High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure: A Supplement to Landolt-Börnstein IV/22 Series 3662645920, 9783662645925

The subject of this supplement to Landolt-Börnstein IV/22 Series is to present both the numerical and graphical data on

119 26 28MB

English Pages 745 [774] Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Preface
Contents
Introduction
General Remarks
On the Selection of the Data
List of Symbols
Definitions, Units, and Conversion Factors
List of Abbreviations
Part I: MO-type Compounds
MnO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Fe1-xO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Mg1-xFexO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CoO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
NiO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CuO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
EuO
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part II: MO2-type Compounds
α-CrO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
UO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part III: M2O3-type Compounds
V2O3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic and Electric Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Cr2O3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
zeta-Mn2O3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
α-Fe2O3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
gamma-Fe2O3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part IV: M3O4-type Compounds
Mn3O4
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Fe3O4
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Co3O4
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part V: M7O13-type Compound
V7O13
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Part VI: M8O15-type Compound
V8O15
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part VII: MOX (X=F, Cl, Br)-type Compounds
TiOF (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
TiOCl
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
TiOBr
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
VOF (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
FeOF (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
Part VIII: MM´O2-type Compounds
LiMnO2 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
NaxCoO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CuCrO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CuFeO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SrFeO2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
2H-AgFeO2 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
3R-AgFeO2 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
Part IX: MM´(MoO4)2-type Compound
RbFe(MoO4)2
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Part X: MM´O2.5-type Compound
La1-xSrxCuO2.5 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
Part XI: MM´O3-type Compounds
NaOsO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
NaIrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
Additional Literature
MgVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
MgMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
K0.84OsO3 (Synthesized Under Pressure)
Crystallographic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
CaCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CaMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Ca1-xSrxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Ca1-xYxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
CaMn1-xRuxO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
CaFeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CaCoO3 (Synthesized Under Pressure)
Crystallographic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
CaRuO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
Pv-CaRhO3 (Perovskite-Type) (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
pPv-CaRhO3 (Post-perovskite-Type) (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CaOsO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CaIrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CaPtO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
ScVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ScCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ScMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ScFeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ScRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
VBO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CrBO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
MnCO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
MnTiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
MnVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
MnCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
MnGeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
MnSeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
MnSnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
MnTeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
FeBO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
FeCO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Mg1-xFexSiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
FeTiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
FeGeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CoCO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CoVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
CoMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
CoSeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
CoTeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
NiVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
NiCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
NiMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
NiSeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
NiTeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
CuMnO3 (Synthesized Under Pressure)
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
CuGeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CuSeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
CuTeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ZnMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
GaFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SrCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
6H-SrMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
C-SrMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sr1-xBaxMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
SrFeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SrFe1-xCoxO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under High Pressure
Symbols and Abbreviations
References
Additional Literatures
SrCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sr1-xYxCoO3-delta
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SrRuO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sr1-xLaxRuO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
SrRu1-xCrxO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literature
SrRu1-xMnxO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SrRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
SrOsO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
SrIrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
SrIr0.8Sn0.2O3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
YTiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
YVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
YCrO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
YMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
YCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
YNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
InCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
InMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
(In1-xMnx)MnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
(In1-xMx)MO3 (x = 0.143; M = Fe0.5Mn0.5) (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
InMn1-xGaxO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
InRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
6H-BaCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
BaMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
BaFeO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
3C-BaRuO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
BaOsO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
9M-BaIrO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
5M-BaIrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
LaTiO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LaVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LaCrO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LaMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-xCaxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-xSrxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La2/3(Ca1-xSrx)1/3MnO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-x-yYyCaxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
La1-xBaxMnO3
Crystallographic Properties
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LaFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1/3Sr2/3FeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La0.5Ba0.5FeO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
LaCoO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-xCaxCoO3
Crystallographic at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-xSrxCoO3-delta
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
La1-xBaxCoO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
CeVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literature
PrVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
PrMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Pr1-xNaxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Pr1-xCaxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Pr1-xSrxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
PrFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
PrNiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Nd1-xSrxMnO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
NdFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Nd1-xBaxCoO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
NdNiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
NdRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
SmVO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
SmMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sm0.2Ca0.8Mn1-xRuxO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sm1-xSrxMnO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Sm0.5Ba0.5MnO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literature
SmNiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
EuTiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
EuVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Eu1-xSrxMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
EuFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
EuCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
EuNiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
GdVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
GdFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
GdNiO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-GdInO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
TbVO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
TbMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
TbCoO3 (Synthesized Under Pressure)
Crystallographic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
DyVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
DyCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
References
Additional Literatures
DyNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
o-DyInO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
h-HoMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-HoMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
HoCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
HoNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ErCrO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-ErMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
ErFeO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-TmMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
TmFeO3
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-YbMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
LuVO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
h-LuMnO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
o-LuMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
LuFeO3
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LuCoO3 (Synthesized Under Pressure)
Crystallographic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
LuNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
LuRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
TlCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
TlMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
TlFeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
TlNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
PbVO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
PbCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
PbMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
PbFe0.5V0.5O3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
PbNiO3 (Synthesized Under Pressure)
Crystallographic Properties
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
PbRuO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
BiCrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literatures
BiCr0.5Ni0.5O3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
Bi0.5Pb0.5CrO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
Reference
BiMnO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
BiMn1-xMxO3 (M=Al, Sc, Cr, Fe, and Ga; 0x0.2) (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
BiFeO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
BiCoO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
BiNiO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Magnetic Properties Under Pressure
Symbols and Abbreviations
References
Additional Literatures
Bi1-xLaxNiO3 (0x0.5) (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Additional Literature
BiRhO3 (Synthesized Under Pressure)
Crystallographic Data at Normal Pressure
Elastic Properties
Magnetic Properties at Normal Pressure
Symbols and Abbreviations
References
Recommend Papers

High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure: A Supplement to Landolt-Börnstein IV/22 Series
 3662645920, 9783662645925

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Yoshiyuki Kawazoe Takeshi Kanomata Ryunosuke Note

High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure A Supplement to Landolt-Börnstein IV/22 Series

MATERIALS.SPRINGER.COM

High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure

Yoshiyuki Kawazoe • Takeshi Kanomata • Ryunosuke Note

High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure A Supplement to Landolt-Bo¨rnstein IV/22 Series

With 354 Figures and 9 Tables

Yoshiyuki Kawazoe Tohoku University Sendai, Japan

Takeshi Kanomata Sendai, Japan

Ryunosuke Note Miyagi-gun, Japan

ISBN 978-3-662-64592-5 ISBN 978-3-662-64593-2 (eBook) https://doi.org/10.1007/978-3-662-64593-2 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

Pressure is one of the important independent variables with temperature which are able to control the state of condensed materials. The essential effect of pressure application is to change both the volume of material or atomic distance between constituent elements in the condensed materials and then their electronic state. Various physical properties of condensed materials change with the change of electronic states by application of pressure. Among the effects of pressure for physical properties of condensed materials, the most remarkable pressure effect is the occurrence of pressure–induced new phase as seen in structural transformation, magnetic and electric phase transition and then insulator–metal transitions induced by pressure application. In the early twentieth century, P. W. Bridgman (a Nobel prize winner 1946) have at first developed the high-pressure generation apparatuses, established the experimental method for research of physical properties of solids under high pressure, and measured the compressibility of many materials, pressure effects on electrical resistance, and studied phase transformation induced by pressure. After Bridgman, the development of various kinds of pressure generation apparatus using solids as compressing medium made it possible for us to study solid-state physics under wide pressure and temperature ranges. In particular, the development of a miniature diamond anvil in the 1970s has extended the experimental ranges of pressures up to 50 GPa and also of the temperatures from super low temperature to those of a few thousand degrees. On the other hand, measurement methods of various kinds of physical properties under high pressure also were greatly developed in the last three decades, and then measurements of magnetization, magnetic susceptibility, electric resistance, magnetoresistance, Hall effect, a dielectric constant, ND, X-ray diffraction, specific heat, thermal expansion, ultrasonic measurements, and Mössbauer effect under pressure become possible and a large number of results have been published on the solid-state physics under high pressure. In the field of magnetism, it was well known earlier that the volume of a ferromagnet changes with the increase of intrinsic magnetization by application of magnetic field after saturation. This volume effect was measured as the forced volume magnetostriction. And also, as the temperature is increased through the Curie temperature, the loss of intrinsic magnetization has an effect on the volume which shows up as an abnormal thermal expansion. This shows that the occurrence v

vi

Preface

of intrinsic magnetization causes the volume change of ferromagnet, which is called spontaneous volume magnetostriction. These effects have been called magnetovolume effects and are used to estimate the volume dependence of intrinsic magnetization or interaction between magnetic ions. As reciprocals of magnetovolume effect, the application of pressure on a ferromagnet induces the change of magnetization and magnetic transition temperature. Because of the difficulty of pressure generation and magnetic measurements under pressure, there were a few reports about the pressure effect on magnetic properties formerly. But the technique of pressure generation and magnetic measurements under pressure developed rapidly after the 1970s. They enable us not only to measure magnetization under pressure up to 50 GPa, but to carry out even the measurements of various micro-magnetic properties, for example, NMR, neutron diffraction, Mössbauer effect, etc. And then the recent results of observations of magnetic phase transitions under pressure revealed that various kinds of magnetic states (magnetic structures) are induced even in a kind of magnetic material by pressure application. At present, the temperature-pressure magnetic phase diagrams have been reported for many magnetically ordered materials: pure metals, ordered or disordered alloys, oxides, and compounds. In the field of superconductivity, research on superconductivity under pressure has made also much progress in superconducting heavy fermion compounds, oxides, and organic compounds since the 1970s. At present, it is also found that a lot of non-superconducting materials under normal pressure transform into superconductors under high pressure. In particular, it was a quite surprising fact that even pure iron metal was found to become superconducting at temperatures below 2 K at pressures between 15 and 30 GPa in the non-magnetic hcp phase and then many non-superconducting materials to become superconducting by application of extreme high pressure of several tens of GPa. It is expected in the field of solid-state physics that the occurrence of new magnetic and superconductive phases by pressure application and clarification of its mechanism will make a great contribution to the development of magnetism and superconductivity research. May 2023

The Editors

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Part I

MO-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

MnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

Fe1-xO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

Mg1-xFexO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

CoO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

CuO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

EuO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

Part II

MO2-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

α-CrO2

..................................................

51

UO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

Part III

.............................

59

V2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

...................................................

66

ζ-Mn2O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

69

α-Fe2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72

γ-Fe2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

Part IV

M3O4-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83

Mn3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85

Cr2O3

M2O3-type Compounds

vii

viii

Contents

Fe3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

Co3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

Part V

M7O13-type Compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

101

V7O13

...................................................

103

Part VI V8O15 Part VII

M8O15-type Compound

............................

107

...................................................

109

MOX (X=F, Cl, Br)-type Compounds . . . . . . . . . . . . . . . . . .

113

TiOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

115

...................................................

116

TiOBr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120

VOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

123

FeOF (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

Part VIII

127

TiOCl

MM’O2-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . .........................

129

NaxCoO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

132

CuCrO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

139

CuFeO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

..................................................

150

2H-AgFeO2 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

153

3R-AgFeO2 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

158

Part IX

161

LiMnO2 (Synthesized Under Pressure)

SrFeO2

MM’(MoO4)2-type Compound . . . . . . . . . . . . . . . . . . . . . . .

RbFe(MoO4)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

163

Part X

167

MM’O2.5-type Compound . . . . . . . . . . . . . . . . . . . . . . . . . . .

La1-xSrxCuO2.5 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . .

169

Part XI

173

MM’O3-type Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . .........................

175

NaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

178

MgVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

180

NaOsO3 (Synthesized Under Pressure)

Contents

ix

........................

182

K0.84OsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .

184

.........................

186

CaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

190

Ca1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194

Ca1-xYxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197

CaMn1-xRuxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200

CaFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

205

.........................

210

CaRuO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

213

Pv-CaRhO3 (Perovskite-Type) (Synthesized Under Pressure) . . . . . . . .

216

pPv-CaRhO3 (Post-perovskite-Type) (Synthesized Under Pressure) . . .

218

.........................

221

CaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

224

CaPtO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

228

ScVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .

231

ScCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

234

.........................

238

ScFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

240

ScRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

243

...........................

246

CrBO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .

249

MnCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

252

.........................

256

MnVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

260

MnCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

263

MnGeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

265

.........................

268

MnSnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

271

MnTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

275

MgMnO3 (Synthesized Under Pressure)

CaCrO3 (Synthesized Under Pressure)

CaCoO3 (Synthesized Under Pressure)

CaOsO3 (Synthesized Under Pressure)

ScMnO3 (Synthesized Under Pressure)

VBO3 (Synthesized Under Pressure)

MnTiO3 (Synthesized Under Pressure)

MnSeO3 (Synthesized Under Pressure)

x

Contents

FeBO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

278

FeCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

287

Mg1-xFexSiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .

292

..................................................

297

FeGeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

301

CoCO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

303

..........................

306

CoMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

308

CoSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

310

CoTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

313

NiVO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .

315

NiCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

317

.........................

319

NiSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

322

NiTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

325

CuMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

328

CuGeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

330

CuSeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

338

CuTeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

341

ZnMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

344

GaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

346

SrCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

350

......................

353

C-SrMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

356

....................

360

SrFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

363

SrFe1-xCoxO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .

368

SrCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

371

Sr1-xYxCoO3-δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

375

SrRuO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

379

FeTiO3

CoVO3 (Synthesized Under Pressure)

NiMnO3 (Synthesized Under Pressure)

6H-SrMnO3 (Synthesized Under Pressure)

Sr1-xBaxMnO3 (Synthesized Under Pressure)

Contents

xi

Sr1-xLaxRuO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

384

SrRu1-xCrxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

388

SrRu1-xMnxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

392

SrRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

395

SrOsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

397

SrIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .

400

SrIr0.8Sn0.2O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .

403

YTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

405

YVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

408

YCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

411

YMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

414

..........................

419

YNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . .

422

InCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

425

.........................

428

(In1-xMnx)MnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . .

431

(In1-xMx)MO3 (x 5 0.143; M 5 Fe0.5Mn0.5) (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

433

....................

436

InRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

439

6H-BaCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

442

BaMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

445

BaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

447

......................

449

BaOsO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

452

9M-BaIrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

455

5M-BaIrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

459

..................................................

461

LaVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

464

LaCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

467

YCoO3 (Synthesized Under Pressure)

InMnO3 (Synthesized Under Pressure)

InMn1-xGaxO3 (Synthesized Under Pressure)

3C-BaRuO3 (Synthesized Under Pressure)

LaTiO3

xii

Contents

LaMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

471

............................................

475

La1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

481

La2/3(Ca1-xSrx)1/3MnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

487

La1-x-yYyCaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

490

............................................

493

LaFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

497

La1/3Sr2/3FeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

502

............................................

506

LaCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

508

La1-xCaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

513

La1-xSrxCoO3-δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

519

La1-xBaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

529

CeVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

533

PrVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

535

.................................................

538

Pr1-xNaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

541

Pr1-xCaxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

544

Pr1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

549

PrFeO3

..................................................

554

PrNiO3

..................................................

558

Nd1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

563

NdFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

568

Nd1-xBaxCoO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

574

NdNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

578

NdRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

583

..................................................

585

SmMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

588

Sm0.2Ca0.8Mn1-xRuxO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

591

............................................

594

La1-xCaxMnO3

La1-xBaxMnO3

La0.5Ba0.5FeO3

PrMnO3

SmVO3

Sm1-xSrxMnO3

Contents

xiii

Sm0.5Ba0.5MnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

599

SmNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

601

EuTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

604

EuVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

607

Eu1-xSrxMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

610

EuFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

615

.........................

619

EuNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

622

..................................................

627

GdFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

630

GdNiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

633

o-GdInO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .

636

TbVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

638

TbMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

641

.........................

645

DyVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

648

.........................

652

DyNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

654

........................

656

...............................................

658

o-HoMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

661

HoCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

664

HoNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

667

ErCrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

669

o-ErMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . .

672

ErFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

674

o-TmMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

677

.................................................

680

o-YbMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . .

683

LuVO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

686

EuCoO3 (Synthesized Under Pressure)

GdVO3

TbCoO3 (Synthesized Under Pressure)

DyCoO3 (Synthesized Under Pressure)

o-DyInO3 (Synthesized Under Pressure) h-HoMnO3

TmFeO3

xiv

Contents

...............................................

689

.......................

692

LuFeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

695

.........................

699

LuNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

702

LuRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

706

TlCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

708

.........................

710

TlFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

713

TlNiO3 (Synthesized Under Pressure)

..........................

716

PbVO3 (Synthesized Under Pressure)

..........................

719

PbCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

723

PbMnO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . .

726

PbFe0.5V0.5O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .

729

PbNiO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

731

.........................

734

BiCrO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

737

BiCr0.5Ni0.5O3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . .

740

....................

742

.........................

744

h-LuMnO3

o-LuMnO3 (Synthesized Under Pressure)

LuCoO3 (Synthesized Under Pressure)

TlMnO3 (Synthesized Under Pressure)

PbRuO3 (Synthesized Under Pressure)

Bi0.5Pb0.5CrO3 (Synthesized Under Pressure) BiMnO3 (Synthesized Under Pressure)

BiMn1-xMxO3 (M5Al, Sc, Cr, Fe, and Ga; 0≤x≤0.2) (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 BiFeO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

756

BiCoO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

764

..........................

768

Bi1-xLaxNiO3 (0≤x≤0.5) (Synthesized Under Pressure) . . . . . . . . . . . . .

773

BiRhO3 (Synthesized Under Pressure) . . . . . . . . . . . . . . . . . . . . . . . . . .

777

BiNiO3 (Synthesized Under Pressure)

Introduction

General Remarks The subject of this volume is to present both the numerical and graphical data on the various magnetic properties of materials under pressure. In general, most of the socalled magnetic materials are materials which contain the iron group 3d elements and rare earth 4f elements as magnetic atoms. In LB IV/22A, we compiled the data for magnetic properties under pressure of magnetic single metals, disordered and ordered alloys and compounds, which contain 3d elements as magnetic atoms, except 3d metal oxides. In this volume, we compile the data for magnetic properties under pressure of transition metal binary oxides MmOn [M: transition metals, O: oxygen, m, n: 1~15], MXO [M: transition metals, X: F, Cl, Br, O: oxygen], and MM0 On [M: transition metals, M0 : transition metals or non-transition metal elements, O: oxygen, n = 2, 2.5, 3] ternary oxides, which are parts of vast accumulation of data for magnetic oxides together with those for various multicomponent magnetic oxides compiled in a subsequent volume. Compiled oxides MmOn are arranged in order of a subscript ordinal number m and n. The data are presented for each oxide in the order of name of oxides, texts (tables), and figures. The numerical data are compiled in the table which consists of four blocks, I–IV, with the contents as shown below. Name of compiled oxides I Crystallographic data at normal pressure Crystal structure, space group, lattice constants, [reference] Example: Fe3O4 Cubic, Fd3m, a ¼ 8.3970 Å, [94OD] Crystal structure, space group, and lattice parameters are quoted from referred literature.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_1

1

2

Introduction

II Elastic properties The elastic properties (compressibility and bulk modulus) are briefly given. Furthermore, the information of the pressure-induced structural transition is given. III Magnetic properties at normal pressure Basic magnetic properties (magnetic moments, magnetization, magnetic transition temperatures, magnetic structure, etc.) are briefly given. IV Magnetic properties under pressure Pressure derivative or pressure coefficient of magnetic properties is given numerically for each material. And pressure dependence of magnetic properties and magnetic phase diagrams are also given graphically in figure. References and additional literatures: References are arranged in order of published date and numbered consecutively for each material.

On the Selection of the Data As well known, the data-compiling principle in the Landolt-Börnstein series is to choose the best reliable values from many available experimental data and give them in the table. The present compilation is done according to this principle as much as possible. In this compilation, the presently available data are listed for numerical data in each literature. In some cases in which graphical data are given, but the numerical data are not given in the literature, the numerical values of magnetic properties are taken from the analytical data given as figures. Numerical data obtained in such a way are marked with * on its right shoulder. On the other hand, the graphical data (figures) take a lot of printed pages unlike the numerical data. In order to avoid the increase of printed pages, the figures which seem more reasonable from the viewpoint of the author are selected and presented.

List of Symbols Symbol a, b, c B B0 B00

Unit Å G, T bar, Pa

Quantity Lattice parameters Magnetic induction Bulk modulus Pressure derivative of B0

Bhf Cg Cm Cp d

G, T cm3 K g1 cm3 K mol1 J mol1 K1 Å

Magnetic hyperfine field (or hyperfine field) Curie constant per gram Curie constant per mole Specific heat Atomic distance (continued)

List of Symbols Symbol Ea Eac Eg f H HA Hcr Hdc HE Hi Hhf IR kB K1

Lm p pc peff

Unit erg cm3, J m3 eV eV Hz Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Oe, A m1 Å J K1, erg K1 erg cm3 erg g1, J m3 J f.u.1, K f.u.1 V A1 s bar, Pa, atm bar, Pa μB/M μB/f.u.

pm pM pr psm psM QS R S T TC Tc TCG TCO TCS Tf TISP Tm TMO

μB/f.u. μB/M μB μB/f.u. μB/M mm s1 Ω K,  C K K K K K K K K K

3 Quantity Magnetocrystalline anisotropy energy Activation energy Energy gap Frequency Magnetic field, also given as μ0H in tesla (T) Anisotropy field Coercive force dc magnetic field Exchange bias field Internal magnetic field Magnetic hyperfine field (or hyperfine field) Ionic radius Boltzmann constant Anisotropy constant

Mutual inductance Pressure Critical pressure Effective magnetic moment per ion M derived from Curie-Weiss law Effective magnetic moment per formula unit derived from Curie-Weiss law Magnetic moment per formula unit Magnetic moment per ion M Remanent magnetic moment Spontaneous, saturation magnetic moment per formula unit Spontaneous, saturation magnetic moment per ion M Quadrupole splitting Electrical resistance (or resistance) Spin quantum number Temperature Curie temperature Critical temperature Cluster glass transition temperature Charge-ordering transition temperature Spin-canting transition temperature Spin glass freezing temperature Incommensurate spin-Peierls transition temperature Magnetic transition temperature Morin temperature (continued)

4 Symbol TMI TN TOO TSO TSP TSR Tst Tt TV v V W x, y, z xc α, β, γ αt δ δCS δIS ΔSP ε θ θD θp κ a, κ b, κ c, κv κ th μB ρ σ

σr σs ϕ χg χm

Introduction Unit K K K K K K K K K cm s1 Å3, cm3, m3 eV

deg V K1 mm s1 mm s1 eV deg, rad K K Pa1, bar1 W m1 K1 J T1, erg G1 Ω cm G cm3 g1 A m2 kg1 V s m kg1 G cm3 g1 G cm3 g1 deg, rad cm3 g1 cm3 mol1

Quantity Metal-insulator transition temperature Néel temperature Orbital ordering transition temperature Spin ordering transition temperature Spin-Peierls (SP) transition temperature Spin reorientation temperature Structural transition temperature Magnetic order-order transition temperature Verwey transition temperature Velocity (Unit cell) volume Bandwidth Concentration Critical concentration Angles Thermoelectric power Oxygen deficit Center shift Isomer shift Spin-Peierls gap Dielectric constant Angle Debye temperature Paramagnetic Curie temperature Compressibility Thermal conductivity Bohr magneton Electrical resistivity Magnetization per unit mass

Remanent magnetization per unit mass Spontaneous, saturation magnetization per unit mass Angle Magnetic susceptibility per gram Magnetic susceptibility per mole

List of Abbreviations

5

Definitions, Units, and Conversion Factors In the SI, units are given for both defining relations of the magnetization, B = μ0(H + M) and B = μ0H + M, respectively. μ0 = 4π107 V s A1 m1, A: molar mass, ρ: mass density. Quantity B H M

P

σ

σm

χ

χν

χg

χm

cgs/emu G = (erg cm3)1/2 1G≙ 1 Oe = (erg cm3)1/2 1 Oe ≙ B = H + 4πM G 1G≙ P = MV G cm3 1 G cm3 ≙ σ = M/ρ G cm3 g1 1 G cm3 g1 ≙ σ m = σA G cm3 mol1 1 G cm3 mol1 ≙ P = χH cm3 1 cm3 ≙ χ ν = χ/V cm3 cm3 1 cm3 cm3 ≙ χ g = χ ν/ρ cm3 g1 1 cm3 g1 ≙ χm = χg A cm3 mol1 1 cm3 mol1 ≙

SI T = V s m2 104 T A m1 103/4π A m1 B = μ0(H + M) A m1 103 A m1 P = MV A m2 103 A m2 σ = M/ρ A m2 kg1 1 A m2 kg1 σ m = σA A m2 mol1 103 A m2 mol1 P = χH m3 4π106 m3 χ ν = χ/V m3 m3 4π m3 m3 χ g = χ ν/ρ m3 kg1 4π103 m3 kg1 χm = χg A m3 mol1 4π106 m3 mol1

B = μ0H + M T 4π104 T P = MV Vsm 4π1010 V s m σ = M/ρ V s m kg1 4π107 V s m kg1 σ m = σA V s m mol1 4π1010 V s m mol1 P = χμ0H m3 4π106 m3 χ ν = χ/V m3 m3 4π m3 m3 χ g = χ ν/ρ m3 kg1 4π103 m3 kg1 χm = χg A m3 mol1 4π106 m3 mol1

List of Abbreviations ac AD AF AFE AFI

Alternating current Angle-dispersive Antiferromagnetic (state) Antiferroelectric (state) Antiferromagnetic insulator (state) (continued)

6 AFM CAF CD CE CG CGI CMR COI C-OO C-SO CS CSI C-SDW CW DAC DAF dc DM DSC DTA ED EPR F FC FCW FE FI FM G-OO G-SO Hel Hex HP HS HT I IC IC-SDW IS LN LP LS LT M MI

Introduction Antiferromagnetic metal (state) Canted antiferromagnetic (state) Charge disproportionation Charge-exchange Cluster glass (state) Cluster glass insulating (state) Colossal magnetoresistance Charge order insulating (state) C-type orbital ordering (state) C-type (antiferromagnetic) spin ordering (state) Canted spin (state) Canted spin (antiferromagnetic) insulating (state) Commensurate spin density wave (state) Curie-Weiss Diamond anvil cell Dimerized-antiferromagnetic (state) Direct current Diamagnetic (state) Differential scanning calorimetry Differential thermal analysis Energy-dispersive Electron paramagnetic resonance Ferromagnetic (state) Field cooling (process) Field cooled warming (process) Ferroelectric (state) Ferromagnetic insulating (state) Ferromagnetic metallic (state) G-type orbital ordering (state) G-type (antiferromagnetic) spin ordering (state) Helimagnetic (state) Hexagonal High pressure High spin (state) High temperature Insulating (state) Incommensurate helimagnetic (state) Incommensurate spin density wave (state) Intermediate spin (state) LiNbO3-type Low pressure Low spin (state) Low temperature Metallic (state) Metal-insulator (continued)

List of Abbreviations MO MS NCD NMR np (=NP) NPD Ortho P PCD PE PI PM P-NFL pPv PS Pv QCP R RIXS RXES SC SDW SG SGI UAF XAS XES XMCD XRD ZFC ZFCW μSR

7 Magnetic ordered (state) Mössbauer spectroscopy Non-charge disproportionation Nuclear magnetic resonance Normal pressure Neutron powder diffraction Orthorhombic Paramagnetic (state) Piston-cylinder device Paraelectric (state) Paramagnetic insulating (state) Paramagnetic metallic (state) Percolated non-Fermi-liquid (state) Post-perovskite Phase separation Perovskite Quantum critical pint Rare earth element Resonant inelastic X-ray scattering Resonant X-ray emission spectroscopy Semiconducting (state) Spin density wave Spin-glass (state) Spin-glass insulating (state) Uniform-antiferromagnetic state X-ray absorption spectroscopy X-ray emission spectroscopy X-ray magnetic circular dichroism X-ray diffraction (pattern) Zero-field cooling (process) Zero-field cooled warming (process) Muon spin resonance

Part I MO-type Compounds

MnO

Crystallographic Data at Normal Pressure Crystal structure: Cubic Space group: Fm3m Lattice parameters: a ¼ 4.446 Å [66CD]

Elastic Properties The compound MnO undergoes the pressure-induced structural transition from a paramagnetic (P) NaCl (B1) structure to an antiferromagnetic (AF) rhombohedral structure (rhombohedral distorted B1, dB1) at 30 GPa, to a paramagnetic B8-type structure at 90 GPa, and to a diamagnetic (DM) B8-type structure at 1055 GPa at 300 K (see Fig. MnO-3) [05YMK]. See also Refs. [98KYS], [00KYS], and [00S] for the pressure-induced structural transition of MnO. See Ref. [70M] for an exchange striction effect in MnO. (1) Bulk modulus Compound MnO (B1 phase)

B0 [GPa] 155.2  2.5

B00 4(fixed)

Pressure range [GPa] 0 and p > pc. [09SKK]

128 Fe3O4

Temperature T [K]

126

124

122 TV heating TV cooling

120

118 0

0.5

1

1.5

2

Pressure p [kbar]

Fig. Fe3O4-3 Uniaxial strain dependence of the Verwey transition temperature TV of Fe3O4 on heating and cooling for the [110] direction. TV was defined as a midpoint of the jump in magnetization. [07NKK]

92

Fe3O4

0.259

0

0.258

Pressure p [GPa] 3 4 2

1

5

6

Fe3O4

u (oxygen)

0.257 u

0.256 0.255

squares: [06KRS] (closed: 300 K, open: 130 K) circles: [02WAR] (1 bar, 130 K)

0.254 0.253 Magnetic moments pA, pB [PB]

6 5

pA (tetrahedral (A) site)

4 magnetic moments

3

squares: [06KRS] (closed: 300 K, open: 130 K) circles: [02WAR] (1 bar, 130 K)

2 –3

pB (octahedral (B) site)

–4 0

1

2 3 4 Pressure p [GPa]

5

6

Fig. Fe3O4-4 Pressure dependence of the fractional atomic coordinate u of oxygen (upper) and the magnetic moments (lower) at Fe3O4 at 300 K and 130 K. [06KRS]

'K1/K1×102

5 0 –5 –10 –15 0

1

2

3 4 5 6 7 Pressure p [kbar]

8

9

10

Fig. Fe3O4-5 Pressure change of the first-order magnetic anisotropy constant K1 of some ferrites at room temperature: Li0.5Fe2.5O4 (open squares), NiFe2O4 (open triangles), and Fe3O4 (open circles). [68SK]

0.28

93

0.68

Fe3O4

Fe3O4

0.67 dCSB [mm s–1]

0.26 0.24 0.22

0.66 0.65 0.64 0.63

(a)

0.25

0.00

0.20 0.15

QSB [mm s–1]

–0.02 –0.04 –0.06 –0.08

0.10 0.05 0.00 –0.05

(c) –0.10

–0.10

492

470

490

486 484

460 455 450

482

478

(d)

465

488

480

(b)

0.62

0.20 0.02

HhfB [kOe]

Hyperfine field HhfA [kOe]

Quadrupole splitting QSA [mm s–1]

Center shift dCSA [mm s–1]

Magnetic Properties Under Pressure

445

(e) 0

5 10 15 Pressure p [GPa]

(f) 0

5 10 15 Pressure p [GPa]

Fig. Fe3O4-6 Pressure dependence of the hyperfine interaction parameters of the A and B sites at room temperature for Fe3O4: (a) and (b) the center shift, δCS; (c) and (d) the quadrupole splitting, QS; (e) and (f) the magnetic hyperfine fields, Hhf. The open and closed circles indicate the B1 and B2 sites, respectively. [06KIK]

94

Fe3O4

Fe3O4

Temperature T [K]

150 Cubic ( ) - metallic -

100

Distorted-cubic ( ) - insulator -

50 0

TV (p)

5 10 Pressure p [GPa]

15

Fig. Fe3O4-7 Pressure versus temperature phase diagram of Fe3O4 in the 50–150 K and 0–12 GPa range encompassing the two structural/electronic phases, where TV means the Verwey transition temperature. All the distorted-cubic points (open circles) are within the insulating phase determined by conductance measurements [02MTT]. [06RPX]

Symbols and Abbreviations Short form TN TMO θ ϕ R

Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance

References [55W] Waldron, R.D.: Phys. Rev. 99 (1955) 1727. [67SK] Sawaoka, A., Kawai, N.: Phys. Lett. 24A (1967) 503. [68S1] Samara, G.A.: Phys. Rev. Lett. 21 (1968) 795. [68S2] Schult, V.A.: Z. Geophys. 34 (1968) 505. [68SK] Sawaoka, A., Kawai, N.: J. Phys. Soc. Jpn. 25 (1968) 133. [69S] Samara, G.A.: Bull. Am. Phys. Soc. 14 (1969) 308. [69SG] Samara, G.A., Giardini, A.A.: Phys. Rev. 186 (1969) 577. [70S] Schult, A.: Earth Planet. Sci. Lett. 10 (1970) 81. [74HDD] Halasa, N.A., DePasquali, G., Drickamer, H.G.: Phys. Rev. B 10 (1974) 154. [74MTB] Mao, H.-K., Takahashi, T., Bassett, W.A., Kinsland, G.L., Merrill, L.: J. Geophys. Res. 79 (1974) 1165. [77WB] Wilburn, D.R., Bassett, W.A.: High Temp.- High Press. 9 (1977) 35. [78EA] Evans, B.J., Amthauer, G.: Phys. Chem. Miner. 3 (1978) 66.

References

95

[79KMK] Kakudate, Y., Mori, N., Kino, Y.: J. Magn. Magn. Mater. 12 (1979) 22. [81F] Fleet, M.E.: Acta Crystallogr. B 37 (1981) 917. [82IKS] Iizumi, M., Koetzle, T.F., Shirane, G., Chikazumi, S., Matsui, M., Todo, S.: Acta Crystallogr. B38 (1982) 2121. [85ABS] Aragón, R., Buttrey, D.J., Shepherd, J.P., Honig, J.M.: Phys. Rev. B 31 (1985) 430. [86FHH] Finger, L.W., Hazen, R.M., Hofmeister, A.M.: Phys. Chem. Miner. 13 (1986) 215. [86HB] Huang, E., Bassett, W.A.: J. Geophys. Res. 91 (1986) 4697. [86NMM] Nakagiri, N., Manghnani, M.H., Ming, L.C., Kimura, S.: Phys. Chem. Miner. 13 (1986) 238. [87EP] Evans, B.J., Pan, L.-S.: J. Appl. Phys. 61 (1987) 4352. [90T] Tamura, S.: J. Phys. Soc. Jpn. 59 (1990) 4462. [94N] Nasu, S.: Hyperfine Interact. 90 (1994) 59. [94OD] O’Neill, H.St.C., Dollase, W.A.: Phys. Chem. Miner. 20 (1994) 541. [94PNW] Pasternak, M.P., Nasu, S., Wada, K., Endo, S.: Phys. Rev. B 50 (1994) 6446. [94RMS] Ramasesha, S.K., Mohan, M., Singh, A.K., Honig, J.M., Rao, C.N.R.: Phys. Rev. B 50 (1994) 13789. [95GO] Gerward, L., Olsen, J.S.: Appl. Radiat. Isot. 46 (1995) 553. [96RHP1] Rozenberg, G.Kh., Hearne, G.R., Pasternak, M.P., Metcalf, P.A., Honig, J.M.: High Pressure Science and Technology, ed. W.A. Trzeciakowski (World Scientific, Singapore, 1996) p. 454. [96RHP2] Rozenberg, G.Kh., Hearne, G.R., Pasternak, M.P., Metcalf, P.A., Honig, J.M.: Phys. Rev. B 53 (1996) 6482. [99FFM] Fei, Y., Frost, D.J., Mao, H.-K., Prewitt, C.T., Häusermann, D.: Am. Mineral. 84 (1999) 203. [00HSF] Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M., Häusermann, D.: Am. Mineral. 85 (2000) 514. [00SBH] Schwenk, H., Bareiter, S., Hinkel, C., Lüthi, B., Kakol, Z., Koslowski, A., Honig, J.M.: Eur. Phys. J. B 13 (2000) 491. [01TTK] Todo, S., Takeshita, N., Kanehara, T., Mori, T., Môri, N.: J. Appl. Phys. 89 (2001) 7347. [01WAR] Wright, J.P., Attfield, J.P., Radaelli, P.G.: Phys. Rev. Lett. 87 (2001) 266401. [02KMO] Kuriki, A., Moritomo, Y., Ohishi, Y., Kato, K., Nishibori, E., Takata, M., Sakata, M., Hamada, N., Todo, S., Mori, N., Shimomura, O., Nakamura, A.: J. Phys. Soc. Jpn. 71 (2002) 3092. [02MTT] Môri, N., Todo, S., Takeshita, N., Mori, T., Akishige, Y.: Physica B 312-313 (2002) 686. [02WAR] Wright, J.P., Attfield, J.P., Radaelli, P.G.: Phys. Rev. B 66 (2002) 214422. [03DDM] Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C., Rozenberg, G. Kh., Ahuja, R., Osorio-Guillen, J.M., Dmitriev, V., Weber, H.-P., Le Bihan, T., Johansson, B.: J. Phys.: Condens. Mat. 15 (2003) 7697. [03PXR] Pasternak, M.P., Xu, W.M., Rozenberg, G.Kh., Taylor, R.D., Jeanloz, R.: J. Magn. Magn. Mater. 265 (2003) L107. [04LSA] Lazor, P., Shebanova, O.N., Annersten, H.: J. Geophys. Res. 109 (2004) B05201. [04MBI] Mathon, O., Baudelet, F., Itié, J.-P., Pasternak, S., Polian, A., Pascarelli, S.: J. Synchrotron Radiat. 11 (2004) 423. [04PXR] Pasternak, M.P., Xu, W.M., Rozenberg, G.Kh., Taylor, R.D., Jeanloz, R.: J. Phys. Chem. Solids 65 (2004) 1531. [04RJ] Reichmann, H.J., Jacobsen, S.D.: Am. Mineral. 89 (2004) 1061. [04XMR] Xu, W.M., Machavariani, G. Yu., Rozenberg, G.Kh., Pasternak, M.P.: Phys. Rev. B 70 (2004) 174106. [05GAC] Gasparov, L.V., Arenas, D., Choi, K.-Y., Güntherodt, G., Berger, H., Forro, L., Margaritondo, G., Struzhkin, V.V., Hemley, R.: J. Appl. Phys. 97 (2005) 10A922. [05WZK] Wiecheć, A., Zach, R., Kąkol, Z., Tarnawski, Z., Kozłowski, A., Honig, J.M.: Physica B 359-361 (2005) 1342. [06KIK] Kobayashi, H., Isogai, I., Kamimura, T., Hamada, N., Onodera, H., Todo, S., Môri, N.: Phys. Rev. B 73 (2006) 104110.

96

Fe3O4

[06KRS] Klotz, S., Rousse, G., Strässle, Th., Bull, C.L., Guthrie, M.: Phys. Rev. B 74 (2006) 012410. [06PT] Pasternak, M.P., Taylor, R.D.: Hyperfine Interact. 170 (2006) 15. [06RPX] Rozenberg, G. Kh., Pasternak, M.P., Xu, W.M., Amiel, Y., Hanfland, M., Amboage, M., Taylor, R.D., Jeanloz, R.: Phys. Rev. Lett. 96 (2006) 045705. [07GKB] Gatta, G.D., Kantor, I., Boffa Ballaran, T., Dubrovinsky, L., McCammon, C.: Phys. Chem. Miner. 34 (2007) 627. [07HTY] Hosoya, T., Takahasi, H., Yamada, D., Todo, S.: J. Phys. Soc. Jpn. 76 (2007) Suppl. A, p.108. [07NKK] Nagasawa, Y., Kosaka, M., Katano, S., Môri, N., Todo, S., Uwatoko, Y.: J. Phys. Soc. Jpn. 76 (2007) Suppl. A, p.110. [07RAX] Rozenberg, G. Kh., Amiel, Y., Xu, W.M., Pasternak, M.P., Jeanloz, R., Hanfland, M., Taylor, R.D.: Phys. Rev. B 75 (2007) 020102(R). [08DHO] Ding, Y., Haskel, D., Ovchinnikov, S.G., Tseng, Y.-C., Orlov, Y.S., Lang, J.C., Mao, H.k.: Phys. Rev. Lett. 100 (2008) 045508. [08KSS] Klotz, S., Steinle-Neumann, G., Strässle, Th., Philippe, J., Hansen, Th., Wenzel, M.J.: Phys. Rev. B 77 (2008) 012411. [08SKT] Spałek, J., Kozłowski, A., Tarnawski, Z., Kąkol, Z., Fukami, Y., Ono, F., Zach, R., Spalek, L.J., Honig, J.M.: Phys. Rev. B 78 (2008) 100401(R). [09SCG] Subías, G., Cuartero, V., García, J., Blasco, J., Mathon, O., Pascarelli, S.: J. Phys.: Conf. Ser. 190 (2009) 012089. [09SKK] Spałek, J., Kozłowski, A., Kąkol, Z., Tarnawski, Z., Fukami, Y., Ono, F., Zach, R., Spalek, L.J., Honig, J.M.: Physica B 404 (2009) 2894. [09SWF] Schollenbruch, K., Woodland, A.B., Frost, D.J., Langenhorst, F.: High Press. Res. 29 (2009) 520. [10BPM] Baudelet, F., Pascarelli, S., Mathon, O., Itié, J.-P., Polian, A., Chervin, J.-C.: Phys. Rev. B 82 (2010) 140412(R). [11SWF] Schollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T., Langenhorst, F.: Am. Mineral. 96 (2011) 820. [12EBS] Ebad-Allah, J., Baldassarre, L., Sing, M., Claessen, R., Brabers, V.A.M., Kuntscher, C.A.: J. Appl. Phys. 112 (2012) 073524. [12GMD] Glazyrin, K., McCammon, C., Dubrovinsky, L., Merlini, M., Schollenbruch, K., Woodland, A., Hanfland, M.: Am. Mineral. 97 (2012) 128. [12GSP] Gasparov, L., Shirshikova, Z., Pekarek, T.M., Blackburn, J., Struzhkin, V., Gavriliuk, A., Rueckamp, R., Berger, H.: J. Appl. Phys. 112 (2012) 043510. [13YKN] Yamanaka, T., Kyono, A., Nakamoto, Y., Meng, Y., Kharlamova, S., Struzhkin, V.V., Mao, H.-K.: Am. Mineral. 98 (2013) 736. [14LWZ] Lin, J.-F., Wu, J., Zhu, J., Mao, Z., Said, A.H., Leu, B.M., Cheng, J., Uwatoko, Y., Jin, C., Zhou, J.: Sci. Rep. 4 (2014) 6282. [16MGB] Muramatsu, T., Gasparov, L.V., Berger, H., Hemley, R.J., Struzhkin, V.V.: J. Appl. Phys. 119 (2016) 135903. [16RF] Ricolleau, A., Fei, Y.: Am. Mineral. 101 (2016) 719. [17GXN] Greenberg, E., Xu, W.M., Nikolaevsky, M., Bykova, E., Garbarino, G., Glazyrin, K., Merkel, D.G., Dubrovinsky, L., Pasternak, M.P., Rozenberg, G.Kh.: Phys. Rev. B 95 (2017) 195150.

Additional Literatures [66B] Bloch, D.: J. Phys. Chem. Solids 27 (1966) 881. [68AK] Anderson, D.L., Kanamori, H.: J. Geophys. Res. 73 (1968) 6477. [70WSL] Wayne, R.C., Samara, G.A., Lefever, R.A.: J. Appl. Phys. 41 (1970) 633. [75SGN] Syono, Y., Goto, T., Nakai, J., Nakagawa, Y.: Proceedings of the 4th International Conference on High Pressure, Kyoto 1974, 1975, p.466.

References

97

[79SKK] Siratori, K., Kita, E., Kaji, G., Tasaki, A., Kimura, S., Shindo, I., Kohn, K.: J. Phys. Soc. Jpn. 47 (1979) 1779. [86HB] Huang, E., Bassett, W.A.: J. Geophys. Res. 91 (1986) 4697. [93AGS] Aragón, R., Gehring, P.M., Shapiro, S.M.: Phys. Rev. Lett. 70 (1993) 1635. [97MW] Morris, E.R., Williams, Q.: J. Geophys. Res. 102 (1997) 18139. [98BST] Berry, F.J., Skinner, S., Thomas, M.F.: J. Phys.: Condens. Mat. 10 (1998) 215. [99BWK] Brabers, J.H.V.J., Walz, F., Kronmüller, H.: J. Phys.: Condens. Mat. 11 (1999) 3679. [00BWK] Brabers, J.H.V.J., Walz, F., Kronmüller, H.: J. Phys.: Condens. Mat. 12 (2000) 5437. [03SL] Shebanova, O.N., Lazor, P.: J. Chem. Phys. 119 (2003) 6100. [04GLC] Gilder, S.A., LeGoff, M., Chervin, J.-C., Peyronneau, J.: Geophys. Res. Lett. 31 (2004) L10612. [04GS] García, J., Subías, G.: J. Phys.: Condens. Mat. 16 (2004) R145. [06NLJ] Nazarenko, E., Lorenzo, J.E., Joly, Y., Hodeau, J.L., Mannix, D., Marin, C.: Phys. Rev. Lett. 97 (2006) 056403. [07AB] Aplesnin, S.S., Barinov, G.I.: Phys. Solid State 49 (2007) 1949. [07FSS] Friák, M., Schindlmayr, A., Scheffler, M.: New J. Phys. 9 (2007) 5. [07ŻWZ] Żukrowski, J., Wiecheć, A., Zach, R., Tabiś, W., Tarnawski, Z., Król, G., Kim-Ngan, N.-T.H., Kąkol, Z., Kozłowski, A.: J. Alloys Compd. 442 (2007) 219. [08OST1] Ovsyannikov, S.V., Shchennikov, V.V., Todo, S., Uwatoko, Y.: J. Phys.: Condens. Mat. 20 (2008) 172201. [08OST2] Ovsyannikov, S.V., Shchennikov, V.V., Todo, S., Uwatoko, Y.: High Press. Res. 28 (2008) 601. [09EBS] Ebad-Allah, J., Baldassarre, L., Sing, M., Claessen, R., Brabers, V.A.M., Kuntscher, C.A.: High Press. Res. 29 (2009) 500. [12JCL] Ju, S., Cai, T.-Y., Lu, H.-S., Gong, C.-D.: J. Am. Chem. Soc. 134 (2012) 13780. [12SWA] Senn, M.S., Wright, J.P., Attfield, J.P.: Nature 481 (2012) 173. [13BMB] Bengtson, A., Morgan, D., Becker, U.: Phys. Rev. B 87 (2013) 155141. [13HPB] Hoesch, M., Piekarz, P., Bosak, A., Le Tacon, M., Krisch, M., Kozłowski, A., Oleś, A.M., Parlinski, K.: Phys. Rev. Lett. 110 (2013) 207204. [13S] Siberchicot, B.: J. Magn. Magn. Mater. 335 (2013) 86. [15WPN] Weerasinghe, G.L., Pickard, C.J., Needs, R.J.: J. Phys.: Condens. Mat. 27 (2015) 455501.

Co3O4

Crystallographic Data at Normal Pressure Crystal structure: Cubic (normal spinel-type) Space group: Fd3m Lattice parameters: a ¼ 8.0841(5) Å [13HM] See also Ref. [73SH] for the crystallographic properties.

Elastic Properties The cubic phase of Co3O4 remains within the pressure range up to 42.1 GPa [12BPZ]. See Refs. [12BPZ] and [13HM] for the pressure-induced structural phase transition. (1) Bulk modulus Compound Co3O4

B0 [GPa] 189  5

B00 6.3  0.3

Pressure range [GPa] 1.4–42.1

Reference [12BPZ]

See Ref. [13HM] for the linear compressibility. See also Ref. [13HM] for the bulk modulus.

Magnetic Properties at Normal Pressure Co3O4 is a magnetic semiconductor. At normal conditions, Co3O4 is a cubic spinel with high-spin Co2+ ions in the tetrahedral (A) sites and low-spin Co3+ ions in the octahedral (B) sites. This compound undergoes a magnetic transition from a paramagnetic state to a long-range ordered antiferromagnetic state at the Néel temperature TN © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_18

98

Magnetic Properties Under Pressure

99

of 30 K with decreasing temperature [12BPZ]. See also Refs. [64R], [07ISN], and [09ISN] for the magnetic structure of Co3O4.

Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN Compound Co3O4

dTN/dp [K GPa1] 2.2*

TN [K] 30.4

Reference [09ISN]

Néel temperature TN [K]

(2) Pressure dependence of the muon-spin precession frequencies of zero field (ZF)-μ+SR spectra Pressure dependence of the frequencies of the two cosine oscillatory signals at 8 K for Co3O4 is shown in Fig. Co3O4-2. Both frequencies are almost independent of applied pressure [09ISN]. 34 Co3O4 33 32 31 30

0

0.5

1

1.5

Pressure p [GPa]

Fig. Co3O4-1 Pressure dependence of the Néel temperature TN for Co3O4. [09ISN] 80

Frequency [MHz]

Co3O4

60

40 ZF-PSR, 8 K 0

0.5

1

1.5

Pressure p [GPa]

Fig. Co3O4-2 Pressure dependence of two spontaneous muon-spin precession frequencies of zero field (ZF)-μ+SR spectra for Co3O4. [09ISN]

100

Co3O4

Symbols and Abbreviations Short form TN TMO θ ϕ R

Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance

References [64R] Roth, W.L.: J. Phys. Chem. Solids 25 (1964) 1. [73SH] Smith, W.L., Hobson, A.D.: Acta Crystallogr. B 29 (1973) 362. [07ISN] Ikedo, Y., Sugiyama, J., Nozaki, H., Itahara, H., Brewer, J.H., Ansaldo, E.J., Morris, G.D., Andreica, D., Amato, A.: Phys. Rev. B 75 (2007) 054424. [09ISN] Ikedo, Y., Sugiyama, J., Nozaki, H., Mukai, K., Itahara, H., Russo, P.L., Andreica, D., Amato, A.: Physica B 404 (2009) 652. [12BPZ] Bai, L., Pravica, M., Zhao, Y., Park, C., Meng, Y., Sinogeikin, S.V., Shen, G.: J. Phys.: Condens. Mat. 24 (2012) 435401. [13HM] Hirai, S., Mao, W.L.: Appl. Phys. Lett. 102 (2013) 041912.

Additional Literatures [58C] Cossee, P.: J. Inorg. Nucl. Chem. 8 (1958) 483. [66K] Kamimura, H.: J. Phys. Soc. Jpn. 21 (1966) 484. [66MKK] Miyatani, K., Kohn, K., Kamimura, H., Iida, S.: J. Phys. Soc. Jpn. 21 (1966) 464. [69KKA] Kündig, W., Kobelt, M., Appel, H., Constabaris, G., Lindquist, R.H.: J. Phys. Chem. Solids 30 (1969) 819. [82KKP] Khriplovich, L.M., Kholopov, E.V., Paukov, I.E.: J. Chem. Thermodynamics 14 (1982) 207. [11CWS] Chen, J., Wu, X., Selloni, A.: Phys. Rev. B 83 (2011) 245204. [15KLY] Kaewmaraya, T., Luo, W., Yang, X., Panigrahi, P., Ahuja, R.: Phys. Chem. Chem. Phys. 17 (2015) 19957.

Part V M7O13-type Compound

V7O13

Crystallographic Data at Normal Pressure Crystal structure: Triclinic Space group: P1 [76HMT] Lattice parameters: a ¼ 5.439 Å, b ¼ 7.005 Å, c ¼ 35.516 Å, α ¼ 40.9 , β ¼ 72.6 , and γ ¼ 109.0 [76HMT]

Magnetic Properties at Normal Pressure V7O13 is metallic at all temperatures. This compound undergoes a paramagneticantiferromagnetic transition at the Néel temperature TN of ~43 K [03UKM]. See also Refs. [73KKO], [74GRR], [79NGK], [82GSN], and [90CTG] for the magnetic properties.

Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN Compound V7O13

TN [K] 44*

dTN/dp [K kbar1] 0.75

Reference [90CTG]

See also Refs. [03UKM] and [13KCN] for the pressure dependence of TN.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_19

103

104

V7O13 50

Néel temperature TN [K]

Metal 40 30

AF Metal

20 V7O13

10 0 0

5

10

15

20

Pressure p [kbar]

Fig. V7O13-1 Pressure dependence of the Néel temperature TN for V7O13. [90CTG]

400 V7O13

TN3/2 [K3/2]

300

200

100

0 0

1

2 3 Pressure p [GPa]

4

Fig. V7O13-2 Pressure dependence of the Néel temperature TN for V7O13, plotted as TN3/2 versus pressure. [03UKM]

References

105

Symbols and Abbreviations Short form TN TMO θ ϕ R

Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance

References [73KKO] Kachi, S., Kosuge, K., Okinaka, H.: J. Solid State Chem. 6 (1973) 258. [74GRR] Gossard, A.C., Remeika, J.P., Rice, T.M., Yasuoka, H., Kosuge, K., Kachi, S.: Phys. Rev. B 9 (1974) 1230. [76HMT] Horiuchi, H., Morimoto, N., Tokonami, M.: J. Solid State Chem. 17 (1976) 407. [79NGK] Nagata, S., Griffing, B.F., Khattak, G.D., Keesom, P.H.: J. Appl. Phys. 50 (1979) 7575. [82GSN] Griffing, B.F., Shivashankar, S.A., Nagata, S., Faile, S.P., Honig, J.M.: Phys. Rev. B 25 (1982) 1703. [90CTG] Canfield, P.C., Thompson, J.D., Gruner, G.: Phys. Rev. B 41 (1990) 4850. [03UKM] Ueda, H., Kitazawa, K., Matsumoto, T., Takagi, H.: Solid State Commun. 125 (2003) 83. [13KCN] Kim, S.K., Colombier, E., Ni, N., Bud’ko, S.L., Canfield, P.C.: Phys. Rev. B 87 (2013) 115140.

Part VI M8O15-type Compound

V8O15

Crystallographic Data at Normal Pressure Crystal structure: Triclinic Space group: P1 [03KS] Lattice parameters: a ¼ 5.43 Å, b ¼ 6.99 Å, c ¼ 40.765 Å, α ¼ 40.89 , β ¼ 72.64 , and γ ¼ 109.00 [03KS] See also Refs. [71HTM] and [13AC] for the crystallographic properties.

Magnetic Properties at Normal Pressure V8O15 has the lowest metal–insulator (MI) transition temperature TMI ≈ 69 K among the Magnéli series except for V7O13 [03UKM]. See Ref. [79NGK] for the magnetic properties.

Magnetic Properties Under Pressure (1) The phase diagram of V8O15 is shown in Figs. V8O15-1 and V8O15-2. As shown in Fig. V8O15-1, an antiferromagnetic state appears at pressures greater than 9 kbar.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_20

109

110

V8O15 100

Temperature T [K]

80

PM

60

40

20

0

AFM

V8O15

0

5

10

15

20

Pressure p [kbar]

Fig. V8O15-1 Pressure versus temperature phase diagram for V8O15. Squares and triangles represent the metal–insulator (MI) transition and the paramagnetic–antiferromagnetic transition temperatures, respectively. PM and AFM denote the paramagnetic metal and the antiferromagnetic metal phases, respectively. [90CTG]

Temperature T [K]

100 V8O15

80 60 40 PI

PM

20 AFM

0 0

1

2

3

4

Pressure p [GPa]

Fig. V8O15-2 Pressure versus temperature phase diagram for V8O15. In the figure, PI and PM mean the paramagnetic insulator and paramagnetic metal phases, respectively. AFM represents the antiferromagnetic metal phase. [03UKM]

Symbols and Abbreviations Short form TN TMO θ ϕ R

Full form Neel temperature Morin temperature axial angle azimuthal angle electrical resistance

References

111

References [71HTM] Horiuchi, H., Tokonami, M., Morimoto, N., Nagasawa, K., Bando, Y., Takada, T.: Mater. Res. Bull. 6 (1971) 833. [79NGK] Nagata, S., Griffing, B.F., Khattak, G.D., Keesom, P.H.: J. Appl. Phys. 50 (1979) 7575. [90CTG] Canfield, P.C., Thompson, J.D., Gruner, G.: Physica B 163 (1990) 191. [03KS] Katzke, H., Schlögl, R.: Z. Kristallogr. 218 (2003) 432. [03UKM] Ueda, H., Kitazawa, K., Matsumoto, T., Takagi, H.: Solid State Commun. 125 (2003) 83. [13AC] Allred, J.M., Cava, R.J.: J. Solid State Chem. 198 (2013) 10.

Additional Literatures [71N] Nagasawa, K.: Mater. Res. Bull. 6 (1971) 853. [13KCN] Kim, S.K., Colombier, E., Ni, N., Bud’ko, S.L., Canfield, P.C.: Phys. Rev. B 87 (2013) 115140.

Part VII MOX (X=F, Cl, Br)-type Compounds

TiOF (Synthesized Under Pressure)

The rutile-type compound TiOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 1200  C [67CS].

Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P4/mnm Lattice parameters: a ¼ 4.651 Å and c ¼ 3.013 Å [67CS]

Magnetic Properties at Normal Pressure TiOF is semiconducting and antiferromagnetic. The value of the electrical resistivity ρ at 298 K is 45 Ωcm [67CS].

Symbols and Abbreviations Short form ρ

Full form electrical resistivity

Reference [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_21

115

TiOCl

Crystallographic Data at Normal Pressure Crystal structure: Orthorhombic Space group: Pmmn Lattice parameters: a ¼ 3.789(1) Å, b ¼ 3.365(1) Å, and c ¼ 8.060(3) Å [03KBM] See also Refs. [03SMC], [05HHK], [05SSP], [06KSB], [06SSP], [07AMC], [07FLA], [08FTM], [08KPH], [08SSS], [09BRP], [10BRP], [10ESS], [10PHF], and [14ZWB] for the crystallographic properties of the FeOCl-type compound TiOCl.

Elastic Properties The lattice parameters at room temperature decrease with increasing pressure. Above the critical pressure pc ≈ 15 GPa, the X-ray diffraction patterns can no longer be described by a single phase, but a good fit of the data only be achieved by assuming the coexistence of two phase, namely, the orthorhombic phase (space group: Pmmn) and a monoclinic phase (space group: P21/m) [10KKH]. See Refs. [08FTM], [08KPH], [09BRP], [09KEP], [10BRP], [10ESS], [10KKH], and [10PHF] for the structural properties under pressure. (1) Bulk modulus Compound TiOCl (low-pressure phase)

B0 [GPa] 26  3

B00 10  1

Pressure range [GPa] 0–18

Reference [08FTM]

See also Refs. [08KPH], [09BRP], [10BRP], and [10PHF] for the elastic properties. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_22

116

Magnetic Properties Under Pressure

117

Magnetic Properties at Normal Pressure TiOCl is composed of chains of Ti ions. At TSP ¼ 66 K, this system shows a first-order phase transition with a doubling of the cell along the Ti chains (b axis) to a low temperature monoclinic P21/m phase. Below TSP, a spin singlet dimerization of the lattice opens up to a magnetic gap (a spin-Peierls scenario). Moreover, there is a secondorder phase transition at TISP ¼ 91 K corresponding to an incommensurate dimerized state due to frustrated interchain interactions [09BRP]. See also [03KBM], [03SMC], [05LCV], [05RBK], [07FLA], [10BRP], and [11AMN] for the magnetic properties. See Refs. [05HHK], [05HSS], [07HSG], and [08CGC] for the electronic properties.

Magnetic Properties Under Pressure 1) Pressure dependence of the commensurate spin-Peierls (SP) transition temperature TSP Compound TiOCl

d lnTSP/dp [GPa1] 2.88  101

TSP [K] ~66(1)

Reference [09BRP]

(2) Pressure dependence of the incommensurate SP transition temperature TISP Compound TiOCl

d lnTISP/dp [GPa1] 3.64  101

TISP [K] ~91(1)

Reference [09BRP]

TiOCl T(p)/T(p=0)

Magnetic susceptibility cm [cm3 mol–1]

See also Refs. [06KFP], [08FTM], [08KPH], [09KEP], [10BRP], [10KKH], and [10PHF] for the magnetic and electronic properties under pressure.

8.0×10–4

1.3

TSP

1.1 1.0 0.0

7.2×10–4

TISP

1.2

0.2

TISP

TSP

0.4 0.6 0.8 p [GPa]

1.0

6.4×10–4 60

80

100

120

Temperature T [K]

Fig. TiOCl-1 Temperature dependence of the magnetic susceptibility χ m at some representative pressures (from left to right: 0, 0.25, 0.43, 0.6, 0.7, and 0.97 GPa) for TiOCl. The curves are slightly vertically displaced for clarity. The inset shows the pressure dependence of the commensurate spinPeierls (SP) transition temperature TSP and the incommensurate SP transition temperature TISP for TiOCl. [09BRP]

118

TiOCl

Symbols and Abbreviations Short form pc B0 TSP TISP χm T p

Full form critical pressure bulk modulus commensurate spin-Peierls transition temperature incommensurate spin-Peierls transition temperature magnetic susceptibility temperature pressure

References [03KBM] Kataev, V., Baier, J., Möller, A., Jongen, L., Meyer, G., Freimuth, A.: Phys. Rev. B 68 (2003) 140405(R). [03SMC] Seidel, A., Marianetti, C.A., Chou, F.C., Ceder, G., Lee, P.A.: Phys. Rev. B 67 (2003) 020405(R). [05HHK] Hemberger, J., Hoinkis, M., Klemm, M., Sing, M., Claessen, R., Horn, S., Loidl, A.: Phys. Rev. B 72 (2005) 012420. [05HSS] Hoinkis, M., Sing, M., Schäfer, J., Klemm, M., Horn, S., Benthien, H., Jeckelmann, E., Saha-Dasgupta, T., Pisani, L., Valentí, R., Claessen, R.: Phys. Rev. B 72 (2005) 125127. [05LCV] Lemmens, P., Choi, K.Y., Valentí, R., Saha-Dasgupta, T., Abel, E., Lee, Y.S., Chou, F.C.: New J. Phys. 7 (2005)74. [05RBK] Rückamp, R., Baier, J., Kriener, M., Haverkort, M.W., Lorenz, T., Uhrig, G.S., Jongen, L., Möller, A., Meyer, G., Grüninger, M.: Phys. Rev. Lett. 95 (2005) 097203. [05SSP] Shaz, M., van Smaalen, S., Palatinus, L., Hoinkis, M., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 71 (2005) 100405 (R). [06KFP] Kuntscher, C.A., Frank, S., Pashkin, A., Hoinkis, M., Klemm, M., Sing, M., Horn, S., Claessen, R.: Phys. Rev. B 74 (2006) 184402. [06KSB] Krimmel, A., Strempfer, J., Bohnenbuck, B., Keimer, B., Hoinkis, M., Klemm, M., Horn, S., Loidl, A., Sing, M., Claessen, R., v. Zimmermann, M.: Phys. Rev. B 73 (2006) 172413. [06SSP] Schönleber, A., van Smaalen, S., Palatinus, L.: Phys. Rev. B 73 (2006) 214410. [07AMC] Abel, E.T., Matan, K., Chou, F.C., Isaacs, E.D., Moncton, D.E., Sinn, H., Alatas, A., Lee, Y.S.: Phys. Rev. B 76 (2007) 214304. [07FLA] Fausti, D., Lummen, T.T.A., Angelescu, C., Macovez, R., Luzon, J., Broer, R., Rudolf, P., van Loosdrecht, P.H.M., Tristan, N., Büchner, B., van Smaalen, S., Möller, A., Meyer, G., Taetz, T.: Phys. Rev. B 75 (2007) 245114. [07HSG] Hoinkis, M., Sing, M., Glawion, S., Pisani, L., Valentí, R., van Smaalen, S., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 75 (2007) 245124. [08CGC] Clancy, J.P., Gaulin, B.D., Castellan, J.P., Rule, K.C., Chou, F.C.: Phys. Rev. B 78 (2008) 014433. [08FTM] Forthaus, M.K., Taetz, T., Möller, A., Abd-Elmeguid, M.M.: Phys. Rev. B 77 (2008) 165121. [08KPH] Kuntscher, C.A., Pashkin, A., Hoffmann, H., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: Phys. Rev. B 78 (2008) 035106. [08SSS] Schönleber, A., Shcheka, G., van Smaalen, S.: Phys. Rev. B 77 (2008) 094117.

References

119

[09BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., Khomskii, D.I., Abd-Elmeguid, M.M., López-Quintela, M.A., Rivas, J.: Phys. Rev. Lett. 102 (2009) 056406. [09KEP] Kuntscher, C.A., Ebad-Allah, J., Pashkin, A., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: High Press. Res. 29 (2009) 509. [10BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., López-Quintela, M.A., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1069. [10ESS] Ebad-Allah, J., Schönleber, A., van Smaalen, S., Hanfland, M., Klemm, M., Horn, S., Glawion, S., Sing, M., Claessen, R., Kuntscher, C.A.: Phys. Rev. B 82 (2010) 134117. [10KKH] Kuntscher, C.A., Klemm, M., Horn, S., Sing, M., Claessen, R.: Eur. Phys. J. Special Topics 180 (2010) 29. [10PHF] Prodi, A., Helton, J.S., Feng, Y., Lee, Y.S.: Phys. Rev. B 81 (2010) 201103(R). [11AMN] Aczel, A.A., MacDougall, G.J., Ning, F.L., Rodriguez, J.A., Saha, S.R., Chou, F.C., Imai, T., Luke, G.M.: Phys. Rev. B 83 (2011) 134411. [14ZWB] Zhang, J., Wölfel, A., Bykov, M., Schönleber, A., van Smaalen, S., Kremer, R.K., Williamson, H.L.: Phys. Rev. B 90 (2014) 014415.

Additional Literatures [93BW] Beynon, R.J., Wilson, J.A.: J. Phys.: Condens. Mat. 5 (1993) 1983. [95KKH] Kim, S.-H., Kang, J.-K., Hwang, S., Kim, H.: Bull. Korean Chem. Soc. 16 (1995) 299. [04CDK] Caimi, G., Degiorgi, L., Kovaleva, N.N., Lemmens, P., Chou, F.C.: Phys. Rev. B 69 (2004) 125108. [04SVR] Saha-Dasgupta, T., Valentí, R., Rosner, H., Gros, C.: Europhys. Lett. 67 (2004) 63. [05PV] Pisani, L., Valentí, R.: Phys. Rev. B 71 (2005) 180409(R). [05RBH] Rückamp, R., Benckiser, E., Haverkort, M.W., Roth, H., Lorenz, T., Freimuth, A., Jongen, L., Möller, A., Meyer, G., Reutler, P., Büchner, B., Revcolevschi, A., Cheong, S.-W., Sekar, C., Krabbes, G., Grüninger, M.: New J. Phys. 7 (2005) 144. [05SLV] Saha-Dasgupta, T., Lichtenstein, A., Valentí, R.: Phys. Rev. B 71 (2005) 153108. [07PVM] Pisani, L., Valentí, R., Montanari, B., Harrison, N.M.: Phys. Rev. B 76 (2007) 235126. [08ZJV1] Zhang, Y.-Z., Jeschke, H.O., Valentí, R.: Phys. Rev. Lett. 101 (2008) 136406. [08ZJV2] Zhang, Y.-Z., Jeschke, H.O., Valentí, R.: Phys. Rev. B 78 (2008) 205104. [09MD] Mastrogiuseppe, D., Dobry, A.: Phys. Rev. B 79 (2009) 134430. [10PPB] Piñeiro, A., Pardo, V., Baldomir, D., Blanco-Canosa, S., Rivadulla, F., Arias, J.E., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1072. [10ZFJ] Zhang, Y.-Z., Foyevtsova, K., Jeschke, H.O., Schmidt, M.U., Valentí, R.: Phys. Rev. Lett. 104 (2010) 146402. [10ZOJ] Zhang, Y.-Z., Opahle, I., Jeschke, H.O., Valentí, R.: J. Phys.: Condens. Mat. 22 (2010) 164208.

TiOBr

Crystallographic Data at Normal Pressure Crystal structure: FeOCl-type: Orthorhombic Space group: Pmmn Lattice parameters: a ¼ 3.785 Å, b ¼ 3.485 Å, and c ¼ 8.525 Å [10BRP] See also Refs. [05PSS], [05SMK], [05SPS], [07FLA], and [07KFP] for the crystallographic properties of the FeOCl-type compound TiOBr.

Elastic Properties Above ~12 GPa, TiOBr undergoes a pressure-induced structural transition from the orthorhombic Pmmn phase to a monoclinic P21/m phase at room temperature [10BRP]. See also Refs. [07KFP], [08KPH], and [10KKH] for the structural properties under pressure. (1) Bulk modulus Compound TiOBr (low-pressure phase)

B0 [GPa] 33.7  0.8

B00 6.9  0.3

Pressure range [GPa] 12.4*

Reference [08KPH]

Magnetic Properties at Normal Pressure TiOBr possesses two successive phase transition. At TSP ¼ 27 K, this compound undergoes a first-order phase transition to a spin-Peierls (SP) state with a dimerization of the chains of Ti atoms along the b axis and a doubling of the unit cell. Furthermore, © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_23

120

Magnetic Properties Under Pressure

121

an intermediate phase for the temperature range TSP < T < TISP ¼ 47 K is found, whose nature is established as an incommensurate modulated structure with a one-dimensional modulation in monoclinic symmetry [08KPH]. See also Refs. [05KKS], [05LCV], [05SPS], [07FLA], [07HSG], and [10KKH] for the magnetic properties.

Magnetic Properties Under Pressure (1) Pressure dependence of the spin-Peierls (SP) transition temperature TSP Compound TiOBr TiOBr

dTSP/dp [Kkbar1] 1.0* 1.00(2)

TSP [K] 27.5*

Reference [07FLA] [10BRP]

(2) Pressure dependence of the incommensurate spin-Peierls transition temperature TISP dTISP/dp [K kbar1] 2.18(3)

Compound TiOBr

Reference [10BRP]

TSP(p)/TSP(p=0)

1.4 TSP TiOBr TISP TiOBr TSP TiOCl TISP TiOCl

1.3 1.2 1.1 1.0 0

2

4 6 Pressure p [GPa]

8

10

Fig. TiOBr-1 Normalized pressure dependence of both spin-Peierls transition temperature TSP and incommensurate spin-Peierls transition temperature TISP for TiOCl and TiOBr. [10BRP]

122

TiOBr

Symbols and Abbreviations Short form B0 TSP TISP p

Full form bulk modulus commensurate spin-Peierls transition temperature incommensurate spin-Peierls transition temperature pressure

References [05KKS] Kato, C., Kobayashi, Y., Sato, M.: J. Phys. Soc. Jpn. 74 (2005) 473. [05LCV] Lemmens, P., Choi, K.Y., Valentí, R., Saha-Dasgupta, T., Abel, E., Lee, Y.S., Chou, F.C.: New J. Phys. 7 (2005) 74. [05PSS] Palatinus, L., Schönleber, A., van Smaalen, S.: Acta Crystallogr. C 61 (2005) i47. [05SMK] Sasaki, T., Mizumaki, M., Kato, K., Watabe, Y., Nishihata, Y., Takata, M., Akimitsu, J.: J. Phys. Soc. Jpn. 74 (2005) 2185. [05SPS] van Smaalen, S., Palatinus, L., Schönleber, A.: Phys. Rev. B 72 (2005) 020105(R). [07FLA] Fausti, D., Lummen, T.T.A., Angelescu, C., Macovez, R., Luzon, J., Broer, R., Rudolf, P., van Loosdrecht, P.H.M., Tristan, N., Büchner, B., van Smaalen, S., Möller, A., Meyer, G., Taetz, T.: Phys. Rev. B 75 (2007) 245114. [07HSG] Hoinkis, M., Sing, M., Glawion, S., Pisani, L., Valentí, R., van Smaalen, S., Klemm, M., Horn, S., Claessen, R.: Phys. Rev. B 75 (2007) 245124. [07KFP] Kuntscher, C.A., Frank, S., Pashkin, A., Hoffmann, H., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Klemm, M., Sing, M., Horn, S., Claessen, R.: Phys. Rev. B 76 (2007) 241101(R). [08KPH] Kuntscher, C.A., Pashkin, A., Hoffmann, H., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: Phys. Rev. B 78 (2008) 035106. [10BRP] Blanco-Canosa, S., Rivadulla, F., Piñeiro, A., Pardo, V., Baldomir, D., López-Quintela, M.A., Rivas, J.: J. Magn. Magn. Mater. 322 (2010) 1069. [10KKH] Kuntscher, C.A., Klemm, M., Horn, S., Sing, M., Claessen, R.: Eur. Phys. J. Special Topics 180 (2010) 29.

Additional Literatures [93BW] Beynon, R.J., Wilson, J.A.: J. Phys.: Condens. Mat. 5 (1993) 1983. [04CDL] Caimi, G., Degiorgi, L., Lemmens, P., Chou, F.C.: J. Phys.: Condens. Mat. 16 (2004) 5583. [09KEP] Kuntscher, C.A., Ebad-Allah, J., Pashkin, A., Frank, S., Klemm, M., Horn, S., Schönleber, A., van Smaalen, S., Hanfland, M., Glawion, S., Sing, M., Claessen, R.: High Press. Res. 29 (2009) 509. [10CGC] Clancy, J.P., Gaulin, B.D., Chou, F.C.: Phys. Rev. B 81 (2010) 024411.

VOF (Synthesized Under Pressure)

The rutile-type compound VOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 1000  C [67CS].

Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P4/mnm [67CS] Lattice parameters: a ¼ 4.618 Å and c ¼ 3.011 Å [67CS]

Magnetic Properties at Normal Pressure VOF is semiconducting and antiferromagnetic. The value of the electrical resistivity ρ at 298 K is 68 Ωcm [67CS].

Symbols and Abbreviations Short form ρ

Full form electrical resistivity

Reference [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_24

123

FeOF (Synthesized Under Pressure)

The rutile-type compound FeOF was synthesized by the reaction of a stoichiometric mixture of the transition metal trifluoride and sesquioxide under 60–65 kbar and 995  C [67CS].

Crystallographic Data at Normal Pressure Crystal structure: Tetragonal Space group: P42/mnm [73VMD] Lattice parameters: a ¼ 4.662 Å and c ¼ 3.043 Å [67CS] See also Refs. [65HPC], [66CP1], [73VMD], [00BWT], and [14TAR] for the crystallographic properties.

Magnetic Properties at Normal Pressure FeOF is antiferromagnetic below the Néel temperature TN of 315  10 K [66CP1]. Each Fe atom of FeOF has eight near Fe neighbors with antiparallel spins. The spin value corresponds to Fe3+ [66CP2].

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_25

124

125 Magnetic hyperfine field Hhf [kOe]

References

500

FeOF

0

100

200

300

Temperature T [K]

Fig. FeOF-1 Temperature dependence of the magnetic hyperfine field Hhf at normal pressure for FeOF. [66CP1]

Symbols and Abbreviations Short form TN Hhf T

Full form Néel temperature magnetic hyperfine field temperature

References [65HPC] Hagenmuller, P., Portier, J., Cadiou, J., De Pape, R.: Compt. Rend. 260 (1965) 4768. [66CP1] Chappert, J., Portier, J.: Solid State Commun. 4 (1966) 185. [66CP2] Chappert, J., Portier, J.: Solid State Commun. 4 (1966) 395. [67CS] Chamberland, B.L., Sleight, A.W.: Solid State Commun. 5 (1967) 765. [73VMD] Vlasse, M., Massies, J.C., Demazeau, G.: J. Solid State Chem. 8 (1973) 109. [00BWT] Brink, F.J., Withers, R.L., Thompson, J.G.: J. Solid State Chem. 155 (2000) 359. [14TAR] Tobias, G., Armand, M., Rousse, G., Tarascon, J-M., Canadell, E., Palacín, M.R., Recham, N.: Solid State Sci. 38 (2014) 55.

Additional Literatures [73P] Pausewang, von G.: Z. anorg. allg. Chem. 409 (1973) 45. [13CHO] Chevrier, V.L., Hautier, G., Ong, S.P., Doe, R.E., Ceder, G.: Phys. Rev. B 87 (2013) 094118.

Part VIII MM’O2-type Compounds

LiMnO2 (Synthesized Under Pressure)

Tetragonal and cubic phases of LixMn1-xO with x ~ 0.5 were synthesized from the orthorhombic LiMnO2 (o-LiMnO2: normal pressure phase) powder by a highpressure technique at 4–6 GPa and 900–1200  C [01SNH]. Table 1 gives compounds obtained by the high-pressure synthesis. See also Ref. [87HC] for the sample preparation. Table 1 Compounds obtained by high-pressure synthesis, where t*-LiMnO2 and c-LiMnO2 mean the tetragonal and cubic phases, respectively [01SNH] Preparation condition Pressure [GPa] 0.0001 2 4 5 6 5 5 5

Temperature [ C] 800 1000 1000 1000 1000 900 1100 1200

Obtained compounds (composition of starting material; x in LixMn1-xO) x ¼ 0.47 x ¼ 0.52 x ¼ 0.55 o-LiMnO2 o-LiMnO2 o-LiMnO2 o-LiMnO2 o-LiMnO2 + t*-LiMnO2 t*-LiMnO2 c-LiMnO2 c-LiMnO2 t*-LiMnO2 t*-LiMnO2 t*-LiMnO2 t*-LiMnO2

Crystallographic Data at Normal Pressure (1) t*-LiMnO2 [01SNH] Crystal structure: Tetragonal (LiInO2-type) Space group: I41/amd Lattice parameters: a ¼ 4.1919 Å and c ¼ 8.2469 Å (Li0.93Mn1.07O2) © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_26

129

130

LiMnO2 (Synthesized Under Pressure)

(2) c-LiMnO2 [01SNH] Crystal structure: Cubic (LiTiO2-type) Space group: Fm3m Lattice parameters: a ¼ 4.157 Å (Li0.52Mn0.48O) and a ¼ 4.166 Å (Li0.55Mn0.45O)

Magnetic Properties at Normal Pressure Figure LiMnO2-1 (a) and (b) show the temperature dependence of the magnetic susceptibility χ g and χ g1 for t*-LiMnO2 prepared at 5 GPa and 1200  C. As seen in Fig. LiMnO2-1(a), the χ g versus T curves exhibits a broad maximum around 280 K, suggesting that the Mn magnetic moments order antiferromagnetically below the Néel temperature TN of 280 K. With further decrease of temperature, χ g increases abruptly at about 65 K [01SNH]. Figure LiMnO2-2 shows the temperature dependence of χ g of c-LiMnO2 for zerofield cooling (ZFC) and field cooling (FC) modes. As shown in the figure, χ ZFC for the ZFC mode makes a sharp maximum at 45 K. With decreasing temperature, χ ZFC decreases steeply. On the other hand, in the case of FC mode, χ FC is almost constant below 45 K. Thus, c-LiMnO2 is found to be a spin-glass below 45 K [01SNH]. 0.0004 t *-LiMnO2

cg [ cm3g–1]

0.0003

Li0.47Mn0.53O 5 GPa, 1200°C

0.0002

Field cool H=100 Oe H=10 kOe

(a)

0.0001 0

cg–1 [g cm–3]

20000 15000 10000 TN

5000

(b) 0

0

100

200

300

400

Temperature T [K]

Fig. LiMnO2-1 Temperature dependence of (a) the magnetic susceptibility χ g and (b) the inverse magnetic susceptibility χ g1 for t*-LiMnO2 prepared at 5 GPa and 1200 C. [01SNH]

References

131

Magnetic susceptibility cg [cm3 g–1]

0.0002 c-LiMnO2 Li0.52Mn0.48O 5 GPa, 1000°C

0.00018 0.00016 0.00014

H=100 Oe ZFC FC

0.00012 0.0001 0

20

40

60

80

100

Temperature T [K]

Fig. LiMnO2-2 Temperature dependence of the magnetic susceptibility χ g measured both in the field cooling (FC) mode and the zero-field cooling (ZFC) mode for c-LiMnO2. The compound c-LiMnO2 was prepared at 5 GPa and 1000  C. [01SNH]

Symbols and Abbreviations Short form χg χg1 T TN H FC ZFC

Full form magnetic susceptibility inverse magnetic susceptibility temperature Néel temperature magnetic field field cooling zero field cooling

References [87HC] Hewston, T.A., Chamberland, B.L.: J. Phys. Chem. Solids 48 (1987) 97. [01SNH] Sugiyama, J., Noritake, T., Hioki, T., Itoh, T., Hosomi, T., Yamauchi, H.; Mater. Sci. Eng. B 84 (2001) 224.

NaxCoO2

Crystallographic Data at Normal Pressure The crystal structure of NaxCoO2 depends on the concentration x (see Fig. NaxCoO2-1). The H1 phase occurs from Na concentration x ¼ 0.3 to 0.75 with the exception of x ¼ 0.5, which has orthorhombic symmetry (O1 phase). The H2 phase occurs from Na concentration x ¼ 0.75 to 0.82. The H3 phase occurs at higher Na concentration (Na1CoO2). See Fig. NaxCoO2-1 for the compositional stability regions of the four NaxCoO2 phases [11PIC]. See Refs [73FMR], [96BD], [04HFP], [04HKC], [04ZFX], and [11PIC] for the crystallographic properties. (1) H1 phase Crystal structure: Hexagonal. Space group: P63/mmc Lattice parameters: a ¼ 2.82438(6) Å and c ¼ 11.0046(3) Å (x ¼ 0.63) [04HFP] (2) H2 phase Crystal structure: Hexagonal Space group: P63/mmc Lattice parameters: a ¼ 2.836(3) Å and c ¼ 10.810(2) Å (x ¼ 0.79) [11PIC] (3) O1 phase Crystal structure: Orthorhombic Space group: Pnmm Lattice parameters: a ¼ 4.87618(5) Å, b ¼ 5.63053(9) Å, and c ¼ 11.1298(2)Å (x ¼ 0.5) [04HFL] See also Ref. [06WAF] for the structural properties of the O1 phase.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_27

132

Magnetic Properties Under Pressure

133

Elastic Properties See Refs. [07SYS], [07ZSZ], and [09GNB] for the structural properties of NaxCoO2 under high pressure. (1) Bulk modulus Compound Na0.5CoO2 Na2/3CoO2 Na0.75CoO2

B0 [GPa] 112  2.3 136  18 103  5 100  4

B00 2.3  0.1 3.2  2.9 4.2 (R.T.) 4.6 (20 K)

Pressure range [GPa] 0–47 0–11.4* 0–40* 0–25.8*

Reference [07SYS] [12PPD] [09KRP] [09KRP]

See Refs. [03PLM], [07ZSZ], and [11PIC] for the elastic properties.

Magnetic Properties at Normal Pressure Magnetic susceptibility data for compounds with 0.5  x  0.7 show Curie-Weiss behavior with a negative paramagnetic Curie temperature. No long-range magnetic ordering is observed for the compounds with x  0.7. The compounds with 0.75  x  0.9 show the antiferromagnetic order below ~20 K (see Fig. NaxCoO2-2) [05BMB]. See also Refs. [03MUN], [03SIB], [04BBC], [04BCT], [04CMA], [04LWL], [04SBA1], [04SBA2], [04STT], [05HBC], [05WPB], and [05YMK] for the magnetic properties of NaxCoO2 (0.6  x  0.9). Whereas, Na0.5CoO2 with the O1 structure displays a long-range magnetic order with the Néel temperature of 86 K and undergoes a metal–insulator transition at TMI ~ 53 K [06BLA]. See also Refs. [04FWW], [04HFL], [05MBB], [05YMK], and [06GOC] for the magnetic properties of Na0.5CoO2.

Magnetic Properties Under Pressure (1) Pressure dependence of the magnetic transition temperature Tm Figures NaxCoO2-3 and NaxCoO2-4 show the pressure dependence of Tm for the sample with x ¼ 0.7 and 0.75, respectively. The Tm increases with pressure for both compounds. See Refs. [07MMK] and [08GMN] for the pressure dependence of the transition temperature of Na0.5CoO2 (x ¼ 0.5). Compound Na0.7CoO2 Na0.75CoO2

Tm [K] 22.0  0.2 22.1*

(dTm/dp)p ! 0 [K kbar1] 0.44  0.03 0.25

Reference [06WPB] [06SKL]

134

NaxCoO2

H2 H2+H3

H1

11.2

c H1+H2

H3

2.86

11.0 O1 10.8

2.84

10.6

a

2.82 0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lattice parameter c [Å]

Lattice parameter a [Å]

11.4 H1

2.88

10.4 1.0

x in NaxCoO2

Magnetic transition temperature Tm [K]

Fig. NaxCoO2-1 Composition dependence of the lattice parameters at normal pressure of the four NaxCoO2 phases, designated as H1, H2, H3, and O1. The H1, H2, and H3 have the hexagonal structure. The O1 phase is the orthorhombic insulating phase at Na0.5CoO2. [04HFP]

40 single crystal polycrystal

NaxCoO2 30

paramagnetic 20 C-SDW

IC-SDW

10

0 0.5

0.6

0.7

0.8

0.9

1

Na concentration x

Fig. NaxCoO2-2 Phase diagram of NaxCoO2 under normal pressure. C- and IC-SDW mean the commensurate and incommensurate spin density wave states, respectively. The point at x ¼ 1 is extrapolated from the data on the related compound LiCoO2 [98TO]. [04SBA1]

Magnetic transition temperature Tm [K]

Magnetic Properties Under Pressure

25.5

135

Na0.7CoO2

25.0 24.5 24.0 23.5 23.0

Run 1 Crystal 1 Run 2 Crystal 1 Run 1 Crystal 2

22.5 22.0 21.5

0

2

4

6

8

10

Pressure p [kbar]

Magnetic transition temperature Tm [K]

Fig. NaxCoO2-3 Pressure dependence of the magnetic transition temperature Tm for two Na0.7CoO2 crystals. [06WPB]

Na0.75CoO2 24

23

22

0

2

4

6

8

10

Pressure p [kbar]

Fig. NaxCoO2-4 Pressure dependence of the magnetic transition temperature Tm for Na0.75CoO2. [06SKL]

NaxCoO2 Néel temperature TN [K] and metal – insulator transition temperature TMI [K]

136 100 : run #1 : run #2

TN

80

60 TMI

Na0.5CoO2

40 0

1

2

3

4

5

Pressure p [GPa]

Fig. NaxCoO2-5 Pressure dependence of the Néel temperature TN and the metal–insulator transition temperature TMI for Na0.5CoO2. [07MMK]

Symbols and Abbreviations Short form x B0 Tm p TN TMI a, b, c C-SDW IC-SDW

Full form concentration bulk modulus magnetic transition temperature pressure Néel temperature metal–insulator transition temperature lattice parameters commensurate spin density wave state incommensurate spin density wave state

References [73FMR] Fouassier, C., Matejka, G., Reau, J.-M., Hagenmuller, P.: J. Solid State Chem. 6 (1973) 532. [96BD] Balsys, R.J., Davis, R.L.: Solid State Ionics, 93 (1996) 279. [98TO] Tomeno, I., Oguchi, M.: J. Phys. Soc. Jpn. 67 (1998) 318. [03MUN] Motohashi, T., Ueda, R., Naujalis, E., Tojo, T., Terasaki, I., Atake, T., Karppinen, M., Yamauchi, H.: Phys. Rev. B 67 (2003) 064406. [03PLM] Park, S., Lee, Y., Moodenbaugh, A., Vogt, T.: Phys. Rev. B 68 (2003) 180505(R). [03SIB] Sugiyama, J., Itahara, H., Brewer, J.H., Ansaldo, E.J., Motohashi, T., Karppinen, M., Yamauchi, H.: Phys. Rev. B 67 (2003) 214420. [04BBC] Bayrakci, S.P., Bernhard, C., Chen, D.P., Keimer, B., Kremer, R.K., Lemmens, P., Lin, C.T., Niedermayer, C., Strempfer, J.: Phys. Rev. B 69 (2004) 100410(R). [04BCT] Boothroyd, A.T., Coldea, R., Tennant, D.A., Prabhakaran, D., Helme, L.M., Frost, C.D.: Phys. Rev. Lett. 92 (2004) 197201. [04CMA] Carretta, P., Mariani, M., Azzoni, C.B., Mozzati, M.C., Bradarić, I., Savić, I., Feher, A., Šebek, J.: Phys. Rev. B 70 (2004) 024409.

References

137

[04FWW] Foo, M.L., Wang, Y., Watauchi, S., Zandbergen, H.W., He, T., Cava, R.J., Ong, N.P.: Phys. Rev. Lett. 92 (2004) 247001. [04HFL] Huang, Q., Foo, M.L., Lynn, J.W., Zandbergen, H.W., Lawes, G., Wang, Y., Toby, B.H., Ramirez, A.P., Ong, N.P., Cava, R.J.: J. Phys.: Condens. Mat. 16 (2004) 5803. [04HFP] Huang, Q., Foo, M.L., Pascal jr, R.A., Lynn, J.W., Toby, B.H., He, T., Zandbergen, H.W., Cava, R.J.: Phys. Rev. B 70 (2004) 184110. [04HKC] Huang, Q., Khaykovich, B., Chou, F.C., Cho, J.H., Lynn, J.W., Lee, Y.S.: Phys. Rev. B 70 (2004) 134115. [04LWL] Luo, J.L., Wang, N.L., Liu, G.T., Wu, D., Jing, X.N., Hu, F., Xiang, T.: Phys. Rev. Lett. 93 (2004) 187203. [04SBA1] Sugiyama, J., Brewer, J.H., Ansaldo, E.J., Itahara, H., Tani, T., Mikami, M., Mori, Y., Sasaki, T., Hébert, S., Maignan, A.: Phys. Rev. Lett. 92 (2004) 017602. [04SBA2] Sugiyama, J., Brewer, J.H., Ansaldo, E.J., Hitti, B., Mikami, M., Mori, Y., Sasaki, T.: Phys. Rev. B 69 (2004) 214423. [04STT] Sakurai, H., Tsujii, N., Takayama-Muromachi, E.: J. Phys. Soc. Jpn. 73 (2004) 2393. [04ZFX] Zandbergen, H.W., Foo, M., Xu, Q., Kumar, V., Cava, R.J.: Phys. Rev. B 70 (2004) 024101. [05BMB] Bayrakci, S.P., Mirebeau, I., Bourges, P., Sidis, Y., Enderle, M., Mesot, J., Chen, D.P., Lin, C.T., Keimer, B.: Phys. Rev. Lett. 94 (2005) 157205. [05HBC] Helme, L.M., Boothroyd, A.T., Coldea, R., Prabhakaran, D., Tennant, D.A., Hiess, A., Kulda, J.: Phys. Rev. Lett. 94 (2005) 157206. [05MBB] Mendels, P., Bono, D., Bobroff, J., Collin, G., Colson, D., Blanchard, N., Alloul, H., Mukhamedshin, I., Bert, F., Amato, A., Hillier, A.D.: Phys. Rev. Lett. 94 (2005) 136403. [05WPB] Wooldridge, J., Paul, D McK., Balakrishnan, G., Lees, M.R.: J. Phys.: Condens. Mat. 17 (2005) 707. [05YMK] Yokoi, M., Moyoshi, T., Kobayashi, Y., Soda, M., Yasui, Y., Sato, M., Kakurai, K.: J. Phys. Soc. Jpn. 74 (2005) 3046. [06BLA] Bobroff, J., Lang, G., Alloul, H., Blanchard, N., Collin, G.: Phys. Rev. Lett. 96 (2006) 107201. [06GOC] Gašparović, G., Ott, R.A., Cho, J.-H., Chou, F.C., Chu, Y., Lynn, J.W., Lee, Y.S.: Phys. Rev. Lett. 96 (2006) 046403. [06SKL] Sushko, Y.V., Korneta, O.B., Leontsev, S.O., Jin, R., Sales, B.C., Mandrus, D.: J. Low Temp. Phys. 142 (2006) 573. [06WAF] Williams, A.J., Attfield, J.P., Foo, M.L., Viciu, L., Cava, R.J.: Phys. Rev. B 73 (2006) 134401. [06WPB] Wooldridge, J., Paul, MCK.D., Balakrishnan, G., Lees, M.R.: J. Phys.: Condens. Mat. 18 (2006) 4731. [07MMK] Miyoshi, K., Miura, M., Kondo, H., Takeuchi, J.:J. Magn. Magn. Mater. 310 (2007) 901. [07SYS] Sun, L., Yi, W., Shi, Y., Li, J., Li, Y., Li, X., Liu, J.: J. Phys.: Condens. Mat. 19 (2007) 425238. [07ZSZ] Zhang, F.X., Saxena, S.K., Zha, C.S.: J. Solid State Chem. 180 (2007) 1759. [08GMN] Garbarino, G., Monteverde, M., Núñez-Regueiro, M., Acha, C., Foo, M.L., Cava, R.J.: Phys. Rev. B 77 (2008) 064105. [09GNB] Garbarino, G., Núñez Regueiro, M., Bouvier, P., Crichton, W.A., Mezouar, M., Lejay, P., Armand, M., Foo, M.L., Cava, R.J.: J. Phys.: Conf. Ser. 150 (2009) 042039. [09KRP] Kumar, R.S., Rekhi, S., Prabhakaran, D., Somayazulu, M., Kim, E., Cook, J.D., Stemmler, T., Boothroyd, A.T., Chance, M.R., Cornelius, A.L.: Solid State Commun. 149 (2009) 1712. [11PIC] Popescu, C., Itie, J.-P., Congedutti, A., Lagarde, P., Flank, A.-M., Pinsard-Gaudart, L., Dragoe, N.: Phys. Rev. B 84 (2011) 224120. [12PPD] Popescu, C., Pinsard-Gaudart, L., Dragoe, N.: J. Appl. Phys. 112 (2012) 053503.

138

NaxCoO2

Additional Literatures [99RGG] Ray, R., Ghoshray, A., Ghoshray, K., Nakamura, S.: Phys. Rev. B 59 (1999) 9454. [03MYM] Mikami, M., Yoshimura, M., Mori, Y., Sasaki, T., Funahashi, R., Shikano, M.: Jpn. J. Appl. Phys. 42 (2003) 7383. [03WRC] Wang, Y., Ragado, N.S., Cava, R.J., Ong, N.P.: Nature 423 (2003) 425. [04GRP] Gavilano, J.L., Rau, D., Pedrini, B., Hinderer, J., Ott, H.R., Kazakov, S.M., Karpinski, J.: Phys. Rev. B 69 (2004) 100404(R). [04MMF] Miyoshi, K., Morikuni, E., Fujiwara, K., Takeuchi, J., Hamasaki, T.: Phys. Rev. B 69 (2004) 132412. [16GMB] Galeski, S., Mattenberger, K., Batlogg, B.: Phys. Rev. B 94 (2016) 140402(R).

CuCrO2

Crystallographic Data at Normal Pressure Crystal structure: Rhombohedral Space group: R3m Lattice parameters: a ¼ 2.9760(1) Å and c ¼ 17.1104(6) Å (hexagonal setting) [09PDM] See also Ref. [91AD] for the crystallographic properties.

Elastic Properties (1) Compressibility Compound CuCrO2

κ a [GPa1] 8.90(6)  103

κ c [GPa1] 1.26(1)  103

Reference [14GMP]

Pressure range [GPa] 0–20.3*

Reference [14GMP]

(2) Bulk modulus Compound CuCrO2

B0 [GPa] 156.7(2.8)

B00 5.3(0.5)

See also Ref. [13AMK] for the elastic properties.

Magnetic Properties at Normal Pressure Delafossite CuCrO2 becomes antiferromagnetic below the Néel temperature TN of ~24 K. The effective magnetic moment peff and the paramagnetic Curie temperature are 3.88 μB and  199 K, respectively [86DWA]. The value of peff is very close to © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_28

139

140

CuCrO2

the theoretical value of 3.87 for Cr3+. The magnetic order is in the form of an incommensurate proper-screw spiral with a propagation vector of the magnetic moments of (τ, τ, 0), where τ ¼ 0.329 [13EPF]. See also Refs. [12PHK] and [16SSK] for the magnetic properties. See Refs. [90KKA], [09PDM], [09SKK], [10KNO], [10PDM], [10SKK], [11FHP], [12FEP], and [13EPF] for the neutron diffraction studies. See Ref. [08SOT] for a spin-driven ferroelectricity.

Magnetic Properties Under Pressure Pressure versus temperature phase diagram is shown in Fig. CuCrO2-1. The TN increases with pressure. See also Ref. [11OT] for the pressure dependence of TN. 50 230

P + PE

210

Temperature T [K]

40

190 170 150

30

130 110

20 AF + FE

AF + (AFE)

90 70 50 30 10 0

10 2

4 6 8 Pressure p [GPa]

Electric polarization P [µC m–2]

250

10

Fig. CuCrO2-1 Pressure versus temperature phase diagram with the contour plot of amplitude of spontaneous polarization along [110] (P110). P, PE, AF, FE, and AFE denote paramagnetic, paraelectric, antiferromagnetic, ferroelectric, and possible antiferroelectric phases, respectively. [13AMK]

References

141

Symbols and Abbreviations Short form B0 TN peff μB τ P PE AF FE AFE P T p

Full form bulk modulus Néel temperature effective magnetic moment Bohr magneton magnetic moment paramagnetic phase paraelectric phase antiferromagnetic phase ferroelectric phase possible antiferroelectric phase electric polarization temperature pressure

References [86DWA] Doumerc, J.-P., Wichainchai, A., Ammar, A., Pouchard, M., Hagenmuller, P.: Mater. Res. Bull. 21 (1986) 745. [90KKA] Kadowaki, H., Kikuchi, H., Ajiro, Y.: J. Phys.: Condens. Mat. 2 (1990) 4485. [91AD] Angelov, S., Doumerc, J.P.: Solid State Commun. 77 (1991) 213. [08SOT] Seki, S., Onose, Y., Tokura, Y.: Phys. Rev. Lett. 101 (2008) 067204. [09PDM] Poienar, M., Damay, F., Martin, C., Hardy, V., Maignan, A., André, G.: Phys. Rev. B 79 (2009) 014412. [09SKK] Soda, M., Kimura, K., Kimura, T., Matsuura, M., Hirota, K.: J. Phys. Soc. Jpn. 78 (2009) 124703. [10KNO] Kajimoto, R., Nakajima, K., Ohira-Kawamura, S., Inamura, Y., Kakurai, K., Arai, M., Hokazono, T., Oozono, S., Okuda, T.: J. Phys. Soc. Jpn. 79 (2010) 123705. [10PDM] Poienar, M., Damay, F., Martin, C., Robert, J., Petit, S.: Phys. Rev. B 81 (2010) 104411. [10SKK] Soda, M., Kimura, K., Kimura, T., Hirota, K.: Phys. Rev. B 81 (2010) 100406 (R). [11FHP] Frontzek, M., Haraldsen, J.T., Podlesnyak, A., Matsuda, M., Christianson, A.D., Fishman, R.S., Sefat, A.S., Qiu, Y., Copley, J.R.D., Barilo, S., Shiryaev, S.V., Ehlers, G.: Phys. Rev. B 84 (2011) 094448. [11OT] Okuda, T., Takeshita, N.: J. Phys. Soc. Jpn. 80 (2011) 074711. [12FEP] Frontzek, M., Ehlers, G., Podlesnyak, A., Cao, H., Matsuda, M., Zaharko, O., Aliouane, N., Barilo, S., Shiryaev, S.V.: J. Phys.: Condens. Mat. 24 (2012) 016004. [12PHK] Poienar, M., Hardy, V., Kundys, B., Singh, K., Maignan, A., Damay, F., Martin, C.: J. Solid State Chem. 185 (2012) 56. [13AMK] Aoyama, T., Miyake, A., Kagayama, T., Shimizu, K., Kimura, T.: Phys. Rev. B 87 (2013) 094401. [13EPF] Ehlers, G., Podlesnyak, A.A., Frontzek, M., Freitas, R.S., Ghivelder, L., Gardner, J.S., Shiryaev, S.V., Barilo, S.: J. Phys.: Condens. Mat. 25 (2013) 496009. [14GMP] Garg, A.B., Mishra, A.K., Pandey, K.K., Sharma, S.M.: J. Appl. Phys. 116 (2014) 133514. [16SSK] Sakhratov, Yu.A., Svistov, L.E., Kuhns, P.L., Zhou, H.D., Reyes, A.P.: Phys. Rev. B 94 (2016) 094410.

142

CuCrO2

Additional Literatures [00SSM] Shimode, M., Sasaki, M., Mukaida, K.: J. Solid State Chem. 151 (2000) 16. [05OJH] Okuda, T., Jufuku, N., Hidaka, S., Terada, N.: Phys. Rev. B 72 (2005) 144403. [06SMB] Sheets, W.C., Mugnier, E., Barnabé, A., Marks, T.J., Poeppelmeier, K.R.: Chem. Mater. 18 (2006) 7. [07OOB] Okuda, T., Onoe, T., Beppu, Y., Terada, N., Doi, T., Miyasaka, S., Tokura, Y.: J. Magn. Magn. Mater. 310 (2007) 890. [08KNO] Kimura, K., Nakamura, H., Ohgushi, K., Kimura, T.: Phys. Rev. B 78 (2008) 140401(R). [08OBF] Okuda, T., Beppu, Y., Fujii, Y., Onoe, T., Terada, N., Miyasaka, S.: Phys. Rev. B 77 (2008) 134423. [09APB] Arnold, T., Payne, D.J., Bourlange, A., Hu, J.P., Egdell, R.G., Piper, L.F.J, Colakerol, L., De Masi, A., Glans, P.-A., Learmonth, T., Smith, K.E., Guo, J., Scanlon, D.O., Walsh, A., Morgan, B.J., Watson, G.W.: Phys. Rev. B 79 (2009) 075102. [09KNK] Kimura, K., Nakamura, H., Kimura, S., Hagiwara, M., Kimura, T.: Phys. Rev. Lett. 103 (2009) 107201. [09KON] Kimura, K., Otani, T., Nakamura, H., Wakabayashi, Y., Kimura, T.: J. Phys. Soc. Jpn. 78 (2009) 113710. [09OKU] Okuda, T., Kishimoto, T., Uto, K., Hokazono, T., Onose, Y., Tokura, Y., Kajimoto, R., Matsuda, M.: J. Phys. Soc. Jpn. 78 (2009) 013604. [10YOK] Yamaguchi, H., Ohtomo, S., Kimura, S., Hagiwara, M., Kimura, K., Kimura, T., Okuda, T., Kindo, K.: Phys. Rev. B 81 (2010) 033104. [11OUS] Okuda, T., Uto, K., Seki, S., Onose, Y., Tokura, Y., Kajimoto, R., Matsuda, M.: J. Phys. Soc. Jpn. 80 (2011) 014711.

CuFeO2

Crystallographic Data at Normal Pressure Crystal structure: Rhombohedral Space group: R3m Lattice parameters: a ¼ 3.036(1) Å and c ¼ 17.171 (9) Å (hexagonal setting) [95ZHT] See also Ref. [96ZHT1] for the crystallographic properties. The antiferromagnetic transition in CuFeO2 (delafossite) are accompanied simultaneously by structural transitions from hexagonal (space group: R3m) to monoclinic (space group: C2/m) [06YRH]. See also Refs. [06TMO] and [06TTT] for the crystallographic properties at low temperatures.

Elastic Properties High-pressure X-ray diffraction studies show that the low-pressure R3m phase is stable up to 18 GPa [10XRP]. See Ref. [13NIT] for the uniaxial pressure effect on the spin-driven lattice distortions. (1) Bulk modulus Compound CuFO2

B0 [GPa] 156.5  2.4

B00 2.6  0.6

Pressure range [GPa] 0–10.1*

Reference [96ZHT2]

See also Refs. [97ZHK] and [10XRP] for the elastic properties.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2023 Y. Kawazoe et al., High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, https://doi.org/10.1007/978-3-662-64593-2_29

143

144

CuFeO2

Magnetic Properties at Normal Pressure CuFeO2 exhibits two successive antiferromagnetic phase transitions at TN1 ¼ 14 K and TN2 ¼ 11 K. The low temperature phase has a collinear four sublattice (4SL) structure (""##)(T  TN2) with the magnetic moments along the c-axis, whereas the intermediate temperature phase (TN2  T  TN1) is a partially disordered (PD) phase with the sinusoidally amplitude-modulated magnetic structure with magnetic moments along the c-axis [06TTT]. The neutron diffraction measurements show that the magnetic moment of Fe3+ extrapolated to T ¼ 0 K is (4.20  0.10) μB [06YRH]. The temperature dependence of the magnetic susceptibility obeys the Curie-Weiss law above 150 K. The effective magnetic moment peff and the paramagnetic Curie temperature θp are 5.64 μB and  67 K, respectively [93MYT]. See also Ref. [86DWA] for the values of peff and θp. See also Refs. [98MKU] and [14TKM] for the magnetic properties.

Magnetic Properties Under Pressure (1) Pressure dependence of the Néel temperature TN TN1 [K] 12.5*

TN2 [K] 8.6*

dTN1/dp [K GPa1] 1

dTN2/dp [K GPa1] 1

Reference [04TMT]

(2) Pressure dependence of hyperfine interaction parameters Figure CuFeO2-2 shows the Mössbauer spectra of CuFeO2 at normal pressure. In the spectra at 5 K and 10 K, long-range magnetic order of the 4-sublattice (4SL) phase is observed with remnants of the magnetic-ordered (“5-sublattice”) phase (5SL). See Ref. [04XPT] for the detail of the 4SL and 5SL phases. Figure CuFeO2-3 shows the Mössbauer spectra recorded at 19 GPa at several temperatures, where TN reaches ~38 K. At 19 GPa, the 4SL phase vanishes leaving only the 5SL phase. The hyperfine field parameters at various pressures are summarized in Table 1. See also Refs. [10RPX], [10XRP], and [16XHP] for the Mössbauer spectra of CuFeO2 under high pressure. Table 1 The hyperfine interaction parameters of Cu57FeO2. δIS and QS mean the isomer shift and the quadrupole splitting, respectively. The hyperfine fields Hhf1 and Hhf2 correspond to the 4SL and 5SL phases, respectively [04XPT] p [GPa] δIS [mm/s]a QS [mm/s] Bhf1(T