174 11 57MB
English Pages 507 Year 2003
ABSTRACT
Wallace, Matthew Spaulding, 2003. Phylogeny and Systematics of the Treehopper Subfamily Centrotinae (Insecta Hemiptera Membracidae). Under the direction of Lewis L. Deitz. The subfamily Centrotinae is the largest and only cosmopolitan subfamily within the treehopper family Membracidae (Insecta: Hemiptera). As the first comprehensive morphological study of the subfamily, this work includes: (a) phylogenetic analyses, (b) illustrated taxonomic keys and descriptions for identifying 23 tribes (6 new) and 2 unplaced genera, (c) new synonymies (1 generic, 11 tribal, 1 subfamilial), (d) a new lectotype designation, and (e) 5 new combinations. Of 216 genera here included in the subfamily, 207 are placed in tribes, 2 are unplaced but have known affinities, and 7 are too poorly known for placement. One genus formerly placed in Centrotinae is placed as Membracidae incertae sedis. Phylogenetic analyses were performed based on 116 morphological characters from the head, thorax, and abdomen of both sexes. These analyses (1 overall analysis of 24 tribes and 8 analyses of the larger tribes) resulted in a single most parsimonious tree showing a basal clade with one New World tribe, followed by two major clades- each with New World components basally followed by Old World components. These analyses demonstrated that the most recent classifications included numerous para- or polyphyletic tribes. Consequently, the tribal placements of 108 genera are changed so that all tribes are monophyletic. As here defined, the subfamily Centrotinae is also a monophyletic group supported by the synapomorphy of the presence of abdominal inornate pits, each with a lateral seta. Characters important in elucidating tribal relationships include features of: ♂ and ♀ genitalia, fore- and hind wings, the scutellum, leg chaetotaxy and abdominal characteristics using scanning electron microscopy. Each tribal diagnosis and description is followed by notes on ecology and distribution, a list of included genera, specimens examined, and discussions of phylogeny and morphological characters. For most genera, the head, pronotum, wings, legs, male and female genitalia, and abdominal fine structure are illustrated. Based on the phylogeny inferred herein, centrotines originated in the New World (6 tribes) and subsequently invaded the Old World twice, possibly via the Bering Land Bridge, which would have facilitated western invasions from North America to the Palearctic and Indomalayan Regions in the early Tertiary. Subsequently, major radiations (17 tribes) occurred within the Old World. While a few centrotine tribes are widely distributed, many occur primarily in one or two major zoogeographic regions. No tribe occurs in both the Old World and New. The distinctive faunas of the Afrotropical, Indomalayan, Australian, and Caribbean Regions are especially notable. Centrotines have exploited 105 plant families. Dominant among these are the Leguminosae, Compositae, Solanaceae, and Euphorbiaceae. At least 11 of the 23 centrotine tribes include genera that are attended by ants, which feed on the honeydew secreted by treehoppers. The distribution of these ecological and behavioral traits, as well as chromosome numbers, are mapped on the tribal phylogeny. Included are 186 figures (1500 individual illustrations and photographs) and 17 tables.
PHYLOGENY AND SYSTEMATICS OF THE TREEHOPPER SUBFAMILY CENTROTINAE (INSECTA: HEMIPTERA: MEMBRACIDAE)
by Matthew S. Wallace
A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
ENTOMOLOGY Raleigh 2003
APPROVED BY:
________________________
_____________________
Chair of Advisory Committee
________________________
_____________________
DISCLAIMER
Nomenclatural acts included in this thesis are not considered published within the meaning of the 1999 International Code of Zoological Nomenclature (see Article 8.3). This work will be published in parts elsewhere, in accordance with Article 8 of the Code. This material is based upon work supported by the National Science Foundation under Grant numbers 981586 and 9978026 and by the North Carolina Agricultural Research Service. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the North Carolina Agricultural Research Service. This work is copyright protected, © 2003. All rights reserved. No part of this publication may be reproduced, stored, transmitted, or disseminated in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the author. For all digital images based on material from The Natural History Museum, London, and from the Museum National d'Histoire Naturelle, Paris, France, the copyrights belong to those institutions, respectively. The copyrights to all other images belong to Matthew S. Wallace and Lewis L. Deitz.
ii
BIOGRAPHY
Matthew S. Wallace was born in Ellington, Connecticut, on August 31, 1973 to Robert and Deborah Wallace. Matt graduated as valedictorian from Ellington High School in 1991 and earned a B.S. in Renewable Natural Resources in the Department of Natural Resources Management and Engineering at the University of Connecticut (UCONN) in 1995. In UCONN’s Department of Ecology and Evolutionary biology, he helped begin a captive breeding program for the endangered butterfly, the regal fritillary, Speyeria idalia (Lepidoptera: Nymphalidae), and assisted in research on the effects of Bacillus thuringiensis on non-target Lepidoptera in the southern Appalachians. Matthew began a master’s program at North Carolina State University, Department of Entomology, in August 1996 with Fred P. Hain. Researching the effects of native enemies of the hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), Matt received a M.S. in entomology in 1999. In early 1999, Matt began work with Lewis L. Deitz on the higher classification of the treehopper (Membracidae) subfamily Centrotinae. In July of 2001, Matt participated in a trip to major European insect collections in London (The Natural History Museum and Linnean Collection), Oxford, Paris, and Dresden. While at North Carolina State, Matt has participated in the Entomology Graduate Student Association as treasurer, fundraising coordinator, and as a student representative of the Museum Council and the Curriculum Committee. He also contributed to a survey of the treehoppers of Great Smoky Mountains National Park as part of the All Taxa Biodiversity Inventory. Matt received a College of Agriculture and Life Sciences Outstanding Teaching iii
Assistant Award, the North Carolina Entomological Society’s Outstanding Ph.D Entomology Student Award, and two President’s Prizes for best student presentation in Section A at the National Meetings of the Entomological Society of America. Matthew enjoys outdoor activities such as golf, tennis, fishing, and basketball as well as science fiction entertainment. He resides in Wilson’s Mills North Carolina with his loving wife Sarah, and his two cats, Bob and Madeline.
iv
ACKNOWLEDGMENTS
I thank my major advisor Lewis L. Deitz for his exceptional support, advice, and friendship throughout my education at North Carolina State University. Fred P. Hain, Jon M. Stucky, and Brian M. Wiegmann offered valuable insights for my research and the manuscript. I also thank my parents Robert S. Wallace and Deborah E. Wallace and my brother Andrew R. Wallace for their support, guidance, and love throughout my life. I especially recognize my brother who provided a supreme example to follow.
I also thank my
grandparents, Robert Brown, Frances Brown, Donald Wallace, and Evelyn Wallace for exposing me to the wonders of nature. My wife, Sarah F. Wallace, always listened to my ideas and complaints, with very patient ears. Without her unconditional love and support, this dissertation would not have been possible. Karen H. Spieler rendered the detailed wing illustrations for the type genus of each tribe.
I am also indebted to the North Carolina State University Libraries, Special
Collections Department for their helpfulness and patience. E. Danielle Dietiker assisted with tabulating centrotine distributional data and David W. Walton contributed important illustrations. I thank Jenny Xiang for assistance with centrotine biogeography and Charles R. Bartlett for his helpful suggestions concerning the taxonomic program DELTA. Cristof Stumpf helped with the translation of German publications. Ted H. Emigh and Herbert H. Neunzig provided helpful comments on the dissertation.
v
Treehopper workers who provided helpful insights and suggestions include Michel Boulard, Christopher H. Dietrich, Jason R. Cryan, Chung-Ping Lin, Stuart H. McKamey, Mark J. Rothschild, and Thomas K. Wood. I am grateful to the following individuals: for technical assistance, V. Knowlton (scanning electron microscopy); for hospitality during visits to collections [the four letter coden following each individual’s name refers to their institution; the list of codens is explained in the Materials and Methods section or listed in Arnett and et al. (1994)], C.A. Johnson (AMNH), V. Eastop, M.G. Fitton, J. Martin, and M.D. Webb (BMNH); N.D. Penny and K.J. Ribardo (CASC); C. Barr (EMEC); M.G. Fitton (LSUK); M. Boulard, T. Bourgoin, and D. Ouvrard (MNHN); G.C. McGavin (OXUM); R. Emmrich (SMTD); and S.H. McKamey and T.J. Henry (USNM); and for lending specimens, C.A. Johnson (AMNH); M.S. Moulds (AMSA); M.F. Day (ANIC); M.D. Webb (BMNH); N.D. Penny and K.J. Ribardo (CASC); K.G.A. Hamilton (CNCI); D.J. Flynn (DJFC); A.M. Sakakibara (DZUP); L.B. O’Brien (LBOB); M. Boulard and T. Bourgoin (MNHN); R. Danielsson (MZLU); Robert L. Blinn (NCSU), B. Viklund (NHRS); D.J. Mann and G.C. McGavin (OXUM); M. Stiller (PPRI); G.B. Monteith (QMBA); S.H. McKamey (SHMC and USNM); and R. Emmrich (SMTD). This research was funded by National Science Foundation Grants DEB-9815867 and DEB-9978026 and by the North Carolina Agricultural Research Service, North Carolina State University, Raleigh, North Carolina.
vi
TABLE OF CONTENTS Page LIST OF TABLES……………………………………………………………….
ix
LIST OF FIGURES………………………………………………………………
x
INTRODUCTION AND MATERIALS AND METHODS……………………
1
Introduction ……………………………………………………………… Literature Review………………………………………………………... Materials and Methods………………………………………………….. Taxon Sampling………………………………………………….. Materials and Methods………………………………………….. Morphological Characters………………………………………. Subfamily Centrotinae Amyot and Serville……………………………. Taxonomic Key to 23 Centotine Tribes………………………………… Centrotinae, Incertae Sedis………………………………………………
1 4 10 10 12 13 19 26 34
TRIBAL DESCRIPTIONS 1. Tribe BEAUFORTIANINI, new tribe……………………………….. 48 2. Tribe BOCCHARINI, new tribe……………………………………… 60 3. Tribe BOOCERINI Goding, 1892…………………………………….. 66 4. Tribe CENTROCHARESINI Goding, 1931…………………………. 82 5. Tribe CENTRODONTINI Deitz, 1975……………………………….. 88 6. Tribe CENTROTINI Amyot and Serville, 1843…………………….. 97 7. Tribe CENTROTYPINI Haupt, 1929………………………………… 136 8. Tribe CHOUCENTRINI Yuan, in Yuan and Chou 1988…………… 143 9. Tribe EBHULOIDESINI Goding, 1931……………………………….150 10. Tribe GARGARINI Distant, 1908……………………………………156 11. Tribe HYPSAUCHENIIINI Distant, 1908………………………….. 188 12. Tribe LEPTOBELINI Yuan, in Yuan and Chou 2002…………….. 203 vii
13. Tribe LEPTOCENTRINI Distant, 1908……………………………. 210 14. Tribe LOBOCENTRINI, new tribe………………………………… 233 15. Tribe MAARBARINI, new tribe…………………………………… 241 16. Tribe MICREUNINI Distant, 1908………………………………… 252 17. Tribe MONOBELINI, new tribe…………………………………… 258 18. Tribe NESSORHININI Deitz, 1975………………………………… 268 19. Tribe OXYRHACHINI Distant, 1908……………………………… 283 20. Tribe PIELTAINELLINI, new tribe………………………………. 292 21. Tribe PLATYCENTRINI Haupt, 1929……………………………. 298 22. Tribe TERENTIINI Haupt, 1929………………………………….. 305 23. Tribe XIPHOPOEINI Capener, 1966……………………………… 343 PHYLOGENETIC ANALYSES, BIOGEOGRAPHY, AND LIFE HISTORY ANALYSES 24. PHYLOGENETIC RELATIONSHIPS WITHIN THE SUBFAMILY CENTROTINAE………………………………………… 350 25. BIOGEOGRAPHY OF THE CENTROTINAE AND MEMBRACIDAE……………………………………………………….. 428 26. CENTROTINE ANT ASSOCIATIONS, HOST PLANTS, AND CHROMOSOME NUMBERS………………………………………… 446 CONCLUSION…………………………………………………………………. 463 REFERENCES CITED………………………………………………………… 467
viii
LIST OF TABLES Table 24.1
Character list……………………………………………………..
371
Table 24.2
Number of taxa and characters for phylogenetic (PAUP*) and phenetic (UPGMA) analyses………………………………..
381
Table 24.3
Summary of phylogenetic analyses 1-8………………………….
382
Table 24.4
List of apomorphies for phylogenetic analysis 1 (Fig. 24.1)….…. 384
Table 24.5
List of taxa in the overall phylogenetic analysis (1) of the Centrotinae (alphabetized by genus)……………………………..
386
Table 24.6
List of apomorphies for phylogenetic analysis 2 (Fig. 24.4)…….. 391
Table 24.7
List of apomorphies for phylogenetic analysis 3 (Fig. 24.6)…….. 394
Table 24.8
List of apomorphies for phylogenetic analysis 4 (Fig. 24.8)…….. 397
Table 24.9
List of apomorphies for phylogenetic analysis 5 (Fig. 24.9)…….. 399
Table 24.10
List of apomorphies for phylogenetic analysis 6 (Fig. 24.11)…… 402
Table 24.11
List of apomorphies for phylogenetic analysis 7 (Fig. 24.13)…… 405
Table 24.12
List of apomorphies for phylogenetic analysis 8 (Fig. 24.15)…… 408
Table 24.13
Data matrix……………………………………………………….
Table 24.14
Summary of taxonomic changes based on phylogenetic analyses 1-8…………………………………………………….… 427
Table 26.1
Centrotine genera reported to be tended by ants with citation…… 454
Table 26.2
List of host plant families and centrotine treehopper genera……... 455
Table 26.3
Chromosome numbers (2n) of male centrotines…………………. 459
ix
411
LIST OF FIGURES Figure 0.1
Centrotinae: pronota and heads…………………………………
36
Figure 0.2
Centrotinae: scutella….…………………………………………
37
Figure 0.3
Centrotinae: scanning electron micrographs of the pronotum, abdomen, and pleuron……………………….………………….
38
Figure 0.4
Centrotinae: forewing and hind wing examples…………………
39
Figure 0.5
Centrotinae: metathoracic tibia and scanning electron micrographs of cucullate setae on metathoracic tibiae.………….. 40
Figure 0.6
Centrotinae: metathoracic tibiae, scanning electron micrograph of cucullate setae and raised setal bases, and spines of trochanter…. 41
Figure 0.7
Centrotinae: leg chaetotaxy…..…………………………………..
42
Figure 0.8
Centrotinae: abdominal features………..………………………..
43
Figure 0.9
Centrotinae: male and female genitalia………………………….
44
Figure 0.10
Centrotinae: maximum development of abdominal fine-structure….…………………………………………………
45
Figure 0.11
Elaphiceps Buckton and Tyrannotus Capener…………………..
46
Figure 0.12
Elaphiceps and Tyrannotus………………………………………
47
Figure 1.1
Beaufortianini: pronota...………………………………………..
54
Figure 1.2
Beaufortianini: pronota, heads, and wing.……………………….
55
Figure 1.3
Beaufortianini: wings and metathoracic leg… ………………….. 56
Figure 1.4
Beaufortianini: female second valvulae………………………….
57
Figure 1.5
Beaufortianini: female second valvulae, and male styles and aedeagi…….…………………………………………………
58
Figure 1.6
Beaufortianini: male lateral plates and maximum development of abdominal fine-structure……..…………………………………. 59 x
Figure 2.1
Boccharini: pronota, heads, wings, and metathoracic leg….…….. 64
Figure 2.2
Boccharini: female second valvulae, and male styles, lateral plates, and subgenital plate, and maximum development of abdominal fine structure……………………………………………………… 65
Figure 3.1
Boocerini: pronota (lateral and anterior aspects)….……………… 73
Figure 3.2
Boocerini: pronota (anterior aspects), heads, and scanning electron micrograph of pronotum………………………………………….. 74
Figure 3.3
Boocerini: wings……..…………………………………………... 75
Figure 3.4
Boocerini: wings and legs….…………………………………….
76
Figure 3.5
Boocerini: female second valvulae….…………………………...
77
Figure 3.6
Boocerini: female second valvulae………………………………
78
Figure 3.7
Boocerini: male styles and aedeagi………………………………
79
Figure 3.8
Boocerini: male lateral plates and subgenital plates……………..
80
Figure 3.9
Boocerini: maximum development of abdominal fine-structure… 81
Figure 4.1
Centrocharesini: pronotum, head, wings, and metathoracic leg....
86
Figure 4.2
Centrocharesini: female genitalia, male genitalia, and maximum development of abdominal and pronotal fine-structure………….
87
Figure 5.1
Centrodontini: pronota, heads, and metathoracic leg..…………..
93
Figure 5.2
Centrodontini: wings and pronotal fine-structure………………..
94
Figure 5.3
Centrodontini: female second valvulae…………………………..
95
Figure 5.4
Centrodontini: male styles, aedeagus, lateral plate, and subgenital plate, and maximum development of abdominal fine-structure….. 96
Figure 6.1
Centrotini: pronota (lateral aspects)… …………………………… 110
Figure 6.2
Centrotini: pronota (lateral aspects)……………………………… 111
Figure 6.3
Centrotini: pronota (lateral aspects)……………………………… 112 xi
Figure 6.4
Centrotini: pronota (anterior aspects)……………………………. 113
Figure 6.5
Centrotini: pronota (anterior aspects)……………………………. 114
Figure 6.6
Centrotini: pronota (anterior aspects)……………………………. 115
Figure 6.7
Centrotini: heads…………………………………………………. 116
Figure 6.8
Centrotini: heads…………………………………………………. 117
Figure 6.9
Centrotini: heads…………………………………………………. 118
Figure 6.10
Centrotini: wings…………………………………………………. 119
Figure 6.11
Centrotini: wings…………………………………………………. 120
Figure 6.12
Centrotini: wings…………………………………………………. 121
Figure 6.13
Centrotini: wings…………………………………………………. 122
Figure 6.14
Centrotini: wings…………………………………………………. 123
Figure 6.15
Centrotini: wings and metathoracic legs…………………………. 124
Figure 6.16
Centrotini: female second valvulae………………………………. 125
Figure 6.17
Centrotini: female second valvulae………………………………. 126
Figure 6.18
Centrotini: female second valvulae………………………………. 127
Figure 6.19
Centrotini: female second valvulae………………………………. 128
Figure 6.20
Centrotini: female second valvulae………………………………. 129
Figure 6.21
Centrotini: female second valvulae………………………………. 130
Figure 6.22
Centrotini: male styles…………………………………………… 131
Figure 6.23
Centrotini: male styles, aedeagi, and lateral plates………………. 132
Figure 6.24
Centrotini: maximum development of abdominal fine-structure… 133
Figure 6.25
Centrotini: maximum development of abdominal fine-structure… 134
Figure 6.26
Centrotini: maximum development of abdominal fine-structure…. 135 xii
Figure 7.1
Centrotypini: pronota, heads, and wing………………………….. 140
Figure 7.2
Centrotypini: wing, metathoracic leg, and female second valvulae……….………………………………………………….
141
Figure 7.3
Centrotypini: male styles, aedeagus, lateral plate, and subgenital plate, and maximum development of abdominal fine-structure…. 142
Figure 8.1
Choucentrini: pronota, heads, wings, and metathoracic leg..……
Figure 8.2
Choucentrini: female second valvulae, male style and lateral plate, and maximum development of abdominal fine-structure……….. 149
Figure 9.1
Ebhuloidesini: pronotum, head, wings, and metathoracic leg……. 154
Figure 9.2
Ebhuloidesini: female second valvulae, male style and lateral plate, and maximum development of pronotal and abdominal fine-structure…..………………………………………………….. 155
Figure 10.1
Gargarini: pronota (lateral aspects)………………………………. 170
Figure 10.2
Gargarini: pronota (lateral and anterior aspects)…………………. 171
Figure 10.3
Gargarini: pronota (anterior aspects)…..………………………… 172
Figure 10.4
Gargarini: heads…………………………………………………... 173
Figure 10.5
Gargarini: heads and wings………………………………………. 174
Figure 10.6
Gargarini: wings………………………………………………….. 175
Figure 10.7
Gargarini: wings………………………………………………….. 176
Figure 10.8
Gargarini: wings………………………………………………….. 177
Figure 10.9
Gargarini: metathoracic leg and female second valvulae………… 178
148
Figure 10.10 Gargarini: female second valvulae……………………………….. 179 Figure 10.11. Gargarini: female second valvulae……………………………….. 180 Figure 10.12 Gargarini: female second valvulae……………………………….. 181 Figure 10.13 Gargarini: female second valvulae and male styles………………. 182 xiii
Figure 10.14 Gargarini: male styles and aedeagi……………………………….. 183 Figure 10.15 Gargarini: male aedeagi and lateral plates……………………….. 184 Figure 10.16 Gargarini: male lateral plates and subgenital plates……………… 185 Figure 10.17 Gargarini: scanning electron micrographs of pronota……………. 186 Figure 10.18 Gargarini: maximum development of abdominal fine-structure.... 187 Figure 11.1
Hypsaucheniini: pronota………………………………………….. 195
Figure 11.2
Hypsaucheniini: pronota and heads………………………………. 196
Figure 11.3
Hypsaucheniini: wings…………………………………………… 197
Figure 11.4
Hypsaucheniini: wings and metathoracic leg……………………. 198
Figure 11.5
Hypsaucheniini: female second valvulae………………………...
199
Figure 11.6
Hypsaucheniini: female third valvulae, and male styles and aedeagi…………….……………………………………………..
200
Hypsaucheniini: male lateral plates, pygofer, and subgenital plate…………….………………………………………….……..
201
Figure 11.7 Figure 11.8
Hypsaucheniini: maximum development of pronotal and abdominal fine-structure………………….…………………………….…… 202
Figure 12.1
Leptobelini: pronota, head, wings, and metathoracic leg..………
Figure 12.2
Leptobelini: female second valvulae, male style and lateral plate, and maximum development of abdominal fine-structure.…..……….. 209
Figure 13.1
Leptocentrini: pronota (lateral aspects)………………………….
Figure 13.2
Leptocentrini: pronota (lateral and anterior aspects)…………….. 223
Figure 13.3
Leptocentrini: pronota (anterior aspects) and heads……………..
224
Figure 13.4
Leptocentrini: wings……………………………………………..
225
Figure 13.5
Leptocentrini: wings……………………………………………..
226
Figure 13.6
Leptocentrini: metathoracic leg………………………………….
227
xiv
208
222
Figure 13.7
Leptocentrini: female second valvulae…………………………..
228
Figure 13.8
Leptocentrini: female second valvulae…………………………..
229
Figure 13.9
Leptocentrini: male styles and aedeagi…………………….…….. 230
Figure 13.10 Leptocentrini: male lateral plates and subgenital plates…………
231
Figure 13.11 Leptocentrini: maximum development of abdominal fine-structure……………………………………………………..
232
Figure 14.1
Lobocentrini: pronota, heads, and wings………………………… 238
Figure 14.2
Lobocentrini: metathoracic leg and female second valvulae…….
239
Figure 14.3
Lobocentrini: male styles and lateral plate, and maximum development of abdominal fine-structure………………………..
240
Figure 15.1
Maarbarini: pronota……………………………………………… 247
Figure 15.2
Maarbarini: heads and wings….…………………………………
248
Figure 15.3
Maarbarini: wings and metathoracic leg………………………..
249
Figure 15.4
Maarbarini: female second valvulae…………………………….
250
Figure 15.5
Maarbarini: male styles and lateral plates, and maximum development of abdominal fine-structure………….……………
251
Figure 16.1
Micreunini: pronotum, head, wings, and metathoracic leg………
256
Figure 16.2
Micreunini: female second valvulae, and male style and lateral plate, and maximum development of abdominal fine-structure…. 257
Figure 17.1
Monobelini: pronota and heads.………………………………….. 263
Figure 17.2
Monobelini: wings…………………………………………….…
264
Figure 17.3
Monobelini: metathoracic leg….………………………………...
265
Figure 17.4
Monobelini: female second valvulae………………….…………
266
Figure 17.5
Monobelini: male styles, lateral plates, and subgenital plates, and maximum development of abdominal fine-structure……………. 267 xv
Figure 18.1
Nessorhinini: pronota……………………………………………
275
Figure 18.2
Nessorhinini: pronota and heads..………………………………
276
Figure 18.3
Nessorhinini: wings……………………………………………..
277
Figure 18.4
Nessorhinini: wings and metathoracic legs……………………..
278
Figure 18.5
Nessorhinini: female second valvulae…………………………..
279
Figure 18.6
Nessorhinini: female second valvulae and male styles…………
280
Figure 18.7
Nessorhinini: male styles, aedeagi, lateral plates, and subgenital plate………………………………………………….
281
Nessorhinini: fine-structure of pronota and maximum development of abdominal fine-structure….…………………….
282
Figure 19.1
Oxyrhachini: pronota, heads, and wings….……………………..
289
Figure 19.2
Oxyrhachini: metathoracic legs and maximum development of abdominal fine-structure…………………………………………
290
Oxyrhachini: female second valvulae, and male styles, aedeagi, and subgenital plate………………………………………………
291
Figure 20.1
Pieltainellini: pronota, heads, wings, and metathoracic leg……..
296
Figure 20.2
Pieltainellini: female second valvulae, and male styles, aedeagus, lateral plate, and subgenital plate, and maximum development of abdominal fine-structure………………………………………… 297
Figure 21.1
Platycentrini: pronota, heads, and wings…..……………………
302
Figure 21.2
Platycentrini: wings, metathoracic leg, and female second valvulae…………………………………………………………..
303
Figure 18.8
Figure 19.3
Figure 21.3
Platycentrini: Male styles, aedeagi, lateral plates, and subgenital plate, and maximum development of abdominal fine-structure.… 304
Figure 22.1
Terentiini: pronota (lateral aspects)……………………………… 319
Figure 22.2
Terentiini: pronota (lateral aspects)……………………………… 320
Figure 22.3
Terentiini: pronota (lateral and anterior aspects)………………… 321 xvi
Figure 22.4
Terentiini: pronota (anterior aspects)…………………………….
322
Figure 22.5
Terentiini: pronota (anterior aspects) and heads…………………
323
Figure 22.6
Terentiini: heads…………………………………………………
324
Figure 22.7
Terentiini: heads…………………………………………………
325
Figure 22.8
Terentiini: wings…………………………………………………
326
Figure 22.9
Terentiini: wings…………………………………………………
327
Figure 22.10 Terentiini: wings…………………………………………………
328
Figure 22.11 Terentiini: wings…………………………………………………
329
Figure 22.12 Terentiini: metathoracic legs……………………………………..
330
Figure 22.13 Terentiini: female second valvulae…….………………………… 331 Figure 22.14 Terentiini: female second valvulae….…………………………… 332 Figure 22.15 Terentiini: female second valvulae………………………………
333
Figure 22.16 Terentiini: female second valvulae………………………………
334
Figure 22.17 Terentiini: female second valvulae and male styles……………..
335
Figure 22.18 Terentiini: male styles and aedeagi………………………………
336
Figure 22.19 Terentiini: male aedeagi and lateral plates………………………
337
Figure 22.20 Terentiini: male lateral plates……………………………………
338
Figure 22.21 Terentiini: male subgenital plates and maximum development of abdominal fine-structure…………………………………………
339
Figure 22.22 Terentiini: maximum development of abdominal fine-structure...
340
Figure 22.23 Terentiini: maximum development of abdominal fine-structure.... 341 Figure 22.24 Terentiini: maximum development of abdominal fine-structure.... 342 Figure 23.1
Xiphopoeini: pronota, heads, wings, and metathoracic leg………. 347 xvii
Figure 23.2
Xiphopoeini: female second valvulae, and male styles, aedeagi, lateral plates, and subgenital plate..……………………………… 348
Figure 23.3
Xiphopoeini: maximum development of pronotal and abdominal fine-structure………………….………………………………….
349
Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*)……………………………………………..
383
Figure 24.1 Figure 24.2
Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*) with “existing” tribal names based on Ananthasubramanian (1996a), McKamey (1998a), and Yuan and Chou (2002a)………………………………………………… 388
Figure 24.3
Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*)…………… 389
Figure 24.4
Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*)…………… 390
Figure 24.5
Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*)……………………………... 392
Figure 24.6
Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*)……………………………………………..
393
Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*)…………………………………………….
395
Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*)…………………………………………….
396
Phylogenetic relationships within Choucentrini, Leptocentrini, and Maarbarini (Analysis 5, PAUP*)…………………………...
398
Figure 24.10 Phylogenetic relationships within Gargarini (Analysis 6, PAUP*)…………………………………………….
400
Figure 24.11 Phylogenetic relationships within Gargarini (Analysis 6, PAUP*)…………………………………………….
401
Figure 24.7 Figure 24.8 Figure 24.9
Figure 24.12 Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*)…………………………………………….. 403
xviii
Figure 24.13 Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*)……………………………….
404
Figure 24.14 Phylogenetic relationships within Terentiini (Analysis 8, PAUP*)……………………………………………..
406
Figure 24.15 Phylogenetic relationships within Terentiini (Analysis 8, PAUP*)……………………………………………..
407
Figure 24.16 Phenetic relationships within Lobocentrini, Beaufortianini, Gargarini, and Centrotini (Analysis 9, UPGMA)………………... 409 Figure 24.17 Phenetic relationships within Nessorhinini, Leptocentrini, and Terentiini (Analysis 10, UPGMA)……………………………….
410
Figure 25.1.
Distributions of centrotine tribes……………………………….
445
Figure 26.1
Ant-attendance and maternal care in centrotines………………… 460
Figure 26.2
Host plant families of centrotines………………………………..
461
Figure 26.3
Male chromosome numbers in centrotines………………………
462
xix
PHYLOGENY AND SYSTEMATICS OF THE TREEHOPPER SUBFAMILY CENTROTINAE (HEMIPTERA: MEMBRACIDAE)
INTRODUCTION AND MATERIALS AND METHODS (Figs. 0.1-0.12)
Introduction
The treehopper subfamily Centrotinae is the only cosmopolitan treehopper group. Predominantly Old World in distribution, this subfamily accounts for approximately half of the membracid diversity at the tribal, generic, and species levels. Prior to this work, 24 of 51 membracid tribes and 212 of the 412 membracid genera were centrotines. Additionally, nearly half of the 3,224 membracid species are centrotines.
Although they are found
worldwide, there are no centrotine tribes (or genera) found in both the Old and New Worlds. Fossil centrotines are unknown. Like other treehoppers, centrotines are important components of the herbivore fauna in many habitats. They are commonly studied because of their intriguing life history traits and behaviors including ant-attendance, maternal care, and aggregation behaviors, and their occasional importance as plant pests and as potential vectors of plant diseases. Despite their diversity, the Centrotinae have been poorly studied and taxonomically are in serious disarray. Historically, workers have focused their work on centrotines within a particular geographic region (for example, Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a; Yuan and Chou 2002a). Moreover, few workers
have examined the evolutionary relationships of the Centrotinae (Strümpel 1972a; Ahmad 1988a; Dietrich and Deitz 1993a; Cryan et al. 2000a; Dietrich et al. 2001a; Yuan and Chou 2002a), and none of these studies was extensive in taxonomic coverage. As a result, the current centrotine classification is based largely on plesiomorphic characters. Thus, the monophyly of the subfamily and tribes has not been tested. These disparities have impeded the development of a stable higher classification and taxonomic studies of centrotines at the generic and species levels. While the higher classification of the Centrotinae is a systematist’s nightmare, centrotine treehoppers are a biologist’s dream, particularly from the viewpoints of historical ecology and biogeography. It is unclear if the first treehoppers arose: (1) before the breakup of Gondwana (Wood 1993a) or (2) in the Neotropics after the Tertiary isolation (Dietrich et al. 2001a). The phylogeny of the Centrotinae is critical in addressing this question because it is the only membracid subfamily distributed in both the Old and New Worlds. However, the lack of information on the evolutionary relationships between the Old and New World centrotines has hindered investigations on biogeographic patterns within the Membracidae and efforts to determine the geographic and temporal origins of the Membracidae and the Centrotinae. This work represents the first comprehensive, phylogenetic treatment of the subfamily Centrotinae, its 24 tribes (20 Old World, 4 New World), and 212 genera (plus the New World tribe Centrodontini) (sensu McKamey 1998a and Yuan and Chou 2002a), using morphological characters. The objectives of this study are to establish the phylogenetic limits of the Centrotinae and its included tribes, to determine the evolutionary relationships among these tribes in 2
order to provide a sound and comprehensive classification, to advance investigations of biogeographical patterns and life history traits, and to develop a tribal key to facilitate identification of the centrotine assemblage. The great number of centrotine genera--together with the limited morphological data for many--precluded a single comprehensive phylogenetic analysis. To circumvent this problem, 10 analyses were performed on subsets of taxa as follows: (1) an overall phylogenetic analysis based on genera representing overall tribal diversity within Centrotinae; (2-8) phylogenetic analyses based on genera representing larger tribes; and (9-10) phenetic analyses based on all scorable genera representing larger tribes. Based on these analyses, 23 tribal descriptions with illustrations and photographs of important morphological structures are presented. In addition, observations on centrotine biogeographical patterns, and lists of centrotine host plant families, genera attended by ants, and centrotine chromosome numbers are included.
3
Literature Review
The following discussion is intended to provide an outline of the important systematic centrotine works at the higher levels and is not an exhaustive summary of centrotine taxonomic publications. Historically, most taxonomic research on the Centrotinae has been extremely regionalized with very few workers examining the worldwide fauna in a single work.
Prominent contributions on the higher level classification and taxonomy of the
Centrotinae include works by Amyot and Serville (1843a), Stål (1866a), Distant (1908g, 1916a, 1916c), Haupt (1929c), Goding (1931a, 1934a), Evans (1966a), Funkhouser (1951a), Capener (1962a, 1968a), Deitz (1975a, 1985a), Ahmad (1975a, 1976a, 1978a), Ahmad and Yasmeen (1972a), Ananthasubramanian (1980b, 1987a, 1996a), Ananthasubramanian and Ananthakrishnan (1975a, 1975b), Day (1999a), and Yuan and Chou (2002a). The catalogues of Funkhouser (1927f), Metcalf and Wade (1965a), and McKamey (1998a) form the framework for all membracid taxonomic and systematic publications, providing important distributional data for all membracid genera. Metcalf and Wade (1965a) and McKamey (1998a) serve as historical outlines to centrotine classification. The higher level name Membracidia was erected by Rafinesque (1815a). Amyot and Serville (1843a) created the name “Centrotides” which was later recognized as Centrotinae by Distant (1879e). Initially, only the genera Uroxiphus Amyot and Serville and Centrotus Fabricius were placed in the “Centrotides”; Oxyrhachis Germar and Hypsauchenia Germar were placed in “Membracides”; and Nessorhinus Amyot and Serville was placed in “Hoplophorides”.
Stål (1866a) provided keys to the subfamilies “Centrotida” and
“Membracida” and to their included genera. 4
He also placed Oxyrhachis within the
“Membracida”. Goding (1892a) described the new Neotropical centrotine tribe Boocerini in his review of the North American membracid subfamilies and genera. Distant (1908g), in his work on Indian membracids, supplied the nomenclatural basis for many of the centrotine tribes used today and their diagnostic morphological characteristics. Although he listed these names as divisions, they were later treated as tribes by various authors and assigned the correct suffixes.
He described the divisions
Oxyrhachisaria [placed in the Membracinae similar to Stål’s (1866a) arrangement], Hypsaucheniaria, Micreunaria, Acanthophyesaria, Leptocentraria, Centrotusaria, Gargararia, and Coccosterphusaria. Haupt (1929c) divided the Old World Membracidae into three subfamilies: the Terentiinae, Centrotinae, and Oxyrhachinae (as Oxyrrhachinae) and included the New World tribe Platycentrini within the Stegaspidinae (as Stegaspinae).
Goding (1931a) arranged
many of Stål’s (1866a) genera and all newer genera, in his higher-level classification of the Old World Membracidae, which included keys to the subfamilies, tribes, and genera. Goding recognized the Aetalioninae (as Aethalioninae), Centrotinae, Membracinae, and Darninae as the four Old World membracid subfamilies.
He recognized nine tribes within the
Centrotinae, including the new tribes Centrocharesini and Ebhuloidesini. The Oxyrhachini (as Oxyrhachisini) and the new tribe Bulbaucheniini were listed within the Membracinae. Funkhouser (1951a) provided separate classifications for the Old and New World Centrotinae.
In his work are numerous keys to tribes and genera, descriptions of all
membracid genera known at that time, and illustrations of many genera. Funkhouser’s Old World classification was very similar to Goding’s (1931a), however, he placed the Oxyrhachini (as Oxyrhachisini) in Centrotinae and the Ebhuloidesini was considered a junior 5
synonym of Gargarini. He also included in the Centrotinae his new tribe Darthulini, which is now in the family Aetalionidae (McKamey 1998a). Evans (1966a) described the membracid species and genera of Australia. With the exception of Terentius Stål, no genera were placed into tribes due to “the present state of knowledge of the Australian fauna” (Evans 1966a). He noted that the high diversity of centrotines in the Oriental (IndoMalayan) Region may indicate it is their center of origin. Capener (1962a, 1968a) focused on the taxonomy of the African Membracidae, a very large group of treehoppers primarily in the tribes Centrotini, Leptocentrini, Oxyrhachini, and a tribe he described, the Xiphopoeini.
Capener was largely unsatisfied with the
descriptions of African membracids made by earlier workers and attempted to correct previous taxonomic errors. His works provide the only generic keys for many African membracids as well as significant information on host plants and biology. Capener made observations on the usefulness of the shape of the frontoclypeus and male genitalia, and characteristics of the hind wing, as higher-level characters. Conversely, he pointed out the inconsistency of the suprahumeral horns as higher-level characters. Strümpel (1972a) used pronotal morphology in his “phylogenetic” diagrams of the Membracidae but apparently included only nine current centrotine genera in his studies without mention of tribal classification. Stegaspidinae arose from the Centrotinae.
He concluded that several genera within the Like Funkhouser (1951a), Strümpel (1972a)
placed the Oxyrhachini (as Oxyrhachisini) within the Centrotinae. Based on morphological similarity, Deitz (1975a) diagrammed a close relationship between the New World centrotine tribes Boocerini and Platycentrini, and between the Centrotinae and the former subfamily
6
Nessorhininae.
He described two tribes here included within the Centrotinae: the
Centrodontini and Nessorhinini. Ahmad (1975a, 1976a, 1978a), and Ahmad and Yasmeen (1972a) described many species from Pakistan, and Ahmad and Yasmeen (1972a) erected the tribe Tricentrini. Ahmad’s (1988a) morphological study of the Tricentrini was apparently the first attempt to justify a centrotine classification using phylogenetic methods. He examined numerous body regions in his study including morphological characters from the head, pronotum, forewings, leg chaetotaxy, and male and female genitalia. In his analysis, Gargarini + Tricentrini form a monophyletic group, the sister group to the Centrotini. Creão-Duarte (1992a) believed that the weakly developed pronotal posterior process and exposed scutellum in the Centrotinae was an intermediate state in pronotal evolution compared to the ancestral condition of Nicomiidae (now Nicomiinae) and the more derived condition in Membracinae.
He
presented his conclusions in the form of a phylogenetic tree but provided no data on evolutionary relationships within the Centrotinae. Ananthasubramanian and Ananthakrishnan contributed substantial taxonomic knowledge on the membracids of India.
Ananthasubramanian (1987a, 1996a), and
Ananthasubramanian and Ananthakrishnan (1975a, 1975b), expanded upon the research of Distant (1908g, 1916a, 1916c). These important papers included research on Indian species and genera from the tribes Leptocentrini, Coccosterphini, Oxyrhachini, Gargarini, and Centrotini. They also included the most comprehensive studies of centrotine ecology and behavior including notes on host plants, maternal care, economic importance, and aggregation behavior.
7
Deitz (1985a) reassigned the New World tribe Abelini to the Centrotinae and provided updated descriptions for the Centrotinae, Abelini, and Leptocentrini. Dietrich and Deitz (1993a) included the subfamilies Centrotinae, Centrodontinae, and Oxyrhachinae as taxa in their morphological phylogenetic analysis of the Membracoidea.
Although the
Oxyrhachinae and Centrotinae are sister groups in their tree, Centrotinae + Centrodontinae + Oxyrhachinae are not monophyletic. Based on phylogenetic and fossil evidence, Dietrich and Deitz hypothesized a Tertiary New World origin for the Membracidae. Boulard continued Capener’s work on African membracids and primarily researched treehoppers at the species and generic levels (1979i). He later described the Madlinini (1995d), a new tribe from the Seychelles. Day’s (1999a) treatment of the Australian genera is an exhaustive examination of diagnostic characters that builds upon Evans’ (1966a) work, although no genera are placed into tribes. He described ten new genera and thirteen new species and used WPGMA to investigate the phenetic relationships among the Australian genera based on characters from the head, forewings, legs, and male genitalia. From this analysis, he concluded that the Australian genera do not group into recognizable tribes and they are distinct morphologically from Northern Hemisphere treehoppers including Tylocentrus Van Duzee, Gargara Amyot and Serville, and Microcentrus Stål. Day also provided distributional records of Australian membracids and information on their host plants. Cryan et al. (2000a) classified the Membracidae based on nuclear genes and included 14 centrotine genera and 4 closely related genera from the subfamilies Nessorhinini and Centrodontinae.
Their analyses indicated close relationships among several centrotine
genera including Gargara and Tricentrus Stål and the Australian genera Eufairmairia 8
Distant, Ceraon Buckton, and Sextius Stål. In their trees, the tribes Hypsaucheniini and Platycentrini were monophyletic and the Nessorhinini and Centrodontini arose from within the Centrotinae. Dietrich et al. (2001a) incorporated 11 centrotine taxa into their morphological phylogenetic analysis of the Membracidae. Similar to the results of Cryan et al. (2000a), the Nessorhinini arose within the Centrotinae. Oxyrhachini also arose within the Centrotinae in the analysis, and the authors consequently placed these two tribes within the Centrotinae. The tribes Uroxiphini and Platybelini were treated as junior synonyms of Leptocentrini and Centrotini, respectively. Too few Old World centrotines were examined in the analysis to confirm the monophyly of the remaining tribes. The Old World tribe Choucentrini was erected by Yuan (Yuan and Chou 1988a). Research on Chinese treehoppers is summarized in a comprehensive treatment by Yuan and Chou (2002a).
Their work includes host plant and distributional data, a phylogenetic
analysis, numerous descriptions and illustrations, and the descriptions of 5 new tribes: Demangini, Antialcidini, Leptobelini, Funkhouserellini, and Ebhulini. Using mostly morphological characters from the pronotum, they presented a phylogenetic tree of 23 centrotine genera. Their tree, although largely unresolved, includes taxa representing a large portion of the centrotine tribal diversity.
9
Materials and Methods
Taxon sampling Representatives species of all tribes and all but 34 genera were examined (26 scored from literature, 8 not scored) in this work (see “Specimens Examined” sections of tribal descriptions and Table 24.13).
Specimens were borrowed from New World, African,
Australian, and European collections. An effort was made to examine the type species of each centrotine genus to lessen the amount of over-generalization. In many cases, type material was also examined (see list of specimens examined in tribal descriptions). Tribal descriptions and the lists of genera within each tribe are here arranged alphabetically. In the “Specimens Examined” sections for all tribes, the scientific name, the determiner, the present location of the specimen, the code number (specimens observed in this work have labels indicating "Wallace Research” numbers), and the sex are listed for all specimens observed. All generic placements are based on phylogenetic analysis unless noted by an asterisk. An asterisk (*) denotes genera placed based on morphological similarity and a dagger (†) denotes genera not examined.
Specimens labeled with an “[n]” in the “Specimens
Examined” sections were nymphs. In general, generic concepts follow McKamey (1998a). Thus, based on material examined in this study, the genera Dograna Distant, 1908g; Pyrgonota Stål, 1870; and Tsunozemia Kato, 1940b which Yuan and Chou (2002a) considered junior synonyms of Lobocentrus Stål, 1870c; Funkhouserella Schmidt, 1926d; and Maurya Distant, 1916c; respectively, are here treated as valid. Kotogargara Matsumura, 1938a and Centrotoscelus Funkhouser 1914c, which Yuan and Chou (2002a) treated as valid, are here considered junior 10
synonyms of Gargara Amyot and Serville, 1843a; and Tricentrus Stål, 1866, respectively. Convector Distant, 1916a, which Ananthasubramanian (1996a) considered as valid, is here considered a junior synonym of Otinotus Buckton, 1903a. The following codens are used in the tribal descriptions to refer to collections in which specimens are located.
Specimens were examined from every continent except
Antarctica. Codens with an asterisk (*) are those not listed in the directory of Arnett et al. (1993a).
AMNH: American Museum of Natural History, New York, New York, USA. AMSA: Australian Museum, Sydney, New South Wales, Australia. ANIC: Australian National Insect Collection, Canberra, Australia. BMNH: The Natural History Museum, London, United Kingdom. CASC: California Academy of Sciences, San Francisco, California, USA. EMEC: Essig Collection, University of California, Berkeley, California, USA. CNCI: Canadian National Collection of Insects, Ontario, Canada. DJFC*: Duane J. Flynn Collection, c/o Schiele Museum of Natural History, Gastonia, North Carolina, USA. LBOB: Lois B. O'Brien Collection, Tallahassee, Florida, USA. LSUK: Linnean Society, London, United Kingdom. MNHN: Museum National d'Histoire Naturelle, Paris, France. MZLU: Museum of Zoology, Lund University, Lund, Sweden. NCSU: North Carolina State University Insect Collection, Raleigh, North Carolina, USA. NHRS: Naturhistoriska Riksmuseet, Stockholm, Sweden. 11
OXUM: Oxford University Museum, Hope Entomological Collection, Oxford, United Kingdom. PPRI: National Collection of Arachnida and Insects, Plant Protection Research Institute, Pretoria, South Africa. QMBA: Queensland Museum, South Brisbane, Queensland, Australia. SHMC*: Stuart H. McKamey Collection, c/o United States National Museum of Natural History, Washington, D.C., USA. SMTD: Staatliches Museum für Tierkunde, Dresden, Germany. USNM: United States National Museum of Natural History, Washington, D.C., USA.
Methods Observations by light microscopy were made using a Leitz® stereoscopic microscope (at 12.5 to 100x magnification) and an Olympus® SZX12 stereoscopic microscope equipped with a digital imaging system. Body lengths are the distance from apex of the head to the posterior end of the abdomen, measured with an 8x ocular micrometer and Image Pro Plus® software. Scale bars were only included in lateral aspect photographs of the entire specimen due to the qualitative nature of the data. Digital photographs were taken with an MTI® 3 CCD digital video camera using Image Pro Plus®, and adjusted for brightness and contrast in Adobe Photoshop® version 5.0. Many morphological features, including the wings, were traced on a light table from digital photographs and then drawn in ink. The ink drawings were subsequently scanned, and adjusted for brightness and contrast in Adobe Photoshop
®
version 5.0. Morphological figures and plates were constructed using Adobe Photoshop®
12
version 5.0 and Adobe Illustrator® version 9.0. Phylogenetic trees were graphically adjusted using TreeView® version 1.6.6 and Adobe Illustrator® version 9.0. Genitalia dissections of both males and females were prepared as described by Deitz (1975a); however, in most cases only the pygofer of the males was removed. In selected specimens, mesothoracic and metathoracic legs were dissected. Dissected material was placed inside the abdomen which was then put in microvial with sufficient glycerine to coat the abdomen. Microvials were then pinned beneath the specimens. A JOEL® JSM-5900LV scanning electron microscope was used to examine the abdominal and pronotal fine structure of centrotines. To maintain the integrity of specimens, observations were made in low vacuum conditions with uncoated pinned specimens at 13 kv and a spotsize of 40. Low voltage reduced charging effects but also decreased the amount of resolution. Distribution records follow Nast (1972a), McKamey (1998a), Day (1999a), and Yuan and Chou (2002a). Host plant classification (Table 26.2) is based on the database at the website: http://www.rbgkew.org.uk/data/vascplnt.html and Brummitt (1992a). Following the tribal descriptions are discussions of important morphological features and hypotheses of phylogenetic relationships with other taxa.
Morphological characters The morphological characters important in elucidating the tribal relationships of Centrotinae are shown in Figs. 0.1-0.10 and in the tribal descriptions (Figs. 1.1-23.3). The terminology in this work is largely based on the morphological works of Deitz (1975a) and
13
Dietrich et al. (2001a). For a detailed list of characters used in the phylogenetic analyses, see the character list (Table 24.1). In the Centrotinae, morphological characters useful in determining tribal relationships occur across all body regions. Important features from the head (Figs. 0.1 C-D) include the shape of the frontoclypeal margins, relative distinctiveness of the frontoclypeal lobes, the placement of the ocelli on the head relative to each other and the compound eyes, and projections of the vertex.
The shape of the frontoclypeal margins was described
independently from the shape of the frontoclypeal lobes.
In most specimens, the
frontoclypeal margins are easily distinguished from the lobes (Figs. 0.1 C-D). Thus, the combined shape of the frontoclypeal lobes and frontoclypeal margins was not considered. The thorax of centrotines, including the pronotum (Fig. 0.1), scutellum (Figs. 0.20.3), pleuron (Fig. 0.3 D), wings (Fig. 0.4), and legs (Figs. 0.5-0.7), contains the largest number of phylogenetically informative characters. Pronotal features, including the nature of the posterior process (length, shape, position relative to the scutellum) (Fig. 0.1 A-B), suprahumeral horns (shape, presence or absence), and the median anterior horn (presence or absence) (Fig. 16.1 B), are useful higher level characters. Acute projections, or spines, on the pronotum, here considered homologous, have been derived independently in several centrotine lineages (Figs. 23.1 B, D; Figs. 4.2 I-J). Useful features of the scutellum include its apical shape (emarginate or acuminate) and its overall length in comparison to the thorax (Fig. 0.2). Observations of the scutellum are best viewed from a ventral aspect after the abdomen has been dissected, however, often the relative length of the scutellum can be viewed from a dorsolateral position. The presence of propleural lobes and enlargement of
14
mesopleural lobes are other important thoracic attributes (Figs. 0.3 D). Mesopleural lobes, in most centrotines, are present but are greatly enlarged in some genera. The fore- and hind wing offer a wealth of centrotine characters, including the shape and length of individual veins (i.e., R1) and groups of veins (i.e., R, M, and Cu) (Fig. 0.4). The presence or absence, length, and position of crossveins, including r-m, s, and m-cu, are useful in characterizing some tribes and critical in distinguishing centrotine genera. In this work, three m-cu crossveins are recognized. Crossvein m-cu3 (Fig. 0.4 A) is equivalent to crossvein m-cu2 of Dietrich et al. (2001a). It can be difficult to determine if a m-cu crossvein is m-cu1 or m-cu2 but apparently m-cu2 crossvein (Fig. 0.4 A) is usually located near cossvein r-m1. Often, crossveins that characterize a particular genus may be on one wing. The presence or absence of a pterostigma (Fig. 4.1 D) and its position relative to R1 vein are useful in characterizing tribes and genera. The position of R4+5 and M1+2 veins in the hind wings (Figs. 0.4 B-C) relative to each other can result in a different number of observable cells. This feature is important in separating a large number of centrotine genera. The discoidal cells of the forewing, as in character 53 (Table 24.1), are labeled in Fig. 0.4 A. The base of R2+3 and R4+5 veins (character 55, Table 24.1) is the area of the forewing marked by the junction of Rs and r-m1 crossvein (Fig. 0.4 A). Certain characters of the forewing, including characters 28 and 29 (Table 24.1), are more informative at the generic level than the tribal level. Illustrations of the fore- and hind wings are of the right side of the specimen unless otherwise noted. Leg chaetotaxy provides very useful taxonomic characters, and specifically, the presence or absence of hooded, or cucullate setae (Figs. 0.5 B-C). The presence or absence and position of the ab- and adlateral cucullate setae on the pro-, meso-, and metathoracic 15
femora (Figs. 0.5, 0.7) are extremely important in determining tribal relationships and in tribal and generic identification. The number of cucullate setae on the first metathoracic tarsomere, another diagnostic character in many taxa, varies from 0-3 (Fig. 0.7 D-E). Most centrotines have 3 rows of cucullate setae on the metathoracic tibiae, while others have 1, 2, or no rows (Figs. 0.5, 0.6).
Less frequently, rows of cucullate setae occur on the
mesothoracic tibiae. For the purposes of this work, if a cucullate setal row is scored as absent, it can be assumed that a row of elevated, non-cucullate setae is present in the same position. Other important characters of the legs include the presence or absence of large spines and enlarged setal bases of the coxa, trochanter (Fig. 0.6 D), and ventral femur. Some centrotines also have dilated, or foliaceous pro-, meso-, or metathoracic tibiae (Fig. 0.7 A). Illustrations of the legs show the left side of the specimen unless otherwise noted. The centrotine abdomen (Fig. 0.8) provides a number of useful taxonomic features including the presence or absence of sternal carinae (Fig. 0.8 B), presence or absence of dorsal abdominal swellings (Figs. 0.8 C-D), the nature of the tergal borders (Figs. 0.8 A, E), characteristics of the male (Fig. 0.9) and female genitalia (Fig. 0.9), and abdominal fine structure (Fig. 0.10). Paired dorsal abdominal swellings are present in several centrotine lineages, and they are either larger in the anterior (Fig. 0.8 C) or posterior portions (Fig. 0.8 D) of the abdomen. Enlarged setal bases on the terga (Fig. 0.8 A) and their anterior borders (Fig. 0.8 E) are helpful in identifying certain tribes.
Alternatively, a large number of
centrotines have the tergal borders modified into irregular ridges (Fig. 0.3 A). Several genera have the ventrolateral margin of tergum III modified into an upcurved groove (Fig. 5 B of Dietrich et al. 2001a).
16
A number of characters (Table 24.1) are based on the shape and dorsal projections of the female second valvulae. As Deitz (1975a) found with the New World Membracidae, the shape of the second valvulae is often extremely useful in identifying Old World tribes or groups of tribes (Fig. 0.9 D). A few centrotine genera have conelike projections on the third valvulae (Figs. 11.6 A-D). Illustrations of the female genitalia are from the left side of the specimen unless otherwise noted. The shape and structure of the male genitalia, specifically of the style, are very informative centrotine characters at the tribal level.
Evans (1966a) noted the lack of
usefulness of membracid male genitalia for species level taxonomy compared to the Cicadellidae. Herein, the apical portion of the male style, often flattened or expanded, is called the clasp (Fig. 0.9 A), a new descriptive term. The overall orientation of the clasp (character 107, Table 24.1), or the position from which most of the clasp structure can be observed, is either dorsoventral (Fig. 0.9 C) or lateral (Fig. 0.9 A). The clasp can be thickened (Fig. 18.6 E) or membranous (Figs. 0.9 B-C) and can be angled ventrally (Fig. 1.5 D) or dorsally (Fig. 7.3 A). The centrotine clasp has assumed numerous distinct shapes that are very useful in identifying tribes or groups of tribes. Illustrations of the male genitalia are from the left side of the specimen unless otherwise noted. The shapes and sizes of the dorsapical and ventral lobes of the male lateral plate offer a number of features for diagnosis (Fig. 0.9 A-B). In a few hypsaucheniines, a small lobe at the dorsum of the pygofer was observed (Fig. 11.7 H). The male subgenital plate is a homogenous structure in most centrotines, but in some it has a distinct division (Fig. 3.9 J). The overall shape of the subgenital plate appears to be more useful at the generic and species levels than for tribal diagnoses. Characteristics of the centrotine aedeagus are apparently 17
uninformative at the tribal level.
Almost all of the males examined have a u-shaped
aedeagus, often armed with teeth. Nevertheless, digital photographs of the aedeagi of many genera were included in the tribal descriptions to aid in identification. The first comprehensive examination of centrotine abdominal fine structure using scanning electron microscopy is presented here, with terminology based on Dietrich (1989a). The overall distinctiveness of the abdominal acanthae, apparently unicelluar non-sensory protuberances (Dietrich 1989a), and the development of microtrichia (sub-celluar protuberances) were useful in characterizing tribes (Fig. 0.10). In centrotines, the acanthae are either distinct as single units (Fig. 0.10 D), or not (Fig. 0.10 B). In some centrotines the acanthae are significantly heightened (Fig. 0.10 D) while in others they have no noticeable relief (Fig. 0.10 B). Acanthae can develop long and threadlike microtrichia (Fig. 0.10 B), single denticles (Fig. 0.10 D), or multidentate projections (Fig. 0.10 A). Apparently groups of microtrichia (homologous to indistinct acanthae, as considered here) are derived from a single acanthus (Dietrich 1989a). The presence and distinctiveness of the abdominal inornate pits, each with a lateral seta, proved significant as the synapomorphy for the Centrotinae. The nature of the abdominal sensillae (Fig. 0.10 A), although frequently observed in centrotines, was not described due to the limited resolution of the scanning electron micrographs of uncoated specimens.
18
Subfamily CENTROTINAE Amyot and Serville, 1843 New World and Old World
Type genus: Centrotus Fabricius, 1803
Cruciatae Beckmann, 1772a: described, invalid (not formed from a generic name). Centrotides Amyot and Serville, 1843a [new group]: subsequently treated as subfamily Centrotinae (Distant 1879e). Nudiscuti Agassiz, Erichson, and Germar, 1846a [new quadivision]: invalid, not formed from a generic name (Deitz 1975a). Oxyrhachisaria Distant, 1908g [new division]: subsequently treated as tribe Oxyrrhachini [sic: for Oxyrhachini] and subfamily Oxyrrhachinae (Haupt 1929c), which equals Centrotinae and tribe Oxyrhachini moved to Centrotinae (Dietrich et al. 2001a). Terentiinae Haupt, 1929c [new subfamily] and Terentiini Haupt, 1929c [new tribe]: subfamily Terentiinae equals Centrotinae and tribe Terentiini moved to Centrotinae (Metcalf and Wade 1965a); elevated to subfamily Terentiinae (Evans 1966a) [error]; equals Centrotinae (Evans 1966a). Platybelinae Capener, 1952b [new subfamily]: subfamily Platybelinae equals Centrotinae (Strümpel 1972a). Nessorhininae Deitz, 1975a [new subfamily] and Nessorhinini Deitz, 1975a [new tribe]: subfamily Nessorhininae equals Centrotinae and tribe Nessorhinini moved to Centrotinae (Dietrich et al. 2001a). 19
Diagnostic characters.—Head width less than distance between humeral angles. Posterior process produced posteriorly (exceptions: posterior process lacking in Abelus Stål and Hemicentrus Melichar). Scutellum not concealed by posterior process (exceptions: scutellum concealed by posterior process in Centrodontini, Oxyrhachini, most Nessorhinini, Bulbauchenia Schumacher, Cryptaspidia Stål, Gargarina Ananthasubramanian, Insitor Distant, Madlinus Boulard, Mesocentrina Metcalf, Monobeloides Ramos, Neosextius Day, and polymorphic in Centrotypus Stål and Sextius); scutellar keel absent. Forewing clavus truncate (exception: clavus acuminate in Centrodontini); apical limbus broad in most genera; forewing not concealed by posterior process; s crossvein present (exception: s crossvein absent in Choucentrini); R, M, and Cu veins without extra branches; R vein initial division R1 and Rs (exceptions: R vein initial division R1+2+3 and R4+5 veins in Ebhuloidesini, Cebes, Ceraon Distant, Gigantorhabdus Schmidt, Hybandoides Distant, Jingkara Chou, Matumuia Day, and Sarantus Stål). Hind wings with R4+5 and M1+2 veins fused (3 apical cells) or not (4 apical cells), in most genera. Abdomen with inornate pits, each with associated lateral seta. Description.—Length 2-10 mm.
Color black, tan, dark brown, brown, or
combinations thereof; often with areas of fine white pubesence; infrequently with red or orange markings on pronotum. HEAD: width less than distance between humeral angles (Figs. 1.1 J-O); frontoclypeal margins variable, parallel or slightly converging ventrally (Fig. 0.1 C) in most genera, without median longitudinal carina (exception: carina present in some species of Sarantus), frontoclypeal lobes distinct or not; ocelli roughly equidistant from each other and eyes (Fig. 0.1 C), ocelli closer to eyes than each other in some genera (Fig. 3.2 D). THORAX: PRONOTUM: suprahumeral horns present (Fig. 1.1 J) or absent (Fig. 1.1 M) (sometimes sexually dimorphic), partially fused into median anterior horn (Fig. 6.5 G) or 20
present at tip of median anterior horn in some genera; posterior process produced posteriorly (exceptions: posterior process not produced posteriorly in Abelus, Fig. 3.1, and Hemicentrus); straight at base (Fig. 0.1 A) or angled dorsally (Fig. 8.1 B), appressed against scutellum (Fig. 0.1 B) or not (Fig. 0.1 A). SCUTELLUM: emarginate with apices acute (Fig. 0.2 A) (apices blunt or rounded in Centrotypini, Fig. 0.2 B) or acuminate, not concealed by posterior process (exceptions: scutellum concealed by posterior process in the Centrodontini, Fig. 5.1 A-C, Oxyrhachini, most Nessorhinines, Bulbauchenia, Cryptaspidia, Gargarina, Insitor, Madlinus, Mesocentrina, Monobeloides, Neosextius, and polymorphic in Centrotypus and Sextius); shortened or not--with abdomen removed, notch and apices visible (Fig. 0.2 B) or not (Fig. 0.2 D), only slightly extending beyond thorax or posterior half extending beyond thorax (Fig. 0.2 E); scutellar keel absent. PLEURON: propleural lobe present (Fig. 0.3 D) or absent, mesopleural lobe enlarged (Fig. 0.3 D) or not. FOREWING: hyaline (Fig. 0.4 A) or opaque (Figs. 11.1 A-H); clavus truncate (Fig. 0.4 A) (exception: clavus acuminate in Centrodontini, Fig. 5.2 E); apical limbus broad in most genera; forewing not concealed by posterior process; s crossvein present (exception: s crossvein absent in Choucentrini, Fig. 8.1 G, I), distad of r-m2 crossvein (exceptions: s crossvein near r-m2 crossvein and angled as in Fig. 7.1 G in Maarbarini, Micreunini, Centrotypini, Elaphiceps, and Spinodarnoides); R, M, and Cu veins without extra branches; R vein initial division R1 and Rs (exceptions: R vein initial division R1+2+3 and R4+5 veins in Ebhuloidesini, Cebes, Ceraon, Gigantorhabdus, Hybandoides, Jingkara, Matumuia, and Sarantus); m-cu1 and m-cu2 crossveins present (Fig. 0.4 A) or absent; M and Cu veins fused at base, adjacent, or separate; R and M veins confluent preapically in few genera; R1 vein with (Fig. 6.10 F) or without pterostigma; r-m1 crossvein present. HIND WING: most genera with R4+5 and M1+2 veins fused (3 apical cells, 21
Fig. 6.10 B) or not (4 apical cells, Fig. 0.4 C); see tribal descriptions for variations of these states. PRO-
AND MESOTHORACIC LEGS:
tibiae foliaceous (Fig. 0.7 A) or not; prothoracic
femur with ab- and adlateral cucullate setae in some Gargarini and Boocerini; mesothoracic tibia without rows of cucullate setae (exception: mesothoracic tibia with row(s) of cucullate setae in Leptobelini, some Boocerini (Fig. 3.4 H), Anchonobelus, Cryptaspidia, and Mesocentrina); mesothoracic femur with (Fig. 0.7 B) or without ab- and adlateral cucullate setae. METATHORACIC LEG: ventral margin of coxa, trochanter, and femur without or without enlarged setal bases, ventral margin of trochanter with large spines in Cryptoparma, Sipylus, and Tricentrus (Fig. 0.6 D); femur with (Fig. 0.7 B) or without ab- and adlateral cucullate setae; femur with or without ablateral cucullate setae ventrolaterally; tibia foliaceous or not, rows I-III with (most genera) or without cucullate setae, if present setal row II single (Fig. 0.6 A) or in irregular or double row (Fig. 0.6 B); tarsomere I with 1 or 2 (rarely exceeds 2) cucullate setae or none.
ABDOMEN: in anterior aspect (abdomen removed) nearly
triangular (exceptions: abdomen dorsoventrally flattened in Platycentrus and Pieltainellus); anterior tergal borders with (Fig. 0.3 A) or without irregular ridges; sternal longitudinal carina present (Fig. 0.8 A) or absent; paired dorsal swellings present (Fig. 0.8 C-D) or absent; tergum III ventrolateral margin carinate, shelflike, or with upcurved groove; abdominal setal bases enlarged or not, dispersed on terga or not. FEMALE GENITALIA: second valvulae shape variable (see tribal descriptions). MALE
GENITALIA:
lateral plate entirely free (exceptions:
free distally in some Hypsaucheniini, absent in Nodonica); with or without short or long dorsoapical lobe extending dorsally, laterally or ventrally; subgenital plate with or without distinct division; characteristics of style clasp variable (see tribal descriptions). ABDOMINAL
22
FINE STRUCTURE:
inornate pits present, each with associated lateral seta; acanthae variable
(see tribal descriptions). Chromosome numbers.—Male 2n= 10, 13, 17, 19, 20, 21, or 23 (Table 26.3). Distribution.—The Centrotinae, the only cosmopolitan subfamily, are found worldwide except on the long isolated islands of New Zealand and Madagascar. They are distributed in the Afrotropical, Australasian and Oceanian, Nearctic, Neotropical, Palearctic, and Indomalayan Regions although they are most diverse in the Afrotropical and the Indomalayan Regions. In the New World, centrotines are most frequent in Mexico, Central America, and the Caribbean Islands. They are not found in Canada, much of the United States, or southern South America. Ecology.—Members of the tribe Centrotinae are reported from 105 different host plant families (Table 26.2). Some genera are reported to be tended by ants, some exhibit maternal care in the form of egg guarding, and others demonstrate aggregative behaviors (see Table 26.1). Discussion.— Traditionally, the treehopper subfamily Centrotinae has been distinguished from other membracid subfamilies by an exposed scutellum, a posterior pronotal process produced posteriorly (with exceptions), an acute clavus, a broad apical limbus, and abdominal pits with lateral setae; the latter being the synapomorphy for the group (Goding 1931a; Funkhouser 1951a; Deitz 1975a, Deitz 1985a; Dietrich et al. 2001a). Abdominal inornate pits with lateral setae were independently derived in some species of Nicomia Stål (Nicomiinae), Endoiastus Fowler (Endoiastinae), and Eunusa Fonseca (Membracini), in addition to all centrotines. The scutellum is concealed, however, in the tribes Nessorhinini and Oxyrhachini, two recent additions to the Centrotinae (Dietrich et al. 23
2001a).
The state in both tribes is a derived condition, and the exposed scutellum is
plesiomorphic for the Centrotinae, although helpful in distinguishing them from other subfamilies. The Centrotinae are monophyletic in the phylogenetic analysis (Fig. 24.1) and the New World tribe Centrodontini is the first lineage. Based on this analysis (Fig. 24.1), six new tribes are described here: four from the Old World (Beaufortianini, Boccharini, Lobocentrini, and Maarbarini) and two from the New World (Monobelini and Pieltainellini). In addition to these new tribes, 11 new tribal synonymies and 1 new subfamily synonymy are proposed. The Centrotinae account for a significant portion of membracid diversity with 216 of the 413 membracid genera and 23 of the 49 membracid tribes. Additionally, the 4 most speciose treehopper genera are centrotines: Tricentrus (223 species), Gargara Amyot and Serville (184), Oxyrhachis Germar (117), and Leptocentrus Stål (94). In recent molecular and morphological analyses of the Membracidae and Membracoidea (Dietrich and Deitz 1993a, Cryan et al. 2000a, Dietrich et al. 2001a), the centrotines occupy a relatively basal position on the phylogenetic trees and are apparently derived from New World ancestors. As a result of this position, workers have hypothesized a New World origin of the Membracidae with a subsequent dispersal(s) into the Old World (Dietrich and Deitz 1993a, Dietrich et al. 2001a), as discussed further in Chapter 25. Centrotines are closely related to the Centronodini, Stegaspidinae, and Nicomiinae. The Stegaspidinae, however, lack inornate pits with lateral setae and have a acuminate clavus. The Centronodini and Nicomiinae have multiple branches in M and Cu veins in the forewing, compared to the centrotines which have Cu vein unbranched and M two-branched. Other subfamilies including the Membracinae, Smiliinae, and Heteronotini, may have 24
inornate pits, but lack associated lateral setae. In addition, the Smiliinae have R4+5 and M1+2 veins in the forewings confluent preapically. This condition although not consistent in any centrotine tribe, is present in some species. With a few exceptions, forewing venation and shape of the pronotum among centrotines are rather consistent and help to define the subfamily. Leg chaetotaxy, especially the presence or absence of ab- and adlateral cucullate setae on the femurs, abdominal features, and hind wing venation are dominant features for defining groups of tribes. Features key to characterizing centrotine tribes include the shape of the male and female genitalia and the frontoclypeus.
25
KEY TO 23 TRIBES AND 2 UNPLACED GENERA OF CENTROTINAE [See Dietrich et al. (2001a) for key to closely related subfamilies].
1.
Clavus of forewing acuminate (Fig. 5.2 E), forewing highly (Figs. 5.2 A, C, E) to slightly (Dietrich et al. 2001a: fig. 9b) reticulate, apical limbus narrow (Fig. 5.2 A); scutellum concealed by posterior process (Fig. 5.2 G); distributed in southwestern United States and Northern Mexico (feed exclusively on creosote bush), and South America (recorded from Brazil, Ecuador, Peru)… Centrodontini
1’.
Clavus of forewing truncate (Fig. 0.4 A), forewings usually not reticulate, apical limbus usually wide (Fig. 0.4 A); scutellum concealed or not (Fig. 0.3 A) by posterior process; Old or New World in distribution..…………………..…….…. 2
2(1’).
Forewing without s crossvein (Figs. 8.1 G, I); Indomalayan and Palearctic Regions………………………………………………………..……. Choucentrini
2.’
Forewing with s crossvein (Fig. 0.4 A); Old or New World in distribution……... 3
3(2’).
Mesothoracic femur without both ab- and adlateral cucullate setae (if only ablateral cucullate seta present, from the Afrotropical Region, frontoclypeal lobes distinct, equals Beaufortiana, in part, Beaufortianini)………………………….... 4
3’.
Mesothoracic femur with both ab- and adlateral cucullate setae (Figs. 0.5 B-C, 0.7 B) (if only adlateral cucullate seta absent, from New World, frontoclypeal lobes indistinct, equals Platycentrus, Platycentrini)……..…………………………… 15
4(3).
Metathoracic tibial row III with non-cucullate setae (Fig. 11.4 F); only in Old World…..….……………………………………………………………....…….. 5
26
4’.
Metathoracic tibial row III with cucullate setae (Fig. 0.5 A); Old World and New……….….…………………………………………….…….…..…...……... 6
5(4) .
Frontoclypeal lobes distinct (Figs. 11.2 B-G) (except in Pyrgauchenia, Fig. 11.2 H); posterior process not concealing scutellum laterally (Figs. 11.1 A-H); median anterior pronotal horn present (Figs. 11.1 A-H); forewing opaque (Figs. 11.1 AH), often reticulate, and usually with anomalous longitudinal vein connecting R and M veins (Fig. 11.3 C), Cu1 vein abutting clavus (Fig. 11.3 C); abdomen without dorsal swellings; Indomalayan and Palearctic Regions…………………………………………………………... Hypsaucheniini
5’.
Frontoclypeal lobes indistinct (Fig. 19.1 I); posterior process entirely concealing scutellum (Figs. 19.1 A-D), median anterior pronotal horn absent; forewing hyaline and not reticulate (Fig. 19.1 J), with Cu1 vein abutting clavus (Fig. 19.1 J), anomalous crossvein absent; abdomen with dorsal swellings larger posteriorly (Fig. 0.8 D); Afrotropical, Indomalayan and Palearctic Regions…… Oxyrhachini
6(4’).
Posterior pronotal process appressed against scutellum for entire length of scutellum (Fig. 0.1 B)……………………………………………………….….. 7
6’.
Posterior pronotal process not appressed against scutellum for entire length of scutellum (Fig. 0.1 A)………………………………………………………….. 10
7(6)
Frontoclypeal margins broadly expanding (Fig. 1.2 D); Afrotropical Region………..……………………..…… Beaufortianini (in part, Centrotusoides)
7’.
Frontoclypeal margins not broadly expanding; not found in Afrotropical Region……………………………………………………………………………. 8
27
8(7’).
Frontoclypeal lobes indistinct (Fig. 18.2 K); abdomen with anterior tergal borders modified into irregular ridges (Fig. 0.3 A); male style clasp thickened and not angled ventrally (Figs. 18.6 E-P); endemic to Caribbean Islands….………… 9
8’.
Frontoclypeal lobes distinct (Figs. 22.5-22.7); abdomen with anterior tergal borders not modified into irregular ridges (Fig. 0.8 E); male style clasp quadrate, angled ventrally (Figs. 22.17-22.18); primarily in Australasian and Oceanian Region, also in Indomalayan and Palearctic Regions……………… Terentiini
9(8).
Metathoracic femur with extra median cucullate setae apically (except in Brachycentrotus, which has no dorsal abdominal swellings) (dorsal abdominal swellings absent, except in Monobelus) (Fig. 17.3 A); 2.0-4.8 mm in length from head to tip of abdomen (Fig. 17.1); endemic to Caribbean Islands…... Monobelini
9’.
Metathoracic femur without extra cucullate setae distally (Figs. 18.4 C, D), all genera with dorsal abdominal swellings (Fig. 0.8 C), 4.5-10 mm in length from head to tip of abdomen (Fig. 18.1); endemic to Caribbean Islands… Nessorhinini
10(6’).
Metathoracic tibial row I with non-cucullate setae (Fig. 9.1 F)…….…………... 11
10’.
Metathoracic tibial row I with cucullate setae (Figs. 0.5 A)……..………..……. 12
11(10).
Frontoclypeal lobes indistinct (Fig. 9.1 C), frontoclypeal margins not converging (Fig. 9.1 C); pronotum without numerous acute projections, suprahumeral horns absent (Fig. 9.1 A-B); forewing with R vein initial division R1+2+3 and R4+5, pterostigma absent (Fig. 9.1 D); hind wing with R4+5 and M1+2 veins fused (3 apical cells) (Fig. 9.1 E); without dorsal abdominal swellings; Indomalayan and Palearctic Regions……………………………………………....… Ebhuloidesini
28
11’.
Frontoclypeal lobes distinct, frontoclypeal margins converging ventrally (Fig. 4.1 C); pronotum with numerous acute projections, suprahumeral horns present (Figs. 4.1 A-B); forewing R1 vein represented by distinct pterostigma (Fig. 4.1 D); hind wing with R4+5 and M1+2 veins fused pre-apically (4 apical cells) (Fig. 4.1 E); dorsal abdominal swellings present; Indomalayan and Palearctic Regions…………………………………………………….…….. Centrocharesini
12(10’).
Frontoclypeal lobes indistinct (Figs. 20.1 E-F)….…….……………………..… 13
12’.
Frontoclypeal lobes distinct (Figs. 1.2 E, G)………….…………….………….. 14
13(12).
Pronotum without median anterior pronotal horn; posterior process not significantly extending past or not reaching forewing m-cu3 crossvein; forewing with R1 vein perpendicular to marginal vein (Fig. 20.1 G-H); Mexico……………………………………………………………….. Pieltaniellini
13’.
Pronotum with median anterior pronotal horn, posterior process originating far above scutellum and significantly extending past forewing m-cu3 crossvein; forewing with R1 vein not perpendicular to marginal vein (Figs. 0.11 G); Palearctic and Indomalayan Regions………………………………….. Elaphiceps Buckton (incertae sedis, near Lobocentrini)
14(12’).
Metathoracic tibial row III with 32 or more cucullate setae (Fig. 2.1 J); female second valvulae broadened (Figs. 2.2 A-D); male style clasp membranous, elliptical or circular with ventral preapical extension (Figs. 2.2 E-F); Afrotropical and the Indomalayan Regions…………………………………….…... Boccharini
14’.
Metathoracic tibial row III with fewer than 32 cucullate setae (Fig. 1.3 H); female second valvulae not broadened (Fig. 1.4 A-D); male style clasp thickened, 29
expanding dorsoventrally and laterally, usually with a sclerotized ridge (Figs. 1.5 C-K); Afrotropical, Indomalayan, and Palearctic Regions…………………………………………………….Beaufortianini (in part) 15(3’).
Pronotum with median anterior horn (Fig. 16.1 B)………..………….………... 16
15’
Pronotum without median anterior horn (Fig. 0.1 A)…………….……..…….... 17
16(15).
Median anterior pronotal horn recurved (Figs. 16.1 A-B); scutellum emarginate (Fig. 0.2 A), posterior half not significantly extending past thorax; forewing with pterostigma at or near R1 vein (Fig. 16.1 D); mesothoracic tibia with rows of noncucullate setae; abdominal setal bases at anterior tergal borders enlarged (Figs. 0.8 E, 10.17 D); Indomalayan Region…….…..…………………………… Micreunini
16’
Median anterior pronotal horn short and erect (Figs. 12.1 A-B); scutellum acuminate (Fig. 0.2 E), posterior half extending past thorax; forewing without pterostigma (Fig. 12.1 D); mesothoracic tibia with row of cucullate setae (Fig. 3.4 H); abdominal setal bases at anterior tergal borders not enlarged; Australasian and Oceanian, Indomalayan, and Palearctic Regions……………………... Leptobelini
17(15’).
Lower margins of vertex with toothlike projections (Figs. 23.1 E-F); abdominal setal bases enlarged and numerous on terga (Fig. 0.8 A); hind wings with R4+5 and M1+2 not fused (4 apical cells) (Fig.23.1 H); Afrotropical Region..…. Xiphopoeini
17’.
Lower margins of vertex without toothlike projections; if enlarged abdominal setal bases present on terga, not numerous, and hind wing with R4+5 and M1+2 veins fused (3 apical cells); hind wing venation variable; all major zoogeographic regions…………………………………………………………….………….... 18
30
18(17’).
Forewing with s crossvein near r-m2 crossvein and angled as in Fig. 7.1 G; hind wing with R4+5 and M1+2 veins not fused (4 apical cells)……………………..… 19
18’.
Forewing with s crossvein distad of r-m2 crossvein (Fig. 13.4 A) (r-m2 crossvein absent in some Centrotini); if s crossvein near r-m2 crossvein, then angled as in Fig. 10.7 A………………..………………………………………….…….…… 20
19(18).
Scutellum with apices blunt or rounded (Fig. 0.2 B), not significantly extending past thorax; forewing with R, M, and Cu veins not parallel or strongly curving distally (Fig. 7.1 G); metathoracic tibia with cucullate setal row II double or irregular (Fig. 7.2 B); abdomen with anterior tergal borders not modified into irregular ridges; Indomalayan and Palearctic Regions……………… Centrotypini
19’.
Scutellum acuminate or emarginate, posterior half extending past thorax (Fig. 0.2 E); forewing with R, M, and Cu veins parallel and strongly curving distally (except in Telingana) (Figs. 15.3 E); metathoracic tibia with cucullate setal row II single (Fig. 15.3 G); abdomen with anterior tergal borders modified into irregular ridges (Fig. 0.3 A); Indomalayan and Palearctic Regions…..……...... Maarbarini
20(18’).
Scutellum shortened; from ventral aspect, at most apices visible (Fig. 0.2 C-D); posterior process appressed against scutellum for entire length of scutellum (Fig. 0.1 B)…………………………………………………………………………... 21
20’.
Scutellum not shortened; from ventral aspect, scutellar notch and apices visible (Fig. 0.2 A-B) (some species of Otinotus in Leptocentrini have scutellum shortened, but are Old World in distribution; also, frontoclypeal margins are not expanding gradually towards apex; hind wing with R4+5 and M1+2 veins not fused);
31
posterior process not appressed against scutellum for entire length of scutellum in most genera (Fig. 0.1 A)…..…………………………………………………..... 22 21(20).
Frontoclypeal margins expanding gradually towards apex (Fig. 10.4 G); hind wing with R4+5 and M1+2 veins fused (3 apical cells) (Fig. 10.5 G) (exception: R4+5 and M1+2 veins not fused in Old World genera Aleptocentrus and Yasa); Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions…………………………………………………………….……. Gargarini
21’.
Frontoclypeal margins parallel or slightly converging (Fig. 21.1 F-G); hind wing with R4+5 and M1+2 veins not fused (4 apical cells) (Fig. 21.1 I); Nearctic and Neotropical Regions (all Northern Hemisphere)………….…..…….. Platycentrini
22(20’).
Hind wing with R4+5 and M1+2 veins fused (3 apical cells) (Fig. 3.3 D) or R4+5 vein apparently absent (2 apical cells) (Fig. 3.3 F)…..…………….………….... 23
22’.
Hind wing with R4+5 and M1+2 veins not fused (4 apical cells) (Fig. 13.4 B)…... 24
23(22).
Prothoracic femur with ablateral and adlateral cucullate setae; R1 vein in forewing not represented by pterostigma (Fig. 3.3 E); male lateral plate with long ventral lobe (Fig. 3.8 C); distributed in Neotropical Region………………………………. …………………..………..…. Boocerini (in part, Amblycentrus and Brachybelus)
23’.
Prothoracic femur without ablateral and adlateral cucullate setae; R1 vein in forewing represented by distinct pterostigma in all genera (Fig. 6.10 E-F) except Centrotus (Fig. 6.10 A) and Capeneralus; male lateral plate without long ventral lobe (Figs. 6.23 P-R); distributed in Afrotropical, Indomalayan, and Palearctic Regions (primarily Afrotropical Region)………….………..………... Centrotini
32
24(22’).
Cucullate setae in row II of metathoracic tibiae forming single row (Fig. 0.6 A); male style clasp not triangular (if triangular equals Leptocentrini, some Otinotus)……………………………………………………………………….. 25
24’.
Cucullate setae in row II of metathoracic tibia in double or irregular row (Fig. 0.6 B)………………………..………………………………………………………. 26
25(24).
Male lateral plate with long ventral lobe (Fig. 3.8 C); abdominal anterior tergal borders modified into irregular ridges (Fig. 0.3 A); Neotropical Region……………………………………………………….... Boocerini (in part)
25’.
Male lateral plate without long ventral lobe; abdominal anterior tergal borders not modified into irregular ridges; Afrotropical Region (Figs. 0.110.12)………..…..……… Tyrannotus Capener (incertae sedis, near Lobocentrini)
26(24’).
Female second valvulae not broadened (Figs. 14.2 B-F); male style clasp oriented dorsoventrally, rounded with acuminate projection (Figs. 14.3 A-C); posterior process not signifiantly extending past or or not reaching forewing m-cu3 crossvein (Fig. 14.1); abdominal setal bases at anterior tergal borders not enlarged; Indomalayan and Palearctic Regions………….……….… Lobocentrini
26.
Female second valvulae broadened in all genera (Fig. 13.7 A-J), except some Otinotus (Fig. 13.8 A-B); male style clasp oriented laterally, triangular (Figs. 13.9 A-J); posterior process usually extending past forewing m-cu3 crossvein (Fig. 13.1); abdominal setal bases at anterior tergal borders usually enlarged (Figs. 0.8 E, 10.17 D); Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions…………………………………………………. Leptocentrini
33
CENTROTINAE, INCERTAE SEDIS
Seven genera are placed incertae sedis because representative specimens were not examined. Based on published descriptions, Megalocentrus may be placed in the Maarbarini or Leptocentrini. Sinocentrus may be placed in the Leptocentrini or Centrotypini. Insitor and Insitoroides may be placed in the Gargarini. Descriptions of the remaining three genera are inadequate for placement.
† no specimen examined Aspasiana Distant, 1916d (type species: A. carbonaria Distant by original designation, junior synonym of A. impressa (Walker)), see description in Distant (1916d: 26-27) [previously placed in Leptocentrini (McKamey 1998a)].† Centrobelus Vilbaste, 1968a (type species: C. curticornis Vilbaste by original designation), see fig. 29 of Vilbaste (1968a: 42) [previously placed in Centrotini (McKamey 1998a)].† Insitor Distant, 1916a (type species: I. exemplificatus Distant by original designation), see fig. 237 of Ananthasubramanian (1996a: 529) [previously placed in Coccosterphini (McKamey 1998)].† Insitoroides Funkhouser, 1933a (type species: I. typicus Funkhouser by original designation), see fig. 173 of Ananthasubramanian (1996: 486) [previously placed in Leptocentrini (McKamey 1998a)].† Megalocentrus Yuan, in Yuan and Chou, 2002a (type species: M. sinensis Yuan, in Yuan and Chou 2002a by original designation), see figs. 64-65 of Yuan and Chou (2002a: 168-169) [previously placed in Leptocentrini (Yuan and Chou 2002a)].† 34
Megaloschema Buckton, 1903a (type species: M. laticornis Buckton by monotypy), see fig. 2, plate 52 of Buckton (1903a).† Sinocentrus Yuan, in Yuan and Chou, 2002a (type species: S. sinensis Yuan, in Yuan and Chou 2002a by original designation), see fig. 66 of Yuan and Chou (2002a: 171) [previously placed in Leptocentrini (Yuan and Chou 2002a)].†
Tyrannotus and Elaphiceps, INCERTAE SEDIS, near Lobocentrini Figs. 0.11-0.12. The genera Tyrannotus and Elaphiceps, here examined in detail form a monophyletic group with the Lobocentrini (Fig. 24.1) but differ significantly from that tribe in characteristics of the ab- and adlateral cucullate setae of the meso- and metathoracic femur. Until more species of these genera can be examined, they are placed incertae sedis. Elaphiceps Buckton, 1903a (type species: E. cervus Buckton by monotypy) [previously placed in Leptobelini (Yuan and Chou 2002a)]. Tyrannotus Capener, 1968a (type species: T. tyrannicus Capener original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Specimens examined.—Elaphiceps cervus Buckton, as det. in USNM, #00-220g%, #00220h&; E. javanensis Funkhouser, as det. in USNM, #00-220k%—det. W.D. Funkhouser, USNM, #01-240d&; Tyrannotus tyrannicus Capener, as det. in PPRI, #00-180h&—as det. in MNHN, #01-225h%.
35
Fig. 0.1. Centrotinae: pronota (lateral aspects, A-B) and heads (B-C). A, Dagonotus lectus Capener. B, Subrincator tonkinensis Distant. C, Streonus tenebrosus (Capener). D, Periaman flavolineatum (Buckton).
36
Fig. 0.2. Centrotinae: scutella (ventral aspect, A-D; dorsolateral aspect, E). A, Umfilianus declivis Distant. B, Centrotypus sp. C, Platycentrus acuticornis Stål. D, Nessorhinus vulpes Amyot and Serville. E, Leptobelus dama (Germar).
37
Fig. 0.3. Centrotinae: scanning electron micrographs (A-C) of the pronotum, abdomen, and pleuron (lateral aspect, D). A, Ischnocentrus conspicuous Buckton. B, Centriculus flavus Goding. C, Multareis cornutus lawsoni Goding. D, Oxyrhachis sulcicornis (Thunberg).
38
Fig. 0.4. Centrotinae: forewing (A) and hind wing (B-C) examples. A, Oxyrhachis taranda (Fabricius). B, O. taranda; left hind wing, inverted. C, Xiphopoeus erectus Distant.
39
Fig. 0.5. Centrotinae: metathoracic tibia (A) and scanning electron micrographs of cucullate setae (B-C) on metathoracic tibiae. A, Xiphopoeus erectus Distant. B, Centrotypus assamensis (Fairmaire). C, Centrotus cornutus (Linnaeus).
40
Fig. 0.6. Centrotinae: metathoracic tibiae (A-B), scanning electron micrograph of cucullate setae and raised setal bases (C), and spines of trochanter (D). A, Nessorhinus vulpes Amyot and Serville. B, Tricentrus fairmairei (Stål). C, Centrotypus assamensis (Fairmaire). D, T. fairmairei.
41
Fig. 0.7. Centrotinae: leg chaetotaxy. A, Oxyrhachis taranda (Fabricius); foliaceous tibia. B, Rachinotus marshalli (Distant); ad- and ablateral cucullate setae of left femora. C, Micreune formidanda Walker; scanning electron microscopy of metathoracic adlateral cucullate seta. D, Umfilianus declivis Distant; metathoracic tarsomere I. E, Hypsauchenia hardwickii (Kirby); metathoracic tarsomere I.
42
Fig. 0.8. Centrotinae: abdominal features. A, Xiphopoeus erectus Distant; enlarged setal bases. B, Tricentrus fairmairei Stål; sternal carina. C, Nessorhinus vulpes Amyot and Serville; dorsal swellings. D, Oxyrhachis taranda (Fabricius); dorsal swellings. E, Umfilianus declivis Distant; enlarged dorsal setal bases. 43
Fig. 0.9. Centrotinae: male and female genitalia. A, Leptocentrus bos Signoret; male genitalic capsule, left lateral aspect. B, L. bos; male genitalic capsule, posterior aspect. C, Gargara genistae (Fabricius); male style, left lateral aspect. D, Umfilianus declivis Distant; female 2nd and 3rd valvulae.
44
Fig. 0.10. Centrotinae: maximum development of abdominal fine-structure. Abdominal scanning electron micrograph near tergum III. A, Ebhul varium (Walker). B, Anchonobelus aries (Jacobi). C, Daimon serricorne (Walker). D, Coccosterphus sp.
45
Fig. 0.11. Elaphiceps and Tyrannotus. Pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-H), and female second valvulae (lateral aspects and closeup of apex, I-K). Bars = 3 mm. A, Elaphiceps cervus Buckton, #00-220h&. B, Tyrannotus tyrannicus Capener, #01-225h%. C, E. cervus, #00-220h&. D, T. tyrannicus, #01-225h%. E, E. cervus, #00-220h&. F, T. tyrannicus, #01-225h%. G, E. cervus, #00-220h&. H, T. tyrannicus, #01-225h%. I, E. cervus, #00-220h&. J, T. tyrannicus, #00-180h&. Copyrights: B, D, F, and J © 2003, Museum national d’Histoire naturelle, Paris. fcl, frontoclypeal lobes.
46
Fig. 0.12. Elaphiceps and Tyrannotus. Male styles (lateral aspects, A-B; and dorsal aspects, C-P), aedeagus (lateral aspect, E), subgenital plate, and maximum development of abdominal fine-structure. All scanning electron micrographs near tergum III. A, Elaphiceps cervus Buckton, #00-220g%. B, Tyrannotus tyrannicus Capener, #01-225h%. C, E. cervus, #00-220g%. D, T. tyrannicus, #01-225h%, left style. E-F, E. cervus, #00-220g%. G, E. javanensis Funkhouser, #01-240d&. H, T. tyrannicus, #01-225h%. Copyrights: B, D, and H © 2003, Museum national d’Histoire naturelle, Paris. c, clasp. d, division of subgenital plate. i, inornate pit. m, microtrichia.
47
1. Tribe BEAUFORTIANINI, new tribe Old World: Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 1.1-1.6 Type genus: Beaufortiana Distant, 1916a
Diagnostic characters.—Frontoclypeal lobes distinct. Pronotum with suprahumeral horns (exception: suprahumeral horns absent in Dukeobelus). Forewing with base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae (exception: ablateral cucullate setae polymorphic in Beaufortiana). Metathoracic femur with ab- and adlateral cucullate setae (exception: adlateral cucullate setae polymorphic in Beaufortiana); tibia with cucullate setal row II single. Female second valvulae not broadened. Male lateral plate with long dorsoapical lobe extending dorsally (exception: dorsoapical lobe absent in Centruchus); style clasp oriented laterally, thickened, expanding dorsoventrally and laterally with a sclerotized ridge (exception: clasp elliptical or wedgelike in Maguva), angled ventrally; style shank without significant arch.
Abdomen with anterior tergal borders modified into irregular
ridges, paired dorsal swellings present (exception: paired dorsal swellings absent in Imporcitor). Description.—Length 4.8-7.6 mm. Color black, tan, dark brown, or combinations thereof.
HEAD (Figs. 1.2 B-H): frontoclypeal margins parallel or slightly converging
(exception: frontoclypeal margins broadly expanding in Centrotusoides and Centruchus, Figs. 1.1 D-E), frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli 48
about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 1.1-1.2): suprahumeral horns present (exception: suprahumeral horns absent in Dukeobelus, Fig. 1.1 M); posterior process straight (Fig. 1.1 A) or curving dorsally (Fig. 1.1 B) at base, not appressed against scutellum (exception: posterior process appressed against scutellum in Centrotusoides, Fig. 1.1 C), extending to, before, or after m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 1 lateral apex or none visible from dorsolateral view (exception: both lateral apices visible from dorsolateral view in Centrolobus); not shortened--with abdomen removed, notch and apices visible (exception: scutellum shortened in Imporcitor, at most apices visible), only slightly extending beyond thorax.
PLEURON: propleural lobe absent, mesopleural lobe
enlarged in Centruchus and Centrotusoides. FOREWING (Figs. 1.2 I -1.3 A-G): hyaline or opaque; apical limbus broad (exception: apical limbus narrow in Imporcitor, 1.3 E); s crossvein distad of r-m2 crossvein; m-cu1 crossvein present in at least one wing in Beaufortiana (Fig. 1.2 I), m-cu2 crossvein present in at least one wing in Centruchus (Fig. 1.3 C) and Centrotusoides (Fig. 1.3 B); M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein (exception: R1 vein perpendicular to marginal vein in Imporcitor, Fig. 1.3 E); forewing without pterostigma; r-m1 crossvein originating anterior, near, or distad of first division of R vein, bent strongly towards R vein (Fig. 1.3 B) or parallel to longitudinal veins (Fig. 1.3 A); R, M, and Cu veins not parallel apically; discoidal cells similar in length (Fig. 1.3 B) or not (Fig. 1.3 F); R4+5 vein shape prior to s crossvein significantly angled (Fig. 1.3 B) or not (Fig. 1.2 I); base of R2+3 and R4+5 veins truncate. HIND WING: R4+5 and M1+2 veins not fused (4 apical cells). PROAND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia without row(s) of 49
cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae (exception: polymorphic in Beaufortiana). METATHORACIC
LEG
(Fig. 1.3 H): ventral margin of coxa,
trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae (exception: adlateral cucullate setae polymorphic in Beaufortiana); femur without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with 10-29 cucullate setae, row II with 19-41 cucullate setae in a single row, row III with 22-31 cucullate setae; number of cucullate setae on tarsomere I variable, usually with 2. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges; sternal longitudinal carina present or absent; paired dorsal swellings present (exception: paired dorsal swellings absent in Imporcitor); tergum III ventrolateral margin carinate or shelflike; abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 1.4-1.5): second valvulae not broadened, narrow or broad near base, curved or not, dorsal teeth fine (Fig. 1.4 H) or large (Fig. 1.4 J), acute projections present or absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 1.5-1.6): lateral plate with long dorsoapical lobe extending dorsally (Fig. 1.6 A) (exception: dorsoapical lobe absent in Centruchus, Fig. 1.6 B), without ventral lobe; subgenital plate without distinct division (subgenital plate with distinct division in Maguva); style clasp oriented laterally, thickened, expanding dorsoventrally and laterally with a sclerotized ridge (exception: clasp elliptical or wedgelike in Maguva, Fig. 1.5 G), angled ventrally; style shank without significant arch. ABDOMINAL FINE STRUCTURE
(Figs. 1.6 F-H): acanthae distinct, bases heightened, acanthae multidentate
or divided into threadlike microtrichia. Chromosome numbers.—Unknown.
50
Distribution.—The
tribe
Beaufortianini
is
found
in
the
Afrotropical,
Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Beaufortianini are reported from the host plant families Leguminosae, Proteaceae, and Solanaceae (Table 26.2). The genus Dukeobelus is reported to be tended by ants (Table 26.1). Discussion.—The new tribe Beaufortianini is monophyletic according to the phylogenetic analysis (Figs. 24.1, 24.3).
Beaufortianines are characterized by a long
dorsoapical lobe on the male lateral plate (lost in Centruchus) and a ventrally angled male style clasp. Although existing only in the Old World, the beaufortianines are related to the New World tribes Pieltainellini, Platycentrini, and Nessorhinini and appear to be intermediate in morphology between the New World centrotines and a large portion of the Old World centrotine fauna.
The genus Beaufortiana was chosen as the type genus because
it seems to be the most common genus in major collections. Beaufortiana, Centrolobus, Dukeobelus, Imporcitor, Mabokiana were formerly placed in the tribe Leptocentrini because each has R4+5 and M1+2 veins not fused in the hind wing (4 apical cells). These genera, however, lack ab- and adlateral cucullate setae on the mesothoracic femur and a triangular male style clasp, characteristic of leptocentrines. The genera Centrotusoides and Maguva were previously placed in the Centrotini. All members of the Centrotini, however, have R4+5 and M1+2 fused in the hind wing (3 apical cells) and both of these genera, in the specimens examined here, have 4 apical cells in the hind wing. Centrotusoides is tentatively placed in the Beaufortianini because a male specimen was not examined and the characteristics of the male genitalia are of utmost importance in the diagnosis of this tribe. 51
Genera of the tribe Beaufortianini Beaufortiana Distant, 1916d (type species: B. cornuta Distant by subsequent designation, preoccupied and replaced by Centrotus distanti Funkhouser) [previously placed in Leptocentrini (McKamey 1998a)]. Centrolobus Capener, 1968a (type species: Lobocentrus africanus Capener by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Centrotusoides Distant, 1916d (type species: C. muiri Distant by subsequent designation) [previously placed in Centrotini (McKamey 1998a)]. Centruchus Stål, 1866a (type species: Centrotus fuscipennis Germar by monotypy) [previously incertae sedis (McKamey 1998a)]. Dukeobelus Capener, 1952b (type species: Centrotus simplex Walker by original designation) [previously placed in the Leptocentrini (McKamey 1998a)]. Imporcitor Distant, 1916a (type species: I. typicus Distant by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Mabokiana Boulard, 1976d (type species: M. teocchii Boulard by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Maguva Melichar, 1903b (type species: M. horrida Melichar by original designation) [previously placed in Centrotini McKamey (1998a)]. Specimens examined.—Beaufortiana distanti (Funkhouser), det. M.Stiller, PPRI, #00-137c%, #00-137d&, #00-137i%, #01-247m&; B. viridis (Capener), paratype, AMNH, #00-137j&—paratype, USNM, #01-232i%; Centrolobus africanus (Capener), det. A.L. Capener, BMNH, #01-69a&; Centrotusoides muiri Distant, holotype, BMNH—det. W.D. Funkhouser, USNM, #83-332a&; Centruchus arcuatus (Funkhouser), det. A.L. Capener, 52
USNM, #00-160l&, #00-160m%—det. A.L. Capener, AMNH, #01-247j%; C. fuscipennis (Germar), det. A.L. Capener, USNM, #00-160c%, #00-160d&, #00-160k[n]; Dukeobelus simplex (Walker), det. A.L. Capener, USNM, #83-332d%, #83-332e&, #00-160o[n]—det. A.L. Capener, PPRI, #01-247k&; Imporcitor typicus Distant, as det. in BMNH, #01-69h&, #01-69i%; Mabokiana teocchii Boulard, holotype, MNHN, #00-265f%; Maguva nigra Funkhouser, det. W.D. Funkhouser, USNM, #00-229a%, #00-229b&.
53
Fig. 1.1. Beaufortianini: pronota (lateral aspects, A-H; and anterior aspects, I-O). Bars = 3 mm. A, Beaufortiana distanti (Funkhouser), #00-137i%. B, Centrolobus africanus (Capener), #01-69a&, reversed from right lateral aspect. C, Centrotusoides muiri Distant, #83-332a&. D, Centruchus fuscipennis (Germar), #00-160c%. E, Dukeobelus simplex (Walker), #83-332d%. F, Imporcitor typicus Distant, #01-69h&. G, Mabokiana teocchii Boulard, holotype, #00-265f%. H, Maguva nigra Funkhouser, #00-229a%. I, B. distanti, #00-137i%. J, Centrolobus africanus, #01-69a&. K, Centrotusoides muiri, #83-332a&. L, Centruchus fuscipennis, #00-160c%. M, D. simplex, #83-332d%. N, I. typicus, #01-69h&. O, Mabokiana teocchii, holotype, #00-265f%. Copyrights: G and O © 2003, Museum national d’Histoire naturelle, Paris; B, F, J, and N © 2003, The Natural History Museum, London. 54
Fig. 1.2. Beaufortianini: pronota (anterior aspects, A), heads (B-H), and wing (I). A, Maguva nigra Funkhouser, #00-229a%. B, Beaufortiana distanti (Funkhouser), #00137i%. C, Centrolobus africanus (Capener), #01-69a&. D, Centrotusoides muiri Distant, #83-332a&. E, Centruchus fuscipennis (Germar), #00-160d&. F, Dukeobelus simplex (Walker), #83-332d%. G, Mabokiana teocchii Boulard, holotype, #00-265f%. H, Maguva nigra Funkhouser, #00-229a%. I, B. distanti, #00-137i%. Copyrights: G © 2003, Museum national d’Histoire naturelle, Paris; C © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes.
55
Fig. 1.3. Beaufortianini: wings (A-G) and metathoracic leg (H). A, Centrolobus africanus (Capener), #01-69a&, right forewing. B, Centrotusoides muiri Distant, #83-332a&, right forewing. C, Centruchus fuscipennis (Germar), #00-160c%, right forewing. D, Dukeobelus simplex (Walker), #83-332e&, left forewing (inverted). E, Imporcitor typicus Distant, #01-69h&, right forewing. F, Mabokiana teocchii Boulard, holotype, #00-265f%, right forewing. G, Maguva nigra Funkhouser, #00-229b&, right forewing. H, Beaufortiana distanti (Funkhouser), #00-137d&, left metathoracic leg. 56
Fig. 1.4. Beaufortianini: female second valvulae (lateral aspects and closeup of apex). A-B, Beaufortiana distanti (Funkhouser), #00-137d&. C-D, Centrolobus africanus (Capener), #01-69a&. E, Centrotusoides muiri Distant, #83-332a&. F, Centruchus fuscipennis (Germar), #00160d&. G-H, Dukeobelus simplex (Walker), #83-332e&. I-J, Imporcitor typicus Distant, #01-69h&. Copyrights: C-D, I-J © 2003, The Natural History Museum, London.
57
Fig. 1.5. Beaufortianini: female second valvulae (lateral aspects and closeup of apex, A-B), and male styles (lateral aspects, C-G; and dorsal aspects, H-K) and aedeagi (lateral aspects, L-N). A-B, Maguva nigra Funkhouser, #00-229b&. C, Beaufortiana distanti (Funkhouser), #00-137c%. D, Centruchus fuscipennis (Germar), #00-160c%. E, Dukeobelus simplex (Walker), #83-332d%. F, Imporcitor typicus Distant, #01-69i%. G, M. nigra Funkhouser, #00-229a%. H, B. distanti, #00-137c%. I, C. fuscipennis, #00-160c%. J, D. simplex, #83332d%. K, I. typicus, #01-69i%. L, C. fuscipennis, #00-160c%. M, D. simplex, #83-332d%. N, M. nigra, #00-229a%. Copyrights: F and K © 2003, The Natural History Museum, London. c, clasp. r, clasp sclerotized ridge.
58
Fig. 1.6. Beaufortianini: male lateral plates (lateral aspects, A-E) and maximum development of abdominal fine-structure (F-H). Scanning electron micrographs near tergum III. A, Beaufortiana distanti (Funkhouser), #00137c%. B, Centruchus fuscipennis (Germar), #00-160c%. C, Dukeobelus simplex (Walker), #83-332d%. D, Imporcitor typicus Distant, #01-69i%. E, Maguva nigra Funkhouser, #00-229a%. F, B. distanti, #01-247m&. G, C. arcuatus (Funkhouser), #01-247j%. H, D. simplex, #01-247k&. Copyrights: D © 2003, The Natural History Museum, London. dl, dorsoapical lobe. m, microtrichia. i, inornate pit.
59
2. Tribe BOCCHARINI, new tribe Old World: Afrotropical and Indomalayan Regions Figs. 2.1-2.2 Type genus: Bocchar Jacobi, 1910b
Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of frontoclypeus; vertex without toothklike projections.
Posterior pronotal process not
appressed against scutellum. Both lateral scutellar apices visible from dorsolateral view, posterior half extending beyond thorax. Forewing with R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first split of R vein, bent towards R vein; R, M, and Cu veins, prior to apical margin, not parallel. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells).
Mesothoracic femur without ab- and adlateral cucullate setae.
Metathoracic tibial row II with single row of cucullate setae. Female second valvulae gradually broadening, widest before or near midpoint, tapering evenly to apex, broadening at base, not curved, dorsal teeth fine. Male lateral plate without dorsoapical lobe; style clasp oriented laterally, membranous, elliptical or circular with preapical ventral extension, angled dorsally; style shank without significant arch and with preapical ventral extension. Abdomen with anterior tergal borders modified into irregular ridges, abdominal setal bases not enlarged. Chromosome numbers.—Unknown. Description.—Length 6-6.7 mm. Color black to reddish-brown, often shiny. HEAD (Figs. 2.1 F-G): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each 60
other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 2.1 A-E): suprahumeral horns present or absent; posterior process curving dorsally or straight at base, not appressed against scutellum, extending significantly past m-cu3 vein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, both lateral apices visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, posterior half extending past thorax.
Pleuron: propleural lobe absent,
mesopleural lobe not enlarged. FOREWING (Figs. 2.1 H-I): hyaline or opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 crossvein present in at least one wing or absent, m-cu2 crossvein absent; M and Cu veins fused at base; R and M veins not confluent preapically; forewing without pterostigma; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first split of R vein, bent towards R vein; R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins acute or truncate. HIND WING: R4+5 and M1+2 veins not fused (4 apical cells). PRO-
AND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia without row(s) of
cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 2.1 J): ventral margin of coxa, trochanter, and femur without
enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibial row I with 27-32 cucullate setae, row II with 28-31 cucullate setae in single row, row III with 32-34 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2).
ABDOMEN: in anterior aspect (abdomen removed) nearly
triangular; anterior tergal borders modified into irregular ridges; sternal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate, abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 2.2 A-D): second valvulae gradually broadening, widest 61
before or near midpoint, tapering evenly to apex, broadening at base, not curved, dorsal teeth fine, acute projections on dorsal margin absent; third valvulae without ventral projections. MALE
GENITALIA
(Figs. 2.2 E-I): lateral plate without dorsoapical lobe (Figs. 2.2 G-H),
without ventral lobe; subgenital plate without distinct division (Fig. 2.2 I); clasp (Figs. 2.2 EF) oriented laterally, membranous, elliptical or circular with preapical ventral extension, angled dorsally; shank without significant arch and with preapical ventral extension. ABDOMINAL
FINE STRUCTURE
(Figs. 2.2 J): acanthae indistinct, bases not heightened,
acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Boccharini is recorded from the Afrotropical and Indomalayan Regions (McKamey 1998a). Ecology.—Members of the tribe Boccharini are reported from the host plant family Lauraceae (Table 26.2). Discussion.—The new tribe Boccharini is monophyletic in the phylogenetic analysis (Fig. 24.1) and is characterized by the circular male style with a preapical ventral extension. Both Bocchar and Lanceonotus were previously placed in the tribe Leptocentrini. Unlike leptocentrines, both genera lack mesothoracic ab- and adlateral cucullate setae on the femur and metathoracic tibial row II is single. Additionally, the boccharine clasp is not triangular as in the leptocentrine style. These two tribes, however, are closely related; the Boccharini diverge before the Leptocentrini in the phylogenetic tree.
Although the clasp of the
Leptocentrini and Boccharini differ in discrete shape, both have a preapical ventral extension. The clasp of the Boccharini, therefore, can be viewed as an ancestral precursor to the triangular clasp of the Leptocentrini. The Boccharini are also apparently closely related to 62
the Lobocentrini. The genus Bocchar was selected as the type genus due to its prevalence in worldwide collections.
Genera of the tribe Boccharini Bocchar Jacobi, 1910b (type species: B. montanum Jacobi by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Lanceonotus Capener, 1968a (type species: Leptocentrus opacus Capener by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Specimens examined.—Bocchar confusus (Distant), as det. in USNM, #00-137g%; B. montanum Jacobi, syntype, SMTD—as det. in USNM, #00-137h&; Lanceonotus basilicus Capener, allotype, PPRI, #00-174c%—paratype, PPRI, #00-174d&—as det. in PPRI, #01256c&; L. defloccatus Capener, paratype, PPRI, #00-174j&.
63
Fig. 2.1. Boccharini: pronota (lateral aspects, A-B; and anterior aspects, C-E), heads (F-G), wings (H-I), and metathoracic leg (J). Bars = 3 mm. A, Bocchar montanum Jacobi, syntype. B, Lanceonotus basilicus Capener, allotype, #00-174c%. C, B. montanum, syntype. D, B. confusus (Distant), #00-137g%. E, L. basilicus, allotype, #00-174c%. F, B. montanum, syntype. G, L. basilicus, allotype, #00-174c%. H, B. montanum, #00-137h&, left forewing (inverted). I, L. basilicus, allotype, #00-174c%. J, L. basilicus, paratype, #00-174d&. fcl, frontoclypeal lobes. 64
Fig. 2.2. Boccharini: female second valvulae (lateral aspects and closeup of apex, A-D), and male styles (lateral aspects, E-F), lateral plate (lateral aspects, G-H), and subgenital plate (ventral aspect, I), and maximum development of abdominal fine-structure (J). All scanning electron micrographs near tergum III. A-B, Bocchar montanum Jacobi, #00-137h&. C-D, Lanceonotus basilicus Capener, paratype, #00-174d&. E, B. confusus (Distant), #00-137g%. F, L. basilicus, allotype, #00-174c%. G, B. confusus, #00-137g%. H-I, L. basilicus, allotype, #00-174c%. J, L. basilicus, #01256c&. c, clasp. lp, lateral plate. i, inornate pit.
65
3. Tribe BOOCERINI Goding, 1892 New World: Neotropical Region Figs. 3.1-3.9 Type genus: Boocerus Stål, 1869
Boocerini Goding, 1892a [new tribe]: equals “Hebesini” Goding, 1926e (Metcalf and Wade 1965a) [“Hebesini”, an improperly derived name, is not based on an included genus (Deitz 1985a)]; referred to Membracinae (Kosztarab 1982a) [error]; reinstated within Centrotinae (Deitz and Dietrich 1993a). Abelusini [sic: for Abelini] Goding, 1930b [new tribe]: corrected to Abelini (Funkhouser 1951a); equals Tolaniini Haupt, 1929c (Metcalf and Wade 1965a) [error]; reinstated within Centrotinae (Deitz 1985a); herein equals Boocerini, NEW SYNONYMY.
Diagnostic characters.—Posterior pronotal process not concealing scutellum. Forewing with M and Cu veins fused at base. Mesothoracic femur with ab- and adlateral cucullate setae. Metathoracic tibial row II of cucullate setae in a single row. Male lateral plate with large ventral lobe; subgenital plate with distinct division; style clasp membranous (exception: style clasp thickened in some species of Campylocentrus), cylindrical, or rounded with acuminate projection, angled ventrally. Abdominal acanthae distinct, bases heightened, acanthae divided into threadlike microtrichia, anterior tergal borders modified into irregular ridges. Description.—Length 2-7 mm. Color black, dark brown, tan or combinations
66
thereof. HEAD (Fig. 3.2): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct (exceptions: frontoclypeal lobes distinct in Boocerus and Campylocentrus; Figs. 3.2 H, K), nearly extending to apex of frontoclypeus or not; ocelli about equidistant from each other and eyes or closer to eyes than each other (Fig. 3.2 D); vertex without toothlike projections. THORAX: PRONOTUM (Figs. 3.1-3.2): suprahumeral horns present or absent; posterior process lacking in Abelus (Fig. 3.1 A), straight at base or angled dorsally, appressed against scutellum (Fig. 3.1 B) or not (Fig. 3.1 H). SCUTELLUM (Fig. 3.2 M): emarginate with apices acute, not concealed by posterior process, 1 or both lateral apices visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 3.3-3.4): hyaline (exception: forewing slightly opaque in Ophicentrus); apical limbus broad; s crossvein distad of r-m2 crossvein; mcu1 and m-cu2 crossveins absent; m-cu3 crossvein distad of M vein fork (exceptions: m-cu3 crossvein basad of M vein fork in Amblycentrus, Fig. 3.4 A; and Brachybelus, Fig. 3.3 E); M and Cu veins fused at base (Fig. 3.3 A); R and M veins not confluent preapically; R1 vein represented by distinct pterostigma in Abelus (Fig. 3.3 C), Ischnocentrus (Fig. 3.4 D), Ophicentrus (Fig. 3.4 E), and Psilocentrus (Fig. 3.4 F); in the remaining genera R1 perpendicular to marginal vein (exception: R1 not perpendicular to marginal vein in Campylocentrus obscuripennis, Fig. 3.4 B); r-m1 crossvein originating near or distad of first division of R vein or anterior to first split of R vein, bent strongly towards R or parallel to longitudinal veins; R, M, and Cu veins not parallel distally; discoidal cells similar in length or not; R4+5 vein shape prior to s crossvein significantly angled (exception: R4+5 shape prior to s crossvein not significantly angled in some species of Campylocentrus); base of R2+3 and 67
R4+5 veins acute or truncate.
HIND
WING:
R4+5 and M1+2 veins not fused (4 apical
cells)(exception: R4+5 and M1+2 veins fused in Amblycentrus, Fig. 3.3 D, see Gargarini hind wings, and R4+5 vein apparently absent in Brachybelus, Fig. 3.3 F). MESOTHORACIC LEGS:
PRO-
AND
tibiae not foliaceous; prothoracic femur with ab- and adlateral
cucullate setae in Amblycentrus and Brachybelus; mesothoracic tibia with rows of cucullate setae in Abelus, Centriculus, Ischnocentrus (Fig. 3.4 H), and Psilocentrus; mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 3.4 G): ventral
margins of coxa, trochanter, and femura without enlarged setal bases (exception: ventral femur with enlarged setal bases in Brachybelus); femur with ab- and adlateral cucullate setae, adlateral setae preapical or apical; femur without ablateral cucullate setae ventrolaterally; tibial row I with 16-31 cucullate setae, row II with 9-25 cucullate setae in single row, row III with 20-27 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges (Fig. 3.2 M); sternal longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate or shelflike; abdominal setal bases not enlarged. FEMALE
GENITALIA
(Figs. 3.5-3.6): second valvulae
without significant broadening (Fig. 3.5 A) or with abrupt slight broadening near midpoint (Fig. 3.6 A) or past midpoint (Fig. 3.5 G), tapering unevenly to apex, narrow near base, curved or not curved, dorsal teeth fine (exception: dorsal teeth indiscernible in Campylocentrus), acute projections on dorsal margin present or absent; third valvulae without ventral projections.
MALE
GENITALIA
(Figs. 3.7-3.8): lateral plate with short
dorsoapical lobe extending dorsally (Fig. 3.8 A, C) (exceptions: lateral plate with long dorsoapical lobe in Abelus, lateral plate lobe extending ventrally in Ischnocentrus, Figs. 3.8 68
E-F), with large ventral lobe; subgenital plate with distinct division (Figs. 3.8 I-J); style clasp oriented dorsoventrally or laterally, membranous (exception: style clasp thickened in some Campylocentrus spp.), cylindrical (Fig. 3.7 C) or rounded with acuminate projection (Figs. 3.7 B, D), angled ventrally; style shank with or without significant arch. ABDOMINAL FINE STRUCTURE
(Fig. 3.9): acanthae distinct, bases heightened, acanthae divided into threadlike
microtrichia. Chromosome numbers.—Male 2n=21. Distribution.—The tribe Boocerini is recorded from the Neotropical Region although no members have been found in the Caribbean Islands (McKamey 1998a). Ecology.—Members of the tribe Boocerini are reported from the host plant families Anacardiaceae, Asclepiadaceae, Convolvulaceae, Cucurbitaceae, Gramineae, Guttiferae, Melastomataceae, Phytolaccaceae, Rubiaceae, and Solanaceae (Table 26.2). Ischnocentrus is reported to be tended by ants (Table 26.1). Discussion.—The name Abelini Goding, 1930a, is here considered a junior synonym of Boocerini Goding, 1892a, NEW SYNONYMY. Based on the present study (Figs. 24.1, 24.5) the tribe Boocerini (sensu McKamey 1998a) is paraphyletic with respect to Abelini (formerly Abelus and Ischnocentrus, sensu McKamey 1998a). Abelus and Ischnocentrus (formerly Abelini), with the remaining genera in Boocerini, share the synapomorphy of a large ventral lobe on the male lateral plate. This synonymy is also partly supported by other recent phylogenetic analyses.
In a morphological analysis of the family Membracidae
(Dietrich et al. 2001a), Boocerus and Ischnocentrus (formerly of Abelini) form a monophyletic clade (Bremer support of 2). However, in molecular analyses of two nuclear
69
genes using parsimony and maximum likelihood (Cryan et al. 2000a), the Boocerini and Abelini never formed a monophyletic group. Thus, the genera here placed within the Boocerini from a monophyletic group and are all restricted to the mainland Neotropics.
Two genera previously placed in Boocerini,
Brachycentrotus Metcalf and Bruner and Daimon Buckton, occur only in the Caribbean Islands; these genera are here referred to the tribes Monobelini and Nessorhinini, respectively, as discussed under these tribes. Goding (1892a) first defined the Boocerini based on the posterior process extending over the abdomen and the clavus not or slightly narrowed approaching the apex; a largely artificial definition. The genus Boocerus was included in this definition by inference (Article 12.2.4, ICZN). The name “Hebesini” was incorrectly used to include a number of boocerine genera by Goding (1926e, 1928a, 1930b) and Funkhouser (1951a), until Metcalf and Wade (1965) reinstated the name Boocerini. “Hebesini” is considered invalid because it was not derived from a published generic name (Deitz 1985a).
Deitz (1975a) redescribed the
Boocerini to include 12 genera and later (1985a) redescribed the Abelini to include Ischnocentrus and Abelus. An important feature of the Abelini was the presence of rows of cucullate setae on the mesothoracic tibia.
This state is also found in Centriculus and
Psilocentrus, providing further evidence that Boocerini and the former Abelini form a natural group. Although the Boocerini share certain characteristics such as features of the male lateral plate and abdominal fine structure, two genera, Brachybelus and Amblycentrus-- differ from the others in their hind wing venation, leg chaetotaxy, and male style clasp shape. These two genera represent a distinct lineage. Molecular analyses and further morphological 70
investigations at the generic level are needed to clarify the taxonomic position and status of Amblycentrus and Brachybelus, which both have anomalous hind wing venation. A generic revision of Campylocentrus is also advised due to the great variation observed among several species, especially in forewing venation and characteristics of the male style. The Boocerini are closely related to the Old World tribe Gargarini and the New World tribe Monobelini.
Genera of the tribe Boocerini Abelus Stål, 1869c (type species: A. luctosus Stål by monotypy) [previously placed in Abelini (McKamey 1998a)]. Amblycentrus Fowler, 1896d (type species: A. pubescens Fowler by monotypy). Boocerus Stål, 1869c (type species: B. gilvipes Stål by subsequent designation). Brachybelus Stål, 1869a (type species: B. cruralis Stål by subsequent designation). Campylocentrus Stål, 1869c (type species: C. obscuripennis Stål by subsequent designation). Centriculus Fowler, 1896d (type species: C. rufotestaceus Fowler by monotypy). Ischnocentrus Stål, 1869c (type species: I. niger Stål by subsequent designation) [previously placed in Abelini (McKamey 1998a)]. Ophicentrus Fowler, 1896d (type species: O. notandus Fowler by monotypy). Psilocentrus Fowler, 1896d (type species: P. xautipae Fowler by monotypy). Specimens examined.—Abelus inermis (Lethierry), as det. in USNM, #01-220c&; A. luctuosus Stål, as det. in NCSU, #99-89g&—det. J.A. Ramos, USNM, #99-167b&—as det. in USNM, #99-167c%; Amblycentrus pubescens Fowler, det. W.D. Funkhouser, USNM, #00187a&—as det. in USNM, #00-187b%, #01-242e&; Boocerus gilvipes Stål, det. L.L. Deitz, 71
NCSU, #71-260h&—det. M.S. Wallace, USNM, #01-67b&—det. W.D. Funkhouser, USNM, #71-298b%; Brachybelus sp., det. L.L. Deitz, NCSU, #70-232e%; B. cruralis Stål, as det. in USNM, #00-187c&, #00-187d%; Campylocentrus hamifer (Fairmaire), as det. in USNM, #00-188a%, #00-188b&, #01-219a&; C. obscuripennis Stål, as det. in MNHN, #01-226l%; Centriculus flavus Goding, holotype, USNM, #01-89c&; C. rufotestaceus Fowler, det. S.H. McKamey, SHMC, #00-187i&; Ischnocentrus sp., det. L.L. Deitz, NCSU, #99-89f&—as det. in NCSU, #83-331a%, #99-141a%; I. inconspicuous Buckton, as det. in USNM, #01-221c%; I. niger Stål, as det. in USNM, #00-188f&, #00-188g%; Ophicentrus notandus Fowler, holotype, BMNH—det. W.D. Funkhouser, USNM, #71-299a%; Psilocentrus sp., as det. in USNM, #71-299e%, #71-299f&.
72
Fig. 3.1. Boocerini: pronota (lateral aspects, A-I; and anterior aspects, J-O). Bars = 3 mm. A, Abelus luctuosus Stål, #99-167c%. B, Amblycentrus pubescens Fowler, #00-187b%. C, Boocerus gilvipes Stål, #01-67b&. D, Brachybelus cruralis Stål, #00-187c&. E, Campylocentrus hamifer (Fairmaire), #00-188a%. F, Centriculus rufotestaceus Fowler, #00-187i&. G, Ischnocentrus niger Stål, #00-188g%. H, Ophicentrus notandus Fowler, #71-299a%. I, Psilocentrus sp., #71-299e%. J, Abelus luctuosus Stål, #99-167c%. K, Amblycentrus pubescens Fowler, #00-187b%. L, Boocerus gilvipes Stål, #01-67b&. M, Brachybelus cruralis Stål, #00-187c&. N, Campylocentrus hamifer (Fairmaire), #00-188a%. O, Centriculus rufotestaceous Fowler, #00-187i&. 73
Fig. 3.2. Boocerini: pronota (anterior aspects, A-C), heads (D-L), and scanning electron micrograph (M) of pronotum (dorsal aspects). A, Ischnocentrus niger Stål, #00-188g%. B, Ophicentrus notandus Fowler, #71-299a%. C, Psilocentrus sp., #71-299e%. D, Abelus luctuosus Stål, #99-167c%. E, Amblycentrus pubescens Fowler, #00-187b%. F, Boocerus gilvipes Stål, #01-67b&. G, Brachybelus cruralis Stål, #00-187c&. H, Campylocentrus hamifer (Fairmaire), #00-188a%. Centriculus rufotestaceous Fowler, #00-187i&. J, I. niger, #00-188g%. K, O. notandus, #71-299a%. L, Psilocentrus sp., #71-299e%. M, I. inconspicuous Buckton, #01-221c%. fcl, frontoclypeal lobes. a, abdomen. i, inornate pit. l, lateral seta. p, posterior process. s, scutellum. r, irregular ridge at anterior tergal border. 74
Fig. 3.3. Boocerini: wings. A, Boocerus gilvipes Stål, #71-260h&, left forewing (inverted). B, B. gilvipes Stål, #71-260h&, left hind wing (inverted). C, Abelus luctuosus Stål, #99-167c%, left forewing (inverted). D, Amblycentrus pubescens Fowler, #00-187b%, left hind wing (inverted). E, Brachybelus cruralis Stål, #00-187d%, left forewing (inverted). F, B. cruralis Stål, #00-187d%, left hind wing (inverted).
75
Fig. 3.4. Boocerini: wings (A-F) and legs (G-H). A, Amblycentrus pubescens Fowler, #00-187b%, left forewing (inverted). B, Campylocentrus obscuripennis Stål, #01-226l%. C, Centriculus rufotestaceous Fowler, #00187i&. D, Ischnocentrus niger Stål, #00-188g%. E, Ophicentrus notandus Fowler, #71-299a%, left forewing (inverted). F, Psilocentrus sp., #71-299e%, left forewing (inverted). G, Ischnocentrus sp., #83-331a%, left metathoracic leg. H, Ischnocentrus sp., #83-331a%, left mesothoracic tibia.
76
Fig. 3.5. Boocerini: female second valvulae (lateral aspects and closeup of apex). A-B, Abelus luctuosus Stål, #99-89g&. C-D, Amblycentrus pubescens Fowler, #00-187a&, reversed from right lateral aspect. E-F, Boocerus gilvipes Stål, #71-260h&. G-H, Brachybelus cruralis Stål, #00-187c&. I, Campylocentrus hamifer (Fairmaire), #00-188b&.
77
Fig. 3.6. Boocerini: female second valvulae (lateral aspects and closeup of apex). A-B, Centriculus rufotestaceous Fowler, #00187i&. C-D, Ischnocentrus niger Stål, #00-188f&. E-F, Psilocentrus sp., #71-299f&.
78
Fig. 3.7. Boocerini: male styles (A-I) and aedeagi (J-Q) (lateral aspects). A, Abelus luctuosus Stål, #99167c%, lateral aspect. B, Amblycentrus pubescens Fowler, #00-187b%, dorsal aspect. C, Boocerus gilvipes Stål, #71-298b%, lateral aspect. D, Brachybelus cruralis Stål, #00-187d%, dorsal aspect. E, Campylocentrus hamifer (Fairmaire), #00-188a%, lateral aspect. F, C. obscuripennis Stål, #01-226l%, lateral aspect. G, Ischnocentrus niger Stål, #00-188g% , lateral aspect. H, Ophicentrus notandus Fowler, #71-299a%, lateral aspect. I, Psilocentrus sp., #71-299e%, reversed from right lateral aspect. J, Abelus luctuosus Stål, #99-167c%. K, Amblycentrus pubescens Fowler, #00-187b%. L, Brachybelus cruralis Stål, #00-187d%. M, C. hamifer (Fairmaire), #00-188a%. N, C. obscuripennis Stål, #01-226l%. O, I. niger Stål, #00-188g%. P, O. notandus Fowler, #71-299a%. Q, Psilocentrus sp., #71-299e%. Copyrights: F © 2003, Museum national d’Histoire naturelle, Paris. c, clasp. 79
Fig. 3.8. Boocerini: male lateral plates (lateral aspects, A-H) and subgenital plates (ventral aspects, I-J). A, Amblycentrus pubescens Fowler, #00187b%. B, Boocerus gilvipes Stål, #71-298b%. C, Brachybelus cruralis Stål, #00-187d%. D, Campylocentrus obscuripennis Stål, #01-226l%. E, Ischnocentrus niger Stål, #00-188g%. F, Ischnocentrus sp., #83-331a%. G, Ophicentrus notandus Fowler, #71-299a%. H, Psilocentrus sp., #71-299e%. I, O. notandus, #71-299a%. J, Ischnocentrus sp., #83-331a%. Copyrights: D © 2003, Museum national d’Histoire naturelle, Paris. lp, lateral plate. vl, ventral lobe. d, subgenital plate division.
80
Fig. 3.9. Boocerini: maximum development of abdominal fine-structure. All scanning electron micrographs near tergum III. A, Amblycentrus pubescens Fowler, #01-242e&. B, Boocerus gilvipes Stål, #01-67b&. C, Centriculus flavus Goding, holotype, #01-89c&. D, Ischnocentrus inconspicuous Buckton, #01-221c%. i , inornate pit. l, lateral seta. m, microtrichia.
81
4. Tribe CENTROCHARESINI Goding, 1931 Old World: Indomalayan Region Figs. 4.1-4.2 Type genus: Centrochares Stål, 1866
Centrocharesini Goding, 1931a [new tribe].
Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of frontoclypeus; frontoclypeal margins distinctly converging ventrally. numerous acute projections (spines).
Suprahumeral horns present.
Pronotum with Mesopleural lobe
enlarged. Forewing opaque with R4+5 vein confluent with M vein distad of its fork, R1 vein represented by distinct pterostigma. Hind wing with R4+5 and M1+2 veins fused pre-apically (4 apical cells).
Legs with some setal bases enlarged into acute projections.
Tibiae
foliaceous. Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur with ablateral cucullate setae and without adlateral cucullate setae; tibial row I without cucullate setae. Abdomen with sternal transverse carina and paired dorsal swellings. Female third valvulae with ventral projections.
Male style clasp oriented laterally, thickened,
triangular. Description.—Length 3.7-4.5 mm. Color tan or dark brown, or combinations thereof. HEAD (Fig. 4.1 C): frontoclypeal margins distinctly converging ventrally, frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 4.1 A-B, 4.2 I-J): pronotum with acute projections (spines); suprahumeral horns present; posterior 82
process angled dorsally at base, not appressed against scutellum, extending significantly past m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 1 lateral apex visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax.
PLEURON:
propleural lobe absent, mesopleural lobe enlarged. FOREWING (Fig. 4.1 D): opaque; apical limbus broad; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R4+5 vein confluent with M vein distad of its fork; R1 vein represented by distinct pterostigma; r-m1 crossvein originating near or distad of first division of R vein, bent strongly towards R vein, often with additional r-m crossveins; R, M, and Cu veins not parallel apically. HIND WING (Fig. 4.1 E): R4+5 and M1+2 veins fused pre-apically (4 apical cells). MESOTHORACIC LEGS:
PRO-
AND
both femora and tibiae with some setal bases enlarged into acute
projections; tibiae foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Fig 4.1 F): femur with ablateral cucullate setae and without adlateral cucullate setae; ventral trochanter and femur with enlarged setal bases; tibia foliaceous, row I without cucullate setae, row II with 22-26 cucullate setae in irregular row, row III with 5-6 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal transverse carina present; paired dorsal swellings present; tergum III ventrolateral margin shelflike. FEMALE
GENITALIA
(Figs. 4.2 A-C): second valvulae with abrupt slight broadening past
midpoint, tapering unevenly to apex, narrow near base, not curved, dorsal teeth fine and absent apically, acute projections on dorsal margin absent; third valvulae with ventral projections (Fig. 4.2 C). MALE GENITALIA (Figs. 4.2 D-F): lateral plate without dorsoapical 83
lobe or ventral lobe (Fig. 4.2 F); subgenital plate without distinct division; style clasp oriented laterally, thickened, triangular, apex blunt, not angled; style shank without significant arch.
ABDOMINAL
FINE STRUCTURE
(Figs. G-H): acanthae distinct, bases
heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—Centrochares is recorded from the Indomalayan Region, namely the countries Borneo, China, the Philippines, Singapore, and Sumatra (McKamey 1998a). Although Centrochares is reported from China, neither Nast (1972a) or Yuan and Chou (2002a) reported it from Palearctic China. Ecology.—The genus Centrochares is reported from the host plant families Euphorbiaceae and Leguminosae (Table 26.2). In addition, Centrochares has been observed providing maternal care in the form of egg guarding and is reported to be tended by ants (Table 26.1) (Stegmann and Linsenmair 2002a). Discussion.—Goding (1931a) defined Centrocharesini as those treehoppers with suprahumeral horns, with the pronotum covered by spines, and with the tibiae foliaceous. Although monotypic, this tribe is supported by a large number of character (phylogenetic tree, Fig. 24.1, and see previous list of diagnostic characters). Morphologically, the tribe Centrocharesini is very distinct from other Centrotinae tribes and may be a relict of previously larger group of genera. Moreover, according to the phylogenetic analysis, the Centrocharesini is sister to a large and widespread group of Old World membracids including the tribes Ebhuloidesini, Hypsaucheniini, Oxyrhachini, and Terentiiini. Yuan and Chou (2002a) showed a similar relationship in their phylogenetic tree of the Centrotinae with
84
Centrochares sister group to a clade containing the genera Ebhul, Hypsauchenia, and Jingkara. Only the type species of Centrochares, C. horrifica (Westwood), was examined for this analysis. Thus, a study of the remaining species in the genus may reveal greater morphological variation among the remaining Centrochares species than described here. Nonetheless, based on the descriptions of Distant (1915b, 1916c) and Funkhouser (1927b, 1929b), C. borneensis Distant, C. foliata Funkhouser, C. ridleyana Distant, and C. spinifera Funkhouser are very similar morphologically to C. horrifica. It is unlikely that C. floripennis Yuan and Fan and C. maculopterus Chou and Yuan belong in the genus Centrochares based on differences in their forewing venation, frontoclypeal characters, pronotal characters, and the shape of the second female valvulae (compare Figs. 4.1-4.2 to Yuan and Chou 2002a: figs. 37 and 38). Molecular analyses may clarify further the limits of this tribe and its affinities to other tribes.
Genera of the tribe Centrocharesini Centrochares Stål, 1866c (type species: Centrotus horrificus Westwood by subsequent designation) Specimens examined.—Centrochares horrifica (Westwood), det. W.D. Funkhouser, USNM, #99-141b&—as det. in USNM, #99-141c%, #99-195a&, #99-195b%.
85
Fig. 4.1. Centrocharesini: pronotum (lateral aspect, A; anterior aspect, B), head (C), wings (D-E), and metathoracic leg (F). Bars = 3 mm. A, Centrochares horrifica (Westwood), #99-195b%. B, C. horrifica, #99-195b%. C, C. horrifica, #99-195b%. D, C. horrifica, #99-195a&, right forewing. E, C. horrifica, #99-195a&, right hind wing. F, C. horrifica, #99-141c%, right metathoracic leg (inverted). fcl, frontoclypeal lobes. p, pterostigma. ap, acute projection. 86
Fig. 4.2. Centrocharesini: female genitalia (lateral aspects), male genitalia (lateral aspects), and maximum development of abdominal and pronotal fine-structure. All scanning electron micrographs of the abdomen near tergum III. A-B, Centrochares horrifica (Westwood), #99-141b&, second valvulae. C, C. horrifica, #99-141b&, third valvulae. D, C. horrifica, #99-141c%, style. E, C. horrifica, #99-141c%, aedeagus. F, C. horrifica, #99-141c%, lateral plate. G-H, C. horrifica, #99-195a&, abdomen. I-J, C. horrifica, #99-195a&, acute projection on pronotum. c, clasp. vp, ventral projection. i, inornate pit. m, microtrichia.
87
5. Tribe CENTRODONTINI, Deitz 1975 New World: Nearctic and Neotropical Regions Figs. 5.1-5.4 Type genus: Centrodontus Goding, 1892c
Centrodontini Deitz, 1975a [new tribe]: elevated to subfamily Centrodontinae Deitz, 1975a (Deitz and Dietrich 1993a); herein subfamily Centrodontinae equals Centrotinae, NEW SYNONYMY, and tribe Centrodontini moved to Centrotinae, NEW PLACEMENT. Diagnostic characters.—Frontoclypeal lobes indistinct. Posterior pronotal process appressed against scutellum and concealing scutellum. Scutellum shortened--with abdomen removed, apices and notch not visible. Forewing opaque and reticulate; clavus acuminate, apical limbus narrow; with extra r-m crossveins; forewings without pterostigma. Hind wing variable. Tibiae foliaceous. Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur with ab- and adlateral cucullate setae in Nodonica only, tibial row I without cucullate setae, rows II and III with cucullate setae in Nodonica only, row III in remaining genera represented by 2 distinct rows of elevated setae. Female second valvulae not broadened, narrow near base, curved (exception: not curved in Nodonica), dorsal teeth fine and present to tip of apex. Male lateral plate apparently absent in Nodonica; with short or long dorsoapical lobe extending laterally, style clasp oriented dorsoventrally, thickened, rounded with acuminate projection, not angled; style shank without significant arch at midpoint.
Abdominal acanthae distinct, bases not heightened, acanthae divided into
threadlike microtrichia. 88
Description.—Length 2.3-4.7 mm. Color, brown, mottled brown, reddish brown, tan, or combinations thereof. HEAD (Figs. 5.1 G-I): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and extending to apex of frontoclypeus or not; ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes in Multareoides, Fig. 5.1 I); vertex without toothlike projections. THORAX: PRONOTUM (Fig. 5.1 A-F): suprahumeral horns present or absent; posterior process straight at base, appressed against scutellum. SCUTELLUM: concealed by posterior process (Fig. 5.2 G); shortened--with abdomen removed, apices and notch not visible. PLEURON: propleural lobe present or absent, mesopleural lobe enlarged or not. FOREWING (Fig. 5.2): opaque and reticulate; clavus acuminate, apical limbus narrow; M and Cu veins adjacent or fused at base; with extra r-m crossveins; forewing without pterostigma; R, M, and Cu veins not parallel apically. HIND WING: variable, R4+5 and M1+2 veins fused (Centrodontus, 3 apical cells, Fig. 5.2 B), R4+5 and M1+2 free apically (Multareis, Fig. 5.2 D), or R4+5 and M1+2 fused for short distance basally (Multareoides, Fig. 5.2 F).
PRO-
AND MESOTHORACIC LEGS:
tibiae
foliaceous; mesothoracic femur without ab- and adlateral cucullate setae; mesothoracic tibia without rows of cucullate setae. METATHORACIC
LEG
(Fig. 5.1 J): ventral margin of coxa,
trochanter, and femur with enlarged setal bases in Centrodontus only; femur with ab- and adlateral cucullate setae in Nodonica only, femur without ablateral cucullate setae ventrolaterally; tibiae foliaceous, row I non-cucullate, rows II and III with cucullate setae in Nodonica only, row III in remaining genera represented by 2 distinct rows of elevated setae; tarsomere I with 1 cucullate seta. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified, sternal carinae absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases not 89
enlarged. FEMALE GENITALIA (Fig. 5.3): second valvulae not broadened, narrow near base, curved (exception: not curved in Nodonica), dorsal teeth fine, present to tip of apex, acute projections absent; third valvulae without ventral projections. MALE GENITALIA (Fig. 5.4 AF): lateral plate apparently absent in Nodonica only; with short or long dorsoapical lobe extending laterally, without ventral lobe; subgenital plate (Fig. 5.4 F) without distinct division; style clasp (Figs. 5.4 A-C) oriented dorsoventrally, thickened, rounded with acuminate projection, not angled; style shank without significant arch at midpoint. ABDOMINAL
FINE STRUCTURE
(Figs. 5.4 G-I): acanthae distinct, bases not heightened,
acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Centrodontini is found in the Nearctic and Neotropical Regions, specifically from the southwestern United States, northern Mexico (McKamey 1998a), and the Amazonian rainforest (Dietrich et al. 2001a). Ecology.—Members of the tribe Centrodontini are known only from the creosote bush, Larrea divaricata tridentata (DC) Felger and Lowe, in the family Zygophyllaceae in North America, and the tropical canopy of Peru, Brazil, and Ecuador (Nodonica) (Table 26.2). North American Centrodontini are not apparently ant-attended (Dietrich et al. 2001a). Discussion.—Deitz (1975a) placed the new tribe Centrodontini within the subfamily Membracinae based on the concealed scutellum, although Goding (1892c, 1895a) originally included Centrodontus and Multareis in the Centrotinae. Deitz (1975a) distinguished the centrodontines from other treehoppers by the presence of: a concealed scutellum, a reticulate forewing, an acuminate clavus, a toothed lateral plate, and slightly foliaceous tibiae. In addition, most centrodontines lack cucullate setal rows on the metathoracic tibia. Deitz and 90
Dietrich (1993a) elevated the Centrodontini to the level of subfamily based on their phylogenetic analysis of the Membracoidea (Dietrich and Deitz 1993a). The tribe Centrodontini, Deitz 1975a, is monophyletic in the phylogenetic analysis (Figs. 24.1, 24.5) and appear to be the most basal lineage within Centrotinae (Fig. 24.1) and sister group of the remaining centrotine taxa, making Centrodontinae a junior synonym of Centrotinae Amyot and Serville, 1843, NEW SYNONYMY. Although the centrodontines have inornate pits, each with an associated lateral seta (the synapomorphy for the Centrotinae), they differ significantly from other centrotines in forewing venation and leg chaetotaxy.
The Centrodontini are therefore tentatively placed within the Centrotinae.
Centrodontines are closely related to the Monobelini and Boocerini. Recent molecular phylogenetic analyses (Cryan et al. 2000a) of the Membracidae support the revised placement of Centrodontini.
Parsimony analysis of 28S rDNA
nucleotides and maximum likelihood analysis of combined EF-1" and 28S rDNA nucleotides resulted in a monophyletic Centrotinae that included the genera Centrodontus and Multareoides. However, the Centrodontini were not included within the Centrotinae in morphological analyses of the Membracoidea (Dietrich and Deitz 1993a) and Membracidae (Dietrich et al. 2001a). Several wing characters were coded as ambiguous for all genera due to the reticulate nature of the forewings. For example, the number of branches in R, M, and Cu veins of the forewing were coded as ambiguous although they were coded as having extra branches by Dietrich et al. (2001a). Nodonica differs significantly from the other centrodontine genera in several morphological features, including leg chaetotaxy and male and female genitalia, and in distribution. Furthermore, it is uncertain whether Nodonica has inornate pits, each with an 91
associated lateral seta (Character 113, Table 24.1). This character was coded as ambiguous (?) for Nodonica because a specimen was not examined, and it is appropriate to score this character with a high power dissecting scope or scanning electron microscope. For these reasons, Nodonica is tentatively placed in the Centrodontini.
Genera of the tribe Centrodontini † no specimen examined Centrodontus Goding, 1892c (type species: Gargara atlas Goding by original designation). Multareis Goding, 1895a (type species: M. cornutus Goding by original designation). Multareoides Cook, 1953a (type species: M. bifurcata Cook by original designation). Nodonica Dietrich, McKamey, and Deitz, 2001a (type species: N. bispinigera Dietrich, McKamey, and Deitz by original designation), see fig. 9 of Dietrich et al. (2001a: 225).† Specimens examined. —Centrodontus atlas (Goding), as det. in NCSU, #99-89a&— as det. in USNM, #99-89h%, #99-89i&; C. atlas atlas (Goding), as det. in USNM, #01337a&; C. atlas paucivenosus Cook, det. L.L. Deitz and J.C. Cryan, NCSU, #99-89b%; Multareis cornutus cornutus Goding, det. P.P. Cook, USNM, #00-194e&, #00-194f%; M. cornutus lawsoni Goding, det. M.J. Rothschild, NCSU, #99-89e&—as det. in USNM, #00194j&, #00-194k%; Multareoides bifurcatus Cook, det. L.L. Deitz and J.C. Cryan, NCSU, #99-89c%, #99-89d&—as det. in USNM, #00-194g&—det. P.P. Cook, USNM, #00-194h%; M. digitatus (Van Duzee), as det. in USNM, #00-194l&, #00-194m%.
92
Fig. 5.1. Centrodontini: pronota (lateral aspects, A-C; and anterior aspects, D-F), heads (G-I), and metathoracic leg (J). Bars = 3 mm. A, Centrodontus atlas (Goding), #99-89h%. B, Multareis cornutus cornutus Goding, #00-194e&. C, Multareoides bifurcatus Cook, #00-194g&. D, C. atlas (Goding), #9989h%. E, Multareis cornutus cornutus Goding, #00-194e&. F, Multareoides bifurcatus Cook, #00194g&. G, C. atlas (Goding), #99-89h%. H, Multareis cornutus cornutus Goding, #00-194e&. I, Multareoides bifurcatus Cook, #00-194g&. J, C. atlas paucivenosus (Goding), #99-89b%. fc, frontoclypeus. 93
Fig. 5.2. Centrodontini: wings and pronotal fine-structure. A, Centrodontus atlas atlas (Goding), #01-337a&, left forewing (inverted). B, C. atlas atlas, #01-337a&, left hind wing (inverted). C, Multareis cornutus cornutus Goding, #00-194f%, left forewing (inverted). D, M. cornutus cornutus, #00-194f%, left hind wing (inverted). E, Multareoides bifurcatus Cook, #00-194g&, left forewing (inverted). F, M. bifurcatus Cook, #00-194g&, left forewing (inverted). G, Multareis cornutus lawsoni Goding, #00194j&.
94
Fig. 5.3. Centrodontini: female second valvulae (lateral aspects and closeup of apex. A-B, Centrodontus atlas (Goding), #99-89a&. C-D, Multareis cornutus cornutus Goding, #00-194e&. E-F, Multareoides bifurcatus Cook, #00-194g&.
95
Fig. 5.4. Centrodontini: male styles (lateral aspect, A; and ventral aspects, BC), aedeagus (lateral aspect, D), lateral plate (lateral aspect, E), and subgenital plate (ventral aspect, F), and maximum development of abdominal finestructure (G-I). Abdominal scanning electron micrograph near tergum III. A, Centrodontus atlas paucivenosus (Goding), #99-89b%, right style (inverted). B, Multareis cornutus cornutus Goding, #00-194f%. C, Multareoides bifurcatus Cook, #00-194h%. D-E, C. atlas paucivenosus (Goding), #9989b%. F, Multareis cornutus cornutus Goding, #00-194f%. G, M. cornutus lawsoni Goding, #00-194j&. H, M. cornutus lawsoni Goding, #00-194j&. I, Multareoides digitatus (Van Duzee), #00-194l&. c, clasp. dl, dorsoapical lobe. i, inornate pit. l, lateral seta. m, microtrichia. 96
6. Tribe CENTROTINI Amyot and Serville, 1843 Old World: Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 6.1-6.26 Type genus: Centrotus Fabricius, 1803
Centrotides [sic: for Centrotinae] Amyot and Serville, 1843 [new group]: first treated as tribe Centrotini (Goding 1892a). Acanthophyesaria Distant, 1908g [new division]: listed as Acanthophyesaria Funkhouser, 1915a (Metcalf and Wade 1965a) [error]; equals Uroxiphini Goding, 1930a (Metcalf and Wade 1965a)[error]; herein equals Centrotini, NEW SYNONYMY. Platybelinae Capener, 1952b [new subfamily]: first treated as tribe Platybelini (Capener 1966a); subfamily Platybelinae equals Centrotinae (Strümpel 1972a); tribe Platybelini equals Centrotini (Dietrich et al. 2001a).
Diagnostic characters.—Frontoclypeal lobes indistinct, nearly extending to apex of frontoclypeus (exceptions: lobes distinct and not extending to apex of frontoclypeus in Centrotus and Rachinotus, lobes indistinct and not extending to apex of frontoclypeus in Acanthophyes, Aurinotus, Daconotus, Tiberianus, and Tricoceps). Posterior pronotal process not appressed against scutellum (exception: posterior process appressed against scutellum in some species of Eumonocentrus). Forewing with R1 vein represented by distinct pterostigma (most genera) or present (Capeneralus and Centrotus). Hind wing with R4+5 and M1+2 veins 97
fused (3 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae. Male style clasp oriented laterally, apex membranous, elliptical or circular, angled dorsally. Abdominal setal bases enlarged, sparsely dispersed on terga. Abdomen with anterior tergal borders not modified. Description.—Length 3-7 mm. thereof.
Color black, tan, dark brown, or combinations
HEAD (Figs. 6.7-6.9): frontoclypeal margins parallel or slightly converging
ventrally, frontoclypeal lobes indistinct (exceptions: frontoclypeal lobes distinct in Centrotus and Rachinotus; Fig. 6.7 M) and nearly extending to apex of frontoclypeus (exceptions: frontoclypeal lobes not extending to apex of frontoclypeus in Acanthophyes, Aurinotus, Daconotus, Centrotus, Rachinotus, Tiberianus, and Tricoceps; Figs 6.7 G, M and O); ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs 6.1-6.6): suprahumeral horns present or absent, partially fused into a median anterior horn in Euceropsila, Eumocentrulus, Eumonocentrus, Flatyperphyma, Foliatrotus, Mitranotus, Monocentrus, and Zanzia (Figs. 6.5 C-E, G, I); posterior process straight at base or angled dorsally, not appressed against scutellum (exception: posterior process appressed against scutellum in some species of Eumonocentrus).
SCUTELLUM:
emarginate with apices acute, not concealed by posterior process, 1 or 2 lateral apices visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged.
FOREWING (Figs. 6.10-6.15): hyaline or opaque; apical limbus broad; s
crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins present or absent; M and Cu veins fused at base or adjacent (Fig. 6.12 E); R and M veins not confluent preapically or R4+5 vein confluent with M vein distad of its fork (Figs. 6.13 H and 6.14 D); R1 vein represented 98
by distinct pterostigma (most genera) or not (Capeneralus and Centrotus, Figs. 6.10 A, C; 6.11 I); r-m1 crossvein originating near or distad of first division of R vein (exceptions: r-m1 crossvein originating anterior to first split of R vein in Aurinotus, Centrotus, Daconotus, and Distanobelus; Figs. 6.10 A, C; 6.11 E; 6.12 B, D), bent strongly towards R vein (exception: r-m1 crossvein parallel to longitudinal veins in Centrotus, Figs. 6.10 A, C); R, M, and Cu veins not parallel apically; discoidal cells similar in length (exceptions: discoidal cells not similar in length in Farcicaudia and Hamma; Figs. 6.12 H and 6.13 B); R4+5 vein shape prior to s crossvein significantly angled (exception: R4+5 shape prior to s crossvein not significantly angled in Centrotus, Figs. 6.10 A, C); base of R2+3 and R4+5 veins acute or truncate. HIND
WING
MESOTHORACIC LEGS:
(Fig. 6.10 B): R4+5 and M1+2 veins fused (3 apical cells). PRO-
AND
tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate
setae (exception: mesothoracic tibia with row of cucullate setae in Anchonobelus); mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC LEG (Figs. 6.15 C-D, Figs. 6.24 F-G): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally (exception: femur with ablateral cucullate setae ventrolaterally in Centrotus); tibia not foliaceous, row I with 9-30 cucullate setae (exception: row I without cucullate setae in Zanzia), row II with 15-52 cucullate setae in irregular or double row (exceptions: row II single in Leprechaunus, Menthogonus, and Paraxiphopoeus, varies interspecifically in Monocentrus), row III with 13-33 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate or shelflike; abdominal setal bases 99
enlarged and sparsely dispersed on terga. FEMALE
(Figs. 6.16-6.21): second
GENITALIA
valvulae without significant broadening (Fig. 6.16 C) or with abrupt slight broadening near midpoint or past midpoint (Fig. 6.17 A), tapering evenly or unevenly to apex, narrow or broad near base, curved or not curved, dorsal teeth variable in size, acute projections on dorsal margin present or absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 6.22-6.23): lateral plate with short or long dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally, membranous, elliptical or circular, angled dorsally; style shank with or without significant arch. ABDOMINAL FINE STRUCTURE (Figs. 6.24-6.26): acanthae distinct (Fig. 6.24 E) or not (Fig. 6.24 B), bases not heightened, acanthae divided into threadlike microtrichia (exceptions: acanthae without ornamentation in Takliwa and acanthae multidentate in Centrotus). Chromosome numbers.—Male 2n= 17 or 19 (Table 26.3). Distribution.—The
tribe
Centrotini
is
recorded
from
the
Afrotropical,
Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). All but two genera, Anchon and Centrotus, are restricted to the Afrotropical Region. Ecology.—Members of the tribe Centrotini are reported from the host plant families Aceraceae,
Apocynaceae,
Betulaceae,
Bromeliaceae,
Caricaceae,
Combretaceae,
Compositae, Convolvulaceae, Cornaceae, Corylaceae, Ericaceae, Euphorbiaceae, Fagaceae, Gramineae, Juglandaceae, Leguminosae, Liliaceae, Malvaceae, Moraceae, Olacaceae, Onagraceae, Oxalidaceae, Palmae, Pinaceae, Piperaceae, Polygonaceae, Ranunculaceae, Rhamnaceae, Rosaceae, Rubiaceae, Rutaceae, Salicaceae, Sapindaceae, Solanaceae, Sterculiaceae, Theaceae, Tiliaceae, Ulmaceae, Urticaceae, and Zingiberaceae. Hamma and 100
Monocentrus are the only genera in the Centrotinae reported from the family Caricaceae. Anchon and Monocentrus are the only genera in the Centrotinae reported from the family Olacaceae (Table 26.2). The genera Anchon, Centrotus, Leprechaunus, Monocentrus are reported to be tended by ants (Table 26.1). Discussion.— In a key to North American treehoppers, Goding (1892a) defined the tribe based on the exposed scutellum and the posterior process extending over the abdomen. However, none of the 5 genera (all but 1 in the New World) are currently placed within Centrotini.
Later, in a key to the Old World Centrotinae tribes (Goding 1931a), the
Centrotini were identified as those membracids with suprahumeral horns and with 3 apical cells in the wings. Funkhouser (1951a) used similar characteristics in his key to the Old World Centrotinae tribes. Capener (1968a), in an extensive work on the African Centrotini and its genera, distinguished the Centrotini from the Gargarini (both tribes with 3 apical cells in the hind wing) by the developed and exposed scutellum in the Centrotini. Capener also discussed the problems associated with using the presence or absence of suprahumeral horns as a morphological character due to sexual dimorphism in several African genera. Dietrich et al. (2001a) considered the Afrotropical tribe Platybelini Capener, (1952b) a junior synonym of Centrotini following Capener (1968a). Capener (1952b) erected the Platybelinae to accommodate the Centrotinae treehoppers with a pterostigma. The present study confirms that all the genera within the Centrotini, with exception to Capeneralus and Centrotus, have a distinct pterostigma in the forewing. The Centrotini show great variety in pronotal features, however, the forewing venation and shape of the frontoclypeus and male style clasp are rather uniform. Most of the genera are only found in the Afrotropical Region, although certain genera, such as Centrotus 101
and Anchon, extend the range into the Palearctic, Indomalayan, and Australasian regions. The Centrotini are closely related to the Afrotropical tribe Xiphopoeini and share the trait of enlarged abdominal setal bases extending past the tergal borders. The phylogenetic trees of selected Centrotini genera (Fig. 24.7) reveal a monophyletic Centrotini, as defined here. Genera included in the Centroini but excluded from the analysis include those with significant missing data, which, if included in the analyses, result in a very large number of most parsimonius trees. While most genera of the tribe are morphologically homogenous, Anchon, Aurinotus, Capeneralus, Centrotus, Rachinotus, and Zanzia, show great morphological variability. For example, Centrotus is placed at the base of the tree, sister group to the remaining Centrotini (Figs. 24.1 and 24.7). This is not surprising considering the differences in some characters among Centrotus and the remaining genera, including shape of the frontoclypeal lobes and forewing venation. Nevertheless, due to the similarities in male genitalia and the synapomorphy of R4+5 vein and M1+2 fused in the hind wing (3 apical cells), Centrotus, the type genus of the subfamily Centrotinae, is placed within Centrotini. According to Ananthasubramanian and Ananthakrishnan (1975a), certain species of Anchon, including A. echinatum Distant have R4+5 vein and M1+2 vein free in the hind wing (4 apical cells). We have examined no species of Anchon with this condition. Therefore, considering the condition of R4+5 vein and M1+2 vein fused (3 apical cells) is the synapomorphy for Centrotini, and in the phylogenetic tree Anchon is relatively derived with respect to the remaining genera, the 4 apical cell condition in A. echinatum (Ananthasubramanian and Ananthakrishnan 1975a, Fig. 39, pg. 266) and possibly other species of Anchon spp. is enigmatic. A detailed revision of this widespread genus is needed 102
to determine if it is a natural group and the degree of variability in its hind wing venation. This character also varies in species of Oxyrhachis with some species having 3 apical cells while others have 4 apical cells in the hind wing. Genera formerly placed in the Centrotini are here referred to the tribes Beaufortianini (Centrotusoides and Maguva), Choucentrini (Evanchon), Gargarini (Neomachaerotypus), and Maarbarini (Maarbarus). Few features of Saudaraba are evident from Dlabola’s (1979b) description. Even though this genus was not coded for its morphological characters, it is tentatively placed in the Centrotini based on its distribution, characters of the pronotum, and the presence of a pterostigma in place of R1 vein in the forewing. The genus Centrobelus Vilbaste, formerly placed in Centrotini, is placed in Centrotinae, incertae sedis because no specimens were observed and it was unclear from the generic and species descriptions where it should be placed.
Genera of the tribe Centrotini † no specimen examined * placement based on morphological similarity Acanthophyes Stål, 1866a (type species: A. albipennis Stål by subsequent designation).* Afraceronotus Boulard, 1976d (type species: A. quinquefasciatus Boulard by original designation).* Anchon Buckton, 1903a (type species: Centrotus nodicornis Germar by monotypy). Anchonastes Capener, 1972a (type species: A. hastatus Capener by monotypy). Anchonobelus Capener, 1954b (type species: Platybelus aries Jacobi by original designation).* 103
Anchonomonoides McKamey, 1994a (type species: Anchonomones expansus Capener by original designation). Aurinotus Capener, 1968a (type species: Cornutobelus auricornis Capener by original designation).* Barsumas Distant, 1916b (type species: B. primus Distant by monotypy). Barsumoides Boulard, 1976d (type species: B. ngoumae Boulard by original designation). Bleccia Capener, 1968a (type species: Cornutobelus fastidiosus Capener by original designation). Capeneralus Deitz, 1983b (type species: Platynotus lobatus Capener by original designation). Capeneriana Boulard, 1976d (type species: C. tenuicornis Boulard by original designation). Centrotus Fabricius, 1803a (type species: Cicada cornutus Linnaeus by subsequent designation). Cornutobelus Capener, 1954b (type species: Platybelus mutabilis Capener by original designation).* Daconotus Capener, 1968a (type species: Platybelus projectus Funkhouser by original designation).* Dagonotus Capener, 1972a (type species: D. lectus Capener by original designation). Distanobelus Capener, 1954b (type species: Platybelus sericeus Capener by original designation).* Euceropsila Boulard, 1979i (type species: E. primus Boulard by original designation).* Eumocentrulus Boulard, 1977j (type species: E. cesalpinae Boulard by original designation). Eumonocentrus Schmidt, 1911d (type species: E. erectus Schmidt by original designation). 104
Farcicaudia Capener, 1968a (type species: Evanchon nitida Funkhouser by original designation). Flatyperphyma Boulard, 1976d (type species: F. flavocristatus Boulard by original designation).* Flexanotus Capener, 1968a (type species: Platybelus albescens Funkhouser by original designation).* Foliatrotus Capener, 1953b (type species: F. elephas Capener by monotypy).* Hamma Buckton, 1905a (type species: H. nodosum Buckton by monotypy). Jacobiana Capener, 1968a (type species: Centrotus alticornis Jacobi by original designation). Kallicrates Capener, 1968a (type species: K. bellicornis Capener by original designation).* Leprechaunus Capener, 1950a (type species: L. cristatus Capener by original designation).* Matonotus Capener, 1954b (type species: M. granulatus Capener by original designation), see fig. 25 of Capener (1968a: 51).†* Menthogonus Capener, 1968a (type species: M. badhami Capener by original designation).* Mitranotus Boulard, 1983b (type species: M. albofascipennis Boulard by original designation). Monanchon Boulard, 1977j (type species: M. monanchonus Boulard by original designation). Monocentrus Melichar, 1905a (type species: M. deletus Melichar by monotypy). Paraxiphopoeus Goding, 1930a (type species: P. arebiensis Goding by original designation). Platybelus Stål, 1866a (type species: Centrotus flavus Signoret by subsequent designation). Promitor Distant, 1915c (type species: P. nominatus Distant by monotypy).
105
Rachinotus Capener, 1968a (type species: Centrotus marshalli Distant by original designation).* Rexicornia Capener, 1968a (type species: R. elegans Capener by original designation).* Saudaraba Dlabola, 1979b (type species: S. buettikeri Dlabola by original designation), see figs. 38-42 of Dlabola (1979b: 23).†* Spalirises Distant, 1916d (type species: Tricoceps rugosa Funkhouser by subsequent designation).* Stalobelus Capener, 1954b (type species: Platybelus africanus Distant by original designation). Streonus Capener, 1968a (type species: Cornutobelus tenebrosus Capener by original designation).* Takliwa Funkhouser, 1935d (type species: T. carteri Funkhouser by original designation). Tiberianus Distant, 1915c (type species: T. typicus Distant by original designation). Tricoceps Buckton, 1903a (type species: Centrotus brunnipennis Germar by monotypy). Vecranotus Capener, 1968a (type species: Evanchon sinuatus Funkhouser by original designation). Zanzia Capener, 1968a (type species: Z. vanderplanki Capener by original designation). Specimens examined. —Acanthophyes decens Capener, paratype, PPRI, #00137a&—paratype, PPRI, #01-247a%; Afraceronotus quinquefasciatus Boulard, holotype, MNHN, #00-266c%; Anchon sp., det. S.H. McKamey, USNM, #01-242f&; A. limbatum Schmidt, det. A.L. Capener, USNM, #01-227b&; A. nodicornis (Germar), as det. in USNM, #99-287a&—det. W.D. Funkhouser, #99-287c&—det. A.L. Capener, PPRI, #00-287j%; A. ulniforme Buckton, as det. in USNM, #99-287b%; A. ximenes Capener, det. A.L. Capener, 106
MNHN, #02-10f[n]; Anchonastes hastatus Capener, holotype, MNHN—det. A.L. Capener, PPRI, #00-137b&—det. M. Boulard, MNHN, #01-225e%; Anchonobelus aries (Jacobi), det. A.L. Capener, USNM, #99-93d%, #99-287f&—det. A.L. Capener, PPRI, #99-287j&, #01247e&; Anchonomonoides expansus (Capener), [holotype of Anchonomones expansus Capener], MNHN—allotype, MNHN, #01-225f&—paratype, MNHN, #01-225g%; Aurinotus auricornis (Capener), holotype, MZLU; Barsumas basilicus Capener, as det. in PPRI, #00160a&—paratype, PPRI, #01-247n&; B. primus Distant, lectotype, BMNH; Barsumoides sp., det. M. Boulard, MNHN, #01-226e%, #01-226f&; Barsumoides ngoumae Boulard, holotype, MNHN, #00-266b%; Bleccia fastidiosus (Capener), as det. PPRI, #00-137e%—det. M. Boulard, DJFC, #00-137f&; Capeneralus lobatus (Capener), det. A.L. Capener, PPRI, #00160b&; C. subnodosus (Jacobi), det. A.L. Capener, PPRI, #00-160j&, #01-247l&; Capeneriana tenuicornis Boulard, holotype, MNHN, #00-266a&—as det. in MNHN, #01226k%; Centrotus cornutus (Linnaeus), [holotype of Cicada cornuta Linnaeus], LSUK—det. Z.P. Metcalf, NCSU, #99-82c&—as det. in NCSU, #99-110a&, 99-190b&, #99-190i%, #99315b%, #01-15a&—as det. in USNM, #99-97c%; Cornutobelus mutabilis (Capener), paratype, USNM, #00-160e&—det. M.Stiller, PPRI, #00-160f%—as det. in PPRI, #01247f&; Daconotus projectus (Funkhouser), det. A.L. Capener, USNM, #00-160g%, #00160h&, #01-247c%; Dagonotus lectus Capener, paratype, PPRI, #00-160i%; Distanobelus sericeus Capener, paratypes, USNM, #99-141d%, #99-141e&; Euceropsila primus Boulard, holotype, MNHN, #00-265i%—as det. in MNHN, #01-225j%, #01-225k&; Eumocentrulus cesalpinae Boulard, holotype, MNHN, #00-265h&; E. deductus (Capener), paratypes, BMNH, #01-69b&, #01-69c%; Eumonocentrus sp., as det. in USNM, #00-161j&; E. bifurcus (Funkhouser), det. W.D. Funkhouser, USNM, #00-161b%—as det. in USNM, #01-221d&; E. 107
erectus Schmidt, det. A.L. Capener, PPRI, #00-161a&—as det. in MNHN, #01-226a%; Farcicaudia nitida (Funkhouser), det. M. Stiller, PPRI, #00-161c%, #00-161d&—det. A.L. Capener, PPRI, #01-247d&; Flatyperphyma flavocristatus Boulard, holotype, MNHN, #00265g&; Flexanotus albescens (Funkhouser), paratype, USNM, #00-161e&; Foliatrotus elephas Capener, holotype, BMNH—det. A.L. Capener, PPRI, #00-161f&—det. M. Boulard, MNHN, #01-225d%; Hamma sp., as det. in NCSU, #81-48i&; H. grahami (Distant), as det. in USNM, #01-227a&; H. nodosa Buckton, neotype, MNHN—det. A.L. Capener, USNM, #9993e%, #99-93f&; H. recta (Vignon), as det. in MNHN, #01-256h&; Jacobiana alticornis (Jacobi), as det. in PPRI, #00-161g&, #00-161h%—det. A.L. Capener, USNM, #00-161k&; J. tanganensis (Buckton), det. A.L. Capener, USNM, #00-161l&; Kallicrates bellicornis Capener, det. M. Boulard, PPRI, #00-174a%, #00-174b&—as det. in MNHN, #01-235c&; Leprechaunus cornutus Capener, det. A.L. Capener, USNM, #00-174k&; L. cristatus Capener, paratype, USNM, #00-174e%—as det. in USNM, #00-174f&—det. A.L. Capener, PPRI, #00-174o[n]—det. M.Stiller, PPRI, #01-256d&; Menthogonus badhami Capener, paratype, PPRI, #00-174g&; Mitranotus albofascipennis Boulard, holotype, MNHN, #00265c&; Monanchon monanchonus Boulard, holotype, MNHN, #00-265b&; Monocentrus bipennis (Walker), as det. in USNM, #00-174n%—det. A.L. Capener, PPRI, #01-33a%; M. deletus Melichar, as det. in MNHN, #01-225i%; M. leighi (Distant), det. A.L. Capener, USNM, #00-174h%, #00-174i&—det. A.L. Capener, AMNH, #00-174m%; Paraxiphopoeus gestroi (Schmidt), det. M. Boulard, USNM, #01-90b%; P. schubotzi (Jacobi), det. A.L. Capener, PPRI, #00-175f&; Platybelus flavus (Signoret), det. A.L. Capener, PPRI, #00-13a&, #00-13b&—as det. in MNHN, #01-226b%; Promitor nominatus Distant, paralectotype, BMNH, #01-75i&—as det. in PPRI, #00-175g%; Rachinotus marshalli (Distant), det. A.L. 108
Capener, USNM, #99-287d%, #99-287e&, #99-288f[n], #99-288h&—det. A.L. Capener, PPRI, #01-256f%; Rexicornia elegans Capener, holotype, NHRS; Spalirises rugosa (Funkhouser), as det. in PPRI, #00-175h&, #00-175i%; Stalobelus africanus (Distant), det. A.L. Capener, PPRI, #00-180j&—as det. in BMNH, #01-296i%; S. serpentarius (Buckton), as det. in MNHN, #01-228b%; S. sinuosus (Distant), det. W.D. Funkhouser, USNM, #00180a%; Streonus tenebrosus (Capener), paratype, PPRI, #00-180b&—det. M. Boulard, USNM, #01-90a%—as det. in MNHN, #01-228a&; Takliwa carteri Funkhouser, as det. in PPRI, #00-180c&, #01-256b&—as det. in MNHN, #01-226c%; Tiberianus platoni Capener, paratype, USNM, #00-180k&; T. typicus Distant, det. M. Stiller, PPRI, #00-180d&, #00180e%; Tricoceps brunnipennis (Germar), det. W.D. Funkhouser, USNM, #00-180f&—det. A.L. Capener, PPRI, #00-180g%—det. A.L. Capener, USNM, #01-247i&; T. curvispina Distant, as det. in USNM, #00-180l%; Vecranotus sinuatus (Funkhouser), as det. in PPRI, #00-181a&, #00-181b%—det. M. Stiller, PPRI, #01-256a&; Zanzia vanderplanki Capener, paratypes, USNM, #00-181e&, #00-181f%—as det. A.L. Capener, USNM, #00-181k[n]— paratype, BMNH, #01-75e%.
109
Fig. 6.1. Centrotini: pronota (lateral aspects). Bars = 3 mm. A, Acanthophyes decens Capener, #00-137a&. B, Afraceronotus quinquefasciatus Boulard, holotype, #00-266c%. C, Anchon nodicornis (Germar), #99-287c&. D, Anchonastes hastatus (Capener), #01-225e%. E, Anchonobelus aries (Jacobi), #99-287j&. F, Anchonomonoides expansus (Capener), paratype, #01-225g%. G, Aurinotus auricornis (Capener), holotype. H, Barsumas basilicus Capener, #00-160a&. I, Barsumoides ngoumae Boulard, holotype, #00-266b%. J, Bleccia fastidiosus (Capener), #00-137f&. K, Capeneralus lobatus (Capener), #00-160b&. L, Capeneriana tenuicornis Boulard, holotype, #00-266a&. M, Centrotus cornutus (Linnaeus), #99-190i%. N, Cornutobelus mutabilis (Capener), #00-160f%. O, Daconotus projectus (Funkhouser), #00-160h&. Copyrights: B, D, F, I, and L © 2003, Museum national d’Histoire naturelle, Paris. 110
Fig. 6.2. Centrotini: pronota (lateral aspects). Bars = 3 mm. A, Dagonotus lectus Capener, paratype, #00160i%. B, Distanobelus sericeus Capener, paratype, #99-141e&. C, Euceropsila primus Boulard, #01225j%. D, Eumocentrulus cesalpinae Boulard, holotype, #00-265h&. E, Eumonocentrus erectus Schmidt, #00-161f&. F, Farcicaudia nitida (Funkhouser), #00-161d&. G, Flatyperphyma flavocristatus Boulard, holotype, #00-265g&. H, Flexanotus albescens (Funkhouser), paratype, #00-161e&. I, Foliatrotus elephas (Capener), #00-161f&. J, Hamma recta (Vignon), #01-256h&. K, Jacobiana alticornis (Jacobi), #00161g&. L, Kallicrates bellicornis (Capener), #00-174a%. M, Leprechaunus cristatus Capener, #00-174f&. N, Menthogonus badhami Capener, paratype, #00-174g&. O, Mitranotus albofascipennis Boulard, holotype, #00-265c&. Copyrights: C, D, G, J, and O © 2003, Museum national d’Histoire naturelle, Paris. 111
Fig. 6.3. Centrotini: pronota (lateral aspects). Bars = 3 mm. A, Monanchon monanchonus Boulard, holotype, reversed from right lateral aspect, holotype, #00-265b&. B, Monocentrus leighi (Distant), #00-174m&. C, Paraxiphopoeus gestroi (Schmidt), #01-90b%. D, Platybelus flavus (Signoret), #01-226b%. E, Promitor nominatus Distant, #00-175g%. F, Rachinotus marshalli (Distant), #99-287d%. G, Rexicornia elegans Capener, holotype. H, Spalirises rugosa (Funkhouser), #00-175i%. I, Stalobelus africanus (Distant), #00180j&. J, Streonus tenebrosus (Capener), #01-90a%. K, Takliwa carteri Funkhouser, #00-180c&. L, Tiberianus typicus Distant, #00-180d&. M, Tricoceps brunnipennis (Germar), #00-180g%. N, Vecranotus sinuatus (Funkhouser), #00-181a&. O, Zanzia vanderplanki (Capener), paratype, #00-181e&. Copyrights: A and D © 2003, Museum national d’Histoire naturelle, Paris. 112
Fig. 6.4. Centrotini: pronota (anterior aspects). A, Acanthophyes decens Capener, paratype, #00-137a&. B, Afraceronotus quinquefasciatus Boulard, holotype, #00-266c%. C, Anchon nodicornis (Germar), #99-287c&. D, Anchonastes hastatus (Capener), #01-225e%. E, Anchonobelus aries (Jacobi), #99-287j&. F, Anchonomonoides expansus (Capener), #01-225g%. G, Aurinotus auricornis (Capener), holotype. H, Barsumas basilicus Capener, #00-160a&. I, Barsumoides ngoumae Boulard, holotype, #00-266b%. J, Bleccia fastidiosus (Capener), #00-137f&. K, Capeneralus lobatus (Capener), #00-160b&. L, Capeneriana tenuicornis Boulard, holotype, #00-266a&. M, Centrotus cornutus (Linnaeus), #99-190b&. N, Cornutobelus mutabilis (Capener), paratype, #00-160e&. O, Daconotus projectus (Funkhouser), #00-160h&. Copyrights: B, D, F, I, and L © 2003, Museum national d’Histoire naturelle, Paris. 113
Fig. 6.5. Centrotini: pronota (anterior aspects). A, Dagonotus lectus Capener, paratype, #00-160i%. B, Distanobelus sericeus Capener, paratype, #99-141e&. C, Euceropsila primus Boulard, #01-225j%. D, Eumocentrulus cesalpinae Boulard, holotype, #00-265h&. E, Eumonocentrus erectus Schmidt, #00-161f&. F, Farcicaudia nitida (Funkhouser), #00-161d&. G, Flatyperphyma flavocristatus Boulard, holotype, #00265g&. H, Flexanotus albescens (Funkhouser), paratype, #00-161e&. I, Foliatrotus elephas (Capener), #00161f&. J, Hamma recta (Vignon), #01-256h&. K, Jacobiana alticornis (Jacobi), #00-161g&. L, Kallicrates bellicornis (Capener), #00-174a%. M, Leprechaunus cristatus Capener, #00-174f&. N, Menthogonus badhami Capener, paratype, #00-174g&. O, Mitranotus albofascipennis Boulard, #00-265c&. Copyrights: C, D, G, J, and O © 2003, Museum national d’Histoire naturelle, Paris. 114
Fig. 6.6. Centrotini: pronota (anterior aspects). A, Monanchon monanchonus Boulard, holotype, #00265b&. B, Monocentrus leighi (Distant), #00-174m&. C, Paraxiphopoeus gestroi (Schmidt), #01-90b%. D, Platybelus flavus (Signoret), #01-226b%. E, Promitor nominatus Distant, #00-175g%. F, Rachinotus marshalli (Distant), #99-287d%. G, Rexicornia elegans Capener, holotype. H, Spalirises rugosa (Funkhouser), #00-175i%. I, Stalobelus africanus (Distant), #00-180j&. J, Streonus tenebrosus (Capener), #01-90a%. K, Takliwa carteri Funkhouser, #00-180c&. L, Tiberianus typicus Distant, #00-180d&. M, Tricoceps brunnipennis (Germar), #00-180g%. N, Vecranotus sinuatus (Funkhouser), #00-181a&. O, Zanzia vanderplanki (Capener), paratype, #00-181e&. Copyrights: A and D © 2003, Museum national d’Histoire naturelle, Paris. 115
Fig. 6.7. Centrotini: heads. A, Acanthophyes decens Capener, #00-137a&. B, Afraceronotus quinquefasciatus Boulard, #00-266c%. C, Anchon nodicornis (Germar), #99-287c&. D, Anchonastes hastatus (Capener), #01-225e%. E, Anchonobelus aries (Jacobi), #99-287j&. F, Anchonomonoides expansus (Capener), #01-225g%. G, Aurinotus auricornis (Capener), holotype. H, Barsumas basilicus Capener, #00160a&. I, Barsumoides ngoumae Boulard, holotype, #00-266b%. J, Bleccia fastidiosus (Capener), #00137f&. K, Capeneralus lobatus (Capener), #00-160b&. L, Capeneriana tenuicornis Boulard, holotype, #00266a&. M, Centrotus cornutus (Linnaeus), #99-82c&. N, Cornutobelus mutabilis (Capener), paratype, #00160e&. O, Daconotus projectus (Funkhouser), #00-160g%. Copyrights: B, D, F, I, and L © 2003, Museum national d’Histoire naturelle, Paris. fcl, frontoclypeal lobes. 116
Fig. 6.8. Centrotini: heads. A, Dagonotus lectus Capener, paratype, #00-160i%. B, Distanobelus sericeus Capener, paratype, #99-141e&. C, Euceropsila primus Boulard, #01-225j%. D, Eumocentrulus cesalpinae Boulard, holotype, #00-265h&. E, Eumonocentrus bifurcus (Funkhouser), #00-161b%. F, Flexanotus albescens (Funkhouser), paratype, #00-161e&. G, Foliatrotus elephas (Capener), #01-225d%. H, Hamma recta (Vignon), #01-256h&. I, Jacobiana alticornis (Jacobi), #00-161h%. J, Kallicrates bellicornis (Capener), #00-174a%. K, Leprechaunus cristatus Capener, #00-174f&. L, Menthogonus badhami Capener, paratype, #00-174g&. M, Mitranotus albofascipennis Boulard, #00-265c&. N, Monanchon monanchonus Boulard, holotype, #00-265b&. O, Monocentrus leighi (Distant), #00-174m&. Copyrights: C, D, G, H, M, and N © 2003, Museum national d’Histoire naturelle, Paris. fcl, frontoclypeal lobes. 117
Fig. 6.9. Centrotini: heads. A, Paraxiphopoeus schubotzi (Jacobi), #00-175f&. B, Platybelus flavus (Signoret), #01-226b%. C, Promitor nominatus Distant, #00-175g%. D, Rexicornia elegans Capener, holotype. E, Spalirises rugosa (Funkhouser), #00175i%. F, Streonus tenebrosus (Capener), paratype, #00-180b&. G, Tiberianus typicus Distant, #00-180d&. H, Tricoceps brunnipennis (Germar), #00-180g%. I, Vecranotus sinuatus (Funkhouser), #00-181a&. J, Zanzia vanderplanki (Capener), paratype, #00181e&. Copyrights: B © 2003, Museum national d’Histoire naturelle, Paris. fcl, frontoclypeal lobes.
118
Fig. 6.10. Centrotini: wings. A, Centrotus cornutus (Linnaeus), forewing, #99-190b&. B, C. cornutus (Linnaeus), hind wing, #99-190b&. C, C. cornutus (Linnaeus), left forewing (inverted), #99-190b&. D, C. cornutus (Linnaeus), #99-82c&. E, Acanthophyes decens Capener, paratype, #00137a&. F, Afraceronotus quinquefasciatus Boulard, left forewing (inverted), holotype, #00-266c&. p, pterostigma. 119
Fig. 6.11. Centrotini: wings. A, Anchon nodicornis (Germar), #99287c&. B, Anchonastes hastatus (Capener), #01-225e%. C, Anchonobelus aries (Jacobi), #99-93d%. D, Anchonomonoides expansus (Capener), paratype, 01-225g%. E, Aurinotus auricornis (Capener), holotype. F, Barsumas basilicus Capener, #00-160a&. G, Barsumoides ngoumae Boulard, holotype, #00-266b%. H, Bleccia fastidiosus (Capener), #00137f&. I, Capeneralus lobatus (Capener), #00-160b&. J, Capeneriana tenuicornis Boulard, holotype, #00-266a&. p, pterostigma. 120
Fig. 6.12. Centrotini: wings. A, Cornutobelus mutabilis (Capener), paratype, #00-160e&. B, Daconotus projectus (Funkhouser), left forewing (inverted), #00-160g%. C, Dagonotus lectus Capener, paratype, #00-160i%. D, Distanobelus sericeus Capener, paratype, #99-141d%. E, Euceropsila primus Boulard, #01-225j%. F, Eumocentrulus cesalpinae Boulard, holotype, #00265h&. G, Eumonocentrus erectus Schmidt, #00-161a&. H, Farcicaudia nitida (Funkhouser), #00-161d&. I, Flatyperphyma flavocristatus Boulard, holotype, #00-265g&. J, Flexanotus albescens (Funkhouser), paratype, #00161e&. p, pterostigma. 121
Fig. 6.13. Centrotini: wings. A, Foliatrotus elephas (Capener), #00-161f&. B, Hamma recta (Vignon), #01-256h&. C, Jacobiana alticornis (Jacobi), #00-161g&. D, Kallicrates bellicornis (Capener), #00-174a%. E, Leprechaunus cristatus Capener, #00-174f&. F, Menthogonus badhami Capener, paratype, #00-174g&. G, Mitranotus albofascipennis Boulard, holotype, #00-265c&. H, Monanchon monanchonus Boulard, holotype, #00265b&. I, Monocentrus deletus Melichar, #01-225i%. J, Paraxiphopoeus schubotzi (Jacobi), #00-175f&. p, pterostigma.
122
Fig. 6.14. Centrotini: wings. A, Platybelus flavus (Signoret), #01226b%. B, Promitor nominatus Distant, #00-175g%. C, Rachinotus marshalli (Distant), #99-287d%. D, Rexicornia elegans Capener, left forewing (inverted), holotype. E, Spalirises rugosa (Funkhouser), #00175i%. F, Stalobelus africanus (Distant), left forewing (inverted), #00180j&. G, Streonus tenebrosus (Capener), paratype, #00-180b&. H, Takliwa carteri Funkhouser, #00-180c&. I, Tiberianus typicus Distant, #00-180d&. J, Tricoceps brunnipennis (Germar), #00-180g%. p, pterostigma. 123
Fig. 6.15. Centrotini: wings (A-B) and metathoracic legs. A, Vecranotus sinuatus (Funkhouser), left forewing (inverted), #00-181a&. B, Zanzia vanderplanki (Capener), paratype, #00181e&. C, Anchonobelus aries (Jacobi), left metathoracic leg, #99-93d%. D, Leprechaunus cristatus Capener, left metathoracic leg, #00-174f&. p, pterostigma.
124
Fig. 6.16. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Acanthophyes decens Capener, paratype, #00137a&. C-D, Anchon nodicornis (Germar), #99-287a&. E, Anchonastes hastatus (Capener), #00-137b&. F, Barsumas basilicus Capener, #00160a&. G-H, Anchonobelus aries (Jacobi), #99-287f&. I-J, Anchonomonoides expansus (Capener), paratype #01-225f&. Copyrights: I-J © 2003, Museum national d’Histoire naturelle, Paris.
125
Fig. 6.17. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Bleccia fastidiosus (Capener), #00-137f&. C-D, Capeneralus lobatus (Capener), #00-160b&. E-F, Centrotus cornutus (Linnaeus), #99-82c&. G-H, Cornutobelus mutabilis (Capener), paratype, #00-160e&. I, Daconotus projectus (Funkhouser), #00-160h&. J, Eumonocentrus erectus Schmidt, #00-161a&.
126
Fig. 6.18. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Distanobelus sericeus Capener, paratype, #99-141e&. C-D, Eumocentrulus deductus (Capener), #01-69b&. E, Farcicaudia nitida (Funkhouser), #00-161d&. F, Takliwa carteri Funkhouser, #00-180c&. G-H, Flexanotus albescens (Funkhouser), paratype, #00-161e&. I-J, Foliatrotus elephas (Capener), #00-161f&. Copyrights: C-D © 2003, The Natural History Museum, London.
127
Fig. 6.19. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Hamma nodosa Buckton, #99-93f&. C-D, Jacobiana alticornis (Jacobi), #00-161g&. E-F, Kallicrates bellicornis (Capener), #00-174b&. G-H, Leprechaunus cristatus Capener, #00-174f&. I-J, Menthogonus badhami Capener, paratype, #00-174g&.
128
Fig. 6.20. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Monocentrus leighi (Distant), #00-174i%. C-D, Paraxiphopoeus schubotzi (Jacobi), #00-175f&. E-F, Platybelus flavus (Signoret), #00-13a&. G-H, Promitor nominatus Distant, #01-75i&. I-J, Rachinotus marshalli (Distant), #99-287e&. Copyrights: G-H © 2003, The Natural History Museum, London.
129
Fig. 6.21. Centrotini: female second valvulae (lateral aspects and closeup of apex). A-B, Spalirises rugosa (Funkhouser), #00-175h&. C-D, Stalobelus africanus (Distant), #00-180j&. E-F, Streonus tenebrosus (Capener), paratype, #00-180b&. G, Tiberianus typicus Distant, #00-180d&. H, Vecranotus sinuatus (Funkhouser), reversed from right lateral aspect, #00-181a&. I-J, Tricoceps brunnipennis (Germar), #00-180f&.
130
Fig. 6.22. Centrotini: male styles (lateral aspects). A, Anchon nodicornis (Germar), #99-287j%. B, Anchonastes hastatus (Capener), #01-225e%. C, Anchonobelus aries (Jacobi), #99-93d%. D, Anchonomonoides expansus (Capener), #01-225g%. E, Barsumoides sp., #01-226e%. F, Bleccia fastidiosus (Capener), #00-137e%. G, Capeneriana tenuicornis Boulard, #01-226k%. H, Centrotus cornutus (Linnaeus), #99-97c%, right style (inverted). I, Cornutobelus mutabilis (Capener), #00-160f%. J, Daconotus projectus (Funkhouser), #00-160g%. K, Dagonotus lectus Capener, paratype, #00-160i%. L, Distanobelus sericeus Capener, paratype, #99-141d%. M, Euceropsila primus Boulard, #01-225j%. N, Eumocentrulus deductus (Capener), #01-69c%. O, Eumonocentrus bifurcus (Funkhouser), #00-161b%. P, Farcicaudia nitida (Funkhouser), #00-161c%. Q, Foliatrotus elephas (Capener), #01-225d%. R, Hamma nodosa Buckton, #99-93e%. S, Jacobiana alticornis (Jacobi), #00-161h%. T, Kallicrates bellicornis (Capener), #00-174a%. U, Leprechaunus cristatus Capener, paratype, #00-174e%. V, Monocentrus leighi (Distant), #00-174h%. W, Paraxiphopoeus gestroi (Schmidt), #01-90b%. X, Platybelus flavus (Signoret), #01-226b%. Copyrights: B, D, E, G, M, Q, and X © 2003, Museum national d’Histoire naturelle, Paris; N © 2003, The Natural History Museum, London. c, clasp.
131
Fig. 6.23. Centrotini: male styles (A-J), aedeagi (K-O), and lateral plates (P-R) (lateral aspects). A, Promitor nominatus Distant, #00-175g%. B, Rachinotus marshalli (Distant), #99-287d%. C, Spalirises rugosa (Funkhouser), #00-175i%. D, Stalobelus sinuosus (Distant), #00-180a%. E, Streonus tenebrosus (Capener), #01-90a%. F, Takliwa carteri Funkhouser, #01-226c%. G, Tiberianus typicus Distant, #00180e%. H, Tricoceps brunnipennis (Germar), #00-180g%. I, Vecranotus sinuatus (Funkhouser), #00181b%. J, Zanzia vanderplanki (Capener), paratype, #01-75e%. K, Anchonobelus aries (Jacobi), #9993e%. L, Cornutobelus mutabilis (Capener), #00-160f%. M, Dagonotus lectus Capener, paratype, #00160i%. N, Euceropsila primus Boulard, #01-225j%. O, Kallicrates bellicornis (Capener), #00-174a%. P, Hamma nodosa Buckton, #99-93e%. Q, E. primus Boulard, #01-225j%. R, V. sinuatus (Funkhouser), #00181b%. Copyrights: F, N and Q © 2003, Museum national d’Histoire naturelle, Paris; J © 2003, The Natural History Museum, London. c, clasp. dl, dorsoapical lobe. 132
Fig. 6.24. Centrotini: maximum development of abdominal fine-structure (except in F-G). All scanning electron micrographs near tergum III (except in F-G). A, Acanthophyes decens Capener, #01-247a%. B, Anchon sp., #01-242f&. C, Anchonobelus aries (Jacobi), #01-247e&. D, Capeneriana tenuicornis Boulard, #01-226k%. E, Centrotus cornutus Linnaeus, #01-15a&. F, C. cornutus Linnaeus, #99-110a&, metathoracic leg. G, C. cornutus Linnaeus, #99-110a&, metathoracic leg. H, Eumonocentrus bifurcus (Funkhouser), #01-221d&. Copyrights: D © 2003, Museum national d’Histoire naturelle, Paris. i, inornate pit. l, lateral seta. m, microtrichia. c, cucullate seta. 133
Fig. 6.25. Centrotini: maximum development of abdominal fine-structure. All scanning electron micrographs near tergum III. A, Farcicaudia nitida (Funkhouser), #01-247d&. B, Hamma grahami (Distant), #01-227a&. C, Jacobiana tanganensis (Buckton), #00-161l&. D, J. tanganensis (Buckton), #00-161l&. E, Monocentrus bipennis (Walker), #01-33a%. F, M. bipennis (Walker), #01-33a%. G, Platybelus flavus (Signoret), #01-226b%. H, Rachinotus marshalli (Distant), #01-256f%. Copyrights: G © 2003, Museum national d’Histoire naturelle, Paris. i, inornate pit. l, lateral seta. m, microtrichia. 134
Fig. 6.26. Centrotini: maximum development of abdominal fine-structure. All scanning electron micrographs near tergum III. A, Streonus tenebrosus (Capener), #01-228a&. B, Takliwa carteri Funkhouser, #01-256b&. C, Tricoceps brunnipennis (Germar), #01-247i&. D, Vecranotus sinuatus (Funkhouser), #01-256a&. Copyrights: A © 2003, Museum national d’Histoire naturelle, Paris. i, inornate pit. l, lateral seta. m, microtrichia
135
7. Tribe CENTROTYPINI Haupt, 1929 Old World: Australasian and Oceanian and Indomalayan Regions Figs. 7.1-7.3 Type genus: Centrotypus Stål, 1869
Centrotypini Haupt, 1929c [new tribe, first proposed in Oxyrhachinae]: reinstated in Centrotinae (Evans 1948b); equals Leptocentrini Distant, 1908g (Yuan and Cui 1987a, 1988a) [error]; reinstated (Yuan and Chou 1988a); implicitly equals Leptocentrini Distant, 1908g (Ananthasubramanian 1996a) based on placement of Centrotypus [error].
Diagnostic characters.—Frontoclypeal lobes indistinct, not extending to apex of frontoclypeus. Posterior pronotal process straight at base. Scutellum with apices blunt or rounded. Forewing with s crossvein near r-m2 crossvein and angled as in Fig. 7.1 G, r-m1 crossvein originating near or distad of first division of R vein, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae. Second valvulae without significant broadening, narrow near base, curved, dorsal teeth fine and absent apically. Male style clasp oriented laterally, apex membranous, elliptical or circular, angled dorsally; style shank with significant arch medially. Abdominal acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia, anterior tergal borders not modified. Description.—Length 6.5-7.5 mm. Color black, metallic purple or blue, black, or combinations thereof. HEAD (Figs. 7.1 E-F): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and not extending to apex of 136
frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs 7.1 A-D): suprahumeral horns present; posterior process straight at base, appressed against scutellum or not, extending significantly past mcu3 vein in forewing. SCUTELLUM: emarginate with apices blunt or rounded, concealed by posterior process or not (varies interspecifically in Centrotypus), 1 lateral apex or none visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax. Pleuron: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 7.1 G and 7.2 A): sub-hyaline with dark streaks; apical limbus broad; s crossvein near r-m2 crossvein and angled as in Fig. 7.1 G; m-cu1 crossvein present or absent (varies intra- and interspecifically in Centrotypus) and m-cu2 crossvein absent; M and Cu veins separate at base (Fig. 7.1 G) or adjacent (Fig. 7.2 A); R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating near or distad of first split of R vein, parallel to longitudinal veins; R, M, and Cu veins not parallel apically; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 7.1 H): R4+5 and M1+2 veins not fused (4 apical cells).
PRO-
AND MESOTHORACIC LEGS:
tibiae not
foliaceous; mesothoracic tibia without row(s) of cucullate; mesothoracic femur with ab- and adlateral cucullate setae.
METATHORACIC
LEG
(Fig. 7.2 B): ventral margin of coxa,
trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibial row I with 13-24 cucullate setae, row II with 24-39 cucullate setae in irregular or double row, row III with 1522 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present; paired dorsal swellings absent; tergum III ventrolateral 137
margin shelflike. FEMALE
GENITALIA
(Figs. 7.2 C-F): second valvulae without significant
broadening, narrow near base, curved, dorsal teeth fine and absent apically, acute projections on dorsal margin present or absent; third valvulae without ventral projections. GENITALIA
MALE
(Figs. 7.3 A-E): lateral plate with or without (Fig. 7.3 D) short dorsoapical lobe
extending dorsally, without ventral lobe; subgenital plate without distinct division (Fig.7.3 E); style clasp (Figs. 7.3 A-B) oriented laterally, membranous, elliptical or circular, angled dorsally; style shank with significant arch medially. ABDOMINAL FINE STRUCTURE (Figs. 7.3 F-H): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Centrotypini is recorded from the Australasian/Oceanian and Indomalayan Regions (McKamey 1998a). Ecology.—Members of the tribe Centrotypini are reported from the host plant families Anacardiaceae, Moraceae, Rhamnaceae, Rubiaceae, and Santalaceae (Table 26.2). Discussion.—Haupt (1929c) described the tribe Centrotypini in the subfamily Oxyrhachinae (now tribe Oxyrhachini) to include those treehoppers without folicaeous legs or distinct pleural lobes. Evans (1948b) believed the Centrotypini belonged in the subfamily Centrotinae, rather than the former subfamily Oxyrhachinae.
Yuan and Chou (2002a)
defined the Centrotypini as those treehoppers with 4 apical cells in the hind wing, large foliaceous suprahumeral horns, and the posterior process in continuous contact with scutellum.
The above interpretations of Centrotypini, although they include important
characteristics, are largely based on symplesiomorphies. According to the phylogenetic analysis (Fig. 24.1), the Centrotypini as defined here, form a monophyletic group united by the synapomorphy of blunt or rounded scutellar apices. 138
The tribe Centrotypini is closely related to the Old World tribes Leptocentrini, Leptobelini, and Maarbarini and is the sister group of the tribe Micreunini.
Although
Micreunini (a monotypic tribe) plus the Centrotypini seem to form a monophyletic group, no synapomorphy was found to justify grouping them into one tribe. Future morphological and molecular analyses, however, may elucidate their relationships. Generic revisions are recommended for both Centrotypus and Emphusis due to their morphological similarities. Genera formerly placed in the Centrotypini are here referred to the tribes Terentiini (Crito and Otinotoides), Leptocentrini (Peltzerella), and Maarbarini (Pogon). See the discussion of the tribe Terentiini for new combinations of former Emphusis species.
Genera of the tribe Centrotypini Centrotypus Stål, 1866a (type species: Membracis flexuosa Fabricius by subsequent designation). Emphusis Buckton, 1903a (type species: E. tumescens Buckton by monotypy, junior synonym of E. obesa (Fairmaire)). Specimens examined.—Centrotypus sp., as det. in NCSU, #70-217a&, #70-217b&; C. assamensis (Fairmaire), det. F. Yuan, SHMC, #01-22a%; C. flexuosus (Fabricius), as det. in USNM, #99-100a&, #99-100b%; Emphusis obesa (Fairmaire), det. Z.P. Metcalf, NCSU, #99-82g&—as det. in USNM, #99-100g%—as det. in NCSU, #00-221g&, #01-232d&—det. W.D. Funkhouser, USNM, #01-278b&.
139
Fig. 7.1. Centrotypini: pronota, (lateral aspects, A-B; and anterior aspects, C-D) heads (E-F), and wings (G-H). Bars = 3 mm. A, Centrotypus flexuosus (Fabricius), #99-100b%. B, Emphusis obesa (Fairmaire), #00221g&. C, C. flexuosus, #99-100b%. D, E. obesa, #00-221g&. E, C. flexuosus, #99-100b%. F, E. obesa, #00-221g&. G, C. flexuosus, #99100b%, right forewing. H, C. flexuosus, #99-100b%, right hind wing. fcl, frontoclypeal lobes.
140
Fig. 7.2. Centrotypini: wing (A), metathoracic leg (B), and female second valvulae (lateral aspects and closeup of apex, C-F). A, Emphusis obesa (Fairmaire), #00-221g&, right forewing. B, Centrotypus flexuosus (Fabricius), #99-100b%, left metathoracic leg. C-D, C. flexuosus, #99-100a&, second valvulae. E-F, E. obesa, #00-221g&, second valvulae.
141
Fig. 7.3 Centrotypini: male styles (lateral aspects, A-B), aedeagus (lateral aspect, C), lateral plate (lateral aspect, D), and subgenital plate (ventral aspect, E), and maximum development of abdominal fine structure (F-H) in Centrotypini. All scanning electron micrographs near tergum III. A, Centrotypus flexuosus (Fabricius), #99-100b%. B, Emphusis obesa (Fairmaire), #99100g%, reversed from light lateral aspect. C, E. obesa, #99-100g%. D, C. flexuosus, #99-100b%. E, E. obesa, #99-100g%. F, C. assamensis (Fairmaire), #01-22a%. G-H, E. obesa, #01-278b&. c, clasp. i, inornate pit. l, lateral seta.
142
8. Tribe CHOUCENTRINI Yuan, in Yuan and Chou 1988a Old World: Indomalayan Region Figs. 8.1-8.2 Type genus: Choucentrus Yuan, 1985a
Choucentrini Yuan, in Yuan and Chou 1988a [new tribe].
Diagnostic characters.—Pronotum with suprahumeral horns; posterior process curving dorsally at base, not appressed against scutellum. Forewing with s-crossvein absent, r-m1 crossvein originating near or distad of first division of R vein, bent towards R vein. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae in Dograna and Evanchon. Metathoracic tibial row II with single row of cucullate setae.
Female second valvulae (Dograna and Evanchon) not
broadened, narrow at base, curved, dorsal teeth fine or large. Male (Dograna) lateral plate with long dorsoapical lobe extending dorsally; style clasp oriented laterally, membranous, triangular, with basal thickening, angled ventrally, acuminate apex acute; style shank with significant arch at midpoint and preapical ventral extension. Abdominal anterior tergal borders modified into irregular ridges. Description.—Length 5.3-6.0 mm. Color brown to dark brown. HEAD (Figs. 8.1 EF): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct or not and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes or ocelli closer to eyes than each other; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 8.1 A-D): suprahumeral horns present; 143
posterior process
curving dorsally at base, not appressed against scutellum, extending significantly past m-cu3 vein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 2 lateral apices or 1 visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax.
Pleuron:
propleural lobe absent and mesopleural lobe not enlarged. FOREWING (Figs. 8.1 G, I): hyaline; apical limbus broad (exception: apical limbus narrow in Evanchon); s crossvein absent; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R vein confluent with M vein distad of its fork in Evanchon; forewing with R1 vein represented by distinct pterostigma in Evanchon, pterostigma present at or near R1 vein in Dograna; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating near or distad of first split of R vein, bent towards R vein; R, M, and Cu veins not parallel apically, not parallel. HIND WING (Fig. 8.1 H): R4+5 and M1+2 veins fused (3 apical cells) or not (4 apical cells). PROMESOTHORACIC LEGS
AND
(Dograna and Evanchon): tibiae not foliaceous; mesothoracic tibia
without row(s) of cucullate; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Dograna and Evanchon; Fig. 8.1 J): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral ventrolateral cucullate setae ventrolaterally; tibial row I with 18-23 cucullate setae, row II with 27 cucullate setae in single row, row III with 26-27 cucullate setae; tarsomere I with 1 or 2 cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges in Dograna and Evanchon; sternal carinae absent; paired dorsal swellings present in Evanchon; tergum III ventrolateral margin carinate or shelflike, abdominal setal bases not enlarged. FEMALE GENITALIA (Dograna and Evanchon, Figs. 8.2 A-C): second valvulae not broadened, 144
narrow at base, curved, dorsal teeth fine or large, acute projections on dorsal margin absent; third valvulae without ventral projections. MALE
GENITALIA
(Dograna, Figs. 8.2 D-E):
lateral plate with long dorsoapical lobe extending dorsally (Fig. 8.2 E), without ventral lobe; subgenital plate without distinct division; style clasp (Fig. 8.2 D) oriented laterally, membranous, triangular, with basal thickening, angled ventrally, acute apically; style shank with significant arch at midpoint and with preapical ventral extension. ABDOMINAL STRUCTURE
FINE
(Evanchon, Fig. 8.2 F): acanthae distinct, bases not heightened, acanthae divided
into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Choucentrini is recorded from the Indomalayan Region. (McKamey 1998a, Yuan and Chou 2002a). Although Choucentrus is reported from China (McKamey 1998a), neither Nast (1972a) or Yuan and Chou (2002a) reported it from Palearctic China. Ecology.—Host plant information for the tribe Choucentrini is unknown (Yuan and Chou 2002a). Discussion.—Yuan and Chou (1988a) erected the tribe Choucentrini for those treehoppers without a posterior process but with a “posterior branch” extending from the mesodorsal process and with 1 discoidal cell in the forewings. Here, the “posterior branch” of Yuan and Chou is interpreted as a slightly raised or dorsally angled posterior process, as seen in the Leptobelini. The tribe Choucentrini, as interpreted here, is monophyletic in the phylogenetic analysis (Fig. 24.9) and characterized by the absence of the s crossvein in the forewing (1 discoidal cell). Additionally, the posterior process is not appressed against the scutellum and the ab- and adlateral cucullate setae are absent on the mesothoracic femur. 145
The Choucentrini are closely related to the Leptobelini and the Maarbarini. Moreover, maarbarines and the genus Dograna have a triangular clasp with a basal thickening and acuminate apex. The monotypic genus Dograna (see discussion of Leptocentrini on Dograna and Hemicentrus), previously placed in the Leptocentrini, lacks features present in leptocentrines, such as the s-crossvein in the forewing, mesothoracic ab- and adlateral cucullate setae in the femur, and broadened second valvulae. The genus Evanchon is tentatively placed in the Choucentrini. Although the scrossvein is absent, no males were examined and the shape of the male style clasp is an important character in the diagnosis of this tribe. This genus was previously placed in the tribe Centrotini because R4+5 and M1+2 veins are fused in the hind wing (3 apical cells) and R1 vein is developed into a distinct pterostigma in the forewing. Evanchon, however, lacks mesothoracic ab- and adlateral cucullate setae in the femur that are present in all Centrotini specimens observed.
Genera of the tribe Choucentrini † no specimen examined * placement based on morphological similarity Choucentrus Yuan, 1985a (type species: C. sinensis Yuan by original designation), see figs. 35-36 of Yuan and Chou (2002a: 118-119).† Dograna Distant, 1908g (type species: D. suffulta Distant by original designation) [previously placed in Leptocentrini (McKamey 1998a)].
146
Evanchon Goding, 1903c (type species: Anchonoides serpentinus Funkhouser by original designation) [previously placed in Centrotini (McKamey 1998a)]. Specimens examined.—Dograna suffulta Distant, det. A.L. Capener, PPRI, #00220f&—det. M.S. Wallace, CASC, #02-189b%; Evanchon maculatum Funkhouser, as det. in USNM, #01-240f&; E. serpentinum (Funkhouser), as det. in USNM, #99-287h&, #99-287i&, E. variegatum (Funkhouser), as det. in USNM, #99-287g%, #99-288a%.
147
Fig. 8.1. Choucentrini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-I), and metathoracic leg (J). Bars = 3 mm. A, Dograna suffulta Distant, #00-220f&. B, Evanchon serpentinum (Funkhouser), #99-287i&. C, D. suffulta, #00-220f&. D, E. serpentinum, #99-287i&. E, D. suffulta, #00-220f&. F, E. serpentinum, #99-287i&. G, E. serpentinum, #99-287h&, left forewing (inverted). H, E. serpentinum, #99-287h&, left hind wing (inverted). I, D. suffulta, #00-220f&. J. D. suffulta, #00-220f&. fcl, frontoclypeal lobes. 148
Fig. 8.2. Choucentrini: female second valvulae (lateral aspects and closeup of apex, A-C), male style (lateral aspect, D) and lateral plate (lateral aspect, E), and maximum development of abdominal fine-structure (F). All scanning electron micrographs near tergum III. A-B, Dograna suffulta Distant, #00-220f&. C, Evanchon serpentinum (Funkhouser), #99-287h&. D-E, D. suffulta, #02-189b%. F, E. maculatum Funkhouser, #01-240f&. c, clasp. dl, dorsoapical lobe. i, inornate pit. m, microtrichia.
149
9. Tribe EBHULOIDESINI Goding, 1931 Old World: Indomalayan Region Figs. 9.1-9.2 Type genus: Ebhul Distant, 1908g
Ebhuloidesini Goding, 1931a [new tribe]: equals Gargarini Distant, 1908g (Metcalf and Wade 1965a) [error]; Ebhulini Yuan, in Yuan and Chou, 2002a [new tribe], herein equals Ebhuloidesini, NEW SYNONYMY.
Diagnostic characters.—Frontoclypeal lobes indistinct and not extending to apex of frontoclypeus.
Posterior pronotal process not concealing scutellum.
Scutellum not
shortened--with abdomen removed, notch and apices visible. Pleuron with mesopleural lobe enlarged. Forewings with R vein initial division R1+2+3 and R4+5, m-cu1 and m-cu2 crossveins absent, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins fused (3 apical cells). Tibiae foliaceous. Mesothoracic and metathoracic femur without ab- and adlateral cucullate setae. Metathoracic tibial row I without cucullate setae; tibial row II with or without cucullate setae, if present, in single row; tibial row III with cucullate setae; tarsomere I with 1 cucullate seta. Female second valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal margin without fine teeth. Male clasp oriented laterally, apex membranous, cylindrical, angled ventrally. Abdomen without paired dorsal swellings; acanthae distinct, bases not heightened, multidentate. Description.—Length 3.3-4.5 mm.
Color tan to dark brown, or combinations
thereof. HEAD (Fig. 9.1 C): frontoclypeal margins parallel or slightly converging ventrally, 150
frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections.
THORAX:
PRONOTUM (Figs. 9.1 A-B): suprahumeral horns absent; posterior process curving dorsally at base, not appressed against scutellum.
SCUTELLUM: emarginate with apices acute, not
concealed by posterior process; 1 lateral apex visible from dorsolateral view; not shortened-with abdomen removed, notch and apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe enlarged.
FOREWING (Fig. 9.1 D):
opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; R vein initial division R1+2+3 and R4+5; Cu1 vein abutting subcosta; m-cu1 and m-cu2 crossveins absent; M and Cu fused at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating near or distad of first division of R vein, bent towards R vein; R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein not significantly angled; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 9.1 E): R4+5 and M1+2 veins fused (3 apical cells).
PRO-
AND MESOTHORACIC LEGS:
tibiae foliaceous;
mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae.
METATHORACIC
LEG
(Figs. 9.1 F): ventral margin of coxa,
trochanter, and femur without enlarged setal bases; femur without ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibial row I without cucullate setae; tibia foliaceous, row II with (13 setae) or without cucullate setae, if present, in single row; tibial row III with 3-11 cucullate setae; tarsomere I with 1 cucullate seta. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases not enlarged. FEMALE GENITALIA (Fig. 9.2 A): second 151
valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal teeth absent or indiscernible, acute projections on dorsal margin absent; third valvulae without small ventral conelike projections. MALE GENITALIA (Fig: 9.2 B-C) lateral plate (Fig. 9.2 C) with short dorsoapical lobe extending laterally, without ventral lobe; subgenital plate without distinct division; style clasp (Fig. 9.2 B) oriented laterally, membranous, cylindrical, angled ventrally; style shank arched, apex past midpoint. ABDOMINAL FINE STRUCTURE (Figs. 9.2 EF): acanthae distinct, bases not heightened, acanthae multidentate. Chromosome numbers.—Male 2n= 17 or 19 (Table 26.3). Distribution.—The tribe Ebhuloidesini is recorded from the Indomalayan Region (McKamey 1998a). Ecology.—The Ebhuloidesini are reported from the host plant families Lauraceae and Moraceae (Table 26.2) and are reported to be tended by ants (Table 26.1). Ebhul has been observed providing maternal care in the form of egg guarding (Stegmann and Linsenmair 2002a). Discussion.—Goding (1931a) erected the tribe Ebhuloidesini for those treehoppers with R4+5 and M1+2 veins fused in the hind wing (3 apical cells) and with one or more sternal teeth. In it, he included only the type genus, Ebhuloides Goding, 1931b, which is now considered a junior synonym of Ebhul Distant, 1908g (Funkhouser 1951a). Metcalf and Wade (1965a) synonymized Ebhuloidesini with Gargarini Distant, 1908g. Yuan, in Yuan and Chou (2002a) recognized the new tribe Ebhulini, but the older name Ebhuloidesini, must be retained based on Article 40.1 (ICZN 1999a).
According to Yuan, this tribe is
characterized by a binsuate posterior process that does not abut the scutellum. In addition to
152
Goding’s and Yuan’s diagnostic features, the forewing of Ebhul has the first division of R vein as R1+2+3 and R4+5 rather than R1 and Rs, characteristic of most centrotines. The monotypic tribe Ebhuloidesini, recognized as a distinct group by Goding (1931a) and Yuan and Chou (2002a), appears as the sister group to a clade containing the Oxyrhachini and Hypsaucheniini in the phylogenetic analysis (Fig. 24.1). The Ebhuloidesini are closely related to the Oxyrhachini, Hypsaucheniini, and Terentiini. The Ebhuloidesini, Oxyrhachini, and Hypsaucheniini have sternal processes and similarly shaped female second valvulae and male style clasps, and lack meso- and metathoracic cucullate setae on the femur. In Yuan and Chou’s (2002a) phylogenetic tree, Ebhul is the sister group of the genera Hypsauchenia and Jingkara (Hypsaucheniini).
Genera of the tribe Ebhuloidesini Ebhul Distant, 1908g (type species: Centrotus varius Walker by original designation). Specimens examined.—Ebhul varium (Walker), as det. in USNM, #00-13f%, #0013g&, #01-90c&, #01-90d%.
153
Fig. 9.1. Ebhuloidesini: pronotum (lateral aspects, A; and anterior aspects, B), head (C), wings (D-E), and metathoracic leg (F). Bars = 3 mm. A-C, Ebhul varium (Walker), #01-90c&. D, E. varium, #0013f%, right forewing. E, E. varium, #00-13f%, right hind wing. F, E. varium, #01-90c&. fc, frontoclypeus.
154
Fig. 9.2. Ebhuloidesini: female second valvulae (lateral aspects, A), male style (lateral aspects, B) and lateral plate (lateral aspects, C), and maximum development of pronotal (D) and abdominal fine-structure (E-F). All abdominal scanning electron micrographs near tergum III. A, Ebhul varium (Walker), #0190c&. B-C, E. varium, #00-13f%. D-F, E. varium, #01-90d%. a, acanthus. i, inornate pit.
155
10. Tribe GARGARINI Distant, 1908 Old World: Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 10.1-10.18 Type genus: Gargara Amyot and Serville, 1843a
Gargararia Distant, 1908g [new division]: first treated as tribe Gargarini (Lallemand 1925a); elevated to subfamily Gargarinae (Esaki and Ishihara 1950a) [error]; returned to tribe Gargarini (Funkhouser 1951a). Coccosterphusaria Distant, 1908g [new division]: first treated as tribe Coccosterphini (Schmidt 1922i); herein equals Gargarini, NEW SYNONYMY. Tricentrini Ahmad and Yasmeen, 1972a [new tribe]: equals Terentiini Haupt, 1929c (Ahmad and Yasmeen 1979b) [error]; equals Centrotini Amyot and Serville, 1843a (Kirillova 1988a) [error]; herein equals Gargarini, NEW SYNONYMY. Aleptocentrini Thirumalai and Ananthasubramanian, 1985a [new tribe]: implicitly equals Uroxiphini Goding, 1930a (Ananthasubramanian 1996a) based on placement of Aleptocentrus [error]; herein equals Gargarini, NEW SYNONYMY. Madlini [sic: for Madlinini] Boulard, 1995d [new tribe]: spelling amended to Madlinini (McKamey 1997a); herein equals Gargarini, NEW SYNONYMY. Antialcidini Yuan and Zhang, in Yuan and Chou, 2002a [new tribe]: herein equals Gargarini, NEW SYNONYMY.
156
Diagnostic characters.—Frontoclypeal margins expanding gradually towards apex. Frontoclypeal lobes distinct or indistinct, not extending to apex of frontoclypeus. Posterior pronotal process straight at base, appressed against scutellum and not significantly extending past or not reaching m-cu3 crossvein in forewing. Scutellum shortened--with abdomen removed, at most apices visible. Forewing with r-m1 crossvein originating near or distad of first division of R vein (exception: r-m1 crossvein originating anterior to first split of R vein in Neomachaerotypus), strongly bent towards R. Hind wing with R4+5 and M1+2 veins fused (3 apical cells) (exceptions: hind wing R4+5 and M1+2 veins not fused in Aleptocentrus and Yasa). Mesothoracic femur with ab- and adlateral cucullate setae. Female second valvulae without significant broadening (exceptions: second valvulae with abrupt slight broadening past midpoint, tapering unevenly to apex in Antialcidas and Machaerotypus), narrow near base, curved (exception: not curved in Maurya). Abdomen with paired dorsal swellings (exceptions: paired dorsal swellings absent in Parayasa and Yasa). Abdominal setal bases at anterior tergal borders enlarged, not dispersed on terga (exceptions: abdominal setal bases not enlarged in Eucoccosterphus, Parayasa, and Yasa); anterior tergal borders not modified. Description.—Length 2-6.5 mm. Color black, tan, dark brown, red, or combinations thereof. HEAD (Figs. 10.4-10.5 A-E): frontoclypeal margins broadly expanding towards apex, frontoclypeal lobes distinct or not, not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes than each other in Aleptocentrus); vertex without toothlike projections. THORAX: PRONOTUM (Figs 10.1-10.3, Fig. 10.17): pronotum with numerous acute projections (spines) in Coccosterphus (Figs. 10.1 C, 10.2 J, 10.17 B), Eucoccosterphus (Figs. 10.1 F, 10.2 M, 10.17 C), and Madlinus (Figs. 10.1 J and 10.3 B); suprahumeral horns present or absent; posterior process straight at base, 157
appressed against scutellum (Fig. 10.17 D), not significantly extending past or not reaching m-cu3 crossvein in forewing. SCUTELLUM (Fig. 10.17): emarginate with apices acute, not concealed by posterior process (exceptions: scutellum concealed by posterior process in Cryptaspidia, Madlinus, Meoscentrina, and Gargarina), 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at most apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 10.5-10.8): hyaline or opaque; apical limbus broad (exceptions: apical limbus narrow in Madlinus and Eucoccosterphus, Figs. 10.7 E, H); s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins present or absent (m-cu2 crossvein varies interspecifically in Maurya and present in Neomachaerotypus); m-cu3 crossvein distad of M vein fork (exception: m-cu3 crossvein basad of M vein fork in Yasa, Fig. 10.8 I); M and Cu veins fused at base or adjacent; R and M veins not confluent preapically (exceptions: R4+5 vein confluent with M vein distad of its fork in Yasa, Fig. 10.8 I; varies interspecifically in Coccosterphus); R1 perpendicular to marginal vein or not; forewing with (Fig. 10.7 F) or without pterostigma, if present, near or at R1 vein (Fig.10.7 E) or ambiguously distad of R1 vein (Fig. 10.7 H); r-m1 crossvein originating near or distad of first split of R vein (exception: r-m1 crossvein originating anterior to first split of R vein in Neomachaerotypus), bent strongly towards R vein; R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein variable; base of R2+3 and R4+5 veins acute or truncate. HIND WING (Figs. 10.5 G; 10.6 B, D): R4+5 and M1+2 veins fused (3 apical cells) (exceptions: R4+5 and M1+2 veins not fused in Aleptocentrus and Yasa). PRO-
AND MESOTHORACIC LEGS:
tibiae not foliaceous;
prothoracic femur with ab- and adlateral cucullate setae in Eucoccosterphus and some species of Tricentrus; mesothoracic tibia without row(s) of cucullate setae (exceptions: 158
mesothoracic tibiae with row of cucullate setae in Cryptaspidia and Mesocentrina); mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 10.9
A): ventral margin of coxa and femur with enlarged setal bases in Coccosterphus, Madlinus, Tricentrus, and Xanthosticta; ventral margin of trochanter with enlarged setal bases in Coccosterphus and Madlinus, with very large spines in Cryptoparma, Sipylus, and Tricentrus (Fig. 10.9 A); femur with ab- and adlateral cucullate setae; femur with or without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with 10-39 cucullate setae, row II with 9-55 cucullate setae in irregular, double, or single row, row III with 15-36 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present or absent; paired dorsal swellings present (exceptions: paired dorsal swellings absent in Parayasa and Yasa); tergum III ventrolateral margin carinate or shelflike; abdominal setal bases at anterior tergal borders enlarged, not dispersed on terga (Fig. 10.17 D) (exceptions: abdominal setal bases at anterior tergal borders not enlarged in Eucoccosterphus, Parayasa, and Yasa).
FEMALE
GENITALIA
(Figs. 10.9-10.13): second
valvulae without significant broadening (exceptions: second valvulae with abrupt slight broadening past midpoint, tapering unevenly to apex in Antialcidas, Figs. 10.9 B-C, and Machaerotypus, Figs. 10.10 I-J ) narrow near base, curved (exception: not curved in Maurya), dorsal teeth variable in size, acute projections on dorsal margin present or absent, third valvulae without ventral projections. MALE GENITALIA (Figs. 10.13-10.16): lateral plate with or without short (Fig. 10.16 C) or long (Fig. 10.15 F) dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate with distinct division (exceptions: subgenital plate without distinct division in Eucoccosterphus and Parayasa); style clasp oriented 159
dorsoventrally (exceptions: style apex oriented laterally in Eucoccosterphus, Fig. 10.13 E, and Parayasa, Fig. 10.13 J), thickened (Fig. 10.13 I) or membranous (Fig. 10.13 M), rounded with acuminate projection (exceptions: clasp expanding dorsoventrally and laterally with sclerotized ridge in Eucoccosterphus, Fig. 10.13 P, elliptical or circular in Parayasa), not angled; style shank without significant arch. ABDOMINAL
FINE STRUCTURE
(Fig. 10.18):
acanthae distinct or not; bases heightened or not; acanthae without ornamentation, multidentate, or divided into threadlike microtrichia. Chromosome numbers.—Male 2n= 10, 13, 19, 20, 21, or 23 (Table 26.3). Distribution.—The
tribe
Gargarini
is
recorded
from
the
Afrotropical,
Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Gargarini are reported from the host plant families Alangiaceae,
Amaranthaceae,
Anacardiaceae,
Apocynaceae,
Araceae,
Araliaceae,
Asclepiadaceae, Betulaceae, Bignoniaceae, Bombacaceae, Cannabiaceae, Casuarinaceae, Celastraceae, Combretaceae, Compositae, Coriariaceae, Cruciferae, Ebenaceae, Eleagnaceae Ericaceae, Euphorbiaceae, Fagaceae, Gramineae, Guttiferae, Hamamelidaceae, Juglandaceae, Lauraceae, Leguminosae, Liliaceae, Lythraceae, Malvaceae, Melastomataceae, Meliaceae, Moraceae, Moringaceae, Myristicaceae, Myrtaceae, Nyctaginaceae, Oleaceae, Oxalidaceae, Pinaceae, Piperaceae, Polygonaceae, Rhamnaceae, Rhizophoraceae, Rosaceae, Rubiaceae, Rutaceae, Salicaceae, Santalaceae, Sapindaceae, Saxifragaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Theaceae, Tiliaceae, Ulmaceae, Verbenaceae, and Vitaceae.
Maurya,
Tricentrus, Erecticornia, and Gargara are the only centrotine genera reported from the family Eleagnaceae (Table 26.2). The genera Butragulus, Coccosterphus, Eucoccosterphus, Gargara, Parayasa, Tricentrus, and Tsunozemia are reported to be tended by ants (Table 160
26.1).
Some species of Gargara and Tricentrus are gregarious as nymphs
(Ananthasubramanian 1996a). Discussion.— The names Antialcidini Yuan and Zhang, in Yuan and Chou, 2002a; Coccosterphini Distant, 1908g; Madlinini Boulard, 1995d; and Tricentrini Ahmad and Yasmeen, 1972a are here considered junior synonyms of Gargarini Distant, 1908g, NEW SYNONYMIES. Although the tribes Gargarini (as Gargararia) and Coccosterphini (as Coccosterphusaria) are described in the same work (Distant 1908g), Gargarini is here chosen as the valid tribal name (ICZN 1999a, Article 24.2.1) because Gargarini (p. 59) was cited before Coccosterphini (p. 70) and Gargara is a much larger and more widespread genus than Coccosterphus. Distant (1908g) defined Gargararia as those treehoppers without suprahumeral horns and an exposed scutellum and the Coccosterphuaria as those with the scutellum concealed and with mesopleural teeth or lobes. Goding (1931a) provided similar definitions in his key to the Old World treehoppers. The scutellum, however, is concealed in several genera in Gargarini (Cryptaspidia, Madlinus, Mesocentrina) and is not concealed in the Coccosterphus specimens observed for this work Therefore, whether the scutellum is concealed by the posterior process appears to be a variable character in those Centrotinae tribes and genera where the posterior process is appressed against the scutellum (see also Terentiini discussion). This is somewhat surprising because the exposed scutellum character state has long defined the subfamily Centrotinae (Deitz 1975a). Additionally, no mesopleural teeth have been found in any Coccosterphus specimens.
Ananthasubramanian and
Ananthakrishnan (1975a) also stated that they could not find these teeth, a diagnostic character according to Distant’s (1908g) original description. 161
Ahmad and Yasmeen (1972a) erected the tribe Tricentrini for those treehoppers with spines on the ventral margin of the trochanter and provided phylogenetic evidence (Ahmad 1988a) for the monophyly of Tricentrini. In a key to centrotine tribes, Boulard (1995d) erected the tribe Madlinini for the genus Madlinus which has the scutellum concealed by the posterior process.
According to Yuan and Chou (2002a),
treehoppers in the tribe
Antialcidini have 3 apical cells in the hind wing, the scutellum is exposed, and suprahumeral horns are present. In their phylogenetic analysis of the Centrotinae using 19 morphological characters, the Gargara and Antialcidas are separate monophyletic lineages. They are both grouped into a larger clade (mostly unresolved), along with Aleptocentrus, Coccosterphus, and Tricentrus, and several other non-gargarine genera. The synonomies proposed here are based on the monophyly of the Gargarini, as defined here, in the phylogenetic analyses (Figs. 24.1, 24.10).
All genera share the
synapomorphies of the frontoclypeal margins increasing broadly in size, a shortened scutellum (with abdomen removed, at most only scutellar apices visible), and narrow second valvulae without significant broadening (exceptions: see description, Antialcidas and Machaerotypus). Many gargarines share other characteristics, such as R4+5 and M1+2 veins fused (3 apical cells) in the hind wing (3 apical cells), male style shape, and enlarged setal bases on the anterior tergal borders. A few genera, however, near the base of the tree, specifically
Aleptocentrus,
Yasa,
and
Parayasa
and
the
more
derived
genus
Eucoccosterphus, differ from the remaining genera in several features, including forewing venation and male style shape in Parayasa, male style shape in Eucoccosterphus, and forewing
venation
in
Yasa
(no
male
observed).
Aleptocentrus,
placed
by
Ananthasubramanian (1996a) in the Uroxiphini [equals Leptocentrini Distant, 1908g 162
(Dietrich et al. 2001a)] has R4+5 and M1+2 veins not fused in the hind wing (4 apical cells, no specimens observed).
Nevertheless, the forewing venation is very similar to that of
Coccosterphus (Ananthasubramanian 1996a). In the phylogenetic analysis, three of these four genera form monophyletic lineages (Figs. 24.10). Here, the four genera are placed within the Gargarini, but further morphological or molecular analyses are desirable to confirm this conclusion. Moreover, Tricentrus and Gargara are two of the four largest membracid genera. Tricentrus is the largest treehopper genus with 223 species and Gargara is the second largest genus with 184 species (McKamey 1998a). Justification for the classification presented here is partly supported in the membracid literature. A phylogeny of treehoppers based on two nuclear genes supports the grouping of Gargara and Tricentrus (Cryan et al. 2000a) using both parsimony and maximum likelihood methods.
Capener (1968a) believed that the genera Gargara and Coccosterphus were
closely related and that Coccosterphus should be included in Gargarini. In Ahmad’s (1988a) cladistic analysis of the Tricentrini, Gargarini and Tricentrini form a monophyletic group sister to the Centrotini. The genera Aleptocentrus and Coccosterphus form a monophyletic group in the phylogenetic analysis presented by Yuan and Chou (2002a: fig. 2). Although Ananthasubramanian and Ananthakrishnan (1975a) argued that Coccosterphini and Gargarini were distinct groups based on male genitalia, they believed that Gargara and Tricentrus and Coccosterphus and Parayasa were closely affiliated. In constrast, in a recent morphological analysis of the family Membracidae (Dietrich et al. 2001a), Tricentrus and Gargara do not form a monophyletic group. The Gargarini are closely related to the New World tribes Boocerini and Monobelini. Evidence for a close relationship between the Boocerini and Gargarini was demonstrated in a 163
maximum likelihood analysis of two nuclear genes by Cryan et al. (2000a). In this tree, the genus Brachybelus (Boocerini) is sister to the clade containing Gargara and Tricentrus. Male chromosome numbers in the Gargarini range from 2n=10 to 2n=23, the greatest range in any centrotine tribe (Table 26.3). A male specimen in the United States National Museum of Natural History, Washington, D.C., is here designated lectotype of Orthobelus flavipes Uhler (now Butragulus flavipes (Uhler)) (Uhler, 1896a: 284) in order to fix the identity of this species, which serves as the type of Butragulus. It bears the labels “Type, No. 3142, U.S.N.M.” and “Tricentrus basalis Walk.” and “Orthobelus flavipes Uhler” and “Loan from USNMNH 2020743” and “Wallace Research / #01-89b%” (the last supplied by Wallace, 2001). The specimen is badly damaged; the terminal end of the posterior process and the left forewing are mounted on cork beneath the specimen. The left prothoracic and mesothoracic legs and the right prothoracic and metathoracic legs are missing. There were 4 specimens of O. flavipes Uhler in the type tray at the USNM all bearing the lable “Type, No. 3142, U.S.N.M.” Uhler (1896a) did not distinguish a holotype among these four specimens in the original description. A male was selected due to the importance of the male genitalia in Centrotinae taxonomy. Kotogargara Matsumura is here considered a subgenus of Gargara and Centrotoscelus Funkhouser is considered a junior synonym of Tricentrus following McKamey (1998a). The elevation of Kotogargara to the generic level and recognition of Centrotoscelus by Yuan and Chou (2002a) merit further investigation. The genus Insitor Distant, formerly in Coccosterphini, is here placed in Centrotinae, incertae sedis, because no specimens were observed and previous generic and species descriptions are ambiguous. 164
Genera of the tribe Gargarini † no specimen examined * placement based on morphological similarity Aleptocentrus Thirumalai and Ananthasubramanian, 1985a (type species: A. notabilis Thirumalai and Ananthasubramanian by original designation), see figs. 9-14 of Thirumalai and Ananthasubramanian (1985a: 228) [previously placed in Leptocentrini (=Uroxiphini) (Ananthasubranmanian 1996a)].† Antialcidas Distant, 1916c (type species: Centrotus trifoliaceus Walker by monotypy) [previously placed in Antialcidini (Yuan and Chou 2002a)]. Butragulus Anufriev and Emel’yanov, 1988a (type species: Orthobelus flavipes Uhler by original designation). Coccosterphus Stål, 1869a (type species: Membracis minuta Fabricius by monotypy) [previously placed in Coccosterphini (McKamey 1998a)]. Cryptaspidia Stål, 1870c (type species: C. pubera Stål by subsequent designation). Cryptoparma Goding, 1931a (type species: Centrotypus parvus Funkhouser by original designation) [previously incertae sedis (McKamey 1998a)]. Erecticornia Yuan and Tian; in Yuan, Tian, and Xu, 1997a (type species: E. castanopinnae Yuan and Tian by original designation), see figs. 137-140 of Yuan and Chou (2002a: 279283) [previously placed in Antialcidini (Yuan and Chou 2002a)].†* Eucoccosterphus Ananthasubramanian and Ghosh, 1987a (type species: Anomus mucronicollis Motschulsky by original designation) [previously placed in Coccosterphini (McKamey 1998a)].
165
Gargara Amyot and Serville, 1843a (type species: Membracis genistae Fabricius by monotypy). Gargarina Ananthasubramanian, 1980a (type species: G. carinata Ananthasubramanian by original designation), see fig. 33 of Ananthasubramanian (1980a).† Kanada Distant, 1908g (type species: K. irvinei Distant by original designation) [previously placed in Coccosterphini (McKamey 1998a)]. Machaerotypus Uhler, 1896a (type species M. sellatus Uhler by monotypy, junior synonym of M. sibiricus (Lethierry)) [previously placed in Antialcidini (Yuan and Chou 2002a)]. Madlinus Boulard, 1995d (type species M. seychellensis Boulard by original designation) [previously placed in Madlinini (McKamey 1998a)]. Maurya Distant, 1916c (type species: Centrotus gibbosulus Walker by monotypy; preoccupied, replaced by Centrotus walkeri Atkinson) [previously placed in Antialcidini (Yuan and Chou 2002a)]. Mesocentrina Metcalf, 1952a (type species: Mesocentrus pyramidatus Funkhouser by original designation) [previously incertae sedis (McKamey 1998a)]. Neomachaerotypus Kato, 1935e (type species: N. eguchii Kato by original designation) see figs. 1-3 of Kato (1935e: 177) [previously placed in Centrotini (McKamey 1998a)].†* Nondenticentrus Yuan and Chou, in Yuan, Chou, and Cui, 1992a (type species: N. flavipes Yuan and Chou by original designation) [previously placed in Antialcidini (Yuan and Chou 2002a)]. Pantaleon Distant, 1916c (type species: Centrotus montifer Walker by monotypy) [previously placed in Antialcidini (Yuan and Chou 2002a)].
166
Parayasa Distant, 1916a (type species: P. typica Distant by original designation) [previously placed in Coccosterphini (McKamey 1998a)]. Sipylus Stål, 1866c (type species: Centrotus crassulus Stål by subsequent designation) [previously placed in Tricentrini (Yuan and Chou 2002a)]. Subrincator Distant, 1916b (type species: S. tonkinensis Distant by monotypy). Thelicentrus Yuan and Cui, 1988a (type species: T. xizangensis Yuan and Cui by original designation), see fig. 175 of Yuan and Chou (2002a: 327-328) [previously placed in Antialcidini (Yuan and Chou 2002a)].† Tribulocentrus Chou and Yuan, 1982a (type species: T. zhenbaensis Chou and Yuan by original designation), see fig. 174 of Yuan and Chou (2002a: 326-327) [previously placed in Antialcidini (Yuan and Chou 2002a)].† Tricentroides Distant, 1916a (type species: T. propria Distant by original designation) [previously placed in Tricentrini (McKamey 1998a)]. Tricentrus Stål, 1866c (type species: Centrotus fairmairei Stål by subsequent designation) [previously placed in Tricentrini (Yuan and Chou 2002a)]. Tsunozemia Kato, 1940b (type species Centrotus mojiensis Matsumura by original designation, junior synonym of T. paradoxa (Lethierry)). Xanthosticta Buckton, 1901a (type species Bolbonota grisea Buckton by subsequent designation, junior synonym of X. pygmaea (Walker)). Yasa Distant, 1908g (type species: Y. greeni Distant by original designation) [previously placed in Coccosterphini (McKamey 1998a)]. Specimens examined.—Antialcidas hyaloptera Chou and Yuan, det. F. Yuan, SHMC, #00-220a&; A. trifoliacea (Walker), [holotype of Centrotus trifoliaceus Walker], 167
BMNH—det. W.D. Funkhouser, USNM, #99-93g%; Butragulus flavipes (Uhler), [lectotype of Centrotus flavipes Uhler], USNM, #01-89b%—paralectotype, USNM, #01-89a&; Coccosterphus sp., det. M.S. Wallace, SHMC, #01-242c&; C. minutus (Fabricius), as det. in USNM, #99-110f%, #01-221a%—det. M.S.K. Ghauri, BMNH, #01-297b&, #01-297c%; C. obscurus Distant, as det. in USNM, #99-110g&; Cryptaspidia pubera Stål, as det. in USNM, #00-221e&, #00-221f%, #01-235d%; Cryptoparma parva (Funkhouser), [holotype of Centrotypus parvus Funkhouser], USNM, #71-363e%; Eucoccosterphus mucronicollis (Motschulsky), as det. in BMNH, #01-75g%, #01-75h&; E. tuberculatus (Motschulsky), as det. W.D. Funkhouser, USNM, #01-67a%; Gargara aenea Distant, as det. in NCSU; G. fraterna Distant, det. Z.P. Metcalf, NCSU, #00-12g&; G. genistae (Fabricius), det. A.P. Liang, NCSU, #99-110h&, #99-110i%—as det. in AMNH, #00-12e%, #00-12f&—as det. in USNM, #01-220a&; G. nyanzai Funkhouser, det. Z.P. Metcalf, NCSU, #00-12i%; Kanada irvinei Distant, det. W.D. Funkhouser, USNM, #00-228g&; Machaerotypus sibiricus (Lethierry) , as det. in USNM, #00-220b&, #00-220c%, #00-220j%; Madlinus seychellensis Boulard, neoallotype, MNHN, #00-265d%—holotype, MNHN, #00-265e&; Maurya angulata Funkhouser, as det. in USNM, #00-220d&; M. bicolor Funkhouser, allotype, BMNH, #01296h%; M. nodosa Funkhouser, paratype, SMTD—as det. in USNM, #01-247g&; M. walkeri Atkinson, [holotype of Centrotus gibbosulus Walker], BMNH; Mesocentrina pyramidata (Funkhouser), [holotype of Mesocentrus pyramidatus Funkhouser], USNM, #01-89g&; Nondenticentrus sp., det. M.S. Wallace, USNM, #01-89l&—det. M.S. Wallace, NCSU, #01214a%; Pantaleon dorsalis (Matsumura), as det. in USNM, #99-288b%, #99-288c&, #99288e&, #01-247h%—det. F. Yuan, SHMC #99-288d&; P. montiferum (Walker), [holotype of Centrotus montifer Walker], BMNH; Parayasa elegantula Distant, det. W.D. Funkhouser, 168
USNM, #00-229d&; P. typica Distant, det. W.D. Funkhouser, USNM, #00-229c%; Sipylus crassulus (Stål), as det. in USNM, #00-221c%, #00-221d&; S. dilatatus (Walker), as det. in USNM, #00-221k&; Subrincator tonkinensis Distant, paralectotype, BMNH, #01-75j&—det. M.S. Wallace, MNHN, #01-226h%, #01-235g&; Tricentroides orcus (Buckton), [holotype of Centrotus orcus Buckton], BMNH—as det. in BMNH, #01-297d&; Tricentrus curvicornis Funkhouser, det. Z.P. Metcalf, NCSU, #99-82h&; T. fairmairei (Stål), det. W.D. Funkhouser, USNM, #99-110b&—det. L.M. Russell, USNM #99-110c%—as det. in USNM, #01-16a%, #01-261b&; Tsunozemia paradoxa (Lethierry), as det. in USNM, #00-220e&; Xanthosticta pygmaea (Walker), as det. in USNM, #00-230e&, #00-230f%, #01-242a&; Yasa greeni Distant, paralectotype, BMNH, #01-75k&.
169
Fig. 10.1. Gargarini: pronota (lateral aspects). Bars = 3 mm. A, Antialcidas hyaloptera Chou and Yuan, #00-220a&. B, Butragulus flavipes (Uhler), lectotype, #01-89b%. C, Coccosterphus obscurus Distant, reversed from right lateral aspect, #99-110g&. D, Cryptaspidia pubera Stål, #00-221f%. E, Cryptoparma parva (Funkhouser), holotype, #71363e%. F, Eucoccosterphus mucronicollis (Motschulsky), #01-75g%. G, Gargara genistae (Fabricius), reversed from right lateral aspect, #99-110i%. H, Kanada irvinei Distant, #00-228g&. I, Machaerotypus sibiricus (Lethierry), #00220c%. J, Madlinus seychellensis Boulard, holotype, #00-265e&. K, Maurya angulata Funkhouser, #00-220d&. L, Mesocentrina pyramidata (Funkhouser), holotype, #01-89g&. M, Nondenticentrus sp., #01-89l&. N, Pantaleon dorsalis (Matsumura), #99-288e&. O, Parayasa typica Distant, #00-229c%. Copyrights: J © 2003, Museum national d’Histoire naturelle, Paris; F © 2003, The Natural History Museum, London.
170
Fig. 10.2. Gargarini pronota (lateral aspects, A-G; and anterior aspects, H-O). Bars = 3 mm. A, Sipylus crassulus (Stål), #00-221d&. B, Subrincator tonkinensis Distant, paralectotype, #01-75j&. C, Tricentroides orcus (Buckton), #01-297d&. D, Tricentrus fairmairei (Stål), #01-261b&. E, Tsunozemia paradoxa (Lethierry), #00-220e&. F, Xanthosticta pygmaea (Walker), #00-230f%. G, Yasa greeni Distant, paralectotype, #01-75k&. H, Antialcidas hyaloptera Chou and Yuan, #00-220a&. I, Butragulus flavipes (Uhler), lectotype, #01-89b%. J, Coccosterphus obscurus Distant, reversed from right lateral aspect, #99-110g&. K, Cryptaspidia pubera Stål, #00-221f%. L, Cryptoparma parva (Funkhouser), holotype, #71-363e%. M, Eucoccosterphus mucronicollis (Motschulsky), #01-75h&. N, Gargara genistae (Fabricius), #99-110i%. O, Kanada irvinei Distant, #00-228g&. Copyrights: B, G, and M © 2003, The Natural History Museum, London. 171
Fig. 10.3. Gargarini: pronota (anterior aspects). A, Machaerotypus sibiricus (Lethierry), #00-220c%. B, Madlinus seychellensis Boulard, holotype, #00-265e&. C, Maurya angulata Funkhouser, #00-220d&. D, Mesocentrina pyramidata (Funkhouser), holotype, #01-89g&. E, Nondenticentrus sp., #01-89l&. F, Pantaleon dorsalis (Matsumura), #99-288e&. G, Parayasa typica Distant, #00-229c%. H, Sipylus crassulus (Stål), #00-221d&. I, Subrincator tonkinensis Distant, paralectotype, #01-75j&. J, Tricentroides orcus (Buckton), #01-297d&. K, Tricentrus fairmairei (Stål), #01-261b&. L, Tsunozemia paradoxa (Lethierry), #00-220e&. M, Xanthosticta pygmaea (Walker), #00-230f%. N, Yasa greeni Distant, paralectotype, #01-75k&. Copyrights: B © 2003, Museum national d’Histoire naturelle, Paris; I, J, and N © 2003, The Natural History Museum, London. 172
Fig. 10.4. Gargarini: heads. A, Antialcidas hyaloptera Chou and Yuan, #00-220a&. B, Butragulus flavipes (Uhler), lectotype, #01-89b%. C, Coccosterphus obscurus Distant, reversed from right lateral aspect, #99110g&. D, Cryptaspidia pubera Stål, #00-221f%. E, Cryptoparma parva (Funkhouser), holotype, #71363e%. F, Eucoccosterphus mucronicollis (Motschulsky), #01-75h&. G, Gargara genistae (Fabricius), #99110i%. H, Kanada irvinei Distant, #00-228g&. I, Machaerotypus sibiricus (Lethierry), #00-220c%. J, Maurya angulata Funkhouser, #00-220d&. K, Mesocentrina pyramidata (Funkhouser), holotype, #01-89g&. L, Nondenticentrus sp., #01-89l&. M, Pantaleon dorsalis (Matsumura), #99-288e&. N, Sipylus crassulus (Stål), #00-221d&. O, Subrincator tonkinensis Distant, paralectotype, #01-75j&. fcl, frontoclypeal lobes. fm, frontoclypeal margins. Copyrights: F and O © 2003, The Natural History Museum, London. 173
Fig. 10.5. Gargarini: heads (A-F) and wings (F-G). A, Tricentroides orcus (Buckton), #01-297d&. B, Tricentrus fairmairei (Stål), #01-261b&. C, Tsunozemia paradoxa (Lethierry), #00-220e&. D, Xanthosticta pygmaea (Walker), #00-230f%. E, Yasa greeni Distant, paralectotype, #01-75k&. F, Gargara genistae (Fabricius), #99-110h&, right forewing. G, G. genistae, #99-110h&, right hind wing. Copyrights: A and E © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes. fm, frontoclypeal margins.
174
Fig. 10.6. Gargarini: wings. A, Coccosterphus minutus (Fabricius), #99-110f%, left forewing (inverted). B, C. minutus, #99-110f%, left hind wing (inverted). C, Tricentrus fairmairei (Stål), #99-110c%, left forewing (inverted). D, T. fairmairei, #99110c%, left hind wing (inverted).
175
Fig. 10.7. Gargarini: wings. A, Antialcidas trifoliacea (Walker), #99-93g%. B, Butragulus flavipes (Uhler), paralectotype, #01-89a&, left forewing (inverted). C, Cryptaspidia pubera Stål, #00-221e&. D, Cryptoparma parva (Funkhouser), holotype, #71-363e%. E, Eucoccosterphus mucronicollis (Motschulsky), #0175h&. F, Kanada irvinei Distant, #00-228g&, left forewing (inverted). G, Machaerotypus sibiricus (Lethierry), #00-220b&. H, Madlinus seychellensis Boulard, neoallotype, #00-265d%. I, Maurya angulata Funkhouser, #00-220d&. J, Mesocentrina pyramidata (Funkhouser), holotype, #01-89g&. p, pterostigma.
176
Fig. 10.8. Gargarini: wings. A, Nondenticentrus sp., #01-89l&. B, Pantaleon dorsalis (Matsumura), #99-288d&. C, Parayasa typica Distant, #00-229c%. D, Sipylus crassulus (Stål), #00-221d&. E, Subrincator tonkinensis Distant, paralectotype, #01-75j&, left forewing (inverted). F, Tricentroides orcus (Buckton), #01-297d&. G, Tsunozemia paradoxa (Lethierry), #00-220e&, left forewing (inverted). H, Xanthosticta pygmaea (Walker), #00-230e&, left forewing (inverted). I, Yasa greeni Distant, paralectotype, #01-75k&. p, pterostigma. 177
Fig. 10.9. Gargarini: metathoracic leg (A) and female second valvulae (lateral aspects and closeup of apex, B-E). A, Tricentrus fairmairei (Stål), #99-110c%, left metathoracic leg. B-C, Antialcidas hyaloptera Chou and Yuan, #00-220a&. D-E, Butragulus flavipes (Uhler), paralectotype, #01-89a&.
178
Fig. 10.10. Gargarini: female second valvulae (lateral aspects and closeup of apex). A-B, Coccosterphus obscurus Distant, #99110g&. C, Cryptaspidia pubera Stål, #00-221e&. D, Kanada irvinei Distant, #00-228g&. E-F, Eucoccosterphus mucronicollis (Motschulsky), #01-75h&. G-H, Gargara genistae (Fabricius), #99110h&. I-J, Machaerotypus sibiricus (Lethierry), #00-220b&. Copyrights: E-F © 2003, The Natural History Museum, London.
179
Fig. 10.11. Gargarini: female second valvulae (lateral aspects and closeup of apex). A-B, Maurya angulata Funkhouser, #00-220d&. C, Mesocentrina pyramidata (Funkhouser), holotype, #01-89g&. D, Tsunozemia paradoxa (Lethierry), #00-220e&. E-F, Nondenticentrus sp., #01-89l&. G-H, Pantaleon dorsalis (Matsumura), #99-288c&. I-J, Parayasa elegantula Distant, #00-229d&.
180
Fig. 10.12. Gargarini: female second valvulae (lateral aspects and closeup of apex). A-B, Sipylus crassulus (Stål), #00-221d&. C-D Subrincator tonkinensis Distant, paralectotype, #01-75j&. E-F, Tricentroides orcus (Buckton), #01-297d&. G-H, Tricentrus fairmairei (Stål), #99-110b&. I-J, Xanthosticta pygmaea (Walker), #00-230e&. Copyrights: C-F © 2003, The Natural History Museum, London.
181
Fig. 10.13. Gargarini: female second valvulae (lateral aspects and closeup of apex, A-B) and male styles (lateral aspects, C-M; dorsal aspect, N-P ). A-B Yasa greeni Distant, paralectotype, #0175k&. C, Antialcidas trifoliacea (Walker), #99-93g%. D, Cryptoparma parva (Funkhouser), holotype, #71-363e%. E, Eucoccosterphus mucronicollis (Motschulsky), #01-75g%. F, Machaerotypus sibiricus (Lethierry), #00-220c%. G, Maurya bicolor Funkhouser, allotype, #01296h%. H, Nondenticentrus sp., #01-214a%. I, Pantaleon dorsalis (Matsumura), #99-288b%. J, Parayasa typica Distant, #00-229c%. K, Sipylus crassulus (Stål), #00-221c%. L, Subrincator tonkinensis Distant, #01-226h%. M, Tricentrus fairmairei (Stål), #99-110c%. N, A. trifoliacea (Walker), #99-93g%, left style. O, Butragulus flavipes (Uhler), lectotype, #01-89b%, left style. P, E. mucronicollis (Motschulsky), #01-75g%, left style. Copyrights: L © 2003, Museum national d’Histoire naturelle, Paris; E and P © 2003, The Natural History Museum, London. c, clasp.
182
Fig. 10.14. Gargarini: male styles (dorsal aspects, A-G) and aedeagi (lateral aspects, H-L). A, Gargara genistae (Fabricius), #99-110i%, left style. B, Machaerotypus sibiricus (Lethierry), #00-220c%, right style. C, Nondenticentrus sp., #01-214a%, right style. D, Pantaleon dorsalis (Matsumura), #99-288b%, left style. E, Sipylus crassulus (Stål), #00-221c%, left style. F, Subrincator tonkinensis Distant, #01-226h%, left and right styles. G, Tricentrus fairmairei (Stål), #99110c%, left style. H, Antialcidas trifoliacea (Walker), #99-93g%. I, Cryptaspidia pubera Stål, #00-221f%. J, Eucoccosterphus mucronicollis (Motschulsky), #0175g%. K, G. genistae, #99-110i%. L, M. sibiricus, #00-220c%. Copyrights: F © 2003, Museum national d’Histoire naturelle, Paris; J © 2003, The Natural History Museum, London.
183
Fig. 10.15. Gargarini: male aedeagi (A-E) and lateral plates (F-L)(lateral aspects). A, Maurya bicolor Funkhouser, allotype, #01-296h%. B, Nondenticentrus sp., #01-214a%. C, Sipylus crassulus (Stål), #00-221c%. D, Subrincator tonkinensis Distant, #01-226h%, reversed from right lateral aspect. E, Tricentrus fairmairei (Stål), #99-110c%. F, Antialcidas trifoliacea (Walker), #99-93g%. G, Coccosterphus minutus (Fabricius), #99-110f%. H, Cryptoparma parva (Funkhouser), holotype, #71-363e%. I, Eucoccosterphus mucronicollis (Motschulsky), #01-75g%. J, Machaerotypus sibiricus (Lethierry), #00-220c%. K, Maurya bicolor Funkhouser, allotype, #01-296h%. L, Nondenticentrus sp., #01-214a%. Copyrights: D © 2003, Museum national d’Histoire naturelle, Paris; I © 2003, The Natural History Museum, London. dl, dorsoapical lobe.
184
Fig. 10.16. Gargarini: male lateral plates (lateral aspects, A-D) and subgenital plates (ventral aspects, E-G). A, Parayasa typica Distant, #00229c%. B, Sipylus crassulus (Stål), #00-221c%. C, Subrincator tonkinensis Distant, #01-226h%. D, Tricentrus fairmairei (Stål), #99-110c%. E, Cryptaspidia pubera Stål, #00-221f%. F, Pantaleon dorsalis (Matsumura), #99-288b%. G, Parayasa typica Distant, #00-229c%. Copyrights: C © 2003, Museum national d’Histoire naturelle, Paris. dl, dorsoapical lobe. d, subgenital plate division.
185
Fig. 10.17. Gargarini: scanning electron micrographs of pronota. A, Butragulus flavipes (Uhler), lectotype, #01-89b%, reversed from right dorsolateral aspect. B, Coccosterphus minutus (Fabricius), #01-221a%. C, Eucoccosterphus tuberculatus (Motschulsky), #0167a%. D, Gargara genistae (Fabricius), #01-220a&. E, Nondenticentrus sp., #01-89l&. e, enlarged setal bases at anterior tergal borders. sc, scutellum. sp, spine.
186
Fig. 10.18. Gargarini: maximum development of abdominal fine-structure. All scanning electron micrographs near tergum III. A, Butragulus flavipes (Uhler), lectotype, #01-89b%. B, Coccosterphus minutus (Fabricius), #01-221a%. C, Coccosterphus sp., #01-242c&. D, Cryptaspidia pubera Stål, #01-235d%. E, Eucoccosterphus tuberculatus (Motschulsky), #01-67a%. F, Subrincator tonkinensis Distant, #01-235g&. G, Tricentrus fairmairei (Stål), #01-16a%. H, Xanthosticta pygmaea (Walker), #01-242a&. Copyrights: F © 2003, Museum national d’Histoire naturelle, Paris. a, acanthus. i, inornate pit. l, lateral seta. m, microtrichia.
187
11. Tribe HYPSAUCHENIINI Distant, 1908 Old World: Indomalayan and Palearctic Regions Figs. 11.1-11.8 Type genus: Hypsauchenia Germar, 1835a
Hypsaucheniaria Distant, 1908g [new division]: first treated as tribe Hypsaucheniini (Schmidt 1926d).
Diagnostic characters.—Fronotclypeal lobes distinct (exception: frontoclypeal lobes indistinct in Pyrgauchenia) and not extending to apex of frontoclypeus. Posterior pronotal process not concealing scutellum. Median anterior pronotal horn present, recurved; short suprahumeral horns present at tip of median anterior horn. Pleuron with propleural lobe present and mesopleural lobe enlarged. Forewing opaque, with m-cu2 crossvein present in at least one wing, additional r-m crossveins present, extra longitudinal vein present. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur without ab- and adlateral cucullate setae, tarsomere I with 1 cucullate seta or none, and tibial rows I-III without cucullate setae. Female second valvulae short with undulating dorsal margin, narrow near base, not curved; third valvulae with small ventral conelike projections in Gigantorhabdus, Hybanda, Hybandoides, and Pyrgauchenia. Male lateral plate with short dorsoapical lobe extending laterally (exception: lateral plate with long dorsoapical lope extending dorsally in Pyrgauchenia); style clasp oriented laterally, apex membranous, cylindrical (exception: clasp elliptical in Hybanda), angled ventrally. Abdomen with anterior tergal borders not modified. 188
Description.—Length 4.5-7.3 mm. Color tan, dark brown, or combinations thereof. HEAD (Fig. 11.2): frontoclypeal margins variable, frontoclypeal lobes distinct (exception: frontoclypeal lobes indistinct in Pyrgauchenia; Fig. 11.2 H) and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes or closer to eyes than each other (Fig. 11.2 B, H); vertex without toothlike projections. THORAX: PRONOTUM (Figs. 11.1-11.2): short suprahumeral horns present or absent, present at tip of median anterior horn in Gigantorhabdus, Hypsauchenia, Jingkara, and Pyrgauchenia; median anterior horn present, recurved; posterior process straight at base (exception: posterior process angled dorsally in Jingkara, Fig. 11.1 G), appressed against scutellum or not.
SCUTELLUM:
emarginate with apices acute, not concealed by posterior process, 1 lateral apex visible from dorsolateral view; shortened or not--with abdomen removed, notch and apices visible, or at most apices visible, only slightly extending beyond thorax.
PLEURON: propleural lobe
present, mesopleural lobe enlarged. FOREWING (Figs. 11.3-11.4): opaque; apical limbus broad (exception: apical limbus narrow in Hybandoides, Fig. 11.4 B); s crossvein distad of rm2 crossvein; R vein first division variable; m-cu1 and m-cu2 crossveins present in at least 1 wing (exception: m-cu1 crossvein absent in Gigantorhabdus, Fig. 11.3 A); m-cu3 crossvein distad or basad of M vein fork (Figs 11.4 A, E); M and Cu veins fused at base (exception: M and Cu veins separate in Jingkara); R and M veins not confluent preapically; additional r-m crossveins present; long r-m crossvein present (exceptions: long r-m crossvein absent in Gigantorhabdus and polymorphic intra- and interspecifically in Pyrgauchenia); veins reticulate or not (Fig. 11.4 B); R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior, near, or distad of first division of R vein, bent towards R vein at 90 degree angle (exception: r-m1 crossvein parallel to longitudinal veins in Gigantorhabdus, 189
Fig. 11.3 A); R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein not significantly angled; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 11.3 B, D): R4+5 and M1+2 veins not fused (4 apical cells).
PRO-
AND MESOTHORACIC LEGS:
tibiae
foliaceous or not; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Fig. 11.4 F): ventral margin of femur with enlarged setal bases in Hybandoides only; femur without ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibia foliaceous or not, rows I-III without cucullate setae; tarsomere I with 1 cucullate seta or none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 11.5-11.6): second valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal teeth fine or indiscernible, acute projections on dorsal margin absent; third valvulae (Figs. 11.6 A-D) with small ventral conelike projections in Gigantorhabdus, Hybanda, Hybandoides, and Pyrgauchenia. MALE
GENITALIA
(Figs. 11.6-11.7): pygofer with dorsal
projection in Gigantorhabdus (Fig. 11.7 H) and Pyrgauchenia; lateral plate free only distally in Gigantorhabdus, Hybanda, and Pyrgauchenia (Figs. 11.7 A, B, G); lateral plate with short dorsoapical lobe extending laterally (exception: lateral plate with long dorsoapical lope extending dorsally in Pyrgauchenia, Fig. 11.7 G), without ventral lobe; subgenital plate without distinct division (Fig. 11.7 I); style clasp oriented laterally, membranous, cylindrical (exception: clasp elliptical in shape in Hybanda, Fig. 11.6 F), angled ventrally. ABDOMINAL FINE STRUCTURE
(Figs. 11.8 B-H): inornate pits with lateral setae present (exception:
190
indistinct in Pyrgauchenia, Fig. 11.8); acanthae distinct, bases not heightened, acanthae multidentate (Fig 11.8 E) or without ornamentation (Fig. 11.8 C). Chromosome numbers.—Male 2n= 17 (Table 26.3). Distribution.—The tribe Hypsaucheniini is recorded from the Indomalayan and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Hypsaucheniini are reported from the host plant families Annonaceae, Compositae, Euphorbiaceae, Leguminosae, Magnoliaceae, Malvaceae, Melastomataceae, Salicaceae, Sapindaceae, Styracaceae, and Thymelaeaceae (Table 26.2). The genera Gigantorhadus, Hybandoides, Hypsauchenia, and Pyrgauchenia are reported to be tended by ants (Table 26.1). Gigantorhabdus, Hybandoides, and Pyrgauchenia are listed as genera that provide maternal care in the form of egg guarding (Stegmann and Linsenmair 2002a). Discussion.—Distant (1908g) included in the tribe Hypsaucheniini those treehoppers without suprahumeral horns, with the pronotum “produced upwards in a compressed process generally curved backward with its apex bilobed” (median anterior pronotal horn), and with teeth on the pro- and mesosterna. The bilobed apex of the median anterior horn is here considered homologous to suprahumeral horns (see discussion in “Morphological Characters” section).
Distant’s latter two key features still help to characterize the
monophyletic tribe Hypsaucheniini (Fig 24.1, 24.12), as defined here. Other diagnostic features include forewing characteristics and the absence of cucullate setae on the legs: the ab- and adlateral cucullate setae on the meso- and metathoracic femora and cucullate setal rows on the metathoracic tibia are all absent. The presence of an anomalous longitudinal vein may represent a long r-m crossvein related to the reticulate nature of the hypsaucheniine 191
forewing or perhaps a distinct branch of R vein. For purposes of consistency with other membracid morphological publications, in this work this feature is coded as a r-m crossvein. The genera Pyrgauchenia and Gigantorhabdus differ from the other hypsaucheniine genera in several characteristics including head features, forewing venation, male genitalia, and abdominal fine structure. Future molecular and morphological analyses may show these genera as a monphyletic lineage sister to the remaining genera. Yuan and Chou (2002a: fig. 2) show a monophyletic Hypsaucheniini using only Hypsauchenia and Jingkara as generic representatives. The hypsaucheniines are closely related to the tribes Oxyrhachini, Ebhuloidesini, and Terentiini. Indeed, the male and female genitalia of the Oxyrhachini and Ebhuloidesini closely resemble the genitalia of the Hypsaucheniini. The Ebhuloidesini, Hypsaucheniini, Oxyrhachini, and Terentiini together form a monophyletic group but each has its own morphological derivations which justify recognizing four monophyletic tribes. The genus Pyrgonota Stål, formerly placed in the Hypsaucheniini, is here referred to the tribe Terentiini. The genus Hybandoides was previously placed in the tribe Funkhouserellini (herein equals Terentiini) by Yuan and Zhang, in Yuan and Chou (2002a) due to the absence of mesopleural processes or teeth and an anterior curving median anterior pronotal horn. All specimens of Hybandoides examined here, however, possess mesopleural processes and the anomalous longitudinal vein (r-m crossvein) in the forewing.
Also, unlike the genus
Funkhouserella, Hybandoides lacks cucullate setae on the meso- and metathoracic legs. The NEW COMBINATION, Hybanda bulbicornis (Funkhouser), referred from Funkhouserella, is proposed based on the similarity between H. bulbicornis and H. anodonta in pronotal shape, forewing venation, and characteristics of the female third valvulae. A 192
complete tribal revision of the Hypsaucheniini is recommended to determine the taxonomic placement of other species within the tribe. Specifically, the variation of the anomalous longitudinal vein among hypsaucheniine species needs to be studied to determine if it is actually a branch of the R vein or an extra r-m crossvein.
Genera of the tribe Hypsaucheniini Gigantorhabdus Schmidt, 1906d (type species: G. enderleini Schmidt by original designation). Hybanda Distant, 1908g (type species: Hypsauchenia anodonta Buckton by original designation). Hybandoides Distant, 1915b (type species: H. horizontalis Distant by original designation) [previously placed in Funhouserellini (Yuan and Chou 2002a)]. Hypsauchenia Germar, 1835a (type species: H. ballista Germar by subsequent designation, junior synonym of H. hardwickii (Kirby)). Hypsolyrium Schmidt, 1926d (type species: Hypsauchenia uncinata Stål by original designation). Jingkara Chou, 1964a (type species: J. hyalipunctata Chou by original designation). Pyrgauchenia Breddin, 1901a (type species: P. sarasinorum Breddin by monotypy). Specimens examined.—Gigantorhabdus enderleini Schmidt, syntype, SMTD—as det. in USNM, #00-228d%, #00-228j[n]—as det. in BMNH, #01-69d&; Hybanda anodonta (Buckton), paralectotypes, BMNH, #01-69f%, #01-69g&; H. bulbicornis (Funkhouser), det. Z.P. Metcalf, NCSU, #70-212c&—det. M.S. Wallace, CASC, #02-189c&; Hybandoides horizontalis Distant, as det. in USNM, #00-228e&, #00-228f%; H. sumatrensis Funkhouser, 193
as det. in USNM, #00-228k&, #00-228l[n], #01-54b%; Hypsauchenia hardwickii (Kirby), as det. in USNM, #99-100c&, #99-100d%, #01-117c%, #01-261a%—as det. in MNHN, #01235a&; Hypsolyrium uncinatum (Stål), as det. in USNM, #00-221a&, #00-221b%, #01240c&; Jingkara hyalipuncata Chou, det. F. Yuan, SHMC, #00-228a&; Pyrgauchenia angulata Funkhouser, paratype, USNM, #01-240g&; P. sarasinorum Breddin, det. E. Schmidt, USNM, #00-229h%, #00-229i&.
194
Fig. 11.1. Hypsaucheniini: pronota (lateral aspects, A-H; and anterior aspects, I-O). Bars = 3 mm. A, Gigantorhabdus enderleini Schmidt. B, Hybanda anodonta (Buckton), paralectotype, #01-69f%. C, H. bulbicornis (Funkhouser), #02-189c&. D, Hybandoides sumatrensis Funkhouser, #00-228k&. E, Hypsauchenia hardwickii (Kirby), #01-261a%, reversed from right lateral aspect. F, Hypsolyrium uncinatum (Stål), #00-221b%. G, Jingkara hyalipunctata Chou, #00-228a&. H, Pyrgauchenia sarasinorum Breddin, #00-229h%. I, G. enderleini Schmidt, #00-228d%. J, Hybanda anodonta (Buckton), paralectotype, #0169f%. K, H. bulbicornis (Funkhouser), #02-189c&. L, Hybandoides sumatrensis Funkhouser, #00-228k&. M, Hypsauchenia hardwickii (Kirby), #01-261a%. N, Hypsolyrium uncinatum (Stål), #00-221b%. O, J. hyalipunctata Chou, #00-228a&. Copyrights: A, B and J © 2003, The Natural History Museum, London.
195
Fig. 11.2. Hypsaucheniini: pronota (anterior aspects, A) and heads (BH). A, Pyrgauchenia sarasinorum Breddin, #00-229h%. B, Gigantorhabdus enderleini Schmidt, #00-228d%. C, Hybanda anodonta (Buckton), paralectotype, #01-69f%. D, H. bulbicornis (Funkhouser), #02-189c&. E, Hybandoides sumatrensis Funkhouser, #00-228k&. F, Hypsauchenia hardwickii (Kirby), #01-261a%. G, Hypsolyrium uncinatum (Stål), #00-221b%. H, P. sarasinorum, #00229h%. Copyrights: C © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes.
196
Fig. 11.3. Hypsaucheniini: wings. A, Gigantorhabdus enderleini Schmidt, #00-228d%, right forewing. B, G. enderleini, #00-228d%, right hind wing. C, Hypsauchenia hardwickii (Kirby), #99-100c&, right forewing. D, H. hardwickii, #99-100c&, left hind wing (inverted).
197
Fig. 11.4. Hypsaucheniini: wings (A-E) and metathoracic leg (F). A, Hybanda anodonta (Buckton), paralectotype, #01-69f%, left forewing (inverted). B, Hybandoides sumatrensis Funkhouser, #00-228k&, right forewing. C, Hypsolyrium uncinatum (Stål), #00-221b%, left forewing (inverted). D, Jingkara hyalipunctata Chou, #00-228a&, left forewing (inverted). E, Pyrgauchenia sarasinorum Breddin, #00-229h%, left forewing (inverted). F, Hypsauchenia hardwickii (Kirby), #99-100c&, left metathoracic leg.
198
Fig. 11.5. Hypsaucheniini: female second valvulae (lateral aspects and closeup of apex). A-B, Gigantorhabdus enderleini Schmidt, #01-69d&. C, Hybanda anodonta (Buckton), paralectotype, #0169g&. D, H. bulbicornis (Funkhouser), #70-212c&. E, Hybandoides horizontalis Distant, #00-228e&. F, Hypsauchenia hardwickii (Kirby), #99-100c&. G, Hypsolyrium uncinatum (Stål), #00-221a&. H, Pyrgauchenia sarasinorum Breddin, #00-229i&. IJ, Jingkara hyalipunctata Chou, #00-228a&. Copyrights: A-C © 2003, The Natural History Museum, London.
199
Fig. 11.6. Hypsaucheniini: female third valvulae (lateral aspects, AD), and male styles (E-J) and aedeagi (K-L)(lateral aspects). A, Hybanda anodonta (Buckton), paralectotype, #01-69g&. B, H. bulbicornis (Funkhouser), #70-212c&. C, Hybandoides horizontalis Distant, #00-228e&. D, Pyrgauchenia sarasinorum Breddin, #00229i&. E, Gigantorhabdus enderleini Schmidt, #00-228d%. F, Hybanda anodonta, paralectotype, #01-69f%. G, Hybandoides horizontalis, #00-228f%. H, Hypsauchenia hardwickii (Kirby), #99100d%. I, Hypsolyrium uncinatum (Stål), #00-221b%. J, P. sarasinorum, #00-229h%. K, Hypsauchenia hardwickii, #99-100d%. L, Hypsolyrium uncinatum, #00-221b%. Copyrights: A and F © 2003, The Natural History Museum, London. c, clasp.
200
Fig. 11.7. Hypsaucheniini: male lateral plates (lateral aspects, A-G), pygofer (lateral aspect, H), and subgenital plate (ventral aspect, I). A, Gigantorhabdus enderleini Schmidt, #00-228d%. B, Hybanda anodonta (Buckton), paralectotype, #01-69f%. C, Hybandoides horizontalis Distant, #00-228f%. D-E, Hypsauchenia hardwickii (Kirby), #99-100d%. F, Hypsolyrium uncinatum (Stål), #00-221b%. G, Pyrgauchenia sarasinorum Breddin, #00-229h%. H-I, G. enderleini, #00-228d%. Copyrights: B © 2003, The Natural History Museum, London. dl, dorsoapical lobe. dp, dorsal process.
201
Fig. 11.8. Hypsaucheniini: maximum development of pronotal (A) and abdominal fine-structure (B-H). All abdominal scanning electron micrographs near tergum III. A-C, Gigantorhabdus enderleini Schmidt, #01-69d&. D-E, Hybandoides sumatrensis Funkhouser, #01-54b%. F, Hypsauchenia hardwickii (Kirby), #01-235a&. G, Hypsolyrium uncinatum (Stål), #01-240c&. H, Pyrgauchenia angulata Funkhouser, paratype, #01240g&. Copyrights: F © 2003, Museum national d’Histoire naturelle, Paris; A-C © 2003, The Natural History Museum, London. a, acanthus. i, inornate pit. l, lateral seta.
202
12. Tribe LEPTOBELINI Yuan, in Yuan and Chou 2002 Old World: Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 12.1-12.2 Type genus: Leptobelus Stål, 1866a
Leptobelini Yuan, in Yuan and Chou 2002a [new tribe]. Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of frontoclypeus. Pronotum with median anterior horn present, columnar; suprahumeral horns present on tip of median anterior horn; posterior process not appressed against scutellum and significantly raised above scutellum. Scutellum acuminate, posterior half extending past thorax. Forewing with R, M, and Cu veins not parallel prior to apical margin; discoidal cells not similar in length; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins acute. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic tibia with row of cucullate setae; femur with ab- and adlateral cucullate setae. Metathoracic femur with ablateral cucullate setae ventrolaterally. Female second valvulae slightly broadened, tapering evenly to apex. Male lateral plate with long dorsoapical lobe extending dorsally, with small ventral lobe; style clasp oriented laterally, membranous, elliptical, angled dorsally, without basal thickening; style shank with significant arch at midpoint. Abdomen with anterior tergal borders modified into irregular ridges. Description.—Length 5.3-6.7 mm. Color black to dark brown, often shiny. HEAD (Fig. 12.1 C): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each 203
other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 12.1 AB): median anterior horn present, columnar; suprahumeral horns present on tip of median anterior horn; posterior process straight at base, not appressed against scutellum, significantly extending past m-cu3 crossvein in forewing, significantly raised above scutellum. SCUTELLUM: acuminate, not concealed by posterior process, apex visible from dorsolateral view; not shortened--with abdomen removed, apex visible, posterior half of scutellum extending past thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Fig. 12.1 D): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein or close to it; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating near or distad of first division of R vein, bent towards R vein; R, M, and Cu veins not parallel apically; discoidal cells not similar in length; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins acute. HIND M1+2 veins not fused (4 apical cells).
PRO-
WING
(Fig. 12.1 E): R4+5 and
AND MESOTHORACIC LEGS:
not foliaceous;
mesothoracic tibia with row of cucullate setae; mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 12.1 F) ventral margin of coxa, trochanter, and
femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur with ablateral cucullate setae ventrolaterally; tibial row I with 29-34 cucullate setae, row II with 40-45 cucullate setae in irregular or double row, row III with 25-32 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral
204
margin carinate; abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 12.2 A-B): second valvulae slightly broadened, widest near midpoint, tapering evenly to apex, narrow near base, not curved, dorsal teeth fine and absent apically, acute projections on dorsal margin absent; third valvulae without ventral projections. MALE GENITALIA (Figs.12.2 C-D): lateral plate with long dorsoapical lobe extending dorsally, with small ventral lobe; subgenital plate without distinct division; style clasp oriented laterally, membranous, elliptical, angled dorsally, without basal thickening; style shank with significant arch at midpoint.
ABDOMINAL
FINE STRUCTURE
(Fig. 12.2 E): acanthae indistinct, bases not
heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Leptobelini is found in the Australasian and Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.— Members of the tribe Leptobelini are reported from the host plant families
Actinidiaceae,
Aristolochiaceae,
Compositae,
Convolvulaceae,
Fagaceae,
Gnetaceae, Leguminosae, Rosaceae, Styracaceae. No other centrotine genera have been recorded from the plant families Actinidiaceae, Aristolochiaceae, and Gnetaceae (Table 26.2). Discussion.—Yuan and Chou (2002a) distinguished the new tribe Leptobelini from the Micreunini, where Leptobelus was previously placed (McKamey 1998a), by the shape of the median anterior pronotal horn and suprahumeral horns. In the Micreunini, the median anterior pronotal horn and suprahumeral horns form a long, recurving structure, while in the Leptobelini, the median anterior pronotal horn is columnar. Additionally, according to Yuan
205
and Chou (2002a), similar to the Choucentrini, the leptobeline treehoppers lack a posterior process but possess a “posterior branch” extending from the mesodorsal process. Here, the posterior branch is interpreted as a raised or dorsally angled posterior process, similar to the Choucentrini. In the phylogenetic analysis presented here (Fig. 24.1), the tribe Leptobelini is supported by a number of character changes including a row of cucullate setae on the mesothoracic tibiae and the posterior process significantly raised above the scutellum. The Leptobelini are closely related to the Maarbarini, Leptocentrini, Centrotypini, Micreunini, and Choucentrini. The long, acuminate scutellum of the Leptobelini is also present in several maarbarine genera. The Centrotypini and Leptobelini both have a laterally flattened elliptical clasp with a significant arch at the midpoint of the style shank. The Leptobelini, as defined here, is based on the two species of Leptobelus examined, the type species, L. dama, and L. metuendus. The species of Leptobelus examined by Yuan and Chou (2002a) differ from L. dama and L. metuendus in several morphological features including characteristics of the scutellum, forewing venation, and leg chaetotaxy.
For
example, Leptobelus gazella (Fairmaire) lacks a rows of cucullate setae on the mesothoracic legs and the scutellum is short and emarginate. Although the male genitalia of these species have not been examined, they most likely belong in Leptocentrini or Centrotypini. Apparently, the type species of Leptobelus was not examined by Yuan and Chou (2002a). A morphological taxonomic revision of Leptobelus is therefore recommended. The genus Elaphiceps, placed in the Leptobelini by Yuan and Chou (2002a), is here placed in Centrotinae, incertae sedis. Although Elaphiceps shares similar pronotal features
206
with Leptobelus, the male genitalia and forewing venation differ significantly. Along with the genus Tyrannotus, Elaphiceps forms a monophyletic group with the tribe Lobocentrini. However, these two genera are highly autapomorphic and lack key lobocentrine diagnostic features.
Genera of the tribe Leptobelini Leptobelus Stål, 1866c (type species: Centrotus dama Germar by subsequent designation). Specimens examined.—Leptobelus dama (Germar), as det. in USNM, #00-13h&, #00-13i%; L. metuendus (Walker), as det. in USNM, #01-220b&.
207
Fig. 12.1. Leptobelini: pronota (lateral aspect, A; and anterior aspect, B), head (C), wings (D-E), and metathoracic leg (F). Bars = 3 mm. A-C, Leptobelus metuendus (Walker), #01-220b&. D, L. dama (Germar), #00-13h&, left forewing (inverted). E, L. dama, #00-13h&, left hind wing (inverted). F, L. dama, #00-13h&, right metathoracic leg (inverted). fcl, frontoclypeal lobes. 208
Fig. 12.2. Leptobelini: female second valvulae (A, lateral aspect; B, closeup of apex), male style (C, lateral aspect) and lateral plate (D, lateral aspect), and maximum development of abdominal fine-structure (E). All abdominal scanning electron micrographs near tergum III. A-B, Leptobelus dama (Germar), #00-13h&. C-D, L. dama, #00-13i%. E, L. metuendus (Walker), #01-220b&. dl, dorsoapical lobe. i, inornate pit. l, lateral seta. c, clasp.
209
13. Tribe LEPTOCENTRINI Distant, 1908 Old World: Afrotropical, Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 13.1-13.11 Type genus: Leptocentrus Stål, 1866
Leptocentraria Distant, 1908g [new division]: first treated as tribe Leptocentrini (Schmidt 1926b). Uroxiphini Goding, 1930a [new tribe]: equals Acanthophyesaria Distant 1908g (Metcalf and Wade 1965a)[error]; equals Leptocentrini (Dietrich et al. 2001a); recognized as tribe (Yuan and Chou 2002a)[error]. Demangini Yuan and Zhang, in Yuan and Chou 2002a [new tribe]: herein equals Leptocentrini, NEW SYNONYMY. Diagnostic characters.— Frontoclypeal lobes distinct (exceptions: frontoclypeal lobes indistinct in Hemicentrus and some species of Otinotus). Posterior pronotal process not appressed against scutellum (exception: posterior process appressed against scutellum in Periaman). Forewing hyaline, with base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute in Otinotus and Leptoceps). Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae. Metathoracic leg cucullate setal row II irregular or double (exception: row II single in some species of Otinotus). Female second valvulae with gradual or abrupt broadening before or near midpoint.
Male lateral plate with short dorsoapical lobe extending dorsally 210
(exception: lateral plate without dorsoapical lobe in Periaman). Male style clasp oriented laterally, apex membranous, triangular (exception: style clasp elliptical or circular in Periaman), angled ventrally, style shank with arch at midpoint and ventral margin with preapical broadening. Abdominal acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Abdominal setal bases at anterior tergal borders enlarged, not dispersed on terga (exceptions: setal bases not enlarged in Periaman and some species of Otinotus). Description.—Length 4.0-8.7 mm. Color black, tan, dark brown, or combinations thereof. HEAD (Fig. 13.3): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct (exceptions: frontoclypeal lobes indistinct in Hemicentrus, Fig. 13.3 E, and some species of Otinotus) and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes than each other in Occator); vertex without toothlike projections. THORAX: PRONOTUM (Figs. 13.1-13.3): suprahumeral horns present or absent; posterior process straight at base or angled dorsally, not appressed against scutellum (exception: posterior process appressed against scutellum in Periaman, Fig. 13.1 L), not extended over scutellum in Hemicentrus (Fig. 13.1 C). SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 1 or both lateral apices visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible (exception: scutellum shortened in some species of Otinotus, at most only apices visible), only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 13.4-13.5): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins absent (exceptions: m-cu2
211
crossvein present in at least one wing in Umfilianus, m-cu1 crossvein present in at least one wing of Uroxiphus, Fig. 13.5 H); M and Cu veins fused at base (Fig. 13.5 F) or adjacent (Fig. 13.5 G); R and M veins not confluent preapically; R1 vein perpendicular to marginal vein (Fig. 13.4 A) or not (Fig. 13.5 B) (never parallel to longitudinal veins); forewing without pterostigma (exception: forewing with pterostigma in some species of Nilautama, Fig. 13.5 A, ambiguously following R1 vein); r-m1 crossvein originating anterior, near, or distad of first division of R vein, bent strongly towards R vein or parallel to longitudinal veins; R, M, and Cu veins parallel apically or not (Fig. 13.4 A); discoidal cells similar in length or not; R4+5 vein shape prior to s crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate (Fig. 13.4 A)(exceptions: base of R2+3 and R4+5 veins truncate or acute in Otinotus and Leptoceps). HIND PRO-
WING
(Fig. 13.4 B): R4+5 and M1+2 veins not fused (4 apical cells).
AND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia without row(s) of
cucullate setae; mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC LEG
(Fig. 13.6 A): ventral margin of coxa, trochanter, and femur without enlarged setal
bases; femur with ab- and adlateral cucullate setae; femur with or without ventrolateral cucullate setae ablaterally; tibia not foliaceous, row I with 20-33 cucullate setae, row II with 26-50 cucullate setae in irregular or double row (exception: row II single in some species of Otinotus), row III with 14-32 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified (exception: anterior tergal borders modified into irregular ridges in some species of Otinotus); sternal longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate or shelflike; abdominal setal bases
212
at anterior tergal borders enlarged, not dispersed on terga (exceptions: setal bases not enlarged in Periaman and some species of Otinotus). FEMALE GENITALIA (Figs. 13.7-13.8): second valvulae with gradual or abrupt broadening before or near midpoint, tapering evenly (exception: second valvulae tapering unevenly to apex in Periaman, Fig. 13.8 C-D), broad near base (exception: second valvulae narrow near base in some species of Otinotus, Fig. 13.8 A-B), not curved (exception: second valvulae curved in some species of Otinotus, Fig. 13.8 A-B), dorsal teeth fine or indiscernible, acute projections absent (exception: acute projections present in some species of Otinotus, Fig. 13.8 A-B); third valvulae without ventral projections. MALE GENITALIA (Figs. 13.9-13.10): lateral plate with short dorsoapical lobe extending dorsally (exception: lateral plate without dorsoapical lobe in Periaman, Fig. 13.10 E), without ventral lobe; subgenital plate (Figs. 13.10 H-I) without distinct division; style clasp oriented laterally, membranous, triangular (exception: style clasp elliptical or circular in Periaman, Fig. 13.9 G), blunt apically (exception: without distinct apex in Periaman), angled ventrally, without basal thickening; style shank with significant arch at midpoint and ventral margin with pre-apical broadening. ABDOMINAL FINE STRUCTURE (Fig. 13.11): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Male 2n= 19 or 21 (Table 26.3). Distribution.—The tribe Leptocentrini is recorded from the Afrotropical, Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Leptocentrini are reported from the host plant families Adiantaceae, Alliaceae, Amaranthaceae, Anacardiaceae, Annonaceae, Apocynaceae,
213
Araliaceae, Asclepiadaceae, Balsaminaceae, Bignoniaceae, Bixaceae, Bombacaceae, Capparaceae, Casuarinaceae, Celastraceae, Combretaceae, Compositae, Connaraceae, Convolvulaceae,
Cruciferae,
Euphorbiaceae,
Fagaceae,
Flacourtiaceae,
Gramineae,
Guttiferae, Hernandiaceae, Labiatae, Lauraceae, Leguminosae, Liliaceae, Lythraceae, Magnoliaceae, Malvaceae, Melastomataceae, Meliaceae, Moraceae, Moringaceae, Myrtaceae, Orchidaceae, Palmae, Passifloraceae, Piperaceae, Polygonaceae, Rhamnaceae, Rubiaceae, Rutaceae, Salvadoraceae, Santalaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Tiliaceae, Ulmaceae, Urticaceae, and Verbenaceae (Table 26.2). Leptocentrus and Otinotus are the only centrotine genera reported from the family Capparaceae. The genera Hemicentrus, Leptocentrus, and Otinotus are reported to be tended by ants (Table 26.1). Certain species of Leptocentrus and Otinotus are gregarious as nymphs (Ananthasubramanian 1996a). Discussion.—The generic components of the tribe Leptocentrini have changed signficantly since its inception (Distant 1908g), partially due to the plesiomorphic nature of its defining characters. Metcalf and Wade (1965a), Capener (1968a), and Deitz (1975a, 1985a), all made significant changes to the generic assignments within Leptocentrini--see Deitz (1985a) for a summary of these changes.
Distant (1908g) defined his division
Leptocentraria to include those treehoppers with 4 apical cells in the hind wing and a scutellum nearly as long as broad. Goding’s (1931a) key to the Old World treehopper tribes defined Leptocentrini to include those treehoppers with 4 apical cells in the hind wing, with suprahumeral horns, and with the pronotal posterior process distant from the scutellum. Goding placed those treehoppers without suprahumeral horns, but otherwise with leptocentrine characteristics, in the tribe Uroxiphini (Goding, 1930a). Dietrich et al. (2001a)
214
synonymized the Uroxiphini with Leptocentrini following Capener’s (1968a) treatment of the Leptocentrini. Capener had placed the genera Awania, Bocchar, Uroxiphus, and Yaponotus, formerly of Uroxiphini, in Leptocentrini.
Yuan and Chou (2002a) provided a similar
definition of Leptocentrini in their key to Chinese membracid tribes but included an unelevated pronotum as a distinguishing characteristic. The Leptocentrini, as defined here, are a monophyletic group based on the phylogenetic analysis (Figs. 24.1, 24.9) and are closely related to the tribes Centrotini, Centrotypini, Maarbarini, Micreunini, and Xiphopoeini. Some of the synapomorphies that unite the leptocentrines, including a triangular style clasp and the broadened second valvulae, are consistent with Deitz’s (1985a) definition. Other characteristics found here that provide further evidence for monophyly include the distinct frontoclypeal lobes, clasp angled ventrally, and the presence of enlarged setal bases at the abdominal anterior tergal borders. The genus Leptocentrus is one of the four largest treehopper genera, with 94 species (McKamey 1998a). The tribe Demangini Yuan and Zhang, 2002 (in Yuan and Chou 2002a) is here considered a junior synonym of Leptocentrini, NEW SYNONYMY.
Yuan and Chou
(2002a) included the genera Demanga, Yaponotus, Neocentrus, Occator, and Sinodemanga in Demangini, all here placed within Leptocentrini based either on phylogenetic analysis (see Fig. 24.1) or morphological similarity (Fig. 24.17) (specimens of Sinodemanga and Neocentrus were not examined but are placed in Leptocentrini based on published descriptions and illustrations). All of these genera lack suprahumeral horns but otherwise share features with other leptocentrines. The presence or absence of suprahumeral horns,
215
although often valuable in lower level taxonomy, has been criticized as a higher level character by Capener (1968a) because of its inconsistency. Moreover, some membracid species are sexually dimorphic with respect to this feature. The low consistency index of this character in the phylogenetic analysis (Fig. 24.1) provides additional evidence of its homoplasticity at the tribal level. The genus Hemicentrus, reinstated by Yuan and Chou (2002a), has had a long and complicated taxonomic history, being formerly placed in the New World treehopper taxa Aetalionidae and Biturritiidae (now Biturritiinae). Deitz (1985a) summarized its taxonomic history up to 1985. Thirumalai (1986a) synonymized Hemicentrus with the genus Dograna, and later, McKamey (1997a) provided new generic combinations for the former Hemicentrus species. Moreover, the type species of Dograna, D. suffulta Distant (See Choucentrini), differs greatly from all species of Hemicentrus in pronotal shape, forewing venation, and male and female genitalia. Indeed, D. suffulta was the only species within Dograna (sensu McKamey 1998a) with a pronotal posterior process. The species H. latus Yuan and Tian, H. cornutus (Funkhouser), H. brunneus Yuan and Tian, H. tenuis Yuan and Tian, H. brevis Yuan and Tian, H. obliquus Yuan and Tian, and H. attenuatus (Funkhouser), all formerly placed in Dograna (sensu McKamey 1998a), were referred to Hemicentrus by Yuan and Chou (2002a).
D. retusus (Distant) was examined here and Goding (1934a) listed D.
aculeata (Oliver) and D. bicornis (Melichar) under Aetalionidae because they lack a pronotal posterior process. Based on these observations, these three species are also here referred back to Hemicentrus: H. retusus (Distant), H. aculeata (Olivier), and H. bicornis Melichar. The genus Dograna is therefore monotypic, including only its type species, D. suffulta.
216
Several genera, including Periaman and some Otinotus species, differ from the other leptocentrines in features of the pronotum, male style clasp shape, and abdominal characteristics. The morphology of Otinotus has been well documented due to its status as an economic pest in the Indomalayan region (Ahmad and Mohammad 1990a, 1998a). Numerous species, including O. bantuantus (examined here), possess a triangular male clasp, broadened second valvulae, and forewing venation similar to other leptocentrines. Nevertheless, the type species, O. ammon, differs from O. bantuantus in forewing venation and female second valvulae shape. Although a male of O. ammon was examined, the genitalic capsule was missing. Due to these differences, a generic revision of Otinotus with its 42 species (McKamey 1998a) is strongly recommended. Periaman is placed tentatively in Leptocentrini due to its broadened second valvulae and characteristic leptocentrine forewing venation, however, males lack the characteristic leptocentrine triangular clasp. Other genera tentatively placed in the Leptocentrini include Camelocentrus, Leptoceps, Neocentrus, Peltzerella, Sinodemanga, Zigzagicentrus. The male and female genitalia were not examined in any of the genera, however, features of the head, pronotum, and forewing unite them with other leptocentrines. The genus Deitzius Ananthasubramanian, 1996a is here considered an objective junior synonym of Ananthasubramanianum McKamey, 1994a, NEW SYNONYMY. Both were proposed as replacement names for Paranotus Ananthasubramanian (1980b), preoccupied. Nineteen genera formerly placed in the Leptocentrini are here referred to the tribes Beaufortianini (Beaufortiana, Centrolobus, Dukeobelus, Imporcitor, Mabokiana), Boccharini
217
(Bocchar and Lanceonotus), Choucentrini (Dograna), Lobocentrini (Amphilobocentrus Chou and Yuan, Arcuatocornum Yuan and Tian, Lobocentrus Stål, and Truncatocornum Yuan and Tian), Maarbarini (Bathoutha Distant, Indicopleustes Distant, Parapogon Distant, Pogonotus Thirumalai and Ananthasubramanian, Telingana Distant) and Terentiini (Arimanes Distant, Polonius Distant, and Sarantus Stål). Five genera--Aspasiana, Insitorioides, Megalocentrus, Sinocentrus, and Tyrannotus-are here placed in Centrotinae, incertae sedis. Although specimens of Tyrannotus were examined, its placement remains uncertain. The forewing venation and features of the female genitalia are similar to other leptocentrines but the male clasp is dorsoventrally oriented and rounded with an acuminate point, similar to the males of Lobocentrini and Gargarini. Along with the genus Elaphiceps, Tyrannotus forms a monophyletic group with the tribe Lobocentrini. However, these two genera are highly autapomorphic and lack key lobocentrine diagnostic features.
Authentic material of the other four genera was not
available and published descriptions were inadequate for placement.
Genera of the tribe Leptocentrini † no specimen examined * placement based on morphological similarity Ananthasubramanianum
McKamey,
1994a
(type
species:
Paranotus
tomentosus
Ananthasubramanian by original designation), see figs. 26-29 of Ananthasubramanian (1980a: 120).†* Awania Distant, 1914m (type species: A. typica Distant by original designation).
218
Camelocentrus Chou, 1976a (type species: C. yunnanensis Chou by original designation), see fig. 76 of Yuan and Chou (2002a: 185).†* Dacaratha Distant, 1916c (type species: D. nyasana Distant by original designation). Demanga Distant, 1908g (type species: D. sookana Distant by original designation) [previously placed in Demangini (Yuan and Chou 2002a)]. Hemicentrus Melichar, 1914b (type species H. bicornis Melichar by original designation). Joveriana Capener, 1968a (type species: J. flaviscutus Capener by original designation). Leptocentrus Stål, 1866a (type species: Centrotus bos Signoret by subsequent designation). Leptoceps Capener, 1954b (type species: L. vinculum Capener by original designation).* Neocentrus Thirumalai and Ananthasubramanian, 1981a (type species: N. rufus Thirumalai and Ananthasubramanian by original designation), see fig. 3 of Thirumalai and Ananthasubramanian (1981a: 32) [previously placed in Demangini (Yuan and Chou 2002a)].†* Nilautama Distant, 1908g (type species: N. typica Distant by original designation). Occator Distant, 1916a (type species: O. erectus Distant by original designation), see fig. 128 of Distant (1916a: 174) [previously placed in Demangini (Yuan and Chou 2002a)].† Otinotus Buckton, 1903a (type species: O. ammon Buckton by subsequent designation). Peltzerella Schmidt, 1926b (type species: P. brevicornis Schmidt by original designation) [previously placed in Centrotypini (McKamey 1998a)].* Periaman Distant, 1908g (type species: Centrotus flavolineatus Buckton by original designation).
219
Sinodemanga Chou and Yuan, 1982a (type species: S. xizangensis Chou and Yuan by original designation), see fig. 87 of Yuan and Chou (2002a: 204) [previously placed in Demangini (Yuan and Chou 2002a)].†* Trioxiphus Boulard, 1979i (type species: T. giganteus Boulard by original designation). Umfilianus Distant, 1915c (type species: U. declivis Distant by monotypy). Uroxiphus Amyot and Serville, 1843a (type species: Centrotus maculiscutum Amyot and Serville by monotypy). Yaponotus Capener, 1953a (type species: Y. villiersi Capener by original designation) [previously placed in Demangini (Yuan and Chou 2002a)]. Zigzagicentrus Chou, 1976a (type species: Z. bannaensis Chou by original designation), see fig. 77 of Yuan and Chou (2002a: 187).†* Specimens examined. —Awania sp., det. M.S. Wallace, CASC, #02-189a%; A. typica Distant, det. M. Stiller, PPRI, #00-13c&, #00-13d%, #00-13e&, #01-247o&—as det. in MNHN, #01-226d&; Dacaratha sp., as det. in USNM, #00-160n&; D. hyalina Peláez, det. W.D. Funkhouser, USNM, #83-334i&; Demanga sooknana Distant, holotype, BMNH; Hemicentrus cornutus (Funkhouser), as det. in USNM, #00-228h%, #01-240b&; H. retusus (Distant), det. W.D. Funkhouser, USNM, #83-227a%; Joveriana flaviscutus Capener, as det. in PPRI, #00-161i&; J. occidentalis (Schmidt), det. A.L. Capener, BMNH, #01-69l%; Leptocentrus sp., det. M.S. Wallace, USNM, #01-117b&; L. bos (Signoret), det. W.L. McAtee, USNM, #71-299b&—as det. in PPRI, #99-315e&, #99-315f%, #99-315i%—as det. in MNHN, #02-10g[n]; L. reponens (Walker), det. Z.P. Metcalf, NCSU, #99-82d&, #9982e&; L. taurus (Fabricius), det. Z.P. Metcalf, NCSU, #71-322a&; Leptoceps vinculum
220
Capener, det. A.L. Capener, PPRI, #00-174l(sex?); Nilautama minutispina Funkhouser, det. W.D. Funkhouser, USNM, #83-334g&, #83-334h%—as det. in USNM, #01-242d%; N. typica Distant, as det. in NCSU, #81-42h&; Otinotus ammon Buckton, as det. in BMNH, #01296e&, #01-296f%; O. bantuantus (Distant), det. A.L. Capener, USNM, #83-334e%, #83334f&—as det. in PPRI, #01-256g&, #02-254a%; O. elongatus Distant, det. Z.P. Metcalf, NCSU, #99-82f&; O. joveri Capener, det. A.L. Capener, PPRI, #00-221j&; Peltzerella borneensis Schmidt, syntype, SMTD. Periaman flavolineatum (Buckton), paralectotype, BMNH, #01-296d%—as det. in USNM, #00-229e&; P. wallacei Distant, det. W.D. Funkhouser, USNM, #00-229f%; Trioxiphus flavescens Boulard, as det. in MNHN, #01225l%, #01-225m&; T. giganteus Boulard, holotype, MNHN, #00-265a%; Umfilianus declivis Distant, det. A.L. Capener, USNM, #99-100e&, #99-100f%, #02-10a[n]; Uroxiphus maculiscutum (Amyot and Serville), det. W.D. Funkhouser, BMNH, #01-297a&; Yaponotus villiersi Capener, paratypes, PPRI, #00-181c%, #00-181d&—det. A.L. Capener, PPRI, #00181j[n].
221
Fig. 13.1. Leptocentrini: pronota (lateral aspects). Bars = 3 mm. A, Awania typica Distant, #01-226d&. B, Dacaratha hyalina Peláez., #83-334i&. C, Hemicentrus cornutus (Funkhouser), #00-228h%. D, Joveriana flaviscutus Capener, #00-161i&. E, Leptocentrus bos (Signoret), #99-315f%. F, Leptoceps vinculum Capener, #00-174l(sex?). G, Nilautama minutispina Funkhouser, #83-334g&. H, N. typica Distant, #81-42h&. I, Otinotus ammon Buckton, #01-296e&. J, O. bantuantus (Distant), #83-334e%. K, Peltzerella borneensis Schmidt, syntype. L, Periaman flavolineatum (Buckton), #00-229e&. M, Trioxiphus giganteus Boulard, #00-256a%. N, Umfilianus declivis Distant, #99-100f%. O, Uroxiphus maculiscutum (Amyot and Serville), #01-297a&. Copyrights: A and M © 2003, Museum national d’Histoire naturelle, Paris; I and O © 2003, The Natural History Museum, London. 222
Fig. 13.2. Leptocentrini: pronota (lateral aspects, A; and anterior aspects, B-O). Bars = 3 mm. A, Yaponotus villiersi Capener, #00-181d&. B, Awania typica Distant, #01-226d&. C, Dacaratha hyalina Peláez., #83334i&. D, Hemicentrus cornutus (Funkhouser), #00-228h%. E, Joveriana flaviscutus Capener, #00-161i&. F, Leptocentrus bos (Signoret), #99-315f%. G, Leptoceps vinculum Capener, #00-174l(sex?). H, Nilautama minutispina Funkhouser, #83-334g&. I, N. typica Distant, #81-42h&. J, Otinotus ammon Buckton, #01296e&. K, O. bantuantus (Distant), #83-334e%. L, Peltzerella borneensis Schmidt, syntype. M, Periaman flavolineatum (Buckton), #00-229e&. N, Trioxiphus giganteus Boulard, #00-256a%. O, Uroxiphus maculiscutum (Amyot and Serville), #01-297a&. Copyrights: B and N © 2003, Museum national d’Histoire naturelle, Paris; J and O © 2003, The Natural History Museum, London. 223
Fig. 13.3. Leptocentrini: pronota (anterior aspects, A-C) and heads (D-O). A, Umfilianus declivis Distant, #99-100e&. B, U. declivis Distant, #99-100f%. C, Yaponotus villiersi Capener, #00-181d&. D, Awania typica Distant, #01-226d&. E, Hemicentrus cornutus (Funkhouser), #00-228h%. F, Joveriana occidentalis Capener, #01-69l%. G, Leptocentrus bos (Signoret), #99-315f%. H, Leptoceps vinculum Capener, #00-174l(sex?). I, Nilautama minutispina Funkhouser, #83-334g&. J, N. typica Distant, #81-42h&. K, O. bantuantus (Distant), #83-334e%. L, Periaman flavolineatum (Buckton), #00-229e&. M, Trioxiphus giganteus Boulard, #00-256a%. N, U. declivis Distant, #99-100f%. O, Y. villiersi Capener, #00-181d&. Copyrights: D and M © 2003, Museum national d’Histoire naturelle, Paris. fcl, frontoclypeal lobes. 224
Fig. 13.4. Leptocentrini: wings. A, Leptocentrus bos (Signoret), #99-315f%, right forewing. B, L. bos (Signoret), #99-315f%, right hind wing. C, Awania typica Distant, #01-226d&, right forewing. D, Dacaratha hyalina Peláez., #83-334i&, right forewing. E, Hemicentrus cornutus (Funkhouser), #00-228h%, right forewing. F, Joveriana occidentalis Capener, #01-69l%, left forewing (inverted). G, Leptoceps vinculum Capener, #00-174l(sex?), right forewing. H, Nilautama minutispina Funkhouser, #83-334g&, right forewing.
225
Fig. 13.5. Leptocentrini: wings. A, N. typica Distant, #81-42h&, right forewing. B, Otinotus ammon Buckton, #01-296e&, left forewing, inverted. C, O. bantuantus (Distant), #83-334e%, right forewing. D, Peltzerella borneensis Schmidt, syntype, right forewing. E, Periaman flavolineatum (Buckton), #00-229e&, right forewing. F, Trioxiphus giganteus Boulard, #00256a%, right forewing. G, Umfilianus declivis Distant, #99-100f%, right forewing. H, Uroxiphus maculiscutum (Amyot and Serville), #01-297a&, right forewing. I, Yaponotus villiersi Capener, #00-181d&, left forewing (inverted).
226
Fig. 13.6. Leptocentrini: metathoracic leg. (Signoret), #99-315e&, left metathoracic leg.
227
A, Leptocentrus bos
Fig. 13.7. Leptocentrini: female second valvulae (lateral aspects and closeup of apex). A-B, Awania typica Distant, #00-13c&. C, Dacaratha hyalina Peláez, #83-334i&. D, Joveriana flaviscutus Capener, #00-161i&. E-F, Hemicentrus cornutus (Funkhouser), #01240b&. G-H, Leptocentrus bos (Signoret), #99-315e&. I, Nilautama minutispina Funkhouser, #83-334g&. J, Otinotus bantuantus (Distant), #83-334f&.
228
Fig. 13.8. Leptocentrini: female second valvulae (lateral aspects and closeup of apex). A-B, Otinotus ammon Buckton, #01-296e&. C-D, Periaman flavolineatum (Buckton), #00-229e&. E-F, Trioxiphus flavescens Boulard, #01-225m&. G, Umfilianus declivis Distant, #99100e&. H, Yaponotus villiersi Capener, #00-181d&. I-J, Uroxiphus maculiscutum (Amyot and Serville), #01-297a&. Copyrights: E-F © 2003, Museum national d’Histoire naturelle, Paris; A-B, I-J © 2003, The Natural History Museum, London.
229
Fig. 13.9. Leptocentrini: male styles (A-J) and aedeagi (K-O) (lateral aspects). A, Awania sp., #02-189a%. B, Hemicentrus cornutus (Funkhouser), #00-228h%. C, Joveriana occidentalis Capener, #01-69l%. D, Leptocentrus bos (Signoret), #99-315f%. E, Nilautama minutispina Funkhouser, #83-334h%. F, Otinotus bantuantus (Distant), #02-254a%. G, Periaman wallacei Distant, #00-229f%. H, Trioxiphus flavescens Boulard, #01-225l%. I, Umfilianus declivis Distant, #99-100f%. J, Yaponotus villiersi Capener, #00-181c%. K, H. cornutus (Funkhouser), #00-228h%. L, J. occidentalis Capener, #01-69l%. M, L. bos (Signoret), #99-315f%. N, N. minutispina Funkhouser, #83-334h%. O, T. flavescens Boulard, #01-225l%. Copyrights: H and O © 2003, Museum national d’Histoire naturelle, Paris; C and J © 2003, The Natural History Museum, London. c, clasp.
230
Fig. 13.10. Leptocentrini: male lateral plates (lateral aspects, AG) and subgenital plates (ventral aspect, H-I). A, Hemicentrus cornutus (Funkhouser), #00-228h%. B, Joveriana occidentalis Capener, #01-69l%. C, Leptocentrus bos (Signoret), #99-315f%. D, Nilautama minutispina Funkhouser, #83-334h%. E, Periaman wallacei Distant, #00-229f%. F, Umfilianus declivis Distant, #99100f%. G, Yaponotus villiersi Capener, #00-181c%. H, U. declivis, #99-100f%. I, Y. villiersi, #00-181c%. Copyrights: B © 2003, The Natural History Museum, London. dl, dorsoapical lobe.
231
Fig 13.11. Leptocentrini: maximum development of abdominal finestructure. All scanning electron micrographs near tergum III. A, Awania typica Distant, #01-247o&. B, Dacaratha sp., #00-160n&. C, Hemicentrus cornutus (Funkhouser), #01-240b&. D, Leptocentrus taurus (Fabricius), #71-322a&. E, Nilautama minutispina Funkhouser, #01-242d%. F-G, Trioxiphus giganteus Boulard, #00-256a%. Copyrights: F-G © 2003, Museum national d’Histoire naturelle, Paris. i, inornate pit. l, lateral seta. m, microtrichia. 232
14. Tribe LOBOCENTRINI, new tribe Old World: Indomalayan and Palearctic Regions Figs. 14.1-14.3 Type genus: Lobocentrus Stål, 1870c Diagnostic characters.—Frontoclypeal lobes distinct. Pronotum with suprahumeral horns; posterior process not appressed against scutellum, not significantly extending past or not reaching m-cu3 crossvein in forewing. Posterior half of scutellum extending beyond thorax (exception: scutellum only slightly extending beyond thorax in Lobocentrus). Forewing with R1 vein perpendicular to marginal vein, R4+5 vein prior to s crossvein not significantly angled; base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae, adlateral seta preapical. Adlateral cucullate seta on metathoracic femur preapical. Metathoracic leg row II with 37-76 cucullate seta in an irregular or double row. Female second valvulae not broadened, narrow near base, dorsal teeth indistinct or absent. Male subgenital plate with distinct division, style clasp oriented dorsoventrally, thickened, rounded with acuminate projection, not angled; style shank without significant arch at midpoint. Description.—Length 6-7.3 mm. Color, black, dark brown, or combinations thereof. HEAD (Figs. 14.1 G-I): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections.
THORAX:
PRONOTUM (Fig. 14.1): suprahumeral horns present; posterior process straight (Fig. 14.1 B) or curving dorsally (Fig. 14.1 A) at base, not appressed against scutellum, not significantly 233
extending past or not reaching m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process; 2 lateral apices or 1 visible from dorsolateral view; not shortened--with abdomen removed, apices and notch visible, posterior half of scutellum extending beyond thorax (exception: scutellum only slightly extending beyond thorax in Lobocentrus). PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 14.1 J-L): hyaline or opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins absent; M and Cu veins adjacent at base; R and M veins not confluent preapically; R1 vein perpendicular to marginal vein; forewing without pterostigma; r-m1 crossvein originating anterior, near, or distad of first division of R vein, bent towards R vein or parallel to longitudinal veins; R, M, and Cu not parallel apically; discoidal cells similar in length (Fig. 14.1 K) or not (Fig. 14.1 J); R4+5 vein shape prior to s crossvein not significantly angled; base of R2+3 and R4+5 veins truncate. HIND WING:
R4+5 and M1+2 veins not fused (4 apical cells). PRO-
AND MESOTHORACIC LEGS:
tibiae
not foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur with ab- and adlateral cucullate setae, adlateral seta preapical. METATHORACIC LEG (Fig. 14.2 A): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with aband adlateral cucullate setae, adlateral cucullate seta preapical; femur without ablateral cucullate seta ventrolaterally; tibia not foliaceous, row I with 25-38 cucullate setae, row II with 37-76 cucullate setae in irregular or double row, row III with 30-37 cucullate setae; tarsomere I with 1 or 2 cucullate setae. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges in Lobocentrus and Truncatocornum; sternal longitudinal carina present or absent; paired dorsal swellings
234
absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Figs. 14.2 B-F): second valvulae not broadened, narrow near base, curved or not, dorsal teeth indistinct or absent, acute projections present or absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 14.3): lateral plate with short or long dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate with distinct division; style clasp oriented dorsoventrally, thickened, rounded with acuminate projection, not angled; style shank without significant arch at midpoint. ABDOMINAL STRUCTURE
FINE
(Fig. 14.3 E, Lobocentrus): acanthae indistinct, bases not heightened, acanthae
divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Lobocentrini is found in the Indomalayan and Palearctic Regions. The genera Amphilobocentrus, Arcuatocornum, and Truncatocornum have only been recorded from China (McKamey 1998a, Yuan and Chou 2002a). Ecology.—Members of the tribe Lobocentrini are reported from the host plant family Fagaceae (Table 26.2). Discussion.—The new tribe Lobocentrini is monophyletic (Fig. 24.1) and is characterized by a male style clasp that is dorsoventrally oriented, thickened, and rounded with an acuminate projection. Lobocentrines also have the adlateral cucullate setae on the meso- and metathoracic femora positioned preapically; they possess suprahumeral horns; the R1 vein is perpendicular to the marginal vein in the forewing; and the female second valvulae are not broadened and lack dorsal teeth. In contrast to other centrotines, the Lobocentrini have a large number of cucullate setae, up to 76, in row II of the metathoracic tibia. The
235
Lobocentrini are apparently closely related to the Boccharini. All of the genera within this tribe were previously placed in the Leptocentrini because R4+5 and M1+2 veins are not fused in the hind wing (4 apical cells). Similar to other genera formerly placed in Leptocentrini, however, the lobocentrines lack the characteristic triangular male style clasp and broadened female second valvulae. Lobocentrus was selected as the type genus because its taxonomy has been more extensively studied and it is more common in insect collections than the other genera. The genera Elaphiceps and Tyrannotus, although forming a monophyletic group with the Lobocentrini, have a similar shaped male style clasp, lack several diagnostic features of the other lobocentrines including features of the leg chaetotaxy.
They are placed
Centrotinae, incertae cedis, until further species and specimens within these genera are examined.
Genera of the tribe Lobocentrini † no specimen examined * placement based on morphological similarity Amphilobocentrus Chou and Yuan, 1982a (type species: A. bifasciatus Chou and Yuan by original designation), see fig. 83 of Yuan and Chou (2002a: 195) [previously placed in Leptocentrini (Yuan and Chou 2002a)].†* Arcuatocornum Yuan and Tian, 1995a (type species: A. acutum Yuan and Tian by original designation) [previously placed in Leptocentrini (Yuan and Chou 2002a)]. Lobocentrus Stål, 1870c (type species: L. falco Stål by monotypy) [previously placed in Leptocentrini (Yuan and Chou 2002a)].
236
Truncatocornum Yuan and Tian, 1995a (type species: T. nigrum by original designation) [previously placed in Leptocentrini (Yuan and Chou 2002a)]. Specimens examined.— Arcuatocornum sp., det. M.S. Wallace, LBOB, #02-136e&, #02-136f%; Lobocentrus falco (Buckton), as det. in USNM, #01-240e&; L. zonatus Stål, det. W.D. Funkhouser, USNM, #83-333f&—as det. in USNM, #83-333g%; Truncatocornum sp., det. M.S. Wallace, LBOB, #02-136d&.
237
Fig. 14.1. Lobocentrini: pronota (lateral aspects, A-C; and anterior aspects, DF), heads (G-I), and wings (J-L). Bars = 3 mm. A, Arcuatocornum sp., #02136f%. B, Lobocentrus zonatus Stål, #83-333g%. C, Truncatocornum sp., #02136d&. D, Arcuatocornum sp., #02-136f%. E, L. zonatus, #83-333g%. F, Truncatocornum sp., #02-136d&. G, Arcuatocornum sp., #02-136f%. H, L. zonatus, #83-333g%. I, Truncatocornum sp., #02-136d&. J, Arcuatocornum sp., #02-136f%. K, L. zonatus, #83-333g%, left forewing (inverted). L, Truncatocornum sp., #02-136d&, left forewing (inverted). fcl, frontoclypeal lobes. 238
Fig. 14.2. Lobocentrini: metathoracic leg (A) and female second valvulae (lateral aspects and closeup of apex, B-F). A, Arcuatocornum sp., #02-136f%. B, Lobocentrus zonatus Stål, #83-333f&. C-D, Arcuatocornum sp., #02-136e&. E-F, Truncatocornum sp., #02-136d&.
239
Fig. 14.3. Lobocentrini: male styles (lateral aspect, A-B; and dorsal aspect, C), lateral plates (D), and maximum development of abdominal fine-structure (E). Abdominal scanning electron micrograph near tergum III. A, Arcuatocornum sp., #02-136f%. B, Lobocentrus zonatus Stål, #83-333g%. C, L. zonatus, #83333g%. D, Arcuatocornum sp., #02-136f%. E, Lobocentrus falco (Buckton), #01-240e&. c, clasp. lp, lateral plate. i, inornate pit. m, microtrichia.
240
15. Tribe MAARBARINI, new tribe Old World: Indomalayan and Palearctic Regions Figs. 15.1-15.5 Type genus: Maarbarus Distant, 1908g
Diagnostic characters.—Pronotum with suprahumeral horns. Scutellum acuminate or emarginate with apices acute, not concealed by posterior process; not shortened--with abdomen removed, notch and apices or acuminate point visible, posterior half of scutellum extending past thorax. Forewing with apical limbus narrow (exception: apical limbus broad in Telingana), s crossvein close to r-m2 crossvein and angled as in Figs. 15.3 A-F; R1 vein, at least basally, parallel to longitudinal veins; R, M, and Cu veins parallel and strongly curving apically (exception: longitudinal veins not parallel or strongly curving in Telingana); discoidal cells not similar in length; R4+5 vein shape prior to s crossvein significantly angled. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with aband adlateral cucullate setae. Metathoracic tibia with cucullate setal row II single. Male lateral plate with long dorsoapical lobe extending dorsally; style clasp oriented laterally, membranous, triangular, with basal thickening, angled ventrally, acuminate point acute; style shank with ventral preapical broadening. Abdomen with tergal anterior borders modified into irregular ridges. Description.—Length 3.0-5.5 mm. Color black, tan, dark brown, or combinations thereof. HEAD (Figs. 15.2 A-F): frontoclypeal margins parallel or slightly converging ventrally; frontoclypeal lobes distinct or not; ocelli about equidistant from each other and
241
eyes or closer to eyes than each other; vertex without toothlike projections. THORAX: PRONOTUM (Fig. 15.1): suprahumeral horns present; posterior process straight (Fig. 15.1 F) or curving dorsally at base (Fig. 15.1 C), not appressed against scutellum, extending to or past m-cu3 crossvein in forewing. SCUTELLUM: acuminate or emarginate with apices acute, not concealed by posterior process; not shortened--with abdomen removed, notch and apices or acuminate point visible, posterior half of scutellum extending past thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 15.2-15.3): hyaline or opaque; apical limbus narrow (exception: apical limbus broad in Telingana, Fig. 15.3 F); s crossvein close to r-m2 crossvein and angled as in Figs. 15.3 A-F; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein, at least basally, parallel to longitudinal veins; forewing without pterostigma; r-m1 crossvein originating anterior, near, or distad of first division of R vein (absent in some species of Telingana, Fig. 15.3 F), parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins parallel and strongly curving apically (exception: longitudinal veins not parallel or strongly curving in Telingana, Fig. 15.3 F); discoidal cells not similar in length; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins truncate (exception: base of R2+3 and R4+5 veins truncate or acute in Maarbarus). HIND 15.2 H): R4+5 and M1+2 veins not fused (4 apical cells). PRO-
WING
(Fig.
AND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC
LEGS
(Fig. 15.3 G): ventral
margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibial row I
242
with 24-33 cucullate setae, row II with 22-41 cucullate setae in single row, row III with 2432 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Fig. 15.4): second valvulae not broadened (exception: second valvulae with slight broadening in Pogon, Figs. 15.4 G-H), narrow near base, curved or not, dorsal teeth fine, acute projections present or absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 15.5 A-I): lateral plate with long dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally, membranous, triangular, with basal thickening, angled ventrally, apex acute; style shank with arch at midpoint and ventral margin with preapical broadening. STRUCTURE
ABDOMINAL
FINE
(Figs. 15.5 J-K): acanthae indistinct, bases not heightened, acanthae divided into
threadlike microtrichia. Chromosome numbers.—Male 2n= 19 or 21 (Table 26.1). Distribution.—The tribe Maarbarini is found in the Indomalayan and Palearctic Regions although it is best represented in India (McKamey 1998a). Ecology.—Members of the tribe Maarbarini are reported from the host plant families Alliaceae, Caprifoliaceae, Cupressaceae, Dryopteridaceae, Fagaceae, Gramineae, Rosaceae, Santalaceae, and Solanaceae (Table 26.2). Members of this tribe are reported to be antattended (Table 26.1).
243
Discussion.— The new tribe Maarbarini, monophyletic in the phylogenetic analysis (Figs. 24.1, 24.9), is characterized by the parallel and curving R, M, and Cu veins in the forewing (except in Telingana) as well as the longitudinal R1 vein. This distinctive forewing venation distinguishes the Maarbarini from other centrotine tribes where the forewing venation is often more heterogenous and not as diagnostic. Similar to the genus Dograna of Choucentrini, the maarbarine male style clasp is triangular and has a basal thickening. Moreover, in his classification of the Old World membracids, Distant (1908g) included the genera Bathoutha, Maarbarus, Parapogon, Telingana, herein placed in the Maarbarini, with the genera Leptobelus and Micreune in the division Micreunaria based on an elongated and acuminate scutellum (an acuminate scutellum has not been observed in the last three genera). The maarbarines are closely related to the Old World tribes Choucentrini, Leptocentrini, Micreunini, Leptobelini, and Centrotypini. With a few exceptions, most maarbarines have been collected from India and Sri Lanka. Maarbarus was previously placed in the tribe Centrotini. Maarbarus, however, lacks a pterostigma in the forewing and has R4+5 and M1+2 veins not free in the hind wing (4 apical cells), not fused (3 apical cells). Also, the male style clasp of Maarbarus differs in shape significantly from centrotini males. It was selected as the type genus because it is most common in insect collections and both male and female specimens were examined. The genus Pogon, previously of Centrotypini, differs from Centrotypus and Emphusis in the shape of the scutellum and characteristics of the forewing. The genera Bathoutha, Indicopleustes, Parapogon, Pogonotus, and Telingana were
244
previously placed in the Leptocentrini.
Although they are closely related to the
leptocentrines, the shape of the forewing veins and characteristics of the male style clasp differ from the Leptocentrini genera. The genus Telingana is tentatively placed in the tribe Maarbarini. Telingana is the sister group to the remaining maarbarine genera and differs from other maarbarines in forewing characteristics, including the shape of the longitudinal veins prior to the apical margin.
Also, the taxonomic limits of the genus are in question.
The type species, T. curvispinus, differs in several morphological characters, including forewing venation, from other species in the genus.
Genera of the tribe Maarbarini † no specimen examined Bathoutha Distant, 1908g (type species: Oxyrhachis indicans Walker by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Indicopleustes Distant, 1908g (type species: I. albomaculatus Distant by original designation) [previously placed in Leptocentrini (Yuan and Chou 2002a)]. Maarbarus Distant, 1908g (type species: Centrotus bubalus Kirby by original designation) [previously placed in Centrotini (McKamey 1998a)]. Parapogon Distant, 1908g (type species: P. kandyiana Distant by original designation) [previously placed in Leptocentrini (McKamey 1998a)]. Pogon Buckton, 1903a (type species: P. incurvatum Buckton by monotypy) [previously placed in Centrotypini (McKamey 1998a)].
245
Pogonotus Thirumalai and Ananthasubramanian, 1985a (type species: P. indicus Thirumalai and Ananthasubramanian by original designation), see figs. 5-8 of Thirumalai and Ananthasubramanian (1985a: 226) [previously placed in Leptocentrini (McKamey 1998a)].† Pogontypus Distant, 1908g (type species: Machaerotypus complicatus Melichar by original designation) [previously incertae sedis (McKamey 1998a)]. Telingana Distant, 1908g (type species: Leptobelus curvispinus Stål by original designation) [previously placed in Leptocentrini (Yuan and Chou 2002a)]. Specimens examined.—Bathoutha indicans (Walker), [holotype of Oxyrhachis indicans Walker], BMNH—as det. in BMNH, #01-296c%; Indicopleustes albomaculata Distant, paralectotypes, BMNH, #01-69j%, #01-69k&; Maarbarus sp., det. M.S. Wallace, USNM, #01-79b%, #01-110a%; M. bubalus (Kirby), as det. in BMNH, #01-75a&, #01-75b%; Parapogon kandyiana Distant, as det. in BMNH, #01-75c&; Pogon incurvatum Buckton, as det. in BMNH, #01-75d&; Pogontypus sp., det. M.S. Wallace, USNM, #01-79a&, #01110b&; P. complicatus (Melichar), as det. in BMNH, #01-75f&; P. horvathi Distant, lectotype, BMNH; Telingana curvispina (Stål), as det. in USNM, #00-230c%; T. flavipes (Kirby), det. W.D. Funkhouser, USNM, #01-240a%.
246
Fig. 15.1. Maarbarini: pronota (lateral aspects, A-G; and anterior aspects, H-N). Bars = 3 mm. A, Bathoutha indicans (Walker), #01-296c%. B, Indicopleustes albomaculata Distant, paralectotype, #01-69j%. C, Maarbarus sp., #01-79b%. D, Parapogon kandyiana Distant, #01-75c& BM. E, Pogon incurvatum Buckton, #01-75d&. F, Pogontypus sp., #01-79a&. G, Telingana curvispina (Stål), #00-230c%. H, B. indicans, #01-296c%. I, I. albomaculata, paralectotype, #01-69j%. J, Maarbarus sp., #01-79b%. K, Parapogon kandyiana Distant, #01-75c&. L, Pogon incurvatum Buckton, #01-75d&. M, Pogontypus sp., #01-79a&. N, T. curvispina, #00-230c%. Copyrights: A, B, D, E, H, I, K, and L © 2003, The Natural History Museum, London. 247
Fig. 15.2. Maarbarini: heads (A-F) and wings (G-H). A, Bathoutha indicans (Walker), #01-296c%. B, Indicopleustes albomaculata Distant, paralectotype, #01-69j%. C, Maarbarus sp., #01-79b%. D, Pogon incurvatum Buckton, #01-75d&. E, Pogontypus sp., #01-79a&. F, Telingana curvispina (Stål), #00230c%. G, Maarbarus sp., #01-110a%, left forewing (inverted). H, Maarbarus sp., #01-110a%, right hind wing. Copyrights: A, B, and D © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes.
248
Fig. 15.3. Maarbarini: wings (A-F) and metathoracic leg (G). A, Bathoutha indicans (Walker), #01-296c%. B, Indicopleustes albomaculata Distant, paralectotype, #01-69k&. C, Parapogon kandyiana Distant, #01-75c&. D, Pogon incurvatum Buckton, #01-75d&. E, Pogontypus sp., #01-79a&. F, Telingana curvispina (Stål), #00-230c%. G, Maarbarus sp., #01-110a%. 249
Fig. 15.4. Maarbarini: female second valvulae (lateral aspects and closeup of apex). A-B, Indicopleustes albomaculata Distant, paralectotype, #01-69k&. C-D, Maarbarus bubalus (Kirby), #01-75a&. E-F, Parapogon kandyiana Distant, #01-75c&. G-H, Pogon incurvatum Buckton, #01-75d&. Copyrights: A-H © 2003, The Natural History Museum, London.
250
Fig. 15.5. Maarbarini: male styles (lateral aspects, A-D; and dorsal aspects, E), lateral plates (F-I), and maximum development of abdominal finestructure (J-K). Scanning electron micrographs near tergum III. A, Bathoutha indicans (Walker), #01-296c%. B, Indicopleustes albomaculata Distant, paralectotype, #01-69j%. C, Maarbarus sp., #01-79b%. D, Telingana curvispina (Stål), #00-230c%. E-F, B. indicans, #01-296c%. G, Indicopleustes albomaculata Distant, paralectotype, #01-69j%. H, Maarbarus sp., #01-79b%. I, Telingana curvispina (Stål), #00-230c%. J, Pogontypus sp., #01-110b&. K, T. flavipes (Kirby), #01-240a%. Copyrights: A, B, E-G © 2003, The Natural History Museum, London. c, clasp. dl, dorsoapical lobe. t, basal thickening. i, inornate pit. m, microtrichia.
251
16. Tribe MICREUNINI Distant, 1908 Old World: Indomalayan Region Figs. 16.1-16.2 Type genus: Micreune Walker, 1857a
Micreunaria Distant, 1908g [new division]: first treated as tribe Micreunini (Schmidt, 1928b). Diagnostic characters.—Frontoclypeal lobes indistinct, nearly extending to apex of frontoclypeus. Pronotum with median anterior horn present, recurved; suprahumeral horns present on tip of median anterior horn, each suprahumeral horn as long or longer than median horn; posterior process not appressed against scutellum. Forewing with s crossvein near r-m2 crossvein, pterostigma present near or at R1 vein, r-m1 crossvein originating anterior to first division of R vein and parallel to longitudinal veins; R, M, and Cu veins parallel apically; base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae. Female second valvulae without significant broadening, narrow near base, curved, dorsal teeth fine and not extending to apex of second valvulae. Male style clasp oriented laterally, membranous, triangular, acuminate point blunt, angled dorsally, without basal thickening; style shank without significant arch. Abdomen with anterior tergal borders unmodified, sternal longitudinal carina present, abdominal setal bases at anterior tergal borders enlarged and not dispersed on terga, tergum III ventrolateral margin with an upcurved groove.
252
Description.—Length 7 mm. Color black with streaks of white pubescence on head, pronotum, and pleuron. HEAD (Fig. 16.1 C): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and nearly extending to apex of frontoclypeus; ocelli closer to eyes than each other; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 16.1 A-B): median anterior horn present, recurved; suprahumeral horns present on tip of median anterior horn, each suprahumeral horn as long or longer than median horn; posterior process straight at base, not appressed against scutellum, extending signficantly past m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, both lateral apices visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Fig. 16.1 D): sub- hyaline or opaque; apical limbus broad; s crossvein near r-m2 crossvein; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; forewing with pterostigma near or at R1 vein; r-m1 crossvein originating anterior to first division of R vein, parallel to longitudinal veins; R, M, and Cu veins parallel apically; discoidal cells not similar in length; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 16.1 E): R4+5 and M1+2 veins not fused (4 apical cells). PROAND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia without row(s) of
cucullate setae; mesothoracic femur with ab- and adlateral cucullate setae, adlateral cucullate setae preapical. METATHORACIC LEG (Fig. 16.1 F): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae, adlateral
253
cucullate setae preapical; femur without ablateral cucullate setae ventrolaterally; tibial row I with 16-18 cucullate setae, row II with 23-27 cucullate setae in irregular or double row, row III with 19-20 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present; paired dorsal swellings absent; tergum III ventrolateral margin with upcurved groove; abdominal setal bases at anterior tergal borders enlarged, not dispersed on terga. FEMALE
GENITALIA
(Figs. 16.2 A-B): second valvulae
without significant broadening, narrow near base, curved, dorsal teeth fine and absent apically, acute projections on dorsal margin present; third valvulae without ventral projections. MALE
GENITALIA
(Figs. 16.2 C-D): lateral plate with long dorsoapical lobe
extending dorsally, without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally, membranous, triangular, apex blunt, angled dorsally, without basal thickening; style shank without significant arch. ABDOMINAL FINE STRUCTURE (Fig. 16.2 E): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Micreunini is found in the Indomalayan Region and has been recorded from Borneo, India, and Singapore (McKamey 1998a). Ecology.—Host plant information for the tribe Micreunini is unknown. Discussion.—Distant (1908g) included the genera Bathoutha, Maarbarus, Micreune, Leptobelus, Parapogon, and Telingana in his division Micreunaria based largely on symplesiomorphies: the presence of an elevated pronotum, a scutellum acuminate and longer than broad, a pleuron without lobes, and 4 apical cells in the hind wing. Although Micreune
254
shares certain features (i.e., some features of the forewing) with these genera and is certainly closely related to them, they do not form a monophyletic group in the phylogenetic analysis (Fig. 24.1). In addition, Micreune has an emarginate scutellum, only slightly extending beyond the thorax, with two distinct apices. Goding (1931a) included those treehoppers (Elaphiceps, Eutryonia Goding, Leptobelus, and Micreune) with a bilobed erect pronotal process, with a scutellum longer than broad and usually acuminate, and a thin posterior process in the tribe Micreunini.
Evans (1966a) subsequently removed Eutryonia, an
Australian genus, to unplaced Centrotinae. Yuan and Chou (2002a) created a new tribe, Leptobelini, to accommodate the columnar shape of the median anterior horn in Leptobelus and Elaphiceps in contrast to the recurving shape of the horn in Micreune. The monotypic tribe Micreunini is supported by numerous character changes (Fig. 24.1) including the presence of a recurved median anterior horn, long suprahumeral horns present at the tip of the median anterior horn, the forewing with a pterostigma near R1 vein, and the ventrolateral margin abdominal tergum III with an upcurved groove. The Micreunini are closely related to the tribes Centrotypini, Leptobelini, Leptocentrini, and Maarbarini.
Genera of the tribe Micreunini Micreune Walker, 1857a (type species: M. formidanda Walker by monotypy). Specimens examined.—Micreune formidanda Walker, as det. in USNM, #99110d&, #99-110e%, #01-47a&, #02-262a&.
255
Fig. 16.1. Micreunini: pronotum (lateral aspect, A; and anterior aspect, B), head (C), wings (D-E), and metathoracic leg (F). Bars = 3 mm. A, Micreune formidanda Walker, #01-47a&. B, M. formidanda, #01-47a&. C, M. formidanda, #02-262a&. D, M. formidanda, #99-110d&, right forewing. E, M. formidanda, #99-110d&, left hind wing (inverted). F, M. formidanda, #99-100e%. fc, frontoclypeus. 256
Fig. 16.2. Micreunini: female second valvulae (lateral aspect and closeup of apex, A-B), and male style (C) and lateral plate (D) (lateral aspects), and maximum development of abdominal fine structure (E). Scanning electron micrograph show the abdomen near tergum III. AB, Micreune formidanda Walker, #99-110d&. C, M. formidanda, #99110e%. D, M. formidanda, #99-110e%. E, M. formidanda, #01-47a&. dl, dorsoapical lobe. i, inornate pit. l, lateral seta. m, microtrichia. c, clasp.
257
17. Tribe MONOBELINI, new tribe New World: Neotropical Region: Caribbean Islands Figs. 17.1-17.5 Type genus: Monobelus Stål, 1869a
Diagnostic characters.— Frontoclypeal lobes indistinct and nearly extending to apex of frontoclypeus.
Pronotum without suprahumeral horns.
Posterior pronotal process
appressed against scutellum. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells) or r-m and m-cu crossveins absent (Brachycentrotus). Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur with ab- and adlateral cucullate setae and extra cucullate setae at apex (exception: extra cucullate setae on femur absent in Brachycentrotus), with ablateral cucullate setae ventrolaterally (exception: femur without ablateral ventrolateral cucullate setae in Brachycentrotus); metathoracic tibia with cucullate setal row II single. Male style clasp apex oriented dorsoventrally, thickened, truncate with acute projection, not angled; style shank without significant arch. Anterior tergal borders modified into irregular ridges. Description.—Length 2.0-4.8 mm. Color black, tan, dark brown, or combinations thereof.
HEAD (Fig. 17.1 H-K): frontoclypeal margins parallel or slightly converging
ventrally, frontoclypeal lobes indistinct and nearly extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes in Brachycentrotus rufinervis Ramos); vertex without toothlike projections.
THORAX:
PRONOTUM (Figs. 17.1 A-G): suprahumeral horns absent; posterior process straight at base,
258
appressed against scutellum. SCUTELLUM: emarginate with apices acute, not concealed by posterior process (exception: scutellum concealed by posterior process in Monobeloides), 1 lateral apex or none visible from dorsolateral view; shortened--with abdomen removed, at most apices visible (exception: scutellum not shortened in Monobelus, notch and apices visible), only slightly extending beyond thorax (exception: posterior half of scutellum extending beyond thorax in Monobelus). PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Fig. 17.2): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 crossvein present in at least one wing (exception: m-cu1 crossvein absent in Brachycentrotus), m-cu2 crossvein absent; M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; forewing without pterostigma; r-m1 crossvein originating anterior, near, or distad of first division of R vein, bent strongly towards R vein; R, M, and Cu veins not parallel apically; discoidal cells similar in length (Fig. 17.2 D) or not; R4+5 vein shape prior to s crossvein significantly angled; base of R2+3 and R4+5 veins acute (exceptions: base of R2+3 and R4+5 veins truncate in Brachycentrotus, Fig. 17.2 D). HIND WING (Fig. 17.2 B): R4+5 and M1+2 veins not fused in Monobelus and Monobeloides (4 apical cells), r-m and m-cu crossveins absent in Brachycentrotus. PRO-
AND MESOTHORACIC LEGS:
tibiae not foliaceous; mesothoracic tibia
without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 17.3 A): ventral margin of coxa, trochanter, and femur
without enlarged setal bases; femora with ab- and adlateral cucullate setae and extra cucullate setae at apex (exception: extra cucullate setae on femora absent in Brachycentrotus); femur with ablateral cucullate setae ventrolaterally (exception: femur without ablateral cucullate
259
setae ventrolaterally in Brachycentrotus); tibia not foliaceous, row I with 15-20 cucullate setae, row II with 12-21 cucullate setae in single row, row III with 14-22 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges; sternal longitudinal carina present or absent; paired dorsal swellings absent (exception: paired dorsal swellings present in Monobelus); tergum III ventrolateral margin carinate; abdominal setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Fig. 17.4): second valvulae with (Fig. 17.4 D) or without abrupt broadening near midpoint, narrow near base, curved in Monobeloides (Fig. 17.4 C), dorsal teeth fine (Fig. 17.4 E) or large (Fig. 17.4 B), acute projections absent; third valvulae without ventral projections. MALE
GENITALIA
(Figs. 17.5 A-K): lateral plate with (Fig. 17.5 H) or without short dorsoapical lobe extending laterally, without ventral lobe; subgenital plate with (Fig. 17.5 K) or without distinct division; style clasp oriented dorsoventrally, thickened, truncate with acute projection, not angled; style shank without significant arch. ABDOMINAL FINE STRUCTURE (Monobelus)(Fig. 17.5 L): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Monobelini is found in the Neotropical Region, specifically the Caribbean Islands, and has been recorded from the Bahamas, Cuba, Dominican Republic, Grenada, Guadeloupe, Haiti, Jamaica, Puerto Rico, and St. Vincent Island. (McKamey 1998a). Ecology.—Members of the tribe Monobelini are reported from the host plant families
260
Anacardiaceae, Araceae, Combretaceae, Compositae, Leguminosae, Moraceae, Sapotaceae, and Solanaceae (Table 26.2). Discussion.—The new tribe Monobelini is a monophyletic group in the phylogenetic analysis (Fig. 24.1) and is closely related to the tribes Boocerini and Gargarini. The included genera are united by the following synapomorphies: a truncate clasp with an acute projection and the frontoclypeal lobes extending to the apex of the frontoclypeus.
The genus
Monobelus was previously placed in the tribe Platycentrini (Deitz 1975a) based on the presence of multiple m-cu crossveins and an exposed scutellum abutted by the pronotal posterior process. Here, these features are diagnostic characters for the Monobelini, but are symplesiomorphic. Moreover, Deitz (1975a) stressed the heterogeneity of Platycentrini, and, that upon more detailed future morphological examination, the genera of Platycentrini may be placed elsewhere. Monobeloides was placed in the tribe Nessorhinini by Ramos (1979a) because of the concealed scutellum, but differs from other nessorhinines in features of the forewing and abdomen. Furthermore, Ramos’ generic description emphasized the overall similarity between Monobelus and Monobeloides. Although Brachycentrotus was previously included in the Boocerini (Deitz 1975a), it lacks the diagnostic long ventral lobe of the male lateral plate and also the mesothoracic ab- and adlateral cucullate setae of the femur. Additionally, Brachycentrotus occurs only in the Caribbean Islands while all boocerines are recorded only from the mainland neotropics. Monobelus and Monobeloides, a monophyletic group in the phylogenetic tree (Fig. 24.1), share characteristics lacking in their sister group Brachycentrotus, including extra cucullate setae at the apex of the metathoracic femur, ablateral ventrolateral cucullate setae
261
present on the metathoracic femur, m-cu1 crossvein present in the forewing, and the base of R2+3 and R4+5 veins acute in the forewing. Monobelus was chosen as the type genus because it is more common in insect collections than the other two genera.
Genera of the tribe Monobelini Brachycentrotus Metcalf and Bruner, 1926a (type species: Brachycentrus punctatus Metcalf and Bruner by original designation) [previously placed in Boocerini (McKamey 1998a)]. Monobeloides Ramos, 1979a (type species: M. stuarti Ramos by original designation) [previously placed in Nessorhinini (McKamey 1998a)]. Monobelus Stål, 1866a (type species: Membracis fasciata Fabricius by subsequent designation, preoccupied junior synonym of Monobelus biguttatus (Fabricius)) [previously placed in Platycentrini (McKamey 1998a)]. Specimens examined.—Brachycentrotus punctatus (Metcalf and Bruner), [holotype of Brachycentrus punctatus Metcalf and Bruner], NCSU, #01-89i%; B. rufinervis Ramos, paratype, USNM, #00-187e&; Monobeloides stuarti Ramos, det. S.H. McKamey, NCSU, #00-194a&—det. S.H. McKamey, SHMC, #00-194b%; Monobelus sp., as det. in NCSU, #9993a%; M. biguttatus (Fabricius), det. W.D. Funkhouser, USNM, #00-194c&—as det. in USNM, #00-194d%; M. flavidus (Fairmaire), as det. in USNM, #01-232a&.
262
Fig. 17.1. Monobelini: pronota (lateral aspects, A-D; and anterior aspects, E-G) and heads (H-K). Bars = 3 mm. A, Brachycentrotus punctatus (Metcalf and Bruner), holotype, #01-89i%. B, B. rufinervis Ramos, paratype, #00-187e&. C, Monobeloides stuarti Ramos, #00-194a&. D, Monobelus biguttatus (Fabricius), #00-194d%. E, B. punctatus, holotype, #01-89i%. F, Monobeloides stuarti, #00-194a&. G, Monobelus biguttatus, #00-194d%. H, B. punctatus, holotype, #01-89i%. I, B. rufinervis, paratype, #00-187e&. J, Monobeloides stuarti, #00-194a&. K, Monobelus biguttatus, #00-194d%.
263
Fig. 17.2. Monobelini: wings. A, Monobelus biguttatus (Fabricius), #00-194d%, right forewing. B, M. biguttatus, #00194d%, right hind wing. C, Monobeloides stuarti Ramos, #00194a&. D, Brachycentrotus punctatus (Metcalf and Bruner), holotype, #01-89i%.
264
Fig. 17.3. Monobelini: metathoracic leg. Monobelus biguttatus (Fabricius) #00-194c&.
265
A,
Fig. 17.4 Monobelini: female second valvulae (lateral aspects and closeup of apex). A-B, Brachycentrotus rufinervis Ramos, paratype, #00-187e&. C, Monobeloides stuarti Ramos, #00-194a&. D-E, Monobelus biguttatus (Fabricius) #00-194c&.
266
Fig. 17.5. Monobelini: male styles (lateral aspects, A-C; and dorsal aspects, D-F), lateral plates (lateral aspects, G-I), and subgenital plates (ventral aspects, J-K), and maximum development of abdominal fine-structure (L). Scanning electron micrograph near tergum III. A, Brachycentrotus punctatus (Metcalf and Bruner), holotype, #01-89i%. B, Monobeloides stuarti Ramos, #00-194b%. C, Monobelus biguttatus, #00-194d%. D, B. punctatus, holotype, #01-89i%. E, Monobeloides stuarti, #00-194b%. F, Monobelus biguttatus, #00-194d%. G, B. punctatus, holotype, #01-89i%. H, Monobeloides stuarti, #00-194b%. I, Monobelus biguttatus, #00-194d%. J, Monobeloides stuarti Ramos, #00-194b%. K, Monobelus biguttatus (Fabricius), #00-194d%. L, M. flavidus (Fairmaire), #01-232a&. c, clasp. d, subgenital plate division. dl, dorsoapical lobe. m, microtrichia. i, inornate pit.
267
18. Tribe NESSORHININI Deitz, 1975 New World: Neotropical Region Figs. 18.1-18.8 Type genus: Nessorhinus Amyot and Serville, 1843a
Nessorhininae Deitz, 1975a [new subfamily] and Nessorhinini Deitz, 1975a [new tribe]: subfamily Nessorhininae equals Centrotinae and tribe Nessorhinini moved to Centrotinae (Dietrich et al. 2001a). Diagnostic characters.—Frontoclypeal lobes indistinct. Posterior pronotal process appressed against scutellum. Scutellum concealed by posterior process (exception: scutellum not concealed by posterior process in Daimon, polymorphic in Orthobelus). Forewing with R4+5 vein prior to s crossvein not significantly angled (exception: R4+5 shape prior to s crossvein significantly angled in Daimon); base of R2+3 and R4+5 veins truncate (exception: base of R2+3 and R4+5 veins truncate or acute in Daimon). Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic leg cucullate setal row II single. Female second valvulae not broadened, narrow near base, with large dorsal teeth. Abdomen with anterior tergal borders modified into irregular ridges; paired dorsal swellings present; tergum III ventrolateral margin with upcurved groove (exceptions: ventrolateral margin shelflike in Callicentrus, Marshallella, and Orthobelus). Abdominal acanthae distinct, bases heightened, acanthae multidentate or divided into threadlike microtrichia.
268
Description.—Length 4.5-10 mm.
Color, tan, dark brown, dark blue, or
combinations thereof. HEAD (Figs. 18.2 D-K): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and extending nearly to apex of frontoclypeus or not; ocelli about equidistant from each other and eyes (Fig. 18.2 G) or closer to eyes than each other (Fig. 18.2 K); vertex without toothlike projections. THORAX: PRONOTUM (Figs. 18.1-18.2): suprahumeral horns present or absent, partially fused into median anterior horn in Nessorhinus (Fig. 18.1 E, N) and Orekthophora (Fig. 18.1 F, O); posterior process straight at base, appressed against scutellum, extending signficantly past mcu3 crossvein in forewing.
SCUTELLUM (when visible): emarginate with apices acute,
concealed by posterior process (exception: scutellum not concealed by posterior process in Daimon, Fig. 18.1 B, polymorphic in Orthobelus); shortened--with abdomen removed, scutellum not visible. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 18.3-18.4): hyaline or opaque; apical limbus broad; s crossvein distad of rm2 crossvein (exception: s crossvein near r-m2 crossvein in Spinodarnoides, Fig. 18.4 B); mcu1 and m-cu2 crossveins present or absent; M and Cu veins adjacent at base (exception: M and Cu veins fused at base in Orekthophora, Fig. 18.3 G); R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; forewing with (Fig. 18.3 D) or without pterostigma (Fig. 18.3 F), when present, pterostigma near or at R1 vein; r-m1 crossvein originating anterior to first division of R vein (exception: r-m1 crossvein originating near first division of R vein in Goniolomus, Fig. 18.3 E), bent towards R vein or parallel to longitudinal veins; R, M, and Cu veins parallel apically (Fig. 18.3 F) or not (Fig. 18.3 A); discoidal cells similar in length (Fig. 18.3 E) or not (Fig. 18.3 D); R4+5 vein shape
269
prior to s crossvein not significantly angled (exception: R4+5 shape prior to s crossvein significantly angled in Daimon, Fig. 18.3 D); base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute in Daimon). HIND WING (Fig. 18.3 B): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC
LEG
(Fig. 18.4 C-D): ventral margin of
coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae (exceptions: femur without adlateral cucullate setae in Goniolomus and Nessorhinus); femur without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with 12-30 cucullate setae (cucullate row I absent in Daimon and Marshallella, Fig. 18.4 C, polymorphic in Callicentrus), row II with 11-30 cucullate setae in single row, row III with 9-34 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders modified into irregular ridges; sternal longitudinal and transverse carinae present or absent; paired dorsal swellings present; tergum III ventrolateral margin with upcurved groove (exceptions: ventrolateral margin shelflike in Callicentrus, Marshallella, and Orthobelus); abdominal setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Figs. 18.518.6): second valvulae not broadened, narrow near base, curved or not, dorsal teeth large, acute projections absent (exception: acute projections present in Nessorhinus); third valvulae without ventral projections. MALE GENITALIA (Figs. 18.6-18.7): lateral plate with (Fig. 18.7 H) or without (Fig. 18.7 J) short or long dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate (Fig. 18.7 L) without distinct division; style clasp oriented
270
dorsoventrally (Fig. 18.6 G) or laterally (Fig. 18.6 E), thickened, expanding dorsally and laterally with a sclerotized ridge (Fig. 18.6 N) or truncate with an acuminate projection (Fig. 18.7 B), not angled (exception: style clasp angled dorsally in Orthobelus, Fig. 18.6 K), without basal thickening; style shank with significant arch at midpoint (exceptions: style shank without significant arch at midpoint in Orthobelus and Paradarnoides, Fig. 18.6 K-L). ABDOMINAL
FINE STRUCTURE
(Fig. 18.8): acanthae distinct, bases heightened, acanthae
multidentate (Fig. 18.8 B) or divided into threadlike microtrichia (Fig. 18.8 E). Chromosome numbers.—Unknown. Distribution.—The tribe Nessorhinini is found in the Neotropical Region and has only been recorded from the Caribbean Islands (McKamey 1998a: 11, 216-219). Ecology.—Members of the tribe Nessorhinini are reported from the host plant families Anacardiaceae, Labiatae, Leguminosae, Malpighiaceae, Malvaceae, Moraceae, Myrtaceae, Phytolaccaceae, Rubiaceae, Rutaceae, Solanaceae, and Vitaceae (Table 26.2). Discussion.— The tribe Nessorhinini as defined here is a monophyletic group (Figs. 24.1, 24.3) and corresponds largely with the original definition of Deitz (1975a). He included in the subfamily Nessorhininae those membracids with the second valvulae straight, long, blade-shaped and with the scutellum completely concealed by the pronotum. Dietrich et. al (2001a) reduced the subfamily Nessorhininae in rank to tribe Nessorhinini within the subfamily Centrotinae, based on a morphological phylogenetic analysis. This taxonomic change is supported by phylogentic analysis of the Centrotinae presented here (Fig. 24.1). In one of the most parsimonius trees of Dietrich et al. (2001a), the nessorhinine genera Callicentrus and Nessorhinus are a monophyletic group, but Orthobelus, here placed in
271
Nessorhinini, and Platycentrus (Platycentrini), are also a monophyletic group. Callicentrus and Nessorhinus were monophyletic in a phylogenetic analysis of the family Membracidae using two nuclear genes (Cryan et al. 2000a). In addition to the above mentioned diagnostic characters, all nessorhinines possess dorsal swellings on the abdomen and have large teeth on the dorsal margin of female second valvulae. Unlike most centrotines, especially those of the Old World, the shape of the female genitalia in nessorhinines is more diagnostic and consistent than the shape of the male genitalia. In most nessorhinines, the M and Cu veins in the forewing are adjacent and the ventrolateral margin of abdominal tergum III is modified into an upcurved groove. The genera Daimon and Orthobelus, formerly in Boocerini and Platycentrini respectively, are here placed in Nessorhinini. Orthobelus differs from the platycentrines in abdominal features and shape of the female second valvulae. Daimon was previously placed in the Boocerini, but it lacks the characteristic long ventral lobe of the male lateral plate. In addition, both genera have only been recorded from the Caribbean Islands while boocerines and platycentrines have only been found in the mainland neotropics. In Daimon and in some species of Orthobelus, the scutellum is not concealed by the posterior process. The plasticity of this character is also evident in the tribe Gargarini, another tribe in which the posterior process is in continuous contact with the scutellum. The genus Monobeloides, formerly placed in the Nessorhinini, is here referred to the tribe Monobelini. The genus Brachytalis is here referred to Membracidae, incertae cedis.
272
Although not included in the phylogenetic analysis, Brachytalis lacks abdominal inornate pits with lateral setae, a synapomorphy for the Centrotinae. Also, the forewing venation differs greatly from other nessorhines and centrotines.
Genera of the tribe Nessorhinini † no specimen examined * placement based on morphological similarity Callicentrus Stål, 1869c (type species: Centrotus ignipes Walker by subsequent designation). Daimon Buckton, 1903a (type species: D. satyrus by monotypy, junior synonym of D. serricorne (Walker)) [previously placed in Boocerini (McKamey 1998a)]. Goniolomus Stål, 1869c (type species: G. tricorniger Stål by subsequent designation). Marshallella Goding, 1927b (type species: M. rubripes Goding by original designation). Nessorhinus Amyot and Serville, 1843a (type species: N. vulpes Amyot and Serville by monotypy). Orekthophora Funkhouser, 1930a (type species: O. cornuta Funkhouser by original designation). Orthobelus Stål, 1869a (type species: Centrotus urus Fairmaire by subsequent designation) [previously placed in Platycentrini (McKamey 1998a)]. Paradarnoides Fowler, 1894a (type species: P. severini Fowler by subsequent designation). Spathenotus Ramos, 1957a (type species: S. tridentatus Ramos by original designation), see fig. 13 E, G, H of Ramos (1957a: 91).†*
273
Spinodarnoides Funkhouser, 1930a (type species: S. typus Funkhouser by original designation). Specimens examined.—Callicentrus ignipes (Walker), lectotype, BMNH—as det. in USNM, #00-187g&, #00-187h%; Daimon serricorne (Walker), [lectotype of D. satyrus Buckton], BMNH—[paralectotype of D. satyrus Buckton], BMNH, #72-193c%—det. W.D. Funkhouser, USNM, #71-294a(sex?)—as det. in USNM, #00-188c&, #01-232f&; Goniolomus tricorniger Stål, det. W.D. Funkhouser, USNM, #00-188d&—as det. in USNM, #00-188e%; Marshallella rubripes Goding, det. W.D. Funkhouser, USNM, #71-295b&—as det. in USNM, #00-188h%, #01-242b&; Nessorhinus gibberulus Stål, as det. in USNM, #0167c&; N. gracilis Metcalf and Bruner, paratype, NCSU, #99-93b&; N. vulpes Amyot and Serville, as det. in USNM, #72-3f%, 99-167a&—det. W.D. Funkhouser, USNM, #01-117d&; Orekthophora cornuta Funkhouser, holotype, USNM, #71-363b&—allotype, USNM, #71361c%; Orthobelus sp., det. L.L. Deitz, USNM, #00-195j&; O. urus (Fairmaire), det. J.A. Ramos, USNM, #83-332b%—det. W.D. Funkhouser, USNM, #83-332c&; Paradarnoides sp., det. S.H. McKamey, SHMC, #02-136c%; P. severini Fowler, det. W.D. Funkhouser, USNM, #71-2d&; Spinodarnoides typus Funkhouser, holotype, USNM, #71-363c&.
274
Fig. 18.1. Nessorhinini: pronota (lateral aspects, A-I; and anterior aspects, J-O). Bars = 3 mm. A, Callicentrus ignipes (Walker), #00-187h%. B, Daimon serricorne (Walker), #00-188c&. C, Goniolomus tricorniger Stål, #00-188d&. D, Marshallella rubripes Goding, #00-188h%. E, Nessorhinus vulpes Amyot and Serville, #99-167a&. F, Orekthophora cornuta Funkhouser, holotype, #71-363b&. G, Orthobelus urus (Fairmaire), #83-332c&. H, Paradarnoides severini Fowler, #71-2d&. I, Spinodarnoides typus Funkhouser, holotype, #71-363c&. J, C. ignipes, #00187h%. K, D. serricorne, #00-188c&. L, G. tricorniger, #00-188d&. M, M. rubripes, #00-188h%. N, N. vulpes, #99-167a&. O, Orekthophora cornuta, holotype, #71-363b&. 275
Fig. 18.2. Nessorhinini: pronota (anterior aspects, A-C) and heads (D-K). A, Orthobelus urus (Fairmaire), #83-332c&. B, Paradarnoides severini Fowler, #71-2d&. C, Spinodarnoides typus Funkhouser, holotype, #71363c&. D, Callicentrus ignipes (Walker), #00-187h%. E, Daimon serricorne (Walker), #00-188c&. F, Goniolomus tricorniger Stål, #00188d&. G, Marshallella rubripes Goding, #00-188h%. H, Orekthophora cornuta Funkhouser, holotype, #71-363b&. I, Orthobelus urus (Fairmaire), #83-332c&. J, P. severini, #71-2d&. K, S. typus, holotype, #71-363c&. fc, frontoclypeus.
276
Fig. 18.3. Nessorhinini: wings. A, Nessorhinus vulpes Amyot and Serville, #72-3f%, left forewing (inverted). B, N. vulpes, #72-3f%, left hind wing (inverted). C, Callicentrus ignipes (Walker), #00-187g&, right forewing. D, Daimon serricorne (Walker), #00-188c&, left forewing (inverted). E, Goniolomus tricorniger Stål, #00-188e%, right forewing. F, Marshallella rubripes Goding, #00-188h%, left forewing (inverted). G, Orekthophora cornuta Funkhouser, holotype, #71-361c%, right forewing. H, Orthobelus urus (Fairmaire), #83-332b%, left forewing (inverted). 277
Fig. 18.4. Nessorhinini: wings (A-B) and metathoracic legs (B-C). A, Paradarnoides severini Fowler, #71-2d&, right forewing. B, Spinodarnoides typus Funkhouser, holotype, #71-363c&, right forewing. C, Marshallella rubripes Goding, #71-295b&, left metathoracic leg. D, Nessorhinus vulpes Amyot and Serville, #99-167a&, left metathoracic leg.
278
Fig. 18.5. Nessorhinini: female second valvulae (lateral aspects and closeup of apex). A-B, Callicentrus ignipes (Walker), #00-187g&. C-D, Daimon serricorne (Walker), #00-188c&. E-F, Goniolomus tricorniger Stål, #00-188d&. G-H, Marshallella rubripes Goding, #71-295b&. I-J, Nessorhinus vulpes Amyot and Serville, #99-167a&.
279
Fig. 18.6. Nessorhinini: female second valvulae (lateral aspects and closeup of apex, A-D) and male styles (lateral aspects, E-L; and dorsal aspects, M-P). A-B, Orthobelus urus (Fairmaire), #83-332c&. C-D, Paradarnoides severini Fowler, #712d&. E, Callicentrus ignipes (Walker), #00-187h%. F, Daimon serricorne (Walker), paralectotype, #72-193c%. G, Goniolomus tricorniger Stål, #00-188e%. H, Marshallella rubripes Goding, #00-188h%. I, Nessorhinus vulpes Amyot and Serville, #72-3f%. J, Orekthophora cornuta Funkhouser, holotype, #71-361c%. K, Orthobelus urus (Fairmaire), #83-332b%. L, Paradarnoides sp., #02-136c%. M, C. ignipes, #00-187h%. N, D. serricorne, paralectotype, #72-193c%. O, G. tricorniger, #00-188e%. P, M. rubripes, #00-188h%. Copyrights: D © 2003, The Natural History Museum, London. c, clasp. 280
Fig. 18.7. Nessorhinini: male styles (dorsal aspects, A-C), aedeagi (lateral aspects, D-E), lateral plates (lateral aspects, F-K), and subgenital plate (ventral aspect, L). A, Nessorhinus vulpes Amyot and Serville, #72-3f%. B, Orekthophora cornuta Funkhouser, holotype, #71-361c%. C, Paradarnoides sp., #02-136c%. D, Goniolomus tricorniger Stål, #00-188e%. E, O. cornuta, holotype, #71-361c%. F, Callicentrus ignipes (Walker), #00-187h%. G, Daimon serricorne (Walker), paralectotype, #72-193c%. H, G. tricorniger, #00-188e%. I, Marshallella rubripes Goding, #00-188h%. J, Orthobelus urus (Fairmaire), #83-332b%. K, Paradarnoides sp., #02-136c%. L, C. ignipes, #00-187h%. Copyrights: G © 2003, The Natural History Museum, London. c, clasp. dl, dorsoapical lobe.
281
Fig. 18.8. Nessorhinini: fine-structure of pronota (A) and maximum development of abdominal fine-structure. All abdominal scanning electron micrographs near tergum III. A-B, Daimon serricorne (Walker), #01-232f&. C, Marshallella rubripes Goding, #01242b&. D, Nessorhinus vulpes Amyot and Serville, #01-117d&. E, Orthobelus sp., #00-195j&. i, inornate pit. l, lateral seta. a, acanthus.
282
19. Tribe OXYRHACHINI Distant 1908 Old World: Afrotropical, Indomalayan, and Palearctic Regions Figs. 19.1-19.3 Type genus: Oxyrhachis Germar, 1833a
Oxyrhachisaria Distant, 1908g [new division]: first treated as subfamily Oxyrrhachinae [sic: for Oxyrhachinae] and tribe Oxyrrhachini (Haupt 1929c); tribe Oxyrhachisini [sic: for Oxyrhachini] Goding 1930b; subfamily Oxyrhachinae equals Centrotinae and tribe Oxyrhachini moved to Centrotinae (Dietrich et al. 2001a). Xiphistesini Goding, 1930a [new division]: first treated as tribe Xiphistini and equals Oxyrhachini (Capener 1962a).
Diagnostic characters.—Frontoclypeal lobes indistinct, head with large foliate lobes. Posterior pronotal process concealing scutellum. Pleuron with propleural lobe present and mesopleural lobe enlarged. Forewing with Cu1 vein abutting clavus (not marginal vein), with m-cu1 and m-cu2 crossveins in at least one wing, M and Cu veins adjacent at base, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins fused or not (3 or 4 apical cells). Tibiae foliaceous. Mesothoracic and metathoracic femora without ab- and adlateral cucullate setae. Metathoracic tibial rows I and III without cucullate setae (row II without cucullate setae in some species). Female second valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal margin with fine teeth. Male style clasp oriented laterally, apex membranous, cylindrical, angled ventrally. Abdomen with paired
283
dorsal swellings, larger in posterior segments; acanthae distinct, bases not heightened, acanthae without ornamentation. Description.—Length 5-6.3 mm. Color tan to dark brown, or combinations thereof. HEAD (Fig. 19.1 I): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct; with large foliate lobes; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 19.1 AH): suprahumeral horns present or absent; posterior process straight at base, appressed against scutellum, significantly extending past m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, concealed by posterior process; shortened--with abdomen removed, notch and apices not visible. PLEURON: propleural lobe present, mesopleural lobe enlarged. FOREWING (Figs. 19.1 J): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein; Cu1 vein abutting clavus (not marginal vein); m-cu1 and m-cu2 crossveins present in at least 1 wing; M and Cu veins adjacent at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first division of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 19.1 K): R4+5 and M1+2 veins fused or not (3 or 4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Figs. 19.2 A-B): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur without ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibia foliaceous, rows I and III without cucullate setae; row II with or without cucullate setae, if present, in single row; tarsomere I with 1 cucullate seta or 284
none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina absent; paired dorsal swellings present, larger in posterior segments; tergum III ventrolateral margin carinate; abdominal setal bases not enlarged. FEMALE
GENITALIA
(Figs. 19.3 A-D): second valvulae short with undulating
dorsal margin, narrow near base, not curved, dorsal teeth fine in size, acute projections on dorsal margin absent; third valvulae without small ventral conelike projections. GENITALIA
MALE
(Figs: 19.3 E-K) lateral plate with short dorsoapical lobe extending laterally (Fig.
19.3 J) or vertically, without ventral lobe; subgenital plate without distinct division; style clasp (Fig. 19.3 E-F) oriented laterally, membranous, cylindrical, angled ventrally; style shank arched, apex at midpoint or past midpoint. ABDOMINAL FINE STRUCTURE (Figs. 19.2 C-D): acanthae distinct, bases not heightened, acanthae without ornamentation. Chromosome numbers.—Male 2n= 21 (Table 26.3). Distribution.—The
tribe
Oxyrhachini
is
recorded
from
the
Afrotropical,
Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Oxyrhachini are reported from the host plant families
Amaranthaceae,
Balanitaceae,
Bignoniaceae,
Buddlejaceae,
Casuarinaceae,
Compositae, Ebenaceae, Euphorbiaceae, Gramineae, Lauraceae, Leguminosae, Moraceae, Myrtaceae, Proteaceae, Rhamnaceae, Santalaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Ulmaceae, and Verbenaceae. Oxyrhachis is the only centrotine genus reported from the family Balanitaceae (Table 26.2). Oxyrhachis is reported to be tended by ants (Table 26.1). Some species of Oxyrhachis are gregarious intra- and interspecifically as both nymphs and adults (Ananthasubramanian 1996a).
In addition, certain species of Oxyrhachis show
285
parental care by guarding egg masses and nymphs from predators and parasitoids (Ananthasubramanian 1996a). Discussion.—The tribe Oxyrhachini, represented by the genus Oxyrhachis, is a very morphologically distinct, geographically widespread, and speciose group.
The genus
Oxyrhachis is among the four largest membracid genera, with 117 species (McKamey 1998a).
Oxyrhachini, although monotypic, is here retained as a valid tribe due to the
numerous character changes on the phylogenetic tree (Fig. 24.1) and the size of the lineage. The genus Oxyrhachis is perhaps best known morphologically for its large foliate lobes on the head that closely border the frontoclypeus. Oxyrhachini was historically placed in the Membracinae by many workers including Stål (1866a), Distant (1908g), Goding (1931a), and Metcalf and Wade (1965a). Funkhouser (1951a), however, included the Oxyrhachini within the Centrotinae. Distant’s (1908g) key characteristics are still valuable diagnostic features for the tribe: oxyrachine treehoppers have a long and narrow posterior process, the tibiae are foliaceous, and the pro- and mesosterna have distinct tooth-like processes. Along with these features, all oxyrhachines examined have dorsal abdominal swellings which are larger in the posterior portion of the abdomen. This is in contrast to nessorhinines and gargarines where the dorsal abdominal processes are more distinct in the anterior portion of the abdomen. Unlike other centrotines, the oxyrhachines examined here have Cu1 vein abutting the clavus in the forewing, or the junction between the clavus and the marginal vein, rather than clearly abutting the marginal vein.
Additionally, M and Cu veins in the forewing are clearly
adjacent in oxyrhachine forewings and m-cu1 and m-cu2 crossveins are present.
286
Although most oxyrhachine species are morphologically homogenous, certain characters vary among species. Some species, including O. carinata and O. sulicornis, have R4+5 and M1+2 veins in the hind wing fused (3 apical cells) while in other species these veins are not fused (4 apical cells). Apparently, according to Capener (1962a), the number of species with 3 apical cells and 4 apical cells in the hind wing is about equal. The presence of cucullate setae in metathoracic tibial row II is also variable among species of Oxyrhachis. Indeed, Oxyrhachis formerly was split into 6 genera to accommodate the differences in hind wing venation and pronotal features, including the presence or absence of suprahumeral horns. Based on a phylogenetic analysis (Fig. 24.12) of three former genera (Gongroneura Jacobi, Kombazana Distant, and Xiphistes Stål) and Oxyrhachis, however, there are too few morphological differences to defend splitting Oxyrhachis into multiple genera at this time. A phylogenetic analysis of Oxyrhachis, using generic morphological characters and molecular methods, is recommended to better determine its taxonomic and phylogenetic limits. The reduction in rank from subfamily Oxyrhachinae to tribe Oxyrhachini (within the Centrotinae) by Dietrich et al. (2001a) based on a morphological phylogenetic analysis is supported by the phylogenetic analysis of the Centrotinae presented here (Fig. 24.1). The Oxyrhachini are closely related to the tribes Ebhuloidesini, Hypsaucheniini, and Terentiini. Apparently, the Oxyrhachini are sister group to the Hypsaucheniini. The Ebhuloidesini, Hypsaucheniini, and Oxyrhachini share similarly shaped female second valvulae and male clasps, and all have enlarged pleural projections. This diagnostic male clasp was described as resembling the “head of a snake” by Capener (1962a). Although the Oxyrhachini are sister group to the Nessorhinini in the phylogenetic analysis of Dietrich et al. (2001a), this relationship was thought to be an artifact of the small number of centrotines sampled. It is 287
critical that future molecular higher level phylogenetic analyses of the Membracidae include the Oxyrhachini in order to investigate further their relationship with the morphologically extreme tribe Hypsaucheniini and predominantly Australian Terentiini.
Genera of the tribe Oxyrhachini Oxyrhachis Germar, 1833a (type species: Membracis taranda Fabricius by monotypy). Specimens examined. —Oxyrhachis carinata (Funkhouser), det. A.L. Capener, AMNH, #00-175b%, #00-175c&; O. delalendei Fairmaire, det. A.L. Capener, AMNH, #00175d%, #00-175e&; O. sulcicornis (Thunberg), det. A.L. Capener, NCSU, #81-48a%, #8148b&; O. taranda (Fabricius), det. Z.P. Metcalf, NCSU, #99-82a&, #99-97a%, #99-97b&, #01-260a& —as det. in NCSU, #99-82b%—as det. in USNM, #01-54c%.
288
Fig. 19.1. Oxyrhachini: pronota (lateral aspects, A-D; and anterior aspects, E-H), heads (I), and wings (J-K). Bars = 3 mm. A, Oxyrhachis carinata (Funkhouser), #00-175c&. B, O. delalendei Fairmaire, #00-175d%. C, O. sulcicornis (Thunberg), #81-48a%. D, O. taranda (Fabricius), #9997a%. E, O. carinata (Funkhouser), #00-175c&. F, O. delalendei Fairmaire, #00-175d%. G, O. sulcicornis (Thunberg), #81-48a%. H, O. taranda (Fabricius), #99-82a&. I, O. taranda (Fabricius), #99-82a&. J, O. taranda (Fabricius), #99-82b%, right forewing. K, O. taranda (Fabricius), #99-82b%, left hind wing (inverted). fo, foliate lobes. 289
Fig. 19.2. Oxyrhachini: metathoracic legs (A-B) and maximum development of abdominal fine-structure (C-D). All scanning electron micrographs near tergum III. A, Oxyrhachis delalendei Fairmaire, #00-175e&. B, O. taranda (Fabricius), #99-82a&. C-D, O. taranda (Fabricius), #01-54c%. i, inornate pit. l, lateral seta.
290
Fig. 19.3. Oxyrhachini: female second valvulae (A-D, lateral aspects and closeup of apex), and male styles (E-F, lateral aspects), aedeagi (G-H, lateral aspects), lateral plates (I-J, lateral aspects), and subgenital plate (K, ventral aspect). A, Oxyrhachis carinata (Funkhouser), #00-175c&. B, O. delalendei Fairmaire, #00-175e&. C-D, O. taranda (Fabricius), #99-82a&. E, O. carinata (Funkhouser), #00-175b%. F, O. taranda (Fabricius), #99-82b%. G, O. carinata (Funkhouser), #00-175b%. H, O. taranda (Fabricius), #99-82b%. I, O. carinata (Funkhouser), #00-175b%. J, O. taranda (Fabricius), #99-82b%. K, O. carinata (Funkhouser), #00-175b%. c, clasp. dl, dorsoapical lobe. 291
20. Tribe PIELTAINELLINI, new tribe New World: Neotropical Region Figs. 20.1-20.2 Type genus: Pieltainellus Peláez, 1970a
Diagnostic characters.— Frontoclypeal lobes indistinct and not extending to apex of frontoclypeus. Posterior pronotal process not appressed against scutellum, not significantly extending past or not reaching m-cu3 crossvein in forewing. Scutellum not shortened--with abdomen removed, notch and apices visible.
Forewing with R1 vein perpendicular to
marginal vein. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur with ab- and adlateral cucullate setae; tibia with cucullate setal row II single.
Female second valvulae not
broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute projections present. Abdominal acanthae (Pieltainellus) distinct, bases heightened, acanthae multidentate. Anterior tergal borders modified into irregular ridges. Description.—Length 4.3-5.4 mm. thereof.
Color tan to dark brown, or combinations
HEAD (Figs. 20.1 E-F): frontoclypeal margins parallel or slightly converging
ventrally, frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 20.1 A-D): suprahumeral horns present in Spathocentrus (Fig. 20.1 D) and polymorphic in Pieltainellus; posterior process straight (Fig. 20.1 A) or curved at base (Fig. 20.1 B), not appressed against scutellum, not significantly extending past or not reaching mcu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by 292
posterior process, 1 lateral apex or none visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 20.1 GH): hyaline or opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent preapically; R1 vein perpendicular to marginal vein; forewing without pterostigma; r-m1 crossvein originating near or distad of first division of R vein, bent towards R vein; R, M, and Cu veins not parallel apically; discoidal cells similar in length; R4+5 vein shape prior to s crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate. HIND WING: R4+5 and M1+2 veins not fused (4 apical cells).
PRO-
AND MESOTHORACIC LEGS:
tibiae not
foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Fig 20.1 I): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae, adlateral cucullate seta preapical; femur without ablateral cucullate seta ventrolaterally; tibial row I with 19-26 cucullate setae, row II with 16-25 cucullate setae in single row, row III with 23-32 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular or flattened; anterior tergal borders modified into irregular ridges; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior tergal borders not enlarged. FEMALE
GENITALIA
(Figs. 20.2 A-D): second valvulae not
broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute projections present; third valvulae without ventral projections.
MALE
GENITALIA
(Pieltainellus, Figs. 20.2 E-J): lateral plate with short dorsoapical lobe extending laterally, 293
without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally, thickened, elliptical, not angled; style shank without significant arch. ABDOMINAL STRUCTURE
FINE
(Pieltainellus) (Fig. 20.2 K): acanthae distinct, bases heightened, acanthae
multidentate. Chromosome numbers.—Unknown. Distribution.—The tribe Pieltainellini is recorded from the Neotropical Region (Maes 1998a, McKamey 1998a). Ecology.— Host plant information for the tribe Pieltainellini is unknown. Discussion.—The new tribe Pieltainellini is a monophyletic group in the phylogenetic analysis (Fig. 24.1) and is closely related to the tribes Beaufortianini Nessorhinini, and Platycentrini. The females of Pieltainellus and Spathocentrus both have curved second valvulae with acute projections on the dorsal margin and have R1 vein perpendicular to the marginal vein in the forewing. Moreover, unlike many of their relatives, the scutellum is fully exposed and is not appressed by the posterior process.
In his
description of Pieltainellus, Peláez (1970a) remarked on the morphological similarities between Pieltainellus and Spathocentrus. The genus Pieltainellus was chosen as the type genus because both female and male specimens were examined. Both Pieltainellus and Spathocentrus were placed in the Boocerini by Deitz (1975a). The Pieltainellini lack extra m-cu crossveins and have an exposed scutellum, characteristics Deitz used to define the Boocerini. The Pieltainellini, however, lack other boocerini features including mesothoracic ablateral cucullate setae on the femur and the long ventral lobe of the male lateral plate.
294
Genera of the tribe Pieltainellini Pieltainellus Peláez, 1970a (type species: P. boneti Peláez by original designation) [previously placed in Boocerini (McKamey 1998a)]. Spathocentrus Fowler, 1896d (type species: S. intermedius Fowler by monotypy) [previously placed in Boocerini (McKamey 1998a)]. Specimens examined.—Pieltainellus sp., det. S.H. McKamey, SHMC, #01-235f&; P. boneti Peláez, det. L.L. Deitz, AMNH, #72-97c&, #72-129a%; Spathocentrus intermedius Fowler, holotype, OXUM, #72-296a&—det. S.H. McKamey, SHMC, #00-195a&—as det. in CNCI, #01-39b&.
295
Fig. 20.1. Pieltainellini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-H), and metathoracic leg (I). Bars = 3 mm. A, Pieltainellus boneti Peláez, #72-97c&. B, Spathocentrus intermedius Fowler, #00-195a&. C, P. boneti, #72-129a%. D, S. intermedius, #00-195a&. E, P. boneti, #72-97c&. F, S. intermedius, #00-195a&. G, P. boneti, #72-129a%, left forewing (inverted). H, S. intermedius, #00-195a&, left forewing (inverted). I, P. boneti, #72-97c&, left metathoracic leg. fc, frontoclypeus. 296
Fig. 20.2. Pieltainellini: female second valvulae (lateral aspects and closeup of apex, A-D), and male styles (lateral aspect, E; dorsal aspect, F; and posterior aspect, G), aedeagus (lateral aspect, H), lateral plate (lateral aspect, I), and subgenital plate (ventral aspect, J), and maximum development of abdominal fine-structure (K). Scanning electron micrograph near tergum III. A-B, Pieltainellus boneti Peláez, #72-97c&. C-D, Spathocentrus intermedius Fowler, #00-195a&. E-J, P. boneti, #72-129a%. K, P. boneti, #01-235f&. c, clasp. a, acanthus. d, dorsoapical lobe. i, inornate pit. l, lateral seta.
297
21. Tribe PLATYCENTRINI Haupt, 1929 New World: Nearctic and Neotropical Regions Figs. 21.1-21.3 Type genus: Platycentrus Stål, 1869
Platycentrini Haupt, 1929c [new tribe]: equals Hebesini (Peláez 1970a)[error]; reinstated as tribe Platycentrini, within subfamily Centrotinae (Deitz 1975a); move to Membracinae (Kosztarab 1982a)[error]; returned to Centrotinae (Deitz and Dietrich 1993a). Diagnostic characters.—Frontoclypeal lobes indistinct and not extending to apex of frontoclypeus.
Posterior pronotal process appressed against scutellum, not significantly
extending past or not reaching m-cu3 crossvein in forewing. Scutellum not concealed by posterior process, shortened--with abdomen removed, at most scutellar apices visible. Forewing hyaline, with m-cu2 crossvein present and base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ablateral cucullate setae. Female second valvulae with gradual broadening before midpoint and gently tapering after midpoint; narrow near base, not curved, dorsal teeth fine and not extending to apex. Abdominal acanthae distinct, bases heightened, acanthae multidentate. Description.—Length 4.5-6 mm. Color brown, tan, mottled or combinations thereof. HEAD (Fig. 21.1): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: 298
PRONOTUM (Figs. 21.1 A-E): suprahumeral horns present or absent; posterior process straight at base, appressed against scutellum, not significantly extending past or not reaching m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at most only apices visible. PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 21.1 H, 21.2 A): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 crossvein present (Fig. 21.2 A) or absent; m-cu2 crossvein present; M and Cu veins fused at base; R and M veins not confluent preapically; veins reticulate in Tylocentrus (Fig. 21.2 A); R1 vein perpendicular to marginal vein (Tylocentrus, Fig. 21.2 A) or not (Platycentrus, Fig. 21.1 H), never parallel to longitudinal veins; forewing without pterostigma; r-m1 crossvein originating anterior to first division of R vein, bent towards R vein; R, M, and Cu veins parallel apically (Fig. 21.1 H) or not (Fig. 21.2 A); discoidal cells similar in length (Fig. 21.1 H) or not (Fig. 21.2 A); R4+5 vein shape prior to s crossvein significantly angled (Fig. 21.1 H) or not (Fig. 21.2 A); base of R2+3 and R4+5 veins truncate. HIND
WING
(Fig. 21.1 I): R4+5 and M1+2 veins not fused (4 apical cells).
MESOTHORACIC LEGS:
PRO-
AND
tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate
setae; mesothoracic femur with ablateral cucullate setae, adlateral cucullate setae present in Tylocentrus but absent in Platycentrus. METATHORACIC LEG (Fig. 21.2 B): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur with ablateral cucullate setae ventrolaterally in Platycentrus; tibia not foliaceous, row I with 15-21 cucullate setae, row II with 15-36 cucullate setae in single (Tylocentrus) or irregular or double row (Platycentrus), row III with 17-33 cucullate setae (irregular in Platycentrus); tarsomere I with 1 cucullate seta in Platycentrus, 2 or more 299
cucullate setae (usually 2) in Tylocentrus.
ABDOMEN: in anterior aspect (abdomen
removed) nearly triangular (Tylocentrus) or dorsoventrally flattened (Platycentrus); anterior tergal borders modified into irregular ridges in Platycentrus; sternal longitudinal carina absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior tergal borders not enlarged. FEMALE
GENITALIA
(Figs. 21.2 C-F):
second valvulae with gradual broadening before midpoint and gently tapering after midpoint; narrow near base, not curved, dorsal teeth fine and not extending to apex, acute projections absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 21.3 A-I): lateral plate with (Platycentrus, Fig. 21.3 G) or without (Tylocentrus, Fig. 21.3 H) short dorsoapical lobe extending dorsally, without ventral lobe; subgenital plate (Fig. 21.3 I) without distinct division; style clasp oriented laterally, thickened, expanding dorsally and laterally with a sclerotized ridge (Platycentrus) or truncate with an acuminate projection (Tylocentrus), not angled, without basal thickening; style shank without significant arch. ABDOMINAL STRUCTURE
FINE
(Fig. 21.3 J-K): acanthae distinct, bases heightened, acanthae multidentate.
Chromosome numbers.—Unknown. Distribution.—The tribe Platycentrini is recorded from the Nearctic and Neotropical Regions (McKamey 1998a), with all members recorded from the Northern Hemisphere. Ecology.—Members of the tribe Platycentrini are reported only from the host plant family Leguminosae (Table 26.2). Platycentrus acuticornis is listed as subsocial by Hinton (1977a). Discussion.— Haupt (1929c) originally placed the Platycentrini within the subfamily Stegaspinae (sic: for Stegaspidinae) but misidentified the type genus Platycentrus. Metcalf and Wade (1965a), Evans (1948b), and Deitz (1975a) assigned the Platycentrini to the 300
Centrotinae. Deitz (1975a) included those genera with multiple m-cu crossveins in the forewing and with the posterior process abutting a laterally exposed scutellum in the tribe Platycentrini.
Here, these features are also considered diagnostic.
A monophyletic
Platycentrini (Figs. 24.1, 24.3), as defined here, is supported by the synapomorphy of the female second valvulae broadening gradually at midpoint and tapering gently towards the apex. A phylogenetic analysis of the family Membracidae using two nuclear genes also resulted in a monophyletic Platycentrini (Platycentrus and Tylocentrus) with high bootstrap and Bremer support (Cryan et al. 2000a). The Platycentrini are closely related to the New World tribes Nessorhinini and Pieltainellini and the Old World tribe Beaufortianini. Two genera formerly placed in the Platycentrini are here referred to the tribes Monobelini (Monobelus) and Nessorhinini (Orthobelus). See the discussions of these tribes for evidence supporting the new placement.
Genera of the tribe Platycentrini Platycentrus Stål, 1869c (type species: P. acuticornis Stål by subsequent designation). Tylocentrus Van Duzee, 1908a (type species: T. reticulatus Van Duzee by monotypy). Specimens examined.— Platycentrus acuticornis Stål, as det. in USNM, #71-82e&, #71-82f%, #99-167e%—det. W.D. Funkhouser, USNM, #71-299a%, #01-221b%—det. L.M. Russell, USNM, #99-167d&; Tylocentrus quadricornis Funkhouser, as det. in USNM, #01232b&; T. reticulatus Van Duzee, as det. in USNM, #00-195b&, #00-195c%—det. L.M. Russell, USNM, #00-195k[n].
301
Fig. 21.1. Platycentrini: pronota (lateral aspects, A-B; anterior aspects, C-E), heads (F-G), and wings (H-I). Bars = 3 mm. A, Platycentrus acuticornis Stål, #71-82f%. B, Tylocentrus reticulatus Van Duzee, #00-195b&. C, P. acuticornis, #71-82f%. D, T. reticulatus, #00-195b&. E, T. reticulatus, #00-195c%. F, P. acuticornis, #71-82f%. G, T. reticulatus, #00-195b&. H, P. acuticornis, #99167d&, right forewing. I, P. acuticornis, #99-167d&, left hind wing (inverted). fcl, frontoclypeal lobes.
302
Fig. 21.2. Platycentrini: wings (A), metathoracic leg (B), and female second valvulae (lateral aspect and closeup of apex, C-F). A, Tylocentrus reticulatus Van Duzee, #00-195b&, left forewing (inverted). B, Platycentrus acuticornis Stål, #71-82f%, right metathoracic leg (inverted). C-D, P. acuticornis, #99-167d&. E-F, T. reticulatus, #00-195b&.
303
Fig. 21.3. Platycentrini: male styles (lateral aspects, A-B; and dorsal aspects, C-D), aedeagi (lateral aspects, E-F), lateral plates (lateral aspects, G-H), and subgenital plate (ventral aspect, I), and maximum development of abdominal fine-structure (J-K). All scanning electron micrographs near tergum III. A, Platycentrus acuticornis Stål, #99-167e%. B, Tylocentrus reticulatus Van Duzee, #00-195c%. C, P. acuticornis, #99-167e%. D, T. reticulatus, #00-195c%. E, P. acuticornis, #99-167e%. F, T. reticulatus, #00-195c%. G, P. acuticornis, #99-167e%. H, T. reticulatus, #00-195c%. I, T. reticulatus, #00-195c%. J, P. acuticornis #01-221b%. K, T. quadricornis Funkhouser, #01-232b&. a, acanthus. dl, dorsoapical lobe. i, inornate pit. c, clasp.
304
22. Tribe TERENTIINI Haupt, 1929 Old World: Australasian and Oceanian, Indomalayan, and Palearctic Regions Figs. 22.1-22.24 Type genus: Terentius Stål 1866a
Terentiinae Haupt, 1929c [new subfamily] and Terentiini Haupt, 1929c [new tribe]: subfamily Terentiinae equals Centrotinae and tribe Terentiini moved to Centrotinae (Metcalf and Wade 1965a); elevated to subfamily Terentiinae (Evans 1966a) [error]; equals Centrotinae (Evans 1966a). Bulbaucheniini Goding, 1931a [new tribe]: herein equals Terentiini, NEW SYNONYMY. Funkhouserellini Yuan and Zhang, in Yuan and Chou 2002a [new tribe]: herein equals Terentiini, NEW SYNONYMY.
Diagnostic characters.—Frontoclypeal margins parallel or slightly converging ventrally. Frontoclypeal lobes distinct. Posterior pronotal process straight at base, appressed against scutellum and significantly extending past m-cu3 crossvein in forewing (exception: posterior process not extending past m-cu3 crossvein in Pyrgonota). Scutellum shortened-with abdomen removed, at most only scutellar apices visible. Forewing with or without mcu1 and m-cu2 crossveins; r-m1 crossvein originating anterior to first split of R vein, parallel to longitudinal veins (exception: r-m1 crossvein bent strongly towards R vein in Alocebes); base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute in Sextius and some species of Bulbauchenia). Hind wing with R4+5 and M1+2 veins not fused (4 apical cells) (exceptions: R4+5 and M1+2 veins fused in Bucktoniella). Mesothoracic femur 305
without ab- and adlateral cucullate setae. Metathoracic tibial row I cucullate or not; row II in single row (exceptions: row II irregular or double in Otinotoides, Sertorius and Yangupia). Male style clasp laterally oriented, thickened dorsally and membranous ventrally, quadrate (with acuminate apex in Bulbauchenia and Pyrgonota), angled ventrally; style shank with significant arch following midpoint, and with ventral preapical broadening. Description.—Length 2.6-8.0 mm.
Color black, dark brown, light green, light
yellow, or combinations thereof. HEAD (Figs. 22.5-22.7): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct, not extending to apex of frontoclypeus (exceptions: frontoclypeal lobes extending nearly to apex in Bulbauchenia, Fig. 22.5 O, Funkhouserella, Figs. 22.6 I-J, and Pyrgonota, Fig. 22.7 C); ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes than each other in Pyrgonota, Fig. 22.7 C); vertex without toothlike projections. THORAX: PRONOTUM (Figs. 22.1-22.5): suprahumeral horns present dorsolaterally, absent, or present at apex of median anterior horn; median anterior horn present in Bulbauchenia (Fig. 22.3 L), Eutryonia (Fig. 22.4 E), Funkhouserella (Figs. 22.4 G-H), and Pyrgonota (Fig. 22.5 A); posterior process straight at base, appressed against scutellum, signficantly extending past m-cu3 crossvein (exception: posterior process not extending past m-cu3 crossvein in Pyrgonota). SCUTELLUM (Fig. 22.23 B): emarginate with apices acute, not concealed by posterior process (exceptions: scutellum concealed by posterior process in Bulbauchenia, Fig. 22.1 H, and polymorphic in Sextius); 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at most only apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe present or absent, mesopleural lobe enlarged or not. FOREWING (Figs. 22.8-22.11): hyaline or opaque; apical limbus broad (exceptions: apical limbus narrow in Anzac, Fig. 22.9 C, and 306
some species of Funkhouserella, Fig. 22.10 F, and Neosextius); R vein initial division R1+2+3 and R4+5 in Cebes (Fig. 22.9 G), Ceraon (Fig. 22.9 H), Matumuia, and Sarantus (Fig. 22.11 E); s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins present or absent; M and Cu veins fused, adjacent, or separate at base; R and M veins not confluent preapically; R1 perpendicular to marginal vein or not; forewing without pterostigma; r-m1 crossvein originating anterior to first split of R vein, parallel to longitudinal veins (exception: r-m1 crossvein bent strongly towards R in Alocebes); R, M, and Cu veins parallel apically or not; R4+5 vein shape prior to s crossvein variable; base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute in Sextius and some species of Bulbauchenia). HIND WING (Fig. 22.8 B): R4+5 and M1+2 veins not fused (4 apical cells) (exception: hind wing with R4+5 and M1+2 fused in Bucktoniella, 3 apical cells). PRO-
AND MESOTHORACIC LEGS:
tibiae foliaceous or not; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEGS (Fig. 22.12): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae (exceptions: femur without ab- and adlateral cucullate setae in Anzac, Goddefroyinella, Pogonotypellus, Sextius; adlateral cucullate setae absent in Cebes, some species of Funkhouserella, and Pyrgonota, Fig. 22.12 B); femur with or without ablateral cucullate setae ventrolaterally; tibiae foliaceous or not, row I with 13-40 cucullate setae or without cucullate setae, row II with 4-56 cucullate setae in single row (exceptions: row II irregular or double in Otinotoides, Sertorius, and Yangupia), row III with 5-30 cucullate setae; tarsomere I with 1 cucullate seta or none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral 307
margin carinate or shelflike; abdominal setal bases at anterior tergal borders enlarged in Terentius, not dispersed on terga. FEMALE GENITALIA (Figs. 22.13-22.17): second valvulae shape variable; narrow or broadening near base, curved or not, dorsal teeth variable in size, acute projections on dorsal margin present or absent, third valvulae without ventral projections. MALE GENITALIA (Figs. 22.17-22.21): lateral plate with or without (Fig. 22.20 D) short (Fig. 22.20 F) or long (Fig. 22.20 E) dorsoapical lobe extending dorsally or laterally, without ventral lobe; subgenital plate without distinct division; style clasp laterally oriented, thickened dorsally and membranous ventrally, quadrate (with acuminate apex in Bulbauchenia Figs. 22.17 I-J, and Pyrgonota, Fig. 22.18 F), angled ventrally; style shank with significant arch following midpoint, and with ventral preapical broadening. ABDOMINAL
FINE STRUCTURE
(Figs. 22.21-22.24): inornate pits with lateral setae present
(exceptions: inornate pits indistinct in Bulbauchenia, Fig. 22.22 B-D, Funkhouserella, Figs 22.23 C-D, and Pyrgonota, Fig. 22.23 H), acanthae distinct or not; bases heightened or not; acanthae multidentate or divided into threadlike microtrichia. Chromosome numbers.—Male 2n= 21 (Table 26.3). Distribution.—The tribe Terentiini is recorded from the Australasian and Oceanian, Indomalayan, and Palearctic Regions, although they are primarily Australasian in distribution (McKamey 1998a). Melichar’s (1905a) records of Acanthuchus trispinifer (Fairmaire) [as Ophicentrus trispinifex Fairmaire] in Tanzania needs to be verified and is not here included in the distribution of Acanthuchus. Ecology.—Members of the tribe Terentiini are reported from the host plant families Casuarinaceae, Chenopodiaceae, Euphorbiaceae, Gramineae, Lauraceae, Lecythidaceae, Leguminosae, Malvaceae, Moraceae, Myrtaceae, Plumbaginaceae, Polygonaceae, Proteaceae, 308
Rosaceae, Rutaceae, Solanaceae (Table 26.2).
The genus Sextius and the nymphs of
Australian treehoppers are reported to be tended by ants (Table 26.1). In addition, Terentius and Pyrgonota have been observed providing maternal care in the form of egg guarding (Stegmann and Linsenmair 2002a). Discussion.—Haupt (1929c) divided the Old World Membracidae into three subfamilies: the Terentiinae, Centrotinae, and Oxyrhachinae (as Oxyrrhachinae). He originally included the tribes Hypsaucheniini and Terentiini within his subfamily Terentiinae. Haupt defined the Terentiinae as treehoppers with M and Cu veins in the forewing usually connected for a short distance and sometimes united by crossveins, and with the forewing often net-like. The tribe Terentiini, as defined here, is monophyletic in the phylogenetic analysis (Figs. 24.1, 24.14). All terentiine males observed to this point have a quadrate style clasp, a synapomorphy for the tribe. Day (1999a) also commented on the homogenous nature of the male genitalia in Australian membracids. Additionally, all terentiines have the posterior process appressed against a shortened scutellum, similar to the Gargarini. As seen in some Gargarini, a few terentiines, including Bulbauchenia and some Sextius species, have the scutellum concealed by the posterior process. The Terentiini are closely related to the Ebhuloidesini, Oxyrhachini, and Hypsaucheniiini, and are primarily distributed in Australia. The classification presented here largely confirms previous studies on the Australian treehopper fauna. Both Evans (1966a) and Day (1999a) examined the Australian genera and believed they represent a distinctive group, long isolated from other membracids. Day cited the distinctive frontoclypeal lobes, the similar shapes in the male and female genitalia, and uniform wing venation, among other features, as evidence for the monophyly of Australian genera. A phylogeny of treehoppers based on two nuclear genes (Cryan et al. 2000a) 309
supported the grouping of the Australian genera Ceraon, Eufairmairia, and Sextius (although included in the analysis, Pyrgonota was not part of this group) using both parsimony and maximum likelihood methods. The names Bulbaucheniini Goding, 1931a and Funkhouserellini Yuan and Zhang, in Yuan Chou, 2002a, are here considered junior synonyms of Terentiini Haupt, 1929c, NEW SYNONYMIES, based on the phylogenetic analysis (Fig. 24.1). The tribe Bulbaucheniini was originally placed in the subfamily Membracinae by Goding (1931a) because of the concealed scutellum and folicaeous tibiae of the type genus Bulbauchenia.
Goding
characterized the tribe, consisting only of the type genus, based on the broadly elevated pronotum with suprahumeral horns at the apex.
Strümpel (1972a) believed the
Bulbaucheniini belonged in the subfamily Centrotinae, where it was subsequently placed, although he was not explicit in his justification. Due to the quadrate shape of the male style clasp, Bulbauchenia is here placed in the Terentiini. Yuan and Zhang, in Yuan and Chou (2002a) erected the Funkhouserellini, including the genera Funkhouserella and Hybandoides, for those treehoppers with the median pronotal horn inclined anteriorly and without teeth on the mesonotum Hybandoides is here referred back to the tribe Hypsaucheniini, based on the phylogenetic analysis (Fig. 24.12). Although no males of Funkhouserella were examined, according to the phylogenetic analysis (Fig. 24.1) this genus is closely related to Bulbauchenia and Pyrgonota based on several morphological features, including the indistinct abdominal inornate pits and absence of metathoracic tibia cucullate setal row I. The male style clasp of Pyrgonota, similar to Bulbauchenia, is quadrate with an acuminate apex. This shape differs significantly from the cylindrical style clasp of the hypsaucheniines where Pyrgonota was previously placed. In 310
addition, Pyrgonota has cucullate setae in rows II and III of the metathoracic tibia. Conversely, these rows are non-cucullate in the Hypsaucheniini. The genera Crito and Otinotoides were formerly placed in the Centrotypini for reasons that are not clear. They differ from centrotypines, nonetheless, in the style clasp shape and leg chaetotaxy. Arimanes, Polonius, and Sarantus were previously placed in the Leptocentrini. The male style clasp of Sarantus is distinctly quadrate and not triangular. Although males of Arimanes and Polonius were not examined, characteristics of the head, pronotum, and leg chaetotaxy differentiate them from leptocentrine genera. The remaining terentiini genera were previously assigned to Centrotinae, incertae sedis (McKamey 1998a, Day 1999a). Four NEW COMBINATIONS are proposed here, all referred from the genus Emphusis Buckton: Bulbauchenia bakeri (Funkhouser), B. rugosa (Funkhouser), B. globosa (Funkhouser), and B. kurosawai (Hayashi and Endo). These species were originally placed in Emphusis (Centrotinae: Centrotypini) based on the elevated pronotum and shape of the posterior process. The genus Emphusis, however, has ab- and adlateral cucullate setae on the mesothoracic femur and an elliptical clasp as opposed to the characteristic terentiine quadrate clasp.
311
Genera of the tribe Terentiini † no specimen examined * placement based on morphological similarity Acanthucalis Evans, 1966a (type species: A. macalpini Evans by original designation) [previously incertae sedis (McKamey 1998a)].* Acanthuchus Stål, 1866c (type species: Centrotus trispinifer Fairmaire by subsequent designation) [previously incertae sedis (McKamey 1998a)]. Alocanthella Evans, 1966a (type species: A. fulva Evans by original designation) [previously incertae sedis (McKamey 1998a)]. Alocebes Evans, 1966a (type species: A. dixoni Evans by original designation), see figs. 7274, 196 of Day (1999a: 649, 733) [previously incertae sedis (McKamey 1998a)].†* Alosextius Evans, 1966a (type species: Acanthuchus carinatus Funkhouser by original designation) [previously incertae sedis (McKamey 1998a)]. Anzac Distant, 1916d (type species: Membracis bipunctata Fabricius by original designation) [previously incertae sedis (McKamey 1998a)]. Arimanes Distant, 1916e (type species: A. doryensis Distant by monotypy) [previously placed in the Leptocentrini (McKamey 1998a)].* Bucktoniella Evans, 1966a (type species: Acanthuchus pyramidatus Funkhouser by original designation) [previously incertae sedis (McKamey 1998a)]. Bulbauchenia Schumacher, 1915b (type species: B. taiwanensis Schumacher by original designation) [previously placed in Bulbaucheniini (McKamey 1998a)].
312
Bunyella Day, 1999a (type species: Acanthuchus dromedarius Kirkaldy by original designation), see figs. 23, 84-86, 200 of Day (1999a: 633, 657, 734) [previously incertae sedis (Day 1999a)]. †* Cebes Distant, 1916d (type species: Centrotus transiens Walker by subsequent designation) [previously incertae sedis (McKamey 1998a)]. Ceraon Buckton, 1903a (type species: Centrotus tasmaniae Fairmaire by subsequent designation) [previously incertae sedis McKamey 1998a)]. Crito Distant, 1916d (type species: C. festivum Distant by monotypy) [previously placed in Centrotypini (McKamey 1998a)].* Dingkana Goding, 1903a (type species: D. borealis Goding by original designation) [previously incertae sedis (McKamey 1998a)]. Eufairmairia Distant, 1916d (type species: Centrotus decisus Walker by original designation) [previously incertae sedis (McKamey 1998a)].* Eufairmairiella Evans, 1966a (type species: Sertorius curvicaudus Goding by original designation) [previously incertae sedis (McKamey 1998a)].* Eufrenchia Goding, 1903a (type species: Centrotus falcatus Walker by original designation) [previously incertae sedis (McKamey 1998a)]. Eutryonia Goding, 1903a (type species: Centrotus monstrifer Walker by monotypy) [previously incertae sedis (McKamey 1998a)]. Evansiana McKamey, 1994a (type species: Acanthuchus iasis Kirkaldy by original designation) [previously incertae sedis (McKamey 1998a)].* Funkhouserella Schmidt, 1926d (type species: Pyrgonota pinguiturris Funkhouser by original designation) [previously placed in Funkhouserellini (Yuan and Chou 2002a)]. 313
Goddefroyinella Distant, 1916d (type species: G. indicans Distant by monotypy, junior synonym of G. neglecta (Buckton)) [previously incertae sedis (McKamey 1998a)]. Lubra Goding, 1903a (type species: Oxyrhachis spinicornis Walker by subsequent designation) [previously incertae sedis (McKamey 1998a)]. Matumuia Day, 1999a (type species: M. laura Day by original designation), see figs. 24, 36, 123-125, 213 of Day (1999a: 633, 684, 736) [previously incertae sedis (Day 1999a)]. †* Neocanthuchus Day, 1999a (type species: N. tropicus Day by original designation) [previously incertae sedis (Day 1999a)].* Neosextius Day, 1999a (type species: N. longinotum Day by original designation), see figs. 26, 30, 43, 132-137, 215 of Day (1999a: 633, 634, 691-692, 736) [previously incertae sedis (Day 1999a)].† Otinotoides Distant, 1916c (type species: Centrotus pallipes Walker by original designation) [previously placed in Centrotypini (McKamey 1998a)].* Pogonella Evans, 1966a (type species: Centrotypus minutus Goding by original designation) [previously incertae sedis (McKamey 1998a)].* Pogonotypellus Evans, 1966a (type species: Pogontypus australis Goding by original designation) [previously incertae sedis (McKamey 1998a)].* Polonius Distant, 1916e (type species: P. biseratensis Distant by monotypy) [previously placed in Leptocentrini (McKamey 1998a)].* Protinotus Day, 1999a (type species: Otinotus doddi Distant by original designation), see figs. 12, 150-152, 219 of Day (1999a: 632, 703, 737) [previously incertae sedis (Day 1999a)].†*
314
Pyrgonota Stål, 1870c (type species: Centrotus bifoliatus Westwood by subsequent designation) [previously placed in Hypsaucheniini (Yuan and Chou 2002a)]. Rentzia Day, 1999a (type species: R. yarla Day by original designation), see figs. 10, 26, 32, 42, 153-158, 220 of Day (1999a: 632-634, 704, 707, 737) [previously incertae sedis (Day 1999a)].†* Rigula Day, 1999a (type species: R. calperum Day by original designation), see figs. 18, 34, 40, 159-164, 221 of Day (1999a: 633-634, 708, 710-711, 737) [previously incertae sedis (Day 1999a)].†* Sarantus Stål, 1863c (type species: Sarantus wallacei Stål by monotypy) [previously placed in Leptocentrini (McKamey 1998a)]. Sertorius Stål, 1866a (type species: Centrotus australis Fairmaire by subsequent designation) [previously incertae sedis (McKamey 1998a)]. Sextius Stål, 1866c (type species: Centrotus virescens Fairmaire by subsequent designation) [previously incertae sedis (McKamey 1998a)]. Strzeleckia Day, 1999a (type species: S. montanus Day by original designation), see figs. 26, 30, 41, 174-176, 224 of Day (1999a: 633-634, 719, 738) [previously incertae sedis (Day 1999a)].†* Terentius Stål, 1866a (type species: T. convexus Stål by subsequent designation). Undarella Day, 1999a (type species: U. storeyi Day by original designation) [previously incertae sedis (Day 1999a)].* Yangupia Day, 1999a (type species: Centrotypus occidentalis Goding by original designation) [previously incertae sedis (Day 1999a)].*
315
Specimens examined.—Acanthucalis macalpini Evans as det. in ANIC, #00-136i&; Acanthuchus trispinifer (Fairmaire), as det. in USNM, #00-80g&, #00-80h%—as det. in ANIC, #00-181o%, #01-43a&; Alocanthella fulva Evans, as det. in ANIC, #01-225b%; Alosextius carinatus (Funkhouser), as det. in AMSA, #00-136a&; Anzac bipunctatum (Fabricius), as det. in ANIC, #00-136d&, #00-136e%; Arimanes doryensis Distant, as det. in USNM, #83-334a&; Bucktoniella pyramidatus (Funkhouser), as det. in CNCI, #01-39a%; Bulbauchenia sp. (probably mirablis), det. M.S. Wallace, USNM, #00-230g♂; B. bakeri (Funkhouser), [holotype of Emphusis bakeri Funkhouser], USNM—det. D. Flynn, NCSU, #02-67b(sex?) —det. Z.P. Metcalf, NCSU, #00-221m♀, #02-67a♀, #02-67f♀ —as det. in NCSU, #01-277a♂, #01-278a♀, #02-67c♀, #02-67d♂, #02-67e(sex?), #02-67g♀, #0267h♀, #02-67i♂, #02-67j(sex?)—as det. in USNM, #01-232c%; B. globosa (Funkhouser), [holotype of Emphusis globosus Funkhouser], USNM; B. mirabilis (Funkhouser), [holotype of Clonauchenia mirablis Funkhouser], USNM, #01-54a♂; B. rugosa (Funkhouser), [holotype of Emphusis rugosus Funkhouser], USNM; Cebes transiens (Walker), as det. in ANIC, #00-80c%, #00-80d&; Ceraon tasmaniae (Fairmaire), det. W.D. Funkhouser, USNM, #00-80a&—as det. in USNM, #00-80b%, #01-232e%; Crito festivum Distant, holotype [as Crito festivus Distant], BMNH; Dingkana borealis Goding, det. W.D. Funkhouser, USNM, #00-87d&, #00-87e%—as det. in USNM, #01-219c&; Eufairmairia decisa (Walker), as det. in USNM, #83-333c%, #83-333d&; E. fraterna Distant, as det. in ANIC, #00-87k&—as det. in USNM, #01-22b&; Eufairmairiella sp, as det. in ANIC, #00-87j%; E. curvicauda (Goding), as det. in USNM, #00-87g%; Eufrenchia falcata (Walker), as det. in ANIC, #0087h%, #00-87i&; Eutryonia monstrifera (Walker), as det. in USNM, #00-87a%, #00-87b&,
316
#01-219b&; Evansiana iasis (Kirkaldy), as det. in ANIC, #01-225a&; Funkhouserella arborea (Funkhouser), [holotype of Pyrgonota arborea Funkhouser], USNM; F. binodis (Funkhouser), [holotype of Pyrgonota binodis Funkhouser], USNM; F. brevifurca (Funkhouser), [holotype of Pyrgonota brevifurca Funkhouser], USNM, #01-089e& —as det. in USNM, #00-228c&; F. bulbiturris (Funkhouser), [holotype of Pyrgonota bulbiturris Funkhouser], USNM; F. pinguiturris (Funkhouser), [holotype of Pyrgonota pinguiturris Funkhouser], USNM, #01-89f&; F. sinuata (Funkhouser), [holotype of Pyrgonota sinuata Funkhouser], USNM; Goddefroyinella neglecta (Buckton), paralectotype, BMNH, #01-69e& —as det. in ANIC, #01-3b%; Lubra spinicornis (Walker), as det. in ANIC, #00-181l&—as det. in AMSA, #00-122f%—as det. in USNM, #00-122e&—det. M.S. Wallace, USNM, #00122j%; Neocanthuchus tropicus Day, paratype, #01-225c&; Otinotoides sp., as det. in ANIC, #00-122k&, #00-122l%; O. pallipes (Walker), det. W.D. Funkhouser, AMSA, #00-122g%, #00-122h&; Pogonella minutus (Goding), as det. in ANIC, #00-136f&, #00-136j%—as det. in USNM, #00-136g%; Pogonotypellus australis (Goding), as det. in ANIC, #00-136h&; Polonius froggatti Goding, holotype, USNM, #01-89j&; Pyrgonota sp., USNM, #0147b(sex?)—det. M.S. Wallace, USNM, #01-47 (sex?); P. bifoliata (Westwood), as det. in USNM, #00-230a&, #00-230b%—det. D. Flynn, DJFC, #00-230j&; Sarantus nobilus Kirkaldy, as det. in ANIC, #00-136b&, #00-136c&; S. wallacei Stål, as det. W.D. Funkhouser, USNM, #00-122c&—as det. in USNM, #00-122d%, #01-247b&; Sertorius sp., as det. in ANIC, #00-122m%; S. australis (Fairmaire), as det. in USNM, #00-122a&—det. F.W. Goding, USNM, #00-122b%; Sextius kurandae Kirkaldy, as det. in USNM, #01-235b%; S. virescens (Fairmaire), det. W.D. Funkhouser, USNM, #00-80e%—as det. in USNM, #0080f&—as det. in ANIC, #00-80i%; Terentius convexus Stål, as det. in USNM, #99-100h&, 317
#99-100i%, #01-29a%—as det. in ANIC, 00-12a&, 00-12b%; Undarella storeyi Day, holotype, QMBA—paratype, QMBA, #01-250a&; Yangupia occidentalis (Goding), as det. in BMNH, #01-296a%, #01-296b%.
318
Fig. 22.1. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Acanthucalis macalpini Evans, #00-136i&, reversed from right lateral aspect. B, Acanthuchus trispinifer (Fairmaire), #00-181o%. C, Alocanthella fulva Evans, #01-225b%. D, Alosextius carinatus (Funkhouser), #00-136a&. E, Anzac bipunctatum (Fabricius), #00-136e%. F, Arimanes doryensis Distant, #83-334a&. G, Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia sp., #00-230g%. I, B. bakeri (Funkhouser), #00-221m&. J, Cebes transiens (Walker), #00-80d&. K, Ceraon tasmaniae (Fairmaire), #00-80a&. L, Dingkana borealis Goding, #00-87d&. M, Eufairmairia fraterna Distant, #00-87k&. N, Eufairmairiella sp., #00-87j%. O, Eufrenchia falcata (Walker), #00-87i&. 319
Fig. 22.2. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Eutryonia monstrifera (Walker), #0087a%. B, Evansiana iasis (Kirkaldy), #01-225a&. C, Funkhouserella brevifurca (Funkhouser), #00228c&. D, F. pinguiturris (Funkhouser), holotype, #01-89f&. E, Goddefroyinella neglecta (Buckton), #01-3b%. F, Lubra spinicornis (Walker), #01-122e&. G, Neocanthuchus tropicus Day, paratype, #01225c&. H, Otinotoides pallipes (Walker), #00-122h&. I, Pogonella minutus (Goding), #00-136f&. J, Pogonotypellus australis (Goding), #00-136h&. K, Polonius froggatti Goding, holotype, #01-89j&. L, Pyrgonota bifoliata (Westwood), #00-230j&. M, Sarantus nobilus Kirkaldy, #00-136c&. N, S. wallacei Stål, #00-122c&. O, Sertorius australis (Fairmaire), #00-122a&. 320
Fig. 22.3. Terentiini: pronota (lateral aspects A-D, and anterior aspects, E-O). Bars = 3 mm. A, Sextius virescens (Fairmaire), #00-80f&. B, Terentius convexus Stål, #00-12b%. C, Undarella storeyi Day, holotype. D, Yangupia occidentalis (Goding), #01-296a%. E, Acanthucalis macalpini Evans, #00-136i&. F, Acanthuchus trispinifer (Fairmaire), #00-181o%. G, Alocanthella fulva Evans, #01225b%. H, Alosextius carinatus (Funkhouser), #00-136a&. I, Anzac bipunctatum (Fabricius), #00136e%. J, Arimanes doryensis Distant, #83-334a&. K, Bucktoniella pyramidatus (Funkhouser), #0139a%. L, Bulbauchenia sp., #00-230g%. M, B. bakeri (Funkhouser), #00-221m&. N, Cebes transiens (Walker), #00-80d&. O, Ceraon tasmaniae (Fairmaire), #00-80a&. Copyrights: D © 2003, The Natural History Museum, London. 321
Fig. 22.4. Terentiini: pronota (anterior aspects). A, Dingkana borealis Goding, #0087d&. B, Eufairmairia fraterna Distant, #00-87k&. C, Eufairmairiella sp., #00-87j%. D, Eufrenchia falcata (Walker), #00-87i&. E, Eutryonia monstrifera (Walker), #0087a%. F, Evansiana iasis (Kirkaldy), #01-225a&. G, Funkhouserella brevifurca (Funkhouser), #00-228c&. H, F. pinguiturris (Funkhouser), holotype, #01-89f&. I, Goddefroyinella neglecta (Buckton), #01-3b%. J, Lubra spinicornis (Walker), #01122e&. K, Neocanthuchus tropicus Day, paratype, #01-225c&. L, Otinotoides pallipes (Walker), #00-122h&. M, Pogonella minutus (Goding), #00-136f&. N, Pogonotypellus australis (Goding), #00-136h&. O, Polonius froggatti Goding, holotype, #01-89j&. 322
Fig. 22.5. Terentiini: pronota (anterior aspects, A-H) and heads (I-O). A, Pyrgonota bifoliata (Westwood), #00-230j&. B, Sarantus nobilus Kirkaldy, #00-136c&. C, S. wallacei Stål, #00-122c&. D, Sertorius australis (Fairmaire), #00-122a&. E, Sextius virescens (Fairmaire), #00-80f&. F, Terentius convexus Stål, #99-100h&. G, Undarella storeyi Day, holotype. H, Yangupia occidentalis (Goding), #01-296a%. I, Acanthuchus trispinifer (Fairmaire), #00-181o%. J, Alocanthella fulva Evans, #01-225b%. K, Alosextius carinatus (Funkhouser), #00-136a&. L, Anzac bipunctatum (Fabricius), #00136d&. M, Arimanes doryensis Distant, #83-334a&. N, Bucktoniella pyramidatus (Funkhouser), #0139a%. O, Bulbauchenia sp., #00-230g%. Copyrights: H © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes. 323
Fig. 22.6. Terentiini: heads. A, Cebes transiens (Walker), #00-80c%. B, Ceraon tasmaniae (Fairmaire), #00-80a&. C, Dingkana borealis Goding, #00-87d&. D, Eufairmairia fraterna Distant, #00-87k&. E, Eufairmairiella sp., #00-87j%. F, Eufrenchia falcata (Walker), #00-87i&. G, Eutryonia monstrifera (Walker), #00-87a%. H, Evansiana iasis (Kirkaldy), #01-225a&. I, Funkhouserella brevifurca (Funkhouser), #00-228c&. J, F. pinguiturris (Funkhouser), holotype, #01-89f&. K, Goddefroyinella neglecta (Buckton), #01-3b%. L, Lubra spinicornis (Walker), #01122e&. M, Neocanthuchus tropicus Day, paratype, #01-225c&. N, Otinotoides pallipes (Walker), #00-122h&. O, Pogonella minutus (Goding), #00-136f&. fcl, frontoclypeal lobes. 324
Fig. 22.7. Terentiini: heads. A, Pogonotypellus australis (Goding), #00136h&. B, Polonius froggatti Goding, holotype, #01-89j&. C, Pyrgonota bifoliata (Westwood), #00-230j&. D, Sarantus nobilus Kirkaldy, #00-136c&. E, S. wallacei Stål, #00-122c&. F, Sertorius australis (Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #0080f&. H, Terentius convexus Stål, #99-100h&. I, Undarella storeyi Day, holotype. fcl, frontoclypeal lobes.
325
Fig. 22.8. Terentiini: wings. A, Terentius convexus Stål, #99-100h&, left forewing (inverted). B, T. convexus, #99-100h&, left hind wing (inverted). C, Bulbauchenia sp., #00-230g%. D, Acanthucalis macalpini Evans, #00-136i&, left forewing (inverted). E, Acanthuchus trispinifer (Fairmaire), #00-80g&.
326
Fig. 22.9. Terentiini: wings. A, Alocanthella fulva Evans, #01-225b%. B, Alosextius carinatus (Funkhouser), #00-136a&. C, Anzac bipunctatum (Fabricius), #00-136d&. D, Arimanes doryensis Distant, #83-334a&. E, Bucktoniella pyramidatus (Funkhouser), #01-39a%, left forewing (inverted). F, Bulbauchenia bakeri (Funkhouser), #00-221m&. G, Cebes transiens (Walker), #00-80dc%. H, Ceraon tasmaniae (Fairmaire), #00-80a&, left forewing (inverted). I, Dingkana borealis Goding, #00-87d&. J, Eufairmairia decisa (Walker), #83-333d&, left forewing (inverted).
327
Fig. 22.10. Terentiini: wings. A, Eufairmairiella sp., #00-87g%. B, Eufrenchia falcata (Walker), #00-87h%. C, Eutryonia monstrifera (Walker), #00-87b&. D, Evansiana iasis (Kirkaldy), #01-225a&, left forewing (inverted). E, Funkhouserella brevifurca (Funkhouser), #00-228c&. F, F. pinguiturris (Funkhouser), holotype, #01-89f&. G, Goddefroyinella neglecta (Buckton), paralectotype, #01-69e&, left forewing (inverted). H, Lubra spinicornis (Walker), #01-122e&, left forewing (inverted). I, Neocanthuchus tropicus Day, paratype, #01-225c&. J, Otinotoides pallipes (Walker), #00-122h&. 328
Fig. 22.11. Terentiini: wings. A, Pogonella minutus (Goding), #00-136f&. B, Pogonotypellus australis (Goding), #00-136h&. C, Polonius froggatti Goding, holotype, #01-89j&, left forewing (inverted). D, Pyrgonota bifoliata (Westwood), #00-230a&. E, S. wallacei Stål, #00-122c&. F, Sertorius australis (Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #00-80f&. H, Undarella storeyi Day, holotype, left forewing (inverted). I, Yangupia occidentalis (Goding), #01-296a%.
329
Fig. 22.12. Terentiini: metathoracic legs. A, Bulbauchenia bakeri (Funkhouser), #00-221m&. B, Pyrgonota bifoliata (Westwood), #00-230a&. C, Terentius convexus Stål, #99-100h&, reversed from right lateral aspect.
330
Fig. 22.13. Terentiini: female second valvulae (lateral aspects and closeup of apex). A, Acanthucalis macalpini Evans, #00-136i&. B, Anzac bipunctatum (Fabricius), #00-136d&. C-D, Acanthuchus trispinifer (Fairmaire), #00-80g&. E-F, Alosextius carinatus (Funkhouser), #00-136a&. G-H, Bulbauchenia bakeri (Funkhouser), #00-221m&. I-J, Cebes transiens (Walker), #00-80d&.
331
Fig. 22.14. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Ceraon tasmaniae (Fairmaire), #00-80a&. CD, Dingkana borealis Goding, #00-87d&. E, Eufairmairia decisa (Walker), #83-333d&. F, Pogonella minutus (Goding), #00-136f&. GH, Eufrenchia falcata (Walker), #00-87i&. I-J, Eutryonia monstrifera (Walker), #00-87b&.
332
Fig. 22.15. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Funkhouserella brevifurca (Funkhouser), #00228c&. C, F. pinguiturris (Funkhouser), holotype, #01-89f&. D-E, Goddefroyinella neglecta (Buckton), paralectotype, #01-69e&. F-G, Lubra spinicornis (Walker), #00-122e&. H-I, Otinotoides pallipes (Walker), #00-122h&. Copyrights: D-E © 2003, The Natural History Museum, London.
333
Fig. 22.16. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Pogonotypellus australis (Goding), #00-136h&. C-D, Pyrgonota bifoliata (Westwood), #00-230a&. E-F, Sarantus nobilus Kirkaldy, #00-136b&. G-H, S. wallacei Stål, #00-122c&. I-J, Sertorius australis (Fairmaire), #00-122a&.
334
Fig. 22.17. Terentiini: female second valvulae (lateral aspects and closeup of apex, A-D) and male styles (lateral aspects, E-P). A-B, Sextius virescens (Fairmaire), #00-80f&. C-D, Terentius convexus Stål, #99-100h&. E, Acanthuchus trispinifer (Fairmaire), #00-80h%. F, Alocanthella fulva Evans, #01-225b%. G, Anzac bipunctatum (Fabricius), #00-136e%. H, Bucktoniella pyramidatus (Funkhouser), #01-39a%. I, Bulbauchenia sp., #00-230g%. J, B. bakeri (Funkhouser), #00-277a%. K, Cebes transiens (Walker), #00-80c%. L, Ceraon tasmaniae (Fairmaire), #00-80b%. M, Dingkana borealis Goding, #00-87e%. N, Eufairmairia decisa (Walker), #83-333c%. O, Eufairmairiella curvicauda (Goding), #00-87g%. P, Eufrenchia falcata (Walker), #00-87h%. c, clasp.
335
Fig. 22.18. Terentiini: male styles (lateral aspects, A-K) and aedeagi (lateral aspects, L-Q). A, Eutryonia monstrifera (Walker), #00-87a%. B, Goddefroyinella neglecta (Buckton), #01-3b%. C, Lubra spinicornis (Walker), #01-122j%. D, Otinotoides pallipes (Walker), #00-122g%. E, Pogonella minutus (Goding), #00-136g%. F, Pyrgonota bifoliata (Westwood), #00-230b%. G, Sarantus wallacei Stål, #00-122d%. H, Sertorius australis (Fairmaire), #00-122b%. I, Sextius virescens (Fairmaire), #00-80e%. J, Terentius convexus Stål, #99-100i%. K, Yangupia occidentalis (Goding), #01-296a%. L, Alocanthella fulva Evans, #01-225b%. M, Bucktoniella pyramidatus (Funkhouser), #01-39a%. N, Bulbauchenia bakeri (Funkhouser), #00-277a%. O, Eufairmairiella curvicauda (Goding), #00-87g%. P, Eutryonia monstrifera, #00-87a%. Q, L. spinicornis, #01-122j%. Copyrights: K © 2003, The Natural History Museum, London. c, clasp.
336
Fig. 22.19. Terentiini: male aedeagi (lateral aspects, A-F) and lateral plates (lateral aspects, G-L). A, Otinotoides pallipes (Walker), #00122g%. B, Pyrgonota bifoliata (Westwood), #00-230b%, reversed from right lateral aspect. C, Sarantus wallacei Stål, #00-122d%. D, Sextius virescens (Fairmaire), #00-80e%. E, Terentius convexus Stål, #99100i%. F, Yangupia occidentalis (Goding), #01-296a%. G, Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia sp., #00-230g%. I, Bulbauchenia bakeri (Funkhouser), #00-277a%. J, Cebes transiens (Walker), #00-80c%. K, Ceraon tasmaniae (Fairmaire), #00-80b%. L, Dingkana borealis Goding, #00-87e%. Copyrights: F © 2003, The Natural History Museum, London. dl, dorsoapical lobe. 337
Fig. 22.20. Terentiini: male lateral plates (lateral aspects). A, Eufairmairia decisa (Walker), #83-333c%. B, Eufairmairiella curvicauda (Goding), #00-87g%. C, Eufrenchia falcata (Walker), #00-87h%. D, Eutryonia monstrifera (Walker), #00-87a%. E, Goddefroyinella neglecta (Buckton), #01-3b%. F, Lubra spinicornis (Walker), #01-122j%. G, Otinotoides pallipes (Walker), #00-122g%. H, Sarantus wallacei Stål, #00-122d%. I, Sertorius australis (Fairmaire), #00-122b%. J, Sextius virescens (Fairmaire), #00-80e%. K, Terentius convexus Stål, #99-100i%. L, Yangupia occidentalis (Goding), #01-296a%. Copyrights: L © 2003, The Natural History Museum, London. dl, dorsoapical lobe.
338
Fig. 22.21. Terentiini: male subgenital plates (ventral aspects, AD) and maximum development of abdominal fine-structure (E-H). All scanning electron micrographs near tergum III. A, Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Cebes transiens (Walker), #00-80c%. C, Eufrenchia falcata (Walker), #00-87h%. D, Otinotoides pallipes (Walker), #00-122g%. E-F, Acanthuchus trispinifer (Fairmaire), #01-43&. G-H, Anzac bipunctatum (Fabricius), #00-136e%. a, acanthae. i, inornate pit. l, lateral seta. m, microtrichia.
339
Fig. 22.22. Terentiini: maximum development of abdominal finestructure. All scanning electron micrographs near tergum III. A, Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Bulbauchenia mirabilis (Funkhouser), holotype, #01-54a%. C-D, B. bakeri (Funkhouser), #01-278a&. E, Ceraon tasmaniae (Fairmaire), #01232e%. F, Dingkana borealis Goding, #01-219c&. G-H, Eufairmairia fraterna Distant, #01-22b&. i, inornate pit. m, microtrichia.
340
Fig. 22.23. Terentiini: maximum development of abdominal and pronotal (B) fine-structure. All scanning electron micrographs near tergum III. A, Eutryonia monstrifera (Walker), #01-219b&. B-D, Funkhouserella brevifurca (Funkhouser), #01-89e&. E, Lubra spinicornis (Walker), 00-181l&. F, Otinotoides sp., 00-122k&. G, Pogonella minutus (Goding), #00-136j%. H, Pyrgonota sp., #0147b(sex?). i, inornate pit. m, microtrichia. sc, scutellum.
341
Fig. 22.24. Terentiini: maximum development of abdominal finestructure. All scanning electron micrographs near tergum III. A, Sarantus wallacei Stål, #01-247b&. B, Sertorius sp., #00-122m%. C, Sextius kurandae Kirkaldy, #01-235b%. D, Terentius convexus Stål, #01-29a%. i, inornate pit. m, microtrichia.
342
23. Tribe XIPHOPOEINI Capener, 1966 Old World: Afrotropical Region Figs. 23.1-23.3 Type genus: Xiphopoeus Stål, 1866c
Xiphopoeini Capener, 1966a [new tribe].
Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of frontoclypeus; vertex with toothlike projections. Pronotum with numerous acute projections (spines). Mesopleural lobe enlarged. Forewing with m-cu2 crossvein present, discoidal cells similar in length, r-m1 crossvein originating anterior to first division of R vein, with pterostigma at or near R1 vein, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate setae. Male lateral plate without dorsoapical lobe; clasp of style oriented laterally, apex membranous, elliptical or circular, angled dorsally. Abdominal tergum III ventrolateral margin with upcurved groove, abdominal setal bases enlarged, numerous, and dispersed on terga. Description.—Length 4.7-6.3 mm. Color brown to dark brown. HEAD (Figs. 23.1 E-F): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex with toothlike projections.
THORAX: PRONOTUM (Figs. 23.1 A-D):
pronotum with numerous acute projections (spines); suprahumeral horns present; posterior process curving dorsally (Xiphopoeus) or straight at base (Negus), appressed against 343
scutellum (Negus) or not (Xiphopoeus), significantly extending past m-cu3 vein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 2 lateral apices or 1 visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax or posterior half extending past thorax. Pleuron: propleural lobe present or absent, mesopleural lobe enlarged. FOREWING (Figs. 23.1 G, I): sub-opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 crossvein absent and m-cu2 crossvein present in at least one wing; M and Cu veins fused at base; R and M veins not confluent preapically; forewing with pterostigma near R1 vein; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first split of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins not parallel apically; discoidal cells similar in length; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 23.1 H): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae not foliaceous; mesothoracic tibia without rows of cucullate; mesothoracic femur with ab- and adlateral cucullate setae. METATHORACIC LEG (Fig. 23.1 J): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with 7-18 cucullate setae, row II with 19-33 cucullate setae in irregular or double row, row III with 13-23 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2). ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal transverse carina present in Negus; paired dorsal swellings absent; tergum III ventrolateral margin with upcurved groove, abdominal setal bases enlarged, numerous, and dispersed on terga. FEMALE
GENITALIA
(Figs. 23.2 A-D): second valvulae
broadened slightly, tapering unevenly to apex, curved or not, dorsal teeth fine, acute 344
projections on dorsal margin present or absent; third valvulae without ventral projections. MALE
GENITALIA
(Figs. 23.2 E-K): lateral plate without dorsoapical lobe (Figs. 23.2 I-K),
without ventral lobe; subgenital plate without distinct division; style clasp (Figs. 23.2 E-F) oriented laterally, membranous, elliptical or circular, angled dorsally; style shank without significant arch. ABDOMINAL FINE STRUCTURE (Figs. 23.3 B): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia. Chromosome numbers.—Unknown. Distribution.—The tribe Xiphopoeini is recorded from numerous Afrotropical countries (McKamey 1998a). Ecology.—Members of the tribe Xiphopoeini are reported from the host plant families Euphorbiaceae, Gramineae, and Leguminosae (Table 26.2). Discussion.—Capener (1966a) placed those African treehoppers with toothlike projections on the lower margins of the vertex and enlarged mesopleural lobes in the tribe Xiphopoeini. This tribe is monophyletic in the phylogenetic analysis (Figs. 24.1, 24.7) and is characterized by Capener’s diagnostic features as well as the presence of numerous enlarged setal bases dispersed on the abdominal terga. The Xiphopeoini are closely related to the predominantly Afrotropical tribes Leptocentrini and Centrotini, and the Micreunini. The Centrotini, like the Xiphopoeini, also have enlarged setal bases dispersed on the abdominal terga although they are less numerous. In addition, both xiphopoeines and centrotines have an elliptical, dorsally angled, male clasp.
345
Genera of the tribe Xiphopoeini Negus Jacobi, 1910b (type species: N. asper Jacobi by original designation). Xiphopoeus Stål, 1866a (type species: Centrotus phantasma Signoret by subsequent designation). Specimens examined.—Negus asper Jacobi, det. A.L. Capener, USNM, #99-93c&— det. A.L. Capener, AMNH, #00-175a%, #00-175j[n]—det. A.L. Capener, PPRI, #01-256e%; Xiphopoeus sp., det. M.S. Wallace, USNM, #01-61a&, #02-10e[n]; X. erectus Distant, det. W.D. Funkhouser, USNM, #83-333h%; X phantasma Signoret, det. A.L. Capener, PPRI, #99-315c%, #99-315d&.
346
Fig. 23.1. Xiphopoeini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-I), and metathoracic leg (J). Bars = 3 mm. A, Negus asper Jacobi, #99-93c&. B, Xiphopoeus phantasma Signoret, #99-315c%. C, N. asper, #99-93c&. D, X. phantasma, #99-315c%. E, N. asper, #99-93c&. F, X. phantasma, #99-315c%. G, X. phantasma, #99-315d&, right forewing. H, X. phantasma, #99315d&, right hind wing. I, N. asper, #99-93c&, right forewing. J, X. phantasma, #99-315d&. tp, toothlike processes. 347
Fig. 23.2. Xiphopoeini: female second valvulae (lateral aspects and closeup of apex, A-D), and male styles (lateral aspects, E-F), aedeagi (lateral aspects, G-H), lateral plates (lateral aspects, I-J), and subgenital plate (ventral aspect, K). A-B, Negus asper Jacobi, #99-93c&. C-D, Xiphopoeus phantasma Signoret, #99-315d&. E, N. asper, #00-175a%. F, X. phantasma, #99-315c%. G, N. asper, #00-175a%. H, X. phantasma, #99-315c%. I, N. asper, #00-175a%. J, X. phantasma, #99315c%. K, N. asper, #00-175a%. c, clasp.
348
Fig. 23.3 Xiphopoeini: maximum development of pronotal (A) and abdominal fine structure (B). All abdominal scanning electron micrographs near tergum III. A-B, Xiphopoeus sp., #01-61a&. l, lateral seta. m, microtrichia.
349
24: PHYLOGENETIC RELATIONSHIPS WITHIN THE SUBFAMILY CENTROTINAE Introduction The treehopper subfamily Centrotinae accounts for roughly half of the worldwide membracid diversity at the species and higher-levels. It is the only subfamily with genera distributed in the Old World (the Afrotropical, Palearctic, Indomalayan, and Australasian/ Oceanian Regions) and New World (Nearctic and Neotropical Regions), but no centrotine tribe (or genus) occurs in both the Old and New Worlds. Historically, workers have focused on taxonomic revisions of centrotines within a particular geographic region (for example, Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a; Yuan and Chou 2002a). Furthermore, relatively few workers have justified centrotine classifications at any taxonomic level with quantitative phylogenetic analyses (Strümpel 1972a; Ahmad 1988a; Dietrich and Deitz 1993a; Cryan et al. 2000a; Dietrich et al. 2001a; Yuan and Chou 2002a). Consequently, a large number of centrotine tribes, many described in the early 1900’s, are based largely on symplesiomorphies, and thus, the monophyly of the subfamily and tribes has not been tested. These disparities have impeded the development of a stable higher classification and taxonomic studies of centrotines at the generic and species levels. In addition, the lack of information on the evolutionary relationships between the Old and New World centrotines has hindered investigations on biogeographic patterns within the Membracidae and in determining the geographic origins of the Membracidae and the Centrotinae. The lack of common taxa between the New World and Old World has long fueled a debate concerning the geographic origin of the Membracidae (Dietrich and Deitz 1993a, Wood 1993a, Dietrich 350
et al. 2001a). The first comprehensive phylogenetic analysis of generic representatives from all 24 centrotine tribes (20 Old World, 4 New World), (sensu McKamey 1998a and Yuan and Chou 2002a) using morphological characters is presented here. The objectives of this study are to establish the phylogenetic limits of the Centrotinae and its included tribes and to determine the evolutionary relationships among these tribes in order to provide a comprehensive classification and to aid in the investigation of biogeographical patterns and life history traits. The great number of centrotine genera-together with the limited morphological data for many--precluded a single comprehensive phylogenetic analysis. To circumvent this problem, 10 analyses were performed on subsets of taxa as follows: (1) an overall phylogenetic analysis based on genera representing overall tribal diversity within Centrotinae; (2-8) phylogenetic analyses based on genera representing larger tribes; and (9-10) phenetic analyses based on all scorable genera representing larger tribes.
Methods Taxon sampling. Overall, 222 taxa representing 213 genera (Table 24.13) were coded for their morphological characters in the taxonomic database DELTA (DEscription Language for TAxonomy) version 1.03e (Dallwitz 1980a; Dallwitz et al. 1993a, 1999a). Ingroup taxa included 208 genera (178 centrotines and 4 centrodontines coded from specimens; 26 centrotine genera coded from published descriptions and illustrations). Taxa in Table 24.13 labeled with only a generic name are represented by more than one species. Knowledge of 8 centrotine genera was insufficient for coding: Aspasiana, Centrobelus, Insitor, Insitoroides, Megalocentrus, Megaloschema, Saudaraba, and Sinocentrus (all but Saudaraba placed as 351
incertae sedis).
Outgroup taxa included the New World genera: Nicomia and Tolania
(Nicomiinae), Microcentrus Stål (Stegaspidinae), and Centronodus Funkhouser and Paracentronodus Sakakibara (Centronodini). The only possible Old World outgroup is the genus Darthula Kirkaldy, in the family Aetalionidae (sister group to the Membracidae). Darthula, however, is not useful for polarizing because it is too distantly related to centrotines. Generic representatives from 23 of the 24 valid tribes were examined; only the tribe Choucentrini (Choucentrus) was coded entirely from the literature. In order to lessen over-generalization of character data, an effort was made to examine the type species of each available genus. The type species (at least one sex) was examined in 164 of the 178 centrotine genera coded. Analyses. The number of taxa and characters included and the characters excluded in each analysis are shown in Table 24.2. In relatively few cases where only one sex of the type species was available for examination, or where significant morphological diversity occurred within a genus, another species was coded in addition to the type species and included in the dataset. With three exceptions, the type species in these instances was used in all of the phylogenetic analyses. In the Boocerini/Centrodontini analysis, Campylocentrus hamifer was used as the generic representative.
In the Choucentrini/Leptocentrini/Maarbarini
analysis, Otinotus bantuantus and Nilautama minutaspina were chosen as the generic representatives. Question marks (?) in the data matrix indicate missing data, inapplicable character states, and cases where character scoring was ambiguous.
With some characters,
polymorphism (sexual, interspecific, or intraspecific) was designated as a hypothesized intermediate character state. Characters listed in the “other” column of Table 24.2 were 352
excluded because they were highly homoplasious and not informative as tribal or generic characters for the analyzed taxa. In the analysis of the entire subfamily Centrotinae, six autapomorphic characters that helped define monotypic tribes or tribes represented by one genus were retained in the analysis. In the first analysis, generic representatives of 22 of the 24 valid tribes plus the New World subfamily Centrodontinae were included in an overall phylogenetic analysis of the subfamily Centrotinae. Where possible, at least two genera from each valid tribe were included in this analysis. The generic representatives and institutional acronyms used in the subfamily analysis are given in Table 24.5. All of the centrotine genera could not be included in this overall analysis due to the large number of taxa and limited morphological data for some genera (often only one sex was available). Therefore, separate phylogenetic analyses (2-8) were also completed for several large tribes and for the generic representatives of the 2 remaining tribes not included in the overall phylogenetic analysis of the Centrotinae.
Thus, many of the remaining
centrotine genera could be confidently placed into tribes. The phylogenetic trees from these analyses were intended to indicate the monophyly of the tribes and preliminary relationships among their genera. It should be noted, however, that many of the characters used in the analyses were selected to delineate tribes and infer relationships among them, rather than infer generic relationships. Therefore, the addition of further morphological characters that vary among genera would likely provide even better resolution of generic relationships. Analyses 2-3 (Table 24.2) investigated the relationships among several basal centrotine tribes, mostly from the New World. The closely related tribes Beaufortianini (new tribe), Nessorhinini, Pieltainellini (new tribe), and Platycentrini were studied in Analysis 2. 353
All of these tribes except the Beaufortianini are found in the New World. The generic relationships of Boocerini and Centrodontini, two New World tribes, were examined in Analysis 3. The remaining phylogenetic analyses examined relationships of Old World centrotines:
Analysis 4, included two primarily Afrotropical tribes, the Centrotini and
Xiphopoeini; 5, the predominantly Palearctic and Indomalayan tribes Choucentrini, Leptocentrini, and Maarbarini (new tribe); 6, the Gargarini; 7 the Oxyrhachini and Hypsaucheniini; and 8, Terentiini (Table 24.2). DELTA datasets were converted to NEXUS files in DELTA. Phylogenetic analyses (analyses 1-8) were performed using PAUP* (Phylogenetic Analysis Using Parsimony) version 4.0b10 for Windows (Swofford 2002a). Character change lists and apomorphy lists were generated using PAUP*. Due to the size of all the analyses, heuristic analyses were performed using the tree-bisection-reconnection routine (TBR) with 50 random addition replicates. Five trees were held at each step of cladogram construction. The number of changes assigned per branch under ACCTRAN optimization was determined by PAUP*. Branch lengths are proportional to the number of changes per branch and are used here as measure of node support. Two similarity analyses (Analyses 9-10) of several larger tribes using UPGMA were performed to show overall morphological similarity among genera in a tribe, including those in which data were too limited for inclusion in the phylogenetic studies. UPGMA was performed in PAUP*. The distance measure or branch lengths for the UPGMA trees are proportional to the mean character distance.
354
Morphological Characters. The dataset for the phylogenetic and phenetic analyses consists of 116 morphological characters (82 binary and 34 multistate) (Table 24.1). Only adult males and females were coded because too few nymphal specimens were examined to include characters from the immatures. Many of the characters, especially those of the forewings, are based on those in Dietrich et al. (2001a). For all analyses, characters were treated as unordered because polarizations were ambiguous. Characters were assigned equal weight in all analyses. See the “Introduction” section for a discussion of morphological characters.
Results and Discussion Phylogeny of the Centrotinae and character evolution. The results presented here represent the first comprehensive morphological phylogenetic analysis of the subfamily Centrotinae.
The overall phylogenetic analysis (Analysis 1) resulted in a single most
parsimonious tree (Fig. 24.1) of 665 steps, consistency index (CI) of 0.23, and retention index (RI) of 0.60. Table 24.3 gives descriptive tree statistics of the other phylogenetic analyses (Analyses 2-8). In many cases, nodes defining tribes and relationships among tribes were well supported with numerous character changes-- for example: node 79 (Terentiini), nodes 82-83 (Ebhuloidesini, Oxyrhachini, Hypsaucheniini, and Terentiini), node 91 (Choucentrini + Maarbarini), node 102 (Leptocentrini), and node 116 (Nessorhinini). Nevertheless, although only 1 most parsimonious tree was found, in basal portions of the tree branch support was either low (i.e., nodes 113 and 111) or nodes were supported by mostly homoplasious characters (i.e., node 118). Indeed, in general, homoplasy was high (CI=0.23) in this analysis, as one might expect with 69 taxa (Sanderson and Donoghue 1989a). Certain 355
characters, however, such as the shape of the female second valvulae, were homoplasious in some tribes (i.e., Centrotini) but consistent and informative in others (i.e., Hypsaucheniini). In a separate analysis using the dataset of Analysis 1, all of the Old World genera were constrained for monophyly to determine the extra number of steps needed for a monophyletic Old World fauna. Analysis parameters were equal to the above unconstrained studies. Constraining a monophyletic Old World centrotine fauna resulted in 65 equally most parsimonious trees with 671 steps, 6 steps longer than the most parsimonious tree without the constraint.
According to a winning-sites test between the most parsimonious tree
(unconstrained for Old World monophyly) and the 65 equally parsimonious trees (constrained for Old World monophyly), the data did not provide significantly less support for the constrained analysis compared to the unconstrained analysis (p-values ranged from 0.42-0.09). Despite this result, the unconstrained analysis is favored here not only because it is more parsimonious, but also because most of the Old World phylogeny was unresolved in the constrained study. As a result of these analyses, 23 centrotine tribes are recognized, including 6 new tribes; 11 tribal synonymies and 1 subfamily synonymy are proposed, and the tribal placements of 108 genera are changed. Based on the present phylogeny, Fig. 24.2 and Table 24.14 contrast the existing centrotine tribal classification (sensu Ananthasubramanian 1996a, McKamey 1998a, and Yuan and Chou 2002a) with the revised classification. The tribal descriptions give detailed morphological descriptions and updated placements of each centrotine genus, while the tribal synonymies and discussions give details on the taxonomic status of each tribal name.
356
The Centrotinae, as defined here, are a monophyletic group based on the phylogenetic analysis (Fig. 24.1), supporting the findings of Dietrich and Deitz (1993a) and Dietrich et al. (2001a). All centrotines have abdominal inornate pits, each with an associated lateral seta. This feature is independently derived in three other treehopper genera: Nicomia (Nicomiinae), Endoiastus Fowler (Endoiastinae), and Eunusa Conseca (Membracini). Dietrich et al. (2001a) also listed these pits as a synapomorphy for centrotines. Moreover, with the exception of the centrodontines, centrotines have a truncate clavus while R, M, and Cu forewing veins lack “extra” branches. The remaining apomorphies of the Centrotinae (Table 24.4) are not as reliable due to the limited number of outgroups presented and the homoplastic nature of these characters. These include r-m1 crossvein bent towards R vein in the forewing, cucullate setae on dorsal femur absent, and abdominal shape in cross-section nearly triangular. Additional apomorphies of Centrotinae listed by Dietrich et al. (2001a) were not retrieved in the present analyses. Although the initial division of R vein in the forewing as R1 and Rs and the presence of r-m1 crossvein are diagnostic centrotine characters, they appear to be plesiomorphic based on the outgroups used here. Of these however, only Microcentrus has R1 and Rs as the initial division of R vein in the forewing like most centrotines--this character state is ambiguous for the remaining outgroup taxa. The Centrotinae topology presented by Dietrich et al. (2001a: Fig. 10) roughly resembles the tree presented here (Fig. 24.1). In both analyses, the Boocerini, as defined here, and Tricentrus, are basal to the remaining centrotines. With the exceptions of the placements of Oxyrhachini and Gargarini in Dietrich et al. (2001a), the two phylogenies are very similar. The Nessorhinini and Platycentrini form a monophyletic group in both analyses 357
and are the sister group to the Leptocentrini and Centrotini, two closely related tribes in both trees. In contrast to morphological studies, a molecular analysis of the Membracidae using nuclear genes did not consistently result in a monophyletic Centrotinae (Cryan et al. 2000a). The Centrodontinae (here considered a tribe within Centrotini) and Stegaspidinae often grouped with the Centrotinae into one of two major membracid lineages. In a combined analysis with EF-1" and 28S rDNA, the New World centrotines arose from the Old World centrotines, contradictory to the results presented here. Moreover, many of the relevant nodes were not highly supported based on the molecular data (Cryan et al. 2000a). Suprahumeral horns are gained and lost numerous times in the Centrotinae. Although these pronotal horns are sometimes diagnostic at lower levels, they are rarely useful in defining tribes. This is not surprising considering the polymorphic nature of these horns in many species. Nevertheless, several centrotine genera have interesting modifications of the suprahumeral horns.
For example, certain genera in the Centrotini (Euceropsila,
Eumocentrulus, Eumonocentrus, Flatyperphyma, Foliatrotus, Mitranotus, Monocentrus, and Zanzia), Nessorhinini (Nessorhinus and Orekthophora), and Terentiini (Neosextius) have suprahumeral horns partially fused into a median anterior pronotal horn. These partially united horns appear to be an intermediate state between separate suprahumeral horns situated dorsolaterally on the pronotum (as in Centrotus) and a single median anterior pronotal horn (as in Micreune). Despite these modifications, the current phylogenetic analysis provides little to confirm this hypothesis. One would expect taxa with the intermediate state to be found basally on the phylogenetic tree with respect to taxa with a median anterior horn, but this apparently is never the case. This hypothesized intermediate state arose multiple times 358
in the Centrotinae and even within the tribe Centrotini (Fig. 24.7), but no genera of the Centrotini have the fully developed median anterior horn. The terentiine genera Eutyronia, Bulbauchenia, Funkhouserella, and Pyrgonota have a median anterior horn but they are not closely related to Neosextius (Fig. 24.14). In constrast, the presence of a median anterior horn is a synapomorphy of the tribes Hypsaucheniini, Micreunini, and Leptobelini, and there is no evidence of the intermediate state. An exposed scutellum has long helped to distinguish centrotines from other membracids, however, Dietrich et al. (2001a) found this condition to be plesiomorphic for the subfamily.
The present study supports this finding and indicates that pronotal
concealment of the scutellum was independently derived in the tribes Centrodontini, Oxyrhachini, and most Nessorhinini, and also in Insitor (incertae sedis), Monobeloides (Monobelini), Bulbauchenia and Neosextius (Terentiini), and several gargarine genera (Cryptaspidia, Gargarina, Madlinus, Mesocentrina). The condition is polymorphic in Orthobelus (Nessorhinini), Centrotypus (Centrotypini), and Sextius (Terentiini). Centrotinae tribal relationships.
Several suites of characters proved especially
significant in determining centrotine phylogeny. Characters important in elucidating tribal relationships include the characteristics, especially shape, of the male style clasp; shape of the female second valvulae; forewing and hind wing characteristics; features of the scutellum; leg chaetotaxy; and abdominal characteristics. The centrotines are arranged in two major clades plus the basal tribe Centrodontini (Fig. 24.1). The New World subfamily Centrodontini is the first lineage of the Centrotinae (Figs. 24.1, 24.5).
Thus, Centrodontinae is here considered a junior synonym of the
Centrotinae. Cryan et al.’s (2000a) recent molecular analyses using nuclear data consistently 359
placed centrodontines near centrotine genera in the phylogenetic tree and recovered the Centrodontini clade consistently with 98-100% bootstrap support. Centrodontini are here tentatively placed within the Centrotinae.
Nevertheless, the Although the
centrodontines have inornate pits, each with an associated lateral seta (the synapomorphy for the Centrotinae), they differ significantly from other centrotines in forewing venation and leg chaetotaxy.
Relationships within the Centrodontini are well resolved (Fig. 24.5).
Apparently, Nodonica, the only centrodontine found in South America, is the sister group to the North American centrodontines, differing significantly from the latter in leg chaetotaxy and features of the male and female genitalia. Character 113 (abdominal inornate pits with lateral setae) was coded as ambiguous (?) for Nodonica because a specimen was not examined, and it is appropriate to score this character with a high power dissecting scope or scanning electron microscope. The next higher clade following the Centrodontini (Figs. 24.1-24.2) contains genera most recently placed in the Abelini, Antialcidini, Boocerini, Coccosterphini, Gargarini, Platycentrini, Nessorhinini, Leptocentrini, Madlinini, and Tricentrini (Ananthasubramanian 1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on the present results, the existing classification is clearly unacceptable, with numerous polyphyletic and paraphyletic tribes, forcing the placement of many genera into different tribes and the creation of new taxa and new synonymies. In most of the genera of this clade, the male subgenital plate has a distinct division near the base. The new tribe Monobelini contains genera previously placed in Boocerini and Nessorhinini (both sensu McKamey 1998a) (Figs. 24.1-24.2). The tribe Monobelini is the basal lineage of this first major centrotine clade and is one of two tribes confined to the 360
Caribbean Islands. Monobelus and Monobeloides both have extra cucullate setae at the distal end of the femur and are more similar morphologically to each other than to Brachycentrotus. Brachycentrotus, the sister group to Monobelus and Monobeloides, lacks extra cucullate setae at the end of the hind femur. The Abelini Goding, 1930a, and Boocerini Goding, 1892a (sensu McKamey 1998a, in part), together form a monophyletic group (Figs. 24.1-24.2, 24.5), rendering Abelini a junior synonym of Boocerini. The boocerines are defined by the long ventral lobe of the male lateral plate. A similar relationship, with Bremer support of 2, was recovered in the morphological analysis of Dietrich et al (2001a). However, phylogenetic analyses using nuclear data (Cryan et al. 2000a) did not result in a monophyletic Abelini and Boocerini sensu McKamey (1998a). Although generic relationships are well resolved, the strict consensus tree (Fig. 24.5) of the Boocerini indicates a basal polytomy. This lack of resolution may be due to missing data, because no males of Centriculus were available. Amblycentrus and Brachybelus, a monophyletic group, differ from other boocerines in hind wing venation, features of the male genitalia, and leg chaetotaxy. The monophyletic group of genera forming a sister group to the Boocerini (Fig. 24.1) includes a large number of tribes under the existing classification (Ananthasubramanian 1996a, McKamey 1998a, and Yuan and Chou 2002a), but with the exceptions of the monotypic tribes Aleptocentrini and Madlinini, none of these are monophyletic (Figs 24.124.2). Therefore, based on the phylogenetic analyses (Figs. 24.1-24.2, 24.10), five tribes-Antialcidini Yuan and Zhang, in Yuan and Chou, 2002a; Aleptocentrini Thirumalai and Ananthasubramanian, 1985a; Madlinini Boulard, 1995d; Tricentrini Ahmad and Yasmeen, 1972a; and Coccosterphini Distant, 1908g--are all junior synonyms of Gargarini Distant, 361
1908g. Molecular analyses of the Membracidae (Cryan et al. 2000a) consistently resulted in a monophyletic relationship between Gargara and Tricentrus with high bootstrap support. In contrast, Dietrich et al.’s (2001a) morphological analysis did not produce a monophyletic Gargara and Tricentrus. A UPGMA analysis including the remaining genera placed in the Gargarini (Fig. 24.16) also produced a single gargarine group based on overall similarity. Many of the generic relationships of the Gargarini are still unresolved (Fig. 24.10). Three morphologically distinct gargarines, however, Aleptocentrus, Yasa, and Parayasa, are consistently positioned at the base of the tree. The Gargarini, although morphologically heterogenous in some features, are united based on the expanding frontoclypeus, by the posterior process appressed against the scutellum, and the shortened scutellum (Figs. 24.124.2, 24.10). In the hind wing, R4+5 and M1+2 veins are fused (3 apical cells) in all genera except Aleptocentrus and Yasa. The Gargarini include the two largest centrotine genera, Tricentrus with 223 species, and Gargara with 184 (McKamey 1998a). Primarily distributed in the Indomalayan and Palearctic regions, the Gargarini are the descendants of one of the two major invasions of centrotines from the New World to the Old World.
See the
“Biogeography” chapter for a more detailed discussion of this dispersal. The next major clade accounts for most of the centrotine diversity at the tribal and generic levels. Similar to the other major clade, many of the tribes based on McKamey (1998a) and Yuan and Chou (2002a) are para- or polyphyletic resulting in new synonymies and the reassignment of genera. Furthermore, the recognition of several monotypic tribes is supported from the analysis in this major clade.
The Centrocharesini, Oxyrhachini,
Leptobelini, Ebhuloidesini, and Micreunini all have strong support based on convincing synapomorphies justifying their retainment as tribes (see the relevant tribal descriptions). 362
As in its sister clade, the basal lineage of this second large assembly of tribes is a New World clade.
The phylogenetic analyses agree with the recent placement of the
Nessorhinini (formerly a subfamily) as a tribe within Centrotinae (Dietrich et al. 2001a). Furthermore, Callicentrus and Nessorhinus were monophyletic in the molecular phylogenetic analysis of the Membracidae using two nuclear genes (Cryan et al. 2000).
Here, the
nessorhinines (sensu McKamey 1998a) are polyphyletic (Fig. 24.1-24.2), with several genera formerly placed in the Platycentrini and Boocerini forming a monophyletic group with the type genus Nessorhinus and several other genera previously placed in the Nessorhinini (Fig. 24.3). All of these genera, along with the Monobelini, are restricted to the Caribbean Islands. The internal phylogeny of the Nessorhinini is well resolved (Fig. 24.3) and is split into two groups. A morphologically homogenous group is represented by Nessorhinus and Goniolomus while a more heterogenous group is represented by Callicentrus and Orthobelus (Figs. 24.1, 24.3). These two groups differ in forewing characteristics and shape of the male and female genitalia. Despite the two clades, all nessorhines have anterior dorsal swellings on the abdomen and long blade-shaped female second valvulae with large dorsal teeth. A UPGMA analysis (Fig. 24.17) including the genus Spathenotus resulted in the same two groupings. The Platycentrini sensu McKamey (1998a) are also polyphyletic but Platycentrus and Tylocentrus (Fig. 24.3) form a monophyletic group supported by the shape of the female ovipositor, and are the sister group to the Nessorhinini. This grouping of Platycentrus and Tylocentrus is also supported by molecular phylogenetic analysis (Cryan et al. 2000a). The Pieltainellini, a new tribe proposed to accommodate elements of the Boocerini sensu McKamey (1998a), are found in Mexico and are the sister group to a majority of the Old World centrotines. 363
The first Old World lineage in the second major centrotine clade are a group of genera formerly placed in the Leptocentrini sensu McKamey (1998a) (Fig. 24.2), here considered polyphyletic. This group of genera form the Beaufortianini (Figs. 24.2-24.3), a new tribe based on the phylogenetic analysis. Imporcitor, distributed in the Palearctic and Indomalayan Regions, is basal to Centrolobus, Centruchus, Beaufortiana, Mabokiana, and Dukeobelus, a clade primarily distributed in the Afrotropical Region but with a few Indomalayan and Palearctic components. Beaufortianines have a long dorsoapical lobe on the male lateral plate, although the lobe is lost in the genus Centruchus. Many of the characters of this group are intermediate between features found in the New World tribes and a majority of the Old World centrotines. A UPGMA analysis (Fig. 24.16) that included the genus Centrotusoides grouped the beaufortianines together based on overall similarity. A substantial clade of genera including the Centrocharesini, Ebhuloidesini, Oxyrhachini, Hypsaucheninii, and the Terentiini (Fig. 24.1) all lack mesothoracic ab- and adlateral cucullate setae on the femur, and with the exception of the Centrocharesini, they all have a reduced number (0 or 1) of cucullate setae on the first metathoracic tarsomere. The Centrocharesini is a highly derived tribe with numerous autapomorphies, including acute projections on the pronotum and abdomen, and foliaceous tibiae. The monophyly of the clade Oxyrhachini + Ebhuloidesini + Hypsaucheniini is strongly supported by a number of characters. The female second valvulae are all short and broad with an undulating dorsal margin, the male style clasp is cylindrical in most genera, they lack metathoracic ab- and adlateral cucullate setae on the hind femur, and their mesopleural lobes are enlarged. The tribe Ebhuloidesini Goding, 1931a, senior synonym of Ebhulini Yuan, in Yuan and Chou 2002a, consists of only its nominative genus Ebhul. 364
Sister group to the
Oxyrhachini + Hypsaucheniini (Fig. 24.1), this tribe has the first division of R vein in the forewing as R1+2+3 and R4+5 rather than R1 and Rs. The Ebhuloidesini are a distinct lineage in the phylogenetic analysis (Fig. 24.1), supporting Yuan and Chou’s (2002a) findings. The placement of Oxyrhachini as a monotypic tribe within the Centrotinae is consistent with the findings of Dietrich et al. (2001a) (Fig 24.1). Oxyrhachines have paired dorsal swellings on the abdomen that are larger on the posterior segments and have Cu1 vein abutting the clavus in the forewing, not the marginal vein.
Several Oxyrhachis species, representatives of
generic synonyms of Oxyrhachis, form a monophyletic group (Fig. 24.12) in the analysis, partly justifying these synonymies. The Hypsaucheniini, as defined here, are monophyletic in the phylogenetic analysis, and largely correspond to McKamey’s (1998a) catalog with the exception of Pyrgonota, here placed in the Terentiini. Yuan and Chou (2002a) placed the genus Hybandoides in the Funkhouserellini (here a synonym of Terentiini) but here it is referred back to the Hypsaucheniini (McKamey 1998a). All hypsaucheniines have a median anterior pronotal horn.
With the exception of Gigantorhabdus, hypsaucheniines have an anomalous
longitudinal vein in the forewing that may represent a distinct branch of R vein. The generic relationships of the Hypsaucheniini are largely unresolved (Fig. 24.12) with the exception of the clade including Hybanda, Gigantorhabdus, and Pyrgauchenia. This group of genera has conelike projections on the female third valvulae and have the m-cu3 crossvein in the forewing basad of the fork of M vein. Bulbaucheniini Goding, 1931a, and Funkhouserellini Yuan and Zhang, in Yuan and Chou 2002a, are junior synonyms of Terentiini Haupt, 1929c, based on the phylogenetic analysis (Figs. 24.1-24.2, 24.14).
The type genera of the two former tribes form a 365
monophyletic group with Terentius (Figs. 24.1, 24.14).
Other genera here placed in
Terentiini were previously incertae sedis or placed in the tribes Centrotypini or Leptocentrini, which in the sense of McKamey (1998a) are here considered polyphyletic (Fig. 24.2). The Terentiini, as defined here, form a sister group to the Ebhuloidesini + Oxyrhachini + Hypsaucheniini (Fig. 24.1). The Australasian genera Eufairmairia, Ceraon, and Sextius were a monophyletic group in a molecular analysis of the Membracidae (Cryan et al. 2000a). A UPGMA analysis (Fig. 24.17) grouped all of the genera here listed within Terentiini together based on morphological similarity. Day’s (1999a) WPGMA analysis grouped the Australian membracids into 3 clusters plus the genus Goddefroyinella. Many of the genera from the present UPGMA analysis cluster in a similar manner. Terentiines have the posterior pronotal process appressed against the scutellum and all males have a quadrate style clasp, a unique clasp shape among all centrotines. Although many of the the basal relationships of the Terentiini are unresolved (Fig. 24.14), some terminal generic relationships are well defined. Anzac, Neosextius, Goddefroyinella, and Sextius are a closely related group of genera with reticulate wing venation. Cebes, Sarantus, and Ceraon all have the first division of R vein as R1+2+3 and R4+5 rather than R1 and Rs in the forewing and lack cucullate setae in row I of the metathoracic tibia. The inornate abdominal pits of Bulbauchenia, Funkhouserella, and Pyrgonota are not distinct and the apex of their male style clasp is acuminate. The next large monophyletic clade contains the tribes (as defined here) Boccharini, Leptobelini,
Choucentrini,
Leptocentrini,
Lobocentrini,
Xiphopoeini,
Micreunini,
Centrotypini, and Centrotini. With the exception of some Centrotini genera, all the members
366
of this clade have indistinct abdominal acanthae with their bases not significantly heightened. All of these tribes, in addition, except the Lobocentrini, have membranous male style clasps. Four genera previously placed in the Leptocentrini sensu McKamey (1998a) (Fig. 24.2), form the new tribe Lobocentrini. Three of these genera, Lobocentrus, Arcuatocornum, and Truncatocornum, form a monophyletic group in the phylogenetic analysis (Fig. 24.124.2) and Amphilobocentrus grouped with these genera based on morphological similarity in a UPGMA analysis (Fig. 24.17). Lobocentrines have numerous cucullate setae, arranged irregularly, in row II of the metathoracic tibia and have a dorsoventrally oriented male style clasp that is rounded with an acuminate projection. Elaphiceps and Tyrannotus, here placed Centrotinae, incertae sedis, form a monophyletic assemblage with the Lobocentrini (Figs. 24.1-24.2) because their clasps are similar, but are not included in the Lobocentrini because they differ significantly in leg chaetotaxy and features of the female genitalia. The new tribe Boccharini consists of two genera, Bocchar and Lanceonotus, formerly of Leptocentrini sensu McKamey (1998a) (Fig. 24.2). The monophyly of the Boccarhini (Figs. 24.1-24.2) is supported by a unique male clasp that is elliptical or circular with a preapical ventral extension. The sister group of the Boccharini is composed of a large number of genera (8 tribes), all with ab- and adlateral cucullate setae on the metathoracic femur. The Leptobelini, a monotypic tribe (Figs. 24.1-24.2), are a distinct lineage with a cucullate setal row on the mesothoracic tibia and an acuminate scutellum. Choucentrus, Evanchon, and Dograna comprise the Choucentrini, a monophyletic assemblage (Fig. 24.9) of centrotines lacking crossvein s in the forewing. They are closely related to the Maarbarini, a new tribe consisting of genera formerly incertae sedis or placed in the Centrotini, Centrotypini, or Leptocentrini (Fig. 24.2). Males of Dograna (no other choucentrine males 367
were examined) and the Maarbarini have a triangular style clasp with a basal thickening. Most maarbarines have a long acuminate scutellum and parallel, curving longitudinal veins in the forewing. The phylogeny of this monophyletic group of genera (Figs. 24.1-24.2, 24.9) is well resolved.
The most basal genus, Telingana, differs from other maarbarines in
scutellar characteristics and forewing venation. Members of the tribes Leptocentrini, Xiphopoeini, Micreunini, Centrotypini, and Centrotini, as defined here, have: a scutellum that extends only slightly beyond the thorax, metathoracic tibia with cucullate setal row II double or irregular in most genera, abdominal tergal borders not modified into irregular ridges, and the abdominal setal bases are usually enlarged. Indeed, previous molecular (Cryan et al. 2000a) and morphological analyses (Dietrich et al. 2001a) of the Membracidae also indicated a close relationship between the Leptocentrini and Centrotini. As mentioned previously, Leptocentrini sensu McKamey (1998a) is polyphyletic in the present analysis (Fig. 24.2).
The Leptocentrini defined here, however, are a
monophyletic group of genera (Figs. 24.1-24.2, 24.9). Included in this tribe is the genus Demanga, type genus of the Demangini Yuan and Zhang, in Yuan and Chou, 2002a, here considered a junior synonym of the Leptocentrini Distant, 1908g. The UPGMA analysis (Fig. 24.17) produced a single leptocentrine group based on overall morphological similarity. Leptocentrines have a triangular style clasp (except Periaman) and broadened second valvulae. Members of the monophyletic group of tribes including the Xiphopoeini, Micreunini, Centrotypini, and Centrotini, all have elliptical or circular male style clasps.
The
Xiphopoeini, found only in the Afrotropical Region, are a monophyletic group (Fig. 24.7), 368
characterized by the presence of toothlike projections on the lower margin of the vertex and enlarged setal bases dispersed on the abdominal terga. The Micreunini, a monotypic tribe (Fig. 24.1), have a long median anterior pronotal horn with suprahumeral horns at its tip. The Centrotypini, a polyphyletic group sensu McKamey (1998a), consists here of two genera, Centrotypus and Emphusis. Their monophyly is supported by rounded or blunt scutellar apices, a condition unique to this tribe. The Centrotini is the largest tribe in the subfamily Centrotinae in terms of genera, with 47. It is monophyletic, as defined here, based on phylogenetic analyses of selected genera (Figs. 24.1, 24.7). The UPGMA analysis of all genera of Centrotini resulted in a single group.
The phylogenetic tree of the tribe (Fig. 24.7) is fairly well resolved.
Predominantly Afrotropical, the Centrotini are characterized by their reduced hind wing venation where R4+5 and M1+2 veins are fused (3 apical cells). Furthermore, many members of the tribe have R1 vein represented by a pterostigma in the forewing and many lack distinct frontoclypeal lobes. Centrotus, the type genus, is somewhat enigmatic in its morphology. Occupying a basal position in the phylogenetic tree (Fig. 24.7), its frontoclypeal lobes are distinct and it lacks a pterostigma on the forewing.
Summary An overall phylogenetic analysis of the subfamily Centrotinae using 116 morphological characters resulted in a single most parsimonious tree showing numerous poly- or paraphyletic tribes as delimited by existing classifications (Ananthasubramanian 1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on this overall analysis, 11 tribal synonymies and 1 subfamily synonymy are proposed, 6 new tribes are described, and 369
the included genera are placed into a total of 23 centrotine monophyletic tribes (see tribal descriptions).
Tribal relationships were supported with many character changes.
The
subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the presence of abdominal inornate pits, each with a lateral seta. The phylogenetic analysis of the subfamily resulted in two major clades, each with New World and Old World components, plus the New World tribe Centrodontini. Apparently, centrotines invaded the Old World twice (Fig. 24.1). One invasion included the ancestors of the tribe Gargarini while the other invasion included the ancestors of the remaining Old World centrotine tribes. Characters important in elucidating tribal relationships include features of the male and female genitalia, the wings, the scutellum, the abdomen; and leg chaetotaxy. A significant number of the 216 known centrotine genera are poorly represented in collections--some being known from only one sex or even a single specimen. Here, all but 9 genera were placed in tribes supported by quantitative phylogenetic analyses of morphological features, or in cases where data were limited, on phenetic overall similarity.
370
Table 24.1. Character list. Head: 1. Width: (1) less than distance between humeral angles of pronotum; (2) greater than or equal to distance between humeral angles of pronotum. 2. Frontoclypeus: (1) without median longitudinal carina; (2) with median longitudinal carina. 3. Frontoclypeal lobes: (1) indistinct (Fig. 0.1 C); (2) distinct (Fig. 0.1 D). 4. Frontoclypeal lobes: (1) not extending to apex of frontoclypeus (Fig. 0.1 D); (2) extending to near apex of frontoclypeus (Fig. 0.1 C). 5. Frontoclypeal margins: (1) distinctly converging (Fig. 4.1 C); (2) parallel or converging only slightly ventrally (Fig. 0.1 D); (3) broadly expanding towards apex (Fig. 10.4 G); (4) abruptly expanding near apex ( Fig. 11.2 B). 6. Ocelli: (1) closer to eyes than each other (Fig. 18.2 F); (2) about equidistant from each other and eyes (Fig. 0.1 C). 7. Vertex: (1) without multiple toothlike projections on lower margins (Fig. 0.1 D); (2) with multiple toothlike projections on lower margins (Figs 23.1 E-F).
Pronotum/Scutellum 8. Posterior pronotal process: (1) lacking (Fig. 3.1 A); (2) produced posteriorly (Fig. 3.1 C). [Coding state 1 makes character #’s 9-12, and 14 inapplicable.] 9. Posterior process: (1) not originating from median anterior horn (not significantly raised above scutellum) (Fig. 0.1 A); (2) originating from median anterior horn (significantly raised above scutellum) (Fig. 0.11 A). 10. Posterior process: (1) not significantly extending past m-cu3 crossvein in forewing (Fig. 1.1 A); (2) significantly extending past m-cu3 crossvein (Fig. 1.1 D). 11. Posterior process (shape at base): (1) straight (Fig. 1.1 A); (2) curved dorsally (Fig. 1.1 B). 12. Posterior process (contact with scutellum): (1) not appressed against scutellum (Fig. 0.1 A); (2) appressed against scutellum (for the entire length of the scutellum) (Fig. 0.1 B).
371
Table 24.1 cont’d. 13. Posterior process (dorsolateral concealment of scutellum by posterior process): (1) both lateral scutellar apices or median acuminate point clearly visible from dorsolateral view (Fig. 0.2 E); (2) 1 lateral apex clearly visible from dorsolateral view (Fig. 0.1 B). 14. Extent of posterior pronotal process relative to scutellum: (1) extended over but not completely concealing scutellum (Fig. 0.3 A); (2) polymorphic; (3) completely concealing scutellum (Fig. 0.3 C). [Character state #2 is here considered an intermediate state between states #1 and #3. In the genus Sextius (Terentiini), for example, some specimens in the same species have the scutellum concealed, while in others it is visible. Coding state 2 makes character #13 inapplicable.] 15. Suprahumeral horns: (1) absent (Fig. 1.1 M); (2) polymorphic; (3) present at base of pronotum (Fig. 1.1 K); (4) present but partially fused into a median anterior horn (Figs. 6.5 D-E, G); (5) present on tip of median anterior horn (Fig. 16.1 B). [The bifurcate process at the tip of the median anterior horn in some treehoppers, for example in many Hypsaucheniini, is here considered homologous to suprahumeral horns (character state #5); see discussions within phylogenetic analysis for morphological progression of this character.] 16. Acute pronotal projections or spines: (1) absent (Fig. 0.1 B); (2) present (Figs. 23.1 B, D; Figs. 4.2 I-J). [Acute projections, or spines, on the pronotum, here considered homologous, have been derived independently in Centrocharesini, Xiphopoeini, several Centrotini (Anchonobelus, Anchonastes, Anchonomonoides, Barsumas, Barsumoides, Eumocentrulus, Flatyperphyma, Hamma, Mitranotus), several gargarines (Madlinus, Eucoccosterphus, Coccosterphus), and the genera Daimon, Jingkara, and Maguva. With the exception of Daimon, the presence of pronotal spines is confined to Old World centrotines.] 17. Median anterior pronotal horn: (1) absent; (2) present (Fig. 16.1 B). 18. Scutellar keel: (1) present; (2) absent. 19. Scutellar posterior margin (if visible): (1) acuminate (always exposed, and without median groove (Fig. 0.2 E); (2) emarginate (notched) (Fig. 0.3 B); (3) acuminate with posterior medial groove . [Coding state 1 or 3 makes character #20 inapplicable.]
372
Table 24.1 cont’d. 20. Scutellar apices (posterior margin notched): (1) acute (Fig. 0.3 B); (2) rounded or blunt (Fig. 0.2 B). 21. Scutellum length (viewed ventrally, with abdomen removed): (1) not shortened--full notch or acuminate point visible (Figs. 0.2 A-B); (2) shortened, at most apices visible (Figs. 0.2 C-D) 22. Scutellar extension: (1) only slightly extending past thorax (Fig. 0.3 A); (2) posterior half of scutellum extending past thorax (Fig. 0.2 E).
Pleuron 23. Propleural lobe: (1) absent; (2) present (Fig. 0.3 D). 24. Mesopleural lobe: (1) not enlarged; (2) enlarged (Fig. 0.3 D). [In centrotines the mesopleural lobe is consistently present, but is substantially enlarged in some.]
Forewing 25. Clavus: (1) acuminate (Fig. 5.2 E); (2) truncate (Fig. 0.4 A). 26. Pigmentation of wing: (1) mostly hyaline (Fig. 0.1 A); (2) mostly translucent with darker areas (Fig. 11.1 AB). 27. Apical limbus: (1) narrow (Fig. 5.2 A); (2) broad (Fig. 0.4 A). 28. Degree that wing (in repose) is concealed by posterior process: (1) not concealed (Fig. 0.1 A); (2) wing partially concealed. 29. Ratio of wing width to length: (1) < 0.30 (Fig. 11.1 H); (2) 0.30 > 0.40 (Fig. 0.4 A); (3) ≥ 0.40 (Fig. 10.6 A). 30. M and Cu (number of branches): (1) 3 veins reaching marginal vein (i.e., M 2-branched, Cu unbranched) (Fig. 0.4 A); (2) with 4 branches reaching marginal vein (M apparently 3-branched) (Fig. 2 D of Dietrich et al. 2001a); (3) with 5 or more branches reaching marginal vein. 31. Crossvein s: (1) present (Fig. 0.4 A); (2) absent (Fig. 8.1 G). [Coding state 2 makes character #32 inapplicable.]
373
Table 24.1 cont’d. 32. Position of s-crossvein relative to r-m2 crossvein: (1) distad (Fig. 0.4 A); (2) directly dorsal to or very close to r-m2 crossvein (Fig. 7.1 G). 33. Vein R (number of branches): (1) with 3 or fewer branches reaching marginal vein (Fig. 0.4 A); (2) with 4 branches reaching marginal vein (Fig. 2 D of Dietrich et al. 2001a); (3) with 5 or more branches reaching marginal vein. 34. Vein R initial division: (1) R1 and RS (Fig. 0.4 A); (2) R1+2+3 and R4+5 (Fig. 9.1 D). 35. Cu1 vein: (1) distally abutting clavus (Fig. 0.4 A); (2) distally abutting marginal vein (Fig. 1.2 I). 36. Crossvein r-m1: (1) present (Fig. 0.4 A); (2) absent. [Coding state 2 makes character #’s 49 and 50 inapplicable.] 37. Crossvein m-cu1: (1) present on at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, as well as m-cu2 crossvein, is sometimes only found on either the right or left wing.] 38. Crossvein m-cu2: (1) present in at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, usually closely associated with crossvein r-m1 in centrotines, is equivalent to “m-cu1 crossvein” of Dietrich et al. 2001a.] 39. Position of m-cu3 crossvein: (1) distad of fork of vein M (Fig. 0.4 A); (2) basad of fork of vein M (Fig. 10.8 I). [This crossvein is equivalent to “m-cu2 crossvein” of Dietrich et al. 2001a.] 40. M and Cu veins: (1) fused, often for considerable distance (Fig. 2.1 H); (2) adjacent with distinct line between veins (Fig. 0.4 A); (3) separate (Fig. 7.1 G). 41. R and M veins (apical fusion): (1) not confluent preapically (Fig. 0.4 A); (2) R4+5 confluent with M distad of its fork (Fig. 4.1 D). [Coding state 2 makes character #32 inapplicable because r-m2 crossvein is absent when R and M veins are confluent]. 42. Additional r-m crossveins: (1) present (Fig. 11.3 C); (2) absent. 43. Anomalous basal r-m crossvein: (1) absent; (2) present (Fig. 11.3 C). 44. Reticulate venation: (1) absent; (2) present (Fig. 5.2 A). 45. Pterostigma: (1) absent (Fig. 0.4 A); (2) present (Fig. 4.1 D). [Coding state 1 makes character #46 inapplicable.]
374
Table 24.1 cont’d. 46. Pterostigma placement: (1) at or near R1 (Fig. 4.1 D); (2) distad of R1 (marginal vein often ambiguous) (Fig. 10.8 F). 47. R1 vein represented by large pterostigma: (1) absent; (2) present (Fig. 0.4 A). [Coding state #2 makes character #48 inapplicable because R1 vein is not visible.] 48. R1 vein: (1) parallel for considerable distance with longitudinal veins (Fig. 15.2 G); (2) weakly bent towards marginal vein (Fig. 0.4 A); (3) perpendicular to marginal vein (Fig. 3.4 A). 49. Origin of r-m1 crossvein: (1) arising before initial division of R vein (Fig. 0.4 A); (2) arising near or distad of initial division of R vein in at least one wing (Fig. 7.1 G). 50. Shape of r-m1 crossvein: (1) bent towards R vein (Fig. 10.5 F); (2) parallel to longitudinal veins (Fig. 1.2 I); (3) bent nearly to a right angle (Fig. 11.3 C). 51. Longitudinal veins: (1) strongly curving together in unison apically (Fig. 15.3 E); (2) not strongly curving together in unison apically (Fig. 0.4 A). 52. Longitudinal veins: (1) not parallel apically (Fig. 8.1 G); (2) parallel apically (Fig. 13.4 A). 53. Relative length of discoidal cells: (1) not similar in length (Fig. 1.2 I); (2) similar in length (Fig. 10.5 F). 54. R4+5 vein shape prior to s: (1) not significantly angled (Fig. 0.4 A); (2) significantly angled (Fig. 10.5 F). 55. Base of R2+3 and R4+5 veins: (1) truncate (Fig. 0.4 A); (2) polymorphic; (3) acute (Fig. 10.5 F).
Hind wing 56. Veins: (1) R4+5 and M1+2 veins not fused (4 apical cells) (Fig. 0.4 C); (2) R4+5 and M1+2 vein fused for short distance basally (4 apical cells) (Fig. 5.2 F); (3) R4+5 and M1+2 veins free near apex (4 apical cells) (Fig. 4.1 E); (4) r-m and m-cu crossveins absent (2 apical cells); (5) R4+5 and M1+2 veins fused (3 apical cells)(Fig. 0.4 B); (6) R4+5 vein apparently absent (2 apical cells) (Fig. 3.3 F); (7) polymorphic (genus Oxyrhachis only). [State #7 is polymorphic between #1 and #5.]
Legs 57. Front, middle, and hind tibia shape: (1) not foliaceous (Fig. 0.6 A); (2) foliaceous (Fig. 0.7 A).
375
Table 24.1 cont’d. 58. Prothoracic femur ablateral and adlateral cucullate setae: (1) absent; (2) present. 59. Mesothoracic tibia with longitudinal row(s) of cucullate setae: (1) absent; (2) present (Fig. 3.4 H). 60. Mesothoracic femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). 61. Mesothoracic femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes character #62 inapplicable.] 62. Mesothoracic leg femur adlateral cucullate setae: (1) apical (Fig. 0.7 B); (2) preapical.
Metathoracic leg 63. Ventral setal bases of coxa: (1) small and raised or nearly flat with little or no projection; (2) enlarged, raised, and often spinelike. 64. Ventral setal bases of trochanter: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A); (2) enlarged, raised, and often spinelike; (3) very large spines (Fig. 0.6 D). 65. Ventral setal bases of femur: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A); (2) enlarged, raised, and often spinelike (Fig. 0.6 D). 66. Cucullate setae on dorsal femur: (1) absent; (2) present (Fig. 17.3 A). [Coding state 1 makes character #67 inapplicable.] 67. Cucullate setae position on dorsal femur: (1) apical (Fig. 17.3 A); (2) in a longitudinal row; (3) scattered. 68. Femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes character #69 inapplicable.] 69. Femur ablateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical. 70. Femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B-C). [Coding state 1 makes character #71 inapplicable.] 71. Femur adlateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical (Fig. 14.2 A). 72. Femur ablateral ventrolateral cucullate setae in male: (1) absent; (2) polymorphic; (3) present. 73. Femur ablateral ventrolateral cucullate setae in female: (1) absent; (2) polymorphic; (3) present (Fig. 17.3 A).
376
Table 24.1 cont’d. 74. Tarsomere I apical cucullate setae: (1) absent (Fig. 19.2 B); (2) 1 seta (Fig. 0.7 E, Fig. 11.4 F); (3) 2 or more setae (Fig. 0.7 D, Fig. 2.1 J). 75. Tibia setal row I: (1) non-cucullate (Fig. 22.12 B, Fig. 0.6 C, Fig. 0.7 A); (2) cucullate (Fig. 0.5 A-C). 76. Tibia setal row II: (1) non-cucullate (Fig. 0.7 A); (2) cucullate (Figs. 0.6 A-B). [Coding state 1 makes character #77 inapplicable.] 77. Tibia setal row II: (1) mostly single row (Fig. 0.6 A); (2) polymorphic; (3) irregular or double row (Fig. 0.6 B). 78. Tibia setal row III: (1) cucullate (Fig. 0.5 A); (2) non-cucullate.
Abdomen 79. Shape (cross-section): (1) dorsoventrally flattened; (2) nearly triangular. 80. Sternum III and/or IV transverse carina: (1) absent; (2) present (Fig. 6A of Dietrich et al. 2001a). 81. Sternum longitudinal median carina: (1) absent; (2) polymorphic; (3) present on at least one segment (Fig. 0.8 B). 82. Number of inornate pits along side of abdominal segments: (1) 3 or fewer per segment (Fig. 5.4 G); (2) 4 or more per segment (Fig. 0.8 E). 83. Paired dorsal swellings or remnants of swellings: (1) absent (Fig. 0.8 E); (2) larger anteriorly (Fig. 0.8 C); (3) larger posteriorly (Fig. 0.8 D). 84. Enlarged setal bases: (1) absent; (2) present (Figs. 0.8 A, E; Fig. 10.17 D). [Coding state 1 makes character #85 inapplicable.] 85. Enlarged setal bases position: (1) only on tergal borders (Fig. 0.8 E, Fig. 10.17 D); (2) extending to tergal segment, sparse; (3) extending to tergal segment, numerous (Fig. 0.8 A). 86. Tergum III ventrolateral margin: (1) carinate (Fig. 5 A of Dietrich et al. 2001a); (2) shelflike (Fig. 5 B of Dietrich et al. 2001a); (3) upcurved groove (Fig. 5 C of Dietrich et al. 2001a). 87. Tergal borders: (1) not extensively modified (Fig. 0.8 E); (2) modified into irregular ridges (Fig. 0.3 A).
377
Table 24.1 cont’d. Female 88. Second valvulae shape: (1) significant broadening absent (Fig. 5.3 A); (2) short and broad with undulation on dorsal margin (Fig. 11.5); (3) abrupt slight broadening (Fig. 22.13 A); (4) gradual broadening (Fig. 22.13 C); (5) broad throughout with very slight increase and decrease after midpoint (Fig. 21.2 C-F). [Coding states 1 or 2 makes character #’s 89 and 90 inapplicable.] 89. Second valvulae shape (broadening): (1) widest before or near midpoint (Fig. 22.13 C); (2) widest past midpoint (Fig. 4.2 A). 90. Second valvulae dorsal margin: (1) tapering evenly after broadening (Fig. 0.9 D); (2) tapering unevenly after broadening (Fig. 22.13 A). 91. Second valvulae width near base: (1) narrow (Fig. 5.3 A); (2) broad or broadening (0.9 D). 92. Second valvulae curvature: (1) not curved (Fig. 3.5 E); (2) curved (concave) (Fig. 3.5 I). 93. Second valvulae teeth development: (1) teeth absent or indiscernible (Fig. 0.9 D); (2) fine and distinct (Fig. 1.4 D); (3) large (Fig. 18.5 J). [Coding state 1 makes character #94 inapplicable]. 94. Second valvulae teeth: (1) present to tip of apex (Fig. 3.6 F); (2) absent apically (Fig. 22.14 H). 95. Second valvulae acute projections: (1) absent (Fig. 18.5 H); (2) present (Fig. 18.5 J). [Acute projections on the second valvulae are usually triangular and apparently not homologous to dorsal teeth.] 96. Third valvulae large ventral projections: (1) absent; (2) present (Fig. 11.6 A-D). 97. Third valvulae apical cleft or groove: (1) not distinct; (2) distinct (Fig. 0.9 D).
Male 98. Pygofer with dorsal projection: (1) absent; (2) present (Fig. 11.7 H). 99. Pygofer with lateral plate: (1) apparently absent; (2) free distally (Fig. 6 D of Dietrich et al. 2001a); (3) entirely free (Fig. 0.9 A). 100. Lateral plate dorsoapical posterior lobe: (1) absent (Fig. 1.6 B); (2) present (Fig. 0.9 A). [Coding state 1 makes character #’s 101 and 102 inapplicable.] 101. Lateral plate dorsoapical lobe length: (1) short (Fig. 0.9 A); (2) long (Fig. 1.6 A).
378
Table 24.1 cont’d. 102. Lateral plate dorsoapical lobe shape: (1) angled dorsally (Fig. 0.9 A); (2) angled laterally (Fig. 11.7 D); (3) angled ventrally (Fig. 3.8 F). 103. Lateral plate ventral lobe: (1) absent; (2) small lobe present; (3) long and large lobe present (Fig. 3.8 C). 104. Subgenital plate: (1) distinct division absent (Fig. 2.2 I); (2) distinct division present (Fig. 3.8 I). 105. Style clasp overall shape: (1) rounded with acuminate projection (Fig. 10.13 N); (2) truncate with acuminate projection (Figs. 18.7. A-B); (3) elliptical or circular (Figs. 7.3 A-B); (4) expanding dorsoventrally and laterally with a sclerotized ridge (Figs. 1.5 C-K); (5) cylindrical (Fig. 3.7 H); (6) quadrate (Fig. 22.18 A-K); (7) triangular (Fig. 0.9 A); (8) rounded at apex with preapical ventral extension (2.2 E-F). [Here, the clasp is defined as the apical portion of the style, which is often flattened or expanded.] 106. Style clasp thickness: (1) thickened (Figs. 18.6 E, M); (2) thickened dorsally, membranous ventrally; (3) membranous (Fig. 0.9 B-C). 107. Style clasp orientation: (1) dorsoventrally flattened or curving dorsally (Fig. 0.9 C); (2) oriented laterally (Figs. 0.9 A-B). 108. Style clasp basal thickening: (1) absent; (2) present (Fig. 15.5 A-D). 109. Style clasp angle (viewed laterally): (1) angled ventrally (Fig. 1.5 D); (2) angled dorsally (Fig. 7.3 A); (3) not angled (Fig. 18.6 J). 110. Style clasp with acuminate apex: (1) absent; (2) blunt (Fig. 0.9 A); (3) acute (Fig. 15.5 D). 111. Style shank ventral margin: (1) without preapical broadening; (2) with preapical broadening (Figs. 0.9 A, 2.2 E, 22.18 A). 112. Style shank shape (viewed laterally): (1) without significant arch (Fig. 0.9 C); (2) apex of arch at midpoint of style shank (Fig. 0.9 A); (3) apex of arch just prior to style clasp (Fig. 9.2 A).
379
Table 24.1 cont’d. Abdominal fine structure 113. Inornate pits and associated lateral setae: (1) absent (Fig. 6 C of Dietrich et al. 2001a); (2) present (Figs. 0.8 E, 0.10 B-D); (3) setae present, pits indistinct (Fig. 22.22 C). [Coding state 1 makes character #82 inapplicable]. 114. Acanthae development: (1) distinct (Figs. 0.10 A, 0.10 C); (2) indistinct, acanthae blending together (Fig. 0.10 B). 115. Acanthae base development: (1) heightened and broad (Fig. 0.10 C); (2) not significantly heightened or broadened (Fig. 0.10 A). 116. Acanthae/microtrichia development: (1) single acanthae without ornamentation (Fig. 0.10 D); (2) acanthae multidentate (Fig. 0.10 A); (3) acanthae divided into threadlike microtrichia (Fig. 0.10 B).
380
Table 24.2. Number of taxa and characters for phylogenetic (PAUP*) and phenetic (UPGMA) analyses. Characters in the “other” column were excluded because they were highly homoplasious and not informative as tribal or generic characters for the analyzed taxa. INCLUDED EXCLUDED Analysis no. no. Constant ParsimonyOther genera characters uninformative 1. PAUP*: 69 109 69, 98 (see text) 42, 44, Centrotinae 57, 93, (overall) 94 2. PAUP*: 30 77 7, 9, 17, 20, 31, 35, 22-24, 32, 36, 42, 44 Beaufortianini, 39, 41, 43, 46, 47, 51, 56, 82, 84, Nessorhinini, 57, 58, 62, 63, 65, 68, 89, 103 Pieltainellini, 69, 76, 78, 85, 96, 98, Platycentrini 108, 110, 111 3. PAUP*: 23 86 7, 9, 16, 17, 20, 31, 32, 22, 28, 36, 42 Boocerini, 35, 41, 43, 46, 51, 52, 46, 62, 63, Centrodontini 69, 85, 90, 96, 98, 108, 80, 84 110, 111 4. PAUP*: 41 81 5, 9, 10, 17, 20, 28, 31, 6, 14, 36, 62, -Centrotini, 32, 35, 39, 43, 46, 51, 70, 71, 74, Xiphopoeini 57, 58, 63, 65, 68, 69, 102 76, 78, 82, 96, 98, 103 104, 108 5. PAUP*: 32 74 5, 7, 14, 16, 20, 24, 28, 9, 17, 23, 37, 93, 94 Choucentrini, 35, 39, 43, 46, 57, 58, 41, 44, 47, Leptocentrini, 63, 65, 68-70, 76, 78, 56, 71, 75, Maarbarini 80, 85, 96, 98 82, 83, 89, 90, 103, 116 6. PAUP*: 35 71 7, 9, 17, 20, 22, 24, 28, 12, 23, 36, -Gargarini 31, 32, 35, 37, 43, 51, 41, 44, 47, 52, 57, 68, 69, 70, 76, 49, 60, 61, 78, 80, 82, 85, 90, 96, 62, 72-74, 75, 98, 108, 110, 111 102, 112 7. PAUP*: 17 68 7, 9, 13, 20, 22, 28, 31, 4, 16, 36, 53, -Hypsaucheniini, 32, 41, 45-47, 51, 52, 54, 65, 77, Oxyrhachini 55, 58, 62, 63, 69, 7182, 92, 100, 73, 80, 81, 84-87, 89, 114, 115 90, 95, 103, 104, 108, 110, 111 8. PAUP*: 28 73 5, 7, 9, 13, 16, 20, 22, 12, 36, 45, 42, 57 Terentiini 31, 32, 39, 41, 43, 46, 50, 55, 73, 47, 51, 58, 62, 63, 65, 78, 80, 81, 69, 71, 72, 76, 85, 96, 83, 84, 87 98, 103, 104, 108 9. UPGMA: 91 115 --94 Centrotini, Beaufortianini, Gargarini, Lobocentrini 10. UPGMA: 76 115 --94 Leptocentrini, Nessorhinini, Terentiini 381
Table 24.3. Summary of phylogenetic analyses 1-8. Analysis
Fig. #’s
no. Steps of MPT trees
Consistency index (CI)
Retention index (RI)
1
665
0.23
0.60
24.3 (SCT), 24.4 (EPT) 2
268
0.36
0.57
24.5 (SCT), 24.6 (EPT) 2
209
0.50
0.64
24.7 (SCT), 24.8 (EPT) 4
277
0.37
0.62
24.9 (MPT)
1
207
0.43
0.69
24.10 (SCT), 24.11 (EPT) 24.12 (SCT), 24.13 (EPT) 24.14 (SCT), 24.15 (EPT)
28
224
0.38
0.60
25
150
0.55
0.71
4
224
0.42
0.60
SCT (Strict consensus tree) MPT (Most parsimonious tree) EPT (Equally parsimonious tree)
1. Centrotinae (overall) 2. Beaufortianini, Nessorhinini, Pieltainellini, Platycentrini 3. Boocerini, Centrodontini 4. Centrotini, Xiphopoeini 5. Choucentrini, Leptocentrini, Maarbarini 6. Gargarini 7. Hypsaucheniini, Oxyrhachini 8. Terentiini
24.1 (MPT)
382
Fig. 24.1. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*). Single most parsimonious tree with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch (CI=0.23, RI=0.60, length 665). 383
Table 24.4. List of apomorphies for Analysis 1 (Fig. 24.1). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 134 (Centrotinae) Node 133 Node 132 Node 131 (Monobelini) Node 130 Node 129 Node 128 (Boocerini) Node 127 Node 126 Node 125 Node 124 (Gargarini) Node 123 Node 122 Node 121 Node 120 Node 119 Node 118 Node 117 Node 116 (Nessorhinini) Node 115 Node 114 Node 113 Node 112 (Pieltainellini) Node 111 Node 110 (Beaufortianini) Node 109 Node 108 Node 107 Node 106 Node 105 (Boccharini) Node 104 Node 103 Node 102 (Leptocentrini) Node 101 Node 100 Node 99 (Centrotini) Node 98 Node 97 Node 96 Node 95
Node 94 (Centrotypini) Node 93 Node 92
50(1), 66(1), 79(2), 113(2) 25(2), 26(1), 27(2), 74(3), 87(2), 101(1) 49(2), 54(2), 67(1)*, 81(3), 90(2), 104(2) 4(2), 100(1), 102(2), 105(2), 114(2) 10(2), 37(1), 53(1), 55(3), 66(2), 72(3), 73(3) 60(2), 61(2), 89(2), 92(2), 106(3) 13(1), 21(1), 48(3), 88(3), 103(3)*, 109(1), 115(1) 4(2), 39(2)*, 56(5), 58(2)*, 95(2) 12(1), 71(2), 105(5) 6(1), 45(2), 47(2), 59(2), 88(1) 5(3)*, 55(3), 77(3), 87(1) 3(2), 56(5) 46(2),* 83(2), 84(2), 86(2), 95(2) 29(3), 97(2) 63(2), 64(2), 65(2), 101(2), 115(1) 16(2), 26(2), 53(1), 116(1) 15(3), 105(4), 107(2), 115(1), 116(2) 38(1), 52(2), 97(2) 10(2), 14(3), 40(2), 50(2), 83(2), 86(2), 105(2), 112(2) 4(2), 6(1), 45(2), 70(1), 80(2), 86(3), 107(1) 37(1), 38(2), 81(3), 92(2), 116(3) 12(1), 21(1) 48(3), 49(2), 71(2), 92(2), 95(2), 102(2), 105(3) 3(2), 53(1) 101(2), 109(1) 50(2), 83(2), 95(2) 10(2), 88(3), 105(7), 116(3) 13(1), 22(2), 54(2) 55(3), 106(3), 109(2), 114(2), 115(2) 88(4), 91(2), 100(1), 105(8)*, 111(2) 60(2), 61(2), 77(3), 112(2) 22(1), 50(2), 54(1), 55(1), 84(2), 87(1) 40(2), 48(3), 52(2), 81(3), 86(2), 91(2), 109(1), 110(2), 111(2) 88(4), 97(2) 11(2), 53(2), 90(2), 105(3) 13(2), 56(5), 85(2)*, 114(1) 3(1), 4(2), 48(3), 49(2), 50(1), 54(2), 55(2) 45(2), 47(2) 26(2), 45(2), 86(3), 89(2), 92(2), 95(2), 97(2), 112(1) 3(1), 11(1), 32(2), 53(1), 54(2), 81(3), 88(1)
Node 91 (Maarbarini) Node 90 Node 89 Node 88 Node 87 Node 86 (Lobocentrini) Node 85 Node 84 Node 83 Node 82 Node 81 Node 80 (Hypsaucheniini) Node 79 (Terentiini) Node 78 Node 77 Node 76 Node 75 Node 74 Node 73 Node 72 Microcentrus Centronodus
Paracentronodus Nicomia Tolania Centrodontus, Centrodontini
Brachycentrotus Monobelus Monobeloides Amblycentrus Brachybelus Boocerus Abelus
384
13(2), 20(2)*, 37(1), 40(2), 45(1), 49(2), 84(1), 86(2), 112(2) 32(2), 49(2), 101(2) 3(1), 11(2), 77(1), 88(1), 92(2), 108(2)*, 109(1), 110(3) 27(1), 48(1), 50(2), 51(2)*, 52(2) 3(2), 26(2), 55(1), 92(1), 95(2) 11(1), 13(2), 97(2) 81(2), 86(2), 97(2), 104(2), 105(1), 107(1) 48(1), 50(2), 54(1), 60(2), 61(2), 88(1) 10(1), 40(2), 48(3), 53(2), 62(2), 71(2), 77(3), 86(1), 95(2), 114(2), 115(2) 13(2), 26(2), 74(2) 24(2), 26(2), 70(1), 75(1), 82(1), 87(1), 90(2) 21(2), 37(1), 74(2), 105(5), 106(2), 109(1), 112(3), 115(2) 3(1), 15(1), 68(1), 76(1), 88(2)*, 102(2), 106(3), 116(2) 23(2), 38(1), 50(3)*, 78(2), 82(2), 112(1) 3(2), 5(4)*, 17(2), 43(2)*, 48(1) 12(2), 48(1), 50(2), 70(2), 91(2), 105(6)*, 111(2) 40(3), 52(2), 97(2) 26(1), 86(2), 88(1) 52(1), 66(2), 75(2), 82(2), 91(1), 95(2), 114(2) 38(1), 54(2), 74(1) 26(1), 28(2), 68(1), 70(1) 4(2), 15(5), 17(2), 24(1), 110(3), 113(3)*, 114(2) 23(2), 37(2) 15(2), 38(1), 48(1), 88(3), 91(2), 97(2), 102(3), 116(2) 2(2), 10(2), 15(3), 21(1), 23(2), 30(3), 33(2), 60(2), 61(2), 74(3), 79(2), 91(1), 92(2), 99(2) 2(2), 30(3), 33(3)*, 38(1), 100(1) 4(2), 25(2), 27(2), 59(1), 75(1), 99(3), 105(5), 113(2), 115(1) 15(3), 36(2)*, 40(1), 77(3), 114(2) 14(3), 29(3), 56(5), 63(2), 64(2), 65(2), 68(1), 70(1), 75(1), 76(1), 78(2), 82(1), 92(2), 102(2) 29(3), 56(4)*, 82(1) 21(1), 22(2), 83(2), 88(3), 97(2) 14(3), 28(2), 49(1), 81(1), 92(2), 100(2), 104(1) 13(2), 29(3) 56(6)*, 65(2) 10(2), 11(2), 15(3), 55(3), 92(1), 112(3) 2(1), 81(2), 101(2), 107(2)
Table 24.4 cont’d. Ischnocentrus Aleptocentrus Parayasa Pantaleon Gargara Tricentrus Coccosterphus Madlinus Platycentrus, Platycentrini Callicentrus Orthobelus Goniolomus Nessorhinus Pieltainellus Spathocentrus Imporcitor Beaufortiana Dukeobelus Centrochares, Centrocharesini
Ebhul, Ebhuloidesini Oxyrhachis, Oxyrhachini Hypsauchenia Hypsolyrium Ceraon Eufairmairia Sertorius Terentius Anzac Sextius Bulbauchenia Funkhouserella Pyrgonota Elaphiceps Tyrannotus Lobocentrus Arcuatocornum Truncatocornum Bocchar Lanceonotus Leptobelus, Leptobelini Dograna, Choucentrini
Maarbarus Indicopleustes Pogon Pogontypus Awania Leptocentrus Umfilianus
71(1), 102(3) 6(1), 48(1) 45(2), 81(1), 101(2), 104(1), 105(3), 107(2) 15(3), 26(2), 54(1), 81(2), 106(1), 114(2) -15(2), 45(2), 64(3), 100(1), 106(1) -3(1), 14(3), 27(1), 77(1) 60(2), 71(2), 72(3), 73(3), 74(2), 77(3), 79(1), 88(5)* 26(2), 48(1), 97(1), 105(4) 14(2), 53(1), 100(1), 109(2), 112(1) 28(2), 49(2), 50(1), 101(2) 15(4), 52(1), 95(2) 15(2), 79(1) 11(2), 26(2), 54(2) 21(2), 27(1), 48(3), 49(2), 92(2), 97(2) 37(1) 15(1), 26(2) 5(1)*, 11(2), 16(2), 41(2)*, 45(2), 47(2), 49(2), 56(3)*, 64(2), 65(2), 77(3), 80(2), 83(2), 86(2), 89(2), 96(2)*, 100(1), 110(2) 11(2), 21(1), 34(2), 37(2), 49(2), 56(5) 12(2), 14(3), 15(2), 26(1), 35(2), 40(2), 56(7)*, 83(3)*, 116(1) 15(5), 21(1), 29(1), 97(2) 49(2) 34(2), 48(2), 90(1), 101(2) 74(1), 88(4) 54(2), 77(3) 15(1), 24(1), 29(3), 48(2), 84(2), 92(2), 97(1) 15(1), 27(1), 29(3), 88(4), 90(1), 115(1), 116(2) 14(2), 35(2), 55(2), 89(2), 91(1), 92(2), 101(2) 14(3), 29(1), 74(2) 27(1), 88(4), 97(2) 6(1), 10(1), 70(1) 3(1), 4(2), 9(2), 15(5), 17(2), 26(2), 32(2), 55(2), 89(2), 101(2), 103(2) 11(2), 15(2), 72(3), 87(1), 88(4), 91(2), 102(3) 22(1), 49(2), 81(1), 92(2), 97(1), 101(2) 11(2), 53(1), 87(1) 95(1) 15(2), 37(1), 53(2) 11(2), 26(2), 48(1), 55(2) 9(2), 15(5), 17(2), 19(1), 59(2), 72(3), 73(3), 97(2), 103(2), 105(3) 13(2), 22(1), 31(2)*, 45(2), 60(1), 61(1), 111(2)
Xiphopoeus, Xiphopoeini Micreune, Micreunini Centrotypus Emphusis Centrotus Capeneralus Anchon Takliwa
385
4(2), 19(1) 10(1) 3(1), 88(3), 95(1) 29(3), 49(1), 92(2) 10(1), 15(1), 72(3) 29(1), 73(2), 81(2) 13(2), 15(2), 38(1), 49(2), 53(2) 7(2)*, 16(2), 24(2), 38(1), 48(1), 85(3)*, 100(1) 4(2), 6(1), 15(5), 17(2), 52(2), 62(2), 71(2), 101(2), 105(7), 110(2) 12(2), 14(2), 40(3), 53(2), 100(1) 54(1), 95(1), 97(1) 72(2)*, 73(2), 91(2), 101(2), 115(1), 116(2) 40(2) 13(1), 86(2), 88(1), 92(2), 95(2), 114(2) 116(1)
Table 24.5. List of taxa in the overall phylogenetic analysis (1) of the Centrotinae (alphabetized by genus). Abelus inermis (Lethierry), USNM; A. luctuosus Stål, NCSU, USNM; Amblycentrus pubescens Fowler, USNM; Anchon sp., USNM; A. limbatum Schmidt, USNM; A. nodicornis (Germar), USNM, PPRI, A. ulniforme Buckton, USNM; A. ximenes Capener, MNHN; Anzac bipunctatum (Fabricius), ANIC; Arcuatocornum sp., LBOB; Awania sp., CASC; A. typica Distant, PPRI, MNHN; Beaufortiana distanti (Funkhouser), PPRI; B. viridis (Capener), AMNH, USNM; Bocchar confusus (Distant), USNM; B. montanum Jacobi, SMTD, USNM; Boocerus gilvipes Stål, NCSU, USNM; Brachycentrotus punctatus (Metcalf and Bruner), NCSU; B. rufinervis Ramos, USNM; Brachybelus sp., NCSU; B. cruralis Stål, USNM; Bulbauchenia sp. (probably mirablis), USNM; B. bakeri (Funkhouser), USNM, NCSU; B. globosa (Funkhouser), USNM; B. mirabilis (Funkhouser), USNM; B. rugosa (Funkhouser), USNM; Callicentrus ignipes (Walker), BMNH, USNM; Capeneralus lobatus (Capener), PPRI; C. subnodosus (Jacobi), PPRI; Centrochares horrifica (Westwood), USNM. Centrodontus atlas (Goding), NCSU, USNM; C. atlas atlas (Goding), USNM; C. atlas paucivenosus Cook, NCSU; Centronodus denticulus Funkhouser, NCSU; C. rochalimai Fonseca, NCSU; Centrotus cornutus (Linnaeus), LSUK, NCSU, USNM; Centrotypus sp., NCSU; C. assamensis (Fairmaire), SHMC; C. flexuosus (Fabricius), USNM; Ceraon tasmaniae (Fairmaire), USNM; Coccosterphus sp., SHMC; C. minutus (Fabricius), USNM, BMNH; C. obscurus Distant, USNM; Dograna suffulta Distant, PPRI, CASC; Dukeobelus simplex (Walker), USNM, PPRI; Ebhul varium (Walker), USNM; Elaphiceps cervus Buckton, USNM; E. javanensis Funkhouser, USNM; Emphusis obesa (Fairmaire), NCSU, USNM; Eufairmairia decisa USNM; E. fraterna Distant, ANIC, USNM; Funkhouserella arborea (Funkhouser), USNM; F. binodis (Funkhouser), USNM; F. brevifurca (Funkhouser), USNM; F. bulbiturris (Funkhouser), USNM; F. pinguiturris (Funkhouser), USNM; F. sinuata (Funkhouser), USNM; Gargara aenea Distant, NCSU; G. fraterna Distant, NCSU; G. genistae (Fabricius), NCSU, AMNH, USNM; G. nyanzai Funkhouser, NCSU; Goniolomus tricorniger Stål, USNM; Hypsauchenia hardwickii (Kirby), USNM, MNHN; Hypsolyrium uncinatum (Stål), USNM; Imporcitor typicus Distant, BMNH; Indicopleustes albomaculata Distant, BMNH; Ischnocentrus sp., NCSU; I. inconspicuous Buckton, USNM; I. niger Stål, USNM; Lanceonotus basilicus Capener, PPRI; L. defloccatus Capener, PPRI; Leptobelus dama (Germar), USNM; L. metuendus (Walker), USNM; Leptocentrus sp., USNM; L. bos (Signoret) USNM, PPRI, MNHN; L. reponens (Walker), NCSU; L. taurus (Fabricius), NCSU. Lobocentrus falco (Buckton), USNM; L. zonatus Stål, USNM; Maarbarus sp., USNM; M. bubalus (Kirby), BMNH; Micreune formidanda Walker, USNM; Microcentrus caryae, NCSU; Monobeloides stuarti Ramos, NCSU, SHMC; Monobelus sp., NCSU; M. biguttatus (Fabricius), USNM; M. flavidus (Fairmaire), USNM; Nessorhinus gibberulus Stål, USNM, N. gracilis Metcalf and Bruner, NCSU; N. vulpes Amyot and Serville, USNM; Nicomia sp., BMNH; N. cicadoides (Walker), BMNH, MNHN; Orthobelus sp., det., USNM, O. urus (Fairmaire), USNM; Oxyrhachis carinata (Funkhouser), AMNH; O. delalendei Fairmaire, AMNH; O. sulcicornis (Thunberg), NCSU; O. taranda (Fabricius), NCSU; Pantaleon dorsalis (Matsumura), USNM, SHMC; P. montiferum (Walker), BMNH; Paracentronodus sp., NCSU; Parayasa elegantula Distant, USNM; P. typica Distant, USNM; Pieltainellus sp., SHMC; P. boneti Peláez, AMNH; 386
Platycentrus acuticornis Stål, USNM; Pogon incurvatum Buckton, BMNH; Pogontypus sp., USNM; P. complicatus (Melichar), BMNH; P. horvathi Distant, BMNH; Pyrgonota sp., USNM; P. bifoliata (Westwood), USNM, DJFC; Sertorius sp., ANIC; S. australis (Fairmaire), USNM; Sextius kurandae Kirkaldy, USNM; S. virescens (Fairmaire), USNM, ANIC; Spathocentrus intermedius, OXUM, SHMC, CNCI; Takliwa carteri Funkhouser, PPRI, MNHN; Terentius convexus Stål, USNM, ANIC; Tolania sp., NCSU, MNHN; Tricentrus curvicornis Funkhouser, NCSU; T. fairmairei (Stål), USNM; Truncatocornum sp., LBOB; Tyrannotus tyrannicus Capener, PPRI, MNHN; Umfilianus declivis Distant, USNM; Xiphopoeus sp., USNM; X. erectus Distant, USNM; X phantasma Signoret, PPRI.
387
Fig. 24.2. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*) with “existing” tribal names based on Ananthasubramanian (1996a), McKamey (1998a), and Yuan and Chou (2002a). “Revised” tribal classification based on the current study are shown at far right. 388
Fig. 24.3. Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*). Strict consensus of 2 equally parsimonious trees (CI=0.36, RI=0.57, length 268).
389
Fig. 24.4. Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*). One of 2 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch. 390
Table 24.6. List of apomorphies for Analysis 2 (Fig. 24.4). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 51 Node 50 Node 49 (Platycentrini) Node 48 (Nessorhinini) Node 47 Node 46 Node 45 Node 44 Node 43 Node 42 Node 41 Node 40 Node 39 (Pieltainellini) Node 38 (Beaufortianini) Node 37 Node 36 Node 35 Node 34 Node 33 Pieltainellus Spathocentrus Imporcitor Maguva Mabokiana Beaufortiana Dukeobelus Centrolobus Centruchus Platycentrus Tylocentrus Callicentrus Orthobelus Daimon Marshallella Goniolomus Nessorhinus Spinodarnoides Orekthoptera Paradarnoides
15(3), 105(4), 107(2), 115(1) 38(1), 49(1) 60(2), 88(5)* 10(2), 14(3), 40(2), 83(2), 86(2), 93(3), 112(2) 4(2), 6(1), 45(2), 80(2), 86(3), 105(2), 107(1) 15(1), 29(1), 48(1) 53(1), 71(2) 70(1)*, 97(2) 24(2), 37(1), 38(2), 50(2), 52(2), 81(3), 92(2) 53(1), 97(2) 75(1), 81(1) 12(1), 21(1), 48(3), 92(2) 71(2), 94(1), 95(2), 102(2), 105(3) 3(2), 53(1), 101(2), 109(1) 48(2), 49(1), 50(2), 83(2) 92(1), 95(2) 10(2), 116(3) 94(1) 71(2), 81(2), 86(2), 104(2) 15(2), 79(1) 11(2), 26(2), 54(2) 21(2), 27(1), 93(3), 97(2) 11(2), 16(2), 26(2), 105(3) 10(2), 54(2) 37(1), 93(3) 15(1), 26(2) 11(2), 13(1) 5(3), 38(1), 53(2), 91(2), 97(2), 100(1) 52(2), 71(2), 72(3), 73(3), 74(2), 77(3), 79(1), 97(2) 15(2), 48(3), 53(1), 54(2), 61(2), 87(1), 100(1), 105(2) 48(1) 14(2)*, 26(1), 94(1), 100(1), 105(2), 109(2)*, 112(1), 116(3) 4(2), 14(1), 16(2), 45(2), 54(2), 55(2)*, 86(3) 15(2), 37(2) 28(2), 49(2), 52(2), 101(2) 15(4), 50(2), 95(2) -15(4), 26(2), 40(1), 80(1), 81(3), 100(1) 6(2), 29(2), 50(2), 112(1)
391
Fig. 24.5. Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*). Strict consensus of 2 equally parsimonious trees (CI=0.50, RI=0.64, length 209). 392
Fig. 24.6. Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*). One of 2 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch 393
Table 24.7. List of apomorphies for Analysis 3 (Fig. 24.6). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 42 Node 41 Node 40 Node 39 Node 38 Node 37 (Boocerini) Node 36 Node 35 Node 34 Node 33 Node 32 Node 31 Node 30 Node 29 Node 28 (Centrodontini) Node 27 Node 26 Nodonica Centrodontus Multareis Multareoides Brachycentrotus Monobelus Monobeloides Gargara Aleptocentrus Centriculus Amblycentrus Brachybelus Ischnocentrus Abelus Psilocentrus Boocerus Campylocentrus Ophicentrus
50(1), 54(2), 66(1), 67(1)*, 79(2), 101(1), 102(2), 113(2) 25(2), 26(1), 27(2), 74(3), 81(3), 87(2), 104(2) 4(2), 93(3), 100(1), 105(2)*, 114(2) 10(2), 37(1)*, 53(1), 55(3), 66(2), 72(3)*, 73(3)*, 94(2) 60(2), 61(2), 92(2), 102(1), 106(3) 21(1), 48(3)*, 88(3), 103(3)*, 109(1)*, 115(1) 13(1), 89(2)* 4(2), 39(2)*, 56(5), 58(2)*, 95(2) 12(1)*, 88(1), 105(5) 10(2), 11(2), 15(3), 71(2), 94(2), 112(3) 3(2), 49(1), 50(2), 53(1), 93(1), 107(2) 6(1), 45(2), 47(2), 59(2) 81(2), 107(2) 5(3)*, 55(3), 77(3), 83(2), 86(2), 87(1), 95(2), 97(2) 14(3), 15(3), 29(3), 44(2), 56(5), 57(2)*, 75(1), 82(1) 68(1)*, 70(1)*, 76(1)*, 78(2)*, 92(2) 23(2), 24(2)*, 56(2) 4(2), 40(2), 99(1)* 15(1), 49(1), 64(2)*, 65(2), 101(2) 15(2), 29(2), 56(3)* 6(1) 29(3), 56(4)*, 82(1) 21(1), 83(2), 88(3), 93(2), 97(2) 14(3), 49(1), 81(1), 92(2), 100(2), 104(1) 3(2), 29(3), 56(5) 6(1), 48(1) 29(1), 59(2), 81(1), 92(1) 13(2), 29(3) 56(6)*, 65(2) 102(3) 8(1), 71(2), 101(2) 6(2), 95(2), 112(2) 55(3), 88(3), 92(1) 11(1), 13(2), 54(1), 86(2), 106(1), 112(2) 6(1), 15(1), 26(2), 45(2), 47(2), 71(1), 81(1)
394
Fig. 24.7. Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*). Strict consensus of 4 equally parsimonious trees (CI=0.37, RI=0.62, length 277). 395
Fig. 24.8. Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*). One of 4 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch. 396
Table 24.8. List of apomorphies for Analysis 4 (Fig. 24.8). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 68 Node 67 (Centrotini) Node 66 Node 65 Node 64 Node 63 Node 62 Node 61 Node 60 Node 59 Node 58 Node 57 Node 56 Node 55 Node 54 Node 53 Node 52 Node 51 Node 50 Node 49 Node 48 Node 47 Node 46 Node 45 Node 44 Node 43 Node 42 (Xiphopoeini) Xiphopoeus Negus Centrotus Capeneralus Takliwa Anchonomonoides Hamma Barsumas Barsumoides Stalobelus Monanchon Mitranotus Eumocentrulus Tricoceps Anchon Anchonastes Paraxiphopoeus Monocentrus Eumonocentrus Zanzia Bleccia Platybelus Jacobiana Tiberianus Capeneriana Dagonotus Vecranotus Farcicaudia Promitor
11(2), 85(2)*, 88(3) 56(5)*, 100(2), 114(1) 3(1), 4(2), 48(3), 49(2), 50(1), 54(2), 55(2), 91(1) 45(2), 47(2)* 13(1), 86(2), 114(2) 90(1) 94(1) 112(1) 89(2) 11(1), 86(1) 13(2), 38(1) 55(1) 101(2) 55(3) 41(2), 97(2) 40(2) 88(1), 90(2), 92(2) 13(2), 15(4), 93(3) 45(1), 114(1) 95(2), 112(2) 26(2), 93(1) 26(2), 55(1) 13(2), 15(4), 16(2), 86(1) 16(2), 55(3) 29(3), 41(2), 112(1) 13(2) 7(2)*, 16(2), 24(2)*, 26(2), 38(1), 45(2), 85(3)*, 86(3), 112(1) 13(1), 48(1), 89(2), 91(1), 92(2), 94(1), 95(2), 97(2) 11(1), 12(2), 22(2), 23(2), 29(3), 50(1), 54(2), 80(2) 72(2)*, 73(2)*, 101(2), 115(1), 116(2) 40(2) 93(1), 116(1)* 88(1) 53(1), 94(1) 26(2), 41(1), 42(1), 44(2), 114(1) 11(1), 37(1) 37(1) 41(2) --4(1), 29(3) -16(2), 86(1) 29(1), 77(1), 88(3) 26(2), 77(2)*, 94(2), 11(1), 112(2) 29(3), 75(1), 95(2) 81(2) -29(3), 112(2) 4(1), 15(2), 86(2), 13(2) --53(1) 13(2), 15(1), 29(3), 81(3), 89(1), 91(2), 94(2)
397
Fig. 24.9. Phylogenetic relationships within Choucentrini, Leptocentrini, and Maarbarini (Analysis 5, PAUP*). Single most parsimonious tree with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch (CI=0.43, RI=0.69, length 207).
398
Table 24.9. List of apomorphies for Analysis 5 (Fig. 24.9). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 57
Node 56 (Leptocentrini) Node 55 Node 54 Node 53 Node 52 Node 51 Node 50 Node 49 Node 48 Node 47 Node 46 Node 45 Node 44 Node 43 Node 42 (Maarbarini) Node 41 Node 40 Node 39 Node 38 Node 37 Node 36 Node 35 (Choucentrini) Node 34 Choucentrus Evanchon Dograna Telingana Pogon Pogontypus Maarbarus Parapogon Pogonotus Bathoutha Indicopleustes Hemicentrus Leptocentrus Otinotus Umfilianus Nilautama Dacaratha Awania Occator Joveriana Uroxiphus Demanga Yaponotus Periaman Trioxiphus
15(3), 49(2), 105(7)*, 106(3)*, 107(2)*, 109(1)*, 110(2), 111(2), 112(2)*, 114(2) 40(2), 48(3)*, 77(3), 84(2), 101(1) 3(2), 52(2), 54(1) 49(1) 53(2), 81(3) 72(3) 49(1) 15(1) 40(1), 73(3)* 48(2) 13(2), 15(3), 53(1) 97(1) 13(2) 10(1), 53(1), 88(3) 32(2), 86(1), 87(2), 88(1), 91(1), 92(2), 108(2)*, 110(3)* 22(2), 111(1) 27(1), 51(2)*, 52(2) 13(2), 26(2) 11(2), 19(1), 97(1) 92(1), 95(2) 3(2), 26(2) 10(1), 11(2), 31(2)*, 50(1), 55(3), 60(1), 61(1), 114(1) 45(2)*, 48(2) -3(2), 6(1), 27(1), 74(2), 86(2) 13(2), 97(1) 6(1), 29(3), 36(2) 88(3), 92(1) 3(2), 29(3), 49(1), 95(2) 4(2), 55(3) 29(3), 50(1) 6(1), 49(1) -19(2) 8(1), 50(1) 29(1), 73(2)*, 81(2) 13(2), 21(2), 86(1) 13(2), 15(2), 38(1) 10(1), 50(1), 81(2) 62(2) -6(1) 29(1) 40(1), 42(1), 81(1) 49(2) 11(2) 12(2), 40(2), 49(2), 84(1), 100(1), 105(3)*, 110(1), 111(1) 62(2), 72(2)*, 81(2)
399
Fig. 24.10. Phylogenetic relationships within Gargarini (Analysis 6, PAUP*). Strict consensus of 28 equally parsimonious trees (CI=0.38, RI=0.60, length 224).
400
Node 38
Fig. 24.11. Phylogenetic relationships within Gargarini (Analysis 6, PAUP*). One of 28 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below, above, or to the side of each branch. 401
Table 24.10. List of apomorphies for Analysis 6 (Fig. 24.11). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 60 (Gargarini) Node 59 Node 58 Node 57 Node 56 Node 55 Node 54 Node 53 Node 52 Node 51 Node 50 Node 49 Node 48 Node 47 Node 46 Node 45 Node 44 Node 43 Node 42 Node 41 Node 40 Node 39 Node 38 Node 37 Node 36 Aleptocentrus Yasa Parayasa Maurya Antialcidas Machaerotypus Gargara Eucoccosterphus
Coccosterphus Madlinus Gargarina Xanthosticta Kanada Cryptaspidia Mesocentrina Sipylus Tricentrus Butragulus Tricentroides Cryptoparma Thelicentrus Nondenticentrus Subrincator Tribulocentrus Pantaleon Tsunozemia
5(3)*, 21(2), 55(3), 88(1) 3(2), 29(3) 48(2), 56(5), 77(3) 83(2)*, 84(2) 15(3), 114(2) 40(2), 88(3), 106(1) 81(3), 95(2) 86(2), 97(2) 16(2)*, 26(2), 53(1), 93(3), 115(1), 116(1)* 63(2), 64(2)*, 65(2) 3(1), 14(3), 77(1) 45(2), 46(2)* 100(1) 15(3), 29(2), 40(2) 3(1), 100(2) 45(1), 106(1) 81(2), 101(1), 114(2) 40(1), 54(1), 93(1) 3(2) 54(1) 55(1), 83(3)* 86(2), 93(1) -64(3), 106(1), 115(1) 3(1), 14(3), 26(2), 59(2), 114(2) 6(1), 42(1), 48(1) 39(2), 93(3), 94(2), 95(2) 29(2), 42(1), 45(2), 104(1), 105(3)*, 107(2) 54(1), 92(1) 45(2), 77(2), 81(3) 97(2) 101(1) 27(1), 42(1), 45(2), 48(1), 58(2), 84(1), 95(1), 104(1), 105(4)*, 106(1), 107(2), 109(1) -27(1) 29(2) 63(2), 65(2), 77(1), 93(3), 95(1) 77(1), 81(1) 29(2), 53(1), 86(1) 48(3), 95(1) 29(2) 15(2), 63(2), 65(2), 97(2) 55(2), 115(1) 86(2), 94(2) 10(2), 53(1), 64(3) 101(1) 55(2) 77(1) 53(1) 26(2), 86(2) 55(2), 81(1), 97(2)
402
Fig. 24.12. Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*). Strict consensus of 25 equally parsimonious trees (CI=0.55, RI=0.71, length 150).
403
Fig. 24.13. Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*). One of 25 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch. 404
Table 24.11. List of apomorphies for Analysis 7 (Fig. 24.13). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 29 Node 28 (Oxyrhachini)
Node 27 Node 26 Node 25 (Hypsaucheniini) Node 24 Node 23 Node 22 Node 21 Node 20 Oxyrhachis delalandei Oxyrhachis sulcicornis Oxyrhachis Oxyrhachis carinata Hybandoides Hypsolyrium Jingkara Hypsauchenia Hybanda Gigantorhabdus Pyrgauchenia
21(2), 23(2), 37(1), 78(2)* 12(2), 14(3)*, 15(3), 26(1), 35(2)*, 40(2), 42(2), 49(1), 83(3)*, 93(2), 97(2), 112(2)*, 116(1)* 50(2), 56(5) 76(1) 3(2), 5(3)*, 17(2)*, 43(2), 50(3)*, 57(1), 76(1) 5(4), 44(2), 48(1), 112(1) 15(5)*, 21(1), 49(1) 29(1), 94(1) 5(2), 10(1), 12(2), 21(2), 39(2)*, 96(2) 99(2) 6(1)*, 34(2), 43(1), 57(2), 98(2)* 94(1), 102(1) -15(2), 56(7)* -10(1), 27(1), 34(2), 96(2) -11(2), 34(2), 40(3)*, 48(2), 93(2) 97(2) 44(1), 105(3)* 5(4), 10(2), 37(2), 50(2), 93(2), 116(1) 3(1), 101(2), 102(1), 113(3)*
405
Fig. 24.14. Phylogenetic relationships within Terentiini (Analysis 8, PAUP*). Strict consensus of 4 equally parsimonious trees (CI=0.42, RI=0.60, length 224).
406
Node 33
Fig. 24.15. Phylogenetic relationships within Terentiini (Analysis 8, PAUP*). One 4 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below, above, or to the side of each branch. 407
Table 24.12. List of apomorphies for Analysis 8 (Fig. 24.15). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*). Node 49 (Terentiini) Node 48 Node 47 Node 46 Node 45 Node 44 Node 43 Node 42 Node 41 Node 40 Node 39 Node 38 Node 37 Node 36 Node 35 Node 34 Node 33 Node 32 Node 31 Dingkana Alosextius Sertorius Terentius Eutryonia Bucktoniella Acanthuchus Alocanthella Lubra Anzac Neosextius Goddefroyinella Sextius Bulbauchenia Funkhouserella Pyrgonota Eufrenchia Cebes Ceraon Sarantus
3(2)*, 54(2), 70(2), 86(2), 92(2), 105(6)*, 111(2)* 15(3), 38(2), 102(1), 116(3) 66(2), 114(2) 37(1), 40(3), 95(2) 48(1), 86(1) 24(2), 88(4), 91(2), 92(1) 29(3) 54(1) 37(1) 38(1), 75(1), 82(1), 88(3), 94(2) 28(2)*, 44(2), 68(1), 70(1), 74(1), 97(1) 35(2), 54(1), 89(2)*, 90(2), 91(1), 101(2) 15(1), 27(1), 29(3), 88(4), 93(1), 115(1), 116(2) 94(2) 40(2), 52(2), 54(1) 34(2), 38(2), 48(2), 101(2) -4(2), 15(5), 17(2), 24(1), 26(2), 90(2), 110(3)*, 113(3)*, 114(2) 23(2), 37(2), 74(1) 95(2) 53(2), 67(3) 24(2), 48(1), 77(3), 92(1) 15(1), 29(3), 54(1), 97(1) 15(5), 17(2), 40(2), 100(1) 40(2), 53(2), 56(5), 82(1), 115(1) --40(3), 52(2) -14(3), 15(4), 38(2) 23(2), 40(3), 48(2), 97(2) 14(2)*, 92(2) 14(3), 29(1)* 27(1), 44(2), 88(4), 93(3) 6(1), 10(1), 70(1), 97(1) -52(1), 70(1), 88(4) 26(2), 40(3) 56(2)*, 90(2), 94(1)
408
Fig. 24.16. Phenetic relationships within Lobocentrini, Beaufortianini, Gargarini, and Centrotini (Analysis 9, UPGMA). Branch lengths indicate mean character distance. Asterisks indicate genera not included in the phylogenetic analyses because of limited data.
409
Fig. 24.17. Phenetic relationships within Nessorhinini, Leptocentrini, and Terentiini (Analysis 10, UPGMA). Branch lengths indicate mean character distance. Asterisks indicate genera not included in the phylogenetic analyses because of limited data. 410
Table 24.13. Data matrix.
Abelus Acanthophyes decens Acanthucalis macalpini Acanthuchus trispinifer Afraceronotus quinquefasciatus
Aleptocentrus notabilis Alocanthella fulva Alocebes dixoni Alosextius carinatus Amblycentrus pubescens Amphilobocentrus bifasciatus Ananthasubramanian tomentosus
Anchon Anchonastes hastatus Anchonobelus aries Anchonomonoides expansus Antialcidas Anzac bipunctatum Arcuatocornum sp. Arimanes doryensis Aurinotus auricornis Awania Barsumas Barsumoides Bathoutha indicans Beaufortiana Bleccia fastidiosus Bocchar Boocerus gilvipes Brachybelus Brachycentrotus Bucktoniella pyramidatus Bulbauchenia sp. Bulbauchenia bakeri Bunyella dromedarius Butragulus flavipes Callicentrus ignipes Camelocentrus yunnanensis Campylocentrus hamifer Campylocentrus obscuripennis Capeneralus Capeneriana tenuicornis Cebes transiens Centriculus Centrochares horrifica Centrodontus Centrolobus africanus Centronodus Centrotosuoides muiri Centrotus cornutus Centrotypus Centruchus Ceraon tasmaniae Choucentrus Coccosterphus Cornutobelus mutabilis Crito festivum Cryptaspidia pubera Cryptoparma parva Dacaratha Daconotus projectus Dagonotus lectus Daimon serricorne Demanga sookana Dingkana borealis Distanobelus sericeus Dograna suffulta Dukeobelus simplex Ebhul varium Elaphiceps Emphusis obesa
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 2 2 1 1 2 2 2 1 ? 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 2 2 1 2 2 ? 2 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1
4 1 1 1 1 2 1 1 1 1 2 1 1 2 2 2 2 1 1 1 1 1 1 2 2 1 1 2 1 1 2 2 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 2 1
5 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 1 2 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2
6 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 ? 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 2 1
1 0 ? 2 2 2 2 1 2 2 2 1 1 2 2 2 2 2 1 2 1 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 2 1 2 2 2 2 ? 2 2 1 2 ? ? 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 ? 2 2 2 1 ? 2 2
1 1 ? 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1
1 2 ? 1 2 2 1 2 2 2 2 2 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 2 1 1 1 2 1 2 1 1 1 1 1 1
411
1 3 ? 2 2 2 1 2 2 2 2 2 ? ? 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 ? ? ? 2 ? ? 2 1 2 2 2 2 2 ? 1 2 2 2 ? 2 2 ? 2 2 ? ? 2 1 2 1 2 1 2 2 2 2 2 1 2
1 4 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 1 3 3 3 1 1 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3 3 3 2 3 1 1 3 5 3 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 3 3 1 1 5 3
1 6 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 2 1 ? 1 1 1 1 1 2 1 1 1 1 1 1 1 1
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 9 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 ? 2 ? ? 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 ? 2 2 2 2 2 2 2
2 0 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 ? 1 ? 1 ? ? 1 1 1 1 1 1 1 ? 1 1 1 1 2 1 1 1 1 1 ? 1 1 1 1 1 1 ? 1 1 1 1 1 1 2
2 1 1 1 2 2 1 ? 2 ? 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 ? 2 2 ? 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 ? 2 1 ? 2 2 1 1 1 2 1 2 1 1 1 1 1 1
2 2 1 1 1 1 ? 1 1 1 1 1 2 ? 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 2 1
2 3 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 1 1 1 2 1 ? 2 ? 1 1 ? ? 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? 1 1 ? 1 1 1 1 2 1 2 1 1 1 2 1 1 2 2 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1
2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 6 1 1 1 1 1 ? 1 1 1 1 ? 1 1 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 2 1 ? 1 2 ? 1 1 1 1 1 1 2 2 1 2 1 1 2 1 2 ? 2 1 ? 2 1 1 1 1 2 1 1 1 1 2 2 2 2
2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ? 2 1 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 9 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 ? 3 2 2 2 2 3 3 ? 2 2 2 2 2 3 3 1 2 ? 2 2 3 2 ? 2 2 2 1 2 3 ? 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 ? 2 2 2 2 2 2 2
3 0 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 24.13 cont’d. Data matrix.
Abelus Acanthophyes decens Acanthucalis macalpini Acanthuchus trispinifer Afraceronotus quinquefasciatus
Aleptocentrus notabilis Alocanthella fulva Alocebes dixoni Alosextius carinatus Amblycentrus pubescens Amphilobocentrus bifasciatus Ananthasubramanium tomentosum
Anchon Anchonastes hastatus Anchonobelus aries Anchonomonoides expansus Antialcidas Anzac bipunctatum Arcuatocornum sp. Arimanes doryensis Aurinotus auricornis Awania Barsumas Barsumoides Bathoutha indicans Beaufortiana Bleccia fastidiosus Bocchar Boocerus gilvipes Brachybelus Brachycentrotus Bucktoniella pyramidatus Bulbauchenia sp. Bulbauchenia bakeri Bunyella dromedarius Butragulus flavipes Callicentrus ignipes Camelocentrus yunnanensis Campylocentrus hamifer Campylocentrus obscuripennis Capeneralus Capeneriana tenuicornis Cebes transiens Centriculus Centrochares horrifica Centrodontus Centrolobus africanus Centronodus Centrotosuoides Centrotus cornutus Centrotypus Centruchus Ceraon tasmaniae Choucentrus Coccosterphus Cornutobelus mutabilis Crito festivum Cryptaspidia pubera Cryptoparma parva Dacaratha Daconotus projectus Dagonotus lectus Daimon serricorne Demanga sooknana Dingkana borealis Distanobelus sericeus Dograna suffulta Dukeobelus simplex Ebhul varium Elaphiceps Emphusis obesa
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 ? ? 1 ? 1 1 2 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 2 2
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 ? ? 1 ? 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
3 5 1 1 1 1 1 ? 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 7 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 ? 1 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 ? 2 1 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 1
3 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 ? ? 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2 2 2
3 9 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 1 1 1 1 2 1 1 3 1 1 ? ? 1 1 1 1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 ? 1 1 2 2 2 1 1 1 1 1 1 1 3 1 3 ? 1 2 3 1 2 2 1 2 2 1 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2
412
4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 5 2 2 ? 1 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 ? 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 2 ? 1 2 2 1 1 1 1
4 6 1 1 ? ? 1 ? ? ? ? ? ? ? 1 1 1 1 1 ? ? ? 1 ? 1 1 ? ? 1 ? ? ? ? ? ? ? ? 2 ? ? ? ? ? 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? 1 ? 2 2 ? 1 1 1 ? ? 1 1 ? ? ? ?
4 7 2 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1
4 8 ? ? 2 1 ? 1 1 1 2 3 3 3 ? ? ? ? 2 1 3 1 ? 3 ? ? 1 2 ? 2 3 3 2 1 1 1 ? 2 1 3 3 2 3 ? ? 3 ? ? 2 ? 2 2 2 2 2 1 2 ? 1 2 2 3 ? ? 2 3 2 ? 2 2 2 2 2
4 9 2 2 1 1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 2 2 2 1 2 2 1 1 ? 2 1 2 1 1 2 2 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 2
5 0 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 2 1 2 1 2 1 1 1 2 1 1 ? 2 ? 1 2 2 2 2 1 1 1 2 1 1 2 1 1 2 ? 2 1 1 2 1 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 2 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 ? 1 1 1 1 1 1 1
5 3 2 2 2 1 2 ? 1 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 2 2 1 1 2 2 2 2 2 2 1 ? 2 2 2 2 1 1 2 2 1 2 ? ? 1 ? 2 2 2 2 1 ? 1 2 1 1 1 2 2 2 1 ? 1 2 ? 1 1 1 1
5 4 2 2 2 1 2 2 1 1 2 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 ? ? 1 ? 2 1 2 1 1 ? 2 2 2 2 1 1 2 2 2 ? 2 2 ? 1 1 2 1
5 5 1 3 1 1 3 3 1 1 1 1 1 1 2 2 3 3 3 1 1 1 1 1 3 3 1 1 2 3 3 1 1 1 1 2 1 2 1 1 1 3 2 2 1 1 ? ? 1 ? 1 1 1 1 1 3 3 2 1 3 1 1 2 2 2 ? 1 2 ? 1 1 2 1
5 6 1 5 1 1 5 1 1 1 1 5 1 1 5 5 5 5 5 1 1 1 5 1 5 5 1 1 5 1 1 6 4 5 1 1 1 5 1 1 1 1 5 5 1 1 3 5 1 1 1 5 1 1 1 1 5 5 1 5 5 1 5 5 1 1 1 5 1 1 5 1 1
5 7 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 ? 1 1 ? 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1
5 8 1 1 1 1 1 ? 1 ? 1 2 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 9 2 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 ? 1 2 1 1 1 1 1 1 1 1 1 ? 1 1 ? 2 1 1 1 1 1 1 1 1 1 1 1 1 1
6 0 2 2 1 1 2 ? 1 ? 1 2 ? ? 2 2 2 2 2 1 2 1 2 2 2 2 2 ? 2 1 2 2 1 1 1 1 ? 2 1 ? 2 2 2 2 1 2 1 1 1 2 1 2 2 1 1 ? 2 2 ? 2 2 2 2 2 1 2 1 2 1 1 1 1 2
Table 24.13 cont’d. Data matrix.
Abelus Acanthophyes decens Acanthucalis macalpini Acanthuchus trispinifer Afraceronotus quinquefasciatus
Aleptocentrus notabilis Alocanthella fulva Alocebes dixoni Alosextius carinatus Amblycentrus pubescens Amphilobocentrus bifasciatus Ananthasubramanium tomentosus
Anchon Anchonastes hastatus Anchonobelus aries Anchonomonoides expansus Antialcidas Anzac bipunctatum Arcuatocornum sp. Arimanes doryensis Aurinotus auricornis Awania Barsumas Barsumoides Bathoutha indicans Beaufortiana Bleccia fastidiosus Bocchar Boocerus gilvipes Brachybelus Brachycentrotus Bucktoniella pyramidatus Bulbauchenia sp. Bulbauchenia bakeri Bunyella dromedarius Butragulus flavipes Callicentrus ignipes Camelocentrus yunnanensis Campylocentrus hamifer Campylocentrus obscuripennis Capeneralus Capeneriana tenuicornis Cebes transiens Centriculus Centrochares horrifica Centrodontus Centrolobus africanus Centronodus Centrotosuoides muiri Centrotus cornutus Centrotypus Centruchus Ceraon tasmaniae Choucentrus Coccosterphus Cornutobelus mutabilis Crito festivum Cryptaspidia pubera Cryptoparma parva Dacaratha Daconotus projectus Dagonotus lectus Daimon serricorne Demanga sooknana Dingkana borealis Distanobelus sericeus Dograna suffulta Dukeobelus simplex Ebhul varium Elaphiceps Emphusis obesa
6 1 2 2 1 1 2 ? 1 ? 1 2 ? ? 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 2 1 1 1 1 ? 2 1 ? 2 2 2 2 1 2 1 1 1 2 1 2 2 1 1 ? 2 2 ? 2 2 2 2 2 1 2 1 2 1 1 1 1 2
6 2 1 1 ? ? 1 ? ? ? ? 1 ? ? 1 1 1 1 1 ? 2 ? 1 1 1 1 1 ? 1 ? 1 1 ? ? ? ? ? 1 ? ? 2 2 1 1 ? 1 ? ? ? 1 ? 1 1 ? ? ? 1 1 ? 1 1 2 1 1 ? 1 ? 1 ? ? ? ? 1
6 3 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 ? 2 1 1 1 1 1 1 1 ? 2 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 4 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 ? 2 1 ? 1 3 1 1 1 1 1 1 1 1 1 1 1 1
6 5 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 ? 2 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 6 1 1 1 1 1 ? 1 ? 2 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 7 ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
6 8 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 1 2 2
6 9 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 ? 1 1
7 0 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 1 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 1 2 2
7 1 2 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 ? 2 1 1 1 1 1 1 ? 1 1 2 1 1 1 1 1 ? 1 1 ? 2 2 1 1 ? 1 ? ? 1 1 2 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 ? 1 1
7 2 1 ? ? 1 1 ? 1 ? ? 1 ? ? 1 1 1 1 1 1 1 ? 1 3 ? ? 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 ? 2 1 1 1 ? 1 1 ? 1 3 ? 1 1 ? 3 1 1 1 1 1 1 1
413
7 3 1 1 1 1 ? ? ? ? 1 1 ? ? 1 1 1 1 1 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 ? ? 1 ? 1 1 ? 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 ? 1 1 ? 1 ? 1 1 1 1 ? 3 1 1 1 1 1 1
7 4 3 3 2 2 3 ? 2 ? 2 3 ? ? 3 3 3 3 3 1 2 2 3 3 3 3 ? 3 3 3 3 3 3 2 2 ? ? 3 3 ? ? 3 3 3 2 3 3 2 3 3 3 3 3 3 2 ? 3 3 ? 3 3 3 3 3 3 3 2 3 3 3 2 3 3
7 5 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ? ? 2 2 2 2 1 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2
7 6 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2
7 7 1 3 1 1 3 ? 1 ? 1 1 ? ? 3 3 3 3 2 1 3 1 3 3 3 3 1 1 3 1 1 1 1 1 1 1 ? 3 1 ? 1 1 3 3 1 1 3 ? 1 1 1 3 3 1 1 ? 3 3 ? 3 3 3 3 3 1 3 1 3 1 1 ? 1 3
7 8 1 1 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 9 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8 0 1 1 1 1 ? ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 ? 1 1 1 1 1 1 1
8 1 2 1 1 1 ? ? 1 ? 1 3 ? ? 1 1 1 1 3 1 2 1 ? 3 1 1 1 1 2 1 3 3 3 1 1 1 ? 3 3 ? 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 ? 3 1 ? 3 3 3 1 1 1 ? 2 1 1 1 1 2 3
8 2 2 2 ? 2 2 ? ? ? ? 2 ? ? 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 1 1 ? ? ? 2 2 ? 2 2 2 2 ? 2 1 1 2 ? 2 2 2 2 1 ? 2 2 ? 2 2 2 2 2 2 ? 2 2 2 2 1 2 2
8 3 1 1 ? 1 ? ? 1 ? 1 1 ? ? 1 1 1 1 2 1 1 1 ? 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 2 2 ? 1 1 1 1 1 1 2 1 2 1 2 1 1 2 1 ? 2 1 ? 2 3 1 1 1 2 ? 1 1 1 2 1 1 1
8 4 1 2 ? 1 ? ? 1 ? 1 1 ? ? 2 2 2 2 2 1 1 1 ? 2 2 2 1 1 2 1 1 1 1 1 1 1 ? 2 1 ? 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 ? 2 2 ? 2 2 2 2 2 1 ? 1 2 1 1 1 1 1
8 5 ? 2 ? ? ? ? ? ? ? ? ? ? 2 2 2 2 1 ? ? ? ? 1 2 ? ? ? 2 ? ? ? ? ? ? ? ? 1 ? ? ? ? 2 ? ? ? ? ? ? ? ? 2 ? ? ? ? 1 2 ? 1 1 1 2 2 ? ? ? 2 ? ? ? ? ?
8 6 1 2 ? 1 2 ? 1 ? ? 1 ? ? 2 1 2 2 1 1 1 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 ? 1 2 ? 2 2 1 1 ? 1 2 1 1 1 2 1 2 1 1 ? 2 1 ? 1 1 2 1 1 3 2 2 2 1 1 1 2 2
8 7 2 1 1 1 1 ? 1 ? 1 2 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 ? 1 2 ? 2 2 1 1 1 2 1 1 2 1 2 1 1 2 1 ? 1 1 ? 1 1 1 1 1 2 ? 1 1 2 2 1 2 1
8 8 1 3 3 4 ? ? ? ? 1 3 ? ? 1 1 3 1 3 4 1 4 ? 3 3 3 ? 1 3 4 3 3 1 ? ? 3 ? 1 1 ? 1 ? 3 ? 4 3 3 1 1 1 1 3 1 1 3 ? 1 3 ? 1 ? 4 3 ? 1 ? 1 1 1 1 2 3 1
8 9 ? 2 1 1 ? ? ? ? ? 2 ? ? ? ? 2 ? 2 1 ? ? ? 1 1 1 ? ? 2 1 2 2 ? ? ? 2 ? ? ? ? ? ? 1 ? 1 1 2 ? ? ? ? 1 ? ? 1 ? ? 1 ? ? ? 1 1 ? ? ? ? ? ? ? ? 2 ?
9 0 ? 1 2 1 ? ? ? ? ? 2 ? ? ? ? 2 ? 2 1 ? ? ? 1 2 2 ? ? 1 1 2 2 ? ? ? 2 ? ? ? ? ? ? 2 ? 1 2 2 ? ? ? ? 2 ? ? 1 ? ? 2 ? ? ? 1 2 ? ? ? ? ? ? ? ? 1 ?
Table 24.13 cont’d. Data matrix.
Abelus Acanthophyes decens Acanthucalis macalpini Acanthuchus trispinifer Afraceronotus quinquefasciatus
Aleptocentrus notabilis Alocanthella fulva Alocebes dixoni Alosextius carinatus Amblycentrus pubescens Amphilobocentrus bifasciatus Ananthasubramanium tomentosus
Anchon Anchonastes hastatus Anchonobelus aries Anchonomonoides expansus Antialcidas Anzac bipunctatum Arcuatocornum sp. Arimanes doryensis Aurinotus auricornis Awania Barsumas Barsumoides Bathoutha indicans Beaufortiana Bleccia fastidiosus Bocchar Boocerus Brachybelus Brachycentrotus Bucktoniella pyramidatus Bulbauchenia Bulbauchenia bakeri Bunyella dromedarius Butragulus flavipes Callicentrus ignipes Camelocentrus yunnanensis Campylocentrus hamifer Campylocentrus obscuripennis Capeneralus Capeneriana tenuicornis Cebes transiens Centriculus Centrochares horrifica Centrodontus Centrolobus africanus Centronodus Centrotosuoides muiri Centrotus cornutus Centrotypus Centruchus Ceraon tasmaniae Choucentrus Coccosterphus Cornutobelus mutabilis Crito festivum Cryptaspidia pubera Cryptoparma parva Dacaratha Daconotus projectus Dagonotus lectus Daimon serricorne Demanga sooknana Dingkana borealis Distanobelus sericeus Dograna suffulta Dukeobelus simplex Ebhul varium Elaphiceps Emphusis obesa
9 1 1 2 2 2 ? ? ? ? 1 1 ? ? 1 1 1 1 1 2 1 2 ? 2 1 1 ? 1 1 2 1 1 1 ? ? 1 ? 1 1 ? 1 ? 1 ? 2 1 1 1 1 1 2 2 1 2 2 ? 1 1 ? 1 ? 2 1 ? 1 ? 1 1 1 1 1 1 1
9 2 2 1 1 1 ? ? ? ? 2 2 ? ? 2 2 1 1 2 1 1 1 ? 1 1 1 ? 1 1 1 1 2 1 ? ? 1 ? 2 2 ? 2 ? 1 ? 1 1 1 2 1 2 1 1 2 1 1 ? 2 1 ? 2 ? 1 1 ? 2 ? 2 1 2 1 1 1 2
9 3 2 2 1 2 ? ? ? ? 2 2 ? ? 2 1 2 2 2 1 1 ? ? 1 2 2 ? 3 2 2 2 2 3 ? ? 2 ? 2 3 ? 1 ? 2 ? 2 2 2 2 2 2 2 2 2 2 2 ? 3 2 ? 1 ? 2 1 ? 3 ? 2 2 2 2 1 1 2
9 4 1 1 ? 1 ? ? ? ? 1 1 ? ? 1 ? 1 2 1 ? ? ? ? ? 2 2 ? 1 1 2 2 1 1 ? ? 2 ? 1 2 ? ? ? 2 ? 2 1 2 1 2 2 2 2 2 2 2 ? 1 2 ? ? ? 2 ? ? 2 ? 1 1 1 1 ? ? 2
9 5 1 1 1 1 ? ? ? ? 1 2 ? ? 2 2 1 1 1 1 2 1 ? 1 1 1 ? 2 1 1 1 2 1 ? ? 1 ? 2 1 ? 1 ? 1 ? 1 1 1 1 2 1 1 1 2 2 1 ? 2 1 ? 2 ? 1 2 ? 1 ? 2 1 1 2 1 1 1
9 6 1 1 1 1 ? ? ? ? 1 1 ? ? 1 1 1 1 1 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 ? ? 1 ? 1 1 ? 1 ? 1 ? 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 ? 1 ? 1 1 ? 1 ? 1 1 1 1 1 1 1
9 7 1 1 2 2 ? ? ? ? 2 1 ? ? 1 1 1 1 1 1 2 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? 1 ? 1 1 ? 1 ? 1 ? 2 1 1 1 1 1 2 1 2 2 2 ? 2 2 ? 1 ? 2 1 ? 2 ? 2 1 1 1 1 2 1
9 8 1 1 ? 1 ? ? 1 ? ? 1 ? ? 1 1 1 1 1 1 1 ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 ? 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1
9 9 3 3 ? 3 ? ? 3 ? ? 3 ? ? 3 3 3 3 3 3 3 ? 3 3 ? ? 3 3 3 3 3 3 3 3 3 3 ? 3 3 ? 3 3 ? 3 3 ? 3 3 3 2 ? 3 3 3 3 ? 3 3 ? 3 3 ? 3 3 3 ? 3 3 3 3 3 3 3
1 0 0 2 2 ? 2 ? ? 2 ? ? 2 ? ? 2 2 2 2 2 2 2 ? 2 2 ? ? 2 2 2 1 2 2 1 2 2 2 ? 1 2 ? 2 2 ? 2 2 ? 1 2 2 2 ? 2 1 1 2 ? 2 2 ? 1 2 ? 2 2 2 ? 2 2 2 2 2 2 2
1 0 1 2 1 ? 1 ? ? 1 ? ? 1 ? ? 1 1 2 1 2 1 1 ? 1 1 ? ? 2 2 1 ? 1 1 ? 1 1 1 ? ? 1 ? 1 1 ? 2 2 ? ? 2 2 2 ? 2 ? ? 2 ? 2 1 ? ? 2 ? 1 2 1 ? 1 1 2 2 1 2 1
1 0 2 1 1 ? 1 ? ? 1 ? ? 1 ? ? 1 1 1 1 1 1 1 ? 1 1 ? ? 1 1 1 ? 1 1 ? 1 1 1 ? ? 1 ? 1 1 ? 1 1 ? ? 2 1 1 ? 1 ? ? 1 ? 1 1 ? ? 1 ? 1 1 1 ? 2 1 1 1 2 1 1
1 0 3 3 1 ? 1 ? ? 1 ? ? 3 ? ? 1 1 1 1 1 1 1 ? 1 1 ? ? 1 1 1 1 3 3 1 1 1 1 ? 1 1 ? 3 3 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 1 ? 1 1 1 1 1 2 1
414
1 0 4 2 ? ? 1 ? ? 1 ? ? 2 ? ? 1 1 1 1 2 ? 2 ? ? 1 ? ? 1 1 1 1 2 2 2 1 1 1 ? 2 1 ? 2 2 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 2 1 ? 2 2 ? 1 1 1 ? 1 1 1 1 1 2 1
1 0 5 5 3 ? 6 ? ? 6 ? 6 1 ? ? 3 3 3 3 1 6 1 ? 3 7 ? ? 7 4 3 8 5 1 2 6 6 6 ? 1 4 ? 5 5 ? 3 6 ? 7 1 4 1 ? 3 3 4 6 ? 1 3 6 1 1 ? 3 3 4 ? 6 3 7 4 5 1 3
1 0 6 3 3 ? 2 ? ? 2 ? 2 3 ? ? 3 3 3 3 1 2 1 ? 3 3 ? ? 3 1 3 3 3 3 1 2 2 2 ? 3 1 ? 1 3 ? 3 2 ? 1 1 1 1 ? 3 3 1 2 ? 3 3 2 3 3 ? 3 3 1 ? 2 3 3 1 3 1 3
1 0 7 2 2 ? 2 ? ? 2 ? 2 1 ? ? 2 2 2 2 1 2 1 ? 2 2 ? ? 2 2 2 2 1 1 1 2 2 2 ? 1 2 ? 2 2 ? 2 2 ? 2 1 2 1 ? 2 2 2 2 ? 1 2 2 1 1 ? 2 2 2 ? 2 2 2 2 2 1 2
1 0 8 1 1 ? 1 ? ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 ? 1 1 ? ? 2 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 1 ? 1 1 2 1 1 1 1
1 0 9 1 2 ? 1 ? ? 1 ? 1 1 ? ? 2 2 2 2 3 1 3 ? 2 ? ? ? 1 1 2 2 1 1 3 1 1 1 ? 3 3 ? 1 1 ? 2 1 ? 3 3 1 3 ? 2 2 1 1 ? 3 2 1 3 3 ? 2 2 3 ? 1 2 1 1 1 3 2
1 1 0 1 1 ? 1 ? ? 1 ? 1 1 ? ? 1 1 1 1 1 1 1 ? 1 2 ? ? 3 1 1 1 1 1 1 1 3 3 ? 1 1 ? 1 1 ? 1 1 ? 2 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 ? 1 1 1 ? 1 1 3 1 1 1 1
1 1 1 1 1 ? 2 ? ? 2 ? 2 1 ? ? 1 1 1 1 1 2 1 ? 1 2 ? ? 1 1 1 2 1 1 1 2 2 2 ? 1 1 ? 1 1 ? 1 2 ? 1 1 1 1 ? 1 1 1 2 ? 1 1 2 1 1 ? 1 1 1 ? 2 1 2 1 1 1 1
1 1 2 1 1 ? 3 ? ? 3 ? 3 1 ? ? 2 2 1 2 1 3 1 ? ? ? ? ? 2 1 1 1 3 1 1 3 3 3 ? 1 2 ? 2 3 ? 1 3 ? 1 1 1 1 ? 2 2 1 3 ? 1 2 ? 1 1 ? 1 1 2 ? 3 1 2 1 3 1 2
1 1 3 2 2 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 ? 2 2 ? 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 4 1 2 ? 1 ? ? ? ? ? 1 ? ? 2 2 2 ? ? 1 ? ? ? 2 1 2 ? 1 ? ? 1 ? ? 1 2 2 ? 1 ? ? ? ? ? 2 ? 1 1 1 ? ? ? 1 2 1 1 ? 1 ? ? 2 ? 2 2 ? 1 ? 1 ? ? 1 1 1 2
1 1 5 1 2 ? 2 ? ? ? ? ? 1 ? ? 2 2 2 ? ? 1 ? ? ? 2 2 2 ? 1 ? ? 1 ? ? 1 2 2 ? 1 ? ? ? ? ? 2 ? 1 1 2 ? ? ? 1 2 1 2 ? 1 ? ? 2 ? 2 2 ? 1 ? 2 ? ? 1 2 1 2
1 1 6 3 3 ? 3 ? ? ? ? ? 3 ? ? 3 3 3 ? ? 2 ? ? ? 3 3 3 ? 2 ? ? 3 ? ? 3 3 3 ? 3 ? ? ? ? 3 3 ? 3 3 3 ? ? ? 2 3 3 3 ? 1 ? ? 3 ? 3 3 ? 2 ? 2 ? ? 2 2 3 3
Table 24.13 cont’d. Data matrix. Erecticornia Euceropsila primus Eucoccosterphus Eufairmairia Eufairmairiella Eufrenchia falcata Eumocentrulus Eumonocentrus Eutryonia monstrifera Evanchon Evansiana iasis Farcicaudia nitida Flatyperphyma flavocristatus Flexanotus albescens Foliatrotus elephas Funkhouserella brevifurca Funkhouserella pinguiturris Gargara Gargarina carinata Gigantorhabdus enderleini Goddefroyinella neglecta Goniolomus tricorniger Hamma Hemicentrus Hybanda anodonta Hybandoides Hypsauchenia hardwickii Hypsolyrium uncinatum Imporcitor typicus Indicopleustes albomaculata Ischnocentrus Jacobiana Jingkara hyalipunctata Joveriana Kallicrates bellicornis Kanada irvinei Lanceonotus Leprechaunus Leptobelus Leptocentrus Leptoceps viniculum Lobocentrus Lubra spincornis Maarbarus Mabokiana teocchii Machaerotypus sibiricus Madlinus seychellensis Maguva nigra Marshallella rubripes Matonotus Matumuia Maurya Menthogonus badhami Mesocentrina pyramidata Micreune formidanda Microcentrus caryae Mitranotus albofascipennis Monanchon monanchonus Monobeloides stuarti Monobelus Monocentrus Multareiodes Multareis Negus asper Neocanthuchus tropicus Neocentrus rufus Neomachaerotypus eguchii Neosextius Nessorhinus Nicomia Nilautama minutaspina Nilautama typica Nodonica bispinigera Nondenticentrus
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 2 1 1 2 2 2 1 1 1 1 2 2 2 1 2 2 1 1 1 2 2 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1
4 1 2 1 1 1 1 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 ? ? 1 2 2 1 1 2 1
5 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 2 2 2 2 2 3 4 4 2 2 2 2 4 2 2 3 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3
6 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1
1 0 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 1 1 2 2 2 2 ? 1 1 2 ? 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 2 2 2 2 2 ? ? 2 2 1 1 2 2 ? 1 ? 1 1
1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 ? 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 1 1
1 2 2 1 2 2 2 2 1 ? 2 1 2 1 1 1 1 2 ? 2 2 2 2 2 1 ? 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 2 1 2 2 1 2 1 2 1 1 2 2 1 2 2 2 2 1 2 2 2 ? 1 1 2 2
415
1 3 ? 1 2 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 ? 2 2 ? 1 ? 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 2 ? 2 ? 2 2 2 1 ? 1 2 2 1 ? 2 2 ? ? 2 2 ? ? ? ? ? 1 1 ? 2
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1 1 3 1 1 3 3 1 1 1 1 3 3 ? 1 1 3 1
1 5 3 4 1 3 3 3 4 4 5 3 3 3 4 3 4 5 5 1 1 5 3 3 3 3 ? 1 5 1 3 3 1 3 5 1 3 1 3 1 5 3 3 3 3 3 3 3 1 3 2 3 3 3 3 1 5 2 4 3 1 1 4 3 2 3 3 1 3 4 4 1 3 3 3 3
1 6 ? 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 ? ? 1 1 1 1 1 2 1 1 1 1 1 1 2 1 ? ? ? 1 1 1 1 1 1
1 7 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
1 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 ? 2 ? 2 2 ? 2 2 2 2 2 2 2 ? ? 2 2 2 ? ? 2 3 2 2 ? 2
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ? 1 1 ? 1 1 1 1 1 1 1 ? ? 1 1 1 ? ? 1 ? 1 1 ? 1
2 1 ? 1 2 2 2 2 1 1 2 1 2 1 1 1 1 2 2 2 ? 2 2 2 1 1 2 2 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 2 ? ? 2 1 2 1 2 1 1 2 1 1 2 2 1 2 ? ? ? 2 1 1 1 2 2
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 2 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 ? ? 1 1 1 1 1 ? 1
2 3 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 ? 2 2 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 2 2 2 1 ? ? ? 1 1 1 1 ? 1
2 4 ? 1 1 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 ? 2 2 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 2 2 2 2 ? ? ? 1 1 1 1 ? 1
2 5 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2
2 6 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 ? 2 1 1 1 1 2 2 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 ? ? ? 1 2 2 2 2 2 2 1 1 2 2 2 2 1 ? ? 1 1 1 1 1 2 1
2 7 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 2 2 1 2
2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1
2 9 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 1 2 2 3 2 1 2 1 2 2 2 2 3 2 1 3 3 2 3 2 1 2 2 2 2 2 3 3 2 2 2 1 3 2 3 2 2 2 2 2 2 2 3 2 3 2 2 ? ? 2 2 2 2 ? 2
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 2 1 1 ? 1
Table 24.13 cont’d. Data matrix. Erecticornia Euceropsila primus Eucoccosterphus Eufairmairia Eufairmairiella Eufrenchia falcata Eumocentrulus Eumonocentrus Eutryonia monstrifera Evanchon Evansiana iasis Farcicaudia nitida Flatyperphyma flavocristatus Flexanotus albescens Foliatrotus elephas Funkhouserella brevifurca Funkhouserella pinguiturris Gargara Gargarina carinata Gigantorhabdus enderleini Goddefroyinella neglecta Goniolomus tricorniger Hamma Hemicentrus Hybanda anodonta Hybandoides Hypsauchenia hardwickii Hypsolyrium uncinatum Imporcitor typicus Indicopleustes albomaculata Ischnocentrus Jacobiana Jingkara hyalipunctata Joveriana Kallicrates bellicornis Kanada irvinei Lanceonotus Leprechaunus Leptobelus Leptocentrus Leptoceps viniculum Lobocentrus Lubra spinicornis Maarbarus Mabokiana teocchii Machaerotypus sibiricus Madlinus seychellensis Maguva nigra Marshallella rubripes Matonotus Matumuia Maurya Menthogonus badhami Mesocentrina pyramidata Micreune formidanda Microcentrus caryae Mitranotus albofascipennis Monanchon monanchonus Monobeloides stuarti Monobelus Monocentrus Multareiodes Multareis Negus asper Neocanthuchus tropicus Neocentrus rufus Neomachaerotypus eguchii Neosextius Nessorhinus Nicomia Nilautama minutaspina Nilautama typica Nodonica bispinigera Nondenticentrus
3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 1 ? 1 1 1 1 1 1 1 ? 1 ? 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 ? 1 1 1 ? ? 1 1 1 1 ? 1 1 1 1 ? 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 2 1 1 ? 1
3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 2 1 1 ? 1
3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1
3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1
3 7 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 ? ? 2 2 2 2 1 ? 2 2 2 2 2
3 8 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 1 2 2 2 2 2 ? ? 1 2 2 1 2 1 2 2 2 2 2
3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1
4 0 ? 2 1 3 3 2 1 1 2 1 1 1 1 1 1 1 1 1 ? 1 3 2 1 2 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 2 2 2 3 1 1 2 1 1 2 ? 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 2 2 2 2 2 2
4 1 1 ? 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 2 2 2 2 1 2
416
4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 2 1
4 5 2 2 2 1 1 1 2 1 1 2 1 2 2 2 2 ? 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 ? 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 2 2 1 1 2 1 1 2 1 1 1 1 2 ? 1 2 1 1
4 6 2 1 1 ? ? ? 1 ? ? 1 ? 1 1 1 1 ? ? ? ? ? ? 1 1 ? ? ? ? ? ? ? 1 1 ? ? 1 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? 1 ? ? 1 2 1 ? 1 1 ? ? 1 ? ? 1 ? ? ? ? 1 ? ? 2 ? ?
4 7 1 2 1 1 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 ? 1
4 8 2 ? 1 1 1 1 ? ? 1 ? 2 ? ? ? ? 1 1 2 2 1 2 2 ? 3 1 2 1 1 3 1 ? ? 2 3 ? 2 1 ? 2 3 2 3 1 1 2 2 2 2 2 ? 2 2 ? 3 2 1 ? ? 2 2 ? ? ? 2 1 2 1 1 2 2 3 3 ? 2
4 9 2 2 2 1 1 1 2 2 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 1 2 1 2 2 2 2 2 1 ? 2 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 2 1 1 2 2 1 2 2 ? 2 1 1 1 1 1 1 2 2 2 ? 2
5 0 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 ? 2 1 1 2 2 1 1 1 3 3 3 3 1 2 1 1 3 2 1 1 1 1 1 2 1 2 2 2 2 1 1 2 2 1 2 1 1 1 2 2 1 1 1 1 1 ? ? 1 2 2 1 2 2 2 1 1 ? 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 2 2 1 1
5 3 2 2 1 1 1 1 2 2 1 ? 1 1 2 2 2 ? ? 2 1 ? 1 2 1 1 1 1 ? ? 1 1 2 2 ? 2 2 2 1 2 1 1 2 2 1 1 1 2 1 1 1 2 2 2 2 2 1 2 2 2 1 1 2 ? ? 2 1 2 2 ? 2 ? 2 2 ? 2
5 4 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 ? ? 2 2 1 1 1 2 2 1 1 1 1 1 2 2 2 ? 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 1 2 1 1 2 2 2 1 2 2 2 2 2 ? ? 2 2 1 2 ? 1 ? 1 1 ? 2
5 5 2 2 3 1 1 1 1 2 1 3 1 3 1 2 2 ? 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 ? 1 2 3 2 2 3 1 2 1 1 3 1 3 3 1 1 3 1 3 2 3 1 1 1 1 3 3 2 ? ? 1 1 1 3 ? 1 ? 1 1 ? 2
5 6 5 5 5 1 1 1 5 5 1 5 1 5 5 5 5 1 1 5 5 1 1 1 5 1 1 1 1 1 1 1 1 5 1 1 5 5 1 5 1 1 1 1 1 1 1 5 5 1 1 5 1 5 5 5 1 1 5 5 1 1 5 2 3 1 1 1 5 1 1 1 1 1 5 5
5 7 ? 1 1 2 ? 2 1 1 1 1 1 1 1 1 1 1 2 1 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 2 2 1 1 ? ? ? 1 1 1 1 ? 1
5 8 ? 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 1 1 ? 1
5 9 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ? 1 1 2 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 2 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 1 1 ? 1
6 0 ? 2 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 2 ? 1 1 1 2 2 1 1 1 1 1 2 2 2 1 2 2 ? 1 2 2 2 2 2 1 2 1 2 2 1 1 ? ? 2 2 2 2 1 2 2 1 1 2 1 1 2 1 ? ? ? 1 2 2 2 ? 2
Table 24.13 cont’d. Data matrix.
Erecticornia Euceropsila primus Eucoccosterphus Eufairmairia Eufairmairiella Eufrenchia falcata Eumocentrulus Eumonocentrus Eutryonia monstrifera Evanchon Evansiana iasis Farcicaudia nitida Flatyperphyma flavocristatus Flexanotus albescens Foliatrotus elephas Funkhouserella brevifurca Funkhouserella pinguiturris Gargara Gargarina carinata Gigantorhabdus enderleini Goddefroyinella neglecta Goniolomus tricorniger Hamma Hemicentrus Hybanda anodonta Hybandoides Hypsauchenia hardwickii Hypsolyrium uncinatum Imporcitor typicus Indicopleustes albomaculata Ischnocentrus Jacobiana Jingkara hyalipunctata Joveriana Kallicrates bellicornis Kanada irvinei Lanceonotus Leprechaunus Leptobelus Leptocentrus Leptoceps viniculum Lobocentrus Lubra spinicornis Maarbarus Mabokiana teocchii Machaerotypus sibiricus Madlinus seychellensis Maguva nigra Marshallella rubripes Matonotus Matumuia Maurya Menthogonus badhami Mesocentrina pyramidata Micreune formidanda Microcentrus caryae Mitranotus albofascipennis Monanchon monanchonus Monobeloides stuarti Monobelus Monocentrus Multareiodes Multareis Negus asper Neocanthuchus tropicus Neocentrus rufus Neomachaerotypus eguchii Neosextius Nessorhinus Nicomia Nilautama minutaspina Nilautama typica Nodonica bispinigera Nondenticentrus
6 1 ? 2 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 2 ? 1 1 1 2 2 1 1 1 1 1 2 2 2 1 2 2 ? 1 2 2 2 2 2 1 2 1 2 2 1 1 ? ? 2 2 2 2 1 2 2 1 1 2 1 1 2 1 ? ? ? 1 2 2 2 ? 2
6 2 ? 1 1 ? ? ? 1 1 ? ? ? 1 1 1 1 ? ? 1 ? ? ? ? 1 1 ? ? ? ? ? 1 1 1 ? 1 1 ? ? 1 1 1 1 2 ? 1 ? 1 1 ? ? ? ? 1 1 1 2 ? 1 1 ? ? 1 ? ? 1 ? ? ? ? ? 1 1 1 ? 1
6 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 1 1 ? 1
6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 3 1 1 ? 1
6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 1 1 ? 1
6 6 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 2 1 1 2 2 1 1 1 1 1 ? ? ? 1 2 1 1 ? 1
6 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? 1 1 ? ? ? ? ? ? ? ? ? 3 ? ? ? ?
6 8 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 1 1 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ? ? ? 2 2 2 2 2 2
6 9 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? ? 1 1 1 ? ? ? ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 ? ? ? 1 1 1 1 ? 1
7 0 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 ? 1 1 1 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ? ? ? 1 2 2 2 2 2
7 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? ? ? ? 1 1 ? ? ? ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 ? ? 1 1 1 2 1 1 1 1 1 1 ? ? 1 1 ? ? ? ? 1 1 1 ? 1
417
7 2 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 3 1 ? 1 1 3 1 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 1 ? ? 3 3 1 1 1 1 ? ? ? ? 1 1 3 3 ? 1
7 3 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 3 2 ? 1 1 1 ? 1 1 1 1 ? ? 1 1 1 1 1 1 1 3 3 1 1 1 1 1 ? ? ? 1 1 1 1 ? 1
7 4 ? 3 3 1 2 2 3 3 2 2 2 3 3 ? 3 2 1 3 ? 2 1 3 3 3 2 2 2 2 3 3 3 3 2 3 3 ? 3 3 3 3 3 3 2 3 3 3 3 3 3 ? ? 3 3 3 3 2 3 3 3 3 3 2 2 3 2 ? ? ? 3 3 3 3 ? 3
7 5 ? 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 1 2 ? 1 1 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ? 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ? ? ? 2 1 2 2 1 2
7 6 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 1 2 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ? ? ? 2 2 2 2 2 2
7 7 ? 3 3 1 1 1 3 3 1 1 1 3 3 3 3 1 1 3 ? ? 1 1 3 3 ? ? ? ? 1 1 1 3 ? 3 3 1 1 1 3 3 3 3 1 1 1 3 1 1 1 ? ? 3 1 3 3 1 3 3 1 1 2 ? ? 3 1 ? ? ? 1 1 3 3 ? 3
7 8 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 ? ? ? 1 1 1 1 1 1
7 9 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 ? 2 ? 2 2 ? ? 2 2 2 2 1 ? ? 2 2 2 2 2 2 2 ? ? ? 2 1 2 ? ? 2
8 0 ? 1 1 1 1 1 1 1 1 1 ? 1 ? 1 1 1 1 1 ? 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 ? ? 1 1 1 1 1 2 ? ? ? ? 2 1 1 ? ? 1
8 1 ? 3 3 1 1 1 1 1 1 1 ? 1 ? 1 1 1 1 3 ? 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 2 ? 1 1 1 ? 1 ? 2 1 ? ? 1 1 3 3 1 ? ? 1 3 1 1 1 1 ? ? ? ? 1 1 2 ? ? 3
8 2 ? 2 2 1 1 ? 2 2 2 1 ? 2 ? 2 2 ? ? 2 ? 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 ? 2 2 ? ? 2 2 2 2 ? 2 2 2 2 2 1 1 2 ? ? ? ? 2 2 2 2 ? 2
8 3 ? 1 2 1 1 1 1 1 1 2 ? 1 ? 1 1 1 1 2 ? 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ? 1 1 1 ? 2 ? 2 2 ? ? 2 1 2 1 1 ? ? 1 2 1 1 1 1 ? ? ? ? 2 1 1 ? ? 2
8 4 ? 2 1 1 1 1 2 2 1 1 ? 2 ? 2 2 1 1 2 ? 1 1 1 2 2 1 1 1 1 1 1 1 2 1 2 2 2 1 2 1 2 ? 1 1 1 ? 2 ? 1 1 ? ? 2 2 2 2 1 ? ? 1 1 2 1 1 2 ? ? ? ? 1 1 2 2 ? 2
8 5 ? 2 ? ? ? ? 2 2 ? ? ? 2 ? 2 2 ? ? 1 ? ? ? ? 2 1 ? ? ? ? ? ? ? 2 ? 1 2 1 ? ? ? 1 ? ? ? ? ? 1 ? ? ? ? ? 1 ? 1 1 ? ? ? ? ? 2 ? ? 3 ? ? ? ? ? ? 1 1 ? ?
8 6 ? 1 2 2 2 ? 1 2 1 2 1 1 1 2 2 1 1 2 ? 1 1 3 2 2 1 1 1 1 1 1 1 1 1 2 2 2 1 2 1 2 ? 1 1 1 2 1 2 2 2 ? ? 1 2 2 3 1 1 2 1 1 2 1 1 3 1 ? ? ? 3 1 2 ? ? 1
8 7 ? 1 1 1 1 1 1 1 1 2 1 1 ? 1 1 ? 1 1 ? 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 2 1 ? 2 1 2 ? 1 1 2 2 ? ? 1 ? 1 1 1 ? ? 2 2 1 1 1 1 1 ? ? ? 2 1 1 1 ? 1
8 8 ? ? 1 4 ? 3 3 1 1 1 ? 3 ? 3 1 3 4 1 ? 2 3 1 3 4 2 2 2 2 1 1 1 3 2 4 3 1 4 3 3 4 ? 1 4 1 ? 3 ? 1 1 ? ? 1 3 1 1 3 ? ? 1 3 1 1 1 3 ? ? ? ? 1 4 4 ? 1 1
8 9 ? ? ? 1 ? 1 1 ? ? ? ? 2 ? 1 ? 1 1 ? ? ? 2 ? 1 1 ? ? ? ? ? ? ? 2 ? 1 1 ? 1 2 1 1 ? ? 1 ? ? 2 ? ? ? ? ? ? 2 ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? ? ? 1 1 ? ? ?
9 0 ? ? ? 2 ? 1 1 ? ? ? ? 1 ? 1 ? 2 2 ? ? ? 2 ? 2 1 ? ? ? ? ? ? ? 1 ? 1 1 ? 1 2 1 1 ? ? 1 ? ? 2 ? ? ? ? ? ? 1 ? ? ? ? ? ? 2 ? ? ? 2 ? ? ? ? ? ? 1 ? ? ?
Table 24.13 cont’d. Data matrix.
Erecticornia Euceropsila primus Eucoccosterphus Eufairmairia Eufairmairiella Eufrenchia falcata Eumocentrulus Eumonocentrus Eutryonia monstrifera Evanchon Evansiana iasis Farcicaudia nitida Flatyperphyma flavocristatus Flexanotus albescens Foliatrotus elephas Funkhouserella brevifurca Funkhouserella pinguiturris Gargara Gargarina carinata Gigantorhabdus enderleini Goddefroyinella neglecta Goniolomus tricorniger Hamma Hemicentrus Hybanda anodonta Hybandoides Hypsauchenia hardwickii Hypsolyrium uncinatum Imporcitor typicus Indicopleustes albomaculata Ischnocentrus Jacobiana Jingkara hyalipunctata Joveriana Kallicrates bellicornis Kanada irvinei Lanceonotus Leprechaunus Leptobelus Leptocentrus Leptoceps viniculum Lobocentrus Lubra spinicornis Maarbarus Mabokiana teocchii Machaerotypus sibiricus Madlinus seychellensis Maguva nigra Marshallella rubripes Matonotus Matumuia Maurya Menthogonus badhami Mesocentrina pyramidata Micreune formidanda Microcentrus caryae Mitranotus albofascipennis Monanchon monanchonus Monobeloides stuarti Monobelus Monocentrus Multareiodes Multareis Negus asper Neocanthuchus tropicus Neocentrus Neomachaerotypus eguchii Neosextius Nessorhinus Nicomia Nilautama minutaspina Nilautama typica Nodonica bispinigera Nondenticentrus
9 1 ? ? 1 2 ? 2 1 1 1 1 ? 1 ? 1 1 1 2 1 ? 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 ? 1 2 1 ? 1 ? 1 1 ? ? 1 1 1 1 2 ? ? 1 1 1 1 1 2 ? ? ? ? 1 2 2 ? 1 1
9 2 ? ? 2 1 ? 1 1 2 2 2 ? 1 ? 1 1 1 1 2 ? 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 ? 2 1 2 ? 2 ? 2 2 ? ? 1 1 2 2 1 ? ? 2 1 2 2 2 1 ? ? ? ? 1 1 1 ? 1 2
9 3 ? ? 3 2 ? 2 2 3 2 3 ? 2 ? 2 3 2 3 2 ? 2 2 3 2 ? 1 1 1 1 3 2 2 2 2 2 2 1 2 2 2 2 ? 1 2 2 ? 2 ? 2 3 ? ? 2 2 1 2 1 ? ? 3 2 3 2 2 2 ? ? ? ? 3 2 1 ? 2 2
9 4 ? ? 1 2 ? 2 1 1 1 2 ? 1 ? 1 1 2 2 1 ? 1 1 2 1 ? ? ? ? ? 2 2 1 1 2 2 1 ? 1 1 2 2 ? ? 1 2 ? 1 ? 2 2 ? ? 1 1 ? 2 ? ? ? 2 2 2 1 1 2 ? ? ? ? 2 2 ? ? ? 1
9 5 ? ? 1 1 ? 1 1 1 1 1 ? 1 ? 1 2 1 1 2 ? 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 ? 2 1 1 ? 1 ? 1 1 ? ? 1 1 1 2 1 ? ? 1 1 1 1 1 1 ? ? ? ? 2 1 1 ? 1 2
9 6 ? ? 1 1 ? 1 1 1 1 1 ? 1 ? 1 1 1 1 1 ? 2 1 1 1 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 ? 1 ? 1 1 ? ? 1 1 1 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 1 ? ? 1
9 7 ? ? 2 2 ? 2 1 1 2 2 ? 2 ? 1 1 1 2 2 ? 1 2 2 1 ? 1 1 2 1 2 1 1 1 1 ? 1 1 1 1 2 2 ? 1 2 1 ? 2 ? 1 2 ? ? 1 1 1 2 2 ? ? 1 2 1 1 1 1 ? ? ? ? 2 1 2 ? ? 1
9 8 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 1 ? 2 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 ? 1 ? 1 1 ? ? 1 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 1 ? ? 1
9 9 ? 3 3 3 3 3 3 3 3 ? ? 3 ? ? 3 ? ? 3 ? 2 3 3 3 3 2 3 3 3 3 3 3 3 ? 3 3 ? 3 3 3 3 ? 3 3 3 ? 3 ? 3 3 ? ? 3 ? ? 3 3 ? ? 3 3 3 3 3 3 ? ? ? ? 3 3 3 ? 1 3
1 0 0 ? 2 2 2 2 2 2 2 1 ? ? 2 ? ? 2 ? ? 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 ? 1 2 2 2 ? 2 2 2 ? 2 ? 2 2 ? ? 2 ? ? 2 2 ? ? 2 1 2 2 2 1 ? ? ? ? 2 2 2 ? ? 2
1 0 1 ? 1 2 1 2 1 1 1 ? ? ? 2 ? ? 1 ? ? 1 ? 1 2 2 1 1 1 1 1 1 2 2 1 1 ? 1 1 ? ? 1 2 1 ? 2 1 2 ? 2 ? 2 1 ? ? 2 ? ? 2 2 ? ? 1 ? 1 1 1 ? ? ? ? ? 1 2 1 ? ? 2
1 0 2 ? 1 1 1 1 1 1 1 ? ? ? 1 ? ? 1 ? ? 1 ? 2 1 1 1 1 2 2 2 2 1 1 3 1 ? 1 1 ? ? 1 1 1 ? 1 1 1 ? 1 ? 1 1 ? ? 1 ? ? 1 3 ? ? 2 ? 1 2 2 ? ? ? ? ? 1 1 1 ? ? 1
418
1 0 3 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 1 ? 1 1 1 1 1 1 1 1 1 1 1 3 1 ? 1 1 ? 1 1 2 1 ? 1 1 1 ? 1 ? 1 1 ? ? 1 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 1 ? ? 1
1 0 4 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 2 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 ? 1 1 ? 1 1 1 1 ? 2 1 1 ? 2 ? 2 1 ? ? 2 ? ? 1 1 ? ? 1 2 1 1 1 1 ? ? ? ? 1 ? 1 ? ? 2
1 0 5 ? 3 4 6 6 6 3 3 6 ? ? 3 ? 3 3 ? ? 1 ? 5 6 2 3 7 3 5 5 5 4 7 5 3 5 7 3 ? 8 3 3 7 ? 1 6 7 4 1 ? 3 4 ? ? 1 ? ? 7 1 ? ? 2 2 3 1 1 3 ? ? ? ? 2 5 7 ? 1 1
1 0 6 ? 3 1 2 2 2 3 3 2 ? ? 3 ? ? 3 ? ? 3 ? 3 2 1 3 3 3 3 3 3 1 3 3 3 3 3 3 ? 3 3 3 3 ? 1 2 3 1 1 ? 1 1 ? ? 3 ? ? 3 1 ? ? 1 1 3 1 1 3 ? ? ? ? 1 1 3 ? ? 1
1 0 7 ? 2 2 2 2 2 2 2 2 ? ? 2 ? ? 2 ? ? 1 ? 2 2 1 2 2 2 2 2 2 ? 2 1 2 2 2 2 ? 2 2 2 2 ? 1 2 2 2 1 ? 2 2 ? ? 1 ? ? 2 1 ? ? 1 1 2 1 1 2 ? ? ? ? 1 1 2 ? 1 1
1 0 8 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 1 ? 1 1 1 1 1 1 1 1 1 1 2 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 2 1 1 ? 1 1 ? ? 1 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 1 ? 1 1
1 0 9 ? 2 1 1 1 1 2 2 1 ? ? 2 ? ? 2 ? ? 3 ? 1 1 3 2 1 1 1 1 1 1 1 1 2 ? 1 2 ? 2 2 2 1 ? 3 1 1 ? 3 ? 1 3 ? ? 3 ? ? 2 3 ? ? 3 3 2 3 3 2 ? ? ? ? 3 3 1 ? ? 3
1 1 0 ? 1 1 1 1 1 1 1 1 ? ? 1 ? ? 1 ? ? 1 ? 1 1 1 1 2 1 1 1 1 1 3 1 1 ? 2 1 ? 1 1 1 2 ? 1 1 3 1 1 ? 1 1 ? ? 1 ? ? 2 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 2 ? ? 1
1 1 1 ? 1 1 2 2 2 1 1 2 ? ? 1 ? ? 1 ? ? 1 ? 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 ? 2 1 1 2 ? 1 2 1 1 1 ? 1 1 ? ? 1 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 1 1 2 ? ? 1
1 1 2 ? 2 1 3 3 3 2 2 3 ? ? 1 ? ? 2 ? ? 1 ? 1 ? 2 1 2 1 3 1 1 1 2 1 2 ? 2 2 ? 1 1 2 2 ? 1 3 2 ? 1 ? 1 2 ? ? 1 ? ? 1 1 ? ? 1 1 1 1 1 1 ? ? ? ? 2 1 2 ? ? 1
1 1 3 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 1 2 2 2 2 2 2 2 2 2 ? ? ? 2 2 2 2 ? 2
1 1 4 ? ? 1 1 ? ? ? 1 1 1 ? 2 ? ? ? 2 ? 1 ? 1 ? ? 2 2 ? 1 1 1 ? ? 1 2 ? ? 2 ? 2 ? 2 2 ? 2 1 ? ? ? ? ? 1 ? ? 2 ? ? 2 1 ? ? ? 2 2 1 1 2 ? ? ? ? 1 1 2 ? ? 1
1 1 5 ? ? 1 2 ? ? ? 2 2 2 ? 2 ? ? ? 2 ? 2 ? 2 ? ? 2 2 ? 2 2 2 ? ? 1 2 ? ? 2 ? 2 ? 2 2 ? 2 2 ? ? ? ? ? 1 ? ? 2 ? ? 2 2 ? ? ? 2 2 2 2 2 ? ? ? ? 1 1 2 ? ? 2
1 1 6 ? ? 1 3 ? ? 3 3 3 3 ? 3 ? ? ? 3 ? 3 ? 1 ? ? 3 3 ? 2 2 2 ? ? 3 3 ? ? 3 ? 3 ? 3 3 ? 3 3 3 ? ? ? ? 2 ? ? 3 ? ? 3 2 ? ? ? 3 3 3 3 3 ? ? ? ? 2 3 3 ? ? 3
Table 24.13 cont’d. Data matrix.
Occator erectus Ophicentrus notandus Orekthophora cornuta Orthobelus Otinotoides Otinotus ammon Otinotus bantuantus Oxyrhachis Oxyrhachis carinata Oxyrhachis delalandei Oxyrhachis sulcicornis Pantaleon Paracentronodus Paradarnoides Parapogon kandyiana Paraxiphopoeus Parayasa Peltzerella borneensis Periaman Pieltainellus Platybelus flavus Platycentrus acuticornis Pogonella minutus Pogon incurvatum Pogonotus indicus Pogonotypellus australis Pogontypus Polonius froggatti Promitor nominatus Protinotus doddi Psilocentrus Pyrgauchenia Pyrgonota Rachinotus marshalli Rentzia Rexicornia elegans Rigula
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 ? 2 1 1 2 1 2 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 1 2 2 2 2 1 2 1 1 2 2 2 1 2
4 ? 1 2 1 1 1 1 ? ? ? ? 1 1 2 1 2 1 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 2 1
5 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 1 2 1 2 ? 2 2 2 2 1 2 1 1 1 2 2 2 2
1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 ? 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2
419
1 3 ? 1 ? 2 2 2 2 ? ? ? ? 2 2 ? 1 1 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 1 2 2 2 ? 1 ?
1 4 1 1 3 2 1 1 1 3 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 1 1 4 3 3 3 3 2 3 3 3 3 1 1 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 3 1 5 5 3 3 3 3
1 6 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1
1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ?
1 9 ? 2 ? 2 2 2 2 2 ? ? ? 2 2 ? 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ? 2 2 2 2 ? 2 ?
2 0 ? 1 ? 1 1 1 1 1 ? ? ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
2 1 ? 1 2 2 2 1 2 2 ? ? ? 2 1 2 1 1 2 ? 1 1 1 2 2 1 1 2 1 ? 1 ? 1 2 2 1 ? 1 ?
2 2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1
2 3 ? 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 2 2 1 ? 1 ?
2 4 ? 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 2 1 1 1 ? 1 2 1 1 ? 1 ?
2 5 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 6 ? 2 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 ? 1 2 2 1 1 1 2 2 1 2 2 1
2 7 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2
2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 9 2 2 1 2 1 ? 2 2 2 2 2 2 2 2 3 1 2 ? 2 2 2 2 2 2 2 3 3 2 3 2 2 1 2 1 1 2 2
3 0 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 24.13 cont’d. Data matrix.
Occator erectus Ophicentrus notandus Orekthophora cornuta Orthobelus Otinotoides Otinotus ammon Otinotus bantuantus Oxyrhachis Oxyrhachis carinata Oxyrhachis delalandei Oxyrhachis sulcicornis Pantaleon Paracentronodus Paradarnoides Parapogon kandyiana Paraxiphopoeus Parayasa Peltzerella borneensis Periaman Pieltainellus Platybelus flavus Platycentrus acuticornis Pogonella minutus Pogon incurvatum Pogonotus indicus Pogonotypellus australis Pogontypus Polonius froggatti Promitor nominatus Protinotus doddi Psilocentrus Pyrgauchenia Pyrgonota Rachinotus marshalli Rentzia Rexicornia elegans Rigula
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 ? 1 1 1 1 1 1 ? 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1
3 5 ? 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1
3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1
3 7 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 1 2 2 2 2 2 1 2 1 1 2 2
3 8 2 2 1 ? 2 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2
3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
4 0 ? 1 1 2 2 2 2 2 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 3 2 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1
420
4 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2
4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
4 5 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 1
4 6 ? 1 1 ? ? ? ? ? ? ? ? ? ? 1 ? 1 1 ? ? ? 1 ? ? ? ? ? ? ? 1 ? 1 ? ? 1 ? 1 ?
4 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 1
4 8 3 ? 1 2 1 2 3 2 2 2 2 2 ? 1 1 ? 2 3 2 3 ? 2 1 1 1 1 1 1 ? 2 ? 1 1 ? 1 ? 1
4 9 1 1 1 1 1 1 1 1 1 1 1 2 ? 1 2 2 2 2 2 2 2 1 1 2 1 1 1 1 2 ? 2 1 1 2 1 2 1
5 0 2 2 1 2 2 1 2 ? 2 1 2 1 ? 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 1 2 1 3 2 1 2 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1
5 2 2 1 1 2 1 2 2 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 2 1 1
5 3 1 1 1 1 2 1 1 ? 1 1 1 2 ? 1 1 2 ? 2 1 2 2 2 1 1 1 2 1 1 2 1 2 ? 1 2 1 2 1
5 4 1 2 1 1 2 2 1 ? 1 2 1 1 ? 1 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 2 ? 2 2 2 2 1
5 5 1 1 1 1 1 2 1 1 1 1 1 3 ? 1 1 2 3 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 2 1 3 1
5 6 1 1 1 1 1 1 1 7 5 1 5 5 1 1 1 5 5 1 1 1 5 1 1 1 1 ? 1 1 5 1 1 1 1 5 1 5 1
5 7 ? 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 2 1 1 ? 1 ?
5 8 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
5 9 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 2 1 1 1 ? 1 ?
6 0 ? 2 1 1 1 2 2 1 1 1 1 2 2 1 2 2 2 2 2 1 2 2 1 2 ? 1 2 1 2 ? 2 1 1 2 ? 2 ?
Table 24.13 cont’d. Data matrix. Occator erectus Ophicentrus notandus Orekthophora cornuta Orthobelus Otinotoides Otinotus ammon Otinotus bantuantus Oxyrhachis Oxyrhachis carinata Oxyrhachis delalandei Oxyrhachis sulcicornis Pantaleon Paracentronodus Paradarnoides Parapogon kandyiana Paraxiphopoeus Parayasa Peltzerella borneensis Periaman Pieltainellus Platybelus flavus Platycentrus acuticornis Pogonella minutus Pogon incurvatum Pogonotus indicus Pogonotypellus australis Pogontypus Polonius froggatti Promitor nominatus Protinotus doddi Psilocentrus Pyrgauchenia Pyrgonota Rachinotus marshalli Rentzia Rexicornia elegans Rigula
6 1 ? 2 1 1 1 2 2 1 1 1 1 2 2 1 2 2 2 2 2 1 2 1 1 2 ? 1 2 1 2 ? 2 1 1 2 ? 2 ?
6 2 ? 1 ? ? ? 1 1 ? ? ? ? 1 1 ? 1 1 1 1 1 ? 1 ? ? 1 ? ? 1 ? 1 ? 1 ? ? 1 ? 1 ?
6 3 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
6 4 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
6 5 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
6 6 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
6 7 ? ? ? ? ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
6 8 ? 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 1 2 2 2 ? 2 1 2 2 ? 2 ?
6 9 ? 1 1 1 1 1 1 ? ? ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 ? 1 ? 1 1 ? 1 ?
7 0 ? 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 1 2 2 2 ? 2 1 1 2 ? 2 ?
7 1 ? 1 2 1 1 1 1 ? ? ? ? 1 1 2 1 1 1 1 1 2 1 2 1 1 ? ? 1 1 1 ? 1 ? ? 1 ? 1 ?
421
7 2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 3 1 1 3 1 ? ? ? ? ? 1 ? 1 1 1 1 ? ? ?
7 3 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ?
7 4 ? 3 3 3 2 3 3 ? 2 2 2 3 3 3 3 3 3 3 3 3 3 2 2 3 ? 2 3 2 3 ? 3 2 ? 3 ? 3 ?
7 5 ? 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 1 2 2 2 ? 2 1 1 2 2 2 2
7 6 ? 2 2 2 2 2 2 ? 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 ? 2 1 2 2 2 2 2
7 7 ? 1 1 1 3 1 3 ? ? 1 1 3 1 1 1 1 3 3 3 1 3 3 1 1 ? 1 1 1 3 ? 1 ? 1 3 ? 3 ?
7 8 ? 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 ? 1 2 1 1 1 1 1
7 9 ? 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 ?
8 0 ? 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 ? 1 1 1 1 1 1 ? 1 1 ? 1 ? 1 1 1 1 ? ? ?
8 1 ? 1 3 3 1 1 1 1 1 1 1 2 1 1 1 1 1 ? 3 1 1 1 1 1 ? 1 1 ? 3 ? 2 1 1 3 ? ? ?
8 2 ? 2 2 2 ? 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 1 2 ? ? 2 ? 2 ? 2 ? ? 2 ? ? ?
8 3 ? 1 2 2 1 1 1 3 3 3 3 2 1 2 1 1 1 ? 1 1 1 1 1 1 ? 1 1 ? 1 ? 1 1 1 1 ? ? ?
8 4 ? 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 ? 1 1 2 1 1 1 ? 1 1 ? 2 ? 1 1 1 2 ? ? ?
8 5 ? ? ? ? ? ? 1 ? ? ? ? 1 ? ? ? 2 ? ? ? ? 2 ? ? ? ? ? ? ? 2 ? ? ? ? 2 ? ? ?
8 6 ? 1 3 2 ? 1 1 1 1 1 1 2 1 3 1 2 1 2 2 1 1 1 1 1 ? ? 1 1 1 ? 1 1 1 2 ? 2 ?
8 7 ? 2 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 ? 1 2 1 2 1 2 ? 1 2 ? 1 ? 2 1 1 1 ? ? ?
8 8 ? ? ? 1 1 1 4 2 2 2 2 1 4 1 1 3 1 ? 4 1 3 5 3 3 ? 3 1 ? 3 ? 1 2 3 3 ? ? ?
8 9 ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? 2 ? ? 1 ? 2 1 1 1 ? 1 ? ? 1 ? ? ? ? 2 ? ? ?
9 0 ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? 2 ? ? 2 ? 1 1 1 1 ? 1 ? ? 1 ? ? ? ? 2 ? ? ?
Table 24.13 cont’d. Data matrix.
Occator erectus Ophicentrus notandus Orekthophora cornuta Orthobelus Otinotoides Otinotus ammon Otinotus bantuantus Oxyrhachis Oxyrhachis carinata Oxyrhachis delalandei Oxyrhachis sulcicornis Pantaleon Paracentronodus Paradarnoides Parapogon kandyiana Paraxiphopoeus Parayasa Peltzerella borneensis Periaman Pieltainellus Platybelus flavus Platycentrus acuticornis Pogonella minutus Pogon incurvatum Pogonotus indicus Pogonotypellus australis Pogontypus Polonius froggatti Promitor nominatus Protinotus doddi Psilocentrus Pyrgauchenia Pyrgonota Rachinotus marshalli Rentzia Rexicornia elegans Rigula
9 1 ? ? ? 1 1 1 2 1 1 1 1 1 2 1 1 1 1 ? 2 1 1 1 1 1 ? 2 1 ? 2 ? 1 1 2 1 ? ? ?
9 2 ? ? ? 2 1 2 1 1 1 1 1 2 1 1 1 2 2 ? 1 2 1 1 1 1 ? 1 2 ? 1 ? 2 1 1 2 ? ? ?
9 3 ? ? ? 3 2 2 2 2 2 2 2 1 2 3 2 1 2 ? 2 2 2 2 3 2 ? 2 2 ? 2 ? 2 1 2 2 ? ? ?
9 4 ? ? ? 1 2 1 2 ? 2 1 2 ? 2 2 2 ? 1 ? 2 1 1 2 2 1 ? 2 2 ? 2 ? 1 ? 2 2 ? ? ?
9 5 ? ? ? 1 1 2 1 1 1 1 1 2 1 1 2 2 1 ? 1 2 1 1 1 1 ? 1 2 ? 1 ? 2 1 1 1 ? ? ?
9 6 ? ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 ? 1 1 ? 1 ? 1 2 1 1 ? ? ?
9 7 ? ? ? 2 1 2 2 ? 2 2 ? 1 1 1 1 1 1 ? 2 1 1 2 2 2 ? 2 2 ? 2 ? 1 1 1 2 ? ? ?
9 8 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 ? ? ? ? ? 1 ? 1 2 1 1 ? ? ?
9 9 ? 3 3 3 3 ? 3 3 3 3 3 3 2 3 ? 3 3 ? 3 3 3 3 3 ? ? ? ? ? 3 ? 3 2 3 3 ? ? ?
1 0 0 ? 2 1 1 2 ? ? 2 2 2 2 2 1 2 ? 2 2 ? 1 2 2 2 2 ? ? ? ? ? 2 ? 2 2 2 2 ? ? ?
1 0 1 ? 1 ? ? 2 ? ? 1 1 1 1 1 ? 1 ? 1 2 ? ? 1 1 1 1 ? ? ? ? ? 2 ? 1 2 1 2 ? ? ?
422
1 0 2 ? 1 ? ? 1 ? ? ? 2 1 2 1 ? 1 ? 1 1 ? ? 2 1 1 1 ? ? ? ? ? 1 ? 1 1 1 1 ? ? ?
1 0 3 ? 3 1 1 1 ? ? 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 ? ? ? ? ? 1 ? 3 1 1 1 ? ? ?
1 0 4 ? 2 1 1 1 ? ? 1 1 1 1 2 1 1 ? 1 1 ? 1 1 1 1 1 ? ? ? ? ? 1 ? 2 1 1 1 ? ? ?
1 0 5 ? 5 2 2 6 ? 7 5 5 5 5 1 1 2 ? 3 3 ? 3 3 3 4 6 ? ? ? 7 ? 3 ? 5 5 6 3 ? ? ?
1 0 6 ? 3 1 1 2 ? 3 3 3 3 3 1 1 1 ? 3 3 ? 3 1 3 1 2 ? ? ? 3 ? 3 ? 3 3 2 3 ? ? ?
1 0 7 ? 2 1 2 2 ? 2 2 2 2 2 1 1 1 ? 2 2 ? 2 2 2 2 2 ? ? ? 2 ? 2 ? 2 2 2 2 ? ? ?
1 0 8 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 ? ? ? 2 ? 1 ? 1 1 1 1 ? ? ?
1 0 9 ? 1 3 2 1 ? 1 1 1 1 1 3 3 3 ? 2 3 ? 1 3 2 3 1 ? ? ? 1 ? 2 ? 1 1 1 2 ? ? ?
1 1 0 ? 1 ? 1 1 ? 2 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 ? ? ? 3 ? 1 ? 1 1 3 1 ? ? ?
1 1 1 ? 1 1 1 2 ? 2 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 2 1 ? ? 1 ? 1 ? 1 1 2 1 ? ? ?
1 1 2 ? 3 2 1 3 ? 2 ? 2 2 2 1 1 1 ? 2 1 ? 2 1 1 1 3 ? ? ? 2 ? 1 ? 2 1 3 1 ? ? ?
1 1 3 ? 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 ? 2 3 3 2 ? 2 ?
1 1 4 ? ? ? 1 1 ? ? 1 ? ? ? 2 ? ? ? ? ? ? ? 1 2 1 1 ? ? ? 2 ? ? ? ? 1 2 2 ? ? ?
1 1 5 ? ? ? 1 1 ? ? 2 ? ? ? 2 ? ? ? ? ? ? ? 1 2 1 2 ? ? ? 2 ? ? ? ? 2 2 2 ? ? ?
1 1 6 ? ? ? 3 3 ? ? 1 ? ? ? 3 ? ? ? ? ? ? ? 2 3 2 3 ? ? ? 3 ? ? ? ? 2 3 3 ? ? ?
Table 24.13 cont’d. Data matrix.
Sarantus wallacei Sarantus nobilus Sertorius Sextius Sinodemanga Sipylus Spalirises rugosa Spathenotus tridentatus Spathocentrus intermedius Spinodarnoides typus Stalobelus Streonus tenebrosus Strzeleckia montanus Subrincator tonkinensis Takliwa carteri Telingana Terentius convexus Thelicentrus xizangensis Tiberianus Tolania Tribulocentrus zhenbaensis Tricentroides orcus Tricentrus Tricoceps Trioxiphus Truncatocornum sp. Tsunozemia paradoxa Tylocentrus Tyrannotus tyrannicus Umfilianus declivis Undarella storeyi Uroxiphus maculiscutum Vecranotus sinuatus Xanthosticta pygmaea Xiphopoeus Yangupia occidentalis Yaponotus villiersi Yasa greeni Zanzia vanderplanki Zigzagicentrus bannaensis
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 1 1 1 1 1 1 2 1 1 1 2 ? 1 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2
4 1 1 1 1 ? 1 2 ? 1 2 2 2 1 1 2 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 ?
5 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 ? 2 2 ? 3 3 2 2 2 3 2 2 2 2 2 2 3 2 2 2 3 2 2
6 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 2 2 2 1 1 2 2 1 2 2 2 2 1 2 2 2 1 1 ? 1 1 1 2 2 1 1 1 2 ? 2 2 2 1 2 2 2 1 1 2
1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 1 ? 1 1 1 2 1 1 1 1 2 1 ? 1 1 1 2 1 2 1 2 2
1 2 2 2 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 ? 2 2 2 1 1 1 2 2 1 1 ? 1 1 2 1 2 1 2 1 1
423
1 3 2 2 2 2 1 2 2 ? 2 ? 1 1 ? 2 2 1 2 ? 2 ? 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 2 1 2 2 ?
1 4 1 1 1 2 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 3 3 3 3 1 1 3 ? 3 1 3 3 1 3 3 3 1 3 2 3 3 3 2 3 3 3 3 2 2 2 3 1 3 1 3 3 1 1 4 3
1 6 1 1 1 1 ? 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ?
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 9 2 2 2 2 2 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 3 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ?
2 0 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ?
2 1 2 2 2 2 ? 2 1 ? 1 2 1 1 ? 2 1 1 2 ? 1 1 ? 2 2 1 1 1 2 2 1 1 2 1 1 2 1 2 1 2 1 ?
2 2 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 2 1 ? 1 1 ? 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 ?
2 3 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ?
2 4 2 2 2 2 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 ?
2 5 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 6 1 1 1 1 ? 1 1 ? 2 1 1 1 ? 1 1 1 1 ? 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 ?
2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 8 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
2 9 2 1 2 2 2 2 2 ? 2 1 2 2 2 2 2 3 3 2 2 2 2 ? 3 3 2 2 2 2 2 2 2 2 2 3 2 ? 2 3 3 2
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 24.13 cont’d. Data matrix.
Sarantus wallacei Sarantus nobilus Sertorius Sextius Sinodemanga Sipylus Spalirises rugosa Spathenotus tridentatus Spathocentrus intermedius Spinodarnoides typus Stalobelus Streonus tenebrosus Strzeleckia montanus Subrincator tonkinensis Takliwa carteri Telingana Terentius convexus Thelicentrus xizangensis Tiberianus Tolania Tribulocentrus zhenbaensis Tricentroides orcus Tricentrus Tricoceps Trioxiphus Truncatocornum sp. Tsunozemia paradoxa Tylocentrus Tyrannotus tyrannicus Umfilianus declivis Undarella storeyi Uroxiphus maculiscutum Vecranotus sinuatus Xanthosticta pygmaea Xiphopoeus Yangupia occidentalis Yaponotus villiersi Yasa greeni Zanzia vanderplanki Zigzagicentrus bannaensis
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 5 1 1 1 2 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 7 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2
3 8 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 2 2 2 ? 2
3 9 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
4 0 2 3 3 1 ? 1 1 ? 1 2 1 2 1 2 1 1 3 ? 1 1 ? 2 1 1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 1 ?
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
4 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2
424
4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
4 5 1 1 1 1 1 2 2 ? 1 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2 ? 1 1 1 1 1 1 1 2 2 2 1 1 ? 1 1
4 6 ? ? ? ? ? 2 1 ? ? 1 1 1 ? ? 1 ? ? 2 1 ? ? 2 2 1 ? ? ? ? ? ? ? ? 1 2 1 ? ? ? ? ?
4 7 1 1 1 1 1 1 2 ? 1 1 2 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1
4 8 2 ? 1 1 3 2 ? ? 3 1 ? ? 2 2 ? 1 2 2 ? 2 2 2 2 ? 2 3 2 3 1 3 1 3 ? 2 1 1 2 3 ? 3
4 9 1 1 1 1 2 2 2 1 2 1 2 2 1 2 2 ? 1 2 2 ? 2 2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 1 2 2 1
5 0 2 2 2 2 1 1 1 2 1 1 1 1 2 1 1 2 2 1 1 ? 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 2 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1 1 2 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1
5 3 ? 2 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 2 2 ? 1 2 2 2 1 2 2 1 1 2 1 2 2 2 2 1 2 2 2 1
5 4 1 1 2 ? 1 2 2 1 2 1 2 2 2 2 2 2 1 1 2 ? 1 1 2 2 1 1 1 2 1 1 2 1 2 2 1 1 1 2 2 1
5 5 1 1 1 2 1 3 2 1 1 1 2 2 1 3 2 1 1 1 1 ? 3 3 3 2 1 1 2 1 1 1 1 1 3 3 1 1 1 ? 2 1
5 6 2 1 1 1 1 5 5 1 1 1 5 5 1 5 5 1 1 5 5 1 5 5 5 5 1 1 5 1 1 1 1 1 5 5 1 1 1 1 5 1
5 7 1 1 1 2 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ?
5 8 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 ? 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
5 9 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 2 ? 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
6 0 1 1 1 1 ? 2 2 ? 1 1 2 2 ? 2 2 2 1 ? 2 2 ? 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 ?
Table 24.13 cont’d. Data matrix.
Sarantus wallacei Sarantus nobilus Sertorius Sextius Sinodemanga Sipylus Spalirises rugosa Spathenotus tridentatus Spathocentrus intermedius Spinodarnoides typus Stalobelus Streonus tenebrosus Strzeleckia montanus Subrincator tonkinensis Takliwa carteri Telingana Terentius convexus Thelicentrus xizangensis Tiberianus Tolania Tribulocentrus zhenbaensis Tricentroides orcus Tricentrus Tricoceps Trioxiphus Truncatocornum sp. Tsunozemia paradoxa Tylocentrus Tyrannotus tyrannicus Umfilianus declivis Undarella storeyi Uroxiphus maculiscutum Vecranotus sinuatus Xanthosticta pygmaea Xiphopoeus Yangupia occidentalis Yaponotus villiersi Yasa greeni Zanzia vanderplanki Zigzagicentrus bannaensis
6 1 1 1 1 1 ? 2 2 ? 1 1 2 2 ? 2 2 2 1 ? 2 2 ? 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 ?
6 2 ? ? ? ? ? 1 1 ? ? ? 1 1 ? 1 1 1 ? ? 1 1 ? 2 1 1 2 2 1 1 1 1 ? 1 1 1 1 ? 1 1 1 ?
6 3 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 ?
6 4 1 1 1 1 ? 3 1 ? 1 1 1 1 ? 1 1 1 1 1 1 3 1 1 3 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
6 5 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 2 1 1 1 ? 1 1 1 1 1 1 2 1 1 1 1 1 ?
6 6 1 1 2 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 2 ? 1 2 ? 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
6 7 ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
6 8 2 2 2 1 ? 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 2 ? 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 ?
6 9 1 1 1 ? ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
7 0 2 2 2 1 ? 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 2 ? 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 ?
7 1 1 1 1 ? ? 1 1 ? 2 1 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 2 2 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
7 2 1 ? 1 1 ? 1 1 ? ? ? 1 1 ? 1 1 ? 1 ? 1 1 ? ? 1 1 2 ? ? 1 3 1 ? ? 1 1 1 1 3 ? 1 ?
425
7 3 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 ? 1 ? 1 1 ? 3 1 1 3 1 ? 1 1 1 1 1 1 1 1 ? 3 1 1 ?
7 4 2 2 2 1 ? 3 3 ? 3 ? 3 3 ? 3 3 3 2 ? 3 3 ? 3 3 3 3 2 ? 3 3 3 2 3 3 3 3 2 3 3 3 ?
7 5 1 2 2 1 ? 2 2 ? 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 1 ?
7 6 2 2 2 2 ? 2 2 ? 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 ?
7 7 1 1 3 1 ? 3 3 ? 1 1 3 3 ? 1 3 1 1 ? 3 3 3 3 3 3 3 3 ? 1 1 3 1 3 3 1 3 3 3 1 3 ?
7 8 1 1 1 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 1 ?
7 9 2 2 2 2 ? 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 1 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ?
8 0 1 1 1 1 ? 1 1 ? 1 ? 1 1 ? 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 1 ? 1 1 1 1 1 1 1 1 ?
8 1 1 1 1 1 ? 3 1 ? 1 ? 1 1 ? 2 1 1 1 ? 1 1 ? 3 3 1 2 ? 1 1 2 3 ? 1 1 3 1 1 3 1 1 ?
8 2 1 ? 2 1 ? 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 ? ? 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ?
8 3 1 1 1 1 ? 2 1 ? 1 ? 1 1 ? 2 1 1 1 ? 1 1 ? 2 2 1 1 1 2 1 1 1 ? 1 1 2 1 1 1 1 1 ?
8 4 1 1 1 1 ? 2 2 ? 1 ? 2 2 ? 2 2 1 2 ? 2 1 ? 2 2 2 2 1 2 1 1 2 ? 2 2 2 2 1 2 1 2 ?
8 5 ? ? ? ? ? 1 2 ? ? ? 2 2 ? 1 2 ? 1 ? 2 ? ? 1 1 2 1 ? 1 ? ? 1 ? 1 2 1 3 ? 1 ? 2 ?
8 6 1 ? 2 1 ? 2 1 3 1 3 2 2 ? 1 1 1 2 ? 2 1 ? 2 2 2 2 1 1 1 2 2 2 2 1 1 3 2 2 1 2 ?
8 7 1 1 1 1 ? 1 1 ? 2 2 1 1 ? 1 1 2 1 ? 1 1 ? 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 ?
8 8 3 4 1 3 ? 1 3 ? 1 ? 3 1 ? 1 3 ? 1 1 3 4 ? 1 1 3 4 1 1 5 4 4 ? 4 3 1 3 ? 4 1 1 ?
8 9 1 1 ? 2 ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 2 1 ? ? ? 1 1 ? ? 1 1 1 ? 1 2 ? 2 ? 1 ? ? ?
9 0 2 1 ? 2 ? ? 1 ? ? ? 1 ? ? ? 2 ? ? ? 1 ? ? ? ? 1 1 ? ? 1 1 1 ? 1 1 ? 2 ? 1 ? ? ?
Table 24.13 cont’d. Data matrix.
Sarantus wallacei Sarantus nobilus Sertorius Sextius Sinodemanga Sipylus Spalirises Spathenotus tridentatus Spathocentrus intermedius Spinodarnoides typus Stalobelus Streonus tenebrosus Strzeleckia montanus Subrincator tonkinensis Takliwa carteri Telingana Terentius convexus Thelicentrus xizangensis Tiberianus Tolania Tribulocentrus zhenbaensis Tricentroides orcus Tricentrus Tricoceps Trioxiphus Truncatocornum sp. Tsunozemia paradoxa Tylocentrus Tyrannotus tyrannicus Umfilianus declivis Undarella storeyi Uroxiphus maculiscutum Vecranotus sinuatus Xanthosticta pygmaea Xiphopoeus Yangupia occidentalis Yaponotus villiersi Yasa greeni Zanzia vanderplanki Zigzagicentrus bannaensis
9 1 2 2 1 1 ? 1 1 ? 1 ? 1 1 ? 1 1 ? 1 1 1 2 ? 1 1 1 2 1 1 1 2 2 ? 2 1 1 1 ? 2 1 1 ?
9 2 1 1 1 2 ? 2 1 ? 2 ? 1 2 ? 2 1 ? 2 2 1 1 ? 2 2 1 1 1 2 1 1 1 ? 1 1 2 2 ? 1 2 2 ?
9 3 2 2 2 2 ? 1 2 ? 2 ? 2 3 ? 2 1 ? 2 2 2 2 ? 2 1 2 2 1 1 2 2 1 ? 2 2 3 2 ? 2 3 3 ?
9 4 1 2 1 1 ? ? 1 ? 1 ? 2 2 ? 1 ? ? 1 1 1 1 ? 2 ? 1 2 ? ? 2 2 ? ? 2 1 1 1 ? 2 2 1 ?
9 5 1 1 2 1 ? 2 1 ? 2 ? 1 2 ? 2 1 ? 2 2 1 1 ? 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 ? 1 2 2 ?
9 6 1 1 1 1 ? 1 1 ? 1 ? 1 1 ? 1 1 ? 1 ? 1 1 ? 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 ? 1 1 1 ?
9 7 2 2 2 1 ? 1 1 ? 1 ? 1 1 ? 1 1 ? 1 ? 1 1 ? 1 2 1 2 2 2 1 2 2 ? 1 1 1 2 ? 2 1 1 ?
9 8 1 ? 1 1 ? 1 1 ? ? ? 1 1 ? 1 1 1 1 ? 1 1 ? ? 1 1 1 1 ? 1 1 1 ? ? 1 1 1 1 1 ? 1 ?
9 9 3 ? 3 3 ? 3 3 ? ? ? 3 3 ? 3 3 3 3 3 3 2 ? ? 3 3 3 ? ? 3 3 3 ? ? 3 3 3 3 3 ? 3 3
1 0 0 2 ? 2 2 ? 1 2 ? ? ? 2 2 ? 2 2 2 2 2 2 2 ? ? 1 2 2 ? ? 1 2 2 ? ? 2 2 1 2 2 ? 2 ?
1 0 1 2 ? 1 2 ? ? 2 ? ? ? 1 1 ? 1 1 2 1 1 1 2 ? ? ? 1 1 ? ? ? 1 1 ? ? 2 2 ? 1 1 ? 1 ?
1 0 2 1 ? 1 1 ? ? 1 ? ? ? 1 1 ? 1 1 1 1 1 1 1 ? ? ? 1 1 ? ? ? 3 1 ? ? 1 1 ? 1 1 ? 1 ?
1 0 3 1 ? 1 1 ? 1 1 ? ? ? 1 1 ? 1 1 1 1 1 1 1 ? ? 1 1 1 ? ? 1 1 1 ? ? 1 1 1 1 1 ? 1 ?
426
1 0 4 1 ? 1 1 ? 2 1 ? ? ? 1 1 ? 2 1 1 1 2 1 ? ? ? 2 1 1 ? ? 1 2 1 ? ? 1 2 1 1 1 ? 1 ?
1 0 5 6 ? 6 6 ? 1 3 ? ? ? 3 3 ? 1 3 7 6 1 3 1 1 ? 1 3 7 ? 1 2 1 7 ? ? 3 1 3 6 7 ? 3 ?
1 0 6 2 ? 2 2 ? 1 3 ? ? ? 3 3 ? 1 3 3 2 ? 3 1 ? ? 1 3 3 ? ? 1 1 3 ? ? 3 3 3 2 3 ? 3 ?
1 0 7 2 ? 2 2 ? 1 2 ? ? ? 2 2 ? 1 2 2 2 1 2 1 1 ? 1 2 2 ? 1 2 1 2 ? ? 2 1 2 2 2 ? 2 ?
1 0 8 1 ? 1 1 ? 1 1 ? ? ? 1 1 ? 1 1 2 1 1 1 1 1 ? 1 1 1 ? 1 1 1 1 ? ? 1 1 1 1 1 ? 1 ?
1 0 9 1 ? 1 1 ? 3 2 ? ? ? 2 2 ? 3 2 1 1 3 2 3 3 ? 3 2 1 ? 3 3 3 1 ? ? 2 3 2 1 1 ? 2 ?
1 1 0 1 ? 1 1 ? 1 1 ? ? ? 1 1 ? 1 1 3 1 ? 1 1 ? ? 1 1 2 ? 1 1 1 2 ? ? 1 1 1 1 2 ? 1 ?
1 1 1 2 ? 2 2 ? 1 1 ? ? ? 1 1 ? 1 1 1 2 1 1 1 1 ? 1 1 2 ? 1 1 1 2 ? ? 1 1 1 2 2 ? 1 ?
1 1 2 3 ? 3 3 ? 1 1 ? ? ? 2 1 ? 1 2 2 3 1 1 1 1 ? 1 1 2 ? 1 1 1 2 ? ? 1 1 1 3 2 ? 1 ?
1 1 3 2 2 2 2 ? 2 2 ? 2 2 2 2 ? 2 2 2 2 ? 2 1 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ?
1 1 4 1 ? 2 1 ? ? ? ? ? ? ? 2 ? 2 1 2 2 ? 2 2 ? ? 1 2 2 ? ? 1 1 ? ? ? 2 ? 2 ? ? ? ? ?
1 1 5 2 ? 2 2 ? ? ? ? ? ? ? 2 ? 2 2 2 2 ? 2 2 ? ? 1 2 2 ? ? 1 1 ? ? ? 2 2 2 ? ? ? ? ?
1 1 6 3 ? 3 3 ? ? ? ? ? ? 3 3 ? 3 1 3 3 ? 3 3 ? ? 3 3 3 ? ? 2 3 ? ? ? 3 3 3 ? ? ? ? ?
Table 24.14. Summary of taxonomic changes based on phylogenetic analyses 1-8. Existing classification (Dietrich et al. 2001a, Yuan and Chou 2002a)
Revised classification presented here
CENTRODONTINAE
Centrotinae:
ABELINI
Centrodontini
BOOCERINI
Boocerini
BULBAUCHENIINI
Terentiini
FUNKHOUSERELLINI
Gargarini
TERENTIINI
Leptocentrini
ANTIALCIDINI
Ebhuloidesini
COCCOSTERPHINI
Centrocharesini
MADLININI
Centrotini
TRICENTRINI
Centrotypini
GARGARINI
Choucentrini
DEMANGINI
Hypsaucheniini
LEPTOCENTRINI
Leptobelini
CENTROCHARESINI
Micreunini
CENTROTINI
Nessorhinini
CENTROTYPINI
Oxyrhachini
CHOUCENTRINI
Platycentrini
EBHULINI
Xiphopoeini
HYPSAUCHENIINI
Lobocentrini
LEPTOBELINI
Maarbarini
MICREUNINI
Monobelini
NESSORHININI
Pieltainellini
OXYRHACHINI
Beaufortianini
PLATYCENTRINI
Boccharini
XIPHOPOEINI
427
moved to Centrotinae
new synonymies
names unchanged
new tribes
25: BIOGEOGRAPHY OF THE CENTROTINAE AND MEMBRACIDAE
Introduction: Origins of the Membracidae Where and when did treehoppers originate? This question is an outstanding and controversial topic for three reasons: (1) the current geographic distribution of treehoppers, with one large cosmopolitan subfamily, but the eight other subfamilies all restricted to the New World; (2) the limited fossil record of treehoppers; and, (3) the lack of phylogenetic understanding for the Membracidae (only recently elucidated) and the Centrotinae (elucidated in this work). Following a review of our knowledge in these three areas, the biogeographic patterns within the subfamily Centrotinae are, for the first time, placed in a phylogenetic context. Geographic patterns. The current distribution of major treehopper lineages is intriguing. Except for a few introductions by man--Spissistilus to Hawaii (Zimmerman 1948a); Centrotus and Gargara to North America (Metcalf and Wade 1965a, McKamey 1998a); and Stictocephala to Europe (Goidanich 1946a, McKamey 1998a)--no membracid tribe (and thus no species or genus) occurs in both the Old World and the New. Nevertheless, the largest membracid subfamily, Centrotinae, occurs in all major regions of the Old World (The Afrotropical, Australasian/Oceanian, Indomalayan, and Palearctic Regions) as well as the New World (Nearctic and the Neotropical Regions). All of the other eight membracid subfamilies occur only in the New World. This overall pattern lead Wood (1993) to believe that treehoppers arose in tropical Gondwana prior to its breakup, with the Old World and New World membracids diversifying after the continents separated. Similarly, Strümpel (1972a) postulated that the membracids arose in Gondwana, but that the 428
Centrotinae reached the New World from Asia by way of the Bering Land Bridge in the Pleistocene. In contrast, the center of origin theory, a controversial method based solely on distribution (Futuyma 1998a), suggests a New World origin of the family. Areas of origin include regions that contain the largest number of species and the most morphological diversity (Cranston and Naumann 1991a). South Asia, for example, is believed to be the center of origin for vespid wasps (Hymenoptera: Vespidae) because it is the only area where all the subfamilies are found (Briggs 1995a). With treehoppers, the Neotropical Region contains more species, genera, tribes, and subfamilies than any other region (McKamey 1998a) and thus is arguably the most morphologically diverse, and, under the center of origin theory, the most likely area of origin. Nonetheless, this method can not distinguish between primary and secondary areas of diversification. Fossils. While a number of hemipteran families have a relatively rich fossil record (Labandeira and Seposki 1993a), the only known fossils assignable to the family Membracidae with certainty are undescribed representatives of the subfamily Stegaspidinae from amber of the Dominican Republic (Schlee 1990a, Poinar 1992a, McKamey 1998a). Dominican amber was deposited during the Eocene-Miocene, 57.8 to 5.3 million years ago (mya), long after the vicariance of Gondwana. Perhaps further membracid fossils await discovery, but meanwhile, the limited records provide a minimum age of 57.8 to 5.3 million years for the Stegaspidinae, and suggest a Tertiary origin for Membracidae, perhaps in the New World. Phylogeny. Recent phylogenetic studies provide a broad outline of evolutionary relationships among New World membracids, but phylogeny within the cosmopolitan 429
subfamily Centrotinae--so critical to addressing biogeographical patterns among treehoppers-was largely neglected until the present study. Both morphological and molecular data (Deitz and Dietrich 1993a, Dietrich and Deitz 1993a, Cryan et al. 2000a, Dietrich et al. 2001a) suggest that the Membracidae arose in the Neotropics, but the time of origin is difficult to pinpoint with neither a substantial fossil record nor divergence times calculated from molecular data. Phylogenetic analyses have consistently placed four subfamilies as the first membracid lineages.
These groups--Endoiastinae, Stepaspidinae, Nicomiinae, and
Centronodinae--are largely confined to the Neotropics. To summarize, evidence from phylogeny, fossils, and geography (region of greatest morphological diversity) all favor a Neotropical origin for the family Membracidae. Furthermore, fossils provide a minimum age of 57.8 to 5.3 million years for the Stegaspidinae (one of four basal membracid lineages), pointing toward a Tertiary origin for the family.
Biogeographic patterns of the Centrotinae The Centrotinae account for roughly half of all treehopper diversity at the tribal, generic, and species levels.
As noted above, centrotines are found in all major
zoogeographic regions. While a few tribes are widely distributed, many occur primarily in one or two major regions.
The distinctive fauna of the Afrotropical, Indomalayan,
Australasian/Oceanian, and Caribbean Regions are especially notable. Indeed, all but one of the Old World centrotine tribes have representative genera found in the Indomalayan Region (Fig. 25.1).
430
How did treehoppers acquire their Old World distribution if it is assumed that membracids arose in the Tertiary Neotropics, when the southern continents had already drifted far apart?
If the centrotine distribution were to be explained by vicariance, their
phylogeny should, to some extent, reflect the historical splitting of the land masses and their historical proximity to one another. The geologic history of the continents followed here is based on McLoughlin (2001a). North America and Africa separated roughly 180-165 mya. Madagascar + India separated from Africa approximately 165 mya, and from Antarctica and Australia about 132 mya. Africa diverged from South America 135-105 mya and India and Madagascar separated from each other 95-84 mya. By the early Tertiary (65 mya), New Zealand was widely separated from Australia.
South America, Australia, and Antarctica
were more or less connected from 60-35 mya. The evolutionary relationships of the Centrotinae (Fig. 25.1) do not coincide with the historical relationships of the continents. Centrotines found in former Gondwanan regions such as Africa, Australia, and South America, are not closely related (Fig. 25.1). The Terentiini, placed relatively basally in the phylogeny (Fig. 25.1) and primarily Australasian in distribution, show no close relationship with South American centrotines. Aside from a single record of the genus Gargara (Gargarini) (Day 1999a), the only tribe on continental Australia is the Terentiini. Terentiines are the sister group to a primarily Palearctic and Indomalayan clade of centrotines, Ebhuloidesini + Oxyrhachini + Hypsaucheniini. Furthermore, the immediate basal lineage of the Terentiini are the Centrocharesini, found in the Palearctic and Indomalayan Regions (Fig. 25.1).
With the exception of the
Centrodontini, the only tribe with South American elements, the Boocerini, are the sister group of the Gargarini, which are predominantly Palearctic and Indomalayan in distribution. 431
The highly derived (Fig. 25.1) and primarily Afrotropical tribes Centrotini and Xiphopoeini are distantly related to the Australasian Terentiini and to South American centrotines. Additionally, no centrotines are apparently native to Madagascar or New Zealand based on extensive collecting in recent times (Capener 1968a; Eyles 1970a, 1971a; Wise 1977a), suggesting either that they went extinct on both islands or perhaps that these islands were isolated before treehoppers reached the Old World. Had treehoppers originated before the breakup of South America and Africa, however, they would likely have colonized both New Zealand and Madagascar. Moreover, centrotines of several tribes have been described from India. If treehoppers were present in Gondwana prior to its breakup, they would likely be present in Madagascar also, because of its historical proximity to India up to 85 mya. Treehoppers likely invaded India in the Cenozoic either when it collided with Asia approximately 45 mya ago (McLoughlin 2001a) or when it is thought to have briefly contacted Africa (Hedges 2001a). The cuckoo wasps (Hymenoptera: Chrysididae) show a similar relationships to centrotines. No higher chrysidid taxa found on different Gondwanan continents are closely related, and thus it is believed that the cuckoo wasps evolved following the Gondwanan breakup (Briggs 1995a). Based on the phylogeny presented here (Fig. 24.1, Fig. 25.1), centrotines originated in the New World, dispersed to the Old World twice, and subsequently underwent explosive radiations. All suitable outgroups for the Centrotinae (Fig. 24.1) are from the New World. Furthermore, the first centrotines are apparently from the New World, ancestors of the Centrodontini (Fig. 25.1), a disjunct tribe located in South and North America. Apparently, one centrotine invasion of the Old World eventually gave rise to the predominantly Indomalayan and Palearctic Gargarini--the other invasion gave rise to most of the remaining 432
centrotine species, with more than half distributed in the Afrotropical and the Australasian/Oceanian Regions. Although the first Old World invasion (Fig. 24.1: node 124, Gargarini) is supported by 4 character changes, the second (Fig 24.1: node 111) is supported by only 2 character changes.
Centrotinae biogeographical patterns and scenarios Biogeographical patterns of New World centrotines. The first centrotines were from the New World, ancestors of the Centrodontini (Fig. 25.1), a disjunct tribe located in South and North America. The genera Multareis, Multareoides, and Centrodontus are confined to creosote bush in the southwestern United States and northern Mexico, the apparent center of diversification of the centrodontines, while Nodonica has been found only in the South American countries of Brazil, Ecuador, and Peru. Most New World centrotines are located in Central America and Mexico (31 spp.), and the Caribbean islands (66 spp.) (McKamey 1998a, Dietrich et al. 2001a). Just 5 genera and 12 centrotine species, all in the Boocerini and Centrodontini, are found in South America.
Based on these numbers, the early
centrotines likely arose in North America and later invaded South America. Nonetheless, even though South American centrotines are few, phylogenetic analyses of the Boocerini and Centrodontini (Fig. 24.5) do not rule out a South American origin for centrotines. Nodonica, the basal genus of Centrodontini, is found in South America, and the basal relationships of the Boocerini are unresolved. Ramos (1988a), however, noted a close relationship among Central American, Mexican, and Caribbean centrotines. Apparently, there were two centrotine invasions to what are now the Caribbean Islands from mainland Neotropical centrotines, one eventually giving rise to the Monobelini 433
and the other giving rise to the Nessorhinini, both tribes endemic to the Caribbean Region (Fig. 25.1). The distribution of these centrotines is likely explained by dispersal rather than vicariance due to the high endemism of the Caribbean fauna and the absence of nessorhinines and monobelines in the mainland Neotropics. The Caribbean membracid fauna would likely resemble a cross-section of the mainland Neotropical fauna if there had been an ancient vicariance of land masses, with a higher diversity at the generic and subfamily levels. Therefore, it is more likely that ancestors of the Centrodontini dispersed into the Caribbean Region giving rise to the Monobelini (Fig. 25.1). The same ancestors apparently also gave rise to the Boocerini. The common ancestor of the Mexican tribe Platycentrini likely made the second invasion into the Antillean region, eventually giving rise to the Nessorhinini (Fig. 25.1). The mechanism for these dispersals is unclear due to the controversial geologic history of the Antillean region (Iturralde-Vinent and MacPhee 1999a, Hedges 2001a). It is generally agreed that the Caribbean Islands were formed by volcanism as a result of subduction of the North American plate beneath the Caribbean plate in the mid-Cretaceous (Hedges 2001a). As a result of this event, it is likely that North America and South America were connected by a “proto Antillean” land arc or land bridge consisting largely of present day Antillean land masses in the late Cretaceous, approximately 70-80 mya. This land bridge could have been an avenue of dispersal to the Caribbean islands. Researchers disagree on the timing and permanency of this land bridge and which islands were continuously above water. If this was a mechanism for dispersal, however, why didn’t more centrotine higher level taxa disperse to these areas? One possibility is that the ancestral centrotines were isolated in various areas of North America. 434
Another possibility is an early Tertiary dispersal following the extraterrestrial impact believed responsible for massive terrestrial and marine extinctions 65 mya. At that time, the continuous land bridge connecting North and South America was beginning to dissolve leaving an island archipelago (Briggs 1995a). Dispersal via more temporary land bridges, rafting, or other means, to these newly formed islands would better explain the endemic Caribbean centrotine fauna. While a permanent land bridge would permit more animals to disperse, island chains would act as filter, allowing some taxa to colonize while acting as a barrier to others (Hedges 2001a). Vertebrate fauna are also low in taxonomic diversity at higher levels in the Caribbean but some genera have a large number of species, similar to centrotines (Hedges 2001a). Many researchers believe that approximately 65 mya, at the border of the Cretaceous and Tertiary, an extraterrestrial object impacted the Yucatan peninsula of Mexico resulting in a mass extinction of numerous marine organisms, dinosaurs, mammals, insects, and plants (Labandeira et al. 2002a). The side effects to the fauna would have been widespread, including massive tsunamis and hurricanes, perhaps destroying all Antillean fauna (Hedges 2001a). It is possible that any Caribbean centrotines that had dispersed via a permanent land bridge prior to the impact would have also been exterminated. This would favor a dispersal following the 65 mya impact event. Biogeographic patterns of Old World centrotines.
Apparently, there were two
centrotine colonizations of the Old World (Fig. 25.1); one eventually giving rise to the predominantly Indomalayan and Palearctic Gargarini and another giving rise to most of the remaining centrotine species, with more than half of these distributed in the Afrotropical and the Australasian/Oceanian Regions. Interestingly, the most basal Old World groups, the tribes Gargarini and Beaufortianini, are also very widely distributed (Fig. 25.1). If the Old 435
World Centrotinae had reached the Old World by dispersal after the extraterrestrial impact (based on the earlier dispersal times to Caribbean and the fossil record), how was this accomplished seeing that the Gondwanan continents by this time were well separated? Four possible scenarios are considered here. Firstly, as a result of a sea level drop in the late Cretaceous, southern South America, Antarctica, and Australia were joined from approximately 60 to 35 mya (Briggs 1995a, McLoughlin 2001a). This passage has been hypothesized as the Tertiary dispersal route for marsupials, birds, reptiles, invertebrates, and angiosperms from southern South America to Australia (Briggs 1995a).
There is no evidence, however, from current centrotine
distributions or the present phylogenetic analysis (Fig. 25.1) to support centrotines dispersing to the Old World via South America to Australia.
The South American centrotines
(Centrodontini and Boocerini) are not closely related to Australasian centrotines (all Terentiini except one record of Gargara) (Fig. 25.1). Additionally, as noted above, most New World centrotines are located in Central and North America and the Caribbean, not southern South America. This scenario is therefore unlikely for either of the two invasions. Dispersal to the Afrotropical Region from the New World is a second possibility. Still, there are only a few species of Gargarini in the Afrotropical Region, a primarily Indomalayan and Palearctic tribe (Fig. 25.1).
The first Old World tribe of the other
centrotine invasion is the Beaufortianini (Fig. 25.1). Their immediate ancestor is the New World tribe Pieltainellini, found in the mainland Neotropics.
The tribe Beaufortianini
consists of Afrotropical and Indomalayan genera but the basal lineage is the genus Imporcitor, found in the Palearctic and Indomalayan Regions.
It is possible that both
invasions dispersed from the Africa to India, which is thought to have been joined with 436
Somalia in northeast Africa in the late Cretaceous (Briggs 1995). Both invasions could have colonized the Indomalayan and Palearctic Regions following India’s collision with Asia, approximately 45 mya (McLoughlin 2001a). The distribution of the gargarine genus Madlinus provides some support for this scenario. Madlinus, which is closely related to Coccosterphus, has been found only on the Seychelle Islands.
The Seychelles were closely associated with India until 65 mya.
Coccosterphus and its relatives are mostly confined to India. Based on the above scenario, the ancestors of Madlinus were subsequently confined to the Seychelles after its split with India 65 mya. The presence of Madlinus in the Seychelles is evidence for an ancient dispersal of the gargarine lineage to India via Africa, considering the great distance between India and the Seychelles today and the relative proximity of the Seychelles to Madagascar, which is devoid of membracids. Nevertheless, the presence of Madlinus on the Seychelles-the only membracid collected there besides Leptocentrus--could also be explained by a recent long distance dispersal from India. Other factors discredit an initial dispersal through the Afrotropical Region. In the Tertiary, the New World and Africa were separated by a long distance seemingly making dispersal by any means, whether rafting or by wind, difficult. The largest centrotine genus, Tricentrus, here placed in the Gargarini, is absent from the Afrotropical Region. Presumably some Tricentrus would be present in the Afrotropical Region, if treehoppers migrated from the New World to India through Africa. Also, the late Cretaceous connection between India and northeastern Africa may have been earlier than the hypothesized origin of membracids following the Cretaceous/Tertiary boundary. Moreover, the immediate Old World lineages following the Beaufortianini in the tree (Fig. 25.1) are primarily distributed in the 437
Indomalayan, Palearctic, and Australasian/Oceanian Regions with very few genera present in Afrotropical Region. Finally, as mentioned previously, centrotines distributed in Gondwanan areas are not closely related, further excluding a Gondwanan vicariant event and dispersal through Africa. Thirdly, it is possible that both Old World invasions were from east to west over the Bering Land Bridge to Asia. This bridge connected North America and Asia beginning in the mid- to late Cretaceous, and from time to time throughout the Tertiary, as a result of continental convergence (Briggs 1995a).
The geographic distributions of the larger
centrotine lineages support this scenario. The Gargarini, the eventual descendants of the one invasion, are predominantly distributed in the Palearctic and Indomalayan Regions. The genus Imporcitor, the first lineage of the Beaufortianini (Fig. 24.1) (the first Old World tribe resulting from the other invasion), has been recorded in India, Taiwan, and Japan (McKamey 1998a).
As noted previously, all but one of the Old World centrotine tribes have
representative genera found in the Indomalayan Region (Fig. 25.1). Evans (1966a) noted that the Indomalayan Region may be the center of origin for the Centrotinae considering the large number of species found there. Therefore, based on the phylogeny and known distributions of the centrotine tribes (Fig. 25.1), the Indomalayan Region appears to be a likely center of diversification and “jumping-off point” for centrotine dispersals to other zoogeographic regions, notably Australia and the Afrotropical Region. Strümpel (1972a) also believed that centrotines used the Bering Land Bridge as a dispersal route. However, he thought the Membracidae arose in Gondwana and that the Centrotinae reached the New World from Asia by way of the Bering Land Bridge in the
438
Pleistocene. This would imply a more derived position for the New World centrotine tribes which is not supported by the current phylogenetic analysis (Fig. 25.1). The center of diversification for the Gargarini, the immediate descendants of one of the Old World Invasions, is clearly the Indomalayan Region (Fig. 25.1). All gargarine genera except one, Butragulus (McKamey 1998a) are found in the Indo-Malaysian Region. Furthermore, 17 of the 28 gargarine genera are restricted to this Region (McKamey 1998a). Based on the phylogenetic tree (Fig. 25.1), ancestors of the Australian treehoppers (Terentiini) likely arrived from the Indomalayan and Palearctic Regions.
Apparently
numerous angiosperm families now present in Australia invaded from southeast Asia in the early Tertiary (Briggs 1995a). It is possible that treehoppers followed these angiosperms into Australia. Other Australian insects, including the ground beetles (Coleoptera: Carabidae) and some scarabs (Scarabaeidae: Dynastinae), likely dispersed into Australia from southeast Asia (Briggs 1995a). According to Hall (1998a), northern Australia and Asia (present day Philippines) collided approximately 25 mya, which probably resulted in a temporary land connection. The ant genus Tetraponera likely invaded Australia from Asia 20 mya using this land bridge (Ward 2001a). It is possible that terentiine ancestors all used this temporary land bridge. Nonetheless, it is clear that Australia was the center of diversification for the Terentiini; all but 3 of the 40 terentiine genera are found in the Australasian/Oceanian Region. The center of diversification for the tribe Maarbarini is the Indomalayan Region (Fig. 25.1) with all of the genera recorded from either India or Sri-Lanka or both (McKamey 1998a).
The derived position of this tribe on the phylogeny (Fig. 24.1, 25.1) and its
immediate Indomalayan and Palearctic ancestors and relatives provide further evidence that 439
treehoppers invaded India after it collided with Asia in the mid-Cretaceous. One would expect a closer relationship between maarbarines and Afrotropical and/or Australian tribes if maarbarine ancestors had colonized India when it was closer to or contiguous with the other Gondwanan continents in the late Cretaceous. Ancestors of the Afrotropical centrotines (Xiphopoeini and Centrotini, Fig. 25.1) likely would have arrived more recently from Indomalayan ancestors. The ancestors of these derived tribes may have dispersed into Africa approximately 23 mya in the Miocene when Africa collided with Asia. The Leptocentrini, the lineage basal to both these tribes, is widely distributed in the Old World and has significant components in the Afrotropical and Indomalayan Regions. All of the genera in the Centrotini, the largest centrotine tribe, are found in the Afrotropical Region, with a few genera (notably the basal genus Centrotus) also occurring in the Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey 1998a). The Afrotropical Region, therefore, appears to be the center of diversification for this large tribe. The Centrotini are a derived lineage with reduced hind wing venation (Fig. 25.1).
Their derived position and large distance from New World centrotines in the
phylogenetic tree (Fig. 24.1, 25.1) is evidence against a historic Gondwanan relationship with Neotropical centrotines. A fourth possibility involves dispersal from west to east across a North Atlantic Land Bridge that is thought to have connected the Laurasian continents in the North Atlantic from the Mesozoic to the Eocene (57.8 mya) (Briggs 1995a). This route was a possible alternative to the Bering Land Bridge or perhaps a parallel dispersal route to the Old World. Nevertheless, if ancestral centrotines arose in tropical North America, dispersal to the Old
440
World--particularly to the Indomalayan Region--across the North Atlantic route would involve a far greater distance than the Bering Land Bridge. Discussion. Of the four scenarios presented here, dispersal across the Bering Land Bridge is most compelling. A number of other organisms are thought to have migrated between North America and Asia via the Bering Land Bridge in the late Cretaceous and early Tertiary. The use of this bridge as a dispersal route to explain disjunct distributions has been hypothesized for placental mammals, salamanders, dinosaurs, and freshwater fish (Briggs 1995a). Although most dispersals over the Bering Land Bridge are thought to have occurred from Asia to North America, there are several examples of organisms dispersing from North America to Asia (Briggs 1995a). The freshwater fish family Esocidae (pikes), distributed today in eastern North America and eastern Asia, apparently migrated a long distance from North America to Asia based on fossil evidence (Briggs 1995a). Researchers believe that numerous aquatic insects lineages used the land bridge as a connection between Asia and North America. The trichopteran genus Chimarra is thought to have dispersed from South America to Asia in the early Tertiary (Briggs 1995a). Further evidence in support of dispersal across the Bering Land Bridge includes records of similar floras in eastern Asia and eastern North America (Briggs 1995a). Numerous plant genera and families show disjunct distributions among Asia and North America. Apparently, angiosperms migrated back and forth between the two continents using the land bridge as a dispersal route. The initial dispersal was apparently eastern but later there were migrations of plants back to Asia from North America (Briggs 1995a). The presence of angiosperms would have provided a constant food source for dispersing treehoppers from North America to Asia. 441
Evidence from plant biogeography supports a possible treehopper migration from North America to the Bering Land Bridge. In the early Tertiary, the dominant vegetation in temperate latitudes consisted mainly of deciduous plants. At the beginning of the Eocene, the time when the earliest known treehoppers (fossil stegaspidines) have been found, the climate was the warmest of the entire Cenozoic, allowing tropical animals, such as treehoppers, to invade to the north. Tropical and temperate vegetation spread northward due to this worldwide warming trend (Briggs 1995a).
Several plant families, including
Cactaceae, Liliaceae, Loasaceae, Nyctaginaceae, Martyniaceae, Tecophilaceae, and Zygophyllaceae, migrated northward from South America in the early Tertiary representing the beginnings of colonization of North America by South American tropical flora (Briggs 1995a). Indeed, centrotines have been recorded from the families Liliaceae, Nyctaginaceae, and most notably the Zygophyllaceae (Table 26.2).
The tribe Centrodontini, the first
centrotine lineage (Fig. 25.1), is the only treehopper group known to feed on the Zygophyllaceae. A northward migration of treehoppers from North America to the Bering Land Bridge is supported by these plant migrations. Assuming the Bering Land Bridge was the dispersal route for both Old World invasions (Fig. 25.1), the treehoppers likely dispersed to the Old World and diversified in isolation without migrating back to North America. No centrotines are currently found in northern North America; the predominant North American treehopper subfamily is the Smiliinae. Centrotines may have gone extinct in these areas or migrated to southern refugia as a result of Pleistocene glaciations. Similarly, modern day continental Europe has only three native centrotine species but may have had more prior to the Pleistocene glaciations. Depauperate fauna in Europe may be due to extreme climatic conditions during the 442
Pleistocene glaciation. Both eastern and western North America have close to 20% more genera of trees and shrubs endemic to their area than Europe. This discrepancy in floral diversity has been attributed to the east/west oriented mountains in Europe that may have prevented the migration of trees into lower, warmer latitudes during the glaciations of the Quaternary. In North America, the major mountain ranges run north/south. Here, the woody plants could migrate ahead of the glaciers without any barriers (Reid 1935a). According to Huntley (1993a), the harsh environments and climates of the Quaternary period eliminated many European forest taxa. These climatic effects could also have severely reduced treehopper numbers.
Summary and Conclusions According to the fossil record and recent phylogenetic analyses, Membracidae likely originated in the New World during the Tertiary, possibly near the time of the hypothesized extraterrestrial impact 65 mya. Other evidence for a Tertiary origin include the absence of treehoppers in Madagascar and New Zealand, the historic connection of India with Madagascar and the high species richness of India (including the tribe Maarbarini), and the distantly related centrotine faunas of the Afrotropical Region, Australia, and South America. These observations do not correspond to patterns that would be expected if centrotines originated in Gondwana, prior to the splitting of the land masses. The highly endemic Monobelini and Nessorhinini of the Caribbean occupy a basal position in the phylogenetic analysis. The hypothesized dispersal of their ancestors to the Caribbean over an island archipelago at the Cretaceous/Tertiary border also supports a treehopper origin near this time.
443
Centrotines are found in all major zoogeographic regions: The Afrotropical, the Nearctic, Neotropical, Palearctic, Indomalayan, and Australasian/Oceanian Regions. While a few tribes are widely distributed, many occur primarily in one or two major zoogeographic regions. The distinctive fauna of the Indomalayan, Australian/Oceanian, Afrotropical, and Caribbean regions are especially notable. All of the Old World centrotine tribes, except the Xiphopoeini, have representatives in the Indomalayan Region. Based on the phylogenetic analysis presented here, the early centrotines, apparently widely abundant in North America, dispersed twice to the Caribbean and twice to the Old World. Indeed, each of the two major centrotine clades has a basal lineage that dispersed to the Caribbean Region and also a more derived clade that dispersed to the Old World. Although the pathways and methods of dispersal are unclear, the repetitive pattern of dispersals in the two groups suggests that the timing, routes, and mechanisms may have been similar in each clade. It is possible that the dispersals to the Old World occurred over the Bering Land Bridge, accounting for the Indomalayan and Palearctic distributions of basal centrotine lineages. Based on the phylogeny and known distributions of the centrotine tribes, the Indomalayan Region is the most plausible center of diversification and “jumping-off point” for centrotine dispersals to other zoogeographic regions, notably Australasian and Afrotropical Regions.
444
Figure 25.1. Distributions of centrotine tribes. Geographic regions are noted on the tribal phylogeny (modified from Fig. 24.1). Asterisks (*) denote obvious centers of generic diversification for those taxa known from multiple geographic regions. Plus signs (+) denote the region of the basal genus, if apparent. 445
26: CENTROTINE ANT ASSOCIATIONS, HOST PLANTS, AND CHROMOSOME NUMBERS
Introduction Although primarily recognized for their exaggerated morphological characteristics, treehoppers are also known for their complex life history patterns including ant-mutualisms, maternal care, sound communication, and host plant specialization.
Wood summarized
behavioral patterns in the New World Membracidae (1993a), and Ananthasubramanian and Ananthakrishnan (1975a, 1975b), Ananthasubramanian (1996a), and Capener (1962a, 1968a) discussed similar characteristics for Indian and African membracids, respectively. Ant-membracid mutualisms, where ants feed on the excreted treehopper honeydew and in exchange provide the homopterans defense against natural enemies, are well documented (Ananthasubramanian 1996a, Hölldobler and Wilson 1990a, Panda 1968a). Ant-attendance is common in both Old World (Table 26.1) and New World Membracidae (Wood 1993a). Wood (1993a) described different levels of maternal care in treehoppers. Maternal care occurs in four of the seven New World subfamilies and in approximately half of the tribes in the highly derived subfamilies Membracinae and Smiliinae. In addition to egg guarding, some New World groups aggressively defend their offspring from predators and parasitoids (Wood 1993a, McKamey and Deitz 1996a). The life history traits of the Centrotinae, a group primarily distributed in the Old World, have not been examined in an evolutionary context. Firstly, it is unclear if antattendance is an ancestral trait for centrotines and if ant-attendance and maternal care (egg 446
guarding) are correlated. Secondly, there are many questions regarding the relationship between centrotines and their host plants. What were the original centrotine host plant families and what are the subsequent patterns of host plant exploitation? information on centrotine host plant families is presented here.
Baseline
Finally, centrotine
chromosome data was gathered to determine the likely ancestral chromosome number, what derivations occurred, and the usefulness of chromosomes as phylogenetic characters. In order to examine these evolutionary patterns, centrotine behavioral and host plant patterns, as well as male chromosome numbers, are tabulated by genus and tribe and are optimized as unweighted characters on a tribal phylogeny (modified from Fig. 24.1). Although Ananthasubramanian (1996a) provided a summary of aggregation behaviors among the Centrotinae, data are lacking for too many taxa to establish evolutionary trends.
Methods Published records of centrotine genera reported to be ant-attended, host plant families, and male chromosome numbers are summarized in Tables 26.1-26.3. Sources are given in each table. The phylogeny of the 23 centrotine tribes was modified from the tree in Fig. 24.1 to serve as a framework for mapping the ecological, behavioral, and chromosomal features. Ant-attendance, maternal care in the form of egg guarding, host plant families, and chromosome numbers were treated as unweighted characters (i.e., each host plant family was treated as a separate character in the analysis) and scored for each tribe in DELTA (Dallwitz et al. 1999a). Characters were scored as present if at least one genus in a tribe was reported as having the trait in the literature. For example, although the genus Coccosterphus is the only gargarine genus listed to feed on the family Nyctaginaceae, this host character was 447
scored as present for the tribe Gargarini. Host plant information is unknown for the tribes Choucentrini, Micreunini, and Pieltainellini and these were scored with a question mark (?). Otherwise, if a host plant family is not recorded for a tribe, it was scored as absent. Tribes and genera without published information on ant-attendance or chromosome numbers were scored with a question mark (?). The presence or absence of each of these characters for the 23 centrotine tribes was optimized in the parsimony program Winclada (Nixon 1999a) using the fast optimization procedure. The gain and loss of these characters were then mapped onto the tribal phylogeny (Figs. 26.1-26.3). Chromosome numbers for Chinese taxa follow Tian and Yuan (1997a: Table 1) except that Tricentrus acuticornis Funkhouser should be male 2n=10 (1997a: 156); some numbers in Yuan and Chou’s (2002a) review are ambiguous.
Results and Discussion Ant-attendance and Maternal Care.
Ant-attendance has been reported from 28
centrotine genera and 11 of 23 centrotine tribes: Beaufortianini, Boocerini, Centrocharesini, Ebhuloidesini, Hypsaucheniini, Maarbarini, Oxyrhachini, and the four largest tribes in terms of genera, Centrotini, Gargarini, Leptocentrini, and Terentiini (Table 26.1).
The tribe
Gargarini has the largest number of ant-attended genera with 8, although “all” Australasian (Terentiini) and South African (including some Beaufortianini, Boccharini, Centrotini, Leptocentrini, Oxyrhachini, and Xiphopoeini) nymphs are said to be ant-attended. The New World tribe Centrodontini is the only centrotine group reported in the literature as not attended by ants (Dietrich et al. 2001a).
448
Ancestral state reconstruction using parsimony resulted in a single derivation of antattendance in the common ancestor of Monobelini + Boocerini + Gargarini and the remaining 19 centrotine tribes (Fig. 26.1). Ant-attendance, however, is an ambiguous trait in the 11 tribes (denoted with a “?’ in Fig. 26.1) where attendance information is unknown. Therefore, although ant-attendance is ambiguous for many centrotine tribes, it appears to be an ancestral character for a majority of the Centrotinae. Lin (2003a), in a study of the treehopper subfamily Membracinae, concluded that antattendance precedes the derivation of maternal care (egg guarding) but that the gain of maternal care is accompanied by the loss of ant-attendance. These findings supported the hypothesis of Wood (1984a) that egg guarding in treehoppers is correlated with the absence of ant-attendance. Conversely, according to Tallamy and Schaefer (1997a), maternal care in the Hemiptera is frought with increased costs to the mother and young including increased exposure to predators and lower fecundity. Thus, many hemipteran groups have acquired traits such as ant-attendance to lower these costs. The results presented here for the Centrotinae (Fig. 26.1) do not reflect either of these conclusions. Maternal care in the form of egg guarding appears to be apomorphic in the Centrotinae.
Tribes within the well supported clade Ebhuloidesini + Oxyrhachini +
Terentiini + Hypsaucheniini + Centrocharesini all have ant-attended genera (Table 26.1) and are the only centrotines known to exhibit maternal care in the form of egg-guarding (Fig. 26.1) (Stegmann and Linsenmair 2002a). (Hinton 1977a listed Platycentrus acuticornis as subsocial but it is unclear from the figure if the female is guarding nymphs or eggs. Thus, for the purposes of this work, Platycentrus is not considered to show maternal care in the form of egg guarding). This common trait, unique to these tribes, provides independent support of 449
their relatedness. In centrotines, therefore, ant-attendance and maternal care in the form of egg guarding appear to occur concurrently. Cryan (1999a) also found sociality and antattendance to occur together on a phylogenetic tree of the Membracidae derived from combined morphological and molecular data. Nevertheless, as found in the Membracinae (Lin 2003a), maternal care is preceded by ant-attendance on the centrotine phylogenetic tree (Fig. 26.1). Apparently, females of some Membracinae, a derived membracid subfamily, developed the trait of defending eggs and did not require additional ant defense (Lin 2003a), but the females of some Centrotinae, a more primitive membracid subfamily, guard their eggs and have ant herders that provide additional defense. Clearly, further data on the life history of centrotines is needed to further elucidate the relationships between maternal care and ant-attendance. Host plants. Centrotines are documented from 105 different host plant families (Table 26.2). Based on ancestral state reconstruction by parsimony, most of the plant family derivations in the phylogenetic tree (Fig. 26.2) are concentrated at the tips, suggesting many centrotine taxa only recently adapted to these hosts. Apparent losses of host plants could reflect the absence of a plant family in a tribe’s geographic range. These patterns, especially in the large tribes Gargarini, Terentiini, Leptocentrini, and Centrotini, suggest an increasing trend towards generalization in host use although there are many examples of novel adaptations of hosts in centrotine tribes. Despite this observable trend in host generalization in centrotine tribes, these patterns should be examined based on generic-level data to avoid over-generalizations on centrotine/host relationships.
450
Excluding the New World tribe Centrodontini, most centrotine tribes are extremely polyphagous. The North American genera of the Centrodontini, Centrodontus, Multareis, and Multareoides, feed only on a single plant species, the creosote bush, Larrea divaricata tridentata (DC) Felger and Lowe, in the family Zygophyllaceae. Twelve of 23 centrotine tribes, however, have at least 5 or more known host plant families. Three of the four largest centrotine tribes in numbers of genera have the most reported host plant families (Table 26.2, Fig. 26.2). Sixty plant families are listed for the Gargarini, 54 for the Leptocentrini, and 40 for the Centrotini. Within the Gargarini, the genus Gargara is known from 35 host plant families and Tricentrus is known from 44 families.
The species Centrotus cornutus
(Centrotini) is recorded from 16 different plant families: Aceraceae, Betulaceae, Compositae, Corylaceae, Cornaceae, Ericaceae, Euphorbiaceae, Fagaceae, Juglandaceae, Leguminosae, Moraceae, Onagraceae, Pinaceae, Rhamnaceae, Rosaceae, and Salicaceae (Table 26.2). Wood (1993a) also noted the widespread polyphagy in tropical Old World centrotines and Central and South American membracids. In contrast, most North American temperate membracids are found on a single host genus (Wood 1993a). In addition to being polyphagous, many centrotines show adaptations to novel plant families. Forty plant families are hosts for only a single centrotine genus or tribe. Centrotus (Centrotini) is the only centrotine genus found on the plant families Aceraceae, Cornaceae, Corylaceae, Onagraceae, while Gargarini is the only centrotine tribe reported to feed on Alangiaceae, Cannabaceae, Coriariaceae, Elaeagnaceae, Hamamelidaceae, Myristicaceae, Nyctaginaceae, Oleaceae, Rhizophoraceae, Saxifragaceae, and Thymelaeaceae. The tribe Nessorhinini, a primitive group based on the phylogenetic analysis (Fig. 24.1), is the only centrotine group found on the Malpighiaceae. These patterns suggest recent adaptations by 451
tribes to plant hosts, however, in most cases, the same tribes include genera that also feed on a number of other host plant families. Conversely, the Leptocentrini and Gargarini share 37 host plant families even though they are not closely related (Fig. 24.1), while the more closely related Centrotini and Leptocentrini share 23 host plant families. These patterns may reflect convergent adaptations to host plants. The Leguminosae (hosts for 42 centrotine genera, 13 tribes), Solanaceae (22 genera, 10 tribes), Euphorbiaceae (19 genera, 8 tribes), and Compositae (18 genera, 7 tribes), are exploited at more basal positions in the tree and appear to be favored centrotine hosts. Moreover, the Solanaceae and Leguminosae are likely the two original host plant families (Fig. 26.2) for most centrotines except the Centrodontini. More than half of the centrotine tribes have genera reported to feed on the host plant family Leguminosae. Ancestral state reconstruction by parsimony indicates 2 independent gains of legume feeding and 5 losses, with the most prominent gain in the common ancestor of Monobelini + Boocerini + Gargarini and the remaining 19 centrotine tribes (Fig. 26.2). With the exception of Ebhuloidesini, all tribes in the clade Centrocharesini + Terentiini + Ebhuloidesini + Oxyrhachini + Hypsaucheniini include some genera that feed on the Euphorbiaceae. Several closely related tribes feed on the same host plant family(s), providing independent support of their relatedness.
For example, the related tribes Lobocentrini,
Leptobelini, Maarbarini, Leptocentrini, and Centrotini all have genera that feed on plants within the family Fagaceae. Furthermore, only the Gargarini and the related Monobelini are known to feed on the family Araceae. Male Chromosome Numbers. Chromosome numbers have only been examined in 8 centrotine tribes, the male number being reported universally. Therefore, many ambiguous 452
gains were plotted using ancestral state optimization. Data is insufficent to conclude on the usefulness of male chromosome numbers as phylogenetic characters in Centrotinae. Nevertheless, 2n=21 may have been the original centrotine chromosome number (Fig. 26.3). Indeed, Kirillova’s (1987a) review gave 2n=21 as the mode among all treehoppers and 17 as the mode among leafhoppers (Cicadellidae). This chromosome number is apparently lost in the Ebhuloidesini, Hypsaucheniini, and Centrotini. Furthermore, the large tribe Gargarini independently acquired 5 different male chromosome numbers. The closely related tribes Centrotini, Maarbarini, and Leptocentrini all have genera with a male chromosome number of 2n=19, while the Ebhuloidesini and Hypsaucheniini have a number of 2n=17, providing independent corroboration of their relatedness. The sex chromosome system in centrotines is primarily XO:XX although Tian and Yuan (1997a) report a XY:XX system in two gargarine species: Nondenticentrus curvispineus Chou and Yuan and Tricentrus acuticornis Funkhouser.
453
Table 26.1. Centrotine genera reported to be tended by ants with citation. Note: not all species within the genus are necessarily ant attended.
Tribe: Genus (citation) BEAUFORTIANINI: Dukeobelus (Capener 1952b). BOOCERINI: Ischnocentrus (Loye 1992a; Olmstead and Wood 1990a). CENTROCHARESINI: Centrochares: (Stegmann and Linsenmair 2002a). CENTROTINI: Anchon (Ananthasubramanian 1984a, 1987a; Ayyar 1937a; Capener 1953b; Lamborn, 1914a); Centrotus (Green 1900a); Leprechaunus (Capener 1950a); Monocentrus (Kenne and Dejean 1997a). EBHULOIDESINI: Ebhul (Azhar 1992a, Funkhouser 1951a). GARGARINI: Butragulus (Hayashi and Endo 1985b); Coccosterphus (Ananthasubramanian and Ananthakrishnan 1975a); Eucoccosterphus (Ananthasubramanian and Ananthakrishnan 1975a); Chitra and Ananthasubramanian 1999a); Gargara (Hayashi and Endo 1985b; Ananthasubramanian and Ananthakrishnan 1975a); Enslin 1911a, 1911b; Funkhouser 1919d, 1951a; Panda 1968a; Weiss and Dickerson 1921a); Machaerotypus (Hayashi and Endo 1985b); Parayasa (Ananthasubramanian and Ananthakrishnan 1975a; Ananthasubramanian 1987a); Tsunozemia (Hayashi and Endo 1985b); Tricentrus (Ananthasubramanian and Ananthakrishnan 1975a); Funkhouser 1919d). HYPSAUCHENIINI: Gigantorhabdus (Ushijima and Nagai 1979a); Hybandoides (Stegmann and Linsenmair 2002a); Hypsauchenia (Funkhouser 1951a); Pyrgauchenia (Melichar 1914b). LEPTOCENTRINI: Hemicentrus (Melichar 1914b); Leptocentrus (Ananthasubramanian and Ananthakrishnan 1975a; Ananthasubramanian and Ramachandran 1990a; Boulard 1969a; Dejean and Bourgoin 1998a; Funkhouser 1951a; Kenne and Dejean 1997a; Panda 1968a; Panda and Behura 1957a; Lamborn 1914a); Otinotus (Ananthasubramanian and Ananthakrishnan 1975a; Behura 1951a, 1955a, 1962a; Behura and Panda 1959a; Behura and Sengupta 1951a; Behura and Sinha 1951a; Panda 1968a; Panda and Behura 1956a). MAARBARINI: Telingana (Ananthasubramanian and Ananthakrishnan 1975a). OXYRHACHINI: Oxyrhachis (Adenuga and Adeboyeku 1987a; Gersani and Degen 1988a; Lamborn 1914a; Panda 1968a; Panda and Behura 1957a; Singh 1986a; Thakur 1973a). TERENTIINI: Cebes (Cookson and New 1980a); Sextius (Buckley 1982a, 1983a; Cookson and New 1980a; Froggatt 1902a; Goding 1903a; Kitching and Filshie 1974a; Hölldobler and Wilson 1990a); Terentius (Kitching 1987a); all Australian nymphs and adults (Carver et al. 1991a; Evans 1966a; Tillyard 1926d). South African nymphs (all ?) (Jacobs 1985a).
454
Table 26.2. List of host plant families and treehopper genera. Numbers correspond to labels in Fig. 25.2. Host plant families are based on the website: http://www.rbgkew.org.uk/data/vascplnt.html and Brummitt (1992a). Treehopper host plant data taken from: Ahmad 1975a, 1976a, 1978a, 1988a; Alma 1999a; Ananthasubramanian 1987a, 1996a; Ananthasubramanian and Ananthkrishnan 1975a; Ananthasubramanian et al. 1990a; Ayyanna et al. 1978a; Ballou 1935a, 1936b; Behura 1951a, 1962a; de Bergevin 1934b; Boulard 1966a, 1968b, 1968d, 1969a, 1969c, 1971c, 1979i, 1979j, 1983b; Capener 1951a, 1962a, 1966a, 1968a, 1968b, 1968c, 1971a, 1972a, 1972b, 1972c; Chatterjee 1933c; Chatterjee and Bose 1933a; Cheo 1935b; Davli et al. 1992a; Day 1999a; Dietrich et al. 2001a; Funkhouser 1919a, 1919d, 1927b, 1935b; Goding 1893d; Gunji and Nagai 1994a; Günthart 1987b; Hargreaves 1937a; Hayashi and Endo 1985b; Helmore 1982a; Hoffmann 1942a; Jankovic 1975a; Kirkaldy 1906c; Koningsberger 1915a; Krauss 1965a; Lamborn 1914a; Lodos and Kalkandelen 1981a; Loye 1992a; Matsumura 1912a; Melichar 1914b; Mohammad and Ahmad 1991a, 1995a; Morley 1905b; Okáli and Janský 1998a; Panda and Behura 1957a; Peláez 1941b; Plummer 1935a; Ramos 1957a, 1979a; Rao et al. 1988a; Raut and Bhattacharya 1999a; Richter 1942c; Smithers 1985a; Swezey 1942a; Wolcott 1941a; Yousuf et al. 1997a; Yuan and Chou 2002a. Host plant family 1. Aceraceae 2. Actinidiaceae 3. Adiantaceae 4. Alangiaceae 5. Alliaceae 6. Amaranthaceae 7. Anacardiaceae 8. Annonaceae 9. Apocynaceae 10. Araceae 11. Araliaceae 12. Aristolochiaceae 13. Asclepiadaceae 14. Balanitaceae 15. Balsaminaceae 16. Betulaceae 17. Bignoniaceae 18. Bixaceae 19. Bombacaceae 20. Bromeliaceae 21. Buddlejaceae 22. Cannabaceae 23. Capparaceae 24. Caprifoliaceae 25. Caricaceae 26. Casuarinaceae 27. Celastraceae 28. Chenopodiaceae 29. Combretaceae
Tribe (Genus) Centrotini (Centrotus) Leptobelini (Leptobelus) Leptocentrini (Leptocentrus) Gargarini (Tricentrus) Leptocentrini (Otinotus); Maarbarini (Telingana) Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus); Oxyrhachini (Oxyrhachis) Boocerini (Campylocentrus); Centrotypini (Centrotypus); Gargarini (Tricentrus); Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini (Nessorhinus) Hypsaucheniini (Gigantorhabdus); Leptocentrini (Leptocentrus, Otinotus) Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus) Gargarini (Tricentrus); Monobelini (Monobelus) Gargarini (Machaerotypus); Leptocentrini (Leptocentrus) Leptobelini (Leptobelus) Boocerini (Campylocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus) Oxyrhachini (Oxyrhachis) Leptocentrini (Otinotus) Centrotini (Centrotus); Gargarini (Butragulus, Gargara, Machaerotypus, Tricentrus) Gargarini (Coccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini (Oxyrhachis) Leptocentrini (Leptocentrus) Leptocentrini (Hemicentrus, Leptocentrus); Gargarini (Tricentrus) Centrotini (Hamma) Oxyrhachini (Oxyrhachis) Gargarini (Gargara) Leptocentrini (Leptocentrus, Otinotus) Maarbarini (Telingana) Centrotini (Hamma, Monocentrus) Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus, Terentius) Gargarini (Gargara, Parayasa); Leptocentrini (Periaman) Terentiini (Acanthucalis) Centrotini (Distanobelus, Platybelus); Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus, Umfilianus); Monobelini (Monobelus) Continued.
455
Table 26.2 cont’d. Host plant family 30. Compositae (Asteraceae) 31. Connaraceae 32. Convolvulaceae 33. Coriariaceae 34. Cornaceae 35. Corylaceae 36. Cruciferae 37. Cucurbitaceae 38. Cupressaceae 39. Dryopteridaceae 40. Ebenaceae 41. Elaeagnaceae 42. Ericaceae 43. Euphorbiaceae
44. Fagaceae
45. Flacourtiaceae 46. Gnetaceae 47. Gramineae 48. Guttiferae 49. Hamamelidaceae 50. Hernandiaceae 51. Juglandaceae 52. Labiatae 53. Lauraceae 54. Lecythidaceae 55. Leguminosae (Fabaceae); (LeguminosaeCaesalpinioideae); (LeguminosaeMimosoideae); (LeguminosaePapilionoideae) 56. Liliaceae 57. Lythraceae 58. Magnoliaceae 59. Malpighiaceae
Genus Centrotini (Anchon, Centrotus, Distanobelus, Leprechaunus); Gargarini (Butragulus, Coccosterphus, Gargara, Machaerotypus, Tricentrus, Tsunozemia); Hypsaucheniini (Hypsauchenia, Hypsolyrium, Jingkara); Leptobelini (Leptobelus); Leptocentrini (Leptocentrus, Otinotus); Monobelini (Monobeloides); Oxyrhachini (Oxyrhachis) Leptocentrini (Leptocentrus) Boocerini (Campylocentrus); Centrotini (Anchon); Leptobelini (Leptobelus), Leptocentrini (Leptocentrus) Gargarini (Tricentrus) Centrotini (Centrotus) Centrotini (Centrotus) Gargarini (Gargara); Leptocentrini (Otinotus) Boocerini (Campylocentrus) Maarbarini (Telingana) Maarbarini (Telingana) Gargarini (Gargara, Machaerotypus); Oxyrhachini (Oxyrhachis) Gargarini (Erecticornia, Gargara, Maurya, Tricentrus) Centrotini (Centrotus); Gargarini (Butragulus, Machaerotypus) Centrocharesini (Centrochares); Centrotini (Anchon, Centrotus, Eumonocentrus, Hamma, Monocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Sipylus, Tricentrus); Hypsaucheniini (Hypsauchenia, Hypsolyrium); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Pyrgonota, Terentius); Xiphopoeini(Xiphopoeus) Centrotini (Centrotus); Gargarini (Erecticornia, Gargara, Machaerotypus, Maurya, Tricentrus); incertae sedis (Elaphiceps); Leptobelini (Leptobelus); Leptocentrini (Leptocentrus); Lobocentrini (Arcuatocornum, Truncatocornum); Maarbarini (Telingana) Ebhuloidesini (Ebhul); Leptocentrini (Hemicentrus, Otinotus) Leptobelini (Leptobelus) Boocerini (Campylocentrus); Centrotini (Anchon); Gargarini (Tricentrus); Leptocentrini (Leptocentrus); Maarbarini (Telingana); Oxyrhachini (Oxyrhachis); Terentiini (Pogonella, Strzeleckia); Xiphopoeini (Xiphopoeus) Boocerini (Ischnocentrus); Gargarini (Tricentrus); Leptocentrini (Otinotus) Gargarini (Tricentrus) Continued. Leptocentrini (Leptocentrus) Centrotini (Centrotus); Gargarini (Machaerotypus, Tricentrus) Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus) Boccharini (Lanceonotus); Ebhuloidesini (Ebhul); Gargarini (Gargara); Leptocentrini (Hemicentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus) Terentiini (Terentius) Beaufortianini (Centruchus); Centrocharesini (Centrochares); Centrotini (Acanthophyes, Anchon, Anchonobelus, Centrotus, Cornutobelus, Distanobelus, Eumonocentrus, Hamma, Monocentrus, Rachinotus, Stalobelus, Tiberianus, Tricoceps); Gargarini (Butragulus, Coccosterphus, Eucoccosterphus, Gargara, Machaerotypus, Parayasa, Tricentrus); Hypsaucheniini (Jingkara); Leptobelini (Leptobelus); Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Platycentrini (Platycentrus, Tylocentrus); Terentiini (Acanthuchus, Anzac, Cebes, Ceraon, Eufairmairia, Eufrenchia, Pogonella, Sarantus, Sextius); Xiphopoeini (Xiphopoeus) Centrotini (Anchon, Tricoceps); Gargarini (Gargara); Leptocentrini (Leptocentrus) Gargarini (Eucoccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus) Hypsaucheniini (Hypsauchenia); Leptocentrini (Leptocentrus, Otinotus, Periaman) Nessorhinini (Nessorhinus, Orthobelus) Continued. 456
Table 26.2 cont’d. Host plant family 60. Malvaceae 61. Melastomataceae 62. Meliaceae 63. Moraceae
64. Moringaceae 65. Myristicaceae 66. Myrtaceae 67. Nyctaginaceae 68. Olacaceae 69. Oleaceae 70. Onagraceae 71. Orchidaceae 72. Oxalidaceae 73. Palmae 74. Passifloraceae 75. Phytolaccaceae 76. Pinaceae 77. Piperaceae 78. Plumbaginaceae 79. Polygonaceae 80. Proteaceae 81. Ranunculaceae 82. Rhamnaceae 83. Rhizophoraceae 84. Rosaceae 85. Rubiaceae
86. Rutaceae 87. Salicaceae 88. Salvadoraceae 89. Santalaceae
Genus Centrotini (Hamma); Gargarini (Gargara, Tricentrus); Hypsaucheniini (Jingkara); Leptocentrini (Leptocentrus); Nessorhinini (Nessorhinus); Terentiini (Alosextius) Boocerini (Ischnocentrus); Ebhuloidesini (Ebhul), Gargarini (Gargara, Sipylus, Tricentrus); Hypsaucheniini (Pyrgauchenia); Leptocentrini (Leptocentrus, Nilautama) Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus) Centrotini (Centrotus, Eumonocentrus); Centrotypini (Centrotypus); Ebhuloidesini (Ebhul); Gargarini (Eucoccosterphus, Gargara, Machaerotypus, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Pogonotypellus) Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus) Gargarini (Tricentrus) Gargarini (Tricentrus); Leptocentrini (Otinotus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Sextius, Acanthuchus, Ceraon, Eufairmairia, Eufairmairiella, Eufrenchia) Gargarini (Coccosterphus) Centrotini (Anchon, Monocentrus) Gargarini (Gargara, Tricentrus) Centrotini (Centrotus) Leptocentrini (Leptocentrus) Centrotini (Zanzia); Gargarini (Tricentrus) Centrotini (Monocentrus); Leptocentrini (Leptocentrus) Leptocentrini (Leptocentrus) Boocerini (Campylocentrus); Nessorhinini (Nessorhinus) Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Maurya, Tricentrus) Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus) Terentiini (Pogonella) Centrotini (Tricoceps); Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus); Terentiini (Cebes) Beaufortianini (Dukeobelus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus, Otinotoides, Pogonella, Sertorius, Terentius) Centrotini (Anchon) Centrotini (Acanthophyes, Centrotus, Distanobelus); Centrotypini (Centrotypus); Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) Gargarini (Tricentrus) Centrotini (Anchon, Centrotus, Daconotus); Gargarini (Butragulus, Machaerotypus, Maurya, Pantaleon, Tricentrus); Leptobelini (Leptobelus); Maarbarini (Telingana); Terentiini (Acanthuchus) Boocerini (Campylocentrus); Centrotini (Euceropsila, Eumonocentrus, Hamma, Monocentrus); Centrotypini (Centrotypus); Ebhuloidesini (Ebhul); Gargarini (Eucoccosterphus, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus) Centrotini (Hamma, Monocentrus); Gargarini (Gargara, Machaerotypus); Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus); Terentiini (Pogonella) Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Tricentrus); Hypsaucheniini (Hypsauchenia) Leptocentrini (Leptocentrus) Centrotypini (Centrotypus); Gargarini (Eucoccosterphus, Coccosterphus, Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Pogon); Oxyrhachini (Oxyrhachis) Continued. 457
Table 26.2 cont’d. Host plant family 90. Sapindaceae 91. Sapotaceae 92. Saxifragaceae 93. Solanaceae
94. Sterculiaceae 95. Styracaceae 96. Tamaricaceae 97. Theaceae 98. Thymelaeaceae 99. Tiliaceae 100. Ulmaceae 101. Urticaceae 102. Verbenaceae 103. Vitaceae 104. Zingiberaceae 105. Zygophyllaceae
Genus Centrotini (Anchon); Gargarini (Tricentrus) Monobelini (Brachycentrotus) Gargarini (Antialcidas, Pantaleon) Beaufortianini (Beaufortiana); Boocerini (Ischnocentrus); Centrotini (Anchon, Eumonocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Parayasa, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Telingana); Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Neocanthuchus, Oxyrhachis, Pogonella, Pogonotypellus, Rentzia, Sarantus, Terentius) Centrotini (Eumonocentrus, Hamma, Monocentrus, Stalobelus); Leptocentrini (Leptocentrus); Oxyrhachini (Oxyrhachis) Hypsaucheniini (Hypsauchenia); Leptobelini (Leptobelus) Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) Centrotini (Stalobelus); Gargarini (Machaerotypus, Tricentrus) Gargarini (Gargara); Hypsaucheniini (Jingkara) Centrotini (Anchon, Eumonocentrus, Hamma, Leprechaunus, Monocentrus); Gargarini (Butragulus, Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus) Centrotini (Anchon, Leprechaunus, Monocentrus); Gargarini (Butragulus, Gargara, Machaerotypus, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini (Oxyrhachis) Centrotini (Anchon, Mitranotus, Monocentrus); Leptocentrini (Leptocentrus, Otinotus) Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) Gargarini (Gargara, Tricentrus); Nessorhinini (Nessorhinus) Centrotini (Kallicrates) Centrodontini (Centrodontus, Multareis, Multareoides)
458
Table 26.3. Chromosome numbers (2n) of male centrotines.
Male 2n 2n=10 2n=13 2n=17 2n=19
2n=20 2n=21
2n=23
Taxa and citations Gargarini: Tricentrus (Tian and Yuan 1997a). Gargarini: Tricentrus (Tian and Yuan 1997a). Centrotini: Anchon (Kirillova 1988a; Parida and Dalua 1981a). Ebhuloidesini: Ebhul (Tian and Yuan 1997a). Hypsaucheniini: Jingkara (Tian and Yuan 1997a). Centrotini: Centrotus (Halkka 1959a, 1962a; Kirillova 1988a). Gargarini: Coccosterphus (Bhattacharya and Manna 1973a; Kirillova 1988a); Gargara (Bhattacharya and Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a; Ray-Chaudhuri et al. 1967a; Tian and Yuan 1997a); Tricentrus (Ahmad and Yasmeen 1980a; Bhattacharya and Manna 1973a; Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan 1997a). Ebhuloidesini: Ebhul (Tian and Yuan 1997a). Leptocentrini: Leptocentrus substitutus (Halkka 1962a; Menon 1959a). Maarbarini: Telingana (Kirillova 1988a; Sharma et al. 1964a). Gargarini: Nondenticentrus (Tian and Yuan 1997a). Boocerini: Boocerus (Halkka 1964a; Kirillova 1988a). Gargarini: Coccosterphus (Bhattacharya and Manna 1967a); Pantaleon (Tian and Yuan 1997a); Tricentrus (Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan 1997a). Leptocentrini: Hemicentrus (Tian and Yuan 1997a); Leptocentrus (Banerjee 1958a; Bhattacharya and Manna 1967a, 1973a; Halkka 1959a; Kirillova 1988a; Parida and Dalua 1981a; Rao 1956a; Tian and Yuan 1997a); Otinotus (Bhattacharya and Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a). Maarbarini: Pogon (Sharma et al. 1964a); Telingana (Sharma et al. 1964a). Oxyrhachini: Oxyrhachis (Abrar and Ahmad 1975a; Banerjee 1958a; Bhattacharya and Manna 1967a, 1973a; Biswas and Bhattacharya 1989a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a; Rao 1956a; Sharma et al. 1964a; Tian and Yuan 1997a). Terentiini: Eufairmairia (Whitten 1965a; Kirillova 1988a); Sextius (Kirillova 1988a; Whitten 1965a). Gargarini: Tricentrus (Tian and Yuan 1997a).
459
Fig. 26.1. Ant attendance and maternal care in centrotines. The gain or loss of each trait was mapped on the tribal phylogeny tree using fast optimization in Winclada. Question marks (?) represent missing data. 460
Fig. 26.2. Host plant families of centrotines. The gain (indicated below branches) or loss (indicated above branches) of each host plant family was mapped on the tribal phylogeny using fast optimization in Winclada. Numbers on the branches identify host plant families in Table 26.2. Question marks represent missing data. 461
Fig. 26.3. Male chromosome numbers in centrotines. The gain (indicated below branches) or loss (indicated above branches) of each was mapped on the tribal phylogeny using fast optimization in Winclada. Question marks (?) represent missing data.
462
CONCLUSIONS The treehopper subfamily Centrotinae is the only treehopper group found worldwide. Predominantly Old World in distribution, this subfamily accounts for roughly half of the membracid diversity at the tribal, generic, and species levels. Although centrotines are cosmopolitan in distribution, there is no centrotine tribe (or genus) found in both the Old and New Worlds. Despite their diversity, the Centrotinae have been poorly studied. Historically, workers have focused their work on centrotines within a particular geographic region (for example, Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a; Yuan and Chou 2002a) and few have justified classifications based on quantitative phylogenetic analyses. These disparities have impeded the development of a stable higher classification and taxonomic studies of centrotines at the generic and species levels. The objectives of this study were to establish the phylogenetic limits of the Centrotinae and its included tribes, to determine the evolutionary relationships among these tribes in order to provide a sound and comprehensive classification, to advance investigations of biogeographical patterns and life history traits, and to develop a tribal key to facilitate identification of the centrotine assemblage. An overall phylogenetic analysis of the 24 existing tribes plus 5 outgroups, using 116 morphological characters, resulted in a single most parsimonious tree with 2 major clades (each with New and Old World components) plus the basal New World tribe Centrodontini. Numerous tribes, as defined in earlier classifications, were rendered polyphyletic or paraphyletic. Eight further phylogenetic analyses confirmed the monophyly of the larger 463
tribes, and, along with two phenetic analyses, helped to place the remaining genera. The subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the presence of abdominal inornate pits, each with a lateral seta.
Characters important in
elucidating tribal relationships include features of: the male and female genitalia, the foreand hind wings, the scutellum, leg chaetotaxy; and abdominal characteristics using scanning electron microscopy. Based on the overall analysis, 11 tribal synonymies and 1 subfamily synonymy are proposed: Abelini, junior synonym of Boocerini; Acanthophyesaria, junior synonym of Centrotini; Ebhulini, junior synonym of Ebhuloidesini; Aleptocentrini, Antialcidini, Coccosterphini, Madlinini, and Tricentrini, all junior synonyms of Gargarini; Demangini, junior synonym of Leptocentrini; Bulbaucheniini and Funkhouserellini, junior synonyms of Terentiini; and Centrodontinae, junior synonym of Centrotinae. Furthermore, 6 new tribes are described: the Beaufortianini, Boccharini, Lobocentrini, and Maarbarini, all from the Old World, and Monobelini, and Pieltainellini from the New World. The 216 included centrotine genera are placed into a total of 23 centrotine monophyletic tribes. Two genera from the phylogenetic analysis, Elaphiceps and Tyrannotus, are placed as Centrotinae, incertae sedis, although they are closely related to the Lobocentrini. Seven genera that were not examined are placed as Centrotinae, incertae sedis: Aspasiana, Centrobelus, Insitor, Insitoroides, Megalocentrus, Megaloschema, and Sinocentrus. Brachytalis, formerly in Nessorhinini, is placed as Membracidae, incertae sedis. Additionally, a lectotype of Butragulus flavipes (Uhler) is designated. The new combinations Hybanda bulbicornis (Funkhouser), referred from Funkhouserella, and Bulbauchenia bakeri (Funkhouser), B. rugosa (Funkhouser), B. globosa (Funkhouser), and B. kurosawai (Hayashi 464
and Endo), all referred from the Emphusis Buckton, are proposed.
Deitzius
Ananthasubramanian is a junior objective synonym of Ananthasubramanium McKamey, both of which are replacement names for Paranotus Ananthasubramanian, preoccupied. A taxonomic key to the 23 centrotine tribes is included. The descriptions of the 23 tribes include diagnoses, descriptions, notes on ecology and distribution, and discussions of phylogeny and morphological characters. Numerous centrotine genera are poorly represented in collections with some known from only one sex or even a unique specimen. All but 9 of the 216 genera were here placed in tribes based on phylogenetic analyses of morphological features, or in cases where data were limited, based on overall morphological similarity. The broader impacts of this work extend beyond systematics to related areas of biological inquiry. The phylogenetically based classification presented here has greater predictive value than prior classifications that included numerous para-or polyphyletic tribes. Furthermore, the phylogenetic hypotheses outlined provide a sound foundation for exploring patterns in host plant associations, ant-attendance, maternal care, acoustic communication, and biogeography. Based on the phylogenetic analyses, centrotines colonized the Old World twice. One invasion included the ancestors of the tribe Gargarini while the other invasion included the ancestors of the remaining 16 Old World centrotine tribes. It seems possible that these dispersals from the New World to the Old occurred over the Bering Land Bridge, accounting for the Indomalayan and Palearctic distributions of the basal centrotine lineages. According to the fossil record and recent phylogenetic analyses of the Membracidae, treehoppers likely originated in the New World in the Tertiary, possibly near the time of the hypothesized 465
extraterrestrial impact 65 mya. Other evidence for a Tertiary origin includes the absence of treehoppers in Madagascar and New Zealand, the historic connection of India with Madagascar and the high species richness of India, and the distantly related centrotine faunas of Africa, Australia, and South America.
These observations do not favor an ancient
vicariant event, for example the splitting of Gondwana, that isolated the Old and New World treehopper faunas. The highly endemic Monobelini and Nessorhinini of the Caribbean occupy a basal position in the phylogenetic analysis. The hypothesized dispersal of their ancestors to the Caribbean over an island archipelago at the Cretaceous/Tertiary border also supports a treehopper origin near this time. Centrotines have been reported from 105 different host plant families, notably the Leguminosae, Solanaceae, Compositae, and Euphorbiaceae. Eleven of 23 centrotine tribes have genera that are ant-attended and the Centrocharesini + Ebhuloidesini + Oxyrhachini + Hypsaucheniini + Terentiini are the only centrotine group known to exhibit maternal care by egg guarding. Although male chromosome numbers of many centrotine tribes are unknown, many of the tribes reported have 2n=21. The reported range in males is 2n= 10-23. Armed with the revised classification presented here and the distributional data summarized by recent workers (McKamey 1998a, Day 1999a, Yuan and Chou 2002a), it is possible to identify hotspots of centrotine diversity or endemism--areas that merit special attention in efforts to preserve global biodiversity. The New World tribes Nessorhinini and Monobelini, for example, are endemic to the Caribbean. Likewise, Queensland, Australia, is a hotspot of diversity for the Terentiini. It is hoped that the improved identification tools provided here will encourage further collecting, stimulate systematic studies at the generic and species levels, and facilitate molecular research at all taxonomic levels. 466
REFERENCES CITED Abrar, I., and I. Ahmad. 1975a. Comparative karyotypes of Oxyrhachis taranda (Fabricius) and O. serratus [serrata] Ahmad & Abrar 1974 (Membracoidea: Oxyrhachinae). Proc. Entomol. Soc. Karachi 4-5: 32-39. Adenuga, A. O., and K. Adeboyeku. 1987a. Notes on selected crop plants. Insect Sci. & Its Applic. 8(2): 239-243. Agassiz, J. L. R., W. E. Erichson, and E. F. Germar. 1846a. Hemiptera. (Addenda et corrigenda). Nomenclator Zoologicus 1846: 1-16. Ahmad, I. 1975a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] First [Annual] Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 47 pp. + map. Ahmad, I. 1976a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Second Ann. Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 74 pp. + map. Ahmad, I. 1978a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Fourth Ann. Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). [i] + 69 pp. + map. Ahmad, I. 1988a. A cladistic analysis of Tricentrini (Homoptera: Auchenorrhyncha: Membracidae) with a note on their origin, distribution and food plants. pp. 473-484. In Vidano, C., and A. Arzone (eds.). 6th Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale delle Ricerche, Incremento Produttivita` Risorse Agricole (CNR-IPRA), Torino. 652 pp. Ahmad, I., and F. A. Mohammad. 1990a. Redescription of the species of Otinotus elongatus complex (Hemiptera: Membracidae: Centratinae [sic: Centrotinae]: Leptocentrini) with two new species from Sind and Punjab in Pakistan, a key to all the Otinotus species from Indo-Pakistan subcontinent and their cladistic analysis. Indian J. Zool. Spectrum 1(2: 30-41): 43-59. Ahmad, I., and F. A. Mohammad. 1998a. The Otinotus rufescens complex: redescription of O. rufescens and O. transversus with two new species from Pakistan and notes on their phylogenetic relationships (Hemiptera Membracidae). Boll. Soc. Entomol. Italiana 130(1): 27-40. Ahmad, I., and N. Yasmeen. 1972a. A revision of the genus Tricentrus Stal [Stål] from Pakistan.
467
Ahmad, I., and N. Yasmeen. 1979b. New species and records of the Tricentrus projectus group (Homoptera: Membracidae: Tricentrini) from Pakistan, Azad Kashmir and Bangladesh, with phylogenetic considerations. Pacific Insects 20(2-3): 257-278. Ahmad, I., and N. Yasmeen. 1980a. The chromosomes of five species of the genus Tricentrus Stal [Stål] (Membracidae, Centrotinae, Tricentrini). Natur. Sci. 2(3): 69-74. Alma, A. 1999a. Indagini sulle popolazioni di Auchenorrinchi in zone umide del lago di Viverone (Piemonte, Italia) (Rhynchota Hemiptera). [Investigations on the populations of Auchenorrhyncha in the wet zones of the lake of Viverone (Piedmont, Italy) (Rhynchota Homoptera).] Boll. Soc. Entomol. Italiana 131(3): 209-217. Amyot, C. J. B., and A. Serville. 1843a. Histoire naturelle des insectes Hémiptères. [Deuxième partie. Homoptères. Homoptera Latr. pp. 455-676]. Libraire Encyclopédique de Roret, Paris, France. i-lxxvi + 676 pp. Ananthasubramanian, K. S. 1980a. Descriptions of a new genus and some new species of Membracidae (Homoptera) in the collections of the Zoological Survey of India. Rec. Zool. Surv. India Misc. Publ., Occas. Pap. 16: 1-[69]. Ananthasubramanian, K. S. 1980b. Taxonomic studies on Indian Membracidae (Insecta: Homoptera). Entomon 5(2): 113-128. Ananthasubramanian, K. S. 1984a. Taxonomical and biological notes on Anchon ulniforme Buckton (Homoptera: Membracidae). Entomon 9(3): 225-229. Ananthasubramanian, K. S. 1987a. Newer trends in the biosystematics of Membracidae. Proc. Indian Acad. Sci., Animal Sci., 96(5): 517-525. Ananthasubramanian, K. S. 1996a. Fauna of India (Homoptera: Membracidae). In Ghosh, A. K. (ed.). Zoological Survey of India, Calcutta, India. xviii + 534 pp. Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975a (dated 1970)]. Taxonomic, biological and ecological studies of some Indian membracids (Insecta: Homoptera). Part I. Rec. Zool. Surv. India 68(1-2): 161-272.
468
Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975b (dated 1970)]. Taxonomic, biological and ecological studies of some Indian membracids. Part--II. Rec. Zool. Surv. India 68(1-2): 305-340. Ananthasubramanian, K. S., G. Murugan, and L. K. Ghosh. 1990a. Redescription of Hypsauchenia subfusca Buckton (Homoptera: Membracidae) with notes on its nymphal stages. Indian Zool. 14(1-2): 93-96. Ananthasubramanian, K. S., and C. Ramachandran. 1990a. Preliminary observations on the behaviour of Formicomus sp., a coleopteran ant-mimic, towards the nymphs of the membracid bug Leptocentrus taurus (F.) (Homoptera: Insecta). Indian Zool. 14(1-2): 131-133. Arnett, R. H., G. A. Samuelson, and G. M. Nishida. 1993a. The insect and spider collections of the world, 2nd. ed. Sandhill Crane, Gainesville, FL. Ayyanna, T., G. V. Subbaratnam, and E. Dharmaraju. 1978a. Pest complex on sunflower, Helianthus annus Lin. in Andhra Pradesh. Indian J. Entomol. 40(3): 353-356. Ayyar, T. V. R. 1937a. A cow bug (Anchon pilosum, Wlk.) injurious to leguminous crops in Malabar. Madras Agric. J. 25(2): 33-35. Azhar, I. 1992a. Role of black ants in cocoa pod borer natural control. MAPPS Newsletter 16(4): 36-37. Ballou, C. H. 1935a. Insect notes from Costa Rica in 1934. Insect Pest Surv. Bull. 15, Suppl. 4: 163-212. Ballou, C. H. 1936b. Insect notes from Costa Rica in 1935. Insect Pest Surv. Bull. 16: 437-497 [454-479]. Banerjee, M. R. 1958a. A study of the chromosomes during meiosis in twenty-eight species of Hemiptera (Heteroptera, Homoptera). Proc. Zool. Soc. (Calcutta) 11(1): 9-37. Beckmann, J. 1772a. Fulgora, Cicada. Caroli a Linné systema naturae ex editions duodecima in epitomen redactum et praelectionibus academicis accomodatum 1: 1-240 [149-150]. Behura, B. K. 1951a. Habits of the common membracid (`tree-hopper')-Otinotus oneratus Walk. J. Bombay Natur. Hist. Soc. 50: 299-304 [reprint paged 1-6]. Behura, B. K. 1955a. Miscellaneous note. 21. Adaptive coloration and camouflage of the common membracid (`tree-hopper') Otinotus oneratus Walk. (Homoptera: Rhynchota). J. Bombay Natur. Hist. Soc. 53: 145-146 [reprint paged 1-2]. Behura, B. K. 1962a. On the biology of Otinotus oneratus Walk. (Homoptera: Membracidae). J. Utkal Univ. (Sci.), Bhubaneswar 2(2): 53-57.
469
Behura, B. K., and U. C. Panda. 1959a. Some unrecorded host plants of four common membracid species in Orissa. Indian J. Entomol. 20(3): 236. Behura, B. K., and G. C. Sengupta. 1951a. On a pest of jute new to Orissa. Sci. & Cult. 16: 572-573. Behura, B. K., and V. Sinha. 1951a. 23. A record of the common membracid, Otinotus oneratus Walk. (Homoptera: Rhynchota) from the City of Patna (Bihar). J. Bombay Natur. Hist. Soc. 50: 183-184 [reprint paged 1]. Bergevin, E. de. 1934b. Hémiptères in Mission du Hoggar. III (Février à Mai 1928). Etudes zoologiques sur le Sahara Central par L.-G. Seurat. Mem. Soc. Hist. Natur. Afrique Nord 4: 119-133; Figs. 1-5. Bhattacharya, A. K., and G. K. Manna. 1967a. A study of germinal chromosomes during meiosis in fifty species of Homoptera (Hemiptera). Proc. Indian Sci. Congr. 54(3): [?618-619 (as cited by Bhattacharya & Manna 1973a); reprint paged 418-[419]. Bhattacharya, A. K., and G. K. Manna. 1973a. Morphology, behaviour and metrical studies of the germinal chromosomes of ten species of Membracidae (Homoptera). Cytologia (Tokyo) 38(4): 657-665. Biswas, A., and A. K. Bhattacharya. 1989a. Cytotaxonomical evaluation of the tree-hopper Oxyrachis [sic] taranda (Fabr.). (Membracidae: Homoptera). Environ. & Ecol. (Kalyani) 7(1): 132-135. Boulard, M. 1966a. Sur un Monocentrus [Membracidae Centrotinae] nouveau nuisible au poivrier cultive en Afrique centralé. Ann. Soc. Entomol. France (n.s.)2(3): 577-584. Boulard, M. 1968b. Description de cinq Membracides nouveaux du genre Hamma accompagnée de précisions sur H. rectum. Ann. Soc. Entomol. France (n.s.)4(4): 937-950. Boulard, M. 1968d. Description du mâle et de la larve de Kallicrates bellicornis Capener (Homoptera-Membracidae). Cahiers La Maboké 6(2): 127-131. Boulard, M. 1969a. Hémiptéroïdes nuisibles ou associés aux cacaoyers en République Centrafricaine. Deuxième partie. Homoptères Auchénorhynches. Café, Cacao, Thé (Paris) 13(4): 310-324. Boulard, M. 1969c. Homoptères jassidomorphes nouveaux liés aux colatiers et aux autres plantes simulantes cultivés en Afrique centrale. Café, Cacao, Thé (Paris) 13(2): 151-156. Boulard, M. 1971c. Monocentrus nouveaux d'Afrique centrale [Hom. Membracidae]. Ann. Soc. Entomol. France (n.s.)7(2): 287-324.
470
Boulard, M. [1979i (dated 1978)]. Genres nouveaux et espèces nouvelles de Membracides africains (Homoptera Auchenorhyncha). Bull. Inst. Fondamental Afrique Noire (sér. A)40(1): 100-119. Boulard, M. [1979j (dated 1978)]. Oxyrhachiens nouveaux du Sahara (Homoptera Membracidae). Bull. Inst. Fondamental Afrique Noire (sér. A)40(2): 428-436. Boulard, M. 1983b. Un genre nouveau de Membracides associés aux plantes stimulantes en Afrique centrale. Café, Cacao, Thé (Paris) 27(3): 191-194. Boulard, M. 1995d [dated 1994-1995]. Membracidés nouveaux des îles Seychelles. Création d'une tribu nouvelle (Homoptera Membracoidea Membracidae). École Pratique Hautes Études), Travaux Lab. Biol. & Evol. Insectes 7-8: 179-187. Briggs, J. C. 1995a. Global Biogeography. Elsevier Science, Amsterdam, The Netherlands. xvii + 452 pp. Brummitt, R. K. 1992a. Vascular Plant Families and Genera. Kew: Royal Botanic Garderns, Kew, United Kingdom. 804 p. Buckley, R. C. 1982a. Ant-plant interactions: a world review. pp. 111-162. In Buckley, R. C. (ed.). Ant-Plant Interactions in Australia. Junk, The Hague. ix + 162 pp. Buckley, R. [C.]. 1983a. Interaction between ants and membracid bugs decreases growth and seed set of host plant bearing extrafloral nectaries. Oecologia (Berlin) 58(1): 132-136. Buckton, G. B. 1903a. A monograph of the Membracidae 1903: 181-296; PIs. 39-60. Capener, A. L. 1950a. A new genus and species of membracid from South Africa. J. Entomol. Soc. South Africa 13: 99-102; Figs. 1-9. Capener, A. L. 1951a. Sexually dimorphic Membracidae from Southern Africa. J. Entomol. Soc. South Africa 14: 152-164; Figs. 1-50. Capener, A. L. 1952b. Notes on the classification of certain African Membracidae with the addition of three new genera and four new species (Hemipt.- Homopt.). J. Entomol. Soc. South Africa 15: 101-121; Figs. 1-39. Capener, A. L. 1953b. African Membracidae I. J. Entomol. Soc. South Africa 16: 112-131; Pls. I-IV. Capener, A. L. 1962a. The taxonomy of the African Membracidae. Part 1. The Oxyrhachinae. Repub. South Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 6: [i], [1]-164.
471
Capener, A. L. 1966a. Contribution à la fauna du Congo (Brazzaville). Mission A. Villiers et A. Descarpentries. XLI. Homoptères Membracidae. Bull. Inst. Français Afrique Noire (sér. A)28(4): 1708-1709. Capener, A. L. 1968a. The taxonomy of the African Membracidae. Part 2. The Centrotinae. Repub. South Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 17: [i-iii], [1-124]. Capener, A. L. 1968b. The genus Gargara Amyot and Serville (Homoptera: Membracidae) in South Africa. J. Entomol. Soc. South Africa 31(1): 181-183. Capener, A. L. 1968c. Six new species of Membracidae (Hemiptera: Homoptera) from South Africa. J. Entomol. Soc. South Africa 31(1): 197-207. Capener, A. L. 1971a. New African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South Africa 34(1): 17-31. Capener, A. L. 1972a. New genera and species of African Membracidae (Hemiptera-Homoptera). Repub. South Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 24. iii + 52 pp. Capener, A. L. 1972b. Some South African species of Anchon (Hemiptera-Homoptera: Membracidae). J. Entomol. Soc. South Africa 35(1): 97-110. Capener, A. L. 1972c. Further new African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South Africa 35(2): 181-199. Carver, M., G. F. Gross, and T. E. Woodward. 1991a. Hemiptera (bugs, leafhoppers, cicadas, aphis, scale insects etc.). pp. 429-509. In CSIRO (ed.), The Insects of Australia. A Textbook for Students and Research Workers. 2nd ed. Cornell University Press, Ithaca, New York. 1137 + xvii (vol. 1) + vi (vol. 2) pp. Chatterjee, N. C. 1933c. Investigations on the spike-disease of sandal. Entomological investigations by the Forest Research Institute. Work done at Dehra Dun. Indian Inst. Sci. 1933 (7): 19-21. Chatterjee, N. C., and M. Bose. 1933a. Entomological investigations on the spike disease of sandal (13). Membracidae and Cercopidae (Homopter.). Indian For. Rec. 19(2): 1-14. Cheo, M. T. 1935b. A preliminary list of the insects and arachnids injurious to economic plants in China. Peking Natur. Hist. Bull. 10: 93-114.
472
Chitra, S., and K. S. Ananthasubramanian. 1999a. Mutualistic association between the treehopper, Eucoccosterphus tuberculatus (De Motschulsky) and the ant, Camponotus compressus Fabricus. J. Entomol. Res. 23(2): 89-98. Cookson, L., and T. R. New. 1980a. Observations on the biology of Sextius virescens (Fairmaire) (Homoptera, Membracidae) on Acacia in Victoria. Australian Entomol. Mag. 7(1): 4-10. Cranston, P. S., and I. D. Naumann. 1991a. Biogeography. pp. 180-197. In CSIRO (ed.), The Insects of Australia. A Textbook for Students and Research Workers. 2nd ed. Cornell University Press, Ithaca, New York. 1137 + xvii (vol. 1) + vi (vol. 2) pp. Creão-Duarte, A. J. 1992a. Sobre a provável parafilia de Centrotinae Amyot & Serville (Homoptera, Membracidae). [About the probable paraphyly of Centrotinae Amyot & Serville (Homoptera, Membracidae).] Rev. Brasileira Zool. 9(3/4): 197-201. Cryan, J. R. 1999a. Molecular Systematic Investigation of the Higher Relationships within the Family Membracidae (Insecta: Hemiptera). Unpublished Ph.D Dissertation, Entomology, North Carolina State University, Raleigh, North Carolina. x + 140 pp. Cryan, J. R., B. M. Wiegmann, L. L. Deitz, and C. H. Dietrich. 2000a. Phylogeny of the treehoppers (Insecta: Hemiptera: Membracidae): evidence from two nuclear genes. Mol. Phylogenet. & Evol. 17(2): 317334. Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon 29, 41–6. Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1993a. User’s guide to the DELTA System: a general system for processing taxonomic descriptions. 4th edition. http://biodiversity.uno.edu/delta/. Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1999a. User’s guide to the DELTA Editor. http://biodiversity.uno.edu/delta/. Davli, C. S., R. B. Dumbre, and V. G. Khanvilkar. 1992a. Record of mango hopper species and their composition in the Konkan region. J. Maharashtra Agric. Univ. 17(3): 404-406. Day, M. F. 1999a. The genera of Australian Membracidae (Hemiptera: Auchenorrhyncha). Invertebr. Taxon. 13(4): 629-747.
473
Deitz, L. L. 1975a. Classification of the higher categories of the New World treehoppers (Homoptera: Membracidae). North Carolina Agric. Exp. Sta. Tech. Bull. 225. 177 pp. Deitz, L. L. 1985a. Placement of the genera Abelus Stål and Hemicentrus Melichar in the subfamily Centrotinae (Homoptera: Membracidae). Proc. Entomol. Soc. Washington 87(1): 161-170. Deitz, L. L., and C. H. Dietrich. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). I. Introduction and revised classification with new family-group taxa. System. Entomol. 18(4):287-296. Dejean, A., and T. Bourgoin. 1998a. Relationships between ants (Hymenoptera: Formicidae) and Euphyonarthex phyllostoma (Hemiptera: Tettigometridae). Sociobiology 32(1): 91-100. Dietrich, C. H. 1989a. Surface sculpturing of the abdominal integument of Membracidae and other Auchenorrhyncha (Homoptera). Proc. Entomol. Soc. Washington 91(2):143-152. Dietrich, C. H., and L. L. Deitz. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). II. Cladistic analysis and conclusions. Syst. Entomol. 18(4): 297-311. Dietrich, C. H., S. H. McKamey, and L. L. Deitz. 2001a. Morphology-based phylogeny of the treehopper family Membracidae (Hemiptera: Cicadomorpha: Membracoidea). Syst. Entomol. 26: 213-239. Distant, W. L. 1879e. Rhynchota. Scientific results of the second Yankand mission; based upon the collections and notes of the late Ferdinand Stoliczka, Ph.D. 1879: 1-15; 1 pl. Distant, W. L. 1908g. Rhynchota-Homoptera. The fauna of British India including Ceylon and Burma. Published under the authority of the Secretary of State for India in Council. Edited by Lt. Col. C. T. Bingham 4: i-xiv, 1-501; Figs. 1-282. [1-419; Figs. 1-255]. Distant, W. L. 1915b. Rhynchotal notes.-LVI. Ann. & Mag. Natur. Hist. (8)16: 322-328. Distant, W. L. 1916a. Rhynchota. Homoptera: Appendix. The fauna of British India, including Ceylon and Burma. Published under the authority of the Secretary of State for India in Council. Edited by A. E. Shipley, assisted by Guy A. K. Marshall 6: i-vii, 1-248; Figs. 1-177. Distant, W. L. 1916c. Rhynchotal notes.-LIX. Ann. & Mag. Natur. Hist. (8)17: 313- 330; 1 fig. Distant, W. L. 1916d. Rhynchotal notes.-LX. Ann. & Mag. Natur. Hist. (8)18: 19-44; 1 fig. Dlabola, J. 1979b. Insects of Saudia Arabia. Homoptera. Fauna Saudi Arabia 1: 115-139. Enslin, E. 1911a. Gargara genistae F. und Formica cinerea Mayr. Z. Wiss. Insektenbiol. 7: 19-21; Figs. 1-2.
474
Enslin, E. 1911b. [Gargara genistae F. und Formica cinerea, Mayr.] Z. Wiss. Insektenbiol. 7: 56-58. Esaki, T., and T. Ishihara. 1950a. Hemiptera of Shansi, North China. Hemiptera I. Homoptera. Mushi 21: 39-48; Pls. 5-7; Text figs. A-B. Evans, J. W. 1948b. Some observations on the classification of the Membracidae and on the ancestry, phylogeny and distribution of the Jassoidea. Trans. R. Entomol. Soc., London 99: 497-515; Figs. 1-10. Evans, J. W. 1966a. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera: Cicadelloidea and Cercopoidea). Australian Mus. Mem. 12: 1-347. Eyles, A. C. 1970a. Hemiptera. [In symposium: "The Present Status of Taxonomic Entomology in New Zealand"]. New Zealand Entomol. 4(3): 34-37 Eyles, A. C. 1971a. The family Membracidae (Homoptera) present in New Zealand. New Zealand Entomol. 5(1): 47-48. Froggatt, W. W. 1902a. Insects of the wattle trees. Misc. Pub. Dep. Agric. New South Wales 581: 16-18. Funkhouser, W. D. 1919a. A new Tylocentrus from Arizona (Membracidae: Homoptera). Entomol. News 30: 2l7-219; Pl. 10. Funkhouser, W. D. 1919d. New records and species of Philippine Membracidae. Philippine J. Sci. 15: 15-29; Pl. 1. Funkhouser, W. D. 1927b. Fauna sumatrensis. (Beitrag Nr. 30). Membracidae (Homoptera) Suppl. Entomol. 15: 1-22; Figs. 1-29. Funkhouser, W. D. 1927f. Membracidae. General Catalogue of the Hemiptera. Fasc. 1: 1-581. Funkhouser, W. D. 1929b. New Archipelagic Membracidae. Philippine J. Sci. 40: 111-131; Pls. 1-2. Funkhouser, W. D. 1935b. New records and species of Membracidae in the Buitenzorg Museum Collection. Treubia 15: 119-130; Figs. 1-7. Funkhouser, W. D. 1951a. Homoptera Fam. Membracidae. Gen. Insectorum 208: 1-383; Pls.I-XIV; Text figs. 1-9. Futuyuma, D. J. 1998a. Evolutionary Biology. 3rd edit. Sinauer Associates, Sunderland, Massachusetts. xviii + 763 + [64] pp.
475
Gersani, M., and A. A. Degen. 1988a. Daily energy intake and expenditure of the weaver ant Polyrhachis simplex (Hymenoptera: Formicidae) collecting honeydew from the cicada Oxyrrhachis [sic] versicolor (Homoptera: Membracidae). J. Arid Environ. 15(1): 75-80. Goding, F. W. 1892a. A synopsis of the subfamilies and genera of the Membracidae of North America. Trans. Amer. Entomol. Soc. 19: 253-260. Goding, F. W. 1892c. Studies in North American Membracidae, II. Entomol. News 3: 200-201. Goding, F. W. 1893d. Food plants of some N. A. Membracidae. Insect Life 5: 92-93. Goding, F. W. 1895a. Studies in N. A. Membracidae-III. Canad. Entomol. 27: 274-277. Goding, F. W. 1903a. A monograph of the Australian Membracidae. Proc. Linn. Soc. New South Wales 28: 2-41; Pl. 1. Goding, F. W. 1926e. Classification of the Membracidae of America. J. New York Entomol. Soc. 34: 295-317. Goding, F. W. 1928a The Membracidae of South America and the Antilles, II. Subfamily Centrotinae. J. New York Entomol. Soc. 35: 391-408; Pls. 19-20. Goding, F. W. 1930a. New Membracidae, X. J. New York Entomol. Soc. 38: 89-92. Goding, F. W. 1930b. Membracidae in the American Museum of Natural History. Amer. Mus. Novitates 421: 1-27; Fig. 1. Goding, F. W. 1931a. Classification of the Old World Membracidae. J. New York Entomol. Soc. 39: 299-313. Goding, F. W. 1934a. The Old World Membracidae. J. New York Entomol. Soc. 42: 451-480. Goidanich, A. 1946a. La scoperta della Ceresa bubalus in Italia. Italia Agric. 83(12): 717-719; 3 figs. Green, E. E. 1900a. Note on the attractive properties of certain larval Hemiptera. Entomol. Mon. Mag. 36: 185; 1 fig. Gunji, Y., and S. Nagai. 1994a. A new subspecies of Giganthorhabdus [sic] enderleini Schmidt from the Malay Peninsula (Homoptera: Membracidae). Trans. Shikoku Entomol. Soc. 20(3-4): 125-127. Günthart, H. 1987b. Oekologische Untersuchungen im Unterengadin. D8. Zikaden (Auchenorrhyncha). Ergeb. Wiss. Unters. Schweizerischen Nationalpark (N.F.)12(12): D203-D299.
476
Halkka, O. 1959a. Chromosome studies on the Hemiptera Homoptera Auchenorrhyncha. Ann. Acad. Sci. Fennicae (ser. A)(4. Biol.) 43: 1-[73]. Halkka, O. 1962a. The chromosomes of the Membracidae. Hereditas 48: 215-219. Halkka, O. 1964a. Recombination in six homopterous families. Evolution 18(1): 81-88. Hall, R. 1998a. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. pp. 99-132. In Hall, R., and J. D. Holloway (eds.) Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden, The Netherlands. 417 pp. Hargreaves, E. 1937a. Some insects and their food-plants in Sierra Leone. Bull. Entomol. Res. 28: 505-520. Haupt, H. 1929c. Neueinteilung der Homoptera-Cicadina nach phylogenetisch zu wertenden Merkmalen. Zool. Jahrb. Abt. System., Ökol. & Biol. Tiere 58: 173-286; Figs. 1-86. Hayashi, M., and T. Endo. 1985b. Some biological notes on Japanese treehoppers (Homoptera, Membracidae). Rostria (Trans. Hemipterol. Soc. Japan) 37: 533-542. Hedges, S. B. 2001a. Biogeography of the West Indies: An overview. pp. 15-33. In Woods, C. A., and F. E. Sergile (eds.). Biogeography of the West Indies. CRC Press, Boca Raton, Florida. 582 pp. Helmore, D. W. 1982a. Drawings of New Zealand insects. Bull. Entomol. Soc. New Zealand 8: 1-52. Hinton, H. E. 1977a. Subsocial behavior and biology of some Mexican membracid bugs. Ecol. Entomol. 2(1): 61-79. Hoffmann, W. E. 1942a. Bugs or Homoptera. The cicadas, plant hoppers, plant lice, scale insects, and others. Spec. Publ. Lingnan Natur. Hist. Surv. & Mus. 9: 1-20; Pls. 1-30. Hölldobler, B., and E. O. Wilson. 1990a. The Ants. Belknap Press of Harvard University Press, Cambridge, Massachusetts. [xiv] + 732 pp. Huntley, B. 1993a. Species-richness in north-temperate zone forests. J. Biogeog. 20: 163-180. International Commission on Zoological Nomenclature (ICZN). 1999a. International Code of Zoological Nomenclature. 4th edtion. International Trust for Zoological Nomenclature, c/o The Natural History Museum, London. xxix + 306 pp. Iturralde-Vinent, M. A., and R. D. E. MacPhee. 1999a. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bull. Amer. Mus. Nat. Hist. 238: 1-95.
477
Jacobs, D. H. 1985a. Order Hemiptera (bugs, leafhoppers, cicadas, aphids, scale-insects, etc.). Introduction. pp. 112-117. In Scholtz, C. H., and E. Holm (eds.). Insects of Southern Africa. Butterworths, Durban, South Africa. [viii] + 502 pp. Jankoviƒ, L. 1975a. Fauna Homoptera: Auchenorrhyncha SR Srbije. Zbornik Radova o Entomofauni SR Srbije, I: Srpska Akad. Nauka i Umetn. -- Odeljenje Prir.-Matem. Nauka (Beograd). pp. 85-217. Kato, M. 1935e. Description of a new Membracidae from Chosen. Entomol. World 3: 476-478; 1 fig. [Reprint paged 2-4; 1 fig.]. Kenne, M., and A. Dejean. 1997a. Caste polyethism and honeydew collection activity in foraging workers of Myrmicaria opaciventris (Hymenoptera: Formicidae: Myrmicinae). Sociobiology 30(3): 247-255. Kirillova, V. I. 1987a. Chromosome numbers of the leafhoppers (Homoptera, Auchenorrhyncha) of the world fauna. II. Karyotypic peculiarities of leafhoppers of the superfamily Cicadelloidea. Entomol. Obozr. 66(2): 321-337. Kirillova, V. I. 1988a. Chromosome numbers of world Homoptera Auchenorrhyncha II. Cicadelloidea. Entomol. Rev. 67(1): 80-108. Kirkaldy, G. W. 1906c. Leaf-hoppers and their natural enemies. (Pt. IX Leaf-hoppers. Hemiptera). Bull. Hawaii. Sugar Planters' Assoc., Div. Entomol. 1 (9): 271-479; Pls. 21-32. Kitching, R. L., and B. K. Filshie. 1974a. The morphology and mode of action of the anal apparatus of membracid nymphs with special reference to Sextius virescens (Fairmaire) (Homoptera). J. Entomol. (ser. A)49(1): 81-88. Kitching, R. L. 1987a. Aspects of the natural history of the lycaenid butterfly Allotinus major in Sulawesi. J. Natur. Hist. 21(3): 535-544. Koningsberger, J. C. 1915a. Java zoölogisch en biologisch 1915: 1-663 [104-106]. Kosztarab, M. 1982a. Homoptera. pp. 447-470. In S. P. Parker (ed.). Synopsis and Classification of Living Organisms. McGraw Hill, New York. Vol. 2. 1232 pp. Krauss, N. L. H. 1965a. Investigations on biological control of melastoma (Melastoma malabathricum L.). Proc. Hawaiian Entomol. Soc. 19(1): 97-101.
478
Labandeira, C. C., K. R. Johnson, and P. Wilf. 2002a. Impact of the terminal Cretaceous event on plant-insect interactions. Proc. Nat. Acad. Sci. 99(4): 2061-2066. Labandeira, C. C., and J. J. Seposki, Jr. 1993a. Insect diversity in the fossil record. Science 261: 310-315. Lallemand, V. 1925a. Hemiptera Homoptera in Zoological results of the Swedish Expedition to Central Africa 1921. Insecta. Arkiv Zool. 18: 1-8. Lamborn, W. A. 1914a. On the relationship between certain West African insects, especially ants, Lycaenidae and Homoptera. With an appendix containing descriptions of new species. Tran. R. Entomol. Soc. London 1913: 436-498; Pl. XXVI; 1 text fig. Lin, C. P. 2003a. Phylogeny and Evolution of Subsocial Behavior and Life History Traits in the Neotropical Treehopper Subfamily Membracinae (Hemiptera: Membracidae) Molecular Phylogeny of the Enchenopa binotata Species Complex (Homoptera: Membracidae). Unpublished Ph.D Dissertation, Cornell University, Ithaca, New York. xiii + 330 pp. Lodos, N., and A. Kalkandelen. 1981a. Preliminary list of Auchenorrhyncha with notes on distribution and importance of species in Turkey. VI. Families Cercopidae and Membracidae. Turkiye Bitki Koruma Dergisi 5(3): 133-149. Loye, J. E. 1992a. Ecological diversity and host plant relationships of treehoppers in a lowland tropical rainforest (Homoptera: Membracidae and Nicomiidae). pp. 280-289, 659-660. In, Quintero, D., and A. Aiello (eds.), Insects of Panama and Mesoamerica. Selected Studies. Oxford University Press, Oxford. xxii + 692 pp. Maes, J-M. 1998a. Superfamilia Membracoidea. pp. 146-157. In, Catalogo de los Insectos y Artropodos Terrestres de Nicaragua. [two volumes, publisher not indicated, Nicaragua]. [xlvi] + 1898 pp. Matsumura, S. 1912a Die Cicadinen Japans II. Annot. Zool. Japonenses, Tokyo, 8: 15-51. McKamey, S. H. 1997a. Nomenclatural changes in the Membracidae and Aetalionidae (Hemiptera: Membracoidea): species-group names and Sphongophorus Fairmaire, revised status. Steenstrupia 22: 1-11.
479
McKamey, S. H. 1998a. Taxonomic Catalogue of the Membracoidea (exclusive of leafhoppers): Second Supplement to Fascicle 1, Membracidae, of the General Catalogue of the Hemiptera. Mem. American Entomol. Institute 60: 1-377. McKamey, S. H., and L. L. Deitz. 1996a. Generic revision of the New World tribe Hoplophorionini (Hemiptera: Membracidae: Membracinae). Syst. Entomol. 21(4): 295-342. McLoughlin, S. 2001a. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust. J. Bot. 49: 271-300. Melichar, L. 1914b. Homopteren von Java, gesammelt von Herrn. Edw. Jacobson. Leyden Mus. Notes 36: 91-147; Pl. 3. Menon, P. S. 1958a. Studies on the chromosome behaviour in three species of Indian Homoptera. Caryologia (Florence) 11(1): 57-67. Menon, P. S. 1959a. On the chromosome behaviour in a membracid, Leptocentrus substitutus Walker. Genetica 29(5-6): 312-318. Metcalf, Z. P., and V. Wade. 1965a. General Catalogue of the Homoptera. A Supplement to Fascicle I Membracidae of the General Catalogue of Hemiptera. Membracoidea. In Two Sections. North Carolina State Univ., Raleigh. 1552 pp. Mohammad, F. A., and I. Ahmad. 1991a. Redescription of Otinotus oneratus (Walker) and Otinotus pallescens Distant (Hemiptera: Membracidae: Centrotinae: Leptocentrini) pests of sunflower and other crops from Indo-Pakistan subcontinent and their relationships. Proc. Pakistan Cong. Zool. 11: 315323. Mohammad, F. A., and I. Ahmad. 1995a. A new species of Leucaspis group of the tree hopper's genus Leptocentrus Stål (Homoptera: Auchenorrhyncha: Membracidae: Centrotine) from Punjab, Pakistan and its cladistic relationship. Biol. Res. J. 2: 23-26. Morley, C. 1905b. Homoptera. The Hemiptera of Suffolk 1905: i-x, 1-34 (23-31). Nast, J. 1972a. Palaearctic Auchenorrhyncha (Homoptera). An Annotated Check List. Polish Sci. Publ., Warsaw. 550 pp. Nixon, K. C. 1999a. Winclada (BETA) ver. 0.9.9. K. C. Nixon, Ithaca, New York.
480
Okáli, I., and V. Janský. 1998a. Treehoppers (Auchenorrhyncha, Membracidae) of Slovakia. Zborník Slovenského Národného Múzea Prírodne Vedy 44: 50-60. Olmstead, K. L., and T. K. Wood. 1990a. Altitudinal patterns in species richness of Neotropical treehoppers (Homoptera: Membracidae): the role of ants. Proc. Entomol. Soc. Washington 92(3): 552-560. Panda, U. C. 1968a. Protective adaptation of some membracids of Orissa. Prakruti-Utkal Univ. J. Sci. 5(2): 17-22. Panda, U. C., and B. K. Behura. 1956a. Further observations on the biology of the common 'tree-hopper' Otinotus oneratus Walk. (Homoptera, Membracidae) in Orissa. J. Bombay Natur. Hist. Soc. 54(1): 160-163. Panda, U. C., and B. K. Behura. 1957a. Notes on the three common tree-hoppers (Membracidae: Hemiptera) in Orissa. J. Bombay Natur. Hist. Soc. 54: 958-960. Parida, B. B., and B. K. Dalua. 1981a. Preliminary studies on the chromosome constitution in 72 species of auchenorrhynchan Homoptera from India. CIS (Chromosome Inform. Serv., Soc. Chromosome Res., Tokyo) 31: 13-16. Peláez, D. 1941b. Estudios sobre membrácidos. III. El genero Platycentrus Stål (Hem. Homopt.). Rev. Soc. Mex. Hist. Natur. 2: 51-67; Pl. II. Peláez, D. 1970a. Estudios sobre membracidos, X. Pieltainellus boneti nov. gen. et sp. de la subfamilia Centrotinae (Hem., Hom.). An. Esc. Nacl. Cienc. Biol. (Mexico City) 17(1-4): 81-89. Plummer, C. C. 1935a. Descriptions of new Membracidae from Mexico. J. New York Entomol. Soc. 43: 373-385; Pls. 27-28. Poinar, G. O., Jr. 1992a. Life in Amber. Stanford University Press, Stanford, California. xiii + 350 pp. Rafinesque, C. S. 1815a. Analyse de la nature ou tableau de l'univers et des corps organisés 1815: 1-224. Ramos, J. A. 1957a. A review of the auchenorhynchous Homoptera of Puerto Rico. J. Agric. Univ. Puerto Rico 41(1): 38-117. Ramos, J. A. 1979a. Membracidae de la República Dominicana (Homoptera: Auchenorhyncha). Univ. Puerto Rico (Mayagüez), Esta. Exp. Agric. Bol. 260. 71 pp.
481
Ramos, J. A. 1988a. Zoogeography of the auchenorrhynchous Homoptera of the Greater Antilles (Hemiptera). pp. 61-70. In Liebherr, J. K. (ed.). Zoogeography of Caribbean Insects. Cornell University Press, Ithaca. xii + 285 pp. Rao, S. R. V. 1956a. Studies on the spermatogenesis of some Indian Homoptera. Part III: A study of chromosomes in two members of the family Membracidae. Caryologia (Florence) 8(2): 309-315. Rao, M. S., C. A. Viraktamath, and V. Muniyappa. 1988a. Incidence of leafhoppers, treehoppers and froghopper (Homoptera) in sandal forests of Karnataka in relation to sandal spike disease. Ann. Entomol. 6(2): 25-34. Raut, S. K., and S. S. Bhattacharya. 1999a. Pests and diseases of betelvine (Piper beetle) and their natural enemies in India. Exp. & Appl. Acarol. 23(4): 319-325. Ray-Chaudhuri, S. P., S. Kakati, S. Pathak, and T. Sharma. 1967a. Studies on the chromosomes of four species of Indian Homoptera [Auchenorrhyncha]. Proc. Zool. Soc., Calcutta 20(1): 25-31. Reid, E. M. 1935a. British floras antecedent to the Great Ice Age. Discussion on the origin and relationship of the British flora. Proceedings of the Royal Society of London, B. 118: 97. Richter, L. 1942c. Catalogo de los Membracidoos de Columbia. Rev. Acad. Colombia 4: 405-409; Pls. I-III. Sanderson, M. J., and M. J. Donoghue. 1989a. Patterns of variation in levels of homoplasy. Evolution 43: 1781-1795. Schlee, D. 1990a. Das Bernstein-Kabinett. Begleitheft zur Bernsteinausstellung im Museum am Löwentor, Stuttgart. Stuttgarter Beitr. Naturk. (Serie C) 28: 1-100. Schmidt, E. 1922i. Beiträge zur Kenntnis aussereuropäischer Zikaden (Rhynchota, Homoptera). XXII. Kanada grandis, eine neue Membracide von Ostindien. Arch. Naturgesch. 88: 265-266. Schmidt, E. 1926b. Neue Membraciden der Unterfamilie Centrotinae des indo-malayischen Faunengebietes. (Hemiptera-Homoptera). Wien. Entomol. Zeitung 43: 181-189. Schmidt, E. 1926d. Neue Membraciden. Soc. Entomol. 41: 21-22. Schmidt, E. 1928b. Die Zikaden des Buitenzorger Museums. (Hemipt.-Homopt.). I. Treubia 10: 107-144. Sharma, T., S. K. Pandha, S. Kakati, B. J. Moitra, and J. K. Patnaik. 1964a. On the study of chromosomes of eight Indian species of Homoptera (Auchenorrhyncha). Proc. 50th Indian Sci. Congr. Pt. 3: 480.
482
Singh, M. M. 1986a. Notes on the behaviour of Oxyrhachis tarandus [taranda] Fabr. (Homoptera: Membracidae). pp. 303-308. In Pathak, S. C., and Y. N. Sahai (eds.). Recent Advances in Insect Physiology, Morphology and Ecology. Today & Tomorrow's Printers & Publishers, New Dehi, India. xlii + 324 pp. + 2 plates. Smithers, C. N. 1985a. New records of Pogonella bispinus (Stål) (Homoptera: Membracidae) from eastern Australia and Barrow Island, Western Australia. Australian Entomol. Mag. 12(2): 35-36. Stål, C. 1866a. Hemiptera Homoptera Latr. Hemiptera Africana 4: 1-276; Pl. 1. Stegmann, U. E., and K. E. Linsenmair. 2002a. Subsocial and aggregating behaviour in Southeast Asian treehoppers (Homoptera: Membracidae: Centrotinae). Eur. J. Entomol. 99(1): 29-34. Strümpel, H. 1972a. Beitrag zur Phylogenie der Membracidae Rafinesque. Zool. Jahrb., Abt. Syst., Ökol. & Geogr. Tiere 99(3): 313-407. Swezey, O. H. 1942a. Membracidae of Guam. Bull. Bernice P. Bishop Mus. 172: 19. Swofford, D. L. 2002a. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Tallamy, D. W., and C. [W.] Schaefer. 1997a. Maternal care in the Hemiptera: ancestry, alternatives, and current adaptive value. pp. 94-115. In Choe, J. C., and B. J. Crespi (eds.). The Evolution of Social Behavior in Insects and Arachnids. Cambridge Univ. Press. xiii + 541 pp. Thakur, S. S. 1973a. Observations of the mutualism between Acacia arabica Willd., Camponotus ligniperda Latr., and Oxyrhachis tarandus [taranda] Fabr. Labdev J. Sci. & Tech. 11-B(3-4): 76-77. Thirumalai, G. 1986a. Further studies on the membracids from Silent Valley, Kerala (Insecta: Homoptera). Rec. Zool. Surv. India 84(1-4): 97-105. Thirumalai, G., and K. S. Ananthasubramanian. 1981a. Taxonomic studies on the membracids collected from Silent Valley, Kerala (Insecta: Homoptera). Bull. Zool. Surv. India 4(1): 27-35. Thirumalai, G., and K. S. Ananthasubramanian. 1985a. Taxonomic studies on the Membracidae of southern India (Homoptera: Insecta)--I. Entomon 10(3): 223-233. Tian, R., and F. Yuan. 1997a. Chromosomes in twenty-five species of Chinese membracids (Homoptera: Membracidae). Entomol. Sinica 4(2): 150-158.
483
Tillyard, R. J. 1926d. Suborder Homoptera (Cicadas, plant-hopppers, plant-lice, scale insects). The insects of Australia and New Zealand. 1926: i-xv, 1-560; Pls. 1-44; Text figs. A1-ZB4 [158-170; Pls. 11-12; Text figs. Q19-Q35]. Uhler, P. R. 1896a. Summary of the Hemiptera of Japan presented to the United States National Museum by Professor Mitzukuri. Proc. U. S. Natl. Mus. 19: 255-297 [276-297]. Ushijima, K., and S. Nagai. 1979a. Some notes on the life history of Gigantorhabdus enderleini Schmidt in Borneo (Hemiptera: Membracidae). Trans. Shikoku Entomol. Soc. 14(3-4): 191-194. Vilbaste, J. 1968a. Über die Zikadenfauna des Primorje Gebietes. Valgus, Tallin. (Acad. Sci. Estonian SSR, Inst. Zool. Bot.) [180 pp.] Ward, P. S. 2001a. Taxonomy, phylogeny and biogeography of the ant genus Tetraponera (Hymenoptera: Formicidae) in the Oriental and Australian regions. Invert. Tax. 15: 589-665. Weiss, H. B., and E. L. Dickerson. 1921a. Gargara genistae Fabr., a European Membracid in New Jersey (Homop.). Entomol. News 32: 108-112; Figs. 1-3. Whitten, M. J. 1965a. Chromosome numbers in some Australian leafhoppers (Homoptera Auchenorrhyncha). Proc. Linnean Soc. New South Wales 90(1): 78-85. Wise, K. A. J. 1977a. A synonymic checklist of the Hexapoda of the New Zealand sub-region. The smaller orders. Auckland Inst. & Mus. Bull. 11. iii + 176 pp. Wolcott, G. N. 1941a. A supplement to "Insectae Borinquenses." J. Agric. Univ. Puerto Rico 25: 33-158. Wood, T. K. 1984a. Life history patterns of tropical membracids (Homoptera: Membracidae). Sociobiology 8(3): 299-344 Wood, T. K. 1993a. Diversity in the New World Membracidae. Ann. Rev. Entomol. 38: 409-435. Yousuf, M., S. I. Ahmed, and M. Gaur. 1997a. Brachygrammatella aligarhensis, a potential egg parasitoid of Oxyrachis tarandus (Fabricius). Bull. Pure & Appl. Sci. A (Zool.) 16(1-2): 53-58. Yuan, F., and I. Chou. 1988a. Advances in the research of systematics of Membracoidea from China (Homoptera: Auchenorrhyncha). pp. 71-78. In, Vidano, C., and A. Arzone (eds.), 6th Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale delle Ricerche, Incremento Produttivita Risorse Agricole (CNR-IPRA), Torino. 652 pp.
484
Yuan, F., and I. Chou. 2002a. Homoptera Membracoidea Aetalionidae Membracidae. Fauna Sinica, Insecta, 28: [i-v], [i]-xix, [1]-590 pp., plates I-IV. Yuan, F., and Z. Cui. 1987a. Homoptera: Membracidae. pp. 133-147. In, Shimei, Z. (ed.), Agricultural Insects, Spiders, Plant Diseases and Weeds of Xizang. Vol. 1. Xizang People Publishing House, China. Yuan, F., and Z. Cui. 1988a. Homoptera: Membracidae. pp. 141-148. In, Huang, F. - S. (chief ed.), Insects of Mt. Namjagbarwa Region of Xizang. The Mountaineering and Scientific Expedition, Academia Sinica. Science Press, Beijing. [6] + xii + 621 pp. Zimmerman, E. C. 1948a. Homoptera: Auchenorhyncha. Insects of Hawaii. A manual of the insects of the Hawaiian Islands, including an enumeration of the species and notes on their origin, distribution, hosts, parasites, etc. 4: i-vii, 1-268; Figs. 1-92.
485