Die Vermessung des Kosmos: Zur geometrischen Konstruktion von urbanem Raum im europäischen Mittelalter [1 ed.] 9783412516987, 9783412516963


117 1 19MB

German Pages [342] Year 2020

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Die Vermessung des Kosmos: Zur geometrischen Konstruktion von urbanem Raum im europäischen Mittelalter [1 ed.]
 9783412516987, 9783412516963

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

DIE

Kerstin Geßner

VERMESSUNG DES KOSMOS Zur geometrischen Konstruktion von urbanem Raum im europäischen Mittelalter

Kerstin Geßner

Die Vermessung des Kosmos Zur geometrischen Konstruktion von urbanem Raum im europäischen Mittelalter

Böhlau Verlag Wien Köln Weimar

Gedruckt mit der Unterstützung des Förderungsfonds Wissenschaft der VG Wort.

Dissertation an der Kulturwissenschaftlichen Fakultät der Europa-Universität Viadrina in Frankfurt (Oder) | Disputation am 05.11.2018 Erstgutachter: Prof. Dr. Dr. Ulrich Knefelkamp Emeritus an der Europa-Universität Viadrina in Frankfurt (Oder) Zweitgutachter: Prof. Dr. Matthias Wemhoff Honorarprofessor an der Freien Universität Berlin Direktor des Museums für Vor- und Frühgeschichte Berlin, Landesarchäologe von Berlin Das Werk wurde für den Druck überarbeitet.

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://dnb.de abrufbar. © 2020 by Böhlau Verlag GmbH & Cie, Lindenstraße 14, D-50674 Köln Alle Rechte vorbehalten. Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Verwertung in anderen als den gesetzlich zugelassenen Fällen bedarf der vorherigen schriftlichen Einwilligung des Verlages. Umschlagabbildung: Die geometrische Konstruktion von der Neustadt von Brandenburg an der Havel – Ausschnitt aus dem Hedemann-Kataster der Stadt Brandenburg an der Havel aus dem Jahr 1724 (BLHA, Rep. 2 K 199 A.), modifiziert durch Verfasserin Satz: SchwabScantechnik, Göttingen Vandenhoeck & Ruprecht Verlage | www.vandenhoeck-ruprecht-verlage.com ISBN 978-3-412-51698-7

Inhalt Dank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Das urbane Phänomen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Forschungsgeschichtliche Aspekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Methodische Aspekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1. Zum mittelalterlichen Geometrieverständnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.1 Die pythagoreische Tradition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.2 Die platonische Tradition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.2.1 Die platonische Zahl- und Proportionslehre . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.2.2 Die Ontologie von Kosmos, Kunst und Geometrie . . . . . . . . . . . . . . . . . . . 49 1.3 Der christliche Neuplatonismus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.3.1 Die artes liberales und der mittelalterliche Bildungskanon . . . . . . . . . . . . . 53 1.3.2 Die mittelalterliche Zahlensymbolik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.3.3 Geometrie im Mittelalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2. Zum mittelalterlichen Städteverständnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.1 Die mittelalterliche Stadt: Versuch einer immanenten Begriffsbestimmung . . . . 76 2.2 Das Ideal der gebauten Stadtordnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.1 Die architektonischen Elemente einer idealen Stadt im Hoch- und Spätmittelalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.2 Die Stadt als gebaute Einheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.2.3 Die mittelalterliche Stadtbaukunst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.3 Der mittelalterliche Stadtgründungsprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.3.1 Gründungsurkunden und Gründungsmythen . . . . . . . . . . . . . . . . . . . . . . . 98 2.3.2 Naturraum, Maß und Geometrie als Parameter der städtischen ­Raumordnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.3.3 Die mittelalterliche Stadtvermessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 2.3.4 Das Stadtgründungsritual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3. Zur geometrischen Konstruktion von streng geometrischen und figürlichen Stadtgrundrissen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1 Die Symbolik urbaner Tetragonalität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1.1 Die Civitas Dei als Idealstadt des Hoch- und Spätmittelalters . . . . . . . . . . 117 3.1.2 Stadtgründung und Apokalypse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.1.3 Ausgewählte Stadtplananalysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.1.4 Die Symbolik der urbanen Tetragonalität: Zusammenfassung . . . . . . . . . . 151 3.2 Stadt und Kosmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3.2.1 Die mittelalterliche Lehre von Mikro- und Makrokosmos . . . . . . . . . . . . . 152 3.2.2 Die Analogie von Schöpfungs- und Gründungsakt . . . . . . . . . . . . . . . . . . . 156

6

Inhalt

3.2.3 Ausgewählte Stadtplananalysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3.2.4 Stadt und Kosmos: Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 3.3 Weltbilder: Die Stadt als mappa mundi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 3.3.1 Das mittelalterliche Weltbild im Spiegel des Kartenwerks . . . . . . . . . . . . . .204 3.3.2 Ausgewählte Stadtplananalysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.3.3 Die Stadt als mappa mundi: Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . 224 4. Die Geometrie der »gewachsenen« Städte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 4.1 Die urbane Wachstumsmetapher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 4.2 Ausgewählte Stadtplananalysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 4.2.1 Rothenburg ob der Tauber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 4.2.2 Worcester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 4.2.3 Wien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 4.3 Die gewachsene Stadt: Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5. Die Vermessung des Kosmos: Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 5.1 Auf einen Blick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 5.2 Summary: Measuring the cosmos. On the geometric construction of urban space in the European Middle Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Quellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Städteverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Tournay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 San Giovanni Valdarno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Bretenoux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Friedeberg/Strzelce Krajeńskie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Wolframs-Eschenbach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Würzburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Brandenburg an der Havel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Villingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Rottweil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Rothenburg ob der Tauber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Worcester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Wien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Personenregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Ortsregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

Dank Für die inhaltliche Diskussion und hilfreichen Anmerkungen danke ich Herrn Prof. Dr. Dr. Ulrich Knefelkamp, der als Inhaber der Professur für mittelalterliche Geschichte Mitteleuropas die vorliegende Arbeit im Wintersemester 2015/16 an der Kulturwissenschaftlichen Fakultät der Europa-Universität Viadrina in Frankfurt (Oder) als Promotionsschrift angenommen hat, sowie Herrn Prof. Dr. Matthias Wemhoff (Honorarprofessor an der Freien Universität Berlin, Direktor am Museum für Vor- und Frühgeschichte und Landesarchäologe von Berlin), der sich freundlicherweise als Zweitgutachter zur Verfügung stellte. Außerdem möchte ich meinem Lektor vom Böhlau Verlag Johannes van Ooyen für die konstruktive Zusammenarbeit danken und der Kommission der Förderungsfonds Wissenschaft der VG Wort GmbH für die Gewährung eines großzügigen Druckkostenzuschusses. Zudem wäre diese Studie ohne die schnelle und teilweise unkonventionelle Unterstützung zahlreicher MitarbeiterInnen in Archiven, Bibliotheken, Universitäten, Museen, Landesämtern und Stadtverwaltungen nicht möglich gewesen. Für ihre Hilfe danke ich besonders Etienne d’Alençon (Directeur, Archives départementales de Lot), Josef Chrást (Karls-Universität, Prag), Esau Dozio (Antikenmuseum Basel und Sammlung Ludwig), Heidi Dücker (Stadtverwaltung Wolframs-Eschenbach), Harry Erler (Stadtverwaltung ­Villingen-Schwenningen), Grzegorz Graliński (Historiker aus Strzelce Krajeńskie), Christopher Guy (Worcester Cathedral Archaeologist), Anne Longuet (Cartothèque de l’Institut national de l’information géographique et forestière), Christine Pomerantz (Responsable du Centre de ressources documentaires Aménagement, Logement et Nature), Clara Sanelli (Archivio di Stato di Siena), Till Ottinger (ULB Darmstadt) sowie Otto Wild (Bayerisches Landesamt für Digitalisierung, Breitband und Vermessung). Für die kostenfreie Überlassung einer Abdruckgenehmigung danke ich Udo ­Gentzen (Brandenburgisches Landeshauptarchiv), dem Wiener Stadt- und Landesarchiv, der Bibliothèque Nationale de France, Helga Tichy (Bayerische Staatsbibliothek München), Anna Villa (Biblioteca Vallicelliana di Roma), der Herzog August Bibliothek Wolfenbüttel, Josefine Albrecht und Dr. Pommeranz (Germanisches Nationalmuseum), Holger Scheerschmidt (Kartenabteilung der Staatsbibliothek Berlin), Dr. Maria Effinger (Universitätsbibliothek Heidelberg), Michaela Scheibl (Universität Graz), Frans Sellies (Universitätsbibliothek Utrecht), Femke van der Fraenen (Ghent University Library), Dr. Anne McLaughlin (The Parker Library, Corpus Christi College, Cambridge), Rolf Moissl (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg), Martina van Spankeren-­Gandhi (Stadtarchiv Rottweil), Martina Meyr (Leiterin der Städtischen Museen Rottweil), Frédéric Mongin (Bibliothèque de Reims), Cécile Gérard (Bibliothèque de Valenciennes), Maria Raffaelle de Gramatica (Archivio di Siena), Jean-François Delmas (Bibliothèque de Car-

8

Dank

pentras), Dr. Ute Feuerbach (Stadtarchiv Volkach), Emilio Buzzella, Prof. Dr. David Friedman, Arietta Ruß (Württembergische Landesbibliothek), Torsten Hoffmann (Webmaster von www.sonnenverlauf.de ) und Dr. Nigel Baker (University of Birmingham). Gedankt sei auch Christoph Körner (Theologische Fakultät Frankfurt/Main) für die Unterstützung bei den lateinischen Übersetzungen, Shivaun Conroy für die Übersetzung der Zusammenfassung in das Englische, Ilse Dittrich und Manfred Gutheins für die Hilfe bei Fragestellungen mathematisch-geometrischer Art, Thomas Jaeger (Westhafen-Verlag) für die Korrektur des Textes und das freundliche Angebot der Inverlagnahme des Manuskripts. Besonderer Dank gebührt Dr. Jette Anders, durch deren kompetentes, engagiertes und kritisches Korrektorat die Arbeit zahlreiche wichtige Impulse erfahren hat. Außerdem danke ich meiner Familie, allen voran meinen Eltern und meinem Bruder Prof. Frank Geßner, deren Beistand in schweren Zeiten eine wichtige Stütze war. Wertvolle Anregungen verdanke ich schließlich Dr. Annett Dittrich, die die Arbeit mit kritischem Blick und kreativem Input begleitet und korrigiert hat.

Das urbane Phänomen In Europa entstand der Großteil der heute bewohnten Städte im Rahmen eines Urbanisierungsprozesses, der zwischen 1100 und 1350 nicht nur das bereits in hohem Maße verstädterte Mittelmeergebiet, sondern auch die Mitte Europas und die wenig urbanisierte Peripherie des Kontinents erfasste. Nie wieder sind in der Geschichte so viele Städte gegründet worden1, denn trotz einer bevölkerungspolitisch und wirtschaftlich angespannten Lage wurde Europa in dieser Zeit mit einem dichten und flächendeckenden Netz aus urbanen Gründungen überzogen, das nicht nur aus Neugründungen aus sogenannter wilder Wurzel bestand, sondern auch aus zahlreichen Stadterhebungen nichturbaner Siedlungen mit dorf- und burgähnlichen Strukturen. Dazu kam die bauliche Reorganisation bzw. Überformung der Wehr- und Sakraltopographie bereits bestehender Städte, die aus antiken bzw. frühmittelalterlichen Gründungen hervorgegangen sind.2 Allein die Anzahl der hoch- und spätmittelalterlichen Neugründungen ist eminent: Schätzungen zufolge sollen in ganz Europa in weniger als 200 Jahren mehr als 5000 Städte gegründet worden sein.3 Die durch Stadtausbau und Stadtgründung ausgelöste Bauaktivität erreichte ein solches Ausmaß, dass sich der anfangs belebende Effekt auf Wirtschaft und Infrastruktur rasch amortisierte, ja sogar umkehrte: Obwohl Stadtherren Siedlungswilligen Anreize, wie die freie Verteilung von Parzellen oder den temporärer Verzicht auf Steuererhebung, Spann- und Frondienste, in Aussicht stellten, litten nicht wenige Neugründungen unter Einwohnermangel.4 Die Wirtschaftsleistung ambitionierter Neustädte blieb trotz großzügiger Subventionen in manchen Fällen so gering, dass die Bürgerschaft ihren Lebensunterhalt nicht in ausreichendem Maß decken konnte.5 Nur in Ausnahmefällen zahlte sich der durch den Stadtherrn in die Gründung investierte pekuniäre und logistische Aufwand noch zu seinen Lebzeiten aus. Dessen ungeachtet wird in der mediävistischen Fachliteratur bei der Diskussion um die Frage nach der Motivation der hoch- und spätmittelalterlichen Stadtgründungswelle häufig der ökonomische Aspekt herausgestellt.6 Diese vereinfachende Reduktion eines komplexen Kausal- und Sinn-

1 2 3 4 5 6

Vgl. Knefelkamp 2003, 56. Vgl. Braunfels 1976, 28 ff. Vgl. Blaschke 2007, 94. Vgl. Schwineköper 1977, 109 und 117. So wurde beispielsweise Aigues-Mortes, eine vom französischen König im Zusammenhang mit den Kreuzzügen errichtete Idealstadt, in wenigen Jahren vollständig verlassen, nachdem die königlichen Zahlungen ausgeblieben waren (vgl. Braunfels 1976, 132 f.). Die Herausstellung des ökonomischen Aspekts der städtischen Gemeinschaft ist vor allem dem großen Einfluss der Monographie Max Webers geschuldet, die 1921 veröffentlicht wurde (vgl. Weber 2000, 6 ff.; Ennen 1987, 78 ff.; Engel 1993, 20 ff.; Blaschke 2007, 91 ff.; Boerefijn 2010, 106 ff.).

10

Das urbane Phänomen

zusammenhangs wird der vielschichtigen ideellen Dimension des mittelalterlichen Städtewesens jedoch nur bedingt gerecht. Die enorme Dynamik der hoch- und spätmittelalterlichen Urbanisierungswelle wirkt bis heute spürbar nach. Seit dem Jahr 2008 wohnen weltweit erstmals mehr Menschen in der Stadt als auf dem Land, und die Verstädterung dauert stetig an: Für das Jahr 2050 wurde prognostiziert, dass über fünf Milliarden Menschen in Städten wohnen werden.7 Doch anders als im Hoch- und Spätmittelalter geht die moderne Urbanisierung nur in Ausnahmefällen mit systematischen Gründungen einher, sondern basiert auf der Erweiterung bestehender Agglomerationen. So sind städtische Neugründungen im 20. und 21. Jahrhundert ausgesprochen selten. Bei der letzten Stadtgründung in Deutschland handelt es sich um Eisenhüttenstadt, die erste sozialistische Planstadt der DDR, die im Jahr 1953 unter dem Namen Stalinstadt gegründet wurde.8 Kurz vor dem Zweiten Weltkrieg gründete Adolf Hitler neben Salzgitter die Autostadt Wolfsburg unter dem Namen Stadt des KdF-Wagens bei Fallersleben.9 Auch weltweit sind die Beispiele für urbane Neugründungen rar. Neben Brasilia, die 1922 gegründete und von Lúcio Costa projektierte Hauptstadt Brasiliens10, sind Chandigarh, die 1952 von Le Corbusier geplante Hauptstadt des indischen Punjabs11, und Naypyidaw, die 2005 gegründete Hauptstadt von Myanmar12, zu nennen. Angesichts der exzeptionellen Stadtgründungen beschränkt sich die moderne Stadtplanung in der Regel auf die Reorganisation von begrenzten urbanen Arealen sowie auf die Neuprojektierung von extraurbanen Wohn- und Wirtschaftsräumen. So entstehen an den Rändern der städtischen Zentren semiurbane Räume aus Vorstädten, Gewerbegebieten und Einfamilienhaussiedlungen, ohne dass eine übergeordnete planerische Hand die neuen Teilstädte in gestalterischer Hinsicht mit dem bereits urbanisierten Raum verbinden würde. Die Dynamik des sogenannten urban sprawl13 – der stetigen Ausdehnung der entgrenzten modernen Stadt – weicht nicht nur die historische Dichotomie von Stadt und Land mehr und mehr auf, sondern wirkt wie die bauliche Umsetzung literarischer Fiktionen von der Stadt als einem alles verschlingenden Moloch.14 Im Hoch- und Spätmittelalter war urbaner Raum dagegen klar definiert. Die Stadtmauer bildete nicht nur eine sichtbare Grenze zur nichturbanen Welt, sondern repräsentierte gleichzeitig einen eigenständigen Rechtsraum, an dessen Gesetze jede Person, die

  7 Vgl. Kessel/Reutlinger 2010, 145; Mieg 2013a, 6.   8 Vgl. Bernhardt/Reif 2009, 95.   9 Vgl. Schneider 1979, 48. 10 Vgl. El-Khoury/Robbins 2013, 59 ff. 11 Vgl. Kalia 2000, 139. 12 Vgl. Witzens 2009, 56. 13 Vgl. Cramer 2013, 19. 14 Zum »parasitären« Charakter der mittelalterlichen Stadt vgl. Padberg 1994, 91 ff.

Das urbane Phänomen

11

ein Stadttor passierte, gebunden war.15 Während dieser abgeschlossene städtische Mikrokosmos im juristischen Sinne durch das vom Stadtherrn festgelegte Stadtrecht geordnet wurde, gab die städtische Morphologie eine verbindliche räumliche Ordnung vor, indem sie die verschiedenen architektonischen Elemente zu einer geschlossenen baulichen Einheit verschmolz. Von der Stadtmauer klar umrissen und begrenzt, präsentierte sich die hochund spätmittelalterliche Stadt deshalb nicht als Summe ihrer einzelnen architektonischen Elemente, sondern als ein gebauter Kosmos, in dem jedes Bauwerk durch seine Position im Gesamtgefüge fest verortet war.16 Die Vorstellung von der Stadt als ein in sich abgeschlossener Kosmos ist vor dem Hintergrund der neuplatonisch-christlichen Lehre vom Mikrokosmos und Makrokosmos zu verstehen, nach der Mensch als ein Mikrokosmos und der Kosmos als ein Makroanthropus gedacht werden konnte.17 Diese platonische Analogie durchdrang im Hoch- und Spätmittelalter auch das Prinzip Stadt, was dazu führte, dass die drei Entitäten Mensch, Kosmos, Stadt im metaphorischen Denken untereinander frei austauschbar waren: Ebenso wie die Stadt und ihre Bürgerschaft als ein menschliche Körper vorgestellt werden konnte18, wurde die Stadt als Kosmos aufgefasst, der von Gott selbst geschaffen worden war.19 Die Isomorphie von Kosmos, Mensch und Stadt basierte auf der Vorstellung, dass alle drei Entitäten auf demselben Ordnungsprinzip gründen, wodurch zwischen ihnen ein verbindlicher Seinszusammenhang im ontologischen Sinn hergestellt wurde. Ein Kosmos ohne Ordnung war deshalb nach vormodernem Verständnis undenkbar20 – und das nicht nur im etymologischen Sinne, denn im griechischen Wort κόσμος ist die Doppelbedeutung von Welt und Ordnung bereits enthalten.21 Nach neuplatonisch-christlicher Auffassung basierte die kosmische Ordnung nämlich maßgeblich auf geometrischen Grundlagen, die Gott im Rahmen des primordialen Schöpfungsaktes geschaffen hatte.22 Das mittelalterliche Gottesbild vom Schöpfer als einem geometer, als einem Vermesser, der durch einen Zirkelschlag den Kosmos erschuf, war in seinem Kern ein christliches Amalgam aus platonischem Demiurgen-Konzept und alttestamentlichem Gott, der die Welt nach Maß, Zahl und Gewicht geordnet hatte.23 Bei jeder Stadtgründung wurde dieser göttliche 15 Vgl. Rykwert 1976, 135; Wagner 2005, 301. 16 Vgl. Braunfels 2012, 45; Bandmann 1972, 73; Bacher 1988, 9 und 25; Leitgeb 2012, 63. 17 Isidor (Sententiarum I, VIII, 1). Vgl. von Korvin-Krasinski 1960, 87 f.; Duby 1979, 131; Lanczkowski et al. 1991, 745 ff.; Mörschel 2003, 138 f.; Edson et al. 2011, 41; Geßner 2015a, 5 ff. 18 Der dem mittelalterlichen Denken vertraute Vergleich findet sich u. a. bei Johannes von Salisbury formuliert, der im Buch V und VI des Policraticus den Stadtstaat als menschlichen Körper beschreibt (vgl. Liebeschütz 1950, 45). 19 Philon v. Alexandria, De opificio mundi, 17 ff.; vgl. Sim 1996, 60 f. 20 Vgl. Englisch 2002, 6 ff. 21 Vgl. Wildberg 2011, 85 22 Arist., Metaphysik 987b; vgl. Burkert 1962, 29; Gaiser 1963, 95; Sladek 1984, 23; Münsch 2000, 7 ff. 23 Sap., 11, 21; vgl. Zahlten 1995, 51; Leinkauf 2005, IX; Lilley 2009, 80 ff.; Geßner 2015a, 5 ff.

12

Das urbane Phänomen

Schöpfungsakt beim Abstecken des städtischen Grundrisses mit Messstab und Seil wiederholt.24 Dank des Ritus blieb die Vorstellung von der Stadtgründung als mikrokosmische Imitation des göttlichen Schöpfungsaktes keine blasse Theorie, sondern eine im Kultgeschehen erfahrene Wirklichkeit. Der Akt der imitatio dei, der Nachahmung Gottes, galt dabei nicht als blasphemische Anmaßung, sondern als ein Medium, um eine Verbindung zwischen der himmlischen und irdischen Sphäre herzustellen.25 Indem darüber hinaus zwischen den einzelnen Elementen der urbanen Wehr- und Sakralarchitektur eine geometrische Beziehung hergestellt wurde, avancierte die geometrische Ordnung der städtischen Topographie zum Symbol des geordneten Kosmos. Heute zu einem Schulfach der Unterstufe herabgesunken, kann der Stellenwert der Geometrie (γεωμετρία, wörtlich: Vermessung der Erde) im neuplatonisch-christlichen Wertesystem des Hoch- und Spätmittelalters deswegen nicht als hoch genug eingeschätzt werden. Nur so erklärt sich der besondere Rang der Mathematik im hoch- und spätmittelalterlichen Bildungssystem. Seit dem ersten nachchristlichen Jahrhundert zählten neben den sprachlichen Fächern Grammatik, Rhetorik und Dialektik die mathematischen Disziplinen Arithmetik, Musik, Geometrie und Astronomie zu den sieben freien Künsten.26 Die mathematischen Fächer fasste der platonisch beeinflusste spätantike Philosoph Boethius (um 480–um 524 n. Chr.) unter dem Begriff Quadrivium zusammen27, wobei er in den Kreuzungspunkt des Vierwegs – ganz nach platonisch-pythagoreischer Tradition – die Zahl stellte.28 Boethius war es auch, dem man im Hoch- und Spätmittelalter die Einführung einer Hierarchie innerhalb der sieben Disziplinen zuschrieb: Die drei sprachlichen Fächer, die ab der karolingischen Zeit in Analogie zum Quadrivium als Trivium (Dreiweg) bezeichnet wurden, standen in der Rangfolge deutlich unter den mathematischen Disziplinen, was bis heute in der pejorativen Bedeutung der Bezeichnung trivial zum Ausdruck kommt.29 Mit diesem kurzen Ausblick ist die Gliederung der vorliegenden Studie sachlich vorgezeichnet: Zunächst soll in einem einleitenden Abschnitt ein knapper Überblick über den aktuellen Forschungsstand zum mittelalterlichen Städtewesen gegeben werden. Dabei werden Ansätze verschiedener Disziplinen vorgestellt, damit die Perspektive nicht auf ein einzelnes mediävistisches Fach mit seiner spezifischen Betrachtungsweise verengt bleibt. Aufbauend auf den bisherigen Ansätzen wird in einem weiteren einleitenden Kapitel der 24 Vgl. Eliade 1956, 77; de Champeaux/Sterckx 1990, 116; Möbius 1995, 109; Lilley 2009, 94. 25 Vgl. Cohen 2000, 195. 26 Die Reihenfolge der Disziplinen war nicht kanonisch: So ordnete Capella in seinem im 5. Jahrhundert verfassten Liber De Nuptiis Mercurii et Philologiae die mathematischen Fächer in der Reihenfolge Geometrie, Arithmetik, Astronomie und Musik an (vgl. Masi 1983, 13; Folkerts 1989, 13; Cohen 2000, 68). 27 Boethius, De Institut. Arithmetica I, 1. Vgl. Roggenkamp 1954, 139; Folkerts 1989, 11 ff.; Gruber 2011, 15 28 Vgl. Roggenkamp 1954, 122. 29 »If a searcher is lacking knowledge of these four sciences, he is not able to find the true« (Boethius, De Institut. Arithmetica I, 1). Vgl. Folkerts 1989, 12.

Das urbane Phänomen

13

methodische Ansatz der vorliegenden Arbeit vorgestellt. Dem mentalitätsgeschichtlichen Hintergrund des Hoch- und Spätmittelalters sind die beiden folgenden Kapitel gewidmet, in denen in einem überblickshaften Abriss zunächst der Stellenwert der Geometrie im Kontext des neuplatonisch-christlichen Weltbilds erörtert werden soll (vgl. Kap. 1), während sich ein weiteres theoretisches Kapitel dem hoch- und spätmittelalterlichen Stadtverständnis widmet (vgl. Kap. 2). In diesem Abschnitt sollen neben verschiedenen zeitgenössischen Stadtdefinitionen nicht nur der ideale Aspekt der mittelalterlichen Stadt als ein gebautes Ordnungssystem erörtert werden, sondern auch der hoch- und spätmittelalterliche Stadtgründungsprozess in seinen verschiedenen Facetten. Der Hauptteil ist der geometrischen Konstruktion von urbanem Raum im europäischen Hoch- und Spätmittelalter vorbehalten (vgl. Kap. 3 und 4). Mittels einer Computer-Aided-Design-­ Software (CAD) werden zwölf exemplarisch ausgewählte Stadtgrundrisse hinsichtlich ihrer geometrischen Grundkonstruktion analysiert. Das Hauptziel besteht darin zu prüfen, ob nicht nur streng-geometrische, sondern auch organisch anmutende Stadtgrundrisse auf einer geometrischen Grundordnung beruhen, die prima vista nicht ersichtlich ist. Wiederkehrende geometrische Konstruktionen und Proportionen sollen dabei ebenso auf ihre Bedeutung im Kontext des neuplatonisch-christlichen Symbolsystems analysiert werden wie evidente Grundrisscharakteristika, die mit ikonographischen Gestaltungsmotiven verglichen werden, wie sie in der zeitgenössischen Eschatologie, Kosmologie und Kartographie vorkommen. Abschließend sollen die wichtigsten Ergebnisse der Arbeit in einem Résumé zusammengefasst werden (vgl. Kap. 5). Der Anhang wird neben einem Quellen-, Literatur- und Abbildungsverzeichnis einen kurzen katalogartigen Überblick zu den zwölf Städten mit Maßtabellen, Quellenauszügen und weiteren stadtspezifischen Informationen enthalten. Ein wichtiger Anstoß zu der vorliegenden Studie ergab sich aus meiner beruflichen Tätigkeit als Mittelalterarchäologin. Langjährige Ausgrabungspraxis in den Stadtkernen Brandenburgs machte immer wieder die Diskrepanz zwischen dem heutigen Selbstverständnis der Städte und dem Aufwand, der im Zusammenhang mit ihrer Gründung betrieben worden war, mit Händen greifbar. Während gegenwärtig der Stadtstatus für die meisten Städte nicht nur rechtlich gesehen30, sondern auch ideell kein oder kaum noch Gewicht hat31, finden sich im Untergrund unzählige Zeugnisse, die von der immensen Kraftanstrengung zeugen, die von bürgerlicher Seite im Rahmen der Stadtgründung und 30 Das Grundgesetz der Bundesrepublik Deutschland benutzt den Begriff Stadt nicht mehr. Als unterste administrative Ebene wurde die Gemeinde eingeführt – ein Terminus, unter dem sowohl Dörfer als auch Städte subsumiert werden (vgl. Isenmann 2012, 40). 31 Mehr und mehr brandenburgische Kommunen geben in den letzten Jahren ihr Stadtrecht, das sie seit dem Mittelalter besitzen, auf, um den Status einer Gemeinde anzunehmen (beispielsweise Wusterhausen/Dosse im Landkreis OPR).

14

Das urbane Phänomen

des Stadtausbaus betrieben worden war. So liegen heute noch in den archäologischen Schichten die Überreste von Tausenden von Bäumen, die in den 30er und 40er Jahren des 13. Jahrhunderts gefällt wurden, um das städtische Terrain in feuchten Gebieten überhaupt bebaubar zu machen.32 Weitere abertausende Bäume waren vonnöten, um allein die Ziegel zu brennen, mit denen die Stadtmauern, Tore, Kirchen, Hospitäler und Klöster errichtet wurden. Dabei handelt es sich um einen immensen zeitlichen, technischen und logistischen Aufwand, den die damalige Bürgerschaft mit eigenen Händen leistete, um an der Errichtung ihrer Stadt teilzuhaben. Zwar gab es auch im Hoch- und Spätmittelalter immer wieder Migrationsbewegungen33, die heutige globalisierte Gesellschaft verlangt jedoch fast jedem Individuum die Bereitschaft ab, mindestens einmal in seinem Leben seinen Lebensmittelpunkt räumlich zu verlagern. Dadurch werden nicht nur Traditionsbänder zwischen den Generationen einer städtischen Kommune zerrissen, sondern auch ein diametraler Unterschied zum mittelalterlichen Stadtverständnis manifestiert. Im Hoch- und Spätmittelalter erwuchs die städtische Einwohnerschaft aus einer Schwurgemeinschaft und bildete eine unverbrüchliche civitas (wörtlich Bürgerschaft), die über Generationen fortbestehen sollte. Die urbane Architektur bot dabei den gebauten Rahmen, ihre Bürgerschaft in räumlicher Hinsicht zu einer geschlossenen Einheit zu verschmelzen, ohne jedoch die ständische Hierarchie zu vernachlässigen. In dieser urbanen Raumordnung konstituierte sich für alle sichtbar die soziale Ordnung der städtischen Bürgerschaft, die nach zeitgenössischem Verständnis eine höhere und damit gottgewollte Ordnung reflektierte.34 Die hoch- und spätmittelalterliche Stadt verkörperte also dem zeitgenössischen Verständnis nach weitaus mehr als einen bloßen Wirtschaftsfaktor. Ihrer gebauten Ordnung lag ein Weltbild zu Grunde, das tief in der philosophisch-theologischen Werteordnung des christlichen Neuplatonismus verankert war. Dieser gebauten städtischen Ordnung ist die vorliegende Arbeit gewidmet, indem sie sich mit dem formalen Aufbau des mittelalterlichen Stadtgefüges beschäftigt, insbesondere hinsichtlich der topographischen Komposition der Wehr- und Sakralarchitektur. Vorrangiges Ziel ist die Erfassung regelhaft wiederkehrender geometrischer Gestaltungsprinzipien als Ausdruck des schöpferischen mittelalterlichen Selbstverständnisses und die Reflexion ihres Bedeutungsinhaltes im Sinnzusammenhang des mittelalterlichen Weltbilds.

32 Vgl. Geßner 2012, 165 ff. 33 Neben Pilgerreisen, Wanderhandwerk und Fernhandel spielte dabei vor allem die Heiratsmigration eine besondere Rolle (vgl. Borgolte 2014, 21). 34 Vgl. Lilley 2009, 155; Leitgeb 2012, 6.

Forschungsgeschichtliche Aspekte

15

Forschungsgeschichtliche Aspekte Das mittelalterliche Städtewesen in Europa ist seit mehreren Generationen Gegenstand einer intensiv geführten Forschungsdebatte mit sehr verschiedenen Fragestellungen.35 So standen seit dem 19. Jahrhundert nicht nur die Definition der hoch- und spätmittelalterlichen Stadt mit ihren charakteristischen Merkmalen und Strukturelementen im Fokus der Forschungsdiskussion, sondern auch Fragen zur urbanen Rechts- und Wirtschaftsgeschichte, Typengeographie, Strukturtypologie, städtischen Sozial- und Verfassungstopographie und politisch-ökonomischen Bedeutung der mittelalterlichen Stadt. Ein zentrales Forschungsthema verschiedener mediävistischer Disziplinen ist die räumliche Organisation des europäischen Städtewesens, insbesondere hinsichtlich einer intendierten Stadtplanung. Zu diesen zählen u. a. die Mittelalterliche Geschichtsforschung36, die Kunstgeschichte37, die Architekturgeschichte38, die Religionswissenschaft39, die Rechtsgeschichte40, die Stadtplanung41, die Geographie42 und neuerdings auch die Archäologie des Mittelalters.43 Angesichts der Vielzahl an Beiträgen zu diesem Thema würde eine nur annähernd erschöpfende Darstellung der Forschungsgeschichte in jeder Hinsicht den Rahmen dieser Studie sprengen. Deshalb beschränkt sich der folgende Abschnitt lediglich darauf, holzschnittartig und ohne Anspruch auf Vollständigkeit die Grundtendenzen der Forschung während der letzten 150 Jahre in den verschiedenen Disziplinen nachzuzeichnen. Angesichts der schwachen Quellenlage zur frühen Stadtentwicklung im europäischen Hoch- und Spätmittelalter wandten sich verschiedene Wissenschaften bereits im 19. Jahrhundert dem Stadtplan zu, der im 20. Jahrhundert zu den wichtigsten heuristischen Instrumenten zur Entwicklung unterschiedlicher Fragestellungen zählte.44 Die ältesten maßstäblichen und parzellengenauen Stadtpläne, die auf einer systematischen, trigonometrischen Vermessung beruhen, stammen aus dem 18. Jahrhundert, wurden jedoch lediglich von bestimmten Städten angefertigt, den bevölkerungsreichen europäischen 35 Für aktuelle Zusammenfassungen der Forschungsgeschichte zum europäischen Städtewesen vgl. Irsliger 2001, 55 ff.; Johanek 2010, 45 ff.; Schott 2013, 120 ff. 36 Vgl. beispielsweise Schlesinger 1953; Ennen 1953; Keyser 1963, 345 ff.; Engel 1993; Hirschmann 1998. 37 Vgl. beispielsweise Hofer 1963; Herzog 1964; Braunfels 1976; Binding 1990; Meckseper 2011. 38 Vgl. beispielsweise Sitte 1889; Siedler 1914; Hall 1978. 39 Vgl. beispielsweise Eliade 1956, 1992; Müller 1961. 40 Vgl. Planitz 1965. 41 Vgl. Gruber 1977; Humpert/Schenk 2001. 42 Vgl. Schlüter 1899; Hofmeister 1997; Zehner 2001. 43 Vgl. Fehring 1996; Gläser, 1993; Untermann 2000, 9 ff. Zur wechselseitigen Beziehung zwischen Archäologie und moderner Stadtplanung vgl. Wemhoff 2012, 185 ff. 44 Für eine aktuelle Zusammenfassung der Forschungsgeschichte zur Stadtplanforschung vgl. Simms 2015, 13 ff.

16

Forschungsgeschichtliche Aspekte

Haupt- und Residenzstädten.45 Eine systematische Aufmessung des überwiegenden Teils der europäischen Städte fand dagegen im Rahmen der flächendeckenden geographischen Erfassung Europas im 19. Jahrhundert statt, in deren Zusammenhang parzellengenaue Messtisch-, Stadt- und Ortsblätter entstanden.46 Mit dem Stadtplan wurden seitens der verschiedenen Disziplinen unterschiedliche Fragestellungen verknüpft: Während der deutsche Kulturhistoriker Wilhelm Heinrich Riehl 1859 einen Zusammenhang zwischen der Stadtgestalt und der gesellschaftlichen Ordnung herstellte, indem er den Stadtplan als »Grundriss der Gesellschaft«47 bezeichnete, beschäftigte sich der an der Praxis orientierte Architekt Camillo Sitte, Leiter der Wiener Staatsgewerbeschule, mit dem künstlerischen Aspekt des vormodernen Stadtgrundrisses, um ihn den modernen Stadtanlagen des ausgehenden 19. Jahrhunderts, die ihm »motivarm« und »nüchtern« schienen, als positives Vorbild gegenüberzustellen.48 Auch in der Geschichtswissenschaft wurde dem Stadtplan ein hoher Quellenwert zugesprochen. Mit dem Schlagwort von der »ältesten Urkunde einer Stadt« stellte man den Stadtplan hinsichtlich seiner Aussagekraft an die Seite der archivalischen Quellen und schuf damit eine forschungsgeschichtliche Formel, die bis heute immer wieder vorgebracht wird.49 Im ausgehenden 19. Jahrhundert stellte der Straßburger Geschichtslehrer Johannes Fritz auf Grundlage einer Kompilation von rund 30 Grundrissen hoch- und spätmittelalterlicher Stadtanlagen im deutschsprachigen Raum erstmals einen Zusammenhang zwischen der Stadtgestalt und der Stadtgenese her.50 Nach der von ihm postulierten regionalen Typologie zeichneten sich die Grundrisse der Städte im Westen und Süden des damaligen Deutschen Reichs ganz und gar durch Regellosigkeit aus, die er damit erklärte, dass die Städte aus dörflichen Siedlungen entstanden seien.51 Für Fritz trugen diese Städte den Charakter des »allmählich Gewordenen«, da sie sich etappenweise, planlos, ohne jede innere Gesetzmäßigkeit und lediglich den Bedürfnissen ihrer Bewohner folgend entwickelt hätten.52 Dass die Grundrisse der Städte östlich der Elbe durch eine weitaus größere Regelhaftigkeit charakterisiert sind, die ihren gestalterischen Ausdruck in geraden Linien, rechten Winkeln und zentralen quadratischen Platzanlagen findet, ist nach Fritz darauf zurückzuführen, dass es sich bei diesen Städten um geplante Gründungen handele und der Stadtgrundriss mittels Messinstrumenten vor der Besiedlung genau festgelegt worden sei. Diese 45 Beispielsweise wurde der erste reine Grundrissplan nach systematischem Aufmaß für die königliche Residenzstadt Berlin-Cölln im Jahr 1723 gestochen (Clauswitz 1906, 26). 46 Vgl. Torge 2007, 120 ff. 47 Vgl. Riehl 1859, 270. 48 Ähnlich wie Sitte (1889, 88 ff.) argumentierte auch der Baumeister Stübben (1890). 49 Vgl. Neumann 1911, 84 ff.; Klaiber 1912, 8 ff.; Gerlach 1963, 323; Blaschke 1997d, 193; Mihm 2002, 134. 50 Vgl. Fritz 1894. 51 Vgl. Fritz 1894, 7 ff. 52 Vgl. ebd.

Forschungsgeschichtliche Aspekte

17

These, die 1894 lediglich als Beilage eines Straßburger Lyceummagazins erschienen war, sollte große forschungsgeschichtliche Wirkung entfalten und die Diskussionen rund um die mittelalterliche Stadtforschung bis zum heutigen Tag nachhaltig beeinflussen. Fritz formulierte nämlich für das mittelalterliche Städtewesen erstmalig das Gegensatzpaar der gewordenen und der gegründeten Stadt und verknüpfte damit die Gestalt einer Stadt mit ihrer hypothetisch angenommenen Genese.53 Zwar wurden die Thesen des Oberlehrers bereits fünf Jahre später von wissenschaftlicher Seite relativiert, wobei der Siedlungsgeograph Otto Schlüter, Professor an der Universität Halle, nicht nur die geographische Verteilung der beiden Typen stärker differenzierte, sondern auch den scharfen Gegensatz von gegründeten und gewordenen Städten in Frage stellte.54 Doch trotz der fachlichen Einwürfe hielt sich der Dualismus von gewordener und gegründeter Stadt bis zum heutigen Tag und bestimmte die Forschungsdiskussion nachhaltig. Zu Beginn des 20. Jahrhunderts mehrten sich die Studien zur Typengeographie des europäischen Städtewesens im Mittelalter: Besonders im Vorfeld des Ersten Weltkrieges betrieb man zur Herausarbeitung regionaler Unterschiede, die politisch gesehen der Stärkung der nationalen Identität der einzelnen europäischen Staaten dienen sollte, vergleichende Stadtplananalysen.55 In diesem Zusammenhang bemühte man sich um die Erstellung regionaler Typologien: Der Architekt Eduard Jobst Siedler legte 1914 eine umfängliche Arbeit zum märkischen Städtebau im Mittelalter vor, in der er auf Grundlage von schematisierten Stadtplänen die Entstehung, Planung und bauliche Entwicklung der Städte in der Mark Brandenburg und in der Neumark nachvollzog.56 In die Zwischenkriegszeit fiel die Gründung des Instituts für geschichtliche Landeskunde der Rheinlande, als dessen Direktor der deutschnationale Historiker Hermann Aubin fungierte.57 Der überzeugte Nationalsozialist rückte als führender Vertreter der deutschen Ostforschung die räumliche Struktur und Morphologie mittelalterlicher Städte in den Fokus des Forschungsinteresses.58 Während in der Bundesrepublik Deutschland eine Hamburger Forschungsgruppe um Aubin die deutsche Ostforschung bruchlos weiterführte, gehörten Evamaria Engel und Erika Engelmann zum zentralen Zirkel der Stadtgeschichtsforschung in der DDR.59 Die Erweiterung des nationalen Blicks auf die europäische Ebene kennzeichnete die Städtebauforschung nach dem Zweiten Weltkrieg. Dies wurde nicht nur durch einzelne For53 Infolge intensiver Stadtforschung ist heute jedoch bekannt, dass es sich bei einigen von Fritz angeführten »gewordenen« Städte um Neugründungen handelt, während die Gründungsstädte östlich der Elbe durchaus ältere Vorgängersiedlungen inkorporieren können. 54 Vgl. Schlüter 1899, 452 ff. 55 Vgl. Simms 2015, 14. 56 Vgl. Siedler 1914. 57 Vgl. Volkmann 2008, 58 ff. 58 Vgl. Michelsen 2003, 659 ff.; Schott 2013, 121. 59 Vgl. Engelmann 1961; Engel 1989.

18

Forschungsgeschichtliche Aspekte

schende, wie die Historikerin Edith Ennen, die die Städte Nordwesteuropas und Italiens in ihre Studien miteinbezog, und den Kunsthistoriker Wolfgang Braunfels, der sich mit dem europäischen Städtewesen beschäftigte60, getragen, sondern auch durch die International Commission of the History of Towns (ICHT), unter deren Schirmherrschaft 1955 in Rom als Zeichen der europäischen Aussöhnung die Übereinkunft zur Erstellung eines Historischen Europäischen Stadtatlas (European historic towns atlas) geschlossen wurde.61 Das Projekt, das das politische Ziel verfolgte, die gemeinsamen europäischen Wurzeln herauszuarbeiten, hatte sich zur Aufgabe gestellt, mit einer systematischen Sammlung von frühen Katasterplänen eine solide Basis für vergleichende urbane Studien zu schaffen.62 Koordiniert durch die Richtlinien der Commission Internationale pour l’Histoire des Villes wurden bis 2015 über 500 Stadtpläne aus 18 europäischen Ländern publiziert.63 Ein Forschungsschwerpunkt der bundesrepublikanischen Mediävistik bestand da­­ rüber hinaus in der Untersuchung der Entstehung des mittelalterlichen Städtewesens in Europa, wozu neben der vergleichenden Auswertung schriftlicher Quellen und der Einbeziehung der Ergebnisse einer intensivierten archäologischen Forschung in den kriegszerstörten Stadtkernen auch die Analyse von Stadtplänen gehörte.64 Die Historiker Ernst Pitz, Carl Haase und Heinz Stoob, alle Schüler Aubins, trieben die sogenannte Stadtplanforschung voran, wobei Stoob als Leiter des Instituts für Vergleichende Stadtforschung in Münster als Herausgeber der Historischen Städteatlanten fungierte.65 Ergänzt wurden die Städteatlanten durch das von Erich Keyser editierte Deutsche Städtebuch.66 Keysers nüchterne Auffassung von der mittelalterlichen Stadtanlage als das Ergebnis von »Zweckmäßigkeiten«67, spiegelt nicht nur die Wiederaufbaupragmatik der westdeutschen Nachkriegszeit wider, sondern hatte auch nachhaltigen Einfluss auf die Richtung der historischen Forschung in der Bundesrepublik.68 Seit den Anfängen bemühte sich die Stadtplanforschung um die Erstellung diverser Typologien, mit deren Hilfe man die Gliederung des europäischen Städtewesens des Mittelalters zeitlich bzw. regional differenzieren wollte.69 Grundlage für die Gruppenbildungen war mehrheitlich die Stadtgestalt der sogenannten Gründungsstadt, wobei je 60 61 62 63 64 65 66 67

Vgl. Ennen 1953; Braunfels 1976; Schott 2013, 121. Vgl. Johanek 2010, 58. Vgl. Simms 2015, 13. Vgl. Schott 2013, 121; Johanek 2010, 58; Simms 2015, 21. Vgl. Planitz 1965; Ennen 1953; Keyser 1963, 345. Vgl. Stoob 1973–2001. Vgl. Keyser 1939–1974. »Städtebau folgt nicht Gesetzen, sondern Zweckmäßigkeiten, und diese ergeben sich aus der für den einzelnen Bau vorliegenden Absicht der früheren Baumeister und ihrer Auftraggeber sowie aus der gesamten Lebenshaltung der Stadtbevölkerung« (Keyser 1963, 346). 68 Vgl. Keyser 1963, 348; Blaschke 1997d, 194. 69 Vgl. Stercken 2006, 16.

Forschungsgeschichtliche Aspekte

19

nach Typologie ein anderer Aspekt als klassifizierendes Merkmal in den Vordergrund gestellt wurde. Dem Beispiel Eduard Jobst Siedlers folgend gilt bis heute eine Einteilung nach dem Straßensystem, wobei nach folgenden Gruppen differenziert wird70: Ȥ das Einstraßensystem, bei dem sich die Parzellen entlang einer Straße gruppieren Ȥ das Querrippensystem, bei dem eine Hauptachse von parallelen Nebenstraßen gequert wird Ȥ das Parallelstraßensystem aus mehreren Längsachsen, das je nach Ausformung der Straßenmündungen in Spindel- oder Leiterformen differenziert werden kann Ȥ das Rastersystem, auch Gitter-, Schachbrett- oder Quadratblocksystem, dessen annähernd orthogonales Straßensystem viereckige Blöcke umschließt Ȥ das Hauptstraßenkreuz, bei dem sich die beiden Hauptachsen kreuzen und Ȥ Sonderformen. Bestimmte Merkmale hatte man dabei als regional distinktiv erkannt: So sind Straßenmärkte, die auf verbreiterten Hauptachsen abgehalten werden, für oberdeutsche und schweizerische Städte charakteristisch, während Platzmärkte vermehrt im Norden und Nordosten des deutschsprachigen Raums und im Südwesten Frankreichs auftreten.71 Eine ähnliche Unterteilung findet auch in den Schweizer Gründungsstädten Anwendung, die gleichfalls hinsichtlich ihrer inneren Disposition in zwei Typen geschieden werden.72 So zählten zur ersten Gruppe axiale Stadtanlagen mit einer oder mehreren dominanten Längsachsen, während die zweite Gruppe konzentrische Stadtanlagen bilden, die rings um ein Zentrum entwickelt wurden. Während das Straßen- und Marktsystem nach regionalen Gesichtspunkten differenziert wurde, galt die Gestalt des Stadtumrisses, die durch den Stadtmauerverlauf kon­ stituiert wird, als chronologisch signifikant. So sollen bis zum 13. Jahrhundert Umrisse mit abgerundeten Ecken dominiert haben, während ab dem 13. Jahrhundert eine Tendenz zur geradlinigen Mauerführung mit scharfkantigen Ecken festzustellen sei.73 Eine weitere Typologie nach chronologischen Faktoren, die ebenfalls Auswirkungen auf die Stadtgestalt haben sollte, wurde in den 1970er Jahren entwickelt: Stoob bezeichnete Städte, die bis zur Mitte des 12. Jahrhunderts entstanden sind, als Mutterstädte, Städte, deren Anfänge im Zeitraum zwischen 1150 und 1250 liegen, als Gründungsstädte, Städte mit einem Gründungsdatum zwischen 1250 und 1300 als Kleinstädte, und schließlich Städte, die zwischen 1300 und 1450 entstanden waren, als Minderstädte.74 70 71 72 73 74

Vgl. Isenmann 2012, 91 basierend auf der Typologie von Meckseper 2011, 72. Vgl. Isenmann 2012, 91; Meckseper 2011, 74; Stercken 2006, 17; Untermann 2009, 189. Vgl. Hofer 1963, 105. Vgl. Meckseper 2011, 75; Isenmann 2012, 91. Vgl. Stoob 1970, 225 ff.

20

Forschungsgeschichtliche Aspekte

Fernerhin wurden die Städte nach Hintergrund und Stand der Gründerpersönlichkeiten unterteilt, da man diese als stadtprägend für Grundriss und Aufbau hielt: So differenzierte man Bischofs- und Abteistädte mit dominierendem kirchlich-geistigem Element von Burg- und Pfalz- sowie Königsstädten mit adelig-feudalem Element und Städten mit starkem bürgerlichem Element.75 Einen Versuch, einen Abgleich zwischen der Baugestalt einer Gründungsstadt und der Gründerdynastie herzustellen, unternahm Ernst Hamm im Jahr 1932 für die Städte, die von den Herzögen von Zähringen gegründet worden waren.76 Als Charakteristika der Zähringerstädte stellte Hamm das Hauptstraßenkreuz, die Hofstätteneinteilung, die Traufstellung der Häuser und den Straßenmarkt heraus.77 Da jedoch diese Merkmale weder ausschließlich im Zusammenhang mit Zähringergründungen auftreten noch für alle Zähringerstädte kennzeichnend sind, gilt dieser Versuch heute als obsolet.78 Die sogenannten Gründungsstädte, deren Grundrisse sich durch eine besondere Regelhaftigkeit auszeichnen, sind seit den 1970er Jahren Gegenstand von Stadtplananalysen. Basierend auf den Untersuchungen mittelalterlicher Kathedralen und Klosteranlagen79, die zeigten, dass in der mittelalterlichen Architektur irrationale Proportionen, wie der Goldene Schnitt, regelhaft Anwendung fanden80, konnten für die Parzellenorganisation der spätmittelalterlichen Neugründungen in Südwestfrankreich81 und Oberitalien82 ähnliche proportionale Systeme nachgewiesen werden. Zudem gelang es David Friedman, eine Verbindung der Stadtanlagen der Florentinischen Gründungen in der Toskana mit zeitgenössischen Lehrbüchern zur Geometrie, wie das des Leonardo Fibonacci, nachzuweisen.83 Der geometrische Ansatz wurde insbesondere in der angelsächsischen und italienischen Forschung rezipiert, wie die Arbeiten von T.R. Slater, David Friedman, P. Crummy, Adrian Randolph, Enrico Guidoni und Keith Lilley zeigen.84 Ein wichtiger Impuls für die Erforschung der Prinzipien der mittelalterlichen Stadtplanung kam in den 1990er Jahren von Erwin Reidinger, der das Prinzip der Ostung von Sakralbauten auf die Orientierung von Stadtanlagen übertrug.85 Der österreichische Ingenieur leitete daraus ab, dass bei der Anlage von Straßenachsen und Torbauten astronomische Aspekte, insbesondere der Sonnenaufgangspunkt am Gründungstag, eine Rolle gespielt haben könnten. 75 76 77 78 79 80 81 82 83 84

Vgl. Schmieder 2009, 25; Isenmann 2012, 96. Vgl. Hamm 1932. Vgl. Hamm 1932, 138 f. Vgl. Schwineköper 1977, 117 ff.; Jenisch 1999, 106; Stercken 2006, 24. Vgl. Witzel 1914; Roggenkamp 1954; Fischer 1956; Braunfels 1965; Conant 1968; Simson 1982. Vgl. Conant 1968, 33 ff. Vgl. Bucher 1972, 37 ff. Vgl. Buselli 1970; kritisch dazu Boerefijn 2010, 452 f. Vgl. Friedman 1988. Vgl. Crummy 1979; T.R. Slater 1990; Friedman 1988; Randolph 1995; Guidoni 2003; Lilley 1998, 2004, 2009. 85 Vgl. Reidinger 1997, 2010.

Forschungsgeschichtliche Aspekte

21

Während sich diese Analysen lediglich auf Gründungsstädte mit regelmäßigen Grundrissen bezogen, schloss die in den 1950er Jahren im deutschsprachigen Raum formierte Stadtgestaltforschung auch die sogenannten gewachsenen Städte mit ein.86 So unterschied der Architekt Wolfgang Rauda grundsätzlich zwei Kompositionsprinzipien, wobei er zur ersten Gruppe Stadtanlagen zählte, die auf dem Gestaltungsprinzip der exakten Geometrie beruhen und zur zweiten Gruppe diejenigen Städte, deren perspektivische Wirkung auf der optischen Geometrie der Aufrissgestaltung basieren.87 Gewisse Charakteristika der sogenannten gewachsenen Stadt, insbesondere der reich bewegte Grundriss, das unregelmäßige Straßen- und Platzsystem und die irreguläre Kontur, galten den Stadtgestaltforschern als gewollt, da sie einer künstlerischen Intention entsprungen seien, um eine ästhetische Wirkung zu erzielen.88 Im Kontext der Innenstadtsanierung leitete dieser Ansatz in den 1980er und 1990er Jahren hinsichtlich der dicht bebauten Altstadtquartiere mit verwinkelter Straßenführung und engen Hinterhöfen einen bedeutsamen Perspektivwechsel ein: Hatte man bis dato die mittelalterlich geprägten Innenstädte als eng, ungesund und kriminalitätsfördernd empfunden und damit ihren systematischen Abbruch gerechtfertigt89, galten sie fortan nicht nur in ästhetischer Hinsicht als wertvoll, sondern auch als »gut funktionierende und vorbildhafte Lösung für das menschliche Zusammenleben«.90 Einen anderen Zugang zum Prinzip Stadt eröffnete Mircea Eliade in seinen in den 1950er Jahren erschienenen Werken, in denen er das Städtewesen vor dem Hintergrund der Mikrokosmos-Makrokosmos-Lehre beleuchtete.91 Darin stellte der Religionswissenschaftler die Symbolik der Stadtgründung heraus, die er als mikrokosmische Imitation des makrokosmischen göttlichen Schöpfungsaktes interpretierte. Einen ähnlichen Ansatz verfolgte der Ethnologe Werner Müller mit seiner 1961 erschienenen Publikation, in der die in zahlreichen Stadtgrundrissen immanente Vierteilung in ihren ideengeschichtlichen Kontext eingebettet wurde.92 Müller betonte dabei nicht nur die Kontinuität des mittelalterlichen Städtewesens bezüglich der antiken Stadttradition, sondern auch die symbolische Dimension einer Stadtgründung. Im Rahmen des in den 1980er Jahren entwickelten mentalitätsgeschichtlichen Ansatzes arbeitete der Historiker Alfred Haverkamp den sakralen Aspekt des mittelalterlichen Städtewesens im Zusammenhang mit den zeitgenössischen eschatologischen Vorstellungen heraus.93 Auch der britische Geograph Keith Lilley stellte in verschiedenen Arbeiten das mittelalterliche Städtewesen in den kosmologischen Kon86 87 88 89 90 91 92 93

Vgl. Gerlach 1963, 324; Schmieder 2009, 24. Vgl. Rauda 1957, 7 ff. Vgl. Gantner 1928; Hamm 1935; Clasen 1943; Gerlach 1963, 324. Vgl. Cramer 2013, 21. Vgl. Cramer 2013, 18. Vgl. Eliade 1956, 1992. Vgl. Müller 1961. Vgl. Haverkamp 1987.

22

Forschungsgeschichtliche Aspekte

text der neuplatonisch-christlichen Geisteswelt und betonte die auch in der baulichen Gestalt der mittelalterlichen Stadt immanenten theologischen Aspekte.94 Während die geistesgeschichtlich inspirierten Arbeiten in der deutschsprachigen Forschung eher verhalten aufgenommen wurden, fanden sie im angelsächsischen Bereich ein breiteres Echo: So wurde jüngst in einer Publikation in Hinblick auf die mittelalterliche Stadt wieder der »human spirit in material form« betont.95 Alle Ansätze, die sich mit der baulichen Gestalt der mittelalterlichen Stadtanlage beschäftigen, fußen auf dem Stadtgrundriss, wie er in den ältesten Katasterplänen überliefert ist. Während der Quellenwert der im 18. und 19. Jahrhundert erstellten Stadtpläne in den Anfängen der Stadtplanforschung nur selten in Frage gestellt wurde, warfen die Ergebnisse archäologischer Untersuchungen, die seit den 1980er Jahren verstärkt in mittelalterlichen Stadtkernen durchgeführt wurden, wichtige Fragen hinsichtlich der Kontinuität auf.96 Vor allem bezüglich der Parzellenstruktur und Straßenführung wurden immer wieder Diskrepanzen zwischen den historischen Katasterplänen und dem archäologischen Befund festgestellt.97 Diese Erkenntnis war folgenschwer: Denn zum einen stellte sie einen unkritischen Umgang mit Stadtplänen in Frage, zum anderen beeinflusste sie die Forschungsausrichtung der sich in den 1970er Jahren im deutschsprachigen Raum formierenden Disziplin der Archäologie des Mittelalters. So wandten sich führende Vertreter der jungen Disziplin bereits in ihrer Konstituierungsphase vermehrt dem Aspekt einer Siedlungskontinuität in Bezug auf ältere Vorgängersiedlungen zu und stellten im Gegenzug die Frage nach einer geplanten Stadtgründung zurück.98 Das Paradigma von der gewachsenen Stadt galt fortan in archäologischen Kreisen als der Regelfall99 und konnte forschungsgeschichtlich auf eine bereits in der Stadtgeschichtsforschung formulierte These zurückgreifen. Denn nicht nur der Historiker Walter Schlesinger100, sondern auch die Historikerin Edith Ennen hatten bereits in ihrem Werk Die Frühgeschichte der europäischen Stadt den Fokus auf die Kontinuität des europäischen Städtewesens gelenkt.101 Daraus entwickelte sich die evolutionäre Vorstellung von einer allmählichen Entwicklung von einer agrarisch geprägten dörflichen Siedlung über eine städtische Frühform hin zu der vollentwickelten Stadt, so dass die Stadtgründung lediglich als rechtlich abschließender Akt und zwangsläufiger Abschluss einer Folge vorangegangener Entwicklungen galt.102 Zwar  94 Vgl. Lilley 2009.  95 Simms 2015, 13.  96 Vgl. Stercken 2006, 22.  97 Vgl. Schott 2013, 132.  98 Vgl. Fehring 1987, 195; Untermann 2004, 9 ff.; Untermann 2006, 39.  99 Vgl. Jankuhn 1973; Untermann 2006, 39. 100 Vgl. Schlesinger 1958. 101 Vgl. Ennen 1953. 102 Vgl. Jankuhn 1973, 9; Blaschke 1997b, 73 f.

Forschungsgeschichtliche Aspekte

23

wurde die Existenz planmäßiger Gründung aus wilder Wurzel auch für das Mittelalter nicht grundsätzlich in Abrede gestellt, für den Großteil der mittelalterlichen Städte nahm man jedoch an, dass ihre Gestalt nicht durch eine willentliche und planvolle Gründung determiniert sei, sondern vielmehr von den »Zufälligkeiten ihrer Entwicklung«103 abhinge.104 Die Erforschung des mittelalterlichen Städtewesens erhielt 2001 einen neuen Impuls, als die Architekten Klaus Humpert und Martin Schenk die Ergebnisse eines DFG-finanzierten Sonderforschungsbereiches an der Fakultät Städtebau an der Universität Stuttgart vorlegten, in denen sie in rund 80 Stadtplänen wiederkehrende geometrische Grundrissfiguren nachweisen konnten, die sie als phänotypisches Resultat einer intendierten Stadtplanung werteten.105 In Bezug auf die praktische Anwendung zeigten die Stadtplaner zudem experimentell, dass die in den Grundrissen ermittelten geometrischen Konstruktionen mit mittelalterlicher Vermessungstechnologie schnell und effektiv umzusetzen waren.106 Die auch in der Öffentlichkeit breit rezipierte Publikation107 sorgte in Fachkreisen für »einige Unruhe«.108 So stellte bereits der Titel der Publikation Ende des Mythos der gewachsenen Stadt nicht nur den allgemein akzeptierten Konsens vom Dualismus der geplanten und der gewachsenen Stadt im mittelalterlichen Städtewesen in Frage, sondern auch »die in der Forschung bisher unstrittige Zäsur zwischen den Planstädten der Frühmoderne und den gewachsenen mittelalterlichen Stadtkernen.«109 Sowohl in Rezensionen als auch auf eigens einberufenen mittelalterarchäologischen Tagungen stießen die Thesen der als fachfremd empfundenen Stadtplaner auf mehr oder weniger scharf formulierte Ablehnung.110 Kritisiert wurde u. a. die fehlende Quellenabsicherung mittels schriftlicher 103 Vgl. Blaschke 1997b, 74 f. 104 Die skeptische Haltung der deutschen Nachkriegsgeneration hinsichtlich einer intendierten Stadtplanung im Mittelalter war eng mit der Pragmatik des Wiederaufbaus der kriegszerstörten Städte in Deutschland verknüpft, der weniger von einem städtebaulichen Gesamtkonzept geleitet worden war als von dem Ziel einer möglichst schnellen Gewinnung von Wohn- und Arbeitsraum in einer autogerechten Stadt (Bruhn/ Bickendorf 2013, 244; Cramer 2013, 23). Das von zahlreichen Umprojektierungen gekennzeichnete Adhoc-­ Bauen der Gegenwart spiegelt sich deutlich in den Einschätzungen der Historiker wider: »Wie schnell Planungen sich ändern können, lehrt die Erfahrung aus der Gegenwart, und das dürfte im Mittelalter nicht anders gewesen sein« (Borchardt 2009, 26). 105 Vgl. Humpert/Schenk 2001. 106 Vgl. Humpert/Schenk 2001, 69 ff.; Humpert 2003, 243. 107 Die mit zahlreichen Planzeichnungen unterlegte Publikation hatte nicht nur eine relativ hohe Auflage, sondern wurde sowohl in Printmedien als auch in Fernsehdokumentationen besprochen (vgl. DER SPIEGEL 46/2001; Neue Zürcher Zeitung, 9.11.2002; Frankfurter Allgemeine Zeitung, 19.06.2002; Gottes Plan und Menschen Hand: Die Entdeckung der mittelalterlichen Stadtplanung. Eine Dokumentation von Dominik Wessely, SWR, 2004; Schönheit ist planbar. Ein Film von Meinhard Prill, Bayerisches Fernsehen, 2009). 108 Vgl. Untermann 2006, 39. 109 Vgl. Wüst 2004, 99. 110 Vgl. Rezensionen von Schreg (2002), Bönisch (2002), Neuheuser (2004) sowie die Göttinger Tagung 2001 (Zusammenfassung vgl. Mihm 2002), die Bamberger Tagung der Gesellschaft für Archäologie des Mittelalters und der Neuzeit 2003 mit Beiträgen u. a. von Untermann (2004), Gutscher (2004), Igel (2004), die

24

Methodische Aspekte

und bildlicher Zeugnisse, fehlende Methodenkritik bezüglich des Umgangs mit dem Stadtplan als historische Quelle, die mangelnde Berücksichtigung von siedlungsbedingten und topographischen Unregelmäßigkeiten und schließlich auch die Nichteinbindung von Mediävisten.111 Inhaltlich stieß die zentrale These, dass auch irreguläre Grundrisse der sogenannten gewachsenen Städte das Ergebnis einer sorgfältigen und elaborierten Planung seien, weitgehend auf Unverständnis.112 Die intensiv geführte Diskussion rückte ein zentrales, jedoch lange vernachlässigtes Thema wieder zurück in den Fokus der aktuellen deutschsprachigen Stadtforschung und führte im Ergebnis nicht nur zur Forderung nach einer Schärfung der Begrifflichkeiten113, sondern auch zu einer Neubewertung der metrologischen und geometrischen Aspekte im Zusammenhang mit dem mittelalterlichen Städtewesen in Europa.114 Hinsichtlich der Frage nach einer systematischen Stadtplanung versucht sich die neuere Stadtgeschichtsforschung in einer ausgleichenden Position. So einigte man sich auf den Konsens, dass Teile sogenannter Gründungsstädte ungeplant entstanden seien, während Bereiche von gewachsenen Städten durchaus geplant sein können.115 Doch die grundsätzliche Dichotomie des mittelalterlichen Städtewesens in die Gruppe der gegründeten Planstädte und die der gewachsenen Städte blieb im Kern unangetastet.

Methodische Aspekte Wie im vergangenen Kapitel dargestellt, gehört die Frage nach einer intendierten Stadtplanung zu einem der vieldiskutierten Themen der Mittelalterforschung und fand besonders in jüngster Vergangenheit wieder erhöhte Aufmerksamkeit. Als Ergebnis der aktuellen Forschungsdebatte kann festgestellt werden, dass der Großteil der Stadtgeschichtsforschenden nach wie vor an der These der Dichotomie von gegründeten Planstädten und gewachsenen Städten festhält. Zwar gilt die gewachsene Stadt als Normalfall, dennoch wurde die Existenz von geplanten mittelalterlichen Stadtgrundrissen durch die traditionelle Stadtgeschichtsforschung grundsätzlich nicht in Abrede gestellt. Diese allgemeine Differenzierung ist jedoch in methodischer Hinsicht nicht unproblematisch, da Arbeitstagung der Bayerischen Landeshistoriker in Rothenburg ob der Tauber im Jahr 2004 mit Beiträgen u. a. von Weber (2009), Borchardt (2009) und Wüst (2009) sowie die Züricher Tagung im Jahr 2004 mit Beiträgen u. a. von Stercken (2006), Untermann (2006). 111 Vgl. Neuheuser 2004, 228; Untermann 2004, 13; Stercken 2006, 26. 112 Vgl. Bönisch 2002, 329. 113 Vgl. Untermann 2004, 12. Stercken (2006, 31) plädierte dafür, den Terminus »Gründungsstadt« durch den Begriff »planmäßige Stadtanlage« zu ersetzen. 114 Vgl. Mihm 2002. 115 Vgl. Schmieder 2009, 38.

25

Methodische Aspekte

sie im konkreten Fall auf einer Herangehensweise basiert, die fachintern bislang weder beschrieben noch diskutiert wurde, und deshalb am besten mit der aus der Medizin und Psychologie bekannten Augenschein-Diagnostik verglichen werden kann.116 Denn angesichts der spärlichen Quellen gilt es in der traditionellen mittelalterlichen Stadtforschung als methodisch unbedenklich, die Komposition des Stadtgrundrisses selbst als Beweis einer systematischen Stadtplanung heranzuziehen. Dabei ist in der Regel allein der subjektiv empfundene Grad an Regularität von Umriss, Straßenführung und Parzellenorganisation ausschlaggebend. Indem der bloße Augenschein als hinlänglicher wissenschaftlicher Beweis akzeptiert ist, wird er in methodischer Hinsicht also in den Rang eines quellengestützten Nachweises erhoben. Exemplarisch für die bislang gängige und allgemein akzeptierte Vorgehensweise seien an dieser Stelle zwei Beispiele angeführt: Zu den in der aktuellen Stadtgeschichtsforschung diskutierten Musterbeispielen einer planvollen Neugründung gehört das in der Toskana gelegene San Giovanni Valdarno, in dem sich heute nicht zufällig das Museo delle Terre Nuove befindet, dessen Daueraus­ stellung dem Stadtgründungsphänomen im Europäischen Mittelalter gewidmet ist (vgl. Abb. 1).117 Sowohl Umriss und Straßenführung als auch Parzellenorganisation der um 1300 vorang­triebenen Florentinischen Gründung sind in einem solchen Maß von einer orthogonalen Geometrie durchdrungen, dass bislang eine zufällige Entstehung des Grundrisses seitens der Stadtbauforschung nicht in Erwägung gezogen wurde. »Men, not topography, established their form«118, lautet das allgemein akzep-

Abb. 1: San Giovanni Valdarno, florentinische Gründung um 1300 in der Toskana. 116 Vgl. Bierbach 2013, 119 ff. 117 http://www.museoterrenuove.it/struttura-museale/ (Letzter Zugriff am 14.10.2019). 118 Friedman 1988, 3.

26

Methodische Aspekte

Abb. 2: Die im 13. und 14. Jahrhundert mehrfach erweiterte Stadtanlage von Rothenburg ob der Tauber (nach Katasterplänen aus dem 19. Jahrhundert).

tierte Urteil hinsichtlich der Frage nach einer systematischen Planung der Florentinischen Gründungen. Diese Einschätzung impliziert dabei unausgesprochen, dass das gromatische Wissen im Mittelalter auf einem so hohen Stand war, dass die Aufmessung eines mehreren Hektar großen Gebiets nach einem festgelegten Plan technisch gesehen ohne Probleme möglich gewesen ist. Im Gegensatz zu San Giovanni Valdarno gilt das im 12. Jahrhundert gegründete und im 13. und 14. Jahrhundert mehrfach erweiterte Rothenburg ob der Tauber in Mittelfranken wegen seiner organisch anmutenden Kontur und des irregulären Straßensystems dagegen als »Idealtypus einer gewachsenen Stadt«119 (vgl. Abb. 2), die im Laufe der Jahrhunderte ohne ein planerisches Gesamtkonzept vergrößert worden sein soll.120 Allenfalls für den nordöstlichen, im ebenen Gelände gelegenen und durch eine rasterförmige

119 Weber 2009, 9. 120 Vgl. Borchardt 2009, 26.

Methodische Aspekte

27

Straßenführung charakterisierten Bereich wurde nicht ausgeschlossen, dass seine heutige Gestalt Ergebnis der »Arbeit eines aus Klöstern geholten Feldmessers«121 sein könnte. Die Einschätzung seitens der Forschung hinsichtlich der Entstehung der beiden mittelalterlichen Stadtanlagen ist insofern bemerkenswert, als dass eine mit einer Absteckung einhergehende Stadtplanung in beiden Fälle weder durch schriftliche Zeugnisse oder bildliche Quellen zweifelsfrei ausgeschlossen noch explizit nachgewiesen werden kann. Diese Quellenlage ist durchaus charakteristisch für den Großteil der mittelalterlichen Städte. Wie im Kapitel 2.3.2 ausgeführt werden wird, kann zwar anhand archivalischer und kartographischer Zeugnisse, wie Urkunden, Zinsbüchern, Stadtplänen, Stadtbauordnungen und einschlägige Fachbüchern zum Vermessungswesen, generell davon ausgegangen werden, dass während des gesamten Mittelalters gromatisch geschulte Spezialisten aktiv waren, die die Neugründung bzw. die räumliche Reorganisation von Städten vermessungstechnisch vorbereiteten und begleiteten. Der konkrete Nachweis ist hinsichtlich einer systematischen Absteckung eines bestimmten Stadtgrundrisses jedoch allein anhand der Quellenlage nur in den seltensten Fällen zweifelsfrei zu erbringen.122 Tatsächlich ist es möglich, mittels einer Augenschein-Diagnostik sowohl streng-geometrische Stadtgrundrisse, deren innere Struktur durch einen besonders hohen Grad an Regularität geprägt ist, als auch bestimmte emblematische Grundrissfiguren als Resultat einer intendierten Planung zu erkennen, die Methode versagt jedoch bei subtileren, weniger offensichtlichen geometrischen Konstruktionen und vor allem hinsichtlich proportionaler Verhältnisse. An diesem Punkt möchte die vorliegende Studie methodisch ansetzen, indem sie über die allgemein akzeptierte reine Augenschein-Diagnostik hi­naus mit objektiveren, nämlich mathematisch-geometrischen Analysemethoden arbeitet. Um die Frage zu klären, ob neben offensichtlichen Aspekten auch latente Determinanten Einfluss auf die topographischen Raumbeziehungen eines Stadtgefüges haben können, soll ein Verfahren zur Anwendung kommen, das sich methodisch an der Herangehensweise der in der Kunstwissenschaft entwickelten Bildanalyse orientiert.123 Dabei werden die Organisationsprinzipien der Wehr- und Sakraltopographie einer Stadt mittels einer CAD-basierten, planimetrischen Analyse auf ihre kompositorische Kohärenz hin geprüft, um geometrische Grundrissfiguren mit dazugehörigen Fluchtlinien- und Winkelsystemen und proportionale Bezüge nachvollziehen zu können.124

121 Ebenda. 122 In der Regel erreichen die schriftlichen Quellen erst im ausgehenden Mittelalter einen solchen Umfang, dass auf ihrer Grundlage ein Bild zur räumlichen Entwicklung einer Stadt erschlossen werden kann, wie es beispielsweise bei Zürich der Fall ist (vgl. Wild 2006, 69). 123 Vgl. Sedlmayr 1958, 36 ff.; Held/Schneider 2007, 358. 124 Vgl. Elam 2001, 42.

28

Methodische Aspekte

Die formal-geometrische Analyse erfolgt mittels der heuristisch-evolutiven Methode. An erster Stelle steht die Suche nach dem städtischen Mittelpunkt, also nach dem gromatischen Zentrum, aus dem die urbane Vermessung formal entwickelt worden ist. Dieser Nullpunkt erfuhr in der späteren Entwicklung häufig eine architektonische Markierung, beispielsweise in Gestalt eines Brunnens, eines Marktkreuzes oder eines anderen Zentrumsmonuments.125 In anderen Fällen kann das urbane Zentrum auch als Kreuzungspunkt der Hauptstraßen in Erscheinung treten, aber auch als Mittelpunkt des Marktplatzes oder als Altarstandort der Hauptkirche. Auf diesen Punkt beziehen sich in der Regel die wichtigsten Wehr- und Sakralbauten, deren geometrische und proportionale Bezüge der Wehr- und Sakraltopographie in einem nächsten Schritt analysiert werden. Schließlich erfolgte – falls bekannt – eine Überprüfung der Orientierung der Ost-West-Achsen auf den Sonnenaufgangspunkt ihres Gründungstages. Zwar wäre bei all diesen Schritten auch eine konventionelle Konstruktionstechnik mit Zirkel und Lineal denkbar, jedoch wurde die geometrische Analyse mittels eines computerunterstützten Konstruktionsverfahrens vorgenommen. Dabei kam ein Computer-Aided-­ Design-Programm (CAD) zum Einsatz, also ein rechnerunterstütztes Konstruktionsprogramm, das in der Regel im architektonischen Entwurf oder im Maschinenbau verwendet wird. Das computerunterstützte Erzeugen eines geometrischen Modells erlaubt nicht nur eine schnelle Überprüfung verschiedenster Konstruktionsvarianten, sondern auch das Skalieren im originalen Maßsystem und erwies sich im Ergebnis bei der geometrischen Analyse von Stadtgrundrissen als äußerst hilfreich. Zweifellos sind auch der planimetrischen Kompositionsanalyse Grenzen gesetzt, da sie auf der Grundlage einer kartographischen Projektion basiert. Als zweidimensionale Projektion des dreidimensionalen Stadtraums gelingt es einem Stadtplan – anders als den im Mittelalter und in der Frühen Neuzeit verbreiteten Städteansichten – trotz der Verwendung bestimmter Signaturen oder Höhenangaben nicht, optisch den Aufriss einer städtischen Landschaft, der durch die Größenverhältnisse der einzelnen Gebäude entsteht, auf einen Blick zu vermitteln. Dies betrifft nicht nur die urbane Vieltürmigkeit, die im Mittelalter und in der Frühen Neuzeit als Synonym für die Schönheit einer Stadt stand, sondern auch die Gestaltungskraft des natürlichen Reliefs, das in der mittelalterlichen Stadtbaukunst insofern effektvoll genutzt wurde, dass für das Stadtgefüge zentrale Gebäude auf dem höchsten Punkt der Stadt platziert worden sind. Fernerhin ist zu beachten, dass es sich auch bei den ältesten Stadtgrundrissen, die auf Aufmessungen aus dem 18. und 19. Jahrhundert basieren, in der Regel um historisch über125 Da die Zentrumsmonumente im 19. und 20. Jahrhundert häufig als verkehrsbehindernd empfunden wurden, sind sie nicht selten versetzt oder zurückgebaut worden. Deshalb ist eine exakte Lokalisierung des mittelalterlichen Standorts unabdingbar.

Methodische Aspekte

29

formte Palimpseste handelt, deren mittelalterliches Erscheinungsbild erst mittels kartographischer, schriftlicher und archäologischer Quellen rekonstruiert werden muss.126 Deshalb ist der forschungsgeschichtliche Fokus auf die interne Gliederung einer Stadt, die durch das Straßensystem und die Parzellenteilung konstituiert wird, grundsätzlich problematisch, da – wie archäologische Untersuchungen in Stadtkernen zeigen – bereits im ausgehenden Mittelalter und in der Neuzeit besonders Straßensystem und Parzellenorganisation häufig verändert wurden. Aufgrund der partiellen Einblicke, die archäologische Untersuchungen in Stadtkernen in der Regel nur gewähren können, ist es deshalb nahezu unmöglich, den gründungszeitlichen Zustand einer mittelalterlichen Stadt in jedem Detail zu rekonstruieren. Im Vergleich dazu ist die Standorttreue der urbanen Wehr- und Sakraltopographie, wie Kirchen, Klöster, Kapellen, Hospitäler, Türme und Tore, in der Regel weitaus höher. Zwar können auch diese Gebäude von radikalen Modifikationen und kompletten Rückbauten betroffen sein, wegen der verbauten durablen Materialien, wie Stein und Ziegel, und ihrer Prominenz innerhalb des Stadtgefüges, lässt sich ihre ursprüngliche Position aber üblicherweise mit Hilfe archäologischer, archivalischer und bildlicher Quellen wesentlich leichter rekonstruieren als die gründungszeitliche Parzellen- und Straßenorganisation. Aus diesen Gründen stützt sich die vorliegende Studie im Wesentlichen auf die Analyse der urbanen Wehr- und Sakraltopographie. Für diese formale Analyse wurden aus im Zusammenhang der Studie rund 120 analysierten Stadtgrundrissen zwölf Städte aus sechs verschiedenen Ländern Mittel- und Westeuropas ausgewählt, deren Gestalt zwischen dem 12. und 14. Jahrhundert maßgeblich geprägt worden ist.127 Dabei handelt es sich um Tournay (Frankreich), San Giovanni Valdarno (Italien), Bretenoux (Frankreich), Strzelce Krajeńskie (Polen), Wolframs-Eschenbach, Würzburg, Brandenburg an der Havel, Villingen, Rottweil und Rothenburg ob der Tauber (Deutschland), Worcester (Großbritannien) und Wien (Österreich). Um eine gewisse Repräsentativität zu gewährleisten, wurde bei der Auswahl darauf geachtet, nicht nur geographisch, sondern auch inhaltlich ein möglichst breites Spektrum an unterschiedlichen Stadttypen abzudecken. Dies betrifft nicht nur die heutige Größe und Bedeutung der Städte128, sondern auch ihre Gestalt129, ihren Gründungszeitraum130, die Gründerpersön126 Vgl. Held/Schneider 2007, 355; Sullivan 2008, 33. 127 Im Vorfeld der Studie wurden über 100 Grundrisse aus ganz Europa einer Analyse unterzogen. Dabei konnte festgestellt werden, dass trotz der individuellen Komposition jedes Grundrisses bestimmte geometrische Konstruktionen regelhaft verwendet wurden. Um jedoch einen kataloghaften Eindruck zu vermeiden, konzentriert sich die Studie auf die Vorstellung von zwölf Städten. 128 So wohnen heute in Tournay lediglich rund 1300 Personen, während Wien als Hauptstadt von Österreich rund 1,8 Millionen Einwohner zählt. 129 Es wurde darauf geachtet, dass sich in der Auswahl Städte mit streng geometrischen Grundrissen, aber auch mit emblematischen Umrissfiguren und irregulären Konturen befinden. 130 Bei Worcester handelt es sich um eine römische Gründung aus dem ersten nachchristlichen Jahrhundert, bei Wolframs-Eschenbach um eine Stadterhebung aus dem 14. Jahrhundert.

30

Methodische Aspekte

lichkeiten bzw. -institutionen131, aber auch die Intensität der bislang erfolgten Forschungsaktivitäten132. Kann die gestalterische Organisation eines Stadtgrundrisses methodisch gesehen ebenso wie jede andere mittelalterliche Kunstäußerung nach formalgeometrischen Aspekten analysiert werden, so muss die mittelalterliche Stadt darüber hinaus auch als ein Gewebe aus Bezügen und Bedeutungen gewürdigt werden, deren semantische Struktur tief in der theologisch-philosophischen Geistesgeschichte des Mittelalters verwurzelt ist.133 Das mittelalterliche Weltbild basiert auf einer konzeptuellen Ordnung, die im Wesentlichen vom neuplatonisch-christlichen Geist durchdrungen ist.134 Um diese vergangene Symbolwelt angemessen zu würdigen, darf sie nicht lediglich als eine rückwärtsgewandte Verlängerung der eigenen Gegenwart aufgefasst werden.135 Im Gegenteil sollte – wie bei jeder anderen Forschungstätigkeit in einem fremdkulturellen Kontext – versucht werden, über die kritische Reflexion der eigenen modernen Denkkategorien hinaus eine dem Mittelalter immanente Perspektive einzunehmen.136 Dazu dient in dieser Arbeit u. a. die verstärkte Hinwendung zu zeitgenössischem Bild- und Quellenmaterial. Auch wenn ein solcher Perspektivwechsel nicht problemlos möglich ist137, kann zumindest die menschliche Neigung, die konzeptuellen Denkstrukturen der eigenen Gegenwart als natürliche Ordnung anzusehen, kritisch reflektiert werden.138 Fasst man beispielsweise die Gestalt einer mittelalterlichen Stadt, wie es in der älteren Stadtgeschichtsforschung üblich war, lediglich als das pragmatische und funktionale Ergebnis von »Zweckmäßigkeiten«139 auf, wird dabei der Blick auf den institutionellen Charakter der mittelalterlichen Stadt verstellt, die neben der Befriedigung der körperlichen Lebensnotwendigkeiten ebenso wie das zeitgenössische Klosterwesen darauf abzielte, den geistigen Bedürfnissen der Bürgerschaft Rechnung zu tragen.140 Auf der Grundlage dieser Überlegungen wird der formalen Analyse ein dem ideengeschichtlichen Kontext gewidmeter Teil vorgeblendet, der der wechselseitigen Beziehung von Stadt und Geometrie vor dem Hintergrund des neuplatonisch-christlichen Weltbildes besondere Beachtung schenkt. 131 Die Gründungen wurden nicht nur von weltlichen und kirchlichen Würdenträgern (Wien und Würzburg) vorangetrieben, sondern auch von Orden (Wolframs-Eschenbach) oder von Mutterstädten (San Giovanni Valdarno). 132 Villingen gehört wegen seines charakteristischen Grundrisses zu den »Klassikern« der Stadtplanforschung, Bretenoux wurde dagegen bislang noch nicht analysiert. 133 Zur hermeneutischen Diskussion vgl. Gadamer 1995a, 1995b; Lorenz 1997, 90 ff. 134 Vgl. Gurjewitsch 1972, 8 f.; Darnton 1989, 11 und 295; Bachmann-Medick 2006, 87. 135 Vgl. Lorenz 1997, 45. 136 Vgl. Bachmann-Medick 2006, 144; Cappai 2008a, 257; Hahn 2013, 76 ff. 137 »Der Mensch [ist] ein Wesen, das in selbstgesponnenen Bedeutungsgeweben verstrickt ist« (Geertz 1983, 9). 138 Vgl. Lorenz 1997, 45. 139 Keyser 1963, 346. Im Gegensatz dazu betont die traditionelle Hermeneutik die grundsätzliche Bedeutung des Nicht-Notwendigen in der Geschichte (vgl. Lorenz 1997, 93). 140 Vgl. Gerlach 1963, 341.

1. Zum mittelalterlichen Geometrieverständnis

Abb. 3: Die Inszenierung der Neuzeit als Erweiterung des mittelalterlichen Horizonts (Frankreich, 1888).

Die mittelalterliche Kosmologie als in sich geschlossene Sinnkonstruktion um Ursprung und Aufbau der Welt folgte Prinzipien, die im deutlichen Kontrast zur modernen Wissenschaft stehen. Die gelehrte Welt des Mittelalters zog keine Grenze zwischen Philosophie, Naturwissenschaft und Theologie und machte daher auch keinen Unterschied zwischen Glauben und empirisch gewonnenem Wissen. Die Natur, wahrgenommen als sichtbarer Ausdruck der göttlichen Schöpfung, war so eng mit der Theologie verwoben, dass ihr Studium als adäquater Weg galt, den göttlichen Heilsplan zu begreifen.1 1

Vgl. Ellard 2007, 21; Obermaier 2009, 10.

32

Abb. 4: Allegorie von Antike und Mittelalter (Bernhard von Chartres, um 1410). 2 3

Zum mittelalterlichen Geometrieverständnis

In der Rückschau sank das »lichttrunkene«2 Mittelalter jedoch zu einem dunklen Zeitalter herab – eine Vorstellung, die im Umfeld des italienischen Humanismus geprägt worden war und bis heute nachwirkt.3 Infolgedessen wurde den 1000 Jahren, die zwischen dem Untergang des Weströmischen Reichs und der Gegenwart des Quattrocento lagen, allenfalls der Status einer Übergangszeit, einer media aetas4, zuerkannt, die man als gleichbedeutend mit dem Niedergang der antiken Zivilisation empfand.5 So intensivierte der finstere Hintergrund des Mittelalters eindrucksvoll die Strahlkraft der neuen Epoche, die sich als Aufbruch in eine neue Zeit inszenierte (vgl. Abb. 3). Ab der Frühmoderne vollzog sich in einem langen Prozess eine Bereinigung der Wissenschaften von christlichen Glaubensinhalten, was zur Verfestigung des Bruchs mit der mittelalterlichen Denkkultur führte. Ungewollt verstellte sich damit die moderne Forschung jedoch gleichzeitig den Blick auf das starke religiöse Element, das die antike griechische Naturphilosophie durchzog.6 Während der gegenwärtige Rezeption der gottgläubige Charakter der griechischen Philosophie tendenziell eher fremd bleibt, war der gelehrten Welt des Mittelalters die antike Religiosität mehr als vertraut, denn gerade aufgrund dieser Gemeinsamkeit konnten

von Simson 1982, 169. Die Vorstellung wurde bereits 1330 von dem italienischen Dichter Francesco Petrarca in den Epistolae vorgedacht, der zudem die Epocheneinteilung zwischen Antike, Mittelalter und Neuzeit vorwegnahm: »Denn es gab ein glücklicheres Zeitalter, und vielleicht wird es ein neues geben. In der mittleren, in unserer Zeit siehst du, wie aller Schmutz, wie alle Schändlichkeit zusammengeflossen sind« (zit. nach Blum 2011, 13). 4 Die humanistische Ansicht, dass in der vorhergehenden Epoche lediglich »media et infirma latinitas« gesprochen worden sein soll, trug zur Namensgebung »medium aevum« bei (vgl. Knefelkamp 2002, 13). 5 Nachdem diese Vorstellung im 15. Jahrhundert von den Humanisten für ihre Gegenwart in Anspruch genommen worden war, feierte 1550 Giorgio Vasari das Quattrocento als Rückbezug auf die Antike, indem er für die Epoche den Begriff rinascita prägte (vgl. Blum 2011, 13 f.; Pfeiffer 2011, 11 f.). 6 Wie die Schriften von Parmenides, Empedokles, Platon und Aristoteles zeigen, ist in der griechischen Philosophie die Grenze zwischen Rationalem und Göttlichem nicht immer eindeutig zu ziehen (vgl. Wildberg 2011, 86 f.).

Zum mittelalterlichen Geometrieverständnis

33

die christlichen Gelehrten zentrale Inhalte des griechischen Philosophiesystems bruchund widerspruchslos in ihr eigenes theologisches Denksystem integrieren. Doch ebenso wie die Neuzeit sich über die vorherige Epoche erhob, fühlte sich die mittelalterliche Geisteswelt ihrer Selbsteinschätzung nach der Antike überlegen. Gemäß der christlichen Geschichtsauffassung wurde das Fortschreiten der irdischen Zeit als ein linearer und zielgerichteter Prozess erlebt, als eine allein von Gott gestaltete Heilsgeschichte, deren Ende mit dem Jüngsten Gericht erwartet wurde, um als neue, gerechtere Zeit im Himmlischen Jerusalem ihre Fortsetzung zu finden.7 Diese teleologische Zeitwahrnehmung erklärt auch das Hochgefühl, das ab der Jahrtausendwende unter den Gläubigen herrschte: Man lebte in dem chiliastischen Bewusstsein, dass sich mit dem nahen Weltenende noch im eigenen Zeitalter, vielleicht sogar während der eigenen Lebenszeit, das Reich Gottes auf Erden verwirklichen würde.8 Trotz dieses Gefühls von Überlegenheit wurde – anders als in der neuzeitlichen Perspektive auf das Mittelalter – der Übergang vom heidnischen Altertum zum christlichen Zeitalter nicht als Bruch wahrgenommen, sondern als eine Synthese von antiker Philosophie und christlichem Glaubenswissen.9 Im 12. Jahrhundert umschrieb man das Verhältnis von antiker und mittelalterlicher Denktradition im Umfeld der Schule von Chartres folgendermaßen (vgl. Abb. 4): Bernhard von Chartres sagte, wir seien gleichsam Zwerge, die auf den Schultern von Riesen sitzen, um mehr und Entfernteres als diese sehen zu können – freilich nicht dank eigener scharfer Sehkraft oder Körpergröße, sondern weil die Größe der Riesen uns emporhebt.10 Die Achtung vor der älteren, obgleich paganen Geistestradition, die aus diesem Vergleich spricht, zeigt den großen Einfluss der griechischen Philosophie auf die christliche Glaubenslehre des hohen Mittelalters. Daher wird das mittelalterliche Weltbild nur vor dem Hintergrund der antiken Denkkultur verständlich, da es von ihr maßgeblich beeinflusst und geprägt worden ist.

  7 Vgl. Knefelkamp 2002, 12 f.   8 Der Abt und Ordensgründer Joachim von Fiore (um 1130–1220) prophezeite für das Jahr 1260 den Anbruch eines Dritten und Letzten Zeitalters, das den Gläubigen alle Freuden des Himmlischen Jerusalems gewähren soll (Joachim v. Fiore, Das Reich des Hl. Geistes, 93 ff.; vgl. Funk 1931, 30; Rosenberg 1955, 25 ff.; Ohly 1966, 10.   9 Vgl. Heinzmann 1992, 18. 10 Johannes v. Salisbury, Metalogicon III, 4, 46–50. Wilhelm von Conches (um 1085–nach 1154) erweiterte den Gedanken seines Lehrers Bernhard von Chartres, indem er bemerkte, dass die gelehrte Welt des Mittelalters nicht nur über die antiken Werke selbst verfüge, sondern auch über die Schriften der eigenen Epoche (vgl. Ellard 2007, 6).

34

Zum mittelalterlichen Geometrieverständnis

1.1 Die pythagoreische Tradition Unbestrittene Autorität auf dem Feld der Mathematik und der Messkunst war während des gesamten Mittelalters der griechische Mathematiker und Philosoph Pythagoras (vgl. Abb. 5).11 Sein Name stand in der mittelalterlichen Gelehrtenwelt für eine Kontinuität des Wissens von der Antike bis in die eigene Gegenwart, weswegen seine Lehren vor allem in den Bereichen der Mathematik, Philosophie und Kunst eine große Rezeption erfuhren. Zwar ist die heutige Kenntnis der pythagoreischen Lehre des im 6. vorAbb. 5: Das Pythagorasbild im ausgehenden Mittelchristlichen Jahrhunderts lebenden Denalter (Schedelsche Weltchronik, 1493). kers infolge der spärlichen Überlieferung und der Arkanophilie des von ihm gegründeten Geheimbunds nur bruchstückhaft12, als gesichert kann zumindest gelten, dass die pythagoreische Tradition aus der Verknüpfung von spiritueller Kosmologie, ästhetischer Ontologie und rationaler Naturwissenschaft eine weit über die Antike hinaus wirkende Denktradition begründet hat, nach der die kosmische Ordnung auf mathematischen Prinzipien beruhe.13 Ins Mittelalter vermittelt wurde die pythagoreische Lehre vor allem über einen wahrscheinlich um 500 n. Chr. lebenden christlichen Gelehrten, der heute unter dem Namen Pseudo-­Dionysios-Areopagita bekannt ist und dessen Schriften die spätere christliche Mystik und Kunstauffassung maßgeblich geprägt haben.14 11 Bereits in der Einleitung der Arithmetica unterstrich Boethius die Bedeutung des Pythagoras für die mathematischen Wissenschaften (vgl. Boethius, De Instit. Arithm. I, 1) – eine Ansicht, die noch am Ausgang des Mittelalters Gültigkeit hatte (vgl. Schedelsche Weltchronik, LXII). In der mittelalterlichen Schultradition galt Pythagoras als Meister des Quadriviums, die mittelalterlichen Bauhütten nannten ihn Patron ihrer ars geometriae. In der Neuzeit wurde er als Schöpfer der modernen Naturwissenschaft gefeiert; man empfand die Lehren des Nikolaus Kopernikus (1473–1543) und des Galileo Galilei (1564–1642) als Erneuerung der pythagoreischen Wissenschaft (vgl. Burkert 1962, 1 und 383). 12 Eine Unterscheidung zwischen pythagoreischer und platonischer Tradition vorzunehmen, gestaltet sich als schwierig, da die pythagoreischen Lehren vor allem durch Platon und seine Schüler überliefert sind (vgl. Burkert 1962, 82; Riedweg 2007, 41 f.). 13 Die ursprünglichen Bedeutungen ordnen und schmücken, die dem griechischen Verb κοσμέω bereits in vorpythagoreischer Zeit innewohnten, wurden in eine philosophisch-spekulative Richtung erweitert, wobei bereits der Begriff Kosmos, also die Vorstellung von einer schmuckvollen Ordnung der Welt, Teil der kosmologischen Konstruktion darstellte (vgl. Burkert 1962, 272; Friesenhahn 1970, 160; Wildberg 2011a, 85). 14 Vgl. Jesberg 1987, 12.

Die pythagoreische Tradition

35

Wie die antike Überlieferung unterstreicht, wurde in der pythagoreischen Tradition den Phänomenen Zahl und Proportion ein fundamentaler Stellenwert eingeräumt: Abgesehen von dem berühmten pythagoreischen Akusma, wonach »die Zahl als das Weiseste von allem«15 angesehen werden solle, betonte der spätantike Neuplatoniker Iamblichos die Bedeutung von Zahl und Proportion im pythagoreischen Denken: Das Erste war für ihn [Pythagoras] Zahl und Proportion, deren Natur sich durch alle Dinge hindurchzieht. Nach Zahl und Proportion ist ja dieses All harmonisch zusammengefügt und in rechter Art geordnet.16 Die beiden Prinzipien galten demnach als das Fundament der harmonischen Weltenordnung, wobei ihre mathematische Erkenntnis nach pythagoreischer Auffassung den Schlüssel zum Verständnis des Kosmos darstellte.17 In einer aristotelischen Schrift ist überliefert, dass die Pythagoreer aufgrund der strukturellen Analogie zwischen Dingen und Zahlen zu folgendem Schluss kamen: Die Elemente der Zahlen sind die Elemente aller seienden Dinge, und der gesamte Himmel ist Harmonie und Zahl.18 Wirkungsgeschichtlich sollte gerade dieses Theorem großen Einfluss auf die mittelalterliche Geisteswelt haben. Da die pythagoreisch beeinflussten Denker davon ausgingen, dass das Ordnungsprinzip der belebten und unbelebten Welt auf Zahlen beruhe, erschien es ihnen folgerichtig möglich, durch das Studium der Zahlen nicht nur die verborgene Ordnung des Kosmos zu ergründen, sondern diese auf den Gesetzen der Mathematik basierende Ordnung auch im menschlichen Werk nachzuahmen – ein erkenntnistheoretischer Ansatz, der nicht nur die mittelalterliche Kunstauffassung nachhaltig prägen sollte.19 Als Konsequenz wurden die zentralen Prinzipien aus Astronomie, Arithmetik, Geometrie und Musik in einem in sich geschlossenen Denksystem zusammengeführt, dessen Tradition im Rahmen des Quadriviums über das Mittelalter hinaus bis in die Neuzeit lebendig war.20 Zu den im Mittelalter noch gepflegten pythagoreischen Traditionen gehört die sogenannte Psephoi-Methodik (ψήφος: Zahl-, Stimmstein), wie der Scholastiker Hugo 15 Das Akusma ist sowohl in dem Werk des kaiserzeitlichen Sophisten Claudius Aelianus (Varia historia, IV, 17), als auch bei Iamblichos (Vit. Pyth. 82) überliefert. 16 Iamblichos, Vit. Pyth. 59. 17 Vgl. Burkert 1962, 70; Eco 2009, 61. 18 Arist., Metaph., 986a. 19 Vgl. Wildberg 2011, 85. 20 »Auch er [Pythagoras] forschte über naturwissenschaftliche Fragen und verband Astronomie, Geometrie, Musik und Zahlenkunde.« (Hippolytos, Ref. 1, 2, 2).

36

Zum mittelalterlichen Geometrieverständnis

von St. Victor (1097–1141) berichtete.21 Indem man die Psephoi zu geometrischen Figuren anordnete, wollte man nicht nur die Analogie von Dingen und Zahlen demonstrieren, sondern auch das unter der äußeren Gestalt verborgene Wesen eines Dinges darstellen.22 Die Psephoi-Methode diente somit der Sichtbarmachung der inneren Ordnung der belebten und unbelebten Welt.23 Von dem griechischen Mathematiker Eurytos ist überliefert, dass er mittels der Psephoi auch die Umrisse von LebeAbb. 6: Die pythagoreische Tetraktys als Psephoi-­Figur. wesen geformt und so ihre Zahl bestimmt habe.24 Eurytos war der Schüler des weithin bekannten Pythagoreers Philolaos (470 v. Chr.–399 v. Chr.), der den geometrischen Figuren Dreieck, Quadrat und Zwölfeck einen so hohen Stellenwert zuschrieb, dass er ihre Winkel den Göttern weihte.25 Zahlen wurden darüber hinaus als eigenständige Entitäten verstanden.26 Neben der Eins kam der Zehn in pythagoreischen Kreisen besondere Verehrung zu, da der Dekade ähnlich wie der Monade die Eigenschaft zugeschrieben wurde, bereits in ihrem Wesen alle Formen, Proportionen und Harmonien zu enthalten.27 Im Rahmen der Psephoi-Methode gab man der Zehn deshalb auch die Gestalt eines aus zehn Zahlsteinen gelegten, gleichseitigen Dreiecks, das von seiner Spitze bis zu seiner Basis aus der Zahlenfolge 1, 2, 3, und 4 bestand und daher auch als Tetraktys (τετρακτύς: Vierheit) bezeichnet wurde (vgl. Abb. 6).28 Die Tetraktys galt aufgrund dieser besonderen Zahlenordnung auch als Symbol für die kosmische Harmonie und bildete einen Bestandteil der Schwurformel der in der Antike als Geheimbund organisierten Anhängerschaft des Pythagoras.29

21 Hugo von St. Victor, Didasc. 6, 3. 22 Arist., Metaph., 1092b. 23 Vgl. Becker 1966, 40; Riedweg 2007, 116. Im antiken Athen dienten ψήφοι in Gerichtsverhandlungen und in Volksversammlungen auch als Stimmsteine (vgl. Burckhardt/Ungern-Sternberg 2000, 47 ff.). 24 Arist., Metaph., 1092b. Vermutlich nehmen die sogenannten Figurenzahlen, die Platon (Tim. 35a) und Boethius (De Instit. Arithm. II, 6–9) verwenden, auf die pythagoreische ψήφοι-Methodik Bezug. 25 Philolaos soll den Winkel des Dreiecks dem Kronos, Hades, Ares und Dionysos, den Winkel des Quadrats der Rhea, Demeter, Hestia und den Winkel des Zwölfecks dem Zeus geweiht haben (Philolaos, Fragm. A 14). 26 »Die Pythagoreer behaupten, das Seiende existiere durch die Nachahmung der Zahlen, Platon, mit verändertem Namen, durch Teilhabe« (Arist., Metaph., 987b). Vgl. Burkert 1962, 390. 27 Lydus, De mensibus, II, 20; Iamblichos, Vit. Pyth. 162. Vgl. auch Riedweg 2007, 46. 28 Vgl. Riedweg 2007, 115. 29 Iamblichos, Vit. Pyth. 82; Arist., Metaph., 986 a. Vgl. auch Burkert 1962, 35 f.; Riedweg 2007, 111.

Die pythagoreische Tradition

37

Abb. 7: Die Experimente des Pythagoras und des Philolaos zum Verhältnis von Proportion und Musik (Franchino Gaffurio, 1472).

Die kosmische Ordnung basierte nach pythagoreischer Auffassung jedoch nicht allein auf der Zahl, sondern auch auf der Proportion. Denn allein das rechte Verhältnis der Zahlen erzeuge auch Harmonie, die Philolaos zufolge als das verbindende Element des Kosmos galt.30 Auch Aristoteles bestätigte, dass allein der Harmonie die Macht zukomme, Gegensätze zu trennen und zu vereinigen.31 So wurde mit Pythagoras noch im Mittelalter die Entdeckung der mathematischen Grundlagen der Musik verbunden: Zufällig soll der Meister bei einem Besuch einer Schmiede erkannt haben, dass auch die musikalischen Intervalle Oktave, Quinte und Quarte auf die Tetraktys zurückgeführt werden können, da ihnen die Grundzahlen 1, 2, 3, 4 zugrunde liegen, die in den Zahlenverhältnissen 2 : 1, 30 Vgl. Jesberg 1987, 14. 31 Arist., De mania I, 4: »καὶ τὴν ἁρμονίαν κρᾶσιν καὶ σύνθεσιν ἁνανωτίων εἶναι« (zit. nach Bauer 1897, 23).

38

Zum mittelalterlichen Geometrieverständnis

3 : 2, 4 : 3 zum Ausdruck kommen (vgl. Abb. 7).32 Fortan galt Musik als ein Medium, Proportion hörbar zu machen: Noch im Mittelalter wurden die Saiten einer Laute gespannt, um verschiedene Zahlenverhältnisse zu demonstrieren.33 Untrennbar mit der musikalischen Proportionslehre war die pythagoreische Vorstellung von der Sphärenharmonie verbunden.34 Demnach werde durch die Bewegung der Gestirne, die nach einem harmonischen Zahlverhältnis angeordnet sind, sphärische Musik erzeugt, die jedoch nicht von den menschlichen Sinnen wahrgenommen werden kann. Allein dem Pythagoras wurde die Fähigkeit zugeschrieben, diese kosmische Musik hören zu können.35 Als Geheimbund organisiert, war die pythagoreische Philosophietradition von einer starken Arkanophilie durchdrungen. Man unterschied streng zwischen einem exoterischen Kreis der Nichteingeweihten und einem esoterischen Kreis der Eingeweihten.36 Iamblichos differenzierte daher auch zwischen zwei Arten von Pythagoreern, zwischen den Akusmatikern (ἀκουσματικοί, abgeleitet von dem griechischen Verb für hören) und den Mathematikern (μαθεματικοί, abgeleitet von dem griechischen Verb für lernen).37 Es wird vermutet, dass es den Anhängern erst nach ihrer endgültigen Aufnahme gestattet war, sich mit den Mathemata (μαθήματα, wörtl. das zu Lernende) zu befassen, worunter die Disziplinen Arithmetik, Geometrie, Astronomie und Musik verstanden wurden.38 Aus dem fünften vorchristlichen Jahrhundert stammen Hinweise auf die Existenz eines »heiligen Wortes« (ἱερός λόγος), wobei es sich allem Anschein nach um eine geheime Lehre handelte, die nur den Eingeweihten zugänglich war.39 32 Der Überlieferung nach soll Pythagoras diesen Zusammenhang erkannt haben, während er an einer Schmiede vorbeiging: Als er hörte, dass die Intervalle Oktave, Quinte und Quarte abhängig von der Masse eines Hammers sind, der auf einen eisernen Amboss geschlagen wird, leitete er daraus die Harmonie der Tonintervalle ab und erfand ein Instrument für das Messen von Tönen (Iamblichos, Vit. Pyth. 115; vgl. auch Riedweg 2007, 44). 33 Hugo von St. Victor, Didasc. 6, 3. 34 Vgl. Riedweg 2007, 46. 35 Iamblichos, Vit. Pyth. 65. Der Kirchenlehrer Hippolytos (Ref. 1, 2, 2) beschrieb die Sphärenmusik mit folgenden Worten: »Auf Grund seiner Forschungen über das Wesen der Zahl behauptete er [Pythagoras], der Kosmos gebe Klänge von sich und beruhe auf Harmonie; als erster schrieb er die Bewegung der sieben Gestirne dem Rhythmus und der Musik zu.« 36 Die Esoterik als Arkantradition, bei der das Wissen lediglich mündlich oder in verschlüsselter Schriftform weitergegeben wurde, ist bis in die Neuzeit Bestandteil der abendländischen Philosophie, insbesondere in ihrer alchemistisch-hermetischen Ausrichtung. Indem das Prinzip des arcanum imperii von frühneuzeitlichen Staatstheoretikern wie Machiavelli aufgenommen und systematisch ausgebaut wurde, überdauerte die Tradition das Mittelalter. Ab dem 18. Jahrhundert formierten sich in Freimaurerlogen hermetische Zirkel mit einer starken Arkantradition, deren Verflechtung mit Herrscherkreisen nicht nur in Schweden und Preußen gängig war. Das Geheimnis galt fortan als anerkannte Dimension des politischen Handelns und als Instrument der Staats- und Regierungskunst (vgl. Sladek 1984, 12). 37 Iamblichos, Vit. Pyth 81; vgl. auch Burkert 1962, 162 ff. 38 Vgl. Burkert 1962, 190. 39 Vgl. Burkert 1962, 204.

Die pythagoreische Tradition

39

In antik-pythagoreischen Kreisen war die Verbreitung bestimmter mathematischer ­Kenntnis­se reglementiert, vor allem das Wissen um die Irrationalität gehörte zu den sorgsam gehüteten Geheimnissen: Das Phänomen der irrationalen Zahlen, die sich von rationalen Zahlen insofern unterscheiden, als dass ihre unendliche Folge nicht dezimal darstellbar ist, wird im Griechischen sogar als ἄρρητος ἀριθμός (wörtl. unaussprechliche Zahl) bezeichnet.40 Die Weitergabe des Wissens um diese unaussprechlichen Zahlen kam einem Sakrileg gleich, wie die Überlieferung um Hippasos von Abb. 8: Die proportionalen Verhältnisse nach der Metapont zeigt. Der Pythagoreer, der ver- Stetigen Teilung im regelmäßigen Pentagramm. mutlich um 500 v. Chr. lebte, soll aus dem pythagoreischen Bund verstoßen worden sein, weil er als erster das Wesen der Messbarkeit (συμμετρία) und der Unmessbarkeit (ἀσυμμετρία) unautorisiert veröffentlich habe. Nach seinem Geheimnisverrat soll ihm von der pythagoreischen Gemeinschaft symbolisch ein Grab bereitet worden sein.41 Im Rahmen einer anderen Überlieferungstradition wird das mathematische Phänomen näher spezifiziert: Demnach habe Hippasos erstmalig das Wesen des Dodekaeders, also des Zwölfflächners, öffentlich beschrieben, weswegen er umgekommen sein soll:42 Denn alles Unausgesprochene (ἄλογον) und Unerschaubare (ἀνείδεον) liebt sich zu verbergen. Wenn aber eine Seele einer solchen Gestalt im Leben begegnet und sie zugänglich und offenbar macht, so wird sie in das Meer des Werdens versetzt und von dessen Fluten umhergespült.43 Das Dodekaeder – ein aus zwölf Pentagonen gebildeter geometrischer Körper – ist mit dem Bereich der unaussprechlichen Zahlen verbunden, da seine Konstruktion auf dem

40 41 42 43

Plut. Plat. q5, 1, 1003 d (zit. nach Burkert 1962, 436 f.). Iamblichos, Vit. Pyth. 132. Iamblichos, Vit. Pyth. 52. Iamblichos, Vit. Pyth. 88.

40

Zum mittelalterlichen Geometrieverständnis

irrationalen Verhältnis der Stetigen Teilung beruht.44 Aufgrund der Hippassos-Überlieferung ist zu vermuten, dass die Kenntnis der mathematischen Grundlagen des Dodekaeders zu dem pythagoreischen Arkanum gehörte, das nur oral tradiert werden durfte.45 Erstmalig von Euklid von Alexandria im dritten vorchristlichen Jahrhundert unter der Bezeichnung ἄκρον καὶ μέσον λόγον τεμεῖν (akron kai meson logon temein, wörtl. das Teilen einer Strecke im äußeren und mittleren Verhältnis) ausführlich beschrieben, war das heute als Goldener Schnitt bezeichnete Teilungsverhältnis kurz und vielsagend als ἡ τομή (he tome, wörtl. der Schnitt) geläufig.46 Dieses besondere Teilungsverhältnis entfaltete eine große kulturgeschichtliche Wirkung, die weit über den mathematischen Bereich hinausstrahlte. Anfang des 16. Jahrhunderts wurde die Proportion sogar als göttlich bezeichnet (divina proportio), wie im Titel der Monographie über die Stetige Teilung des Franziskanermönchs Luca Pacioli, die im Jahr 1509 erschien.47 Besonders eine Eigenschaft scheint die Gelehrten an der Stetigen Teilung über Jahrhunderte hinweg fasziniert zu haben, wie den Worten von Johannes Kepler (1571–1630) zu entnehmen ist: Die Eigentümlichkeit dieser Proportion besteht darin, dass aus dem größeren Teil und dem Ganzen wieder eine gleiche Proportion gebildet werden kann; was vorher der größere Teil war, wird dabei der kleinere; was vorher das Ganze war, wird der größere Teil, und die Summe beider spielt nun die Rolle des Ganzen. Das geht unendlich weiter, immer bleibt die göttliche Proportion bestehen. Ich glaube nun, dass diese geometrische Proportion dem Schöpfer als Idee gedient hat, als er die Erzeugung von Ähnlichem aus Ähnlichem, die auch immerfort weitergeht, eingeführt hat.48 Bei diesem Verhältnis, das seit dem 19. Jahrhundert als Goldener Schnitt bezeichnet wird49, wird trotz fortschreitender Teilung dasVerhältnis M : m stetig weiter erzeugt, so dass sich 44 Es wurde vermutet, dass die Entdeckung der Inkommensurabilität im regulären Pentagon mit der Entdeckung des irrationalen Verhältnisses (√2) von Seite und Diagonale im Quadrat einherging (vgl. Becker 1966, 50 f. und 72). 45 Allem Anschein nach stammte ein Teil des pythagoreischen Wissens, wie der nach Pythagoras benannte Dreiecksatz, ursprünglich aus Babylon und Ägypten, wo sich Pythagoras in seinen Lehrjahren aufgehalten haben soll (Iamblichos, Vit. Pyth 4; vgl. auch Heller 1958, 10; Becker 1966, 13 f. und 71 f.; Jesberg 1987, 12). 46 Scholion zu Eucl. Elem. II, 11 Nr. 70, 248 (zit. nach Fredel 1998, 193; vgl. Archibald 1918, 233). Euklid, Elem., Buch VI, § 30. Der Ursprung der Aufgabe »Eine gegebene Strecke so zu teilen, dass das Rechteck aus der ganzen Strecke und dem einen Abschnitt dem Quadrat über dem anderen Abschnitt gleich ist« (Euklid, Elemente, Buch II, § 11), die ebenfalls Bezug auf die Stetige Teilung nimmt, soll pythagoreisch sein (Archibald 1918, 233). 47 Luca Pacioli, Divina Proportione. Die Bezeichnung hatte Pacioli aus dem Vatikan-Manuskript des Mathematikers und Kunsttheoretikers Piero della Francesca (1420–1492) übernommen (vgl. Archibald 1918, 233). 48 Kepler, Astronomia nova, 309 f. 49 Vgl. Hueck 1977, 144.

Die pythagoreische Tradition

41

die Gesamtstrecke zum größeren Teil einer Strecke (Maior) genausoo verhält wie dieser zu dem kleinerenTeil (Minor).50 Gesamtstrecke (G) : Maior (M) = Maior (M) : Minor (m) (M + m) : M = M : m Das Verhältnis ist auch bei der Konstruktion eines Pentagramms maßgebend, dessen aufeinanderfolgende Sehnen und durch Schnittpunkte begrenzte Sehnenabschnitte zueinander im Verhältnis der Stetigen Teilung stehen (vgl. Abb. 8). Die Proportion ergibt einen irrationalen Wert, der in der modernen Mathematik mit φ und σ umschrieben wird.51



   Maior (M)   M + m   √5 + 1  φ= = = = 1,618033988749895 … Minor (m) M 2



   Minor (m)       M       √5 − 1  φ= = = = 0,618033988749895 … Maior (M) M + m     2    

Obwohl die Verhältniszahl φ sich der dezimalen Darstellung entzieht, ist die geometrische Konstruktion in wenigen Schritten präzise zu bewerkstelligen (vgl. Kap. 1.3.3), woran man den genuin geometrischen Charakter des Teilungsverhältnisses erkennen kann.52 Der mittelalterlichen Überlieferung zufolge soll die geometrische Konstruktion bereits von dem griechischen Mathematiker Heron von Alexandria im ersten nachchristlichen Jahrhundert veröffentlicht worden sein.53 Die der Stetigen Teilung innewohnende Proportion ist mit der Konstruktion des Pentagons verbunden, das seinerseits wiederum untrennbar zu dem Pentagramm gehört. In jedem Pentagon ist ein Pentagramm eingeschrieben, dessen zentrale Figur gleichzeitig ein invertiertes Pentagon bildet (vgl. Abb. 9).54 Bei dem geometrischen Verhältnis von Pentagramm und Pentagon ergibt sich eine Selbstähnlichkeit ad infinitum. In dieser unendlichen Folge weisen die sich ergänzenden Figuren unabhängig von ihrer Größe stets die gleiche Proportionierung auf – eine Eigenschaft, auf die wörtlich die Bezeichnung Stetige

50 Vgl. Beutelspacher/Petri 1996, 55 f. 51 Im Jahr 1909 führte der amerikanische Mathematiker Mark Barr für die irrationale Verhältniszahl das Kürzel φ als Verweis auf den griechischen Bildhauer Phidias ein (vgl. Fredel 1998, 37). 52 Vgl. Hellgart 1973, 95. 53 Der im 9. Jahrhundert schreibende, arabische Euklidkommentator an-Nairizi berichtete, dass die geometrische Konstruktion einer stetig geteilten Strecke auf Heron von Alexandria zurückgehe (vgl. Anaritius, Comm. 107–108; vgl. Tropfke 1923, 185). 54 Vgl. Becker 1966, 72.

42

Abb. 9: Das infinite Verhältnis von Pentagramm und Pentagon.

Zum mittelalterlichen Geometrieverständnis

Abb. 10: Altpythagoreisches (?) Symbolon mit Pentagramm und ΥΓΙΕΙΑ-Formel (Historisches M ­ useum Basel).

Teilung Bezug nimmt.55 Da jeder Figur dieser unendlichen Kette dasselbe Verhältnis innewohnt wie dem Ganzen, avanciert die Proportion zu ihrem systeminhärenten Merkmal. Wirkungsgeschichtlich kamen Pentagramm und Pentagon eine besondere Bedeutung zu, die weit über die Antike hinauswirkte. In der Rezeption avancierte die Stetige Teilung zum Musterbild der Inkommensurabilität; bis heute gilt das Verhältnis von Seite und Diagonale im regulären Pentagramm als Prototyp eines irrationalen Verhältnisses.56 Vermutlich diente aus diesem Grund das Pentagramm den Pythagoreern als sogenanntes Symbolon (σύμβολον), das gemeinsam mit der pythagoreischen Grußformel ΥΓΙΕΙΑ (hygeia: Gesundheit) den Anhängern des pythagoreischen Bundes als Erkennungszeichen gedient hatte (vgl. Abb. 10).57 Besonders im magischen Bereich wurden Pentagramm und Pentagon bis die Neuzeit eine unheilabwehrende und apotropäische Wirkung zugeschrieben. Beide Figuren galten als Bannzeichen, die von Außenstehenden weder überwunden noch gelöst werden konnten.58 Die defensiv-apotropäischen Eigenschaften, die mit dem Pen55 Vgl. Fredel 1998, 10. 56 Vgl. Becker 1966, 73. 57 In einem Scholion zu Aristophanes ist die Einschätzung Lukians überliefert (Lukian von Samosata, Pro lapsu in salutando), dass das Pentagramm, das geometrische Symbol der Pentade, das σύμβολον der geheimen Gesellschaft der Pythagoreer sei und für Gesundheit stehe. Vgl. Dölger 1929, 51; Burkert 1962, 443; Riedweg 2007, 43. 58 Bereits aus Babylonien sind einschlägige Zaubersprüche im Zusammenhang mit dem Pentagramm bekannt, aber auch in Goethes Faust spielte die auch als Drudenfuß bezeichnete Figur eine magisch-apotro­ päische Rolle (vgl. Dölger 1929, 51).

Die platonische Tradition

43

tagon verbunden werden, waren nicht nur für seine Verwendung im frühneuzeitlichen Festungswesen verantwortlich59; noch heute steht das Pentagon Pate für das US-amerikanische Verteidigungsministerium, das Mitte des 20. Jahrhunderts errichtet wurde.

1.2 Die platonische Tradition 1.2.1 Die platonische Zahl- und Proportionslehre In das lateinische Mittelalter wurde altpythagoreisches Gedankengut vor allem durch die Vermittlung Platons tradiert (vgl. Abb. 11).60 Dabei ist bemerkenswert, dass die Verehrung des paganen Gelehrten – Platon galt nicht nur als König der Philosophie, sondern sogar als ein Prophet61 – auf einem einzigen Werk fußte, dem Timaeus, der im Hoch- und Spätmittelalter lediglich aus den spätantiken Kommentaren von Chalcidius und Macrobius als gekürztes lateinisches Fragment zugänglich war.62

Abb. 11: Platon im Dialog mit Philosophia (Wilhelm von Conches, Dramaticon, um 1230). 59 Vgl. Uppenkamp 2005, 262. 60 Platons enges Verhältnis zur pythagoreischen Schule war in der Antike wohlbekannt: Bereits Platons Schüler Speusipp und Xenokrates fassten die Lehren des Timaios als pythagoreische Weisheit auf, ebenso wie Aristoteles und Cicero (vgl. Burkert 1962, 14 und 75). 61 Vgl. von Simson 1982, 266; Heinzmann 1992, 188; Gruber 2011, 20. 62 Vgl. von Simson 1982, 43; Lilley 2009, 79. Der spätantike Kommentar von Chalcidius beruhte auf einer unvollständigen lateinischen Übersetzung durch Cicero, der die Textpassage 17A bis 53C übertragen hatte (vgl. Speer 2005, 214).

44

Zum mittelalterlichen Geometrieverständnis

Der Timaeus, dem eine ähnliche Ehrfurcht entgegengebracht wurde wie der Genesis, wurde nicht nur gelesen, insbesondere Scholastiker und Zisterzienser kommentierten, zitierten und diskutierten ihn.63 Neben Wilhelm von Conches (um 1080–um1150) verfasste Bernhard von Chartres (gest. nach 1124) einen Kommentar, dessen Beliebtheit sich mit dem des Chalcidius messen konnte.64. Darüber hinaus entstanden eine Reihe von Abwandlungen, wie der Anticlaudian aus der Feder des Zisterziensers Alanus ab Insulis (um 1120–1202) oder De Mundi Universitate von Bernardus Silvestris (1085–nach 1160), einem der bedeutendsten Lehrer von Chartres.65 Der im Hochmittelalter zu den wirkungsgeschichtlich einflussreichsten Denkern der Antike gehörende griechische Philosoph nahm in seinem Werk zentrale kosmologische und zahlentheoretische Überlegungen der pythagoreischen Schule auf und entwickelte sie fort.66 Doch nicht nur inhaltlich knüpfte der platonische Kreis an die pythagoreische Tradition an, auch die für die Pythagoreer charakteristische Arkanophilie wurde in der von Platon begründeten Akademie in modifizierter Form gepflegt.67 Zwar basierte die Struktur der platonischen Anhängerschaft ebenso wie in den pythagoreischen Zirkeln auf einem strengen Dualismus zwischen Innen und Außen, doch entgegen der älteren Tradition versuchte der als kultischer Bund hermetisch abgegrenzte innere Zirkel, auf Bürgerschaft und Herrschende aktiv Einfluss zu nehmen, indem man sie durch Vorträge und Schriften politisch und moralisch leiten wollte.68 Im Grunde ist es paradox, dass das mehrere Tausend Seiten umfassende Werk Platons von einer scharfen Schriftkritik durchzogen ist.69 Diese Paradoxie ist allerdings nur eine vordergründige, da die Verschriftlichung seiner Lehren mit der verhüllenden Rede einhergeht und zentrale Teile ohnehin nicht schriftlich fixiert, sondern nur mündlich 63 64 65 66

Vgl. von Simson 1982, 43; Otten 2000, 190 f.; Halfen 2011, 115. Vgl. Otten 2000, 189; Halfen 2011, 196. Bern. Silv., De Mundi Universitate. Im Hochmittelalter wurde der Timaios als »Blume der Philosophie« gefeiert (vgl. Wetherbee 1972, 29; von Simson 1982, 43; Lilley 2009, 79). 67 Vgl. Erler 2009, 68. Da Platon seine Vorträge mit einer Prüfung begann, um ungeeignete Zuhörer durch die Strenge und Schwierigkeit der Lehre abzuschrecken (Plat., Epist. VII 340b–341a), ist zu vermuten, dass auch innerhalb des esoterischen Kreises mit einer Abstufung zu rechnen ist (vgl. Gaiser 1963, 7). Dass nur der engste Zirkel in die Tiefen der Lehre eingeweiht wurde, ist auch für die antike Mysterientradition charakteristisch (vgl. Sladek 1984, 20). 68 Platon bemühte sich nicht nur um Einfluss auf die Politik der athenischen Polis, sondern auch um die des Dionysios II., des Tyrannen von Syrakus (vgl. von Fritz, 1968). 69 Plat., Phaidr. 273b–e; Plat., Epist. VII, 341 c–d); Plat., Epist. II, 314c; Plat., rep. VI, 506d–e. Vgl. Söder 2009, 19. Die Schriftfeindlichkeit ist in der Antike ein Merkmal sowohl der Mysterien als auch der philosophischen und gnostischen Kreise: Nicht nur Pythagoras, auch Sokrates, Jesus Christus, Epiktet u. a. hinterließen keine Autographen, allenfalls ihre Schüler legten die mündlich tradierte Lehre schriftlich nieder. Das Nebeneinander von schriftlicher und mündlicher Lehre macht die platonische Philosophietradition also zu einem Hybriden.

Die platonische Tradition

45

im esoterischen Kreis der platonischen Akademie vermittelt wurden.70 Dies bestätigen auch Ausführungen des Aristoteles: Der Schüler Platons bezog sich mehrfach auf eine ungeschriebene Lehre (ἄγραφα δόγματα) seines ehemaligen Lehrers, zu der auch die Theorie περὶ τὰγαθοῦ (wörtlich: über das Gute) gehört haben soll – Platons teleologische Mathematik des Guten.71 Aus den aristotelischen Schriften wird deutlich, dass es sich bei der platonischen Lehre um eine schwer verständliche, mathematisierte Ontologie pythagoreischer Prägung handelte, in der die mathematischen Disziplinen als Vermittlerinnen zwischen der Welt der Ideen und der Welt der Erscheinungen aufgefasst wurden.72 Im Unterschied zur streng hermetischen Praxis der pythagoreischen Schule unternahm Platon mindestens einmal den Versuch, seine Lehre περὶ τὰγαθοῦ öffentlich vorzutragen. Aristoteles zufolge, der bei diesem Vortrag zugegen gewesen war, blieb der Versuch, die Lehre zu vermitteln, jedoch weitgehend erfolglos. Demnach konnten die nur wenig vorgebildeten Zuhörer den rein mathematischen Ausführungen Platons nicht folgen; sie sollen den Redner sogar ausgelacht und beschimpft haben.73 Vor diesem Hintergrund wird die Befürchtung Platons verständlich, dass die höchsten, wertvollsten und schwierigsten Themen häufig missverstanden und verächtlich gemacht werden74 – eine Erfahrung, die der Verhüllung seiner Lehre wohl auch in der schriftlichen Fassung Vorschub geleistet hat.75 Im Timaios, eine nach dem in der Antike weithin bekannten Pythagoreer Timaios von Lokri benannte Schrift, die als exoterische Essenz der mathematischen Ontologie des esoterischen platonischen Kreises gilt, schimmert altpythagoreisches Gedankengut besonders deutlich durch.76 Ähnlich wie die Genesis der Bibel ist die Schrift ein Schöpfungsbericht: Der Kosmos wurde demnach von einem als Demiurgen (δημιουργός, wörtl. Handwerker, 70 Das rhetorische Mittel, das im lateinischen Mittelalter als integumentum (lat. Hülle, Schleier) bezeichnet wurde, kommt in den platonischen Schriften immer dann zum Einsatz, wenn vom höchsten Prinzip die Rede ist. Es wurde explizit dazu verwendet, ein als heilig erachtetes Geheimnis vor Uneingeweihten zu bewahren, wie auch der spätantike Platonkommentator Macrobius unterstreicht (vgl. Brinkmann 1971, 323). 71 »Deshalb auch sagt Platon im Timaios, dass Materie und Raum dasselbe sind. (…) Dort aber spricht er von dem, was teilhaben kann, in einem anderen Sinn als in den so genannten ungeschriebene Lehren.« (Aristot. phys. A2.209b 14–15; zit. nach Söder 2009, 29). Über den Inhalt der ungeschriebenen Lehren wird in der modernen Forschung heftig und kontrovers diskutiert (vgl. de Vogel 1972, 41; Gadamer 1995d, 238; Algra 1995, 75; Ferber 2007, 13; Döring 2009, 6), die folgenden Ausführungen stützen sich im Wesentlichen auf Gaiser 1963. 72 Vgl. Sladek 1984, 22. 73 Aristoxenos, Elem. harm. II 30–31; zit. nach Döring 2009, 6. 74 Plat., Phaidr., 275d–274e. 75 Die Verhüllung der Lehre korrespondiert mit dem beschriebenen Prinzip, wie Sextus Empiricus (Adv. mathem. Buch X, 250–262) unterstreicht: »Zu sagen, das Prinzip aller Dinge sei sichtbar, verstößt sozusagen gegen das Wissen von der Natur. Denn das Sichtbare muss aus Unsichtbarem zustande kommen. (…) Folglich nahmen sie an, dass die Prinzipien des Seienden verborgen sind.«. 76 Vgl. Burkert 1962, 77; Gaiser 1963, 7; Leinkauf 2005, IX.

46

Zum mittelalterlichen Geometrieverständnis

Künstler) bezeichneten Schöpfergott nach den Prinzipien Zahl, Maß und Proportion erschaffen. Indem der Demiurg die geordneten Ideen mit der ungeordneten Materie mischte, formte er die sichtbare Welt der Erscheinungen nach dem Vorbild der Ideenwelt:77 Davor war dies alles ohne Proportion und Maß. Als jedoch die Ordnung des Alls in Angriff genommen wurde, da bildete der Gott zuerst Feuer, Wasser, Erde und Luft aus. (…) Alles bildete er nach Form und Zahl aus.78 Den vier Elementen wies der Schöpfergott jeweils einen geometrischen Körper zu (vgl. Abb. 12), dem Feuer das Tetraeder (Vierflächner), der Luft das Oktaeder (Achtflächner), dem Wasser das Ikosaeder (Zwanzigflächner) und der Erde das Hexaeder (Sechsflächner).79 Die regelmäßigen Körper haben mehrere geometrische Merkmale gemeinsam. Zum einen kann ihre Grundform auf das gleichseitige Dreieck zurückgeführt werden80 – nach Platon das »schönste aller möglichen Dreiecke«81 –, zum anderen wird ihre Gestalt in zweifacher Weise über die Kugel definiert: Alle Ecken der Polyeder können auf einer äußeren Kugel platziert werden, während die Mittelpunkte ihrer Flächen auf einer inneren Kugel liegen. Und sowohl das gleichseitige Dreieck als auch die Kugel gelten aufgrund ihrer Regelmäßigkeit als vollkommene Körper.82 Sodann mischte der Demiurg die vier Elemente, um die Weltenseele zu schaffen.83 Dazu nutzte der Schöpfergott das »schönste Band (δέσμος καλλιστὸς), das sich selbst und das Verbundene so weit wie möglich zu einem Einzigen macht, (…) nämlich die Proportion«84 (vgl. Abb. 13). Allein der Proportion wurde nach platonischer Auffassung die Fähigkeit 77 Plat., Tim. 29a; vgl. auch Gaiser 1963, 109 und 270. 78 Plat., Tim. 53c. Auch im übrigen Werk Platons ist auffallend oft von Bändern die Rede, die den Zusammenhalt garantieren. Im Gorgias (Plat. Gorg. 508a) wird die Proportion als ἡ ἰσότης ἡ γεωμετρική (geometrische Gleichheit) bezeichnet, als Band, das Himmel, Erde, Menschen und Götter zusammenhält. Der Schöpfergott des Timaios, der sich der Proportion als Band bedient, wird deswegen auch συνδήσας, der Verbindende, genannt (Plat., Tim. 32c; vgl. Schreckenberg 1964, 85 und 98). 79 Vgl. Jesberg 1987, 27; Gadamer 1995a, 169 ff. 80 Dabei wird die quadratische Grundform des Hexaeders als vierfaches gleichseitiges Dreieck aufgefasst. Boethius (De Institutione Arithmetica II, 6 und 18) demonstrierte, dass alle Vielecke in Dreiecke zerlegt werden können. Auf diesem Prinzip fußt nicht nur die Triangulation als Vermessungsmethode, sondern auch die Modellierung der dreidimensionalen Körper in der Virtual Reality. 81 Plat., Tim. 54a. 82 Vgl. Gadamer 1995a, 169 f. 83 Vgl. Halfen 2011, 202. 84 Plat., Tim. 31b–32a. Im griechischen Text ist die besagte Proportion mit folgenden Worten spezifiziert »Ὁπόταν γάρ ἀριθμῶν τριῶν εἴτε ὄγκων εἴτε δυνάμεων ὡντινωνοῦν ᾗ τὸ μέσον, ὅτιπερ τὸ πρῶτον πρὸς αὐτό, τοῦτο αὐτὸ πρὸς τὸ ἔσχατον, καὶ πάλιν αῦθις, ὅτι τὸ ἔσχατον πρὸς τὸ μέσον, τὸ μέσον πρὸς τὸ πρῶτον, τότε τὸ μέσον μὲν πρῶτον καὶ ἔσχατον γιγνόμενον, τὸ δ‘ἔσχατον καὶ τὸ πρῶτον αὖ μέσα ἀμφότερα, πάνθ‘ οὕτως

Die platonische Tradition

47

Abb. 12: Tetraeder, Oktaeder, Ikosaeder und Hexaeder (De divina proportione, 1509).

zugeschrieben, aus der Vielfalt der Elemente eine dauerhafte Einheit herzustellen, die im harmonischen Einklang mit sich selbst steht. Ziel war es, eine beständige Verbindung zu schaffen, die nur durch den Schöpfer selbst gelöst werden kann.85

ἐξ ἀνςαγκης τὰ αὐτὰ εἶναι συμβήσεται, τὰ αὐτὰ δὲ γενόμενα ἀλλήλοις ἕν πάντα ἔσται.«, was in der Forschung bereits mit dem der Stetigen Teilung innewohnenden Verhältnis in Verbindung gebracht wurde (vgl. Brunés 1967b, 66). 85 Plat., Tim. 32c; vgl. Jesberg 1987, 23.

48

Zum mittelalterlichen Geometrieverständnis

Abb. 13: Die Weltseele und die Weltharmonie (Chalcidius, Timaios-Kommentar, 13. Jahrhundert).

Einzig die Gestalt des Kosmos wurde nicht auf das Dreieck zurückgeführt, sondern – der altpythagoreischen Lehre folgend – in der Form des auf dem Pentagon basierenden Dodekaeders gedacht, eine Reminiszenz an die Stetige Teilung (vgl. Abb. 14).86 Diesem geometrischen Körper ordnete Platon den Äther als das fünfte Element zu – eine von der traditionellen Vier-Elementenlehre des Empedokles abweichende Sichtweise, die sich ebenfalls auf pythagoreische Tradition beruft.87 Gemeinsam mit dem Tetraeder, dem Oktaeder, dem Ikosaeder und dem Hexaeder komplettiert das Dodekaeder den Reigen der fünf regulären konvexen Polyeder, da seine Gestalt ebenfalls über eine Außenkugel und eine Innenkugel definiert ist. Im Rahmen der im Timaios formulierten Raumgeometrie erklärte 86 Dreidimensionale Dodekaedermodelle gallo-römischer Provenienz stehen vermutlich mit den pythagoreisch-platonischen Kosmosspekulationen im Zusammenhang (vgl. Fredel 1998, 204; Werth 2005, 11 ff.). Im Jahr 1556 wurde die antike Tradition unter der Bezeichnung Dodechedron de Fortune wiederbelebt: »Cette figure a esté estimée par les anciens la plus excellente et parfaite de toute la Géométrie, tellement qu’ils l’ont accomparée à ceste grande machine du Ciel« (zit. nach Fredel 1998, 204). 87 Vgl. Bauer 1897, 84; Böhme/Böhme 2004, 94.

Die platonische Tradition

49

Platon also das Dreieck, das Fünfeck und den Kreis gemeinsam mit der Proportion zum strukturellen Ordnungsprinzip des Kosmos. Als Grundlage der fünf ›schönen‹ Körper versinnbildlichen sie das Ideal der Symmetrie und der mathematischen kosmischen Ordnung.88 1.2.2 Die Ontologie von Kosmos, Kunst und Geometrie Nach platonisch-pythagoreischer Tradition basiert der Kosmos auf verborgenen Prinzipien, deren geometrische Gesetze Abb. 14: Das Dodekaeder als kosmische Gestalt der menschliche Verstand mittels der (De divina proportione, 1509). Gesetze der Mathematik nachzuvollziehen vermag.89 Aus diesem Grund legte die platonische Akademietradition auch großen Wert auf eine adäquate Schulung ihrer Anhängerschaft in den mathematischen Fächern.90 Den hohen Stellenwert der Geometrie im platonischen Bildungsprogramm veranschaulicht ein Sinnspruch, der der Überlieferung nach über dem Eingang der platonischen Akademie gestanden haben soll: Ἀγεωμέτρητος μηδεὶς εἰσίτω (wörtlich: Kein Nichtgeometriker solle eintreten).91 Die Heraushebung der Geometrie erklärt sich dadurch, dass Platon die altpythagoreische Zahlen- und Proportionslehre insofern modifizierte, als dass er sie mit seiner Ideenlehre verwoben hatte.92 Während die Pythagoreer Dinge und Zahlen als gleichbedeutend auffassten93, trennte die platonische Denktradition die Zahlen als Ideen von der sinnlich wahrnehmbaren Welt ab und positionierte die mathematischen Disziplinen als Zwischenbereich zwischen der transzendenten Welt der Ideen und der irdischen Welt der Erscheinungen.94 88 Vgl. Gadamer 1995a, 171. 89 Letztlich basieren die modernen Naturwissenschaften noch auf diesem Prinzip: Ohne mathematische Grundlagen wäre die Erforschung der Naturgesetze auf der Erde und im All undenkbar (vgl. Gaiser 1963, 38). 90 Vgl. Gaiser 1959, 19. 91 Vgl. Giebel 1993, 98. 92 Vgl. Erler 2009, 92. 93 Vgl. Riedweg 2007, 39. 94 Aristot. metaph. 987b; vgl. Burkert 1962, 29; Gaiser 1963, 91 ff.; Sladek 1984, 23.

50

Zum mittelalterlichen Geometrieverständnis

Abb. 15: Gott als artifex principalis und geometer (Bible moralisée, um 1240).

Der Mathematik, insbesondere in ihrer angewandten Form als Geometria (γεωμετρία, wörtl. Vermessung der Erde), kam fortan nach der platonischen Ideenlehre eine Mittlerinfunktion zwischen den Welten zu. So avancierte die Kenntnis der Geometrie nicht nur zur Grundlage der philosophischen Erkenntnis, sondern diente in ihrer angewandten Form vor allem auch als Ordnungsstruktur der Künste (τέχναι).95 Denn ebenso wie die mathematischen Disziplinen galten die Künste als ein Medium, um zwischen der Ideenwelt, in der sich auch die Urbilder (εἴδη) der menschlichen Artefakte befinden, und der sinnlichen Welt zu vermitteln.

95 Plat., Prot. 322A; vgl. Gaiser 1963, 226.

Die platonische Tradition

51

Ein menschliches Kunstwerk musste nach platonischer Auffassung auf die Nachahmung (μίμησις) der Normstruktur seines von Gott geschaffenen Urbildes abzielen.96 Ebenso wie Gott als erster Künstler, als artifex principalis, wie er im Mittelalter genannt wurde97, am Anfang der Zeiten die Welt der Urbilder allen Seins nach den Prinzipien der Geometrie geschaffen hatte (vgl. Abb. 15), sollten sich die menschlichen Kunstschaffenden bei der Gestaltung ihrer Werke am göttlichen Regelwerk orientieren. Nur wenn die Kunst formal die kosmische Ordnung nachahmte, konnte sie zur sinnlichen Offenbarung des Übersinnlichen werden, anderenfalls blieb sie der Trivialität verhaftet, war nach der Logik der platonischen Ontologie nicht einmal wirklich. Die Prinzipien Maß, Zahl und Proportion, die der göttliche Schöpfer genutzt hatte, um den Kosmos zu schaffen, mussten daher in analoger Form bei der Schaffung eines irdischen Werks ebenfalls zur Anwendung gebracht werden.98 Angewandte Geometrie garantierte nicht nur, dass ein menschliches Werk »nach allen Regeln der Kunst gestaltet« war, sondern stand für die Verbindung von Gott und Mensch, Kosmos und Kunst:99 Denn offenbar ist die Messkunst die Kenntnis des immer Seienden.100 Basierend auf dieser wirkungsgeschichtlich sehr bedeutenden inhaltlichen Verbindung zwischen Kunst und Geometrie etablierte Platon zudem eine ontologische Hierarchie innerhalb der Künste: Die bildenden Künste, insbesondere die Malerei, genossen nämlich bedeutend weniger Ansehen als die angewandten Künste, zu der er die Handwerksund die Baukunst zählte. Dieses phänomenologische Problem erörterte Platon in der Politeia anhand der »dreifachen Kline«: Demnach schaffe der Handwerker mit dem Bau einer Kline ein Abbild der vom Demiurgen geschaffenen Urkline, während der Maler mit einem Bild von einer Kline lediglich ein doppeltes Abbild produziere, nämlich ein Abbild des von dem Handwerker geschaffenen Abbilds.101 Da nach platonischer Ontologie vor allem die Anwendung der Geometrie das irdische Werk dem Urbild anzunähern vermag, genoss folgerichtig die Baukunst unter den angewandten Künsten das größte Ansehen. Denn wie Platon es formulierte:  96 Plat., Phil. 16b–e; vgl. Gaiser 1963, 105 und 224.  97 Vgl. Binding/Speer 1994, 208.  98 Nach platonischer Ansicht kann wahrhafte Kunst auch die Grundlage von Erkenntnis sein: Im Phaidon wird ausgeführt, dass Erkenntnis nicht im unmittelbaren Hinblicken auf die Dinge erreicht wird, sondern nur über den Umweg über die λόγοι (wörtlich: Proportion), in denen sich das wahrhaft Seiende spiegele wie die Sonne im Wasser (Plat. Phaid. 99e). Vgl. auch Gaiser 1963, 106.  99 Nach Platon (rep. VII, 526c) besteht die Aufgabe der Messkunst darin, »daß die Idee des Guten leichter gesehen werde.« Vgl. Gaiser 1963, 105; Götze 1984, 15. 100 Plat., rep. VII, 526c. 101 Plat., rep. VII, 596a ff.

52

Zum mittelalterlichen Geometrieverständnis

Die Baukunst aber (…), welche sich der meisten Maße und Werkzeuge bedient, wird durch das, was ihr so viele Genauigkeit sichert, auch kunstreicher als die meisten anderen.102 Der von Platon etablierten Kunstauffassung folgte die gelehrte Welt noch im Spätmittelalter: Als anlässlich der Errichtung des Mailänder Doms im Jahr 1400 die Baumeister über die Eigenständigkeit der Kunst (ars) und ihr Verhältnis zur Geometrie (scientia) in Streit gerieten, konnte die Antwort nicht eindeutiger sein. Der Meinung, »scientia est unum et ars aliud« setzte der Dombaumeister Jean Mignot die wuchtige Gewissheit Platons entgegen: »Ars sine scientia nihil est«.103

1.3 Der christliche Neuplatonismus Die Schließung der platonischen Akademie in Athen im Jahr 529 war nicht gleichbedeutend mit dem Ende der Rezeptionsgeschichte der platonischen Philosophie.104 Nachdem die Auseinandersetzung zwischen dem frühen Christentum und der paganen Tradition lange zwischen Annäherung und Ablehnung oszilliert hatte, flossen schließlich zentrale Gedanken der griechischen Tradition christlich umgedeutet in die Theologie des Mittelalters ein.105 Das Hochmittelalter war zugleich Höhepunkt des christlichen Neuplatonismus, der ab 1140 in der zisterziensischen und in der scholastischen Bewegung zwei weit über Frankreich hinaus wirkende Zentren fand.106 Jenseits einer rein historisierenden Ebene beschränkte sich das Interesse der Gelehrten jedoch nicht auf ein antiquarisch-philologisches Studium der antiken Schriften; die platonische Lehre wurde im Gegenteil als lebendiger Impuls für den eigenen Glauben empfunden.107 Denn analog zur platonisch-pythagoreischen Kosmologie konnte auch dem christlichen Weltverständnis zufolge nichts zufällig und bedeutungslos sein, da die Schöpfung fest in der göttlichen Ordnung verortet war.108

102 Plat., Phil. 51 d. 103 Sitzung der Mailänder Baukommission vom 21. Januar 1400 (Annali I, 290). 104 Vgl. Heinzmann 1992, 15. 105 Vgl. Riedel 2005, 40; Tornau 2009c, 421, 423; Guldentops 2009, 450. Vor allem um die Deutungshoheit des wahren Weltverständnisses konkurrierte das junge Christentum mit der älteren Philosophietradition, wobei die Auseinandersetzung auch gewalttätige Züge annehmen konnte, wie der Tod der neuplatonischen Philosophin Hypatia von Alexandria zeigt, die Anfang des 5. Jahrhunderts von Christen ermordet wurde (vgl. Waithe 1987, 169 ff.). 106 Vgl. Hahn 1957, 76; von Simson 1982, 42. 107 Vgl. Rath 1983, 15; von Simson 1982, 266; Heinzmann 1992, 188; Gruber 2011, 20. 108 Vgl. Otten 2000, 192; Ellard 2007, 5 und 33; Halfen 2011, 115.

Der christliche Neuplatonismus

53

Zu den Bemühungen der christlichen Hermeneutik, die jüdisch-christliche Tradition mit der platonisch-pythagoreischen Philosophie in Übereinstimmung zu bringen, gehörte die Überzeugung, dass den griechischen Denkern die mosaischen Schriften vertraut gewesen seien.109 Mit der Absicht, eine Verbindung zwischen Platons Schlüsselwerk, dem Timaios, und der Genesis herzustellen, vertrat man daher die Überzeugung, dass sich Platon bei der Abfassung seiner kosmologischen Schrift in Ägypten aufgehalten habe, wo er in Kontakt mit dem jüdischen Glauben gekommen sein soll.110 Die Annahme einer gegenseitigen Kenntnis diente den christlichen Gelehrten als Grundlage, zentrale Glaubensinhalte der platonischen und hebräischen Tradition abzugleichen: So wurde der Gott des Alten Testaments mit dem höchsten, unveränderlichen Sein der platonischen Ideenwelt (ὁ ὤν) gleichgesetzt, Jesus Christus galt als das fleischgewordene Wort (ὁ λόγος) und der Heilige Geist konnte mit der göttlichen Vernunft (ἡ νοῦς) parallelisiert werden.111 Darüber hinaus harmonierte die platonische Vorstellung von der unsterblichen Seele mit dem christlichen Auferstehungsglauben.112 Vor allem aber die platonisch-pythagoreische Zahlenphilosophie fand im hebräischen Kontext verwandte Ansätze. Denn ebenso wie der platonische Demiurg hatte der jüdisch-christliche Schöpfergott den Heiligen Schriften zufolge die Welt nach den Prinzipien Maß, Zahl und Gewicht geordnet.113 In Analogie zu diesem primordialen Schöpfungsakt finden sich im Alten Testament zahlreiche Hinweise auf göttlich inspirierte Zahlenordnungen, die maßgebend für die Baupläne menschlicher Werke waren, so beispielsweise die von Gott übermittelten Maße für die Bundeslade des Moses, den Tempel Salomons oder die Arche Noahs.114 1.3.1 Die artes liberales und der mittelalterliche Bildungskanon Vor allem die zahlenphilosophischen Ansätze des Alten Testaments dienten dem stark vom Neuplatonismus beeinflussten Aurelius Augustinus (354–430 n. Chr.) als Rechtfertigung für das Studium der paganen Zahlenlehre (vgl. Abb. 16).115 Der Bischof des afrikanischen Hippo Regius begriff die mathematischen Disziplinen als ein Instrument, jenseits der 109 Vgl. Heinzmann 1992, 41. 110 Augustinus, Civ. Dei VIII, 11. Auch Cassiodor (De institut. arithm., PL 70, 1203) zufolge soll Pythagoras sein Wissen aus der Heiligen Schrift geschöpft haben. 111 Der alttestamentarische Gottesname im 2. Buch Mose (Ex 3,14) wurde bereits in der griechischen Septuaginta mit den Worten »ἐγώ εἰμι ὁ ὤν« (»ich bin der Seiende«) übersetzt (vgl. Scott 2015, 139; Tornau 2009c, 423). 112 Augustinus, De immort. animae V, 9. 113 »Sed omnia in mensura, et numero, et pondere disposuisti« (Buch der Weisheit 11, 21). 114 1. Mose, 6, 15; 1. Kön 5; 2. Mose, 25, 10. Vgl. Kurdziałek 1971, 47; Kalvesmaki 2013, 1. 115 Da Augustinus (Civ. Dei XXII, 27) davon ausging, dass Platon Christ geworden wäre, konnte er sich ausgiebig der platonischen Zahlenlehre widmen (vgl. Augustinus, Civ. Dei XI, 30). Vgl. Andresen 1978, XV; Zahlten 1995, 51; Cohen 2000, 163; Kalvesmaki 2013, 1.

54

Zum mittelalterlichen Geometrieverständnis

Abb. 16: Der Kirchenvater Augustinus (Schedelsche Weltchronik, 1493).

sinnlichen Wahrnehmung wissenschaftliche Erkenntnis (scientia) zu erringen, auf deren Grundlage die Erkenntnis Gottes möglich sei.116 Die Überzeugung des Kirchenlehrers, dass die göttliche Ordnung, die den Kosmos durchwaltet, mittels mathematischer Methoden erkennbar sei, beeinflusste das mittelalterliche Denken nachhaltig.117 Nach augustinischer Überzeugung stand dem menschlichen Geist also die Möglichkeit zu Verfügung, über die Mathematik Erkenntnis über den Ursprung der Dinge, das Wesen der Seele und sogar über Gott selbst zu erlangen.118 Die von Augustinus postulierte Verbindung zwischen Wissenschaft, Mathematik und Theologie sollte wirkungsgeschichtlich großen Einfluss auf das mittelalterliche Gedankengebäude haben: Im 13. Jahrhundert erklärte Robert de Grosseteste (1175–1253), dass es 116 Vgl. Pascha 2004, 63. 117 Vgl. von Simson 1982, 52; Heinzmann 1992, 60. 118 Augustinus, De ordine II, 15, 42; vgl. von Simson 1982, 38; Pascha 2004, 64.

Der christliche Neuplatonismus

Abb. 17: Die sieben artes liberales mit der thronenden Philosophia, Sokrates und Platon im Zentrum (Hortus Delicarum von Herrad von Landsberg, spätes 12. Jahrhundert).

55

ohne Geometrie nicht möglich sei, die Natur zu verstehen.119 Denn neben der Musik wurde insbesondere der Geometrie die Fähigkeit zugesprochen, die verborgenen Zahlbeziehungen (congruentia) von Gesehenem und Gehörtem anschaulich darzustellen und so dem menschlichen Geist zugänglich zu machen.120 Dem Ansehen des als Kirchenvater verehrten Augustinus war es zu verdanken, dass nicht nur die griechische Philosophietradition während des Mittelalters intensiv rezipiert wurde, sondern dass die platonisch-pythagoreische Hervorhebung der mathematischen Disziplinen auch im christlichen Bildungskanon beibehalten wurde.121 Die Beschäftigung mit Geometrie galt nach christlicher Theologie als ein Weg zu Gott, wie es die Benediktinerin Hrosvitha von Gandersheim formulierte:

Je deutlicher der Mensch erkennt, wie wunderbar des Herrn Gesetze in Zahl, Gewicht und Maß das All regieren, desto größere Liebe wird er zu Gott verspüren.122 Ähnlich stark wie Augustinus war auch Boethius (um 480–um 535 n. Chr.), ein Gelehrter am Hofe des Ostgotenkönigs Theoderich, in der platonisch-pythagoreischen Zahlenphilosophie verhaftet. Auch ihm galten die Zahlen als unveränderliche Grundlage aller Dinge und damit der kosmischen Harmonie.123 Ebenso wie Augustinus zollte der Neuplatoniker 119 »Utilitas considerationis linearum, angulorum, et figurarum est maxima, quoniam impossibile est sciri naturalem philosophiam sine illis« (Robert de Grosseteste, De lineis, angulis et figuris; zit. nach von Simson 1982, 278, Anm. 47). 120 Die rechte Proportion war zudem die Grundlage der Schönheit, da Symmetrie mit Ebenmaß und Ordnung, Asymmetrie dagegen mit Unordnung, Willkür und Zufall gleichgesetzt wurde (vgl. Götze 1984, 16; Cohen 2000, 163). Auch Augustinus (Epistola III, 4) setzte körperliche Schönheit (corporis pulchritudo) mit Ebenmaß (congruentia) gleich. 121 Augustinus verfasste selbst eine Schrift zur Arithmetik, die allerdings verloren gegangen ist (vgl. von Simson 1982, 38; Masi 1983, 49; Halfen 2011, 26). 122 Hrosvitha von Gandersheim, Paphnutius, 1. Akt, 133. 123 Vgl. Gruber 2011, 5.

56

Zum mittelalterlichen Geometrieverständnis

Abb. 18: Der eingekerkerte Boethius und die personifizierte Philosophie mit einem Leiterornament auf ihrem Gewand (Johannes Affligemensis, um 1230).

Boethius dem antiken Bildungssystem der artes liberales, die aus dem Bildungskanon der Sophisten hervorgegangen waren, große Anerkennung und beförderte so deren Tradierung ins christliche Mittelalter (vgl. Abb. 17).124 Seit dem ersten nachchristlichen Jahrhundert zählten neben den sprachlichen Fächern Grammatik, Rhetorik und Dialektik, die mathematischen Disziplinen Arithmetik, Musik, Geometrie und Astronomie zu den sieben freien Künsten.125 Die mathematischen Fächer fasste Boethius unter dem Begriff Quadrivium (Vierweg) zusammen, wobei er ausdrück124 Vgl. Heinzmann 1992, 137; Gruber 2011, 14. 125 Die Reihenfolge der Disziplinen war nicht kanonisch: So ordnete Capella in seinem im 5. Jahrhundert verfassten Liber De Nuptiis Mercurii et Philologiae die mathematischen Fächer in der Reihenfolge Geometrie, Arithmetik, Astronomie und Musik an (vgl. Masi 1983, 13; Folkerts 1989, 13; Cohen 2000, 68).

Der christliche Neuplatonismus

57

lich ihren pythagoreischen Ursprung betonte.126 In den Kreuzungspunkt seines Vierwegs stellte Boethius – ganz nach platonisch-pythagoreischer Tradition – die Zahl.127 Boethius schrieb man auch die Einführung einer Hierarchie innerhalb der sieben Disziplinen zu: Die drei sprachlichen Fächer, die ab der karolingischen Zeit in Analogie zum Quadrivium als Trivium (Dreiweg) bezeichnet wurden, standen in der Rangfolge deutlich unter den mathematischen Disziplinen, was bis heute in der pejorativen Bedeutung der Bezeichnung trivial zum Ausdruck kommt.128 Diesem Bildungsideal zufolge wurde die Ausbildung eines Menschen nicht auf die bloße Anhäufung von Wissen reduziert, sondern galt vielmehr als ein Weg, der die ganzheitliche Entwicklung des menschlichen Geistes befördern solle. Boethius prägte dafür das Bild einer Leiter, die von der praxisorientierten Philosophia activa zur theoretischen Philosophia speculativa führt.129 In dem Bild einer Leiter, deren Stufen aus den einzelnen Fächer der artes liberales besteht, spiegelt sich wieder die Rangordnung der Disziplinen, die im propädeutischen Sinne durchschritten werden müssen, damit die Seele zur kontemplativen Schau der Philosophia theoretica aufsteigen kann (vgl. Abb. 18).130 1.3.2 Die mittelalterliche Zahlensymbolik Aus der Verknüpfung von hebräischer und griechischer Zahlen- und Proportionslehre entstand im Mittelalter also ein spezifisch christliches Symbol- und Zeichensystem, das fortan die Grundlage der theologischen Exegese bilden sollte. So erfuhr die christliche Theologie eine konsistente Geometrisierung im platonisch-pythagoreischem Sinn. Im Gewand der christlichen Symbolik fand die pagane Zahlenphilosophie Eingang in die mittelalterliche Kunst, in deren Rahmen sie als formales Strukturelement die Gestalt der Bildenden Künste, der Architektur und der Städtebaukunst nachhaltig beeinflusste.131 Die Überzeugung, dass das äußere Ebenmaß einer Gestalt ein Ausdruck ihrer inneren Vollkommenheit sei, diente als Grundlage für die Heraushebung bestimmter geometrischer Formen, wozu der Kreis, das gleichseitige Dreieck und das Rechteck gehörten.132 So 126 Boethius, De Institut. Arithmetica I, 1. Vgl. Roggenkamp 1954, 139; Folkerts 1989, 11 ff.; Gruber 2011, 15. 127 Vgl. Roggenkamp 1954, 122. 128 »If a searcher is lacking knowledge of these four sciences, he is not able to find the true« (Boethius, De Institut. Arithmetica I, 1). Vgl. Folkerts 1989, 12. 129 Boethius (Comm. in Porpyrium I, 73) folgte der Unterteilung in eine theoretische (speculativa) und in eine praktische (activa) Philosophie (vgl. Gericke 1990, 51; Cohen 2000, 168). 130 »Partes igitur, in quas primum philosophia dividitur, hae sunt: scilicet theorica et practica« (Dominicus Gundalissimus, De div. phil, 12; zit. nach Fidora 2003, 167). Vgl. Bandmann 1960, 51ff; Meier 1977, 35; Halfen 2011, 119. 131 Vgl. Englisch 2002, 114. 132 Vgl. Hautecoeur 1954, 99 ff.

58

Zum mittelalterlichen Geometrieverständnis

wurde die geometrische Eigenschaft des Kreises, nämlich dass der aus unendlich vielen Punkten bestehende Kreisbogen einem einzigen Zentrum entspringt, mit dem Prinzip der Monade verbunden, die der platonisch-pythagoreischen Tradition zufolge den Ursprung aller Dinge darstellt.133 Die weder Anfang noch Ende kennende Kreisform stand in der christlichen Ikonographie daher nicht nur für die regenerative Kraft der zyklischen Erneuerung, sondern galt aufgrund ihrer vollkommenen Ebenmäßigkeit als ideales Sinnbild für Gott und Kosmos (vgl. Abb. 19), was ihre regelhafte Verwendung in der sakralen Kunst und Architektur erklärt.134 Mit dem auf der Drei als göttlicher Ordnungszahl basierenden Dreieck wurde Abb. 19: Mikrokosmos und Makrokosmos als konzentrisches Kreissystem (Hildegard von Bingen, eine spezifisch räumliche Komponente Liber Divinorum Operum, 13. Jahrhundert). verbunden, wovon sich die Vorstellung von der Dreiteilung des Kosmos in einen zälestischen, einen terrestrischen und einen chthonischen Bereich ableitete.135 Das triadische Motiv gliederte auch die Erde in einen asiatischen, afrikanischen und europä­ ischen Kontinent, eine Teilung, die wiederum die Gliederung der Menschheit in die Nachkommenschaft der drei Söhne Noahs – Sem, Ham und Japhet – nach sich zog.136 Nach diesem Vorbild waren auch Gesellschaft und Kirche in drei Stände geteilt.137

133 »Der Gott, der, wie auch das alte Wort besagt, Anfang und Ende und die Mitte alles dessen, was ist, in Händen hat, geht auf geradem Wege zum Ziel, indem er der Natur gemäß kreisend seine Bahnen zieht« (Plat., Nom. IV, 715e). 134 Vgl. Englisch 2002, 91 ff. und 119. Bonaventura (Itinerarium V, 8) setzte Gott mit einer »geistigen Kugel« gleich, »deren Mittelpunkt überall und deren Umkreis nirgendwo ist«. 135 Vgl. Meyer/Suntrup 1987, 215. 136 Vgl. von den Brincken 1968, 131; Meyer/Suntrup 1987, 215; Englisch 2002, 41. 137 In der Drei-Stände-Lehre, die die Gesellschaft in den status ecclesiasticus, in den status oeconomicus und in den status politicus gliederte, fand die Schöpfungsordnung eine Widerspiegelung in der politischen Ordnung (vgl. Kürbis 2013, 447; Meyer/Suntrup 1987, 215).

59

Der christliche Neuplatonismus

Abb. 20: Die göttliche Dreieinigkeit als Schild des Glaubens, dem Scutum Fidei (Missale von Langres, 1517).

Abb. 21: Die vier Evangelisten (Book of Kells, 8. Jahrhundert).

Die Hauptbedeutung der Dreizahl fiel im Rahmen der christlichen Zahlsymbolik jedoch mit der Dreifaltigkeit Gottes zusammen.138 In Gestalt des Dreiecks wurde die Zahl zum Symbol der Trinitätslehre, die seit dem arianischen Streit im 4. Jahrhundert einen der Eckpfeiler der christlichen Theologie bildete (vgl. Abb. 20).139 Über die Verknüpfung mit der göttlichen Dreieinigkeit Vater, Sohn und Heiliger Geist hinaus wurde die Dreizahl zum Sinnbild der Auferstehung (ressurectio), da der Gottessohn nach christlicher Glaubenslehre am dritten Tag nach seiner Kreuzigung auferstanden war, nachdem er 33 Stunden in seinem Grab gelegen hatte.140 Mit der Vier und ihren verwandten geometrischen Figuren, dem Kreuz, dem Quadrat und dem Viereck, war ebenfalls eine spezifisch räumliche Komponente verbunden.141 In Gestalt des orbis quadratus galt die Vierteilung als Abbreviatur der vier Elemente, der vier 138 Vgl. Meyer/Suntrup 1987, 214. 139 Vgl. Witzel 1914, 11; Duby 1979, 45. 140 Isidor, Etym. VI, 17, 16; Honorius Augustodunensis, Gemma animae, 667 D–668 A. Vgl. Meyer/Suntrup 1987, 214 ff.; Englisch 2002, 101 f. 141 Hrabanus Maurus, De laudibus s. crucis 1, 157A.

60

Zum mittelalterlichen Geometrieverständnis

Himmelsrichtungen, der vier Weltgegenden und der vier Jahreszeiten und avancierte so zur bestimmenden Zahl für die Ordnung der irdischen Welt.142 Die mit der Vier assoziierten Evangelisten, Paradiesflüsse und apokalyptischen Reiter standen zudem für eine totale Durchdringung des Raums von seinem Zentrum bis an die Peripherie (vgl. Abb. 21).143 1.3.3 Geometrie im Mittelalter Als in sich geschlossene Sinnkonstruktion widmete sich die mittelalterliche Philosophie nicht allein der theoretischen Erkenntnis der Gesetze der göttlichen Ordnung, sondern bemühte sich in Gestalt der scientia activa in dezidierter Form um Anwendung und Umsetzung des theoretischen Wissens.144 Bernardus Silvestris (1085–nach 1160), ein Gelehrter aus dem Umfeld der Schule von Chartres, fand hierfür eine treffende Metapher: Theorie und Praxis, beides Töchter der Natur, galten ihm als ein unzertrennliches Geschwisterpaar, weil eine Schwester ohne die andere nicht bestehen könne.145 Diesem Bild entsprechend stellte der Scholastiker Hugo von St. Victor (1097–1141) den klassischen artes liberales die artes mechanicae an die Seite, die er explizit als eine Gestaltwerdung des Geistes verstand.146 Geometrie wurde daher im Mittelalter ganz selbstverständlich in theoretischer und in praktischer Form gelehrt. Die Vermittlung der theoretischen Grundlagen des griechischen Geometrieerbes erfolgte vor allem durch das Werk des antiken Mathematikers Euklid von Alexandria.147 Die lateinische Übertragung des um 300 v. Chr. verfassten Standardwerks fand weite Verbreitung innerhalb des monastischen und klerikalen Netzwerkes, wie zahlreiche frühund hochmittelalterliche Manuskripte und Fragmente belegen.148 Die aus 13 Büchern bestehende Schrift behandelt nicht nur in ausführlicher Form Zahlentheorie, Raumlehre

142 Vgl. Meyer/Suntrup 1987, 332; Englisch 2002, 104. 143 Isidor, Etym. VI, 2, 40; Honorius Augustodunensis Gemma animae, 687C. Vgl. Englisch 2002, 105 f. 144 Vgl. Cohen 2000, 163; Halfen 2011, 51 und 119. 145 Bern. Silv., De Mundi Univ. II, 9. 146 »Du siehst also, aus welchem Grund wir die Philosophie auf alle menschlichen Handlungen ausdehnen müssen« (Hugo v. St. Victor, Didasc. 1, 4). Vgl. Mayer 1926, 71; Folkerts 1989, 1. 147 Euklid bezog sich auf verloren gegangene Werke von Hippokrates von Kos und Eudoxos von Knidos aus dem 5. und 4. vorchristlichen Jahrhundert (vgl. Dilke 1991, 36). 148 Abgesehen von frühmittelalterlichen Fragmenten kursierten ab dem 12. Jahrhundert mehrere lateinische Gesamtausgaben der Euklidischen Elemente, die entweder aus dem Arabischen oder direkt aus dem Griechischen übersetzt worden waren. Unter den verschiedenen Versionen wurde die kommentierte Euklid-Übersetzung von Campanus von Novara aus dem Jahr 1260 besonders intensiv rezipiert (vgl. Fredel 1998, 197 und 205 ff.; van der Schoot, 2005, 50; Lilley 2009, 114; Leisse 2010, 1 ff.).

Der christliche Neuplatonismus

61

und Konstruktion geometrischer Figuren, sondern auch das Phänomen der irrationalen Zahlen, darunter die Stetige Teilung einer Strecke.149 Die mittelalterlichen Gelehrten beschränkten sich jedoch nicht auf die formalen Grundlagen der Euklidischen Geometrie, sondern integrierten sie in ihre Zahlenphilosophie neuplatonisch-christlicher Prägung. Ein von dem Mathematiker Johannes Campanus von Novara (um 1220–1296) verfasster Kommentar, der mit seiner Euklidübersetzung eine vielbeachtete Grundlage des hoch- und spätmittelalterlichen Quadriviums hervorgebracht hatte, illustriert die Bedeutung, die dem Phänomen der Stetigen Teilung entgegengebracht wurde: Wunderbar ist also die Eigenschaft einer Strecke, die nach dem mittleren und zwei äußeren Verhältnissen geteilt ist. Da sich viele Dinge, die in den Augen derjenigen, welche die Philosophie ausüben, bewundernswert sind, nach ihm richten, geht dieses Prinzip oder diese Hauptregel aus der Unveränderlichkeit höherer Prinzipien hervor. Es bringt verschiedene Körper entweder gemäß ihrer Größe oder hinsichtlich der Zahl ihrer Seiten oder hinsichtlich der Form in einer irrationalen Symphonie logisch zueinander in Übereinstimmung.150 Die Eigenschaft, Verschiedenartiges (diversa) in Übereinstimmung (symphonia) zu bringen, war also Grundlage der Wertschätzung des Zahlenverhältnisses, das Campanus mit der Wendung »proportionem habentem medium duoque extrema divisae« übersetzt hatte. Der Kommentar gibt damit Antwort auf die Frage, warum das irrationale Zahlenverhältnis Eingang in den Gestaltungskanon der mittelalterlichen Künste gefunden hat: Die Stetige Teilung wurde von den mittelalterlichen Philosophen als mathematische Umsetzung des platonischen Gedankens von der Proportion als dem »schönsten Band, das sich selbst und das Verbundene so weit wie möglich zu einem Einzigen macht« verstanden.151 Als Taktgeberin des Rhythmus der christlichen Kunst galt die der Stetigen Teilung innewohnende Proportion somit als ein adäquates Instrument, um einem Werk Harmonie und Schönheit zu verleihen, indem es seine Teile zu einem Ganzen fügt. Die äußere Gestalt eines Kunst149 Vgl. Euklid, Elem. VI, § 30. Der Verfasser eines frühmittelalterlichen Scholions zu Euklid hob bei der Beschreibung des Fünfecks die Existenz eines besonderen Zahlenverhältnisses heraus. Zwar wurde das Verhältnis nicht näher bestimmt, aber es ist zu vermuten, dass es sich um die Stetige Teilung handelt, ohne die die Konstruktion eines exakten Pentagramms nicht möglich ist (Ps.-Boethius, Geom., S. 389, 12–16; vgl. Hellgardt 1973, 103 ff.; Fredel 1998, 198). 150 »Mirabilis itaque est potentia lineae secundum proportionem habentem medium duoque extrema divisae. Cui cum plurima philosophantium admiratione digna conveniant hoc principium vel praecipuum ex superiorum principiorum invariabili procedit natura ut tam diversa solida tum magnitude tum basium numero, tum etiam figura, irrationali quadam symphonia rationabiliter conciliet.« (Johannes v. Novara, Euklid, XIV, 10). 151 Plat., Tim. 31b–32a.

62

Zum mittelalterlichen Geometrieverständnis

werkes stellte gemäß dieser mathematisierten Ästhetik also lediglich den umhüllenden Mantel seines eigentlichen Wesens dar, das letztlich auf Zahl und Proportion basiert.152 Damit avancieren die beiden Entitäten zu den Grundlagen von Schönheit und Harmonie (ἁρμονία), die als vollkommene Übereinstimmung verschiedenartiger Teile aufgefasst wird.153 Schönheit und Wohlgefallen sind aber nie ohne Verhältnismaß, und dieses findet sich an erster Stelle in den Zahlen. Darum muss allem die Zahl zugrunde liegen. Somit ist die Zahl das vorbildlichste Urbild im Geiste des Schöpfers, in den Dingen dagegen ist sie die deutlichste Spur, die zur göttlichen Weisheit führt.154 Das der Stetigen Teilung innewohnende Verhältnis wurde im Hochmittelalter nicht nur im Rahmen der Euklidischen Geometrie vermittelt, sondern auch als Zahlenfolge in Gestalt der sogenannten Fibonacci-Reihe.155 Der Überlieferung nach soll der Stauferkaiser Friedrich II. seinem Gelehrtenkreis die Aufgabe gestellt haben, wie groß die Nachkommenschaft eines Kaninchenpaares innerhalb eines Jahres sei. Als Antwort legte ihm Leonardo da Pisa, auch Fibonacci genannt (um 1170–nach 1240), folgende Aufstellung vor: Paare 1 erster Monat 2 zweiter Monat 3 dritter Monat 5 vierter Monat 8 fünfter Monat 13 sechster Monat 21 siebter Monat 34 achter Monat 55 neunter Monat 89 zehnter Monat 144 152 Vgl. Burkert 1962, 250; Friesenhahn 1970, 160; Kurdziałek 1971, 57; Eco 2009, 61. 153 Der griechische Begriff ἁρμονία, der wörtlich Verbindung, Klammer und Ordnung bedeutet, kann auf die gleiche etymologische Wurzel wie ἀριθμός (Zahl) zurückgeführt werden (vgl. Burkert 1962, 37; Rossi 2003, 2). Der bereits von Boethius (in top. Cic. III, 1) formulierten Definition, dass Schönheit durch das Ebenmaß der Glieder erzeugt werde (vgl. Gruber 2011, 20), hing man noch im Mittelalter an, wie die Feststellung von Thomas von Aquin zeigt: »Darum besteht die Schönheit im harmonischen Verhältnis der Teile. Denn die Sinne finden Wohlgefallen an harmonisch geordneten Dingen.« (Summa Theologica I, 5, 4). 154 Bonaventura, Itinerarium II, 10. 155 Der Name Fibonacci, abgeleitet aus filio di Bonacci, haftet der rekurrenten Zahlenreihe seit dem 19. Jahrhundert an (vgl. Fredel 1998, 238).

63

Der christliche Neuplatonismus

elfter Monat 233 zwölfter Monat 377 Die sogenannte »Hasenreihe« des Leonardo da Pisa, genannt Fibonacci Bei der auch als »Hasenreihe« bekannten Aufstellung handelt sich um den Anfang einer rekurrenten, endlosen Zahlenfolge, die durch die Addition der beiden vorhergehenden Zahlen entsteht, wie Fibonacci in seinem Liber Abaci erläuterte.156 Die Fibonacci-Reihe gehört damit zu dem Phänomen des gnomonischen Wachstums, das gegeben ist, wenn eine Figur, die zu einer ursprünglichen Figur hinzugefügt wird, eine ähnliche Figur erzeugt.157 Die besondere Eigenschaft der Fibonacci-Folge besteht in der ihr innewohnenden Proportion. Denn je größer die Zahlen werden, desto mehr nähert sich der Quotient zweier aufeinander folgender Zahlen der Verhältniszahl der Stetigen Teilung an (φ = 1,618033988749895) an.158 2/1 = 2 3/2 = 1,5 5/3 = 1,6 8/5 = 1,6 13/8 = 1,625 21/13 = 1,615384615384615 … 34/21 = 1,619047619047619 … 55/34 = 1,617647058823529 … 89/55 = 1,618 144/89 = 1,617977528089888 … 233/144 = 1,61805 377/233 = 1,618025751072961 … Im Gegensatz zur Stetigen Teilung, bei der jedoch die ihr innewohnende Proportion dividierend wirkt, entfaltet sie in der endlosen Zahlenfolge eine progressive Wirkung. Aufgrund ihrer einfachen Bildung erweist sich die Zahlenfolge in der Anwendung als 156 Leonardo Pisano, Abaci XII 7. Die Zahlenfolge war lange vor Fibonacci bekannt: Der Anfang der Folge findet sich bereits bei Boethius (De Institutione Arithmetica II, 53), der bei der Unterteilung der Proportionen (medietates) als zehnte Variante die Zahlenreihe 3, 5, 8 nennt. In Indien wurde die Zahlenreihe im 7. und 8. Jahrhundert durch die Schriften des Mathematikers Virahânka verbreitet, der auch das Bildungsgesetz beschrieb (vgl. Braunfels 1965, 207; Fredel 1998, 240; Odifreddi 2010, 20). 157 Vgl. Rossi 2003, 26. 158 Vgl. Braunfels 1965, 205. Annäherungen an irrationale Zahlen über Zahlenverhältnisse sind seit der Antike bekannt. Dem griechischen Mathematiker Archimedes von Syrakus (um 287–212 v. Chr.) wird bei1 10 spielsweise zugeschrieben, dass er über die Brüche 3 7 und 3 eine Annäherung an die Kreiszahl π herstellte (vgl. Dilke 1991, 37).

64

Zum mittelalterlichen Geometrieverständnis

anwendungsfreundlich und praktikabel, weshalb sie bis heute noch zu den Grundlagen der ästhetischen Gestaltung gehört.159 Von allegorischer Bedeutung ist der Umstand, dass in jedem Glied alle vorhergehenden Glieder enthalten sind, während jedes Glied wiederum Bestandteil aller nachfolgenden Glieder darstellt. In der Zahlenfolge waltet also ein der Generationenfolge vergleichbares Prinzip, in der jedes Individuum sowohl als das Resultat – mathematisch ausgedrückt als die Summe – der Elterngeneration als auch als die Voraussetzung – mathematisch gesprochen als der Summand – für alle kommenden Generationen gesehen werden kann. Die mit der progressiven Zahlenreihe verknüpfte Fortpflanzungsallegorie eines Kaninchenpaares erinnert an das lebenserneuernde Geburtenprinzip, das beispielsweise bei Alanus ab Insulis (1120–1202), einem Gelehrten aus dem Umfeld von Chartres, mit der göttlichen Schöpfungsordnung verbunden wurde: Als der Künstler des Universums alle Dinge mit einem Äußeren bekleidet hatte, das ihrer inneren Natur entspricht und einander im Verhältnis einer gesetzestreuen Hochzeit vermählt hatte, war es sein Wille, (…) dass die Folge der Dinge auf immer durch die sukzessive Erneuerung der Geburten verknüpft sei.160 Im Kontext der neuplatonischen Zahlenlehre wurde außerdem dem Umstand eine besondere Bedeutung beigemessen, dass der Ursprung der sich endlos fortsetzenden Folge nicht aus beiden Elternteilen, also der Zwei, besteht, sondern aus einem Paar, mithin aus der Eins, also der Monade, die nach platonisch-pythagoreischer Auffassung den göttlichen Ursprung allen Seins darstellt.161 Der in der Überlieferung inhärente inhaltliche Zusammenhang mit der kaiserlichen Kaninchenaufgabe bringt die Fibonacci-Folge so mit dem Prinzip des Lebens in Zusammenhang, das ebenfalls infolge eines bestimmten Verhältnisses aus dem Einen entsprungen ist.162 Während die Stetige Teilung also das dividierende Prinzip verkörpert – aus einer Einheit entstehen unendlich viele kleinere Bestandteile –, steht die Fibonacci-Folge dagegen für das expansive Prinzip, nämlich dass aus dem Einen unendlich Vieles entsteht. Die Vermittlung der angewandten Geometrie in Gestalt der mittelalterlichen Feldmesskunst erfolgte sowohl über den schriftlichen als auch über den mündlichen Weg: Während sich das geometrische Schrifttum an literate Personen richtete, die mit der Schriftkultur vertraut waren, wurden im Feld praktische Lehrgänge durchgeführt, die sich der konkre159 Vgl. Hellgardt 1973, 96. Die Fibonacci-Folge gehört heute noch zu den Grundlagen des zeitgenössischen Gestaltungsrepertoires, wie z. B. in Screen- und Interface-Design-Lehrbüchern (vgl. Stapelkamp 2007, 258). 160 Alanus ab Ins., De planctu nat. 5 (zit. nach Halfen 2011, 480). Das Vorkommen der biblischen Zahl 144 im zehnten Monat dürfte im Kontext der christlichen Zahlenlehre besondere Aufmerksamkeit erregt haben. 161 Lydus, De mensibus II, 20; Iamblichos, Vit. Pyth. 162. 162 Plat., Tim. 32.

Der christliche Neuplatonismus

65

ten Handhabung von Messinstrumenten und dem Erlernen von Konstruktionsverfahren widmeten. Den mittelalterlichen Agrimensoren, die sich der Messkunst »secundum uolgarem modum«163 (nach gewöhnlicher Art) widmeten, dürfte sich die Konstruktion von geometrischen Figuren auf dem Papier oder im Feld als eine rhythmisch-ritualisierte Abfolge von Tätigkeiten dargestellt haben, die über Merksprüche memoriert werden konnte.164 Diese angewandte Vermessung vor Ort entzieht sich jedoch weitgehend der Verschriftlichung und ist deswegen im Quellenmaterial allenfalls indirekt nachzuvollziehen. Auch die literarische Geometriepraxis rekurrierte auf Euklids Standardwerk, wenn auch über den Umweg über die römische Geodäsie.165 Die römischen Gromatiker, die mit ihrer Arbeit die konzeptionelle Grundlage der Raumordnung des Imperium Romanum schufen, galten als Meister ihres Fachs.166 Ihre Arbeit, auch limitatio genannt, bildete die Grundlage der römischen Expansion: Nicht nur die Vermessung römischer Städte und die Aufteilung des dazugehörigen Ackerlandes, sondern auch die Aufmessung ephemerer Gebilde wie Militärlager folgte einem dem sakralen Bereich entlehnten, ritualisierten Schema, dessen Grundlage ein zentrales Straßenkreuz aus senkrechtem cardo und waagrechtem decumanus darstellte. Dieses diente sowohl als Bezugssystem für die Etablierung der Grenzen, als auch für die innere Gliederung des Geländes, die über die Parzellierung und die Straßenführung erfolgte (vgl. Abb. 22).167 Römische Geodäsie fand in Gestalt des Corpus Agrimensorum Romanorum, einer Kompilation gromatischer Fachtexte verschiedener Autoren aus dem 1. bis 4. nachchristlichen Jahrhundert, Eingang in den monastischen Kontext des Mittelalters, in dessen Rahmen die Schriften systematisch gesammelt, rezipiert und verbreitet wurden.168 Neben zahlentheoretischen und kosmologischen Ausführungen enthielten die praxisorientierten Texte Anleitungen zur Vermessungstechnik in Form von detaillierten Beschreibungen zur Handhabung von Messinstrumenten, der praktischen Aufmessung und der Kartographie.169 Die Schriften der römischen Messkunst, die bereits in der Antike die Stellung von Meisterbüchern besaßen, avancierten zum gro163 Leonardo Pisano, De Practica Geometrie 95 (zit. nach Fredel 1998, 211, Anm. 490). 164 »Ein Punkt, der in dem Zirkel geht / Der im Quadrat und Dreyangel steht / Kennst du den Punkt, so ist es gut / Kennst du ihn nit, so ist’s umbsonst« (Merkvers der Bauhütten, zit. nach Ghyka 1931, 72). 165 Vgl. Dilke 1991, 36 f.; Cohen 2000, 163. 166 Vgl. Edson et al. 2011, 48. 167 Wie der Kommentar eines römischen Vermessers zeigt, bezog sich die römische Raumordnung explizit auf sakrale Grundlagen, die dem Augurenwesen entlehnt sind: »Denn jeder erfahrene Feldmesser kann Ländereien abstecken und in ihren Grenzen wiederherstellen, zuweisen kann er sie aber nur dann, wenn er durch geheiligte Unterweisung dazu stark gemacht worden ist« (Frontinus; zit. nach Roggenkamp 1954, 152). 168 Vgl. Corpus Agrimensorum Romanorum. Da das als sakral geltende Wissen zunächst nur mündlich weitergegeben wurde, kam es erst in flavischer und trajanischer Zeit zu einer Verschriftlichung. Zu den Autoren gehören u. a. Sextus Iulius Frontinus, Siculus Flaccus, Hyginus Gromaticus, Balbus und Celsus (vgl. Hänger 2001, 21 ff.). 169 Vgl. Dilke 1991, 62; Lilley 2009, 116.

66

Zum mittelalterlichen Geometrieverständnis

Abb. 22: Limitiertes Gebiet mit zentralem Achsenkreuz (Agrimensores veteres Roma­ norum, 6. Jahrhundert.

matischen Standardwerk des Mittelalters; zahlreiche mittelalterliche Kommentare und Ergänzungen zeigen darüber hinaus, dass man sich nicht auf eine bloße Übernahme des antiken Fachwissens beschränkte, sondern sich explizit um eine Erweiterung der antiken Kenntnisse in theoretischer und praktischer Form bemühte.170 Ab dem Frühmittelalter kursierten im europaweiten monastischen Netzwerk daher auch diverse Lehrbücher über Vermessungsgeometrie, teilweise unter dem Namen ihrer mittelalterlichen Verfasser, aber auch unter der Autorenschaft antiker Autoritäten.171 Bereits aus dem Frühmittelalter stammt eine fragmentarisch erhaltene Schrift, heute unter dem Namen Geometria incerti auctoris bekannt, in der ausführlich Fragen zur Vermessungspraxis behandelt wurden, darunter auch die Verwendung von elaborierter Messtechnologie, wie dem Astrolabium.172 Auch der weithin bekannte Scholastiker Hugo von St. Victor trug mit seiner Practica geometriae zur angewandten Messkunst bei.173 Unter der Autorenschaft der mathematischen Autorität Boethius wurde ab dem 11. Jahrhundert eine vermutlich in Lothringen verfasste geometrische Schrift mit deutlichem Bezug auf die römische Geodäsie verbreitet, die neben einer Abhandlung über Zahlentheorie zahlreiche praktische Anleitungen für die Feldmessung enthält, darunter auch die Konstruktion geometrischer 170 Bei den ältesten erhaltenen Abschriften des Corpus Agrimensorum Romanorum, handelt es sich um den Codex Arcerianus, eine aus dem Kloster Bobbio stammende Handschrift aus dem 6. Jahrhundert, sowie um den Codex Palatinus Vaticanus (lat. 1564), eine karolingische Minuskel aus dem 9. Jahrhundert (vgl. Müller 1961, 11; Meckseper 1970, 304; Randolph 1995, 299; Hänger 2001, 23; Torge 2007, 26; Lilley 2009, 116). 171 Vgl. Gericke 1990, 156. Dem mittelalterlichen Wissenschaftskodex zufolge galt der Bezug auf Autoritäten als vorbildlich und tugendhaft, während die Formulierung eigener und neuer Ideen dagegen als anmaßend gewertet wurde (vgl. Gurjewitsch 1978, 11). 172 Auch diese Schrift wird Papst Silvester II. zugeschrieben (vgl. Gerberti Opera, Appendix IV). 173 Hugo v. St. Victor, Pract. geom.

Der christliche Neuplatonismus

67

Abb. 23: Geometrische Fünfeckkonstruktion nach Leonardo Fibonacci (Practica geometriae von Leonardo, filio Bonacii, Pisano nach einer Abschrift aus dem 15. Jahrhundert).

Figuren und die Stetige Teilung einer Strecke.174 Im Jahr 1220 veröffentlichte Leonardo Fibonacci seine Practica Geometrica, das ausgereifteste Handbuch der mittelalterlichen Messkunst, das neben theoretischen Abhandlungen über Euklidische Geometrie auch praxisorientierte Anweisungen für die Konstruktion geometrischer Figuren, darunter das gleichseitige Dreieck, das Fünfeck und das Zehneck, enthält (vgl. Abb. 23).175 Einen Einblick in die aus der Antike übernommenen Arkantradition der mittelalterlichen Hüttengeometrie gewährt das um 1230 entstandene Skizzenbuch des Baumeisters Villard de Honnecourt.176 Bei dem auch als Bauhüttenbuch bezeichneten Portfolio handelt es sich um ein singuläres Dokument, da es trotz seines skizzenhaften Charakters den tech174 Ps.-Boethius, Geom. Vielleicht weil Boethius als Autor galt, fand die Schrift weite Verbreitung: Heute sind über 40 Handschriften bekannt (vgl. Folkerts 1970, 95 und 105; Masi 1983, 33; Fredel 1998, 202). 175 Leonardo Pisano, De Practica Geometrie. 176 In der Antike wurden nicht nur im Bereich der Mysterien, sondern in allen Formen kultisch gebundener Kollegien, wie Handwerkszünften und Ärztegilden, eine eigene Esoterik gepflegt, die einer strikten Geheimhaltung unterlag (vgl. Burkert 1962, 162). Das im Mittelalter zunftmäßig organisierte Bauwesen war mit einem strikten Schweigegelübde belegt, so dass lediglich der Meister im Vollbesitz des Hüttengeheimnisses, des sogenannten arcanum magistri, war. Er allein kannte den rechten Steinmetzgrund, war also im Besitz des Wissens um Maß, Proportion und der angewandten Konstruktionsschlüssel und hatte Zugang zur Lade, in der die Dokumente der Hütte, zu denen auch die Konstruktionszeichnungen gehörten, aufbewahrt wurden (vgl. Neuwirth 1888, 204; Witzel 1914, 7; Roggenkamp 1954, 121).

68

Zum mittelalterlichen Geometrieverständnis

Abb. 24: Geometrische ­Kon­struktion des menschlichen Antlitzes (Skizzenbuch des Villard de Honnecourts, um 1230.

nischen und künstlerischen Kenntnisstand des europäischen Hüttenwesens widerspiegelt, mit dem Honnecourt im Rahmen seiner wechselnden Tätigkeit für kirchliche Bauherren vertraut war.177 Aus Honnecourts Skizzen spricht die enge Verzahnung von Geometrie und Kunst, die die mittelalterliche Ästhetik durchzieht.178 Der Baumeister entwickelte sämtliche Zeichnungen, von Proportionsstudien des menschlichen Körpers bis hin zum Aufriss von Stadttoren über geometrische Grundformen. Neben dem Dreieck, dem Quadrat und dem Kreis zählt vor allem das Pentagramm zu seinem favorisierten Konstruktionsprinzip (vgl. Abb. 24).179 An der breiten Zusammenstellung verschiedenster Themen, angefangen bei den Grundlagen der Geometrie und Vermessung über ingenieurtechnische Aufgaben bis 177 Anders als bei den bereits vorgestellten geometrischen Werken handelt es sich bei der Schrift Villard de Honnecourts nicht um ein Lehrbuch im klassischen Sinn. Die mit kurzen Kommentaren versehenen Skizzen dienten entweder als Erinnerungsstütze oder als Illustrationen im Rahmen eines mündlichen Lehrprozesses (vgl. Gericke 1990, 133). 178 Vgl. von Simson 1982, 32. 179 Vgl. von Simson 1982, 277; Masi 1983, 33.

69

Der christliche Neuplatonismus

Abb. 25: Der thronende Christus überreicht einem Agrimensoren ein Messinstrument (Handbuch des Bertrand Boysset, ausgehendes 14. Jahrhundert).

Abb. 26: Vermesser mit Messseil, Rute und Messpflöcken (Handbuch des Bertrand Boysset, ausgehendes 14. Jahrhundert).

hin zu architektonischen Grund- und Aufrissen wird zudem der Universalanspruch des mittelalterlichen Baumeisters deutlich, zu dessen Aufgabengebiet nicht nur die Errichtung sakraler Bauwerke, sondern auch der Wehr-, Straßen- und Wasserbau gehörte.180 Zudem kursierten Handbücher, die sich konkret an Feldvermesser richteten. Dazu gehört beispielsweise die Geometria Culmensis, ein im ausgehenden 14. Jahrhundert verfasstes agronomisches Traktat aus den Reihen des Deutschen Ordens181, aber auch das reich, wenn auch etwas naiv bebilderte Kompendium von Bertrand Boysset (1355–1416), einem Agrimensoren aus Arles.182 Bei der letzteren Schrift handelt es sich um eine praxisorientierte Anleitung zu Feldvermessung, in der nicht nur die geeigneten Messinstrumente dargestellt, sondern auch konkrete Anleitung zur Vermessung einer Stadt oder eines Feldes gegeben werden. Doch auch in diesem Handbuch fehlen nicht die Hinweise auf 180 Vgl. Sehrt 1977, 123. 181 Geometria Culmensis. 182 Bertrand Boysset, manuscrit de Carpentras; vgl. Portet/Clavel-Lévêque 1996, 239 ff.; Portet 2004, 7 ff.

70

Zum mittelalterlichen Geometrieverständnis

den göttlichen Auftrag, durch die die mittelalterliche Vermessung eine Art sakrale Legitimation gewann (vgl. Abb. 25). Basierend auf der Vorstellung, Christus selbst habe dem Agrimensoren Messinstrumente in die Hand gegeben, damit er seine Abb. 27: Die geometrische Konstruktion eines rechtAufgabe vollbringen könne, wurde winkligen Dreiecks, genannt »der Pythagoras«. der Akt der Vermessung aus dem rein profanen Kontext herausgehoben. Die platonische Tradition, nach der die Konstruktion mit Zirkel und Lineal allein zulässig ist, um die geometrische Idealität abzubilden183, lebte im Mittelalter fort. Die Kon­ struktion geometrischer Figuren auf einem Blatt Papier erfordert ein verblüffend einfaches Instrumentarium, das lediglich aus einem Zirkel, einem Stift und einem Lineal besteht. Auch die Geländevermessung folgt diesem Prinzip, wobei der Zirkel durch ein Seil (funis) und das Lineal durch eine Messlatte (baculus) ersetzt werden.184 Mittels dieser Ausstattung gelang es einem erfahrenen Vermesser schnell und effektiv, geometrische Konstruktionen unterschiedlichster Art ins Gelände zu übertragen (vgl. Abb. 26).185 Wurde beispielsweise ein rechter Winkel benötigt, genügte das Spannen eines Seils, das zuvor mittels Knoten nach einem festen Modul in zwölf Abschnitte geteilt worden ist. Hält man das Seil am ersten, vierten und neunten Knoten, entsteht ohne weiteres Zutun ein 90 °-Winkel (vgl. Abb. 27).186 Diese bis heute in der Feldarchäologie gängige Konstruktionsmethode zur Herstellung orthogonaler Figuren beruht auf dem mit dem Namen Pythagoras verbundenen Satz187, wonach die Summe des Quadrats der Katheten mit den Seitenlängen von 3 und 4 gleich dem Quadrat der Hypotenuse mit der Seitenlänge von 5 ist.188 a2 + b2 = c2 32 + 42 = 52 9 + 16 = 25

183 Vgl. Mainzer 2010, 2. 184 Vgl. Binding/Linscheid-Burdich 2002, 119 ff. 185 Vgl. Roggenkamp 1954, 151; Jesberg 1987, 11; Pascha 2004, 59. 186 Vgl. Dilke 1991, 34; Regal 2012, 62. 187 Der mathematische Satz wurde bereits in der Antike mit Pythagoras verbunden, beispielsweise bei Vitruv, De arch. IX, 6. 188 Euklid, Elem. I, 47.

71

Der christliche Neuplatonismus

Abb. 28: Mit einer Knotenschnur konstruierbare geometrische Figuren.

Ähnlich effektiv können mit einer solchen Knotenschnur gleichseitige Dreiecke mit der Seitenlänge von vier Modulen, Quadrate mit der Seitenlänge von drei Modulen sowie Kreise mit dem Radius von einem bis zu zwölf Modulen konstruiert werden (vgl. Abb. 28).189 Neben diesen einfachen Figuren können im Gelände mit der Messseilmethode auch elaborierte Konstruktionen ausgeführt werden, die auf einem irrationalen Verhältnis beruhen (vgl. Abb. 29). Soll beispielsweise die gegebene Strecke AB stetig geteilt werden, konstruiert man zunächst mit der Knotenschnur nach dem oben beschriebenen Weg einen rechten Winkel zu dieser Strecke, verlängert diese auf die Länge AB 2  = AC und verbindet den Punkt C mit B. Sodann wird mit dem Seil um den Punkt C ein Kreis mit dem Radius AC gezogen, so dass der Punkt D auf der Strecke BC abgetragen werden kann. Schlägt man nun um den Punkt B einen Kreis mit dem Radius BD, ist die Strecke AB im Punkt E stetig

189 Vgl. Jesberg 1987, 11; Dilke 1991, 34.

72

Zum mittelalterlichen Geometrieverständnis

geteilt, wobei sich die längere Seite (BE = Maior) zur kürzeren Seite (AE = Minor) verhält, wie die Gesamtstrecke (AB) zur längeren Seite (BE = Maior).190 BE : AE = AB : BE Dass die Konstruktion geometrischer Figuren mit der Messseilmethode bei größeren Entwürfen aufgrund von unwegsamem Gelände nicht immer zu praktizieren ist, führte zum Einsatz einer erweiterten Messtechnologie. Als Grundlage für die Vereinfachung ihres orthogonalen Messverfahrens hatten die römischen Vermesser die Abb. 29: Die geometrische Konstruktion einer stetig geteilten Strecke. so genannte groma übernommen (vgl. Abb. 30). Dabei handelt es sich um ein drehbares, rechtwinkliges Achsenkreuz aus Metall, an dessen Enden vier Lote herabhängen.191 Zur Anlage eines orthogonalen Bezugssystems mussten die römischen Agrimensoren die groma lediglich über dem zentralen Bezugspunkt platzieren und über die Visur der diagonal gegenüberliegenden Lote die Punkte im gewünschten Abstand abstecken.192 Über die römische Standardausstattung hinaus wurde die mittelalterliche Vermessungstechnik durch die Übernahme arabischer Geodäsietechnologie erweitert, wobei vor allem das muslimische Spanien als wichtiger Impulsgeber fungierte.193 Im arabischen Raum, vor allem im persischen Kalifat, widmete man sich seit dem 8. Jahrhundert intensiv der wissenschaftlichen Rezeption der antiken Geometriker, darunter Euklid, Archimedes und Ptolemaios194, deren Schriften systematisch ins Arabische übersetzt wurden.195 Auf dieser Grundlage, die durch Einflüsse aus dem indischen Raum ergänzt und erweitert wurde196, entstand eine reiche arabische Geometrietradition, mit Muhammed ibn Musa al’Khwarizmi (780–850), an-Nairizi (um 865–um 922), Ahmad bin Yusuf, genannt al-Misri (­835– 190 Dem aus dem 9. Jahrhundert stammenden Euklidkommentar von an-Nairizi ist zu entnehmen, dass die geometrische Konstruktion einer stetig geteilten Strecke auf Heron von Alexandria zurückgehe (vgl. Anaritius, Comm., 107–108; vgl. Tropfke 1923, 185). 191 Vgl. Roggenkamp 1954, 151; Folkerts, 1989, 125; Gargola 1995, 41 ff. 192 Vgl. Torge 2007, 21. 193 Vgl. Meckseper 1970, 96; Randolph 1995, 300; Waerden 2003, 1135. 194 Vgl. Edson et al. 2011, 28. 195 Die Übersetzungen aus dem 8. bis 10. Jahrhundert waren Teil eines konsequent durchgeführten Programms, das öffentlich und privat von einer Elite finanziert wurde (vgl. Folkerts, 1989, 46; Edson et al. 2011, 21 ff.). 196 Vgl. Rosenfeld/Youschkevitch 1996, 447; Folkerts 1989, 46; van der Schoot 2005, 49; Leisse, 2010, 1 ff.

Der christliche Neuplatonismus

73

912) und al-Hajjaj ibn Matar (Anfang des 9. Jahrhunderts) als wichtigsten Autoren, deren geometrische Kenntnisse zum Teil in übersetzter Form Eingang in die lateinische Fachliteratur fanden.197 Im 10. Jahrhundert gelangte das Astrolabium, ein Messinstrument zur Erfassung von Zeit, Entfernungen, Höhen und Flächen aus dem maurischen Spanien in das lateinische Europa (vgl. Abb. 31).198 Dass Abaelard und Heloise ihren gemeinsamen Sohn Astrolab nannten, illustriert die beispiellose Faszination, die von dem vielseitigen Messinstrument ausging, das sowohl in der Himmels- als auch in der Landvermessung eingesetzt wurde.199 Bei dem so genannten Jakobstab (baculus geometricus oder baculus Iacob), einem Instrument zur Winkel- und mittelbaren Streckenmessung, handelt es sich um Abb. 30: Der Einsatz einer groma zur Konstruktion eine genuin mittelalterliche Erfindung.200 eines rechtwinkligen Achsenkreuzes (Handbuch des Mit dem Jakobstab, der aus einem LängsBertrand Boysset, ausgehendes 14. Jahrhundert). stab mit einem verschiebbaren Querstab besteht, können über eine Winkelmessung die Entfernung bzw. die Höhe eines anvisierten Zielobjekts gemessen werden.201 Zwar wurde das Messgerät erstmals im Werk des Polyhistors Levi ben Gerson (1288– 1344) eingehend beschrieben, das Prinzip der goniometrischen Bestimmung vertikaler Punkte durch Visur war jedoch bereits im 13. Jahrhundert bekannt, wie eine Zeichnung 197 Muhammed ibn Musa al’Khwarizmi schrieb mit seinem Werk bab-al-misaha (Tor zur Vermessung) die früheste Arbeit über Geometrie in arabischer Sprache, während Anaritius (Abū l-Abbās al-Fad.l b. Ḥātim an-Nayrīzī) einen Kommentar zu Euklid verfasste. Hametus (Ahmad bin Yusuf) veröffentlichte neben einer Anweisung zum Gebrauch des Astrolabiums eine Schrift über Proportionalität, die ebenso wie das gromatische Standardwerk ìlm-al-misaha (Wissenschaft der Vermessung) ins Lateinische übersetzt wurde (vgl. Folkerts 1989, 57; Randolph 1995, 299; Rosenfeld/Youschkevitch 1996, 448 ff.; Rashed 1996, 419). 198 Vgl. Gericke 1990, 68 ff.; Randolph 1995, 300; Lilley 2009, 124; Edson et al. 2011, 38 f. 199 Vgl. Lilley 2009, 125; Edson et al. 2011, 40. 200 Vgl. Gericke 1990, 156. In der Genesis (32, 10) ist – allerdings in anderem Zusammenhang – die Rede vom Stab des Jakob: »Ich hatte nicht mehr als diesen Stab, als ich über den Jordan ging«. 201 Vgl. Gericke 1990, 156 f. Eine vereinfachte Variante wurde 1504 in Reisch, Margarita Philosophica, VI, II, 4 beschrieben.

74

Zum mittelalterlichen Geometrieverständnis

Abb. 31: Die Visur eines Gestirns mit einem Astrolabium (Psautier de Saint Louis et de Blanche de Castille, um 1200).

Abb. 32: Höhenmessung mittels eines Jakobsstabes (Skizzenbuch des Villard de Honnecourt, um 1230).

Der christliche Neuplatonismus

75

in dem um 1230 entstandenen Skizzenbuch des gotischen Baumeisters Villard de Honne­ court zeigt (vgl. Abb. 32).202 Zahlreiche Erfindungen, wie beispielsweise der im 12. Jahrhundert aus Fernost übernommene magnetische Kompass, erweiterten die mittelalterliche Geodäsietechnik im Laufe der Zeit.203 Doch betreffen diese technischen Veränderungen lediglich die Art und Weise der Umsetzung, das Prinzip blieb im Kern unverändert. Mit einigem Sachverstand können sämtliche die Bauvermessung betreffende Aufgaben, die heute mittels digitaler Messtechnik durchgeführt werden, mit einer technischen Ausstattung, die bereits im Mittelalter gängig war, schnell und präzise verwirklicht werden.

202 Villard de Honnecourt, Bauhüttenbuch, T. 40. Die bei Honnecourt skizzierte vereinfachte Form des Jakobstabes blieb bis in das 16. Jahrhundert in Gebrauch. Im gleichen Werk findet sich auch die Beschreibung eines Messverfahrens, bei dem man über eine indirekte Messung unzugängliche Punkte erfassen kann. Dieses bereits seit der Antike bekannte Verfahren beruht ebenso wie der Jakobstab auf der Kongruenz ähnlicher Dreiecke (vgl. Günther 1898, 158 ff.; Durach 1929, 26; Gericke 1990, 133 und 156). 203 Vgl. Gericke 1990, 128 f.; Edson et al. 2011, 29.

2. Zum mittelalterlichen Städteverständnis

2.1 Die mittelalterliche Stadt: Versuch einer immanenten Begriffsbestimmung Die Wertschätzung, die in der Moderne dem Phänomen Stadt entgegengebracht wird, kann nicht hoch genug eingeschätzt werden.1 Im 20. Jahrhundert wurde der Beginn der Stadtkultur im 4. vorchristlichen Jahrtausend als eine »urbane Revolution« wahrgenommen, die über einen ökonomischen Wandel hinaus2 als kultureller Aufstieg der Menschheit von einem Stadium der »Barbarei« in einen Zustand der »Zivilisation« verstanden wurde.3 Urbane Kulturen galten als »Hochkulturen«, die Geschichte der Menschheit war gleichbedeutend mit der Geschichte der Stadt.4 Da Urbanität auch im schriftlosen Kontext einer archäologischen Kultur als ein Zeichen von »Zivilisation« gewertet wurde5, verwundert es nicht, dass sich verschiedene wissenschaftliche Disziplinen darum bemühten, für den amphibolisch schillernden Begriff6 eine epochenübergreifende definitorische Klammer von allgemeiner Gültigkeit zu etablieren.7 Die modernen Begriffsbestimmungen oszillieren daher um ein Kriterienbündel aus Siedlungsgröße, sozialer Differenzierung, zentralörtlichem Charakter und nichtagrarischer, arbeitsteiliger Wirtschaftsweise, wobei je nach politisch-ideologischem Hintergrund der Verfasser die Gewichtung der Elemente verschoben werden kann.8 Aus der Fülle an Determinationen sei lediglich folgende Defini1 2 3

4

5 6 7 8

Aufgrund der weltweit zunehmenden Verstädterung wurde das 21. nachchristliche Jahrhundert bereits als »das Jahrhundert der Stadt« ausgerufen (Töpfer 1999, 4). Marx reduzierte die gesamte Geschichte der Menschheit auf einen Antagonismus zwischen Stadt und Land (Marx/Engels 1969, 358. Vgl. Kolb 1984, 239; Häußermann/Siebel 2004, 90). Der australische Archäologe Childe prägte 1936 in Anlehnung an die neuzeitliche »industrial revolution« die Begriffe »neolithic revolution« und »urban revolution«, die die Übergänge der Menschheit von einem »wilden«, in ein »barbarisches« und schließlich in ein »zivilisiertes« Stadium markieren sollen (vgl. Childe 1936, 114; Childe 1950, 3). Vgl. beispielsweise Benevolo 1983; Kolb 1984. Doch auch in der jüngeren Vergangenheit hat der Begriff »urbane Revolution« nichts von seiner Faszination eingebüßt: Heute dient er als politisches Schlagwort für den Umbau der Städte im Sinne einer nachhaltigen Entwicklung, wirtschaftlichen Stabilität und ökologischen Vorsorge (vgl. Töpfer 1999, 4). Der im 18. Jahrhundert geprägte Begriff Zivilisation ist etymologisch auf lateinisch civis (Bürger) zurückzuführen (vgl. Duden, Etymologie, 833). Vgl. Knefelkamp 2000, 21. Vgl. Novák 1999, 44. Die Hervorhebung des wirtschaftlichen Elements basiert im Wesentlichen auf den 1921 postum veröffentlichten Ausführungen von Max Weber, der diese im Rahmen seiner Theorie zu Herrschaftsformen entwickelt hatte. Abgesehen von politisch-administrativen Kriterien, als deren Materialisation Weber die Be-

Die mittelalterliche Stadt: Begriffsbestimmung

77

tion zitiert, da sie in der aktuellen mittelalterlichen Stadtforschung weitgehende Akzeptanz genießt:9 Stadt ist eine vom Dorf und nichtagrarischen Einzwecksiedlungen unterschiedene Siedlung relativer Größe mit verdichteter, gegliederter Bebauung, beruflich spezialisierter und sozial geschichteter Bevölkerung und zen­tralen Funktionen (politisch-herrschaftlich-militärisch) für eine bestimmte Region oder regionale Bevölkerung.10 Diese recht vage Begriffsbestimmung wird jedoch dem Wesen und der Gestalt einer mittelalterlichen Stadt nur bedingt gerecht, da ihre charakteristischen Eigenschaften wie Rechtsstatus, Gerichtsbarkeit, Befestigung und Marktrecht keine Berücksichtigung finden.11 Eine epochenübergreifende Definition gestaltet sich also als schwierig, da zu allen Zeiten mit dem Phänomen Stadt unterschiedliche spezifische Vorstellungen verbunden waren, die nur mit Schwierigkeiten in Deckung gebracht werden können. Ähnlich diffizil gestalteten sich die definitorischen Bemühungen auch im Frühmittelalter, als man im Rahmen der karolingischen Ostexpansion den antiken civitas-Begriff in die Gebiete außerhalb des ehemaligen Römischen Reichs übertragen wollte: Alkuin (735–804), der Berater Karls des Großen, stellte in der Vita des Hl. Willibrord für Sachsen lapidar fest, dass civitates, in denen nach alter Sitte Bischofssitze gegründet worden waren, in jener Provinz ganz und gar fehlten.12 Dabei handelt es sich um eine äußerst aufschlussreiche Bemerkung, da zu dieser Zeit in der Region sehr wohl befestigte Orte mit zentralörtlichem Charakter existierten, die allerdings in pagan-indigenem Kontext errichtet worden waren.13 Offensichtlich verband der christliche Gelehrte nicht die ­äußerlichen Merkmale eines befestigten Zentralorts mit dem antiken civitas-Gedanken, sondern hatte gänzlich andere Eigenschaften im Sinn.14 Im Hoch- und Spätmittelalter fiel es dagegen aus

  9 10 11 12 13 14

festigung und das Gericht ansah, fokussierte seine Definition auf die ökonomischen Funktionen der Stadt (Weber 2000, 35 ff.). Die späteren Begriffsbestimmungen orientierten sich stark an Webers Ausführungen (z. B. Amman 1930, 527 ff.; Haase 1965, 3; Kolb 1984, 13 und 261; Ennen 1987, 38 ff. Einen ausführlichen Überblick über die Forschungsgeschichte geben Hirschmann 2009, 62 ff. und Isenmann 2012, 40 ff.). Vgl. Johanek 1994, 9ff; Novák 1999, 48 f.; Hirschmann 2009, 65. Eine kritische Bewertung stammt dagegen von Isenmann 2012, 49, Anm. 69. Irsigler 2001, 63. Vgl. Isenmann 2012, 48. »Civitates, in quibus more antiquo sedes episcopales constituerentur, illi penitus provinciae deerant« (Alkuin, Vita Willibrordi, 150). Vgl. Schlesinger 1969b, 241. Die während der karolingischen Sachsenkriege lang umkämpfte Eresburg auf dem Obermarsberg war nicht nur ein stark befestigtes castrum, sondern beherbergte mit der irminsul ein zentrales Heiligtum der Sachsen (vgl. Mildenberger et al. 1989, 475). Vgl. Isenmann 2012, 40. Im Gegensatz dazu zog man in der Antike den Stadtstatus bestimmter Siedlungen, deren Erscheinungsbild nur wenig urbanen Charakter hatten, in Zweifel: »Von Chaironeia sind es zwanzig Stadien bis nach Panopeus, eine Stadt der Phoker, wenn man den Wohnort der Panopeer wirklich Stadt

78

Zum mittelalterlichen Städteverständnis

zeitgenössischer Perspektive trotz unterschiedlichster Erscheinungsformen (vgl. Abb. 33) und Bezeichnungen, wie civitas, oppidum, burg und stat, nicht schwer, den Stadtstatus einer Siedlung festzustellen.15 Doch was verband eine kleine Ackerbürgerstadt mit wenigen Hundert Einwohnern mit bevölkerungsreichen Metropolen wie Paris, Brügge oder Mailand, die mehr als das Hundertfache an Bürgern zählten? Hrabanus Maurus (780–856) gab auf diese Frage Antwort. Für den frühmittelalterlichen Gelehrten spielten quantitative Merkmale keine Rolle, er verstand den Begriff civitas vielmehr als einen würdevollen Rang, den eine urbane Siedlung im Vergleich zu dörflichen Niederlassungen auszeichnet und darüber hinaus als ein Mittel, eine Vielzahl von Menschen durch das Band der Gemeinschaft zu einen: Abb. 33: Die verschiedenen Formen einer mittelalterlichen Stadt: von der vieltürmigen Festung bis zum unbefestigten Weiler (Schedelsche Weltchronik, 1493).

Civitas est hominum multitudo, societatis vinculo adunata. (…) Vici et castella et pagi sunt, quae nulla dignitate civitatis honorantur.16

nennen kann, da sie doch weder Gebäude für Beamte noch ein Gymnasion, kein Theater und keine Agora haben« (Pausanias, Beschreibung Griechenlands X, 4,1). 15 Zu den im Frühmittelalter benutzten lateinischen Begriffen urbs, civitas, oppidum und burg tritt in den hochmittelalterlichen Quellen der mittelhochdeutsche Begriff stat hinzu, der vom ahd. stat (Standort, Ort, Stelle) abgeleitet ist (vgl. Schlesinger 1969b, 239 ff.) Trotz definitorischer Bemühungen (vgl. Nikolaus Wurm, Liegnitzer Stadtrechtsbuch, Art. II) sind die Begriffe in der Quellensprache austauschbar: So wurde beispielsweise Ödenburg im Burgenland in den hoch- und spätmittelalterlichen Quellen sowohl civitas als auch oppidum und stat genannt (vgl. Knittler 1970, 47). 16 Hrabanus Maurus, De universo XVI, 4: »Eine civitas (Bürgerschaft/Stadt) ist eine Vielzahl von Menschen, vereint durch das Band des Gemeinschaft. Dörfer (vici), befestigte Siedlungen (castelli) und Landgemeinden (pagi) sind [dagegen] diejenigen, die nicht durch die Würde der civitas ausgezeichnet sind« (Übersetzung Ch. Körner). Die Definition stammt ursprünglich von Cicero und wurde über Augustinus und Isidor von Sevilla ins Mittelalter vermittelt (vgl. Braunfels 1959, 22; Sydow 1968, 190).

79

Die mittelalterliche Stadt: Begriffsbestimmung

Abb. 34: Aristoteles (Schedelsche Weltchronik, 1493).

Der Mainzer Erzbischof und Abt des Fuldaer Klosters folgte dabei der Begriffsbestimmung des Enzyklopädisten Isidor von Sevilla, der wiederum Rekurs auf antike Vorstellung nahm, wie sie sich beispielsweise bei dem Philosophen Dion Chrysostomos (40–112 n. Chr.) formuliert finden. Der Philosoph, der die Stadt als eine »nach Gesetz verwaltete Menge von Menschen, die an einem Ort wohnen« definierte17, sah dem platonisch-aristotelischen Vorbild folgend das Gesetz als verbindendes Element einer ortsfesten städtischen Gemeinschaft an.18 Aristoteles (384–322 v. Chr.) hatte das Wesen einer Stadt nämlich mit folgenden Worten charakterisiert:

Auf die Mauern kommt es offenbar nicht an. Könnte man doch auch den Peloponnes mit einer Mauer umgeben. (…) Ist es nun so um die Sache bestellt, so erhellt, dass man bei der Frage nach der Identität einer Polis vor allem auf die Verfassung achten muss.19

Auch die hoch- und spätmittelalterlichen Begriffsbestimmungen hoben das Stadtrecht als verbindenden Faktor der Bürgerschaft hervor: Der Scholastiker Petrus Abaelardus (1049–1142) definierte die Stadt als eine Vereinigung von Menschen, die nach demselben Recht (aequo iure) leben.20 Thomas von Aquin (1224/5–1274) orientierte sich ebenfalls an dem rechtlich basierten Stadtbegriff des Aristoteles: Civitas ist für den Theologen eine über die Familiengemeinschaft eines Hauses rechtlich geordnete, vollkommene Gemeinschaft, die es dem Einzelnen ermögliche, seine auf die Kommune orientierte Natur als politisches und soziales Wesen (zoon politikon oder animal civile) zu verwirklichen.21 Die Stadt als ökonomisches und soziales Gebilde befriedige nicht nur den für ein menschliches Leben notwendigen Bedarf an Gütern, sondern fördere zugleich in aristotelischchristlichem Sinne ein vollkommenes und tugendhaftes, also ein sittlich gutes Leben.22 Der mittelalterliche Stadtbegriff wurde also primär über das Stadtrecht entwickelt, das 17 18 19 20 21 22

Dion Chrysostomos, Bei den Borystheniten, or. 36, 20. Vgl. Schlesinger 1969a, 100; Kugler 1986, 92. Plat., Nom.; Aristot., pol. Aristot., pol. I, 1, 1276a–b. Abaelard, Commentaria in epistolam Pauli ad Romanos I, 5. Vgl. Brückle 2005, 102. Thomas von Aquin, Über die Herrschaft der Fürsten I, 1. Aristot., pol. I, 2, 1252b, 1253a. Vgl. Isenmann 2014, 34.

80

Zum mittelalterlichen Städteverständnis

das Fundament der sozialen Ordnung der Bürgerschaft bildete.23 Dabei ist auffällig, dass in der hochmittelalterlichen Quellensprache der Begriff stat gleichzeitig mit der Formierung des Stadt- und Bürgerrechts erscheint.24 Dass der lateinische Begriff civitas von civis, dem Bürger, abgeleitet ist, deutet bereits an, dass über den rechtlichen Status hinaus die Stadt als lebendige Gemeinschaft ihrer Bürgerschaft empfunden wurde.25 Die bürgerliche Einheit garantiert nach Hrabanus Maurus, dass das gemeinschaftliche Leben schöner und sicherer werde: Cives vocati, quod in unum coeuntes vivant, ut vita communis et ornatior fiat et tutior.26 Analog zur Klostergemeinschaft verstand sich nicht nur die frühmittelalterliche, sondern auch die hoch- und spätmittelalterliche Stadt als ein Leitbild der christlichen Idealgemeinschaft, die dem gemeinschaftlichen Leben, der vita communis, verpflichtet war.27 Die der Stadt zugesprochene Eigenschaft, aus einer Vielzahl an Einzelgliedern eine Einheit entstehen zu lassen, rückte sie in das Spannungsfeld der christlichen Eucharistietheologie.28 Denn in Analogie zu dem aus Brot und Wein bestehenden Abendmahl, beides Komposita aus einer Vielzahl einzelner Körner und Trauben, setzt sich die Kirche aus der Gemeinschaft ihrer Gläubigen, die Stadt aus ihrer Bürgergemeinde zusammen.29 Der öffentlich zelebrierte Bürgereid (coniuratio civium), der im ausgehenden 10. Jahrhundert in Norditalien entstanden war, stellte die ritualisierte Form dieser bürgerlichen Einheit dar.30 Nicht nur Neubürger mussten auf das Stadtrecht schwören, an einem festgelegten Tag, dem sogenannten Schwörtag, trat die gesamte Einwohnerschaft einer Stadt zusammen und schwor gemeinsam auf die städtische Verfassung (coniuratio reiterata).31 Mit dem Eid wurden die Bürger nicht nur zu einer ideellen Gemeinschaft geeint, sondern 23 Im Spätmittelalter leitete man das Recht nicht nur von Gott ab, sondern setzte es sogar mit ihm gleich: »Das gerichte kommet von dem rechten, das ist von Gote. Wenne worumme: Got ist das recht. (…) Ist denne Gott das recht, so ist ouch Got das gerichte« (Nikolaus Wurm, Liegnitzer Stadtrechtsbuch, Art. VII, S. 97). 24 Vgl. Kolb 1984, 12. 25 Der lateinische civis (Bürger) wird etymologisch mit dem griechischen κοίτη (Lager) in Zusammenhang gebracht. Bürger sind also Menschen, die ein Lager teilen (vgl. Walde 1910, 164). 26 Hrabanus Maurus, De universo XVI, 4: »Sie werden Bürger genannt, weil sie in einer Einheit zusammenleben, damit das gemeinschaftliche Leben sowohl schöner als auch sicherer werde« (Übersetzung Ch. Körner). 27 Anonymus Parisiensis, Recommentario, 24. Vgl. Brückle 2005, 105. 28 Auch Aristoteles (pol. I, 1, 1252a) wies daraufhin, dass die Stadt ein »Zusammengesetztes« ist, das wiederum »in nicht mehr Zusammengesetzte« zerlegt werden kann. Dies kann wiederum mit der arithmologischen Ontologie Platons in Zusammenhang gebracht werden. Isidor von Sevilla (Liber numerorum I, 2) definierte daher die Zahl auch mit folgenden Worten: »Numerus est congregatio unitatis, vel ab uno progrediens multitudo«. 29 Vgl. Sydow 1968, 186 ff.; Schmithals 1994, 219; Meier-Oeser 2001, Sp. 1042. 30 Vgl. Hirschmann 2009, 62. 31 Vgl. Ebel 1958, 6 ff.

Die mittelalterliche Stadt: Begriffsbestimmung

81

Abb. 35: Der Volkacher Bürgereid (Volkacher Salbuch, 1504).

verpflichteten sich, gemeinschaftlich kommunale Aufgaben wie Straßen- und Mauerbau sowie die Stadtverteidigung zu bewältigen (vgl. Abb. 35).32 Die Glieder der coniuratio schuldeten zudem untereinander persönlichen Frieden. Verstöße wurden daher mit Bußen geahndet; als höchste Strafe drohte der Ausschluss aus der Eidgenossenschaft, was mit Stadtverweisung und Hauszerstörung einherging.33 Durch die coniuratio entstand die hoch- und spätmittelalterliche Stadt im Sinne einer Körperschaft – ein rechtlicher Status, der auch im übertragenen Sinn von erheblicher Bedeutung war.34 Indem die hoch- und spätmittelalterliche Stadt ihrer durch den Schwur geeinten Bürgerschaft mit dem Stadtrecht eine sittliche Ordnung verlieh, diente sie der Verwirklichung eines gottgefälligen Gemeinschaftslebens.35 Durch diese Funktion hob sich das urbane Gebilde auch von den dörflichen Siedlungsformen ab: Eine hoch- und spätmittelalterliche Stadt war in diesem Sinne nicht allein die Summe ihrer einzelnen Bauwerke, sondern wurde zu einer gottgewollten Staatsform, zu einer Metapher für die göttliche Ordnung.36 Die Einwohnerschaft erlebte die Erhebung einer Siedlung zu einer Stadt als eine moralische Privilegierung, die nicht nur mit einem ritualisierten Akt einherging, sondern in der Regel auch mit der Erteilung von bestimmten, nur einer Stadt vorbehaltenen Rechten, zu denen die Gerichtsbarkeit, das Marktrecht und die Stadtbefestigung gehörte.37 Der

32 33 34 35

Vgl. Planitz 1972, 103. Vgl. Ebel 1958, 3. Vgl. Ebel 1958, 12. In eine ähnliche Richtung zeigt auch die Definition des Fra Giordano di Rivalto (Predigt Nr. 104) aus dem Jahr 1304: »Città (civitas) tanto suona come amore (caritas), e per amore s’edificano le cittade, perocchè si dilettano le gente di stare insieme.« Vgl. Braunfels 1959, 2. 36 Vgl. Braunfels 1959, 18, 41, 124; Sydow 1968, 190; Kugler 1986, 10; Lilley 2009, 12 und 73. 37 Vgl. Isenmann 2012, 40 f.

82

Zum mittelalterlichen Städteverständnis

Rechtsgelehrte Nikolaus Wurm fasste im Jahr 1399 den spätmittelalterlichen Stadtbegriff deshalb auch folgendermaßen zusammen: Is heyst eine stat, das das volk, das dorynne wonit, steticlich in eynir eynunge stehen sal und dem rechten beystehen und das stercken. (…) Nach einem gemeynen synne zo heist und ist eyne stad, die gemawert ist und beczynnet und graben, toren, tormen, weickhawsern befestent, mit eynir eynunge dorynne woner, markrecht und gerichte czu uben noch Gotis frede und des reiches.38 Diese immanente Begriffsbestimmung ist sehr aufschlussreich, denn der Gelehrte unterscheidet dabei zwei Ebenen. In erster Linie wird die Stadt also ganz im aristotelischen Sinn als die Einheit ihrer Bürgerschaft verstanden. Daneben bringt der Gelehrte noch eine weitere, eine gewöhnliche Definition, wonach die Stadt durch ihre mit Zinnen, Graben, Toren, Türmen und Wiekhäusern versehene Stadtmauer und ihrer juristischen Privilegien – Marktrecht, Gerichtsbarkeit, Gottes- und Reichsfrieden – definiert wird.

2.2 Das Ideal der gebauten Stadtordnung 2.2.1 D  ie architektonischen Elemente einer idealen Stadt im Hoch- und Spätmittelalter Abseits von ihrer ideellen Bedeutung setzte sich die ideale mittelalterliche Stadt des Mittelalters aus einem gebauten Kanon aus Wehr-, Sakral- und Repräsentationsbauten zusammen. Zu diesen städtebaulich dominanten Bauwerken gehörten neben der Stadtbefestigung mit Mauer, Toren und Türmen die sakrale Architekturlandschaft, meist in Form eines um die Zentralkirche geordneten Kranzes aus Kirchen, Klöstern, Hospitälern und Kapellen, sowie die Zentren des bürgerlichen Lebens, bestehend aus einem oder mehreren Straßen- oder Platzmärkten mit Rathaus, Kaufhaus und Stadtwaage.39 Anzahl und Ausführung dieser städtebaulichen Elemente richteten sich nach dem Repräsentationsbedürfnis und der ökonomischen Potenz der jeweiligen Stadt. Dass aber auch Klein- und Kleinststädte neben einer Kirche und einem Markt immer auch über eine Stadtbefestigung verfügten, zeigt, dass es sich bei diesen drei Komponenten um die bauliche Mindestausstattung einer hoch- und spätmittelalterlichen Stadt handelte.40 Diese Bauwerke waren 38 Nikolaus Wurm, Liegnitzer Stadtrechtbuch, Art. II, S. 24. 39 Vgl. Kiesow 1999, 86 ff.; Untermann 2009, 203 ff.; Meckseper 2011, 50 ff. 40 Vgl. Stoob 1970, 225 ff.

Das Ideal der gebauten Stadtordnung

83

stadtbildprägend, da sie aus durablen Materialien, wie Ziegel oder Stein, errichtet wurden und sich so bereits optisch von der Wohnbebauung in der gängigen Holz-Lehm-Bauweise absetzten. Ihre Türme oder Dachreiter gestalteten nicht nur die Silhouette und Dachlandschaft einer Stadt in markanter Weise, gemeinsam mit der Mauer und den Toren prägten sie das physische Erscheinungsbild einer Stadt in der Außenwahrnehmung.41 Aus der Ferne präsentierte sich eine Stadt als ein durch die Stadtmauer repräsentativ gerahmtes, vieltürmiges Panorama (vgl. Abb. 36).42

Abb. 36: Das mittelalterliche Siena als vieltürmiges Gesamtwerk (Fresko im Palazzo Pubblico in Siena, 14. Jahrhundert).

Besonders die Stadtbefestigung prägte Selbstverständnis und Außenwirkung einer Stadt. Ihre primäre Funktion bestand im Schutz ihrer Bürgerschaft, wobei ihr defensiver Charakter im Mittelalter eine geradezu magische Erweiterung erfuhr: Die Bürgerschaft fühlte 41 Vgl. Knefelkamp 2003, 57. Erst ab der Frühen Neuzeit setzte sich auch in der profanen Bebauung der Ziegel- und Steinbau verstärkt durch (vgl. Gruber 1977, 44 und 51; Hofrichter 1993, 79; Leitgeb 2012, 5 f. und 44). Eine Ausnahme bildeten mittelalterliche Wohntürme, die von einflussreichen Patrizierfamilien in der Toskana und im süddeutschen Raum errichtet wurden (vgl. Wischmann 2011, 25). 42 Vgl. Kiesow 1999, 88.

84

Zum mittelalterlichen Städteverständnis

sich durch die Stadtmauer nicht nur gegen äußere Feinde beschützt, sondern auch gegen Tod, Teufel und Krankheit.43 Zudem herrschte noch im Spätmittelalter nach wie vor der antike Glaube vor, dass es sich bei der Stadtmauer um eine sakrosankte Stadtgrenze handele, weswegen ihr unerlaubtes Überqueren als ein Sakrileg galt, das mit dem Tod bestraft werden konnte.44 Über den rein defensiven Charakter hinaus war die Stadtmauer mit zahlreichen weiteren symbolischen Konnotationen verbunden.45 Indem die Mauer die Stadt rahmte, durch ihren Verlauf dem Häusermeer Zusammenhalt, Umriss und Form verlieh und es aus dem umgebenden Land abgrenzte und heraushob, konstituierte sie eine sinnlich-optisch wahrnehmbare Rechtsgrenze, weshalb die steinerne Mauer auch als definierendes Kriterium, ja als »steinerne Gründungsurkunde« einer Stadt verstanden wurde.46 Dass sich die Bedeutung des städtischen Wehrbaus dem mittelalterlichen Verständnis nach nicht im rein defensiven Charakter erschöpfte, zeigt sich auch daran, dass sich repräsentationsorientierte Städte mit einer so mächtigen Befestigung umgaben, dass ein rein funktionaler Verteidigungsanspruch in Hinblick auf die zeitgenössische Waffentechnologie um ein Vielfaches überschritten wurde: So war beispielsweise die Mauer des mittelalterlichen Byzanz zwölf Meter hoch und fünf Meter breit.47 Keine mittelalterliche Waffe hätte einer auch nur halb so starken Befestigung ernsthaft Schaden zufügen können. Indem die schützende Mauer das urbane Häusermeer wie eine Krone schmückte, präsentierte sich die mittelalterliche Stadt nicht nur als »wehrhaft, heilig und schön«48, sondern auch als Stätte des Schutzes und der Ordnung.49 Im urbanen Repräsentationsbedürfnis ist hierin auch der Hauptgrund zu suchen, warum sich Städte, die im verteidigungstechnischen Sinn ausreichend und effektiv durch palisadenbewehrte Wall-Graben-Systeme geschützt waren, trotz des hohen finanziellen Aufwandes und der gewaltigen Arbeitsleistung sukzessive mit Mauern aus Stein und Ziegeln umgaben.50 43 Vgl. Eliade 1959, 49; Pearson/Richards 1994, 21. In der Toskana war die Mauer deshalb den Stadtheiligen geweiht, während Heiligenbilder die Tore schmückten (vgl. Braunfels 2012, 83). 44 So wurde in Freiburg i. Br. das unerlaubte Übersteigen der Stadtmauer im Wiederholungsfall mit dem Tod bestraft (vgl. Jenisch 1999, 54). Dabei handelt es sich um eine Strafpraxis, deren Ursprünge in der Antike wurzeln: Romulus erschlug seinen Bruder Remus, weil dieser den Grenzgraben des neugegründeten Roms übersprang (Plut. Rom., 10). 45 In der antiken Philosophie verlieh die Grenze einer Idee im ontologischen Sinn Gestalt, weswegen nach Aristoteles ein Ort nur über seine Grenze definiert werden kann (Arist. Phys. 212a–212b). 46 Selbst die außerhalb der Mauer gelegenen Vorstädte gehörten nicht immer in den juristischen Einflussbereich der Kommune (vgl. Braunfels 2012, 50; Haase 1969c, 378 f.; Braunfels 1976, 43; Haverkamp 1987, 137; Schulze 1994, 328; Wagner 2005, 101; Leitgeb 2012, 55). 47 Vgl. Wheatley 1969, 16. 48 Gerber 2007, 25. 49 Vgl. Braunfels 2012, 45; Bandmann 1972, 73. 50 Vgl. Haase 1969c, 397; Schich 1999, 135.

Das Ideal der gebauten Stadtordnung

85

Die Erlaubnis zum Mauerbau, dem zeitlich sogar der Vorrang vor dem Bau der zentralen Sakralbauten eingeräumt wurde, gehörte zu den Herrschaftsprivilegien, die einer Stadt nur dann von ihrem Stadtherren eingeräumt werden konnte, wenn er auch über einen landesherrschaftlichen Status verfügte.51 Neben städtischen Einnahmen – durch das Strafrecht eingenommene Geldbußen konnten zum Mauerbau bestimmt werden  – unterstützten die Herrscher deshalb durch Steuerpolitik und gesetzgeberische Maßnahmen auch die aufwendige Errichtung der steinernen Befestigungen.52 Die enge Verbindung von Regent und Stadtbefestigung wird vor dem Hintergrund des mittelalterlichen Herrscherkults verständlich, in dessen Rahmen dem rituellen EinAbb. 37: Einzug Christi in Jerusalem (Biblia sacra zug durch das Stadttor, dem adventus regis, cum prologis, um 1430). große Bedeutung zukam.53 Der mittelalterliche Durchschreitritus rekurrierte sowohl auf die in der Ezechielvision beschriebene Gottestür der Himmlischen Stadt, durch die niemand außer Gott selbst schreiten durfte, als auch auf das Goldene Tor in Jerusalem, durch das Jesus von Nazareth im Rahmen des Palmarum auf einer Eselin reitend in die Stadt eingezogen war (vgl. Abb. 37).54 Diese jüdisch-christlichen Vorstellungen verbanden sich 51 Wiederholt verweisen Urkunden auf das vom Landesherrn erteilte Recht, eine Stadt mit einer Mauer zu umgeben. Bei einigen zähringischen Gründungen wurde die Stadtmauer vor der Stadtkirche fertiggestellt. Auch im apulischen Manfredonia waren beim Tod des eponymen Gründers lediglich Mauer und Tore fertiggestellt (vgl. Hamm 1932, 112; Trost 1959, 110; Braunfels 2012, 50 ff.). 52 Beispiele hierfür sind mannigfaltig: Das Reichssteuergesetz aus dem Jahr 1241 befreite zahlreiche Städte wegen des Stadtmauerbaus (edificio) von Abgaben. König Konrad IV. erließ der Stadt Murten die Steuern mit der Auflage, dass sich die Stadt mit einer steinernen Mauer umgebe. Im märkischen Templin wurden die Baukosten der Stadtmauer vom Markgrafen mitgetragen (vgl. Haase 1969c, 390 f.; Planitz 1972, 107; Schwineköper 1977, 122; Makowitz et al. 2013, 30). 53 Das erste Betreten einer Stadt durch den König wurde von einem liturgischen Ritus begleitet (vgl. Schwineköper 1964, 137 ff.; Wagner 2005, 267 und 273). 54 Ez. 44,1; Joh. 12,13–15; Mt. 21,1–11, Lk. 19,28–40. Vgl. Möbius 1995, 116. Der englische Pilger Sæwulf beschrieb das Goldene Tor in Jerusalem im Jahr 1102 mit folgenden Worten: »Dort ist ein Stadttor an der östlichen Seite des Tempels, wo Joachim, der Vater der heiligen Maria, auf Befehl eines Gottesengels seiner Frau Anna entgegen eilte; durch das gleiche Tor trat der Herr Jesus, von Betanien herkommend auf einem

86

Zum mittelalterlichen Städteverständnis

im mittelalterlichen Herrscherzeremoniell mit dem Epiphaniegedanken des römischen Kaiserkults, bei dem dem Durchschreitritus im Rahmen der Triumphzüge eine wichtige symbolische Bedeutung im Zusammenhang mit der kaiserlichen Apotheose zukam (vgl. Abb. 38).55 Aufgrund seines theophanen Charakters wurde das Stadttor so nicht nur zum Sinnbild der himmlischen und irdischen Herrschaft, sondern auch zum pars pro toto der Stadt selbst und konnte deshalb auch als ikonographische Abbreviatur graphisch synonym auf Münzen, Siegeln und Karten verwendet werden.56 Der Geist des Durchschreitritus fand auch juristisch Widerhall, indem für Fremde das Passieren des Stadttors der Anerkenntnis des herrschenden städtischen Rechts gleichkam.57 Dem Rechtsbrauch zufolge war es beispielsweise einem auf Lebenszeit Verbannten gestattet, die Stadt wieder zu betreten, wenn es ihm Abb. 38: Der königliche Einzug in eine Stadt (Magdeburger Reiter, 13. Jahrhundert). gelang, in dem Moment einen Würdenträger zu berühren, wenn dieser durch das Tor in die Stadt einzog.58 Dass das Stadttor ein mächtiges Symbol der städtischen Ordnung darstellte, zeigt sich auch an dem Umstand, dass es in der Strafpraxis eine große Rolle spielte; bedeutende Richtstätten lagen oft in der Nähe eines Tores.59 Die Gleich-

55 56 57 58 59

Esel sitzend, in die Stadt Jerusalem ein.« (Sæwulf, De pereg. 32). Der feierliche Einzug Friedrichs II. in die Stadt Jerusalem wurde von Marquardus von Padua deshalb folgendermaßen kommentiert: »Rex quia magnificus Iesus olim, nunc Fridericus« (MGH SS IX, 624 f.). Vgl. Künzl 1988, 7. Vgl. Bandmann 1951, 90; Braunfels 2012, 46; Bandmann 1969, 86; Haase 1969c, 379; Wagner 2005, 179 und 330. Vgl. Rykwert 1976, 135; Wagner 2005, 301. Maurer 1996, 214. Im Stadtarchiv Konstanz findet sich beispielsweise für das Jahr 1452 zu einem Verbannten die Bemerkung »ist mit dem küng ingevaren« (zit. nach Maurer 1996, 224, Anm. 186). Häufig lagen wichtige Richtstätten in der Nähe eines Tores: In Berlin befand sich der Rabenstein bis 1701 vor dem Georgentor, ebenso in Breslau, wo er vor dem Schweidnitzer Tor lag (Wendland’sche Chronik, 101; Wojtucki 2008, 362 ff.).

Das Ideal der gebauten Stadtordnung

87

Abb. 39: Stadtplan von Brügge mit zentralem Markt (Luigi Guicciardini, 1612).

setzung von Stadtbefestigung und Strafrecht war bis in die Neuzeit lebendig. Vor allem in der Zeit nach der Französischen Revolution, die durch eine starke Opposition gegen die althergebrachten Machtverhältnisse gekennzeichnet war, galt die Entfestung der Städte als sichtbares Zeichen für einen politischen Aufbruch in eine neue Epoche – ein mit großem Arbeitsaufwand verbundener Rückbau, der vor allem von dem Bedürfnis getragen war, sich inhaltlich von den als veraltet empfundenen Rechtsvorstellungen abzusetzen.60 In der urbanen Morphologie einer mittelalterlichen Stadt ergibt sich in der Regel ein deutlich erkennbarer Mittelpunkt, der als offener Platz gestaltet oder durch einen Zentrumsbau markiert sein kann und der als Bezugspunkt der Hauptachsen und der 60 Vgl. Kiesow 1999, 188. Als symbolischer Auftakt der Französischen Revolution galt der Sturm auf die Bastille am 14. Juli 1789, also auf eine als Gefängnis genutzte Pariser Stadttorfestung (Kircheisen 2013, 124 ff.). Die im 18. und 19. Jahrhundert in ganz Europa vorangetriebene Entfestung der Städte war nicht nur verkehrstechnischen Gründen geschuldet, sondern eindeutig politisch motiviert, wie ein zeitgenössischer Kommentar anlässlich des Abbruchs eines mittelalterlichen Turms in Zug zeigt: »Kürzlich sind die festen Mauern dieses schauerlichen Gebäudes abgebrochen, und die Zuger haben dadurch gezeigt, dass sie ernstlich gesonnen sind, die Wege mittelalterlicher Strafrechtspflege zu verlassen« (Osenbrüggen 1868, 419).

88

Zum mittelalterlichen Städteverständnis

übrigen urbanen Kernbauten fungiert (vgl. Abb. 39). Während sich der urbane Grundriss in vielen Gründungen, insbesondere in frühmittelalterlichen Bischofssitzen, auf die zentrale Kirche bezog, konnte auch der Markt oder ein zentrales Straßenkreuz ins Zen­ trum einer mittelalterlichen Stadt gerückt sein.61 Als Mittelpunkt des bürgerlichen Lebens spielte der Markt nicht nur in ökonomischer und politischer Hinsicht eine große Rolle; vor allem seine Funktion als Rechtsort und Richtstätte ließ ihn zum Sinnbild der städtischen Rechtsordnung werden.62 In die steinerne Sprache der urbanen Architektur übersetzt, präsentierte sich der mittelalterliche Markt in der Regel als ein offener Platz, dessen Zentrum durch Signa der städtischen Rechtspflege markiert und der von den Wohnhäusern der angesehensten Bürgerfamilien und kommunalen Repräsentativbauten gesäumt war.63 Handel und Recht waren aufs Engste mit den Prinzipien der Messkunst verbunden: Die städtische Waage als Sinnbild der Justiz und des Marktrechtes befand sich in der Regel in der Nähe des Marktes, städtische Maße waren abgesehen von den Hauptkirchen häufig an Rathäusern angebracht, also an Gebäuden, die im Hoch- und Spätmittelalter als Versammlungsorte des Rates, aber auch – der römischen Basilika vergleichbar – als Kaufhaus und als Gerichtsort dienten.64 Die Zentrumsbauten auf dem Marktplatz konnten je nach Landschaft variieren: Neben Marktkreuzen, Rolanden und Gerichtslinden waren in Frankreich und Belgien sogenannte perrons verbreitet. Diese mit einem Kreuz oder einer Säule bekrönten Stufenmonumente hatten mehrere Funktionen inne, indem sie als Symbol des Marktfriedens, als Gerichtsstätte und als Bezugspunkt für die Vermessung der Stadt und des Umlands dienten.65 Die europaweit verbreiteten Marktbrunnen spielten ebenfalls im städtischen Strafvollzug eine prominente Rolle: Auch sie galten als städtisches Symbol des Marktrechts und fungierten als Orte für bürgerliche Rechts- und Handelsgeschäfte.66

61 62 63 64

Vgl. Bandmann 1972, 85. Vgl. Schulze 1994, 19. Vgl. Kiesow 1999, 112. Die Verbindung von Messen und Richten hat angefangen vom Menetekel des Alten Testaments, bei dem König Belšazar von Gott mit den Worten »gezählt, gewogen und zu leicht befunden« (mene tekel u-parsin) gerichtet wurde (Buch Daniel 5,1–30), bis in die Jetztzeit eine lange Tradition. Noch heute haben städtische Beamte im fränkischen Raum als sogenannte Siebengeschworene eine Doppelfunktion im rechtlichen und im vermessungstechnischen Bereich inne. Zu den Aufgaben der konspirativ organisierten Beamten, die erst nach ihrer Vereidigung in das nicht öffentlich bekannte Siebenergeheimnis eingeweiht werden, gehören neben der Vermessung des Ackerlands und dem Schutz der Grenzsteine auch gerichtliche Tätigkeiten (Wiebel/Bauer 2004, 10). 65 Im belgischen Namur tagte das Schöffengericht zu Füßen des siebenstufigen perron, der gleichzeitig als Nullpunkt für die Bannmeile der Stadt diente. Auch in Lüttich diente der dortige perron als geographischer Fixpunkt für die Meilenzählung (vgl. Müller 1961, 107, 207, 214; Schwineköper 1964, 134; Schulze 1994, 29; Carlen 2003, Sp. 1495). 66 Bereits im Alten Testament galt der Brunnen als Rechtsort (vgl. Müller 1961, 189; Schulze 1994, 20 ff.).

Das Ideal der gebauten Stadtordnung

89

2.2.2 Die Stadt als gebaute Einheit Wie bereits in Kap. 2.1 ausgeführt, wurde die mittelalterliche Stadt von dem Gedanken getragen, aus der Vielheit ihrer Bürger eine Einheit zu schaffen (»ex pluribus unum«).67 Während das Stadtrecht dabei nach innen wirkte und die Ordnung der Bürgerschaft im sittlich-moralischen Sinn vorgab, ordnete die städtische Morphologie die Einwohnerschaft in räumlicher Hinsicht, indem sie die verschiedenen architektonischen Elemente zu einer geschlossenen baulichen Einheit verschmolz. Von der Stadtmauer klar umrissen und begrenzt, präsentierte sich die mittelalterliche Stadt deshalb nicht als Summe ihrer einzelnen architektonischen Elemente, sondern als eine gebaute Einheit (unitas), in der jedes Bauwerk durch seine festgelegte Position im Gesamtgefüge verortet war (vgl. Abb. 40).68 In dieser urbanen Raumordnung, insbesondere im klassischen Dualismus zwischen Zen­trum und Peripherie, konstituierten sich für alle sichtbar Hierarchie und soziale Ordnung der städtischen Bürgerschaft.69 Während bestimmte Berufsgruppen, wie Abdecker und Prostituierte, an den urbanen Rand gedrängt waren, blieb das Zen­trum den politischen Autoritäten der Stadt vorbehalten.70 Auch die Lokalisierung der übrigen Gewerbe, Stände und Religionsgruppen nach Vierteln und Straßen folgte einer festgelegten topographischen VerAbb. 40: Der Schutzheilige San Gimignano mit seiner Stadt (Taddeo di Bartolo, um 1400). teilung.71 67 »Tertio modo fit ex pluribus unum per commixtionem« (Thomas von Aquin, Cont. gent. lib. IV, Cap. XXXVI). »Quia ab hoc, scilicet ab unitate civium, civitas nominatur, quia civitas quasi civium unitas« (Thomas von Aquin, Expos. in Ps. XLV, 3). Die von Thomas von Aquin formulierte Stadtauffassung ging auf pythagore­ isches Gedankengut zurück, wie Cicero (De offic. 56) bekräftigt (»Efficiturque id, quod Pythagoras vult in amicitia ut unus fiat ex pluribus«) und ist bis heute ein Eckpfeiler der US-amerikanischen Staatskonzeption (vgl. Deutsch 1923, 387 ff.). 68 Vgl. Bacher 1988, 9 und 25; Leitgeb 2012, 63. 69 Vgl. Leitgeb 2012, 6. 70 Die für die Franziskanerklöster charakteristische urbane Randlage ist dagegen Ausdruck der selbstauferlegten Demut des Bettelordens (vgl. Cante 2010, 63). 71 Vgl. Braunfels 2012, 122 ff.

90

Zum mittelalterlichen Städteverständnis

In der mittelalterlichen Wahrnehmung reflektierte die Verortung jeder Personengruppe im städtischen Gefüge gleichsam eine höhere und damit gottgewollte Ordnung.72 Innerhalb des städtischen Weichbildes entstand so über einen längeren Zeitraum eine feingewebte soziale Topographie der Bürgerschaft, die durch die urbane Morphologie nicht nur vorgegeben und geordnet, sondern auch sichtbar gemacht wurde.73 Diese geschlossene architektonische Komposition aus Sakral-, Wehr- und Profanbauten galt erst dann als vollendet, wenn sie nicht nur baulich ausgeführt worden war, sondern auch belebt und bewohnt wurde.74 Da die dafür erforderlichen Arbeiten – ähnlich wie beim mittelalterlichen Kathedralbau – nicht zu Lebzeiten der Gründungsgeneration abgeschlossen werden konnten, musste generationsübergreifend zielstrebig und planvoll an der Vollendung des zusammenhängenden Bauwerks Stadt gearbeitet werden.75 Wie schriftliche Quellen zeigen, oblag die Organisation der baulichen Großvorhaben spätestens ab dem Hochmittelalter vereidigten Spezialisten: In bestehenden Städten übernahmen die Stadtbaumeister, die auch für den Kathedral- und Wehrbau zuständig waren, die Koordination der urbanen Neuordnung, in zu gründenden Städten bedienten sich die Stadtherren sogenannten magister incolarum oder locatores (vgl. Abb. 41).76 Die auf den Gründungsvorgang spezialisierten Männer waren von den Stadtherren beauftragt, die

Abb. 41: Ein Lokator bei der Zuweisung von Land an Siedlungswillige (Eike von Repgow, Heidelberger Sachsenspiegel, 13. Jahrhundert).

72 73 74 75 76

Vgl. Lilley 2009, 155. Vgl. Lilley 2009, 144. Vgl. Braunfels 2012, 43. Vgl. Braunfels 2012, 51. Bedeutende Künstler wirkten oft als Dom- und Stadtbaumeister: In Florenz hatten Arnolfo di Cambio (um 1240–um 1310) und Giotto di Bondone (1266–1337) die Ämter inne, in Würzburg wurde der Laie Enzelin im 12. Jahrhundert von den Bischöfen beauftragt, den Dom mit einer monumentalen Sichtachse und einer Brücke zu planen und auszuführen (vgl. Braunfels 2012, 136 ff.). Die den griechischen Oikisten vergleichbaren magister incolarum werden in der Quellensprache östlich der Elbe auch locatores oder possessores und in Südwestfrankreich seneschals genannt (vgl. Siedler 1914, 15; Bodenschatz/Seifert 1992, 38; Lübke 2003, Sp. 2090; Hardt 2008, 156 ff.; Lilley 2009, 84).

Das Ideal der gebauten Stadtordnung

91

Vermessung, Urbarmachung und Aufteilung des Landes an angeworbene siedlungswillige Familien vorzunehmen.77 So forderte der englische König Edward I. 1296 mehrere Städte auf, bei der Errichtung seiner geplanten bastides in der Gascogne zu helfen, indem sie ihre weisesten und fähigsten Männer (»wisest and ablest«), die Erfahrung in der Planung einer Neugründung haben, schicken möchten.78 Aus den in Schwurgilden zusammengeschlossenen coniurationes, die nach der Stadtgründung als Lohn die zentralen Parzellen in der Stadt sowie die wichtigsten Ämter in der urbanen Hierarchie übernahmen, entwickelte sich das selbstbewusste Patriziat der Stadt, das im Spätmittelalter als Rat und Bürgermeister den architektonischen und politischen Auf- und Ausbau der Städte lenkte.79 Durch Schwur und Eid über Generationen getragen, entstand und wuchs die mittelalterliche Stadt über einen längeren Zeitraum als eine sozioarchitektonische Gesamtkomposition.80 2.2.3 Die mittelalterliche Stadtbaukunst Dem civitas-Ideal zufolge verschmolzen die architektonischen Glieder der Stadt in der ästhetischen Wahrnehmung also zu einer von der Stadtmauer gerahmten Einheit, in deren Gesamtkomposition sich jedes Element durch die Festlegung seiner Position harmonisch einfügte.81 Die Stadt wurde so – einer vielstimmigen Symphonie gleich – zu einem zusammenhängenden Kunstwerk (artificium).82 Dabei gilt es zu bedenken, dass der mittelalterliche Kunstbegriff nur bedingt mit der heutigen Kunstauffassung in Deckung gebracht werden kann. Im Gegensatz zur modernen Konzeption eines freien und individuellen Umgangs mit der Kunst basierten die mittelalterlichen artes auf einem mit der Geometrie verbundenen normativen Regelwerk, das auf der Anwendung von Zahl und 77 Von dem Lokator der askanischen Gründung Neubrandenburg, einem Adeligen mit dem Namen Herbord von Raven, ist bekannt, dass dieser in Italien studierte und seine Neugründung »nach Form und Art, wie in Italia gemeiniglich die Straßen gebaut sein sollen« angelegt habe (Bernhard Scharfenberg, Bürgermeister von Rostock, zit. nach Müller 1961, 91; vgl. Reincke 1969, 336). 78 »To elect men from among your wisest and ablest who know best how to devise, order and array a new town to the greatest profit of Ourselves and of merchants« (zit. nach Schwineköper 1977, 132). 79 Die Schwurgilden umfassten 12 oder 24 Mitglieder, was als Anspielung auf die zwölf Apostel und die 24 Ältesten der Apokalypse gewertet werden kann (vgl. Kiesow 1999, 36). 80 Vgl. Brinckmann 1925, V; Kiesow 1999, 36. 81 »Das Werk Gottes ist es, das zu schaffen, was vorher nicht existierte. (…) Das Werk der Natur ist es, das, was verborgen lag, in die Wirklichkeit zu überführen (…) Das Werk des schaffenden Menschen ist es, Getrenntes zu verbinden und Verbundenes zu trennen« (Hugo v. St. Victor, Didasc. I, 9). Vgl. Braunfels 2012, 136; Bacher 1988, 9 und 25; Leitgeb 2012, 63. 82 Die Vorstellung von der Stadt als ein Kunstwerk, dem die Macht innewohnt, seine Bürgerschaft zu einen, ist noch in der Frühen Neuzeit lebendig: »Die Vielheit machet noch nicht, daß man sagen kann, es sey ein imperium, eine civitas da, sondern es braucht ein artificium, da die vielen Personen da unter einen Hut gebracht werden müssen. Die civitas ist eine artificisissima structura« (Gundling 1734, 417).

92

Zum mittelalterlichen Städteverständnis

Proportion gründete. Auf diesen engen, mit dem Quadrivium verbundenen Rahmen verweist bereits die spätantike etymologische Verknüpfung der lateinischen Begriffe ars (Kunst) mit artus (eng).83 Wie die übrigen mittelalterlichen artes folgte auch die mittelalterliche Stadtbaukunst einer ästhetischen Konzeption, wie man sie u. a. bei dem einflussreichen franziskanischen Theoretiker Bonaventura (1221–1274) formuliert findet. Denn jeder Künstler ist bestrebt, ein schönes, nützliches und dauerhaftes Werk zu schaffen. Wenn ein Werk diese drei Eigenschaften besitzt, dann ist es wertvoll und angenehm.84 Schönheit, Nützlichkeit und Beständigkeit – in der literarischen Tradition wurden diese Eigenschaften bei der Beschreibung einer Stadt regelhaft hervorgehoben. Nicht nur Chronisten feierten die Schönheit ihrer Heimatstädte, es hatte sich nach antiker Tradition ein eigenes Genre, das sogenannte Städtelob (laus urbium), entwickelt, das diese urbanen Eigentümlichkeiten pries und feierte.85 Der Dominikaner Fra Giordano da Pisa (1260–1310) hob nicht nur die urbane Ordnung (ordine) als strukturelle Voraussetzung hervor, einer Stadt Schönheit, Stärke und Größe (bellezza, fortezza, grandezza) zu verleihen, sondern bekräftigte auch Bonaventuras These eines Zusammenhangs zwischen Kunst und Nutzen: Die andere Eigenschaft, weswegen sie Stadt genannt wird, ist die Ordnung. Seht, wie schön eine Stadt ist, wenn sie wohlgeordnet ist und in ihr viele Künste sind. Ein allzu schönes Ding ist die Ordnung einer Stadt. Und diese Ordnung verleiht drei Eigenschaften: Schönheit, Stärke und Größe. (…) Allzugroß ist die Schönheit, weil in jeder Kunst ein Nutzen liegt.86 Nach Giordano war der Nutzen, der konkret auf das Wohl des Menschen ausgerichtet war, ein definitorisches Kriterium der Stadtbaukunst, da eine Stadt in erster Linie die Grundbedürfnisse ihrer Einwohnerschaft zu befriedigen hatte. Dazu gehörte, wie Thomas von Aquin ausführte, zuallererst die Wahl eines geeigneten Standorts.87 Denn eine gesunde und geschützte Lage, die einen geregelten Zugang zu Trinkwasser und eine stabile Nahrungs83 Vgl. Gabler 1987, 22; Rüffer 2014, 40 ff. und 83 ff. 84 »Omnis enim artifex intendit producere opus pulcrum et utile et stabile; et tunc est carum et acceptabile opus, cum habet istas tres conditiones« (Bonaventura, De reductione, 13). 85 Vgl. Braunfels 2012, 45; Kugler 1986, 6 ff. 86 »L’altra cosa, perch’ella è detta cittade, si è per l’ordine. Vedete come è bella la cittade quando è ordinata, e sonci le molti arti, troppo è bella cosa l’ordine della città; e quest’ordine da tre cose, bellezza, fortezza, grandezza. (…) Troppo è grande bellezza, perocché non ci ha arte nulla che non sia utile« (Giordano da Pisa, Predigt Nr. 94. Vgl. Braunfels 1956, 123 f.). 87 Thomas v. Aquin, De re. princ I, 13.

Das Ideal der gebauten Stadtordnung

93

versorgung zu gewährleisten vermochte, war Voraussetzung für das Prosperieren einer Stadtgründung. Die auf das Allgemeinwohl abzielende Stadtbaukunst basierte demnach auf Ordnung und Schönheit, wobei diese wiederum auf dem harmonischen Verhältnis (proportio) der einzelnen Glieder rekurrierten.88 Diese harmonische Proportion galt, wie Bonaventura ausführte, als qualitative Größe, da sie ungeachtet der Quantität unveränderlich und damit beständig ist: Fragt man aber nach dem Grund des Schönen, Angenehmen und Heilsamen, so findet man, dass er in dem Verhältnis der Gleichheit liegt. Dieses ist aber dasselbe in den großen wie in den kleinen Dingen. Es weitet sich nicht mit der Ausdehnung, noch hat es ein Nacheinander oder geht es mit dem Unvergänglichen vorüber, noch wird es durch Bewegungen verändert. Es ist also von Ort, Zeit und Bewegung und somit unveränderlich, unbegrenzt, ohne Ende und ganz geistig.89 Auch der Architekturtheoretiker Leon Battista Alberti (1404–1472), dessen noch ganz dem Mittelalter verhaftete Ästhetik, wonach Schönheit durch ein harmonisches Verhältnis der einzelnen Teile zueinander entstehe, grundlegend für die Kunstauffassung der europä­ ischen Renaissance werden sollte, definierte die Schönheit einer Stadt als das Ebenmaß von Zahl (numerus), Beziehung (finitio) und Anordnung (collocatio).90 Albertis Auffassung spiegelt ältere Kunsttheorien wider, wie sie sich bei Hugo von St. Victor und Thomas von Aquin formuliert finden.91 Denn auch die neoaristotelische Kunsttheorie des Aquinaten rückte ebenso wie die neuplatonische Ontologie die Ähnlichkeitsbeziehung (similitudo) zwischen dem transzendenten Urbild und dem irdischen Abbild in den Mittelpunkt, wobei Thomas von Aquin den Stadtgründungsprozess explizit aus der »Ähnlichkeit mit der Erschaffung der Welt«92 ableitet. Diese Vorstellung war mit der theologischen Denkfigur verbunden, dass der Mensch den Verlust der Gottesebenbildlichkeit (similitudo Dei) durch die Anwendung der artes zu kompensieren versuche.93 Jedem menschlichen Werk

88 »Schönheit ist nichts anderes als zahlenmäßige Gleichheit« (Bonaventura, Itinerarium II, 5). 89 Bonaventura, Itinerarium II, 6. 90 Alberti, De re Aedificatoria, 491 f. Thomas von Aquin (De re. princ. I, 3) fasste die Grundlagen des mittelalterlichen Schönheitsideals folgendermaßen zusammen: »So gibt es keine Schönheit des Körpers, wenn nicht alle Glieder in entsprechendem Verhältnis zueinander stehen, aber die Hässlichkeit ist da, wenn auch nur ein Glied diesem Verhältnis widerspricht.« Vgl. Jesberg 1987, 8. 91 Thomas v. Aquin, Summa theologiae I, 45, 5. 92 Thomas v. Aquin, De re. princ. I, 13. 93 Theophilus Presbyter, Schedula diversarum artium. Vgl. Rüffer 2014, 59 ff.

94

Zum mittelalterlichen Städteverständnis

musste somit ein im Geist entstandener Entwurf zu Grunde gelegt werden, der sich an geometrischen Prinzipien orientierte.94 Da Gott nach neuplatonisch-christlicher Kunstauffassung als erster Künstler (artifex principalis) auftrat, wurde ihm allein die Fähigkeit zugeschrieben, ein Werk ex nihilo zu schaffen.95 In der besonders während der baufreudigen Gotik verbreiteten Vorstellung eines göttlichen Baumeisters, der kraft der Geometrie eine kunstreiche Ordnung entsteht ließ, waren althebräische und griechische Gottesvorstellungen vom göttlichen Künstler (τεχνίτης θεὸς) zu einem christlichen Amalgam verschmolzen.96 In der Natur, also im göttlichen Kosmos, sah man die von Gott geschaffenen Urbilder materialisiert, während es die Aufgabe des menschlichen Kunstwerks war, die Natur und daher die göttlichen Urbilder nachzuahmen (vgl. Abb. 42). Die menschliche Kunst war also kein Erfinden im modernen Sinne, sondern lediglich ein Wiederfinden der geometrischen Grundordnung des von Gott vorgegebenen Musters, wie Hugo von St. Victor bekräftigte: Jenes ursprüngliche Muster aller Dinge, das im göttlichen Geist existiert und nach dessen Vorbild alles geschaffen wurde.97 Dieses neuplatonische Gewebe aus Analogien durchdrang auch die Geometrie der mittelalterlichen Stadt, die sich den Gläubigen als Abbild des himmlischen Jerusalems darstellte, als dessen Schöpfer Gott selbst galt (artifex et conditor civitatis).98 Denn im Grundriss und in der äußeren Form der himmlischen Urstadt materialisierte sich für die Gläubi94 Bonaventura, De reductione, 12: »Si consideremus egressum, videbimus, quod effectus artificialis exit ab artifice, mediante similitudine existente in mente; per quam artifex excogitat, antequam producat, et inde producit, sicut disposuit.« (»Durch dieses Ebenbild erdenkt der Künstler etwas, ehe er es hervorbringt, und danach gestaltet er es, wie er es geplant hat. Wenn wir den Ausgangspunkt betrachten, so werden wir sehen, dass das Kunstwerk vermittels eines im Geist sich vorfindenden Ebenbildes vom Künstler ausgeht.«). 95 Die Werkunterteilung von Hugo von St. Victor (Didasc. I, 9) »Sunt enim tria opera, id est, opus Dei, opus naturae, opus artificis imitantis naturam« ist ein wörtliches Zitat aus dem Timaeus-Kommentar des Calcidius (vgl. Rüffer 2014, 63). 96 1. Mos. 2,7. Sap., 11, 21. Cassiodor (De institut. arithm. 2, 3) erklärte das Maß zu dem entscheidenden Kriterium, das das Werk Gottes von dem des Teufels unterscheide; Isidor von Sevilla, Etymologiae, 3,4,1. Vgl. Ghyka 1931, 20; von Simson 1982, 47; Zahlten 1995, 51; Leinkauf 2005, IX; Englisch 2002, 16, Anm. 3; Lilley 2009, 80 ff. 97 Hugo v. St. Victor, Didasc. I, 10. Der Gedanke findet sich bereits bei Hrabanus Maurus, De institutione clericorum III, 17 formuliert. Vgl. Rüffer 2014, 40 und 71. 98 Die Vorstellung von Gott als Stadtgründer findet sich bereits in der Qumrangemeinde (1 QH VI, 26) und bei Paulus (Heb. 11.10) formuliert als »civitatem cuius artifex et conditor Deus«, was nicht nur von Anselm von Laon in seinem Kommentar zur Apokalypse (XXI, D) aufgenommen wurde (»cives coelestis patria/ Regi regum concinite/Qui supernus est artifex/Civitatis uranicae«), sondern auch in dem im 11. Jahrhundert verfassten angelsächsischen Hymnus, in dem Gott als oberster Künstler (supremus artifex) der himmlischen Stadt (civitatis uranice) gepriesen wurde (Vatican, Biblioteca Apostolica, Ross. Lat. 205, 81v-2r; zit. nach Kitson 1983, 115).

Das Ideal der gebauten Stadtordnung

95

Abb. 42: Angewandte Geometrie bei der Erschaffung der Welt durch Gott (oben links), bei der Gestaltung der Natur (oben rechts) und bei der Gründung einer Stadt durch den Lokator (unten) (Handschriften aus dem 13.–15. Jahrhundert).

gen das göttliche Muster in Gestalt vollkommener geometrischer Formen. Auch die zeitgenössische Buchmalerei favorisierte deshalb als Form der civitas Dei Kreis, Quadrat oder Rechteck.99 Diese als vollkommen erachteten geometrischen Figuren waren bei der Darstellung ihrer irdischen Pendants form- und maßgebend. Fest in der geometrischen Ordnung verankert, zeichnete die urbane Morphologie das Vorbild ihres transzendenten Archetyps nach (vgl. Abb. 43 und 44).100 Das Konzept der inneren und äußeren Vollkommenheit wird bei zeitgenössischen Darstellungen der Stadt Jerusalem besonders deutlich. Obwohl man auch in Europa durch Pilgerfahrten und Kreuzzügen durchaus mit der realen Topographie der palästinensischen Stadt vertraut war, wurde sie analog zur vollkommenen Morphologie ihres himmlischen  99 Vgl. Casel 1960, 91. Die quadratische Gestalt rekurriert auf die Johannesapokalypse: »Und die Stadt liegt viereckig, und ihre Länge ist so groß wie die Breite« (Joh. Off. 21, 16). 100 Vgl. Sedlmayr 1950, 97; Haverkamp 1987, 124; Geßner 2015a, 5 ff.

96

Zum mittelalterlichen Städteverständnis

Abb. 43: Das himmlische Jerusalem (links) und das irdische Jerusalem (rechts) in Gestalt des Kreises (Handschriften aus dem 9. und 12. Jahrhundert).

Abb. 44: Das himmlische Jerusalem (links) und das irdische Jerusalem (rechts) in Gestalt eines Rechtecks (Handschriften aus dem 12. Jahrhundert).

Das Ideal der gebauten Stadtordnung

97

Urbilds in Gestalt eines Kreises oder Vierecks dargestellt (vgl. Abb. 43 und 44).101 Dabei spielten auch Zahl-, Maß- und Proportionsanalogien eine besondere Rolle, die in der Heiligen Schrift im Zusammenhang mit dem Himmlischen Jerusalem erwähnt wurden und deren Übertragung eine transzendente Verbindung zur apokalyptischen Himmelsstadt herstellen sollte: So kann beispielsweise die Zwölftorigkeit der Stadtanlagen von Köln und Aachen als Anspielung auf das zwölftorige Jerusalem der Johannesapokalypse102 gelesen werden, ebenso wie das häufig in der mittelalterlichen sakralen und urbanen Architektur verwendete apokalyptische Maß von 144, der zweiten Potenz von 12 (144 = 122).103 Die Vorstellung von einer inneren Verbindung von Ordnung, Schönheit und Proportion war also die Grundlage der Konstruktion von urbanem Raum im europäischen Mittelalter. Denn ein ungeordnetes Wachstum wäre im urbanen Kontext unvereinbar mit dem mittelalterlichen Ordo-Gedanken gewesen.104 Während sich der tief im geistigen Weltbild des Mittelalters verwurzelte Ordnungsgedanke moralisch in den Verordnungen des Stadtrechts verwirklichte, materialisierte sich die Ordnung in räumlicher Hinsicht in der proportionalen Gliederung des urbanen Grundrisses.105 Stadtrecht und Stadtgrundriss wurden so zum Inbegriff der als göttlich inspiriert aufgefassten Weltenordnung.106 In diesem Kontext diente die Proportion als ein Band, mit dessen Hilfe sich die einzelnen Bauwerke zu einem harmonischen Ganzen fügten, wie die Glieder eines wohlgestalteten Körpers. Das theologische Programm, das der mittelalterlichen Stadtbaukunst zu Grunde liegt, hatte daher zur Folge, dass der Entwurf des städtischen Grundrisses einem ikonographischen Konzept folgte, das der Komposition eines sakralen Bauwerks, einer Skulptur oder eines Gemäldes ähnelte.107 Die metaphorische Verbindung, die durch das proportionale Beziehungsgeflecht innerhalb einer Stadt geschaffen wurde, konkretisierte sich 101 Der Kreuzfahrer Wilhelm von Tyrus, Erzbischof und Kanzler des Königreichs Jerusalem, beschrieb die Stadt Jerusalem folgendermaßen: »Ihre Form ist länglich, ein Teil länger als der andere, sie bildet jedoch ein Viereck und ist auf drei Seiten von sehr tiefen Tälern eingeschlossen« (zit. nach Müller 1961, 56). 102 Vor allem in dem von Karl dem Großen als Abbild des Himmlischen Jerusalems inszenierten Aachen spielen Zahlanalogien eine große Rolle: Neben der Zwölf findet sich die Acht im Oktogon der Pfalzkapelle und im Jahr der Kaiserkrönung anno 800 wieder (vgl. Konrad 1965, 527 f.; Haverkamp 1987, 144). 103 Joh. Off. 21,17. Das Maß von 144 Ellen bzw. Fuß findet sich beispielsweise an der Grabeskirche in Jerusalem, am Grabmal der Helena in Rom sowie am Aachener Dom (vgl. Kreusch 1963, 64 f.; Braunfels 1965, 206; Meyer 1975, 183). 104 Zum ordo divinus, der sich in der Stadt manifestiert, vgl. Thomas v. Aquin, De re. princ. I, 14; Summa theol. II, 62a,1. Die Abwesenheit von geometrischer Ordnung galt als gleichbedeutend mit dem Chaos und wurde deshalb als »satanische Falschheit« erlebt (vgl. Englisch 2002, 149). 105 Vgl. Braunfels 2012, 130; Rasmus 2008, 29. Aus einem Dekret des Sienischen Magistrats aus dem Jahr 1357 wird die fundamentale Bedeutung der gebauten Stadtordnung deutlich: »Ohne Ordnung könne man nichts Gutes schaffen. Die Regierung der Stadt sei dazu berufen, der ganzen Civitas Ordnung und eine Regel zu geben«. 106 Vgl. Geßner 2015a, 5 ff. 107 Vgl. Braunfels 2012, 9.

98

Zum mittelalterlichen Städteverständnis

im Akt der Vermessung mit dem Messseil, das so zur Materialisierung des platonischen Bandes, nämlich der Proportion, avancierte.108

2.3 Der mittelalterliche Stadtgründungsprozess 2.3.1 Gründungsurkunden und Gründungsmythen Im zeitgenössischen Sprachgebrauch wird mit dem Begriff Stadtgründung in der Regel der rechtliche Akt der Erhebung einer Siedlung zur Stadt verbunden. Diese im Idealfall urkundlich mit einem bestimmten Jahr verknüpfte Zeremonie gehört zu den wichtigsten Eckdaten einer Stadthistorie, weshalb sie bis zum heutigen Tag im Rahmen von städtischen Jubiläumsfeiern mit großer identitätsstiftender Wirkung für die Politik und die Bürgerschaft memoriert wird.109 Dabei knüpft die Tradition der modernen Jahrfeiern nicht an einen lokalen prä- oder protohistorischen Siedlungsbeginn an, sondern bezieht sich im europäischen Raum exklusiv auf den Akt einer formalen Gründung in der griechisch-römischen Antike, im christlichen Mittelalter oder in der Neuzeit.110 Die Zeremonie gilt bis heute als Ei­ chung der städtischen Zeit, denn mit ihr beginnt in der Rückschau die eigentliche Stadtgeschichte (vgl. Abb. 45). Diese urbanisierte Zeitwahrnehmung herrschte grundsätzlich in jeder Stadt; im Falle des Römischen Reichs wurde sie sogar auf das gesamte imperium ausgedehnt, in dem die Jahre ab der Gründung der Stadt Rom, ab urbe condita, gezählt wurden.111 Da dem Abb. 45: Die Gründung der Stadt Bern (Tschachtgenauen Gründungszeitpunkt ein gewichlanchronik, 1470). 108 Vgl. Weigert 1963, 21 ff. 109 Sogar während des Kalten Kriegs gab es 1987 anlässlich der 750. Stadtjubiläums Berlins ernsthafte Überlegungen, die Jahrfeier trotz der Teilung der Stadt gemeinsam zu begehen (vgl. Large 2000, 453). 110 Während Städte in West- und Süddeutschland trotz urkundlich nicht überlieferter Gründungsdaten unter Rückbezug auf den römischen Ursprung 2000-Jahrfeiern begingen (beispielsweise Bonn, Kempten, Mainz, Augsburg und Neuss; vgl. Klein 2000, 18), definieren ostdeutsche Städte trotz älterer befestigter slawischer Vorgängersiedlungen mit zentralörtlichem Charakter erst das Jahr der deutschrechtlichen Gründung als Beginn der Stadtgeschichte (beispielsweise Wusterhausen/Dosse; vgl. Geßner 2012, 165). 111 Vgl. Braunfels 2012, 18; Melville 2007, 18.

Der mittelalterliche Stadtgründungsprozess

99

tiger Einfluss auf das zukünftige Schicksal der Stadt eingeräumt wurde, konnten Tag und Stunde des Rituals nach astrologischen Kriterien gewählt werden. In einigen Fällen erhielten Städte wie Personen ein Horoskop.112 Doch die Stadtgründung war in der Regel nicht der Anfang, sondern lediglich das zeremonielle Ende eines langen Prozesses, der – wie aus literarischen und archäologischen Zeugnissen hervorgeht – Jahre, sogar Jahrzehnte andauern konnte.113 Im Idealfall wurde die Erhebung einer Siedlung zur Stadt schriftlich bestätigt, wobei insbesondere die Art des Stadtrechts und die Höhe der Abgaben verbindlich geregelt wurden.114 Da es sich bei den ältesten städtischen Schriftstücken in der Regel um formale Stadtrechtsbestätigungen durch den Landesherrn handelt, schimmern nur in wenigen Dokumenten Hinweise durch, die den ideellen Hintergrund einer Stadtgründung erhellen.115 Zu diesen seltenen Ausnahmen gehört die Gründungsurkunde der Stadt Prenzlau. Das im Jahr 1234 ausgestellte Dokument erwähnt, dass der Stadtherr, der pommersche Herzog Barnim I. (um 1210–1278), der auch den Beinamen der Städtegründer trug, durch »gebildete Männer« (per virorum litteratorum) in der Gründung freier Städte unterrichtet worden war, die »den Schleier von den Worten nahmen« (velamine littere ablato), damit sein Herrschaftsbereich den Gewohnheiten anderer Länder angepasst werde.116 Aus dieser Formulierung geht hervor, dass der Anstoß zur Städtegründung extern erfolgte, indem der christliche Landesherr von einem spezialisierten Kreis in das Procedere des Gründungsvorgangs einer Stadt eingeweiht wurde.117 Die Wortwahl velamine ablato kann zudem als Verweis auf die mittelalterliche Arkantradition gewertet werden, die als philosophisches Prinzip unter dem Begriff integumentum (lat. »Hülle, Decke«) geläufig war. Diese auf die 112 Vor allem im römischen Kontext ist die Stadtgründung eng mit der Astrologie verwoben. Nicht nur ­Vitruv (De arch. IX) widmete in seinem architekturtheoretischen Werk der Sternenkunde ein eigenes Kapitel, auch Kaiser Konstantin beauftragte bei der Gründung Konstantinopels einen Astrologen, der für die Stadt ein Horoskop erstellte (Zonaras, hist. XIII, 3, 1ff; vgl. Möbius 1995, 107 f.). Der Gründungszeitpunkt der im Jahr 1247 von Friedrich II. gegründeten Stadt Victoria richtete sich ebenfalls nach astrologischen Kriterien (vgl. Horst 1975, 312). Noch für die 2005 gegründete neue Hauptstadt Naypidaw der asiatischen Republik Myanmar wurden Ort und Zeitpunkt der Gründung von Astrologen berechnet (vgl. Witzens 2009, 360). 113 Im Fall der englischen Stadt Winchelsea ist bekannt, dass der Stadtgründungsprozess von der Standortwahl bis zum Vollzug der Gründung acht Jahre dauerte (vgl. Lilley 2009, 82). 114 Beispielsweise wurde in der 1237 ausgestellten Gründungsurkunde der Stadt Kyritz der Bürgerschaft der Genuss des Stendaler Stadtrechts und das Recht, sich alljährlich einen Vogt zu wählen, zugestanden sowie die Höhe der Abgaben festgelegt (CDB, AIII, VII). 115 Vgl. Flachenecker 2010, 761. 116 »(…) aliarum provinciarum consuetudinibus conformantes in terra nostra civitates liberas decrevimus ins­ taurare« (Pommersches Urkundenbuch 1. Bd, Nr. 308a). 117 Auch die Formulierung in Urkunden anderer Städte verweist auf die Einflussnahme von Gremien aus »weisen Männern«. So wurden auch die Gründung der Florentinischen terre nuove auf externen Ratschlag hin beschlossen (»consilio sapientium virorum«; Archivio di Stato di Firenze, Provvisioni, 9 fol. 136v, 26. Jan. 1298).

100

Zum mittelalterlichen Städteverständnis

antike Mysterientradition rekurrierende Methode diente dazu, sakrales Wissen gezielt zu verschleiern, um es vor der Profanisierung zu schützen.118 Vor diesem Hintergrund verwundert es nicht, dass zahllose Gründungsmythen das faktische Geschehen um eine Stadt- oder Klostergründung weniger erhellen als verschleiern. Der Wahrheitsgehalt der religiösen Legenden wurde von den Gläubigen in der Regel nicht in Frage gestellt, da man sie als Bestätigung des Umstands verstand, dass Stadt oder Kloster harmonisch in die göttliche Schöpfung eingebettet seien.119 Trotz zahlreicher Varianten ist allen Legenden gemeinsam, dass die Gründung, vor allem was die Standortwahl und die Grundrissgestalt angeht, als durch eine göttliche Eingebung inspiriert erscheint, so dass der menschliche Gestaltungswille in den Hintergrund tritt.120 Dieser göttliche Wille manifestierte sich nach antikem Vorbild häufig in Gestalt eines Tiers, das in Etymologie und Heraldik als theriomorpher Stadtahn auftrat.121 Abgesehen von Jagdmythen, in denen ein Tier, in der Regel ein Bär oder ein Eber, vom Stadtherrn am Ort der späteren Stadtstelle erlegt wurde (vgl. Abb. 46), finden sich in den mittelalterlichen Retrofiktionen neben numinosen Mächten, wie Engeln und Heiligen (vgl. Abb. 47), wiederholt Hirsche in der Rolle von Protagonisten, die den Stadtherrn zu dem von Gott ausersehenen Standort geleitet haben sollen.122 Die Gründung erhielt durch das Erscheinen dieser Abb. 46: Die Berner Bärenjagd (Tschachtlanchronik, 1470). Boten, die als Manifestation des unmittel118 Gemäß der neuplatonischen Metaphysik wurde auch die wahrnehmbare Welt als integumentum oder Hülle empfunden, die das wahre Sein verdecke (vgl. Brinkmann 1971, 314 ff.; Meier 1977, 42; Sladek 1984, 16; Ellard 2007, 43 ff.). 119 Vgl. Franz 2009, 263 und 280. 120 Vgl. Roggenkamp 1954, 122; Hawel 2007, 426. 121 Im Mittelalter sind die Tiere häufig namensgebend für die Gründung, wie beispielsweise der Eber im Falle des Klöster Eberbach und Ebersberg und der Bär bei den Städten Bern, Bernau und Berlin (vgl. Franz 2009, 264 f.). 122 Ebenso wie der römische Kaiser Hadrian die eponyme Stadt Hadrianutherae an dem Ort gründete, an dem er eine Bärin erlegt hatte, soll das märkische Bernau bei Berlin an der Stelle gegründet worden sein, an der der askanische Markgraf Albrecht, der den Beinamen der Bär trug, sich nach der Bärenjagd erfrischte (vgl. Schwertheim 1985, 39; Seiler, Chronik der Stadt Bernau). Die Tierjagd kann als eine Variante des Tieropfers verstanden werden, das zu dem antiken Stadtgründungsritus gehörte. Vgl. Rykwert 1977, 44; Alföldi 1977, 246; Eliade 1992, 27 f.; Franz 2009, 262.

Der mittelalterliche Stadtgründungsprozess

Abb. 47: Göttliche Beteiligung in Gestalt von Engeln an der Vermessung einer Stadt (Handbuch des Bertrand Boysset, ausgehendes 14. Jahrhundert).

101

baren Eingreifen Gottes verstanden wurden, eine transzendente Legitimation und rückte sie in den Bereich des göttlichen Schöpfungsaktes.123 Die göttlichen Boten bestimmten den Legenden nach nicht nur den Standort der Gründung, sondern galten als aktiv am urbanen Vermessungsritual beteiligt, wie in der Gründungslegende der Benediktinerabtei Fécamp En­de des 11. Jahrhunderts über­ liefert ist:

Herzog Ansegisus (…) begibt sich eines Tages mit seinem Gefolge in die Gegend von Fécamp, um in den Wäldern zu jagen. Bald stoßen Jäger auf einen Hirsch, den sie sogleich verfolgen. Trotz größter Bemühung gelingt es ihnen nicht, das prächtige Tier zu erjagen. An der Stelle, an der später der Altar des Klosters errichtet wird, bleibt der Hirsch stehen und blickt sich um. Die heraneilenden Hunde und Pferde erstarren sogleich. Nachdem der Herzog das Wunder betrachtet und seine göttliche Urheberschaft erkannt hat, wirft sich die ganze Jagdgesellschaft im Gebet zur Erde. Der Hirsch zeichnet daraufhin mit seinem Geweih einen kreisrunden Umriss auf den Boden und verschwindet. Ansegisus lässt dort sofort eine Kapelle aus Ästen errichten.124 Doch nicht nur der vermessungstechnische Initialkreis wurde den Gründungsmythen zufolge von den göttlichen Boten vollzogen, in einigen Versionen gilt der gesamte Grundriss des zukünftigen Bauwerks als ein Entwurf von Gottes Hand.125 Diese enge Verbindung zwischen dem Akt der Vermessung und dem sich in Tieren oder Engeln manifestierenden göttlichen Willen wird auch im Gründungsmythos des Kanonissenstifts Böddeken deutlich, nach dem der Standort des zukünftigen Klosters durch das Erscheinen von Hirschkühen bezeichnet wurde, während ein Kreuzhirsch die Lage des Altars bestimmt haben soll, an 123 Vgl. Franz 2009, 268. 124 Libellus de rev.; Übersetzung nach Franz 2009, 269. 125 Vgl. Franz 2009, 271.

102

Zum mittelalterlichen Städteverständnis

dessen Stelle der Abt einen Stab fand.126 Der als Messlatte fungierende Stab entstammt also direkt der göttlichen Sphäre, wobei die Tiere als Vermittlung zwischen Transzendentem und Irdischem, zwischen göttlichem Willen und menschlichem Handeln fungieren.127 Ihr Erscheinen galt als göttliches Zeichen, die von ihnen bezeichnete Stätte avancierte zur Hierophanie, zur Manifestation des Göttlichen in der irdischen Welt; das Wunder bestätigte den Gläubigen die Willenseinheit von Gott und Gründer oder Gründerin.128 Obwohl sich jenseits der mythischen Überlieferung nur wenige Quellen finden, die das tatsächliche Geschehen eines Stadtgründungsprozesses detailliert beschreiben, liefern die Gründungslegenden indirekt einen Hinweis darauf, dass sowohl Standort als auch Grundriss und Anordnung einer Gründung einem festen Plan folgen. Unter dem Mythos schimmert in den Legenden die Existenz einer übergreifenden planerischen Konzeption durch, die den monastischen bzw. urbanen Grund- und Umriss, einschließlich der Anordnung der einzelnen Bauwerke zueinander, bestimmte und verbindlich festlegte.129 2.3.2 Naturraum, Maß und Geometrie als Parameter der städtischen Raumordnung Um dauerhaft Bestand zu haben, musste jeder städtische Organismus der Befriedigung der Grundbedürfnisse seiner Einwohner dienen. Dazu gehörte neben der defensiven Schutzfunktion die verlässliche Verfügbarkeit von Nahrung und gesundem Trinkwasser. Während die eigenständige Selbstversorgung nur in Ackerbürgerstädten mit einer ausreichend großen Feldmark und einer begrenzten Einwohnerschaft möglich war, musste der Nahrungsbedarf in größeren Ballungszentren in erster Linie durch Handelsaktivitäten, also im Rahmen eines ökonomischen Güteraustausches zwischen Stadt und Land, gedeckt werden.130 Während dies zum einen die Entstehung eines spezialisierten Handwerks in den Städten förderte, dessen Produkte gegen die auf dem Land erzeugten Grundnahrungsmittel eingehandelt werden konnten131, verfolgten auch die von den jeweiligen Landesherren verliehenen Privilegien, wie Stapel-, Brau- oder Marktrechte, ebenfalls das Ziel, die wirtschaftliche Potenz der Städte durch begünstigte Bedingungen voranzutreiben.132 Auch zur Gewährleitung der kollektiven Wasserversorgung wurden viele hochund spätmittelalterliche Städte in der Gründungsphase mit einem elaborierten Leitungs126 Sigeward, Vita S. Mainulfi; zit. nach Franz 2009, 276. 127 Vgl. Franz 2009, 280. 128 Vgl. Eliade 1992, 27 f.; Franz 2009, 275 ff. 129 Vgl. Leitgeb 2012, 5. 130 Fehn 2003, Sp. 81. 131 Vgl. Weber 2000, 1 ff.; Pitz 1991, 228 f.; Engel 1993, 21. 132 Vgl. Lavedan/Higounet 1974, 4 ff.

Der mittelalterliche Stadtgründungsprozess

103

system ausgestattet, das bereits Bestandteil des Planungskonzeptes war.133 Während in zähringischen Gründungen, wie Freiburg im Breisgau und in Villingen im Schwarzwald, sogenannte Bächle-Systeme der städtischen Versorgung mit Nutz-, Trink- und Tränkwasser dienten, wurden in Städten östlich der Elbe zum Teil aufwendige hölzerne Rohrleitungssysteme verlegt.134 Zur Befriedigung der Grundbedürfnisse der Bürgerschaft musste also bei jeder Stadtgründung eine verbindliche räumliche Ordnung festgelegt werden, die nicht nur eine Trennung zwischen öffentlich und privat genutztem Raum miteinschloss, sondern auch Verlauf und Art des Straßensystems, der Stadtbefestigung, der Wasserversorgung sowie die räumliche Verortung der Märkte und der sakralen Gebäude.135 Diese urbane Morphologie, die sich stets im Spannungsfeld zwischen Ideal und Naturraum befand, erfolgte für jede urbane Gründung individuell, da ein abstrakt-geometrischer Entwurf nicht nur mit den naturräumlichen Gegebenheiten, sondern auch mit einem stadtspezifischen Maß in Deckung gebracht werden musste. Gerade in dem wechselseitigen Zusammenspiel zwischen Naturraum, Maß und Geometrie ist auch der grundsätzliche Unterschied zwischen der mittelalterlichen und modernen Stadtplanung festzustellen.136 Während jüngere Entwürfe zu standardisierten Grundrisslösungen neigen, folgte die mittelalterliche Stadtplanung zwar auch bestimmten Kompositionsschemata, bewies jedoch durch die Anpassung an das städtische Maß und an die lokalen Formationen eine auf den Einzelfall abgestimmte und an den Ort gebundene Gestaltungskraft.137 Zwar illustrieren aufwendige Maßnahmen, wie großflächige Planierungen, Regulierungen von Wasserläufen, Trockenlegungsmaßnahmen und großflächigen Pfahlgründungen138, den massiven Gestaltungswillen, der auch dem mittelalterlichen Städtebau innewohnte, dennoch überstiegen die Bemühungen, die Landschaft in Form zu bringen, niemals ein bestimmtes Maß – sei es aus technologischen oder theologischen Gründen. So wurde bei der Anlage von Plätzen, Mauern und Kirchen stets auf lokale Geländeformen, Flusslinien und Relief Rücksicht genommen, weshalb die Landschaft einen nicht unerheblichen Gestaltungsfaktor darstellt, 133 Vgl. Grewe 1991, 53. 134 Vgl. Zähringer 1986, 266; Grewe 1991, 53 f.; Geßner/Dittrich 2018, 92 ff. 135 Vgl. Isenmann 2012, 47 f.; Leitgeb 2012, 28. 136 Die neuzeitliche und moderne Stadtplanung nimmt in der Regel wenig Rücksicht auf naturräumliche Gegebenheiten: Nicht nur Eugène Haussmann (1809–1891) ließ vor der Umsetzung seiner Pläne das Pariser Stadtgebiet großflächig einebnen, auch zu Le Corbusiers Standards (1887–1965) gehörte grundsätzlich die Planierung des zu bebauenden Stadtgebiets (vgl. Maurières 2003, 16; Kruft 2004, 462). 137 Vgl. Brinckmann 1925, 31. Nicht nur die Architektur, sondern auch die Stadtplanung weist im 20. Jahrhundert hinsichtlich der räumlichen Organisation eine verstärkte Normung auf, wie die etwa zeitgleich entstandenen Berliner Großwohnquartiere Marzahn und Märkisches Viertel im Ost- und Westteil der Stadt zeigen. 138 So entstand beispielsweise das mittelalterliche Venedig in einer wenig siedlungsgünstigen Lagunenlandschaft, so dass der Untergrund aufwendig präpariert werden musste (vgl. Braunfels 1976, 76 ff.).

104

Zum mittelalterlichen Städteverständnis

der im Rahmen der Stadtplanung mit den idealen Parametern Zahl, Maß und Proportion in Deckung gebracht werden musste.139 Abgesehen vom Naturraum stellte das lokale Maßsystem den zweiten wichtigen Parameter dar, der auf den städtischen Entwurf einen großen Einfluss haben sollte: Jede mittelalterliche Stadt verfügte nämlich über ein eigenes, aufeinander abgestimmtes System aus Längen-, Flächen- und Volumenmaßen, wobei die gängigen Längenmaße, wie Fuß, Elle, Spanne und Klafter, dem menschlichen Körper entlehnt waren.140 Dieses stadtspezifische Maßsystem wurde vom Stadtgründer bestimmt und konnte im Rahmen des Stadtrechts schriftlich fixiert werden.141 Während im frühen und hohen Mittelalter überregionale, mit dem Herrscherhaus assoziierte Maße vorherrschten, wie beispielsweise der Königsfuß (32,48 cm), der karolingische Fuß (33,29 cm) oder der staufische Fuß (30,5 cm), ist im Rahmen der Stadtgründungswelle des 12.–14. Jahrhunderts eine starke Diversifikation im Maßsystem zu beobachten.142

Abb. 48: Das im mittelalterlichen Bauwesen Frankreichs gängige Maßsystem.

Im mittelalterlichen Bauwesen Frankreichs herrschte ein Maßsystem vor, das seine Bezeichnungen ebenfalls von den menschlichen Extremitäten ableitete: Demnach maß eine Handbreit (paume) umgerechnet 7,64 cm, eine Hand (palme) 12,36 cm, eine Spanne

139 Vgl. Bacher 1988, 20; Leitgeb 2012, 63. 140 Vgl. Fleckenstein 1958, 29. 141 Beispielsweise im Soester Stadtrecht, Art. 36 (zit. nach Planitz 1972, 89). 142 Vgl. Spieß 1963, 220.

Der mittelalterliche Stadtgründungsprozess

105

(empan) 20 cm, ein Fuß (pied) 32,36 cm und eine Elle (coudée) 52,36 cm (vgl. Abb. 48).143 Dabei ist bemerkenswert, dass sich die Maße wie die Bestandteile einer Fibonaccifolge verhalten: 1 paume + 1 palme = 1 empan 7,64 cm + 12,36 cm = 20 cm 1 palme + 1 empan = 1 pied 12,36 cm + 20 cm = 32,36 cm 1 empan + 1 pied = 1 coudée 20 cm + 32,36 cm = 52,36 cm In dieser rekurrenten Zahlenreihe entsteht also ab der dritten Stelle jede Zahl durch die Addition der beiden vorhergehenden Zahlenwerte, wobei sich der Quotient der Verhältniszahl des Goldenen Schnittes (φ = 1,618033988749895 …) annähert: 12,36/7,64 = 1,617801047120419 … 20/12,36 = 1,618122977346278 … 32,36/20 = 1,618 52,36/32,36 = 1,618046971569839 … Indem ein mittelalterlicher Baumeister dieses von den menschlichen Proportionen abgeleitete System anwandte, wurde also der Proportionskanon des menschlichen Körpers, als dessen Schöpfer nach christlichem Glauben Gott selbst galt, in symbolischer Form auf das menschliche Werk übertragen. Gemäß der Logik dieser Verknüpfung wurde der Mensch im wahrsten Sinne des Wortes zum Maß aller Dinge, insbesondere der gotischen Architektur. Bestimmten diese Werkmaße den Kanon der Maßbeziehungen eines Gebäudes, bildete das städtische Maß das Grundmodul des urbanen Proportionssystems.144 Ausgehend von einer Basiseinheit, bei der es sich in der Regel um ein Fuß-, Ellen- oder Rutenmaß handelte, wurden die größeren Einheiten als 100er oder 1000er Relationen des Grundmaßes abgeleitet.145 Neben lokalem Naturraum und städtischem Maß gehörte schließlich die Geometrie zu den wichtigsten Parametern eines urbanen Entwurfs. Durch das zu Grunde liegende geometrische Schema manifestierte sich im neuplatonischen Sinn die Ähnlichkeit der städtischen mit der göttlichen Ordnung, wobei insbesondere das Beziehungsgeflecht 143 Vgl. Peyron 2012, 3. Das Fußmaß wurde auch pied des bâtisseurs (Fuß der Baumeister) genannt. 144 Vgl. Spieß 1963, 219. 145 Die Fünf und die Zehn, die vom menschlichen Hand-Fuß-System abgeleiteten Module des dezimalen Algorithmus, galten nach platonisch-pythagoreischem Verständnis als vollkommene Zahlen (Vgl. Fettweis 1958, 2; Burkert 1962, 35 f.; Spieß 1963, 220 ff.).

106

Zum mittelalterlichen Städteverständnis

der urbanen Sakral- und Wehrtopographie die Struktur der himmlischen Idealstadt nachahmte. Da dieser Aspekt der angewandten Geometrie den Stadtbaumeistern immer vor Augen stand, lag der mittelalterlichen Stadt, ebenso wie der zeitgenössischen Sakralarchitektur, ein individuell entworfenes geometrisches Schema zu Grunde, das die Position der stadtkonstituierenden Gebäude festlegte und bei der Erstvermessung ins Gelände übertragen wurde (vgl. Abb. 49). Naturraum, Maß und Geometrie bildeten also die Parameter eines jeden städtischen Positionssystems, das für eine mittelalterliche Gründung charakteristisch ist, wie Thomas von Aquin bekräftigte:

Abb. 49: Geometrisches Positionsschema urbaner Architektur (Handbuch des Bertrand Boysset, ausgehendes 14. Jahrhundert).

Geht man aber zur Gründung einer Stadt ans Werk, so muss man vorsehen, welcher Platz für die Kirchen, welcher für die Gerichtsgebäude, und welcher für die Zünfte zu bestimmen ist.146

Die Umsetzung dieser urbanen Stadtgeometrie ist ohne einen Entwurf, der die Position der stadtkonstituierenden Architektur und das Verhältnis von öffentlichem und privatem Raum regelt, nicht denkbar. Das Verfahren der kartographischen Erfassung eines Kleinraums in Form von Katasterkarten, Stadt- und Tempelgrundrissen war bereits in Ägypten und Mesopotamien bekannt und fand in der römischen und griechischen Antike weite Verbreitung.147 Aus dem europäischen Mittelalter haben sich nicht nur umfangreiche maßstabsgerechte Grund- und Aufrisssammlungen, die aus dem Umfeld der gro-

146 Thomas von Aquin, De re. princ. I, 13. 147 Diejenigen römischen Stadtpläne, die bis heute erhalten geblieben sind, wurden auf Marmorplatten graviert, so beispielsweise die Forma Urbis Romae, ein Stadtplan Roms aus dem Jahr 192 n. Chr., das Kataster von Orange und Fragmente eines Plans, die in Rom-Trastevere gefunden wurden (vgl. Zanker 1987, 142; Hänger 2001, 27 ff.; Coarelli 2005, 61 f.).

Der mittelalterliche Stadtgründungsprozess

107

Abb. 50: Der Grundriss von Talamone nach der Erstvermessung aus dem Jahr 1306 (Stadtarchiv Siena).

ßen mittelalterlichen Bauhütten stammen, erhalten, sondern auch Stadtpläne.148 Schriftliche Nachrichten zeigen, dass diese Maßstabstreue der Pläne ein Resultat systematischer Aufmessungen von Städten, Dörfern und Weilern ist.149 Bei dem Grundriss von Talamone, einer italienischen terra nuova, die von Siena im Jahr 1303 gegründet wurde, handelt es sich um einen städtischen Entwurf, der von einem Vermesser bzw. Stadtbaumeister im Vorfeld der Gründung konzipiert worden war (vgl. Abb. 50).150 Dabei ist auffällig, dass das Pergament die urbane Topographie der Gründungsstadt unterschiedlich darstellt: Während die Hauptkirche, die Burg und die Stadttore durch eine Aufrissdarstellung herausgehoben sind, wurden das Straßensystem, die Parzellenstruktur und der Stadtmauerverlauf im Grundriss dargestellt. Mit dieser Zeichentechnik 148 Hier sind das Reimser Palimpsest aus dem 13. Jahrhundert und die Sammlungen der Wiener und Prager Bauhütten zu nennen (von Simson 1982, 26 ff.). 149 So wurde nicht nur das Stadtgebiet von Siena im Jahr 1218 detailliert aufgemessen, sondern auch kleinere Siedlungen, wie Nogaro, ein Dorf in Frankreich, das bereits im 11. Jahrhundert systematisch vermessen wurde (vgl. Braunfels 2012, 99; Schwineköper 1977, 129). 150 Vgl. Lilley 2009, 89.

108

Zum mittelalterlichen Städteverständnis

wurde ein maßstäblicher Geländeübertrag der geometrischen Komposition durch eine proportionale Schnurvermessung ermöglicht. In einer Quelle, die die Vermessung der belgischen Stadt Ardres beschreibt, wird ausdrücklich betont, dass der Agrimensor bei der Übertragung des Grundrisses ins Gelände einem Entwurf folgte, den er »schon vorher im Geiste konzipiert« hatte (iam in mente conceptum).151 Diese Formulierung erinnert an Bonaventuras Darstellung des künstlerischen Schaffensprozesses, bei dem er den Nachahmungscharakter des menschlichen Werkes in den Vordergrund stellte: Der Künstler (artifex) konzipiert nach Bonaventura in seinem Geist (in mente) das zu schaffende Werk und setzt dieses um, indem er sein Werk dem Vorbild (exemplar, paradigma) angleicht. Wenn wir den Ausgangspunkt betrachten, so werden wir sehen, dass das Kunstwerk vermittels eines im Geist sich vorfindenden Ebenbildes vom Künstler ausgeht. Durch dieses Ebenbild erdenkt der Künstler etwas, ehe er es hervorbringt, und danach gestaltet er es, wie er es geplant hat.152

2.3.3 Die mittelalterliche Stadtvermessung Derartige Entwürfe bildeten die Grundlage der Erstvermessung einer Gründungsstadt.153 Hinweise in Chroniken und Rechnungsbelege illustrieren, dass Vermesser, in Italien beispielsweise als mensuratores, in Flandern als lantemetere oder geometrici bezeichnet, die Neugründung einer Stadt vorbereiteten.154 Die Historia comitum Ghisnensium, eine um 1200 verfasste Chronik der französischen Stadt Ardres (Dép. Pas de Calais), schildert detailliert eine urbane Neuvermessung, die von einem Mitglied aus der lokalen Grafenfamilie beauftragt worden war. Demnach bereitete »ein in der Geometrie erfahrener Meister« (doctum geometricalis operis magistrum) die Neuparzellierung und Befestigung einer bereits bestehenden Siedlung vor, indem er den Umriss, den Straßenverlauf und die Wohnparzellen aufmaß.155 Die mit Stab und Seil vorgenommene Vermessung, die übrigens Scha151 Lambert von Ardres, Historia comitum Ghisnensium, 589; vgl. Binding/Linscheid-Burdich 2002, 73 ff. 152 »Si consideremus egressum, videbimus, quod effectus artificialis exit ab artifice, mediante similitudine existente in mente. per quam artifex excogitat, antequam producat, et inde producit, sicut disposuit.« (Bonaventura, De reductione, 12). 153 Vgl. Binding/Linscheid-Burdich 2002, 99. 154 Vgl. Schwineköper 1977, 130; Meckseper 2011, 76; Lilley 2009, 90 ff. 155 »Tam doctum geometricalis operis magistrum Symonem fossarium cum virga sua magistrali more procedentem et hic illic iam in mente conceptum rei opus non tam in virga quam in oculorum pertica geometricantem domosque et grangias convellentem, pomeria et abores florentes et fructificantes concidentem, plateas non tam festis quam profestis diebus ad omne omnium transeuntium asiamentum summo studio et labore

Der mittelalterliche Stadtgründungsprozess

109

Abb. 51: Die Verwendung von agachons in der Feldmessung (Handbuch des Bertrand B ­ oysset, ausgehendes 14. Jahrhundert).

ren von Neugierigen anzog, wurde ohne Rücksicht auf bereits vorhandene Wege, Häuser, Gärten und Felder durchgeführt. Es handelt sich also um einen Neuentwurf eines urbanen Grundrisses, der unabhängig von der lokalen Siedlungsgeschichte konzipiert worden war. Bei der Anlage der südwestfranzösischen bastides ist ebenfalls der Einsatz von professionellen Geometern belegt: In Baa bei Bordeaux wurde im Jahr 1287 ein Meister namens Gérard de la Tour namentlich genannt, dessen Aufgabe darin bestand, die Parzellen und den Straßenverlauf der Neugründung aufzumessen. Der Vermesser wurde in den Gehaltslisten des Stadtgründers Edward I. ausdrücklich unter dem Titel »magister operum nove bastide« geführt.156 Es ist also zu vermuten, dass er einem Kreis von Personen angehörte, die auf Stadtgründungen spezialisiert waren. Im Zusammenhang mit der Verlegung des belgischen Dorfs Logne wurde ebenfalls die Aufmessung einer neuangelegten Siedlung beschrieben, wobei auch Grenzzeichen erwähnt wurden, die als Vermarkung der Grenzen der städtischen areae dienten.157 Die im französischen Raum als agachons bezeichneten Messpflöcke dienten als Hilfsmittel beim Aufmaß von Siedlungen und Städten, wie das

paratos conspicantem, curtilos cum oleribus et linis foduentem, sata ad restituendas vias diruentem et conculcantem« (Lambert von Ardres, Historia comitum Ghisnensium, 589; vgl. Strahm 1950, 399; Frölich 1969, 297; Lilley 1998, 89 f.). 156 Vgl. Lilley 2009, 90. 157 Receuil des chartes de l’abbaye de Stavelot-Malmédy Bd. 1, Bruxelles 1909, 338 ff., Nr. 165 (zit. nach Schwind 2003, 86 f.).

110

Zum mittelalterlichen Städteverständnis

um 1400 verfasste Vermessungshandbuch des Geometers Bertrand Boysset illustriert (vgl. Abb. 51).158 Auch Quellen aus dem deutschsprachigen Raum beschreiben die Arbeit von Landvermessern, so bei der Siedlungsverlegung von Hamm.159 Abgesehen von den spezialisierten Vermessern, die ihr Gewerbe – den zeitgenössischen Bauhütten vergleichbar – auf Wanderschaft ausübten, konnten auch Personen mit der Aufmessung beauftragt werden, die nach der Gründung ortsansässig wurden und wichtige städtische Ämter, wie das des Schultheißen, des Vogts oder des Schulzen übernahmen.160 Doch nicht alle, die mit der Vermessung betraut waren, verfügten über denselben Kenntnisstand. Die um 1400 verfasste Geometria Culmensis, ein Handbuch über Vermessungswesen, das vom Deutschen Orden autorisiert war, unterschied deshalb zwischen mensores litterati, also gelehrten Vermessern, und mensores layici, den Laienvermessern.161 Anhand der Quellenlage kann hinsichtlich der Erstvermessung einer Gründungsstadt folgender Ablauf rekonstruiert werden162: Nachdem der Stadtgrundriss entworfen worden war, wurde die Grundrisskonfiguration mittels eines Messseils, das in den Quellen als reep, funis oder funiculus bezeichnet wurde, und mit Messlatten und Ruten (baculus, pertica, penica, virga, virgula oder regula) auf den Baugrund übertragen.163 Das dafür notwendige Seil war durch Knoten nach dem vorher festgelegten Grundmodul, dem städtischen Urmaß, unterteilt. Die Strecken wurden im Gelände ausgemessen und ausgepflockt, wobei die Vermarkung der Hauptmesspunkte durch hölzerne Pflöcke (paxillus) und Pfähle (palum) auch archäologisch belegt werden konnte.164 Zur Absteckung rechtwinkliger Straßenkreuzungen waren noch die aus dem römischen Vermessungswesen bekannten gromae in Gebrauch.165 Da das Straßensystem sich häufig dem Verlauf der Stadtmauer angleicht, ist davon auszugehen, dass mit dem Abstecken des Umrisses begonnen wurde.166 Die Straßenverläufe, Parzellengrenzen und Standorte der Kirchen und Tore konnten auch mit Kalk, Gips oder Pflöcken im Gelände markiert werden.167 Moderne Feld158 Bertrand Boysset, manuscrit de Carpentras; vgl. Portet/Clavel-Lévêque 1996, 239 ff. 159 Vgl. Frölich 1969, 297. 160 Vgl. Meckseper 2011, 76. 161 Vgl. Mendthal 1886, 4. In der französischen Fachliteratur wird für die auf die Praxis orientierte Geometrie, die bis heute im Acker- und Gartenbau Anwendung findet, der Begriff »mathématiques paysannes«, also bäuerliche Mathematik, gebraucht (vgl. Abreu 1995, 800 ff.). 162 Vgl. Binding/Linscheid-Burdich 2002, 101 ff. 163 Vgl. Bürger 2007, 305. 164 Messpflöcke konnten bei Ausgrabungen in Kirchen und auf Marktplätzen dokumentiert werden, beispielsweise in St. Donatian in Brügge, im gotischen Chor in Köln und auf dem Marktplatz von Lund (vgl. Spieß 1963, 223; Untermann 2009, 285; Schwineköper 1977, 116, Anm. 31a). 165 Vgl. Meckseper 2011, 77. 166 Z. B. in Rottweil (vgl. Meckseper 1970, 98). 167 Vgl. Binding 1990, 161 ff.

Der mittelalterliche Stadtgründungsprozess

111

versuche zeigen, dass Stadtgrundrisse mit der Messseilmethode einfach und effizient ins Gelände übertragen werden können.168 Das Lippiflorium, ein aus dem 13. Jahrhundert stammendes Fürstenlob auf Bernhard II. zur Lippe, beschreibt anlässlich der Gründung von Lippstadt die Abfolge der einzelnen Etappen des Stadtgründungsprozesses, angefangen von der Standortwahl über die Ersteinmessung des städtischen Grundrisses bis zur anschließenden Bebauung und Besiedlung der Stadt.169 Die Anlage des Walls und der Befestigung wird ausdrücklich durch eine Vermessung eingeleitet: Grabenarbeiter sind da, man vermisst das Gelände nach Länge Und nach Breite, der Grund wird von Gräben durchfurcht.170 Die bei der Erstvermessung vorgenommene Aufteilung des städtischen Raums in öffentliche und private Parzellen sowie Straßenland erwies sich in vielen Fällen über Jahrhunderte als überraschend konstant, häufig wurde der bei der Erstvermessung festgelegte Grundriss lediglich verwischt und verdeckt.171 Zwar war vor allem die äußere Gestalt der Bauwerke über die Jahrhunderte dem Wandel der architektonischen Moden unterworfen, die Verortung vor allem der Wehr- und Sakraltopographie im städtischen Gefüge blieb dagegen in der Regel bis zu den großen Entfestungsmaßnahmen nach der Französischen Revolution meist unverändert. Erst im 20. Jahrhundert fanden infolge von Kriegszerstörungen und dem autogerechten Umbau der Innenstädte nachhaltige Veränderungen der städtischen Strukturen statt, die auch den Straßenverlauf und das Parzellierungssystem betrafen. Ein Grund für die Langlebigkeit der bei der Erstvermessung vorgenommenen urbanen Raumordnung ist unter anderem in den bürgerlichen Besitzrechten zu suchen, da eine Änderung der Grenzen immer auch Eigentumsrechte verletzt hätte.172 Um Dissonanzen im inneren Gefüge der Stadt zu verhindern, wurden deshalb europaweit städtische Bauvorschriften erlassen. Während im deutschsprachigen Raum derartige Erlasse, deren Ziel in der Eindämmung unsystematischer Bauten und der Einhaltung von Baufluchten bestand, nicht immer schriftlich fixiert sein mussten, sind aus Italien Baustatute überliefert, wobei das von Siena zu den ausführlichsten Regelwerken seiner Zeit gehört.173 Die Ein168 Der Grundriss der Zähringerstadt Freiburg im Breisgau konnte von einem Team aus zehn Personen in fünf Tagen ins Gelände übertragen werden, während das Aufmaß des Offenburger Grundrisses sogar innerhalb eines Tages vonstattenging. Die Einmessung mittels moderner Vermessungsgeräte erwies sich als nicht schneller (vgl. Humpert/Schenk 2001, 69 ff.; Humpert 2003, 243). 169 Vgl. Kugler 1986, 142. 170 Justinus von Lippstadt, Lippiflorium; vgl. Reincke 1969, 341. 171 Vgl. Leitgeb 2012, 6 und 26. 172 Vgl. Leitgeb 2012, 27. 173 Vgl. Braunfels 2012, 98 ff.; Untermann 2009, 222.

112

Zum mittelalterlichen Städteverständnis

haltung der Ordnung, die auf einem detaillierten Bebauungsplan aus dem Jahr 1218 basiert, wurde nicht nur durch eine eigene Vermessungsbehörde mit zwei hauptberuflichen Vermessungsbeamten (mensuratores communis) überwacht, Veränderungen der städtischen Raumordnung, auch kleinster Art, konnten mit drastischen Strafen und Abriss geahndet werden: In Siena wurde im Jahr 1370 beispielsweise ein Laden abgebrochen, weil er eine dreiviertel Elle, also weniger als einen halben Meter, in die Straßenflucht hineinreichte.174 2.3.4 Das Stadtgründungsritual Eine Stadt galt erst dann als gegründet, wenn das Gründungszeremoniell vollzogen worden war. Teile dieses Rituals waren geheim und fanden unter Ausschluss der Öffentlichkeit statt, weshalb der mittelalterliche Stadtgründungsprozess nur selten von einer schriftlichen Überlieferung begleitet ist.175 So mussten beispielsweise bei der Neugründung der oberitalienischen Stadt Alessandria die Bewohner auf Befehl Friedrichs I. die Stadt verlassen, bis sie von einem kaiserlichen Boten zurückgerufen wurden. Dann erst verkündete der Kaiser die Neugründung unter dem neuen Namen Caesarea.176 Stadtgründungsrituale sind bereits in der frühen urbanen Welt im mesopotamischen Raum fassbar.177 Über phönizische und etruskische Vermittlung gelangten sie im ersten vorchristlichen Jahrtausend in die griechisch-römische Antike, deren Tradition wiederum im Mittelalter fortlebte.178 Das aus dem etruskischem Sakralwesen übernommene römische Stadtgründungsritual, das für jede Stadt, die den Titel urbs trug, vollzogen werden musste, wurde nicht nur in der Literatur mehrfach beschrieben, sondern war auch in sogenannten Ritualbüchern (libri rituales) fixiert, die den öffentlichen Ablauf des Ritus regeln.179 Demnach erfolgte nach dem Setzen des Mittelpunkts (mundus), das Ziehen der Stadtgrenze (sulcus primigenius), anschließend wurde unter Anrufung der Schutzgottheit ein Feuer entzündet und der Name der Stadt verkündet.180 Als kosmologischer Akt unterlag die römische Vermessungspraxis daher auch strengen kultischen Vorschriften, die in rationalisierter Form Eingang in die gromatischen Fachtexte gefunden haben.181 Bereits die geläufige Bezeichnung gromatici für die römischen Feldmesser verweist auf die enge Wechselwirkung von Vermessung, Astrologie und Kosmologie: Der lateinische Begriff groma wird als etruskische Adaption auf das griechische Gnomon (γνόμων) zurückgeführt, 174 Vgl. Braunfels 2012, 110. 175 Vgl. Kugler 1986, 142. 176 Vgl. Strahm 1950, 391, Anm. 32. 177 Vgl. van Buren 1952, 29; Hutter 1996, 84. 178 Vgl. Burkert 1984, 114ff; Rathje 1990, 33. 179 Vgl. Alföldi 1977, 184; Rykwert 1976, 29. 180 Vgl. Rykwert 1976, 66. 181 Vgl. Hänger 2001, 21 ff.; Lilley 2009, 119.

Der mittelalterliche Stadtgründungsprozess

113

Abb. 52: Anweisungen zum Gebrauch eines Gnomons bei der Orientierung der Hauptachsen (Agrimensores veteres Romanorum, 6. Jahrhundert).

ein astronomisches Instrument, das aufgrund seiner Eigenschaft, den Sonnenlauf auf die Erde zu projizieren, als eine Verbindung von himmlischer und irdischer Sphäre galt.182 Mittels der groma wurden die Hauptachsen der Stadt aufgemessen: die Nord-Süd-Achse, auch cardo genannt, und die Ost-West Achse, der decumanus. Das Wort cardo oder kardo bezeichnete im Lateinischen ebenso wie der griechische Polos (πόλος) einen Drehpunkt und bezieht sich auf die Vorstellung vom Polarstern als Angelpunkt des Universums, an dem die Erde im All befestigt ist.183 Um die dazu rechtwinklig verlaufende Ost-West-Achse, den decumanus, zu bestimmen, platzierte der römische Agrimensor die groma auf den zentralen Nullpunkt, den lucus gromae.184 Die Etymologie des Begriffs decumanus ist auf den bildlichen Aspekt der lateinischen Zahl zehn, decem (X), zurückzuführen: Die Anlage des decumanus (–) lässt aus der vertikalen Linie des cardo (|) ein Kreuz (+) entstehen, das in archaischer Zeit als Zahlzeichen für die 10 benutzt wurde.185 Am Kreuzungspunkt von cardo und decumanus, also am städtischen Mittelpunkt, der nach antiker Kosmologie auf die axis mundi ausgerichtet ist, wurde im Rahmen des Stadtgründungsrituals eine Opfer-

182 Vgl. Hübner 1992, 141 ff; Gargola 1995, 42; Lilley 2009, 216, Anm. 53. 183 Varro verbindet den Begriff mit dem griechischen Verb für schwingen κραδαίνω (vgl. Hübner 1992, 143; von den Brincken 1992, 18). 184 Vgl. Rykwert 1976, 60; Folkerts 1989, 125; Gargola 1995, 41, 88; Schubert 1996, 52; Hänger 2001, 24; Torge 2007, 21. 185 Vgl. Müller 1961, 16; Hübner 1992, 146, Anm. 52.

114

Zum mittelalterlichen Städteverständnis

grube angelegt – eine Zeremonie, die vor allem im Zusammenhang mit der Gründung Roms reiche literarische Überlieferung fand: Nachdem Romulus den Remus (…) begraben hatte, gründete er die Stadt, wozu er aus Etruria Männer kommen ließ, die nach gewissen heiligen Regeln und Aufzeichnungen zu allem die Anweisung und Anleitung gaben, wie bei Mysterien. Es wurde nämlich auf dem jetzigen Comitium eine runde Grube ausgehoben und Erstlinge von allem, was man der Sitte nach als gut und der Natur nach als notwendig in Gebrauch hatte, hineingelegt. Zuletzt brachte jeder eine Handvoll Erde aus dem Lande, woher er gekommen war, und warf sie darauf, und dann mischte man alles. Diese Grube benennen sie mit demselben Wort wie das Weltall: mundus. Hierauf beschrieb man um sie wie um das Zentrum eines Kreises die Stadtgrenze.186

Abb. 53: Ziehen des sulcus primigenius als rituelle Stadtgrenze (Rom, 2. Jahrhundert n. Chr.).

Auf das städtische Zentrum bezog sich die Definition der urbanen Peripherie, des pomerium.187 Auf dieser Grenze, die das Stadtgebiet vom Umland abtrennte, wurde die Stadtmauer errichtet, weswegen Plutarch den Ursprung des lateinischen Begriffs aus post murum (hinter der Mauer) ableitete.188 Nach altrömischem Ritual wurde die Stadtgrenze mit einer bronzenen Pflugschar gezogen, wobei die Erdschollen dieser ersten Furche (sulcus primi-

186 Plut. Rom. 11, 1–2. Eine Beschreibung des Rituals findet sich auch bei Varro (De lingua latinae IV, 32) und im Vergilkommentar des Servius Honoratius (Servius, Vergil Aen. 16). Ein solcher mundus konnte im toskanischen Cosa, einer römischen Kolonie aus republikanischer Zeit, auch archäologisch nachgewiesen werden: Auf dem höchsten Punkt des Stadthügels befindet sich eine Grube, die in den anstehenden Fels eingetieft worden war und – wie Bodenproben zeigten – ehemals organische Reste enthalten hatte (vgl. Brown 1980, 17). 187 Vgl. Bandmann 1972, 78; Rykwert 1976, 66. 188 Plut. Rom. 11; vgl. Rykwert 1976, 59.

Der mittelalterliche Stadtgründungsprozess

115

genius) nach innen fallen mussten.189 Die Etablierung einer Grenze zur Abtrennung eines heiligen Bezirks (lat. templum, griech. τέμενος) von der profanen Umgebung ist ein universelles und ubiquitäres Merkmal der alten Religionen, das noch im christlichen Mittelalter im Weih- und Gründungsritus fortbestand.190 Da die mit zahlreichen Ritualen verbundene Stadtgrenze und Stadtmauer als heilig und unveränderbar galten, musste bei jeder Stadterweiterung das Gründungsritual zeremoniell zurückgenommen werden, um das Pomerium überbauen zu können.191 Die erweiterte Stadt wurde sodann neu gegründet, weshalb jede Stadterweiterung als erneute Stadtgründung aufgefasst wurde.192 Sobald der Pflug bei der kultischen Umrundung des künftigen Stadtgebiets die Stadttore passierte, war es Brauch, die Pflugschar anzuheben.193 Daher führten antike etymologische Studien die Wurzel des Begriffs porta (Tor) vom lateinischen Verb portare (tragen) zurück.194 Die Aussparung der Tore aus dem sakrosankten Stadtkreis wurde durch antike Autoren durch die Notwendigkeit erklärt, dass Unreines, wie tote Körper, die Stadt durch die Tore verlassen musste.195 Als nichtkonsekrierte Übergangsorte galten die Tore auch als potentiell gefährlich – einem Phänomen, dem man mit zahlreichen kulturspezifischen Übergangsritualen (rites de passage) zu begegnen suchte.196 Die etruskisch-römischen Gründungsrituale wurden über Hrabanus und Isidor ins Mittelalter tradiert, wo sie nach wie vor gepflegt wurden.197 Der staufische Kaiser Friedrich II. folgte beispielsweise bei der Gründung seiner Stadt Victoria im Jahre 1247 detailliert dem römischen Vorbild: Nicht nur der Gründungstag war nach astrologischen Kriterien ermittelt worden, der Kaiser ließ eine Vogelschau vornehmen und zog persönlich die Stadtgrenze mit einem Pflug.198 Auch die im 15. Jh. von Antonio Averulino, genannt il Filarete, beschriebenen Gründungsriten seiner idealen Stadt Sforzinda nehmen auf 189 Johannes Lydus (De mensibus IV, 50, 85–6), ein byzantinischer Geschichtsschreiber aus dem 6. Jahrhundert, erläuterte das Ritual folgendermaßen.: »Having harnessed a bullock and a heifer [Romulus] walked round the walls, keeping the male animal outside, towards the fields, and the female towards the town, so that its men be feared by outsiders and the women be fertile at home.«. 190 Der griechische Begriff wird auf die Wurzel τεμ schneiden (τέμνειν) zurückgeführt, womit auch der Ausdruck ἡ τομή (der Schnitt) verwandt ist (vgl. Nissen 1869, 1; Eliade 1992, 22; Hänger 2001, 65; Cassirer 2010, 117). 191 Hyginus Gromaticus, Constitutio Limitum (167, 4–5) betonte, dass die Grenzziehung himmlischen Ursprungs und daher zeitlos sei. 192 Wegen der Erweiterung des römischen Stadtgebiets ließ sich Augustus als Stadtgründer und zweiter Romulus feiern (Livius, Ab urbe condita 5, 49, 7). Vgl. Kühn 1963, 346. 193 Servius beschrieb unter Berufung auf Cato das Ritual in seinem Vergilkommentar (5,755) folgendermaßen: »Urbem designat aratro quem Cato in originibus dicit morem fuisse. (…) et ita sulco ducto loca murorum designabant, aratrum suspendentes circa loca portarum.«. 194 Vgl. Moschek 2011, 133. 195 Plut. Quaest. Rom. 27. 196 Vgl. Pearson/Richards 1994, 22; Hänger 2001, 65; van Gennep 2005, 25 ff.; Cassirer 2010, 122. 197 Vgl. Reincke 1969, 343. 198 Vgl. Horst 1977, 312.

116

Zum mittelalterlichen Städteverständnis

das altrömische Ritual Bezug.199 Nachdem an dem astrologisch bestimmten Tag der Stadtgründung gemeinsam mit dem Grundstein der Stadt ein bronzenes Buch, Figuren, Getreide, Öl, Wasser, Wein und Milch in eine Grube gelegt worden waren, begann der Herrscher mit dem Graben der Fundamentgruben.200 Nach dem magisch-rituellen Denken der Antike, das noch im Mittelalter nachwirkte, konnte eine Stadtgründung nur mit denselben Mitteln zurückgenommen werden, mit denen sie einst vollzogen worden war.201 Um eine feindliche Stadt zu vernichten, war es deshalb vonnöten, dass über den physischen Akt der Zerstörung der Bebauung und der Vertreibung der Bevölkerung hinaus die Gründung in ritualisierter Form zurückgenommen wurde.202 Aus diesem Grund beschloss der Römische Senat, dass nach dem Dritten Punischen Krieg die Stadtstelle Karthagos umgepflügt wurde.203 Auch dieses Ritual war noch im Mittelalter lebendig: Der Stauferkaiser Friedrich I. Barbarossa ließ nach der Eroberung Mailands den Pflug über die Stadt gehen und Salz in die Furchen säen.204

199 Vgl. Rykwert 1976, 199. 200 Filarete, De Arch. IV, fol. 26v, 27r. 201 Servius, Vergil Aen. IV, 212; Horaz, Carmina I, 16. 202 Vgl. Kühn 1963, 344; Rykwert 1976, 70. 203 Macrobius, Saturnalia III, 19; vgl. Rykwert 1976, 70. 204 Vgl. Braunfels 2012, 20; Rykwert 1976, 202.

3. Z  ur geometrischen Konstruktion von streng geometrischen und figürlichen Stadtgrundrissen

3.1 Die Symbolik urbaner Tetragonalität 3.1.1 Die Civitas Dei als Idealstadt des Hoch- und Spätmittelalters Die christliche Theologie augustinischer Prägung verknüpfte den antiken civitas-Begriff mit der Vorstellung von der jenseitigen Civitas Dei und erweiterte ihn so um eine eschatologisch-apokalyptische Komponen­te.1 Bevor es in der barocken Bildsprache üblich wurde, das Reich Gottes als ein ätherisches Wolken- und Lichtgebilde zu imaginieren, setzte die christliche Glaubenswelt das Jenseits mit einer von Gottes Hand geplanten, festummauerten Stadt gleich (vgl. Abb. 54).2 Diese himmlische Stadt, auch als das Neue Jerusalem (Nova Hieru­ salem) bezeichnet, galt als Sinnbild der ewigen göttlichen Ordnung und jenseitiger Wohnsitz einer Schar Rechtgläubiger, die im Rahmen des Jüngsten Gerichts auserwählt wird.3 In den Himmel gelangen war für die christliche Theologie des Hoch- und Spätmittelalters gleichbedeutend damit, die Bürgerschaft der von Engeln und Heiligen bewohnten Himmels- Abb. 54: Das Neue Jerusalem nach der Vision des stadt zu erlangen.4 Ezechiel (Nikolaus von Lyra, Postille, 1485). 1 2 3 4

Vgl. Llanque 2008, 90 f. Vgl. Sedlmayr 1950, 97; von Simson 1982, 24; Rath 1983, 81. Tertullian, De spect. 30, 1. Vgl. Sedlmayr 1950, 97; Kugler 1986, 139; Haverkamp 1987, 124; Bernet 2007, 21. Die mittelalterliche Vorstellung von der jenseitigen Stadt lebt heute noch als klassisches Schwankmuster von Petrus als Pförtner am Himmelstor fort. Vgl. Bandmann 1972, 72; Monumenta Annonis 1975, 99. Diese Vorstellung geht auf den jüdischen Platoniker Philon von Alexandria (10/15 v. Chr.–40 n. Chr.) zurück, der darlegte, dass nur tugendhafte Menschen das Bürgerrecht für die von Gott gegründete Stadt (πόλις θεοῦ) erwerben können (Philon v. Ale­ xandria, De opificio mundi IV, 17 ff.).

118

Streng geometrische und figürliche Stadtgrundrisse

Abgesehen von platonischen Einflüssen5 wurde das mittelalterliche Bild von der civitas als Sinnbild der neuen göttlichen Ordnung vor allem durch die biblischen Schriften gespeist, die die physische Gestalt der transzendenten Idealstadt detailliert beschrieben, nämlich die Vision des Ezechiel, ein Buch des Alten Testaments und die Johannes-Apokalypse, das letzte Buch des Neuen Testaments.6 Die alttestamentliche Schrift, bei der es sich um eine Sammlung von Visionen und Reden des jüdischen Priesters Ezechiel oder Hesekiel handelt, war im 6. vorchristlichen Jahrhundert während des jüdischen Exils in Babylon entstanden, weshalb die urbane Vision deutliche Züge der orientalischen Großstadt trägt.7 Vor dem historischen Hintergrund der Eroberung Jerusalems im Jahr 597 v. Chr. durch Nebukadnezar II., die mit der Zerstörung der Stadt und des Salomonischen Tempels, dem zentralen Heiligtum des jüdischen Glaubens, einherging, zeichnet die Ezechielvision ein detailliertes Bild von einem Neuen Jerusalem als Sinnbild der neugeordneten Welt, von der man glaubte, dass sie nach der Zerstörung Jerusalems durch Gottes Hand erschaffen werde.8 Im Zentrum der Schrift steht die Vision der transzendenten Stadt mit dem zentralen Heiligtum, weshalb sie auch Tempelvision genannt wird.9 Vor den Augen des Protagonisten fertigt ein Engel in der Rolle des göttlichen Vermessers mit einer »leinenen Schnur und einer Messrute« ein detailliertes Aufmaß sämtlicher architektonischer Teile der »Stadt auf dem Berge« an.10 Dabei spielt das Quadrat eine besondere Rolle (vgl. Abb. 55). Als geometrisches Grundmodul bestimmt es nicht nur den Umriss der Stadtmauer11, sondern auch die Gestalt des Tempelbezirks12, des Tempels13, des Vorhofs 14 und des Allerheiligsten15. Das auf dem Quadrat beruhende Rastersystem, das in der Vision als Sinnbild für die vollkommene Ebenmäßigkeit und Symmetrie der endzeitlichen Stadt steht, avancierte zur architektonischen Vorlage weiterer eschatologischer Szenarien: Nicht nur das Neue Jeru-

  5   6   7   8  9 10 11 12 13 14 15

Platon, Pol. 592a–b; vgl. Aune 1998, 1153. Ez. 40,1 ff.; Joh. Off. 21 ff. Vgl. Sedlmayr 1950, 97 ff. Vgl. Neuss 1912, 6. Vgl. Sedlmayr 1950, 108; de Champeaux/Sterckx 1990, 125; Meier 1977, 72, Anm. 206. Hieronymus berichtete, dass es wegen der schwierigen Auslegung des Textes Juden vor der Vollendung des dreißigsten Lebensjahres nicht erlaubt war, die Gottesvision und die Tempelvision zu lesen (Neuss 1912, 23). Ez. 40,1. Ez. 48,16. Ez. 42,15–20. Ez. 41,13–15. Ez. 40, 47. Ez. 41,4. Nach der Beschreibung beträgt der Umfang der Stadt 4500 × 4500 Ellen, der Tempelbezirk 500 × 500 Ellen, Tempel und Vorhof 100 × 100 Ellen und das Allerheiligste 20 × 20 Ellen.

Die Symbolik urbaner Tetragonalität

119

Abb. 55: Die Vermessung des Himmlischen Jerusalems (Apokalypsenkommentar des Beatus von Liébana, Spanien, 10. Jahrhundert).

salem, das in den Schriftrollen aus Qumran beschrieben wird, ist stark von der Ezechielvision beeinflusst, auch in der christlichen Vorstellungswelt wurde sie intensiv rezipiert.16 Das Motiv vom Dualismus des Himmlischen Jerusalems als transhistorische Reduplikation der irdischen Stadt hatte großen Einfluss auf die christliche Offenbarungsliteratur, insbesondere auf die Apokalypse des Johannes.17 Die gegen Ende des ersten nachchristlichen Jahrhunderts entstandene Schrift liefert gleichfalls eine detaillierte Beschreibung der Himmelsstadt als Sinnbild der neugeordneten Welt, wobei auch sie besonderen Fokus auf den Akt der Vermessung legt (vgl. Abb. 55).18 Ähnlich wie ihre alttestamentliche Vorlage ist die apokalyptische Vision vor dem Hintergrund der römischen Eroberung Jerusalems im Jahr 70 n. Chr. entstanden, die ebenfalls mit der Zerstörung der Stadt und des Tempels des Herodes einherging, und beschreibt in drastischen Bildern den Untergang 16 In der Qumrangemeinde herrschte die Vorstellung eines rechteckigen Jerusalems mit zwölf Toren vor (vgl. Sim 1996, 65). 17 In der frühen christlichen Kirche war man überzeugt, dass der Verfasser der Apokalypse identisch mit dem Apostel Johannes ist, der als Verfasser des gleichnamigen Evangeliums galt (vgl. von Bendemann 2013, 62). 18 Vgl. von Bendemann 2013, 64.

120

Streng geometrische und figürliche Stadtgrundrisse

Abb. 56: Das Himmlische J­ erusalem nach der Johannes-Offenbarung (­Fresko in der Abtei San Pietro al Monte in Civate, 12. Jahrhundert).

der bestehenden Weltordnung, die kollektive körperliche Auferstehung der Toten und das Weltengericht.19 Höhepunkt und Ende der Apokalypse ist die Bauvision der neuen Stadt als Inbegriff der neuen Weltenordnung.20 Rekurrierend auf die Ezechielvision wird die zwölftorige Stadt nicht nur als eine quadratische (τετράγωνος) Anlage beschrieben, sondern als ein gigantischer Kubus mit einer Seitenlänge von 120 000 Stadien.21 Die kubusförmige Erscheinung – eine gestaltliche Parallele zum Allerheiligsten des Salomonischen Tempels22 – unterstreicht den Charakter des Neuen Jerusalems als Tempelstadt Gottes.23 Auffallend ist die auf die Zwölf und ihre Vielfachen bezogene Zahlensymbolik: In der zwölftorigen Stadt24, deren Mauer hundertvierundvierzig Ellen (12 × 12) misst25 und die auf zwölf Grundsteinen26 errichtet wurde, sitzen vierundzwanzig Älteste (2 × 12) um den Thron Gottes27, während hundertvierundvierzigtausend Rechtgläubige (12 × 12 × 1000) in ihr wohnen.28 Im Zentrum 19 Vgl. Riedel 2005, 39. 20 Vgl. von Bendemann 2013, 64. 21 Joh. Off. 21,16. Allerdings ist es in der Exegese umstritten, ob sich die 12 000 Stadien auf die Länge des Umfangs oder auf eine Seite beziehen (vgl. Aune 1998, 1160 f.; Sim 1996, 104; Müller-Fieberg 2003, 103; von Bendemann 2013, 77). 22 1Kön 8,29. Vgl. Sim 1996, 104; von Bendemann 2013, 77. 23 Vgl. Sim 1996, 105. 24 Joh. Off. 21,12. 25 »Und er maß ihre Mauer, 144 Ellen, eines Menschen Maß, das ist des Engels« (Joh. Off. 21,17). Vgl. Sim 1996, 105; Aune 1998, 1162; von Bendemann 2013, 76. 26 Joh. Off. 21,14. 27 Joh. Off. 4,4. 28 Joh. Off. 7,4.

Die Symbolik urbaner Tetragonalität

121

Abb. 57: Das Paradies als Gartenstadt (Mariotto di Nardo, Anfang des 15. Jh.).

der aus Gold, Kristall und Edelsteinen errichteten, leuchtenden Stadt befinden sich der Baum des Lebens und die Quelle des Wassers des Lebens.29 Bei dieser Beschreibung klingen Motive der Paradieserzählung der Genesis an, in der der Garten Eden mit dem Baum des Lebens, dem Baum der Erkenntnis und dem Paradiesstrom geschildert wird (vgl. Abb. 56).30 So überlagert das Stadtmotiv die vorderasiatische Vision vom Paradies als Garten, wodurch gleichsam das erste und das letzte Buch der Heiligen Schrift in Deckung gebracht werden 29 »Und er zeigte mir einen Strom von Wasser des Lebens, glänzend wie Kristall, der hervorging aus dem Throne Gottes und des Lammes. In der Mitte ihrer Straße (πλατεία) und des Stromes, diesseits und jenseits, war der Baum des Lebens« (Joh. Off. 22,1–2). Die griechische Bezeichnung πλατεία ist ebenso wie die lateinische Entsprechung plataea doppeldeutig, da es sowohl die breiteste Straße als auch den Marktplatz einer antiken Stadt bezeichnen kann (vgl. Sim 1996, 40 und 116). 30 »Und Gott ließ aus dem Erdboden allerlei Bäume wachsen, lieblich anzusehen und gut zur Speise; und den Baum des Lebens in der Mitte des Gartens, und den Baum der Erkenntnis des Guten und Bösen. Und ein Strom ging aus von Eden, den Garten zu bewässern; und von dort aus teilte er sich und wurde zu vier Flüssen« (1. Mose 2,9–10). Vgl. Sim 1996, 126.

122

Streng geometrische und figürliche Stadtgrundrisse

und das Neue Jerusalem als apokalyptische Gartenstadt erscheint (vgl. Abb. 57).31 Durch die Analogie, die den Gegensatz zwischen der von Gott geschaffenen Natur und der vom Menschen geschaffenen Zivilisation aufhebt, entsteht das Bild eines harmonischen Gleichgewichts vom Anfang und Ende.32 Ein markanter Unterschied zwischen der Johannes-Offenbarung und seiner alttestamentlichen Vorlage, der Ezechielvision, besteht darin, dass in der christlichen Version der endzeitlichen Stadt kein Heiligtum, kein Tempel oder keine Kirche zu finden sind: Und ich sah keinen Tempel in ihr. Denn der Herr, Gott, der Allmächtige, ist ihr Tempel, und das Lamm.33 Indem Gott und der im Lamm personifizierte Gottessohn in der Stadt immanent sind, avanciert die Stadt selbst zum Heiligtum, mit der Folge, dass die Entitäten Stadt und Tempel austauschbar werden.34 In der urbanen und sakralen Architektur des Hoch- und Spätmittelalters wurde die allegorische Doppeldeutigkeit der Identität von Kirche und Stadt mit großem Baueifer verwirklicht.35 Das aus den heiligen Schriften entwickelte eschatologische Bild einer neuen urbanen Weltordnung floss in die augustinische Lehre ein, die wirkungsgeschichtlich großen Einfluss auf den mittelalterlichen Stadtbegriff haben sollte. Vor dem Hintergrund der Zerstörung Roms durch die Westgoten im Jahr 412 stellte Augustinus Aurelius in seinem Hauptwerk De Civitate Dei die Geschichte der Menschheit als ein Nebeneinander zweier Städte vor, die trotz ihres unvereinbaren Gegensatzes auf ewig verbunden bleiben sollten: zum einen die Stadt Gottes, die civitas Dei als jenseitiges Reich aller guten Christen und zum anderen die Stadt der Menschen, die civitas terrena, die zwar nach dem transzendenten Vorbild konzipiert ist, jedoch durch Schuld und Sünde ihre Vollkommenheit

31 Der Begriff Paradies, der in der Septuaginta als Entsprechung des Garten Edens (Genesis 2,8) gebraucht wird, ist iranischen Ursprungs und geht auf das mittelpersische *pardēz (umzäunter Bereich) zurück. Xenophon (Oikonomikos 4, 20 ff.) benutzt den Begriff παράδεισος erstmals im Griechischen bei der Beschreibung des Gartens des persischen Königs Kyros, der nach strengen geometrischen Grundsätzen gestaltet ist. Das den Griechen fremde Bild eines Königs bzw. eines Gottes als Gärtner wurde im frühen Christentum aufgegriffen (vgl. Fauth 1979, 5; Mayer-Tasch/Mayerhofer 1998, 1; Leutzsch 2010, 43 ff.). 32 Die Analogie vom Ersten und vom Letzten findet sich auch in anderen frühchristlichen Schriften, wie z. B. im Barnabas-Brief (6,13), der Ende des 1./Anfang des 2. Jhs. entstanden ist: »Hinwiederum will ich dir zeigen, wie er zu uns redet; eine zweite Schöpfung hat er in letzter Zeit gewirkt. Der Herr spricht: Siehe, ich mache das letzte (τὰ ἔσχατα) wie das erste (τὰ πρῶτα)« (vgl. Sim 1996, 126; von Bendemann 2013, 66 und 82). 33 Joh. Off. 21,22. Vgl. Sim 1996, 117. 34 Vgl. Aune 1998, 1166 ff.; Sim 1996, 119. 35 Vgl. Sedlmayr 1950, 91 ff.; Corboz 1994, 11.

Die Symbolik urbaner Tetragonalität

123

einbüßte und daher dem Verfall preisgegeben ist.36 Augustinische Vorstellungen beeinflussten die im 12. Jahrhundert entstandene universalgeschichtliche Abhandlung Chronica sive Historia de duabus Civitatibus (Chronik oder die Geschichte der beiden Städte) des Bischofs und Zisterziensermönchs Otto von Freising, der die dualistische Weltenlehre des Kirchenvaters mit der mittelalterlichen Historiographie verwob.37 Doch abweichend von der patristischen Auffassung konnten Otto von Freising zufolge auserwählte Menschen durch besondere Verdienste das Privileg erhalten, bereits nach ihrem Tod als Bürger in der civitas Dei zu wohnen. Unter denjenigen, die nicht wie die übrigen bis zum Jüngsten Tag auf den Einzug in das Himmlische Jerusalem warten mussten, nennt Otto Henoch, den Gott zum großen Bürger der Stadt Gottes machte (magnus civitas Dei cives).38 Henoch – der Genesis zufolge auch der Name von Kains Sohn und der ersten Stadtgründung der biblischen Weltgeschichte – stand im Hochmittelalter als Synonym für den gottgefälligen Städtebau des auserwählten Volkes.39 Inspiriert durch die Heiligen Schriften und die augustinische Lehre entwickelte sich also im Hochmittelalter ein mehrsinniges Gedankengebäude um das Analogon der himmlischen und der irdischen Stadt.40 Der Abbildcharakter der diesseitigen Stadt hinsichtlich ihres jenseitigen Archetyps war dem neuplatonisch-christlichen Verständnis nach keineswegs eine vage Parallele, sondern stellte im ontologischen Sinn einen verbindlichen Bezug zwischen den beiden Entitäten her.41 Nach den Gesetzen der neuplatonischen Analogie entsprachen die Eigenschaften der mittelalterlichen Stadt in vollem Umfang denen des transzendenten Archetypen, so dass jede mittelalterliche civitas als ein Ort gedacht wurde, an dem himmlische und irdische Sphäre verknüpft erscheinen.42 Diese Vorstellung war so selbstverständlich, dass sie nach mittelalterlichem Verständnis keiner weiteren Erläuterung bedurfte.43 Die apokalyptischen Schriften wurden deshalb den hoch- und spätmittelalterlichen Baumeistern gleichsam zu Gestaltungsvorlagen, wobei insbesondere die tetragonale 36 Augustinus, Civ. Dei. Vgl. Brackmann 1955, 32; Andresen 1978, XVII; Dinkler 1967, 360; Gurjewitsch 1978, 119; Llanque 2008, 90. 37 Vgl. Schmidlin 1906, 65 ff.; Töpfer 1964, 26; Lohse 1998, 99 ff.; Brückle 2005, 101. 38 Otto v. Freising, Chronik IV, 4. Vgl. Schmidt 2011, XLVI. 39 Vgl. von den Brincken 1992, 159. 40 Die Analogie wird in einem Brief des Zisterzienserabtes Bernhard von Clairvaux (Epistula, 64) deutlich, in dem er sein Kloster mehrfach mit dem Himmlischen Jerusalem vergleicht: »Euer Philipp wollte nach Jerusalem aufbrechen. Er fand einen Weg, die Reise abzukürzen, und kam rasch, wohin er wollte. (…) Betreten hat er die Heilige Stadt. (…) Er ist (…) ein eingeschriebener Bürger in Jerusalem; freilich nicht in dem irdischen, das am Berg Sinai in Arabien liegt, sondern in jenem freien Jerusalem, das unsere Mutter im Himmel ist. Wenn Ihr es wissen wollt: Clairvaux ist es. Dieses selbst ist Jerusalem, dem himmlischen ganz verbunden durch Frömmigkeit der Seele, Nachfolge im Leben und besondere Verwandtschaft des Geistes« (vgl. Sedlmayr 1950, 108; Meier 1977, 72, Anm. 206; de Champeaux/Sterckx 1990, 125; Neuss 1912, 6). 41 Vgl. Sedlmayr 1950, 135. 42 Vgl. Fabritius 2005, 65; Lilley 2009, 27. 43 Vgl. Sedlmayr 1950, 104.

124

Streng geometrische und figürliche Stadtgrundrisse

Gestalt und das Maß- und Proportionssystem in der Sakralarchitektur und im Städtebau adaptiert wurden.44 Das Motiv eines urbanen Jenseits mit paradiesischem Charakter fand im Mittelalter nicht nur in der bildenden Kunst eine breite Rezeption, sondern auch in der hochmittelalterlichen Literatur und in der urbanen Architektur des 12. und 13. Jahrhunderts, die bezeichnenderweise zahlreiche Gartenmotive kennt.45 3.1.2 Stadtgründung und Apokalypse Seit der ersten Jahrtausendwende erwartete die Christenheit das Anbrechen der in den Heiligen Schriften beschriebenen neuen Weltordnung. Für die Gläubigen stand der Begriff Apokalypse – anders als im heutigen Sprachgebrauch – nicht allein für ein katastrophales Ende, sondern vor allem für einen ersehnten Anfang.46 Die chiliastische Erwartung ging in Gestalt der Kreuz- und Pilgerzüge mit massiven Migrationsbewegungen einher und veränderte nicht nur den Alltag, sondern hatte auch großen Einfluss auf politische Entscheidungen.47 Es waren die Bilder vom drohenden Weltuntergang, mit denen Bernhard von Clairvaux den zögernden französischen König Ludwig VII. im Jahr 1146 schließlich überzeugte, zum Zweiten Kreuzzug zu rüsten.48 Doch bereits im Vorfeld des Ersten Kreuzzugs im Jahr 1098 fanden große Pilgerzüge nach Jerusalem statt, wie der Passauer Bischof Altmann (1015–1091) schilderte: In jener Zeit [im Jahr 1061] zogen viele edle Herren nach Jerusalem, um das Grab des Herrn zu besuchen. Sie waren von einer gewissen Volksmeinung verführt zu glauben, dass der Tag des Jüngsten Gerichts nahe sei, weil Ostern in jenem Jahr auf den 6. Tag vor den Kalenden des April fiel, welcher Tag als Tag der Auferstehung Christi angesetzt wird. Dergestalt verließen, von Schrecken erfasst, nicht allein viele einfache Leute, sondern auch Fürsten und selbst Bischöfe verschiedener Städte (…) ihre Heimat und folgten, das Kreuz tragend, Christus nach.49

44 Vgl. Bernet 2007, 227. 45 So schaute die pisanische Einsiedlerin Gerardesca den Himmel als einen mit den Attributen des Neuen Jerusalem ausgestatteten, oberitalienischen Stadtstaat des 13. Jahrhunderts, der inmitten eines paradiesischen Territoriums liegt (vgl. Müller-Fieberg 2003, 283 f.; von Bendemann 2013, 92). 46 Vgl. Bernet 2007, 2: Wörtlich bedeutet Apokalypse Enthüllung, Entschleierung und kann als Hinweis auf die Mysterientradition, aus dessen Zusammenhang die Vision stammt, gewertet werden. 47 Vgl. Duby 1979, 49. Viele Religionen kennen die Vorstellung von dem Ende eines zeitlichen Zyklus mit der Ankunft eines Erretters, der das Böse besiegt und eine neue Welt wiederherstellt. Der Retter (Σωτήρ) ist entweder ein vermenschlichter Gott oder ein vergöttlichter Mensch (vgl. Jeremias 1913, 205). 48 Vgl. Schmidt 2011, XV. 49 Vgl. Niehoff 1985, 59.

Die Symbolik urbaner Tetragonalität

125

Auch im 13. und 14. Jahrhundert hielt die von der apokalyptischen Stimmung getragene Pilger- und Kreuzzugbewegung nach Jerusalem an. Als messianisches Herrscherzeremoniell inszeniert, erfolgte am 17. März 1229 der feierliche Einzug des Stauferkaisers Friedrich II. in die Heilige Stadt Jerusalem, begleitet von einer enthusiastischen Schar von Pilgern, die trotz eines päpstliches Verbotes Augenzeugen des apokalyptischen Zuges sein wollten.50 Im Jahr 1233, also 1200  Jahre nach dem überlieferten Kreuzestod Jesu Christi, radikalisierte sich die von den Bettelorden getragene Armutsund Bußbewegung, in deren Gefolge StröAbb. 58: Die Errichtung des Himmlischen Jerusalems (Ausschnitt aus dem Utrechter Psalter, 9. Jahrme von Franziskanern lombardische Städte hundert). durchzogen und das Ende der Welt verkündeten.51 Ähnliche Vorgänge wiederholten sich im Jahr 1260, also in dem Jahr, das von dem kalabresischen Mönch Joachim von Fiore als Beginn der dritten Weltzeit prophezeit worden war: In diesem Jahr sollte sich nämlich die in der Offenbarung des Johannes verkündete Apokalypse ereignen, die mit dem Beginn des letzten Reichs gleichgesetzt wurde, das der Prophezeiung nach im Zeichen des Heiligen Geistes und des ordo monachorum, der monastischen Ordnung stehen soll.52 Ausgerechnet in der aufgeheizten Endzeitstimmung des 12. bis 14. Jahrhunderts wurde Europa von einem flächendeckenden urbanen und monastischen Netzwerk überzogen.53 Doch gerade der apokalyptisch-eschatologische Mythos von der Heiligen Stadt fungierte als Antrieb der hoch- und spätmittelalterlichen Stadtgründungswelle.54 Denn nach der gängigen Glaubensvorstellung galt das irdische Leben lediglich als Weg einer Pilgerreise in das Himmlische Jerusalem, auf dem den Gläubigen die Möglichkeit gewährt wurde, sich zu bewähren, indem sie durch gottgefällige Taten Verdienste erwürben.55 Durch die 50 51 52 53 54

Vgl. Kantorowicz 1998, 154 f. Vgl. Horst 1975, 224. Vgl. Rosenberg 1955, 18; Töpfer 1964, 49; Boiadjiev 2002, 178. Vgl. Konrad 1965, 523; Sydow 1968, 190; Fabritius 2005, 65; Melville 2007, 19. »Vivis si credis; si autem credis, efficeris templum Dei« (Augustinus, In psalmum 121). Vgl. Bandmann 1972, 67; Meier 1977, 73; Kugler 1986, 107; Pourshirazi 2007, 37. 55 Nach der sogenannten Engellehre des Kirchenvaters Augustinus (Augustinus, De civ. Dei 22, 1) war eine bestimmte Zahl an Rechtgläubigen dazu ausersehen, in der Himmlischen Stadt den Platz der gefallenen Engel einzunehmen, der durch den Sturz der Teufel entstanden war: »Alle übrigen vernunftbegabten Ge-

126

Streng geometrische und figürliche Stadtgrundrisse

Gründung und Stiftung von Städten, Klöstern und Kirchen versprachen sich die Gläubigen, in die am Himmlischen Jerusalem bauende Gemeinschaft aus Engeln und Heiligen (communio sanctorum) der civitas Dei aufgenommen zu werden (vgl. Abb. 58).56 Das Bauen an der irdischen Stadt wurde gleichbedeutend mit dem Bauen am Himmlischen Jerusalem.57 Der Städtebau avancierte so nicht nur zum werktätigen Gottesdienst, sondern auch zu einem Mittel, den eigenen Namen im Himmel zu bestätigen.58 Die von einem religiösen Sendungsbewusstsein geleiteten Gründer fühlten sich nicht nur durch göttlichen Auftrag legitimiert, sondern versprachen sich durch den Städte- und Sakralbau eine Beschleunigung des Weltenendes.59 Zahlreiche Stifterzeugnisse spiegeln das Streben der Gläubigen wider, durch irdische Bautätigkeit Einlass in das Himmlische Jerusalem zu erlangen: Bernward, der Gründer des Hildesheimer Michaelis-Klosters, formulierte diesen Gedanken in der Gründungsurkunde aus dem Jahr 1019 folgendermaßen: In Erwägung dessen habe ich, Bernward, (…) lange bei mir nachgesonnen, durch welches Bauwerk meiner Verdienste, durch welches kostbare Gut ich mir den Himmel verdienen könne.60 Der Stifter, der eigens Vermesser nach Jerusalem entsandt hatte, um die Maße des Heiligen Grabes in Erfahrung zu bringen, erhoffte sich also durch die Errichtung seines Klosters, einen Anspruch auf die Aufnahme in den Himmel erwerben zu können.

56

57 58 59 60

schöpfe dagegen, nämlich die Menschen (…) sollten einen Ersatz bilden für den Verlust, den die Gesellschaft der Engel durch den Sturz der Teufel erlitten hatte. (…) So wird denn das himmlische Jerusalem, unsere Mutter, die Stadt Gottes, an der Vollzahl seiner Bewohner nichts einbüßen, ja vielleicht wird es sogar über noch reichlichere Scharen gebieten dürfen. (…) Die Schar der Himmelsbürger aber, diejenigen, die es schon sind, so gut wie diejenigen, die es erst werden sollen, erfreut sich der Anschauung des Weltenmeisters, der »das, was schon ist, ruft wie das, was noch nicht ist« und alles nach Maß und Zahl und Gewicht zu ordnen weiß« (Augustinus, Enchiridion 9, 29). Vgl. Kaup 1961, 36; Lohse 1998, 99; Dürr 2009, 65 ff. Bernhard von Clairvaux (Sermones I) unterstrich die Wechselwirkung von irdischer und himmlischer Bautätigkeit: »Der Ruhm der irdischen Stadt zerstört in Wirklichkeit nicht die himmlischen Güter, sondern baut sie auf; wir dürfen überhaupt nicht daran zweifeln, dass diese vergängliche irdische Stadt die Gestalt jener festhält, die im Himmel unsere Mutter ist«. Vgl. Haverkamp 1987, 127). Vgl. Kugler 1986, 139; Reinhardt/Saranyana 2002, 546; Brückle 2005, 98. Vgl. Chenu 1967, 314; Kugler 1986, 81 und 121. Auch Thomas von Aquin (De regno ad regem Cypri II,1) verwies auf die Zeile in der Vulgata »quod aedificatio civitatis confirmabit nomen«. Augustinus, Enchiridion 39, 10. Vgl. Schmidlin 1906, 74; Reinhardt/Saranyana 2002, 546; Lilley 2009, 78. zit. nach Roggenkamp 1954, 122. Auch die Vita des Bischofs Meinwerk erklärte die Gründe für Errichtung des bischöflichen Grabes in der Busdorfkirche folgendermaßen: »Den Eingang in das himmlische Jerusalem sich zu sichern, errichtete er bei Paderborn jene Nachbildung der Grabeskirche des irdischen [Jerusalem]« (zit. nach Jezler 1985, 101).

Die Symbolik urbaner Tetragonalität

127

3.1.3 Ausgewählte Stadtplananalysen Als zentrale Bibeltexte mit rezeptionsgeschichtlich breiter Wirkung beeinflussten die in der Ezechiel- und Johannesvision beschriebenen Entwürfe einer idealen Stadt bis in die Moderne hinein die Stadtplanung Europas.61 Auch die mittelalterlichen Baumeister nutzten die apokalyptischen Schriften mitsamt den darin detailliert angegebenen Formen, Maßen und Proportionen als Vorlage ihrer eigenen Entwürfe – jedoch nie als deckungsgleiche Kopie, sondern immer in Einzelelementen zitiert.62 Eine Eigenschaft der civitas

Abb. 59: Rekonstruktion des Grundrisses von Babylon im 1. Jahrtausend v. Chr. 61 Vgl. von Bendemann 2013, 63. 62 So wurde beispielsweise das sogenannte Engelmaß von144 Ellen oder Fuß zur Leitzahl zahlreicher mittelalterlicher Sakralbauten, z. B. in der Grabeskirche in Jerusalem, im Grabmal der Helena in Rom und in den Dombauten von Aachen und Florenz (vgl. Kreusch 1963, 64 f.; Braunfels 1965, 206; Meyer 1975, 183).

128

Streng geometrische und figürliche Stadtgrundrisse

Dei, die in den Visionen als Sinnbild für die vollkommene Ebenmäßigkeit und Symmetrie der endzeitlichen Stadt steht, verleiht dem urbanen Raum einen hervorgehoben artifiziellen Charakter, da sie ihn in wesentlicher Form aus seiner natürlichen Umgebung heraushebt: Es ist die Tetragonalität, wobei das mehrsinnige Adjektiv τετράγωνος, wie es im griechischen Original der Johannesapokalypse heißt, wörtlich vierwinklig bedeutet und im Deutschen mit den geometrischen Eigenschaften viereckig, rechteckig und rechtwinklig wiedergegeben werden kann.63 In die Sprache des Städtebaus übersetzt, kann sich die Tetra­gonalität eines urbanen Grundrisses sowohl auf einen vier- bzw. rechteckigen Umriss einer Stadt beziehen als auch auf ein internes Rastersystem, das als orthogonales Ordnungselement Straßen und Parzellen gliedert. Die Vorstellung vom Raster als urbanem Ideal einer geplanten Stadt war keine genuin jüdisch-christliche Innovation, sondern dem Städtebau des ersten und zweiten vorchristlichen Jahrtausends entliehen. Die tetragonale Stadt findet sich nicht nur in ägyptischen Festungen und Städten des Mittleren und Neuen Reichs, sondern auch in Mesopotamien, beispielsweise in Babylon, der Stadt, in der die Ezechielvision verfasst wurde (vgl. Abb. 59).64 Trotz dieser langen Tradition wurde die Tetragonalität seit dem Hellenismus mit dem Namen des im 5. vorchristlichen Jahrhunderts lebenden griechischen Baumeisters Hippodamus von Milet verbunden.65 Sein Name stand Pate für ein Schachbrettsystem, das auf einem rechtwinklig-parallelen Straßenverlauf und gleichförmiger Parzellierung basiert, während sich der äußere Umriss Abb. 60: Rekonstruktion des Grundrisses von Milet um 400 v. Chr. der Landschaft anpasst – im Falle Milets 63 »Und die Stadt liegt viereckig (καὶ ἡ πόλις τετράγωνος κεῖται)« (Joh. Off. 21,16). Vgl. Braunfels 1976, 134 64 Vgl. Sim 1996, 104. 65 Plat. Prot. 344a; Aristoteles (pol. 1330b–31) bezeichnete eine Stadt mit orthogonaler Grundstruktur als einen hippodamischen Ort (ἱπποδαμεῖος τρόπος), dem ein eigenes Ordnungsprinzip (κόσμος) zu Grunde liege. Das Gleichmaß, das das urbane Straßen- und Parzellensystem prägt, wurde mit dem demokratischen Konzept der Isonomie (Besitzgleichheit) in Zusammenhang gebracht. Abgesehen von Milet gelten die Stadtgrundrisse von Piräus, Olynth, Rhodos und Priene als hippodamisch (vgl. Rykwert 1976, 72; Kolb 1984, 115 ff.; Schubert 1996, 23 ff.; von Bendemann 2013, 78).

Die Symbolik urbaner Tetragonalität

129

der Landzunge, auf der die Stadt liegt (vgl. Abb. 60). Mit seinem dediziert artifiziellen Charakter verlieh das hippodamische Schachbrettsystem der Landschaft eine geometrische Ordnung und avancierte so in der griechischen Welt zum Inbegriff der idealen Stadt. Das um die Tetragonalität entwickelte Ideal einer Planstadt entfaltete im römischen Imperium großen Einfluss auf die gebaute urbane Welt vom Vorderen Orient bis zu den Britischen Inseln, denn auch die römische Raumauffassung fußte auf dem Raster.66 Angefangen von den kleinsten Einheiten einer Stadt, den insulae, über das urbane Straßensystem, den Umriss der coloniae und castra bis hin zur Limitation ganzer Landstriche beruhte die sakrale Raumordnung Roms auf der Quadratur, weshalb der Begriff Roma quadrata zum Sinnbild der römischen Stadtordnung avancierte (vgl. Abb. 61).67 Über das römische Städtewesen ins Mittelalter tradiert, erfuhr das tetragonale System basierend auf den apokalyptischen Visionen eine christliche Deutung, die nicht nur als formaler Bezug auf das Neue Jerusalem aufgefasst wurde, sondern auch als Allegorie auf die christlichen Tugenden.68 Wie der Dominikaner Giordano von Pisa (1255–1311) bezeugte, galten Straßen mit geradem Verlauf aufgrund ihrer Kürze, Gleichförmig­ keit und Einheitlichkeit als SinnAbb. 61: Rekonstruktion des Grundrisses von Timgad in der Provinz Afrika um 100 n. Chr. bild der tugendhaften Vollkommenheit.69 Bereits in den angelsächsischen Gründungen des 10. Jahrhunderts, den sogenannten burhs, realisiert, waren die streng rechtwinklig-geometrischen Grundrisse Ende des 13. Jahrhunderts in ganz Europa in den Neuen Städten verbreitet: In der Toskana findet man sie in den terrenuove, im spanischen Katalonien in den villanovas, in Mittel- und Osteuropa in den Neustädten, den nové město und nowe miasto, in Frankreich schließlich in den bastides seu villae novae.70 Dem urbanen Phänomen der Neuen Städte, das Europa zwischen dem 12. und 14. Jahrhundert erfasste, ist gemein, dass die tetragonalen Anlagen von einer zentralen Platz­anlage domi66 67 68 69 70

Vgl. Sim 1996, 30 und 103. Vgl. von Bendemann 2013, 78. Vgl. Randolph 1995, 299; Fabritius 2005, 62. Giordano, Predigt Nr. 5; zit. nach Braunfels 1959, 102. Vgl. Randolph 1995, 291; Dubourg 2002, 11 f.; Lilley 2009, 63; Boerefijn 2010, 127.

130

Streng geometrische und figürliche Stadtgrundrisse

niert werden (vgl. Abb. 62). In der Regel als Viereck gestaltet, zitieren die Plätze in ihrer architektonischen Gestaltung Charakteristika der apokalyptischen Idealstadt, so dass sie gleichsam als ein Neues Jerusalem en miniature erscheinen.71 Dazu gehören abgesehen von ihrer tetragonalen Form Brunnen, die als gebaute Allegorie auf das Wasser des Lebens (aquae vitae) verstanden werden können, Säulenmonumente als architektonische Entsprechung des Baums des Lebens (lignum vitae) und platzsäumende Arkaden, die ebenso wie die Kreuzgänge der Klöster als architektonische Reminiszenz eines belaubten Gartenspaliers den paradiesischen Gartencharakter der Anlage hervorheben.72

Abb. 62a–d: Die Grundrisse von Massa Lombarda (Prov. Ravenna, Italien), Briviesca (Prov. Burgos, ­Spanien), Wiener Neustadt (Niederösterreich), Nový Jičín (Tschechien) nach historischen Katasterplänen. 71 Vgl. Corboz 1994, 7. 72 Schulze 1994, 9 ff.; Randolph 1995, 294; Geßner 2015a, 13, Anm. 45.

Die Symbolik urbaner Tetragonalität

131

3.1.3.1 Tournay

Das am Fuß der Pyrenäen gelegene südfranzösische Tournay (Dép. Hautes-Pyrenées) gehört zu dem ambitionierten Städtenetzwerk der sogenannten bastides, das im 13. und 14. Jahrhundert den bis dahin wenig urbanisierten Südwesten Frankreichs überzog und Schätzungen zufolge über 700 Neugründungen hervorbrachte.73 Initiiert und ausgeführt wurde die systematische Urbanisierung von Gründungsgemeinschaften aus Vertretern der Französischen und Englischen Krone und den jeweiligen Landbesitzern, in der Regel weltliche oder klerikale Landesherren oder Klöster.74 Der Zusammenschluss erfolgte im Rahmen sogenannter paréages, formaler Übereinkünfte, die die Rechte und Pflichten der Vertragsparteien verbindlich regelten.75 Zudem wurde der Akt der Stadtgründung meist durch eine schriftliche Fixierung der Stadtrechte (chartes des franchises oder chartes des coutumes) begleitet. Auch für die vom französischen König Philippe IV., vertreten durch seinen sénéchal Jean de Mauquenchy, und dem Landesherrn Boémond d’Astarac, seigneur de Sauveterre en Gaujaguez und de Ranson en Bigorre, durchgeführte Gründung Tournays haben sich die Gründungsdokumente erhalten.76 Aus ihnen geht hervor, dass Boémont d’Astarac zur Errichtung der neuen bastide Tournay, die ihren Namen nach der belgischen Stadt Tournai als Erinnerung an einen militärischen Sieg erhielt, das Territorium der bereits bestehenden Burg und Siedlung Renso zur Verfügung stellte.77 Die Neugründung war mit der Aufgabe der Vorgängersiedlung verbunden, die Bewohner Rensos erhielten damit eine neue Identität.78 Solch bauliche und rechtliche Reorganisationen bereits bestehender Siedlungen, die mit dem Neubau einer Stadt und der Umsiedlung einer kompletten Bürgerschaft einhergingen, zeigen den anspruchsvollen Hintergrund eines kostspieligen und aufwendigen Städtebauprogramms. Alle streng-geometrischen bastides besitzen ein gestalterisches Zentrum, aus dem der Grundriss entwickelt wurde. Bei diesem Mittelpunkt handelt es sich in der Regel um ein Straßenkreuz, aus dem die Hauptausfallstraßen entspringen und in dessen Nachbarschaft sich eine großzügige Platzanlage befindet (vgl. Abb. 63a–d). Das urbane Zentrum als Mittelpunkt der räumlichen Organisation war auch Schauplatz der Gründungszeremonie, 73 Der Begriff bastide gehört zu der Wortfamilie des lateinischen bastire und des französischen Verbs bâtir für bauen (vgl. Randolph 1995, 290; Lilley 2009, 46; Boerefijn 2010, 90). 74 Vgl. Randolph 1995, 292, 302; Boerefijn 2010, 112. 75 In den paréages wurden beispielsweise die Personen benannt, die das Land vermessen und aufteilen sollten (vgl. Boerefijn 2010, 107; Randolph 1995, 293). 76 Vgl. Paréage de la bastide Tournay en 1307 (Anhang Tournay). Vgl. Saint-Blanquat 1985, 59; Boerefijn 2010, 142; Abadie 2011, 8 ff. 77 Paréage de la bastide Tournay en 1307, § 1 (Anhang Tournay). 78 So war vertraglich geregelt, dass die Bewohner Rensos abgesehen von eine Parzelle am Hauptplatz der bastide einen arpent Land erhielten (paréage de la bastide Tournay en 1307, § 5/6; vgl. Anhang Tournay; Saint-Blanquat 1984, 67 und 69; Randolph 1995, 291).

132

Streng geometrische und figürliche Stadtgrundrisse

Abb. 63a–d: Die Grundrisse von Montpazier (Dép. Dordogne), Damazan (Dép. Lot-et-Garonne), ­Miramont-de-Guyenne (Dép. Lot-et-Garonne), Masseube (Dép. Gers).

die sowohl jüdisch-christliche als auch altrömisch-etruskische Traditionen inkorporierte. Den Gründungsdokumenten ist zu entnehmen, dass das Gründungsritual analog zum biblischen Schöpfungsmythos sieben Tage dauerte: Nachdem – ganz dem altrömischen

Die Symbolik urbaner Tetragonalität

133

Ritual folgend – am letzten Tag ein Graben, der die Stadtgrenze markierte, gezogen worden war, richtete der Stadtherr im städtischen Zentrum einen mit den königlichen Insignien geschmückten Pfahl (palus) auf, während das Stadtrecht verkündet wurde.79 Ganz ähnlich wird das Ritual in der Gründungsurkunde des südfranzösischen Toulouzette aus dem Jahr 1321 geschildert: Zunächst hob der Stadtherr ein Loch aus, platzierte sodann den palus und verkündete schließlich die Stadtrechte im Namen Gottes, der Heiligen Jungfrau und aller Heiligen.80 Der so eng mit einer mittelalterlichen Stadtgründung verbundene Pfahl, der in den Quellen auch als pal oder pau bezeichnet wird, geht auf den palus sacrificialis zurück, der rituellen Marke, die von den römischen Agrimensoren im Rahmen des antiken Vermessungsrituals gesetzt wurde.81 Aus vermessungstechnischer Sicht ist der palus das mittelalterliche Pendant der antiken groma, die wiederum auf das griechische Gnomon (γνόμων) zurückgeführt werden kann.82 Im römischen Vermessungswesen platzierten die Agrimensoren die groma auf den zentralen Nullpunkt, den lucus gromae, um das rechtwinklige Achsenkreuz aus cardo und decumanus zu bestimmen.83 Gemeinsam mit dem Umkreis der Stadt bilden cardo und decumanus einen viergeteilten Kreis, der den quadrierten Himmelskreis (templum) versinnbildlicht (vgl. Abb. 64).

Abb. 64: Das sogenannte templum des Himmels (links) und seine Projektion auf die Erde (rechts) (Codex Arcerianus, 6. Jahrhundert). 79 Im Englischen bezeichnet der Begriff pole sowohl den Messpfahl als auch den Erdpol. Dieser Doppelbedeutung liegt die Vorstellung zu Grunde, dass der zentrale pole einer Stadt auf den Himmelspol, also den Polarstern, ausgerichtet ist (vgl. Flach 1893, 168; Strahm 1950, 400; Roggenkamp 1954, 123; Randolph 1995, 300; Lilley 2009, 93; Boerefijn 2010, 119). 80 Diese Tradition hat sich bis heute in Form des ersten Spatenstichs bewahrt. 81 Vgl. Gargola 1995, 85. 82 Vgl. Hübner 1992, 141 ff; Gargola 1995, 42; Randolph 1995, 300; Lilley 2009, 216, Anm. 53. 83 Die Etymologie des Begriffs decumanus ist auf den bildlichen Aspekt der lateinischen Zahl zehn, decem (X), zurückzuführen: Die Anlage des decumanus (–) lässt aus der vertikalen Linie des cardo (|) ein Kreuz (+) entstehen, das in archaischer Zeit als Zahlzeichen für die 10 benutzt wurde (vgl. Müller 1961, 16; Rykwert 1976, 60; Folkerts 1989, 125; Hübner 1992, 146, Anm. 52; Gargola 1995, 41, 88; Schubert 1996, 52; Hänger 2001, 24; Torge 2007, 21).

134

Streng geometrische und figürliche Stadtgrundrisse

Abb. 65: Die mittelalterliche Pelourinho von Sintra (links) und eine antike Groma aus Süddeutschland (rechts).

Dieses augurale Diagramm wurde bei jeder Stadt- und Tempelgründung von einem Priester mit dem Krummstab (lituus) auf den Boden gezeichnet.84 Der viergeteilte Kreis der urbs quadrata, in dem sich die vier diametralen Elemente vereinigen, galt als Sinnbild der vom Himmel auf die Erde projizierten Ordnung, wie Hugo von St. Victor erläuterte.85 Jede antike und mittelalterliche Stadt, die nach dem altrömischen Ritual gegründet wurde, besaß einen solchen Mittelpunkt. Häufig erfuhr dieses mittels eines Rituals hergestellte urbane Zentrum eine architektonische Markierung, die – je nach Region und Epoche – unterschiedlich gestaltet sein konnte. In der Regel handelte es sich um vertikale Säulenmonumente, wie Marktkreuze, Rolande, Pranger oder Gerichtsbäume, aber auch andere architektonische Varianten wie Gerichtslauben und Brunnen waren gängig. All diesen Markierungen ist gemeinsam, dass sie abseits des Gründungsrituals sowohl in der städtischen Rechtsikonographie als auch in der Stadtvermessung eine besondere Rolle einnahmen.86 Vor allem bei den säulenartigen Stufenmonumenten – in Frankreich und Belgien perrons, in Portugal pelourinho genannt – 84 Varro (De lingua latinae VII, 6, 11) zählte drei Formen des templum auf, nämlich das des Himmels, das auf der Erde und das unter der Erde (vgl. Cassirer 2010, 118; Müller 1961, 43; Schubert 1996, 5). 85 »Our sight line terminates, in every direction, in a circle we call horizon. Here as noted, the celestial sphere itself seems joined with earth’s surface. (…) The celestial hemisphere sits over this circle. If we draw straight lines from its middle into the four quarters out to its circumference, we divide the horizon into four parts« (Hugo v. St. Victor, Pract. geom. 3; englische Übersetzung nach Homann 1991, 35). Vgl. Cohen 2000, 162; Hänger 2001, 73; Geßner 2015a, 5 ff. 86 Vgl. Geßner 2015a, 5 ff.

Die Symbolik urbaner Tetragonalität

135

Abb. 66: ­Aktueller Katasterplan von Tournay mit rekon­ struiertem Stadtmauerverlauf (­Grundlage: Lavedan/ Hugueney 1974).

ist die formale Analogie zur groma, dem vierarmigen Vermessungsgerät der römischen Agrimensoren, das noch im Mittelalter im Gebrauch war, deutlich (vgl. Abb. 65). Im Falle Tournays fallen Straßenkreuz und Platz zusammen, was der Stadtanlage ihren besonderen, auf Symmetrie und Zentralität der Stadtanlage beruhenden Charakter verleiht und sie mit zeitgleichen Städtegründungen in Osteuropa verbindet.87 Trotz neuzeitlicher Entfestungsmaßnahmen und der daraus resultierenden partiellen Überformung der Parzellenstrukturen, insbesondere im nördlichen und südlichen Verlauf der Stadtmauer, blieb der reguläre Grundriss in seinen wesentlichen Zügen bis heute erhalten (vgl. Abb. 66). Auffallend ist, dass der Grundriss aus dem Viereck entwickelt worden ist: Im Zentrum der Anlage befindet sich der annähernd quadratische, von profaner Bebauung freigehaltene Hauptplatz88, dessen vier Ecken jeweils durch eine viereckige Parzelle, den cantons, die sich Besitz des Stadtherrn befanden, akzentuiert werden.89 Die großzügige Platzanlage, die mit 87 Einen ähnlichen Grundriss zeigen beispielsweise das 1262 durch Přemysl Ottokar II. als Königsstadt gegründete Vysoké Mýto in Böhmen und das 1313 mit Stadtrechten ausgestattete Nový Jičín in Mähren (vgl. Lilley 2009, 49; Boerefijn 2010, 142; Abadie 2011, 2). 88 Abgesehen von einem Ratsgebäude (maison de ville), das sich dort befunden hatte (vgl. Abadie 2011, 27). 89 Paréage de la bastide Tournay en 1307, § 4; vgl. Anhang Tournay.

136

Streng geometrische und figürliche Stadtgrundrisse

über 5000 m2 fast ein Fünftel der gesamten Fläche der Innenstadt einnimmt, wurde von Wohnhäusern gesäumt, die den Bewohnern der Vorgängersiedlung Renso vorbehalten waren.90 Während das zweite Viereck von dem annähernd quadratischen Straßensystem gebildet wird, ist das äußerste Viereck von der Stadtbefestigung aus Stadtmauer und vorgelagertem Graben geformt.91 Zugang zum Stadtgebiet gewährte eine Toranlage im Osten (le pourtal devant) sowie ihr Gegenstück im Westen (le pourtal de dernier).92 Anhand der urbanen Morphologie ist deutlich erkennbar, dass der Tournayer Stadtplan nach dem klassischen Schema des auguralen Diagramms in Gestalt einer urbs quadrata entworfen wurde. Der römischen Tradition zufolge gab es zwei Methoden, das orthogonale Hauptachsenkreuz einer Neugründung anzulegen. Sollte das Achsensystem auf die Himmelsrichtungen ausgerichtet sein, musste mit der Nord-Süd verlaufenden Achse begonnen werden.93 Dazu benutzte man einen Stab (Gnomon oder sciotherum) als Schattenmesser und beobachtete dessen Schattenwurf im Tagesverlauf.94 Da der kürzeste Schatten eines Objekts zur Mittagsstunde ortsunabhängig nach Norden weist, waren die Vermesser in der Lage, mittels dieser wenig aufwendigen empirischen Beobachtung die Himmelsrichtungen exakt zu bestimmen.95 Eine andere, nicht minder verbreitete Methode, um das Achsenkreuz anzulegen, war die Orientierung auf den Sonnenaufgangspunkt am Horizont.96 Plinius beschrieb die Methode mit folgenden Worten: Man merke sich an einem beliebigen Tag die Gegend, wo die Sonne aufgeht, und stelle sich in der sechsten Tagesstunde [am Mittag] so, dass man den Sonnenaufgang an der linken Schulter hat, so sieht man gerade gegen Mittag [nach Süden], und im Rücken ist Mitternacht [Norden].97 Diese Methode hatte zur Folge, dass das Achsenkreuz wegen des im Jahresverlauf variierenden Sonnenaufgangspunktes gegen die exakten Himmelsrichtungen verschoben ist. Denn wurde die Ost-West-Achse mit dem Sonnenaufgang korreliert, ergaben sich je nach Jahreszeit unterschiedliche Orientierungen, da lediglich am Tag des Frühlings- und des Herbstäquinoktiums, also an den Tagen, an dem die Länge des Tages dem der Nacht ent-

90 Paréage de la bastide Tournay en 1307, § 5/6; vgl. Anhang Tournay. 91 Die von Abadie vorgenommene Rekonstruktion der Stadtbefestigung basiert auf einem Landbuch aus dem 18. Jahrhundert (vgl. Abadie 2011, 22 f.). 92 Abadie 2011, 27. 93 Vgl. Rykwert 1976, 50. 94 Vgl. Lelgemann et. al. 2005, 238 ff. 95 Vgl. Fasching 1994, 205 ff. 96 Vgl. Hübner 1992, 146. 97 Plinius, Naturalis historiae XVIII, 76–77.

Die Symbolik urbaner Tetragonalität

137

Abb. 67: Astronomische Orientierung der Tournayer Stadtanlage an ihrem Gründungstag (29. August 1307).

spricht (um den 21. März und den 21. September), die Sonne exakt im Osten aufgeht.98 Auf den Sonnenaufgangspunkt der Tagundnachtgleichen bezogen, verschiebt sich dieser Punkt im weiteren Jahresverlauf nach Norden bzw. nach Süden, um an der Sommer- bzw. an der Wintersonnenwende den extremsten Punkt im Nordosten bzw. Südosten zu erreichen. So ergibt sich, bezogen auf die Ost-West-Achse, eine Abweichung des Sonnenaufgangspunkt, die im Idealfall einen Rückschluss auf den Gründungstag zulässt.99 Die Tournayer Stadtanlage ist nicht auf die exakten Himmelsrichtungen orientiert, sondern um 18 ° gegen den Uhrzeigersinn verschoben (vgl. Abb. 67). Dies ergibt unter Hinzuziehung der Gründungsurkunde eine bemerkenswerte kalendarische Koinzidenz: Aus dem paréage geht nämlich hervor, dass der Vertrag in Toulouse am Sonntag nach Maria Himmelfahrt ausgestellt wurde. Der Ausstellungszeitraum ist also auf den 20. August 1307

 98 Vgl. Fasching 1994, 205 ff.  99 Zur Achsenorientierung in mittelalterlichen Städten vgl. Reidinger 2011, 155 ff.

138

Streng geometrische und figürliche Stadtgrundrisse

zu datieren.100 Des Weiteren ist im paréage ein Hinweis erhalten, dass der Gründungsakt zum Zeitpunkt der Ausstellung der Urkunde noch nicht erfolgt war, sondern noch ausstand. Wörtlich heißt es: »a prima die in antea qua palus erit fixus in dicta, in signum dicte bastide faciende«.101 Addiert man also zu dem Ausstellungsdatum am 20. August 1307 eine entsprechende Reisedauer von Toulouse nach Tournay von einem Tag sowie die urkundlich erwähnte siebentägige Gründungszeremonie, so ergibt sich als das früheste Datum für die Gründungszeremonie Dienstag, der 29. August 1307.102 Und tatsächlich korrespondiert die Nordabweichung der Ost-West-Achse um 18 ° mit dem Sonnenaufgangspunkt in Tournay am 29. August.103 Die Bemerkung in der Tournayer Gründungsurkunde, dass die Aufstellung des palus für die Stadtgründung selbst steht, muss also wörtlich genommen werden. Stadtvermessung und Stadtgründung fielen im Gründungsritual zusammen, dessen Ablauf formal stark an die überlieferte Auguralpraxis des römischen Vermessungswesens erinnert.104 Während sich der cardo im heutigen Grundriss Tournays als Symmetrieachse wiederfindet, diente der decumanus darüber hinaus als Grundlinie, auf der die beiden Stadttore platziert wurden (vgl. Abb. 67).105 Die Benennung der Tore le pourtal devant (das vordere Tor) im Osten und das le pourtal dernier (das hintere Tor) im Westen ist ebenfalls aus dem antiken Ritual abgeleitet.106 Im römischen Vermessungswesen inaugurierte der Priester bzw. der Agrimensor den neutralen Raum, indem er ihn mit den Gegensatzpaaren vorne–hinten und rechts–links klassifizierte, ihn also mittels seines Körpers quasi anthropomorphisierte. So entstand eine verbindliche Orientierung des städtischen Raums, die mit der körperlichen Raumwahrnehmung während der Erstvermessung zusammenfiel. Die Bezeichnung des im Osten platzierten Tors als das vordere wird dadurch verständlich, dass der Vermesser die Grundachse mit dem Gesicht zum Sonnenaufgang anlegte. Die auf dem decumanus axialsymmetrisch zum urbanen Mittelpunkt platzierten Tore defi100 Vgl. Paréage de la bastide Tournay en 1307 (vgl. Abadie 2011, S. 12). Im Jahr 1307 fiel Maria Himmelfahrt auf einen Dienstag, der 20. August auf den darauffolgenden Sonntag (vgl. www.timeanddate.de letzter Zugriff am 14.10.2019). 101 »Vom ersten Tag an, an dem der palus in der benannten bastide aufgestellt sein wird, ist er ein Zeichen der Gründung der benannten bastide« (Paréage de la bastide Tournay en 1307, § 23). 102 Ein weiterer Hinweis auf den Dienstag als Gründungstag ist die seit dem Mittelalter verbürgte Tradition, den Wochenmarkt von Tournay (marché de mardi) am Dienstag abzuhalten (vgl. www.ville-tournay.fr/ marche letzter Zugriff am 14.10.2019).). 103 Heute korreliert der Sonnenaufgangspunkt am 22., 23. und 24. August mit der Flucht der Ost-West-­Achse (vgl. www.sonnenverlauf.de letzter Zugriff am 14.10.2019). Dies entspricht unter Berücksichtigung der Differenz vom Julianischen zum Gregorianischen Kalender um rund sieben Tage dem Sonnenaufgangspunkt am 29., 30. und 31. August des Jahres 1307. 104 Dazu ausführlich Geßner 2020 (im Druck). 105 Vgl. Abadie 2011, 22. 106 Vgl. Hübner 1992, 146 ff.

Die Symbolik urbaner Tetragonalität

139

nieren den Durchmesser des Initialkreises und sind gleichzeitig die äußere Begrenzung des klassischen Augurendiagramms der urbs quadrata. Verweist bereits der tetragonale Grundriss Tournays auf die Beschreibung des Neuen Jerusalems in den apokalyptischen Visionen, so wird diese Verbindung durch das Fehlen eines christlichen Gotteshauses innerhalb der Stadtmauern noch unterstrichen.107 In Analogie zur Himmlischen Stadt, die nach der Johannesoffenbarung aufgrund der Gegenwart Gottes keinen Tempel mehr benötigt, wird auch in ihrem irdischen Pendant auf ein Gotteshaus verzichtet.108 Die theologische Konzeption von der Heiligen Stadt als Tempel Gottes findet durch die Übernahme des in der Ezechielvision genannten Tempelmaßes von 500 eine weitere Umsetzung in der urbanen Architektur: Der lichte Abstand zwischen Ost- und Westtor von 500 pieds109 korrespondiert mit dem Maß, das die Ezechielvision für den Tempel des Neuen Jerusalems angibt.110 Die Fünfhundert, die das Tournayer Stadtgebiet intra muros definiert, wiederholt sich im Territorium extra muros, das eine Fläche von 500 arpents besaß.111 Die weitere räumliche Binnenorganisation erfolgte nach einem harmonischen Proportionssystem, das auf der Stetigen Teilung basiert. Dabei dienten der urbane Mittelpunkt und die Standorte der Tore im Osten und Westen als Bezugsgrößen, auf die die Dimension der Innenbebauung abgestimmt wurde.112 Der Tournayer Grundriss bewahrte also nicht nur über Jahrhunderte hinweg die Gestalt, die durch den performativen Akt des Gründungsrituals konstruiert worden war, sondern übersetzte auch die wichtigsten Charakteristika – Gestalt, Proportion und Maß – des in den apokalyptischen Schriften entworfenen Bilds der eschatologischen Idealstadt in die urbane Architektur. Die kleine bastide am Fuße der Pyrenäen wurde so zu einer irdischen Manifestation des Neuen Jerusalems, vermutlich ganz im Sinne ihres Gründers Boémont d’Astarac, dessen Familie bereits über Generationen hinweg mit Jerusalem als Sinnbild der neuen Ordnung verbunden gewesen war.113 107 Rund 500 m südlich des Stadtgebiets befand sich eine Kapelle, die einst als Pfarrkirche der Vorgängerstadt Renso gedient hatte, und 1590 den Minoriten für die Gründung eines Konvents geschenkt wurde (Abadie 2011, 24 und 28). Die unmittelbar südlich der Stadt gelegene Kirche St. Étienne wurde dagegen erst im 19. Jahrhundert errichtet (vgl. Boerefijn 2010, 142). 108 Joh. Off. 21,22. Vgl. von Bendemann 2013, 84 f. 109 Das lokale Fußmaß betrug 0,3302 m (vgl. Randolph 1995, 297). 110 Ez. 42,15–20. 111 Paréage de la bastide Tournay en 1307, § 1; vgl. Anhang Tournay. 112 Auch in anderen bastides konnte festgestellt werden, dass die Binnenteilung nach dem Prinzip der Stetigen Teilung erfolgte, so beispielsweise im 1290 gegründeten Grenade-sur-Garonne (Dép. Haute-Garonne) und Ste. Foy-la-Grande (Dép. Gironde). Vgl. Bucher 1972, 43; Friedman 1988, 131; Randolph 1995, 290 und 300; Lilley 2009, 48. 113 Boémont d’Astarac ist ein Nachkomme des Ordensritters Sancho d’Astarac, der gemeinsam mit seinem Sohn bereits am Ersten Kreuzzug teilnahm und 1099 dem Jerusalemer Spital und dem Heiligen Grab Land um Fonsorbes (Dép. Haute-Garonne) in den Mittleren Pyrenäen stiftete (vgl. Demurger 2003, 37).

140

Streng geometrische und figürliche Stadtgrundrisse

3.1.3.2 San Giovanni Valdarno

Obwohl Ober- und Mittelitalien im Gegensatz zum Südwesten Frankreichs bereits seit der Antike mit einem dichten Städtenetz überzogen waren, setzte auch in diesen Regionen ab dem ausgehenden 11. Jahrhundert eine erneute Urbanisierungswelle ein. Im Unterschied zum übrigen Europa ging die Gründungsinitiative jedoch nicht von einer individuellen Gründerfigur oder von einem Gründerkonsortium aus, sondern – ganz nach griechisch-­ römischer Tradition – von einer Mutterstadt.114 Bezeichnenderweise auch conquista del contado (Eroberung des Umlands) genannt, befeuerte die von den einflussreichen Stadtstaaten Florenz, Arezzo, Pisa, Siena, Brescia, Cremona, Bologna und Lucca durchgeführte, systematische Aufsiedlung nicht nur die Rivalitäten zwischen den ehrgeizigen Städten, sondern auch die Auseinandersetzung zwischen Stadt und Land.115 Im Falle von Florenz markierte der Sieg über das benachbarte Arezzo in der 1289 ausgetragenen Schlacht von Campaldino nicht nur den Auftakt der hegemonialen Stellung der Handelsstadt in der Toskana, sondern auch den Beginn der systematischen conquista del contado fioren­tino.116 Der am 26. Januar 1299 vom Florentiner Rat der Hundert ergangene Beschluss, drei Gründungen (terrae seu comunitates de novo) voranzutreiben, war der offizielle Beginn eines florentinischen Siedlungsprogrammes, das das Umland systematisch durchdringen und an die Mutterstadt binden sollte.117 Zu diesen ersten Gründungen gehörten die im östlichen Arnotal unweit von Arezzo gelegenen Siedlungen San Giovanni Valdarno und Castelfranco di Sopra.118 In der ersten Hälfte des 14. Jahrhunderts kamen folgende terrae nuove hinzu: Castel Santa Barnaba, heute Scarperia (1306), Firenzuola (1332), Castel Santa Maria, heute Terranuova Bracciolini (1337), Castellum della Badia di Capolona (1342) und schließlich Giglio Fiorentino (1350).119 Bei den Neugründungen handelte es sich um befestigte, für rund 2500 Personen ausgelegte Siedlungen, die trotz ihres städtischen Charakters, der sichtbar durch die Stadtbefestigung und das Ratsgebäude zum Ausdruck gebracht wurde, nicht mit Stadtrechten ausgestattet waren. Aus diesem Grund wird in den Quellen grundsätzlich die Bezeichnung Stadt (civitas bzw. città) vermieden, während dagegen Begrifflichkeiten, wie terre, castra, terrenuove, terre murate oder castelli, verwendet werden.120 Die Bewohner erhielten daher 114 Vgl. Higounet 1963, 17; Boerefijn 2010, 161, 166 ff. 115 Vgl. Richter 1940, 451. 116 Zwar hatte der Florentiner Rat bereits im 13. Jahrhundert die Gründung von Montelupo, Incisa und Pietrasanta beschlossen, dabei handelte es sich jedoch um keine Neugründungen, sondern um Wiedergründungen bereits bestehender Siedlungen an Ort und Stelle (vgl. Boerefijn 2010, 166). 117 »Tres terrae seu comunitates de novo construantur hedefficentur et fiant et pupullentur in partibus vallis Arni« (Archivio di Stato di Firenze, Provvisioni, 9 fol. 136v, 26. Jan. 1298). 118 Unklar ist, um welche Siedlung es sich bei der dritten Neugründung handelt (vgl. Boerefijn 2010, 168). 119 Vgl. Boerefijn 2010, 161. 120 Vgl. Braunfels 2012, 22; Higounet 1962, 4; Buselli 1970, 22; Friedman 1988, 40.

Die Symbolik urbaner Tetragonalität

141

auch kein Bürgerrecht, konnten sich jedoch durch die Ansiedlung von den Verpflichtungen früherer feudaler Bindungen befreien und standen fortan unter florentinischem Schutz.121 Die terre nuove fiorentine waren also nicht als Städte im rechtlichen Sinne konzipiert worden, sondern als Abbilder ihrer Mutterstadt, sozusagen als ein Florenz en miniature. Dies wird nicht nur in der heraldischen Symbolik und in der Namensgebung von Firenzuola bzw. Fiorentino (wörtl. das kleine Florenz), sondern auch in der urbanen Architektur deutlich, die sich stark an Florentiner Vorbilder anlehnt (vgl. Abb. 68).122

Abb. 68: Der von Arnolfo di Cambio entworfene Florentiner Palazzo Vecchio (links) und der Palazzo Pretorio von San Barnaba/Scarperia (rechts).

Die Gründung der terre nuove fiel zeitlich mit einem Wandel in der Florentiner Patrozinienlandschaft zusammen, deren Ziel darin bestand, eine Heiligentopographie entstehen zu lassen, die das Florentiner Umland über die Weihung von Neugründungen, Kirchen und Prozessionen mit der Mutterstadt verwob.123 So wurde 1296 nicht nur der ursprünglich 121 Vgl. Boerefijn 2010, 166. 122 Vgl. Weber 2011, 434. 123 Die Stadtpatrone und ihre kollektive Verehrung trugen gerade in dieser Schlüsselphase der italienischen Stadtgeschichte maßgeblich zur Konstruktion einer lokalen urbanen Identität bei (vgl. Dartmann 2007, 180).

142

Streng geometrische und figürliche Stadtgrundrisse

der Santa Reparata gewidmete Dom von Florenz mit dem Patrozinium der Maria del fiore ausgestattet, auch die 1337 gegründete terra nuova Castel Santa Maria war der Muttergottes geweiht.124 Ebenso fungierte der Heilige Barnabas, der anlässlich der Schlacht von Campaldino, deren Austragung im Vorfeld auf den Festtag des Barnabas am 11. Juni 1289 gelegt worden war, in den Pantheon der Florentiner Stadtheiligen aufgenommen wurde, als Schutzpatron des 1306 gegründeten Castel San Barnaba.125 Einer der bedeutendsten Stadtheiligen von Florenz war jedoch seit alters her Johannes der Täufer (ital. Giovanni Battista), dessen Festtag am 24. Juni einen wichtigen Platz in der florentinischen Festkultur einnahm.126 Ihm zu Ehren wurde der Florentiner Stadt- und Dombaumeister Arnolfo

Abb. 69: Grundriss des von Arnolfo di Cambio entworfene San Giovanni Valdarno (nach einem Katasterplan aus dem 19. Jahrhundert). 124 Vgl. Schenk 2016, 275. 125 Vgl. Davidsohn 1908, 352. 126 Vgl. Villanis (Istorie Fiorentine III, 159) Beschreibung der Prozession des Jahres 1283.

Die Symbolik urbaner Tetragonalität

143

di Cambio (um 1240–um 1310) im ausgehenden Duecento mit der Durchführung eines umfangreichen Bauprogramms beauftragt, wozu nicht nur die Restaurierung des dem Täufer geweihten Baptisteriums (tempio di S. Giovanni) gehörte, sondern auch der Entwurf einer terra nuova mit dem Namen San Giovanni Valdarno (vgl. Abb. 69).127 Dass das Florentiner Bauprogramm von herausragenden Künstlern ausgeführt wurde, ist kein Einzelfall: 1334 berief der Florentiner Rat den nicht minder berühmten Maler und Bildhauer Giotto di Bondone (1266–1337) zum Stadt- und Dombaumeister.128 Vertraglich verbindlich geregelt, gehörten zu seinem Aufgabengebiet nicht nur der Entwurf und die Durchführung großer urbaner Projekte, wie der Dombau und der Bau der Stadtmauer, sondern auch die Planung und Errichtung der als fortificationes bezeichneten terre murate im Umfeld der Stadt.129 So ist wahrscheinlich, dass der Entwurf der während Giottos Amtszeit gegründeten Satellitensiedlung Castel Santa Maria (heute Terranuova Bracciolina) auch aus seiner Hand stammt. Bei der im frühen Trecento vom Florentiner Rat forcierten Neugestaltung von Stadt und Land handelte es sich um ein Bauprogramm, dessen Planung in den Händen versierter Baumeister lag, denen man spezielle geometrische Kenntnisse (scientia et doctrina) nachrühmte.130 Zwar haben sich keine Entwürfe aus der Hand von Arnolfo di Cambio erhalten, vermutlich basiert jedoch ein Mitte des 16. Jahrhunderts erstellter Stadtplan von San Giovanni, der die ideale Grundform der Stadt frei von baulichen Modifikationen darstellt, auf einem originalen Plan aus der Gründungsphase (vgl. Abb. 70).131 Der Stadtgrundriss wurde 1553 von Piero della Zucca anlässlich einer Arnoüberschwemmung erstellt, die den südöstlichen Teil von San Giovanni völlig zerstörte.132 Insbesondere die schematische Darstellung und die detaillierten Maßangaben machen es unwahrscheinlich, dass sich der Zeichner auf eine lokale Vermessung des renaissancezeitlichen Zustands stützte.133 Der Plan liefert nicht nur wichtige Informationen über die ursprüngliche Gestalt der terranuova: Wie das Aufrissschema im unteren Teil des Grundrisses veranschaulicht, war auch die vertikale Dachlandschaft, die von der Peripherie zum Zentrum stetig hin ansteigt, in die geometrische Ordnung einbezogen.134 Das urbs-quadrata-Schema des aus cardo und decumanus gebildeten Achsenkreuzes wird in jedem der vier Quartiere (San Christofero im Nordosten, San Giovanni im Südosten, 127 Vasari, pittore e architetto I, 96. 128 Vgl. Friedman 1988, 6; Guidoni 2003, 15. 129 Vgl. Braunfels 2012, 239. 130 Archivio di Stato di Firenze, Provvisioni, Reg. 26, fol. 100v. Vgl. Braunfels 2012, 239; Friedman 1988, 6. 131 Die heutige Parzellierung weicht infolge der vielfachen Überbauung bis zu 5 % von der originalen Parzellenstruktur ab (vgl. Friedman 1988, 121). 132 Archivio di Stato Firenze, Cinque Conservatori del Contado, 258, carta 602 bis. 133 Vgl. Transkription Friedman 1988, Doc. 22, 347 f. 134 Vgl. Boerefijn 2010, 185.

144

Streng geometrische und figürliche Stadtgrundrisse

San Lorenzo im Südwesten und Santa Maria im Nordwesten) in analoger Form wiederholt. Sämtliche Längsstraßen führen auf den zentralen, langrechteckigen Platz zu, auf dem sich neben einem Stadtbrunnen der Palazzo d’Arnolfo, der ehemalige Sitz des von Florenz eingesetzten Statthalters (vicario), befindet.135 Darüber hinaus zeigt der Zuccasche Plan, dass die heute fast vollständig entfestete Stadt ursprünglich von einer Stadtmauer umgeben war, die in einem regelmäßigen Rhythmus durch Tore und turmartige Pforten gegliedert wurde (vgl. Abb. 70).136 So mündeten nicht nur die vier Hauptachsen in einer Toranlage, auch die übrigen Längs- und Querachsen führten jeweils auf einen Stadtmauerturm zu, so dass jede Seite des langgestreckten Rechtecks über drei Eingänge verfügte. Die Position der Stadtmauertürme und damit auch des internen Straßensystems folgt einem ProportionsAbb. 70: Grundriss von San Giovanni Valdarno (Piero schema, das aus einem Kreissystem della Zucca, 1553). um den Kreuzungspunkt von cardo und decumanus entwickelt wurde: Während auf dem inneren Kreisbogen das Ost- und Westtor platziert sind, liegen die Stadtmauertürme auf dem mittleren, die Ecktürme auf dem äußeren Kreisbogen (vgl. Tafel 1). Da der Plan von Piero della Zucca mit einem detaillierten Bemaßungsschema versehen ist, können die Durchmesser des Kreissystems nach dem im Mittelalter gebräuchlichen Florentiner Ellenmaß (bf. = braccia fiorentina) rekonstruiert werden: Der Durchmesser des inneren Kreises, der identisch mit dem Ab135 Vgl. Friedman 1988, 51; Guidoni 2003, Abb. 58 136 Friedman 1988, 3. Die westlich gelegene Porta San Lorenz wurde im Jahr 1484 durch die Basilica di Santa Maria delle Grazie ersetzt, während die im Norden gelegene Porta Fiorentina im Rahmen einer archäologischen Ausgrabung erfasst wurde (Bernardi/Capelli 1983, 351 ff.).

Die Symbolik urbaner Tetragonalität

145

stand zwischen dem Ost- und Westtor ist, beträgt demnach 162 bf. (rund 94,7 m)137, der des mittleren Kreises 262 bf. (rund 153,3 m) und der des äußeren Kreises 424 bf. (rund 248 m). Dabei handelt es sich um eine Sequenz aus einer klassischen Fibonacci-Folge, die auf den Basiszahlen 4 und 10 beruht:138 4, 10, 14, 24, 38, 62, 100, 162, 262, 424 … Wie jede Fibonacci-Folge basiert die Bildung der Reihe auf der Addition aufeinander folgender Zahlen, deren Quotient sich der Verhältniszahl der Stetigen Teilung annähert (φ = 1,618033988749895 …). 162 + 262 = 424 262/162 = 1,617283950617284 … ~ 1,617 424/262 = 1,618320610687023 … ~ 1,618 Bereits in den Grundrissen anderer Florentiner Gründungen konnte ein Zusammenhang zwischen der geometrischen Konstruktion des urbanen Entwurfs und dem Werk von Leonardo Fibonacci nachgewiesen werden.139 Ähnliches gilt für die Florentiner Sakralarchitektur, in der ebenfalls Fibonacci-Reihen als Grundlage von Proportionsschemen dienten.140 Wie aus dem 1299 erfolgten Erlass hervorgeht, unterlagen Form und Gestalt (modo et forma) von San Giovanni, insbesondere die Breite und die Länge (latitudine et longitudine), allerhöchster Autorität.141 Offensichtlich hatte der Florentiner Rat die Vermesser bereits mit einem im Vorfeld entwickelten Plan beauftragt, der im Vorfeld nach dem Ratschlag weiser Männer (consilio sapientium virorum) entworfen worden ist. Einen interessanten Bezug auf den Stadtpatron liefert die Orientierung des Achsenkreuzes von San Giovanni, die hinsichtlich der exakten Ost-West-Achse um 34 ° nach Norden verschoben ist. Dies entspricht der Abweichung des Sonnenaufgangspunktes am 24. Juni, also dem Tag der Sommersonnenwende, der mit der äußersten Nordabweichung

137 »La larghezza del diamitro dellaltre chase da decta via transversale et insino alla piazza 162 a panno« Piero della Zucca, Piante dei Capitani, Marginalie am linken Rand (abgedruckt in Friedman 1988, Doc. 22, 348). 138 Vgl. Anderson 2014, 16. 139 Friedman (1988, 129) gelang der Nachweis, dass das Straßensystem der Florentiner Gründung Castel Santa Maria (heute Terranuova Bracciolini) nach dem in Fibonaccis Standardwerk Practica Geometriae veröffentlichten Tafelwerk der Kreissehnen entworfen wurde. 140 So konnte Braunfels (1965, 207 ff.) auf der Grundlage eines um 1425 entstandenen Aufrisses aus der Hand von Giovanni di Gherardo da Prato zeigen, dass die Durchmesser der verschiedenen architektonischen Teile der Kuppel des Florentiner Doms einer Fibonacci-Reihe folgen. 141 Archivio di Stato di Firenze, Provvisioni, 9 fol. 136v, 26. Jan. 1298.

146

Streng geometrische und figürliche Stadtgrundrisse

Abb. 71: Orientierung der Ost-West-Achse von San Giovanni Valdarno nach dem Sonnenaufgangspunkt am Tag des Stadtpatrons, den 24. Juni.

zusammenfällt (vgl. Abb. 71 und Anhang San Giovanni Valdarno).142 Gemeinsam mit dem 24. Dezember, dem Fest der Geburt Christi, das auf den Tag der Wintersonnenwende fällt, scheidet der Tag sowohl das astronomische Jahr als auch das christliche Jahr 142 Die Verschiebung des Sonnenaufgangspunkt erfolgt im Laufe eines Jahres nicht gleichmäßig: Während sich die Position um die Äquinoktien um 0,5 ° pro Tag ändert, verschiebt sich der Sonnenaufgangspunkt zur Zeit der Sonnenwenden nur sehr langsam, etwa um ein Grad in drei Wochen (vgl. Coray-Lauer 2007, 277).

Die Symbolik urbaner Tetragonalität

147

in zwei Hälften.143 Da es sich um den Festtag von Johannes dem Täufer, dem Schutzpatron von San Giovanni handelt, ist mit großer Wahrscheinlichkeit davon auszugehen, dass die Erstvermessung von San Giovanni am Morgen des 24. Juni durchgeführt wurde. Nicht nur in San Giovanni wird dieser Tag im Rahmen von Festlichkeiten bis zum heutigen Tag memoriert144, auch in der Mutterstadt Florenz werden bis heute am Tag des Stadtpatrons zahlreiche Feierlichkeiten begangen.145 Über die evidente Geometrie hinaus, die sich im Um-, Grund- und Aufriss der orthogonalen Stadt prima vista offenbart, wurde die geometrische Konstruktion von San Giovanni Valdarno also auch durch latente Paradigmen beeinflusst, die nicht auf den ersten Blick erkennbar sind. Dabei handelt es sich sowohl um die astronomische Orientierung des Achsenkreuzes der Hauptstraßen und Torbauten als auch um das Proportionsschema der Wehrtopographie. Während die Orientierung des Achsenkreuzes als ein Verweis auf den Stadtpatron Johannes den Täufer gewertet werden kann, basiert die Proportionierung der Torgeometrie auf dem Goldenen Schnitt, also auf einer Proportion, die seit jeher als harmonisch gilt. Dank einer Fibonacci-Reihe ließ sich die urbane Konstruktion mittels einer seil- und stabbasierten Vermessung schnell und effizient ins Gelände übertragen. 3.1.3.3 Bretenoux

Der Grundriss des im Département Lot gelegenen Bretenoux fällt ebenfalls durch seine streng orthogonale Geometrie auf (vgl. Abb. 72). Die bastide wurde im Jahr 1277 unter dem Namen Villa franca ad Orlindam bzw. Villefranche-d’Orlinde von dem Seigneur Guérin de Castelnau unweit seines Stammsitzes gegründet.146 Bei der heutigen Bezeichnung Bretenoux handelt es sich um eine Übertragung des Namens der in der Nähe gelegenen Siedlung Villa Bretenoro, die nach ihren bretonischen Einwohnern benannt wurde.147 Im Gegensatz zur modernen Siedlung folgte der Mauerverlauf der heute weitgehend entfesteten Stadt nicht natürlichen Gegebenheiten, wie der Flusslinie der nördlich fließenden Cère, sondern formte ein ebenmäßiges Viereck, das zusätzlich mit einem Wall-Graben-System geschützt war, das heute noch im Südosten der Stadt zu erkennen ist.148 143 Vgl. Henkelmann et al. 1987, 196. 144 Vgl. Marruchi 2004, 8. 145 Die Festivitäten greifen bezeichnenderweise immer wieder das Motiv der Analogie von Florenz und dem Himmlischen Jerusalem auf. Einer Beschreibung aus dem Jahr 1407 ist zu entnehmen, dass der Florentinische Hauptplatz, der Platz der Signoria, mit Kulissen aus Karton und goldfarbenem Wachs umkleidet wurde, die eine goldene Stadtsilhouette simulierten (vgl. Dean 2000, 72 ff.). 146 Vgl. Pressouyre 1974, 314 ff.; Lauret et al. 1988, 284; Dubourg 2002, 363; Boerefijn 2010, 137; Séraphin/ Charrier 2011, 1. Da eine Abschrift der Gründungscharta von Bretenoux nicht mehr auffindbar ist, können sowohl der Tag der Gründung als auch das lokale Maßsystem nicht nachvollzogen werden (frdl. Mitteilung von Etienne d’Alençon, Direktorin der Archive des Département du Lot am 28.08.2015). 147 Vgl. Cassagne/Korsak 2013, Stichwort: Bretenoux. 148 Vgl. Boerefijn 2010, 137.

148

Streng geometrische und figürliche Stadtgrundrisse

Abb. 72: Der Grundriss des mittelalterlichen Bretenoux (Dép. Lot) mit dem ehemaligen Stadtmauerverlauf.

Wie bei den tetragonalen Städten üblich, dominiert das Raster in Gestalt eines rechtwinkligen Straßen- und Parzellensystems auch in Bretenoux die urbane Binnengliederung. Indem sich die auf die vier Tore zuführenden Hauptachsen nach dem Urbs-quadrata-­ Schema rechtwinklig am städtischen Mittelpunkt kreuzen, teilen sie die Stadt in vier Quartiere. Nordöstlich des Kreuzungspunktes der Hauptachsen öffnet sich ein von Arkaden gesäumter Platz, die place de consuls, in deren Zentrum sich der Marktbrunnen befindet.149 Jedes Viertel stellte einen der vier Räte (consuls), die für die Administration der bastide zuständig waren und in deren Aufgabenbereich u. a. die Kontrolle der Maße und die 149 Vgl. Pressouyre 1974, 316.

Die Symbolik urbaner Tetragonalität

149

Aufsicht über die vier Tore fiel.150 Dass zu der bastide zudem vier Vorstädte gehörten151, zeigt, wie sehr das Motiv der Tetragonalität die städtische Organisation in räumlicher und administrativer Hinsicht dominierte. Ein weiterer Bezug auf die apokalyptischen Schriften ergibt sich dadurch, dass sich innerhalb der Stadtmauern keine Kirche befand: Die Pfarrkirche Sainte Cathérine, deren Chor aus dem 13. Jahrhundert stammt152, wurde außerhalb der Stadt extra muros errichtet. Wie die formale Analyse des Grundrisses zeigt, sind die Gestalt des rechteckigen Umrisses und die Lage der vier Tore Ergebnis einer geometrischen Konstruktion, die auf einer klassischen Methode zur Stetigen Teilung einer Strecke basiert: Ausgangsstrecke ist der Nordost-Südwest verlaufende decumanus, also die Strecke vom späteren Ost- zum Westtor (AB = 1). Die Hälfte dieser Strecke definiert den Abstand der Südostecke zum Osttor (AC = ½ AB), der rechtwinklig zum decumanus abgetragen wird. Daraus ergibt sich das rechtwinklige Dreieck ABC (vgl. Abb. 73, Schritt 1 und 2). Schlägt man nun um C einen Kreis mit dem Radius ½ AB, also die Hälfte der decumanus-Strecke, kann auf der Geraden BC der Punkt D abgetragen werden. Ein Kreis um den Punkt B mit dem Radius BD teilt die Strecke AB sodann im Punkt E nach dem Goldenen Schnitt und bildet den Kreuzungspunkt des Achsenkreuzes der späteren Hauptstraßen, die jeweils auf ein Tor zuführen (vgl. Abb. 73, Schritt 3 und 4). Die sich aus der Stetigen Teilung des decumanus ergebende Minorstrecke AE dient sodann als Bezugsgröße, um den Abstand des zentralen Kreuzungspunktes zum Nordtor EF und zur Nordostecke (FK und AK) zu definieren (vgl. Abb. 73, Schritt 5 und 6). Während so das nordöstliche Quartier die Gestalt eines Quadrates erhält, nimmt das nordwestliche Viertel die Gestalt eines sogenannten Aurons153 oder eines Goldenen Rechtecks an, das dadurch definiert ist, dass sich die Länge (Maior = a) zur Breite (Minor = b) ebenso verhält, wie die Summe der Länge und Breite (Maior + Minor = (a + b) = decumanus) zur Länge (Maior = a). Im Proportionsschema von Bretenoux gilt also: a : b = (a + b) : a Maior : Minor = decumanus : Maior So wird nicht nur der decumanus im Kreuzungspunkt der Hauptachsen stetig geteilt, sondern auch der nördliche Mauerabschnitt durch das Nordtor und der südliche Mauer150 Vgl. Pressouyre 1974, 317 f. 151 Vgl. Pressouyre 1974, 316. 152 Vgl. Séraphin/Charrier 2011, 2. 153 Der Begriff Auron wurde von dem amerikanischen Archäologen Conant im Zusammenhang mit der Analyse des Proportionsschemas des romanischen Kirchenbaus von Cluny geprägt (Conant 1968, 34).

150

Streng geometrische und figürliche Stadtgrundrisse

Abb. 73: Die Grundkonstruktion von Bretenoux: Schritt 1 und 2.

Die Grundkonstruktion von Bretenoux: Schritt 3 und 4.

Die Grundkonstruktion von Bretenoux: Schritt 5 und 6.

Die Symbolik urbaner Tetragonalität

151

abschnitt durch das Südtor (vgl. Abb. 73, Schritt 6). Die gesamte Stadtanlage von Bretenoux basiert also auf einer harmonischen Proportionierung (vgl. Tafel 2). Fernerhin finden sich Hinweise, dass auch für die weitere Binnengliederung der bastide die Stetige Teilung zur Anwendung kam. Der streng-orthogonale Grundriss von Bretenoux basiert also über seine vordergründige Geometrie hinaus auf einer Konstruktion, die bis heute in der Schule als Standardverfahren vermittelt wird, eine gegebene Strecke mit geometrischen Mitteln stetig zu teilen.154 Wie ein Euklidkommentar aus dem 9. Jahrhundert zeigt, war das Verfahren im arabischen Raum geläufig und wurde dort mit dem Namen des im ersten nachchristlichen Jahrhundert lebenden Mathematikers Heron von Alexandria verbunden.155 Dass das Verfahren im Grundriss der in der zweiten Hälfte des 13. Jahrhunderts angelegten bastide gleichsam versteinert überliefert worden ist, kann als Beleg gewertet werden, dass antike Konstruktionsverfahren im europäischen Vermessungswesen nicht nur bekannt waren, sondern auch angewendet wurden. So ist der Nachweis der Heronischen Konstruktion im Grundriss von Bretenoux ein weiterer Hinweis auf den hohen Stand und die lebendige Tradition des Vermessungswesens im Hoch- und Spätmittelalter, bei dem es ebenso wie im zeitgenössischen Bauhüttenwesen gelungen ist, abseits der schriftlichen Überlieferung antike geometrische Standardkenntnisse durch orale Vermittlung zu bewahren und anzuwenden.156 3.1.4 Die Symbolik der urbanen Tetragonalität: Zusammenfassung Den drei im vorangegangenen Kapitel vorgestellten, um 1300 planmäßig gegründeten urbanen Siedlungen ist die strenge Orthogonalität ihres Grundrisses gemeinsam. Die auf den ersten Blick ersichtliche Grundrissgeometrie steht damit exemplarisch für einen europaweit verbreiteten urbanen Typ der Neuen Städte, der in der Städteforschung aufgrund bestimmter konstitutiver Grundrisselemente, insbesondere wegen des orthogonalen Straßensystems und des tetragonalen Umrisses, zum Prototyp der Planstadt und damit zum Antonym der sogenannten gewachsenen Stadt avancierte. Meist in Flussebenen ohne markante naturräumliche Gegebenheiten platziert, folgt ihre Morphologie einer strengen Geometrie, die nicht nur den Grundriss, sondern vermutlich auch den Aufriss der Gründungsstädte bestimmt hat. Basierend auf der aus dem römischen Vermessungswesen abgeleiteten Grundfigur des auf den Sonnenaufgangspunkt orientierten Achsenkreuzes 154 Der Mathematikunterricht (MU) 2007, 97. 155 Anaritius, Comm., 107–108; vgl. Tropfke 1923, 185. 156 Ob es sich bei der Weitergabe dieser speziellen geometrischen Kenntnisse um eine Kontinuität handelt, die ungebrochen bis in die Antike reicht, oder ob diese über die arabische Vermittlung nach Europa »reimportiert« wurden, muss jedoch angesichts der Quellenlage offen bleiben.

152

Streng geometrische und figürliche Stadtgrundrisse

entwickelten die mittelalterlichen Stadtplaner einen orthogonalen Grundriss, der das Raster des Straßensystems und des Umrisses definierte. Seit der Antike mit der idealen Stadt assoziiert, wurde die Tetragonalität im Kontext der jüdisch-christlichen Eschatologie mit der himmlischen Ordnung in Verbindung gebracht und stand ab der Jahrtausendwende als apokalyptische Abbreviatur für das Neue Jerusalem. Um die irdische Stadt als Abbild des Neuen Jerusalems aus dem rein profanen Kontext herauszuheben, wurden in der Grundrisskonzeption Elemente aus den eschatologischen Visionen der Heiligen Schrift zitiert. Dazu gehören neben der Verwendung von tetragonalen Elementen auch charakteristische apokalyptische Maße und die Absenz eines Gotteshauses im innerstädtischen Bereich. Über diese evidenten Charakteristika hinaus verwendeten die Stadtplaner auch irrationale Verhältnissysteme, wie die Stetige Teilung, die auf den ersten Blick weniger augenfällig sind und nur über eine formale Analyse erarbeitet werden können. Die Stetige Teilung, heute als Goldener Schnitt geläufig, galt im Mittelalter als wunderbar, da man ihr die Fähigkeit zusprach, Verschiedenes dauerhaft in Übereinstimmung zu bringen.157 In diesem Charakteristikum ist vermutlich auch die Erklärung für die regelhafte Verwendung in der hoch- und spätmittelalterlichen Stadtbaukunst zu suchen, da auch die Stadt im theologischen Sinn darauf abzielte, aus einer Vielzahl an Einzelgliedern eine dauerhafte Einheit entstehen zu lassen.

3.2 Stadt und Kosmos 3.2.1 Die mittelalterliche Lehre von Mikro- und Makrokosmos Ein Kerngedanke der neuplatonisch-christlichen Lehre besteht in der Vorstellung von einer Entsprechung von Mikrokosmos und Makrokosmos, auf deren Grundlage eine besondere Beziehung zwischen Mensch und Universum abgeleitet wurde.158 Platons kosmologischer Schrift, dem besonders in der Scholastik intensiv rezipierten Timaeus, zufolge schuf der Schöpfergott Kosmos und Mensch, indem er die vier Elemente nach einem bestimmten Verhältnis zusammenfügte.159 Daraus wurde eine Proportionsanalogie postuliert, die einen ontologischen Seinszusammenhang zwischen den beiden Entitäten entstehen ließ: Denn

157 Vgl. Johannes v. Novara, Euklid, XIV, 10. 158 Die aus der Antike ins Mittelalter tradierte Vorstellung vom Menschen als Mikrokosmos (Demokrit, Fragm. 34) findet sich u. a. bei Bernardus Silvestris (De Mundi Univ., II, 8), Thomas von Aquin (De re. princ. I, 12) und Konrad von Megenberg (Buch der Natur I, 1). 159 Vgl. Plat., Tim. 42e.

Stadt und Kosmos

Abb. 74: Mittelalterliche Darstellung vom Kosmos als Makroanthropus (Holzschnitt, 1491).

153

Abb. 75: Der scheinbar ruhende Polarstern als Zentrum eines konzentrischen Kreissystems (langzeitfotografische Aufnahme des Nachthimmels).

ebenso wie der Mensch als ein Mikrokosmos, konnte der Kosmos als ein Makroanthropus gedacht werden (vgl. Abb. 74).160 Indem die über Platon vermittelte Vorstellung eines beseelten Kosmos mit der empirischen Beobachtung von konzentrischen Bewegungsabläufen am Sternenhimmel in Deckung gebracht wurde, entstand die Vorstellung von einem Weltennabel, der im scheinbar einzig ruhenden Punkt, dem immobilen Polarstern am nördlichen Himmel, verortet wurde (vgl. Abb. 75).161 Der vormodernen Kosmologie zufolge befand sich an dieser Stelle die Mitte des Himmels, die über die Weltenachse, die axis mundi, mit dem irdischen Zentrum als verbunden gedacht wurde. In Analogie zur antiken Embryologie, die im Nabel den Ort der Entstehung und des Wachstums des menschlichen Lebens lokalisierte, wurde die Himmelsmitte als Weltennabel betrachtet, von dem die Schöpfung ihren Ausgang genommen haben soll.162 Der Logik der Körpermetaphorik eines beseelten Kosmos folgend, galten Himmel und Erde wie lebende Organismen verbunden, wobei die Weltenachse

160 Isidor (Sententiarum I, VIII, 1). Vgl. von Korvin-Krasinski 1960, 87 f.; Duby 1979, 131; Lanczkowski et al. 1991, 745 ff.; Mörschel 2003, 138 f.; Edson et al. 2011, 41; Geßner 2015a, 5 ff. 161 Bern. Silv., De Mundi Univ., V, 22. Vgl. Kurdziałek 1971, 63; Meyer 1975, 42. 162 Vgl. Tilly 2002, 40 und 230 ff.

154

Streng geometrische und figürliche Stadtgrundrisse

als Nabelschnur fungierte.163 Sichtbares Zeichen dieser Geburtsmetapher konnte je nach Kultur ein Omphalos- oder Altarstein sein, der nach der vormordernen Kosmologie den irdischen Mittelpunkt der Welt wie eine versteinerte Nabelnarbe markierte.164 Als Spiegelbild des beseelten Makrokosmos galt der Mensch als Mikrokosmos – eine Vorstellung, die ihren Niederschlag ikonographisch im sogenannten homo quadratus et circularis findet (vgl. Abb. 76).165 Diese bis in die Neuzeit weit verbreitete Darstellung symbolisiert die Einheit von Kosmos und Mensch, wobei der Kreis für Abb. 76: Die Stellung des Menschen im kosmischen Gefüge (Frankreich, um 1180). die himmlische Sphäre steht, während der viergliedrige Körper den irdischen, durch die vier Himmelsrichtungen, die vier Elemente und die vier Winde geordneten Bereich symbolisiert.166 Die antike Vorstellung von den kosmischen Ursprüngen des Menschen beeinflusste nicht nur den Kirchenvater Augustinus, der den Menschen zum Ebenbild der Welt (imago mundi) erklärte, sondern auch die hoch- und spätmittelalterliche Anthropologie, die die Wurzeln des Menschen im Himmel verortete.167 163 Auch in der Ezechielvision ist von der Nabelschnur der Stadt Jerusalem die Rede (Ez. 16,4; vgl. auch Tilly 2002, 142 und 179). 164 Nicht nur die griechisch-römische Welt kannte die Omphaloslehre (vgl. Plut., De placita philosophorum V, 17), sondern auch die jüdische Tradition (vgl. Tanḥuma Peḳude § 3 zu Ex 38, 21, zit. nach Tilly 2002, 237). 165 Die Darstellung des sogenannten vitruvianischen Menschen fußt auf der folgenden Textstelle: »Ferner ist natürlicherweise der Mittelpunkt des Körpers der Nabel. Liegt nämlich ein Mensch mit gespreizten Armen und Beinen auf dem Rücken, und setzt man die Zirkelspitze an der Stelle des Nabels ein und schlägt einen Kreis, dann werden von dem Kreis die Fingerspitzen beider Hände und die Zehenspitzen berührt. Ebenso wie sich am Körper ein Kreis ergibt, wird sich auch die Figur des Quadrats an ihm finden. Wenn man nämlich von den Fußsohlen bis zum Scheitel Maß nimmt und wendet dieses Maß auf die ausgestreckten Hände an, so wird sich die gleiche Breite und Höhe ergeben, wie bei Flächen, die nach dem Winkelmaß quadratisch angelegt sind« (Vitr., De arch. III, 1, 3). Vgl. Edson et al. 2011, 41. 166 Die vier Gliedmaßen des homo quadratus et circularis, entsprechen ihrer Gestalt nach dem griechischen Buchstaben X (chi), was nach neuplatonischer Lesart für die Weltenseele stehen kann, die das konzentrische Sphärenmodell des Kosmos zusammenhält (vgl. Plat., Tim. 36b) bzw. nach christlicher Interpretation als Initiale Christi (griech. Χριστός) oder als Kreuzsymbol gelesen werden kann (Kurdziałek 1971, 38 und 50). 167 Vgl. Kurdziałek 1971, 35 ff.; Rath 1983, 75; de Champeaux/Sterckx 1990, 177; Sollbach 1995, 20; Carruthers/Ziolkowski 2002, 106; Englisch 2002, 16, Anm. 4; Halfen 2011, 400.

Stadt und Kosmos

155

Das platonische Gewebe aus Analogien, das Mensch und Kosmos verband, durchdrang auch das Prinzip Stadt, was dazu führte, dass die drei Entitäten im metaphorischen Denken des Hoch- und Spätmittelalters untereinander frei austauschbar waren: Ebenso wie der menschliche Körper als Mikrokosmos mit den Attributen einer Stadt beschrieben werden konnte168, war es möglich, den Kosmos als eine Stadt zu denken, die von Gott selbst gegründet worden war.169 Dafür konnte im Gegenzug die Stadt als menschlicher Körper verstanden werden.170 Die Isomorphie von Kosmos, Mensch und Stadt wird besonders im römischen Gründungsritual deutlich, in dessen Zusammenhang im urbanen Zentrum zunächst eine Grube angelegt wurde, die sowohl als mundus (Welt), dem lateinischen Äquivalent des griechischen κόσμος (Welt, Ordnung), als auch als umbilicus (Nabel) bezeichnet werden konnte.171 Im Zentrum der Stadt wurden Mikro- und Makrokosmos in Deckung gebracht: Der mundus der Stadt Rom, der der mythischen Überlieferung nach vom Stadtgründer Romulus im Rahmen der GründungsAbb. 77: Anthropomorphe Stadtzeremonie angelegt worden sein soll, galt nicht nur darstellung (Francesco di Giorgio, als Zentrum der Stadt, von dem aus die urbane Ver15. Jahrhundert). messung entwickelt worden war, sondern auch als Übergangsort zwischen den Welten. An dieser Stelle soll Romulus, der mythische Stadtgründer, sowohl in die Unterwelt hinabgestiegen als auch in den Himmel entrückt worden sein.172 Zudem wurde an dieser Stelle das Zentrum der Stadt Rom und des Römischen Reichs verortet, was durch die Aufstellung des Miliarium Aureum, des Goldenen Meilensteins, in der Regierungszeit des Kaisers Augustus sichtbaren Ausdruck fand. Die Errichtung eines Tempels mit der Bezeichnung umbilicus urbis (Nabel der Stadt) unweit 168 Bonaventura, Itinerarium, II, 3; Bern. Silv., De Mundi Univ., II, 13, 49. 169 Philon v. Alexandria, De opificio mundi, 17 ff.; vgl. Sim 1996, 60 f. 170 Der dem mittelalterlichen Denken vertraute Vergleich findet sich u. a. bei Johannes von Salisbury formuliert, der im Buch V und VI des Policraticus den Stadtstaat als menschlichen Körper beschreibt (vgl. Liebeschütz 1950, 45). 171 Während der kaiserzeitliche Lexikograph Festus den Mittelpunkt als mundus bezeichnet, was er »von der Welt [mundus], die über uns ist« ableitete (zit. nach Ruperti 1843, 557, Anm. 1), bezeichnete Plinius (Naturalis historiae XVIII, 76–77) denselben als Nabel (umbilicus). 172 Vgl. Plut. Rom. 11, 1–2 und 28, 36.

156

Streng geometrische und figürliche Stadtgrundrisse

des Fixpunktes des römischen Vermessungswesens erweiterte die facettenreiche Zentrumsmetaphorik schließlich noch um eine anthropomorphe Komponente.173 In das semantische Bezugssystem eines organologischen Stadtkonzepts konnten bis in das Mittelalter mühelos die verschiedenen sozialen Gruppen einer städtischen Gemeinschaft integriert werden: Abgeleitet von der Hierarchie des aufrechten menschlichen Körpers galten die städtischen Autoritäten nach dieser Logik als Kopf einer Stadt (caput urbis), weshalb man bei der Errichtung ihrer repräsentativen Bauten eine erhöhte Lage bevorzugte, die Krieger und Handwerker wurden mit dem Herz und den Nieren, die Bauern dagegen mit den Füßen des städtischen Organismus gleichgesetzt.174 Noch feingliedriger ließen diejenigen Familien den städtischen Körper erscheinen, die sich ab dem 13. Jahrhundert Namen zulegten, die von menschlichen Körperteilen abgeleitet waren. Dazu gehörten Patriziernamen wie Zahn, Nase, Faust, Daum, Schienbein, Galle, Lunge oder Niere.175 Für die graphische Umsetzung dieser Idee ist das um 1480 von Francesco di Giorgio Martini verfasste Architekturtraktat ein besonders anschauliches Beispiel (Abb. 77): Die Stadt ist in der Gestalt eines Jünglings dargestellt, dessen Haupt mit einer Zitadelle bekrönt ist, während die Füße und Ellenbogen mit Türmen besetzt und auf der Brust eine Kirche und auf dem Nabel ein kreisförmiger Marktplatz (piazza) platziert sind.176 3.2.2 Die Analogie von Schöpfungs- und Gründungsakt Die sich aus der Mikrokosmos-Makrokosmos-Lehre ergebende Isomorphie von Mensch, Stadt und Kosmos führte zu einer weiteren Analogie, die das mittelalterliche Denken vor allem während der Gotik beherrschte. Wenn Stadt und Kosmos konvertibel waren, ergab sich zwangsläufig eine Parallele zwischen dem Gründungsakt einer Stadt und dem göttlichen Schöpfungsakt des Kosmos.177 Ebenso wie Gott am Anfang der Zeit durch einen Zirkelschlag den Kosmos vom Chaos geschieden und damit die kosmische Ordnung geschaffen hatte, trennte der Stadtherr durch das Ziehen der Stadtgrenze den urbanen Raum vom umgebenden Land ab und schuf somit die städtische Ordnung.178 Im Licht dieser Analogie erschien das Stadtgründungsritual nicht nur als eine geometrische Opera173 Vgl. Hölscher 2006, 119. 174 Wilhelm von Conches (Glosse zu Macrobius’ Commentar zum Traum des Scipio; zit. nach Lilley 2004, 301). Der römischen Tradition folgend, wonach die befestigte Burg (arx) auf dem Kapitol (!) mit dem caput urbis (Kopf der Stadt) gleichgesetzt wurde (Varro, De lingua Latina III, 47), bezeichnete man das mittelalterliche Rathaus von Stralsund mit dem doppeldeutigen Begriff kophus (plattdeutsch Kopf- und Kaufhaus). Vgl. Küspert 1902, 35; Kugler 1986, 91; Kiesow 1999, 291. 175 Vgl. Planitz 1965, 259. 176 Francesco di Giorgio, Tratt. di Arch. I, T. 1; vgl. Schweizer 2002, 71; Uppenkamp 2005, 253. 177 Vgl. de Champeaux/Sterckx 1990, 91; Lilley 2009, 78. 178 Vgl. Eliade 1956, 10 ff.; Gaiser 1963, 57; Hawel 2007, 183; Cassirer 2010, 119.

Stadt und Kosmos

157

Abb. 78: Der göttliche Zirkelschlag zur Schaffung der Welt (Bible moralisée, 13. Jahrhundert).

tion, sondern auch als mikrokosmische Imitation des göttlichen Schöpfungsaktes.179 Analog zum göttlichen Zirkelschlag aus der Hand des ersten Geometers materialisierte sich durch die urbane Geometrie der städtische Kosmos (vgl. Abb. 78).180 Der Zirkel wurde so zu einem Symbol der schöpferischen Kraft, die der Geometrie in ihrer angewandten Form zugeschrieben wurde.181 Die Nachahmung Gottes in seiner Eigenschaft als erster geometer galt dem hoch- und spätmittelalterlichen Verständnis nach jedoch nicht als blasphemische Anmaßung, son179 Vgl. Lilley 2009, 77. 180 »[Gott] setzt in die Mitte das Zentrum und krönet den Punkt dieser Mitte / Mit des Radius’ vielfachem Strahl, den der Kreisbogen abschließt« (Alanus ab Ins., Anticlaudian III, IV). Vgl. Hawel 2007, 183; Cassirer 2010 119. 181 Vgl. Heimann 1966, 52.

158

Streng geometrische und figürliche Stadtgrundrisse

dern als eine Möglichkeit, eine Verbindung zwischen der himmlischen und irdischen Sphäre herzustellen.182 Die Vorstellung vom gottgleichen König als Mittler zwischen den Welten ist so alt wie das Prinzip Stadt selbst und seit der Urbanisierung Mesopotamiens und der Reichsbildung Ägyptens geläufig.183 Indem es auf die Grundlagen eines christlich-theologischen Programms gestellt wurde, manifestierte sich das aus der griechisch-­ römischen Antike übernommene Prinzip im Mittelalter im sakralen König- und Kaisertum (vgl. Abb. 79).184 Dieser imperiale Anspruch wurde durch die angenommene Mittlerfunktion zwischen Himmel und Erde gerechtfertigt und kam in der mittelalterlichen Ikonographie besonders im kaiserlichen Ornat und in den Insignien zum Ausdruck.185 In diesem Kontext stand der Reichsapfel als Abbreviatur des kugelförmigen Kosmos oder der Erde, Szepter oder Reichsschwert symbolisierten die Weltenachse und der Krönungsmantel konnte sogar den Himmel selbst darstellen.186 Über die Herrscherikonographie hinaus stellten mittelalterliche Schriften explizit die Bedeutung des sakralen Herrscher-

Abb. 79: Mittelalterliche ­Darstellung des Kaisers Augustus in seiner Funktion als Weltenherrscher (Lambert von St. Omer, 12. Jahrhundert.

182 Vgl. Cohen 2000, 195. 183 Vgl. Voegelin 2001, 65. 184 Johannes v. Salisbury, Policraticus I: »Every ruler is a form of earthly image of divine majesty«. Vgl. Randolph 1995, 306; Lilley 2009, 77 ff. 185 Vgl. Hawel 2007, 184. 186 Vgl. beispielsweise die Reichsinsignien Heinrichs II. (Trnek 2003, Sp. 623 ff.; Jung/Reddig 2012, 85).

Stadt und Kosmos

159

tums heraus; besonders im Fürstenspiegel von Thomas von Aquin wurde die gottgleiche Stellung des Herrschers betont.187 Nicht zuletzt ist dieser Anspruch wohl ein nicht zu unterschätzender Motor der in großer Zahl auftretenden Stadtherren, deren Gründungen ausschlaggebend für den rasanten spätmittelalterlichen Urbanisierungsprozess waren. Denn ab dem 13. Jahrhundert war das Stadtgründungsprivileg im Heiligen Römischen Reich nicht mehr Kaiser, König oder Bischof vorbehalten, sondern wurde auf kirchliche und weltliche Territorialherren unterschiedlichen Standes erweitert, darunter auch auf den niedrigen Landadel.188 Ohne diese kleinen Herren, die von nun an wie ein König oder ein Bischof als fundatores auftreten konnten, wäre die Urbanisierung Europas in diesem Ausmaß und der Schnelligkeit nicht möglich gewesen.189 Und es gibt zahlreiche Indizien, dass jeder Stadtherr, ganz gleich ob er von hohem oder von niedrigem Rang war, in die kosmologische Bedeutung einer Stadtgründung eingeweiht gewesen ist.190 3.2.3 Ausgewählte Stadtplananalysen 3.2.3.1 Friedeberg/Strzelce Krajeńskie

Das ikonographische Sinnbild für die Isomorphie von Kosmos, Stadt und Mensch war traditionell der viergeteilte Kreis, der orbis quadratus. Aus diesem Grund konnte nicht nur das irdische Jerusalem entgegen seiner realen topographischen Gestalt, sondern auch das Himmlische Jerusalem im Widerspruch zum Wortlaut der Heiligen Schrift in dieser Gestalt dargestellt werden (vgl. Abb. 80).191 Inspiriert von den platonischen und vitruvianischen Schriften avancierte deshalb die Kreisform, die als die vollkommenste geometrische Figur empfunden wurde, im Hoch- und Spätmittelalter zum Sinnbild der idealen Stadt.192 Über die zeremonielle Ebene des Stadtgründungsrituals hinaus manifestierte sich das Urbs-quadrata-Schema im baulichen Sinne ganz konkret im Kontext der hoch- und spätmittelalterlichen Städteplanung. Dies ist vor allem bei denjenigen Städten augenfällig, deren Grundrisse einen annähernd runden Umriss mit einem zentralen Achsenkreuz aufweisen. Der viergeteilte Kreis diente vorrangig im 13. und 14. Jahrhundert als geometrische Grund187 »Dessen muss sich also ein König bewusst werden: Dass er das Amt auf sich genommen hat, seinem Königreich das zu sein, was die Seele für den Leib und Gott für die Welt ist« (Thomas v. Aquin, De princ. reg., I, 12). »Das also ist es, um zusammenzufassen, was bei der Reichs- oder Städtegründung zum Amte des Königs gehört. Alles konnte aus der Ähnlichkeit mit der Erschaffung der Welt abgeleitet werden« (Thomas v. Aquin, De princ. reg., I, 13, 51). 188 Vgl. Haase 1969c, 394 f. 189 Vgl. Frölich 1969, 293; Sydow 1977, 173. 190 Vgl. Lilley 2009, 79. 191 Vgl. Sedlmayr 1953, 126. 192 Plat. Krit. 208; Vitruv, De arch. V. Vgl. Bendemann 2013, 78.

160

Streng geometrische und figürliche Stadtgrundrisse

figur der Neugründungen und findet sich nicht nur in Frankreich und Italien im Zusammenhang mit den Bastide- und Terranova-Bewegungen, sondern auch in den Städten, die im Kontext mit dem mittel- und osteuropäischen Landesausbau in den Gebieten östlich der Elbe gegründet wurden (vgl. Abb. 81a–d). Ähnlich wie bei den tetragonalen Städten ist die Binnenstruktur bei diesem Typ durch ein orthogonales Rastersystem mit einer großen Platzanlage geprägt, was die Anlage regelmäßig und großzügig erscheinen lässt. Abb. 80: Das Himmlische Jerusalem in Gestalt eines viergeteilten Kreises (Frankreich, 9. Jahrhundert). Auch Friedeberg/Strzelce Krajeńskie gehört mit seinem annähernd ­kreisrunden Umriss und dem hervorgehobenen Achsenkreuz in die Gruppe der Städte vom Urbs-qua­ drata-Typ (vgl. Abb. 82). Die Stadt wurde um 1280 nördlich der unteren Warthe gegründet, also in einem politisch strittigen Gebiet, das im 13. Jahrhundert im Fokus der expandierenden Mächte Polen, Pommern und Brandenburg stand.193 Die ursprünglich polnische Kastellanei Zantoch/Santok kam 1260 als Mitgift der polnischen Prinzessin Konstanze im Rahmen ihrer Vermählung mit dem askanischen Markgrafen Konrad zum Gebiet der Mark Brandenburg.194 Nachdem im Jahr 1272 eine unweit der slawischen villa Strzelcz gelegene askanische Burg durch den Bruder Konstanzes, der spätere polnische König Przemysław II., zerstört worden war, gründete der Markgraf Konrad auf dem Gebiet der slawischen Siedlung die Stadt Friedeberg.195 Während der deutsche Name vermutlich von einer aus Thüringen stammenden Familie abgeleitet ist, die sich im markgräflichen Gefolge befunden hat, kann der polnische Name, der über Jahrhunderte hinweg parallel zum deutschen Namen verwendet wurde und den die Stadt seit 1945 offiziell trägt, auf die slawische Vorgängersiedlung Strzelcz zurückgeführt werden.196 Zwar ist keine Gründungsurkunde überliefert, die Gründung muss jedoch vor 1286 erfolgt sein, da Friedeberg in diesem Jahr erstmals als Ausstellungsort einer markgräflichen Urkunde genannt

193 Vgl. Schultze 1989, 155 ff.; Graliński 2005, 25. 194 Vgl. Heinrich 1973, 411 und 432. 195 Annales Posnanienses, 486. Vgl. Wittlingera 1932, 26 f.; Heinrich 1973, 432. 196 Der Chronist Johann Christoph Bekmann bemerkte Anfang des 18. Jahrhunderts hierzu: »Die Stadt Friedberg (…) sol Strelitz geheißen haben, wird auch noch von den Pohlen Strelza genannt.« (zit. nach Wittlingera 1932, 26, Anm. 1a; vgl. Graliński 2005, 6).

Stadt und Kosmos

161

Abb. 81a–d: Die Grundrisse von Créon (Dép. Gironde, Frankreich), Cittadella (Prov. Padua, Italien), Neubrandenburg (Mecklenburg-Vorpommern, Deutschland), Reichenbach/Dzierżoniów (Woiwodschaft Niederschlesien, Polen) nach genordeten Katasterplänen.

wurde.197 Die Gründung war Teil eines expansiven Urbanisierungsprogramms, das seit den 50er Jahren des 13. Jahrhunderts von den askanischen Markgrafen Johann I. und Otto  III. vorangetrieben wurde: Nachdem 1253 Frankfurt an der Oder gegründet worden war, folgten im Gebiet östlich der Oder – in den Quellen als terra transoderana oder

197 Vgl. Wittlingera 1932, 28; Heinrich 1973, 432; Deutsches Städtebuch 2003, 65; Graliński 2005, 53.

162

Streng geometrische und figürliche Stadtgrundrisse

Abb. 82: Grundriss von Friedeberg/Strzelce Krajeńskie (nach einem Katasterplan aus der ersten Hälfte des 20. Jahrhunderts).

als Neumark (neuwe Mark obir Oder) bezeichnet – weitere Gründungen, u. a. Landsberg an der Warthe/Gorzów Wielkopolski, Soldin/Myślibórz und Arnswalde/Choszczno.198 Der Grundriss der auf einer Anhöhe liegenden Stadt ist nach der klassisch-römischen Vermessung aus zwei Hauptachsen, dem cardo und dem decumanus, entwickelt worden, deren Kreuzung als Mittelpunkt eines konzentrischen Kreissystems dient (vgl. Abb. 82).199 Während die äußeren Kreise durch das fast 50 Meter breite, doppelte Wall-Graben-­System und die Stadtmauer gebildet werden, formt die sogenannte Ringstraße oder Umbstraße den inneren Kreis, der das Zentrum in leicht ellipsoider Form umschließt. Über die Benennung der Ringstraße in Süd-, Nord-, Ost-, Westumstraße (poln. ul. Południowa, Północna, Wschodnia, Zachodnia)200 hinaus, die das Motiv der Vierteilung aufnimmt und damit expressis verbis eine Orientierung auf die vier Himmelsrichtungen ausdrückt, wiederholt jedes Viertel intern die Vierteilung der urbanen Grundfigur, indem es wiederum durch ein Straßenkreuz in vier Segmente gegliedert ist. 198 Vgl. Schultze 1989, 155 ff. 199 Vgl. Siedler 1914, 71. 200 Vgl. Deutsches Städtebuch 2003, 66; Graliński 2005, 16.

Stadt und Kosmos

163

Während drei Hauptachsen direkt in eine Ausfallstraße münden, ergibt sich im Osten der Stadt durch die Einschiebung eines Blockes (F) ein Versatz in der Führung der Hauptachse zum Mühlentor (D).201 Möglicherweise hängt dies mit dem Standort des seit 1290 in Friedeberg bezeugten Augustinerklosters zusammen, das sich dicht an der Stadtmauer in der Nähe des Mühlentors befunden haben soll.202 Bis 1866 lag im Westen des Stadtmauerrings, der bereits im letzten Viertel des 13. Jahrhunderts errichtet worden war, die Doppeltoranlage des Birkholzer Tor (C).203 Im Norden wurde im 14. Jahrhundert das Neue Tor (poln. Nowa Brama) errichtet, flankiert von dem als Gefängnis und Pulverlager genutzten Fangturm (E).204 Unweit des Kreuzungspunktes beherrschten die um 1300 erbaute Pfarrkirche St. Marien (A) und das Rathaus (B) das Zentrum der Stadt. Ebenso wie die Kirche auf dem höchsten Punkt der Stadt einen prominenten Platz einnimmt, dominierte das mit einem Dachreiter ausgestattete gotische Rathaus bis zu seinem Abbruch um das Jahr 1600 den Marktplatz.205 Eine formale Analyse des Stadtgrundrisses offenbart, dass die urbane Geometrie von Friedeberg/Strzelce Krajeńskie sich nicht nur auf Umriss und Straßenführung beschränkt, sondern auch die Anordnung der repräsentativen Stadtarchitektur miteinbezieht. Im Gegensatz zum inneren Kreis, der durch die Vierteilung charakterisiert ist, formen im äußeren Kreis Tore und Ausfallstraßen ein achsensymmetrisches Fünfeck, das in den Stadtmauerring eingeschrieben ist (vgl. Taf. 3). Obwohl es sich nicht um ein klassisches Pentagon handelt, da sowohl die Seitenlängen als auch die Innenwinkel variieren, weist die Struktur des Friedeberger Fünfecks eine proportionale Ordnung auf, die auch für das regelmäßige Pentagon charakteristisch ist. Es handelt es sich um zwei axialsymmetrische, proportionale Reihen, die nach dem Rhythmus der Stetigen Teilung gebildet sind: Dabei verhalten sich die horizontalen Innensehnen (BG und AE), die durch die Lage des Rathauses, der Kirche und der Ausfallstraßen bestimmt sind, ebenso zu den westlichen Außensehnen des Pentagons (CG und CE) wie diese zu den vertikalen Innensehnen (CD und CH). Letztere stellen wiederum die Summe der beiden vorhergehenden Strecken dar, so dass sich daraus eine Fibonaccireihe ergibt (vgl. Anhang Friedeberg). In der geometrischen Figur des Friedeberger Grundrisses schimmern zudem anthropomorphe Mikrokosmos-Makrokosmos-Darstellungen durch, wie sie vom hohen Mittel201 Auch Driesener Tor, polnisch Brama Młyńska (vgl. Treu 1865, 48; Heinrich 1973, 432; Deutsches Städtebuch 2003, 66). 202 1637 brannte das Kloster ab und wurde nicht wieder errichtet (vgl. Treu 1865, 36; Heinrich 1973, 432; Brandenburgisches Klosterbuch, 475; Deutsches Städtebuch 2003, 66; Graliński 2005, 18). 203 Auch Landsberger Tor, poln. Brama Gorzowska genannt (vgl. Treu 1865, 48; Heinrich 1973, 432; Deutsches Städtebuch 2003, 66; Graliński 2005, 30 und 151). 204 Vgl. Treu 1865, 25; Graliński 2005, 152. 205 Vgl. Treu 1865, 26; Graliński 2005, 18 und 35.

164

Streng geometrische und figürliche Stadtgrundrisse

alter bis in die Frühe Neuzeit typisch sind (vgl. Abb. 83). Überträgt man diese kosmologische Ikonographie auf den Friedeberger Grundriss, kann die Anordnung der repräsentativen Architektur in Gestalt eines Fünfecks wie eine anatomische Skizze des menschlichen Körpers gelesen werden. Dabei stehen das Westtor für den Kopf, Rathaus und Kirche für die inneren Organe, Tore und Ausfallstraßen für die vier Gliedmaßen, während der urbane Mittelpunkt am Kreuzungspunkt der Hauptachsen  – ganz nach römischer Tradition – als Nabel des städtischen Organismus fungiert. Abb. 83: Das Mikrokosmos-Makrokosmos-Schema (Agrippa von Nettersheim, 1509). In dieser vor allem in neuplatonischen Kreisen rezipierten Ikonographie spielen Pentagon und Kreis eine wichtige Rolle, da beiden geometrischen Figuren eine Verweiskraft auf den Kosmos zugeschrieben wird. Dabei symbolisiert der Kreis den Makrokosmos, während das auf die Fünf rekurrierende Pentagon für den Mikrokosmos steht und häufig als Synonym für den menschlichen Körper verwendet wird.206 Im Konzept des MikrokosmosMakrokosmos-Schemas formiert sich somit die Idee einer universellen Analogie, der zufolge die kosmische, menschliche und urbane Struktur in Deckung gebracht werden konnte. 3.2.3.2 Wolframs-Eschenbach

Die Bildsprache der Vormoderne kannte nicht allein den quadrierten Kreis als graphische Abbreviatur für den Kosmos. Auf Homer geht eine weitere Variante zurück, die im Mittelalter vor allem in ritterlichen Kreisen eine breite Rezeption fand.207 Es handelt sich um die Schildmetapher, die in der Ilias um den Schild des Achilles (Achillis scutum) entwickelt worden ist. In der lateinischen Fassung, der Ilias latina des Bebius Italicus, fand der griechische Sagenstoff Eingang in den literarischen Kanon des europäischen Mittelalters und gehörte ab dem 11. Jahrhundert zur Standardlektüre der gebildeten Welt.208 In einer lebhaften Schilderung beschrieb Homer im 18. Gesang seiner Ilias in über 130 Zeilen den kreisrunden Schild des griechischen Helden vor Troja. Darin breitete er nicht nur ein umfassendes Bild des Kosmos aus, sondern behandelte auch das Wechselspiel zwischen dem 206 Lydus, De mensibus, II, 25; vgl. Ghyka 1931, 37. 207 Vgl. Sæbø et al. 1996, 469, Anm. 143. 208 Vgl. Wandhoff 2003, 43.

Stadt und Kosmos

165

astralen Makrokosmos und dem menschlichen, durch die Stadt repräsentierten Mikrokosmos.209 Das in der mittelalterlichen Literatur häufig aufgegriffene und abgewandelte Thema wurde in den Habitus eines zeitgenössischen Ritters übertragen, wie beispielsweise die Bearbeitung des mythischen Stoffes durch Konrad von Würzburg zeigt (vgl. Abb. 84).210 Breit rezipiert fand die homerische Analogie von Schild und Kosmos Eingang in die mittelhochdeutsche Metaphernsprache und gehörte bis in die Neuzeit auch außerhalb der Ilias zu den beliebten literarischen Topoi.211 So ist beispielsweise in der Bearbeitung der Metamorphosen von Ovid durch Jörg Wickram (1505–um 1555) von einem Schild die Rede, »inn welchem die welt gegraben«212 und auf dem »die gantze Welt druff figuriert«213 ist. Die Verknüpfung von Kosmos und Schild war derart eng, dass die inhaltliche Abb. 84: Der kämpfende Achilles vor Troja (Konrad Analogie vom formalen Wandel der Gestalt von Würzburg, Mitte des 15. Jh.). der Schutzwaffe unberührt blieb. Denn an die Seite des bereits in homerischer Zeit gängigen Rundschilds mit Nabel (clipeus), der ohne weiteres mit dem kosmischen Kreissymbol in Deckung gebracht werden kann, trat in Mitteleuropa seit dem Ersten Kreuzzug der in Byzanz entwickelte mandelförmige Schild.214 In Gestalt eines verkürzten Dreieckschilds, dessen Spitze auch gerundet ausgeführt sein konnte, gehörte dieser Schildtyp im 13.–15. Jahrhundert zu den gängigsten Schutzwaffenvarianten und avancierte schließlich sogar zum Erkennungszeichen des Ritterstandes schlechthin.215 Denn ebenso wie dem Schwert wurde dem Schild in Kreisen des Ritterstandes eine besondere 209 Homer Il. XVIII, 478–608. 210 Konrad v. Würzburg, Trojanerkrieg. 211 Vgl. Starkey/Wenzel 2005, 57. 212 Jörg Wickram, Metamorphosen, XIII, 165. 213 ebenda, 414. 214 Vgl. Demmin 1869, 309; Nickel 1958, 7; Gamber 2003, Sp. 1482. 215 Vgl. Gamber 2003, 1462.

166

Streng geometrische und figürliche Stadtgrundrisse

Verehrung entgegengebracht. Als Gegenstand mystischer Ausdeutungen erfuhr der defensive Charakter der Schutzwaffe eine geradezu magische Überhöhung.216 Auch der 1198/99 in Jerusalem unter dem Namen Ordo fratrum hospitalis sanctae Mariae Theutonicorum gegründete Deutsche Orden war als Ritterorden eng mit dem Schild verbunden.217 Neben dem weißen Habit mit schwarzem Kreuz und Helm gehörte er zur Ordenstracht218 (vgl. Abb. 85), war aber auch in metaphorischer Hinsicht für den Orden von identitätsstiftendem Charakter, da sich die Ritterschaft als »Schutzschild der Christenheit« verstand.219 Die Metapher, die geradezu archetypisch mit dem Orden verbunden wurde, kursierte im 13.–15. Jahrhundert in den verschiedensten Varianten: Bereits eine Urkunde aus dem Jahr 1223 Abb. 85: Tannhäuser im Habit des Deutschen bezeichnete den Orden als »scutum inex­Ordens (Codex Manesse, um 1300). pugnabile«, als unbezwingbaren Schild.220 Im Jahr 1454 wurde der Orden auf einer Versammlung in Regensburg als »fredeschilt der Cristenheit«221 (Friedensschild der Christenheit) charakterisiert. Ähnlich fiel das wohlwollende Urteil von König Sigismund im Jahr 1429 über die bewaffneten Ordensbrüder aus: Der spätere Kaiser des Heiligen Römischen Reichs stellte fest, »dass die heilige Christenheit durch ihre Mühe, Arbeit und Sorgfalt hinter ihnen [den Deutschordensrittern] wie hinter einem festen Schild in gutem Frieden gesessen [hat] und wie in einem Garten der Ruhe erquickt [worden] ist.«222 216 Vgl. Nickel 1958, 6. 217 Vgl. Boockmann 2003, Sp. 768. 218 Vgl. Regel des Deutschen Ordens, Art. XXIV (zit. nach Voßberg 1843, 14). 219 Vgl. Sarnowsky 2012, 71; Daniels 2013, 370. 220 Directorium Diplomaticum Nr. 243, 576. 221 zit. nach Daniels 2013, 371. 222 zit. nach Sarnowsky 2012, 70 f. All diese um die Schildmetapher entwickelten Varianten rekurrieren auf eine biblische Wendung aus dem paulinischen Brief an die Epheser, in dem vom scutum fidei, dem Schild des Glaubens, die Rede ist: »Indem ihr über das alles ergriffen habt den Schild des Glaubens, mit welchem ihr imstande sein werdet, alle feurigen Pfeile des Bösen auszulöschen« (Eph. 6,16).

167

Stadt und Kosmos

Die repräsentative Funktion des Schilds für den Deutschen Orden wird zudem an der engen Verflechtung der Waffe mit der ordenseigenen Heraldik und Sphragistik offenbar, was den identitätsstiftenden Charakter noch verstärkte (vgl. Abb. 86a).223 Die obersten Repräsentanten des Ordens führten deshalb den Schild im Siegel; insbesondere der Doppelschild, der mit dem kleinen Adlerschild bedeckte Kreuzschild von Jerusalem, war auf den Hochmeistersiegeln ein gängiges Motiv (vgl. Abb. 86b).224

Abb. 86a: Siegel des Marschalls des Deutschen Ordens (Urkunde von 1423).

Abb. 86b: Siegel der Hochmeister des Deutschen Ordens von 1324–1491.

Auf die Ezechielrede wider die falschen Propheten rekurrierend, galt der Deutsche Orden auch als »Verteidiger der Mauern des Hauses Israel«225. Diese Funktion verband ihn wiederum mit dem Phänomen Stadt, die ebenfalls stark mit dem Schutz- und Schildgedanken konnotiert war. So wurde beispielsweise Hermannstadt im Jahr 1454 deshalb mit dem gerade durch die Türken eroberten Byzanz verglichen, weil sie wie »die Stadt Konstantinopel, die (…) einstmals der ganzen Christenheit als eine Mauer und ein Schild galt, (…) ein Schild und Schirm«226 sei. Die Verbindung von Stadt und Schild war bereits in der Antike ein verbreitetes Motiv: So war der Schild (ἀσπίς) im griechischen Kontext Teil einer Analogiekette, indem er mit dem Hopliten gleichgesetzt werden konnte, der wiederum als pars pro toto für die Stadt (πόλις) stand.227 So ist es folgerecht, dass sich der expansionsorientierte Deutsche Orden in den neuerworbenen Gebieten neben dem Burgenbau vor allem der 223 Vgl. Nickel 1958, 7. 224 Vgl. Voßberg 1843, 58 und 98. 225 Ez. 13,5. Vgl. Sarnowsky 2012, 88. 226 zit. nach Niedermaier 2008, 6. 227 Für diesen Hinweis danke ich Christoph Körner (Theologische Fakultät Frankfurt am Main).

168

Streng geometrische und figürliche Stadtgrundrisse

Stadtgründung widmete. Denn insbesondere die Städte galten als Zeugnis eines geordneten Landesausbaus, was wiederum als Argument diente, um das Wirken des Ordens in Ostpreußen und im Baltikum zu rechtfertigen. Gerade in diesen Gebieten rühmten sich die Ordensbrüder »schonen stete, kostliche huzere und vil festen« errichtet zu haben.228 Doch die Stoßrichtung des Ordens richtete sich nicht nur nach Osten, man bemühte sich auch um längst kolonisierte Gebiete im Altsiedelgebiet. In der Ballei Franken erwarb die Ritterschaft in der ersten Hälfte des 13. Jahrhunderts das unweit von Ansbach gelegene Eschenbach, in den Quellen auch als Obereschenbach bezeichnet.229 Der im 11. Jahrhundert erstmals erwähnte Kirchort hatte zu dieser Zeit bereits überregionale Bekanntheit erlangt, da er die Heimat des Minnesängers Wolfram von Eschenbach (um 1160–1220) ist, der bereits zu Lebzeiten als größter Laiendichter gefeiert wurde.230 Der Schöpfer des wohl berühmtesten Ritterepos des Mittelalters bezeichnete sich im Parzival mehrfach selbstbewusst als »Wolfram von Eschenbach«.231 Der offensichtlich stark mit seinem Geburtsort verbundene Autor versteckte in dem Epos auch noch weitere biographische Details. Mit der Wendung »schildes ambet ist mîn art« verwies Wolfram ausdrücklich auf seinen eigenen ritterlichen Stand und unterstrich gleichzeitig die starke Verflechtung zwischen Schild und Rittertum im Allgemeinen.232 So liegt es nahe zu vermuten, dass Wolframs Verbundenheit mit dem Rittertum im Allgemeinen und mit seinem Heimatort Eschenbach im Besonderen ein nicht zu unterschätzenden Anreiz darstellte, warum Abb. 87: Wolfram von Eschenbach (Codex Manesse, um 1300). sich der Deutsche Orden so sehr um den 228 zit. nach Seitz/Geidner 1997, 66. 229 Das Geschlecht derer von Eschenbach, dem auch der mittelhochdeutsche Sänger Wolfram entstammt, war Unterlehensträger der Grafen von Wertheim, bis das Dorf um 1200 zum Bistum Eichstätt kam (vgl. Dehio 1979, 895; Seitz/Geidner 1997, 37 f.; Boockmann 2003, 768). 230 Wolfram v. Eschenbach, Parzival 114,12; 185,7; 827,13. Nach dem Sänger nennt sich der Ort seit 1917 Wolframs-Eschenbach. Vgl. Dehio 1979, 895; Seitz/Geidner 1997, 37 f.; Boockmann 2003, 768. 231 Vgl. Schirok 2011, 1 ff. 232 Wolfram v. Eschenbach, Parzival 115,11. Vgl. Heinzle 2011, 288; Schirok 2011, 1; Seitz/Geidner 1997, 21.

Stadt und Kosmos

Abb. 88: Der Stadtgrundriss von Eschenbach (nach einem Katasterplan aus dem Jahr 1826).

169

170

Streng geometrische und figürliche Stadtgrundrisse

Erwerb und den Ausbau des politisch und strategisch eher unbedeutenden Ortes bemühte. Denn nachdem der Deutsche Orden Anfang des 13. Jahrhunderts in den Besitz Eschenbachs gekommen war, ersuchte er über 100 Jahre lang um das Recht, die unbefestigte Siedlung zu einer Stadt erheben zu dürfen. Dies gelang schließlich im Jahr 1332 unter der Regentschaft des Hochmeisters Luther von Braunschweig, dem eine große Vorliebe für die Dichtung nachgesagt wurde.233 Kraft eines kaiserlichen Privilegs wurde gestattet, »auz dem Dorf ze Obereschenbach […] ein Stat [zu] machen«, wie es in der Urkunde wörtlich heißt.234 Zu den Stadtrechten gehörte neben der hohen Gerichtsbarkeit und dem Marktrecht auch das Stadtbefestigungsrecht.235 Angesichts der repräsentativen Funktion des Schilds in Kreisen des Ritterstandes nimmt es nicht wunder, dass der Umriss der einzigen Stadt in der Ballei Franken, deren Gestalt der Deutsche Orden selbst entwerfen konnte, die Form eines Deutschordensschilds mit gerundeter Basis aufnimmt. Die heute noch geläufige Benennung der Eschenbacher Tore – das Obere Tor im Westen und das Untere Tor im Osten – liefert zudem einen Hinweis auf die gewestete Leserichtung der Eschenbacher Topographie (vgl. Abb. 88). Doch nicht nur die den Umriss definierende, äußerst wehrhafte Stadtbefestigung, die streckenweise sogar doppelt ausgeführt ist, wurde in die schildförmige Gestaltung miteinbezogen, sondern auch das lokale Höhenrelief. Denn wie ein Schildbuckel erhebt sich im Zentrum vor der Ordensvogtei (E) der höchste Punkt der Stadt, auf den die sanft S-förmig geschwungene Hauptachse zuführt. Damit gehört die Deutschordensstadt Eschenbach zu der Gruppe von Städten mit schildförmigem Umriss, die in ganz Europa bevorzugt im 13.–15. Jahrhundert projektiert wurden (vgl. Abb. 89). Im Vergleich zu den angeführten Städten, bei denen sich die Schildform auf den äußeren, durch die Stadtbefestigung konstituierten Umriss beschränkt, versahen die Stadtplaner des Deutschen Ordens, der für sein elaboriertes Vermessungswesen bekannt ist236, den Eschenbacher Grundriss mit weiteren gromatischen Finessen. So wird die Schildform im Zentrum der Stadt wiederholt, nämlich in der Gestalt des Kirchhofs, der das Liebfrauenmünster durch eine Mauer vom profanen Teil der Stadt abgrenzt (vgl. Tafel 4).237 Abgesehen von dem Pfarrhaus, das sich an der Flucht der Pfarrkirche orientiert, folgen alle Gebäude und Gärten dem schildförmigen Verlauf, der durch die Kirchhofsmauer und die Parzellengrenzen vorgegeben ist. 233 Vgl. Voigt 1842, 57. 234 Privileg des Kaisers Ludwig der Bayer, 18. Dezember 1332 (Staatsarchiv Nürnberg, Kaiser-Ludwig-Selekt 529; zit. nach Seitz/Geidner 1997, 148) Vgl. Dehio 1979, 895. 235 Vgl. Seitz/Geidner 1997, 58 und 66. 236 Im 13. Jahrhundert gab der Orden die Geometria Culmensis, ein in lateinischer Sprache verfasstes agronomisches Traktat zur praktischen Feldmesskunst, heraus, das um 1400 sogar ins Deutsche übersetzt wurde, um es einer größeren Gruppe von Feldmessern zugänglich zu machen (vgl. Mendthal, 1886). 237 Auch die zur St.-Sebastian-Kirche (E) gehörige Parzelle bezeichnet einen, wenn auch etwas irregulären, schildförmigen Umriss (vgl. Abb. 88).

Stadt und Kosmos

171

Abb. 89a–d: Die Grundrisse von a) Worms (Rheinland-Pfalz), b) Vellberg (Baden-Württemberg), c) Sainte Suzanne (Dép. Mayenne, Frankreich) und d) Amsterdam (Niederlande).

Die Geometrie des Eschenbacher Kirchhofs hat auffallende Ähnlichkeiten mit der klassischen spätmittelalterlichen Schildteilung, wie sie sich beispielsweise bei dem Kupferstecher Erwin Schön (1491–1542) abgebildet findet (vgl. Abb. 90b). Im Falle der Eschenbacher Konstruktion definiert die Verlängerung der Mittelachse zwischen zwei Quadraten, die je

172

Streng geometrische und figürliche Stadtgrundrisse

Abb. 90a–b: Die Konstruktion des Eschenbacher Kirchhofs (links) nach der klassischen spätmittelalterlichen Schildteilung (rechts nach Erwin Schön, um 1510).

eine Seitenlänge von 6 Altkulmer Ruten (rund 28,2 m) aufweisen, um ½ Rute den Mittelpunkt eines Kreises (*) mit einem Radius von ebenfalls 6 Ruten.238 Geometrisch – und symbolisch – gesehen ist der kleine Schild der Eschenbacher Topographie also aus dem Zentrum des Liebfrauenmünsters entwickelt worden. Auch die Schildform der Stadtbefestigung wurde aus zwei Bogenkonstruktionen entwickelt: Während der Konstruktionspunkt des östlichen Bogens, dessen Radius 20 Kulmer Ruten bzw. 2 Kulmer Schnüre umfasst, direkt vor dem Rathaus liegt, befindet sich der Mittelpunkt des großen Bogens außerhalb der Stadt, nämlich östlich des Schießweihers. Diese Bogenkonstruktion mit einem Radius von 100 Ruten definiert zum einen den west­ lichen Grabenverlauf der Stadtbefestigung, zum anderen orientieren sich an der Ost-West ausgerichteten Achse die südlichen Fluchten des Eschenbacher Liebfrauenmünsters sowie die des Oberen Tors (vgl. Tafel 5).239 Von dem externen Messpunkt aus wurden auch die Ecken der bogenförmigen Westmauer konstruiert. Denn diese formen gemeinsam ein sogenanntes Goldenes Dreieck, also ein gleichschenkliges Dreieck mit den Innenwinkeln von 72 °, 72 ° und 36 °, dessen Schenkel sich zur Basis verhalten wie Maior zu Minor

238 Auch in Eschenbach galt das ordenseigene Maßsystem, das in den Gründungen des Deutschen Ordens bis 1577 in Gebrauch war: Dabei maß 1 Fuß 0,331 m, 1 Elle 0,662 m, 1 Rute 4,71 m und 1 Schnur das Zehnfache einer Rute, nämlich 47,1 m (vgl. Gąsiorowski 1974, 50). 239 Große Bogenkonstruktionen zur Definition von Straßen- und Mauerverläufen finden sich in Stadtgrundrissen in ganz Europa (vgl. Humpert/Schenk 2001 mit zahlreichen Beispielen).

Stadt und Kosmos

173

(vgl. Anhang Wolframs-Eschenbach).240 Das Goldene Dreieck, ein beliebtes Gestaltungselement der gotischen Architektur241, stellt wiede­rum die Grundfigur des regelmäßigen Pentagons dar, also einer geometrischen Figur, mit der traditionell eine defensiv-apotropäische Wirkung verbunden wurde (vgl. Abb. 91). Dass die Schildkonstruktion des Eschenbacher Grundrisses mittels eines Goldenen Dreiecks konstruiert ist, diente vermutlich der Stärkung der apotropä­ischen Wirkung, die mit dem Schild verbunden ist. Abb. 91: Ein in ein reguläres Fünfeck einDer Eschenbacher Grundriss ist somit geschriebenes Goldenes Dreieck (De divina proporein anschauliches Beispiel dafür, dass die tione, 1508). sichtbare äußere Gestalt einer Stadt und ihre nichtsichtbare geometrische Konstruk­ tion eine untrennbare Einheit bilden, die in ihrer Gesamtheit ein elaboriertes Gewebe aus geometrischen und symbolischen Bezügen darstellen. Dank geringer Überformung hat sich dieses Bezugssystem in Eschenbach bis zum heutigen Tag erhalten. 3.2.3.3 Würzburg

Das Pentagon als Grundform des Dodekaeders, dem platonisch-pythagoreischen Kosmossymbol, diente ab dem 12. Jahrhundert auch als Prototyp der fünfeckigen Mitra, der liturgischen Kopfbedeckung der Bischöfe.242 Denn ebenso wie der Schild emblematisch für den Ritterstand war, war die Bischofsmütze auf das engste mit der episkopalen Würde verflochten und wurde nicht nur auf Epitaphen als Zeichen des episkopalen Standes dargestellt, sondern auch auf Siegeln geführt (vgl. Abb. 92).243 Gleichermaßen stark war die Verbindung zwischen dem im heutigen Unterfranken gelegenen Würzburg und den dort residierenden Bischöfen. Im Jahr 742 fiel die Wahl des angelsächsischen Missionars Bonifatius auf ein am Main gelegenes, befestigtes castellum, das nicht nur Sitz einer fränkischthüringischen Herzogsdynastie, sondern auch Schauplatz des Martyriums der drei irischen 240 Vgl. Beutelspacher/Petri 1996, 34 f. 241 Vgl. Witzel 1914, 10. 242 Die Mitra tritt ab dem 10. Jahrhundert als kegelförmige Kopfbedeckung von Päpsten, Äbten und Bischöfen auf. Im 12. Jahrhundert erhält sie die fünfeckige Form (vgl. Braun 1907, 447; Lenssen 2002, 134). 243 Mitte des 12. Jahrhunderts wurde den Bischöfen von Würzburg das Recht verliehen, die fünfeckige Mitra in ihren Siegeln zu führen (vgl. Braun 1907, 451).

174

Streng geometrische und figürliche Stadtgrundrisse

Abb. 92: Gottfried von Spitzenberg, Bischof von Würzburg 1186–1190 (Epitaph im Würzburger Dom).

Mönchen Kilian, Kolonat und Totnan war, um es als Mittelpunkt des neugegründeten Bistums, der Dioecesis Herbipolensis, auszubauen.244 Damit gehörte Würzburg neben der hessischen Büraburg und dem thüringischen Erfurt zu denjenigen Bischofssitzen, die in päpstlichem Auftrag gegründet wurden, um die Christianisierung des überwiegend noch paganen Ostfrankens einzuleiten.245 In topographischer Hinsicht ist der Auftakt des systematischen Ausbaus des episkopalen Sitzes im 11. Jahrhundert anzusetzen, denn die städtische Entwicklung ging im ersten Vierteljahrhundert, also von der Gründung bis zur Jahrtausendwende, mit mehreren radikalen Neuordnungen einher, wozu neben der Verlegung der Bischofskirche auch die translationes der Gebeine der Märtyrer Kilian, Kolonat 244 Vgl. Schich 1977, 11. 245 Vgl. Herzog 1964, 151; Steidle/Weisner 1999, 17.

Stadt und Kosmos

175

und Totnan gehörten.246 Erst infolge der Auflösung des Herzogtums im 10. Jahrhundert konnten sich die Würzburger Bischöfe als alleinige Stadtherren etablieren, ein Umstand, der den planmäßigen Umbau des weltlichen castellums zu einer episkopalen civitas sancta einläutete.247 Zur bischöflichen Neuordnung der Stadt gehörte der im Jahr 1040 begonnene Ausbau der Bischofskirche zu dem heute noch stehenden romanischen St.-Kilians-Dom, der fortan als architektonischer Bezugspunkt des Städteausbaus fungierte.248 Markanten Ausdruck fand der episkopale Machtanspruch zudem in der Gestaltung der Stadtmauer, der eine für die Bischofswürde charakteristische Form verliehen wurde, nämlich die eines Pentagons, das heute noch im Volksmund Bischofsmütze genannt wird. Eine derartig regelmäßige Form ist für Mitteleuropa zu jener Zeit einzigartig.249 In diesem wehrhaften Fünfeck, das heute noch gut im städtischen Grundriss erkennbar ist, bildete die parallel zum Fluss verlaufende Mainmauer die Basis, während der Rolandsturm am sogenannten Katzenwicker die nach Osten gerichtete Spitze darstellte (vgl. Abb. 93). Als Verkörperung der Würde des bischöflichen Amtes avancierte die Stadtbefestigung, die vermutlich gleichzeitig mit dem Dom projektiert wurde250, so zu einer steinernen Metapher der bischöflichen Stadtherrschaft, die erst mit der Säkularisation Anfang des 19. Jahrhunderts aufgehoben wurde.251 Ähnlich wie mit dem ritterlichen Schild wurde mit der bischöflichen Mitra eine apotropäische Funktion verbunden, die den Schutzcharakter der Stadtbefestigung in magischer Weise verstärken sollte. Der unheilabwehrende Aspekt der episkopalen Kopfbedeckung kommt auch im Rahmen der Bischofsweihe zum Ausdruck, bei der das Aufsetzen der Mitra von folgenden Worten begleitet wird: Wir setzen, o Herr, auf das Haupt dieses deines Bischofs und Kämpen den Helm des Schutzes und des Heiles.252 246 Nachdem die Gebeine der Märtyrer im 8. Jahrhundert vom rechtsmainisch gelegenen castellum des Herzogs Gozbert in der ersten translatio in die linksmainisch gelegene Marienkirche auf dem Marienberg überführt worden waren, wurden sie 788 im Beisein Karls des Großen in einer zweiten translatio in den rechtsmainisch gelegenen Salvatordom gebracht. Im Jahr 855 wurde die Bischofskirche an ihrem heutigen Standort geweiht (vgl. Herzog 1964, 152; Schich 1977, 7 ff.; Dehio 1979, 906; Steidle/Weisner 1999, 18). 247 Vgl. Schich 2001, 188; Hirschmann 2002, 39 ff. 248 Vgl. Dehio 1979, 900. 249 Vgl. Hirschmann 2002, 46. 250 Aus einer Quelle aus dem Jahr 1057, die die Lage des Stephansklosters als »in antemurali urbis Wirciburgensis« bezeichnet, geht hervor, dass bereits im 11. Jahrhundert eine Mauer bestand, deren Südseite um 1200 niedergelegt wurde (vgl. Schlesinger 1958, 346; Seberich 1962, 6; Herzog 1964, 156; Schich 1977, 68, 115, 185; Dehio 1979, 902). 251 Die Aufhebung des Hochstifts wurde durch den Beschluss zur Aufhebung der geistlichen Fürstentümer im Frieden von Luneville am 9. Februar 1801 eingeläutet (vgl. Sticker 1932, 520). 252 Ähnlich lautet auch das im Mittelalter verbreitete bischöfliche Gebet bei der Weihe: »Setze auf, o Herr, die Mitra als Helm des Heiles auf mein Haupt, damit ich gegen des alten Feindes und aller Gegner Nachstellungen geschirmt sei« (Vat. lat. 4730 und Vat. Ottob. 27; zit. nach Braun 1907, 451 und 720).

176

Streng geometrische und figürliche Stadtgrundrisse

Abb. 93: Der Verlauf der sogenannten Bischofsmütze, der Würzburger Stadtbefestigung im 11. Jahrhundert (Stadtmauerrekonstruktion: Schich 1977).

Die unter den hochmittelalterlichen Stadtbefestigungen singuläre Fünfeckform ist trotz mehrfacher Modifizierungs-, Erweiterungs- und Entfestungsmaßnahmen stark in der lokalen Tradition verhaftet.253 So wird die Bischofsmütze bis zum heutigen Tag jährlich im Rahmen des Fronleichnamsfestes memoriert, indem die seit dem 14. Jahrhundert weitgehend unveränderte Route immer noch dem ehemaligen Verlauf der Fünfeckmauer folgt.254 Dadurch dass die Mauerprozession am Dom beginnt, entsteht gleichzeitig eine zeremonielle Verknüpfung von Zentrum und Peripherie, wobei der ehemalige Mauerverlauf durch die Bewegung der Gemeinde im urbanen Raum gleichsam auf dem städtischen Boden nachgezeichnet wird.255 Die bis heute andauernde Verankerung der Bischofsmütze im lokalen Kultgeschehen ist umso auffälliger, da die pentagonale Form der Stadtbefestigung nicht lange Bestand hatte. Denn bereits um 1200 wurde das Fünfeck durch die Einbeziehung der Vorstadt Sand in südlicher Richtung erweitert.256 253 Die spätmittelalterliche Umfassungsmauer des Jahres 1343 von Frankfurt am Main ist zwar fünfeckig, jedoch weit weniger regelmäßig als die Würzburger Befestigung (vgl. Planitz 1965, 240). 254 Vgl. Lilley 2009, 158 ff. 255 Vgl. Wittstadt 2001, 307; Ashley 2001, 17; Ashley/Sheingorn 2001, 62; Boogaart 2001, 92; Lilley 2009, 158 ff. 256 Vgl. Schich 1977, 185 ff.

Tafelteil

Tafel 1: Das mittels einer Fibonacci-Reihe gestaltete, konzentrische Kreissystem der Wehrtopographie von San Giovanni Valdarno (Prov. Arezzo, Italien).

Tafel 2: Das nachz dem Goldenen Schnitt komponierte Proportionsschema der Wehrtopographie von Bretenoux (Dép. Lot, Frankreich).

Tafel 3: Das Proportionsschema der Wehr- und Sakraltopographie von Friedeberg/Strzelce Krajeńskie (­Woiwod. Lebus, Polen).

Tafel 4: Der Doppelschild in der Topographie von Eschenbach (Kr. Ansbach, Deutschland).

Tafel 5: Die aus einem Goldenen Dreieck und einem Kreissystem entwickelte Wehrtopographie von Eschenbach (Kr. Ansbach, Deutschland).

Tafel 6: Das konzentrische Kreissystem der Wehr- und Sakraltopographie von Würzburg (Deutschland).

Tafel 7: Die geometrische Konstruktion der Wehr- und Sakraltopographie der Neustadt von Brandenburg an der Havel (Deutschland).

Tafel 8: Die aus einem konzentrischen Kreissystem entwickelte Kirchenlandschaft der Mehrfachstadt von Brandenburg an der Havel (Deutschland).

Tafel 9: Das harmonische Proportionsschema der Torgeometrie von Villingen (Kr. Villingen-Schwenningen, Deutschland).

Tafel 10: Die Hexagonalkonstruktion der Villinger Stadtbefestigung (Kr. Villingen-Schwenningen, Deutschland).

Tafel 11: Dreieckskonstruktionen in der Villinger Wehrtopographie (Kr. Villingen-Schwenningen, Deutschland).

Tafel 12: Die geometrische Konstruktion der Wehrtopographie von Rottweil (Deutschland).

Tafel 13: Die geometrische Konstruktion der Wehrtopographie von Rothenburg ob der Tauber (Deutschland).

Tafel 14: Das konzentrische Kreissystem der Wehrtopographie von Rothenburg ob der Tauber (Deutschland).

Tafel 15: Die astronomische Orientierung des Achsenkreuzes von Rothenburg ob der Tauber (Deutschland).

Tafel 16: Die Dreieckskonstruktion der Wehrtopographie von Worcester (Großbritannien).

Tafel 17: Das Achsenkreuz Dreieckskonstruktion der Wehr- und Sakraltopographie von Worcester (Großbritannien).

Tafel 18: Der Rückbezug der mittelalterlichen Wehrtopographie von Wien (Österreich) auf das römische Proportionsschema.

Tafel 19: Das Kreissystem der Babenberger Wehrtopographie von Wien (Österreich).

Tafel 20: Das Dreieckssystem der Wiener Wehrtopographie (Österreich).

Tafel 21: Die geometrische Konstruktion der mittelalterlichen Sakraltopographie von Wien (Österreich).

Stadt und Kosmos

201

Über die repräsentative Ausgestaltung von Zentrum und Peripherie hinaus bemühte sich der als besonders baufreudig geltende Würzburger Klerus ab der ersten Hälfte des 12. Jahrhunderts um die weitere Ausformung der urbanen Sakrallandschaft.257 Dazu gehörte die Errichtung eines Kirchenkreuzes, das über die Bischofskirche, die fortan als sakraler Mittelpunkt der städtebaulichen und religiösen Entwicklung fungierte, gelegt wurde (vgl. Tafel 6).258 Den Auftakt zu diesem urbanen Kreuz aus Wehr- und Sakralbauten bildete die Ost-West-Achse, die in der Verlängerung des Langhauses des Doms (A) über die Domstraße und die Mainbrücke mit der Godehardkapelle (E) über den Fluss geführt wurde. Die Projektierung der an die Bischofsstädte Speyer und Augsburg erinnernden Monumentalachse stammt aus der Hand eines namentlich bekannten Baumeisters, was eine überaus seltene Ausnahme im mittelalterlichen Hüttenwesen mit den ihm eigenen arkanen Zügen darstellt.259 Denn eine Quelle aus dem Jahr 1133 rühmt ausdrücklich den Laien Enzelin, der sich nicht nur der Fortführung des Dombaus gewidmet hatte, sondern sich auch mit der Errichtung der steinernen Mainbrücke, einem hochmittelalterlichen Großbau, Verdienste erwarb.260 Die Achse, in deren Flucht auch der städtische Hauptbrunnen (F) liegt, wurde Mitte des 12. Jahrhunderts über den Dom hinaus nach Osten verlängert und findet in dem im Jahr 1156 erstmals erwähnten Rolandsturm am Katzenwicker (B) ihren Abschluss.261 Die Ost-West-Achse wird durch eine Nord-Süd orientierte Achse gequert, die über das Ulrichkloster (C) zur Pfarrkirche in der Vorstadt Sand (D) geführt wurde.262 Die Orthogonale, die im Süden ihren Ausgang in der dem Apostel Petrus geweihten Kirche (D) nimmt, wurde im 13. Jahrhundert ebenfalls durch die Errichtung der Dominikanerkirche (G) verlängert, so dass sich die Ost-West-Achse exakt in der Vierung des Doms mit der Nord-Süd-Achse kreuzt.

257 Eine zeitgenössische Quelle nutzte ein Horazzitat, um die Bautätigkeit der Würzburger zu beschreiben: »quia Wirtzburgensibus … quodammodo naturale est destruere et edificare, quadrata rotundis mutare« (»weil es also den Würzburgern gewissermaßen von Natur aus eigen ist abzureißen und zu bauen, Quadratisches in Rundes zu verändern«; zit. nach Schich 1977, 122). 258 Vgl. Rasmus 2008, 34; Schich 2001, 188. 259 Vgl. Dehio 1979, 900; Schich 2001, 193. Humpert (2003, 240) arbeitete heraus, dass die Basiskonstruktion des Grundrisses von Speyer, ähnlich wie in Würzburg, auf die Vierung des Domes zurückgeführt werden kann. 260 »So ist uns (…) ein guter Mann bezeichnet worden, welcher uns auch die Brücke in hervorragender Weise gebaut hat, der Laie Enzelin (…), so daß der, welcher Brücke und Weg zur Kirche hergestellt hat, selbst auch durch die Wiederherstellung der Kirche zum königlichen Palast, das heißt zum himmlischen Palast, emporsteige« (zit. nach Braunfels 1959, 136). 261 MB 37 Nr. 99; zit. nach Schich 1977, 72; UB St. Stephan I, Nr. 147, 154 f.; Schich 2001, 195. Durch die Errichtung der spätgotischen Kirche des Spitals zu den 14 Nothelfern auf dem linksmainischen Ufer fand die Flucht im 15. Jahrhundert eine weitere Verlängerung. 262 Das Ulrichkloster wurde im Jahr 1583 von Julius Echter mit der Universitätskirche (heute Neubaukirche) überbaut (vgl. Seberich 1962, 46).

202

Streng geometrische und figürliche Stadtgrundrisse

Doch nicht nur die Apostelpatrozinien Petrus und Paulus, die die Enden der NordSüd-Achse markieren, nehmen Bezug aufeinander, auch die Proportionen der Abstände zwischen den Sakral- und Wehrbauten stellen eine unsichtbare Verbindung von großer Symbolik her. Denn während der Abstand von der Dominikanerkirche Pauli Bekeh­ rung im Norden, dem Rolandsturm im Osten, dem Ulrichkloster im Süden und dem ­Vierröhrenbrunnen im Westen zur Vierung des Doms dem Maß von 1000 ­Würzburger Fuß263 entspricht, wurde die Petrikirche im ­Abstand von 1600 Fuß vom Würzburger Dom platziert, was als Annäherung an den Goldenen Schnitt betrachtet werden kann (vgl. Anhang Würzburg). Das Verhältnis der Stetigen Teilung, das im platonischen Sinne immer auch als ein unlösbares Band verstanden wurde, diente also als geometrisches Mittel, um die Vorstadt Sand mit der Kernstadt des rechtsmainischen Würzburgs zu verbinden. Dass die in das Würzburger Kirchenkreuz integrierte Brückenkapelle im Jahr 1133, also nur zwei Jahre nach seiner Heiligsprechung, dem Hildesheimer Bischof Abb. 94: Das im 12. und 13. Jahrhundert errichtete Godehard (1022–1038) geweiht wurde, Kirchenkreuz von Hildesheim. stellt einen weiteren interessanten Zusammenhang von überregionaler Bedeutung her. Denn auch in der Bischofsstadt Hildesheim war im 11. und 12. Jahrhundert vermutlich unter Beteiligung Godehards ein schrägwinkliges Kirchenkreuz entstanden, in dessen Zentrum sich nicht nur die Bischofskirche befand, sondern in das ebenfalls eine Kirche mit einem Godehard-Patrozinium integriert war (vgl. Abb. 94). Während die Nord-Süd-Achse von der Michaeliskirche (B) über den Dom (A) zur Godehardikirche (C) geführt wurde, erstreckte sich die Ost-West-Achse von der 1161 geweihten Johanniskapelle des gleichnamigen Spitals (E) über den Dom (A) zu der aus einem ehemaligen Tor entstandenen Kirche, die bezeichnenderweise Heilig-­ Kreuz-Kirche (D) heißt.264 Auch in anderen Städten entstanden zeitgleich ähnliche urbane Kreuzfiguren: So sind die Nebenkirchen in Utrecht, Paderborn und Bamberg ebenfalls kreuzförmig um die Haupt-

263 1 Würzburger Fuß entspricht 0,2918279 m (vgl. Noback/Noback 1851, 1501). 264 Vgl. Haass 1909, 94.

Stadt und Kosmos

203

kirche angeordnet.265 Die Kreuzform stellt im Christentum ein starkes soteriologisches und apotropäisches Zeichen dar – ein Zusammenhang, der auch in zeitgenössischen Quellen reflektiert wurde.266 Während eine aus dem 11. Jahrhundert stammende Quelle die Bamberger Kirchenfigur ausdrücklich als »in modum crucis«267 beschreibt, wurde auch im Städtelob der englischen Stadt Chester der städtische Marktplatz nicht nur als Zentrum und Nabel der Welt gepriesen (in medio orbis et umbilico terre), sondern auch als urbaner Mittelpunkt, um den sich die Hauptkirchen der Stadt kreuzförmig gruppieren, wie eine zeitgenössische Abbildung aus einer Handschrift aus dem späten 12. Jahrhundert auf markante Art illustriert.268 Die formal-geometrische Analyse des Würzburger Grundrisses zeigt also, dass sich die im 11.–13. Jahrhundert errichteten Hauptkirchen sowohl proportional als auch geometrisch aufeinander beziehen, indem sie eine kreuzförmige Figur beschreiben, deren Hauptachsen sich in der Vierung der Bischofskirche kreuzen. Dieses daraus entstandene Kirchenkreuz gehört ebenso wie das Pentagon, das den Umriss der Stadt beschreibt, zu den symbolisch stark aufgeladenen geometrischen Figuren, die nicht nur emblematisch für die klerikalen Stadtherren stehen, sondern vermutlich auch den Schutz- und Heilsgedanken, das dem urbanen Prinzip innewohnt, auf besondere Art verstärken sollten. 3.2.4 Stadt und Kosmos: Zusammenfassung Bei den sogenannten Kosmosstädten, die im vorigen Kapitel behandelt wurden, fällt in erster Linie ihr äußerer Umriss auf, der Ergebnis einer intendierten Planung ist. Während sich Grund- und Umrissgestalt der askanischen Gründung Friedeberg/Strzelce Krajeńskie am quadrierten Kreis orientierte, also an einer geometrischen Figur, die im Zusammenhang mit der mittelalterlichen Mikrokosmos-Makrokosmos-Lehre als graphische Abbreviatur der kosmischen Struktur galt, fielen im Fall der fränkischen Städte Eschenbach und Würzburg traditionelle Kosmossymbole mit identitätsstiftenden Emblemen ständischer Würdezeichen zusammen. So steht der schildförmige Umriss von Eschenbach zum einen für die homerische Kosmosmetapher, zum anderen aber auch als Zeichen für die Ritterschaft der Stadtherren des Deutschen Ordens. Das Fünfeck der Würzburger Bischofsmütze kann einerseits mit der Grundform des Dodekaeders, dem platonisch-pythagoreischen Kosmossymbol, in Zusammenhang gebracht werden, während es andererseits als Hinweis auf das Episkopat der bischöflichen Stadtherren gelesen werden kann. Die beiden Fallbeispiele aus 265 Vgl. Herzog 1964, 246; Corboz 1994, 15 ff.; Kugler 1986, 153. 266 »ita a crucifixo (…) contra omnia inimici iacula esset munita et insignita« (»so wie das Kreuz, das als Schutz und Zeichen gegen alle Feinde gerichtet ist« Lehmann-Brockhaus, Nr. 1050; zit. nach Braunfels 1959, 134). 267 Lehmann-Brockhaus, Nr. 99; zit. nach Braunfels 1959, 134. 268 Lucian, Cestria, 47.

204

Streng geometrische und figürliche Stadtgrundrisse

dem fränkischen Altsiedelgebiet zeigen zudem, dass der hoch- und spätmittelalterliche Gestaltungswille sich nicht nur auf städtische Neugründungen konzentrierte, sondern auch die Neuordnung von bereits im Frühmittelalter gegründeten Siedlungen miteinschloss. Im Unterschied zu den in Kap. 3.1 vorgestellten Stadtgrundrissen von streng-orthogonalem Grundriss ist die geometrische Binnenordnung der vorgestellten Grundrisse vor allem aufgrund der organisch anmutenden Straßenführung der fränkischen Fallbeispiele weniger evident. Erst eine formal-geometrische Analyse konnte zeigen, dass die Positionierung der Wehr- und Sakralbauten einem geometrischen Muster folgt, das nicht nur die Verwendung von symbolisch aufgeladenen Figuren, wie das Fünfeck, den Schild oder das Kreuz, einschließt, sondern auch die Proportionierung von Strecken nach dem Verhältnis des Goldenen Schnitts. Dabei ist der Einsatz von Hunderter und Tausender-Relationen des städtischen Grundmaßes auffallend, was die Proportionierung mittels einer Fibonaccifolge deutlich erleichtert. Während sich die Friedeberger und Würzburger Grundrisse – dem römischen Gründungsritual folgend – dabei auf einen zentralen Mittelpunkt beziehen, gehört Eschenbach zu den polyzentrischen Städten, deren Grundriss aus mehreren, auch extern gelegenen Bezugspunkten entwickelt wurde. Bei allen drei Fallbeispielen wird deutlich, dass die geometrisch basierte Stadtplanung sich nicht im durch die Stadtbefestigung definierten Umriss erschöpft, sondern auch Einfluss auf die urbane Binnengliederung hat, insbesondere was die Position der Sakral- und Wehrtopographie betrifft.

3.3 Weltbilder: Die Stadt als mappa mundi 3.3.1 Das mittelalterliche Weltbild im Spiegel des Kartenwerks Anders als in der modernen Kartographie handelt es sich bei einer mittelalterlichen Weltkarte, einer sogenannten mappa mundi, nicht um eine maßstäbliche Projektion der geographischen Gestalt der physischen Umgebung. Im Gegenteil: Eine mappa mundi wurde im zeitgenössischen Kontext als ein Abbild der Welt (imago mundi) verstanden, das einem dezidiert religiösen Weltbild entsprang (vgl. Abb. 95).269 Weit entfernt davon, im Alltag als Navigations- und Orientierungshilfe zu dienen – dafür nutzte man im Mittelalter ebenso wie in der Antike Seekarten und Itinerarien mit darin enthaltenen Stationsverzeichnissen, Routenbeschreibungen und Entfernungstabellen270 –, galten die auch als Altarbilder verwendeten mappae mundi den Zeitgenossen 269 Die ältere Forschungsmeinung, die die Kartenwerke häufig als fehlerhaft und primitiv deklassiert hatte (z. B. Leithäuser 1958), konnte durch neue Forschungsansätze zum Teil revidiert werden (z. B. Müller 1961, 111; von den Brincken 1968, 122; Englisch 2002, 24; Lilley 2009, 30). 270 Vgl. Ball 1942, 28; Simek 1992, 59; Hänger 2011, 95; Edson et al. 2011, 48.

Weltbilder: Die Stadt als mappa mundi

205

als eine Form des Gottesdienstes, die der Anbetung Gottes und der Lobpreisung der göttlichen Schöpfung gewidmet war.271 Wie Vincenz von Beauvais im 13.  Jahrhundert darlegte, galt die kartographische Darstellung zudem als ein Instrument, um den menschlichen Geist in einer Art und Weise zu erheben, dass er die Größe der ganzen Welt gleichsam von einem erhöhten Punkt aus erfasse.272 Die mappa mundi erschöpfte sich deswegen nicht in der Darstellung der äußeren Weltengestalt, sondern zielte in erster Linie auf die Abb. 95: Die Weltenordnung als B ­ eziehungssystem Abbildung der inneren Weltenordnung, aus den drei Kontinenten, den vier Himmelsrich­ der ordo orbis terrae, ab.273 Ihrem Geist tungen, den Elementen und ihren Eigenschaften (Beda Venerabilis, De rerum naturae, 9. Jahrhundert). nach waren die mappae mundi deshalb auch mit der im 12. und 13. Jahrhundert weit verbreiteten Summenliteratur verwandt, die ebenfalls zum Ziel hatte, das gesamte verfügbare theologische Wissen über Gott, den Kosmos und die Welt darzustellen.274 Geometrisierte Rundkarten, auch TO-Karten genannt, gehörten zu den bereits in der griechischen Antike bekannten schematischen Weltendarstellungen, die, durch die Autorität des Augustinus tradiert, noch im Hoch- und Spätmittelalter weit verbreitet waren.275 In diesem stark standardisierten Schema umfließt der Okeanos als kreisrundes Weltenmeer die Ökumene als den bewohnten Erdkreis, der durch ein T-förmiges Gewässersystem, bestehend aus dem Nil, dem Tanais (der heutige Don) und dem Mittelmeer in die drei Kontinente Europa, Asien und Afrika gegliedert wird (vgl. Abb. 96). Auf diesem

271 Beispielsweise wurden die Großkarten aus Ebstorf und Hereford als Altarbilder verwendet (vgl. von den Brincken 1968, 128; Englisch 2002, 123). 272 Apologia Actoris c.6; zit. nach von den Brincken 1992, 1. 273 Vgl. von den Brincken 1968, 122; von den Brincken 1992, 1; Englisch 2002, 123. 274 Der seit der Karolingerzeit gebräuchliche Begriff mappa mundi (vgl. Isidor, Etym. XIII, 1) verweist auf den kosmischen Anspruch als Weltendarstellung. Denn nicht die Darstellung der Erde (terra) steht im Vordergrund, sondern die der Welt (mundus) in ihrem ganzheitlichen Sinn (vgl. von den Brincken 1968, 122; von den Brincken 1992, 13 ff.; Englisch 2002, 86, Anm. 41). 275 Herodot, Hist. IV, 36; Augustinus, De civitate Dei, 16, 17; Isidor von Sevilla, Etym. XIV, 2; Beda Venerabilis, De nat. rerum 51; Otto von Freising, Chronik I (vgl. Müller 1961, 110; von den Brincken 1968, 131; von den Brincken 1992, 25 ff.; von den Brincken 2010, 14; Edson et al. 2011, 44).

206

Streng geometrische und figürliche Stadtgrundrisse

geometrischen Schema fußt die Ordnung des Weltenkreises, im Lateinischen auch Terrarum Orbis genannt.276 Im mittelalterlichen Kontext brachte man die klassische Dreiteilung des griechischen Weltbildes mit der alttestamentlichen Weltenordnung der Noachiden in Deckung.277 So stellte man sich vor, dass die drei Kontinente Asien, Afrika und Europa nach der Sintflut von Noahs Nachkommenschaft bevölkert worden waren, die seine drei Söhne Sem, Ham und Japhet mit ihren Frauen gezeugt hatten.278 Das TO-Schema wurde in christlichem Sinne Abb. 96: Die Welt im TO-Schema (Isidor-Manuskript, 15. Jahrhundert) interpretiert, indem das T als Kreuzmetapher und Sinnbild des österlichen Heilsgeschehens gelesen wurde, während die Dreizahl der Kontinente, mit der heiligen Zahl der göttlichen Trinität korreliert, für die christliche Auferstehungshoffnung stand.279 An die Seite der schematisierten TO-Karten traten ab dem 8. Jahrhundert detailliertere kartographische Darstellungen, wie beispielsweise die Kartenwerke der Beatustradition, die als Illustration der Johannesapokalypse in zehn Varianten überliefert sind. Wie in der jüngeren Forschung gezeigt werden konnte, liegt den Beatuskarten – ebenso wie allen mittelalterlichen mappae mundi – eine geometrische Konzeption zu Grunde, die vor allem auf der Verwendung von konzentrischen Kreissystemen und gleichschenkligen Dreiecken fußt.280 Ungeachtet dessen, ob die geometrischen Grundlagen in der kartographischen Darstellung sichtbar oder unsichtbar umgesetzt sind, erfüllten alle mittelalterlichen mappae mundi die Forderung des Scholastikers Hugo von St. Victor, wonach die Karte die in der Natur unsichtbare geometrische Ordnung offenbaren solle.281 Hinweise auf 276 Der Dominikaner Leonardo Dati (1360–1425) beschrieb die Gestalt der TO-Karte mit den folgenden Worten: »Un T dentro a uno O monstra il disegno, Come in tre parte fu diviso il mondo« (zit. nach von den Brincken 1968, 131). 277 Vgl. von den Brincken 1968, 131; Englisch 2002, 41. 278 1. Mos. 8,17. Eine Ansicht, die bis in die ältere Sprachwissenschaft nachwirkte, die die Menschheit nach Sprachen einteilte und zwischen semitischen, hamitischen und japhetitischen Sprachen unterschied (vgl. Daniel 1870, 196). 279 Das T wurde mit der crux commissa, einem vertikalen Holzstamm mit einem quer verlaufenden Balken, der der Gestalt des griechischen τ ähnelt, assoziiert, an der Jesus gekreuzigt worden sein soll (vgl. Dinkler 1967a, 22 ff.; von den Brincken 1992, 205 f.; Englisch 2002, 96 ff.; Restle 2003, 1490). 280 Vgl. Englisch 2002, 139 ff. 281 zit. nach Englisch 2002, 69.

Weltbilder: Die Stadt als mappa mundi

207

die enge Verzahnung von Geographie und Geometrie finden sich bereits in antiken Werken, in denen bestimmte Regionen und Inseln auf geometrische Körper, wie Quadrate und Dreiecke, zurückgeführt werden.282 Da auch nach neuplatonisch-christlicher Auffassung die Geometrie als ordnende Kraft der göttlichen Schöpfung verstanden wurde, galt sie als selbstverständliche Grundlage der Geographie.283 In diese Tradition sind die mittelalterlichen mappae mundi zu stellen, die nach einer geometrischen Systematik gestaltet sind, die darauf abzielte, dem göttlichen Ordnungsgedanken Rechnung zu tragen.284 Den Anspruch, die innere Weltenordnung abzubilden, teilt die mittelalterliche Kartenkunst mit der zeitgenössischen Stadtbaukunst, wobei zur Erreichung dieses Ziels ähnliche gestalterische Mittel eingesetzt wurden. So war das künstlich angelegte Grabensystem, das jede mittelalterliche Stadtbefestigung begleitete, über seine defensive Funktion hi­ naus mit einer reichhaltigen Symbolik verbunden.285 Denn die wasserführenden Gräben ließen die mittelalterliche Stadt zu einer künstlichen Insel werden, die nur über Brücken mit der nichturbanen Außenwelt verbunden war. In analoger Entsprechung zum mythischen Okeanos, der die als Großinsel aufgefasste Ökumene umschloss, wurde die Stadt von ihrem Grabensystem umflossen, was ihren abgeschlossenen Charakter betonte. Während der äußere Wassergraben dem städtischen Häusermeer Form und Gestalt verlieh, formten interne Straßen- und Kanalsysteme die Binnenordnung einer Stadt. Am anschaulichsten setzt das mittelalterliche Wasserstraßensystem der Lagunenstadt Venedig den fluviatilen Charakter eines städtischen Wegenetzes um. Aber auch in anderen Gründungsstädten finden sich straßenbegleitende Stadtbachsysteme, die häufig gemeinsam mit dem Straßennetz angelegt wurden.286 Dass in einigen mittelalterlichen Städten Straßen und Kanäle nach dem Roten Meer benannt sind, also dem rubrum mare, das auf keiner detaillierten mappa mundi fehlen durfte, unterstreicht noch die inhaltliche Analogie der räumlichen Stadt- und Weltenordnung (vgl. Abb. 97).287 Zudem war noch im Spätmittelalter die Gleichsetzung von Straße und Fluss lebendig, wobei sie im italienischen Humanismus vor allem in ästhetischer Hinsicht Beachtung fand. In seinem Hauptwerk verglich der Architekturtheoretiker Leon Battista Alberti (1404– 282 Der Tradition Herodots (Hist. IV, 21) folgend beschrieben Strabon (Geogr. II,1,30; IV,5,1; II,1,29; V,1,2) und Plinius Inseln und Länder ebenfalls in der Gestalt von geometrischen Figuren (vgl. Gehrke 1998, 181; Hänger 2001, 157). 283 Vgl. Englisch 2002, 69. 284 Vgl. Englisch 2002, 148; Edson et al. 2011, 61. 285 In der Antike wurde der sakrale Charakter einer Insel durch ihre Abgrenzung von der profanen Umgebung konstituiert (vgl. Lanczkowski 1986, 83; von den Brincken 1992, 161). 286 Beispielsweise die Zähringer Stadtbachsysteme in Villingen und in Freiburg im Breisgau (vgl. Jenisch 1999, 161). 287 In Templin trug ein im Süden des Stadtgebiets gelegener Kanal diese Bezeichnung, während bis heute Straßen in Jüterbog, Rottenburg am Neckar und Zörbig den Namen Rotes Meer führen.

208

Streng geometrische und figürliche Stadtgrundrisse

Abb. 97: Die durch Wassersysteme konstituierte Binnengliederung der Ökumene mit dem durch seine Farbigkeit kenntlich gemachten Roten Meer (Psalterkarte, 13. Jahrhundert).

1442) das städtische Straßensystem mit einem Fluss, weswegen die Straße »nicht gerade, sondern wie ein Fluss hierhin und dorthin und wieder nach derselben früheren Seite in weicher Biegung gekrümmt sein« sollte.288 Die Metapher wurzelt in der römischen Antike: Der lateinische Begriff insula, der einen städtischen Häuserblock bezeichnet289, transportiert expressis verbis den Inselcharakter, der erst durch die Gleichsetzung von Straße und Fluss entstehen kann. Auch der lateinische Begriff ostium, der neben der Bedeutung von Tor oder Tür eine Flussmündung bezeichnen kann, weist auf die semantische Kongruenz der beiden Begriffe hin.290 288 Alberti, De re Aedificatoria, 201 (Übersetzung M. Theuer). 289 Vgl. Planitz 1965, 13. 290 Im lateinischen Begriff ostium, der von os (Mund, Antlitz) abgeleitet ist, wird ähnlich wie beim deutschen Begriff Mündung der anthropomorphe Aspekt betont (vgl. Walde 1910, 550).

Weltbilder: Die Stadt als mappa mundi

209

Durch den Verlauf der Hauptstraßen entsteht über die gestaltende Funktion hinaus eine markante Figur, die die Bürgerschaft in verschiedene Bezirke teilt, die je nach Gestalt und Region Quartiere, Viertel oder Orte genannt werden. Ähnlich monolithisch wie die Kontinente der mappae mundi, die die gentile Ordnung der Nachkommenschaft Noahs abbilden, ordnen die Bezirke die Bürgerschaft in sozialer, administrativer und politischer Hinsicht. Ihre mikrokosmische Abbildfunktion wird dadurch deutlich, dass jeder Bezirk in der Regel eine eigene Pfarrkirche besitzt und gelegentlich sogar einen eigenen Bürgermeister stellen durfte.291 Gilt die Stadt als Abbild der Welt, kann umgekehrt auch die Welt als Stadt gedacht werden. Das Motiv schimmert in einer frühneuzeitlichen Glosse durch, nach der ein Bretterzaun das Ende der Welt markieren solle: Daß er vom Ende der Welt komme gelauffen / vnd habe gesehen / daß er mit Brettern daselbst sey vunterschlagen.292 Hinsichtlich ihres Abbildcharakters schöpfen Städtebau- und Kartenkunst also aus derselben Quelle: Sie dienen nicht nur als Medium, die äußere Gestalt der Welt darzustellen, sondern werden auch als Abbild einer inneren Weltenordnung verstanden, die sich nach neuplatonisch-christlicher Auffassung in der Geometrie manifestiert.293 Durch die Verwendung eines bestimmten geometrischen Bezugssystems entstand im Rahmen der urbanen Vermessung ein häufig gestalterisch überformter Proportionskanon, der die Position und Ausrichtung der stadtkonstituierenden Bauwerke innerhalb der urbanen Morphologie festlegte. Der Stadtgrundriss wurde so zu einem semiotischen System, dessen versteckte Geometrie meist nur durch eine formal-geometrische Analyse offengelegt werden kann. 3.3.2 Ausgewählte Stadtplananalysen 3.3.2.1 Die Neustadt von Brandenburg an der Havel

Der hemisphärenförmige Grundriss der Ende des 12. Jahrhunderts durch die askanischen Markgrafen gegründeten Brandenburger Neustadt294 liefert ein anschauliches Beispiel für die formale Ähnlichkeit einer mittelalterlichen Stadtanlage mit den gestalterischen Standards der zeitgenössischen Kartographie. So weist die annähernd runde Brandenburger 291 Beispielsweise im uckermärkischen Templin (vgl. »Verzeichnuß und Würdigung der Häuser und liegende Gründe zu Templin anno 1567«; zit. nach Makowitz et al. 2013, 56). 292 Johannes Olorius, Ethographia mundi, Erster Theil, 1659, II (zit. nach Kaiser 1991, 15). 293 Vgl. Müller 1961, 111. 294 Die Brandenburger Neustadt entstand bald nach 1170 auf Initiative des Markgrafen Otto I., Sohn von Albrecht dem Bären, womit er eine askanische Stadtgründungswelle östlich der Elbe einleitete (vgl. Heinrich 1973, 136; Assing et al. 1986, 10 und 61; Schich 1993, 67; Vgl. Müller 2004, 83 f.).

210

Streng geometrische und figürliche Stadtgrundrisse

Neustadt hinsichtlich ihres Umrisses und des T-förmigen Straßenkreuzes eine starke Reminiszenz zu dem TO-Schema der mappae mundi auf (vgl. Abb. 98 und 99). Die Gestalt der künstlichen Stadtinsel ist Ergebnis aufwendiger, vom Markgrafen selbst angeordneter Erd- und Wasserbaumaßnahmen, die ein mehrkanaliges und streckenweise sogar schiffbares Grabensystem schufen, um die Brandenburger Neustadt von ihrem Umland abzugrenzen.295

Abb. 98: Hemisphärenförmiger Grundriss der im 12. Jahrhundert gegründeten brandenburgischen Neustadt.

Abb. 99: TO-förmige mappa mundi mit betürmten Stadtsymbolen (Sallust-Handschrift, 12. Jahrhundert).

Trotz des organisch anmutenden Eindrucks, der durch den leicht amorphen Umriss und den irregulären Verlauf der Nebenstraßen erweckt wird, offenbart eine formale Analyse der Standorte der wichtigsten Wehr- und Sakralbauten ein äußerst exaktes Konstruktionsschema, aus dem die Stadtgeometrie entwickelt wurde (vgl. Tafel 7). Auffallend ist, dass der Mittelpunkt des Vermessungssystems sich nicht am Kreuzungspunkt der T-förmigen Hauptstraßenfigur befindet, sondern, nach Nordwesten verschoben, mit dem höchsten Punkt der Stadtanlage zusammenfällt, auf dem die Apsis der Neustädter Katharinen-­ Kirche (A) errichtet wurde. Der Altar der Pfarrkirche markiert also den Mittelpunkt der städtischen Konstruktion, denn auf ihn sind die Haupttürme des südöstlich gelegenen St.-Annen-Tores (C) und des südwestlich Steintores (B) bezogen bezogen, die denselben Abstand aufweisen wie die Uferlinie der Langen Brücke am Neuen Tor (E). 295 Vgl. Assing et al. 1986, 10; Schich 1993, 75; Untermann 2006, 42; Müller 2014, 61 ff.

Weltbilder: Die Stadt als mappa mundi

211

Geometrisch gesehen liegen die Wehrbauten also auf einem Kreisbogen, dessen Mittelpunkt die Stadtpfarrkirche St. Katharinen darstellt, die so über ihre religiöse Zentrumsfunktion als Pfarrkirche der städtischen Gemeinde im konkreten Sinn zum städtebaulichen Zentrum avancierte. Verbindet man die vier durch Wehr- und Sakralbauten markierten Punkte miteinander, ergeben sich zwei gleichschenklig-rechtwinklige Dreiecke (ABC) und (ABE), die gemeinsam wiederum das gleichschenklig-rechtwinklige Dreieck (BCE)

Abb. 100: Die Konstruktion eines rechtwinkligen Dreiecks nach Leonardo Fibonacci (Practica geometriae von Leonardo, filio Bonacii, Pisano nach einer Abschrift aus dem 15. Jahrhundert).

bilden. Dieses Dreieck ist ebenso wie die geostete Längsachse der Kirche St. Katharinen nach den Himmelsrichtungen orientiert, da die Strecken BE und BC genau nach Norden bzw. nach Osten ausgerichtet sind. Überdies ist der Standort des Hauptturms des Neuen Tors, der sogenannte Ehebrecherturm (D), in Bezug auf die Strecke AE bemerkenswert, da er diese stetig teilt (vgl. Anhang Brandenburg an der Havel). Die innere Geometrie der Brandenburger Neustadt folgt damit einer klassischen Konstruktion, wie sie in dem um 1220 verfassten geometrischen Standardwerk De practica geometriae von Leonardo Fibonacci vermittelt wurde (vgl. Abb. 100). In Anlehnung an den Satz des Thales296 zeigte Leonardo Fibonacci mit dieser Konstruktion, dass in einem gleichschenkligen Dreieck der Winkel der Halbierenden hinsichtlich

296 »Der Umfangswinkel über einem Halbkreis ist ein rechter« (vgl. Böhme 1967, 92).

212

Streng geometrische und figürliche Stadtgrundrisse

der Hypotenuse ein rechter ist.297 Demgemäß misst auch der Winkel im brandenburgischen Dreieck (BCE) 90° . So basiert die Ende des 12. Jahrhunderts projektierte Neustadt von Brandenburg auf einem Konstruktionsschema, das zu dem klassischen Kanon der zeitgenössischen Geometriestandards gehört und kurze Zeit später im Standardwerk von Leonardo Fibonacci verschriftlicht wurde. Wie bereits der Name suggeriert, ist die brandenburgische Neustadt die dritte und jüngste Gründung im heutigen Stadtgebiet und formt gemeinsam mit der Dominsel und der Altstadt die Mehrfachstadt Brandenburg.298 Die komplexe urbane Entwicklung nahm im Frühmittelalter ihren Ausgangspunkt auf der Dominsel, der einzigen natürlichen Havelinsel im Stadtgebiet, auf der sich die slawische Brennaborg, die Hauptburg der Heveller, befand. Trotz turbulenter politisch-religiöser Verhältnisse behielt die städtische Keimzelle ihren Zentrumscharakter bis in das 12. Jahrhundert bei, indem sie zur Dominsel ausgebaut wurde.299 Nachdem nämlich die slawische Brennaborg im Winter 928/29 von Heinrich I., dem Kaiser des Heiligen Römischen Reichs, eingenommen worden war, diente sie zunächst dem 948 errichteten Bistum Brandenburg als Standort der Kathedralkirche.300 Und auch nach dem Slawenaufstand im Jahr 983 wurde auf der Insel wieder der slawische Fürstensitz eingerichtet. Der letzte slawische Herrscher Pribislaw, der zum Christentum konvertiert war und nach seiner Taufe den Namen Heinrich annahm, ließ im Zentrum seiner Burg, vermutlich am ehemaligen Standort der ersten Bistumskirche, eine dem Apostel Petrus geweihte Kapelle errichten, in der er 1150 bestattet wurde.301 Wie eine formale Analyse der Geometrie zeigt, bezieht sich der Großteil der später errichteten Sakralbauten auf die Petri-Kapelle, die fortan wie ein Fels den Mittelpunkt der wachsenden Mehrfachstadt markierte (vgl. Tafel 8). Im Laufe des Ausbaus der Brandenburger Sakraltopographie entstanden drei aufeinander bezogene Kirchenpaare: So besteht nicht nur zwischen den beiden Pfarrkirchen der Alt- und Neustadt, der Gotthard-Kirche (B) und der Neustädter Katharinen-Kirche (C) ein unsichtbares Band, indem die Kirchen jeweils denselben Abstand zur Petri-­Kapelle aufweisen, sondern auch zwischen der St.-Marien-Kirche auf dem Harlunger Berg (E), die auf einem slawischen Heiligtum errichtet worden ist, und der Luckenberger Nikolai-­ 297 Leonardo Pisano, De Practica Geometrie III, 6. 298 Im Jahr 1715 wurden Altstadt und Neustadt zusammengelegt, die Eingemeindung der Dominsel fiel in das Jahr 1927 (vgl. Assing et al. 1986, 20; Bodenschatz/Seifert 1992, 53; Schich 1993, 51). 299 Vgl. Heinrich 1973, 140; Assing et al. 1986, 82 ff.; Müller 2014, 56 ff. 300 Zwar ist genaue Lage der Kathedralkirche nicht eindeutig geklärt, als gesichert kann zumindest gelten, dass sie sich nicht am Standort des heutigen Doms befand (vgl. Heinrich 1973, 137; Assing et al. 1986, 6 und 82; Schich 1993, 53). 301 Die Existenz einer Burgkapelle ist durch schriftliche Quellen bereits für das Jahr 1136 indirekt bezeugt (vgl. Heinrich 1973, 140; Assing et al. 1986, 85; Bodenschatz/Seifert 1992, 29; Rathert 2011, 84; Dehio 2012, 112).

Weltbilder: Die Stadt als mappa mundi

213

Kirche (D)302(vgl. Anhang Brandenburg an der Havel). Dass die Lage der Kirchen aufeinander Bezug nimmt, wird auch daran deutlich, dass die Nikolai-Kirche exakt auf der Winkelhalbierenden zwischen den Neu- und Altstädter Pfarrkirchen positioniert wurde. Das geometrische System erfuhr im 13. Jahrhundert durch die Bettelordenskirchen eine Erweiterung, wobei über 150 Jahre später noch Bezug auf die Urvermessung genommen wurde (vgl. Tafel 8). Denn auch diesmal wurde die Flucht der Winkelhalbierenden zwischen Alt- und Neustädter Pfarrkirche genutzt, um in den 1240er Jahren die Franziskanerkirche St. Johannis (F)303 im Südwesten der Altstadt zu positionieren, obwohl der Klosterkomplex so außerhalb des von Natur her siedlungsgünstigen Terrains errichtet werden musste. Die aufwendigen Trockenlegungsmaßnahmen, die mit einer künstlichen Erhöhung des Geländes einhergingen304, wurden jedoch in Kauf genommen, da es offenbar zwei Zwangspunkte gab, die sich aus der urbanen Topographie mit der Flucht von der Nikolai-­ Kirche (D) zur Petri-Kapelle (A) und dem Standort des Neustädter Dominikanerkirche St. Pauli (G) ergaben. Um die beiden Mendikantenkonvente so zu positionieren, dass sie denselben Abstand zur Petri-Kapelle aufweisen, wurde im Fall des Franziskanerklosters also nicht nur äußerst ungünstiges Terrain toleriert, für das Dominikanerkloster überließ der Markgraf 1286 dem Konvent sogar den eigenen Stadthof. (vgl. Tafel 8).305 Dass der Ausbau der Brandenburger Sakraltopographie systematisch und planvoll betrieben wurde, legt eine Bemerkung in einer Urkunde aus dem Jahr 1166 nahe. Denn in der Urkunde wurde bereits in Aussicht gestellt, dass außer der Gotthard-Kirche weitere Kirchen im Sprengel entstehen werden.306 Dies kann als Hinweis darauf gewertet werden, dass das topographische Bezugssystem der Brandenburger Sakralarchitektur bereits zu diesem Zeitpunkt projektiert war. Nicht zufällig dürfte eine weitere Koinzidenz sein: Die Altstädter Pfarrkirche, die von einer 1147 von Pribislaw-Heinrich selbst berufenen Gemeinschaft von Prämonstratensern gegründet wurde, ist dem Heiligen Godehard von Hildesheim (969–1038) geweiht, also dem Bischof, dessen Kirchen bereits in geometrischen Bezugssystemen anderer Städte eine tragende Rolle spielen.307

302 Die Architektur der mit einem Nikolai-Patrozinium ausgestatteten Luckenberger Pfarrkirche, die erstmals im Jahr 1174/76 erwähnt wurde (CDB I/9 Nr. 8), ist für eine Dorfkirche auffallend stattlich, was bereits zu der Vermutung Anlass gegeben hat, dass sie für eine Kaufmannsgemeinschaft errichtet wurde (vgl. Blaschke 1967, 279 f.; Assing et al. 1986, 38; Schich 1993, 83 und 93). 303 Vgl. Schich 1993, 82. 304 Vgl. Assing et al. 1986, 13; Schich 1993, 82. 305 Vgl. Badstübner 1993, 320. 306 »Si que alie ecclesie in eadem villa fuerint in posterum edificate« (CDB I/8 Nr. 19). 307 Die Gotthard-Kirche fungierte ab 1166 als Pfarrkirche der villa Parduin, die heute als Brandenburger Altstadt bezeichnet wird (vgl. Schich 1993, 53; Bodenschatz/Seifert 1992, 53).

214

Streng geometrische und figürliche Stadtgrundrisse

3.3.2.2 Villingen im Schwarzwald

Villingen, eine in der Nähe der Neckarquelle gelegene Zähringerstadt, die der lokalen Tradition folgend im Jahr 1119 gegründet worden ist308, war in der Vergangenheit bereits mehrfach Gegenstand von Grundrissanalysen.309 Dies ist nicht nur ihrer frühen Gründung geschuldet – die Zähringerstädte gehören zu den ersten Stadtfamilien, mit denen die hoch- und spätmittelalterliche Urbanisierung Mitteleuropas einleitet wurde310 –, sondern vor allem ihrer urbanen Topographie. Villingen gehört nämlich gemeinsam mit Freiburg im Breisgau, München, Kenzingen und Neuenburg am Rhein zu den in der deutschsprachigen Forschung vielbeachteten Städten, deren Grundrisse durch eine mehr oder weniger deutliche kreuzförmige Straßenfigur charakterisiert sein sollen.311 Im Falle des Villinger Grundrisses ist die Hauptstraßenfigur aufgrund der Straßenbreite der beiden Hauptachsen deutlich hervorgehoben und teilt als ein schrägwinkliges Schragenkreuz die Stadt in vier unterschiedlich große Stadtviertel, die im Volksmund auch als Orte bezeichnet werden (vgl. Abb. 101). Die Hauptfigur des schrägwinkligen Achsenkreuzes wird im südwestlich gelegenen Viertel wiederholt, denn hier kreuzen sich eine horizontale und vertikale Achse in analoger Art und Weise, ebenso wie in den kleineren Einheiten des Straßensystems, in denen sich das Achsenkreuz immer wieder findet. Die fortwährende Wiederholung einer Hauptfigur im Kleinen schafft ein System aus homologen Teilen und ist ein aus der Mikrokosmos-Makrokosmos-Lehre hergeleitetes harmonisches Gestaltungselement, das in verschiedenen mittelalterlichen Künsten angewendet wurde.312 Es findet sich nicht nur in der gotischen Baukunst313, sondern auch in der zeitgenössischen Kartographie. So werden beispielsweise in einer hochmittelalterlichen Darstellung von Jerusalem sowohl die kreuzförmige Hauptstraßenfigur als auch der kreisförmige Umriss in den Vierteln en miniature wiederholt. Indem die aus dem 12. Jahrhundert stammende Jerusalemdarstellung das Motiv des viergeteilten Kreises als zentrales Gestaltungselement des urbanen Raums zitiert, variiert sie ein auch aus den zeitgenössischen mappae mundi bekanntes Thema, das auf die Analogie von Kosmos, Erde und Stadt rekurriert. Denn bereits in der Antike stellte man sich nicht nur den Kosmos 308 »Anno 1119 ist die stat Villingen von den hertzogen von Zäringen erbauwen worden« (Hug, Villinger Chronik, 1). Vgl. Jenisch 1999, 91; Miller 1980, 835. 309 Vgl. Hamm 1932; Meckseper 1970; Humpert 2003; Lilley 2009. 310 Vgl. Ebel/Schelling 2002, 36 ff. 311 Das von Hamm (1932, 138 f.) vorgeschlagene Idealschema einer Zähringerstadt, dessen Grund- und Aufriss u. a. durch ein Straßenkreuz, eine regelmäßige Parzellierung, die traufseitige Stellung der Gebäude und einen Straßenmarkt charakterisiert sei, wurde jedoch in den folgenden Jahrzehnten kontrovers diskutiert und stieß vielfach auf Ablehnung (vgl. u. a. Meckseper 1970, 8 ff., Schwineköper 1977, 95 ff., Schmid 1986, 76; Jenisch 1999, 198 ff.). 312 Vgl. Panofsky 1989, 32. 313 Vgl. Witzel 1914, 4.

Weltbilder: Die Stadt als mappa mundi

215

Abb. 101: Der Stadtgrundriss der Zähringerstadt Villingen mit dem rekonstruierten Stadtmauerverlauf nach Jenisch 1999.

216

Streng geometrische und figürliche Stadtgrundrisse

als einen viergeteilten Kreis vor, sondern auch den bewohnten Weltkreis. So beschrieb beispielsweise Krates von Mallos im zweiten vorchristlichen Jahrhundert die Ökumene als eine Landmasse, die von zwei sich kreuzenden Ozeangürteln, dem Polarozean und dem Äquatorozean, in vier Kontinente geteilt wird.314 Die Villinger Topographie kann also hinsichtlich ihrer Gestaltung als Allusion auf die zeitgenössische Vorstellung von der Analogie von Stadt und Welt gelesen werden. Der Kreuzungspunkt der Villinger Hauptachsen erfuhr als symbolischer Mittelpunkt der Stadt eine architektonische Markierung, da sich an dieser Stelle sowohl die städtischen Gerichtslaube als auch der städtische Hauptbrunnen befanden.315 Aus diesem Zentrum heraus ist der städtische Grundriss entwickelt worden, denn die Kreuzung teilt die beiden Hauptachsen hinsichtlich der vier Toranlagen nach dem Goldenen Schnitt (vgl. Tafel 9 und Anhang Villingen). Um dieses Teilungsverhältnis zu gewährleisten, wurden die Haupttore im Osten, Westen und im Süden in Bezug auf die Stadtmauerflucht um 5 bis 7 m zurückversetzt.316 Die Asymmetrie des Ovals ergibt sich – vom Standpunkt der urbanen Geometrie aus betrachtet – aus einem unregelmäßigen Hexagon, dessen sechs Ecken mit Toren, Türmen und Wiekhäusern markiert sind. Letztere geben nicht nur den Umbruch und Richtungswechsel des Stadtmauerverlaufs vor, sondern formen gemeinsam ein Parallelogramm, dessen Proportionen die Maße der Torgeometrie, insbesondere der Nord-Süd-Achse, exakt wiederholen (vgl. Tafel 10 und Anhang Villingen).317 Darüber hi­ naus ergeben sich weitere regelmäßige geometrische Figuren, darunter ein Goldenes Dreieck, also ein gleichschenkliges, spitzwinkliges Dreieck, das aus den Punkten (E), (G), (I) gebildet wird, und ein gleichseitig-rechtwinkliges Dreieck, das sich aus den Eckpunkten (E), (F), (G) ergibt (vgl. Tafel 11). So liegt also der unregelmäßig erscheinenden Kontur der Villinger Stadtbefestigung, die prima vista vermuten ließe, dass sie Zwangspunkten folgt, die sich aus der Topographie ergeben, ein äußerst exaktes Konstruktionsschema zu Grunde. Dabei ist auffällig, dass die Maße der verwendeten geometrischen Figuren sich auf die Nord-Süd-Achse beziehen, deren Module nach dem Goldenen Schnitt proportioniert sind. Durch die Stadtmauer verbunden, ergeben die mit Toren, Türmen und Wiekhäusern markierten Punkte ein unregelmäßiges Oval, das der Stadt ihre charakteristische »ey-­

314 Der viergeteilte Kosmos des Krates von Mallos ist lediglich literarisch überliefert, kartographische Illus­ trationen sind nicht bekannt (vgl. von den Brincken 1983, 394; von den Brincken 1988, 45). 315 Der Brunnen wird auch in Grüninger, Stadtchronik Villingen (12) herausgehoben, in der es heißt: »So daß man wo selbe [die Straßen] sich durchschneiden wo ein großer steinerner Brunnen mit 4 Röhren stehet, auf alle 4 Thore sehen kann« (vgl. Hamm 1932, 138; Müller 1961, 113). 316 Im Falle des Oberen Tors, der Doppeltoranlage im Norden, stellt das Vortor den Bezugspunkt im Verhältnis der Längsachse dar. 317 Abgesehen vom Standort (I).

Weltbilder: Die Stadt als mappa mundi

217

Abb. 102: Weltkarte zu Imago mundi (Sawley-Weltkarte oder Heinrich von Mainz-Karte, um 1180).

förmige« Gestalt verleiht, wie eine Chronik aus dem 18. Jahrhundert vermerkt.318 Ovale Umgrenzungen sind nicht nur bei hoch- und spätmittelalterlichen Stadtgründungen verbreitet, sondern stellen auch in der zeitgenössischen Kartographie ein äußerst beliebtes Gestaltungselement dar (vgl. Abb. 102). So zeigen nicht nur die mappae mundi der Beatustradition die vom Okeanos umflossene Ökumene als ein Oval, sondern auch zahlreiche hoch- und spätmittelalterliche Kartenwerke, wie beispielsweise die um 1200 entstandene Sawley-Weltkarte.319 Letztere ist als Illustration eines vielgelesenen enzyklopädischen Werkes, des Imago mundi des Honorius Augustodunensis, konzipiert worden, in dem sich die 318 Vgl. Grüninger, Villingen, 12. 319 Vgl. Englisch 2002, 91.

218

Streng geometrische und figürliche Stadtgrundrisse

zeitgenössische Vorstellung von der Welt in Gestalt eines Eies formuliert findet.320 Dieses Weltbild, das auf orphisches Gedankengut rekurriert, beeinflusste unter anderem auch die mittelalterliche Elementenlehre.321 Indem die urbane Topographie Villingens also zentrale Motive der zeitgenössischen Kartographie aufnimmt, wird deutlich, dass die mittelalterliche Vorstellung von einer Analogie der Entitäten Stadt und Welt keine blasse Abstraktion der gelehrten Welt darstellt, sondern im Städtebau als gebaute Realität umgesetzt wurde. 3.3.2.3 Rottweil

Die heutige Lage der Stadt Rottweil, die sich mit fast 80 Höhenmetern prominent über das Neckartal erhebt, ist Ergebnis einer mehrfachen Siedlungsverlegung.322 Denn das im ersten nachchristlichen Jahrhundert unter Vespasian gegründete römische Municipium Arae Flaviae lag ursprünglich auf der westlichen Neckarseite.323 Aus der mit dem römischen Kaiserkult verbundenen Stadt entstand im Frühmittelalter auf einer Hochfläche auf der linken Neckarseite eine befestigte Königspfalz.324 Zwischen 1120 und 1150 – aufgrund der schwachen schriftlichen Quellenlage sind weder die Identität des Gründers325 noch das genaue Gründungsdatum bekannt – wurde die Stadt an ihre heutige Position verlegt und präsentiert sich seitdem weithin sichtbar als »Stadt auf dem Berg«.326 Die Stadtverlegung zeigt deutlich die durch den Stadtherrn veranlasste systematische Planungsleistung. Denn es wurden nicht nur Name und Privilegien von der Alt- auf die Neusiedlung übertragen327, sondern die mit großer Geschwindigkeit errichtete Neustadt füllte sich ebenso schnell mit Bewohnern, wie eine Rottweiler Chronik hervorhebt.328 Dies wird auch durch die Ergebnisse archäologischer Untersuchungen bestätigt, die gleichfalls

320 Honorius Augustodunensis, Imago mundi I (vgl. Simek 1992, 32; von den Brincken 1992, 69 und 76; Barber 2006, 50). 321 Dabei wurde eine Analogiekette entwickelt, der zufolge die Kontinente mit den Elementen und diese wiederum mit den Teilen eines Eis gleichgesetzt wurden. Danach entspricht das Wasser der Schale, das Feuer dem Eiweiß, die Luft dem Dotter und die Erde dem Fetttröpfchen (vgl. Simek 1992, 32). 322 Vgl. Hamm 1932, 104; Meckseper 1970, 43; Gildhoff 2003, 99 ff. 323 Vgl. Planck 2003, 381. 324 Vgl. Planck 2003, 382. 325 Als Stadtgründer kommen sowohl Mitglieder aus zähringischem als auch aus staufischem Haus in Betracht (vgl. u. a. Gildhoff 2003, 99 und 125). 326 Ez. 40, 2. Die Höhenlage der Stadt bereitete logistischen Aufwand, denn wenn das Brunnenwasser trotz der tiefen Gründung nicht ausreichte, musste Flusswasser aus dem Neckar hochgepumpt werden (vgl. Hamm 1932, 108 f.; Meckseper 1970, 41; Gildhoff 2003, 122). 327 Das Marktrecht wurde von der als Rotunvila bezeichneten Königspfalz rechts des Neckars auf die Neustadt übertragen (vgl. Gildhoff 2003, 108). 328 Die Zimmersche Chronik vermerkt, dass Rottweil an seinem neuen Standort »in wenige jaren erbawen worden«, es sei »schier ungleublich, wie heftig die in kurzer Zeit zugenommen« habe (Chronik der Grafen von Zimmern, Bd. 3, 178 f.; zit. nach Gildhoff 2003, 124).

Weltbilder: Die Stadt als mappa mundi

219

Abb. 103: Die Pürschgerichtskarte von Rottweil (David Rötlin, 1564).

nahelegen, dass eine systematische Umsiedlung der Bevölkerung in die neugegründete Stadt stattgefunden haben muss.329 Der Rottweiler Grundriss, wie er sich heute noch präsentiert, gilt in der Forschung als Ergebnis einer mit einer verbindlichen topographischen Grundordnung einhergehenden urbanen Vermessung.330 Dabei handelt es sich um eine Doppelanlage aus einer dreieckigen Vorstadt im Westen und einer viereckigen und bereits in der ersten Hälfte des 13. Jahrhunderts befestigten Kernstadt im Osten (vgl. Abb. 104).331 Kern- und Vorstadt formen gemeinsam ein Fünfeck, dessen Spitze im äußersten Westen mit dem höchst gelegenen Punkt des Geländes zusammenfällt, auf dem der sogenannte Hochturm platziert ist (vgl. 329 Anders wäre der abrupte Abbruch der Besiedlung in der ehemaligen Königspfalz nicht zu erklären (vgl. Hamm 1932, 106; Schwineköper 1977, 159). 330 Vgl. Schwineköper 1977, 111. 331 Vgl. Miller 1980, 679; Gildhoff 2003, 123.

220

Streng geometrische und figürliche Stadtgrundrisse

Abb. 104: Der Stadtgrundriss von Rottweil (nach einem Katasterplan aus der 1. Hälfte des 19. Jahrhunderts).

Weltbilder: Die Stadt als mappa mundi

221

Abb. 103). Diesem Turm liegt im äußersten Osten eine Doppeltoranlage gegenüber, die als das Untere Tor bezeichnet wurde, was eine gewestete Orientierung des Grundrisses impliziert.332 Beide Teilstädte waren von einer eigenen Stadtmauer und den dazugehörigen Toranlagen umgeben. Von den vier Haupttoren der quadratischen Kernstadt ist heute noch das aus dem 13. Jahrhundert stammende, zwischen Kern- und Vorstadt gelegene Schwarze Tor erhalten, um das sich ein mit Durchgangsriten verbundenes Brauchtum entfaltet hat, das heute im Rahmen der schwäbisch-alemannischen Fastnacht gepflegt wird.333 Der fünfeckige Umriss Rottweils zeigt eine starke formale Analogie zu der um 1300 entstandenen großen Ökumenenkarte von Hereford, die einst als Altarbild gedient hatte.334 Denn ebenso wie dem Rottweiler Grundriss wurde der mappa mundi die Form eines Fünfecks verliehen, in dessen dreieckigem Giebelfeld Gott mit seinen himmlischen Heerscharen auf dem höchsten Punkt über der kreisrunden Ökumene thront (vgl. Abb. 105).335 Die dadurch bereits angedeutete Analogie von Stadt und Welt wird noch um eine weitere Facette bereichert, wenn nämlich das Fünfeck als ein Giebelhaus gelesen wird (vgl. Abb. 106). Die Vorstellung eines Weltenhauses, einer domus mundi, ist im Mittelalter weit verbreitet und findet sich als Allegorie in den verschiedensten Sinnzusammenhängen.336 Da das Haus als kleinste Wohneinheit wiederum als mikrokosmische Reflexion auf die Welt gedeutet werden kann, wird es häufig mit der Arche Noah in Verbindung gebracht. Denn auch die Arche stellt einen geschlossenen Mikrokosmos dar, da sie in Gestalt der Menschen- und Tierpaare gewissermaßen eine Essenz des göttlichen Schöpfungswerkes in sich birgt.337 Dies verbindet sie wiederum mit der mittelalterlichen mappa mundi, die ja ebenfalls als Sinnbild der Welt aufgefasst wird. Vor diesem Hintergrund wird verständlich, dass Hugo von St. Victor die Arche Noah explizit als mappa mundi bezeichnete.338 Die Analogie von Haus und Welt findet sich bereits in der frühchristlichen Kosmologie, beispielsweise im Werk des im 6. Jahrhundert schreibenden Kosmas Indikopleustes, der die Weltenarchitektur nach Vorbild des mosaischen Bundeszeltes als ein zweistöckiges Haus beschrieb.339 Die frühchristlich-hebräische Vorstellung von der Welt als hausförmiges 332 Das Untere Tor wurde in den Quellen auch Autor oder das am Höllenstein gelegene Tor genannt (vgl. Ruckgaber 1835, 31; Hamm 1932, 113; Meckseper 1970, 73). 333 Vgl. Hamm 1932, 108; Meckseper 1970, 62 ff.; Mezger 1999, 139 f. 334 Vgl. von den Brincken 2010, 14. 335 Vgl. Westrem 2001, XV. 336 Beispielsweise stammt von dem italienischen Literaten Benvenuto da Imola (1330–1388) die Aussage »Italia est pulcrior domus mundi« (»Italien ist das schönste Haus der Welt« zit. nach Saitta 1997, 232). 337 Vgl. Assmann 2009, 114. 338 Hugo v. St. Victor, De arca Noah mystica, 700; vgl. von den Brincken 1988, 28. 339 »[Gott hat] ein Haus, wie einer sagen könnte, ein ganz großes [geschaffen]« (Kosmas Indikopleustes, Top. 2, 17), »Das Bundeszelt, das Mose in der Wüste aufstellen ließ, welches Vorbild und Illustration des ganzen Kosmos war« (Kosmas Indikopleustes, Top. 2, 2). Vgl. Schneider 2010, 7 ff.

222

Streng geometrische und figürliche Stadtgrundrisse

Abb. 105: Die Ökumenenkarte von Hereford (England, Ende des 13. Jahrhunderts).

Tabernakel, das in seinem Zentrum Jesus Christus in verschiedenen Erscheinungsformen beherbergt, ist im Hochmittelalter vor allem in der Gestalt der Reliquienschreine verwirklicht.340 340 Vgl. von den Brincken 1983, 391.

Weltbilder: Die Stadt als mappa mundi

223

Abb. 106: Darstellung der Arche Noah (Apokalypsenkommentar des Beatus von Liébana in einer Abschrift aus dem 12. Jahrhundert).

In dieser Hinsicht kann der Rottweiler Grundriss ebenso wie die zeitgenössischen Kreuzreliquare als ein Tabernakel verstanden werden – eine Parallele, die dadurch noch verstärkt wird, dass Rottweil in mehrerer Hinsicht eine starke Affinität zur Kreuzikonographie aufweist: So wird nicht allein der Rottweiler Grundriss von einer kreuzförmigen Hauptstraßenfigur beherrscht, an deren Kreuzung sich einst tatsächlich ein Kreuz befand341, sondern die Rottweiler Heiligkreuzkirche beherbergt eine Kreuzreliquie, die alljährlich am Tag der Kreuzerhöhung der Gemeinde gezeigt wurde.342 341 RUB 1053 (vgl. Ruckgaber 1835, 125 Hamm 1932, 107 ff.; Meckseper 1970, 153, 252). 342 Das Heilige Kreuz ist zudem namensgebend für das nordwestliche Viertel, für das Heiligkreuzspital und die Heilig-Kreuz-Bruderschaft, die sich der Pflege der Armen und Kranken der Stadt widmete (RUB 101; vgl. Meckseper 1970, 186; 240; Miller 1980, 680).

224

Streng geometrische und figürliche Stadtgrundrisse

Die Kreuzung der Hauptstraßen ist hinsichtlich der urbanen Geometrie maßgebend, denn aus dem urbanen Zentrum, in dessen Nähe sich auch der Galgen und der Hauptbrunnen befanden, ist der Rottweiler Grundriss entwickelt worden (vgl. Tafel 12). Verbindet man den urbanen Mittelpunkt (A) mit den nordwestlichen und südwestlichen Ecktürmen (H) und (E), entsteht ein 90 °-Winkel, auf dessen Abb. 107: Fünfeckkonstruktion (Arithmetik des Winkelhalbierenden sowohl der HochBoethius, 9. Jahrhundert). turm (B) als auch das Schwarze Tor (D) und der Apostelbrunnen vor dem Rathaus (C) platziert wurden. Zudem fällt das Verhältnis der drei Strecken zueinander auf, denn die Abstände der Ecktürme (H) und (E) zum urbanen Mittelpunkt (A) sind gleich lang (AE = AH) und verhalten sich bezüglich des Abstands des Hochturms zum Zen­trum (AH) wie Minor zu Maior; sie sind also nach dem Goldenen Schnitt proportioniert (vgl. Anhang Rottweil). So kann die Rottweiler Wehrtopographie also auf ein Pentagon zurückgeführt werden, das wiederum in fünf Dreiecke unterteilt ist.343 Derlei Konstruktionen gehören zum gängigen Repertoire der mittelalterlichen Mathematik, wie eine Illustration zu Boethius’ Arithmetik aus dem 9. Jahrhundert zeigt (vgl. Abb. 107). Die leichten Asymmetrien der Rottweiler Figur sind der Topographie des Geländes geschuldet, denn insbesondere im nordöstlichen Bereich der Kernsiedlung bricht das Plateau, auf dem die Stadt angelegt worden ist, schluchtartig zum Neckartal hin ab.344 3.3.3 Die Stadt als mappa mundi: Zusammenfassung Das vorherige Kapitel behandelte die enge inhaltliche und formale Verbindung zwischen der mittelalterlicher Stadtbaukunst und der zeitgenössischen Kartenkunst. Die Vorstellung von der Stadt als mappa mundi wurzelt tief in der Mikrokosmos-Makrokosmos-Lehre, die von einer Übereinstimmung aller Teile mit dem Gesamten ausgeht. Vor diesem Hintergrund entstand eine gestaltliche Analogiekette, die nicht nur den Kosmos (mundus) als die größte bewohnbare Einheit mit einschließt, sondern auch den bewohnten Erdkreis (terra), 343 In früheren Analysen der Rottweiler Grundrisskomposition konnte gezeigt werden, dass sich markante Punkte der Stadtbefestigung auf ein geradzahliges Vielfaches des lokalen Fußmaßes zurückführen lassen: Meckseper (1970, 95) stellte fest, dass die Abstände der Längsachsen zwischen den vier Ecken des Kernorts jeweils 1000 Fuß betragen, wobei ein Rottweiler Fuß 0,324 m entspricht. 344 Vgl. Gildhoff 2003, 122.

Weltbilder: Die Stadt als mappa mundi

225

die Stadt (civitas) und nicht zuletzt die kleinste bewohnte Einheit, das Haus (domus). Allen Entitäten ist gemeinsam, dass sie durch die Schaffung eines Innen und eines Außen eine räumliche Ordnung konstituieren, die auf den Regeln der Geometrie fußt. So weisen die Gründungsstädte des 12.–14. Jahrhunderts auch in der formalen Gestaltung Elemente der zeitgenössischen Kartenkunst auf. Dabei ist zuallererst der wasserführende Stadtgraben zu nennen, der im metaphorischen Sinn analog zum allumschließenden Weltmeer den urbanen Raum umfließt und ihn so vom nichturbanen Umland abgrenzt. Dieser Logik folgend erscheinen die Straßen als Kanäle, die der Stadt nicht nur ihre innere Ordnung verleihen, sondern auf denen auch der innerstädtische Verkehr fließen kann. Besonders deutlich wird diese Analogie bei der Gestaltung der Grundrisse der drei vorgestellten Städte Brandenburg an der Havel, Villingen und Rottweil. Dabei nimmt die von den Askaniern gegründete Neustadt von Brandenburg das klassische TO-Schema der Kartographie auf, indem die Hauptachsen eine T-förmige Straßenfigur bilden, die in den annähernd runden, durch ein künstliches Kanalsystem konstituierten Umriss der Stadt eingeschrieben ist. Die ovale Gestalt mit dem kreuzförmigen Hauptstraßensystem der Zähringerstadt Villingen variiert dagegen nicht nur die klassische Kosmosund Weltendarstellung in Gestalt des viergeteilten Kreises, sondern spielt hinsichtlich seiner eiförmigen Gestalt auch auf ein im Hochmittelalter weit verbreitetes Weltbild an, das sich beispielsweise bei Honorius Augustodunensis im 12. Jahrhundert formuliert findet. Im Rottweiler Grundriss wurden schließlich gleich mehrere Vorstellungen in Deckung gebracht: Denn die fünfeckige Form in Gestalt eines Hauses zeigt nicht nur starke formale Ähnlichkeiten zur großen Ökumenenkarte von Hereford und zeitgenössischen Darstellungen der Arche Noah, sondern auch zu hochmittelalterlichen Kreuzreliquaren – eine Kongruenz, die dadurch noch verstärkt wird, dass die Rottweiler Hauptkirche eine Kreuzreliquie beherbergt. Doch ebenso wie bei allen bereits vorgestellten mittelalterlichen Stadtgrundrissen ist auch in der urbanen Topographie der Brandenburger Neustadt, Villingens und Rottweils eine geometrische Ordnung inhärent, die nicht auf den ersten Blick offensichtlich ist: So zeigt die formale Analyse nicht nur, dass der Goldene Schnitt ein immer wiederkehrendes Element im Zusammenhang mit der Positionierung der urbanen Sakral- und Wehrtopographie ist, sondern auch, dass die Grundrisse auf klassischen geometrischen Konstruktionen des zeitgenössischen Kanons basieren, wie sie in mathematischen Standardwerken beschrieben sind. So basiert die Brandenburger Neustadt beispielsweise auf einer orthogonalen Figur, wie sie sich im geometrischen Hauptwerk Leonardo Fibonaccis De geometriae practicae abgebildet findet, Villingens Kontur basiert u. a. auf einem Goldenen Dreieck, während die Rottweiler Konstruktion ein in fünf Dreiecke geteiltes Pentagon variiert, das in dieser Form in der Arithmetika des Boethius beschrieben wurde.

4. Die Geometrie der »gewachsenen« Städte

4.1 Die urbane Wachstumsmetapher In den vorherigen Kapiteln wurden Städte behandelt, deren räumliche Organisation klar erkennbare Charakteristika einer gestalterischen Planung erkennen lassen, wobei Umriss und Straßenfiguren entweder einem orthogonalen Raster folgen oder einer abstrakten Figur nachgebildet sind. Diese Städte bilden jedoch quantitativ hinsichtlich der Gesamtmenge eine überschaubare Gruppe, denn der Großteil der mittelalterlichen Stadtgrundrisse zeichnet sich durch eine organisch anmutende Morphologie aus, die auf den ersten Blick nicht erwarten lässt, dass sie auf einer geometrischen Ordnung beruht (vgl. Abb. 108a–d).1 Diverse Eigenschaften, wie ein unregelmäßiger Umriss, kleinteilige Bebauung mit bewegten und gestaffelten Baufluchten, Verschiebung der Sichtachsen durch gekrümmte Straßenverläufe, die intern einen unregelmäßigen Wechsel zwischen engen und weiten Abschnitten aufweisen, dazu noch irreguläre Plätze, ließen vielfältig gegliederte und immer individuelle Stadträume entstehen.2 Auf diesen Raumformen basiert der Eindruck einer lebendig-organischen Stadt, wie sie hinsichtlich ihres spätestens seit der Romantik auch als malerisch erlebten Aspekts für das Mittelalter als charakteristisch gilt.3 Diese organischen Formen waren die Grundlage für den in der klassischen Städteforschung postulierten Antagonismus zwischen einer sogenannten gegründeten und einer sogenannten gewachsenen Stadt, wobei zur ersten Gruppe urbane Topographien gezählt werden, die in der Forschung für das Ergebnis einer koordinierten Stadtplanung gehalten wurden, während unter dem Begriff gewachsene Stadt Grundrisse subsumiert sind, die man als das Resultat eines spontanen, durch bloße Agglomeration erzeugten, quasi wuchernden Stadtwachstums ansah.4 Hinsichtlich des terminologischen Bedeutungsinhalts ist das Gegensatzpaar gegründet–gewachsen jedoch nicht unproblematisch: Denn einerseits ist das Gründungsritual für den Stadtstatus konstitutiv, so dass jede mittelalterliche Siedlung, die Stadtrechte genoss, im Rahmen eines zeremoniellen Ritus zur Stadt erhoben, 1 2 3 4

Zwar liegen hinsichtlich der Gesamtheit aller europäischen Städte keine quantitativen Untersuchungen vor, für die französischen bastides wird jedoch davon ausgegangen, dass nur 5 % aller Städte einen strenggeometrischen Grundriss aufweisen (Lauret et al. 1988, 55). Vgl. Rasmus 2008, 30 ff. Vgl. Isenmann 2012, 97; Leitgeb 2012, 36. Zu der umfangreichen Diskussion vgl. beispielsweise Haase 1969b, 5; Stoob 1979, 198; Reinisch 1990, 126; Humpert/Schenk 2011, 5 ff.; Schreg 2002, 226; Borchardt 2009, 26; Wüst 2009, 99; Untermann 2009, 188; Leisse 2010, 1 ff.; Isenmann 2012, 88.

Die urbane Wachstumsmetapher

227

Abb. 108a–d: Die Grundrisse von a) Siena*, Toskana, b) Dijon*, Dép. Côte-d’Or, c) Erfurt*, Thüringen, d) Aberystwyth, Wales (* mittelalterlicher Stadtkerne, teilweise umgeben von frühneuzeitlichen Festungswerken und Vorstädten).

also gegründet worden sein muss.5 Andererseits wurde jede mittelalterliche Stadt im Verlauf ihrer Geschichte in der Regel auch vergrößert, so dass sie als gewachsen gelten kann. Doch trotz der Unschärfe im wissenschaftlichen Diskurs beleuchtet der aus der Natur entlehnte Begriff gewachsen in metaphorischer Hinsicht einen Aspekt, der nicht nur für die Städte mit organisch anmutendem Grundriss, sondern auch für den mittelalterlichen 5

Liegen keine dokumentarischen Quellen über den Gründungsvorgang vor, wurde entweder auf eine schriftliche Fixierung verzichtet oder es handelt sich um eine überlieferungsbedingte Forschungslücke.

228

Die Geometrie der »gewachsenen« Städte

Urbanismus im Allgemeinen bedeutsam ist. Da die äußere Form und die innere Linienführung der sogenannten gewachsenen Städte sich nicht an abstrakt-geometrischen Formen, sondern an der belebten Natur orientieren, entsteht keine artifizielle Spannung zu dem Umland.6 Ganz im Gegenteil greifen gewachsene Städte durch die Einbeziehung der lokalen Topographie, wie Flussläufe oder Plateauränder, natürliche Formen auf und fügen sich so harmonisch in ihre Umgebung ein. Gestalterisch lehnen sich die gewachsenen Städte also an das Vorbild der Natur an, deren Bauplan nach neuplatonisch-christlichem Verständnis auf den primordialen göttlichen Schöpfungsakt selbst zurückgeht. Zum besseren Verständnis dieses Aspekts muss bedacht werden, dass der christliche Naturbegriff des Hoch- und Spätmittelalters, der im Kern auf Augustinus beruht, die Natur als zeichenhaftes Offenbarungsmedium Gottes verstand, das es zu lesen und zu verstehen galt.7 Für den im Mittelalter vielzitierten Albertus Magnus ist die Welt deswegen auch ein Gleichnis, die Schöpfung ein von Gott geschriebenes Buch.8 Die gelehrte mittelalterliche Welt fasste die göttliche Schöpfung (res) als ein chiffriertes Zeichensystem aus vielerlei Schriftzeichen auf, die in ihrer Gesamtheit das Buch der Natur ergaben.9 Hugo von St. ­Victor verglich deshalb auch einen Illiteraten, der nicht mit Theologie und Naturwissenschaft vertraut war, mit einem Analphabeten. Nach seinem Verständnis sind sowohl der Illiterat als auch der Analphabet nur in der Lage, die äußere Gestalt der Dinge zu erfassen, nicht jedoch ihre tiefere Bedeutung: Die Welt ist ein Buch, von Gottes Finger geschrieben. Jedes Geschöpf ist ein Zeichen Gottes. Wenn einer des Lesens unkundig, in ein geöffnetes Buch hineinschaut, so bemerkt er wohl Zeichen, aber er kennt nicht die Buchstaben, noch fasst er die darin ausgedrückten Gedanken. So der fleischliche Mensch, der Gottes Werke nicht begreift. Er sieht wohl die äußeren Formen der geschaffenen Dinge, versteht aber nicht die ewigen Ideen, die darin sichtbar werden. Er freut sich gleichsam nur an Form und Farbe der Zeichen, während den geistlichen Menschen der Inhalt gefangen nimmt. Dem Menschen ist es aufgegeben, im Buche der Welt zu lesen und dadurch zur Erkenntnis des Schöpfers zu kommen, nicht nur durch Schlussfolgerung von der Wirkung auf die Ursache, sondern durch Beschauung, so wie man vordringt vom Zeichen zum Gegenstand, vom Wort zum Gedanken.10

  6 Das Prinzip entstammt der mittelalterlichen Kunstauffassung, wonach jedes Kunstwerk direkt auf die Natur bezogen sein muss: ars imitatur naturam (vgl. Krop 1992, 952).   7 Vgl. Kann 2003, 48.   8 Vgl. Sollbach 1995, 24.   9 Vgl. Meier 1977, 34. 10 Hugo v. St. Victor, Mystische Schriften 16.

Die urbane Wachstumsmetapher

229

Auch nach Bonaventura ist das ganze Universum ein feinverzweigtes System durchschimmernder Symbole des einen und des dreieinigen Gottes.11 Durchschimmernd insofern, da man in neuplatonischen Kreisen annahm, dass die wahre Ordnung der göttlichen Schöpfung verborgen unter der wahrnehmbaren Welt liege. Die über die Sinne wahrgenommene Gestalt eines Objekts oder eines Lebewesens wurde lediglich als ein Schleier (lat. integumentum) verstanden, der das wahre Sein verhülle. Die Vorstellung von einer gezielten Verschleierung gehörte zu dem im Mittelalter sorgfältig gepflegten hermetischen Erbe der Antike. Anklänge finden sich bereits in den aus dem sechsten vorchristlichen Jahrhundert stammenden Heraklitfragment, in dem es heißt »Mehr als sichtbare gilt die unsichtbare Harmonie«.12 In das Mittelalter tradiert, wurde das arkane Prinzip jedoch vor allem durch Platon, den scholastische Kreise als Meister des integumentum feierten.13 Da man überzeugt war, dass »Gott alles nach Maß, Zahl und Gewicht geordnet«14 habe, lag das Hauptanliegen der mittelalterlichen Wissenschaft im Ergründen dieser verdeckten göttlichen Ordnung.15 Doch die Aufgabe des nach Erkenntnis strebenden Menschen erschöpfte sich nicht darin, diese verborgene geometrische Ordnung zu entziffern16, sondern er war angehalten, sie auch in seinen Werken nachzuahmen.17 Besonders in scholastischen Kreisen wurde das integumentum deshalb zum philosophischen Prinzip erhoben, und man wendete es vielfach in den eigenen Schriften an.18 Doch nicht nur in der christlichen Naturwissenschaft und in der Philosophie wurde die Dechiffrierung der Schöpfungsordnung vorangetrieben19, auch die darstellende Kunst widmete sich der gestalterischen Umsetzung des geometrischen Bauplans. In der mittelalterlichen Buchkunst kamen zwei verschiedene Techniken mit sehr unterschiedlicher Wirkung zur Anwendung: Die erste Methode reduzierte das darzustellende Objekt auf seine geometrischen Grundformen, so dass der Eindruck eines Idealtypus erweckt wurde, wie beispielsweise bei den geometrisierten Pflanzenabbildungen der Apuleius11 Vgl. Kaup 1961, 22. 12 Heraklit, Fragm., 54. 13 Beispielsweise auf dem Epitaphium auf Thierry von Chartres (Handschrift 923, Bibliothek von Troyes; zit. nach Halfen 2011, 371). 14 Buch der Weisheit 11, 21. 15 Vgl. Ohly 1966, 5. Die Vorstellung ist noch in der Frühen Neuzeit lebendig. So stellte Galileo Galilei (Opere, VI, 232) fest: »[Das Buch des Universums] ist in mathematischer Sprache geschrieben, und die Schriftzeichen sind Dreiecke, Kreise und andere geometrische Figuren.« 16 Hugo v. St. Victor (Didascalicon VII,1): »Das ewige Wort tut sich kund in der Kontemplation der Schöpfung. Es ist selbst unsichtbar, aber es hat sich sichtbar gemacht und wird geschaut in seinen Werken.«. 17 Hugo v. St. Victor (Didascalicon I,1). 18 In Anlehnung an die verhüllende Redeweise der platonischen Schriften stellt es eine der weit verbreiteten literarischen Darstellungsformen dar und durchzieht z. B. die Schriften von Wilhelm von Conches, Bernhardus Silvestris und Alanus ab Insulis (vgl. Brinkmann 1971, 315; Sladek 1984, 16; Ellard 2007, XXIII). 19 Vgl. Meier 1977, 34; Sollbach 1995, 24.

230

Die Geometrie der »gewachsenen« Städte

Platonicus-­Tradition20, einem aus der Spätantike stammenden Herbarium, das bis ins 15. Jahrhundert in reich bebilderten Fassungen vervielfältigt wurde (vgl. Abb. 109). Die Illustration zielte nicht auf eine naturalistische Wiedergabe der tatsächlichen Morphologie eines individuellen Gewächses ab. Vielmehr wurde versucht, die Pflanze auf ihre geometrische Grundfigur zurückzuführen oder – um es in neuplatonischen Begrifflichkeiten auszudrücken – das wahre Sein in seinem ontologischen Sinne darzustellen.21 Als Beispiele für die zweite Methode können dagegen die naturalistisch anmutenden Skizzen von Villard de Honnecourt angeführt werden. Obwohl der mittelalterliche Baumeister in die Umrisse von Menschen, Tieren, aber auch von Architekturteilen geometrische Figuren, wie Dreiecke, Rechtecke und Kreise, Abb. 109: Geometrisierende einschrieb, blieb ihr individueller Charakter erhalten. Pflanzendarstellung (Apuleius PlaDie Darstellung wirkt trotz des skizzenhaften Charaktonicus, 6. Jahrhundert). ters wirklichkeitsnah und naturgetreu (vgl. Abb. 110). Nach dieser Methode dient die geometrische Konstruktion nicht dazu, die äußere Kontur einer Gestalt zu formen, sondern arbeitet punkt- oder verlaufsorientiert, indem sie die Lage neuralgischer Punkte oder Bögen definiert. Die geometrische Konstruktion dient dem Zeichner also als Grundlage, um aus verschiedenen Bestandteilen eine zusammenhängende Gestalt zu erschaffen. Die Überformung der zu Grunde liegenden Geometrie kann somit als ein Kunstgriff betrachtet werden. Zum einen um das menschliche Werk dem Prinzip der göttlichen Schöpfung anzunähern, zum anderen um es natürlicher und lebendiger wirken zu lassen.22 Dies gilt nicht nur für die Buchkunst, sondern auch für die Städtebaukunst. Denn noch im Hochmittelalter betrachtete man ganz nach aristotelischer Auffassung das Prinzip Stadt als Teil der Natur.23 Und ebenso wie man annahm, dass die Idee der städtischen Gemeinschaft der natürlichen Ordnung entspringe, wurde die räumliche Ordnung der 20 Auch Pseudo-Apuleius oder Apuleius Barbarus genannt. 21 Plat. Pol. 527b. Möglicherweise schimmert in diesem Bemühen auch das pythagoreische Psephoi-System durch, dessen Ziel ja auch darin bestand, jedem Wesen eine geometrische Form zuzuordnen. 22 Vgl. Kaup 1961, 30. Ähnlich verhält es sich auch mit der Europäischen Gartenkunst der Neuzeit: Zu dem streng geometrischen Garten, der vor allem in der Französischen Gartenkunst favorisiert wurde, trat der sogenannte Englische Garten, dessen geometrische Grundordnung organisch überformt wurde (vgl. Herzig 1873, 242). 23 »Omnis civitas natura est« (Aristoteles, Politica 1252b 30–32). Vgl. Bertelloni 1991, 689.

Ausgewählte Stadtplananalysen

231

Abb. 110: Figürliche Darstellungn und ihre geometrischen Grundformen (Skizzenbuch des Villard de Honnecourt, 13. Jahrhundert).

sogenannten gewachsenen Stadt der Natur und damit der göttlichen Schöpfung nachempfunden. Denn ungeordnetes urbanes Wachstum wäre mit dem mittelalterlichen OrdoGedanken schlicht unvereinbar gewesen.24

4.2 Ausgewählte Stadtplananalysen Wie in den folgenden Kapiteln gezeigt werden soll, liegen auch dem organisch anmutenden Habitus sogenannter gewachsener Städte planerische Gesetzmäßigkeiten zu Grunde, die zwar prima vista nicht ersichtlich sind, jedoch durch eine formale Analyse offengelegt werden können. Dabei zeigt sich deutlich eine regelhafte Anwendung bestimmter kon­ 24 Zu einem ähnlichen Schluss kam auch Englisch (2002) im Zusammenhang mit der mittelalterlichen Kartenkunst.

232

Die Geometrie der »gewachsenen« Städte

struktiver Bildungsprinzipien, die auch die Basisgeometrie der in den vorherigen Kapiteln behandelten Städte maßgeblich prägten. Bei jeder Stadt sind sie jedoch mit weiteren Faktoren, wie den naturräumlichen Gegebenheiten und dem städtischen Maßsystem, abgestimmt, so dass jedem urbanen Organismus trotz der geometrischen Grundordnung ein natürliches, individuelles und einzigartiges Gepräge verliehen wurde. 4.2.1 Rothenburg ob der Tauber Rothenburg ob der Tauber (vgl. Abb. 111) gilt wegen seines charakteristischen Erscheinungsbildes nicht nur im internationalen Tourismus als Inbegriff einer mittelalterlichen Stadt.25 Auch in der traditionellen Städteforschung wird die Topographie der Tauberstadt wegen der Vielzahl »verwinkelter Gassen« und »malerischer Winkel« als »Idealtypus der gewachsenen Stadt«26 gewertet. Der Grundrissgestalt wurde deshalb eine übergreifende stadtplanerische Intention ausdrücklich abgesprochen.27 Im Folgenden soll jedoch anhand einer formalen Analyse gezeigt werden, dass die Wehr- und Sakraltopographie der über Jahrhunderte mehrfach erweiterten Stadt im Kontrast zu ihrem unregelmäßigen Straßensystem und dem irregulären Umriss einer exakten geometrischen Konstruktion folgt und somit ein anschauliches Beispiel für die systematische Planung einer sogenannten gewachsenen Stadt darstellt. Der Abschnitt des Taubertals, in dem Rothenburg im 12. Jahrhundert auf staufische Initiative hin gegründet wurde, befand sich seit dem 10. Jahrhundert im Einflussbereich der Grafen von Comburg-Rothenburg und kam nach dem Aussterben der dynastischen Linie in den Besitz des Staufers Konrad III.28 Dieser ließ 1142 auf einem steilen Bergsporn in einer engen Tauberschleife eine pfalzähnliche Burg anlegen29, an die sich in östlicher Richtung auf einem flachen Plateau eine befestigte Vorburgsiedlung anschloss, die 1144 unter dem Namen Rothenburg erstmals erwähnt und im Jahr 1204 mit einer Stadtmauer umgeben wurde.30 Die mit Marktrechten ausgestattete Burgsiedlung stand zunächst unter 25 Im angelsächsischen Tourismus gilt Rothenburg ob der Tauber u. a. als »Germany’s Most Medieval City« (vgl. https://kaptainkennytravel.com/2016/07/07/germanys-most-medieval-city-rothenburg-ob-der-­tauber/ letzter Zugriff am 14.10.2019). 26 Weber 2009, 9. 27 Borchardt (2009, 26 f.) lehnte die von Humpert und Schenk (2001, 31) vorgenommene geometrische Analyse des Rothenburger Grundrisses als »absurd« ab, »da man nicht mit Bauleitnormen rechnen dürfe, die von der Stadtgründung an über Jahrhunderte hinweg durchgehalten wurden.« Einzig für das rechtwinklige Straßensystem im flachen Bereich um die Galgengasse konnte sich der Landeshistoriker eine auf einer Vermessung basierende Planung vorstellen. 28 Vgl. Borchardt 1988, 3 ff.; Vasold 1999, 64. 29 Vgl. Borchardt 1988, 8; Vasold 1999, 65. 30 HStA München, Hochstift Würzburg U 5641 (zit. nach Schnurrer 1969, 59); vgl. Vasold 1999, 65; Borchardt 2009, 22.

Ausgewählte Stadtplananalysen

233

Abb. 111: Rothenburg ob der Tauber, staufische Kernstadt (12. Jh.) mitsamt der Stadterweiterungen aus dem 13. und 14. Jh. (grau markiert) nach dem Urkatasterplan aus dem Jahr 1827.

234

Die Geometrie der »gewachsenen« Städte

der Aufsicht eines königlichen Schultheißen (sculteltus), aus dessen Machtbereich sich die Stadt sukzessive im Laufe der Zeit befreien konnte, bis sie schließlich 1274 durch ein königliches Edikt von Rudolf dem Habsburger direkt dem Reich unterstellt und fortan durch einen eigenen Rat regiert wurde.31 Die Erhebung Rothenburgs zur Freien Reichsstadt war der Auftakt einer planvollen und systematischen Stadterweiterung, die in der Folgezeit über fast anderthalb Jahrhunderte in mehreren Etappen vollzogen wurde. Einen Mittelpunkt der polyzentrischen urbanen Konstruktion bildete die Jakobskir­ che (A), auf die sich zwei Torbauten der ersten, um 1300 vorangetriebenen Stadterweiterung beziehen, nämlich das Galgentor im Nordosten (B) und das Gebsattler Tor (D) im Südosten. Beide Tore sind dergestalt auf einem Kreisbogen um die Vierung der gotischen Pfarrkirche platziert, dass die Achsen einen 90 °-Winkel bilden. Mit leichten Abweichungen folgen auch der Verlauf des dazwischen liegenden Stadtmauerabschnittes und die Positionierung des Rödertors (C) dem Radius dieses Viertelkreisbogensegments (vgl. Tafel 13 und Anhang Rothenburg ob der Tauber). Bei den beiden Torbauten handelte es sich zu dieser Zeit um die Rothenburger Haupttore, durch die ab 1340 aufgrund eines Ediktes von Ludwig dem Bayern der Verkehr auf der Reichsstraße geführt wurde.32 Der Abstand der Tore zur Vierung der Jakobskirche entspricht rund 470 m, ist also eine Hunderterrelation der Kulmer Rute, dem gängigen Maß des Deutschen Ordens.33 Der seit 1220 in Rothenburg urkundlich belegte Deutsche Orden war dank der guten Beziehungen zum staufischen Königshaus auf vielerlei Art mit der Stadt verbunden und für die Stadtentwicklung von großer Bedeutung.34 Dazu gehörte seit 1311 auch der Ausbau der vormals bescheidenen romanischen Rothenburger Jakobskirche zu einer stattlichen gotischen Kathedrale mit einer Länge von über 80 Metern, die wegen der Aufbewahrung einer Heiligblutreliquie überregionalen Bekanntheitsgrad genoss.35 Der Orden, dem die geistliche Aufsicht über die Stadtpfarrkirche oblag, besaß nördlich der Jakobskirche große Liegenschaften, von denen aus ein gedeckter Gang in das Kirchengebäude führte.36 Finanziert wurde das Großprojekt zunächst allein aus den Mitteln des Deutschen Ordens, der auch die Bauleitung für die Erweiterung des zentralen

31 Vgl. Borchardt 1988, 11; Vasold 1999, 68; Borchardt 2009, 14. 32 HStA München, Kaier-Ludwig-Selekt 759 (ungedruckt; zit. nach Schnurrer 1969, 62. Vgl. Borchardt 2009, 24.). 33 Dem ordenseigenen Maßsystem zufolge maß 1 Fuß 0,331 m, 1 Elle 0,662 m, 1 Rute 4,71 m und 1 Schnur das Zehnfache einer Rute, nämlich 47,1 m (vgl. Gąsiorowski 1974, 50). In Rothenburg wurde das Ordensmaß im Spätmittelalter von den städtischen Maßen (1 Fuß = 30,2 cm) verdrängt, die heute noch am Rathaus angebracht sind (vgl. Vasold 1999, 15). 34 Vgl. Schnurrer 1969, 63; Borchardt 1988, 19; Vasold 1999, 47 f. 35 Vgl. Borchardt 1988, 39; Vasold 1999, 32 f. 36 Vgl. Vasold 1999, 47.

Ausgewählte Stadtplananalysen

235

Sakralbaus innehatte.37 Zu Rudolf dem Habsburger und seinem Sohn Albrecht I., also den beiden Königen, die Rothenburg mehrfach privilegierten, unterhielt der Deutsche Orden gute Beziehungen; insbesondere unter seinem Hochmeister Conrad von Feuchtwangen (1291–1296) wurde der Deutsche Orden von königlicher Seite mehrfach begünstigt.38 Eine auffällige Koinzidenz im Zusammenhang mit der lokalen Stadtentwicklung besteht in dem Umstand, dass zeitgleich zur Amtsperiode dieses Hochmeisters ein eponymer Verwandter in den Jahren 1291–1303 als Deutschordenspriester der Rothenburger Jakobskirche dokumentiert ist, die in der Konstruktion der urbanen Geometrie eine zentrale Rolle spielte.39 Interessanterweise variiert der formale Aufbau der um 1300 vorangetriebenen ersten Stadterweiterung zwei Elemente der Erstvermessung, die auch in der Konstruktion der staufischen Altstadt zu fassen sind.40 Denn drei Torbauten der Anfang des 13. Jahrhunderts errichteten älteren Stadtbefestigung, das Johannistor (E), der Markusturm (F) und das Burgtor (M), sind in ihrer Lage ebenso auf die Jakobskirche (A) bezogen wie der zwischen Johannistor (E) und Markusturm (F) befindliche Stadtmauerverlauf (vgl. Tafel 14). Dass auch zwei Türme der nördlichen Stadterweiterung, nämlich der Strafturm (H) und das Klingentor (G) samt der dazugehörigen Mauerverläufe nicht nur auf demselben Kreisbogen platziert wurden, sondern dass das Klingentor (G) darüber hinaus der durch die Jakobskirche (A) und dem Gebsattler Tor (D) vorgegebenen Flucht folgt, zeigt deutlich den Bezug auf die stauferzeitliche Erstvermessung der Stadt. Schließlich sind auch der zu der älteren Befestigung gehörende Weiße Turm (I) und der Dominikanerturm (L) in die urbane Geometrie einbezogen, indem sie auf einem Kreisbogen platziert wurden, dessen Radius (39 Ruten) hinsichtlich des äußeren Kreisbogenradius (100 Ruten) nach dem Goldenen Schnitt proportioniert ist (vgl. Anhang Rothenburg ob der Tauber). Der Verlauf der staufischen Stadtmauer folgt im südöstlichen Abschnitt zwischen dem Johannistor (E) und dem Markusturm (F) exakt dem mittleren Kreisbogen, während er sich im östlichen und nördlichen Bereich an dem inneren Kreisbogen orientiert, auf dem der Weiße Turm (I) und der Dominikanerturm (L) liegen. Dadurch erhält der Stadtmauerverlauf trotz der zu Grunde liegenden präzisen Konstruktion ein irreguläres Erscheinungsbild. Fernerhin ist für die geometrische Basiskonstruktion das Datum der Erhebung Rothenburgs zur Freien Reichsstadt am 15. Mai 127441 relevant, da ein Zusammenhang mit der 37 38 39 40

Vgl. Vasold 1999, 33. Vgl. Hirn 1874, 67, Anm. 3. Vgl. Borchardt 1988, 511. Die Kreisbögen wurden bereits bei der Analyse des Grundrisses durch Humpert/Schenk (2001, 31) festgestellt. Der Mittelpunkt der Bögen wurde jedoch nördlich der Jakobskirche verortet, da sich die Autoren nicht an der Lage der Tore, sondern am leicht unregelmäßigen Mauerverlauf orientierten. 41 1274 Mai 15: MG Const. 3, 638 Nr. 650 (zit. nach Schnurrer 1969, 72; vgl. Vasold 1999, 17).

236

Die Geometrie der »gewachsenen« Städte

Position des nordöstlich gelegenen Galgentors (B) und damit der Ost-West-Achse der Stadt gegeben ist (vgl. Tafel 15). Denn die Positionen des auf dem höchsten Punkt der Stadt gelegenen Galgentors (B), des Weißen Turms (I) und der gleichfalls auf einem erhöhten Punkt auf der Burg gelegenen Blasiuskapelle (N) bilden eine Flucht, die ihrer Orientierung nach dem Sonnenaufgangspunkt am 15. Mai folgt (vgl. Anhang Rothenburg ob der Tauber).42 Deshalb liegt einerseits der Schluss nahe, dass der Standort des Galgentors (B) während einer feierlichen Zeremonie am 15. Mai 1274, also dem Tag der Erhebung zur Freien Reichsstadt, vom Weißen Turm (I) aus festgelegt wurde. Zum anderen ist zu vermuten, dass dieser Tag in Anlehnung an die stauferzeitliche Erstvermessung gewählt wurde, da die Flucht der Burgkapelle (N) und des zur stauferzeitlichen Stadtmauer gehörenden Weißen Turms (I) ebenfalls der Orientierung des Sonnenaufgangspunktes am 15. Mai folgt. Die Nord-Süd-Achse hingegen ist durch die Lage des errichteten Johannistors (E) sowie durch die Position des Gebsattler Tors (D) sowie des Spitaltors (L) festgelegt. Die Südtore sämtlicher Stadterweiterungen folgen hinsichtlich ihrer Lage dieser Flucht. Die auf den Sonnenaufgangspunkt des 15. Mai orientierte Ost-West-Achse ergibt gemeinsam mit der Nord-Süd-Achse ein schrägwinkliges Schragenkreuz, das sich an das Cardo-und-Decumanus-System der römischen Agrimensorik anlehnt, das sich ja ebenfalls hinsichtlich der Ost-West-Achse an dem Sonnenaufgangspunkt der Erstvermessung orientierte. Damit ist ein weiterer Mittelpunkt der polyzentrischen Stadtkonstruktion an der Kreuzung der Georgengasse mit der Oberen Schmidtgasse (O) zu verorten. Betrachtet man das fein aufeinander abgestimmte geometrische Bezugssystem, das der Rothenburger Konstruktion zu Grunde liegt, so überrascht die zeitliche Tiefe der Vermessungstradition, die trotz der wechselnden politischen Verhältnisse kontinuierlich beibehalten wurde.43 Denn offensichtlich waren bereits mit der Errichtung der ersten Stadtmauer Anfang des 13. Jahrhunderts Parameter geschaffen worden, die die während des 14. Jahrhunderts vorangetriebenen Stadterweiterungen maßgeblich beeinflussten.44 Die trotz eines durch mehrere Pestepidemien verursachten massiven Bevölkerungsrück-

42 Dies entspricht unter Berücksichtigung der Differenz vom Gregorianischen zum Julianischen Kalender dem heutigen Sonnenaufgangspunkt am 9. Mai (vgl. www.sonnenverlauf.de letzter Zugriff am 14.10.2019). 43 Dagegen Borchardt 2009, 25 f. 44 Während zunächst die Türme der Stadtbefestigung errichtet wurden (Sieberstum am Gebsattler Tor um 1280, das Galgentor und das Rödertor um 1300, Kummereck um 1330; vgl. E. Eichhorn: Zur Baugeschichte und Bedeutung der Befestigungsanlagen in der ehemaligen Reichsstadt Rothenburg ob der Tauber. Dissertation Universität Erlangen. Ungedrucktes Typoskript; zit. nach Schnurrer 1969, 74), legt die Auswertung der Erstnennung der Gassen eine etappenweise Besiedlung der Stadt nahe, wobei zunächst das östliche Viertel von innen nach außen besiedelt wurde (Ersterwähnung der Galgengasse: 1303, Rödergasse 1307; Gebsattler Gasse 1311, Neugasse 1339; StadtA Rothenburg B 14, fol. 9, 94, 165; zit. nach Schnurrer 1969, 70) und anschließend das südliche und das nördliche Viertel (Ersterwähnung der Äußeren Klingengasse: 1407; vgl. Schnurrer 1969, 59ff; Vasold 1999, 115 ff. und 180 ff.; Borchardt 2009, 24 f.).

Ausgewählte Stadtplananalysen

237

ganges45 etappenweise ausgeführte Verdreifachung des urbanen Gebiets muss also bereits im Vorfeld en détail geplant worden sein, denn ein räumlicher Bedarf an der enormen Stadtfläche bestand nach dem durch mehrere Pestepidemien ausgelösten verheerenden Massensterben nach 1350 nicht mehr. Garant dieser über 200 Jahre währenden Kontinuität waren vermutlich Vermesser des Deutschen Ordens, nach dessen Maßsystem die um 1204 errichtete innere Umfassung und die im Laufe des 14. Jahrhunderts hinzugefügte äußere Stadtmauer projektiert worden sind. Zwar ist der Orden urkundlich erst um 1220 in Rothenburg nachzuweisen, ordenseigene Vermesser waren jedoch nachweislich ab 1200 an Bauvorhaben nördlich der Alpen aktiv beteiligt.46 Folgt man der lokalen Überlieferung, waren Planung und Projektierung der Spitalstadt, die 1378 in das Stadtgebiet integriert wurde47, bereits 80 Jahre zuvor abgeschlossen und genehmigungsfähig. Denn 1298 erbat die Stadt von König Albrecht I. das Privileg, das Spital in die Befestigung miteinzubeziehen, was der König trotz fortifikatorischer Bedenken auch gewährte.48 Wie eine im 17. Jahrhundert verfasste Rothenburger Chronik zu berichten weiß, soll der König bei der Gelegenheit angesichts des geplanten Rothenburger Grundrisses ausgerufen haben: »Sieht eure Stadt schon aus wie eine Schlafkappe, so mag dieses Stück der Zipfel daran sein!«49 Trotz der humoristischen Pointe ist der anekdotenhaften Erzählung ein historischer Quellenwert nicht vollends abzusprechen, denn die Bezeichnung Kappenzipfel ist für die Spitalstadt bereits im Jahr 1387 urkundlich belegt.50 Die spätmittelalterliche Bezeichnung kann daher gemeinsam mit der Anekdote als Hinweis auf die Existenz von im Vorfeld erstellten, zweidimensionalen Planungszeichnungen im Zusammenhang mit Stadterweiterungen herangezogen werden, aber auch als Beleg gelten, dass mit der Gestalt von Stadtumrissen figürliche Vorstellungen assoziiert worden sind.51 Betrachtet man vor diesem Hintergrund den Umriss Rothenburgs nach den Stadterweiterungen im 14. Jahrhundert, so erinnert er in der Tat an eine zeitgenössische Schlafkappe (vgl. Abb. 112), die quasi auf den Kopf der Altstadt gesetzt wurde. Trotz des irregulären Erscheinungsbildes weist der Rothenburger Grundriss also eine geometrische Basiskonstruktion auf, die einige Elemente variiert, wie sie für die zeitgenössische Stadtplanung typisch sind. Dazu gehören neben einer Proportionierung von 45 Vgl. Vasold 1999, 116; Borchardt 2009, 24. 46 Beispielsweise bei der Errichtung eines Spitals in Halle (vgl. Prutz 1908, 135). 47 Im Jahr 1378 wurde die Lage des Hospitals als »infra civitatem« bezeichnet (vgl. Schnurrer 1969, 66; Vasold 1999, 116). 48 Vgl. Schnurrer 1969, 66; Vasold 1999, 116. 49 Chronik des Nicol. Göttlingk (1608—1679) und Johann Adam Erhard (1661—1718): Rothenburgische Chronica (München, Staatsbibliothek, Cod. germ. 7804; zit. nach Bensen 1837, 93). 50 StadtA Rothenburg B 39, fol. 63 (zit. nach Schnurrer 1969, 71). 51 Dies deutete sich bereits mit der Bezeichnung Bischofsmütze für die Würzburger Stadtbefestigung an (vgl. Kap. 3.2.3.3).

238

Die Geometrie der »gewachsenen« Städte

Abb. 112: Spätmittelalterliche Darstellung eines Ehepaars. Die Ehefrau trägt eine Schlafhaube mit sogenannten Kappenzipfeln (Roman de la Rose, 15. Jahrhundert).

Strecken und Kreisbögen nach dem Goldenen Schnitt auch ein zentrales, schrägwinkliges Achsenkreuz52 mit Orientierung der Ost-West-Achse auf den Sonnenaufgangspunkt53 sowie der Polyzentrismus von konzentrischen Kreissystemen, auf deren Grundlage gebogene Verläufe von Straßen und Stadtmauern konstruiert wurden.54 Im Falle Rothenburgs setzt die bauliche Umsetzung, an der mindestens anderthalb Jahrhunderte gearbeitet wurde, einen verbindlichen Plan voraus. Analog zum zeitgenössischen Kathedralenbau, dessen Realisierung ein ähnlich langer Prozess vorausgehen konnte55, ist mit zweidimensionalen Grund- und Aufrisszeichnungen zu rechnen, wie sie aus der Hüttentradition bekannt sind. Dass die Realisierung des stadtplanerischen Konzepts über Generationen hinweg systematisch vorangetrieben wurde, ist umso erstaunlicher, da es für eine Stadterweiterung dieses Ausmaßes nach dem drastischen Bevölkerungsschwund Mitte des 14. Jahrhunderts keinen räumlichen Bedarf mehr gab. Dieser Umstand macht es noch wahrscheinlicher, dass die Projektierung für eine Verdreifachung der Stadtfläche zu einem Zeitpunkt erfolgt ist, als ein veritables Bevölkerungswachstum der prosperierenden Stadt erwartet wurde.

52 53 54 55

Vgl. Villingen (Kap. 3.3.2.2). Vgl. Tournay und San Giovanni (vgl. Kap. 3.1.3.1 und 2). Vgl. Wolframs-Eschenbach (vgl. Kap. 3.2.3.2). Der 1311 begonnene Ausbau der Rothenburger Jakobskirche zur gotischen Kathedrale wurde ebenfalls über anderthalb Jahrhunderte später im Jahr 1485 mit der Weihung des Sakralbaus abgeschlossen (vgl. Vasold 1999, 33).

Ausgewählte Stadtplananalysen

239

4.2.2 Worcester Der Grundriss des im Westen Mittelenglands gelegenen Worcester gilt in der Forschung in weiten Teilen als das absichtslose Resultat einer langen und wechselvollen Stadtentwicklung56, wobei seine Erscheinung wegen des ungeordneten Eindrucks sogar mit dem Attribut »chaotic«57 charakterisiert wurde (vgl. Abb. 113). Doch dieser erste Eindruck täuscht. Im folgenden Kapitel soll dargelegt werden, inwiefern die Topographie von Worcesters Altstadt trotz des irregulären Umrisses und des unregelmäßigen Straßensystems einer stringenten geometrischen Konstruktion folgt, die planvoll ausgeführt worden sein muss. Worcester, Hauptstadt der gleichnamigen Grafschaft, kann auf eine fast zweitausendjährige Siedlungsgeschichte zurückblicken. Die in einer fruchtbaren Flussebene, am Ostufer des schiffbaren Severn gelegene Stadt geht auf ein im ersten nachchristlichen Jahrhundert angelegtes römisches castrum zurück, das sich an der Straße zwischen Glevum (Gloucester) und Viroconium (Wroxeter) befand. Bei der weiträumigen römischen Zivilstadt, die sich um das befestigte castrum mit einer Größe von rund 10,5 ha ausdehnte (vgl. Abb. 113), handelte es sich um ein florierendes Manufakturzentrum, das auf Keramikproduktion und Eisenverarbeitung spezialisiert war.58 Nach dem Rückzug der Römer aus Britannien am Anfang des 5. Jahrhunderts gehörte die befestigte Siedlung zu dem angelsächsischen Königreich Hwicce, dessen Einwohner sich im 7. Jahrhundert dem Christentum zuwandten.59 Im letzten Viertel des 7. Jahrhunderts wurde Worcester – in den Quellen erstmals unter der Bezeichnung Weogorna civitate erwähnt – zum episkopalen Sitz einer neuen Diözese gewählt und mit einer Kathedralkirche versehen, die im Bereich des ehemaligen römischen Lagers errichtet wurde.60 Die dem Apostel Petrus geweihte Bischofskirche hatte die Stellung eines Priorats und war als Domkloster organisiert, wobei der Bischof, der im Idealfall selbst Mönch sein sollte, auch als Abt und Prior fungierte.61 Im ausgehenden 9. Jahrhundert wurde der Bischofssitz unter König Alfred zum burh bzw. borough erhoben – ein rechtlicher Akt, in dessen Vorfeld es zwischen dem angelsächsischen Ealdorman Æthelred, seiner Frau Æthelflæd und der Church of Worcester zu einer vertraglich geregelten Teilung der Stadtherrschaft kam.62 Wie in England und Wales üblich, ging die Erhebung zum burh mit der Erteilung eines festen Kanons an Rechten einher. Dazu gehörte neben dem Markt- und Münzprivilegium die Befestigung, die aufgrund archäologischer Ergebnisse 56 Allenfalls für den Bereich der rechtwinkligen Nebenstraßen im Umfeld der High Street wurde eine Planung angenommen (vgl. Baker et al. 1992, 65). 57 Vgl. Baker/Holt 2004, 151. 58 Vgl. Baker et al. 1992, 69; Baker/Holt 2004, 143. 59 Vgl. Engel 2000, 16. 60 Vgl. Engel 2000, 15; Baker/Holt 2004, 127. 61 Vgl. Engel 2000, 18. 62 Vgl. Beardsmore 1980, 53; Baker/Holt 2004, 128 ff.

240

Die Geometrie der »gewachsenen« Städte

Abb. 113: Die historischen Siedlungszentren Worcesters innerhalb der hochmittelalterlichen Umfassungsmauer (Rekonstruktion der Siedlungsphasen nach Baker/Holt, 2004).

Ausgewählte Stadtplananalysen

241

im Nordwesten der heutigen Stadt lokalisiert wird.63 In diesem Bereich soll sich auch der befestigte Wohnsitz (haw oder haga) des angelsächsischen Ealdorman befunden haben.64 Der südliche Teil der heutigen Altstadt war dagegen bis in das 11. Jahrhundert sakralen Zwecken vorbehalten: In unmittelbarer Nähe zur St.-Peter-Kathedrale wurde zwischen 960 und 983 eine zweite Kathedrale platziert, die ein Marienpatrozinium erhielt.65 Die wechselvolle Stadtgeschichte der ersten elf Jahrhunderte hatte jedoch nur wenig sichtbare Auswirkung auf das heutige Erscheinungsbild Worcesters. Denn keiner der architektonischen Großbauten aus römischer und angelsächsischer Zeit überdauerte die umfassende Neugestaltung der Stadt, deren zeitlicher Auftakt im 11. Jahrhundert nach der Eroberung Englands durch die Normannen anzusetzen ist. Monumentalen Ausdruck fand der politische Machtwechsel in der Neugestaltung des Dombezirks. In diesem Zusammenhang mussten in der zweiten Hälfte des 12. Jahrhunderts die beiden angelsächsischen Kathedralen der Errichtung der heutigen Kathedrale von Worcester weichen, wobei die Marien-Kathedrale vermutlich in den normannischen Neubau der heute stehenden Kathedrale von Worcester einbezogen und die südlich gelegene St.-Peter-Kathedrale vom Refektorium des Klosterbezirks überbaut wurde.66 Der südliche, eigentlich als klösterlicher Friedhof genutzte Bereich wurde 1069 in das königliche castle integriert – eine drastische Missachtung der bestehenden Grenzen durch den normannischen ­Sheriff, der deswegen vom Erzbischof von York mit einem Fluch belegt worden sein soll.67 Im Nordwesten des Dombezirks ließ sich der Bischof einen Palast errichten68, der mit einer eigenen, fünfeckigen Umfassungsmauer umgeben wurde, die ihrem Umriss nach an eine Bischofsmütze erinnert (vgl. Abb. 113).69 Eine deutliche Stärkung der städtischen Identität erfuhr Worcester, dessen Herrschaft bis in das 12. Jahrhundert zwischen Kirche und König aufgeteilt war, im Jahr 1189, als König Richard Löwenherz (Richard I. the Lionheart) kurz nach seinem Regierungsantritt der Stadt das Recht auf Selbstbestimmung verlieh.70 Richards Nachfolger, König Johann Ohneland (John I. Lackland), wurde im Jahr

63 Vgl. Beardsmore 1980, 53 f.; Engel 2000, 15; Boerefijn 2010, 33. 64 In Abgleich mit den in der Urkunde angegebenen Maßen und dem heutigen Straßensystem wird der haga im Westen des burhs lokalisiert (vgl. Baker/Holt 1996, 138; Baker/Holt 2004, 128). 65 Vgl. Baker/Holt 2004, 134. 66 Dafür spricht sowohl die Orientierung des Refektoriums, die nicht mit der der übrigen Bauten des Domklosters übereinstimmt, als auch östlich davon aufgedeckte Grabungsbefunde, die als Überreste eines polygonalen Chors gedeutet werden (vgl. Engel 2000, 52; freundliche Mitteilung von Christopher Guy, Worcester Cathedral Archaeologist). 67 Vgl. Cooper 1970, 28; Baker/Holt 2004, 128. 68 Der Palast ist vermutlich Anfang des 13. Jahrhunderts errichtet worden. 1271 erhielt der Bischof die Erlaubnis, ihn mit Zinnen auszustatten (vgl. Baker/Holt 2004, 157). 69 Vgl. Würzburg (vgl. Kap. 3.2.3.3). 70 Cartulary XLf.; zit. nach Engel 2000, 16; Baker/Holt 2004, 128.

242

Die Geometrie der »gewachsenen« Städte

1216 gemäß seines Testaments sogar im Ostchor der Kathedrale von Worcester bestattet (vgl. Abb. 114).71 Als sichtbares Zeichen der städtischen Identität entstand im ausgehenden 12. Jahrhundert eine Stadtbefestigung, die die bisher nur lose verbundenen Siedlungszentren in ihre Mauern inkorporierte. Finanziell unterstützt wurde der Bau der Stadtbefestigung vom Königshaus durch die Erteilung großzügiger murage grants.72 Bei der Projektierung der Umfassung bemühten sich die Verantwortlichen offensichtlich, königliche und kirchliche Besitzungen harmonisch in ein Gesamtkonzept zu integrieren, Abb. 114: Die Bestattung von König John I. in Worcester (Frankreich, 14. Jh.). weshalb für den Bereich des Dombezirks hinsichtlich der Positionierung der Wehrund Sakraltopographie eine besondere geometrische Lösung gewählt wurde (vgl. Tafel 16). Das um 1200 errichtete Gate House des bischöflichen Palastes (A) bildete mit dem um 1197 erbauten Sidbury Gate (B) und der SW-Ecke des castle (C) ein gleichschenkliges Dreieck mit den Winkeln 72 °, 54 ° und 54 °, dessen flusszugewandter Schenkel (AC) exakt Nord-Süd ausgerichtet ist. Während dieser Schenkel durch die Position des Watergate (E) ebenso wie der zweite Schenkel (CB) durch das Frog Gate (D) nach dem Goldenen Schnitt geteilt wird, ist der Ostchor der Worcester Kathedrale (F), in dem sich die königliche Grablege befindet73, dagegen genau in der Mitte der Dreiecksbasis platziert (vgl. Tafel 16 und Anhang Worcester). Die agrometrische Umsetzung dieser geometrischen Konstruktion gestaltet sich im Gelände als wenig aufwendig. Denn um die Länge der Dreiecksschenkel stetig zu teilen, ist der Umkreismittelpunkt des Dreiecks (M) maßgebend.74 Wird ein Seil an den Eckpunkten (A) und (C) befestigt, muss der Vermesser mit einem Seil lediglich einen Kreisbogen schlagen, dessen Radius sich am Abstand des jeweiligen Eckpunkts zum Mittel71 John I. hatte in seinem Testament ausdrücklich festgelegt, dass er in der Kathedrale von Worcester bestattet werden wollte (vgl. Beardsmore 1980, 59; Engel 2000, 10 und112; Baker/Holt 2004, 167; Church 2010, 1 ff.). 72 Vgl. Beardsmore 1980, 59; Engel 2000, 112. 73 Vgl. Engel 2000, 10. 74 In der euklidischen Geometrie wird unter dem Umkreismittelpunkt derjenige Punkt verstanden, an dem sich die Mittelsenkrechten schneiden (vgl. Berchthold 2016, 64).

Ausgewählte Stadtplananalysen

243

punkt bemisst. An dem Punkt, an dem der Radius den Schenkel des Dreiecks schneidet, ist die Strecke nach dem Goldenen Schnitt geteilt. Zudem diente der Radius des Umkreises auch zur Definierung eines bogenförmigen Abschnittes der östlichen Stadtmauer, der sich nördlich des Sidbury Gates (B) anschließt, während sich der heute unbebaute Mittelpunkt vermutlich im Bereich des ehemaligen Ostchores der angelsächsischen St.-Peter-Kathedrale befindet.75 Die besondere Proportionierung des Dreiecks hängt damit zusammen, dass gleichschenklige Dreiecke mit den WinAbb. 115: Die Dreieckskonstruktion eines regelmäßigen Pentagons nach Leonardo Fibonacci keln 72 °, 54 ° und 54 ° Bestandteile des (Practica geometriae nach einer Abschrift aus dem regelmäßigen Pentagons sind, das aus 15. Jahrhundert). fünf solchen Dreiecke konstruiert ist, die durch eine Mittelsenkrechte wiederum in zehn rechtwinklige Dreiecke mit den Winkeln 90 °, 36 ° und 54 ° aufgeteilt werden können (vgl. Abb. 115).76 Dieser Zusammenhang war in mathematischen Kreisen Anfang des 13. Jahrhunderts hinlänglich bekannt und wurde u. a. in dem um 1220 verfassten Werk Leonardo Fibonaccis zur praktischen Geometrie ausführlich beschrieben, weshalb davon auszugehen ist, dass es zum Standardwissen eines gut ausgebildeten Agrimensoren gehörte.77 Die Dreieckskonstruktion des Dombezirks definierte zudem die Position der Hauptausfalltore der Stadt, nämlich die des Foregate (G) im Norden und die des verkehrstechnisch wichtigen Bridge Gate (H) im Nordwesten (vgl. Tafel 17). Während auf der Verlängerung der durch das Sidbury Gate (B), den Ostchor der Kathedrale (F) und das Bishop’s Gate (A) definierten Dreiecksbasis das Bridge Gate (H) platziert wurde, positionierten die Stadtplaner das nördliche Foregate (G) auf der Verlängerung der Flucht vom Frog Gate im Süden (D) über den Ostchor der Kathedrale (F). An diesem Punkt, an dem sich auch die königliche Grablege befand, kreuzten sich die beiden Achsen. Nach dieser Achse richtete sich zudem der Verlauf der Hauptstraße Worcesters, der sich leicht windenden High Street sowie die Lage eines weiteren Punktes (M2), der zwar architektonisch nicht besonders hervorgehoben 75 Vgl. Engel 2000, 52. 76 Vgl. Sidebotham 2002, 322. 77 Leonardo Pisano, De Practica Geometrie, 207 ff.

244

Die Geometrie der »gewachsenen« Städte

war, jedoch den Mittelpunkt eines Kreisbogens markiert, der einen Abschnitt des Stadtmauerverlaufs im nordöstlichen Bereich der Stadt definierte (vgl. Tafel 17). Auch wenn es auf den ersten Blick nicht ersichtlich ist, basiert die Ende des 12. Jahrhunderts projektierte Stadtbefestigung Worcesters also auf einem schrägwinkligen Achsenkreuz, dessen Kreuzungspunkt sich in der königlichen Grablege im Ostchor der Kathe­ drale befindet. Auf den dadurch vorgegebenen Fluchten wurden die beiden Haupttore im Norden der Stadt platziert, wobei die im Süden gelegenen Torbauten Teile eines Dreiecks sind, das im Zusammenhang mit der Konstruktion eines Pentagons steht, also einer Figur, die wegen ihrer als gefahrenabwehrend und apotropäisch geltenden Wirkung häufig im Zusammenhang mit Verteidigungsanlagen verwendet wurde. Während sich der östliche Bereich der Stadtmauer nach dem Flusslauf orientierte, richtete sich der westliche Mauerverlauf abschnittsweise nach Kreisbogensegmenten, deren Mittelpunkte Teile der urbanen Konstruktion darstellen. Da sämtliche Gebäude bzw. Gebäudeteile im ausgehenden 12. und 13. Jahrhunderts entstanden78, ist davon auszugehen, dass ein Zusammenhang zwischen der königlichen Privilegierung Worcesters durch Richard Löwenherz und seinen Bruder Johann Ohneland besteht, die den Bau der Stadtbefestigung auch finanziell großzügig unterstützten. Dass sich zudem die Grablege Johns I. im Ostchor der Kathe­ drale von Worcester befindet, also an einem Punkt, der für die Geometrie der Stadt eine zentrale Rolle spielt, lässt vermuten, dass die Neuprojektierung der Stadt im ausgehenden 12. und beginnenden 13. Jahrhundert auf königliches Geheiß vonstattenging. Der trotz des organisch anmutenden Eindrucks auf exakten geometrischen Konstruktionen beruhende Grundriss von Worcester zeigt also anschaulich, wie Städte mit scheinbar irregulärem Umriss und Straßensystem auf einer konsequenten geometrischen Planung basieren. 4.2.3 Wien Die räumliche Struktur der Inneren Stadt Wiens ist im gegenwärtigen Zustand maßgeblich von der im 12. und 13. Jahrhundert vorangetriebenen Neugestaltung durch die Babenberger Herzöge geprägt (vgl. Abb. 116). So orientiert sich das Straßen- und Platzsystem nur in wenigen Teilabschnitten am Raster des um 100 n. Chr. errichteten römischen Lagers Vindobona und folgt in gestalterischer Hinsicht der organisch anmutenden Formensprache der hoch- und spätmittelalterlichen Stadtmorphologie. Das um 1200 errichtete mittelalterliche Befestigungssystem verlieh der Stadt einen kompakten, ovoiden Umriss, dessen abschnittsweise irregulärer Verlauf durch das nach der Ersten Türkenbelagerung 78 Während die Haupttore Foregate und Sidbury Gate bereits im 12. Jahrhundert urkundlich belegt sind, wurde die steinerne Stadtmauer vor 1216 fertiggestellt (vgl. Beardsmore 1980, 59 ff.; Bennett 1980, 69; Baker/Holt 2004, 157 ff.).

Ausgewählte Stadtplananalysen

245

Abb. 116: Die topographische Entwicklung der Inneren Stadt Wiens (Rekonstruktion der Siedlungsphasen nach dem Österreichischen Städteatlas).

246

Die Geometrie der »gewachsenen« Städte

im Jahr 1529 angelegte Bastionensystem geglättet wurde.79 In der mittelalterlichen Städteforschung gilt Wien deshalb auch als eine »einigermaßen symmetrisch gewachsene Stadt«.80 Mit mächtigen Mauern versehen, gehörte das an der Peripherie des Römischen Reichs gelegene castrum Vindobona in den ersten nachchristlichen Jahrhunderten zu dem sogenannten Donaulimes, einem fortifikatorischen System aus Türmen, Kastellen und Städten, dessen Aufgabe in der Sicherung der Flussgrenze des Imperiums bestand.81 Nachdem sich die Römer in der ersten Hälfte des 5. Jahrhunderts aus Pannonien zurückgezogen hatten, befand sich die ehemalige römische Provinz zunächst im hunnischen, später im langobardischen und awarischen Einflussbereich.82 Im 9. und 10. Jahrhundert geriet der Wiener Raum in das Spannungsfeld zwischen der ungarischen Expansion aus dem Osten und einer von den Baiern getragenen Kolonisations- und Missionstätigkeit aus dem Westen.83 Im 11. Jahrhundert gehörte Wien zu einem Grenzsicherungsstreifen des Heiligen Römischen Reichs, in dem zur Verteidigung gegen die Ungarn eine Kette von Burgen und Städten angelegt wurde.84 An der Schnittstelle zwischen Byzantinischem und Heiligem Römischem Reich gelegen, führte die Kreuzfahrerroute Abb. 117: Leopold VI. der Glorreiche (Babenberger im Hochmittelalter über die Donaustadt, Stammbaum im Stift Neuenburg, 1489). wobei sich aus der Begegnung des europäischen Rittertums mit der verfeinerten Lebensart des islamischen Orients und der prunkvollen Welt von Byzanz wichtige Impulse für das städtische Leben Wiens ergaben.85 Nachdem die Babenberger Herzöge um 1130 in den Besitz Wiens gekommen waren, mussten sich die neuen Stadtherren in der nunmehr östlichsten Stadt der Babenberger Mark mit bereits etablierten, starken politischen Kräften auseinandersetzen, wozu neben den Ambitionen des folgenden Jahrhunderten mehrfach versuchte, Wien mit kaiserlicher Billigung zur Freien Reichsstadt zu erklären.86 Unter den Babenberger Herzögen 79 80 81 82 83 84 85 86

Vgl. Czeike 1992, 268. Fassmann et al. 2009, 23. Vgl. Uhlig 1958, 4; Hummelberger/Peball 1974, 9 ff.; Harl 1975, 12; Waissenberger 1975, 7 Vgl. Waissenberger 1975, 7. Vgl. Czeike 1992, 268. Vgl. Hummelberger/Peball 1974, 12. Vgl. Düriegl 1975, 16. Vgl. Düriegl 1975, 15; Braunfels 1977, 259 f.

Ausgewählte Stadtplananalysen

247

begann im 12. Jahrhundert ein systematischer Ausbau, der zu einer Verdreifachung des ursprünglichen Stadtgebiets führte.87 1156 verlegte Herzog Heinrich II. Jasomirgott seinen Hof nach Wien, das von Al Idrisi (1100–1166) als ein bemerkenswertes Beispiel für eine europäische Stadt bezeichnet wurde.88 Ähnlich fiel auch das Urteil des Babenberger Herzogs Leopold VI. (1176–1230) aus, der Wien als »eine der hervorragendsten Städte der Deutschen Herrschaft«89 pries. Zwar scheiterten seine Bemühungen, in Wien ein Bistum einzurichten, an dem Widerstand des Passauer Bischofs. Unter dem Babenberger Leopold IV., auch der Glorreiche genannt, avancierte das für seine prächtige Hofhaltung bekannte Wien, dessen »wunneclîche[r] hof« unter anderem von Walter von der Vogelweide besungen wurde, zu einem weitgerühmten Zentrum des Minnesangs.90 Leopold VI. legte auch das Fundament für den wirtschaftlichen Wohlstand der Donaustadt, indem er Wien 1221 das erste kodifizierte Stadtrecht verlieh.91 Das im Leopoldinum enthaltene Stapelrecht92, nach dem sämtliche für Ungarn bestimmten Waren binnen zwei Monaten an lokale Händler verkauft werden mussten, garantierte den Wiener Kaufleuten über Jahrhunderte hinweg reiche Gewinne.93 Was die Topographie des mittelalterlichen Wiens angeht, so bestimmte das römische castrum zwar nicht das Straßen- und Platzsystem der mittelalterlichen Stadt. Die an der Basis bis zu drei Meter starken Lagermauern definierten jedoch bis ins 11. Jahrhundert den Siedlungskern der sich entwickelnden Stadt und galten, nachdem ihre Funktion durch die hochmittelalterlichen Stadtbefestigungen obsolet geworden war, als steinerne Zeugnisse einer bis in die Antike reichenden Stadtgeschichte.94 Dieser Tradition folgend, orientierte sich die Planung der im 11. Jahrhundert ausgeführten Befestigung zwar nicht im Umriss am Rechteck des römischen Lagers95, übernahm jedoch hinsichtlich der Positionierung der Torbauten wichtige Prinzipien der antiken Konstruktion (vgl. Tafel 20). Im römischen Bezugssystem weisen sowohl der im Nordwesten gelegene Torbau der porta sinistra (B) als auch die südwestliche porta decumana (C) den gleichen Abstand zu dem Punkt (M) auf, der die Hauptkreuzung des römischen cardo- und decumanus-­ Systems definierte. Die drei Punkte formen gemeinsam das gleichschenklige Dreieck, 87 88 89 90 91 92 93 94

Vgl. Opll 1982, o. S. Vgl. Düriegl 1975, 15; Waissenberger 1975, 8; Perger 1975, 72. zit. nach Waissenberger 1975, 7. zit. nach Uhlig 1958, 43; vgl. Düriegl 1975, 16. Vgl. Uhlig 1958, 20; Waissenberger 1975, 7; Opll/Sonnlechner 2008, 8 und 21. Vgl. Düriegl 1975, 15. Vgl. Waissenberger 1975, 8. Um 1287/88 wurde betont: »(…) civitas Wienna, qua olim oppidum, sicut hodie quia vetustissimus monstrat murus« (Gutholf von Heiligenkreuz: Translatio sanctae Deliciana; zi. t. nach Uhlig 1958, 79); vgl. Harl 1975, 12. 95 Die Nordseite von Vindobona folgte aus Rücksicht auf den Verlauf der Donau nicht der typischen Rechteckform eines römischen Legionslagers (vgl. Opll 1982, o. S.).

248

Die Geometrie der »gewachsenen« Städte

Abb. 118: Das Wiener Achsenkreuz mit dem neuen urbanen Mittelpunkt (M) der Babenberger Stadterweiterung (Stadtplan mit Bastionensystem von M. Bonifatius Wolmut, 1547, mit Modifikationen).

dessen Basis (BC) exakt Nord-Süd ausgerichtet ist. Außerdem verhält sich die Länge der Schenkel im Vergleich zum Abstand der porta dextra zum Punkt M (AM) wie Maior zu Minor (vgl. Tafel 20 und Anhang Wien). Für den Untersuchungsgegenstand dieser Studie ist aber vor allem der Umstand relevant, dass das antike geometrische Bezugssystem noch im Mittelalter maßgebend war, denn auch das Ungarntor (D) und das Katzensteigtor (E), beide im 11. Jahrhundert errichtet, sind auf Kreisradien positioniert, die durch die Lage der antiken Tore vorgegeben sind. Während die antiken Torbauten zu diesem Zeitpunkt noch sichtbar waren96 und so ohne weiteres in das Vermessungsnetz inte­griert werden konnten, ist zu vermuten, dass auch der römische Nullpunkt zu dieser Zeit entweder noch bekannt oder durch eine architektonische Markierung kenntlich war, so dass die mittelalterliche Vermessung des 11. Jahrhunderts auf das antike System rekurrieren konnte. Mit der weit über das ehemalige römische Lager ausgreifenden Stadterweiterung, die größtenteils aus Lösegeldern finanziert wurde, die der österreichische Herzog Leopold V. für die Freilassung des englischen Königs Richard Löwenherz erhalten hatte97, ging auch die Etablierung eines neuen urbanen Mittelpunktes einher, der sich heute südwestlich des Stephansdoms befindet (vgl. Abb. 118). Das auch als Markt fungierende Babenberger 96 Noch auf der im 17. Jh. entstandenen Vogelschau Hoefnagels ist nahe der Kirche St. Ruprecht ein römischer Lagerturm zu sehen (vgl. Uhlig 1958, 4; Perger 1975, 72; Waissenberger 1975, 7). 97 Mit den 50 000 Silbermark finanzierte der Babenberger nicht nur die neue Wiener Stadtbefestigung, sondern gründete auch die nach allen Regeln der geometrischen Kunst projektierte Wiener Neustadt (vgl. Waissenberger 1975, 9; Csendes 1975, 21; Perger 1975, 72; Reidinger 2010, 155 ff.).

249

Ausgewählte Stadtplananalysen

Abb. 119: Der Stock im Eisen (Zeichnung, 1880).

Zentrum98 wurde zu einer dreieckigen Platzanlage ausgebaut, an der sich die vier großen Hauptstraßen der Stadt kreuzten. Ähnlich wie in anderen mittelalterlichen Städten galt das zentrale Achsenkreuz als Versinnbildlichung der räumlichen und rechtlichen Ordnung des urbanen Raums99, weshalb sich auch hier in Wien bis in die Frühe Neuzeit ein Holzkreuz befand, an das Bäcker, die des Betrugs überführt worden waren, gespannt wurden.100 An der Kreuzung, dem heutigen Stock-im-Eisen-­ Platz, findet sich zudem bis zum heutigen Tag  ein ­Rechtsmal, von dem der Platz seinen Namen ­entliehen hat und der in den Chroniken Wiens als M ­ ittelpunkt der Stadt bezeichnet wurde.101 Bei dem sogenannten Stock im Eisen handelt es sich um einen ­Y-förmigen Nagelbaum, der nicht nur im Zunft- und R ­ echtsbrauch eine zentrale Rolle spielte, sondern wohl  auch  im­ magisch-therapeutischen Bereich (vgl. Abb.  119).102 Eine dendrologische Untersuchung ergab, dass der »sym­ bolische Mittelpunkt«103 der Stadt Wien von einer zweiwipfeligen Zwieselfichte stammt, die um das Jahr 1400 gefällt und vermutlich zu dieser Zeit auch aufgestellt wurde.104 Der Name Stock im Eisen rührt von den fünf Eisenbändern her, die den Stamm (Stock) ­stützen, der durch Axthiebe verletzt worden war. Außerdem konnte festgestellt werden, dass die Benagelung, die sich bis in das 19. Jahrhundert als Zunftbrauch fortsetzte, bereits zu Lebzeiten des Baumes begann.105 Eine Kammeramts­ rechnung aus dem Jahr 1533, die den Stock im Eisen inmitten des Platzes erstmals schriftlich erwähnt, nennt

 98 Der Platz diente als Pferde- und als Brotmarkt (vgl. Czeike 2004, 353).  99 Beispielsweise in Berlin, Zürich und St. Gallen (vgl. Geßner 2015a, 5 ff.). 100 Vgl. Czeike 2004, 353. 101 Vgl. Schmidt 1953, 75; Lohrmann 1986, 1. 102 Vgl. Schmidt 1953, 75 ff.; Czeike 2004, 353. 103 Schmidt 1953, 75. 104 Vgl. Czeike 2004, 353. 105 Vgl. Czeike 2004, 353.

250

Die Geometrie der »gewachsenen« Städte

in seiner unmittelbaren Nähe auch einen Brunnen.106 So wurde die neue Mitte Wiens also mit zwei Zentrumsmonumenten markiert, die nicht nur in der Rechtspflege eine gewichtige Rolle spielen, sondern auch als Verweise auf die apokalyptischen Schriften verstanden werden können, nach denen in der Mitte des Himmlischen Jerusalems neben dem Baum des Lebens auch das Wasser des Lebens zu finden ist.107 Der Zentrumscharakter des Wiener Achsenkreuzes erschöpft sich jedoch nicht auf der rein symbolisch-assoziativen Ebene. Die Kreuzung stellte in ganz konkretem Sinne einen Mittelpunkt im geometrischen Gefüge der Stadt dar. Auf diesen Punkt ist nämlich die Position von fünf Haupttoren der um 1200 fertiggestellten Babenberger Stadtbefestigung bezogen. So liegen das Stubentor (A), das Kärtnertor (B), das Widmertor (C) und das Rotenturmtor (E) auf einem Kreisbogen, dessen Mittelpunkt (M) mit dem Stock-imEisen-Platz zusammenfällt. Dabei ist in proportionaler Hinsicht bemerkenswert, dass der Radius des Torkreises hinsichtlich des Abstands des Schottentors zum Mittelpunkt (DM) sich ungefähr verhält wie Minor zu Maior (vgl. Tafel 19 und Anhang Wien). Durch die Babenberger Stadterweiterung war das römische Befestigungssystem endgültig obsolet geworden, weshalb man die Grabensysteme einebnete und das rückgebaute Material für den Mauerbau wiederverwendete.108 Trotz des enormen Materialbedarfs, der mit der Errichtung des weit ausgreifenden Mauerrings einherging, blieben jedoch die nun mitten im Stadtgebiet gelegenen römischen Torbauten, die porta sinistra und die porta decumana, vom Abbruch verschont.109 Grund hierfür war vermutlich ihre maßgebende Funktion, die die beiden Tore im geometrischen Bezugssystem der neuen Stadtbefestigung innehatten (vgl. Tafel 18 und Anhang Wien). So richtet sich die Position der Nordostecke der neuen Stadtmauer (A) nach den beiden ehemaligen römischen Toren: Zum einen weist sie den gleichen Abstand zur porta sinistra (C) und zur porta decumana (D) auf, zum anderen liegt sie auf einer exakt OstWest ausgerichteten Winkelhalbierenden, wobei ihre Flucht mit dem römischen Mittelpunkt (M) die Lage des Franzentors (B) definiert. Dabei verhält sich die Gesamtstrecke hinsichtlich der Strecken AC und AD wie Maior zu Minor und bildet mit der Nord-Süd ausgerichteten ein nach den Himmelsrichtungen orientiertes Kreuz. Dieses definiert wie das templum der römischen Auguren die räumliche Organisation und gibt u. a. Richtungswechsel im Verlauf der nördlichen und der südlichen Befestigung vor. Die um 1200 aus106 »Der Stat Phlaster von Adam Eisner Haus bis zum prun, do der stokh in eisen ligt zwanzig claffter« (zit. nach https://www.geschichtewiki.wien.gv.at/Stock_im_Eisen (abgerufen am 20.10.2019); zur Symbolik von Brunnen im mittelalterlichen Rechtsbrauch vgl. Schulze 1994. 107 Joh. Off. 22,1. 108 Auf dem zugeschütteten Grabensystem an der Südseite des Kastells entstand der sogenannte Graben, eine der vier neuen Wiener Hauptachsen (vgl. Perger 1975, 72; Opll 1982, o. S.). 109 Vgl. Kühnel 1975, 22.

Ausgewählte Stadtplananalysen

251

geführte Stadtbefestigung nimmt also ebenso wie die Stadtbefestigung des 11. Jahrhunderts eindeutig Bezug auf die römische Urvermessung, was angesichts der wechselhaften Stadtgeschichte Wiens nur dadurch erklärbar ist, dass die Projektierung der neuen Stadtbefestigung mit einer im Vorfeld sorgfältig ausgeführten Vermessung einherging. Die seit dem Mittelalter gängige Bezeichnung Peilertor für das Südtor des ehemaligen Römerlagers memoriert offensichtlich diesen gromatischen Vorgang und gibt außerdem einen Hinweis auf die wichtige Funktion von Torbauten bei der Visur im Zusammenhang mit systematischen Aufmessungen (vgl. Abb. 120).110 Doch nicht nur die hochmittelalterliche Wehrtopographie rekurriert auf antiken Ursprung, auch die im Hoch- und Spätmittelalter entstandene Wiener Sakrallandschaft basiert auf einer TradiAbb. 120: Das Anpeilen eines Turms mittels eines Jakobstabes. tion, die bereits im Frühmittelalter ihren Ausgang genommen hat. Die rechtlichen Grundlagen hierfür wurden im 1137 zwischen Herzog Leopold III. und dem ­Passauer Bi­ schof Reginmar geschlossenen Vertrag von Mautern geschaffen, also kurz nachdem die Babenberger im Jahr 1130 in den Besitz der Stadt Wien gekommen waren.111 Mittels der vertraglichen Absprachen gelang es den Babenberger einerseits, ihren Besitz im Wiener Stadtgebiet abzurunden, während sich andererseits der Passauer Bischof das Recht auf ein bestimmtes Areal schriftlich verbriefen ließ, das zu diesem Zeitpunkt noch außerhalb der Stadtmauern lag. Dabei handelte es sich um einige Parzellen nordöstlich des Pferdemarktes, die mit Stallungen (stabula) bebaut waren. Kurz nach dem Vertragsschluss begann man mit der Errichtung einer neuen Pfarrkirche, die 1147 dem Passauer Patron St. ­Stephan geweiht wurde, der im Mittelalter bezeichnenderweise auch als Schutzheiliger der ­Pferde galt.112 Obwohl der romanische Bau lediglich als Pfarrkirche fungierte, besaß er ­hinsichtlich seiner Dimensionen den Zuschnitt einer Kathedrale und gehörte zu den größten Kirchenbauten seiner Zeit.113 Nach dem Vertrag von Mautern war die Wiener Pfarre, die eigentlich 110 Vgl. Perger 1975, 72. 111 Vgl. Urk. der Babenberger in Österreich, Nr. 11; vgl. Uhlig 1958, 28; Waissenberger 1975, 8; Harl 1975, 14; Frenzl 1997, 9; Pohanka 1997, 380; Opll/Sonnlechner 2008, 7. 112 Vgl. Frenzl 1997, 9; Pohanka 1997, 383; Perger 1997, 36. 113 Vgl. Braunfels 1977, 260; Frenzl 1997, 9; Pohanka 1997, 383.

252

Die Geometrie der »gewachsenen« Städte

nach dem Eigenkirchenrecht unter der Verwaltung der weltlichen Stadtherren gestanden hätte, dem Passauer Bistum unterstellt.114 Die Verortung der neuen Pfarrkirche St. Stephan erfolgte nicht willkürlich, sondern nahm Bezug auf die bestehende Kirchenlandschaft. Zentrum der Wiener Sakraltopographie stellte nämlich die älteste Pfarrei Wiens dar, die dem Salzburger Bischof Ruprecht (um 650–um 718) geweiht ist. Von dieser um 800 im Nordosten des ehemaligen Legionslagers errichteten Kirche war im Frühmittelalter die Mission und Christianisierung der Wiener Bevölkerung ausgegangen.115 So liegen die St.-Stephan-Kirche (B) und die St.-Peter-Kirche (C) dergestalt auf einem Kreisbogen um die im Zentrum gelegene St.-Ruprecht-Kirche (A), dass die drei Kirchen gemeinsam das Goldene Dreieck ABC mit den Innenwinkeln von 72 °, 72 ° und 36 ° formen (vgl. Tafel 21 und Anhang Wien). Zur Positionierung der erstmals 1267 erwähnten Pfarrkirche St. Michael (E) wurde die Flucht von der St.-Ruprecht-Kirche (A) und der St.-Peter-Kirche (C) um den Abstand von der St.-Peter-Kirche (C) zur St.-Stephan-­Kirche (B) verlängert116, so dass mit einem Innenwinkel von 108 ° ein neuer nach dem Goldenen Schnitt determinierter Bezugspunkt entstand. Die Strecke AE bestimmte zudem die Position der Schottenkirche (D), die genau im Westen der St.-Ruprecht-Kirche (A) verortet ist. Damit weist sie den gleichen Abstand zur ältesten Pfarrei auf wie die St.-­Michael-Kirche (E). Die drei Kirchen formen wiederum das gleichschenklige Dreieck ADE. Was die zeitliche Abfolge angeht, so wurde, kurz nachdem die Babenberger die Stadtherrschaft übernommen hatten, im Rahmen des Ausbaus der Wiener Sakrallandschaft bereits mit dem Goldenen Dreieck ABC, das aus der St.-Ruprecht-Kirche, der St.-Peter-Kirche und der St.-Stephan-Kirche besteht, begonnen. Denn schon im Jahr 1137 findet die Ersterwähnung der St.-Peter-Kirche statt, also in dem gleichen Jahr, als im Vertrag von Mautern der Standort der St.-Stephan-Kirche (B) vertraglich verbindlich festgelegt wurde.117 Dies lässt vermuten, dass es sich beim Ausbau der Wiener Sakrallandschaft um eine gemeinschaftliche Planung von dem Babenberger Herzog Leopold III. und dem Passauer Bischof Reginmar handelt. Ein halbes Jahrhundert später wurde im Jahr 1200 mit der Weihung der dritten Wiener Pfarrkirche, der Schottenkirche, die dem Herzog Heinrich II. Jasomirgott als Begräbnisplatz diente, das bestehende System ergänzt und kam schließlich Anfang des 13. Jahrhunderts mit der Errichtung der St.-Michael-Kirche zu einem vorläufigen Abschluss.118 Die St.-Ruprecht-Kirche, die älteste Pfarrei Wiens, stellt also den Mittelpunkt und Ursprung eines konzentrischen Kreissystems dar, dessen Radien nach dem Goldenen 114 Vgl. Frenzl 1997, 9. 115 Vgl. Uhlig 1958, 7; Braunfels 1977, 359; Harl 1975, 13; Pohanka 1997, 383; Perger 1997, 36. 116 Diese Messung bezieht sich auf den nach Osten verschobenen Chorraum des gotischen Kirchenbaus, der 1340 geweiht wurde (vgl. Frenzl 1997, 11). 117 Urk. der Babenberger in Österreich, Nr. 11. 118 Vgl. Opll 1982, o. S.; Pohanka 1997, 384.

Die gewachsene Stadt: Zusammenfassung

253

Schnitt proportioniert sind. Auf diesen Radien wurden die vier Hauptkirchen Wiens so positioniert, dass sie untereinander Dreieckssysteme bilden, die in ihren Strecken und Winkeln Charakteristika des regelmäßigen Pentagons variieren.119 So entstand in Wien im 12. und 13. Jahrhundert eine geometrisch komponierte Sakrallandschaft, in die durch die Geometrie eine Proportion eingeschrieben wurde, die nach neuplatonisch-christlichem Verständnis Harmonie, Beständigkeit und Schutz garantieren sollte.

4.3 Die gewachsene Stadt: Zusammenfassung In den vorherigen Kapiteln wurden die Grundrisse von Rothenburg ob der Tauber, Worcester und Wien als Beispiele von sogenannten gewachsenen Städten vorgestellt. Während Rothenburg ob der Tauber auf eine staufische Gründung aus dem 12. Jahrhundert zurückgeht und im 13. und 14. Jahrhundert sukzessive erweitert wurde, sind die Ursprünge von Worcester und Wien in römischen Legionslagern des ersten nachchristlichen Jahrhunderts zu suchen. Zudem weist die spätere Geschichte der letztgenannten Städte gemeinsame Entwicklungslinien auf: So stellten beide Städte frühmittelalterliche Missionszentren dar, gerieten im Hochmittelalter in das Spannungsfeld zwischen bischöflichen und weltlichen Ambitionen, wurden um 1200 mit vom englischen Königshaus finanzierten Stadtbefestigungen umgeben und dienten nicht zuletzt als königliche bzw. herzogliche Grablege. Trotz all dieser Gemeinsamkeiten ist ihr unterschiedlicher Umgang mit dem römischen und frühmittelalterlichen Erbe bemerkenswert. Während in Worcester im Rahmen des im 11. und 12. Jahrhundert vorangetriebenen Städteausbaus durch die Normannen sämtliche Befestigungssysteme und sogar die frühmittelalterlichen Kathedralen konsequent rückgebaut wurden, integrierte die Stadterweiterung Wiens unter den Babenbergern nicht nur ältere Bauwerke aus römischer und frühmittelalterlicher Zeit in das neu entstandene Stadtbild, sondern auch in das zu Grunde liegende geometrische Bezugssystem. Während die Stadtplaner in der westenglischen Stadt also eine tabula rasa herstellten, um einen städtebaulichen Neuanfang zu wagen, entstand unter den Wiener Planern ein Palimpsest, in dem die ältere Stadtgeschichte konsequent durchschien. Während dazu eine systematische Vermessung des architektonischen Altbestands vonnöten gewesen sein muss, ist auch in Rothenburg ob der Tauber damit zu rechnen, dass den Stadterweiterungen des 13. und 14. Jahrhunderts eine Aufmessung der staufischen Wehr- und Sakraltopographie vorangegangen ist. Denn auch im Fall der Tauberstadt blieben die Stadttore der älteren Phase teilweise erhalten und dienten als Visierpunkte, um die neuen Stadttore, die im Rahmen der Stadterweiterung errichtet wurden, abzustecken. 119 Vgl. Beutelspacher 1996, 34 ff.

254

Die Geometrie der »gewachsenen« Städte

Die Stadtgrundrisse von Rothenburg ob der Tauber, Worcester und Wien zeigen also exemplarisch, dass auch Grundrisse von sogenannten gewachsenen Städten Ergebnis einer Planungsleistung sind, an deren Verwirklichung über mehrere Generationen systematisch gearbeitet wurde. Dabei kamen bei dem Ausbau der urbanen Wehr- und Sakraltopographie bestimmte konstruktive Bildungsprinzipien zur Anwendung, die auf einem Zusammenspiel von konzentrischen Kreissystemen und sogenannten Goldenen Dreiecken, die Winkel und Proportionen des als apotropäisch geltenden Pentagons variieren, basieren. Da anders als in der neuzeitlichen Stadtplanung keine standardisierten und ubiquitären Module zum Einsatz kamen, sondern im Falle jeder Stadt die Basisgeometrie mit externen Faktoren, wie den naturräumlichen Gegebenheiten und dem städtischen Maßsystem, individuell abgestimmt wurde, erhielt trotz der Anwendung ähnlicher Gestaltungsprinzipien jeder mittelalterliche Stadtgrundriss ein einzigartiges Gepräge. Was Kontur und Straßensystem angeht, so wurden bei den gewachsenen Städten eine aus der Natur entlehnte Formensprache bevorzugt, die durch Irregularitäten, wie unregelmäßige Umrisse oder bogenförmige Straßenverläufe, einen organischen Eindruck erwecken. So zeigte eine formale Analyse, dass die Stadtgrundrisse trotz der organisch anmutenden Formensprache, die für die hoch- und spätmittelalterlichen Stadtmorphologie Europas so charakteristisch ist, auf einem exakten geometrischen Fundament gegründet sind.

5. Die Vermessung des Kosmos: Résumé

Die vorliegende Arbeit widmete sich der systematischen Untersuchung formaler Gestaltungsprinzipien ausgewählter Stadtanlagen, was im Ergebnis zu einer Neubewertung der Frage nach einer systematischen Stadtplanung im europäischen Hoch- und Spätmittelalter führte.1 Ausschlaggebend für die Studie war meine praktische Erfahrung als Archäologin mit einer Spezialisierung auf mittelalterliche Stadtkerne. Eine langjährige Ausgrabungstätigkeit verfestigte den Eindruck, dass während der Gründungs- und Ausbauphase einer mittelalterlichen Stadt eine verbindliche und aufeinander abgestimmte Raumordnung geschaffen worden war, die nicht selten in späterer Zeit überprägt und teilweise bis zur Unkenntlichkeit verwischt worden ist. So zeigte sich insbesondere im Zusammenhang mit wichtigen Infrastrukturmaßnahmen, wie Straßenbau und Wasserversorgung, eine bis ins Detail aufeinander abgestimmte Ausführung, was nur mit einer intensiven systematischen Planung im Vorfeld erklärt werden konnte. Diese Beobachtungen waren mit dem in archäologischen und historischen Kreisen gängigen Paradigma von der gewachsenen Stadt als Regelfall des hoch- und spätmittelalterlichen Städtewesens nicht vereinbar. Dies führte in der Folge zu einer systematischen Untersuchung der räumlichen Organisation von urbanem Raum im europäischen Hoch- und Spätmittelalter, wobei in dieser Arbeit zwölf Städte exemplarisch vorgestellt wurden. Dabei fanden nicht nur streng-geometrische und figürliche Stadtanlagen Berücksichtigung, sondern auch organisch anmutende Topographien sogenannter gewachsener Städte. Allen Grundrissen ist eine inhärente Raumorganisation gemeinsam, die nicht auf den ersten Blick ersichtlich ist. Diese innere Ordnung basierte auf der Verwendung von Figuren und Proportionen, die der euklidischen Geometrie entlehnt sind und in der christlichen Symbolik eine besondere Rolle spielten. Dazu gehören nicht nur konzentrische Kreissysteme, Kreuzund Dreiecksfiguren, sondern auch irrationale Proportionen, wie der Goldene Schnitt. Damit folgte das intraurbane Raumgefüge den Prinzipien einer als göttlich verstandenen Ordnung, die sich gemäß dem neuplatonisch-christlichen Verständnis in den Prinzipien Maß, Zahl und Proportion manifestierte. Dieses geometrisch basierte Ordnungskonzept wurde für jede Stadt individuell entwickelt und konnte unter Einhaltung der genannten Prinzipien beliebig erweitert werden. Denn stets im Spannungsfeld zwischen Ideal und 1

In dieser Zusammenfassung werden lediglich wörtliche Wiedergaben und die wichtigsten Quellenangaben genannt. Der vollständige Fußnotenapparat für die verwendeten Literaturangaben ist im Haupttext zu finden.

256

Die Vermessung des Kosmos: Résumé

Naturraum befindlich, musste der abstrakt-geometrische Entwurf nicht nur mit den naturräumlichen Gegebenheiten, sondern auch mit einem stadtspezifischen Maß in Deckung gebracht werden. Die Erkenntnis eines inneren Zusammenhangs dieser Faktoren ermöglichte nicht nur eine neue Perspektive auf die räumliche Organisation hoch- und spätmittelalterlicher Stadtanlagen, sondern führte zwangsläufig auch zu einer Neubewertung der geometrisch-symbolischen Aspekte, die dem Prinzip Stadt im mittelalterlichen Denken immanent sind. Deshalb soll diese Studie auch als ein erster Versuch verstanden werden, die intraurbane Raumorganisation der hoch- und spätmittelalterlichen Stadt in den Kategorien des mittelalterlichen Denkens nachzuvollziehen und zu klassifizieren. Bislang fußte die Einteilung des europäischen Städtewesens auf einer Konzeption, in deren Mittelpunkt der Gegensatz zwischen der sogenannten gewachsenen und der sogenannten gegründeten Stadt stand. Während unter der ersten Gruppe Städte mit einem organisch anmutenden Habitus verstanden wurden, der durch einen unregelmäßigen Umriss, eine kleinteilige Bebauung mit bewegten Baufluchten, gekrümmte Straßenverläufe und irreguläre Plätze gekennzeichnet ist, zählte man zur zweiten Gruppe Städte mit erkennbar geometrischem Umriss, einem regulären Platz- und Straßensystem und regelmäßigen Wohnblöcken. Die Verwendung dieses komplementären Begriffspaars ist jedoch nicht unproblematisch, da es die Gestalt einer Stadt mit ihrer hypothetisch angenommenen Genese verknüpft. So wurde das regelmäßige Erscheinungsbild von Städten mit streng-­ geometrischem Grundriss als das Resultat einer mit einer koordinierten Stadtplanung einhergehenden Gründung verstanden, während ein als unregelmäßig empfundener Stadtgrundriss als das zufällige Ergebnis eines allmählichen Stadtwerdungsprozesses ohne konstitutiven Gründungsakt und ohne ästhetische Gesamtkonzeption erschien. Um eine bestimmte Stadtanlage als Planstadt oder gewachsene Stadt anzusprechen, konnten in der Regel keine externen Belege herangezogen werden. Die schriftliche Quellenlage ist in der Gründungszeit der Städte überwiegend schwach, bildliche Quellen setzen in der Regel erst später ein, archäologische Befunde erfassen häufig nur einen begrenzten Ausschnitt des Stadtgebiets. So wurde zur Beantwortung der Frage nach der Existenz einer systematischen Stadtplanung die Komposition des Stadtgrundrisses selbst herangezogen, wobei bislang allein der subjektiv empfundene Grad an Regularität von Umriss, Straßenführung und Parzellenorganisation ausschlaggebend war. Methodisch fußte diese Einteilung auf einer Herangehensweise, die fachintern bislang weder beschrieben noch diskutiert wurde und deshalb am besten mit der aus der Medizin bekannten Augenschein-Diagnostik verglichen werden kann. Das subjektiv empfundene Erscheinungsbild einer Stadtanlage wurde durch dieses Vorgehen in den Rang eines quellengestützten Nachweises erhoben. Exemplarisch für diese Herangehensweise sei auf zwei typische Stadtanlagen verwiesen. Als klassisches Musterbeispiel für eine mit einer systematischen Stadtplanung einher-

Die Vermessung des Kosmos: Résumé

257

gehenden Neugründung gilt das in der Toskana gelegene San Giovanni Valdarno. Umriss, Straßen- und Platzsystem sowie die Parzellenorganisation der um 1300 vorangetriebenen Florentinischen Gründung sind in einem solchen Maß von einer orthogonalen Geometrie durchdrungen, dass bislang eine zufällige Entstehung nicht in Erwägung gezogen wurde. »Men, not topography, established their form«2, lautete das allgemein akzeptierte Urteil. Im Gegensatz dazu wurde das im 12. Jahrhundert gegründete und im 13. und 14. Jahrhundert mehrfach erweiterte Rothenburg ob der Tauber in Mittelfranken wegen seiner organisch anmutenden Kontur und des irregulären Straßensystems dagegen als ein »Idealtypus einer gewachsenen Stadt«3 bezeichnet, der im Laufe der Jahrhunderte ohne ein planerisches Gesamtkonzept vergrößert worden sein soll. An diesem Punkt setzte die vorliegende Studie methodisch an, indem sie über die allgemein akzeptierte reine Augenschein-Diagnostik hinaus mit objektiveren, mathematisch-geometrischen Analysemethoden arbeitete. Um die Frage zu klären, ob neben offensichtlichen Aspekten auch latente Determinanten Einfluss auf die topographischen Raumbeziehungen eines Stadtgefüges haben können, kam ein Verfahren zur Anwendung, das sich methodisch an der Herangehensweise der in der Kunstwissenschaft entwickelten Bildanalyse orientierte. Dabei wurden die Organisationsprinzipien der Wehr- und Sakraltopographie einer Stadt mittels einer CAD-basierten, planimetrischen Analyse auf ihre kompositorische Kohärenz hin geprüft, um geometrische Grundrissfiguren mit dazugehörigen Fluchtlinien- und Winkelsystemen und proportionale Bezüge nachvollziehen zu können. Für diese formale Analyse waren zwölf Städte aus sechs verschiedenen Ländern Mittel- und Westeuropas ausgewählt worden, deren Gestalt im Wesentlichen zwischen dem 12. bis 14. Jahrhundert maßgeblich geprägt wurden. Es handelte sich um Tournay (Frankreich), San Giovanni Valdarno (Italien), Bretenoux (Frankreich), Friedeberg/Strzelce Krajeńskie (Polen), Wolframs-Eschenbach, Würzburg, Brandenburg an der Havel, Villingen, Rottweil und Rothenburg ob der Tauber (Deutschland), Worcester (Großbritannien) und Wien (Österreich). Um eine gewisse Repräsentativität zu gewährleisten, wurde bei der Auswahl darauf geachtet, nicht nur geographisch, sondern auch inhaltlich ein möglichst breites Spektrum an unterschiedlichen Stadttypen abzudecken. Dies betraf nicht nur die heutige Größe und Bedeutung der Städte, sondern auch ihre Gestalt, ihren Gründungszeitraum, die Gründerpersönlichkeiten bzw. -institutionen, aber auch die Intensität der bisherigen Forschungsaktivitäten. Zweifellos sind grundsätzlich auch der planimetrischen Kompositionsanalyse Grenzen gesetzt, da sie auf der Grundlage einer zweidimensionalen Projektion eines dreidimensionalen Stadtraums basiert. Daher gelingt es in einem Stadtplan nur bedingt, den 2 3

Friedman 1988, 3. Weber 2009, 9.

258

Die Vermessung des Kosmos: Résumé

Aufriss einer städtischen Landschaft zu vermitteln. Fernerhin ist zu beachten, dass es sich auch bei den ältesten Stadtgrundrissen, die auf Aufmessungen aus dem 18. und 19. Jahrhundert basieren, in der Regel um historisch überformte Palimpseste handelt, deren mittelalterliches Erscheinungsbild erst rekonstruiert werden musste. Da dies hinsichtlich der internen Gliederung einer Stadt, die durch das Straßensystem und die Parzellenteilung konstituiert wird, nur ausschnittsweise möglich ist, konzentrierte sich die vorliegende Studie aufgrund der besseren Rekonstruierbarkeit auf die urbane Wehr- und Sakraltopographie. Deren architektonische Bestandteile – Klöster, Kapellen, Hospitäler, Stadtmauerverläufe, Türme und Tore – zeichnen sich nicht nur durch eine höhere Standorttreue aus, im Falle eines Rückbaus war ihre Position anhand archäologischer, archivalischer und bildlicher Quellen wesentlich leichter zu rekonstruieren als die gründungszeitliche Parzellen- und Straßenorganisation. Kann die gestalterische Organisation eines Stadtgrundrisses methodisch gesehen ebenso wie jede andere mittelalterliche Kunstäußerung nach formalgeometrischen Aspekten analysiert werden, so muss die mittelalterliche Stadt darüber hinaus auch als ein Gewebe aus Bezügen und Bedeutungen gewürdigt werden, deren semantische Struktur in der theologisch-philosophischen Geistesgeschichte des Mittelalters, insbesondere im neuplatonisch-christlichen Weltbild, verwurzelt ist. Wie bei jeder anderen Forschungstätigkeit in einem fremdkulturellen Kontext darf diese vergangene Symbolwelt nicht lediglich als eine rückwärtsgewandte Verlängerung der eigenen Gegenwart aufgefasst, sondern sollte aus einer immanenten Perspektive heraus wahrgenommen werden. Dazu diente in dieser Arbeit u. a. die verstärkte Hinwendung zu zeitgenössischem Bild- und Quellenmaterial. Auf der Grundlage dieser Überlegungen wurde in der Studie der formalen Analyse ein dem ideengeschichtlichen Kontext gewidmeter mentalitätsgeschichtlicher Teil vorgeblendet, der der wechselseitigen Beziehung von Stadt und Geometrie vor dem Hintergrund des neuplatonisch-christlichen Weltbildes besondere Beachtung schenkt (vgl. Kap. 1 und 2). Das erste Kapitel dieses theoretischen Teils widmete sich der Bedeutung der Geometrie im philosophischen Denken des Hoch- und Spätmittelalters, dessen Stellenwert wiederum nur vor dem Hintergrund der Antike zu verstehen ist (vgl. Kap. 1). Die unbestrittene Autorität auf dem Feld der Mathematik war bis in die frühe Neuzeit der griechische Philosoph Pythagoras, der im 6. vorchristlichen Jahrhundert lebte. Zu den Kernaussagen der pythagoreischen Lehre gehörte, dass das Ordnungsprinzip der belebten und unbelebten Welt auf zwei Prinzipien beruhe, nämlich auf der Zahl und der Proportion. Dieser Grundsatz sollte wirkungsgeschichtlich großen Einfluss entfalten, denn bis in die Neuzeit bemühte man sich, mittels mathematischer Disziplinen die verborgene Ordnung des Kosmos zu ergründen. Fernerhin waren drei geometrische Figuren mit der als Geheimbund organisierten pythagoreischen Gemeinschaft verbunden. Dabei handelte es sich zum einen um den Kreis, der als graphische Abbreviatur der Monade benutzt

Die Vermessung des Kosmos: Résumé

259

wurde, zum anderen um das gleichseitige Dreieck, das in Gestalt der Tetraktys als Symbol für die kosmische Harmonie einen Bestandteil der Schwurformel der Anhängerschaft des Pythagoras bildete, und schließlich um das Pentagramm, das als Erkennungszeichen der Pythagoreer galt. Die geometrische Konstruktion der letzten Figur beruht auf dem irrationalen Verhältnis der Stetigen Teilung, heute besser bekannt als der Goldene Schnitt, dessen Kenntnis zu den pythagoreischen Arkana gezählt haben soll. Altpythagoreisches Gedankengut wurde in das lateinische Mittelalter durch die Vermittlung Platons (um 428–um 378 v. Chr.) tradiert, der im Hoch- und Spätmittelalter sogar den alttestamentlichen Propheten gleichgestellt wurde. Diese tiefe Verehrung gründete eigentümlicherweise auf der Kenntnis eines einzigen Werks, das im Hoch- und Spätmittelalter lediglich als gekürztes lateinisches Fragment aus der Feder der spätantiken Kommentatoren Chalcidius und Macrobius zugänglich war. Dabei handelte es sich um den Timaeus, einen Schöpfungsbericht, in dem das altpythagoreische Substrat im platonischen Denken besonders deutlich durchschimmert. In der stark verklausulierten Schrift beschrieb Platon, wie ein als Demiurg bezeichneter Schöpfergott den Kosmos nach den Prinzipien Maß, Zahl und Proportion erschuf, wobei das gleichseitige Dreieck, der Kreis und das Pentagon als kosmische Grundfiguren genannt werden. Dabei wurde besonders die Proportion hervorgehoben, denn sie galt nicht nur als das »schönste Band, das sich selbst und das Verbundene so weit wie möglich zu einem Einzigen macht«, sondern Platon schrieb ihr auch die Fähigkeit zu, aus der Vielfalt der Elemente eine dauerhafte Einheit herzustellen, die nur durch den Schöpfer selbst gelöst werden kann.4 Indem sich die platonische Demiurgenvorstellung mit dem alttestamentlichen Gott, der die Welt nach Maß, Zahl und Gewicht geordnet hatte5, verband, entstand das vor allem im Hochmittelalter verbreitete Gottesbild von einem Schöpfer als einem Geometer, der mittels eines Zirkelschlags den Kosmos erschuf. Diese auf geometrischen Prinzipien beruhende konzeptuelle Ordnung der göttlichen Schöpfung gehörte zum theologischen Konsens des christlichen Mittelalters, was dazu führte, dass die Geometrie auch als gestalterisches Ordnungssystem der mittelalterlichen Künste diente. Da nach neuplatonisch-christlicher Auffassung Gott als erster Künstler (artifex principalis) den Kosmos nach den Prinzipien der Geometrie geordnet hatte, waren auch die menschlichen Künstler dazu angehalten, sich bei der Gestaltung eines Kunstwerkes am göttlichen Regelwerk zu orientieren, indem sie es nach allen Regeln der Kunst schufen. Im Gewand der christlichen Symbolik fand die platonisch-pythagoreische Zahlenphilosophie Eingang in die mittelalterliche Kunst, in deren Rahmen sie als formales Strukturelement die Bildenden Künste, die Architektur und die Städtebaukunst nachhaltig beeinflusste. Zum Gestaltungskanon der mittelalter4 5

Plat., Tim. 31b–32c. Buch der Weisheit 11, 21.

260

Die Vermessung des Kosmos: Résumé

lichen Ikonographie gehörten geometrische Figuren und Proportionen, die als vollkommen galten, wie der Kreis als ideales Sinnbild für Gott und Kosmos, das gleichseitige Dreieck als Symbol der Dreifaltigkeit Gottes und schließlich die Stetige Teilung, die u. a. aufgrund ihres Vermögens geschätzt wurde, »Verschiedenartiges in Übereinstimmung zu bringen«6. Vermittelt wurden die geometrischen Grundlagen im Rahmen der artes liberales, einem ursprünglich aus sieben gleichwertigen Disziplinen bestehenden Bildungskanon, der seit der Antike bekannt war und noch im Hoch- und Spätmittelalter zum Standardwissen der gebildeten Welt gehörte. Im Laufe der Jahrhunderte bildete sich eine innere Hierarchie heraus, denn man räumte den mathematischen Disziplinen Arithmetik, Geometrie, Musik und Astronomie, die als Quadrivium zusammengefasst wurden, den Vorrang vor den als Trivium bezeichneten sprachlichen Fächern Grammatik, Dialektik und Rhetorik ein. Wurden die hierfür notwendigen geometrischen Grundlagen noch im Hoch- und Spätmittelalter mittels des um 300 v. Chr. verfassten Standardwerks des Mathematikers Euklid von Alexandria vermittelt, erfolgte die Weitergabe der Grundregeln der praktischen Feldmesskunst (geometria, wörtl. Vermessung der Erde) sowohl in mündlicher als auch in schriftlicher Form. Während sich heute die orale Tradition allenfalls indirekt nachweisen lässt, sind zahlreiche Lehrbücher zur Vermessungsgeometrie überliefert, die im Hoch- und Spätmittelalter kursierten. Abgesehen von dem Standardwerk der römischen Geodäsie, dem Corpus Agrimensorum Romanorum, einer Kompilation antiker Schriften, und dem aus dem 13. Jahrhundert stammenden Skizzenbuch des Villard de Honnecourt, einem einzigartigen Zeugnis des mittelalterlichen Hüttenwesens, ist auffallend, dass auch namhafte Gelehrte Anweisungen zur praktischen Feldmesskunst verfassten. Dazu gehören u. a. Hugo von St. Victor, Leonardo Fibonacci, Robert Grosseteste, Francis Bacon und William von Ockham. Zudem kursierten Handbücher, die sich konkret an Feldvermesser richteten, wie die Geometria Culmensis, ein im ausgehenden 14. Jahrhundert verfasstes agronomisches Traktat aus den Reihen des Deutschen Ordens, aber auch das reich bebilderte Kompendium von Bertrand Boysset (1355–1416), einem Vermesser aus Arles. Derartige Schriften dienten u. a. auch der Ausbildung von Agrimensoren, die im Hoch- und Spätmittelalter die Absteckung von urbanem Raum vornahmen. Die Aktivitäten der in Italien als mensuratores, in Flandern als lantemetere oder geometrici bezeichneten professionellen Vermesser sind hinreichend in Chroniken und Rechnungsbelegen bezeugt (vgl. Kap. 2.2.3). So beschreibt beispielsweise die Historia comitum Ghisnensium, eine um 1200 verfasste Chronik der französischen Stadt Ardres (Dép. Pas de Calais), detailliert, wie »ein in der Geometrie erfahrener Meister« (doctum geometricalis operis magistrum) die Absteckung einer neu zu gründenden Stadt mit Stab und Seil und ohne Rücksicht auf bereits vorhandene Wege, Häuser, Gärten und Felder durchführte. 6

Johannes v. Novara, Euklidkommentar, XIV, 10.

Die Vermessung des Kosmos: Résumé

261

Doch welcher Zusammenhang bestand im Hoch- und Spätmittelalter zwischen Geometrie und Stadt? Warum wurde urbaner Raum im Vorfeld aufwendig abgesteckt und vermessen? Diesen Fragen widmete sich das zweite Kapitel des theoretischen Teils der vorliegenden Studie, in dem das hoch- und spätmittelalterliche Stadtverständnis behandelt wurde (vgl. Kap. 2). Deutete bereits der lateinische Begriff civitas (wörtlich Bürgerschaft) darauf hin, dass der auf die Antike rekurrierende Stadtbegriff die Einheit der darin lebenden Menschen in den Vordergrund stellte, so unterschied der spätmittelalterliche Gelehrte Nikolaus Wurm bei der Definition von Stadt grundsätzlich zwischen einer idealen Ebene, worunter er die in Einigkeit lebenden Menschen versteht, und einer gewöhnlichen Ebene, womit er die Stadtbefestigung, das Marktrecht und die Gerichtsbarkeit zusammenfasste.7 Die primäre Aufgabe der Stadt bestand also darin, einen idealen Rahmen zu schaffen, um aus einer Vielzahl von Menschen mit unterschiedlicher Herkunft, Stand und Beruf eine stabile Einheit herzustellen. Dafür bediente man sich eines öffentlich zelebrierten Rituals, nämlich des Bürgereids (coniuratio civium), für den an einem festgelegten Tag die gesamte Einwohnerschaft einer Stadt zusammentrat und auf die städtische Verfassung schwor. Über die Bewältigung kommunaler Aufgaben hinaus, zu denen sowohl der Straßen- und Mauerbau als auch die Stadtverteidigung gehörten, verpflichtete der Schwur die Bürgerschaft zudem auf eine gemeinsame moralische Ordnung, die durch das Stadtrecht versinnbildlicht wurde. Während das Stadtrecht die sittlich-moralische Ordnung der Bürgerschaft vorgab, ordnete die gebaute Stadt die Einwohnerschaft in räumlicher Hinsicht. Durchdrungen von dem mittelalterlichen Ordo-Gedanken bildete die urbane Morphologie deshalb nicht nur den Rahmen einer feingewebten sozialen Topographie der Bürgerschaft, sondern reflektierte durch die darin immanenten geometrischen Bezüge gleichzeitig eine höhere und damit gottgewollte Ordnung, so dass der von Menschenhand geschaffene städtische Mikrokosmos sich harmonisch in den von Gott geschaffenen Makrokosmos einfügen konnte. Diese gebaute Ordnung wurde durch immer wiederkehrende Architekturelemente manifestiert, die – urbanen Bausteinen gleich – die städtische Wehr- und Sakraltopographie bildeten. Dazu gehörten sakrale Einrichtungen, wie Kirchen, Klöster und Hospitäler, auch Befestigungsbauten, wie Stadtmauer, Türme und Tore sowie wirtschaftliche und administrative Institutionen, wie der Markt mit Marktmonument und das Rathaus. Diese Bauwerke hoben sich nicht nur durch ihre architektonische Ausführung aus dura­ blen Materialien von der profanen Wohnbebauung ab, sondern standen bis in die Neuzeit bezeichnenderweise im räumlichen Zusammenhang mit Richtstätten, an denen durch den öffentlichen Vollzug der Strafordnung das Stadtrecht sichtbar inszeniert wurde. Um aus der Vielzahl an einzelnen Gebäuden eine gebaute Einheit zu schaffen, bedurfte es eines auf geometrischen Prinzipien beruhenden Beziehungssystems, in dem die Position 7

Nikolaus Wurm, Liegnitzer Stadtrechtbuch, Art. II.

262

Die Vermessung des Kosmos: Résumé

jedes Elements verbindlich festgelegt wurde. Aus diesem Grund schufen professionelle Vermesser, meist im Vorfeld der Gründungszeremonie oder der baulichen Neuordnung einer bestehenden Stadtanlage, eine bindende räumliche Trennung zwischen öffentlichem, sakralem und privatem Raum, indem sie nicht nur den Verlauf des Straßensystems, der Stadtbefestigung und der Wasserversorgung festlegten, sondern auch Parzellengrenzen, Märkte, Richtstätten und sakrale Gebäude verorteten. Diese urbane Morphologie wurde für jedes urbane Gebilde individuell entworfen. Denn nur wenn so wichtige städtische Funktionen, wie Schutz, verlässliche Versorgung mit Nahrung und Trinkwasser mit den lokalen Gegebenheiten, wie dem Naturraum und dem städtischen Maßsystem, harmonisch in Übereinstimmung gebracht worden waren, konnte eine Stadt dauerhaft Bestand haben. Im Unterschied zu neuzeitlichen und modernen Stadtanlagen, die in der Regel zu standardisierten und ortsunabhängigen Grundrisslösungen neigen, bewies die mittelalterliche Stadtplanung durch ihre Anpassungsfähigkeit an das städtische Maßsystem und an die lokalen Formationen eine auf den Einzelfall abgestimmte Gestaltungskraft, indem das urbane Gefüge der Landschaft quasi auf den Leib geschneidert wurde. Zwar illustrieren aufwendige Maßnahmen, wie flächige Planierungen, Regulierungen von Wasserläufen, Trockenlegungsmaßnahmen und arbeits- und materialintensive Pfahlgründungen, den großen Gestaltungswillen, der auch dem mittelalterlichen Städtebau innewohnte, dennoch überstiegen die Bemühungen, die Landschaft in Form zu bringen, niemals ein bestimmtes Maß – sei es aus technologischen oder theologischen Gründen. Als eine zentrale Aussage dieses theoretischen Kapitels ist also festzuhalten, dass die innere und äußere Ordnung auf einer mit verschiedenen Parametern fein abgestimmten Planungsleistung basierte. Wie im Hauptteil (vgl. Kap. 3 und 4) gezeigt werden konnte, ist dies bei städtischen Topographien mit einem orthogonalen Grundriss und einem vier- bzw. rechteckigen Umriss besonders eklatant. Zwar sind derlei Topographien in ganz Europa verbreitet, besonders häufig findet man sie aber im Zusammenhang mit den urbanen Neugründungen der südwestfranzösischen Bastide- und der toskanischen Terranova-Bewegung, von denen in dieser Studie die Städte Tournay, San Giovanni Valdarno und Bretenoux exemplarisch ausgewählt wurden (vgl. Kap. 3.1.3.1–3). Orthogonaler Grundriss und rechteckiger Umriss verleihen diesen urbanen Siedlungen nicht nur einen unübersehbaren artifiziellen Charakter, der sie gänzlich von ihrem natürlichen Umland abhebt, sondern stehen in der jüdisch-christlichen Eschatologie auch als Sinnbild für eine göttliche Ordnung, die sich im Hoch- und Spätmittelalter in der Vorstellung vom Himmlischen Jerusalem manifestiert. Diese ideale Stadt Gottes wird in der Johannes-Apokalypse als tetragonal beschrieben, wobei das griechische Adjektiv τετράγωνος (tetrágōnos) wörtlich vierwinklig bedeutet. In die Sprache des Städtebaus übersetzt, kann es sich deshalb sowohl auf einen vier- oder rechteckigen Umriss einer Stadt beziehen als auch auf ein internes Rastersystem, das als orthogonales Ordnungselement Straßen und Parzellen gliedert. Seit der Antike mit der

Die Vermessung des Kosmos: Résumé

263

idealen Stadt assoziiert, stand die urbane Tetragonalität im Hoch- und Spätmittelalter nicht nur als Sinnbild für die vollkommene Ebenmäßigkeit und Symmetrie der endzeitlichen Stadt, sondern auch für die göttliche Messkunst, die in der Ezechiel-Vision und in der Johannes-Apokalypse durch die Gestalt eines Engels personifiziert ist, der in der Funktion eines göttlichen Vermessers ein detailliertes Aufmaß der civitas Dei anfertigt.8 Ähnlich artifiziell wie die tetragonalen Topographien wirken Städte mit figürlichen Umrissen, deren Gestalt aus ikonographischen Motiven der neuplatonisch-christlichen Kosmologie abgeleitet wurde (vgl. Kap. 3.2). Das mikrokosmisch-makrokosmische Beziehungsgefüge, das sich nach mittelalterlicher Auffassung aus der Proportionsanalogie zwischen dem Kosmos als Ganzem und seinen einzelnen Teilen ergibt, hatte nicht nur Auswirkung auf die ontologische Beziehung von Mensch und Kosmos, sondern durchdrang auch das Prinzip Stadt. Als Konsequenz konnten Mensch und Stadt ebenso als ein Mikrokosmos gedacht werden, wie der Kosmos als ein Makroanthropus oder als eine kosmische Stadt aufgefasst werden konnte. Als graphische Abbreviatur dieses ontologischen Sinnzusammenhangs diente seit der Antike der quadrierte Kreis, der, aus dem römischen Auguralprinzip der urbs quadrata entwickelt, Pate für die geometrische Grundfigur von Neugründungen in Frankreich, Italien und in den Gebieten östlich der Elbe stand. So weist auch der Umriss von Friedeberg/Strzelce Krajeńskie, einer askanischen Gründung des 13. Jahrhunderts in der Neumark, einen kreisförmigen Umriss mit kreuzförmiger Hauptstraßenfigur auf (vgl. Kap. 3.2.3.1). Auch die Schildform der Deutschordensstadt Eschenbach variiert ein antikes Kosmossymbol, das im Hoch- und Spätmittelalter vor allem in ritterlichen Kreisen eine breite Rezeption fand (vgl. Kap. 3.2.3.2). Es handelt sich um die Schildmetapher, die in der homerischen Ilias dazu diente, anhand des Schilds des Achilles (Achillis scutum) das Wechselspiel zwischen dem astralen Makrokosmos und dem menschlichen, durch die Stadt repräsentierten Mikrokosmos zu erörtern. Breit rezipiert gehörte die Ilias in ihrer lateinischen Fassung ab dem 11. Jahrhundert zur Standardlektüre der gebildeten Welt, wodurch auch die homerische Analogie von Schild und Kosmos Eingang in die mittelhochdeutsche Literatur fand. Abseits seiner kosmologischen Bedeutung avancierte der Schild zum Erkennungszeichen des Ritterstandes schlechthin. Insbesondere der 1198/99 in Jerusalem gegründete Deutsche Orden, der in der Selbst- und in der Fremdwahrnehmung als »Schutzschild der Christenheit« verstanden wurde, war als Ritterorden eng mit dem Schild verbunden, was die häufige Verwendung in der ordenseigenen Heraldik und der Sphragistik erklärt. Angesichts des hohen identitätsstiftenden Charakters nimmt es nicht wunder, dass der Deutsche Orden, dem das Privileg gewährt wurde, Eschenbach, die Heimat des bereits zu Lebzeiten gefeierten Minnesängers Wolfram von Eschenbach (um 1160–1220), zu einer 8

Ez. 40,1 ff.; Joh. Off. 21 ff.

264

Die Vermessung des Kosmos: Résumé

Stadt zu erheben, für den Umriss die Form eines Schilds wählte – ein Motiv, das auch in der Binnenstruktur im Zentrum der Stadt aufgenommen und variiert wurde. Ebenso wie der Schild emblematisch für den Ritterstand stand, war die fünfeckige Bischofsmütze auf das engste mit dem episkopalen Stand verflochten. Hierin ist der Grund zu suchen, dass die Bischöfe von Würzburg, nachdem sie zu den alleinigen Stadtherren avanciert waren, ihre Stadt im 11. Jahrhundert mit einer fünfeckigen Umfassungsmauer umgaben, die heute noch im Volksmund »Bischofsmütze« genannt wird (vgl. Kap. 3.2.3.3). Mit der Mitra, die in der Bischofsweihe auch als »Helm des Schutzes und des Heiles« bezeichnet wurde, verband sich ein apotropäischer Aspekt, der offensichtlich die defensive Funktion der Stadtbefestigung in magisch-symbolischer Weise verstärken sollte. Im Zen­ trum der pentagonalen Befestigung, deren regelmäßige Form für Mitteleuropa zu jener Zeit einzigartig ist, befand sich der heute noch stehende romanische Kilians-Dom, der fortan als architektonischer Bezugspunkt für den Stadtausbau fungierte. Auch bei dem Umriss der Bischofsstadt Würzburg fällt ein ständisches Würdezeichen mit einer traditionellen Kosmosmetapher zusammen, denn das Pentagon der Würzburger Bischofsmütze ist gleichzeitig die Grundform des Dodekaeders, des platonisch-pythagoreischen Kosmossymbols. Den Anspruch, die innere Weltenordnung abzubilden, verbindet die Stadtbaukunst zudem mit der mittelalterlichen Kartenkunst, deren primäres Ziel darin bestand, ein religiös inspiriertes Abbild der Welt (imago mundi) zu zeichnen. So nimmt beispielsweise der Grundriss der im späten 12. Jahrhundert gegründeten Neustadt von Brandenburg an der Havel gestalterische Motive zeitgenössischer geometrisierter Rundkarten auf und übersetzt die Elemente der TO-Karten in die Sprache des Städtebaus (vgl. Kap. 3.3.2.1). Dabei umschließt ein künstlich angelegtes Grabensystem die Neustädter Innenstadt dergestalt, wie der Okeanos als kreisrundes Weltenmeer die Form des bewohnten Erdkreises definiert. Analog zum T-förmigen Gewässersystem, das im Kartenschema die drei Kontinente voneinander scheidet, trennt eine T-förmige Hauptstraßenfigur die drei Neustädter Stadtbezirke voneinander ab. Auch andere Elemente verbinden die mittelalterliche Kartenkunst mit dem zeitgenössischen Städtewesen. So führen beispielsweise in Templin, Jüterbog, Rottenburg am Neckar und Zörbig Straßen und Kanäle den Namen Rotes Meer und unterstreichen dadurch auf ihre Weise die Analogie des urbanen Kanal- und Straßennetzes mit dem globalen Gewässernetz. Auch die im 12. Jahrhundert gegründete Zähringerstadt Villingen im Schwarzwald variiert mit ihrer ovalen Gestalt und dem schrägwinkligen Hauptstraßenkreuz die klassische Kosmos- und Weltendarstellung in Gestalt des viergeteilten Kreises (vgl. Kap. 3.3.2.2), während der hausförmige Grundriss von Rottweil (vgl. Kap. 3.3.2.3) starke formale Ähnlichkeiten zu großen Ökumenenkarten, wie der von Hereford, aufweist. Bei allen bisher genannten Beispielen handelte es sich um urbane Topographien, deren räumliche Organisation klar erkennbare Charakteristika einer gestalterischen Planung

Die Vermessung des Kosmos: Résumé

265

erkennen lassen, wobei Umriss und Straßenfiguren entweder einer geometrischen oder einer abstrakten Figur nachgebildet sind, die der zeitgenössischen Ikonographie entliehen ist. Diese urbanen Grundrisse bilden jedoch quantitativ hinsichtlich der Gesamtmenge an Städten eine überschaubare Gruppe, denn der Großteil der mittelalterlichen Stadtgrundrisse zeichnet sich durch eine organisch anmutende Morphologie aus, die auf den ersten Blick nicht erwarten lässt, dass sie auf einer geometrischen Ordnung beruht. So wurden auch die untersuchten Städte Rothenburg ob der Tauber, Worcester und Wien (vgl. Kap. 4.2.1–3) aufgrund irregulärer Charakteristika ihres Grundrisses bislang in der Forschung zu der Gruppe der gewachsenen Städte gezählt. Trotz seiner terminologischen Unschärfe beleuchtet der aus der Natur entlehnte Begriff gewachsen in metaphorischer Hinsicht einen wichtigen Aspekt des mittelalterlichen Urbanismus. Denn indem die innere und äußere Gestalt der sogenannten gewachsenen Städte sich scheinbar nicht an abstrakt-geometrischen Formen orientieren, sondern an der belebten Natur, entsteht keine artifizielle Spannung zu ihrem Umland. Ganz im Gegenteil greifen gewachsene Städte durch die Einbeziehung der räumlichen Gegebenheiten, wie Flussläufe oder Plateauränder, natürliche Formen auf und fügen sich so harmonisch in ihre Umgebung ein. Gestalterisch lehnen sie sich an dem Vorbild der Natur an, deren Bauplan nach mittelalterlichem Verständnis Gott selbst entworfen hatte. Bislang wurden in der Forschung überwiegend diejenigen Stadtanlagen als Resultat einer systematischen Planungsleistung anerkannt, die im Ganzen oder in Teilen offensichtliche geometrische Charakteristika, wie orthogonale Raster- und Blocksysteme, aufwiesen. Deshalb war es ein zentrales Anliegen der vorliegenden Studie, anhand einer nachvollziehbaren geometrischen Analyse weniger offensichtliche Prinzipien hoch- und spätmittelalterlicher Stadtplanung herauszuarbeiten. So konnte gezeigt werden, dass jede Stadtanlage – gleich ob sie zu den sogenannten gewachsenen oder gegründeten Städten zählt – auf einer latenten Ordnung basiert, die nicht prima vista ersichtlich ist. Im Ergebnis konnte die Analyse zeigen, dass der räumlichen Organisation aller untersuchten Stadtanlagen eine geometrische Komposition zu Grunde liegt, die auf Grundrissfiguren mit einem dazugehörigen Fluchtlinien- und Winkelsystem und einem proportionalen Bezugssystem basiert. Obgleich jede Komposition individuell gestaltet war, indem sie mit lokalen Gegebenheiten abgeglichen wurde, zeigten sich wiederkehrende Grundrissfiguren und Proportionssysteme, die die Position und Lage der einzelnen Elemente der urbanen Wehr- und Sakraltopographie, insbesondere der Kirchen und Torbauten, bestimmten. Dazu gehörten geometrische Figuren, die nicht nur in der christlichen Heilssymbolik eine besondere Rolle spielen, sondern auch im platonisch-pythagoreischen Kontext. Häufige Verwendung fand die Konstruktion konzentrischer Kreissysteme, auf deren meist durch den Goldenen Schnitt proportionierten Radien Gebäude der urbanen Wehr- und Sakraltopographie positioniert wurden. Der Mittelpunkt der Kreissysteme erfuhr in der

266

Die Vermessung des Kosmos: Résumé

Regel eine architektonische Markierung, beispielsweise durch die Apsis oder Vierung der Hauptkirche, durch ein Marktkreuz, einen Brunnen oder die Kreuzung der Hauptachsen. Die Tradition, Grundrisse aus einem Mittelpunkt zu entwickeln, stammte aus dem römischen Agrimensorenwesen, wobei das Zentrum im übertragenen Sinne als ein Ort des Übergangs und der Verbindung zwischen den Sphären aufgefasst wurde. Ebenso aus der römischen Vermessungstradition entlehnt, war die Orientierung der Hauptachsen nach den Himmelsrichtungen, wobei der Sonnenaufgangspunkt am Gründungstag für die Ausrichtung der Ost-West orientierten Achse mit ihren Torbauten den Ausschlag gab. Verbreitet sind fernerhin Grundrissfiguren, die nach Art eines Kreuzes (in modum crucis) gestaltet sind. Bei dieser Konstruktion wurden die Nebenkirchen dergestalt auf einem konzentrischen Kreissystem um die Hauptkirche positioniert, dass eine gedachte Verbindung sich in der Vierung oder der Apsis der Hauptkirche kreuzt. Dadurch entstand ein dem Stadtplan symbolisch eingeschriebenes Kirchenkreuz, das zu den stärksten Heilsymbolen der christlichen Ikonographie gehört und das – eine seltene Ausnahme für die geometrische Konstruktion von urbanem Raum im Mittelalter – sowohl in bildlichen als auch in schriftlichen Quellen dargestellt und reflektiert wurde.9 Soteriologisch nicht weniger stark aufgeladen waren die ebenfalls regelmäßig verwendeten Dreieckskonstruktionen. Wiederholt fanden bei der Positionierung der urbanen Wehr- und Sakraltopographie gleichseitige und gleichschenklige Dreiecke Verwendung, deren Seiten exakt nach den Himmelsrichtungen orientiert sind. Auch der Goldene Schnitt wurde – sowohl in Gestalt der Stetigen Teilung einer Strecke als auch als Fibonacci-Folge – regelhaft im Gefüge mittelalterlicher Topographien verwendet, insbesondere was die Positionierung der urbanen Sakral- und Wehrtopographie angeht. So waren nicht nur die Abstände zwischen einzelnen Gebäuden der Wehr- und Sakraltopographie untereinander nach dem Goldenen Schnitt proportioniert, die entsprechenden Gebäude konnten auch die Eckpunkte charakteristischer urbaner Grundrissfiguren mit goldenen Längenverhältnissen bilden. Dazu gehören neben Goldenen Dreiecken, bei denen die Längen von Grundseite und Schenkel im Verhältnis des Goldenen Schnitts stehen, auch Pentagramme und Pentagone, deren Einzelelemente sich im Goldenen Verhältnis zueinander befinden. Ein wesentliches Ergebnis dieser Studie besteht darin, dass deutlich gemacht wurde, dass die bisher gängige Dichotomie zwischen gegründeter und gewachsener Stadt begrifflich und inhaltlich in dieser Form nicht aufrechtzuerhalten ist. Denn einerseits ist – terminologisch gesehen – das Gründungsritual dem mittelalterlichen Verständnis nach für den Stadtstatus unbedingt konstitutiv, so dass jede mittelalterliche Siedlung, die Stadtrechte genoss, im Rahmen eines zeremoniellen Ritus zur Stadt erhoben, also gegründet worden sein musste. Andererseits wurde jede mittelalterliche Stadt im Verlauf ihrer Geschichte 9

Lucian, Cestria, 47.

Auf einen Blick

267

in der Regel auch vergrößert, so dass sie immer auch als gewachsen gelten kann. Dass sowohl die gegründete als auch die gewachsene Stadt Ergebnisse einer intendierten Stadtplanung sein können, hat die formal-geometrische Analyse gezeigt. Denn auch die organisch anmutende Gestalt sogenannter gewachsener Städte, wie Rothenburg ob der Tauber, Worcester und Wien (vgl. Kap. 4.2.1–3), ist nicht das Resultat eines unkoordinierten Wachstums, ihre jeweils exakt ausgeführten geometrischen Basiskonstruktionen zeigen, dass die räumliche Ordnung auf einer systematischen Planung basieren muss. Im Falle von Rothenburg ob der Tauber und Wien kommt hinzu, dass bestimmte Konstruktionen auch nach Jahrhunderten aufgegriffen und variiert worden sein konnten. Allen sogenannten gewachsenen Städten ist gemeinsam, dass sie absichtsvoll durch eine organische Gestaltung überformt wurden. Damit orientieren sich die gewachsenen Städte an den ungleichmäßig erscheinenden Formen des natürlichen Wachstums, ohne jedoch die geometrischen Grundlagen, die dem mittelalterlichen Verständnis nach der gesamten Schöpfung zu Grunde liegen, zu vernachlässigen. Die gestalterische Anlehnung an die Natur, die aus neuplatonisch-christlicher Sicht als schöpferisches Werk aus der Hand Gottes verstanden wurde, hob die mittelalterliche Stadt damit aus dem profanen Kontext heraus und machte sie im metaphysischen Sinn nicht nur zu einem mikrokosmischen Abbild des göttlichen Makrokosmos, sondern auch zu einer gebauten Manifestation der Vielfalt der göttlichen Schöpfung. Theologisch gesehen war die hoch- und spätmittelalterliche Stadt deshalb untrennbar mit einer schöpferischen Planungsleistung verbunden, denn ein Kosmos ohne Ordnung wäre – im Kleinen wie im Großen – mit der mittelalterlichen Weltsicht schlicht unvereinbar gewesen.

5.1 Auf einen Blick Thesenartig können die Ergebnisse dieser Studie folgendermaßen zusammengefasst werden: Ȥ Die Reduzierung der Gestalt einer mittelalterlichen Stadtanlage allein auf pragmatische Aspekte greift zu kurz. Tief verankert in der philosophisch-theologischen Werteordnung des christlichen Neuplatonismus reflektierte das intraurbane Gefüge durch die darin inhärenten geometrischen Bezüge eine höhere und damit gottgewollte Ordnung, so dass der von Menschenhand geschaffene städtische Mikrokosmos Stadt sich harmonisch in den von Gott geschaffenen Makrokosmos einfügte. Ȥ Für die Umsetzung dieses ambitionierten Anspruchs bedurfte es im Vorfeld einer sorgfältigen Planung der Stadtanlage. Denn zu den Aufgaben eines auf Dauer funktionierenden urbanen Gefüges gehörte nicht nur, der Bürgerschaft eine verlässliche Verfügbarkeit von Nahrung, gesundem Trinkwasser und den Schutz von Besitz, Leib

268

Ȥ

Ȥ

Ȥ

Ȥ

Ȥ

Die Vermessung des Kosmos: Résumé

und Leben zu gewährleisten, sondern auch einen abstrakt-geometrischen Entwurf mit lokalen Gegebenheiten und dem städtischen Maßsystem abzustimmen. Unabhängig davon, ob es sich um eine Neugründung oder um die bauliche Reorganisation einer bestehenden Stadtanlage handelte, musste der Entwurf von professionellen Vermessern ins Gelände übertragen werden. Damit wurde eine verbindliche räumliche Trennung zwischen öffentlichem, sakralem und privatem Raum geschaffen, deren Fortbestand durch Bauvorschriften, Erlasse zur Eindämmung unsystematischer Bauten und Baustatuten kontrolliert wurde. Dadurch entstand eine manifeste Ordnung, die besonders bei streng-geometrischen oder figürlichen Stadtgrund- und Umrissen eklatant ist. Besonders häufig verwendet wurden ikonographische Elemente, die Motive der zeitgenössischen Eschatologie, Kosmologie und Kartenkunst variierten. Weniger offensichtlich ist dagegen die inhärente Ordnung organisch anmutender Stadtgrundrisse, deren Formensprache der Natur entlehnt ist. Über die offensichtliche Ordnung einer Stadtanlage hinaus, die durch den Straßenverlauf und den Umriss konstituiert wurde, fanden sich bei sämtlichen untersuchten Stadtanlagen latente geometrische Konstruktionen, die auf Grundrissfiguren basieren, die im christlichen Sinne als vollkommen galten. Dazu gehörten konzentrische Kreissysteme, Kreuz- und Dreiecksfiguren, deren Radien und Elemente zusätzlich nach dem Goldenen Schnitt proportioniert sein konnten. Bei letzterem handelt es sich um ein irrationales Verhältnis, das seit der Antike nicht nur mit Schönheit und Harmonie assoziiert wurde, sondern auch mit der Fähigkeit, »Verschiedenartiges in Übereinstimmung zu bringen«10 Diese latenten Grundrissfiguren und proportionalen Verhältnisse können nicht per Augenschein wahrgenommen werden, so dass für die Entscheidung, ob eine Stadtanlage Ergebnis einer systematischen Stadtplanung ist, eine geometrische Analyse unverzichtbar ist. Um die Vorstellung eines Beziehungsgeflechtes von Stadt und Kosmos entfaltete sich also eine eigenständige urbane Ikonographie, die bereits bei der Urabsteckung und Vermessung als unsichtbares Diagramm in die Topographie der Stadt eingeschrieben worden ist. Obgleich intentionell überformt, bildete die den Grundrissen inhärente Kryptogeometrie die formale Grundlage des Gefüges von urbanem Raum im europä­ ischen Hoch- und Spätmittelalter – gleichsam als gebauter Beweis für den Glaubenssatz, Gott habe den Kosmos nach den Prinzipien Maß, Zahl und Proportion geordnet.

10 Johannes v. Novara, Euklidkommentar, XIV, 10.

Summary: Measuring the cosmos

269

5.2 Summary: Measuring the cosmos. On the geometric construction of urban space in the European Middle Ages In search of the roots of the spatial ordering of the European urban system, the doctoral thesis focuses on the connection between urban space and geometry. Against the background of Neoplatonic-Christian cosmology, the philosophical-theological framework of medieval urban planning is discussed in conjunction with its practical implementation based on medieval surveying techniques. The analysis of twelve urban layouts, exemplarily selected by means of computer-assisted analysis, shows that the geometric construction of medieval defence and sacral topography is based on the one hand on ground plan forms that are of special significance in Christian theology and iconography and, on the other, on an irrational proportion, which, under the name ›golden ratio‹, still plays an integral role in design and the visual arts today. In addition, there is evidence of an astronomical orientation of the main urban road system, which during the founding rituals on the day of foundation would have been oriented towards the position of the rising sun on the horizon. This town-specific correlation of time and space was one of the cornerstones of the spatial order in the European urban system and clearly shows the binding connection between city and cosmos in pre-modern thinking

Anhang

Quellen Wenn in den Fußnoten nicht anders angegeben, sind die Quellenzitate den folgenden Werken entnommen: Abaelard, Commentaria in epistolam Pauli ad Romanos Petrus Abaelardus: Commentaria in epistolam Pauli ad Romanos. Edited by E.M. Buytaert. Turnhout, 1969. http://www.intratext.com/IXT/LAT0963/_P7.HTM (letzter Zugriff am 14.10.2019) Aelianus, Varia historia Claudius Aelianus: Varia historia. Herausgegeben von Mervin R. Dilts. (Bibliotheca scriptorum Graecorum et Romanorum Teubneriana) Leipzig, 1974. Alanus ab Ins., De planctu nat. Alain de Lille: The complaint of nature. Translated from the Latin by Douglas M. Moffat, New York, 1908. Alanus ab Ins., Anticlaudian Alanus ab Insulis: Anticlaudian oder Die Bücher von der himmlischen Erschaffung des Neuen Menschen. Ein Epos des lateinischen Mittelalters. Übersetzt und eingeleitet von Wilhelm Rath. (Aus der Schule von Chartres, Bd. II) Stuttgart, 19832. Alanus ab Ins., Liber parabolarum Les paraboles Maistre Alain en françoys. Herausgegeben von Tony Hunt. (Modern Humanities Research Association Critical Texts Bd. 2) London, 2005. Alberti, De re Aedificatoria Leon Battista Alberti: De re Aedificatoria. Übersetzung ins Deutsche durch Max Theuer. Wien, Leipzig, 1912. Annales Posnanienses Annales capituli Posnaniensis. In: Monumenta Germaniae Historica. Scriptores in Folio, Bd. 29, 1892, 469–470. Annali I Cantù, Cesare (Hg.): Annali della fabbrica del Duomo di Milan dall’origine fino al presente. Bd. 1, Milano, 1877. Anselm von Laon, Kommentar zur Apokalypse Sancti Ivonis Carnotensis Episcopi: Opera omnia. (J.P. Migne, Patrologia Latina, Bd. 162) Paris, 1854. Anaritius, Comm. Nairīzī, al-Fad.l Ibn-Ḥātim: In decem libros priores Elementorum Euclidis commentarii. Herausgegeben von Maximilianus Curtze. Leipzig, 1899. Anonymus Parisiensis, Recommentario Anonymus Parisiensis: Recommentario civitatis Parisiensis. In: Paris et ses historiens aux XIVe et XVe siècles. Documents et écrits originaux. Edité par Antoine Jean Victor Le Roux de Lincy/Lazare Maurice Tisserand. Paris, 1867, 22–31. Alkuin, Vita Willibrordi Alkuin: Vita Willibrordi archiepiscopi Traiectensis. (MGH SS 4) Leipzig, 1841. Aristot., de cael. Aristoteles: Über den Himmel. Übersetzt und erläutert von Alberto Jori. Darmstadt, 2009. Aristot., metaph. Aristoteles’ Metaphysik. Erster Halb Bd.: Bücher I (A) – VI (E). Zweiter Halb Bd.: Bücher VII (Z) – XIV (N). In der Übersetzung von Hermann Bonitz. Neu bearbeitet, mit Einleitung und Kommentar versehen von Horst Seidel. Griechischer Text in der Edition von Wilhelm Christ (Philosophische Bibliothek), Hamburg, 19822.

Quellen

271

Aristot., phys. Die aristotelische Physik. Herausgegeben von Wolfgang Wieland. Göttingen, 1962. Aristot., pol. Aristoteles: Politik. Übersetzt und herausgegeben von Olof Gigon. München, 2006. Augustinus, Civ. Dei Des Heiligen Kirchenvaters Aurelius Augustinus zweiundzwanzig Bücher über den Gottesstaat. Aus dem Lateinischen übersetzt von Dr. Alfred Schröder. Bd. I–III. Kempten und München, 1914. Sancti Aurelii Augustini Episcopi. De civitate Dei, Libri XXII. Recognoverunt Bernardus Dombart et Alfonsus Kalb. Vol. I et II. Darmstadt, 1981. Augustinus, De immort. animae De Immortalitate Animae of Augustine: Text, Translation and Commentary of Saint Augustine (Bishop of Hippo). Edited by C.W. Wolfskeel. Amsterdam, 1977. Augustinus, De ordine Trelenberg, Jörg: Augustins Schrift De ordine: Einführung, Kommentar, Ergebnisse. (Beiträge zur historischen Theologie, Bd. 144) Tübingen, 2009. Augustinus, Enchiridion Augustinus, Enchiridion. Handbüchlein für den Laurentius oder Buch vom Glauben, von der Hoffnung und von der Liebe. (Des heiligen Kirchenvaters Aurelius Augustinus ausgewählte Schriften Bd. 8; Bibliothek der Kirchenväter, 1. Reihe, Bd. 49) Kempten, München, 1925. Augustinus, Epistola Augustinus, Epistola (Sancti Aurelii Augustini hipponensis episcopi: Opera omnia, Bd. I) Paris, 1841. Augustinus, In psalmum 121 Augustinus, In psalmum 121. Enerratio, Sermo ad plebem, 4. (Sancti Aurelii Augustini hipponensis episcopi: Opera omnia, Bd. XII) Paris, 1837. Barnabasbrief Der Barnabasbrief. Übersetzt und erklärt von Ferdinand R. Prostmeier. (Kommentar zu den Apostolischen Vätern, Bd. 8) Göttingen, 1999. Beda Venerabilis, De nat. rerum Beda il Venerabile, De natura rerum. A cura di Elisa Tinelli. Latein/Italienisch. Bari, 2013. Bernhard von Clairvaux, Epistulae Bernhard von Clairvaux, Epistulae. (Winkler, Bernd (Hg.): Bernhard von Clairvaux. Sämtliche Werke. Bd. 2) Innsbruck, 1994. Bernhard von Clairvaux, Sermones Bernhard von Clairvaux, Sermones. (Winkler, Bernd (Hg.): Bernhard von Clairvaux: Sämtliche Werke, Bd. 5) Innsbruck, 1994. Bern. Silv., De Mundi Univ. Bernardi Silvestris: De Mundi Universitate Libre Duo sive Megacosmus et Microcosmus: Über die allumfassende Einheit der Welt. Aus dem Latein des XII. Jahrhunderts übersetzt und eingeleitet von Wilhelm Rath. (Aus der Schule von Chartres, Bd. 1) Stuttgart, o. J. Bertrand Boysset, manuscrit de Carpentras Bertrand Boysset, manuscrit de Carpentras. Carpentras, Bibl. mun. 327, f. 9v–20. http://lamop.univ-paris1.fr/sites/arpenteur/edition/Images/Presenta/Pagesfin/IM7a77.htm (letzter Zugriff am 05.09.2019) Boethius, Comm. in Porpyrium An. Man. Sev. Boetii: Commentaria in Porphyrium a se translatum, Liber primus. (J.P. Migne, Patrologia Latina, Bd. 64) Paris, 1847. Boethius, De Institut. Arithmetica Masi, Michael: Boethian Number Theory. A Translation of the De Institutione Arithmetica. Amsterdam, 1983.

272

Anhang

Boeth., in top. Cic. Boethius’s In Ciceronis Topica. Translates, with notes and an introduction by Eleonore Stump. Ithaka and London, 1988. Bonaventura, De reductione Bonaventura: Itinerarium mentis in Deum. De reductione artium ad theologiam. Pilgerbuch der Seele zu Gott. Die Zurückführung der Künste auf die Theologie. Übersetzung von Julian Kaup. München, 1961. Bonaventura, Itinerarium Bonaventura: Itinerarium mentis in Deum. De reductione artium ad theologiam. Pilgerbuch der Seele zu Gott. Die Zurückführung der Künste auf die Theologie. Übersetzung von Julian Kaup. München, 1961. Buch der Weisheit Das Buch der Weisheit. Herausgegeben von Helmut Engel. (Neuer Stuttgarter Kommentar, Bd. 16) Stuttgart, 1998. Cassiodor, De institut. arithm. Magni Aurelii Cassiodori: Opera omnia in duos tomos distributa. (J.P. Migne, Patrologia Latina, Bd. 69, 70) Paris, 1865. CDB I Codex diplomaticus Brandenburgensis: Sammlung der Urkunden, Chroniken und sonstigen Geschichtsquellen der Mark Brandenburg und ihrer Regenten. Herausgegeben von Adolph Friedrich Johann Riedel. Bd. 1. Berlin, 1838. CDB III Codex diplomaticus Brandenburgensis: Sammlung der Urkunden, Chroniken und sonstigen Geschichtsquellen der Mark Brandenburg und ihrer Regenten. Herausgegeben von Adolph Friedrich Johann Riedel. Bd. 3. Berlin, 1843. Cicero, De off. Marci Tullii Ciceronis de officiis Libri tres. Herausgegeben von Ludwig Julius Billerbeck. Hannover, 1827. Corpus Agrimensorum Romanorum Opvscvla agrimensorvm vetervm: adiectae svnt 48 tabvlae phototypicae. Ed. Thulin, Carl Olof, Lipsiae, 1913. Demokrit, Fragm. Demokrit von Abdera: Fragmente. In: Die Fragmente der Vorsokratiker. Griechisch und Deutsch von Hermann Diels. Bd. 2. Berlin 19224. Dion Chrysostomos, Bei den Borystheniten Drei Reden des Dio Chrysostomus zum ersten Mal ins Deutsche übertragen und erläutert von H. Stich. Programm der Königlichen Studienanstalt Zweibrücken zum Schlusse des Studienjahres 1889/90, Zweibrücken, 1890. Directorium Diplomaticum Directorium Diplomaticum oder chronologisch geordnete Auszüge von sämtlichen zur Geschichte Obersachsens vorhandenen Urkunden, Bd. 2. Herausgegeben von Ludwig August Schultes, Rudolstadt, 1825. Euklid, Elem. Euklid: Die Elemente. Aus dem Griechischen übersetzt und herausgegeben von Clemens Thaer. Einleitung von Peter Schreiber (Ostwalds Klassiker der Exakten Wissenschaften, Bd. 235) Frankfurt/Main, 2010. Filarete, De Arch. Filarete’s Treatise on Architecture. Being the treatise by Antonio di Piero Averlino, known as Filarete. Translated with an introduction and notes by John R. Spencer. Bd. 1: The translation. New Haven, London, 1965. Francesco di Giorgio, Tratt. di Arch. Francesco di Giorgio Martini, Trattati di Architettura, Ingegneria e Arte Militare. Herausgegeben von Corrado Maltese, Milano, 1967. Galileo Galilei, Opere Le Opere Complete di Galileo Galilei: Tomo VI, Firenze, 1847.

Quellen

273

Gerberti Opera Gerberti, postea Silvestri II papae Opera mathematica. Accedunt aliorum opera ad Gerberti libellos aestimandos intelligendosque necessaria per septem appendices distributa collegit Nicolaus Bubnov. Hildesheim, 1963. Geometria Culmensis Geometria Culmensis, ein agronomischer Traktat aus der Zeit Conrad von Jungingen (1393–1407). Herausgegeben von H. Mendthal. Leipzig, 1886. Giordano di Rivalto, Predigt Prediche del beato frate G. da Rivalto dell’Ordine dei predicatori. A cura di D.M. Manni, Firenze, 1739. Grüninger, Villingen Meinrad Grüninger: Kurze Geschichte von Villingen vom Jahre 999 bis 1781. Stadtarchiv Villingen-Schwenningen Bestand 2.1 Faszikel BBB 6a (3203). Heraklit, Fragm. Die Fragmente des Heraklit. In: Diels, Hermann, Kranz, Walther (Hg.): Die Fragmente der Vorsokratiker. Bd. 1, Hildesheim, 2004. Herodot, Historien Herodot: Historien. Griechisch-deutsch. Herausgegeben von Josef Feix. Bd. 1 und 2. Düsseldorf, 20016. Hesiod, Werke und Tage Hesiod: Sämtliche Werke. Deutsch von Thassilo von Scheffer. Mit einer Übersetzung der Bruchstücke aus den Frauenkatalogen. Herausgegeben von Ernst Günther Schmidt. Bremen, 1965. Hippolyt, Ref. Hippolytus: Refutatio omnium haeresium. Herausgegeben von Miroslav Marcovich. Berlin, 1986. Homer Il. Homers Ilias, Bd. 1 und 2. Übersetzt von Johann Heinrich Voß. Tübingen, 1806. Honorius Augustodunensis, Gemma animae Honorii Augustodunensis: Opera omnia, Bd. 1 (J.P. Migne, Patrologia Latina, Bd. 172) Paris, 1895. Honorius Augustodunensis, Imago mundi Honorii Augustodunensis: Opera omnia, Bd. 1 (J.P. Migne, Patrologia Latina, Bd. 172) Paris, 1895. Horaz, Carmina Horace: Odes book IV and Carmen saecvlare. Edited by Richard Thomas. Cambridge, 2011. Hrabanus Maurus, De institutione clericorum Rabani Mauri: De institutione clericorum. Libri tres. Herausgegeben von Alois Knöpfler. (Veröffentlichungen aus dem Kirchenhistorischen Seminar München, Universität München, Bd. 5) München, 1900. Hrabanus Maurus, De laudibus s. crucis Hrabanus Maurus: De laudibus s. crucis. (J.P. Migne, Patrologia Latina, Bd. 107) Paris, 1864. Hrabanus Maurus, De universo Hrabanus Maurus: De universo. (J.P. Migne, Patrologia Latina, Bd. 111) Paris, 1864. Hrosvitha v. Gandersheim, Paphnutius Hrotsvit von Gandersheim: Dramen. In der Übersetzung von Ottomar Piltz. Neu herausgegeben, eingeleitet und ergänzt durch Teile aus den historischen Epen von Fritz Preißl. Leipzig, 1942. Hug, Villinger Chronik Christian Roder (Hg.): Heinrich Hugs Villinger Chronik von 1495 bis 1533. Tübingen, 1883. Hugo v. St. Victor, De arca Noah mystica Hugo von St. Victor: De arca Noah mystica. (J.P. Migne, Patrologia Latina, Bd. 176) Paris, 1834. Hugo v. St. Victor, Didasc. Hugo von St. Victor: Didascalicon. Studienbuch. Übersetzt und eingeleitet von Thomas Offergeld. LateinischDeutsch. (Fontes Christiani, Bd. 27) Freiburg im Breisgau, 1997. Hugo v. St. Victor, Mystische Schriften Die Victoriner. Mystische Schriften. Ausgewählt, übersetzt und eingeleitet von Paul Wolff. Trier, 1961.

274

Anhang

Hugo v. St. Victor, Pract. Geom. Hugonis de Sancto Victore Opera Propaedeutica. Ed. Roger Baron. Notre Dame, 1966. Practical Geometry: Practica Geometriae. Attributed to Hugh of St. Victor. Translated by Frederick A. Homann, Milwaukee, 1991. Hyginus Gromaticus, Constitutio Limitum Hygini: De limitibus constituendis. In: Blume, Friedrich et al. (Hg.): Gromatici veteres. Die Schriften der römischen Feldmesser, 2 Bde., Berlin 1848–52. Iamblichos, Vit. Pyth. Iamblichi: De Vita Pythagorica Liber. Graece et Germanice. Herausgegeben von M. von Albrecht. Zürich, Stuttgart, 1963. Isidor, Sententiarum Sancti Isidori: Opera omnia. Recensente Faustino Arevalo. (J.P. Migne, Patrologia Latina, Bd. 83) Paris, 1862. Isidor, Etym. The Etymologies of Isidore of Seville. Translated with introduction and notes by Stephen A. Barney, W.J. Lewis, J.A. Beach, Oliver Berghof with the collaboration of Muriel Hall. Cambridge, 2006. Isidor, Liber numerorum Sancti Isidori: Opera omnia. Recensente Faustino Arevalo. (J.P. Migne, Patrologia Latina, Bd. 83) Paris, 1862. Joachim v. Fiore, Das Reich des Hl. Geistes Joachim von Fiore: Das Reich des Heiligen Geistes. Bearbeitung Alfons Rosenberg. München, 1955. Johannes v. Novara, Euklid Campanus of Novara and Euclid’s Elements. Edited by Busard, H.L.L. Vol. I, Stuttgart, 2005. Johannes v. Salisbury, Metalogicon Ioannis Saresberiensis: Metalogicon. Edited by John Barry Hall. Brepols, 1991. Johannes v. Salisbury, Policraticus John of Salisbury, Policraticus. Of the Frivolities of Courtiers and the footprints of Philosophers. Translated by Cary J. Nederman, Cambridge, 1990. Jörg Wickram, Metamorphosen Jörg Wickram: Sämtliche Werke, herausgegeben von Hans-Georg Roloff in 13 Bänden. Berlin, 1967–1973. Justinus von Lippstadt, Lippiflorium Justinus von Lippstadt: Lippiflorium. Detmold, Lippische Landesbibliothek, Manuscript. Bd. 73. In: Christoph Stiegemann (Hg.): Credo – Christianisierung Europas im Mittelalter. Detmold, 2013, 649–650. Kepler, Astronomia nova Johannes Kepler: Astronomia nova. Herausgegeben von Max Caspar. Bayerische Akademie der Wissenschaften Kommission für die Herausgabe der Werke von Johannes Kepler. München, 1938. Konrad von Megenberg, Buch der Natur Konrad von Megenberg: Buch der Natur. In: G.E. Sollbach: Die mittelalterliche Lehre vom Mikrokosmos und Makrokosmos. Hamburg, 1995. Konrad v. Würzburg, Trojanerkrieg Konrad von Würzburg: Trojanerkrieg. (Universitätsbibliothek von Würzburg, M.ch.f.24). http://vb.uni-wuerzburg.de/ub/mchf24/ueber.html (letzter Zugriff am 14.10.2019). Kosmas Indikopleustes, Top. Kosmas Indikopleustes: Topographie. In: Schneider, Horst (Hg.): Kosmas Indikopleustes. Christliche Topographie – Textkritische Analysen, Übersetzung, Kommentar. (Indicopleustoi. Archaeologies of the Indian Ocean, Bd. 7) Turnhout, 2010. Lambert von Ardres, Historia comitum Ghisnensium Lambert von Ardres: Historia comitum Ghisnensium. In: Monumenta Germaniae Historica, Scriptores in Folio, Bd. 24, 550–642.

Quellen

275

Leonardo Pisano, Abaci Tre scritti inediti di Leonardo Pisano pubblicati da Baldassare Boncompagni secondo la lezione di un codice della Biblioteca Ambrosiana di Milano, Tipografia Galileiana di M. Cellini e C., Florenz, 1854. Leonardo Pisano, De Practica Geometrie Fibonacci’s De Practica Geometrie. Edited by Barnabas Hughes. Sources and Studies in the History of Mathe­ matics and Physical Sciences. New York, 2008. Libellus de rev. Libellus de revelatione, aedificatione et auctoritate Fiscannensis monasterii (J.P. Migne, Patrologia Latina, Bd. 151) Paris, 1853. Livius, Ab urbe condita Titus Livius: Römische Geschichte. Von der Gründung der Stadt an. Übersetzt von Otto Güthling, herausgegeben von Lenelotte Möller. Wiesbaden, 2009 Luca Pacioli, Divina proportione Fra Luca Pacioli: Divina Proportione. Die Lehre vom Goldenen Schnitt. Nach der venezianischen Ausgabe vom Jahre 1509. Neu herausgegeben, übersetzt und erläutert von Constantin Winterberg. (Quellenschriften für Kunstgeschichte und Kunsttechnik des Mittelalters und der Neuzeit. Begründet von Rudolf Eitelberger von Edeleberg. Neue Folge, II. Bd.), Wien, 1889. Lucian, Cestria Extracts from the MS Liber Luciani de laude Cestrie, written about the year 1195 and now in the Bodleian Library Oxford. Transcribed and edited by M.V. Taylor. The Record Society for the Publication of Original Documents relating to Lancashire and Chesire, Vol. LXIV, 1912. Lydus, De mensibus Ioannes Lydus: On the months (De mensibus). Translated and edited by Anastasius C. Bd.y. Lewiston, 2013. Macrobius, Saturnalia Ambrosius Theodosius Macrobius: Tischgespräche am Saturnalienfest. Übersetzt von Otto und Eva Schönberger. Würzburg, 2008. Nikolaus Wurm, Liegnitzer Stadtrechtsbuch Das Liegnitzer Stadtrechtsbuch des Nikolaus Wurm. Hintergrund, Überlieferung und Edition eines schlesischen Rechtsdenkmals von Hans-Jörg Leuchte. Sigmaringen, 1990. Otto v. Freising, Chronik Otto Bischof von Freising: Ottonis Episcopi Frisingensis. Chronica sive historia de duabus civitatibus (Chronik oder die Geschichte der zwei Staaten). Übersetzt von Adolf Schmidt, herausgegeben von Walther Lammers mit einem Literaturnachtrag von Hans-Werner Goetz. Darmstadt, 20116. Pausanias, Beschreibung Griechenlands Pausanias: Beschreibung Griechenlands. Ein Reise- und Kulturführer aus der Antike. Ausgewählt, aus dem Griechischen übersetzt und mit einem Nachwort von Jacques Laager. Zürich, 1998. Philolaos, Fragm. Philolaos: Fragmente. (Gemelli Marciano, Laura: Die Vorsokratiker. Bd. 1) Düsseldorf, 2007. Philon v. Alexandria, De opificio mundi Philo von Alexandria: Die Werke in deutscher Übersetzung, Bd. 1. Herausgegeben von Leopold Cohn, Isaak Heinemann, Maximilian Adler und Willy Theiler. Berlin, 19622. Plat., Epist. Platon: Epistolae (Briefe). Bearbeitet von Dietrich Kurz. Griechischer Text von Léon Robin, Auguste Diès und Joseph Souilhé. Deutsche Übersetzung von Friedrich Schleiermacher und Dietrich Kurz. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 5) Darmstadt, 20116. Plat., Gorg. Platon: Gorgias. Bearbeitet von Heinz Hofmann. Griechischer Text von Alfred Croiset, Louis Bodin, Maurice

276

Anhang

Croiset und Louis Méridier. Deutsche Übersetzung von Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 2) Darmstadt, 20116. Plat., Krit. Platon: Kritias. Bearbeitet von Klaus Widdra. Griechischer Text von Albert Rivaud und Auguste Diès. Deutsche Übersetzung von Hieronymos Müller und Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 7) Darmstadt, 20116. Plat., Nom. Platon: Nomoi. Bearbeitet von Klaus Schöpsdau. Griechischer Text von Auguste Diès und Joseph Souilhé. Deutsche Übersetzung von Klaus Schöpsdau und Hieronymus Müller. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 8/1) Darmstadt, 20116. Plat., Phaid. Platon: Phaidon. Bearbeitet von Dietrich Kurz. Griechischer Text von Léon Robin und Louis Méridier. Deutsche Übersetzung von Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 3) Darmstadt, 20116. Plat., Phaidr. Platon: Phaidros. Bearbeitet von Dietrich Kurz. Griechischer Text von Léon Robin, Auguste Diès und Joseph Souilhé. Deutsche Übersetzung von Friedrich Schleiermacher und Dietrich Kurz. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 5) Darmstadt, 20116. Plat. Phil. Platon: Philebos. Bearbeitet von Klaus Widdra. Griechischer Text von Albert Rivaud und Auguste Diès. Deutsche Übersetzung von Hieronymos Müller und Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 7) Darmstadt, 20116. Plat., Prot. Platon: Protagoras. Bearbeitet von Heinz Hofmann. Griechischer Text von Louis Bodin, Alfred Croiset, Maurice Croiset und Louis Méridier. Deutsche Übersetzung von Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 1) Darmstadt, 20116. Plat., rep. Platon: Politeia. Bearbeitet von Dietrich Kurz. Griechischer Text von Emile Chambray. Deutsche Übersetzung von Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 4) Darmstadt, 20116. Plat., Tim. Platon: Timaios. Bearbeitet von Klaus Widdra. Griechischer Text von Albert Rivaud und Auguste Diès. Deutsche Übersetzung von Hieronymos Müller und Friedrich Schleiermacher. (Eigler, Gunther (Hg.): Platon: Werk in acht Bänden. Griechisch und Deutsch. Bd. 7) Darmstadt, 20116. Plinius, Naturalis historiae Gaius Plinius Secundus: Naturalis historiae. Naturgeschichte. Lateinisch–deutsch. Stuttgart, 2005. Plut., De placita philosophorum Plutarch’s Morals. Translated from the Greek by several hands. Corrected and revised by William W. Goodwin, PH. D. Boston. Cambridge, 1874. Plut. Quaest. Rom. Plutarch: Moralia. Bd. IV: Roman Questions. Greek Questions. Greek and Roman Parallel Stories. Translated by Frank Cole Babbitt. (Loeb Classical Library, Bd. 305), Cambridge, London, 1936, 1–171. Plut. Rom. Plutarch: Romulus und Ruma. (Langenscheidtsche Bibliothek sämtlicher griechischer und römischer Klassiker in neueren deutschen Musterübersetzungen, Bd. 46). Berlin, 1905. Pommersches Urkundenbuch Pommersches Urkundenbuch. Herausgegeben von der Landesgeschichtlichen Forschungsstelle. (Historische Kommission für die Provinz Pommern. Bd. 1: 786–1253) Köln, 1970.

Quellen

277

Ps.-Boethius, Geom. Anicii Manlii Torquati Severini Boetii: De Institutione Arithmetica, libri duo. De institutione Musica, libri quinque. Accedit Geometria quae fertur Boetii. Edidit Godofredus Friedlein. Lipsiae, 1867. Reisch, Margarita Philosophica Gregorius Reisch: Margarita philosophica nova. Herausgegeben von Lucia Andreini. (Analecta Cartusiana, Bd. 179) Salzburg, 2002. RUB Urkundenbuch der Stadt Rottweil. Bd. 1. Bearbeitet von Heinrich Günter. Stuttgart, 1896. Sæwulf, de pereg. Relatio de peregrinatione Saewulfi ad Hierosolymam et Terram Sanctam. In: A. d’Avezac dans Recueil de voyages et de mémoires de la Société de la géographie de Paris. Paris, 1839, 21–42. Schedelsche Weltchronik Schedelsche Weltchronik. Gedruckt nach der Ausgabe von 1493. Mit einem Nachwort versehen von Rudolf Pförtner. (Die bibliophilen Taschenbücher) Dortmund, 19782. Seiler, Chronik der Stadt Bernau Tobias Seiler: Die Chronik der Stadt Bernau 1736. Übertragung der handschriftlichen Fassung von Karl Bülow. Bernau, 1995. Servius, Vergil Aen. Maurus Servius Honoratus: In Vergilii carmina comentarii. Servii Grammatici qui feruntur in Vergilii carmina commentarii; recensuerunt Georgius Thilo et Hermannus Hagen. Leipzig, 1881. Sextus Empiricus, Adv. mathem. Sextus Empiricus: Gegen die Dogmatiker. Adversus mathematicos libri 7–11. Herausgegeben von Hansueli Flückiger, Sankt Augustin, 1998. Sigeward, Vita S. Mainulfi Sigeward: Vita S. Mainulfi, In: Acta Sanctorum Octobris III, Paris, Rom, 1866, Sp. 209. Tertullian, De spect. Tertullian: De spectaculis/Über die Spiele. Lateinisch/Deutsch. (Reclams Universal-Bibliothek) Leipzig, 1988. Theophilus Presbyter, Schedula diversarum artium Theophilus Presbyter: Schedula diversarum artium. Bd. 1. Revidierter Text, Übersetzung und Appendix von Albert Ilg. Wien, 1874. Thomas von Aquin, Cont. gent. Thomas von Aquin: Summa contra gentiles. Joann. Franc. Mariae de Rubeis: Divi Thomae Aquinatis Opera juxta editionem veneta, Rom, 1770. Thomas von Aquin, Expos. in Ps. XLV Thomas von Aquin: Expositio in Psalm XLV. (Opera omnia, Bd. XVIII) Paris, 1876. Thomas von Aquin, Summa theologiae Sancti Thomae de Aquino: Summa Theologiae. Roma, 1962. Thomas von Aquin, De re. princ. Thomas von Aquin: Über die Herrschaft der Fürsten. Übersetzung von Friedrich Schreyvogl. Nachwort von Ulrich Matz. Stuttgart, 1999. Thomas von Aquin, De regno ad regem Cypri Thomas von Aquin, De regno ad regem Cypri. Textum Taurini 1954 editum ac automato translatum a Roberto Busa SJ in taenias magneticas denuo recognovit Enrique Alarcón atque instruxit. Paris, 1954. Urk. der Babenberger in Österreich Fichtenau/Heinrich; Zöllner/Erich (Hg.): Urkundenbuch zur Geschichte der Babenberger in Österreich, Bd. 1. (Publikationen des Instituts für österreichische Geschichtsforschung, 3. Reihe, Bd. 1) Wien, 1950.

278

Anhang

Urk. zur Städt. Verf.geschichte Urkunden zur Städtischen Verfassungsgeschichte. Herausgegeben von Friedrich Wilhelm Eduard Keutgen. Bd. 1, Berlin, 1901. Varro, De lingua Latina Marcus Terentius Varro: De Lingua Latina. Fragments. Harvard, 1938. Vasari, pittore e architetto Le opere di Giorgio Vasari: pittore e architetto aretino, Parte prima. Firenze 1832–1838. Villani, Istorie Fiorentine Istorie Fiorentine di Giovanni Villani, cittadino Fiorentino: Bd. 3: fino all’ anno MCCCXLVIII. Milano, 1802. Villard de Honnecourt, Bauhüttenbuch Villard de Honnecourt: Kritische Gesamtausgabe des Bauhüttenbuches ms. fr 19093 der Pariser Nationalbibliothek. Herausgegeben von Hans R. Hahnloser. Wien, 1935. Vitruv, De arch. Vitruvius: De Architectura libri decem. Zehn Bücher über Architektur. Übersetzt und durch Anmerkungen und Zeichnungen erläutert von Dr. Franz Reber. Berlin, 1908. Wolfram v. Eschenbach, Parzival Wolfram von Eschenbach, Parzival. Bd. 1 und 2. Mittelhochdeutsch und neuhochdeutsch. Stuttgart, 1981. Xenophon, Oikonomikos Xenophons Oikonomikos. Übersetzung und Kommentar von Klaus Meyer. Westerburg, 1975. Zonaras, hist. The History of Zonaras: From Alexander Severus to the Death of Theodosius the Great. Translation by Thomas M. Banchich and Eugene N. Lane. Introduction and commentary by Thomas M. Banchich. London and New York, 2009. Die Auszüge aus dem Alten und Neuen Testament folgen der Elberfelder Übersetzung aus dem Jahr 1905 (http://www.bibel-online.net/ letzter Aufruf am 14.10.2019)

Literatur Abadie 2011 Abadie, Stéphane: La bastide de Tournay. (Service éducatif des archives départementales des Hautes-Pyrénées). 2011. www.archivesenligne65.fr/_depot…/bastide-tournay_doc.pdf (letzter Zugriff am 25.07.2016). Abreu 1995 Abreu, Guida de: Mathématiques paysannes. In: La Recherche, Bd. 278/26, 1995, 800–802. Alföldi 1977 Alföldi, Andreas: Das frühe Rom und die Latiner. Darmstadt, 1977. Algra 1995 Algra, Keimpe A.: Concepts of Space in Greek Thought. (Philosophia Antiqua. A Series of Studies on Ancient Philosophy, Bd. LXV) Leiden, New York, Köln, 1995. Amman 1930 Amman, Hektor: Thesen als Grundlage für eine Aussprache über die Stadtwerdung in der deutschen Schweiz und die Theorien über die Entstehung des mittelalterlichen Städtewesens. In: Zeitschrift für Schweizerische Geschichte, Bd. 10, 1930, 527–529. Amman 1969 Amman, Hektor: Wie groß war die mittelalterliche Stadt? In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Bd.: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) 1969, 408–415.

Literatur

279

Anderson 2014 Anderson, Peter G.: Extended Fibonacci Zeckendorf theory. In: Fibonacci quarterly, December 2014, 15–21. Andresen 1977 Andresen, Carl: Einführung. In: Aurelius Augustinus: Vom Gottesstaat (De civitate dei). Buch 1–10. München, 1978, V–XXXII. Archibald 1918 Archibald, R.C.: Undergraduate Mathematic Clubs. In: The American Mathematical Monthly, Bd. 25/5, 226–238. Ashley 2001 Ashley, Kathlee: Introduction. The Moving Subjects of Processional Performance. In: Ashley, Kathleen/Hüsken, Wim (Hg.): Moving Subjects. Processional Performance in the Middle Ages and the Renaissance. Amsterdam, 2001, 7–34. Ashley/Sheingorn 2001 Ashley, Kathleen/Sheingorn, Pamela: Sainte Foy on the Loose, Or, The Possibilities of Procession. In: Ashley, Kathleen/Hüsken, Wim (Hg.): Moving Subjects. Processional Performance in the Middle Ages and the Renaissance. Amsterdam, 2001, 53–67. Assing et al. 1986 Assing, Helmut/Hess, Klaus/Weigelt, Günter: Brandenburg. Stadtführer. (Brandenburger Blätter Bd. 5) Brandenburg/Havel, 1986. Assmann 2009 Assmann, Aleida: Erinnerungsräume. Formen und Wandlungen des kulturellen Gedächtnisses. München, 20094. Aune 1998 Aune, David E.: Revelation 17–22. (World Biblical Commentary, Bd. 52C) Nashville, 1998. Bacher 1988 Bacher, Ernst: Kunstwerk Stadt. Österreichische Stadt- und Ortsdenkmale. In: Euler, Bernd (Hg.): Kunstwerk Stadt. Salzburg, Wien, 1988, 9–28. Bachmann-Medick 2006 Bachmann-Medick, Doris: Cultural turns. Neuorientierungen in den Kulturwissenschaften. Hamburg, 2006. Badstübner 1993 Badstübner, Ernst: Die mittelalterlichen Kirchen in Brandenburg. In: Schich, Winfried (Hg.): Beiträge zur Entstehung und Entwicklung der Stadt Brandenburg im Mittelalter. Berlin, New York, 1993, 317–332. Baeriswyl 2006 Baeriswyl, Armand: Mittelalterliche Gründungsstadt und Stadtplanung am Beispiel der »Zähringerstädte« Bern und Burgdorf. In: Fritzsche, Bruno/Gilomen, Hans-Jörg/Stercken, Martina (Hg.): Städteplanung – Planungsstädte. Zürich, 2006, 51–67. Baker et al. 1992 Baker, Nigel/Dalwood, Hal/Holt, Richard/Mundy, Charles/Taylor, Gary: From Roman to Medieval Worcester: Development and Planning in the Anglo-Saxon City. In: Antiquity, Bd. 66/250, 1992, 65–83. Baker/Holt 1996 Baker, Nigel/Holt, Richard: The City of Worcester in the Tenth Century. In: Brooks, Nicholas/Cubitts, Catherine (Hg.): St Oswald of Worcester. Life and Influence. London, 1996, 129–146. Baker/Holt 2004 Baker, Nigel/Holt, Richard: Urban Growth and the Medieval Church. Gloucester and Worcester. Aldershot, 2004. Ball 1942 Ball, John: Survey of Egypt, Egypt in the classical geographers. Cairo, 1942. Bandmann 1960 Bandmann, Günter: Melancholie und Musik: Ikonographische Studien. Köln, 1960.

280

Anhang

Bandmann 1951 Bandmann, Günter: Mittelalterliche Architektur als Bedeutungsträger. Berlin, 1951. Bandmann 1969 Bandmann, Günter: Ikonologie der Architektur. Darmstadt, 1969. Bandmann 1972 Bandmann, Günter: Die vorgotische Kirche als Himmelsstadt. In: Frühmittelalterliche Studien, Bd. 6, 1972, 67–93. Barber 2006 Barber, Peter: Das Buch der Karten. Meilensteine der Kartografie aus drei Jahrtausenden. Darmstadt, 2006. Barran 1990 Barran, Fritz R.: Städte-Atlas Ostbrandenburg mit den früher brandenburgischen Landkreisen Arnswalde und Friedeberg/Nm. Leer, 1990. Bartolami/Ceschi 2007 Bartolami, Sante/Ceschi, Chiara: Cittadella. Città murata. Cittadella, 2007. Bauer 1897 Wilhelm Bauer: Der ältere Pythagoreismus. Eine kritische Studie. (Berner Studien zur Philosophie und ihrer Geschichte, Bd. VIII) Bern, 1897. Beardsmore 1980 Beardsmore, Clive: Documentary Evidence for the History of Worcester City Defences. In: Transactions of the Worcestershire Archaeological Society 3S, Bd. 7, 1980, 53–64. Becker 1966 Becker, Oskar: Das mathematische Denken der Antike. Göttingen, 19662. Beer 1999 Beer, Ellen J.: Berns grosse Zeit. Bern, 1999. von Bendemann 2013 von Bendemann, Reinhard: Die ideale Stadt als Mittelpunkt der Welt. Frühjüdische und frühchristliche Stadtkonzeptionen am Beispiel der Konstruktion des himmlischen Jerusalem in Apk. 21 f. In: Bosshard, Marco Thomas et al. (Hg.): Sehnsuchtsstädte: Auf der Suche nach lebenswerten urbanen Räumen. Bielefeld, 2013, 61–98. Benevolo 1983 Benevolo, Leonardo: Die Geschichte der Stadt. Frankfurt am Main, 1983. Bennett 1980 Bennett, Julian: Excavation and Survey on the Medieval City Wall, 1973. In: Transactions of the Worcestershire Archaeological Society 3S, Bd. 7, 1980, 65–71. Bensen 1873 Bensen, Heinrich Wilhelm: Historische Untersuchungen über die ehemalige Reichsstadt Rothenburg oder die Geschichte einer deutschen Gemeinde aus urkundlichen Quellen. Nürnberg, 1837. Berchthold 2016 Berchthold, Florian: Geometrie. Von Euklid bis zur hyperbolischen Geometrie mit Ausblick auf angrenzende Gebiete. Berlin, 2016. Bernhardt/Reif 2009 Bernhardt, Christoph/Reif, Heinz: Sozialistische Städte zwischen Herrschaft und Selbstbehauptung. Kommunalpolitik, Stadtplanung und Alltag in der DDR. Stuttgart, 2009. Bermann 1880 Bermann, Moritz: Alt- und Neu-Wien. Geschichte der Kaiserstadt und ihrer Umgebungen seit dem Entstehen bis auf den heutigen Tag und in allen Beziehungen zur gesamten Monarchie. Wien, 1880. Bernardi/Capelli 1983 Bernardi, Manuela/Capelli, Laura: Lo scavo della Porta Fiorentina di San Giovanni Valdarno. In: Archeologia medievale, Bd. X, 1983, 351–361.

Literatur

281

Bernet 2007 Bernet, Claus: »Gebaute Apokalypse«. Die Utopie des Himmlischen Jerusalems in der Frühen Neuzeit. (Veröffentlichungen des Instituts für Europäische Geschichte Mainz. Abteilung für Abendländische Religionsgeschichte, Bd. 215) Mainz, 2007. Bertelloni 1991 Bertelloni, Francisco: Die Rolle der Natur in den »Commentarii in Libros Politicorum Aristotelis« des Albertus Magnus. In: Zimmermann, Albert/Speer, Andreas (Hg.): Mensch und Natur im Mittelalter, 2. Halb Bd., Berlin, New York, 1991, 682–702. Beutelspacher/Petri 1996 Beutelspacher, Albrecht/Petri, Bernhard: Der Goldene Schnitt. Heidelberg, Berlin, Oxford, 19962. Bichler 1995 Bichler, Reinhold: Von der Insel der Seligen zu Platons Staat. Teil 1: Geschichte der antiken Utopie. (Alltag und Kultur im Altertum, Bd. 3) Wien, 1995. Bierbach 2013 Bierbach, Elvira: Naturheilpraxis heute: Lehrbuch und Atlas. München und Jena, 20135. Binding 1990 Binding, Günter: Der Baubetrieb in der nordeuropäischen Stadt 1150 bis 1250. In: Dolgner, Dieter et al. (Hg.): Stadtbaukunst im Mittelalter. Berlin, 1990, 162–176. Binding/Speer 1994 Binding, Günther/Speer, Andreas (Hg.): Mittelalterliches Kunsterleben nach Quellen des 11. bis 13. Jahrhunderts. Stuttgart, 19942. Binding/Linscheid-Burdich 2002 Binding, Günther/Linscheid-Burdich, Susanne: Planen und Bauen im frühen und hohen Mittelalter. In Zusammenarbeit mit Julia Wippermann. Darmstadt, 2002. Blaschke 1967 Blaschke, Karlheinz: Nikolaipatrozinium und städtische Frühgeschichte. In: Zeitschrift der Savigny-Stiftung für Rechtsgeschichte. Bd. 84, 1967, 273–337. Blaschke 1997a Blaschke, Karlheinz: Qualität, Quantität und Raumfunktion als Wesensmerkmale der Stadt vom Mittelalter bis zur Gegenwart. In: Stadtgrundriss und Stadtentwicklung. Forschung zur Entstehung mittelalterlicher Städte. Ausgewählte Aufsätze von Karlheinz Blaschke. (Städteforschung A/44) Köln, Weimar, Wien, 1997, 59–72. Blaschke 1997b Blaschke, Karlheinz: Altstadt – Neustadt – Vorstadt. Zur Typologie genetischer und topographischer Stadtgeschichtsforschung. In: Stadtgrundriss und Stadtentwicklung. Forschung zur Entstehung mittelalterlicher Städte. Ausgewählte Aufsätze von Karlheinz Blaschke. (Städteforschung A/44) Köln, Weimar, Wien, 1997, 73–82. Blaschke 1997c Blaschke, Karlheinz: Kirchenorganisation und Kirchenpatrozinien als Hilfsmittel der Stadtkernforschung. In: Stadtgrundriss und Stadtentwicklung. Forschung zur Entstehung mittelalterlicher Städte. Ausgewählte Aufsätze von Karlheinz Blaschke. (Städteforschung A/44) Köln, Weimar, Wien, 1997, 83–162. Blaschke 1997d Blaschke, Karlheinz: Wie liest man einen Stadtplan? In: Stadtgrundriss und Stadtentwicklung. Forschung zur Entstehung mittelalterlicher Städte. Ausgewählte Aufsätze von Karlheinz Blaschke. (Städteforschung A/44) Köln, Weimar, Wien, 1997, 193–204. Blaschke 2007 Blaschke, Karlheinz: Kaufmannssiedlungen als Frühformen städtischer Entwicklung. In: Jäschke, Kurt-Ulrich/

282

Anhang

Schrenk, Christian (Hg.): Was machte im Mittelalter zur Stadt? Selbstverständnis, Außensicht und Erscheinungsbilder mittelalterlicher Städte. Vorträge des gleichnamigen Symposiums vom 30. März bis 2. April 2006 in Heilbronn. Heilbronn, 2007, 91–124. Blum 2011 Blum, Gerd: Giorgio Vasari, der Erfinder der Renaissance. Eine Biographie. München, 2011. Bodenschatz/Seifert 1992 Bodenschatz, Harald/Seifert, Carsten: Stadtbaukunst in Brandenburg an der Havel. Vom Mittelalter bis zur Gegenwart. Berlin, 1992. Boerefijn 2010 Boerefijn, Wim: The Foundation, Planning and Building of new Towns in the 13th and 14th Centuries in Europe. An Architectural-historical Research into Urban Form and its Creation. Amsterdam, 2010. https://dare.uva.nl/search?identifier=6ac40515-d4b1–49e7–8703–60b8aee1a791 (letzter Zugriff am 14.10.2019). Böhme 1967 Böhme, Gert: Analytische Geometrie. In: Mathematik, 2: Einführung in die höhere Mathematik. Berlin, Heidelberg, New York, 1967, 1–124. Böhme/Böhme 2004 Böhme, Gernot/Böhme, Hartmut: Feuer, Wasser, Erde, Luft. Eine Kulturgeschichte der Elemente. München, 2004. Boiadjiev 2002 Boaidjiev, Tzotcho: Der mittelalterliche Apokalyptismus und der Mythos vom Jahre 1000. In: Aertsen, Jan A./ Pickavé, Martin (Hg.): Ende und Vollendung. Eschatologische Perspektiven im Mittelalter (Miscellanea mediaevalia, Bd. 29) Berlin, 2002, 165–178. Bönisch 2002 Bönisch, Fritz: Buchbesprechung von Humpert, Klaus/Schenk, Martin: Entdeckung der mittelalterlichen Stadtplanung. Das Ende vom Mythos der »gewachsenen Stadt«. In: Jahrbuch für die Geschichte Mittel- und Ostdeutschlands. Zeitschrift für vergleichende und preußische Landesgeschichte. Bd. 48, 2002, 327–330. Bötticher 1856 Bötticher, Carl: Baumkultus der Hellenen. Berlin, 1856. Boockmann 2003 Boockmann, Hartmut: Deutscher Orden. In: Lexikon des Mittelalters, Bd. V, 2003, Sp. 768–778. Boogaart 2001 Boogaart, Thomas A.: Our Saviour’s Blood: Procession and Community in Late Medieval Bruges. In: Ashley, Kathleen/Hüsken, Wim (Hg.): Moving Subjects. Processional Performance in the Middle Ages and the Renaissance. Amsterdam, 2001, 69–116. Boos 2011 Boos, Marion: Heiligtümer römischer Bürgerkolonien. Archäologische Untersuchungen zur sakralen Ausstattung republikanischer coloniae civium Romanorum. (Internationale Archäologie, Bd. 119) Heidelberg, 2011. Borchardt 1988 Borchardt, Karl: Die geistlichen Institutionen in der Reichsstadt Rothenburg ob der Tauber und dem dazugehörigen Landgebiet von den Anfängen bis zur Reformation. (Veröffent–lichungen der Gesellschaft für Fränkische Geschichte, Reihe IX. Darstellungen aus der Fränkischen Geschichte, Bd. 37/1 und 2). Neustadt/Aisch, 1988. Borchardt 2009 Borchardt, Karl: Spätmittelalterliche Normensetzung durch den Rat der Reichsstadt Rothenburg ob der Tauber. In: Weber, Andreas Otto (Hg.): Städtische Normen – genormte Städte. Zur Planung und Regelhaftigkeit urbanen Lebens und regionaler Entwicklung zwischen Mittelalter und Neuzeit. 43. Arbeitstagung in Rothenburg o. d. T., 12–14. November 2004. (Stadt in der Geschichte, Bd. 34) Ostfildern, 2009, 13–32.

Literatur

283

Borgolte 2014 Borgole, Michael: Migrationen im Mittelalter. Ein Überblick. In: Borgolte, Michael (Hg.): Migrationen im Mittelalter: Ein Handbuch. Berlin, 2014, 21–34. Brackmann 1955 Brackmann, Albert: Zur politischen Bedeutung der kluniazensischen Bewegung. (Libelli Bd. XXVI) Darmstadt, 1955. Braun 1907 Braun, Joseph: Die liturgische Gewandung im Occident und Orient nach Ursprung und Entwicklung, Verwendung und Symbolik. Freiburg im Breisgau, 1907. Braunfels 1965 Braunfels, Wolfgang: Drei Bemerkungen zur Geschichte und Konstruktion der Florentiner Domkuppel. In: Mitteilungen des Kunsthistorischen Institutes in Florenz, Bd. 11, Heft 4, 1965, 203–226. Braunfels 1976 Braunfels, Wolfgang: Abendländische Stadtbaukunst. Herrschaftsform und Bauform. Köln, 1976. Braunfels 2012 Braunfels, Wolfgang: Mittelalterliche Stadtbaukunst in der Toskana. Mit neuen Farbfotografien sowie mit einem Vor- und Nachwort versehen und herausgegeben von Stephan Braunfels. Berlin, 2012. von den Brincken 1968 von den Brincken, Anna-Dorothee: Mappa mundi und Chronographia. Studien zur imago mundi des abendländischen Mittelalters. In: Deutsches Archiv für Erforschung des Mittelalters, Bd. 24, 1968, 118–186. von den Brincken 1983 von den Brincken, Anna-Dorothee: Weltbild der lateinischen Universalhistoriker und -kartographen. In: Settimane di studio del Centro italiano di studi sull’alto medioevo, Bd. XXIX: Popoli e paesi nella cultura altomedivale.1983, 377–421. von den Brincken 1988 von den Brincken, Anna-Dorothee: Kartographische Quellen. Welt-, See- und Regionalkarten. (Typologie des sources du moyen âge occidental, Bd. 51) Turnhout, 1988. von den Brincken 1992 von den Brincken, Anna-Dorothee: Fines Terrae. Die Enden der Welt und der vierte Kontinent auf mittelalterlichen Weltkarten (Monumenta Germania Historica, Schriften, Bd. 36) Hannover, 1992. von den Brincken 2010 von den Brincken, Anna-Dorothee: Weltbild und Welterkenntnis in der Kartographie um 1308. Die Ebstor­ fer Weltkarte und die Rundkarte im Portulan-Atlas des Pietro Vesconte. In: Speer, Andreas/Werner, Daniel (Hg.): 1308. Eine Topographie historischer Gleichzeitigkeit. (Miscellanea Mediaevalia, Bd. 35), 2010, 13–26. Brinkmann 1971 Brinkmann, Hennig: Verhüllung (»integumentum«) als literarische Darstellungsform des Mittelalters. In: Zimmermann, Albert (Hg.): Der Begriff der Repraesentatio im Mittelalter. Stellvertretung, Symbol, Zeichen, Bild. (Miscellanea Mediavalia. Veröffentlichungen des Thomas-Institutes der Universität Köln. Bd. 8) Berlin/New York, 1971, 314–339. Brinckmann 1925 Brinckmann, Albert Erich: Stadtbaukunst vom Mittelalter bis zur Neuzeit. Potsdam, 19252. Brown 1980 Brown, Frank E.: Cosa – The Making of a Roman Town. Michigan, 1980. Brückle 2005 Brückle, Wolfgang: Civitas terrena. Staatsrepräsentation und politischer Aristotelismus in der französischen Kunst 1270–1380. (Kunstwissenschaftliche Studien, Bd. 124) München, Berlin, 2005.

284

Anhang

Bruhn/Bickendorf 2013 Bruhn, Matthias/Bickendorf, Gabriele.: Das Bild der Stadt. In: Mieg, Harald A./Heyl, Christoph: Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 200–243. Burckhardt/Ungern-Sternberg 2000 Burckhardt, Leonhard/Ungern-Sternberg, Jürgen: Große Prozesse im antiken Athen. München, 2000. Bucher 1972 Bucher, François: Medieval Architectural Design Methods 800–1560. In: Gesta, Bd. XI/2, 1972, 37–51. Buchinger 2013 Buchinger, Kirstin: Das Gedächtnis der Stadt. In: Mieg, Harald A./Heyl, Christoph: Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 263–270. Buchs et. al. 1964 Buchs, Hermann/Hager, Rolf/Keller, Karl: Die Zähringerstädte. Dokumente zum Städtebau des Hochmittelalters aus 15 Städten Süddeutschlands und der Schweiz. 700 Jahre Jahre Thuner Handveste. Jubiläumsausstellung im Schloss Thun. Thun, 1964. van Buren 1952 van Buren, E. Douglas: Foundation Rites for a New Temple. In: Orientalia, Nova Series, Bd. 21, 1952, 293–306. Bürger 2007 Bürger, Stefan: Figurierte Gewölbe zwischen Saale und Neiße. Bd. 1, Weimar, 2007. Burkert 1962 Burkert, Walter: Weisheit und Wissenschaft. Studien zu Pythagoras, Philolaos und Platon. (Erlanger Beiträge zur Sprach- und Kunstwissenschaft, Bd. X) Nürnberg, 1962. Burkert 1977 Burkert, Walter: Griechische Religion der archaischen und klassischen Epoche. (Die Religionen der Menschheit. Bd. 15) Stuttgart, 1977. Burkert 1984 Burkert, Walter: Die orientalisierende Epoche in der griechischen Religion und Literatur. (Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Philosophisch-historische Klasse, Jahrgang 1984, Bericht I) Heidelberg, 1984. Buselli 1970 Buselli, Franco: Pietrasanta e le sue rocche. Urbanistica, storia e struttura di un centro medievale a pianta preordinata, contributo alla storia dell’urbanistica e alla storia dell’arte. Firenze, 1970. Cante 2010 Cante, Marcus: Klosteranlagen der Bettelorden und ihre Nutzung. Das Beispiel des Dominikanerklosters Brandenburg an der Havel. In: Schumann, Dirk (Hg.): Brandenburgische Franziskanerklöster und norddeutsche Bettelordensbauten: Architektur – Kunst – Denkmalpflege. Beiträge der am 5. und 6. Oktober 2007 in Gransee durchgeführten Tagung. Berlin, 2010, 61–82. Carlen 2003 Carlen, Louis: Kreuz. In: Lexikon des Mittelalters, Bd. V, 2003, Sp. 1494. Casel 1960 Casel, Odo: Das christliche Kultmysterium. Regensburg, 19604. Carruthers/Ziolkowski 2002 Carruthers, Mary/Ziolkowski, Jan M.: The Medieval Craft of Memory. An Anthology of Texts and Pictures. Philadelphia, 2002. Cassagne/Korsak 2013 Cassagne, Jean-Maire/Karsak, Mariola: Villes et Villages en pays lotois. Vayrac, 2013. Cassirer 2010 Cassirer, Ernst: Philosophie der symbolischen Formen. Zweiter Teil: Das mythische Denken. Text und Anmerkungen bearbeitet von Claus Rosenkranz. Hamburg, 2010.

Literatur

285

de Champeaux/Sterckx 1990 de Champeaux, Gérard/Sterckx, Sébastien: Einführung in die Welt der Symbole. Würzburg, 1990. Chenu 2008 Chenu, Marie-Dominique: Die Theologie als Wissenschaft im 13. Jahrhundert. (Collection Chenu, Bd. 4) Ostfildern, 2008. Childe 1936 Childe, Gordon V.: Man Makes Himself. London, 1936. Childe 1950 Childe, Gordon V.: The Urban Revolution. In: The Town Planning Review, Bd. 21/1, 1950, 3–17. Church 2010 Church, S.D.: King John’s Testament and the Last Days of his Reign. In: English Historical Review, 2010, 1–24. Clasen 1943 Clasen, Karl Heinz: Die ordenspreußische Stadt als Kunstwerk. In: Tintelnot, Hans (Hg.): Kunstgeschichtliche Studien. Festschrift für Dagobert Frey. Breslau, 1943, 9–23. Clauswitz 1906 Clauswitz, Paul: Die Pläne von Berlin und die Entwicklung des Weichbilds. Festschrift zur Feier der Silbernen Hochzeit Ihrer Majestäten des Kaisers Wilhelm II. und der Kaiserin Auguste Victoria. Berlin, 1906. Coarelli 2005 Coarelli, Filippo: L’orientamento e il significato ideologico della pianta marmorea severiania di Roma. In: Gros, Pierre (Hg.): Théorie et pratique de l’architecture romaine. La norme et l’expérimentation. Aix-enProvence, 2005, 61–68. Cohen 2000 Cohen, Ada S.: The Uta Codex. Art, Philosophy, and Reform in Eleventh-Century Germany. Pennsylvania State University, 2000. Conant 1968 Conant, Kenneth: The After-Life of Vitruvius in the Middle Ages. In: Journal of the Society of Architectural Historians, Bd. XXVII, 1, 1968, 33–38. Contin et al. 2010 Contin, Duilio/Odifreddi, Piergiorgio/Pieretti, Antonio (Hg.): Antologia della Divina Proporzione di Luca Pacioli, Piero della Francesca e Leonardo da Vinci. Florenz, 2010. Cooper 1970 Cooper, Janet M.: The last four Anglo-Saxon Archbishops of York. (Borthwick Papers Nr. 38) York, 1970. Coray-Lauer 2007 Coray-Lauer, Gion Gieri: Beobachtungen des Lichteinfalls in karolingischen Kirchen Graubündens. In: Sennhauser, Hans Rudolf (Hg.): Müstair, Kloster St. Johann. Bd. 4: Naturwissenschaftliche Beiträge. Zürich, 2007, 273–316. Corboz 1994 Corboz, André: La ville comme temple. In: Compar(a)ison. An International Journal of Comparative Literature. 1994/II: Jerusalem – visions, phantasies and transpositions of the Holy City. Bern, 1994, 7–40. Cramer 2013 Cramer, Johannes: Architektur. Stadtplanung und Städtebau. In: Mieg, Harald A./Heyl, Christoph: Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 18–45. Crummy 1979 Crummy, P.: The System of Measurement used in Town Planning from the Ninth to the Thirteenth Centuries. Anglo-saxon Studies in Archaeology and History, Bd. 1, 1979, 149–164. Csendes 1975 Csendes, Peter: Straßen und Plätze Wiens im Mittelalter. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41.

286

Anhang

Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 21–23. Czeike 1992–2004 Czeike, Felix: Historisches Lexikon Wien in 6 Bänden. Wien, 1992–2004. Daniel 1870 Daniel, Hermann, Adalbert: Handbuch der Geographie: Erster Theil: Allgemeine Geographie. Die außereuropäischen Erdtheile. Leipzig, 1870. Daniels 2013 Daniels, Tobias: Diplomatie, politische Rede und juristische Praxis im 15. Jahrhundert: der gelehrte Rat Johannes Hofmann von Lieser. Göttingen, 2013. Darnton 1989 Darnton, Robert: Das große Katzenmassaker. Streifzüge durch die französische Kultur vor der Revolution. München/Wien, 1989. Dartmann 2007 Dartmann, Christoph: Der Stadtpatron in der kollektiven Identität des frühkommunalen Italiens. In: Bauer, Dieter et. al. (Hg.): Patriotische Heilige. Beiträge zur Konstruktion religiöser und politischer Identitäten in der Vormoderne. (Beiträge zur Hagiographie, Bd. 5), Stuttgart, 2007, 179–192. Davidsohn 1908 Davidsohn, Robert: Forschungen zur älteren Geschichte von Florenz. Theil 4: 13. und 14. Jahrhundert. Berlin, 1908. Dean 2000 Dean, Trevor: The Towns of Italy in the Later Middle Ages. Manchester und New York, 2000. Dehio 1895 Dehio, Georg: Ein Proportionsgesetz der antiken Baukunst und sein Nachleben im Mittelalter und in der Renaissance. Straßburg, 1895. Dehio/Betzold 1898 Dehio, Georg/Betzold, Gustav von: Die kirchliche Baukunst des Abendlandes, historisch und systematisch dargestellt. Bd. 2, 1. Hälfte, 3. Buch: Der gotische Stil. Stuttgart, 1898. Dehio 1979 Dehio, Georg: Handbuch der Deutschen Kunstdenkmäler. Fortgeführt durch Ernst Gall. Bayern I: Franken. München, 1979. Dehio 2012 Dehio, Georg: Handbuch der deutschen Kunstdenkmäler. Brandenburg. München, 2012. Demmin 1869 Demmin, August: Die Kriegswaffen in ihrer historischen Entwickelung von der Steinzeit bis zur Erfindung des Zündnadelgewehrs. Leipzig, 1869. Demurger 2002 Demurger, Alain: Ritter des Herrn. Geschichte der geistlichen Ritterorden. München, 2003. Deutsch 1923 Deutsch, Monroe E.: E Pluribus Unum. In: The Classical Journal, Bd. 18, Nr. 7, April, 1923, 387–407. Deutsches Städtebuch 2003 Deutsches Städtebuch: Handbuch städtischer Geschichte. Begründet von Erich Keyser im Institut für Vergleichende Städtegeschichte der Universität Münster. Bd. 3,2: Hinterpommern. Stuttgart, 2003. de Vogel 1972 de Vogel, Cornelia J.: Probleme der späteren Philosophie Platons. In: Wippern, Jürgen (Hg.): Das Problem der ungeschriebenen Lehre Platons. Beiträge zum Verständnis der platonischen Prinzipienphilosophie. München, 1972, 41–87.

Literatur

287

Dilke 1991 Dilke, Reinhard Ottway: Mathematik, Maße und Gewichte in der Antike. Stuttgart, 1991. Dinkler 1967 Dinkler, Erich: Zum Problem der Ethik bei Paulus. Rechtsnahme und Rechtsverzicht (1Kor 6,1–11). In: Erich Dinkler: Signum Crucis. Aufsätze zum Neuen Testament und zur Christlichen Archäologie. Tübingen, 1967, 204–240. Dinkler 1967a Dinkler, Erich: Kreuzzeichen und Kreuz. Tav, Chi und Stauros. In: Erich Dinkler: Signum Crucis. Aufsätze zum Neuen Testament und zur Christlichen Archäologie. Tübingen, 1967, 26–54. Dölger 1929 Dölger, Franz Josef: Der Stempel mit Pentagramm, Θ und ΥΓΙΕΙΑ im Historischen Museum zu Basel, kein heidnischer oder christlicher Weihbrotstempel, sondern der Stempel eines antiken Arztes. In: Dölger, Franz Josef: Antike und Christentum (Kultur- und religionsgeschichtliche Studien, Bd. 1) Münster, 1929, 47–53. Döring 2009 Döring, Klaus: Zur Biographie Platons. In: Horn, Christoph/Müller, Jörn/Söder, Joachim (Hg.): Platon Handbuch. Leben – Werk – Wirkung. München, 2006, 1–18. Dubourg 2002 Dobourg, Jacques: Histoire des bastides. Les villes neuves du Moyen Âge. Paris, 2002. Duby 1979 Duby, Georges: Der heilige Bernhard und die Kunst der Zisterzienser. Frankfurt am Main, 1979. Duden 1989 Duden: Etymologie. Herkunftswörterbuch der deutschen Sprache. Bearbeitet und erweitert von Günther Drosdowski. (Duden, Bd. 7) Mannheim, Wien, Zürich, 19892. Durach 1921 Durach, Felix: Mittelalterliche Bauhütten und Geometrie. Stuttgart, 1921. Düriegl 1975 Dürigel, Günter: Wien vom Hochmittelalter bis zum Beginn der Neuzeit – ein historischer Abriß. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 15–20. Dürr 2009 Dürr, Oliver: Der Engel Mächte. Systematisch-theologische Untersuchung: Angelologie. Stuttgart, 2009. Ebel 1958 Ebel, Wilhelm: Der Bürgereid als Geltungsgrund und Gestaltungsprinzip des deutschen mittelalterlichen Stadtrechts. Weimar, 1958. Ebel/Schelling 2002 Ebel, Friedrich/Schelling, Renate: Die Bedeutung deutschen Stadtrechts im Norden und Osten des mittelalterlichen Europas. Lübisches und Magdeburger Recht als Gegenstand von Kulturtransfer und Träger der Moderne. In: Schweitzer, Robert (Hg.): Die Stadt im europäischen Nordosten: Kulturbeziehungen von der Ausbreitung des Lübischen Rechts bis zur Aufklärung. Beiträge anlässlich des II. Internationalen Symposiums zur Deutschen Kultur im Europäischen Nordosten der Stiftung zur Förderung Deutscher Kultur (Aue-Stiftung) Helsinki in Zusammenarbeit mit dem Stadtarchiv Tallinn vom 10. bis 13. September 1998 in Tallinn, Estland. Helsinki, 2002, 35–46. Eco 2009 Eco, Umberto: Geschichte der Schönheit. Hamburg, 2009³. Edson et al. 2011 Edson, Evelyn/Savage-Smith, Emily/von den Brincken, Anna-Dorothee: Der mittelalterliche Kosmos. Karten der christlichen und islamischen Welt. Darmstadt, 2011.

288

Anhang

Elam 2001 Elam, Kimberly: Geometry of Design. Princeton, 2001. Eliade 1956 Eliade, Mircea: Cosmos and History. The Myth of the Eternal Return. New York, 1956. Eliade 1992 Eliade, Mircea: The Sacred and the Profane. The Nature of Religion. The Significance of Religious Myth, Symbolism, and Ritual within Life and Culture. New York, 1992. El-Khoury/Robbins 2013 El-Khoury, Rodolphe/Robbins, Edward: Shaping the City. Studies in History, Theory and Urban Design. London, 2013. Ellard 2007 Ellard, Peter: The Sacred Cosmos: Theological, Philosophical, and Scientific Conversations in the Early Twelfth Century School of Chartres. Scranton, 2007. Engel 1989 Engel, Evamaria: Hansische Stadtgeschichte – brandenburgische Landesgeschichte. Berlin, 1989. Engel 1993 Engel, Evamaria: Die deutsche Stadt des Mittelalters. München, 1993. Engel 2000 Engel, Ute: Die Kathedrale von Worcester. (Kunstwissenschaftliche Studien, Bd. 88) München, Berlin, 2000. Engelmann 1961 Engelmann, Erika: Zur »Kontinuitätstheorie« in der westdeutschen stadtgeschichtlichen Forschung. In: Zeitschrift für Geschichtswissenschaft, Bd. 9, 1961, 628–644. Englisch 2002 Englisch, Brigitte: Ordo orbis terrae. Die Weltsicht in den Mappae mundi des frühen und hohen Mittelalters. (Orbis mediaevalis. Vorstellungswelten des Mittelalters, Bd. 3) Berlin, 2002. Ennen 1953 Ennen, Edith: Frühgeschichte der europäischen Stadt. Bonn, 1953. Ennen 1987 Ennen, Edith: Die europäische Stadt des Mittelalters. Göttingen, 19874. Erler 2009 Erler, Michael: Kontexte der Philosophie Platons. In: Horn, Christoph/Müller, Jörn/Söder, Joachim (Hg.): Platon Handbuch. Leben – Werk – Wirkung. München, 2006, 61–99. Escherich et al. 2007 Escherich, Mark/Misch, Christian/Müller, Rainer A. (Hg.): Entstehung und Wandel mittelalterlicher Städte in Thüringen. (Erfurter Studien zur Kunst- und Baugeschichte, Bd. 3) Berlin, 2007. Euler 1988. Euler, Bernd: Kunstwerk Stadt. Österreichische Stadt- und Ortsdenkmale. Salzburg, Wien, 1988. Fabritius 2005 Fabritius, Helga: Jerusalem und andere Paradiese. Das Bild vom Paradies im Mittelalter. In: Bergstedt, Clemens/Heimann, Heinz-Dieter (Hg.): Wege in die Himmelsstadt. Bischof – Glaube – Herrschaft 800–1550. (Veröffentlichungen des Museums für Brandenburgische Kirchen- und Kulturgeschichte des Mittelalters, Bd. 2) Berlin, 2005, 56–65. Fasching 1994 Fasching, Gerd: Sternbilder und ihre Mythen. Wien, New York, 19942. Fassmann et al. 2009 Fassmann, Heinz/Hatz, Gerhard/Matznetter, Walter (Hg.): Wien. Städtebauliche Strukturen und gesellschaftliche Entwicklungen. Wien, Köln, Weimar, 2009.

Literatur

289

Fauth 1979 Fauth, Wolfgang: Der königliche Gärtner und Jäger im Paradeisos. Beobachtungen zur Rolle des Herrschers in der vorderasiatischen Hortikultur. In: Persica, Bd. 8, 1979, 1–53. Fehn 2003 Fehn, Klaus: Ackerbürgerstadt. In: Lexikon des Mittelalters, Bd. I, Sp. 81. Fehring 1996 Fehring, Günter P.: Stadtarchäologie in Deutschland. Stuttgart, 1996. Fehring 2000 Fehring, Günter P.: Die Archäologie des Mittelalters. Darmstadt, 20003. Ferber 2007 Ferber, Rafael: Warum hat Platon die »ungeschriebene Lehre« nicht geschrieben? München, 2007. Fettweis 1958 Fettweis, Ewald: Orientierung und Messung in Raum und Zeit bei Naturvölkern. In: Studium Generale, Bd. 11, Heft 1, 1958, 1–11. Fidora 2003 Fidora, Alexander: Die Wissenschaftstheorie des Dominicus Gundissalinus. Voraussetzungen und Konsequenzen des zweiten Anfangs der aristotelischen Philosophie im 12. Jahrhundert. (Wissenskultur und gesellschaftlicher Wandel, Bd. 6) Berlin, 2003. Fischer 1956 Fischer, Theodor: Zwei Vorträge über Proportionen. München, 19562. Fisseni 2004 Fisseni, Hermann-Josef: Lehrbuch der psychologischen Diagnostik: Mit Hinweisen zur Intervention. Göttingen u. a., 20043. Flach 1893 Flach, Jacques: Les origines de l’ancienne France, Bd. II. Paris, 1893. Flachenecker 2010 Flachenecker, Helmut: Die Darstellung der Stadt im Historischen Atlas von Bayern, Teil Franken. In: Zeitschrift für bayerische Landesgeschichte Bd. 73, 2010, 761–778. Flammarion 1888 Flammarion, Camille: L‘Atmosphère. Météorologie Populaire. Paris, 1888. Flatten 1929 Flatten, Heinrich: Die Philosophie des Wilhelm von Conches. Koblenz, 1929. Fleckenstein 1958 Fleckenstein, Joachim Otto: Die Erweiterung des kosmischen Raumbegriffs in der Geschichte der Raummessung. In: Studium Generale, Bd. 11, Heft 1, 1958, 29–34. Folkerts 1970 Folkerts, Menso: Einleitung. In: »Boethius« Geometrie II. Ein mathematisches Lehrbuch des Mittelalters. Wiesbaden, 1970, 1–107. Folkerts 1989 Folkerts, Menso: Maß, Zahl und Gewicht. Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung. Ausstellung im Zeughaus vom 15. Juli bis 24. September 1989. Wiesbaden, 1989. Franz 2009 Franz, Leonie: Im Anfang war das Tier. Zur Funktion und Bedeutung des Hirsches in mittelalterlichen Gründungslegenden. In: Obermaier, Sabine (Hg.): Tiere und Fabelwesen im Mittelalter. Berlin, New York, 2009, 261–280. France 1998 France, James: The Cistercians in Medieval Art. Gloucestershire, 1998.

290

Anhang

Fredel 1998 Fredel, Jürgen: Maßästhetik. Studien zu Proportionsfragen und zum Goldenen Schnitt (Kunstgeschichte, Bd. 57) Hamburg, 1998. Frenzl 1997 Frenzl, Annemarie: Der Stephansdom – Museum oder Gotteshaus? In: 850 Jahre St. Stephan: Symbol und Mitte in Wien 1147–1997. 226. Sonderausstellung Historisches Museum der Stadt Wien. Wien, 1997, 9–27. Friedman 1988 Friedman, David: Florentine New Towns. Urban Design in the Late Middle Ages. (Architectural History Foundation Books, Bd. 12) New York, 1988. Friesenhahn 1970 Friesenhahn, Peter: Hellenistische Wortzahlenmystik im Neuen Testament. Amsterdam, 19702. Fritz 1894 Fritz, Johannes: Deutsche Stadtanlagen. Beilage zum Programm Nr. 520 des Lyzeums Straßburg. Strassbourg, 1894. Fritz 1968 Fritz, Kurt von: Platon in Sizilien und das Problem der Philosophenherrschaft. Berlin, 1968. Fritzsche et al. 2006 Fritzsche, Bruno/Gilomen, Hans-Jörg/Stercken, Martina (Hg.): Städteplanung – Planungsstädte. Zürich, 2006. Frölich 1969 Frölich, Karl: Das verfassungstopographische Bild der mittelalterlichen Stadt im Lichte der neueren Forschung. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Bd.: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) 1969, 274–330. Funk 1931 Funk, Philipp: Überwelt und Welt im Mittelalter. In: Historisches Jahrbuch, Bd. 51, 1931, 30–46. Gabler 1987 Gabler, Darius: Die semantischen und syntaktischen Funktionen im Tractatus de Modis Significandi Sive Grammatica Speculativa des Thomas von Erfurt: Die Probleme der Mittelalterlichen Semiotik. (Europäische Hochschulschriften/European University Studies/Publications Universitaires Européennes, Bd. 944) Bern, Frankfurt am Main, New York, Paris, 1987. Gadamer 1995a Gadamer, Hans-Georg: Hermeneutik auf der Spur. In: Gesammelte Werke, Bd. 10: Hermeneutik im Rückblick. Tübingen, 1995, 148–174. Gadamer 1995b Gadamer, Hans-Georg: Die Idee der praktischen Philosophie. In: Gesammelte Werke, Bd. 10: Hermeneutik im Rückblick. Tübingen, 1995, 238–246. Gaiser 1963 Gaiser, Konrad: Platons ungeschriebene Lehre. Studien zur systematischen und geschichtlichen Begründung der Wissenschaften in der Platonischen Schule. Stuttgart, 1963. Gamber 2003 Gamber, Ortwin: Schild. In: Lexikon des Mittelalters, Bd. VII, Sp. 1462. Gantner 1928 Gantner, Joseph: Grundformen der europäischen Stadt: Versuch eines historischen Aufbaues in Genealogien. Wien, 1928. Gargola 1995 Gargola, Daniel J.: Lands, Laws, & Gods: Magistrates & Ceremony in the Regulation of Public Lands in Republican Rome. Chapel Hill, 1995.

Literatur

291

Gąsiorowski 1974 Gąsiorowski, Eugeniusz: Das Altstädtische Rathaus in Toruń – Thorn. Ein Beitrag zur mittelalterlichen Entwurfstechnik. In: Hafnia. Copenhagen Papers in the History of Art, Bd. 3, 1974, 47–66. Geertz 1983 Geertz, Clifford: Dichte Beschreibung. Beiträge zum Verstehen kultureller Systeme. Frankfurt am Main, 1983. Gehrke 1998 Gehrke, Hans-Joachim: Die Geburt der Erdkunde aus dem Geist der Geometrie. Überlegungen zur Entstehung und zur Frühgeschichte der wissenschaftlichen Geographie der Griechen. In: Kullmann, Wolfgang (Hg.): Gattungen wissenschaftlicher Literatur in der Antike. (ScriptOralia, Bd. 95, Reihe A: Altertumswissenschaftliche Reihe, Bd. 22) Tübingen, 1998, 163–192. van Gennep 2005 van Gennep, Arnold: Übergangsriten (Les rites de passage). Frankfurt am Main, New York, 20053. Gerber 2007 Gerber, Roland: Wehrhaft, heilig und schön. Selbstverständnis, Außensicht und Erscheinungsbilder mittelalterlicher Städte im Südwesten des Reiches. In: Jäschke, Kurt-Ulrich/Schrenk, Christian (Hg.): Was machte im Mittelalter zur Stadt? Selbstverständnis, Außensicht und Erscheinungsbilder mittelalterlicher Städte. Vorträge des gleichnamigen Symposiums vom 30. März bis 2. April 2006 in Heilbronn. Heilbronn, 2007, 25–46. Gericke 1990 Gericke, Helmuth: Mathematik im Abendland. Von den römischen Feldmessern bis zu Descartes. Berlin, 1990. Gerlach 1963 Gerlach, Walther: Stadtgestaltungsforschung. In: Studium Generale, Jg. 16, Heft 6, 1963, 323–345. Geßner 2012 Geßner, Kerstin: Eine Brücke zwischen Slawen und Deutschen – Die Schiffahrt in Wusterhausen/Dosse. In: Mitteilungen des Vereins für Geschichte der Prignitz, Bd. 12, 165–176. Geßner 2015a Geßner, Kerstin: Stadt, Recht und Weltenordnung. Zur Geometrie von Rechtsritual und Stadttopographie am Beispiel der frühneuzeitlichen Strafjustiz in Berlin-Cölln. In: Bibliographie zur Symbolik, Ikonographie und Mythologie Bd. 46, 2013 (2015), 5–22. Geßner 2015b Geßner, Kerstin: Bausteine für das Himmlische Jerusalem. Glasfoliierte Steine aus dem Kyritzer Kloster St. Johannis und die Bauallegorese der Franziskanerarchitektur. In: Zeitschrift für Archäologie des Mittelalters Bd. 42, 2014 (2015), 203–216. Geßner/Dittrich 2018 Geßner, Kerstin/Dittrich, Annett: Kyritzer Knatterwasser. Zum planmäßigen Ausbau von Straßenbau und Wasserversorgung in Kyritz Lkr. Ostprignitz-Ruppin. In: Archäologie in Berlin und Brandenburg 2016 (2018), 92–95. Geßner 2020 (im Druck) Geßner, Kerstin: Stadt und Kosmos. Zur astronomischen Orientierung mittelalterlicher Stadtanlagen in Europa. In: Maß und Mythos. Zahl und Zauber. Die Vermessung von Himmel und Erde. Tagung der Gesellschaft für Archäoastronomie in Dortmund 2018. (Nuncius Hamburgensis, Bd. 48), 2020 (im Druck). Ghyka 1931 Ghyka, Matila C.: Le Nombre d’Or. Rites et rythmes pythagoriciens dans le développement de la civilisation occidentale. Bd. 1: Les Rythmes, précédé d’une lettre de Paul Valéry. Paris, 1931. Giebel 1993. Giebel, Marion: Das Geheimnis der Mysterien. Antike Kulte in Griechenland, Rom und Ägypten. München, 1993.

292

Anhang

Gildhoff 2003 Gildhoff, Christian: Area Flaviae – Rotunvilla – Rottweil. Der lange Weg zur Stadt Rottweil. In: Maulhardt, Heinrich/Zotz, Thomas (Hg.): Villingen 999–1218. Aspekte seiner Stadtwerdung und Geschichte bis zum Ende der Zähringerzeit im überregionalen Vergleich. Waldkirch, 2003, 99–128. Gläser 1993. Gläser, Manfred (Hg.): Archäologie des Mittelalters und Bauforschung im Hanseraum. Eine Festschrift für Günter P. Fehring. Rostock, 1993. Götze 1984 Götze, Heinz: Castel del Monte. Gestalt, Herkunft und Bedeutung. (Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Philosophisch-historische Klasse, Jahrgang 1984, Bericht 2) Heidelberg, 1984. Gradmann 1907 Gradmann, Eugen: Die Kunst- und Altertums-Denkmale der Stadt und des Oberamtes Schwäbisch-Hall. Esslingen, 1907. Graliński 2005 Graliński, Grzegorz: Strzelce Krajeńskie-Friedeberg in der Neumark: Geschichte einer Stadt. Strzelce Krajeńskie, 2005. von Greyerz 1996 von Greyerz, Kaspar: Grenzen zwischen Religion, Magie und Konfession aus der Sicht der frühneuzeitlichen Mentalitätsgeschichte. In: Guy P. Marchal (Hg.): Grenzen und Raumvorstellungen, 11.–20. Jh.; Frontières et conceptions de l’éspace, 11e-20e siècles, (Chronos, Bd. 3) Göttingen, 1996, 329–343. Gruber 1977 Gruber, Karl: Die Gestalt der deutschen Stadt. Ihr Wandel aus der geistigen Ordnung der Zeiten. München, 1977. Gruber 2011 Gruber, Joachim: Boethius. Eine Einführung. (Standorte in Antike und Christentum, Bd. 2) Stuttgart, 2011. Guidoni 2003 Guidoni, Enrico: Arnolfo di Cambio urbanista. (Civitates, Bd. 8: Urbanistica, archeologia, architettura delle città medievali) Rom, 2003. Guldentops 2009 Guldentops, Guy: Lateinisches Mittelalter. In: Horn, Christoph/Müller, Jörn/Söder, Joachim (Hg.): Platon Handbuch. Leben – Werk – Wirkung. München, 2006, 446–452. Gundling 1734 Gundling, Nicolaus-Hieronymus: Ausführlicher Discours über das Natur- und Völcker-Recht. Nach Anleitung und Ordnung des von Ihm selbst zum zweyten mahl herausgegebenen Iuris Naturae ac gentium. Frankfurt am Main, 1734. Günther 1898 Günther, S.: Der Jakobstab als Hilfsmittel geographischer Ortsbestimmung. In: Geographische Zeitschrift, Bd. 4/3, 1898, 157–167. Gurjewitsch 1972 Gurjewitsch, Aaron J.: Das Weltbild des mittelalterlichen Menschen. Mit einem Nachwort von Hubert Mohr. (Fundus Bücher 55/56/57) Dresden, 1972. Gutscher 2004 Gutscher, Daniel: Areale und Parzellen: Sind Planungsschritte archäologisch nachweisbar? In: In: Mitteilungen der DGAMN: Die vermessene Stadt. Mittelalterliche Stadtplanung zwischen Mythos und Befund, Bd. 15, 2004, 103–106. Haase 1963 Haase, Carl: Die mittelalterliche Stadt als Festung. In: Studium Generale, Jg. 16, Heft 6, 1963, 379–390. Haase 1969b

Literatur

293

Haase, Carl: Einleitung. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Band: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) Darmstadt, 1969, 1–6. Haase 1969c Haase, Carl: Stadtbegriff und Stadtentstehungsgeschichten in Westfalen. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Band: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) Darmstadt, 1969, 60–94. Haass 1909 Haass, Ludwig: Hildesheim: ein Führer für Einheimische und Fremde. Hildesheim, 1909. Hahnloser 1935 Hahnloser, Hans R.: Villard de Honnecourt: kritische Gesamtausgabe des Bauhüttenbuches ms. fr 19093 der Pariser Nationalbibliothek. Wien, 1935. Halfen 2001 Halfen, Roland: Chartres. Schöpfungsbau und Ideenwelt im Herzen Europas. Das Königsportal. Stuttgart, 2001. Halfen 2011 Halfen, Roland: Chartres. Schöpfungsbau und Ideenwelt im Herzen Europas. Die Kathedralschule und ihr Umkreis. Stuttgart, 2011. Hall 1978 Hall, Thomas: Mittelalterliche Stadtgrundrisse. Versuch einer Übersicht in Deutschland und Frankreich (Antivariskt arki, Bd. 66) Stockholm, 1978. Hahn 1957 Hahn, Hanno: Die frühe Kirchenbaukunst der Zisterzienser. Untersuchungen zur Baugeschichte von Kloster Eberbach im Rheingau und ihren europäischen Analogien im 12. Jahrhundert. Berlin, 1957. Hamm 1932 Hamm, Ernst: Die Städtegründungen der Herzöge von Zähringen in Südwestdeutschland. (Veröffentlichungen des Alemannischen Instituts Freiburg im Breisgau, Bd. I) Freiburg im Breisgau, 1932. Hamm 1935 Hamm, Ernst: Die deutsche Stadt im Mittelalter. Stuttgart, 1935. Hänger 2001 Hänger, Christian: Die Welt im Kopf. Raumbilder und Strategie im Römischen Kaiserreich. (Hypomnemata, Bd. 136) Göttingen, 2001. Hardt 2008 Hardt, Matthias: Formen und Wege der hochmittelalterlichen Siedlungsgründung. In: Enno Bünz (Hg.): Ostsiedlung und Landesausbau in Sachsen: die Kührener Urkunde von 1154 und ihr historisches Umfeld. (Schriften zur Sächsischen Geschichte und Volkskunde, Bd. 23) Leipzig, 2008, 143–160. Harl 1975 Harl, Ortolf: Die dunklen Jahrhunderte. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 12–14. Häußermann/Siebel 2004 Häußermann, Hartmut/Siebel, Walter: Stadtsoziologie. Eine Einführung. Frankfurt am Main, 2004. Hautecoeur 1954 Hautecoeur Louis: Mystique et architecture: Symbolism du cercle et de la cupole. Paris, 1954. Haverkamp 1987 Haverkamp, Alfred: ›Heilige Städte‹ im hohen Mittelalter. In: Graus, Frantisek (Hg.): Mentalitäten im Mittelalter. Methodische und inhaltliche Probleme. (Vorträge und Forschungen, Bd. XXXV) Stuttgart, 1987, 119–156. Hawel 2007 Hawel, Peter: Das Mönchtum im Abendland. Ursprung – Idee – Geschichte. München, 2007. Heimann 1966

294

Anhang

Heimann, Adelheid: Three Illustrations from the Bury St. Edmunds Psalter and Their Prototypes. Notes on the Iconography of Some Anglo-Saxon Drawings. In: Journal of the Warburg and Courtauld Institutes, Bd. 29, 1966, 39–59. Heinrich 1973 Heinrich, Gerd (Hg.): Handbuch der historischen Stätten Deutschlands. Bd. 10: Berlin und Brandenburg. Stuttgart, 1973. Heinzle 2011 Heinzle, Joachim: Abriß der Handlung. In: Heinzle, Joachim (Hg.): Wolfram von Eschenbach. Ein Handbuch. Berlin, 2011, 223–263. Heinzmann 1992 Heinzmann, Richard: Philosophie des Mittelalters. (Grundkurs Philosophie, Bd. 7) Berlin, Köln, 1992. Hellgardt 1973 Hellgardt, Ernst: Zum Problem symbolbestimmter und formalästhetischer Zahlenkomposition in mittelalterlicher Literatur. Mit Studien zum Quadrivium und zur Vorgeschichte des mittelalterlichen Zahlendenkens. (Münchner Texte und Untersuchungen zur deutschen Literatur des Mittelalters, Bd. 45) München, 1973. Henkelmann et al. 1987 Henkelmann, Dietrich von/Krämer, Thomas/Engelhardt, Annette: Florenz und die Toscana: Eine Reise in die Vergangenheit von Medizin, Kunst und Wissenschaft. Basel, 1987. Herzig 1872 Herzig, Wenzel: Die angewandte oder praktische Ästhetik oder die Theorie der dekorativen Architektur. Leipzig, 1872. Herzog 1964 Herzog, Ernst: Die ottonische Stadt. Die Anfänge der mittelalterlichen Stadtbaukunst in Deutschland. Berlin, 1964. Heyl 2013 Heyl, Christoph: Stadt und Literatur. In: Mieg, Harald A./Heyl, Christoph (Hg.): Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 200–243. Higounet 1962 Higounet, Charles: Les ›terre nuove‹ florentines du XIVe siècle. In: Studi in onore di Amintore Fanfani. Bd. III: Medioevo. Milano, 1962, 3–17. Hirn 1874 Hirn, Josef: Rudolf von Habsburg. Zur Erinnerung an die vor 600 Jahren stattgehabte Krönung des ersten Habsburgers. Wien, 1874. Hirschmann 2002 Hirschmann Frank G.: Wirtzebirgensis… naturale est destruere et edificare. Bauprojekte und Stadtplanung in Würzburg im hohen Mittelalter. In: Das Mittelalter, Bd. 7, 2002, 39–70. Hirschmann 1998 Hirschmann, Frank G.: Stadtplanung, Bauprojekte und Großbaustellen im 10. und 11. Jahrhundert. Vergleichende Studien zu den Kathedralstädten westlich des Rheins. Stuttgart, 1998. Hofer 1963 Hofer, Paul: Die Städtegründungen des Mittelalters zwischen Genfersee und Rhein. In: Boesch, Hans/Hofer, Paul: Flugbild der Schweizer Stadt. Bern, 1963, 85–144. Hofmeister 1997 Hofmeister, Burkhard: Stadtgeographie. (Das Geographische Seminar) Braunschweig, 19977. Hofrichter 1993 Hofrichter, Hartmut: Architektur des Mittelalters. Braunschweig, Wiesbaden, 19932.

Literatur

295

Hölscher 2006 Hölscher, Tonio: Das Forum Romanum – die monumentale Geschichte Roms. In: Stein-Hölkeskamp, Elke/ Hölkeskamp, Karl-Joachim: Erinnerungsorte der Antike. Die römische Welt. München, 2006, 100–122. Horst 1975 Horst, Eberhard: Friedrich II., der Staufer: Kaiser, Feldherr, Dichter. München, 1975. Hübner 1992 Hübner, Wolfgang: Himmel und Erdvermessung. In: Behrends, Okko/Capogrossi Colognesi, Luigi (Hg.): Die römische Feldmeßkunst. Interdisziplinäre Beiträge zu ihrer Bedeutung für die Zivilisationsgeschichte Roms. (Abhandlungen der Akademie der Wissenschaften in Göttingen. Philologisch-historische Klasse, Dritte Folge, Nr. 193) Göttingen, 140–171. Hueck 1977 Hueck, Irene: Giotto und die Proportion. In: Piel, Friedrich/Traeger, Jörg (Hg.): Festschrift für Wolfgang Braunfels. Tübingen, 1977, 143–155. Hummelberger/Peball 1974 Hummelberger, Walter/Peball, Kurt: Die Befestigungen Wiens. Wien, Hamburg, 1974. Humpert 2003 Humpert, Klaus: Rekonstruktion des Gründungsgrundrisses der Stadt Villingen. In: Maulhardt, Heinrich/ Zotz, Thomas (Hg.): Villingen 999–1218. Aspekte seiner Stadtwerdung und Geschichte bis zum Ende der Zähringerzeit im überregionalen Vergleich. Waldkirch, 2003, 235–267. Humpert/Schenk 2001 Humpert, Klaus/Schenk, Martin: Entdeckung der mittelalterlichen Stadtplanung. Das Ende vom Mythos der »gewachsenen« Stadt. Stuttgart, 2001. Hutter 1996 Hutter, Manfred: Religionen in der Umwelt des Alten Testaments I: Babylonier, Syrer, Perser. (Kohlhammer Studienbücher Theologie, Bd. 4,1) Stuttgart, 1996. Hyslop 1990 Hyslop, John: Inka Settlement Planning. Austin, 1990. Icher 2012 Icher, François: Les œuvriers des cathédrales. Paris, 2012. Igel 2004 Igel, Karsten: Geplant oder gewachsen – ein scheinbarer Widerspruch. Mittelalterliche Stadtentwicklung an den Beispielen Greifswald und Osnabrück. In: Mitteilungen der DGAMN: Die vermessene Stadt. Mittelalterliche Stadtplanung zwischen Mythos und Befund, Bd. 15, 2004, 17–23. Irsliger 2001 Irsigler, Franz: Die Stadt im Mittelalter. Aktuelle Forschungstendenzen. In: Hauptmeyer, Carl-Hans/Rund, Jürgen (Hg.): Goslar und die Stadtgeschichte. Forschungen und Perspektiven 1399–1999. Bielefeld, 2001, 57–74. Isenmann 2012 Isenmann, Eberhard: Die deutsche Stadt im Mittelalter 1150–1550. Stadtgestalt, Recht, Verfassung, Stadtregiment, Kirche, Gesellschaft, Wirtschaft. Köln, Weimar, Wien, 2012. Jankuhn 1973 Jankuhn, Herbert: Einführung. In: Jankuhn, Herbert/Schlesinger, Walter/Steuer, Heiko (Hg.): Vor- und Frühformen der europäischen Stadt im Mittelalter. Bericht über ein Symposium in Reinhausen bei Göttingen in der Zeit vom 18. bis 24. April 1972. Teil 1. Göttingen, 1973, 8–11. Jenisch 1999 Jenisch, Bertram: Die Entstehung der Stadt Villingen. Archäologische Zeugnisse und Quellenüberlieferung. Stuttgart, 1999.

296

Anhang

Jeremias 1913 Jeremias, Alfred: Handbuch der altorientalischen Geisteskultur. Leipzig, 1913. Jesberg 1987 Jesberg, Paulgerd: Vom Bauen zwischen Gesetz und Freiheit. Braunschweig, Wiesbaden, 1987. Jezler 1985 Jezler, Peter: Gab es in Konstanz ein ottonisches Osterspiel? Die Mauritius-Rotunde und ihre kultische Funktion als Sepulchrum Domini. In: Reinle, Adolf et al. (Hg.): Variorum Munera Florum. Latinität als prägende Kraft mittelalterlicher Kultur. Festschrift für Hans F. Haefele. Sigmaringen, 1985, 91–128. Johanek 1994 Johanek, Peter: Landesherrliche Städte, kleine Städte. Umrisse eines europäischen Phänomens. In: Treffeisen, Jürgen/Andermann, Kurt (Hg.): Landesherrliche Städte in Südwestdeutschland. (Reihe: Oberrheinische Studien, Bd. 12) Sigmaringen, 1994, 9–25. Johanek 2010 Johanek, Peter: Stadtgeschichtsforschung – ein halbes Jahrhundert nach Ennen und Planitz. In: Opll, Ferdinand/Sonnlechner, Christoph (Hg.): Europäische Städte im Mittelalter. (Forschungen und Beiträge zur Wiener Stadtgeschichte Bd. 52) Wien, 2010, 45–94. Jung/Reddig 2012 Jung, Norbert/Reddig, Wolfgang: Dem Himmel entgegen – 1000 Jahre Kaiserdom Bamberg 1012–2012. Katalog zur Sonderausstellung des Diözesanmuseums Bamberg vom 4.5.–31.10. Petersberg, 2012. Kaiser 1991 Kaiser, Reinhard: Der Zaun am Ende der Welt. Frankfurt am Main, 1991. Kalia 2000 Kalia, Ravi: Chandigarh: The Making of an Indian City. Oxford India Paperbacks, 2000. Kalvesmaki 2013 Kalvesmaki, Joel: The Theology of Arithmetic. Number Symbolism in Platonism and Early Christianity. Washington, 2013. Kann 2003 Kann, Christoph: Zeichen – Ordnung – Gesetz: Zum Naturverständnis in der mittelalterlichen Philosophie. In: Dilg, Peter (Hg.): Natur im Mittelalter. Konzeptionen – Erfahrungen – Wirkungen. Akten des 9. Symposiums des Mediävistenverbandes, Marburg, 14.–17. März 2001. Berlin, 2003, 33–49. Kantorowicz 1998 Kantorowicz, Ernst H.: Kaiser Friedrich der Zweite. Mit einem biographischen Nachwort von Eckhart Grünewald. Stuttgart, 1998. Kaup 1961 Kaup, Julian: Einführung. In: Bonaventura: Itinerarium mentis in Deum. De reductione artium ad theologiam. Pilgerbuch der Seele zu Gott. Die Zurückführung der Künste auf die Theologie. München, 1961, 9–43. Kessel/Reutlinger 2010 Kessel, Fabian/Reutlinger, Christian: Ökonomischer Raum: Megacities und Globalisierung. In: Günzel, Stephan (Hg.): Raum. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2010, 145–161. Keyser 1939–1974 Keyser, Erich (Hg.): Deutsches Städtebuch: Handbuch städtischer Geschichte. Stuttgart, Berlin, 1939–1974. Keyser 1963 Keyser, Erich: Der Stadtgrundriß als Geschichtsquelle. In: Studium Generale, Jg. 16, Heft 6, 1963, 345–351. Kiesow 1999 Kiesow, Gottfried: Gesamtkunstwerk – Die Stadt. Zur Geschichte der Stadt vom Mittelalter bis in die Gegenwart. Bonn, 1999. Kircheisen 2013 Kircheisen, Friedrich Max: Die Bastille. Hamburg, 2013.

Literatur

297

Kitson 1983 Kitson, Peter: Lapidary Traditions in Anglo-Saxon England. Part II. Bede’s Explanatio Apocalypsis and Related Works. In: Anglo-Saxon England, Bd. 12, 1983, 73–124. Klaiber 1912 Klaiber, Christoph: Die Grundrißbildung der deutschen Stadt im Mittelalter unter besonderer Berücksichtigung der schwäbischen Lande. Berlin, 1912. Klein 1990 Klein, Hejio: Bonn – Universität in der Stadt. Beiträge zum Stadtjubiläum am Dies Academicus 1989, Rheinische Friedrich-Wilhelms-Universität Bonn. (Veröffentlichungen des Stadtarchivs Bonn, Bd. 48) Bonn, 1990. Knefelkamp 1981 Knefelkamp, Ulrich: Das Gesundheits- und Fürsorgewesen der Stadt Freiburg im Breisgau im Mittelalter. Freiburg im Breisgau, 1981. Knefelkamp 2000 Knefelkamp, Ulrich: Stadt und Spital im späten Mittelalter. Ein struktureller Überblick zu Bürgerspitälern süddeutscher Städte. In: Johanek, Peter (Hg.): Städtisches Gesundheits- und Fürsorgewesen vor 1800. Köln u. a. 2000, 19–40. Knefelkamp 2002 Knefelkamp, Ulrich: Das Mittelalter. Geschichte im Überblick. Paderborn, München, Wien, Zürich, 20022. Knefelkamp 2003 Knefelkamp, Ulrich: Alltag in der Stadt und auf dem Land im späteren Mittelalter. In: Butz, Reinhardt/Melville, Gert (Hg.): Coburg 1353. Stadt und Land Coburg im Spätmittelalter. Festschrift zur Verbindung des Coburger Landes mit den Wettinern vor 650 Jahren bis 1918. (Schriftenreihe der Historischen Gesellschaft Coburg, Bd. 17) Coburg, 2003, 41–64. Knittler 1970 Knittler, Herbert: Die Städte des Burgenlandes. Österreichische Akademie der Wissenschaften, Kommission für Wirtschafts-, Sozial- und Stadtgeschichte. Wien, 1970. Kolb 1984 Kolb, Frank: Die Stadt im Altertum. München, 1984. Konrad 1965 Konrad, Robert: Das himmlische und das irdische Jerusalem im mittelalterlichen Denken. Mystische Vorstellung und geschichtliche Wirkung. In: Bauer, Clemens et al. (Hg.): Speculum Historiale. Geschichte im Spiegel von Geschichtsschreibung und Geschichtsdeutung. Festschrift für Johannes Spörl. Freiburg im Breisgau, 1965, 523–540. Korvin-Krasinski 1960 Korvin-Krasinski, Cyrill: Mikrokosmos und Makrokosmos in religionswissenschaftlicher Sicht. Düsseldorf, 1960. Kreusch 1963 Kreusch, Felix: Das Maß des Engels. In: Hoster, Joseph (Hg.): Vom Bauen, Bilden und Bewahren. Festschrift für Willy Weyres zur Vollendung seines 60. Lebensjahres. Köln, 1963, 61–82. Kronberger 2016 Kronberger, Michaela (Hg.): Die Virgilkapelle in Wien. Wien, 2016. Krop 1992 Krop, Henri Adrien: Artificialia und Naturalia von Ockham. Wandlungen in dem Begriff der Unterscheidung zwischen Kunst und Natur. In: Zimmermann, Albert/Speer, Andreas (Hg.): Mensch und Natur im Mittelalter. 2. Halb Bd., Berlin, New York, 1992, 952–964. Kruft 2004 Kruft, Hanno-Walter: Geschichte der Architekturtheorie: von der Antike bis zur Gegenwart. Studienausgabe. München, 20045.

298

Anhang

Kugler 1986 Kugler, Hartmut: Die Vorstellung der Stadt in der Literatur des deutschen Mittelalters. München, Zürich, 1986. Kühn 1963 Kühn, Erich: Glaube in der Stadt. In: Hoster, Joseph (Hg.): Vom Bauen, Bilden und Bewahren. Festschrift für Willy Weyres zur Vollendung seines 60. Lebensjahres. Köln, 1963, 343–355. Kühnel 1975 Kühnel, Harry: Die materielle Kultur Wiens im Mittelalter. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 29–46. Künzl 1988 Künzl, Ernst: Der römische Triumph. Siegesfeiern im antiken Rom. München, 1988. Kürbis 2013 Kürbis, Anja: Der Antichrist im Chorrock. Apokalyptik als Ordnungstheologie. In: Wieser, Veronika (Hg.): Abendländische Apokalyptik: Kompendium zur Genealogie der Endzeit. Berlin, 2013. Küspert 1902 Küspert, Oskar Gottfried Johannes: Über Bedeutung und Gebrauch des Wortes caput im älteren Latein. Eine lexicalisch-semasiologische Untersuchung. Hof, 1902. Kurdziałek 1971 Kurdziałek, Marian: Der Mensch als Abbild des Kosmos. In: Zimmermann, Albert (Hg.): Der Begriff der Repraesentatio im Mittelalter. Stellvertretung, Symbol, Zeichen, Bild (Miscellanea Mediavalia. Veröffentlichungen des Thomas-Institutes der Universität Köln. Bd. 8) Berlin, New York, 1971, 35–75. Kuthan 1996 Kuthan, Jiři: Přemysl Ottokar II. König, Bauherr und Mäzen. Höfische Kunst im 13. Jahrhundert. Wien, Köln, Weimar, 1996. Lanczkowski 1986 Lanczkowski, Günter: Die Inseln der Seligen und verwandte Vorstellungen. (Europäische Hochschulschriften, Reihe XXIII, Bd. 261) Frankfurt am Main, 1986. Lanczkowski et al. 1991 Lanczkowski, Günter/Janke, Wolfgang/Siegmann, Georg: Makrokosmos/Mikrokosmos. In: Theologische Realenzyklopädie. Bd. 21, Berlin/New York 1991, 745–754. Landwehr 2003 Landwehr, Achim: Raumgestalter: Die Konstitution politischer Räume in Venedig um 1600. In: Martschukat, Jürgen/Patzold, Steffen (Hg.): Geschichtswissenschaft und »performative turn«. Ritual, Inszenierung und Performanz vom Mittelalter bis zur Neuzeit. Köln, Weimar, Wien, 2003, 161–183. Large 2000 Large, David Clay: Berlin. Biographie einer Stadt. München, 2000. Lauret et al. 1988 Lauret, Alain/Malebranche, Raymond/Séraphin, Gilles: Bastides. Villes nouvelles du moyen âge. Toulouse, 1988. Lavedan/Hugueney 1974 Lavedan, Pierre/Hugueney, Jeanne: L’urbanisme au moyen âge. Genève, 1974. Leinkauf 2005 Leinkauf, Thomas: Vorwort. In: Leinkauf, Thomas/Steel, Carlos (Hg.): Platons Timaios als Grundtext der Kosmologie in Spätantike, Mittelalter und Renaissance. (Ancient and Medieval Philosophy. De Wulf-Mansion Centre, Series 1, Bd. XXXIV) Leuven, 2005, IX–XXIV. Leisse 2010 Leisse, Gisela: Geometrie und Stadtgestalt. Praktische Geometrie in der Stadt- und Landschaftsplanung der frühen Neuzeit. Berlin, 2010.

Literatur

299

Leitgeb 2012 Leitgeb, Michael: Oberwölz. Versuch einer neuen Sehweise der historischen Stadtgestalt. (grazer edition, Bd. 10) Wien, 2012. Leithäuser 1958 Leithäuser, Joachim G.: Mappae mundi, die geistige Eroberung der Welt. Berlin, 1958. Lelgemann et al. 2005 Lelgemann, Dieter/Knobloch, Eberhard/Fuls, Andreas/Kleineberg, Andreas: Zum antiken astro-geodätischen Messinstrument Skiotherikós Gnomon. In: Zeitschrift für Geodäsie, Geoinformation und Landmanagement, Bd. 130, Heft 4, 2005, 238–247. Lenssen 2002 Lenssen, Jürgen: Domschatz Würzburg. Bearbeitet von Jürgen Emmert und Wolfgang Schneider. (Museumsschriften der Diözese Würzburg, Bd. 1), Würzburg, 2002. Leutzsch 2010 Leutzsch, Martin: Transformationen des Paradieses. Wandlungen eines biblischen Topos. In: Faber, Richard/ Holste, Christine (Hg.): Arkadische Kulturlandschaft und Gartenkunst. Eine Tour d’Horizon. Würzburg, 2010, 37–55. Liebeschütz 1950 Liebeschütz, Hans: Mediaeval Humanism in the life and writings of John Salisbury. (Studies of the Warburg Institute, Bd. 17) London, 1950. Lilley 1998 Lilley, Keith D.: Taking Measures across the Medieval Landscape: Aspects of Urban Design before the Renaissance. In: Urban Morphology, Bd. 2/2, 1998, 82–92. Lilley 2004 Lilley, Keith D.: Cities of God? Medieval Urban Forms and Their Christian Symbolism. In: Transactions of the Institute of British Geographers, New Series, Vol. 29, No. 3, 2004, 296–313. Lilley 2009 Lilley, Keith D.: City and Cosmos. The Medieval World in Urban Form. London, 2009. Llanque 2008 Llanque, Marcus: Politische Ideengeschichte – Ein Gewebe politischer Diskurse. München, Wien, 2008. Lohrmann 1986 Lohrmann, Klaus: Zur Geschichte des Stock-im-Eisen-Platzes. Funktion und Gestaltung. In: Wiener Geschichtsblätter. Verein für Geschichte der Stadt Wien, Bd. 41, 1986, 1–20. Lohse 1998 Lohse, Bernhard: Studien zur Theologie der Kirchenväter und ihre Rezeption in der Reformation. (Evangelium in der Geschichte, Bd. 2) Göttingen, 1998. Lorenz 1997 Lorenz, Chris: Konstruktion der Vergangenheit. Eine Einführung in die Geschichtstheorie. Köln, Weimar, Wien, 1997. Lübke 2003 Lübke, Christian: Lokator. In: Lexikon des Mittelalters, Bd. V, Sp. 2090. Maffei/Vaccaro 1999 Maffei, Gian Luigi/Vaccaro, Paolo: Forma urbana e architettura ad Arezzo e a San Giovanni Valdarno. Firenze, 1999. Mainzer 2010 Mainzer, Klaus: Grundlagen. In: Günzel, Stephan (Hg.): Raum. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2010, 1–23.

300

Anhang

Makowitz et al. 2013 Makowitz, Bärbel/Knitter, Eitel/Kunze, Martin: Templin. Eine märkische Stadt im Wandel der Geschichte. Strasburg, Berlin, 2013. Marruchi 2004 Marruchi, Giovanni: La Banda di San Giovanni Valdarno: duecento anni di musica. San Giovanni Valdarno, 2004. Marx/Engels 1969 Marx, Karl/Engels, Friedrich: Werke. Bd. 8: August 1851 bis März 1853. Berlin, 1969. Masi 1983 Masi, Michael: Boethian Number Theory. A Translation of the De Institutione Arithmetica. Amsterdam, 1983. Mathematikunterricht (MU) 2007 Mathematikunterricht: MU. Beiträge zu seiner fachlichen und fachdidaktischen Gestaltung. Herausgegeben von F. Klett. Bd. 53, 2007. Maurer 1996 Maurer, Helmut: Erzwungene Ferne. Zur räumlichen Dimension der Stadtverweisung im Spätmittelalter. In: Marchal, Guy P. (Hg.): Grenzen und Raumvorstellungen, 11.–20. Jh. – Frontières et conceptions de l’éspace, 11e–20e siècles. (Chronos, Bd. 3) Zürich, 1996, 199–224. Mayer 1926 Mayer, Anton Ludwig: Liturgie und der Geist der Gotik. In: Geschichtliche Aufsätze I, Jahrbuch für Liturgiewissenschaft, Bd. 6, 1926, 68–97. Mayer-Tasch/Mayerhofer 1998 Mayer-Tasch, Peter Cornelius/Mayerhofer, Bernd: Hinter Mauern ein Paradies. Der mittelalterliche Garten. Insel-Bücherei Nr. 1184, Berlin, 1998. Meckseper 1970 Meckseper, Cord: Rottweil. Untersuchungen zur Stadtbaugeschichte im Hochmittelalter. Bd. 1 und 2. Stuttgart, 1970. Meckseper 1985 Meckseper, Cord (Hg.): Stadt im Wandel. Kunst und Kultur des Bürgertums in Norddeutschland 1150–1650. Ausstellungskatalog zur Landesausstellung in Niedersachsen 1985, Bd. 2, Stuttgart, 1985. Meckseper 2011 Meckseper, Cord: Kleine Kunstgeschichte der deutschen Stadt im Mittelalter. Darmstadt, 20113. Meier 1977 Meier, Christel: Gemma Spiritualis. Methode und Gebrauch der Edelsteinallegorese vom frühen Christentum bis ins 18. Jahrhundert. Teil 1. (Münstersche Mittelalter-Schriften, Bd. 34/1) München, 1977. Meier-Oeser 2001 Meier-Oeser, Stephan: Vielheit. In: Historisches Wörterbuch der Philosophie, Bd. 11, Basel, 2001, Sp. 1041–1050. Melville 2007 Melville, Gerd: Himmlisches Jerusalem, Stadtutopien und ihre Abgrenzung von nichtstädtischen Siedlungen im Mittelalter. In: Jäschke, Kurt-Ulrich/Schrenk, Christian (Hg.): Was machte im Mittelalter zur Stadt? Selbstverständnis, Außensicht und Erscheinungsbilder mittelalterlicher Städte. Vorträge des gleichnamigen Symposiums vom 30. März bis 2. April 2006 in Heilbronn. Heilbronn, 2007, 9–24. Mendthal 1886 Mendthal, Hans: Einleitung. In: Geometria Culmensis, ein agronomischer Traktat aus der Zeit Conrad von Jungingen (1393–1407), Leipzig, 1886, 3–11. Meyer/Suntrup 1987 Meyer, Heinz/Suntrup, Rudolf: Lexikon der mittelalterlichen Zahlenbedeutungen. München, 1987.

Literatur

301

Mezger 1999 Mezger, Werner: »Rückwärts in die Zukunft«. Metamorphosen der schwäbisch-alemannischen Fastnacht. In: Matheus, Michael: Fastnacht/Karneval im europäischen Vergleich. (Mainzer Vorträge, Bd. 3) Stuttgart, 1999, 121–174. Michelsen 2003 Michelsen, Jakob: Von Breslau nach Hamburg. Ostforscher am Historischen Seminar der Universität Hamburg nach 1945. In: Hering, Rainer/Nicolaysen, Rainer (Hg.): Lebendige Sozialgeschichte. Gedenkschrift für Peter Borowsky. Wiesbaden, 2003, 659–681. Mieg 2013a Mieg, Harald A.: Einleitung. Perspektiven der Stadtforschung. In: Mieg, Harald A./Heyl, Christoph (Hg.): Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 1–14. Mieg 2013b Mieg, Harald A.: Die Stadt als Feld multidisziplinärer Forschung. In: Mieg, Harald A./Heyl, Christoph (Hg.): Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 15–17. Mihm 2002 Mihm, Julius: Die mittelalterliche Gründungsstadt. Ein Tagungsbericht. In: Die Alte Stadt. Stadtgeschichte und Stadtplanung. Jg. 29, 2002/2, 127–141. Mildenberger 1989 Mildenberger, Gerhard/Schwind, Fred/Udolph, Jürgen: Eresburg. In: Reallexikon der Germanischen Altertumskunde, Bd. 7, Berlin/New York, 1989, 475–482. Miller 1980 Miller, Max (Hg.): Handbuch der historischen Stätten, Bd. 6: Baden-Württemberg, Stuttgart, 19802. Möbius 1995 Möbius, Friedrich: Kosmosvorstellungen in der mittelalterlichen Sakralarchitektur. Zu religionsgeschichtlichen Aspekten von Grundsteinlegung und Orientierung. In: Möbius, Friedrich (Hg.): Der Himmel über der Erde. Kosmossymbolik in der mittelalterlichen Kunst. Leipzig, 1995, 107–123. Möller 2004 Möller, Gunnar: Aspekte der Gründung Stralsunds. »Wildes Wachstum« oder »durchrationalisiertes Planungsmuster«? In: Mitteilungen der DGAMN: Die vermessene Stadt. Mittelalterliche Stadtplanung zwischen Mythos und Befund, Bd. 15, 2004, 28–35. Moosbrugger-Leu 2000 Moosbrugger-Leu, Rudolf: Die Schnurvermessung im mittelalterlichen Bauwesen. In: Mittelalter: Zeitschrift des Schweizerischen Burgenvereins. Bd. 5, 2000/1, 1–30. Mörschel 2003 Mörschel, Ulrike: Makrokosmos/Mikrokosmos. In: Lexikon des Mittelalters. Bd. 6, München, 2003, Sp. 138–139. Moschek 2011 Moschek, Wolfgang: Der Römische Limes: eine Kultur- und Mentalitätsgeschichte. Speyer, 2011. Müller 1961 Müller, Werner: Die heilige Stadt. Roma quadrata, himmlisches Jerusalem und die Mythe vom Weltnabel. Stuttgart, 1961. Müller 2004 Müller, Joachim: Auf der Suche nach der geplanten Stadt. Untersuchungen zum Grundstücksnetz der Altstadt und Neustadt Brandenburg. In: Mitteilungen der Deutschen Gesellschaft für Archäologie des Mittelalters und der Neuzeit, Bd. 15, 2004, 82–96. Müller 2014 Müller, Joachim: Gründung ohne Gründer? Drei nur mittelbar erschließbare Gründungsvorgänge von erheblicher Tragweite in der Stadt Brandenburg an der Havel. In: Mitteilungen der Deutschen Gesellschaft für Archäologie des Mittelalters und der Neuzeit, Bd. 27, 2014, 55–71.

302

Anhang

Müller-Fieberg 2003 Müller-Fieberg, Rita: Das »neue Jerusalem«. Vision für alle Herzen und alle Zeiten? (Bonner Biblische Beiträge, Bd. 144) Bonn, 2003. Neumann 1911 Neumann, Wilhelm: Der Stadtplan als geschichtliche Urkunde: Mitteilungen aus der livländischen Geschichte, Bd. 21, 1911, 84–89. Neuss 1912 Neuss, Wilhelm: Das Buch Ezechiel in Theologie und Kunst bis zum Ende des XII. Jahrhunderts mit besonderer Berücksichtigung der Gemälde in der Kirche zu Schwarzrheindorf. Münster, 1912. Neuwirth 1888 Neuwirth, Joseph: Die Satzungen des Regensburger Steinmetzentages im Jahre 1459 auf Grund der Klagenfurter Steinmetzen- und Maurerordnung von 1628. Wien, 1888. Neuheuser 2004 Neuheuser, Hanns Peter: Besprechung Klaus Humpert und Martin Schenk: Entdeckung der mittelalterlichen Stadtplanung. Das Ende vom Mythos der »gewachsenen Stadt«. In: Archiv für Kulturgeschichte Bd. 86, 2004, 227–228. Nickel 1958 Nickel, Helmut: Der mittelalterliche Reiterschild des Abendlandes. Berlin, 1958. Niedermaier 2008 Niedermaier, Paul: Städte, Dörfer, Baudenkmäler. Studien zur Siedlungs- und Baugeschichte Siebenbürgens. Köln, 2008. Niehoff 1985 Niehoff, Franz: Umbilicus mundi – Der Nabel der Welt. Jerusalem und das Heilige Grab im Spiegel von Pilgerberichten und -karten, Kreuzzügen und Reliquiaren. In: Legner, Anton (Hg.): Ornamenta Ecclesiae. Kunst und Künstler der Romanik. Katalog zur Ausstellung des Schnütgen-Museums in der Josef-Haibrich-Kunsthalle. Köln, 1985, 53–72. Nissen 1869 Nissen, Heinrich: Das Templum. Antiquarische Untersuchungen. Berlin, 1869. Noback/Noback 1851 Noback, Christian/Noback, Friedrich: Vollständiges Taschenbuch der Münz-, Maass- und Gewichts-Verhältnisse etc. aller Länder und Handelsplätze. Zweite Abteilung: Petersburg–Zwoll. Leipzig, 1851. Novák 1999 Novák, Mirko: Herrschaftsform und Stadtbaukunst: Programmatik im mesopotamischen Residenzstadtbau von Agade bis Surra man ra’ā. Saarbrücken, 1999. Obermaier 2009 Obermaier, Sabine: Tiere und Fabelwesen im Mittelalter. Einführung und Überblick. In: Obermaier, Sabine (Hg.): Tiere und Fabelwesen im Mittelalter. Berlin, New York, 2009, 1–28. Odifreddi 2010 Odifreddi, Piergiorgio: Le divine proporzioni. In: Contin, Duilio/Odifreddi, Piergiorgio/Pieretti, Antonio (Hg.): Antologia della Divina Proprozione di Luca Pacioli, Piero della Francesca e Leonardo da Vinci. Florenz, 2010, 19–26. Ohly 1966 Ohly, Friedrich: Vom geistigen Sinn des Wortes im Mittelalter. Darmstadt, 1966. Olley 2009 Olley, John W.: Ezechiel. A Commentary based on Iezekiēl in Codex Vaticanus. Leiden, Boston, 2009. Opll 1982 Opll, Ferdinand: Wien. Kommentar zur Siedlungsgeschichte. In: Österreichischer Städteatlas. Wien, 1982. http://mapire.eu/oesterreichischer-staedteatlas/wien/#OV_63_1 (letzter Zugriff am 14.10.2019).

Literatur

303

Opll/Sonnlechner 2008 Opll, Ferdinand/Sonnlechner, Christoph: Wien im Mittelalter. Aspekte und Facetten. (Wiener Geschichtsblätter, Beiheft 1) Wien, 2008. Opll 2015 Opll, Ferdinand: Seigneural Power and Planning: Aspects of the Origins of Towns in Austria with Particular Reference to Vienna and Wiener Neustadt. In: Simmes, Annegret/Clarke Howard B. (Hg.): Lords and Towns in Medieval Europe: Maps and Texts. The European Towns Atlas Project. Farnham, 165–188. Osenbrüggen 1868 Osenbrüggen, Eduard: Studien zur deutschen und schweizerischen Rechtsgeschichte. Schaffhausen, 1868. Otten 2000 Otten, Willemien: Plato and the Fabulous Cosmology of William of Conches. In: Kardaun, Maria/Spruyt, Joke (Hg.): The Winged Chariot. Collected Essays on Plato and Platonism in Honour of L.M. de Rijk. Leiden, Boston, Köln, 2000, 185–203. Padberg 1996 Padberg, Britta: Die Oase aus Stein. Humanökologische Aspekte des Lebens in mittelalterlichen Städten. Berlin, 1996. Panofsky 1989 Panofsky, Erwin: Gotische Architektur und Scholastik. Zur Analogie von Kunst, Philosophie und Theologie im Mittelalter. Köln, 1989. Pascha 2004 Pascha, Saleh: »Gefrorene Musik«. Das Verhältnis von Architektur und Musik in der ästhetischen Theorie. Berlin, 2004. Pausch 1998 Pausch, Matthias: Ende einer Fehlinterpretation. Die römische Groma aus Pfünz. In: Antike Welt. Zeitschrift für Archäologie und Kulturgeschichte, Jg. 29, 1998, 541–544. Pawlowski 1994 Pawlowski, Krzysztof: Formes Urbaines en Languedoc et les Débuts de l’Urbanisme en Europe Médiévale. In: Pomoerium, Bd. 1, 1994, 139–144. Pearson/Richards 1994 Pearson, Michael Parker/Richards, Colin: Ordering the World: Perceptions of Architecture, Space and Time. In: Pearson, Michael Parker/Richards, Colin (Hg.): Architecture & Order. Approaches to Social Space. London, 1994. Perger 1975 Perger, Richard: Rekonstruktion der räumlichen Entwicklung Wiens im Mittelalter. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 72–74. Perger 1997 Perger, Richard: St. Stephan und die Wiener vom 12. bis zum 19. Jahrhundert. In: 850 Jahre St. Stephan: Symbol und Mitte in Wien 1147–1997. 226. Sonderausstellung Historisches Museum der Stadt Wien. Wien, 1997, 36–54. Peyron 2012 Peyron, Corinne: Le cloître de l‘abbaye du Thoronet. Centre des monuments nationaux. Paris, 2012. Pfeiffer 2011 Pfeiffer, Jens: ›Landschaft‹ im Mittelalter? oder Warum die Landschaft angeblich der Moderne gehört. In: Das Mittelalter, Bd. 16, 2011, 11–30. Piltz 1981 Piltz, Anders: The world of medieval learning. Translated into English by David Jones. Oxford, 1981.

304

Anhang

Pitz 1991 Pitz, Ernst: Europäisches Städtewesen und Bürgertum von der Spätantike bis zum hohen Mittelalter. Darmstadt, 1991. Planck 2003 Planck, Dieter: Rottweil. In: Reallexikon der Germanischen Altertumskunde. Bd. 25. New York, Berlin, 380–385. Planitz 1965 Planitz, Hans: Die deutsche Stadt im Mittelalter. Von der Römerzeit bis zu den Zunftkämpfen. Graz, Köln, 19652. Planitz 1972 Planitz, Hans: Die deutsche Stadtgemeinde. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Zweiter Bd.: Recht und Verfassung. (Wege der Forschung, Bd. CCXLIV) Darmstadt, 1972, 55–134. Plotzek 1998 Plotzek, Joachim M. (Hg.): Glaube und Wissen im Mittelalter. Die Kölner Dombibliothek: Katalogbuch zur Ausstellung, Erzbischöfliches Diözesanmuseum Köln, 7. August bis 16. September 1998. München, 1998. Pohanka 1997 Pohanka, Reinhard : Der Tauschvertrag von Mautern 1137 und der Bau von St. Stephan – Fakten, Konsequenzen und Spekulationen. In: 850 Jahre St. Stephan: Symbol und Mitte in Wien 1147–1997. 226. Sonderausstellung Historisches Museum der Stadt Wien. Wien, 1997, 380–385. Portet/Clavel-Lévêque 1996 Portet, Pierre/Clavel-Lévêque, Monique: Bertrand Boysset, arpenteur arlésien de la fin du Moyen Âge (vers 1355/1358–vers 1416), et ses traités techniques d’arpentage et de bornage. In: Dialogues d’histoire ancienne, Bd. 22/2, 1996, 239–244. Portet 2004 Portet, Pierre: Bertrand Boysset, la vie et les œuvres techniques d’un arpenteur médiéval (1355–1416). Paris, 2004. Pourshirazi 2007 Pourshirazi, Katja: Martin Bubers literarisches Werk zum Chassidismus. Frankfurt am Main, 2007. Pressouyre 1974 Pressouyre, M. Ferdinand: Trois bastides du Nord du Quercy: Bretenoux, Puybrun, Labastide –du–Haut–Mont. In: Montauban et le Bas-Quercy. Actes du XXVIIe Congrès d’Etudes de la Féderation des Sociétées Académiques et Savantes de Languedoc-Pyrénées-Gascogne et du XXIVe Congrès d’Etudes de la Fédération Historique du Sud-Ouest tenus à Montauban les 9, 10, 11 juin 1972. Paris, 1974, 313–331. Prutz 1908 Prutz, Hans: Die Ritterorden. Ihre Stellung zur kirchlichen, politischen, gesellschaftlichen und wirtschaftlichen Entwicklung des Mittelalters. Berlin, 1908. Randolph 1995 Randolph, Adrian: Bastides of Southwest France. In: Art Bulletin, Bd. LXXVII, 2, 1995, 290–307. Rashed 1996 Rashed, Roshdi: Infinitesimal Determinations, Quadrature of Lunules and Isoperimetric Problems. In: Rashed, Roshdi (Hg.): Encyclopedia of the History of Arabic Science, Bd. 2: Mathematics and the Physical sciences, Abingdon-on-Thames, 1996, 418–446. Rasmus 2008 Rasmus, Claus: Die Morphologie der mittelalterlichen Stadt. In: Goetheanismus in Kunst und Wissenschaft, Bd. 30, Heft 1, 2008, 29–36. Rath 1983 Rath, Wilhelm: Einleitung. In: Alanus ab Insulis, Anticlaudian oder Die Bücher von der himmlischen Erschaffung des Neuen Menschen. Ein Epos des lateinischen Mittelalters übersetzt und eingeleitet von Wilhelm Rath. (Aus der Schule von Chartres, Bd. II) Stuttgart, 19832, 9–103.

Literatur

305

Rathert 2011 Rathert, Dietmar: Doppelkapelle in Brandenburg? Vorgängerbauten und eine romanische Grabstele in der St. Petri-Kapelle in Brandenburg an der Havel. In: Archäologie in Berlin und Brandenburg, 2009 (2011), 84–89. Rathje 1990 Rathje, Annette: Die Phönizier in Etrurien. In: Gehrig, Ulrich/Niemeyer, Hans Georg (Hg.): Die Phönizier im Zeitalter Homers: Ausstellung im Kestner-Museum, Hannover, 14. Sept.–25. Nov. 1990, 33–44. Rauda 1957 Rauda, Wolfgang: Lebendige städtebauliche Raumbildung: Asymmetrie und Rhythmus in der deutschen Stadt. Berlin, 1957. Regal 2012 Regal, Wolfgang: Daumensprung und Jakobsstab. Messen ohne Maßband. Welver, 2012. Reidinger 1997 Reidinger, Erwin: Die Geometrie der mittelalterlichen Stadteinfassung von Wien. In: 850 Jahre St. Stephan: Symbol und Mitte in Wien 1147–1997. 226. Sonderausstellung Historisches Museum der Stadt Wien. Wien, 1997, 69–70. Reidinger 2010 Reidinger, Erwin: Stadtplanung im hohen Mittelalter: Wiener Neustadt – Marchegg – Wien. In: Opll, Ferdinand/Sonnlechner, Christoph (Hg.): Europäische Städte im Mittelalter. Innsbruck, 2010, 155–176. Reincke 1969 Reincke, Heinrich: Über Städtegründung. Betrachtung und Phantasie. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Band: Begriff, Entstehung und Ausbreitung. Wege der Forschung, Bd. CCXLIV, 1969, 331–363. Reinhardt/Saranyana 2002 Reinhardt, Elisabeth/Saranyana, Josep-Ignasi: Joachim von Fiore und sein vermeintlicher Einfluß auf Hispano­ amerika im 16. Jahrhundert. In: Aertsen, Jan A./Pickavé, Martin (Hg.): Ende und Vollendung. Eschatologische Perspektiven im Mittelalter (Miscellanea mediaevalia, Bd. 29) Berlin, 2002, 545–557. Reinisch 1990 Reinisch, Ulrich: Zur Grundrißentwicklung deutscher Planstädte im 12. und 13. Jahrhundert. In: Dolgner, Dieter/Roch, Irene (Hg.): Stadtbaukunst im Mittelalter. Berlin, 1990, 126–136. Restle 2003 Restle, Marcell: Kreuz. In: Lexikon des Mittelalters, Bd. V, 2003, Sp. 1489–1490. Richter 1940 Richter, Maina: Die »Terra murata« im Florentiner Gebiet. In: Mitteilungen des kunsthistorischen Institutes in Florenz, Bd. 5 (1937–40), 351–386. Riedel 2005 Riedel, Peter: Himmelssphären und Höllenkreise. Jenseitsvorstellungen des Mittelalters. In: Bergstedt, Clemens/Heimann, Heinz-Dieter (Hg.): Wege in die Himmelsstadt. Bischof – Glaube – Herrschaft 800–1550. (Veröffentlichungen des Museums für Brandenburgische Kirchen- und Kulturgeschichte des Mittelalters, Bd. 2) Berlin, 2005, 38–49. Riedweg 2002 Riedweg, Christoph: Pythagoras: Leben – Lehre – Nachwirkung. Eine Einführung, München, 2002. Riehl 1859 Riehl, Wilhelm Heinrich: Culturstudien aus drei Jahrhunderten. Stuttgart, 1859. Roggenkamp 1954 Roggenkamp, Hans: Maß und Zahl. In: Beseler, Hartwig/Roggenkamp, Hans: Die Michaeliskirche in Hildesheim. Berlin, 1954, 121–158.

306

Anhang

Röhrig 1975 Röhrig, Floridus: Das kirchliche Leben im mittelalterlichen Wien. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 46–49. Rosenberg 1955 Rosenberg, Alfons: Einleitung, Zur Lehre des Joachim von Fiore. In: Joachim von Fiore: Das Reich des Heiligen Geistes. Herausgegeben von Alfons Rosenberg. München, 1955, 7–69. Rosenfeld/Youschkevitch 1996 Rosenfeld, Boris A./Youschkevitch, Adolf P.: Geometry. In: Rashed, Roshdi (Hg.): Encyclopedia of the History of Arabic Science, Bd. 2: Mathematics and the Physical sciences, Abingdon-on-Thames, 1996, 447–494. Rossi 2003 Rossi, Corinna: Architecture and Mathematics in Ancient Egypt. Cambridge, 2003. Ruckgaber 1835 Ruckgaber, Heinrich: Geschichte der Frei- und Reichsstadt Rottweil. Erster Band. Rottweil/Neckar, 1835. Rüffer 2014 Rüffer, Jens: Werkprozess – Wahrnehmung – Interpretation. Studien zur mittelalterlichen Gestaltungspraxis und zur Methodik ihrer Erschließung am Beispiel baugebundener Skulptur. Berlin, 2014. Rykwert 1976 Rykwert, Joseph: The Idea of a Town. The Anthropology of Urban Form in Rome, Italy and the Ancient World. London, 1976. Sæbø et al. 1996 Sæbø, Magne/Brekelmans, Chris/Haran, Menahem: Hebrew Bible/Old Testament. Band I: From the Beginnings to the Middle Ages. Göttingen, 1996. Saitta 1997 Saitta, Armando: Momenti e figure della civiltà Europea. (Storia e letteratura, Bd. 198) Rom, 1997. Sarnowsky 2012 Sarnowsky, Jürgen: Der Deutsche Orden. München, 2012. de Saint-Blanquat 1983 de Saint-Blanquat, Odon: La fondation des bastides royales dans la sénéchaussée de Toulouse aux XIIIe et XIVe siècles. Toulouse, 1983. Scott 2015 Scott, Carl: Verbum Domini and the Complementarity of Exegesis and Theology. Cambridge, 2015. Schenk 2016 Schenk, Gerrit Jasper: Die westeuropäische Stadt als »sakraler Handlungsraum« in Spätmittelalter und Früher Neuzeit – eine Skizze. In: Elisabeth Gruber et al. (Hg.): Städte im lateinischen Westen und im griechischen Osten zwischen Spätantike und Früher Neuzeit. Topographie – Recht – Religion. Wien, 2016, 273–298. Schich 1977 Schich, Winfried: Würzburg im Mittelalter. Studien zum Verhältnis von Topographie und Bevölkerungsstruktur. Köln, Wien, 1977. Schich 1993 Schich, Winfried: Zur Genese der Stadtanlage der Altstadt und Neustadt Brandenburg. In: Schich, Winfried (Hg.): Beiträge zur Entstehung und Entwicklung der Stadt Brandenburg im Mittelalter. Berlin, New York, 1993, 51–102. Schich 1999 Schich, Winfried: Berlin, Struzberch, Vrankenvorde… et alia loca plurima exstruxerunt. Zum Bau der Städte in der Mark Brandenburg im 13. Jahrhundert. In: Janssen, Wilhelm/Wensky, Margret (Hg.): Mitteleuropäisches Städtewesen im Mittelalter und in der frühen Neuzeit, Köln, 1999, 105–140.

Literatur

307

Schich 2001 Schich, Winfried: Die topographische Entwicklung Würzburgs im Hoch- und Spätmittelalter (1000–1400). In: Ulrich Wagner (Hg.): Geschichte der Stadt Würzburg. Bd. 1. Würzburg, 2001, 183–210. Schirok 2011 Schirok, Bernd: Wolfram und seine Werke im Mittelalter. In: Heinzle, Joachim (Hg.): Wolfram von Eschenbach. Ein Handbuch. Berlin, 2011, 1–82. Schlesinger 1958 Schlesinger, Walter: Städtische Frühformen zwischen Rhein und Elbe. In: Studien zu den Anfängen des europäischen Städtewesens. (Vorträge und Forschungen, Bd. 4) Sigmaringen, 1958, 297–362. Schlesinger 1969a Schlesinger, Walter: Stadt und Burg im Lichte der Wortgeschichte. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Band: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) Darmstadt, 1969, 95–121. Schlesinger 1969b Schlesinger, Walter: Über mitteleuropäische Städtelandschaften der Frühzeit. In: Haase, Carl (Hg.): Die Stadt des Mittelalters. Erster Band: Begriff, Entstehung und Ausbreitung. (Wege der Forschung, Bd. CCXLIV) Darmstadt, 1969, 239–273. Schlüter 1899 Schlüter, Otto: Über den Grundriß der Städte. In: Zeitschrift der Gesellschaft für Erdkunde zu Berlin, Bd. 34, 1899, 446–462. Schmid 1986 Schmid, Karl: Die Zähringer: Eine Tradition und ihre Erforschung. Archiv der Stadt Freiburg im Breisgau, Universität Freiburg im Breisgau. Landesgeschichtliche Abteilung, Stuttgart, 1986. Schmidlin 1906 Schmidlin, Joseph: Die geschichtsphilosophische und kirchenpolitische Weltanschauung Ottos von Freising, ein Beitrag zur mittelalterlichen Geistesgeschichte. (Studien und Darstellungen aus dem Gebiete der Geschichte 4, 2/3) Freiburg im Breisgau, 1906. Schmidt 1953 Schmidt, Leopold: Der »Stock im Eisen« als mythischer Stadtmittelpunkt Wiens. In: Jahrbuch des Vereins für Geschichte der Stadt Wien. Bd. 10, 1953, 75–81. Schmidt 2011 Schmidt, Adolf: Einleitung. In: Otto Bischof von Freising: Ottonis Episcopi Frisingensis. Chronica sive historia de duabus civitatibus (Chronik oder die Geschichte der zwei Staaten). Übersetzt von Adolf Schmidt, herausgegeben von Walther Lammers mit einem Literaturnachtrag von Hans-Werner Goetz. Darmstadt, 20116, IX–LXXIV. Schmieder 2009 Schmieder, Felicitas: Die mittelalterliche Stadt. Darmstadt, 20092. Schmithals 1994 Schmithals, Walter: Theologiegeschichte des Urchristentums: eine problemgeschichtliche Darstellung. Stuttgart, Berlin, 1994. Schneider 1979 Schneider, Christian: Stadtgründung im Dritten Reich. Wolfsburg und Salzgitter. Ideologie, Ressortpolitik, Repräsentation. München, 1979. Schneider 2010 Schneider, Horst: Kosmas Indikopleustes. Christliche Topographie – Textkritische Analysen, Übersetzung, Kommentar. (Indicopleustoi. Archaeologies of the Indian Ocean, Bd. 7) Turnhout, 2010.

308

Anhang

Schnurrer 1969 Schnurrer, Ludwig: Die Stadterweiterungen in Rothenburg ob der Tauber. Ihre topographischen und sozialen Hintergründe und Folgen. In: Maschke, Erich/Sydow, Jürgen (Hg.): Stadterweiterung und Vorstadt. Protokoll über die IV. Arbeitstagung des Arbeitskreises für südwestdeutsche Stadtgeschichtsforschung. Konstanz 10.–12. November 1967. Stuttgart, 1969, 59–79. Scholkmann 2004 Scholkmann, Barbara: Zwischen Mythos und Befund. Eine kritische Bilanz zum Thema »Die vermessene Stadt« aus Sicht der archäologischen Stadtkernforschung. In: Mitteilungen der DGAMN: Die vermessene Stadt. Mittelalterliche Stadtplanung zwischen Mythos und Befund, Bd. 15, 2004, 180–184. van der Schoot 2005 van der Schoot, Albert: Die Geschichte des Goldenen Schnitts. Aufstieg und Fall der göttlichen Proportion. (Aesthetik, Bd. 3), Stuttgart, 2005. Schott 2013 Schott, Dieter: Stadt in der Geschichtswissenschaft. In: Mieg, Harald A./Heyl, Christoph (Hg.): Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 120–147. Schreckenberg 1964 Schreckenberg, Heinz: Ananke. Untersuchungen zur Geschichte des Wortgebrauchs. (Zetemata. Monographien zur Klassischen Altertumswissenschaft, Heft 36) München, 1964. Schreg 2002 Schreg, Rainer: Rezension zu Klaus Humpert/Martin Schenk: Entdeckung der mittelalterlichen Stadtplanung. Das Ende des Mythos der »gewachsenen Stadt« (Stuttgart 2001). In: Zeitschrift für Archäologie des Mittelalters, Bd. 30, 2002, 226–228. Schubert 1996 Schubert, Charlotte: Land und Raum in der Römischen Republik. Die Kunst des Teilens. Darmstadt, 1996. Schultze 1989 Schultze, Johannes: Die Mark Brandenburg. Band 1: Entstehung und Entwicklung unter den askanischen Markgrafen (bis 1319). Berlin, 1989. Schulze 1994 Schulze, Ulrich: Brunnen im Mittelalter. Politische Ikonographie der Kommunen in Italien. (Europäische Hochschulschriften, Reihe XXVIII Kunstgeschichte, Bd. 209) Frankfurt am Main, 1994. Schweizer 2002 Schweizer, Stefan: Zwischen Repräsentation und Funktion: Die Stadttore der Renaissance in Italien. Göttingen, 2002. Schwind 2003 Schwind, Fred: Alte und neue Märkte und Städte im deutschen Reich des Hochmittelalters. In: Maulhardt, Heinrich/Zotz, Thomas (Hg.): Villingen 999–1218. Aspekte seiner Stadtwerdung und Geschichte bis zum Ende der Zähringerzeit im überregionalen Vergleich. Waldkirch, 2003, 79–98. Schwineköper 1964 Schwineköper, Berent: Zur Deutung der Magdeburger Reitersäule. In: Festschrift Percy Ernst Schramm zu seinem siebzigsten Geburtstag von Schülern und Freunden zugeeignet. Bd. 1, Wiesbaden, 1964, 117–142. Schwineköper 1977 Schwineköper, Berent: Die Problematik von Begriffen wie Stauferstädte, Zähringerstädte und ähnlichen Bezeichnungen. In: Maschke, Erich/Sydow, Jürgen (Hg.): Südwestdeutsche Städte im Zeitalter der Staufer. 16. Arbeitstagung in Stuttgart 22.–24.4.1977 (Stadt in der Geschichte, Bd. 6) Stuttgart, 1977, 95–172. Seberich 1962 Seberich, Franz: Die Stadtbefestigung Würzburgs. 1. Teil: Die mittelalterliche Befestigung mit Mauern und Türmen (Mainfränkische Hefte, Heft 39) Würzburg, 1962.

Literatur

309

Sedlmayr 1950 Sedlmayr, Hans: Die Entstehung der Kathedrale. Zürich, 1950. Sehrt 1977 Sehrt, Hans-Georg: Zur Stellung und Funktion von Bauherrn (Auftraggeber) und Baumeister im feudalen Mittelalter. Halle, Wittenberg, 1977. Seitz/Geidner 1997 Seitz, Erwin/Geidner, Oskar: Wolframs-Eschenbach. Der Deutsche Orden baut eine Stadt. Wolframs-Eschenbach, 1997. Séraphin/Charrier 2011 Séraphin, Gilles/Charrier, Anais: Bretenoux. Église paroissiale Sainte-Catherine. (Inventaire de l’architecture médiévale du Lot) Paris, 2011. Sidebotham 2002 Sidebotham, Thomas H.: The A to Z of Mathematics: A Basic Guide. New York, 2002. Siedler 1914 Siedler, Jobst: Märkischer Städtebau im Mittelalter. Beiträge zur Geschichte der Entstehung, Planung und baulichen Entwicklung der märkischen Städte. Berlin, 1914. Sim 1996 Sim, Unyong: Das himmlische Jerusalem in Apk 21,1–22,5 im Kontext biblisch-jüdischer Tradition und antiken Städtebaus. (Bochumer Altertumswissenschaftliches Colloquium, Bd. 25) Trier, 1996. Simek 1992 Simek, Rudolf: Erde und Kosmos im Mittelalter. Das Weltbild vor Kolumbus. München, 1992. Simms 2015 Simms, Anngret: The European Historic Town Atlas Project: Origin and Potential. In: Simms, Anngret/Clarke, Howard B. (Hg.): Lords and Towns in Medieval Europe. The European Historic Towns Atlas Project. Farnham 2015, 13–32. von Simson 1982 von Simson, Otto: Die gotische Kathedrale. Beiträge zu ihrer Entstehung und Bedeutung. Darmstadt, 19824. Sitte 1889 Sitte, Camillo: Der Städtebau nach seinen künstlerischen Grundsätzen. Wien, 1889. Sladek 1984 Sladek, Mirko: Fragmente der hermetischen Philosophie in der Naturphilosophie der Neuzeit. Historisch-­ kritische Beiträge zur hermetisch-alchemistischen Raum- und Naturphilosophie bei Giordano Bruno, Henry More und Goethe (Europäische Hochschulschriften, Reihe XX, Philosophie, Bd. 156) Frankfurt am Main, 1984. Slater 1990 Slater, T.R.: English Medieval New Towns with Composite Plans: Evidence from the Midlands. In: Slater, T.R. (Hg.): The Built Form of Western Cities. Essays for M.R.G. Conzen on the Occasion of his Eightieth Birthday. Leicester und London, 1990, 60–82. Söder 2009 Söder, Joachim: Zu Platons Werken. In: Horn, Christoph/Müller, Jörn/Söder, Joachim (Hg.): Platon Handbuch. Leben – Werk – Wirkung. München, 2006, 19–59. Sollbach 1995 G.E. Sollbach: Die mittelalterliche Lehre vom Mikrokosmos und Makrokosmos. Hamburg, 1995. Speer 2005 Speer, Andreas: Lectio physica. Anmerkungen zur Timaios-Rezeption im Mittelalter. In: Leinkauf, Thomas/Steel, Carlos (Hg.): Platons Timaios als Grundtext der Kosmologie in Spätantike, Mittelalter und Renaissance. (Ancient and Medieval Philosophy. De Wulf-Mansion Centre, Series 1, Bd. XXXIV) Leuven, 2005, 213–234.

310

Anhang

Spieß 1963 Spieß, Herwig: Werkmaß und Bauwerk. In: Hoster, Joseph (Hg.): Vom Bauen, Bilden und Bewahren. Festschrift für Willy Weyres zur Vollendung seines 60. Lebensjahres. Köln, 1963, 219–225. Stapelkamp 2007 Stapelkamp, Torsten: Screen- und Interfacedesign. Gestaltung und Usability für Hard- und Software. Berlin, Heidelberg, New York, 2007. Steidle/Weisner 1999 Steidle, Hans/Weisner, Christine: Würzburg. Streifzüge durch 13 Jahrhunderte Geschichte. Würzburg, 1999. Stercken 2006 Stercken, Martina: Gebaute Ordnung. Stadtvorstellungen und Planung im Mittelalter. In: Fritzsche, Bruno/ Gilomen, Hans-Jörg/Stercken, Martina (Hg.): Städteplanung – Planungsstädte. Zürich, 2006, 15–37. Sticker 1932 Sticker, Gerd: Entwicklungsgeschichte der Medizinischen Fakultät an der Alma Mater Julia. In: Buchner, Max (Hg.): Aus der Vergangenheit der Universität Würzburg: Festschrift zum 350-jährigen Bestehen der Universität. Würzburg, 1932, 383–736. Stoob 1973–2001 Stoob, Heinz (Hg.): Deutscher Städteatlas. Dortmund, 1973–2001. Stoob 1970 Stoob, Heinz: Minderstädte. Formen der Stadtentstehung im Spätmittelalter. In: Stoob, Heinz: Forschungen zum Städtewesen in Europa, Band 1: Räume, Formen und Schichten der mitteleuropäischen Städte. Eine Aufsatzfolge. Köln, Wien, 1970, 225–245. Stoob 1979 Stoob, Heinz: Frühneuzeitliche Städtetypen. In: Stoob, Heinz (Hg.): Städtewesen. Köln, Wien, 1979, 195–228. Starkey/Wenzel 2005 Starkey, Kathryn/Wenzel, Horst: Visual Culture and the German Middle Ages. New York, 2005. Strahm 1950 Strahm, Hans: Zur Verfassungstopographie der mittelalterlichen Stadt mit besonderer Berücksichtigung des Gründungsplans der Stadt Bern. In: Zeitschrift für Schweizerische Geschichte, Bd. 30/3, 1950, 373–410. Stübben 1890 Stübben, Joseph: Der Städtebau. Darmstadt, 1890. Sydow 1968 Sydow, Jürgen: Elemente von Einheit und Vielfalt in der mittelalterlichen Stadt (im Lichte kirchenrechtlicher Quellen). In: Miscellanea Mediaevalia, Bd. 5: Universalismus und Partikularismus im Mittelalter, 1968, 186–197. Tilly 2002 Tilly, Michael: Jerusalem – Nabel der Welt. Überlieferung und Funktionen von Heiligtumstraditionen im antiken Judentum. Stuttgart, 2002. Töpfer 1964 Töpfer, Bernd: Das kommende Reich des Friedens. Zur Entwicklung chiliastischer Zukunftshoffnungen im Hochmittelalter. Berlin, 1964. Töpfer 1999 Töpfer, Klaus: Grußwort. In: Kiesow, Gottfried: Gesamtkunstwerk – Die Stadt. Zur Geschichte der Stadt vom Mittelalter bis in die Gegenwart. Bonn, 1999, 4–5. Torge 2007 Torge, Wolfgang: Geschichte der Geodäsie in Deutschland. New York, Berlin, 2007. Tornau 2009 Tornau, Christian: Kirchenväter. In: Horn, Christoph/Müller, Jörn/Söder, Joachim (Hg.): Platon Handbuch. Leben – Werk – Wirkung. München, 2006, 421–433.

Literatur

311

Treu 1865 Treu, Carl: Geschichte der Stadt Friedeberg in der Neumark und des Landes Friedeberg der alten Terra Frede­ berghe. Friedeberg i. d. Neumark, 1865. Trnek 2003 Trnek, Helmut: Reichsinsignien. In: Lexikon des Mittelalters. Bd. 7: Planudes bis Stadt (Rus). München 2003, Sp. 623–626. Tropfke 1923 Tropfke, Johannes: Geschichte der Elementar-Mathematik in systematischer Darstellung. Band 4: Ebene Geometrie. Berlin und Leipzig, 19232. Trost 1959 Trost, Heinrich: Norddeutsche Stadttore zwischen Elbe und Oder. (Schriften zur Kunstgeschichte, Heft 5) Berlin, 1959. Uhlig 1958 Uhlig, Margarete: Wien. Stadtbeschreibung und Stadtbild im spätmittelalterlichen Schrifttum. Wien (Unveröffentlichtes Typoskript), 1958. Untermann 2000 Untermann, Matthias: Archäologie in der Stadt: Zum Dialog der Mittelalterarchäologie mit der südwestdeutschen Stadtgeschichtsforschung. In: Kirchgässner, Bernhard/Becht, Hans-Peter (Hg.): Stadt und Archäologie. 36. Arbeitstagung 1997. (Stadt in der Geschichte, Bd. 26) Stuttgart, 2000, 9–44. Untermann 2004 Untermann, Matthias: Planstadt, Gründungsstadt, Parzelle. Archäologische Forschung im Spannungsfeld von Urbanistik und Geschichte. Einführende Bemerkungen. In: Mitteilungen der DGAMN: Die vermessene Stadt. Mittelalterliche Stadtplanung zwischen Mythos und Befund, Bd. 15, 2004, 9–16. Untermann 2006 Untermann, Matthias: Strassen, Areae, Stadtmauern. Mittelalterliche Stadtplanung im Licht der Archäologie. In: Fritzsche, Bruno/Gilomen, Hans-Jörg/Stercken, Martina (Hg.): Städteplanung – Planungsstädte. Zürich, 2006, 39–49. Untermann 2009 Untermann, Matthias: Handbuch der mittelalterlichen Architektur. Darmstadt, 2009. Uppenkamp 2005 Uppenkamp, Barbara: Das Pentagon von Wolfenbüttel. Der Ausbau der welfischen Residenz 1568–1626 zwischen Ideal und Wirklichkeit (Veröffentlichungen der historischen Kommission für Niedersachsen und Bremen, Bd. 229) Hannover, 2005. Vasold 1999 Vasold, Manfred: Geschichte der Stadt Rothenburg ob der Tauber. Stuttgart, 1999. Voegelin 2001 Voegelin, Eric: Order and History. Maurice P. Hogan (Hg.): The collected works of Eric Voegelin. Bd. 1: Israel and Revelation. Columbia/London, 2001. Voigt 1842 Voigt, Johannes: Handbuch der Geschichte Preußens bis zur Zeit der Reformation, Bd. 2. Königsberg, 1842. Volkmann 2008 Volkmann, Hans-Erich: Hermann Aubin. In: Haar, Ingo, Fahlbusch, Michael (Hg.): Handbuch der völkischen Wissenschaften. Personen – Institutionen – Forschungsprogramme – Stiftungen. München 2008, 58–62. Voßberg 1843 Voßberg, Friedrich August: Geschichte der Preußischen Münzen und Siegel von frühester Zeit bis zum Ende der Herrschaft des Deutschen Ordens. Berlin, 1843.

312

Anhang

Waerden 2003 Waerden, Bartel van der: Astrolabium. In: Lexikon des Mittelalters, Bd. I, 2003, Sp. 1135. Wagner 2005 Wagner, Birgit: Die Bauten des Stauferkaisers Friedrich II. – Monumente des Heiligen Römischen Reichs. Berlin, 2005. Waissenberger 1975 Waissenberger, Robert: Wiens europäische Bedeutung im Mittelalter. In: Bisanz, Hans (Hg.): Wien im Mittelalter. 41. Sonderausstellung des Historischen Museums der Stadt Wien, 18. Dezember 1975 bis 18. April 1976. Wien, 1975, 7–11. Waithe 1987 Waithe, Mary Ellen: Hypatia of Alexandria. In: Waithe, Mary Ellen (Hg.): A History of Women Philosophers. Bd. 1: Ancient Women Philosophers: 600 B.C.–500 A.D. Dordrecht, Boston, Lancaster, 1987, 169–196. Walde 1910 Walde, Alois: Lateinisches etymologisches Wörterbuch. Heidelberg, 19102. Wandhoff 2003 Wandhoff, Haiko: Ekphrasis. Kunstbeschreibung und rituelle Räume in der Literatur des Mittelalters. Berlin, 2003. Weber 2000 Weber, Max: Wirtschaft und Gesellschaft. Die Wirtschaft und die gesellschaftlichen Ordnungen und Mächte. Nachlaß. Bd. 5: Die Stadt. (Studienausgabe der Max-Weber-Gesamtausgabe, herausgegeben von Winfried Nippel) Tübingen, 2000. Weber 2009 Weber, Andreas Otto: Einleitung. In: Weber, Andreas Otto (Hg.): Städtische Normen – genormte Städte. Zur Planung und Regelhaftigkeit urbanen Lebens und regionaler Entwicklung zwischen Mittelalter und Neuzeit. 43. Arbeitstagung in Rothenburg ob der Tauber, 12–14. November 2004. (Stadt in der Geschichte, Bd. 34) Ostfildern, 2009, 9–12. Weber 2011 Weber, Christoph Friedrich: Zeichen der Ordnung und des Aufruhrs. Heraldische Symbolik in italienischen Stadtkommunen des Mittelalters.(Symbolische Kommunikation in der Vormoderne. Studien zur Geschichte, Literatur und Kunst) Köln, Weimar, Wien, 2011. Weigert 1963 Weigert, Hans: Magische Bänder und Knoten. In: Joseph Hoster/Albrecht Mann (Hg.): Vom Bauen, Bilden und Bewahren. Festschrift für Willy Weyres zur Vollendung seines 60. Lebensjahres. Köln, 1963, 21–32. Wemhoff 2012 Wemhoff, Matthias: Archäologie und Stadtplanung. Fragen der Archäologie an die Stadtplanung. In: Alte Mitte – neue Mitte? Positionen zum historischen Zentrum von Berlin. Herausgegeben von der Historischen Kommission Berlin e. V., dem Landesdenkmalamt Berlin und der Senatsverwaltung für Stadtentwicklung und Umwelt, Abteilung Städtebau und Projekte. Berlin, 2012, 185–188. Werth 2005 Werth, Peter: De Divina Proportione oder Über die fünf Platonischen Körper. Digitale Festschrift für Josef Adolf Schmoll gen. Eisenwerth. 2005. http://www.galerie-st-johann.de/fileadmin/ifak_kunst/images/kunstwissenschaft/schmoll/07_werth.pdf (letzter Zugriff am 08.04.2011). Westrem 2001 Westrem, Scott D.: The Hereford Map. A transcription and translation of the legends with commentary. (Terrarum Orbis. Bd. 1) Turnhout, 2001.

Literatur

313

Wetherbee 1972 Wetherbee, Winthrop: Platonism and Poetry in the Twelth Century. The Literary Influence of the School of Chartres. Princeton, 1972. Wheatley 1969 Wheatley, Paul: City as Symbol. An Inaugural Lecture Delivered at University College London 20 November 1967. London, 1969. Wiebel/Bauer 2004 Wiebel, Emil/Bauer, Rainer: Der Feldgeschworene. Rechtsgrundlagen und Erläuterungen. Erläuternde Ausgabe der für Feldgeschworene geltenden Vorschriften. Augsburg, 200427. Wietschorke 2013 Wietschorke, Jens: Anthropologie der Stadt: Konzepte und Perspektiven. In: Mieg, Harald A./Heyl, Christoph: Stadt. Ein interdisziplinäres Handbuch. Stuttgart, Weimar, 2013, 202–221. Wild 2006 Wild, Dölf: Der Rennweg, Paul Hofer und die Archäologie. In: Fritzsche, Bruno/Gilomen, Hans-Jörg/Stercken, Martina (Hg.): Städteplanung – Planungsstädte. Zürich, 2006, 69–99. Wildberg 2011a Wildberg, Christian: Kosmologie. In: Rapp, Christof/Corcilius, Klaus (Hg.): Aristoteles Handbuch. Leben – Werk – Wirkung. Stuttgart, 2011, 84–87. Willcock 1976 Willcock, Malcolm M.: A Companion to the Iliad. Based on the Translation by Richmond Lattimore. Chicago, 1976. Wischmann 2011 Wischmann, Katharina: Hamburg, Vertikal: Landmarken als Symbole in der urbanen Skyline. (Kulturlandforschung und Industriearchäologie, Bd. 4) Hamburg, 2011. Wittlingera 1932 Wittlingera, Hellmut: Untersuchungen zur Entstehung und Frühgeschichte der neumärkischen Städte. Landsberg a. W., 1932. Wittstadt 2001 Wittstadt, Klaus: Geistliche Impulse und Frömmigkeitsleben in der Stadt Würzburg. In: Wagner. Ulrich (Hg.): Geschichte der Stadt Würzburg. Bd. 1. Würzburg, 2001, 297–312. Witzel 1914 Witzel, Karl: Untersuchungen über gotische Proportionsgesetze. Dissertationsschrift an der Technischen Hochschule zu München. Berlin, 1914. Witzens 2009 Witzens, Uwe: Aufstand der Mönche. Mönche gegen Generäle. Hintergründe der ›Safran-Rebellion‹ in Birma. Berlin, 2009. Wojtucki 2008 Wojtucki, Daniel: Breslauer Rabenstein und Hochgericht. Ehrliche und unehrliche Hinrichtungsstätte in einer frühneuzeitlichen Stadt. In: Auler, Jobst (Hg.): Richtstättenarchäologie, Bd. 1, 2008, 362–377. Zahlten 1995 Zahlten, Johannes: »In principio creavit Deus caelum …« (Gen. 1, 1). Das Bild des Himmels in der Schöpfungsikonographie aus der Sicht mittelalterlicher Naturwissenschaftler. In: Möbius, Friedrich (Hg.): Der Himmel über der Erde. Kosmossymbolik in mittelalterlicher Kunst. Leipzig, 1995, 47–58. Zähringer 1986 Die Zähringer: Veröffentlichungen zur Zähringer-Ausstellung. Herausgegeben vom Archiv der Stadt Freiburg im Breisgau. Bd. 2: Anstoß und Wirkung: Katalog zur Ausstellung der Stadt und der Universität Freiburg im Breisgau vom 31. Mai bis 31. August 1986. Sigmaringen, 1986.

314

Anhang

Zanker 1987 Zanker, Paul: Augustus und die Macht der Bilder. München, 1987. Zimmermanns 1985 Zimmermanns, Klaus: Florenz. Ein europäisches Zentrum der Kunst. Geschichte, Denkmäler, Sammlungen. Köln, 19853.

Abbildungsverzeichnis Abb. 1 nach Friedman 1988, Abb. 3. Abb. 2 Stadtblatt der Uraufnahme von Rothenburg ob der Tauber aus dem Jahr 1827 (Geobasisdaten: Bayerische Vermessungsverwaltung). Abb. 3 nach Flammarion, 1888, 163 https://de.wikipedia.org/wiki/Flammarions_Holzstich#/media/Datei: Flammarion.jpg (letzter Zugriff am 14.10.2019). Abb. 4 Enzyklopädisches Manuskript, Süddeutschland um 1410 (Library of Congress, Rosenwald 4, Bl. 5r) https://de.wikipedia.org/wiki/Zwerge_auf_den_Schultern_von_Riesen#/media/Datei:Library_of_Congress,_Rosenwald_4,_Bl._5r.jpg (letzter Zugriff am 14.10.2019). Abb. 5 Schedelsche Weltchronik, Blatt LXII (Bayerische Staatsbibliothek http://daten.digitale-sammlungen.de/ bsb00034024/image_193) (letzter Zugriff am 14.10.2019). Abb. 6 Verf. Abb. 7 Franchino Gaffurio: Die Experimente des Pythagoras über die Beziehungen zwischen den Tönen (Mailand, Biblioteca Braidense Theorica Musicae) https://de.wikipedia.org/wiki/Pythagoras_in_der_Schmiede#/media/Datei:Gaffurio_Pythagoras.png (letzter Zugriff am 14.10.2019). Abb. 8 Verf. Abb. 9 Verf. Abb. 10 nach Dölger 1929, T. 2,1 Abb. 11 Cologny, Fondation Martin Bodmer, Cod. Bodmer 188, f. 10v https://www.e-codices.ch/de/list/one/fmb/cb-0188 (letzter Zugriff am 14.10.2019). Abb. 12 Anonymos, I poliedri del De divina proportione a stampa del 1509 (Biblioteca Vallicelliana di Roma); nach Contin et al. 2010, 286 ff. Abb. 13 Chalcidius, Timaios-Kommentar (Florenz, Biblioteca Nazionale Centrale, Conv. Soppr. San Marco J.II.50, fol. 61v). Abb. 14 I poliedri del De divina proportione a stampa del 1509 (Biblioteca Vallicelliana di Roma); nach Contin et al. 2010, 290. Abb. 15 Bible moralisée (Bibliothèque nationale de France, MS Bodl. 270b, fol. 1v); nach Edson et al. 2011, Abb. 1. Abb. 16 Schedelsche Weltchronik, Blatt CXXXVI (Bayerische Staatsbibliothek; https://daten.digitale-sammlungen.de/~db/0003/bsb00034024/images/index.html?seite=345&fip=193.174.98.30) (letzter Zugriff am 14.10.2019). Abb. 17 Hortus Delicarum von Herrad von Landsberg, fol. 3. Umzeichnung der 1870 verbrannten Handschrift; nach Bandmann 1960, Abb. 13. Abb. 18 Bayerische Staatsbibliothek München, Clm 2599, fol. 106v.; nach Bandmann 1960, Abb. 12. Abb. 19 Hildegard von Bingen, Liber Divinorum Operum (Lucca, MS 1942, fol. 1) https://de.wikipedia.org/ wiki/Hildegard_von_Bingen#/media/Datei:Hildegard_von_Bingen_Liber_Divinorum_Operum.jpg (letzter Zugriff am 14.10.2019). Abb. 20 Missale von Langres (Chaumont, BM, imp. 3 J7Y, fol. 1r); nach Dalarun 2011, Abb. 327.

Abbildungsverzeichnis

315

Abb. 21 Book of Kells (University of Dublin, MS 58, 27v) https://commons.wikimedia.org/wiki/Book_of_ Kells?uselang=de#/media/File:KellsFol027v4Evang.jpg (letzter Zugriff am 14.10.2019). Abb. 22 Agrimensores veteres Romanorum (Herzog August Bibliothek Wolfenbüttel, Cod. Guelf. 3623 Aug. 2 °, 49v); nach Lilley 2009, Abb. 50. Abb. 23 Practica geometriae von Leonardo, filio Bonacii, Pisano, an. 1221. conscripta (Bibliothèque nationale de France, MS Latin 7223). Abb. 24 Villard de Honnecourt, Bauhüttenbuch; nach Hahnloser 1935, Abb. 101, 102, 104, 105. Abb. 25 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol. 21). Abb. 26 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol. 123). Abb. 27–29 Verf. Abb. 30 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol.1). Abb. 31 Psautier de Saint Louis et de Blanche de Castille (Bibliothèque nationale de France, MS. 1186 res, fol. 1v). Abb. 32 Villard de Honnecourt, Bauhüttenbuch; nach Hahnloser 1935, T. 40. Abb. 33 Schedelsche Weltchronik, Ausschnitt Blatt CLXXXV (Bayerische Staatsbibliothek https://daten. digitale-sammlungen.de/0003/bsb00034024/images/index.html?id=00034024&groesser=&fip=193.174. 98.30&no=&seite=442) (letzter Zugriff am 14.10.2019). Abb. 34 Schedelsche Weltchronik, Blatt XXXIX (Bayerische Staatsbibliothek https://daten.digitale-sammlungen. de/0003/bsb00034024/images/index.html?id=00034024&seite=229&fip=193.174.98.30&nativeno=&groesser=300 %25) (letzter Zugriff am 14.10.2019). Abb. 35 Volkacher Salbuch, fol. 448r (© Volkacher Stadtarchiv). Abb. 36 Anonymos, Beato Ambrogio Sansedoni, Fresco Palazzo Pubblico in Siena; nach Icher 2012, 15. Abb. 37 Biblia sacra Veteris Testamenti cum prologis. Vorderer Spiegel (Universität Graz MS 564). Abb. 38 nach Schwineköper 1964, Abb. 11. Abb. 39 Luigi Guicciardini: Stadtplan von Brügge https://commons.wikimedia.org/wiki/File:Map_of_Bruges_ by_Guicciardini.JPG (letzter Zugriff am 14.10.2019). Abb. 40 Taddeo di Bartol: San Gimignano und seine Stadt (um 1400); nach Kugler 1986, Abb. 1. Abb. 41 Eike von Repgow: Heidelberger Sachsenspiegel (Heidelberg Cod. Pal. germ. 164). Abb. 42a Giuard de Moulin: Bible historiale, Paris (Bibliothèque nationale de France, Manuscrit occidentaux, français, 3 f. 3v). Abb. 42b Bibliothèque nationale de France MS 143 fol. 12v; nach Halfen 2011, Abb. 49. Abb. 42c Isidor von Sevilla, Etym. Stuttgart, Württemb. Landesbibliothek, Cod. poet. et phil. 2 ° 33, f. 28v. Abb. 43a Bibliotheque Municipale, Valenciennes MS 99, fol. 38r; nach Lilley 2009, Abb. 38. Abb. 43b nach Dalarun 2011, Abb. 41. Abb. 44a Trinity College Cambridge MS R1,2; nach Lilley 2009, Abb. 39. Abb. 44b nach Schwineköper 1977, Abb. 16. Abb. 45 Chronik des Benedicht Tschachtlan (Zentralbibliothek Zürich); gemeinfrei https://commons.wikimedia.org/wiki/File:Tschachtlan_Bern.jpg?uselang=de (letzter Zugriff am 14.10.2019). Abb. 46 Chronik des Benedicht Tschachtlan (Zentralbibliothek Zürich); https://commons.wikimedia.org/wiki/ File:Tschachtlan-Chronik,_Berner_B%C3%A4renjagd.jpg?uselang=de (letzter Zugriff am 14.10.2019). Abb. 47 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol. 170v). Abb. 48 Albrecht Dürer, Ad quadratum; nach Hinz 2011, 99, modif. durch Verf. Abb. 49 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol. 172v). Abb. 50 ASSi, Capitolini 3, cc. 25v–26r, divieto di ulteriore riproduzione. Abb. 51 Bertrand Boysset (Bibliothèque de Carpentras, BM, 0327, MS fol.1). Abb. 52 Agrimensores veteres Romanorum (Herzog August Bibliothek Wolfenbüttel, Cod. Guelf. 3623 Aug. 2 °, 54r); nach Lilley 2009, Abb. 55. Abb. 53 Foto © Ilya Shurygin.

316

Anhang

Abb. 54 Nikolaus von Lyra, Postille, Köln; nach Piltz 1981, 2. Abb. 55 The Pierpont Morgan Library and Museum New York, MS 644, vol. 2, fol. 222v; nach Williams 1994, Abb. 97. Abb. 56 Foto © Emilio Buzzella. Abb. 57 Bibliothèque nationale de France; nach Mayer-Tasch/Mayerhofer 1998, 13. Abb. 58 Universitätsbibliothek Utrecht, MS 32; http://psalter.library.uu.nl/?_ga=1.233431452.322987491.1472032334 (letzter Zugriff am 14.10.2019). Abb. 59 nach Benevolo 1983, Abb. 64. Abb. 60 nach Benevolo 1983, Abb. 256. Abb. 61 nach Benevolo 1983, Abb. 429. Abb. 62a nach Lavedan/Hugueney 1974, Abb. 426. Abb. 62b nach Lavedan/Hugueney 1974, Abb. 437. Abb. 63c Kataster der Wiener Neustadt aus dem Jahr 1813 https://commons.wikimedia.org/wiki/File:Wiener_ Neustadt_um_1813.JPG (letzter Zugriff am 14.10.2019). Abb. 63d nach Benevolo 1983, Abb. 439. Abb. 63a nach Lavedan/Hugueney 1974, Abb. 279. Abb. 63b nach Lavedan/Hugueney 1974, Abb. 312. Abb. 63c nach Lavedan/Hugueney 1974, Abb. 314. Abb. 63d nach Lavedan/Hugueney 1974, Abb. 329. Abb. 64a Codex Arcerianus (Herzog August Bibliothek Wolfenbüttel); nach Rykwert 1977, Abb. 6. Abb. 64b Codex Arcerianus (Herzog August Bibliothek Wolfenbüttel); nach Rykwert 1977, Abb. 26. Abb. 65a nach Müller 1961, T. 15c. Abb. 65b Museum Eichstädt; nach Pausch 1998, Abb. 4. Abb. 66–67 nach Lavedan/Hugueney 1974, Abb. 347; modifiziert durch Verf. Abb. 68a nach Zimmermanns 1985, Abb. 25. Abb. 68b Foto: Alinari 10091; nach Friedman 1988, Abb. 46. Abb. 69 nach Friedman 1988, Abb. 3. Abb. 70 Cinque Conservatori del Contado, 258, carta 602 bis; su concessione del Ministero per i beni e le attività de culturali/Archivio di Stato Firenze; nach Boerefijn 2010, Abb. 3.13. Abb. 71 Aktueller Katasterplan und Stadtmauerverlauf nach Guidoni 2003, Abb. 49; modifiziert durch Verf. Abb. 72 Plan von Bretenoux (aus Lauret, Malebranche & Séraphin 1988; nach Boerefijn 2010, Abb. 2.33; modifiziert durch Verf. Abb. 73 Verf. Abb. 74 nach Sollbach 1995, 83. Abb. 75 nach de Champeaux/Sterckx 1990, T. 1. Abb. 76 Bibliothèque Municipale de Reims (MS 672, fol. 1r). Abb. 77 Francesco di Giorgio: Trattato Archittetura (Turin, Codex Saluzziano); https://de.wikipedia.org/wiki/ Datei:Giorgio_Martini,_Francesco_di_-_Illustration_from_the_Trattato_di_architettura_-_c._1470.jpg (letzter Zugriff am 14.10.2019). Abb. 78 Bible moralisée (Österreichische Nationalbibliothek Wien, Codex Vindobonensis 2554); https://commons.wikimedia.org/wiki/File:God_the_Geometer.jpg. (letzter Zugriff am 14.10.2019). Abb. 79 Ghent University Library, BHSL.HS. 0092, fol. 138v. Abb. 80 Bibliothèque Municipale de Valenciennes, MS 99, fol. 38r; nach Lilley 2009, Abb. 38. Abb. 81a nach Lavedan/Hugueney 1974, Abb. 293. Abb. 81b nach Bartolami/Ceschi 2007, 60. Abb. 81c nach Siedler 1914, 50. Abb. 81d nach Siedler 1914, 93.

Abbildungsverzeichnis

317

Abb. 82 Verf., nach Barran 1990, 46. Abb. 83 Agrippa von Nettersheim, Liber secundus CLXIII. Abb. 84 Germanisches Nationalmuseum, Hs 998, fol. 113r. Abb. 85 Codex Manesse (UB Heidelberg, Cod. Pal. germ. 848, fol. 264); https://commons.wikimedia.org/ wiki/Codex_Manesse?uselang=de#/media/File:Codex_Manesse_Tannh%C3%A4user.jpg (letzter Zugriff am 14.10.2019). Abb. 86a nach Voßberg 1843, 58. Abb. 86b nach Voßberg 1843, T. 1,3. Abb. 87 Codex Manesse (UB Heidelberg, Cod. Pal. germ. 848, fol. 113r); https://commons.wikimedia.org/wiki/ Codex_Manesse?uselang=de#/media/File:Codex_Manesse_149v_Wolfram_von_Eschenbach.jpg (letzter Zugriff am 14.10.2019). Abb. 88 Stadtblatt von Wolframs-Eschenbach aus dem Jahr 1826 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Abb. 89a nach Müller 1961, 20. Abb. 89b nach Gradmann 1907, Abb. 23. Abb. 89c nach Lavedan/Hugueney 1974, Abb. 456. Abb. 89d Hogenberg, Frans und Georg Braun: Amstelredamum, 1575 https://commons.wikimedia.org/wiki/ Category:Map_of_Amsterdam_by_Braun_%26_Hogenberg#/media/File:Amsterdam_Braun_and_Hogenberg_1574.jpg (letzter Zugriff am 14.10.2019). Abb. 90a Stadtblatt von Wolframs-Eschenbach aus dem Jahr 1826 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Abb. 90b nach Hahnloser 1935, Abb. 113. Abb. 91 nach Contin et al. 2010, 166. Abb. 92 Foto: unbekannt, gemeinfrei. Abb. 93 Stadtblatt von Würzburg aus dem Jahr 1832 (Geobasisdaten © Bayerische Vermessungsverwaltung: w13_1832_w 013_2500); modif. durch Verf. Abb. 94 Baedecker 1895, 92; modif. durch Verf. Abb. 95 Bayerische Staatsbibliothek München, Clm 210, fol. 132v.; nach Lilley 2009, Abb. 45 Abb. 96 Isidorus, Etym. (Druckfassung: Guntherus Ziner, 1472) https://en.wikipedia.org/wiki/T_and_O_map#/ media/File:T_and_O_map_Guntherus_Ziner_1472.jpg (letzter Zugriff am 14.10.2019). Abb. 97 British Library (Add. MS 28681, fol. 9); nach Lilley 2009, Abb. 36. Abb. 98 nach Siedler 1914, 26; modif. durch Verf. Abb. 99 nach Leithäuser 1958, 61. Abb. 100 Bibliothèque nationale de France, MS Latin 7223. Abb. 101 Atlas der Stadt Villingen 1882–188; nach Jenisch 1999, Abb. 136; modif. durch Verf. Abb. 102 Parker Library, Cambridge, MS 66; nach Barber 2006, 51. Abb. 103 Stadtmuseum Rottweil; nach Buchs et al. 1964, Kat.nr. 39. Abb. 104 Erstdruck der württembergischen Flurkarte 1:2500 mit Genehmigung des Landesamts für Geoinformation und Landentwicklung Baden-Württemberg, 18.12.2018, Az.: 2851.3-A/1067. Abb. 105 Copyright of the University of Manchester, John Rylands Library (JRL 1316340; Latin MS 8). Abb. 106 Bibliothèque nationale de France, Bible Historiale de Guiard des Moulins, MS fr. 14, fol.; nach Icher 2012, 125. Abb. 107 Kölner Dombibliothek (Dom Hs. 186, 36v); nach Plotzek 1998, 300. Abb. 108a nach Braunfels 1976, Abb. 29. Abb. 108b Le Pautre fecit 1696 (Bibliothèque nationale de France: Om. 031). Abb. 108c Matthias Merian 1634; nach Escherich et al. 2007, Abb. 3. Abb. 108d nach Boerefijn 2010, Abb. 1.19.

318

Anhang

Abb. 109 Leiden, MS. Voss. Q 9 https://commons.wikimedia.org/wiki/File:Leiden_Dragontea.jpg (letzter Zugriff am 14.10.2019). Abb. 110 nach Hahnloser 1935, T. 36, 37. Abb. 111 Stadtblatt der Uraufnahme von Rothenburg o.d.Tauber aus dem Jahr 1827 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Abb. 112 University of Oxford, Bodleian Library (MS Douce 195, fol. 118r). http://www.luminarium.org/medlit/douce.htm (letzter Zugriff am 14.10.2019). Abb. 113 nach Baker/Holt 2004, Abb. 6.17. Abb. 114 Romances in French Verse (British Library, Egerton MS 3028). Abb. 115 Practica geometriae von Leonardo, filio Bonacii, Pisano, an. 1221. conscripta. (Bibliothèque nationale de France, MS Latin 7223). Abb. 116 Österreichische Städteatlas; modif. durch Verf. Abb. 117 Ausschnitt aus dem Babenberger Stammbaum im Stift Klosterneuburg; https://de.wikipedia.org/wiki/ Datei:Herzog_Leopold_VI._Babenberg.jpg (letzter Zugriff am 14.10.2019). Abb. 118 nach Bermann 1880, 804. Abb. 119 Reproduktion des Planes der Stadt Wien von M. Bonifatius Wolmut aus dem Jahre 1547 (Wiener Stadt- und Landesarchiv, Akt 3.2.1.1.P1.236G); Hervorhebung durch Verf. Abb. 120 nach Gericke 1990, Abb. 2.29. Abb. 121 Verf. Abb. 122 https://www.sonnenverlauf.de/#/43.1847,0.244,18/2019.08.22/19:07/1/3 (letzter Zugriff am 14.10.2019). Abb. 123 Verf. Abb. 124 https://www.sonnenverlauf.de/#/43.5675,11.5308,16/2019.06.18/08:03/1/3 (letzter Zugriff am 14.10.2019). Abb. 125–132 Verf. Abb. 133 https://www.sonnenverlauf.de/#/49.3779,10.1791,15/2019.05.08/08:03/1/3 (letzter Zugriff am 14.10.2019). Abb. 134–135 Verf.

Tafelteil

319

Tafelteil Tafel 1 Aktueller Katasterplan und Stadtmauerverlauf nach Guidoni 2003, Abb. 49; modif. durch Verf. Tafel 2 Plan von Bretenoux (aus Lauret, Malebranche & Séraphin 1988; nach Boerefijn 2010, Abb. 2.33; modif. durch Verf. Tafel 3 Verf., nach Barran 1990, 46. Tafel 4 Stadtblatt von Wolframs-Eschenbach aus dem Jahr 1826 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Tafel 5 Stadtblatt von Wolframs-Eschenbach aus dem Jahr 1826 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Tafel 6 Stadtblatt von Würzburg aus dem Jahr 1832 (Geobasisdaten © Bayerische Vermessungsverwaltung: w13_1832_w 013_2500); modif. durch Verf. Tafel 7 Brandenburgisches Landeshauptarchiv (BLHA, Rep. 2 K 199 A.); modif. durch Verf. Tafel 8 Staatsbibliothek zu Berlin – Preußischer Kulturbesitz (SBB III Kart X 20192); modif. durch Verf. Tafel 9 Atlas der Stadt Villingen 1882–188; nach Jenisch 1999, Abb. 136; modif. durch Verf. Tafel 10 Atlas der Stadt Villingen 1882–188; nach Jenisch 1999, Abb. 136; modif. durch Verf. Tafel 11 Atlas der Stadt Villingen 1882–188; nach Jenisch 1999, Abb. 136; modif. durch Verf. Tafel 12 Erstdruck der württembergischen Flurkarte 1:2500 mit Genehmigung des Landesamts für Geoinformation und Landentwicklung Baden-Württemberg, 18.12.2018, Az.: 2851.3-A/1067; modif. durch Verf. Tafel 13–15 Stadtblatt der Uraufnahme von Rothenburg o. d. Tauber aus dem Jahr 1827 (Geobasisdaten © Bayerische Vermessungsverwaltung); modif. durch Verf. Tafel 16–17 nach Baker/Holt 2004, Abb. 6.8; modif. durch Verf. Tafel 18–21 Österreichische Städteatlas; modif. durch Verf.

320

Anhang

Städteverzeichnis Tournay Département

Hautes-Pyrénées

Region

Okzitanien

Administration

Hauptort des Kantons Tournay

Staat

Frankreich

Einwohnerzahl

1 358 (Stand 2013)

Gründungsurkunde

ausgestellt am 20. August 1307 (Sonntag nach Maria Himmelfahrt)

Gründungsdatum

vermutlich 29. August 1307

Gründer

Philipp IV., genannt der Schöne (1268–1314), aus der Dynastie der Kapetinger, und Boémond d’Astarac, Seigneur de Sauveterre en Gaujaguez und de Rans n en Bigorre (1275–1317)

Gründungsmaß

Abb. 121: Lage von Tournay.

1 Fuß (pied): 0,3302 m

Strecken1 Urbaner Mittelpunkt-Le pourtal devant

AB

82,5 m

250 pieds

Maior

Urbaner Mittelpunkt-Le pourtal dernier

AC

82,5 m

250 pieds

Maior

Urbaner Mittelpunkt-1. Ringstraße

Proportionen

51 m

Maior : Minor = φ 82,5 m : 51 m ≈ 1,617647058823529 … φ ≈ 1,618033988749895 …

1

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

Minor

Städteverzeichnis

321

Orientierung

Abb. 122: Simulation des Sonnenaufgangspunktes (gestrichelt) am 28. August 1307 (julianischer Kalender)  22. August 2019 (gregorianischer Kalender) vom urbanen Mittelpunkt aus gesehen.

Quellen Auszug aus dem paréage de Tournay (1307). Lateinisches Original: Ordonnances des Rois de France Bd. XII, 1932, 372–376. Französische Übersetzung: Abadie 2011, 8–12. § 1- En premier lieu ledit Boémond d’Astarac, écuyer, s’est associé avec notre dit roi pour faire un paréage, et a reçu le susdit sire sénéchal au nom de notre sire le roi, cinq cents arpents dans le territoire du lieu de Renso, à la mesure de Gimont, pour faire ou construire une nouvelle bastide dans lesdits cinq cents arpents de terre; à savoir que les susdits cinq cents arpents de terre à la mesure de Gimont, qui se montent à mille arpents à la mesure de Toulouse, comme il a été dit, ont été mis à disposition des habitants de ladite nouvelle bastide, et on les a concédé en emphytéose au nom du sire roi et dudit noble, pour faire des maisons, parcs et jardins et d’autres constructions, selon les us et coutumes de la bastide de Gimont qui est à notre sire le roi; voulant et concédant ledit Boémond que les oblies ou cens des maisons, terres et jardins et autres qui seront levés dans ces cinq cents arpents, et les ventes, et les droits féodaux de justice, et les bancs et tables, et les autres droits féodaux provenant desdits cinq cents arpents, et les leudes et péages perçus dans ladite bastide et ses dépendances, seront partagés par moitié entre notre sire le roi et ses successeurs, et ledit écuyer et ses successeurs pour l’autre moitié en indivision. § 4- De même. Le sire écuyer a retenu pour lui et les siens dans ladite bastide quatre places ou emplacements de maisons sur la place principale, pour y construire des habitations. § 5- De même, ledit écuyer a voulu et retenu que les hommes vivant dans ladite forteresse de Renso soient reçus dans ladite bastide; et qu’il soit donné et concédé aux hommes susdits une place ou un emplacement sur la grande place de ladite bastide, avec une rue adjacente, pour y construire des maisons sur cette partie de la place où les hommes de Renso choisiront de s’installer.

322

Anhang

§ 6- De même. Que les susdits hommes de Renso pourront avoir chacun un arpent de terre; dans les propriétés qu’ils auront dans ledit lieu, ces propriétés, ils les choisiront dans ces cinq cents arpents, avec les oblies annuelles associées à payer à notre sire le roi et audit écuyer, comme ils paient déjà pour les autres arpents au sire susdit. § 23- De même ledit écuyer a retenu pour lui et ses successeurs à perpétuité que tous les droits dans ladite bastide sont et seront communs entre le sire roi et ledit écuyer, comme il est dit, à partir du jour ou le pal sera fixé dans ladite bastide, pour marque de la création de ladite bastide, tant que la bastide durera, les trois premières années exceptées, comme il est d’usage dans les autres bastides neuves faites dans la sénéchaussée de Toulouse.

San Giovanni Valdarno Provinz

Arezzo

Region

Toskana

Administration



Staat

Italien

Einwohnerzahl

17 018 (Stand 2015)

Gründungsdatum

nicht genau bekannt; ­vermutlich 1300

Gründer

Stadt Florenz

Gründungsmaß

Florentiner Ellenmaß/braccia a panno (bf.): 0,585 m

Abb. 123: Lage von San Giovanni Valdarno.

Strecken2 Innerer Durchmesser: Urbaner Mittelpunkt–Osttor/Westtor

95 m

162 bf.

Minor

Mittlerer Durchmesser: Urbaner Mittelpunkt–Stadttortürme

153 m

262 bf.

Maior

Äußerer Durchmesser: Urbaner Mittelpunkt–Ecktürme

248 m

424 bf.

Minor + Maior

2

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

Städteverzeichnis

323

Orientierung

Abb. 124: Simulation des Sonnenaufgangspunktes (gestrichelt) am 24. Juni 1300 (julianischer Kalender)  18. Juni 2019 (gregorianischer Kalender) vom urbanen Mittelpunkt aus gesehen.

Quellen Auszug aus den Rechtsvorschriften zur Gründung von florentinischen Siedlungen im Oberen Arnotal (26. Januar 1299). Lateinisches Original: Archivio di Stato di Firenze, Provvisioni, 9, fols. 136r–137r Abgedruckt in: Friedman 1988, Document 2, 308–310. Pro honore et iurisdictione Comunis Florentie amplianda et melius conservanda per dominos priores artium et vexilliferum iustitie populi Florentie prehabita in hiis dili genti examinatione et quam [plurium] sapientum virorum consilio nec non inter eos secundum formam statutorum secreto et solempni scruptinio ad pissides et palloctas celebrato et facto, eorum offitii auctoritate et vigore provisum deliberatum et firmatum fuit quod pro iamdicto Comune Florentie et ad ipsius Comunis laudabile incrementum tres terre seu comunitates de novo construantur hedifficentur et fiant et popullentur in partibus vallis Arni, videlicet due ex eis in planitie et partibus de Casuberti, tertia vero in burgo seu juxta burgum Plani Alberti, in illis locis et in ea latitudine et longitudine et eo modo et forma quibus placuerit et videbitur et prout et secundum quod placuerit et videbitur dominis prioribus artium et vexillifero iustitie populi florentini, tam presentibus quam futuris.

324

Anhang

Bretenoux Département

Lot

Region

Okzitanien

Administration



Staat

Frankreich

Einwohnerzahl

1 362 (Stand 2013)

Gründungsdatum

1277

Gründer

Guérin de Castelnau Baron, Seigneur de Castelnau (um 1220–1299)

Gründungsmaß

nicht bekannt Abb. 125: Lage von Bretenoux.

Friedeberg/Strzelce Krajeńskie Kreis

Woiwodschaft Lebus

heutiger Name

Strzelce Krajeńskie (seit 1945)

Region

Westpolen

Administration

Landkreissitz

Staat

Polen

Einwohnerzahl

10 114 (Stand 2015)

Gründungsjahr

nicht überliefert, zwischen 1272 und 1286

Gründer

Konrad I. von Brandenburg (um 1240–1304), Markgraf von Brandenburg aus dem Geschlecht der Askanier

Gründungsmaß

nicht bekannt

Abb. 126: Die Lage von Friedeberg/Strzelce Krajeńskie.

325

Städteverzeichnis

Strecken3 St.-Marienkirche–Fangturm

(AE)

183 m

Minor

Rathausstandort–Ausfallstraße Süd

(BG)

183 m

Minor

Birkholtzisches Tor–Fangturm

(CE)

296 m

Maior

Birkholtzisches Tor–Ausfallstraße Süd

(CG)

296 m

Maior

Birkholtzisches Tor–Mühlentor

(CD)

479 m

Maior + Minor

Birkholtzisches Tor–Ausfallstraße Ost

(CH)

479 m

Maior + Minor

Proportionen

Maior : Minor = (Maior + Minor) : Maior 296 m : 183 m ≈ (296 m + 183 m) : 296 m 296 m : 183 m ≈ 479 m : 296 m 1,617486338797814 … ≈ 1,618243243243243 … φ ≈ 1,618033988749895 …

Wolframs-Eschenbach Kreis

Ansbach

heutiger Name

Wolframs-Eschenbach (seit 1917)

Region

Mittelfranken

Administration

Sitz der Verwaltungsgemeinschaft Wolframs-Eschenbach

Staat

Deutschland

Einwohnerzahl

3045 (Stand 2015)

Gründungsjahr

Stadterhebung am 18. Dezember 1332

Gründer

Deutscher Orden

Gründungsmaß

Kulmer Maßsystem: 1 Fuß 0,331 m, 1 Elle 0,662 m, 1 Rute 4,71 m, 1 Schnur 47,1 m

3

Abb. 127: Die Lage von Wolframs Eschenbach.

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

326

Anhang

Strecken4 Externer Messpunkt–NW-Turm

ca. 93 Ruten

ca. 436 m

Maior

Externer Messpunkt–SW-Turm

ca. 93 Ruten

ca. 436 m

Maior

NW-Turm–SW-Turm

ca. 57 Ruten

ca. 270 m

Minor

Proportionen

Maior : Minor = φ 436 m : 270 m = 1.614814814814815 φ = 1,618033988749895 …

Würzburg Kreis

Würzburg

Region

Unterfranken

Administration

Sitz der Regierung von Unterfranken

Staat

Deutschland

Einwohnerzahl

124 873 (Stand 2015)

Gründungsjahr

Erhebung zum Bistum 742

Gründer

Bonifatius (um 673–754/5)

Gründungsmaß

Würzburger Fuß: 0,2918279 m

Abb. 128: Die Lage von Würzburg.

4

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

327

Städteverzeichnis

Strecken5 St.-Kilians-Dom–Rolandsturm

(AB)

ca. 1000 Würzburger Fuß

ca. 290 m

Minor

St.-Kilians-Dom–Ulrich-Kloster

(AC)

ca. 1000 Würzburger Fuß

ca. 290 m

Minor

St.-Kilians-Dom–Hauptbrunnen

(AF)

ca. 1000 Würzburger Fuß

ca. 290 m

Minor

St.-Kilians-Dom–Dominikanerkirche

(AG)

ca. 1000 Würzburger Fuß

ca. 290 m

Minor

St.-Kilians-Dom–Petrikirche

(AD)

ca. 1600 Würzburger Fuß

ca. 467 m

Maior

Proportionen

Maior : Minor = φ 467 m : 290 m = 1.610344827586207 … φ = 1,618033988749895 …

Brandenburg an der Havel Kreis

kreisfreie Stadt

Region

Brandenburg

Administration

Oberzentrum

Staat

Deutschland

Einwohnerzahl

71 574 (Stand 2015)

Gründungsjahr

nicht bekannt ausgehendes 12. Jahrhundert

Gründer

Otto I. von Brandenburg (um 1125–1184) aus dem ­Geschlecht der Askanier

Gründungsmaß

nicht bekannt Abb. 129: Die Lage von Brandenburg an der Havel.

5

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

328

Anhang

Strecken6 Neustadt Katharinen-Kirche–Ehebrecherturm

(AD)

ca. 281 m

Minor

Katharinen-Kirche–Lange Brücke

(AE)

ca. 454 m

Maior

Katharinen-Kirche–Steintor

(AB)

ca. 454 m

Maior

Katharinen-Kirche–St.-Annen-Tor

(AC)

ca. 454 m

Maior

Proportionen Neustadt

Maior : Minor = φ 454 m : 281 m = 1.615658362989324 … φ = 1,618033988749895 …

Strecken Sakralbauten Petri-Kapelle–Katharinen-Kirche

AD

ca. 705 m

Petri-Kapelle–Gotthard-Kirche

AC

ca. 705 m

Petri-Kapelle–Marien-Kirche

AE

ca. 1304 m

Petri-Kapelle–Nikolai-Kirche

AD

ca. 1304 m

Petri-Kapelle–Franziskaner-Kirche St. Johannis

DE

ca. 930 m

Petri-Kapelle–Dominikaner-Kirche St. Pauli

BC

ca. 930 m

Proportionen Altstadt

Maior : Minor = φ 496 m : 307 m = 1,615635179153095 … φ = 1,618033988749895 …

6

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

329

Städteverzeichnis

Villingen Kreis

Schwarzwald-Baar-Kreis

heutiger Name

Villingen-Schwenningen (seit 1972)

Region

Baden

Administration

Oberzentrum

Staat

Deutschland

Einwohnerzahl

84 674 (Stand 2015)

Gründungsjahr

nach der lokalen Tradition 1119; vermutlich ausgehendes 12. Jahrhundert

Gründer

Herzog von Zähringen

Gründungsmaß

nicht bekannt Abb. 130: Die Lage von Villingen.

Strecken7 Achsenkreuz Urbaner Mittelpunkt–Vortor des Oberen Tors

(AB)

ca. 235 m

Minor 1

Urbaner Mittelpunkt–Niederes Tor

(AC)

ca. 381 m

Maior 1

Vortor des Oberen Tors–Niederes Tor

(DE)

ca. 616 m

Minor + Minor

Urbaner Mittelpunkt–Bickentor

(AD)

ca. 173 m

Minor 2

Urbaner Mittelpunkt–Riettor

(AE)

ca. 281 m

Maior 2

Bickentor–Riettor

(DE)

ca. 454 m

Minor + Minor

Proportionen Achsenkreuz

Maior : Minor = (Maior + Minor) : Maior Reihe 1: 381 m : 235 m ≈ (381 m + 235 m) : 381 m 1,621276595744681 … ≈ 1,616797900262467 … Reihe 2: 281 m : 173 m ≈ (281 m + 173 m) : 281 m 1,624277456647399 … ≈ 1,615658362989324 … φ ≈ 1,618033988749895 …

7

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

330

Anhang

Strecken Hexagon Riettor–Nordwestecke

(EF)

ca. 235 m

Minor 1

Nordwestecke–Nordostecke

(FG)

ca. 235 m

Minor 1

Bickentor–Nordostecke

(DG)

ca. 235 m

Minor 1

Bickentor–Südostecke

(DI)

ca. 381 m

Maior 1

Südostecke–Südwestecke

(HI)

ca. 235 m

Minor 1

Nordwestecke–Südwestecke

(HF)

ca. 616 m

Minor 1 + Maior 1

Nordostecke–Südostecke

(GI)

ca. 616 m

Minor 1 + Maior 1

Rottweil Kreis

Rottweil

Region

Württemberg

Administration

Kreisstadt

Staat

Deutschland

Einwohnerzahl

24 915 (Stand 2015)

Gründungsjahr

nicht bekannt zwischen 1120 und 1150

Gründer

nicht bekannt

Gründungsmaß

nicht bekannt

Abb. 131: Die Lage von Rottweil.

Strecken8 Urbaner Mittelpunkt–Hochturm

(AB)

ca. 404 m

Maior

Urbaner Mittelpunkt–Rotherturm

(AH)

ca. 250 m

Minor

Urbaner Mittelpunkt–Predigerturm

(AE)

ca. 250 m

Minor

Proportionen

Maior : Minor = φ 404 m : 250 m = 1.616 φ ≈ 1,618033988749895 …

8

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

331

Städteverzeichnis

Rothenburg ob der Tauber Kreis

Ansbach

Region

Mittelfranken

Administration



Staat

Deutschland

Einwohnerzahl

11 041 (Stand 2015)

Gründungsjahr

nicht bekannt 15. Mai 1274: Erhebung zur Freien Reichsstadt

Gründer

Pfalzgraf Konrad der Staufer (um 1135–1195)

Gründungsmaß

Kulmer Maßsystem: 1 Fuß 0,331 m, 1 Elle 0,662 m, 1 Rute 4,71 m, 1 Schnur 47,1 m

Abb. 132: Die Lage von Rothenburg ob der Tauber.

Strecken9 Jakobskirche–Galgentor

(AB)

ca. 470 m

rund 100 Kulmer Ruten

Maior + Minor

Jakobskirche–Gebsattlertor

(AD)

ca. 470 m

rund 100 Kulmer Ruten

Maior + Minor

ca. 290 m

rund 61 Kulmer Ruten

Maior

Weißer Turm–Äußere Stadtmauer Jakobskirche–Weißer Turm

(AI)

ca. 180 m

rund 39 Kulmer Ruten

Minor

Jakobskirche–Dominikanerturm

(AL)

ca. 180 m

rund 39 Kulmer Ruten

Minor

Proportionen

Maior : Minor = (Maior + Minor) : Maior 290 m : 180 m ≈ (290 m + 180 m) : 290 m 1,611111111111111 … ≈ 1,620689655172414 … φ ≈ 1,618033988749895 …

9

Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

332

Anhang

Orientierung

Abb. 133: Simulation des Sonnenaufgangspunktes (gestrichelt) am 15. Mai 1274 (julianischer Kalender) 8. Mai 2019 (gregorianischer Kalender) vom urbanen Mittelpunkt gesehen.

Worcester Region

West Midlands Englands

Administration

Verwaltungssitz der Grafschaft Worcestershire

Staat

Großbritannien

Einwohnerzahl

93 700 (Stand 2007)

Gründungsjahr

nicht bekannt

Gründer

nicht bekannt

Gründungsmaß

nicht bekannt

Abb. 134: Die Lage von Worcester.

333

Städteverzeichnis

Strecken10 Reihe 1

Reihe 2

Umkreis

Bishop’s Gate–SW-Corner Castle

(AC)

ca. 371 m

Maior

Bishop’s Gate–Water Gate

(AE)

ca. 230 m

Minor

Sidbury Gate–SW-Corner Castle

(BC)

ca. 343 m

Maior

SW-Corner Castle-Frogs Gate

(CD)

ca. 213 m

Minor

Bishop’s Gate–Sidbury Gate

(AB)

ca. 426 m

Bishop’s Gate–Chor Cathedral

(AF)

ca. 213 m

Mittelpunkt–Bishop’s Gate

(AM)

ca. 219 m

Mittelpunkt–Sidbury Gate

(BM)

ca. 219 m

Mittelpunkt–SW-Corner Castle

(CM)

ca. 219 m

Proportionen

Maior : Minor = φ Reihe 1 371 m : 230 m ≈ 1,61304347826087 … Reihe 2 343 m : 213 m ≈ 1,610328638497653 … φ ≈ 1,618033988749895 …

Wien Region

Niederösterreich

Administration

Bundeshauptstadt von Österreich

Staat

Österreich

Einwohnerzahl

1 840 573 (Stand 2016)

Gründungsjahr

nicht bekannt

Gründer

nicht bekannt

Gründungsmaß

nicht bekannt

Abb. 135: Die Lage von Wien. 10 Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

1

AB

334

Anhang

Strecken11 Reihe 1

Reihe 2

Reihe 3

Reihe 4

Proportionen

Porta dextra–Porta sinistra

(AB)

ca. 460 m

Maior + Minor

Porta dextra–Urbaner Mittelpunkt

(BM)

ca. 176 m

Minor

Porta sinistra–Urbaner Mittelpunkt

(BM)

ca. 284 m

Maior

Mittelpunkt–Stubentor

(AM)

ca. 530 m

Minor

Mittelpunkt–Kärtnertor

(BM)

ca. 530 m

Minor

Mittelpunkt–Widmertor

(CM)

ca. 530 m

Minor

Mittelpunkt–Rotenturmtor

(EM)

ca. 530 m

Minor

Mittelpunkt–Schottentor

(DM)

ca. 829 m

Maior

Nordostecke–Tor an der Hohen Brücke

(AC)

ca. 851 m

Minor

Nordostecke–Peilertor

(AD)

ca. 851 m

Minor

Nordostecke–Franzentor

(AB)

ca. 1376 m

Maior

St.-Ruprecht-Kirche–St.-Stephan-Kirche (romanischer Chor)

(AB)

ca. 400 m

Maior

St.-Ruprecht-Kirche–St.-Peter-Kirche

(AC)

ca. 400 m

Maior

St.-Peter-Kirche–St.-Stephan-Kirche (­gotischer Chor)

(BC)

ca. 250 m

St.-Peter-Kirche–St.-Michael-Kirche

(CE)

ca. 250 m

Minor

St.-Ruprecht-Kirche–Schotten-Kirche

(AD)

ca. 650 m

Maior + Minor

St.-Ruprecht-Kirche–St.-Michael-Kirche

(AE)

ca. 650 m

Maior + Minor

Maior : Minor = (Maior + Minor) : Maior Maior : Minor = φ

11 Die gerundeten metrischen Maße sind einem skalierten Katasterplan entnommen.

Minor

335

Städteverzeichnis

Reihe 1

284 m : 176 m ≈ (284 m + 176 m) : 284 m 1,613636363636364 … ≈ 1,619718309859155 …

Reihe 2

829 m : 530 m ≈ 1,564150943396226 … φ ≈ 1,618033988749895 …

Reihe 3

1376 m : 851 m ≈ 1.616921269095182 … φ ≈ 1,618033988749895 …

Reihe 4

400 m : 250 m ≈ (400 m + 250 m) : 400 m 1,6 ≈ 1,625 φ ≈ 1,618033988749895 …

336

Anhang

Personenregister A Achilles  164 f., 263 Aelianus 35 Æthelflæd 239 Æthelred 239 Ahmad bin Yusuf  72 f. Alanus ab Insulis  44, 64, 229 Albertus Magnus  228 Albrecht I. (HRR)  235, 237 Albrecht der Bär (Markgraf von Brandenburg)  100, 209 Alfred der Große (Ælfred)  239 al-Hajjaj ibn Matar  73 Al Idrisi  247 Alkuin 77 Altmann von Passau (Bischof)  124 an-Nairizi  41, 72 Antonio Averulino (il Filarete)  115 Anselm von Laon  94 Apuleius Platonicus  230 Archimedes von Syrakus  63, 72 Ares 36 Aristoteles  32, 37, 43, 45, 79 f., 84, 128 Arnolfo di Cambio  90, 141–143 Astrolab 73 Aubin, Hermann  17 f. Augustus  115, 155, 158 Aurelius Augustinus  53–55, 78, 122, 125, 154, 205, 228 B Balbus (Agrimensor)  66 Barnim I. (Herzog von Pommern)  99 Barr, Mark  41 Bebius Italicus  164 Bekmann, Johann Christoph  160 Belšazar 88 Bernhard II. zur Lippe  111 Bernardus Silvestris  44, 60, 152 Bernhard von Chartres  32 f., 44 Bernhard von Clairvaux  123 f., 126 Bernward von Hildesheim  126 Bertrand Boysset  69, 73, 101, 106, 109 f., 260 Boémond d’Astarac  131, 320 f.

Boethius  12, 34, 46, 55–57, 62, 66, 224 f. Bonaventura  92–94, 108, 155, 229 Bonifatius  173, 327 Braunfels, Wolfgang  18 C Cassiodor 53 Cato 115 Celsus (Agrimensor)  65 Chalcidius  43 f., 48, 259 Childe, Gordon  76 Cicero  43, 78, 89 Conant, Kenneth John  149 Conrad von Feuchtwangen  235 Costa, Lúcio  10 Crummy, P.  20 D Demeter 36 Dion Chrysostomos  79 Dionysos 36 Dionysios II. von Syrakus  44 E Edward I. (König von England)  91, 109 Empedokles  32, 48 Engel, Evamaria  17 Engelmann, Erika  17 Ennen, Edith  18, 22 Enzelin  90, 201 Eliade, Mircea  21 Epiktet 44 Eudoxos von Knidos  60 Euklid von Alexandria  40, 60 f., 65, 67, 72 f., 151, 255, 260 Ezechiel  85, 117–120, 122, 127 f., 139, 154, 167, 263 F Festus 155 Fibonacci, Leonardo da Pisa  20, 62–64, 67, 145, 211 f., 225, 243, 260 Francesco di Giorgio Martini  156 Francesco Petrarca  32

337

Personenregister

Francis Bacon  260 Friedrich I. Barbarossa  116 Friedrich II. (HRR)  62, 99, 115, 125 Friedman, David  20, 145 Fritz, Johannes  16 f. Frontinus, Sextus Iulius  65 G Galileo Galilei  34, 229 Gérard de la Tour  109 Gerardesca von Pisa  124 Giordano da Pisa  92, 129 Giordano di Rivalto  81 Giorgio Vasari  32 Giotto di Bondone  90, 143 Giovanni Battista/Johannes der Täufer  142 f., 147 Giovanni di Gherardo da Prato  145 Godehard von Hildesheim  202, 213 Goethe, Johann Wolfgang von  58 Guérin de Castelnau  147, 324 Guidoni, Enrico  20 H Haase, Carl  18 Hades 36 Hadrian 100 Ham  58, 206 Hamm, Ernst  20 Haussmann, Eugène  103 Haverkamp, Alfred  21 Helena von Konstantinopel  97, 127 Heloise 73 Henoch 123 Heinrich I. (HRR)  212 Heinrich II. Jasomirgott  247, 252 Heraklit 229 Herbord von Raven  91 Herodes 119 Herodot 207 Heron von Alexandria   41, 72, 151 Herrad von Landsberg  55 Hestia 36 Hildegard von Bingen  58 Hippasos von Metapont  39 Hippodamus von Milet  128 Hippokrates von Kos  60 Hippolytos 38

Homer 165 Honorius Augustodunensis  217, 225 Hrabanus Maurus  78, 80, 94 Hrosvitha von Gandersheim  55 Hugo von St. Victor  60, 66, 93 f., 134, 206, 221, 228, 260 Humpert, Klaus  23, 235 Hyginus Gromaticus  65, 105 Hypatia von Alexandria  52 I/J Iamblichos  35, 38 Isidor von Sevilla  78–80, 115, 206 Japhet  58, 206 Jean de Mauquenchy  131 Jean Mignot  52 Jesus von Nazareth  44, 53, 69 f., 85, 124, 206, 222 Joachim von Fiore  33, 125 Johann I. (Markgraf von Brandenburg)  161 Johann Ohneland/John I. Lackland  241, 244 Johannes (Evangelist)  95, 118–120, 122, 125, 127 f., 139, 206, 262 f. Johannes Campanus von Novara  60 f. Johannes der Täufer/Giovanni Battista  142 f., 147 Johannes Lydus  115 Johannes von Salisbury  11, 155 Jörg Wickram  165 K Karl der Große  77, 97, 175 Kepler, Johannes  40 Keyser, Erich  18 Kilian 174 Kolonat 174 Konrad I. (Markgraf von Brandenburg)  160, 324 Konrad III. (HRR)  232 Konrad IV. (HRR)  85 Konrad der Staufer (Pfalzgraf)  331  Konrad von Megenberg  152 Konrad von Würzburg  165 Konstantin 99 Konstanze 160 Krates von Mallos  216 Kronos 36 Kyros 122

338 L Le Corbusier  10 Leonardo Dati  206 Leonardo da Pisa siehe Fibonacci Leon Battista Alberti  93, 207 Leopold III. (Herzog Österreich)  251 Leopold IV. (Herzog Österreich)  247 Leopold V. (Herzog Österreich)  248 Leopold VI. (Herzog Österreich)  246 f. Levi ben Gerson  73 Lilley, Keith  20 f. Luca Pacioli  40 Ludwig VII. (König von Frankreich)  124 Ludwig der Bayer  170 Lukian von Samosata  42 Luther von Braunschweig  170 M Macrobius  43, 45, 259 Marquardus von Padua  86 Marx, Karl  76 Meinwerk von Paderborn  126 Muhammed ibn Musa al’Khwarizmi  72 f. Müller, Werner  21 N Nebukadnezar II.  118 Nikolaus Kopernikus  34 Nikolaus Wurm  78, 80, 82, 261 Noah  221, 223, 225 O Otto I. (Markgraf von Brandenburg)  209, 327 Otto III. (Markgraf von Brandenburg)  161 Ottokar II. Přemysl  135 Otto von Freising  123 P Parmenides 32 Paulus  94, 202 Petrus  117, 201 f., 212, 239 Petrus Abaelardus  73, 79 Phidias 41 Philipp (König von Frankreich)  124 Philippe IV. (König von Frankreich)  131, 320 Philolaos  36 f. Philon von Alexandria  117

Anhang

Piero della Francesca  40 Piero della Zucca  143 f. Pitz, Ernst  18 Platon  32, 34, 36, 43–52 f., 55, 153, 229, 259 Plinius der Ältere  136, 155, 207 Plutarch 114 Przemysław II.  160 Pribislaw-Heinrich  212 f. Pseudo-Boethius 61 Pseudo-Dionysios-Areopagita 34 Ptolemaios 72 Pythagoras  34–43 f., 53, 70, 89, 258 f. R Randolph, Adrian  20 Rauda, Wolfgang  21 Reginmar von Passau  251 f. Reidinger, Erwin  20 Remus  84, 114 Rhea 36 Richard Löwenherz/Richard I. the Lionheart  241, 244, 248 Riehl, Heinrich  16 Robert de Grosseteste  54, 260 Romulus  84, 114 f., 155 Rudolf der Habsburger  234 f. Ruprecht von Salzburg  252 S Sæwulf 85 Sancho d’Astarac  139 Schenk, Martin  23, 235 Schlesinger, Walter  22 Sem  58, 206 Servius Honoratius  114 Sextus Empiricus  45 Siculus Flaccus  65 Sigismund von Luxemburg  166 Siedler, Eduard Jobst  17 Silvester II. (Papst)  66 Sitte, Camillo  16 Slater, T. R.  20 Sokrates  44, 55 Speusipp 43 Stephan (Heiliger)  251 Stoob, Heinz  18 Strabon 207

339

Ortsregister

T Tannhäuser 166 Thales 211 Theoderich 55 Thomas von Aquin  62, 79, 89, 92 f., 106, 126, 159 Timaios von Lokri  45 Totnan 174 U/V Varro  113 f., 134 Villard de Honnecourt  67 f., 74 f., 230 f., 260 Vincenz von Beauvais  205 Virahânka 63 Vitruv  70, 99, 154, 159

W Walter von der Vogelweide  247 Weber, Max  9, 76 Wilhelm von Conches  33, 43 f., 156, 229 Wilhelm von Tyrus  97 William von Ockham  260 Willibrord 77 Wolfram von Eschenbach  168, 263 XYZ Xenokrates 43 Xenophon 122 Zeus 36

Ortsregister A Aachen  97, 127 Aberystwyth 227 Aigues-Mortes 9  Alessandria 112 Amsterdam 171 Ardres  108, 260 Arezzo 140 Arnswalde/Choszczno 162 Augsburg  98, 201 B Baa 109 Babylon  40, 118, 127 f. Bamberg 202 Berlin  16, 86, 98, 100, 103, 249 Bern  98, 100 Bernau 100 Bobbio 66 Böddeken 101 Bologna 140 Bonn 98 Bordeaux 109 Brandenburg an der Havel  29, 209–213, 225, 257, 264, 327–328 Brasilia 10 Brescia 140

Breslau/Wrocław 86 Bretenoux  29 f., 147–151, 257, 324 Briviesca 130 Brügge  78, 87, 110 Büraburg 174 Byzanz/Konstantinopel  84, 165, 167, 246 C Campaldino  140, 142 Castelfranco di Sopra  140 Castel Santa Barnaba/ Scarperia  140 f. Castel Santa Maria/Terranuova Bracciolini  140, 145 Castellum della Badia di Capolona  140 Chandigarh 10 Chester 203 Choszczno/Arnswalde 162 Cittadella 161 Clairvaux 123 Cosa 114 Créon 161 Cremona 140 D Damazan 132 Dijon 227 Dzierżoniów/Reichenbach 161

340 E Eberbach 100 Ebersberg 100 Ebstorf 205 Eichstätt 168 Eisenhüttenstadt 10 Eresburg 77 Erfurt  174, 227 Eschenbach/Wolframs-Eschenbach  29 f., 164–173, 203 f., 238, 257, 263, 325–326 F Fécamp 101 Firenzuola  140 f. Florenz  90, 127, 141 f., 144, 147, 322 Fonsorbes 139 Frankfurt am Main  176 Frankfurt (Oder)  161 Freiburg im Breisgau  84, 111, 207, 214 Friedeberg/Strzelce Krajeńskie  29, 159–164, 203, 263, 324–325 Fulda 79 G Giglio Fiorentino  140 Glevum/Gloucester 239 Gorzów Wielkopolski/Landsberg an der ­Warthe  162 Grenade-sur-Garonne 139 H Hadrianutherae 100 Hamm 110 Hereford  206, 221 f., 225 Hildesheim 202 Hippo Regius  53 I/J Incisa 140 Jerusalem  85 f., 95–97, 123–127, 139, 154, 159, 166 f., 214, 263 Jüterbog  207, 264 K Karthago 116 Kempten 98 Köln  97, 110

Anhang

Konstantinopel/Byzanz  84, 165, 167, 246 Konstanz 86 Kyritz 99 L Landsberg an der Warthe/Gorzów Wielkopolski  162 Lippstadt 111 Logne 109 Lucca 140 Luckenberg  212 f. Lund 110 Lüttich 88 M Mailand  52, 78, 116 Mainz  79, 98 Manfredonia 85 Massa Lombarda  130 Masseube 132 Mautern 251 Milet 128 Miramont-de-Guyenne 132 Montelupo 140 Montpazier 132 Murten 85 Myślibórz/Soldin 162 N Namur 88 Naypyidaw 10 Neubrandenburg  91, 161 Neuss 98 Nogaro 107 Nový Jičín  130, 135 O Ödenburg 78 Olynth 128 P Paderborn  126, 202 Paris  78, 87, 103 Passau  124, 247, 251 f. Pietrasanta 140 Piräus 128 Pisa 140

341

Ortsregister

Prenzlau 99 Priene 128

Tournai 131 Tournay  29, 131–139, 238, 257, 262, 320–322

R Regensburg 166 Reichenbach/Dzierżoniów 161 Renso  131, 136, 139, 321 f. Rhodos 128 Rom  18, 97 f., 106, 114, 127, 129, 155 Rothenburg ob der Tauber  24, 26, 29, 232–238, 253 f., 257, 265, 267, 321–322 Rottenburg am Neckar  207, 264 Rottweil  29, 110, 218–224 f., 257, 264, 330

U/V Utrecht  125, 202 Vellberg 171 Venedig  103, 207 Victoria  99, 105 Villa Bretenoro  148 Villingen  29 f., 103, 207, 214–218, 225, 238, 257, 264, 329–330 Vindobona  244, 246 f. Viroconium/Wroxeter 239 Vysoké Mýto  135

S Sainte Suzanne  171 Salzgitter 10 San Giovanni Valdarno  25 f., 29 f., 140–147, 238, 257, 262, 322–323 Scarperia/Castel Santa Barnaba  140 f. Siena  83, 107, 111 f., 140, 227 Soest 104 Soldin/Myślibórz 162 Speyer 201 St. Gallen  249 Strzelce Krajeńskie/Friedeberg  29, 159–164, 203, 263, 324–325 T Talamone 107 Templin  85, 207, 209, 264 Terranuova Bracciolini/Castel Santa Maria  140, 145 Timgad 129 Toulouse  137 f., 322 Toulouzette 133

W Wien  29 f., 107, 244–253 f., 257, 265, 267, 333–335 Wiener Neustadt  130, 248 Winchelsea 99 Wolframs-Eschenbach/Eschenbach  29 f., 164–173, 203 f., 238, 257, 263, 325–326 Wolfsburg 10 Worcester  29, 239–244, 253 f., 257, 265, 267, 332– 333 Worms 171 Wrocław/Breslau 86 Wroxeter/Viroconium 239 Würzburg  29 f., 90, 173–176, 201–203 f., 237, 241, 257, 264, 326–327 Wusterhausen/Dosse  13, 98 Z Zörbig  207, 264 Zürich  27, 249