Mathcad. Лабораторный практикум

В пособии кратко рассматриваются основные возможности пакета Mathcad по вводу и редактированию текстовой информации, мат

339 26 742KB

Russian Pages 59 Year 2000

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Mathcad. Лабораторный практикум

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

-

MATHCAD Ы

., . . . . .

-

, 2000

2

681.3.06

Mathcad. . . .

, . . : . . .,

©

, 2000

, . . ..

. .

, . .

.

3

4 1. 1.1 1.2 1.3 2. 2.1 2.2 3.

, 3.1 3.2

4.

5 .................................................................................... 6 ..................................................................................... 6 Mathcad................................................................................ 7 Mathcad 10 Mathcad ............................... 10 Mathcad....................................................................................... 11 11 ................................................................. 11 ............................................................................ 12

, 13 4.1 4.2

............................ 13 ....................................... 15

5.

15 5.1 :................................................................................... 15 5.2 ....................................................................... 15 6. 16 6.1 (Resource Center)..................................... 16 6.2 Quick Sheets................................................................................................ 17 7. 18 7.1 № 1………………………………………………...18 7.2 № 2………………………………………………...20 7.3 № 3………………………………………………...24 7.4 № 4………………………………………………...26 7.5 № 5………………………………………………...29 7.6 № 6………………………………………………...31 7.7 № 7………………………………………………...32 7.8 № 8………………………………………………...38 7.9 № 9………………………………………………...41 7.10 № 10……………………………………………...18 45 59

4

Mathcad ,

,

.

Mathcad . Mathcad .



Mathcad

, . ,

,

, Mathcad

.

Mathcad



Windows:



,

, ,

♦ ♦ ♦ ♦

.

. . . ,

.

,



,

. ,

Э



,

,

– -

,

. , ,

♦ ♦ ♦

-

,

,

-

,

,

. . .

, :

,

,

, ,



,

,

-

. .

5 ♦

,

. -

Mathcad 8. я

1.

Windows –

Mathcad .

-

, (Mathcad) , .

(

).



. .



/

.

.



,

. (

-

.1).

.1.

Mathcad Mathcad ,

-

, . Mathcad

-

6 .

Mathcad –

. . Mathcad . / . Mathcad

, ,

. .

/

Mathcad –

,

. .

,

, . ,

, Mathcad. я

1.1

1 2

3

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. – 19. 20. -

4

5

6

7

8

9

10 11

14 15 16

17 18

19 20

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Internet; ,

( ; .

1.2

-

12 13

;

Excel);

-

7

-

;

-

;

-

;

-

;

-

;

-

.

1.3

Mathcad

♦ ♦ ♦

:

Mathcad ; ; .

: ……– –

. . . . .



…-

,

-

. –

-

. …–

. Mathcad.

– -

. . –

. -

.

-

. ….



. –

. .

…-

.

8 …-

. ……-

. -

. …-

-

. Windows –



.

Mathcad, (



)

-

. /



.



. … .

– ….

А

. … .

…-



Mathcad



-

. .

– ……-

. . .

….



-

– . .

– ……. Excel). ….

. . (

Internet. ,

Windows –

-

9 -

….

-

…( …-

,

. .). (

,

. .). (

…-

,

. .). .

… …-

,

. .

-

,

– . ,



.

. /

-

…. .

– –

, . .

– А

,

.

– . .

– … -

,

,

(

– ,

,

-

). ,



-

, . -

– . ,



. ,

– . .

-

10 ,

. – ,

(

-

,

Z–

, ). –

(

, –

,

). (

). … (

-

,

. .),

. -

. –

,

Mathcad

.

я Mathcad

2. 2.1

Mathcad

: 1.

ё



, .

2.

,

ё

.

-

. 3.

,

. . :

1.

,

-

. . 2.

, .

.

3.

, . :

1. 2.

. , .

11 3.

,

.

, .



4.

-

. :

1. 2.

. . :

1. 2. 3.

. . –

-

. 2.2

Mathcad

(

)



,

. .

. – ,

-

.

. ,

,

. . .

-

[Ins]. 3.

,

3.1

: 1. 2.

ё

. . .

3.

. .

ё

,

. 4. Enter,

-

ё

,

ё

ё. .

12 : 1.

ё

.

[→]

[←]

. 2.

. ,

-

[BkSp]. :

1. 2.

. ,

-

. 3.

,

.

: 1. 2.

,

. .

: 1. 2. 3.

.

ё

Mathcad. . :

1. 2. 3.

. . ,

.

-

. 3.2

Ф

,

,

,

,

:

1. 2. 3.

. "OK" . . :

1. 2. 3.

ё

. . , .

-

13 : 1. 2.

. .

.

3.

,

,

-

. 4. 4.

. ,

-

4.1

,

,

-

.

, :

1. 2.

.

ё

[ : ], [ := ]

.

3.

. Mathcad

.

Для с да я: ♦

-

,

[;] .

1. -

, ♦ ♦ ♦ ♦

; -

[ ^ ]; -

[ . ];

-

[ [ ];

,

. .-

,

-

. ,

ё

ё

, 1. 2.

.

,

: . ,

.

14 3.

[ : ], [ := ]

.

4.

. ,

,

1.

:

,

-

. 2.

[ = ],

Mathcad -

. [F9]. ,

ё

,

:

1.

ё

, - [↑],

. -

. 2. 3.

, [Ins]

. ,

ё

,

.

: 1.

ё

, .

ё

,

-

. 2. 3.

[BkSp],

. . :

1. 2. 3.

. [']

.

[Del], :

1.

ё

,

.

- [↑],

.

2. 3.

[Ins].

. ,

,

.

-

[BkSp].

: 1.

, .

,

-

15 2. 3.

, .

ё

, .

4.

,

-

. 4.2

Ф

,

,

,

,

:

1. 2.

. Variables

Constants .

3.

"OK" . . ё

:

1. 2.

. .

5. 5.1

:

1. 2.

,

,

-

. 3. 5.2

.

F9,

Ф

: 1. 2.

. ,

.

3.

. :

1. 2.

. .

16 : ё

1. 2.

,

. . Mathcad

. , . .,

,

-

: ё

1. 2. 3.

. . .

Ц

6.

, . .

Э

Mathcad. Mathcad ,

ё

,

ё . .

♦ ♦ ♦ ♦ ♦

.

Overview – Mathcad, Getting Started – Advanced Topic – Quick Sheets Reference Tables – , ♦ Mathcad in Action – , ♦ Web Library – Mathcad. ♦ Collaboratory – Internet -

. Mathcad. . ,

-

. . , Mathcad. Internet

Э

Mathcad. ,

,

-

qsheet.hbk. я

6.1

Ц

(Resource Center)

-

. -

Internet. -

-

. -

.

17

-

.

.

-

. ,

.

. -

.

. 6.2

.

Quick Sheets

Ш

Quick Sheets

-

ё , , Mathcad,

Mathcad

-

. . Ш ё ,

,

,

. ,

, Mathcad

. , -

READPRN. ,

READPRN. Ш ,

,

-

.

. : , Mathcad.

-

.

,

Ш

, . -

18 . Э . Ш . : My Formulas ( (

)

My Hotlinks

).

7.

. я

7.1

№1

«

»

.

:

-

. , , . .

MathCAD .

. . .

. 3.

.

-

. ,



. ,

-

. . 4. MathCAD

. : 2 ⎞ ⎛ 9x − 9x ⎛ ⎜1 + ⎟ * ⎜⎜1 − 3x + 1 ⎝ 3x − 1 ⎠ ⎝

2

⎞ ⎟⎟ + 1 ⎠

:

.

:

19 1.

: )

Insert

Text Region

-

“. ) )

. .

2.

-

, . .

.

, ,

.

3.

,

-

.

4. 5.

Simbolics

Simplify.



(

Simbolics

Evaluation Style).

. .

1.

1

2.

3.

4.

x. ( z 2 a .b

a .b

2

2)

2

2 3.x 3.x 9.x 1

1

3

2.x 3.x

4 . z. ( x 2 . z )

2.a .b .c

2 b .c

3 3 : a −b a −b

2 a .c

a .c

2

b .c

2

-

20

5.

x. ( z

1)

6. 2

x

2 . z. ( x z)

2

3.x 7

2 2 ( x 1) . x

x 1

7. 8.

x. ( z

2)

2

9. 2

x

4 . z. ( x 2 . z) 6.x 2

2 2 ( x 1) . x

10.

2 a .b

a .b

2

2.a .b .c

2 b .c

я

7.2

2 4 . x. ( x 4 )

(2

x)

x 1

2 a .c

a .c

b .c

2

2

c

2 c .a

№2

«

» :

-

. ,

A*X=B. -1

X=A *B. MathCAD X

lsolve(A,B),

. – –

. .

21 ,

, :

-

, ,

, -

.

: :

1.

ORIGIN

.

22 2. 3.

. . ,

.

4.

,

.

5.

.

ORIGIN 1 1 2 3 1 3 2

A

7 b

1 1 1

Δ1

7 2 3 Δ1= 3

5 3 2 3 1 1

x1

Δ1

3

Δ = 3

A

1 7 3

Δ2

x1 = 1

Δ

Δ

5

1 5 2

Δ2= 0

1 3 1 Δ2 Δ

x2

x2 = 0

1 2 7

Δ3

1 3 5 1 1 3

x3

Δ3 Δ

Δ3= 6 x3 = 2

(

-

) : 1. 2. 3.

ORIGIN

. -

. –

aug-

ment(A,b). 4.



rref(Ar).

5.

– trix(Ag,1,3,4,4).

6. -

.

subma-

23

ORIGIN 1 1 2 3 A

7

1 3 2

b

1 1 1 Ar

5 3

augment ( A , b )

Ar =

1 2 3 7 1 3 2 5 1 1 1 3

Ag

Ag =

rref( Ar )

1 0 0 1 0 1 0 0 0 0 1 2

x

submatrix( Ag , 1 , 3 , 4 , 4 )

x=

1 0

A .x b =

,

0 0

2

1.

0

,

-

. 2.

. .

0.005 0.004 0.150

1. A

2. A

0.090 0.033 0.0067 0.098 0.0150 0.033 0.050

0.057

0 0

B

0.098 0.041

0.015 0.012 0.250 0.100

0.388

0.070 0.033 0.020 0.075 0.350 0.100 0.075 0.110 0.0086 0.200 0.233 0.075

B

A

0.183

2.857 0.100 0.300 0.025

0.084 1.357 0.149

0.010 0.008 0.200 0.050

6.

7. A

0.080 0

0.013 0.050

0.250 0.067 0.067 0.069

0.186 B

0.126 0.646

0.0057 0.150 0.267 0.050

0.0086

0.020 0.016 0.300 0.150

0.662

0.060 0.067 0.027 0.100 0.450 0.133 0.080 0.139 0.011 0.250 0.200 0.100

B

0.029 2.312 0.379

24 3.

0.025 0.020 0.350 0.200 A

4. A

5. A

8.

1.008

0.050 0.100 0.033 0.125

B

0.550 0.167 0.083 0.161

0.212 0.700

0.035 0.028 0.450 0.300

1.918

0.030 0.167 0.047 0.175

B

0.750 0.233 0.088 0.195

0.788 6.611

0.045 0.036 0.550 0.400

3.117

0.950 0.300 0.090 0.220 0.026 0.500 0.033 0.225

10.664

A

B

0.465 4.940 1.111

0.040 0.032 0.500 0.350

2.481

0.850 0.267 0.089 0.208

B

1.182 8.520

0.023 0.450 0.067 0.200

2.205

0.050 0.040 0.600 0.450

3.825

0.267 0.067 0.250

0

B

1.050 0.333 0.091 0.230 0.029 0.550 0

2.888

я

7.3

1.646

10.

1.427

0.017 0.350 0.133 0.150

0.020 0.200 0.053 0.200

A

1.613

B

0.650 0.200 0.086 0.179

9.

0.020 0.400 0.100 0.175

0.010 0.233 0.060 0.225

0.040 0.133 0.040 0.150

A

3.507

0.014 0.300 0.167 0.125

0.030 0.024 0.400 0.250

0.250

2.181 13.045 3.661

№3

«Ч

» :

.

я

. ,

,

-

.

.

F(x)=0 root(

,

). Э

-

, 0.

,



,

. :

. x1. root.

-

25 я

я:

1. 2. 3. 4.

. . root. . a3

1 a3 . x

3

F( x) x

a2

0

i

6 a2 . x

2

21

a0

52

a1 . x a0

root ( F( x) , x)

x1 1

a1

x

1

1.i

x1 = 4 x2

root

F( x) x x1

x3

root

З

F( x) ,x ( x x1) . ( x x2)

x3 = 1

,x

x2 = 1 + 3.464i

3.464i

: .

F(x)=a3*x3+a2*x2+a1*x+a0

№ 7.1.1.1.1

1 2 3 4 5 6 7 8 9

a3 2 34 5 -34 4 6 -8 -10 5

a2 -8 -3 -4 67 4 12 -24 -1 32

a1 15 23 27 -3 45 12 26 84 -34

a0 -30 48 23 11 22 35 -47 -2 8

26 10

7

17 я

7.4

25

48

№4

«Ч

» : . .

,

Given –

– :

Given

find find

minerr

minerr ,

. . -

. find(v1,v2,…,vn) – ; minerr(v1,v2,…,vn) – . : я

1.

я

x2=3.

x=10

2.

– .

3. . 4.

minerr

x

10 Given 2

x

3

x0

Find( x)

.

27

x

10 Given 2

x 3 x0 x

Find( x) x0 = 1.732

10 Given 2

x 3 x1

Minerr( x)

x1 = 1.732

. я

1. 2.

я

. , -1,7

8+3

^2

+4,8

1. 2. 3. 4.

x=0, y=0. . . .

я x

я

я

6 , 5.75 .. 6

x 8

2 3 .x 10

5

40 34 28 22 16 10 4 2 8 14 20

0

x

5

10

28

x

0 y

0

x

Given 2 y x

y 8

3.x

Find( x, y )

x0 y0

x0 = 2.895 2

x

3 x0 y0

y

x< 0

я x0 y0

1.702 2.895

3 . x0 = 2.895

8

0

=

Given

Find( x, y )

x0 y0

я x> 0

2

y x =

y

y 8

3.x

4.702 22.105

З В

я

я

. .

.

.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

я

. . . . . . . . . .

29 я

7.5

№5

я

«

»

: . . .

x1, x2,…, xn,

f(x1,x2,…,xn)=c1x1+c2x2+…+cnxn ,

-

ai1x1+ai2x2+…+ainxn=bp,

i≠k≠p

. xj>=0 f(x1,x2,…,xn)

.

: f(x,y)=2x+3y x+y=4, 2x+y>=5, я

x>=0, y>=0.

я

1.

.

2.

, ( )

3.

. .

30 x

y 5

x

2 .y 4

x

5 1.

y1 ( x )

x

2

x

1.

y2 ( x )

2

2 .x

y 5

2 .x

3 .y c

2

2 .x 2.

5

5

y3 ( x ) 1.

x

3

c

c

3

x

2

2 .x

7

5

y4 ( x )

2.

1.

x

3

c

3

5

y1 ( x ) y2 ( x ) y3 ( x )

4 3 2

y4 ( x ) 1

0

1

2

3

4

5

x

я Given

я

x 2.y 4 2.x y 5 f( x, y )

Find( x, y )

2.x 3.y

я

. x+2=4, 2x+y=5

2 1 f( 2 , 1 )

fmin

fmin = 7 7,

я

x=2,

y=1. fmin=f(2,1)=7.

: f(x,y)=ax+by .

. :

-

31

7.1.1

1 2 3 4 5 6 7 8 9 10

f(x,y)

7.1.1.1.3

3x+2y 3x+2y 3x+2y 3x+2y 3x+2y 2x+5y 2x+5y 2x+5y 2x+5y 2x+5y

x+y=7

x+2y>=5 x+2y>=7 x+2y>=8 x+2y>=7 x+2y>=5 x+2y=3 2x+y=0 x>=0 x>=0 x>=0 x>=0 x>=0

№6 ”

:

, ,

,

,

. . В

Sin(x) Cos(x) Exp(x)cos(x) X+cos(x) tgx

10

Sec(x)

f(x) lnx 1+1/x Exp(x) e−x

2

-

MathCAD.

1:

№ 1 2 3 4 5 6 7 8 9

y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0

F(x,y)

x + y2 = 4 2

x2 − y2 = 4

( x − 3) 2 + y 2 = 4

cos( x) 2 + sin( y ) 2 = 1

(x+y)y=2 Xy+x+y=4 X+cos(xy)=1 x + y2 = 4

( x 3) 2 + y 2 = 4

x2 y2 + =1 3 4

-

32 №7

7.7 ”



MathCAD

:

. . -

. -

, :



,

,

. – (

,

), ,

-

, .

, ,

,

, , ,

(

-

, ). .

MathCAD

:

linterp(VX,VY,x) –

. VX

VY -

. (

10)

. . .

, .

, .

-

,

, , : spline —

( ).

MathCAD . :

-

33 cspline(V ,VY) —

VS

;

pspline(V ,VY) —

VS

;

lspline(V ,VY) —

VS

-

. , interp(VS, VX, VY, ) VS, VX, VY . , cspline, spline y(x), ( ). , y(x) c

y(x) .

-

lspline

VX

VY

-

interp.

y(x). , V

(

VY)

-

. ,

y(x)

y(x) = a + b⋅x . y(x). : (V ,VY) — interp(V ,VY) — s1



; a (

); —

(VX, VY) ).

b (

. MathCAD . : F( ,

1,

2,…,Kn) 1⋅F1(

,

=

2⋅F2(

1⋅F1(

, ),

),…,

)+

2⋅F2(

n⋅Fn(

) + ... +

), .

n⋅Fn(

).

34

1infit(V ,VY,F). Э

, , VX VY, F1( ), F2( ),…, Fn( ),

.

-

F . .

MathCAD

:

Regress(VX,VY,n)

VS,

inn-

terp(VS,VX,VY,x), « V

, ,

»

-

,

regress

,

. VS, V .

-

VY.

— .

1 ss(V ,VY,span). Э terp(VS,VX,VY,x)

-

VY)

, . . , , — in( -

span>0 (

- 0,75). .

span, span

regress(V ,VY,2). . MathCAD

, —

. z, ( , ) .

.

: gress( ,Vz,n) — interp(VS,Mxy,Vz,V)

, n-

m⋅2,

x , ;

z-

,

y.

, Vz. — Vz — mm ,

-

35 1 s( ,Vz,span) — ; 1nterp(VS, ,Vz,V) — VS ( regress x y ,

loes(VX,VY,span), z , Vz

1 ss)

V(

z). . F( , 1, 2,..., n),

. ' genfit(VX,VY,VS,F). Э F, F( , 1, 2,..., n)

.

F

,

VS

. ,

. . . .

MathCAD (

smooth ). Medsmooth(VY,n) m, n , m); ksmooth(VX,VY,b) -

: m

(n

n-

VY, . VX

.

b(

(b x); supsmooth(VX,VY) -

n-

VY,

.Э -

kk. V V

VY - n. .

data -

,k-

-

VY - n)

dikt(data,k,N), N.

36

N

, . . (

-

)

.

: X := ( 10 12 13.5 15 17 19 20 22 25 30 )

T

Y := ( 10 11.5 12 13 14.7 12 12.4 15 15.8 20 )

N := 9

i := 0 .. N

T

x := X0 , X0 + 0.1 .. XN

y ( x) := linterp( X , Y , x)

y ( 12) = 11.5

20 Yi 15

y( x)

10 10

20

30

Xi , x

. x = N + 0.55 ,

.

y=f(x), у

, N–

. .

1. Y 2. Y 3. Y 4. Y

1 0.686

1.1 0.742

1.2 0.767

1.3 0.646

1.5 0.774

2 2.312

2.1 2.251

2.2 2.418

2.3 2.752

2.5 2.7

3 4.615

3.1 4.591

3.2 5.13

4 8.472

4.1 8.805

4.2 9.096

3.3 5.481 4.3 8.993

3.5 5.553 4.5 9.312

1.4 0.807 2.4 2.459 3.4 5.492 4.4 9.465

1.6 0.97 2.6 3.022 3.6 5.471 4.6 9.771

1.7 0.932 2.7 3.079

1.8 0.936 2.8 2.42

1.9 0.978 2.9 2.669

3.7 5.727

3.8 5.798

3.9 6.11

4.7 9.61

4.8 9.722

4.9 11.41

2 1.048 3 3.241 4 6.605 5 10.28

37 5. 5 12.36

Y 6.

5.1 13.63

5.2 13.3

5.3 13.15

5.5 13.48

5.4 14.24

5.6 14.52

5.7 14.88

5.8 15.25

5.9 15.34

Y

6 17.63

6.1 19.75

6.2 19.79

6.3 18.81

6.5 19.87

6.4 21.12

6.6 20.21

6.7 19.49

6.8 20.15

6.9 20.51

7 21.29

Y

7 25.24

7.1 25.13

7.2 25.67

7.3 26.63

7.5 26.75

7.4 27.23

7.6 26.49

7.7 26.88

7.8 27.23

7.9 28.07

8 27.79

Y

8 30.53

8.1 34.22

8.2 34.23

8.3 34.11

8.5 33.6

8.4 34.06

8.6 34.5

8.7 35.83

8.8 35.68

8.9 35.44

9 35.67

9 41.74

9.1 42.24

9.2 43.88

9.3 42.17

9.5 43.7

9.4 45.04

9.6 42.46

9.7 45.72

9.8 44.06

9.9 45.87

10 44.95

10 49.76

10.1 51.92

10.2 50.08

10.3 52.38

10.5 53.41

10.4 54.96

10.6 52.77

10.7 54.12

10.8 55.48

10.9 55.69

11 56.2

6 15.16

7.

8.

9. Y 10. Y

-

y = f (x)

(

. 1). x = N + 0.55 ,

у

,

N–

-

, ,

. :

1. y = a ⋅ x + b; 2. y = a + b ⋅ x + c ⋅ x 2 ; 3. y = a0 + a1 ⋅ x + a2 ⋅ x 2 + a3 ⋅ x3 ; 4. y = a + +

b c ; x x2 b c d 5. y = a + + 2 + 3 ; x x x 6. y = a + b ⋅ ln(x);

7. y = a + b ⋅ cos( x) + c ⋅ x 2 ; 8. y =

1 ; a + b ⋅ tg ( x) 2 1 9. y = a + + c ⋅ x2 ; b ⋅ log( x)

10. y = a + b ⋅ sin( x) 2 + c ⋅ x 3 . z = f ( x, y )

-

( –

, .

X, Y z

.

.).

x = X N + 0.55 , y = YN + 0.3 5,

N

38

1. 2. 3. 4. 5. 6. 7. 8.

z = sin( x + y );

z = cos( x + y );

sin( x + y 2 ) − z = 0; z = tg ( x + y );

z = sin( x + 0.5 ⋅ y ) 2 ;

ln( x + y ) − z = 0;

1.5 ⋅ x ⋅ y − ( x 2 + y 2 ) − z = 0;

z = x 2 ⋅ y + sin( x + y ); 3⋅ x ⋅ y 9. 2 2 − z = 0; x +y

10. z = x ⋅ y + cos( x + y ). №8

7.8 ”



-

:

MathCAD. . MathCAD



,

-

-

( ) .

,

,

, .

,

MathCAD. ( ) MathCAD 13 : rkadapt, Rkadapt, rkfixed, Bulstoer, bulstoer, bvalfit, multigird, relax, sbval, Stiffb, stiffb, Stiffr stiffr. . rkfixed – . , , rkfixed . , .Э : -

39 (Stiffb, Stiffr), (Rkadap).

(Bulstoer) (

,

.

),

,

,

Bulstoer,

rkfixed. ( ,

,

-

,

-

. ),

, ,

.

Rkadap.

, ,

Rkadap ,

. y=A⋅x,

, ,

,

.

-

A–

, : Stiffb (r).

Stiffr. , . : sbval bvalfit.

,

(b)

-

(

) : bvalfit, multigird, relax, sbval. QuickSheets,

-

. 3.

.



⎛ 0⎞ ⎟ ⎝ 1⎠

X := ⎜

μ := −0.1

⎡ μ ⋅ X0 − X1 − ⎡⎣ ( X0) 2 + ( X1) 2 ⎤⎦ ⋅ X0 ⎢ D( t , X) := ⎢ μ ⋅ X + X − ⎡ ( X )2 + ( X )2 ⎤ ⋅ X 1 1 ⎦ 1 0 ⎣ 0 ⎣ Z := rkfixed( X , 0 , 20, 100, D)

n := 0 .. 99

В

⎤ ⎥ ⎥ ⎦ я

1

Zn ,1 Zn ,2

0

1

0

20

40

60 n

80

100

40

:

y ( x0 ) = y0

y ′ = f ( x, y ) ,

[ x0 , xN ]

-

.

,

h, 2h

xN > x0

h/2.

-

.

№ 1 2 3 4 5 6 7

F ( x, y, y′) = 0

y (0) = 0.5

(e x + 1)dy + e x dx = 0 y ln y + xy ′ = 0

y (1) = e y (0) = −tg 2

4 − x 2 y ′ + xy 2 + x = 0

y (1) = arctg (2 − e)

2 − ex dx = 0 cos 2 x (1 + e x ) yy ′ = e x y ′ sin x = y ln y

3e x tgydx +

y (0) = 1

⎛π ⎞ y⎜ ⎟ = e ⎝2⎠ y (1) = 1

xdx ydy − =0 1+ y 1+ x

8

(1 + y 2 )dx = xdy

9

y ′ sin x = sin y

10

3( x 2 y + y )dy + 2 + y 2 dx = 0

⎛π ⎞ y⎜ ⎟ = 1 ⎝4⎠ ⎛π ⎞ π y⎜ ⎟ = ⎝2⎠ 2 y (0) = 1

y1′ = f1 ( x, y1 , y 2 ) , y 2′ = f 2 ( x, y1 , y 2 ) , y1 (a) = y1,0 , y2 (a) = y2, 0

-

[ a , b]

,

№ 1 2 3 4 5 6 7 8

f1(x,y1,y2) x+y1 siny2 xcos(y1+y2) siny1cos2y2 cos(y1y2) y2lnx 2y1/y2 y1+y2

f2(x,y1,y2) (y1-y2)2 cosy1 sin(y1-y2) cosy1cosy2 sin(y1+y2) y1+y2 2y1-y2 1/(1+ y1+y2)

h=0.1. h, 2h

h/2.

y1(a) 0 0.5 -0.6 0 0 -2 1 0

y2(a) 1 -0.5 2 0 0 -1 1 0

a -1 -1 2 -1 0 1 1 0

b 1 3 5 3 2 4 3 4

41 9 10

arctg(xy2) sin(x2+2y2)

siny1 cos(xy1) я

7.9

0 0

0 0

№9 ,



-2 0

1 4

я ”

. .

F ( X, Y) := X + Y 2

,

2

-

. X

Y:

a := −5

b := 5

X

M := 25 N := 25 i := 0 .. M j := 0 .. N Xi , j := a + ( b − a) ⋅

i M

,

Yi , j := a + ( b − a) ⋅

(

Zi , j := F Xi , j , Yi , j

j N

Y:

)

( X , Y , Z)

. 1. 2. 3. 4. 5.

Z Z Z Z Z

= e −(X +Y ) = X 2 −Y 2 = X 2 + Y 2 − XY = ( X + Y )2 = ( X − Y )2

6. Z =

2

2

X 2 +Y2

7. Z = e 2 2 15. Z = tg ( X π−Y ) X 2 +Y 2

8. Z 9. Z 10. Z 11. Z 12. Z 13. Z

= 3 X 2 +Y 2 = XY = e XY = e − XY = e − ( X +Y ) = cos( XY 2π )

14. Z = sin( X

+Y 2

π

2

)

42

я

7.10

№ 10

«

»

Y = R cos(α ) sin(φ ) X = R cos(α ) cos(φ ) Z = R sin(α ) .

:

Z R Y X

F ( X ,Y , Z ) = 0 , .

α

0

M := 25 N := 50 i := 0 .. M j := 0 .. N α i :=

π⋅ i

φj :=

Xi , j := tan ( α i) ⋅ cos ( φj) M

2⋅ π⋅ j

Yi , j := tan ( α i) ⋅ sin ( φj) N

π,

Zi , j := tan ( α i)

α ,φ , R , φ

0

X,Y,Z,

-

2π .

2

( X , Y , Z)

я я

:

43 Y = r sin(φ ) X = rсos(φ ) Z =Z. Z h R

r

Y

M := 25 N := 50 i := 0 .. M

j := 0 .. N

X

Xi , j := Ri , j ⋅ cos ( φi , j)

r := 5 φi , j :=

Yi , j := Ri , j ⋅ sin ( φi , j)

2⋅ π⋅ j N

Zi , j := r ⋅

i M

Ri , j := Zi , j

( X , Y , Z)

В

:

1. 2.

R=4. я

я

R = cos(α ) .

,

-

3.

45 .

4. R=4

h=10.

5. 45 6. 7.

OZ. К OX. К

,

я

,

я

h=10.

я : A(0,0,0) я : A(0,0,0)

я B(1,0,2). B(1,0,2).

я

-

44 8.

OZ. К

,

я

я : A(0,0,0)

я B(1,0,2).

Z ( X , Y ) = e − ( X +Y ) . я a=1, b= 2

9. 10. 2, c=3.

2

45

1

я

Mathcad

ё

,

.

(

[ " ])

-

. ( )

.

! "

ё .

" # $ & ' ,

-

ё

. . .

. . , . -

,

. -

;

. ? [ \ ^ | Ctrl+1 Ctrl+3 Ctrl+4 Ctrl+9 Ctrl+0 Ctrl+8 Ctrl+Ctrl+= Ctrl+6 Ctrl+Shift+4 Ctrl+Shift+3 Ctrl+Shift+?

. . . . . . . . . . . . . . . n-

.

46 ( )

n-

Ctrl+\ Ctrl+Enter

. .

. ( )

Windows. Windows

Alt+Esc Alt+Tab Ctrl+F4 Ctrl+F6 Alt+F4 Ctrl+R F1 F5 F6 F7 F9 Shift+F1

. . Mathcad. .

. . . . . . -

Mathcad. ( )

.

Ctrl+F9 Ctrl+F10 Ctrl+F5

. .

Shift+F5 Alt+BkSp

. .

Ctrl+C Ctrl+V Ctrl+X

. . -

Ctrl+U

. Ins

47 . 2

400

Mathcad

. ln(x)

,

. . ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

.

sin(z),

. :



;

z– m, n, I, j k – v, u , А – N– F– file – .

; ; v, –

;

; ; ; , .

, ,



.

angle(x, ) – ( ) ( , ). APPEND(file) – file.dat . APPENDPRN(file) – file.prn . augment(A, ) – , . bulstoer(v, 1, 2, , n, F, k, s) – , F 1 2, ; k s . Bulstoer(v, 1, 2, n, F) – , F v 2, . bvalfit(vl, v2, 1, 2, xi, F, LI, L2, S) – , F, vl v2 2, xi. il( ) – , .

-

v -

1 1

48 cfft(A) –

. ,

CFFT(A) – , cholesky(M) – T =L(L , – L. cnorm(x) –

.

.

,

. ,L–

-

.

.

cols(A) – complex – . condl(M) – cond2(M) – conde(M) –

. , ,

L1. L2. ,

. condi(M) – . corr(vx, vy) – csort(A, n) –

,

– vx

vy

( n).

cspline(vx, vy) – va vy. cvar(X, Y) – diag(v) – v. dbeta(x, si, s2) – dbinom(k, n, p) – P(x=k), k– dcauchy(x, I, s) – dchisq(x, d) – dexp(x, r) – dF(x, dl, d2) – dgamma(x, s) – dgeom(k, p) –

.

, Y. ,

β-

. .

. . -

-

. .

,

,

. -

dlnorm(x, μ, δ) – . dlogis(x, I, s) –

-

-

. dnbinom(k, n, p) – .

,

,

-

49 dnorm(x, μ, δ) –

-

. dpois(k, X) – dt(x, d) – dunif(x, a, b) –

,

,

. . -

dweibull(x, s) – eigenvals(M) – eigenvec(M, z) –

. . ,

-

z. eigenvecs(M) – .

, ,

eigen-vals.

erf(x) – . Find(varl, var2, ...) – varl, var2 ,... , . . fft(v) – ,v– n 2 , n – . n-l 2 +l. FFT(v) – , fft(v), . flo ( ) – , . . genfit(vx, vy, vg, F) – , , F U0, U1;, ... , un-i, vx vy. F , n+1 , f n , vx vy , vg – n n . geninv(A) – A, L*A=E, – n (n, L – n*m, A – m* n). genvals(M, N) – vi N– . M: M(x=vi* N* ). genvecs(M, N) – , , v, genvals. n, *x=v*N * . N . Given – , Find Minerr. hist(intervals, data) – . intervals , data – .

50 ,

intervals, .

data,

I0(x) – . I1( ) – . icfft(A) –

, ,

-

CFFT.

-

. ,

ICFFT(A) –

, linterp(vx, vy, x) – vx vy Ioess(vx, vy, span) –

cfft

.

,

interp , vx

vy.

-

span

. loess(Mxy, vz, span) –

,

interp

-

, Z(x, ) vz. span

.

Z

-

U–

-

, .

lsolve(M, v) – *x=v. lspline(vx, vy) – vx vy. lu(M) –

, : *M=L*U. L .

, . matrix(m, n, f) – , i=0, I, ... m j=0, 1, ... n. max(A) – mean(v) – median(X) – . medsmooth(vy, n) – m, vy – , min(A) – Muierr(xl, x2, ...) –

(i, j)-n

f(i, j), .

v. ,

vy ,n–

. . 1, 2, .... .

predict(v, m, n) – n . pspline(vx, vy) – vx vy.

.

, ,

v

m ,

-

51

Э

pspline(Mxy, Mz) –

Mz. -

interp. , . pt(x, d) –

.d–

. >0 d>0. punif(x, a, b) – ,b – . 0 0< 0, qexp(p, r) – >0, . 0< 0 – . rgeom(m, p) – m . 0< [1. rkadapt(v, xl, 2, acc, n, F, k, s) –

, . . , xl

2

, . –

F, n –

. Rkadapt(v, xl, 2, n, F) – )

,k -

F,

(

s , xl

2; n – . sbval(v, xl, x2, F, L, S) – , F, v– xl, x2. simplify – . slope(vx, vy) – b = + b* vx vy. sort(v) – v . stack(A, ) – , . . sfdev(v) – v. stiffb(v, xl, x2, , n, F, J, k, s) – stiff, F J. v – [xl, x2]; Bulirsch-Stoer . Stiflb(v, xl, x2, n, F, J) – stiff, F J. v – [xl, x2]; Bulirsch-Stoer. stiffr(v, xl, x2, , n, F, J, k, s) – stiff, F J. v – [xl, x2]; . Stiflr(v, xl, x2, n, F, J) – stiff, F J. v – [xl, x2]; . Yn(m, x) – m; – ;m– 0 100 δ( , ) – (1, = , 0, ? ; – ).

53 ( )– ( ) – 1,

-

. 0

>0,

(

).

я

3

Э

. ,

,

Mathcad

. ,

Mathcad

,

, ,

. ,

А

.

.

.

.

.

Array size mismatch

,

-

.

,

, .

linterp

Cannot be denned

.

-

Cannot take subscript

-

,

-

.

-

Cannot take subscript

,

-

.

-

Definition stack overHow

Did not find solution

(:=)

-

-

.

-

Mathcad .

,



MinerrFind.

Domain error

-

,

, -

54

А

.

.

.

.

.

Duplicate

-



-

, . Mathcad

Equation too large

. .

-

Mathcad

Error in constant

. Mathcad . .

: f( , , z ...).

Error in list ,

-

. -

Error in solve block

, ,

.

File error

READ READPRN.

, File not found

READ READPRN, .

,

Illegal array operation

-

.

, .

Illegal context

,

Mathcad.

, Illegal factor

, . .

Illegal func-

,

Mathcad

55

А . . tion name

.

. -

,

. Э

,

, :

,

6( ). *,

.

Mathcad

, ORIGIN

Illegal ORIGIN

ORIGIN

-

Incompatible units

Э

16 000 000.

ORIGIN.

Illegal range

Illegal tolerance

,

-

-

. ,

Root, TOL ™ 1

,

TOL Find Minerr, TOL ™ 0. TOL

.

,

-

, , . , .

Index out of bounds

( , ORIGIN > 0)

,

,

ORIGIN,

,

.

Invalid order

, 0

-

5

.

. Э

List too long ,

Mathcad,

, -

56

А

.

.

.

.

.

Misplaced comma

, . .

Missing operand

,

-

. Mathcad (

)

, -

Missing operator

.

Must be 3vector

-

,

-

. .

Must be array

Must be dimensionless

, ,

-

-

. , ( -

, -

. , cos ,

In)

. ,

Must be increasing

-

pspline, cspline, interp, linterp

(spline, -

hist).

. , Must be integer

,

-

,

identity

. Must be nonzero Must be positive

-

,

.

, -

, ,

.

57

А

.

.

.

.

-

Mathcad .

Must be range Must be real

,

-

,

Mathcad .

-

-

Must be vector

-

No scalar value

.

-

Must be scalar

No matching Given

,

-

Given -

,

, identity.

,

. Find Given.

Minerr

, ,

-

, .

Not a name

,

,

Mathcad

-

root.

. Mathcad Only one array allowed

-

, .

Overflow

,

-

, Mathcad (

Significance lost

10307).

,

-

, .

Stack overflov

-

-

Mathcad. Э

.

58

А

.

.

.

.

Subscript too large

-

, Mathcad.

,

. Too few arguments

-

.

, .

Given с , -

Find

,

Too few constraints

-

. . ,

Too few elements

,

-

. .

-

-

Too few subscripts

. ,

-

.

Too large to display

,

-

,

Mathcad.

. Too many arguments

-

.

, .

Too many constraints Too many points

-

. Mathcad .

, -

59

А

.

.

Too many subscripts

.

.

.

. Undefindet

,

-

(:) . Э

, ,

.

(=)

, Unmatched parenthesis

. , .

, , Wrong size vector

n

-

2 ,

, Mathcad

, fft n 1+2 0.

1. ifft

, ,

n-

, -

ORIGIN

.

1. 2. 3. 4.

Mathcad. Mathcad. . . Mathcad 7 Pro. . . Mathcad PLUS 6.0 , 1996 5. Mathcad PLUS 6.0. , Windows 95. . — . « », 1996.

.: « .

-

», 1998 .:

-