339 26 742KB
Russian Pages 59 Year 2000
-
MATHCAD Ы
., . . . . .
-
, 2000
2
681.3.06
Mathcad. . . .
, . . : . . .,
©
, 2000
, . . ..
. .
, . .
.
3
4 1. 1.1 1.2 1.3 2. 2.1 2.2 3.
, 3.1 3.2
4.
5 .................................................................................... 6 ..................................................................................... 6 Mathcad................................................................................ 7 Mathcad 10 Mathcad ............................... 10 Mathcad....................................................................................... 11 11 ................................................................. 11 ............................................................................ 12
, 13 4.1 4.2
............................ 13 ....................................... 15
5.
15 5.1 :................................................................................... 15 5.2 ....................................................................... 15 6. 16 6.1 (Resource Center)..................................... 16 6.2 Quick Sheets................................................................................................ 17 7. 18 7.1 № 1………………………………………………...18 7.2 № 2………………………………………………...20 7.3 № 3………………………………………………...24 7.4 № 4………………………………………………...26 7.5 № 5………………………………………………...29 7.6 № 6………………………………………………...31 7.7 № 7………………………………………………...32 7.8 № 8………………………………………………...38 7.9 № 9………………………………………………...41 7.10 № 10……………………………………………...18 45 59
4
Mathcad ,
,
.
Mathcad . Mathcad .
.Э
Mathcad
, . ,
,
, Mathcad
.
Mathcad
♦
Windows:
♦
,
, ,
♦ ♦ ♦ ♦
.
. . . ,
.
,
♦
,
. ,
Э
♦
,
,
– -
,
. , ,
♦ ♦ ♦
-
,
,
-
,
,
. . .
, :
,
,
, ,
♦
,
,
-
. .
5 ♦
,
. -
Mathcad 8. я
1.
Windows –
Mathcad .
-
, (Mathcad) , .
(
).
–
. .
–
/
.
.
–
,
. (
-
.1).
.1.
Mathcad Mathcad ,
-
, . Mathcad
-
6 .
Mathcad –
. . Mathcad . / . Mathcad
, ,
. .
/
Mathcad –
,
. .
,
, . ,
, Mathcad. я
1.1
1 2
3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. – 19. 20. -
4
5
6
7
8
9
10 11
14 15 16
17 18
19 20
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Internet; ,
( ; .
1.2
-
12 13
;
Excel);
-
7
-
;
-
;
-
;
-
;
-
;
-
.
1.3
Mathcad
♦ ♦ ♦
:
Mathcad ; ; .
: ……– –
. . . . .
–
…-
,
-
. –
-
. …–
. Mathcad.
– -
. . –
. -
.
-
. ….
–
. –
. .
…-
.
8 …-
. ……-
. -
. …-
-
. Windows –
–
.
Mathcad, (
–
)
-
. /
–
.
–
. … .
– ….
А
. … .
…-
“
Mathcad
”
-
. .
– ……-
. . .
….
–
-
– . .
– ……. Excel). ….
. . (
Internet. ,
Windows –
-
9 -
….
-
…( …-
,
. .). (
,
. .). (
…-
,
. .). .
… …-
,
. .
-
,
– . ,
–
.
. /
-
…. .
– –
, . .
– А
,
.
– . .
– … -
,
,
(
– ,
,
-
). ,
–
-
, . -
– . ,
–
. ,
– . .
-
10 ,
. – ,
(
-
,
Z–
, ). –
(
, –
,
). (
). … (
-
,
. .),
. -
. –
,
Mathcad
.
я Mathcad
2. 2.1
Mathcad
: 1.
ё
.Э
, .
2.
,
ё
.
-
. 3.
,
. . :
1.
,
-
. . 2.
, .
.
3.
, . :
1. 2.
. , .
11 3.
,
.
, .
–
4.
-
. :
1. 2.
. . :
1. 2. 3.
. . –
-
. 2.2
Mathcad
(
)
–
,
. .
. – ,
-
.
. ,
,
. . .
-
[Ins]. 3.
,
3.1
: 1. 2.
ё
. . .
3.
. .
ё
,
. 4. Enter,
-
ё
,
ё
ё. .
12 : 1.
ё
.
[→]
[←]
. 2.
. ,
-
[BkSp]. :
1. 2.
. ,
-
. 3.
,
.
: 1. 2.
,
. .
: 1. 2. 3.
.
ё
Mathcad. . :
1. 2. 3.
. . ,
.
-
. 3.2
Ф
,
,
,
,
:
1. 2. 3.
. "OK" . . :
1. 2. 3.
ё
. . , .
-
13 : 1. 2.
. .
.
3.
,
,
-
. 4. 4.
. ,
-
4.1
,
,
-
.
, :
1. 2.
.
ё
[ : ], [ := ]
.
3.
. Mathcad
.
Для с да я: ♦
-
,
[;] .
1. -
, ♦ ♦ ♦ ♦
; -
[ ^ ]; -
[ . ];
-
[ [ ];
,
. .-
,
-
. ,
ё
ё
, 1. 2.
.
,
: . ,
.
14 3.
[ : ], [ := ]
.
4.
. ,
,
1.
:
,
-
. 2.
[ = ],
Mathcad -
. [F9]. ,
ё
,
:
1.
ё
, - [↑],
. -
. 2. 3.
, [Ins]
. ,
ё
,
.
: 1.
ё
, .
ё
,
-
. 2. 3.
[BkSp],
. . :
1. 2. 3.
. [']
.
[Del], :
1.
ё
,
.
- [↑],
.
2. 3.
[Ins].
. ,
,
.
-
[BkSp].
: 1.
, .
,
-
15 2. 3.
, .
ё
, .
4.
,
-
. 4.2
Ф
,
,
,
,
:
1. 2.
. Variables
Constants .
3.
"OK" . . ё
:
1. 2.
. .
5. 5.1
:
1. 2.
,
,
-
. 3. 5.2
.
F9,
Ф
: 1. 2.
. ,
.
3.
. :
1. 2.
. .
16 : ё
1. 2.
,
. . Mathcad
. , . .,
,
-
: ё
1. 2. 3.
. . .
Ц
6.
, . .
Э
Mathcad. Mathcad ,
ё
,
ё . .
♦ ♦ ♦ ♦ ♦
.
Overview – Mathcad, Getting Started – Advanced Topic – Quick Sheets Reference Tables – , ♦ Mathcad in Action – , ♦ Web Library – Mathcad. ♦ Collaboratory – Internet -
. Mathcad. . ,
-
. . , Mathcad. Internet
Э
Mathcad. ,
,
-
qsheet.hbk. я
6.1
Ц
(Resource Center)
-
. -
Internet. -
-
. -
.
17
-
.
.
-
. ,
.
. -
.
. 6.2
.
Quick Sheets
Ш
Quick Sheets
-
ё , , Mathcad,
Mathcad
-
. . Ш ё ,
,
,
. ,
, Mathcad
. , -
READPRN. ,
READPRN. Ш ,
,
-
.
. : , Mathcad.
-
.
,
Ш
, . -
18 . Э . Ш . : My Formulas ( (
)
My Hotlinks
).
7.
. я
7.1
№1
«
»
.
:
-
. , , . .
MathCAD .
. . .
. 3.
.
-
. ,
–
. ,
-
. . 4. MathCAD
. : 2 ⎞ ⎛ 9x − 9x ⎛ ⎜1 + ⎟ * ⎜⎜1 − 3x + 1 ⎝ 3x − 1 ⎠ ⎝
2
⎞ ⎟⎟ + 1 ⎠
:
.
:
19 1.
: )
Insert
Text Region
-
“. ) )
. .
2.
-
, . .
.
, ,
.
3.
,
-
.
4. 5.
Simbolics
Simplify.
–
(
Simbolics
Evaluation Style).
. .
1.
1
2.
3.
4.
x. ( z 2 a .b
a .b
2
2)
2
2 3.x 3.x 9.x 1
1
3
2.x 3.x
4 . z. ( x 2 . z )
2.a .b .c
2 b .c
3 3 : a −b a −b
2 a .c
a .c
2
b .c
2
-
20
5.
x. ( z
1)
6. 2
x
2 . z. ( x z)
2
3.x 7
2 2 ( x 1) . x
x 1
7. 8.
x. ( z
2)
2
9. 2
x
4 . z. ( x 2 . z) 6.x 2
2 2 ( x 1) . x
10.
2 a .b
a .b
2
2.a .b .c
2 b .c
я
7.2
2 4 . x. ( x 4 )
(2
x)
x 1
2 a .c
a .c
b .c
2
2
c
2 c .a
№2
«
» :
-
. ,
A*X=B. -1
X=A *B. MathCAD X
lsolve(A,B),
. – –
. .
21 ,
, :
-
, ,
, -
.
: :
1.
ORIGIN
.
22 2. 3.
. . ,
.
4.
,
.
5.
.
ORIGIN 1 1 2 3 1 3 2
A
7 b
1 1 1
Δ1
7 2 3 Δ1= 3
5 3 2 3 1 1
x1
Δ1
3
Δ = 3
A
1 7 3
Δ2
x1 = 1
Δ
Δ
5
1 5 2
Δ2= 0
1 3 1 Δ2 Δ
x2
x2 = 0
1 2 7
Δ3
1 3 5 1 1 3
x3
Δ3 Δ
Δ3= 6 x3 = 2
(
-
) : 1. 2. 3.
ORIGIN
. -
. –
aug-
ment(A,b). 4.
–
rref(Ar).
5.
– trix(Ag,1,3,4,4).
6. -
.
subma-
23
ORIGIN 1 1 2 3 A
7
1 3 2
b
1 1 1 Ar
5 3
augment ( A , b )
Ar =
1 2 3 7 1 3 2 5 1 1 1 3
Ag
Ag =
rref( Ar )
1 0 0 1 0 1 0 0 0 0 1 2
x
submatrix( Ag , 1 , 3 , 4 , 4 )
x=
1 0
A .x b =
,
0 0
2
1.
0
,
-
. 2.
. .
0.005 0.004 0.150
1. A
2. A
0.090 0.033 0.0067 0.098 0.0150 0.033 0.050
0.057
0 0
B
0.098 0.041
0.015 0.012 0.250 0.100
0.388
0.070 0.033 0.020 0.075 0.350 0.100 0.075 0.110 0.0086 0.200 0.233 0.075
B
A
0.183
2.857 0.100 0.300 0.025
0.084 1.357 0.149
0.010 0.008 0.200 0.050
6.
7. A
0.080 0
0.013 0.050
0.250 0.067 0.067 0.069
0.186 B
0.126 0.646
0.0057 0.150 0.267 0.050
0.0086
0.020 0.016 0.300 0.150
0.662
0.060 0.067 0.027 0.100 0.450 0.133 0.080 0.139 0.011 0.250 0.200 0.100
B
0.029 2.312 0.379
24 3.
0.025 0.020 0.350 0.200 A
4. A
5. A
8.
1.008
0.050 0.100 0.033 0.125
B
0.550 0.167 0.083 0.161
0.212 0.700
0.035 0.028 0.450 0.300
1.918
0.030 0.167 0.047 0.175
B
0.750 0.233 0.088 0.195
0.788 6.611
0.045 0.036 0.550 0.400
3.117
0.950 0.300 0.090 0.220 0.026 0.500 0.033 0.225
10.664
A
B
0.465 4.940 1.111
0.040 0.032 0.500 0.350
2.481
0.850 0.267 0.089 0.208
B
1.182 8.520
0.023 0.450 0.067 0.200
2.205
0.050 0.040 0.600 0.450
3.825
0.267 0.067 0.250
0
B
1.050 0.333 0.091 0.230 0.029 0.550 0
2.888
я
7.3
1.646
10.
1.427
0.017 0.350 0.133 0.150
0.020 0.200 0.053 0.200
A
1.613
B
0.650 0.200 0.086 0.179
9.
0.020 0.400 0.100 0.175
0.010 0.233 0.060 0.225
0.040 0.133 0.040 0.150
A
3.507
0.014 0.300 0.167 0.125
0.030 0.024 0.400 0.250
0.250
2.181 13.045 3.661
№3
«Ч
» :
.
я
. ,
,
-
.
.
F(x)=0 root(
,
). Э
-
, 0.
,
.Э
,
. :
. x1. root.
-
25 я
я:
1. 2. 3. 4.
. . root. . a3
1 a3 . x
3
F( x) x
a2
0
i
6 a2 . x
2
21
a0
52
a1 . x a0
root ( F( x) , x)
x1 1
a1
x
1
1.i
x1 = 4 x2
root
F( x) x x1
x3
root
З
F( x) ,x ( x x1) . ( x x2)
x3 = 1
,x
x2 = 1 + 3.464i
3.464i
: .
F(x)=a3*x3+a2*x2+a1*x+a0
№ 7.1.1.1.1
1 2 3 4 5 6 7 8 9
a3 2 34 5 -34 4 6 -8 -10 5
a2 -8 -3 -4 67 4 12 -24 -1 32
a1 15 23 27 -3 45 12 26 84 -34
a0 -30 48 23 11 22 35 -47 -2 8
26 10
7
17 я
7.4
25
48
№4
«Ч
» : . .
,
Given –
– :
Given
find find
minerr
minerr ,
. . -
. find(v1,v2,…,vn) – ; minerr(v1,v2,…,vn) – . : я
1.
я
x2=3.
x=10
2.
– .
3. . 4.
minerr
x
10 Given 2
x
3
x0
Find( x)
.
27
x
10 Given 2
x 3 x0 x
Find( x) x0 = 1.732
10 Given 2
x 3 x1
Minerr( x)
x1 = 1.732
. я
1. 2.
я
. , -1,7
8+3
^2
+4,8
1. 2. 3. 4.
x=0, y=0. . . .
я x
я
я
6 , 5.75 .. 6
x 8
2 3 .x 10
5
40 34 28 22 16 10 4 2 8 14 20
0
x
5
10
28
x
0 y
0
x
Given 2 y x
y 8
3.x
Find( x, y )
x0 y0
x0 = 2.895 2
x
3 x0 y0
y
x< 0
я x0 y0
1.702 2.895
3 . x0 = 2.895
8
0
=
Given
Find( x, y )
x0 y0
я x> 0
2
y x =
y
y 8
3.x
4.702 22.105
З В
я
я
. .
.
.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
я
. . . . . . . . . .
29 я
7.5
№5
я
«
»
: . . .
x1, x2,…, xn,
f(x1,x2,…,xn)=c1x1+c2x2+…+cnxn ,
-
ai1x1+ai2x2+…+ainxn=bp,
i≠k≠p
. xj>=0 f(x1,x2,…,xn)
.
: f(x,y)=2x+3y x+y=4, 2x+y>=5, я
x>=0, y>=0.
я
1.
.
2.
, ( )
3.
. .
30 x
y 5
x
2 .y 4
x
5 1.
y1 ( x )
x
2
x
1.
y2 ( x )
2
2 .x
y 5
2 .x
3 .y c
2
2 .x 2.
5
5
y3 ( x ) 1.
x
3
c
c
3
x
2
2 .x
7
5
y4 ( x )
2.
1.
x
3
c
3
5
y1 ( x ) y2 ( x ) y3 ( x )
4 3 2
y4 ( x ) 1
0
1
2
3
4
5
x
я Given
я
x 2.y 4 2.x y 5 f( x, y )
Find( x, y )
2.x 3.y
я
. x+2=4, 2x+y=5
2 1 f( 2 , 1 )
fmin
fmin = 7 7,
я
x=2,
y=1. fmin=f(2,1)=7.
: f(x,y)=ax+by .
. :
-
31
7.1.1
1 2 3 4 5 6 7 8 9 10
f(x,y)
7.1.1.1.3
3x+2y 3x+2y 3x+2y 3x+2y 3x+2y 2x+5y 2x+5y 2x+5y 2x+5y 2x+5y
x+y=7
x+2y>=5 x+2y>=7 x+2y>=8 x+2y>=7 x+2y>=5 x+2y=3 2x+y=0 x>=0 x>=0 x>=0 x>=0 x>=0
№6 ”
:
, ,
,
,
. . В
Sin(x) Cos(x) Exp(x)cos(x) X+cos(x) tgx
10
Sec(x)
f(x) lnx 1+1/x Exp(x) e−x
2
-
MathCAD.
1:
№ 1 2 3 4 5 6 7 8 9
y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0 y>=0
F(x,y)
x + y2 = 4 2
x2 − y2 = 4
( x − 3) 2 + y 2 = 4
cos( x) 2 + sin( y ) 2 = 1
(x+y)y=2 Xy+x+y=4 X+cos(xy)=1 x + y2 = 4
( x 3) 2 + y 2 = 4
x2 y2 + =1 3 4
-
32 №7
7.7 ”
”
MathCAD
:
. . -
. -
, :
.Э
,
,
. – (
,
), ,
-
, .
, ,
,
, , ,
(
-
, ). .
MathCAD
:
linterp(VX,VY,x) –
. VX
VY -
. (
10)
. . .
, .
, .
-
,
, , : spline —
( ).
MathCAD . :
-
33 cspline(V ,VY) —
VS
;
pspline(V ,VY) —
VS
;
lspline(V ,VY) —
VS
-
. , interp(VS, VX, VY, ) VS, VX, VY . , cspline, spline y(x), ( ). , y(x) c
y(x) .
-
lspline
VX
VY
-
interp.
y(x). , V
(
VY)
-
. ,
y(x)
y(x) = a + b⋅x . y(x). : (V ,VY) — interp(V ,VY) — s1
—
; a (
); —
(VX, VY) ).
b (
. MathCAD . : F( ,
1,
2,…,Kn) 1⋅F1(
,
=
2⋅F2(
1⋅F1(
, ),
),…,
)+
2⋅F2(
n⋅Fn(
) + ... +
), .
n⋅Fn(
).
34
1infit(V ,VY,F). Э
, , VX VY, F1( ), F2( ),…, Fn( ),
.
-
F . .
MathCAD
:
Regress(VX,VY,n)
VS,
inn-
terp(VS,VX,VY,x), « V
, ,
»
-
,
regress
,
. VS, V .
-
VY.
— .
1 ss(V ,VY,span). Э terp(VS,VX,VY,x)
-
VY)
, . . , , — in( -
span>0 (
- 0,75). .
span, span
regress(V ,VY,2). . MathCAD
, —
. z, ( , ) .
.
: gress( ,Vz,n) — interp(VS,Mxy,Vz,V)
, n-
m⋅2,
x , ;
z-
,
y.
, Vz. — Vz — mm ,
-
35 1 s( ,Vz,span) — ; 1nterp(VS, ,Vz,V) — VS ( regress x y ,
loes(VX,VY,span), z , Vz
1 ss)
V(
z). . F( , 1, 2,..., n),
. ' genfit(VX,VY,VS,F). Э F, F( , 1, 2,..., n)
.
F
,
VS
. ,
. . . .
MathCAD (
smooth ). Medsmooth(VY,n) m, n , m); ksmooth(VX,VY,b) -
: m
(n
n-
VY, . VX
.
b(
(b x); supsmooth(VX,VY) -
n-
VY,
.Э -
kk. V V
VY - n. .
data -
,k-
-
VY - n)
dikt(data,k,N), N.
36
N
, . . (
-
)
.
: X := ( 10 12 13.5 15 17 19 20 22 25 30 )
T
Y := ( 10 11.5 12 13 14.7 12 12.4 15 15.8 20 )
N := 9
i := 0 .. N
T
x := X0 , X0 + 0.1 .. XN
y ( x) := linterp( X , Y , x)
y ( 12) = 11.5
20 Yi 15
y( x)
10 10
20
30
Xi , x
. x = N + 0.55 ,
.
y=f(x), у
, N–
. .
1. Y 2. Y 3. Y 4. Y
1 0.686
1.1 0.742
1.2 0.767
1.3 0.646
1.5 0.774
2 2.312
2.1 2.251
2.2 2.418
2.3 2.752
2.5 2.7
3 4.615
3.1 4.591
3.2 5.13
4 8.472
4.1 8.805
4.2 9.096
3.3 5.481 4.3 8.993
3.5 5.553 4.5 9.312
1.4 0.807 2.4 2.459 3.4 5.492 4.4 9.465
1.6 0.97 2.6 3.022 3.6 5.471 4.6 9.771
1.7 0.932 2.7 3.079
1.8 0.936 2.8 2.42
1.9 0.978 2.9 2.669
3.7 5.727
3.8 5.798
3.9 6.11
4.7 9.61
4.8 9.722
4.9 11.41
2 1.048 3 3.241 4 6.605 5 10.28
37 5. 5 12.36
Y 6.
5.1 13.63
5.2 13.3
5.3 13.15
5.5 13.48
5.4 14.24
5.6 14.52
5.7 14.88
5.8 15.25
5.9 15.34
Y
6 17.63
6.1 19.75
6.2 19.79
6.3 18.81
6.5 19.87
6.4 21.12
6.6 20.21
6.7 19.49
6.8 20.15
6.9 20.51
7 21.29
Y
7 25.24
7.1 25.13
7.2 25.67
7.3 26.63
7.5 26.75
7.4 27.23
7.6 26.49
7.7 26.88
7.8 27.23
7.9 28.07
8 27.79
Y
8 30.53
8.1 34.22
8.2 34.23
8.3 34.11
8.5 33.6
8.4 34.06
8.6 34.5
8.7 35.83
8.8 35.68
8.9 35.44
9 35.67
9 41.74
9.1 42.24
9.2 43.88
9.3 42.17
9.5 43.7
9.4 45.04
9.6 42.46
9.7 45.72
9.8 44.06
9.9 45.87
10 44.95
10 49.76
10.1 51.92
10.2 50.08
10.3 52.38
10.5 53.41
10.4 54.96
10.6 52.77
10.7 54.12
10.8 55.48
10.9 55.69
11 56.2
6 15.16
7.
8.
9. Y 10. Y
-
y = f (x)
(
. 1). x = N + 0.55 ,
у
,
N–
-
, ,
. :
1. y = a ⋅ x + b; 2. y = a + b ⋅ x + c ⋅ x 2 ; 3. y = a0 + a1 ⋅ x + a2 ⋅ x 2 + a3 ⋅ x3 ; 4. y = a + +
b c ; x x2 b c d 5. y = a + + 2 + 3 ; x x x 6. y = a + b ⋅ ln(x);
7. y = a + b ⋅ cos( x) + c ⋅ x 2 ; 8. y =
1 ; a + b ⋅ tg ( x) 2 1 9. y = a + + c ⋅ x2 ; b ⋅ log( x)
10. y = a + b ⋅ sin( x) 2 + c ⋅ x 3 . z = f ( x, y )
-
( –
, .
X, Y z
.
.).
x = X N + 0.55 , y = YN + 0.3 5,
N
38
1. 2. 3. 4. 5. 6. 7. 8.
z = sin( x + y );
z = cos( x + y );
sin( x + y 2 ) − z = 0; z = tg ( x + y );
z = sin( x + 0.5 ⋅ y ) 2 ;
ln( x + y ) − z = 0;
1.5 ⋅ x ⋅ y − ( x 2 + y 2 ) − z = 0;
z = x 2 ⋅ y + sin( x + y ); 3⋅ x ⋅ y 9. 2 2 − z = 0; x +y
10. z = x ⋅ y + cos( x + y ). №8
7.8 ”
”
-
:
MathCAD. . MathCAD
.Э
,
-
-
( ) .
,
,
, .
,
MathCAD. ( ) MathCAD 13 : rkadapt, Rkadapt, rkfixed, Bulstoer, bulstoer, bvalfit, multigird, relax, sbval, Stiffb, stiffb, Stiffr stiffr. . rkfixed – . , , rkfixed . , .Э : -
39 (Stiffb, Stiffr), (Rkadap).
(Bulstoer) (
,
.
),
,
,
Bulstoer,
rkfixed. ( ,
,
-
,
-
. ),
, ,
.
Rkadap.
, ,
Rkadap ,
. y=A⋅x,
, ,
,
.
-
A–
, : Stiffb (r).
Stiffr. , . : sbval bvalfit.
,
(b)
-
(
) : bvalfit, multigird, relax, sbval. QuickSheets,
-
. 3.
.
-К
⎛ 0⎞ ⎟ ⎝ 1⎠
X := ⎜
μ := −0.1
⎡ μ ⋅ X0 − X1 − ⎡⎣ ( X0) 2 + ( X1) 2 ⎤⎦ ⋅ X0 ⎢ D( t , X) := ⎢ μ ⋅ X + X − ⎡ ( X )2 + ( X )2 ⎤ ⋅ X 1 1 ⎦ 1 0 ⎣ 0 ⎣ Z := rkfixed( X , 0 , 20, 100, D)
n := 0 .. 99
В
⎤ ⎥ ⎥ ⎦ я
1
Zn ,1 Zn ,2
0
1
0
20
40
60 n
80
100
40
:
y ( x0 ) = y0
y ′ = f ( x, y ) ,
[ x0 , xN ]
-
.
,
h, 2h
xN > x0
h/2.
-
.
№ 1 2 3 4 5 6 7
F ( x, y, y′) = 0
y (0) = 0.5
(e x + 1)dy + e x dx = 0 y ln y + xy ′ = 0
y (1) = e y (0) = −tg 2
4 − x 2 y ′ + xy 2 + x = 0
y (1) = arctg (2 − e)
2 − ex dx = 0 cos 2 x (1 + e x ) yy ′ = e x y ′ sin x = y ln y
3e x tgydx +
y (0) = 1
⎛π ⎞ y⎜ ⎟ = e ⎝2⎠ y (1) = 1
xdx ydy − =0 1+ y 1+ x
8
(1 + y 2 )dx = xdy
9
y ′ sin x = sin y
10
3( x 2 y + y )dy + 2 + y 2 dx = 0
⎛π ⎞ y⎜ ⎟ = 1 ⎝4⎠ ⎛π ⎞ π y⎜ ⎟ = ⎝2⎠ 2 y (0) = 1
y1′ = f1 ( x, y1 , y 2 ) , y 2′ = f 2 ( x, y1 , y 2 ) , y1 (a) = y1,0 , y2 (a) = y2, 0
-
[ a , b]
,
№ 1 2 3 4 5 6 7 8
f1(x,y1,y2) x+y1 siny2 xcos(y1+y2) siny1cos2y2 cos(y1y2) y2lnx 2y1/y2 y1+y2
f2(x,y1,y2) (y1-y2)2 cosy1 sin(y1-y2) cosy1cosy2 sin(y1+y2) y1+y2 2y1-y2 1/(1+ y1+y2)
h=0.1. h, 2h
h/2.
y1(a) 0 0.5 -0.6 0 0 -2 1 0
y2(a) 1 -0.5 2 0 0 -1 1 0
a -1 -1 2 -1 0 1 1 0
b 1 3 5 3 2 4 3 4
41 9 10
arctg(xy2) sin(x2+2y2)
siny1 cos(xy1) я
7.9
0 0
0 0
№9 ,
“
-2 0
1 4
я ”
. .
F ( X, Y) := X + Y 2
,
2
-
. X
Y:
a := −5
b := 5
X
M := 25 N := 25 i := 0 .. M j := 0 .. N Xi , j := a + ( b − a) ⋅
i M
,
Yi , j := a + ( b − a) ⋅
(
Zi , j := F Xi , j , Yi , j
j N
Y:
)
( X , Y , Z)
. 1. 2. 3. 4. 5.
Z Z Z Z Z
= e −(X +Y ) = X 2 −Y 2 = X 2 + Y 2 − XY = ( X + Y )2 = ( X − Y )2
6. Z =
2
2
X 2 +Y2
7. Z = e 2 2 15. Z = tg ( X π−Y ) X 2 +Y 2
8. Z 9. Z 10. Z 11. Z 12. Z 13. Z
= 3 X 2 +Y 2 = XY = e XY = e − XY = e − ( X +Y ) = cos( XY 2π )
14. Z = sin( X
+Y 2
π
2
)
42
я
7.10
№ 10
«
»
Y = R cos(α ) sin(φ ) X = R cos(α ) cos(φ ) Z = R sin(α ) .
:
Z R Y X
F ( X ,Y , Z ) = 0 , .
α
0
M := 25 N := 50 i := 0 .. M j := 0 .. N α i :=
π⋅ i
φj :=
Xi , j := tan ( α i) ⋅ cos ( φj) M
2⋅ π⋅ j
Yi , j := tan ( α i) ⋅ sin ( φj) N
π,
Zi , j := tan ( α i)
α ,φ , R , φ
0
X,Y,Z,
-
2π .
2
( X , Y , Z)
я я
:
43 Y = r sin(φ ) X = rсos(φ ) Z =Z. Z h R
r
Y
M := 25 N := 50 i := 0 .. M
j := 0 .. N
X
Xi , j := Ri , j ⋅ cos ( φi , j)
r := 5 φi , j :=
Yi , j := Ri , j ⋅ sin ( φi , j)
2⋅ π⋅ j N
Zi , j := r ⋅
i M
Ri , j := Zi , j
( X , Y , Z)
В
:
1. 2.
R=4. я
я
R = cos(α ) .
,
-
3.
45 .
4. R=4
h=10.
5. 45 6. 7.
OZ. К OX. К
,
я
,
я
h=10.
я : A(0,0,0) я : A(0,0,0)
я B(1,0,2). B(1,0,2).
я
-
44 8.
OZ. К
,
я
я : A(0,0,0)
я B(1,0,2).
Z ( X , Y ) = e − ( X +Y ) . я a=1, b= 2
9. 10. 2, c=3.
2
45
1
я
Mathcad
ё
,
.
(
[ " ])
-
. ( )
.
! "
ё .
" # $ & ' ,
-
ё
. . .
. . , . -
,
. -
;
. ? [ \ ^ | Ctrl+1 Ctrl+3 Ctrl+4 Ctrl+9 Ctrl+0 Ctrl+8 Ctrl+Ctrl+= Ctrl+6 Ctrl+Shift+4 Ctrl+Shift+3 Ctrl+Shift+?
. . . . . . . . . . . . . . . n-
.
46 ( )
n-
Ctrl+\ Ctrl+Enter
. .
. ( )
Windows. Windows
Alt+Esc Alt+Tab Ctrl+F4 Ctrl+F6 Alt+F4 Ctrl+R F1 F5 F6 F7 F9 Shift+F1
. . Mathcad. .
. . . . . . -
Mathcad. ( )
.
Ctrl+F9 Ctrl+F10 Ctrl+F5
. .
Shift+F5 Alt+BkSp
. .
Ctrl+C Ctrl+V Ctrl+X
. . -
Ctrl+U
. Ins
47 . 2
400
Mathcad
. ln(x)
,
. . ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
.
sin(z),
. :
–
;
z– m, n, I, j k – v, u , А – N– F– file – .
; ; v, –
;
; ; ; , .
, ,
–
.
angle(x, ) – ( ) ( , ). APPEND(file) – file.dat . APPENDPRN(file) – file.prn . augment(A, ) – , . bulstoer(v, 1, 2, , n, F, k, s) – , F 1 2, ; k s . Bulstoer(v, 1, 2, n, F) – , F v 2, . bvalfit(vl, v2, 1, 2, xi, F, LI, L2, S) – , F, vl v2 2, xi. il( ) – , .
-
v -
1 1
48 cfft(A) –
. ,
CFFT(A) – , cholesky(M) – T =L(L , – L. cnorm(x) –
.
.
,
. ,L–
-
.
.
cols(A) – complex – . condl(M) – cond2(M) – conde(M) –
. , ,
L1. L2. ,
. condi(M) – . corr(vx, vy) – csort(A, n) –
,
– vx
vy
( n).
cspline(vx, vy) – va vy. cvar(X, Y) – diag(v) – v. dbeta(x, si, s2) – dbinom(k, n, p) – P(x=k), k– dcauchy(x, I, s) – dchisq(x, d) – dexp(x, r) – dF(x, dl, d2) – dgamma(x, s) – dgeom(k, p) –
.
, Y. ,
β-
. .
. . -
-
. .
,
,
. -
dlnorm(x, μ, δ) – . dlogis(x, I, s) –
-
-
. dnbinom(k, n, p) – .
,
,
-
49 dnorm(x, μ, δ) –
-
. dpois(k, X) – dt(x, d) – dunif(x, a, b) –
,
,
. . -
dweibull(x, s) – eigenvals(M) – eigenvec(M, z) –
. . ,
-
z. eigenvecs(M) – .
, ,
eigen-vals.
erf(x) – . Find(varl, var2, ...) – varl, var2 ,... , . . fft(v) – ,v– n 2 , n – . n-l 2 +l. FFT(v) – , fft(v), . flo ( ) – , . . genfit(vx, vy, vg, F) – , , F U0, U1;, ... , un-i, vx vy. F , n+1 , f n , vx vy , vg – n n . geninv(A) – A, L*A=E, – n (n, L – n*m, A – m* n). genvals(M, N) – vi N– . M: M(x=vi* N* ). genvecs(M, N) – , , v, genvals. n, *x=v*N * . N . Given – , Find Minerr. hist(intervals, data) – . intervals , data – .
50 ,
intervals, .
data,
I0(x) – . I1( ) – . icfft(A) –
, ,
-
CFFT.
-
. ,
ICFFT(A) –
, linterp(vx, vy, x) – vx vy Ioess(vx, vy, span) –
cfft
.
,
interp , vx
vy.
-
span
. loess(Mxy, vz, span) –
,
interp
-
, Z(x, ) vz. span
.
Z
-
U–
-
, .
lsolve(M, v) – *x=v. lspline(vx, vy) – vx vy. lu(M) –
, : *M=L*U. L .
, . matrix(m, n, f) – , i=0, I, ... m j=0, 1, ... n. max(A) – mean(v) – median(X) – . medsmooth(vy, n) – m, vy – , min(A) – Muierr(xl, x2, ...) –
(i, j)-n
f(i, j), .
v. ,
vy ,n–
. . 1, 2, .... .
predict(v, m, n) – n . pspline(vx, vy) – vx vy.
.
, ,
v
m ,
-
51
Э
pspline(Mxy, Mz) –
Mz. -
interp. , . pt(x, d) –
.d–
. >0 d>0. punif(x, a, b) – ,b – . 0 0< 0, qexp(p, r) – >0, . 0< 0 – . rgeom(m, p) – m . 0< [1. rkadapt(v, xl, 2, acc, n, F, k, s) –
, . . , xl
2
, . –
F, n –
. Rkadapt(v, xl, 2, n, F) – )
,k -
F,
(
s , xl
2; n – . sbval(v, xl, x2, F, L, S) – , F, v– xl, x2. simplify – . slope(vx, vy) – b = + b* vx vy. sort(v) – v . stack(A, ) – , . . sfdev(v) – v. stiffb(v, xl, x2, , n, F, J, k, s) – stiff, F J. v – [xl, x2]; Bulirsch-Stoer . Stiflb(v, xl, x2, n, F, J) – stiff, F J. v – [xl, x2]; Bulirsch-Stoer. stiffr(v, xl, x2, , n, F, J, k, s) – stiff, F J. v – [xl, x2]; . Stiflr(v, xl, x2, n, F, J) – stiff, F J. v – [xl, x2]; . Yn(m, x) – m; – ;m– 0 100 δ( , ) – (1, = , 0, ? ; – ).
53 ( )– ( ) – 1,
-
. 0
>0,
(
).
я
3
Э
. ,
,
Mathcad
. ,
Mathcad
,
, ,
. ,
А
.
.
.
.
.
Array size mismatch
,
-
.
,
, .
linterp
Cannot be denned
.
-
Cannot take subscript
-
,
-
.
-
Cannot take subscript
,
-
.
-
Definition stack overHow
Did not find solution
(:=)
-
-
.
-
Mathcad .
,
•
MinerrFind.
Domain error
-
,
, -
54
А
.
.
.
.
.
Duplicate
-
.Э
-
, . Mathcad
Equation too large
. .
-
Mathcad
Error in constant
. Mathcad . .
: f( , , z ...).
Error in list ,
-
. -
Error in solve block
, ,
.
File error
READ READPRN.
, File not found
READ READPRN, .
,
Illegal array operation
-
.
, .
Illegal context
,
Mathcad.
, Illegal factor
, . .
Illegal func-
,
Mathcad
55
А . . tion name
.
. -
,
. Э
,
, :
,
6( ). *,
.
Mathcad
, ORIGIN
Illegal ORIGIN
ORIGIN
-
Incompatible units
Э
16 000 000.
ORIGIN.
Illegal range
Illegal tolerance
,
-
-
. ,
Root, TOL ™ 1
,
TOL Find Minerr, TOL ™ 0. TOL
.
,
-
, , . , .
Index out of bounds
( , ORIGIN > 0)
,
,
ORIGIN,
,
.
Invalid order
, 0
-
5
.
. Э
List too long ,
Mathcad,
, -
56
А
.
.
.
.
.
Misplaced comma
, . .
Missing operand
,
-
. Mathcad (
)
, -
Missing operator
.
Must be 3vector
-
,
-
. .
Must be array
Must be dimensionless
, ,
-
-
. , ( -
, -
. , cos ,
In)
. ,
Must be increasing
-
pspline, cspline, interp, linterp
(spline, -
hist).
. , Must be integer
,
-
,
identity
. Must be nonzero Must be positive
-
,
.
, -
, ,
.
57
А
.
.
.
.
-
Mathcad .
Must be range Must be real
,
-
,
Mathcad .
-
-
Must be vector
-
No scalar value
.
-
Must be scalar
No matching Given
,
-
Given -
,
, identity.
,
. Find Given.
Minerr
, ,
-
, .
Not a name
,
,
Mathcad
-
root.
. Mathcad Only one array allowed
-
, .
Overflow
,
-
, Mathcad (
Significance lost
10307).
,
-
, .
Stack overflov
-
-
Mathcad. Э
.
58
А
.
.
.
.
Subscript too large
-
, Mathcad.
,
. Too few arguments
-
.
, .
Given с , -
Find
,
Too few constraints
-
. . ,
Too few elements
,
-
. .
-
-
Too few subscripts
. ,
-
.
Too large to display
,
-
,
Mathcad.
. Too many arguments
-
.
, .
Too many constraints Too many points
-
. Mathcad .
, -
59
А
.
.
Too many subscripts
.
.
.
. Undefindet
,
-
(:) . Э
, ,
.
(=)
, Unmatched parenthesis
. , .
, , Wrong size vector
n
-
2 ,
, Mathcad
, fft n 1+2 0.
1. ifft
, ,
n-
, -
ORIGIN
.
1. 2. 3. 4.
Mathcad. Mathcad. . . Mathcad 7 Pro. . . Mathcad PLUS 6.0 , 1996 5. Mathcad PLUS 6.0. , Windows 95. . — . « », 1996.
.: « .
-
», 1998 .:
-