Mathématiques récréatives: Éclairages historiques et épistémologiques 9782759823192

Apprendre les mathématiques par les jeux. Cette idée vous paraît farfelue ? Détrompez-vous : les jeux ont de tout temps

141 25 31MB

French Pages 254 [290] Year 2019

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Mathématiques récréatives: Éclairages historiques et épistémologiques
 9782759823192

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Mathématiques récréatives Éclairages historiques et épistémologiques

Enseigner les sciences Collection dirigée par Michèle Gandit /DFROOHFWLRQ©ௗ(QVHLJQHUOHVVFLHQFHVௗªV¶DGUHVVHDX[HQVHLJQDQWVGHVSUHPLHU HWVHFRQGGHJUpVjFHX[GHO¶XQLYHUVLWpDX[IRUPDWHXUVDLQVLTX¶jWRXWHSHUVRQQHLQWpUHVVpHSDUOHVPDWKpPDWLTXHVVFLHQFHVHWWHFKQLTXHVO¶pGXFDWLRQRX ODIRUPDWLRQVFLHQWL¿TXH6RQREMHFWLIHVWGHIRXUQLUGHVUHVVRXUFHV pFODLUDJHV KLVWRULTXHVpSLVWpPRORJLTXHV¿FKHVGHWUDYDX[SUDWLTXHV¿FKHVSRXUO¶HQVHLJQDQW SRXUPLHX[H[SOLTXHUHQVHLJQHUFHVGLVFLSOLQHV,OV¶DJLWQRWDPPHQW GHYDORULVHUHWGLIIXVHUOHVWUDYDX[GHUHFKHUFKHDFWLRQGHV,5(0GH0DWKV jPRGHOHUDLQVLTXHFHX[TXLVRQWPHQpVGDQVWRXVOHVSD\VIUDQFRSKRQHV JUkFH DX UpVHDX GHV ,5(0 HW j VHV OLHQV DYHF O¶$IULTXH O¶$PpULTXH ODWLQH O¶$VLHOH4XpEHFHWO¶(XURSHIUDQFRSKRQH'LYHUVW\SHVGHWUDYDX[HQODQJXH IUDQoDLVHSHXYHQWrWUHVRXPLVDLQVLTXHG¶DXWUHVW\SHVGHVXSSRUWV VXSSRUWV QXPpULTXHV REMHWV SK\VLTXHV  GH PpGLDWLRQ GHV VFLHQFHV V¶DFFRPSDJQDQW G¶XQHUpÀH[LRQVXUOHVVDYRLUVHQVHLJQpV

Mathématiques récréatives Éclairages historiques et épistémologiques

Sous la direction de Nathalie Chevalarias Michèle Gandit Marcel Morales Dominique Tournès

EDP SCIENCES UGA ÉDITIONS 2019

Photo de couverture : IStock/CreativaImages. ,OOXVWUDWLRQVG¶DSUqVFHUWDLQHV¿JXUHVGXSUpVHQWRXYUDJH Graphisme : Jean-Christophe Monnier. Maquette : Jean-Christophe Monnier et Gwenn Cognard. ÉGLWLRQ*ZHQQ&RJQDUGHW6WpSKDQLH7ULQH ISBN 978-2-7598-2318-5 ISSN en cours ,PSULPpHQ)UDQFHSDU3UpVHQFH*UDSKLTXH0RQWV

© EDP Sciences 17, avenue du Hoggar 3DUFG¶$FWLYLWpGH&RXUWDE°XI±%3 /HV8OLV&HGH[$±)UDQFH

© UGA Éditions 8QLYHUVLWp*UHQREOH$OSHV CS 40700 *UHQREOH&HGH[±)UDQFH

TABLE DES MATIÈRES

Introduction 9

Partie 1 – Jeux de société ou miroirs d’une société ? Le jeu des quinze croyants et des quinze infidèles : variations sur la violence 19 ,QWURGXFWLRQ  6RXUFHVODWLQHVPpGLpYDOHV  6RXUFHVHQODQJXHVJHUPDQLTXHV  6RXUFHVKpEUDwTXHVDUDEHVSHUVDQHVWXUTXHVDIULFDLQHV  6RXUFHVHQODQJXHVURPDQHV  &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV 3UDWLTXHVSRXUO¶HQVHLJQDQWRXOHIRUPDWHXU

L’exponentielle, entre jeu mathématique et vision du monde 47 ,QWURGXFWLRQ *UDLQVGHEOpGRXEOHPHQWVVXUO¶pFKLTXLHU (QWUH©IpFRQGHQDWXUHªHWDQJRLVVHVPDOWKXVLHQQHV 'LUKDPVTXDQGO¶DUJHQWFUpHO¶DUJHQW 5pIpUHQFHVELEOLRJUDSKLTXHV 3UDWLTXHVSRXUO¶HQVHLJQDQWRXOHIRUPDWHXU

     

Partie 2 – Portraits de récréateurs en leur temps Didier Henrion, compilateur de récréations mathématiques des années 1620 65 +HQULRQXQLQFRQQXUpSXWp" /DFRQIXVLRQGHVLGHQWLWpV+HQULRQ&\ULDTXH+pULJRQH« /HV©4XHVWLRQVLQJHQLHXVHVªGDQVODCollection mathematique /HVFRPPHQWDLUHVVXUODRecreation mathematique &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV 3UDWLTXHVSRXUO¶HQVHLJQDQWRXOHIRUPDWHXU

Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915) 85 'HODQQR\XQPLOLWDLUHGHFDUULqUHGHj 'HVUpFUpDWLRQVGDQVXQHSUHVVHPLOLWDQWH /HVWDWXWGHVUpFUpDWLRQVPDWKpPDWLTXHV &RQWULEXWLRQVGH'HODQQR\ &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV

Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique 113 &KDQJHPHQWG¶LWLQpUDLUHSRXU/DLVDQW  eGRXDUG/XFDVDPLHWFROODERUDWHXU 9HUVO¶Initiation mathématique &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV 3UDWLTXHVSRXUO¶HQVHLJQDQWRXOHIRUPDWHXU

Partie 3 – Variations combinatoires et algorithmiques La rithmomachie, un « jeu pédagogique » du XIe au XVIe siècle 139 ,QWURGXFWLRQ 8QHEUqYHKLVWRLUHGXMHX /HVUDSSRUWVGHQRPEUHVVHORQ%RqFH 'HVFULSWLRQGXMHXYHUVLRQXVIeVLqFOH /HMHXDXXIeVLqFOH



/HMHXDXXXIeVLqFOH 5pIpUHQFHVELEOLRJUDSKLTXHV

Géométrie, combinatoire et algorithmes des carrés magiques 159 /HPpPRLUHDes quarrés ou tables magiquesGH)UpQLFOH /DFRPELQDWRLUHGHVFDUUpVPDJLTXHVFKH])URORY &DUUpVPDJLTXHVHWUpFUpDWLRQVPDWKpPDWLTXHVFKH]/XFDV &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV

Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation 181 ,QWURGXFWLRQ 1DLVVDQFHGHODWKpRULHGHVMHX[FRPELQDWRLUHV /LHQVDYHFO¶DOJRULWKPLTXHHWODSURJUDPPDWLRQ &RQFOXVLRQ $QQH[H$OLVWHGHVLQVWUXFWLRQVVXLYLHVSDUOHSURJUDPPH GH'U1LPHQIUDQoDLV $QQH[H%WDEOHDXSRXUH[pFXWHUODOLVWHGHVLQVWUXFWLRQV 5pIpUHQFHVELEOLRJUDSKLTXHV 3UDWLTXHVSRXUO¶HQVHLJQDQWRXOHIRUPDWHXU

Partie 4 – Quand la récréation entre en classe Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin 205 /HVSURSRVLWLRQVGLWHV©G¶$OFXLQªpOpPHQWVFRQWH[WXHOV ¬ODGpFRXYHUWHGHTXHOTXHVXQVGHV©SUREOqPHVG¶$OFXLQª 9DULDWLRQVSpGDJRJLTXHVDXWRXUGHVSUREOqPHVG¶$OFXLQ FRPPHQWOHVUHSUHQGUHHWOHVRUJDQLVHU" &RQFOXVLRQ 5pIpUHQFHVELEOLRJUDSKLTXHV

Récréations mathématiques et algorithmique dans le Liber abaci de Fibonacci (XIIIe siècle) 225 ,QWURGXFWLRQ )LERQDFFL±TXHOTXHVpOpPHQWVFRQWH[WXHOV 'HVSUREOqPHVUpFUpDWLIVGDQVOHLiber abaci



/RUVTXH©SHUVSHFWLYHKLVWRULTXHªULPHDYHF©DOJRULWKPLTXHª &RQFOXVLRQ $QQH[H¿FKHpOqYHVpDQFH $QQH[H¿FKHpOqYHVpDQFH $QQH[HpYDOXDWLRQSDUFRPSpWHQFHV DYHFOHORJLFLHO6DFRFKH  5pIpUHQFHVELEOLRJUDSKLTXHV

À propos des auteurs 253



Dominique Tournès

INTRODUCTION 'HSXLV O¶$QWLTXLWp GLYHUV SUREOqPHV D\DQW XQ FRQWHQX PDWKpPDWLTXH RQW pWp SUpVHQWpV SDU OHXUV DXWHXUV FRPPH SURSUHV j ©ௗDPXVHUௗª WRXWH SHUVRQQH FXULHXVHTXLFRQVDFUHUDLWGXWHPSVjODUHFKHUFKHGHOHXUVVROXWLRQV&HVSUREOqPHV WUDQVPLV GH JpQpUDWLRQ HQ JpQpUDWLRQ RQW pWp SHX j SHX UDVVHPEOpV GDQVGHVUHFXHLOVSXLVSXEOLpVVRXVIRUPHGHOLYUHV&RQVXOWRQVWURLVGHFHV RXYUDJHV SDUPL FHX[ TXL RQW FRQQX OH VXFFqV DX SRLQW G¶rWUH UpJXOLqUHPHQW UpLPSULPpVUppGLWpVRXDGDSWpVSDUIRLVMXVTX¶jQRVMRXUV 1(Q&ODXGH *DVSDUG%DFKHWGH0p]LULDFSURSRVHjVRQSXEOLFGHVProblemes plaisans et delectables, qui se font par les nombres 2(QWrWHGHODVHFRQGHpGLWLRQGH RQ WURXYH FHWWH GpGLFDFH j 0RQVLHXU OH FRPWH GH7RXUQRQ ©ௗ-H YRXV RIIUH GHVMHX[PDLVTXLVRQWjPRQDGYLVGLJQHVGHYRVWUHEHOHVSULWHWFDSDEOHV GHOXLIRXUQLUTXHOTXHVIRLVXQDJJUHDEOHGLYHUWLVVHPHQWௗª9LHQWHQVXLWHXQ VRQQHWTXH&KDUOHVOH*UDQGDYRFDWDXVLqJHSUpVLGLDOGH%UHVVHDHQYR\pj %DFKHWVXU©ௗVRQOLYUHGHMHX[ௗªGDQVOHTXHOLOTXDOL¿HFHVGHUQLHUVGH©ௗSDVVH WHPSVHWUHFUHDWLRQVௗª-HXGLYHUWLVVHPHQWSDVVHWHPSVUpFUpDWLRQWRXVFHV PRWVVRQWGHQDWXUHjQRXVLQWULJXHUHWPpULWHQWG¶rWUHLQWHUURJpV)DLUHVXLYUH FKDFXQG¶HX[GHO¶DGMHFWLI©ௗPDWKpPDWLTXHௗªQ¶HVWFHSDVFUpHUDXWDQWG¶R[\PRUHV DX[ \HX[ GH FHOOHV HW FHX[ HQFRUH WURS QRPEUHX[ DXMRXUG¶KXL TXL JDUGHQWXQPDXYDLVVRXYHQLUVFRODLUHGHFHWWHGLVFLSOLQHDVVRFLpHPDOJUpHOOH jODVRXIIUDQFHHWjO¶pFKHFௗ"(WSRXUWDQWGHSXLVOHXVIIeVLqFOHGHQRPEUHX[ OLYUHVRQWSRUWpOHWLWUHGHRécréations mathématiques(QTXRLFRQVLVWHGRQF FHWWH QRWLRQ GH ©ௗPDWKpPDWLTXHV UpFUpDWLYHVௗªௗ" 6¶DJLWLO VHXOHPHQW G¶RIIULU 1. 3RXUQHSDVDORXUGLUFHWWHLQWURGXFWLRQQRXVQHPHQWLRQQHURQVGDQVODVXLWHTXHOHV pGLWLRQVSXEOLpHVGXYLYDQWGHVDXWHXUV 2. /\RQ5LJDXGUHpGepG

GHVPRPHQWVGHORLVLUGHGpWHQWHGHGpODVVHPHQWjTXHOTXHVULFKHVRLVLIVRX DPDWHXUVpFODLUpVௗ" (QGDQVODSUpIDFHGHVHVRécréations mathématiques et physiques 3 -DFTXHV2]DQDPQRXVSHUPHWG¶DYDQFHUGDQVODUpÀH[LRQ©ௗ%LHQTXHOHVMHX[ G¶HVSULWGRQWMHSDUOHVRLHQWGHVDPXVHPHQWVLOVQHVRQWSHXWrWUHSDVPRLQV XWLOHVTXHOHVH[HUFLFHVDX[TXHOVRQDSSOLTXHOHVMHXQHVSHUVRQQHVGHTXDOLWp SRXU IDoRQQHU OHXUV FRUSV HW SRXU OHXU GRQQHU OH ERQ DLUௗª ,O \ D Oj O¶LGpH TX¶HQPDWKpPDWLTXHVFRPPHGDQVWRXWDXWUHGRPDLQHOHVMHX[SHXYHQWVHUYLU GHPRWLYDWLRQHWGHVXSSRUWjO¶pGXFDWLRQGHVMHXQHV'HSXLVFHWWHLGpHDpWp SpULRGLTXHPHQWUpDI¿UPpH5DSSHORQVSDUH[HPSOHTXHOD©ௗ6WUDWpJLHPDWKpPDWLTXHVௗªGXPLQLVWqUHGHO¶eGXFDWLRQQDWLRQDOHSXEOLpHHQGpFHPEUH UHPHWHQDYDQW©ௗODGLPHQVLRQOXGLTXHGHVPDWKpPDWLTXHVௗªHW©ௗODSODFHGX MHXGDQVOHVDSSUHQWLVVDJHVHQPDWKpPDWLTXHVௗª/HVQRXYHDX[SURJUDPPHV HQWUpV HQ DSSOLFDWLRQ j OD UHQWUpH QRWDPPHQW FHX[ GX F\FOH GpYHORSSHQW FHW REMHFWLI HQ OLHQ DYHF OD SODFH FURLVVDQWH TXH OHV SUREDELOLWpV HW O¶DOJRULWKPLTXH RFFXSHQW GDQV OHV PDWKpPDWLTXHV DFWXHOOHV OD SUDWLTXH GH MHX[SRXUOHVTXHOVLOIDXWGpYHORSSHUXQHVWUDWpJLHJDJQDQWHFRQWULEXHGHIDoRQ JpQpUDOHDXGpYHORSSHPHQWGHVIDFXOWpVGHUDLVRQQHPHQWௗO¶LQWHUSUpWDWLRQGHV GRQQpHVLVVXHVGHO¶pWXGHG¶XQMHXHWO¶pYDOXDWLRQGHVHVFKDQFHVGHJDLQVRQW XQSRLQWGHGpSDUWQDWXUHOSRXUO¶LQWURGXFWLRQGHVSUREDELOLWpVHWGHODVWDWLVWLTXHௗO¶DQDO\VHODFRQFHSWLRQHWODSURJUDPPDWLRQGHMHX[VLPSOHVFRQVWLWXHQWXQVXSSRUWPRWLYDQWSRXUO¶pWXGHGHO¶DOJRULWKPLTXH3OXVUpFHPPHQWOH UDSSRUW9LOODQL7RURVVLDQUHFRPPDQGHpJDOHPHQWOHSODLVLUSDUOHMHXFRPPH O¶XQHGHVHQWUpHVjSULYLOpJLHUSRXUDWWLUHUOHVMHXQHVYHUVOHVPDWKpPDWLTXHV ©ௗ(QWUDYDLOODQWOHVIRQGDPHQWDX[SDUXQHDSSURFKHGLIIpUHQWHOHMHXFRQWULEXH OXLDXVVLjODIRUPDWLRQPDWKpPDWLTXHGHVpOqYHV>/HVMHX[@VWLPXOHQWOHUDLVRQQHPHQWORJLTXHHWFRQWULEXHQWjFUpHURXUHVWDXUHUOHSODLVLUGHIDLUHGHV PDWKpPDWLTXHV SRXUO¶pOqYHFRPPHSRXUVRQSURIHVVHXU  4ௗª'XSRLQWGHYXH SpGDJRJLTXHOHVUpFUpDWLRQVPDWKpPDWLTXHV MHX[pQLJPHVFRQFRXUVGp¿V HW KLVWRLUHV  VRQW DXVVL PLVHV HQ DYDQW SRXU OHXU DGpTXDWLRQ DYHF OD WULORJLH ©ௗPDQLSXOHUHWH[SpULPHQWHUYHUEDOLVHUDEVWUDLUHௗªSUpFRQLVpHSDUOHUDSSRUW /H WURLVLqPH RXYUDJH FODVVLTXH DXTXHO QRXV QRXV UpIqUHURQV GDQV FHWWH LQWURGXFWLRQDpWpSXEOLpSDUeGRXDUG/XFDVYHUVOD¿QGXXIXeVLqFOHHWSRUWH HQFRUHOHWLWUHGHRécréations mathématiques 52QOLWFHFLGDQVVDSUpIDFH 3. YRO3DULV-RPEHUW 4. &pGULF9LOODQL HW &KDUOHV7RURVVLDQ 21 mesures pour l’enseignement des mathématiquesUDSSRUWUHPLVOHIpYULHUDXPLQLVWUHGHO¶eGXFDWLRQQDWLRQDOHS 5. 3DULV*DXWKLHU9LOODUVUHpG YRO epG YRO 

 Introduction

©ௗ6LFHVSDJHVSODLVHQWjTXHOTXHVVDYDQWVVLHOOHVLQWpUHVVHQWTXHOTXHVJHQV GX PRQGH VL HOOHV LQVSLUHQW j TXHOTXHV MHXQHV LQWHOOLJHQFHV OH JR€W GX UDLVRQQHPHQW HW OH GpVLU GHV MRXLVVDQFHV DEVWUDLWHV MH VHUDL VDWLVIDLW 6ௗª$SUqV OHV JHQV GX PRQGH HW OHV FRPPHQoDQWV DSSDUDvW XQ WURLVLqPH SXEOLF SRWHQWLHO FHOXL GHV VDYDQWV HW QRWDPPHQW GHV PDWKpPDWLFLHQV SURIHVVLRQQHOV (Q HIIHWFHVGHUQLHUVSHXYHQWWURXYHUGDQVOHVMHX[PDWKpPDWLTXHVGHVSUREOqPHV GLI¿FLOHVjUpVRXGUHHWGHVVXMHWVG¶LQVSLUDWLRQSRXUGpYHORSSHUGHVWKpRULHV QRXYHOOHV&¶HVWDLQVLTXHORQJWHPSVFRQVLGpUpHVFRPPHGHVHQIDQWLOODJHV GHVEDJDWHOOHVGHVDPXVHPHQWVGHVDORQVDQVJUDQGHSRUWpHOHVUpFUpDWLRQV PDWKpPDWLTXHVRQWSHXjSHXJDJQpHQUHVSHFWDELOLWpDXVHLQGHODFRPPXQDXWp PDWKpPDWLTXH 'DQV OD GHUQLqUH YHUVLRQ GH OD Mathematical Subject &ODVVL¿FDWLRQDGRSWpHDXQLYHDXLQWHUQDWLRQDO 06& LO\DXQHUXEULTXH JpQpUDOHRecreational mathematics $ HWXQHLPSRVDQWHUXEULTXHVSpFLDOLVpH Game theory $[[  GRQW OHV VRXVUXEULTXHV IRQW HQWUHYRLU OHV QRPEUHX[OLHQVWLVVpVDYHFGLYHUVGRPDLQHVGHVPDWKpPDWLTXHVDXSUHPLHU UDQJGHVTXHOVODWKpRULHGHVJUDSKHVODFRPELQDWRLUHHWOHVSUREDELOLWpV3DU DLOOHXUVODWKpRULHGHVMHX[WLHQWXQU{OHGHSOXVHQSOXVLPSRUWDQWGDQVOHV VFLHQFHVVRFLDOHVO¶pFRQRPLHOHGRPDLQHPLOLWDLUHHWSOXVJpQpUDOHPHQWGDQV WRXWHV OHV VLWXDWLRQV R LO LPSRUWH G¶pODERUHU HW G¶RSWLPLVHU GHV WDFWLTXHV HW GHV VWUDWpJLHV 5DSSHORQV HQ¿Q TXH OHV UHFKHUFKHV SRXU FRQFHYRLU GHV SURJUDPPHVLQIRUPDWLTXHVFDSDEOHVGHEDWWUHOHVPHLOOHXUVMRXHXUVKXPDLQVDX MHXG¶pFKHFVDXMHXGHJRRXjG¶DXWUHVMHX[RQWFRQGXLWjGHVSURJUqVVLJQL¿FDWLIVHQDOJRULWKPLTXHSURJUDPPDWLRQHWLQWHOOLJHQFHDUWL¿FLHOOH &RPSWHWHQXGHFHTXLSUpFqGHOHSUpVHQWOLYUHVHSURSRVHGRQFG¶LQWHUURJHUODQRWLRQGH©ௗPDWKpPDWLTXHVUpFUpDWLYHVௗªGXSRLQWGHYXHpSLVWpPRORJLTXHHWKLVWRULTXH4X¶HVWFHTXLHVWPDWKpPDWLTXHGDQVOHVGLIIpUHQWVW\SHV GHMHX[HQXVDJHjXQPRPHQWGRQQpGDQVXQHVRFLpWpGRQQpHௗ"4XDQGSRXUTXRLHWFRPPHQWOHVPDWKpPDWLFLHQVVHVRQWLOVLQWpUHVVpVjO¶pWXGHGHFHUWDLQV MHX[ௗ"(QTXRLOHVMHX[RQWLOVFRQWULEXpjODFUpDWLRQRXDXGpYHORSSHPHQWGH FHUWDLQHVSDUWLHVGHVPDWKpPDWLTXHVHWGHO¶LQIRUPDWLTXHௗ"(QV¶LQVSLUDQWGH O¶KLVWRLUHFRPPHQWFRQFHYRLUGHVVLWXDWLRQVOXGLTXHVSHUWLQHQWHVSRXUO¶HQVHLJQHPHQWGHVPDWKpPDWLTXHVG¶DXMRXUG¶KXLHQSDUWLFXOLHUGHVSUREDELOLWpVHW GHO¶DOJRULWKPLTXHௗ" /HVGL[FKDSLWUHVUpXQLVLFLV¶HIIRUFHQWGHIDLUHOHWRXUGXWKqPHFRQGXFWHXUGHVPDWKpPDWLTXHVUpFUpDWLYHVHQDGRSWDQWVXFFHVVLYHPHQWGLYHUVDQJOHV GHYXH

6. Op. cit.epGYROSYLLL



1RXVFRPPHQFHURQVSDUSUHQGUHXQSHXGHUHFXOSDUUDSSRUWDX[PDWKpPDWLTXHVHOOHVPrPHVSRXUQRXVLQWpUHVVHUDX[FRQWH[WHVGDQVOHVTXHOVFHUWDLQHVUpFUpDWLRQVPDWKpPDWLTXHVRQWSXYRLUOHMRXUHWVHGpYHORSSHU$LQVL GDQVOHSUHPLHUFKDSLWUHFRQVDFUpDX©ௗ-HXGHVTXLQ]HFUR\DQWVHWGHVTXLQ]H LQ¿GqOHVௗª 3LHUUH $JHURQ HW *pUDUG +DPRQ QRXV IRQW SUHQGUH FRQVFLHQFH G¶HQWUpH GH MHX TXH OHV UpFUpDWLRQV PDWKpPDWLTXHV FRQWUDLUHPHQW j FH TXH G¶DXFXQVSRXUUDLHQWFURLUHQDwYHPHQWQHVRQWSDVWRXMRXUVGHVMHX[GH©ௗERQQH VRFLpWpௗª/RLQG¶rWUHQHXWUHVHWDVHSWLVpVLOVUHÀqWHQWSDUIRLVFUXHOOHPHQWOH FRQWH[WHSROLWLTXHHWVRFLRFXOWXUHOGDQVOHTXHOLOVVRQWSUDWLTXpV'DQVFHMHX GHV FUR\DQWV HW GHV LQ¿GqOHV TXL FLUFXOH GDQV GH QRPEUHXVHV ODQJXHV HW GH QRPEUHX[ OLHX[ GHSXLV OH IXeVLqFOH LO V¶DJLW WRXW VLPSOHPHQW GH VDXYHU OHV FUR\DQWV HW G¶pOLPLQHU OHV LQ¿GqOHV SDU GHV WHFKQLTXHV GH FRPSWDJH GDQV OH FDVSDUH[HPSOHRLOHVWQpFHVVDLUHG¶DOOpJHUXQEDWHDXHQSHUGLWLRQ6LJQH G¶XQHYLROHQFHRPQLSUpVHQWHOHVVRXUFHVTXLQRXVVRQWSDUYHQXHVPHWWHQWHQ VFqQHGHVFKUpWLHQVGHVMXLIVHWGHVPXVXOPDQVGDQVOHU{OHGHVFUR\DQWVWRXW DXWDQWTXHGDQVFHOXLGHVLQ¿GqOHVDYHFWRXWHVOHVFRPELQDLVRQVSRVVLEOHV/H VHFRQGFKDSLWUHLQWLWXOp©ௗ/¶H[SRQHQWLHOOHHQWUHMHXPDWKpPDWLTXHHWYLVLRQGX PRQGHௗªSHUPHWj%HQRvW5LWWDXGGHUHVWHUGDQVOHPrPHUHJLVWUH,OV¶DWWDFKH GHVRQF{WpjPRQWUHUHQTXRLODFURLVVDQFHH[SRQHQWLHOOHGHSXLVOHIDPHX[ FRQWHDQFLHQGXGRXEOHPHQWGHVJUDLQVGHEOpVXUFKDTXHFDVHGHO¶pFKLTXLHU HVWUpYpODWULFHGHQRVUHSUpVHQWDWLRQVFROOHFWLYHVHWGHQRVFUDLQWHVLUUDLVRQQpHV7RXWHQVHUYDQWGHSUpWH[WHHWGHVXSSRUWjGHVUpFUpDWLRQVQXPpULTXHV VXUSUHQDQWHVFHWWHFURLVVDQFHH[SRQHQWLHOOHSHUPHWGHPRGpOLVHUO¶pYROXWLRQ GHSRSXODWLRQVYpJpWDOHVDQLPDOHVRXKXPDLQHVGHVHOLYUHUjGHVH[pJqVHV ELEOLTXHVG¶pEDXFKHUGHVVFpQDULRVSROLWLTXHVRXpFRQRPLTXHVYRLUHG¶pODERUHUGHVSURJUDPPHVGHSHXSOHPHQW'DQVVHVDYDWDUVOHVPRLQVDYRXDEOHV HOOHDDXVVLFRQGXLWFHUWDLQVjHQYLVDJHUO¶DUUrWGHWRXWHHVSqFHG¶DVVLVWDQFH DX[SOXVSDXYUHVRXHQFRUHG¶pWXGLHUODIDLVDELOLWpG¶XQUDSDWULHPHQWPDVVLI HQ$IULTXHGHVDQFLHQVHVFODYHVQRLUV &RPPH QRXV O¶DYRQV GLW SOXV KDXW OH JHQUH GHV UpFUpDWLRQV PDWKpPDWLTXHVDGRQQpQDLVVDQFHjXQQRPEUHLPSRUWDQWG¶RXYUDJHVGDQVWRXWHVOHV ODQJXHV 0DLV TXL VRQW OHV DXWHXUV GH FHV RXYUDJHVௗ" 4XHOV VRQW OHXUV SDUFRXUVOHXUVFHQWUHVG¶LQWpUrWOHXUVPRWLYDWLRQVௗ"&RPPHQWFROOHFWHQWLOVGHV pQLJPHVGHVGHYLQHWWHVGHVSUREOqPHVSURSUHVjpYHLOOHUODFXULRVLWpGHOHXUV OHFWHXUVௗ"7URLVFKDSLWUHVGHFHOLYUHYRQWV¶DWWDFKHUjPLHX[FHUQHUFHVDXWHXUV G¶XQ W\SH SDUWLFXOLHU TXH QRXV DSSHOOHURQV ©ௗUpFUpDWHXUVௗª HQ EURVVDQW GHV SRUWUDLWVKDXWVHQFRXOHXU$LQVLOHWURLVLqPHFKDSLWUHV¶HIIRUFHGHSHUFHUOHV VHFUHWV GH ©ௗ'LGLHU +HQULRQ FRPSLODWHXU GH UpFUpDWLRQV PDWKpPDWLTXHV GHV DQQpHVௗª ¬ SDUWLU GH VRXUFHV DUFKLYLVWLTXHV QRXYHOOHV )UpGpULF 0pWLQ

 Introduction

SUpFLVHODELRJUDSKLHREVFXUHGXSHUVRQQDJHHQpWDEOLVVDQWQRWDPPHQWTXH VRQSUpQRPHVWELHQ'LGLHUHWQRQ'HQLVFRPPHRQOHFUR\DLWjWRUWHWTXH F¶HVWXQDXWHXUGLVWLQFWGH3LHUUH+pULJRQHHWGH&\ULDTXHGH0DQJLQDYHFTXL RQO¶DYDLWSDUIRLVFRQIRQGX/HFKDSLWUHVHSRXUVXLWSDUXQHpWXGHGpWDLOOpHGHV ©ௗ4XHVWLRQVLQJHQLHXVHVHWUHFUHDWLYHVௗªTXLRFFXSHQWSDJHVGHVDCollection mathematiqueSXEOLpHHQ)DLVDQWXQVDXWGHSOXVGHGHX[VLqFOHV 6\OYLDQH6FKZHUVHSHQFKHVXUXQDXWUHUpFUpDWHXURULJLQDOGDQVOHTXDWULqPH FKDSLWUHLQWLWXOp©ௗ5HYHQLUDX[PDWKpPDWLTXHVSDUOHVUpFUpDWLRQVO¶H[HPSOH GH +HQUL$XJXVWH 'HODQQR\ௗª$SUqV XQH ORQJXH FDUULqUH PLOLWDLUH OH SRO\WHFKQLFLHQ+HQUL$XJXVWH'HODQQR\V¶LQWpUHVVHjQRXYHDXDX[PDWKpPDWLTXHV jSDUWLUGHSDUO¶LQWHUPpGLDLUHGHVUpFUpDWLRQV/HVSUREOqPHVGHJpRPpWULHGHVLWXDWLRQTXHO¶RQSHXWUpVRXGUHjO¶DLGHG¶XQpFKLTXLHUOHFRQGXLVHQW jODSXEOLFDWLRQGHRQ]HDUWLFOHVGHPDWKpPDWLTXHVSRUWDQWVXUGHVTXHVWLRQV GH SUREDELOLWpV GLVFUqWHV 8Q WHO SDUFRXUV HVW H[HPSODLUH GX U{OH PLOLWDQW GHV UpFUpDWLRQV PDWKpPDWLTXHV GDQV O¶HQWUHGHX[JXHUUHV  SRXU OD UHFRQVWLWXWLRQ G¶XQH pOLWH VFLHQWL¿TXH IUDQoDLVH DSUqV OD GpIDLWH GH 6HGDQ HWODFKXWHGX6HFRQG(PSLUH&¶HVWGDQVFHPrPHFRQWH[WHTX¶DpWpFUppH HQ O¶$VVRFLDWLRQ IUDQoDLVH SRXU O¶DYDQFHPHQW GHV VFLHQFHV 'HODQQR\ ODIUpTXHQWHDVVLGXPHQWWRXWFRPPHG¶DXWUHVLQJpQLHXUVHWPDWKpPDWLFLHQV pJDOHPHQWVHQVLEOHVjO¶LQWpUrWGHVUpFUpDWLRQVSRXUODUHFKHUFKHHWO¶HQVHLJQHPHQW8QDXWUHPHPEUHGHFHPLOLHXIRLVRQQDQWIDLWMXVWHPHQWO¶REMHWGXFLQTXLqPHFKDSLWUHpFULWSDU-pU{PH$XYLQHW©ௗ/HVUpFUpDWLRQVPDWKpPDWLTXHV FKH]&KDUOHV$QJH/DLVDQWGHODJpRPpWULHGHVLWXDWLRQjO¶Initiation mathématiqueௗª'¶RULJLQHSRO\WHFKQLFLHQQHHWPLOLWDLUHFRPPH'HODQQR\/DLVDQW HVWpOXGpSXWpGHjDYDQWGHGHYHQLUHQVHLJQDQWHQFODVVHVSUpSDUDWRLUHVDX[JUDQGHVpFROHV$\DQWODYRORQWpGHSRSXODULVHUOHVPDWKpPDWLTXHV HWGHUHQRXYHOHUOHXUHQVHLJQHPHQWLOSHUoRLWOHVVLWXDWLRQVUpFUpDWLYHVFRPPH XQHVRXUFHG¶LQQRYDWLRQVSpGDJRJLTXHVHWHQIDLWODVXEVWDQFHG¶XQOLYUHQRYDWHXU SRXU O¶pGXFDWLRQ GHV MHXQHV HQIDQWV O¶Initiation mathématique SXEOLpH HQ /HVWURLVFKDSLWUHVVXLYDQWVQHVRQWSOXVFHQWUpVSULQFLSDOHPHQWVXUGHVSHUVRQQDJHVPDLVVXUGHVW\SHVSDUWLFXOLHUVGHMHX[RXGHUpFUpDWLRQVDYHFO¶DPELWLRQGHOHVUHSODFHUGDQVOHXUFRQWH[WHKLVWRULTXHG¶HQSUpFLVHUOHFRQWHQX PDWKpPDWLTXH VRXVMDFHQW HW GH VXJJpUHU OHXUV SRWHQWLDOLWpV SpGDJRJLTXHV 7RXW G¶DERUG )UDQoRLV *RLFKRW VH FRQFHQWUH GDQV OH VL[LqPH FKDSLWUH VXU ©ௗ/D ULWKPRPDFKLHXQ MHX SpGDJRJLTXH GXXIe DX XVIeVLqFOHௗª ,QYHQWp SDU OHPRLQH$VLORQDX XIeVLqFOHODULWKPRPDFKLHRX©ௗFRPEDWGHVQRPEUHVௗª VHYRXODLWXQMHXSRXUGpODVVHUOHVVDYDQWVHWSHUPHWWUHDX[SOXVMHXQHVG¶DSSUHQGUHDJUpDEOHPHQWO¶DULWKPpWLTXHGH%RqFH3OXVTX¶XQFRPEDWGHQRPEUHV



LOV¶DJLVVDLWG¶XQFRPEDWGHUDSSRUWVGHQRPEUHVIDLVDQWDOOXVLRQjO¶LQWHUSUpWDWLRQPXVLFDOHGHO¶DULWKPpWLTXH/HFKDSLWUHSUpVHQWHG¶DERUGTXHOTXHVXQV GHV QRPEUHX[ WH[WHV TXL RQW ÀHXUL HQWUH HW VXU FH MHX WUqV FRPSOH[HSXLVHQGRQQHOHVUqJOHVHWHQpYRTXHXQHYHUVLRQVLPSOL¿pHDGDSWpHj XQHXWLOLVDWLRQHQFROOqJH'DQVOHVHSWLqPHFKDSLWUHeYHO\QH%DUELQDERUGH HQVXLWHOD©ௗ*pRPpWULHFRPELQDWRLUHHWDOJRULWKPHVGHVFDUUpVPDJLTXHVௗª/H SUREOqPHIDVFLQDQWGHVFDUUpVPDJLTXHVFRQVLVWHjUHPSOLUOHVFDVHVG¶XQFDUUp GHnOLJQHVHWGHnFRORQQHVjO¶DLGHGHVQRPEUHVGHjnGHVRUWHTXHOD VRPPHGHVQRPEUHVVRLWODPrPHVXUFKDTXHOLJQHFKDTXHFRORQQHHWFKDTXH GLDJRQDOH/HFKDSLWUHDQDO\VHOHVWUDYDX[GH%HUQDUG)UHQLFOHGH%HVV\TXL SXEOLH HQ XQH WDEOH GHV FDUUpV PDJLTXHV GH F{Wp SXLV FHX[ GH 0LFKHO )URORY HW eGRXDUG /XFDV TXL j OD ¿Q GX XIXeVLqFOH UHSUHQQHQW OH GpQRPEUHPHQWGH)UHQLFOHSRXUHQJDJHUGHVLQYHVWLJDWLRQVFRPSOpPHQWDLUHV GH QDWXUH JpRPpWULTXH HW FRPELQDWRLUH ,O VH WHUPLQH SDU XQH UpÀH[LRQ VXU OHVH[SORLWDWLRQVSRVVLEOHVGHVFDUUpVPDJLTXHVGDQVO¶HQVHLJQHPHQWSRXUTXH FHX[FLWRXWHQUHVWDQWGLYHUWLVVDQWVVRLHQWSRUWHXUVGHFRQQDLVVDQFHVDXWKHQWLTXHPHQW PDWKpPDWLTXHV (Q¿Q /LVD 5RXJHWHW WUDLWH G¶XQH DXWUH FDWpJRULH GH MHX[ GDQV OH KXLWLqPH FKDSLWUH ©ௗ/HV MHX[ FRPELQDWRLUHV RX FRPPHQW WLVVHU XQ OLHQ HQWUH PDWKpPDWLTXHV DOJRULWKPLTXH HW SURJUDPPDWLRQௗª &HV MHX[TXLVHFDUDFWpULVHQWSDUXQHDOWHUQDQFHGHFRXSVHQWUHGHX[MRXHXUVXQH LQIRUPDWLRQFRPSOqWHHWO¶DEVHQFHGHKDVDUGVRQWGpWHUPLQpVLOHVWSRVVLEOH HQWKpRULHGHGpQRPEUHUWRXWHVOHVSRVLWLRQVSRXYDQWVHSUpVHQWHUGXUDQWXQH SDUWLHHWGHFDUDFWpULVHUFHOOHVTXLVRQWJDJQDQWHVSRXUO¶XQGHVMRXHXUV(Q LOOXVWUDQWVHVSURSRVSDUO¶pWXGHGpWDLOOpHGXMHXGH1LPHWGXMHXGH.D\OHV O¶DXWHXUH PRQWUH TXH FHV MHX[ SUHQQHQW OHXUV VRXUFHV GDQV GHV RXYUDJHV GH UpFUpDWLRQV PDWKpPDWLTXHV GqV OH GpEXW GX XVIIeVLqFOH TX¶LOV VRQW j O¶RULJLQHGHGpYHORSSHPHQWVPDWKpPDWLTXHVHWDOJRULWKPLTXHVWRXWjIDLWDFWXHOV HWTX¶LOHVWSHUWLQHQWGHOHVXWLOLVHUHQFODVVHSRXUDERUGHUFHUWDLQHVQRWLRQVGX SURJUDPPHGHPDWKpPDWLTXHVGXF\FOH 6L OHV KXLW SUHPLHUV FKDSLWUHV VXJJqUHQW WRXV GHV SLVWHV FRQFUqWHV SRXU H[SORLWHU GDQV O¶HQVHLJQHPHQW OHV UpFUpDWLRQV TX¶LOV pWXGLHQW OHV GHX[ GHUQLHUVYRQWSOXVORLQGDQVFHWWHGLUHFWLRQGDQVODPHVXUHRLOVVRQWFRQVWUXLWV VXUO¶DQDO\VHGLGDFWLTXHG¶H[SpULPHQWDWLRQVUpDOLVpHVHQFODVVH$ODLQ%HUQDUG HW(PPDQXHOOH5RFKHUpFULYHQWjTXDWUHPDLQVXQQHXYLqPHFKDSLWUHLQWLWXOp ©ௗ(QWUHKLVWRLUHHWPDWKpPDWLTXHVYDULDWLRQVSpGDJRJLTXHVDXWRXUGHVSUREOqPHVG¶$OFXLQௗª/HVXSSRUWKLVWRULTXHHVWLFLXQUHFXHLOG¶XQHFLQTXDQWDLQH GHSUREOqPHVTXLRQWFLUFXOpHQWUHOHIXe et le XIIeVLqFOH%LHQTX¶LOVRLWDWWULEXp j$OFXLQG¶*H@RX7KRPDV>%%H33@/DVROXWLRQHVW IUpTXHPPHQWGRQQpHVRXVFHWWHIRUPH Quatuor, et pentas, duo, monas, tres, mias, unus, Hinc dias, ambo, trias, unus, dias, et duo, monas.

(QDVVRFLDQWOHVPRWVODWLQVDX[%ODQFVHWOHVJUHFVDX[1RLUVRQGpFRGH %ODQFV1RLUV%ODQFV1RLU«6RXYHQWDXVVLODVROXWLRQHVWWRXUQpH HQXQSRqPHTXLGLIIqUHVHORQOHVPDQXVFULWV3UpVHQWRQVUDSLGHPHQWOHVSOXV UHPDUTXDEOHV • /H SRqPHVROXWLRQ , FRPPHQFH SDU Quatuor eximii candoris, quinque nigelli >%D*H//0233359L:@ 9RLFLQRWUHWUDGXFWLRQ 4XDWUHG¶XQHH[FHSWLRQQHOOHEODQFKHXUFLQTQRLUDXGV 'HX[EODQFKHWVHWXQVHXOQRLU 7URLVpFODWDQWVXQQRLUDXGjODSHDXVRPEUH ¬SDUWLUG¶LFLXQEODQFHWGHX[FKDUERQQHX[ 'HX[pWLQFHODQWVHWWURLVDXPDQWHDXVRPEUH (WXQQHLJHX[HWGHX[DIIUHX[ 'HX[pFODWDQWVEODQFKHWVjODSHDXJUDFLHXVH (WXQQRLUXQLTXHTXLOHVVXLYDLWWRXV $LQVLSDUFHWWHUXVHOHQHXYLqPHVRUWVXUWRXVOHVQRLUV 6¶DEDWWLWௗODWURXSHEODQFKHHVWH[HPSWpHSDUOHVRUW 6HXOOHFKHIQRLUUHVWDQWVDQVSODLVLUWRXWHODQXLWpYHLOOp &RQGXLVLWODJDUGHMXVTX¶DXMRXUDYHFVHVVROGDWVQRLUV 0DLVWRXWHODQXLWO¶LQJpQLHX[EODQF $YHFOHVVLHQVJR€WDXQSDLVLEOHVRPPHLO

3. (QJDpOLTXHLUODQGDLVPRGHUQHdubh QRLU¿RQQ = blanc.



• /HSRqPHVROXWLRQ,,FRPPHQFHSDUBis duo nam nivei præsunt et quinque nigelli >%H&&E0D23339@ 1RXVOHWUDGXLURQVDLQVL 'HX[IRLVGHX[QHLJHX[VRQWHQWrWHHWFLQTQRLUDXGV 6HSODFHQWDSUqVHX['HX[WHLQWVFODLUVVXLYLVHQVXLWH '¶XQVHXODVVRPEULHWWURLVSOXVEODQFV 'RQWOHODLWHIIDFHOHVSDV8QPRULFDXGDXVVLV¶DWWDFKHjHX[ 8QEODQFV¶LQVqUH3XLVRQDXQQRLUHWXQDXWUH 'HX[FULVWDOOLQVV¶DVVRFLHQWjHX[GDQVOHUDQJ 7URLVQRLUVWLWXEHQWYDLQFXVSDUODYLJXHXUG¶XQODLWHX[ (QVXLWHLO\DGHX[QRLUVFRUEHDX[HWHQ¿QGHX[QHLJHX[ 8QIRQFpWHUPLQHDORUVOHFHUFOH

• /HSRqPHVROXWLRQ,,,TXLFRPPHQFHSDUAlbi bis bini procedunt ordinis arcem, Q¶H[LVWH TXH GDQV OH PDQXVFULW >3@ /HV QRLUV \ VRQW QRPPpV Aethiopes eWKLRSLHQV  • /HSRqPHVROXWLRQ,9TXLFRPPHQFHSDUBis bini simili consistunt ordino claro…Q¶H[LVWHTXHGDQVOHPDQXVFULW>%R@DFFRPSDJQpG¶XQH¿JXUH,FL DXVVLDSSDUDvWOHPRWAethiopes. &RPPHQWFRPSUHQGUHFHWWHGLYHUVLWpௗ",ODpWpVXJJpUp 0DQLWLXV  TXHOHSRqPHpQRQFpLQYDULDEOHFLUFXODLWGDQVOHVpFROHVPRQDVWLTXHV RXFDWKpGUDOHVHWTX¶XQHIRLVODVROXWLRQWURXYpHOHVpOqYHVpWDLHQWFKDUJpV GH OD PHWWUH HQ YHUV$XWUH TXHVWLRQ FUXFLDOH SRXU FRPSUHQGUHO¶pYROXWLRQ XOWpULHXUHGXSUREOqPHTXHIDXWLOFRPSUHQGUHSDUEODQFVHWQRLUVௗ"6¶DJLWLO G¶DSSHOODWLRQVFRQYHQWLRQQHOOHVRXGHW\SHVHWKQLTXHVௗ"GHFRXOHXUVGHSHDX RXGHYrWHPHQWௗ"/HVPRWVpellis SHDX HWtegmen YrWHPHQW ¿JXUHQWWRXV GHX[GDQVODVROXWLRQ,PDLVOHTXHOHVWXQHPpWDSKRUHSRXUO¶DXWUHௗ"/HWHUPH Aethiopes GHVSRqPHVVROXWLRQV,,,HW,9QRXVSDUDvWGpFLVLIGHSXLV5RPH RQDSSHOOHDLQVLOHV$IULFDLQVjODSHDXIRQFpHSDURSSRVLWLRQDX[0DXUHV HWRQVDLWTXHF¶HVWGXUDQWO¶pSRTXHFDUROLQJLHQQHjODTXHOOHUHPRQWHQWQRV WH[WHV TXH V¶DQFUH GDQV O¶LPDJLQDLUH RFFLGHQWDO O¶LGHQWL¿FDWLRQ GH O¶eWKLRSLHQDXSpFKHXUKDELWpSDUOHGpPRQ 6WHQRX $MRXWRQVOHVUHVVRXUFHVOLQJXLVWLTXHVGpSOR\pHVSRXUGpVLJQHU%ODQFVHW1RLUVDVVRFLDQWGHV WHUPHVSRVLWLIVDX[XQVSpMRUDWLIVDX[DXWUHVௗFHVRQWELHQV€UOHV1RLUVTXL VRQWEHUQpV 'HX[ pYROXWLRQV V¶HVTXLVVHQW YHUV /¶XQH HVW O¶pYHQWXDOLWp G¶XQ PRGXOHGHFRPSWDJHDXWUHTXHXQUHFXHLOGHWH[WHVPDWKpPDWLTXHVHQYLVDJH

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

DLQVLSXLV©ௗWRXWQRPEUHYRXOXௗª>0XY@ &XUW]H /¶DXWUH HVWODSHUFpHGHODGLPHQVLRQDQWLMXLYHDYHFFHWLWUHG¶DSSDUHQFHLQDGpTXDWH GRQQpGDQVSOXVLHXUVPDQXVFULWVDXSRqPHVROXWLRQ,,©ௗ7LUDJHDXVRUW>sors@ SDU XQ FHUWDLQ >pYrTXH@ FRQFHUQDQW FKUpWLHQV HW DXWDQW GHMXLIVௗª >%H & 0D@ /HV MXLIV VHURQW GpVRUPDLV HQ 2FFLGHQW OHV LQFDUQDWLRQV SULYLOpJLpHV GHODQRLUFHXUG¶kPHU{OHTX¶LOVGHYURQWFHSHQGDQWDVVH]YLWHSDUWDJHUDYHF OHVPXVXOPDQV

Sources en langues germaniques (XIIIe-XVIIIe siècles) ,OV¶DJLWLFLGHVVRXUFHVHQDQJODLVQpHUODQGDLVDOOHPDQGGDQRLVHWVXpGRLV DLQVLTXHGHVRXUFHVODWLQHVGXGRPDLQHJHUPDQLTXH '¶DQFLHQQHVYHUVLRQVDOOHPDQGHVGXMHXGHVFUR\DQWVHWGHVLQ¿GqOHVRQW pWppFULWHVSDUGHVMeistersinger PDvWUHVFKDQWHXUV SRXUrWUHFKDQWpHV&HOOH DWWULEXpH j 5HLQPDU YRQ =ZHWH Y  Y  HVW FRQVHUYpH GDQV XQ PDQXVFULWGXXVeVLqFOH>0XG@SXEOLpDXXIXe %DUWVFK  ,O\HVWTXHVWLRQG¶XQHHPEDUFDWLRQVXUFKDUJpHRRQODLVVHV¶DEDWWUHOHVRUWVXU MXLIVHWFKUpWLHQVHQOHVDVVH\DQWHQVHPEOHHWHQQR\DQWFKDTXHGL[LqPH /¶RUGRQQDQFHPHQWHVWGRQQpௗGHX[VWURSKHVpGL¿DQWHVVXLYHQW 'DQVODVHXOHMRXUQpHGXRFWREUHOHPDvWUHFKDQWHXU+DQV6DFKV pFULYLWXQSRqPHHWXQOLHGVXUOHPrPHVXMHW'DQVOHSRqPHLOSUpWHQGUHODWHU XQIDLWVXUYHQXHQVXUXQEDWHDXHPPHQDQW7XUFVHWFKUpWLHQVGH &RQVWDQWLQRSOHj9HQLVHEDUUpSDUXQ©ௗSDWURQUDLVRQQDEOHKRPPHVHQVpOXL PrPHFKUpWLHQHQVHFUHWPDLVPDKRPpWDQG¶DSSDUHQFHௗª0DLVGDQVOHOLHG F¶HVWYHUV5KRGHVTXHYRJXHOHEDWHDX&RPPHFKH]5HLQPDUOHPRGXOHGH FRPSWDJHHVW 6DFKVUYௗ.|KOHUHW%ROWH  &H PRGXOH SRXU OHTXHO OD VROXWLRQ HVW              VHPEOH G¶DLOOHXUV W\SLTXH GX GRPDLQH JHUPDQLTXH ,O HVW DGRSWp GDQVXQPDQXVFULWODWLQGX XVeVLqFOHpFULWHQ$QJOHWHUUH>2@ (OUHGJHet al.  GDQVOHUHJLVWUHGHFRPSWHVG¶XQFRPPHUoDQWGH1XUHPEHUJSRXU O¶DQQpH /RRVH   GDQV XQ WUDLWp G¶DULWKPpWLTXH QpHUODQGDLV FRPSRVpHQ 9DUHQEUDNHQV 9HUVGDQVODPractica des Algorismus Ratisbonensis, RQWURXYHVDQVpQRQFpGHVYHUVPQpPRWHFKQLTXHVSRXU OHVPRGXOHV>0XU@ &XUW]Hௗ9RJHO  0rPHFKRVHELHQSOXVWDUGSRXUOHVPRGXOHVGDQVO¶Arithmetica curiosa G¶XQ MpVXLWH SRORQDLV HQVHLJQDQW j 'DQW]LJ 7\ONRZVNL   1RWRQVXQHPRGpOLVDWLRQRULJLQDOHGDQVXQPDQXHOGHFDOFXOGRQW QRXVWUDGXLVRQVFHVOLJQHV -DFREU 



DLQVLSXLV©ௗWRXWQRPEUHYRXOXௗª>0XY@ &XUW]H /¶DXWUH HVWODSHUFpHGHODGLPHQVLRQDQWLMXLYHDYHFFHWLWUHG¶DSSDUHQFHLQDGpTXDWH GRQQpGDQVSOXVLHXUVPDQXVFULWVDXSRqPHVROXWLRQ,,©ௗ7LUDJHDXVRUW>sors@ SDU XQ FHUWDLQ >pYrTXH@ FRQFHUQDQW FKUpWLHQV HW DXWDQW GHMXLIVௗª >%H & 0D@ /HV MXLIV VHURQW GpVRUPDLV HQ 2FFLGHQW OHV LQFDUQDWLRQV SULYLOpJLpHV GHODQRLUFHXUG¶kPHU{OHTX¶LOVGHYURQWFHSHQGDQWDVVH]YLWHSDUWDJHUDYHF OHVPXVXOPDQV

Sources en langues germaniques (XIIIe-XVIIIe siècles) ,OV¶DJLWLFLGHVVRXUFHVHQDQJODLVQpHUODQGDLVDOOHPDQGGDQRLVHWVXpGRLV DLQVLTXHGHVRXUFHVODWLQHVGXGRPDLQHJHUPDQLTXH '¶DQFLHQQHVYHUVLRQVDOOHPDQGHVGXMHXGHVFUR\DQWVHWGHVLQ¿GqOHVRQW pWppFULWHVSDUGHVMeistersinger PDvWUHVFKDQWHXUV SRXUrWUHFKDQWpHV&HOOH DWWULEXpH j 5HLQPDU YRQ =ZHWH Y  Y  HVW FRQVHUYpH GDQV XQ PDQXVFULWGXXVeVLqFOH>0XG@SXEOLpDXXIXe %DUWVFK  ,O\HVWTXHVWLRQG¶XQHHPEDUFDWLRQVXUFKDUJpHRRQODLVVHV¶DEDWWUHOHVRUWVXU MXLIVHWFKUpWLHQVHQOHVDVVH\DQWHQVHPEOHHWHQQR\DQWFKDTXHGL[LqPH /¶RUGRQQDQFHPHQWHVWGRQQpௗGHX[VWURSKHVpGL¿DQWHVVXLYHQW 'DQVODVHXOHMRXUQpHGXRFWREUHOHPDvWUHFKDQWHXU+DQV6DFKV pFULYLWXQSRqPHHWXQOLHGVXUOHPrPHVXMHW'DQVOHSRqPHLOSUpWHQGUHODWHU XQIDLWVXUYHQXHQVXUXQEDWHDXHPPHQDQW7XUFVHWFKUpWLHQVGH &RQVWDQWLQRSOHj9HQLVHEDUUpSDUXQ©ௗSDWURQUDLVRQQDEOHKRPPHVHQVpOXL PrPHFKUpWLHQHQVHFUHWPDLVPDKRPpWDQG¶DSSDUHQFHௗª0DLVGDQVOHOLHG F¶HVWYHUV5KRGHVTXHYRJXHOHEDWHDX&RPPHFKH]5HLQPDUOHPRGXOHGH FRPSWDJHHVW 6DFKVUYௗ.|KOHUHW%ROWH  &H PRGXOH SRXU OHTXHO OD VROXWLRQ HVW              VHPEOH G¶DLOOHXUV W\SLTXH GX GRPDLQH JHUPDQLTXH ,O HVW DGRSWp GDQVXQPDQXVFULWODWLQGX XVeVLqFOHpFULWHQ$QJOHWHUUH>2@ (OUHGJHet al.  GDQVOHUHJLVWUHGHFRPSWHVG¶XQFRPPHUoDQWGH1XUHPEHUJSRXU O¶DQQpH /RRVH   GDQV XQ WUDLWp G¶DULWKPpWLTXH QpHUODQGDLV FRPSRVpHQ 9DUHQEUDNHQV 9HUVGDQVODPractica des Algorismus Ratisbonensis, RQWURXYHVDQVpQRQFpGHVYHUVPQpPRWHFKQLTXHVSRXU OHVPRGXOHV>0XU@ &XUW]Hௗ9RJHO  0rPHFKRVHELHQSOXVWDUGSRXUOHVPRGXOHVGDQVO¶Arithmetica curiosa G¶XQ MpVXLWH SRORQDLV HQVHLJQDQW j 'DQW]LJ 7\ONRZVNL   1RWRQVXQHPRGpOLVDWLRQRULJLQDOHGDQVXQPDQXHOGHFDOFXOGRQW QRXVWUDGXLVRQVFHVOLJQHV -DFREU 



'HODPrPHPDQLqUHWXSHX[DYRLUHQYLHGHUpVRXGUHODTXHVWLRQRO¶RQGHPDQGHFRPPHQWUpSDUWLUMXLIVSDUPLDXWDQWGH FKUpWLHQVGHVRUWHTXHFKDTXHeeHWFWRPEHVXUXQMXLIGH VRUWHTXHWRXWHVOHVIRLVFHVRLHQWGHVMXLIVTXLGRLYHQWWRPEHUHW DXFXQFKUpWLHQ)DEULTXHWRLDXWDQWGHOHWWUHVGHO¶DOSKDEHWTX¶LO \ D GH MXLIV HW GH FKUpWLHQV SULV HQVHPEOH FRPPHQFH DORUV j FRPSWHUFRPPHWXOHYHX[MXVTX¶jFHTXHWXDLHVH[WUDLWQHXI OHWWUHV$ORUVFRPPHFHVQHXIOHWWUHVVRQWSODFpHVSDUPLWRXWHV OHV OHWWUHV DLQVL GRLYHQW rWUH SODFpV OHV MXLIV HW GRLYHQW rWUH SODFpVOHVFKUpWLHQV

,FLOHPRGXOHHVWHQFRUHRXPDLVLOQ¶\DTXHKRPPHV&HODWLHQW DVVXUpPHQWjODPpWKRGHDYHFO¶DOSKDEHWQ¶DXUDLWSDVDVVH]GHOHWWUHVௗ $X[ XVIIe-XVIIIeVLqFOHVOHVFDOHQGULHUVGHERLVVFDQGLQDYHVGLWVUXQLTXHV FRPSRUWDLHQW OD OLJQH GH VLJQHV ;;;;,,,,,;;,;;;,;,,;;,,,;,,;;, 6HORQODWUDGLWLRQHOOHGRQQDLWO¶RUGRQQDQFHPHQWSDUOHTXHO6DLQW3LHUUHVXU XQHEDUTXHHQSpULODXUDLWpSDUJQpFKUpWLHQVHQVDFUL¿DQWMXLIV *DLGR] et al.ௗ$KUHQVௗ6FKQLSSHO 

Sources hébraïques, arabes, persanes, turques, africaines (XIIe-XXe siècles) Sources hébraïques /HV-XLIVGXVXGGHO¶(XURSHRQWFRQWULEXpjODFLUFXODWLRQGXMHXGHVFUR\DQWV HWGHVLQ¿GqOHV,OVO¶RQWV\VWpPDWLTXHPHQWDVVRFLpDXVDYDQWUDEELQDQGDORX $EUDKDP ,EQ µ(]UD   FRQQX GHV KLVWRULHQV GHV PDWKpPDWLTXHV SRXUVRQ°XYUHDULWKPpWLTXHHWJpRPpWULTXH 8QH YHUVLRQ GX MHX D pWp WURXYpH GDQV XQ PDQXVFULW PpGLpYDO KpEUHX >0XY@ 6WHLQVFKQHLGHU &¶HVWXQUHFXHLOGHWH[WHVGLYHUV GRQWGHVSUREOqPHVDULWKPpWLTXHV/HSUHPLHUDWWULEXpj,EQµ(]UDGHPDQGH FRPPHQWUDQJHUÀRULQVHWJURVFKHQVGHVRUWHTX¶HQpOLPLQDQWWRXMRXUV ODQHXYLqPHSLqFHRQJDUGHWRXVOHVÀRULQV8QHIRUPXOHGHPRWVGRQQH ODVROXWLRQHQDVVRFLDQWjFKDTXHPRWOHUDQJGHVRQLQLWLDOHGDQVO¶DOSKDEHW KpEUHXRQREWLHQWODVXLWH  6LFHWWHYHUVLRQQHXWUHUHOqYHGHQRWUHVXMHWF¶HVWSDUFHTX¶HOOHHVWVXLYLHG¶XQHIRUPXOH DLGHPpPRLUHTXLpYRTXHGHVLQ¿GqOHVMHWpVjODPHUWUDKLVVDQWO¶H[LVWHQFH G¶XQHVRXUFHSDUDOOqOH

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

'HODPrPHPDQLqUHWXSHX[DYRLUHQYLHGHUpVRXGUHODTXHVWLRQRO¶RQGHPDQGHFRPPHQWUpSDUWLUMXLIVSDUPLDXWDQWGH FKUpWLHQVGHVRUWHTXHFKDTXHeeHWFWRPEHVXUXQMXLIGH VRUWHTXHWRXWHVOHVIRLVFHVRLHQWGHVMXLIVTXLGRLYHQWWRPEHUHW DXFXQFKUpWLHQ)DEULTXHWRLDXWDQWGHOHWWUHVGHO¶DOSKDEHWTX¶LO \ D GH MXLIV HW GH FKUpWLHQV SULV HQVHPEOH FRPPHQFH DORUV j FRPSWHUFRPPHWXOHYHX[MXVTX¶jFHTXHWXDLHVH[WUDLWQHXI OHWWUHV$ORUVFRPPHFHVQHXIOHWWUHVVRQWSODFpHVSDUPLWRXWHV OHV OHWWUHV DLQVL GRLYHQW rWUH SODFpV OHV MXLIV HW GRLYHQW rWUH SODFpVOHVFKUpWLHQV

,FLOHPRGXOHHVWHQFRUHRXPDLVLOQ¶\DTXHKRPPHV&HODWLHQW DVVXUpPHQWjODPpWKRGHDYHFO¶DOSKDEHWQ¶DXUDLWSDVDVVH]GHOHWWUHVௗ $X[ XVIIe-XVIIIeVLqFOHVOHVFDOHQGULHUVGHERLVVFDQGLQDYHVGLWVUXQLTXHV FRPSRUWDLHQW OD OLJQH GH VLJQHV ;;;;,,,,,;;,;;;,;,,;;,,,;,,;;, 6HORQODWUDGLWLRQHOOHGRQQDLWO¶RUGRQQDQFHPHQWSDUOHTXHO6DLQW3LHUUHVXU XQHEDUTXHHQSpULODXUDLWpSDUJQpFKUpWLHQVHQVDFUL¿DQWMXLIV *DLGR] et al.ௗ$KUHQVௗ6FKQLSSHO 

Sources hébraïques, arabes, persanes, turques, africaines (XIIe-XXe siècles) Sources hébraïques /HV-XLIVGXVXGGHO¶(XURSHRQWFRQWULEXpjODFLUFXODWLRQGXMHXGHVFUR\DQWV HWGHVLQ¿GqOHV,OVO¶RQWV\VWpPDWLTXHPHQWDVVRFLpDXVDYDQWUDEELQDQGDORX $EUDKDP ,EQ µ(]UD   FRQQX GHV KLVWRULHQV GHV PDWKpPDWLTXHV SRXUVRQ°XYUHDULWKPpWLTXHHWJpRPpWULTXH 8QH YHUVLRQ GX MHX D pWp WURXYpH GDQV XQ PDQXVFULW PpGLpYDO KpEUHX >0XY@ 6WHLQVFKQHLGHU &¶HVWXQUHFXHLOGHWH[WHVGLYHUV GRQWGHVSUREOqPHVDULWKPpWLTXHV/HSUHPLHUDWWULEXpj,EQµ(]UDGHPDQGH FRPPHQWUDQJHUÀRULQVHWJURVFKHQVGHVRUWHTX¶HQpOLPLQDQWWRXMRXUV ODQHXYLqPHSLqFHRQJDUGHWRXVOHVÀRULQV8QHIRUPXOHGHPRWVGRQQH ODVROXWLRQHQDVVRFLDQWjFKDTXHPRWOHUDQJGHVRQLQLWLDOHGDQVO¶DOSKDEHW KpEUHXRQREWLHQWODVXLWH  6LFHWWHYHUVLRQQHXWUHUHOqYHGHQRWUHVXMHWF¶HVWSDUFHTX¶HOOHHVWVXLYLHG¶XQHIRUPXOH DLGHPpPRLUHTXLpYRTXHGHVLQ¿GqOHVMHWpVjODPHUWUDKLVVDQWO¶H[LVWHQFH G¶XQHVRXUFHSDUDOOqOH

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

8QH DXWUH YHUVLRQ GLWH ©ௗVWUDWDJqPH GH UDEEL $EUDKDP ,EQ µ(]UDௗª IXW LPSULPpH HQ KpEUHX j9HQLVH HQ HQ DQQH[H j XQ DEUpJp JUDPPDWLFDO ,EQণDELE HWWUDGXLWHHQDOOHPDQGSDU'DQLHO6FKZHQWHUSURIHVVHXU GH PDWKpPDWLTXHV HW ODQJXHV RULHQWDOHV 6FKZHQWHU   4 2Q OD UHWURXYHGDQVOHGLDORJXHVXUOHVMHX[GHKDVDUGGXUDEELQ/pRQGH0RGqQH SXEOLp HQ KpEUHX VDQV QRP G¶DXWHXU j9HQLVH HQ UpLPSULPpHW WUDGXLW HQODWLQHQ 0RGqQH+ ௗHQ¿QXQHYDULDQWHWLUpHG¶XQHVRXUFH KpEUDwTXHLPSULPpHQRQLGHQWL¿pHDpWpSXEOLpHHQKpEUHXHWDOOHPDQGGDQV OHJURVOLYUHGHO¶pUXGLW0DUWLQ0RULW]VXUOHWLUDJHDXVRUWFKH]OHV$QFLHQV 0DXULWLXV 'DQVFHWWHYHUVLRQ,EQµ(]UDHVWHQEDWHDXDYHF GLVFLSOHVHWERQVjULHQTXDQGOHFDSLWDLQHRUGRQQHTX¶RQMHWWHODPRLWLp GHV SDVVDJHUV j OD PHU /H WH[WH GRQQH XQH IRUPXOH PQpPRWHFKQLTXH HQ KpEUHXGLIIpUHQWHGHFHOOHGXPDQXVFULWSUpFpGHQWPDLVG¶HPSORLLGHQWLTXH /DFLUFXODWLRQRUDOHG¶XQHWURLVLqPHIRUPXOHWRXMRXUVVXUOHPrPHSULQFLSH HVWDWWHVWpHSDUGHVWpPRLQVMXLIVDX XVIIeVLqFOH 0DXULWLXV HWDX e XIX 0OOHU ௗHOOHVHWUDGXLWSDU©ௗ/HURL'DYLGDOODMXVTX¶j ODIURQWLqUHGXSD\VGHO¶$UQRQLOSOHXUDDPqUHPHQWLOGLWPRQ¿OVPRQ¿OV $EVDORPௗௗª %LHQ TX¶HOOH QH VRLW SDV HQ KpEUHX VLJQDORQV LFL XQH YHUVLRQ FRSLpH DX e XVII VLqFOH GDQV OD FRPPXQDXWp MXLYH KLVSDQRSRUWXJDLVH UpIXJLpH j$PVWHUGDP HOOH IDLW LQWHUYHQLU ,EQ µ(]UD -XLIV HW )ODPDQGV 9DQ GHU &UX\VVH 

Sources arabes 7RXWHVOHVYHUVLRQVDUDEHVpFULWHVTXHQRXVFRQQDLVVRQVO¶RQWpWpHQeJ\SWH PrPHORUVTXHOHXUVDXWHXUVYHQDLHQWG¶DLOOHXUV/DSOXVDQFLHQQHHVWMXGpR DUDEHF¶HVWGHO¶DUDEHGLDOHFWDOpJ\SWLHQpFULWDYHFO¶DOSKDEHWKpEUHX'pWHFWpH VXUODJDUGHG XQPDQXVFULWGXCommentaire sur la MishnahGH0DwPRQLGH FRSLpHQ>2Y@HOOHIXWMXVWHVLJQDOpH 6WHLQVFKQHLGHU  SXLVRXEOLpH(OOHHVWLFLGpFKLIIUpHHWWUDGXLWHSRXUODSUHPLqUHIRLV 5 5HODWLRQ G¶XQ IDLW VXUYHQX HQWUH GHV MXLIV HW GHV FKUpWLHQV ,OV pWDLHQWHQPHU6DOpH> 0pGLWHUUDQpH@GDQVXQEDWHDXHWODPDLQ

4. 6FKZHQWHUUHQYR\DLWjXQDXWUHWUDLWpOLQJXLVWLTXHKpEUHXPDLVQRXVDYRQVYpUL¿pTXH F¶pWDLWXQHHUUHXU 5. 1RXVUHPHUFLRQVSRXUVRQDLGHOHSURIHVVHXU0LULDP)UHQNHOGHO¶XQLYHUVLWpKpEUDwTXH GH7HO$YLY



GHVLQFLUFRQFLVpWDLWDJUHVVLYHHQYHUVHX[,OVYRXOXUHQWOHVQR\HU ,OVOHXUGLUHQWFHTXLQRXVIDLWUHPXHUVXUOHEDWHDXHWO¶pQRUPH YDFDUPHGXYHQWTXLQRXVPDOPqQHF¶HVWjFDXVHGHYRXV$ORUV WRXVOHVLQFLUFRQFLVVHPLUHQWG¶DFFRUGSRXUOHVQR\HU,O\DYDLW GDQVOHJURXSHGHVMXLIVXQHSHUVRQQHTXLpWDLWXQJUDQGVDJH,O SURSRVDFHFRQVHLOTXLIXWDJUppSDUOHVLQFLUFRQFLVTX¶LOVVH PHWWHQWGHX[SDUGHX[>sic@HWFRPSWHQWGHQHXIHQQHXI(WTXH TXLFRQTXHVXUTXLV¶HVWDFKHYpOHFRPSWDJHGHVQHXIVRLWMHWpj ODPHUTX¶LOVRLWMXLIRXFKUpWLHQ(WFHFLHVWODGLVSRVLWLRQ>«@

6XLYHQW GHX[ IRUPXOHV PQpPRWHFKQLTXHV VDQV PRGH G¶HPSORL /D SUHPLqUH HQ KpEUHX HVW OD PrPH TXH GDQV OD YHUVLRQ LPSULPpH HQ /D VHFRQGH HQ DUDEH HVW FRSLpH GDQV OHV GHX[ DOSKDEHWV PDLV Q¶HVW XWLOLVDEOH TX¶HQDOSKDEHWDUDEHFHTXLVXJJqUHVRQHPSUXQWjXQHYHUVLRQPXVXOPDQH DQWpULHXUH(OOHUHSRVHVXUODSDUWLWLRQGHVOHWWUHVDUDEHVHQOHWWUHVDYHFRXVDQV SRLQWVSDUWDQWGHODGURLWHRQUHQFRQWUHVXFFHVVLYHPHQWOHWWUHVQRQSRQFWXpHVSRQFWXpHVQRQSRQFWXpHVSRQFWXpHHWF(OOHV¶pFULW ϥΎϛΚϴΣϒϴπϟ΍ϕίήϳϭήδϳϞϜΑϲπϘϳௌ FHTXLVHWUDQVFULW$OOƗK\DT‫ڲ‬ƯELNXOOi yusr wa-yarzuq al-‫ڲ‬ayf ‫ۊ‬D\WKXNƗQDet VHWUDGXLW©ௗ'LHXGpFLGHGHWRXWHSURVSpULWpHWSRXUYRLWjODVXEVLVWDQFHGH O¶LQYLWpRTX¶LOVHWURXYHௗª 'HX[LqPHYHUVLRQDUDEHHWSUHPLqUHYHUVLRQPXVXOPDQHGHQRWUHFRUSXV FHOOHGXOHWWUpৡDOƗতDOGƯQDOৡDIDGƯ P ,OO¶LQVpUDGDQVGHX[GHVHV OLYUHVXQIRXUUHWRXWpUXGLWpODERUpDXWRXUG¶XQSRqPHFpOqEUHHWXQLPSRVDQW GLFWLRQQDLUHELRJUDSKLTXHGHVQRWDEOHVGHVRQWHPSV1RXVWUDGXLVRQVLFLGX SUHPLHU>4,,,UY@ DOৡDIDGƯ,,  -¶DL SHUVRQQHOOHPHQW YX TXHOTXHV FRPSDJQRQV SUHQGUH GHV SLqFHVGHMHXG¶pFKHFVOHVUDQJHUG¶XQHPDQLqUHVSpFL¿TXHHQ IRUPH GH FHUFOH HQ UDFRQWDQW FHFL 8Q EDWHDX VH WURXYDLW VXU O¶RFpDQSDUJURVVHPHUDYHFjERUGGHVPXVXOPDQVHWGHVLQ¿GqOHV,OVpWDLHQWjGHX[GRLJWVGXQDXIUDJHHWHXUHQWO¶LQWHQWLRQ G¶HQYR\HUFHUWDLQVG¶HQWUHHX[jODPHUSRXUDOOpJHUOHEDWHDX HWTX¶DLQVLFHUWDLQVHQUpFKDSSHQWHWTXHOHEDWHDXVRLWLQWDFW,OV GLUHQWWLURQVDXVRUWHWFHOXLjTXLOHVRUWVHUDGpIDYRUDEOHQRXV OH MHWWHURQV SDUGHVVXV ERUG $ORUV OH FDSLWDLQH GX EDWHDX OHV UHJDUGD,OVpWDLHQWDVVLVVHORQFHWWH¿JXUH(WLOGLWFHQ¶HVWSDV XQHGpFLVLRQVDWLVIDLVDQWH0DGpFLVLRQjPRLHVWSOXW{WTXHQRXV FRPSWLRQVOHJURXSHHWTXHFHOXLTXLDXUDpWpQHXYLqPHQRXV OHMHWWHURQVSDUGHVVXVERUG,OVIXUHQWVDWLVIDLWVGHFHOD3XLVLO

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

QHFHVVDGHOHVFRPSWHUHWGHMHWHUSDUGHVVXVERUGOHQHXYLqPH SXLVOHQHXYLqPHMXVTX¶jFHTXHODWRWDOLWpGHVLQ¿GqOHVDLHQWpWp MHWpVSDUGHVVXVERUGHWWRXVOHVPXVXOPDQVVDXYpV

&HUpFLWHVWVXLYLG¶XQVFKpPDFLUFXODLUHROHVPXVXOPDQVVRQW¿JXUpV HQURXJHHWOHVLQ¿GqOHVHQQRLU'HX[YHUVPQpPRWHFKQLTXHVR©ௗOHVOHWWUHV VDQVSRLQWVSODFHQWOHVPXVXOPDQVHWOHVOHWWUHVDYHFSRLQWVSODFHQWOHVLQ¿GqOHVௗªVRQWSURSRVpVௗO¶XQGHVGHX[HVWFHOXLGXPDQXVFULWMXGpRDUDEHSUpFpGHQW$OOƗK\DT‫ڲ‬ƯELNXOOi yusr…/¶DXWUHSOXVIULYROHVHWUDQVFULW:DODPPƗ futintu bi-la‫ܲۊ‬in ODKX µXGKLOWX IDPƗ NKLIWX PLQ VKƗmit, FH TXL YHXW GLUH ©ௗ/RUVTXHMHIXVVpGXLWHSDUXQUHJDUGGHOXLMHIXVEOkPpHHWQ¶HXVSRLQWGH FUDLQWHG¶XQPpGLVDQWௗª$OৡDIDGƯGRQQHDXVVLODIRUPXOH'DKDEƗMƗababajƗ EDEƗGpSRXUYXHGHVHQVHOOHHVWODVXFFHVVLRQGHVOHWWUHVFRUUHVSRQGDQWDX[ QRPEUHV«'DQVVRQDXWUHRXYUDJH DOৡDIDGƯ,,,  LOSUpFLVHTXHOHFDSLWDLQHHVWPXVXOPDQHWOHVLQ¿GqOHVVRQWFKUpWLHQVDMRXWH XQYHUVSRXUXQHIIHFWLIGHHWXQPRGXOHGHFRPSWDJHGHHWLQGLTXHTXH G¶DXWUHVYHUVRQWGpMjpWpFRPSRVpVSDUOHSRqWHDO+LOOƯ/DQRWRULpWpGHO¶KLVWRLUHGDQVOHVFHUFOHVSRpWLTXHVGX&DLUHPDLVDXVVLGH'DPDVGHYLQWHQVXLWH WHOOH TXH OHV DQWKRORJLHV Q¶pSURXYDLHQW PrPH SOXV WRXMRXUV OH EHVRLQ GH OD UDFRQWHU2XWUHDO+LOOƯ P HWDOৡDIDGƯ P RQWFRQWULEXpjFRPSRVHURXWUDQVPHWWUHGHVYHUVPQpPRWHFKQLTXHVOHVOLWWpUDWHXUV,EQDO.KDWƯE 'DUL\Ɨ P DO*KX]njOƯ P DO%DVKWDNƯ P HWDO6DNKƗZƯ P  DO*KX]njOƯ  , ௗ DO6DNKƗZƯ    /H IDLW TX¶DOৡDIDGƯ DLW OLp OH MHX GHV FUR\DQWV HW GHV LQ¿GqOHV DX MHX G¶pFKHFV H[SOLTXHVDSUpVHQFHGDQVGHX[WUDLWpVVXUOHVpFKHFVFHOXLGH,EQ$EƯণDMDOD DO7LOLPVƗQƯ P  DO7LOLPVƗQƯ HWFHOXLGH6KDPVDOGƯQ DO6DNKƗZƯGpMjFLWp/HQRPEUHGHVSLqFHVGXMHXG¶pFKHFVpWDQWGHFHUWDLQV DXWHXUV RQW SUpIpUp FHW HIIHFWLI GH j FHOXL GH $X XVIIeVLqFOH OH UpFLWG¶DOৡDIDGƯIXWWUDGXLW HQ ODWLQ GDQV O¶RXYUDJH GH 7KRPDV+\GH ¿J SURIHVVHXU G¶DUDEH j 2[IRUG VXU O¶KLVWRLUH GHV pFKHFV +\GHHH  Fig. 1 – Le cercle des musulmans et des chrétiens (Hyde 1694, d’après al-Вafadī).



/HMHXGHVFUR\DQWVHWLQ¿GqOHVUpDSSDUXWVDQVLQGLFDWLRQGHVRXUFHGDQV OHUHFXHLOG¶KLVWRLUHVpWRQQDQWHVHWDQHFGRWHVG¶LQVSLUDWLRQVRX¿HGH6KLKƗE DOGƯQ $তPDG DO4DO\njEƯ P  7UDGXLVRQV VRQ UpFLW UHPDUTXDEOH GH FRQFLVLRQ DO4DO\njEƯ  +LVWRLUH FHQWVRL[DQWHVHL]LqPH >DX FRQWHQX DSSUpFLp SDU FHUWDLQHVSHUVRQQHVEULOODQWHV@-ROLYHWp,ODGYLQWTXHO¶XQGHFHV PDULQVVXEWLOVGRQWOHEDWHDXpWDLWVXUOHSRLQWGHIDLUHQDXIUDJH DYHF j ERUG GHV PXVXOPDQV HW GHV LQ¿GqOHV pWDLW ELHQ HPEDUUDVVp$ORUV LO FRQYLQW DYHF HX[ TX¶LO OHV PpODQJHUDLW OHV XQV DYHFOHVDXWUHVTX¶LOOHVGLVSRVHUDLWHQFHUFOHHWWRXUQHUDLWSDUPL HX[ HQ OHV FRPSWDQW SDU XQ QRPEUH ad hoc HW TXH FKDFXQ GH FHX[VXUTXLWRPEHUDLWOD¿QGXQRPEUHLOOHMHWWHUDLWjODPHU &¶HVWFHTX¶LO¿WHWOHQRPEUHWRPEDVXUWRXVOHVLQ¿GqOHVLOOHV MHWDjODPHUHWOHVPXVXOPDQVUpFKDSSqUHQW7XDSSUHQGUDVOD FRPELQDLVRQjSDUWLUGHFHYHUV$OOƗK\DT‫ڲ‬ƯELNXOOi yusr>«@ &HUWDLQVRQWUHPSODFpFHYHUVSDUXQDXWUHVHPEODEOHDXSUpFpGHQWHWGLVHQW:DODPPƗIXWLQWXELOD‫ܲۊ‬in lahu >«@

/HPrPHDXWHXUUHSULWOHPrPHUpFLWGDQVXQOLYUHELHQGLIIpUHQWXQWUDLWpGH MXULVSUXGHQFHPXVXOPDQHVKƗ¿µLWHPDLVHQRPHWWDQWOHVHFRQGYHUVMXJpVDQV GRXWHXQSHXIULYROH DO4DO\njEƯ %LHQSOXVWDUGXQDXWUHWUDLWpGHFHW\SH G€jণDVDQDOµ$৬৬ƗU P OHUHSULWjVRQWRXUHQOHSUpVHQWDQWFRPPHXQH ©ௗGLJUHVVLRQௗªHWHQIDLVDQWUpIpUHQFHjDOৡDIDGƯ DOµ$৬৬ƗU,, 

Sources persanes ¬OD¿QGX XVIIIeVLqFOHOHMHXGHVFUR\DQWVHWGHVLQ¿GqOHVDSSDUDvWGDQVOHV DQWKRORJLHVOLWWpUDLUHVSHUVDQHV NDVKNnjOVjongV /HVFUR\DQWVVRQWPXVXOPDQVSDUIRLVVSpFL¿pVFRPPHFKLLWHVHWOHVLQ¿GqOHVVRQWMXLIV'DQVO¶XQH G¶HOOHVDFKHYpHHQO¶DXWHXU0XতDPPDGµ$OƯDO.DUPƗQVKƗKƯDWWULEXH VDQVIRQGHPHQWO¶DVWXFHj1DৢƯUDO'ƯQDO৫njVƯOHIDPHX[VDYDQWSHUVDQGX XIIIeVLqFOH DO.DUPƗQVKƗKƯ,, ,OGRQQHOHVGHX[YHUVPQpPRWHFKQLTXHV GHV YHUVLRQV DUDEHV FH TXL PDUTXH OD FLUFXODWLRQ GX MHX DLQVL TX¶XQSRqPHVROXWLRQHQSHUVDQGRQWQRXVSURSRVRQVODWUDGXFWLRQVXLYDQWH 4XDWUH7XUFVFLQT,QGLHQV 3RXUGHX[$QDWROLHQVFRPSWHXQ,UDNLHQௗ 7URLVMRXUVXQHQXLW

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

8QHSpULRGHGLXUQHHWGHX[QRFWXUQHV 'HX[EXVHVEODQFKHVWURLVFRUEHDX[FUDYHV 8QTXLEULOOHFRPPH&DQRSXVGHX[VHPEODEOHVjGHVQXDJHV 'HX[TXLVRQWFRPPHGHV/XQHVHWXQFRPPHODIXPpH (QFRPSWDQWGHQHXIHQQHXIOHV-XLIVDXURQWVXFFRPEp

&H SRqPH GRQW QRXV LJQRURQV O¶RULJLQH VH UHWURXYH DYHF GH OpJqUHV YDULDQWHVGDQVOHVPDUJHVGHQRPEUHX[PDQXVFULWV,OHQH[LVWHDXVVLXQGH PrPHSULQFLSHHQWXUFD]HUL 6

Sources turques (QWXUFRWWRPDQF¶HVWGDQVOHVPDQXHOVG¶DULWKPpWLTXHpOpPHQWDLUHTX¶LOIDXW FKHUFKHUQRWUHMHX1RXVHQDYRQVUHSpUpGHX[ 7/HSUHPLHUPDQXVFULWHVW GDWpGH6RQWLWUHHVWDUDEHVHORQO¶XVDJH=ƯQDWDONXWWƗEZDPXJKQƯ al-‫ܒ‬XOOƗE ௘L’Ornement des écrivains et le Contentement des étudiants /¶DXWHXU.KDOƯOELQ0XতDPPDGDO$µ਌DPƯDO%DJKGƗGƯDSODFpOHMHXHQ¿QG¶RXYUDJHHWPXOWLSOLpOHVIRUPXOHVPQpPRWHFKQLTXHVSRXUGLYHUVHVYDULDQWHV/H VHFRQGOLWKRJUDSKLpj,VWDQEXOHQHVWDQRQ\PHHWDSRXUWLWUHZubdat al-‫ۊ‬LVƗE ௘Le Beurre du calcul௘ /HSUREOqPHLQWLWXOpSDUDOOXVLRQjXQFRUVDLUH RWWRPDQ©ௗ0XUDW5HLVMHWWHGHVMXLIVSDUGHVVXVERUGௗª\HVWOHSUHPLHUG¶XQH VpULHGH©ௗMROLHVUqJOHVௗªௗLOHVWDFFRPSDJQpG¶XQGLDJUDPPHFLUFXODLUHVDQV IRUPXOHPQpPRWHFKQLTXH

Sources malgaches eSRXVDQWODWUDGLWLRQRUDOHSOXVLHXUVPDQXVFULWVPDOJDFKHVpFULWVHQFDUDFWqUHVDUDEHVQDUUHQWXQpSLVRGHGHVPLJUDWLRQVDUDEHVYHUVO¶RFpDQ,QGLHQ8Q EDWHDXTXLWWD=DQ]LEDUSRXU0D\RWWHDYHFPXVXOPDQVYHQXVG¶eJ\SWHGRQW XQFHUWDLQ5DPRVDODQDU\$QWHPDVLU\ 8HWHVFODYHVQRLUVGHODWULEXSDwHQQH GHV$QWHYDQGULND/HEDWHDXpWDQWWURSFKDUJpRQMHWDjODPHUSDVVDJHUV HQ VDFUL¿DQW WRXMRXUV OH QHXYLqPH UHVWDQW 6XUYpFXUHQW OHV PXVXOPDQV HW

6. 1RXVUHPHUFLRQV0DKPRXG6KDKLG\GH7pKpUDQTXLQRXVDVLJQDOpHWFRPPXQLTXpGH QRPEUHX[PDQXVFULWVSHUVDQV 7. 1RXVUHPHUFLRQV$WLOOD3RODWGHO¶XQLYHUVLWpG¶,VWDQEXOTXLQRXVDVLJQDOpHWFRPPXQLTXpFHVGHX[RXYUDJHV 8. 1RP DUDERPDOJDFKH  Ra  0RQVLHXU 0RVD 0njVƗ   0RwVH ante  YHQDQW GH Masiry pJ\SWLHQ



XQ VHXO $QWHYDQGULND TXL SURIpUD FRQWUH HX[ XQH PDOpGLFWLRQ pWHUQHOOH 0XQWKHௗ5RPEDNDௗ%HDXMDUG 

Sources ethnographiques africaines /¶HWKQRJUDSKLHGX XXeVLqFOHDUpYpOpODSUpVHQFHGXMHXGHVFUR\DQWVHW LQ¿GqOHVHQ$IULTXHRFFLGHQWDOHLVODPLVpH (Q0DXULWDQLHSD\VFRQQXGHVVSpFLDOLVWHVSRXUrWUHIULDQGGHGHYLQHWWHV PDWKpPDWLTXHV zergV $OEHUW/HULFKHUHFXHLOOLWHQFHUpFLWORUVG¶XQ FRPEDW R GHV FKUpWLHQV PDVVDFUDLHQW GHV PXVXOPDQV OHV GHUQLHUV PXVXOPDQV SURSRVqUHQW DX[ FKUpWLHQVGHOHXURSSRVHUFRPEDWWDQWVௗ WRXV FRQYLQUHQW TX¶j O¶DSSHO GHV WUHQWH UpXQLV FKDTXH QXPpUR Fig. 2 – Support de cε-bi-saba. Les 30 hommes sont dans WRPEHUDLWjODPHUFLGHO¶DGYHUVDLUH une lettre-bulle du mot al-ёamad (l'Absolu) [reproduit 6RQWpPRLQXQHPXVXOPDQHOHWWUpH avec l'aimable autorisation de A. Tall]. OXL UpYpOD OD FRPELQDLVRQ pSDUJQDQW OHV PXVXOPDQV SDU XQ SRqPH HQ DUDEH GLDOHFWDO ‫ۊ‬asaniyya %pDUW    $X0DOLHWGDQVOHVSD\VYRLVLQVH[LVWHXQHSUDWLTXHRFFXOWHUpSXWpHHI¿FDFHHWGDQJHUHXVHGLWHHQEDPEDUDFİELVDEDOHVKRPPHV 9$XVRORX VXUGXSDSLHURQWUDFHEkWRQVURQGVEkWRQVURQGHWF/HeVLJQHOH ©ௗSXLWVௗªHVWXQURQGSOXVJURVRRQ¿[HOHY°XGXGHPDQGHXU YRLU¿J  2QSRVHXQFDLOORXEODQFVXUFKDTXHEkWRQHWXQFDLOORXURXJHVXUFKDTXHURQG SXLWVH[FHSWp2QpOLPLQHOHVURQGVGHHQVDXIOHGHUQLHUTXLHVWOHSXLWV 9RLFLO¶H[SOLFDWLRQUHFXHLOOLHHQj.DODERXJRXIDFHj6pJRXVXUODULYH JDXFKHGX1LJHUPXVXOPDQVHWLQ¿GqOHVYRXODLHQWWUDYHUVHUOHÀHXYH VXUXQHSLURJXHQHSRXYDQWDFFXHLOOLUTXHSHUVRQQHVௗVRQSURSULpWDLUH.D 0RXVVDOHVFRPSWDSDUpJRUJHDQWjFKDTXHIRLVOHQHXYLqPHHWWURXYDDLQVL PR\HQGHQHIDLUHPRQWHUTXHOHVPXVXOPDQV %DUULqUH  Le FİELVDEDHVWDXMRXUG¶KXLSUDWLTXpSDUOHVPDUDERXWVGH3DULV .XF]LQVNL  1RXVO¶DYRQVDXVVLGpWHFWpVXU,QWHUQHWOHEORJGéomancie africaine 10 LQGLTXHTXHODSUDWLTXHYLHQWGXGpFRGDJHG¶XQYHUVHWFRUDQLTXHVXU 9. 'Hsaba WURLVbi GL]DLQHHWFİ KRPPH JUDSKLHRI¿FLHOOH /DJUDSKLHthiébissaba HVWFRXUDQWH 10. KWWSVERGHGLRSFRP! FRQVXOWpOHHURFWREUH 9RLUDXVVLKWWSVPDLWUHWDOOEORJZRUGSUHVVFRP! FRQVXOWpOHHURFWREUH 

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

OHEkWRQGH0RwVH 0njVƗ HWUpYqOHOHVQRPVDUDEHVGHFKDFXQGHVKRPPHV WDQGLVTX¶XQYLVLWHXUYDQWHOHVPpULWHVGXYHUV$OOƗK\DT‫ڲ‬ƯELNXOOi yusr… et SUpFRQLVHGHOHFRSLHUIRLVHWGHGLOXHUO¶HQFUHGDQVO¶HDXGHERLVVRQ

Sources en langues romanes (XVe-XIXe siècles) 'DQVOHGRPDLQHURPDQRQWURXYHjSDUWLUGXXVeVLqFOHGHVYHUVLRQVGHQRWUH MHXHQYHUQDFXODLUHVLWDOLHQVHQIUDQoDLVHQSRUWXJDLVSDUIRLVHQFRUHHQODWLQ ,OFRPPHQFHDORUVjFLUFXOHUGDQVODFRPPXQDXWpPDWKpPDWLTXH

Le rejet à la mer, une question mathématique ? )UDQFHVFR%HQWDFFRUGLpWDLWXQPDUFKDQGÀRUHQWLQLQVWDOOpHQ3URYHQFHRLO PRXUXWGDQVODPLVqUHHQ¬OD¿QGHVRQLivre de raisonUHFXHLOPDQXVFULWGHPLVFHOODQpHVGRQWGHVSUREOqPHVPDWKpPDWLTXHVLOpYRTXHXQMHXGRQW VHXOHODPLVHHQSODFHHVWQRWpH>$U@ 11 /H MHX GHV FKUpWLHQV FRQWUH OHV 6DUUDVLQV ,OV VRQW TXLQ]H GH FKDTXHSDUWLVXUXQQDYLUHHWOHQDYLUHHVWHQGDQJHU,OYDIDOORLU TXHGHVFKUpWLHQVRXGHV6DUUDVLQVVDXWHQWjODPHU

/HSUHPLHURXYUDJHPDWKpPDWLTXHFRQWHQDQWFHMHXHVWOHWUDLWpG¶DEDTXH F¶HVWjGLUHG¶DULWKPpWLTXHpFULWYHUVSDUXQDXWUH)ORUHQWLQTX¶RQDSSHODLWPDvWUH%HQHGHWWR>)YY@ 12 9RXV YRXOH] DXVVL FRQQDvWUH FHWWH KLVWRLUH GHV FKUpWLHQV HW GHVMXLIVTXLVRQWVXUXQEDWHDX>«@3RXUpYLWHUWRXWHFRQIXVLRQYRLFLPDLQWHQDQWXQYHUVGRQWWXSUHQGUDVOHVGLIIpUHQWHV YR\HOOHV HQ FRPPHQoDQW SDU OD SUHPLqUH HW OD SODFH TX¶HOOH D GDQV O¶RUGUH GHV YR\HOOHV WH GRQQHUD OH QRPEUH GH FKUpWLHQV jSUHQGUHSXLVFHOOHTXLVHUDODVHFRQGHGDQVFHPrPHRUGUHWH GRQQHUDOHQRPEUHGH0DXUHVHWDLQVLGHVXLWHHQDOWHUQDQWXQH IRLVGHVFKUpWLHQVXQHIRLVGHVMXLIVMXVTX¶jFHTX¶LOQ¶\HQDLW SOXVNove la pinta dà e certi mantenea

11. 1RXVUHPHUFLRQV-DFTXHV6HVLDQRTXLQRXVDDLGpVjGpFKLIIUHUFHVTXHOTXHVOLJQHV 1RXVQ¶DYRQVSXFRQVXOWHUODUpFHQWHpGLWLRQGHFHPDQXVFULWSXEOLpHHQ,WDOLH 12. &HWUDLWppWDLWDXWUHIRLVDWWULEXpj3LHU0DULD&DODQGUL



OHEkWRQGH0RwVH 0njVƗ HWUpYqOHOHVQRPVDUDEHVGHFKDFXQGHVKRPPHV WDQGLVTX¶XQYLVLWHXUYDQWHOHVPpULWHVGXYHUV$OOƗK\DT‫ڲ‬ƯELNXOOi yusr… et SUpFRQLVHGHOHFRSLHUIRLVHWGHGLOXHUO¶HQFUHGDQVO¶HDXGHERLVVRQ

Sources en langues romanes (XVe-XIXe siècles) 'DQVOHGRPDLQHURPDQRQWURXYHjSDUWLUGXXVeVLqFOHGHVYHUVLRQVGHQRWUH MHXHQYHUQDFXODLUHVLWDOLHQVHQIUDQoDLVHQSRUWXJDLVSDUIRLVHQFRUHHQODWLQ ,OFRPPHQFHDORUVjFLUFXOHUGDQVODFRPPXQDXWpPDWKpPDWLTXH

Le rejet à la mer, une question mathématique ? )UDQFHVFR%HQWDFFRUGLpWDLWXQPDUFKDQGÀRUHQWLQLQVWDOOpHQ3URYHQFHRLO PRXUXWGDQVODPLVqUHHQ¬OD¿QGHVRQLivre de raisonUHFXHLOPDQXVFULWGHPLVFHOODQpHVGRQWGHVSUREOqPHVPDWKpPDWLTXHVLOpYRTXHXQMHXGRQW VHXOHODPLVHHQSODFHHVWQRWpH>$U@ 11 /H MHX GHV FKUpWLHQV FRQWUH OHV 6DUUDVLQV ,OV VRQW TXLQ]H GH FKDTXHSDUWLVXUXQQDYLUHHWOHQDYLUHHVWHQGDQJHU,OYDIDOORLU TXHGHVFKUpWLHQVRXGHV6DUUDVLQVVDXWHQWjODPHU

/HSUHPLHURXYUDJHPDWKpPDWLTXHFRQWHQDQWFHMHXHVWOHWUDLWpG¶DEDTXH F¶HVWjGLUHG¶DULWKPpWLTXHpFULWYHUVSDUXQDXWUH)ORUHQWLQTX¶RQDSSHODLWPDvWUH%HQHGHWWR>)YY@ 12 9RXV YRXOH] DXVVL FRQQDvWUH FHWWH KLVWRLUH GHV FKUpWLHQV HW GHVMXLIVTXLVRQWVXUXQEDWHDX>«@3RXUpYLWHUWRXWHFRQIXVLRQYRLFLPDLQWHQDQWXQYHUVGRQWWXSUHQGUDVOHVGLIIpUHQWHV YR\HOOHV HQ FRPPHQoDQW SDU OD SUHPLqUH HW OD SODFH TX¶HOOH D GDQV O¶RUGUH GHV YR\HOOHV WH GRQQHUD OH QRPEUH GH FKUpWLHQV jSUHQGUHSXLVFHOOHTXLVHUDODVHFRQGHGDQVFHPrPHRUGUHWH GRQQHUDOHQRPEUHGH0DXUHVHWDLQVLGHVXLWHHQDOWHUQDQWXQH IRLVGHVFKUpWLHQVXQHIRLVGHVMXLIVMXVTX¶jFHTX¶LOQ¶\HQDLW SOXVNove la pinta dà e certi mantenea

11. 1RXVUHPHUFLRQV-DFTXHV6HVLDQRTXLQRXVDDLGpVjGpFKLIIUHUFHVTXHOTXHVOLJQHV 1RXVQ¶DYRQVSXFRQVXOWHUODUpFHQWHpGLWLRQGHFHPDQXVFULWSXEOLpHHQ,WDOLH 12. &HWUDLWppWDLWDXWUHIRLVDWWULEXpj3LHU0DULD&DODQGUL



6XLWXQH¿JXUHFLUFXODLUHDX[ DUPHV G¶XQH IDPLOOH ÀRUHQWLQH YRLU¿J 2QYRLWTXH%HQHGHWWRDPDOJDPHMXLIVHWPXVXOPDQV $WLO LQFRPSOqWHPHQW PRGL¿p XQ WH[WH SOXV DQFLHQௗ" ,OHVWSOXVSUREDEOHTX¶LOQHOHV GLVWLQJXDLWJXqUHFRPPHEHDXFRXS G¶2FFLGHQWDX[ௗ OD OpJLVODWLRQFDQRQLTXHHOOHPrPHOHV DVVLPLODLW'DQVXQDXWUHWH[WH Fig. 3 – Le cercle des chrétiens et des juifs dans le manuscrit 1 Chasi dilettevoli (Problèmes [F ] de Benedetto (v. 1565). Cliché : bibliothèque laurentienne plaisants  LO SDUOH VLPSOHPHQW (Florence)/Donato Pineider. GH ©ௗSDwHQVௗª $UULJKL   3HXDSUqVOHMHXHWVD¿JXUHDSSDUXUHQWGDQVXQDXWUHWUDLWpG¶DEDTXH °XYUHG¶XQ)ORUHQWLQDQRQ\PH>)U@ $JRVWLQL  (QIUDQoDLVLOHVWGDQVOH Livre de la praticque d’algorismeDWWULEXpj%DUWKpOHP\GH5RPDQVHWRX0DWKLHX3UHKRXGH>&pUY@ 138QHUpSDUWLWLRQ GpVpTXLOLEUpHUHQGOHUpFLWPRLQVIUDSSDQW©ௗ(QXQHJDOHHVRQWPDUFKDQV F¶HVWDVVDYRLUFKUHWLHQVHWVDUDVLQVௗª/HSDWURQD\DQWRUGRQQpG¶HQVDFUL¿HU©ௗO¶RQGHPDQGHFRPPHQWRQOHVSRXUURLWRUGRQQHUHQPDQLHUHTXHOHV FKUHWLHQVIHXVVHQWVDXOYH]HWWRXVOHVVDUDVLQVIHXVVHQWJHWWH]HQODPHUௗª /DUpSRQVHHVWSUpVHQWpHDYHFXQHOLJQHGHSHWLWVFHUFOHVGRQWFHUWDLQVVRQW EDUUpVVHORQOHPRGXOH/HVH[WHQVLRQVSURSRVpHVPRQWUHQWSDUOHVJpQpUDOLVDWLRQVSURSRVpHVXQGpEXWGHPDWKpPDWLVDWLRQGXSURSRV (WSDUFHVWHPDQLHUHSRXUURLWRQIDLUHV¶LO\DYRLWSOXVRXPRLQV GH6DUDVLQVHWDXVVLOHVFKUHWLHQV(WDXVVLTXHYRXOGURLWJHFWHUOH PHHQODPHURXOHPHLOFRQYLHQGURLWIDLUHFRPPHGHVVXVHW WUDQFKHUODPH żRXODWDQWLHVPHTXHO¶RQYRXOGURLW

/HVOLHQVGH1LFRODV&KXTXHWDYHFOHVPDWKpPDWLTXHVLWDOLHQQHVVRQWPDQLIHVWHVLOOHXUHPSUXQWHGHVH[SUHVVLRQVHQOHVIUDQFLVDQW'DQVVHVProblèmes numériquesGDWDQWGHLOPHWHQVFqQH©ௗXQJSDWURQGHJDOHHTXLDHQVD JDUGHHWFRQGXLWHFKUHWLHQVHWMXLI]ௗªHWTXLYRXGUDLWWURXYHUXQPR\HQ G¶DSSDUHQFHLPSDUWLDOH©ௗSRXUTXHOHVMXLI]VHXOHPHQWIHXVVHQWJHWWH]HQODPHU

13. 1RXVUHPHUFLRQV0DU\YRQQH6SLHVVHUTXLQRXVDVLJQDOpHWFRPPXQLTXpFHWH[WH

34 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

HWOHVFKUHWLHQVVDXOYH]ௗª>3YU@2QUHWURXYHOHVSHWLWVFHUFOHVEDUUpV GHQHXIHQQHXIGXLivre de la praticque d’algorismeDUUDQJpVLFLHQXQGHVVLQ FLUFXODLUH R HVW GH SOXV pFULWH XQH IRUPXOH ODWLQH SHUPHWWDQWGH PpPRULVHU ODVROXWLRQ Populeam virgam mater regina ferebat 14

,OVXI¿WG¶HQRXEOLHUOHVFRQVRQQHVHWGHUHPSODFHUaeiouSDU SRXUREWHQLUODVXLWH&¶HVWODSUHPLqUHRFFXUHQFHFRQQXHGHFHWWHSKUDVH TXHO¶RQUHWURXYHUDVRXYHQW0DLV&KXTXHWQHVHPEOHSDVO¶DYRLULQYHQWpHFDU LOQ¶HQH[SOLFLWHSDVO¶XWLOLVDWLRQ,OSURSRVHDXVVLGHVH[WHQVLRQVGXMHXPDLV WRXMRXUVDYHFDXWDQWGHMXLIVTXHGHFKUpWLHQV (Q )LOLSSR &DODQGUL VH VLQJXODULVH HQ RSSRVDQW GDQV VRQ Trattato di aritmetica IUDQFLVFDLQVHWFDPDOGXOHV 15YRJXDQWYHUV-pUXVDOHP>) YY@¬F{WpG¶XQHPLQLDWXUHVDLVLVVDQWHUHSUpVHQWDQWOHVUHOLJLHX[HW OHVPRLQHVHQWDVVpVGDQVOHXUQDYLUHOHWH[WHLQGLTXH /jRRQGRLWFRPPHQFHUjFRPSWHURQPHWG¶DERUGIUqUHV SXLV PRLQHV SXLV IUqUHV SXLV PRLQH IUqUHV PRLQH IUqUH PRLQHV IUqUHV PRLQHV IUqUH PRLQHV HW IUqUHVPRLQH

/XFD3DFLROLFRQVDFUHjQRWUHMHXFLQTIHXLOOHWVGHVRQPDQXVFULWDe Viribus quantitatis,pFULWYHUV>%ROUY@6HSURSRVDQWGHPRQWUHU©ௗFRPELHQLOHVWXWLOHG¶DYRLUFRQQDLVVDQFHGXSRXYRLUGHVQRPEUHVௗªLOUDFRQWHOH SpULOTX¶LODXUDLWFRXUXDXVHUYLFHGXPDUFKDQGMXLI$QWRQLR5RPSLDFLrWUH WLUpjODFRXUWHSDLOOHSRXUDOOpJHUXQQDYLUH3XLVLOH[SRVHXQHIRUPHGXMHX DYHFLQGLYLGXVFHTXLGLWLOHVWDXWDQWTXHGHSLqFHVDXMHXG¶pFKHFVGRQW GHX[GRLYHQWVXUYLYUH±VRLHQWFKUpWLHQVHWMXLIVFRPSWpVSDURX,O SDVVHDXFDVGHHWFRPSWpVSDUDYHFXQGHVVLQFLUFXODLUHHWODSKUDVH ODWLQHGH&KXTXHW 'HX[ IRUPHV GX MHX GHV FKUpWLHQV HW GHV MXLIV VRQW UHSULVHV GDQV OH Libro dicto giuochi mathematici GH 3LHUR GL 1LFRODR G¶$QWRQLR GD )LOLFDLD

14. ©/DUHLQHHWPqUHSRUWDLWXQUDPHDXGHERXOHDXª 15. /¶RUGUHPRQDVWLTXHGHV&DPDOGXOHVDpWpIRQGpSDUVDLQW5RPXDOGHQj&DPDOGROL 7RVFDQH 



ca. VHXORXYUDJHGHVXVe et XVIeVLqFOHVHQWLqUHPHQWFRQVDFUpDX[MHX[ PDWKpPDWLTXHVWUqVLQVSLUpSDU3DFLROL>)YY@ 16 /HMHXSDVVHHQVXLWHGDQVGHVRXYUDJHVLPSULPpV(QIUDQoDLVOHLivre de chiffres et de getz 17 GHPDQGH FRPPHQW DVVHRLU FKUpWLHQV HW 6DUUDVLQV D¿QTX¶©ௗRQQHJHWWHQXOVGHVFUHVWLHQVௗª $QRQ\PH (QODWLQ -pU{PH &DUGDQ O¶pYRTXH DSUqV O¶KLVWRLUH GH -RVqSKH &DUGDQXV  /9, † HQSDUODQWGHSODTXHWWHVEODQFKHVHWQRLUHVLOpYDFXHWRXWHDOOXVLRQjXQJURXSHKXPDLQjpOLPLQHU,OpPHWFHWDYLV &HFLHQWUHDXWUHV>MHX[@SDUDvWDGPLUDEOHjFHX[TXLQ¶RQWSDV GHMXJHPHQWELHQTXHFHVRLWFKRVHVLPSOHHWLOVGHYLHQQHQWGHV MHX[GHO¶HVSULW

/HPDWKpPDWLFLHQSRUWXJDLV%HQWR)HUQDQGHVOHFWHXUGHVDEDFLVWHVLWDOLHQV SURSRVHGDQVVRQWUDLWpG¶DULWKPpWLTXHXQHYHUVLRQROHVFKUpWLHQVSUHQQHQWj O¶DERUGDJHXQEDWHDXPDXUH )HUQDQGHVUY 18 3DUPL OHV FKUpWLHQV LO \ DYDLW XQ KRPPH WUqV H[SpULPHQWp HQ FRPSWHTXLOHVDPLVGDQVXQWHORUGUHTXHOHV0DXUHVRQWpWp WRXVMHWpVHQPHU>«@/HVFKUpWLHQVRQWYDLQFXHWVHVRQWSDUWDJp ODSULVH

'DQVVRQGHVVLQ YRLU¿J OHVFKUpWLHQVVRQWKDELOOpVHQEODQFHWSRUWHQW XQHFURL[VXUODWrWHOHV0DXUHVVRQWHQQRLUHWRQWXQERQQHWSRLQWX6DYHUVLRQHVWSHXWrWUHjO¶RULJLQHGHYHUVLRQVHQFLQJDODLVRSSRVDQWDXWRFKWRQHVGH &H\ODQHWFRORQVSRUWXJDLV $KUHQV  1LFROOz 7DUWDJOLD FRPPH 3DFLROL GpYHORSSH ORQJXHPHQW OD TXHVWLRQ 7DUWDJOLD  YU  3DUWDQW GH SLRQV EODQFV HW QRLUV VXU XQ GDPLHUDVVRFLpVjGHVFKUpWLHQVHWGHV7XUFVLOH[DPLQHWRXVOHVPRGXOHVGH FRPSWDJHGHjUHOLDQWFKDFXQjSOXVLHXUVSKUDVHVHQODWLQRXLWDOLHQ-HDQ %RUUHOUHSUHQGOHWKqPHDYHFFKUpWLHQVHWMXLIVFRPSWpVSDU %XWHR  

16. 1RXV UHPHUFLRQV (OLVDEHWWD 8OLYL GH O¶XQLYHUVLWp GH )ORUHQFH TXL QRXV D LQGLTXp FH WH[WH 17. Getz MHWRQV 18. 1RXVUHPHUFLRQV7HUHVD&ODLQGHO¶XQLYHUVLWpG¶$YHLURTXLQRXVDFRPPXQLTXpFHWWH VRXUFH

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

¬ F{Wp GH FHWWH OLWWpUDWXUH PDWKpPDWLTXH OD YHLQH SRpWLTXHVHPDLQWLHQWDYHFXQHRFWDYHContro i Turchi DWWULEXp DX SRqWH VLFLOLHQ $QWRQLR 9HQH]LDQR GRQW O¶°XYUHQHIXWSXEOLpHTX¶DXXIXeVLqFOH6HORQODWUDGLWLRQLOO¶DXUDLWpFULWj$OJHURLOIXWDYHF&HUYDQWqV FDSWLIGHj6HVYHUVUDSSHOOHQWOHVYHUVLRQV PpGLpYDOHVPDLVRQQRWHO¶DVVLPLODWLRQGHVPDKRPpWDQVDX[OXWKpULHQVFRQVWDQWHGHODFXOWXUHFDWKROLTXH GX XVIeVLqFOH 9HQH]LDQR  ௗ 3LWUq   

Fig. 4 – Le cercle des chrétiens et des Maures (Fernandes 1555) [Biblioteca Pública Municipal do Porto, Y1-3-31].

4XDWUH¿GqOHVHWFLQTOXWKpULHQV 'HX[ERQVHWXQDXYLVDJHEUXQ 7URLVRQWSUqVG¶HX[XQPDJQL¿TXHFKLHQ>«@

/H SRqWH eWLHQQH7DERXURW GHV$FFRUGV pYRTXH OH MHXGDQVses Bigarrures 7DERXURWYU ௗ



LOLQGLTXHTXHODYDULDWLRQGXPRGXOHGHFRPSWDJHHVWXQHVRXUFHLQ¿QLHGH SRVVLELOLWpVSRpWLTXHV (Q¿QQRWUHMHXHVWVLJQDOpGDQVSOXVLHXUVPDQXVFULWVFRQVDFUpVDX[pFKHFV 0XUUD\ 

Le passage aux livres de récréations mathématiques ¬SDUWLUGX XVIIeVLqFOHQRWUH©ௗMHXௗªDLQVLTXHG¶DXWUHVDYHFOHVTXHOVLOYRLVLQDLWKDELWXHOOHPHQWWHOOHMHXGHVPDULVMDORX[GpVHUWHSURJUHVVLYHPHQWOHV WUDLWpVPDWKpPDWLTXHVFRQYHQWLRQQHOVDXSUR¿WG¶XQJHQUHQRXYHDXOHVOLYUHV H[FOXVLYHPHQWFRQVDFUpVDX[UpFUpDWLRQVPDWKpPDWLTXHV &¶HVW%DFKHWGH0H]LULDFTXLLQLWLHOHPRXYHPHQW %DFKHW  ,O UpXQLW FH TXL D GpMj pWp GLW VXU OD TXHVWLRQ HQ SDUWDQW GH FKUpWLHQV HW 7XUFVHWSURSRVHXQHSKUDVHPQpPRWHFKQLTXHHQIUDQoDLVVXUOHSULQFLSH GHVYR\HOOHVMort, tu ne falliras pas en me livrant le trepas 19,OH[DPLQH HQVXLWHGLIIpUHQWVHIIHFWLIVHWPRGXOHVGHGpFRPSWHVXJJpUDQWDLQVLXQHPXOWLSOLFLWpGHYHUVLRQV)DLVDQWGHPrPHO¶DXWHXUGHODRecreation mathematicque /HXUHFKRQ SUpFLVHQRQVDQVKXPRXU©ௗ>FHOD@SHXWGHEHDXFRXS VHUYLU DX[ FDSLWDLQHV PDJLVWUDWV  PDLVWUHV TXL RQW SOXVLHXUV SHUVRQQHV j SXQLUHWYRXGUDLHQWVHXOHPHQWFKDVWLHUOHVSOXVGLVFROHVௗª (Q LWDOLHQ RQ OH WURXYH HQFRUH GDQV XQ WUDLWp G¶DULWKPpWLTXH )LJDWHOOL  PDLVDXVHLQG¶XQFKDSLWUHVXUOHV©ௗMHX[FXULHX[ௗªDYHFSOXVLHXUVPRGXOHVGHGpFRPSWHHWSKUDVHVDVVRFLpHV 3UHQGV IqYHV EODQFKHV HW QRLUHV /HV EODQFKHV UHSUpVHQWHURQWOHVFKUpWLHQVHWOHVQRLUHVOHV7XUFV>«@(WVLF¶HVWGH jVHORQODVXLYDQWH5H[$QJOLFXVFHUWHERQDÀDPLQDGHGHUDW

3XLVVRXVXQHIRUPHVHPEODEOHGDQVXQRXYUDJHSXUHPHQWOXGLTXH $OEHUWL   &HMHXSHXWrWUHUpDOLVpDYHFpOpJDQFHVXUXQHWDEOHDYHFIqYHV EODQFKHVHWQRLUHVOHVEODQFKHVSHXYHQWUHSUpVHQWHUOHVFKUpWLHQVHWOHVQRLUHVOHV7XUFVRXOHVMXLIV(QSUHPLHURQGRLWVDYRLU FHYHUVSDUF°XUPopuleam Virgam Mater Regina tenebat

19. ,OHVWQpFHVVDLUHG¶RUWKRJUDSKLHU falliras et non failliras

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

6L QRWUH MHX HVW DEVHQW GHV Récréations GH -DFTXHV 2]DQDP SXEOLpHV HQRQWURXYHGDQVODUppGLWLRQSRVWKXPHDXJPHQWpHSDUO¶DEEp*UDQGLQ XQHYHUVLRQRSSRVDQW7XUFVHWFKUpWLHQVHPSUXQWDQWj%DFKHWHWj/HXUHFKRQ 2]DQDP*UDQGLQW,  2QGRQQHUDLFLSOXVG¶pWHQGXHjFHSUREOqPHD¿QTX¶LOSXLVVH rWUHXWLOHDX[FDSLWDLQHVTXLD\DQWSOXVLHXUVVROGDWVjSXQLUVRQW REOLJH]GHOHVIDLUHGpFLPHU3DUFHPR\HQLOVIHURQWWRPEHUOH VRUW VXU OHV SOXV FRXSDEOHV HQ OHV UDQJHDQW GH OD PDQLqUH TXH QRXVDOORQVHQVHLJQHU

1RXVWHUPLQHURQVFHYR\DJHFRPPHQRXVO¶DYRQVFRPPHQFpSDUL’Arithmétique amusanteG¶eGRXDUG/XFDV /XFDV &HOXLFLIDLWDSSHO jGHVFDUWHVjMRXHU 3RXUUpDOLVHUFHSUREOqPHRQUHSUpVHQWHOHVTXLQ]HFKUpWLHQVSDU TXLQ]HFDUWHVURXJHVHWOHV7XUFVSDUTXLQ]HFDUWHVQRLUHV

Conclusion 1p VHORQ FHUWDLQV LQGLFHV HQ ,UODQGH FH TXH QRXV DYRQV DSSHOp OH MHX GHV FUR\DQWVHWLQ¿GqOHVDFLUFXOpODUJHPHQWHQ(XURSHVXUWRXWVHSWHQWULRQDOHGX IXe DX XIIeVLqFOH,OHVWHQVXLWHFRQQXGDQVOHVFRPPXQDXWpVMXLYHV HW SDVVH HQ eJ\SWH$X[ XIIIe-XIVeVLqFOHV MXLIV HW PXVXOPDQV G¶eJ\SWH VH O¶pFKDQJHQWௗ LO UHVWHUD FpOqEUH GDQV OHV FHUFOHV OLWWpUDLUHV pJ\SWLHQV MXVTX¶j O¶pSRTXH FRQWHPSRUDLQH 'H Oj LO DWWHLQW O¶$IULTXH RFFLGHQWDOH DUDELVpH SUREDEOHPHQW SDU OD YRLH GX 'DUIRXU SXLVTX¶DXFXQH DWWHVWDWLRQ PDJKUpELQH Q¶HVWFRQQXHDLQVLTXH0DGDJDVFDUSDUODF{WHRULHQWDOH,OSpQqWUHDXVVLDX 0R\HQ2ULHQWQRWDPPHQWHQ6\ULHGqVOH XVeSXLVHQ,UDQDX XVIIIeVLqFOH 'DQV O¶(XURSH FKUpWLHQQH R LO UHVWDLW VSRUDGLTXHPHQW FLWp LO IDLW LQGpSHQGDPPHQWUHWRXUDX XVeVLqFOHSDUO¶,WDOLHDWWHLQWOD)UDQFHSXLVOH3RUWXJDO YUDLVHPEODEOHRULJLQHGHYHUVLRQVHQFLQJDODLV&ODVVLTXHHQ(XURSHMXVTX¶DX XXeVLqFOHLOpPHUJHHQ7XUTXLHDXXIXeVLqFOH 6RQJHQUHYDULHjO¶LQ¿QLDYDQWWRXWSUpWH[WHjODFRPSRVLWLRQSRpWLTXH VRXV FRQWUDLQWHV GH SRqPHVVROXWLRQV RX GH YHUV PQpPRWHFKQLTXHV GDQV WRXWHV VRUWHV GH ODQJXHV LO HVW DXVVL MHX GH VRFLpWp RX HQ VROLWDLUH DYHF RX VDQV SLqFHV G¶pFKHFV RX FDUWHV j MRXHU LO VH FKDQWH VH SHLQW VH PpWDPRUSKRVHHQFDVMXULGLTXHHQUpFLWP\WKLTXHRXHQSUDWLTXHPDJLTXH$X[XVe et



6L QRWUH MHX HVW DEVHQW GHV Récréations GH -DFTXHV 2]DQDP SXEOLpHV HQRQWURXYHGDQVODUppGLWLRQSRVWKXPHDXJPHQWpHSDUO¶DEEp*UDQGLQ XQHYHUVLRQRSSRVDQW7XUFVHWFKUpWLHQVHPSUXQWDQWj%DFKHWHWj/HXUHFKRQ 2]DQDP*UDQGLQW,  2QGRQQHUDLFLSOXVG¶pWHQGXHjFHSUREOqPHD¿QTX¶LOSXLVVH rWUHXWLOHDX[FDSLWDLQHVTXLD\DQWSOXVLHXUVVROGDWVjSXQLUVRQW REOLJH]GHOHVIDLUHGpFLPHU3DUFHPR\HQLOVIHURQWWRPEHUOH VRUW VXU OHV SOXV FRXSDEOHV HQ OHV UDQJHDQW GH OD PDQLqUH TXH QRXVDOORQVHQVHLJQHU

1RXVWHUPLQHURQVFHYR\DJHFRPPHQRXVO¶DYRQVFRPPHQFpSDUL’Arithmétique amusanteG¶eGRXDUG/XFDV /XFDV &HOXLFLIDLWDSSHO jGHVFDUWHVjMRXHU 3RXUUpDOLVHUFHSUREOqPHRQUHSUpVHQWHOHVTXLQ]HFKUpWLHQVSDU TXLQ]HFDUWHVURXJHVHWOHV7XUFVSDUTXLQ]HFDUWHVQRLUHV

Conclusion 1p VHORQ FHUWDLQV LQGLFHV HQ ,UODQGH FH TXH QRXV DYRQV DSSHOp OH MHX GHV FUR\DQWVHWLQ¿GqOHVDFLUFXOpODUJHPHQWHQ(XURSHVXUWRXWVHSWHQWULRQDOHGX IXe DX XIIeVLqFOH,OHVWHQVXLWHFRQQXGDQVOHVFRPPXQDXWpVMXLYHV HW SDVVH HQ eJ\SWH$X[ XIIIe-XIVeVLqFOHV MXLIV HW PXVXOPDQV G¶eJ\SWH VH O¶pFKDQJHQWௗ LO UHVWHUD FpOqEUH GDQV OHV FHUFOHV OLWWpUDLUHV pJ\SWLHQV MXVTX¶j O¶pSRTXH FRQWHPSRUDLQH 'H Oj LO DWWHLQW O¶$IULTXH RFFLGHQWDOH DUDELVpH SUREDEOHPHQW SDU OD YRLH GX 'DUIRXU SXLVTX¶DXFXQH DWWHVWDWLRQ PDJKUpELQH Q¶HVWFRQQXHDLQVLTXH0DGDJDVFDUSDUODF{WHRULHQWDOH,OSpQqWUHDXVVLDX 0R\HQ2ULHQWQRWDPPHQWHQ6\ULHGqVOH XVeSXLVHQ,UDQDX XVIIIeVLqFOH 'DQV O¶(XURSH FKUpWLHQQH R LO UHVWDLW VSRUDGLTXHPHQW FLWp LO IDLW LQGpSHQGDPPHQWUHWRXUDX XVeVLqFOHSDUO¶,WDOLHDWWHLQWOD)UDQFHSXLVOH3RUWXJDO YUDLVHPEODEOHRULJLQHGHYHUVLRQVHQFLQJDODLV&ODVVLTXHHQ(XURSHMXVTX¶DX XXeVLqFOHLOpPHUJHHQ7XUTXLHDXXIXeVLqFOH 6RQJHQUHYDULHjO¶LQ¿QLDYDQWWRXWSUpWH[WHjODFRPSRVLWLRQSRpWLTXH VRXV FRQWUDLQWHV GH SRqPHVVROXWLRQV RX GH YHUV PQpPRWHFKQLTXHV GDQV WRXWHV VRUWHV GH ODQJXHV LO HVW DXVVL MHX GH VRFLpWp RX HQ VROLWDLUH DYHF RX VDQV SLqFHV G¶pFKHFV RX FDUWHV j MRXHU LO VH FKDQWH VH SHLQW VH PpWDPRUSKRVHHQFDVMXULGLTXHHQUpFLWP\WKLTXHRXHQSUDWLTXHPDJLTXH$X[XVe et



XVIeVLqFOHV LO V¶pSDQRXLW GDQV OD OLWWpUDWXUH DULWKPpWLTXH LWDOLHQQH HW IUDQ-

oDLVHDXFXQPDWKpPDWLFLHQLPSRUWDQWQHO¶RPHWDORUV,OPLJUHHQVXLWHYHUVOH JHQUHGHVUpFUpDWLRQVPDWKpPDWLTXHVHXURSpHQQHVGRQWLOGHYLHQWXQFODVVLTXH MXVTX¶jO¶RUpHGXXXeVLqFOH'HPDQLqUHUHPDUTXDEOHOHVPDWKpPDWLFLHQVGHV SD\VG¶,VODPjODGLIIpUHQFHGHOHXUVKRPRORJXHVGHO¶(XURSHFKUpWLHQQHQ¶\ RQWMDPDLVYXXQSUREOqPHUHVVRUWLVVDQWjOHXUDUWjODVHXOHHWWDUGLYHH[FHSWLRQGHO¶(PSLUHRWWRPDQGHVTanܲƯPƗW XIXeVLqFOH  ¬O¶RSSRVLWLRQEODQFVQRLUVGHVWHPSVFDUROLQJLHQVVXFFqGHDX XIIeVLqFOH O¶RSSRVLWLRQ UHOLJLHXVH SDU RUGUH FKURQRORJLTXH GHV VRXUFHV FRQQXHV RQ UHQFRQWUHGHVFKUpWLHQVQR\DQWGHVMXLIVGHVMXLIVQR\DQWGHVFKUpWLHQVGHV PXVXOPDQVQR\DQWGHVFKUpWLHQVGHVFKUpWLHQVQR\DQWGHVPXVXOPDQVHWGHV PXVXOPDQVQR\DQWGHVMXLIV/HV¿OVVHPrOHQWGDQVXQPrPHWH[WHOHVQRLUV VRQWDVVLPLOpVjGHVMXLIVOHVMXLIVjGHV0DXUHVOHV0DXUHVjGHVOXWKpULHQV 5DUHVVRQWOHVDXWHXUVTXLFRPPH&DUGDQVRQJHQWjpFKDSSHUjFHWWHUKpWRULTXHYLROHQWH /¶HIIHFWLIGHHWOHPRGXOHGHFRPSWDJHGHDSSDUDLVVHQWGqVO¶RULJLQH (QSHQVDQWDXFKkWLPHQWGHGpFLPDWLRQRXjO¶LPS{WGHGvPHRQSHXWV¶LQWHUURJHUVXUOHFKRL[GHSOXW{WTXHFRXUDQWGDQVOHVHXOGRPDLQHJHUPDQLTXH ,OVHPEOHTX¶RQDLWFRQVLGpUpTXHODGL]DLQHV¶DFKqYHjGHPrPHTX¶RQD VRXYHQWSUpOHYpODGvPHjODQHXYLqPHJHUEHHWSODFpOHV¿QVGHVLqFOHVDX[ DQQpHV1RPEUHG¶DXWHXUVRQWSURSRVpSOXVLHXUVPRGXOHVHWPXOWLSOLpOHV YHUVPQpPRWHFKQLTXHVLOVXI¿WDORUVGHYpUL¿HUTXHODUpSRQVH©ௗPDUFKHௗª &HVH[WHQVLRQVRXYUDLHQWODSRUWHYHUVODJpQpUDOLVDWLRQHWODPDWKpPDWLVDWLRQ PDLVQHVHPEODQWSDVUHVVRUWLUjXQHPpWKRGHJpQpUDOHOHMHXDpWpUHOpJXp GDQVOHJHQUHPLQHXUGHVUpFUpDWLRQV/DGRQQpHODSOXVSHUWLQHQWHjFRQVLGpUHU FRPPHXQHYDULDEOHHVWHQIDLWO¶HIIHFWLIGXJURXSHQRQFRQVWDQWDXFRXUVGX MHX(XOHUVHPEOHrWUHOHSUHPLHUjO¶DYRLUFRPSULVGDQVFHTXLFRQVWLWXDLWOD SUHPLqUHDQDO\VHYUDLPHQWPDWKpPDWLTXHGHODVLWXDWLRQ (XOHU 

Références bibliographiques Sources primaires imprimées et sources secondaires (appels entre parenthèses) $JRVWLQL$  2QFRGLFHGLDULWPHWLFDDQRQLPRGHOVHF;9Bollettino dell’Unione Matematica Italiana   $KUHQV:   Mathematische Unterhaltungen und Spiele e pGLWLRQ DXJPHQWpHHWFRUULJpH /HLS]LJ7HXEQHU

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

XVIeVLqFOHV LO V¶pSDQRXLW GDQV OD OLWWpUDWXUH DULWKPpWLTXH LWDOLHQQH HW IUDQ-

oDLVHDXFXQPDWKpPDWLFLHQLPSRUWDQWQHO¶RPHWDORUV,OPLJUHHQVXLWHYHUVOH JHQUHGHVUpFUpDWLRQVPDWKpPDWLTXHVHXURSpHQQHVGRQWLOGHYLHQWXQFODVVLTXH MXVTX¶jO¶RUpHGXXXeVLqFOH'HPDQLqUHUHPDUTXDEOHOHVPDWKpPDWLFLHQVGHV SD\VG¶,VODPjODGLIIpUHQFHGHOHXUVKRPRORJXHVGHO¶(XURSHFKUpWLHQQHQ¶\ RQWMDPDLVYXXQSUREOqPHUHVVRUWLVVDQWjOHXUDUWjODVHXOHHWWDUGLYHH[FHSWLRQGHO¶(PSLUHRWWRPDQGHVTanܲƯPƗW XIXeVLqFOH  ¬O¶RSSRVLWLRQEODQFVQRLUVGHVWHPSVFDUROLQJLHQVVXFFqGHDX XIIeVLqFOH O¶RSSRVLWLRQ UHOLJLHXVH SDU RUGUH FKURQRORJLTXH GHV VRXUFHV FRQQXHV RQ UHQFRQWUHGHVFKUpWLHQVQR\DQWGHVMXLIVGHVMXLIVQR\DQWGHVFKUpWLHQVGHV PXVXOPDQVQR\DQWGHVFKUpWLHQVGHVFKUpWLHQVQR\DQWGHVPXVXOPDQVHWGHV PXVXOPDQVQR\DQWGHVMXLIV/HV¿OVVHPrOHQWGDQVXQPrPHWH[WHOHVQRLUV VRQWDVVLPLOpVjGHVMXLIVOHVMXLIVjGHV0DXUHVOHV0DXUHVjGHVOXWKpULHQV 5DUHVVRQWOHVDXWHXUVTXLFRPPH&DUGDQVRQJHQWjpFKDSSHUjFHWWHUKpWRULTXHYLROHQWH /¶HIIHFWLIGHHWOHPRGXOHGHFRPSWDJHGHDSSDUDLVVHQWGqVO¶RULJLQH (QSHQVDQWDXFKkWLPHQWGHGpFLPDWLRQRXjO¶LPS{WGHGvPHRQSHXWV¶LQWHUURJHUVXUOHFKRL[GHSOXW{WTXHFRXUDQWGDQVOHVHXOGRPDLQHJHUPDQLTXH ,OVHPEOHTX¶RQDLWFRQVLGpUpTXHODGL]DLQHV¶DFKqYHjGHPrPHTX¶RQD VRXYHQWSUpOHYpODGvPHjODQHXYLqPHJHUEHHWSODFpOHV¿QVGHVLqFOHVDX[ DQQpHV1RPEUHG¶DXWHXUVRQWSURSRVpSOXVLHXUVPRGXOHVHWPXOWLSOLpOHV YHUVPQpPRWHFKQLTXHVLOVXI¿WDORUVGHYpUL¿HUTXHODUpSRQVH©ௗPDUFKHௗª &HVH[WHQVLRQVRXYUDLHQWODSRUWHYHUVODJpQpUDOLVDWLRQHWODPDWKpPDWLVDWLRQ PDLVQHVHPEODQWSDVUHVVRUWLUjXQHPpWKRGHJpQpUDOHOHMHXDpWpUHOpJXp GDQVOHJHQUHPLQHXUGHVUpFUpDWLRQV/DGRQQpHODSOXVSHUWLQHQWHjFRQVLGpUHU FRPPHXQHYDULDEOHHVWHQIDLWO¶HIIHFWLIGXJURXSHQRQFRQVWDQWDXFRXUVGX MHX(XOHUVHPEOHrWUHOHSUHPLHUjO¶DYRLUFRPSULVGDQVFHTXLFRQVWLWXDLWOD SUHPLqUHDQDO\VHYUDLPHQWPDWKpPDWLTXHGHODVLWXDWLRQ (XOHU 

Références bibliographiques Sources primaires imprimées et sources secondaires (appels entre parenthèses) $JRVWLQL$  2QFRGLFHGLDULWPHWLFDDQRQLPRGHOVHF;9Bollettino dell’Unione Matematica Italiana   $KUHQV:   Mathematische Unterhaltungen und Spiele e pGLWLRQ DXJPHQWpHHWFRUULJpH /HLS]LJ7HXEQHU

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

DOµ$৬৬ƗUণ   ‫ۉ‬ƗVKL\D µDOƗ 6KDU‫ ۊ‬DO-DOƗO DO0D‫ۊ‬DOOƯ µDOƗ -DPµ DOMDZƗPLµ OLOLPƗP ,EQ DO6XENƯ %H\URXWK GƗU DONXWXE DOµLOPL\\D UHSURGXFWLRQSKRWRJUDSKLTXHGHO¶pGLWLRQGH  $OEHUWL*$   I Giochi numerici fatt arcani. %RORJQH %DUWRORPHR %RUJKL $QRQ\PH  Livre de chiffres et de getz nouvellement imprimé./\RQ 30DUpFKDOHW%&KDXVVDUG $UULJKL*  La matematica dell’età di mezzo. Scritti scelti.3LVD(76 %DFKHW&*  Problemes plaisans et delectables, qui se font par les nombres/\RQ3LHUUH5LJDXG %DUULqUH&   Lieux et objets sacrés bamanan de la région de Segu 0DOL  7KqVHGHGRFWRUDWHQDWKURSRORJLH &OHUPRQW)HUUDQG8QLYHUVLWp GH&OHUPRQW)HUUDQG,, URQpRWp  %DUWVFK.  Meisterlieder der Kolmarer Handschrift6WXWWJDUW/LWWHUDULVFKHU9HUHLQ %HDXMDUG3   /H SqOHULQDJH VHSWHQQDO VXU OH WRPEHDX GH O¶DQFrWUH GHV DULVWRFUDWHV DQWHRx\ SD\V DQWHPRUR 6XG(VW GH 0DGDJDVFDU  'DQV 6%ODQFK\ -$5DNRWRDULVRD 3%HDXMDUG &5DGLPLODK\ GLU  Les dieux au service du peuple. Itinéraires religieux, médiation et syncrétisme à Madagascar.3DULV.DUWKDODS %XWHR> %RUUHO@-  Logistica quae et arithmetica vulgo dicitur/\RQ *5RXLOOp &DUGDQXV+  Practica arithmetice & mensurandi singularis.0LODQ -$&DVWHOOLRQHXV &XUW]H0   =XU *HVFKLFKWH GHV -RVHSKVSLHOV Bibliotheca mathematica   :HLWHUHVEHUGDV-RVHSKVSLHOBibliotheca mathematica   (OUHGJH/0 6FKPLGW.$5 HW 6PLWK0%   )RXU 0HGLHYDO 0DQXVFULSWVZLWK0DWKHPDWLFDO*DPHVMedium Ævum68(2  (XOHU/   2EVHUYDWLRQHV FLUFD QRYXP HW VLQJXODUH SURJUHVVLRQXP JHQXVNovi Commentarii academiæ scientiarum imperialis Petropolitanæ pro MDCCLXXV 20 )HUQDQGHV%  Tratado da Arte de Arismetica3RUWR)&RUUHD )LJDWHOOL*0  Trattato aritmetico >@ in questa seconda impresione aggiontoui l’Algebra.9HQLVH6&XUWL *DLGR]+ /pYL, HW %DVVHW5   /H -HX GH 6DLQW3LHUUH 'DQV +*DLGR]HW(5ROODQG GLU Mélusine : recueil de mythologie, littérature populaire, traditions et usages WRPH,,, 3DULV/LEUDLULHKLVWRULTXHGHV SURYLQFHVFROHW



DO*KX]njOƯµ$  Ma‫ܒ‬ƗOLµDOEXGnjUZDPDQƗ]LODOVXUnjU60$O7LMƗQƯ pG %H\URXWKGƗUDONXWXEDOµLOPL\\D +\GH7  De Ludis Orientalibus libri duo. Liber prior : Mandragorias, seu Historia Shahiludii.2[IRUG6KHOGRQWKHDWUH ,EQণDELE0EHQ67  Marpe lashon>/D/DQJXHDVVDLQLH@9HQLVH '%RPEHUJ -DFREYRQ&REXUJ6  Ein new und wolgegründt Rechenbuch)UDQFIRUW*5DE DO.DUPƗQVKƗKƯ0µ$  0DTƗPLµDOID‫ڲ‬l4RPPX¶DVVDVDWDOµDOOƗPD DOPXMDGGLGDO:DতƯGDO%LKELKƗQƯ .|KOHU5HW%ROWH-  6WRIIJHVFKLFKWOLFKHV]X+DQV6DFKV±'LH &KULVWHQXQG7UNHQEuphorion3 .XF]\QVNL/  Les marabouts africains à Paris3DULV&156pGLWLRQV /HIRUW-  /HSUREOqPHGH)ODYLXV-RVqSKHL’Ouvert 109 /HXUHFKRQ- DWWULEXp j   Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux.3RQWj0RXVVRQ-HDQ$SSLHU +DQ]HOHW /RRVH:  =lKOVSLHOAnzeiger für Kunde der deutschen Vorzeit, 24 FRO 0DQLWLXV0  =XUNDUROLQJLVFKHQ/LWHUDWXUNeues Archiv der GesellVFKDIWIUlOWHUHGHXWVFKH*HVFKLFKWVNXQGH 36   0DXULWLXV0   Tractatus philologicus de Sortitione Veterum, Hebræorum inprimis%kOH-/.|QLJ >0RGqQH / GH@   6XU 0HUD, i.e. recede a malo, sive libellus rabbini doctissimi anonymi de lusu $3IHLIIHU pG HW WUDG ODW  :LWWHQEHUJ -+DNHQ 0OOHU/  hEHUHLQKHXWLJHV.LQGHUVSLHOJahrbücher für classische Philologie, 11 0XUUD\+-5   A History of Chess2[IRUG&ODUHQGRQ3UHVV 2]DQDP-  Récréations mathématiques et physiques WRPH,ௗQRXYHOOH pGLWLRQUHYXHFRUULJpHHWDXJPHQWpHSDU*UDQGLQ 3DULV&$-RPEHUW 3LWUq*  Usi e costumi : credenze et pregiudizi del popolo siciliano YRO 3DOHUPH/3HGRQH/DXULHO DO4DO\njEƯ6K$   ‫ۉ‬LNƗ\ƗW ZDJKDUƗ¶LE ZDҵDMƗ¶LE ZDOD‫ܒ‬Ɨ¶LI ZDQDZƗGLUZDIDZƗ¶LGZDQDIƗ¶LV/H&DLUHVH DO4DO\njEƯ6K$ >  µ8PD\UD 6K $@   ‫ۉ‬ƗVKL\DWƗQ ҵDOƗ VKDU‫ۊ‬ al-Ma‫ۊ‬DOOƯҵDOƗ0LQKƗMDO‫ܒ‬ƗOLEƯQ%H\URXWKGƗUDONXWXEDOµLOPL\\D

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

5RPEDND-3 5DPDURVDRQD= HW 0ROHW/   +LVWRLUH GHV DQFrWUHV $QWHPRUR$QWHRQ\ 'DQV -3RLULHU HW $5DEHQRUR GLU  Tradition et dynamique sociale à Madagascar1LFH,QVWLWXWG¶pWXGHVHWGHUHFKHUFKHV LQWHUHWKQLTXHVHWLQWHUFXOWXUHOOHV 6DFKV+   Sehr herrliche, schöne und wahrhaffte Gedicht 1XUHPEHUJ&+HX‰OHU DOৡDIDGƯৡ  al-Ghayth al-musajjam bi-shar‫ۊ‬OƗPL\\DWDOµDMDP>/D SOXLHDERQGDQWHUpSDQGXHHQFRPPHQWDLUHGXSRqPHHQ/GHV3HUVDQV@/H &DLUHDOPD৬EDµDDOD]KDUL\\DDOPLৢUL\\D DOৡDIDGƯ ৡ   $µ\ƗQ DOµD‫܈‬U ZDDµZƗQ DOQD‫܈‬r $O0XEƗUDN 0 $ $Enj=D\G$HWFROO pG %H\URXWKGƗUDO¿NUDOPX‫ޏ‬ƗৢLU DO6DNKƗZƯ6K  ҵUmdat al-mu‫ۊ‬WDMMIƯ‫ۊ‬XNPDOVKD‫ܒ‬ranj.$OণDUƯUƯ8 .DµND1 pG %H\URXWKGƗUDOQDZƗGLU 6FKQLSSHO( HW %ROWH-   'DV 6W 3HWHUV6SLHO =HLWVFKULIW IU 9RONVNXQGH,   6FKZHQWHU'   Deliciæ physico-mathematicæ oder Mathematische XQG3KLORVRSKLVFKH(UTXLFNVWXQGHQ>«@1XUHPEHUJ-'POHU 6LJQDF/  ©ௗ$XWRXUGXSUREOqPHGH-RVqSKHௗªBibnum$UWLFOHHQOLJQH MRXUQDOVRSHQHGLWLRQRUJELEQXP! FRQVXOWpOHHURFWREUH  6LQJPDVWHU'  Sources in Recreational Mathematics : an annotated Bibliography2XYUDJHQRQSXEOLp)LFKLHUVGLVSRQLEOHVHQOLJQH eYHUVLRQ SUpOLPLQDLUH  KWWSVZZZSX]]OHPXVHXPFRPVLQJPDVLQJPD LQGH[KWP! FRQVXOWpOHHURFWREUH  6WHLQVFKQHLGHU0  Catalogus Librorum Hebræorum in Bibliotheca Bodleiana%HUOLQ7\SLV$G)ULHGODHQGHU 6WHLQVFKQHLGHU0  'LHKHEU LVFKHQ+DQGVFKULIWHGHUN|QLJOLFKHQ+RI XQG6WDDWVELEOLRWKHNLQ0XHQFKHQ0XQLFK3DOP¶VFKH+RIEXFKKDQGOXQJ 6WHQRX.   Images de l’autre. La différence : du mythe au préjugé. 3DULVeGLWLRQVGX6HXLOHWeGLWLRQVGHO¶81(6&2 6WUHFNHU.   Monumenta Germaniæ historica : Poetæ Latini aevi CaroliniYRO%HUOLQ:HLGPDQQ 7DERXURW GHV$FFRUGVe   Les Bigarrures du seigneur des Accordz 3DULV-HKDQ5LFKHU 7DUWDJOLD1  La prima parte del general trattato du numeri, et misure. 9HQLVH&XUWLR7URLDQRGHL1DYR DO7LOLPVƗQƯ ,EQ $EƯ ণDMDOD $   8QPnjGKDM DOTLWƗO IƯ QDTO DOµDZƗO 0DOµ$GZƗQƯ pG  %H\URXWK DOPX¶DVVDVDW DOµDUDEL\\D OLOGLUƗVƗW ZDOQDVKU



7\ONRZVNL$   Arithmeticæ curiosæ editio secunda, correctior et copiosior.2OLZD--DFRE 9DQGHU&UX\VVH'  8QWpPRLJQDJHGHUDQFXQHHWGH©ௗVDXGDGLVPRௗª MXGpRSRUWXJDLVDXXVIIeVLqFOHLes Lettres romanes    9RJHO.  Die 3UDFWLFDGHV$OJRULVPXV5DWLVERQHQVLV : ein Rechenbuch GHV%HQHGLNWLQHUNORVWHUV6W(PPHUDPDXVGHU0LWWHGHV-DKUKXQGHUWV 0XQLFK&+%HFN

Sources manuscrites (appels entre crochets) >$@$YLJQRQDUFKLYHVGpSDUWHPHQWDOHVGX9DXFOXVHPV) >%H@%HUQHELEOLRWKqTXHGHOD%RXUJHRLVLHPV >%RO@%RORJQHELEOLRWKqTXHXQLYHUVLWDLUHPV >%R@ %RXORJQHVXUPHU ELEOLRWKqTXH PXQLFLSDOH PV  SURY DEED\H GH 6DLQW%HUWLQ  >&@&DPEUDLELEOLRWKqTXHPXQLFLSDOHPV >&E@ &DPEULGJH ELEOLRWKqTXH GX FROOqJH GH OD 7ULQLWp PV 2 SURY DEED\H6DLQW$XJXVWLQj&DQWRUEpU\  >&p@&pVqQHELEOLRWKqTXHPDODWHVWLHQQHPV6;;9, >(@(LQVLHGHOQELEOLRWKqTXHGHO¶DEED\HPV >)@)ORUHQFHELEOLRWKqTXHODXUHQWLHQQHPV$FTXLVWLH'RQL >)@)ORUHQFHELEOLRWKqTXHODXUHQWLHQQHPV$VKEXUQDP DQFLHQQHPHQW    >) @)ORUHQFHELEOLRWKqTXH5LFFDUGLPV5LFFDUGL >)@)ORUHQFHELEOLRWKqTXHQDWLRQDOHPV0DJOLDEHFKLDQR;, >/@/H\GHELEOLRWKqTXHGHO¶XQLYHUVLWpPV9RVVLXV4 >/@/H\GHELEOLRWKqTXHGHO¶XQLYHUVLWpPV9RVVLXV4 >0@ 0DGULG ELEOLRWKqTXH QDWLRQDOH G¶(VSDJQH PV  DFKHWp j 9DOODGROLGSRXUODELEOLRWKqTXHGXFKDSLWUHFDWKpGUDOGH7ROqGH  >0D@ 'RXDL ELEOLRWKqTXH PXQLFLSDOH PV  SURY DEED\H GH 0DUFKLHQQHVVXU6FDUSH >0X@0XQLFKELEOLRWKqTXHG¶eWDWGH%DYLqUHFRGH[/DWLQXV SURY DEED\H6DLQW(PPHUDPj5HJHQVEXUJ  >0X@0XQLFKELEOLRWKqTXHG¶eWDWGH%DYLqUHFRGH[/DWLQXV SURY DEED\H6DLQW(PPHUDPj5HJHQVEXUJ 

 Le jeu des quinze croyants et des quinze infidèles : variations sur la violence

>0X@ 0XQLFK ELEOLRWKqTXH G¶eWDW GH %DYLqUH FRGH[ +HEUDLFXV  HQ KpEUHX  >0X@0XQLFKELEOLRWKqTXHG¶eWDWGH%DYLqUHFRGH[*HUPDQLFXV GLW Kolmarer Liederhandschrift   >2 @2[IRUGELEOLRWKqTXHERGOpLHQQHPV$XFWDULXP) >2@2[IRUGELEOLRWKqTXHERGOpLHQQHPV%RGOH\ >2@2[IRUGELEOLRWKqTXHERGOpLHQQHPV3RFRFNH HQMXGpRDUDEH  >3@3DULV%Q)PV/DWLQ >3@3DULV%Q)PV/DWLQ SURYDEED\HGH&RUELH  >3@3DULV%Q)PV/DWLQ SURYDEED\HGH6DLQW'HQLV  >3@ 3DULV %Q) PV 1RXY DFTXLVLWLRQV ODWLQHV  SURY DEED\H GH 6DLQW%HQRvWVXU/RLUH   >3 @3DULV%Q)PV/DWLQ SURYDEED\HGH3DUD\OH0RQLDO  >3@3DULV%Q)PV)UDQoDLV >4@/H&DLUHELEOLRWKqTXHGHO¶XQLYHUVLWpDO$]KDUPV HQDUDEH  >5@5RXHQELEOLRWKqTXHPXQLFLSDOHPV SURYDEED\HGH-XPLqJHV  >9@ 9DOHQFLHQQHV ELEOLRWKqTXH PXQLFLSDOH PV  SURY DEED\H GH 6DLQW$PDQG  >9L@9LHQQHELEOLRWKqTXHQDWLRQDOHDXWULFKLHQQHPV >:@:ROIHQEWWHOELEOLRWKqTXHGXGXF$XJXVWHPV SURYDEED\HGH :LVVHPERXUJ 



PRATIQUES

POUR L’ENSEIGNANT OU LE FORMATEUR



/H MHX PLOOpQDLUH GHV FUR\DQWV HW LQ¿GqOHV SHUPHW GHVUpÀH[LRQVDOJRULWKPLTXHVHWFLYLTXHV*XLGpVSDUXQH H[SpULHQFHHQ3UHPLqUH6QRXVSURSRVRQVGHX[VpDQFHV 'DQVODSUHPLqUHRQpQRQFHOHSUREOqPHHQpYDFXDQW WRXWHQRWLRQGHJURXSHVDQWDJRQLVWHVSDUH[HPSOHDYHFGHV SODTXHWWHV URXJHV HW YHUWHV /HV pOqYHV FRPPHQFHQW SDU GHVHVVDLVPDQXHOVDYHFFHUFOHGHSODTXHWWHVHWPRGXOH GHGpFRPSWHFHTXLQ¶HVWSDVVLVLPSOH2QSURSRVHXQ pODUJLVVHPHQWjG¶DXWUHVHIIHFWLIVHWG¶DXWUHVPRGXOHV2Q QRWHTX¶XQSUREOqPHjSODTXHWWHVVHUDPqQHDSUqVXQH pWDSH DX SUREOqPH j GH PrPH PRGXOH (Q IRQFWLRQ GX QLYHDX HW GHV REMHFWLIV RQ JXLGH YHUV OD IRUPXOH GH UpFXUUHQFH /HIRUW    GRQQDQW OHi௘e pOLPLQp GDQV ^«ௗn`DYHFPRGXOHN J nN  N>PRG n@ௗ J nNi  J n±Ni± N>PRGn@SRXU”i ”n 2Q WHUPLQH SDU O¶pFULWXUH G¶XQ SHWLW SURJUDPPH VRLW HQ VW\OH UpFXUVLI j SDUWLU GH FHWWH IRUPXOH VRLW HQ VW\OH LPSpUDWLIGDQVXQODQJDJHGLVSRVDQWGHOLVWHVG\QDPLTXHV FRPPH3\WKRQ 6LJQDF  /DVHFRQGHVpDQFHpYHQWXHOOHPHQWFRQGXLWHHQLQWHUGLVFLSOLQDULWp DYHF OH SURIHVVHXU G¶KLVWRLUHJpRJUDSKLH (0& FRQVLVWH HQ OD OHFWXUH GH WH[WHV DQFLHQV PRQWUDQW FRPPHQW OHV WURLV UHOLJLRQV VH VRQW GDQV FH MHX FKRLVLHV FRPPHFLEOHVOHVXQHVGHVDXWUHV QRXVSUpSDURQVXQHEURFKXUHJURXSDQWOHVWUDGXFWLRQVFRPSOqWHVGHVWH[WHVpYRTXpV GDQV FH FKDSLWUH  /D VXUSULVH HW OH VHQWLPHQW G¶DEVXUGLWpQDLVVDQWGHVSDUDOOpOLVPHVIDYRULVHQWXQHUpÀH[LRQ FRQWH[WXDOLVpHVXUODVWLJPDWLVDWLRQHWODKDLQHUHOLJLHXVH

Benoît Rittaud

L’EXPONENTIELLE, ENTRE JEU MATHÉMATIQUE ET VISION DU MONDE

Introduction 4XHFHVRLWDXWUDYHUVGHVVXLWHVJpRPpWULTXHVRXGHO¶pWXGHGHVIRQFWLRQVOD FURLVVDQFH H[SRQHQWLHOOH HVW VRXYHQW HQYLVDJpH FRPPH XQH SURSULpWp SXUHPHQWWHFKQLTXHGRQWOHVpYHQWXHOVSURORQJHPHQWVVHOLPLWHQWjGHVDFWLYLWpV OXGLTXHV VRXYHQWIRQGpHVVXUODYLWHVVHGHFHWWHFURLVVDQFH RXDSSOLTXpHV 2UFHW\SHGHFURLVVDQFHHVWHQUpDOLWpULFKHG¶XQHORQJXHKLVWRLUHTXLPRQWUH FRPELHQDX¿OGHVkJHVO¶H[SRQHQWLHOOHHVWXQUpYpODWHXUGHQRVUHSUpVHQWDWLRQVFROOHFWLYHV /¶H[HPSOHOHSOXVHPEOpPDWLTXHHVWVDQVDXFXQGRXWHFHOXLGHODOpJHQGH GHVJUDLQVGHEOpTXHO¶RQGRXEOHVXUOHVFDVHVG¶XQpFKLTXLHU/DYDULpWpGHV YHUVLRQVGLVSRQLEOHVOHXUVLQWHUSUpWDWLRQVTXLDWWHLJQLUHQWSDUIRLVMXVTX¶jOD FRVPRJRQLHO¶HIIDFHPHQWGXFRQWH[WHDXSUR¿WGXVHXOFDOFXOPDWKpPDWLTXH DX 0R\HQ ÆJH VRQW DXWDQW GH VXMHWV G¶pWXGH TXL IRQW GH FHWWH OpJHQGH ELHQ GDYDQWDJHTX¶XQVLPSOHH[HUFLFHGLYHUWLVVDQWVXUOHVVXLWHVJpRPpWULTXHV 3OXVLHXUVDXWUHVPLVHVHQVFqQHGHODFURLVVDQFHH[SRQHQWLHOOHRQWpJDOHPHQWFRQQXOHVXFFqVFRPPH¿JXUDWLRQG¶XQDVSHFWGHQRWUHPRQGHSDUIRLV GDQVXQHSHUVSHFWLYHP\VWLTXH ,O VHPEOH GRQF XWLOH TXH O¶HQVHLJQDQW GH PDWKpPDWLTXHV FRQQDLVVH TXHOTXHVXQHVGHVUHSUpVHQWDWLRQVFROOHFWLYHVDWWDFKpHVjODFURLVVDQFHH[SRQHQWLHOOHDLQVLTXHOHVpOpPHQWVVRFLpWDX[TXLV¶\UDWWDFKHQW&¶HVWO¶REMHWGX SUpVHQWFKDSLWUHTXHG¶HQSUpVHQWHUXQDSHUoXSDUGHVFRQVLGpUDWLRQVUHOHYDQW

QRWDPPHQWGHODGpPRJUDSKLHHWGHO¶pFRQRPLH3RXUXQHSUpVHQWDWLRQSOXV FRPSOqWHRQSRXUUDFRQVXOWHU 5LWWDXG 

Grains de blé : doublements sur l’échiquier 'HV VRQGDJHV LQIRUPHOV DXSUqV GH SXEOLFV GLYHUV VXJJqUHQW TXH GDQV XQ JURXSH G¶XQH YLQJWDLQH GH SHUVRQQHV LO V¶HQ WURXYH HQ PR\HQQH DX PRLQV XQHRXGHX[SRXUFRQQDvWUHGDQVO¶XQHRXO¶DXWUHGHVHVPXOWLSOHVYHUVLRQVOD IDPHXVHOpJHQGHGHVJUDLQVGHEOpTXHO¶RQGRXEOHVXUFKDTXHFDVHGHO¶pFKLTXLHU 3RXU PpPRLUH UDSSHORQVHQ OH VFKpPD JpQpUDO XQ URL VRXIIUDQW GH PpODQFROLHHVWJXpULSDUVRQPLQLVWUH SDUIRLVDSSHOp6HVVD6DVVDRX6LVVD DYHFRFFDVLRQQHOOHPHQWOHQRPDGGLWLRQQHOGHEHQ'DKLU TXLLQYHQWHSRXUOXL OHMHXGHVpFKHFV5HFRQQDLVVDQWOHVRXYHUDLQRIIUHjVRQPLQLVWUHGHFKRLVLU OXLPrPHVDUpFRPSHQVH6HVVDGHPDQGHTXHOXLVRLWGRQQpXQJUDLQGHEOp SRXU OD SUHPLqUH FDVH GH O¶pFKLTXLHU GHX[ SRXU OD VHFRQGH TXDWUH SRXU OD WURLVLqPHHWSOXVJpQpUDOHPHQWn±JUDLQVSRXUODneFDVH&RQWUDLUHPHQWjFH TXHOHURLSHQVHOHQRPEUHWRWDOGHJUDLQVGXVHVWDVWURQRPLTXH/DSURPHVVH HVWGRQFLPSRVVLEOHjKRQRUHU ,OQHVHPEOHSDVTXHOHVDXWHXUVDQRQ\PHVGHFHWWHKLVWRLUHO¶DLHQWFRQoXH FRPPH XQH GHYLQHWWH PDWKpPDWLTXH PDLV SOXW{W FRPPH XQ FRQWH PRUDO TXL pWDLW GHVWLQp j HQVHLJQHU OD SUXGHQFH IDFH DX[ MXJHPHQWV KkWLIV QRWDPPHQWGDQVOHGRPDLQHPLOLWDLUH¬O¶RULJLQH6HVVDSRXUQRXVOHSHUVRQQDJH SULQFLSDOGHO¶KLVWRLUHDYDLWXQU{OHSOXVHIIDFp&¶HVWDLQVLTXHGDQVODSOXV DQFLHQQHYHUVLRQTXLQRXVHVWSDUYHQXHTXLUHPRQWHDX IXeVLqFOHOHURLHVW PRUWjODJXHUUHHWF¶HVW6HVVDTXLGRLWDQQRQFHUODWULVWHQRXYHOOHjODUHLQH 2VWL 3RXUOHIDLUHLOVLPXOHVXUXQpFKLTXLHUODEDWDLOOHGDQVODTXHOOHOH URLDSpULHWF¶HVWFHWDFWTXLOXLYDXWVDUpFRPSHQVH

Le nombre de grains /H QRPEUH GH JUDLQV GXV j 6HVVD HVW pJDO j OD VRPPH GHV VRL[DQWHTXDWUH SUHPLqUHVSXLVVDQFHVGH HQFRPPHQoDQWSDU /DIRUPXOHFODVVLTXHGH ODVRPPHGHVSUHPLHUVWHUPHVG¶XQHVXLWHJpRPpWULTXHPRQWUHTXHOHQRPEUH WRWDOHVWGH± ,O Q¶HVW SDV QpFHVVDLUH GH FRQQDvWUH FHWWH IRUPXOH JpQpUDOH SRXU REWHQLU FHUpVXOWDW8QHIDoRQSOXVpOpPHQWDLUHFRQVLVWHSDUH[HPSOHjVHGRQQHUXQH eFDVHVXUODTXHOOHRQVHSURSRVHGHSODFHUGHX[IRLVSOXVGHJUDLQVTXHVXU OD e HW SRXU FH IDLUH G¶XWLOLVHU OHV JUDLQV GLVSRQLEOHV VXU OHV FDVHV GH

 L’exponentielle, entre jeu mathématique et vision du monde

QRWDPPHQWGHODGpPRJUDSKLHHWGHO¶pFRQRPLH3RXUXQHSUpVHQWDWLRQSOXV FRPSOqWHRQSRXUUDFRQVXOWHU 5LWWDXG 

Grains de blé : doublements sur l’échiquier 'HV VRQGDJHV LQIRUPHOV DXSUqV GH SXEOLFV GLYHUV VXJJqUHQW TXH GDQV XQ JURXSH G¶XQH YLQJWDLQH GH SHUVRQQHV LO V¶HQ WURXYH HQ PR\HQQH DX PRLQV XQHRXGHX[SRXUFRQQDvWUHGDQVO¶XQHRXO¶DXWUHGHVHVPXOWLSOHVYHUVLRQVOD IDPHXVHOpJHQGHGHVJUDLQVGHEOpTXHO¶RQGRXEOHVXUFKDTXHFDVHGHO¶pFKLTXLHU 3RXU PpPRLUH UDSSHORQVHQ OH VFKpPD JpQpUDO XQ URL VRXIIUDQW GH PpODQFROLHHVWJXpULSDUVRQPLQLVWUH SDUIRLVDSSHOp6HVVD6DVVDRX6LVVD DYHFRFFDVLRQQHOOHPHQWOHQRPDGGLWLRQQHOGHEHQ'DKLU TXLLQYHQWHSRXUOXL OHMHXGHVpFKHFV5HFRQQDLVVDQWOHVRXYHUDLQRIIUHjVRQPLQLVWUHGHFKRLVLU OXLPrPHVDUpFRPSHQVH6HVVDGHPDQGHTXHOXLVRLWGRQQpXQJUDLQGHEOp SRXU OD SUHPLqUH FDVH GH O¶pFKLTXLHU GHX[ SRXU OD VHFRQGH TXDWUH SRXU OD WURLVLqPHHWSOXVJpQpUDOHPHQWn±JUDLQVSRXUODneFDVH&RQWUDLUHPHQWjFH TXHOHURLSHQVHOHQRPEUHWRWDOGHJUDLQVGXVHVWDVWURQRPLTXH/DSURPHVVH HVWGRQFLPSRVVLEOHjKRQRUHU ,OQHVHPEOHSDVTXHOHVDXWHXUVDQRQ\PHVGHFHWWHKLVWRLUHO¶DLHQWFRQoXH FRPPH XQH GHYLQHWWH PDWKpPDWLTXH PDLV SOXW{W FRPPH XQ FRQWH PRUDO TXL pWDLW GHVWLQp j HQVHLJQHU OD SUXGHQFH IDFH DX[ MXJHPHQWV KkWLIV QRWDPPHQWGDQVOHGRPDLQHPLOLWDLUH¬O¶RULJLQH6HVVDSRXUQRXVOHSHUVRQQDJH SULQFLSDOGHO¶KLVWRLUHDYDLWXQU{OHSOXVHIIDFp&¶HVWDLQVLTXHGDQVODSOXV DQFLHQQHYHUVLRQTXLQRXVHVWSDUYHQXHTXLUHPRQWHDX IXeVLqFOHOHURLHVW PRUWjODJXHUUHHWF¶HVW6HVVDTXLGRLWDQQRQFHUODWULVWHQRXYHOOHjODUHLQH 2VWL 3RXUOHIDLUHLOVLPXOHVXUXQpFKLTXLHUODEDWDLOOHGDQVODTXHOOHOH URLDSpULHWF¶HVWFHWDFWTXLOXLYDXWVDUpFRPSHQVH

Le nombre de grains /H QRPEUH GH JUDLQV GXV j 6HVVD HVW pJDO j OD VRPPH GHV VRL[DQWHTXDWUH SUHPLqUHVSXLVVDQFHVGH HQFRPPHQoDQWSDU /DIRUPXOHFODVVLTXHGH ODVRPPHGHVSUHPLHUVWHUPHVG¶XQHVXLWHJpRPpWULTXHPRQWUHTXHOHQRPEUH WRWDOHVWGH± ,O Q¶HVW SDV QpFHVVDLUH GH FRQQDvWUH FHWWH IRUPXOH JpQpUDOH SRXU REWHQLU FHUpVXOWDW8QHIDoRQSOXVpOpPHQWDLUHFRQVLVWHSDUH[HPSOHjVHGRQQHUXQH eFDVHVXUODTXHOOHRQVHSURSRVHGHSODFHUGHX[IRLVSOXVGHJUDLQVTXHVXU OD e HW SRXU FH IDLUH G¶XWLOLVHU OHV JUDLQV GLVSRQLEOHV VXU OHV FDVHV GH

 L’exponentielle, entre jeu mathématique et vision du monde

O¶pFKLTXLHU WRXWHVUHPSOLHVFRPPHLOVHGRLW 8QHIRLVYHUVpOHFRQWHQXGH ODeFDVHVXUODeODPRLWLpGXWUDYDLOHVWIDLW(QVXLWHXQHIRLVYHUVpOH FRQWHQXGHODeODPRLWLpGXWUDYDLOTXLUHVWDLWHVWIDLW(QSRXUVXLYDQWDLQVL GDQVO¶RUGUHGpFURLVVDQWGHVFDVHVLODSSDUDvWTXHFKDTXHQRXYHOOHFDVHGRQW RQYHUVHOHFRQWHQXVXUODeDSSRUWHODPRLWLpGHFHTXLPDQTXHHQFRUHj FHWWH eFDVH$SSOLTXp DX FDV GH OD SUHPLqUH FDVH TXL FRQWLHQW XQ XQLTXH JUDLQ FHWWH UHPDUTXH PRQWUH TXH OD VRPPH « GHV JUDLQV VXU O¶pFKLTXLHUHVWpJDOHjXQHXQLWpSUqVj OHQRPEUHGHJUDLQVUHTXLVVXUOD eFDVH  /HIDLWTXHODVRPPHGHVSUHPLqUHVSXLVVDQFHVGHVRLWpJDOHjXQHXQLWp GHPRLQVTXHODSXLVVDQFHVXLYDQWHGHHVWIDFLOHjUHPDUTXHU,ODVDQVGRXWH pWpUHPDUTXpPDLQWHVIRLVVDQVTX¶LOVRLWEHVRLQG¶LQYRTXHUODFRQQDLVVDQFH GHODSURSRVLWLRQGXOLYUH,;GHVÉlémentsG¶(XFOLGH TXLGRQQHOHUpVXOWDW JpQpUDO SRXU OD VRPPH GHV SUHPLHUV WHUPHV G¶XQH VXLWH JpRPpWULTXH TXHOFRQTXH %LHQGHVDXWHXUVMXVTX¶jXQHSpULRGHUpFHQWHVHIRFDOLVHQWWRXWHIRLV VXUOHQRPEUHWRWDOGHJUDLQV jVDYRLU HWQRQ VXUODPpWKRGHGHFDOFXO)LERQDFFLGDQVVRQLiber abaci 6LJOHU  HVWVDQVGRXWHOHSUHPLHUjH[SOLFLWHUFRPPHQWLOSURFqGH,ODSSOLTXHXQDOJRULWKPHG¶H[SRQHQWLDWLRQUDSLGHTXLFRQVLVWHjFDOFXOHUOHVSUHPLHUVWHUPHVGH n ODVXLWHGp¿QLHSDUu HWun  un  =   /DYDOHXUHVWDWWHLQWHGqV uHWOHVPXOWLSOLFDWLRQVVRQWWUqVVLPSOHVjHIIHFWXHUMXVTX¶ju

Une histoire à plusieurs niveaux /DOpJHQGHGHVJUDLQVVXUO¶pFKLTXLHUDFHFLG¶LQWpUHVVDQWTX¶LOHVWSRVVLEOHGH O¶DERUGHUjWRXVOHVQLYHDX[VFRODLUHV 'DQVO¶HQVHLJQHPHQWSULPDLUHHOOHV¶LQWqJUHELHQGDQVXQFRXUVVXUODPXOWLSOLFDWLRQ6¶LOQ¶HVWFHUWHVSDVUDLVRQQDEOHG¶HVSpUHUTXHOHVpOqYHVVRLHQWHQ PHVXUHGHFDOFXOHUOHWHUPHuGHODVXLWHSUpFpGHQWH QLPrPHu O¶LQWURGXFWLRQGHODFpOqEUHVXLWHGHVSXLVVDQFHVGHHWOHFDOFXOGHVHVSUHPLHUVWHUPHV MXVTX¶jGLVRQV  HVWXQPR\HQVLPSOHG¶H[HUFHUVHVDSWLWXGHVDX FDOFXOPHQWDO/¶pQRQFpGXQRPEUHWRWDOGHJUDLQVPrPHVDQVGpPRQVWUDWLRQ HVWVRXYHQWO¶RFFDVLRQG¶XQpPHUYHLOOHPHQWGHYDQWO¶LPPHQVLWpGHFHWWHYDOHXU $XQLYHDXGXFROOqJHO¶KLVWRLUHHVWO¶RFFDVLRQG¶XWLOLVHUOHIRUPDOLVPHGHV H[SRVDQWVTXHFHVRLWSRXUH[SULPHUOHQRPEUHGHJUDLQVVXUODneFDVH DYHFOH SLqJHTX¶LOV¶DJLWGHn±HWQRQGHn௘ RXSRXUREWHQLUOHQRPEUHWRWDOGHJUDLQV $X O\FpH OH QRPEUH GH JUDLQV VH GpGXLW DLVpPHQW GH OD IRUPXOH VXU OD VRPPHGHVWHUPHVG¶XQHVXLWHJpRPpWULTXHHWLOSHXWDXVVLVHUYLUGDQVOHFDGUH GHO¶DSSUHQWLVVDJHGHO¶DOJRULWKPLTXH



(Q¿QGDQVOHFDGUHGHODIRUPDWLRQGHVHQVHLJQDQWVGLYHUVHVJpQpUDOLVDWLRQVSHXYHQWrWUHFRQVLGpUpHVWULSOHPHQWGHVJUDLQV RXSOXVJpQpUDOHPHQW PXOWLSOLFDWLRQSDUXQHFRQVWDQWHr pWXGHGHO¶pFULWXUHELQDLUHGXQRPEUHGH JUDLQVVXUODneFDVH OHFKLIIUHVXLYLGH n± IRLVOHFKLIIUH HWGHFHOOHGX QRPEUHWRWDOGHJUDLQV VRL[DQWHTXDWUHFRQVpFXWLIV HWF

Mystique vs calcul approché /¶XQHGHVFDUDFWpULVWLTXHVOHVSOXVUHPDUTXDEOHVGHVSUpVHQWDWLRQVFRQWHPSRUDLQHVGHO¶KLVWRLUHGHVJUDLQVVXUO¶pFKLTXLHUHVWODP\VWLTXHTXLOXLHVWWUqV VRXYHQWDWWDFKpHTXLSUHQGODIRUPHGHO¶DI¿UPDWLRQVHORQODTXHOOHOHQRPEUH GH JUDLQV ©ௗGpSDVVHUDLW O¶LPDJLQDWLRQௗª HW TX¶LO VHUDLW LPSRVVLEOH GH VH OH UHSUpVHQWHU,OHVWUHPDUTXDEOHTX¶XQHWHOOHDWWLWXGHSUHVTXHFUDLQWLYHGHYDQW OHVJUDQGVQRPEUHVV¶REVHUYHGHQRVMRXUV\FRPSULVGDQVGHVWH[WHVPDWKpPDWLTXHV 8Q H[HPSOH G¶DQDO\VH GH FH SRLQW ¿JXUH GDQV 5LWWDXG    &¶HVWG¶DXWDQWSOXVpWRQQDQWTX¶LOQHVHPEOHSDVTXHOHSKpQRPqQHDLWpWp DXVVLSUpJQDQWDX[pSRTXHVSDVVpHV$LQVL)LERQDFFLTXLHQSOHLQHpSRTXH PpGLpYDOH HWHQXQORLQWDLQpFKRGHL’ArénaireG¶$UFKLPqGH JORUL¿HGDQV VRQLiber abaciODFRQTXrWHGHVJUDQGVQRPEUHVTXHSHUPHWOHV\VWqPHGH QXPpUDWLRQGpFLPDOH&¶HVWOHFDVpJDOHPHQWGDQVOHLalitâvistarapFULWHQWUH le IHU et le IIIeVLqFOHGDQVOHTXHOHVWSUpVHQWpXQH[SORLWGHMHXQHVVHGXIXWXU %RXGGKD FHOXLFL VH PRQWUH FDSDEOH GH FDOFXOHU PHQWDOHPHQW XQ QRPEUH LPPHQVHGp¿QLSDUFHTXHQRXVDSSHOOHULRQVXQHVXLWHJpRPpWULTXH 5DFKHW   3RXUGpSDVVHUFHWWHYLVLRQDUFKDwTXHGHVJUDQGVQRPEUHV©ௗLQDFFHVVLEOHV jO¶HQWHQGHPHQWௗªODGpPDUFKHG¶XQFDOFXODSSURFKpGXQRPEUHGHJUDLQV HVW VDQV GRXWH GH TXHOTXH XWLOLWp HQ SOXV GH FRQVWLWXHU XQ FDV LQWpUHVVDQW SRXUUpÀpFKLUVXUO¶LQWpUrWGXFDOFXODSSURFKp RQSHQVHLFLELHQV€UjXQ OLHQ LQWHUGLVFLSOLQDLUH DYHF OHV VFLHQFHV H[SpULPHQWDOHV  /¶DSSUR[LPDWLRQ GH SDU SHUPHWHQHIIHWXQHpYDOXDWLRQUHPDUTXDEOHPHQW SUpFLVH GX QRPEUH WRWDO GH JUDLQV (OOH SUpVHQWH HQ RXWUHO¶DYDQWDJH G¶rWUHG¶XQHWHOOHVLPSOLFLWpTXHWRXVOHVFDOFXOVTXLV¶HQGpGXLVHQWSHXYHQW V¶HIIHFWXHUHQWLqUHPHQWGHWrWHDSSURFKHUSDUFRQGXLWjpFULUH VRXV OD IRUPH î î ௘௘  î ௘௘  TXH O¶RQ DSSURFKH DORUV SDU î ௘௘  VRLW î XQH YDOHXU TXL Q¶HVW LQIpULHXUH TXH GH  DX UpVXOWDW H[DFW 8QH DXWUH SRVVLELOLWp SOXV TXDOLWDWLYH SRXU YLVXDOLVHU GH IDoRQ OXGLTXH OD YLWHVVH GH FURLVVDQFH GX QRPEUH GHV JUDLQV DX ¿O GHV FDVHV GH O¶pFKLTXLHU HW GpP\VWL¿HU DLQVL O¶H[SRQHQWLHOOH HVW SURSRVpH GDQV 5LWWDXG 

 L’exponentielle, entre jeu mathématique et vision du monde

Entre « féconde nature » et angoisses malthusiennes Du jeu à l’exégèse biblique 0rPHVLGDQVODOpJHQGHOHGRXEOHPHQWGHVJUDLQVDXQFDUDFWqUHDUELWUDLUH LOVXJJqUHOHOLHQHQWUHODFURLVVDQFHH[SRQHQWLHOOHHWOHVPRGqOHVG¶pYROXWLRQ GHSRSXODWLRQVYLYDQWHV YpJpWDOHVDQLPDOHVRXKXPDLQHV %LHQHQWHQGXLO FRQYLHQWLFLGHPHQWLRQQHUjQRXYHDX)LERQDFFLFHWWHIRLVSRXUVRQIDPHX[ SUREOqPHGHVODSLQVELHQTXHFHOXLFLQHVHPEOHSDVDYRLULQLWLpXQHWUDGLWLRQ GDQVOHGRPDLQH/¶LGpHGHPRGpOLVHUPDWKpPDWLTXHPHQWXQHSRSXODWLRQUpDSSDUDvWFKH]-pU{PH&DUGDQ DXXVIeVLqFOH PDLVGHIDoRQDQHFGRWLTXH&¶HVW HQIDLWDXGpEXWGX XVIIeVLqFOHTXHO¶LGpHVHGpSORLHSRXUGHERQDXVHLQGH GHX[FHUFOHVGHSHQVHXUVOHVVSpFLDOLVWHVGHUpFUpDWLRQVPDWKpPDWLTXHVG¶XQH SDUWOHVH[pJqWHVELEOLTXHVG¶DXWUHSDUW /HVSUHPLHUVWHOV-HDQ/HXUHFKRQ /HXUHFKRQ HW-HDQ$SSLHU+DQ]HOHW $SSLHU+DQ]HOHW RIIUHQWjOHXUVOHFWHXUVGLYHUVpPHUYHLOOHPHQWV QXPpULTXHVIRQGpVVXUODYLWHVVHVRXYHQWVXUSUHQDQWHGHVVXLWHVJpRPpWULTXHV TXLSHUPHWWHQWHQSHXGHWHPSVGHUHFRXYULUODWHUUHGHWHOOHRXWHOOHSODQWH RXGHFRQVWLWXHUG¶LPPHQVHVWURXSHDX[GHEpWDLO/HVVHFRQGVTXDQWjHX[ VH SRVHQW GHV TXHVWLRQV GH GpPRJUDSKLH ELEOLTXH /¶XQH G¶HOOHV TXL UHVWHUD HQYRJXHSHQGDQWSUqVGHGHX[VLqFOHVHWVHUDHQFRUHpYRTXpHOHSOXVVpULHXVHPHQWGXPRQGHSDU0RQWXFODjOD¿QGX XVIIIeVLqFOH 2]DQDP HVW FHOOHGHO¶DFFURLVVHPHQWGXQRPEUHG¶+pEUHX[ORUVGHOHXUVpMRXUHQeJ\SWH 6HORQOHUpFLWGHO¶([RGH-RVHSKV¶LQVWDOOHGDQVODYDOOpHGX1LODFFRPSDJQp GH SHUVRQQHV DYDQW TXH DQV SOXV WDUG VHV GHVFHQGDQWV Q¶HQ VRLHQW FKDVVpV2UVHORQFHTXHODLVVHHQWUHYRLUOHWH[WHFHX[FLVRQWDORUVSOXVG¶XQ PLOOLRQ&RPPHQWFRPSUHQGUHXQHWHOOHFURLVVDQFHHQjSHLQHSOXVGHGHX[ VLqFOHVௗ"2QSHXWELHQV€UHQYLVDJHUXQPLUDFOHPDLVXQHWHOOHIDFLOLWpQ¶HVW SDVUHJDUGpHG¶XQERQ°LOSDUOHVH[pJqWHV(QHIIHWOHXULGpHGRPLQDQWHHVW DORUVTXHV¶LOHVWELHQpYLGHPPHQWUHFRQQXj'LHXOHGURLWGHIDLUHXQPLUDFOH jFKDTXHIRLVTX¶LOOHMXJHRSSRUWXQO¶DEVHQFHGHWRXWHLQGLFDWLRQHQFHVHQV GDQVOHWH[WHELEOLTXHGRLWIRUFHUjFKHUFKHUXQHDXWUHH[SOLFDWLRQ(QG¶DXWUHV WHUPHVTXDQG'LHXIDLWXQPLUDFOHLOOHIDLWVDYRLU6¶LOQHGLWULHQF¶HVWTX¶LO \DTXHOTXHFKRVHG¶DXWUHjFRPSUHQGUH /D WUqV UDSLGH FURLVVDQFH TXH SHUPHW XQ PRGqOH GpPRJUDSKLTXH DSSX\p VXUXQHVXLWHJpRPpWULTXHRIIUHXQHVROXWLRQLQHVSpUpHDXSDUDGR[H$YHFXQ FRHI¿FLHQWPXOWLSOLFDWHXUELHQFKRLVLLOHVWSRVVLEOHGHPRGpOLVHU©ௗUDWLRQQHOOHPHQWௗªODFURLVVDQFHGHV+pEUHX[HWGRQFGHIDLUHGLVSDUDvWUHFHWWHDSSDUHQWHLQFRKpUHQFHGHVGRQQpHVELEOLTXHVTXLQ¶DYDLWSDVPDQTXpG¶rWUHUHOHYpH GDQVOHVPLOLHX[OLEHUWLQV



/HV SUpFXUVHXUV GH OD VFLHQFH GpPRJUDSKLTXH GDQV O¶$QJOHWHUUH GH OD VHFRQGH PRLWLp GX XVIIeVLqFOH SURSDJHQW HQVXLWH j OHXU WRXU OHV PRGqOHV H[SRQHQWLHOVGHSRSXODWLRQ/HVFRQVLGpUDWLRQVWKpRORJLTXHVGHPHXUHQWVRXYHQWSUpJQDQWHVSRXUGHX[UDLVRQVLPSRUWDQWHVTXLGRLYHQWIUHLQHUQRVVRXULUHV/DSUHPLqUHELHQV€UHVWTXHOHPLOLHXpUXGLWHVWDORUVSURIRQGpPHQW LPSUpJQpGHFXOWXUHFKUpWLHQQHOHV6DLQWHVeFULWXUHVpWDQWFRQVLGpUpHVFRPPH YUDLHV GDQV OD OHWWUH DXVVL ELHQ TXH GDQV O¶HVSULW &¶HVW DX SRLQW TX¶,VDDF 1HZWRQ OXLPrPH HVW O¶DXWHXU G¶XQH FKURQRORJLH ELEOLTXH ODTXHOOH FRQQXW XQHFHUWDLQHGLIIXVLRQHQVRQWHPSV /DVHFRQGHUDLVRQSOXVVSpFL¿TXHDX[ SUpFXUVHXUVGHODVFLHQFHGpPRJUDSKLTXHHVWTXHOHVVWDWLVWLTXHVDORUVGLVSRQLEOHVVRQWHQFRUHUDUHVHWpSDUVHVA contrarioOHVGRQQpHVQXPpULTXHVVXU OHVSRSXODWLRQVELEOLTXHVVRQWHOOHVjODIRLVQRPEUHXVHVHW©ௗSUpFLVHVௗª 1FH TXLIRXUQLWXQHEDVHTXDQWLWDWLYHPHQWULFKHPDLVDXVVLTXDOLWDWLYHPHQWLUUpSURFKDEOHSXLVTX¶LOYDGHVRLTXHO¶H[DFWLWXGHGXYHUEHGLYLQQHVDXUDLWrWUH PLVHHQGRXWH«

Et les regards se tournèrent vers l’avenir /D¿QGXXVIIeVLqFOHYRLWO¶DYqQHPHQWGHVSUHPLqUHVpEDXFKHVGHSURMHWVSROLWLTXHVIRQGpVVXUO¶LGpHGHFURLVVDQFHH[SRQHQWLHOOH/DPXOWLSOLFDWLRQGHVUHVVRXUFHVSURPLVHVSDUOHVPRGqOHVIDLWVHWRXUQHUOHXUVDXWHXUVYHUVO¶DYHQLUHW QRQSOXVVHXOHPHQWYHUVODUHFRQVWLWXWLRQG¶DVSHFWVGXSDVVp ELEOLTXH WHOTXH OHFDOFXOGXQRPEUHG¶KXPDLQVD\DQWVXFFRPEpDX'pOXJH :LOOLDP3HWW\OHSUHPLHUJUDQGSUpFXUVHXUGHODVFLHQFHGpPRJUDSKLTXH VHSURMHWWHGDQVO¶DYHQLUHQDQWLFLSDQWO¶pYROXWLRQGHVSRSXODWLRQVGH/RQGUHV HW GH O¶$QJOHWHUUH HQ VH IRQGDQW SURJUqV FRQVLGpUDEOH VXU G¶DXWKHQWLTXHV UHJLVWUHV GH QDLVVDQFH 2 (QFRUH SURIRQGpPHQW LPSUpJQp GH WKpRORJLH LO VH OLYUH DXVVL j GH VDYDQWV FDOFXOV HQFRUH HW WRXMRXUV IRQGpV VXU O¶K\SRWKqVH G¶XQHFURLVVDQFHH[SRQHQWLHOOHGHODSRSXODWLRQSRXUGpWHUPLQHUODGDWHR OD 7HUUH VHUD HQWLqUHPHQW UHPSOLH G¶KXPDLQV 6HORQ OXL TXL VHUD GLVVXDGp SDUXQDPLWKpRORJLHQGHSXEOLHUVHVLGpHVSRXUOHPRLQVKDUGLHV FHWWHGDWH IDWLGLTXH QH SHXW TXH FRUUHVSRQGUH j FHOOH GX -RXU GX -XJHPHQW GHUQLHU VL ELHQTX¶DFFURvWUHOHSOXVYLWHSRVVLEOHODSRSXODWLRQV¶pOqYHDXUDQJGHSURMHW 1. 3DUH[HPSOHOHLivre des Nombres TXDWULqPHOLYUHGHOD%LEOH IRXUQLWXQUHFHQVHPHQWWUqVGpWDLOOpGHVGRX]HWULEXVG¶,VUDsO 2. 6HVFDOFXOVSDUWLHOOHPHQWHUURQpVOHIRQWDERXWLUjO¶LQFRQJUXLWpG¶XQHFDSLWDOHFRQWHQDQW j WHUPH GDYDQWDJH G¶KDELWDQWV TXH OH SD\V WRXW HQWLHU FH TXL O¶DPqQH j FRPSUHQGUHOHFDUDFWqUHQpFHVVDLUHPHQWOLPLWpGDQVOHWHPSVGHODYDOLGLWpGHVRQPRGqOH H[SRQHQWLHO

 L’exponentielle, entre jeu mathématique et vision du monde

PHVVLDQLTXHSOXVYLWHO¶KXPDQLWpDXUDUHPSOLOD7HUUHSOXVYLWHUHYLHQGUDOH 0HVVLH« 5RKUEDVVHU 3OXVFRQFUqWHVVRQWFHUWDLQHVSURVSHFWLYHVGH9DXEDQUpGLJpHVYHUV GRQW GHX[ VRQW UHPDUTXDEOHV j SOXVLHXUV WLWUHV /D SUHPLqUH HVW FHOOH G¶XQ JUDQG SURJUDPPH GH SHXSOHPHQW GX &DQDGD IUDQoDLV 9DXEDQ    SRXUIDLUHIDFHjO¶HQQHPLDQJODLVTX¶LOIDXWDIIURQWHUGDQVOH1RXYHDX0RQGH 9DXEDQTXDQWL¿HVRQSURMHWMXVTX¶jFDOFXOHUFHTXHGHYUDLWrWUHODSRSXODWLRQ FDQDGLHQQH IUDQFRSKRQH jOD¿QGX XXeVLqFOH3RXUO¶DQHFGRWHLOSURSRVH PLOOLRQV G¶KDELWDQWV SRXU VRLW XQH YDOHXU UHPDUTXDEOHPHQW SURFKH GH FHOOH GX UHFHQVHPHQW HIIHFWXp HQ PLOOLRQV G¶KDELWDQWV  %LHQ V€U DX YX GX FDUDFWqUH IUXVWH GH VRQ PRGqOH LO QH IDXW SDV YRLU GDQV FHWWH SUR[LPLWpGDYDQWDJHTX¶XQHFRwQFLGHQFH /H VHFRQG SURMHW SROLWLTXH GH9DXEDQ VLJQL¿FDWLI SRXU QRWUH VXMHW ¿JXUH GDQVXQSHWLWWH[WHLQWLWXOpLa Cochonnerie RQSDUOHUDLWDXMRXUG¶KXLGHSRUFKHULH 'DQVFHOXLFL 9DXEDQ LOPRQWUHFRPPHQWXQHWUXLHXQLTXH SHXWSURGXLUHHQVHXOHPHQWTXHOTXHVDQQpHVXQHGHVFHQGDQFHFRQVLGpUDEOH TXL GRLW SHUPHWWUH GH IDLUH GH OD YLDQGH GH SRUF XQ ELHQ GH FRQVRPPDWLRQ GpVRUPDLVDFFHVVLEOHjWRXV2XWUHOHFDUDFWqUHFRQFUHWSURJUDPPDWLTXHGH OD GpPDUFKH TXL OH GLVWLQJXH GX UHJDUG SOXV GLVWDQFLp G¶XQ )LERQDFFL SDU H[HPSOH O¶RULJLQDOLWpGHLa CochonnerieWLHQWjFHTX¶HOOHQ¶DSDVUHFRXUVj XQHVLPSOHVXLWHJpRPpWULTXHPDLVjXQHVXLWHjUpFXUUHQFHOLQpDLUHG¶RUGUH TXL SHUPHW QRWDPPHQW GH WHQLU FRPSWH GX WHPSV OLPLWp R XQH WUXLH HVW IpFRQGH 3

La peur exponentielle /D ¿Q GX XVIIIeVLqFOH HVW FHOOH G¶XQ FRXS GH WRQQHUUH GDQV OH FLHO EOHX GH O¶DERQGDQFHH[SRQHQWLHOOHHQSDUDvWODSUHPLqUHpGLWLRQDQRQ\PHGH O¶Essai sur le principe de populationGH7KRPDV0DOWKXV&HWRXYUDJHIRQGDWHXU G¶XQ UHQRXYHOOHPHQW FRQVLGpUDEOH GDQV OH UHJDUG VXU O¶H[SRQHQWLHOOH V¶RXYUHVXUOHPRGqOHGpMjFODVVLTXHjO¶pSRTXHVHORQOHTXHOWRXWHSRSXODWLRQKXPDLQHODLVVpHOLEUHGHVHUHSURGXLUHFURvWVHORQXQHVXLWHJpRPpWULTXH 3. 2XWUH)LERQDFFL&DUGDQHW9DXEDQLO\DDXPRLQVXQDXWUHDXWHXUDYDQW(XOHUTXLD HXO¶LGpHG¶XWLOLVHUXQHVXLWHjUpFXUUHQFHOLQpDLUH QRQJpRPpWULTXH SRXUXQHPRGpOLVDWLRQGpPRJUDSKLTXH,OV¶DJLWG¶XQFHUWDLQ-DPHV5XG\HUGjSHXSUqVLQFRQQXTXL D UHSUpVHQWp O¶pYROXWLRQ G¶XQH SRSXODWLRQ ELEOLTXH j O¶DLGH G¶XQH VXLWH j UpFXUUHQFH OLQpDLUHG¶RUGUHGDQVGHX[OHWWUHVDGUHVVpHVjVRQDPL7KRPDV7DQQHUOHTXHOHQD LQVpUpOHFRQWHQXHQDQQH[HG¶XQRXYUDJHVXUO¶KLVWRLUHGHODFKUpWLHQWpDQWLTXH 7DQQHU   9RLUDXVVL 5RKUEDVVHU 



0DOWKXVDMRXWHjFHSRVWXODWTXHODSURGXFWLRQ TXLSRXUOXLVHFRQIRQGDYHF ODSURGXFWLRQGHO¶DJULFXOWXUH QHSHXWHQDXFXQFDVFURvWUHjODPrPHYLWHVVH ,ODFFHSWHFHUWHVO¶LGpHG¶XQSURJUqVSRVVLEOHGDQVOHVFDSDFLWpVSURGXFWLYHV PDLVOHOLPLWHVLQJXOLqUHPHQWjXQHVLPSOHVXLWHDULWKPpWLTXHELHQHQWHQGX YLWHGpSDVVpHSDUODFURLVVDQFHH[SRQHQWLHOOHGHODSRSXODWLRQ&HOOHFLWRXMRXUVWURSUDSLGHFRQGXLWGRQFUDSLGHPHQWjXQHSpULRGHGHIDPLQHTXLGpFLPH ODSRSXODWLRQHQFOHQFKDQWDORUVXQHQRXYHOOHSpULRGHGHFURLVVDQFHGpPRJUDSKLTXHMXVTX¶jODFULVHVXLYDQWH &RPPHRQO¶DYXSOXVKDXW0DOWKXVHVWORLQG¶rWUHOHSUHPLHUjSDUOHUGH FURLVVDQFHH[SRQHQWLHOOHSRXUXQHSRSXODWLRQKXPDLQH,OQ¶HVWPrPHSDVOH SUHPLHUjPHWWUHHQRSSRVLWLRQFHWWHFURLVVDQFHDYHFOHSRVWXODWGXFDUDFWqUH SOXVRXPRLQVVWDJQDQWGHODSURGXFWLRQDJULFROHSOXVLHXUVDQQpHVDXSDUDYDQWOHSHQVHXULWDOLHQ*LDPPDULD2UWHVDYDLWSURSRVpXQSRLQWGHYXHYRLVLQ &HTXLGLVWLQJXH0DOWKXVHVWVXUWRXWODYLROHQFHSDUWLFXOLqUHPHQWEUXWDOHGX UHPqGHTX¶LOSURSRVHSRXUVRUWLUGHFHVF\FOHVGHVXUSRSXODWLRQHWGHIDPLQHV FHVVHUWRXWHHVSqFHG¶DVVLVWDQFHDX[SOXVSDXYUHVHWDX[PRLQVpGXTXpVTXL QRQVHXOHPHQWQ¶RQWSDVOHXUSODFHDX©ௗJUDQGEDQTXHWGHODQDWXUHௗªPDLV UXVWUHVTX¶LOVVRQWRQWHQSOXVOHGpIDXWGHSUDWLTXHUVDQVPHVXUHODIRUQLFDWLRQ HWGRQFGHWURSVHUHSURGXLUH 'HVpFKRVSOXVRXPRLQVDWWpQXpVGHFHWWHLGpHVHUHWURXYHQWXQSHXSDUWRXW GpFOLQpV GH PDQLqUHV GLYHUVHV \ FRPSULV GDQV O¶HQVHLJQHPHQW 8Q PDQXHO DPpULFDLQ GX GpEXW GX XIXeVLqFOH &ROEXUQ    SURSRVH O¶H[HUFLFH TXLFRQVLVWHjpWXGLHUODIDLVDELOLWpG¶XQUDSDWULHPHQWPDVVLIHQ$IULTXHGHV DQFLHQVHVFODYHVQRLUVQRQVDQVVXJJpUHUORXUGHPHQWO¶XUJHQFHGHVHGpEDUUDVVHUDXSOXVYLWHGHFHVDIIUDQFKLVDYDQWTXHOHXUUHSURGXFWLRQH[SRQHQWLHOOH QHUHQGHODFKRVHLPSRVVLEOH«6LGHQRVMRXUVGHVSURSRVGHFHJHQUHQH VRQWpYLGHPPHQWSOXVSHQVDEOHVRQSHXWWRXWGHPrPHVLJQDOHUTX¶XQpQRQFp SRXUOHPRLQVpTXLYRTXHHVWWRXWUpFHPPHQWSDUXGDQVXQPDQXHOGHPDWKpPDWLTXHVGHWHUPLQDOH 0DUDYDO  'HVPLJUDQWVIX\DQWODJXHUUHDWWHLJQHQWXQHvOHHQ0pGLWHUUDQpH /DSUHPLqUHVHPDLQHLOHQDUULYH3XLVFKDTXHVHPDLQHOH QRPEUHGHQRXYHDX[DUULYDQWVDXJPHQWHGH

,OQHVDXUDLWrWUHTXHVWLRQGHVRXSoRQQHUGHODSDUWGHVDXWHXUVTXRLTXHFH VRLWG¶DXWUHTX¶XQHSURIRQGHPDODGUHVVHQLGHQpJOLJHUTXHOHFDUDFWqUHGRXWHX[GHO¶pQRQFpWLHQWSRXUEHDXFRXSDXIDLWTX¶LOSURSRVHGHVHOLYUHUjGHV FDOFXOVPDWKpPDWLTXHVGDQVXQFRQWH[WHTXLQHV¶\SUrWHSDV,OUHVWHTXHFHW H[HUFLFHQHV¶LQVFULWTXHWURSELHQGDQVFHVFKpPDGHX[IRLVFHQWHQDLUHGHSHXU

 L’exponentielle, entre jeu mathématique et vision du monde

GpPRJUDSKLTXHH[SRQHQWLHOOHVFKpPDLFLUHQIRUFpSDUOHFDUDFWqUHSURIRQGpPHQWDUELWUDLUHGHODPRGpOLVDWLRQGXSKpQRPqQHSDUXQHVXLWHJpRPpWULTXH 3UpFLVRQVTXHGHYDQWOHVSURWHVWDWLRQVVRXOHYpHVSDUFHWpQRQFpODSUpVLGHQWHGHODPDLVRQG¶pGLWLRQFRQFHUQpHDIDLWDPHQGHKRQRUDEOHGDQVO¶DFWXHOOHpGLWLRQGHFHPDQXHOO¶pQRQFpHQTXHVWLRQDpWpVXSSULPp

Dirhams : quand l’argent crée l’argent 3DUPLOHVJOLVVHPHQWVTXLVHVRQWSURGXLWVDX¿OGHVkJHVVXUODOpJHQGHGHV JUDLQVVXUO¶pFKLTXLHULO\DFHOXLTXLSRUWHVXUODQDWXUHGHFHTXLHVWGRXEOp 'DQVODWRXWHSUHPLqUHYHUVLRQGRQWQRXVGLVSRVRQV 2VWL FRPPHGDQV ELHQG¶DXWUHVGHVVLqFOHVVXLYDQWVLOQHV¶DJLWSDVGHJUDLQVGHEOpPDLVGH GLUKDPVRXG¶DXWUHVXQLWpVPRQpWDLUHV6RXYHQWPrPHORUVTXHO¶KLVWRLUHHVW GRQQpHDYHFGHVJUDLQVOHFDOFXOVHSURORQJHSDUXQHpYDOXDWLRQGXSUL[TXL FRUUHVSRQGjODTXDQWLWpWRWDOHGHEOp 2QSHXWSHQVHU PDLVFHODQHVHPEOHSDVDYRLUIDLWO¶REMHWG¶XQHLQYHVWLJDWLRQSUpFLVH TXHO¶LQGLIIpUHQFHLQLWLDOHHQWUHFHVGHX[FDWpJRULHVV¶H[SOLTXHSDU ODQDWXUHQRQ¿GXFLDLUHGHODPRQQDLHTXLDYDLWDORUVFRXUV$X[pSRTXHVR ODYDOHXUQRPLQDOHG¶XQHSLqFHHVWVWULFWHPHQWpTXLYDOHQWHjVDYDOHXULQWULQVqTXH FHOOHGHODTXDQWLWpGHPDWpULDXTXLODFRPSRVH XQHIRUPHG¶pTXLYDOHQFH H[LVWH HQWUH QXPpUDLUH HW ©ௗUHVVRXUFHV QDWXUHOOHVௗª /H GpYHORSSHPHQW jJUDQGHpFKHOOHGHVPRQQDLHV¿GXFLDLUHVDX XIXeVLqFOHHVWVDQVGRXWHSRXU TXHOTXHFKRVHGDQVODGLVSDULWLRQGHODYHUVLRQPRQpWDLUHGHODOpJHQGHGHV JUDLQVVXUO¶pFKLTXLHU8QDXWUHpOpPHQWG¶H[SOLFDWLRQWLHQWVDQVGRXWHDXGpVLU SOXVRXPRLQVFRQVFLHQWG¶DQFUHUODOpJHQGHGDQVXQPRQGH©ௗKRUVGXWHPSVௗª FHTXLFRQGXLWjpYLWHUO¶HPSORLG¶XQHPRQQDLHTXLSDUDvWUDLWXQSHXWURSOLpH jXQHFXOWXUHRXXQHpSRTXHSDUWLFXOLqUH 4 &HTXLHVWUHPDUTXDEOHF¶HVWTXHFHWWHFRKDELWDWLRQHQWUHJUDLQVHWGLUKDPV VLJQDOHGqVO¶RULJLQHOHVJHUPHVGHVGHX[FDGUHVOHVSOXVLPSRUWDQWVGDQVOHVTXHOVOHFRQFHSWGHFURLVVDQFHH[SRQHQWLHOOHV¶HVWGpYHORSSpGDQVOHVUHSUpVHQWDWLRQV FROOHFWLYHV GpYHORSSHPHQW VRXYHQW IRUW pORLJQp GHV FRQWH[WHV RUGLQDLUHPHQWFRQFHUQpVSDUOHVVFLHQFHVPDWKpPDWLTXHV/HSUHPLHUFDGUH QRXV O¶DYRQV YX HVW FHOXL GH OD FURLVVDQFH GHV SRSXODWLRQV TX¶LO V¶DJLVVH G¶KXPDLQV G¶DQLPDX[ RX GH SODQWHV /H VHFRQG HVW FHOXL GH OD FURLVVDQFH 4. A contrario OD FRQQRWDWLRQ ©RULHQWDOHª OH SOXV VRXYHQW GRQQpH j O¶KLVWRLUH URL GHV ,QGHV SDUIRLV GH &KLQH RX GH 3HUVH  H[SOLTXH SHXWrWUH O¶DSSDULWLRQ UHODWLYHPHQW UpFHQWHjFHTX¶LOVHPEOHGHVJUDLQVGHUL]jODSODFHGHVJUDLQVGHEOp



GpPRJUDSKLTXHH[SRQHQWLHOOHVFKpPDLFLUHQIRUFpSDUOHFDUDFWqUHSURIRQGpPHQWDUELWUDLUHGHODPRGpOLVDWLRQGXSKpQRPqQHSDUXQHVXLWHJpRPpWULTXH 3UpFLVRQVTXHGHYDQWOHVSURWHVWDWLRQVVRXOHYpHVSDUFHWpQRQFpODSUpVLGHQWHGHODPDLVRQG¶pGLWLRQFRQFHUQpHDIDLWDPHQGHKRQRUDEOHGDQVO¶DFWXHOOHpGLWLRQGHFHPDQXHOO¶pQRQFpHQTXHVWLRQDpWpVXSSULPp

Dirhams : quand l’argent crée l’argent 3DUPLOHVJOLVVHPHQWVTXLVHVRQWSURGXLWVDX¿OGHVkJHVVXUODOpJHQGHGHV JUDLQVVXUO¶pFKLTXLHULO\DFHOXLTXLSRUWHVXUODQDWXUHGHFHTXLHVWGRXEOp 'DQVODWRXWHSUHPLqUHYHUVLRQGRQWQRXVGLVSRVRQV 2VWL FRPPHGDQV ELHQG¶DXWUHVGHVVLqFOHVVXLYDQWVLOQHV¶DJLWSDVGHJUDLQVGHEOpPDLVGH GLUKDPVRXG¶DXWUHVXQLWpVPRQpWDLUHV6RXYHQWPrPHORUVTXHO¶KLVWRLUHHVW GRQQpHDYHFGHVJUDLQVOHFDOFXOVHSURORQJHSDUXQHpYDOXDWLRQGXSUL[TXL FRUUHVSRQGjODTXDQWLWpWRWDOHGHEOp 2QSHXWSHQVHU PDLVFHODQHVHPEOHSDVDYRLUIDLWO¶REMHWG¶XQHLQYHVWLJDWLRQSUpFLVH TXHO¶LQGLIIpUHQFHLQLWLDOHHQWUHFHVGHX[FDWpJRULHVV¶H[SOLTXHSDU ODQDWXUHQRQ¿GXFLDLUHGHODPRQQDLHTXLDYDLWDORUVFRXUV$X[pSRTXHVR ODYDOHXUQRPLQDOHG¶XQHSLqFHHVWVWULFWHPHQWpTXLYDOHQWHjVDYDOHXULQWULQVqTXH FHOOHGHODTXDQWLWpGHPDWpULDXTXLODFRPSRVH XQHIRUPHG¶pTXLYDOHQFH H[LVWH HQWUH QXPpUDLUH HW ©ௗUHVVRXUFHV QDWXUHOOHVௗª /H GpYHORSSHPHQW jJUDQGHpFKHOOHGHVPRQQDLHV¿GXFLDLUHVDX XIXeVLqFOHHVWVDQVGRXWHSRXU TXHOTXHFKRVHGDQVODGLVSDULWLRQGHODYHUVLRQPRQpWDLUHGHODOpJHQGHGHV JUDLQVVXUO¶pFKLTXLHU8QDXWUHpOpPHQWG¶H[SOLFDWLRQWLHQWVDQVGRXWHDXGpVLU SOXVRXPRLQVFRQVFLHQWG¶DQFUHUODOpJHQGHGDQVXQPRQGH©ௗKRUVGXWHPSVௗª FHTXLFRQGXLWjpYLWHUO¶HPSORLG¶XQHPRQQDLHTXLSDUDvWUDLWXQSHXWURSOLpH jXQHFXOWXUHRXXQHpSRTXHSDUWLFXOLqUH 4 &HTXLHVWUHPDUTXDEOHF¶HVWTXHFHWWHFRKDELWDWLRQHQWUHJUDLQVHWGLUKDPV VLJQDOHGqVO¶RULJLQHOHVJHUPHVGHVGHX[FDGUHVOHVSOXVLPSRUWDQWVGDQVOHVTXHOVOHFRQFHSWGHFURLVVDQFHH[SRQHQWLHOOHV¶HVWGpYHORSSpGDQVOHVUHSUpVHQWDWLRQV FROOHFWLYHV GpYHORSSHPHQW VRXYHQW IRUW pORLJQp GHV FRQWH[WHV RUGLQDLUHPHQWFRQFHUQpVSDUOHVVFLHQFHVPDWKpPDWLTXHV/HSUHPLHUFDGUH QRXV O¶DYRQV YX HVW FHOXL GH OD FURLVVDQFH GHV SRSXODWLRQV TX¶LO V¶DJLVVH G¶KXPDLQV G¶DQLPDX[ RX GH SODQWHV /H VHFRQG HVW FHOXL GH OD FURLVVDQFH 4. A contrario OD FRQQRWDWLRQ ©RULHQWDOHª OH SOXV VRXYHQW GRQQpH j O¶KLVWRLUH URL GHV ,QGHV SDUIRLV GH &KLQH RX GH 3HUVH  H[SOLTXH SHXWrWUH O¶DSSDULWLRQ UHODWLYHPHQW UpFHQWHjFHTX¶LOVHPEOHGHVJUDLQVGHUL]jODSODFHGHVJUDLQVGHEOp



PRQpWDLUHDXWUDYHUVGHVLQWpUrWVFRPSRVpV&HVHFRQGFDGUHGLVSRVHG¶XQH ©ௗOpJHQGHௗªTXLOXLHVWVSpFL¿TXHGXHj5LFKDUG3ULFH 3ULFH[LLL  8QSHQQ\SODFpORUVGHODQDLVVDQFHGHQRWUH6DXYHXUjSRXU FHQWG¶LQWpUrWVFRPSRVpVDXUDLWDYDQWQRWUHpSRTXHFU€MXVTX¶j DWWHLQGUHXQHVRPPHSOXVJUDQGHTXHFHOOHTXLVHUDLWFRQWHQXH GDQVGHX[FHQWVPLOOLRQVGHIRLVWRXWO¶RUGHODWHUUH

/DPDJLHGXWDX[G¶LQWpUrWSURPHWGRQFXQHSURVSpULWpIRUPLGDEOHVRXV UpVHUYHELHQV€UG¶rWUHSDWLHQW«3ULFHV¶HQWKRXVLDVPHSRXUOHVSHUVSHFWLYHV RIIHUWHVSDUFHWWHFUpDWLRQIDEXOHXVHGHULFKHVVHV /H FDUDFWqUH DQRUPDOHPHQW PLUDFXOHX[ GH O¶DSSDULWLRQ GH WRXW FHW RU Q¶pFKDSSH SDV j .DUO 0DU[ 6D FULWLTXH GHV ©ௗpOXFXEUDWLRQV IDQWDLVLVWHV GX GRFWHXU 3ULFHௗª TX¶LO UDSSURFKH GH FHOOHV GHV DOFKLPLVWHV HVW LPSLWR\DEOH (OOHGHYUDLWrWUHPpGLWpHjFKDTXHIRLVTXHO¶LPPHQVLWpGHVQRPEUHVHQMHX GDQVXQFRQWH[WHGHFURLVVDQFHH[SRQHQWLHOOHULVTXHGHFRQGXLUHjQpJOLJHUGH SRUWHUXQUHJDUGFULWLTXHVXUODYDOLGLWpGXPRGqOHXWLOLVp 0DU[  3ULFHIXWVLPSOHPHQWpEORXLSDUODJUDQGHXUGHVQRPEUHVDX[TXHOV FRQGXLVHQW OHV SURJUHVVLRQV JpRPpWULTXHV &RPPH 0DOWKXVGDQVVRQWKpRUqPHGHODSRSXODWLRQLOFRQVLGpUDVDQVWHQLU FRPSWHGHVFRQGLWLRQVGHODUHSURGXFWLRQHWGXWUDYDLOOHFDSLWDO FRPPHXQDXWRPDWHJURVVLVVDQWGHOXLPrPHHWLOSXWVH¿JXUHU DYRLU H[SULPp FH GpYHORSSHPHQW SDU OD IRUPXOHS = C i௘ n GDQV ODTXHOOH S UHSUpVHQWH OD VRPPH GX FDSLWDO HW GHV LQWpUrWV DFFXPXOpVCOHFDSLWDOSUrWpiOHWDX[GHO¶LQWpUrWHWnODGXUpH HQDQQpHVGXSUrW

/H WHPSV ORQJ FKRLVL GDQV OD IDEOH GH 3ULFH RXYUH SDU DLOOHXUV OD YRLH j ODTXHVWLRQGXUDSSRUWHQWUHO¶H[SRQHQWLHOOHHWODPRUW/DSUHPLqUHH[SORUDWLRQGHFHWWHLGpHQRXVYLHQWSHXWrWUHGH&KDUOHV-RVHSK0DWKRQGHOD&RXU DXWHXUG¶XQWH[WHKXPRULVWLTXHWUqVUpXVVLVXUOHWKqPHGHVSODFHPHQWVjORQJ WHUPH 0DWKRQ GH OD &RXU   ,O V¶DJLW GHV UpÀH[LRQV LPDJLQDLUHV G¶XQ KRPPHDUULYpDXVRLUGHVDYLHHWGpVLUHX[G¶KRQRUHUODPpPRLUHGHVRQSqUH TXLOXLDMDGLVHQVHLJQpO¶DULWKPpWLTXH(QFRPSRVDQWVRQWHVWDPHQWLOGpFLGH GHSODFHUXQHFHUWDLQHVRPPHjLQWpUrWVFRPSRVpVSHQGDQWSOXVLHXUVVLqFOHV,O SUpYRLWDLQVLG¶DWWHLQGUHDXERXWGHFLQTFHQWVDQVXQHVRPPHDVWURQRPLTXH TXLGRLWSHUPHWWUHGHUHPERXUVHUOHVGHWWHVGHOD)UDQFHHWGHO¶$QJOHWHUUHGH FUpHUGHVYLOOHVHWTXDQWLWpG¶pWDEOLVVHPHQWVGLYHUV«/HSOXVpWRQQDQWUHVWH

 L’exponentielle, entre jeu mathématique et vision du monde

TXHOHSDVWLFKHGH0DWKRQGHOD&RXUHVWHQVXLWHGHYHQXUpDOLWpJUkFHj%HQMDPLQ)UDQNOLQTXLO¶D\DQWOXHWEHDXFRXSDSSUpFLpDFKRLVLGHV¶HQLQVSLUHU SRXUPRGL¿HUVRQSURSUHWHVWDPHQW$YHFSRXUUpVXOWDWTXHOH)RQGV)UDQNOLQ DHIIHFWLYHPHQWSURVSpUpDSUqVODPRUWGXSqUHIRQGDWHXUGHVeWDWV8QLVFH TXLDSHUPLVODFUpDWLRQj%RVWRQHQGX%HQMDPLQ)UDQNOLQ,QVWLWXWHRI TechnologyXQpWDEOLVVHPHQWG¶HQVHLJQHPHQWWHFKQLTXHWRXMRXUVHQDFWLYLWp DXMRXUG¶KXL /DFURLVVDQFHH[SRQHQWLHOOHGXFDSLWDOSDUODJUkFHGHVLQWpUrWVFRPSRVpV DpJDOHPHQWpWpO¶REMHWGHFULWLTXHVGHSULQFLSH/RUVTXHFHOOHVFLV¶LQVFULYHQW GDQVOHGpEDWJpQpUDOVXUO¶XVXUHODYLWHVVHGHFURLVVDQFHQ¶HVWSDVOHSRLQWFOp FDUODTXHVWLRQSULQFLSDOHSRUWHDORUVVXUOHFDUDFWqUHVXSSRVpLPPRUDOG¶XQ HQULFKLVVHPHQWTXLQ¶HVWSDVOHUpVXOWDWG¶XQWUDYDLO0DLVLODUULYHDXVVLTXH O¶H[SRQHQWLHOOHVRLWYLVpHSRXUHOOHPrPH&¶HVWOHFDVFKH]-RVHSK3URXGKRQ TXLGpIHQGVRQIDPHX[©ௗODSURSULpWpF¶HVWOHYROௗªjO¶DLGHGHODPrPHLGpH GH EDVH TXH 3ULFH PDLV TXL GpERXFKH VXU XQH FRQFOXVLRQ WUqV GLIIpUHQWH 3URXGKRQKXLWLqPHSURSRVLWLRQ  6L OHV KRPPHV >«@ DFFRUGDLHQW j O¶XQ G¶HX[ OH GURLW H[FOXVLI GH SURSULpWp HW TXH FH SURSULpWDLUH XQLTXH SODokW VXU O¶KXPDQLWp j LQWpUrWV FRPSRVpV XQH VRPPH GHIU UHPERXUVDEOH j VHV GHVFHQGDQWV j OD eJpQpUDWLRQௗ DX ERXW GH DQV FHWWH VRPPH GHIU SODFpH j S V¶pOqYHUDLW j IU>«@ -HQHSRXVVHUDLSDVSOXVORLQFHVFDOFXOVTXHFKDFXQSHXWYDULHU j O¶LQ¿QL HW VXU OHVTXHOV LO VHUDLW SXpULO j PRL G¶LQVLVWHUௗ >«@ /HOpJLVODWHXUHQLQWURGXLVDQWGDQVODUpSXEOLTXHOHSULQFLSHGH SURSULpWpHQDWLOSHVpWRXWHVOHVFRQVpTXHQFHVௗ">«@SRXUTXRL FHWWH ODWLWXGH HIIUD\DQWH ODLVVpH DX SURSULpWDLUH GDQV O¶DFFURLVVHPHQW GH VD SURSULpWp >«@ௗ" MXVTX¶j TXHO SRLQW O¶RLVLI SHXWLO H[SORLWHUOHWUDYDLOOHXUௗ">«@TXDQGHVWFHTXHOHSURGXFWHXUSHXW GLUHDXSURSULpWDLUH-HQHWHGRLVSOXVULHQௗ"

7RXWFRPPHODPRGpOLVDWLRQH[SRQHQWLHOOHGHODGpPRJUDSKLHSUpVHQWHOHV F{WpVVRPEUHVTXHQRXVDYRQVYXVOHVUHSURFKHVDGUHVVpVDX[LQWpUrWVFRPSRVpVSHXYHQWHX[DXVVLGpJpQpUHUHQO¶RFFXUUHQFHVXUOHWHUUDLQGHO¶DQWLVpPLWLVPH(QHIIHWOH©ௗMXLIXVXULHUௗªHVWXQWKqPHDQFLHQVRXYHQWDVVRFLpj O¶LPPRUDOLWpVXSSRVpHGXSUrWjLQWpUrWV8QHDQDO\VHGpWDLOOpHGHODOLWWpUDWXUH DQWLVpPLWHGHFHVGHUQLHUVVLqFOHVUHVWHjIDLUHPDLVXQVXUYROUDSLGHVXJJqUH GpMjTXHFHOOHFLGRLWFRQWHQLUQRPEUHG¶DVVRFLDWLRQVGHFHJHQUH/HPDQXHO



PHQWLRQQpSOXVKDXWDYHFVRQH[HUFLFH©ௗGpPRJUDSKLTXHௗªVXUOHVPLJUDQWVD G¶DLOOHXUVVRQpTXLYDOHQWGDQVFHFDGUH,OV¶DJLWG¶XQPDQXHOGHSUHPLqUHTXL SURSRVDLWO¶H[HUFLFHTXHYRLFL /DQRsOOH  '¶DSUqV OD UXPHXU -XGDV ,VFDULRWH DYDLW SODFp OHV GHQLHUV JDJQpVSDUVDWUDKLVRQDX&UpGLW$JULFROHGXFRLQjDYHF LQWpUrWVFRPSRVpV 6DFKDQWTX¶XQGHQLHUYDXWJG¶RUGpWHUPLQHUODPDVVHG¶RU HQPLOOLRQVGHWRQQHV GRQWDXUDLHQWGLVSRVpVHVpYHQWXHOVKpULWLHUVDXHUMDQYLHU -XGDVDXUDLWWUDKLHQO¶DQ 

'HPrPHTXHO¶H[HUFLFHVXUOHVPLJUDQWVQHFRQWLHQWjSURSUHPHQWSDUOHU DXFXQ pOpPHQW [pQRSKREH OHV DXWHXUV SRXYDQW WRXW j IDLW DUJXHU TXH OHXU LQWHQWLRQ pWDLW j O¶LQYHUVH G¶DWWLUHU O¶DWWHQWLRQ VXU XQ GUDPH G¶LPSRUWDQFH FURLVVDQWH  LO HVW j O¶pYLGHQFH IDX[ G¶DI¿UPHU TXH FHWWH YDULDQWH GH O¶KLVWRLUHGXpennyGH3ULFHHVWDQWLVpPLWH/DMXGpLWpGH-XGDVQ¶\HVWSDVPrPH pYRTXpH HW LO HVW WRXW VDXI FODLU TXH FHOOHFL VRLW FRQQXH GHV pOqYHV VDQV SDUOHUGHODIDLEOHLPSRUWDQFHTX¶LOVVHUDLHQWVXVFHSWLEOHVGHOXLDFFRUGHUV¶LOV ODFRQQDLVVDLHQW  ,OUHVWHSRXUWDQWTXHFHWH[HUFLFHV¶LQVFULWHWGHPDQLqUHjO¶pYLGHQFHWRXW DXVVLLQYRORQWDLUHTXHGDQVOHFDVGHFHOXLVXUOHVPLJUDQWVGDQVXQHKLVWRLUH ORQJXHRO¶H[SRQHQWLHOOHFHWWHIRLVviaOHVLQWpUrWVFRPSRVpVDSRXUFHUWDLQV OHSDUIXPG¶XQHPLVHHQDFFXVDWLRQFHOOHGX©ௗMXLIXVXULHUௗª7HODpWpOHFDV SRXUFHWH[HUFLFHTXLIXWO¶REMHWG¶DFFXVDWLRQVG¶DQWLVpPLWLVPHVXI¿VDPPHQW LQVLVWDQWHVSRXUFRQGXLUHDXUHWUDLWGXPDQXHOGHODYHQWH8QEpJDLHPHQWGH O¶KLVWRLUHGRQWRQVHVHUDLWELHQSDVVp

Références bibliographiques $SSLHU+DQ]HOHW-  Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux3RQWj0RXVVRQ-HDQ$SSLHU+DQ]HOHW &ROEXUQ:  An introduction to algebra upon the inductive method of instruction%RVWRQ&XPPLQJV+LOOLDUGDQG&RPSDQ\ /DQRsOOH$/DQRsOOH)1DVVLHW)6pULV%HW7HVWDUG)  Mathématiques. Analyse probabilités 1re S3DULV'LGLHU /HXUHFKRQ-   Selectæ Propositiones in Tota Sparsim Mathematica Pulcherrimæ3RQWj0RXVVRQ6pEDVWLHQ&UDPRLV\

 L’exponentielle, entre jeu mathématique et vision du monde

PHQWLRQQpSOXVKDXWDYHFVRQH[HUFLFH©ௗGpPRJUDSKLTXHௗªVXUOHVPLJUDQWVD G¶DLOOHXUVVRQpTXLYDOHQWGDQVFHFDGUH,OV¶DJLWG¶XQPDQXHOGHSUHPLqUHTXL SURSRVDLWO¶H[HUFLFHTXHYRLFL /DQRsOOH  '¶DSUqV OD UXPHXU -XGDV ,VFDULRWH DYDLW SODFp OHV GHQLHUV JDJQpVSDUVDWUDKLVRQDX&UpGLW$JULFROHGXFRLQjDYHF LQWpUrWVFRPSRVpV 6DFKDQWTX¶XQGHQLHUYDXWJG¶RUGpWHUPLQHUODPDVVHG¶RU HQPLOOLRQVGHWRQQHV GRQWDXUDLHQWGLVSRVpVHVpYHQWXHOVKpULWLHUVDXHUMDQYLHU -XGDVDXUDLWWUDKLHQO¶DQ 

'HPrPHTXHO¶H[HUFLFHVXUOHVPLJUDQWVQHFRQWLHQWjSURSUHPHQWSDUOHU DXFXQ pOpPHQW [pQRSKREH OHV DXWHXUV SRXYDQW WRXW j IDLW DUJXHU TXH OHXU LQWHQWLRQ pWDLW j O¶LQYHUVH G¶DWWLUHU O¶DWWHQWLRQ VXU XQ GUDPH G¶LPSRUWDQFH FURLVVDQWH  LO HVW j O¶pYLGHQFH IDX[ G¶DI¿UPHU TXH FHWWH YDULDQWH GH O¶KLVWRLUHGXpennyGH3ULFHHVWDQWLVpPLWH/DMXGpLWpGH-XGDVQ¶\HVWSDVPrPH pYRTXpH HW LO HVW WRXW VDXI FODLU TXH FHOOHFL VRLW FRQQXH GHV pOqYHV VDQV SDUOHUGHODIDLEOHLPSRUWDQFHTX¶LOVVHUDLHQWVXVFHSWLEOHVGHOXLDFFRUGHUV¶LOV ODFRQQDLVVDLHQW  ,OUHVWHSRXUWDQWTXHFHWH[HUFLFHV¶LQVFULWHWGHPDQLqUHjO¶pYLGHQFHWRXW DXVVLLQYRORQWDLUHTXHGDQVOHFDVGHFHOXLVXUOHVPLJUDQWVGDQVXQHKLVWRLUH ORQJXHRO¶H[SRQHQWLHOOHFHWWHIRLVviaOHVLQWpUrWVFRPSRVpVDSRXUFHUWDLQV OHSDUIXPG¶XQHPLVHHQDFFXVDWLRQFHOOHGX©ௗMXLIXVXULHUௗª7HODpWpOHFDV SRXUFHWH[HUFLFHTXLIXWO¶REMHWG¶DFFXVDWLRQVG¶DQWLVpPLWLVPHVXI¿VDPPHQW LQVLVWDQWHVSRXUFRQGXLUHDXUHWUDLWGXPDQXHOGHODYHQWH8QEpJDLHPHQWGH O¶KLVWRLUHGRQWRQVHVHUDLWELHQSDVVp

Références bibliographiques $SSLHU+DQ]HOHW-  Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux3RQWj0RXVVRQ-HDQ$SSLHU+DQ]HOHW &ROEXUQ:  An introduction to algebra upon the inductive method of instruction%RVWRQ&XPPLQJV+LOOLDUGDQG&RPSDQ\ /DQRsOOH$/DQRsOOH)1DVVLHW)6pULV%HW7HVWDUG)  Mathématiques. Analyse probabilités 1re S3DULV'LGLHU /HXUHFKRQ-   Selectæ Propositiones in Tota Sparsim Mathematica Pulcherrimæ3RQWj0RXVVRQ6pEDVWLHQ&UDPRLV\

 L’exponentielle, entre jeu mathématique et vision du monde

0DUDYDO- GLU   Hyperbole Term(66SpFL¿TXH6SpFLDOLWp/3DULV 1DWKDQ 0DU[ .   Le Capital. Critique de l’économie politique. Livre troisième. Le procès d’ensemble de la production capitaliste. Tome I. Chapitre XXIV WUDGXFWLRQIUDQoDLVHGH-%RUFKDUGWHW+9DQGHUU\GWGHO¶,QVWLWXW GHV VFLHQFHV VRFLDOHV GH %UX[HOOHV  3DULV9 *LDUG HW ( %ULqUH °XYUH RULJLQDOH SXEOLpH HQ   'LVSRQLEOH HQ OLJQH VXU OH VLWH GH 0DU[LVWV ,QWHUQHW$UFKLYHHQFROODERUDWLRQDYHFODELEOLRWKqTXHGHVFLHQFHVVRFLDOHV GH O¶8QLYHUVLWp GX 4XHEHF KWWSVZZZPDU[LVWVRUJIUDQFDLVPDU[ ZRUNV&DSLWDO,,,NPFDSBKWP! FRQVXOWpOHHURFWREUH  0DWKRQ GH OD &RXU&-   Testament de M. Fortuné Ricard, maître d’arithmétique à D** : lu & publié à l’audience du bailliage de cette ville, le 19 août 1784)UDQFHVQ 2VWL/  7KH*UDLQRQWKH&KHVVERDUG7UDYHOVDQG0HDQLQJV'DQV )%DXGHQ$&KUDwELHW$*KHUVHWWL GLU Le Répertoire narratif arabe médiéval, transmission et ouverture : actes de Colloque international /LqJHVHSWHPEUH  S *HQqYH'UR] 2]DQDP-   Récréations mathématiques et physiques… VRXV OD GLUHFWLRQ GH -e0RQWXFOD LOOXVWUDWLRQV 3&'HODJDUGHWWH LPSULPHXU &$-RPEHUW 3DULV-RPEHUW 3ULFH5  Observations on reversionary payments/RQGUHV&DGHOO 3URXGKRQ3-  4X¶HVWFHTXHODSURSULpWpࣟ"RXUHFKHUFKHVVXUOHSULQcipe du droit et du gouvernement : premier mémoire3DULV3UpY{W 5DFKHW*  Lalitâvistara : vie et doctrine du Bouddha tibétain3DULV 6DQG 5LWWDXG%  /HVJUDLQVVXUO¶pFKLTXLHUHQWUHLQWXLWLRQFDOFXOHWP\VWLTXH 'DQVShort proceeding du colloque hommage à Michèle Artigue : La didactique des mathématiques: approches et enjeux (31 mai, 1erHWMXLQ  3DULV8QLYHUVLWp3DULV'LGHURW3DULV'LVSRQLEOHHQOLJQHVXU «@

-HDQ ,WDUG GDQV VD QRWLFH SRXU OH &RPSOHWH GLFWLRQDU\ RI VFLHQWL¿F ELRgraphy ,WDUG IDLWSUHXYHGHSOXVGHSUXGHQFHV¶HQWHQDQWjFHTXLHVW FRUURERUp SDU OHV pFULWV PrPHV G¶+HQULRQ ,O LQWLWXOH G¶DLOOHXUV FHWWH QRWLFH ©ௗ+HQULRQ'HQLVRX'LGLHUௗªWRXWHQVRXOLJQDQWOHSHXG¶RULJLQDOLWpGHVpFULWV GH O¶DXWHXU TXL WUDGXLW VRXYHQW PRW j PRW GHV SDVVDJHV HQWLHUV GHV °XYUHV GH &ODYLXV RX G¶DXWUHV PDWKpPDWLFLHQV &HSHQGDQW LO UHFRQQDvW O¶LQWpUrW GH FHUWDLQHVTXHVWLRQVJpRPpWULTXHVWUDLWpHVSDU+HQULRQGDQVVHVFRPPHQWDLUHV DLQVL TXH O¶pWHQGXH GHV VXMHWV TX¶LO D FRQWULEXp j IDLUH FRQQDvWUH DX SXEOLF SDULVLHQ(Q¿Q,WDUGUpWDEOLWODGDWHGHGpFqVG¶+HQULRQjDXSOXVWDUG DYDQoDQWVLPSOHPHQWTXHO¶DQQpHVHPEOHIDQWDLVLVWHGDQVODPHVXUHR OHVElements d’EuclideSDUXVHQVRQWYHQGXVSDU©ௗODYHXIYH+HQULRQௗª jVRQGRPLFLOH

Les nouvelles recherches biographiques +HQULRQpWDLWXQDXWHXUSUROL[H,ODSXEOLpSOXVG¶XQHYLQJWDLQHG¶RXYUDJHV VXUGLIIpUHQWVVXMHWVDOODQWGHO¶DULWKPpWLTXHjODIRUWL¿FDWLRQHQSDVVDQWSDUOD FRVPRJUDSKLHO¶DOJqEUHHWO¶XVDJHGHGLYHUVLQVWUXPHQWVGHPDWKpPDWLTXHV 0rPHVLFRPPHQRXVO¶DYRQVGpMjUDSSHOpLOQ¶pWDLWSDVXQJUDQGVDYDQWOD IRUWH SUpVHQFH GH VHV RXYUDJHV GDQV OHV ELEOLRWKqTXHV SXEOLTXHV LQGLTXH OD SRSXODULWpGHVHVpFULWV,OUHVWHUHFRQQXGHQRVMRXUVFRPPHOHSUHPLHUDXWHXU IUDQoDLVjDYRLUWUDLWpGHVORJDULWKPHVPDLVQRXVDMRXWHURQVTX¶LODLQWURGXLW HQ)UDQFHDXGpEXWGXXVIIeVLqFOHG¶DXWUHVWKpPDWLTXHVDORUVGpYHORSSpHVDX[ 3D\V%DVGDQVOHVPLOLHX[GHVLQJpQLHXUVPLOLWDLUHVPDLVSHXFRQQXHVj3DULV HQSDUWLFXOLHUODWULJRQRPpWULHHWO¶XVDJHGXFRPSDVGHSURSRUWLRQ Y Ce que ses ouvrages révèlent de lui &HTXLIUDSSHDXSUHPLHUDERUGHQFRQVXOWDQWOHVRXYUDJHVG¶+HQULRQF¶HVW O¶DEVHQFHIUpTXHQWHG¶XQQRPGHOLEUDLUHVXUOHXUVSDJHVGHWLWUH(QHIIHWSRXU ODPDMRULWpG¶HQWUHHX[QRXVWURXYRQVODPHQWLRQ©ௗDX[GpSHQVGHO¶$XWKHXUௗª RX ©ௗDX[ IUDL] GX VLHXU +HQULRQௗª 6RQ SUHPLHU WUDLWp Memoires mathematiques recueillis et dressez en faveur de la noblesse françoise +HQULRQ 

 Didier Henrion, compilateur de récréations mathématiques des années 1620

HVWXQUHFXHLOYROXPLQHX[GHVWLQpDX[MHXQHVQREOHVTXLVHSUpSDUHQWDXPpWLHU GHVDUPHV2QV¶DWWHQGj\OLUHO¶DGUHVVHGXOLEUDLUHFKH]OHTXHOOHWURXYHUPDLV LOQH¿JXUHTXHODORFDOLVDWLRQ©ௗ(QO¶,VOHGX3DODLVDO¶LPDJH60LFKHOௗªPDLV DXFXQOLEUDLUHQHWLHQWERXWLTXHjFHWHQGURLW1RWRQVTXHGDQVFHFDVLODXUDLW pWpIDLWPHQWLRQG¶XQHenseigneHWQRQG¶XQHimageTXLVHUYDLWjLGHQWL¿HUOHV PDLVRQVSDULVLHQQHVDYDQWTXHOHVQXPpURVVRLHQWHQXVDJH1RXVDSSUHQRQV HQIDLWSDUOHIURQWLVSLFHGXVHFRQGYROXPHGHVMemoiresTXHFHWWHDGUHVVHHVW FHOOHGXGRPLFLOHGHO¶DXWHXUO¶vOHGX3DODLVpWDQWJURVVRPRGRO¶DFWXHOOHSODFH 'DXSKLQHHWOHVTXDLVDIIpUHQWV (QVHFRQGOLHXLOHVWQRWDEOHTXHO¶DXWHXUVHTXDOL¿HGH©ௗ0DWKHPDWLFLHQௗª DXIURQWLVSLFHGHVHVMemoiresGHHWGHVHVRXYUDJHVVXLYDQWVSXLVGH ©ௗ3URIHVVHXU pV 0DWKHPDWLTXHVௗª j SDUWLU GH  &H TXDOL¿FDWLI DSSDUDvW GHPDQLqUHH[SOLFLWHRXVRXVO¶DFURQ\PH'+3(0 D. Henrion Professeur és mathematiques TX¶+HQULRQXWLOLVHHQSDUWLFXOLHUORUVTX¶LOpGLWHHWFRPPHQWHXQRXYUDJHFRQWHPSRUDLQGpMjSXEOLpHQIUDQoDLV&HWLWUHUHYHQGLTXp PRQWUHO¶DFWLYLWpSULQFLSDOHGHQRWUHDXWHXUFRPPHO¶DPLVHQpYLGHQFH$XUpOLHQ 5XHOOHW GDQV VRQ pWXGH GH OD VWUDWpJLH GpGLFDWRLUH G¶+HQULRQ 5XHOOHW   /¶H[DPHQGHVSUpIDFHVGHVRXYUDJHVFRQ¿UPHOHVSRLQWVDYDQFpVSDU,WDUG GDQVOH'LFWLRQDU\RI6FLHQWL¿F%LRJUDSK\+HQULRQSUpWHQGDYRLUH[HUFpOD FKDUJHG¶LQJpQLHXUDXSUqVGHVeWDWVJpQpUDX[GHV3URYLQFHV8QLHVXQHSUHPLqUHIRLVYHUVHWGHQRXYHDXHQ,ODI¿UPHpJDOHPHQWDYRLUFRPPHQFp j HQVHLJQHU j 3DULV j SDUWLU GH  FDU LO HQ DSSHOOH SOXVLHXUV IRLV DXWpPRLJQDJHGHVHVpOqYHVGHFHWWHpSRTXHGDQVGHVTXHUHOOHVGHSULRULWp &HV TXHUHOOHV VRQW G¶DLOOHXUV O¶XQH GHV FDUDFWpULVWLTXHV GH QRWUH DXWHXU TXL GpIHQGMDORXVHPHQWVDSODFHG¶LQLWLDWHXUGDQVOHVGRPDLQHVQHXIVFRPPHOD WULJRQRPpWULH HQ DFFXVDQW OHV LPSULPHXUV URXHQQDLV GH SODJLDW PDLV pJDOHPHQWODTXDOLWpGHVHVWUDGXFWLRQVGHVElementsG¶(XFOLGHIDFHj/H0DUGHOp TX¶LOWUDLWHFRPPHXQVLPSOHFRUUHFWHXUG¶LPSULPHULH1RXVYHUURQVSOXVORLQ XQDXWUHH[HPSOHGXYHQLQTX¶LOSHXWGLVWLOOHUIDFHjXQFRQWUDGLFWHXUFRPPH &ODXGH0\GRUJHjSURSRVGHVHVFRPPHQWDLUHVGHVRecreationsGH/HXUHFKRQ Y Les documents d’archive /H VLWH GHV$UFKLYHV QDWLRQDOHV FRQVHUYH OHV PLQXWHV GHV pWXGHV QRWDULDOHV SDULVLHQQHVGHSXLVOHXUFUpDWLRQ,OHVWGRQFSRVVLEOHG¶\WURXYHUWRXWHVVRUWHV G¶DFWHV SDVVpV GHYDQW QRWDLUHV TX¶LO V¶DJLVVH GH FRQVWLWXWLRQV GH UHQWHV GH WHVWDPHQWV RX GH FRQWUDWV GH PDULDJH HQ EUHI WRXW FH TXL FRQFHUQH OD YLH GHV SHUVRQQHV HW OHV WUDQVDFWLRQV HQWUH HOOHV ¬ OD VXLWH G¶$XUpOLHQ 5XHOOHW QRXV DYRQV HQWDPp XQH UHFKHUFKH PpWKRGLTXH FRQFHUQDQW +HQULRQ VDFKDQW



Fig. 1 – Bail du 28 février 1611 (AN/MC/ET/VI/66).

TX¶LO Q¶\ D SDV HQFRUH GH GpSRXLOOHPHQW FRPSOHW GX IRQGVGHVQRWDLUHVSDULVLHQVHWTX¶XQLPPHQVHWUDYDLO UHVWHjIDLUH1RWUHH[DPHQGHVVRXUFHVHQHVWGRQFVHXOHPHQW j VHV GpEXWV HW Q¶RIIUH SRXU O¶LQVWDQW TXH GHV LQIRUPDWLRQVWUqVSDUWLHOOHV 1RWUH SUHPLHU UpVXOWDW SHXW VHPEOHU DQHFGRWLTXH FDU LO QH FRQFHUQH TXH O¶LGHQWLWp PrPH GH O¶DXWHXU 0DLV SXLVTXH OHV UHFKHUFKHV DFWXHOOHV VH IRQW PDMRULWDLUHPHQWSDUPRWVFOpVLOpWDLWQpFHVVDLUHGHWUDQFKHU HQWUH FHV GHX[ SRVVLELOLWpV 'HQLVௗ" 'LGLHUௗ"7RXV OHV GRFXPHQWVQRWDULpVOHFRQ¿UPHQWQRWUHPDWKpPDWLFLHQ pWDLW SUpQRPPp 'LGLHU HW QRQ 'HQLV FRPPH FHOD HVW FODLUHPHQWOLVLEOHVXUOD¿JXUH ,O V¶DJLW G¶XQ FRQWUDW SDVVp GHYDQW OH QRWDLUH -DFTXHVII3DUTXHOHIpYULHUSDUOHTXHO'LGLHU +HQULRQ©ௗPDWKHPDWLFLHQGHPH>XUDQW@UXH SDURLVVH 6DLQW *HUPDLQ GH O¶$X[HUURLVௗª VRXVORXH SRXU GHX[ FHQWV OLYUHV SDU DQ j XQ PDUFKDQG GH YLQ OD FDYH GX ORJHPHQWTX¶LORFFXSHXQH©ௗPDLVRQVFL]HD3DULVSODFH GDXSKLQHRXSHQGSR>X@UHQVHLJQHOLPDJH6W0LFKHOௗª /DPDMRULWpFLYLOHpWDQWjFHWWHpSRTXH¿[pHjDQV +HQULRQHVWGRQFQpDYDQW 3DUDLOOHXUVVLO¶RQFKHUFKHjFRPSUHQGUHFRPPHQW +HQULRQ D SX IDLUH LPSULPHU WDQW GH OLYUHV j FRPSWH G¶DXWHXU LO HVW LPSRUWDQW GH FRQQDvWUH O¶pWDW HW O¶RULJLQHGHVDIRUWXQH'LYHUVHVPLQXWHVGXQRWDLUH-HDQGH 0RQKpQDXOWGRQQHQWGHSUpFLHX[UHQVHLJQHPHQWVjFH VXMHWFDULO\HVWTXHVWLRQGHODVXFFHVVLRQQRQSDVGH 'LGLHU+HQULRQPDLVGH-HDQ+HQULRQVRQRQFOHVXFFHVVLRQ ¿QDOHPHQW UpJOpH HQ  SOXV GH WUHQWH DQV DSUqVVDPRUW

 Didier Henrion, compilateur de récréations mathématiques des années 1620

-HDQ+HQULRQQDWLIGH*UDQGGDQVOHV9RVJHVDYDLWRFFXSpGHKDXWHVIRQFWLRQVGDQVO¶DGPLQLVWUDWLRQSDULVLHQQHLOpWDLWSURFXUHXUDX&KkWHOHWHWSUpY{W GHSOXVLHXUVFRPPXQHVGHODUpJLRQSDULVLHQQH 0RQWUHXLO9LQFHQQHV/D9LOOHWWH %HOOHYLOOH DXWUHIRLV QRQ UDWWDFKpHV j 3DULV  j O¶pYLGHQFH LO pWDLW WUqV ULFKH/¶H[DPHQGHO¶DFWHGHFO{WXUHGHVXFFHVVLRQGXGpFHPEUHIDLW DSSDUDvWUHTXH'LGLHU+HQULRQpWDLWOpJDWDLUHXQLYHUVHOGHODPRLWLpGHVDIRUWXQHFHTXLH[SOLTXHSUREDEOHPHQWVDYLVLEOHDLVDQFH¿QDQFLqUH '¶DXWUHV GRFXPHQWV FRQFHUQDQW -HKDQQH /H 9LOODLQ OD YHXYH GH 'LGLHU +HQULRQFLWHQWVHVHQIDQWV&DWKHULQHEDSWLVpHHQDXWHPSOHGH&KDUHQWRQ FHTXLLQGLTXHTXHVHVSDUHQWVpWDLHQWSURWHVWDQWV 0DULHQpHHQ 0DUWKHHQHW6X]DQQHHQ1RWUHPDWKpPDWLFLHQQ¶DYDLWGRQFTXH GHV¿OOHVFHTXLUHQGVDSRVWpULWpIDPLOLDOHSOXVGLI¿FLOHjWUDFHU

La confusion des identités : Henrion, Cyriaque, Hérigone… 2XWUH FHOOH G¶XQ SUpQRP IDQWDLVLVWH XQH DXWUH DPELJXwWp VXEVLVWH j SURSRV GHO¶DXWHXUTXHQRXVpWXGLRQV,OV¶DJLWGHVHVOLHQVDYHFGHX[DXWUHVPDWKpPDWLFLHQVGHODSUHPLqUHPRLWLpGX XVIIeVLqFOH3LHUUH+pULJRQHHW&OpPHQW &\ULDTXHGH0DQJLQ+pULJRQHHVWELHQFRQQXGHQRVMRXUVFRPPHDXWHXUGX Cours mathematique  pFULWHQODWLQHWHQIUDQoDLVjO¶DLGHGHQRWDWLRQV SURFKHVGHO¶pFULWXUHORJLTXHPRGHUQH'H0DQJLQELHQPRLQVFRQQXHQWDQW TXHPDWKpPDWLFLHQDQpDQPRLQVSXEOLpVRXVVRQQRPXQHUpVROXWLRQGHSUREOqPHVJpRPpWULTXHVDGUHVVpHj9LqWHHW*KHWDOGL &\ULDTXHGH0DQJLQ  /DFRQIXVLRQHQWUHOHVWURLVSHUVRQQDJHVVXEVLVWHjO¶KHXUHDFWXHOOHSXLVTXH OHV FDWDORJXHV GH JUDQGV pWDEOLVVHPHQWV FRPPH OD Bayerische StaatsbiEOLRWKHNRXOD%LEOLRWKqTXHVDLQWH*HQHYLqYHj3DULVUpIpUHQFHQWOHV°XYUHV G¶+HQULRQHWG¶+pULJRQHVRXVOHQRPGH&\ULDTXHGH0DQJLQ&HWWHFRQIXVLRQ WURXYHSUREDEOHPHQWVRQRULJLQHGqVOHPLOLHXGXXVIIeVLqFOHGDQVXQHDQWKRORJLHG¶pFULYDLQVERXUJXLJQRQVGRQWO¶DXWHXUDI¿UPHDYRLUOXVRXVODSOXPH GH &ODXGH +DUG\ O¶LGHQWL¿FDWLRQ HQWUH +pULJRQH HW GH 0DQJLQ ,O D HQVXLWH VXI¿jTXHOTXHVXQVGHVRXOLJQHUOHVIRUWHVUHVVHPEODQFHVHQWUHSOXVLHXUVSDVVDJHVGHV°XYUHVG¶+HQULRQHWOHCursusG¶+pULJRQHSRXUFRQIRQGUHOHVWURLV DXWHXUVYRLUHOHVDFFXVHUGHSODJLDWPXWXHO 1

1. /H PrPH SKpQRPqQH HVW WRXMRXUV j O¶°XYUH GDQV OD QRWLFH ©&OpPHQW &\ULDTXH GH 0DQJLQªGH:LNLSHGLDGRQWO¶DXWHXUSUpWHQGTXHOHOLYUHGHGH0DQJLQDpWpUHSXEOLp SDU+HQULRQHQ&HWWHHUUHXUHVWVDQVGRXWHGXHjXQHOHFWXUHHUURQpHGHO¶RXYUDJH G¶+HQUL-HDQ0DUWLQTXLHVWpYRTXpjFHWHQGURLW



-HDQ+HQULRQQDWLIGH*UDQGGDQVOHV9RVJHVDYDLWRFFXSpGHKDXWHVIRQFWLRQVGDQVO¶DGPLQLVWUDWLRQSDULVLHQQHLOpWDLWSURFXUHXUDX&KkWHOHWHWSUpY{W GHSOXVLHXUVFRPPXQHVGHODUpJLRQSDULVLHQQH 0RQWUHXLO9LQFHQQHV/D9LOOHWWH %HOOHYLOOH DXWUHIRLV QRQ UDWWDFKpHV j 3DULV  j O¶pYLGHQFH LO pWDLW WUqV ULFKH/¶H[DPHQGHO¶DFWHGHFO{WXUHGHVXFFHVVLRQGXGpFHPEUHIDLW DSSDUDvWUHTXH'LGLHU+HQULRQpWDLWOpJDWDLUHXQLYHUVHOGHODPRLWLpGHVDIRUWXQHFHTXLH[SOLTXHSUREDEOHPHQWVDYLVLEOHDLVDQFH¿QDQFLqUH '¶DXWUHV GRFXPHQWV FRQFHUQDQW -HKDQQH /H 9LOODLQ OD YHXYH GH 'LGLHU +HQULRQFLWHQWVHVHQIDQWV&DWKHULQHEDSWLVpHHQDXWHPSOHGH&KDUHQWRQ FHTXLLQGLTXHTXHVHVSDUHQWVpWDLHQWSURWHVWDQWV 0DULHQpHHQ 0DUWKHHQHW6X]DQQHHQ1RWUHPDWKpPDWLFLHQQ¶DYDLWGRQFTXH GHV¿OOHVFHTXLUHQGVDSRVWpULWpIDPLOLDOHSOXVGLI¿FLOHjWUDFHU

La confusion des identités : Henrion, Cyriaque, Hérigone… 2XWUH FHOOH G¶XQ SUpQRP IDQWDLVLVWH XQH DXWUH DPELJXwWp VXEVLVWH j SURSRV GHO¶DXWHXUTXHQRXVpWXGLRQV,OV¶DJLWGHVHVOLHQVDYHFGHX[DXWUHVPDWKpPDWLFLHQVGHODSUHPLqUHPRLWLpGX XVIIeVLqFOH3LHUUH+pULJRQHHW&OpPHQW &\ULDTXHGH0DQJLQ+pULJRQHHVWELHQFRQQXGHQRVMRXUVFRPPHDXWHXUGX Cours mathematique  pFULWHQODWLQHWHQIUDQoDLVjO¶DLGHGHQRWDWLRQV SURFKHVGHO¶pFULWXUHORJLTXHPRGHUQH'H0DQJLQELHQPRLQVFRQQXHQWDQW TXHPDWKpPDWLFLHQDQpDQPRLQVSXEOLpVRXVVRQQRPXQHUpVROXWLRQGHSUREOqPHVJpRPpWULTXHVDGUHVVpHj9LqWHHW*KHWDOGL &\ULDTXHGH0DQJLQ  /DFRQIXVLRQHQWUHOHVWURLVSHUVRQQDJHVVXEVLVWHjO¶KHXUHDFWXHOOHSXLVTXH OHV FDWDORJXHV GH JUDQGV pWDEOLVVHPHQWV FRPPH OD Bayerische StaatsbiEOLRWKHNRXOD%LEOLRWKqTXHVDLQWH*HQHYLqYHj3DULVUpIpUHQFHQWOHV°XYUHV G¶+HQULRQHWG¶+pULJRQHVRXVOHQRPGH&\ULDTXHGH0DQJLQ&HWWHFRQIXVLRQ WURXYHSUREDEOHPHQWVRQRULJLQHGqVOHPLOLHXGXXVIIeVLqFOHGDQVXQHDQWKRORJLHG¶pFULYDLQVERXUJXLJQRQVGRQWO¶DXWHXUDI¿UPHDYRLUOXVRXVODSOXPH GH &ODXGH +DUG\ O¶LGHQWL¿FDWLRQ HQWUH +pULJRQH HW GH 0DQJLQ ,O D HQVXLWH VXI¿jTXHOTXHVXQVGHVRXOLJQHUOHVIRUWHVUHVVHPEODQFHVHQWUHSOXVLHXUVSDVVDJHVGHV°XYUHVG¶+HQULRQHWOHCursusG¶+pULJRQHSRXUFRQIRQGUHOHVWURLV DXWHXUVYRLUHOHVDFFXVHUGHSODJLDWPXWXHO 1

1. /H PrPH SKpQRPqQH HVW WRXMRXUV j O¶°XYUH GDQV OD QRWLFH ©&OpPHQW &\ULDTXH GH 0DQJLQªGH:LNLSHGLDGRQWO¶DXWHXUSUpWHQGTXHOHOLYUHGHGH0DQJLQDpWpUHSXEOLp SDU+HQULRQHQ&HWWHHUUHXUHVWVDQVGRXWHGXHjXQHOHFWXUHHUURQpHGHO¶RXYUDJH G¶+HQUL-HDQ0DUWLQTXLHVWpYRTXpjFHWHQGURLW



0DLV OHV WURLV SHUVRQQDJHV GH QRWUH P\VWpULHXVH DIIDLUH RQW EHO HW ELHQ H[LVWpLQGpSHQGDPPHQWFHTXLHVWPDQLIHVWHSDUOHXUVGDWHVGHGpFqVQRXV DYRQVYXTX¶+HQULRQDYDLWGLVSDUXDXSOXVWDUGHQMXLOOHW2UODGLVSDULWLRQGHGH0DQJLQHVWpJDOHPHQWELHQVLWXpHGDQVOHWHPSVFDUFHOXLFLpWDLW GHYHQXXQSURFKHGXFDUGLQDOGX3HUURQ 2HWSDUFRQVpTXHQWOHVpYpQHPHQWV GHVDYLHG¶DGXOWHVRQWFRQQXVHQSDUWLFXOLHUVRQGpFqVOHRFWREUH DX &ROOqJH GH %RXUJRJQH j 3DULV 3DU DLOOHXUV O¶LQYHQWDLUH DSUqV GpFqV GH 3LHUUH+pULJRQHVHWURXYHGDQVOHVPLQXWHVGXQRWDLUH(WLHQQH3DLVDQW 0& (7/;9,  HW OH SURFqVYHUEDO VLWXH OH GpFqV DX HUIpYULHU  1RXV SRXYRQV GRQF DI¿UPHU SXLVTX¶RQ QH PHXUW TX¶XQH IRLV TX¶+HQULRQ +pULJRQHHWGH0DQJLQVRQWELHQWURLVSHUVRQQHVGLIIpUHQWHV 4XHOOHV SRXYDLHQW GRQF rWUH OHXUV UHODWLRQVௗ" 8QH UpSRQVH SRVVLEOH QRXV HVWIRXUQLHSDU&ODXGH+DUG\SUpFpGHPPHQWFLWpTXLGpIHQGDQWODTXDOLWpGH VRQ pGLWLRQ GHV Données G¶(XFOLGH pFULW DX GpWRXU G¶XQ OLEHOOH SROpPLTXH +DUG\  'LGLHU+HQULRQO¶DWUDGXLWHQ)UDQoRLVGHPRWjPRWVDQVV¶HQ SODLQGUH OX\ TXL DYRLW GH ERQQHV DLGHV  TXL SD\RLW ELHQ OHV SHUVRQQHVTXLOHVRXODJHRLHQWTXLQHVHIXVVHQWSDVWHXsV>WXHV@ jO¶RFFDVLRQGHODVDLVLHTX¶LODYRLWIDLWHG¶XQHDXWUHLPSUHVVLRQ GXPHVPHOLYUHGHVDonnez d’EuclideSRXUHPSHVFKHUTX¶HOOH QH IXVWH SDUDFKHYHH FRPPH LO HVW DUULYp SXLVTX¶LOV HXVVHQW HXEHDXPR\HQGHODGHVFULHU4XHOHVLHXU+HULJRQHSDJH GX VXSSOHPHQW GH VRQ FRXUV 0DWKHPDWLF UHFRQQRLVW QHWWHPHQW DYRLUVXLY\FHVWHPHVPHHGLWLRQHQVRQSUHPLHUWRPHRLOO¶D DFFRPRGHHDX[QRWHV PDUTXHVGRQWLOV¶HVWVHUY\HQWRXWVRQ RXYUDJH

*UDQGSKLORORJXHHWVDYDQWGHVRQWHPSV+DUG\FRQQDLVVDLWELHQOHPLOLHX PDWKpPDWLTXH SDULVLHQ DXTXHO LO DSSDUWHQDLW 5HPDUTXRQV TXH GDQV OH WH[WH FLWpFLGHVVXVLOQHFRQIRQGSDV+HQULRQHW+pULJRQHFHTXLFRQ¿UPHFODLUHPHQW OHXUV H[LVWHQFHV GLVWLQFWHV 1RXV SRXYRQV IRUPXOHU O¶K\SRWKqVH VXLYDQWH+HQULRQSLqWUHWUDGXFWHXUPDWKpPDWLFLHQPpGLRFUHPDLVULFKHKpULWLHUSRXYDLWV¶rWUHHQWRXUpGHFRPSDJQRQVGHKDXWQLYHDXFRPPH+pULJRQH

2. '¶RULJLQHSURWHVWDQWH-DFTXHV'DY\GX3HUURQ  pWDLWXQpUXGLWH[FHSWLRQQHODPDWHXUGHVFLHQFHVHWSRqWH6DFRQYHUVLRQDXFDWKROLFLVPHOXLSHUPLWGHSpQpWUHU OHVSOXVKDXWHVVSKqUHVGXSRXYRLUHWGHGHYHQLUXQWKpRORJLHQGHSUHPLHUSODQ,OIXW O¶XQGHVSULQFLSDX[DUWLVDQVGHO¶DEMXUDWLRQG¶+HQU\,9

 Didier Henrion, compilateur de récréations mathématiques des années 1620

HW GH 0DQJLQ SRXU O¶DSSURIRQGLVVHPHQWPDWKpPDWLTXHHW OHV WUDGXFWLRQVGX ODWLQHWGXJUHF8QHIRUPHGHVRXVWUDLWDQFHGHODSDUWG¶XQFLWR\HQDLVpHW pFODLUpGpSRXUYXGHJpQLH+HQULRQLPSRVWHXUௗ"1RXVQHOHSHQVRQVSDVGDQV ODPHVXUHRVHVFHQWUHVG¶LQWpUrWHWVHVOHFWHXUVVRQWGLIIpUHQWVGHFHX[G¶+pULJRQHTXLV¶DGUHVVHGDYDQWDJHjVHVKRPRORJXHVVDYDQWVWDQGLVTX¶+HQULRQ HVWXQYXOJDULVDWHXUTXLWUDYDLOOHHQGLUHFWLRQGHVHVpOqYHVGpEXWDQWV$ORUV TX¶+pULJRQHHWGH0DQJLQVHPHVXUHQWj9LqWH TXHOHSUHPLHUYpQqUHHWSURORQJHWDQGLVTXHOHVHFRQGOHFRQWUHGLW +HQULRQGpODLVVHODQRXYHOOHDOJqEUH ¬O¶RSSRVpFHOXLFLHVWXQSDUWLVDQGHVH[HUFLFHVLOSURPHXWXQHJpRPpWULHGH FRQVWUXFWLRQGHSUREOqPHVGRQWLORIIUHGHPXOWLSOHVYDULDWLRQVDLQVLTXHOHV UpFUpDWLRQVPDWKpPDWLTXHVTX¶LOFRPPHQWHPDLVTX¶LOHVVDLHVXUWRXWGHGLIIXVHUHWGHPHWWUHjODSRUWpHGHVFRPPHQoDQWV&¶HVWFHWDVSHFWGHVRQ°XYUH TXHQRXVDOORQVpYRTXHUPDLQWHQDQW

Les « Questions ingenieuses » dans la Collection mathematique /RUVTX¶+HQULRQIDLWLPSULPHUVDCollection mathematique +HQULRQD  LOHVWHQOLWLJHDYHF0LFKHO'DQLHOOHOLEUDLUHTXLDYDLWSXEOLpHQVRQ Usage du compas de proportionHWVRQpGLWLRQFRPPHQWpHGHODGeometrie G¶(UUDUG/HFRQWUDWGHFHVVLRQGHVGURLWVGHO¶Usage du compas de proportion SDVVp HQ MXLOOHW GHYDQW (WLHQQH 3DLVDQW 0&(7/;9,  PHQWLRQQDLWGpMjFHQWFLQTXDQWHOLYUHVWRXUQRLVGHGHWWHGH'DQLHOHQYHUV+HQULRQ HWODVLWXDWLRQGHYDLWDYRLUHPSLUpO¶DQQpHVXLYDQWHSXLVTXHOHVGHX[KRPPHV SDVVHQWjQRXYHDXGHYDQWOHPrPHQRWDLUHHQDR€WSRXUGpVLJQHUGHV OLEUDLUHV DFFHSWDQW G¶DUELWUHU OHXUV OLWLJHV 0&(7/;9,  /H GpFqV GH 'DQLHO LQYHQWDLUH DSUqV GpFqV pWDEOL OH RFWREUH   PHWWUD XQ WHUPH jFHWWHSURFpGXUH /HV SUHPLHUV H[HPSODLUHV GH OD Collection D\DQW pWp IDEULTXpV ©ௗj >V@RQ GHVoHXௗªSDU'DQLHO+HQULRQOHVIDLWVDLVLUHWOHVGRQQHSRXUUHFRPSRVLWLRQj )OHXU\%RXUULTXDQWXQLPSULPHXUDYHFOHTXHOLOWUDYDLOOHUDHQVXLWH&¶HVWOD UDLVRQSRXUODTXHOOHQRXVSRXYRQVWURXYHUODCollectionGDQVGHVpWDWVYDULpV VHORQ OD SURYHQDQFH GHV H[HPSODLUHV YHQGXV SDU OH OLEUDLUH 3DFDUG RX SDU +HQULRQOXLPrPH&RPPHVRQ QRP O¶LQGLTXHODCollection UDVVHPEOHGHV pFULWVSRUWDQWVXUGLYHUVVXMHWVQRQGLUHFWHPHQWOLpVDX[EHVRLQVGHIRUPDWLRQ GHVRI¿FLHUVDULWKPpWLTXHDOJqEUHJpRPpWULHWKpRULTXHHWSUDWLTXHJpRJUDSKLHHWDVWURQRPLH/HOHFWRUDWG¶+HQULRQ RXVDFOLHQWqOHHQWDQWTXHSURIHVVHXU  D SUREDEOHPHQW FKDQJp SRXU V¶pWHQGUH DX[ HVSULWV DYLGHV GH FRQQDLVVDQFHV VFLHQWL¿TXHV /HV WUDLWpV SUDWLTXHV \ VRQW QHWWHPHQW D[pV VXU O¶XVDJH



HW GH 0DQJLQ SRXU O¶DSSURIRQGLVVHPHQWPDWKpPDWLTXHHW OHV WUDGXFWLRQVGX ODWLQHWGXJUHF8QHIRUPHGHVRXVWUDLWDQFHGHODSDUWG¶XQFLWR\HQDLVpHW pFODLUpGpSRXUYXGHJpQLH+HQULRQLPSRVWHXUௗ"1RXVQHOHSHQVRQVSDVGDQV ODPHVXUHRVHVFHQWUHVG¶LQWpUrWHWVHVOHFWHXUVVRQWGLIIpUHQWVGHFHX[G¶+pULJRQHTXLV¶DGUHVVHGDYDQWDJHjVHVKRPRORJXHVVDYDQWVWDQGLVTX¶+HQULRQ HVWXQYXOJDULVDWHXUTXLWUDYDLOOHHQGLUHFWLRQGHVHVpOqYHVGpEXWDQWV$ORUV TX¶+pULJRQHHWGH0DQJLQVHPHVXUHQWj9LqWH TXHOHSUHPLHUYpQqUHHWSURORQJHWDQGLVTXHOHVHFRQGOHFRQWUHGLW +HQULRQGpODLVVHODQRXYHOOHDOJqEUH ¬O¶RSSRVpFHOXLFLHVWXQSDUWLVDQGHVH[HUFLFHVLOSURPHXWXQHJpRPpWULHGH FRQVWUXFWLRQGHSUREOqPHVGRQWLORIIUHGHPXOWLSOHVYDULDWLRQVDLQVLTXHOHV UpFUpDWLRQVPDWKpPDWLTXHVTX¶LOFRPPHQWHPDLVTX¶LOHVVDLHVXUWRXWGHGLIIXVHUHWGHPHWWUHjODSRUWpHGHVFRPPHQoDQWV&¶HVWFHWDVSHFWGHVRQ°XYUH TXHQRXVDOORQVpYRTXHUPDLQWHQDQW

Les « Questions ingenieuses » dans la Collection mathematique /RUVTX¶+HQULRQIDLWLPSULPHUVDCollection mathematique +HQULRQD  LOHVWHQOLWLJHDYHF0LFKHO'DQLHOOHOLEUDLUHTXLDYDLWSXEOLpHQVRQ Usage du compas de proportionHWVRQpGLWLRQFRPPHQWpHGHODGeometrie G¶(UUDUG/HFRQWUDWGHFHVVLRQGHVGURLWVGHO¶Usage du compas de proportion SDVVp HQ MXLOOHW GHYDQW (WLHQQH 3DLVDQW 0&(7/;9,  PHQWLRQQDLWGpMjFHQWFLQTXDQWHOLYUHVWRXUQRLVGHGHWWHGH'DQLHOHQYHUV+HQULRQ HWODVLWXDWLRQGHYDLWDYRLUHPSLUpO¶DQQpHVXLYDQWHSXLVTXHOHVGHX[KRPPHV SDVVHQWjQRXYHDXGHYDQWOHPrPHQRWDLUHHQDR€WSRXUGpVLJQHUGHV OLEUDLUHV DFFHSWDQW G¶DUELWUHU OHXUV OLWLJHV 0&(7/;9,  /H GpFqV GH 'DQLHO LQYHQWDLUH DSUqV GpFqV pWDEOL OH RFWREUH   PHWWUD XQ WHUPH jFHWWHSURFpGXUH /HV SUHPLHUV H[HPSODLUHV GH OD Collection D\DQW pWp IDEULTXpV ©ௗj >V@RQ GHVoHXௗªSDU'DQLHO+HQULRQOHVIDLWVDLVLUHWOHVGRQQHSRXUUHFRPSRVLWLRQj )OHXU\%RXUULTXDQWXQLPSULPHXUDYHFOHTXHOLOWUDYDLOOHUDHQVXLWH&¶HVWOD UDLVRQSRXUODTXHOOHQRXVSRXYRQVWURXYHUODCollectionGDQVGHVpWDWVYDULpV VHORQ OD SURYHQDQFH GHV H[HPSODLUHV YHQGXV SDU OH OLEUDLUH 3DFDUG RX SDU +HQULRQOXLPrPH&RPPHVRQ QRP O¶LQGLTXHODCollection UDVVHPEOHGHV pFULWVSRUWDQWVXUGLYHUVVXMHWVQRQGLUHFWHPHQWOLpVDX[EHVRLQVGHIRUPDWLRQ GHVRI¿FLHUVDULWKPpWLTXHDOJqEUHJpRPpWULHWKpRULTXHHWSUDWLTXHJpRJUDSKLHHWDVWURQRPLH/HOHFWRUDWG¶+HQULRQ RXVDFOLHQWqOHHQWDQWTXHSURIHVVHXU  D SUREDEOHPHQW FKDQJp SRXU V¶pWHQGUH DX[ HVSULWV DYLGHV GH FRQQDLVVDQFHV VFLHQWL¿TXHV /HV WUDLWpV SUDWLTXHV \ VRQW QHWWHPHQW D[pV VXU O¶XVDJH



GHVLQVWUXPHQWVFRPPHO¶DVWURODEHRXOHVJOREHVWHUUHVWUHHWFpOHVWHGRQWOD PDQLSXODWLRQQ¶HVWSDVMXVWL¿pHSDUGHVFRQVLGpUDWLRQVWKpRULTXHV $X VHLQ GH FHWWH Collection OH FKDSLWUH GHV ©ௗ4XHVWLRQV LQJHQLHXVHV HW UHFUHDWLYHVௗªYLHQWHQVL[LqPHSRVLWLRQDYDQWODIRUWL¿FDWLRQHWO¶XVDJHGHVLQVWUXPHQWVGHJpRJUDSKLHPDLVLORFFXSHODWURLVLqPHSODFHHQFHTXLFRQFHUQH OHQRPEUHGHSDJHV  DSUqVO¶DULWKPpWLTXHHWODJpRPpWULH'DQVO¶RSWLTXH G¶XQH ©ௗFXOWXUH VFLHQWL¿TXHௗª SRXU DPDWHXUV pFODLUpV VD GpGLFDFH GRQQH GH SUpFLHXVHV LQGLFDWLRQV VXU OD SODFH GHV UpFUpDWLRQV PDWKpPDWLTXHV DVVRFLpHV DX SODLVLU GH OD UHFKHUFKH HW j O¶pOpJDQFH VXSSRVpH GHV UpVROXWLRQV +HQULRQ EQS  /RUVTXHMHFRPPHQoD\jJRXVWHUOHVVFLHQFHV0DWKHPDWLTXHV XQGHPHVDPLVPHSUHVWDOHV°XYUHVGH9DOOHQWLQ0HQKHUOHVTXHOOHV PH SOHXUHQW WHOOHPHQW TXH QH OHV SRXYDQW UHFRXYUHU MHPHPLVjHQH[WUDLUH UHFXHLOOLUHQVHPEOHGHX[FHQVEHOOHV TXHVWLRQV>«@

&HFL QRXV GRQQH DXVVL XQ ERQ H[HPSOH GHV SURFpGpV GH GRFXPHQWDWLRQ G¶XQ DSSUHQWL PDWKpPDWLFLHQ lorsque je commençay à gouster  j O¶pSRTXH RLOQ¶pWDLWSDVIDFLOHG¶DFTXpULUOHVOLYUHV WURSFKHUVWURSDQFLHQVLQGLVSRQLEOHVௗ" /¶HQWKRXVLDVPHH[SULPpjWUDYHUVOHVVRXYHQLUVGXGpEXWDQW+HQULRQ IDLWQpDQPRLQVSODFHjXQHFHUWDLQHYDQLWpORUVTX¶LOFKHUFKHODUHFRQQDLVVDQFH >«@M¶HQDYDLVHPSHVFKpODFRQWLQXDWLRQ UHWLUpFHTXLHVWRLW MDLPSULPpHQLQWHQWLRQGHVXSSULPHUOHWRXWO¶HVWLPDQWLQGLJQH GH OD OXPLHUHௗ PDLV GHSXLV YR\DQW TXH TXHOTXHV H[HPSODLUHV GHPHXUH]pVPDLQVGHV,PSULPHXUVFRQWUDULRLHQWPRQGHVVHLQ TXHSOXVLHXUVHQWUHOHVPDLQVGHVTXHOVLOVHVWRLHQWWRPEH]IDLVRLHQWJUDQGHVWDWGHFHVTXHVWLRQVGH0HQKHUMHPHVXLVUHVROX OHVODLVVHUDXSXEOLFVRXVYRVWUHSURWHFWLRQP¶DVVHXUDQWTXHSRUWDQWHQOHXUIURQWYRVLOOXVWUHVQRPVHOOHVVHURQWYHXsVGHERQ °LO  Q¶DJUpHURQW PRLQV DX[ DPDWHXUV GHV GLYLQHV 0DWKHPDWLTXHVTXHOHWUDLFWpGHVWULDQJOHV6SKHULTXHV

6¶DJLWLOSRXUDXWDQWG¶XQUHFXHLOGHIXWLOLWpVDSSUpFLpHVGHTXHOTXHVDPLVௗ" 1RXVHQVRPPHVORLQ&RPPHjVRQKDELWXGH+HQULRQDVpOHFWLRQQpXQÀRULOqJHGHSUREOqPHVGHVSOXVpOpPHQWDLUHVDX[SOXVFRPSOLTXpV3RXUFHODLOD UHSULVHWUpRUGRQQpGLIIpUHQWVH[WUDLWVGHVRXYUDJHVGH9DOHQWLQ0HQQKHUTXH QRXVDYRQVPHQWLRQQpVSOXVKDXW

 Didier Henrion, compilateur de récréations mathématiques des années 1620

(QIDLWOHGpFRXSDJHHIIHFWXpSDU+HQULRQQ¶HVWSDVWUqVFRPSOLTXpOHV TXDUDQWHVHSWSUHPLHUVSUREOqPHVWUDLWDQWSRXUODPDMRULWpGHSUREOqPHVGH SURSRUWLRQQDOLWpUpVROXVSDUUqJOHGHWURLVVRQWUHSULVjO¶LGHQWLTXHGHVTXDUDQWHVHSWLqPHV SUHPLqUHV SURSRVLWLRQV GH &RLJQHW0HQQKHU /HV FHQW SUREOqPHV VXLYDQWV JpRPpWULTXHV PDLV UpVROXV SDU O¶DOJqEUH VRQW GLUHFWHPHQW WLUpVGHO¶Arithmetique secondeGHO¶$QYHUVRLV 0HQQKHU RXGHVDUppGLWLRQ DXJPHQWpH GH OD FRPSWDELOLWp 0HQQKHU   /HV FLQTXDQWHTXDWUH GHUQLqUHV SDJHV FRQVDFUpHV j OD WULJRQRPpWULH VSKpULTXH HW j GHV TXHVWLRQV G¶DVWURQRPLHVRQWLQWpJUDOHPHQWUHFRSLpHVGHO¶pGLWLRQGH&RLJQHWGH 0HQQKHU 

Un exemple de problème arithmétique 1RXVSURSRVRQVjWLWUHG¶H[HPSOHOHFLQTXLqPHH[HUFLFH&HOXLFLVHVLWXH GDQV OD OLJQpH GHV SUREOqPHV GH SRXUVXLWH TXH O¶RQ WURXYH GDQV GH QRPEUHX[RXYUDJHVG¶DULWKPpWLTXHSUDWLTXHGXXVIeVLqFOHjFHFLSUqVTX¶LOPHW HQ VFqQH GHV DQLPDX[ SOXW{W TXH GHV YROHXUV HW GHV JHQGDUPHV +HQULRQ E  8QKRPPHFKDVVHXQOLpYUHTXLFRXUWGHYDQWOHFKLHQVDXWV GX FKLHQ  DXWDQW GH IRLV TXH OH OLpYUH IDLW  VDXWV OH FKLHQ Q¶HQIDLWTXHௗPDLVVDXWVGXFKLHQIRQWVDXWVGXOLpYUHRQ GHPDQGHHQFRPELHQGHVDXWVOHFKLHQDWWDLQWOHOLpYUHௗ"IDFLWHQ VDXWV

/DTXHVWLRQHVWFODVVLTXHFRPELHQGHWHPSVPHWWUDOHSRXUVXLYDQW LFL OHFKLHQ jUDWWUDSHUOHSRXUVXLYL LFLOHOLqYUH ௗ"2XFHTXLUHYLHQWDXPrPH TXHOOH VHUD OD GLVWDQFH SDUFRXUXH SDU OH FKLHQ SRXU UDWWUDSHU OH OLqYUHௗ" /D OHFWXUHGHO¶pQRQFpSHXWV¶DYpUHUGLI¿FLOHSDUWLFXOLqUHPHQWjO¶pFROHSULPDLUH FDUOHVGRQQpHV\VRQWHQFKHYrWUpHVHWIRQWDSSHOjGHVGLVWDQFHVWUDGXLWHVHQ WHUPHVGHVDXWV RXERQGV /HSDXYUHOLqYUHDXQHDYDQFHLQLWLDOHFRUUHVSRQGDQWjVDXWVGXFKLHQௗRUjVDXWVGXFKLHQFRUUHVSRQGHQWVDXWVGXOLqYUH PDLVFHVRQWGHVVDXWVSOXVFRXUWV VDXWVGXOLqYUHSRXUVHXOHPHQWVDXWVGX FKLHQ GRQFOHOLqYUHSHUGUDGXWHUUDLQHWVHUDSULVௗ 'DQVODYHUVLRQGH0HQQKHUODUpSRQVHpWDLWDQQRQFpHVDQVH[SOLFDWLRQSDU XQfacit ©ௗFHODIDLWௗª &Hfacit HVWVXLYLGXGpWDLOGHVRSpUDWLRQVFKH]&RLJQHW HW+HQULRQPDLVOHXUSUpVHQWDWLRQWUqVSDUWLFXOLqUHQ¶HQIDFLOLWHSDVODFRPSUpKHQVLRQ +HQULRQE 



/H SULQFLSH JpQpUDO HVW TXH WRXWHVOHVGRQQpHVVRQWWUDGXLWHV HQ VDXWV GX FKLHQ /H WH[WH GRLW rWUH OX GH KDXW HQ EDV HQ GHX[ FRORQQHV 'DQV FHOOH GH JDXFKH OHVVDXWVGXOLqYUHVRQWFRQYHUWLV HQVDXWGXFKLHQ©ௗௗª SHXW VH OLUH ©ௗ6L  FRUUHVSRQG j  j FRPELHQ FRUUHVSRQG ௗ"ௗª FH TXL UHYLHQW j FKHUFKHU XQH Fig. 2 – Problème 5 : détail des calculs de Coignet/Henrion, TXDWULqPH SURSRUWLRQQHOOH /HV reproduit dans l'ouvrage de Mennher (1573 : 5e paragraphe) RSpUDWLRQV VXFFHVVLYHV PrOHQW [Staats- und Stadtbibliothek Augsburg, Math 572#(Beibd., p.  6, OHV pFULWXUHV OD PXOWLSOLFDWLRQ urn=urn:nbn:de:bvb:12-bsb11267587-3]. GH  SDU  HVW SRVpH HQ FRORQQH HWOHUpVXOWDWHVWLPPpGLDWHPHQWGLYLVpSDU GLYLVLRQpFULWHjODPDQLqUHDQJODLVHDYHFXQHSDUHQWKqVH ©ௗ ௗª SRXUXQUpVXOWDWGH 4 23 /HVVDXWVGHOLqYUHYDOHQWDXWDQWGHVDXWV GXFKLHQ 'DQVODVHFRQGHFRORQQHHVWG¶DERUGFDOFXOpOHUHWDUGUDWWUDSpSDUOHFKLHQj FKDTXHVpULHGHVDXWV VRLW 13 GHVDXWGXFKLHQ 8QHSURSRUWLRQpTXLYDOHQWHj ODSUpFpGHQWHHVWpFULWH©ௗ 13 JDJQpHQVDXWVHQFRPELHQGHVDXWVVRQWLOV JDJQpVௗ"ௗª1RWH]TXHODGLYLVLRQSDU 13 HVWHIIHFWXpHFRPPHPXOWLSOLFDWLRQ SDUHWTXHODSURSRUWLRQHQWUHHW 13 HVWH[SULPpHSDUFHOOHHQWUHHW FHTXLUHYLHQWjXQ©ௗUHWRXUjO¶XQLWpௗª&HWWHVROXWLRQHVWWLUpHGHO¶pGLWLRQGH &RLJQHWVDQVDXFXQHPRGL¿FDWLRQ

Un exemple de problème géométrique /¶RULJLQDOLWpGXUHFXHLOSDUUDSSRUWDX[RXYUDJHVG¶DULWKPpWLTXHSUDWLTXHGX e XVI VLqFOH UpVLGH GDQV VD YDULpWp G¶H[HUFLFHV GH QDWXUH JpRPpWULTXH &HWWH RULJLQDOLWpGRLWrWUHUHFRQQXHj0HQQKHUOXLPrPHGRQW+HQULRQUHSUHQGPRW SRXUPRWOHVTXHVWLRQVSRUWDQWVXUGHV¿JXUHVJpRPpWULTXHVVDQVUDSSRUWDYHF GHVSUREOqPHVFRQFUHWV$LQVLFHVH[HUFLFHVGpSDVVHQWODUJHPHQWOHFDGUHGHV RXYUDJHVGHJpRPpWULHSUDWLTXHGDQVOHVTXHOVLOV¶DJLVVDLWGHPHVXUHUSDUYLVpH GHVGLVWDQFHVLQDFFHVVLEOHV,OVVRQWG¶DLOOHXUVUpVROXVSDUGHVSURFpGpVDOJpEULTXHVFRPPHFHWH[HUFLFHQƒ +HQULRQE  3OXVLO\DXQFHUFOHGXTXHOOHGLDPHWUHIDLWGHGDQVOX\ VRQW IDLWV  DXWUHV FHUFOHV G¶XQH >PrPH@ JUDQGHXU  GH VRUWH

 Didier Henrion, compilateur de récréations mathématiques des années 1620

TXH FKDFXQ WRXFKH O¶XQ O¶DXWUH HQ IRUPH G¶XQ WULDQJOH HW OHV WURLV H[WUpPHV WRXFKHQW OD FLUFRQIHUHQFH GX SOXV JUDQG FHUFOH /D GHPDQGH HVW FRPELHQ HVW OH GLDPHWUH G¶XQ FKDFXQ GHVGLWV SHWLWVFHUFOHVௗ" 5HVSRQVHSRVH]TX¶LOVRLWxDGRQFIHUD XQFRVWpGXWULDQJOH501x SDUODFLQTXDQWLHVPH SURSRVLWLRQ IHUD 56 ¥q GHVTXHOV SUHQH] 13  TXL IDLW ¥ 3 q  UHVWHURQW 9 ¥ 12 9 q DX[ PHVPHV DGMRXWH]$5 TXL HVW 1 1 12 2 x HQYLHQGUD 2 x¥ 9 qHJDOHjTXL HVW OH GHPLGLDPHWUH $(  x HVW HJDOH 10 j ¥ 152 169  ± 13  SRXU XQ GLDPHWUH GHV SHWLWVFHUFOHV

Fig. 3 – Problème 104.

4XHOTXHV H[SOLFDWLRQV VXSSOpPHQWDLUHV VRQW QpFHVVDLUHV VDFKDQW TXH OHV SURSULpWpVJpRPpWULTXHVGHOD¿JXUHVRQWDGPLVHV • ODFLQTXDQWLqPHSURSRVLWLRQHVWHQIDLWOHeH[HUFLFHGHFHV©4XHVWLRQV LQJHQLHXVHVªVLPSOHDSSOLFDWLRQGXWKpRUqPHGH3\WKDJRUHSHUPHWWDQW G¶REWHQLUO¶XQGHVF{WpVGHO¶DQJOHGURLWG¶XQWULDQJOHUHFWDQJOHHQ IRQFWLRQGHVRQK\SRWpQXVHHWGHO¶DXWUHF{Wp • ODOHWWUHxGpVLJQHODTXDQWLWpLQFRQQXHHWODOHWWUHqVRQFDUUp • OHVLJQHGXUDGLFDOQHFRPSUHQGSDVGHEDUUHVXSpULHXUH vinculum  • ©SUHQH]ªVLJQL¿H©VRXVWUD\H]ªPDLVLFLLOVHUDLWSOXVVLPSOHGHFDOFXOHU GLUHFWHPHQWOHVGHX[WLHUVGH56FDU(HVWOHFHQWUHGHJUDYLWpGXWULDQJOH pTXLODWpUDO501 1¶HVWFHSDVXQMROL6DQJDNXௗ"0DOKHXUHXVHPHQWO¶H[SUHVVLRQGHODUpVROXWLRQQ¶HVWSDVVDWLVIDLVDQWH(QHIIHWO¶pFULWXUH¥qHVWDPELJXsLOIDXWOD FRPSUHQGUHQRQSDVFRPPH  q PDLVELHQFRPPH q RX  x (QRXWUH OHWULDQJOH561HVWLPSOLFLWHPHQWVXSSRVpUHFWDQJOHHQ6HW501pTXLODWpUDO 0DLV VXUWRXW +HQULRQ DGPHW DYHF 0HQQKHU TXH OH FHQWUH GH JUDYLWp ( GX WULDQJOHpTXLODWpUDO%01HVWOHFHQWUHGXFHUFOHH[WpULHXUHWSDUFRQVpTXHQW TXHOHUD\RQGHFHFHUFOHHVW$(FHTXLMXVWL¿HO¶pTXDWLRQSRVpHTXLV¶pFULWGH PDQLqUHPRGHUQH 1 2 3 2x+ 3 x = 6 /¶H[SUHVVLRQ GH OD VROXWLRQ GRQQpH GDQV OH WH[WH HVW REWHQXH SDU GHV PpWKRGHVDULWKPpWLTXHVQRQH[SOLFLWpHVPDLVHOOHHVWMXVWHFHTXHOHOHFWHXU



PRGHUQH SRXUUD YpUL¿HU SDU VHV PR\HQV GH FDOFXO FRQWHPSRUDLQV /D GLI¿FXOWp GH OD YpUL¿FDWLRQ VDQV FHV PR\HQV PRGHUQHV ODLVVH SODQHU OH GRXWH VXU O¶DFFHVVLELOLWp GX WH[WH RULJLQDO j O¶DPDWHXU PrPH pFODLUp 7RXWHV OHV TXHVWLRQVJpRPpWULTXHVVRQWGXPrPHDFDELWHWVRQWVXLYLHVGHSUREOqPHV GH WULJRQRPpWULH VSKpULTXH HQFRUH SOXV GLI¿FLOHV 1RXV QRXV TXHVWLRQQRQV VXUO¶DEVHQFHG¶pFODLUFLVVHPHQWVDSSRUWpVSDU+HQULRQ,OIDXWFURLUHTX¶XQH SDUWLHGXSODLVLUpSURXYpjODUpVROXWLRQGHVTXHVWLRQVLQJpQLHXVHVUpVLGHMXVWHPHQWGDQVOHXUREVFXULWp«

Les commentaires sur la Recreation mathematique $SUqV FHWWH SUHPLqUH LQFXUVLRQ GDQV OH PRQGH GHV PDWKpPDWLTXHV UpFUpDWLYHV+HQULRQUpFLGLYHHQUpGLJHDQWGHVQRWHVYLVDQWjH[SOLTXHUjVRQSXEOLF TXHOTXHVSDVVDJHVGHODRecreation mathematiqueSXEOLpHj3RQWj0RXVVRQ /HXUHFKRQ  (QOXLPrPHOHWH[WHGH /HXUHFKRQ UHVWHXQ P\VWqUHFDULOVHPEOHTXH FHSUrWUHGXFROOqJHMpVXLWHGH3RQWj0RXVVRQQ¶DLWIDLWTXHVHUYLUGHSUrWH QRPjO¶LPSULPHXU-HDQ$SSLHU+DQ]HOHW +HHIIHU 1RWRQVTXHFRPPH ODGpGLFDFHHVWVLJQpHGH+YDQ(WWHQ QHYHXGXGpGLFDWDLUH FHOXLFLDpWp ORQJWHPSVSULVSRXUOHYpULWDEOHDXWHXUGXOLYUHTXLDXUDLWVLJQpVRXVOHSVHXGRQ\PHGH/HXUHFKRQ1RXVVDYRQVFHSHQGDQWTXHOHMpVXLWH/HXUHFKRQpWDLW UpHOOHPHQWSURIHVVHXUDXFROOqJHGH3RQWj0RXVVRQFHTXLUHQGDLWSODXVLEOH ODWKqVHGHVDSDWHUQLWp %LHQ TXH ©ௗPDWKpPDWLTXHVௗª FHV UpFUpDWLRQV WRXFKHQW DVVH] SHX DX[ GRPDLQHV DULWKPpWLTXHV HW JpRPpWULTXHV SRXU V¶pWHQGUH HQ UHYDQFKH ODUJHPHQW j OD SK\VLTXH OD FKLPLH O¶RSWLTXHHWF /HV FRPPHQWDLUHV G¶+HQULRQ QHFRQFHUQHQWHQIDLWTX¶XQHYLQJWDLQHGHSURSRVLWLRQVVRLWSDUFHTX¶LOV¶DJLW GLUHFWHPHQWGHPDWKpPDWLTXHVVRLWSDUFHTX¶HOOHVOXLSHUPHWWHQWGHSURPRXYRLUVHVSURSUHVpFULWVFRPPHVDCosmographieRXVDGeometrie d’Errard

Les diverses éditions du texte /HVXFFqVLPPpGLDWGHODRecreation mathematiqueGH/HXUHFKRQHVWPDQLIHVWpSDUODYDULpWpGHVpGLWLRQVGRQWFHWRXYUDJHIDLWUDSLGHPHQWO¶REMHW /¶pGLWLRQ RULJLQDOH SDUDvW HQ  j 3RQWj0RXVVRQ VRXV OHV SUHVVHV GH -HDQ$SSLHU GLW +DQ]HOHW LPSULPHXU GH O¶XQLYHUVLWp F¶HVWjGLUH GX FROOqJH GHVMpVXLWHVHWGX'XFGH/RUUDLQH,OHQUHVWHVLSHXG¶H[HPSODLUHVTX¶LOHVW SUREDEOHTXHOHWLUDJHDLWpWpDVVH]IDLEOHPDOJUpO¶LQVHUWLRQGHTXDWUHSODQFKHV

 Didier Henrion, compilateur de récréations mathématiques des années 1620

PRGHUQH SRXUUD YpUL¿HU SDU VHV PR\HQV GH FDOFXO FRQWHPSRUDLQV /D GLI¿FXOWp GH OD YpUL¿FDWLRQ VDQV FHV PR\HQV PRGHUQHV ODLVVH SODQHU OH GRXWH VXU O¶DFFHVVLELOLWp GX WH[WH RULJLQDO j O¶DPDWHXU PrPH pFODLUp 7RXWHV OHV TXHVWLRQVJpRPpWULTXHVVRQWGXPrPHDFDELWHWVRQWVXLYLHVGHSUREOqPHV GH WULJRQRPpWULH VSKpULTXH HQFRUH SOXV GLI¿FLOHV 1RXV QRXV TXHVWLRQQRQV VXUO¶DEVHQFHG¶pFODLUFLVVHPHQWVDSSRUWpVSDU+HQULRQ,OIDXWFURLUHTX¶XQH SDUWLHGXSODLVLUpSURXYpjODUpVROXWLRQGHVTXHVWLRQVLQJpQLHXVHVUpVLGHMXVWHPHQWGDQVOHXUREVFXULWp«

Les commentaires sur la Recreation mathematique $SUqV FHWWH SUHPLqUH LQFXUVLRQ GDQV OH PRQGH GHV PDWKpPDWLTXHV UpFUpDWLYHV+HQULRQUpFLGLYHHQUpGLJHDQWGHVQRWHVYLVDQWjH[SOLTXHUjVRQSXEOLF TXHOTXHVSDVVDJHVGHODRecreation mathematiqueSXEOLpHj3RQWj0RXVVRQ /HXUHFKRQ  (QOXLPrPHOHWH[WHGH /HXUHFKRQ UHVWHXQ P\VWqUHFDULOVHPEOHTXH FHSUrWUHGXFROOqJHMpVXLWHGH3RQWj0RXVVRQQ¶DLWIDLWTXHVHUYLUGHSUrWH QRPjO¶LPSULPHXU-HDQ$SSLHU+DQ]HOHW +HHIIHU 1RWRQVTXHFRPPH ODGpGLFDFHHVWVLJQpHGH+YDQ(WWHQ QHYHXGXGpGLFDWDLUH FHOXLFLDpWp ORQJWHPSVSULVSRXUOHYpULWDEOHDXWHXUGXOLYUHTXLDXUDLWVLJQpVRXVOHSVHXGRQ\PHGH/HXUHFKRQ1RXVVDYRQVFHSHQGDQWTXHOHMpVXLWH/HXUHFKRQpWDLW UpHOOHPHQWSURIHVVHXUDXFROOqJHGH3RQWj0RXVVRQFHTXLUHQGDLWSODXVLEOH ODWKqVHGHVDSDWHUQLWp %LHQ TXH ©ௗPDWKpPDWLTXHVௗª FHV UpFUpDWLRQV WRXFKHQW DVVH] SHX DX[ GRPDLQHV DULWKPpWLTXHV HW JpRPpWULTXHV SRXU V¶pWHQGUH HQ UHYDQFKH ODUJHPHQW j OD SK\VLTXH OD FKLPLH O¶RSWLTXHHWF /HV FRPPHQWDLUHV G¶+HQULRQ QHFRQFHUQHQWHQIDLWTX¶XQHYLQJWDLQHGHSURSRVLWLRQVVRLWSDUFHTX¶LOV¶DJLW GLUHFWHPHQWGHPDWKpPDWLTXHVVRLWSDUFHTX¶HOOHVOXLSHUPHWWHQWGHSURPRXYRLUVHVSURSUHVpFULWVFRPPHVDCosmographieRXVDGeometrie d’Errard

Les diverses éditions du texte /HVXFFqVLPPpGLDWGHODRecreation mathematiqueGH/HXUHFKRQHVWPDQLIHVWpSDUODYDULpWpGHVpGLWLRQVGRQWFHWRXYUDJHIDLWUDSLGHPHQWO¶REMHW /¶pGLWLRQ RULJLQDOH SDUDvW HQ  j 3RQWj0RXVVRQ VRXV OHV SUHVVHV GH -HDQ$SSLHU GLW +DQ]HOHW LPSULPHXU GH O¶XQLYHUVLWp F¶HVWjGLUH GX FROOqJH GHVMpVXLWHVHWGX'XFGH/RUUDLQH,OHQUHVWHVLSHXG¶H[HPSODLUHVTX¶LOHVW SUREDEOHTXHOHWLUDJHDLWpWpDVVH]IDLEOHPDOJUpO¶LQVHUWLRQGHTXDWUHSODQFKHV

 Didier Henrion, compilateur de récréations mathématiques des années 1620

JUDYpHV TXL HQ WUDKLVVHQW XQ FR€W QRQ QpJOLJHDEOH 8Q VHFRQG WLUDJH FKH] OH PrPHLPSULPHXUHVWGDWpGHDORUVTXHSDUDvWFKH]$QWRLQH5RELQRWj3DULV XQHVHFRQGHpGLWLRQQHSUpVHQWDQWSDVGHGLIIpUHQFHSDUUDSSRUWjO¶RULJLQDO /DPrPHDQQpHSDUDvWFKH]-HDQ0RUHDXHW*XLOODXPH/R\VRQj3DULVXQH WURLVLqPHpGLWLRQDXJPHQWpHGHFRPPHQWDLUHVDQRQ\PHVVLJQDOpVSDUO¶DFURQ\PH'$/*,OVHPEOHTXHO¶DXWHXUGHFHVFRPPHQWDLUHV&ODXGH0\GRUJH Q¶DLWSDVDXWRULVpFHWWHSUHPLqUHSXEOLFDWLRQFHTXLH[SOLTXHSHXWrWUHODGLVVLPXODWLRQGHVRQQRP (Q¿QHQ5ROHW%RXWRQQpSXEOLHj3DULVXQHTXDWULqPHpGLWLRQSRUWDQWOHVFRPPHQWDLUHVGH'+3(0QRWUH'LGLHU+HQULRQ/HOLEUDLUHIHUDDXVVL LPSULPHUVpSDUpPHQWXQIDVFLFXOHGHVFRPPHQWDLUHVG¶+HQULRQTX¶LOLQVpUHUD GDQVXQHpGLWLRQXOWpULHXUHDSUqVTXH0\GRUJHOXLDXUDFpGpOHSULYLOqJHUR\DO TX¶LOGpWHQDLW /HVQRPEUHXVHVpGLWLRQVXOWpULHXUHVVRQWGHVUHIRQWHVHWGHVDXJPHQWDWLRQV GHFHOOHVFLO¶XQHSDUDLVVDQWVRXVOHQRPGH0\GRUJHHWOHWLWUHG¶Examen du livre des Recreations mathematiques 0\GRUJH   PDLV DXJPHQWpH GH GHX[QRXYHOOHVSDUWLHVLQFOXDQWODS\URWHFKQLHUHSULVHVGHVYHUVLRQVSXEOLpHV j5RXHQHQSDU&KDUOHV2VPRQW

La polémique DHPEM / DALG /HV GHX[ FRPPHQWDWHXUV DQRQ\PHV +HQULRQ HW 0\GRUJH Q¶DYDLHQW SDV H[DFWHPHQW OHV PrPHV PRWLYDWLRQV +HQULRQ YLYDLW GH VHV OHoRQV HW DYDLW GpMjSXEOLpDQRQ\PHPHQWGHVWUDGXFWLRQVRXpGLWLRQVFRPPHQWpHVG¶°XYUHV G¶DXWUHVDXWHXUVGDQVOHVTXHOOHVLOFLWDLWHQUpIpUHQFHOHVRXYUDJHV«G¶+HQULRQ,OGHYDLWDYRLUWRXWLQWpUrWFRPPHUFLDOHPHQWSDUODQWTX¶LOHQVRLWDLQVL RFFXSDQW WRXV OHV VHJPHQWV G¶XQ PrPH PDUFKp 0\GRUJH pWDLW OXL j O¶DEUL GX EHVRLQ SXLVTX¶LO RFFXSDLW XQH LPSRUWDQWH FKDUJH GDQV O¶DGPLQLVWUDWLRQ GH3LFDUGLH6RQLQWpUrWSRXUOHVUpFUpDWLRQVPDWKpPDWLTXHVpWDLWGRQFPRLQV JXLGpSDUODQpFHVVLWpRXODUHFKHUFKHGHQRWRULpWp/HXUSRLQWFRPPXQUHVWH FHSHQGDQWODYRORQWpGHFRUULJHUOHVHUUHXUVFRPPLVHVSDUOHSUHPLHUDXWHXUGH O¶RXYUDJHGRQWODULJXHXUODLVVDLWjGpVLUHU /HGpFOHQFKHPHQWGHVKRVWLOLWpVHVWGHO¶LQLWLDWLYHGH'+3(0GDQVVRQFRPPHQWDLUHDXWRXWSUHPLHUSUREOqPH /HXUHFKRQS+HQULRQS  1RWUHDXWKHXUDYDLWDXVVLIDLWLF\XQHWUHVORXUGHIDXWHODFKRVH HVWDQW GX WRXW IDXOFH FRPPH LO O¶HQVHLJQRLWௗ  MH P¶HVWRQQH FRPPH FHX[ TXL RQW MD DQQRWp FH OLYUH Q¶RQW DSSHUFHX  UHPDUTXpFHVPDQTXHPHQV GHIIHFWXRVLWH]



0\GRUJH QH SRXYDLW SDV PDQTXHU GH UpWRUTXHU j FHOXL TX¶LO TXDOL¿H GH ©ௗUHJUDWWLHUGHOLYUHV HVFULSWVG¶DXWUX\ௗªHWHQFRUHG¶©ௗHVFXPHXURUGLQDLUH GHVHVFULSWVHWGXWUDYDLOG¶DXWUX\ௗª 0\GRUJHS  >«@PDLVFHQRXYHDX&HQVHXUTXLVHTXDOL¿H3(0DYHFVHV QRWHVVHUYDQWHVjO¶LQWHOOLJHQFHGHVFKRVHVGLI¿FLOHV REVFXUHV GHFHOLYUHGHEYRLWSXLVTX¶LOSDUOHHQJHQHUDODYRLUUHOHYpFHWWH GLI¿FXOWpOX\TXLVHPHVOHGHUHOHYHUOHVDXWUHVHWOHVDFFXVHU VDQVVXEMHFWGHPHVJDUGH G¶REPLVVuRQ(WFHSHQGDQWHQV¶HQ WDLVDQWLODGYRHTXHODGLVFXVVLRQGHODSOXVSDUWGHWHOVVXEMHFWV QHOX\HVWSDVSURSUHQ\GHODSRUWHHGXFRPPXQHQFRUHVTXH OH UHQFRQWUH V¶HQ IDFH DVVH] RUGLQDLUHPHQW HW LQGLIIHUHPPHQW '$/* 0\GRUJHS

'¶DXWUHVDWWDTXHVSHXYHQWrWUHOXHVHQWUHOHVOLJQHVPDLVXQHH[pJqVHFRPSOqWH Q¶HQ SUpVHQWHUDLW SDV JUDQG LQWpUrW SRXU QRWUH SURSRV HWH[DJpUHUDLW OD WDLOOHGHFHFKDSLWUHTX¶LOHVWWHPSVGHFRQFOXUH

Conclusion &H FRXUW SDUFRXUV j WUDYHUV XQH VpOHFWLRQ GH WH[WHV PDWKpPDWLTXHV GX GpEXW GX XVIIeVLqFOHQRXVDDPHQpjQRXVLQWHUURJHUVXUGHVTXHVWLRQVG¶LGHQWLWpV GH SVHXGRQ\PHV G¶XVXUSDWLRQ 4X¶LO V¶DJLVVH GX FDV G¶+HQULRQ GH FHOXL GH 0HQQKHURXGHFHOXLGH/HXUHFKRQOHVpFULWVFLUFXOHQWHQpWDQWSDUIRLVUHSURGXLWVjO¶LGHQWLTXHPDLVSDVV\VWpPDWLTXHPHQW/HVDXWHXUVGHVFRQWHQXVQH VRQWSDVIRUFpPHQWOHVVLJQDWDLUHVGHVWH[WHVFHTXLSRXUUDLWH[SOLTXHUHQSDUWLH OD IDEULFDWLRQ GX PRQXPHQWDO Cursus mathematicus G¶+pULJRQH j SDUWLU GH WH[WHVTX¶LODXUDLWOXLPrPHpFULWVSRXU+HQULRQHWFKH]XQLPSULPHXUTXLDXUDLW SXUpFXSpUHUOHVERLVRXOHVFXLYUHVQpFHVVDLUHVjODUHSURGXFWLRQGHVJUDYXUHV 1RWRQVHQO¶RFFXUUHQFHTXHFHQ¶HVWTXHTXHOTXHVDQQpHVDSUqVOHGpFqV G¶+HQULRQTXHOHCursusHVWSXEOLpVRXVOHQRPG¶+pULJRQHSDWURQ\PHTXL Q¶pWDLW MDPDLV DSSDUX GX YLYDQW G¶+HQULRQ &HWWH UpDSSURSULDWLRQ SUREDEOH G¶pFULWVSDUOHXUDXWKHQWLTXHDXWHXUDSUqVOHGpFqVGHVRQ©ௗHPSOR\HXUௗªQ¶HVW SDVFKRTXDQWHGHQRVMRXUVPDLVHOOHO¶pWDLWHQFRUHPRLQVjFHWWHpSRTXHDORUV TXHOHWHUPH©ௗSODJLDWௗªQ¶H[LVWDLWPrPHSDVWDQWODTXHVWLRQGXGURLWG¶DXWHXU Q¶pWDLWSDVDORUVSHUWLQHQWH+HQULRQHQHVWG¶DLOOHXUVXQERQH[HPSOHOXLTXL UHSUHQDLWGHVSDQVHQWLHUVGHWH[WHVG¶DXWUHVDXWHXUVSRXUOHVPHWWUHjODGLVSRVLWLRQGHVHVpOqYHV1¶HVWFHG¶DLOOHXUVSDVOjXQHGHVFDUDFWpULVWLTXHVWRXMRXUV

 Didier Henrion, compilateur de récréations mathématiques des années 1620

0\GRUJH QH SRXYDLW SDV PDQTXHU GH UpWRUTXHU j FHOXL TX¶LO TXDOL¿H GH ©ௗUHJUDWWLHUGHOLYUHV HVFULSWVG¶DXWUX\ௗªHWHQFRUHG¶©ௗHVFXPHXURUGLQDLUH GHVHVFULSWVHWGXWUDYDLOG¶DXWUX\ௗª 0\GRUJHS  >«@PDLVFHQRXYHDX&HQVHXUTXLVHTXDOL¿H3(0DYHFVHV QRWHVVHUYDQWHVjO¶LQWHOOLJHQFHGHVFKRVHVGLI¿FLOHV REVFXUHV GHFHOLYUHGHEYRLWSXLVTX¶LOSDUOHHQJHQHUDODYRLUUHOHYpFHWWH GLI¿FXOWpOX\TXLVHPHVOHGHUHOHYHUOHVDXWUHVHWOHVDFFXVHU VDQVVXEMHFWGHPHVJDUGH G¶REPLVVuRQ(WFHSHQGDQWHQV¶HQ WDLVDQWLODGYRHTXHODGLVFXVVLRQGHODSOXVSDUWGHWHOVVXEMHFWV QHOX\HVWSDVSURSUHQ\GHODSRUWHHGXFRPPXQHQFRUHVTXH OH UHQFRQWUH V¶HQ IDFH DVVH] RUGLQDLUHPHQW HW LQGLIIHUHPPHQW '$/* 0\GRUJHS

'¶DXWUHVDWWDTXHVSHXYHQWrWUHOXHVHQWUHOHVOLJQHVPDLVXQHH[pJqVHFRPSOqWH Q¶HQ SUpVHQWHUDLW SDV JUDQG LQWpUrW SRXU QRWUH SURSRV HWH[DJpUHUDLW OD WDLOOHGHFHFKDSLWUHTX¶LOHVWWHPSVGHFRQFOXUH

Conclusion &H FRXUW SDUFRXUV j WUDYHUV XQH VpOHFWLRQ GH WH[WHV PDWKpPDWLTXHV GX GpEXW GX XVIIeVLqFOHQRXVDDPHQpjQRXVLQWHUURJHUVXUGHVTXHVWLRQVG¶LGHQWLWpV GH SVHXGRQ\PHV G¶XVXUSDWLRQ 4X¶LO V¶DJLVVH GX FDV G¶+HQULRQ GH FHOXL GH 0HQQKHURXGHFHOXLGH/HXUHFKRQOHVpFULWVFLUFXOHQWHQpWDQWSDUIRLVUHSURGXLWVjO¶LGHQWLTXHPDLVSDVV\VWpPDWLTXHPHQW/HVDXWHXUVGHVFRQWHQXVQH VRQWSDVIRUFpPHQWOHVVLJQDWDLUHVGHVWH[WHVFHTXLSRXUUDLWH[SOLTXHUHQSDUWLH OD IDEULFDWLRQ GX PRQXPHQWDO Cursus mathematicus G¶+pULJRQH j SDUWLU GH WH[WHVTX¶LODXUDLWOXLPrPHpFULWVSRXU+HQULRQHWFKH]XQLPSULPHXUTXLDXUDLW SXUpFXSpUHUOHVERLVRXOHVFXLYUHVQpFHVVDLUHVjODUHSURGXFWLRQGHVJUDYXUHV 1RWRQVHQO¶RFFXUUHQFHTXHFHQ¶HVWTXHTXHOTXHVDQQpHVDSUqVOHGpFqV G¶+HQULRQTXHOHCursusHVWSXEOLpVRXVOHQRPG¶+pULJRQHSDWURQ\PHTXL Q¶pWDLW MDPDLV DSSDUX GX YLYDQW G¶+HQULRQ &HWWH UpDSSURSULDWLRQ SUREDEOH G¶pFULWVSDUOHXUDXWKHQWLTXHDXWHXUDSUqVOHGpFqVGHVRQ©ௗHPSOR\HXUௗªQ¶HVW SDVFKRTXDQWHGHQRVMRXUVPDLVHOOHO¶pWDLWHQFRUHPRLQVjFHWWHpSRTXHDORUV TXHOHWHUPH©ௗSODJLDWௗªQ¶H[LVWDLWPrPHSDVWDQWODTXHVWLRQGXGURLWG¶DXWHXU Q¶pWDLWSDVDORUVSHUWLQHQWH+HQULRQHQHVWG¶DLOOHXUVXQERQH[HPSOHOXLTXL UHSUHQDLWGHVSDQVHQWLHUVGHWH[WHVG¶DXWUHVDXWHXUVSRXUOHVPHWWUHjODGLVSRVLWLRQGHVHVpOqYHV1¶HVWFHG¶DLOOHXUVSDVOjXQHGHVFDUDFWpULVWLTXHVWRXMRXUV

 Didier Henrion, compilateur de récréations mathématiques des années 1620

DFWXHOOHGXPpWLHUGHprofesseurௗ"&¶HVWjGLUHFHPpWLHUTXLFRQVLVWHGDYDQWDJHjHVVD\HUGHPHWWUHFHUWDLQHVQRWLRQVjODSRUWpHGHFHX[TXLDSSUHQQHQW TX¶jLQYHQWHUOHVFRQWHQXV /HVFRSLHUFROOHUFRXUDQWVDXMRXUG¶KXLOLHQWQRVFRQWHPSRUDLQVj+HQULRQ HWVHVFRPSDUVHVjWUDYHUVOHVVLqFOHVGHPrPHTXHOHVH[SpULHQFHVG¶pFULWXUH FROOHFWLYHORUVTX¶LOV¶DJLWGHWUDQVFULUHXQHSHQVpHpODERUpHHQFRPPXQ1RXV QHWROpURQVSOXVOHSODJLDWGHQRVWUDYDX[PDLVGDQVOHGRPDLQHGHVPDWKpPDWLTXHVTXLSHXWVHUHYHQGLTXHULQYHQWHXUௗ"(WHQSDUWLFXOLHUORUVTX¶LOV¶DJLW GH MHX[ PDWKpPDWLTXHV SRXU OHVTXHOV O¶LQWHUYHQWLRQ GX FUpDWHXU G¶pQRQFpV FRQVLVWH VRXYHQW HQ XQH PLVH HQ IRUPH G¶H[HUFLFHV FODVVLTXHV D¿Q GH OHV UHQGUHSOXVDWWUDFWLIV 'DQV OH FDV TXH QRXV DYRQV H[SRVp LO VHPEOH LPSRVVLEOH GH GpPrOHU O¶pFKHYHDXGHVpFULWVG¶+HQULRQ1RXVYHUURQVGRQFGDQVVDSHUVRQQHXQDFWHXU PDMHXUGHODFLUFXODWLRQGHVLGpHVGDQVODSUHPLqUHPRLWLpGX XVIIeVLqFOHHW O¶XQGHVURXDJHVSDUOHVTXHOVOHVQRXYHOOHVPDWKpPDWLTXHVGHVLQJpQLHXUVWULJRQRPpWULHHWORJDULWKPHVRQWpWpGLIIXVpHVGDQVXQSD\VTXLQHFRPSWDLWSDV HQFRUHG¶pFROHGpGLpHjODIRUPDWLRQGHVIXWXUHVpOLWHVVFLHQWL¿TXHV

Références bibliographiques %DFKHW&*  Problemes plaisans et delectables, qui se font par les nombres/\RQ3LHUUH5LJDXG &DWKDODQ$   L’arithmetique et maniere d’apprendre à chifrer & conter, par la plume & par les getz…/\RQ7KLEDXOW3D\DQ 'HOD5RFKHe   L’arismethique novellement composee par maistre Estienne de la roche dict Villefranche natif de Lyon sus le Rosne divisee en deux parties… /\RQ&RQVWDQWLQ)UDGLQ +DUG\&  Refutation du libelle de J. Pujos, intitulé Futilitez des raisonnemens, &c. Refutation de la fausse quadratrice du mesme Pujos. Troisieme refutation de la fausse quadrature de Mr. de Laleu, où il est demonstré que le quarré des huict neufviémes du diametre d’un cercle est SOXVJUDQGTXHOD¿JXUHGH;;,9FRVWH]FRQVFULWHLQGHSHQGDPPHQWGHOD XLVII proposition du premier livre d’Euclide3DULVVQ>5REHUW6DUD@ +HHIIHU$  5pFUpDWLRQV0DWKpPDWLTXHV  $6WXG\RQLWV$XWKRUVKLS6RXUFHVDQG,QÀXHQFHGibeciere   +HQULRQ'  Memoires mathematiques recueillis et dressez en faveur de la noblesse françoisePremier volume3DULVVQ>FKH]O¶DXWHXU©ௗHQ O¶,VOHGX3DODLVjO¶,PDJH60LFKHOௗª@



DFWXHOOHGXPpWLHUGHprofesseurௗ"&¶HVWjGLUHFHPpWLHUTXLFRQVLVWHGDYDQWDJHjHVVD\HUGHPHWWUHFHUWDLQHVQRWLRQVjODSRUWpHGHFHX[TXLDSSUHQQHQW TX¶jLQYHQWHUOHVFRQWHQXV /HVFRSLHUFROOHUFRXUDQWVDXMRXUG¶KXLOLHQWQRVFRQWHPSRUDLQVj+HQULRQ HWVHVFRPSDUVHVjWUDYHUVOHVVLqFOHVGHPrPHTXHOHVH[SpULHQFHVG¶pFULWXUH FROOHFWLYHORUVTX¶LOV¶DJLWGHWUDQVFULUHXQHSHQVpHpODERUpHHQFRPPXQ1RXV QHWROpURQVSOXVOHSODJLDWGHQRVWUDYDX[PDLVGDQVOHGRPDLQHGHVPDWKpPDWLTXHVTXLSHXWVHUHYHQGLTXHULQYHQWHXUௗ"(WHQSDUWLFXOLHUORUVTX¶LOV¶DJLW GH MHX[ PDWKpPDWLTXHV SRXU OHVTXHOV O¶LQWHUYHQWLRQ GX FUpDWHXU G¶pQRQFpV FRQVLVWH VRXYHQW HQ XQH PLVH HQ IRUPH G¶H[HUFLFHV FODVVLTXHV D¿Q GH OHV UHQGUHSOXVDWWUDFWLIV 'DQV OH FDV TXH QRXV DYRQV H[SRVp LO VHPEOH LPSRVVLEOH GH GpPrOHU O¶pFKHYHDXGHVpFULWVG¶+HQULRQ1RXVYHUURQVGRQFGDQVVDSHUVRQQHXQDFWHXU PDMHXUGHODFLUFXODWLRQGHVLGpHVGDQVODSUHPLqUHPRLWLpGX XVIIeVLqFOHHW O¶XQGHVURXDJHVSDUOHVTXHOVOHVQRXYHOOHVPDWKpPDWLTXHVGHVLQJpQLHXUVWULJRQRPpWULHHWORJDULWKPHVRQWpWpGLIIXVpHVGDQVXQSD\VTXLQHFRPSWDLWSDV HQFRUHG¶pFROHGpGLpHjODIRUPDWLRQGHVIXWXUHVpOLWHVVFLHQWL¿TXHV

Références bibliographiques %DFKHW&*  Problemes plaisans et delectables, qui se font par les nombres/\RQ3LHUUH5LJDXG &DWKDODQ$   L’arithmetique et maniere d’apprendre à chifrer & conter, par la plume & par les getz…/\RQ7KLEDXOW3D\DQ 'HOD5RFKHe   L’arismethique novellement composee par maistre Estienne de la roche dict Villefranche natif de Lyon sus le Rosne divisee en deux parties… /\RQ&RQVWDQWLQ)UDGLQ +DUG\&  Refutation du libelle de J. Pujos, intitulé Futilitez des raisonnemens, &c. Refutation de la fausse quadratrice du mesme Pujos. Troisieme refutation de la fausse quadrature de Mr. de Laleu, où il est demonstré que le quarré des huict neufviémes du diametre d’un cercle est SOXVJUDQGTXHOD¿JXUHGH;;,9FRVWH]FRQVFULWHLQGHSHQGDPPHQWGHOD XLVII proposition du premier livre d’Euclide3DULVVQ>5REHUW6DUD@ +HHIIHU$  5pFUpDWLRQV0DWKpPDWLTXHV  $6WXG\RQLWV$XWKRUVKLS6RXUFHVDQG,QÀXHQFHGibeciere   +HQULRQ'  Memoires mathematiques recueillis et dressez en faveur de la noblesse françoisePremier volume3DULVVQ>FKH]O¶DXWHXU©ௗHQ O¶,VOHGX3DODLVjO¶,PDJH60LFKHOௗª@



+HQULRQ' D Collection ou recueil de divers traictez mathematiques 3DULVVQ +HQULRQ' E Deux cens questions ingenieuses et recreatives extraictes et tirees des œuvres mathematiques de Vallentin Menher Allemand. Avec quelques annotations de Michel Coignet sur aucunes d’icelles questions. Le tout corrigé, recueilly, & mis en cet ordre, par D.H.P.E.M3DULVVQ +HQULRQ'  Nottes sur les recreations mathematiques (QOD¿QGH GLYHUV 3UREOHPHV VHUYDQW HQ O¶LQWHOOLJHQFH GHV FKRVHV GLI¿FLOHV  REVcures. Par D.H.p.E.M3DULV5ROHW%RXWRQQp +pULJRQH3   Cursus mathematicus nova brevi et clara methodo demonstratus, Per Notas reales et universales citra, usum cuiuscumque LGLRPDWLVLQWHOOHFWXIDFLOHV&RXUVPDWKHPDWLTXHGHPRQVWUpG¶XQHQRXvelle, briefve et claire methode, Par Notes réelles & universelles qui peuvent estre entenduës facilement sans l’usage d’aucune langue. Par Pierre Herigone, Mathematicien WRPHVIjIV). 3DULVO¶DXWHXUHW+HQU\ /H*UDV ,WDUG-  +HQULRQ'HQLVRU'LGLHU'DQV&&*LOOLVSLH)/+ROPHV 1.RHUWJH GLU  &RPSOHWH GLFWLRQDU\ RI VFLHQWL¿F ELRJUDSK\ 'pWURLW &KDUOHV6FULEQHU¶V6RQV /HXUHFKRQ-   Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux, En faict d’Arithmeticque, Geometrie, Mechanicque, Opticque, et autres parties de ces belles sciences3RQWj 0RXVVRQ-HDQ$SSLHU+DQ]HOHW /HXUHFKRQ- D  Recreation mathematicque… UppGLWLRQ  3RQWj 0RXVVRQ-HDQ$SSLHU+DQ]HOHW /HXUHFKRQ- E  Recreation mathematicque… Seconde edition, Reveüe, corrigée & augmentée 3DULV$QWKRLQH5RELQRW /HXUHFKRQ- F Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux… Augmentee en cette troisiesme Edition de SOXVLHXUV3UREOHPHVQRQHQFRUHYHX]ࣟ GHTXHOTXHV1RWHV UHPDUTXHV [de Claude Mydorge] servant a l’intelligence d’iceux3DULV-HDQ0RUHDX *XLOODXPH/R\VRQ /HXUHFKRQ-  Recreation mathematicque, composee de plusieurs problemes plaisants et facetieux en faict d’Arithmetique, Geometrie, Mechanique, Optique, & autres parties de ces belles sciences. Quatriesme edition, augmentée de plusieurs beaux Problemes, & de quelques nottes servant jO¶LQWHOOLJHQFHGHVFKRVHVGLI¿FLOHV REVFXUHVDYHFODFRUUHFWLRQG¶XQ grand nombre de fautes & erreurs commises aux precedentes editions. Par D.H.P.E.M3DULV5ROHW%RXWRQQp

 Didier Henrion, compilateur de récréations mathématiques des années 1620

GH0DQJLQ&  Problemata duo nobilissima, quorum nec analysin GeoPHWULFDP YLGHQWXU WHQXLVVH ,RDQQHV 5HJLRPRQWDQXV  3HWUXV 1RQLXVࣟ nec demonstrationem satis accuratam repræsentasse, Franciscus Vieta, & Marinus Ghetaldus, nunc demùm à Clemente Cyriaco diligentiùs elaborata…3DULV'DYLG/H&OHUF 0HQQKHU9  Arithmetique seconde$QYHUV-HDQ/RXs 0HQQKHU9  Cent questions ingenieuses et recreatives, pour delecter & aguiser l’entendement, de feu V. Menher Allemand. Souldées & ampli¿pHVSDUOHVUDLVRQV*HRPHWULTXHVUHTXLVHVjLFHOOHVSDU0LFKLHO&RLJQHW $QYHUV-HDQ:DHVEHUJKH 0HQQKHU9  Practique pour brievement apprendre à Ciffrer & tenir Livre de Comptes, avec la Regle de Coss, & Geometrie seconde$QYHUV JLGLXV'LHVW 0pWLQ)   /D IRUWL¿FDWLRQ JpRPpWULTXH GH -HDQ (UUDUG HW O¶pFROH IUDQoDLVH GH IRUWL¿FDWLRQ   7KqVH GH 'RFWRUDW VRXWHQXH OH  GpFHPEUHj1DQWHVVRXVODGLUHFWLRQG¶(YHO\QH%DUELQ 8QLYHUVLWp GH1DQWHV 0LFKDXG/*   Biographie universelle, ancienne et moderne… WRPH;,; epGLWLRQ UHYXH FRUULJpH HW FRQVLGpUDEOHPHQW DXJPHQWpH G¶DUWLFOHVRPLVRXQRXYHDX[ 3DULVFKH]PDGDPH&'HVSODFHV 0\GRUJH&  Examen du livre des Recreations mathematiques et de ses Problemes en Geometrie, Mechanique, Optique, & Catoptrique…3DULV 5ROHW%RXWRQQp>(W$QWKRLQH5RELQRWSRXUODVHFRQGHSDUWLH@ 5XHOOHW$  /D0DLVRQGH6DORPRQ+LVWRLUHGXSDWURQDJHVFLHQWL¿TXH et technique en France et en Angleterre au XVIIe siècle5HQQHV 385



PRATIQUES

POUR L’ENSEIGNANT OU LE FORMATEUR



,O HVW WRXW j IDLW HQYLVDJHDEOH GH GRQQHU j pWXGLHU GHV H[WUDLWV GH WH[WHV GH /HXUHFKRQ j GHV pOqYHV GH FROOqJH YRLUHGHF\FOHSRXUFHX[TXLQHGHPDQGHQWSDVGHFRPSpWHQFHVHQDOJqEUH/HVWH[WHVGH0HQQKHUVRQWSOXVGLI¿FLOHVHWQHGHYUDLHQWrWUHDERUGpVTX¶DXO\FpH 3DU DLOOHXUV LO HVW LQWpUHVVDQW GH OHV DERUGHU HQ IRUPDWLRQ FDU LOV VRQW GpVWDELOLVDQWV SRXU OHV MHXQHV HQVHLJQDQWVTXLQ¶RQWSDVO¶KDELWXGHG¶pWXGLHUGHVWH[WHVDOJpEULTXHV UpGLJpV GH FHWWH IDoRQ / REVFXULWp GH FHUWDLQV SDVVDJHVQpFHVVLWHXQWUDYDLOGHUHFRQVWUXFWLRQTXLSHUPHW GH UHPHWWUH HQ FDXVH O¶LPDJH WUDGLWLRQQHOOH GH O¶pFULWXUH PDWKpPDWLTXHXQLYRTXHHW¿DEOHj /¶RXYUDJH GH UpFUpDWLRQV GH /HXUHFKRQ SHXW DXVVL VHUYLUGHEDVHjGHVDFWLYLWpVGpSDVVDQWOHVWULFWFDGUHpFULW HWPDWKpPDWLTXH,OFRQWLHQWHQHIIHWGHVSUpVHQWDWLRQVGH GLVSRVLWLIVPDWpULHOVHWGHVTXHVWLRQVFRQFUqWHV RXSVHXGR FRQFUqWHV IDYRULVDQWXQHDSSURFKHH[SpULPHQWDOH

Sylviane R. Schwer En hommage à Anne-Marie Décaillot (1940-2011)

REVENIR AUX MATHÉMATIQUES PAR LES RÉCRÉATIONS : L’EXEMPLE DE HENRI AUGUSTE DELANNOY (1833-1915)

Fig. 1 – Henri Auguste Delannoy [Collection du Musée de Guéret, photographie M.-A. Baldensperger].

'DQVODOLWWpUDWXUHPDWKpPDWLTXHOHQRP'HODQQR\HVWDVVRFLpjGHX[VXLWHV GHQRPEUHV/¶XQHDSSDUDvWGDQVODOLWWpUDWXUHIUDQFRSKRQH (UUHUDௗ7RXFKDUG (OOHFRUUHVSRQGjODUpFXUUHQFH a pq  a p íq a pq í DYHFa q  a p   /D VXLWH GHV QRPEUHV FHQWUDX[ a nn  HVW UpIpUHQFpH VRXV OH QXPpUR (,6 $GHO¶HQF\FORSpGLHHQOLJQHGHVVXLWHVG¶HQWLHUV 6ORDQH HWFRUUHVSRQG DX[FRHI¿FLHQWVFHQWUDX[ELQRPLDX[a n,n ௘ = c 2n m = (2n)2! DSSHOpV©ௗQRPEUHV n (n!) GH &DWDODQௗª &HWWH VXLWH HVW pJDOHPHQW DVVRFLpH DX[ QRPV G¶(XOHU 6HJQHU &DWDODQYRLUH'\FN&HVQRPEUHVGpQRPEUHQWGHQRPEUHXVHVIDPLOOHVG¶REMHWV6WDQOH\HQH[KLEH 6WDQOH\  Tableau 1 – Suite française : a(p, q) = a(p − 1, q) + a(p, q − 1) ; a(0, q) = a(p, 0) = 1. 

















1



















2



















6



















20



















70



















252



















924



















3 432

/DVHFRQGHVXLWHDQJORVD[RQHFRUUHVSRQGjODUpFXUUHQFH d p, q  G Síq G pTí G p – Tí ࣟ DYHF d 0 q  G p 0  . /HVQRPEUHVGLDJRQDX[d pp VRQWFRQQXVVRXVOHQRPGHVXLWHFHQWUDOHGH 'HODQQR\GHQXPpUR(,6$GHODPrPHHQF\FORSpGLH6XODQNH   D UpSHUWRULp IDPLOOHV G¶REMHWV GpQRPEUpHV SDU FHV QRPEUHV &¶HVW FHWWH VXLWHTXLUHVWHDVVRFLpHj'HODQQR\ 1

1. :HLVVWHLQ(:Delannoy Number'LVSRQLEOHHQOLJQHVXUOHVLWHGH0DWK:RUOG± $:ROIUDP:HE5HVRXUFHKWWSPDWKZRUOGZROIUDPFRP'HODQQR\1XPEHUKWPO! FRQVXOWpOHHURFWREUH   :LNLSHGLD  Nombre de Delannoy'LVSRQLEOHHQOLJQHVXUKWWSVIUZLNLSHGLD RUJZLNL1RPEUHBGHB'HODQQR\! FRQVXOWpOHHURFWREUH 

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

Tableau 2 – Suite anglaise : d(p, q) = d(p − 1, q) + d(p, q − 1) + d(p – 1, q − 1) ; d(0, q) = d(p, 0) = 1. q































































































































p

&HV GHX[ VXLWHV VH FDOFXOHQW j O¶DLGH GH WDEOHDX[ GpFULYDQW OHV SDUFRXUV PLQLPDX[G¶XQHWRXUHWGHODUHLQHSDUSDVGHXQG¶XQMHXG¶pFKHFVHQSDUWDQW G¶XQGHVFRLQVHWHQVHGLULJHDQWYHUVOHFRLQRSSRVpDXVVLGpQRPPpVpFKLTXLHUVDULWKPpWLTXHV 6FKZHU /HSUHPLHUWDEOHDXHVWFRQQXpJDOHPHQW VRXVOHQRPGH©ௗWDEOHDXDULWKPpWLTXHGH)HUPDWௗªRXVLO¶RQSHQFKHODWrWH GH ƒ YHUV OD JDXFKH GH ©ௗWULDQJOH GH 3DVFDOௗª ,O pWDLW GpMj FRQQX GDQV OH PRQGHDUDEHSDUH[HPSOHFKH]OHPDWKpPDWLFLHQSKLORVRSKHHWSRqWHDUDEH 2PDU .KD\\jP   GDQV GHV PDQXVFULWV FKLQRLV GX XIIIeVLqFOH DX XVIeVLqFOH HQ (XURSH SDU H[HPSOH FKH] 7DUWDJOLD   &KDTXH QRPEUHG¶XQHFDVHHVWODVRPPHGXQRPEUHGHODFDVHYRLVLQHJDXFKHHWGH ODFDVHYRLVLQHVXSpULHXUH/HVHFRQGWDEOHDXHVWSURSUHj'HODQQR\&KDTXH QRPEUHG¶XQHFDVHHVWODVRPPHGXQRPEUHGHODFDVHYRLVLQHJDXFKHGHOD FDVHYRLVLQHVXSpULHXUHHWGHODFDVHYRLVLQHVXSpULHXUHGLDJRQDOHJDXFKH &HV WDEOHDX[ 2 PLV HQ °XYUH SDU 'HODQQR\ GDQV OHV DQQpHV  RQWpWpUHGpFRXYHUWVHWUppWXGLpVjSDUWLUGHHQUHODWLRQDYHFOHVGpSODFHPHQWV GH SDUWLFXOHV GDQV GHV UpVHDX[ WUqV OLpV DYHF OD WKpRULH GX PRXYHPHQW EURZQLHQ HW OD WKpRULH FODVVLTXH GHV SUREDELOLWpV )HOOHU   'HODQQR\V¶HVWpJDOHPHQWLQWpUHVVpDX[pFKLTXLHUVDULWKPpWLTXHVGHIRUPHV HWGHFRQGLWLRQVLQLWLDOHVYDULpHV6HVpFKLTXLHUVWULDQJXODLUHVSHQWDJRQDX[ KH[DJRQDX[OXLRQWSHUPLVGHPRGpOLVHUHWGHUpVRXGUHVLPSOHPHQWGHVSUREOqPHVGLI¿FLOHVGHIDoRQYLVXHOOHQRWDPPHQWGHVTXHVWLRQVGHSUREDELOLWpV FRPPHOHVSUREOqPHVGHVFUXWLQVHWOHSUREOqPHGH©ௗODGXUpHGXMHXௗªRX©ௗOD UXLQHGXMRXHXUௗªH[DPLQpVHQWUHDXWUHVSDU+X\JKHQVGH0RLYUH/DJUDQJH 2. &HVWDEOHDX[DULWKPpWLTXHVFRQVWUXLWVjSDUWLUG¶XQHIRUPXOHUHOLDQWOHVYDOHXUVG¶XQH FHOOXOHjGHVYDOHXUVGHFHOOXOHVGpMjGRQQpHVRXFDOFXOpHVFRQVWLWXHQWHQVRLGHVVRXUFHV G¶H[HUFLFHVGHFDOFXOVDULWKPpWLTXHVLQpSXLVDEOHVGpFOLQDEOHVjSDUWLUGXF\FOH



$PSqUH%HUWUDQGGRQWYRLFLO¶pQRQFpLQLWLDOUHSULVSDU'HODQQR\ *ROGVWHLQ ௗ6FKZHU  8QMRXHXUH[SRVHjXQMHXGHKDVDUGODneSDUWLHGHVDIRUWXQHHW UHQRXYHOOHFHWWHpSUHXYHLQGp¿QLPHQW4XHOOHHVWODSUREDELOLWp SRXUTX¶LOVHUXLQHHWTXHODNeSDUWLHOXLHQOqYHVRQGHUQLHUpFXௗ"

/XFDV   D FRQVDFUp j FHV WUDYDX[ OH FKDSLWUH GpGLp j OD JpRPpWULH GH VLWXDWLRQ GH VRQ RXYUDJH GH Théorie des nombres /XFDV   /HVGpSODFHPHQWVGHSLqFHVVXUGHVpFKLTXLHUVUHOqYHQWGHVUpFUpDWLRQVPDWKpPDWLTXHV/HVGpSODFHPHQWVGHSDUWLFXOHVRXG¶LQIRUPDWLRQVXUGHVJULOOHVHQ OLHQDYHFO¶pWXGHGXPRXYHPHQWEURZQLHQHWGHVUpVHDX[VRQWGHVDSSURFKHV PDWKpPDWLTXHVFODVVLTXHVSRXUODSK\VLTXHTXDQWLTXHHWO¶LQIRUPDWLTXH/¶DXWHXUHDUHQFRQWUpOHVQRPEUHVGH'HODQQR\GDQVOHFDGUHGHVHVWUDYDX[VXUOHV UHSUpVHQWDWLRQVGXWHPSVHWOHUDLVRQQHPHQWWHPSRUHO 6FKZHU (QHIIHW FHV VXLWHV LQWHUYLHQQHQW QDWXUHOOHPHQW SRXU GpQRPEUHU OH QRPEUH GH VLWXDWLRQV SRVVLEOHV GH GHX[ FKDvQHV GH SRLQWV VXU XQH PrPH OLJQH OD SUHPLqUH VLO¶RQH[FOXWODVXSHUSRVLWLRQGHSRLQWVGHO¶XQHGHVFKDvQHVDYHFGHVSRLQWV GHO¶DXWUHFKDvQHODVHFRQGHVLO¶RQDXWRULVHOHVVXSHUSRVLWLRQV3DUH[HPSOH VLODSUHPLqUHFKDvQHSRVVqGHGHX[SRLQWVUHSUpVHQWpHSDUOHPRW$$HWOD VHFRQGHXQVHXOSRLQWUHSUpVHQWpHSDU%LO\DWURLV±VRLWa  ±IDoRQVGH UHSUpVHQWHUOHXUVVLWXDWLRQVUHODWLYHVVDQVVXSHUSRVLWLRQ%$$$%$HW$$% A HWFLQT±VRLWd  ±DYHFVXSHUSRVLWLRQHQDMRXWDQWOHVVpTXHQFHV c mA et B A Ac m  B

1RXVDYRQVXQWpPRLJQDJHLQGLTXDQWTXH'HODQQR\HVWELHQGHYHQXPDWKpPDWLFLHQJUkFHDX[UpFUpDWLRQVPDWKpPDWLTXHV,OV¶DJLWG¶XQHOHWWUH 3TX¶+HQUL )OHXU\ 4OXLDGUHVVHOHMXLOOHW

3. /HVOHWWUHVFLWpHVVRQWGHVOHWWUHVPDQXVFULWHVGHODFRUUHVSRQGDQFHSDVVLYHGH'HODQQR\ FRQVHUYpHVGDQVOHVDUFKLYHVGHOD661$+& 4. 3LHUUH+HQU\)OHXU\ " HVWOLFHQFLpqVVFLHQFHVPDWKpPDWLTXHVHWGLUHFWHXU G¶LQVWLWXWLRQ SUpSDUDQW DX[ FRQFRXUV GHV JUDQGHV pFROHV 6D QRPEUHXVH FRUUHVSRQGDQFHDYHF'HODQQR\SRUWHG¶XQHSDUWVXUGHVSUREOqPHVSKLORVRSKLFRPDWKpPDWLTXHV HW G¶DXWUH SDUW VXU OHV MHX[ PDWKpPDWLTXHV ,O YHXW HQ SDUWLFXOLHU FKDVVHU O¶LQ¿QL GH O¶DQDO\VHHWGHODJpRPpWULHHWLOUHMHWWHODGp¿QLWLRQGHVSUREDELOLWpVFRPPHUDSSRUWGX QRPEUHGHFDVIDYRUDEOHVVXUOHQRPEUHWRWDOGHVFDVHQVHIRQGDQWVXULa LogiqueGH 3RUW5R\DO)OHXU\LQYHQWHGHVMHX[FRPPHOH&DPpOpRQHWOH3DUDGR[DOTXH/XFDVGpFULWGDQVOHWRPH,,,GHVRécréations mathématiques)OHXU\GHPDQGHj'HODQQR\XQH UpYLVLRQTXLSDUDvWGDQVOHVQRWHVGXWRPH,9 /XFDV ,OUHQWUHjOD6RFLpWp PDWKpPDWLTXHGH)UDQFHHQSDUUDLQpSDU+HQUL'HODQQR\HW'pVLUp$QGUp

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

9RXV P¶DYH] GLW TXH F¶HVW j O¶RFFDVLRQ GHV MHX[ H[SOLTXpV GDQV O¶RXYUDJH GH /XFDV TXH YRXV rWHV UHYHQX DX[ PDWKpPDWLTXHV GHSXLV ORQJWHPSV GpODLVVpHV VLQRQ RXEOLpHV /D WKpRULH GH FHV MHX[ YRXV FRQGXLVDLW QDWXUHOOHPHQW j GHV TXHVWLRQV GH SUREDELOLWp

1RWUHEXWGDQVFHFKDSLWUHHVWGHPRQWUHUO¶DFWXDOLWpGXFRQWH[WHVFLHQWL¿TXHGHODVHFRQGHPRLWLpGX XIXeVLqFOHWHUUHDXGHO¶pPHUJHQFHGHVUpFUpDWLRQVPDWKpPDWLTXHVQRQVHXOHPHQWGDQVGHVTXRWLGLHQVPDLVDXVVLGDQVXQH UHYXHjYRFDWLRQGHGLIIXVLRQHWGHIRUPDWLRQVFLHQWL¿TXHODRevue scienti¿TXHFUppHSRXUUpSRQGUHjXQGp¿FLWFULDQWGHVFLHQWL¿TXHV 5/HVUpFUpDWLRQV VFLHQWL¿TXHV\VRQWSUpVHQWpHVVRXVXQDQJOHKLVWRULTXHHWDQDO\VpHVPDWKpPDWLTXHPHQW1RXVLQWHUURJHRQVDORUVOHEXWGHFHVUpFUpDWLRQVPDWKpPDWLTXHV V¶DJLWLOGHGRQQHUOHJR€WGHVPDWKpPDWLTXHVௗ"UpYHLOOHUFHJR€WV¶LOH[LVWHDX SUpDODEOHௗ"GHVGp¿VHQWUHPDWKpPDWLFLHQVௗ"

Delannoy, un militaire de carrière de 1855 à 1888 +HQU\$XJXVWH'HODQQR\  LQWqJUHO¶eFROHSRO\WHFKQLTXHjYLQJW DQV SXLV OH FRUSV GH O¶DUPHPHQW DUWLOOHULH  HQ ,O SDUWLFLSH j OD FDPSDJQHG¶,WDOLHHQTXLOXLYDXWODPpGDLOOHG¶,WDOLHHWODPpGDLOOHGHOD YDOHXUPLOLWDLUHGH6DUGDLJQH,OUHMRLQWOHFRUSVGHO¶LQWHQGDQFHHQ,O SDVVHWURLVDQVHQ$IULTXHGHjG¶DERUGj$OJHUSXLVj6LGL%HO $EEqVRLOJqUHXQHpSLGpPLHGHW\SKXVFHTXLOXLYDXWOHJUDGHGHFKHYDOLHU GH OD OpJLRQ G¶KRQQHXU HQ ,O SDUWLFLSH j GHX[ UpXQLRQV FODVVpHV VHFUHWGpIHQVHDX[DUFKLYHVGHVDUPpHV GHQpJRFLDWLRQVDYHFOHV$OOHPDQGV OHMXLOOHWHWOHPDUVF¶HVWjGLUHDYDQWHWDSUqVODJXHUUHGLWH GH,OUHQWUHGp¿QLWLYHPHQWHQ)UDQFHFRPPHVRXVLQWHQGDQWVXFFHVVLYHPHQWj/LPRJHV/LOOH$QJRXOrPH2UOpDQV,OGpPLVVLRQQHHQHWUHYLHQW V¶LQVWDOOHUGDQVOH*XpUpWRLVWHUUHIDPLOLDOHSRXUV¶DGRQQHUjVHVSDVVHWHPSV IDYRULV OHV PDWKpPDWLTXHV HW OD FKDVVH 6HV VXSpULHXUV RQW UpJXOLqUHPHQW QRWpWRXWDXORQJGHVDFDUULqUHFRPPHDSWLWXGHSDUWLFXOLqUHXQJR€WPDUTXp SRXUOHVVFLHQFHV

5. ,OQRXVDVHPEOpLPSRUWDQWGHGpYHORSSHUFHWWHSDUWLHGHO¶KLVWRLUH±GpYHORSSHPHQWTXL UHSUHQGOHVWUDYDX[GH'pFDLOORW  HWGH6FKZHUHW&DUGLQDO  ±pWDQWGRQQp TXHQRXVDYRQVpWpFRPPH$QQH0DULH'pFDLOORWIUDSSpHSDUODVLPLOLWXGHGHFHUWDLQV GpEDWVDYHFFHX[GHQRWUHpSRTXH



9RXV P¶DYH] GLW TXH F¶HVW j O¶RFFDVLRQ GHV MHX[ H[SOLTXpV GDQV O¶RXYUDJH GH /XFDV TXH YRXV rWHV UHYHQX DX[ PDWKpPDWLTXHV GHSXLV ORQJWHPSV GpODLVVpHV VLQRQ RXEOLpHV /D WKpRULH GH FHV MHX[ YRXV FRQGXLVDLW QDWXUHOOHPHQW j GHV TXHVWLRQV GH SUREDELOLWp

1RWUHEXWGDQVFHFKDSLWUHHVWGHPRQWUHUO¶DFWXDOLWpGXFRQWH[WHVFLHQWL¿TXHGHODVHFRQGHPRLWLpGX XIXeVLqFOHWHUUHDXGHO¶pPHUJHQFHGHVUpFUpDWLRQVPDWKpPDWLTXHVQRQVHXOHPHQWGDQVGHVTXRWLGLHQVPDLVDXVVLGDQVXQH UHYXHjYRFDWLRQGHGLIIXVLRQHWGHIRUPDWLRQVFLHQWL¿TXHODRevue scienti¿TXHFUppHSRXUUpSRQGUHjXQGp¿FLWFULDQWGHVFLHQWL¿TXHV 5/HVUpFUpDWLRQV VFLHQWL¿TXHV\VRQWSUpVHQWpHVVRXVXQDQJOHKLVWRULTXHHWDQDO\VpHVPDWKpPDWLTXHPHQW1RXVLQWHUURJHRQVDORUVOHEXWGHFHVUpFUpDWLRQVPDWKpPDWLTXHV V¶DJLWLOGHGRQQHUOHJR€WGHVPDWKpPDWLTXHVௗ"UpYHLOOHUFHJR€WV¶LOH[LVWHDX SUpDODEOHௗ"GHVGp¿VHQWUHPDWKpPDWLFLHQVௗ"

Delannoy, un militaire de carrière de 1855 à 1888 +HQU\$XJXVWH'HODQQR\  LQWqJUHO¶eFROHSRO\WHFKQLTXHjYLQJW DQV SXLV OH FRUSV GH O¶DUPHPHQW DUWLOOHULH  HQ ,O SDUWLFLSH j OD FDPSDJQHG¶,WDOLHHQTXLOXLYDXWODPpGDLOOHG¶,WDOLHHWODPpGDLOOHGHOD YDOHXUPLOLWDLUHGH6DUGDLJQH,OUHMRLQWOHFRUSVGHO¶LQWHQGDQFHHQ,O SDVVHWURLVDQVHQ$IULTXHGHjG¶DERUGj$OJHUSXLVj6LGL%HO $EEqVRLOJqUHXQHpSLGpPLHGHW\SKXVFHTXLOXLYDXWOHJUDGHGHFKHYDOLHU GH OD OpJLRQ G¶KRQQHXU HQ ,O SDUWLFLSH j GHX[ UpXQLRQV FODVVpHV VHFUHWGpIHQVHDX[DUFKLYHVGHVDUPpHV GHQpJRFLDWLRQVDYHFOHV$OOHPDQGV OHMXLOOHWHWOHPDUVF¶HVWjGLUHDYDQWHWDSUqVODJXHUUHGLWH GH,OUHQWUHGp¿QLWLYHPHQWHQ)UDQFHFRPPHVRXVLQWHQGDQWVXFFHVVLYHPHQWj/LPRJHV/LOOH$QJRXOrPH2UOpDQV,OGpPLVVLRQQHHQHWUHYLHQW V¶LQVWDOOHUGDQVOH*XpUpWRLVWHUUHIDPLOLDOHSRXUV¶DGRQQHUjVHVSDVVHWHPSV IDYRULV OHV PDWKpPDWLTXHV HW OD FKDVVH 6HV VXSpULHXUV RQW UpJXOLqUHPHQW QRWpWRXWDXORQJGHVDFDUULqUHFRPPHDSWLWXGHSDUWLFXOLqUHXQJR€WPDUTXp SRXUOHVVFLHQFHV

5. ,OQRXVDVHPEOpLPSRUWDQWGHGpYHORSSHUFHWWHSDUWLHGHO¶KLVWRLUH±GpYHORSSHPHQWTXL UHSUHQGOHVWUDYDX[GH'pFDLOORW  HWGH6FKZHUHW&DUGLQDO  ±pWDQWGRQQp TXHQRXVDYRQVpWpFRPPH$QQH0DULH'pFDLOORWIUDSSpHSDUODVLPLOLWXGHGHFHUWDLQV GpEDWVDYHFFHX[GHQRWUHpSRTXH



'HODQQR\HQWUHjO¶eFROHLPSpULDOHSRO\WHFKQLTXHHQMXVWHDSUqVOD JUDQGH UpIRUPH GH O¶HQVHLJQHPHQW GH O¶eFROH PHQpH SDU 8UEDLQ OH 9HUULHU VHORQOHVLQVWUXFWLRQVGXPLQLVWUHGHOD*XHUUH /D&RPPLVVLRQGRQWYRXVDYH]ODSUpVLGHQFHUHFRQQDvWUDVDQV GRXWH >«@ TX¶LO FRQYLHQW GH UHQIHUPHU OHV SURJUDPPHV GDQV OHV OLPLWHV TXL GRLYHQW V¶DSSOLTXHU QRQ SDV j TXHOTXHV HVSULWV G¶pOLWHPDLVjODPR\HQQHGHVLQWHOOLJHQFHV>«@TX¶HQ¿QGDQV O¶HQVHLJQHPHQWGHO¶eFROHHOOHPrPHLOLPSRUWHGHUHVWUHLQGUH O¶pWHQGXHGHV&RXUVPDWKpPDWLTXHVG¶HQpOLPLQHUXQHIRXOHGH WKpRULHV DEVWUDLWHV TXL QH GRLYHQW MDPDLV WURXYHU G¶DSSOLFDWLRQ GDQVDXFXQGHVVHUYLFHVSXEOLFVHWG¶\LQWURGXLUHDXFRQWUDLUH GHVTXHVWLRQVGHSUDWLTXHQRQVHXOHPHQWjFDXVHGHOHXUXWLOLWp SURSUHPDLVDXVVLSDUFHTX¶HOOHVVRQWQpFHVVDLUHVjO¶pWXGHFRPSOqWHGHODWKpRULH

¬ O¶pSRTXH FHWWH pFROH PLOLWDLUH HVW GHVWLQpH VSpFLDOHPHQW j IRUPHU GHV pOqYHVSRXUO¶DUPpHHWOHVVHUYLFHVSXEOLFVTXLH[LJHQWGHVFRQQDLVVDQFHVpWHQGXHVGDQVOHVVFLHQFHVPDWKpPDWLTXHVSK\VLTXHVHWFKLPLTXHV/HVFRXUVGH PDWKpPDWLTXHVGLVSHQVpVjO¶ÉFROHDXFRXUVGHVGHX[DQVGHIRUPDWLRQVRQW HVVHQWLHOOHPHQWGHO¶DQDO\VHHWGHODPpFDQLTXH/DGHYLVHGHO¶eFROHGRQQpH SDU1DSROpRQSUHPLHUPour la patrie, les sciences et la gloireHVWFRQVHUYpH &HWWHWUDQVIRUPDWLRQHVWOHUpVXOWDWG¶XQHSpULRGHG¶DXWRULWDULVPHHWGHFHQVXUHGX6HFRQG(PSLUHTXLLPSRVDGHVUpIRUPHVVFRODLUHVLPSRSXODLUHVWHOOH HQWUH HW OD UpIRUPH GLWH GH ©ELIXUFDWLRQªREOLJHDQWOHV O\FpHQV jFKRLVLUjOD¿QGHODFODVVHGHTXDWULqPHHQWUHXQH¿OLqUHOLWWpUDLUHHWXQH ¿OLqUH VFLHQWL¿TXH (OOH LQVWLWXD GHV SURJUDPPHV REOLJDWRLUHV TXH OHV HQVHLJQDQWVGHYDLHQWVXLYUHjODOHWWUHH[LJHDQWREpLVVDQFHHWVRXPLVVLRQGHOHXU SDUW +XOLQ ௗ %HOKRVWH *LVSHUW HW +XOLQ   3RXU OH PDWKpPDWLFLHQ 0LFKHO&KDVOHVLOV¶DJLWQLSOXVQLPRLQVGH VXEVWLWXHUDX[pWXGHVLQWHOOHFWXHOOHVHWWKpRULTXHVVpULHXVHVGHV pWXGHV WURQTXpHV IRUPpHV GH ODPEHDX[ GH WKpRULH D\DQW SRXU REMHWVXSUrPHHWLPPpGLDWGHVDSSOLFDWLRQVSUDWLTXHV

/HUHWDUGGHODVFLHQFHIUDQoDLVHVXUODVFLHQFHDOOHPDQGHHQSDUWLFXOLHU PDLV DXVVL DQJORVD[RQQH HVW XQ WKqPH UpFXUUHQW j O¶DXEH GH OD VHFRQGH PRLWLpGX XIXeVLqFOH(Q-HDQ%DSWLVWH'XPDVFKLPLVWHHWSURIHVVHXU DX&ROOqJHGH)UDQFHGDQVVRQUDSSRUWDXPLQLVWqUHGHO¶,QVWUXFWLRQSXEOLTXH

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

VRXOLJQH OD PLVqUH EXGJpWDLUH GHV XQLYHUVLWpV IUDQoDLVHV HW OD ULFKHVVH GHV XQLYHUVLWpV pWUDQJqUHV HW SURSRVH XQH VpULH GH UpIRUPHV GH O¶HQVHLJQHPHQW VFLHQWL¿TXH /H9HUULHU DORUV GLUHFWHXU GH O¶2EVHUYDWRLUH VH SODLQW HQ GHVGp¿FLHQFHVGHO¶DVWURQRPLHIUDQoDLVH&HVPLVHVHQJDUGHODLVVHQWWRWDOHPHQWLQGLIIpUHQWOH6HFRQG(PSLUH&¶HVWGDQVOHVDQQpHVTXHOHVFKRVHV pYROXHQWOHVDYDQFpHVVFLHQWL¿TXHVGHYLHQQHQWGHVpOpPHQWVGHODJUDQGHXU QDWLRQDOH$LQVL3DVWHXUDORUVGLUHFWHXUGHO¶eFROHQRUPDOHVXSpULHXUHpFULW GDQV VD OHWWUH DX GLUHFWHXU GH O¶HQVHLJQHPHQW VXSpULHXU G¶DR€W  $1 ) 6 4XDQG OD VFLHQFH VHUDWHOOH GLJQHPHQW HQFRXUDJpH GDQV QRWUH SD\Vௗ"9RXVVHULH]KXPLOLp0RQVLHXUOHGLUHFWHXUVLYRXVSDUFRXULH] OHV ODERUDWRLUHV OHV SOXV KXPEOHV GHV XQLYHUVLWpV GH O¶$OOHPDJQH RX GH O¶$QJOHWHUUH 1RXV VHUYLRQV GH PRGqOHV LO \DYLQJWDQVSRXUQRVYRLVLQV,OVQRXVRQWWHOOHPHQWGHYDQFpV TX¶DXMRXUG¶KXLLOVVHULHQWGHQRWUHPLVqUH(WGpMjRQHQYRLWOHV IUXLWV9RXVHQWHQGUH]ELHQW{WSDUOHUGHVSOXVDGPLUDEOHVGpFRXYHUWHVVXUGHX[QRXYHDX[PpWDX[DOFDOLQVHWVXUODFRQVWLWXWLRQHW ODQDWXUHGHVVXEVWDQFHVTXLFRPSRVHQWO¶DWPRVSKqUHGXVROHLO 9RXVDXUH]HQPrPHWHPSVODGRXOHXUG¶DSSUHQGUHTXHOD)UDQFH HVWDEVHQWHGHFHVDGPLUDEOHVUpVXOWDWVHWTXHODVFLHQFHOHVGRLWj SHXSUqVWRXWHQWLHUVjGHX[VDYDQWVGHODSHWLWHXQLYHUVLWpG¶+HLGHOEHUJ00%XQVHQHW.LUFKKRZ'DQVYLQJWDQVQRXVVHURQV jODUHPRUTXHGHO¶$OOHPDJQHHWGHO¶$QJOHWHUUHVLOHVFKRVHV UHVWHQWFHTX¶HOOHVVRQW&UR\H]PRL0RQVLHXUOH'LUHFWHXUOH PDOHVWSURIRQG-¶DXUDLVELHQjYRXVGLUHVXUFHVXMHW

¬SDUWLUGHSDUDLVVHQWGLIIpUHQWVUDSSRUWVVXUO¶©pWDWGHVOHWWUHVHWGHV SURJUqVGHVVFLHQFHVHQ)UDQFHª/HPLQLVWUH9LFWRU'XUX\Q¶DWWHQGSDVSRXU SUHQGUHOHVSUHPLqUHVGpFLVLRQVFUpDQWGqVSRXUSDOOLHUXQHLQVXI¿VDQFH GHODUHFKHUFKHHQ)UDQFHGDQVWRXVOHVGRPDLQHVO¶eFROHSUDWLTXHGHVKDXWHV pWXGHVGRQWOHSURMHWGDWHGH/HPDWKpPDWLFLHQ&KDVOHVHQHVWOHSUHPLHU SUpVLGHQW 6XLWHjXQHVROOLFLWDWLRQGXPLQLVWqUHGHO¶,QVWUXFWLRQSXEOLTXHOHPDWKpPDWLFLHQ*DVWRQ'DUERX[DYHFODFROODERUDWLRQGH00+RHOHW/°Z\FUpH HQ PDUV OH Bulletin des sciences mathématiques et astronomiques &H EXOOHWLQ SRUWH FRPPH HQWrWH ©ELEOLRWKqTXH GH O¶eFROH GHV KDXWHV pWXGHV

6. $UFKLYHV1DWLRQDOHVGRVVLHU)FLWpSDU'pFDLOORW  



SXEOLpHVRXVOHVDXVSLFHVGXPLQLVWqUHGHO¶,QVWUXFWLRQSXEOLTXHª/¶DPELWLRQ GHVRQEXOOHWLQHVWQRQSDVGHSXEOLHUGHVPpPRLUHVRULJLQDX[HWLQpGLWVPDLV GHUHQGUHFRPSWHUpJXOLqUHPHQWGHVWUDYDX[GHWRXWHQDWXUHGDQVOHVGRPDLQHV PDWKpPDWLTXHV RX DVWURQRPLTXHV SXEOLpV VRLW HQ )UDQFH VRLW j O¶pWUDQJHU 'DUERX[V¶DGUHVVHDLQVLj+RXsO 'pFDLOORW  -HYRXVGLVDLVTXHQRXVDYRQVEHVRLQGHUHIDLUHQRWUHHQVHLJQHPHQW VXSpULHXU -H SHQVH TXH YRXV rWHV GH PRQ DYLV OHV$OOHPDQGVQRXVHQIRQFHQWSDUOHQRPEUHOjFRPPHDLOOHXUV-HFURLV TXH VL FHOD FRQWLQXH OHV ,WDOLHQV QRXV GpSDVVHURQW DYDQW SHX $XVVLWkFKRQVDYHFQRWUH%XOOHWLQGHUpYHLOOHUFHIHXVDFUpHWGH IDLUHFRPSUHQGUHDX[)UDQoDLVTX¶LO\DXQWDVGHFKRVHVGDQVOH PRQGHGRQWLOVQHVHGRXWHQWSDVHWTXHVLQRXVVRPPHVWRXMRXUV OD*UUUDQGHQDWLRQRQQHV¶HQDSHUoRLWJXqUHjO¶pWUDQJHU

/DGpIDLWHGHOD)UDQFHGHYDQWOD3UXVVHUHODQFHHWDPSOL¿HOHVFULWLTXHVGHV VDYDQWVIUDQoDLVF¶HVWHQHIIHWGLVHQWLOVODVFLHQFHDOOHPDQGHTXLDJDJQp ODJXHUUH 'pFDLOORW 'DQVXQDUWLFOHGHPDUVSXEOLpGDQVLe Salut publicGH/\RQ3DVWHXUpFULW -HPHSURSRVHGHGpPRQWUHUGDQVFHWpFULWTXHVLDXPRPHQWGX SpULOVXSUrPHOD)UDQFHQ¶DSDVWURXYpOHVKRPPHVVXSpULHXUV SRXUPHWWUHHQ°XYUHVHVUHVVRXUFHVHWOHFRXUDJHGHVHVHQIDQWV LOIDXWO¶DWWULEXHUM¶HQDLODFRQYLFWLRQjFHTXHOD)UDQFHV¶HVW GpVLQWpUHVVpH GHSXLV XQ GHPLVLqFOH GHV JUDQGV WUDYDX[ GH OD SHQVpHSDUWLFXOLqUHPHQWGDQVOHVVFLHQFHVH[DFWHV>«@7DQGLV TXH O¶$OOHPDJQH PXOWLSOLDLW VHV XQLYHUVLWpV TX¶HOOH pWDEOLVVDLW HQWUH HOOHV OD SOXV VDOXWDLUH pPXODWLRQ TX¶HOOH HQWRXUDLW VHV PDvWUHV HW VHV GRFWHXUV G¶KRQQHXU HW GH FRQVLGpUDWLRQ TX¶HOOH FUpDLWGHYDVWHVODERUDWRLUHVGRWpVGHVPHLOOHXUVLQVWUXPHQWVGH WUDYDLOOD)UDQFH>«@QHGRQQDLWTX¶XQHDWWHQWLRQGLVWUDLWHjVHV pWDEOLVVHPHQWVG¶LQVWUXFWLRQVXSpULHXUH

'DQVOHVPLOLHX[LQWHOOHFWXHOVLODSSDUDvWpYLGHQWTXHFHQ¶HVWSDVOH soldat PDLV O¶instituteur DOOHPDQG TXL DXUDLW JDJQp OD JXHUUH /D IRUPDWLRQ GHV VRFLpWpVVDYDQWHVVHSUpVHQWHDORUVFRPPHXQH°XYUHGHUHFRQVWUXFWLRQQDWLRQDOH'DQVFHWHVSULWGqVODJXHUUH¿QLHHWOD&RPPXQHGH3DULVpFUDVpHOHV JUDQGHVVRFLpWpVVDYDQWHVFRPPHOD60) 6RFLpWpPDWKpPDWLTXHGH)UDQFH  O¶$)$6 $VVRFLDWLRQ IUDQoDLVH SRXU O¶DYDQFHPHQW GHV VFLHQFHV  VH IRUPHQW

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

HQOD6RFLpWpGHSK\VLTXHHQ/¶eFROHQRUPDOHVXSpULHXUHVHUpRUJDQLVH /HV XQLYHUVLWpV VH VWUXFWXUHQW VHORQ OH PRGqOH DOOHPDQG 'pFDLOORW  8QPRXYHPHQWSRXUO¶HQVHLJQHPHQWGHVVFLHQFHVV¶RUJDQLVH 3DUPLOHVQRPEUHX[MRXUQDX[VFLHQWL¿TXHVIRQGpVjFHWWHpSRTXHFLWRQV SRXUOHVPDWKpPDWLTXHVOHBulletin de la Société mathématique de France  ௗOHVMRXUQDX[UHYXHVHWEXOOHWLQVGHPDWKpPDWLTXHVVSpFLDOHVRXpOpPHQWDLUHV HQWUHOD¿QGHVDQQpHVHWOD¿QGHVDQQpHV  (Q GHV VFLHQWL¿TXHV DOVDFLHQV HQ SRVWH j 3DULV FRPPH :XUVW HW )ULHGHOIRQGHQWO¶eFROHDOVDFLHQQHXQHpFROHVHFRQGDLUHSULYpH©ௗKRUVGHWRXWH REpGLHQFH FOpULFDOH RX SROLWLTXH PDLV IRUWHPHQW SDWULRWLTXHௗª /¶pFROH YHXW SHUPHWWUHO¶H[SUHVVLRQGHODFUpDWLYLWpGHVpOqYHVHQGpYHORSSDQWOHXUVFDSDFLWpV LQWHOOHFWXHOOHV SURSUHV 'H QRPEUHXVHV UpIRUPHV GH O¶eGXFDWLRQ QDWLRQDOH VRQW LQVSLUpHV GH VHV PpWKRGHV &H JURXSH IRQGH DXVVL j 3DULV O¶eFROH PXQLFLSDOH GH SK\VLTXH HW GH FKLPLH LQGXVWULHOOHV (03&,  /¶DUJXPHQW OH SOXVVRXYHQWDYDQFpSRXUODFUpDWLRQGHFHWWHpFROHHVWO¶LQIpULRULWpGHO¶LQGXVWULHIUDQoDLVHV\VWpPDWLTXHPHQWVRXOLJQpHSDUOHVPHPEUHVGXJURXSHTXLHVW XQHGHVUDLVRQVPDMHXUHVVHORQHX[GHODGpIDLWHGHOD)UDQFHFRQWUHOD3UXVVH

Des récréations dans une presse militante ¬ 2UOpDQV 'HODQQR\ OLW OHV UHYXHV GH YXOJDULVDWLRQ VFLHQWL¿TXH SDUPL OHVTXHOOHV OD 5HYXH VFLHQWL¿TXH GH OD )UDQFH HW GH O¶pWUDQJHU &HWWH UHYXH HVW FUppH OH GpFHPEUH  DYHF OH WLWUH 5HYXH GHV FRXUV VFLHQWL¿TXHV GH OD France et de l’étranger : physique, chimie, zoologie, botanique, anatomie, physiologie, géologie, paléontologie, médecine.,OQ¶\DGRQFSDVGHUXEULTXH SRXUOHVPDWKpPDWLTXHV/DUHYXHSDUDvWFKDTXHVDPHGLMXVTX¶HQDYHF SRXUREMHFWLIGH YXOJDULVHU OHV VFLHQFHV HW OHV PHWWUH j SRUWpH GH WRXV DJUDQGLU O¶DPSKLWKpkWUHWURSpWURLWGHVSURIHVVHXUVDLPpVHWDPHQHUSRXU DLQVLGLUHOHXUHQVHLJQHPHQWMXVTXHGDQVOHFDELQHWGHFHX[TXL QHSHXYHQWOHVXLYUHpSDUJQHUHQ¿QOHWHPSVVLSUpFLHX[GHFHOXL TXLFXOWLYHODVFLHQFHOHUHPSODFHUTXDQGLOHVWDEVHQWUHGUHVVHU VHVHUUHXUVTXDQGLOVHWURPSH

/DGpIDLWHGHFRQVWLWXHXQHUXSWXUHGDQVOHSD\VDJHLQWHOOHFWXHOIUDQoDLV/DUHYXHUHSUHQGHQHQWDQWTXH5HYXHVFLHQWL¿TXH±GHOD)UDQFH HWGHO¶pWUDQJHUUHYXHGHVFRXUVVFLHQWL¿TXHVHWSRUWHUDFHQRPMXVTX¶HQ



HQOD6RFLpWpGHSK\VLTXHHQ/¶eFROHQRUPDOHVXSpULHXUHVHUpRUJDQLVH /HV XQLYHUVLWpV VH VWUXFWXUHQW VHORQ OH PRGqOH DOOHPDQG 'pFDLOORW  8QPRXYHPHQWSRXUO¶HQVHLJQHPHQWGHVVFLHQFHVV¶RUJDQLVH 3DUPLOHVQRPEUHX[MRXUQDX[VFLHQWL¿TXHVIRQGpVjFHWWHpSRTXHFLWRQV SRXUOHVPDWKpPDWLTXHVOHBulletin de la Société mathématique de France  ௗOHVMRXUQDX[UHYXHVHWEXOOHWLQVGHPDWKpPDWLTXHVVSpFLDOHVRXpOpPHQWDLUHV HQWUHOD¿QGHVDQQpHVHWOD¿QGHVDQQpHV  (Q GHV VFLHQWL¿TXHV DOVDFLHQV HQ SRVWH j 3DULV FRPPH :XUVW HW )ULHGHOIRQGHQWO¶eFROHDOVDFLHQQHXQHpFROHVHFRQGDLUHSULYpH©ௗKRUVGHWRXWH REpGLHQFH FOpULFDOH RX SROLWLTXH PDLV IRUWHPHQW SDWULRWLTXHௗª /¶pFROH YHXW SHUPHWWUHO¶H[SUHVVLRQGHODFUpDWLYLWpGHVpOqYHVHQGpYHORSSDQWOHXUVFDSDFLWpV LQWHOOHFWXHOOHV SURSUHV 'H QRPEUHXVHV UpIRUPHV GH O¶eGXFDWLRQ QDWLRQDOH VRQW LQVSLUpHV GH VHV PpWKRGHV &H JURXSH IRQGH DXVVL j 3DULV O¶eFROH PXQLFLSDOH GH SK\VLTXH HW GH FKLPLH LQGXVWULHOOHV (03&,  /¶DUJXPHQW OH SOXVVRXYHQWDYDQFpSRXUODFUpDWLRQGHFHWWHpFROHHVWO¶LQIpULRULWpGHO¶LQGXVWULHIUDQoDLVHV\VWpPDWLTXHPHQWVRXOLJQpHSDUOHVPHPEUHVGXJURXSHTXLHVW XQHGHVUDLVRQVPDMHXUHVVHORQHX[GHODGpIDLWHGHOD)UDQFHFRQWUHOD3UXVVH

Des récréations dans une presse militante ¬ 2UOpDQV 'HODQQR\ OLW OHV UHYXHV GH YXOJDULVDWLRQ VFLHQWL¿TXH SDUPL OHVTXHOOHV OD 5HYXH VFLHQWL¿TXH GH OD )UDQFH HW GH O¶pWUDQJHU &HWWH UHYXH HVW FUppH OH GpFHPEUH  DYHF OH WLWUH 5HYXH GHV FRXUV VFLHQWL¿TXHV GH OD France et de l’étranger : physique, chimie, zoologie, botanique, anatomie, physiologie, géologie, paléontologie, médecine.,OQ¶\DGRQFSDVGHUXEULTXH SRXUOHVPDWKpPDWLTXHV/DUHYXHSDUDvWFKDTXHVDPHGLMXVTX¶HQDYHF SRXUREMHFWLIGH YXOJDULVHU OHV VFLHQFHV HW OHV PHWWUH j SRUWpH GH WRXV DJUDQGLU O¶DPSKLWKpkWUHWURSpWURLWGHVSURIHVVHXUVDLPpVHWDPHQHUSRXU DLQVLGLUHOHXUHQVHLJQHPHQWMXVTXHGDQVOHFDELQHWGHFHX[TXL QHSHXYHQWOHVXLYUHpSDUJQHUHQ¿QOHWHPSVVLSUpFLHX[GHFHOXL TXLFXOWLYHODVFLHQFHOHUHPSODFHUTXDQGLOHVWDEVHQWUHGUHVVHU VHVHUUHXUVTXDQGLOVHWURPSH

/DGpIDLWHGHFRQVWLWXHXQHUXSWXUHGDQVOHSD\VDJHLQWHOOHFWXHOIUDQoDLV/DUHYXHUHSUHQGHQHQWDQWTXH5HYXHVFLHQWL¿TXH±GHOD)UDQFH HWGHO¶pWUDQJHUUHYXHGHVFRXUVVFLHQWL¿TXHVHWSRUWHUDFHQRPMXVTX¶HQ



(QVXLWHFHVHUDVLPSOHPHQWOD5HYXHVFLHQWL¿TXHGHjSOXVFRQQXH VRXVGHQRPGHRevue rose 7(OOHGHYLHQWHQVXLWHNucléusDEVRUEpHSDULa RechercheHQ /HV pGLWHXUV GX SUHPLHU QXPpUR GH  $QWRLQH %UpJXHW HW &KDUOHV 5LFKHWSXEOLHQWODSURIHVVLRQGHIRLVXLYDQWH /DIRUFHGHO¶$OOHPDJQHQRXVO¶DYRQVGLWSOXVLHXUVIRLVOXLYLHQW VXUWRXWGHVHVXQLYHUVLWpVGHO¶HVSULWVFLHQWL¿TXHTXLOHVDQLPH HWTXLDSDVVpQDWXUHOOHPHQWGDQVO¶DUPpHDOOHPDQGHUpVXOWDQWH GHODQDWLRQWRXWHQWLqUH1RXVQHSRXYRQVHVSpUHUGHUHYDQFKH TX¶HQ SUHQDQW j O¶$OOHPDJQH OHV DUPHV TXL QRXV RQW YDLQFXV &¶HVW GRQF VXU OH WHUUDLQ GH OD VFLHQFH TX¶LO IDXW FRPEDWWUH G¶DERUGSRXUQRXVSUpSDUHUjFRPEDWWUHVXUG¶DXWUHVFKDPSVGH EDWDLOOHSDUFHTXHF¶HVWODVFLHQFHVHXOHTXLGRQQHDXMRXUG¶KXL ODYLFWRLUH&¶HVWHOOHDXVVLTXLSHXWUpJpQpUHUODVRFLpWpSXLVTXH ODVRFLpWpPRGHUQHUHSRVHVXUOHVDSSOLFDWLRQVGHODVFLHQFH

&¶HVWOHVHSWHPEUHGDQVOHVComptes-rendusGXSUHPLHUFRQJUqV GHO¶$)$6TXLV¶HVWGpURXOpj%RUGHDX[TX¶DSSDUDvWOHSUHPLHUDUWLFOHFRQFHUQDQWOHVPDWKpPDWLTXHV,OV¶DJLWGHO¶LQWHUYHQWLRQ 8G¶(XJqQH&DWDODQVXU©ௗOHV FRQVpTXHQFHV DQWLVRFLDOHV GH OD IRUPXOH GHV LQWpUrWV FRPSRVpVௗª SUpVHQWpH GDQVODVHFWLRQ0DWKpPDWLTXHVDVWURQRPLHJpRGpVLHHWPpFDQLTXH 6HSW UpFUpDWLRQV VRXV O¶LQWLWXOp ©ௗ5pFUpDWLRQV VFLHQWL¿TXHV VXU O¶DULWKPpWLTXHHWVXUODJpRPpWULHGHVLWXDWLRQௗªYRQWSDUDvWUHHQWUHHWGDQV ODUHYXH/HVFLQTSUHPLqUHVVRXVODUXEULTXH©ௗ9DULpWpVௗªOHVGHX[GHUQLqUHV VRXV OD UXEULTXH ©ௗ0DWKpPDWLTXHVௗª (OOHV VRQW WRXWHV UpGLJpHV SDU eGRXDUG /XFDVSURIHVVHXUGHPDWKpPDWLTXHVHQFODVVHSUpSDUDWRLUHDX[JUDQGHVpFROHV ,OV¶DJLWjFKDTXHIRLVGHO¶pWXGHKLVWRULTXHHWPDWKpPDWLTXHG¶XQMHXGRQWOHV UqJOHVRQWIDLWO¶REMHWG¶XQHpWXGHSDUXQPDWKpPDWLFLHQUHQRPPp1RXVDOORQV SUpVHQWHUFHVVHSWUpFUpDWLRQVQRWDPPHQWHQVXLYDQWOHVGLIIpUHQWHVIDoRQVGH UHSUpVHQWHUOHVSUREOqPHVHWOHVpFKLTXLHUVTXDQGLOVLQWHUYLHQQHQW±VHORQOH SUREOqPHRXO¶pYROXWLRQGHVSUDWLTXHVDFDGpPLTXHV /DSUHPLqUHSDUDvWOHDR€W(OOHHVWSUpFpGpHGXSDVVDJHVXLYDQW G¶XQHOHWWUHGH/HLEQLW]j0RQWPRUWPLVHQH[HUJXH /XFDV  7. &¶HVWXQHUpIpUHQFHjODFRXOHXUGHVDFRXYHUWXUHSDURSSRVLWLRQjODRevue bleueTXL WUDLWDLWGHVVFLHQFHVKXPDLQHV 8. 0DOKHXUHXVHPHQW&DWDODQQ¶DMDPDLVHQYR\pOHWH[WHGHVDFRPPXQLFDWLRQVHXOOHWLWUH ¿JXUHGDQVOHVComptes-rendus

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

$SUqVOHVMHX[TXLGpSHQGHQWXQLTXHPHQWGHVQRPEUHVYLHQQHQW OHV MHX[ R HQWUH HQFRUH OD VLWXDWLRQ FRPPH GDQV OH WULFWUDF GDQV OHV GDPHV HW VXUWRXW GDQV OHV pFKHFV /H MHX QRPPp ©ௗOH VROLWDLUHௗªP¶D SOX DVVH] -H O¶DL SULV G¶XQH PDQLqUHUHQYHUVpH F¶HVWjGLUHDXOLHXGHGpIDLUHXQFRPSRVpGHSLqFHVVHORQODORL GHFHMHXTXLHVWGHVDXWHUGDQVXQHSODFHYLGHHWG¶{WHUODSLqFH VXUODTXHOOHRQVDXWHM¶DLFUXTX¶LOVHUDLWSOXVEHDXGHUpWDEOLU FHTXLDpWpGpIDLWHQUHPSOLVVDQWXQWURXVXUOHTXHORQVDXWHௗ HWSDUFHPR\HQRQSRXUUDLWVHSURSRVHUGHIRUPHUXQHWHOOHRX WHOOH¿JXUHSURSRVpHVLHOOHHVWIDLVDEOHFRPPHHOOHO¶HVWVDQV GRXWHVLHOOHHVWGpIDLVDEOH0DLVjTXRLERQFHODௗ"GLUDWRQ-H UpSRQGVÀSHUIHFWLRQQHUO¶DUWG¶LQYHQWHU 9&DULOIDXGUDLWDYRLU GHVPpWKRGHVSRXUYHQLUjERXWGHWRXWFHTXLVHSHXWWURXYHU SDUUDLVRQ

3RXU/HLEQL]HW/XFDVO¶pWXGHGHVMHX[GHVWUDWpJLHHWGH©ௗUHMHXௗªF¶HVWj GLUHOHIDLWGHSDUWLUGHODVLWXDWLRQ¿QDOHSRXUUHYHQLUjODVLWXDWLRQLQLWLDOH SHUPHWGHGpYHORSSHUjODIRLVO¶LPDJLQDWLRQHWOHUDLVRQQHPHQW/HVPLOLWDLUHV O¶RQWWUqVELHQFRPSULV(Q*LOOHV-RGHOHWGH/D%RLVVLqUHLQYHQWHSRXU O¶pGXFDWLRQGX¿OVDvQpGH/RXLV;,9OH©ௗMHXGHODJXHUUHௗªXQMHXGHFDUWHV RHVWGpFULWWRXWFHTXLFRQFHUQHOHVPDUFKHVHWFDPSHPHQWVGHVDUPpHVOHV EDWDLOOHVFRPEDWVVLqJHVHWDXWUHVDFWLRQVPLOLWDLUHV(Q-DFTXHVGH*XLEHUWXWLOLVHGHV¿JXULQHVVXUXQWHUUDLQjpOpPHQWVPRELOHV6XLWHjO¶KXPLOLDWLRQSUXVVLHQQHGHODGpIDLWHGH,pQDHQOHEDURQYRQ5HLVVZLW]LQYHQWH D XGpEXW GXXIXe VLqFOHOHMHXGHJXHUUHSRXUODIRUPDWLRQGHVpWDWVPDMRUV IRQGpVXUOHMHXG¶pFKHFV8QHYHUVLRQVRUWLHHQYDVHUYLUjSUpSDUHUOD JXHUUHFRQWUHO¶$XWULFKHHQSXLVFHOOHFRQWUHOD)UDQFHHQ &HWWHSUHPLqUHUpFUpDWLRQV¶LQWLWXOH©ௗVXUOHMHXGHGDPHVjODSRORQDLVH FRPSRUWDQW OD VROXWLRQ FRPSOqWH GH OD SDUWLH GH YLQJW FRQWUH XQ j TXL SHUG JDJQHௗª (OOH D IDLW O¶REMHW DXVVL G¶XQH FRPPXQLFDWLRQ RUDOH DX FRQJUqV GH O¶$)$6 GH  &H MHX GH GDPHV VH MRXH VXU XQ pFKLTXLHU GpFLPDO RFWDO SRXUOHMHXjODIUDQoDLVH ,OV¶DJLWG¶pWXGLHUOHVGpSODFHPHQWVGHSLRQVVXUXQ pFKLTXLHU&HSUREOqPHDpWppWXGLpSRXUODSUHPLqUHIRLVSDU/DPDUOHHQ GHYDQW O¶$FDGpPLH UR\DOH GH %HOJLTXH 10 /XFDV SURSRVH GDQV FHW DUWLFOH GH

9. 6RXOLJQpSDUO¶DXWHXUH 10. 7RXWHVOHV¿JXUHVLOOXVWUDQWOHVUpFUpDWLRQVGH/XFDVVRQWGHVFRSLHVH[WUDLWHVGHVDUWLFOHV SDUXVGDQVOD5HYXHVFLHQWL¿TXH



UHSUpVHQWHUFKDTXHFHOOXOHGHO¶pFKLTXLHUSDUXQHH[SUHVVLRQuvuGpVLJQDQWOH UDQJGHODFRORQQHHWvFHOXLGHVOLJQHV ¿J 

Fig. 2 – Échiquiers des dames à la polonaise (Lucas 1879-1880 : 155) [© BnF].

/D VHFRQGH UpFUpDWLRQ DYULO   ©ௗVXU OH MHX GHV pFKHFV FRPSRUWDQW OD VROXWLRQFRPSOqWHGXSUREOqPHGHVKXLWUHLQHVௗªDYHFUpIpUHQFHj*DXVVDpWp DXVVL O¶REMHW G¶XQH FRPPXQLFDWLRQ RUDOH DX FRQJUqV GH O¶$)$6 GH  ,O V¶DJLWGHUpVRXGUHOHSUREOqPHVXLYDQW 'pWHUPLQHUWRXWHVOHVPDQLqUHVGHSODFHUKXLWUHLQHVVXUO¶pFKLTXLHU RUGLQDLUH IRUPp GH VRL[DQWHTXDWUH FDVHV GH WHOOH VRUWH TX¶DXFXQH GHV UHLQHV QH SXLVVH rWUH SULVH SDU XQH DXWUHௗ HQ G¶DXWUHVWHUPHVVXUKXLWGHVFDVHVGHO¶pFKLTXLHUGLVSRVHUKXLW UHLQHV GH WHOOH IDoRQ TXH GHX[ TXHOFRQTXHV G¶HQWUH HOOHV QH VRLHQW MDPDLV VLWXpHV VXU XQH PrPH OLJQH SDUDOOqOH j O¶XQ GHV ERUGVRXjO¶XQHGHVGLDJRQDOHVGHO¶pFKLTXLHU

/¶H[WUDLW VXLYDQW ¿J  PRQWUH FODLUHPHQW TXH WRXWH VROXWLRQ DX SUREOqPH SRVpV¶H[SULPHFRPPHXQHSHUPXWDWLRQG¶RUGUH7RXWHSHUPXWDWLRQVDWLVIDLWOHVFRQWUDLQWHVG¶KRUL]RQWDOLWpHWGHYHUWLFDOLWp GRQFUpDOLVHH[DFWHPHQW XQHVROXWLRQGXSUREOqPHGHQRQSULVHSRXUWRXUV (QUHYDQFKHFHUWDLQHV SHUPXWDWLRQVQHUHSUpVHQWHQWSDVXQHVROXWLRQGXSUREOqPHSRXUUHLQHVSDU H[HPSOHOHVSHUPXWDWLRQVRXYLROHQWODFRQWUDLQWHG¶XQLFLWpGDQVFKDTXHGLDJRQDOH

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

/DWURLVLqPHUpFUpDWLRQ MXLOOHW ©ௗVXUOHMHX GXEDJXHQDXGLHU>FRPSRUWH@OHPR\HQG¶REWHQLUWRXWHV OHVGLVSRVLWLRQVSRVVLEOHVGHVDQQHDX[SDUO¶HPSORLGX V\VWqPH GH OD QXPpUDWLRQ ELQDLUHௗª DYHF UpIpUHQFH j &DUGDQHW:DOOLV

Fig. 3 – Deux représentations du problème des huit reines (Lucas 1880 : 949) [© BnF].

Fig. 4 – Le jeu de baguenaudier (Lucas 1880-1881a : 36) [© BnF].



/D TXDWULqPH RFWREUH   HVWLQWLWXOpH©OHMHXGHVSRQWVHWGHV vOHVª DYHF UpIpUHQFHV DX[ SRQWV GH .|QLJVEHUJ G¶(XOHU ,O V¶DJLW G¶pWDEOLUGHVFRQGLWLRQVSRXUIDLUHXQFLUFXLWIHUPpHQHPSUXQWDQWFKDFXQGHV SRQWVXQHHWXQHVHXOHIRLV /DFLQTXLqPHUpFUpDWLRQ PDUV Fig. 5 – Les ponts de Königsberg (Lucas 1880-1881b :   V¶DSSHOOH ©OH MHX GHV WUDYHU376) [© BnF]. VpHV HQ EDWHDXª TXH /XFDV IDLW UHPRQWHUjO¶$QWLTXLWpHWVHUDSSRUWH j OD JpRPpWULH GH O¶RUGUH HW GH OD VLWXDWLRQ ,O V¶DJLW GH SOXVLHXUV YDULDWLRQV DXWRXU©GHODFKqYUHGXORXSHWGXFKRXªWUqVSULVpSDUOHVHQVHLJQDQWV 11. Le SUHPLHUSUREOqPHHQHVWXQHYHUVLRQJpQpUDOLVpHHWPLOLWDULVpH 8QHFRPSDJQLHG¶LQIDQWHULHV¶DYDQFHVXUOHERUGG¶XQÀHXYHௗ PDLVOHSRQWHVWEULVpODULYLqUHHVWSURIRQGH/HFDSLWDLQHDSHUoRLWVXUOHERUGGHX[HQIDQWVTXLMRXHQWGDQVXQSHWLWFDQRWௗFH FDQRWHVWVLSHWLWTX¶LOQHSHXWSRUWHUSOXVG¶XQVROGDW&RPPHQW V¶\SUHQGUDOHFDSLWDLQHSRXUIDLUHSDVVHUOHÀHXYHDX[VROGDWVGH VDFRPSDJQLH

/D VL[LqPH UpFUpDWLRQ MXLQ   FRQFHUQH OH ©MHX GX7DTXLQ RX GX FDVVHWrWHDPpULFDLQª &HMHXGHFRPELQDLVRQFRQVLVWHj{WHUOHPpODQJHU OHVDXWUHVQXPpURVGDQVODERvWHHWUHWURXYHUO¶RUGUHRULJLQDOSDUGpSODFHPHQWV,ODpWpSXEOLpGDQVOHJournal de mathématiquesSDU6\OYHVWHUTXLOH FRQVLGqUHFRPPHXQHLQLWLDWLRQjO¶pWXGHGHVGpWHUPLQDQWV 7UqVSRSXODLUHFH MHXDpJDOHPHQWpWpDSSHOp©GRXEOHFDVVHWrWHJDXORLVª *XLWDUW 

Fig. 6 – Un jeu de taquin et une représentation de situation (Lucas 1881 : 783) [© BnF].

11. &RQFHUQDQW FHW pQRQFp YRLU OD VHFWLRQ ©&KH] OHV HQVHLJQDQWVª HW OD FRQWULEXWLRQ G¶$ODLQ%HUQDUG (PPDQXHOOH5RFKHUGDQVFHWRXYUDJH

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

/D VHSWLqPH UpFUpDWLRQ WUDLWH GX ©MHX GX VROLWDLUHª VHSWHPEUH   (QVXLWH/XFDVFRQWLQXHUDjSXEOLHUGHVUpFUpDWLRQVPDWKpPDWLTXHVGDQVODUHYXH DYDQWGHOHVUHJURXSHUGDQVGHVRXYUDJHV $XWHEHUW'pFDLOORWHW6FKZHU  (QMDQYLHU+HQUL'HODQQR\HQYRLHjODGLUHFWLRQGXMRXUQDOXQHpWXGH VXUOHMHXGH7DTXLQMHXTXLIDLWIXUHXUHQ)UDQFHGHSXLVTXHOTXHWHPSV9RLFL ODUpSRQVHTX¶LOUHoRLWG¶$QWRLQH%UpJXHWDQFLHQSRO\WHFKQLFLHQ 12 0RQVLHXUHWFKHU&DPDUDGH -¶DXUDLVpWpWUqVKHXUHX[G¶LQVpUHUGDQVOD5HYXHYRWUHpWXGHVXU OH7DTXLQVLMXVWHPHQWXQDUWLFOHVXUOHPrPHVXMHWQHYHQDLWSDV G¶rWUHFRPSRVpHWPrPHFRUULJpHQSODFDUG9RXVDXUH]VRXVSHX O¶RFFDVLRQGHOHOLUHHWO¶DXWHXUHQHVWHQFRUH0/XFDV

&¶HVWOHSRLQWGHGpSDUWG¶XQHIUXFWXHXVHFROODERUDWLRQHQWUH'HODQQR\HW /XFDV +HQUL 'HODQQR\ IUpTXHQWH DORUV O¶$)$6 HW HQWUHWLHQW XQH DERQGDQWH FRUUHVSRQGDQFHDYHFGHQRPEUHX[LQJpQLHXUVHWPDWKpPDWLFLHQVTXLVHSDVVLRQQHQW SRXU OHV SUREOqPHV G¶DULWKPpWLTXH HW GH FRPELQDWRLUH ¿JXUDWLYH FRPPH&KDUOHV$QJH/DLVDQW*DVWRQ7DUU\0LFKHO)URORZ/HVPDWKpPDWLFLHQV 6\OYHVWHU RX &DWDODQ HQWUHWLHQQHQW GHV UDSSRUWV G¶HVWLPH HW G¶DPLWLp DYHFOXLFHTXLHVWORLQG¶rWUHOHFDVGHVXQLYHUVLWDLUHVIUDQoDLVFRPPH'pVLUp $QGUpRX(XJqQH5RXFKp3DUUDLQpSDU/XFDVHW/DLVDQW 13LOIXWPHPEUHGHOD 6RFLpWpPDWKpPDWLTXHGH)UDQFHGHj &HVRQWGRQFHVVHQWLHOOHPHQWGHVSUREOqPHVGHJpRPpWULHGHVLWXDWLRQTXH O¶RQSHXWUpVRXGUHjO¶DLGHG¶XQpFKLTXLHUTXLRQWFRQGXLW'HODQQR\jGHYHQLU OH PDWKpPDWLFLHQ GRQW OH QRP HVW DVVRFLp j GHV QRPEUHV HW GHV pFKLTXLHUV HWGRQWFHGpEXWGH XXIeVLqFOHHVWSDUWLFXOLqUHPHQWIULDQG :HLVVWHLQௗ 6FKZHUHW$XWHEHUWௗ'LFNDXௗ*ROGVWHLQௗ6FKZHU  'HODQQR\ HVW UHYHQX DX[ PDWKpPDWLTXHV SDU OHV UpFUpDWLRQV PDLV OHV PHQWLRQVUpLWpUpHVSDUVHVVXSpULHXUVG¶XQJR€WSURQRQFpSRXUOHVVFLHQFHV ± FH TXL QH GHYDLW GRQF SDV rWUH OH FDV GH WRXV VHV FDPDUDGHV GH O¶eFROH SRO\WHFKQLTXH±QRXVODLVVHQWjSHQVHUTX¶LODYDLWFHUWDLQHPHQWOHVDSWLWXGHV TXHO¶RQDWWHQGSRXUGHYHQLUPDWKpPDWLFLHQDSWLWXGHjpPHWWUHGHVFRQMHFWXUHV j pODERUHU XQH GpPRQVWUDWLRQ j JpQpUDOLVHU HW DEVWUDLUH j WUDQVIpUHU GHVUpVXOWDWVG¶XQGRPDLQHjGHVGRPDLQHVQRXYHDX[VDQVOLHQa prioriDYHF OHGRPDLQHLQLWLDO  &IQRWH  3RXUGHYHQLUPHPEUHGHOD60)LOIDOODLWrWUHSDUUDLQpSDUGHX[PHPEUHV$FWXHOOHPHQW LOVXIILWGHSD\HUVDFRWLVDWLRQ



Le statut des récréations mathématiques Chez les enseignants /HWHUPHUpFUpDWLRQHVWHPSUXQWpDXODWLQrecreatioTXLVLJQL¿HVHORQOHVGLFWLRQQDLUHVODWLQVUpWDEOLVVHPHQWFRQYDOHVFHQFHJXpULVRQ'qVVRQDSSDULWLRQ DX XIIIeVLqFOHFHWHUPHVLJQL¿HUpFRQIRUWGpODVVHPHQWXQPRPHQWGHORLVLU XQ GLYHUWLVVHPHQW &¶HVW DXVVL OH WHPSV GH UHSRV DFFRUGp DX[ pFROLHUV$X XVIeVLqFOHRQWURXYHFHWHUPHDXSOXULHOFRPPHWLWUHGRQQpjGHVRXYUDJHV TXLWUDLWHQWGHVXMHWVGHVFLHQFHGHPRUDOHGHPDQLqUHSODLVDQWHHWGLVWUD\DQWH 'XWHPSVGH&KDUOHPDJQHRQWURXYHGpMjGHVSUREOqPHVUpFUpDWLIVpFULWV SDU$OFXLQ  XQFOHUFSpGDJRJXHDQJODLVDSSHOpSDUOHIXWXUHPSHUHXU SRXULQVWDXUHUODUHQDLVVDQFHFDUROLQJLHQQH$OFXLQHQVHLJQHjOD&RXUHWDX KDXWFOHUJpSRXUFUpHUXQHDGPLQLVWUDWLRQSHUIRUPDQWH,OLPSRVHSRXUOHVDFWHV RI¿FLHOVOHODWLQFODVVLTXHPDLVGpYHORSSHG¶DXWUHSDUWXQSURJUDPPHpGXFDWLI HQODQJXHYHUQDFXODLUHSRXUOHSHXSOH/HUHFXHLOpFULWSDU$OFXLQHVWpFULWHQ ODWLQLOV¶DGUHVVHGRQFDX[MHXQHVpOLWHVGXSD\V,OV¶DJLWGHVPropositones ad acuendos de juvenesF¶HVWjGLUHPropositions pour aiguiser l’intelligence de la jeunesse/HWLWUHQ¶LQGLTXHHQULHQTXHFHVRQWGHVSUREOqPHVUpFUpDWLIV ,O FRQWLHQWFLQTXDQWHWURLVSUREOqPHVSDUPLOHVTXHOVSOXVLHXUVSUREOqPHVGH WUDYHUVpHVGRQWXQSUREOqPHGHIUqUHVYHLOODQWVXUO¶KRQQHXUGHOHXUVV°XUVHW FHOXLGXORXSGHODFKqYUHHWGXFKRX 14 Proposition 17. De trois hommes et leurs sœurs 7URLV KRPPHV D\DQW FKDFXQ XQH V°XU GRLYHQW WUDYHUVHU XQH ULYLqUHHQpYLWDQWTX¶XQKRPPHVRLWHQSUpVHQFHG¶XQHIHPPH DXWUHTXHVDV°XU,OVQ¶RQWTX¶XQHEDUTXHTXLQHSHXWWUDQVSRUWHU TXHGHX[SHUVRQQHV 4XL SHXW GLUH FRPPHQW LOV SHXYHQW WUDYHUVHU OD ULYLqUH SRXU TX¶XQHIHPPHQHVRLWMDPDLVHQFRPSDJQLHG¶XQDXWUHKRPPHVL VRQIUqUHQ¶HVWSDVSUpVHQWௗ"

2QWURXYHDXVVLFHJHQUHGHSUREOqPHVjO¶LQWpULHXUGHOLYUHVGHPDWKpPDWLTXHVjGHVWLQDWLRQGHMHXQHVEDFKHOLHUVRXIXWXUVPDUFKDQGV HWQRQGHMHXQHV pOqYHV FRPPHGDQVOHLiber abaci Livre pour le calcul௘ GH)LERQDFFL   RXOHTriparty en la science des nombres UpGLJpHQ GH1LFRODV &KXTXHW "  RX HQFRUH OH SUHPLHU OLYUH DWWULEXp j &ODXGH*DVSDUG 14. ,OV¶DJLWGHODSURSRVLWLRQpWXGLpHSDU$%HUQDUGHW(5RFKHUGDQVFHWRXYUDJH2Q WURXYHUDDXVVLGDQVFHWWHFRQWULEXWLRQXQHELRJUDSKLHGpWDLOOpHG¶$OFXLQ

 Revenir aux mathématiques par les récréations : l’exemple de Henri Auguste Delannoy (1833-1915)

%DFKHW GH 0p]LULDF   Problemes plaisans et delectables, qui se font par les nombres  'DQVFHWRXYUDJHSDUDvWOH©ௗSUREOqPHGHVPDULV MDORX[ௗª 7URLV PDULV MDORX[ VH WURXYHQW GH QXLW DYHF OHXUV IHPPHV DX SDVVDJH G¶XQH ULYLqUH R LOV QH UHQFRQWUHQW TX¶XQ SHWLW EDWHDX VDQV EDWHOLHU VL pWURLW TX¶LO Q¶HVW FDSDEOH TXH GHX[ SHUVRQQHV RQGHPDQGHFRPPHQWFHVVL[SHUVRQQHVSDVVHURQWGHX[jGHX[ WHOOHPHQWTXHMDPDLVDXFXQHIHPPHQHGHPHXUHHQFRPSDJQLH G¶XQRXGHGHX[KRPPHVVLVRQPDULQ¶HVWSUpVHQW

&HWRXYUDJHV¶DGUHVVHDX[VDYDQWVGHO¶pSRTXHTXL\WURXYHQWGHVGp¿VDX[TXHOVUpSRQGUH%DFKHWpWDLWXQKHOOpQLVWHHWODWLQLVWHUHPDUTXDEOH,OWUDGXLVLW OHVArithmétiquesGH'LRSKDQWHHQODWLQFHTXLSHUPLWQRWDPPHQWj)HUPDW GHGpFRXYULUFHWDXWHXUJUHF,OHQVHLJQDOHVPDWKpPDWLTXHVGDQVXQFROOqJH MpVXLWHHWIXWpOXjO¶$FDGpPLHIUDQoDLVH2QOXLGRLWO¶LGHQWLWpGLWHGH%p]RXW RXGH%DFKHW%p]RXWFRQFHUQDQWGHX[QRPEUHVSUHPLHUVHQWUHHX[1RPEUH GHVHVSUREOqPHV©ௗSODLVDQWVHWGpOHFWDEOHVௗª¿JXUHQWGDQVOHVUpFUpDWLRQVGH VHVVXFFHVVHXUV2QUHWURXYHSDUH[HPSOHOH©ௗSUREOqPHGHVPDULVMDORX[ௗª 15 FRPPHLQVWDQFHGHVSUREOqPHVLOOXVWUDQWODFLQTXLqPHUpFUpDWLRQGH/XFDVTXL UHOqYH SOXV GX UDLVRQQHPHQW ORJLTXH FRPPH QRXV O¶DYRQV GpMj PHQWLRQQp TXHG¶XQSUREOqPHGHQRPEUH 4XDUDQWHWURLVpGLWLRQVGHUpFUpDWLRQVPDWKpPDWLTXHVGHTXDOLWpVGLYHUVHV VRQW SXEOLpHV HQWUH HW DXSUqV GH GL[VHSW pGLWHXUV GLIIpUHQWV /¶DXWRULWpHQODPDWLqUHGHOD¿QGX XVIIeDXPLOLHXGX XIXeVLqFOHHVWFHUWDLQHPHQW-DFTXHV2]DQDPTXLSXEOLDHQRécréations mathématiques et physiques qui contiennent les problèmes & les questions les plus remarquables, & les plus propres à piquer la curiosité, tant des mathématiques que de la physique, le tout traité d’une manière à la portée des lecteurs qui ont seulement quelques connaissances légères de ces sciences,OHQVHLJQDHW IXWPHPEUHGHO¶$FDGpPLHUR\DOHGHVVFLHQFHV,OSXEOLDSOXVLHXUVRXYUDJHV PDWKpPDWLTXHVSDUPLOHVTXHOVHQXQDictionnaire des mathématiques HWHQXQCours de mathématiques pour les hommes de Guerre et ceux qui veulent se perfectionner dans cette scienceHQFLQTYROXPHV/HVPDWKpPDWLTXHVFRQVWLWXHQWODPDWLqUHGXSUHPLHUYROXPHGLYLVpHQGHX[SDUWLHV ©ௗ$ULWKPpWLTXHௗªHW©ௗ*pRPpWULHௗª

15. &HTXLFRQGXLWELHQpYLGHPPHQWjODPrPHVROXWLRQTXHFHOOHGHVIUqUHV



/HV SUREOqPHV GH WRXWHV VHV UpFUpDWLRQV V¶DGUHVVHQW DX ©ௗOHFWHXU PDWKpPDWLFLHQௗª RX j FHX[ TXL RQW VLPSOHPHQW OH JR€W GHV PDWKpPDWLTXHV ,O QH V¶DJLWGRQFSDVG¶pYHLOOHUDX[PDWKpPDWLTXHVGHMHXQHVpOqYHVPDLVG¶LQWHUSHOHUFHX[TXLRQW GpMj OHJR€WGHVPDWKpPDWLTXHV±RXTXLGRLYHQWHQPDvWULVHU FHUWDLQHV WHFKQLTXHV± HQ OHXU SURSRVDQW GH TXRL SLTXHU OHXU FXULRVLWp HWOHXUSURFXUHUSODLVLUHWGpODVVHPHQW'HPrPH/XFDVDGUHVVHG¶DERUGVHV UpFUpDWLRQV PDWKpPDWLTXHV DX[ OHFWHXUV G¶XQH UHYXH VFLHQWL¿TXH FHX[ TXL FKRLVLVVHQWSHQGDQWOHXUVKHXUHVGHORLVLUVGHOLUHGHVDUWLFOHVVFLHQWL¿TXHV 7HOIXWOHFDVGH'HODQQR\

Dans le domaine des mathématiques 4XLGLW©ௗUpFUpDWLRQVPDWKpPDWLTXHVௗªGLW©ௗPDWKpPDWLTXHVௗª@TXHOHV FRPPXQLFDWLRQV VXU O¶DQDO\VH DOJpEULTXH GHYLHQQHQW GH SOXV HQ SOXV QRPEUHXVHVௗª /DLVDQW    VRXV O¶LPSXOVLRQ GH /XFDV TXL \ SURSRVH VD ©ௗORLJpRPpWULTXHGXWLVVDJHௗª¬SDUWLUGHFHWpWp/DLVDQWHW/XFDVVH OLHQW G¶DPLWLpௗ OH SUHPLHU UpFHPPHQW pOX GpSXWp VRXWHQDQW OH VHFRQG SRXU O¶REWHQWLRQ G¶XQ SRVWH GDQV XQ O\FpH SDULVLHQ /HV GHX[ PDWKpPDWLFLHQV VH WURXYHQWDXVVLrWUHjSDUWLUGHGHX[FROODERUDWHXUVDFWLIVHWH[SOLFLWHV GHODUHYXHEHOJHNouvelle Correspondance Mathématique NCM GLULJpHSDU (XJqQH&DWDODQ  UHYXHTXLFRPPHO¶$)$6DSSDUDvWFRPPHXQ GHVOLHX[G¶pFKDQJHVDXWRXUGHVUpFUpDWLRQV 5HSUHQDQWXQHTXHVWLRQGH/XFDV/DLVDQWPRQWUHHQO¶LPSRVVLELOLWp G¶LQVFULUHXQWULDQJOHpTXLODWpUDOGDQVXQpFKLTXLHULFLXQTXDGULOODJHFRQVWLWXp GHFDUUpVLGHQWLTXHVHQSODoDQWOHVVRPPHWVGXWULDQJOHDX[FHQWUHVGHFDVHV /DLVDQW /HVXVDJHVSDU/XFDVGHFHVpFKLTXLHUVOXLIRQWUHPDUTXHU ©ௗ/HVFRQVLGpUDWLRQVUHODWLYHVjFHWRUGUHG¶LGpHVVHUDLHQWSHXWrWUHG¶XQFHUWDLQVHFRXUVGDQVODWKpRULHGHVQRPEUHVHWSRXUUDLHQWIRXUQLUODPDWLqUHGH UHFKHUFKHV LQWpUHVVDQWHVௗª /DLVDQW    &¶HVW OH GpEXW GHV WUDYDX[ GH /DLVDQW VXU OHV OLHQV HQWUH DULWKPpWLTXH FRPELQDWRLUH HW JpRPpWULH SOXV SUpFLVpPHQWVXUOHVSRWHQWLDOLWpVGHYLVXDOLVDWLRQVHQPDWKpPDWLTXHVGLVFUqWHV 'HODQQR\HVWXQHDXWUH¿JXUHGRQWODSUpVHQFHSDUPLOHVSURFKHVGH/DLVDQW H[SOLTXHO¶DGKpVLRQGHFHGHUQLHUjFHVSUREOpPDWLTXHVOLpHVDX[UpFUpDWLRQV 1pHQHQ+DXWH0DUQH+HQUL$XJXVWH'HODQQR\LQWqJUHO¶eFROHSRO\WHFKQLTXHHQHWGHYLHQWRI¿FLHUG¶DUWLOOHULHSXLVVRXVLQWHQGDQWPLOLWDLUH MXVTX¶HQ,OSDVVHODPDMHXUHSDUWLHGHVDYLHj*XpUHWGDQVOD&UHXVH6RQ LQWpUrWSRXUOHVPDWKpPDWLTXHVUpFUpDWLYHVHQSDUWLFXOLHUSRXUOHVFDUUpVPDJLTXHV HWOHVSUREDELOLWpVFRPELQDWRLUHVOHSODFHDXF°XUG¶XQUpVHDXG¶pFKDQJHVVXU



ODJpRPpWULHGHVLWXDWLRQRO¶HPT V SORL GHV pFKLTXLHUV DULWKPpWLTXHV TX¶LOJpQpUDOLVHWURXYHXQHERQQH J L K SODFH,OHVWXQFRQWULEXWHXULPSRUWDQWGHODUHYXHFRIRQGpHSDU/DLH F M D G VDQWHQL’Intermédiaire des C B mathématiciens N S W X P Z /D QRWH GH /DLVDQW VXU OH FDOFXO LFRVLHQ G¶+DPLOWRQ SDUXH Q HQ GDQV OH GHX[LqPH WRPH GHVRécréations mathématiquesGH R VRQDPL/XFDV /XFDV   LOOXVWUH ELHQ O¶XVDJH SUHPLHU Fig. 1 – Le jeu d’Hamilton (Lucas, 1896 : 211). GHVUpFUpDWLRQVPDWKpPDWLTXHVSDU /DLVDQW¬FHVXMHW/DLVDQWpFULWG¶DLOOHXUVj'HODQQR\GDQVXQHOHWWUHGDWpHGX QRYHPEUH 1©ௗ&HWWHTXHVWLRQGHO¶,FRVLHQPHSDUDvWIRUWGLJQHG¶LQWpUrWHWMHYRLVTXHYRXVO¶DYH]FUHXVpH-HFURLVDYHFYRXVTX¶HOOHPpULWHUDLW G¶rWUHpWXGLpHDYHFOHVQRWDWLRQVG¶+DPLOWRQDXSRLQWGHYXHGHODPpWKRGHௗª /H MHX LQYHQWp SDU +DPLOWRQ FRQVLVWH j GpWHUPLQHU XQ FKHPLQ SDVVDQW SDU YLQJWYLOOHVSODFpHVDXVRPPHWGHODSURMHFWLRQVXUOHSODQG¶XQGRGpFDqGUH 2 HQVXLYDQWOHVDUrWHVGHOD¿JXUH YRLU¿J &KDTXHYLOOHQHSHXWrWUHWUDYHUVpHTX¶XQHVHXOHIRLVHWOHVFLQTSUHPLqUHVpWDSHVSHXYHQWrWUHLPSRVpHV %DUELQ  /DLVDQWH[SOLTXHTX¶+DPLOWRQDVVLJQHjFHMHXXQFDOFXOFRPSRUWDQWWURLV V\PEROHV ȚȤHWȜ jODPDQLqUHGXFDOFXOVXUOHVTXDWHUQLRQVTXHSURPHXW /DLVDQWGDQVOHVHQVRO¶RQDHQWUHDXWUHVUHODWLRQV Ț Ȥ HWȜ ȚȤ ȤȚ WHOTXHȜ  ,OGRQQHO¶LQWHUSUpWDWLRQJpRPpWULTXHGHFKDTXHV\PEROHGDQVODVLWXDWLRQGX MHXLFRVLHQODPXOWLSOLFDWLRQSDUȚFRUUHVSRQGDXUHQYHUVHPHQWG¶XQHOLJQH %& HQ &% SDU H[HPSOH  FHOOH SDU Ȥ j XQH URWDWLRQ G¶XQH OLJQH GH %& HQ '& HWFHOOHSDUȜjODVXEVWLWXWLRQG¶XQHOLJQHjODOLJQHVXLYDQWH GDQVOHVHQV KRUDLUHGH%&HQ&'ௗVDXISRXUOHJUDQGSHQWDJRQHR65GHYLHQW5: (Q SRVDQWȝ ȚȤODUpVROXWLRQGXSUREOqPHUHYLHQWjUpVRXGUH>Ȝȝ Ȝȝ @  RFRUUHVSRQGjO¶LGHQWLWp/HF°XUGHFHWWHUpFUpDWLRQpJDOHPHQWpWXGLpH SDU/XFDVFRQVLVWHELHQHQXQHXWLOLVDWLRQLQJpQLHXVHG¶XQFDOFXOSURSRVpSDU

1. )RQGV)$UFKLYHVGpSDUWHPHQWDOHVGHOD&UHXVH *XpUHW  2. 3RO\qGUHFRPSRVpGHSHQWDJRQHVUpJXOLHUV

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

+DPLOWRQGDQVVHVUHFKHUFKHVSRUWDQWHQWUHDXWUHVVXUODQRQFRPPXWDWLYLWp /HSURSRVWKpRULTXHWURXYHUpFLSURTXHPHQWXQHYLVXDOLVDWLRQUpFUpDWLYHSDUWLFXOLqUHPHQWIUDSSDQWH3RXUQRVpOqYHVG¶DXMRXUG¶KXLFHWWHVLWXDWLRQSURSRVH XQHUHSUpVHQWDWLRQWDQJLEOH VXUXQHSODQFKHGHERLVSODQWpHGHFORXVDXWRXU GHVTXHOVRQHQURXOHXQH¿FHOOH G¶RSpUDWLRQVDOJpEULTXHVQRQFRPPXWDWLYHV

De la « géométrie de situation », selon Laisant /D JpRPpWULH GH VLWXDWLRQ YD GHYHQLU XQ FKDPS G¶LQYHVWLJDWLRQV PDMHXU GH /DLVDQWTXHFHVRLWjWUDYHUVVRQLPSOLFDWLRQGDQVOHVFRQJUqVGHO¶$)$6RX GDQV OHV SDJHV GH UHYXHV PDWKpPDWLTXHV9RLFL OD Gp¿QLWLRQ TX¶LO HQ GRQQH HQ LOV¶DJLWOjGHTXHVWLRQVG¶XQHQDWXUHVSpFLDOHFRQ¿QDQWjODIRLV jO¶DQDO\VHFRPELQDWRLUHjO¶LGpHGHFODVVL¿FDWLRQHWjGHVFRQVLGpUDWLRQV JpRPpWULTXHV 2Q QH VDXUDLW OHV IDLUH UHQWUHU DEVROXPHQWQLGDQVOHGRPDLQHH[FOXVLIGHO¶DOJqEUHQLGDQVFHOXLGHOD JpRPpWULH /DLVDQW

,O SUpFLVH HQ GDQV VRQ OLYUH GH UpÀH[LRQV VXU OHV PDWKpPDWLTXHV HW OHXUHQVHLJQHPHQWLa Mathématique. Philosophie, Enseignement &¶HVWpJDOHPHQWjO¶$ULWKPRORJLH 3TXHVHUDWWDFKHQWDXPRLQV SDU FHUWDLQV F{WpV OHV SUREOqPHV GH JpRPpWULH GH VLWXDWLRQ VL DWWDFKDQWVHWVRXYHQWVLGLI¿FLOHVSDUPLOHVTXHOVQRXVSRXYRQV FLWHUHQSDVVDQWOHVFDUUpVPDJLTXHVHWOHV¿JXUHVPDJLTXHVHQ JpQpUDO /DLVDQW

(Q HVVD\DQW GH GpOLPLWHU FH FKDSLWUH GH JpRPpWULH GH VLWXDWLRQ /DLVDQW \ UDWWDFKH OHV VLWXDWLRQV UpFUpDWLYHV PDLV HOOHV Q¶\ FRQVWLWXHQW SDV GH SULPH DERUGGHVOHYLHUVSpGDJRJLTXHV /XFDVFRQVDFUHXQFKDSLWUHGHVRQRXYUDJHPDMHXUThéorie des nombres /XFDVD jODJpRPpWULHGHVLWXDWLRQ2Q\WURXYHHQWUHDXWUHVXQHpWXGH GX FDUUp DULWKPpWLTXH GH )HUPDW GHV pFKLTXLHUV GH 'HODQQR\ DX[ IRUPHV GLYHUVHV WULDQJXODLUHSHQWDJRQDOHHWF GHVUpVHDX[DYHFOHVUpVXOWDWVG¶(XOHU RX OH WKpRUqPH GHV FDUUHIRXUV GH *DVWRQ 7DUU\   FRQWULEXWHXU 3. /DLVDQW\UDQJHODWKpRULHGHVQRPEUHVOHVTXHVWLRQVVXUOHVSXLVVDQFHVG¶XQELQ{PH VXUOHWULDQJOHDULWKPpWLTXHHWO¶DQDO\VHFRPELQDWRLUH



JpQpUDOGHV¿QDQFHVj$OJHUHWDXWUH¿JXUHGHFHWWHFRPPXQDXWpGHVUpFUpDWLRQVPDWKpPDWLTXHV 7DUU\HW %DUELQ  6LODJpRPpWULHGHVLWXDWLRQHVWVRXUFHGHUpFUpDWLRQVPDWKpPDWLTXHVGHV H[HPSOHV H[SOLFLWHV VRQW UDUHV GDQV O¶°XYUH GH /DLVDQW 7RXWHIRLV HQ GDQVVRQDUWLFOHVXUXQH©ௗFXULRVLWpDULWKPpWLTXHௗª /DLVDQW LOPRQWUH TX¶HQLQVpUDQWVXFFHVVLYHPHQWOHQRPEUHDXFHQWUHGXQRPEUH VRLW  HWF  RQ REWLHQW GHV FDUUpV SDUIDLWV UHVSHFWLYHPHQW   ðHWF /DUHPDUTXHHVWYDODEOHSRXUOHVQRPEUHV ð  ð   ð HWF,OGpPRQWUHTX¶HQEDVHĮðLO\DĮ±QRPEUHVSRVVpGDQWFHWWHSURSULpWp DLQVLGDQVOHV\VWqPHGpFLPDORĮ VHXOHVOHVGHX[ VXLWHVLVVXHVGHVQRPEUHVHWUpSRQGHQWDXSUREOqPH  /DGpPRQVWUDWLRQHVWFDOFXODWRLUHHWUHSRVHVXUOHVUqJOHVpOpPHQWDLUHVGX FDOFXOHQEDVH% Įð/DLVDQWFRQVLGqUHOHQRPEUHȖnIRUPpGHnIRLVOH FKLIIUHHWTXLYpUL¿H Ȗn  %n±  %±   %n± Į 3RXUXQHQWLHUcTXHOFRQTXHOHQRPEUH1 c ĮȖnDSRXUFDUUp 1 = cĮȖncĮȖn cȖn %n± cĮȖn Ȗnc%nȖn cĮ±c  6L c HW cĮ±c VRQW GHV FKLIIUHV F¶HVWjGLUH V¶LOV VRQW LQIpULHXUV j %± GRQF VL cĮ DORUV OHV QRPEUHV 1ð REWHQXV SRXU GLIIpUHQWHV YDOHXUV GH n UpSRQGHQWDXSULQFLSHGHFRQVWUXFWLRQH[SRVp 4HQEDVH RĮ FHTXL LPSOLTXHTXHc RXc G¶ROHVGHX[VXLWHVGHQRPEUHVH[KLEpHV 3RXU XQpOqYHGXF\FOHWHUPLQDOG¶DXMRXUG¶KXLODYpUL¿FDWLRQSDUXQDOJRULWKPHGH FHWWHSURSULpWpSHXWLQLWLHUXQHUpÀH[LRQVXUODQRWLRQGHFKLIIUHVGDQVXQHEDVH TXHOFRQTXH $XGHOjGHFHVDSSURFKHVFDOFXODWRLUHVGHTXHVWLRQVG¶DSSDUHQFHUpFUpDWLYHOHWUDLWHPHQWSDU/DLVDQWGHSUREOqPHVGHJpRPpWULHGHVLWXDWLRQUHSRVH VXUXQHYLVXDOLVDWLRQGHVSURFpGpVjO¶DLGHG¶XQH¿JXUHRPQLSUpVHQWHGDQVVHV WUDYDX[HWUpFXUUHQWHSRXUODFRPPXQDXWpGHVUpFUpDWLRQVFHOOHGHO¶pFKLTXLHU 'pFDLOORW 

4. 2QSHXWUHPDUTXHUTXHFHVQRPEUHVIRUPpVG¶XQQRPEUHSDLUGHFKLIIUHVFRPPHQFHQW SDUnIRLVOHFKLIIUH cðVHSRXUVXLYHQWSDUn±IRLVOHFKLIIUHcĮ±cðHWVHWHUPLQHSDU cĮ±cð

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

Différents échiquiers à l’œuvre 'DQVVRQDUWLFOHGHLa Grande Encyclopédie 5 /DLVDQW /DLVDQW LQVLVWH VXU O¶XWLOLWp GHV pFKLTXLHUV GLWV DULWKPpWLTXHV FH VRQW GHV WDEOHDX[ QXPpULTXHV DX[ FDVHV FDUUpHV FRPSDUDEOHV j XQ TXDGULOODJH GDQV OHVTXHOV VRQW LQVFULWV GHV QRPEUHV VHORQ XQ SURFpGp GRQQp /D SODFH GH FHV YDOHXUV OHVXQHVSDUUDSSRUWDX[DXWUHVUHQYRLHDORUVjXQHSHQVpHJpRPpWULTXHGHV SURFpGpV FDOFXODWRLUHV /DLVDQW UHOLH OHV YDOHXUV GX FDUUp GH )HUPDW ¿J  DX[QRPEUHVSRVVLEOHVGHGpSODFHPHQWVG¶XQHWRXUVXUXQpFKLTXLHU/HFDUUp GH )HUPDW HVW O¶pFKLTXLHU DULWKPpWLTXH FRPSRUWDQW XQLTXHPHQW GHV  VXU OD SUHPLqUHOLJQHHWODSUHPLqUHFRORQQHHWGDQVOHTXHOFKDTXHQRPEUHSODFpjOD OLJQHi et la colonne jHVWODVRPPHGXWHUPHGHODOLJQHiHWGHODFRORQQHj ± DYHFFHOXLGHODOLJQHi ±HWGHODFRORQQHj(QFRQVLGpUDQWXQHWRXUVHGpSODoDQWVXUXQSODWHDXGXMHXG¶pFKHFVXQLTXHPHQWGHJDXFKHjGURLWHRXGHKDXW HQEDVRQSHXWHQHIIHWGpWHUPLQHUOHQRPEUHGHGpSODFHPHQWVSRVVLEOHVG¶XQH FDVHRULJLQH LFLPDUTXpH2 jXQHFDVHTXHOFRQTXH LFLPDUTXpH; 6XUOD ¿JXUHGpSODFHPHQWVVRQWSRVVLEOHV GRQWWURLVVHXOHPHQWRQWpWpUHSUpVHQWpV  (Q /DLVDQW HQWUHSUHQG SRXU O¶$)$6 XQH pWXGH JpQpUDOH GHV DSSOLFDWLRQVGHWHOV©ௗWDEOHDX[GHVRPPHVௗªGpMjpWXGLpVSDU/XFDVHQ /DLVDQW /XFDVD 

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

1

3

6 10 15 21 28 36

1

4 10 30 35 56 84

1

5 15 35 70

1

6 21 56 Fig. 2 – Carré de Fermat et trois déplacements (parmi 84) d’une tour sur un échiquier.

8Q DXWUH W\SH G¶pFKLTXLHUV FRQVLVWH j UHPSODFHU OHV YDOHXUV QXPpULTXHV GHVpFKLTXLHUVDULWKPpWLTXHVSDUGLYHUVHVFRORUDWLRQVOLpHVjXQSURFpGpDOJRULWKPLTXH&HUWDLQVGHFHVpFKLTXLHUVVHURQWG¶DLOOHXUVDSSHOpV©ௗPRVDwTXHVGH /DLVDQWௗªHWVRQWXQHFODVVHSDUWLFXOLqUHG¶pFKLTXLHUVDQDOODJPDWLTXHV(QYRLFL 5. La Grande Encyclopédie : inventaire raisonné des sciences, des lettres, et des arts, par une société de savants et de gens de lettresVRXVODGLUHFWLRQGH0DUFHOOLQ%HUWKHORW  



ODGp¿QLWLRQGRQQpHSDU/DLVDQWDXFRQJUqVGHO¶$)$6GH©ௗ/¶pFKLTXLHU DQDOODJPDWLTXHHVWXQFDUUpIRUPpGHFDVHVQRLUHVHWEODQFKHVHQQRPEUHpJDO RXLQpJDOGHWHOOHVRUWHTXHSRXUGHX[OLJQHVRXGHX[FRORQQHVTXHOFRQTXHV OHQRPEUHGHYDULDWLRQVGHFRXOHXUVHVWWRXMRXUVpJDODXQRPEUHGHVSHUPDQHQFHVௗª /DLVDQW /DLVDQWHQSURSRVHXQHFRQVWUXFWLRQSDUXWLOLVDWLRQGHOHXUVFRPSOpPHQWDLUHVRX©ௗpSUHXYHSKRWRJUDSKLTXHQpJDWLYHௗª ¿J  ¬SDUWLUG¶XQpFKLTXLHUDQDOODJPDWLTXH(GHF{WpGRQWOHVFDVHVVRQWQRLUHV RXEODQFKHVRQFRQVWUXLWVRQQpJDWLI(ƍHQLQYHUVDQWOHVFRXOHXUVGHFKDTXH FDVH/¶pFKLTXLHUDQDOODJPDWLTXHGHF{WpHVWDORUVREWHQXSDUFRQFDWpQDWLRQ GHVpFKLTXLHUV(HW(ƍVXLYDQWOHPRGqOHLPSRVpSDUOHVFRXOHXUVGDQV(2Q REWLHQWXQQRXYHOpFKLTXLHUDQDOODJPDWLTXH(GHF{WpHWO¶RSpUDWLRQSHXWrWUH UHQRXYHOpHD¿QG¶HQREWHQLUXQGHF{Wpn

E E′ E E′

E′ E

E′ E

Fig. 3 – Construction des échiquiers anallagmatiques.

&¶HVWFHWWHFRQVWUXFWLRQTXH/DLVDQWXWLOLVHSRXUUpSRQGUHjXQHTXHVWLRQ SRVpHHQSDU&DWDODQGDQVODNouvelle Correspondance Mathématique 6 'DQVOHGpYHORSSHPHQWGXSURGXLW ±a ±b ±c ±d «ௗ jVDYRLU ±a±bab±cacbc±abc±d« TXHOHVWOHVLJQHGXnLqPHWHUPHௗ" 7 6. &DWDODQ (   4XHVWLRQ  'DQV Nouvelle Correspondance Mathématique WRPH9,S %UX[HOOHV)+D\H] 7. /H GpYHORSSHPHQW V¶HIIHFWXH HQ GLVWULEXDQW OHV pOpPHQWV VXFFHVVLYHPHQW GH OD GHX[LqPHSDUHQWKqVHjFHX[GHODSUHPLqUH

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

'DQV VD FRPPXQLFDWLRQ SRXU O¶$)$6 ©ௗ6XU OHVGpYHORSSHPHQWV GH FHUWDLQV SURGXLWV DOJpEULTXHVௗª /DLVDQW  $XYLQHW   /DLVDQWSURSRVHXQHUppFULWXUHGXSUREOqPHjO¶DLGHG¶pFKLTXLHUV HQ UHSUpVHQWDQW OH VLJQH  SDU XQH FDVH EODQFKH HW OH VLJQH ± SDU XQH QRLUH /HV pFKLTXLHUV DLQVLREWHQXVVRQWDQDOODJPDWLTXHV HW FRQVWUXFWLEOHV SDU OH SURFpGp LQGLTXp HQ (W /DLVDQW GH Fig. 4 – Mosaïque de Laisant pour le développement UHPDUTXHU©ௗ&HODGRQQHOLHXjGHV de (1 + i – 1 – i)4. GHVVLQVPRVDwTXHVDVVH]FXULHX[HW V\PpWULTXHVௗª /DLVDQW  (Q XWLOLVDQW SOXVLHXUV FRXOHXUV 8 /DLVDQW UHSUpVHQWH GH PDQLqUH VLPLODLUH OH GpYHORSSHPHQWGH i±±i  ¿J RHWiVRQWOHVXQLWpVGXFDOFXOVXU OHVQRPEUHVFRPSOH[HV/HV¿JXUHVFRORUpHVREWHQXHVVRQWSUpVHQWpHVFRPPH GHVWUDGXFWLRQVYLVXHOOHVGHSURFpGXUHVFDOFXODWRLUHVWKpRULTXHV /HVPRVDwTXHVGH/DLVDQWDLQVLIRUPpHVVRQWVLJQDOpHVGDQVODUpFUpDWLRQ LQWLWXOpH ©ௗOHV SDUTXHWVௗª GH /XFDV /XFDV    /HV pFKLTXLHUV DQDOODJPDWLTXHV VRQW HQ HIIHW SUpVHQWV GDQV OH GHX[LqPH WRPH GHV Récréations mathématiquesGH/XFDVHQ/HVSDUTXHWVDQDOODJPDWLTXHV /XFDV  LOOXVWUHQWOHVVLJQHVjXWLOLVHUSRXUODGpFRPSRVLWLRQGXSURGXLWGH VRPPHVGHTXDWUHFDUUpVHQXQHVRPPHGHTXDWUHFDUUpV ¿J  ^a 2 + b 2 + c 2 + d 2 h^ p 2 + q 2 + r 2 + s 2 h Fig. 5 – Parquet de décomposition du produit de sommes de quatre carrés en somme de quatre carrés.

= 6+ ap − bq − cr − ds@2 +6+ as − br + cq + dp@2 +6+ aq + bp − cs + dr@2 +6− ar − bs − cp + dq@2



±a ±b ±c ±d «  ±a±bab ±c ±d «  ±a±bab±c acbc±abc ±d  « 8. 8QHFDVHEODQFKHFRUUHVSRQGDXWHUPHXQHJULVHDXWHUPHiXQHQRLUHj±HWXQH KDFKXUpHj±i2QWURXYHXQHLPSUHVVLRQG¶XQWHOpFKLTXLHUGDQVXQHOHWWUHGH/XFDVj /DLVDQWSUpSDUDQWO¶pGLWLRQGXYROXPHGHVRécréations mathématiques 1$)  ) 



Édouard Lucas, ami et collaborateur /XFDV HVW QRUPDOLHQ G¶DERUG DVWURQRPHDGMRLQW j O¶2EVHUYDWRLUH GH 3DULV MXVTX¶HQSXLVSURIHVVHXUHQFODVVHSUpSDUDWRLUHMXVTX¶jVDPRUWHQ $XWHXU G¶XQH WKqVH Sur l’application des séries récurrentes à la recherche des grands nombres premiersRQOXLGRLWQRWDPPHQWXQWHVWGHSULPDOLWpGLW WHVW GH /XFDV/HKPHU ,O FRQWULEXH pJDOHPHQW j OD YXOJDULVDWLRQ GHV PDWKpPDWLTXHVHQSXEOLDQWHQWUHHWVHVRécréations mathématiques en TXDWUHYROXPHV(QLOHQWDPHO¶pFULWXUHG¶XQYDVWHWUDLWpXQHThéorie des nombres /XFDVD GRQWVHXOOHSUHPLHUYROXPHVHUDSXEOLp/XFDV GpFqGH HQ HIIHW DFFLGHQWHOOHPHQW DSUqV XQ FRQJUqV GH O¶$)$6 /DLVDQW HW 'HODQQR\FRQWULEXHURQWjODSXEOLFDWLRQHQWUHDXWUHVGHO¶Arithmétique amusanteGH/XFDVHQ $XWHEHUW'pFDLOORWHW6FKZHU 

Paradoxe de Lewis-Carroll et représentation géométrique des fractions continues 'DQVVRQRXYUDJHInitiation mathématiqueSDUXHQ/DLVDQWSUpVHQWHj O¶RFFDVLRQGHODOHoRQ©ௗXQSDUDGR[H ௗª /DLVDQW OHFpOqEUH SDUDGR[HGLWGH/HZLV&DUUROO ¿JD 

13

D

C

21 A

B 8 A

21 34

D

C

13 13

B (a)

(b)

Fig. 6 – Deux paradoxes : (a) 64 = 65 ; (b) 441 = 442.

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

/XFDVDpJDOHPHQWDERUGpFHWWHTXHVWLRQOjHQFRUHFRPPHLOOXVWUDWLRQGH UpVXOWDWVHQWKpRULHGHVQRPEUHVGDQVXQHOHWWUHj/DLVDQWGH -¶DLRXEOLpGHYRXVGLUHTXHODTXHVWLRQGXFDUUpGHWUDQVIRUPp HQUHFWDQJOHGHF¶HVWODVpULHGH)LERQDFFLௗF¶HVWWUqVMROLHW RQSHXWHQIDLUHWDQWTX¶RQYHXWHQSOXVRXHQPRLQVௗF¶HVWDX IRQGODUHSUpVHQWDWLRQJpRPpWULTXHGHVIUDFWLRQVFRQWLQXHV 6pULHGH)LERQDFFL ð±Â ± ð±Â ± ð±Â ± GRQQHQWODGLPLQXWLRQTXDQGRQSDVVHGXUHFWDQJOHDXFDUUpௗ>«@ RQSHXWDXJPHQWHUG¶DXWDQWGHFDUUpVTX¶RQYHXWDYHFG¶DXWUHV 1 IUDFWLRQVFRQWLQXHVTXH .  1$)  ) 1 1+

1+

1 1 1+ 1

/HSDUDGR[HSURYLHQWGXIDLWTX¶RQSHXWDJHQFHUSLqFHVG¶XQSX]]OHSRXU IRUPHUXQFDUUpG¶DLUHRXXQUHFWDQJOHG¶DLUH/¶XQLWpG¶DLUHVXSSOpPHQWDLUHDSSDUXHGDQVOHUHFWDQJOHSURYLHQWGXIDLWTXHODGLDJRQDOHDSSDUHQWHHVW XQ¿QSDUDOOpORJUDPPHG¶DLUH,OHVWXQHSUpFLHXVHVLWXDWLRQSUREOqPHGDQV QRVFODVVHVDXYXGHVRXWLOVPDWKpPDWLTXHVYDULpVTXLSHXYHQWrWUHPRELOLVpV SRXUO¶H[SOLTXHU &HUFOp  /HVpJDOLWpVSUpVHQWpHVSDU/XFDVGDQVVDOHWWUHFRUUHVSRQGHQWjO¶LGHQWLWp GLWH GH &DVVLQL 1LQ   FRQFHUQDQW OHV WHUPHV GH OD VXLWH GH )LERQDFFL Gp¿QLHSDU u ௗu HWSRXUWRXWHQWLHUn•un   = unun ±  /¶LGHQWLWpGH&DVVLQLV¶pFULWDORUV un – un ± un    ± n HWRQVDLWTXHODOLPLWHGXUDSSRUWununHVWOHQRPEUHG¶RUVHXOHVROXWLRQ SRVLWLYHGHO¶pTXDWLRQx x(QUHPSODoDQWVXFFHVVLYHPHQWxSDUx GDQVOHGHX[LqPHPHPEUHRQREWLHQWO¶pFULWXUHHQIUDFWLRQFRQWLQXHpQRQFpH SDU/XFDV  «  .RVK\  2Q SRXUUDLW DLQVL DLVpPHQW LPDJLQHU j OD VXLWH GH /XFDV HW /DLVDQW XQ H[HUFLFH LQWLWXOp ©ௗXQ SDUDGR[H  ௗª ¿JE  8QH IRLV OD VLWXDWLRQ ©ௗ ௗªpWXGLpHjO¶DLGHGHODVXLWHGH)LERQDFFLXQpOqYH SDUH[HPSOH GXF\FOH SRXUUDLWrWUHDPHQpjFRQVWUXLUHGHQRXYHOOHV¿JXUHVDYHFGHSOXV JUDQGVWHUPHVGHODVXLWHSRXUREWHQLUXQSDUDOOpORJUDPPHGpFRXSDQWOHUHFWDQJOHGHSOXVHQSOXV©ௗDSODWLௗª



Lucas confie à Laisant sa résolution du problème des 36 officiers Le SUREOqPH GHV  RI¿FLHUV HVW XQ DXWUH H[HPSOH GH UpFUpDWLRQV DERUGpHV SDU/XFDVGDQVXQHOHWWUHj/DLVDQW,OpFULWHQHIIHWHQ©ௗ3DJHGH 1&0 TXHVWLRQ WUqVGU{OH G¶DXWDQW SOXV TXH MH VDLV OD UpVRXGUH SRXU ð ð ðRI¿FLHUVௗª 9/HSUREOqPHHQTXHVWLRQVRXOHYpSDU(XOHUFRQVLVWHjUDQJHU GDQVXQHIRUPDWLRQFDUUpHRI¿FLHUVGHVL[JUDGHVGLIIpUHQWVLVVXVGHVL[ UpJLPHVGLIIpUHQWVGHWHOOHVRUWHTXHVXUFKDTXHOLJQHHWVXUFKDTXHFRORQQH RQQHWURXYHTXHGHVRI¿FLHUVGHJUDGHHWGHUpJLPHGLVWLQFWV &DWDODQ  %DUELQ  'DQV OH FDV GH QHXI RI¿FLHUV GH WURLV JUDGHV HW WURLV UpJLPHV GLIIpUHQWV /XFDVFRQVWUXLWG¶DERUGXQFDUUpPDJLTXHG¶RUGUHWURLVjSDUWLUG¶XQHGLVSRVLWLRQLQLWLDOH©ௗHQIDLVDQWIDLUHHQDYDQWGHX[HWUHWRXUQHPHQWDX[QRPEUHV HQGHKRUVGXFDUUpௗª ¿J ,OV¶DJLWHQIDLWG¶XQHFRQVWUXFWLRQKLVWRULTXHGH FDUUpVPDJLTXHVH[SRVpHSDU%DFKHWGH0p]LULDF   GDQVOHFDVR OHF{WpGHO¶pFKLTXLHUFRPSRUWHXQQRPEUHLPSDLUnGHFDVHV RXHQFRUHSDU XQSURIHVVHXUGHPDWKpPDWLTXHVjO¶eFROHVSpFLDOHGHVWUDYDX[SXEOLFVePLOH )RXUUH\GDQVODWURLVLqPHSDUWLHGHVHVRécréations arithmétiques )RXUUH\  GpGLpHDX[FDUUpVPDJLTXHV 10(QDWWULEXDQWjFKDTXHHQWLHUXQRI¿FLHU GHJUDGHHWGHUpJLPHQWVSpFL¿TXHVRQREWLHQWXQHGLVSRVLWLRQUpSRQGDQWDX SUREOqPH ¿J  1 2

4 7

3

5 8

6

4

9

2

G1 L3 C2

3

5

7

C3 G2 L1

8

1

6

L2 C1 G3

9 1, 2, 3 trois colonels C1 C2 C3 4, 5, 6 trois généraux G1 G2 G3 7, 8, 9 trois lieutenants L1 L2 L3 Fig. 7 – Le carré magique du problème des 9 officiers.

9. 1$)  ) 10. 9RLUODFRQWULEXWLRQG¶eYHO\QH%DUELQGDQVOHSUpVHQWRXYUDJH

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

d1 e1

c2 d2

e2

a3

d3 e3

a4

b3 c3

b4 c4

d4 e4

a5 b5

c5

état major

infanterie

a2 b2

cavalerie

b1 c1

artillerie

officier du génie

a1 c1 e4 b2 d5 a3

a1 a2 a3 a4 a4 généraux

a4 c2 e5 b3 d1

b1 b2 b3 b4 b5 colonels

d2 a5 c3 e1 b4

c1 c2 c3 c4 c5 commandants

b5 d3 a1 c4 e2

d1 d2 d3 d4 d5 capitaines

e3 b1 d4 a2 c5

e1 e2 e3 e4 e5 lieutenants

d5 e5

/XFDVSURFqGHGHPrPHSRXUUpVRXGUHOHSUREOqPH DYHFðRI¿FLHUV ¿J HWFRQFOXW©ௗ(WFHFLV¶DSSOLTXH MH SHQVH j WRXV OHV n ð RI¿FLHUV 6L YRXV DYLH] GDQVYRWUHELEOLRWKqTXHGHVFDUUpVPDJLTXHVSDLUVLO\ DXUDLWjYRLUௗª /jHQFRUH/XFDVVHPEOHLQLWLHU/DLVDQWDX[UpFUpDWLRQV LOOXVWUDQW GH PDQLqUH SHUWLQHQWH GHV UpVXOWDWV DXWRXU GHV FDUUpV PDJLTXHV WRXW FRPPH DXSDUDYDQW GHVSURSULpWpVGHODVXLWHGH)LERQDFFL

Fig. 8 – Le carré magique du problème des 25 officiers.

Vers l’Initiation mathématique (Q &KDUOHV$QJH /DLVDQW GpVDEXVp PHW ¿Q j VD FDUULqUH GH GpSXWp &HOOH G¶HQVHLJQDQW V¶RXYUH DORUV j OXL HQ FODVVHV SUpSDUDWRLUHV QRWDPPHQW j 6DLQWH%DUEHSXLVFRPPHH[DPLQDWHXUG¶DGPLVVLRQj O¶eFROHSRO\WHFKQLTXH6RQLQWpUrWSRXUOHVTXHVWLRQV SpGDJRJLTXHV GHYLHQW GqV ORUV SUpSRQGpUDQW XQH QRXYHOOH XWLOLVDWLRQ GHV YLVXDOLVDWLRQV HQ PDWKpPDWLTXHVGLVFUqWHVHWGRQFGHVUpFUpDWLRQVYDSURJUHVVLYHPHQWVHGpJDJHU



d1 e1

c2 d2

e2

a3

d3 e3

a4

b3 c3

b4 c4

d4 e4

a5 b5

c5

état major

infanterie

a2 b2

cavalerie

b1 c1

artillerie

officier du génie

a1 c1 e4 b2 d5 a3

a1 a2 a3 a4 a4 généraux

a4 c2 e5 b3 d1

b1 b2 b3 b4 b5 colonels

d2 a5 c3 e1 b4

c1 c2 c3 c4 c5 commandants

b5 d3 a1 c4 e2

d1 d2 d3 d4 d5 capitaines

e3 b1 d4 a2 c5

e1 e2 e3 e4 e5 lieutenants

d5 e5

/XFDVSURFqGHGHPrPHSRXUUpVRXGUHOHSUREOqPH DYHFðRI¿FLHUV ¿J HWFRQFOXW©ௗ(WFHFLV¶DSSOLTXH MH SHQVH j WRXV OHV n ð RI¿FLHUV 6L YRXV DYLH] GDQVYRWUHELEOLRWKqTXHGHVFDUUpVPDJLTXHVSDLUVLO\ DXUDLWjYRLUௗª /jHQFRUH/XFDVVHPEOHLQLWLHU/DLVDQWDX[UpFUpDWLRQV LOOXVWUDQW GH PDQLqUH SHUWLQHQWH GHV UpVXOWDWV DXWRXU GHV FDUUpV PDJLTXHV WRXW FRPPH DXSDUDYDQW GHVSURSULpWpVGHODVXLWHGH)LERQDFFL

Fig. 8 – Le carré magique du problème des 25 officiers.

Vers l’Initiation mathématique (Q &KDUOHV$QJH /DLVDQW GpVDEXVp PHW ¿Q j VD FDUULqUH GH GpSXWp &HOOH G¶HQVHLJQDQW V¶RXYUH DORUV j OXL HQ FODVVHV SUpSDUDWRLUHV QRWDPPHQW j 6DLQWH%DUEHSXLVFRPPHH[DPLQDWHXUG¶DGPLVVLRQj O¶eFROHSRO\WHFKQLTXH6RQLQWpUrWSRXUOHVTXHVWLRQV SpGDJRJLTXHV GHYLHQW GqV ORUV SUpSRQGpUDQW XQH QRXYHOOH XWLOLVDWLRQ GHV YLVXDOLVDWLRQV HQ PDWKpPDWLTXHVGLVFUqWHVHWGRQFGHVUpFUpDWLRQVYDSURJUHVVLYHPHQWVHGpJDJHU



Des manuels où émergent des questions de géométrie de situation &H QRXYHO LWLQpUDLUH G¶HQVHLJQDQW V¶DFFRPSDJQH GH OD SXEOLFDWLRQ GH QRPEUHX[ PDQXHOV $XYLQHW   1RXV VLJQDORQV VD FROODERUDWLRQ GqV  DYHF eOLH 3HUULQ SRXU OD SXEOLFDWLRQ GH OHXUV Premiers principes d’algèbre /DLVDQWHW3HUULQ 2Q \ WURXYH GDQV O¶DSSHQGLFH 9,,, XQH SUpVHQWDWLRQ GH O¶©ௗ(PSORL GH O¶pFKLTXLHUௗª VLJQDOp FRPPH pWDQW ©ௗG¶XQ JUDQG VHFRXUVௗª SDU H[HPSOH SRXU Fig. 9 – Échiquier illustrant l’égalité OH FDOFXO GHV VRPPHV GHV n SUHPLHUV 8(1 + 2 + 3 + … + n) + 1 = (2n + 1)2 pour n=5. QRPEUHV HQWLHUV RX GHV n SUHPLHUV QRPEUHVLPSDLUV/¶pJDOLWp  «n   n  \WURXYHDXVVLXQHLOOXVWUDWLRQFDUDFWpULVWLTXHGHVSX]]OHVPDWKpPDWLTXHVHQ SHUPHWWDQWXQHYLVXDOLVDWLRQRSpUDQWHRFKDTXHpOpPHQWGHO¶pJDOLWpWURXYHVD SODFHGDQVODUHSUpVHQWDWLRQSURSRVpH ¿J  &KDFXQGHFHVSX]]OHVSHXWFRQVWLWXHUXQHLOOXVWUDWLRQDFFRPSDJQDQWGHV H[HUFLFHV FODVVLTXHV DFWXHOV GH GpPRQVWUDWLRQ SDU UpFXUUHQFH O¶DSSRUW GH WHOOHVYLVXDOLVDWLRQVUHPHWHQSHUVSHFWLYHOHSURFpGpFDOFXODWRLUHFKH]O¶pOqYH HWSHUPHWG¶HQWDPHUXQHUpÀH[LRQVXUOHVWDWXWGHODSUHXYH 'DQVVRQRXYUDJHGH/DLVDQWSUpFLVHODSODFHDFFRUGpHDX[MHX[GDQV O¶DSSUHQWLVVDJHGHVSUHPLqUHVUqJOHVGHO¶DULWKPpWLTXH©ௗGDQVWRXVFHVH[HUFLFHVSUpVHQWpVFRPPHGHVUpFUpDWLRQVOHMHXQHpOqYHWURXYHXQDWWUDLWௗVD FXULRVLWpV¶pYHLOOHLOGpVLUHDOOHUFKDTXHMRXUXQSHXSOXVORLQTXHODYHLOOHௗª /DLVDQW    /H SURFpGp G¶DEVWUDFWLRQ YHUV OHV REMHWV LGpDX[ GHV PDWKpPDWLTXHVQDWXUHOSRXUOHVMHXQHVHQIDQWVSHXWGRQFV¶DSSX\HUVXUGHV UpFUpDWLRQVVLPSOHV$ORUVXWLOLVpHVSDU/DLVDQWSRXULOOXVWUHUGHPDQLqUHSHUWLQHQWHWHORXWHOFDOFXOOHVUpFUpDWLRQVPDWKpPDWLTXHVWURXYHQWXQQRXYHDX VWDWXWFHOXLG¶RXWLOSpGDJRJLTXH &HWWHLGpHHVWSURFKHGHFHOOHGpYHORSSpHSDU/XFDV /XFDV  DXWHXUG¶XQHVpULHGHPRQRJUDSKLHV-HX[VFLHQWL¿TXHVSRXUVHUYLUjO¶KLVWRLUH à l’enseignement et à la pratique du calcul et du dessin R VRQW SUpVHQWpV GHVMHX[WHOVTXHODIDVLRXOHWWHODSLSRSLSHWWHOD7RXUGH+DQRwHWF /XFDV  2QWURXYHSDUDLOOHXUVGDQVO¶Arithmétique amusanteSOXVLHXUVUpFUpDWLRQVPDWKpPDWLTXHVTXHFHVRLWVXUOHVFDOFXOVpOpPHQWDLUHV DYHFO¶Abacus

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

GH)LERQDFFL VXUOHFDOFXOUDSLGH DYHFOHVUpJOHWWHVQpSpULHQQHVHWF VXU OHVSURJUHVVLRQVDULWKPpWLTXHV OHYROGHVJUXHVOHFDUUpGHFKRX[ RXHQFRUH VXUOHVSURJUHVVLRQVJpRPpWULTXHV DYHFOHEDJXHQDXGLHURXODWRXUGH+DQRw  'H WHOOHV FRQVLGpUDWLRQV VRQW SDUWDJpHV SDU G¶DXWUHV DXWHXUV GH UHFXHLOV GH UpFUpDWLRQV ePLOH )RXUUH\ H[SOLTXH SRXU VD SDUW GDQV VHV Récréations arithmétiques LOH[LVWHDFWXHOOHPHQWGDQVO¶HQVHLJQHPHQWXQHWHQGDQFHjQHSDV IDLUHDERUGHUDX[HQIDQWVO¶pWXGHGHVVFLHQFHVSDUO¶H[SRVpGHOD WKpRULHSXUHGRQWO¶DULGLWpSHXWOHVUHEXWHU¬O¶DLGHGHVTXHOTXHV SULQFLSHVVWULFWHPHQWQpFHVVDLUHVRQFRPPHQFHFHWWHpWXGHSDU G¶DPXVDQWHVDSSOLFDWLRQVTXLLQWpUHVVHQWOHVMHXQHVHVSULWVHWOHXU GRQQHQWOHGpVLUG¶HQFRQQDvWUHGDYDQWDJH )RXUUH\9,,

2QUHWURXYHGHPrPHGDQVFHWRXYUDJHGHVUpFUpDWLRQVDXWRXUGHVRSpUDWLRQV DULWKPpWLTXHV GHV QRPEUHV SRO\JRQDX[ GH SUREOqPHV DQFLHQV HW VXUWRXWGDQVXQHGHUQLqUHSDUWLHGHVFDUUpVPDJLTXHV

Des récréations pour initier les jeunes enfants /DLVDQW YD GpYHORSSHU HQWUH HW O¶LGpH GH UHQRXYHOHU O¶HQVHLJQHPHQW GHV SUHPLqUHV QRWLRQV PDWKpPDWLTXHV DORUV TX¶LO YLHQW GH IRQGHU OD UHYXHLQWHUQDWLRQDOHL’Enseignement mathématique  6DFRQIpUHQFHGH V¶LQWLWXOHO¶Initiation mathématiqueLO\SU{QHXQHSUHPLqUHLQLWLDWLRQ UDWLRQQHOOHIRQGpHVXUO¶REVHUYDWLRQG¶REMHWVFRQFUHWVFHTXLFRUUHVSRQGDX[ IRQGHPHQWVH[SpULPHQWDX[GHVVFLHQFHVPDWKpPDWLTXHV/¶pSLVWpPRORJLHGHV PDWKpPDWLTXHVWHOOHTX¶LOODFRQoRLWUHMRLQWVDUpÀH[LRQVXUOHXUHQVHLJQHPHQW &HWHQVHLJQHPHQWUHSRVHGRQFVXUODFXULRVLWpQDWXUHOOHGHO¶HQIDQWVROOLFLWpH SDUOHVUpFUpDWLRQVPDWKpPDWLTXHV&HWWHGpPDUFKHHVWjUDSSURFKHUGHVDFROODERUDWLRQDYHFOHSpGDJRJXHHVSDJQRO)UDQFLVFR)HUUHU  IRQGDWHXUGHO¶eFROHPRGHUQHHWGpIHQVHXUG¶XQHSpGDJRJLHFHQWUpHVXUO¶HQIDQW &HV SULQFLSHV VH FRQFUpWLVHQW HQ GDQV O¶Initiation mathématique ©ௗRXYUDJHpWUDQJHUjWRXWSURJUDPPHGpGLpDX[DPLVGHO¶HQIDQFHௗª©ௗJXLGH SRXUOHVpGXFDWHXUVௗªGHVHQIDQWVGHjDQVRHQOHoRQVRUGRQQpHV /DLVDQWSURSRVHXQHLQLWLDWLRQFRPSOqWHGHODQXPpUDWLRQDX[FDUUpVPDJLTXHV ©ௗXQH FXULRVLWp GRQW LO Q¶HVW JXqUH SHUPLV G¶LJQRUHU O¶H[LVWHQFHௗª /DLVDQW  HQSDVVDQWSDUO¶DOJqEUHOHVQRPEUHVSUHPLHUVOHVSURJUHVVLRQV ODJpRPpWULHDQDO\WLTXHHWF/DLVDQWH[SOLTXHGDQVVRQDYDQWSURSRVOHU{OH QRYDWHXUDVVLJQpDX[UpFUpDWLRQV



/HSUpVHQWOLYUHQ¶DULHQGHFRPPXQDYHFOHVRécréations mathématiques>«@'DQVOHVRécréations mathématiquesOHPRWOH GLWDVVH]LOV¶DJLWG¶DSSOLTXHUjGHVVXMHWVDPXVDQWVMHX[GLYHUV FRPELQDLVRQVHWF OHV WKpRULHV PDWKpPDWLTXHV GpMj FRQQXHV HWVRXYHQWXQHFHUWDLQHLQVWUXFWLRQHVWQpFHVVDLUHSRXUSRXYRLU VHXOHPHQWFRPSUHQGUHOHVH[SOLFDWLRQVGRQQpHV ,FLF¶HVWO¶LQYHUVHௗQRXVQRXVVHUYLURQVGHTXHVWLRQVDPXVDQWHV FRPPH PR\HQ SpGDJRJLTXH SRXU DWWLUHU OD FXULRVLWp GH O¶HQIDQWHWDUULYHUDLQVLjIDLUHSpQpWUHUGDQVVRQHVSULWVDQVHIIRUWV LPSRVpV OHV SUHPLqUHV QRWLRQV PDWKpPDWLTXHV OHV SOXV HVVHQWLHOOHV /DLVDQW

&HV OLJQHV GpFULYHQW SUpFLVpPHQW OD EDVFXOH HIIHFWXpH VXU 2 4 6 8 10 12 14 16 18 O¶XVDJH GHV UpFUpDWLRQV HW O¶pYROXWLRQGHODSHQVpHGH/DLVDQWVXU 3 6 9 12 15 18 21 24 27 ODJpRPpWULHGHVLWXDWLRQHQWUHOHV 4 8 12 16 20 24 28 32 36 DQQpHVHW3DUH[HPSOH 5 10 15 20 25 30 35 40 45 OHV UpIpUHQFHV j O¶REMHW pFKLTXLHU 6 12 18 24 30 36 42 48 54 V¶HIIHFWXHQWLFLSDUO¶LQWHUPpGLDLUH GH O¶XVDJH UpFXUUHQW GX SDSLHU 7 14 21 28 35 42 49 56 63 TXDGULOOp SRXU SUpVHQWHU QRWDP8 16 24 32 40 48 56 64 72 PHQW OD WDEOH GH PXOWLSOLFDWLRQ 9 18 27 36 45 54 63 72 81 ¿J /DLVDQWLQYLWHjREVHUYHU Fig. 10 – La table de Pythagore dans l’Initiation. FHWWH WDEOH GH 3\WKDJRUH j QRWHU OHV V\PpWULHV GH FHW pFKLTXLHU DULWKPpWLTXHSRXUPLHX[HQPpPRULVHUOHFRQWHQX 'HVRSpUDWLRQVFXULHXVHVjODPDQLqUHGHOD©ௗFXULRVLWpDULWKPpWLTXHௗªSUpVHQWpH SOXV KDXW GHV FDOFXOV PDJLTXHV VRQW PDLQWHQDQW FRQYRTXpV QRQ SOXV SRXUDSSOLTXHUGHVFDOFXOVVXEWLOVGDQVGHVEDVHVTXHOFRQTXHVPDLVSRXUSDUWLFLSHUH[SOLFLWHPHQWDX[F{WpVDWWUD\DQWVGHVOHoRQVVXUOHVRSpUDWLRQVXVXHOOHV $LQVL î ௗî ௗ« î  /HSURGXLWGHSDU«V¶pFULWSDUXQHSHUPXWDWLRQGHVHVFKLIIUHV î ௗ î ௗ «ௗ î   /HVSXLVVDQFHVGHGRQQHQWpJDOHPHQWOLHXjGHVUpVXOWDWVSDUWLFXOLHUVLQFLWDQWjXQHSUDWLTXHGpSD\VDQWHGXFDOFXOQXPpULTXHௗVRLWDXWDQWGHFDOFXOV SRVVLEOHV GqV QRWUH F\FOH  YRORQWDLUHPHQW GpSRXLOOpV SDU /DLVDQW GH 1

2

3

4

5

6

7

8

9

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

1

1

17 10001

1

2

4

8

16

2

10

18 10010

3

3

5

9

17

3

11

19 10011

5

6

6

10

18

4

100

30 10100

7

7

7

11

19

5

101

21 10101

9

10

12

12

20

6

110

22 10110

11

11

13

13

21

7

111

23 10111

13

14

14

14

22

8 1000

24 11000

15

15

15

15

23

9 1001

25 11001

17

18

20

24

24

10 1010

26 11010

19

19

21

25

25

11 1011



21

22

21

26

26

12 1100

23

23

23

27

27

13 1101

25

26

28

28

28

14 1110

27

27

29

29

29

15 1111

29

30

30

30

30

16 10000

31

31

31

31

31



GpPRQVWUDWLRQVRXGHJpQpUDOLVDWLRQVGDQVFHWWHSKDVH G¶LQLWLDWLRQ ©ௗ/¶pYHQWDLO P\VWpULHX[ௗª HVW OH VHXO MHX j SURSUHPHQWSDUOHUGHO¶Initiation,OHVWGpMjSUpVHQWGDQVOHV Récréations mathématiques GH /XFDV /XFDV E  /HVHQWLHUVGHjpWDQWLQVFULWVVXUFLQTEDQGHV GH SDSLHUV OH PDJLFLHQ GRLW UHWURXYHU LQVWDQWDQpPHQW XQQRPEUHVHFUHWDYHFSRXUVHXOHLQGLFDWLRQOHVEDQGHV RLOHVWSUpVHQW&¶HVWO¶pFULWXUHHQEDVHGHX[GHFHV HQWLHUVTXLSHUPHWG¶H[SOLTXHUOHWRXUOHVQRPEUHVGH ODSUHPLqUHEDQGHOHWWHFRQWLHQQHQWFHX[GRQWO¶pFULWXUH HQEDVHGHX[VHWHUPLQHSDUXQ©ௗௗªFHX[GHODGHX[LqPHEDQGHOHWWHRQWXQHpFULWXUHGRQWO¶DYDQWGHUQLHU QRPEUH HVW XQ ©ௗௗªHWF VL ELHQ TXH OH PDJLFLHQ Q¶D TX¶jDGGLWLRQQHUOHVSUHPLHUVHQWLHUVGHVEDQGHVGpVLJQpHV $XYLQHWD¿J /DLVDQW\YRLWXQRXWLO

Fig. 11 – Écriture des entiers en numération binaire et leur disposition sur l’éventail mystérieux.



GHSUDWLTXHGXFDOFXOPHQWDOSRXUOHVMHXQHVHQIDQWV3RXUQRVpOqYHVGXF\FOH WHUPLQDOO¶pYHQWDLOP\VWpULHX[HWVRQpOXFLGDWLRQSHXYHQWFRQVWLWXHUXQHSUHPLqUHDSSURFKHGHODQXPpUDWLRQELQDLUH FRQYHUVLRQG¶XQHpFULWXUHGpFLPDOH HQELQDLUHSUHPLHUVFDOFXOVHQEDVH  (Q¿QO¶XVDJHGHJUDSKLTXHVORUVGHODOHoRQ©ௗ/¶DOJqEUHVDQVFDOFXOௗªHVW O¶RFFDVLRQGHUpVRXGUHGHVSUREOqPHVGHUHQFRQWUHVGHGHX[PDUFKHXUVYR\DJHDQWHQGpFDODJHHWjGHVDOOXUHVGLIIpUHQWHV ¿JD RXG¶pYDOXHUJUDSKLTXHPHQWOHFKHPLQSDUFRXUXSDUXQFKLHQHIIHFWXDQWGHVDOOHUVUHWRXUVHQWUH GHX[GHFHVYR\DJHXUV ¿JE  &HV JUDSKLTXHV VRQW SUpVHQWV GDQV OHV H[HUFLFHV GH QRV PDQXHOV DFWXHOV ORUVTX¶LOHVWTXHVWLRQGHIRQFWLRQVDI¿QHVHQFODVVHGHVHFRQGHQRWDPPHQW /D SDUWLFXODULWp GH OD SUpVHQWDWLRQ GH /DLVDQW HVW OD FRQVWUXFWLRQ SXUHPHQW JpRPpWULTXH GHV GURLWHV FRUUHVSRQGDQWHV j SDUWLU GHV YLWHVVHV FRQQXHV QXO UHFRXUVjO¶H[SUHVVLRQDOJpEULTXHGHODIRQFWLRQ©ௗGLVWDQFHSDUFRXUXHௗªSRXU FRQVWUXLUH OH JUDSKLTXH HW UpVRXGUH OH SUREOqPH /DLVDQW V¶DWWDFKH j GRQQHU VHQVDX[UHSUpVHQWDWLRQVJUDSKLTXHVHQpOXGDQWOHVFDOFXOV Y

Y

14 km 12 km

25 km

M

10 km

20 km

8 km

15 km

6 km 4 km

B2

10 km

B1

5 km

2 km 0

A2 1h

T 2h

(a)

3h

T

0 1h 2h 3h 4h

(b)

Fig. 12 – Deux problèmes de rencontres. Y représente la distance parcourue et T, le temps écoulé.

,O VRXOLJQH HQ HIIHW OD SHUWLQHQFH GH WHOOHV UHSUpVHQWDWLRQV SRXU DERUGHU OHVUpFUpDWLRQVFRUUHVSRQGDQWHVGpSDVVDQWO¶pFULWXUHDOJpEULTXHV\PEROLTXH G¶XQHH[SUHVVLRQIRQFWLRQQHOOHHOOHVRQW©ௗO¶DYDQWDJHGHSDUOHUjO¶HVSULWSDU O¶LQWHUPpGLDLUHGHV\HX[GH¿JXUHUOHVFKRVHVHOOHVPrPHV&¶HVWOjXQHTXDOLWpSUpFLHXVHHQPDWLqUHGHSpGDJRJLHௗª /DLVDQW 

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

Conclusion ,VVXGHODVSKqUHSRO\WHFKQLFLHQQH/DLVDQWGpODLVVHHQSDUWLHjODPRLWLpGHVRQ SDUFRXUVVFLHQWL¿TXHODGLIIXVLRQGHVWKpRULHVGHVpTXLSROOHQFHVHWGHVTXDWHUQLRQVSRXUV¶LQWpUHVVHUDX[UpFUpDWLRQVPDWKpPDWLTXHV6DFRUUHVSRQGDQFHDYHF /XFDV HW 'HODQQR\ HW OD FROODERUDWLRQ TXL V¶pWDEOLW HQWUH FHV KRPPHV DXWRXU GHSXEOLFDWLRQVQRWDPPHQWGDQVOHVFRPSWHVUHQGXVGHVFRQJUqVGHO¶$)$6 DOLPHQWHQWVDUpÀH[LRQVXUOHU{OHGHVUpFUpDWLRQV/¶DSSRUWGHVYLVXDOLVDWLRQV UpFUpDWLYHVjO¶DSSOLFDWLRQRXjO¶pWXGHGHVWKpRULHVWDQWDXQLYHDXKHXULVWLTXH TX¶HVWKpWLTXHRXGHODFODUL¿FDWLRQGHVSURFHVVXVHQMHXVpGXLW/DLVDQW,OH[SORLWH OHOLHQLQWLPHTXHFHVVXSSRUWVWLVVHQWDYHFOHVGLIIpUHQWVFKDSLWUHVGHODWKpRULH GHVQRPEUHV6RQSDUFRXUVSHUVRQQHOO¶LQFLWHGDQVXQGHX[LqPHWHPSVjUppYDOXHUOHXUVXVDJHVjGHV¿QVSpGDJRJLTXHV/jHQFRUHOHVpFKDQJHVDYHF/XFDV RX)HUUHUQRXUULVVHQWVDUpÀH[LRQVXUO¶XWLOLWpGHVUpFUpDWLRQVGDQVXQHSHQVpH JOREDOHG¶XQUHQRXYHDXGHO¶pGXFDWLRQGHVMHXQHVHQIDQWVTXLFRwQFLGHDYHFVHV FRQYLFWLRQVSROLWLTXHV/¶pYLWHPHQWGXV\PEROLVPHDEVFRQVGHODPpPRULVDWLRQ jRXWUDQFHHWGHSUDWLTXHVURXWLQLqUHVVRQWDXWDQWG¶DWRXWVGHVUpFUpDWLRQVTXL IRQWEDVFXOHU/DLVDQWYHUVOHXUH[SORLWDWLRQSOHLQHHWHQWLqUHௗFHVDWRXWVFRQVWLWXHQWHQFRUHDXMRXUG KXLGHVpOpPHQWVIRUWVGHUpÀH[LRQSRXUO¶HQVHLJQDQW &HVPDWKpPDWLTXHVGHVUpFUpDWLRQVUHVWHQWjUHOLHUjXQPRXYHPHQWSOXV ODUJHTXHGHVDXWHXUVFRPPH/XFDV'HODQQR\)RXUUH\RX/DLVDQWRQWELHQ FHUQp 2XWUH OHV FRQJUqV GH O¶$)$6 GHV SXEOLFDWLRQV FRPPH OH ELPHQVXHO Les Tablettes du chercheur : journal des jeux d’esprit et de combinaisons  IRXUQLVVHQWXQUHFXHLOLPSRUWDQWGHUpFUpDWLRQVWRXWFRPPHXQ OLHXG¶pFKDQJHVSRSXODLUHVXUOHVMHX[HQYRJXHjO¶pSRTXH/¶HQMHXSROLWLTXH HWVRFLpWDOG¶XQHWHOOHSURGXFWLRQjO¶$)$6RXGDQVOHVTablettesHVWELHQGH GRQQHUOHJR€WSRXUOHVpWXGHVPDWKpPDWLTXHVjXQSXEOLFWRXMRXUVSOXVODUJH TXHVWLRQTXLUHVWHDXVVLG¶DFWXDOLWp

Références bibliographiques $XWHEHUW-0 'pFDLOORW$0 HW 6FKZHU65   +HQUL$XJXVWH 'HODQQR\HWODSXEOLFDWLRQGHV°XYUHVSRVWKXPHVGH/XFDVGazette des Mathématiciens $XYLQHW-   Charles-Ange Laisant. Itinéraires et engagements d’un mathématicien de la Troisième République3DULV+HUPDQQeGLWHXUV $XYLQHW-  5pFUpDWLRQVPDWKpPDWLTXHVJpRPpWULHGHVLWXDWLRQ«'H QRXYHDX[RXWLOVSRXUHQVHLJQHUOHVPDWKpPDWLTXHVjOD¿QGX XIXeVLqFOH



Conclusion ,VVXGHODVSKqUHSRO\WHFKQLFLHQQH/DLVDQWGpODLVVHHQSDUWLHjODPRLWLpGHVRQ SDUFRXUVVFLHQWL¿TXHODGLIIXVLRQGHVWKpRULHVGHVpTXLSROOHQFHVHWGHVTXDWHUQLRQVSRXUV¶LQWpUHVVHUDX[UpFUpDWLRQVPDWKpPDWLTXHV6DFRUUHVSRQGDQFHDYHF /XFDV HW 'HODQQR\ HW OD FROODERUDWLRQ TXL V¶pWDEOLW HQWUH FHV KRPPHV DXWRXU GHSXEOLFDWLRQVQRWDPPHQWGDQVOHVFRPSWHVUHQGXVGHVFRQJUqVGHO¶$)$6 DOLPHQWHQWVDUpÀH[LRQVXUOHU{OHGHVUpFUpDWLRQV/¶DSSRUWGHVYLVXDOLVDWLRQV UpFUpDWLYHVjO¶DSSOLFDWLRQRXjO¶pWXGHGHVWKpRULHVWDQWDXQLYHDXKHXULVWLTXH TX¶HVWKpWLTXHRXGHODFODUL¿FDWLRQGHVSURFHVVXVHQMHXVpGXLW/DLVDQW,OH[SORLWH OHOLHQLQWLPHTXHFHVVXSSRUWVWLVVHQWDYHFOHVGLIIpUHQWVFKDSLWUHVGHODWKpRULH GHVQRPEUHV6RQSDUFRXUVSHUVRQQHOO¶LQFLWHGDQVXQGHX[LqPHWHPSVjUppYDOXHUOHXUVXVDJHVjGHV¿QVSpGDJRJLTXHV/jHQFRUHOHVpFKDQJHVDYHF/XFDV RX)HUUHUQRXUULVVHQWVDUpÀH[LRQVXUO¶XWLOLWpGHVUpFUpDWLRQVGDQVXQHSHQVpH JOREDOHG¶XQUHQRXYHDXGHO¶pGXFDWLRQGHVMHXQHVHQIDQWVTXLFRwQFLGHDYHFVHV FRQYLFWLRQVSROLWLTXHV/¶pYLWHPHQWGXV\PEROLVPHDEVFRQVGHODPpPRULVDWLRQ jRXWUDQFHHWGHSUDWLTXHVURXWLQLqUHVVRQWDXWDQWG¶DWRXWVGHVUpFUpDWLRQVTXL IRQWEDVFXOHU/DLVDQWYHUVOHXUH[SORLWDWLRQSOHLQHHWHQWLqUHௗFHVDWRXWVFRQVWLWXHQWHQFRUHDXMRXUG KXLGHVpOpPHQWVIRUWVGHUpÀH[LRQSRXUO¶HQVHLJQDQW &HVPDWKpPDWLTXHVGHVUpFUpDWLRQVUHVWHQWjUHOLHUjXQPRXYHPHQWSOXV ODUJHTXHGHVDXWHXUVFRPPH/XFDV'HODQQR\)RXUUH\RX/DLVDQWRQWELHQ FHUQp 2XWUH OHV FRQJUqV GH O¶$)$6 GHV SXEOLFDWLRQV FRPPH OH ELPHQVXHO Les Tablettes du chercheur : journal des jeux d’esprit et de combinaisons  IRXUQLVVHQWXQUHFXHLOLPSRUWDQWGHUpFUpDWLRQVWRXWFRPPHXQ OLHXG¶pFKDQJHVSRSXODLUHVXUOHVMHX[HQYRJXHjO¶pSRTXH/¶HQMHXSROLWLTXH HWVRFLpWDOG¶XQHWHOOHSURGXFWLRQjO¶$)$6RXGDQVOHVTablettesHVWELHQGH GRQQHUOHJR€WSRXUOHVpWXGHVPDWKpPDWLTXHVjXQSXEOLFWRXMRXUVSOXVODUJH TXHVWLRQTXLUHVWHDXVVLG¶DFWXDOLWp

Références bibliographiques $XWHEHUW-0 'pFDLOORW$0 HW 6FKZHU65   +HQUL$XJXVWH 'HODQQR\HWODSXEOLFDWLRQGHV°XYUHVSRVWKXPHVGH/XFDVGazette des Mathématiciens $XYLQHW-   Charles-Ange Laisant. Itinéraires et engagements d’un mathématicien de la Troisième République3DULV+HUPDQQeGLWHXUV $XYLQHW-  5pFUpDWLRQVPDWKpPDWLTXHVJpRPpWULHGHVLWXDWLRQ«'H QRXYHDX[RXWLOVSRXUHQVHLJQHUOHVPDWKpPDWLTXHVjOD¿QGX XIXeVLqFOH



'DQV/5DGIRUG))XULQJKHWWLHW7+DXVEHUJHU GLU International Study Group on the Relations between the History and Pedagogy of Mathematics. Proceedings of the 2016 ICME Satellite Meeting S 0RQWSHOOLHU,5(0GH0RQWSHOOLHU $XYLQHW- D 'HO¶XVDJHGHVUpFUpDWLRQVSRXUXQHInitiation mathématiqueVHORQ&KDUOHV$QJH/DLVDQWBulletin de l’APMEP PDUVDYULO   $XYLQHW- E  &KDUOHV$QJH /DLVDQW XQ DFWHXU SRXU OHV PDWKpPDWLTXHVGLVFUqWHVHWOHXUFRPPXQDXWpjOD¿QGXXIXeVLqFOH'DQVe%DUELQ &*ROGVWHLQ 00R\RQ 656FKZHU HW 69LQDWLHU GLU  Les travaux FRPELQDWRLUHV HQ )UDQFH   HW OHXU DFWXDOLWp 8Q KRPPDJH j Henri Delannoy S /LPRJHV3UHVVHVXQLYHUVLWDLUHVGH/LPRJHV %DUELQe  /HV5pFUpDWLRQVGHVPDWKpPDWLTXHVjODPDUJHPour la Science30 %DUELQe   *DVWRQ 7DUU\ HW OD GRFWULQH GHV FRPELQDLVRQV 'DQV e%DUELQ&*ROGVWHLQ00R\RQ656FKZHUHW69LQDWLHU GLU Les WUDYDX[FRPELQDWRLUHVHQ)UDQFH  HWOHXUDFWXDOLWp8QKRPmage à Henri Delannoy S /LPRJHV3UHVVHVXQLYHUVLWDLUHVGH /LPRJHV %DUELQe HW *XLWDUW5   'HV UpFUpDWLRQV SRXU HQVHLJQHU OHV PDWKpPDWLTXHVDYHF/XFDV)RXUUH\/DLVDQW'DQV/5DGIRUG))XULQJKHWWLHW 7+DXVEHUJHU GLU International Study Group on the Relations between the History and Pedagogy of Mathematics. Proceedings of the 2016 ICME Satellite Meeting S 0RQWSHOOLHU,5(0GH0RQWSHOOLHU &DWDODQ(  8QSUREOqPHWUDLWpSDU(XOHUNouvelle Correspondance Mathématique &HUFOp9  8QSX]]OHGH/HZLV&DUUROOPlot29 'pFDLOORW$0  /¶DULWKPpWLFLHQeGRXDUG/XFDV  WKpRULH HWLQVWUXPHQWDWLRQRevue d’histoire des mathématiques4 2  'pFDLOORW$0  ÉGRXDUG/XFDV  OHSDUFRXUVRULJLQDO G¶XQVFLHQWL¿TXHIUDQoDLVGDQVODGHX[LqPHPRLWLpGX[L[e siècle 7KqVHGH GRFWRUDW 8QLYHUVLWp5HQp'HVFDUWHV±3DULV9 'pFDLOORW$0  *pRPpWULHGHVWLVVXV0RVDwTXHVeFKLTXLHUV0DWKpPDWLTXHV FXULHXVHV HW XWLOHV Revue d’histoire des mathématiques 8 2   )RXUUH\e  Récréations arithmétiques3DULV1RQ\

 Les récréations mathématiques chez Charles-Ange Laisant : de la géométrie de situation à l’Initiation mathématique

*LVSHUW+ GLU    ©ࣟ3DU OD VFLHQFH SRXU OD SDWULHࣟª /¶$VVRFLDWLRQ IUDQoDLVHSRXUO¶DYDQFHPHQWGHV6FLHQFHV  XQSURMHWSROLWLTXH pour une société savante5HQQHV3UHVVHVXQLYHUVLWDLUHVGH5HQQHV .RVK\7   Fibonacci and Lucas Numbers with Applications 1HZ ¿J 4 9 2 2 GURLWH@ $LQVL WRXV WHV 3 5 7 5 3 QRPEUHV VHURQW GLV8 1 6 6 SRVpV HQ OD IDoRQ TXH 9 UHTXLHUWFHSUREOqPH

Fig. 2 – La construction du carré magique par sauts.

%DFKHW pQRQFH HQVXLWH OD ©ௗUqJOH JpQpUDOH GH OD WUDQVSRVLWLRQௗª LO IDXW WUDQVSRUWHUOHQRPEUHTXLVHWURXYHKRUVGXFDUUpGDQVOHPrPHUDQJRLOVH WURXYH©ௗDXWDQWGHSODFHVSOXVDYDQWTX¶LO\DG¶XQLWpVDXF{WpGHWRQFDUUpௗª %DFKHW 'DQVVRQH[HPSOHLOIDXWOHWUDQVSRUWHUWURLVSODFHVSOXV DYDQWFDUHVWOHF{WpGH&HWWHUqJOHSHXWrWUHMXVWL¿pHSDUXQFDOFXOGH FRQJUXHQFHV &KDEHUWHWFROO 



a A

16 21

23 δ

14 19

24 η

5 10

15 20

25

4 12 25 8 16

4 9

13

11 24 7 20 3

ε

8

18

22

γ 3

12 17

β

2 7

11

g

α

6

e l

1

c

b

d

17 5 13 21 9 10 18 1 14 22 23 6 19 2 15

f

h o

a B

21

18 δ

19 η

Fig. 3 – Une variante de Frénicle.

10

14 24

5 15

25 20

9 12 20 3 21

9 4

13

11 19 2 25 8

ε

3

23

17 β

γ 8

12 22

16

7 2

11

g

α

1

e l

6

c

d

f

b

22 10 13 16 4 5 23 6 14 17 18 1 24 7 15

h o

Y Les « variations » de Frénicle $SUqVDYRLUH[SRVpODPpWKRGHSDUVDXWVDYHFO¶H[HPSOH G¶XQ FDUUp GH F{Wp )UpQLFOH PRQWUH FRPPHQW IDLUH YDULHU OHV FDUUpV REWHQXV HQ FRQVHUYDQW OH FDUDFWqUH PDJLTXH,OFRPPHQFHSDUOHVFKDQJHPHQWVSDUWUDQVSRUWVGHOLJQHVGLDJRQDOHV )UpQLFOH  /HFKDQJHPHQWGHFHV¿JXUHVHVWIDFLOH jFRPSUHQGUHSDUO¶LQVSHFWLRQGHFHOOHV TXL\VRQWLFLUHSUpVHQWpHVDX[TXHOOHV RQYRLWTX¶RQSHXWWUDQVSRUWHUOHVOLJQHV GHV QRPEUHV DLQVL TX¶RQ YHXW SRXUYX TX¶RQ FKDQJH HQ PrPH VRUWH OD OLJQH

 Géométrie, combinatoire et algorithmes des carrés magiques

FRUUHVSRQGDQWHRXUHODWLYH2UOHVOLJQHVUHODWLYHVVRQWFHOOHVTXL VRQWpJDOHPHQWpORLJQpHVGHFHOOHVGXPLOLHXௗDLQVLODUHODWLYHGH abHQOD¿JXUH$HVWloHWFHOOHGHcdHVWghௗGHPrPHFHOOHGH alHVWboHWFHOOHGHĮȕHVWİȘ

(QpFKDQJHDQWSDUH[HPSOHab et cdHWGRQFDXVVLOHXUVV\PpWULTXHVSDU UDSSRUWDXFHQWUHlo et ghRQREWLHQWjSDUWLUGHOD¿JXUH$ ¿JKDXW XQH ¿JXUH%TXLIRXUQLWXQQRXYHDXFDUUpPDJLTXH ¿JEDV &HFKDQJHPHQWVH FRPSUHQGjSDUWLUGHODGLVSRVLWLRQJpRPpWULTXHHWGHODUqJOHJpQpUDOHGH%DFKHW )UpQLFOH H[SOLTXH FRPPHQW RQ SHXW DXVVL ©ௗWUDQVSRUWHUௗª GHV OLJQHV HW GHVFRORQQHV HW HQ¿Q FRPELQHU HQVHPEOH OHV GLIIpUHQWHV YDULDWLRQV 2Q REWLHQW SDU FHV PR\HQV WUDQVSRVLWLRQV GH OD ¿JXUH PDUTXpH$ TXL DYHF OD ¿JXUH $ IRQW ¿JXUHV HW HQVXLWH GH OD ¿JXUH $ RQ REWLHQW HQFRUH ¿JXUHVHWF )UpQLFOH HQ FRQFOXW TXH VL FHV ¿JXUHV VRQW GLIIpUHQWHV RQ DXUDLW HQ WRXW ¿JXUHV 0DLV LO DMRXWH ©ௗLO IDXW SUHQGUH JDUGH TX¶LO Q¶\ DXUDSRLQWGH¿JXUHVVHPEODEOHVSDUPLFHQRPEUHௗª )UpQLFOH ,O LQGLTXHTX¶LOH[LVWHG¶DXWUHVYDULDWLRQVPDLVTXLQHVRQWSDV©ௗVLIDFLOHVௗªTXH OHVSUpFpGHQWHV

Construction de carrés de côté pair par pointages )UpQLFOHH[SOLTXHODFRQVWUXFWLRQG¶XQFDUUpGHF{WpSDLUDYHFO¶H[HPSOHG¶XQ FDUUpGHF{Wp,OIDXWSDUWLUGX©ௗFDUUpQDWXUHOௗªGHF{WpF¶HVWjGLUHFRQWHQDQWODVXLWHRUGRQQpHGHVQRPEUHVHQWLHUVGHj2QQHUHWLHQWTXHOHV GLDJRQDOHV ¿J SXLVOHVSODFHVYLGHVVRQWUHPSOLHVSDUOHVHQWLHUV©ௗRSSRVpV HQFURL[ௗª )UpQLFOH  1

2

3

4

5

6

7

8

1 6

9 10 11 12 13 14 15 16

4 7

12 6

10 11 13

1 15 14 4 7

9

8 10 11 5 16

13 3

2 16

Fig. 4 – Construction d’un carré de côté 4.

6DPpWKRGHHVWXQFDVVLPSOHGHO¶DOJRULWKPHSDUSRLQWDJHVTXLVHWURXYH GDQV Le dévoilement des opérations du calcul GX PDWKpPDWLFLHQ DUDEH ,EQ 4XQIXGKDXXIVeVLqFOH &KDEHUWHWFROO 3RXUXQF{WpnPXOWLSOH GH GDQVO¶H[HPSOHVXLYDQWDYHFn  RQPDUTXHGHVFDVHVV\PpWULTXHV



SDU UDSSRUW DX[ D[HV KRUL]RQWDO HW YHUWLFDO GH IDoRQ j PDUTXHU OD PRLWLp GHV FDVHV GH FKDTXH OLJQH HW OD PRLWLp GH FHOOHV GH FKDTXH FRORQQH ,O IDXW SDUWLUGX©ௗFDUUpQDWXUHOௗªGHF{WpF¶HVWjGLUHFRQWHQDQWODVXLWHRUGRQQpH GHVQRPEUHVHQWLHUVGHjHWGHVRQLQYHUVH ¿J 'DQVXQHSUHPLqUH pWDSH RQ UHWLHQW GDQV OH ©ௗFDUUp QDWXUHOௗª OHV FDVHV PDUTXpHV ¿J  'DQV XQHVHFRQGHpWDSHRQUHPSOLWOHVFDVHVQRQPDUTXpHVDYHFOHFDUUpLQYHUVH ¿J ,OUHVWHjVXSHUSRVHUOHVFDUUpVREWHQXVGDQVOHVGHX[pWDSHVSRXUDYRLU XQFDUUpPDJLTXH /HV H[SOLFDWLRQV IRXUQLHV SDU ,EQ 4XQIXGK LQGLTXHQW TXH OH SRLQWDJH FRQVHUYH OD V\PpWULH SDU UDSSRUW DX[ D[HV KRUL]RQWDO HW YHUWLFDO GX FDUUp &KDEHUWHWFROO 

Construction par enceintes et variations )UpQLFOH H[SRVH HQVXLWH FH TX¶LO QRPPH OD ©ௗPpWKRGH JpQpUDOH SRXU IDLUH OHVFDUUpVPDJLTXHVௗªYDODEOHSRXUOHVFDUUpVGHF{WpSDLUHWLPSDLU,OpFULW )UpQLFOH  3DUODPpWKRGHVXLYDQWHRQSRXUUDIDLUHWRXWHVVRUWHVGHWDEOHV WDQWSDLUHVTX¶LPSDLUHVPDLVLOIDXWUHPDUTXHUXQHSURSULpWpSDUWLFXOLqUH GHV WDEOHV IDLWHV SDU FHWWH PpWKRGH TXL HVW TXH VL RQ {WHO¶HQFHLQWHGHTXHOTX¶XQHGHFHVWDEOHVFHOOHTXLUHVWHUDQH ODLVVHUDSDVG¶DYRLUHQFRUHWRXWHVVHVOLJQHVpJDOHV>«@

/DPpWKRGHFRQVLVWHjUHPSOLUXQFDUUpSDUHQFHLQWHVGHO¶LQWpULHXUYHUV O¶H[WpULHXURXGHO¶H[WpULHXUYHUVO¶LQWpULHXU8QDOJRULWKPHSDUHQFHLQWHVVH WURXYHGDQVXQWH[WHGHD]=LQMDQLPDWKpPDWLFLHQDUDEHGXXIIIeVLqFOH &KDEHUWHWFROO TXH)UpQLFOHQHFLWHSDV$QWRLQH$UQDXOGHQGRQQH DXVVLXQGDQVVHVNouveaux éléments de géométrieGH )UpQLFOHGRQQHSOXVLHXUVPpWKRGHVSRXUIRUPHUOHVHQFHLQWHV/DSUHPLqUH HVWLOOXVWUpHDYHFXQFDUUpGHF{Wp/HVWURLVLQVWUXFWLRQVGHODSUHPLqUHpWDSH VRQWOHVVXLYDQWHV  'LVSRVHUOHVQRPEUHVHQXQHJULOOHGHGHX[OLJQHV ¿J   &KRLVLUQRPEUHVGHODSUHPLqUHOLJQHSDUH[HPSOHOHVSUHPLHUVHWOHV QRPEUHV©FRUUHVSRQGDQWVªGHODGHX[LqPHOLJQH ODVRPPHG¶XQQRPEUH HWGHVRQFRUUHVSRQGDQWYDXW    &RQVWUXLUH XQ FDUUp PDJLTXH GH F{Wp  DYHF FHV QRPEUHV HQ XWLOLVDQW OD PpWKRGHSRXUOHVFDUUpVSDLUVODVRPPHPDJLTXHYDXWî 

 Géométrie, combinatoire et algorithmes des carrés magiques

1

2

3

4

5

6

7

8

64 63 62 61 60 59 58 57

9 10 11 12 13 14 15 16

56 55 54 53 52 51 50 49

17 18 19 20 21 22 23 24

48 47 46 45 44 43 42 41

25 26 27 28 29 30 31 32

40 39 38 37 36 35 34 33

33 34 35 36 37 38 39 40

32 31 30 29 28 27 26 25

41 42 43 44 45 46 47 48

24 23 22 21 20 19 18 17

49 50 51 52 53 54 55 56

16 15 14 13 12 11 10 9

57 58 59 60 61 62 63 64

8

7

6

5

4

3

2

1

Fig. 5 – Carré naturel et carré inverse.

1

4

5

8

9 10

15 16

18 19

22 23

27 28 29 30 35 36 37 38 42 43

46 47

49 50

55 56

57

60 61

64

Fig. 6 – La méthode par pointages (première étape).

63 62

59 58

54 53 52 51 48

45 44

41

40 39

34 33

32 31

26 25

24

21 20

17

14 13 12 11 7

6

3

2

Fig. 7 – La méthode par pointages (seconde étape).



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

1

2

3

4

5

6

7

8

1

4 6

32 6

30 31

29 30 31 32 33 34 35 36

7

1 35 34 4 7 29

8 30 31 5

33

36

33 3

2 36

Fig. 8 – Première étape de la méthode par enceintes.

&HFDUUpYDrWUHHQWRXUpSDUXQHHQFHLQWHGHF{WpGHVRUWHjREWHQLUXQ FDUUpPDJLTXHGHVRPPHPDJLTXHî /HVWURLVLQVWUXFWLRQVGHFHWWH VHFRQGHpWDSHVRQWOHVVXLYDQWHV  &KRLVLUSRXUOHVTXDWUHDQJOHVGHX[QRPEUHVHWOHXUVFRUUHVSRQGDQWVSDUPL OHVQRPEUHVUHVWDQWVGDQVODJULOOHRQFKRLVLWSDUH[HPSOHHW  &KHUFKHU TXDWUH QRPEUHV GDQV OHV QRPEUHV HQFRUH UHVWDQWV GH VRUWH TXH FKDTXHOLJQHGHO¶HQFHLQWHDXUDSRXUVRPPH  0HWWUHOHVFRPSOpPHQWVGHVQRPEUHVWURXYpVHQRSSRVLWLRQ ¿J  9

10

9

25 26 23 18 10

1 35 34 4

16

1 35 34 4

32 6

20 32 6

7 29

8 30 31 5

24

33 3

15 33 3

27

2 36 28

21

7 29 17

8 30 31 5

13

2 36 22

27 12 11 14 19 28

Fig. 9 – Construction de l’enceinte.

&HWWHPpWKRGHHVW VXVFHSWLEOHGH EHDXFRXS GH YDULDQWHVVHORQ OHV FKRL[ RSpUpV0DLV)UpQLFOHUHFKHUFKHGHV©ௗYDULDWLRQVௗªF¶HVWjGLUHGHVPDQLqUHV V\VWpPDWLTXHV GH FKDQJHU XQ FDUUp PDJLTXH REWHQX DYHF OD PpWKRGH JpQpUDOHHQXQFDUUpPDJLTXH6RQH[SpULPHQWDWLRQFRXYUHSDJHVRLOH[SORUH OHV FDUUpV REWHQXV GDQV XQH WHQVLRQ HQWUH GHV H[DPHQV GH YDULDQWHV HW GHV UHFKHUFKHVGHYDULDWLRQV,OpSURXYHODPpWKRGHVXUGHVFDUUpVDOODQWMXVTX¶DX F{WpHWLOFRPPHQWHHQLQGLTXDQWTXHOHVHQFHLQWHVSHXYHQWrWUHREWHQXHVGH

 Géométrie, combinatoire et algorithmes des carrés magiques

PDQLqUHLQGpSHQGDQWHRXHQFRUHTXHOHVQRPEUHVGHVHQFHLQWHVSHXYHQWrWUH PLVHQVXLYDQWXQRUGUHLQYHUVH 6RQH[SpULPHQWDWLRQO¶RULHQWHYHUVXQQRXYHDXSUREOqPHFHOXLG¶pQXPpUHU WRXVOHVFDUUpVPDJLTXHVGHF{WpGRQQp(QHIIHWFHWWHSDUWLHGXPpPRLUHVH WHUPLQHSDUXQHOLVWHGHFDUUpVGHF{WpGRQWFKDFXQSHXWDYRLUYDULDWLRQV )UpQLFOH 

Dénombrement de carrés magiques de côté 4 /D©ௗ7DEOHJpQpUDOHGHVTXDUUpVGHTXDWUHௗªFRXYUHSDJHV )UpQLFOH   )UpQLFOH Q¶LQGLTXH SDV OD PDQLqUH GRQW OHV FDUUpV RQW pWp FODVVpV PDLVLOGRQQHXQHW\SRORJLHHQFLQTFDWpJRULHVTXL¿JXUHVXUOD7DEOH ¿J  jO¶DLGHGHOHWWUHVJUHFTXHV )UpQLFOH  /HVWDEOHVTXLRQWFHWWHPDUTXHĮHQWrWHRQWFHWWHSURSULpWpTXH TXDWUHQRPEUHVpWDQWSULVHQFDUUpGDQVFHWWHWDEOHHQTXHOTXH IDoRQTXHFHVRLWIRQWDXWDQWTX¶XQGHVF{WpV>«@/HVWDEOHVTXL RQWFHWWHPDUTXHȕDXGHVVXVRQWODPrPHpJDOLWpTXHGHYDQW VLQRQTX¶DXPLOLHXG¶XQGHVF{WpVHWjVRQRSSRVpLO\DXQGHV FDUUpVGRQWOHVQRPEUHVQHVRQWSDVpJDX[jFHX[G¶XQGHVF{WpV >«@/HVWDEOHVPDUTXpHVȖQ¶RQWTXHOHVFDUUpVGHVDQJOHVTXL DLHQWFHWWHpJDOLWpDYHFFHOXLGXPLOLHXPDLVQ¶RQWSDVFHX[GX PLOLHXGHVF{WpV>«@/HVWDEOHVTXLRQWFHWWHPDUTXHįQ¶RQW pJDOLWp RXWUH OHV DQJOHV GX JUDQG FDUUp HW FHX[ GX FDUUp GX PLOLHX DX[TXHOVLO\DpJDOLWpGDQVWRXWHVOHVWDEOHV TXHGHX[ DXWUHVFDUUpVDX[F{WpVRSSRVpV>«@/HVDXWUHVWDEOHVTXLQ¶RQW SRLQW GH PDUTXH Q¶RQW ULHQ TXH FH TXL HVW FRPPXQ j WRXWHV VDYRLUOHSHWLWFDUUpGXPLOLHXHWOHJUDQGGXGHKRUVRLO\DLW pJDOLWpDX[QRPEUHVGHVDQJOHV>«@

,OFRPSWHOHVFDUUpVGDQVFKDTXHFDWpJRULHHWLOREWLHQW  FDUUpV )UpQLFOHQ¶LQGLTXHSDVQRQSOXVODIDoRQGRQWOHVFDUUpVRQWpWpWURXYpV (QUHYDQFKHLOpQRQFHjOD¿QGXPpPRLUHGHVSURSULpWpVVXUODFRPSRVLWLRQ JpRPpWULTXHGHVFDUUpVPDJLTXHVGHF{WpTXLLQGLTXHQWTXHOHQRXYHDXSUREOqPHGHGpQRPEUHPHQWGHVFDUUpVO¶DFRQGXLWYHUVGHVLQYHVWLJDWLRQVG¶XQ JHQUHQRXYHDX(QHIIHWLOGpFRPSRVHOD¿JXUHGXFDUUpGHF{WpHQFDUUpV OH©ௗFDUUpLQWpULHXUௗªOH©ௗFDUUpH[WpULHXUௗª HQFHLQWH HWOHV©ௗFDUUpVG¶DQJOHௗª GHF{WpVRX/DFRPSRVLWLRQJpRPpWULTXHGRQQHOLHXjTXDWUHSURSULpWpV DYHF SODVRPPHPDJLTXH   /DVRPPHGHVQRPEUHVGHVDQJOHVGHVFDUUpVH[WpULHXUHWLQWpULHXUYDXWS



Fig. 10 – La première page de la « Table générale des quarrés de quatre » (non paginée) [© BnF].

 Géométrie, combinatoire et algorithmes des carrés magiques

2. La somme des 4 nombres d’un « carré d’angle » de côté 2 égale celle du « carré d’angle » opposé. 3. De même pour les 4 nombres des angles des carrés de côté 3. 4. Si la somme des 4 nombres d’un des « carrés d’angle » de côté 2 vaut S, alors ce sera aussi vrai pour les autres « carrés d’angle » de côté 2 et pour les angles des carrés de côté 3. Ce sont ces propriétés qui vont orienter les recherches des auteurs du XIXe siècle désirant comprendre et poursuivre le résultat obtenu par Frénicle.

La combinatoire des carrés magiques chez Frolov L’héritage des carrés magiques dans les années 1870-1880 Leonhard Euler a consacré deux mémoires aux carrés magiques©ௗDe quadris magicisௗªUpGLJpHQHW©ௗ5HFKHUFKHVVXUXQHQRXYHOOHHVSqFHGHFDUUpV PDJLTXHVௗªSXEOLpHQIUDQoDLVHQGDQVOHVMémoires de la Société des sciences de Flessingue. Signalons que les deux mémoires d’Euler paraissent dans le tome II des Commentationes arithmeticaepGLWpVHQSXLVTX¶LOV VRQWUpLPSULPpVHQSRXUOHVOpera Omnia. (QGDQVODNouvelle correspondance mathématique, Édouard Lucas DERUGHO¶XQGHVSUREOqPHVG¶(XOHU¿JXUDQWGDQVOHVHFRQGPpPRLUH¬SDUWLU de cette date, il y a un regain d’intérêt pour les carrés magiques en France, en SDUWLFXOLHUORUVGHVFRQJUqVGHO¶$VVRFLDWLRQIUDQoDLVHSRXUO¶DYDQFHPHQWGHV VFLHQFHV $)$6  %DUELQ 1RWRQVTX¶HQXQSURIHVVHXUGHPDWKpmatiques, nommé A. Labosne, réédite l’ouvrage de Bachet, qui était très rare, HQOHVLPSOL¿DQWHWHQO¶DXJPHQWDQW %DFKHW  Mikhail Frolow publie à Saint-Pétersbourg HQ HQ IUDQoDLV  Le problème d’Euler et les carrés magiques SXLV j 3DULV HQ Les carrés magiques, nouvelle étude. Il est ingénieur et il publiera plus tard en France VRXVOHQRPGH0LFKHO)URORY %DUELQ 'DQVOHVHFRQGRXYUDJHDXTXHO collaborent Édouard Lucas et Henri Delannoy, il corrige son ouvrage précédent et il s’intéresse à la table de Frénicle.

Les carrés magiques de côté 4 chez Frolov 'DQVVRQRXYUDJHGH)URORYH[SOLTXHOHVPpWKRGHVTXLOXLRQWSHUPLVGH ©ௗWURXYHUOHVFDUUpVGHLQGpSHQGDPPHQWGHV7DEOHVGH)UpQLFOHௗªTX¶LO Q¶DYDLWSDVjVDGLVSRVLWLRQ©ௗPDLVHQFRUHGHOHVFODVVHUGDQVXQRUGUHPpWKRGLTXH HW FRPPRGH SRXU OHXU YpUL¿FDWLRQௗª )URORZ    ,O FRPPHQFH

169

2. La somme des 4 nombres d’un « carré d’angle » de côté 2 égale celle du « carré d’angle » opposé. 3. De même pour les 4 nombres des angles des carrés de côté 3. 4. Si la somme des 4 nombres d’un des « carrés d’angle » de côté 2 vaut S, alors ce sera aussi vrai pour les autres « carrés d’angle » de côté 2 et pour les angles des carrés de côté 3. Ce sont ces propriétés qui vont orienter les recherches des auteurs du XIXe siècle désirant comprendre et poursuivre le résultat obtenu par Frénicle.

La combinatoire des carrés magiques chez Frolov L’héritage des carrés magiques dans les années 1870-1880 Leonhard Euler a consacré deux mémoires aux carrés magiques©ௗDe quadris magicisௗªUpGLJpHQHW©ௗ5HFKHUFKHVVXUXQHQRXYHOOHHVSqFHGHFDUUpV PDJLTXHVௗªSXEOLpHQIUDQoDLVHQGDQVOHVMémoires de la Société des sciences de Flessingue. Signalons que les deux mémoires d’Euler paraissent dans le tome II des Commentationes arithmeticaepGLWpVHQSXLVTX¶LOV VRQWUpLPSULPpVHQSRXUOHVOpera Omnia. (QGDQVODNouvelle correspondance mathématique, Édouard Lucas DERUGHO¶XQGHVSUREOqPHVG¶(XOHU¿JXUDQWGDQVOHVHFRQGPpPRLUH¬SDUWLU de cette date, il y a un regain d’intérêt pour les carrés magiques en France, en SDUWLFXOLHUORUVGHVFRQJUqVGHO¶$VVRFLDWLRQIUDQoDLVHSRXUO¶DYDQFHPHQWGHV VFLHQFHV $)$6  %DUELQ 1RWRQVTX¶HQXQSURIHVVHXUGHPDWKpmatiques, nommé A. Labosne, réédite l’ouvrage de Bachet, qui était très rare, HQOHVLPSOL¿DQWHWHQO¶DXJPHQWDQW %DFKHW  Mikhail Frolow publie à Saint-Pétersbourg HQ HQ IUDQoDLV  Le problème d’Euler et les carrés magiques SXLV j 3DULV HQ Les carrés magiques, nouvelle étude. Il est ingénieur et il publiera plus tard en France VRXVOHQRPGH0LFKHO)URORY %DUELQ 'DQVOHVHFRQGRXYUDJHDXTXHO collaborent Édouard Lucas et Henri Delannoy, il corrige son ouvrage précédent et il s’intéresse à la table de Frénicle.

Les carrés magiques de côté 4 chez Frolov 'DQVVRQRXYUDJHGH)URORYH[SOLTXHOHVPpWKRGHVTXLOXLRQWSHUPLVGH ©ௗWURXYHUOHVFDUUpVGHLQGpSHQGDPPHQWGHV7DEOHVGH)UpQLFOHௗªTX¶LO Q¶DYDLWSDVjVDGLVSRVLWLRQ©ௗPDLVHQFRUHGHOHVFODVVHUGDQVXQRUGUHPpWKRGLTXH HW FRPPRGH SRXU OHXU YpUL¿FDWLRQௗª )URORZ    ,O FRPPHQFH

169

SDU GHV SURSULpWpV ©ௗOHV SOXV UHPDUTXDEOHVௗªVXUODFRPSRVLWLRQJpRPpd3 b3 b4 d4 WULTXHGHVFDUUpVPDJLTXHVGHF{Wp d2 b2 b1 d1 SDUPL OHVTXHOOHV ¿JXUHQW FHOOHV GH D C a4 c4 c3 a3 OD¿QGXPpPRLUHGH)UpQLFOH¬FHW HIIHW LO LQWURGXLW XQH QRWDWLRQ LQGLFig. 11 – Les « quadrilles » et les « quartiers ». FLHOOH SRXU OHV FDVHV GX FDUUp UpSDUWLHVHQJURXSHVGHFDVHVLQGLTXpHVSDUabcdTX¶LOQRPPH©ௗTXDGULOOHVௗª ¿JJDXFKH  )URORYpQRQFHHWGpPRQWUHTXHOHVVRPPHVGHVTXDWUHQRPEUHVGHFKDTXH TXDGULOOHYDOHQWODVRPPHPDJLTXHF¶HVWjGLUHTXH Ȉa Ȉb Ȉc Ȉd  ,O HQ GpGXLW GL[ ©ௗpJDOLWpV IRQGDPHQWDOHVௗª GH TXDWUH QRPEUHV H[SULPpHV j O¶DLGH GHV TXDWUH ©ௗTXDUWLHUVௗª$ % & HW ' ¿J GURLWH  ,O PRQWUH TXH OHVVRPPHVGHTXDWUHQRPEUHVGDQVGHX[TXDUWLHUVRSSRVpVVRQWpJDOHVHQWUH HOOHV$ &% ',OSUpFLVHTXHFHWWHpJDOLWpHVWYUDLHGDQVWRXVOHVFDUUpV GHF{WpSDLU,OSURXYHTXHWRXWHVOHVUDQJpHVKRUL]RQWDOHVHWYHUWLFDOHVVRQW FRPSRVpHVGHGHX[QRPEUHVSDLUVHWGHX[QRPEUHVLPSDLUVHWTXHVLO¶XQH GHV©ௗJUDQGHVGLDJRQDOHVௗªHVWIRUPpHGHTXDWUHQRPEUHVSDLUVDORUVO¶DXWUH FRPSRUWHTXDWUHQRPEUHVLPSDLUV,OLQGLTXHWURLVPDQLqUHVGHUHJURXSHUOHV QRPEUHVjO¶DLGHGH©ௗGLDJUDPPHVௗª ¿J OHVGHX[GHUQLHUVGp¿QLVVDQWGHV ©ௗFDUUpVPpGLDQVௗª)URORYUDSSRUWHFHVUpVXOWDWVjODFODVVL¿FDWLRQGH)UpQLFOH )URORZ  a1 c1 c2 a2

A

B

&¶HVW VXU OD FRQVLGpUDWLRQ GHV TXDGULOOHV TXDUWLHUV HW FDUUpV PpGLDQV TXH )UHQLFOH V¶HVW EDVp SRXU SDUWDJHU WRXV OHV FDUUpV GHHQFODVVHVGRQWOHVTXDWUHVSUHPLqUHVRQWOHVPDUTXHVĮ ȕȤįHWODGHUQLqUHQ¶DSDVGHPDUTXH

× Fig. 12 – Les diagrammes de Frolov et les « carrés médians ».

o

×

o

− + − + × o × o − + − +

× × + + − − o o

× ×

o

o

× ×

o

o

+ − − +

× × + +

+ − − +

− −

o

o

¬O¶DLGHGHVHVUpVXOWDWVLOGRQQHODGpWHUPLQDWLRQFRPELQDWRLUHG¶XQFDUUp PDJLTXHGHF{WpLOVXI¿WG¶pFULUHGHVQRPEUHVTXLOHFRPSRVHQWHQ FKRLVLVVDQW  FDVHV ¿J  GH VRUWH j WURXYHU OD SODFH GHV  QRPEUHV QRQ pFULWVjO¶DLGHGHVSURSULpWpVUHPDUTXDEOHV

 Géométrie, combinatoire et algorithmes des carrés magiques

× × ×

× ×

× × ×

×

× × ×

×

× × × ×

×

Fig. 13 – La détermination combinatoire d’un carré de côté 4.

× × ×

)URORYHQFRQFOXWTXHOHSUREOqPHGHVFDUUpVPDJLTXHVQ¶HVWSDVGHQDWXUH FDOFXODWRLUHHWDOJpEULTXHPDLVFRPELQDWRLUHHWDULWKPpWLTXH )URORZ  &HODPRQWUHFODLUHPHQWTXHFHSUREOqPH>«@Q¶DSSDUWLHQWQXOOHPHQW j OD WKpRULH GHV pTXDWLRQV TXL QH V¶RFFXSH TXH GH OD JUDQGHXUGHVTXDQWLWpVPDLVQRQSDVGHO¶RUGUHGHOHXUGLVSRVLWLRQUHODWLYHHWTXHOHVpJDOLWpVTXLH[SULPHQWOHVFRQGLWLRQVGHV FDUUpVPDJLTXHVQHVRQWDXFXQHPHQWGHVpTXDWLRQVDOJpEULTXHV SDUFHTX¶LOV¶DJLWLFLQRQSDVGHWURXYHUGHVQRPEUHVLQFRQQXV PDLVGHVDYRLUGLVSRVHUGHVQRPEUHVGRQQpVG¶DYDQFHVXUGHV FDVHVG¶XQH¿JXUHGRQQpHDXVVL>&HSUREOqPHDSSDUWLHQW@HQWLqUHPHQWjODVFLHQFHGHVQRPEUHV

,O V¶LQWpUHVVH DXVVL DX[ WUDQVIRUPDWLRQV GH FDUUpV PDJLTXHV GH F{Wp HQ G¶DXWUHVFDUUpVPDJLTXHVSDUH[HPSOH )URORZ  >«@ VL O¶RQ D pJDOH j s OD VRPPH GHV  QRPEUHV SULV GDQV  FDVHV GLIIpUHQWHV GDQV  UDQJpHV KRUL]RQWDOHV RX YHUWLFDOHV GLVSRVpHVHQORVDQJHRXHQFDUUpV>¿J@GHVRUWHTX¶LO\DLW GHX[ QRPEUHV GDQV GHX[ TXDGULOOHV a et b RX c et d >¿J@ RQSHXWIDLUHSHUPXWHUOHVUDQJpHVHWOHVGLVSRVHUGDQVO¶RUGUH ,,,,,,,9RX,,,,,9,,WHOTXHOHVTXDWUHQRPEUHVIRUPHQW XQHGLDJRQDOH,OHVWpYLGHQWTXHGDQVFHFDVO¶DXWUHGLDJRQDOH GRQQHUDDXVVLODVRPPHpJDOHjsFDUWRXWHVOHVGHX[VRQWpJDOHV HQVHPEOHjȈaȈb ȈcȈd s

Fig. 14 – Une transformation de carrés magiques chez Frolov.



Carrés magiques et récréations mathématiques chez Lucas /HVUpFUpDWLRQVPDWKpPDWLTXHVVRQWHQYRJXHjOD¿QGXXIXVLqFOHHQ)UDQFH 8Q ©ௗMRXUQDO GHV MHX[ G¶HVSULW HW GH FRPELQDLVRQVௗª WLWUp Les tablettes du chercheur HVW FUpp HQ SDU %'HFRORPEH 2Q \ WURXYH GHV SUREOqPHV G¶pFKHFVGHGRPLQRVGHVFDUUpVPDJLTXHV8QH6RFLpWpGHVVFLHQFHVUpFUpDWLYHVYRLWOHMRXUHQDYHF&KDUOHV$QJH/DLVDQWFRPPHYLFH3UpVLGHQW YRLU%DUELQ  /HV TXDWUH YROXPHV GHV Récréations mathématiques G¶eGRXDUG /XFDV SDUDLVVHQWGHj/XFDVHVWPDWKpPDWLFLHQHQWKpRULHGHVQRPEUHV HWHQVHLJQDQWGHPDWKpPDWLTXHVj3DULVDXO\FpH&KDUOHPDJQHSXLVDXO\FpH 6DLQW/RXLV YRLU 'HFDLOORW   ,O pFULW DXVVL HQ La Fasioulette du 3URIHVVHXU 1&ODXV GH 6LDP  TXL HVW OD SUHPLqUH VpULH GH ©ௗ-HX[ VFLHQWL¿TXHVSRXUVHUYLUjO¶+LVWRLUHjO¶(QVHLJQHPHQWHWjOD3UDWLTXHௗª/XLHWVRQ DPL/DLVDQWDWWULEXHQWXQU{OHpGXFDWLIDX[UpFUpDWLRQVPDWKpPDWLTXHV %DUELQ ௗ%DUELQ 

Les récréations : l’ancrage historique et mathématique chez Lucas 'DQV O¶LQWURGXFWLRQ GX YROXPH GH VHV Récréations mathématiques /XFDV PRQWUH TXH OHV UpFUpDWLRQV TX¶LO SURSRVH RQW LQWpUHVVp GHV PDWKpPDWLFLHQV FpOqEUHV,OFLWHODJpRPpWULHGHVLWXDWLRQHWOHMHXGXVROLWDLUHGH/HLEQL]WURLV PpPRLUHVG¶(XOHUVXUOHFDYDOLHUGXMHXG¶pFKHFVOHVSRQWVGHOD3UHJHOHWOH SUREOqPHGHVRI¿FLHUV,OLQGLTXHOHPpPRLUHGH$OH[DQGUH7KpRSKLOH9DQGHUPRQGHVXUO¶HQWUHODFHPHQWGHV¿OV6XUOHVFDUUpVPDJLTXHVLOPHQWLRQQH 0RVFKRSRXORV%DFKHW)HUPDWHW)UHQLFOHHWDXVVLOHV©ௗFDUUpVGLDEROLTXHVௗª GH3KLOLSSHGHOD+LUH-RVHSK6DXYHXUHW/HRQKDUG(XOHU/¶LQWURGXFWLRQPHQWLRQQHGHVWUDYDX[UpFHQWVFRPPHODWRSRORJLHHWOHVQ°XGVGH-RKDQQ%HQHGLFW /LVWLQJ /H YROXPH VH WHUPLQH SDU GHV UpIpUHQFHV KLVWRULTXHV GDQV XQH ELEOLRJUDSKLHGHGL[SDJHV /DLVDQW D °XYUp HQ YXH G¶XQH pGLWLRQ FRPSOqWH GHV Œuvres GH )HUPDW $XYLQHW (QLODQQRQFHTX¶HOOHVHUDDVVXUpHSDU/XFDVHW&KDUOHV +HQU\ &H WUDYDLO G¶pGLWLRQ HVW FHUWDLQHPHQWXQH GHV VRXUFHV GH O¶LQWpUrW GH /XFDVYLVjYLVGHVFDUUpVPDJLTXHV(QHIIHWLODHXOHERQKHXUGHPHWWUHOD PDLQVXUGHVPDQXVFULWVRULJLQDX[HWLQpGLWVGH)HUPDW&HVRQWFDKLHUVHW IHXLOOHWVGpWDFKpVVXUOHVFDUUpVPDJLTXHV,OHQSURSRVHXQH©ௗUHVWDXUDWLRQௗª TXLVHSRXUVXLWHQ(OOHUHSDUDvWGDQVOHWRPH,9GHVŒuvresGH)HUPDW HWGDQVOHYROXPHGHVRécréationsGH VXU/XFDVHWOHVFDUUpVPDJLTXHV GH)HUPDWYRLU%DUELQ 

 Géométrie, combinatoire et algorithmes des carrés magiques

Les « transformations générales des carrés » par Lucas /D FLQTXLqPH UpFUpDWLRQ GX 3 4 YROXPH GHV Récréations mathé1 2 matiquesGH/XFDV  V¶LQWLWXOH 4 3 ©ௗ/HVFDUUpVPDJLTXHVGH)HUPDWௗª 2 1 PDLV HOOH FRQFHUQH DXVVL OHV WDEOHV GH )UpQLFOH (OOH FRPPHQFH SDU OD Fig. 15 – Transformation par échanges de quartiers FRQVHUYDWLRQ GX FDUDFWqUH PDJLTXH dans un carré pair. SRXU GHV WUDQVIRUPDWLRQV JpRPpWULTXHV GH URWDWLRQ HW GH V\PpWULH DJLVVDQW VXU OHV FDUUpV GH F{Wp SXLV OD FRQVWUXFWLRQGXFDUUpPDJLTXHGHF{WpSDU)HUPDWTXLHVWDXVVLFHOOHTXH QRXVDYRQVYXHSOXVKDXWFKH])UpQLFOH /XFDV DERUGH HQVXLWH FH TX¶LO QRPPH ©ௗWUDQVIRUPDWLRQV JpQpUDOHV GHV FDUUpVௗª,OFRPPHQFHSDUOHVpFKDQJHVSDUTXDUWLHUVSRXUGHVFDUUpVGHF{Wp SDLU ¿J ©ௗWRXWFDUUpSDLUUHVWHPDJLTXHVLO¶RQpFKDQJHVLPXOWDQpPHQW VDQVOHVWRXUQHUOHVTXDUWLHUVRSSRVpVௗª /XFDV  ,OH[DPLQHDXVVLOHFDVGHVFDUUpVLPSDLUV&HVWUDQVIRUPDWLRQVQHGRQQHQW SDV GH QRXYHDX[ FDUUpV SRXU OH F{Wp PDLV SRXU OH F{Wp RQ REWLHQW GHV FDUUpVGLIIpUHQWVGHFHX[TXLVRQWREWHQXVSDUURWDWLRQHWV\PpWULH,OpQRQFH VDQVOHGpPRQWUHUTXH /XFDV  7RXWFDUUpUHVWHPDJLTXHVLO¶RQpFKDQJHGHX[KRUL]RQWDOHVSXLV GHX[ YHUWLFDOHV TXL VRQW WRXWHV OHV TXDWUH j OD PrPH GLVWDQFH GXFHQWUH

/XFDVH[SOLTXHTX¶DYHFVD©ௗWKpRULHGHVpFKDQJHVௗªRQ©ௗV¶DSHUoRLWLPPpGLDWHPHQW TXH OHV7DEOHV GH )UpQLFOH SHXYHQW rWUH UpGXLWHV DX TXDUW GH OHXU pWHQGXHௗª /XFDV ,ODQQRQFHTX¶LOYDPRQWUHUGDQVODVXLWH©ௗO¶LQXWLOLWpGHFHWWH7DEOHௗªPDLVTX¶LOYDUHSUHQGUHOHVSURSULpWpVpQRQFpHVSDU)UpQLFOH HQ¿QGHVRQPpPRLUH DX[TXHOOHVVHURQWDMRXWpHVOHVVLHQQHVFRPSOpWpHVSDU'HODQQR\/XFDVQHPHQWLRQQHSDV)URORY

La composition géométrique des carrés de côté 4 /XFDVQRPPH©ௗpJDOLWpVjTXDWUHERXOHVௗªGHVpJDOLWpVGHVRPPHVGHTXDWUH QRPEUHV j OD ©ௗFRQVWDQWHௗª F¶HVWjGLUH OD VRPPH PDJLTXH  GDQV XQ FDUUp PDJLTXH GH F{Wp /HXUV SODFHV VRQW GpVLJQpHV SDU GHV V\PEROHV TXL SHUPHWWHQWGHOHVUHSpUHUYLVXHOOHPHQW/XFDVGpPRQWUHSDUpFKDQJHGHVTXDUWLHUVHWSDUURWDWLRQTXDWUHpJDOLWpV ¿J  /XFDV 



7KpRUqPH,±'DQVWRXWFDUUpGHTXDWUHODVRPPHGHVDQJOHV GXFDUUpH[WpULHXUFHOOHGHVDQJOHVGXSHWLWFDUUpLQWpULHXUOHV VRPPHVGHVDQJOHVGHFKDFXQGHVGHX[UHFWDQJOHVPpGLDQVVRQW pJDOHVjODFRQVWDQWH

/HWKpRUqPH,,pQRQFHGHVpJDOLWpVGHVRPPHVGHTXDWUHQRPEUHVjG¶DXWUHV VRPPHVGHTXDWUHDXWUHV ¿J  /XFDV  7KpRUqPH,,±'DQVWRXWFDUUpGHTXDWUHODVRPPHGHVTXDWUH ERXOHVQRLUHVGHO¶XQGHVFDUUpVpJDOHODVRPPHGHVTXDWUHERXOHV EODQFKHVGXFDUUpRSSRVpSDUUDSSRUWDXFHQWUHHWODVRPPHGH O¶XQGHFHVFDUUpVDXJPHQWpHGXFDUUpDGMDFHQWIRUPpGHFURL[RX GHVSRLQWVYDXWGHX[IRLVODFRQVWDQWH

&HWKpRUqPHYDXWQRWDPPHQWSRXUOHVTXDWUH©ௗFDUUpVGHWURLVௗªOHVTXDWUH FURL[OHVTXDWUHJURVVHVERXOHVQRLUHVHWF3RXUFHVTXDWUHFDUUpVGHF{WpOD VRPPHGHVQRPEUHVDX[VRPPHWVHVWpJDOHjODVRPPHPDJLTXH

Fig. 17 – Le théorème II de Lucas.

Fig. 16 – Le théorème I de Lucas.

/H WKpRUqPH ,,, pQRQFH GHV ©ௗpJDOLWpV j GHX[ ERXOHVௗª F¶HVWjGLUH LFL GHVVRPPHVGHGHX[QRPEUHVpJDOHVjGHVVRPPHVGHGHX[DXWUHVQRPEUHV ¿J  /XFDV  7KpRUqPH,,,±'DQVWRXWFDUUpGHTXDWUHODVRPPHGHVH[WUpPLWpVG¶XQHUDQJpHH[WpULHXUHpJDOHODVRPPHGHVQRPEUHVLQWpULHXUVGHODUDQJpHH[WpULHXUHRSSRVpHௗODVRPPHGHVH[WUpPLWpV G¶XQHUDQJpHLQWpULHXUHpJDOHODVRPPHGHVQRPEUHVLQWpULHXUV

 Géométrie, combinatoire et algorithmes des carrés magiques

GHODUDQJpHYRLVLQHHWODVRPPHGHVH[WUpPLWpVG¶XQHGLDJRQDOH pJDOHODVRPPHGHVQRPEUHVLQWpULHXUVGHO¶DXWUHGLDJRQDOH

Fig. 18 – Le théorème III de Lucas.

/XFDV pFULW TXH SRXU GpPRQWUHU FHWWH SURSRVLWLRQ RQ DMRXWH OHV QRPEUHV FRQWHQXVVXUOHVWURLVWUDLWVSOHLQV ¿J HWRQUHWUDQFKHOHVQRPEUHVVLWXpV VXUOHVWURLVWUDLWVSRLQWLOOpV,OREVHUYHGHSOXVTXHOHWURLVLqPHFDUUp jGURLWH  VH GpGXLW GX SUpFpGHQW PLOLHX  SDU O¶pFKDQJH GHV TXDUWLHUV RSSRVpV /XFDV   ,OFRPPHQWHO¶pQRQFpGXWKpRUqPH,,,HQpFULYDQW &HWWHpJDOLWpGRQQHOLHXSDUURWDWLRQHWSDUV\PpWULHjGL[pTXDWLRQV KRPRJqQHV TXL UHPSODFHQW DYDQWDJHXVHPHQW OHV GL[ pTXDWLRQVGHODGp¿QLWLRQGHVFDUUpVPDJLTXHVGHTXDWUH

(Q HIIHW OD Gp¿QLWLRQ G¶XQ FDUUp PDJLTXH GH F{Wp V¶H[SULPH GH PDQLqUH FDOFXODWRLUH SDU OHV pJDOLWpV QRQ KRPRJqQHV GH OD VRPPH PDJLTXH DYHF OHV TXDWUH QRPEUHV GHV OLJQHV KRUL]RQWDOHV GHV  OLJQHV YHUWLFDOHV HW GHV GLDJRQDOHV7DQGLVTXHOHVpTXDWLRQVFRUUHVSRQGDQWDXWKpRUqPH,,,VRQW KRPRJqQHVGHX[QRPEUHVpJDOHQWGHX[QRPEUHV /XFDV PRQWUH FRPPHQW WURXYHU JpRPpWULTXHPHQW OHV pTXDWLRQV QRQ KRPRJqQHV j SDUWLU GHV  pTXDWLRQV KRPRJqQHV (Q HIIHW O¶HQVHPEOH GHV ERXOHV IRUPH XQ JUDQG WUDSq]H ¿J JDXFKH  XQ SHWLW WUDSq]H ¿J PLOLHX  RX XQ ORVDQJH ¿J GURLW  'RQF SDU H[HPSOH HQ DMRXWDQW OHV ERXOHVEODQFKHVGHO¶XQGHVJUDQGVWUDSq]HVDX[ERXOHVQRLUHVGHO¶DXWUHRQ REWLHQWO¶pJDOLWpGHVOLJQHVH[WpULHXUHVGXFDUUpPDJLTXH

Fig. 19 – La géométrie du théorème III.



,O GpGXLW GX WKpRUqPH ,,, XQH GpWHUPLQDWLRQ FRPELQDWRLUH G¶XQ FDUUp GH F{Wp /XFDV  &RUROODLUH±3RXUIRUPHUXQFDUUpPDJLTXHDYHFQRPEUHV SULV DX KDVDUG LO IDXW TX¶HQ SUHQDQW OHV VRPPHV GH WRXWHV OHV FRPELQDLVRQVGHVQRPEUHVGHX[jGHX[RQWURXYHGL[VRPPHV GHGHX[QRPEUHVpJDOHVjGL[VRPPHVGHGHX[QRPEUHV

Conclusion /HV WURLV WH[WHV TXH QRXV DYRQV H[DPLQpV RQW GHV VWDWXWV GLIIpUHQWV /H PpPRLUHGH)UpQLFOHHVWXQFDVDVVH]UDUHGDQVODOLWWpUDWXUHPDWKpPDWLTXH R¿JXUHQWOHVGpWRXUVHWOHVLPSDVVHVGHVDUHFKHUFKH1RXVDYRQVODFKDQFH GHSUHVTXHOLUHOHVH[SpULHQFHVG¶XQPDWKpPDWLFLHQDXWUDYDLOHQSDUWLFXOLHU GDQVVHVUHFKHUFKHVDULWKPpWLTXHV YRLU*ROGVWHLQ /DPDQLqUHGRQWOHV PDWKpPDWLFLHQVH[SpULPHQWHQWFKDQJHPDLVFHODIDLWWRXMRXUVSDUWLHGXWUDYDLO %DUELQHW&OpUR /¶RXYUDJHGH)URORYSRXUVXLWOHVWUDYDX[GHPDWKpPDWLFLHQVUHFRQQXV(XOHUHW)HUPDW'DQVFHVGHX[SUHPLHUVWH[WHVOHWHUPH GHUpFUpDWLRQVQ¶DSSDUDvWSDV(QUHYDQFKHOHWH[WHGH/XFDVTXLHVWjODIRLV DULWKPpWLFLHQHWHQVHLJQDQWSDUDvWGDQVXQUHFXHLOGHRécréations mathématiques0DLVQRXVDYRQVLQGLTXpSOXVKDXWTXHSRXU/XFDVOHVUpFUpDWLRQV IRQWSDUWLHGHVPDWKpPDWLTXHV &HTXLHVWIUDSSDQWSRXUOHOHFWHXUGHVWURLVWH[WHVHVWOHSDVVDJHGHGLVFRXUV HWGHOHWWUHVFKH])UpQLFOHjGHVJUDSKLVPHVFKH])URORYHW/XFDV0DLVFHV JUDSKLVPHV pFODLUDQWV QH VRQW SDV SURSUHV DX[ UpFUpDWLRQV (Q HIIHW j FHWWH pSRTXHLOVFRQVWLWXHQWGHQRXYHOOHVPDQLqUHVGHUpVRXGUHGHVSUREOqPHVSRXU OHVPDWKpPDWLFLHQV %DUELQ /DYLVXDOLVDWLRQHVWXQHSUDWLTXHPDWKpPDWLTXHTXLQ¶HVWSDVQRXYHOOHPDLVHOOHVHUpYqOHSRXUHX[IpFRQGH$XWUHPHQW GLWHOOHQ¶HVWSDVSRXU/XFDVXQH©ௗYDULDEOHGLGDFWLTXHௗª $XYLQHW  PDLVXQHSUDWLTXHPDWKpPDWLTXH /XFDVHWVRQDPL/DLVDQWDWWULEXHQWXQHSRUWpHpGXFDWLYHDX[UpFUpDWLRQV %DUELQ 'DQVLa FasiouletteGpGLpHjVHVHQIDQWV/XFDVpFULW /XFDV   -¶DL GRQF IDLW FHV SHWLWV OLYUHV SRXU YRXV UpFUpHU WRXW HQ YRXV DSSUHQDQWGHVFRPELQDLVRQVDULWKPpWLTXHVHWJpRPpWULTXHVWUqV GLI¿FLOHV

 Géométrie, combinatoire et algorithmes des carrés magiques

,O GpGXLW GX WKpRUqPH ,,, XQH GpWHUPLQDWLRQ FRPELQDWRLUH G¶XQ FDUUp GH F{Wp /XFDV  &RUROODLUH±3RXUIRUPHUXQFDUUpPDJLTXHDYHFQRPEUHV SULV DX KDVDUG LO IDXW TX¶HQ SUHQDQW OHV VRPPHV GH WRXWHV OHV FRPELQDLVRQVGHVQRPEUHVGHX[jGHX[RQWURXYHGL[VRPPHV GHGHX[QRPEUHVpJDOHVjGL[VRPPHVGHGHX[QRPEUHV

Conclusion /HV WURLV WH[WHV TXH QRXV DYRQV H[DPLQpV RQW GHV VWDWXWV GLIIpUHQWV /H PpPRLUHGH)UpQLFOHHVWXQFDVDVVH]UDUHGDQVODOLWWpUDWXUHPDWKpPDWLTXH R¿JXUHQWOHVGpWRXUVHWOHVLPSDVVHVGHVDUHFKHUFKH1RXVDYRQVODFKDQFH GHSUHVTXHOLUHOHVH[SpULHQFHVG¶XQPDWKpPDWLFLHQDXWUDYDLOHQSDUWLFXOLHU GDQVVHVUHFKHUFKHVDULWKPpWLTXHV YRLU*ROGVWHLQ /DPDQLqUHGRQWOHV PDWKpPDWLFLHQVH[SpULPHQWHQWFKDQJHPDLVFHODIDLWWRXMRXUVSDUWLHGXWUDYDLO %DUELQHW&OpUR /¶RXYUDJHGH)URORYSRXUVXLWOHVWUDYDX[GHPDWKpPDWLFLHQVUHFRQQXV(XOHUHW)HUPDW'DQVFHVGHX[SUHPLHUVWH[WHVOHWHUPH GHUpFUpDWLRQVQ¶DSSDUDvWSDV(QUHYDQFKHOHWH[WHGH/XFDVTXLHVWjODIRLV DULWKPpWLFLHQHWHQVHLJQDQWSDUDvWGDQVXQUHFXHLOGHRécréations mathématiques0DLVQRXVDYRQVLQGLTXpSOXVKDXWTXHSRXU/XFDVOHVUpFUpDWLRQV IRQWSDUWLHGHVPDWKpPDWLTXHV &HTXLHVWIUDSSDQWSRXUOHOHFWHXUGHVWURLVWH[WHVHVWOHSDVVDJHGHGLVFRXUV HWGHOHWWUHVFKH])UpQLFOHjGHVJUDSKLVPHVFKH])URORYHW/XFDV0DLVFHV JUDSKLVPHV pFODLUDQWV QH VRQW SDV SURSUHV DX[ UpFUpDWLRQV (Q HIIHW j FHWWH pSRTXHLOVFRQVWLWXHQWGHQRXYHOOHVPDQLqUHVGHUpVRXGUHGHVSUREOqPHVSRXU OHVPDWKpPDWLFLHQV %DUELQ /DYLVXDOLVDWLRQHVWXQHSUDWLTXHPDWKpPDWLTXHTXLQ¶HVWSDVQRXYHOOHPDLVHOOHVHUpYqOHSRXUHX[IpFRQGH$XWUHPHQW GLWHOOHQ¶HVWSDVSRXU/XFDVXQH©ௗYDULDEOHGLGDFWLTXHௗª $XYLQHW  PDLVXQHSUDWLTXHPDWKpPDWLTXH /XFDVHWVRQDPL/DLVDQWDWWULEXHQWXQHSRUWpHpGXFDWLYHDX[UpFUpDWLRQV %DUELQ 'DQVLa FasiouletteGpGLpHjVHVHQIDQWV/XFDVpFULW /XFDV   -¶DL GRQF IDLW FHV SHWLWV OLYUHV SRXU YRXV UpFUpHU WRXW HQ YRXV DSSUHQDQWGHVFRPELQDLVRQVDULWKPpWLTXHVHWJpRPpWULTXHVWUqV GLI¿FLOHV

 Géométrie, combinatoire et algorithmes des carrés magiques

$LQVLOHYHUEHUpFUpHUQ¶HVWSDVjSUHQGUHDXVHXOVHQVUHVWUHLQWGH©ௗGLYHUWLUௗª PDLV DXVVL DX VHQV GH VD UDFLQH ODWLQH GH ©ௗYLYL¿HUௗª 'DQV VRQ Initiation mathématique/DLVDQWSUpFLVHTXHOHOLYUH©ௗQ¶DULHQGHFRPPXQௗªDYHFFHV UpFUpDWLRQVPDWKpPDWLTXHVRLOHVWGHPDQGpG¶DSSOLTXHUOHVWKpRULHVPDWKpPDWLTXHV GpMj FRQQXHV j GHV VXMHWV DPXVDQWV ,O pFULW ©ௗLFL F¶HVW O¶LQYHUVH QRXV QRXV VHUYLURQV GH TXHVWLRQV DPXVDQWHV FRPPH G¶XQ PR\HQ SpGDJRJLTXHௗª /DLVDQW9, 6RQSURSRVQ¶HVWSDVGHFRQYHUWLUOHVPDWKpPDWLTXHVHQUpFUpDWLRQVSRXU©ௗGLYHUWLUௗªPDLVGHWUDQVIRUPHUOHVUpFUpDWLRQVHQ PDWKpPDWLTXHVSRXU©ௗYLYL¿HUௗª ([DPLQRQVGHFHSRLQWGHYXHO¶XWLOLVDWLRQGHVFDUUpVPDJLTXHVGDQVO¶HQVHLJQHPHQWDYHFOHVTXDWUHSUREOqPHVVXUOHVFDUUpVPDJLTXHVTXHQRXVDYRQV PLVHQDYDQWGDQVO¶KLVWRLUHFRQVWUXFWLRQGpQRPEUHPHQWFRPSRVLWLRQJpRPpWULTXHGpWHUPLQDWLRQFRPELQDWRLUH /HVFRQVWUXFWLRQVVRQWLQWpUHVVDQWHVFDUFHVRQWGHV©ௗDOJRULWKPHVJpRPpWULTXHVௗª&HIXWVDQVGRXWHOHWKqPHTXL©ௗDFFURFKDௗªOHSOXVPHVpWXGLDQWV GH SUHPLqUH DQQpH HQ LQIRUPDWLTXH ORUV G¶XQ FRXUV HQ VXU OHV DOJRULWKPHVGDQVO¶KLVWRLUH-¶DYDLVQRWpXQDXWUHLQWpUrWTXDQGMHOHXUGHPDQGDLV GH©ௗYRLUௗªVLOHFDUUpPDJLTXHGHOD©ௗ0pODQFROLHௗªGH'UHUpWDLWREWHQXDYHF O¶XQGHVDOJRULWKPHVTXHQRXVDYLRQVpWXGLpV&HODGHPDQGDLWG¶H[DPLQHUOD FRPSRVLWLRQGXFDUUpHWGHIDLUHYDULHUXQGHVDOJRULWKPHV /HV FDUUpV PDJLTXHV SHXYHQW rWUH DERUGpV GqV OH FROOqJH (Q WURLV pOqYHV GH FODVVH GH eRQW PHQp GHV WUDYDX[ GDQV OH FDGUH GH ©ௗ0DWKV HQ MHDQVௗª 1,OVpWDLHQWJXLGpVSDUVL[TXHVWLRQVG¶XQFKHUFKHXUTXLSRUWDLHQWVDXI ODGHUQLqUHVXUOHVFDUUpVPDJLTXHVGHF{Wp/DSUHPLqUHpWDLW©ௗ&RPPHQW FRQVWUXLUHXQFDUUpPDJLTXHGHFDVHVௗ"ௗª/HVpOqYHVRQWpFULWG¶HPEOpHTXHOD VRPPHPDJLTXHHVWVDQVDUJXPHQWHUHWLOVRQWPRQWUpTXHHVWDXPLOLHX SDUFHTXHODUHYXHGHWRXVOHVDXWUHVQRPEUHVLQGLTXHTX¶LOVQHSHXYHQWSDV FRQYHQLU3XLVXQFDUUpPDJLTXHHVWGRQQpSDUOHVpOqYHVTXLpFULYHQW©ௗ(Q IDLVDQWWRXUQHUOHVQRPEUHVG¶XQTXDUWGHWRXURQWURXYHODPrPHVRPPHௗª 0DLV OHV TXHVWLRQV VXLYDQWHV RULHQWHQW OHV pOqYHV YHUV GHV FDOFXOV DMRXWHU RX PXOWLSOLHU OHV QRPEUHV G¶XQ FDUUp PDJLTXH /D TXHVWLRQ  UHYLHQW VXU OH FDOFXOGHODVRPPHPDJLTXHHWOHVpOqYHVpFULYHQW©ௗ1RXVDYRQVWURXYp XQHIRUPXOHSRXUREWHQLUXQFDUUpPDJLTXHSOXVUDSLGHPHQWௗª/D©ௗIRUPXOHௗª HVWO¶pFULWXUHOLWWpUDOHGHVQRPEUHVGXFDUUpjO¶DLGHGXQRPEUHGHODFDVHGX 1. &RXQLO+0DJQRX[0HW0DUWLQ,  Les carrés magiques – Collège Fernand *DUDQGHDX /D 7UHPEODGH  7UDYDX[ G¶pOqYHV 0$7KHQ-($16  S   'LVSRQLEOH HQ OLJQH VXU OH VLWH GH 0$7KHQ-($16  KWWSVZZZPDWKHQMHDQVIU VLWHVGHIDXOW¿OHVOHVBFDUUHVBPDJLTXHBFROOHJHBIHUQDQGBJDUDQGHDXBDBODBWUHPEODGH SGI! FRQVXOWpOHHURFWREUH 



PLOLHXQRWpD&HWWHIRUPXOHTXLSUpVHQWHGHVV\PpWULHVQ¶HVWSDVUpLQYHVWLH GDQVODUHFKHUFKHGHQRXYHDX[FDUUpVPDJLTXHV(OOHVHUWjIDLUHGHVFDOFXOV SRXUIDLUHXQFDUUpPDJLTXHDYHFGHVQRPEUHVWRXVSDLUVRXLPSDLUVRXHQFRUH DYHF GHV QRPEUHV QpJDWLIV /D GHUQLqUH TXHVWLRQ GHPDQGH GH ©ௗWURXYHU XQ FDUUpPDJLTXHGHVXUDYHFOHVSUHPLHUVQRPEUHVௗª/HVpOqYHVFDOFXOHQW ODVRPPHPDJLTXHHWGRQQHQWXQFDUUpPDJLTXHVDQVLQGLTXHUFRPPHQWLOD pWpREWHQX3XLVLOVGRQQHQWXQHIRUPXOHOLWWpUDOH &HWWHVLWXDWLRQHVWLQWpUHVVDQWHjH[DPLQHUSRXUDSSX\HUQRWUHSURSRVFDU O¶DVSHFW JpRPpWULTXH SUpVHQW WUqV YLWH GDQV XQH UHPDUTXH GHV pOqYHV Q¶HVW SDVUHSULVFDUOHVTXHVWLRQVQHOHVRULHQWHQWSDVYHUVGHVSURGXFWLRQVRXGHV H[DPHQVGHFDUUpV/DFRQVWUXFWLRQG¶XQFDUUpGHF{WpHVWJRPPpHSXLVTXH OD TXHVWLRQ HVW  ©ௗ3HXWRQ WURXYHUௗ"ௗª /HV pOqYHV UpSRQGHQW HQ GRQQDQW XQ FDUUp/HVFDUUpVPDJLTXHVRQWpWpH[SORLWpVLFLHQWDQWTX¶REMHWVG¶H[HUFLFHV GHFDOFXOV\FRPSULVLFLDYHFXQHOHWWUH 3RXUWDQWO¶KLVWRLUHLQGLTXHG¶DXWUHVSUREOqPHVTXLHQJDJHUDLHQWOHVpOqYHV GDQVGHVLQYHVWLJDWLRQVJpRPpWULTXHVHWFRPELQDWRLUHVGDQVGHVH[SpULPHQWDWLRQV DXWKHQWLTXHPHQW PDWKpPDWLTXHV F¶HVWjGLUH SRUWHXVHV GH FRQQDLVVDQFHV 'DQV O¶KLVWRLUH FRPPH GDQV OD FODVVH OHV FDUUpV PDJLTXHV SHXYHQW rWUH GHV UpFUpDWLRQV ©ௗYLYL¿DQWHVௗª HW SDV VHXOHPHQW ©ௗGLYHUWLVVDQWHVௗª /HV H[HPSOHVGHWHOOHVUpFUpDWLRQVVRQWQRPEUHX[GDQVO¶KLVWRLUHVDQVTX¶LOVRLW EHVRLQGH©ௗJDPL¿FDWLRQௗªGHO¶HQVHLJQHPHQWHWGHO¶DSSUHQWLVVDJHGHVPDWKpPDWLTXHVFRPPHFHODHVWSURSRVpGHSXLVTXHOTXHVDQQpHV .LP6RQJ/RFNHH HW%XUWRQ &HFLSRXUQHSDVDYRLUj©ௗGpJDPL¿HUௗªOHVPDWKpPDWLTXHV WRXWFRPPHLOIDXW©ௗGpWUDQVSRVHUௗªDSUqVDYRLU©ௗWUDQVSRVpௗª YRLU$QWLELHW %URXVVHDX 

Références bibliographiques $QWLEL$ HW %URXVVHDX*   /D GpWUDQVSRVLWLRQ GHV FRQQDLVVDQFHV VFRODLUHVRecherches en didactique des mathématiques   $XYLQHW-   Charles-Ange Laisant. Itinéraires et engagements d’un mathématicien de la Troisième République3DULV+HUPDQQeGLWLRQV $XYLQHW-  5pFUpDWLRQVPDWKpPDWLTXHVJpRPpWULHGHVLWXDWLRQ«'H QRXYHDX[RXWLOVSRXUHQVHLJQHUOHVPDWKpPDWLTXHVjOD¿QGX XIXeVLqFOH 'DQV/5DGIRUG))XULQJKHWWLHW7+DXVEHUJHU GLU International Study Group on the Relations between the History and Pedagogy of Mathematics. Proceedings of the 2016 ICME Satellite Meeting S 0RQWSHOOLHU,5(0GH0RQWSHOOLHU

 Géométrie, combinatoire et algorithmes des carrés magiques

PLOLHXQRWpD&HWWHIRUPXOHTXLSUpVHQWHGHVV\PpWULHVQ¶HVWSDVUpLQYHVWLH GDQVODUHFKHUFKHGHQRXYHDX[FDUUpVPDJLTXHV(OOHVHUWjIDLUHGHVFDOFXOV SRXUIDLUHXQFDUUpPDJLTXHDYHFGHVQRPEUHVWRXVSDLUVRXLPSDLUVRXHQFRUH DYHF GHV QRPEUHV QpJDWLIV /D GHUQLqUH TXHVWLRQ GHPDQGH GH ©ௗWURXYHU XQ FDUUpPDJLTXHGHVXUDYHFOHVSUHPLHUVQRPEUHVௗª/HVpOqYHVFDOFXOHQW ODVRPPHPDJLTXHHWGRQQHQWXQFDUUpPDJLTXHVDQVLQGLTXHUFRPPHQWLOD pWpREWHQX3XLVLOVGRQQHQWXQHIRUPXOHOLWWpUDOH &HWWHVLWXDWLRQHVWLQWpUHVVDQWHjH[DPLQHUSRXUDSSX\HUQRWUHSURSRVFDU O¶DVSHFW JpRPpWULTXH SUpVHQW WUqV YLWH GDQV XQH UHPDUTXH GHV pOqYHV Q¶HVW SDVUHSULVFDUOHVTXHVWLRQVQHOHVRULHQWHQWSDVYHUVGHVSURGXFWLRQVRXGHV H[DPHQVGHFDUUpV/DFRQVWUXFWLRQG¶XQFDUUpGHF{WpHVWJRPPpHSXLVTXH OD TXHVWLRQ HVW  ©ௗ3HXWRQ WURXYHUௗ"ௗª /HV pOqYHV UpSRQGHQW HQ GRQQDQW XQ FDUUp/HVFDUUpVPDJLTXHVRQWpWpH[SORLWpVLFLHQWDQWTX¶REMHWVG¶H[HUFLFHV GHFDOFXOV\FRPSULVLFLDYHFXQHOHWWUH 3RXUWDQWO¶KLVWRLUHLQGLTXHG¶DXWUHVSUREOqPHVTXLHQJDJHUDLHQWOHVpOqYHV GDQVGHVLQYHVWLJDWLRQVJpRPpWULTXHVHWFRPELQDWRLUHVGDQVGHVH[SpULPHQWDWLRQV DXWKHQWLTXHPHQW PDWKpPDWLTXHV F¶HVWjGLUH SRUWHXVHV GH FRQQDLVVDQFHV 'DQV O¶KLVWRLUH FRPPH GDQV OD FODVVH OHV FDUUpV PDJLTXHV SHXYHQW rWUH GHV UpFUpDWLRQV ©ௗYLYL¿DQWHVௗª HW SDV VHXOHPHQW ©ௗGLYHUWLVVDQWHVௗª /HV H[HPSOHVGHWHOOHVUpFUpDWLRQVVRQWQRPEUHX[GDQVO¶KLVWRLUHVDQVTX¶LOVRLW EHVRLQGH©ௗJDPL¿FDWLRQௗªGHO¶HQVHLJQHPHQWHWGHO¶DSSUHQWLVVDJHGHVPDWKpPDWLTXHVFRPPHFHODHVWSURSRVpGHSXLVTXHOTXHVDQQpHV .LP6RQJ/RFNHH HW%XUWRQ &HFLSRXUQHSDVDYRLUj©ௗGpJDPL¿HUௗªOHVPDWKpPDWLTXHV WRXWFRPPHLOIDXW©ௗGpWUDQVSRVHUௗªDSUqVDYRLU©ௗWUDQVSRVpௗª YRLU$QWLELHW %URXVVHDX 

Références bibliographiques $QWLEL$ HW %URXVVHDX*   /D GpWUDQVSRVLWLRQ GHV FRQQDLVVDQFHV VFRODLUHVRecherches en didactique des mathématiques   $XYLQHW-   Charles-Ange Laisant. Itinéraires et engagements d’un mathématicien de la Troisième République3DULV+HUPDQQeGLWLRQV $XYLQHW-  5pFUpDWLRQVPDWKpPDWLTXHVJpRPpWULHGHVLWXDWLRQ«'H QRXYHDX[RXWLOVSRXUHQVHLJQHUOHVPDWKpPDWLTXHVjOD¿QGX XIXeVLqFOH 'DQV/5DGIRUG))XULQJKHWWLHW7+DXVEHUJHU GLU International Study Group on the Relations between the History and Pedagogy of Mathematics. Proceedings of the 2016 ICME Satellite Meeting S 0RQWSHOOLHU,5(0GH0RQWSHOOLHU

 Géométrie, combinatoire et algorithmes des carrés magiques

%DFKHW&*  Problemes plaisans et delectables, qui se font par les nombres epG /\RQ3LHUUH5LJDXG %DFKHW&*  Problèmes plaisants et délectables, qui se font par les nombres epGUHYXHSDU$/DERVQH 3DULV*DXWKLHU9LOODUV %DUELQe  /HV5pFUpDWLRQVGHVPDWKpPDWLTXHVjODPDUJHPour la science30 %DUELQe   *DVWRQ 7DUU\ HW OD GRFWULQH GHV FRPELQDLVRQV 'DQV e%DUELQ&*ROGVWHLQ00R\RQ656FKZHUHW69LQDWLHU GLU Les WUDYDX[FRPELQDWRLUHVHQ)UDQFH  HWOHXUDFWXDOLWp8QKRPmage à Henri Delannoy S /LPRJHV3UHVVHVXQLYHUVLWDLUHVGH /LPRJHV %DUELQe HW &OpUR-3 GLU    Les mathématiques et l’expérience. Ce qu’en ont dit les philosophes et les mathématiciens3DULV+HUPDQQ eGLWLRQV %DUELQe HW *XLWDUW5   'HV UpFUpDWLRQV SRXU HQVHLJQHU OHV PDWKpPDWLTXHVDYHF/XFDV)RXUUH\/DLVDQW'DQV/5DGIRUG))XULQJKHWWLHW 7+DXVEHUJHU GLU International Study Group on the Relations between the History and Pedagogy of Mathematics. Proceedings of the 2016 ICME Satellite Meeting S 0RQWSHOOLHU,5(0GH0RQWSHOOLHU &KDEHUW-/ %DUELQe *XLOOHPRW0 0LFKHO3DMXV$ %RURZF]\N- 'MHEEDU$ HW 0DUW]ORII-& GLU    Histoire d’algorithmes. Du caillou à la puce3DULV%HOLQ 'HFDLOORW$0  eGRXDUG/XFDV  OHSDUFRXUVRULJLQDO G¶XQVFLHQWL¿TXHIUDQoDLVGDQVODGHX[LqPHPRLWLpGX XIXe siècle 7KqVH GHGRFWRUDW 8QLYHUVLWp5HQp'HVFDUWHV±3DULV9 )HUPDW3GH  Varia opera mathematica7RXORXVH-RDQQHP3HFK )UHQLFOHGH%HVV\%  'HVTXDUUpVRXWDEOHVPDJLTXHV'DQVDivers ouvrages de mathématiques et de physique par Messieurs de l’Académie Royale des Sciences S 3DULV,PSULPHULH5R\DOH )URORZ0   Les *DXWKLHUV9LOODUV

carrés

magiques.

Nouvelle

étude 3DULV

*ROGVWHLQ&  /¶H[SpULHQFHGHVQRPEUHVGH%HUQDUG)UHQLFOHGH%HVV\ Revue de synthèse   .LP66RQJ./RFNHH%HW%XUWRQ-  *DPL¿FDWLRQLQ/HDUQLQJ and Education&KDP6SULQJHU,QWHUQDWLRQDO3XEOLVKLQJ /DLVDQW&$  Initiation mathématique : ouvrage étranger à tout programme, dédié aux amis de l’enfance3DULV+DFKHWWH



/XFDVe  /DIDVLRXOHWWHGX3URIHVVHXU1&ODXV GH6LDP .'DQVJeux VFLHQWL¿TXHVSRXUVHUYLUjO¶KLVWRLUHjO¶HQVHLJQHPHQWHWjODSUDWLTXHGX calcul et du dessin UHVpULHQƒ 3DULV&KDPERQ %D\H /XFDVe   Récréations mathématiques YRO  3DULV *DXWKLHUV 9LOODUVHW¿OV

 Géométrie, combinatoire et algorithmes des carrés magiques

Lisa Rougetet

LES JEUX COMBINATOIRES OU COMMENT TISSER UN LIEN ENTRE MATHÉMATIQUES, ALGORITHMIQUE ET PROGRAMMATION

0rPHVLOHWHUPH©ௗMHX[FRPELQDWRLUHVௗªGDWHGHOD¿QGHVDQQpHVHQ )UDQFH WUDGXFWLRQ GX WHUPH DQJODLV combinatorial games TXL OXL DSSDUDvW DXGpEXWGHVDQQpHV FHVMHX[DX[SURSULpWpVELHQGp¿QLHV±TXHQRXV GpWDLOORQVFLGHVVRXV±H[LVWHQWGHSXLVDXPRLQVOHGpEXWGXXVIeVLqFOH /HVMHX[FRPELQDWRLUHVRQWFHWWHVSpFL¿FLWpG¶DYRLUHQFRXUDJpOHVPDWKpPDWLFLHQVjVHSHQFKHUVXUOHXUUpVROXWLRQDXSRLQWGHGHYHQLUGHYpULWDEOHV REMHWVG¶DQDO\VHPDWKpPDWLTXHHWGHSHUPHWWUHOHGpYHORSSHPHQWGHODWKpRULH DFWXHOOHTXLSRUWHOHXUQRPODWKpRULHGHVMHX[FRPELQDWRLUHV /HV SUHPLqUHV UpIpUHQFHV UHWURXYpHV VXU OHV MHX[ FRPELQDWRLUHV FRUUHVSRQGHQW j GHV RXYUDJHV GH UpFUpDWLRQV PDWKpPDWLTXHV ±GRQW OHV SUHPLqUHV pGLWLRQVGDWHQWGXPLOLHXGXXVIIeVLqFOH/HVVROXWLRQVGRQQpHVVRQWDORUVWUqV VLPSOHVPDLVDXMRXUG¶KXLOHXUWKpRULHDYDQFpHWLVVHGHVOLHQVpWURLWVDYHFOD WKpRULHGHVJUDSKHVHWO¶LQIRUPDWLTXH $XYXGHVQRXYHDX[SURJUDPPHVGHPDWKpPDWLTXHVGDQVOHVHFRQGDLUHHW GHODSODFHLPSRUWDQWHDWWULEXpHDX[MHX[HWjODGLPHQVLRQOXGLTXHGDQVO¶DSSUHQWLVVDJHGHVPDWKpPDWLTXHV±QRWDPPHQWDXF\FOH±O¶REMHFWLIGHFHWWH

FRQWULEXWLRQHVWG¶DSSRUWHUTXHOTXHVpFODLUDJHVKLVWRULTXHVVXUOHVMHX[FRPELQDWRLUHVHWOHXUUpVROXWLRQ&HODSHUPHWWUDG¶XQHSDUWGHGRQQHUGHVFOpVGH FRPSUpKHQVLRQpSLVWpPRORJLTXHVVXUOHGpYHORSSHPHQWGHODWKpRULHPDWKpPDWLTXHGHVMHX[FRPELQDWRLUHVHWG¶DXWUHSDUWGHIRXUQLUGHVUHFRPPDQGDWLRQVSRXUOHXUXWLOLVDWLRQHQFODVVHIRQGpHVVXUFHTXLDGpMjSXrWUHWHVWpHQ FRQWH[WHG¶DQLPDWLRQVFLHQWL¿TXHDLQVLTXHVXUGHVWpPRLJQDJHVUHFXHLOOLVDX FRXUVG¶DWHOLHUVSRXUODIRUPDWLRQGHVHQVHLJQDQWV 'DQVXQSUHPLHUWHPSVQRXVSUpVHQWRQVOHVFDUDFWpULVWLTXHVGHVMHX[FRPELQDWRLUHVHWGRQQRQVTXHOTXHVH[HPSOHVFRQQXV1RXVVRXOLJQRQVOHXULQWpUrW PDWKpPDWLTXH HW H[SOLTXRQV HQ TXRL FRQVLVWH OHXU UpVROXWLRQ (QVXLWH QRXV H[SOLTXRQVTXDQGHWFRPPHQWOHVPDWKpPDWLFLHQVVHVRQWLQWpUHVVpVjFHVMHX[ SRXUWHQWHUGHOHVUpVRXGUHHQLOOXVWUDQWQRVSURSRVSDUO¶pWXGHGpWDLOOpHGXMHX GH1LPHWGXMHXGH.D\OHV/DWURLVLqPHSDUWLHHVWFRQVDFUpHjO¶pWXGHG¶XQ MHXHQWLqUHPHQWPpFDQLTXH'U1LP(Q¿QQRXVFRQFOXRQVVXUOHVDSSRUWV GHO¶XWLOLVDWLRQGHFHVGLIIpUHQWVMHX[HQFODVVHSRXUDERUGHUFHUWDLQHVQRWLRQV GXSURJUDPPHGHPDWKpPDWLTXHVDXF\FOH

Introduction /HVMHX[FRPELQDWRLUHV±WHOVTX¶LOVVRQWGp¿QLVGDQVODOLWWpUDWXUHDFWXHOOH 1± YpUL¿HQWOHVSURSULpWpVVXLYDQWHVLOVVHMRXHQWDOWHUQDWLYHPHQWjGHX[MRXHXUV VDQV KDVDUG HW LOV VRQW j LQIRUPDWLRQ FRPSOqWH SDV GH FDUWHV FDFKpHV SDU H[HPSOH 3DUDLOOHXUVOHQRPEUHGHFRXSVHVW¿QLLOQ¶\DSDVGHSDUWLHQXOOH HWOHJDJQDQW LO\HQDWRXMRXUVXQ HVWXQLTXHPHQWGpWHUPLQpSDUOHGHUQLHU FRXSGHODSDUWLH 2(QUpDOLWpOHVMHX[TXLDGPHWWHQWGHVSDUWLHVQXOOHVFRPPH OHVpFKHFVRXOHVMHX[jVFRUHFRPPHOHMHXGHJRHQWUHQWGDQVODFDWpJRULH GHVMHX[FRPELQDWRLUHVpWHQGXVHWVHURQWpJDOHPHQWFRQVLGpUpVGDQVFHWH[WH /HV MHX[ FRPELQDWRLUHV OHV SOXV SRSXODLUHV VRQW OH 3XLVVDQFH  OH 0RUSLRQOHMHXGH'DPHVOHVpFKHFVOHJRPDLVDXVVLOHMHXGHVEkWRQQHWVj)RUW %R\DUG 3RXOHMHXGHVSHWLWVFDUUpV 4,OHQH[LVWHELHQG¶DXWUHVVRXYHQWPRLQV 1. 9RLUSDUH[HPSOHODGp¿QLWLRQGRQQpHSDU $OEHUW1RZDNRZVNLHW:ROIH  2. 3DU FRQYHQWLRQ RQ GLW TXH OH MHX HVW MRXp HQ ©YHUVLRQ QRUPDOHª ORUVTXH OH GHUQLHU MRXHXUjMRXHUJDJQHODSDUWLHVLQRQRQSDUOHGH©YHUVLRQPLVqUHªORUVTXHTXHOHGHUQLHUMRXHXUjMRXHUSHUGODSDUWLH 3. 'DQVFHMHXOHVMRXHXUVSHXYHQWUHWLUHUDOWHUQDWLYHPHQWRXEkWRQQHWVG¶XQHUDQJpHHQFRQWHQDQW&HOXLTXLSUHQGOHGHUQLHUEkWRQQHWSHUGODSDUWLH 4. $SSHOpDots-and-BoxesHQDQJODLVFHMHXFRQVLVWHjWUDFHUDOWHUQDWLYHPHQWOHVF{WpV GHFDVHVVLWXpHVVXUXQHIHXLOOHGHSDSLHUTXDGULOOp4XDQGXQMRXHXUDIHUPpXQHFDVH

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

FRQQXVTXLWURXYHQWOHXUVRULJLQHVGDQVOHVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVSXEOLpVjSDUWLUGHV XVIe et XVIIeVLqFOHV1RXVOHVSUpVHQWRQVGDQVOD SUHPLqUHSDUWLHGHODVHFWLRQVXLYDQWHFDULOVSHUPHWWHQWXQHDSSURFKHUHODWLYHPHQWVLPSOHGHVMHX[FRPELQDWRLUHVHWGHOHXUDQDO\VHHQFODVVH 'HSDUO¶DOWHUQDQFHGHVFRXSVHQWUHOHVGHX[MRXHXUVHWSDUO¶DEVHQFHGH KDVDUGLOHVWSRVVLEOHHQWKpRULHGHGpQRPEUHUWRXWHVOHVSRVLWLRQVSRXYDQW VH SUpVHQWHU GXUDQW XQH SDUWLH GH MHX HW HQYLVDJHU XQ FKHPLQ RSWLPDO SRXYDQWPHQHUjODYLFWRLUH0DLVRQFRPSUHQGUDSLGHPHQWTXHOHQRPEUHWRWDO GHSRVLWLRQVSRVVLEOHVGDQVXQMHXHVWFRQVLGpUDEOHPHQWpOHYpௗGHVPpWKRGHV G¶DQDO\VH DXWUHV TXH OH GpQRPEUHPHQW V¶DYqUHQW QpFHVVDLUHV FRPPH QRXV DOORQVOHYRLU

Naissance de la théorie des jeux combinatoires $YDQWTXHQHSDUDLVVHHQOHSUHPLHUDUWLFOHFRQVDFUpjO¶DQDO\VHPDWKpPDWLTXHFRPSOqWHG¶XQMHXFRPELQDWRLUH±OHMHXGH1LPTXHQRXVDERUGRQV XOWpULHXUHPHQW %RXWRQ  ± RQ WURXYH GDQV GHV RXYUDJHV GH UpFUpDWLRQV PDWKpPDWLTXHVGHV©ௗSUREOqPHVDULWKPpWLTXHVௗªTX¶RQTXDOL¿HUDLWDXMRXUG¶KXL GH ©ௗMHX[ FRPELQDWRLUHVௗª 1RXV SUpVHQWRQV LFL OHV SUREOqPHV UHFXHLOOLV SDU /XFD3DFLROL  HW&ODXGH*DVSDUG%DFKHWGH0p]LULDF  

Prémices : les récréations mathématiques aux XVIe et XVIIe siècles /HVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVGXGpEXWGX XVIIeVLqFOHFRQVWLWXHQW HQ )UDQFH XQ JHQUH OLWWpUDLUH HW pGLWRULDO QRXYHDX TXL SURSRVH XQH SUDWLTXHIRQGpHVXUOHGp¿jO¶HQWHQGHPHQWHW©ௗTXLFRQVLVWHjFUpHUSRXUXQ SXEOLFO¶LOOXVLRQG¶XQSRXYRLUH[WUDRUGLQDLUHௗª &KDEDXG &HVRQW GHVFROOHFWLRQVGHSUREOqPHVDULWKPpWLTXHVHWJpRPpWULTXHV SXLVSK\VLTXHV PpFDQLTXHVRSWLTXHVHWF GRQWOHEXWHVWDYDQWWRXWGH©ௗSLTXHUODFXULRVLWpௗª %DUELQ  8QGHVSUHPLHUVRXYUDJHVHQWLqUHPHQWFRQVDFUpVjFHW\SHGHSUREOqPHV GLYHUWLVVDQWV 6LQJPDVWHU   HVW OH De Viribus Quantitatis GX PDWKpPDWLFLHQ LWDOLHQ )UD /XFD %DUWRORPHR GH 3DFLROL   3DUPL OHV UpFUpDWLRQV DULWKPpWLTXHV GH OD SUHPLqUH SDUWLH GH O¶RXYUDJH VH WURXYH LOODPDUTXHGHVRQLQLWLDOHHWSHXWUHMRXHU/HMRXHXUTXLjOD¿QGHODSDUWLHSRVVqGHOH SOXVGHFDVHVDYHFVHVLQLWLDOHVUHPSRUWHODYLFWRLUH3RXUXQHpWXGHKLVWRULTXHGpWDLOOpH GXMHXGHVSHWLWVFDUUpVHWGHVRQDQDO\VHYRLU 5RXJHWHW 



FRQQXVTXLWURXYHQWOHXUVRULJLQHVGDQVOHVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVSXEOLpVjSDUWLUGHV XVIe et XVIIeVLqFOHV1RXVOHVSUpVHQWRQVGDQVOD SUHPLqUHSDUWLHGHODVHFWLRQVXLYDQWHFDULOVSHUPHWWHQWXQHDSSURFKHUHODWLYHPHQWVLPSOHGHVMHX[FRPELQDWRLUHVHWGHOHXUDQDO\VHHQFODVVH 'HSDUO¶DOWHUQDQFHGHVFRXSVHQWUHOHVGHX[MRXHXUVHWSDUO¶DEVHQFHGH KDVDUGLOHVWSRVVLEOHHQWKpRULHGHGpQRPEUHUWRXWHVOHVSRVLWLRQVSRXYDQW VH SUpVHQWHU GXUDQW XQH SDUWLH GH MHX HW HQYLVDJHU XQ FKHPLQ RSWLPDO SRXYDQWPHQHUjODYLFWRLUH0DLVRQFRPSUHQGUDSLGHPHQWTXHOHQRPEUHWRWDO GHSRVLWLRQVSRVVLEOHVGDQVXQMHXHVWFRQVLGpUDEOHPHQWpOHYpௗGHVPpWKRGHV G¶DQDO\VH DXWUHV TXH OH GpQRPEUHPHQW V¶DYqUHQW QpFHVVDLUHV FRPPH QRXV DOORQVOHYRLU

Naissance de la théorie des jeux combinatoires $YDQWTXHQHSDUDLVVHHQOHSUHPLHUDUWLFOHFRQVDFUpjO¶DQDO\VHPDWKpPDWLTXHFRPSOqWHG¶XQMHXFRPELQDWRLUH±OHMHXGH1LPTXHQRXVDERUGRQV XOWpULHXUHPHQW %RXWRQ  ± RQ WURXYH GDQV GHV RXYUDJHV GH UpFUpDWLRQV PDWKpPDWLTXHVGHV©ௗSUREOqPHVDULWKPpWLTXHVௗªTX¶RQTXDOL¿HUDLWDXMRXUG¶KXL GH ©ௗMHX[ FRPELQDWRLUHVௗª 1RXV SUpVHQWRQV LFL OHV SUREOqPHV UHFXHLOOLV SDU /XFD3DFLROL  HW&ODXGH*DVSDUG%DFKHWGH0p]LULDF  

Prémices : les récréations mathématiques aux XVIe et XVIIe siècles /HVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVGXGpEXWGX XVIIeVLqFOHFRQVWLWXHQW HQ )UDQFH XQ JHQUH OLWWpUDLUH HW pGLWRULDO QRXYHDX TXL SURSRVH XQH SUDWLTXHIRQGpHVXUOHGp¿jO¶HQWHQGHPHQWHW©ௗTXLFRQVLVWHjFUpHUSRXUXQ SXEOLFO¶LOOXVLRQG¶XQSRXYRLUH[WUDRUGLQDLUHௗª &KDEDXG &HVRQW GHVFROOHFWLRQVGHSUREOqPHVDULWKPpWLTXHVHWJpRPpWULTXHV SXLVSK\VLTXHV PpFDQLTXHVRSWLTXHVHWF GRQWOHEXWHVWDYDQWWRXWGH©ௗSLTXHUODFXULRVLWpௗª %DUELQ  8QGHVSUHPLHUVRXYUDJHVHQWLqUHPHQWFRQVDFUpVjFHW\SHGHSUREOqPHV GLYHUWLVVDQWV 6LQJPDVWHU   HVW OH De Viribus Quantitatis GX PDWKpPDWLFLHQ LWDOLHQ )UD /XFD %DUWRORPHR GH 3DFLROL   3DUPL OHV UpFUpDWLRQV DULWKPpWLTXHV GH OD SUHPLqUH SDUWLH GH O¶RXYUDJH VH WURXYH LOODPDUTXHGHVRQLQLWLDOHHWSHXWUHMRXHU/HMRXHXUTXLjOD¿QGHODSDUWLHSRVVqGHOH SOXVGHFDVHVDYHFVHVLQLWLDOHVUHPSRUWHODYLFWRLUH3RXUXQHpWXGHKLVWRULTXHGpWDLOOpH GXMHXGHVSHWLWVFDUUpVHWGHVRQDQDO\VHYRLU 5RXJHWHW 



OHSUREOqPHVXLYDQW©ௗ¿QLUQ¶LPSRUWHTXHOQRPEUHDYDQWO¶DXWUHVDQVSUHQGUH SOXVTX¶XQFHUWDLQQRPEUHOLPLWpௗª 3DFLROLY 3DUH[HPSOH PacioliSURSRVHjGHX[SHUVRQQHVG¶DWWHLQGUHOHQRPEUHHQDGGLWLRQQDQWj WRXUGHU{OHGHVQRPEUHVFRPSULVHQWUHHWHWGHPDQGHV¶LO\DXQDYDQWDJHjFRPPHQFHUODSDUWLHRXQRQ3DFLROLH[SOLTXHTXHSRXUJDJQHULOIDXW DWWHLQGUH OHV SDOLHUV    HW  5 /H MRXHXU TXL DWWHLQW OH SUHPLHU XQ GH FHVSDOLHUVSRXUUDHQVXLWHDWWHLQGUHOHVDXWUHVHWFHMXVTX¶j'HPDQLqUH JpQpUDOHSRXUWURXYHUOHVSDOLHUVTXLSHUPHWWHQWGHJDJQHUTXHOVTXHVRLHQW OHV QRPEUHV FLEOHV FKRLVLV 3DFLROL H[SOLTXH TX¶LO IDXW ©ௗWRXMRXUV GLYLVHU OH QRPEUHDXTXHORQYHXWDUULYHUSDUXQGHSOXVTXHFHTXLSHXWrWUHHQOHYpHW OHUHVWHGHODGLWHGLYLVLRQVHUDWRXMRXUVOHSUHPLHUSDOLHUGHODSURJUHVVLRQௗª 3DFLROLU /HSDOLHUVXLYDQWVHGpGXLWHQDGGLWLRQQDQW©ௗXQGH SOXVTXHFHTXLSHXWrWUHHQOHYpௗªGXSDOLHUSUpFpGHQW 6 8QHYDULDQWHGHODUpFUpDWLRQ SURSRVpH SDU 3DFLROL HVW FHOOH GRQQpH SDU &ODXGH *DVSDUG %DFKHW GDQV VHV Problemes plaisans et delectables, qui se font par les nombres   HW TXL FRQVLVWH j DWWHLQGUH  HQ DGGLWLRQQDQW GHV QRPEUHV Fig. 1 – Problème proposé par Bachet dans ses Problemes plaisans FRPSULV HQWUH HW YRLU et delectables, qui se font par les nombres (Bachet 1612 : 99) ¿J  &HWWH UpFUpDWLRQ SHXW [Ghent University Library, BIB.MA.000910]. HQ HIIHW VH GpFOLQHU DYHF Q¶LPSRUWH TXHOOHV YDOHXUV SRXU OH QRPEUH j DWWHLQGUH HW SRXU OHV QRPEUHV TX¶RQSHXWDGGLWLRQQHU 73DUDLOOHXUVHOOHSHXWpJDOHPHQWVHMRXHUHQYHUVLRQ ©ௗVRXVWUDFWLYHௗªDXOLHXG¶DGGLWLRQQHUPHQWDOHPHQWGHVYDOHXUVOHVMRXHXUV 5. (QHIIHWHQUDLVRQQDQWSDUOD¿QVLXQMRXHXUQHYHXWSDVTXHVRQDGYHUVDLUHJDJQHHQ DWWHLJQDQWLOGRLWOXLSURSRVHUOHSOXVJUDQGQRPEUHWHOTX¶HQOXLDMRXWDQW RXLOQHSXLVVHDWWHLQGUH&HQRPEUHHVWFDUTXHOTXHVRLWOHQRPEUHTXH O¶DGYHUVDLUHDMRXWHjLOREWLHQGUDXQQRPEUHVXSpULHXURXpJDOjPDLVLQIpULHXU RXpJDOj/HMRXHXUSRXUUDDORUVFRPSOpWHUODVRPPHMXVTX¶jDXWRXUVXLYDQW(Q UDLVRQQDQWGHODPrPHIDoRQDYHFRQWURXYHTXHOHSDOLHUSUpFpGHQWHVWSXLV SXLV 6. $LQVLSRXUDWWHLQGUHHQDGGLWLRQQDQWGHVQRPEUHVFRPSULVHQWUHHWLOIDXGUD G¶DERUGDWWHLQGUHSXLVHW OHUHVWHGHODGLYLVLRQHXFOLGLHQQHGHSDU  pWDQWQXO  7. ©/DFRXUVHjªGpYHORSSpHSDU*X\%URXVVHDX  SRXULQWURGXLUHVDWKpRULHGHV VLWXDWLRQVGLGDFWLTXHVHQHVWXQH[HPSOH

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

RQWjOHXUGLVSRVLWLRQXQHQVHPEOHGHMHWRQVGXTXHOFKDFXQUHWLUHOHQRPEUH YRXOXjFKDTXHWRXU&HWWHYHUVLRQFRPELQpHjO¶XVDJHGHMHWRQVTX¶RQSHXW PDQLSXOHUHVWGDYDQWDJHDGDSWpHjXQHDFWLYLWpHQFODVVHFDUHOOHSHUPHWXQH PHLOOHXUHUHSUpVHQWDWLRQGHVVLWXDWLRQVGHMHXHWIDFLOLWHOHXUDQDO\VH 'DQVOHVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVGHVXVIe et XVIIeVLqFOHV OHV SUREOqPHV VRQW WUDLWpV HVVHQWLHOOHPHQW GDQV GHV FDV SDUWLFXOLHUV VXU GHV H[HPSOHV2QQHWURXYHSDVGHJpQpUDOLVDWLRQSRXUXQQRPEUHnjDWWHLQGUHHQ DGGLWLRQQDQWGHVYDOHXUVHQWUHHWN/DSUHPLqUHDQDO\VHPDWKpPDWLTXHFRPSOqWHG¶XQMHXFRPELQDWRLUHVHUDGRQQpHDXGpEXWGXXXeVLqFOHGDQVO¶DUWLFOH GH&KDUOHV%RXWRQ  VXUOHMHXGH1LP

Avancées théoriques : le jeu de Nim et le jeu de Kayles Y Le jeu de Nim et ses variantes /HVUqJOHVGXMHXGH1LPGRQQpHVSDU%RXWRQ  VRQWOHVVXLYDQWHVRQ GLVSRVHVXUXQHWDEOHWURLVUDQJpHVG¶REMHWVGHWRXWHVRUWHFKDFXQHFRQWHQDQW XQQRPEUHTXHOFRQTXHG¶REMHWV/HVGHX[MRXHXUVVpOHFWLRQQHQWjWRXUGHU{OH XQHGHVUDQJpHVHWUHWLUHQWDXWDQWG¶REMHWVTX¶LOVYHXOHQWXQGHX[WURLV«RX ODUDQJpHHQWLqUHPDLVDXPRLQVXQREMHWGRLWrWUHUHWLUp/HMRXHXUTXLSUHQG OH V GHUQLHU V REMHW V JDJQHODSDUWLH YHUVLRQQRUPDOH /DUpVROXWLRQWKpRULTXHSUpVHQWpHSDU%RXWRQ  UHSRVHVXUO¶pFULWXUHGXQRPEUHG¶REMHWV GHFKDTXHUDQJpHHQELQDLUHHWVXUOD©ௗ1LPVRPPHௗª 8TXLFRUUHVSRQGjOD IRQFWLRQERROpHQQH28H[FOXVLIOHVQRPEUHVG¶REMHWVFRQWHQXVGDQVFKDTXH UDQJpH VRQW G¶DERUG pFULWV HQ ELQDLUH SXLV LOV VRQW DGGLWLRQQpV ±HQ IDLVDQW DWWHQWLRQGHELHQDOLJQHUOHVPrPHVXQLWpVHQWUHHOOHV±PRGXORVDQVWHQLU FRPSWHGHVUHWHQXHV 96LOHUpVXOWDWGHVVRPPHVGHFKDTXHFRORQQHHVWpJDO

8. &HWWH H[SUHVVLRQ DEVHQWH GH O¶DUWLFOH GH %RXWRQ HVW LQWURGXLWH SDU 3DWULFN *UXQG\ *UXQG\ TXLHPSORLHOHWHUPHNim AdditionHQDQJODLV 9. 1RXVQHUHQWUHURQVSDVLFLGDQVOHVGpWDLOVGHODUpVROXWLRQGXMHXGH1LPIDXWHGH SODFHPDLVOHOHFWHXUGpVLUDQWHQVDYRLUSOXVSRXUUDFRQVXOWHU 5RXJHWHWE 8QH UHVVRXUFHpGXVFROGpGLpHDXMHXGH1LPDXF\FOH LQWHQWLRQVSpGDJRJLTXHVSURSRVLWLRQGHVpTXHQFHSURORQJHPHQWVSRVVLEOHV HVWpJDOHPHQWGLVSRQLEOH  eGXVFRO  -HXGH1LP'LVSRQLEOHHQOLJQHVXUKWWSFDFKHPHGLDHGXVFROHGXFDWLRQIU¿OH0HWWUHBHQBRHXYUHBVRQBHQVHLJQHPHQWBGDQVBODBFODVVH5$B&B 67BMHXBGHBQLPB1'BSGI! FRQVXOWpOHHURFWREUH   8QHUpIpUHQFHXWLOLVDQWGHVRXWLOVPDWKpPDWLTXHVDFWXHOVDFFHVVLEOHVDX[HQVHLJQDQWV HVWSURSRVpHSDU%DSWLVWH*RULQ ,5(0GHOD5pXQLRQ   *RULQ%  -HX[GH1LP'LVSRQLEOHHQOLJQHVXUOHVLWHGHO¶,5(0GHOD5pXQLRQ KWWSLUHPXQLYUHXQLRQIU,0*SGI*RULQB-HX[BGHB1LPSGI! FRQVXOWp OH HU ocWREUH 



jODSRVLWLRQHVWGLWHSHUGDQWH 10/HMRXHXUTXLODLVVHFHWWHSRVLWLRQjVRQ DGYHUVDLUHVHPHWDORUVHQVLWXDWLRQGHIRUFHHWSHXWUHPSRUWHUODYLFWRLUH /¶DUWLFOHGH%RXWRQ  HVWFRQVLGpUpFRPPHIRQGDWHXUSRXUODWKpRULH GHVMHX[FRPELQDWRLUHVFDULOHVWOHSUHPLHUjDQDO\VHUXQMHXFRPELQDWRLUH GDQVXQFDGUHJpQpUDODYHFGHVGRQQpHVQXPpULTXHVTXHOFRQTXHV,OHVWSDU DLOOHXUVSXEOLpGDQVXQMRXUQDOGHPDWKpPDWLTXHVDPpULFDLQUHQRPPpAnnals of Mathematics&HFLH[SOLTXHWUqVFHUWDLQHPHQWSRXUTXRLG¶DXWUHVPDWKpPDWLFLHQVDSUqV%RXWRQVHVRQWLQWpUHVVpVDXMHXGH1LPHQDSSRUWDQWGHOpJqUHV PRGL¿FDWLRQVGDQVOHVUqJOHVLQLWLDOHVFHTXLDERXWLWjGHQRXYHOOHVUpVROXWLRQV Q¶LPSOLTXDQW SOXV QpFHVVDLUHPHQW OH V\VWqPH ELQDLUHௗ F¶HVW OH FDV GX 1LPGH:\WKRII&HGHUQLHUIXWLQWURGXLWHQSDUOHPDWKpPDWLFLHQQpHUODQGDLV:LOOHP$EUDKDP:\WKRII  GDQVODUHYXHNieuw Archief YRRU:LVNXQGH :\WKRII  'DQVOH1LPGH:\WKRIILO\DH[DFWHPHQWGHX[WDVG¶REMHWVVXUODWDEOH HWOHVMRXHXUVSHXYHQWjWRXUGHU{OHHQOHYHUXQQRPEUHTXHOFRQTXHG¶REMHWV G¶XQVHXOWDV28HQOHYHUOHPrPHQRPEUH G¶REMHWV GDQV OHV GHX[ WDV /H JDJQDQW HVW FHOXL TXL SUHQG OH V  GHUQLHU V  REMHWV V  4 :\WKRII    &HWWH YDULDQWH 3 HVW WKpRULTXHPHQW DQDORJXH DX MHX DSSHOp 2 ©ௗOD UHLQH GH :\WKRIIௗª Wythoff’s Queen  TXLVHMRXHVXUXQSODWHDX 11XQHUHLQHHVW 1 SODFpH Q¶LPSRUWH R VXU XQ SODWHDX GH MHX 0 TXDGULOOpHWO¶REMHFWLISRXUOHVGHX[MRXHXUV 0 1 2 3 4 HVW G¶DPHQHU OD UHLQH VXU OD FDVH HQ EDV j Fig. 2 – Les différents déplacements JDXFKH /H SUHPLHU TXL \ DUULYH UHPSRUWH possibles de la reine sur le plateau de jeu. ODSDUWLH/DUHLQHSHXWVHGpSODFHUXQLTXHPHQW YHUV O¶RXHVW KRUL]RQWDOHPHQW  YHUV OH VXG YHUWLFDOHPHQW  RX YHUV OH VXGRXHVW GLDJRQDOHPHQW  G¶DXWDQW GH FDVHV YRXOXHV FRPPH OH PRQWUH OD ¿JXUH

10. 2QGLWTX¶XQHSRVLWLRQHVW©SHUGDQWHªVLHOOHQHSHUPHWSDVDXMRXHXUGRQWF¶HVWOHWRXU GHMRXHUXQFRXSTXLOHPHWWHHQSRVLWLRQGHIRUFH 11. /H MHX HQ TXHVWLRQ HVW GpFULW GDQV O¶RXYUDJH GH &ODXGH %HUJH   VXU OD Théorie des graphes et de ses applications %HUJH PDLVLOQHOXLGRQQHSDV GHQRPSUpFLVHWQHIDLWDXFXQHUpIpUHQFHj:\WKRII/¶DSSHOODWLRQWythoff’s Queen RX HQFRUHWyt QueensGDQVVDIRUPHDEUpJpH DSSDUDvWGDQVO¶RXYUDJHWinning Ways for Your Mathematical PlaysGRQWODUHpGLWLRQHVWSDUXHHQSDUOHVPDWKpPDWLFLHQV (OZ\Q%HUOHNDPS-RKQ&RQZD\HW5LFKDUG*X\  

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

(QTXRLOH1LPGH:\WKRII DYHFOHVGHX[WDVG¶REMHWV HVWpTXLYDOHQWGDQV VDUpVROXWLRQjODUHLQHGH:\WKRIIMRXpHVXUXQSODWHDXDYHFXQVHXOSLRQௗ" '¶HPEOpHODFRUUHVSRQGDQFHQ¶HVWSDVLPPpGLDWHFDUOHVPpFDQLVPHVGXMHX HWOHPDWpULHOXWLOLVpGLIIqUHQWJUDQGHPHQW,OVHWURXYHTXHOHVFRRUGRQQpHV GHODUHLQHVXUOHSODWHDXFRUUHVSRQGHQWDX[GHX[WDVG¶REMHWVGDQVOH1LPGH :\WKRIITXDQGRQUHWLUHGHVREMHWVG¶XQVHXOWDVODUHLQHVHGpSODFHKRUL]RQWDOHPHQWRXYHUWLFDOHPHQW VHXOHVRQDEVFLVVHRXVRQRUGRQQpHYDULHVHORQOH WDVFKRLVL HWTXDQGRQUHWLUHXQPrPHQRPEUHG¶REMHWVGHVGHX[WDVODUHLQH VH GpSODFH HQ GLDJRQDOH O¶DEVFLVVH HW O¶RUGRQQpH YDULHQW VLPXOWDQpPHQW  $LQVL OHV GHX[ MHX[ PDOJUp GHV GLIIpUHQFHV GH PpFDQLVPHV HW GH PDWpULHO V¶DQDO\VHQWGHODPrPHIDoRQ $SUqVTXHOTXHVSDUWLHVMRXpHVVXUOHSODWHDXDYHFSRXUFRQVLJQHG¶HVVD\HU GHWURXYHUTXHOOHVFDVHVLOIDXWDWWHLQGUHSRXUrWUHV€UGHJDJQHULOHVWSRVVLEOH GHGpWHUPLQHUOHVSUHPLqUHVSRVLWLRQVSHUGDQWHVUHSUpVHQWpHVHQKDFKXUpVXU OD¿JXUH 9 8 7 6 5 4 3 2 1 0

Fig. 3 – Les cases hachurées sont les positions perdantes sur lesquelles il faut amener la reine pour pouvoir gagner la partie. Les cases noires et grises (clair et foncé) sont les cases qu’il faut éviter, au risque de laisser notre adversaire atteindre une case hachurée. Pour une analyse détaillée de la recherche des positions perdantes au jeu de la reine de Wythoff, et de leurs propriétés, voir (Rougetet 2016b).

0 1 2 3 4 5 6 7 8 9

,OIDXWLFLVRXOLJQHUO¶LPSRUWDQFHGHODV\PpWULHSDUUDSSRUWjXQHGLDJRQDOH D¿Q GH SDV RXEOLHU GH SRVLWLRQV SHUGDQWHVௗ HQ HIIHW DXWDQW OD FRQ¿JXUDWLRQ  GDQVOH1LPGH:\WKRII XQREMHWGDQVXQWDVGHX[GDQVO¶DXWUH HVWOD PrPHTXHODFRQ¿JXUDWLRQ  DXWDQWGDQVODUHLQHGH:\WKRIIFHVRQWGHX[ SRVLWLRQVGLVWLQFWHV/HWDEOHDXGpWHUPLQpLWpUDWLYHPHQWDYHFO¶HQVHPEOHGHV SRVLWLRQVSHUGDQWHVHVWUHSUpVHQWpFLGHVVRXV Tableau 1 – Tableau représentant les abscisses (ligne A) et ordonnées (ligne B) des positions perdantes, en prenant l’abscisse inférieure à l’ordonnée, et en leur assignant un rang (n). Les positions symétriques n’ont pas été intégrées. n























A





















«

B





















«



/DYDULDQWH©ௗJpRPpWULTXHௗªGX1LPGH:\WKRIISHUPHWVHORQQRXVXQH DQDO\VHSOXVYLVXHOOHGHFHTXLVHSDVVHDXFRXUVGHODSDUWLH DQWLFLSDWLRQGHV FRXSVGHO¶DGYHUVDLUHSDUH[HPSOH 8QWUDYDLOSRVVLEOHHQFODVVHDYHFFHWWH DFWLYLWpVHUDLWGHGHPDQGHUDX[pOqYHVGHFRQMHFWXUHUOHVSRVLWLRQVSHUGDQWHV DXYXGHVSRVLWLRQVTXLRQWGpMjpWpWURXYpHVHWGHWHVWHUGLUHFWHPHQWVXUOH SODWHDX HQSUpYRLUXQGHJUDQGHWDLOOH SRXUYDOLGHURXLQYDOLGHUODFRQMHFWXUH '¶DXWUHVPDWKpPDWLFLHQVDSUqV:\WKRIIVHVRQWpJDOHPHQWLQWpUHVVpVDXMHX GH1LPGH%RXWRQHQ\DSSRUWDQWGHVPRGL¿FDWLRQVIDLVDQWDLQVLDYDQFHUOD WKpRULHGHVMHX[FRPELQDWRLUHVYHUVOHIRUPDOLVPHTX¶RQFRQQDvWDFWXHOOHPHQW /HMHXGH.D\OHVSUpVHQWpGDQVODVHFWLRQVXLYDQWHYDQRXVSHUPHWWUHGHPRQWUHUO¶pPHUJHQFHHWO¶XWLOLVDWLRQG¶XQHQRWLRQHVVHQWLHOOHGDQVODUpVROXWLRQGH FHVMHX[FHOOHGHVNimbers Y Le jeu de Kayles : illustration des Nimbers /HMHXGH.D\OHVHVWXQHDGDSWDWLRQGHVDORQG¶XQMHXG¶DGUHVVHYHQDQWG¶$QJOHWHUUHGDWDQWGX XIVeVLqFOHGRQWOHEXWpWDLWGHUHQYHUVHUXQPD[LPXPGH TXLOOHVLQLWLDOHPHQWGLVSRVpHVG¶XQHFHUWDLQHPDQLqUH SDUIRLVDOLJQpHVSDUIRLVHQFDUUp jO¶DLGHG¶XQHERXOHODQFpHjODPDLQRXDXPR\HQG¶XQHFDQQH HQERLV/HMHXGH.D\OHVWHOTX¶LOHVWSUpVHQWpGDQVOHCanterbury Puzzles GX puzzlist 12 EULWDQQLTXH +HQU\ 'XGHQH\   GH  HW GDQV OH Cyclopedia of PuzzlesGXpuzzlist6DPXHO/R\G  GHVHMRXH DLQVL TXLOOHV VRQW DOLJQpHV VXU XQH PrPH UDQJpH HW OD GHX[LqPH TXLOOH HVW UHQYHUVpH YRLU ¿J  ¬ WRXU GH U{OH OHV MRXHXUV SHXYHQW IDLUH WRPEHU XQHTXLOOHRXGHX[TXLOOHVDGMDFHQWHV&HOXLTXLUHQYHUVHOD OHV GHUQLqUH V  TXLOOH V  UHPSRUWH OD SDUWLH &H MHX SHXW ELHQ pYLGHPPHQW VH MRXHU VXU XQH WDEOHDYHFGHVMHWRQVFDUDXFXQHKDELOHWpSK\VLTXHQ¶HQWUHHQMHX&¶HVWGRQF XQMHXFRPELQDWRLUHTX¶LOHVWSRVVLEOHG¶DQDO\VHUPDWKpPDWLTXHPHQW /HVVROXWLRQVGRQQpHVSDU'XGHQH\HW/R\GVRQWSDUWLFXOLqUHVjODFRQ¿JXUDWLRQLQLWLDOHHWQHVRQWQLH[SOLTXpHVGDQVXQFDGUHJpQpUDOQLPrPHMXVWL¿pHV 3RXU rWUH V€U GH UHPSRUWHU OD YLFWRLUH pFULYHQWLOV LO IDXW DEDWWUH OD VL[LqPHRXODGL[LqPHTXLOOHHWODLVVHU©ௗW{WRXWDUGௗª 'XGHQH\  XQQRPEUHSDLUGHJURXSHVVLPLODLUHVGHTXLOOHV$LQVLTXRLTXHMRXHO¶DGYHUVDLUHLOVXI¿WGHUpSpWHUVRQDFWLRQGDQVXQJURXSHVLPLODLUH 12. 8QpuzzlistHVWXQWHUPHDQJODLVTXLjPDFRQQDLVVDQFHQHFRQQDvWSDVG¶pTXLYDOHQW IUDQoDLV 2Q SRXUUDLW OH WUDGXLUH OLWWpUDOHPHQW SDU LQYHQWHXU G¶pQLJPHV RX GH FDVVH WrWHVFHOOHVFLpWDQWGHQDWXUHQXPpULTXHHWORJLTXH'XGHQH\HW/R\GRQWFRQWULEXp WUqV UpJXOLqUHPHQW GDQV GHV MRXUQDX[ DQJODLV HW DPpULFDLQ UHVSHFWLYHPHQW HW SXEOLp SOXVLHXUVRXYUDJHVUHSUHQDQWO¶HQVHPEOHGHOHXUVpQLJPHVGHVWLQpVDXJUDQGSXEOLFHW DX[DPDWHXUVGHFDVVHWrWHVYRLU 'XGHQH\ HW /R\G 

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

/¶DQDO\VH FRPSOqWH GX MHX GH .D\OHV DLQVL TX¶XQ JUDQGQRPEUHG¶DXWUHVMHX[FRPELQDWRLUHVVHUDGRQQpH HQ SDU 5LFKDUG *X\ HW &HGULF 6PLWK *X\ HW 6PLWK   GDQV ODTXHOOH LOV PRQWUHQW FRPPHQW OD UpVROXWLRQGHFHMHXVHUDPqQHjDQDO\VHUXQHFRQ¿JXUDWLRQSDUWLFXOLqUHGX1LPGH%RXWRQ 7RXW G¶DERUG *X\ HW 6PLWK   UHSUHQQHQW OD IRQFWLRQ LQWURGXLWH SDU 3DWULFN *UXQG\ HQ *UXQG\   LOV OD QRWHQW G P  DYHF P XQH SRVLWLRQSRVVLEOHGXMHXFRPELQDWRLUHGRQWLOHVWTXHVWLRQ (QVXLWH LOV DWWULEXHQW DX[ SRVLWLRQV ¿QDOHV TXL VRQW SHUGDQWHV ODYDOHXUG P  3RXUOHVSRVLWLRQVP non¿QDOHVLOVDWWULEXHQWjG P OHSOXVSHWLWHQWLHUGLIIpUHQW GHVYDOHXUVG Qi ROHVQiVRQWOHVFRXSVSRVVLEOHVj SDUWLUGHODSRVLWLRQP DSSHOpVOHVFRXSVGHVFHQGDQWV GHP &HWWHUqJOHHVWDXMRXUG¶KXLDSSHOpH©ௗODUqJOHGX 0H[ௗª SRXU0LQLPXP(;FOXV 13 HQWKpRULHGHVMHX[

Fig. 4 – Illustration du jeu proposé par Samuel Loyd (Loyd 1914 : 232). C’est à Rip Van Winkle de jouer après qu’un nain a abattu la 2e quille, que doit-il jouer pour remporter la victoire ?

13. Minimum Excluded value HQ DQJODLV PHQWLRQQpH GDQV %HUOHNDPS&RQZD\HW*X\ 



FRPELQDWRLUHVHWOHVYDOHXUVSULVHVSDUODIRQFWLRQGH*UXQG\VRQWDXVVLQRPPpHVNimbers2QWUDYDLOOHDORUVSDUUDLVRQQHPHQWUpWURJUDGHHQUHPRQWDQW GHVSRVLWLRQV¿QDOHV TXLRQWXQNimberpJDOj DX[SRVLWLRQVGRQWRQFKHUFKH le Nimber 9R\RQV FRPPHQW SURFpGHU VXU XQ H[HPSOH VLPSOH OD ¿JXUH UHSUpVHQWHO¶DUEUHGHVGLIIpUHQWHVSRVVLELOLWpVGHMHXjSDUWLUGHODSRVLWLRQ DXMHXGH.D\OHVMXVTX¶DX[SRVLWLRQV¿QDOHV SDUVRXFLGHSODFHQRXVQ¶DYRQV SDV UHSUpVHQWp OHV GHUQLqUHV EUDQFKHV TXL GH OD SRVLWLRQ  DUULYHUDLHQW j OD SRVLWLRQ¿QDOH  1-2

1-2

2

1

0

1

0

1-1

1

1

00

Fig. 5 – Arbre de jeu au Kayles à partir de la position 1-2.

2

1

00

1

1-23

2

11

00

Fig. 6 – On assigne aux positions finales un Nimber égal à 0.

1-2

11

1-1

00

1-1

11

11

00

Fig. 7 – Les Nimbers des positions menant à une position finale sont égaux à 1.

22

11

1-10

00

11

Fig. 8 – L’arbre de jeu de Kayles à partir de la position initiale 1-2, avec leurs Nimbers.

2QFRPPHQFHSDUDVVLJQHUDX[SRVLWLRQV¿QDOHVXQNimberpJDOjUHSUpVHQWpHQJULVVXUOD¿JXUH 3XLVOHNimberG¶XQHSRVLWLRQTXLPqQHjXQHSRVLWLRQ¿QDOHHVWpJDODX SOXVSHWLWHQWLHUGLIIpUHQWGXNimber GHODSRVLWLRQ¿QDOHF¶HVWjGLUHOHSOXV SHWLWHQWLHUGLIIpUHQWGHGRQF2QFRPSOqWHDORUVO¶DUEUHSRXUREWHQLUOD ¿JXUH (Q UpLWpUDQW FH SURFHVVXV RQ WURXYH TXH OD SRVLWLRQ D XQ Nimber pJDO jTXHODSRVLWLRQDXQNimber pJDOj FDUODVHXOHSRVLWLRQVXLYDQWH

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

SRVVLEOHDXQNimber pJDOj HWTXHGRQFODSRVLWLRQLQLWLDOHDXQ Nimber pJDOjFRPPHOHPRQWUHOD¿JXUH ¬SUpVHQWOHNimberG¶XQHSRVLWLRQGRQQpHSOXVFRPSOH[HTXHTXL Q¶HVWDXWUHTX¶XQHVRPPHGLVMRLQWHGHSRVLWLRQVSOXVVLPSOHVPP«PmHVW GpWHUPLQpHQFDOFXODQWOD1LPVRPPHGHVNimbers GHVGLIIpUHQWHVSRVLWLRQV PP«Pm(WVLFHWWH1LPVRPPHHVWQXOOHFRPPHGDQVODUpVROXWLRQGX 1LPGH%RXWRQODSRVLWLRQHVWXQHSRVLWLRQSHUGDQWH $LQVLO¶XWLOLVDWLRQGHVNimbersSHUPHWGHUDPHQHUWRXWMHXFRPELQDWRLUHj XQHFRQ¿JXUDWLRQSDUWLFXOLqUHGX1LPGH%RXWRQHWO¶DQDO\VHG¶XQHSRVLWLRQ UHYLHQW¿QDOHPHQWDXFDOFXOG¶XQH1LPVRPPH&HUpVXOWDWIRQGDPHQWDOSRXU ODWKpRULHGHVMHX[FRPELQDWRLUHVSRUWHDXMRXUG¶KXLOHQRPGX©ௗWKpRUqPHGH 6SUDJXH*UXQG\ௗª 14 /HVIRQFWLRQVGH*UXQG\VRQWWRXMRXUVpWXGLpHVDFWXHOOHPHQWQRWDPPHQW SRXU OHXUV SURSULpWpV GH SpULRGLFLWp VHORQ OHV MHX[ FRQVLGpUpVௗ O¶XWLOLVDWLRQ GHO¶RXWLOLQIRUPDWLTXH HWGHFDOFXODWHXUVpOHFWURQLTXHVWHOTXHO¶('6$&GH &DPEULGJHDXGpEXWGHVDQQpHV GHYLHQWIRQGDPHQWDOHSRXUHIIHFWXHUOHV FDOFXOVVDQVHUUHXUV

Liens avec l’algorithmique et la programmation La programmation des jeux combinatoires /¶DVSHFW©ௗGpWHUPLQpௗª 15GHVMHX[FRPELQDWRLUHVHWOHXUDQDO\VHIDLVDQWDSSHODX V\VWqPHELQDLUHHWjOD1LPVRPPHIDYRULVHQWXQHPRGpOLVDWLRQLQIRUPDWLTXH 14. /¶$OOHPDQG 5RODQG 6SUDJXH   HW OH %ULWDQQLTXH 3DWULFN *UXQG\   D\DQWFKDFXQGpFRXYHUWLQGpSHQGDPPHQWFHUpVXOWDW 15. 'HSDUO¶DEVHQFHGHKDVDUGOHVMHX[FRPELQDWRLUHVVRQWGLWV©GpWHUPLQpVªF¶HVWjGLUH TX¶LOV VDWLVIRQW WRXMRXUV XQH GHV WURLV FRQGLWLRQV VXLYDQWHV VRLW OHV %ODQFV SHXYHQW JDJQHUTXHOOHTXHVRLWODPDQLqUHGRQWOHV1RLUVMRXHQWVRLWOHV1RLUVSHXYHQWJDJQHU TXHOOH TXH VRLW OD PDQLqUH GRQW OHV %ODQFV MRXHQW VRLW FKDTXH MRXHXU SHXW DUULYHU j XQQXOTXHOOHTXHVRLWODPDQLqUHGRQWO¶DGYHUVDLUHMRXH&HWWHSURSULpWp±TXLVHPEOH pYLGHQWHHWTX¶LQWqJUHWUqVUDSLGHPHQWQ¶LPSRUWHTXHOMRXHXUG¶pFKHFVSDUH[HPSOH±D pWpH[SOLFLWpHSRXUODSUHPLqUHIRLVSDUOHPDWKpPDWLFLHQDOOHPDQG(UQVW=HUPHORTXL pWDLWXQIHUYHQWMRXHXUG¶pFKHFVGDQVXQDUWLFOHSur une application de la théorie des ensembles à la théorie du jeu d’échecs =HUPHOR 3DUODVXLWHG¶DXWUHVPDWKpPDWLFLHQVVHVRQWLQWpUHVVpVDXFDUDFWqUHGpWHUPLQpGXMHXG¶pFKHFVQRWDPPHQWMXVTXH GDQVOHVDQQpHVF¶HVWOHFDVSDUH[HPSOHGHV+RQJURLV'pQHV.|QLJHW/iV]OR .DOPiU TXL UHSUHQQHQW HW DSSURIRQGLVVHQW OHV UpVXOWDWV GpYHORSSpV SDU =HUPHOR GX 1pHUODQGDLV0D[(XZHTXLHQYLVDJHO¶DQDO\VHGXMHXG¶pFKHFVVRXVO¶DQJOHGHODWKpRULHGHVHQVHPEOHVHWGHO¶$OOHPDQG(PDQXHO/DVNHUTXLFRQVDFUHXQFKDSLWUHGHVRQ RXYUDJHVXUOHVMHX[GHSODWHDXDX[Mathematische KampfspieleHQUHSUHQDQWO¶DQDO\VH GXMHXGH1LPHWG¶DXWUHVYDULDQWHV



SRVVLEOHDXQNimber pJDOj HWTXHGRQFODSRVLWLRQLQLWLDOHDXQ Nimber pJDOjFRPPHOHPRQWUHOD¿JXUH ¬SUpVHQWOHNimberG¶XQHSRVLWLRQGRQQpHSOXVFRPSOH[HTXHTXL Q¶HVWDXWUHTX¶XQHVRPPHGLVMRLQWHGHSRVLWLRQVSOXVVLPSOHVPP«PmHVW GpWHUPLQpHQFDOFXODQWOD1LPVRPPHGHVNimbers GHVGLIIpUHQWHVSRVLWLRQV PP«Pm(WVLFHWWH1LPVRPPHHVWQXOOHFRPPHGDQVODUpVROXWLRQGX 1LPGH%RXWRQODSRVLWLRQHVWXQHSRVLWLRQSHUGDQWH $LQVLO¶XWLOLVDWLRQGHVNimbersSHUPHWGHUDPHQHUWRXWMHXFRPELQDWRLUHj XQHFRQ¿JXUDWLRQSDUWLFXOLqUHGX1LPGH%RXWRQHWO¶DQDO\VHG¶XQHSRVLWLRQ UHYLHQW¿QDOHPHQWDXFDOFXOG¶XQH1LPVRPPH&HUpVXOWDWIRQGDPHQWDOSRXU ODWKpRULHGHVMHX[FRPELQDWRLUHVSRUWHDXMRXUG¶KXLOHQRPGX©ௗWKpRUqPHGH 6SUDJXH*UXQG\ௗª 14 /HVIRQFWLRQVGH*UXQG\VRQWWRXMRXUVpWXGLpHVDFWXHOOHPHQWQRWDPPHQW SRXU OHXUV SURSULpWpV GH SpULRGLFLWp VHORQ OHV MHX[ FRQVLGpUpVௗ O¶XWLOLVDWLRQ GHO¶RXWLOLQIRUPDWLTXH HWGHFDOFXODWHXUVpOHFWURQLTXHVWHOTXHO¶('6$&GH &DPEULGJHDXGpEXWGHVDQQpHV GHYLHQWIRQGDPHQWDOHSRXUHIIHFWXHUOHV FDOFXOVVDQVHUUHXUV

Liens avec l’algorithmique et la programmation La programmation des jeux combinatoires /¶DVSHFW©ௗGpWHUPLQpௗª 15GHVMHX[FRPELQDWRLUHVHWOHXUDQDO\VHIDLVDQWDSSHODX V\VWqPHELQDLUHHWjOD1LPVRPPHIDYRULVHQWXQHPRGpOLVDWLRQLQIRUPDWLTXH 14. /¶$OOHPDQG 5RODQG 6SUDJXH   HW OH %ULWDQQLTXH 3DWULFN *UXQG\   D\DQWFKDFXQGpFRXYHUWLQGpSHQGDPPHQWFHUpVXOWDW 15. 'HSDUO¶DEVHQFHGHKDVDUGOHVMHX[FRPELQDWRLUHVVRQWGLWV©GpWHUPLQpVªF¶HVWjGLUH TX¶LOV VDWLVIRQW WRXMRXUV XQH GHV WURLV FRQGLWLRQV VXLYDQWHV VRLW OHV %ODQFV SHXYHQW JDJQHUTXHOOHTXHVRLWODPDQLqUHGRQWOHV1RLUVMRXHQWVRLWOHV1RLUVSHXYHQWJDJQHU TXHOOH TXH VRLW OD PDQLqUH GRQW OHV %ODQFV MRXHQW VRLW FKDTXH MRXHXU SHXW DUULYHU j XQQXOTXHOOHTXHVRLWODPDQLqUHGRQWO¶DGYHUVDLUHMRXH&HWWHSURSULpWp±TXLVHPEOH pYLGHQWHHWTX¶LQWqJUHWUqVUDSLGHPHQWQ¶LPSRUWHTXHOMRXHXUG¶pFKHFVSDUH[HPSOH±D pWpH[SOLFLWpHSRXUODSUHPLqUHIRLVSDUOHPDWKpPDWLFLHQDOOHPDQG(UQVW=HUPHORTXL pWDLWXQIHUYHQWMRXHXUG¶pFKHFVGDQVXQDUWLFOHSur une application de la théorie des ensembles à la théorie du jeu d’échecs =HUPHOR 3DUODVXLWHG¶DXWUHVPDWKpPDWLFLHQVVHVRQWLQWpUHVVpVDXFDUDFWqUHGpWHUPLQpGXMHXG¶pFKHFVQRWDPPHQWMXVTXH GDQVOHVDQQpHVF¶HVWOHFDVSDUH[HPSOHGHV+RQJURLV'pQHV.|QLJHW/iV]OR .DOPiU TXL UHSUHQQHQW HW DSSURIRQGLVVHQW OHV UpVXOWDWV GpYHORSSpV SDU =HUPHOR GX 1pHUODQGDLV0D[(XZHTXLHQYLVDJHO¶DQDO\VHGXMHXG¶pFKHFVVRXVO¶DQJOHGHODWKpRULHGHVHQVHPEOHVHWGHO¶$OOHPDQG(PDQXHO/DVNHUTXLFRQVDFUHXQFKDSLWUHGHVRQ RXYUDJHVXUOHVMHX[GHSODWHDXDX[Mathematische KampfspieleHQUHSUHQDQWO¶DQDO\VH GXMHXGH1LPHWG¶DXWUHVYDULDQWHV



Fig. 9 – Support en plastique rouge du Dr. Nim. Les billes sont placées initialement dans la gouttière en haut du support. Le joueur actionne la gâchette en bas à droite du plateau pour faire descendre la bille qui passe par le chemin déterminé selon la position des différents flip-flops.

HW OD FRQVWUXFWLRQ G¶XQ SURJUDPPH GH UpVROXWLRQ /H SURJUDPPH GH F\FOH VXJJqUH G¶DLOOHXUV G¶DSSURFKHU OD QRXYHOOH WKpPDWLTXH ©ௗDOJRULWKPLTXH HW SURJUDPPDWLRQௗª SDU GHV DFWLYLWpV OXGLTXHV QRWDPPHQW via FHUWDLQV MHX[ FRPELQDWRLUHV FRPPH OH 7LF7DF7RH RXOHMHXGH1LP3RXUFHIDLUHXQHGHVPRGDOLWpVGH O¶DSSUHQWLVVDJH FRUUHVSRQGDQW SURSRVpH HVW OH WUDYDLO HQPRGHGpEUDQFKpF¶HVWjGLUHVDQVO¶XWLOLVDWLRQG¶XQ GLVSRVLWLILQIRUPDWLTXH 'DQV OH FDGUH GX eFROORTXH LQWHU,5(0 G¶pSLVWpPRORJLH HW G¶KLVWRLUH GHV PDWKpPDWLTXHV GRQW OH SUpVHQWRXYUDJHHVWLVVXQRXVDYRQVPRQWUpFRPPHQW O¶DQDO\VHHWODSURJUDPPDWLRQGHVMHX[FRPELQDWRLUHV RQW SHUPLV FHUWDLQHV DPpOLRUDWLRQV DOJRULWKPLTXHV et WHFKQLTXHVGDQVOHGRPDLQHLQIRUPDWLTXHQRWDPPHQWj WUDYHUVO¶KLVWRLUHGHODSURJUDPPDWLRQGXMHXG¶pFKHFV 3DU PDQTXH GH SODFH QRXV QH GpWDLOOHURQV SDV LFL OHV IDLWVPDUTXDQWVGHFHWWHKLVWRLUHSUpIpUDQWQRXVDWWDUGHU SOXVHQGpWDLOVXUODGHUQLqUHDFWLYLWpTXLDpWpSUpVHQWpH DXFRXUVGHO¶DWHOLHUHWTXLSRUWHVXUXQMHXPpFDQLTXH

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

FRPPHUFLDOLVpjOD¿QGHVDQQpHVGHVWLQpjMRXHUDXMHXGH3DFLROLHQYHUVLRQVRXVWUDFWLYH'U1LP3RXUOHOHFWHXUTXLVRXKDLWHFRQVXOWHUXQHpWXGH GpWDLOOpHGHVDYDQFpHVDOJRULWKPLTXHVHWWHFKQLTXHVOLpHVjODSURJUDPPDWLRQ GXMHXG¶pFKHFVQRXVUHQYR\RQVjO¶DUWLFOH 5RXJHWHWD 

Le jeu de Pacioli en version mécanique : Dr. Nim 'U1LPHVWXQMHXIDEULTXpHWFRPPHUFLDOLVpGDQVOHPLOLHXGHVDQQpHV SDU(65,QFHQWUHSULVHVSpFLDOLVpHGDQVODPDQXIDFWXUHGHMHX[pGXFDWLIV ,OVHMRXHjXQMRXHXUTXLMRXHFRQWUH'U1LPHQYHUVLRQQRUPDOHRXPLVqUH HWVHUDPqQHDXMHXGH3DFLROLjXQHUDQJpHFRQWHQDQWMXVTX¶jMHWRQVGRQW RQSHXWHQUHWLUHUXQGHX[RXWURLV /H MHX VH SUpVHQWH VRXV OD IRUPH G¶XQ VXSSRUW HQ SODVWLTXH URXJH YRLU ¿J ODLVVDQWWRPEHUXQHQVHPEOHGHELOOHVjWUDYHUVGLYHUVOHYLHUVGHFRXOHXU EODQFKHFKDFXQSRXYDQWVHSRVLWLRQQHUGHGHX[IDoRQVGLIIpUHQWHV&HGLVSRVLWLIGHFRPPXWDWLRQHVWXQPRQWDJHÀLSÀRS EDVFXOHjGHX[pWDWVVWDEOHVWHO XQLQWHUUXSWHXU HWSHUPHWGHUpDOLVHUODQXPpUDWLRQELQDLUH XQpWDWUHSUpVHQWH OHHWO¶DXWUHpWDWUHSUpVHQWHOH  /HMRXHXUTXLDIIURQWH'U1LPFKRLVLWGHIDLUHWRPEHUXQHGHX[RXWURLV ELOOHVGDQVOHV\VWqPH OHOHYLHUVLWXpHQEDVjJDXFKHGXVXSSRUWSHUPHWGH FKRLVLUTXHOMRXHXUDODPDLQ'U1LPRXPlayer HQDFWLRQQDQWXQHGHX[RX WURLVIRLVODJkFKHWWHVLWXpHHQEDVjGURLWHGXVXSSRUW4XDQGF¶HVWj'U1LP GHMRXHULOVXI¿WG¶DFWLRQQHUODJkFKHWWHXQHVHXOHIRLVHWLOGpFLGHOXLPrPH GHIDLUHWRPEHUXQHGHX[RXWURLVELOOHV 16 /D YHUVLRQ FODVVLTXH GX MHX FRQVLVWH j SODFHU LQLWLDOHPHQW ELOOHV GDQV ODJRXWWLqUHHQKDXWGXVXSSRUWjSRVLWLRQQHUOHVOHYLHUVFRPPHOHPRQWUHOD ¿JXUHHWjMRXHUHQYHUVLRQPLVqUH

Fig. 10 – Position initiale des leviers pour jouer en version misère à Dr. Nim avec 15 billes placées initialement dans la gouttière. Le levier de droite ainsi placé permet au joueur qui défie Dr. Nim, qu’il joue en premier ou non, de prendre la main sur la partie (à condition de bien jouer, auquel cas Dr. Nim prend la main et gagne la partie à coup sûr) [© L'inventeur du jeu : John Thomas Godfrey ; Crédit photo : Andrew Beck].

16. 8QH GpPRQVWUDWLRQ EHDXFRXS SOXV SDUODQWH G¶XQH SDUWLH GH MHX HVW GLVSRQLEOH VXU OH VLWH GH O¶pGLWHXU 8*$ eGLWLRQV  KWWSVZZZXJDHGLWLRQVFRPPHQXSULQFLSDO FROOHFWLRQVHWUHYXHVWRXWHVQRVFROOHFWLRQVHQVHLJQHUOHVVFLHQFHV!



'HPDQLqUHJpQpUDOHTXDQGOHMHXHVWSUpVHQWpHQDWHOLHURXHQFRQIpUHQFH OHVSDUWLFLSDQWVGpYHORSSHQWXQLQWpUrWPDQLIHVWHSRXU'U1LPௗLOHVWYUDLTXH VRQIRQFWLRQQHPHQWSXUHPHQWPpFDQLTXHVHVFRPSRVDQWHVHQPDWLqUHSODVWLTXHERQPDUFKpHWOHIDLWTX¶LOGHVFHQGHOXLPrPHOHQRPEUHGHELOOHVFKRLVL QRXV YRXV LQYLWRQV YUDLPHQW j YLVLRQQHU OD YLGpR GX OLHQ GRQQp j OD QRWH ௗ  LPSUHVVLRQQHQW O¶XWLOLVDWHXU GH SULPH DERUG 0DLV XQH IRLV OD VXUSULVH UHWRPEpHO¶DQDO\VHGXMHXHWGHVPpFDQLVPHVGXVXSSRUWSHXYHQWFRPPHQFHU JUkFHDXWUDYDLOSUpOLPLQDLUHTXLDXUDLWpWpPHQpVXUOHMHXGH3DFLROLHQYHUVLRQVRXVWUDFWLYHDYHFGHVMHWRQV 17 ,OV¶DJLWDYDQWWRXWGHIDLUHOHUDSSRUWHQWUHOHMHXGH3DFLROLSUpDODEOHPHQW DQDO\VpHWFHWWHFRQ¿JXUDWLRQGX'U1LPROHQRPEUHGHELOOHVLQLWLDOFKDQJH DLQVLTXHOHQRPEUHGHELOOHVTX¶RQSHXWUHWLUHU'¶DXWUHSDUWOHMHXHVWMRXpHQ YHUVLRQPLVqUH LOIDXWGRQFODLVVHUODGHUQLqUHELOOHj'U1LPSRXUJDJQHUHW QRQSOXVIDLUHWRPEHUOD RXOHV GHUQLqUH V ELOOH V /HVGLIIpUHQWHVSRVLWLRQV SHUGDQWHV VRQW GRQF    HW ,O HVW DORUV SUpIpUDEOH GH FRPPHQFHU OD SDUWLHHWGHIDLUHWRPEHUGHX[ELOOHVSXLVGHVHUDPHQHUjHWSRXUrWUH FHUWDLQGHUHPSRUWHUODSDUWLH 18 'DQVOHFDVG¶XQHDFWLYLWpHQFODVVHOHVpOqYHVSHXYHQWpPHWWUHGHVFRQMHFWXUHVVXUODVWUDWpJLHJDJQDQWHHWVXUOHQRPEUHGHELOOHVTX¶LOIDXWODLVVHUVXU OHVXSSRUWSRXUJDJQHU,OVSHXYHQWHQVXLWHLPPpGLDWHPHQWOHVWHVWHUIDFHj 'U1LP HW SDU GLIIpUHQWHV SKDVHV G¶HVVDLHUUHXU YDOLGHU RX LQYDOLGHU OHXUV K\SRWKqVHV&HWWHDFWLYLWpIDYRULVHOHWUDYDLOFROOHFWLISDUSHWLWVJURXSHV SRXU FKHUFKHU HQVHPEOH XQH VWUDWpJLH GH MHX  PDLV DXVVL HQ FODVVH HQWLqUH SRXU FRQIURQWHUOHVGLIIpUHQWHVLGpHV HWSHUPHWG¶DERUGHUOHVFRPSpWHQFHVUHTXLVHV GDQV OD UpVROXWLRQ GH SUREOqPHV FKHUFKHU UDLVRQQHU FRPPXQLTXHU ODUJHPHQWPRELOLVpHVDX[F\FOHVHW /RUVGHVDFRPPHUFLDOLVDWLRQGDQVOHVDQQpHV'U1LPpWDLWDFFRPSDJQpG¶XQPDQXHOG¶XWLOLVDWLRQ (65,QFHW-RKQ7KRPDV*RGIUH\  ±SDJHVDXIRUPDW$±ULFKHHQFRQWHQXSpGDJRJLTXHௗHQHIIHWFHGRFXPHQWDSRXUREMHFWLIGHIDLUHFRPSUHQGUHDX[MRXHXUVTXHOTXHVRLWOHXUkJH

17. 1RXV UHFRPPDQGRQV G¶DLOOHXUV YLYHPHQW G¶DERUGHU FHWWH DFWLYLWp DYHF XQ WUDYDLO GH SUDWLTXHHWG¶DQDO\VHGXMHXGH3DFLROLDYHFXQHUDQJpHGHMHWRQVGHODTXHOOHRQ SHXWHQUHWLUHUHQWUHXQjVL[ 18. /DGpWHUPLQDWLRQGHVSRVLWLRQVSHUGDQWHVGDQVFHWWHFRQ¿JXUDWLRQ HWSRXUOHMHXGH 3DFLROL GH PDQLqUH JpQpUDOH  VH IDLW SDU XQ UDLVRQQHPHQW UpWURJUDGH TXL FRQVLVWH j DQDO\VHUOHMHXHQSDUWDQWGHODSRVLWLRQSHUGDQWH¿QDOH LFL HWGH©UHPRQWHUªOHV SRVLWLRQVSRXUGpWHUPLQHUTXHOOHVVRQWOHVSRVLWLRQVSHUGDQWHVDQWpULHXUHV HW  ,OHVWLPSRUWDQWGHPRQWUHUTXHO¶pFDUWHQWUHGHX[SRVLWLRQVVXFFHVVLYHVHVWWRXMRXUV GHF¶HVWjGLUHOHQRPEUHPD[LPDOGHELOOHVTX¶RQSHXWUHWLUHULQFUpPHQWpGH

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

OH IRQFWLRQQHPHQW GX MHX DLQVL TXH OH UDLVRQQHPHQW VRXVMDFHQW DX PpFDQLVPH 19 /H PDQXHO SUpVHQWH DX 19. )DXWH GH SODFH QRXV QH GpWDLOORQV SDV LFL OH UDLVRQQHPHQW SUpVHQWpGDQVOHPDQXHOHWLQYLWRQVOHOHFWHXUjOHFRQVXOWHU jFHWWHDGUHVVH KWWSZZZRQHOHJJHGVDQGSLSHUFRP&KULVWPDV3UHVHQWV 'U1LP0DQXDOSGI!

Fig. 11 – Liste des instructions suivies par le programme au cours d’une partie de Dr. Nim (1968 : 14) [© L'inventeur du jeu : John Thomas Godfrey ; Crédit photo : Andrew Beck].



Fig. 12 – Tableau pour exécuter les instructions suivies par le programme au cours d’une partie de Dr. Nim (1968 : 13) [© L'inventeur du jeu : John Thomas Godfrey ; Crédit photo : Andrew Beck].

GHOjGHVUqJOHVGXMHXHWGHVSRVLWLRQVGHVOHYLHUVVHORQ OH QRPEUH LQLWLDO GH ELOOHV OH SURJUDPPH HW OD OLVWH GHV LQVWUXFWLRQV VXLYLHV SDU 'U1LP DX FRXUV G¶XQH SDUWLH 1RXV DYRQV UHSURGXLW FLGHVVRXV OD OLVWH GHV LQVWUXFWLRQVIRXUQLHVGDQVOHPDQXHO YRLU¿JSRXU OD VRXUFH KLVWRULTXH HQ DQJODLV HW O¶DQQH[H$ SRXU OH GRFXPHQWWUDGXLW HWOHXUH[pFXWLRQSDUOHSURJUDPPH JUkFHDXWDEOHDXIRXUQLHQDQQH[H% YRLU¿JSRXU ODVRXUFHKLVWRULTXH  /¶XWLOLVDWLRQGHFHVVXSSRUWVSHUPHWXQUpHOWUDYDLO HQ PRGH GpEUDQFKp DYHF OHV pOqYHV HQ UDSSRUW GLUHFW DYHFOHPDWpULHOTX¶LOVRQWGHYDQWHX[TX¶LOVSHXYHQW PDQLSXOHUHWGRQWLOVSHXYHQWFRQVWDWHUSK\VLTXHPHQW OHVUpVXOWDWV

Conclusion /HV MHX[ FRPELQDWRLUHV HW SOXV SUpFLVpPHQW OHV MHX[ TXH QRXV DYRQV DERUGpV GDQV FHWWH FRQWULEXWLRQ SUpVHQWHQWGHVLQWpUrWVUpHOVSRXUODFODVVHHQRIIUDQWXQH JUDQGH GLYHUVLWp G¶DFWLYLWpV QRWDPPHQW DXWRXU GX FDOFXOGHO¶DOJRULWKPLTXHHWGHODSURJUDPPDWLRQ,OV

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

Fig. 12 – Tableau pour exécuter les instructions suivies par le programme au cours d’une partie de Dr. Nim (1968 : 13) [© L'inventeur du jeu : John Thomas Godfrey ; Crédit photo : Andrew Beck].

GHOjGHVUqJOHVGXMHXHWGHVSRVLWLRQVGHVOHYLHUVVHORQ OH QRPEUH LQLWLDO GH ELOOHV OH SURJUDPPH HW OD OLVWH GHV LQVWUXFWLRQV VXLYLHV SDU 'U1LP DX FRXUV G¶XQH SDUWLH 1RXV DYRQV UHSURGXLW FLGHVVRXV OD OLVWH GHV LQVWUXFWLRQVIRXUQLHVGDQVOHPDQXHO YRLU¿JSRXU OD VRXUFH KLVWRULTXH HQ DQJODLV HW O¶DQQH[H$ SRXU OH GRFXPHQWWUDGXLW HWOHXUH[pFXWLRQSDUOHSURJUDPPH JUkFHDXWDEOHDXIRXUQLHQDQQH[H% YRLU¿JSRXU ODVRXUFHKLVWRULTXH  /¶XWLOLVDWLRQGHFHVVXSSRUWVSHUPHWXQUpHOWUDYDLO HQ PRGH GpEUDQFKp DYHF OHV pOqYHV HQ UDSSRUW GLUHFW DYHFOHPDWpULHOTX¶LOVRQWGHYDQWHX[TX¶LOVSHXYHQW PDQLSXOHUHWGRQWLOVSHXYHQWFRQVWDWHUSK\VLTXHPHQW OHVUpVXOWDWV

Conclusion /HV MHX[ FRPELQDWRLUHV HW SOXV SUpFLVpPHQW OHV MHX[ TXH QRXV DYRQV DERUGpV GDQV FHWWH FRQWULEXWLRQ SUpVHQWHQWGHVLQWpUrWVUpHOVSRXUODFODVVHHQRIIUDQWXQH JUDQGH GLYHUVLWp G¶DFWLYLWpV QRWDPPHQW DXWRXU GX FDOFXOGHO¶DOJRULWKPLTXHHWGHODSURJUDPPDWLRQ,OV

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

GRQQHQWXQHODUJHSODFHDXSRWHQWLHOOXGLTXHGDQVGHVVLWXDWLRQVGHUHFKHUFKH HQ FODVVH 20 HW SHUPHWWHQW DX[ pOqYHV G¶rWUH DFWHXUV GH OHXUV DSSUHQWLVVDJHV GDQV GHV DFWLYLWpV PDWKpPDWLTXHV R LOV SHXYHQW WHVWHU GLUHFWHPHQW OHXUV K\SRWKqVHVHQMRXDQWHWFRQVWUXLUHDLQVLOHXUVFRQQDLVVDQFHV/DPDQLSXODWLRQ G¶REMHWV HW OD YLVXDOLVDWLRQ FRQFUqWH G¶XQH VXLWH G¶LQVWUXFWLRQV JpQqUHQW XQH DSSURFKHQRXYHOOHGHFHUWDLQHVQRWLRQVTXLSHXYHQWSDUIRLVVDQVFHODrWUHPDO UHVVHQWLHVSDUOHVpOqYHV /HVOLHQVTXHWLVVHQWOHVMHX[FRPELQDWRLUHVHQWUHOHVPDWKpPDWLTXHVO¶DOJRULWKPLTXHHWODSURJUDPPDWLRQVHUpYqOHQWGDYDQWDJHSHUFHSWLEOHVHWDFFHVVLEOHV JUkFH DX[ pFODLUDJHV KLVWRULTXHV DSSRUWpV SDU OHV VRXUFHV H[SORLWpHV GDQVFHWWHFRQWULEXWLRQ/¶KLVWRLUHSHUPHWGHYRLUTXHOHVVDYRLUVPDWKpPDWLTXHVVRXVMDFHQWVDX[MHX[Q¶RQWSDVWRXMRXUVpWpOjTX¶LOVRQWpWpLQYHQWpV PRGL¿pVDXFRXUVGXWHPSVSRXUUpVRXGUHGHVSUREOqPHVHWTX¶LOVUpVXOWHQW G¶XQSURFHVVXVTXLV¶LQVFULWGDQVOHWHPSVHWGDQVO¶HVSDFH&HVMHX[SUHQQHQW OHXUVVRXUFHVGDQVGHVRXYUDJHVGHUpFUpDWLRQVPDWKpPDWLTXHVGqVOHGpEXW GX XVIIeVLqFOH HW FRQWLQXHQW G¶LQWpUHVVHU HW GH PHWWUH DX Gp¿ PDWKpPDWLFLHQV SXLV LQIRUPDWLFLHQV SRXU OHV UpVRXGUH ,QWpJUHU FHWWH KLVWRLUH GDQV XQ HQVHLJQHPHQWSHUPHWXQHDSSURFKHFXOWXUHOOHGHODGLVFLSOLQHTXLQRXVSDUDvW LQGLVSHQVDEOH j OD FRQVWUXFWLRQ GHV FRQQDLVVDQFHVௗ OD PDvWULVH GHV VDYRLUV VRXVMDFHQWV TX¶LOV VRLHQW G¶RUGUH GLVFLSOLQDLUH GLGDFWLTXH KLVWRULTXH  DX[ DFWLYLWpVSURSRVpHVDX[pOqYHVSDUO¶HQVHLJQDQW RXGDQVOHFDGUHG¶XQHDFWLRQ GH PpGLDWLRQ VFLHQWL¿TXH  SHUPHWWDQW XQ UHFXO QpFHVVDLUH HW EpQp¿TXH j OD FRKpUHQFHGHO¶DSSUHQWLVVDJHYLVp

20. 1RXVUHSUHQRQVLFLOHVSURSRVGpYHORSSpVSDU&ROLSDQGDQVVRQWUDYDLOGHWKqVH   TXLYRLWOHVMHX[FRPELQDWRLUHVGHW\SH1LPFRPPHGHVSUREOqPHVGHUHFKHUFKHHQ PDWKpPDWLTXHVGRQWODUpVROXWLRQSHUPHWGHPHWWUHHQ°XYUHGHV6L5& 6LWXDWLRQVGH 5HFKHUFKHHQ&ODVVH OLpHVjO¶DFWLYLWpPDWKpPDWLTXHHQJpQpUDO



Annexe A : liste des instructions suivies par le programme de Dr. Nim en français Programmation Dr. Nim pour 15 billes initiales en version misère (2/2) 3URJUDPPHSRXUMRXHUDX'U1LPFRQWUHXQHSHUVRQQH 4XLSUHQGODGHUQLqUHELOOHSHUG Numéro de l’instruction

Instruction



&RPPHQoRQVXQQRXYHDXMHXDYHFELOOHV



eFULYH]XQGDQVODFRORQQH0HWXQGDQVODFRORQQH5



6LYRXVVRXKDLWH]MRXHUHQSUHPLHUDOOH]jO¶,QVWUXFWLRQ



-HYDLVSUHQGUHELOOHpFULYH]GDQVODFRORQQH1 VRXVWUD\H]GH0HWUppFULYH]GDQVODFRORQQH0 6RXVWUD\H]DXVVLGH5HWUppFULYH]GDQVODFRORQQH5



6L0HVWPDLQWHQDQWpJDOjDOOH]jO¶,QVWUXFWLRQ6LQRQFRQWLQXH]



&RPELHQGHELOOHVVRXKDLWH]YRXVSUHQGUH" eFULYH]ODUpSRQVHGDQVODFRORQQH3



6RXVWUD\H]3GH0HWUppFULYH]GDQV0



6L0HVWPDLQWHQDQWpJDOj]pURDOOH]HQ6LQRQFRQWLQXH]



6L3HVWLQIpULHXURXpJDOj5DOOH]HQ



$MRXWH]j5HWUppFULYH]GDQV5



6RXVWUD\H]3GH5HWUppFULYH]GDQV5



6L5Q¶HVWSDVpJDOj]pURDOOH]HQ



eFULYH]XQGDQV5$OOH]HQ



-HYDLVSUHQGUH5ELOOHVeFULYH]5GDQV1eFULYH]GDQV5 6RXVWUD\H]1GH0$OOH]HQ



9RXVDYH]JDJQp5HWRXUQH]HQ



9RXVDYH]SHUGX5HWRXUQH]HQ

 Les jeux combinatoires ou comment tisser un lien entre mathématiques, algorithmique et programmation

Annexe B : tableau pour exécuter la liste des instructions Programmation Dr. Nim pour 15 billes initiales en version misère (1/2) ©ௗ/H SURJUDPPH D pWp pFULW GH VRUWH TXH QRPEUHV DLHQW EHVRLQ G¶rWUH FKDQJpV GH IDoRQ UpSpWLWLYH HW G¶rWUH PpPRULVpV GXUDQW OD SDUWLH GH MHX HQ FRXUV1RXVDSSHOOHURQVFHVQRPEUHV 0OHQRPEUHGHELOOHVUHVWDQWHVGDQVOHMHX DXGpSDUW  5XQQRPEUH©ௗGHUDSSHOௗªGRQWOHSURJUDPPHDEHVRLQ 3OHQRPEUHGHELOOHVTXHOH-28(85 player FKRLVLWjXQWRXUGRQQp 1OHQRPEUHGHELOOHVTXHOH3URJUDPPHFKRLVLWjXQWRXUGRQQp $¿QGHPpPRULVHUFHVQRPEUHVDXIXUHWjPHVXUHGHODSDUWLHSUHQH]XQH IHXLOOHGHSDSLHUEODQFHWpFULYH]OHVOHWWUHVGRQQpHVHQWrWHGHTXDWUHFRORQQHV FRPPHFLGHVVRXVௗª 0

5

P

1



Références bibliographiques $OEHUW0+ 1RZDNRZVNL5- HW :ROIH'   Lessons in play: an introduction to combinatorial game theory:HOOHVOH\$.3HWHUV/WG %DFKHW&*  Problemes plaisans et delectables, qui se font par les nombres/\RQ3LHUUH5LJDXG %DUELQ(  /HV5pFUpDWLRQVGHVPDWKpPDWLTXHVjODPDUJHLes génies de la science, 30 %HUJH&  Théorie des graphes et ses applications epGLWLRQ 3DULV 'XQRG %HUOHNDPS(5 &RQZD\-+ HW *X\5.   Winning Ways for Your Mathematical Plays YRO epGLWLRQ  1DWLFN 0DVVDFKXVHWWV $.3HWHUV/WG %RXWRQ&/  1LPD*DPHZLWKD&RPSOHWH0DWKHPDWLFDO7KHRU\ The Annals of Mathematics   %URXVVHDX*   Théorie des situations didactiques *UHQREOH /D 3HQVpH6DXYDJH &KDEDXG*  Sciences en jeux. Les récréations mathématiques et physiques en France du XVIIe au XVIIIe siècle 7KqVHGHGRFWRUDW (+(663DULV &ROLSDQ;   Étude didactique des situations de recherche pour la classe concernant des jeux combinatoires de type Nim 7KqVHGHGRFWRUDW  8QLYHUVLWpGH*UHQREOH*UHQREOH 'XGHQH\+(  The Canterbury Puzzles and Other Curious Problems 1HZ«@

/HV SUREOqPHV  HW  LQGLTXHQW TXH OHV DPELJXwWpV HW OHV SLqJHV IRQW PDQLIHVWHPHQWSDUWLHGHVDWWHQGXVGHFHW\SHG¶pQLJPHV Proposition 14D’un bœuf 8Q E°XI WLUH XQH FKDUUXH SRXU OH ODERXU &RPELHQ GH WUDFHV ODLVVHWLOGDQVOHGHUQLHUVLOORQௗ"

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

Proposition 43De certains porcs 8Q KRPPH D SRUFV HW LO RUGRQQH GH OHV DEDWWUH HQ WURLV MRXUVGHIDoRQTXHOHQRPEUHGHSRUFVWXpVSDUMRXUGHYUDrWUH XQ QRPEUH LPSDLU 2Q SHXW IDLUH XQH TXHVWLRQ VLPLODLUH DYHF >SRUFV@4XHGLVHGRQFTXLOHSHXWFRPELHQGHSRUFVGRLYHQW rWUHWXpVSDUMRXUTX¶LOV¶DJLVVHGHRXGH>SRUFV@

'DQVOHVGHX[FDVLOV¶DJLWGHSLqJHVORJLTXHVGDQVOHSUREOqPHGXE°XI LOQHUHVWHDXFXQHWUDFHSXLVTX¶HOOHVVRQWHIIDFpHVDXIXUHWjPHVXUHSDUOHVRF GHODFKDUUXH4XDQWDXVXLYDQWOD©ௗVROXWLRQௗªSURSRVHODUHPDUTXHpFODLUDQWH VXLYDQWHTXLMXVWL¿HOHWLWUHWUDGLWLRQQHOGHVpQLJPHV Solution 43.&¶HVWXQHVRUQHWWH>IDEXOD@FDUSHUVRQQHQHSHXW UpVRXGUHODTXHVWLRQGHWXHURXWUHQWHSRUFVHQWURLVMRXUV HQQRPEUHLPSDLUSDUMRXU&HWWHVRUQHWWHHVWOjVHXOHPHQWSRXU DOHUWHUOHVpOqYHV

/HVHFRQGSUREOqPHFRPSRUWHOXLDXVVLXQHDPELJXwWp Proposition 2D’un promeneur qui va son chemin. 'DQVODUXHXQSURPHQHXUUHQFRQWUHG¶DXWUHVKRPPHV,OOHXU GLWMHYRXGUDLVTX¶LO\DLWHQSOXVDXWDQWG¶DXWUHVKRPPHVTXH YRXVrWHVSOXVODPRLWLpGHODPRLWLpSOXVGHUHFKHIODPRLWLpGH FHWWHPRLWLp$ORUVQRXVVHULRQVDYHFPRL'LVPRLTXLOH GpVLUHFRPELHQG¶KRPPHVOHSURPHQHXUDUHQFRQWUpV

(OOH WLHQW DX IDLW TX¶RQ QH VDLW SDV ELHQ VL ©ௗOD PRLWLp GH OD PRLWLpௗª HVW SULVHVXUOHQRPEUHG¶KRPPHVUHQFRQWUpVLQLWLDOHPHQWRXELHQVXUODWURXSH ©ௗGRXEOpHௗªTX¶RQSRXUUDLWLPDJLQHU 42XWUHFHFDUDFWqUHTXLUHMRLQWOHVREVHUYDWLRQV SUpFpGHQWHV RQ SHXW UHPDUTXHU TXH FH SUREOqPH VH SUrWH DYHF OHV WHFKQLTXHV G¶DXMRXUG¶KXL j GH PXOWLSOHV GpPDUFKHV HW PpWKRGHV GLIIpUHQWHV YRLU©ௗ*pQpUDOLVDWLRQOLUH$OFXLQHQJURXSH,5(0ௗª  /HSUREOqPHVXLYDQWLOOXVWUHOHVLPSOHIDLWTXHSOXVLHXUVGHVSUREOqPHVGX UHFXHLOHQTXHVWLRQVRQWGHYHQXVWUqVFpOqEUHV

4. /D SUHPLqUH LQWHUSUpWDWLRQ FRQGXLW j XQH LPSRVVLELOLWp j PRLQV G¶LPDJLQHU TX¶RQ SXLVVHDYRLUXQHWURXSHGHKRPPHVHWXQDXWUHSHXWrWUHGLPLQXpTXLQHVRLWTXH OHVGL[QHXYLqPHVGHOXLPrPH



Proposition 18D’un loup, d’une chèvre et d’une botte de choux 8QKRPPHGHYDLWIDLUHWUDYHUVHUXQÀHXYHjXQORXSXQHFKqYUH HWXQHERWWHGHFKRX[,OQHSHXWWURXYHUTX¶XQEDWHDXSHUPHWWDQW VHXOHPHQWjGHX[G¶HQWUHHX[GHSDVVHU2ULODYDLWSRXUPLVVLRQGH OHVIDLUHWUDYHUVHUWRXVWURLVVDQVDXFXQGRPPDJH4XHFHOXLTXLOH SHXWGLVHFRPPHQWLOSDUYLQWjOHVIDLUHWUDYHUVHUVDQVGRPPDJH

/HVPpWKRGHVGHUpVROXWLRQPRGHUQHVGHFHW\SHGHSUREOqPHVVXSSRVHQW GHVIRUPHVGHVFKpPDWLVDWLRQTXLRQWIDLWO¶REMHWG¶XQHDXWUHFRQWULEXWLRQGX FROORTXHGRQWOHSUpVHQWRXYUDJHHVWLVVX 5HWSHXYHQWGRQQHUOLHXDXMRXUG¶KXL HQFRUH j G¶LQWpUHVVDQWV H[HUFLFHV GH UHSUpVHQWDWLRQ FRPPH RQ OH YHUUD SDU OD VXLWH YRLU ©ௗ8QH H[SpULHQFH j YDOHXU KHXULVWLTXH XQ DWHOLHU PDWKpPDWLTXHVKLVWRLUHHQFODVVHGHVHFRQGHௗª ,OHVWHQWRXWFDVG¶XQW\SHWUqVGLIIpUHQWGHVSUREOqPHVGHFDOFXORXORJLTXHVGRQWRQDYXTXHOTXHVH[HPSOHV SUpFpGHPPHQW 2QWURXYHpJDOHPHQWXQFHUWDLQQRPEUHGHSUREOqPHVOLpVjODJpRPpWULH FRPPHOHSUREOqPH Proposition 23. D’un champ quadrangulaire ,OHVWXQFKDPSHQIRUPHGHTXDGULODWqUHGRQWXQF{WpPHVXUH SHUFKHVOHF{WpRSSRVpSHUFKHVODEDVHSHUFKHVHWVRQ RSSRVpSHUFKHV4XLSHXWGLUHFRPELHQG¶DUSHQWVPHVXUHFH FKDPSௗ"

/¶KDELWXGH DFWXHOOH TXH QRXV DYRQV GH YRXORLU LOOXVWUHU XQ SUREOqPH GH JpRPpWULHSDUXQH¿JXUHIDLWLPPpGLDWHPHQWVXUJLUXQHSUHPLqUHGLI¿FXOWpLO Q¶\DSDVXQLFLWpGXTXDGULODWqUHHWSDUOjWRXWFDOFXOH[DFWGHO¶DLUHGXFKDPS V¶DYqUHLPSRVVLEOH/DOHFWXUHGHODVROXWLRQDSSRUWHXQpFODLUDJH Solution 23/HVORQJXHXUVGHVGHX[F{WpVVRQWGHSHUFKHV(Q GLYLVDQWSDURQREWLHQW/HVODUJHXUVGHVGHX[F{WpVVRQWGH SHUFKHV(QGLYLVDQWSDURQREWLHQW>2QVRXVWUDLWj HWRQDGGLWLRQQHj@2QPXOWLSOLHOHVGHX[UpVXOWDWVVRLW SDU&HODGRQQH2QGLYLVHSDUFHODGRQQHௗ GLYLVpSDUIRQW&¶HVWOHQRPEUHG¶DUSHQWVGXFKDPS 5. 5HQp*XLWDUW  Algorithmes de résolutions de problèmes de taquins, garages et aiguillages&RPPXQLFDWLRQSUpVHQWpHDXeFROORTXHLQWHU,5(0G¶pSLVWpPRORJLHHW G¶KLVWRLUHGHVPDWKpPDWLTXHV©0DWKpPDWLTXHVUpFUpDWLYHVFRPELQDWRLUHVHWDOJRULWKPLTXHVpFODLUDJHVKLVWRULTXHVHWpSLVWpPRORJLTXHVª*UHQREOH

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

2QUHFRQQDvWLFLXQHPpWKRGHDOJRULWKPLTXHDQFLHQQHFHOOHGLWH©ௗGHO¶DUSHQWHXUௗªTXLVDQVSUpWHQGUHDSSRUWHUXQHUpSRQVHH[DFWHHWSUpFLVHSHUPHW G¶HVWLPHUWRXWjIDLWFRUUHFWHPHQWO¶DLUHG¶XQFKDPS 'DQVXQVW\OHWUqVGLIIpUHQWRQWURXYHXQSUREOqPHGRQWO¶LQWpUrWHVWVDQV GRXWHPRLQVDQHFGRWLTXHTX¶LOQ¶\SDUDvW Proposition 11. De deux mariages 6L GHX[ KRPPHV RQW SULV HQ PDULDJH OD V°XU O¶XQ GH O¶DXWUH GLVPRLMHWHSULHTXHOVHUDOHOLHQGHSDUHQWpGHOHXUVHQIDQWV

,OV¶DJLWLFLG¶XQpQRQFpTXLQHUHOqYHSDVGXGRPDLQHPDWKpPDWLTXHௗRQ HVW IDFH j XQ SUREOqPH GH QDWXUH MXULGLTXH 'HUULqUH FH TXL SHXW DSSDUDvWUH FRPPHXQHVLPSOHGHYLQHWWHVHFDFKHSHXWrWUHXQHYRORQWpGHIDLUHUpÀpFKLU VXU OHV HQMHX[ GH OD FRPSUpKHQVLRQ GHV OLHQV GH SDUHQWp TXH FH VRLW SRXU O¶DXWRULVDWLRQGHVPDULDJHVRXSRXUGHVTXHVWLRQVG¶KpULWDJHHQMHX[PDMHXUV GHODVRFLpWpPpGLpYDOH (Q¿QRQSHXWDXVVLVLJQDOHUODSUpVHQFHGHSUREOqPHVSURSRVDQWGHVVLWXDWLRQVSOXVFRPSOH[HVFRPPHOHVSUREOqPHVRX&HGHUQLHUHVWOHVHXO TX¶RQSXLVVHUDQJHUGDQVODFDWpJRULHRSWLPLVDWLRQ /DQJORLV  Proposition 52. D’un chef de famille 8Q FKHI GH IDPLOOH RUGRQQH TXH ERLVVHDX[ GH EOp VRLHQW GpSODFpV G¶XQ GRPDLQH j XQ DXWUH OHVTXHOV VRQW GLVWDQWV GH OLHXHVHWGHWHOOHVRUWHTX¶XQVHXOFKDPHDXWUDQVSRUWHWRXW FHEOpHQWURLVYR\DJHVTX¶HQFKDTXHYR\DJHERLVVHDX[VRLW SRUWpV>DXSOXV@HWTXHOHFKDPHDXPDQJHXQERLVVHDXSDUOLHXH 4XHGLVHTXLOHYHXWFRPELHQGHERLVVHDX[LOUHVWHUD

Remarques générales sur le « désordre » de ces problèmes $XGHOj GHV UHPDUTXHV SDUWLFXOLqUHV DSSHOpHV SDU QRV H[HPSOHV RQ SHXW SRLQWHUSOXVLHXUVFDUDFWqUHVSOXVJpQpUDX[GHO¶HQVHPEOHGHFHVpQLJPHV /HVH[HPSOHVFKRLVLVFLGHVVXVO¶RQWpWpSRXUOHXUYDULpWpF¶HVWjGLUHSRXU ODGLYHUVLWpGHVFRQWHQXVHWGHVVW\OHVGHTXHVWLRQV&HWWHYDULpWpHVWpJDOHPHQW XQFDUDFWqUHGHO¶HQVHPEOHHQOLVDQWOLQpDLUHPHQWRQDVRXYHQWOHVHQWLPHQWGH SDVVHUG¶XQHTXHVWLRQjO¶DXWUHGDQVXQRUGUHDOpDWRLUHHWOXGLTXH&HSHQGDQW LOH[LVWHDXVVLGDQVOHVSUREOqPHVGHVPDQXVFULWVGHVUHJURXSHPHQWVGHSUREOqPHVVHPEODEOHVDLQVLOHSUREOqPHGHWUDYHUVpHV  HVWOHVHFRQGG¶XQH VpULHGHTXDWUHSUREOqPHVDVVH]VHPEODEOHVGHPrPHSRXUOHVSUREOqPHVGH PDULDJH  RXOHVSUREOqPHVGHPHVXUH  



6L RQ UHJDUGH GRQF FH UHFXHLO FRPPH XQH série de problèmes SRXU UHSUHQGUHOHWHUPHTXLVHUWG¶LQWLWXOpDXSURMHWGHUHFKHUFKHLQWHUGLVFLSOLQDLUH TXL QRXV D SRXVVp DX GpSDUW j QRXV LQWpUHVVHU j FH W\SH G¶REMHWV %HUQDUG  LOVHPEOHJRXYHUQpSDUXQSULQFLSHGHYDULpWp±TX¶LOVRLWGpOLEpUpRX QRQ±HWXQSULQFLSHGHVpULDWLRQWKpPDWLTXHSRXUTXHOTXHVVRXVHQVHPEOHV &HODUDSSURFKHFHUHFXHLOG¶DXWUHVW\SHVGHWH[WHVPpGLpYDX[DSSDUHPPHQWGX PrPHJHQUHPDLVGRQWOHGpYHORSSHPHQWDpWpSRVWpULHXUjODWUDGLWLRQPDQXVFULWHGHVpropositionesjSDUWLUGXXIVeVLqFOHDSSDUDLVVHQWDLQVLGHVUHFXHLOV GH FDXWqOHV cautelae  GDQV ELHQ GHV PDQXVFULWV PpGLpYDX[ 6HVLDQR   ¬OD5HQDLVVDQFHRQWURXYHSDUH[HPSOHOHVSUREOqPHVYDULpVGH-HDQ %RUHO &LIROHWWL %HDXFRXSSOXVSURFKHVGHQRXVOHVSUREOqPHVYDULpV XWLOLVpVGDQVODUpIRUPH9DUJDGDQVOD+RQJULHGHVDQQpHVLQGLTXHQWTXH GHWHOOHVFROOHFWLRQVSRXYDLHQWUHQYR\HUjGHVREMHFWLIVSpGDJRJLTXHVSUpFLV VRXOLJQHUOHFDUDFWqUHOXGLTXHGHVPDWKpPDWLTXHVPRQWUHUOHXUVOLHQVjGLIIpUHQWVGRPDLQHVGHODFXOWXUHKXPDLQHHWVXUWRXWGRQQHUXQHEDVHjODFRQVWUXFWLRQGXVDYRLUPDWKpPDWLTXHSDUODGLYHUVLWpGHVH[SpULHQFHV *RV]WRQ\L FKDS,,, &H TXH ODLVVH HQWUHYRLU OD FRPSDUDLVRQ GH FHV H[HPSOHV VHPEODEOHV SDU O¶LQWHQWLRQQDOLWpDSSDUHQWHF¶HVWODWHQGDQFHSDUDGR[DOHQRQjRUGRQQHUOHV SUREOqPHV VXLYDQW XQ SULQFLSH GH SURJUHVVLYLWp SDU H[HPSOH PDLV SOXW{W j OHV GpVRUGRQQHU SRXU OH VLPSOH SODLVLU RX HQ YXH G¶XQH LQLWLDWLRQ LQWHOOHFWXHOOHHWFXOWXUHOOHSOXVSURIRQGH/HWHUPHGHvariétéOXLPrPHHPSUXQWpDX YRFDEXODLUHUKpWRULTXHGHOD5HQDLVVDQFHH[SOLFLWHFHWWHUHFKHUFKHSDUDGR[DOH ©ௗG¶KDUPRQLHGDQVOHGpVRUGUHௗª

Variations pédagogiques autour des problèmes d’Alcuin : comment les reprendre et les organiser ? Une expérience à valeur heuristique : un atelier mathématiques/histoire en classe de seconde Y Motivation et réflexions préalables /DYDULpWpHWODULFKHVVHGHVSUREOqPHVHQJHQGUHQWWUqVUDSLGHPHQWOHGpVLUGH OHVH[SORLWHUHQFODVVH/¶XQHG¶HQWUHQRXVDFRQVWUXLWDYHF&DPLOOH%DWDLOOH SURIHVVHXU G¶KLVWRLUHJpRJUDSKLH XQH VpDQFH LQWHUGLVFLSOLQDLUH PDWKpPDWLTXHVKLVWRLUHHQFODVVHGHVHFRQGH&HWWHSUHPLqUHDSSURFKHDYDLWHQSDUWLFXOLHUSRXUDPELWLRQGHPRQWUHUTXHOHVPDWKpPDWLTXHVQHVRQWSDV¿JpHV GDQV OH WHPSV HW TXH OHXU QDWXUH HW OHXU HQVHLJQHPHQW pYROXHQW /¶DVSHFW

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

6L RQ UHJDUGH GRQF FH UHFXHLO FRPPH XQH série de problèmes SRXU UHSUHQGUHOHWHUPHTXLVHUWG¶LQWLWXOpDXSURMHWGHUHFKHUFKHLQWHUGLVFLSOLQDLUH TXL QRXV D SRXVVp DX GpSDUW j QRXV LQWpUHVVHU j FH W\SH G¶REMHWV %HUQDUG  LOVHPEOHJRXYHUQpSDUXQSULQFLSHGHYDULpWp±TX¶LOVRLWGpOLEpUpRX QRQ±HWXQSULQFLSHGHVpULDWLRQWKpPDWLTXHSRXUTXHOTXHVVRXVHQVHPEOHV &HODUDSSURFKHFHUHFXHLOG¶DXWUHVW\SHVGHWH[WHVPpGLpYDX[DSSDUHPPHQWGX PrPHJHQUHPDLVGRQWOHGpYHORSSHPHQWDpWpSRVWpULHXUjODWUDGLWLRQPDQXVFULWHGHVpropositionesjSDUWLUGXXIVeVLqFOHDSSDUDLVVHQWDLQVLGHVUHFXHLOV GH FDXWqOHV cautelae  GDQV ELHQ GHV PDQXVFULWV PpGLpYDX[ 6HVLDQR   ¬OD5HQDLVVDQFHRQWURXYHSDUH[HPSOHOHVSUREOqPHVYDULpVGH-HDQ %RUHO &LIROHWWL %HDXFRXSSOXVSURFKHVGHQRXVOHVSUREOqPHVYDULpV XWLOLVpVGDQVODUpIRUPH9DUJDGDQVOD+RQJULHGHVDQQpHVLQGLTXHQWTXH GHWHOOHVFROOHFWLRQVSRXYDLHQWUHQYR\HUjGHVREMHFWLIVSpGDJRJLTXHVSUpFLV VRXOLJQHUOHFDUDFWqUHOXGLTXHGHVPDWKpPDWLTXHVPRQWUHUOHXUVOLHQVjGLIIpUHQWVGRPDLQHVGHODFXOWXUHKXPDLQHHWVXUWRXWGRQQHUXQHEDVHjODFRQVWUXFWLRQGXVDYRLUPDWKpPDWLTXHSDUODGLYHUVLWpGHVH[SpULHQFHV *RV]WRQ\L FKDS,,, &H TXH ODLVVH HQWUHYRLU OD FRPSDUDLVRQ GH FHV H[HPSOHV VHPEODEOHV SDU O¶LQWHQWLRQQDOLWpDSSDUHQWHF¶HVWODWHQGDQFHSDUDGR[DOHQRQjRUGRQQHUOHV SUREOqPHV VXLYDQW XQ SULQFLSH GH SURJUHVVLYLWp SDU H[HPSOH PDLV SOXW{W j OHV GpVRUGRQQHU SRXU OH VLPSOH SODLVLU RX HQ YXH G¶XQH LQLWLDWLRQ LQWHOOHFWXHOOHHWFXOWXUHOOHSOXVSURIRQGH/HWHUPHGHvariétéOXLPrPHHPSUXQWpDX YRFDEXODLUHUKpWRULTXHGHOD5HQDLVVDQFHH[SOLFLWHFHWWHUHFKHUFKHSDUDGR[DOH ©ௗG¶KDUPRQLHGDQVOHGpVRUGUHௗª

Variations pédagogiques autour des problèmes d’Alcuin : comment les reprendre et les organiser ? Une expérience à valeur heuristique : un atelier mathématiques/histoire en classe de seconde Y Motivation et réflexions préalables /DYDULpWpHWODULFKHVVHGHVSUREOqPHVHQJHQGUHQWWUqVUDSLGHPHQWOHGpVLUGH OHVH[SORLWHUHQFODVVH/¶XQHG¶HQWUHQRXVDFRQVWUXLWDYHF&DPLOOH%DWDLOOH SURIHVVHXU G¶KLVWRLUHJpRJUDSKLH XQH VpDQFH LQWHUGLVFLSOLQDLUH PDWKpPDWLTXHVKLVWRLUHHQFODVVHGHVHFRQGH&HWWHSUHPLqUHDSSURFKHDYDLWHQSDUWLFXOLHUSRXUDPELWLRQGHPRQWUHUTXHOHVPDWKpPDWLTXHVQHVRQWSDV¿JpHV GDQV OH WHPSV HW TXH OHXU QDWXUH HW OHXU HQVHLJQHPHQW pYROXHQW /¶DVSHFW

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

OXGLTXHGHVSUREOqPHVDWWULEXpVj$OFXLQQRXVODLVVDLW HVSpUHU TXH GHV pOqYHV RUGLQDLUHPHQW SHX LQWpUHVVpV SDU OHV PDWKpPDWLTXHV YRLUH WRWDOHPHQW UpWLIV SRXUUDLHQW V¶LQYHVWLU GDYDQWDJH HW VH SUHQGUH DX MHX GH OD UpVROXWLRQ G¶pQLJPHV 'H SOXV OHV pOqYHV GDYDQWDJH V€UV G¶HX[ GDQV FH GRPDLQH SRXUUDLHQW VH FRQIURQWHU j GHV pQRQFpV SOXV DUGXV TX¶j O¶RUGLQDLUH HW HQULFKLU OHXU FDSDFLWp j UpVRXGUH GHV SUREOqPHV RXYHUWV ,O V¶DJLVVDLWDLQVLGHIDYRULVHUODSULVHG¶LQLWLDWLYHHWHQ XWLOLVDQWGHVSUREOqPHVGHFHW\SHG¶pYLWHUTX¶XQHIRUPDOLVDWLRQ H[FHVVLYH QH EORTXH OHXU FUpDWLYLWp HW OHXU LQYHQWLYLWp /DFODVVHGHVHFRQGHGDQVODTXHOOHQRXVDYRQVPLV HQ°XYUHFHWWHVpDQFHQHFRPSRUWDLWTXHpOqYHVPDLV SUpVHQWDLWODSDUWLFXODULWpG¶rWUHTXDVLPHQWVFLQGpHHQ GHX[JURXSHVTXLQHVHPrODLHQWJXqUH8QHSDUWLHGHV pOqYHVpWDLWSOXVDWWLUpHSDUOHVPDWLqUHVVFLHQWL¿TXHVHW QpJOLJHDLWSDUIRLVOHVPDWLqUHVOLWWpUDLUHVௗO¶DXWUHSDUWLH pWDLW GDQV O¶HVSULW FRQWUDLUH DYHF GHV pOqYHV DI¿FKDQW

Fig. 1 – Exemple de production d’élèves.



OHXUPDQTXHGHJR€WSRXUOHVVFLHQFHVPDLVV¶LQYHVWLVVDQWGDQVOHVPDWLqUHV OLWWpUDLUHV 3DU DLOOHXUV XQ ERQ WLHUV GH OD FODVVH DYDLW FKRLVL O¶RSWLRQ ©ௗDUWV SODVWLTXHVௗª $SUqV TXHOTXHV KpVLWDWLRQV HW GLVFXVVLRQV VXU OHV PRGDOLWpV QRXV DYRQV GpFLGpG¶H[SORLWHUOHSUR¿OWUqVKpWpURJqQHGHODFODVVHHWQRXVDYRQVSURSRVp DX[pOqYHVGHSURGXLUHSDUJURXSHGHTXDWUHRXFLQTXQH©ௗSDJHGHPDQXHOௗª ±ODSURGXFWLRQ¿QDOHGHYDQWrWUHXQJUDQGSDQQHDX±UpSRQGDQWjFHUWDLQHV FRQVLJQHVSUpFLVHV • XQH SDUWLH GX SDQQHDX WUDLWHUDLW G¶XQ WKqPH KLVWRULTXH HQ OLHQ DYHF OHV VFLHQFHVRXO¶pGXFDWLRQDX0R\HQÆJH • XQH VHFRQGH SDUWLH VHUDLW FRQVDFUpH DX WUDYDLO PDWKpPDWLTXH DYHF GHV H[HPSOHVGHSUREOqPHVG¶$OFXLQHWODVROXWLRQSRXUFHUWDLQVG¶HQWUHHX[ • OD SURGXFWLRQ ¿QDOH VHUDLW DORUV HQMROLYpH GDQV O¶HVSULW GHV PDQXVFULWV PpGLpYDX[DYHFFDOOLJUDSKLHHWHQOXPLQXUHVFRPPHRQSHXWOHYRLUVXU O¶H[HPSOHGRQQpGDQVOD¿JXUH $XVHLQGHFKDTXHJURXSHOHVpOqYHVGHYDLHQWVHUpSDUWLUOHVWkFKHVO¶REMHFWLIpWDQWGHWRXVOHVPHWWUHHQDFWLYLWpHQIRQFWLRQGHOHXUGRPDLQHGHSUpGLOHFWLRQ'HFHWWHIDoRQQRXVHVSpULRQVpYLWHUTXHFHUWDLQVQHVHPHWWHQWHQ UHWUDLW VDQV SDUWLFLSHU DX WUDYDLO FRPPXQ (Q OHXU DWWULEXDQW j WRXV XQ U{OH YDORULVDQWHWXQHUHVSRQVDELOLWpGDQVODSURGXFWLRQ¿QDOHQRXVVRXKDLWLRQVOHV SRXVVHUjV¶LPSOLTXHUGHIDoRQSOXVVpULHXVH &RQFHUQDQWOHVUHFKHUFKHVKLVWRULTXHVVL[WKqPHV XQSDUJURXSH RQWpWp FKRLVLV • $OFXLQHWODUHQDLVVDQFHFDUROLQJLHQQH IXeVLqFOH  • le quadriviumHWO¶HQVHLJQHPHQWGHVVFLHQFHVDX0R\HQÆJH • OHVPDQXVFULWVPDWKpPDWLTXHVDX0R\HQÆJH • *HUEHUWG¶$XULOODFHWOHVPDWKpPDWLTXHVDXXIeVLqFOH • /pRQDUG)LERQDFFLHWOHVPDWKpPDWLTXHVDXXIIIeVLqFOH • OHVpFROHVGXIXeDXXIIIeVLqFOH (QFHTXLFRQFHUQHODSDUWLHPDWKpPDWLTXHLOpWDLWLPSpUDWLIGHIDLUHXQH VpOHFWLRQ GDQV OHV SUREOqPHV &UpHU XQH VRXVVpULH G¶XQH VpULH H[LVWDQWH GH SUREOqPHV QpFHVVLWH GH VH SRVHU SOXVLHXUV TXHVWLRQV VXU OHV REMHFWLIV PDLV DXVVLG¶DQWLFLSHUOHVGLI¿FXOWpVTXHSRXUUDLHQWUHQFRQWUHUOHVpOqYHVGDQVOHXU UpVROXWLRQ /HV propositiones VRQW FRPPH RQ O¶D YX GH JHQUHV YDULpV HW QH SUpVHQWHQW SDV WRXWHV OH PrPH GHJUp GH GLI¿FXOWp TXH FH VRLW GX SRLQW GH YXH

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

PDWKpPDWLTXHRXGHO¶LQWHUSUpWDWLRQGHO¶pQRQFp,OSDUDLVVDLWLQWpUHVVDQWGHQH SDVIDLUHDEVWUDFWLRQGHO¶DPELJXwWpGHFHUWDLQVSUREOqPHVHWSRXUUHVWHUGDQV O¶REMHFWLIG¶XQHVpDQFHWRXUQpHYHUVO¶KLVWRLUHGHVPDWKpPDWLTXHVG¶HQJDUGHU DXWDQW TXH SRVVLEOH O¶HVSULW &¶HVW OD UDLVRQ SRXU ODTXHOOH OD WUDGXFWLRQ SURSRVpHQHOHYDLWSDVOHVGLI¿FXOWpVpYHQWXHOOHVG¶LQWHUSUpWDWLRQHWpWDLWIRXUQLH VDQVLQGLFDWLRQVVXSSOpPHQWDLUHVQLUHIRUPXODWLRQVjO¶H[FHSWLRQGHTXHOTXHV SUpFLVLRQVVXUOHVXQLWpVGHPHVXUH 3OXVLHXUV RSWLRQV GH UpSDUWLWLRQ GHV SUREOqPHV pWDLHQW HQYLVDJHDEOHV 1RXVSRXYLRQVSDUH[HPSOHSURSRVHUjWRXVOHVJURXSHVXQHPrPHVpOHFWLRQ GHFLQTRXVL[pQRQFpVPDLVQRXVSHUGLRQVDLQVLODULFKHVVHHWODYDULpWpGH O¶HQVHPEOH ,O pWDLW DXVVL SRVVLEOH GH SURSRVHU XQH VpOHFWLRQ PDWKpPDWLTXHPHQW WUqV YDULpH j FKDTXH JURXSH 8QH pWXGH GpWDLOOpH GHV SUREOqPHV G¶$OFXLQ YRLU ©ௗ*pQpUDOLVDWLRQOLUH$OFXLQHQJURXSH,5(0ௗª SHUPHWGHGpJDJHUXQHFDWpJRULVDWLRQVHORQGHVW\SHVPDWKpPDWLTXHVDFWXHOVGHVSUREOqPHVPHWWDQWHQ °XYUHGHVPpWKRGHVJpRPpWULTXHVDOJRULWKPLTXHVDQFLHQQHVGHVSUREOqPHV DULWKPpWLTXHVGHVSUREOqPHVTXHO¶RQSHXWUpVRXGUHSDUGHVPpWKRGHVDOJpEULTXHVGHVSUREOqPHVIDLVDQWSOXVDSSHOjODORJLTXHTX¶jGHUpHOOHVFDSDFLWpVFDOFXODWRLUHV«1RXVSRXYLRQVDLQVLSURSRVHUGHVVpULHVDYHFXQSUREOqPHGHFKDTXHFDWpJRULHHQYDULDQWOHUHSUpVHQWDQWG¶XQJURXSHjO¶DXWUH (Q¿Q OD WURLVLqPH SRVVLELOLWp TXL D pWp FHOOH FKRLVLH pWDLW GH GRQQHU j FKDTXH JURXSH XQH VpOHFWLRQ GH FLQT RX VL[ SUREOqPHV GH PrPH W\SH HQ FRQVWLWXDQWXQJURXSH©ௗJpRPpWULHௗªXQJURXSH©ௗSUREOqPHVGHORJLTXHௗªHWF &HWWHGHUQLqUHRSWLRQSUpVHQWDLWO¶DYDQWDJHGHSHUPHWWUHDX[pOqYHVVXUGHV pQRQFpV GLI¿FLOHV SRXU XQ GpEXW GH VHFRQGH GH PHWWUH HQ pYLGHQFH XQH PpWKRGHH[SORLWDEOHSRXUOHVSUREOqPHVVXLYDQWV,OHVWpJDOHPHQWWUqVYLWH DSSDUXTXHFHWULSDUFDWpJRULHVFUpDLWQDWXUHOOHPHQWGHVVRXVVpULHVGHGLI¿FXOWpVWUqVYDULDEOHVHWDOODLWSHUPHWWUHGHV¶DGDSWHUDXQLYHDXGHVJURXSHV Y Mise en œuvre de la séance 1RWUH VpDQFH GHYDLW VH GpURXOHU SHQGDQW WURLV KHXUHV FRQVpFXWLYHV DX &', FHQWUHG¶LQIRUPDWLRQHWGHGRFXPHQWDWLRQ HQFDGUpHSDUOHVGHX[SURIHVVHXUV j O¶LQLWLDWLYH GH O¶DFWLYLWp HW OD SURIHVVHXU GRFXPHQWDOLVWH /H WUDYDLO Q¶pWDQW SDVWRWDOHPHQWDFKHYpjOD¿QGHODVpDQFHLODIDOOXGHX[KHXUHVGHSOXVSRXU TX¶LOVUpDOLVHQWOHVSDQQHDX[TXHQRXVDWWHQGLRQV /HVpOqYHVSUpYHQXVGHVPRGDOLWpVVHVRQWYLWHUpSDUWLVHQJURXSHVVDQV QpFHVVDLUHPHQW YHLOOHU j O¶pTXLOLEUH GHV FRPSpWHQFHV ±FRPPH LO IDOODLW V¶\ DWWHQGUH±HWQRXVDYRQVFRQ¿pjFKDTXHJURXSHODUHVSRQVDELOLWpG¶XQWKqPH G¶KLVWRLUHHWG¶XQHVpULHGHSUREOqPHVPDWKpPDWLTXHV



/HWUDYDLOHIIHFWXpSHQGDQWFHVWURLVKHXUHVDpWpVRXWHQXHWG¶XQERQQLYHDX GDQVFLQTGHVVL[JURXSHV3RXUOHVJXLGHUGDQVOHXUVUHFKHUFKHVKLVWRULTXHV GHVRXYUDJHVGLVSRQLEOHVDX&',HWGHVVLWHVLQWHUQHWHQOLHQDYHFOHVWKqPHV SURSRVpVDYDLHQWpWpSUpDODEOHPHQWUpIpUHQFpV3RXUO¶DVSHFWPDWKpPDWLTXH OHVpOqYHVTXLHQpWDLHQWUHVSRQVDEOHV\RQWFRQVDFUpEHDXFRXSG¶pQHUJLHHWGH YRORQWpௗGpVDUoRQQpVGDQVXQSUHPLHUWHPSVSDUOHVpQRQFpVLOVVHVRQW¿QDOHPHQWSULVDXMHXHWRQWIDLWSUHXYHG¶LQYHQWLYLWpGHSHUVpYpUDQFHHWGHPRWLYDWLRQVRXWHQXVHWSDUIRLVDLGpVSDUOHXUVFDPDUDGHVHQWUHGHX[UHFKHUFKHV KLVWRULTXHVRXFUpDWLRQVDUWLVWLTXHV3HXRQWIDLWDSSHODX[RXWLOVDOJpEULTXHV XWLOLVpVHQO\FpHHQV¶pWRQQDQWTXHFHODQHQRXVGpUDQJHSDV/HJURXSHHQ FKDUJH GHV SUREOqPHV GH WUDYHUVpH FRPPH OH IDPHX[ SUREOqPH pYRTXp SUpFpGHPPHQW DYLWHPLVHQ°XYUHXQHPpWKRGHIRQGpHVXUXQHUHSUpVHQWDWLRQVFKpPDWLTXHHWXQV\VWqPHGHÀqFKHVFRPPHRQSHXWOHYRLUVXUODSKRWR VXLYDQWH

Fig. 2 – Exemple de résolution proposée pour le problème 18.

4XDQWDX[pOqYHVFRQIURQWpVDX[SUREOqPHVSOXVFRPSOLTXpVLOVRQWSHLQp jXWLOLVHUGHVpTXDWLRQVHWRQWVRXYHQWSURFpGpSDUHVVDLHUUHXU /HVSURGXFWLRQVRQWJOREDOHPHQWpWpGHERQQHTXDOLWpOHVpFKDQJHVDXVHLQ GHFKDTXHJURXSHRQWpWpSURGXFWLIVPDLVLOHVWSOXVFRPSOLTXpG¶HQWLUHUXQ ELODQDXQLYHDXGHO¶DSSRUWjFKDTXHpOqYH/HVSUREOqPHVPDWKpPDWLTXHVOHV RQWGpVWDELOLVpVௗFHODDVDQVGRXWHSHUPLVjFHUWDLQVGHFRPSUHQGUHODQpFHVVLWpGHSDUIRLVRSWHUSRXUXQSRLQWGHYXHGpFDOpD¿QGHUpVRXGUHXQSUREOqPH

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

HWGHO¶LPSRUWDQFHGHODSKDVHGHUHFKHUFKH&HWHVVDLFHUWHVOLPLWpHQWHUPHV G¶DPELWLRQVSpGDJRJLTXHVHWVDQVREMHFWLIG¶LQWpJUDWLRQjXQFRXUVDSHUPLV GHGpJDJHUGLIIpUHQWHVSLVWHVGHWUDYDLOTXHQRXVHVTXLVVRQVFLGHVVRXV

Généralisation : lire Alcuin en groupe IREM /HF°XUGHO¶DFWLYLWppYRTXpHUHSRVHFRPPHRQO¶DYXVXUXQHIIRUWGHUHSULVH HWGHFDWpJRULVDWLRQGHFHUWDLQVSUREOqPHVG¶$OFXLQVXLYDQWGHVFULWqUHVTX¶LOD IDOOXpODERUHUjFHWHIIHWHQWHQDQWFRPSWHGHV©ௗFRQWUDLQWHVORFDOHVௗªjO¶DWHOLHU QRWDPPHQWHQWHUPHVGHSUR¿OVG¶pOqYHV(QJpQpUDOLVDQWO¶LGpHQRXVQRXV VRPPHVLQWHUURJpVDXVHLQGXJURXSH©ௗKLVWRLUHHWpSLVWpPRORJLHௗªGHO¶,5(0 GH3DULV1RUGVXUO¶RSSRUWXQLWpGHWUDYDLOOHUVXUGHVFDWpJRULVDWLRQVJpQpULTXHV GHVSUREOqPHVHQYXHGHOHXUUpXWLOLVDWLRQHQFRQWH[WHPRGHUQH 6 1RWUHSDUWLSULVDpWpGHVpOHFWLRQQHUXQHYLQJWDLQHGHSUREOqPHVGHW\SHV GLIIpUHQWV 7 HQ OHV VpSDUDQW GH OHXUV VROXWLRQV PpGLpYDOHV SXLV HQ OHV H[DPLQDQW XQLTXHPHQW VRXV O¶DQJOH GH OD variété des méthodes possibles /H WHUPHGH©ௗPpWKRGHௗªHVWHQWHQGXLFLQRQDXVHQVGHV©ௗVROXWLRQVௗªGXWH[WH GHVpropositiones,PDLVDXVHQVG¶XQHSURFpGXUHHQYLVDJHDEOHSDUOHVpOqYHV G¶DXMRXUG¶KXL,OV¶DJLWGRQFG¶XQHVRUWHG¶DQDO\VHGLGDFWLTXHa prioriUDSSRUWpHjXQHQVHPEOHG¶pQRQFpVVpSDUpVGHOHXUV©ௗVROXWLRQVௗªG¶RULJLQH&HWWH GpPDUFKHLQFOXWODSRVVLELOLWpG¶pQRQFpVDPELJXVQRXVFRPSWDELOLVRQVGRQF OHV GLIIpUHQWHV LQWHUSUpWDWLRQV SRVVLEOHV HW j TXHOOHV VROXWLRQV HOOHV GRQQHQW pYHQWXHOOHPHQWOLHX /DGpPDUFKHSUpVHQWHXQLQWpUrWSRXUVRQUpVXOWDWXQ©ௗSUR¿OௗªGHVSUREOqPHVVpOHFWLRQQpVHQIRQFWLRQGHVPpWKRGHVSRVVLEOHV0DLVHOOHQRXVHVW SDUXHpJDOHPHQWLQWpUHVVDQWHSRXUO¶HIIHWG¶pFKDQJHHWG¶H[HUFLFHVHQWUHQRXV HQVHLJQDQWVGHOHWWUHVG¶KLVWRLUHHWGHPDWKpPDWLTXHVODGLVFXVVLRQDXWRXU GHVPpWKRGHVHQYLVDJHDEOHVHVWDORUVXQPR\HQG¶pFKDQJHVHWGHPXWXDOLVDWLRQGHVFRQQDLVVDQFHVRXSRLQWVGHYXH ¬WLWUHG¶H[HPSOHGDQVODVHFRQGHLQWHUSUpWDWLRQGXSUREOqPH YRLU©ௗ8Q ÀRULOqJHVXFFLQFWG¶H[HPSOHVௗª RQSHXWPRGL¿HUO¶pQRQFpHQUDLVRQQDQWQRQ jSDUWLUGHODWURXSHUHQFRQWUpHPDLVGHODPRLWLpG¶HOOHPrPHSXLVGXTXDUW G¶HOOHPrPH8QHYDULDQWHSOXVDOJRULWKPLTXHFRQVLVWHjpFULUHO¶DOJRULWKPH DXTXHOFRUUHVSRQGO¶pQRQFpSXLVjWUDQVIRUPHUFHWDOJRULWKPHMXVTX¶jWURXYHU 6. &HVFDWpJRULHVQ¶RQWGRQFSDVOHVPrPHVYLVpHVTXHFHOOHVTX¶pODERUHQWOHVKLVWRULHQV YRLULe recueil des propositiones et son genre PrPHVLGHVFURLVHPHQWVRFFDVLRQQHOV UHVWHQWSRVVLEOHV 7. /HÀRULOqJHFLGHVVXVHVWHQSDUWLHGpGXLWGHFHWWHW\SRORJLH



FHOXLG¶XQHGLYLVLRQSDU2QSHXWELHQV€UHPSOR\HUXQHWHFKQLTXHDOJpEULTXH HW FDOFXOHU VXU OD TXDQWLWp LQFRQQXH QRPPpH n RX x RQ REWLHQW XQH pTXDWLRQ WUqV VLPSOH 8QH YDULDQWH FRQVLVWH j UHSUpVHQWHU JUDSKLTXHPHQW OD TXDQWLWpG¶KRPPHVSRXUFRQVWDWHUTXHOHSUREOqPHVHUpGXLWDORUVjXQHGLYLVLRQVLPSOHGHOLJQH2QSHXWHQ¿QSUDWLTXHUXQHWHFKQLTXHG¶HVVDLVHUUHXUV TXL FRQQDvW j VRQ WRXU XQH YDULDQWH DOJRULWKPLTXH j SDUWLU GH O¶DOJRULWKPH pYRTXpFLGHVVXV RXG¶DXWUHVSOXVVDYDQWHVHWELHQFRQQXHVGX0R\HQÆJH FRPPHGHVWHFKQLTXHVGHIDXVVHSRVLWLRQ &¶HVWFHW\SHGHOHFWXUHTXHQRXVFRQGXLVRQVVXUO¶HQVHPEOHGHVW\SHVGH SUREOqPHVUpSHUWRULpVGDQVOHFDGUHGHODSUpSDUDWLRQG¶XQHEURFKXUH,5(0

Conclusion (Q JpQpUDOLVDQW HQFRUH OHV LGpHV H[SRVpHV FLGHVVXV RQ FRQVWDWH DLVpPHQW TX¶XQREMHWDXVVLYDULpHWFRPSOH[HTXHO¶HQVHPEOHGHVSUREOqPHVGLWV©ௗG¶$OFXLQௗªSRUWHGHWUqVULFKHVSRVVLELOLWpVGHYDULDWLRQVSpGDJRJLTXHVVXLYDQWOHV FKRL[ GLGDFWLTXHV TX¶RQ IDLW GH UHJURXSHPHQWV G¶pQRQFpV RX GH WUDYDLO VXU OHVpQRQFpVHX[PrPHV¬FHWpJDUGLOIDXWGLVWLQJXHUjWLWUHUpFDSLWXODWLIOD TXHVWLRQGXpourquoiGHFHOOHGXcomment3RXUTXRLFHWH[WHRIIUHWLOGHSDU VDQDWXUHVHVFDUDFWpULVWLTXHVKLVWRULTXHVWDQWGHSRWHQWLDOLWpVௗ"(WFRPPHQW H[SORLWHU DXMRXUG¶KXL FHV SRWHQWLDOLWpV VXU TXHOV OHYLHUV SHXWRQ DJLU SRXU FRQVWUXLUHGHVGpPDUFKHVG¶HQVHLJQHPHQWௗ" 3DU QDWXUH RQ O¶D YX QRPEUH GHV pQRQFpV G¶$OFXLQ LQYLWHQW DX[ MHX[ G¶HVSULWLOVVHUDSSURFKHQWGHVpQLJPHVSDUO¶XVDJHGHSLqJHVG¶DPELJXwWpV HW G¶LQWHUSUpWDWLRQV PXOWLSOHV A contrario HW VDXI TXHOTXHV SUREOqPHV SDUWLFXOLqUHPHQWWRUWXHX[ODSOXSDUWRQWXQFDUDFWqUHDFFHVVLEOHHWpOpPHQWDLUH EHDXFRXSVHSUrWHQWjGHVVROXWLRQVQRQIRUPHOOHVPDLVUDLVRQQpHV4XDQWDX[ VROXWLRQVWUDQVPLVHVSDUOHVWH[WHVHOOHVVRQWHVVHQWLHOOHPHQWGHVFULSWLYHVHW LQYLWHQWGRQFjUDLVRQQHU3OXVLHXUVSUREOqPHVRQWGHVXUFURvWXQFDUDFWqUHGH IDPLOLDULWpTXHOHXUDVVXUHOHXUFDUDFWqUHWUDGLWLRQQHOHW©ௗELHQFRQQXௗª6LRQ OHVUHJDUGHVRXVO¶DQJOHGHODvariétéLOVVRQWSDUDLOOHXUVWUqVFRPSRVLWHVHW FRXYUHQWXQFKDPSDVVH]ODUJHGHW\SHVGHTXHVWLRQVGHVSOXVFDOFXODWRLUHVj GHVSUREOqPHVORJLTXHV/HIDLWHQ¿QTXHOHXUH[LVWHQFHPrPHVRLWOLpHDXQRP G¶$OFXLQHWSDUOjjWRXWHODYLHLQWHOOHFWXHOOHjODFRXUGHVHPSHUHXUVFDUROLQJLHQVHQIDLWXQWpPRLQLQWpUHVVDQWHWVXJJHVWLIGHFHWWHpSRTXHWUqVULFKH &RQFHUQDQW OD PDQLqUH GH FRQVWUXLUH DXMRXUG¶KXL GHV YDULDWLRQV SpGDJRJLTXHVVXUFHWH[WHjO¶H[HPSOHGHO¶DWHOLHUpYRTXpFLGHVVXVpQXPpURQVHQ FRQFOXVLRQTXHOTXHV©ௗOHYLHUVIRQGDPHQWDX[ௗªSRVVLEOHV

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

FHOXLG¶XQHGLYLVLRQSDU2QSHXWELHQV€UHPSOR\HUXQHWHFKQLTXHDOJpEULTXH HW FDOFXOHU VXU OD TXDQWLWp LQFRQQXH QRPPpH n RX x RQ REWLHQW XQH pTXDWLRQ WUqV VLPSOH 8QH YDULDQWH FRQVLVWH j UHSUpVHQWHU JUDSKLTXHPHQW OD TXDQWLWpG¶KRPPHVSRXUFRQVWDWHUTXHOHSUREOqPHVHUpGXLWDORUVjXQHGLYLVLRQVLPSOHGHOLJQH2QSHXWHQ¿QSUDWLTXHUXQHWHFKQLTXHG¶HVVDLVHUUHXUV TXL FRQQDvW j VRQ WRXU XQH YDULDQWH DOJRULWKPLTXH j SDUWLU GH O¶DOJRULWKPH pYRTXpFLGHVVXV RXG¶DXWUHVSOXVVDYDQWHVHWELHQFRQQXHVGX0R\HQÆJH FRPPHGHVWHFKQLTXHVGHIDXVVHSRVLWLRQ &¶HVWFHW\SHGHOHFWXUHTXHQRXVFRQGXLVRQVVXUO¶HQVHPEOHGHVW\SHVGH SUREOqPHVUpSHUWRULpVGDQVOHFDGUHGHODSUpSDUDWLRQG¶XQHEURFKXUH,5(0

Conclusion (Q JpQpUDOLVDQW HQFRUH OHV LGpHV H[SRVpHV FLGHVVXV RQ FRQVWDWH DLVpPHQW TX¶XQREMHWDXVVLYDULpHWFRPSOH[HTXHO¶HQVHPEOHGHVSUREOqPHVGLWV©ௗG¶$OFXLQௗªSRUWHGHWUqVULFKHVSRVVLELOLWpVGHYDULDWLRQVSpGDJRJLTXHVVXLYDQWOHV FKRL[ GLGDFWLTXHV TX¶RQ IDLW GH UHJURXSHPHQWV G¶pQRQFpV RX GH WUDYDLO VXU OHVpQRQFpVHX[PrPHV¬FHWpJDUGLOIDXWGLVWLQJXHUjWLWUHUpFDSLWXODWLIOD TXHVWLRQGXpourquoiGHFHOOHGXcomment3RXUTXRLFHWH[WHRIIUHWLOGHSDU VDQDWXUHVHVFDUDFWpULVWLTXHVKLVWRULTXHVWDQWGHSRWHQWLDOLWpVௗ"(WFRPPHQW H[SORLWHU DXMRXUG¶KXL FHV SRWHQWLDOLWpV VXU TXHOV OHYLHUV SHXWRQ DJLU SRXU FRQVWUXLUHGHVGpPDUFKHVG¶HQVHLJQHPHQWௗ" 3DU QDWXUH RQ O¶D YX QRPEUH GHV pQRQFpV G¶$OFXLQ LQYLWHQW DX[ MHX[ G¶HVSULWLOVVHUDSSURFKHQWGHVpQLJPHVSDUO¶XVDJHGHSLqJHVG¶DPELJXwWpV HW G¶LQWHUSUpWDWLRQV PXOWLSOHV A contrario HW VDXI TXHOTXHV SUREOqPHV SDUWLFXOLqUHPHQWWRUWXHX[ODSOXSDUWRQWXQFDUDFWqUHDFFHVVLEOHHWpOpPHQWDLUH EHDXFRXSVHSUrWHQWjGHVVROXWLRQVQRQIRUPHOOHVPDLVUDLVRQQpHV4XDQWDX[ VROXWLRQVWUDQVPLVHVSDUOHVWH[WHVHOOHVVRQWHVVHQWLHOOHPHQWGHVFULSWLYHVHW LQYLWHQWGRQFjUDLVRQQHU3OXVLHXUVSUREOqPHVRQWGHVXUFURvWXQFDUDFWqUHGH IDPLOLDULWpTXHOHXUDVVXUHOHXUFDUDFWqUHWUDGLWLRQQHOHW©ௗELHQFRQQXௗª6LRQ OHVUHJDUGHVRXVO¶DQJOHGHODvariétéLOVVRQWSDUDLOOHXUVWUqVFRPSRVLWHVHW FRXYUHQWXQFKDPSDVVH]ODUJHGHW\SHVGHTXHVWLRQVGHVSOXVFDOFXODWRLUHVj GHVSUREOqPHVORJLTXHV/HIDLWHQ¿QTXHOHXUH[LVWHQFHPrPHVRLWOLpHDXQRP G¶$OFXLQHWSDUOjjWRXWHODYLHLQWHOOHFWXHOOHjODFRXUGHVHPSHUHXUVFDUROLQJLHQVHQIDLWXQWpPRLQLQWpUHVVDQWHWVXJJHVWLIGHFHWWHpSRTXHWUqVULFKH &RQFHUQDQW OD PDQLqUH GH FRQVWUXLUH DXMRXUG¶KXL GHV YDULDWLRQV SpGDJRJLTXHVVXUFHWH[WHjO¶H[HPSOHGHO¶DWHOLHUpYRTXpFLGHVVXVpQXPpURQVHQ FRQFOXVLRQTXHOTXHV©ௗOHYLHUVIRQGDPHQWDX[ௗªSRVVLEOHV

 Entre histoire et mathématiques : variations pédagogiques autour des problèmes d’Alcuin

• 3UHVTXH WRXV OHV pQRQFpV G¶$OFXLQ VL RQ OHV VpSDUH GH OHXU ©VROXWLRQª SHXYHQW rWUH UHJDUGpV FRPPH GHV SUREOqPHV RXYHUWV j XQH SOXUDOLWp GH PpWKRGHV  F¶HVW FH FKDPS GHV SRVVLEOHV TXH QRXV FRQWLQXRQV j H[SORUHU GDQVOHJURXSH,5(0 YRLU©*pQpUDOLVDWLRQOLUH$OFXLQHQJURXSH,5(0ª  • 6L RQ PHW DX FRQWUDLUH HQ MHX OHV ©VROXWLRQVª GHVFULSWLYHV HW VRXYHQW LQVXI¿VDQWHVGHVWH[WHVRQSHXWOHVWRXUQHUHQREMHWG¶pWXGHSRXUSHUPHWWUH DX[pOqYHVGHPHVXUHUODGLIIpUHQFHHQWUHXQHPpWKRGHDUJXPHQWpHPrPH pOpPHQWDLUHHWXQHVLPSOHGHVFULSWLRQ • /HQLYHDXG¶DPELJXwWpTX¶RQFRQVHUYHUDDX[pQRQFpVRXTX¶RQGpFLGHUD DX FRQWUDLUH GH PDVTXHU RX G¶DWWpQXHU HVW XQ DXWUH OHYLHU IRQGDPHQWDO $VVXPHU OHV DPELJXwWpV UHYLHQW j UDSSURFKHU OD SUDWLTXH GHV SUREOqPHV GH FHOOHV GX MHX G¶HVSULW HW RXYUH OD YRLH DX[ GpEDWV DUJXPHQWpV VXU OHV pQRQFLDWLRQVPrPHV • 3ULV GDQV OHXU HQVHPEOH YDULp OHV SUREOqPHV G¶$OFXLQ VH SUrWHQW j GHV MHX[ GH UHJURXSHPHQW G¶pQRQFpV VXLYDQW GHV FULWqUHV j FRQVWUXLUH  F¶HVW FHTXLHVWHQMHXGDQVO¶H[HPSOHSUpFLWp YRLU©8QHH[SpULHQFHjYDOHXU KHXULVWLTXHª  HW F¶HVW XQ QRXYHDX OHYLHU G¶DFWLRQ 2Q SHXW HQ TXHOTXH VRUWHUHFRQVWUXLUHGHVVpULHVHQSXLVDQWDX[pQRQFpVG¶$OFXLQ • (Q¿Q LO HVW ORLVLEOH GH MRXHU VXU OD YDOHXU KLVWRULTXH HW SDWULPRQLDOH GX UHFXHLOSRXUUHJDUGHUHQSDUWLHOHVSUREOqPHVFRPPHREMHWVKLVWRULTXHVHW FRQVWUXLUHDLQVLGHVGpPDUFKHVLQWHUGLVFLSOLQDLUHVO¶H[HPSOHSURSRVpHQ HVWOjHQFRUHXQHLOOXVWUDWLRQ

Références bibliographiques %HUQDUG$ GLU   Les séries de problèmes, un genre au carrefour des cultures : une 1re synthèseSHS web of conferences YRO 3DULV('3 6FLHQFHV 'LVSRQLEOH HQ OLJQH VXU OH VLWH GHV 6+6:HE RI &RQIHUHQFHV KWWSZZZVKVFRQIHUHQFHVRUJDUWLFOHVVKVFRQIDEVFRQWHQWV FRQWHQWVKWPO! FRQVXOWpOHHURFWREUH  %Q)   Trésors carolingiens H[SRVLWLRQ YLUWXHOOH  'LVSRQLEOH HQ OLJQH VXU KWWSH[SRVLWLRQVEQIIUFDUROLQJLHQVLQGH[KWP! FRQVXOWp OH HURFWREUH  %XOORXJK'$  Alcuin: achievement and reputation./HLGHQ%RVWRQ %ULOO %XW]HU3/ 6SULQJVIHOG. HW 2EHUVFKHOS:   $OFXLQ 'DQV 7+RFNH\ HW FROO GLU  Biographical Encyclopedia of Astronomers S  1HZ«@ TXH OHV 0DWKpPDWLTXHV RQW GHV LQYHQWLRQV WUqV VXEWLOHV  TXL SHXYHQW EHDXFRXS VHUYLU WDQW j FRQWHQWHU OHV FXULHX[ TX¶j IDFLOLWHU WRXV OHV DUWV  GLPLQXHU OH WUDYDLO GHV KRPPHV 'HVFDUWHV

$LQVLV¶H[SULPH'HVFDUWHVGDQVOHDiscours de la méthodejSURSRVGHV PDWKpPDWLTXHV (VWFH YUDLPHQW SRVVLEOH GH ©ௗFRQWHQWHU OHV FXULHX[ௗª HW



LOGLVWLQJXHOHVIUDFWLRQVHQSOXVLHXUVJHQUHVSRXUUpVRXGUHGLYHUVW\SHVGHSUREOqPHV 0R\RQHW6SLHVVHU  /HGHX[LqPHH[HPSOHTX¶LOHVWLQWpUHVVDQWGHFRQVLGpUHULFLFRQFHUQHO¶DOJqEUH +XJKHVௗ0LXUDௗ0R\RQ (QHIIHWSRXUFHWWHQRXYHOOHGLVFLSOLQHQpHj%DJKGDGHQWUHHWDYHFal-NLWƗEDOPXNKWD‫܈‬ar IƯ ‫ۊ‬LVƗE al-jabr wa-l-PXTƗEDOD /LYUH DEUpJp VXU OH FDOFXO SDU OD UHVWDXUDWLRQHWODFRPSDUDLVRQ G¶DO.KZƗUL]PƯ)LERQDFFLPRQWUHOjHQFRUHXQHSDUIDLWHFRQQDLVVDQFHGXFRUSXVGHODQJXHDUDEH,O\FRQVDFUHOHTXLQ]LqPHHW GHUQLHUFKDSLWUHGHVRQLiber abaci ©ௗ3URSRUWLRQVSUREOqPHVGHJpRPpWULH HW TXHVWLRQV G¶DOJqEUHௗª (Q SOXV GH O¶RXYUDJH IRQGDWHXU GX PDWKpPDWLFLHQ EDJGDGLHQ LO FRQQDvW DX PRLQV OHV WUDYDX[ G¶$Enj .ƗPLO P  3RXU GH QRPEUHX[ SUREOqPHV OH PDWKpPDWLFLHQ SLVDQ SURSRVH j OD IRLV XQH UpVROXWLRQDOJRULWKPLTXHHWXQHUpVROXWLRQDOJpEULTXHHQXWLOLVDQWOHcensus FDUUpGH O¶LQFRQQXH ODradix UDFLQH RXODres FKRVH HWdragma GUDFKPH RXdenarius GHQLHU SRXUOHnumerus simplex QRPEUHVLPSOH $LQVLSRXUSUHQGUH XQHWHUPLQRORJLHPRGHUQHLOGpWDLOOHOHFKRL[GHO¶LQFRQQXHODPLVHHQpTXDWLRQSXLVVDUpVROXWLRQௗFKDTXHSUREOqPHGHGHJUpLQIpULHXURXpJDOjGHX[VH UDPHQDQWjXQGHVVL[W\SHVFRQQXV , x = bxௗ ,, x = cௗ ,,, x = c  ,9 x bx = Fࣟ 9 bx c = xௗ 9, xc = bx 3RXUFRQFOXUH)LERQDFFLSHXWrWUHFRQVLGpUpFRPPHO¶XQGHVSOXVJUDQGV PDWKpPDWLFLHQVGX XIIIeVLqFOHSRXUVRQ°XYUH0DLVLOHVWDXVVLQpFHVVDLUH GHO¶DSSUpFLHUFRPPHXQ©ௗWUDLWG¶XQLRQௗªHQWUHOHVSD\VG¶,VODPHWO¶(XURSH ODWLQH (Q HIIHW DQFUp GDQV XQ EDVVLQ PpGLWHUUDQpHQ PXOWLOLQJXH )LERQDFFL GRQQHjYRLUXQHSDUIDLWHFRQQDLVVDQFHGHVPDWKpPDWLTXHVGHVSD\VG¶,VODP TX¶LODVXV¶DSSURSULHUSRXUPRQWUHUDXVVLXQHSDUWG¶RULJLQDOLWp

Des problèmes récréatifs dans le Liber abaci En quel sens ? -H VDYDLV >«@ TXH OHV 0DWKpPDWLTXHV RQW GHV LQYHQWLRQV WUqV VXEWLOHV  TXL SHXYHQW EHDXFRXS VHUYLU WDQW j FRQWHQWHU OHV FXULHX[ TX¶j IDFLOLWHU WRXV OHV DUWV  GLPLQXHU OH WUDYDLO GHV KRPPHV 'HVFDUWHV

$LQVLV¶H[SULPH'HVFDUWHVGDQVOHDiscours de la méthodejSURSRVGHV PDWKpPDWLTXHV (VWFH YUDLPHQW SRVVLEOH GH ©ௗFRQWHQWHU OHV FXULHX[ௗª HW



©ௗGLPLQXHUOHWUDYDLOGHVKRPPHVௗªௗ"7HOSRXUUDLWrWUHOHGHVVHLQGHO¶HQVHLJQHPHQWGHVPDWKpPDWLTXHVHWSHXWrWUHSRXUOH0R\HQÆJHFHOXLG¶$OFXLQ G¶