8
Properties Molar magnetic moment
Structure [Ni2L2(N3)2](ClO4)2;
L ¼ Schiff-base obtained by the condensation of diethylenetriamine and 2-benzoylpyridine C N N
N H
N C N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_73
178
Reference
179
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–25 – – 2.89/Ni – SQUID Each Ni(II) centre is in a distorted octahedral coordination environment T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) no evidence of magnetic exchange between two Ni(II) centers
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Deoghoria, W.T. Wong, S.K. Chandra, Indian J. Chem. 42A, 1004 (2003)
Magnetic properties of azido bridged binuclear nickel(II) complex derived from a hexadentate Schiff-base ligand
Substance Azido bridged binuclear nickel(II) complex derived from a hexadentate Schiff-base ligand; [Ni2(L)(N3)4]
Gross Formula C32H36N18Ni2
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni2(L)(N3)4];
L ¼ Schiff-base ligand prepared from the reaction of 2-benzoylpyridine with N,N0 -bis(3-aminopropyl) ethylenediamine N N
H N
N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_74
180
Additional Remarks
181
Data T [K] RT 35 2
χg [106 emu/g] – – –
χ MT pm or μeff [cm3 K mol1] [μB] 2.83 – 3.36 1.60
ΘP [K] Method Remarks – SQUID Binuclear complex contains terminal and end-on bridging azido ligands; distorted octahedral environment around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T (300–2 K) is shown in Fig. 1 (ii) the μ–N3 bridges mediate ferromagnetic interactions between Ni(II) centers leading to an S ¼ 2 ground state (iii) magnetic data analyzed using the Van-Vleck equation (iv) best-fit parameters are: J ¼ +20.96 cm1 D ¼ 0.69 cm1 (zero-field splitting parameter) g ¼ 2.17 temperature xMT [cm3 K mol–1]
3.5 Product of molar susceptibility with
Fig. 1 [Ni2(L) (N3)4]. Temperature dependence of χ MT. The solid line is a fit to the experimental data as described in the text
3.0
2.5
2.0
1.5
0
100 200 Temperature T [K]
300
182
Magnetic properties of azido bridged binuclear nickel(II) complex derived. . .
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromi, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358, 3362 (2005)
Magnetic properties of nickel(II) complex with oxime-thiosemicarbazone
Substance Di[1-phenyl-1,2-propanedione-2-oximethiosemicarbazonatonickel(II)] chloride; [Ni(L)]2Cl2
Gross Formula C20H22Cl2N8Ni2O2S2
Properties Molar magnetic moment
Structure [Ni(L)]2Cl2; 2+
HN H2N
C6H5
CH3
N
N O
C S
Ni O
NH2
S
C
N
NH
Ni N
H3C
_ 2Cl
HL ¼ 1-phenyl-1,2-propanedione2-oximethiosemicarbazone HO
CH3 N
S N
C6H5
N H
NH2
C6H5
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_75
183
184
Magnetic properties of nickel(II) complex with oxime-thiosemicarbazone
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 1.39
ΘP [K] Method Remarks – VSM Dimeric, square-planar geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) sub-normal μeff value may be attributed to the presence of magnetically coupled metal centers
Symbols and Abbreviations Short form T χg χM pm μeff ΘP VSM
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Vibrating-sample magnetometer
Reference K.H. Reddy, M.S. Babu, P.S. Babu, S. Dayananda, Indian J. Chem. 43A, 1233 (2004)
Magnetic properties of nickel(II) complex with oximethiosemicarbazone
Substance Di[diacetylmonoximethiosemicarbazonatonickel(II)] chloride; [Ni(L)]2Cl2
Gross Formula C10H18Cl2N8NiO2S2
Properties Molar magnetic moment
Structure HL ¼ diacetylmonoximethiosemicarbazone
[Ni(L)]2Cl2;
CH3
2+ H3C HN H2N
CH3 N
N C S
O
S
C
NH2
Ni
Ni O N H3C
N
NH
HO _ 2Cl
N
S
N
CH3
N H
NH2
CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_76
185
186
Magnetic properties of nickel(II) complex with oximethiosemicarbazone
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 1.85
ΘP [K] Method Remarks – VSM Dimeric, square-planar geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) sub-normal μeff value may be attributed to the presence of magnetically coupled metal centers
Symbols and Abbreviations Short form T χg χM pm μeff ΘP VSM
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Vibrating-sample magnetometer
Reference K.H. Reddy, M.S. Babu, P.S. Babu, S. Dayananda, Indian J. Chem. 43A, 1233 (2004)
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-alanine)
Substance Aqua-(dl-alaninato)-bis[tris(2-aminoethyl)amine]dinickel(II,II)iodide monohydrate; [Ni2(tren)2(dl-alaninato)(H2O)]I3.H2O
Gross Formula C15H48I3N9Ni2O5
Properties Exchange energy and Weiss constant
Structure [Ni2(tren)2(dl-alaninato)(H2O)]I3.H2O;
tren ¼ tris(2-aminoethyl)amine; N NH2
dl-alanine ¼
NH2 NH2
O H3C H OH C NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_77
187
188
Magnetic properties of mixed ligand dinickel complex with tren and racemic. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–5 – – –
ΘP [K] Method Remarks 2.81 SQUID Dinickel(II) complex bridged by unusual (N,O, O0 )-coordinated amino acid, Ni(II) in octahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
0.5
5
0.4
4
0.3
3
0.2
2
0.1
1
0.0
0
50
100 150 200 Temperature T [K]
250
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
(i) temperature dependence of χ M and μeff is shown in Fig. 1 (ii) weak ferromagnetic interactions exist between the two Ni(II) centers, with: J ¼ +1.58 cm1 (intramolecular ➔ ferromagnetic) g ¼ 2.15 θ ¼ 2.81 K (intermolecular interaction being antiferromagnetic)
0 300
Fig. 1 [Ni2(tren)2(dl-alaninato)(H2O)]I3.H2O. Temperature dependence of χ M (■) and μeff (▼). The solid line represents the calculated curve fits
Reference
189
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Wang, J. Cai, Z.-W. Mao, X.-L. Fentg, J.-W. Huang, Transit. Met. Chem. 29, 411 (2004)
Magnetic properties of ion-pair complex, having diethylenetriamine nickel(II) cation and tetracyanonickelate anion
Substance Monoethanolamine-diethylenetriamine-nickel(II) tetracyanonickelate(II); [Ni(dien)(mea][Ni(CN)4]
Gross Formula C10H20N8Ni2O
Properties Molar magnetic moment
Structure [Ni(dien)(mea][Ni(CN)4];
dien ¼ diethylenetriamine; H N
H2N
mea ¼ 2-aminoethanol
NH2
OH
H2N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_78
190
Additional Remarks
191
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] 80 – – ~3.0
ΘP [K] Method Remarks – – 1-D structure, distorted squarepyramidal nickel in cation, while anion has square-planar nickel(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of μeff and χ M (inset) is shown in Fig. 1 (ii) a considerable local magnetic anisotropy was found: D/hc ¼ 7.0 cm1
Molar susceptibility xM [cm3 mol–1]
4
3 Molar susceptibility xM [cm3 mol–1]
Effective magnetic moment meff [mB]
Fig. 1 [Ni(dien)(mea][Ni (CN)4]. Temperature dependence of μeff and χ M (inset). The solid line corresponds to the best fit of the experimental data
2
1
0
0
20
3
2
1
0
0
10
40
20 30 40 50 60 Temperature T [K]
60
80
100
Temperature T [K]
70
120
80
140
192
Magnetic properties of ion-pair complex, having diethylenetriamine. . .
Symbols and Abbreviations Short form T χg χM pm μeff D ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter paramagnetic Curie constant (Weiss constant)
Reference J. Paharova, J. Cernak, R. Boca, Z. Zak, Inorg. Chim. Acta 346, 25 (2003)
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-phenylalaninato)
Substance Aqua-(dl- phenylalaninato)-bis[tris(2-aminoethyl)amine]dinickel(II,II)iodide monohydrate; [Ni2(tren)2(dl-phenylalaninato)(H2O)]I3.H2O
Gross Formula C21H50I3N9Ni2O4
Properties Exchange energy and Weiss constant
Structure [Ni2(tren)2(dl-phenylalaninato)(H2O)]I3.H2O;
tren ¼ tris(2-aminoethyl)amine; N NH2
NH2
NH2
dl-phenylalanine ¼ H2 C
O OH NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_79
193
194
Magnetic properties of mixed ligand dinickel complex with tren and. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–5 – – –
ΘP [K] Method Remarks 2.59 SQUID Dinickel(II) complex bridged by unusual (N,O, O0 )-coordinated amino acid, Ni(II) in octahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) weak ferromagnetic interactions exist between the two Ni(II) centers, with: J ¼ +1.59 cm1 (intramolecular ➔ ferromagnetic) g ¼ 2.18 θ ¼ 2.59 K (intermolecular interaction being antiferromagnetic)
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Wang, J. Cai, Z.-W. Mao, X.-L. Fentg, J.-W. Huang, Transit. Met. Chem. 29, 411 (2004)
Magnetic properties of mixed ligand dinickel complex with tren and racemic amino acid (dl-histinato)
Substance catena-poly{[Bis-(tris(2-aminoethyl)amine)-dl-histinatodinickel(II,II)perchlorate mono-hemi-hydrate; {[Ni2(tren)2(dl- histinato)](ClO4)3.1.5H2O}n
Gross Formula C18H47Cl3N11Ni2O15.50
Properties Exchange energy and Weiss constant
Structure {[Ni2(tren)2(dl- histinato)](ClO4)3.1.5H2O}n;
tren ¼ tris(2-aminoethyl)amine; N NH2
NH2
dl-histinine ¼ H2N HO
O
NH2
H N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_80
195
Magnetic properties of mixed ligand dinickel complex with tren and. . .
196
Data χM T χg pm or μeff ΘP [106 emu/g] cm3 K mol1 [μB] [K] Method Remarks [K] 300-5 – – – 0.10 SQUID Dinickel(II) complex bridged by unusual (N,O,O0 )coordinated amino acid, Ni(II) in octahedral environment T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) temperature dependence of χ M and μeff is shown in Fig. 1 (ii) best-fir of the data yielded: J ¼ 0.49 (iii) weak ferromagnetic exchange indicated in the cross-exchanged Ni(II) chain
Molar susceptibility xM [cm3 mol–1]
3.0 0.15
2.5 2.0
0.10 1.5 1.0
0.05
0.5 0.00
0
50
100 150 200 Temperature T [K]
250
Effective magnetic moment meff [mB]
3.5
0.20
0.0 300
Fig. 1 {[Ni2(tren)2(dl- histinato)](ClO4)3.1.5H2O}n. Temperature dependence of χ M (■) and μeff (▼). The solid line represents the calculated curve fits
Reference
197
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Wang, J. Cai, Z.-W. Mao, X.-L. Fentg, J.-W. Huang, Transit. Met. Chem. 29, 411 (2004)
Magnetic properties of mixed ligand dinickel(II) complex with thiodiglycolic acid and ethylenediamine
Substance Bis-μ-thiodiglycolato-bis(ethylenediamine)dinickel(II, II) tetrahydrate; [(en)Ni(μ-tdga)2Ni(en)].4H2O
Gross Formula C12H32N4Ni2O12S2
Properties Molar magnetic moment, Weiss constant and exchange energy
Structure [(en)Ni(μ-tdga)2Ni(en)].4H2O;
H2tdga ¼ thiodiglycolic acid; HO O
en ¼ ethylenediamine H2N
OH
S O
NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_81
198
Additional Remarks
199
Data χM T χg [K] [106 emu/g] [106 emu/mol] RT – – 1.8
pm or μeff [μB] 3.06 0.26
ΘP [K] Method Remarks 1.17 Faraday Dinuclear, coordination + around both Ni(II) centers is SQUID distorted- octahedron
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ M and μeff versus T is shown in Fig. 1 (ii) Curie Weiss law obeyed, with: C ¼ 1.217 cm3 K mol1 θ ¼ 1.17 K (iii) magnetic data (300–1.8 K) analysed by Ginsberg’s equation, (iv) least-squares fitting of the data, yielded: J ¼ 4.35 cm1 g ¼ 2.00 D ¼ 5.53 cm1 (zero-field splitting parameter) zJ0 ¼ 0.94 cm1 (intramolecular interaction)
0.035 3
0.030 0.025
2
0.020 0.015
1
0.010 0.005 0.000
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
4 0.040
0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Cu2(2-NO2bz)4(H2O)2].2H2O. Temperature dependence of χ M (○) and μeff (●). The solid lines represent the calculated curves using data from Ginsberg’s equation
200
Magnetic properties of mixed ligand dinickel(II) complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff D J C ΘP Faraday SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Curie constant paramagnetic Curie constant (Weiss constant) Faraday method superconducting quantum interference device
Reference P. Kopel, Z. Travnicek, J. Marek, J. Mrozinski, Polyhedron 23, 1573 (2004)
Magnetic properties of binuclear nickel(II) cluster stabilized by pivalate ligand
Substance Aqua bridged binuclear nickle(II) cluster stablised by pivalate ligand; [Ni2(μ-OH2)(O2CCMe3)4(HO2CCMe3)4]
Gross Formula C40H78Ni2O17
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni2(μ-OH2)(O2CCMe3)4(HO2CCMe3)4]
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_82
201
Magnetic properties of binuclear nickel(II) cluster stabilized by pivalate. . .
202
Data χ MT T χg [K] [106 emu/g] [cm3 K mol1] 150 – 2.57
ΘP [K] –
pm or μeff [μB] –
Method Remarks SQUID Binuclear small Ni(II) cage
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T (300–1.5 K) is shown in Fig. 1 (ii) ground state is S ¼ 2 with a ferromagnetic exchange interactions between Ni (II) centers, with: J ¼ 0.26 cm1
3.6 [emu.K.mol–1]
3.6 3.4
3.4 3.2
xT
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
3.8
3.2
3.0 2.8
3.0
0
5
10
15 20 25 Temperature (K)
30
35
2.8 2.6 0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 [Ni2(μ-OH2)(O2CCMe3)4(HO2CCMe3)4]. Temperature dependence of χ MT. The inset shows the low temperature region. The solid line represent the best-fit to the data
Reference
203
Symbols and Abbreviations Short form T χg χM pm μeff J ΘP SQUID S
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy paramagnetic Curie constant (Weiss constant) superconducting quantum interference device spin state
Reference G. Chaboussant, R. Basler, H.-U. Gudel, S. Ochsenbein, A. Parkin, S. Parsons, G. Rajaraman, A. Sieber, A.A. Smith, G.A. Timco, R.E. Winpenny, J. Chem. Soc. Dalton Trans., 2758 (2004)
Magnetic properties of bimetallic nickel(II) (host)-barium(II)(guest) complex with polyether ligand
Substance Bimetallic nickel(II)(host)-barium(II)(guest) complex with polyether ligand; BaNiL.2CF3SO3
Gross Formula C24H34BaF6N2NiO18S2
Properties Weiss constant and exchange energy
Structure BaNiL.2CF3SO3; H3CO N O O O 2CF3SO3
OCH3 N Ni 2+ Ba
O
O
H2L ¼ 3,30 -(3,6-dioxaoctane-1,8-diyldioxy)bis(2-hydroxybenzaldehyde)bis(O-methyloxime) H3CO N
O
OH
OCH3 N HO O
O O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_83
204
Additional Remarks
205
Data χ MT pm or μeff T χg [106 emu/g] [cm3 K mol1] [μB] [K] 300–18 – – –
ΘP [K] Method Remarks 2.42 SQUID In the complex polyether group form a loop-like crown-ethers, Ni2+ ion has an octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
temperature xMT [cm3 K mol–1]
Fig. 1 BaNiL.2CF3SO3. Temperature dependence of χ MT
Product of molar susceptibility with
(i) temperature dependence of χ MT is shown in Fig. 1 (ii) χ M data analyzed based on the S ¼ 1 dimer model, the optimized parameters were: J/kB ¼ 12 K g ¼ 2.15 (iii) ferromagnetic coupling between two Ni(II) ions suggested
2
1
0
0
200 100 Temperature T [K]
300
206
Magnetic properties of bimetallic nickel(II)(host)-barium(II)(guest). . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference T. Nakabayashi, T. Ishida, T. Nogami, Inorg. Chem. Commun. 7, 1221 (2004)
Magnetic properties of oxo-bridged heterobinuclear, Ni(II)-Co(II) complex with compartmental Schiff-base
Substance Oxo-bridged hetero-binuclear, Ni(II)-Co(II) complex with compartmental Schiff-base; [Ni(L)Co].2H2O
Gross Formula C20H21CoN3NiO8
Properties Molar magnetic moment
Structure [Ni(L)Co].2H2O; H
H4L ¼ N,N0 -2,20 -bis(aminoethyl)methylaminebis (3-carboxysalicylidimine)
O N
O
HO
O
O
O
HO
OH NH Ni N H
Co .2H2O O
N H
O
OH
H N
N
H
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_84
207
208
Magnetic properties of oxo-bridged hetero-binuclear, Ni(II)-Co(II) complex. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 4.9
ΘP [K] Method Remarks – Gouy Co(II) having octahedral geometry (by addition of H2O molecules) while Ni(II) having square-planar geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference K. Dey, S. Sarkar, R. Bhowmick, S. Biswas, D. Koner, Indian J. Chem. 44A, 1995 (2005)
Magnetic properties of hybrid materials containing organometallic cations (cobaltocenium) and 3-D anionic nickel dicyanamide
Substance Bis(pentamethylcyclopentadienyl)cobalt(III) tris(dicyanamido)nickelate(II); [Cp*2Co][Ni(dca)3]
Gross Formula C26H30CoN9Ni
Properties Molar magnetic moment and Weiss constant
Structure [Cp*2Co][Ni(dca)3];
Cp* ¼ pentamethylcyclopentadienyl anion; Me
Me
Me
Me Me
dca ¼ dicyanamide anion
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_85
209
Magnetic properties of hybrid materials containing organometallic cations. . .
210
Data T [K] 300 20
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.12 0.19 SQUID Cationic and anionic 3.06 framework sub-lattices remains magnetically independent
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss susceptibility behaviour with: C ¼ 1.14 cm3 K mol1 θ ¼ 0.19 K (ii) apart from maximum at ~20 K, the behaviour is due to weak antiferromagnetic coupling and zero-field splitting within the [Ni(dca)3] networks (iii) the 20 K behaviours is due to traces of ferromagnetic impunity
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P.M. Van der Werff, E. Martinez-Ferrero, S.R. Batten, P. Jensen, C. Ruiz-Perez, M. Almeida, J.C. Waerenborgh, J.D. Cashion, B. Moubaraki, J.R. Galan-Mascaros, J.M. Martinez-Agudo, E. Coronado, K.S. Murray, J. Chem. Soc. Dalton Trans., 285 (2005)
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis (2-pyridylethyl)oxamide dianion and dimethyl-bipyridine
Substance Copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylethyl) oxamide dianion and dimethyl-bipyridine; [Cu(pmoxd)Ni(Me2-bipy)2](ClO4)2
Gross Formula C40H40Cl2CuN8NiO10
Properties Exchange energy
Structure [Cu(pmoxd)Ni(Me2-bipy)2](ClO4)2;
Cu(pmoxd) ¼ N,N0 -bis(2-pyridylmethyl) oxamidatocopper(II) N N
N Cu
N
O O
Me2-bipy ¼ 4, 40 -dimethyl-2, 20 -bipyridine Me N © Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_86
N
Me
211
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with. . .
212
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–2 – – –
ΘP [K] –
Method Remarks SQUID Square-planar geometry around Cu(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
0.12
4
3 0.08 2 0.04 1
0.00
0 0
50
100
150 200 Temperature T [K]
250
300
Fig. 1 [Cu(pmoxd)Ni(No2-bipy)2](ClO4)2. Temperature dependence of χ M and μeff
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
(i) variable temperature (300–2 K) χ M and μeff is shown in Fig. 1 (ii) magnetic analysis done using the spin Hamiltonian ℋ ¼ 2JS1S2 leads to: J ¼ 57.30 cm1 gNi ¼ 2.19 gCu ¼ 2.07
Reference
213
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Ouyang, B. Liu, Q.-L. Wang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Transit. Met. Chem. 30, 460 (2005)
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis (2-pyridylmethyl)oxamide dianion and 5-nitrophenanthroline
Substance Copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylmethyl) oxamide dianion and 5-nitrophenanthroline; [Cu(pmoxd)Ni(NO2-phen)2](ClO4)2
Gross Formula C38H42Cl2CuN10NiO14
Properties Exchange energy
Structure [Cu(pmoxd)Ni(NO2-phen)2](ClO4)2;
Cu(pmoxd) ¼ N,N0 -bis(2-pyridylmethyl) oxamidatocopper(II) N N
N
Cu
N
O O
NO2-phen ¼ 5-nitro-1,10-phenanthroline O2N
N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_87
214
Additional Remarks
215
Data χg χM pm or μeff T [K] [106 emu/g] [106 emu/mol] [μB] 300–2 – – –
ΘP [K] –
Method Remarks SQUID Square-planar geometry around Cu(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
0.12
4
0.10 3 0.08 0.06
2
0.04 1 0.02 0
0.00 0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 [Cu(pmoxd)Ni(NO2-phen)2](ClO4)2. Temperature dependence of χ M and μeff
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
(i) variable temperature (300–2 K) χ M and μeff is shown in Fig. 1 (ii) magnetic analysis done using the spin Hamiltonian ℋ ¼ 2JS1S2 leads to: J ¼ 56.23 cm1 gNi ¼ 2.20 gCu ¼ 2.08
216
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Ouyang, B. Liu, Q.-L. Wang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Transit. Met. Chem. 30, 460 (2005)
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis (2-pyridylmethyl)oxamide dianion and phenanthroline
Substance Copper(II)-nickel(II) heterodinuclear complex with N,N0 -bis(2-pyridylmethyl) oxamide dianion and phenanthroline; [Cu(pmoxd)Ni(phen)2](ClO4)2
Gross Formula C38H28Cl2CuN8NiO10
Properties Exchange energy
Structure [Cu(pmoxd)Ni(phen)2](ClO4)2;
Cu(pmoxd) ¼ N,N0 -bis(2-pyridylmethyl) oxamidatocopper(II) N N
Cu
N N
O O
phen ¼ 1,10-phenanthroline N
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_88
217
Magnetic properties of copper(II)-nickel(II) heterodinuclear complex with. . .
218
Data χg χM pm or μeff T [K] [106 emu/g] [106 emu/mol] [μB] 300–2 – – –
ΘP [K] –
Method Remarks SQUID Square-planar geometry around Cu(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
0.10
4
0.08 3 0.06 2 0.04 1
0.02 0.00
0 0
50
100
150
200
250
Temperature T [K]
Fig. 1 [Cu(pmoxd)Ni(phen)2](ClO4)2. Temperature dependence of χ M and μeff
300
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
(i) variable temperature (300-2 K) χ M and μeff is shown in Fig. 1 (ii) magnetic analysis done using the spin Hamiltonian ℋ ¼ 2JS1S2 leads to: J ¼ 70.83 cm1 gNi ¼ 2.21 gCu ¼ 2.08 (iii) weak antiferromagnetic spin-exchange interactions between Cu(II)-Ni(II) ions suggested
Reference
219
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Ouyang, B. Liu, Q.-L. Wang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Transit. Met. Chem. 30, 460 (2005)
Magnetic properties of heterobimetallic Ni(II)-Cu(II) complex with bis(2-hydroxy1-naphthaldehyde)malonoyldihydrazone
Substance Tetraaqua-[bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazonato]copper(II)Nickel(II); [NiCu(L)(H2O)4]
Gross Formula C25H24CuN4NiO8
Properties Molar magnetic moment
Structure [NiCu(L)(H2O)4];
H4L ¼ bis(2-hydroxy-1-naphthaldehyde) malonoyldihydrazone O
H H C N N H
H2C O
H
O O
N N H
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_89
220
Reference
221
Data χM pm or μeff T χg [K] [106 emu/g] [10-6 emu/mol] [μB] – – – 2.60
ΘP [K] Method Remarks – – Both copper and nickel have distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) presence of metal-metal interactions indicated
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference R.A. Lal, J. Chakraborty, S. Bhaumik, A. Kumar, Indian J. Chem. 41A, 1157 (2002)
Magnetic properties of trinuclear nickel(II) complex with 1,3,5-benzenetricarboxylic acid
Substance Tetradecaaquabis-(1,3,5-benzetricarboxylato)trinickel(II) tetrahydrate; [Ni3(L)2(H2O)14].4H2O
Gross Formula C18H42Ni3O30
Properties Product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Ni3(L)2(H2O)14].4H2O;
H3L ¼ 1,3,5-benzenetricarboxylic acid O
O
OH
O OH
OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_90
222
Additional Remarks
223
Data χg T [K] [106 emu/g] 300–30 – 2.0 –
χ MT pm or μeff [cm3 K mol1] [μB] 3.5/timer – 1.29/timer
ΘP [K] Method Remarks ~0.0 VSM + SQUID Roughly octahedral environment of Ni(II) ions
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plots of χ M1 and χ MT versus T are shown in Figs. 1 and 2 (ii) Curie-Weiss behaviour (200–30 K), with: C ¼ 1.15 cm 3 K mol1 θ ~ 0.0 K (iii) χ M data analysed (100–2 K) with appropriate equation and indicated the presence of either weak antiferromagnetic interactions between metal centers or single ion anisotropy
80.0 Inverse molar susceptibility xM–1 [mol cm–3]
Fig. 1 [Ni3(L)2(H2O)14].4H2O. Temperature dependence of χ M1. The solid line represents a fit to the CurieWeiss law
60.0
40.0
20.0
0.0 0
100 200 Temperature T [K]
300
Magnetic properties of trinuclear nickel(II) complex with. . .
224
temperature xMT [cm3 K mol–1]
4.0 Product of molar susceptibility with
Fig. 2 [Ni3(L)2(H2O)14].4H2O. Temperature dependence of χ MT. The solid line is the bestfit to the parameters described in the text
3.5 3.0 Ni3(BTCA)2 18H2O
2.5 2.0 1.5 1.0 0
20
40 60 Temperature T [K]
80
100
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID VSM
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device vibrating-sample magnetometer
Reference W. Zhang, S. Bruda, C.P. Landee, J.L. Parent, M.M. Turnbull, Inorg. Chim. Acta 342, 193 (2003)
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand
Substance Trinuclear nickel(II) complex with asymmetric compartmental proligand; [Ni3(L)2(OAc)2(NCS)2]
Gross Formula C46H58N8Ni3O8S2
Properties Molar magnetic moment and exchange energy
Structure [Ni3(L)2(OAc)2(NCS)2];
HL ¼ 2-[(2-methoxy-ethylimino)-methyl]-4-methyl-6{[methyl-(2-pyridin-2-yl-ethyl)-amino]-methyl} phenol
NMe OH N
N MeO
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_91
225
226
Magnetic properties of trinuclear nickel(II) complex with asymmetric. . .
Data T [K] RT 2.0
χg [106 emu/g] – –
χM [10-6 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.29-3.09 – – The metals form isosceles 2.35-1.50 triangle, Ni(II) has a distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) weak antiferromagnetic interactions suggested between adjacent nickel ions (ii) χ M data analyzed through HDVV model, gave J ¼ –0.70 cm–1 g ¼ 2.27
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference H. Adams, D.E. Fenton, L.R. Cummings, P.E. McHugh, M. Ohba, H. Okawa, H. Sakiyama, T. Shiga, Inorg. Chim. Acta 357, 3648 (2004)
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand
Substance Trinuclear nickel(II) complex with asymmetric compartmental proligand; [Ni3(L)2(OAc)2(NCS)2]
Gross Formula C48H62Ni3O6S2
Properties Molar magnetic moment and exchange energy
Structure [Ni3(L)2(OAc)2(NCS)2]; nBu
N
Me
N
M(1)
O N
nBu
M(2)
O (3) M N
N NCS
HL ¼ 2-butyliminomethyl-4-methyl-6-{[methyl(2-pyridin-2-yl-ethyl)-amino]-methyl}phenol
SCN
N
Me
NMe OH NnBu N
M = Ni
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_92
227
228
Magnetic properties of trinuclear nickel(II) complex with asymmetric. . .
Data T [K] RT 2.0
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.29–3.09 – – The metals form isosceles 2.35–1.50 triangle, Ni(II) has a distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) weak antiferromagnetic interactions suggested between adjacent M1M2 ions (ii) χ M data analyzed through HDVV model, gave J ¼ –4.50 cm–1 g ¼ 2.34
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference H. Adams, D.E. Fenton, L.R. Cummings, P.E. McHugh, M. Ohba, H. Okawa, H. Sakiyama, T. Shiga, Inorg. Chim. Acta 357, 3648 (2004)
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand
Substance Trinuclear nickel(II) complex with asymmetric compartmental proligand; [Ni3(L)2(OAc)2(NCS)2]
Gross Formula C46H58N8Ni3O6S2
Properties Molar magnetic moment and exchange energy
Structure [Ni3(L)2(OAc)2(NCS)2]; nPr
N
N
N
M(1)
O Me
nPr
M(2)
O (3) M N
N NCS M = Ni
HL ¼ 2-n-propyliminomethyl-4-methyl-6-{[methyl(2-pyridin-2-yl-ethyl)-amino]-methyl}phenol
SCN
N
Me
NMe OH NnPr N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_93
229
230
Magnetic properties of trinuclear nickel(II) complex with asymmetric. . .
Data T [K] RT 2.0
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.29–3.09 – – The metals form isosceles 2.35–1.50 triangle, Ni(II) has a distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plots of χ M versus T and μeff versus T are shown in Fig. 1 (ii) weak antiferromagnetic interactions suggested between adjacent M1M2 ions (iii) χ M data analyzed through HDVV model, gave J ¼ 3.00 cm1 g ¼ 2.28 0.2
4
3
0.1
2
1
0.0
0
100
200
Temperature T [K]
0 300
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
Fig. 1 [Ni3(L)2(OAc)2(NCS)2]. Temperature dependence of χ M and μeff
Reference
231
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference H. Adams, D.E. Fenton, L.R. Cummings, P.E. McHugh, M. Ohba, H. Okawa, H. Sakiyama, T. Shiga, Inorg. Chim. Acta 357, 3648 (2004)
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand
Substance Trinuclear nickel(II) complex with asymmetric compartmental proligand; [Ni3(L)2(OAc)2(NCS)2]
Gross Formula C44H54N8Ni3O6S2
Properties Molar magnetic moment and exchange energy
Structure [Ni3(L)2(OAc)2(NCS)2]; Et N
N
N
M(1)
O Me
Et
M(2)
O (3) M N
N NCS M = Ni
HL ¼ 2-ethyliminomethyl-4-methyl-6-{[methyl(2-pyridin-2-yl-ethyl)-amino]-methyl}phenol
SCN
N
Me
NMe OH NEt N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_94
232
Reference
233
Data T [K] RT 2.0
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.29–3.09 – – The metals form isosceles 2.35–1.50 triangle, Ni(II) has a distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) weak antiferromagnetic interactions suggested between adjacent M1M2 ions (ii) χ M data analyzed through HDVV model, and gave: J ¼ 2.50 cm1 g ¼ 2.25
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference H. Adams, D.E. Fenton, L.R. Cummings, P.E. McHugh, M. Ohba, H. Okawa, H. Sakiyama, T. Shiga, Inorg. Chim. Acta 357, 3648 (2004)
Magnetic properties of trinuclear nickel(II) complex with asymmetric compartmental proligand
Substance Trinuclear nickel(II) complex with asymmetric compartmental proligand; [Ni3(L)2(OAc)2(MeOH)2](BPh4)2
Gross Formula C94H106B2N6Ni3O8
Properties Molar magnetic moment and exchange energy
Structure [Ni3(L)2(OAc)2(MeOH)2](BPh4)2;
HL ¼ 2-n-propyliminomethyl-4-methyl6-{[methyl-(2-pyridin-2-yl-ethyl)amino]-methyl}phenol
NMe OH NnPr N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_95
234
Reference
235
Data T [K] RT 2.0
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff ΘP [μB] [K] Method Remarks 3.29–3.09 – – The metals form isosceles 2.35–1.50 triangle, Ni(II) has a distorted octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) weak antiferromagnetic interactions suggested between adjacent nickel ions (ii) χ M data analyzed through HDVV model, gave J ¼ 2.50 cm1 g ¼ 2.17
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference H. Adams, D.E. Fenton, L.R. Cummings, P.E. McHugh, M. Ohba, H. Okawa, H. Sakiyama, T. Shiga, Inorg. Chim. Acta 357, 3648 (2004)
Magnetic properties of linear trinuclear nickel(II) complex with 4-amino-3, 5-dimethyl-1,2,4-triazole
Substance Linear trinuclear nickel(II) complex with 4-amino-3,5-dimethyl-1,2,4-triazole; [Ni3(NCS)6(L)6].1.5H2O
Gross Formula C30H51N30Ni3O1.5S6
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni3(NCS)6(L)6].1.5H2O;
L ¼ 4-amino-3,5-dimethyl-1,2,4-triazole. NH2 N N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_96
236
Additional Remarks
237
Data T [K] RT 8
χg [106 emu/g] – –
χ MT [cm3 K mol1] 3.61 4.34
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Linear trimer
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ MT versus T and χ M versus T plots are shown in Fig. 1 (ii) weak-ferromagnetic interactions with: J ¼ +10.45 cm1 g ¼ 2.10
4.0 0.6
3.5 3.0
0.4
2.5 0.2
2.0 1.5
0.0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Ni3(NCS)6(L)6].1.5H2O. Temperature dependence of χ M and χ MT
1.0
temperature xMT [cm3 K mol–1]
Molar susceptibility xM [cm3 mol–1]
4.5 0.8
Product of molar susceptibility with
5.0
1.0
238
Magnetic properties of linear trinuclear nickel(II) complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Q. Zhao, H. Li, Z. Chen, R. Fang, Inorg. Chim. Acta 336, 142 (2002)
Magnetic properties of nickel complex of crown thioether
Substance Bis(1,4,7-trithiacyclononane)nickel(II) di[bis(benzenedithiolato)nickelate(II)]; [Ni(L)2][Ni(bdt)2]2
Gross Formula C36H40Ni3S14
Properties Weiss constant
Structure [Ni(L)2][Ni(bdt)2]2;
L ¼ 1,4,7-trithiacyclononane; S
S
S [Ni(bdt)2] ¼ [bis(benzenedithiolato)nickelate(II) S
S Ni S
S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_97
239
240
Magnetic properties of nickel complex of crown thioether
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] 30–0 – – –
ΘP [K] Method Remarks 6.5 SQUID Structure consists of two types of chains connected to each other by antiferromagnetic interactions
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M obeys Curie-Weiss law, with: C ¼ 1.76 cm3 K mol1 θ ¼ 6.5 K (ii) a competition between two types of antiferromagnetic interactions causes canted spin configuration, giving rise to weak ferromagnetism
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference J. Nishijo, A. Miyazaki, T. Enoki, Polyhedron 22, 1755 (2003)
Magnetic properties of ion-pair complex of 2,6-bis(pyrazol-3-yl)pyridine nickel(II) cation and trioxalatochromate(III) anion
Substance Di{bis[2,6-bis(pyrazol-3-yl)pyridine]nickel(II)} trioxalatochromate(III) perchlorate hexahydrate; [Ni(bpp)2]2[Cr(C2O4)3]ClO4.6H2O
Gross Formula C50H48ClCrN20Ni2O22
Properties Product of molar magnetic susceptibility with temperature
Structure [Ni(bpp)2]2[Cr(C2O4)3]ClO4.6H2O;
bpp ¼ 2,6-bis(pyrazol-3-yl)pyridine HO
OH
S O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_98
241
242
Magnetic properties of ion-pair complex of 2,6-bis(pyrazol-3-yl)pyridine. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] RT – 4.72 –
ΘP [K] Method Remarks – SQUID Structure consists of isolated [NiII(bpp)2]2+ and [Cr(C2O4)2]3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T (300–2 K) is shown in Fig. 1 (ii) χ MT remains constant until 68 K, below this temperature the decrease observed, which gets abrupt on further cooling (iii) temperature dependence behavior can be attributed to a zero-field splitting of Ni2+ and Cr3+ cations
temperature xMT [cm3 K mol–1]
5 Product of molar susceptibility with
Fig. 1 [Ni(bpp)2]2[Cr (C2O4)3]ClO4.6H2O. Temperature dependence of χ MT
4
3
2
1
0
0
50
100
150
200
Temperature T [K]
250
300
Reference
243
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference E. Coronado, M.C. Gimenez-Lopez, C. Gimenez-Siaz, J.M. Martinez-Agudo, F.M. Romero, Polyhedron 22, 2375 (2003)
Magnetic properties of trinuclear, cyanobridged, hetero-bimetallic (Cu-Ni) complex with piperazine
Substance Trinuclear, cyano-bridged, hetero-bimetallic (Cu-Ni) complex with piperazine; [Cu(bappz)(μ-NC)Ni(CN)2(μ-CN)Cu(bappz)](ClO4)2
Gross Formula C24H48Cl2Cu2N12NiO8
Properties Molar magnetic moment, Weiss constant and exchange energy
Structure [Cu(bappz)(μ-NC)Ni(CN)2(μ-CN)Cu(bappz)](ClO4)2;
bappz ¼ 1,4-bis(3-aminopropyl) piperazine H2N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_99
N
N
244
NH2
Additional Remarks
245
Data T [K] 300 1.9
χg [106 emu/g] – –
χM [106 emu/mol1] – –
pm or μeff [μB] 1.93 1.26
ΘP [K] Method Remarks 19.7 SQUID Nickel(II) in a squareplanar arrangement while Cu(II) ions in a distorted square-pyramid geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence χ cu and χ CuT is shown in Fig. 1 (ii) in the temperature range 300-50 k, Curie-Weiss law is obeyed, with C ¼ 0.475 cm3 K mol1 θ ¼ 19.7 K (iii) very weak antiferromagnetic interactions (J ¼ 0.54 cm1) suggested between the copper atoms through the diamagnetic [Ni(CN)4]2 ion
0,30 0,08
0,25
0,06
0,20 0,15
0,04
0,10 0,02
0,05
0,00
temperature xMT [cm3 K mol–1]
Molar susceptibility xCu [cm3 mol–1]
0,35
0,10
Product of molar susceptibility with
0,40
0,12
0,00 0
10
20 30 Temperature T [K]
40
50
Fig. 1 [Cu(bappz)(μ-NC)Ni(CN)2(μ-CN)Cu(bappz)](ClO4)2. Temperature dependence of χ cu (●) and χ cuT (○). The solid line is the calculated curve
246
Magnetic properties of trinuclear, cyano-bridged, hetero-bimetallic. . .
Symbols and Abbreviations Short form T χg χM pm μeff J C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Z. Smekal, Z. Travnicek, J. Mrozinski, J. Marek, Inorg. Chem. Commun. 6, 1395 (2003)
Magnetic properties of nickel(II) complex with benzenehexacarboxylic acid (mellitic acid)
Substance Hexaaqua-dihydroxo(benzenehexacarboxylato)tetranickel(II); [Ni4(L)(OH)2(H2O)6]
Gross Formula C12H14Ni4O20
Properties Weiss constant
Structure [Ni4(L)(OH)2(H2O)6];
H6L ¼ benzenehexacarboxylic acid HO O
O
O
HO O
OH OH OH O
O OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_100
247
Magnetic properties of nickel(II) complex with benzenehexacarboxylic acid. . .
248
Data χg χM pm or μeff T [K] [106 emu/g] [106 emu/mol] [μB] 300–1.8 – – –
ΘP [K] Method Remarks 12.1 SQUID 2-D, polymer, pseudooctahedral Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature (300–1.8 K) dependence of χ M1 and χ MT is shown in Fig. 1 (ii) at high temperature, Curie-Weiss law observed, with: C ¼ 4.4 cm3 K mol1 θ ¼ 12.1 K (iii) antiferromagnetic interactions between Ni centres indicated 5.0
Inverse molar susceptibility xM–1 [mol cm–3]
80
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
70 4.0
60 50
3.0
40 2.0
30 20
1.0
10 0.0
0
50
100 150 200 Temperature T [K]
250
Fig. 1 [Ni4(L)(OH)2(H2O)6]. Temperature dependence of χ M1 and χ MT
0 300
Reference
249
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H. Kumagai, Y. Oka, M. Akita-Tanaka, K. Inoue, Inorg. Chim. Acta 332, 176 (2002)
Magnetic properties of tetranuclear nickel(II) butterfly complex stabilized by pivalate ligand
Substance Tetranuclear nickel(II) butterfly complex stabilized by pivlate ligand; [Ni4(μ3-OH)2(O2CCMe3)6(EtOH)6].2EtOH
Gross Formula C46H104Ni4O22
Properties Exchange energy
Structure [Ni4(μ3-OH)2(O2CCMe3)6(EtOH)6].2EtOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_101
250
Additional Remarks
251
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.5 – – –
ΘP [K] –
Method Remarks SQUID Butterfly type of arrangement
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks plot of χ M versus T and χ MT versus T (inset) are shown in Fig. 1 χ MT data (Fig. 1) show that ground state is S ¼ 0 χ MT data analyzed using an isotropic model with three exchange couplings best-fit parameters are: J0 ¼ 0.20 cm1 [core coupling (weakly ferromagnetic) between central metal ions] J1 ¼ 1.37 cm1 [wing coupling (weakly antiferromagnetic)] J2 ¼ 0.20 cm1 [wing coupling (weakly antiferromagnetic)]
Fig. 1 [Ni4(μ3-OH)2(O2 CCMe3)6(EtOH)6].2EtOH. Temperature dependence of χ M. The dashed line represent a Curie-Weiss fit to the hightemperature region with ϴcw ¼ -34 K and a Curie constant of 4.82 cm3 K mol1
0.10 Molar susceptibility xM [cm3 mol–1]
(i) (ii) (iii) (iv)
xexp xspin
0.08
0.06
0.04
0.02 ~ 5% PM impurity term
0.00
0
50
100
150
200
Temperature T [K]
250
300
252
Magnetic properties of tetranuclear nickel(II) butterfly complex. . .
Symbols and Abbreviations Short form T χg χM pm μeff J C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference G. Chaboussant, R. Basler, H.-U. Gudel, S. Ochsenbein, A. Parkin, S. Parsons, G. Rajaraman, A. Sieber, A.A. Smith, G.A. Timco, R.E. Winpenny, J. Chem. Soc. Dalton Trans., 2758 (2004)
Magnetic properties of tetranuclear heterocubane nickel(II) cluster stabilized by pivalate ligand
Substance Methoxy bridged tetranuclear nickel(II) cluster stabilized by pivlate ligand; [Ni4(μ3-OMe)4(O2CCMe3)4(MeOH)4]
Gross Formula C32H80Ni4O20
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni4(μ3-OMe)4(O2CCMe3)4(MeOH)4]
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_102
253
254
Magnetic properties of tetranuclear heterocubane nickel(II) cluster. . .
Data T [K] RT
χ MT χg [106 emu/g] [cm3 K mol1] – 4.66
pm or μeff [μB] –
ΘP [K] –
Method Remarks SQUID Tetranuclear small Ni(II) cage
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T (300–1.5 K) is shown in Fig. 1 (ii) ground state is S ¼ 4, with two types of ferromagnetic exchange interactions: J ¼ 0.84 cm1 J' ¼ 0.45 cm1 g ¼ ~2.0
temperature xMT [cm3 K mol–1]
11 Product of molar susceptibility with
Fig. 1 [Ni4(μ3-OMe)4(O2CCMe3)4 (MeOH)4]. Temperature dependence of χ MT. The solid line represent the best- fit to the data described in the text
10 9 8 7 6 5 4
0
50
100 150 200 Temperature T [K]
250
300
Reference
255
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference G. Chaboussant, R. Basler, H.-U. Gudel, S. Ochsenbein, A. Parkin, S. Parsons, G. Rajaraman, A. Sieber, A.A. Smith, G.A. Timco, R.E. Winpenny, J. Chem. Soc. Dalton Trans., 2758 (2004)
Magnetic properties of tetranuclear Ni2IIMn2II complex with N-(2-hydroxymethylphenyl) salicylideneimine
Substance Tetranuclear Ni2IIMn2II complex with N-(2-hydroxymethylphenyl)salicylideneimine; [Mn2Ni2Cl2(L)4(H2O)2]
Gross Formula C58H54Cl6Mn2N5Ni2O11
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and exchange energy
Structure [Mn2Ni2Cl2(L)4(H2O)2];
H2L ¼ N-(2-hydroxymethylphenyl)salicylideneimine N
OH OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_103
256
Additional Remarks
257
Data T [K] RT 4
χg [106 emu/g] – –
χ MT [cm3 K mol1] – ~22
pm or μeff [μB] 2.79 13.2
ΘP [K] Method Remarks – SQUID Complex has a double-cubane core connected by μ3-alkoxo bridges
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T (300–2 K) is shown in Fig. 1 (ii) χ MT measurements indicate presence of ferromagnetic interactions between metal ions in double cubane core (iii) magnetic data analyzed by Kambe’s method, with: JNiNi ¼ 20 cm1 JNiMn ¼ 1.5 cm1 g ¼ 2.08 (iv) S ¼ 6 is the ground state 30
25 temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
Fig. 1 [Mn2Ni2Cl2(L)4(H2O)2]. Temperature dependence of χ MT. The solid line represents the least-squares fit of the data as described in the text
20
15
10
5
0
100 200 Temperature T [K]
300
258
Magnetic properties of tetranuclear Ni2IIMn2II complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID S
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device spin state
Reference M. Koikawa, M. Ohba, T. Tokii, Polyhedron 24, 2257 (2005)
Magnetic properties of tetrametallic Ni2-Fe2 macrocyclic framework constructed from ferrocenedicarboxylate and bipyridine
Substance Di-μ-aqua-bis(2,20 -bipyridine)-bis(ferrocenedicarboxylato)dinickel(II,II) monomethanolate dihydrate; [Ni2(L)2(bipy)2(μ-OH2)2].CH3OH.2H2O
Gross Formula C45H44Fe2N4Ni2O13
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature, Weiss constant and exchange energy
Structure [Ni2(L)2(bipy)2(μ-OH2)2].CH3OH.2H2O;
L2 ¼ ferrocenedicarboxylate dianion; O O Fe O O
bipy ¼ bipyridine N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_104
259
260
Magnetic properties of tetrametallic Ni2-Fe2 macrocyclic framework. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] 300 – 2.265 3.01
ΘP [K] Method Remarks 7.19 SQUID Each nickel is at a six-coordinated geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plots of χ M1 and χ MT versus T are shown in Fig. 1 (ii) Curie-Weiss law obeyed (300–5 K), with: C ¼ 2.238 cm3 K mol1 θ ¼ 7.19 K (iii) χ M data shows an unusual global ferromagnetic coupling between the nickel(II) ions (iv) best-fit parameters, being: J ¼ 8.15 cm1 g ¼ 2.085 3.8 Inverse molar susceptibility xM–1 [mol cm–3]
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
140 3.6
120 3.4
100
3.2
80
3.0 2.8
60
2.6
40
2.4
20
2.2
0 0
50
100 150 200 Temperature T [K]
250
300
350
Fig. 1 [Ni2(L)2(bipy)2(μ-OH2)2].CH3OH.2H2O. Temperature dependence of χ M1 and χ MT. The solid line is theoretical curve obtained with J ¼ 8015 cm3, g ¼ 2.085
Reference
261
Symbols and Abbreviations Short form T χg χM pm μeff J g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference X. Meng, H. Hou, G. Li, B. Ye, T. Ge, Y. Fan, Y. Zhu, H. Sakiyama, J. Organomet. Chem. 689, 1218 (2004)
Magnetic properties of a polymeric complex of nickel(II) with 2,6-dimethylbenzo[1,2-d:4,5-d0 ]diimidazole
Substance catena-poly-Diacetato-(2,6-dimethylbenzo[1,2-d:4,5-d0 ]diimidazole)nickel(II); [Ni(dmbdiz)(OOCMe)2]
Gross Formula C14H16N4NiO4
Properties Molar magnetic moment and product of molar magnetic susceptibility with temperature
Structure [Ni(dmbdiz)OOCMe)2];
dmbdiz ¼ 2,6-dimethylbenzo[1,2-d:4,5-d0 ]diimidazole Me
N
N
N H
N H cis
Me
Me
N
H N
N
N
Me
H trans
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_105
262
Additional Remarks
263
Data T [K] 300 300–95 21.0 2.0
χg [106 emu/g] – – – –
χ MT [cm3 K mol1] – 1.40 1.48 0.4
pm or μeff [μB] 3.3 – – –
ΘP [K] Method Remarks – Dmbdiz ligand bridges the Ni(II) ions to form linear chain; high-spin Ni(II) being in a pseudooctahedral environment
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T and χ M versus T is shown in Fig. 1 (ii) very weak ferromagnetic interactions between the magnetic centers
1.4 1.2
0.15
1.0 0.10 0.8 0.05
0.6 0.4
0.00 0
50
100 150 200 Temperature T [K]
250
300
temperature xMT [cm3 K mol–1]
0.20
Product of molar susceptibility with
Molar susceptibility xM [cm3 mol–1]
1.6
0.2
Fig. 1 [Ni(dmbdiz)OOCMe)2]. Temperature dependence of χ M and χ MT. The solid lines correspond to the best fits
264
Magnetic properties of a polymeric complex of nickel(II) with. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference C.-X. Cai, Y.-Q. Tian, X.-M. Ren, Y.-Z. Li, X.-Z. You, Transit. Met. Chem. 28, 312 (2003)
Magnetic properties of nickel(II) 1-D chain composed of nickel(II) cation and nickel(II) anionic building blocks
Substance catena-poly-{[Tetraaquanickel(II)][tetraaqua-bis(3,5-pyrazoledicarboxylato) nickalate(II)]}; [{Ni(H2O)4}{Ni2(dcp)2(H2O)4}]1
Gross Formula C10H18N4Ni3O16
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [{Ni(H2O)4}{Ni2(dcp)2(H2O)4}]1;
H3dcp ¼ 3,5-pyrazoledicarboxylic acid HOOC N N H
COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_106
265
Magnetic properties of nickel(II) 1-D chain composed of nickel(II) cation. . .
266
Data T [K] 300 8
χg [106 emu/g] – –
χ MT pm or μeff [cm3 K mol1] [μB] 3.44 – 1.0
ΘP [K] Method Remarks – SQUID 1-D chain, octahedral environment around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence (300–1.8 K) of χ MT is shown in Fig. 1 (ii) χ M data analyzed using the appropriate equation where anisotropy can be considered negligible and leads to best-set of parameters J/kB ¼ 4.6 K (interactions through carboxylate bridge) J’/kB ¼ 29.3 K (interactions through pyrazole bridge) g ¼ 2.17
temperature xMT [cm3 K mol–1]
3.5 Product of molar susceptibility with
Fig. 1 [{Ni(H2O)4} {Ni2(dcp)2(H2O)4}]1. Temperature dependence of χ MT. The solid line is the bestfit
3 2.5 2 1.5 1 0.5 0
0
50
100 150 200 Temperature T [K]
250
300
Reference
267
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P. King, R. Clerac, C.E. Anson, A.K. Powell, J. Chem. Soc. Dalton Trans., 852 (2004)
Magnetic properties of m-aqua-dinuclear nickel(II) 1-D chain with 3, 5-pyrazoledicarboxylic acid
Substance catena-poly-Di-μ-aqua-diaqua-bis(hydrogen-3, 5-pyrazoledicarboxylato)dinickel(II); [Ni2(Hdcp)2(μ-H2O)2(H2O)2]1
Gross Formula C10H12N4Ni2O12
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni2(Hdcp)2(μ-H2O)2(H2O)2]1;
H3dcp ¼ 3,5-pyrazoledicarboxylic acid HOOC N N H
COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_107
268
Additional Remarks
269
Data T [K] 300 50 1.8
χg [106 emu/g] – – –
χ MT pm or μeff [cm3 K mol1] [μB] 2.41 – 2.31 0.31
ΘP [K] Method Remarks – SQUID Rarely reported double aquabridges linked Ni(II) ions forming an inter-linked double stranded chain with distorted octahedral Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
2.5 0.24
2
0.22 Molar susceptibility c M [cm3 mol–1]
Fig. 1 [Ni2(Hdcp)2(μH2O)2(H2O)2]1. Temperature dependence of χ MT and χ M/ Ni2 (inset). The solid and dashed lines are the best fits obtained with a Heisenberg S ¼ 1 dimer model and anisotropic Heisenberg S ¼ 1 dimer model, respectively
Product of molar susceptibility with temperature c MT [cm3 K mol–1]
(i) temperature dependence of χ M/Ni2 and χ MT is shown in Fig. 1 (ii) weak antiferromagnetic interactions between spin centers, with: (Heisenberg S ¼ 1 dimer model used) J/kB ¼ 2.3 K (interactions through carboxylate bridge) g ¼ 2.3
1.5 1
0.2 0.18 0.16 0.14 0.12
0.5 0
0.1
0
50
0
5
10
100 150 200 Temperature T [K]
15
20
250
300
270
Magnetic properties of m-aqua-dinuclear nickel(II) 1-D chain with. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID S
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device spin state
Reference P. King, R. Clerac, C.E. Anson, A.K. Powell, J. Chem. Soc. Dalton Trans. 852 (2004)
Magnetic properties of nickel(II) complex with 4-pyridyl-substituted nitronyl nitroxide radical and 1,4-dicarboxy-2, 5-dicarboxylatobenzene dianion
Substance catena-poly-Diaqua-(1,4-dicarboxy-2,5-dicarboxylatobenzene)-bis[2-(40 -pyridyl)4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide]nickel(II) dihydrate; {[Ni(L)2(tcb)(H2O)2].2H2O}n
Gross Formula C34H48N6NiO18
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure {[Ni(L)2(tcb)(H2O)2].2H2O}n;
L ¼ 2-(40 -pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide N
O N
N O
tcb ¼ 1,4-dicarboxy-2,5-dicarboxylatobenzene dianion OOC HOOC
COOH COO
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_108
271
272
Magnetic properties of nickel(II) complex with 4-pyridyl-substituted. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] 300 – 1.78 – –
ΘP [K] Method Remarks – SQUID Chain structure, distorted octahedral geometry around each Ni(II) ion
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ MT and χ M versus T plots are shown in Fig. 1 (ii) the χ MT value decreases with decreasing temperature indicating the presence of antiferromagnetic interactions in the complex (iii) magnetic data analysed assuming 1-D chain consisting of R-Ni-R units, using the Fisher’s classical spin model χ MðchainÞ ¼ Ng 2 β2 =3kT ½Seff ðSeff þ 1Þð1 þ uÞ=ð1 uÞ ð1Þ u ¼ Coth½jS eff ðSeff þ 1Þ=kT kT =jS eff ðSeff þ 1Þ
ð2Þ
ð3Þ Seff ðSeff þ 1Þ ¼ 3kðχ uni T Þ=Ng 2 β2 where Seff ¼ classical spin (iv) the best-fitting for the data gives: J ¼ 5.0 cm1 (exchange interaction between Ni(II) and a radical) j ¼ 1.65 cm1 (exchange interaction between fragments in the chain) g ¼ 2.05 (v) results indicate weak antiferromagnetic exchange interactions simultaneously between Ni(II) and radical and between two R-Ni-R units in the chain
1.8
0.12
1.6
0.10
1.4
0.08
1.2
0.06
1.0
0.04
0.8
0.02
0.6 0.00 0.4 0
50
100 150 200 Temperature T [K]
250
Molar susceptibility xM [cm3 mol–1]
temperature xMT [cm3 K mol–1]
273
Product of molar susceptibility with
Reference
300
Fig. 1 {[Ni(L)2(tcb)(H2O)2].2H2O}n. Temperature dependence of χ MT (□) and χ M (Δ). The solid lines represent the best least-squares fit of the experimental data to the theoretical equation
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L.-Y. Wang, Z.-L. Liu, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, Inorg. Chem. Commun. 6, 630 (2003)
Magnetic properties of heterobimetallic, polymeric Ni(II)-Cu(II) complex with N-(3-hydroxypropyl)ethane-1,2-diamine
Substance catena-poly-{[Bis(μ-N-(aminoethyl)-3-aminopropanolato)]dicopper(II) tetracyanonickelate(II) dihydrate}; [Cu2(L)2][Ni(CN)4].2H2O
Gross Formula C14H30Cu2N8NiO4
Properties Exchange energy
Structure [Cu2(L)2][Ni(CN)4].2H2O;
HL ¼ N-(3-hydroxypropyl)ethane-1,2-diamine HO
N H
NH2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_109
274
Additional Remarks
275
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 380–70 – – – – SQUID Dinuclear Cu(II) cation linked to Ni(II) anion, giving 1D-chain structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ M versus T (380–70 K) is shown in Fig. 1 (ii) χ M data fit well with the Cu(II) dimer equation to give: 2 J ¼ 622 cm1 g ¼ 2.05 (iii) very high coupling parameter value indicates strong antiferromagnetic interactions between the Cu(II) ions
Molar susceptibility xM [cm3 mol–1]
7.0x10–4 6.0x10–4 5.0x10–4 4.0x10–4 3.0x10–4 2.0x10–4 1.0x10–4 0.0 50
100
150
200
250
300
350
400
Temperature T [K]
Fig. 1 [Cu2(L)2][Ni(CN)4].2H2O. Temperature dependence of χ M. The best-fit obtained by applying magnetic data described in the text
276
Magnetic properties of heterobimetallic, polymeric Ni(II)-Cu(II) complex. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference P.S. Mukherjee, T.K. Maji, T. Mallah, E. Zangrando, L. Randaccio, N.R. Chaudhuri, Inorg. Chim. Acta 315, 249 (2001)
Magnetic properties of polynuclear nickel(II) complex with dicyanamide and triethylenetetramine
Substance catena-poly-[Dicyanamidotriethylenetetraminenickel(II)] perchlorate; [Ni(teta){N(CN)2}]ClO4
Gross Formula C8H18ClN7NiO4
Properties Molar magnetic moment and exchange energy
Structure [Ni(teta){N(CN)2}]ClO4;
teta ¼ triethylenetetramine NH HN NH2
H 2N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_110
277
278
Magnetic properties of polynuclear nickel(II) complex with dicyanamide and. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] 80–0 – – 2.84
ΘP [K] Method Remarks – SQUID Polymeric chain structure, octahedral geometry around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of μeff is shown in Fig. 1 (ii) complex exhibits a negligiable exchange coupling: J/hc ¼ 0.07 cm1 gNi ¼ 2.016 (iii) Curie-Weiss law holds true for isolated S ¼ 1 centers 4
3
Effective magnetic moment meff [mB]
Effective magnetic moment meff [mB]
Fig. 1 [Ni(teta){N(CN)2}] ClO4. Temperature dependence of μeff; inset shows the low-temperature window. The open circles correspond to the experimental data whereas full points and solid lines correspond to the fitted data
2
1
3.5
3.0
2.5 2
0
0
10
20
30
4 6 8 10 12 14 Temperature T [K]
40
50
Temperature T [K]
60
70
80
Reference
279
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Boca, M. Boca, M. Gembicky, L. Jager, C. Wagner, H. Fuess, Polyhedron 23, 2337 (2004)
Magnetic properties of two-dimensional, dipyrazine bridged Ni(II) polymer
Substance Di-μ-pyrazine-dibromonickel(II); [Ni(pyz)2Br2]
Gross Formula C8H8Br2N4Ni
Properties Molar magnetic moment, Weiss constant and exchange energy
Structure [Ni(pyz)2Br2];
pyz ¼ pyrazine N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_111
280
Additional Remarks
281
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–100 – – 3.41/Ni
ΘP [K] Method Remarks 3.7 SQUID Structure is made up of parallel sheets, octahedral arrangement around Ni(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of plot of χ MT and χ M is shown in Fig. 1 (ii) Curie-Weiss behavior (300–100 K) with: θ ¼ 3.7 K (iii) at lower temperature antiferromagnetic interactions indicated, with: J ¼ 0.08 cm1
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Ni(pyz)2Br2]. Temperature dependence of χ MT. The solid line indicates the paramagnetic Curie-Weiss fit to the data
282
Magnetic properties of two-dimensional, dipyrazine bridged Ni(II) polymer
Fig. 2 [Ni(pyz)2Br2]. Temperature dependence of χ M. The solid line indicates thefit to the data based on an expression for S ¼ 1 system
Symbols and Abbreviations Short form T χg χM pm μeff J ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference M. James, Aust. J. Chem. 55, 219 (2002)
Magnetic properties of nickel(II) tetraamine phthalocyanine
Substance catena-poly-Tetraaminephthalocyaninatonickel(II) dihydrate; {[Ni(L)].2H2O}n
Gross Formula C32H24N12NiO2
Properties Molar magnetic susceptibility
Structure {[Ni(L)].2H2O}n;
H2L ¼ tetraminophthalocyanine NH2
H2N
N
N H
N N
N N
H N
NH2
N
H2N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_112
283
284
Magnetic properties of nickel(II) tetraamine phthalocyanine
Data F [kG] 1.02 1.92 2.81 3.58
χg [106 emu/g] – – – –
χM [106 emu/mol] 598 355 339 330
pm or μeff [μB] –
ΘP [K] –
Method Gouy
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant) F: Field strength
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference B.N. Achar, K.S. Lokesh, J. Organomet. Chem. 689, 3357 (2004)
Remarks Sheet polymer
Magnetic properties of nickle(II) phthalocyanine polymer
Substance catena-poly-Phthalocyaninatonickle(II); [Ni(L)]n
Gross Formula C32H12N8Ni
Properties Molar magnetic susceptibility
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_113
285
286
Magnetic properties of nickle(II) phthalocyanine polymer
Structure H2L ¼ phthalocyanine
[Ni(L)]n; N
N
N
N N N
N Ni N
N N N
Ni N
N
N N N
N N N
N Ni N
N Ni N
N
N
N H
N
N
N
N
N
N
N
N
N
N Ni N
N N
N H N
N
N N N
N N N
Data F [kG] 1.02 1.92 2.81 3.58
χg [106 emu/g] – – ¼
χM [106 emu/mol] 113 1.44 163 167
pm or μeff [μB] –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant) F: Field strength
ΘP [K] –
Method Gouy
Remarks Sheet polymer
Reference
287
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference B.N. Achar, K.S. Lokesh, J. Organomet. Chem. 689, 2601 (2004)
Magnetic properties of a three-dimensional polymeric Ni(II) complex with 5-nitroisophthalate and 1,3-di(4-pyridyl) propane
Substance catena-poly-Aqua-[1,3-di(4-pyridyl)propane]-5-nitroisophthalatonickel(II); [Ni(bpp)(nip)(H2O)]n
Gross Formula C21H19N3NiO7
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Ni(bpp)(nip)(H2O)]n;
bpp ¼ 1,3-di(pyridyl) propane; N
nip2 ¼ 5-nitroisophthalate O
N
N
2
O
O
O O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_114
O
288
Additional Remarks
289
Data T [K] 300 2
χg [106 emu/g] – –
χ MT pm or μeff [cm3 K mol1] [μB] 0.92 2.72 0.41
ΘP [K] Method Remarks 1.26 SQUID Polymeric, coordination around Ni atom is distorted octahedral
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility c M –1 [mol cm–3]
350 0.9
300 250
0.6
200 150 100
0.3
50 0 0.0
0
100
200
300
Temperature T [K] Fig. 1 [Ni(bpp)(nip)(H2O)]n. Temperature dependence of χ MT (□) and χ M1 (◊)
Product of molar susceptibility with temperature c MT [cm3 K mol–1]
(i) plots of χ MT versus T and χ M1 versus T are shown in Fig. 1 (ii) the data fit the Curie-Weiss law, with: C ¼ 0.925 cm3 K mol1 θ ¼ 1.26 K (iii) antiferromagnetic interactions suggested
290
Magnetic properties of a three-dimensional polymeric Ni(II) complex with. . .
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H.-P. Xiao, J.-G. Wang, X.-H. Li, A. Morsali, Z. Anorg. Allg. Chem. 631, 2976 (2005)
Magnetic properties of dicyanamide bridged nickel(II) complex with tetraazacyclotetradecane
Substance Dicyanamide bridged nickel(II) complex with tetraazacyclotetradecane; {[Ni(meso-cth)(μ1,5-dca)]ClO4}n
Gross Formula C18H36ClN7Ni4
Properties Product of molar magnetic susceptibility with temperature, Weiss constant and exchange energy
Structure {[Ni(meso-cth)(μ1,5-dca)]ClO4}n;
meso-cth ¼ meso-5,5,7,12,12,14-hexamethyl1,4,8,11-tetraazacyclotetradecane NH HN NH HN
dca ¼ dicyanamide anion N
C
N
C
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_115
291
292
Magnetic properties of dicyanamide bridged nickel(II) complex with. . .
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol1] [μB] RT – 1.17 –
ΘP [K] Method Remarks +2.4 SQUID Structure consists of 1-D cationic polymeric zig-zag chain with dca bridges
T: Temperature. χ g: Specific susceptibility. χ M: Molar susceptibility. pm, μeff: Effective magnetic moment per molecule. ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ MT and χ M1 (inset) is shown in Fig. 1 (ii) χ M1 obeys Curie-Weiss law (300–2 K), with: C ¼ 1.17 cm3 K mol1 θ ¼ +2.4 K gNi ¼ 2.17 (iii) χ M measurements reveal weak ferromagnetic interactions across dca bridges (iv) magnetic data analysed through Resino’s equation: 2Ng2 β2 Ax3 þ Bx3 þ Cx þ 1 χM ¼ 3kB T Dx2 þ Ex þ 1 best-fit parameters yielded: J ¼ +0.75 cm1 g ¼ 2.183 (v) whereas analysis through Rushbrooke-Wood equation gave: 2Ng2 β2 Fx2 þ Gx þ 2 χM ¼ 3kB T Hx3 þ Ix2 þ Jx þ 1 Where A ¼ 0.1471, B ¼ 0.7890, C ¼ 0.8664, D ¼ 0.0966, E ¼ 0.6249, F ¼ 0.3885, G ¼ 0.0097, H ¼ 1.9446, I ¼ 1.077 and J ¼ 1.4486, x ¼ J/kBT J ¼ +0.78 cm1 g ¼ 2.184
293
3
Inverse molar susceptibility cM–1 [mol cm–3]
Product of molar susceptibility with temperature cMT [cm3 K mol–1]
Reference
2
300 200 100 0 0
100 200 TemperatureT [K]
300
1
0 0
100
200
300
TemperatureT [K] Fig. 1 {[Ni(meso-cth)(μ1,5-dca)]ClO4}n. Temperature dependence of χ MT and χ M1 (inset). The solid line represents the best fit to the theoretical model
Symbols and Abbreviations Short form T χg χM pm μeff J g C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference E. Colacio, I.B. Maimoun, R. Kivekas, R. Sillanpaa, J. Suarez-Varela, Inorg. Chim. Acta 357, 1465 (2004)
Magnetic properties of m1,3-azido bridged nickel(II) compound with macrocyclic ligand having perchlorate counter anion
Substance μ1,3-Azido bridged nickel(II) compound with macrocyclic ligand having perchlorate counter anion; trans-{(μ1,3-N3)[Ni(meso-cth)]}n(ClO4)n
Gross Formula (C16H36ClN7NiO4)n
Properties Molar magnetic susceptibility and exchange energy
Structure trans-{(μ1,3-N3)[Ni(meso-cth)]}n(ClO4)n;
meso-cth ¼ meso-5,7,7,12,14, 14-hexamethyl-1,4,8, 11-tetraazacyclo-tetradecane NH HN NH HN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_116
294
Additional Remarks
295
Data T [K] RT 70
χg [106 emu/g] – –
χM pm or μeff [106 emu/mol] [μB] 3600 – 6030
ΘP [K] Method Remarks – SQUID Compound has two different + isomeric chains A and B Faraday present in 2:1 ratio
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks plot of χ M versus T is shown in Fig. 1 and χ MT versus T is shown in Fig. 2 χ M versus T plot shows a discontinuity at a ~ 137 K due to structural transition χ MT measurements in discontinuity region show a hysteresis loop (Fig. 2) strong antiferromagnetic interaction observed: JA ¼ 43.9 cm1 gA ¼ 2.36 JB ¼ 39.79 cm1 gB ¼ 2.44
Fig. 1 trans-{(μ1,3-N3)[Ni (meso-cth)]}n(ClO4)n. Temperature dependence of χ M. The solid lines shows the best fit of the experimental data
0,014
Molar susceptibility xM [cm3 mol–1]
(i) (ii) (iii) (iv)
0,012
0,010
0,008
0,006
0,004
0,002 0
50
100 150 200 Temperature T [K]
250
300
temperature xMT [cm3 K mol–1]
Fig. 2 trans-{(μ1,3-N3)[Ni (meso-cth)]}n(ClO4)n. Temperature dependence of χ MT
Magnetic properties of m1,3-azido bridged nickel(II) compound. . .
Product of molar susceptibility with
296
0.85
0.80
0.75
0.70 120
130
140 150 Temperature T [K]
160
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device Faraday method
Reference M.S. El Fallah, A. Escuer, R. Vicente, X. Solans, M. Font-Bardia, M. Verdaguer, Inorg. Chim. Acta 344, 133 (2003)
Magnetic properties of m1,3-azido bridged nickel(II) compound with macrocyclic ligand having hexafluorophosphate counter anion
Substance μ1,3-Azido bridged nickel(II) compound with macrocyclic ligand having hexafluorophosphate counter anion; trans-{(μ1,3-N3)[Ni(meso-cth)]}n(PF6)n
Gross Formula (C16H36F6N7NiP)n
Properties Molar magnetic susceptibility and exchange energy
Structure trans-{(μ1,3-N3)[Ni(meso-cth)]}n(PF6)n;
meso-cth ¼ meso-5,7,7,12,14, 14-hexamethyl-1,4,8, 11-tetraazacyclo-tetradecane NH HN NH HN
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_117
297
Magnetic properties of m1,3-azido bridged nickel(II) compound. . .
298
Data T [K] RT 30 10
χg [106 emu/g] – – –
χM [106 emu/mol] 3900 1110 1020
pm or μeff [μB] –
ΘP [K] –
Method SQUID + faraday
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ M versus T is shown in Fig. 1 (ii) experimental data fitted to modified Weng’s equation; best-fit parameters are: J ¼ 21.12 cm1 g ¼ 2.25 ϱ ¼ 3.42 102% (fraction of paramagnetic impurity) (iii) antiferromagnetic coupling indicated 0,014
Molar susceptibility xM [cm3 mol–1]
Fig. 1 trans-{(μ1,3-N3)[Ni (meso-cth)]}n(PF6)n. Temperature dependence of χ M. The solid lines shows the best fit of the experimental data
0,012
0,010
0,008
0,006
0,004
0,002 0
50
100
150
200
Temperature T [K]
250
300
Reference
299
Symbols and Abbreviations Short form T χg χM pm μeff ϱ J g ΘP SQUID Faraday
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic impurity exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device Faraday method
Reference M.S. El Fallah, A. Escuer, R. Vicente, X. Solans, M. Font-Bardia, M. Verdaguer, Inorg. Chim. Acta 344, 133 (2003)
Magnetic properties of nicotinic acid bridged nickel polymer
Substance Aqua-tetra(nicotinato)dinickel(II,II); [Ni2(nic)4(H2O)]
Gross Formula C24H18N4Ni2O9
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [Ni2(nic)4(H2O)];
Hnic ¼ nicotinic acid O OH N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_118
300
Additional Remarks
301
Data T [K] RT 20.0 5.0
χg [106 emu/g] – – –
χ MT [cm3 K mol1] 2.17/dimer 3.76/dimer 2.88/dimer
pm or μeff ΘP [μB] [K] Method Remarks – – CF-1 Structure has a 3D stair-shaped – architecture in which building – units are ‘mushroom-shaped’ channels
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M and χ MT is shown in Fig. 1 (ii) χ M measurements show a ferromagnetic interaction between the two nickel atoms in one dimer and an antiferromagnetic coupling between adjacent dimer units (iii) least-squares fitting of data through proper equation yielded: J ¼ +26.82 cm1 J’ ¼ 0.89 cm1 g ¼ 2.42
3.5
0.4 3.0
0.3 0.2
2.5
0.1 0.0 0
50
100 150 200 Temperature T [K]
250
Fig. 1 [Ni2(nic)4(H2O)]. Temperature dependence of χ M (○) and χ MT (~)
2.0 300
temperature xMT [cm3 K mol–1]
0.5
Product of molar susceptibility with
Molar susceptibility xM [cm3 mol–1]
4.0 0.6
302
Magnetic properties of nicotinic acid bridged nickel polymer
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant)
Reference C.-D. Wu, C.-Z. Lu, H.-H. Zhuang, J.-S. Huang, Z. Anorg. Allg. Chem. 629, 693 (2003)
Magnetic properties of ion-pair complex containing substituted isoquinolinium cation and nickel(III)-malconitriledithiolate anion
Substance 1-(40 -Bromo-20 -fluorobenzyl)isoquinolinium-bis(maleonitriledithiolato)nickelate(III); [BrFbz-iql][Ni(mnt)2]0.5MeCN
Gross Formula C24H12BrFN5NiS4
Properties Product of molar magnetic susceptibility with temperature and Weiss constant
Structure [BrFbz-iql][Ni(mnt)2]0.5MeCN;
[BrFbz-iql]+ ¼ 1-(4-bromo-20 -fluorobenzyl) isoquinolinium cation N F
Br
mnt ¼ maleonitriledithiolato anion NC
S
NC
S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_119
303
Magnetic properties of ion-pair complex containing substituted. . .
304
Data T [K] RT 85 100 –
χM [106 emu/mol] –
pm or μeff [μB] 0.75
ΘP [K] 5.3
Method Remarks SQUID 6-H perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Fig. 1 Ba3PrIr2O9. Temperature dependence of χ M. The solid line shows the modified Curie-Weiss law fitting
Molar susceptibility χM [cm3 mol–1]
(i) temperature dependence of χ M is shown in Fig. 1 (ii) χ M data fitted to modified Curie-Weiss law, with: θ ¼ 5.3 K TIP ¼ 915 106 cm3 mol1 (temperature independent paramagnetism) (iii) χ M data show that antiferromagnetic interaction between two Ir ions in the Ir2O9 dimer results in the large TIP over a wide temperature range (iv) μeff is quite reasonable for Pr4+ ion octahedrally coordinated
0.020 0.015 0.010 0.005 0.000
0
100
200 300 Temperature T [K]
400
800
Magnetic properties of 6H-perovskite, quaternary oxide of. . .
Symbols and Abbreviations Short form T χg χM pm μeff TIP ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment temperature independent paramagnetism paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Hinatsu, S. Oyama, Y. Doi, Bull. Chem. Soc. Jpn. 77, 1479 (2004)
Magnetic properties of terbium germanium antimonide
Substance Terbium germanium antimonide; Tb6Ge5-xSb11+x
Gross Formula Tb6Ge5-xSb11+x
Properties Molar magnetic moment and Weiss constant
Structure Tb6Ge5-xSb11+x
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_348
801
802
Magnetic properties of terbium germanium antimonide
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 300 – – 8.53 10 SQUID Metallic, possessing a threedimensional extended structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
6
24
5
20
4
16
3
12
2
8
1 4 0
0
50
100 150 200 Temperature T [K]
250
300
Effective magnetic moment meff [m]
Fig. 1 Tb6Ge5-xSb11+x. Temperature dependence of μeff
Inverse molar susceptibility χ–1 [mol cm–3]
(i) variation of μeff with temperature is shown in Fig. 1 (ii) χ M measurement reveal long range antiferromagnetic ordering at TN ¼ 22 K (iii) at 2 K, it undergoes a metamagnetic transition: Hc ¼ >7 T (degree of the resistance of a magnet against demagnetisation)
Reference
803
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Deakin, R. Lam, A. Mar, Inorg. Chem. 40, 960 (2001)
Magnetic properties of praseodymium(III) complex with 5-aminosalicylic acid
Substance Di[aqua-bis(5-aminosalicylato)praseodimium(III)] chloride dihydrate; [Pr(L)2(H2O)]2Cl2.2H2O
Gross Formula C28H32Cl2N4O16Pr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_349
804
Symbols and Abbreviations
805
Structure NaL ¼ sodium 5-aminosalicylate
[Pr(L)2(H2O)]2Cl2.2H2O;
H2 N
NH2
NH2
OH C
H
O
O
Pr
O HO
O
HO
HO
H
COONa
C
O
O
Pr O
O C
O
O
OH
H Cl2.2H2O H
C
NH2
NH2
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.37
ΘP [K] –
Method –
Remarks Dimeric
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) little deviation of χ M from Van Vleck equation, indicating non-participation of 4f electrons in bonding
Symbols and Abbreviations Short form T χg χM
Full form temperature specific susceptibility molar susceptibility (continued)
806 pm μeff ΘP
Magnetic properties of praseodymium(III) complex with 5-aminosalicylic acid effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference X. Zhang, X. Lie, Z. Dai, Synth. React. Inorg. Met.-Org. Chem. 34, 1123 (2004)
Magnetic properties of heterotrimetallic derivative of praseodymium(III) containing nonaisopropoxidezirconate ligand
Substance Chlorotetraisopropoxoaluminatononaisorpopoxozirconatopraseodymium(III); [Pr(LZr)(LAl)Cl]
Gross Formula C39H91AlClPO13Zr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_350
807
Magnetic properties of heterotrimetallic derivative of praseodymium(III). . .
808
Structure LZrΘ ¼ nonaisopropoxidezirconate;
[Pr(LZr)(LAl)Cl]; iPrO
iP
iPrO
iPrO
rO iP
Zr iPrO
iPrO
rO
Cl
Zr
rO
iPrO
i PrO
iPrO
Zr
i PrO
iPrO
rO
Zr iPrO
i PrO
iP
iPrO
Al
Pr iPrO
iP
i PrO
iPrO iPrO
iPrO
LAlΘ ¼ tetraisopropoxoaluminate i P rO
iP
rO
Al i PrO
i PrO
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.56 – Gouy μeff value close to calculated curve T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference
809
Reference S. Mishra, U.M. Tripathi, A. Singh, R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem. 32, 689 (2002)
Magnetic properties of heterotrimetallic derivative of praseodymium(III) containing nonaisopropoxidezirconate ligand
Substance Bis(tetraisopropoxoaluminato)nonaisorpopoxozirconatopraseodymium(III); [Pr(LZr)(LAl)2]
Gross Formula C51H119Al2PrO17Zr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_351
810
Symbols and Abbreviations
811
Structure LZrΘ ¼ nonaisopropoxidezirconate;
[Pr(LZr)(LAl)2];
iPrO
i PrO iPrO
rO
iPrO
Al
i PrO
Zr
iP
iPrO
rO
Pr OPri
rO Al
iPrO
iPrO
i PrO
iP
rO
rO
iPrO
Zr
i PrO
iP
iPrO
iPrO
iPrO
Zr
iP
Zr
O
iP
iPrO
Pi r
iPrO
i PrO
iPrO iPrO
LAlΘ ¼ tetraisopropoxoaluminate iP
i P rO
rO
Al i PrO
i PrO
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.54 – Gouy μeff value close to calculated curve T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
812
Magnetic properties of heterotrimetallic derivative of praseodymium(III). . .
Reference S. Mishra, U.M. Tripathi, A. Singh, R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem. 32, 689 (2002)
Part VI Nd
Magnetic properties of neodymium(III) chloro complex with 2-(3-coumarinyl)imidazo[1,2-a]pyridine
Substance Dichloro-bis[2-(3-coumarinyl)imidazo[1,2-a]pyridine]neodymium(III) chloride hexahydrate; [Nd(cip)2Cl2]Cl.6H2O
Gross Formula C32H32Cl3N4NdO10
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_352
815
Magnetic properties of neodymium(III) chloro complex with. . .
816
Structure [Nd(cip)2Cl2]Cl.6H2O;
cip ¼ 2-(3-coumarinyl)imidazo[1,2-a]pyridine
+
O
O N
Cl O
N
N
O
Nd
N
O
Cl
N
N
Cl.6H2O
O
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.80
ΘP [K] Method Remarks – Gouy μeff value closely agree with Van Vleck values, suggesting non-participation of 4f electrons in bonding
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference
Reference K.B. Gudasi, T.R. Goudar, M.V. Kulkarni, Indian J. Chem. 43A, 1459 (2004)
817
Magnetic properties of crotonato bridged dinuclear neodymium(III) aqua complex
Substance Crotonato bridged dinuclear neodymium(III) aqua complex; [Nd2(crot)6(H2O)3]n
Gross Formula C24H44Nd2O19
Properties Molar magnetic moment and product of molar magnetic susceptibility with temperature
Structure [Nd2(crot)6(H2O)3]n;
crot ¼ crotonate anion O H3C
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_353
818
Additional Remarks
819
Data T [K] RT 5
χg [106 emu/g] – –
χ MT [cm3 K mol1] 3.3 –
pm or μeff [μB] 3.3/Nd 2.1/Nd
ΘP [K] –
Method SQUID
Remarks Polymeric
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
100
80
80
60
60
40
40
20
20
0 0
50
100
150
200
250
Temperature T [K]
Fig. 1 [Nd2(crot)6(H2O)3]n. Temperature dependence of χ M1 and χ MT
0 300
temperature xMT [cm3 K mol 1]
90
Product of molar susceptibility with
Inverse molar susceptibility xM–1 [mol cm–3]
(i) χ M1 versus T and χ MT versus T plots are shown in Fig. 1 (ii) Curie-Weiss behaviour not observed
820
Magnetic properties of crotonato bridged dinuclear neodymium(III) aqua complex
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A.M. Atria, R. Baggio, M.T. Garland, J.C. Munoz, O. Pena, Inorg. Chim. Acta 357, 1997 (2004)
Magnetic properties of heteronuclear copper-neodymium unsaturated carboxylate complex
Substance Di[ethanol-penta(α-methylacrylato)-1,10-phenanthrolinecopper(II)-neodymium(III)]; [NdCuL5(EtOH)(phen)]2
Gross Formula C68H78Cu2N4Nd2O22
Properties Product of molar magnetic susceptibility with temperature and Weiss constant
Structure [NdCuL5(EtOH)(phen)]2;
HL ¼ α-methylacrylic acid; H2 C
CH3 COOH
phen ¼ 1,10-phenanthroline N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_354
N
821
Magnetic properties of heteronuclear copper-neodymium unsaturated. . .
822
Data T [K] 250 5.0
χg [106 emu/g] – –
χ MT [cm3 K mol1] 3.70 1.73
pm or μeff [μB] –
ΘP [K] Method Remarks –16.54 SQUID Tetranuclear molecule
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT and χ M1 versus T is shown in Fig. 1 (ii) Curie-Weiss behavior observed with: θ ¼ –16.54 K (iii) antiferromagnetic interactions suggested
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
70 60 50 40 30 2 20 10 0 0
50
100
150
200
250
Temperature T [K]
Fig. 1 [NdCuL5(EtOH)(phen)]2. Temperature dependence of χ MT and χ M–1
Inverse molar susceptibility xM–1 [mol cm–3]
4
Reference
823
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference B. Wu, W. Lu, X. Zheng, Transit. Met. Chem. 28, 323 (2003)
Magnetic properties of neodymium(II) complex with 1,3,5-benzenetricarboxylate
Substance catena-poly-Tetraaqua-(1,3,5-benzenetricarboxylato)neodymium(III) monohydrate; {[Nd(btc)(H2O)4].H2O}n
Gross Formula C9H13NdO11
Properties Molar magnetic moment and Weiss constant
Structure {[Nd(btc)(H2O)4].H2O}n;
H3btc ¼ 1,3,5-benzenetricarboxylic acid HO
O
HO
OH O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_355
824
Additional Remarks
825
Data T [K] RT 5
χg [106 emu/g] – –
χM [106 emu/mol] – –
pm or μeff [μB] 3.55 1.24
ΘP [K] Method Remarks –18.3 SQUID Supra-molecular structure with two dimensional framework, Nd(III) ion being ten-coordinated
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M and μeff versus T plots are shown in Fig. 1 (ii) Curie-Weiss law obeyed, with: C ¼ 1.32 cm3 K mol1 θ ¼ 18.3 K 4
0.035 3
0.030 0.025
2
0.020 0.015
1 0.010 0.005 0 0
50
100 150 200 Temperature T [K]
260
300
Fig. 1 {[Nd(btc)(H2O)4].H2O}n. Temperature dependence of χ M (○) and μeff (Δ)
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
0.040
826
Magnetic properties of neodymium(II) complex with 1,3,5-benzenetricarboxylate
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Q.-L. Wang, M. Liang, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, P. Cheng, Z. Anorg. Allg. Chem. 630, 613 (2004)
Magnetic properties of neodymium salt of silicomolybdate heteropoly blues
Substance Neodymium salt of silicomolybdate heteropoly blues; NdHSiMo12O40.12H2O
Gross Formula H25Mo12NdO52Si
Properties Molar magnetic moment
Structure NdHSiMo12O40.12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_356
827
828
Magnetic properties of neodymium salt of silicomolybdate heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 3.53 3.62 (calcd)
ΘP [K] –
Method –
Remarks Keggin structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) negative electric field of the heteropoly blue anion [SiMo10VIMo2VO40]6– may affect the electronic structure of Ln+3 ion to give the observed reduction in the μeff value
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Magnetic properties of neodymium salt of silicomolybdate cobalt heteropoly blues
Substance Neodymium salt of silicomolybdate cobalt heteropoly blues; Nd2H2[SiMo11O39Co(H2O)].7H2O
Gross Formula H18CoMo11Nd2O47Si
Properties Molar magnetic moment
Structure Nd2H2[SiMo11O39Co(H2O)].7H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_357
829
830
Magnetic properties of neodymium salt of silicomolybdate cobalt heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 7.48
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) larger value of μeff suggests orbital contribution
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Remarks Keggin structure
Magnetic properties of neodymium salt of silicomolybdate nickel heteropoly blues
Substance Neodymium salt of silicomolybdate nickel heteropoly blues; Nd2H2[SiMo11O39Ni(H2O)].12H2O
Gross Formula H18Mo11Nd2NiO64Si
Properties Molar magnetic moment
Structure Nd2H2[SiMo11O39Ni(H2O)].12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_358
831
832
Magnetic properties of neodymium salt of silicomolybdate nickel heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 6.15
ΘP [K] –
Method –
Remarks Keggin structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) smaller value of μeff attributed to a super-exchange type antiferromagnetic interactions between the heteropoly blue and the Ni+2 ion
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Magnetic properties of neodymium(III) nitrato complex with hexadentate macrocyclic ligand
Substance Aqua-dinitrato{3,5,13,15-tetramethyl-2,6,12,16,21-22-hexaazatricyclo[15.3]117,7-11]cosa-1(21),2,5,7,9, 11(22),12,15,17,19-decane}neodymium(III) nitrate; [Nd(L)(NO3)2(H2O)]NO3
Gross Formula C20H24N9NdO10
Properties Molar magnetic moment
Structure L ¼ 3,5,13,15-tetramethyl-2,6,12,16, 21-22-hexaazatricyclo-[15.3]1-17,7-11] cosa-1(21),2,5,7,9,11(22),12,15,17, 19-decane
[Nd(L)(NO3)2(H2O)]NO3; H3C C
NO3
H2C
H2O C
H3C
N
N
CH3
N
N
Nd
NO3
N
N
C CH2
NO3–
H3C
C CH3
C
N
N
N
C
C
N
N
N
C
H2C H3C
CH3 CH2 CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_359
833
Magnetic properties of neodymium(III) nitrato complex with hexadentate. . .
834
Data T [K] RT
χM χg [106 emu/g] [106 emu/mol] – –
pm or μeff [μB] 3.58
ΘP [K] Method Remarks – Gouy Nine-coordinated complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Chandra, M. Tyagi, S. Rani, S. Kumar, Spectrochim. Acta A 75, 835 (2010)
Magnetic properties of neodymium(III) chloro complex with hexadentate macrocyclic ligand
Substance Aquadichloro{3,5,13,15-tetramethyl-2,6,12,16,21-22-hexaazatricyclo[15.3]1-17, 7-11]cosa-1(21),2,5,7,9, 11(22),12,15,17,19-decane}neodymium(III) chloride; [Nd(L)(Cl)2(H2O)]Cl
Gross Formula C20H24Cl3N6NdO
Properties Molar magnetic moment
Structure L ¼ 3,5,13,15-tetramethyl-2,6,12,16, 21-22-hexaazatricyclo-[15.3.I,1-17,I,7-11] cosa1(21),2,5,7,9,11(22),12,15, 17, 19-decane
[Nd(L)(Cl)2(H2O)]Cl; H3C C
Cl
H2C
H2O C
H3C
N
N
N Nd N
CH3 N
C
Cl N
CH2
Cl–
H3C
C CH3
C
N
N
N
C
C
N
N
N
C
H2C H3C
CH3 CH2 CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_360
835
836
Magnetic properties of neodymium(III) chloro complex with hexadentate. . .
Data T χg [K] [106 emu/g] RT –
χM pm or μeff [106 emu/mol] [μB] – 2.29
ΘP [K] –
Method Remarks Gouy Nine-coordinated complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Chandra, M. Tyagi, S. Rani, S. Kumar, Spectrochim. Acta A 75, 835 (2010)
Magnetic properties of double perovskite A2LnMO6; barium-neodymium-ruthenium oxide
Substance Barium-neodymium-ruthenium oxide; Ba2NdRuO6
Gross Formula Ba2NdO6Ru
Properties Molar magnetic moment and Weiss constant
Structure Ba2NdRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_361
837
838
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 4.96
ΘP [K] Method Remarks 35 – Double perovskites have two kinds of cations, Nd and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 57 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite of neodymium, gallium and manganese, Nd2GaMnO6
Substance Double perovskite of neodymium, gallium and manganese; Nd2GaMnO6
Gross Formula GaMnNd2O6
Properties Molar magnetic moment and Weiss constant
Structure Nd2GaMnO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_362
839
840
Magnetic properties of double perovskite of neodymium, gallium and. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] >40 – – 6.70
ΘP [K] Method Remarks 45.9 SQUID Ga3+ and Mn3+ cations are disordered over the six coordinate site
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law (300–40 K) obeyed, with: C ¼ 5.61 cm3 K mol1 θ ¼ +45.9 K TIP ¼ 8.9 104 cm3 mol1 (ii) an ordered moment of 6.08/Na2GdMnO6 formula unit is measured at 5 K
Symbols and Abbreviations Short form T χg χM pm μeff TIP ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment temperature independent paramagnetism paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference E.J. Cussen, M.J. Rosseinsky, P.D. Battle, J.C. Burley, L.E. Spring, J.F. Vente, S.J. Blundell, A.I. Coldea, J. Singleton, J. Am. Chem. Soc. 123, 1111 (2001)
Magnetic properties of neodymium germanium antimonide
Substance Neodymium germanium antimonide; Nd6Ge5-xSb11+x
Gross Formula Nd6Ge5-xSb11+x
Properties Molar magnetic moment and Weiss constant
Structure Nd6Ge5-xSb11+x
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_363
841
842
Magnetic properties of neodymium germanium antimonide
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 300 – – 3.94 53 SQUID Metallic, possessing a threedimensional extended structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) variation of μeff with temperature is shown in Fig. 1 (ii) χ M measurement reveal long range antiferromagnetic ordering at TN ¼ 4.2 K (iii) at 2 K, it undergoes a metamagnetic transition: Hc ¼ 4.0 T (degree of the resistance of a magnet against demagnetisation) 10 Effective magnetic moment meff [mB]
Fig. 1 Nd6Ge5-xSb11+x. Temperature dependence of μeff
8
6
4
2 0
50
100
150
200
Temperature T [K]
250
300
Reference
843
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Deakin, R. Lam, A. Mar, Inorg. Chem. 40, 960 (2001)
Magnetic properties of neodymium(III) complex with 5-aminosalicylic acid
Substance Di[aqua-bis(5-aminosalicylato)neodimium(III)] chloride dihydrate; [Nd(L)2(H2O)]2Cl2.2H2O
Gross Formula C28H32Cl2N6ND2O16
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_364
844
Reference
845
Structure NaL ¼ sodium 5-aminosalicylate
[Nd(L)2(H2O)]2Cl2.2H2O;
H 2N
NH2
NH2
OH C HO
C O
O
O
H Nd
O
HO
O
COONa
H
H O
Nd
Cl2.2H2O H
HO
O
O C
NH2
O
O
OH
C
NH2
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.45
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference X. Zhang, X. Lie, Z. Dai, Synth. React. Inorg. Met.-Org. Chem. 34, 1123 (2004)
Remarks Dimeric
Magnetic properties of heterotrimetallic derivative of neodymium(III) containing nonaisopropoxidezirconate ligand
Substance Chlorotetraisopropoxoaluminatononaisorpopoxozirconatoneodymium(III); [Nd(LZr)(LAl)Cl]
Gross Formula C39H91AlClNdO13Zr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_365
846
Data
847
Structure LZrΘ ¼ nonaisopropoxidezirconate;
[Nd(LZr)(LAl)cl]; iPrO
iP
iPrO
iPrO
rO iP
iP
rO
rO
rO
Zr iPrO
iP
iPrO
Zr
iPrO
Al
Nd Cl
Zr
i PrO
i PrO
i PrO
iPrO
iPrO
iPrO
iPrO
iPrO
iPrO
Zr i PrO
iPrO iPrO
LAlΘ ¼ tetraisopropoxoaluminate iP
iP
rO
rO
Al i PrO
i PrO
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.60 – Gouy μeff value close to calculated curve T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
848
Magnetic properties of heterotrimetallic derivative of neodymium(III). . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Mishra, U.M. Tripathi, A. Singh, R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem. 32, 689 (2002)
Magnetic properties of heterotrimetallic derivative of neodymium(III) containing nonaisopropoxidezirconate ligand
Substance Bis(tetraisopropoxoaluminato)nonaisorpopoxozirconatoneodymium(III); [Nd(LZr)(LAl)2]
Gross Formula C51H119Al2NdO17Zr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_366
849
Magnetic properties of heterotrimetallic derivative of neodymium(III). . .
850
Structure LZrΘ ¼ nonaisopropoxidezirconate;
[Nd(LZr)(LAl)2]; i PrO iP
iPrO
rO
Al
iP
iPrO
rO
Nd iPrO iP
OPri
rO
Al iPrO
iPrO
iPrO
i PrO
iPrO
i
PrO
iPrO
i PrO
iPrO iPrO
rO
Zr
i PrO
Zr
iP
Zr
O
i PrO
Zr iPrO
iPrO iPrO
Pi r
iPrO
LAlΘ ¼ tetraisopropoxoaluminate iP
iP
rO
rO
Al i PrO
i PrO
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 3.61 – Gouy μeff value close to calculated curve T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Reference
851
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Mishra, U.M. Tripathi, A. Singh, R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem. 32, 689 (2002)
Part VII Sm
Magnetic properties of samarium(III) nitrato complex with 2-(3-coumarinyl)imidazo[1,2-a]pyridine
Substance Dinitrato-bis[2-(3-coumarinyl)imidazo[1,2-a]pyridine]samarium(III) nitrate trihydrate; [Sm(cip)2(NO3)2]NO3.3H2O
Gross Formula C32H26N7O16Sm
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_367
855
856
Magnetic properties of samarium(III) nitrato complex with. . .
Structure [Sm(cip)2(NO3)2]NO3.3H2O;
cip ¼ 2-(3-coumarinyl)imidazo[1,2-a]pyridine
+
O N
O3N O
O
N
N
O
Sm
N
O
N NO3
N
NO3.3H2O
O
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 2.07
ΘP [K] Method Remarks – Gouy μeff value closely agree with Van Vleck values, suggesting non-participation of 4f electrons in bonding
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference
Reference K.B. Gudasi, T.R. Goudar, M.V. Kulkarni, Indian J. Chem. 43A, 1459 (2004)
857
Magnetic properties of first Sm-Ni heterometallic complex of picolinic acid ligand showing basket weave topology
Substance catena-poly-Pentaaqua-tris(picolinato)-nickel(II)-samarium(II) perchlorate; [Sm(Ni(pic)3(H2O)5]n(ClO4)2n
Gross Formula C18H28Cl2N3NiO22Sm
Properties Molar magnetic moment and Weiss constant
Structure [Sm(Ni(pic)3(H2O)5]n(ClO4)2n;
HL ¼ picolinic acid N
COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_368
858
Additional Remarks
859
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 293 – – 3.23 –0.75 – Thermal (300–6 K) dependence of χ M and μeff is shown in Fig. 1 T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) above 50 K, Curie-Weiss behavior observed, with: C ¼ 1.2651 cm3 K mol–1 θ ¼ –0.75 K χ 0 (background susceptibility) ¼ –7.30 10–4 cm3 mol–1 (ii) the gradual decrease of μeff upon cooling suggests the presence of weak antiferromagnetic interactions
3.18 3.17
0.15 3.16 3.15
0.10
3.14 0.05
3.13
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
0.20
3.12 0.00 0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 [Sm(Ni(pic)3(H2O)5]n(ClO4)2n. Temperature dependence of χ M (○) and μeff (●). The gradual decrease of μeff upon cooling suggests the presence of weak antiferromagnetic interactions
860
Magnetic properties of first Sm-Ni heterometallic complex of picolinic. . .
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant)
Reference A.-Q. Wu, G.-H. Guo, F.-K. Zheng, M.-S. Wang, Y. Li, G.-C. Guo, J.-S. Huang, Inorg. Chem. Commun. 8, 1078 (2005)
Magnetic properties of samarium salt of silicomolybdate heteropoly blues
Substance Samarium salt of silicomolybdate heteropoly blues; SmHSiMo12O40.12H2O
Gross Formula H25Mo12O52SiSm
Properties Molar magnetic moment
Structure SmHSiMo12O40.12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_369
861
862
Magnetic properties of samarium salt of silicomolybdate heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 1.49 0.842 (calcd)
ΘP [K] –
Method –
Remarks Keggin structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) level separation between the ground state and the excited state J levels is too small giving the much larger value of μeff than the theoretical value for free ion
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Magnetic properties of samarium salt of silicomolybdate cobalt heteropoly blues
Substance Samarium salt of silicomolybdate cobalt heteropoly blues; Sm2H2[SiMo11O39Co(H2O)].7H2O
Gross Formula H18CoMo11O47SiSm2
Properties Molar magnetic moment
Structure Sm2H2[SiMo11O39Co(H2O)].7H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_370
863
864
Magnetic properties of samarium salt of silicomolybdate cobalt heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 5.01
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic interactions suggested
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Remarks Keggin structure
Magnetic properties of samarium salt of silicomolybdate nickel heteropoly blues
Substance Samarium salt of silicomolybdate nickel heteropoly blues; Sm2H2[SiMo11O39Ni(H2O)].12H2O
Gross Formula H18Mo11NiO64SiSm2
Properties Molar magnetic moment
Structure Sm2H2[SiMo11O39Ni(H2O)].12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_371
865
866
Magnetic properties of samarium salt of silicomolybdate nickel heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 4.10
ΘP [K] –
Method –
Remarks Keggin structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) smaller value of μeff attributed to a super-exchange type antiferromagnetic interactions between the heteropoly blue and the Ni+2 ion
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Magnetic properties of samarium germanium antimonide
Substance Samarium germanium antimonide; Sm6Ge5-xSb11+x
Gross Formula Sm6Ge5-xSb11+x
Properties Molar magnetic moment
Structure Sm6Ge5-xSb11+x
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_372
867
868
Magnetic properties of samarium germanium antimonide
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 300 – – 1.2 – SQUID Metallic, possessing a threedimensional extended structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M measurement reveal long range antiferromagnetic ordering at TN ¼ 8.3 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Deakin, R. Lam, A. Mar, Inorg. Chem. 40, 960 (2001)
Magnetic properties of samarium(III) chloro complex with hexadentate macrocyclic ligand
Substance Aquadichloro{3,5,13,15-tetramethyl-2,6,12,16,21-22-hexaazatricyclo[15.3]1-17,711]cosa-1(21),2,5,7,9, 11(22),12,15,17,19-decane}samarium(III) chloride; [Sm(L)(Cl)2(H2O)]Cl
Gross Formula C20H24Cl3N6OSm
Properties Molar magnetic moment
Structure L ¼ 3,5,13,15-tetramethyl-2,6,12,16, 21-22-hexaazatricyclo[15.3.I,1-17,I,7-11] cosa-1(21),2,5,7,9,11(22),12,15,17,19decane
[Sm(L)(Cl)2(H2O)]Cl; H3C H2C
C
Cl H 2O
C H 3C
N
N
N Sm N
N
C
Cl N
CH3 CH2
C CH3
Cl–
H 3C H 2C H 3C
C
N
N
N
C
C
N
N
N
C
CH3 CH2 CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_373
869
870
Magnetic properties of samarium(III) chloro complex with hexadentate. . .
Data T χg [K] [106 emu/g] RT –
χM [106 emu/mol] –
pm or μeff ΘP [μB] [K] 1.49 –
Method Remarks Gouy Nine-coordinated complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Chandra, M. Tyagi, S. Rani, S. Kumar, Spectrochim. Acta A 75, 835 (2010)
Magnetic properties of samarium(III) complex with 5-aminosalicylic acid
Substance Di[aqua-bis(5-aminosalicylato)samarium(III)] chloride dihydrate; [Sm(L)2(H2O)]2Cl2.2H2O
Gross Formula C28H32Cl2N4O16Sm2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_374
871
872
Magnetic properties of samarium(III) complex with 5-aminosalicylic acid
Structure NaL ¼ sodium 5-aminosalicylate
[Sm(L)2(H2O)]2Cl2.2H2O;
H2N
NH2
NH2
OH C H H
O
C O
O
Sm
O HO
O
HO
HO
COONa
O
O C
NH2
O
O
H
O
Sm OH
Cl2.2H2O
H
C
NH2
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 1.45
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference X. Zhang, X. Lie, Z. Dai, Synth. React. Inorg. Met.-Org. Chem. 34, 1123 (2004)
Remarks Dimeric
Part VIII Eu
Magnetic properties of europium(II) nitridoborate
Substance Europium(II) nitridoborate; Eu3[BN2]2
Gross Formula B2Eu3N4
Properties Molar magnetic moment and Weiss constant
Structure Eu3[BN2]2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_375
875
876
Magnetic properties of europium(II) nitridoborate
Data χM pm or μeff T χg [106 emu/g] [10–6 emu/mol] [μB] [K] 300–80 – – 8.03/Eu
ΘP [K] Method Remarks 40.0 SQUID Temperature dependence of χ M–1 is shown in Fig. 1
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) above 80 K, Curie-Weiss behaviour observed, with: θ ¼ 40 K (ii) the compound order ferromagnetically at: Tc ¼ 32.0 K
30
xM–1 [mol cm–3]
Inverse molar susceptibility
35
25 20 15 10 5 0
50
100
150 200 250 Temperature T [K]
300
Fig. 1 Eu3[Bn2]2. Temperature dependence of χ M–1 at a magnetic flux density of 1T
Reference
877
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference M. Somer, C. Gul, R. Mullmann, B.D. Mosel, R.K. Kremer, R. Pottgen, Z. Anorg. Allg. Chem. 630, 389 (2004)
Magnetic properties of lithium-europium nitridoborate
Substance Lithium-europium nitridoborate; LiEu4[BN2]3
Gross Formula B2LiEu4N6
Properties Molar magnetic moment
Structure LiEu4[BN2]3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_376
878
Additional Remarks
879
Data χM pm or μeff T χg [106 emu/g] [10–6 emu/mol] [μB] [K] 300–80 – – 8.5/Eu
ΘP [K] Method Remarks 45.0 SQUID Temperature dependence of χ M–1 is shown in Fig. 1
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) above 80 K, Curie-Weiss behaviour observed, with: θ ¼ 45 K (ii) the compound order ferromagnetically at: Tc ¼ 22.0 K 30
xM–1 [mol cm–3]
Inverse molar susceptibility
25
20 15 10 5 0
0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 LiEu4[Bn2]3. Temperature dependence of χ M–1 at a magnetic flux density of 3T
880
Magnetic properties of lithium-europium nitridoborate
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference M. Somer, C. Gul, R. Mullmann, B.D. Mosel, R.K. Kremer, R. Pottgen, Z. Anorg. Allg. Chem. 630, 389 (2004)
Magnetic properties of tetranuclear (FeIII-EuIII) cluster assembled by carboxylate ligands
Substance Tetranuclear (FeIII-EuIII) cluster assembled by carboxylate ligands; [Fe3EuO2(CCl3COO)8H2O(thf)3].thf
Gross Formula C20H24Cl12EuFe3O16
Properties Product of molar magnetic susceptibility with temperature
Structure [Fe3EuO2(CCl3COO)8H2O(thf)3].thf;
thf ¼ tetrahydrofuran O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_377
881
Magnetic properties of tetranuclear (FeIII-EuIII) cluster assembled by. . .
882
Data T [K] RT
χg [106 emu/g] –
χ MT [cm3 K mol–1] 5.8
pm or μeff [μB] –
ΘP [K] –
Method VSM
Remarks Butterfly type structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT against T is shown in Fig. 1 (ii) strong intramolecular antiferromagnetic interactions suggested
6.0 Product of molar susceptibility with temperature xMT [cm3 K mol–1]
Fig. 1 [Fe3EuO2(CCl3COO)8H2O (thf)3].thf. Temperature dependence of χ MT
5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 0
50
100
150
200
Temperature T [K]
250
300
Reference
883
Symbols and Abbreviations Short form T χg χM pm μeff ΘP VSM
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Vibrating-sample magnetometer
Reference C. Turta, D. Prodius, V. Mereacre, S. Shova, M. Gdaniec, Y.A. Simonov, V. Kuncser, G. Filoti, A. Caneschi, L. Sorace, Inorg. Chem. Commun. 7, 576 (2004)
Magnetic properties of europiumytterbium nitridosilicate
Substance Europium-ytterbium nitridosilicate; EuYbSi4N7
Gross Formula EuN7Si4Yb
Properties Molar magnetic moment and Weiss constant
Structure EuYbSi4N7
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_378
884
Additional Remarks
885
Data χM pm or μeff ΘP T χg [106 emu/g] [10–6 emu/mol] [μB] [K] Method Remarks [K] 300–4.2 – – 9.17 –4.9 SQUID Compound contains a condensed network of corner sharing [N(SiN3)4 units T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Fig. 1 EuYbSi4N7. Temperature dependence of χ M–1 at flux density of 3T
Inverse molar susceptibility 106 mol m–3
(i) temperature dependence of χ M–1 is shown in Fig. 1 (ii) >150 K, Curie-Weiss law is obeyed, with: θ ¼ –4.9 K
12 10 8 6 4 2
50
100 150 200 Temperature T [K]
250
300
886
Magnetic properties of europium-ytterbium nitridosilicate
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H.A. Hoppe, H. Trill, G. Kotzyba, B.D. Mosel, R. Pottgen, W. Schnick, Z. Anorg. Allg. Chem. 630, 224 (2004)
Magnetic properties of europium(III) chromate
Substance Europium(III) chromate; EuCrO4
Gross Formula CrEuO4
Properties Molar magnetic moment
Structure EuCrO4
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_379
887
888
Magnetic properties of europium(III) chromate
Data T χg [10 [K] 300–130 –
6
emu/g]
χM [10 –
6
pm or μeff emu/mol] [μB] 1.54
ΘP [K] –
Method Remarks SQUID Zircon type structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Molar susceptibility CM [cm3 mol–1]
Fig. 1 EuCrO4. Temperature dependence of χ M. The inset shows the change at 0–30 K
Molar susceptibility C [cm3 mol–1]
(i) temperature dependence of χ M is shown in Fig. 1 (ii) Curie-Weiss law obeyed (300–130 K) (iii) smaller value of μeff than calculated for Cr(V) indicated no contribution of Eu (III)
0.05 0.04 0.03 0.02
0.05
0.04
0.03 0
10
20
30
Temperature T [K]
0.01 0
0
50
150 200 100 Temperature T [K]
250
300
Reference
889
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H. Konno, Y. Aoki, Z. Klencsar, A. Vertes, M. Wakeshima, K. Tezuka, Y. Hinatsu, Bull. Chem. Soc. Jpn. 74, 2335 (2001)
Magnetic properties of europium(III) chloro complex with hexadentate macrocyclic ligand
Substance Aquadichloro{3,5,13,15-tetramethyl-2,6,12,16,21-22-hexaazatricyclo[15.3]1-17, 7-11]cosa-1(21),2,5,7,9, 11(22),12,15,17,19-decane}europium(III) chloride; [Eu(L)(Cl)2(H2O)]Cl
Gross Formula C20H24Cl3CuN6O
Properties Molar magnetic moment
Structure [Eu(L)(Cl)2(H2O)]Cl;
L ¼ 3,5,13,15-tetramethyl-2,6,12,16, 21-22-hexaazatricyclo[15.3.I,1-17,I,7-11] cosa-1(21),2,5,7,9,11(22),12,15,17, 19-decane H 3C H 2C H 3C
C
N
N
N
C
C
N
N
N
C
CH3 CH2 CH3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_380
890
Reference
891
Data T χg [K] [106 emu/g] RT –
χM [106 emu/mol] –
pm or μeff ΘP [μB] [K] 3.56 –
Method Remarks Gouy Nine-coordinated complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Chandra, M. Tyagi, S. Rani, S. Kumar, Spectrochim. Acta A 75, 835 (2010)
Magnetic properties of europium(III) complex with 5-aminosalicylic acid
Substance Di[aqua-bis(5-aminosalicylato)europium(III)] chloride dihydrate; [Eu(L)2(H2O)]2Cl2.2H2O
Gross Formula C28H32Cl2Cu2N4O16
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_381
892
Reference
893
Structure NaL ¼ sodium 5-aminosalicylate
[Eu(L)2(H2O)]2Cl2.2H2O;
H 2N
NH2
NH2 C
H
Eu
O H
O
O
HO
O
HO
C O
HO
O
Eu O
O
OH COONa
C
NH2
O
O
OH
H Cl2.2H2O H
C
NH2
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 3.15
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference X. Zhang, X. Lie, Z. Dai, Synth. React. Inorg. Met.-Org. Chem. 34, 1123 (2004)
Remarks Dimeric
Part IX Gd
Magnetic properties of gadolinium(III) nitrato complex with 2-(3-coumarinyl)imidazo[1,2-a]pyridine
Substance Dinitrato-bis[2-(3-coumarinyl)imidazo[1,2-a]pyridine]gadolinium(III) nitrate trihydrate; [Gd(cip)2(NO3)2]NO3.3H2O
Gross Formula C32H26GdN7O16
Properties Molar magnetic moment
Structure [Gd(cip)2(NO3)2]NO3.3H2O; +
O N
O3N O
O
O
N
N
O
Gd
N
cip ¼ 2-(3-coumarinyl)imidazo[1,2-a]pyridine
N NO3
N
NO3.3H2O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_382
897
898
Magnetic properties of gadolinium(III) nitrato complex with. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 8.13
ΘP [K] Method Remarks – Gouy μeff value closely agree with Van Vleck values, suggesting non-participation of 4f electrons in bonding
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference K.B. Gudasi, T.R. Goudar, M.V. Kulkarni, Indian J. Chem. 43A, 1459 (2004)
Magnetic properties of crotonato bridged dinuclear gadolinium(III) aqua complex as 2,20 -dipyridylamine adduct
Substance Crotonato bridged dinuclear gadolinium(III) aqua complex as 2,20 -dipyridylamine adduct; [Gd2(crot)6(H2O)4].4(dypam)
Gross Formula C64H74Gd2N12O16
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Gd2(crot)6(H2O)4].4(dypam);
dpyam ¼ 2,20 -dipyridylamine; N
H N N
crot ¼ crotonate anion O H3C
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_383
899
Magnetic properties of crotonato bridged dinuclear gadolinium(III) aqua. . .
900
Data T [K] 300–2 300 5
χg [106 emu/g] – – –
χ MT [cm3 K mol–1] – 21.71 22.62
pm or μeff [μB] 7.94/Gd
ΘP [K] –0.97
Method SQUID
Remarks Dimer
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
25
20
20
15
15
10
10
5
5
0
0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Gd2(crot)6(H2O)4].4(dypam). Temperature dependence of χ M–1 and χ MT
temperature xMT [cm3 K mol–1]
25
Product of molar susceptibility with
xM–1 [mol cm–3]
Inverse molar susceptibility
(i) χ M–1 versus T and χ MT versus T plots are shown in Fig. 1 (ii) Curie-Weiss law obeyed, with: C ¼ 21.8 cm3 K mol–1 θ ¼ –0.97 K (iii) weak antiferromagnetic interactions indicated
Reference
901
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A.M. Atria, R. Baggio, M.T. Garland, J.C. Munoz, O. Pena, Inorg. Chim. Acta 357, 1997 (2004)
Magnetic properties of crotonato bridged dinuclear godalinium(III) complex with 2,20 -bipyridine
Substance Crotonato bridged dinuclear godalinium(III) complex with 2,20 -bipyridine; [Gd2(crot)6(bipy)2]
Gross Formula C44H46Gd2N4O12
Properties Molar magnetic moment and Weiss constant
Structure [Gd2(crot)6(bipy)2];
crot ¼ crotonate anion;
bipy ¼ 2,20 bipyridine
O H3C
N
O
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_384
902
Additional Remarks
903
Data T [K] 300
χg [106 emu/g] –
χM [10–6 emu/mol] –
ΘP [K] –0.4
pm or μeff [μB] 7.8
Method SQUID
Remarks Dimer
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
20
15
15
10
10
5
5 0
0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Gd2(crot)6(bipy)2]. Temperature dependence of χ M–1 and χ MT
temperature xMT [cm3 K mol–1]
20
Product of molar susceptibility with
xM–1 [mol cm–3]
Inverse molar susceptibility
(i) χ M–1 versus T and χ MT versus T plots are shown in Fig. 1 (ii) Curie-Weiss law obeyed, with: C ¼ 15.33 cm3 K mol–1 θ ¼ –0.4 K
904
Magnetic properties of crotonato bridged dinuclear godalinium(III) complex. . .
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A.M. Atria, R. Baggio, M.T. Garland, J.C. Munoz, O. Pena, Inorg. Chim. Acta 357, 1997 (2004)
Magnetic properties of cyano-bridged, gadolinium(III)-iron(III) complex with o-phenanthroline
Substance Cyano-bridged, gadolinium(III)-iron(III) complex with o-phenanthroline; trans-[Gd(o-phen)2(H2O)2(μ-CN)2Fe(CN)4]n.2n.o-phen
Gross Formula C54H36FeGdN14O2
Properties Product of molar magnetic susceptibility with temperature
Structure trans-[Gd(o-phen)2(H2O)2(μ-CN)2Fe(CN)4]n.2n.o-phen;
o-phen ¼ o-phenanthroline N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_385
N
905
Magnetic properties of cyano-bridged, gadolinium(III)-iron(III) complex. . .
906
Data T [K] 300 14 2.5 1.8
χg [106 emu/g] – – – –
χ MT pm or μeff [cm3 K mol–1] [μB] 8.80 – 8.54 8.40 8.49
ΘP [K] Method Remarks – SQUID a) cyano-bridged one dimensional coordination polymer b) Gd(III) center is 10-coordinated with distorted square-antiprism geometry c) Fe(III) has octahedral geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T is shown in Fig. 1 (ii) χ M data displayed weak interactions between the spin carriers
8.5
8.56
7.5
7.0
[cm3 K mol–1] temperature
x
8.0
8.54
MT
Product of molar susceptibility with
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
9.0
8.52 8.50 8.48 8.46 8.44 8.42
2
6.5
0
50
4
6 8 10 Temperature T [K]
100 150 200 Temperature T [K]
12
250
14
300
Fig. 1 trans-[Gd(o-phen)2(H2O)2(μ-CN)2Fe(CN)4]n.2n.o-phen. Temperature dependence of χ MT at 0.8 T. The inset shows the plot of χ MT versus T in the temperature range 2–14 K at 0.01 T
Reference
907
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Koner, M.G.B. Drew, A. Figuerola, C. Diaz, S. Mohanta, Inorg. Chim. Acta 358, 3041 (2005)
Magnetic properties of cyano-bridged gadolinium(III)-tungstate(V) bimetallic assembly with N,N-dimethylformamide
Substance Cyano-bridged godalinium(III)-tungstate(V) bimetallic assembly with N, N-dimethylformamide; {[GdIII(dmf)6][WV(CN)8]}
Gross Formula C26H42GdN14O16W
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure {[GdIII(dmf)6][WV(CN)8]};
dmf ¼ dimethylformamide H Me
O N Me
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_386
908
Additional Remarks
909
Data T [K] 300 7.0 8.0
χg [106 emu/g] – – –
χ MT [cm3 K mol–1] 8.4 7.6 8.8
pm or μeff [μB] –
ΘP [K] –
Method Remarks SQUID One-dimensional chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature (300–3 K) dependence of χ M and χ MT is shown in Fig. 1 (ii) magnetic data analyzed using the Seden’s model; in this model spin Hamiltonian is described as: X ℋ ¼ 2J i SA2i1 þ SA2iþ1 SB2i , where SA2i1 refers to SGd and SB2i to Sw (iii) the χ M value is described by: N βμ2B 2 2 S GD þ 1 δ 1 gGD S GD χM ¼ þ2 4gGD gw ΛS w S GD S GD 1δ 1δ 3 1 þg2w S w ðS w þ 1Þ þ 2Λ2 S 2w 1δ where N is Avogadro number, μB is Bohr magneton, and β ¼ 1/kT; other parameters of δ, Λ and γ are: Λ1 δ ¼ 3A 0h i B0 B1 Λ ¼ 2 3A þ A0 0 A0 ¼ 4[γ–1 sinh γ + γ–2cosh γ + γ–2] A1 ¼ 12[(γ–1 + 12γ–3)sinh γ –(5γ–2 + 12γ4)cosh γ-γ–2] + 12γ–4] B0 ¼ γ–1(cosh γ-1) B1 ¼ 3[(γ–1 + 4γ–3)cosh γ –4γ–2 sinh γ + γ–1–4γ–3] γ ¼ –2βJSGd (iv) antiferromagnetic coupling between GdIII (S ¼ 7/2) and WV (S ¼ 1/2) is: J ¼ –0.58 cm–1 g Gd ¼ 2.02 g w ¼ 1.96
Magnetic properties of cyano-bridged gadolinium(III)-tungstate(V). . .
910
Molar susceptibility xM [cm3 mol–1]
4.0
3.0
2.0
1.0
0.0 0
50
100
150
200
250
300
Temperature T [K]
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
9.5 9.0 8.5 8.0 7.5 7.0 6.5 0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 {[GdIII(dmf)6][WV(CN)8]}. Temperature dependence of χ M and χ MT. Solid lines correspond to the fits from Seiden’s model with parameters described in the text
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference
Reference S. Ikeda, T. Hozumi, K. Hashimoto, S.-i. Ohkoshi, J. Chem. Soc. Dalton Trans. 2120 (2005)
911
Magnetic properties of heteronuclear CuIIGdIII complex with the hexadentate Schiff-base compartmental ligand
Substance Heteronuclear CuIIGdIII complex with the hexadentate Schiff-base compartmental ligand; [CuLGd(NO3)3]
Gross Formula C20H22CuGdN5O13
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure [CuLGd(NO3)3];
H2L ¼ N,N0 -ethylene-bis(3-ethoxysalicylaldimine) C2H5O OH HC N
HO
OC2H5
N CH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_387
912
Additional Remarks
913
Data T [K] 320 12 5
χg [106 emu/g] – – –
χ MT pm or μeff [cm3 K mol–1] [μB] 8.43 – 9.86 9.68
ΘP[K] Method Remarks – SQUID Zig-zag chain structure, Gd(III) has deca-coordination while environment of Cu(II) is square-planar
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT (exp.) and χ MT (calcd) versus T is shown in Fig. 1 (ii) magnetic studies reveal ferrromagnetic interactions within the dinuclear core and antiferromagnetic interaction propagated through the extended network (iii) least-squares fitting of the experimental data yielded: J ¼ 4.04 cm–1 gGd ¼ 2.001 gCu ¼ 2.109 zJ0 ¼ –0.027 cm–1 (zero-field splitting parameter)
Magnetic properties of heteronuclear CuIIGdIII complex with the. . .
914
9.6 temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
10.0
8.8
8.4
0
50
100
150
200
250
300
Temperature T [K]
Fig. 1 [CuLGd(NO3)3]. Temperature dependence of χ MT. The solid line represents the calculated curve
Symbols and Abbreviations Short form T χg χM pm μeff D J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment zero-field splitting parameter exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Mohanta, H.-H. Lin, C.-J. Lee, H.-H. Wei, Inorg. Chem. Commun. 5, 585 (2002)
Magnetic properties of copper(II)gadolinium(II) complex with Schiff-base ligand
Substance Copper(II)-gadolinium(III) complex with N,N0 -ethylene-bis-5-methoxysalicylaldiimine; [CuGd(ems)(NO3)3H2O]Cu(ems)
Gross Formula C36H38CCu2GdN7O18
Properties Molar magnetic moment, Weiss constant and exchange energy
Structure [CuGd(ems)(NO3)3H2O]Cu(ems);
H2ems ¼ N,N0 -ethylene-bis5-methoxysalicylaldiimine HO O
N
N
O
OH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_388
915
916
Magnetic properties of copper(II)-gadolinium(II) complex with Schiff-base ligand
Data T [K] RT 5
χg [106 emu/g] – –
χ MT [10–6 emu/mol] – –
pm or μeff [μB] 8.56 9.79
ΘP [K] Method Remarks +2.66 – Structure consists of two discrete molecules, a mononuclear Cu(II) entity and a dinuclear complex containing Cu(II) and Gd(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
10
2,5
2
8
1,5
6
1
4
0,5
2
0
0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [CuGd(ems)(NO3)3H2O]Cu(ems). Temperature dependence of χ M and μeff
Effective magnetic moment meff [mB]
Molar susceptibility xM [cm3 mol–1]
(i) temperature (300–5 K) dependence of χ M and μeff is shown in Fig. 1 (ii) Curie-Weiss law obeyed with: C ¼ 9.012 cm3 k mol–1 θ ¼ +2.66 K (iii) ferromagnetic interactions indicated (iv) magnetic data analysed by Van Vleck equation, yielding: J ¼ +1.878 cm–1 g1 ¼ 2.12 g2 ¼ 2.28
Reference
917
Symbols and Abbreviations Short form T χg χM pm μeff J g C ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor Curie constant paramagnetic Curie constant (Weiss constant)
Reference A.M. Atria, Y. Moreno, E. Spodine, M.T. Garland, R. Baggio, Inorg. Chim. Acta 335, 1 (2002)
Magnetic properties of gadolinium-copper complex with nitrilotriacetic acid
Substance Hexaaquachloronitrilotriacetatocopper(II)-gadolinium(III) perchlorate monohydrate; [GdCuCl(nta)(H2O)6]ClO4.H2O
Gross Formula C6H20Cl2CuGdNO17
Properties Product of molar magnetic susceptibility with temperature and Wiess constant
Structure [GdCuCl(nta)(H2O)6]ClO4.H2O;
H3nta ¼ nitrilotriacetic acid
H2C COOH
HOOC H2C
N H2C COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_389
918
Additional Remarks
919
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol–1] [μB] 300 – 8.28 –
ΘP [K] 2.6
Method Remarks – 1-D, zig-zag chain, dimeric structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) plot of χ MT versus T is shown in Fig. 1 (ii) fitting of the data to Curie-Weiss law gave: C ¼ 0.398 cm3 K mol–1 θ ¼ 2.6 K
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
12 10 8
Gd
6 4 2 0 0
50
100 150 200 Temperature T [K]
Fig. 1 [GdCuCl(nta)(H2O)6]ClO4.H2O. Temperature dependence of χ MT
250
300
920
Magnetic properties of gadolinium-copper complex with nitrilotriacetic acid
Symbols and Abbreviations Short form T χg χM pm μeff C ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Curie constant paramagnetic Curie constant (Weiss constant)
Reference Q.-D. Liu, S. Gao, J.-R. Li, B.-Q. Ma, Q.-Z. Zhou, K.-B. Yu, Polyhedron 21, 1097 (2002)
Magnetic properties of tetranuclear bimetallic (FeIII-GdIII)2 complex with 1,2-bis(3-methoxysalicylidene)aminoethane
Substance Tetranuclear bimetallic (FeIII-GdIII)2 complex with 1,2-bis(3-methoxysalicylidene) aminoethane; {[LFeGd(NO3)3]2O}.(CH3COCH3)
Gross Formula C39H42Fe2Gd2N10O28
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure {[LFeGd(NO3)3]2O}.(CH3COCH3);
H2L ¼ 1,2-bis(3-methoxysalicylidene) aminoethane H3CO
OCH3 OH HC N
HO
N CH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_390
921
Magnetic properties of tetranuclear bimetallic (FeIII-GdIII)2. . .
922
Data T [K] 300 2
χg [106 emu/g] – –
χ MT [cm3 K mol–1] 16.4 11.8
pm or μeff [μB] –
ΘP [K] –
Method SQUID
Remarks Tetranuclear complex
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
temperature xMT [cm3 K mol–1]
Fig. 1 {[LFeGd(NO3)3]2O}. (CH3COCH3). Temperature dependence of χ MT. The solid line represents the best-fit of the experimental data
Product of molar susceptibility with
(i) variation of χ MT with T is shown in Fig. 1 (ii) Fe-Fe interaction is antiferromagnetic with a magnitude of: JFe-Fe ¼ –101.4 cm–1 JFe, Gd ¼ –0.7 cm–1 gFe ¼ gGd ¼ 2.00
18 15 12 9 6 3 0 0
100 200 Temperature T [K]
300
Reference
923
Symbols and Abbreviations Short form T χg χM pm μeff g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference J.-P. Costes, F. Dahan, F. Dumestre, J.M. Clemente-Juan, J. Garcia-Tojal, J.-P. Tuchagues, J. Chem. Soc. Dalton Trans., 464 (2003)
Magnetic properties of heterometallic gadolinium-copper, Gd2Cu3 complex with ortho-phenylenebis(oxamate)
Substance Heterometallic gadolinium-copper, Gd2Cu3 complex with ortho-phenylenebis (oxamate); {Gd2[Cu(opba)]3(dmso)6(H2O)}.H2O
Gross Formula C42H50Cu3Gd2N6O26S6
Properties Product of molar magnetic susceptibility with temperature and exchange energy
Structure {Gd2[Cu(opba)]3(dmso)6(H2O)}.H2O;
opba ¼ ortho-phenylenebis(oxamate); O O
O NH NH
O
O O
dmso ¼ dimethylsulfoxide O S
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_391
924
Additional Remarks
925
Data T [K] RT 2
χg [106 emu/g] – –
χ MT pm or μeff [cm3 K mol1] [μB] 15.2 – 53.0
ΘP [K] Method Remarks – SQUID Ladder-like structure, both Gd(III) are eight coordinated with dodecahedral geometry, Cu(II) has capped squarepyramidal geometry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ MT and χ M1 (inset) is shown in Fig. 1 (ii) ferromagnetic interactions between Gd(III) and Cu(II) centers indicated, with: J ¼ +1.02 K g ¼ 1.9 2.0
xM–1 [mol cm–3]
Inverse molar susceptibility
temperature xMT [cm3 K mol–1]
50 Product of molar susceptibility with
Fig. 1 {Gd2[Cu (opba)]3(dmso)6(H2O)}. H2O. Temperature dependence of χ MT (●) and χ M1 (inset). The solid lines represent the best fitted curves
40
30
1.5 1.0 0.5 0.0
20
0
10 20 Temperature T [K]
30
10
0
0
20
40 60 Temperature T [K]
80
100
926
Magnetic properties of heterometallic gadolinium-copper, Gd2Cu3. . .
Symbols and Abbreviations Short form T χg χM pm μeff J g ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment exchange energy Lande factor paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference N. Kerbellec, N. Mahe, O. Guillou, C. Daiguebonne, O. Cador, T. Roisnel, R.L. Oushoorn, Inorg. Chim. Acta 358, 3246 (2005)
Magnetic properties of gadolinium salt of silicomolybdate heteropoly blues
Substance Gadolinium salt of silicomolybdate heteropoly blues; GdHSiMo12O40.12H2O
Gross Formula GdH25Mo12O52Si
Properties Molar magnetic moment
Structure GdHSiMo12O40.12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_392
927
928
Magnetic properties of gadolinium salt of silicomolybdate heteropoly blues
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 7.76 7.94 (calcd)
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Remarks Keggin structure
Magnetic properties of gadolinium salt of silicomolybdate cobalt heteropoly blues
Substance Gadolinium salt of silicomolybdate cobalt heteropoly blues; Gd2H2[SiMo11O39Co(H2O)].7H2O
Gross Formula H18CoGd2Mo11O47Si
Properties Molar magnetic moment
Structure Gd2H2[SiMo11O39Co(H2O)].7H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_393
929
Magnetic properties of gadolinium salt of silicomolybdate cobalt. . .
930
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 12.28
ΘP [K] –
Method –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) larger value of μeff suggests orbital contribution
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Remarks Keggin structure
Magnetic properties of gadolinium salt of silicomolybdate nickel heteropoly blues
Substance Gadolinium salt of silicomolybdate nickel heteropoly blues; Gd2H2[SiMo11O39Ni(H2O)].12H2O
Gross Formula H18Gd2Mo11NiO64Si
Properties Molar magnetic moment
Structure Gd2H2[SiMo11O39Ni(H2O)].12H2O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_394
931
Magnetic properties of gadolinium salt of silicomolybdate nickel. . .
932
Data T [K] RT
χg [10 –
6
emu/g]
χM [10 –
6
emu/mol]
pm or μeff [μB] 10.12
ΘP [K] –
Method –
Remarks Keggin structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) smaller value of μeff attributed to a super-exchange type antiferromagnetic interactions between the heteropoly blue and the Ni+2 ion
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference L. Xu, E. Wang, J. Liu, R. Huang, Transit. Met. Chem. 28, 142 (2003)
Magnetic properties of double perovskite A2LnMO6; strontium-gadoliniumruthenium oxide
Substance Strontium-gadolinium-ruthenium oxide; Sr2GdRuO6
Gross Formula GdO6RuSr2
Properties Molar magnetic moment and Weiss constant
Structure Sr2GdRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_395
933
934
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 7.12
ΘP [K] Method Remarks 8 – Double perovskites have two kinds of cations, Gd and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 31 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-gadolinium-ruthenium oxide
Substance Barium-gadolinium-ruthenium oxide; Ba2GdRuO6
Gross Formula Ba2GdO6Ru
Properties Molar magnetic moment and Weiss constant
Structure Ba2GdRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_396
935
936
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 8.0
ΘP [K] Method Remarks 13 – Double perovskites have two kinds of cations, Gd and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 48 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-gadoliniumdiruthenium oxide
Substance Barium-gadolinium-diruthenium oxide; Ba3GdRu2O9
Gross Formula Ba3GdO9Ru2
Properties Molar magnetic moment and Weiss constant
Structure Ba3GdRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_397
937
938
Magnetic properties of double 6H-perovskite; barium-gadolinium-diruthenium oxide
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 7.68 9.28 (calcd)
ΘP [K] Method Remarks 2.9 – Ln cations occupy the cornersharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data (>150 K) was fitted to Curie-Weiss law, with: θ ¼ 2.9 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-gadoliniummolybdenum Ba3Gd2MoO9
Substance Quaternary oxide of barium-gadolinium-molybdenum oxide; Ba3Gd2MoO9
Gross Formula Ba3Gd2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Gd2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_398
939
Magnetic properties of perovskite, quaternary oxide of. . .
940
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 7.89 7.94 (calcd)
ΘP [K] Method Remarks 1.63 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (300–1.8 K), with: Θ ¼ 1.63 K (iii) -ve value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction 0 40 30 20 10 0
0
50
100
150 Temperature T [K]
Fig. 1 Ba3Gd2MoO9. Temperature dependence of χ M1
200
250
300
Reference
941
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide of barium-gadoliniumtungsten oxide Ba3Gd2WO9
Substance Quaternary oxide of barium-gadolinium-tungsten oxide; Ba3Gd2WO9
Gross Formula Ba3Gd2O9W
Properties Molar magnetic moment and Weiss constant
Structure Ba3Gd2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_399
942
Reference
943
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 7.85 7.94 (calcd)
ΘP [K] Method Remarks 1.51 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law obeyed (300–1.8 K), with: θ ¼ 1.51 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of gadolinium germanium antimonide
Substance Gadolinium germanium antimonide; Gd6Ge5-xSb11+x
Gross Formula Gd6Ge5-xSb11+x
Properties Molar magnetic moment and Weiss constant
Structure Gd6Ge5-xSb11+x
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_400
944
Additional Remarks
945
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] 300 – – 7.08 47 SQUID Metallic, possessing a threedimensional extended structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) variation of χ M1 and μeff with temperature is shown in Fig. 1 (ii) χ M measurement reveal long range antiferromagnetic ordering at TN ¼ 12.5 K (iii) at 2 K, it undergoes a metamagnetic transition: Hc ¼ 4.75 T (degree of the resistance of a magnet against demagnetisation)
8
16 14
6
12 4
10 8
2
6 0
0
50
100
150
200
Temperature T [K]
250
4 300
Effective magnetic moment meff [m]
18 Inverse molar susceptibility χ–1 [mol cm–3]
Fig. 1 Gd6Ge5-xSb11+x. Temperature dependence of χ M1 and μeff
946
Magnetic properties of gadolinium germanium antimonide
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference L. Deakin, R. Lam, A. Mar, Inorg. Chem. 40, 960 (2001)
Part X Tb
Magnetic properties of terbium-copper complex with nitrilotriacetic acid
Substance Hexaaquachloronitrilotriacetatocopper(II)-terbium(III) perchlorate monohydrate; [TbCuCl(nta)(H2O)6]ClO4H2O
Gross Formula C6H20Cl2CuNO17Tb
Properties Product of molar magnetic susceptibility with temperature
Structure [TbCuCl(nta)(H2O)6]ClO4.H2O;
H3nta ¼ nitrilotriacetic acid
H2C COOH
HOOC H2C
N H2C COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_401
949
950
Magnetic properties of terbium-copper complex with nitrilotriacetic acid
Data T [K] 300
χg [106 emu/g] –
χ MT [cm3 K mol1] 12.17
pm or μeff [μB] –
ΘP [K] –
Method –
Remarks chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) plot of χ MT versus T is shown in Fig. 1 (ii) an overall antiferromagnetic interactions suggested
temperature xMT [cm3 K mol–1]
Product of molar susceptibility with
12 10 8 6 4 2 0 0
50
100 150 200 Temperature T [K]
Fig. 1 [TbCuCl(nta)(H2O)6]ClO4.H2O. Temperature dependence of χ MT
250
300
Reference
951
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Q.-D. Liu, S. Gao, J.-R. Li, B.-Q. Ma, Q.-Z. Zhou, K.-B. Yu, Polyhedron 21, 1097 (2002)
Magnetic properties of mixed ligand bimetallic, heteronuclear complex of terbium(III)-zinc(II) with α–methylacrylic acid and bipyridine
Substance Di[diaqua-4,40 -bipyridine-deca(α-methylacrylato)diterbium(III)-dizinc(II)]; [Tb2Zn2(L)10(bipy)(H2O)2]2
Gross Formula C100H124N4O44Tb4Zn4
Properties Product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Tb2Zn2(L)10(bipy)(H2O)2]2; HL ¼ α-methylacrylic acid; H
CH3
H
COOH
bipy ¼ 4,40 -bipyridine
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_402
N
N
952
Additional Remarks
953
Data T [K] 300 29.0
χg [106 emu/g] – –
χ MT [cm3 K mol–1] 47.4 58.2
pm or μeff [μB] –
ΘP [K] 6.7
Method SQUID
Remarks Octanuclear molecule
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) thermal variation of χ MT is shown in Fig. 1 (ii) χ M1 data (300–29 K) obey Curie-Weiss law, with: C ¼ 47 cm3 K mol1 θ ¼ 6.7 K (iii) positive value of θ indicates strong ferromagnetic interactions between Tb(III) ions (iv) At 50 K), with: θ ¼ 9.84 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction (iii) μeff value is smaller than free ion value indicating the mixed valence state (+3, +4) of Tb
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Part XI Dy
Magnetic properties of dysprosium(III) nitrato complex with 2-(3-coumarinyl)imidazo[1,2-a]pyridine
Substance Dinitrato-bis[2-(3-coumarinyl)imidazo[1,2-a]pyridine]dysprosium(III) nitrate trihydrate; [Dy(cip)2(NO3)2]NO3.3H2O
Gross Formula C32H26DyN7O16
Properties Molar magnetic moment
Structure [Dy(cip)2(NO3)2]NO3.3H2O; +
O N
O3N N
cip ¼ 2-(3-coumarinyl)imidazo[1,2-a]pyridine O
O
N
N
O
N Dy O NO3
N
NO3.3H2O
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_405
961
962
Magnetic properties of dysprosium(III) nitrato complex with. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] RT – – 10.73
ΘP [K] Method Remarks – Gouy μeff value closely agree with Van Vleck values, suggesting non-participation of 4f electrons in bonding
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference K.B. Gudasi, T.R. Goudar, M.V. Kulkarni, Indian J. Chem. 43A, 1459 (2004)
Magnetic properties of dysprosium(III) trans-2-butenoate polymer
Substance Dysprosium(III) trans-2-butenoate polymer; {[Dy2(L)6(H2O)].0.5HL.H2O}n
Gross Formula C26H43Dy2O18
Properties Molar magnetic moment and Weiss-constant
Structure {[Dy2(L)6(H2O)].0.5HL.H2O}n;
HL ¼ trans-2-butenoic acid H3C H
H COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_406
963
Magnetic properties of dysprosium(III) trans-2-butenoate polymer
964
Data T [K] 300 2
χg [106 emu/g] – –
χM [10–6 emu/mol] – –
pm or μeff [μB] 10.40 9.2
ΘP [K] –3 +0.3
Method SQUID
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Product of molar susceptibility with temperature c MT [cm3 K mol–1]
Inverse molar susceptibility c M –1 [mol cm–3]
(i) plots of χ M1 versus T and χ MT versus T (inset) are shown in Fig. 1 (ii) Curie-Weiss behaviour observed at high temperatures (iii) deviation from Curie-Weiss behaviour at low temperatures
16
12
8
40
30
20
10
0
150 Temperature T [K]
300
4
0 0
100 200 Temperature T [K]
300
Fig. 1 {[Dy2(L)6(H2O)].0.5HL.H2O}n. Temperature dependence of χ M1 (●) and χ MT (inset)
Reference
965
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Baggio, M.T. Garland, O. Pena, M. Perec, Inorg. Chim. Acta 358, 2332 (2005)
Magnetic properties of double perovskite A2LnMO6; strontium-dysprosiumruthenium oxide
Substance Strontium-dysprosium-ruthenium oxide; Sr2DyRuO6
Gross Formula DyO6RuSr2
Properties Molar magnetic moment and Weiss constant
Structure Sr2DyRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_407
966
Reference
967
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 10.4
ΘP [K] Method Remarks 20 – Double perovskites have two kinds of cations, Dy and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 38 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-dysprosiummolybdenum Ba3Dy2MoO9
Substance Quaternary oxide of barium-dysprosium-molybdenum oxide; Ba3Dy2MoO9
Gross Formula Ba3Dy2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Dy2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_408
968
Additional Remarks
969
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 10.17 10.63 (calcd)
ΘP [K] Method Remarks 11.94 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (>50 K), with: θ ¼ 11.94 K (iii) -ve value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
01 401 301 201 101 01
0
50
100
150 Temperature T [K]
Fig. 1 Ba3Dy2MoO9. Temperature dependence of χ M1
200
250
300
970
Magnetic properties of perovskite, quaternary oxide of. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide of barium-dysprosiumtungsten Ba3Dy2WO9
Substance Quaternary oxide of barium-dysprosium-tungsten oxide; Ba3Dy2WO9
Gross Formula Ba3Dy2WO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Dy2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_409
971
972
Magnetic properties of perovskite, quaternary oxide of. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 10.27 10.63 (calcd)
ΘP [K] Method Remarks 8.85 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law obeyed (>50 K), with: θ ¼ 8.85 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Part XII Ho
Magnetic properties of holmium copper phosphide
Substance Holmium copper phosphide; HoCuP2
Gross Formula CuHoP2
Properties Molar magnetic moment and Weiss constant
Structure HoCuP2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_410
975
976
Magnetic properties of holmium copper phosphide
Data T [K] 300–50 1.7
χg [10 – –
6
χM emu/g] [10 –
6
pm or μeff ΘP emu/mol] [μB] [K] 10.62 2 7.2
Method SQUID
Remarks Zig-zag chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M-1 is shown in Fig. 1 (ii) above 50 K, Curie-Weiss law is obeyed (iii) magnetic moment localized on holmium atom order antiferromagnetically at: 3.8 K (iv) at 1.7 K, μeff value are considerably reduced due to a splitting of the 5I8 ground multiplet in a tetragonal crystal field potential Fig. 1 HoCuP2. Temperature dependence of χ M 1 Inverse molar susceptibility
21 18 15 12 9 6 3 0 0
50
100 150 200 Temperature T [K]
250
300
Reference
977
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Mozharivskyj, D. Kaczorowski, H.F. Franzen, Z. Anorg, Allg. Chem. 627, 2163 (2001)
Magnetic properties of holmium copper arsenide
Substance Holmium copper arsenide; HoCuAs2
Gross Formula AS2CuHo
Properties Molar magnetic moment and Weiss constant
Structure HoCuAs2
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_411
978
Additional Remarks
979
Data T [K] 300–50 1.7
χg [10 – –
6
χM emu/g] [10 –
6
pm or μeff ΘP emu/mol] [μB] [K] 10.5 3 6.9
Method SQUID
Remarks Zig-zag chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) temperature dependence of χ M 1 is shown in Fig. 1 (ii) above 50 K, Curie-Weiss law is obeyed (iii) magnetic moment localized on holmium atom order antiferromagnetically at: 3.6 K (iv) at 1.7 K, μeff values are considerably reduced due to a splitting of the 5I8 ground multiplet in a tetragonal crystal field potential
xM–1 [mol cm–3]
Inverse molar susceptibility
21 18 15 12 9 6 3 0
0
50
100 150 200 Temperature T [K]
Fig. 1 HoCuAs2. Temperature dependence of χ M
1
250
300
980
Magnetic properties of holmium copper arsenide
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference Y. Mozharivskyj, D. Kaczorowski, H.F. Franzen, Z. Anorg, Allg. Chem. 627, 2163 (2001)
Magnetic properties of crotonato bridged dinuclear holmium(III) aqua complex as 2,20 -dipyridylamine adduct
Substance Crotonato bridged dinuclear holmium(III) aqua complex as 2,20 -dipyridylamine adduct; [Ho2(crot)7]n.(dypam)
Gross Formula C38H49Ho2N3O16
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Ho2(crot)7]n.(dypam);
dpyam ¼ 2,20 -dipyridylamine; N
crot ¼ crotonate anion O
H N N
H3C
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_412
O
981
Magnetic properties of crotonato bridged dinuclear holmium(III) aqua. . .
982
Data T [K] 295 2.7
χg [106 emu/g] – –
χ MT [cm3 K mol–1] 27.3 14.8
pm or μeff [μB] 10.4/Ho 6.5/Ho
ΘP [K] Method Remarks –12.9 SQUID Polymeric, chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
25
25
20
20
15
15
10
10
5
5 0
0 0
50
100 150 200 Temperature T [K]
250
300
Fig. 1 [Ho2(crot)7]n.(dypam). Temperature dependence of χ M–1 and χ MT
Product of molar susceptibility with temperature xMT [cm3 K mol–1]
xM–1 [mol cm–3]
Inverse molar susceptibility
(i) χ M–1 versus T and χ MT versus T plots are shown in Fig. 1 (ii) at low temperature χ M–1 versus T plot has negative intercept, with: θ ¼ –12.9 K
Reference
983
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A.M. Atria, R. Baggio, M.T. Garland, J.C. Munoz, O. Pena, Inorg. Chim. Acta 357, 1997 (2004)
Magnetic properties of crotonato bridged dinuclear holmium(III) complex 2,20 -bipyridine
Substance Crotonato bridged dinuclear holmium(III) complex with 2,20 -bipyridine; [Ho2(crot)6(bipy)2]
Gross Formula C44H46Ho2N4O12
Properties Molar magnetic moment, product of molar magnetic susceptibility with temperature and Weiss constant
Structure [Ho2(crot)6(bipy)2];
crot ¼ crotonate anion;
bipy ¼ 2,2,0 bipyridine
O H3C
N
O
N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_413
984
Additional Remarks
985
Data χg [106 emu/g] – –
T [K] 295 2
χ MT [cm–1 K mol–1] 20.2 2.6
pm or μeff [μB] 9.92 43.0
ΘP [K] –11.64
Method SQUID
Remarks Dimer
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
20
20
15
15
10
10
5
5
0
0 0
50
100 150 200 Temperature T [K]
250
Fig. 1 [Ho2(crot)6(bipy)2]. Temperature dependence of χ M–1 and χ MT
300
Product of molar susceptibility with temperature xMT [cm3 K mol–1]
xM–1 [mol cm–3]
Inverse molar susceptibility
(i) χ M–1 versus T and χ MT versus T plots are shown in Fig. 1 (ii) at low temperature χ M–1 versus T plot has negative intercept, with: θ ¼ –11.64 K
986
Magnetic properties of crotonato bridged dinuclear holmium(III) complex. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference A.M. Atria, R. Baggio, M.T. Garland, J.C. Munoz, O. Pena, Inorg. Chim. Acta 357, 1997 (2004)
Magnetic properties of holmium(III) trans-2-butenoate polymer
Substance Holmium(III) trans-2-butenoate polymer; {[Ho2(L)6(H2O)].0.5HL.H2O}n
Gross Formula C26H43Ho2O18
Properties Molar magnetic moment and Weiss-constant
Structure {[Ho2(L)6(H2O)].0.5HL.H2O}n;
HL ¼ trans-2-butenoic acid H3C H
H COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_414
987
988
Magnetic properties of holmium(III) trans-2-butenoate polymer
Data T [K] 300 2
χg [106 emu/g] – –
χM [10–6 emu/mol] – –
pm or μeff [μB] 10.52 8.4
ΘP [K] –13 0.0
Method SQUID
Remarks Chain structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark
Product of molar susceptibility with temperature c MT [cm3 K mol–1]
Inverse molar susceptibility c M –1 [mol cm–3]
(i) plots of χ M–1 versus T and χ MT versus T (inset) are shown in Fig. 1
16
12
8
40
30
20
10
0
150 Temperature T [K]
300
4
0
0
100
200
300
Temperature T [K] Fig. 1 {[Ho2(L)6(H2O)].0.5HL.H2O}n. Temperature dependence of χ M–1 and χ MT (inset)
Reference
989
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference R. Baggio, M.T. Garland, O. Pena, M. Perec, Inorg. Chim. Acta 358, 2332 (2005)
Magnetic properties of double perovskite A2LnMO6; strontium-holmium-ruthenium oxide
Substance Strontium-holmium-ruthenium oxide; Sr2HoRuO6
Gross Formula HoO6RuSr2
Properties Molar magnetic moment and Weiss constant
Structure Sr2HoRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_415
990
Reference
991
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 10.6
ΘP [K] Method Remarks 20 – Double perovskites have two kinds of cations, Ho and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 36 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-holmium-ruthenium oxide
Substance Barium-holmium-ruthenium oxide; Ba2HoRuO6
Gross Formula Ba2HoO6Ru
Properties Molar magnetic moment and Weiss constant
Structure Ba2HoRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_416
992
Reference
993
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 10.8
ΘP [K] Method Remarks 20 – Double perovskites have two kinds of cations, Ho and M in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 51 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-holmiumdiruthenium oxide
Substance Barium-holmium-diruthenium oxide; Ba3HoRu2O9
Gross Formula Ba3HoO9Ru2
Properties Molar magnetic moment and Weiss constant
Structure Ba3HoRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_417
994
Reference
995
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 10.15 11.62 (calcd)
ΘP [K] Method Remarks 5.4 – Ln cations occupy the cornersharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data (>150 K) was fitted to Curie-Weiss law, with: θ ¼ 5.4 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-holmiummolybdenum oxide Ba3Ho2MoO9
Substance Quaternary oxide of barium-holmium-molybdenum oxide; Ba3Ho2MoO9
Gross Formula Ba3Ho2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Ho2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_418
996
Symbols and Abbreviations
997
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 10.28 10.58 (calcd)
ΘP [K] Method Remarks 13.73 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (>50 K), with: Θ ¼ 13.73 K (iii) -ve value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction 0 50 40 30 20 10 0
0
50
100
150 Temperature T [K]
200
250
300
Fig. 1 Ba3Ho2MoO9. Temperature dependence of χ M1
Symbols and Abbreviations Short form T χg χM pm μeff
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment (continued)
998 ΘP SQUID
Magnetic properties of perovskite, quaternary oxide of. . . paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide of barium-holmiumtungsten Ba3Ho2WO9
Substance Quaternary oxide of barium-holmium-tungsten oxide; Ba3Ho2WO9
Gross Formula Ba3Ho2WO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Ho2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_419
999
1000
Magnetic properties of perovskite, quaternary oxide of. . .
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–1.8 – – 10.51 10.58 (calcd)
ΘP [K] Method Remarks 9.36 SQUID Quaternary oxide, have a distorted perovskite structure
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law obeyed (>50 K), with: θ ¼ 9.36 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of heterotrimetallic derivative of holmium(III) containing nonaisopropoxidezirconate ligand
Substance Chlorotetraisopropoxoaluminatononaisorpopoxozirconatoholmium(III); [Ho(LZr)(LAl)Cl]
Gross Formula C39H31AlClHoO13Zr2
Properties Molar magnetic moment
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_420
1001
Magnetic properties of heterotrimetallic derivative of holmium(III). . .
1002
Structure LZrΘ ¼ nonaisopropoxidezirconate;
[Ho(LZr)(LAl)Cl]; iPrO
iP
iPrO
iPrO
rO iP
Zr iPrO
iP
rO
rO
iP
iPrO
rO
Zr
iPrO
Al
Ho Cl
Zr
i PrO
i PrO
i PrO
iPrO
iPrO
iPrO
iPrO
iPrO
Zr i PrO
iPrO
iPrO
iPrO
LAlΘ ¼ tetraisopropoxoaluminate i
PrO
Pi rO
Al i PrO
i PrO
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 10.48 – Gouy μeff value close to calculated curve T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Reference
1003
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference S. Mishra, U.M. Tripathi, A. Singh, R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem. 32, 689 (2002)
Part XIII Er
Magnetic properties of erbium-copper complex with nitrilotriacetic acid
Substance Hexaaquachloronitrilotriacetatocopper(II)-erbium(III)perchlorate trihydrate; [ErCuCl(nta)(H2O)6]ClO4.3H2O
Gross Formula C6H24Cl2CuErNO19
Properties Product of molar magnetic susceptibility with temperature
Structure [ErCuCl(nta)(H2O)6]ClO4.3H2O;
H3nta ¼ nitrilotriacetic acid
H2C COOH
HOOC H2C
N H2C COOH
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_421
1007
1008
Magnetic properties of erbium-copper complex with nitrilotriacetic acid
Data χ MT pm or μeff T χg [K] [106 emu/g] [cm3 K mol–1] [μB] 300 – 11.46 –
ΘP [K] Method Remarks – – 1-D chain structure, with eight coordinated erbium and five coordinated copper ions
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) plot of χ MT versus T is shown in Fig. 1 Fig. 1 [ErCuCl(nta)(H2O)6] ClO4.3H2O. Temperature dependence of χ MT
Reference
1009
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Q.-D. Liu, S. Gao, J.-R. Li, B.-Q. Ma, Q.-Z. Zhou, K.-B. Yu, Polyhedron 21, 1097 (2002)
Magnetic properties of double perovskite A2LnMO6; strontium-erbium-ruthenium oxide
Substance Strontium-erbium-ruthenium oxide; Sr2ErRuO6
Gross Formula ErO6RuSr2
Properties Molar magnetic moment and Weiss constant
Structure Sr2ErRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_422
1010
Reference
1011
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 9.8
ΘP [K] Method Remarks 22 – Double perovskites have two kinds of cations, Er and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 42 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-erbium-ruthenium oxide
Substance Barium-erbium-ruthenium oxide; Ba2ErRuO6
Gross Formula Ba2ErO6Ru
Properties Molar magnetic moment and Weiss constant
Structure Ba2ErRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_423
1012
Reference
1013
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 9.52
ΘP [K] Method Remarks 14.6 – Double perovskites have two kinds of cations, Er and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 40 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-erbium-diruthenium oxide
Substance Barium-erbium-diruthenium oxide; Ba3ErRu2O9
Gross Formula Ba3ErO9Ru2
Properties Molar magnetic moment and Weiss constant
Structure Ba3ErRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_424
1014
Reference
1015
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 9.45 10.47 (calcd)
ΘP [K] Method Remarks 9.9 – Ln cations occupy the cornersharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data (>150 K) was fitted to Curie-Weiss law, with: θ ¼ 9.9 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-erbiummolybdenum Ba3Er2MoO9
Substance Quaternary oxide of barium-erbium-molybdenum oxide; Ba3Er2MoO9
Gross Formula Ba3Er2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Er2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_425
1016
Reference
1017
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] ΘP [K] Method Remarks [K] 300–1.8 – – 9.49–9.59 12.75 SQUID Quaternary oxide, (calcd) have a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law obeyed (>50 K), with: θ ¼ 12.75 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide barium-erbium-tungsten Ba3Er2WO9
Substance Quaternary oxide of barium-erbium-tungsten oxide; Ba3Er2WO9
Gross Formula Ba3Er2WO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Er2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_426
1018
Reference
1019
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–1.8 – – 9.48–9.59 8.82 SQUID Quaternary oxide, have (calcd) a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) Curie-Weiss law obeyed (>50 K), with: θ ¼ 8.82 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-LN3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Part XIV Tm
Magnetic properties of diphenyl hydrazine bridged binuclear complex of thullium(III) iodide
Substance Diphenyl hydrazine bridged binuclear complex of thullium(III) iodide; [Tm(I)(thf)2]2(N2Ph2)2
Gross Formula C40H52I2N4O4Tm2
Properties Molar magnetic moment
Structure [Tm(I)(thf)2]2(N2Ph2)2;
N2Ph2–2 ¼ diphenylhydrazine anion;
thf ¼ tetrahydrofuran O
N N
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_427
1023
Magnetic properties of diphenyl hydrazine bridged binuclear complex of. . .
1024
Data T [K] RT
χg [106 emu/g] –
χM [10–6 emu/mol] –
pm or μeff [μB] 7.4
ΘP [K] –
Method Evans
Remarks Binuclear
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Evans
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Evans balance
Reference M.A. Katkova, G.K. Fukin, A.A. Fagin, M.N. Bochkarev, J. Organomet. Chem. 682, 218 (2003)
Magnetic properties of double perovskite A2LnMO6; strontium-thulium-ruthenium oxide
Substance Strontium-thulium-ruthenium oxide; Sr2TmRuO6
Gross Formula O6RuSr2Tm
Properties Molar magnetic moment and Weiss constant
Structure Sr2TmRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_428
1025
1026
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 8.1
ΘP [K] Method Remarks 47 – Double perovskites have two kinds of cations, Tm and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 36 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-thulium-ruthenium oxide
Substance Barium-thulium-ruthenium oxide; Ba2TmRuO6
Gross Formula Ba2O6RuTm
Properties Molar magnetic moment and Weiss constant
Structure Ba2TmRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_429
1027
1028
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 7.92
ΘP [K] Method Remarks 34 – Double perovskites have two kinds of cations, Tm and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 42 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-thuliumdiruthenium oxide
Substance Barium-thulium-diruthenium oxide; Ba3TmRu2O9
Gross Formula Ba3O9Ru2Tm
Properties Molar magnetic moment and Weiss constant
Structure Ba3TmRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_430
1029
1030
Magnetic properties of double 6H-perovskite; barium-thulium-diruthenium oxide
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 7.35 8.94 (calcd)
ΘP [K] Method Remarks 24.5 – Ln cations occupy the corner-sharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data (>150 K) was fitted to Curie-Weiss law, with: θ ¼ 24.5 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-thuliummolybdenum Ba3Tm2MoO9
Substance Quaternary oxide of barium-thulium-molybdenum oxide; Ba3Tm2MoO9
Gross Formula Ba3Tm2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Tm2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_431
1031
Magnetic properties of perovskite, quaternary oxide of. . .
1032
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–1.8 – – 7.44–7.55 25.2 SQUID Quaternary oxide, have (calcd) a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (>50 K), with: θ ¼ 25.2 K (iii) -ve value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction 0 50 40 30 20 10 0
0
50
100
150 Temperature T [K]
Fig. 1 Ba3Tm2MoO9. Temperature dependence of χ M1
200
250
300
Reference
1033
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide of barium-thuliumtungsten Ba3Tm2WO9
Substance Quaternary oxide of barium-thulium-tungsten oxide; Ba3Tm2WO9
Gross Formula Ba3Tm2WO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Tm2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_432
1034
Reference
1035
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–1.8 – – 7.56–7.55 25.3 SQUID Quaternary oxide, have (calcd) a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) Curie-Weiss law obeyed (>50 K), with: θ ¼ 25.3 K (ii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Part XV Yb
Magnetic properties of barium-ytterbium nitridosilicate
Substance Barium-ytterbium nitridosilicate; BaYbSi4N7
Gross Formula BaN7Si4Yb
Properties Molar magnetic moment and Weiss constant
Structure BaYbSi4N7
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_433
1039
1040
Magnetic properties of barium-ytterbium nitridosilicate
Data χM pm or μeff T χg [106 emu/g] [106 emu/mol] [μB] [K] 300–4.2 – – 2.73
ΘP [K] Method Remarks –2.7 SQUID Compound contains a condensed network of corner sharing [N(SiN3)4 units
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Fig. 1 BaYbSi4N7. Temperature dependence of χ M–1 at flux density of 3T
Inverse molar susceptibility 106 mol m–3
(i) temperature dependence of χ M–1 is shown in Fig.1 (ii) >150 K, Curie-Weiss law is obeyed, with: θ ¼ –2.7 K
2.5 2.0 1.5 1.0 0.5
50
100 150 200 Temperature T [K]
250
300
Reference
1041
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H.A. Hoppe, H. Trill, G. Kotzyba, B.D. Mosel, R. Pottgen, W. Schnick, Z. Anorg. Allg. Chem. 630, 224 (2004)
Magnetic properties of strontiumytterbium nitridosilicate
Substance Strontium-ytterbium nitridosilicate; SrYbSi4N7
Gross Formula N7Si4SrYb
Properties Molar magnetic moment and Weiss constant
Structure SrYbSi4N7
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_434
1042
Additional Remarks
1043
Data χM pm or μeff ΘP T χg [106 emu/g] [10–6 emu/mol] [μB] [K] Method Remarks [K] 300–4.2 – – 3.03/formula –2.1 SQUID Compound contains a condensed network of corner sharing [N(SiN3)4 units T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Fig. 1 SrYbSi4N7. Temperature dependence of χ M–1 at flux density of 3T
Inverse molar susceptibility 106 mol cm–3
(i) temperature dependence of χ M–1 is shown in Fig. 1 (ii) >150 K, Curie-Weiss law is obeyed, with: θ ¼ –2.1 K 16 14 12 10 8 6 4 2 50
100
150
200
Temperature T [K]
250
300
1044
Magnetic properties of strontium-ytterbium nitridosilicate
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference H.A. Hoppe, H. Trill, G. Kotzyba, B.D. Mosel, R. Pottgen, W. Schnick, Z. Anorg. Allg. Chem. 630, 224 (2004)
Magnetic properties of double perovskite A2LnMO6; strontium-ytterbium-ruthenium oxide
Substance Strontium-ytterbium-ruthenium oxide; Sr2YbRuO6
Gross Formula O6RuSr2Yb
Properties Molar magnetic moment and Weiss constant
Structure Sr2YbRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_435
1045
1046
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 6.6
ΘP [K] Method Remarks 225 – Double perovskites have two kinds of cations, Yb and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 44 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-ytterbium-ruthenium oxide
Substance Barium-ytterbium-ruthenium oxide; Ba2YbRuO6
Gross Formula Ba2O6RuYn
Properties Molar magnetic moment and Weiss constant
Structure Ba2YbRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_436
1047
1048
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 4.20
ΘP [K] Method Remarks 181 – Double perovskites have two kinds of cations, Yb and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 48 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-ytterbiumdiruthenium oxide
Substance Barium-ytterbium-diruthenium oxide; Ba3YbRu2O9
Gross Formula Ba3O9Ru2Yb
Properties Molar magnetic moment and Weiss constant
Structure Ba3YbRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_437
1049
1050
Magnetic properties of double 6H-perovskite; barium-ytterbium-diruthenium oxide
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] – – – 5.26–6.60 178 – Ln cations occupy the (calcd) corner-sharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer) T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data (>150 K) was fitted to Curie-Weiss law, with: θ ¼ 178 K
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of perovskite, quaternary oxide of barium-ytterbiummolybdenum Ba3Yb2MoO9
Substance Quaternary oxide of barium-ytterbium-molybdenum oxide; Ba3Yb2MoO9
Gross Formula Ba3Yb2MoO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Tb2MoO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_438
1051
Magnetic properties of perovskite, quaternary oxide of. . .
1052
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–1.8 – – 4.36–4.54 45.6 SQUID Quaternary oxide, have (calcd) a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (>50 K), with: θ ¼ 45.6 K (iii) -ve value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction
150 100 50 0
0
50
100
150 Temperature T [K]
Fig. 1 Ba3Yb2MoO9. Temperature dependence of χ M1
200
250
300
Reference
1053
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Magnetic properties of perovskite, quaternary oxide of barium-ytterbiumtungsten Ba3Yb2WO9
Substance Quaternary oxide of barium-ytterbium-tungsten oxide; Ba3Yb2WO9
Gross Formula Ba3Yb2WO9
Properties Molar magnetic moment and Weiss constant
Structure Ba3Yb2WO9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_439
1054
Additional Remarks
1055
Data χM pm or μeff ΘP T χg [106 emu/g] [106 emu/mol] [μB] [K] Method Remarks [K] 300–1.8 – – 4.46–4.54 53.0 SQUID Quaternary oxide, have (calcd) a distorted perovskite structure T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks
Inverse molar susceptibility χ–1 [mol cm–3]
(i) temperature dependence of χ M1 is shown in Fig. 1 (ii) Curie-Weiss law obeyed (>50 K), with: θ ¼ 53.0 K (iii) negative value of Weiss constant indicates the existence of a Ln3+-Ln3+ antiferromagnetic interaction 50 40 30 20 10 0
0
50
100
150 Temperature T [K]
Fig. 1 Ba3Yb2WO9. Temperature dependence of χ M1
200
250
300
1056
Magnetic properties of perovskite, quaternary oxide of. . .
Symbols and Abbreviations Short form T χg χM pm μeff ΘP SQUID
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) superconducting quantum interference device
Reference S. Oyama, Y. Doi, Y. Hinatsu, Y. Ishii, Bull. Chem. Soc. Jpn. 77, 1359 (2004)
Part XVI Lu
Magnetic properties of double perovskite A2LnMO6; strontium-lutetium-ruthenium oxide
Substance Strontium-lutetium-ruthenium oxide; Sr2LuRuO6
Gross Formula LuO6RuSr2
Properties Molar magnetic moment and Weiss constant
Structure Sr2LuRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_440
1059
1060
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 3.2
ΘP [K] Method Remarks 205 – Double perovskites have two kinds of cations, Lu and Ru in the B site of perovskite SrBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 30 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double perovskite A2LnMO6; barium-lutetium-ruthenium oxide
Substance Barium-lutetium-ruthenium oxide; Ba2LuRuO6
Gross Formula Ba2LuO6Ru
Properties Molar magnetic moment and Weiss constant
Structure Ba2LuRuO6
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_441
1061
1062
Magnetic properties of double perovskite A2LnMO6;. . .
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 4.4
ΘP [K] Method Remarks 630 – Double perovskites have two kinds of cations, Lu and Ru in the B site of perovskite BaBO3
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) antiferromagnetic transitions at low temperature, small hysteresis observed below Neel temperature TN ¼ 35 K
Symbols and Abbreviations Short form T χg χM pm μeff TN ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment Neel temperature paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Magnetic properties of double 6H-perovskite; barium-lutetiumdiruthenium oxide
Substance Barium-lutetium-diruthenium oxide; Ba3LuRu2O9
Gross Formula Ba3LuO9Ru2
Properties Molar magnetic moment and Weiss constant
Structure Ba3LuRu2O9
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_442
1063
1064
Magnetic properties of double 6H-perovskite; barium-lutetium-diruthenium oxide
Data χM pm or μeff T χg [K] [106 emu/g] [106 emu/mol] [μB] – – – 0.77
ΘP [K] Method Remarks 31.0 – Ln cations occupy the corner-sharing octahedra (LnO6 octahedra) and Ru cations occupy the face sharing octahedra (Ru2O9 dimer)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remarks (i) χ M properties mainly reflect two kinds of magnetic interactions: interaction between Ln and Ru ions and that between Ru ions in Ru2O9 dimer (ii) χ M data analyzed by modified Curie-Weiss law, with: θ ¼ 31.0 K TIP ¼ 1.4 103 cm3 mol1 (temperature independent paramagnetism)
Symbols and Abbreviations Short form T χg χM pm μeff TIP ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment temperature independent paramagnetism paramagnetic Curie constant (Weiss constant)
Reference Y. Hinatsu, Y. Doi, Bull. Chem. Soc. Jpn. 76, 1093 (2003)
Part XVII Th
Magnetic properties of disubstitutedcyclopentadienyl thorium complex
Substance Tris-ȵ5-[bis(1,3-trimethylsilyl)-cyclopentadienyl]thorium(III); [ThCp00 3]
Gross Formula C33H60Si6Th
Properties Molar magnetic moment and Weiss constant
Structure [ThCp00 3];
Cp00 ¼ bis(1,3-trimethylsilyl)cyclopentadienyl anion Me3Si
-
SiMe3
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_443
1067
1068
Magnetic properties of disubstituted-cyclopentadienyl thorium complex
Data χM pm or μeff T χg [106 emu/g] [10–6 emu/mol] [μB] [K] 300–5 – – Vary from 1.56 to 0.4
ΘP [K] Method Remarks Curie-Weiss law vary from – followed, but 0.8 to +0.3 different samples gave different value of μeff
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference P.C. Blake, N.M. Edelstein, P.B. Hitchcock, W.K. Kot, M.F. Lappert, G.V. Shalimoff, S. Tian, J. Organomet. Chem. 636, 124 (2001)
Part XVIII U
Magnetic properties of heterobimetallic UO2(VI)-Cu(II) complex with bis(2-hydroxy1-naphthaldehyde)malonoyldihydrazone
Substance Triaqua-[bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazonato]oxouranyl(VI)copper(II); [UO2Cu(L)(H2O)3]
Gross Formula C25H22CuN4O9U
Properties Molar magnetic moment
Structure [UO2Cu(L)(H2O)3];
H4L ¼ bis(2-hydroxy-1-naphthaldehyde) malonoyldihydrazone O
H H C N N H
H2C O
H
O O
N N H
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_444
1071
1072
Magnetic properties of heterobimetallic UO2(VI)-Cu(II) complex with. . .
Data χM pm or μeff T χg [K] [106 emu/g] [10–6 emu/mol] [μB] – – – 1.75
ΘP [K] Method Remarks – – Copper has distorted octahedral geometry while uranium has pentagonal-bipyramidal stereochemistry
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Additional Remark (i) absence of metal-metal interactions indicated
Symbols and Abbreviations Short form T χg χM pm μeff ΘP
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant)
Reference R.A. Lal, J. Chakraborty, S. Bhaumik, A. Kumar, Indian J. Chem. 41A, 1157 (2002)
Magnetic properties of oxo-bridged heterobinuclear, UO2(VI)-Co(II) complex with compartmental Schiff-base
Substance Oxo-bridged hetero-binuclear, UO2(VI)-Co(II) complex with compartmental Schiffbase; [UO2(L)Co].2H2O
Gross Formula C20H21CoN3O10U
Properties Molar magnetic moment
Structure [UO2(L)Co].2H2O; H
H4L ¼ N,N0 -2,20 -bis(aminoethyl)methylaminebis (3-carboxysalicylidimine)
O N
O
HO
O
O
O
HO
OH H N N H
Co
O U O .2H2O O
O
N H
OH
H N
N
H
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_445
1073
Magnetic properties of oxo-bridged hetero-binuclear, UO2(VI)-Co(II). . .
1074
Data T [K] RT
χg [106 emu/g] –
χM [10–6 emu/mol] –
pm or μeff [μB] 4.49
ΘP [K] –
Method Gouy
Remarks Octahedral Co(II)
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference K. Dey, S. Sarkar, R. Bhowmick, S. Biswas, D. Koner, Indian J. Chem. 44A, 1995 (2005)
Magnetic properties of binuclear mixed metal, U(VI)-Mn(II) complex with o-cresolphthalein ligand
Substance Oxouranium(II)-manganese(II) complex with o-cresolphthalein ligand; [(H2L)Mn(UO2)(H2O)3]
Gross Formula C32H34MnN2O17U
Properties Molar magnetic moment
Structure [(H2L)Mn(UO2)(H2O)3];
H6L ¼ o-cresolphthalein ligand H2C HO H3C
HOOC
COOH
HOOC
N
COOH
H2 C
CH2 CH2
H2C
C
OH CH3
O C
CH2 N
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_446
1075
1076
Magnetic properties of binuclear mixed metal, U(VI)-Mn(II) complex with. . .
Data χM pm or μeff ΘP T χg [K] Method Remarks [K] [106 emu/g] [106 emu/mol] [μB] RT – – 5.6 – Gouy Weak antiferromagnetic interactions suggested T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference R.M. Issa, A.M. Khedr, A. Tawfik, Synth. React. Inorg. Met.-Org. Chem. 34, 1087 (2004)
Magnetic properties of binuclear mixed metal, U(VI)-Co(II) complex with o-cresolphthalein ligand
Substance Oxouranium(II)-Cobalt(II) complex with o-cresolphthalein ligand; [(H2L)Co(UO2)(H2O)2].2H2O
Gross Formula C32H36CoN2O18U
Properties Molar magnetic moment
Structure [(H2L)Co(UO2)(H2O)2].2H2O;
H6L ¼ o-cresolphthalein ligand
N
H3C
COOH
H2 C
CH2
H2C HO
HOOC
COOH
HOOC
CH2
H2C
C
OH CH3
O C
CH2 N
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_447
1077
Magnetic properties of binuclear mixed metal, U(VI)-Co(II) complex with. . .
1078
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 4.1
ΘP [K] –
Method Gouy
Remarks –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference R.M. Issa, A.M. Khedr, A. Tawfik, Synth. React. Inorg. Met.-Org. Chem. 34, 1087 (2004)
Magnetic properties of binuclear mixed metal, U(VI)-Cu(II) complex with o-cresolphthalein ligand
Substance Oxouranium(II)-Copper(II) complex with o-cresolphthalein ligand; [(H2L)Cu(UO2)(H2O)2].4H2O
Gross Formula C32H40CuN2O20U
Properties Molar magnetic moment
Structure [(H2L)Cu(UO2)(H2O)2].4H2O;
H6L ¼ o-cresolphthalein ligand
N
H3C
COOH
H2 C
CH2
H2C HO
HOOC
COOH
HOOC
CH2
H2C
C
O C
CH2 N OH CH3
O
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 A. Gupta (ed.), Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 3, https://doi.org/10.1007/978-3-662-62470-8_448
1079
Magnetic properties of binuclear mixed metal, U(VI)-Cu(II) complex with. . .
1080
Data T [K] RT
χg [106 emu/g] –
χM [106 emu/mol] –
pm or μeff [μB] 1.7
ΘP [K] –
Method Gouy
Remarks –
T: Temperature χ g: Specific susceptibility χ M: Molar susceptibility pm, μeff: Effective magnetic moment per molecule ΘP: Paramagnetic Curie constant (Weiss constant)
Symbols and Abbreviations Short form T χg χM pm μeff ΘP Gouy
Full form temperature specific susceptibility molar susceptibility effective magnetic moment per molecule effective magnetic moment paramagnetic Curie constant (Weiss constant) Gouy method or Pascal method
Reference R.M. Issa, A.M. Khedr, A. Tawfik, Synth. React. Inorg. Met.-Org. Chem. 34, 1087 (2004)