324 80 288KB
Russian Pages 13 Year 1999
2
В 5
Mathcad. :«
220400, « 071900 «
1. 2. 3. 4. "
Mathcad"
__
1999
1. 2. 3. 4.
Э. . . . .,
:
»
я . .
:
:
я
:
Mathcad
1.
. ., . ., . . .,
.
MathCAD PLUS 7.0 PRO. .: 345 . Mathcad 6.0 PLUS. , dows 95. .: , 1996, 697 . . . Mathcad 8.0 Pro. .: , 1999, 523 . . ., . . Mathcad: . , 1999, 656 . ч : , , . . .
: -
Mathcad, , , , , , . . .
2. 3.
1999
К 1. 2. 3. 4. 5. 6. 7.
-
»
1. -
»
.
Mathcad. "File" "Edit" "View" "Insert" "Format" "Math"
. . . . . .
, 1998, Win-
.:
.
4
3 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
"Symbolics" "Window" "Help" .
. .
. 3.
.
XY -
. . . . . XY
.
З ,
. 1
2,
№ 1 2 3 4 5 6 7
. . .
2. 1. 2.
,
. 1
2
-
. 3.
(
-
-
). 3. XY
.
1. . 2. М 1.
. ч
я 3
-
: y=f(x), x,
x, x, ,
XY
, XY
.
В
.
1. 1. 2. 3. 4.
XY
:
, ,
2.
XY
.
.
-
. «
». , , . .
-
1. Ф 1 y = sin(x) y = cos(x) y = |tg(x)| + 0.1 y = (x2-1)/15 y = (x3-2)/15 y = x2 - 10
y = ∫ sin( x )dx x
8
y=
9
y=
Ф 2 z= exp(x+3)/5000 - 1 z = 0.00025e3-x - 0.6 z = (1+x)6 z = 1+sin(x) z = 5cos(x) z = 0.025e-1.2x z=0.02x3
a -2π -2π -2π -2π -2π -5 -5
b 2π 2π 2π 2π 2π 5 5
h π/20 π/20 π/20 π/20 π/20 1 1
z = 0.05x2
1
10
1
z = 0.01x3
-10
10
1
z = - 0.05(x2 + 10cos(x)) z = 0.01(x2 - 40sin(x)) z = sin(x) + sin(2x) z = sin2(x) + cos(x) z = x(0.5 + x)exp(0.1x) z = 5x - x1.5+sin(x)
-8
8
1
-8 -π -π -π 0
8 π π π 5
1 π/8 π/8 π/8 0.5
−5
d (sin(x ) + 7 ⋅ ln(x )) dx
d 1+ 0.2x ⋅sin(x) (e ) dx
10
y = √2+cos(x)
11 12 13 14 15
y = sin2(x/3) y = cos3(x) y = 0.5x + cos2(x) y = sin(x) + cos2(2x) y = |sin(x)|exp(x/2)
6
5 2. М
1 sin ( x) . exp( x)
f1( x) f2( x) a N n
1.9
10
x
0.5
b
40
h
Ф
1
Ф
2
1.
a
2 yn
f1( a
n .h )
0 0 0.79
, , , , .
2. 3.
N
0 .. N
Mathcad
: -
4 b
я
Mathcad
1 zn
n .h )
f2( a
2
0 1 2 3 4 5 6 T z = 0 9.732 9.636 9.526 9.403 9.266 9.115 8.952
1 0.997 3
2 1.227
. .
К 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
. . . . . . . . . .
З
3 1.481
.
1.
4 1.758
y = 5 2.058
1. 2. 3.
41.32 32.27
6 2.382
y
7 2.728
n
z n
8 3.094 10 3.88
. .
1. 2.
14.17
3.93
. , -
2.
23.22
,
.
. .
5.12
9 3.479
,
3. 0
10
11 4.291
20
30
(
40
1. 2. 3.
n
trace 1 trace 2
.
3. ,
. . .
4.
Mathcad . .
1. 2. 3. 4.
.
,
. . . .
).
М 1.
ч
7
я 4
8 1
:
2.
Mathcad
,
y ( x, t )
, ,
if x 0 , 1 ,
sin ( x ) . sin ( t ) if t 0 , 1 , x t π
. N
.
, ,
-
n
-
m
. , .
20
M
20
Ф
h
5
0 .. N
1
0 .. M
3.
2
2
:
В № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-
y=f(x,t), x x t,
M n,m
t,
M,
N . h, m 2
n
N . h 2
, (
)
0
, .
2.
y=sin(x)cos(t) y=sin(x/2)cos(t) y=sin(2x)cos(t) y = sin(x)cos(t/2) y = sin(x/2)cos(2t) y = sin(2x)cos(2t) y = (1+sin(x)/x)(sin(t)/t) y = (sin(x)/x)cos(t) y = (sin(x)/x)|cos(t)| y = (sin(x)/x)t y = (sin(x)/x)|t| y = (sin(x)/x)sin(t) y = (sin(x)/x)|sin(t)| y = (sin(x)/x)(1-t) y = (sin(x)/x)|t+0.5|
y
x -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π -2π
2π 2π 2π 2π 2π 2π 2π 2π 2π 2π 2π 2π 2π 2π 2π
t -2π -2π -2π -2π -2π -2π -2π -2π -2π -2 -2 -2π -2π -2 -2
2π 2π 2π 2π 2π 2π 2π 2π 2π 2 2 2π 2π 2 2
1
2
3
4
5
6
7
0 0
0
0
0
0
0
0
1 0
0.011
0.02
0.022
0.016
0
-0.024 -0.052
2 0
0.02
0.036
0.041
0.03
0
-0.044 -0.095
3 0
0.022
0.041
0.047
0.034
0
-0.051 -0.109
4 0
0.016
0.03
0.034
0.024
0
-0.036 -0.079
5 0
0
0
0
0
0
0
0
-0.024 -0.044 -0.051 -0.036 0
0.055
0.118
-0.052 -0.095 -0.109 -0.079 0
0.118
0.255
8 0
-0.079 -0.143 -0.164 -0.118 0
0.177
0.382
9 0
-0.097 -0.177 -0.202 -0.146 0
0.219
0.472
10 0
-0.104 -0.189 -0.216 -0.156 0
0.234
0.505
11 0
-0.097 -0.177 -0.202 -0.146 0
0.219
0.472
12 0
-0.079 -0.143 -0.164 -0.118 0
0.177
0.382
13 0
-0.052 -0.095 -0.109 -0.079 0
0.118
0.255
M = 6 0 7 0
0
10
9 3
х
3.
Mathcad
1.
: ,
-
1
, .
2. 3.
0.5
0
0
5
10
0
15
. .
К 1. 2. 3. 4. 5. 6. 7. 8. 9.
20
5 10 15 20
M 4
. . root. . polyroot. . Mathcad.
Given
Find. Minerr.
К
10.
.
З
1
.
1. 0 0.5
0.1
0 0
0.1 0 0.2 0.1 0.5
0
0.2 0
0.1 0.2
0.3 0.7 0.6
0.4
0.8 0.2 0.5 0.7 0.1 0.3 0.4
1 0.9 0.8 0.6
0
0 0
0.1
1. 2. 3.
0.1
0.2
0
0.2
0.1 0 0.5 0.4 0.3 0.2 0.1
0.1
0.5
0
. ,
. . .
2.
0.1
1. 2.
0.2 0.1
,
. f1(x)
3.
y(x)=f1(x) y(x)=0.
0
XY
. ,
-
.
0
4.
,
1. 2.
1
root. .
3. 0.5
-
.
1 1
,
,
. f1(x)
f2(x)
-
.
M Mathcad.
, .
3.
XY ,
. f1(x)
f2(x).
11
12
4.
,
Find, y=f1(x) y=f2(x).
5. 6. М 1.
4. : Given
,
Minerr.
1 2
. ч
...........
я
Find / 3
-
Minerr .
:
[Ctrl]+[=]. «
, .
,
-
».
. ,
5.
Find
Minerr .
f1(x)=0. Find ,
y=f1(x)
-
Э
.
. -
.
: Find( Minerr( : y:=
f2.
2. x:= Given
, . ,
Minerr -
y=f2(x). ,
f1
,
).
y=f1(x) y=f2(x)
. .
)
.
-
x:= Given
. 3.
Find(x,y)=...
-
. root
y=f1(x) y=f2(x)
. : root(
,
x1 y1 :=Find(x,y) x1 y1 =...
). .
: := root(f1(x),x)=... := x0:=root(f1(x),x) 0=...
Find , , x0
.
y:=
,
, В
x1 .
y1
13 №
3. f1(x)-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a3 0 0 0 0 0 .1 .2 .3 .4 .5 -.1 -.2 -.3 -.4 -.5
3a2 -1 2 1 9 -4 -5 -3 -6 -9 -7 -4 -6 -9 7 1
a1 4 -2 4 -8 4 4 2 1 1 5 9 -7 -8 8 4
14
f2(x) a0 -1 -15 -1 -70 50 40 30 50 70 60 60 55 75 -75 -1
333 0.2exp(x)-20 40|cos(x)| 10ln(x+5.5) 100|sin(x)| 70cos(x) 60exp(|0.1*x|)-100 20sin(2x) exp(|x|)sin(2x) exp(|x|)cos(3x) -60|cos(x)| 15log(x+5.1) -50ln(x+5.1) -100|cos(x)| 100sin(x/2) 40cos(x/2)
1 Mathcad a0
2
a2
a1 2
a3
a3 . x
2
6 . cos ( x )
f2 ( x ) a
4
x
a,a
b
f1(x)
1
a2 . x
3
f1 ( x )
К
7
4
a1 . x
a0
h
Ф
1
Ф
2
0.5
h .. b 2
6 4
2
8.4
0
22.8 f1( x ) 37.2 51.6 66 x
x
root ( f1 ( x ) , x ) = 2
2
x
1
x
3
root ( f1 ( x ) , x ) = 0.268 root ( f1 ( x ) , x ) = 3.732
2
4
15
16
3
я
4. a
4
a,a
x
b
4
h .. b
h
1. 2. 3.
6 4
2
0
8.4
f1 ( x )
22.8
f2 ( x )
37.2
2
4
66 x
2.2
y
0
Given y
f1 ( x ) x1 y1
x
y
f2 ( x )
find ( x , y )
x1 y1
=
2.25 3.77
0
Given y
f1 ( x ) x1 y1
x
y
x1 y1
=
5.099 ,
Find
Given f1 ( x ) x1 y1 x
y
x1 y1
=
Given
x1 y1
y
f2 ( x )
Minerr ( x , y )
x1 y1
=
Find (
. . . . . . . . .
. , ,
. . ,
. (
2.
).
,
. f(x)
. .
Minerr
,
. FC(x)
. .
4. 1. 2. 3. 4.
,
. p(x) XY
. f(x)
,
.
3.385 5.823 root.
Given
1. 2. 3.
1. 2.
5.823 ,
f1 ( x )
. Add Line ← if , while for break otherwise return on error continue -
3.
3.385
3
y
.
1. 2.
f2 ( x )
Find ( x , y )
Mathcad, .
1. 0.555
3
y
,
З
f2 ( x )
Find ( x , y )
: ,
К 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
51.6
x
Mathcad
0.5
Minerr).
М 1.
ч
я 4
-
,
:
p(x)
.
17 -
18 , ,
1
,
Mathcad
,
.
2. Mathcad «
,
-
L
1
N
5
».
,
2
( ).
. f( x )
Add Line. ,
x if
.
1 otherwise Ф
4. f(x) -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2-
3
В №
1-
1 x 0
1 0 -x 0 1 x x 0 1 -x2 -x2 0 1 x2 x2
0 1 0 -x -x 0 1 x x 0 1 -x2 -x2 0 1
L f( x) d x
R
Ф
L 0
for n ∈ 1 .. N
10 8 9 5 6 7 9 12 10 8 6
1. L
L
1. L
L
f ( x ) . cos
n .π .x
dx
L L f ( x ) . sin
n .π .x
nФ -
dx
-
L L
T R
9
spectum
7 10 8
R
FC ( N , L )
N
1 . 2 .L
FC ( N , L )
A
spectum
B
spectum
К
0.75
0
0.203 A =
2.974 10
4
0.023 2.974 10 8.403 10
0.318 B =
0.159 0.106
4
0.08
3
0.064
: - A, -B
20
19 4
я
5. N p ( x)
A0 n=1
x
L, L
L 50
A n . cos
n .π .x L
Bn . sin
n .π .x
1. 2.
L
.. L
1
: , , , , , , , ,
z-. SmartMath -
-
.
(
f( x ) p( x )
Mathcad
0.5
1
0.5
0 x
Mathcad
0.5
, . .
1
).
К 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
Evaluate/Simbolically Evaluate/Floating Point Evaluate/Complex Simplify . Expand ( Factor ( Collect Polinomial Coefficients Variable/Solve Variable/Substitute Variable/Differentiate Variable/Integrate Expand to Series Convert to Partial Fraction ( , , z-. Evaluation Style SmartMath -
. . . ). ). . . . . . . . . , . .
З .
1. 1. 2. 3.
, , , /
2. 1.
. .
,
. . .
,
).
21 2. 3.
f1(x)
22 .
.
.
f1(x).
/
3. 1. 2. 3.
-
-
.
,
.
.
f2(x)
.
5. .
f2(x). 4.
(
1. 2. 3. 4.
.
.
f2(x) XY ,
. f2(x)
, . .
я
XY 4
2.
:
, , , .
.
:
-
,
Mathcad,
, 3.
. ( ).
-
. . .
"
,
F2(x). .
ч
"
-
. . -
-
. 4. . (
, .
,
М 1.
),
.
)
-
.
. .
, .
.
23
24
В № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4. f1(x) (1+x)2 (1-x)2 (a+x)2 (a-x)2 (1+x)3 (1-x)3 (a+x)3 (a-x)3 (1+x)4 (1-x)4 (a+x)4 (a-x)4 (1+x)5 (1-x)5 (a+x)5 (a+x)5
1 f2(x) ax3+bx2+cx+d sin(ax) cos(ax) sec(x) exp(ax) x(ln(x)-1) -csc(x) 1/(1+x2) 1/(a+bx) 1/(1-x2) -cos3(x)/3 sin3(x)/3 x2(ln(x)-0.5)/2 -(ln(x)+1)/x ln2(x)/2 ln3(x)/3
Mathcad a
2
f1( x)
(a
x)
3
sin ( x)
f2( x)
Ф
1
Ф
2
x 2 / (a a
3
(a a
3
x)
2 2 3.a .x 3.a .x 3
x) expand 2 2 3.a .x 3.a .x
( x a)
Ф
3 3
x
2 12. x 6 . x
8
3
SmartMath
x
( Ф
3
x
3
3 / (a
x)
Ф
3
3.( x a )
2
3.( x a )
2
( x a)
3
Ф
)
25 4 sin ( x)
Ф
x 1
1.
1 . 4 x 120
2
x
6 F2( x)
1
1.
5
O x
1 . 4 x 120
2
x
6
x
4 , 3.9.. 4 1
f2( x )
0.5
F2 ( x ) 0
0.5 5
0 x
5
Mathcad
. SmartMath, .