Ethnobiology of Uzbekistan: Ethnomedicinal Knowledge of Mountain Communities 3031230302, 9783031230301

Natural resources and associated biological diversity provide the basis of livelihood for humans, particularly in rural

103 63 122MB

English Pages 1564 [1486] Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Contents
About the Editors
Part I: Ecosystems, Biodiversity of Uzbekistan and Its Global Value
Uzbekistan – Ecosystems, Biodiversity, History and Culture
Ecosystems and Biodiversity of Uzbekistan
Geographical Location
Climate of Uzbekistan
Natural Resources of Uzbekistan
Biodiversity of Uzbekistan and Its Global Value
Flora and Vegetation
The Flora of Uzbekistan
Vegetation Zonation
The Peoples of Uzbekistan and Their Traditions
Population
National Art
A Brief History of Ethnobiology in Uzbekistan
Diversity of Medicinal Plants, Fungi and Animals Use in Uzbekistan
Useful Wild Plants of the Flora of Uzbekistan
Folk Healers (Tabib’s) Knowledge and Communication About Traditional Uses of Ethnobiological Species in Uzbekistan
The Personality of Tabib and the Specialization of Tabib in the System of Worldviews of the Uzbek People
Traditions of Uzbeks Related to Treatment and Medical Practice
Geographic Factors
Lifestyle and Type of Occupation of the Population
Native Flora and Fauna
Religious Views
Tabib’s Culture: Personal and Professional Norms of Behavior
Determination of Treatment Fees
Raising a Student Is a Duty of Tabib
Following the Precepts of a Mentor
Traditions of Treatment and Pharmacology in Uzbek Folk Medicine
Working Tools Used in Traditional Medicine
Natural Raw Materials and Medicinal Products Used in Pharmacology
References
Part II: Chapter Conservation and Sustainable Use of Plant Resources of Uzbekistan
Conservation and Sustainable Use of Plant Resources of Uzbekistan
Conservation and Use in Uzbekistan
Restoration of Licorice Raw Material Base Is Possible in Two Ways
Conclusions
References
Part III: Plant Chapters
Acanthophyllum gypsophiloides Regel. - CARYOPHYLLACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
In Veterinary
Local Handicraft and Other Uses
References
Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
References
Acorus calamus L. - ACORACEAE
Local Names
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Ajuga turkestanica (Regel) Briq. - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
Local Handicraft and Other Uses Other Species
References
Allium caspium subsp. baissunense (Lipsky) F.O. Khass. & R.M. Fritsch, Allium cepa L., Allium giganteum Regel, Allium karataviense Regel, Allium oschaninii O. Fedtsch., Allium pskemense B. Fedtsch., Allium ramosum L., Allium rosenbachianum
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Local Handicraft and Other Uses of Other Species
References
Althaea armeniaca Ten., Althaea cannabina L., Althaea nudiflora Lindl., Althaea officinalis L. - MALVACEAE
Local Names
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Handicraft and Other Uses
References
Anabasis aphylla L. - AMARANTHACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Reference
Anethum graveolens L. - APIACEAE
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
References
Arctium lappa L., Arctium tomentosum Mill. - ASTERACEAE
Local Names
Botany and Ecology
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Armoracia rusticana G. Gaertn., B. Mey. & Scherb. - BRASSICACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Artemisia absinthium L., Artemisia annua L., Artemisia dracunculus L., Artemisia frigida Willd., Artemisia leucodes Schrenk, Artemisia scoparia Waldst. & Kit., Artemisia sieversiana Ehrh. ex Willd., Artemisia vulgaris L., Eclipta pr
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Atraphaxis pyrifolia Bunge - POLYGONACEAE
Local Names
Botany and Ecology
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Berberis integerrima Bunge, Berberis oblonga (Regel) C.K. Schneid., Berberis vulgaris L. - BERBERIDACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Betonica betoniciflora (Rupr. ex O. Fedtsch. & B. Fedtsch.) Sennikov; LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Handicraft and Other Uses
References
Betula pendula Roth, Betula tianschanica Rupr. - BETULACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Bidens triparita L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Capparis sicula Vieill. subsp. herbacea (Willd.) Inocencio, D. Rivera, Obón & Alcaraz, Capparis spinosa L. - CAPPARACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Important Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Important Species
References
Capsella bursa-pastoris (L.) Medik - BRASSICACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Centaurea behen L., Centaurea cyanus L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Cichorium intybus L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Cistanche salsa (C.A. Mey.) Beck - OROBANCHACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Handicraft and Other Uses
References
Codonopsis clematidea (Schrenk ex Fisch. & C.A. Mey.) C.B. Clarke - CAMPANULACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
References
Cucurbita pepo L. - CUCURBITACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Important Species
Handicraft and Other Uses of Other Important Species
References
Cullen drupaceum (Bunge) C.H. Stirt. - FABACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Dactylorhiza incarnata subsp. cilicica Klinge - ORCHIDACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
Handicraft and Other Uses of Others Species
References
Datura stramonium L. - SOLANACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Handicraft and Other Uses
References
Delphinium semibarbatum Bien. ex Boiss. - RANUNCULACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Dracocephalum bipinnatum Rupr.; Dracocephalum diversifolium Rupr.; Dracocephalum formosum Gontsch.; Dracocephalum heterophyllum Benth.; Dracocephalum imberbe Bunge; Dracocephalum integrifolium Bunge; Dracocephalum komarovii Lipsky; Dracoc
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Elaeagnus angustifolia L.- ELAEAGNACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
References
Elwendia persica (Boiss.) Pimenov & Kljuykov - APIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Ephedra equisetina Bunge, Ephedra intermedia Schrenk ex C.A. Mey. - EPHEDRACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Use of Other Species
Local Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Equisetum arvense L., Equisetum ramosissimum Desf. - EQUISETACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Eremurus olgae Regel, Eremurus regelii Vved., Eremurus robustus (Regel) Regel, Eremurus soogdianus (Regel) Benth. & Hook. f., Eremurus turkestanicus Regel - ASPHODELACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Ferula assa-foetida L., Ferula foetida (Bunge) Regel, Ferula foetidissima Regel & Schmalh., Ferula karelinii Bunge, Ferula kuhistanica Korovin, Ferula moschata (H. Reinsch) Koso-Pol., Ferula tadshikorum Pimenov, Ferula tenuisecta Korovin,
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Ficus carica L. - MORACEAE
Local Names
Botany and Ecology
Local Medicinal Uses
Medicinal Use of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Gentiana olivieri Griseb. - GENTIANACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medidicinal Uses
Medicinal Uses of Other Species
Food Uses of Other Species
Handicraft and Other Uses of Other Species
References
Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch. ex DC. - FABACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Helichrysum maracandicum N. Pop. ex Kirp., Helichrysum mussae Nevski, Helichrysum nuratavicum Krasch. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Hippophae rhamnoides subsp. turkestanica - ELAEAGNACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Hypericum elongatum Ledeb. ex Rchb., Hypericum perforatum L., Hypericum scabrum L. - HYPERICACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Use of Other Species
Local Food Uses
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Inula grandis Schrenk ex Fisch. & C.A. Mey., Inula helenium L., Inula orientalis Lam. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Use of Other Species
Local Food Uses
Local Handicraft and Other Uses
References
Juglans regia L. - JUGLANDACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Juniperus pseudosabina Fisch. & C.A. Mey., Juniperus sabina L., Juniperus semiglobosa Regel, Juniperus seravschanica Kom. - CUPRESSACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Koenigia coriaria (Grig.) T.M. Schust. & Reveal - POLYGONACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Lagochilus inebrians Bunge, Lagochilus platycalyx Schrenk ex Fisch. & C.A. Mey., Lagochilus seravschanicus Knorring - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
References
Leonurus turkestanicus V.I. Krecz. & Kuprian., Leonurus panzerioides Popov - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
References
Leuzea repens (L.) D.J.N. Hind - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Handicraft and Other Uses
References
Mediasia macrophylla (Regel & Schmalh.) Pimenov - APIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Focal Food Uses
Local Handicraft and Other Uses
References
Mentha arvensis L., Mentha longifolia (L.) L., Mentha spicata L., Menta x piperita L. - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Use of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
References
Morus alba L., Morus nigra L. - MORACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Use of Other Species
References
Origanum vulgare subsp. gracile (K. Koch) Letsw. - LAMIACEAE
Local Names
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Peganum harmala L. - NITRARIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Pentanema britannica (L.) D. Gut.Larr., Santos-Vicente, Anderb., E. Rico & M.M. Mart. Ort. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Persicaria hydropiper (L.) Spach - POLYGONACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Phragmites australis (Cav.) Trin. ex Steud. - POACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Plantago lanceolata L., Plantago major L. - PLANTAGINACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Polygonum aviculare L. - POLYGONACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Prunus amygdalus Batsch, Prunus bucharica (Korsh.) Hand.-Mazz., Prunus spinosissima (Bunge) Franch. - ROSACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Economic Importance
References
Punica granatum L. - LYTHRACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Rhamnus cathartica L. - RHAMNACEAE
Local Names
Botany and Ecology
Phytochemistry
Phytochemistry
Local Medicinal Uses
Folk Recipes
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Rheum maximowiczii Losinsk. - POLYGONACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Foods
Food Uses of Other Species
Local Handicraft and Other Uses
References
Rhodiola heterodonta (Hook.f. & Thomson) Boriss., Rhodiola pamiroalaica Boriss. - CRASSULACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Rhus coriaria L. - ANACARDIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Ribes janczewskii Pojark. Ribes meyeri Maxim. - GROSSULARIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Rosa canina L., Rosa webbiana Wall. ex Royle - ROSACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Rubia tinctorium L. - RUBIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Local Handicraft and Other Uses
Handicraft and Other Uses for Other Species
References
Salvia deserta Schangin, Salvia sclarea L., Salvia virgata Jacq. - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Silybum marianum (L.) Gaertn. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Taraxacum brevirostre Hand.-Mazz., Taraxacum juzepczukii Schischk., Taraxacum macrochlamydeum Kovalevsk., Taraxacum officinale F.H. Wigg, Taraxacum pseudominutilobum Kovalevsk., Taraxacum sonchoides (D. Don) Sch. Bip. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
References
Thermopsis alterniflora Regel & Schmalh. - FABACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
References
Thymus seravschanicus Klokov - LAMIACEAE
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Use of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Tribulus terrestris L. - ZYGOPHYLLACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Local Handicraft and Other Uses
References
Tussilago farfara L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Handicraft and Other Uses
References
Ungernia sewerzowii (Regel) B.Fedtsch., Ungernia victoris Vved. ex Artjush. - AMARYLLIDACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Economic Importance
References
Urtica dioica L. - URTICACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Use of Other Species
Local Food Uses
Food Use of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Verbascum songaricum Schrenk ex Fisch. & C.A. Mey - SCROPHULARIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Xanthium spinosum L., Xanthium strumarium L. - ASTERACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Xylosalsola richteri (Moq.) Akhani & Roalson, Xylosalsola paletzkiana (Litv.) Akhani & Roalson - AMARANTHACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Folk Recipes
Local Handicraft and Other Uses
References
Ziziphora clinopodioides Lam., Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f., Ziziphora pamiroalaica Juz., Ziziphora pedicellata Pazij et Vved., Ziziphora tenuior L. - LAMIACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft Uses of Other Species
References
Ziziphus jujuba Mill, Ziziphus mauritiana Lam. - RHAMNACEAE
Local Names
Botany and Ecology
Phytochemistry
Local Medicinal Uses
Medicinal Uses of Other Species
Local Food Uses
Food Uses of Other Species
Local Handicraft and Other Uses
Handicraft and Other Uses of Other Species
References
Part IV: Animal Chapters
Camelus bactrianus Linnaeus, 1758 - CAMELIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Capra hircus Linnaeus, 1758 - BOVIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Coturnix coturnix Linnaeus, 1758 - PHASIANIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Equus caballus Linnaeus, 1758 - EQUIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Eryx tataricus Lichtenstein, 1823 - BOIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Hemiechinus auritus Gmelin, 1770 - ERINACEIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Hystrix indica Kerr, 1792. - HYSTRICIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Marmota caudata Geoffroy, 1844 - SCIURIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Meles canescens canescens Blanford, 1875, Meles leucurus leucurus Hodgson, 1847 - MUSTELIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Naja oxiana Eichwald, 1831 - ELAPIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Ovis aries Linnaeus, 1758 - BOVIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Pelophylax ridibundus Pallas, 1771 - RANIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Phasianus colchicus Linnaeus, 1758 - PHASIANIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Tetraogallus himalayensis G.R. Gray, 1843 - PHASIANIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Ursus arctos isabellinus Horsfieldi, 1826 - URSIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
References
Varanus griseus caspius Eichwald, 1831 - VARANIDAE
Local Names
Zoology and Ecology
Local Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Part V: Fungus Chapters
Agaricus bisporus (J.E. Lange) Imbach; Agaricus campestris L.; Agaricus xanthodermus Genev. - AGARICACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Local Food Uses
References
Auricularia mesenterica (Dicks.) Pers. - AURICULARIACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Local Food Uses
Local Handicraft and Other Uses
References
Bjerkandera adusta (Willd.) P. Karst.; Bjerkandera fumosa (Pers.) P. Karst. - MERULIACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Volatile Organic Derivatives
Mineral Composition
Carboxyl Acids
Fatty Acids and Sterols
Phenolic Derivatives
Preliminary Results on Polysaccharides and Proteins
Ligninolytic Enzymes
Local Medicinal Uses
Modern Medicinal Uses
Antimicrobial Activities
B. adusta as Both Antigenic and Allergic Agent
Antioxidant and Immunomodulating Properties
Ligninolytic Enzymes
Cosmetic Applications
Environmental Applications
Bioremediation
Decolorization
Biocontrol Agent Against Fusarium wilt
Environmental Application for Plant Resistance to Abiotic Stress
Local Food Uses
References
Cerioporus squamosus (Huds.) Quél.; Cerioporus leptocephalus (Fr.) Zmitr. & Kovalenko - POLYPORACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Folk Recipes
Local Food Uses
Culinary Recipes
Recipes for Making Cerioporus squamosus
Cleaning and Preparing Mushrooms
How to Cook Soup with This Mushroom
How to Cook Fried Mushrooms with Onions
A Common Dish Made from Mushroom Is Pesters Stewed in Sour Cream
Preparation of Pickled Scaly Tinder Fungi
References
Cerrena unicolor (Bull.) Murrill - CERRENACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharides
Low Molecular Weight Metabolites
Lectins
Enzymes
Local Medicinal Uses
Modern Medicinal Uses
Hypoglycemic Effect
Antioxidant Activity
Antibacterial and Antifungal Properties
Anticancer Properties
Detoxification Properties
Antiparasitic Properties
Industrial and Textile Applications
Local Food Uses
References
Coprinus comatus (O.F. Müll.) Pers. - AGARICACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Local Food Uses
Culinary Note
References
Flammulina velutipes (Curtis) Singer - PHYSALACRIACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Minerals and Vitamins
Polysaccharides
Amino Acids and Proteins
Nucleotides and Nucleosides
Fatty Acids
Terpenes
Sterols and Derivatives
Phenolics
Enzymes
Local Medicinal Uses
Modern Medicinal Uses
Antibacterial and Antifungal Activities
Antioxidant and Anti-aging Effects
Antitumor and Immunomodulatory Properties
Anti-Inflammatory Effect
Anti-metabolic Syndrome
Cardioprotective Potential
Neuroprotective Potential
Other Bioactivities and Usage
Local Food Uses
Culinary Note
References
Fomes fomentarius (L.) Fr. - POLYPORACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Aliphatic and Organic Compounds
Phenolic Compounds
Sterol Derivatives
Terpene Derivatives
Bioactive Polymers
Local Medicinal Uses
Modern Medicinal Uses
Potential in Metabolic, Liver and Renal Disorders
Antibacterial, Antifungal and Antiviral Activities
Antioxidant Potential
Anti-Inflammatory and Antinociceptive Properties
Immunomodulatory Properties
Anticancer and Antiproliferative Activities
Environmental Applications
Extracellular Lignocellulolytic Enzymes and Biotechnological Potential
Biosorption
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Fomitiporia hippophaeicola (H. Jahn) Fiasson & Niemelä; Fomitiporia punctata (P. Karst.) Murrill; Fomitiporia robusta (P. Karst.) Fiasson & Niemelä - HYMENOCHAETACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharides
Triterpenes, Polyphenols, and Melanin Compounds
Steroids and Organic Acid Compounds
Phytotoxic Compounds
Enzymes
Melanin Complex
Polysaccharides
Steroids and Coumarins Derivatives
Indolic, Phenolic and Organic Acid Compounds
Macroelements
Local Medicinal Uses
Modern Medicinal Uses
Antitumor Activity
Antiviral Property
Antioxidant Capacity and Xanthine Oxidase Inhibitory Activity
Antibacterial Effects
Antioxidant and Xanthine Oxidase Inhibitory Activity
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Fomitopsis betulina (Bull.) B.K. Cui, M.L. Han & Y.C. Dai; Fomitopsis pinicola (Sw.) P. Karst. - FOMITOPSIDACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Funalia trogii (Berk.) Bondartsev & Singer - POLYPORACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Minerals and Vitamins
Enzymes
Polysaccharides
Sesquiterpenoids
Proteins
Local Medicinal Uses
Modern Medicinal Uses
Antitumor Activity
Antioxidant Properties
Neuroprotective Activity
Fibrinolytic Activity
Environmental Applications
Bioremediation as Biosorption of Heavy Metals and Pollutants
Bioremediation of Dyes from Food Industry Effluents and Textile Effuents
Enzyme Production
Other Applications
Local Food Uses
References
Fuscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) T. Wagner & M. Fisch. - HYMENOCHAETACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharides
Phenolic and Organic Acid Compounds
Triterpenes
Steroids
Macroelements
Enzymatic Potential
Local Medicinal Uses
Modern Medicinal Uses
Antibacterial and Antifungal Properties
Antioxidant Property
Anticholinesterase Activity
Antihyperglycemic Property
Cytotoxic and Anticancer Activities
Folk Recipes
Local Food Uses
References
Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.) Pat.; Ganoderma lucidum (Curtis) P. Karst.; Ganoderma resinaceum Boud. - GANODERMATACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Local Food Uses
Folk Recipes
Local Handicraft and Other Uses
References
Grifola frondosa (Dicks.) Gray - GRIFOLACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Medicinal Uses of Primary Metabolites of G. frondosa
Medicinal Uses of Secondary Metabolites of G. frondosa
Clinical Studies of G. frondosa
Local Food Uses
Edibility, Aroma and Flavor
Culinary Note
Recipe: Grilled Thai Marinated Maitake Mushrooms
Recipe: Maitake Wild Rice Salad
Recipe: Maitake Mushrooms with Thyme and Sherry
References
Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.) Pilát - HYMENOCHAETACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Edibility, Aroma and Flavor
Phytochemistry
Local Medicinal Uses
Modern Medicine Uses
References
Irpex lacteus (Fr.) Fr. - IRPICACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Tremulane Sesquiterpenoids
Eburicane Triterpenoids
Other Secondary Metabolites
Coculture
Application in Biotransformation
Local Medicinal Uses
Modern Medicinal Uses
Antimicrobial Activities (Antibacterial, Antifungal, Phytopathogenic Properties)
Effects of Renal Pathologies and Metabolic Syndrome
Antitumor Activity
Anti-inflammatory Activity
Other Biological Activities
Local Food Uses
References
Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Nutrient Content
Polysaccharides
Volatile Compounds
Sterol Composition, Fatty Acids and Lipids
Triterpenes
Phenolic Compounds
Macro- and Microelements
Vitamins
Local Medicinal Uses
Modern Medicinal Uses
Antiviral and Antimicrobial Activities
Antioxidant Activity
Anti-inflammatory Activity
Anti-ulcer Activity
Hypoglycemic Effect
Cytotoxic and Anticancer Activity
Anti-malaria
Environmental Applications
Local Food Uses
Culinary Notes
References
Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Antimicrobial Properties
Antiviral Properties
Antiparasitic Properties
Antioxidant Properties Against Cancer
Antioxidant and Anti-inflammatory Properties, and Neurodegenerative Diseases
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus ciliatus (Fr.) Zmitr.; Lentinus squarrosulus Mont.; Lentinus tigrinus (Bull.) Fr. - POLYPORACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal and Environmental Uses
Local Food Uses
Cooking Note
References
Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.) Cooke - TRICHOLOMATACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Antimicrobial Activity
Antioxidant Activity
Antitumor Activity
Against Metabolic Diseases
Local Food Uses
Culinary Note
References
Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Carbohydrate and Polysaccharide Composition
Protein and Amino Acids Composition
Fatty Acids
Volatile Aromatic Compounds (VOC)
Phenolic Compounds
Steroids
Minerals and Vitamins
Local Medicinal Uses
Modern Medicinal Uses
Nephroprotective Activity
Hepatoprotective Activity
Antioxidant Properties
Antibacterial Activity
Anti-inflammatory Activity
Antitumor Activity
Immunomodulatory Activity
Toxic Neurological Effects
Antioxidant Potential
Enzymatic Potential
Local Food Uses
Local Food Uses
References
Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus tremulae (Bondartsev) Bondartsev & P.N. Borisov - HYMENOCHAETACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharides
Terpenoids
Steroids
Flavones, Coumarins, and Furans Derivatives
Styrylpyranones and Related Compounds
Other Secondary Metabolites
Terpenoids
Styrylpyranones and Related Compounds
Steroids
Other Secondary Metabolites
Terpenoids
Other Secondary Metabolites
Local Medicinal Uses
Modern Medicinal Uses
Antitumor Effect
Anti-inflammatory Activity
Antioxidant Action
Neuroprotective Property
Vascular Activities
Anti-viral Property
Other Biological Activities
Cytotoxic Effect
Antioxidant Activity
Hepatoprotective Activity
Multidirectional Therapeutic Activity
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.) P. Kumm. - PLEUROTACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharide Composition
Protein Composition
Terpene and Sterol Derivatives Composition
Phenolic Compound Broad Spectrum
Vitamins and Minerals
Other Mycochemical Compounds
Fatty Acids and Lipids
Polysaccharides
Amino Acids, Proteins and Lectins
Lovastatin
Vitamins and Minerals
Other Mycochemical Compounds
Local Medicinal Uses
Modern Medicinal Uses
Antitumor Activity
Prebiotic Activity
Antimicrobial Activity
Antioxidant Activity
Putative Properties Against Metabolic Disorders: Hypolipidemic Activity, Antihypercholesterol Activity, Hepatoprotective Activity, Antidiabetic Activity
Hypolipidemic Activity
Antihypercholesterol Activity
Hepatoprotective Activity
Antidiabetic Activity
Neuroprotective Activity
Anti-inflammatory Activity
Other Potential Biological Properties
Antioxidant Activity
Anticancer Activity of P. ostreatus Extracts
Antitumor Activity of Isolated Molecules from P. ostreatus
Antimicrobial Activities: Antibacterial and Antifungal Properties, Prebiotic Effects, Antiviral Potential
Antibacterial and Antifungal Properties
Prebiotic Effects
Antiviral Potential
Putative Properties Against Metabolic Disorders and Cardiometabolic Diseases: Antihypercholesterol Activity, Anti-atherosclerosis Activity, Antidiabetic Activity, Cardioprotective Effect
Antihypercholesterol Activity
Anti-atherosclerosis Activity
Antidiabetic Activity
Cardioprotective Effect
Other Biological Properties and P. ostreatus-Based Cosmetics
Folk Recipes
Local Food Uses
Local Handicraft and Other Uses
References
Sanghuangporus lonicerinus (Bondartsev) Sheng H. Wu, L.W. Zhou & Y.C. Dai - HYMENOCHAETACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Hepatoprotective Properties
Antiproliferative, Cytotoxic and Estrogenic Properties
Local Food Uses
References
Sarcodon imbricatus (L.) P. Karst. - BANKERACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Minerals and Vitamins Composition
Polysaccharides
Fatty Acids
Amino Acids
Sterols
Phenolics
Indole Compounds
Other Secondary Metabolites
Local Medicinal Uses
Modern Medicinal Uses
Antioxidant Property
Antimicrobial Activity
Antifatigue Activity
Hepatoprotective Activity
Antitumor and Immunomodulatory Activity
Hematopoietic Activity
Local Food Uses
References
Schizophyllum commune Fr.- SCHIZOPHYLLACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Vitamins and Mineral Composition
Polysaccharides
Proteins and Amino Acid Derivatives
Phenolic Compounds
Volatile Organic Compounds (VOCs)
Enzymes
Local Medicinal Uses
Modern Medicinal Uses
Anti-inflammatory Activity
Antibacterial and Antifungal Activities
Antiviral Activity
Antioxidant Properties
Anticancer Effect and Immunological Activity
Antidiabetic Activity
Analgesic Activity
Neuroprotective Activity
Cosmeceutical Application
Other Applications
Allergenic Properties of S. commune
Local Food Uses
Folk Recipes
Local Handicraft and Other Uses
References
Stereum hirsutum (Willd.) Pers.; Stereum rugosum Pers. - STEREACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Local Medicinal Uses
Modern Medicinal Uses
Antimicrobial Activity
Antidiabetic Activity
Cytotoxic Activity
Anti-Lipase Activity
Local Food Uses
References
Trametes betulina (L.) Pilát.; Trametes cinnabarina (Jacq.) Fr.; Trametes gibbosa (Pers.) Fr.; Trametes hirsuta (Wulfen) Lloyd; Trametes pubescens (Schumach.) Pilát; Trametes suaveolens (L.) Fr.; Trametes versicolor (L.) Lloyd - POLYPORACEAE
Local Names
Short Morphological Description
Ecology and Distribution
Mycochemistry
Polysaccharides and Carbohydrates
Phenolic Derivatives
Ligninolytic Enzymes
Volatile Organic Compounds as Insect Attractants
Other Components
Lignans and Polysaccharides
Phenolic Derivatives
Laccases and Biotechnological Applications
Other Components
Ligninolytic Enzymes
Phenolic Compounds
Volatile and Non Volatile Compounds
Enzymatic Potential
Primary Metabolites
Secondary Metabolites
Local Medicinal Uses
Modern Medicinal Uses
Antidiabetic Activity
Antioxidant Activity
Antitumor Activity
Antimicrobial and Antiviral Activities
Antitumor Activity
Antimicrobial Activity
Other Bioactivities
Anti-Inflammatory Activity
Antioxidant Activity
Antimicrobial Activity
Antitumor Activity
Other Biological Activities
Enzyme Activities
Antitumor and Immunostimulatory Activities
Antioxidant Activity
Antimicrobial Activity
Other Bioactivities
Enzymatic Activities
Antioxidant Activity
Neuroprotective Activity
Enzyme Activities
Antitumor Activity
Other Bioactivities
Antidiabetic Activity and Other Metabolic Disorders
Antiobesity Activity
Anti-Inflammatory Activity
Antimicrobial Activity
Antioxidant Activity
Antitumor Activity
Immunomodulatory Activity
Other Bioactivities
Local Food Uses
Local Handicraft and Other Uses
References
Recommend Papers

Ethnobiology of Uzbekistan: Ethnomedicinal Knowledge of Mountain Communities
 3031230302, 9783031230301

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Ethnobiology

Olim K. Khojimatov Yusufjon Gafforov Rainer W. Bussmann   Editors

Ethnobiology of Uzbekistan Ethnomedicinal Knowledge of Mountain Communities

Ethnobiology Series Editors Robert Voeks, Center for Remote Sensing & California State University FULLERTON, CA, USA John Richard Stepp, Department of Anthropology University of Florida GAINESVILLE, FL, USA

Ethnobiology is the study of the dynamic relationship between plants, animals, people, and the environment. Academic and applied interests include ethnobotany, ethnozoology, linguistics, paleoethnobotany, zooarchaeology, ethnoecology, and many others. The field lies at a dynamic intersection between the social and biological sciences. The major contribution from the biological sciences has come from economic botany, which has a rich historical and scientific tradition. Indeed, the objectives of the colonial enterprise were as much about the quest for “green gold” –herbal medicines, spices, novel cultivars, and others—as it was for precious metals and sources of labor. The view that ethnobiology concerns mostly the discovery of new and useful biota extended into the 20th century. The social sciences have contributed to the field in both descriptive studies but also within quantitative approaches in cognitive anthropology that have led to general principles within ethnobiological classification. Ethnobiological research in recent years has focused increasingly on problem solving and hypothesis testing by means of qualitative and especially quantitative methods. It seeks to understand how culturally relevant biotas are cognitively categorized, ranked, named, and assigned meaning. It investigates the complex strategies employed by traditional societies to manage plant and animal taxa, communities, and landscapes. It explores the degree to which local ecological knowledge promotes or undermines resource conservation, and contributes to the solution of global challenges, such as community health, nutrition, and cultural heritage. It investigates the economic value and environmental sustainability to local communities of non-timber forest products, as well as the strategies through which individual ecological knowledge and practices encourage resilience to change—modernization, climate change, and many others. Most importantly, contemporary ethnobiological research is grounded in respect for all cultures, embracing the principles of prior informed consent, benefit sharing, and general mindfulness.

Olim K. Khojimatov Yusufjon Gafforov  •  Rainer W. Bussmann Editors

Ethnobiology of Uzbekistan Ethnomedicinal Knowledge of Mountain Communities

Editors Olim K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences Tashkent, Uzbekistan Rainer W. Bussmann Department of Ethnobotany State Museum of Natural History Karlsruhe, Germany Department of Ethnobotany

Institute of Botany and Bakuriani Alpine Botanical Garden Ilia State University Tbilisi, Georgia

Yusufjon Gafforov New Uzbekistan University Tashkent, Uzbekistan

Mycology Laboratory, Institute of Botany Academy of Sciences of Republic of Uzbekistan Tashkent, Uzbekistan State Key Laboratory of Mycology

Institute of Microbiology Chinese Academy of Sciences Beijing, P.R. China

ISSN 2365-7553     ISSN 2365-7561 (electronic) Ethnobiology ISBN 978-3-031-23030-1    ISBN 978-3-031-23031-8 (eBook) https://doi.org/10.1007/978-3-031-23031-8 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Part I Ecosystems, Biodiversity of Uzbekistan and Its Global Value  zbekistan – Ecosystems, Biodiversity, History and Culture������������������      3 U Olim K. Khojimatov, Rainer W. Bussmann, and Yusufjon Gafforov Ecosystems and Biodiversity of Uzbekistan��������������������������������������������������      3 Geographical Location������������������������������������������������������������������������������      3 Climate of Uzbekistan��������������������������������������������������������������������������������      5 Natural Resources of Uzbekistan��������������������������������������������������������������      8 Biodiversity of Uzbekistan and Its Global Value ������������������������������������������      8 Flora and Vegetation����������������������������������������������������������������������������������      8 The Flora of Uzbekistan����������������������������������������������������������������������������     10 Vegetation Zonation ����������������������������������������������������������������������������������     10 The Peoples of Uzbekistan and Their Traditions ������������������������������������������     18 Population��������������������������������������������������������������������������������������������������     18 National Art������������������������������������������������������������������������������������������������     20 A Brief History of Ethnobiology in Uzbekistan��������������������������������������������     25 Diversity of Medicinal Plants, Fungi and Animals Use in Uzbekistan����������     26 Useful Wild Plants of the Flora of Uzbekistan����������������������������������������������     26 Folk Healers (Tabib’s) Knowledge and Communication About Traditional Uses of Ethnobiological Species in Uzbekistan��������������������������     27 The Personality of Tabib and the Specialization of Tabib in the System of Worldviews of the Uzbek People����������������������������������������������     28 Traditions of Uzbeks Related to Treatment and Medical Practice������������     29 Geographic Factors������������������������������������������������������������������������������������     29 Lifestyle and Type of Occupation of the Population ��������������������������������     30 Native Flora and Fauna������������������������������������������������������������������������������     31 Religious Views�����������������������������������������������������������������������������������������     31 Tabib’s Culture: Personal and Professional Norms of Behavior����������������     31 Determination of Treatment Fees��������������������������������������������������������������     32 Raising a Student Is a Duty of Tabib ��������������������������������������������������������     32 Following the Precepts of a Mentor����������������������������������������������������������     33 v

vi

Contents

Traditions of Treatment and Pharmacology in Uzbek Folk Medicine������     33 Working Tools Used in Traditional Medicine��������������������������������������������     33 Natural Raw Materials and Medicinal Products Used in Pharmacology����������������������������������������������������������������������������������������     34 References������������������������������������������������������������������������������������������������������     36 Part II Chapter Conservation and Sustainable Use of Plant Resources of Uzbekistan Conservation and Sustainable Use of Plant Resources of Uzbekistan������������������������������������������������������������������������������������������������     41 Olim K. Khojimatov and Rainer W. Bussmann Conservation and Use in Uzbekistan ������������������������������������������������������������     41 Restoration of Licorice Raw Material Base Is Possible in Two Ways����������     44 Conclusions����������������������������������������������������������������������������������������������������     49 References������������������������������������������������������������������������������������������������������     49 Part III Plant Chapters  canthophyllum gypsophiloides Regel. - CARYOPHYLLACEAE����������     53 A Dilovar T. Khamraeva, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������     53 Botany and Ecology��������������������������������������������������������������������������������������     53 Phytochemistry����������������������������������������������������������������������������������������������     55 Local Medicinal Uses������������������������������������������������������������������������������������     55 Folk Recipes��������������������������������������������������������������������������������������������������     55 Local Food Uses��������������������������������������������������������������������������������������������     55 In Veterinary��������������������������������������������������������������������������������������������������     56 Local Handicraft and Other Uses������������������������������������������������������������������     56 References������������������������������������������������������������������������������������������������������     57  chillea arabica Kotschy, Achillea filipendulina Lam., Achillea A millefolium L. - ASTERACEAE������������������������������������������������������������������     59 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������     61 Botany and Ecology��������������������������������������������������������������������������������������     61 Phytochemistry����������������������������������������������������������������������������������������������     64 Local Medicinal Uses������������������������������������������������������������������������������������     65 Medicinal Uses of Other Species������������������������������������������������������������������     67 Local Food Uses��������������������������������������������������������������������������������������������     67 Local Handicraft and Other Uses������������������������������������������������������������������     68 References������������������������������������������������������������������������������������������������������     68

Contents

vii

 corus calamus L. - ACORACEAE ����������������������������������������������������������     71 A Dilovar T. Khamraeva, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������     71 Phytochemistry����������������������������������������������������������������������������������������������     73 Local Medicinal Uses������������������������������������������������������������������������������������     73 Folk Recipes��������������������������������������������������������������������������������������������������     76 Local Food Uses��������������������������������������������������������������������������������������������     76 Local Handicraft and Other Uses������������������������������������������������������������������     76 References������������������������������������������������������������������������������������������������������     77  juga turkestanica (Regel) Briq. - LAMIACEAE ������������������������������������     79 A Olim K. Khojimatov, Dilovar T. Khamraeva, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������     79 Botany and Ecology��������������������������������������������������������������������������������������     79 Phytochemistry����������������������������������������������������������������������������������������������     81 Local Medicinal Uses������������������������������������������������������������������������������������     81 Medicinal Uses of Other Species������������������������������������������������������������������     82 Local Food Uses��������������������������������������������������������������������������������������������     82 Local Handicraft and Other Uses������������������������������������������������������������������     82 Local Handicraft and Other Uses Other Species ������������������������������������������     82 References������������������������������������������������������������������������������������������������������     83  llium caspium subsp. baissunense (Lipsky) F.O. Khass. A & R.M. Fritsch, Allium cepa L., Allium giganteum Regel, Allium karataviense Regel, Allium oschaninii O. Fedtsch., Allium pskemense B. Fedtsch., Allium ramosum L., Allium rosenbachianum Regel, Allium sarawschanicum Regel, Allium sativum L., Allium stipitatum Regel, Allium suworowii Regel, Allium tschimganicum B. Fedtsch. - AMARYLLIDACEAE ������������������     85 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������     86 Botany and Ecology��������������������������������������������������������������������������������������     87 Phytochemistry����������������������������������������������������������������������������������������������     98 Local Medicinal Uses������������������������������������������������������������������������������������     99 Medicinal Uses of Other Species������������������������������������������������������������������    102 Local Food Uses��������������������������������������������������������������������������������������������    104 Food Uses of Other Species ��������������������������������������������������������������������������    106 Local Handicraft and Other Uses������������������������������������������������������������������    108 Local Handicraft and Other Uses of Other Species ��������������������������������������    108 References������������������������������������������������������������������������������������������������������    108  lthaea armeniaca Ten., Althaea cannabina L., Althaea nudiflora A Lindl., Althaea officinalis L. - MALVACEAE��������������������������������������������    113 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    114 Phytochemistry����������������������������������������������������������������������������������������������    119

viii

Contents

Local Medicinal Uses������������������������������������������������������������������������������������    119 Folk Recipes��������������������������������������������������������������������������������������������������    120 Local Handicraft and Other Uses������������������������������������������������������������������    120 References������������������������������������������������������������������������������������������������������    121  nabasis aphylla L. - AMARANTHACEAE����������������������������������������������    123 A Olim K. Khojimatov, Gulnara J. Abdiniyazova, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    123 Botany and Ecology��������������������������������������������������������������������������������������    124 Phytochemistry����������������������������������������������������������������������������������������������    124 Local Medicinal Uses������������������������������������������������������������������������������������    126 Reference ������������������������������������������������������������������������������������������������������    126  nethum graveolens L. - APIACEAE ��������������������������������������������������������    127 A Olim K. Khojimatov and Rainer W. Bussmann Botany and Ecology��������������������������������������������������������������������������������������    127 Phytochemistry����������������������������������������������������������������������������������������������    129 Local Medicinal Uses������������������������������������������������������������������������������������    130 Local Food Uses��������������������������������������������������������������������������������������������    130 References������������������������������������������������������������������������������������������������������    131  rctium lappa L., Arctium tomentosum Mill. - ASTERACEAE ��������������    133 A Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    133 Botany and Ecology��������������������������������������������������������������������������������������    134 Local Medicinal Uses������������������������������������������������������������������������������������    137 Folk Recipes��������������������������������������������������������������������������������������������������    138 Local Food Uses��������������������������������������������������������������������������������������������    138 Local Handicraft and Other Uses������������������������������������������������������������������    138 References������������������������������������������������������������������������������������������������������    138  rmoracia rusticana G. Gaertn., B. Mey. & Scherb. A BRASSICACEAE����������������������������������������������������������������������������������������    141 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    141 Botany and Ecology��������������������������������������������������������������������������������������    142 Phytochemistry����������������������������������������������������������������������������������������������    143 Local Medicinal Uses������������������������������������������������������������������������������������    143 Folk Recipes��������������������������������������������������������������������������������������������������    144 Local Food Uses��������������������������������������������������������������������������������������������    144 Local Handicraft and Other Uses������������������������������������������������������������������    144 References������������������������������������������������������������������������������������������������������    145

Contents

ix

 rtemisia absinthium L., Artemisia annua L., A Artemisia dracunculus L., Artemisia frigida Willd., Artemisia leucodes Schrenk, Artemisia scoparia Waldst. & Kit., Artemisia sieversiana Ehrh. ex Willd., Artemisia vulgaris L., Eclipta prostrata (L.) L. - ASTERACEAE��������������������������������������������������    147 Dilovar T. Khamraeva, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    148 Botany and Ecology��������������������������������������������������������������������������������������    149 Phytochemistry����������������������������������������������������������������������������������������������    157 Local Medicinal Uses������������������������������������������������������������������������������������    158 Folk Recipes��������������������������������������������������������������������������������������������������    162 Medicinal Uses of Other Species������������������������������������������������������������������    162 Local Food Uses��������������������������������������������������������������������������������������������    164 Food Uses of Other Species ��������������������������������������������������������������������������    165 Local Handicraft and Other Uses������������������������������������������������������������������    166 Handicraft and Other Uses of Other Species ������������������������������������������������    167 References������������������������������������������������������������������������������������������������������    167  traphaxis pyrifolia Bunge - POLYGONACEAE��������������������������������������    173 A Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    173 Botany and Ecology��������������������������������������������������������������������������������������    173 Local Medicinal Uses������������������������������������������������������������������������������������    174 Local Food Uses��������������������������������������������������������������������������������������������    175 Local Handicraft and Other Uses������������������������������������������������������������������    176 References������������������������������������������������������������������������������������������������������    176  erberis integerrima Bunge, Berberis oblonga (Regel) B C.K. Schneid., Berberis vulgaris L. - BERBERIDACEAE ����������������������    177 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    177 Botany and Ecology��������������������������������������������������������������������������������������    178 Phytochemistry����������������������������������������������������������������������������������������������    181 Local Medicinal Uses������������������������������������������������������������������������������������    182 Medicinal Uses of Other Species������������������������������������������������������������������    182 Local Food Uses��������������������������������������������������������������������������������������������    185 Food Uses of Other Species ��������������������������������������������������������������������������    186 Local Handicraft and Other Uses������������������������������������������������������������������    186 Handicraft and Other Uses of Other Species ������������������������������������������������    186 References������������������������������������������������������������������������������������������������������    187  etonica betoniciflora (Rupr. ex O. Fedtsch. & B. Fedtsch.) B Sennikov; LAMIACEAE����������������������������������������������������������������������������    191 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    191 Botany and Ecology��������������������������������������������������������������������������������������    191

x

Contents

Phytochemistry����������������������������������������������������������������������������������������������    192 Local Medicinal Uses������������������������������������������������������������������������������������    193 Medicinal Uses of Other Species������������������������������������������������������������������    194 Local Handicraft and Other Uses������������������������������������������������������������������    194 References������������������������������������������������������������������������������������������������������    194  etula pendula Roth, Betula tianschanica Rupr. - BETULACEAE �������    195 B Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    196 Botany and Ecology��������������������������������������������������������������������������������������    196 Phytochemistry����������������������������������������������������������������������������������������������    199 Local Medicinal Uses������������������������������������������������������������������������������������    199 Medicinal Uses of Other Species������������������������������������������������������������������    201 Local Food Uses��������������������������������������������������������������������������������������������    202 Food Uses of Other Species ��������������������������������������������������������������������������    202 Local Handicraft and Other Uses������������������������������������������������������������������    202 Handicraft and Other Uses of Other Species ������������������������������������������������    203 References������������������������������������������������������������������������������������������������������    204  idens triparita L. - ASTERACEAE����������������������������������������������������������    207 B Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    208 Botany and Ecology��������������������������������������������������������������������������������������    208 Phytochemistry����������������������������������������������������������������������������������������������    210 Local Medicinal Uses������������������������������������������������������������������������������������    210 Folk Recipes��������������������������������������������������������������������������������������������������    210 Medicinal Uses of Other Species������������������������������������������������������������������    210 Local Food Uses��������������������������������������������������������������������������������������������    212 Food Uses of Other Species ��������������������������������������������������������������������������    212 Local Handicraft and Other Uses������������������������������������������������������������������    212 Handicraft and Other Uses of Other Species ������������������������������������������������    213 References������������������������������������������������������������������������������������������������������    213  apparis sicula Vieill. subsp. herbacea (Willd.) Inocencio, C D. Rivera, Obón & Alcaraz, Capparis spinosa L. - CAPPARACEAE ������   215 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    216 Botany and Ecology��������������������������������������������������������������������������������������    216 Phytochemistry����������������������������������������������������������������������������������������������    216 Local Medicinal Uses������������������������������������������������������������������������������������    218 Folk Recipes��������������������������������������������������������������������������������������������������    220 Medicinal Uses of Other Important Species��������������������������������������������������    220 Local Food Uses��������������������������������������������������������������������������������������������    221 Food Uses of Other Species ��������������������������������������������������������������������������    221 Local Handicraft and Other Uses������������������������������������������������������������������    222 Handicraft and Other Uses of Other Important Species��������������������������������    222 References������������������������������������������������������������������������������������������������������    222

Contents

xi

 apsella bursa-pastoris (L.) Medik - BRASSICACEAE ��������������������������    227 C Olim K. Khojimatov, Dilovar T. Khamraeva, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    228 Botany and Ecology��������������������������������������������������������������������������������������    228 Phytochemistry����������������������������������������������������������������������������������������������    228 Local Medicinal Uses������������������������������������������������������������������������������������    230 Local Food Uses��������������������������������������������������������������������������������������������    231 Local Handicraft and Other Uses������������������������������������������������������������������    232 References������������������������������������������������������������������������������������������������������    232  entaurea behen L., Centaurea cyanus L. - ASTERACEAE��������������������    235 C Olim K. Khojimatov, Valeriy V. Pak, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    236 Botany and Ecology��������������������������������������������������������������������������������������    236 Phytochemistry����������������������������������������������������������������������������������������������    237 Local Medicinal Uses������������������������������������������������������������������������������������    239 Local Handicraft and Other Uses������������������������������������������������������������������    240 References������������������������������������������������������������������������������������������������������    240  ichorium intybus L. - ASTERACEAE������������������������������������������������������    241 C Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    241 Botany and Ecology��������������������������������������������������������������������������������������    242 Phytochemistry����������������������������������������������������������������������������������������������    243 Local Medicinal Uses������������������������������������������������������������������������������������    244 Folk Recipes��������������������������������������������������������������������������������������������������    246 Local Food Uses��������������������������������������������������������������������������������������������    246 Local Handicraft and Other Uses������������������������������������������������������������������    247 References������������������������������������������������������������������������������������������������������    247  istanche salsa (C.A. Mey.) Beck - OROBANCHACEAE ����������������������    249 C Olim K. Khojimatov, S. A. Murodov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    249 Botany and Ecology��������������������������������������������������������������������������������������    250 Phytochemistry����������������������������������������������������������������������������������������������    250 Local Medicinal Uses������������������������������������������������������������������������������������    251 Folk Recipes��������������������������������������������������������������������������������������������������    252 Local Handicraft and Other Uses������������������������������������������������������������������    253 References������������������������������������������������������������������������������������������������������    253  odonopsis clematidea (Schrenk ex Fisch. & C.A. Mey.) C C.B. Clarke - CAMPANULACEAE ����������������������������������������������������������    255 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    255 Botany and Ecology��������������������������������������������������������������������������������������    256 Phytochemistry����������������������������������������������������������������������������������������������    258 Local Medicinal Uses������������������������������������������������������������������������������������    258

xii

Contents

Medicinal Uses of Other Species������������������������������������������������������������������    259 Local Food Uses��������������������������������������������������������������������������������������������    259 Food Uses of Other Species ����������������������������������������������������������������������    259 Local Handicraft and Other Uses������������������������������������������������������������������    259 References������������������������������������������������������������������������������������������������������    259  ucurbita pepo L. - CUCURBITACEAE ��������������������������������������������������    261 C Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    261 Botany and Ecology��������������������������������������������������������������������������������������    262 Phytochemistry����������������������������������������������������������������������������������������������    262 Local Medicinal Uses������������������������������������������������������������������������������������    267 Folk Recipes��������������������������������������������������������������������������������������������������    267 Medicinal Uses of Other Species������������������������������������������������������������������    267 Local Food Uses��������������������������������������������������������������������������������������������    268 Food Uses of Other Important Species����������������������������������������������������������    268 Handicraft and Other Uses of Other Important Species��������������������������������    269 References������������������������������������������������������������������������������������������������������    269  ullen drupaceum (Bunge) C.H. Stirt. - FABACEAE������������������������������    271 C Olim K. Khojimatov, Z. Z. Kosimov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    271 Botany and Ecology��������������������������������������������������������������������������������������    271 Phytochemistry����������������������������������������������������������������������������������������������    273 Local Medicinal Uses������������������������������������������������������������������������������������    273 Local Handicraft and Other Uses������������������������������������������������������������������    273 References������������������������������������������������������������������������������������������������������    274  actylorhiza incarnata subsp. cilicica Klinge - ORCHIDACEAE ����������    275 D Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    276 Botany and Ecology��������������������������������������������������������������������������������������    276 Phytochemistry����������������������������������������������������������������������������������������������    277 Local Medicinal Uses������������������������������������������������������������������������������������    278 Folk Recipes��������������������������������������������������������������������������������������������������    279 Medicinal Uses of Other Species������������������������������������������������������������������    279 Local Food Uses��������������������������������������������������������������������������������������������    280 Local Handicraft and Other Uses������������������������������������������������������������������    280 Handicraft and Other Uses of Others Species������������������������������������������������    281 References������������������������������������������������������������������������������������������������������    281  atura stramonium L. - SOLANACEAE ��������������������������������������������������    283 D Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    284 Botany and Ecology��������������������������������������������������������������������������������������    284 Phytochemistry����������������������������������������������������������������������������������������������    286 Local Medicinal Uses������������������������������������������������������������������������������������    286

Contents

xiii

Folk Recipes��������������������������������������������������������������������������������������������������    287 Medicinal Uses of Other Species������������������������������������������������������������������    288 Local Handicraft and Other Uses������������������������������������������������������������������    288 References������������������������������������������������������������������������������������������������������    288  elphinium semibarbatum Bien. ex Boiss. - RANUNCULACEAE����������    291 D Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    291 Botany and Ecology��������������������������������������������������������������������������������������    291 Phytochemistry����������������������������������������������������������������������������������������������    293 Local Medicinal Uses������������������������������������������������������������������������������������    294 Medicinal Uses of Other Species������������������������������������������������������������������    294 Local Handicraft and Other Uses������������������������������������������������������������������    296 Handicraft and Other Uses of Other Species ������������������������������������������������    296 References������������������������������������������������������������������������������������������������������    296  racocephalum bipinnatum Rupr.; Dracocephalum diversifolium D Rupr.; Dracocephalum formosum Gontsch.; Dracocephalum heterophyllum Benth.; Dracocephalum imberbe Bunge; Dracocephalum integrifolium Bunge; Dracocephalum komarovii Lipsky; Dracocephalum nodulosum Rupr.; Dracocephalum nutans L.; Dracocephalum oblongifolium Regel; Dracocephalum paulsenii Briq.; Dracocephalum stamineum Kar. & Kir. - LAMIACEAE ������������������������    299 Natalya Yu Beshko, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    300 Botany and Ecology��������������������������������������������������������������������������������������    301 Phytochemistry����������������������������������������������������������������������������������������������    310 Local Medicinal Uses������������������������������������������������������������������������������������    310 Local Handicraft and Other Uses������������������������������������������������������������������    310 References������������������������������������������������������������������������������������������������������    311  laeagnus angustifolia L.- ELAEAGNACEAE ����������������������������������������    313 E Olim K. Khojimatov, Khislat Kudratovich Khaydarov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    314 Botany and Ecology��������������������������������������������������������������������������������������    314 Phytochemistry����������������������������������������������������������������������������������������������    314 Local Medicinal Uses������������������������������������������������������������������������������������    315 Medicinal Uses of Other Species������������������������������������������������������������������    316 Local Food Uses��������������������������������������������������������������������������������������������    318 Local Handicraft and Other Uses������������������������������������������������������������������    318 References������������������������������������������������������������������������������������������������������    318  lwendia persica (Boiss.) Pimenov & Kljuykov - APIACEAE����������������    321 E Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    321 Botany and Ecology��������������������������������������������������������������������������������������    322 Phytochemistry����������������������������������������������������������������������������������������������    322

xiv

Contents

Local Medicinal Uses������������������������������������������������������������������������������������    323 Local Food Uses��������������������������������������������������������������������������������������������    323 Local Handicraft and Other Uses������������������������������������������������������������������    324 References������������������������������������������������������������������������������������������������������    324  phedra equisetina Bunge, Ephedra intermedia Schrenk E ex C.A. Mey. - EPHEDRACEAE����������������������������������������������������������������    327 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    327 Botany and Ecology��������������������������������������������������������������������������������������    328 Phytochemistry����������������������������������������������������������������������������������������������    332 Local Medicinal Uses������������������������������������������������������������������������������������    332 Medicinal Use of Other Species��������������������������������������������������������������������    333 Local Food Uses of Other Species����������������������������������������������������������������    333 Local Handicraft and Other Uses������������������������������������������������������������������    333 Handicraft and Other Uses of Other Species ������������������������������������������������    334 References������������������������������������������������������������������������������������������������������    334  quisetum arvense L., Equisetum ramosissimum Desf. E EQUISETACEAE����������������������������������������������������������������������������������������    337 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    338 Botany and Ecology��������������������������������������������������������������������������������������    338 Phytochemistry����������������������������������������������������������������������������������������������    342 Local Medicinal Uses������������������������������������������������������������������������������������    343 Medicinal Uses of Other Species������������������������������������������������������������������    344 Local Food Uses��������������������������������������������������������������������������������������������    346 Food Uses of Other Species ��������������������������������������������������������������������������    346 Local Handicraft and Other Uses������������������������������������������������������������������    346 Handicraft and Other Uses of Other Species ������������������������������������������������    347 References������������������������������������������������������������������������������������������������������    347  remurus olgae Regel, Eremurus regelii Vved., Eremurus robustus E (Regel) Regel, Eremurus soogdianus (Regel) Benth. & Hook. f., Eremurus turkestanicus Regel - ASPHODELACEAE������������������������������    351 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    352 Botany and Ecology��������������������������������������������������������������������������������������    352 Phytochemistry����������������������������������������������������������������������������������������������    355 Local Medicinal Uses������������������������������������������������������������������������������������    356 Folk Recipes��������������������������������������������������������������������������������������������������    356 Local Food Uses��������������������������������������������������������������������������������������������    356 Local Handicraft and Other Uses������������������������������������������������������������������    356 References������������������������������������������������������������������������������������������������������    357

Contents

xv

 erula assa-foetida L., Ferula foetida (Bunge) Regel, Ferula foetidissima F Regel & Schmalh., Ferula karelinii Bunge, Ferula kuhistanica Korovin, Ferula moschata (H. Reinsch) Koso-Pol., Ferula tadshikorum Pimenov, Ferula tenuisecta Korovin, Ferula varia (Schrenk) Trautv. - APIACEAE ����������������������������������������������������������������������������������    359 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    360 Botany and Ecology��������������������������������������������������������������������������������������    361 Phytochemistry����������������������������������������������������������������������������������������������    368 Local Medicinal Uses������������������������������������������������������������������������������������    368 Local Food Uses��������������������������������������������������������������������������������������������    369 Local Handicraft and Other Uses������������������������������������������������������������������    370 References������������������������������������������������������������������������������������������������������    370  icus carica L. - MORACEAE��������������������������������������������������������������������    373 F Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    373 Botany and Ecology��������������������������������������������������������������������������������������    374 Local Medicinal Uses������������������������������������������������������������������������������������    377 Medicinal Use of Other Species��������������������������������������������������������������������    378 Local Food Uses��������������������������������������������������������������������������������������������    379 Food Uses of Other Species ��������������������������������������������������������������������������    381 Local Handicraft and Other Uses������������������������������������������������������������������    382 Handicraft and Other Uses of Other Species ������������������������������������������������    382 References������������������������������������������������������������������������������������������������������    383  entiana olivieri Griseb. - GENTIANACEAE������������������������������������������    387 G Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    387 Botany and Ecology��������������������������������������������������������������������������������������    387 Phytochemistry����������������������������������������������������������������������������������������������    389 Local Medidicinal Uses ��������������������������������������������������������������������������������    389 Medicinal Uses of Other Species������������������������������������������������������������������    390 Food Uses of Other Species ��������������������������������������������������������������������������    390 Handicraft and Other Uses of Other Species ������������������������������������������������    390 References������������������������������������������������������������������������������������������������������    390  lycyrrhiza glabra L., Glycyrrhiza uralensis Fisch. ex DC. G FABACEAE��������������������������������������������������������������������������������������������������    393 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    394 Botany and Ecology��������������������������������������������������������������������������������������    394 Phytochemistry����������������������������������������������������������������������������������������������    396 Local Medicinal Uses������������������������������������������������������������������������������������    397 Folk Recipes��������������������������������������������������������������������������������������������������    398

xvi

Contents

Local Food Uses��������������������������������������������������������������������������������������������    399 Local Handicraft and Other Uses������������������������������������������������������������������    399 References������������������������������������������������������������������������������������������������������    401  elichrysum maracandicum N. Pop. ex Kirp., Helichrysum mussae H Nevski, Helichrysum nuratavicum Krasch. - ASTERACEAE������������������    403 Olim K. Khojimatov, N. Khujanov Alisher, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    403 Botany and Ecology��������������������������������������������������������������������������������������    404 Phytochemistry����������������������������������������������������������������������������������������������    407 Local Medicinal Uses������������������������������������������������������������������������������������    407 Medicinal Uses of Other Species������������������������������������������������������������������    407 Local Handicraft and Other Uses������������������������������������������������������������������    408 Handicraft and Other Uses of Other Species ������������������������������������������������    409 References������������������������������������������������������������������������������������������������������    409  ippophae rhamnoides subsp. turkestanica - ELAEAGNACEAE ����������    411 H Khislat Kudratovich Khaydarov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    411 Botany and Ecology��������������������������������������������������������������������������������������    412 Phytochemistry����������������������������������������������������������������������������������������������    412 Local Medicinal Uses������������������������������������������������������������������������������������    415 Local Food Uses��������������������������������������������������������������������������������������������    416 Local Handicraft and Other Uses������������������������������������������������������������������    416 References������������������������������������������������������������������������������������������������������    416  ypericum elongatum Ledeb. ex Rchb., Hypericum perforatum L., H Hypericum scabrum L. - HYPERICACEAE����������������������������������������������    419 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    419 Botany and Ecology��������������������������������������������������������������������������������������    420 Phytochemistry����������������������������������������������������������������������������������������������    423 Local Medicinal Uses������������������������������������������������������������������������������������    423 Folk Recipes��������������������������������������������������������������������������������������������������    424 Medicinal Use of Other Species��������������������������������������������������������������������    425 Local Food Uses��������������������������������������������������������������������������������������������    425 Local Handicraft and Other Uses������������������������������������������������������������������    426 Handicraft and Other Uses of Other Species ������������������������������������������������    426 References������������������������������������������������������������������������������������������������������    426 I nula grandis Schrenk ex Fisch. & C.A. Mey., Inula helenium L., Inula orientalis Lam. - ASTERACEAE������������������������������������������������������    429 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    429 Botany and Ecology��������������������������������������������������������������������������������������    430 Phytochemistry����������������������������������������������������������������������������������������������    434

Contents

xvii

Local Medicinal Uses������������������������������������������������������������������������������������    435 Folk Recipes��������������������������������������������������������������������������������������������������    435 Medicinal Use of Other Species��������������������������������������������������������������������    437 Local Food Uses��������������������������������������������������������������������������������������������    437 Local Handicraft and Other Uses������������������������������������������������������������������    437 References������������������������������������������������������������������������������������������������������    438 J uglans regia L. - JUGLANDACEAE��������������������������������������������������������    441 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    441 Botany and Ecology��������������������������������������������������������������������������������������    442 Phytochemistry����������������������������������������������������������������������������������������������    443 Local Medicinal Uses������������������������������������������������������������������������������������    445 Folk Recipes��������������������������������������������������������������������������������������������������    447 Local Food Uses��������������������������������������������������������������������������������������������    448 Local Handicraft and Other Uses������������������������������������������������������������������    448 References������������������������������������������������������������������������������������������������������    452 J uniperus pseudosabina Fisch. & C.A. Mey., Juniperus sabina L., Juniperus semiglobosa Regel, Juniperus seravschanica Kom. CUPRESSACEAE���������������������������������������������������������������������������������������    457 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    458 Botany and Ecology��������������������������������������������������������������������������������������    458 Phytochemistry����������������������������������������������������������������������������������������������    460 Local Medicinal Uses������������������������������������������������������������������������������������    462 Medicinal Uses of Other Species������������������������������������������������������������������    463 Local Food Uses��������������������������������������������������������������������������������������������    465 Local Handicraft and Other Uses������������������������������������������������������������������    465 Handicraft and Other Uses of Other Species ������������������������������������������������    466 References������������������������������������������������������������������������������������������������������    466  oenigia coriaria (Grig.) T.M. Schust. & Reveal K POLYGONACEAE��������������������������������������������������������������������������������������    469 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    469 Botany and Ecology��������������������������������������������������������������������������������������    470 Phytochemistry����������������������������������������������������������������������������������������������    471 Local Medicinal Uses������������������������������������������������������������������������������������    472 Local Food Uses��������������������������������������������������������������������������������������������    473 Local Handicraft and Other Uses������������������������������������������������������������������    473 References������������������������������������������������������������������������������������������������������    473

xviii

Contents

 agochilus inebrians Bunge, Lagochilus platycalyx Schrenk ex L Fisch. & C.A. Mey., Lagochilus seravschanicus Knorring LAMIACEAE����������������������������������������������������������������������������������������������    475 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    475 Botany and Ecology��������������������������������������������������������������������������������������    476 Phytochemistry����������������������������������������������������������������������������������������������    478 Local Medicinal Uses������������������������������������������������������������������������������������    478 Folk Recipes��������������������������������������������������������������������������������������������������    478 References������������������������������������������������������������������������������������������������������    479  eonurus turkestanicus V.I. Krecz. & Kuprian., Leonurus L panzerioides Popov - LAMIACEAE ����������������������������������������������������������    481 Olim K. Khojimatov, Valeriy V. Pak, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    481 Botany and Ecology��������������������������������������������������������������������������������������    482 Phytochemistry����������������������������������������������������������������������������������������������    483 Local Medicinal Uses������������������������������������������������������������������������������������    484 References������������������������������������������������������������������������������������������������������    484  euzea repens (L.) D.J.N. Hind - ASTERACEAE ������������������������������������    487 L Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    487 Botany and Ecology��������������������������������������������������������������������������������������    488 Phytochemistry����������������������������������������������������������������������������������������������    489 Local Medicinal Uses������������������������������������������������������������������������������������    489 Folk Recipes��������������������������������������������������������������������������������������������������    490 Medicinal Uses of Other Species������������������������������������������������������������������    490 Local Handicraft and Other Uses������������������������������������������������������������������    490 References������������������������������������������������������������������������������������������������������    490  ediasia macrophylla (Regel & Schmalh.) Pimenov - APIACEAE��������    491 M Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    491 Botany and Ecology��������������������������������������������������������������������������������������    491 Phytochemistry����������������������������������������������������������������������������������������������    493 Local Medicinal Uses������������������������������������������������������������������������������������    494 Focal Food Uses��������������������������������������������������������������������������������������������    494 Local Handicraft and Other Uses������������������������������������������������������������������    494 References������������������������������������������������������������������������������������������������������    495  entha arvensis L., Mentha longifolia (L.) L., Mentha spicata L., M Menta x piperita L. - LAMIACEAE�����������������������������������������������������������    497 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    499 Botany and Ecology��������������������������������������������������������������������������������������    499 Phytochemistry����������������������������������������������������������������������������������������������    503

Contents

xix

Local Medicinal Uses������������������������������������������������������������������������������������    505 Medicinal Use of Other Species��������������������������������������������������������������������    508 Local Food Uses��������������������������������������������������������������������������������������������    508 Food Uses of Other Species ��������������������������������������������������������������������������    508 Local Handicraft and Other Uses������������������������������������������������������������������    508 References������������������������������������������������������������������������������������������������������    509  orus alba L., Morus nigra L. - MORACEAE�����������������������������������������    513 M Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    514 Botany and Ecology��������������������������������������������������������������������������������������    514 Phytochemistry����������������������������������������������������������������������������������������������    517 Local Medicinal Uses������������������������������������������������������������������������������������    518 Medicinal Uses of Other Species������������������������������������������������������������������    519 Local Food Uses��������������������������������������������������������������������������������������������    520 Food Uses of Other Species ��������������������������������������������������������������������������    520 Local Handicraft and Other Uses������������������������������������������������������������������    521 Handicraft and Other Use of Other Species��������������������������������������������������    522 References������������������������������������������������������������������������������������������������������    524  riganum vulgare subsp. gracile (K. Koch) Letsw. O LAMIACEAE����������������������������������������������������������������������������������������������    527 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    527 Phytochemistry����������������������������������������������������������������������������������������������    530 Local Medicinal Uses������������������������������������������������������������������������������������    530 Medicinal Uses of Other Species������������������������������������������������������������������    530 Local Food Uses��������������������������������������������������������������������������������������������    532 Food Uses of Other Species ��������������������������������������������������������������������������    532 Local Handicraft and Other Uses������������������������������������������������������������������    532 Handicraft and Other Uses of Other Species ������������������������������������������������    532 References������������������������������������������������������������������������������������������������������    533  eganum harmala L. - NITRARIACEAE��������������������������������������������������    537 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    537 Botany and Ecology��������������������������������������������������������������������������������������    538 Phytochemistry����������������������������������������������������������������������������������������������    541 Local Medicinal Uses������������������������������������������������������������������������������������    541 Folk Recipes��������������������������������������������������������������������������������������������������    542 Local Food Uses��������������������������������������������������������������������������������������������    543 Local Handicraft and Other Uses������������������������������������������������������������������    543 References������������������������������������������������������������������������������������������������������    545

xx

Contents

 entanema britannica (L.) D. Gut.Larr., Santos-Vicente, Anderb., P E. Rico & M.M. Mart. Ort. - ASTERACEAE ������������������������������������������    549 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    550 Botany and Ecology��������������������������������������������������������������������������������������    550 Phytochemistry����������������������������������������������������������������������������������������������    552 Local Medicinal Uses������������������������������������������������������������������������������������    552 Local Handicraft and Other Uses������������������������������������������������������������������    552 References������������������������������������������������������������������������������������������������������    552  ersicaria hydropiper (L.) Spach - POLYGONACEAE����������������������������    553 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    554 Botany and Ecology��������������������������������������������������������������������������������������    554 Phytochemistry����������������������������������������������������������������������������������������������    555 Local Medicinal Uses������������������������������������������������������������������������������������    557 Folk Recipes��������������������������������������������������������������������������������������������������    557 Local Medicinal Uses of Other Species��������������������������������������������������������    557 Local Food Uses��������������������������������������������������������������������������������������������    558 Food Uses of Other Species ��������������������������������������������������������������������������    558 Local Handicraft and Other Uses������������������������������������������������������������������    558 Handicraft and Other Uses of Other Species ������������������������������������������������    559 References������������������������������������������������������������������������������������������������������    559  hragmites australis (Cav.) Trin. ex Steud. - POACEAE��������������������������    563 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    563 Botany and Ecology��������������������������������������������������������������������������������������    563 Phytochemistry����������������������������������������������������������������������������������������������    565 Local Medicinal Uses������������������������������������������������������������������������������������    565 Local Handicraft and Other Uses������������������������������������������������������������������    566 References������������������������������������������������������������������������������������������������������    566  lantago lanceolata L., Plantago major L. - PLANTAGINACEAE ��������    567 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    568 Botany and Ecology��������������������������������������������������������������������������������������    568 Phytochemistry����������������������������������������������������������������������������������������������    572 Local Medicinal Uses������������������������������������������������������������������������������������    572 Medicinal Uses of Other Species������������������������������������������������������������������    575 Local Food Uses��������������������������������������������������������������������������������������������    576 Food Uses of Other Species ��������������������������������������������������������������������������    576 Local Handicraft and Other Uses������������������������������������������������������������������    577 Handicraft and Other Uses of Other Species ������������������������������������������������    577 References������������������������������������������������������������������������������������������������������    577

Contents

xxi

 olygonum aviculare L. - POLYGONACEAE ������������������������������������������    583 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    583 Botany and Ecology��������������������������������������������������������������������������������������    584 Phytochemistry����������������������������������������������������������������������������������������������    586 Local Medicinal Uses������������������������������������������������������������������������������������    586 Folk Recipes��������������������������������������������������������������������������������������������������    587 Local Food Uses��������������������������������������������������������������������������������������������    587 Local Handicraft and Other Uses������������������������������������������������������������������    589 References������������������������������������������������������������������������������������������������������    589  runus amygdalus Batsch, Prunus bucharica (Korsh.) Hand.-Mazz., P Prunus spinosissima (Bunge) Franch. - ROSACEAE ������������������������������    591 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    592 Botany and Ecology��������������������������������������������������������������������������������������    592 Phytochemistry����������������������������������������������������������������������������������������������    597 Local Medicinal Uses������������������������������������������������������������������������������������    597 Local Food Uses��������������������������������������������������������������������������������������������    598 Economic Importance������������������������������������������������������������������������������������    598 References������������������������������������������������������������������������������������������������������    600  unica granatum L. - LYTHRACEAE������������������������������������������������������    601 P Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    601 Botany and Ecology��������������������������������������������������������������������������������������    601 Phytochemistry����������������������������������������������������������������������������������������������    604 Local Medicinal Uses������������������������������������������������������������������������������������    604 Local Food Uses��������������������������������������������������������������������������������������������    605 Local Handicraft and Other Uses������������������������������������������������������������������    605 References������������������������������������������������������������������������������������������������������    606  hamnus cathartica L. - RHAMNACEAE ������������������������������������������������    607 R Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    607 Botany and Ecology��������������������������������������������������������������������������������������    607 Phytochemistry����������������������������������������������������������������������������������������������    608 Phytochemistry����������������������������������������������������������������������������������������������    609 Local Medicinal Uses������������������������������������������������������������������������������������    610 Folk Recipes��������������������������������������������������������������������������������������������������    611 Medicinal Uses of Other Species������������������������������������������������������������������    611 Local Food Uses��������������������������������������������������������������������������������������������    612 Food Uses of Other Species ��������������������������������������������������������������������������    612 Local Handicraft and Other Uses������������������������������������������������������������������    613 Handicraft and Other Uses of Other Species ������������������������������������������������    613 References������������������������������������������������������������������������������������������������������    613

xxii

Contents

 heum maximowiczii Losinsk. - POLYGONACEAE��������������������������������    617 R Olim K. Khojimatov, Z. Z. Kosimov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    617 Botany and Ecology��������������������������������������������������������������������������������������    617 Phytochemistry����������������������������������������������������������������������������������������������    619 Local Medicinal Uses������������������������������������������������������������������������������������    619 Medicinal Uses of Other Species������������������������������������������������������������������    620 Local Foods����������������������������������������������������������������������������������������������������    620 Food Uses of Other Species ��������������������������������������������������������������������������    621 Local Handicraft and Other Uses������������������������������������������������������������������    621 References������������������������������������������������������������������������������������������������������    623  hodiola heterodonta (Hook.f. & Thomson) Boriss., Rhodiola R pamiroalaica Boriss. - CRASSULACEAE ������������������������������������������������    625 Olim K. Khojimatov, Alisher N. Khujanov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    625 Botany and Ecology��������������������������������������������������������������������������������������    626 Phytochemistry����������������������������������������������������������������������������������������������    628 Local Medicinal Uses������������������������������������������������������������������������������������    629 Local Handicraft and Other Uses������������������������������������������������������������������    630 References������������������������������������������������������������������������������������������������������    630  hus coriaria L. - ANACARDIACEAE ����������������������������������������������������    631 R Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    631 Botany and Ecology��������������������������������������������������������������������������������������    631 Phytochemistry����������������������������������������������������������������������������������������������    632 Local Medicinal Uses������������������������������������������������������������������������������������    634 Medicinal Uses of Other Species������������������������������������������������������������������    634 Local Food Uses��������������������������������������������������������������������������������������������    635 Food Uses of Other Species ��������������������������������������������������������������������������    635 Local Food Uses��������������������������������������������������������������������������������������������    635 Local Handicraft and Other Uses������������������������������������������������������������������    636 Handicraft and Other Uses of Other Species ������������������������������������������������    636 References������������������������������������������������������������������������������������������������������    636  ibes janczewskii Pojark. Ribes meyeri Maxim. R GROSSULARIACEAE ������������������������������������������������������������������������������    639 Olim K. Khojimatov, Valeriy V. Pak, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    639 Botany and Ecology��������������������������������������������������������������������������������������    640 Phytochemistry����������������������������������������������������������������������������������������������    642 Local Medicinal Uses������������������������������������������������������������������������������������    642 Medicinal Uses of Other Species������������������������������������������������������������������    642 Local Food Uses��������������������������������������������������������������������������������������������    643 Food Uses of Other Species ��������������������������������������������������������������������������    643

Contents

xxiii

Local Handicraft and Other Uses������������������������������������������������������������������    644 Handicraft and Other Uses of Other Species ������������������������������������������������    644 References������������������������������������������������������������������������������������������������������    644  osa canina L., Rosa webbiana Wall. ex Royle - ROSACEAE ����������������    647 R Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    649 Botany and Ecology��������������������������������������������������������������������������������������    649 Phytochemistry����������������������������������������������������������������������������������������������    651 Local Medicinal Uses������������������������������������������������������������������������������������    653 Medicinal Uses of Other Species������������������������������������������������������������������    655 Local Food Uses��������������������������������������������������������������������������������������������    657 Food Uses of Other Species ��������������������������������������������������������������������������    657 Local Handicraft and Other Uses������������������������������������������������������������������    657 Handicraft and Other Uses of Other Species ������������������������������������������������    657 References������������������������������������������������������������������������������������������������������    658  ubia tinctorium L. - RUBIACEAE ����������������������������������������������������������    663 R Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    663 Botany and Ecology��������������������������������������������������������������������������������������    663 Phytochemistry����������������������������������������������������������������������������������������������    664 Local Medicinal Uses������������������������������������������������������������������������������������    666 Medicinal Uses of Other Species������������������������������������������������������������������    667 Local Food Uses��������������������������������������������������������������������������������������������    668 Local Handicraft and Other Uses������������������������������������������������������������������    668 Handicraft and Other Uses for Other Species������������������������������������������������    669 References������������������������������������������������������������������������������������������������������    669  alvia deserta Schangin, Salvia sclarea L., Salvia virgata Jacq. S LAMIACEAE ����������������������������������������������������������������������������������������������    673 Trobjon Kh. Makhkamov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    674 Botany and Ecology��������������������������������������������������������������������������������������    674 Phytochemistry����������������������������������������������������������������������������������������������    680 Local Medicinal Uses������������������������������������������������������������������������������������    681 Medicinal Uses of Other Species������������������������������������������������������������������    681 Local Food Uses��������������������������������������������������������������������������������������������    684 Food Uses of Other Species ��������������������������������������������������������������������������    685 Local Handicraft and Other Uses������������������������������������������������������������������    685 Handicraft and Other Uses of Other Species ������������������������������������������������    686 References������������������������������������������������������������������������������������������������������    687

xxiv

Contents

 ilybum marianum (L.) Gaertn. - ASTERACEAE ����������������������������������    691 S Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    691 Botany and Ecology��������������������������������������������������������������������������������������    692 Phytochemistry����������������������������������������������������������������������������������������������    694 Local Medicinal Uses������������������������������������������������������������������������������������    695 Folk Recipes��������������������������������������������������������������������������������������������������    695 Local Food Uses��������������������������������������������������������������������������������������������    696 Local Handicraft and Other Uses������������������������������������������������������������������    696 References������������������������������������������������������������������������������������������������������    696  araxacum brevirostre Hand.-Mazz., Taraxacum juzepczukii T Schischk., Taraxacum macrochlamydeum Kovalevsk., Taraxacum officinale F.H. Wigg, Taraxacum pseudominutilobum Kovalevsk., Taraxacum sonchoides (D. Don) Sch. Bip. - ASTERACEAE��������������������    699 Olim K. Khojimatov, Dilovar T. Khamraeva, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    700 Botany and Ecology��������������������������������������������������������������������������������������    700 Phytochemistry����������������������������������������������������������������������������������������������    705 Local Medicinal Uses������������������������������������������������������������������������������������    706 Medicinal Uses of Other Species������������������������������������������������������������������    708 Local Food Uses��������������������������������������������������������������������������������������������    709 Food Uses of Other Species ��������������������������������������������������������������������������    709 Local Handicraft and Other Uses������������������������������������������������������������������    709 References������������������������������������������������������������������������������������������������������    710  hermopsis alterniflora Regel & Schmalh. - FABACEAE������������������������    715 T Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    715 Botany and Ecology��������������������������������������������������������������������������������������    715 Phytochemistry����������������������������������������������������������������������������������������������    716 Local Medicinal Uses������������������������������������������������������������������������������������    717 Folk Recipes��������������������������������������������������������������������������������������������������    717 References������������������������������������������������������������������������������������������������������    719  hymus seravschanicus Klokov - LAMIACEAE��������������������������������������    721 T Olim K. Khojimatov and Rainer W. Bussmann Botany and Ecology��������������������������������������������������������������������������������������    721 Phytochemistry����������������������������������������������������������������������������������������������    723 Local Medicinal Uses������������������������������������������������������������������������������������    724 Medicinal Use of Other Species��������������������������������������������������������������������    724 Local Food Uses��������������������������������������������������������������������������������������������    724 Food Uses of Other Species ��������������������������������������������������������������������������    725 Local Handicraft and Other Uses������������������������������������������������������������������    725 Handicraft and Other Uses of Other Species ������������������������������������������������    725 References������������������������������������������������������������������������������������������������������    725

Contents

xxv

 ribulus terrestris L. - ZYGOPHYLLACEAE �����������������������������������������    727 T Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    727 Botany and Ecology��������������������������������������������������������������������������������������    728 Phytochemistry����������������������������������������������������������������������������������������������    729 Local Medicinal Uses������������������������������������������������������������������������������������    729 Local Handicraft and Other Uses������������������������������������������������������������������    731 References������������������������������������������������������������������������������������������������������    731  ussilago farfara L. - ASTERACEAE��������������������������������������������������������    735 T Olim K. Khojimatov, Z. Z. Kosimov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    735 Botany and Ecology��������������������������������������������������������������������������������������    736 Phytochemistry����������������������������������������������������������������������������������������������    737 Local Medicinal Uses������������������������������������������������������������������������������������    737 Folk Recipes��������������������������������������������������������������������������������������������������    738 Local Handicraft and Other Uses������������������������������������������������������������������    738 References������������������������������������������������������������������������������������������������������    738  ngernia sewerzowii (Regel) B.Fedtsch., Ungernia victoris Vved. U ex Artjush. - AMARYLLIDACEAE����������������������������������������������������������    741 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    741 Botany and Ecology��������������������������������������������������������������������������������������    742 Phytochemistry����������������������������������������������������������������������������������������������    743 Local Medicinal Uses������������������������������������������������������������������������������������    744 Economic Importance������������������������������������������������������������������������������������    745 References������������������������������������������������������������������������������������������������������    745  rtica dioica L. - URTICACEAE����������������������������������������������������������������    747 U Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    747 Botany and Ecology��������������������������������������������������������������������������������������    748 Phytochemistry����������������������������������������������������������������������������������������������    749 Local Medicinal Uses������������������������������������������������������������������������������������    749 Medicinal Use of Other Species��������������������������������������������������������������������    752 Local Food Uses��������������������������������������������������������������������������������������������    752 Food Use of Other Species����������������������������������������������������������������������������    753 Local Handicraft and Other Uses������������������������������������������������������������������    753 Handicraft and Other Uses of Other Species ������������������������������������������������    754 References������������������������������������������������������������������������������������������������������    754  erbascum songaricum Schrenk ex Fisch. & C.A. Mey V SCROPHULARIACEAE����������������������������������������������������������������������������    759 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    759 Botany and Ecology��������������������������������������������������������������������������������������    760

xxvi

Contents

Phytochemistry����������������������������������������������������������������������������������������������    760 Local Medicinal Uses������������������������������������������������������������������������������������    762 Medicinal Uses of Other Species������������������������������������������������������������������    762 Local Handicraft and Other Uses������������������������������������������������������������������    763 Handicraft and Other Uses of Other Species ������������������������������������������������    763 References������������������������������������������������������������������������������������������������������    764  anthium spinosum L., Xanthium strumarium L. X ASTERACEAE��������������������������������������������������������������������������������������������    767 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    768 Botany and Ecology��������������������������������������������������������������������������������������    768 Phytochemistry����������������������������������������������������������������������������������������������    771 Local Medicinal Uses������������������������������������������������������������������������������������    772 Folk Recipes��������������������������������������������������������������������������������������������������    772 Local Food Uses��������������������������������������������������������������������������������������������    773 Local Handicraft and Other Uses������������������������������������������������������������������    773 References������������������������������������������������������������������������������������������������������    774  ylosalsola richteri (Moq.) Akhani & Roalson, Xylosalsola X paletzkiana (Litv.) Akhani & Roalson - AMARANTHACEAE����������������    775 Olim K. Khojimatov, Gulnara J. Abdiniyazova, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    775 Botany and Ecology��������������������������������������������������������������������������������������    776 Phytochemistry����������������������������������������������������������������������������������������������    778 Local Medicinal Uses������������������������������������������������������������������������������������    779 Folk Recipes��������������������������������������������������������������������������������������������������    779 Local Handicraft and Other Uses������������������������������������������������������������������    779 References������������������������������������������������������������������������������������������������������    780  iziphora clinopodioides Lam., Ziziphora clinopodioides subsp. Z bungeana (Juz.) Rech.f., Ziziphora pamiroalaica Juz., Ziziphora pedicellata Pazij et Vved., Ziziphora tenuior L. - LAMIACEAE��������������    781 Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    782 Botany and Ecology��������������������������������������������������������������������������������������    782 Phytochemistry����������������������������������������������������������������������������������������������    787 Local Medicinal Uses������������������������������������������������������������������������������������    787 Medicinal Uses of Other Species������������������������������������������������������������������    788 Local Food Uses��������������������������������������������������������������������������������������������    788 Food Uses of Other Species ��������������������������������������������������������������������������    789 Local Handicraft and Other Uses������������������������������������������������������������������    789 Handicraft Uses of Other Species������������������������������������������������������������������    789 References������������������������������������������������������������������������������������������������������    789

Contents

xxvii

 iziphus jujuba Mill, Ziziphus mauritiana Lam. - RHAMNACEAE ������    791 Z Olim K. Khojimatov and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    792 Botany and Ecology��������������������������������������������������������������������������������������    792 Phytochemistry����������������������������������������������������������������������������������������������    795 Local Medicinal Uses������������������������������������������������������������������������������������    795 Medicinal Uses of Other Species������������������������������������������������������������������    797 Local Food Uses��������������������������������������������������������������������������������������������    798 Food Uses of Other Species ��������������������������������������������������������������������������    799 Local Handicraft and Other Uses������������������������������������������������������������������    799 Handicraft and Other Uses of Other Species ������������������������������������������������    800 References������������������������������������������������������������������������������������������������������    800 Part IV Animal Chapters  amelus bactrianus Linnaeus, 1758 - CAMELIDAE����������������������������������   805 C Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    805 Zoology and Ecology������������������������������������������������������������������������������������    806 Local Medicinal Uses������������������������������������������������������������������������������������    806 Local Food Uses��������������������������������������������������������������������������������������������    809 Local Handicraft and Other Uses������������������������������������������������������������������    810 References������������������������������������������������������������������������������������������������������    810  apra hircus Linnaeus, 1758 - BOVIDAE ������������������������������������������������    811 C Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    811 Zoology and Ecology������������������������������������������������������������������������������������    811 Local Medicinal Uses������������������������������������������������������������������������������������    813 Local Food Uses��������������������������������������������������������������������������������������������    814 References������������������������������������������������������������������������������������������������������    815  oturnix coturnix Linnaeus, 1758 - PHASIANIDAE��������������������������������    817 C Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    817 Zoology and Ecology������������������������������������������������������������������������������������    818 Local Medicinal Uses������������������������������������������������������������������������������������    819 Local Food Uses��������������������������������������������������������������������������������������������    820 Local Handicraft and Other Uses������������������������������������������������������������������    820 References������������������������������������������������������������������������������������������������������    821  quus caballus Linnaeus, 1758 - EQUIDAE ��������������������������������������������    823 E Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    823 Zoology and Ecology������������������������������������������������������������������������������������    824 Local Medicinal Uses������������������������������������������������������������������������������������    826 Local Food Uses��������������������������������������������������������������������������������������������    827 References������������������������������������������������������������������������������������������������������    827

xxviii

Contents

 ryx tataricus Lichtenstein, 1823 - BOIDAE ��������������������������������������������    829 E Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    830 Zoology and Ecology������������������������������������������������������������������������������������    830 Local Medicinal Uses������������������������������������������������������������������������������������    833 Local Food Uses��������������������������������������������������������������������������������������������    833 References������������������������������������������������������������������������������������������������������    833  emiechinus auritus Gmelin, 1770 - ERINACEIDAE������������������������������    835 H Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    835 Zoology and Ecology������������������������������������������������������������������������������������    836 Local Medicinal Uses������������������������������������������������������������������������������������    838 Local Food Uses��������������������������������������������������������������������������������������������    839 References������������������������������������������������������������������������������������������������������    839  ystrix indica Kerr, 1792. - HYSTRICIDAE��������������������������������������������    841 H Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    841 Zoology and Ecology������������������������������������������������������������������������������������    842 Local Medicinal Uses������������������������������������������������������������������������������������    842 Local Food Uses��������������������������������������������������������������������������������������������    844 References������������������������������������������������������������������������������������������������������    844  armota caudata Geoffroy, 1844 - SCIURIDAE��������������������������������������    845 M Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    845 Zoology and Ecology������������������������������������������������������������������������������������    846 Local Medicinal Uses������������������������������������������������������������������������������������    846 Local Food Uses��������������������������������������������������������������������������������������������    849 References������������������������������������������������������������������������������������������������������    849  eles canescens canescens Blanford, 1875, Meles leucurus M leucurus Hodgson, 1847 - MUSTELIDAE������������������������������������������������    851 Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    851 Zoology and Ecology������������������������������������������������������������������������������������    852 Local Medicinal Uses������������������������������������������������������������������������������������    855 Local Food Uses��������������������������������������������������������������������������������������������    855 References������������������������������������������������������������������������������������������������������    855  aja oxiana Eichwald, 1831 - ELAPIDAE������������������������������������������������    857 N Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    857 Zoology and Ecology������������������������������������������������������������������������������������    858 Local Medicinal Uses������������������������������������������������������������������������������������    858 Local Food Uses��������������������������������������������������������������������������������������������    860 References������������������������������������������������������������������������������������������������������    861

Contents

xxix

 vis aries Linnaeus, 1758 - BOVIDAE������������������������������������������������������    863 O Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    863 Zoology and Ecology������������������������������������������������������������������������������������    863 Local Medicinal Uses������������������������������������������������������������������������������������    866 Local Food Uses��������������������������������������������������������������������������������������������    867 References������������������������������������������������������������������������������������������������������    867  elophylax ridibundus Pallas, 1771 - RANIDAE ��������������������������������������    869 P Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    870 Zoology and Ecology������������������������������������������������������������������������������������    870 Local Medicinal Uses������������������������������������������������������������������������������������    870 Local Food Uses��������������������������������������������������������������������������������������������    872 References������������������������������������������������������������������������������������������������������    873  hasianus colchicus Linnaeus, 1758 - PHASIANIDAE����������������������������    875 P Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    875 Zoology and Ecology������������������������������������������������������������������������������������    875 Local Medicinal Uses������������������������������������������������������������������������������������    876 Local Food Uses��������������������������������������������������������������������������������������������    878 References������������������������������������������������������������������������������������������������������    879  etraogallus himalayensis G.R. Gray, 1843 - PHASIANIDAE����������������    881 T Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    881 Zoology and Ecology������������������������������������������������������������������������������������    882 Local Medicinal Uses������������������������������������������������������������������������������������    882 Local Food Uses��������������������������������������������������������������������������������������������    884 References������������������������������������������������������������������������������������������������������    884  rsus arctos isabellinus Horsfieldi, 1826 - URSIDAE������������������������������    885 U Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    886 Zoology and Ecology������������������������������������������������������������������������������������    886 Local Medicinal Uses������������������������������������������������������������������������������������    886 Local Food Uses��������������������������������������������������������������������������������������������    888 References������������������������������������������������������������������������������������������������������    889

xxx

Contents

Part V Fungus Chapters  aranus griseus caspius Eichwald, 1831 - VARANIDAE��������������������������    891 V Timur V. Abduraupov, Olim K. Khojimatov, and Rainer W. Bussmann Local Names��������������������������������������������������������������������������������������������������    892 Zoology and Ecology������������������������������������������������������������������������������������    892 Local Medicinal Uses������������������������������������������������������������������������������������    894 Local Food Uses��������������������������������������������������������������������������������������������    894 Local Handicraft and Other Uses������������������������������������������������������������������    894 References������������������������������������������������������������������������������������������������������    895  garicus bisporus (J.E. Lange) Imbach; Agaricus campestris L.; A Agaricus xanthodermus Genev. - AGARICACEAE����������������������������������    899 Yusufjon Gafforov, Mustafa Yamaç, Milena Rašeta, Sylvie Rapior, Mustafa Sevindik, Rui-Lin Zhao, Samantha Chandranath Karunarathna, Manzura Yarasheva, and Soumya Ghosh Local Names��������������������������������������������������������������������������������������������������    901 Short Morphological Description������������������������������������������������������������������    902 Ecology and Distribution ������������������������������������������������������������������������������    903 Mycochemistry����������������������������������������������������������������������������������������������    904 Local Medicinal Uses������������������������������������������������������������������������������������    912 Modern Medicinal Uses��������������������������������������������������������������������������������    913 Local Food Uses��������������������������������������������������������������������������������������������    921 References������������������������������������������������������������������������������������������������������    921  uricularia mesenterica (Dicks.) Pers. - AURICULARIACEAE ������������    931 A Yusufjon Gafforov, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Milena Rašeta, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������    932 Short Morphological Description������������������������������������������������������������������    932 Ecology and Distribution ������������������������������������������������������������������������������    933 Mycochemistry����������������������������������������������������������������������������������������������    934 Local Medicinal Uses������������������������������������������������������������������������������������    934 Modern Medicinal Uses��������������������������������������������������������������������������������    935 Local Food Uses��������������������������������������������������������������������������������������������    935 Local Handicraft and Other Uses������������������������������������������������������������������    935 References������������������������������������������������������������������������������������������������������    935  jerkandera adusta (Willd.) P. Karst.; Bjerkandera fumosa (Pers.) B P. Karst. - MERULIACEAE ����������������������������������������������������������������������    939 Yusufjon Gafforov, Milena Rašeta, Sylvie Rapior, Michal Tomšovský, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Manzura Yarasheva, and Li-Wei Zhou Local Names��������������������������������������������������������������������������������������������������    940 Short Morphological Description������������������������������������������������������������������    940 Ecology and Distribution ������������������������������������������������������������������������������    941 Mycochemistry����������������������������������������������������������������������������������������������    942

Contents

xxxi

Volatile Organic Derivatives����������������������������������������������������������������������    943 Mineral Composition ��������������������������������������������������������������������������������    946 Carboxyl Acids������������������������������������������������������������������������������������������    947 Fatty Acids and Sterols������������������������������������������������������������������������������    947 Phenolic Derivatives����������������������������������������������������������������������������������    947 Preliminary Results on Polysaccharides and Proteins ������������������������������    948 Ligninolytic Enzymes��������������������������������������������������������������������������������    948 Local Medicinal Uses������������������������������������������������������������������������������������    949 Modern Medicinal Uses��������������������������������������������������������������������������������    949 Antimicrobial Activities����������������������������������������������������������������������������    950 B. adusta as Both Antigenic and Allergic Agent����������������������������������������    950 Antioxidant and Immunomodulating Properties����������������������������������������    951 Ligninolytic Enzymes��������������������������������������������������������������������������������    951 Cosmetic Applications ����������������������������������������������������������������������������������    952 Environmental Applications��������������������������������������������������������������������������    952 Bioremediation������������������������������������������������������������������������������������������    952 Decolorization��������������������������������������������������������������������������������������������    953 Biocontrol Agent Against Fusarium wilt��������������������������������������������������    954 Environmental Application for Plant Resistance to Abiotic Stress������������    954 Local Food Uses��������������������������������������������������������������������������������������������    955 References������������������������������������������������������������������������������������������������������    956  erioporus squamosus (Huds.) Quél.; Cerioporus leptocephalus (Fr.) C Zmitr. & Kovalenko - POLYPORACEAE������������������������������������������������    959 Yusufjon Gafforov, Sunil K. Deshmukh, Shilpa A. Verekar, Sylvie Rapior, Michal Tomšovský, Milena Rašeta, Manzura Yarasheva, and Lei Cai Local Names��������������������������������������������������������������������������������������������������    960 Short Morphological Description������������������������������������������������������������������    960 Ecology and Distribution ������������������������������������������������������������������������������    961 Mycochemistry����������������������������������������������������������������������������������������������    962 Local Medicinal Uses������������������������������������������������������������������������������������    966 Modern Medicinal Uses��������������������������������������������������������������������������������    966 Folk Recipes��������������������������������������������������������������������������������������������������    967 Local Food Uses��������������������������������������������������������������������������������������������    968 Culinary Recipes��������������������������������������������������������������������������������������������    968 Recipes for Making Cerioporus squamosus����������������������������������������������    968 Cleaning and Preparing Mushrooms����������������������������������������������������������    968 How to Cook Soup with This Mushroom��������������������������������������������������    969 How to Cook Fried Mushrooms with Onions��������������������������������������������    969 A Common Dish Made from Mushroom Is Pesters Stewed in Sour Cream��������������������������������������������������������������������������������������������������������    970 Preparation of Pickled Scaly Tinder Fungi������������������������������������������������    971 References������������������������������������������������������������������������������������������������������    971

xxxii

Contents

 errena unicolor (Bull.) Murrill - CERRENACEAE ������������������������������    973 C Yusufjon Gafforov, Oksana Mykchaylova, Michal Tomšovský, Manzura Yarasheva, Bekhzod Abdullaev, Rainer W. Bussmann, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������    973 Short Morphological Description������������������������������������������������������������������    974 Ecology and Distribution ������������������������������������������������������������������������������    974 Mycochemistry����������������������������������������������������������������������������������������������    976 Polysaccharides������������������������������������������������������������������������������������������    976 Low Molecular Weight Metabolites����������������������������������������������������������    977 Lectins��������������������������������������������������������������������������������������������������������    978 Enzymes����������������������������������������������������������������������������������������������������    979 Local Medicinal Uses������������������������������������������������������������������������������������    981 Modern Medicinal Uses��������������������������������������������������������������������������������    982 Hypoglycemic Effect ��������������������������������������������������������������������������������    982 Antioxidant Activity����������������������������������������������������������������������������������    982 Antibacterial and Antifungal Properties����������������������������������������������������    983 Anticancer Properties��������������������������������������������������������������������������������    985 Detoxification Properties ��������������������������������������������������������������������������    987 Antiparasitic Properties������������������������������������������������������������������������������    987 Industrial and Textile Applications����������������������������������������������������������������    988 Local Food Uses��������������������������������������������������������������������������������������������    989 References������������������������������������������������������������������������������������������������������    989  oprinus comatus (O.F. Müll.) Pers. - AGARICACEAE��������������������������    993 C Yusufjon Gafforov, Milena Rašeta, Manzura Yarasheva, Wan Abd Al Qadr Imad Wan-Mohtar, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������    994 Short Morphological Description������������������������������������������������������������������    994 Ecology and Distribution ������������������������������������������������������������������������������    996 Mycochemistry����������������������������������������������������������������������������������������������    997 Local Medicinal Uses������������������������������������������������������������������������������������   1000 Modern Medicinal Uses��������������������������������������������������������������������������������   1000 Local Food Uses��������������������������������������������������������������������������������������������   1004 Culinary Note������������������������������������������������������������������������������������������������   1005 References������������������������������������������������������������������������������������������������������   1006  lammulina velutipes (Curtis) Singer - PHYSALACRIACEAE ������������   1011 F Yusufjon Gafforov, Susanna Badalyan, Milena Rašeta, Manzura Yarasheva, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1012 Short Morphological Description������������������������������������������������������������������   1012 Ecology and Distribution ������������������������������������������������������������������������������   1013 Mycochemistry����������������������������������������������������������������������������������������������   1016 Minerals and Vitamins ������������������������������������������������������������������������������   1017 Polysaccharides������������������������������������������������������������������������������������������   1017 Amino Acids and Proteins ������������������������������������������������������������������������   1019

Contents

xxxiii

Nucleotides and Nucleosides ��������������������������������������������������������������������   1020 Fatty Acids ������������������������������������������������������������������������������������������������   1021 Terpenes ����������������������������������������������������������������������������������������������������   1021 Sterols and Derivatives������������������������������������������������������������������������������   1022 Phenolics����������������������������������������������������������������������������������������������������   1022 Enzymes����������������������������������������������������������������������������������������������������   1023 Local Medicinal Uses������������������������������������������������������������������������������������   1025 Modern Medicinal Uses��������������������������������������������������������������������������������   1025 Antibacterial and Antifungal Activities������������������������������������������������������   1026 Antioxidant and Anti-aging Effects ����������������������������������������������������������   1026 Antitumor and Immunomodulatory Properties������������������������������������������   1029 Anti-Inflammatory Effect��������������������������������������������������������������������������   1032 Anti-metabolic Syndrome��������������������������������������������������������������������������   1033 Cardioprotective Potential��������������������������������������������������������������������������   1033 Neuroprotective Potential��������������������������������������������������������������������������   1033 Other Bioactivities and Usage�������������������������������������������������������������������   1034 Local Food Uses��������������������������������������������������������������������������������������������   1036 Culinary Note������������������������������������������������������������������������������������������������   1037 References������������������������������������������������������������������������������������������������������   1039  omes fomentarius (L.) Fr. - POLYPORACEAE��������������������������������������   1045 F Yusufjon Gafforov, Liudmila Kalitukha, Michal Tomšovský, Paola Angelini, Roberto Venanzoni, Giancarlo Angeles Flores, Manzura Yarasheva, Wan Abd Al Qadr Imad Wan-Mohtar, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1045 Short Morphological Description������������������������������������������������������������������   1046 Ecology and Distribution ������������������������������������������������������������������������������   1046 Mycochemistry����������������������������������������������������������������������������������������������   1048 Aliphatic and Organic Compounds������������������������������������������������������������   1049 Phenolic Compounds ��������������������������������������������������������������������������������   1049 Sterol Derivatives��������������������������������������������������������������������������������������   1049 Terpene Derivatives������������������������������������������������������������������������������������   1050 Bioactive Polymers������������������������������������������������������������������������������������   1050 Local Medicinal Uses������������������������������������������������������������������������������������   1051 Modern Medicinal Uses��������������������������������������������������������������������������������   1051 Potential in Metabolic, Liver and Renal Disorders������������������������������������   1052 Antibacterial, Antifungal and Antiviral Activities ������������������������������������   1052 Antioxidant Potential ��������������������������������������������������������������������������������   1053 Anti-Inflammatory and Antinociceptive Properties ����������������������������������   1054 Immunomodulatory Properties������������������������������������������������������������������   1054 Anticancer and Antiproliferative Activities ����������������������������������������������   1055 Environmental Applications��������������������������������������������������������������������������   1056 Extracellular Lignocellulolytic Enzymes and Biotechnological Potential ����������������������������������������������������������������������������������������������������   1056 Biosorption������������������������������������������������������������������������������������������������   1057

xxxiv

Contents

Folk Recipes��������������������������������������������������������������������������������������������������   1057 Local Food Uses��������������������������������������������������������������������������������������������   1057 Local Handicraft and Other Uses������������������������������������������������������������������   1057 References������������������������������������������������������������������������������������������������������   1058  omitiporia hippophaeicola (H. Jahn) Fiasson & Niemelä; F Fomitiporia punctata (P. Karst.) Murrill; Fomitiporia robusta (P. Karst.) Fiasson & Niemelä - HYMENOCHAETACEAE ������������������   1065 Yusufjon Gafforov, Oksana Mykchaylova, Michal Tomšovský, Manzura Yarasheva, Wan Abd Al Qadr Imad Wan-Mohtar, Li-Wei Zhou, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1066 Short Morphological Description������������������������������������������������������������������   1066 Ecology and Distribution ������������������������������������������������������������������������������   1068 Mycochemistry����������������������������������������������������������������������������������������������   1071 Polysaccharides������������������������������������������������������������������������������������������   1072 Triterpenes, Polyphenols, and Melanin Compounds ��������������������������������   1072 Steroids and Organic Acid Compounds ����������������������������������������������������   1073 Phytotoxic Compounds������������������������������������������������������������������������������   1073 Enzymes����������������������������������������������������������������������������������������������������   1074 Melanin Complex��������������������������������������������������������������������������������������   1074 Polysaccharides������������������������������������������������������������������������������������������   1075 Steroids and Coumarins Derivatives����������������������������������������������������������   1075 Indolic, Phenolic and Organic Acid Compounds��������������������������������������   1075 Macroelements������������������������������������������������������������������������������������������   1076 Local Medicinal Uses������������������������������������������������������������������������������������   1076 Modern Medicinal Uses��������������������������������������������������������������������������������   1077 Antitumor Activity ������������������������������������������������������������������������������������   1077 Antiviral Property��������������������������������������������������������������������������������������   1078 Antioxidant Capacity and Xanthine Oxidase Inhibitory Activity��������������   1078 Antibacterial Effects����������������������������������������������������������������������������������   1079 Antioxidant and Xanthine Oxidase Inhibitory Activity ����������������������������   1079 Folk Recipes��������������������������������������������������������������������������������������������������   1080 Local Food Uses��������������������������������������������������������������������������������������������   1081 Local Handicraft and Other Uses������������������������������������������������������������������   1081 References������������������������������������������������������������������������������������������������������   1082  omitopsis betulina (Bull.) B.K. Cui, M.L. Han & Y.C. Dai; F Fomitopsis pinicola (Sw.) P. Karst. - FOMITOPSIDACEAE ������������������   1085 Yusufjon Gafforov, Sunil K. Deshmukh, Shilpa A. Verekar, Michal Tomšovský, Manzura Yarasheva, Jia-Jia Chen, Ewald Langer, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1086 Short Morphological Description������������������������������������������������������������������   1086 Ecology and Distribution ������������������������������������������������������������������������������   1087 Mycochemistry����������������������������������������������������������������������������������������������   1089

Contents

xxxv

Local Medicinal Uses������������������������������������������������������������������������������������   1093 Modern Medicinal Uses��������������������������������������������������������������������������������   1094 Folk Recipes��������������������������������������������������������������������������������������������������   1098 Local Food Uses��������������������������������������������������������������������������������������������   1098 Local Handicraft and Other Uses������������������������������������������������������������������   1098 References������������������������������������������������������������������������������������������������������   1099  unalia trogii (Berk.) Bondartsev & Singer - POLYPORACEAE����������   1103 F Yusufjon Gafforov, Milena Rašeta, Michal Tomšovský, Ting-Chi Wen, Makhkamov Trobjon, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1104 Short Morphological Description������������������������������������������������������������������   1104 Ecology and Distribution ������������������������������������������������������������������������������   1104 Mycochemistry����������������������������������������������������������������������������������������������   1106 Minerals and Vitamins ������������������������������������������������������������������������������   1106 Enzymes����������������������������������������������������������������������������������������������������   1106 Polysaccharides������������������������������������������������������������������������������������������   1107 Sesquiterpenoids����������������������������������������������������������������������������������������   1108 Proteins������������������������������������������������������������������������������������������������������   1108 Local Medicinal Uses������������������������������������������������������������������������������������   1108 Modern Medicinal Uses��������������������������������������������������������������������������������   1108 Antitumor Activity ������������������������������������������������������������������������������������   1108 Antioxidant Properties ������������������������������������������������������������������������������   1109 Neuroprotective Activity����������������������������������������������������������������������������   1110 Fibrinolytic Activity����������������������������������������������������������������������������������   1110 Environmental Applications��������������������������������������������������������������������������   1111 Bioremediation as Biosorption of Heavy Metals and Pollutants ��������������   1111 Bioremediation of Dyes from Food Industry Effluents and Textile Effuents������������������������������������������������������������������������������������������������������   1112 Enzyme Production������������������������������������������������������������������������������������   1115 Other Applications ����������������������������������������������������������������������������������������   1116 Local Food Uses��������������������������������������������������������������������������������������������   1117 References������������������������������������������������������������������������������������������������������   1117  uscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) F T. Wagner & M. Fisch. - HYMENOCHAETACEAE ������������������������������   1121 Yusufjon Gafforov, Oksana Mykchaylova, Michal Tomšovský, Manzura Yarasheva, Hasan Hüseyin Doğan, Young Woon Lim, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1122 Short Morphological Description������������������������������������������������������������������   1122 Ecology and Distribution ������������������������������������������������������������������������������   1123 Mycochemistry����������������������������������������������������������������������������������������������   1125 Polysaccharides������������������������������������������������������������������������������������������   1125 Phenolic and Organic Acid Compounds����������������������������������������������������   1126 Triterpenes ������������������������������������������������������������������������������������������������   1126

xxxvi

Contents

Steroids������������������������������������������������������������������������������������������������������   1127 Macroelements������������������������������������������������������������������������������������������   1127 Enzymatic Potential ����������������������������������������������������������������������������������   1127 Local Medicinal Uses������������������������������������������������������������������������������������   1128 Modern Medicinal Uses��������������������������������������������������������������������������������   1128 Antibacterial and Antifungal Properties����������������������������������������������������   1128 Antioxidant Property����������������������������������������������������������������������������������   1129 Anticholinesterase Activity������������������������������������������������������������������������   1131 Antihyperglycemic Property����������������������������������������������������������������������   1132 Cytotoxic and Anticancer Activities����������������������������������������������������������   1132 Folk Recipes��������������������������������������������������������������������������������������������������   1133 Local Food Uses��������������������������������������������������������������������������������������������   1133 References������������������������������������������������������������������������������������������������������   1133  anoderma adspersum (Schulzer) Donk; Ganoderma applanatum G (Pers.) Pat.; Ganoderma lucidum (Curtis) P. Karst.; Ganoderma resinaceum Boud. - GANODERMATACEAE ������������������������������������������   1135 Yusufjon Gafforov, Aisha Umar, Soumya Ghosh, Michal Tomšovský, Mustafa Yamaç, Milena Rašeta, Manzura Yarasheva, Wan Abd Al Qadr Imad Wan-Mohtar, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1137 Short Morphological Description������������������������������������������������������������������   1137 Ecology and Distribution ������������������������������������������������������������������������������   1139 Mycochemistry����������������������������������������������������������������������������������������������   1140 Local Medicinal Uses������������������������������������������������������������������������������������   1149 Modern Medicinal Uses��������������������������������������������������������������������������������   1151 Local Food Uses��������������������������������������������������������������������������������������������   1159 Folk Recipes��������������������������������������������������������������������������������������������������   1160 Local Handicraft and Other Uses������������������������������������������������������������������   1161 References������������������������������������������������������������������������������������������������������   1161  rifola frondosa (Dicks.) Gray - GRIFOLACEAE����������������������������������   1171 G Yusufjon Gafforov, Milena Rašeta, Michal Tomšovský, Muhammad Zafar, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1172 Short Morphological Description������������������������������������������������������������������   1172 Ecology and Distribution ������������������������������������������������������������������������������   1172 Mycochemistry����������������������������������������������������������������������������������������������   1173 Local Medicinal Uses������������������������������������������������������������������������������������   1179 Modern Medicinal Uses��������������������������������������������������������������������������������   1180 Medicinal Uses of Primary Metabolites of G. frondosa����������������������������   1180 Medicinal Uses of Secondary Metabolites of G. frondosa������������������������   1184 Clinical Studies of G. frondosa������������������������������������������������������������������   1185 Local Food Uses��������������������������������������������������������������������������������������������   1187 Edibility, Aroma and Flavor����������������������������������������������������������������������   1187 Culinary Note������������������������������������������������������������������������������������������������   1187

Contents

xxxvii

Recipe: Grilled Thai Marinated Maitake Mushrooms ������������������������������   1187 Recipe: Maitake Wild Rice Salad��������������������������������������������������������������   1188 Recipe: Maitake Mushrooms with Thyme and Sherry������������������������������   1188 References������������������������������������������������������������������������������������������������������   1189 I nonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.) Pilát HYMENOCHAETACEAE ������������������������������������������������������������������������   1193 Yusufjon Gafforov, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Masoomeh Ghobad-Nejhad, Rainer W. Bussmann, and Michal Tomšovský Local Names��������������������������������������������������������������������������������������������������   1194 Short Morphological Description������������������������������������������������������������������   1194 Ecology and Distribution ������������������������������������������������������������������������������   1195 Edibility, Aroma and Flavor��������������������������������������������������������������������������   1196 Phytochemistry����������������������������������������������������������������������������������������������   1196 Local Medicinal Uses������������������������������������������������������������������������������������   1200 Modern Medicine Uses����������������������������������������������������������������������������������   1200 References������������������������������������������������������������������������������������������������������   1201 I rpex lacteus (Fr.) Fr. - IRPICACEAE ������������������������������������������������������   1203 Yusufjon Gafforov, Sunil K. Deshmukh, Michal Tomšovský, Manzura Yarasheva, Mengcen Wang, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1204 Short Morphological Description������������������������������������������������������������������   1204 Ecology and Distribution ������������������������������������������������������������������������������   1204 Mycochemistry����������������������������������������������������������������������������������������������   1205 Tremulane Sesquiterpenoids����������������������������������������������������������������������   1206 Eburicane Triterpenoids ����������������������������������������������������������������������������   1208 Other Secondary Metabolites��������������������������������������������������������������������   1209 Coculture����������������������������������������������������������������������������������������������������   1210 Application in Biotransformation��������������������������������������������������������������   1211 Local Medicinal Uses������������������������������������������������������������������������������������   1211 Modern Medicinal Uses��������������������������������������������������������������������������������   1211 Antimicrobial Activities (Antibacterial, Antifungal, Phytopathogenic Properties)��������������������������������������������������������������������������������������������������   1211 Effects of Renal Pathologies and Metabolic Syndrome����������������������������   1213 Antitumor Activity ������������������������������������������������������������������������������������   1213 Anti-inflammatory Activity������������������������������������������������������������������������   1214 Other Biological Activities������������������������������������������������������������������������   1214 Local Food Uses��������������������������������������������������������������������������������������������   1215 References������������������������������������������������������������������������������������������������������   1215

xxxviii

Contents

 aetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE ������������   1219 L Yusufjon Gafforov, Michal Tomšovský, Lei Cai, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Milena Rašeta, Sunil K. Deshmukh, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1220 Short Morphological Description������������������������������������������������������������������   1220 Ecology and Distribution ������������������������������������������������������������������������������   1221 Mycochemistry����������������������������������������������������������������������������������������������   1222 Nutrient Content����������������������������������������������������������������������������������������   1223 Polysaccharides������������������������������������������������������������������������������������������   1223 Volatile Compounds����������������������������������������������������������������������������������   1224 Sterol Composition, Fatty Acids and Lipids����������������������������������������������   1224 Triterpenes ������������������������������������������������������������������������������������������������   1225 Phenolic Compounds ��������������������������������������������������������������������������������   1226 Macro- and Microelements������������������������������������������������������������������������   1226 Vitamins ����������������������������������������������������������������������������������������������������   1226 Local Medicinal Uses������������������������������������������������������������������������������������   1227 Modern Medicinal Uses��������������������������������������������������������������������������������   1227 Antiviral and Antimicrobial Activities ������������������������������������������������������   1227 Antioxidant Activity����������������������������������������������������������������������������������   1228 Anti-inflammatory Activity������������������������������������������������������������������������   1229 Anti-ulcer Activity ������������������������������������������������������������������������������������   1230 Hypoglycemic Effect ��������������������������������������������������������������������������������   1230 Cytotoxic and Anticancer Activity������������������������������������������������������������   1230 Anti-malaria ����������������������������������������������������������������������������������������������   1231 Environmental Applications��������������������������������������������������������������������������   1232 Local Food Uses��������������������������������������������������������������������������������������������   1232 Culinary Notes ����������������������������������������������������������������������������������������������   1233 References������������������������������������������������������������������������������������������������������   1233  aricifomes officinalis (Vill.) Kotl. & Pouzar L FOMITOPSIDACEAE��������������������������������������������������������������������������������   1237 Yusufjon Gafforov, Bożena Muszyńska, Katarzyna Sułkowska-Ziaja, Michal Tomšovský, Manzura Yarasheva, Lorenzo Pecoraro, Oksana Mykchaylova, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1238 Short Morphological Description������������������������������������������������������������������   1238 Ecology and Distribution ������������������������������������������������������������������������������   1239 Mycochemistry����������������������������������������������������������������������������������������������   1240 Local Medicinal Uses������������������������������������������������������������������������������������   1241 Modern Medicinal Uses��������������������������������������������������������������������������������   1242 Antimicrobial Properties����������������������������������������������������������������������������   1243 Antiviral Properties������������������������������������������������������������������������������������   1244 Antiparasitic Properties������������������������������������������������������������������������������   1244 Antioxidant Properties Against Cancer������������������������������������������������������   1244

Contents

xxxix

Antioxidant and Anti-inflammatory Properties, and Neurodegenerative Diseases������������������������������������������������������������������������������������������������������   1245 Folk Recipes��������������������������������������������������������������������������������������������������   1247 Local Food Uses����������������������������������������������������������������������������������������   1247 Local Handicraft and Other Uses��������������������������������������������������������������   1247 References������������������������������������������������������������������������������������������������������   1247  entinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) L Zmitr.; Lentinus ciliatus (Fr.) Zmitr.; Lentinus squarrosulus Mont.; Lentinus tigrinus (Bull.) Fr. - POLYPORACEAE ������������������������������������   1253 Yusufjon Gafforov, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Michal Tomšovský, Manzura Yarasheva, Milena Rašeta, Rainer W. Bussmann, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1254 Short Morphological Description������������������������������������������������������������������   1255 Ecology and Distribution ������������������������������������������������������������������������������   1257 Mycochemistry����������������������������������������������������������������������������������������������   1258 Local Medicinal Uses������������������������������������������������������������������������������������   1263 Modern Medicinal and Environmental Uses ������������������������������������������������   1264 Local Food Uses��������������������������������������������������������������������������������������������   1266 Cooking Note ��������������������������������������������������������������������������������������������   1267 References������������������������������������������������������������������������������������������������������   1268  epista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.) Cooke L TRICHOLOMATACEAE ��������������������������������������������������������������������������   1271 Yusufjon Gafforov, Mustafa Yamaç, Milena Rašeta, Manzura Yarasheva, Rainer W. Bussmann, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1272 Short Morphological Description������������������������������������������������������������������   1272 Ecology and Distribution ������������������������������������������������������������������������������   1273 Mycochemistry����������������������������������������������������������������������������������������������   1274 Local Medicinal Uses������������������������������������������������������������������������������������   1277 Modern Medicinal Uses��������������������������������������������������������������������������������   1277 Antimicrobial Activity ������������������������������������������������������������������������������   1278 Antioxidant Activity����������������������������������������������������������������������������������   1279 Antitumor Activity ������������������������������������������������������������������������������������   1280 Against Metabolic Diseases����������������������������������������������������������������������   1281 Local Food Uses��������������������������������������������������������������������������������������������   1281 Culinary Note��������������������������������������������������������������������������������������������   1281 References������������������������������������������������������������������������������������������������������   1282  orchella esculenta (L.) Pers.; Morchella steppicola Zerova M MORCHELLACEAE����������������������������������������������������������������������������������   1285 Yusufjon Gafforov, Şule İnci, Milena Rašeta, Jonathan Cazabonne, Erol Semra S., Manzura Yarasheva, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1287 Short Morphological Description������������������������������������������������������������������   1287

xl

Contents

Ecology and Distribution ������������������������������������������������������������������������������   1288 Mycochemistry����������������������������������������������������������������������������������������������   1290 Carbohydrate and Polysaccharide Composition����������������������������������������   1292 Protein and Amino Acids Composition�����������������������������������������������������   1292 Fatty Acids ������������������������������������������������������������������������������������������������   1293 Volatile Aromatic Compounds (VOC) ������������������������������������������������������   1293 Phenolic Compounds ��������������������������������������������������������������������������������   1294 Steroids������������������������������������������������������������������������������������������������������   1294 Minerals and Vitamins ������������������������������������������������������������������������������   1295 Local Medicinal Uses������������������������������������������������������������������������������������   1295 Modern Medicinal Uses��������������������������������������������������������������������������������   1296 Nephroprotective Activity��������������������������������������������������������������������������   1297 Hepatoprotective Activity��������������������������������������������������������������������������   1297 Antioxidant Properties ������������������������������������������������������������������������������   1297 Antibacterial Activity��������������������������������������������������������������������������������   1299 Anti-inflammatory Activity������������������������������������������������������������������������   1300 Antitumor Activity ������������������������������������������������������������������������������������   1300 Immunomodulatory Activity����������������������������������������������������������������������   1301 Toxic Neurological Effects������������������������������������������������������������������������   1301 Antioxidant Potential ��������������������������������������������������������������������������������   1302 Enzymatic Potential ����������������������������������������������������������������������������������   1302 Local Food Uses��������������������������������������������������������������������������������������������   1303 Local Food Uses��������������������������������������������������������������������������������������������   1303 References������������������������������������������������������������������������������������������������������   1303  hellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; P Phellinus tremulae (Bondartsev) Bondartsev & P.N. Borisov HYMENOCHAETACEAE ������������������������������������������������������������������������   1309 Yusufjon Gafforov, Oksana Mykchaylova, Masoomeh Ghobad-Nejhad, Michal Tomšovský, Manzura Yarasheva, Hasan Hüseyin Doğan, Sylvie Rapior, and Li-Wei Zhou Local Names��������������������������������������������������������������������������������������������������   1310 Short Morphological Description������������������������������������������������������������������   1311 Ecology and Distribution ������������������������������������������������������������������������������   1312 Mycochemistry����������������������������������������������������������������������������������������������   1312 Polysaccharides������������������������������������������������������������������������������������������   1317 Terpenoids��������������������������������������������������������������������������������������������������   1317 Steroids������������������������������������������������������������������������������������������������������   1318 Flavones, Coumarins, and Furans Derivatives ������������������������������������������   1318 Styrylpyranones and Related Compounds ������������������������������������������������   1319 Other Secondary Metabolites��������������������������������������������������������������������   1319 Terpenoids��������������������������������������������������������������������������������������������������   1320 Styrylpyranones and Related Compounds ������������������������������������������������   1320 Steroids������������������������������������������������������������������������������������������������������   1320 Other Secondary Metabolites��������������������������������������������������������������������   1320

Contents

xli

Terpenoids��������������������������������������������������������������������������������������������������   1321 Other Secondary Metabolites��������������������������������������������������������������������   1321 Local Medicinal Uses������������������������������������������������������������������������������������   1321 Modern Medicinal Uses��������������������������������������������������������������������������������   1322 Antitumor Effect����������������������������������������������������������������������������������������   1322 Anti-inflammatory Activity������������������������������������������������������������������������   1324 Antioxidant Action������������������������������������������������������������������������������������   1324 Neuroprotective Property��������������������������������������������������������������������������   1324 Vascular Activities�������������������������������������������������������������������������������������   1325 Anti-viral Property ������������������������������������������������������������������������������������   1325 Other Biological Activities������������������������������������������������������������������������   1325 Cytotoxic Effect ����������������������������������������������������������������������������������������   1326 Antioxidant Activity����������������������������������������������������������������������������������   1326 Hepatoprotective Activity��������������������������������������������������������������������������   1326 Multidirectional Therapeutic Activity��������������������������������������������������������   1327 Folk Recipes��������������������������������������������������������������������������������������������������   1327 Local Food Uses��������������������������������������������������������������������������������������������   1328 Local Handicraft and Other Uses������������������������������������������������������������������   1328 References������������������������������������������������������������������������������������������������������   1328  leurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.) P. Kumm. P PLEUROTACEAE ��������������������������������������������������������������������������������������   1335 Yusufjon Gafforov, Mustafa Yamaç, Şule İnci, Sylvie Rapior, Manzura Yarasheva, and Milena Rašeta Local Names��������������������������������������������������������������������������������������������������   1336 Short Morphological Description������������������������������������������������������������������   1337 Ecology and Distribution ������������������������������������������������������������������������������   1337 Mycochemistry����������������������������������������������������������������������������������������������   1338 Polysaccharide Composition����������������������������������������������������������������������   1340 Protein Composition����������������������������������������������������������������������������������   1342 Terpene and Sterol Derivatives Composition��������������������������������������������   1343 Phenolic Compound Broad Spectrum��������������������������������������������������������   1343 Vitamins and Minerals ������������������������������������������������������������������������������   1343 Other Mycochemical Compounds ������������������������������������������������������������   1344 Fatty Acids and Lipids ������������������������������������������������������������������������������   1345 Polysaccharides������������������������������������������������������������������������������������������   1347 Amino Acids, Proteins and Lectins������������������������������������������������������������   1348 Lovastatin��������������������������������������������������������������������������������������������������   1349 Vitamins and Minerals ������������������������������������������������������������������������������   1350 Other Mycochemical Compounds ������������������������������������������������������������   1351 Local Medicinal Uses������������������������������������������������������������������������������������   1351 Modern Medicinal Uses��������������������������������������������������������������������������������   1352 Antitumor Activity ������������������������������������������������������������������������������������   1353 Prebiotic Activity ��������������������������������������������������������������������������������������   1356 Antimicrobial Activity ������������������������������������������������������������������������������   1357

xlii

Contents

Antioxidant Activity����������������������������������������������������������������������������������   1358 Putative Properties Against Metabolic Disorders: Hypolipidemic Activity, Antihypercholesterol Activity, Hepatoprotective Activity, Antidiabetic Activity����������������������������������������������������������������������������������   1359 Antimicrobial Activities: Antibacterial and Antifungal Properties, Prebiotic Effects, Antiviral Potential���������������������������������������������������������   1366 Putative Properties Against Metabolic Disorders and Cardiometabolic Diseases: Antihypercholesterol Activity, Anti-atherosclerosis Activity, Antidiabetic Activity, Cardioprotective Effect������������������������������������������   1369 Folk Recipes��������������������������������������������������������������������������������������������������   1372 Local Food Uses��������������������������������������������������������������������������������������������   1373 Local Handicraft and Other Uses������������������������������������������������������������������   1373 References������������������������������������������������������������������������������������������������������   1374  anghuangporus lonicerinus (Bondartsev) Sheng H. Wu, S L.W. Zhou & Y.C. Dai - HYMENOCHAETACEAE��������������������������������   1389 Yusufjon Gafforov, Milena Rašeta, Manzura Yarasheva, Oksana Mykchaylova, Michal Tomšovský, Young Woon Lim, Bekhzod Abdullaev, Rainer W. Bussmann, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1389 Short Morphological Description������������������������������������������������������������������   1390 Ecology and Distribution ������������������������������������������������������������������������������   1391 Mycochemistry����������������������������������������������������������������������������������������������   1391 Local Medicinal Uses������������������������������������������������������������������������������������   1395 Modern Medicinal Uses��������������������������������������������������������������������������������   1396 Hepatoprotective Properties����������������������������������������������������������������������   1396 Antiproliferative, Cytotoxic and Estrogenic Properties����������������������������   1396 Local Food Uses��������������������������������������������������������������������������������������������   1398 References������������������������������������������������������������������������������������������������������   1398  arcodon imbricatus (L.) P. Karst. - BANKERACEAE����������������������������   1401 S Yusufjon Gafforov, Milena Rašeta, Sylvie Rapior, Manzura Yarasheva, Muhammad Zafar, and Li-Wei Zhou Local Names��������������������������������������������������������������������������������������������������   1402 Short Morphological Description������������������������������������������������������������������   1402 Ecology and Distribution ������������������������������������������������������������������������������   1403 Mycochemistry����������������������������������������������������������������������������������������������   1404 Minerals and Vitamins Composition����������������������������������������������������������   1405 Polysaccharides������������������������������������������������������������������������������������������   1406 Fatty Acids ������������������������������������������������������������������������������������������������   1407 Amino Acids����������������������������������������������������������������������������������������������   1408 Sterols��������������������������������������������������������������������������������������������������������   1408 Phenolics����������������������������������������������������������������������������������������������������   1408 Indole Compounds ������������������������������������������������������������������������������������   1409 Other Secondary Metabolites��������������������������������������������������������������������   1409

Contents

xliii

Local Medicinal Uses������������������������������������������������������������������������������������   1409 Modern Medicinal Uses��������������������������������������������������������������������������������   1410 Antioxidant Property����������������������������������������������������������������������������������   1410 Antimicrobial Activity ������������������������������������������������������������������������������   1410 Antifatigue Activity������������������������������������������������������������������������������������   1411 Hepatoprotective Activity��������������������������������������������������������������������������   1411 Antitumor and Immunomodulatory Activity ��������������������������������������������   1412 Hematopoietic Activity������������������������������������������������������������������������������   1413 Local Food Uses��������������������������������������������������������������������������������������������   1413 References������������������������������������������������������������������������������������������������������   1414  chizophyllum commune Fr.- SCHIZOPHYLLACEAE��������������������������   1417 S Yusufjon Gafforov, Milena Rašeta, Manzura Yarasheva, Lorenzo Pecoraro, Michal Tomšovský, Chunying Deng, Christopher Hobbs, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1417 Short Morphological Description������������������������������������������������������������������   1418 Ecology and Distribution ������������������������������������������������������������������������������   1418 Mycochemistry����������������������������������������������������������������������������������������������   1419 Vitamins and Mineral Composition ����������������������������������������������������������   1423 Polysaccharides������������������������������������������������������������������������������������������   1424 Proteins and Amino Acid Derivatives��������������������������������������������������������   1426 Phenolic Compounds ��������������������������������������������������������������������������������   1427 Volatile Organic Compounds (VOCs)�������������������������������������������������������   1427 Enzymes����������������������������������������������������������������������������������������������������   1428 Local Medicinal Uses������������������������������������������������������������������������������������   1429 Modern Medicinal Uses��������������������������������������������������������������������������������   1429 Anti-inflammatory Activity������������������������������������������������������������������������   1430 Antibacterial and Antifungal Activities������������������������������������������������������   1431 Antiviral Activity ��������������������������������������������������������������������������������������   1432 Antioxidant Properties ������������������������������������������������������������������������������   1432 Anticancer Effect and Immunological Activity ����������������������������������������   1433 Antidiabetic Activity����������������������������������������������������������������������������������   1434 Analgesic Activity��������������������������������������������������������������������������������������   1435 Neuroprotective Activity����������������������������������������������������������������������������   1435 Cosmeceutical Application������������������������������������������������������������������������   1436 Other Applications ������������������������������������������������������������������������������������   1437 Allergenic Properties of S. commune��������������������������������������������������������   1438 Local Food Uses��������������������������������������������������������������������������������������������   1439 Folk Recipes��������������������������������������������������������������������������������������������������   1439 Local Handicraft and Other Uses������������������������������������������������������������������   1440 References������������������������������������������������������������������������������������������������������   1440

xliv

Contents

 tereum hirsutum (Willd.) Pers.; Stereum rugosum Pers. S STEREACEAE��������������������������������������������������������������������������������������������   1445 Yusufjon Gafforov, Milena Rašeta, Michal Tomšovský, Manzura Yarasheva, Muhammad Zafar, and Sylvie Rapior Local Names��������������������������������������������������������������������������������������������������   1446 Short Morphological Description������������������������������������������������������������������   1446 Ecology and Distribution ������������������������������������������������������������������������������   1447 Mycochemistry����������������������������������������������������������������������������������������������   1448 Local Medicinal Uses������������������������������������������������������������������������������������   1453 Modern Medicinal Uses��������������������������������������������������������������������������������   1453 Antimicrobial Activity ������������������������������������������������������������������������������   1454 Antidiabetic Activity����������������������������������������������������������������������������������   1455 Cytotoxic Activity��������������������������������������������������������������������������������������   1455 Anti-Lipase Activity����������������������������������������������������������������������������������   1456 Local Food Uses��������������������������������������������������������������������������������������������   1456 References������������������������������������������������������������������������������������������������������   1456  rametes betulina (L.) Pilát.; Trametes cinnabarina (Jacq.) Fr.; T Trametes gibbosa (Pers.) Fr.; Trametes hirsuta (Wulfen) Lloyd; Trametes pubescens (Schumach.) Pilát; Trametes suaveolens (L.) Fr.; Trametes versicolor (L.) Lloyd - POLYPORACEAE��������������������������������   1459 Yusufjon Gafforov, Milena Rašeta, Şule İnci, Michal Tomšovský, Manzura Yarasheva, Sylvie Rapior, Wan Abd Al Qadr Imad Wan-Mohtar, Bożena Muszyńska, and Katarzyna Sułkowska-Ziaja Local Names��������������������������������������������������������������������������������������������������   1461 Short Morphological Description������������������������������������������������������������������   1462 Ecology and Distribution ������������������������������������������������������������������������������   1465 Mycochemistry����������������������������������������������������������������������������������������������   1466 Polysaccharides and Carbohydrates����������������������������������������������������������   1474 Phenolic Derivatives����������������������������������������������������������������������������������   1474 Ligninolytic Enzymes��������������������������������������������������������������������������������   1475 Volatile Organic Compounds as Insect Attractants������������������������������������   1475 Other Components ������������������������������������������������������������������������������������   1476 Lignans and Polysaccharides ��������������������������������������������������������������������   1476 Phenolic Derivatives����������������������������������������������������������������������������������   1476 Laccases and Biotechnological Applications��������������������������������������������   1477 Other Components ������������������������������������������������������������������������������������   1478 Ligninolytic Enzymes��������������������������������������������������������������������������������   1478 Phenolic Compounds ��������������������������������������������������������������������������������   1479 Volatile and Non Volatile Compounds ������������������������������������������������������   1480 Enzymatic Potential ����������������������������������������������������������������������������������   1481 Primary Metabolites����������������������������������������������������������������������������������   1482 Secondary Metabolites������������������������������������������������������������������������������   1484 Local Medicinal Uses������������������������������������������������������������������������������������   1485 Modern Medicinal Uses��������������������������������������������������������������������������������   1486

Contents

xlv

Antidiabetic Activity����������������������������������������������������������������������������������   1486 Antioxidant Activity����������������������������������������������������������������������������������   1487 Antitumor Activity ������������������������������������������������������������������������������������   1487 Antimicrobial and Antiviral Activities ������������������������������������������������������   1487 Antitumor Activity ������������������������������������������������������������������������������������   1488 Antimicrobial Activity ������������������������������������������������������������������������������   1488 Other Bioactivities ������������������������������������������������������������������������������������   1489 Anti-Inflammatory Activity�����������������������������������������������������������������������   1489 Antioxidant Activity����������������������������������������������������������������������������������   1490 Antimicrobial Activity ������������������������������������������������������������������������������   1490 Antitumor Activity ������������������������������������������������������������������������������������   1491 Other Biological Activities������������������������������������������������������������������������   1491 Enzyme Activities��������������������������������������������������������������������������������������   1491 Antitumor and Immunostimulatory Activities ������������������������������������������   1492 Antioxidant Activity����������������������������������������������������������������������������������   1493 Antimicrobial Activity ������������������������������������������������������������������������������   1493 Other Bioactivities ������������������������������������������������������������������������������������   1494 Enzymatic Activities����������������������������������������������������������������������������������   1494 Antioxidant Activity����������������������������������������������������������������������������������   1495 Neuroprotective Activity����������������������������������������������������������������������������   1496 Enzyme Activities��������������������������������������������������������������������������������������   1496 Antitumor Activity ������������������������������������������������������������������������������������   1497 Other Bioactivities ������������������������������������������������������������������������������������   1497 Antidiabetic Activity and Other Metabolic Disorders ������������������������������   1498 Antiobesity Activity ����������������������������������������������������������������������������������   1498 Anti-Inflammatory Activity�����������������������������������������������������������������������   1498 Antimicrobial Activity ������������������������������������������������������������������������������   1499 Antioxidant Activity����������������������������������������������������������������������������������   1499 Antitumor Activity ������������������������������������������������������������������������������������   1501 Immunomodulatory Activity����������������������������������������������������������������������   1502 Other Bioactivities ������������������������������������������������������������������������������������   1502 Local Food Uses��������������������������������������������������������������������������������������������   1503 Local Handicraft and Other Uses������������������������������������������������������������������   1503 References������������������������������������������������������������������������������������������������������   1504

About the Editors

Olim  K.  Khojimatov  In 1990, Olim K.  Khojimatov worked as a research trainee in the laboratory “Flora and taxonomy of vascular plants” of the Institute of Scientific Research of Botany of the Academy of Sciences of the Republic of Uzbekistan, and since 1996, a researcher at the laboratory “Cadaster and Plant Resources.” In 1998, Olim defended his PhD thesis in the specialty “Botany” on the topic: Medicinal plants of a basin of River Pskem (Tashkent region of the Republic of Uzbekistan). Since 1999, he worked as a senior researcher at the Cadaster and Plant Resources Laboratory of the eponymous institute of scientific research. In the course of scientific activity, Olim K.  Khojimatov successfully participated in projects within the framework of several state scientific and technical programs. In particular, he worked on the flora of medicinal plants in Tashkent, Dzhizak, Kashkadarya, Surkhandarya regions, and Karakalpakstan. The scientific results obtained from these projects are given as recommendations to the Ecology and Environmental Protection State Committee of the Republic of Uzbekistan, and employees of the reserves of the republic national parks and forestry. In 1994–1996, Olim was granted the Japanese government MONBUSHO scholarship and studied at Nagoya University and Toyama Medical and Pharmaceutical Universities. From 2000 to 2004, he worked at the Japanese universities of Kyoto and Tokushima. In 2008, Olim successfully defended his Doctor of Sciences dissertation in the specialty “Botany-03.00.05” on the topic: Medicinal plants of South-West Tien-­Shan xlvii

xlviii

About the Editors

ridges. He compiled and analyzed a list of the medicinal flora of the Uzbek part of the Western Tien Shan, numbering 705 species belonging to 351 genera and 91 families. Valuable ethnobotanical information concerning the use of medicinal plants of the study area in folk medicine by the local population has been collected. The result of the work was the development of instructions for the collection, drying, and storage of plant raw materials, as well as cartographic schemes of commercial thickets of 65 species of promising medicinal plants. The recipes were developed, and four kinds of healing herbal teas were introduced into production: “Jeludochniy,” “Muzhiza,” “Kakhkhorin,” and “Uspokoitelniy.” During 2017-2020, Olim. Khojimatov held the post of head of the laboratory “Plant Resources” of the Botanical Institute of the Academy of Sciences of the Republic of Uzbekistan. Currently, he works as a leading researcher at the Cadaster and Monitoring of Rare Plant Species Laboratory. His scientific direction is related to the study of medicinal plants, ethnobotany, and resources. Olim K. Khojimatov is the author of more than 225 scientific and popular articles and theses. He has published five monographs and three textbooks, and has one patent and a copyright certificate. In addition, he participated in two foreign grant projects as a botanist. Under the leadership of Prof. Khojimatov, one doctor of science (DsSc), three doctors of philosophy (PhD), and one graduate student in biological sciences obtained their degrees. Currently, Olim K. Khojimatov consults one doctor of sciences (DSc) and three doctor of philosophy (PhD) on scientific dissertations in biological sciences. https://planta-­medica.uz/o-­proekte/ https://scholar.google.com/citations?user=2zDEqQUA AAAJ&hl=ru https://www.researchgate.net/profile/Olim-­Khojimatov

About the Editors

xlix

Dr.  Yusufjon  Gafforov is a senior researcher at the Mycology Laboratory of the Institute of Botany, Uzbekistan Academy of Sciences. He holds a PhD in Mycology and Botany from the Institute of Botany and an MSc in Biology from Namangan State University, Uzbekistan. His research interests focus mainly on mycology, phytopathology, ethnobiology, plant protection, and molecular biology. He conducted postdoctoral studies at the Swedish University of Agricultural Sciences, Uppsala, Sweden; at the Institute of Botany, Sao Paulo, Brazil; at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and then at Ibaraki University, Mito, Japan. Moreover, he has won prestigious fellowships such as the President’s International Fellowship for Visiting Professors (PIFI) from the Chinese Academy of Sciences; DAAD, Germany; TWAS-CNPq, Brazil; TWAS-CAS, China, MIF, Japan; and OeAD, Austria. He was appointed Uzbekistan’s representative to the International Society of Fungal Conservation for Central and Western Asia (2012–2014) and the Asian Mycological Association (2019–2025). He has been appointed as a board member of several organizations such as the International Council for Vine Trunk Diseases, the International Union of Forest Research Organizations, and the International Society for the Conservation of Fungi and the European Mycological Association. He has also led as coordinator and partner several international and local research projects supported by the Ministry of Innovative Development of the Republic of Uzbekistan (2015–2017; 2018–2020), the Alliance of International Scientific Organizations, China (2022–2024), and National Institutes of Health and National Science Foundation, USA (2003–2007). Dr. Gafforov has held several academic positions as a visiting scientist, including Senckenberg Biodiversity and Climate Research Institute, Goethe-Universität Frankfurt am Main, Germany in 2021; Bio-Resources and Bio-Technology Research Center, Institute of Applied Ecology, CAS, Shenyang, China from 2018 to 2019; and the Institute of Microbiology, University of Innsbruck, Austria from 2015 to 2016, to the Department of Ecology, University of Kassel, Germany in 2013 and in 2017; Ruhr-University Bochum, Germany in 209; and

l

About the Editors

as a visiting researcher at the University of Vienna, Austria from 2005 to 2006. Dr. Gafforov is currently associate editor of Frontiers in Fungal Biology, Plant Pathology & Quarantine, MycoKing, and Studies in Fungi; member of the editorial board of Mycology; and is guest editor of Frontiers in Fungal Biology and co-editor of Frontiers in Cellular and Microbiology of Infections. Additionally, he has reviewed several articles in peer-reviewed journals such as Fungal Diversity, Studies in Mycology, BMC Microbiology, Frontiers in Microbiology, Frontiers in Fungal Biology, Mycological Progress, Mycoscience, Journal of Fungi, Diversity, Life, Phytotaxa, Mycology, Nova Hedwigia, Biodiversity Data Journal, and Mycokeys. He has published numerous articles in peerreviewed journals, including book chapters, and has been recognized for his excellence in research, undergraduate teaching, and outreach. Rainer W. Bussmann  Prof. Dr. Bussmann earned his MSc (Diploma) in Biology at Universität Tübingen, in 1993 and his doctorate at Universität Bayreuth in 1994. He is an ethnobotanist and vegetation ecologist, and currently head of the Department of Botany at the State Museum of Natural History in Karlsruhe, Germany. He is also a full professor of Ethnobotany at the Department of Ethnobotany, Institute of Botany, Ilia State University. Dr. Bussmann was director of William L. Brown Center at Missouri Botanical Garden, William L.  Brown Curator of Economic Botany, and Senior Curator. Before accepting the directorship of WLBC, he held academic appointments as research fellow in Geography and the Environment at University of Texas at Austin from 2006 to 2007, as associate professor of Botany and Scientific Director of Harold Lyon Arboretum at University of Hawaii from 2003 to 2006, and as assistant professor at University of Bayreuth from 1997 to 2003, following a postdoc at the same institution from 1994 to 1997. He holds affiliate appointments and serves as external thesis advisor at universities worldwide. His work focuses on ethnobotanical research, and the preservation of traditional knowledge, in the Andes, Caucasus, and the Himalayas. Dr. Bussmann has authored over 350 peer reviewed papers, over 1300 peer

About the Editors

li

reviewed book chapters, and authored or edited 38 books. According to PLOS Biology, he is one of the most cited ethnobotanists and recognized among the most influential scientists worldwide. He currently serves as editor-in-chief of the Ethnobotany of Mountain Regions book series published by Springer Nature. Dr. Bussmann is past President of the Society for Economic Botany and has served as board/council member of the International Society for Ethnopharmacology, Society of Ethnobiology, Botanical Society of America, and International Society of Ethnobiology. Bussmann is editor-in-chief of Ethnobotany Research and Applications, deputy editor of the Journal of Ethnobiology and Ethnomedicine, associate editor of Ethnobiology and Conservation, academic editor of PLOS One, editor of Ethnobotany topics for the Nordic Journal of Botany, and member of the editorial boards of Antibiotics, Life, Indian Journal of Traditional Knowledge, Pleione, and Nelumbo. https://www.ethnobotcaucasus.org/rainer-­w-­bussmann https://www.researchgate.net/profile/Rainer-­Bussmann https://scholar.google.com/citations?hl=es&user=jvsdl kIAAAAJ&view_op=list_works&gmla=AJsN-­F4sIv-­ FDryg2zq-­qC-­1S9b5_NnVCPcNx8qqSlV7qaXnq1C5 mmUc-­3Uu4h2Kv2nMxyyV3zzqL7qTQ517eCrUZb4 RvY_RCcv2THjaG9jee_UjMAmnIYNkDxIiPrJxV OC16rvTrpKGC3am9Dep6lW9l9G8DKxTHU_V_ VKBqvM0JfrMA9nbGdMPKbhkN5PJJXrnvQosATm 9 s We 8 J V U l c r A i y X c s y W U K p w & s c i und=7801836191896711947

Part I

Ecosystems, Biodiversity of Uzbekistan and Its Global Value

Uzbekistan – Ecosystems, Biodiversity, History and Culture Olim K. Khojimatov, Rainer W. Bussmann, and Yusufjon Gafforov

Ecosystems and Biodiversity of Uzbekistan Geographical Location Uzbekistan is located in Central Asia and according to natural and geographical conditions, represents one of the most favorable regions in Central Asia. The Republic of Uzbekistan is located at the interfluve of the Amudarya and Syrdarya rivers and covers an area of 448,900 thousand km2 The length The territory of Uzbekistan is a combination of plain and mountain terrain, but most is occupied by plains (about 80%), the largest of which is the Turan Plain. In the east and northeast of the country are the spurs of Tien Shan and the Pamirs, with the highest point of

O. K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences, Tashkent, Uzbekistan e-mail: [email protected] R. W. Bussmann (*) Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany e-mail: [email protected]; [email protected] Y. Gafforov New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_1

3

4

O. K. Khojimatov et al.

Map 1 Uzbekistan

the country (4643 m). In the north of the central part of Uzbekistan there is one of the largest deserts in the world – Kyzylkum, in the west – Karakum. Mountains and foothills make up about 20% of the republic’s territory. In the east, mid-mountain and high-mountain relief forms prevail: the slopes or endings of the Western Tien Shan ridges (Ugam, Pskem, Chatkal, Kuramf ridges) and Pamir-­ Alay (Zeravshan, Turkestan, Gissars, Kugitangtau ridges), to the south and west, gradually decline and pass into the plains. Quite large depressions stretch between the mountains: Kashkadarya, Surkhandarya, Zeravshan, Samarkand. The largest intermountain depression is the Ferghana basin (valley) – 370 km long, and 190 km wide. It is framed on three sides by mountain ranges and only open from the west. On the border with Afghanistan is the vast Amudarya depression. of the republic from west to east is 1425 km, from north to south – 930 km (Map 1). The territory in the north and northeast borders with Kazakhstan, in the east and southeast with Kyrgyzstan and Tajikistan, in the west with Turkmenistan, in the south with Afghanistan. The total length of the state border is 6221 km. The length of the borders with Afghanistan is 137  km, with Kazakhstan 2203  km, with Kyrgyzstan 1099 km, with Tajikistan 1161 km, and with Turkmenistan 1621 km. The largest rivers of both Uzbekistan and the whole of Central Asia are Amudarya and Syrdarya. The total length of Amudarya is 1437  km, Syrdarya 2137  km. However, Syrdarya is inferior to it in aquifer content.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

5

Climate of Uzbekistan The climate of Uzbekistan is sharply continental. It is expressed in sharp amplitudes of daytime and night, summer and winter temperatures. The nature is arid, there is little atmospheric precipitation, and relative humidity is low. The duration of the day in summer is about 15 hours, in winter at least nine. The coldest month is January when the temperature in the north drops to −8 °C and below. The absolute minimum winter temperatures are −35–38 °C. The hottest month is July, and in the mountainous regions July – August. The average temperature in this period on the plains and foothills is 25–30  °C, and in the south (Termez and Sherabad) it reaches 41–42 ªC. The maximum air temperature was recorded in the city of Termez with 50 °C (July 1944). In most of the territory, the annual rainfall does not exceed 200–300 millimeters. There are few lakes on the territory of the republic, the largest of them is Aral Sea. The Aral Sea began to dry out in the 60 s, when water from rivers flowing into it began to be used for irrigation of fields. In 1989, the Aral Sea broke up into two isolated reservoirs – the Small Aral Sea in Kazakhstan and the Big Aral Sea in Uzbekistan. By the beginning of the 2000s the absolute water level in the sea decreased to an elevation of 31 m, which is 22 m below the initial level observed in the late 1950s. In 2001, the South (Big) Aral Sea was divided into western and eastern parts. In 2003, the surface area of the Aral Sea was about a quarter of the original, and the volume of water was about 10%. Today, on the site of the once deep sea, a new sand-salt-marsh desert Aralkum is formed, the area of which is already 38,000 km2. Uzbekistan, together with the other Central Asian States and with the support of the international community, is taking urgent measures to reduce the negative consequences of this environmental disaster. About 20% of Uzbekistan’s area is made up of human-transformed landscapes. As a result of economic development in such regions of Uzbekistan as the Ferghana Valley, the valleys of Zeravshan, Kashkadarya, Surkhandarya, Khorezm and Tashkent oasis, the Golodnaya Steppe, natural ecosystems were almost completely replaced by anthropogenic landscapes. Flora and vegetation cover of many regions are severely degraded. The range and number of many plant species decreased significantly; many species were on the verge of extinction. An analysis of the current state of ecosystems and biological diversity in Uzbekistan and existing trends shows that the country continues to reduce biological diversity, mainly as a result of degradation and destruction of habitats and overexploitation of bioresources. A characteristic feature of the ecosystems of Uzbekistan is their increased fragility; the western part of the country is located in the zone of the Aral ecological crisis. The ever-increasing anthropogenic impact on nature has caused significant changes in indigenous plant communities in all regions of the Republic. The current state of vegetation is characterized by rarefaction, low biomass productivity, a significant reduction in forest area, a wide distribution of secondary communities and adventitious, weed plant species. The highly vulnerable and highly anthropogenic component of vegetation is represented by all types of natural forests in Uzbekistan. Uzbekistan belongs to low-forest countries, the forest area covered in 1990 was 7.2% of the total land area, and as of 2013 it is about three million hectares or 6.7%

6

O. K. Khojimatov et al.

of the territory of the Republic. A sharp deterioration in the state of forests occurred in the 1970–1980s. During this period, about 150,000 ha of forest land were seized from the state forest fund for the needs of agriculture, and many of the best forests were transferred to agricultural development. Due to climate change and various anthropogenic impacts, the degradation of tree and bush vegetation on the lands of the forest fund has begun to develop intensively. Despite the efforts made, to date it has not been possible to restore the level of forest cover of the 1960s. The Red Book of Uzbekistan (2019) includes 184 species of animals, of which 77 species of invertebrates, 18 species of fish, 16 species of reptiles, 48 species of birds and 25 species of mammals, as well as 313 species of vascular plants and 3 species of fungi. The most important role in preserving the biological diversity of Uzbekistan, according to employees of the State Committee for Natural Resources, is played by a network of protected natural areas (PNO). The PNO system of Uzbekistan includes 8 state reserves, 1 Lower Amudarya State Biosphere Reserve, 2 national natural parks, 9 state reserves and one republican center for breeding rare species of animals – the Dzheyran eco-center (Figs. 1, 2, 3, 4, and 5). Fig. 1 Surkhandarya region, Baisun district. (Photo A.N.Khujanov)

Fig. 2 Kashkadarya region, Yakkabog district, Gissar State reservation. (Photo A.N.Khujanov)

Uzbekistan – Ecosystems, Biodiversity, History and Culture Fig. 3 Kashkadarya region, Yakkabog district, Gissar reservation. (Photo A.N.Khujanov)

Fig. 4  Tashkent region, Bustonlik district, Chatakal range, Charvak reservoir. (Photo O.K.Khojimatov)

Fig. 5 Surkhandarya region, Sariosiyo district, Sangardak waterfall. (Photo A.N.Khujanov)

7

8

O. K. Khojimatov et al.

Natural Resources of Uzbekistan The natural resources of the Republic are rich and diverse. Depending on the use of minerals in the economy and their composition, they are divided into metal, non-­ metallic, fuel and energy, raw materials for building materials. On the territory of the Republic, more than 2700 deposits of a variety of minerals have been identified. These deposits include 100 types of minerals, more than half of which are involved in production. The total mineral resource potential of the country is estimated at 3.3 trillion dollars. The country is developing the richest deposits of non-ferrous, noble and rare metals, organic fuel, many types of building materials. Hydrocarbon deposits are considered promising for production in an area of 60%. Kashkadarya and Bukhara regions are large areas of natural gas. In terms of geological coal reserves, Uzbekistan ranks second in Central Asia. Three large coal deposits are known  – Angren, Shargun, Baisun. In the Angren deposit, which is the most significant, brown coal is mined in an open-pit manner. The republic occupies a leading place not only in the CIS, but also in the world in the confirmed reserves of uranium, copper, gold, natural gas, tungsten, phosphorites, potassium salts, kaolin. Fourth in the world is the Republic in terms of gold reserves and the first in terms of per capita. In Uzbekistan, 40 deposits of precious metals were explored, 20 deposits of marble, 15 deposits of granite and gabbro were identified. Most of these deposits are unique and largest within the Euro-Asian zone. The reserves of phosphorites, potash and stone salts are significant in the Republic. A variety of soil cover is formed in arid desert conditions. The main zonal type of soils are gray earth. The Republic is rich in groundwater, which is used not only in water supply, but also for irrigation and watering of pastures. Mineral water reserves are significant. Hydrogen sulfide, iodine-bearing, radon, weakly mineralized alkaline thermal waters were identified. There are few forest resources in Uzbekistan, the area of the forest fund is 5.2 million hectares, which is only 2% of the country’s area.

Biodiversity of Uzbekistan and Its Global Value Flora and Vegetation The nature of Uzbekistan is a combination of plain and mountain terrain. The plains are located in the southwest and northwest and consist of the Ustyurt plateau, the Amudarya delta and the Kyzylkum desert. In the central and southwestern part of this desert there are rather large mountain hills. Mountains and foothills, occupying about a third of the territory of the republic, are located in the east and southeast, where they connect with the powerful mountain formations of Kyrgyzstan and Tajikistan. The highest point of the mountains of the republic is 4643 m. Uzbekistan belongs geographically to Central Asia, whose plant and animal world is diverse due to the fact that weather and climatic conditions are

Uzbekistan – Ecosystems, Biodiversity, History and Culture

9

heterogeneous throughout the territory. The plant world of Uzbekistan has about 4400 species of plants, at least 20% of which are endemic of Uzbekistan. The basis of the animal world of Uzbekistan is 732 species of wild vertebrates and about 14,900 species of invertebrates (among them 109 species of mammals, 468 species of birds, 60 species of reptiles, 3 species of amphibians, 92 species of fish, about 11,000 species of insects, 223 mollusks, 61 species of ringworms, 1179 species of round and 533 species of flatworms, 850 species of protozoa. The territory of Uzbekistan is mountains, plains, foothills, steppes and deserts. And since the climatic conditions in these natural zones are different, they are different plant and animal worlds. The vegetation and wildlife of deserts, surprisingly, is rich and diverse. It is especially diverse in the territory of sandy deserts. Deserts revive in the spring, while the rest of the year weather conditions are not very favorable to the plant and animal world. Many plants are found here – ephemera, which end their annual cycle in a very short period of time. Camels, saigas, various rodents, lizards, geckos, turtles live in the deserts. Here there are snakes, the bite of which is deadly – this is the Central Asian cobra and epha. In the mountains and foothills of the plant world there are many herbs, cereals, almonds and pistachios also grow here. In the mountains there are many birds of prey, you can find mammals. The snow leopard, listed in the red book of the republic and distinguished by its special beauty, also lives here. Most of Uzbekistan’s plants, which are not found anywhere else in the world, grow in the mountains. The plains are rich in both plant and animal life. There are no harsh conditions for survival, such as in mountains or deserts. The plant world is reviving already in February, with the advent of spring. On the plains in Uzbekistan, many fruit trees, melons, grain crops and one of the most famous plants in this region are grown – cotton. Thanks to the hot summer without precipitation, cotton grown in Uzbekistan is of special quality. Uzbekistan has many reserves and reserves, the total area of which is more than 5% of the republic area. The territory of Uzbekistan is one of the centers of origin of many plants that are part of the modern flora among them there are many species – wild relatives of cultivated plants, which man grows as food, medicinal, ornamental, technical, etc. Many of these plants occupy a large place in his life – apple, walnut, barley, spicy, oilseeds, onions, carrots, pistachios and many others – more than 50 species in total. Among the rather extensive list of wild relatives of cultivated plants of Uzbekistan there are species that occupy a significant place in human nutrition. These include Malus domestica (Suckow) Borkh., five almond species Amygdalus sp., Juglans regia L., Pistacia vera L., Allium pskemense B.  Fedtsch., Hordeum spontaneum K. Koch. Of particular interest is the presence of wild relatives of cultivated plants, which are of great importance in the work to create new and improve existing economic and valuable varieties of plants. These are species: Diospyros lotus L., Ficus carica L., Juglans regia L., Malus domestica (Suckow) Borkh., Prunus amygdalus Batsch, Prunus bucharica (Korsh.) Hand.-Mazz., Punica granatum L., Pyrus turcomanica Maleev, Vitis vinifera L., Ziziphus jujuba Mill. N.I. Vavilov and M.G. Popov consider the most likely center of origin of cultivated varieties of some plants, in particular the genera Malus L., Pyrus L., Ficus L., Morus L. and other fruit plants of mountain and foothill regions of Uzbekistan

10

O. K. Khojimatov et al.

(Tashkent, Kashkadarya and Surkhandarya regions). This hypothesis is confirmed by the presence of the above species in these areas. Spicy and aromatic plants are widely used by the local population and very appreciated. This includes Elwendia Boiss., Berberis L., Ziziphora L., Origanum L., Mediasia Pimenov, Mentha L.  In general, botanical diversity, and especially wild relatives of cultivated plants, are a powerful potential resource for meeting the needs of the economy, which will help achieve sustainable development of society as a whole.

The Flora of Uzbekistan The flora of Uzbekistan has studied since the mid nineteenth century and is likely the best known in Central Asia. First assessments were mainly published by botanists affiliated with the Russian Academy of Sciences in St. Petersburg starting in the 1840, and the first synopsis of the flora of Central Asia was published starting 1906 (Fedtschenko and Fedtschenko 1906–1916). The University of Turkestan, established in 1920, now the National University of Uzbekistan, took the lead on floristic and vegetation studies both in Uzbekistan and Central Asia especially during Soviet occupation (1922–1991). The ‘Flora of Uzbekistan’ (Kudryashev 1941; Vvedensky 1953–1962) provided the first detailed treatment of vascular plants of the country, including descriptions of 3663 species. The most recent treatment of vascular plants of Uzbekistan is the ‘Conspectus Florae Asiae Mediae’ (Adylov 1983, 1987; Adylov and Zuckerwanik 1993; Bondarenko and Nabiev 1972; Kamelin et al. 1981; Kovalevskaya 1968–1971; Nabiev 1986; Pakhomova 1974–1976). Since then, generic delimitations have however been updated, and many species new to science have been described, e.g., over 100 new species and three new genera (Kamelinia F.O.  Khass., I.I.  Malzev, Autumnalia Pimenov, Kuramosciadium Pimenov et al.; all belonging to Apiaceae) have been found, and distribution data improved (Khassanov 2015).

Vegetation Zonation The first overviews on the vegetation of Uzbekistan were published by Korovin (1934, 1941, 1961–1962), Babushkin and Kogai (1971), Granitov and Babushkin (1971–1973), and Maylun (1982), and expanded by Rachkovskaya et  al. (2003). The phytogeographical zonation of Central Asia was described quite early (Abolin 1929; Korovin 1941) and further detailed by Kamelin (1973, 1979, 1990, 2012). Detailed phytogeographical descriptions of Uzbekistan were published by Tojibaev (2010, 2013). The vegetation of Uzbekistan can be grouped into four major ecosystems in different altitudinal zones (Belolipov et  al. 2013). These zones form belts directly

Uzbekistan – Ecosystems, Biodiversity, History and Culture

11

correlated to an increase in precipitation and elevation. With increasing precipitation along the altitudinal gradient water is no longer a limiting factor above 2500 m. Diverse soil conditions, in combination with other environmental factors, lead to a great diversity of vegetation, reflected in the vernacular names “Chul” (arid plain, desert), “Adyr” (foothills), “Tau” (mountains), and “Yailau” (alpine zone) (Zakirov 1947). The Chul zone (arid plain, desert) consists of the plains of Uzbekistan (Turan) up to 450–600 m, with a dry period of 3–6 months. The climate of the Chul is continental and characterized by a low precipitation of about 70–200  mm per year and humidity levels dropping as low as 1–2%, with a dry period from May to October. Summer temperatures can reach 45 °C whandile winter temperatures often drop to freezing. This zone is occupied mainly by the desert forests (Haloxylon apyllum, H. persicum) and Artemisia spp. communities (A. turanica, A. diffusa) as well as perennial species of Salsola. The Chul zone displays four soil types: salty Chul, sandy Chul, gypsum (stony) Chul, and clay Chul. Parts of the salty Chul support no plant life, but zones Areas with lower salt content are dominated by Artemisia halophila and Chenopodiaceae including Halocnemum strobilaceum, Halostachys caspica, Haloxylon aphyllum, Salicornia herbacea, Salsola dendroides, Suaeda dendroides and S. microphylla (Map 2; Figs. 6, 7, and 8). The sandy Chul is dominated by Acanthophyllum korolkowi, Ammodendron conollyi, Astragalus villosissima, Calligonum aphyllum, Convolvulus hamadae, Ephedra strobilacea, Ferula foetida, Salsola arbuscula and S. richteri. The gypsum

Map 2  Chul zone landscapes and characteristic species

12

O. K. Khojimatov et al.

Fig. 6  Chul zone, Khorezm region, KaraKum desert. (Photo N. Yu.Beshko)

Fig. 7  Chul zone, Bukhara region, Kizil-Kum desert. (Photo N.Yu.Beshko)

Fig. 8  Chul zone, saline soils, Karakalpakstan, Kizil-­Kum desert. (Photo N.Yu.Beshko)

Chul, mostly found in the hills of the southwestern and central Kyzylkum desert is characterized by Artemisia associations, especially Artemisia diffusa (less commonly A. ferganensis) with Aellenia subaphylla, Anabasis eriopoda, Anabasis turkestanica, Calligonum junceum, Convolvulus hamadae, Nanophyton erinaceum, Reaumuria turkestanica and Salsola arbuscula.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

13

Fig. 9  Tugai vegetation, near to Amudarya River, Khorezm region. (Photo O.K.Khojimatov)

Fig. 10  Dalverzin tugai, Tashkent region. (Photo O.K.Khojimatov)

Where river valleys cut into the zone the increased humidity facilitates the development of mesophytic communities locally called “Tugai” (Figs.  9 and 10). Common species in these communities are Alhagi persarum, Apocynum scabrum, Asparagus persicus, Clematis orientalis, Elaeagnus orientalis, Erianthus purpurascens, Glycyrrhiza glabra, Halimodendron halodendron, Hippophae rhamnoides, Karelinia caspia, Limonium otolepis, Lycium ruthenicum, Phragmites communis, Populus diversifolia and P. pruinosa, and Tamarix spp. The Adyr zone (lowlands and foothills) is a broad belt at elevations of around 500–1500 m in all mountains of Central Asia between the xerothermic Chul (desert) and the mesothermic Tau (mountain region). The soils of the Adyr zone contain less salt and more humus than the Chul soils and can be classified as sierozem. Bedrock is often found exposed on the surface. The annual precipitation ranges from 250–400 mm, rarely up to 500 mm. The mean monthly temperature for July is 25 °C 3–4 °C lower than in the Chul and 5–6 °C higher than in the Tau. The dry season lasts from June to September. Due to its location the Adyr zone is exposed to the influence of both the hot desert along its lower edge, and the cooling effects of the mountains on its upper edge, allowing to divide the Adyr into subzones: the lower Adyr with rolling relief and the upper Adyr with broken relief. This zone is

14

O. K. Khojimatov et al.

characterized by the ephemeroid vegetation with Carex pachystylis and Poa bulbosa, dry forb steppes (Eremurus spp., Hordeum bulbosum, Inula macrophylla, Phlomis spp., Phlomoides spp Tulipa spp., Verbascum songoricum), and shrub communities (Berberis spp. Cerasus spp, Lonicera spp., Rosa spp). Typical species found in the lower Adyr area are Amygdalus spinosissima, Artemisia sogdiana, Carex pachystylis, Mediasia macrophylla, Phlomis thapsoides, Pistacia vera and Psoralea drupacea. At altitudes of 1200–1500  m in the upper Adyr zone, Acanthophyllum gypsophiloides, Agropyron trichophorum, Astragalus eximius, Bunium persicum, Centaurea squarrosa, Cousinia pulchella, Onobrychis spp., Phlomis salicifolia and P. olgae, Potentilla soongarica, Scabiosa songarica and Ziziphora pamiroalaica become dominant (Map 3, Figs. 11 and 12). The Tau zone (mid-mountain zone) is a broad belt at an elevation of around 1500–2800 m, with brown soils. Precipitation in this zone exceeds 500 mm per year, with a dry season from July to September. The mean monthly temperature in July is 19 °C. The Tau zone is an important area for growing cereals and fabaceous crops, for hay, and as pastures. It is characterized by juniper forests (Juniperus seravschanica, J. semiglobosa, J. turkestanica) with small areas of deciduous forests with Acer semenovii, A. turkestanica, Betula tianschanica, Crataegus pontica, C. turkestanica Juglans regia, Malus sieversii, Prunus sogdiana, Sorbus persica, S. tianschanica, Ziziphus jujuba. The dominating wild and cultivated species (e.g., Crataegus spp., Juglans regia, Malus spp., Prunus spp.) provide the local

Map 3  Adyr zone landscapes and characteristic species

Uzbekistan – Ecosystems, Biodiversity, History and Culture

15

Fig. 11  Adir zone, Poppy fields, Bakhmal district, Jizzakh region. (Photo A.N.Khujanov)

Fig. 12  Adir zone, Kitob district, Kashkadarya region. (Photo Z.Z.Kosimov)

population with fuel, building materials, and food. Common species of shrubs are Berberis oblonga, Cerasus tianshanica, Ephedra equisetina, Lonicera microphylla, Rosa kokanica and Spiraea hypericifolia (Map 4, Figs. 13 and 14). The Yailau zone (high-altitude, subalpine to alpine zone) extends from 2800 to around 4600 m. The soils are mostly light brown meadow-steppe types. Summer is short and warm, with sharp differences between day and night temperatures, with daytime temperature reaching up to 25 °C, dropping to 0 °C at night. In the winter the temperature may drop to −40 °C. Precipitation varies from 400 to more than 600 mm per year. The Yailau is mostly utilized as the main summer pasture. While Karakul sheep graze mainly in the Chul, Merinos and fat-tailed breeds of sheep (including the Gissar breed) are pastured mainly in the Yailau. Agriculture is limited by the low temperatures. This zone is covered by tall grass meadows (Aconogonon coriarium, A. hissaricum, Alopecurus spp., Ferula tenuisecta, Geranium regelii, Lagotis korolkowii, Polygonum bucharicum, P. hissaricum, Prangos pabularia) and

16

O. K. Khojimatov et al.

Map 4  Tau zone landscapes and characteristic species Fig. 13  Tau zone, Juniperus belt, Tashkent region, Bustonlik district, Chatkal range. (Photo O.K.Khojimatov)

communities of spiny cushion-shaped plants (Acantholimon ssp., Astragalus ssp., Gentiana spp., Oxytropis ssp., Onobrychis echidna, Potentilla spp., Ranunculus spp.), as well as alpine steppes (Festuca valesiaca, Puccinellia subspicata). High altitude meadows also contain Alopecurus spp., Festuca spp., Poa alpina and Phleum alpinum, and sedges such as Carex spp. and Kobresia spp. are also characteristic of the upper Yailau zone (Map 5, Figs. 15 and 16).

Uzbekistan – Ecosystems, Biodiversity, History and Culture

17

Fig. 14  Tau zone, Juniperus belt, Surkhandarya region, Baisun district, Gissar range. (Photo A.N.Khujanov)

Map 5  Yailau zone landscapes and characteristic species

Due to human activities many of the natural areas of the planet are being disturbed or destroyed. Conservation of natural environments and resources are of great importance for the future of mankind and the conservation of Uzbekistan’s natural resources is no exception. (Belolipov et  al. 2013; Sennikov et  al. 2016; Tojibaev et al. 2017; Khojimatov 2008, 2021a, b).

18

O. K. Khojimatov et al.

Fig. 15  Yailau zone, Highlands of Gissar range. (Photo O.K.Khojimatov)

Fig. 16  Yailau zone, Highlands of Baisun, Gissar range. (Photo A.N.Khujanov)

The Peoples of Uzbekistan and Their Traditions Population Uzbekistan is a multinational state. Dozens of nationalities and nationalities live here, including residents of the Central Asian region: Uzbeks, Karakalpaks, Tajiks, Turkmens, Kazakhs, Kyrgyz, Uighurs, Dungans; Western and Eastern Slavs: Russians, Ukrainians, Belarusians, Poles; numerous diasporas in Uzbekistan are Koreans, Iranians, Armenians, Georgians, Azerbaijanis, Tatars, Bashkirs, Germans, Jews, Lithuanians, Greeks, Turks and many other nationalities (Figs.  17, 18, 19, and 20). The ethnic diversity of the population of Uzbekistan is due to various historical events. Many representatives of the indigenous peoples of the Union republics of the USSR were evacuated to Uzbekistan during World War II (Russians, Tatars, Armenians, Belarusians, Ukrainians, Germans, Jews, etc.). Representatives of

Uzbekistan – Ecosystems, Biodiversity, History and Culture Fig. 17  Greeting the young bride, Ferghana region. (Photo D.A.Akhunbabaev)

Fig. 18 Wedding ceremony in Karakalpakstan. (Photo G.J.Abdiniyazova)

Fig. 19 Traditional game – Kupkari, Jizzakh region. (Photo N.Yu. Beshko)

19

20

O. K. Khojimatov et al.

Fig. 20  Days of Korean Culture at the Korean Cultural Center, Tashkent. (Photo V.V.Pak)

individual nations were deported from places of permanent residence during the years of Stalin’s repressions (Koreans, Crimean Tatars, Chechens, and others). And in peacetime, active migration took place, especially for young people who took part in large-scale construction and projects to raise and develop new lands, subsequently remaining in inhabited places. Uzbekistan is the most populous state in Central Asia and ranks third among the CIS countries in terms of population, second only to Russia and Ukraine. The population of Uzbekistan exceeds 35 million people (as of October 1, 2021). About 80% of the modern population of Uzbekistan are Uzbeks, over 10% are representatives of other peoples of Central Asia (4.5% are Tajiks, 2.5% are Kazakhs, 2% are Karakalpaks, 1% are Kyrgyz, as well as Turkmen and others.). One of the largest ethnic minorities remains the Russian and other Slavic peoples (10%). Employment: 44% in agriculture, 20% in industry, 36% in services. The State language of Uzbekistan and the language of interethnic communication is Uzbek. However, most of the population can also speak Russian. In some areas, such as Samarkand, Bukhara, the population speaks Tajik.

National Art Components of the plant and animal world have found their application in the decorative and applied art of Uzbekistan. From plants, natural pigments are obtained, used both in architecture and in weaving, up to carpet weaving. Wood is also used in architecture, in the manufacture of furniture, crafts, small plastic and musical instruments. From the horns and bones of animals cut unusually beautiful, at the same time strong knife handles, figurines, various accessories. The decorative and applied art of Uzbekistan developed from ancient times, leaving a legacy of unique products of famous and nameless masters, striking with a wealth of artistic fantasy, filigree, and perfection of forms. In Uzbekistan, for centuries, peculiar centers and schools of folk-art crafts were formed. Each region has its own direction. Chust

Uzbekistan – Ecosystems, Biodiversity, History and Culture

21

(Namangan) is widely known for its tubes and knives, Rishtan (Ferghana) – azure ceramics, ancient Margilan  – a rainbow overflowing atlas, ikat, adras, sacred Bukhara – golden art. The creations of Ferghana, Samarkand, Bukhara, Khiva, and other masters have long been famous far beyond the homeland and continue to arouse interest among lovers of the beautiful from all over the world. Various schools of embroidery susane and ceramics, tubes of a variety of types and destinations, national chick knives for each occasion, silk and woolen carpets, silk and minting – wonderful works, for many centuries now, created by the hands of local masters and craftsmen, constitute a unique exotic of Uzbekistan (Figs. 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31). Fig. 21 Hand-made production of carpets using natural dyes. (Photo S. Muradov)

Fig. 22 Manual production of carpets using natural dyes. (Photo S. Muradov)

22 Fig. 23  Suzane maker, Iskhakov S.M., Hasti Imom, Tashkent. (Photo O.K.Khojimatov)

Fig. 24  Carpet weaving in Karakalpakstan. (Photo G.J.Abdiniyazova)

Fig. 25  Work with walnut wood, cabinet maker Azlarov A.A., Hasti Imom, Tashkent. (Photo O.K.Khojimatov)

O. K. Khojimatov et al.

Uzbekistan – Ecosystems, Biodiversity, History and Culture Fig. 26  Works of art in the national style. (Photo O.K.Khojimatov)

Fig. 27  Fragment of stucco molding of the inside of the dome of the Gur-Emir mausoleum. Samarkand, fifteenth century. (Photo Z.S.Bagirova)

Fig. 28  Ichan Kala Fortress Wall. Khiva, sixteenth century. (Photo O.K.Khojimatov)

23

24 Fig. 29 Ensemble Registan. Samarkand, fifteenth century. (Photo O.K.Khojimatov)

Fig. 30  Fragment of the painting of the inner part of the Tillya-Kari madrassa, Registan. Samarkand, fifteenth century. (Photo Z.S.Bagirova)

Fig. 31 Architectural complex Ichan Kala. Khiva, sixteenth century. (Photo N.Yu.Beshko)

O. K. Khojimatov et al.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

25

A Brief History of Ethnobiology in Uzbekistan The folk medicines in Middle Asia have a long history, which began many centuries ago, but the most notable period was in the tenth to eleventh centuries. The existence of the Great Silk Road, which covered most of the Eurasian mainland with caravan paths, contributed to the development of not only trade relations, but also gave a significant impetus to the cultural and scientific exchange of knowledge. The information received was further disseminated and improved, which significantly enriched knowledge on the use of biological species in medicine. Many scientists tried to explore the secrets of folk medicines; among them, Abu Raihon Beruni (973–1048) and Abu Ali ibn Sino (Avicenna) (980–1037) did a great contribution in herbal medicines. Beruni (Abu Raihon Muhammad ibn Ahmad Al Beruniy) was born in Khorazm in Kiyat city in 1973. He wrote more than 150 works devoted to almost all branches of knowledge of that time. Some works (Chronology, India, Geodesy, Canon Masuda) are published in translation into Russian, Uzbek and Western European languages and are available to a wide range of readers. Among Beruni’s works, the last work “Kitab as Saidana fi-t-tibb” (abbreviated “Saidana”) in terms of volume and content is a valuable source on the history of medicinal science in the medieval East. This work of Beruni differs from other works devoted to pharmacognosy, even from Avicenna’s second book, The Canon of Medical Science, because it focuses not on the properties and effects of drugs, but on their definition, since in the medical literature of that time there were more foreign-language names of drugs that were not known to all doctors. He cited in work about 4500 names of plants, animals, minerals and other products obtained from them, in different languages of the peoples of the East of that time. Of the 1116 paragraphs given in the book, 901 plant species are devoted to medicinal herbs, 104 to animal products, 124 to minerals. However, the appendix contains information about 116 plants. Currently, of the plants reported by Beruni, 135 species are growing in the territory of Uzbekistan as wild, 89 species are as cultivated plants. Among them, 56 plant species are used in modern medicine and 114 in folk medicine (Tayjanov et al. 2021). Avicenna (Abu Ali Hussin bin Abdallah ibn Hasan ibn Ali ibn Sina) was born in 980 in the village of Afshana, present day Bukhara region. He is one of the outstanding encyclopedist scholars of the medieval East, who made a huge contribution to the history of world science and culture. His scientific heritage includes a variety of industries: philosophy, medicine, astronomy, mathematics, physics, poetry, music. In his autobiography, he writes “I didn’t sleep all night, I didn’t rest from morning till night, and I didn’t do anything but mental work.” The results of such work were reflected in his creative activity as a medical scientist. He lived and worked in many cities in Bukhara, Gurganj, Nishapur, Hamadan, Jurjan. As the ruler of Hamadan, he spent 9 years as a treating physician and vizier. In Hamadan, he began to write the “Book of Healing” (Kitob al-Shifa), then the first book with 5 volumes, “The Canon of Medical Science”, which he finished all volumes in 1020. Numerous wanderings, continuous hard work exhausted the health of Avicenna. He died in 1037  in

26

O. K. Khojimatov et al.

Hamadan. Avicenna’s contribution to the development of medicine was especially significant, amounting to more than 55 books, of which 31 were written by Ibn Sina. The “Canon” (“Kitab al-Kanun fi-t-tib”) – the main medical work of Avicenna is a genuine medical encyclopedia. For many centuries, this work of Avecinna served as the main medical guide of many countries, including in the East. The author himself divided the “Canon” into five books. The second book of the Canon is an encyclopedia of medicines. More than 800 medicinal agents of vegetable, mineral, and animal origin are described. It combines the experiments of medicine of ancient Rome, Greece, India, Iran and Central Asia. Of the 810 drugs listed in the second book of Canon, 515 are medicinal plants (and their agents), 125 products of animal origin, 85 minerals. In addition to higher plants, it contains lichens (Leconora, Roccelia, Usnea) and fungi (Morchella, Fomitopsis, Tuber). Avicenna divides drugs into simple and complex ones. Simple consists of one plant (or resources), complex numbers from 4–6 to 10–15 items. Means are consisting of 60–80 plants and means of animal and mineral origin. In addition to drugs prepared by hands, he used the medicine of other authors, such as Barmacius (composition of 5 plants), Antil (7 plants), Andromachus (9 plants), Aristotle (25 plants), Mithridates (57 plant species) (Tayjanov et al. 2021).

 iversity of Medicinal Plants, Fungi and Animals Use D in Uzbekistan Current state of plant resources of Uzbekistan, trends, and problems. The vegetation cover of Uzbekistan is represented by unique reserves of raw materials and the richest gene pool of plants; therefore, the conservation and rational use of biodiversity is of extremely important environmental, economic and social importance.

Useful Wild Plants of the Flora of Uzbekistan Currently, a little more than 100 species of medicinal plants are used in medical practice, which is about 2.5% of the total number of species of the flora of Uzbekistan, although at least 1157 species of plants that have found their application in the medical practice of the peoples of Central Asia and neighboring countries grow on the territory of the republic. Unfortunately, valuable information about the use of plants in folk medicine and other aspects of their use in everyday life is lost due to the aging of carriers and custodians of unique information. Therefore, the collection of available information on the use of medicinal plants, its analysis and systematization, as well as the identification of new sources of biologically active substances, are an important link in the development and implementation of effective natural medicines. Every year, about 80 species of wild medicinal plants are

Uzbekistan – Ecosystems, Biodiversity, History and Culture

27

Table 1  Important useful plant groups of Uzbekistan Use categories Food

Important useful plant families Rosaceae, Amaryllidaceae, Juglandaceae, Rhamnaceae, Apiaceae, Polygonaceae Fodder Poaceae, Fabaceae, Amaranthaceae, Asteraceae Medicinal Ranunculaceae, Lamiaceae, Rosaceae, Boraginaceae, Apiaceae, Asteraceae, Nitrariaceaeидр. Essential oils Asteraceae, Acoraceae, Lamiaceae, Apiaceae, Rosaceae, Cupressaceae, Geraniaceae, Iridaceae Alkaloid Amaranthaceae, Solanaceae, Ephedraceae, Ranunculaceae, bearing Berberidaceae, Papaveraceae, Euphorbiaceae Dye plants Malvaceae, Papaveraceae, Asteraceae Decorative Liliaceae, Asphodelaceae, Iridaceae, Amaryllidaceae, Rosaceae, Asteraceae Aromatic Lamiaceae, Apiaceae, Berberidaceae, Cuprissaceae, Asteraceae plants Saponin Fabaceae, Caryophyllacea, Solanaceae, Astereceae, Liliaceae bearing Fibrous Urticaceae, Cannabaceae, Malvaceae plants

Number of species 350 1700 1157 650 200 150 270 200 100 6

submitted for quotas from procurement organizations, pharmaceutical enterprises, and other environmental users, among which there are both red-listed and endemic species (Table 1). Only from 2018 to 2021, the procurement of wild plant resources increased more than four times (Fig. 32). Since then, the Government of Uzbekistan has paid close attention to studying the experience of traditional medicine in the country, the creation of new effective and affordable medicines based on plant raw materials, which is facilitated by a number of Orders, Presidential Decrees and Cabinet Resolutions. In addition, within the framework of these and other decrees, work is underway on a large scale in the country to create industrial plantations of medicinal plants, including such species as: Crocus sativus L., Ferula tadshikorum Pimenov, Glycyrrhiza glabra L. Hippophae rhamnoides L. and many others.

 olk Healers (Tabib’s) Knowledge and Communication About F Traditional Uses of Ethnobiological Species in Uzbekistan The carriers of knowledge in the field of herbal medicine in Uzbekistan are folk healers called tabib’s. Most of them are hereditary tabib’s that have accumulated knowledge of previous related generations.

28

O. K. Khojimatov et al.

Fig. 32  Increase of wild plant raw material use for selected species

 he Personality of Tabib and the Specialization of Tabib T in the System of Worldviews of the Uzbek People In traditional medicine, the profession of tabibs, skill, norms of behavior were formed in a harmonious connection with professional experience and knowledge, guaranteeing the integrity of this area. Being Arabic, the word tabib is used in the sense of davo (cure). The word tib itself means “reform,” straighten, “and the tib turnover was қildi used in the sense of” straightened, cured. “Another meaning of the word tib is – “skill,” “experience.” Uzbeks in relation to experienced doctors and prominent scientists used the word ҳakim” (doctor, healer, scientist, thinker, sage). Tabib is a person who has absorbed the empirical knowledge of health inherent in the ethnic group to which he belongs, and himself turned into a tradition, since he conveys this experience to his descendants in oral or written form. By their professional activities and treatment process, tabibas are classified as follows: Siniқchilar – Bone-setter, usta (master). Tabibs siniқchi treat bruises, cracks, fractures, correct dislocations. At the same time, special attention is paid to the age of the victim. Usually, bone breeders insist that after the procedure, the damaged part of the body should be protected for as many days as the patient is old. Tabib’s siniқchi and today have extensive practice. Doyalar  – Midwives and healers of women’s diseases. In ancient times, people, along with methods of treatment, were able to provide assistance in childbirth.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

29

And among Uzbeks, the history of the doylar profession goes back centuries, and its representatives are called bibi halfa, momo, kushnoch momo. Now childbirth is accepted according to the rules of modern medicine, so the help of popular midwives is important in the recommendations regarding the health of babies and mothers. With their participation, rites are also held in families when the baby is first placed in the cradle or bathed for the first time. Zharroҳlar – Surgeons. In Uzbek folk medicine, tabibs-jarroch were circumcised, teeth were removed, and bloodletting was performed. Once upon a time, the population turned to the help of Tabib jarroch to get rid of the parasitic worm, common in some areas. Today, jarroches are invited to perform circumcision or release blood. Dorigarlar, attorlar. Due to the constant occupation of tabibs, dorigars were engaged in the collection of medicinal herbs and the manufacture of medicines. The population on the outskirts was also supplied with medicinal herbs. Their knowledge in the field of traditional medicine was very primitive, however, they understood what medicinal herbs were needed for certain diseases. With the advent of pharmacies in the region, the activities of attors for the manufacture of medicines have lost their significance. Kakhkhol (tabibs involved in the treatment of eye diseases). In the documents of the Cossacks of the XVI century there is information about the medical procedure that was carried out by the Samarkand tabibs. Along with them, there are tabibs involved in the treatment of skin and sexually transmitted diseases, as well as diseases of the internal organs (Jumanazarov 2018).

Traditions of Uzbeks Related to Treatment and Medical Practice The traditions of treatment among the peoples of the world differ in the methods of treatment and diagnosis, as well as in the methods of using medicines. The regional features of the traditional medicine of Uzbeks were influenced by such factors as the experience of the settled agricultural population and semi-settled cattle breeders who simultaneously lived in the region, the seasonal-cyclical climate, trade relations, as well as the exploration of tabibs. O characterize the factors that influence the local features of treatment (Figs. 33 and 34).

Geographic Factors When studying the regional features of folk medicine in terms of geographical environment, the territory of residence of the population should be divided into mountain-­foothill regions and flat terrain. At the same time, the regional difference is reflected in the daily diet, collection of medicinal herbs, storage conditions and at the cost of natural medicines.

30

O. K. Khojimatov et al.

Fig. 33  Internal organ projection diagram. (Photo G.J.Abdiniyazova)

Fig. 34  Folk healer with 40 years of experience Kobeysin Erniyazov (79 years old). Nukus, Karakalpakstan. (Photo G.J.Abdiniyazova)

Lifestyle and Type of Occupation of the Population Depending on the economic activities of people, the traditions of traditional medicine also acquire their special manifestations. Thus, studying the lifestyle of livestock breeders and farmers, we note the following feature: in relation to representatives of traditional medicine, livestock breeders have a tendency to empirical, and among farmers – to a mystical type of treatment. There is also a difference in the use of medicinal products: cattle breeders used simple drugs, and in farmers the composition of medicines included many components. The differences in the tools used during the treatment are also very noticeable: livestock breeders used objects of natural origin, while farmers used specially made hand-made tools.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

31

Native Flora and Fauna For people, they have always been an inexhaustible source. In everyday life, people used the healing qualities of the plant world around them. As a result, the body adapted to certain products, that is, the side effect of local remedies was reduced. Uzbeks use products obtained from small and cattle.

Religious Views In folk medicine, the religious views of Uzbeks were formed under the influence of Zoroastrian and Islamic religions. This is manifested in the rules of hygiene, sanitary standards, in behavior with the patient. The Avesta noted that it is necessary to protect water, air, fire and soil. This call is consonant with misage – the “doctrine of the human body” in folk medicine. With the establishment of the Islamic religion in Central Asia, the concepts of permissiveness, cleanliness and neatness have acquired a stronger foundation, this is one of the factors that distinguish Eastern medicine from the medicine of other peoples. Currently, in the study of regional features, territorial location, economic situation, integration of state and traditional medicine is of certain importance. Sometimes in this regard, factors such as the ethnic composition of the population, standard of living, migration flow, urbanization, and the legal state of traditional medicine play a significant role. Thus, the regional study of traditional medicine makes it possible to learn the traditions and customs inherent in the people, as well as methods of treatment that are not fully known in state medicine. Traditional medicine, the emergence and development of which dates back to the era of the birth of mankind, absorbed all the achievements of society. Thus, the tools of tabib reflect the development of the craft, and its rights and obligations, responsibility for improper treatment make it possible to determine the legal literacy of society.

Tabib’s Culture: Personal and Professional Norms of Behavior Based on the available information, the following standards of personal and professional behavior of tabib can be characterized: A benevolent and sympathetic experience is a sign of professional behavior, its main tool. According to Alisher Navoiy, if tabib is skilled in the profession, however, has a bad character, he speaks indifferently and rudely, no matter how much he treats the patient, he will not be able to make changes in his condition (Navoiy and Makhbub ek-kulub 1983). Adherence to the rules of professional etiquette is one of the important principles of tabib culture. The professional mystery of tabibs consists of two aspects.

32

O. K. Khojimatov et al.

The first aspect is that tabib keeps its methods of treatment and technology for the manufacture of a therapeutic agent secret. As a rule, a lot of effort was spent on this, so the recipe and treatment method are considered its property, which the mentor (father) wants to transfer to his son, and, therefore, it will be of material benefit. The second aspect contains a medical secret that arises during tabib communication with the patient. So, he is obliged to keep secret information about the disease from others, and sometimes from the patient himself. Gender equality, being one of the national characteristics of the profession, consists in the observance of these norms by a tabib man. There are also special criteria for the attitude towards women in society and the moral norms of behavior of Tabib-men in communicating with them: a healer should see only a patient in a woman. For this profession, it was characteristic to know the folk customs and rites, mentality, marital status of the patient (Jumanazarov 2018).

Determination of Treatment Fees This criterion depends on the severity of the disease, the duration of treatment, the time and effort spent by the tabib, as well as the patient’s financial situation. In the far villages, the tabibs still receive a fee in their natural form, that is, with fruits, grains or other agricultural products. The low price and availability of raw materials for medical products are the reason for the preservation of the need for tabibs in society.

Raising a Student Is a Duty of Tabib Healing is considered one of the professions passing from father to son. Sometimes there was no continuation of traditions in the family, so the student was taken from the outside. The student inherited all the achievements and knowledge of the mentor, on whom professional training and the attitude of people towards him depended. So that the school he created did not disappear, the mentor brought up a worthy replacement. When the student reached the pinnacle of knowledge and skills, the mentor convened other tabibs, and they examined the student, and then blessed him for independent activity. Knowledge of the history of the profession for tabib, these are necessary conditions. Each science has its own history and heritage. Representatives of not only traditional medicine, but also other professions, were interested in the history of their industry. In the process of treatment, experiencing a new remedy or facing a disease unknown to him, tabib inevitably turns to the history of his profession. Knowledge of history allows you to realize your weaknesses or achievements.

Uzbekistan – Ecosystems, Biodiversity, History and Culture

33

Following the Precepts of a Mentor It’s the duty of the apprentice. Most Tabibs left commandments to their disciples, who, due to their knowledge and abilities, became the successors of his work. The purpose of the commandment is to preserve the school created by the mentor and prepare a worthy successor in the future. It should be noted that the formation of the rules of the professional culture of Tabibs and control over their observance are carried out due to the worldview of the people, the status of ҳakim’s in the life of society and the legal norms of the state. In Uzbek folk medicine, the moral character of tabib, its personal and professional culture are the focus of the community. Tabib’s status is also determined by his knowledge of folk values, religious views, traditions, customs and rites.

 raditions of Treatment and Pharmacology in Uzbek T Folk Medicine In general, diagnostic methods in oriental medicine can be distinguished into four main groups: visual examination, olfactory perception, information on the conditions of residence and susceptibility to individual products, measurement of heart rate and palpation. In addition, experienced tabibs, diagnosing the disease, perform the following actions: study the amount of color, the volume of urine, feces, sweat, sputum and measure the patient’s pulse. In Uzbek folk medicine, the process of determining a disease can be divided into the following two groups by tabib actions: through direct communication with the patient (palpating parts of the body, interviewing about the nature of pain and changes, studying discharge); by observing the patient (without entering into direct contact with the patient, conclusions are drawn after monitoring him from the outside). Thus, we can say that in ancient times, due to the limitations of human communication and the ignorance of the population (lack of knowledge in the field of medicine), patients could not tell in detail about their condition. As a result, the tabibs studied ways to determine the diagnosis in a mediated way and over the years of practice mastered them perfectly.

Working Tools Used in Traditional Medicine In their activities, tabibs use special tools and utensils, which can be conditionally distinguished into the following groups: 1. Utensils used in the preparation of medicinal products. Medicinal products according to the method of preparation are divided into two types: simple and complex. Simple means consist of one raw material product and do not require

34

O. K. Khojimatov et al.

much effort. For this reason, household and kitchen utensils can be used during preparation. The second type includes more complex medicinal products consisting of a number of components (medicinal herbs, mineral additives). They also include substances that beat off an unpleasant smell or give a taste and aroma. Based on this, the items used to prepare drugs are also divided into three groups: (a) items of kitchen utensils – casa, sieve, cauldron, knife, kettle, piala, spoon, pieces of different canvas. (b) special tools. Devices for the preparation of complex drugs to comply with high accuracy certain conditions (darkened and cool room) and utensils: scales with cups, mortars, cauldrons of different volumes, spoons, sieves, hand mill, special dishes (vessels) for drugs, alembic. (c) modern devices: electronic scales, gas stoves, refrigerators, mixers, grinders. 2. Tools used in the treatment process. They are used in the treatment of therapeutic diseases and diseases related to other areas of medicine. Among them are universal tools used by tabibs of different profiles: (a) bloodletting instruments: horns, lancets. Leeches are used during the procedure. (b) costing tools: lubes from planks. Chicken eggs are used in the procedure. (c) surgical instruments: straight and curved scissors, metal lancets, knives, hooks, needles, silver threads, forceps.

 atural Raw Materials and Medicinal Products Used N in Pharmacology Raw materials used in traditional medicine are conditionally divided into the following types: 1. Medicinal herbs, bushes, trees – cultivated and wild plants (roots, bark, petals, stems, fruit peel, flowers, fruit seeds) and the components obtained from them (oils, juices, resins). 2. Animals, insects, birds – parts of organs (bones, blood, bone marrow, fats, meat, horns, internal organs, skin), products (dairy products, eggs), waste (excrement, urine, saliva). 3. Minerals – mumiyo, copper vitriol, mercury, sulfur, nitric acid, etc. Therapeutic agents used in folk medicine can be grouped as follows: Therapeutic agents used in folk medicine can be grouped as follows: 1. according to the composition of the medicine: Turkona (Turkic medicinal product)  – consists of from one type of product, for the preparation of which no special room is required; complex therapeutic mixtures – have more than two components (boiled or infused broth; exciting infusion; syrup; powder; binding component).

Uzbekistan – Ecosystems, Biodiversity, History and Culture

35

2. by the method of use: for internal use (cakes, tablets, gruel), for external use (ointments), as well as candles (nasal, eye, rectal). 3. in appearance: in hard (cakes, pills), in liquid (infusions, syrups), in powders. Thus, it can be argued that the collection of plant components origin, selection of animal products, search for minerals form the basis of pharmacology. Today in pharmacies you can find healing products of traditional medicine, the bulk of which retained the previous names, although there are some changes in composition. Another rather large group of people with knowledge of herbal medicine are shepherds and elders of mountain villages. This is due to the fact that shepherds are in high-altitude pastures for a significant time of the year and in the event of a disease that does not require emergency medical intervention, plants growing here may well be used. As for the oldest residents of the villages, their experience is based on information transmitted from generation to generation. In both of these cases, respondents willingly share the available information, while showing plants and talking in detail about recipes and methods for preparing drugs. A common feature of tabibs is a persistent reluctance to share existing treatment experience with medicinal herbs. First of all, this is due to the reluctance to lose the financial source and keep recipes secret. However, there is another category of practicing folk healers, whose knowledge is obtained by studying modern books and other sources. In this case, a problem is revealed that there is insufficient knowledge of systemic knowledge, lack of experience, ignorance of medicinal plants, correct diagnosis and treatment of human diseases. Such “tabibs” will not only not bring benefits, but also harm. Analyzing the available materials on the collection of ethnobotanical data, we can note that tabibas mainly treat diseases of the gastrointestinal tract, hepatobillary, cardiovascular, nervous systems and respiratory organs with herbs. Disorders of the musculoskeletal system (osteochondrosis of the spine; rheumatoid arthritis; gout; polyarthrosis, etc.). And a very small number of turns are used in the treatment of mechanical injuries (bone fractures). Nevertheless, work in the direction of studying the secrets of traditional medicine in Uzbekistan must be continued, for this it is necessary to make every effort of scientists of botany, chemists, pharmacologists and many other specialists. The result of this cooperation will undoubtedly be the creation of new highly effective medicines based on environmentally friendly plant raw materials. In support of the above, we can cite an example of the experience of the creation by the scientific team of the Institute of Botany, the Institute of Plant Substances Chemistry of the Academy of Sciences of the Republic of Uzbekistan of a highly effective medicine “Species cholagogae Chodjimatovi”, used to treat liver diseases of various etiologies. This drug is patented and approved for use in medical practice of the Republic, by the Ministry of Health of the Republic of Uzbekistan. The production and sale of the drug was established by “Salvare” LLC at the Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan.

36

O. K. Khojimatov et al.

References Abolin RI (1929) On the biogeographic division of the Soviet Central Asia. Acta Universitatis Asiae Mediae (ser 12a) 2:1–75. [In Russian] Adylov TA (ed) (1983) Conspectus Florae Asiae Mediae 7. Science Publishers, Tashkent. 415 pp. [In Russian] Adylov TA (ed) (1987) Conspectus Florae Asiae Mediae 9. Science Publishers, Tashkent, 400 pp. [In Russian] Adylov TA, Zuckerwanik TI (eds) (1993) Conspectus Florae Asiae Mediae 10. Science Publishers, Tashkent, 692 pp. [In Russian] Babushkin LN, Kogai NA (1971) Biogeographical divisions. In: Granitov II, Babushkin LN (eds) The plant cover of Uzbekistan and the ways of its practical use 1. Science Publishers, Tashkent, 98–117 pp. [In Russian] Belolipov VI, Zaurov ED, Eisenman SW (2013) The geography, climate and vegetation of Uzbekistan. In: Eisenman SW, Zaurov DE, Struwe L (eds) Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan. Springer, New  York etc., pp  5–7. https://doi. org/10.1007/978-­1-­4614-­3912-­7_2 Bondarenko ON, Nabiev MM (eds) (1972) Conspectus Florae Asiae Mediae 3. Science Publishers, Tashkent, 268 pp. [In Russian] Fedtschenko OA, Fedtschenko BA (1906–1916) Conspectus florae Turkestanicae, 1–6. Saint-­ Petersburg, Yuriev. [In Russian] Granitov II, Babushkin LN (eds) (1971–1973) The plant cover of Uzbekistan and the ways of its practical use 1–2. Science Publishers, Tashkent, 230 + 400 pp. [In Russian] Jumanazarov KhS (2018) Traditcii svyazannie s uzbekskoi narodnoi medicinoi (istoriko-­ aetnologicheskoe issledovanie) // Avtoref. Dissertation, Doktora philosofii (PhD).Tashkent, 51 P. (IN Uzbek and Russian) Kamelin RV (1973) A florogenetic analysis of the native flora of the Mountainous Central Asia. Science Publishers, Leningrad, 243 pp. [In Russian] Kamelin RV (1979) The Kuhistan District of the Mountainous Central Asia. [Komarov lectures 31.]. Science Publishers, Leningrad, 116 pp. [In Russian] Kamelin RV (1990) Flora of the Syrdarya Karatau. Science Publishers, Leningrad, 184  pp. [In Russian] Kamelin RV (2012) Phytogeography of the land: new solutions to some problems. Botanicheskii Zhurnal (Saint-Petersburg) 97:1481–1488. [In Russian] Kamelin RV, Kovalevskaya SS, Nabiev MM (eds) (1981) Conspectus Florae Asiae Mediae 6. Science Publishers, Tashkent, 395 pp. [In Russian] Khassanov FO (ed) (2015) Conspectus Florae Asiae Mediae 11. Science Publishers, Tashkent, 456 pp. [In Russian] Khojimatov OK (2008) Medicinal plants of south-west Tien-Shan (within Uzbekistan). Avtoref… doktora biologicheskikh nauk, Tashkent, 321 pages. (in Russian) Khojimatov OK (2021a) Lekarstvennie rasteniya Uzbekistana (properties, use and sustainable using). – Tashkent, “Ma’naviyat”. – 328 P. (In Russian) Khojimatov OK (2021b) K voprosu o sokhranenii I ustoichivomu ispolzovanii dikorastucshikh rastitelnikh resursov Uzbekistana// International scientific and practical conference dedicated to the 100th anniversary of the National Herbarium (TASH), the 80th anniversary of the Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan and the 70th anniversary of the Botanical Garden named after Academician F.N. Rusanov Problems and prospects for studying the plant world in Central Asia; 20–22 April 2021; Tashkent, pp 255–264. (in Russian) Korovin EP (1934) The vegetation of Central Asia. Central Asian Department of the Union of State Publishers, Moscow, Tashkent, 480 pp. [In Russian] Korovin EP (1941) Botanical-geographical districts of Uzbekistan and main characters of its vegetation cover. In: Kudryashev SN (ed) Flora of Uzbekistan 1. Uzbek Department of the Academy of Sciences of the USSR, Tashkent, pp 51–54. [In Russian]

Uzbekistan – Ecosystems, Biodiversity, History and Culture

37

Korovin EP (1961–1962) The vegetation of Central Asia and southern Kazakhstan 1–2. Academy of Sciences of the Uzbek SSR, Tashkent, 452 pp. + 547 pp. [In Russian] Kovalevskaya SS (ed) (1968–1971) Conspectus Florae Asiae Mediae 1–2. Science Publishers, Tashkent. [In Russian] Kudryashev SN (ed) (1941) Flora of Uzbekistan 1. Uzbek Department of the Academy of Sciences of the USSR, Tashkent, 568 pp. [In Russian] Maylun ZA (1982) Geobotanical zoning. [Map]. Scale 1: 10,000,000. In: Sadykov AS (ed) Atlas of Uzbekistan 1. State Department for Mapping, Moscow, Tashkent, p 96. [In Russian] Nabiev MM (ed) (1986) Conspectus Florae Asiae Mediae 8. Science Publishers, Tashkent, 191 pp. [In Russian] Navoiy A, Makhbub ek-kulub GG (1983) Tashkent, p 25 (in Uzbek) Pakhomova MG (ed) (1974–1976) Conspectus florae Asiae Mediae 4–5. Science Publishers, Tashkent. [In Russian] Rachkovskaya EI, Volkova EA, Khramtsov VN (2003) Botanical geography of Kazakhstan and middle Asia (desert region). Komarov Botanical Institute, Saint-Petersburg, xxxvii + 423 pp. [In Russian] Sennikov AN, Tojibaev KS, Khassanov FO, Beshkop FO (2016) The Flora of Uzbekistan project. Phytotaxa 282(2):107–118 Tayjanov K, Khojimatov O, Gafforov Y, Makhkamov T, Bussmann RW, Normakhamatov N (2021) Plants and fungi in the ethnomedicine of the medieval. East  - a review. Ethnobot Res Appl 22:46. https://doi.org/10.32859/era.22.46.1-­20 Tojibaev KS (2010) Flora of the south-western Tian-Shan (within the Republic of Uzbekistan). Science Publishers, Tashkent, 100 pp. [In Russian] Tojibaev KS (2013) About the botanical-geographical regions of Uzbekistan and the new additions to the flora of the South-Western Tian-Shan. In: Sitpaeva GT (ed) Proceedings of the international conference ‘studies on the botanical diversity of Kazakhstan’, Almaty, pp 80–84. [In Russian] Tojibaev KS, Beshko NY, Popov VA, Jang CG, Chang KS (2017) Botanical geography of Uzbekistan. Korea National Arboretum, Pocheon, Republic of Korea Vvedensky AI (ed) (1953–1962) Flora of Uzbekistan 2–6. Academy of Sciences of the Uzbek SSR, Tashkent. [In Russian] Zakirov KZ (1947) Some problems of zoning and terminology in the botanical geography of Central Asia. Bulletin of the Samarkand State University 25:3–12. [In Russian]

Part II

Chapter Conservation and Sustainable Use of Plant Resources of Uzbekistan

Conservation and Sustainable Use of Plant Resources of Uzbekistan Olim K. Khojimatov and Rainer W. Bussmann

Conservation and Use in Uzbekistan The vegetation of Uzbekistan represents unique reserves of raw materials and the richest gene pool of plants; therefore, the conservation and rational use of biodiversity is of extremely important ecological, economic and social importance. All this strongly requires a study of plant resources at such a level that the developed recommendations make it possible to guarantee their preservation even in conditions of intensive nature management and a changing climate. In addition to the above, the development of the national economy of Uzbekistan largely depends on the competent and careful use of its natural resources. Biological resources, including medicinal plants, are an essential part of Uzbekistan’s natural wealth. To determine the current state of species for the purpose of their protection and sustainable use, it is necessary to obtain annual information on the distribution, abundance, impact of negative factors on their populations. The basis for studying these parameters is annual monitoring, which is carried out subject to the principle of other equal conditions, i.e., according to a single method for collecting and analyzing data for each individual species or group of environmentally similar species at certain times, in a certain territory. Research  is usually fragmentary, and only  carried out either for individual species (for example, for Glycyrrhiza glabra L., Ferula tadshikorum O. K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences, Tashkent, Uzbekistan e-mail: [email protected] R. W. Bussmann (*) Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_2

41

42

O. K. Khojimatov and R. W. Bussmann

Pimenov, Capparis spinosa L.), or within a limited territory (for example, the territory of reserves and forestry), or in a limited time period. According to the dynamics of populations of most species, information is not updated for years. To determine the quota for use, as well as to plan effective security measures, extensive data covering a long time period collected using a single method must be available. This will help determine the population trends of species, identify the causes of fluctuations in numbers, as well as make timely forecasts about the dynamics of populations in the future, and will not only provide objective long-term information on the state of the biological resources of the republic, but also carry out planning for the preservation and sustainable use of them. Despite the long history of collecting medicinal plants in Uzbekistan and the available literature, there is an acute lack of information about the current state of natural populations of the most popular medicinal, food, technical and other raw plants in Uzbekistan. The exception was only no more than five species of plants carried out under economic agreements concluded with business entities and interested organizations (State Committee of the Republic of Uzbekistan on Ecology and Environmental Protection, State Committee of Forestry). There is an urgent need to organize an extensive research program to clarify the current state of wild plant resources, to study the pace of restoration (recovery) of their thickets after harvesting. Since the necessary experimental data are not available in these areas, recommendations are given only by analogy with similar species. Over the past years, harvesting of Phragmites australis (Cav.) Trin. ex Steud., has sharply increased in the floodplain of the Amudarya River which is harvested to meet the needs of enterprises that manufacture chip boards. Such intensive harvesting can cause irreparable damage to the population of a given plant. Reed warblers are a kind of biological oasis, they are the habitat of fish, amphibians, reptiles, birds and mammals. Human economic activity and interference in this biological environment can lead not only to the irretrievable loss of plants and animals, but also reduce their role in water protection and coastal protection. Reeds protected the Syrdarya floodplain from destruction. Now stormy waters spread soil throughout the channel, the river basin silts up and loses its capacity, which is especially felt during flood periods. Reeds have a unique ability to self-repair, however, active harvesting of reeds in the floodplain of the Amudarya River can lead to the scenario described above and the fate of Syrdarya, as a result, will repeat the Amudarya River. Of the medicinal plants, Glycyrrhiza glabra L. (licorice) and Ferula tadshikorum Pimenov (Tajik Ferula) are subjected to the greatest pressure, due to intensive workings over the past 20 years, stocks have been greatly undermined. The increasing demand for raw materials and the volume of uncontrolled licorice harvesting have led to a sharp reduction in natural thickets in the territory of the Republic of Uzbekistan. So, for example, as a result of uncontrolled harvesting in the Syrdarya region, in the late 90 s – early 2000th, the previously existing wild thickets were practically destroyed. Many massifs disappeared altogether; the area of others was significantly reduced. Other plants appeared on the site of the former licorice massifs, mainly agricultural crops (cotton, rice and others). This information is confirmed by comparing the data reflected in scientific literary sources of the

Conservation and Sustainable Use of Plant Resources of Uzbekistan

43

50,000,000 45,000,000 40,000,000 35,000,000 30,000,000 25,000,000 20,000,000 15,000,000 10,000,000 5,000,000 0,000

2017 year

2018 year

2019 year

2020 year

Fig. 1  Dynamics of reduction of licorice stocks in terms of Republic of Karakalpakstan (tons)

70–90  s of the XX century (Bakhiev 1974; Bakhiev et  al. 1983; Dauletmuradov 1991) and his own field research (Abdiniyazova and Khojimatov 2013; Sherimbetov et al. 2018; Khojimatov 2021a, b). At the moment, scarce reserves of wild licorice, are only preserved in the territory of Karakalpakstan. Thus, we can conclude that over the past decades and at present, there has been a predatory extermination and extremely irrational exploitation of wild populations of licorice and Ferula (Figs. 1 and 2). Based on an analysis of many years of field research of the distribution range and reserves of Tajik Ferula in the territories of the Surkhandarya and Kashkadarya regions of Uzbekistan, a sharp decrease in the number of Ferula tadshikorum was found. In this regard, this type of Ferula was included in the next edition of the Red Book of the Republic of Uzbekistan, with status 3 (Khasanov 2019). Many farmers, due to the provision of land plots for long-term use, independently collect using agricultural equipment, by uprooting from irrigation systems, which catastrophically violates not only irrigation canals, but also plant communities (Fig. 1). The rules for collecting and drying collected raw materials are violated everywhere, especially for the roots and rhizomes of bare licorice. Due to the incorrect drying process (in direct sunlight), the main biologically active substance, glyceridic acid, is actively destroyed and, as a result, the grade and cost of the final product are reduced. In addition, we have identified cases when pets roam on top of raw materials dried under the sun, in particular (livestock), which leads to contamination of raw materials with animal bowel movements. It also degrades the quality of the raw material, contaminating it with organic and microbiological impurities, up to the destruction of the raw material itself. This fact ultimately leads to an unjustified reset and, as a result, irreparable damage to plant populations is caused (Fig. 2).

44

O. K. Khojimatov and R. W. Bussmann

Fig. 2  Dynamics of organ collection and their derivatives Ferula tadshikorum

To preserve and restore the remaining natural populations of bare licorice, a number of urgent measures must be taken, such as establishing strict control and accounting for all places of commercial thickets and conducting their regular monitoring. In this regard, it is extremely important to establish the introduction of licorice on secondary saline lands unsuitable for sowing industrial crops. Moreover, the return to circulation of secondarily salted lands using licorice as phytomeliorant allows achieving a high economic and environmental effect. Its cultivation helps to reduce the degree of salinity and increase the fertility of the soil, similar to many representatives of the Fabaceae family. Licorice reproduces in both generative (from the seed) and vegetative (from the root, escape) ways. However, scientific developments have shown very limited generative reproduction of licorice on saline lands and recommended a vegetative method of reproduction. At the same time, plants that have reached productive maturity, that is, 4–5 summer specimens, are used for harvesting.

 estoration of Licorice Raw Material Base Is Possible R in Two Ways 1. culturing wild thickets (removing trees and shrubs, sod grains from them and planting licorice) and thus increasing their productivity 2. expansion of industrial plantations. However, producers should not forget that only considering all the norms and rules for the operation of natural plant resources and their cultivation in culture, as well

Conservation and Sustainable Use of Plant Resources of Uzbekistan

45

as in general, of medicinal plants of commercial interest, will ensure full reproduction of medicinal plants and will not lead to disruption of the natural balance and ecology. The main sources of threats leading to the reduction and/or loss of botanical biodiversity are summarized in Fig. 3. Currently, due to the significant growth of the population of our republic, as well as with the rapid development of all sectors of the national economy, the development of new previously unused lands, the issue of the careful and rational use of natural resources remains one of the priorities. And one of those riches is undoubtedly the plant world. Economic activity here should be carried out deliberately and systematically, taking into account the peculiarities of the biology of species

Fig. 3  The main threats leading to the loss of biodiversity (light ochre shows the main threats of biodiversity, lettuce – the causes of threats)

46

O. K. Khojimatov and R. W. Bussmann

included in mountain phytocenoses and necessarily with maximum and comprehensive consideration of all available botanical information on the study area. Special care is required to safeguard  intensively used plant species, including medicinal ones. Since the full description of all necessary protection and rational use measures for each individual species is a topic of separate independent work, it is appropriate to describe only the most general principles and the most important and urgent activities related to all species to one degree or another. With regard to the mountain territories of Uzbekistan, the following fundamental principles for the protection of medicinal plants can be distinguished: 1. The greatest attention should be paid to the already developed areas of the first category of use. First of all, one should carefully calculate the economic efficiency and feasibility of developing new territories for crops of rich crops and compare these figures with the economic and social losses from such activities (Fig. 4). 2. It is necessary to reduce (or at least not increase) the pasture load in the mountain territory, since mountain phytocenoses are very sensitive to overgrowth. Plant communities are very harmed by a huge number of flocks of sheep and herds of cattle, which eat and trample everything in their path. The grazing load in these areas is increasing from year to year, which threatens the gradual destruction of natural landscapes. So, an example is the situation in the Parkent district of the Tashkent region, the feed capacity of the pastures of which allows you to graze 30,000 heads of cattle, but in fact graze 2 times more (Fig. 5). 3. You should not spare money on afforestation of mountain slopes. In our opinion, such xerophilic species of trees and shrubs as Crataegus pontica, Pistacia vera, many species of the genus Rosa, and on the northern slopes of the mesophilic tree – Juglans regia, would easily take root in the southern expositions. These funds will not pay off soon, but their social return will be incomparably more significant (Fig. 6). 4. It is necessary to increase the level of culture and consciousness of the local population in the study area mainly by economic means, the main of which is to Fig. 4  Human economic activity, Jizzakh region. (Photo O.K. Khojimatov)

Conservation and Sustainable Use of Plant Resources of Uzbekistan

47

Fig. 5  Overgrazing of small and large cattle, Tawaqsay, Tashkent region. (Photo O.K. Khojimatov)

Fig. 6 Dried Juniperus sp. on the slopes of the Turkestan Range, Bahmal, Jizzakh region. (Photo O.K. Khojimatov)

provide them with construction forest, if possible, wiring gas and electricity. Currently, cases of cutting of valuable rocks for the needs of construction, heating and cooking are very often inaccessible to control. 5. One of the threats to mountain phytocenoses is fires, which, along with steppe areas, mainly cover archers. Deciduous forests and areas of steppe vegetation are characterized by an increased degree of fire during early spring, the second half of summer and autumn. An additional factor is the presence of grass cover. 6. A big problem recently, has become the problem of unorganized recreation of people, when especially on Saturday and Sunday days a large stream of vacationers is sent to the mountains, where they cause irreparable damage, collecting rare, often endemic plant species for bouquets, for example many species of Tulipa sp., Eremurus sp. Unorganized tourists break trees for the sake of making fires, and uncontrolled collecting medicinal herbs, both for their own use and for sale in the markets. In this regard, we suggest:

48

O. K. Khojimatov and R. W. Bussmann

Fig. 7  Consequences of outdoor recreation, Tawaqsay, Tashkent region. (Photo O.K. Khojimatov)

(a) Develop strictly defined routes for tourists. (b) Organize places for organized recreation of tourists. (c) Organize everywhere visual agitation, in the form of various posters, shields depicting rare plants and their significance for humanity. Cultivate a feeling of love for nature and respect for it (Fig. 7). 7. Imposing penalties on persons engaged in the illegal collection and sale of wild plants, especially rare species listed in the Red Book of the Republic of Uzbekistan. 8. To meet the needs of the pharmaceutical industry, it is necessary to introduce the most important species of medicinal plants into the culture. For example, such as Achillea millefolium, Helichrysum maracandicum, Hypericum perforatum, natural thickets, which, due to systematic harvesting, have decreased significantly in recent years. For wet places, along mountain springs, we recommend planting Urtica dioica. By inefficient management and lack of market research, we mean not taking into account by the procurer’s data on collection methods, primary processing of raw materials, drying and storage methods, as well as information on the quantitative need, absence of the end user both among local and foreign companies for a particular type of plant. Sometimes a large number of plants or their derivatives are mistakenly harvested, dried and stored, similar to the appearance of species, for example, the stolons of Cistanche salsa (C.A.Mey.) Beck and Cistanche flava (C.A.Mey.) Korsh. These, in the absence of demand, after several years of storage, lose their quality, commodity type and, as a result, price, after which all raw materials are simply subject to disposal, which again requires financial resources.

Conservation and Sustainable Use of Plant Resources of Uzbekistan

49

Conclusions 1. Regular research work on monitoring of quota resource (medicinal, food) species of plants with high demand in both domestic and foreign markets. 2. Strict accounting and monitoring of the remaining populations of the most vulnerable species. 3. Creation of industrial plantations for the cultivation of valuable types of medicinal plants. 4. Establish a full cycle of processing plant raw materials from growing to obtaining a finished product. These measures will have a great economic effect by creating new jobs, introducing and using new technologies and producing high-­ value-­added products in demand on the world market, which will ensure an increase in the receipt of foreign exchange earnings. The authors would like to note that the wild species of animals and plants given in the book are mostly included in the Red Book of Uzbekistan, and some of them in the IUCN Red Book. This work does not call for the  shooting, trapping, etc. of representatives of fauna and the use of their parts and derivatives as a therapeutic agent, but only provides information on the use of them in the past. Modern science does not confirm or refute the effectiveness of treatment with objects of the animal world. We hope for an understanding of the respected reader on this issue.

References Abdiniyazova GJ, Khojimatov OK (2013) Sovremennoe sostoyanie estestvennikh zaroslei Glycyrrhiza glabra L. V Karakalpakstane. Bulletin of Kaz NU, Almaty 3/2(59):455–457. (In Russian) Bakhiev А (1974) Ratcionalnoe ispolzovanie prirodnikh zaroslei solodki goloi v nizoviakh Amudariyi I vvedenie v kulturu. “FAN”, Tashkent, 84 p. (In Russian) Bakhiev А, Butov KN, Dauletmuradov S (1983) Lekarstvennie rasteniya Karakalpakii. “FAN”, Tashkent, 136 p. (In Russian) Dauletmuradov SD (1991) Resurci lekarstvennikh rasteniy Karakappakii i ikh okhrana, Nukus, 179 p. (In Russian) Khasanov FU (ed) (2019) The Red data book of the Republic Uzbekistan, vol 1. Chinor ENK, Tashkent, 360 p. (in Uzbek and Russian) Khojimatov OK (2021a) Lekarstvennie rasteniya Uzbekistana (properties, use and sustainable using). “Ma’naviyat”, Tashkent, 328 p. (In Russian) Khojimatov OK (2021b) K voprosu o sokhranenii I ustoichivomu ispolzovanii dikorastucshikh rastitelnikh resursov Uzbekistana// International scientific and practical conference dedicated to the 100th anniversary of the National Herbarium (TASH), the 80th anniversary of the Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan and the 70th anniversary of the Botanical Garden named after Academician F.N. Rusanov Problems and prospects for studying the plant world in Central Asia; 20–22 April 2021; Tashkent, pp 255–264. (in Russian) Sherimbetov Kh, Aripdjanov М, Gabitova R, Mitropolskaya Yu, Sobirov U, Talskikx V, Khojimatov O, Shagiakhmetova G, Shulgina N (2018) Shestoi Natcionalniy doklad Respybliki Uzbekistan o spkhranenii biologicheskogo raznoobraziya. Tashkent. GEF, UNDP, 263 p. (in Russian). https://dev-­chm.cbd.int/doc/nr/nr-­06/uz-­nr-­06-­ru.pdf

Part III

Plant Chapters

Acanthophyllum gypsophiloides Regel. - CARYOPHYLLACEAE Dilovar T. Khamraeva, Olim K. Khojimatov, and Rainer W. Bussmann

Acanthophyllum gypsophiloides Regel Synonyms: Acanthophyllum gypsophiloides var. papillatum Yukhan. & Kuvaev; Allochrusa gypsophiloides (Regel) Schischk.

Local Names Allochrusa gypsophiloides: Russian: Колючелистник качимовидный; Uzbek: Etmak, Bekh; Kyrgyz: Качымдай кой тикен; Kazakh: Қаѕбақ тјрізді жерсабын, Аққаңбақ түсті бозтікен; Tadjik: Бех; English: Acanthus-leaved thistle.

Botany and Ecology Perennial; rhizome long, to 7  mm thick; stems erect, divaricately branched from base, 50–80  cm long, glabrous, whitish or purple -tinged, strongly thickened at nodes, the branches arising at an almost right angle; leaves linear -subulate, D. T. Khamraeva · O. K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences, Tashkent, Uzbekistan e-mail: [email protected]; [email protected] R. W. Bussmann (*) Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_3

53

54

D. T. Khamraeva et al.

glabrous or very rarely somewhat scabrid, with thick midrib and 2 less distinct lateral veins, 1–2 cm long and 0.5–0.3 mm broad, acute, scarcely acerose; leaves of axillary fascicles shorter and narrower; flowers in loose dichasia at ends of stems and branches, forming a broad panicle; central flower of the dichasium sessile, the other two on filiform pedicels 5–10 mm long; bracts lanceolate, ca. 0.5 mm long, inserted just below the calyx and appressed to it; calyx narrowly campanulate, 3 mm long, glabrous, often violet -tinged; teeth broadly triangular, narrowly white-­ margined, obtusish, one -quarter length of calyx; petals white or roseate, one and a half times as long as calyx; limb obovate -oblong, rounded at apex. June–August. Dry slopes, desert steppes, dry stream beds, and derelict fields. Central Asia: West Tien Shan (Kirghiz Range), Syr D., Amu D., Mtn. Turkm. (Kugitang), Pamiro-Alai. Endemic (Komarov 1936). Included in Red Data Book of Uzbekistan (The Red Data Book of the Republic of Uzbekistan 2019) (Figs. 1 and 2). Fig. 1  Acanthophyllum gypsophiloides (Caryophyllaceae), Tashkent region, Charvak, Uzbekistan. (Photo N.Yu. Beshko)

Fig. 2  Acanthophyllum gypsophiloides (Caryophyllaceae), Tashkent region, Charvak, Uzbekistan. (Photo N.Yu. Beshko)

Acanthophyllum gypsophiloides Regel. - CARYOPHYLLACEAE

55

Phytochemistry Triterpene saponins: hypsoside. The roots contain carbohydrates 20%, anthraglycosides, triterpene saponins 18–29%: acanthophylloside A, B, C, D. The amount of saponins increases with the age of the plant. The aboveground part contains saponins 0.79%, flavonoids, tannins 0.07%, anthraglycosides. The roots of this species contain up to 30% of steroid compounds – saponins, used in perfumery, textile, food industry, in the production of building materials (Kyrgyz Respublikasynyn Kyzyl kitebi 2006). The foaming and hemolytic activity of saponins isolated from plant roots was evaluated. At the same time, high surface activity and significant hemolytic activity were revealed (Mursaliyeva et al. 2016).

Local Medicinal Uses Due to the fact that the decoction of allochruse foams like soap, the plant is commonly called a “soap root”. Sometimes the roots are brewed as tea and drunk for gastrointestinal, skin (pyoderma, eczema, furunculosis, scaly lichen), venereal diseases and diseases of the spleen, liver, kidneys and metabolic disorders (https:// p l a n t a -­m e d i c a . u z / a l l o c h r u s a -­g y p s o p h i l o i d e s -­r e g e l -­s c h i s c h k ­kolyuchelistnik-­kachimovidnyj/).

Folk Recipes Decoction: 1 tablespoon of crushed thorn roots per 300 ml of water is boiled for 20 minutes on low heat, filtered. Take 1 tablespoon 12 times a day as an expectorant for bronchitis. The roots of the acanthus-leaved thistle are used for the manufacture of halva and effervescent drinks (https://nemezund.ru/zdorove/lekarstvennye-­ rasteniya/kolyuchelistnik-­kachimovidnyj-­acanthophyllum-­gypsophiloides-­rege-­ alloxruza-­kachimovidnaya-­allochrusa-­gypsophiloides-­regel-­schischk.html). In folk medicine, root infusion is taken as an expectorant for bronchitis and other respiratory diseases, as a choleric, diuretic, laxative – a teaspoon of crushed roots is poured with a glass of cold boiled water, infused for 8–10 hours and drunk during the day (https://planta-­medica.uz/allochrusa-­gypsophiloides-­regel-­schischk-­kolyuchelistnik­kachimovidnyj/).

Local Food Uses The roots of the acanthus-leaved thistle are used for the manufacture of traditional sweet Nisholda (Khojimatov 2021; https://inlnk.ru/emY8eK) (Figs. 3 and 4).

56

D. T. Khamraeva et al.

Fig. 3  Nisholda seller, Kashkadarya region, Shakhrisabz market. (Photo Z.Z. Kosimov)

Fig. 4 Nisholda, Kashkadarya region, Shakhrisabz market. (Photo Z.Z. Kosimov)

In Veterinary Decoction of roots is used as an expectorant, wound healing agent. In veterinary medicine in the form of saponin vaccine – in the fight against sheep brucellosis. In industry, it is used as a foaming agent for the electrolysis of zinc and the production of cellular concrete (Sokolov 1984).

Local Handicraft and Other Uses Ornamental and melliferous plants. Due to the high foaminess, the roots used to be used for washing clothes and for bathing. Currently, the raw materials of the roots are widely demanded by the perfumery and cosmetic industry, for the manufacture of natural shampoos, cosmetics and other hygiene products (Khojimatov 2021).

Acanthophyllum gypsophiloides Regel. - CARYOPHYLLACEAE

57

References https://inlnk.ru/emY8eK https://nemezund.ru/zdorove/lekarstvennye-­r asteniya/kolyuchelistnik-­k achimovidnyj-­ acanthophyllum-­gypsophiloides-­rege-­alloxruza-­kachimovidnaya-­allochrusa-­gypsophiloides-­ regel-­schischk.html https://planta-­m edica.uz/allochrusa-­g ypsophiloides-­r egel-­s chischk-­k olyuchelistnik-­ kachimovidnyj/ Khojimatov OK (2021) Lekarstvennie rasteniya Uzbekistana (properties, use and sustainable using). “Ma’naviyat”, Tashkent, 328 p. (In Russian) Komarov LV (1936) (English 1970). Flora of the USSR, Volume 6: Centrospermae; Akademia Nauk, Moscow-Leningrad, 520 p Kyrgyz Respublikasynyn Kyzyl kitebi (2006) Kirgizstandin „Aleyne“ ekologiyalyk kyyemyly. 2-bas. – Bishkek. – 544 b Mursaliyeva VK, Kozhebayeva ZS, Rakhimbayev IR, Gemejiyeva NG (2016) Qualitative and quantitative analysis of saponins of Turkestan soap root Allochrusa gypsophiloides (Regel) Schischk. Bulletin of KazNU Biological series 68(3) Sokolov PD (ed) (1984) Plant resources of the USSR: flowering plants, their chemical composition, use. Families of Magnoliaceae-Limoniaceae Akademia Nauk, Sankt Peterburg, 731 p. (in Russian) The Red Data Book of the Republic of Uzbekistan (2019) Volume 1. Plants. Tasvir, Tashkent, 356 p. (in Uzbek, Russian and English)

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium L. - ASTERACEAE Olim K. Khojimatov and Rainer W. Bussmann

Achillea arabica Kotschy Synonyms: Achillea biebersteinii Afanasiev Achillea filipendulina Lam. Synonyms: Achillea eupatorium M.Bieb.; Achillea filicifolia M.Bieb.; Tanacetum angulatum Willd. Achillea millefolium L. Synonyms: Achillea albicaulis C.A. Mey.; Achillea albida Willd.; Achillea alpicola (Rydb.) Rydb; Achillea ambigua Pollini; Achillea ambigua Boiss.; Achillea anethifolia Fisch. ex Herder; Achillea angustissima Rydb.; Achillea arenaria A. Heller; Achillea arenicola A.  Heller; Achillea bicolor Wender.; Achillea borealis Bong.; Achillea borealis var. arenicola (A.  Heller) J.T.  Howell; Achillea borealis subsp. Arenicola (A.  Heller) D.D.  Keck; Achillea borealis subsp. californica (Pollard) D.D. Keck; Achillea borealis var. californica (Pollard) J.T. Howell; Achillea borealis f. fusca (Rydb.) Hultén; Achillea borealis var.fusca (Rydb.) G.N. Jones; Achillea borealis subsp. typica D.D. Keck; Achillea californica Pollard; Achillea compacta Lam.; Achillea coronopifolia Willd.; Achillea crassifolia Steud.; Achillea crassifolia Dietr. ex Colla; Achillea cristata DC.; Achillea cuspidata Wall.; Achillea dentifera DC.; Achillea dentifera Rchb.; Achillea eradiata Piper; Achillea fusca Rydb.; O. K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences, Tashkent, Uzbekistan e-mail: [email protected] R. W. Bussmann (*) Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_4

59

60

O. K. Khojimatov and R. W. Bussmann

Achillea gigantea Pollard; Achillea gracilis Raf.; Achillea haenkeana Tausch; Achillea intermedia Schleich.; Achillea lanata Spreng.; Achillea lanata Lam.; Achillea lanulosa Nutt.; Achillea lanulosa subsp. alpicola (Rydb.) D.D.  Keck; Achillea lanulosa var. alpicola Rydb.; Achillea lanulosa var. arachnoidea Lunell; Achillea lanulosa var. eradiata (Piper) M.  Peck; Achillea lanulosa subsp. megacephala (Raup) Argus; Achillea lanulosa f.peroutkyi F.Seym.; Achillea lanulosa f. rubicunda Farw. Achillea lanulosa subsp. typica D.D.  Keck; Achillea laxiflora Pollard & Cockerell; Achillea magna Haenke; Achillea magna L.; Achillea magna; Achillea marginata Turcz. ex Ledeb.; Achillea megacephala Raup; Achillea millefolium f. albiflora Dabrowska; Achillea millefolium var. alpicola (Rydb.) Garrett; Achillea millefolium var. arenicola (A. Heller) Ferris; Achillea millefolium subsp. atrotegula B. Boivin; Achillea millefolium subsp. balearica Sennen; Achillea millefolium var. asplenifolia (Vent.) Farw.; Achillea millefolium var. borealis (Bong.) Farw.; Achillea millefolium subsp. borealis (Bong.) Breitung; Achillea millefolium f. californica (Pollard) H.M.  Hall; Achillea millefolium var. californica (Pollard) Jeps.; Achillea millefolium var. colliniformis Dabrowska; Achillea millefolium var. densiloba P.D. Sell; Achillea millefolium var. dipetala Dabrowska; Achillea millefolium f.discolor B.  Boivin; Achillea millefolium var.dissecta Dabrowska; Achillea millefolium var.fulva B. Boivin; Achillea millefolium var. fusca (Rydb.) G.N. Jones; Achillea millefolium var.gigantea (Pollard) Ferris; Achillea millefolium var.gracilis Raf. ex DC.; Achillea millefolium var. iserana Podp.; Achillea millefolium f. iserana Hayek; Achillea millefolium var. lanata W.D.J. Koch; Achillea millefolium subsp. lanulosa (Nutt.) Piper; Achillea millefolium var. lanulosa (Nutt.) Piper; Achillea millefolium var. litoralis Ehrend. ex Ferris; Achillea millefolium var. lobata Dabrowska; Achillea millefolium var. maritima Dabrowska; Achillea millefolium var.maritima Jeps.; Achillea millefolium var. megacephala (Raup) B.  Boivin; Achillea millefolium var. nigrescens E. Mey.; Achillea millefolium var. occidentalis DC.; Achillea millefolium subsp. occidentalis (DC.) Hyl.; Achillea millefolium var. pacifica (Rydb.) G.N. Jones; Achillea millefolium subsp. pallidotegula B. Boivin; Achillea millefolium var. parviligula B. Boivin; Achillea millefolium subvar. parviligulata Farw.; Achillea millefolium var. parvula B. Boivin; Achillea millefolium f. pseudopannonica Pamp.; Achillea millefolium var.puberula (Rydb.) Ferris; Achillea millefolium var. purpurea Wirtg.; Achillea millefolium f. rhodantha Lepage; Achillea millefolium var. rosea Gray; Achillea millefolium f. roseiflora B. Boivin; Achillea millefolium f. roseoides Breitung; Achillea millefolium f. rubicunda (Farw.) Farw.; Achillea millefolium var. russeolata B. Boivin; Achillea millefolium var. sordida W.D.J. Koch; Achillea millefolium var. spathulata Dabrowska; Achillea millefolium var.sylvatica Wirtg.; Achillea nabelekii Heimerl; Achillea nigrescens (E. Mey.) Rydb.; Achillea occidentalis (DC.) Raf. ex Rydb.; Achillea ochroleuca Eichw.; Achillea ossica K.Koch; Achillea pacifica Rydb.; Achillea palmeri Rydb.; Achillea pecten-­veneris Pollard; Achillea pratensis Saukel & R. Länger; Achillea pseudotanacetifolia Wierzb. ex Rchb.; Achillea puberula Rydb.; Achillea rosea Desf.; Achillea scabra Host; Achillea setacea Schwein.; Achillea sordida (W.D.J. Koch) Dalla Torre & Sarnth.; Achillea subalpina Greene; Achillea subhirsuta Gilib.; Achillea submellifolium Klokov & Krytzka; Achillea sudetica Opitz;

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium...

61

Achillea sylvatica Becker; Achillea tanacetifolia Mill.; Achillea tanacetifolia var. dentifera W.D.J. Koch; Achillea tenuifolia Salisb.; Achillea tenuis Schur; Achillea tomentosa Pursh; Achillea virgata DC.; Achillios millefoliatus St.-Lag.; Alitubus millefolium (L.) Dulac; Chamaemelum millefolium (L.) E.H.L.  Krause; ­Chamaemelum tanacetifolium E.H.L.Krause; Millefolium officinale Gueldenst. ex Ledeb.; Millefolium vulgare Gueldenst. ex Ledeb.; Ptarmica borealis (Bong.) DC.; Santolina millefolium Baill.

Local Names Achillea arabica: Language: Uzbek: Buimadaron; Tadjik: Push; Tkhach. Achillea filipendulina: Russian: Tыcячeлиcтник тaвoлгoлиcтный (Tysyachelistnik tavolgolistnyy); Uzbek: Dastarbosh; Kyrgyz: Taбылгы жaлбыpaктуу кaз тaндaй (Tabylgy zhalbyraktuu kaz tanday); Tajik: Buymodaron (Буймодарон), Hazorbarg (Ҳазорбарг); Pamiri: Zirdos (Зирдос), Zirdados (Зирдадос), Zirdathaws (Зирдасаӯс), Zirdadosk (Зирдадоск), Zardsarak (Зардсарак); English: Fern-leaf yarrow (Sokolov 1993). Achillea millefolium: Uzbek: Buimadaron; Tadjik: Ummalaf; Hazorbarg; English: Yarrow.

Botany and Ecology Achillea аrabica: Perennial. Rhizome slender, branched, woody in upper part; plantsgrayish-green, more or less densely covered with long, weakly 98 appressed, hairs; stems few, less often solitary, straight or weakly flexuous, (12)20–35(60) cm high, finely sulcate, cylindrical below, weakly angular above, often with short leafy branches in axils of cauline leaves, simple, sometimes branched above. Cauline leaves pinnatisect, sessile, linear-lanceolate to oblong-linear, mostly upward directed, straight or more or less falcately bent upward; segments numerous, somewhat distant, especially in lower half of leaves, leaves longer at base, semiamplexicaul (auricles), pinnately cut or parted in 3(5) narrow, somewhat obtuse, linear, oblong-linear, less often lanceolate lobes, terminating in short, usually cartilaginous cusp; midrib usually narrow, not toothed; middle cauline leaves (2)3–4(10) cm long, with segments (2)3–5(8) mm long and lobes (1)2–3(4) mm long; uppermost leaves mostly with entire, narrow segments; leaves on nonflowering branches twice pinnately cut, petiolate, (5)8–12(25) cm long, with distant smaller segments in lower part. Capitula usually on short peduncles, in more or less dense, convex, compound, usually unequal corymbs. Receptacle convex or conical. Involucre oblong to ovate, 3–4  mm long, (2.0)2.5–3.0  mm in dia; involucral bracts thin-membranous, light colored, yellowish, usually glaucous, weakly carinate, with midrib prominent

62

O. K. Khojimatov and R. W. Bussmann

Fig. 1  Achillea arabica (Asteraceae), Jizzakh region, Uzbekistan. (Photo N.Yu. Beshko)

dorsally, white-membranous along margin, obtuse; outer bracts ovate or oblong, others oblong, bracts wide, oblong, less often broadly lanceolate, short, almost a half as long as tubular florets, thin-membranous, transparent. Ligules of outer florets golden or bright yellow, 1/2–1/3(2/7) as long as involucre, rotund-reniform or semi-­ circular, 1.0–1.5 (1.8) mm long, 1.5–2.0(3.0) mm wide, truncate above with 3-obtuse, unequal teeth. Achenes 1.0–1.25 mm long, cuneate-oblong, roundish at apex. Flowering May to August. On clayey, stony, sometimes sandy soils, less often on stony out-crops and gravel beds along riverbanks in foothill plains, foothills, and along mountain slopes up to 2500(3000) m, in desert, semi desert, steppe and less shrubby, forest and meadow vegetation. Also found in irrigated and unirrigated fields, and on old fields, wastelands, along roads, irrigation channels, etc. Central Asia: mountainous Turkmenia, Kara-Kum, Amu-Darya, Kyzyl-Kum (south), Pamiro-Alai Region Syr-Darya, Tien Shan, Lake Balkhash Region, Dzhungaria-­ Tarbagatai (Fig. 1). Achillea filipendulina: Perennial. Rhizome woody; whole plant more or less densely pubescent from slightly appressed hairs; stems less numerous, less often solitary, (25)40–70(120) cm high, erect, ribbed-sulcate, straight or weakly flexuous, simple, less often sparingly branched, densely leafy, very rarely with short branches in axils of cauline leaves. Leaves pubescent, with frequent punctate-alveolate glandular hairs on both sides, wide, oblong-lanceolate, pinnately parted, with decurrent oblong-lanceolate, or oblong, crenulate and obtusely toothed large segments; midrib of leaves serrate-dentate; leaves on nonflowering branches long- petiolate, up to 40  cm long; lower cauline leaves petiolate, middle 8–18  cm long, with (0.5)1.5–2.0(3.0) cm-long middle segments, lower 91 segments smaller, more remote; upper leaves sessile, smaller, uppermost about 1 cm long, filiform-linear, serrate-dentate or entire. Capitula with few or many flowers, in dense, large (to 10  cm in dia), compound, convex, unequal corymbs. Receptacle convex to

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium...

63

Fig. 2  Achillea filipendulina (Asteraceae), Tashkent region, Uzbekistan. (Photo N.Yu. Beshko)

oblong-­ cylindrical. Involucre oblong-obconical, often with elongate base, or oblong-­cylindrical, 3–4 to 9–10 mm long and about 2 mm in dia; involucral bracts deltoid-oblong, pubescent, pale; bracts oblong-lanceolate, much shorter than florets. All flowers tubular, or outer flowers short-ligulate, often irregular, with small (up to 1  mm long) three-lobed reniform-rotund, bright yellow ligules. Achenes oblong, 1.5–1.75 mm long. Flowering June to July (September). On gravel beds in river valleys, on stony, clayey, clayey-sandy soils along irrigation channels, springs and streams, as well as in old fields and open dry mountain slopes, in glades and along edges of mountain forests and shrub thickets. From foothill plains to upper part of the tree belts (Caucasus) and tree-shrub (Central Asia) vegetation. European part: Crimea (?); Caucasus: Ciscaucasia, Eastern and Southern Transcaucasia; Central Asia: Tien Shan, Syr-Darya, Pamiro-Alai (Fig. 2). Achillea millefolium: Perennial. Rhizome slender, creeping, branched; whole plant more or less covered with fine white hairs; stems few or solitary, usually weakly pubescent (finely floccose), (5)20–60(120) cm high, erect or ascending from base, erect, less often flexuous, simple or branched above, cylindrical, finely sulcate, with short leafy branches in axils of upper and middle cauline leaves. Leaves lanceolate, oblong-lanceolate, or almost linear, punctate-alveolate, twice or thrice pinnately cut, with numerous more or less remote segments (1.5–10 mm apart); lower cauline leaves and leaves of nonflowering branches 10–40 cm long, 0.8–5 cm wide, rachis 1–2 mm wide, leaves usually in upper part with solitary teeth between basal segments; lobes and teeth lanceolate, less often linear, 0.5–1.5 mm long, 0.3–0.4(0.5) mm wide, terminating in short cartilagenous cusp. Capitula in numerous, unequal, compound corymbs, 2–15 cm in dia. Involucre oblong to almost ovoid, 3–4(6) mm long, (2)3–4(5) mm in dia; involucral bracts green, carinate, with prominent midrib, membranous along margin, often brownish; bracts ovate to oblong-elliptical, membranous, floccose above, with scattered hairs on dorsal surface. Ligules of outer florets white, pink, or red. (1)2–4 mm long, 1.5–3.0(4.5) mm wide, more or less

64

O. K. Khojimatov and R. W. Bussmann

Fig. 3  Achillea millefolium (Asteraceae), Tashkent region, Uzbekistan. (Photo O.K. Khojimatov)

Fig. 4  Achillea millefolium (Asteraceae), Tashkent region, Uzbekistan. (Photo O.K. Khojimatov)

rotund, 2–3-toothed at apex, limb a half as long as involucre; tubular florets up to 20, glandular-hairy on outside. Flowering July–October. Ural, Caucasus, Altai, Middle Asia, on dry forest edges, clearings, in open forests, on dry meadows, slopes, railroad embankments, along roads, on the outskirts of fields. (Macbride and Weberbauer 1936–1995) (Figs. 3 and 4).

Phytochemistry Carbohydrates (glucose, galactose, arabinose, inositol), organic acids (aconite, amber), essential oils (azulene, caryophyllene, eucalyptol, borneol, bornylacetate, pinene, limonene, a-thujone, terpineol, aljojoen, cadinene, camphene, camphor,

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium...

65

copaene, cumIn aldehyde, cymol, eugenol, farnesene, furfural, gumulene, isoartemisiacetone, isobutyl acetate, limonene, menthol, myrcene, sabinene, a-terpinene, y-terpinene, terpinol-4, terpinolene), sesquiterpenoids (acetoxyartabsin, acetylbalkanolide, achillicine, achilline, austricine, balkhanide, dihydroacetoxytamatcine, hydroxyachilline, leucodine, millefine, millepholide), alkaloids (betaine, choline, trigonelline, achilleine), cyanogenic compounds, steroids (sitosterol, sitosterol acetate), phenolic compounds, tannins, phenolcarbonic acids (salicylic, coffee), coumarins, flavonoids (apigenine, luteoline, cosmosyne, luteoline, artemethine, kasticine, isoramnetine, vitexine, sertizine, orientine, quercetine, isovitoxine, apigenine, isoeryentin, vicenin), fatty acids (myristic, palmitic, stearic, oleic, linoleicc), coumarins, terpenoids (azulene, geraniol, citral, menton, carvone, a-thuyone, achilline). (Sokolov 1993).

Local Medicinal Uses Achillea arabica: is used against headaches, colds, stomach-ache, ulcers (Tetik et al. 2013). In folk medicine of Uzbekistan, decoction of aboveground mass and flowers is used in gastralgia, pulmonary tuberculosis, hemorrhoids, malaria, flatulency. Externally for stomatitis, gingivitis, laryngitis (Khalmatov 1964; Khojimatov 2021). Used against headaches, colds, stomach-ache, ulcers (Tetik et al. 2013). Achillea filipendulina: In folk medicine, decoction of flowers is used for headaches, colds, dysentery, asthma; It is considered a diuretic and hemostatic agent; dry flowers with honey are used as clay; grass is used when menstruation is delayed, for which the patient is smoked with smoke; external  – parkas in the event of a cut (Sakhobiddinov 1948). A decoction of the aerial part, an infusion of flowers for pulmonary tuberculosis, heart disease, externally for gingivitis, laryngitis, stomatitis (Khalmatov 1964; Khojimatov 2021). An infusion and a decoction of the aerial parts and flowers of Achillea filipendulina are used as a treatment for diarrhea, dysentery, gastrointestinal diseases, gynecological diseases and as an appetizer. To prepare an infusion, one teaspoon of the flowers or aerial parts is infused in 200 ml of boiled water for 15 minutes. For a decoction, two teaspoons of flowers or aerial parts are added to half a liter of water and boiled for 5 minutes. Sugar and honey are added to change the taste. To treat diarrhea and dysentery, half a glass of the infusion is taken before each meal for 7 days. A decoction of flowers is added to soups and taken in case of diarrhea or dysentery. A bath with a decoction is taken against gynecological diseases, such as colpitis, inflammation of the female genital organs, itching skin or allergy in or around the vagina. To treat gynecological diseases (colpitis), it is used together with Capparis spinosa var. herbacea L. and Amaranthus retroflexus L. It is also used to treat cardiovascular diseases. A decoction of dried flowers is used as a children’s digestive aid, and also to treat stomach-ache and cough (Liu et al. 2020; Jan et al. 2021).

66

O. K. Khojimatov and R. W. Bussmann

Achillea millefolium: In folk medicine, decoction of flowers is used for headaches, colds, dysentery, asthma; It is considered a diuretic and hemostatic agent; dry flowers with honey are used as vermifuge; Aerial part (grass) is used when menstruation is delayed, for which the patient is smoked with smoke; external – poultice in case of cut (Sakhobiddinov 1948). Water decoction of the aerial parts of plant, infusion of flowers used for pulmonary tuberculosis, heart diseases, externally pringivitis, laryngitis, stomatitis (Khalmatov 1964; Khojimatov 2021). Used for fever and cold (Gilani et  al. 2006), toothache, as tonic, dysentery (Akhtar et  al. 2018; Shah and Khan 2006); cough,profuse mucous discharges (Kayani et al. 2014); piles and leucorrhoea (Amjad et al. 2017), toothache, earache, tuberculosis, stomach disorders, fever (Ahmad and Habib 2014), as diaphoretic, stimulant, tonic, to treat fever, cold, hemorrhoids, headaches, diuretic, urinary disorders and menstrual problems (Shaheen et al. 2012), for wound healing, digestion, earache, toothache, tuberculosis (Ahmad et al. 2017); as tonic, astringent, stomachic, fever, cough, diarrhea flu, chest pain, black fever and cough (Ch et al. 2013), also to treat stomachache (Mahmood et  al. 2012). The species has decongestant, astringent, healing, diaphoretic, antipyretic and anti-inflammatory properties. The whole plant (including flowers) is prepared in infusion and is taken to promote menstruation, as a stimulant and against hemorrhoids. It is also used to relieve the symptoms of indigestion, flatulence and colitis. The whole plant is used to treat acne, boils, bot fly infestations, bruises, gallbladder, gastritis, strengthens digestive system, healing wounds, hemorrhage, hemorrhoids, lack of appetite, menstrual colic, nosebleed, skin ulcers, sores, and as analgesic and tonic; the Whole plant, leaves and flowers are used to treat indigestion, inflammation, spasms and as emmenagogue; leaves and flowers are used for blood cleansing. The infusion of flowers and roots is used to treat diarrhea and empacho. Fresh flowers and leaves are used to treat gastritis, diabetes, blood and cholesterol. The plant is also widely used for psychosomatic and nervous system disorders, gstro-intestinal problems, liver and gallbladder ailments and spiritual cleansing, as well as inflammations, and shows antibacterial and antifungal properties. It is also used as remedy for diabetes and cancer. The preparations exhibit low toxicity (Paniagua Zambrana et al. 2020). Species of Artemisia are also widely used in the Caucasus (Bussmann et al. 2017; Bussmann 2017). Widely used as wound healing agent and included in a variety of official pharmacopoeiae. In the Altai the leaves are chewed for toothache, and the plants are used as diuretic, antitumor, and woundhealing agent. In the Ural the decoction is used as hemostatic for internal bleeding and nosebleeds, as laxatives, for gastric problems, hemorrhoids, gastritis, stomach ulcers, kidney and urinary diseases, skin diseases and burns. In Middle Asia the leaves are used for rheumatism, bronchial asthma, heart disease, kidney disease, as diuretic, hemostatic and antipyretic as well as anthelmintic, for anemia, diarrhea and amenorrhea (Liu et al. 2020). Used for digestive problems (Ari et al. 2015). Smoke is applied to treat fever and respiratory tract problems (Mohagheghzadeh and Faridi 2006). An infusion and a decoction of the aerial parts and flowers of Achillea filipendulina are used as a treatment for diarrhea, dysentery, gastrointestinal diseases, gynecological diseases and as an appetizer. To prepare an infusion, one teaspoon of the flowers or aerial parts is infused in 200 ml of boiled water for 15 minutes. For a decoction, two teaspoons of flowers or aerial parts are added to half a liter of water

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium...

67

and boiled for 5 minutes. Sugar and honey are added to change the taste. To treat diarrhea and dysentery, half a glass of the infusion is taken before each meal for 7 days. A decoction of flowers is added to soups and taken in case of diarrhea or dysentery. A bath with a decoction is taken against gynecological diseases, such as colpitis, inflammation of the female genital organs, itching skin or allergy in or around the vagina. To treat gynecological diseases (colpitis), it is used together with Capparis spinosa var. herbacea L. and Amaranthus retroflexus L. It is also used to treat cardiovascular diseases. A decoction of dried flowers is used as a children’s digestive aid, and also to treat stomach-ache and cough (Liu et al. 2020).

Medicinal Uses of Other Species Achillea grandiflora: The leaves and the whole plant are used for wound care (Bussmann et al. 2020). Achillea micrantha: The leaves and the whole plant are used for wound care (Bussmann et al. 2020). Achillea nobilis: The leaves and whole pant are being used for wounds. The root extract is used to treat rheumatism Bussmann et al. 2020). Achillea tenuifolia Lam. is under research for its health effects and has supposed uses in traditional medicine for minor ailments. In Iraq and Jordan, an infusion of the leaves of Achillea tenuifolia is used for intestinal complications such as intestinal colics, dysentery, and often used as a flatulence reliever. In Turkey, the plant is traditionally used to treat abdominal pain, stomach-aches, and for the treatment of superficial wounds (Bader et al. 2003). Pharmacological studies of Achillea tenuifolia presented its antimicrobial, antioxidant, spasmolytic, antiulcer, antitumor, choleretic, antidiuretic, antidiabetic, and anti-inflammatory capabilities. Externally, the plant has been used to treat skin inflammation and skin irritation associated with various conditions in forms of a sits bath and a compress (Nemeth and Bernath 2008). Additionally, the dried aerial parts of the plant are traditionally used to treat symptoms of the common cold (Al-Snafi 2013).

Local Food Uses Achillea extracts are used to produce bitter liqueurs. (Liu et al. 2020; Jan et al. 2021). Achillea millefolium: The whole plant is used as filling for Khachapuri. The flowers are used as tea. (Bussmann et al. 2017, 2020; Bussmann 2017). Achillea filipendulina Lam.: Boiled flowers are added to flour soup and are given to women after delivery (Liu et al. 2020; Jan et al. 2021).

68

O. K. Khojimatov and R. W. Bussmann

Local Handicraft and Other Uses Achillea millefolium: Used as insect repellent. Serves as fodder for cattle, sheep, horses and camels. Planted as ornamenta. (Bussmann et al. 2020; Liu et al. 2020). An aerial part of the Achillea millefolium is used against parasites and in gastrointestinal diseases in calves. The mixture of the plant with hay contributes to its digestibility in livestock (Ges and Gorbach 1977). The insecticidal and repellent activities of aerial parts of Achillea tenuifolia are attributed to the oil content of the plant. Domestic flies and honeybees displayed a significant response to the plant’s insecticidal and repellent activities. However, there has not been much study on its insecticidal and repellent effects on other organisms. Additionally, there has not been further research on determining the active constituents responsible for the plant’s insecticidal and repellent properties. Widely used in pest management. For this purpose, 800 g of the aerial parts including the flowers are infused in ten liters of boiled water for 40 minutes. Before application, 40 g of soap is added to the infusion. The infusion is sprayed on vegetables and/or trees in the evening, before sunset. The aerial parts of the plant, including the flowers, are also put within the furrows of vegetables to deter pests (Liu et al. 2020; Jan et al. 2021).

References Ahmad KS, Habib S (2014) Indigenous knowledge of some medicinal plants of Himalaya region, Dawarian village, Neelum valley, Azad Jammu and Kashmir, Pakistan. Univ J Plant Sci 2(2):40–47 Ahmad KS, Hamid A, Nawaz F, Hameed M, Ahmad F, Deng J, Mahroof S (2017) Ethnopharmacological studies of indigenous plants in Kel village, Neelum Valley, Azad Kashmir, Pakistan. J Ethnobiol Ethnomed 13(1):68 Akhtar R, Mir TA, Showkat S (2018) Ethnomedicinal observations among the inhabitants of sarf naar area of Shiekhpora-Kreeri, Baramulla, Jammu and Kashmir. J Med Plants 6(3):78–81 Al-Snafi AE (2013) Chemical constituents and pharmacological activities of milfoil (Achillea santolina). A review. Int J PharmTech Res 5:1373–1377 Amjad MS, Arshad M, Saboor A, Page S, Chaudhari SK (2017) Ethnobotanical profiling of the medicinal flora of Kotli, Azad Jammu and Kashmir, Pakistan: empirical reflections on multinomial logit specifications. Asian Pac J Trop Med 10(5):503–514 Ari S, Temel M, Kargıoğlu M, Konuk M (2015) Ethnobotanical survey of plants used in Afyonkarahisar-Turkey. Arı et  al. J Ethnobiol Ethnomed 11:84. https://doi.org/10.1186/ s13002-­015-­0067-­6 Bader A, Flamini G, Cioni PL, Morelli I (2003) Essential oil composition of Achillea santolina L. and Achillea biebersteinii Afan. collected in Jordan. Flavour Fragr J 18(1):36–38. https:// doi.org/10.1002/ffj.1147 Bussmann RW, Batsatsashvili K, Kikvidze Z, Paniagua-Zambrana NY, Ghorbani A, Nasab FK, Khutsishvili M, Maisaia I, Sikharulidze S, Tchelidze D (2020) Achillea grandiflora M. Bieb.; Achillea micrantha Willd.; Achillea millefolium L.; Achillea nobilis L.; Achillea ptarmicifolia (Willd.) Rupr. ex Heimerl. In: Batsatsashvili K, Kikvidze Z, Bussmann RW (eds) Ethnobotany of mountain regions far Eastern Europe. Springer International Publishing, Cham. https://doi. org/10.1007/978-­3-­319-­77088-­8_5-­2

Achillea arabica Kotschy, Achillea filipendulina Lam., Achillea millefolium...

69

Ch MI, Ahmed F, Maqbool M, Hussain T (2013) Ethnomedicinal inventory of flora of maradori valley, district forward Khahuta, Azad Kashmir, Pakistan. Am J Res Commun 1(6):239–261 Ges DK, Gorbach NV (1977) Lekarstvennie rasteniya i ikh primenenie. – Minsk, “Nauka i tekhnika”. 552 P. (In Russian) Gilani SA, Qureshi RA, Gilani SJ (2006) Indigenous uses of some important ethnomedicinal herbs of Ayubia National Park, Abbottabad, Pakistan. Ethnobotanical Leaflets 2006(1):32 Jan HA, Bussmann RW, Paniagua-Zambrana NY (2021) Achillea millefolium L. ssp. millefolium. In: Kunwar RW, Sher H, Bussmann RW (eds) Ethnobotany of the Himalayas. Springer, Cham Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, Yaseen G (2014) Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. J Ethnopharmacol 156:47–60 Khalmatov KK (1964) Dikorastushie lekarstvennie rasteniya Uzbekistana. – Tashkent. 278 P. (In Russian) Khojimatov OK (2021) Lekarstvennie rasteniya Uzbekistana (properties, use and sustainable using). – Tashkent, Ma’naviyat. 328 P. (In Russian) Liu B, Bussmann RW, Batsatsashvili K, Kikvidze Z, Akobirshoeva A, Ghorbani A, Kool A (2020) Achillea asiatica Serg.; Achillea filipendulina Lam.; Achillea millefolium L.; Achillea setacea Waldst. & Kit. In: Batsatsashvili K, Kikvidze Z, Bussmann RW (eds) Ethnobotany of mountain regions Central Asia and Altai. Springer International Publishing International Publishing, Amsterdam. https://doi.org/10.1007/978-­3-­319-­77087-­1_11-­1 Macbride JF, Weberbauer A (1936–1995) Flora of Peru. Field Museum, Chicago Mahmood A, Mahmood A, Malik RN (2012) Indigenous knowledge of medicinal plants from Leepa valley, Azad Jammu and Kashmir, Pakistan. J Ethnopharmacol 143(1):338–346 Mohagheghzadeh A, Faridi P (2006) Medicinal smokes. J Ethnopharmacol 108:161–184 Nemeth E, Bernath J (2008) Biological activities of yarrow species (Achillea spp.). Curr Pharm Des 14(29):3151–3167. https://doi.org/10.2174/138161208786404281 Paniagua Zambrana NY, Bussmann RW, Romero C (2020) Achillea millefolium L.  In: Paniagua Zambrana NY, Bussmann RW (eds) Ethnobotany of mountain regions  – ethnobotany of the Andes. Springer International Publishing, Cham. https://doi. org/10.1007/978-­3-­319-­77093-­2_6-­1 Sakhobiddinov SS (1948) Dikorastushie lekarstvennie rasteniya Srednei Azii. – Tashkent. Gosizdat UzSSR. 216 P. (In Russian) Shah GM, Khan MA (2006) Checklist of medicinal plants of Siran Valley, Mansehra, Pakistan. Ethnobotanical Leaflets 2006(1):6 Shaheen H, Shinwari ZK, Qureshi RA, Ullah Z (2012) Indigenous plant resources and their utilization practices in village populations of Kashmir Himalayas. Pak. J Bot 44(2):739–745 Sokolov PD (ed) (1993) Plant resources of the USSR: flowering plants, their chemical composition, use, vol 7. Family Asteraceae (Compositae). Akademia Nauk, Leningrad. 352 p. (in Russian) Tetik F, Civelek S, Cakilcioglu U (2013) Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 146:331–346

Acorus calamus L. - ACORACEAE Dilovar T. Khamraeva, Olim K. Khojimatov, and Rainer W. Bussmann

Acorus calamus L. Synonyms: Calamus aromaticus Garsault

Local Names Acorus calamus: Russian: Аир болотный (Air bolotniy), Аир обыкновенный (Air obiknovenniy), Аир тростниковый (Air trostnikoviy); Uzbek: Игир (Igir); Kyrgyz: Каламус Сазы (Kalamus Sazi); Kazakh: Каламус Батпақты (Kalamus Batlakti); Tadjik: Ботлоқи Каламус (Botloki Kalamus); English: Calamus, Flagroot, Myrtle-Flag, Sweet Calamus, Sweet-Flag, Sweetroot. Acorus calamus: Perennial, rhizome stout (to 3 cm in diameter), creeping, covered with long fiber-roots; leaves narrowly linear, ensiform (1–2 or more cm broad in var. vulgaris L. and 5–8 mm in var. angustatus Bess.). Stem 60–100 cm tall, grooved on one side and sharp-ribbed on the opposite side, the rib extending into the leaf-like spathe; spadix cylindrical, conical, attenuate at the summit, obtuse, divergent, 4–12 cm long, covered throughout with greenish- yellow perfect flowers; perianth segments hyaline, oblong, somewhat thickened and incurved at the summit. D. T. Khamraeva · O. K. Khojimatov Tashkent Botanical Garden named after Academician F. N. Rusanov at Institute of Botany of Uzbek Academy of Sciences, Tashkent, Uzbekistan e-mail: [email protected]; [email protected] R. W. Bussmann (*) Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_5

71

72

D. T. Khamraeva et al.

Flowering in the second half of May. Shores of rivers, streams, stagnant waters, and marshes. The plant became established in Europe only at the middle of the XVI century. Live rootstocks were first introduced to Prague and Vienna from Constantinople. The seeds do not mature. In addition to natural distribution, it is spread by artificial propagation (Komarov and Shishkin 1935) (Figs. 1, 2, and 3). Fig. 1  Acorus calamus (Acoraceae), Tashkent Botanical Garden, Tashkent, Uzbekistan. (Photo O.K. Khojimatov)

Fig. 2  Acorus calamus (Acoraceae), Tashkent Botanical Garden, Tashkent, Uzbekistan. (Photo O.K. Khojimatov)

Acorus calamus L. - ACORACEAE

73

Fig. 3  Acorus calamus (Acoraceae), Tashkent Botanical Garden, Tashkent, Uzbekistan. (Photo O.K. Khojimatov)

Phytochemistry Acorus calamus: Calamus root extract contains 45–65% of vapor volatile components (thanks to which it is known as a flavor), as well as 10–20% of such active phytochemicals as acorenone, acorone, isoacorone, cryptoacorone and beta-azarone (  hexane (42.67  ±  0.08  μg PEs/mg)  >  chloroform (19.38 ± 0.88 μg PEs/mg). Thirteen phenolic and organic acid compounds namely p-hydroxybenzoic acid (0.01 μg/g d.w.), coumarin derivative (0.05 μg/g d.w.), vanillin (0.07 μg/g d.w.), protocatechuic acid (0.17 μg/g d.w.), fumaric acid (0.33 μg/g d.w.), ellagic acid (0.39 μg/g d.w.), ferulic acid (0.46 μg/g d.w.), 2,4-­dihydroxybenzoic acid (0.48  μg/g d.w.), trans-cinnamic acid (0.51  μg/g d.w.), catechin hydrate (0.91 μg/g d.w.) p-coumaric acid (3.04 μg/g d.w.), gallic acid (5.01 μg/g d.w.), and trans-2-hydroxy cinnamic acid (10.05 μg/g d.w.) were identified in the F. torulosa methanol extract (Deveci et al. 2019b). Stojanova et al. (2021) determined the polyphenol content from the aqueous and ethanolic extracts of F. torulosa. The results demonstrated that phenol content is as follows: of aqueous extract of F. torulosa – 19.85 + 18.18%; of ethanolic extract was 15.71 + 16.36%.

Triterpenes The investigation of Béni et  al. (2021) from the methanol extract of F. torulosa resulted in the isolation of a novel triterpene, 22S-hydroxy-8,24-dien-3-­ norlanosta-28-oic acid (fuscoporic acid). Inoscavin A and its previously undescribed Z- isomer, 3,4-dihydroxy-benzaldehyde, natalic acid, osmundacetone and senexdiolic acid as well as ergosta-7,22-diene-3-one were identified in F. torulosa methanol extract. The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analyses, and molecular modelling studies. The same year two new curious pentacyclic triterpenoids were isolated from the fungus F.

Fuscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) T. Wagner…

1127

torulosa; their structures were established as 3,7,11-trioxo-20,21-seco-olean-1,12-­ dien-­ 21,20-lactone (fuscotorunone A), and 3,7-dioxo-20,21-seco-olean-1, 12-dien-21,20-lactone (fuscotorunone B). Fuscotorunones A and B, each of which has a unique ε-caprolactone in ring E which are very rare in nature (Noji et al. 2021).

Steroids Deveci et  al. (2019a) isolated and identified a new steroid named 5α,8α-­ epidioxyergosta-­6,22-dien-3β-il-palmitate and four known steroids, as ergosta-­4,6,8(14),22-tetraen-3-one; ergosterol peroxide; 28-norolean-12-en-3β-ol; β-sitosterol from the chloroform, acetone, and methanol extracts of F. torulosa. Recently, Noji et  al. (2021) isolated and identified ergone (ergosta-4,6,8(14),22-­ tetraen-­ 3-one), campesterol (ergost-5-en-3-ol) and castanopsone (3-hydroxyolean-12-en-1-one) from the methanol extract of F. torulosa.

Macroelements Azeem et al. (2022) reported the contents of macroelements, trace elements, and some non-essential elements of wild basidiocarps of F. torulosa collected from India. The wild basidiocarps of F. torulosa were rich in various macroelements such as Ca  – 763.3  ±  14.53  mg/kg dry weight; Cl  – 89.53  ±  0.37  mg/kg d.w.; K  – 250 ± 17.32 mg/kg d.w.; Mg – 96.6 ± 8.819 mg/kg d.w.; Na – 56 ± 1.55 mg/kg d.w.; P – 126.7 ± 12.01 mg/kg d.w.; S – 170 ± 11.55 mg/kg d.w. The contents of trace elements in fruit bodies of F. torulosa are as follows: Cu – 19.6 ± 0.23 mg/kg d.w.; Cr – 26 ± 1.73 mg/kg d.w.; Fe – 380 ± 11.55 mg/kg d.w.; Mn − 19.77 ± 0.14 mg/kg d.w.; Mo  – 19.57  ±  0.23  mg/kg d.w.; Ni  – 20.67  ±  1.21  mg/kg d.w.; Si  – 540 ± 11.55 mg/kg d.w.; Zn – 9.63 ± 0.23 mg/kg d.w. The contents of some nonessential elements in fruit bodies of F. torulosa are: Al – 186.7 ± 14.53 mg/kg d.w.; Br – 32 ± 1.73 mg/kg d.w.; Rb – 28 ± 1.15 mg/kg d.w.; Sr – 56.67 ± 1.76 mg/kg d.w.; Ti – 19.67 ± 0.21 mg/kg d.w. In addition, the content of vitamins in fruit bodies of F. torulosa is as follows: vitamin C  – 9.32  mg/100  g d.w.; vitamin D2–1.55 ± 0.014 mg/100 g d.w. (Azeem et al. 2022).

Enzymatic Potential Aftab et al. (2020) investigated F. torulosa from multiple harvests by a solid state fermentation assay for qualitative assessment of laccase using malt extract agar medium supplemented with two oxidizing agents such as guaiacol and 2,2′-azino-­ bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). Qualitative assay analysis

1128

Y. Gafforov et al.

revealed that F. torulosa possesses the ability to synthesize laccase enzyme at pH 4.0 on malt extract agar medium with ABTS. F. torulosa exhibited potential for laccase biosynthesis in a zone of inhibition of 10.7 ± 0.54 mm.

Local Medicinal Uses Fuscoporia contigua: To our knowledge, data on the local medicinal uses of this fungus are not known. Fuscoporia torulosa: To our knowledge, data on the traditional medicinal uses of this mushroom are unknown.

Modern Medicinal Uses Fuscoporia contigua: Data on the therapeutic properties of F. contigua are unknown. Fuscoporia torulosa: According to the scientific literature, the bioactive compounds isolated from F. torulosa treated anemia (Ying et al. 1987; Dai et al. 2009), demonstrated cytotoxic and anticancer properties (Deveci et al. 2019a; Béni et al. 2021) as well as antioxidant (Deveci et al. 2019a, b; Azeem et al. 2020; Béni et al. 2021; Stojanova et al. 2021), antihyperglycaemic (Azeem et al. 2021), and anticholinesterase (Deveci et al. 2019b) properties. We will describe some of these activities in a little more detail.

Antibacterial and Antifungal Properties Dulger et al. (2005) tested extracts of F. torulosa for antimicrobial activity against some Gram (+) and Gram (−) bacteria, yeasts, filamentous fungi and actinomycetes. As a result, all the extracts of F. torulosa (acetone, chloroform, ethyl acetate, ethanol) showed more antifungal activities than antibacterial activities. In the 2010s, Kovács et al. (2017) examined the potential pharmacological activity of F. torulosa. Organic (n-hexane, chloroform, 50% methanol) and aqueous extracts from F. torulosa were analysed for their antimicrobial, properties. F. torulosa showed moderate antibacterial activity. Bacillus subtilis and methicillin-­ resistant Staphylococcus aureus were the most sensitive strains to F. torulosa extracts. Then Covino et al. (2019) reported than antibacterial activity of F. torulosa methanol extract was tested against three Gram(−) strains, namely Pseudomonas aeruginosa (American Type Culture Collection (ATCC) 15442), Escherichia coli (ATCC

Fuscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) T. Wagner…

1129

10536), and Salmonella typhimurium (clinical isolate), and four Gram(+) strains, i.e., S. aureus (ATCC 6538), Enterococcus faecalis (clinical isolate), B. cereus (ATCC 12826), and B. subtilis (environmental isolate). Gram(+) bacteria, particularly those belonging to the genus Bacillus (i.e., B. subtilis and B. cereus) were more susceptible than Gram (−) ones to the methanol extract. In the study, the Gram(−) strain of E. coli showed MIC values equal to those of Bacillus spp., with complete growth inhibition using 1.13 mg ml−1 of F. torulosa methanol extract. Other bacterial strains showed an MIC between 1.13 and 2.27 mg ml−1 methanolic extract. In addition, Covino et al. (2019) highlighted that F. torulosa methanol extract used at a concentration of 2.27 mg ml−1 inhibited the growth of fungal isolates. Four references fungal strains resistant to amphotericin B and itraconazole, including plant-pathogens (Sclerotinia sclerotiorum (Lib.) de Bary and Verticillium sp.) and clinical fungal species (Aspergillus tubingensis Mosseray, Penicillium chrysogenum Thom) responsible for human cutaneous infection, were used for minimum inhibitory concentrations (MIC) determination. Two well-known plant pathogens, namely Sclerotinia sclerotium and Verticillium sp., were unable to grow in all culture media supplemented with F. torulosa extract, even at the lowest concentration used (0.57 mg ml−1). At 1.13 mg ml−1, the growth of Aspergillus minutus and Penicillium chrysogenum growth was inhibited while the same concentration was simply fungistatic for Aspergillus tubingensis, given the visible turbidity in its culture media (Covino et al. 2019). Recently, Béni et  al. (2021) reported the compounds fuscoporic acid, natalic acid, senexdiolic acid and ergosta-7,22-diene-3-one were examined for their antibacterial properties on resistant clinical isolates. The antimicrobial effect of these compounds was determined on E. coli (ATCC 25922), Salmonella enterica serovar Typhimurium 14028  s, S. aureus (ATCC 25,923) and S. aureus (ATCC 27,213; methicillin and ofloxacin resistant clinical isolate) strains. However, none of the compounds produced a significant antibacterial effect (MIC >100 μM). The same year, the compounds fuscotorunone A and B were tested for in vitro antimicrobial activity against B. subtilis, S. aureus, and Candida albicans (Noji et  al. 2021). According to the authors, although the EtOAc extract of F. torulosa was active with a minimum inhibitory concentration (MIC) of 25 μg/ml against S. aureus, and MIC of 100 μg/ml against B. subtilis, compounds fuscotorunone A and B, unfortunately, had no activity against any of the microorganisms tested.

Antioxidant Property Seephonkai et al. (2011) investigated the antioxidant activity and total phenolic content (TPC) from the crude extracts and crude fractions of F. torulosa collected from northeast Thailand. The samples were tested for their radical scavenging activity toward 2,2-diphenyl-1-pricylhydrazyl radical (DPPH method) and TPC (Folin-­ Ciocalteu method). Some of the investigated extracts exhibited potent radical scavenging activity with the IC50 ranging from 7.30 ± 0.34 to 19.80 ± 0.13 μg·mL−1. IC50

1130

Y. Gafforov et al.

were in the range of the standard antioxidant used; quercetin, ascorbic acid and butylated hydroxytoluene (BHT). The strongest scavenging activity as comparable to quercetin was found in the crude 80% EtOH extract of F. torulosa. Later, Khadhri et al. (2017) studied antioxidant activity of the ethanol extract of F. torulosa and showed high antioxidant activity using DPPH assay (IC50 = 0.025 mg mL−1). The same year Kovács et al. (2017) investigated the hexane, chloroform, 50% methanol, and water extracts of F. torulosa for the radical scavenging activities using DPPH and oxygen radical absorbance capacity (ORAC). F. torulosa showed high antioxidant activities as DPPH EC50 (7.981 ± 0.65 μg/mL) and ORAC (2592.06  ±  228.07  μg Trolox equivalent/mg); the aqueous extract is more active in antioxidants than the organic extracts (Kovács et al. 2017). Deveci et al. (2019a) used isolated compounds as 2,3-dihydroxy cinnamic acid, 3,4-dihydroxy-benzaldehyde, oleanolic acid, oleanonic acids, and 4-(3,4-­dihydroxyphenyl)but-3-en-2-one of F. torulosa to identify its antioxidant activity. They found that 2,3-dihydroxy cinnamic acid and 3,4-dihydroxy-­ benzaldehyde displayed higher antioxidant activity than α-tocopherol and butylated hydroxyanisole (BHA) which are used as standards in ABTS, DPPH, and cupric reducing antioxidant capacity (CUPRAC) assays. Both oleanolic acid and oleanonic acid were determined as the most active compounds. Among all isolated compounds, 4-(3,4-dihydroxyphenyl)but-3-en-2-one exhibited the highest tyrosinase inhibitory activity. The same year, the hexane, chloroform, acetone, methanol, and water extracts of F. torulosa were investigated for their antioxidant activities by Deveci et al. (2019b). All extracts showed antioxidant activities in a dose-dependent manner. The methanol extract of F. torulosa demonstrated the highest antioxidant activity in all tests except the metal chelating test, followed by the acetone extract. Antioxidant activity of the methanol extract of F. torulosa was found to be higher than α-tocopherol and butylhydroxyanisole (BHA) used as standards in DPPH•, ABTS•+ and CUPRAC assays with IC50 values of 15.03  ±  0.25, 10.06  ±  0.87, and A0.50 value of 17.43 ± 0.29 μg/mL, respectively. The acetone extract of F. torulosa showed higher antioxidant activity than α-tocopherol in DPPH assay (IC50 = 25.66 ± 0.38 μg/mL), it showed higher antioxidant activity than α-tocopherol and BHA in ABTS (IC50 = 11.53 ± 0.41 μg/mL) and CUPRAC (A0.50 = 17.93 ± 0.06 μg/mL) assays (Deveci et al. 2019b). Also, Deveci et al. (2019c) investigated the antioxidant activity of the polysaccharide extracts of F. torulosa. Antioxidant activities of the polysaccharide extracts were monitored using metal chelating activity on Fe2+ assay, ABTS cation radical scavenging assay, DPPH free radical scavenging assay, and β-carotene-linoleic acid assay. EDTA, α-tocopherol, and BHA were used as antioxidant standards for comparison of the activities. The activity of the polysaccharide extracts F. torulosa are as follows: β-carotene-linoleic acid (IC50 = 6.56 ± 0.37 μg/ mL), DPPH (IC50  =  80.42  ±  0.48  μg/mL), ABTS (IC50  =  36.48  ±  0.81  μg/mL), CUPRAC, (IC50  =  115.68  ±  0.41  μg/mL) and metal chelating assays (IC50 = 73.68  ±  1.23  μg/mL). In metal chelating assay, F. torulosa polysaccharides indicated the highest metal chelating activity with inhibition values.

Fuscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) T. Wagner…

1131

Azeem et al. (2020) studied the antioxidant potential of F. torulosus using different tests. The ethanol extract of the fruiting bodies of F. torulosus was evaluated in vitro for scavenging potential against DPPH, hydroxyl radicals, superoxide radicals, as well as for the reducing power. The free radical scavenging activity of the extract from F. torulosus exhibited significant DPPH and superoxide radical scavenging activities, when compared to the standard catechin. When compared to the standard as the reduced form of glutathione, the F. torulosus extract exhibited a high significant reducing power (EC50 = 320 ± 0.02 μg/mL). According to the authors, the free radical scavenging efficacy of the examined mushroom showed positive correlation with their phenol content. F. torulosa appears a significant natural resource of antioxidants and could be incorporated in nutraceuticals/pharmaceuticals after detailed studies. Béni et  al. (2021) also investigated the antioxidant properties of F. torulosa. Inoscavin A plus its Z isomer as well as 3,4-dihydroxy-benzaldehyde plus osmundacetone were evaluated for their antioxidant activity using ORAC and DPPH assays: combined 3,4-dihydroxy-benzaldehyde plus osmundacetone demonstrated a considerable antioxidant effect with EC50 values of 0.25  ±  0.01  μg/mL (DPPH) and 12.20 ± 0.92 mmol TE/g (ORAC). Stojanova et al. (2021) determined the antioxidant potential of the aqueous and the ethanolic extracts of F. torulosa. According to the data based on the values for Antioxidant Activity Index (AAI), the aqueous extract of F. torulosa belongs to the group of antioxidants with strong antioxidant activity (1.71). The examined extracts show significantly better antioxidant properties in terms of chelation of iron ions compared to citric acid, but none of the extracts is competitive with EDTA at any of the tested concentrations. According to the data, aqueous extracts of F. torulosa had higher content of total phenols, and as a consequence better ability to capture DPPH radicals, the ability to reduce iron ions, and the ability to chelate iron ions. The antioxidant potential proven in the analyzed F. torulosa extracts shows that they can be used in the food industry as a substitute for synthetic antioxidant compounds. At the same time, the extract can be a basis for use in alternative medicine (Stojanova et al. 2021).

Anticholinesterase Activity Deveci et al. (2019b) investigated the hexane, chloroform, acetone, methanol and water extracts of F. torulosa for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities using a spectrophotometric method developed by Ellman et  al. (1961). All extracts except the water extract showed anticholinesterase activities in a dose dependent manner. Among the extracts of F. torulosa, the hexane extract proved to be the most active but nevertheless moderate against AChE enzyme as 41.34  ±  1.50% of 100  μg/mL concentration of the extract compared with 78.76 ± 0.52% of 100 μg/mL concentration of galantamine standard. Hexane and aqueous extracts were inactive against BChE enzyme. The

1132

Y. Gafforov et al.

chloroform, acetone and methanol extracts indicated moderate activity against BChE enzyme with inhibition value of 35.18 ± 0.55, 40.78 ± 0.30 and 45.39 ± 0.65% of 100  μg/mL concentration of the extract, respectively, when compared with 79.27 ± 0.56% of 100 μg/mL concentration of galantamine standard (Deveci et al. 2019b). Also, Deveci et al. (2019c) investigated about anticholinesterase inhibitory activity of the polysaccharide extracts of F. torulosa. Against AChE enzyme and against BChE enzyme F. torulosa polysaccharides were found to show low inhibitory activities with inhibition values of 5.16 ± 1.04 and 27.63 ± 0.51% of 200 μg/ mL concentration of the extracts, respectively, when compared with 80.41.27 ± 0.98% and 82.23 ± 0.67% of 200 μg/mL concentration of galantamine standard.

Antihyperglycemic Property There is a strong demand for exploring natural resource-based oral antidiabetic agents. Carbohydrate metabolism management for controlling postprandial hyperglycaemia (PPH) is an effective approach for the treatment of type 2 diabetes. Starch is a major carbohydrate in the daily diet and its digestion is carried out by pancreatic α-amylase and intestinal α-glucosidase. Based on the results of in vitro study Azeem et  al. (2021) reported that hydroalcoholic extract of Phellinus torulosus have a marked influence on starch metabolism (inhibition of α-amylase and α-glucosidase). The mushroom extract showed a concentration-dependent increase in enzyme inhibition when compared to acarbose standard (1 mg/ml). Hydroalcoholic extract of F. torulosus caused maximum enzyme inhibition as 91.82 ± 0.60% (compared with 95.17 ± 1.22% for the standard) and hence maximum lowering in glucose liberation at a concentration of 250 mg/mL (Azeem et al. 2021).

Cytotoxic and Anticancer Activities Deveci et al. (2019a) evaluated cytotoxic activities against MCF-7 (breast cancer), PC-3 (prostate cancer), and 3 T3 (nontumor) cells of the hexane, chloroform, acetone, and methanol extracts of F. torulosa. According to their results; the methanol extract and oleanonic acid showed the best cytotoxicity against MCF-7, whereas the hexane extract and oleanolic acid displayed the highest cytotoxicity against PC-3. Recently, Béni et  al. (2021) reported that compounds fuscoporic acid, natalic acid, senexdiolic acid, and ergosta-7,22-diene-3-one isolated from F. torulosa were examined for their cytotoxic activity on sensitive and resistant Colo 205 and Colo 320 colon adenocarcinoma cell lines, and on the normal MRC-5 embryonal fibroblast cell line with doxorubicin as a standard. Ergosta-7,22-diene-3-one was effective against colon adenocarcinoma cells as Colo 205 (ATCC-CCL-222) doxorubicin sensitive parent (IC50 = 11.65 ± 1.67 μM), Colo 320/MDR-LRP (ATCC-CCL-220.1) resistant to anticancer agents expressing ABCB1 (IC50 = 8.43 ± 1.1 μM), and MRC-5

Fuscoporia contigua (Pers.) G. Cunn.; Fuscoporia torulosa (Pers.) T. Wagner…

1133

(ATCC CCL-171) human embryonic lung fibroblast (IC50 = 7.92 ± 1.42 μM) cell lines. A potentially synergistic relationship was investigated between ergosta-7,22-­ diene-­3-one and doxorubicin, which revealed synergy between the two compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521 ± 0.15 (Béni et al. 2021).

Folk Recipes Fuscoporia spp: To our knowledge the data on the folk recipes of this mushroom are not known.

Local Food Uses Edibility, aroma and flavor. Fuscoporia spp: without distinctive taste, inedible.

References Aftab A, Siddique I, Aftab M, Yousaf Z, Chaudhry FA (2020) Wood degrading mushrooms potentially strong towards laccase biosynthesis in Pakistan. Wood Res 65:809–818 Azeem U, Shri R, Dhingra GS (2020) In vitro antioxidant efficacy of some selected medicinal mushrooms from India. Int J Med Mushrooms 22:641–649 Azeem U, Shri R, Dhingra GS (2021) In vitro and in vivo antihyperglycemic activities of medicinal mushrooms (Agaricomycetes) from India. Int J Med Mushrooms 23:29–41 Azeem U, Shri R, Dhingra GS (2022) Mineral elements and vitamins from wild wood inhabiting Basidiocarps of some medicinal mushrooms (Agaricomycetes) from India. Int J Med Mushrooms 24:53–62. https://doi.org/10.1615/IntJMedMushrooms.2022043411 Bal C, Akgul H, Sevindik M, Akata I, Yumrutas O (2017) Determination of the anti-oxidative activities of six mushrooms. Fresenius Envir Bull 26:6246–6252 Béni Z, Dékány M, Sárközy A, Kincses A, Spengler G, Papp V, Hohmann J, Ványolós A (2021) Triterpenes and phenolic compounds from the fungus Fuscoporia torulosa: isolation, structure determination and biological activity. Molecules (Basel, Switzerland) 26:1657. https://doi. org/10.3390/molecules26061657 Bernicchia A (2005) Polyporaceae S.L. (Fungi Europaei Vol. 10). Edizioni Candusso. Italy Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Segrate, Romar, 903 p Chen Q, Wu F, Ji XH, Si J, Zhou LW, Tian XM, Vlasák J, Dai YC (2019) Phylogeny of the genus Fuscoporia and taxonomic assessment of the F. contigua group. Mycologia 111(3):423–444. https://doi.org/10.1080/00275514.2019.1570749 Chen Q, Du P, Vlasák J, Wu F, Dai YC (2020) Global diversity and phylogeny of Fuscoporia (Hymenochaetales, Basidiomycota). Mycosphere 11(1):1477–1513. https://doi.org/10.5943/ mycosphere/11/1/10

1134

Y. Gafforov et al.

Covino S, D'Ellena E, Tirillini B, Angeles G, Arcangeli A, Bistocchi G, Venanzoni R, Angelini P (2019) Characterization of biological activities of methanol extract of Fuscoporia torulosa (Basidiomycetes) from Italy. Int J Med Mushrooms 21:1051–1063. https://doi.org/10.1615/ IntJMedMushrooms.2019032896 Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11:287–302 Deveci E, Tel-Çayan G, Duru ME, Öztürk M (2019a) Isolation, characterization, and bioactivities of compounds from Fuscoporia torulosa mushroom. J Food Biochem 43:e13074 Deveci E, Tel-Çayan G, Duru ME (2019b) Evaluation of phenolic profile, antioxidant and anticholinesterase effects of Fuscoporia torulosa. Int J Second Metab 6(1):79–89 Deveci E, Çayan F, Tel-Çayan G, Duru ME (2019c) Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J Food Biochem 43:e12965 Dulger B, Suerdem TB, Yesilyurt D, Hacioglu N, Camdeviren A (2005) Evaluation of antimicrobial activity of macrofungus Phellinus torulosus. J Biol Sci 5:436–439 Ellman GL, Courtney KD, Andres V, Featherston RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95 Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-­ inhabiting Poroid and Corticioid fungi in Uzbekistan. Front Microbiol 11:598321 Gafforov Y, Ordynets A (2022) Aphyllophoroid fungi of Uzbekistan. Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan. Occurrence Dataset. Available online at: GBIF.org. Accessed 13 Aug. https://doi.org/10.15468/vsru5z González AG, Expósito TS, Barrer JB, Castellano AG, Marante FJT (1993) The absolute stereochemistry of senexdiolic acid at C-22. J Nat Prod 56:2170–2174 González AG, Siverio T, Marante FJT, Pirez MJM, Tejeras EB, Barreras JB (1994) Lanosterol derivatives from Phellinus torulosus. Phytochemistry 35:1523–2152 Khadhri A, Aouadhi C, Aschi-Smiti S (2017) Screening of bioactive compounds of medicinal mushrooms collected on Tunisian territory. Int J Med Mushrooms 19:127–135 Kovács B, Zomborszki ZP, Orbán-Gyapai O, Liktor-Busa E, Lázár A, Papp V, Urbán E, Hohmann J, Ványolós A (2017) Investigation of antimicrobial, antioxidant, and xanthine oxidase–inhibitory activities of Phellinus (Agaricomycetes) mushroom species native to Central Europe. Int J Med Mushrooms 19:387–394 Noji M, Yoneyama T, Nishihama K, Elshamy AI, Hashimoto T, Umeyama A (2021) Pentacyclic triterpenoids, fuscotorunones A and B, with ε-caprolactone in ring E from Fuscoporia torulosa. Phytochemistry 187:112748. https://doi.org/10.1016/j.phytochem.2021.112748 Ryvarden L, Gilbertson RL (1994) European polypores. 2. Meripilus—Tyromyces; Fungi Flora: Oslo, p. 743 Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31, Fungiflora. Oslo Seephonkai P, Samchai S, Thongsom A, Sunaart S, Kiemsanmuang B, Chakuton B (2011) DPPH radical scavenging activity and total phenolics of Phellinus mushroom extracts collected from northeast of Thailand. Chin J Nat Med 9:441–445 Stojanova M, Pantić M, Karadelev M, Čuleva B, Nikšić M (2021) Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia. J Food Process Preserv 45:e15155 Ying J, Mao X, Ma Q (1987) Icons of medicinal fungi from China. Science Press, Beijing

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.) Pat.; Ganoderma lucidum (Curtis) P. Karst.; Ganoderma resinaceum Boud. - GANODERMATACEAE Yusufjon Gafforov, Aisha Umar, Soumya Ghosh, Michal Tomšovský, Mustafa Yamaç, Milena Rašeta, Manzura Yarasheva, Wan Abd Al Qadr Imad Wan-Mohtar, and Sylvie Rapior

Ganoderma adspersum (Schulzer) Donk Synonyms: Ganoderma europaeum Steyaert; G. linhartii (Kalchbr.) Z. Igmándy.; Polyporus linhartii Kalchbr., G. australe (Fr.) Pat. auct. Ganoderma applanatum (Pers.) Pat. Synonyms: Agaricus flabelliformis Scop.; Boletus applanatus Pers.; B. lipsiensis Batsch Elfvingia applanata (Pers.) P.  Karst.; E. megaloma (Lév.) Murrill; Fomes applanatus (Pers.) Fr.; F. concentricus Sacc.; F. gelsicola Berl.; F. longoporus Lloyd; F. megaloma (Lév.) Cooke, Grevillea; F. stevenii (Lév.) P. Karst.; F. vegetus (Fr.) Fr.; Friesia applanata (Pers.) Lázaro Ibiza; F. vegeta (Fr.) Lázaro Ibiza; Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] A. Umar Institute of Botany, University of Punjab, Lahore, Pakistan e-mail: [email protected] S. Ghosh Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, Republic of South Africa e-mail: [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty ofForestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_111

1135

1136

Y. Gafforov et al.

Ganoderma gelsicola (Berl.) Sacc.; G. incrassatum (Berk.) Bres.; G. leucophaeum (Mont.) Pat.; G. megaloma (Lév.) Bres.; Phaeoporus applanatus (Pers.) J. Schröt.; Polyporus applanatus (Pers.) Wallr.; P. concentricus Cooke; P. ­incrassatus Berk.; P. leucophaeus Mont.; P. megaloma Lév.; P. merismoides Corda; P. stevenii Lév.; P. subganodermicus (Lázaro Ibiza) Sacc. & Trotter; P. vegetus Fr.; Ungularia subganodermica Lázaro Ibiza. Ganoderma lucidum (Curtis) P. Karst. Synonyms: Agarico-igniarium trulla Paulet; Agaricus lignosus Lam.; Boletus castaneus Weber; B. crustatus J.J. Planer; B. flabelliformis Leyss.; B. laccatus Timm; B. lucidus Curtis; B. rugosus Jacq.; B. supinus J.F. Gmel.; B. verniceus Brot.; B. vernicosus Bergeret; Fomes japonicus (Fr.) Sacc.; F. lucidus (Curtis) Sacc.; Ganoderma japonicum (Fr.) Sawada; G. laccatum (Timm) Pat.; G. mongolicum Pilát; G. nitens Lázaro Ibiza; G. ostreatum Lázaro Ibiza; G. pseudoboletus (Jacq.) Murrill; Grifola lucida (Curtis) Gray; Phaeoporus lucidus (Curtis) J. Schröt.; Polyporus japonicus Fr.; P. laccatus (Timm) Pers.; P. lucidus (Curtis) Fr. Ganoderma resinaceum Boud. Synonyms: Fomes areolatus (Murrill) Murrill; F. chaffangeonii (Pat.) Sacc.; F. resinaceus (Boud.) Sacc.; F. sessilis (Murrill) Sacc. & D. Sacc.; F. subperforatus (G.F. Atk.) Sacc. & Traverso; Friesia resinacea (Boud.) Lázaro Ibiza; Ganoderma areolatum Murrill; G. argillaceum Murrill; G. chaffangeonii Pat.; G. praelongum Murrill; G. pulverulentum Murrill; G. subfornicatum Murrill; G. subincrustatum Murrill; G. subperforatum G.F. Atk.; G. subtuberculosum Murrill; Polyporus argillaceus (Murrill) Overh.; P. perturbatus Lloyd; P. pulverulentus (Murrill) Overh.; P. subincrustatus (Murrill) Seaver & Chardón;

M. Yamaç Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey e-mail: [email protected] M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] W. A. A. Q. I. Wan-Mohtar Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia e-mail: [email protected] S. Rapior Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France e-mail: [email protected]

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1137

Local Names Ganoderma adspersum: Uzbek: Pog‘anasimon ganoderma, xilma-xil po‘kak; English: Shelf fungus; Russian: Трутовик разнообразный; French: Ganoderme d’Europe, Ganoderme parsemé; German: Wulstiger Lackporling; Turkish: Koca reyşi Ganoderma applanatum: Uzbek: Tug‘ri pukak, ayiq noni; English: Artist’s bracket, Artist’s conk (“artist’s shell”), bear bread; Russian: Трутовик плоский, Ганодермы сплюснутой; Chinese: 树舌灵芝; Japanese: kofuki-saru-no-­ koshikake (コフキサルノコシカケ), French: Polypore aplani, Ganoderme aplani; German: Flache Lackporling; Korean: 잔나비불로초; Turkish: Terek reyşi; Serbian: pljosnata sjajnica. Ganoderma lucidum: Uzbek: Reshi ganoderma, laklangan pukak; English: Reishi, ling chih, lingzhi (ling zhi), “spirit plant,” Ganopoly; Russian: Трутовиик лакированный, Ганодерма лакированная; Chinese: 亮蓋靈芝; Japanese: Mannentaké (マンネンタケ), Reishi (霊芝), Kadodetake, Hijiridake, Magoshakushi; French: Ganoderme/polypore luisant; German: Gemeiner Spaltblättling, Glänzende Lackporling; Spanish: Pipa; Hindi: रशी खु; Korean: 야 생 불로초버섯; Persian: ‫ ;قارچی یک‌ساله از تیره تابان‌پوستان‬Turkish: Reyşi; Arabic: ‫;فطر رييش‬ Serbian: hrastova sjajnica. Ganoderma resinaceum: Uzbek: Qatronsimon ganoderma; English: Lacquered Bracket; Russian: Ганодерма смолистая; Chinese: Língzhī resinaceum De (靈芝, 靈芝resinaceum的); Japanese: Reishi resinaceum (レイシresinaceum); French: Polypore résineux, Ganoderme résineux; Italian: Fungo coriaceo; German: Harziger Lackporling; Turkish: Cilalı reyşi.

Short Morphological Description Ganoderma adspersum: Basidiomata perennial, flat (applanate) to hoofed (ungulate), solitary to imbricate, 5–75 cm long and wide, up to 20 cm thick, dull surface, leathery, chocolate brown/rusty/chestnut to gray-brown, uneven with zones of concentric circles, crust hard brown. Margin white with indistinct yellow zone to slightly pale brown or reddish brown. Hymenophore whitish to ochraceous and brown, darker when touched. Pores round, 3–4 per mm, thick, entire. Tube layer dark reddish brown, stratified, 6–8 cm thick. Context homogenous, brown to reddish brown, 10–15 cm thick; Hyphal system trimitic: generative hyphae with clamps 1.5–3.5 μm, colorless, branched, thin-walled; skeletal hyphae 4–5 (−6) μm wide, abundantly branched at the top, yellow-brown, aseptate, tapering ends; binding hyphae few. Cystidia absent. Basidia 22–30  ×  7–12  μm, colorless, broadly club-­ shaped, 4-sterigmatic with a basal clamp. Basidiospores (9–) 9.5–11 (−12.7) × (5.5–) 6–7.5 (−8.5) μm ellipsoid, truncated, ornamented, pale brown, negative in Melzer’s

1138

Y. Gafforov et al.

reagent. Basidiospore powder rusty-brown (Donk 1969; Ryvarden and Gilbertson 1993; Gafforov 2014; Bernicchia and Gorjón 2020; Luangharn et  al. 2021; Gryzenhout et al. 2021). Ganoderma applanatum: Basidiomata 5–40 (−100) cm long, 1.5–12  cm thick, perennial, flat (applanate) to slightly hoofed (ungulate), solitary to imbricate, surface wavy to concentrically uneven, brown to dark brown, thin dull crust. Margin thin, white. Hymenophore whitish to ochraceous and brown, darker when touched. Pores round 4–6 per mm, dissepiments thick, entire. Tube layer dark brown, stratified, up to 13 cm thick. Context purplish brown, brighter than G. adspersum, corky, mottled with white patches; Hyphal system trimitic: generative hyphae with clamps 2–4 μm, colorless, branched, thin-walled; vegetative arboriform hyphae 4–5 (6) μm wide, abundantly branched at the top, yellow-brown, aseptate, tapering ends; binding hyphae few. Cystidia absent. Basidia 20–35 × 8–10 μm, colorless, broadly clubshaped, 4-sterigmatic with a basal clamp. Basidiospores 7–8 (−9)  ×  (4.5−) 5–6 (−6.8) μm ovoid-ellipsoid, truncated, ornamented, pale brown to reddish, negative in Melzer’s reagent. Basidiospore powder rusty-brown, often on surface of basidiomata (Breitenbach and Kränzlin 1986; Ryvarden and Gilbertson 1993; Gafforov 2014; Bernicchia and Gorjón 2020; Luangharn et al. 2021). G. applanatum have perennial fruiting body, seated (without stipe). The context and tubes turn black by reaction with KOH (Rašeta 2016). Ganoderma lucidum: Basidiomata up 20 cm high, up 18 cm wide, annual, centrally to laterally stipitate, applanate, semicircular to fan-shaped or reniform, woody to corky, laccate, orange red when young, later dark reddish, purplish to brown. Margin acute cream to yellowish; Stipe up 20 cm long, 1–1.5 cm diameter, reddish black to dark reddish brown, irregularly cylindrical. Hymenophore creamy white to brown, darker when touched. Pores round 4–5 per mm, dissepiments thick, entire. Tube layer brown to purple brown, up to 20 cm thick. Context creamy white to purplish brown. Hyphal system dimitic: generative hyphae with clamps 1.5–2.5 μm, colorless, branched, thin-walled; skeletal hyphae of context aseptate, thick-walled to solid, colorless to yellow brown 2–6 μm wide, tramal skeletal hyphae similar; cuticular layer formed by dense palisade of cylindrical-clavate amyloid, reddish brown hyphal ends, up to 12 μm in diam. Cystidia absent. Basidia 10–23 × 8–11 μm, colorless, broadly ellipsoid, 4-sterigmatic with a basal clamp. Basidiospores 7–11 × 6–8.5 μm ellipsoid, truncated at apex, ornamented, pale brown, negative in Melzer’s reagent (Ryvarden and Gilbertson 1993; Bernicchia and Gorjón 2020; Luangharn et al. 2021). Ganoderma resinaceum: Basidiomata 15–40 cm long, 10 cm thick, annual, solitary to imbricate, broadly attached to stipitate, corky to woody, surface sulcate, glabrous, tuberculate, reddish to reddish brown and brown, thin resinoid crust becoming yellowish when crushed and melts in flame. Margin thick, round and whitish. Hymenophore cream, yellowish to pale brown when old. Pores round 2–3 per mm, dissepiments thick, entire. Tube layer concolorous with pore surface, stratified, up to 3 cm thick. Context pale brown, slightly zonate, corky. Hyphal system trimitic: generative hyphae with clamps 2–4 μm, colorless, branched, thin-walled; skeletal

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1139

hyphae aseptate, thick-walled to solid, yellowish brown 3.5–5.5 μm wide; binding hyphae colorless to pale yellow, thick-walled, nonseptate 3–5 μm wide; cuticular layer formed by dense palisade of cylindrical-clavate amyloid, brown hyphal ends, up to 15 μm in diam. Cystidia absent. Basidia 15–19 × 5.5–7 μm, colorless, clavate, 4-sterigmatic with a basal clamp. Basidiospores 9–11.5 × (4.5–) 5–7.5 μm ellipsoid, truncated at apex, finely ornamented pale brown, negative in Melzer’s reagent (Ryvarden 2004; Torres-Torres and Dávalos 2012).

Ecology and Distribution Ganoderma adspersum: Occurs in the temperate zone of the Euroasia mainly. The specimens from other continents probably belong to other species. The fungus has been recorded almost exclusively on hardwoods, and it is found on wide range of living deciduous trees, e.g. Alnus, Fagus, Fraxinus, Juglans Morus, Pinus sp., Platanus, Robinia, Prunus, and Quercus, rarely on conifers (Abies), later on dead trees causing white rot (De Simone and Anessi 2012; Gafforov 2014; Bernicchia and Gorjón 2020; Gafforov et al. 2020; Gryzenhout et al. 2021). Ganoderma applanatum: Occurs in the temperate zone of the Euroasia mainly on broadleaved trees, e.g. Acacia, Acer, Aesculus, Alnus, Betula, Castanea, Citrus, Fagus, Fraxinus, Gleditsia, Juglans, Malus, Platanus, Populus, Prunus, Quercus, Salix, Tilia, and more rarely on conifers, e.g. Abies and Pinus (De Simone and Anessi 2012; Gafforov 2014; Beck et al. 2020; Gafforov et al. 2020). Ganoderma species, including G. applanatum initially develops as pathogen (attacks roots and but of living trees), and later continues on the dead wood as saprotrophs (Gafforov 2014; Rašeta 2016; Jargalmaa et al. 2017; Beck et al. 2020; Gryzenhout et al. 2021; Luangharn et al. 2021). Ganoderma lucidum: Occurs on roots and base of living deciduous tree (usually Quercus), stumps, dead wood or on earth (growing from submerged wood). Known from temperate Europe and Asia, in East and South East Asia can be confused with G. sinense, G. lingzhi or G. multipileum. We expect occurrence of G. lucidum in Uzbekistan but this must be confirmed by DNA sequence (Gafforov et al. 2020). The species is absent in North America (Loyd et al. 2018). Other stipitate species inhabit conifers of temperate zone (G. carnosum, G. tsugae, or G. oregonense). Ganoderma resinaceum: Growing on broadleaved trees as Albizia, Betula, Fagus, Fraxinus, Gleditschia, Negundo, Populus, Quercus, and Salix (Ryvarden and Gilbertson 1993; Beck et al. 2020; Luangharn et al. 2021), usually at the base of trunks or stumps, in alluvial forests, parks and urban greenery. In Uzbekistan that species found on living stem of Salix spp. (Gafforov et al. 2020). This is reported from Europe, Asia and North Africa. Records from other continents refer to other Ganoderma spp. (Ryvarden and Gilbertson 1993; de Correia et al. 2014; Xing et al. 2016; Jargalmaa et al. 2017; Cabarroi-Hernández et al. 2019; Gafforov et al. 2020; Luangharn et al. 2021) (Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9).

1140

Y. Gafforov et al.

Fig. 1  Ganoderma adspersum (Ganodermataceae), Uzbekistan. (Photo IlyorMustafoyv)

Fig. 2  Ganoderma adspersum (Ganodermataceae), Uzbekistan. (Photo Yusufjon Gafforov)

Mycochemistry Although there are many reports on the mycochemical composition and biological potential of Ganoderma species, according to the latest edition of the Chinese Pharmacopoeia (2020 Edition), the content of triterpenoids and polysaccharides is the main evaluation index (Wang et al. 2020).

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1141

Fig. 3  Ganoderma adspersum (Ganodermataceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 4  Ganoderma adspersum (Ganodermataceae), Uzbekistan. (Photo Yusufjon Gafforov)

In general, Ganoderma species contain numerous classes of compounds such as: alkaloids, amino acids, vitamins (Paterson 2006; Cör et al. 2018; Yang et al. 2019a, b; Wang et  al. 2020), phenolic acids (Karaman et  al. 2010; Zengin et  al. 2015; Rašeta et al. 2016, 2020a, 2020b, 2023; Yalcin et al. 2020), ganomycins (Mothana et al. 2003), lignins and lectins, nucleosides, nucleotides, polysaccharides (Jeong et al. 2008; Kozarski et al. 2012; Villares et al. 2012; Ahmad 2018; Balamurugan

1142

Y. Gafforov et al.

Fig. 5  Ganoderma applanatum (Ganodermataceae), Uzbekistan. (Photo Ilyor Mustafoyv)

Fig. 6  Ganoderma lucidum (Ganodermataceae), Czech Republic. (Photo Michal Tomšovský)

et al. 2019; Yang et al. 2019a, b), steroids (Shao et al. 2016; Shi et al. 2019), tannins (Muhsin et al. 2011; Nagaraj et al. 2014) and triterpenoids (Boh et al. 2000, 2007; Mothana et al. 2003; Zhao et al. 2015; Ahmad 2018; Chen et al. 2018a; Huang et al. 2020a; Biswal et al. 2022; Lin et al. 2022). Triterpenoids and polysaccharides are

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1143

Fig. 7  Ganoderma lucidum (Ganodermataceae), Czech Republic. (Photo Michal Tomšovský)

Fig. 8  Ganoderma resinaceum (Ganodermataceae), Czech Republic. (Photo Michal Tomšovský)

usually considered as the main active compounds from Ganoderma basidiomes, therefore more than 140 biologically active triterpenoids (ganoderic, lucidenic and ganodermic acids, etc.) and more than 200 polysaccharides, lectins, proteins, sterols and other metabolites were isolated from fertile bodies, mycelium and spores from different species of the genus Ganoderma (Paterson 2006; Boh et al. 2007; Villares et al. 2012; Xie et al. 2012; Baby et al. 2015; Bishop et al. 2015; Taofiq et al. 2017;

1144

Y. Gafforov et al.

Fig. 9  Ganoderma resinaceum (Ganodermataceae), Czech Republic. (Photo Michal Tomšovský)

Cör et al. 2018; Bulam et al. 2019; Wang et al. 2020; Biswal et al. 2022; Lin et al. 2022). Biswal et al. (2022) concluded using principal component analysis (PCA) analysis on triterpenoids of the selected strains of Ganoderma spp., that the triterpenes, i.e., ganoderic acids A, D, F, J, M, and N, ganoderenic acid B, ganoderiol H, 3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid, 3β,7β,15β-­ trihydroxy-­ 11,23-dioxo-lanost-8,16-dien-26-oic acid and 20-hydroxy-ganoderic acid AM1 were identified as the principal contributors for the discrimination of a particular strain of the Ganoderma mushroom. Ganoderma adspersum: The basidiome of G. adspersum contain alkaloids, fatty acids, flavonoids, phenolic and organic acids as well as major polysaccharides, lanostane-type triterpenoids, and steroids (Papp et al. 2012; Tel-Çayan et al. 2015, 2020; Tokul-Olmez et al. 2018; Shomali et al. 2019; Mayaka et al. 2020). Tokul-Olmez et  al. (2018) determined fatty acid profiles of seven extracts of G. adspersum from Turkey: lauric acid, myristic acid, pentadecanoic acid, palmitoleic acid, palmitic acid, heptadecenoic acid, heptadecanoic acid, linoleic acid, oleic acid, elaidic acid, stearic acid, arachidic acid, behenic acid, tricosanoic acid and tetracosanoic acid were the main fatty acids determined in all extracts. The monosaccharide composition of the polysaccharide extracts of G. adspersum was determined by GC-MS technique (Deveci et al. 2019), whereas galactose was present in the highest percent, followed by glucose and mannose. In extracts were also determined rhamnose, fucose and xylose in lower amounts. Two new polysaccharides, galactomannans (galactomannans I and II) were isolated from G. adspersum, and their structures were characterized using FT-IR as well as 1D- and 2D-NMR techniques (Tel-Çayan et al. 2020). Structures of both isolated compounds comprise of β-(1,4)-mannose backbone units with

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1145

α-(1,6)-galactose single unit as a side group. Their molecular weights are about 5240 and 5090 Da, respectively. Galactomannan II is polysachharide-protein complex, which has a small proportion of protein with a partial substitution at O-6 by a terminal α-D-galactopyranosyl (Tel-Çayan et al. 2020). Tel-Çayan et al. (2015) isolated four lanostane triterpenoids: applanoxidic acid G, applanoxidic acid E, applanoxidic acid A, and (22E, 24ξ)-24-ethyl-5α-cholest-22en-3β-ol (Δ22-stigmastenol) from the fruiting body G. adspersum. These low molecular weight chemical compounds of G. adspersum have been isolated and characterized for the first time. Additionally, the phenolic and organic acid composition are also determined in G. adspersum extracts by HPLC-DAD, and fumaric acid was quantified in the highest concentration (14.3  μg/g), followed by caffeic acid (1.33 μg/g), 2,4-dihydroxy benzoic acid (0.79 μg/g), ferulic acid (0.59 μg/g), and rosmarinic acid (0.50 μg/g) (Tel-Çayan et al. 2015). Beside them, Shomali et al. (2019) quantified myricetin and quercetin hydrate in G. adspersum extracts by HPLC technique and Sułkowska-Ziaja et al. (2022) determined gallic acid, protocatechuic acid, 3,4-dihydroxyphenylacetic acid using HPLC-DAD. Additionally, in the ethanol extract of G. adspersum were also determined remarkable amounts of phenolic compounds as myricetin and quercetin hydrate (0.6370 and 1.3040  mg/g, respectively), which have benefits to health (Shomali et al. 2019). Also, from the dried fruiting bodies of G. adspersum were isolated and identified by NMP spectroscopic three known steroids, ergosta-7,22-dien-3-one, ergosta-7,22-dien-3-ol, and ergosta-5,7,22-trien-3-ol (Mayaka et  al. 2020) and ergosterol (Sułkowska-Ziaja et al. 2022). Ganoderma applanatum: The mycochemical composition of the flat tinder fungus is extremely rich with various biologically active compounds. It is interesting to note that the mycochemical composition of the same species from different geographical origin varies due to various growth conditions in the habitats (Jeong et al. 2008). To date for the fruiting bodies and mycelium of G. applanatum were discovered to mainly contain polysaccharides (α-D-glucans and β-D-glucans), highly oxidized lanostane-type triterpenoids and their derivatives (ganoderic acid, applanoxidic acid), fatty acids, steroids, saponins, glycosides, phenolic compounds (Balamurugan et al. 2019; Karaman et al. 2022). They are also observed to be rich in trace elements, such as selenium and other micro- and macroelements (Rašeta et al. 2016). During the growth, the mycelium of the fungus secretes lignin-degrading enzymes (https://www.agroone.info/publication/tainstvennaja-­l echebnaja-­s ila­trutovika-­ploskogo/). The most important metabolites are proteins and poysaccharides, and G. applanatum proteins are mostly present in the form of protein-polyaccharide complexes (Kozarski et al. 2012), while free proteins are rare (Li et al. 2019). In general, therapeutic properties of G. applanatum are mainly found from the extracted mycelial (biomass) polysaccharides, exopolysaccharides (EPS) and endopolysaccharides (ENS) (Balamurugan et  al. 2019). Related to this, G. applanatum contain exo-­ biopolymer (EXP), which is composed of mannose and glucose, while the protein mainly consisted of amino acids as serine, glycine and aspartic acid (Jeong et al.

1146

Y. Gafforov et al.

2008). G. applanatum also possesses β-glucans (Osińska-Jaroszuk et  al. 2014; Deveci et  al. 2019) and α/β-glucans, composed of glucose, fucose, mannose and galactose as monosaccharide units (Kozarski et al. 2012; Deveci et al. 2019). A series of secondary metabolites, including highly oxygenated lanostane-type triterpenes, such as ganoderenic acids, ganoderic acids, applanoxidic acids, 20-OH lucidenic acids A and N, ganoderiol A, D and F, lucidumol A, ganodermanotriol have been isolated in addition to benzopyran-4-one derivatives and ganoderma aldehyde (Paterson 2006; Wang et al. 2007; Ermoshin et al. 2022). Wang et al. (2007) isolated two new benzopyran-4-one derivatives, applanatins A and B, from the fruiting bodies of G. applanatum, along with one known analogue, ganoderma aldehyde, as well as four known triterpenes, ganoderenic acids A, B, D and G. Muhsin et al. (2011) identified two compounds with high molecular weight (MW) (336 kDa and 360 kDa, respectively) as a terpenoid with molecular formula C21H28O2 and a tannin with molecular formula C20H34O4. Both compounds expressed antimicrobial potential. In G. applanatum are also determined tannins (Nagaraj et al. 2014) as well as some other secondary metabolites as alkaloids, saponins, and steroids (Manasseh et al. 2012). Sun et al. (2015) identified, beside terpenoids and polyketides, applanoxidic acids A-H with antitumor potential. In G. applanatum were also determined phenolic compounds as hydroxybenzoic acid derivatives (gallic, p-hydroxybenzoic, protocatechuic, syringic and vanillic acids), hydroxycinnamic acid derivatives (caffeic, chlorogenic, p-coumaric and ferulic acids), cyclohexanecarboxilic acid (quinic acid), flavanols (catechin, epigallocatechin), flavones (apigenin), flavonoids (kaempferol, luteolin and rutin), and a coumarin derivative named aesculetin (Karaman et al. 2010, 2022; Zengin et al. 2015; Rašeta et al. 2016; Ermoshin et al. 2022). Related to secondary metabolites, Baby et al. (2015) obtained the largest number of isolated compounds from G. applanatum including: C30 lanostanes as ganoderic acids (GAs) and methyl ester of GAs, C24 and C25 lanostanes, C30 pentacyclic triterpenes, C15 sesquiterpenoids, steroids, prenylated hydroquinone derivatives, benzene derivatives. Luo and co-workers studied on identification of meroterpenoids from this mushroom, and first discovered a novel meroterpenoid dimer, applanatumin A (Luo et al. 2015a) and later 26 new meroterpenoids, applanatumols C-Z, Z1 and Z2, and three new alkaloids, ganoapplanatumines A, B and epi-­ ganoapplanatumine B (Luo et al. 2016). The (±)-ganoapplanin, a pair of polycyclic meroterpenoid enantiomers, was also identified in G. applanatum (Li et al. 2016). Hakkim et  al. (2016) determined ϒ-terpinene, D-limonene, cis-2-methyl-4pentylthiane-­­S,S-dioxide, β-cymene and α-terpinolene with significant cancer cell-­ specific toxicity compared to normal cells after 24 hours. Ganoderma lucidum: About 400 metabolites isolated from the mycelium and fruiting bodies of G. lucidum including alkaloids, amino acids, fatty acids, lactones, lectins, nucleosides, phenols, polysaccharides (β-D-glucans), proteins and enzymes, steroids, triterpenoids (ganoderic acids, ganodermanontriol, ganoderiol), meroterpenoids ((±)-lingzhiols) and trace elements, exhibited a wide range of biological activities, including protective activities against liver damage caused by various

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1147

toxins (Xu et al. 2010; Yan et al. 2013; Walton 2014; Baby et al. 2015; Taofiq et al. 2017; Bulam et  al. 2019; Liang et  al. 2019; Ahmad et  al. 2021; Karaman et  al. 2022). It accumulates elements: calcium, copper, iron, magnesium, phosphorus, potassium, selenium, and zinc (Rašeta et al. 2016; Cör et al. 2018; Wang et al. 2020; Ahmad et al. 2021). Polysaccharides, proteoglycans and triterpenes are three primary active derivatives in G. lucidum (Bulam et  al. 2019; Saltarelli et  al. 2019). G. lucidum is important source of polysaccharides, with over 200 determined polysaccharides (Karaman et al. 2022). G. lucidum polysaccharides are mostly β-glucans, linear homopolysaccharides, a water-insoluble β-(1  →  3)-D-glucan, as well as a water-soluble (1 → 6)-linked glucan with (1 → 4) branches at O-4 position, or a heteropolysaccharide composed of 1  →  4-linked α-D-glucopyranosyl and 1 → 6-linked β-D-galactopyranosyl residues with branches at O-6 of glucose and O-2 of galactose residues (Boh et  al. 2007; Villares et  al. 2012; Xie et  al. 2012; Liang et al. 2014; Obodai et al. 2017). Previous studies showed that polysaccharides from G. lucidum usually consist of arabinose, galactose, glucose, xylose and mannose (Xie et al. 2012; Bishop et al. 2015; Obodai et al. 2017; Taofiq et al. 2017). From fruting bodies of G. lucidum were isolated and characterized chitosan (Ng and Ng 2014), protein-bound polysaccharides (Kozarski et al. 2012; Obodai et al. 2017), and some proteins (LZP-1, LZP-2 and LZP-3, LZ-8, and ganodermin) (Wang and Ng 2006; Ahmad 2018). A large number of triterpenoids was determined and identified as G. lucidum triterpenoids (Kubota et al. 1982; Wachtel-Galor et al. 2011; Karaman et al. 2022). The first triterpenes isolated from G. lucidum are the ganoderic acids A and B, which were identified by Kubota et al. (1982). Since then, more than 100 triterpenes with defined chemical compositions and molecular configurations have been reported to G. lucidum, and among them, more than 50 were found to be new and unique to this mushroom species (Wachtel-Galor et al. 2011). Some of them are: ganoderic (highly oxygenated C30 lanostane-type triterpenoids), lucidenic, ganodermic, ganoderenic, ganolucidic and applanoxidic acids, lucidones, ganoderals and ganoderols, etc. (Boh et al. 2000; Qi et al. 2012; Zhao et al. 2015; Ahmad 2018; Yang et al. 2019a, b; Biswal et al. 2022; Ermoshin et al. 2022). Based on literature data, from G. lucidum have been identified over 140 different kinds of ganoderic acids (Yue et al. 2010). Biswal et al. (2022) identified by using an UHPLC-ESI-­ QTOF-MS analyser 70 triterpenes with the domination of ganoderic acids. Lin et al. (2022) isolated from the fruiting bodies of G. lucidum 17 triterpenoids including three new lanostane triterpenoids (ganoderol A, and C and 12β-acetoxy-3,7,11,15,23-­ pentaoxo-­lanost-8,20E-dien-26-oic acid) and characterized by 1D-NMR, 2D-NMR, and HRESIMS. Ma et al. (2011) identified from the spores two new pentacyclic triterpenoids, ganosporelactones A and B and two new lanostane triterpenes, lucidumol A and ganoderic acid β. Shao et  al. (2016) isolated and characterized 19 triterpenoids, three steroids, one cerebroside, and one thymidine, and from them six triterpenoids, one cerebroside and one steroid were isolated for the first time from G. lucidum. At present, there are few alkaloids isolated from G. lucidum, including pyrrolidinic alkaloids, indolic alkaloids, and quinolonic alkaloids (Wang et al. 2020).

1148

Y. Gafforov et al.

Different kind of phenolic compounds are also determined in the extracts of G. lucidum: hydroxybenzoic acids (gallic acid, p-hydroxybenzoic acid, protocatechuic acid and syringic acid among others), hydroxycinnamic acids (caffeic, cinnamic, p-coumaric and chlorogenic acid among others), cyclohexanecarboxilic acid (quinic acid), flavonoids (kaempferol, luteolin, rutin), coumarin derivatives etc. (Rašeta 2016; Rašeta et  al. 2020a; Rašeta et  al. 2020b; Ermoshin et  al. 2022; Karaman et al. 2022). Ganoderma resinaceum: Lanostane triterpenoids (Niu et  al. 2007), nortriterpenoids (Chen et al. 2017), meroterpenoids (Yang et al. 2018), steroids (Sedky et al. 2018; Shi et al. 2019), fatty acids (Tokul-Olmez et al. 2018), phenolic compounds (Zengin et  al. 2015; Rašeta et  al. 2020a, b), and polysaccharides (Amaral et  al. 2008; Silva et al. 2013) had been determined in G. resinaceum. β-D-Glucans are the most common, having a branched structure, varied degree of substitution, containing β-(1 → 3) linkages in the main chain and additional β-(1 → 6) branch points (Paterson 2006). PSH from G. resinaceum are mostly unexamined, therefore Amaral et  al. (2008) described the isolation and chemical characterization of an unusual β-glucan which contained mainly glucose (96.5%) and traces of the mannose (1.6%), xylose (1.2%) and galactose (0.7%). Peng et al. (2013) have isolated eight unknown lanostanoid compounds from the fruiting bodies of G. resinaceum: lucidones D-G, 7-oxo-ganoderic acid Z2, 7-oxo-ganoderic acid Z3, ganoderesin A, ganoderesin B, and six already known lanostanoids. Some of the others ganoderic triterpenoids identified from G. resinaceum are four new compounds, ganoderenses H–K and four known compounds, resinacein S (Chen et  al. 2018a), 3β,7β-­ dihydroxy-­ 11,15,23-trioxo-lanost-8,16-dien-26-oic acid (Guan et  al. 2007), 3β,7β,15α-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (Li et al. 2016) and resinacein I (Chen et al. 2018a). Chen et al. (2018a) isolated 48 triterpenes including 18 previously undescribed compounds (resinacein A-B, resinacein D-S) and 30 known compounds. After this publication, Chen et  al. (2018b) isolated more 14 triterpenoid compounds, including seven compounds described for the first time. Known compounds are elucidated mostly as ganoderic acids (GAs): ganotropic acid, GA AM1, GA K, GA C2 and ganolucidic acid B while 3β,7β-­ dihydroxy-­ 11,15,23-trioxo-lanost-8,16-dien-26-oic acid and 3β,7β,15β-­ trihydroxy-­ 11,23-dioxo-lanost-8,16-dien-26-oic acid are triterpenoid lactones (Chen et al. 2018b). Yang et al. (2018) first isolated four compounds including one new meroterpenoid, ganoresinains F, and then (Yang et al. 2019a, b) isolated and identified three triterpenoid compounds, one new resinacein T, and two known lanostane triterpenoids, 3β,7β,15α,24-tetrahydroxy-11,23-dioxo-lanost-8-en-26-oic acid and resinacein O. Chen et al. (2019) identified 55 triterpenoids including 21 unknown compounds. Huang et  al. (2020b) isolated of A −  F type triterpenoids from the fruiting body of G. resinaceum, four new compounds (resinacein U, V, W and X) and eight known compounds (resinacein T, resinacein I, 3β,7β-­ dihydroxy-­11,15,23-trioxo-lanost-8,16-dien-26-oic acid, ganoderense A, resinacein G, 3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid methyl ester, resinacein S and resinacein C). Shi et  al. (2019) determined C28 steroids and

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1149

identified eight novel, unidentified ergostane-type steroids, and 21 known analogues were isolated from the fruiting body of G. resinaceum. Also are determined some substantial triterpenoids (nortriterpenoids) and meroterpenoids (Karaman et al. 2022). In addition, phenolic compounds and flavonoids were determined from G. resinaceum extracts as apigenin, benzoic acid, caffeic acid, (+)-catechin, chlorogenic acid, p-coumaric acid, (−)-epicatechin, gallic acid, p-hydroxybenzoic acid, protocatechuic acid, quinic acid, and rosmarinic acid (Zengin et al. 2015; Rašeta et al. 2020a, b; Sułkowska-Ziaja et al. 2022).

Local Medicinal Uses Ganoderma species have been used for centuries for medical purposes, especially in the countries of the Far East: China, Japan and Korea (Baby et al. 2015), while systematic studies of their pharmacological effects began just 25 years ago (Boh et al. 2000). They have a history of at least 2000 years, possessing high medicinal properties and have been used since ancient times (Bishop et al. 2015). For example, Tao Hongjing (456–536), a noted Chinese alchemist and pharmacologist, related several medicinal mushrooms, including G. lucidum and Dendropolyporus umbellatus, with the power of healing (Qadir 2021). In traditional Chinese medicine, Ganoderma spp. relieves pain, reduce fever, improve digestion, help in maintaining homeostasis, and also reduces phlegm (Jung et al. 2011) and they has been used to improve health and longevity as well as in the treatment of many diseases such as neurasthenia, hypertension, hepatopathy, and carcinoma via their characteristics; (a) it does not produce any toxicity or side effects; (b) it does not act on a specific organ; and (c) it promotes the improvement of normalization of the organ function (Valverde et al. 2015). It is used as a tincture for many animal (Mdachi et al. 2004) and human (Yuan et al. 2018; Lin 2019) diseases. For some small rural and traditional communities in Indonesia, gathering and collecting wild mushrooms including G. applanatum and G. lucidum from the nature as consumption goods and other purposes has been conducted over centuries (Khastini et al. 2018). Baduy tribe from the remote highland jungles of the south area of Banten Province (Indonesia) live in climatic condition, which have resulted in a diversity of ecological habitats which preserve and sustain a wide range of mushroom species including Ganoderma spp. Indigenous knowledge of Baduy tribe regarding the utilization of wild mushrooms has been transmitted orally from one generation to the next (Khastini et al. 2018). For instance, they have been used for treatment for hepatopathy, chronic hepatitis, nephritis, hypertension, arthritis, bronchitis, asthma, ulcers, cancer, androgens, immuno-stimulant, diabetes, hypolipidemic and also exhibit anti-inflammatory effects (Lin 2019). Some of the main and the most examined Ganoderma species are G. applanatum, G. atrum, G. formosanum, G. lucidum, G. sinensis and G. tsugae. G. lucidum is recorded in USP40-NF35 (U.S. Pharmacopeia/National Formulary) and together with G. sinensis, they are recorded in ChP2015 (Pharmacopeia of the People’s Republic of China) (Karaman et al. 2022).

1150

Y. Gafforov et al.

Ganoderma adspersum: It has been reported that the fruiting bodies of G. adspersum was found at the Neolithic site of La Draga (Spain) which confirms ethnomycological importance of the species in Europea on prehistoric ages. A total of 51 out of 86 remains, complete and/or fragmented, were belongs to G. adspersum which is the highest one (Berihuete-Azorin et al. 2018). Ganoderma applanatum: This species has been used in traditional medicine for many years as a tea or water-based extract and usually imparts a very hot feeling when consumed. Notably, the taste and smell of these mushrooms may vary with the host plant (Dai et al. 2009). In traditional Chinese medicine, G. applanatum is used for digestive disorders to reduce excess phlegm, pain and fever, lowering blood glucose and improving immunity. Besides it is used as antiviral and antitumor agent (Dai et al. 2009). In China, G. applanatum is used for its tonic effect, that is beneficial to increase mental performance, to normalize blood composition, for the prevention and treatment of nervous diseases, diseases of the cardiovascular system, liver diseases, diseases of the genitourinary system, diabetes, rheumatism, gastritis, ulcers, cancer and tumors of other nature. For instance, this mushroom has been used in the restoration of the nervous system, in the protection and restoration of immunity. Additionally, the health problems associated with potency, hypertension, asthma, bronchitis, prostatitis, mental disorders, cardiovascular and circulatory systems were also being largely solved. Notably, it has been observed that not the mushroom itself was used, but its active ingredients largely contributed for the treatment. In folk medicine, the medicinal properties of the fruiting body of G. applanatum were mostly used (https://www.agroone.info/publication/tainstvennaja-­l echebnaja-­s ila-­ trutovika-­ploskogo/). In the eastern Asia, since ancient times, the healing properties of G. applanatum can overcome ailments such as cancer, hepatitis, diabetes, potency problems, hypertension, asthma, bronchitis, prostate, mental disorders, proper functioning of cardiovascular and circulatory systems (https://progrib.ru/trutoviki/ trutovik-­ploskiy.html). In Nigeria, G. applanatum has been used as antioxidant, hypoglycemic and antihypertension agent (Oyetayo 2011). It has been used to treat internal growth, heart problems, and cancer in Cameroon (Kinge et al. 2011). The powder of dry G. applanatum fruiting body is added to vegetables in very small quantities during cooking with the belief that it reduces the chances of disease in India (Pala et al. 2013). It has also used in Serbia for strengthening the immune system as tea (Živković et al. 2021). Ganoderma lucidum: This is the best-known species in traditional medicine especially in Far East countries. The “mushroom of immortality”, G. lucidum and similar species are well known in Korea, Japan, the People’s Republic of China, and other countries in eastern Asia, where it is used as a folk remedy to improve health and longevity for thousands of years, as well as for the treatment of such disparate conditions as cancer, hepatitis, chronic bronchitis, asthma, hemorrhoids, and fatigue symptoms among others (Tie and Huang 1988; Bulam et al. 2019). In traditional Chinese medicine, G. lucidum has been used for the prevention and treatment of

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1151

allergies, astma, bronchitis, hepatitis as antithrombotic, antitumor agent, for mind relaxation, ease the cough and used to lowering blood pressure and improving immunity (Dai et al. 2009; Bulam et al. 2019; Ahmad et al. 2021). In China, it is known as ‘herb with spiritual potency’ due to the inherent characteristics of longevity, divine power, and healthy well-being (Ahmad et al. 2021) and is/was considered as an ‘elixir that could revive the dead’ (Cheng et al. 2010). G. lucidum has been used for curing joint pain (Harsh et al. 1993) and asthma (Kumar et al. 2014) in India. It has also used for enhancing the milk secretion in India (Kumar et al. 2017). In traditional Nigerian medicine, stipitate Ganoderma sp. is used for treating arthritis and neoplasia (Oyetayo 2011). The species has been used for muscular pain, asthma, ulcer, high blood pressure, anticancer treatment, improve immune system, and for many ailments as tonic in Pakistan (Yasin et al. 2019). In Cameroon, it is used to treat skin infections, boils, abscesses, and tumors in traditional medicine. Besides, it is noted that other medicinal preparations are also include it as a component (Yongabi et al. 2004). The species is used for treating anthritis and neoplasia in Nigeria (Oyetayo 2011). In Serbia, the species has been used for strengthening the immune system and cancer treatment as tea and alcoholic tincture (Živković et al. 2021). Ganoderma resinaceum: This fungus is a multi-purpose herbal medicine that is homologous to functional food that has long been used for enhancing health and treating chronic hepatopathy, lowering blood sugar level in hyperglycemia, as antitumor agent and in immune-regulation in Traditional Chinese Medicine and also in Nigeria (Dai et al. 2009; Oyetayo 2011; Chen et al. 2017, 2018a, b; Shi et al. 2020).

Modern Medicinal Uses The bioactive metabolites of Ganoderma species are reported to be responsible for antiatherosclerotic, antidiabetic, anti-inflammatory, antimicrobial, antioxidant, antitumor, hepatoprotective and neuroprotective activities (Paterson 2006; Dai et  al. 2009; De Silva et al. 2012a, b; Hapuarachchi et al. 2017). Ganoderma species are also used as functional food to prevent and to treat a lot of diseases including anorexia, arthritis, asthma, cardiovascular problems, diabetes, gastritis, hepatitis, hypercholesterolemia, hypertension, insomnia, migraine, nephritis, obesity, and tumorigenesis, amongst others (Bishop et al. 2015; Hapuarachchi et al. 2017). Ganoderma adspersum: Several medicinal properties, such as antidiabetic (Sułkowska-Ziaja et  al. 2022), antifungal (Badalyan et  al. 2019; Mayaka et  al. 2020), antimicrobial (Shomali et al. 2019; Mayaka et al. 2020), antioxidant (Tel-­ Çayan et al. 2015, 2020; Shomali et al. 2019; Sułkowska-Ziaja et al. 2022), antitumor (Sadava et al. 2009), neuroprotective (Deveci et al. 2019; Tel-Çayan et al. 2015, 2020; Sułkowska-Ziaja et al. 2022) activities as well as anti-tyrosinase activity have been reported in the mycelia and fruiting bodies of G. adspersum.

1152

Y. Gafforov et al.

Of primary metabolites, two new polyasaccharides, galactomannans (galactomannan I and II) are confirmed as antioxidant compounds, while galactomannan II could be used as a new natural promising anti-cholinesterase agent in the treatment of Alzheimer’s disease (Tel-Çayan et  al. 2020). Fatty acids profile showed that G. adspersum extracts have high oleic acid/linoleic acid ratio, thought its extracts could be more resistant to oxidation and moreover being healthier nutrient (Tokul-­ Olmez et  al. 2018). Triterpenoids are the most important secondary metabolites from Ganoderma spp., and Tel-Çayan et al. (2015) reported that applanoxidic acid E and Δ22-stigmastenol showed significant antioxidant activities in the inhibition of lipid peroxidation. They also demonstrated that applanoxidic acid G and Δ22-­ stigmastenol exhibited moderate inhibiting activity against the enzyme butyrylcholinesterase. The ethanol extracts from G. adspersum included remarkable amounts of phenolic compounds, myricetin, quercetin hydrate, fumaric, and caffeic acid which possess antioxidant, neuroprotective, anticancer properties as well as weak antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and antiviral activity on HIV-virus and the Epstein-Barr virus (EBV–EA) 3 (Tel-Çayan et al. 2015; Shomali et al. 2019). From steroids isolated by Mayaka et al. (2020), ergosta-7,22-dien-3-one weakly inhibited the growth of Gram positive bacteria Streptococcus pneumonia and fungus Cryptococcus neoformans, while ergosta-5,7,22-trien-3β-ol weakly inhibited Gram positive bacteria S. pyogenes. In conclusion, these steroids were not active against Gram-negative bacteria and fungus Candida albicans and showed weak antimicrobial activity, in general. Also, for all of these steroids had previously been found to exhibit antiviral activity against influenza A virus and Herpes simplex virus type 1 (Mayaka et al. 2020). All above mentioned revealed that the G. adspersum species can be considered as an alternative to natural material as a valuable raw material for the pharmaceutical or cosmetic industries. Ganoderma applanatum: Similar to the other species of the Ganoderma family, G. applanatum contains about 400 diverse mycochemicals. Based on literature data, G. applanatum produces various bioactive compounds which exhibit antiallergic, anticancer, antifibrotic, antihyperglycemic, antimicrobial, antioxidant, antitumor, hepatoprotective, hypoglycemic, immunomodulatory, liver protective properties as well as inhibition of aldose reductase enzyme, Epstein-Barr and influenza virus (Chairul and Hayashi 1994; Smânia et al. 1999; Acharya et al. 2005; Lee et al. 2006; Karaman et  al. 2010, 2022; Osińska-Jaroszuk et  al. 2014; Luo et  al. 2015a; Teplyakova and Kosogova 2015; Hapuarachchi et  al. 2017; Rašeta et  al. 2016, 2020a; Ermoshin et al. 2022; Sułkowska-Ziaja et al. 2022). Currently, G. applanatum and other species of the genus Ganoderma are used in China and Japan for the treatment and prevention of hepatitis, hypertension, chronic bronchitis, bronchial asthma, hyperglycemia, rheumatism, connective tissue and oesophageal cancer (a dangerous tumor with epithelial cells), arthritis, tuberculosis and many other diseases (Paul et al. 2002; Yong-Tae et al. 2008; Kumaran et al. 2017). These medicinal benefits are based on bioactive phenolic compounds, triterpenes and

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1153

polysaccharides (Karaman et al. 2022).β-D-Glucan polysaccharides (Sasaki et al. 1971) and triterpenoids (Chairul et al. 1991) from basidiomata of G. applanatum are reported to be responsible for antitumor activity of the species. Many polysaccharides, including β-D-Glucans isolated from Ganoderma spp. have exhibited promising antitumor activities, with no significant side effects which are mostly associated with synthetic compounds. In purified fractions of G. applanatum have been detected exo-biopolimer (EXP), which contained 58.9% carbohydrate and 17.1% protein, with antitumor effect on sarcoma-180 cells (Jeong et al. 2008). They are able to increase the activity of natural killer (NK) cells. Polysaccharides from G. applanatum were able to regenerate NK cell activity and the IL2 and IFNγ production of the spleen cells in sarcoma mices (Jeong et  al. 2008; Živković et  al. 2021). It was determined that the structure differences between polysaccharides were responsible for the exhibiting a better antitumor activities against Sarcoma 180 cell lines (Sun et al. 2015). Osińska-Jaroszuk et al. (2014) isolated exopolysaccharides wich exhibited antitumor activity against cancer cells, SiHa and stimulated production of Il-6 and TNF-α by macrophage line THP-1. It has been found that the mycochemical characteristics of a polymer varies with the cultural condition or growth stages, even in the same species (Jeong et al. 2008). Biological potential of polysaccharides are closely related to their structures including monosaccharide components, molecular weight, degree of substitution, degree of branching, chain conformation in solution and the main chain and branches (Sun et al. 2015). Polysaccharides of G. applanatum has also antimicrobial and antioxidant activities as well as protective effect against gastric ulcer. The protective effect of G. applanatum polysaccharides against gastric ulcer by strengthen gastric mucosa barrier by improving the level of PGE2, GMBF and the secretion of gastric mucus (Yang et al. 2005). The polysaccharides also showed antibacterial activity against S. aureus and Vibrio fischeri (Osińska-Jaroszuk et al. 2014). A positive correlation between radical scavenging activity of exopolysaccharides against hydroxyl and superoxide radicals and exopolysaccharide concentration was reported by Liu et al. (2015). Water-soluble preparations from basidiomata of G. applanatum (as Elfvingia applanata) exhibited potent antiviral activity against vesicular stomatitis virus Indiana serotype (VSV) (Eo et al. 2001). G. applanatum extracts containing exopolymers significantly reduce blood glucose by inhibiting aldose reductase (an enzyme whose uncontrolled activity leads to the development of diabetes), cholesterol and triglyceride levels (Paul et al. 2002). G. applanatum also helps to prevent diabetes and its complications (Jung et al. 2005). Furthermore, its aqueous extracts and decoctions actively absorb free radicals and protect lipids from lipid peroxidation (Acharya et  al. 2005). Muhsin et  al. (2011) isolated, purified and identified from fruiting bodies of G. applanatum two compounds named as G1 and G2, based on structure data there are tanin and terpenoid with good bioactivities against E. coli and S. aureus. For G. applanatum polar extracts (methanol, ethanol and water) have been reported antibacterial, antioxidant, antiproliferative, and antiviral activities (Karaman et  al. 2010; Zengin et  al. 2015; Rašeta et  al. 2016, 2020a;

1154

Y. Gafforov et al.

Sułkowska-­Ziaja et  al. 2022). The methanol extract of its fruiting body exhibits antibacterial properties and antagonize Gram-negative bacteria rather than Grampositive bacteria while its antitumor properties prevents the growth of tumors in the human body, and increases the activity of leukocytes. From G. applanatum were also identified meroterpenoids, alkaloids and some other secondary metabolites with significant antitumor potential (Karaman et al. 2022). Ganoderma lucidum: G. lucidum, a well-known Asian herbal remedy, and the most appreciated and revered medicinal mushroom across many Asian countries, which has been used for hundreds of years as a health promotion and treatment strategy (Wachtel-Galor et al. 2011; Saltarelli et al. 2019). Numerous data have been confirmed the potential of G. lucidum as a chemo-­ preventive or chemo-therapeutic agent (Saltarelli et  al. 2019). This species possesses a number of pharmacological characteristics, and therefore, they are observed to have analgesic, anti-allergenic, anti-cholesterolemic, anti-diabetic, anti-­ hypertensive, anti-inflammatory, anti-mutagenic, antioxidant, antiproliferative, anti-viral (anti-HIV), cardioprotective, chemopreventive, hepatoprotective, immuno-modulating, and renoprotective among others (Kabir et al. 1988; Lakshmi et al. 2003; Zjawiony 2004; Paterson 2006; Ajith and Janardhanan 2007; Shi et al. 2008; Chen and Huang 2010; Xu et al. 2010; De Silva et al. 2012b; Rajasekaran and Kalaimagal 2012; Walton 2014; Luo et al. 2015a, b; Rašeta 2016; Rašeta et al. 2017; Rašeta et  al. 2020a; Saltarelli et  al. 2019; Wang et  al. 2020; Chun et  al. 2021; Ermoshin et al. 2022; Karaman et al. 2022). The market of G. lucidum dietary supplements has been estimated at about 5–6 billion dollars per year, of which 1.6 billion correspond only to its consumption within the United States (Zjawiony 2004). It is believed to have properties that can improve health and prolong life (Bulam et al. 2019; Saltarelli et al. 2019). Based on literature data, different preparations made from the fruiting bodies, mycelium, and spores of G. lucidum have been marketed as nutriceuticals or dietary supplements due their antitumor, immunomodulatory and free radical scavenging abilities among others (Trigos and Medellín 2011; Wachtel-Galor et al. 2011). Various G. lucidum based products composed of isolated compounds and extracts in wide spectrum of diverse formulations, have commercially become available and marketed all over the world in the form of injection, syrup, tablet, creams, capsules, tincture or bolus of powdered medicine and an ingredient or additive in dark chocolate bars and organic fermented medicinal mushroom drink mixes such as green teas, coffees, and hot cacaos (Wachtel-Galor et  al. 2011; Bulam et  al. 2019). Some of the G. lucidum products which have been used as drugs and food supplements in China are: (1) G. lucidum compound capsules (Chongqing Taiji Industry (Group) Co. Ltd); (2) G. lucidum syrups (Guizhou Shunjian Pharmaceutical Co. Ltd); (3) G. lucidum spore powder capsules enriched with Se (Guizhou Lingkangshi Biological Technology Co. Ltd); (4) G. lucidum spore powder (Yunnan Xianghui Pharmaceutical Co. Ltd); (5) Broken G. lucidum spore powder oil capsules (FGTZ Biotechnology Company); (6) Broken G. lucidum spore powder (Chengdu Dujiangyan Chunsheng Chinese Herbal Pieces Co. Ltd); and (7) G. lucidum fruiting

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1155

body slices (Sichuan Zibo Pharmaceutical Co. Ltd) (Hapuarachchi et al. 2018). In Nepal, Ganoderma mushrooms are considered as an important non-timber forest product in the industrial market a decade ago. Besides this, the Nepal’s market has grown dramatically in recent years (Raut et  al. 2022). Also, manufacturers of Ganoderma-based products in Nepal import raw Ganoderma powder from China and sell it in America, Australia, Europe, Nepal, and other regions in the world (Raut et al. 2022). Furthermore, epidemiological studies carried out in Asia suggest that a high dietary intake of G. lucidum is negatively associated with breast cancer risks (Saltarelli et al. 2019). The reported properties have also attracted interest in Western countries, and in the West, it is now commercially available as a dietary supplement in preparations mainly consisting of spores, fruiting bodies and mycelia (Saltarelli et al. 2019). G. lucidum is one of the primary herbs of choice in any immune deficiency disease. It possesses a broad spectrum of immunostimulating activities, as well as anti-inflammatory and antiallergenic properties. G. lucidum contains more than 100 oxygenated triterpenes, many of which exhibit a marked effect on the activity of NK cells (https://ultimate-­mushroom.com/edible/12-­ganoderma-­ lucidum.html; Wang et al. 2020). G. lucidum is a source of compounds that can prevent cancer and can be used for strengthening the immune system. The polysaccharides, triterpenoids, meroterpenoids, sesquiterpenoids, phenolic compounds, steroids and alkaloids have been isolated and characterized from G. lucidum and other Ganoderma species (Wachtel-Galor et al. 2011; Wang et al. 2020). The isolated polysaccharides exhibited mostly antitumor activity by production of TNF and IFN-γ by macrophages and spleen cells in mice, and further inhibit or kill tumor cells (Wang et al. 2020). Numerous refined polysaccharides extracted from G. lucidum are now marketed in treatment for chronic diseases, such as different types of cancer and liver diseases (Wachtel-Galor et  al. 2011). Based on literature data, application of polysaccharides, ganoderans A and B significantly decreased (by up to 50%) the plasma glucose concentrations, expressing the hypoglycemic effect (Wachtel-Galor et  al. 2011). In a study to compare bioactivity of G. lucidum basidiomata produced with different cultivation methods, wood-culture was a superior method for the production of such antioxidant and hypoglycemic mushrooms (Song et al. 2020). The polysaccharides are known to enhance the immune system and exert free radical scavenging activity (Trigos and Medellín 2011). Unlike other species of the genus Ganoderma, G. lucidum and its polysaccharides/polysaccharide extracts could be important ingredients in cosmeceutical formulations based on their power as anti-tyrosinase compounds, photoprotective agents among others (Karaman et al. 2022). Some newer experimental findings suggest that the polysaccharide-protein complexes isolated from G. lucidum fruiting bodies and cultured mycelia might be a useful as therapeutic agents on ameliorate doxorubicin-induced cardiomyopathy (Veenaa and Janardhanan 2022). Therefore, finding an effective treatment that can prevent doxorubicin-induced cardiotoxicity could be important in cancer chemotherapy (Veenaa and Janardhanan 2022).

1156

Y. Gafforov et al.

Unsoluble polysaccharide, chitosan has ability to form micro/nanoparticles, films, fibers and hydrogels allowed several biomedical applications, in particular for skin healing (Savin et al. 2020). It exert decreasing of blood lipid levels (Ng and Ng 2014), antioxidant and antimicrobial activity on bacterial growth in cultures of P. aeruginosa and S. aureus (Savin et  al. 2020). Polysaccharide fractions of G. lucidum was also used to treat major depressive disorder in mice. Biochemical data have also confirmed that G. lucidum polysaccharide fraction is very effective in regulating the neuroimmune system (Li et al. 2021). Similar to G. applanatum, G. lucidum PSH are often in the form of the protein-­ bound PSH as glycoproteins or glycopeptides and showing significant antioxidant properties (Kozarski et al. 2012; Obodai et al. 2017). For β-D-glucans ultrasonically extracted from Ganoderma species have been reported to possess better in vitro antioxidant activity than conventionally extracted ones, owing to the fact that the ultrasonic extraction preserved their molecular weights and degree of branching polysaccharide units (Chun et al. 2021). Beside polysaccharide, from G. lucidum are also isolated peptides wich influence a significant decrease in the activity of superoxide dismutase (SOD) and glutathione against D-galactosamine-induced liver injury in mice which indicates the hepatoprotective effect (Shi et al. 2008). Some bioactive proteins, LZP-1, LZP-2 and LZP-3 have been isolated from G. lucidum spores and fruiting bodies (Ahmad 2018). On the other hand, Ling Zhi-8 (LZ-8) is a polypeptide consisting of 110 amino acid residues with an acetylated amino terminus and it was the first immunomodulatory protein which was obtained from the mycelial extract of G. lucidum (Ahmad 2018). An antifungal protein, ganodermin (15 kDa) was also isolated from fruiting bodies of G. lucidum with activity against Botrytis cinerea (MIC ~15 μm), Fusarium oxysporum (MIC ~12 μm), and Physalospora piricola (Wang and Ng 2006). There has been significant progress in triterpenoids research in recent decades. Triterpenoids have been investigated for their biological activities, including antibacterial, antiviral (anti-HIV-1), antitumor, antiosteoclastic differentiation activity, hepatoprotection, antioxidative, anti-invasive, anti-inflammatory, anti-aging, antihypertension, neuroprotective (anti-acetylcholinesterase), cholesterol reduction, and anti-aggregation functions (Mothana et  al. 2003; Trigos and Medellín 2011; Hsu and Yen 2014; Tel-Çayan et al. 2015; Wu et al. 2019; Karaman et al. 2022). The triterpene ganoderic acid and the meroterpenoid ganomycin I from G. lucidum have been identified as responsible agents to prevent the bone loss in ovariectomized rats by regulating effects on osteoclastogenesis (Miyamoto et al. 2009; Tran et al. 2018; Lindequist and Haertel 2021). The hydroxyl groups on the C-3, C-24 and C-25 positions of the lanostane triterpenoids were the necessary active groups for the inhibition of HIV-1 virus. Also, lanostane triterpenes can inhibit human immunodeficiency virus-1 protease, which has potential anti-HIV-1 activity (Wang et  al. 2020). One of the first G. lucidum triterpenoids are identified as ganosporeric acid A and ganoderic acids R and S from the cultured mycelia have been reported for the in vitro anti-hepatotoxic effects in primary cultured rat hepatocytes (Hirotani et  al. 1986). G. lucidum has a

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1157

neuroprotective role for many age-related neurological disorders (Phan et al. 2015) with ganoderic acids as some of the resoponsible compounds (Lee et al. 2019). Lin et al. (2022) isolated and characterized 17 triterpenoids including four new triterpenes from the fruiting bodies of G. lucidum and based on the in vitro biological assay, most of these compounds showed inhibitory effects against fatty acid amide hydrolase (FAAH), as well as no cytotoxicity. These results could be useful for the potential application of these triterpenoids for anti-neuroinflammation (Lin et  al. 2022). Boh (2013) suggest at least five groups of mechanisms for the anticancer activity of G. lucidum after studied around 270 patents for fruiting bodies and mycelia cultivation: (1) activation/modulation of the immune response of the host, (2) direct cytotoxicity to cancer cells, (3) inhibition of tumor-induced angiogenesis, (4) inhibition of cancer cells proliferation and invasive metastasis behaviour, and (5) carcinogens deactivation with protection of cells. The current preclinical or clinical studies of GLTs indicate that these compounds have now become recognized as alternative adjuvants for the treatment of leukaemia, carcinomas, hepatitis and diabetes (Liang et al. 2019). It is important to note that seven GAs are currently at different stages of clinical trials (GAs A, C2, D, F, DM, X and Y) (Liang et al. 2019). Currently, there are 13 clinical trials registered for G. lucidum, where three clinical trials are active and related to Parkinson’s disease, prostate cancer and uveitis (Ahmad et al. 2021). Meroterpenoids generally have good biological activity, for example fornicin E as the oxygen-containing five-membered heterocyclic compound had a stronger antioxidant potential (Wang et al. 2020). Luo et al. (2015b) isolated new meroterpenoids, chizhines A–F (1–6), wich are potential renoprotective agents. Biological evaluation of isolated meroterpenoidal enantiomers, (±)-lingzhiols showed that these enantiomers could selectively inhibit the phosphorylation of Smad3 in TGF-­ β1-­induced rat renal proximal tubular cells and activate Nrf2/Keap1 in mesangial cells under diabetic conditions (Yan et al. 2013). Sesquiterpenoids are also constituents of G. lucidum. Eleven double ringed sesquiterpenoids have been isolated from the mycelium of G. lucidum and characterized as ganodermanols A–K with potential antifungal properties (Wang et al. 2020). Palmitic, linoleic, oleic and stearic acid are main free fatty acids in G. lucidum and may contribute to their antitumor proliferation effect (Lv et  al. 2012; Taofiq et al. 2017; Obodai et al. 2017). Long chain fatty acids in the spores of G. lucidum could act as antitumor agents through induction of apoptosis (Lv et al. 2012). Gao et  al. (2012) worked on isolation and identification of C-19 fatty acids and their 2-naphthyl esters and this is the first report about presence of nonadecanoic acid and cis-9-nonadecenoic acid from spores of G. lucidum with antitumor activity. Beside them, from G. lucidum have been determined also some steroids, ergosterol (anti-angiogensis, anti-inflammatory, antimicrobial agent, in prevention of cardiovascular diseases), ergosterol peroxide (cytostatic effect on HT29 cells, cerevisterol (in vitro inhibition against mammal α-DNA polymerase), ergosta-7,22-­ diene-­2β,3α,9α-triol among others (Trigos and Medellín 2011). Ergosterol and its analogues contained in G. lucidum had multiple pharmacological effects (Lv et al.

1158

Y. Gafforov et al.

2012). It is important as the precursor of vitamin D2, and its conversion is facilitated by exposure to sunlight or UV light (Obodai et al. 2017). Phenolic compounds from G. lucidum could be important antioxidant, anti-­ acetylcholynestrase, antimicrobial, anti-tyrosinase, antiproliferative and anti-­ inflammatory agents (Karaman et al. 2010, 2022; Rašeta et al. 2016; Deveci et al. 2019; Saltarelli et  al. 2019; Sułkowska-Ziaja et  al. 2022). According to Rahman et al. (2020), feeding of G. lucidum hot water extract at 200 mg/kg body weight to the rats for 8 weeks has improved their memory and learning abilities. Currently, many patents wich used G. lucidum are available worldwide in the form of extracts, spore powder, and protein/polysaccharides with a potential role in emerging diseases of ageing, skin-related problems, antitumor, cerebral ischaemia, and neurodegenerative diseases (Ahmad et al. 2021). Ganoderma resinaceum: G resinaceum has been used for immune-regulation, hyperglycemia, and liver disease (Peng et al. 2013; Rašeta et al. 2020b) and also exhibited antihypertensive, anti-inflammatory, antimicrobial, anti-obesity, antioxidant, antiproliferative, and inhibitory activities against acetylcholinesterase, α-amylase, cholinesterase, α-glucosidase, and tyrosinase (Coletto and Mondino 1991; Zjawiony 2004; Silva et al. 2013; Zengin et al. 2015; Chen et al. 2018a, b; Sedky et al. 2018; Huang et al. 2020a; Kozarski et al. 2020; Rašeta et al. 2020a, b). Endopolysaccharides from G. resinaceum express significant antiproliferative and antioxidant activity (Karaman et al. 2022). As a secondary metabolite source, culture liquid of G. resinaceum has presented antimicrobial activity against Bacillus subtilis and Staphylococcus aureus (Coletto and Mondino 1991). Ganoderma triterpenoids are one of the major secondary metabolites determined in Ganoderma species, and are deemed to be one of the main functional constituents in G. resinaceum (Peng et al. 2013; Huang et al. 2020b; Karaman et al. 2022). Some of the first isolated lanostane triterpenoids from G. resinaceum are 3-epipachymic acid and 3-oxo-5α-lanosta-8,24-dien-21-oic acid with significant cytotoxic activity with on Hep-2 cells (Niu et al. 2007). Resinacein S is one of the major lanostane-­ type triterpenoids from G. resinaceum providing anti-obesity potential of this mushroom, whereas some others express antidiabetic and hepatoprotective effects among others (Chen et al. 2018a; Huang et al. 2020a; Shi et al. 2020). Five new lanostanoid compounds (lucidones D-G, 7-oxo-ganoderic acid Z2, 7-oxo-ganoderic acid Z3, ganoderesin A, ganoderesin B) together with six known compounds showed antioxidant potential and inhibitory effects against the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in HepG2 cells induced by H2O2 (Peng et al. 2013). Shi et al. (2020) isolated 16 new lanostane-type triterpenoids and 20 known analogues from the fruiting body of G. resinaceum and most of them expressed significant hepatoprotective activities, also due to their remarkable in vitro inhibitory activities against the increase of ALT and AST levels in HepG2 cells induced by H2O2.

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1159

A large number of nortriterpenoids and meroterpenoids have been reported from Ganoderma, as biologically active secondary metabolites from G. resinaceum (Karaman et al. 2022). Resinacein A-B, and resinacein D-S showed stronger inhibitory activity against α-glucosidase as antidiabetic agents (Chen et al. 2018a). Shi et al. (2019) worked on determination of C28 steroids and identified eight novel, unidentified ergostane-type steroids, and 21 known analogues were isolated from the fruiting bodies of G. resinaceum. Another important group of secondary metabolites from G. resinaceum, similar to other Ganoderma species, are phenolic compounds with the highest amounts of phenolic acids, flavanols (i.e., (+)-catechin, (−)-epicatechin), flavones (apigenin) with important antioxidant, anti-diabetic, anti-tyrosinase, anti-acetylcholinesterase activity among others (Zengin et al. 2015; Rašeta et al. 2020a, b, 2023; Sułkowska-­ Ziaja et al. 2022). Rašeta et al. (2020b) suggested that phenolic compounds may affect as hypoglycaemic agents on carbohydrate metabolism at various levels: improving glucose levels, secretion and sensitivity of insulin, helping on diabetes mellitus prevention and limiting the rate of glucose absorption. Similar to hypoglycaemic potential, phenolic compounds may have hepatoprotective activity protecting β-cells from diabetogenic activity of alloxan (Rašeta et al. 2020b). On the other hand, three years later, the same group (Rašeta et  al. 2023) found that phenolic compounds from four autochtonous Ganoderma species from Serbia showed high activity against multi-resistant bacterial strains, including B. cereus, E. coli and P. aeruginosa. Identified flavonoids (amentoflavone, apigenin, and rutin) and 2,5-dihydroxybenzoic acid were found to be linked with the high antimicrobial activity of G. resinaceum, indicating that phenolic compounds have significance for determined antimicrobial activity (Rašeta et al. 2023). Steroids and their analogues isolated from the fruiting bodies of G. resinaceum showed inhibitory effects on production of nitric oxide (NO) production (Shi et al. 2019).

Local Food Uses Edibility, aroma and flavor. Ganoderma genus are not listed as a genus of edible species, mainly because their fruiting bodies are thick and corky (Yalcin et al. 2020). Ganoderma adspersum: Inedible, not significant odour but bitter taste. Ganoderma applanatum: Inedible, not significant odour and bitter taste. Ganoderma lucidum: Inedible, not significant odour but bitter taste. Ganoderma resinaceum: Inedible, not significant odour but bitter taste.

1160

Y. Gafforov et al.

Folk Recipes Ganoderma adspersum: Recipes: Ganoderma Tea Recipe. Raw fruit bodies are inedible. However, when cooked, they have a rich mushroom flavor that goes well with a variety of recipes. Fruiting body slices are used in fermented foods to enhance their flavor. Once dried and crushed, the fruiting bodies can be prepared as a tea or tincture. The artist’s conch can be used to dye wool, some fabrics, and paper. In Asia, the fruiting bodies are blended or cold-pressed mixed with water to create Ganoderma drinks. Ingredients: • Dried basidiomes – 3–4 grams • Water – 4 cups Instructions • In a stainless steel or ceramic pot, bring water to a boil. Do not use aluminum for such a long boiling process. • Add mushroom pieces. Reduce the heat until the mixture comes to a simmer instead of simmering. Let it brew for 2 hours. • Remove from heat, strain and set aside. Allow the liquid to cool slightly as it is quite hot. You can repeat the process with strained pieces until the resulting extract is no longer bitter or colored (https://ultimate-­mushroom.com/). Ganoderma applanatum: Recipe for medicinal tea: a healthy tea is prepared from the fruiting body that helps in increasing the immunity and improve the functioning of the cardiovascular system., Also, tinctures for alcohol, decoctions, powders, extracts are made from oblate Ganoderma. It is used for pulmonary diseases, diabetes, inflammatory processes and oncology. Instruction: The collected fruiting bodies must be dried at a temperature of 50–70 °C, ground into powder. Store in a dry sealed container out of direct sunlight. Required Ingredients: basidiome powder – 4 table soop. water – 0.7 L. Pour the powder with water, bring to a boil and cook over low heat for 5–10 minutes. Pour into a thermos, close and leave for half a day. Tea can be taken 3 times a day, 40–60 minutes before meals, 2 tbsp. The course of treatment is 21 days, after which a week-long break should be taken. This tea is effective for removing toxic substances from the body and stimulating the digestive system (https://ultimate-­­ mushroom.com/edible/23-­ganoderma-­applanatum.html).

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1161

Local Handicraft and Other Uses Culinary cooking: Ganoderma applanatum is used in Asian cuisine as a flavor enhancer in food. G. applanatum is indigestible, but due to the rich taste of mushrooms, it is used in cooking. Filtration in water or blending with cold pressing is a common method for making drinks from Ganoderma. Hot soups or citric acid are fermented with onions, and G. applanatum is often used as a general flavor enhancer in fermented foods. Ganoderma lucidum: Soup with carrots and rale Ingredients 1 table spoon olive oil, 1 medium yellow onion diced, 4 cloves garlic diced, 2 tbsp Fresh ginger peeled and grated, 2 carrots sliced 1/2″ thick, 1 bulb fennel diced (fronds reserved), 2 cups Cremini mushrooms sliced, 2 cups fresh shiitake mushrooms sliced (or 1/2 cup dried), 6 cups water 1/4 cup dried ground Ganoderma basidiome, 1/4 cup miso paste, 1 table spoon allspice 1/2 table spoon thyme, 3 cups kale chopped. Sea salt and black pepper to taste, Fennel fronds minced Instructions In a large soup pot, heat up the olive oil over medium heat. Add the onion and saute for 2 minutes. Add the garlic and saute for 1 minute. Add the ginger and the remaining vegetables (except the Ganoderma basidiome,) and saute for another 5 minutes or until golden brown. Add the water, reishi powder, miso paste and dried spices. Bring your soup to a boil and then reduce the heat to bring to a simmer. Cover and cook for 1 hour. Stir the kale into the hot soup to wilt. Add salt and pepper to taste (https://ultimate-­mushroom.com/edible/12-­ganoderma-­lucidum.html). Ganoderma powder is also added to chocolate bars, candies, energy drinks, and even coffee blends (https://ultimate-­mushroom.com/edible/12-­ganoderma-­lucidum.html).

References Acharya K, Yonzone P, Rai M, Acharya R (2005) Antioxidant and nitric oxide synthase activation properties of Ganoderma applanatum. Indian J Exp Biol 43:926–929 Ahmad MF (2018) Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 107:507–519 Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A (2021) Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 35:6030–6062 Ajith TA, Janardhanan KK (2007) Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40:157–162 Amaral AE, Carbonero ER, Simão RDCG, Kadowaki MK, Sassaki GL, Osaku CA, Gorin PA, Iacomini M (2008) An unusual water-soluble beta-glucan from the basidiocarp of the fungus Ganoderma resinaceum. Carbohydr Polym 72:473–478 Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101 Badalyan SM, Gharibyan NG, Iotti M, Zambonelli A (2019) Morphological and ecological screening of different collections of medicinal white-rot bracket fungus Ganoderma adspersum (Schulzer) Donk (Agaricomycetes, Polyporales). Ital J Mycol 48:1–15

1162

Y. Gafforov et al.

Balamurugan JP, Supramani S, Ahmad Usuldin SR, Ilham Z, Klaus A, Khairul Ikram NK, Ahmad R, Wan-Mohtar WA (2019) Efficient biomass-endopolysaccharide production from an identified wild-Serbian Ganoderma applanatum strain BGS6Ap mycelium in a controlled submerged fermentation. Biocatal Agric Biotechnol 37:102166 Beck T, Gáperová S, Gáper J, Náplavová K, Šebesta M, Kisková J, Pristaš P (2020) Genetic (non)homogeneity of the bracket fungi of the genus Ganoderma (Basidiomycota) in Central Europe. Mycosphere 11(1):225–238 Berihuete-Azorin M, Girbal J, Pique R, Palomo A, Terradas X (2018) Punk’s not dead. Fungi for tinder at the Neolithic site of La Draga (NE Iberia). PLoS One 13(4):e0195846 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar, p 904 Bishop KS, Kao CHJ, Xu YY, Glucina MP, Paterson RR, Ferguson LR (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65 Biswal RP, Dandamudi RB, Patnana DP, Pandey M, Kishore Vutukuri VN (2022) Metabolic fingerprinting of Ganoderma spp. using UHPLC-ESI-QTOF-MS and its chemometric analysis. Phytochemistry 199:113169 Boh B (2013) Ganoderma lucidum: a potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Pat Anticancer Drug Discov 8(3):255–287 Boh B, Hodžar D, Dolničar D, Berovič M, Pohleven F (2000) Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrian Origin. Food Technol Biotechnol 38:11–18 Boh B, Berovič M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301 Breitenbach J, Kränzlin K (1986) Fungi of Switzerland, vol. 2: Non Gilled Fungi Heterobasidiomycetes, Aphyllophorales, Gastromycetes. Edition Mycologia Lucerne 412 Bulam S, Üstün NŞ, Pekşen AU (2019) Health benefits of Ganoderma lucidum as a medicinal mushroom. Turk J Agric Food Sci Technol 7:84–93 Cabarroi-Hernández M, Villalobos-Arámbula AR, Torres-Torres MG, Decock C, Guzmán-Dávalos L (2019) The Ganoderma weberianum-resinaceum lineage: multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics. MycoKeys 29(59):95–131 Chairul SM, Hayashi Y (1994) Lanostanoid triterpenes from Ganoderma applanatum. Phytochemistry 35:1305–1308 Chairul, Tokuyama T, Hayashi Y, Nishizawa M, Tokuda H, Chairul SM, Hayashi Y (1991) Applanoxidic acids A, B, C and D, biologically active tetracyclic triterpenes from Ganoderma applanatum. Phytochemistry 30:4105–4109 Chen JT, Huang JW (2010) Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathol Bull 19:261–270 Chen XQ, Chen LX, Zhao J, Tang Y, Li S (2017) Nortriterpenoids from the fruiting bodies of the mushroom Ganoderma resinaceum. Molecules 22:1073 Chen XQ, Zhao J, Chen LX, Wang S, Wang Y, Li S (2018a) Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry 149:103–115 Chen XQ, Lin LG, Zhao J, Chen L, Tang Y, Luo D, Li S (2018b) Isolation, structural elucidation, and α-glucosidase inhibitory activities of triterpenoid lactones and their relevant biogenetic constituents from Ganoderma resinaceum. Molecules 23:1391 Chen L, Chen X, Wang S, Bian Y, Zhao J, Li S (2019) Analysis of triterpenoids in Ganoderma resinaceum using liquid chromatography coupled with electrospray ionization quadrupole  – time – of – flight mass spectrometry. Int J Mass Spectrom 436:42–51 Cheng CR, Yue QX, Wu ZY, Song XY, Tao SJ, Wu XH, Xu PP, Liu X, Guan SH, Guo DA (2010) Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 71:1579–1585 Chun S, Gopal J, Muthu M (2021) Antioxidant activity of mushroom extracts/polysaccharides— their antiviral properties and plausible AntiCOVID-19 properties. Antioxidants 10:1899 Coletto BMA, Mondino P (1991) Antibiotic activity in Basidiomycetes: V. Antibiotic activity of mycelia and cultural filtrates. Allionia (Turin) 30:61–64

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1163

Cör D, Knez Ž, Knez Hrnčič M (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23(3):649 Dai YC, Yang ZL, Cui BK, Yu CY, Zhou ZW (2009) Species diversity and utulization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11(3):287–302 de Correia L, Júnior N, Baptista Gibertoni T, Malosso E (2014) Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology. Rev Biol Trop 62(3):1197–1208 De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012a) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35 De Silva DD, Rapior S, Hyde KD, Bahkali AH (2012b) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56:1–29 De Simone D, Anessi T (2012) Occurrence of Ganoderma adspersum on Pinus pinea. Phytopathol Mediterr 51:374–382 Deveci E, Çayan F, Tel-Çayan G, Duru ME (2019) Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J Food Biochem 43(9):e12965 Donk MA (1969) Notes on European polypores – IV. On some species of Ganoderma. Proc K Ned Akad Wet C 72:273–282 Eo SK, Kim YS, Oh K, Lee CK, Lee YN, Han SS (2001) Mode of antiviral activity of water soluble components isolated from Elfvingia applanata on vesicular stomatitis virus. Arch Pharm Res 24:74–78 Ermoshin AA, Kiseleva IS, Nikkonen I, Duan S, Ma C (2022) Chemical composition and antioxidant activity of two fungi species from the genus Ganoderma. AIP Conf Proc 2390:030017-1–030017-6 Gafforov YS (2014) Taxonomy and diversity of the genus Ganoderma Karst. (Basidiomycota) species in Uzbekistan. Uzb Biol J Special Issue:22–25 Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello GA, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321. https://doi.org/10.3389/ fmicb.2020.598321 Gao P, Hirano T, Chen Z, Yasuhara T, Nakata Y, Sugimoto A (2012) Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom). Fitoterapia 83:490–499 Gryzenhout M, Ghosh S, Tchotet Tchoumi JM, Vermeulen M, Kinge TR (2021) Ganoderma: diversity, ecological significances, and potential applications in industry and allied sectors. In: Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (eds) Industrially important fungi for sustainable development. Fungal biology. Springer, Cham Guan SH, Yang M, Wang XM, Xia J, Zhang Z, Liu X, Guo D (2007) Structure elucidation and complete NMR spectral assignments of three new lanostanoid triterpenes with unprecedented Δ16, 17 double bond from Ganoderma lucidum. Magn Reson Chem 45:789–791 Hakkim FL, Al-Buloshi M, Achankunju J (2016) Chemical composition and anti-proliferative effect of Oman’s Ganoderma applanatum on breast cancer and cervical cancer cells. J Taibah Univ Sci 11:145–151 Hapuarachchi KK, Cheng CR, Wen TC, Jeewon R, Kakumyan P (2017) Mycosphere essays 20: therapeutic potential of Ganoderma species: insights into its use as traditional medicine. Mycosphere 8(10):1653–1694 Hapuarachchi KK, Elkhateeb WA, Karunarathna SC, Cheng CR, Bandara AR, Kakumyan P, Hyde KD, Daba GM, Wen TC (2018) Current status of global Ganoderma cultivation, products, industry and market. Mycosphere 9(5):1025–1052 Harsh NSK, Rai BK, Tiwari DP (1993) Use of Ganoderma lucidum in folk medicine. J Trop Biodivers 1:324–326

1164

Y. Gafforov et al.

Hirotani M, Ino C, Furuya T, Shiro M (1986) Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum. Chem Pharm Bull 34:2282–2285 Hsu C, Yen G (2014) Ganoderic acid and lucidenic acid (triterpenoid). Enzymes 36:33–56 https://progrib.ru/trutoviki/trutovik-­ploskiy.html https://ultimate-­mushroom.com/edible/12-­ganoderma-­lucidum.html https://ultimate-­mushroom.com/edible/23-­ganoderma-­applanatum.html https://www.agroone.info/publication/tainstvennaja-­lechebnaja-­sila-­trutovika-­ploskogo/ Huang Y, Li X, Peng X, Adegoke AT, Chen J, Su H, Hu G, Wei G, Qiu M (2020a) NMR-based structural classification, identification, and quantification of triterpenoids from edible mushroom Ganoderma resinaceum. J Agr Food Chem 68:2816–2825 Huang Y, Wei G, Peng X, Hu G, Su H, Liu J, Chen X, Qiu M (2020b) Triterpenoids from functional mushroom Ganoderma resinaceum and the novel role of Resinacein S in enhancing the activity of brown/beige adipocytes. Food Res Int 136:109303 Jargalmaa S, Eimes JA, Park MS, Park JY, Oh SY, Lim YW (2017) Taxonomic evaluation of selected Ganoderma species and database sequence validation. Peer J 5:e3596 Jeong Y, Yang B, Jeong SC, Kim S, Song C (2008) Ganoderma applanatum: a promising mushroom for antitumor and immunomodulating activity. Phytother Res 22:614–619 Jung SH, Lee YS, Shim SH, Lee S, Shin KH, Kim JS, Kim YS, Kang SS (2005) Inhibitory effects of Ganoderma applanatum on rat lens aldose reductase and sorbitol accumulation in streptozotocin-­induced diabetic rat tissues. Phytother Res 19:477–480 Jung M, Liermann JC, Opatz T, Erkel G (2011) Ganodermycin, a novel inhibitor of CXCL10 expression from Ganoderma applanatum. J Antibiot (Tokyo) 64(10):683–686 Kabir Y, Kimura S, Tamura T (1988) Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol 34:433–438 Karaman M, Jovin E, Malbaša R, Matavuly M, Popović M (2010) Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 24:1473–1481 Karaman M, Čapelja E, Rašeta M, Rakić M (2022) Diversity, chemistry, and environmental contamination of wild growing medicinal mushroom species as sources of biologically active substances (antioxidants, anti-diabetics, and AChE inhibitors). In: Arya A, Rusevska K (eds) Biology, cultivation and applications of mushrooms. Springer, Singapore. https://doi. org/10.1007/978-­981-­16-­6257-­7_8 Khastini R, Wahyuni I, Saraswati I (2018) Ethnomycology of bracket fungi in Baduy tribe Indonesia. Biosaintifika 10(2):424–432 Kinge TR, Tabi EM, Mih AM, Enow EA, Njouonkou L, Nji TM (2011) Ethnomycological studies of edible and medicinal mushrooms in the Mount Cameroon region (Cameroon, Africa). Int J Med Mushrooms 13(3):299–305 Kozarski M, Klaus A, Nikšić M, Vrvić MM, Todorović N, Jakovljević DV, Griensven LJ (2012) Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J Food Compos Anal 26:144–153 Kozarski MS, Klaus AS, Vunduk JD, Jakovljević DM, Jadranin MB, Nikšić MP (2020) Health impact of the commercially cultivated mushroom Agaricus bisporus and the wild-­ growing mushroom Ganoderma resinaceum–a comparative overview. J Serbian Chem Soc 85(6):721–735 Kubota T, Asaka Y, Miura I, Mori H (1982) Structures of ganoderic acid A and B, two new lanostane type bittertriterpenes from Ganoderma lucidum (FR.) KARST. Helv Chim Acta 65:611–619 Kumar R, Pandey S, Tapwal A, Rishi RR, Giri K, Mishra G (2014) Ethnomycological knowledge on wild mushrooms by tribes of Mokokchung, Nagaland, North East India. J Ethnobiol Tradit Med Photon 122:890–899 Kumar M, Harsh NSK, Prasad R, Pande VV (2017) An ethnomycological survey of Jaunsar, Chakratta, Dehradun, India. J Threat Taxa 9(9):10717–10725 Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM (2017) Isolation and characterization of lectin from the Artist's Conk medicinal mushroom, Ganoderma applanatum

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1165

(Agaricomycetes), and evaluation of its antiproliferative activity in HT-29 colon cancer cells. Int J Med Mushrooms 19(8):675–684 Lakshmi B, Ajith TA, Sheena N, Gunapalan N, Janardhanan KK (2003) Antiperoxidative, anti-­ inflammatory, and antimutagenic activities of ethanol extract of the mycelium of Ganoderma lucidum occurring in South India, Teratog. Carcinog Mutagen 23(S1):85–97 Lee SH, Shim SH, Kim JS, Kang SS (2006) Constituents from the fruiting bodies of Ganoderma applanatum and their aldose reductase inhibitory activity. Arch Pharm Res 29:479–483 Lee W, Fujihashi A, Govindarajulu M, Ramesh S, Deruiter J, Majrashi M, Almaghrabi M, Nadar RM, Moore T, Agrawal DC, Dhanasekaran M (2019) Role of mushrooms in neurodegenerative diseases. In: Agrawal DC, Dhanasekaran M (eds) Medicinal mushrooms. Springer, pp 222–249 Li L, Li H, Peng XR, Hou B, Yu M, Dong J, Li X, Zhou L, Yang J, Qiu M (2016) (±)-Ganoapplanin, a pair of polycyclic meroterpenoid enantiomers from Ganoderma applanatum. Org Lett 18:6078–6081 Li LD, Mao PW, Shao KD, Bai X, Zhou X (2019) Ganoderma proteins and their potential applications in cosmetics. Appl Microbiol Biotechnol 103:9239–9250 Li H, Xiao Y, Han L, Jia Y, Luo S, Zhang D, Zhang L, Wu P, Xiao C, Kan W, Du J, Bao H (2021) Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res Bull 171:16–24 Liang Z, Yi Y, Guo Y, Wang R, Hu Q, Xiong X (2014) Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. Int J Mol Sci 15:9103–9116 Liang C, Tian D, Liu Y, Li H, Zhu J, Li M, Xin M, Xia J (2019) Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur J Med Chem 174:130–141 Lin Z (2019) Ganoderma (Lingzhi) in traditional Chinese medicine and Chinese culture. In: Lin Z, Yang B (eds) Ganoderma and health, Advances in experimental medicine and biology, p 1181. https://doi.org/10.1007/978-­981-­13-­9867-­4_1 Lin Y, Sun J, Liao Z, Sun Y, Tian X, Jin L, Wang C, Leng A, Zhou J, Li D (2022) Triterpenoids from the fruiting bodies of Ganoderma lucidum and their inhibitory activity against FAAH. Fitoterapia 158:105161 Lindequist U, Haertel B (2021) Medicinal mushrooms for prevention and therapy of osteoporosis (Review). Int J Med Mushrooms 23(4):13–22 Liu ZH, Hou XG, Zhao JH, He L (2015) Liquid fermentation of Ganoderma applanatum and antioxidant activity of exopolysaccharides. Open Biomed Eng J 9:224–227 Loyd AL, Barnes CW, Held BW, Schink MJ, Smith ME, Smith JA, Blanchette RA (2018) Elucidating "lucidum": distinguishing the diverse laccate Ganoderma species of the United States. PLoS One 13(7):e0199738 Luangharn T, Karunarathna SC, Dutta AK, Paloi S, Promputtha I, Hyde KD, Xu J, Mortimer PE (2021) Ganoderma (Ganodermataceae, Basidiomycota) species from the Greater Mekong subregion. J Fungi 7:819 Luo Q, Di L, Dai WF, Lu Q, Yan YM, Yang ZL, Li RT, Cheng YX (2015a) Applanatumin A, a new dimeric meroterpenoid from Ganoderma applanatum that displays potent antifibrotic activity. Org Lett 17:1110–1113 Luo Q, Wang XL, Di L, Yan YM, Lu Q, Yang XH, Hu DB, Cheng YX (2015b) Isolation and identification of renoprotective substances from the mushroom Ganoderma lucidum. Tetrahedron 71:840–845 Luo Q, Yang XH, Yang ZL, Tu Z, Cheng Y (2016) Miscellaneous meroterpenoids from Ganoderma applanatum. Tetrahedron 72:4564–4574 Lv GP, Zhao J, Duan JA, Tang Y, Li S (2012) Comparison of sterols and fatty acids in two species of Ganoderma. Chem Cent J 6:10 Ma B, Ren W, Zhou Y, Ma J, Ruan Y, Wen C (2011) Triterpenoids from the spores of Ganoderma lucidum. N Am J Med Sci 3:495–498 Manasseh AT, Godwin JTA, Emanghe EU, Borisde OO (2012) Phytochemical properties of Ganoderma applanatum as potential agents in the application of nanotechnology in modern day medical practice. Asian Pac J Trop Biomed 2:S580–S583

1166

Y. Gafforov et al.

Mayaka RK, Njue AW, Langat MK, Cheplogoi PK, Omolo JO (2020) Antimicrobial compounds from the Kenyan Ganoderma adspersum (Schulz.) Donk species. Int J Biol Chem Sci 13:3390–3397 Mdachi SJM, Nkunya MHH, Nyigo VA, Urasa IT (2004) Amino acid composition of some Tanzanian wildmushrooms. Food Chem 86(2):179–182 Miyamoto I, Liu J, Shimizu K, Sato M, Kukita A, Kukita T, Kondo R (2009) Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum. Eur J Pharmacol 602(1):1–7 Mothana RAA, Awadh Ali NA, Jansen R, Wegner U, Mentel RD, Lindequist U (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74:177–180 Muhsin TM, Al-Duboon AA, Khalaf KT (2011) Bioactive compounds from a polypore fungus Ganoderma applanatum (Pers. ex Wallr.) Pat. Jordan J Biol Sci 4(4):205–212 Nagaraj K, Mallikarjun N, Naika R, Venugopal TM (2014) Antioxdative activities of wild macro fungi Ganoderma applanatum (Pers.) Pat. Asian J Pharm Clin Res 7:166–171 Ng TB, Ng CCW (2014) Antihyperlipidemic effects of mushroom extracts and compounds. Cultiv Antioxid Prop Heal Benefits 1:189–197 Niu XM, Li SH, Xiao WL, Sun H, Che CT (2007) Two new lanostanoids from Ganoderma resinaceum. J Asian Nat Prod Res 9:659–664 Obodai M, Mensah DLN, Fernandes Â, Kortei NK, Dzomeku M, Teegarden MD, Schwartz SJ, Barros L, Prempeh J, Takli RK, Ferreira IC (2017) Chemical characterization and antioxidant potential of wild Ganoderma species from Ghana. Molecules 22:196 Osińska-Jaroszuk M, Jaszek M, Mizerska-Dudka M, Blachowicz A, Rejczak TP, Janusz G, Wydrych J, Polak J, Jarosz-Wilkołazka A, Kandefer-Szerszeń M (2014) Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. Biomed Res Int 2014:743812 Oyetayo OV (2011) Medicinal uses of mushrooms in Nigeria: towards full and sustainable exploitation. Afr J Tradit Complement Altern Med 8(3):267–274 Pala SA, Wani AH, Bhat MY (2013) Ethnomycological studies of some wild medicinal and edible mushrooms in the Kashmir Himalayas (India). Int J Med Mushrooms 15(2):211–220 Papp V, Geösel A, Èros-Honti Z (2012) Native Ganoderma species from the Carpathian basin with the perspective of cultivation review. Acta Aliment 41:160–170 Paterson RRM (2006) Ganoderma – a therapeutic fungal biofactory. Phytochemistry 67:1985–2001 Paul S, Dusty C, Yao W (2002) Ganoderma applanatum. In: Mycomedicinals: an informational booklet on medicinal mushrooms. MycoMedia, Olympia, WA, pp 22–24. Print Peng XR, Liu JQ, Han ZH (2013) Protective effects of triterpenoids from Ganoderma resinaceum on H2O2-induced toxicity in HepG2 cells. Food Chem 141:920–926 Phan CW, David P, Naidu M, Wong KH, Sabaratnam V (2015) Therapeutic potential of culinary-­ medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35(3):355–368 Qadir S (2021) Ethnomycology of mushrooms and their antioxidant properties. In: Significance of Indian medicinal plants and mushrooms – Dr. Ved Prakash, pp 434–458 Qi Y, Zhao L, Sun HH (2012) Development of a rapid and confirmatory method to identify ganoderic acids in Ganoderma mushrooms. Front Pharmacol 3 Rahman MA, Hossain S, Abdullah N, Aminudin N (2020) Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), ameliorates nonspatial learning and memory deficits in rats with hypercholesterolemia and Alzheimer's disease. Int J Med Mushrooms 22(11):1067–1078 Rajasekaran M, Kalaimagal C (2012) Cardioprotective effect of a medicinal mushroom, Ganoderma lucidum against Adriamycin induced toxicity. Int J Pharmacol 8(4):252–258 Rašeta M (2016) Detection of bioactive substances selected fungal species of the genus Ganoderma (Basidiomycota) and their biological activity. Dissertation, University of Novi Sad, Serbia Rašeta M, Karaman M, Jakšić M, Šibul F, Kebert M, Novaković AR, Popović M (2016) Mineral composition, antioxidant and cytotoxic biopotentials of wild-growing Ganoderma species

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1167

(Serbia): G. lucidum (Curtis) P. Karst vs. G. applanatum (Pers.) Pat. Int J Food Sci Technol 51:2583–2590 Rašeta M, Vrbaški S, Bošković EV, Popović M, Mimica-Dukić NM, Karaman MA (2017) Comparison of antioxidant capacities of two Ganoderma lucidum strains of different geographical origins. Matica Srpska J Nat Sci 133:209–219 Rašeta M, Popović M, Beara IN, Šibul F, Zengin G, Krstić S, Karaman M (2020a) Anti-­ inflammatory, antioxidant and enzyme inhibition activities in correlation with mycochemical profile of selected indigenous Ganoderma spp. from Balkan region (Serbia). Chem Biodivers 17:e2000828 Rašeta M, Popović M, Čapo I, Stilinović N, Vukmirović S, Milošević B, Karaman M (2020b) Antidiabetic effect of two different Ganoderma species tested in alloxan diabetic rats. RSC Adv 10:10382–10393 Rašeta M, Mišković J, Čapelja E, Zapora E, Petrović Fabijan A, Knežević P, Karaman M (2023) Do Ganoderma species represent novel sources of phenolic based antimicrobial agents? Molecules 28:3264 Raut JK, Bade A, Khyaju S, Baral K (2022) Ganoderma industry in Nepal: current status and future prospects. Asian J Mycol 5(1):1–15 Ryvarden L (2004) Neotropical polypores part 1. Introduction, ganodermataceae & hymenochaetaceae. Synopsis Fungorum 19, pp 1–229 Ryvarden L, Gilbertson RL (1993) European polypores. Part 1. Abortiporus—Lindtneria; Fungi Flora: Oslo, p. 387 Sadava D, Still DW, Mudry RR, Kane SE (2009) Effect of Ganoderma on drug-sensitive and multidrug resistant small-cell lung carcinoma cells. Cancer Lett 277:182–189 Saltarelli R, Palma F, Gioacchini AM, Calcabrini C, Mancini U, De Bellis R, Stocchi V, Potenza L (2019) Phytochemical composition, antioxidant and antiproliferative activities and effects on nuclear DNA of ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum. J Ethnopharmacol 231:464–473 Sasaki T, Arai Y, Ikekawa T, Chihara G, Fukuoka F (1971) Antitumor polysaccharides from some polyporaceae,Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo)19(4):821–826 Savin S, Craciunescu OI, Oancea A, Ilie D, Ciucan T, Antohi LS, Toma A, Nicolescu A, Deleanu C, Oancea F (2020) Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chem Biodivers 17:e2000175. https://doi. org/10.1002/cbdv.202000175 Sedky NK, El Gammal ZH, Wahba AE, Mosad E, Waly ZY, El-Fallal AA, Arafa RK, El-Badri N (2018) The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. J Cell Biochem 119:3892–3902 Shao Y, Qiao L, Wu L, Sun X, Zhu D, Yang G, Zhang X, Mao X, Chen W, Liang W, Zhang Y, Zhang L (2016) Structure identification and anti-cancer pharmacological prediction of triterpenes from Ganoderma lucidum. Molecules 21:678 Shi Y, Sun J, He H, Guo H, Zhang S (2008) Hepatoprotective effects of Ganoderma lucidum peptides against D-galactosamine-induced liver injury in mice. J Ethnopharmacol 117(3):415–419 Shi Q, Huang Y, Su H, Gao Y, Peng X, Zhou L, Li X, Qiu M (2019) C28 steroids from the fruiting bodies of Ganoderma resinaceum with potential anti-inflammatory activity. Phytochemistry 168:112109 Shi QQ, Huang YJ, Su HG, Gao Y, Lu S, Peng X, Li X, Zhou L, Qiu M (2020) Structurally diverse lanostane triterpenoids from medicinal and edible mushroom Ganoderma resinaceum Boud. Bioorg Chem 100:103871 Shomali N, Onar O, Alkan T, Demirtas N, Akata I, Yildirim Ö (2019) Investigation of the polyphenol composition, biological activities, and detoxification properties of some medicinal mushrooms from Turkey. Turkish J Pharm Sci 16:155–160 Silva AM, Miranda A, Fernandes E, Santos S, Fraga I, Santos DL, Dias AA, Bezerra RM (2013) Endopolysaccharides from Ganoderma resinaceum, Phlebia rufa, and Trametes ver-

1168

Y. Gafforov et al.

sicolor affect differently the proliferation rate of HepG2 cells. Appl Biochem Biotechnol 169:1919–1926 Smânia A, Monache FD, Smânia EF, Cuneo RS (1999) Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) Fruit Body. Int J Med Mushrooms 1:325–330 Song T, Zhang Z, Liu S, Chen J, Caia W (2020) Effect of cultured substrates on the chemical composition and biological activities of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms 22(12):1183–1190 Sułkowska-Ziaja K, Zengin G, Gunia-Krzyżak A, Popiół J, Szewczyk A, Jaszek M, Rogalski J, Muszyńska B (2022) Bioactivity and mycochemical profile of extracts from mycelial cultures of Ganoderma spp. Molecules 27:275 Sun X, Zhao C, Pan W, Wang J, Wang W (2015) Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohydr Polym 123:283–287 Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, González-Paramás AM, Barreiro MF, Ferreira IC (2017) The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 108:139–147 Tel-Çayan G, Öztürk M, Duru ME, Rehman MU, Adhikari A, Türkoğlu A, Choudhary MI (2015) Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Ind Crop Prod 76:749–754 Tel-Çayan G, Muhammad A, Deveci E, Duru ME, Öztürk M (2020) Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. Int J Biol Macromol 165(Pt B):2395–2403 Teplyakova T, Kosogova TA (2015) Fungal bioactive compounds with antiviral effect. J Pharm Pharmacol 3:357–371 Tie Z, Huang X (1988) Dictionary of traditional Chinese medicine. The Commercial Press Ltd, Hong Kong, p 201 Tokul-Olmez O, Kaplaner E, Ozturk M, Ullah Z, Duru ME (2018) Fatty acid profile of four Ganoderma species collected from various host trees with chemometric approach. Biochem Syst Ecol 78:91–97 Torres-Torres MG, Dávalos LG (2012) The morphology of Ganoderma species with a laccate surface. Mycotaxon 119(1):201–216 Tran PT, Dat NT, Dang NH, Van Cuong P, Lee S, Hwangbo C, Van Minh C, Lee JH (2018) Ganomycin I from Ganoderma lucidum attenuates RANKL-mediated osteoclastogenesis by inhibiting MAPKs and NFATc1. Phytomedicine 55:1–8 Trigos Á, Medellín JS (2011) Biologically active metabolites of the genus Ganoderma: three decades of myco-chemistry research. Rev Mex Mic 34:63–83 Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015:376387 Veenaa RK, Janardhanan KK (2022) Polysaccharide-protein complex isolated from fruiting bodies and cultured mycelia of Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), attenuates doxorubicin-induced oxidative stress and myocardial injury in rats. Int J Med Mushrooms 24(2):31–40 Villares A, Mateo-Vivaracho L, Guillamón E (2012) Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2:452–471 Wachtel-Galor S, Yuen JG, Buswell J, Benzie IF (2011) Ganoderma lucidum (Lingzhi or Reishi). A medicinal mushroom. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis Chapter, Boca Raton, F), p 9 Walton E (2014) Buried treasure: unlocking the secrets of medicinal mushrooms. Biom J 37:339–342 Wang H, Ng TB (2006) Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27(1):27–30 Wang F, Dong ZJ, Liu JK (2007) Benzopyran-4-one derivatives from the fungus Ganoderma applanatum. Verlag der Zeitschrift für Naturforschung 62:1329–1332

Ganoderma adspersum (Schulzer) Donk; Ganoderma applanatum (Pers.)…

1169

Wang L, Li JG, Zhang J, Li Z, Liu HG, Wang YZ (2020) Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv 10:42084–42097 Wu Y, Han F, Luan S, Ai R, Zhang P, Li H, Chen L (2019) Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J Agric Food Chem 67(18):5147–5158 Xie J, Zhao J, Hu DJ, Duan J, Tang Y, Li S (2012) Comparison of polysaccharides from two species of Ganoderma. Molecules 17:740–752 Xing JH, Song J, Decock C, Cui BK (2016) Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 266(2):115–124 Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87:457–466 Yalcin OU, Sarikurkcu C, Cengiz M, Gungor H, Ćavar Zeljković S (2020) Ganoderma carnosum and Ganoderma pfeifferi: metal concentration, phenolic content, and biological activity. Mycologia 112:1–8. https://doi.org/10.1080/00275514.2019.1689748 Yan YM, Ai J, Zhou LL, Chung AC, Li R, Nie J, Fang P, Wang X, Luo J, Hu Q, Hou FF, Cheng Y (2013) Lingzhiols, unprecedented rotary door-shaped meroterpenoids as potent and selective Inhibitors of p-Smad3 from Ganoderma lucidum. Org Lett 15(21):5488–5491 Yang M, Sun H, Yu DW, Cui ZY, Tian J (2005) Effects of the polysaccharides isolated from Ganoderma applanatum (PGA) on the level of PGE2 and gastric mucosal blood flow (GMBF) and gastric mucus secretion of rats with gastric mucosa injury, China. J Chin Materia Medica 30(15):1176–1178 Yang QF, Hu QY, Ma ZH et al (2018) A new meroterpenoid from Ganoderma resinaceum. Chin Traditi Herb Drugs 50(24):1902–1905 Yang Q, He K, Qiu S, Zheng A, Hu Q, Ma Z, Dong M, Zhou M (2019a) A new lanostane triterpenoid from Ganoderma resinaceum. J Asian Nat Prod Res 22:1095–1099 Yang Y, Zhang H, Zuo J, Gong X, Yi F, Zhu W, Li L (2019b) Advances in research on the active constituents and physiological effects of Ganoderma lucidum. Biomed Dermatol 3:1–17 Yasin H, Zahoor M, Yousaf Z, Aftab A, Saleh N, Riaz N, Shamsheer B (2019) Ethnopharmacological exploration of medicinal mushroom from Pakistan. Phytomedicine 54:43–55 Yongabi K, Agho M, Martínez-Carrera D (2004) Ethnomycological studies on wild mushrooms in Cameroon, Central Africa. Micol Aplicada Int 16(2):34–36 Yong-Tae J, Yang BK, Jeong SC, Kim SM, Song CH (2008) Ganoderma applanatum: a promising mushroom for antitumor and immunomodulating activity. Phytother Res 22:614–619 Yuan Y, Wang Y, Sun G, Wang Y, Cao L, Shen Y, Yuan B, Han D, Huang L (2018) Archaeological evidence suggests earlier use of Ganoderma in Neolithic China. Sci Bull 63(13):1180–1188 Yue Q, Song X, Ma C, Feng L, Guan S, Wu W, Yang M, Jiang B, Liu X, Cui Y, Guo D (2010) Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 17(8–9):606–613 Zengin G, Sarikurkcu C, Gunes E, Uysal A, Ceylan R, Uysal S, Gungor H, Aktumsek A (2015) Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders. Food Funct 6(8):2794–2802 Zhao ZZ, Yin RH, Chen HP, Feng T, Li Z, Dong Z, Cui B, Liu J (2015) Two new triterpenoids from fruiting bodies of fungus Ganoderma lucidum. J Asian Nat Prod Res 17:750–755 Živković J, Ivanov M, Stojković DS, Glamočlija J (2021) Ethnomycological investigation in Serbia: astonishing realm of mycomedicines and mycofood. J Fungi 7:349 Zjawiony J (2004) Biologically active compounds from Aphyllophorales (polypore) Fungi. J Nat Prod 67:300–310

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE Yusufjon Gafforov, Milena Rašeta, Michal Tomšovský, Muhammad Zafar, and Sylvie Rapior

Grifola frondosa (Dicks.) Gray Synonyms: Agaricus frondosus (Dicks.) Schrank; Boletus cristatus Gouan; B. elegans Bolton; B. frondosus Dicks.; Cladomeris frondosa (Dicks.) Quél.; Grifola albicans Imazeki; G. intybacea (Fr.) Imazeki; Polyporus barrelieri Viv.; P. frondosus (Dicks.) Fr.; P. intybaceus Fr.

Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] M. Zafar Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan e-mail: [email protected] S. Rapior Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_112

1171

1172

Y. Gafforov et al.

Local Names Uzbek: Jingalak grifola zamburug‘i, qo‘chqorbosh zamburug; English: Hen of the Woods, Maitake mushroom; Russian: Грифола курчавая, гриб-баран, мейтаке, маитаке, танцующий гриб; Chinese: 灰树花孔菌, hui-shu-hua (grey tree flower); Japanese: 舞茸, マイタケ, maitake, kumotake; Italian: Signorina Mushroom; French: Polypore en touffe, Poule des bois; German: Gemeiner Klapperschwamm, Laubporling; American and Canadian: sheep’s head, king of mushrooms, hen-of-­ the-woods, cloud mushroom; Holland: eikhaas; Italian: Signorina mushroom; Norway: korallkjuke; Korean: 잎새버섯; Persian: ‫ ;قارچ مرغ چوب‬Serbian: zečarka, zec gljiva.

Short Morphological Description Basidiomata annual, large, compound, multipileate, stipitate, entire structure up to 15–60  cm wide and several kilograms in weight, pilei kidney-shaped, spatulate, petaloid to fan-shaped, flat to often curved, in imbricated and confluent clusters, each pileus up to 4–10 cm wide, smooth or radially glabrous, azonate or sometimes lightly zoned or wrinkled, pale lavender-grey, grayish-brown or pale brown at first to dark brown with age. Margin concolorous, thin, wavy and sometimes lobed. Hymenium white, ivory-white to cream. Pores angular, slightly stretched and lacerated, 2–4 per mm, with thin and lacerated dissepiments. Tube layer decurrent on the stipe, distinct from context, brittle when dry, whitish or darker with age or when dry, up to 5 mm thick. Context firm, slightly fibrous, flexible, ivory-white and 2–5 mm thick in individual pilei and up to several cm thick on main stem branches and in stipitate base. Stipe whitish repeatedly branched, up to 10  cm in diameter at the base, arising from a hypogeal structure known as a sclerotium. Hyphal system dimitic. Generative hyphae curly, thin-walled, rarely branching, colorless, 2.5–5 μm in diameter; skeletal hyphae from context thick-walled, sparsely branched, 2.5–6 μm diam. Cystidia and other sterile hymenial elements absent. Basidia clavate, with 4 sterigmata, clamped at the base, 20–35 × 5–8 μm. Basidiospores ovoid to ellipsoid, smooth, thin-walled, often guttulate, colorless, negative in Melzer’s reagent, 5.5–7 × 4–4.5 μm. Spore print white (Ryvarden and Gilbertson 1993; Bernicchia 2005; Ryvarden and Melo 2014).

Ecology and Distribution This fungus is distributed in the temperate zone of Northern Hemisphere, temperate forests in eastern North America, Europe and Asia (Shevchenko et  al. 2019; Wu et al. 2021; Marco et al. 2022; Gafforov and Ordynets 2022). Basidiomes grow from

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1173

Fig. 1  Grifola frondosa (Grifolaceae), Germany. (Photo Ewald Langer)

living and dead roots and the bases of trees causing white pocket rot. The most common substrate is Quercus spp. but may also occur on other hardwoods (e.g. Acer, Betula, Carpinus, Castanea, Fagus, Juglans, Populus and Ulmus) and occasionally on conifers (Ryvarden and Melo 2014; Gafforov et al. 2020; Gafforov and Ordynets 2022) (Fig. 1).

Mycochemistry G. frondosa provides a broad spectrum of biologically active molecules that are potentially valuable for nutraceutical and pharmaceutical applications. In 1821, this species was defined as edible by Grey (Rossi et al. 2018). It has delicious and special umami taste, and it is not only used as food, but also as food-flavoring substance in powder form (Wu et al. 2021). It has a sweet and umami taste, is mainly attributed to its high concentrations of aspartic and glutamic amino acids, 5′-nucleotide and disaccharide trehalose (Tabata et al. 2004; Wu et al. 2021). In relation to this, aspartic and glutamic acids are classified as monosodium glutamate-like (MSG-like) components that contribute to the most typical mushroom taste, MSG-like and sweetness components would mainly be responsible for the attractive taste of G. frondosa (Tabata et al. 2004). Only young basidiomata are edible, since, like all polypores, G. frondosa becomes tougher as it ages (Rossi et  al. 2018). It can be related with the fact that with the aging of the fruiting body, the amino acid translocation can be stopped and therefore high amounts of amino acids accumulated in the mycelium of G. frondosa (Sato et al. 2017). G. frondosa represents healthy food and a rich source of alkaloids, amino acids, enzymes (Mn-oxidizing peroxidases and laccase), fatty acids, lectins, phenolic compounds, polysaccharides, proteins, triterpenoids, steroids as ergosterol and its derivatives, vitamins (ascorbic acid, vitamin D2 as well as vitamins B1, B2, B3, B5 and B9), and minerals (Ca, K, Mg, Na, P) (Mau et al. 2004; Tabata et al. 2004; Gu et al. 2006, 2007; Tsao et al. 2013; Yaoita et al. 2014; Cohen et al. 2014; Acharya

1174

Y. Gafforov et al.

et al. 2015; Shen et al. 2015; Gregori et al. 2016; He et al. 2017; Chen et al. 2018a, b; He et al. 2018; Kawai et al. 2018; Rossi et al. 2018; Bai et al. 2019; Grodzinskaya et al. 2019; Gargano et al. 2020; Zhao et al. 2020; Aranaz et al. 2021; Galić et al. 2021; Wang et al. 2021; Wu et al. 2021). The most dominant macroelement quantified in G. frondosa is potassium (20039–25,000 mg/kg dry weight) (Cohen et al. 2014; Sato et al. 2017), followed by phosphorus (7014.0–7528.0 mg/kg d.w.) (Sato et al. 2017) and magnesium (994.0–1148.0 mg/kg d.w.) (Cohen et al. 2014; Sato et al. 2017; Grodzinskaya et al. 2019), while microelements determined in the highest amounts are iron (112.0  mg/kg d.w.), zinc (74.0  mg/kg d.w.), manganese (38.1 mg/kg d.w.), copper (24.0 mg/kg d.w.), and selenium (10.0 mg/kg d.w.), and among others (Cohen et al. 2014; Sato et al. 2017; Grodzinskaya et al. 2019). Kurasawa et al. (1982) in some of the first works on G. frondosa, concluded that the composition of the G. frondosa fruiting body resembles that of some other cultivated mushrooms. They confirmed that the crude fat content of the fruiting body of G. frondosa is generally lower than the average crude fat content in cultivated mushrooms (4.3%), while the carbohydrate and protein contents are slightly higher than the average of other mushrooms (70.3% and 17.2%, respectively), indicating the excellent nutritional potential of G. frondosa. Based on the newest literature data, G. frondosa is made up of around 83–96% moisture and 4–17% dry matter in its fresh fruiting body and mycelium, respectively, revealing its watery texture (Wu et al. 2021). Carbohydrates and proteins are the major constituents contributing to the dry weight of G. frondosa, taking up around 46–80% and 13–23.1%, respectively, of the fruiting body (Cohen et  al. 2014; Gregori et al. 2016; Rossi et al. 2018; Aranaz et al. 2021; Wu et al. 2021). Based on the average values of component percentage, it can be found that the mycelium of G. frondosa has similar moisture content, a lower content of carbohydrate and crude ash and a higher content of crude fat and protein, compared with the fruiting body of G. frondosa (Wu et al. 2021). G. frondosa has crude fiber content of about 10%, and ash of 5–7% (Gregori et al. 2016; Rossi et al. 2018; Aranaz et al. 2021; Wu et al. 2021), with both low fat content and caloric values (Wu et al. 2021). The total carbohydrate content of the fruiting body of G. frondosa is superior to some other edible mushrooms (Craterellus odoratus and Lactarius glaucescens), which may be one of the reasons for the good taste and high nutritional value of G. frondosa (Galić et al. 2021; Wu et al. 2021). Variations in both total soluble carbohydrate content and individual carbohydrate content among different samples of G. frondosa were reported which may be attributed to different factors such as cultivation period and cultivation environment for cultivated samples (Wu et al. 2021). On the other hand, environment (geographical position and habitat) and mushroom genotype of wild-growing species can be affecting on the carbohydrate content (Rašeta 2016). The carbohydrates of G. frondosa were composed of glucose in the highest concentration (72.2–75.6%), followed by galactose (10.5–10.9%), mannose (7.5–7.8%), fucose (5.8%), ribose (1.3–2.2%), xylose and glucuronic acid in lower concentrations (He et al. 2018; Aranaz et al. 2021). Tsai et al. (2006) claimed that disaccharide trehalose was the major sugar component of both the fruiting body and mycelia

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1175

of G. frondosa (Tsai et al. 2006), and whereas fruiting body contained more trehalose than the mycelium (50–160 mg/g d.w.) (Wu et al. 2021). In addition, Sato et al. (2017) determined by using HPLC technique that trehalose, including also glucose, and glycerol, were the major carbohydrate components in the examined G. frondosa strains. The highest concentration of glucose in the extracts of G. frondosa can be ascribed to high β-glucan content (around 20%), while smaller amounts of mannose, fucose, and galactose may be ascribed to typical mushroom mannogalactans and fucogalactans (Aranaz et al. 2021). Dai et al. (2021) summarized that all polysaccharides determined from the fruiting bodies of G. frondosa are β-glucans, while heterofucans, heteromannans and heteroxylans, and their polysaccharide-protein complexes were determined in its mycelium (Dai et  al. 2021). Therefore, major bioactive compounds from G. frondosa were found to be polysaccharides with the β-glucans as the most present (He et al. 2017, 2018; Wu et al. 2021). Japanese scientists (Nanba’s group) have been discovered G. frondosa polysaccharide (GFP) also known as the D-fraction in the late 1980s (Wu et al. 2021). It can be extracted from different sources (the fruiting bodies, mycelia, and the fermentation broth) using different extraction methods (Bian et al. 2004), and it is biologically the most important and the best known polysaccharide compound of G. frondosa (He et al. 2018). The D-fraction (GFP) is a protein-bound polysaccharide with 30% of protein, and consisting of β-glucan (either β-1,6-linked glucan with β-1,3 branches or β-1,3-­ linked glucan branched with β-1,6 glucosides) (He et  al. 2018). Its sugar part is mainly consisting of D-glucose along with L-arabinose, D-fucose, galactose, gentiobiose, D-mannose, trehalose, uronic acid, and D-xylose (Li and Zhao 2006). Some of the earlier characterizations of the G. frondosa polysaccharide by the gas chromatography–mass spectroscopy (GC-MS) were found to consist of glucose, mannose and galactose with a molar ratio of 6.5:1:2.6 (Xu et al. 2010). Its structure have been characterized by infrared (IR) spectrum, 1D NMR and 2D NMR spectroscopy, and suggested that the polysaccharide consisted of pyranoside, a heteropolysaccharide consisting of the repeating disaccharide unit (Xu et al. 2010). G. frondosa polysaccharides are mainly consist of a backbone of β-1,3-linked β-Dglucopyranosyl units with β-1,6-linked side chains of varying distributions and lengths and they present major structural components of mushroom cell walls (Rossi et al. 2018). G. frondosa is also rich sources of α-D-glucans, and its mycelium contains less α-glucans compared with the fruiting body (He et  al. 2017). Different water-soluble and water-insoluble polysaccharides can be obtained by using different methods of extraction, such as acid precipitation, alkaline extraction, hot water extraction, and microwave extraction (He et  al. 2018). The molecular weight of G. frondosa polysaccharides shows diverse distribution, and two major macromolecular populations are with 19.6 kDa and 722.7 kDa (He et al. 2017). After discovery of the D-fraction, there are many other bioactive polysaccharide fractions that were obtained from G. frondosa, such as grifolan, the MD-fraction, MZ-fraction, SX-fraction and MT-α-glucan (He et al. 2017; Wu et al. 2021). The MD-fraction, defined as proteoglycan or polysaccharide-bound protein with a ratio of 80:20–99:1 (Deng et al. 2009). It is consisted of β-glucan (either β-1,6-linked

1176

Y. Gafforov et al.

glucan with β-1,3 branches or β-1,3-linked branched with β-1,6 glucosides) a molecular weight about one million Dalton (Deng et al. 2009; He et al. 2018). It is obtained from purification of D-fraction (He et al. 2017). In general, G. frondosa polysaccharide extracts determined as D- and MD-fractions contained 1–20% of proteins and could express unique activities (Wu et al. 2021). The SX-fraction, is also polysaccharide-bound protein, which ratio ranging from about 75:25 to about 90:10 (He et  al. 2017). Some of the structural analysis of G. frondosa polysaccharide, GFP revealed that its backbone consisted of (1→4)-linked methylation, whereas glucose (Glc) residues were the major structural monosaccharide units, accounting of the polysaccharide backbone speculate GFP every→3)-Glc-(1→and one→3,4)-Glc-(1 →connected interval with a small amount of 1→, 1→4, 1→6 glycosidic linkage (Meng et al. 2019). Zhao et al. (2020) summarized that in G. frondosa were also determined grifolan (1–6-­monoglucosylbranched β-1,3-D-glucan), proteoglycan, heteroglycan, galactomannan among others. The natural selenium polysaccharides successfully obtained from mushrooms, include Ganoderma lucidum selenium polysaccharide, Lentinus edodes selenium polysaccharide, and Auricularia auricular-judae selenium polysaccharide (Zhao et al. 2018). In relation to this, Huang et al. (2020) determined selenium polysaccharide in G. frondosa as an organic selenium compound formed by the combination of polysaccharide and selenium, whereas these polymers are connected by aldose or ketose through glycoside bonds. In conclusion, Wu et al. (2021) have summarized that to date the following bioactive polysaccharide fractions have been determined from G. frondosa: D-fraction, MD-fraction, MZ-fraction, X-fraction, EX-GF-Fr.III, GF70-F1, GFAP, GFP, GFP-22, GFP30-2-a, GFP-A, GFP-N, GFPBW1, GFPBW2, GFPS1b, GFPs-F2 and F3, GFPW, GP11, GRN, GRP1, grifolan-7n, LMw-GFP, MT-α-glucan, MZF, Se-GFP-22 and Se-GP11 with wide range of the molecular weights between 1.79–2040 kDa. Numerous studies have been focused on investigation of the activity of G. frondosa polysaccharides or polysaccharide extracts, but studies of its proteins are scarce. Based on literature data, G. frondosa proteins/peptides have been extracted mainly from its fruiting body, with average molecular weights around 20–88 kDa (Gu et  al. 2007; Zhuang et  al. 2007; Cui et  al. 2013; Tsao et  al. 2013; Yuan et al. 2019). Gu et al. (2007) purified from an extract of G. frondosa fruiting bodies GFAHP protein with molecular weight of 29.5 kDa. It’s N-terminal sequence consisted of an 11 amino acid peptide (NH2-REQDNAPCGLN-COOH) that did not match any known peptide sequences, indicating that GFAHP is likely to be a novel antivirus protein (Gu et al. 2007). Zhuang et al. (2007) patented low molecular weight glycoprotein (20 kDa) from the ethanol extract of G. frondosa fruiting body. Protein to polysaccharide ratio was from 75:25 to 90:10, and monosaccharide units were: fucose, galactose, glucose, mannose and N-acetylglucosamine (Zhuang et al. 2007).

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1177

Cui et al. (2013) isolated from the cultured mycelia of G. frondosa a novel glycoprotein named as GFG-3a with a molecular weight of 88.01 kDa. GFG-3a was a glycoprotein with O-glycosylation and it contained 6.20% of carbohydrates with monohydrate units: arabinose, fructose, mannose, and glucose with a molar ratio of 1.33:4.51:2.46:1.00. It structure was confirmed by FT-IR and NMR spectra (Cui et al. 2013). Further, Tsao et al. (2013) purified and identified from the fruiting body of G. frondosa, a new nonglucan heterodimeric protein named as Grifola frondosa protein (GFP), with molecular weight of 83 kDa, which was reduced to two 41 kDa subunits after sodium dodecyl sulfate (SDS) denaturation. Yuan et al. (2019) worked on hydrolisation of G. frondosa protein, and the resulting hydrolysates are named as CGFP, and they have two main fractions, named as GFP-1 and GFP-2. They were purified using ultrafiltration and Sephadex gel chromatography. As a result, they produced low molecular weight Fe(II)-chelating peptides with G. frondosa peptides and FeCl2. The molecular weight of GFP-2 was about 963 Da (Yuan et al. 2019). Several scientists (Mau et al. 2001; Tsai et al. 2006) reported amino acid profile using HPLC technique, whereas the total free amino acid content in the fruiting body of G. frondosa was around 15–60 mg/g d.w., which is higher than that in some other edible mushrooms, such as Dictyophora indusiata and Tricholoma giganteum (Mau et al. 2001). The mycelium of G. frondosa contains a relatively higher total free amino acid content in comparison with the fruiting body (Wu et al. 2021). In relation to this, when the formation of the fruiting body started, the accumulated mycelial proteins were hydrolyzed by proteases in the mycelium, and the formed free amino acids, upon hydrolysis were the main nitrogen source, while the small amount of free amino acids was incorporated from the culture medium (Sato et al. 2017). When the fruiting body matured, the amino acid translocation can be stopped and as a consequence large amounts of amino acids accumulated in the vegetative mycelium (Sato et al. 2017). Tabata et al. (2004) quantified 15 amino acids, and showed that there is no significant difference in total amino acid contents between the mushroom cultivated on log or sawdust substrates (29.26  ±  0.58  mg/g d.w. and 29.38  ±  0.61  mg/g d.w., respectively). They have been noticed that log mushroom contained more glutamic acid and alanine than sawdust mushroom with different cultivation conditions. On the other hand, histidine and tyrosine were significantly higher in sawdust mushroom than in log mushroom (Tabata et al. 2004). Free amino acids in the fruiting body were not related to protein content in the substrates for cultivation of mushroom G. frondosa (Tabata et al. 2004). The different behaviors of total amino acids and protein content could be caused by the temperature and moisture of the medium, and the nutrient integration in the formation stage of the fruiting bodies (Tabata et al. 2004). Few years later, Cohen et al. (2014) determined amino acid composition which reveals the presence of 17 amino acids including nine essential amino acids, whereas total amino acid content was from 9.92 ± 0.08 mg/g d.w. There are around eighteen kinds of free amino acids, including essential amino acids in both the fruiting body and the mycelium of G. frondosa, indicating that G. frondosa is an excellent source of amino acids (Wu et al. 2021). Also, it is well known, that amino acids contents in the fruiting bodies were different among the different strains (Sato

1178

Y. Gafforov et al.

et  al. 2017). Moreover, γ-aminobutyric acid (GABA), a biologically active compound determined in G. frondosa related to its therapeutic effect, is mainly detected in the mycelium but not in the fruiting body (Huang et al. 2011). Apart from the primary metabolites, polysaccharides and proteins/glycoproteins, some other bioactive small compounds have also been determined in G. frondosa, whereas the major small molecules include alkaloids, ergosterol derivatives, fatty acids, flavonoids, and vitamins (Wu et al. 2021). Zhang et al. (2002) isolated, purified, and characterized from the hexane extract of the cultured mycelia of G. frondosa, fatty acid fraction and three other compounds, ergosterol, ergosta-4,6,8(14),22-tetraen-3-one, and 1-oleoyl-2-linoleoyl-3-­ palmitoylglycerol. The fatty acid fraction was composed of linoleic, oleic, and palmitic acids, which was confirmed by GC-MS analysis (Zhang et al. 2002). Preliminary, qualitative mycochemical analysis of methanol extract of G. frondosa indicated presence of cardiac glycosides, flavonoids, phenolics, saponins and terpenoids. Quantitative analysis confirmed that the major bioactive components were phenols (960.24 ± 59.38 μg gallic acid equivalent/g d.w.), followed by flavonoids (187.56  ±  29.29  μg quercetin equivalent/g d.w.), ascorbic acid (41.76  ±  0.01  μg/g d.w.), β-carotene (4.87  ±  0.92  μg/g d.w.), and lycopene (3.76 ± 0.54 μg/g d.w.) (Acharya et al. 2015). In G. frondosa have been determined and quantified different vitamins as ascorbic acid, thiamin (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), vitamin D, folate (vitamin B9), pantothenic acid (vitamin B5) as well as α-, γ-, and δ-tocopherols (vitamin E derivatives) (Mau et al. 2004; Sato et al. 2017). Yaoita et al. (2014) with fractionation of the diethyl ether extracts from the fruiting bodies of G. frondosa isolated some new compounds, 5α,6α-epoxy-(22E)-ergosta-8(14),22-diene-3β,7β-diol, (22E)-ergosta-7,9(11),22-­ triene-­3β,5α,6β-triol and 3β,5α,6β-trihydroxy-(22E)-ergost-22-en-7-one, (22E)ergosta-8,22-diene-3β,5α,6β,7α-tetrol and (22E)-ergosta-8(14),22-diene-3β,5α,6β,7α-tetrol. Similar, Kawai et al. (2018) isolated also from the extract of G. frondosa ergosterol, and its derivatives 6β-methoxyergosta-7,22-dien-3β,5α-diol, and 6-oxoergosta-7,22-dien-3β-ol. He et al. (2016) have been isolated from the ethyl acetate of the mycelium of G. frondosa, a novel furanone (S)-methyl2-(2-hydroxy-3,4-dimethyl-5-oxo-2,5-­ dihydrofuran-­2-yl)acetate named as grifolaone A, which structure was approved by mass spectrometry and NMR analyses. Further, the contents of some organic acids, such as aconitate, citrate, fumarate, oxalate, and succinate were determined in different strains of G. frondosa (Sato et al. 2017). These organic acids are synthesized via glycolysis and the tricarboxylic acid (TCA) cycle (Sato et al. 2017). Based on the results, contents of organic acids were lower and contents of amino acids were higher in some of the G. frondosa strain; the organic acids are possibly being used for amino acids synthesis rather than energy production (Sato et al. 2017). Differences in the levels of amino acids and organic acids between different strains of G. frondosa may be involved in the higher production efficiency of some of the used strain in comparison to others (Sato et al. 2017).

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1179

Rossi et al. (2018), determined in G. frondosa some other fat compounds beside mentioned fatty acids determined by Zhang et al. (2002) (oleic acid, palmitic acid, and stearic acid), behenic acid, lignoceric acid, n-nonadecanoic acid, tetracosanol and triacylglycerols. Kawai et al. (2018) isolated from the extract of G. frondosa ergosterol, and its derivatives 6β-methoxyergosta-7,22-dien-3β,5α-diol, and 6-oxoergosta-7,22-dien-3β-ol. Chen et  al. (2018a) worked on examination of three fractions of G. frondosa (GF-1–GF-3) which contained 20 compounds including eight pyrrole alkaloids, two amides, one vitamin compound and nine ergosterol derivatives. They identified one new compound named as pyrrolefronine together with 19 known ones, which included seven pyrrole alkaloids, nine ergosterols and three others (Chen et  al. 2018a). Chen et al. (2018b) determined some phenolic compounds, and the major phenolic compounds identified were gallic (6.45 ± 0.32 mg/g extract) and tannic acids (13.33 ± 0.32 mg/g extract). Recently, Wang et al. (2021) worked on identification of the main components of G. frondosa ethanolic extract by ultra-high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technique, and summarized that they are composed of different bioactive compounds, aromatic amino acids (succinyl-adenosine), carboxylic acids and its derivatives (4-acetamidobutanoic acid), coumarin derivatives (dimethoxycoumarin, scopoletin), flavonoids ((-)-epicatechin-3-O-gallate), isoflavonoids (formononetin), fatty acyls (azelaic acid, 9,10,13-trihydroxy-11-octadenoic acid, 9,12,13-­trihydroxy-octadecenoic acid, 9,10,11-trihydroxy-12-octadecenoic acid), phenolic acids (vanillic acid), and others (3,6-dihydropyrazine-2,5-dipropanoic acid, (2E)-N-hydroxy-3-[4-methoxy-3-(2-oxo-2-{[3-(trifluoromethyl)phenyl]amino}-ethoxy)phenyl]acrylamide, malvidin-3-O-cis-caffeoyglucoside).

Local Medicinal Uses First notes about G. frondosa originated from Japan, where it has been enjoyed as a super food for thousands of years. In Japanese, “mai” means dance and “take” means mushroom, while in Chinese G. frondosa is known as “hui-shu-hua” (grey tree flower), possibly due to its appearance (Wu et al. 2021). Historically, G. frondosa was a highly valued commodity in feudal Japan, where local lords would trade their subjects an equivalent weight in silver for it. Thus, the Japanese name “dancing mushroom” stems from the Japanese commoners who would dance for joy when they found G. frondosa, knowing they would be greatly compensated for their discovery. The mushroom was so highly valued in Japan, and, the expert mushroom foragers would keep their harvest areas so secret that they would only reveal their locations after their death in their wills (Wu et al. 2021). Based on literature data, in mainland Japan, China and some other Asian countries, G. frondosa was popularly consumed for centuries as traditional medicines as curative herbal medication or health foods based on its enticing taste (Hong et al.

1180

Y. Gafforov et al.

2007; Shin and Lee 2014; Acharya et al. 2015; Shen et al. 2015; Rossi et al. 2018; Aranaz et al. 2021; Živković et al. 2021).

Modern Medicinal Uses Many studies confirmed wide spectrum of biological activities of G. frondosa, including anti-aging (Chen et al. 2017; Aranaz et al. 2021), antiallergic (Kawai et al. 2018; Hetland et  al. 2020), antidiabetic (Hong et  al. 2007; Lei et  al. 2007; Konno et  al. 2013; Xiao et al. 2015; Chen et al. 2018a), anti-inflammatory (Zhang et al. 2002; Hetland et al. 2020), antimicrobial (He et al. 2016; Gargano et al. 2020; Fasciana et al. 2021), antioxidant (Zhang et al. 2002; Yeh et al. 2011; Shin and Lee 2014; Dong et  al. 2015; Chen et  al. 2017; Aranaz et  al. 2021; Wang et  al. 2021), antitumor (Kodama et al. 2003; Cui et al. 2013; Tsao et al. 2013; Chen et al. 2018b; He et al. 2018; Rossi et al. 2018; Hetland et al. 2020; Patel et al. 2020; Dai et al. 2021; Gargano et al. 2021; Wu et al. 2021), antiviral (Gu et al. 2007), hepatoprotective (Sato et al. 2013; Wang et al. 2021), hypoglycemic (Shen et al. 2015; Jiang et al. 2020), hypolipidemic (Sato et al. 2013), immunomodulatory and immunostimulatory (Deng et al. 2009; Vetvicka and Větvičková 2014; Wesa et al. 2015; Kawai et al. 2018; Rossi et al. 2018; Bai et al. 2019; Meng et al. 2019; Zhao et al. 2020), nephroprotective (Jiang et al. 2020), and neuroprotective (Bai et al. 2019) (He et al. 2018; Kawai et al. 2018; Hetland et al. 2020; Wu et al. 2021). Numerous nutraceutical preparations based on G. frondosa powdered fruiting bodies, dried extracts or purified polysaccharides are in use in different forms of capsules, tablets, and additives to food formulations (Gregori et  al. 2016). Also, G. frondosa is approved to be effective for enhanced osteogenesis and could be utilized as a natural, edible, and osteogenic agent (Patel et al. 2020). Furthermore, enhanced deposition of calcium ions was noticed in the presence of G. frondosa particles indicating its better mineralization efficiency in comparison with control (Patel et  al. 2020). Therefore, the appropriate size of the used mushroom should be applied for a better therapeutic effect (Patel et al. 2020).

Medicinal Uses of Primary Metabolites of G. frondosa Numerous studies have revealed that polysaccharides are the most widely extracted mushroom active compounds in mycomedicine, demonstrating significant antitumor properties, whereas the most important biologically active compounds of G. frondosa are polysaccharide fractions (Dai et al. 2021). Since the discovery of the D-fraction more than three decades ago, many other polysaccharides, including some other β-glucans and heteroglycans, have been extracted from the G. frondosa fruiting body and mycelium, which have been showed antitumor and immunomodulatory activities as the most important medicinal properties of this mushroom (He et al. 2018).

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1181

Zhao et al. (2020) summarized that the highest activity of a polysaccharide fraction of G. frondosa extracts was ascribed to fractions with a molecular weight of over 800 kDa. Contrary, they low molecular weight polysaccharides can penetrate immune cells and exert stimulatory effects from within (Zhao et al. 2020). Most of the health-promoting activities of G. frondosa are attributed to its content in functional polysaccharides such as β-glucans (Rossi et al. 2018; Aranaz et al. 2021), α-glucans (Hong et al. 2007), and other polysaccharide-protein complexes among others (Zhang et al. 2002; He et al. 2018; Hetland et al. 2020; Wu et al. 2021). In the 1980s, for the hot water extracts of the fruiting body of G. frondosa was for the first time discovered antitumor activity (Wu et al. 2021), and then began the era of G. frondosa as some of the most important antitumor agent originated from mushrooms. Among different kind of G. frondosa polysaccharides, the β-glucan (GFP) or D-fraction is the major biologically active component from G. frondosa, which has been studied extensively for nearly 30 years (Wu et al. 2021). It was reported that D-Fraction, extracted from G. frondosa, has been found to enhance antitumor effect by enhancing the immune system through activation of macrophages, natural killer (NK) cells and T cells (Kodama et al. 2003; Gu et al. 2006, 2007). Precise molecular mechanisms of action of the β-glucans are still unclear, but it is known that their immunomodulatory effects depend on the differences in the degree of branching, polymer length, and tertiary structures among different kinds of β-glucans (Rossi et al. 2018). α-Glucan YM-2A isolated from G. frondosa, characterized as a highly α-1,6-branched α-1,4 glucan is more resistant to digestive enzymes than amylopectin and its immunomodulatory effect makes it a promising candidate as an oral therapeutic agent in the translational and clinical research of antitumor immunotherapy (Rossi et al. 2018). Meng et al. (2019) have been showed by using MTT assay that GFP could significantly improve the proliferation activity of RAW264.7 cells in a certain range of concentrations and time. Oral administration of D-fraction is a pain-free treatment method for the patient and may be an effective method of stimulating the immune system to fight cancers (Kodama et al. 2003). Safety of application of D-fraction has been confirmed by the Consumer Product Testing Co. (Fairfield, NJ) and it is widely sold as a nutritional supplement and touted as beneficial for health in Japan (Kodama et al. 2003). It was approved as an adjunctive therapeutic drug in China for treating cancers since 2010 (He et al. 2018). Polysaccharides, proteins, fatty acids and some other compounds from G. frondosa, have been showed notable antioxidant activities (Wu et al. 2021). Antioxidant activity of these compounds include the scavenging abilities of different radicals as well as the reducing power and ferrous chelating activity (Wu et al. 2021). Lee et al. (2003) suggested that G. frondosa polysaccharides could be potential ingredients for cosmetic preparations in relation with their antioxidant activity, through collagen biosynthesis, proliferation of fibroblasts and radical scavenging activity after UV irradiation (Lee et al. 2003). Vetvicka and Větvičková (2014) demonstrated that extract of G. frondosa named as MaitakeGold 404 is β-glucan/protein complex

1182

Y. Gafforov et al.

which act via the same mechanisms as other highly active glucans which strongly stimulate immune defense reactions and, when is in a combination with Shiitake glucan, this product was even more immunologically and biologically active than either glucan alone. Oral administration of G. frondosa polysaccharide (GFP) could improve memory impairment via antioxidant action, and dietary supplementation with GFP may provide potential benefits on brain aging (Chen et al. 2017). This was the first report about the improvement effect of GFP on memory impairment in naturally aged rat model, which application have been found to attenuate age-associated changes of brain histology and ultrastructure observed by light microscopy and transmission electron microscopy (Chen et al. 2017). This oral administration has a significant improvement in learning and memory as evident from the decreasing escape latencies and increasing platform crossing times compared to the aged controls. This might be result of antioxidant activity of GFP on the mitochondria, which is the major site for free radical injure in the cell and are also the main source for free radical generation (Chen et al. 2017). In conclusion, it’s oral administration of showed a neuroprotective effect with significantly attenuated the shrinkage of the neurons and improved organization of cellular layers and therefore GFP can be a potential natural resource for dietary supplements or medicines in the prevention of brain aging. Hong et  al. (2007) examined antidiabetic activity of α-glucan of G. frondosa, which molecular weight was about 400–450  kDa. It significantly decreased the body weight, and some other parameters (cholesterol, free fatty acids, level of fasting plasma glucose, MDA content in liver, serum insulin, and triglycerides). On the other hand, its treatment significantly increased the content of hepatic glycogen, glutathione (GSH) and the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD). Antidiabetic effect of α-glucan could be related to amelioration of peripheral insulin resistance and enhancement of insulin sensitivity (Hong et al. 2007). The anti-diabetic activity of the MT-α-glucan from G. frondosa, was in relation to ameliorating insulin resistance of peripheral target tissue and improving insulin sensitivity (Lei et al. 2007). Sato et al. (2013) worked on examination of G. frondosa and concluded that this species showed antiatherogenic activity and improve the symptoms of arteriosclerosis, diabetes and obesity induced by hypercholesterolemia. Huang et  al. (2020) worked on production of selenium polysaccharide, as an important biological selenium supplement with a potential wide range of biological activities, such as antioxidant, antitumor, anti-virus, hypoglycemic, hypolipidemic among others. Jiang et  al. (2020) worked on examination of G. frondosa polysaccharide named as PGF, and obtained results showed that PGF have significant influence on decrease of blood glucose levels and on increase in body weight in the treatment group compared with those of model group, as well as on indexes of inflammatory cytokines and renal fibrosis, decreasing them compared to the model group. The obtained results showed nephroprotective effects of PGF by reducing

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1183

the inflammatory factor content and preventing renal fibrosis, which are associated with the development and progression of diabetic nephropathy (Jiang et al. 2020). Therefore, PGF can be used as dietary supplement for the treatment or prevention of diabetic nephropathy. G. frondosa polysaccharides possess wide spectrum of health benefits, including also regulating blood glucose, blood pressure, lipid metabolism and eliciting a hepatoprotective, nephroprotective and neuroprotective effects among others (Deng et al. 2009; He et al. 2017; Bai et al. 2019; Jiang et al. 2020). Another class of bioactive macromolecules from G. frondosa is composed of proteins and glycoproteins, which beside antitumor and immunomodulatory activities express also antioxidant activity among others (Wu et al. 2021). A number of small organic molecules such as sterols and phenolic compounds have also been isolated from G. frondosa and have shown various biological activities, therefore this mushroom species provides a wide spectrum of biologically active compounds, which are potentially valuable for nutraceutical, pharmaceutical and some of them for cosmeceutical applications (Wu et al. 2021). Until discovery of protein named as GFAHP with an antiviral activity on herpes simplex virus type 1 (HSV-1), the polysaccharides from G. frondosa were the main compounds that contain antiviral activity (Gu et al. 2007). Some glycoproteins (GFG-3a and GFL) isolated from G. frondosa, exhibited antitumor effects due to their antiproliferative activity on different cancer cell lines (Cui et al. 2013). The hypoglycemic mechanisms of some polysaccharide fractions (F2 and F3) (Xiao et al. 2015) and SX glycoprotein fractions (Konno et al. 2013) can be the most likely linked to insulin activity. Dong et al. (2015) have been used protein extracted from G. frondosa fruiting body and then digested using different proteases with the aim to produce the antioxidative hydrolysates. Based on the results all fractions were effective antioxidants, whereas fraction named as GFHT-4 have been showed the highest antioxidant activity (Dong et al. 2015). It has been reported that proteo-β-glucan, a protein bound polysaccharide derived from G. frondosa (PGM), possesses strong immunomodulatory activities (Bai et al. 2019). PGM could ameliorate the learning and memory function and histopathological abnormalities in region of hippocampus region in APP/PS1 experimental mice, and therefore, PGM can be a promising candidate drug for some neurological diseases (Bai et al. 2019). Yuan et al. (2019) worked on examination of the immunomodulatory activities of iron(II)-chelating G. frondosa peptides on proliferation of immunocytes and secretion of cytokines, IL-6 and TNF-α. G. frondosa showed synergistic antitumor and immuno-modulatory activity in human macrophages, whereas G. frondosa lectin have been showed cytotoxic effect against HeLa cells in vitro, even at very low concentrations (Zhao et al. 2020).

1184

Y. Gafforov et al.

Medicinal Uses of Secondary Metabolites of G. frondosa Zhang et  al. (2002) determined anti-inflammatory and antioxidant activity of G. frondosa extracts which benefits may include reducing pain related to inflammation, reducing the incident of cardiovascular disease, and cancer prevention by acting as an antioxidant and/or as anti-inflammatory agents. G. frondosa exert antioxidant activity based on its bioactive compounds, including phenolic compounds and vitamins (ascorbic acid and α-tocopherol) (Yeh et al. 2011; Aranaz et  al. 2021). The various antioxidant mechanisms of extracts of G. frondosa may be attributed probably with its strong hydrogen-donating ability, metal-chelating ability and the effectiveness as good scavengers of different free radicals (Yeh et al. 2011). Shin and Lee (2014) worked on hydrothermal extracts of G. frondosa in the different temperature conditions (121, 130, 140, and 150 °C) and for two time periods (30 and 60 min). They concluded that the highest phenol content was determined in the extract at 150 °C incubated for 60 min, and also the antioxidant activity and anti-­ tyrosinase activity were increased with increasing treatment temperature and incubation period. Therefore, the highest extraction temperatures and the longest treatment period were effective in producing high levels of the antioxidative substances. Shin and Lee (2014) also concluded that hydrothermal extraction could be used as a tool to increase the antioxidant activity in the G. frondosa extracts. In vitro hypoglycemic effects of G. frondosa were evaluated measuring α-amylase and α-glucosidase inhibitory potential of its non-polar fractions, resulting in better anti-α-glucosidase activity (Shen et al. 2015). GC-MS analysis showed that G. frondosa contained mainly unsaturated fatty acids, linoleic and oleic acids, well known α-glucosidase inhibitors (Su et al. 2013), but they are determined in very low concentrations, which could be suggesting that factors other than these may have contributed to the hypoglycemic effect of G. frondosa (Shen et al. 2015). He et  al. (2016) isolated grifolaone A, a furanone compound which exhibited significant antifungal activity against the plant pathogens, Fusarium oxysporum, Gibberella zeae and Piricularia oryzae and one human pathogen, Pseudallescheria boydii. On the other hand, it showed weak activity towards Aspergillus spp. and Candida albicans. Chen et al. (2018a) worked on examination of three fractions of G. frondosa (from GF-1 to GF-3), against α-glucosidase and some human tumor cell lines (A549, HepG2, and MDA-MB-231). As the most active stood out the fraction GF-3 from which pyrrole alkaloids showed potent inhibitory activity against α-glucosidase, while ergosterol derivatives displayed potential inhibition against used human cancer cell lines (Chen et al. 2018a). Study reported by Chen et al. (2018b) suggests that cold water extract of G. frondosa exhibited strong antioxidant potential, which was likely to be mainly contributed by the most present phenolic compounds, gallic and tannic acids. Kawai et al. (2018) isolated ergosterol, and its derivatives (6β-methoxyergosta-7,22-dien-3β,5α-­ diol and 6-oxoergosta-7,22-dien-3β-ol), and they have been showed inhibitory effects on the antigen-induced release of β-hexosaminidase and histamine. Among

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1185

all of these bioactive components, ergosterol was the most active as inhibitor of the aggregation of high-affinity IgE receptor (FcεRI), which is the first step in the activation of mast cells and antigen-induced tyrosine phosphorylation. It also suppressed antigen-increased IL-4 and TNF-α mRNA (Kawai et al. 2018). Gargano et  al. (2020) reported for the first time results of an albino Italian G. frondosa specimen. They cold-water extracts have been effective as inhibitors of the growth of Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis (Gargano et  al. 2020). Fasciana et  al. (2021) also worked on albino specimen of G. frondosa, and reported ability of the extracts to inhibit the growth of some bacteria and the biofilm production by Staphylococcus aureus. They concluded that anti-biofilm activity of the extract of albino G. frondosa should be considered an important approach in finding antimicrobial compounds from this mushroom (Fasciana et al. 2021). Wang et  al. (2021) analyzed effects of coumarin-rich ethanolic extracts of G. frondosa on hepatocites and thought histopathological analyses revealed that its administration improved hepatocyte abnormality and regulated levels of alanine aminotransferase (ALT), aspartate transaminase (AST), serum and liver lipids, and antioxidant enzymes (total glutathione peroxidase and superoxide dismutase).

Clinical Studies of G. frondosa Medicinal mushroom species G. frondosa is considered an important source of polysaccharides (primarily β-glucans) and polysaccharide-protein complexes, and express various immunological (immunomodulatory and immunostimulatory) and antitumor properties (He et al. 2018; Wu et al. 2021). The major effects of D-fraction include amelioration of immunologic and hematologic parameters, inhibition or regression of growth of cancer cell, and improvement of quality of life in patients with cancer (Gargano et al. 2021). Increasingly, traditional mycotherapies are combined with an integrated complementary therapy, leading to a reduction of side effects in patients undergoing chemotherapy or radiotherapy (Gargano et al. 2021). Oral administration of polysaccharide D-fraction is a pain-free treatment method for the cancer patients and could be an effective method of stimulating the immune system to fight cancers, as a result this polysaccharide have been inhibited cancer progression even without adjunct therapies (Kodama et al. 2003). They also suggested that the D-fraction from G. frondosa in the combination with chemotherapy and immunotherapy may have the potential to decrease the size of lung, liver, and breast tumors in cancer patients (Kodama et al. 2003). The polysaccharide extracts of G. frondosa have been used as a dietary supplement and showed immunomodulatory effects in preclinical studies, and therefore it could be important in clinical use (Deng et al. 2009). Although preclinical studies suggest that polysaccharide extracts of G. frondosa express antitumor activity, clinical evidence from rigorously designed prospective trials with therapeutic endpoints have not been conducted (Deng et al. 2009). Deng et al. (2009) summarized that

1186

Y. Gafforov et al.

oral administration of G. frondosa polysaccharide extracts over a 3-week period helped in the phase I/II trial of breast cancer survivors without any dose-limiting toxicity 10 mg/kg per day, while dose of 5–7 mg/kg per day was associated with some functional changes (increased production of IL-2, IL-10, TNF-α and IFN-γ by subsets of T cells. On the other hand, G. frondosa β-glucan were applied in the phase II in the case of myelodysplastic syndromes (MDS) which progression leads to acute myelogenous leukemia (Wesa et al. 2015), and they consumption improved monocyte and neutrophile function in MDS patients showing its significant immunomodulatory potential. Clinical evidence for antitumor and other medicinal activities of mushrooms come primarily from some purified polysaccharides, such as grifolan from G. frondosa, krestin from Trametes versicolor, lentinan from Lentinula edodes and schizophyllan from Schizophyllum commune and some other medicinal mushrooms, also show promissing results (Gregori et al. 2016). A phase I/II trial of a polysaccharide extract from G. frondosa also in breast cancer patients demonstrated its activity on some immunologic parameters in the peripheral blood, which has a stimulatory effect on some parameters and a suppressive effect on others without any side effect of them. The most prominent functional changes were increased production of IL-2, IL-10, TNF-α, and IFN-γ by subsets of T cells (Rossi et al. 2018). Mushrooms Agaricus blazei, G. frondosa (3%) and Hericium erinaceus (15%) are active components of mushroom product AndoSan™ (ACE Co. Ltd. produced for Immunopharma, Gifu-ken, Japan), which first have been shown significant antiallergic, antibacterial, and antitumor properties (Hetland et  al. 2020). Moreover, AndoSan™ contains extracts and biologically active compounds from these mushrooms, and its medicinally importance could be result of their positive synergistic effect (Hetland et al. 2020). Later, it has been extensively investigated in clinical studies (Hetland et al. 2020). In relation to this, D-fraction of G. frondosa have been clinically tested on different stages of cancer patients of breast, gastric, lingual, or lung cancer (Dai et al. 2021). Treatment with D-fraction clearly reduced the levels of different tumor markers (carcinoembryonic antigen (CEA), carbohydrate antigen 15-3 (CA15-3), and carbohydrate antigen 19-9 (CA19-9)) (Dai et al. 2021). Also, case report on patients with brain cancer have been showed that traditional mycotherapy based on A. blazei, G. lucidum, G. frondosa, and Polyporus umbellatus in the form of dry powder (US origin and is encapsulated and distributed by an Italian company), can reduce side effects particularly related to chemotherapy, radiotherapy, and cortisone therapy (Gargano et al. 2021). First results, after approximately two weeks have been noted significant improvement in clinical symptomatology, which was included a considerable reduction in cerebral edema. Also, the cortisone therapy was reduced, most likely due to the synergistic effect of the applied mycotherapy (Gargano et al. 2021). In addition, the GFP-based drugs are available as capsules and the only the Saudi Food and Drug Authority (SFDA)-approved drug is “Mai Te Xiao” (Hui Shu Hua Jiao Nang) (drug # B20020023) which was granted in 2010 in China (He et al. 2018).

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1187

Local Food Uses Edibility, Aroma and Flavor Pleasant nutlike odor, fruity taste. Edible of choice when young tough and requiring long cooking when ripe pleasant, fragrant, nutty, persistent, and succulent, but slightly tart flavor, more pronounced when ripe. G. frondosa is often harvested for its flavour and considered an excellent edible. It is cultivated for this purpose. The Japanese call it Maitake, because according to a legend, people danced with joy when a Grifola was found, this mushroom being famous for its exceptional virtues, in particular that of prolonging life.

Culinary Note Recipe: Grilled Thai Marinated Maitake Mushrooms Grill about 3–5 minutes on each side for the perfect side dish. Ingredients 2 pounds Maitake mushrooms 3/4 cup olive oil 1/4 cup tamari 6 wild leeks - cut into small pieces, or you could use scallions in a pinch 3 tablespoons maple syrup 1 teaspoon curry powder 3 tablespoons white wine - dry, such as chardonnay 1/4 teaspoon sea salt 1/8 teaspoon ground black pepper Instructions Clean the maitake’s by quickly running them underwater. Set on paper towels to drain. Slice in 3/4″ thick slices and layout in a casserole dish or two for marinading. Making the marinade: Add all of the marinade ingredients to a blender. I forgot to mention that I got the wild leeks (ramps) from Whole Earth Harvest too! Blend until everything is smooth and completely blended. It only takes about a minute. Pour the marinade evenly over the prepared mushrooms. Cover the casserole with plastic wrap and place in the refrigerator for at least 4 hours. When ready to cook grill over medium-high heat for 3–5  minutes on each side (https://ultimate-­mushroom.com/edible/35-­grifola-­frondosa.html). Ready to eat!

1188

Y. Gafforov et al.

Recipe: Maitake Wild Rice Salad Ingredients ½ cup raw walnut pieces 2 tablespoons extra virgin olive oil 2 tablespoons finely chopped yellow onion 6 ounces maitake mushrooms, roughly chopped 1 teaspoon fresh lemon juice ¾ teaspoon fine sea salt ¼ teaspoon ground black pepper 1 cup dry wild rice, cooked according to package directions and cooled 1 tablespoon chopped fresh chives Instructions Toast the walnut pieces over medium-high heat in a large, dry skillet. Stir often and cook for 3 minutes, or until you begin to smell their nutty aroma. Remove from the heat and transfer the nuts to a bowl to cool. Add the olive oil to the skillet and return it to medium heat. Add the onions. Cook, stirring often for 1 minute. The onion will begin to turn golden brown in spots as it cooks in the oil. Stir in the mushrooms and cook for about 2 minutes. They will soften and shrink, but still, have a somewhat firm bite. Stir in the walnuts and cook for another 30 seconds. Remove the skillet from the heat and add the lemon juice, salt, and pepper. Stir well and let cool to room temperature. Transfer the rice to a large bowl. Add the mushrooms. Toss to mix the ingredients. Sprinkle with chives before serving at room temperature or chilled (https:// ultimate-­mushroom.com/edible/35-­grifola-­frondosa.html).

Recipe: Maitake Mushrooms with Thyme and Sherry Ingredients 3 pounds maitake mushrooms (or cremini or morels, or a mix) Kosher salt to taste 1/2 cup unsalted butter (at room temperature), divided 8 to 10 branches fresh thyme 1/4 cup sherry, preferably Amontillado About 1 tbsp. lemon juice About 1 tbsp. Champagne vinegar Chopped fresh chives or parsley Instructions Brush mushrooms clean and trim bottoms of stems. Tear clusters into large chunks.

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1189

Heat two large heavy (not nonstick) frying pans over medium-high heat 2 minutes. Divide mushrooms between pans and season lightly with salt. Cook until starting to release liquid, about 7 minutes. If mushrooms are very dry, add a splash or two of water. Add 1 1/2 tbsp. butter and 4 or 5 branches thyme to each pan. Cook mushrooms, turning occasionally, until nicely browned, about 5 minutes. Add another 1 1/2 tbsp. butter to each pan and cook until tender, 7 to 10 minutes. Into each pan, swirl 2 tbsp. sherry, then 1 tbsp. butter and 1 1/2 tsp. each lemon juice and vinegar. Cook over high heat, stirring occasionally, until sauce is glossy and mushrooms are coated, 2 minutes. Stir in a few table spoon water as needed to loosen sauce. Season to taste with salt and more vinegar. Remove thyme. Pour mushrooms into a serving dish and top with chives. Make ahead: Through step 3, up to 1 day, chilled airtight in 1 pan. To reheat, add a few tbsp. water and heat gently in pan. (https://ultimate-­mushroom.com/ edible/35-­grifola-­frondosa.html).

References https://ultimate-­mushroom.com/edible/35-­grifola-­frondosa.html Acharya K, Bera I, Khatua S, Rai M (2015) Pharmacognostic standardization of Grifola frondosa: a well-studied medicinal mushroom. Pharm Lett 7(7):72–78 Aranaz P, Peña AD, Vettorazzi A, Fabra MJ, Martínez-Abad A, López-Rubio A, Pera J, Parladé J, Castellari M, Milagro FI, González-Navarro CJ (2021) Grifola frondosa (Maitake) extract reduces fat accumulation and improves health span in C. elegans through the DAF-16/FOXO and SKN-1/NRF2 signalling pathways. Nutrients 13:3968 Bai Y, Chen L, Chen Y, Chen X, Dong Y, Zheng S, Zhang L, Li W, Du J, Li H (2019) A Maitake (Grifola frondosa) polysaccharide ameliorates Alzheimer's disease-like pathology and cognitive impairments by enhancing microglial amyloid-β clearance. RSC Adv 9:37127–37135 Bernicchia (2005) A. Polyporaceae s.l.; Edizioni Candusso: Alassio, Italy, 808 Bian S, Ye B, Xi T, Han Z, Wu W (2004) Progress on the studies of polysaccharide from Grifola frondosa. Pharm Biotechnol 11(1):60–63 Chen Z, Tang Y, Liu A, Jin X, Zhu J, Lu X (2017) Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action. Mol Nutr Food Res 61(11):1700313 Chen S, Yong T, Xiao C, Su J, Zhang Y, Jiao C, Yizhen X (2018a) Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J Funct Foods 43:196–205 Chen H, Wang Y, Lin C (2018b) Phenolic profiles and antioxidant abilities of various extracts from white maitake mushrooms (Grifola frondosa). FASEB J. https://doi.org/10.1096/ fasebj.31.1_supplement.972.3 Cohen N, Cohen J, Asatiani MD, Varshney VK, Yu HT, Yang YC, Li YH, Mau JL, Wasser SP (2014) Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms 16:273–291 Cui F, Zan X, Li Y, Yang Y, Sun W, Zhou Q, Yu S, Dong Y (2013) Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa. Int J Biol Macromol 62:684–690

1190

Y. Gafforov et al.

Dai R, Liu M, Nik Nabil WN, Xi Z, Xu H (2021) Mycomedicine: a unique class of natural products with potent anti-tumour bioactivities. Molecules 26:1113 Deng G, Lin H, Seidman AD, Fornier MN, D’Andrea GM, Wesa KM, Yeung S, Cunningham-­ Rundles S, Vickers AJ, Cassileth BR (2009) A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:1215–1221 Dong Y, Qi G, Yang Z, Wang H, Wang S, Chen G (2015) Preparation, separation and antioxidant properties of hydrolysates derived from Grifola frondosa protein. Czech J Food Sci 33:500–506 Fasciana T, Gargano ML, Serra N, Galia E, Arrigo I, Tricoli MR, Diquattro O, Graceffa G, Vieni S, Venturella G, Giammanco A (2021) Potential activity of Albino Grifola frondosa mushroom extract against biofilm of meticillin-resistant Staphylococcus aureus. J Fungi 7:551 Gafforov Y, Ordynets A (2022) Aphyllophoroid fungi of Uzbekistan. Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan. Occurrence dataset https://doi. org/10.15468/vsru5z accessed via GBIF.org on 2022-05-25 Gafforov Y, Ordynets A, Langer E, Yarasheva M, Gugliotta AM, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321. https://doi.org/10.3389/ fmicb.2020.598321 Galić M, Ćilerdžić J, Vukojevic J, Stajić M (2021) Agro-forestry residues valorization by ligninosome of Grifola frondosa. Wood Res 66(4):657–665 Gargano ML, Zervakis GI, Isikhuemhen OS, Venturella G, Calvo R, Giammanco A, Fasciana T, Ferraro V (2020) Ecology, phylogeny, and potential nutritional and medicinal value of a rare white “Maitake” collected in a Mediterranean forest. Diversity 12:230 Gargano ML, Venturella G, Bosco F, Fabrini MG, Gao W, Pecoraro L (2021) The role of medicinal mushrooms in brain cancer therapies: review. Int J Med Mushrooms 23(5):13–20 Gregori A, Švagelj M, Voglar D, Berovič M (2016) Growth characteristics and ergosterol content of Grifola frondosa in various solid-state substrates. Chem Biochem Eng Q 30:183–188 Grodzinskaya AA, Samchuk AI, Nebesnyi VB, Honchar HY (2019) Radiocesium (137Cs) and mineral elements in culinary-medicinal mushrooms from the Southern Outskirts of Kyiv, Ukraine. Int J Med Mushrooms 21(1):71–77 Gu CQ, Li JW, Chao FH (2006) Inhibition of hepatitis B virus by D-fraction from Grifola frondosa: synergistic effect of combination with interferon-α in HepG2 2.2.15. Antivir Res 72:162–165 Gu C, Li J, Chao F, Jin M, Wang X, Shen Z (2007) Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antivir Res 75(3):250–257 He X, Du X, Zang X, Dong L, Gu Z, Cao L, Chen D, Keyhani NO, Yao L, Qiu J (2016) Extraction, identification and antimicrobial activity of a new furanone, grifolaone A, from Grifola frondosa. Nat Prod Res 30:941–947 He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z (2017) Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. Int J Biol Macromol 101:910–921 He Y, Li X, Hao C, Zeng P, Zhang M, Liu Y, Chang Y, Zhang L (2018) Grifola frondosa polysaccharide: a review of antitumor and other biological activity studies in China. Discov Med 25(138):159–176 Hetland G, Tangen J, Mahmood F, Mirlashari MR, Nissen-Meyer LS, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E (2020) Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal Basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: a review of preclinical and clinical studies. Nutrients 12:1339 Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an α-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59(4):575–582 Huang SJ, Tsai SY, Lin SY, Liang CH, Mau JL (2011) Nonvolatile taste components of culinary-­ medicinal Maitake mushroom, Grifola frondosa (Dicks.:Fr.) S.F. Gray. Int J Med Mushrooms 13:265–272

Grifola frondosa (Dicks.) Gray - GRIFOLACEAE

1191

Huang S, Yang W, Huang G (2020) Preparation and activities of selenium polysaccharide from plant such as Grifola frondosa. Carbohydr Polym 242:116409 Jiang T, Wang L, Ma A, Wu Y, Wu Q, Wu Q, Lu J, Zhong T (2020) The hypoglycemic and renal protective effects of Grifola frondosa polysaccharides in early diabetic nephropathy. J Food Biochem e13515. https://doi.org/10.1111/jfbc.13515 Kawai J, Higuchi Y, Hirota M, Hirasawa N, Mori K (2018) Ergosterol and its derivatives from Grifola frondosa inhibit antigen-induced degranulation of RBL-2H3 cells by suppressing the aggregation of high affinity IgE receptors. Biosci Biotechnol Biochem 82:1803–1811 Kodama N, Komuta K, Nanba H (2003) Effect of Maitake (Grifola frondosa) D-fraction on the activation of NK cells in cancer patients. J Med Food 6(4):371–377 Konno S, Alexander B, Zade J, Choudhury M (2013) Possible hypoglycemic action of SX-fraction targeting insulin signal transduction pathway. Int J General Med 6:181–187 Kurasawa SI, Sugahara T, Hayashi J (1982) Proximate and dietary fibre analysis of mushrooms. Nippon Shokuhin Kogyo Gakkaishi 29:400–406 Lei H, Ma X, Wu W (2007) Anti-diabetic effect of an α-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59:575–582 Li Q, Zhao J (2006) Advance in the study on polysaccharide from Grifola frondosa. West China J Pharm Sci 3:247–250 Lee B, Bae J, Pyo H, Choe TB, Kim SW, Hwang HJ, Yun JW (2003) Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola frondosa. Enzyme and Microb Technol 32:574–581 Marco CM, Girometta CE, Baiguera RM, Buratti S, Babbini S, Bernicchia A, Savino E (2022) Lignicolous fungi collected in northern Italy: identification and morphological description of isolates. Diversity 14:413. https://doi.org/10.3390/d14050413 Mau JL, Lin HC, Ma JT, Song SF (2001) Non-volatile taste components of several speciality mushrooms. Food Chem 73:461–466 Mau JL, Chang CN, Huang S, Chen C (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118 Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C (2019) Water-soluble polysaccharides from Grifola frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-­ induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Function. https:// doi.org/10.1039/C8FO02062K Patel DK, Seo Y, Dutta SD, Lee O, Lim K (2020) Influence of Maitake (Grifola frondosa) particle sizes on human mesenchymal stem cells and in vivo evaluation of their therapeutic potential. Biomed Res Int 2020. https://doi.org/10.1155/2020/8193971 Rašeta M (2016) Detection of bioactive substances selected fungal species of the genus Ganoderma (Basidiomycota) and their biological activity. Dissertation, University of Novi Sad, Serbia Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M (2018) B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget 9:24837–24856 Ryvarden L, Gilbertson RL (1993) European polypores 1. Synop Fungorum 6:1–387 Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synop Fungorum 31:1–455 Sato M, Tokuji Y, Yoneyama S, Fujii-Akiyama K, Kinoshita M, Chiji H, Ohnishi M (2013) Effect of dietary Maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice. J Oleo Sci 62(12):1049–1058 Sato M, Miyagi A, Yoneyama S, Gisusi S, Tokuji Y, Kawai-Yamada M (2017) CE–MS-based metabolomics reveals the metabolic profile of maitake mushroom (Grifola frondosa) strains with different cultivation characteristics. Biosci Biotechnol Biochem 81:2314–2322 Shen KP, Su CH, Lu TM, Lai MN, Ng LT (2015) Effects of Grifola frondosa non-polar bioactive components on high-fat diet fed and streptozotocin-induced hyperglycemic mice. Pharm Biol 53(5):705–709 Shevchenko MV, Heluta VP, Hayova VO (2019) Distribution and conservation status of Grifola frondosa (Polyporales, Basidiomycota). Ukraine Ukrainian Botan J 76(2):144–151

1192

Y. Gafforov et al.

Shin Y, Lee S (2014) Antioxidant activity and β-glucan contents of hydrothermal extracts from maitake (Grifola frondosa). Food Sci Biotechnol 23:277–282 Su CH, Hsu CH, Ng LT (2013) Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. Biofactors 39:415–421 Tabata T, Yamasaki Y, Ogura T (2004) Comparison of chemical compositions of Maitake (Grifola frondosa (Fr.) S.  F. Gray) cultivated on logs and sawdust substrate. Food Sci Technol Res 10:21–24 Tsai SY, Weng CC, Huang SJ, Chen CC, Mau JL (2006) Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. LWT Food Sci Technol 39:1066–1071 Tsao Y, Kuan Y, Wang J, Sheu F (2013) Characterization of a novel maitake (Grifola frondosa) protein that activates natural killer and dendritic cells and enhances antitumor immunity in mice. J Agric Food Chem 61(41):9828–9838 Vetvicka V, Větvičková J (2014) Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Ann Transl Med 2(2):14 Wang C, Zeng F, Liu Y, Yuyang P, Xu J, Ge X, Zheng H, Pang J, Liu B, Huang Y (2021) Coumarin-­ rich Grifola frondosa ethanol extract alleviate lipid metabolism disorders and modulates intestinal flora compositions of high-fat diet rats. J Funct Foods 85:104649 Wesa KM, Cunningham-Rundles S, Klimek VM, Vertosick EA, Coleton MI, Yeung KS, Lin H, Nimer SD, Cassileth BR (2015) Maitake mushroom extract in myelodysplastic syndromes (MDS): a phase II study. Cancer Immunol Immunother 64:237–247 Wu JY, Siu KC, Geng P (2021) Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods 10:95 Xiao C, Wu Q, Xie Y, Zhang J, Tan J (2015) Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Function 6:3567–3575 Xu H, Liu J, Shen Z, Fei Y, Chen X (2010) Analysis of chemical composition, structure of Grifola frondosa polysaccharides and its effect on skin TNF-α levels, lgG content, T lymphocytes rate and caspase-3 mRNA. Carbohydr Polym 82:687–691 Yaoita Y, Kikuchi M, Machida K (2014) Terpenoids and sterols from some Japanese mushrooms. Nat Prod Commun 9(3):419–426 Yeh J, Hsieh L, Wu K, Tsai C (2011) Antioxidant properties and antioxidant compounds of various extracts from the edible Basidiomycete Grifola frondosa (Maitake). Molecules 16:3197–3211 Yuan B, Zhao C, Cheng C, Huang D, Cheng S, Cao C, Chen G (2019) A peptide-Fe(II) complex from Grifola frondosa protein hydrolysates and its immunomodulatory activity. Food Biosci 32:100459 Zhang Y, Mills GL, Nair MG (2002) Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem 50(26):7581–7585 Zhao B, Zhou S, Wu X, Xing K, Zhu Y, Hu L, Tao X (2018) Distribution and accumulation of selenium in plants and health risk assessment from a selenium-rich area in China. Pol J Environ Stud 27(6):2873–2882 Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J (2020) Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J Fungi 6:269 Zhuang C, Kawagishi H, Preuss HG (2007) Glycoprotein with antidiabetic, antihypertensive, antiobesity and antihyperlipidemic effects from Grifola frondosa, and a method for preparing same. U.S. Patent 7,214,778, 8 May 2007 Živković J, Ivanov M, Stojković DS, Glamočlija J (2021) Ethnomycological investigation in Serbia: astonishing realm of mycomedicines and mycofood. J Fungi 7:349

Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.) Pilát - HYMENOCHAETACEAE Yusufjon Gafforov, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Masoomeh Ghobad-Nejhad, Rainer W. Bussmann, and Michal Tomšovský

Inonotus hispidus (Bull.) P. Karst. Synonyms: Boletus hirsutus Scop.; B. hispidus Bull.; B. spongiosus Lightf.; Hemidiscia hispida (Bull.) Lázaro Ibiza; Inodermus hispidus (Bull.) Quél.; Inonotus hirsutus (Scop.) Murrill; I. tinctorius (Quél.) S.  Ahmad; Phaeolus endocrocinus

Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] P. Angelini · G. Cusumano · R. Venanzoni · G. Angeles Flores Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy e-mail: [email protected]; [email protected]; [email protected]; [email protected] M. Ghobad-Nejhad Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran e-mail: [email protected] R. W. Bussmann Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_113

1193

1194

Y. Gafforov et al.

(Berk.) Pat.; Ph. hispidus (Bull.) J. Schröt.; Polyporus endocrocinus Berk.; P. hispidus (Bull.) Fr.; P. tinctorius Quél.; Polystictus hispidus (Bull.) Gillot & Lucand. Inonotus obliquus (Fr.) Pilát Synonyms: Boletus obliquus Pers.; Fomes igniarius f. sterilis Vanin; F. obliquus (Fr.) Cooke; Fuscoporia obliqua (Fr.) Aoshima; Inonotus obliquus f. sterilis (Vanin) Baland. & Zmitr.; Mucronoporus obliqua (Fr.) Ellis & Everh.; Phaeoporus obliquus (Fr.) J. Schröt.; P. obliquus f. sterilis (Vanin) Spirin, Zmitr. & Malysheva; Phellinus obliquus (Fr.) Pat.; Physisporus obliquus (Fr.) Chevall.; Polyporus obliquus Fr.; Poria obliqua (Fr.) P. Karst.; Scindalma obliquum (Fr.) Kuntze.

Local Names Inonotus hispidus: Uzbek: Yolli inonotus, English: Shaggy bracket; Russian: Трутовик щетинистый, Инонотус щетинистоволосый; French: polypore hérissé, polypore hispide; German: Zottiger Schillerporling; Korean: 시루뻔버섯; Persian: inonotus-e mūdār. Inonotus obliquus: Uzbek: Chaga, English: Chaga; Russian: Трутовик скошенный или Инонотус скошенный, Чага; Chinese: 白樺茸; French: Polypore incrusté, Polypore oblique; German: Schiefer Schillerporling; Korean: 차가버섯.

Short Morphological Description Inonotus hispidus: Basidiomes annual, sessile, applanate, dimidiate, solitary rarely imbricate, effused up to 30 cm long and 8 cm tick; sterile surface is slightly undulating, hispid, hirsute to rarely strigose, azonate, rough, watery, spongy, soft when fresh, reddish orange when young, dark reddish brown to dark brown to blackish when old, margin obtuse, concolorous with pilear surface; pore surface olivaceus yellow becoming brown to blackish-brown; pores angular and variable in size, 1–3 per mm, but often wider with thin and lacerate dissepiments. Large holes irregularly placed among pores, 2–4 mm wide, exude hyaline drops of liquid. Context is azonate, spongy, hygrophanous, fleshy when fresh, brittle when dry, reddish brown to dark brown, up to 5 cm thick; it turns black when exposed to potassium hydroxide (KOH); tube yellowish brown to dark brown, up to 10–20 mm thick. Hyphal system monomitic. Generative hyphae yellowish brown, simple-septate, thin-walled, rarely branched, interwoven but with a parallel arrangement in the subhymenium, 2.5–3.9 μm wide; contextual hyphae thin-walled, pale yellowish-brown, rarely branched and septate, up to 4.3–9.5 μm wide; tramal hyphae brown, branched and thick-walled, 4–6 μm wide;

Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.)...

1195

some hyphae yellow brown, branched with almost solid walls, with a strong tortuosus, twisted arrangement, up to 10–12 μm wide. Hyphae of dissepiments hyaline, thin-walled, apically rounded, long-celled, septate; hyphae of hispid epicutis brown, thin-walled, tightly packed forming hyphal strings, interwoven but with a parallel arrangement, up to 6 μm wide; Hymenial setae brownish dark brown, rare to abundant, thick-walled, ventricose, with an acute and hooked apex, 20.9–33.6 × 8.7–11 μm. Basidia hyaline, broadly clavate, with a simple basal septum, 28–33 × 10–12 μm. Basidiospores smooth, subglobose, brown, guttulate, thick-walled, 8.0–9.8 (−10.2)  ×  (7.2−)7.5–8.8(−9.2) μm (Bernicchia and Gorjón 2020; Ryvarden and Gilbertson 1993; Niemelä 2005). Inonotus obliquus: Basidiomes annual, resupinate, crustose, growing under the outer layers of wood and bark surrounding the “sterile conk”, developing effused layer which becomes visible after the crack of bark and outer layers of host tree, 20 cm long or more, corky when fresh, hard and brittle when dry, separable from substratum and easily breaking into pieces; margin thin to thick, yellowish and fertile. Pore surface yellow, yellowish brown to reddish brown at maturity; pores round to angular, 6–7 (−8) per mm; dissepiments at first entire and thick, becoming very soon thin, lacerate and dentate; subiculum very thin, slightly zonate, yellowish brown, usually not more than 1 mm thick; tube layer reddish brown to dark brown, woody to brittle, pruinose, 2–3 mm thick. The black “sterile conk” – in fact an imperfect stage producing asexual spores developed by segmentation of hyphae –appears many years before the basidiome are formed. This imperfect stage grows on living trees, irregularly shaped, appearing as a burnt charcoal, black due to large amount of melanin, cracked, consisting of a woody mycelial mass called “chaga”. The structure of the hyphae is monomitic, generative hyphae frequently septate, rarely branched, thin-to slightly thick-walled, hyaline to yellowish brown, agglutinated, 2.5–3.5 μm wide in the trama; subicular hyphae similar but larger, 7–8  μm wide. Hymenial setae straight, thick-walled, reddish brown to dark brown, subulate to ventricose, embedded or slightly projecting, 15–30 (−45)  ×  4.5–9  μm; basidia broadly clavate to barrel-­ shaped, with a simple basal septum, sometimes with a large guttule, 4-­sterigmatic, 15–20  ×  6–10  μm; basidiospores smooth, hyaline to pale yellow, broadly ellipsoid to ovoid, IKI − (Melzer’s reagents −), 8–10 × 5–6 μm (Bernicchia and Gorjón 2020; Ryvarden and Gilbertson 1993).

Ecology and Distribution Inonotus hispidus: grows on living Quercus spp. but also on a very large number of angiosperms causing a white rot of sapwood and the crack of the wood along the annual rings. Commonly found on old fruit trees, Ryvarden and Gilbertson (1993) report 19 host genera. In Central Asia, it occurs on Acer, Malus, Pistacia, Populus, Prunus, Pyrus, Quercus, Salix, and Vitis trees (Gafforov et al. 2020). Common and

1196

Y. Gafforov et al.

widespread species, growing in gardens, parks, old orchards, and forests. Circumtemperate distribution in Europe and Asia, (Bernicchia and Gorjón 2020; Ryvarden and Gilbertson 1993; Gafforov et al. 2020). Inonotus obliquus: grows almost exclusively on Betula, more rarely on Acer, Alnus, Fagus and Quercus. In Uzbekistan found on Alnus, Betula, Fraxinus, Salix trees (Gafforov et  al. 2020). Circumboreal and circumtemperate distribution in Euroasia, common in boreal ecosystem on Betula and European mountains on Fagus (Bernicchia and Gorjón 2020; Ryvarden and Gilbertson 1993).

Edibility, Aroma and Flavor Inonotus hispidus: inedible, aroma and flavor are irrelevant. Inonotus obliquus: inedible, aroma and flavor are irrelevant (Figs. 1, 2, 3, 4, and 5).

Phytochemistry Inonotus hispidus: basidiomes contain polysaccharides, β-glucans, monosaccharides (glucose, galactose, mannose, xylose), organic acids (oxalic, formic, acetic, butyric, vanillic, paraoxybenzoic, obliquequinic, inonotic, etc.), triterpene acids, phenols (free phenols, phenolic aldehydes, polyphenols, hydroxyphenolcarboxylic acids, quinines of oxyphenolcarboxylic acids), pterins, lignin, fiber, steroids, sterols (ertosterol, lanesterol, inotodinol), humins, pigments (chromogens), styrylpyrones, Fig. 1  Inonotus obliquus, Czechia, Michal Tomšovský

Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.)...

1197

Fig. 2  Inonotus hispidus (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 3  Inonotus obliquus (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

resins, mineral salts (silicon, iron, aluminum, calcium, magnesium, sodium, potassium, zinc, copper, manganese). Previous studies of this species have also reported the presence of melanin (Angelini et al. 2019). Fruiting body extracts of I. hispidus have shown antiviral, immunomodulatory, antioxidant, hypolipidemic, and antitumor properties. A chemical study on the fruiting bodies of I. hispidus resulted in 14 metabolites including three new: two

1198

Y. Gafforov et al.

Fig. 4  Inonotus obliquus (Hymenochaetaceae), Sweden. (Photo Michal Tomsovsky)

Fig. 5  Inonotus obliquus Sweden, Michal Tomšovský

hispolon congeners, named Inonophenols A−B (1–3) and one new lanostane triterpenoid, named Inonoterpene A (4), as well as ten known compounds (5–14). Inonophenol A was obtained as a yellow oil. The chemical formula was confirmed to be C12H16O4; Inonophenol B (2) was purified as a yellow oil, with a chemical

Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.)...

1199

formula of C12H14O4; Inonophenol C (3) was purified as a yellow oil with a chemical formula C16H16O6; Inonoterpene A (4) was purified as a white powder with a molecular formula of C30H50O4. Ten known compounds were named 4-(3′,4′-dihydroxyphenyl)-2-butanone (5), (E)-4-(3′,4′-dihydroxyphenyl)but-3-­ en-2-one (6), hispolon (7), 2 xylaritriol (8), 3β-hydroxy-lanosta-8,24-dien-21-al (9), 24-methylenelanost-8-en-3β-ol (10), cereaisterol (11), ergosterol peroxide (12), (22E, 24R)-ergosta-7,22-diene-3β,5α,6β,9α-tetrol (13), and 3-β-O-­ glucopyranosylergosta-5,7,22-triene (14). The isolation of compounds 5, 8, and 9, is first reported from I. hispidus (Kou et al. 2021). Inonotus obliquus: The chemical composition of I. obliquus was first studied by Dragendorff (1864); the polysaccharides of I. obliquus are regarded as the most active compounds, due to an array of biological activities (Ma et al. 2012). Ludwiczak and Wrecino (1962) first detected and identified lanostane triterpene compounds (lanosterol‐3β‐hydroxy‐lanosta‐8,24‐diene and its derivative inotodiol). Kahlos and Tikka (1994) isolated β‐hydroxylanosta‐8,24‐dien‐21‐oic acid (trametenolic acid), 3β‐hydroxylanosta‐8,24‐dien‐21‐al, 3β,22,25‐trihydroxylanosta‐8,23‐ diene, and d 3β,22‐dihydroxylanosta‐8,24‐dien‐7‐one from this mushroom. Careful examination of the conks by Shin et al. (2000) led to the isolation of 3β‐hydroxylanosta‐8,24‐diene‐21,23‐lactone, 21,24‐cyclopentalanost‐8‐ene‐3β,21,25‐ triol, and lanost‐8‐ene‐3β,22,25‐triol. Inonotustriols D and E were equally isolated from the sclerotia of this mushroom (Duru et al. 2019). Recently, chagabusone, a lanostane‐type triterpenoid, was isolated following the fractionation of methanolic extracts of this mushroom (Baek et al. 2018). Currently, approximately 40 triterpene compounds of the lanostane series have been isolated from I. obliquus, as well as trace amounts of pentacyclic triterpenes such as betulin, lupeol, and lupenon. Furthermore, steroids, mainly ergosterol and other typically plant‐derived steroidal compounds such as sitosterol, and stigmasterol have been identified, whereas the ergosterol content of I. obliquus was found to be lower when compared with the triterpene content (Duru et al. 2019). I. obliquus contains β-D-glucose polysaccharide (β-glucan) which is also a predominant bioactive compound and has beneficial health properties as a prebiotic and hypoglycemic agent (Ham et al. 2009). I. obliquus also contains lectins; some of which contain calcium, magnesium, and other metallic/nonmetallic ions. Melanin, a polyphenolic pigment that is formed as a result of the oxidative polymerization of phenols, was also identified following a physicochemical analysis this mushroom (Duru et al. 2019). The chemical characterization of the aqueous extracts of I. obliquus showed that oxalic acid was the most predominant organic acid present among other organic acids such as gallic, protocatechuic, and p‐hydroxybenzoic acids (Glamočlija et al. 2015). I. obliquus also contains flavonoids (e.g., flavonols, flavones, catechols, and anthocyanin), hemicellulose (~12.5%), and cellulose (~2%) (Duru et al. 2019).

1200

Y. Gafforov et al.

Local Medicinal Uses Inonotus hispidus: used in traditional medicine to treat dyspepsia, cancer and diabetes. It is also used in the treatment of parasites, diarrhea, general internal cleansing, diseases of the heart, liver, stomach, abdominal pain and tuberculosis. And also its infusion as an antiseptic when washing the genitals during menstruation and the body of newborns (Angelini et al. 2019). Inonotus obliquus: traditionally used to treat various gastrointestinal diseases. For many years, local experience confirmed the potential of I. obliquus extracts for treatment of viral and parasitic infections. Furthermore, substances from I. obliquus have been shown to stimulate the immune system. The most promising finding was the demonstration that I. obliquus has hypoglycemic and insulin sensitivity potential (Szychowski et al. 2021).

Modern Medicine Uses Inonotus hispidus: Numerous studies have confirmed the antimicrobial, antiviral, antioxidant, anti-inflammatory, immunomodulatory, antiproliferative, antifungal, immunostimulatory, antitumor and cytotoxic biological activities of extracts of this species (Alves et al. 2012). I. hispidus is reported to be used as ancient medicinal materials and health care products in Chinese traditional medicine. It is used as a diuretic, an astringent, and a treatment for canker sores and inflammation in folk culture (Yousfi et  al. 2009). Studies have shown promising immunomodulatory activity of extracts of the I. hispidus basidiomes, woth presence of the active substances hispolon and hispidin (Ren et al. 2017). The activity and function of natural killer T-cells increased depending on the dose of the extract from the fruiting bodies of the fungus. It is concluded that I. hispidus may be a new source of neurotrophic and protective agents against neurodegenerative diseases (Kou et  al. 2021). Neurodegenerative diseases are a group of diseases predominantly of late age, such as Alzheimer’s, Parkinson’s, Huntington’s, Pick’s, with slowly progressive death of certain groups of nerve cells and increasing atrophy of the corresponding parts of the brain and / or spinal cord (Dugger and Dickson 2016). Inonotus obliquus: The medicinal benefits of ‘Chaga’, the conks growing on trees, have recently been proven and comprise potent anticancer, antioxidation, anti-­ inflammatory and antidiabetic activity and enhancement of immunity; in the last decade, several studies have reported these biological activities (Thomas et al. 2020). Various compounds extracted from I. obliquus have been reported to exhibit an antioxidant activity. Nakajima et al. (2007) showed the superiority of the antioxidant activity (both superoxide and hydroxyl radicals scavenging activities) of a hot water extract of Chaga in comparison with those of other medicinal fungi (Agaricus blazei = A. subrufescens, Ganoderma lucidum and Phellinus linteus = Tropicoporus linteus). Furthermore, Chaga extracts function as an antidiabetic through lowering

Inonotus hispidus (Bull.) P. Karst.; Inonotus obliquus (Fr.)...

1201

the blood glucose levels; It may act as a hypoglycemic agent by retarding glucose absorption and thus preventing hyperglycemia following meals (Wang et al. 2017). For the ability to reduce inflammation, Van et al. (2009) tested several different types of extractions from Chaga. All of those tested significantly inhibited inflammation. For the anticancer activity, the cytotoxic and/or apoptotic effects of Chaga extract have been demonstrated in numerous in vitro studies in cancer cell lines, including the human colon cancer cells and the human hepatoma HepG2 cells (Youn et al. 2008). Polysaccharides isolated from I. obliquus sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumour cells and polysaccharides derived from the mycelium of I. obliquus function by activating the immune system. Polysaccharides isolated from the sterile conk and endo-polysaccharides present in the mycelium differ in the mechanism of antitumor activity: the former act directly on cancer cells while the latter act indirectly by activating the immune system (Kim et al. 2007).

References Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado MA (2012) Review on antimicrobial activity of mushroom (basidiomycetes) extracts and isolated compounds. Planta Med 78(16):1707–1718 Angelini P, Girometta C, Tirillini B, Moretti S, Covino S, Cipriani M, D’Ellena T, Angeles G, Federici E, Savino E, Cruciani G, Venanzoni R (2019) A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int J Food Prop 22(1):768–783 Baek J, Roh HS, Baek KH, Lee S, Lee S, Song SS, Kim KH (2018) Bioactivity‐based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol 224:63–75 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar ed, pp 388–412 Dugger BN, Dickson DW (2016) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7):a028035 Duru KC, Kovaleva EG, Danilova IG, Van der Bijl P (2019) The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res 33:1966–1980 Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-­ inhabiting Poroid and Corticioid fungi in Uzbekistan. Front Microbiol 11:598321 Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, Barros L, Soković M (2015) A comparative study on edible mushrooms as functional foods. Food Funct 6:1900–1910 Ham SS, Kim SH, Moon SY, Chung MJ, Cui CB, Han EK, Choe M (2009) Antimutagenic effects of subfractions of Chaga mushroom (Inonotus obliquus) extract. Mutat Res 672:55–59 Kahlos K, Tikka VH (1994) Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipids in Inonotus obliquus, in  vitro. Appl Microbiol Biotechnol 42:385–390 Kim HG, Yoon DH, Kim CH, Shrestha B, Chang WC, Lim SY, Lee WH, Han SG, Lee JO, Lim MH, Kim GY, Choi S, Song WO, Sung JM, Hwang KC, Kim TW (2007) Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J Med Food 10:80–89

1202

Y. Gafforov et al.

Kou RW, Du ST, Xia B, Zhang Q, Yin X, Gao JM (2021) Phenolic and steroidal metabolites from the cultivated edible Inonotus hispidus mushroom and their bioactivities. J Agric Food Chem 69(2):668–675 Ludwiczak RS, Wrecino U (1962) Rocz Chem 36:497–502 Ma L, Chen H, Zhang Y, Zhang N, Fu L (2012) Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydr Polym 89:371–378 Nakajima Y, Sato Y, Konishi T (2007) Antioxidant small phenolic ingredients in Inonotus obliquus (Persoon) Pilat (Chaga). Chem Pharm Bull 55(8):1222–1226 Niemelä T (2005) Polypores, lignicolous fungi (in Finnish, with English summary). Norrlinia 13:1–320 Ren Q, Lu X, Han J, Aisa HA, Yuan T (2017) Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase. Chin Chem Lett 28:1052–1056 Ryvarden L, Girbertson RL (1993) European Polypores, part 1. Fungiflora, Oslo Shin Y, Tamai Y, Terazawa M (2000) Chemical constituents of Inonotus obliquus I. A new triterpene, 3‐hydroxy‐8,24‐dien‐lanosta‐ 21,23‐lactone from sclerotium. Eurasian J Res 1:43–50 Szychowski KA, Skòra B, Pomianek T, Gminski J (2021) J Tradit Complement Med 11:293–302 Thomas PW, Elkhateeb WA, Daba GM (2020) Chaga (Inonotus obliquus): a medical marvel becomes a conservation dilemma. Sydowia 72:123–130 Van Q, Nayaka BN, Reimera M, Jonesa PJ, Fulcherb RG, Rempel CB (2009) Antiinflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J Ethnopharmacol 125:487–493 Wang C, Chen Z, Pan Y, Gao X, Chen H (2017) Anti-diabetic effects of Inonotus obliquus polysaccharides-­chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food Chem Toxicol 108:498–509 Youn MJ, Kim JK, Park SY, Kim Y, Kim SJ, Lee JS, Chai KY, Kim HJ, Cui MX, So HS, Kim KY, Park R (2008) Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol 14:511–517 Yousfi M, Djeridane A, Bombarda I, Chahrazed-Hamia DB, Gaydou EM (2009) Isolation and characterization of a new hispolone derivative from antioxidant extracts of Pistacia atlantica. Phytother Res 23:1237–1242

Irpex lacteus (Fr.) Fr. - IRPICACEAE Yusufjon Gafforov, Sunil K. Deshmukh, Michal Tomšovský, Manzura Yarasheva, Mengcen Wang, and Sylvie Rapior

Irpex lacteus (Fr.) Fr. Synonyms: Trametes lactea (Fr.) Pilát; Hirschioporus lacteus (Fr.) Teng; Hydnum lacteum (Fr.) Fr.; Irpiciporus lacteus (Fr.) Murrill; Xylodon lacteus (Fr.) Kuntze; Coriolus lacteus (Fr.) Pat.; Steccherinum lacteum (Fr.) Krieglst. Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] S. K. Deshmukh R&D Division, Greenvention Biotech Pvt. Ltd., Maharashtra, India e-mail: [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] M. Wang State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China e-mail: [email protected] S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_114

1203

1204

Y. Gafforov et al.

Local Names Uzbek: Oqsut tishli po‘kak, oqsutli quzqorin; English: Milk-white toothed polypore; Russian: Ирпекс молочно-белый; Chinese: 乳白耙菌; German: Milchweisser Eggenpilz; Turkish: Dişlek; Korean: 기계충버섯.

Short Morphological Description Basidiomata annual, resupinate to effuse-reflexed, occasionally sessile. Pilei single or imbricate, dimidiate or laterally fused, imbricate or solitary, up to 7  cm long. Upper surface white to pale cream, tomentose to hirsute, sulcate, slightly zonate. Hymenophore irregularly poroid, labyrinthine to irpicoid or dentate, pores 2–3 per mm on the marginal parts; dissepiments thin and deeply lacerate. Margin concolorous. Context white, fibrous, 2–3 mm thick. Tube layer concolorous with the context, up to 3  mm thick. Hyphal system dimitic. Generative hyphae with simple septa, colorless, thin- to thick-walled, frequently branched, 2.5–3.5 μm; skeletal hyphae thick-walled, colorless, rarely branched and septate, 2.5–5.5 μm. Cystidia conspicuous, cylindrical-clavate, apically encrusted, thick-walled, 60–110  ×  4.5–10  μm. Basidia clavate, with 4-sterigmata, with a simple basal septum, colorless, 16–33 × 3.5–6 μm. Basidiospores cylindrical to oblong, smooth, thin-walled, colorless, 4.5–6.5(−7) × 2–2.5(−3) μm, negative in Melzer’s reagent, colorless in KOH (Bernicchia and Gorjón 2020).

Ecology and Distribution Irpex lacteus is a saprothrophic or facukltative parasitic wood-decaying basidiomycete belonging to Polyporales (Novotný et al. 2009). This fungus causes a white rot and occurs on numerous hardwood trees, growing on dead branches of either dead or living trees as well as on dead standing trunks or fallen trunks and branches. The host spectrum is broad including Acer, Alnus, Betula, Cornus, Corylus, Fagus, Frangula, Juglans, Populus, Prunus, Rosa, Sorbus and Tilia, rarely on conifers (Juniperus). The geographic distribution of I. lacteus is restricted to the Northern Hemisphere, including Europe, Asia, North Africa, and widely distributed in North America (Bernicchia and Gorjón 2020; Gafforov et al. 2020; Gafforov and Ordynets 2022). Gafforov et al. (2020) reported I. lacteus on Populus, Pyrus, Quercus, Salix and Ulmus trees from Uzbekistan (Figs. 1, 2, 3, and 4).

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1205

Fig. 1  Irpex lacteus (Irpicaceae), Canada. (Photo https://www. inaturalist.org/ observations/20563640)

Fig. 2  Irpex lacteus (Irpicaceae), Czechia (Michal Tomšovský)

Mycochemistry 5-Pentyl-2-furaldehyde, 5-(4-pentenyl)-2-furaldehyde, and 3-p-­anisoloxypropionate were isolated from culture filtrate of I. lacteus (IFO 5367) (Hayashi et al. 1981). Later monacolin K and dehydromonacolin K as well as 5α,8α-epidioxy-(22E,24R)ergosta-6,22-dien-3β-ol and ergosterol were isolated from I. lacteus strain E21, an endophyte associated with the root of Lycium ruthenicum (Wang et al. 2013). A I. lacteus polysaccharide named ILN3A was purified from hot water extract of mutant (mutant ILN10 obtained via chemical mutagenesis) I. lacteus, grown in a liquid medium. The backbone of ILN3A (264 kDa) comprises (1→2) and (1→4) linkages, and 1H NMR spectrum suggests the existence of α- and β-glycosidic anomeric carbon (Wang et al. 2016).

1206

Y. Gafforov et al.

Fig. 3  Irpex lacteus (Irpicaceae), Iran (Masoomeh Ghobad-Nejhad)

Fig. 4  Irpex lacteus (Irpicaceae), Slovakia (Michal Tomšovský)

Tremulane Sesquiterpenoids Irlactins A-D, four sesquiterpenoids with a rearranged 6/6 bicyclic system, together with their presumed biosynthetic precursor irlactin E, were purified from cultures of the I. lacteus. Their structures were elucidated by means of spectroscopic methods, and the absolute configurations of irlactins A-D (tremulane-type sesquiterpenes) were established by single crystal X-ray diffraction analysis (Ding et al. 2013). Six 5,6-seco-tremulane analogues as 11,12-epoxy-15-hydroxy-5,6-seco-­ tremula-1,6(13)-dien-5,12-olide, 12β,15-dihydroxy-5,6-seco-tremula-1,6(13)dien-5-oate, 11,12-epoxy-14-hydroxy-5,6-seco-tremula-1,6(13)-dien-5,12-olide, methyl-12β,14-dihydroxy-5,6-seco-tremula-1,6(13)-dien-5-oate,

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1207

6,11-dihydroxy5,6-seco-tremul-1-en-5,12-olide, and 11,12-epoxy-6-hydroxy5,6-­seco-­tremul-1-en-5,12-olide, together with both conocenolides A and B were isolated from the culture broth of the medicinal fungus I. lacteus HFG1102 (Chen et al. 2018). Five new tremulane sesquiterpenes, named irlactins F-J, were isolated from cultures of the I. lacteus together with two known analogues tremulenediol A and 1β,12-epoxy-14-hydroxy-2(11)-tremulene; structures and relative configurations of compounds irlactins F-J were elucidated by spectroscopic data analyses (Ding et al. 2018). A new tremulane sesquiterpenoid, irlactam A, was purified from cultures of the I. lacteus; the structure was elucidated by spectroscopic data analysis (Ding et al. 2019). One new tremulane sesquiterpene, irpexlacte A, and three new furan derivatives, irpexlactes B–D, were isolated from the endophytic fungus I. lacteus DR10-1 waterlogging tolerant plant Distylium chinense, together with two known ones, irlactin E and 3β-hydroxycinnamolide. Structures of these metabolites were characterized by high resolution electrospray ionisation mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR) methods by Duan et al. (2019). Eight previously undescribed sesquiterpenoids, tremutins A-H, together with three known compounds as irlactin I, (+)-(1R,6S,7S)-tremul-2-ene-12(11)-lactone and ceriponol C were isolated from cultures of I. lacteus. Structures of the new compounds together with absolute configurations were elucidated on the basis of extensive spectroscopic methods, as well as single-crystal X-ray diffractions and equivalent circulating density calculations. Compounds tremutins A and B possess an unusual 6/7-fused ring system that might be derived from a tremulane framework. Compounds tremutins C-G and irlactin I, (+)-(1R,6S,7S)-tremul-2-ene12(11)-lactone and ceriponol C are tremulane sesquiterpenoids of which tremutins D and E are the first tremulane examples with a 1,2-epoxy moiety to be reported (Wang et al. 2020). A new tremulane sesquiterpene lactone, named irlactin K, was isolated from the I. lacteus. The structure of the new compound was established through extensive spectroscopic analyses (Ding et al. 2020). Then, two new tremulane-type sesquiterpenes, irlactin L and irlactin M along with known compound, 6-hydroxy-2,6-­ dimethyloct-­7-enoic acid were purified from cultures of I. lacteus. Their structures were elucidated by spectroscopic data analyses (Ding et al. 2021). At the same time, a new irlactane-type sesquiterpene, namely irlactin K, and 22 tremulane-type sesquiterpenes including fourteen previously undescribed ones, namely irpexolactins A-N, and a known irlactane-type sesquiterpenoid, conocenol C, tremulenolide D, tremulenediol A, (+)-(3S,6R,7R)-tremulene-6,11,12-triol, conocenol B, (−)-(3S,6S,7S,10S)-tremulene-10,11,12-triol, irlactam A, 11,12­dihydroxy-­1-tremulen-5-one and irlactin A were isolated from the culture of I. lacteus HFG1102. The structures of all the isolates were characterized by extensive spectroscopic methods, including 1D and 2D NMR, and MS spectroscopic analyses. The absolute configurations of irlactin K and the known compound conocenol B were established by single-crystal X-ray diffraction analysis (Chen et al. 2020).

1208

Y. Gafforov et al.

Five new tremulane sesquiterpenes irpexlactins A-E, and a new tetrahydrofuran derivative irpexlacin, and known compounds irlactin G, conocenols B-C, 11,12-­dih ydroxy-­ 1-tremulen-5-one, neroplofurol, 11,12-epoxy-5,6-seco-tremula-1,6(13)dien-5,12-olide, irpexlacte B and 2,3-dihydroxydodacane-4,7-dione were extracted from endophyte I. lacteus associated with the plant Gastrodia elata. Compound irpexlactin A was the first tremulane glucoside, and irpexlacin possessed a rare tetrahydropyran-­tetrahydrofuran scaffold (Wang et al. 2021a, b). Recently, a new tremulane sesquiterpene, lactedine along with seven known tremulane sesquiterpenes as conocenol B, phellinignincisterol C, ceriponol A, nigrosirpexin A, 11,12-dihydroxy-1-termulen-5- one, conocenol A, 10β,11-­ dihydroxy-­5,6-seco1,6(13)-termulacation-5,12-olide, and a known triterpene irpenigirin A were isolated from the fungus I. lacteus. Their structures were established on the basis of extensive spectroscopic data and DP4+ probability analyses (Sun et al. 2022). Nine undescribed compounds, including six tremulane-type sesquiterpenoids, irpexolaceus A-F, one phenolic bisabolane-type sesquiterpenoid, irpexolaceus G, and two furan derivatives, irpexonjusts A-B, as well as eight known analogs, tremulenolide D, irpexlactes B-C, 5-(3-oxopentyl)-2-furaldehyde, irpexolactins I-J, irpexolactin J, 2-furoic acid and 5-(3-methoxy-3-oxopropyl)furan-2-carboxylic acid, were isolated from an endophytic fungus (I. lacteus OV38) of Orychophragmus violaceus (L.) O.E. Schulz, a Chinese medicinal and edible plant. The structures of these natural compounds were elucidated based on NMR, HRESIMS, single-crystal X-ray diffraction, and ECD spectroscopic data (Luo et al. 2022a). Two new tremulane-type sesquiterpenoids, irpexolaceus H and I together with two known furan compounds, irpexlactes B and C, were isolated from I. lacteus an endophytic fungus associated with the plant Orychophragmus violaceus. Their structures were elucidated by detailed spectroscopic data (NMR, HRESIMS, IR, and UV), single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analysis (Luo et al. 2022b).

Eburicane Triterpenoids Four eburicane-type triterpenoids with malonyl modifications, namely irpexoates A-D, were isolated for the first time from the fruiting bodies of I. lacteus. The structures of the new compounds were established by extensive spectroscopic methods, including 1D and 2D NMR, and HRESIMS spectroscopic analyses (Tang et al. 2018a). Five eburicane-type triterpenoids, irpeksins A-E, were also isolated from fruiting bodies of I. lacteus. Compounds irpeksins A-D are featured by a scaffold of 1,10-­ seco- and ring B aromatic eburicane (24-methyllanostane), and compound irpeksin E is characterized by a scaffold of 1,10-9,11-diseco- and ring B aromatic eburicane, which represents unprecedented cleavage patterns in the lanostane family (Tang et al. 2018b).

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1209

Irpexolidal, a triterpenoid with an unprecedented carbon skeleton, along with its biogenetic-related compound irpexolide A, were isolated from the fruiting bodies of I. lacteus. Irpexolidal features a 6/5/6/5/6/5-fused polycyclic skeletal system which arises from the eburicane-type triterpene by a 6,7-seco-6,8-cyclo pattern. The structures of irpexolidal and irpexolide A, were established by means of extensive spectroscopic techniques, and DP4+ probability based on GIAO 13C NMR chemical shift calculations (Tang et al. 2019a). Ten previously undescribed triterpenoids, namely irpeksolactins A (Irpeksolactin A is featured by a rare 19 (10.→5)abeo-eburicane skeleton), irpeksolactins B-J, together with eighteen known compounds asiatic acid, 15α-hydroxydehydrotumulosic acid, polyporenic acid C, 24-methylene-lanosta7,9(11)-diene-3-one, 29-­hydroxypolyporenic acid C, 6α-hydroxypolyporenic acid C, de-­hydrosulphurenic acid, polycarpol, dehydrotrametenonic acid, 3-oxo-6,16α-­ dihydroxylanosta-­ 7,9(11),24(31)-trien-21-oicacid, ganoderol A, 13α,14β,17α-­ lanosta-­7,9,24-triene-3β,16α-diol, 3α-hydroxy-24-methylene-23-oxolanost8-en-26-arboxylic acid, 3α-carboxyacetoxyquercinic acid, inonotusane C, daedalol C, ganodermanondiol, hexatenuins B were isolated from the fruiting bodies of I. lacteus. The structures of all compounds were characterized by extensive spectroscopic approaches, including 1D and 2D NMR, and MS spectroscopic methods (Tang et al. 2019b).

Other Secondary Metabolites Fourteen extracellular metabolites as mainly sesquiterpene, sesquiterpenoid epoxide, quinazoline, triterpene, xanthone, and polyketide derivatives were produced by I. lacteus broth filtrate. Apotrichodiol, apotrichothecene, blennin D, collybial, cyclocalopin A, dehydrooreadone, dictyoquinazol A, dihydromarasmone, frequentin, ganodermic acid Jb, geosmin, microdiplodiasol, pandangolide 1, piperdial were purified from I. lacteus strain CMU-8413 (Pineda-Suazo et al. 2021). Eight new furan derivatives, irpexins A-H, two new polyketides, irpexins I and J together with nine known compounds irpexlactes B-D, 1-(5-(hydroxymethyl)2-furanyl)-pentanone, 5-(3-oxopentyl)-2-furancarboxaldehyde, (1R,2R)-1-(5(pent-4-en-1-yl)furan-2-yl)propane-1,2-diol, (1R,2R)-1-(5-pentylfuran-2-yl) propane-1,2-diol, 2,5,8-decanetrione, 2-butyl-3hydroxy-2-cyclopenten-1-one were obtained from the culture of I. lacteus. The structures and absolute configurations were elucidated on the basis of extensive spectroscopic methods and Mosher ester reaction (Wang et al. 2021a, b). In addition, two undescribed disubstituted pyridine derivatives irpexidines A and B and two undescribed alkylfuran derivatives named irpexins K and L were isolated from fruiting bodies of I. lacteus. Their structures were established by extensive spectroscopic methods. The pyridine derivatives from this fungus were reported for the first time (Chen et al. 2021).

1210

Y. Gafforov et al.

Coculture Five new metabolites belonging to two backbones of pulvilloric acid-type azaphilone and tremulane sesquiterpenes, nigirpexins A-D, conocenol B and nigrosirpexin A, were isolated from Nigrospora oryzae co-cultured with I. lacteus. The tremulane sesquiterpene conocenol B production was induced by I. lacteus through the induction of N. oryzae (Zhou et al. 2018). The coculture of the phytopathogenic N. oryzae and endophytic I. lacteus from the same host Dendrobium officinal afforded two new squalenes irpenigirins A-B, irpenigirin B, one new azaphilone isonigirpexin C, two new tremulane sesquiterpenes 5-demethylconocenol C, nigrosirpexin A and known compound conocenols B-C, and 4-(4- dihydroxymethylphenoxy)benzaldehyde (Wu et al. 2019). A new isoindolinone alkaloid, irpexine, was isolated as a racemate, along with a known green pigment, hypoxyxylerone, from the coculture of two endophytic fungi, I. lacteus and Phaeosphaeria oryzae. Irpexine was found to be a newly produced metabolite of I. lacteus in the coculture with P. oryzae. Although hypoxyxylerone, was produced in a monoculture of I. lacteus, its production was markedly enhanced by the coculture (Sadahiro et al. 2020). Compounds nigrosirpexin B-E, nigirpexin E, and 11,12-epoxy-5,6-seco-­ tremula-1,6(13)-dien-5,12-olide, 12-acetoxy-5,6-seco-1,6(13)-tremuladien-­5,11-­ olide, conocenol B, 11,12-dihydroxy-1-tremulen-5-one, conocenolide A, and 11-acetoxy-5,6-seco-1,6(13)-tremuladien-5,12-olide were isolated from coculture of phytopathogen−endophyte (nonhomologous N. oryzae and I. lacteus), nigcollin A-E, and nigbeauvin A, nigbeauvin C, nigirpexin A and nigbeauvin D were isolated from coculture of phytopathogen (N. oryzae and C. gloeosporioides), and nigrosirpexin F, 11,12-epoxy-5,6-seco-tremula-1,6(13)-dien-5,12-olide, 11,12-epoxy-12β-­ hydroxy-1-tremulen-5-one and syringaresinol were isolated from coculture of endophyte−host (N. oryzae, I. lacteus, and host plant Dendrobium officinale) (Shi et al. 2020). Five new tremulane sesquiterpenoids nigpexin A-E, along with previously reported compounds mevalonolactone, microsphaerophthalide F, p-hydroxybenzoic acid, tyrosol, 2-hydroxyphenylacetic acid, tremulenediol A, 11-aldehyde-5,6seco-­1,6(13)-tremuladien-5,12-olide, conocenolides A-B, β-sitosterol, scytalone, 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one and (3S,4R)-3,4-­ dihydroxypentanoic acid were isolated from co-culture of endophyte Irpex lacteus, phytopathogen N. oryzae, and entomopathogen Beauveria bassiana (Yin et al. 2021). A new antifungal butenolide irperide along with five known compounds nigirpexin C, tremulenediol A, lactedine, (+)-(3S,6R,7R)-tremulene-6,11,12-triol, and conocenol B were isolated from the co-culture of endophyte I. lacteus and pathogenic N. oryzae. The structure of irperide including the absolute configuration, was elucidated by analyses based on NMR, HR-ESI-MS data and ECD spectra (Wu et al. 2022).

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1211

Application in Biotransformation The biotransformation of huperzine A (hupA), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte I. lacteus CCTCC M 2017161 of the host plant yielded two previously undescribed compounds, featuring a hupA-butanone structure, along with a known analog named 8α,15α-epoxyhuperzine A.  The structures of all molecules were established by spectroscopic methods including NMR, MS, IR, and UV spectra (Ying et al. 2019).

Local Medicinal Uses The fungus I. lacteus has been used as drug formulations in traditional Chinese medicine, and used for the treatment of chronic glomerulonephritis in clinic (Bau and Dai 2004). The crude polysaccharide fraction of I. lacteus was approved by the China Food and Drug Administration with the name Yishenkang for the treatment of chronic glomerulonephritis (Dong et al. 2017).

Modern Medicinal Uses  ntimicrobial Activities (Antibacterial, Antifungal, A Phytopathogenic Properties) Firstly, the culture extract of I. lacteus was found active against Bacillus cereus, Candida albicans, C. glabrata, C. parapsilosis, Escherichia coli, Staphylococcus aureus and S. typhimurium (Rosa et al. 2003). Then monacolin K shown a stronger inhibition to the growth of Gram-negative and Gram-positive bacteria; however dehydromonacolin K showed a moderate inhibition to the growth of B. subtilis (Wang et al. 2013). Methanolic extract of I. lacteus exhibited antibacterial activity against Klebsiella pneumonia (MTCC109), S. aureus (MTCC 737), E. coli (MTCC-739), with zone of inhibition of 28, 27.33 and 19.33 mm, respectively at the highest concentration of 500 mg/ml. (Chaudhary and Tripathy 2015). Irpexlactes A-D displayed moderate antibacterial activity against Pseudomonas aeruginosa with MIC values ranging from 23.8 to 35.4 μM (Duan et al. 2019). Methanolic extract of I. lacteus also exhibited antifungal activity C. albicans (MTCC-227) and Trichophyton mentagrophyte (MTCC-8476) with zone of inhibition of 10.33 and 25.66 mm, respectively at the same concentration (Chaudhary and Tripathy 2015). The tremulane-type sesquiterpene conocenol B produced by I. lacteus by induction of Nigrospora oryzae, showed antifungal activity against N. oryzae and I. lacteus with MICs of 16 and 128 μg/mL, respectively (Zhou et al. 2018). Nigrosirpexin

1212

Y. Gafforov et al.

A displayed poor activity against N. oryzae and I. lacteus with MICs of 64 and 128 μg/ml respectively (Zhou et al. 2018). Compounds irpenigirin B and 5-demethylconocenol C showed antifungal activities against Colletotrichum gloeosporioides with MICs of 8  μg/ mL. 5-Demethylconocenol C as well as conocenols B-C showed antifungal activities against Didymella glomerata with MICs of 1, 8, and 4  μg/mL, respectively. Nigrosirpexin A from I. lacteus showed antifungal activity against N. oryzae with MICs at 32  μg/mL.  The in-vivo antifungal activities of conocenol B, and 4-(4-­dihydroxymethylphenoxy)benzaldehyde against Cerasus cerasoides infected by N. oryzae were also investigated, and they exhibited significant antipathogen activity against N. oryzae at a concentration of 100 μg/mL (Wu et al. 2019). Metabolites nigrosirpexin B, 11,12-epoxy-5,6 seco-tremula-1,6(13)-dien-5,12­olide, 12-acetoxy-5,6-seco-1,6(13)-tremuladien-5,11-olide, conocenol B, 11,12-dihydroxy-1-tremulen-5-one, conocenolide A, and 11-acetoxy-5, 6-seco-­1,6(13)-tremuladien-5,12-olide from I. lacteus showed selective anti-­ phytopathogenic activity against N. oryzae with MICs of 1, 32, 256, 16, 128, 1, and 128 μg/mL, respectively, and no obvious anti-phytopathogenic activity against itself was observed (MIC of 512 μg/mL) (Shi et al. 2020). In dual culture confrontation assays, basidiomycete I. lacteus efficiently antagonized Colletotrichum spp., Fusarium spp. and Phytophthora spp. phytopathogenic strains, with growth inhibition percentages between 16.7–46.3%. Antibiosis assays evaluating the inhibitory effect of soluble extracellular metabolites indicated I. lacteus strain inhibited phytopathogens growth between 32.0–86.7% (Pineda-Suazo et al. 2021). Compound 2,3-dihydroxydodacane-4,7-dione displayed antifungal activity against Penicillium polonicum, Psathyrella. subsingeri and Trichoderma atroviride with MIC values of 16, 32 and 16 μg/mL respectively. Compounds irpexlactins A-E, 11,12-epoxy-5,6-seco-tremula-1,6(13)-dien-5, 12-­ olide, irpexlacin, irlactin G, conocenols B-C, 11,12-dihydroxy-1-tremulen5-one, neroplofurol, irpexlacte B were found active against Armillaria sp., P. polonicum, P. subsingeri and T. atroviride, with MIC values in the range of 4–64  μg/ mL.  Compounds irpexlactins A-B, irpexlactin E, 11,12-epoxy-5,6-seco-­ tremula-1,6(13)-dien-5,12-olide, irlactin G, conocenols B-C, 11,12-dihydroxy-­1tremulen-5-one, irpexlacte B were found active against I. lacteus with MIC values in the range of 32–64 μg/mL. Positive control nystatin displayed antifungal activity against P. polonicum, P. subsingeri and T. atroviride, I. lacteus with MIC values of in the range of 4–16 μg/mL (Wang et al. 2021a). Compounds nigpexin B-D, p-hydroxybenzoic acid, tyrosol, β-sitosterol and scytalone displayed antifungal activities against I. lacteus with MICs ≤8  μg/ mL.  Compounds tremulenediol A, 11-aldehyde-5,6-seco-1,6(13)-tremuladien-­5, 12-­ olide, scytalone, 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one, and (3S,4R)-3,4-dihydroxypentanoic acid indicated significant antifungal activity against N. oryzae with MICs ≤4 μg/mL. Compounds nigpexin B and E, 11-­aldehyde -­5,6-seco-1,6(13)-tremuladien-5,12-olide and (3S,4R)-3,4-dihydroxypentanoic acid

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1213

from I. lacteus, displayed significant anti-fungal activity against Beauveria bassiana with MICs ≤8 μg/mL (Yin et al. 2021).

Effects of Renal Pathologies and Metabolic Syndrome Firstly, polysaccharides obtained from I. lacteus, displayed therapeutic effect on chronic glomerulonephritis, and suppresses erythropoiesis and urinary protein content in chronic nephritis patients (Zhang et al. 2012). Then, polysaccharide ILN3A was shown to inhibit mesangial cell proliferation. In MGN rats, ILN3A reversed structural changes in kidney, suppressed abnormal high level of urine protein and restored concentration of serum albumin. ILN3A also reduced total cholesterol, triglycerides, and creatinine in serum, and 6-keto-PGF in kidney cortex. Further study shows ILN3A restores serum Interleukin 2, Interleukin 2 receptor, Interleukin 6, tumor necrosis factor α, and renal cortical nuclear factor κB (Wang et al. 2016). Later, aqueous extract from the fruiting body of I. lacteus showed a preventive effect against adenine-induced chronic nephritis (Han et al. 2018).

Antitumor Activity Ethyl acetate extract of I. lacteus CCB 196, exhibited the 100% growth inhibition of UACC-62, MCF-7, and TK-10 human cancer cell lines and inhibition of PBMC proliferation; ethyl acetate extract of I. lacteus CCB 196 also displayed 91% inhibition of the enzyme trypanothione reductase (TryR) and 87% kill of Leishmania amazonensis (Rosa et al. 2009). The water-soluble polysaccharide (ILN III) isolated from I. lacteus by hot-water extraction, displayed antitumor activity against HepG2 and HeLa cell lines with IC50 values of 60.95 and 99.95 μg/mL, respectively. ILA I exhibited significant inhibition effects on murine mesangial cells (HBZT-1) with an IC50 value of 185.06 μg/ mL (Na et al. 2012). Irpexoate B displayed weak cytotoxicity against four human cancer cell lines (A-549, SMMC-7721, MCF-7, SW480) with IC50 values varying from 22.9 to 34.0 μM, and irpexoate D showed weak cytotoxicity against the human cancer cell line SW480 with an IC50 value of 35.2 μM (Tang et al. 2018a). Compound irlactinsI, exhibited moderate cytotoxicities on HL-60, SMMC-7721, A-549, MCF-7, and SW480 cells with IC50 values of 16.23, 20.40, 25.55, 19.05, and 18.58 μM, respectively (Ding et al. 2018). Irpeksolactin J displayed selective and weak cytotoxicity against the human lung cancer cell line A549 and the human hepatocellular carcinoma cell line SMMC-7721 (Tang et al. 2018b).

1214

Y. Gafforov et al.

The compound irlactin K, was inactive against breast cancer SK-BR-3, hepatocellular carcinoma SMMC-7721, human myeloid leukemia HL-60, pancreatic cancer PANC-1, and lung cancer A-549 cells (IC50 values >40 μM) (Ding et al. 2020).

Anti-inflammatory Activity Compounds irpeksins A-E, showed significant inhibitory activity against NO production in LPS-activated RAW 264.7 macrophage cells with IC50 values varying from 2.2 to 19.6 μM (Tang et al. 2018b). Polysaccharides in aqueous extracts have attracted much attention due to their renoprotective activities through anti-inflammation and inhibition of nuclear factor κB 65 heterodimer (NF-κB-p65) (Jiang et al. 2014). I. lacteus extract elevates the endurance capacity via activating AMPK-linked antioxidant pathway, which provides experimental evidence in supporting the clinical use of ILE (I. lacteus extract) as an effective agent against fatigue (Wang et al. 2019). At the concentration of 50 μg/mL, the inhibitory effects of irpexolaceus A, C, D, F, and G, irpexonjust B, and irpexlacte B against NO release from LPS-induced RAW 264.7 cells were higher than 45%, while irpexlacte C (42.6%), irpexolaceus B (39.6%), irpexonjust A (43.7%), and irpexolaceus E (33.6%) exhibited weaker inhibitory effects on the release of NO (Luo et al. 2022a). Compounds tremutin F, tremutin G, (+)-(1R,6S,7S)-tremul-2-ene-12(11)lactone, and ceriponol C, exhibited poor activities to several human cancer cell lines. Compound tremutins H showed a weak inhibitory effect on NO production with a half maximal inhibitory concentration (IC50) value of 22.7 μM. Compound tremutins A inhibited the lipopolysaccharide (LPS)-induced proliferation of B lymphocyte cells with an IC50 value of 22.4 μM, while tremutins B inhibits concanavalin A (Con A)-induced T cell proliferation and LPS-induced B lymphocyte cell proliferation with IC50 values of 16.7 and 13.6 μM, respectively (Wang et al. 2020).

Other Biological Activities The compound 3-p-anisoloxypropionate showed 50% mortality of nematode Aphelencoides besseyi in the solution of 25  ppm, and compound 5-pentyl-2-­ furaldehyde, 5-(4-pentenyl)-2-furaldehyde showed the similar activity in the solution of 50 ppm (Hayashi et al. 1981). I. lacteus extract displayed anti-fatigue activities in mice (Wang et al. 2019). Nigrosirpexin A was active against acetylcholinesterase (AChE) with a ratio of 35% at the concentration of 50 μM. (Zhou, et al. 2018). Compound nigrosirpexin A from I. lacteus showed weak activity against AChE, with an inhibition ratio of 16% at a concentration of 50 μM (Wu et al. 2019).

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1215

Irlactam A and irlactin K showed no significant activity against isozymes of 11β-hydroxysteroid dehydrogenases (Ding et  al. 2019, 2020). Irpexlacte A and irpexlacte D showed remarkable antioxidant activity with IC50 values of 2.50 and 5.75 μM, respectively (Duan et al. 2019). Compounds irlactin K, irpexolactin A, irpexolactin C, irpexolactin K, and irlactam A were evaluated on KCl precontracted thoracic aorta rings with no significant vasorelaxant effect. Nifedipine was used as the positive control (Chen et al. 2020). Nigpexin A-E, mevalonolactone, microsphaerophthalide F, p-hydroxybenzoic acid, tyrosol, 2-hydroxyphenylacetic acid, tremulenediol A, 11-aldehyde-5,6seco-­1,6(13)-tremuladien- 5,12-olide, conocenolide A-B, β-sitosterol, scytalone, 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one, and (3S,4R)-3,4-­ dihydroxypentanoic acid displayed antifeedant activities against silkworm with inhibition percentages of 73–99%, at concentrations of 50 μg/cm2. Tremulenediol A, indicated notable antifeedant activity with inhibition percentage of 93% at concentration of 6.25 μg/cm2 among them. Avermectin was used as positive drug with inhibition percentage >95%, at concentration of 50  μg/cm2 or 6.25  μg/cm2 (Yin et al. 2021). Recently, irpexlacte B was displayed potential quorum sensing inhibitory activity at 50 mg/mL against biomarker strains of Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026 (Luo et al. 2022a, b).

Local Food Uses Edibility, aroma and flavor Inedible, without odor and taste

References Bau T, Dai YC (2004) Diversity and conservation of main wood-rotting fungi in Changbai Mountains. J Fungal Res 2:26–30. https://doi.org/10.3969/j.issn.1672-­3538.2004.02.007 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar, Segrate, p 903 Chaudhary R, Tripathy A (2015) Isolation and identification of bioactive compounds from IrpexLacteus Wild Fleshy Fungi. J Pharm Sci Res 7(7):424 Chen HP, Zhao ZZ, Li ZH, Feng T, Liu JK (2018) Seco-tremulane Sesquiterpenoids from the cultures of the medicinal fungus Irpex lacteus HFG1102. Nat Prod Bioprospect 8(2):113–119. https://doi.org/10.1007/s13659-­018-­0157-­y Chen HP, Ji X, Li ZH, Feng T, Liu JK (2020) Irlactane and tremulane sesquiterpenes from the cultures of the medicinal fungus Irpex lacteusHFG1102. Nat Prod Bioprospect 10(2):89–100. https://doi.org/10.1007/s13659-­020-­00239-­z Chen Q, Wang M, Yi XW, Li ZH, Feng T, Liu JK (2021) Two new pyridine derivatives and two new furan derivatives from Irpex lacteus. Nat Prod Res 18:1–7. https://doi.org/10.1080/1478641 9.2021.1889544 Ding JH, Feng T, Cui BK, Wei K, Li ZH, Liu JK (2013) Novel sesquiterpenoids from cultures of the basidiomycete Irpex lacteus. Tetrahedron Lett 54(21):2651–2654

1216

Y. Gafforov et al.

Ding JH, Li ZH, Feng T, Liu JK (2018) Tremulane sesquiterpenes from cultures of the basidiomycete Irpex lacteus. Fitoterapia 125:245–248. https://doi.org/10.1016/j.fitote.2017.12.001 Ding JH, Li ZH, Feng T, Liu JK (2019) A new tremulane sesquiterpenoid from the fungus Irpex lacteus. Nat Prod Res 33(3):316–320. https://doi.org/10.1080/14786419.2018.1448816 Ding JH, Li ZH, Feng T, Liu JK (2020) A sesquiterpene lactone from Irpexlacteus. Chem Nat Compd 56(3):403–405 Ding JH, Li ZH, Feng T, Liu JK (2021) Two new sesquiterpenes from cultures of the fungus Irpex lacteus. J Asian Nat Prod Res 23(4):348–352. https://doi.org/10.1080/10286020.2020.1737857 Dong XM, Song XH, Liu KB, Dong CH (2017) Prospect and current research status of medicinal fungus Irpex lacteus. Mycosystema 36:28–34 Duan XX, Qin D, Song HC, Gao TC, Zuo SH, Yan X, Wang JQ, Ding X, Di YT, Dong JY (2019) Irpexlacte AD, four new bioactive metabolites of endophytic fungus Irpex lacteus DR10-1 from the waterlogging tolerant plant Distylium chinense. Phytochem Lett 32:151–156 Gafforov Y, Ordynets A (2022) Aphyllophoroid fungi of Uzbekistan. Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan. Occurrence dataset https://doi. org/10.15468/vsru5z accessed via GBIF.org on 2022-05-25 Gafforov Y, Ordynets A, Langer E, Yarasheva M, Gugliotta AM, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321. https://doi.org/10.3389/ fmicb.2020.598321 Han Y, Bao HY, Ma L, Chen WJ, Bau T (2018) Prevention and treatment of chronic glomerulonephritis in mice by administrating Irpex lacteus fruiting body extract. Mycosystema 38(3):428–439 Hayashi M, Wada K, Munakata K (1981) New nematicidal metabolites from a fungus, Irpex lacteus. Agric Biol Chem 45(6):1527–1529 Jiang X, Zhao X, Luo H, Zhu K (2014) Therapeutic effect of polysaccharide of large yellow croaker swim bladder on lupus nephritis of mice. Nutrients 6(3):1223–1235 Luo HZ, Jiang H, Sun B, Wang ZN, Jia AQ (2022a) Sesquiterpenoids and furan derivatives from the Orychophragmus violaceus (L.) OE Schulz endophytic fungus Irpex lacteus OV38. Phytochemistry 194:112996. https://doi.org/10.1016/j.phytochem.2021.112996 Luo H, Jiang H, Huang X, JIA A (2022b) Corrigendum: New sesquiterpenoids from plant-­ associated Irpex lacteus. Front Chem 10:946835 Na Z, Yan L, Jia-hui L, Juan W, Shuang Y, Nan Z, Qing-fan M, Li-rong T (2012) Isolation, purification and bioactivities of polysaccharides from Irpex lacteus. Chem Res Chin Univ 28(2):249–254 Novotný Č, Cajthaml T, Svobodová K, Šušla M, Šašek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential – review. Folia Microbiol 54:375–390. https://doi.org/10.1007/ s12223-­009-­0053-­2 Pineda-Suazo D, Montero-Vargas JM, Ordaz-Ortiz JJ, Vázquez-Marrufo G (2021) Growth inhibition of phytopathogenic fungi and oomycetes by basidiomycete Irpexlacteus and identification of its antimicrobial extracellular metabolites. Pol J Microbiol 70(1):131–136. https://doi. org/10.33073/pjm-­2021-­014 Rosa LH, Machado KMG, Jacob CC, Capelari M, Rosa CA, Zani CL (2003) Screening of Brazilian basidiomycetes for antimicrobial activity. Mem Inst Oswaldo Cruz 98(7):967–974 Rosa LH, Machado KM, Rabello AL, Souza-Fagundes EM, Correa-Oliveira R, Rosa CA, Zani CL (2009) Cytotoxic, immunosuppressive, trypanocidal and antileishmanial activities of Basidiomycota fungi present in Atlantic rainforest in Brazil. Antonie Van Leeuwenhoek 95(3):227–237 Sadahiro Y, Kato H, Williams RM, Tsukamoto S (2020) Irpexine, an isoindolinone alkaloid produced by coculture of endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae. J Nat Prod 83(5):1368–1373. https://doi.org/10.1021/acs.jnatprod.0c00047 Shi LJ, Wu YM, Yang XQ, Xu TT, Yang S, Wang XY, Yang YB, Ding ZT (2020) The cocultured Nigrospora oryzae and Collectotrichum gloeosporioides, Irpex lacteus, and the plant host Dendrobium officinale bidirectionally regulate the production of phytotoxins by anti-­

Irpex lacteus (Fr.) Fr. - IRPICACEAE

1217

phytopathogenic metabolites. J Nat Prod 83(5):1374–1382. https://doi.org/10.1021/acs. jnatprod.0c00036 Sun CT, Wang JP, Shu Y, Cai XY, Hu JT, Zhang SQ, Cai L, Ding ZT (2022) A new tremulane sesquiterpene from Irpex lacteus by solid-state fermentation. Nat Prod Res 36(3):862–867. https:// doi.org/10.1080/14786419.2020.1806272 Tang Y, Zhao ZZ, Li ZH, Feng T, Chen HP, Liu JK (2018a) Irpexoates A–D, four triterpenoids with malonyl modifications from the fruiting bodies of the medicinal fungus Irpex lacteus. Nat Prod Bioprospect 8(3):171–176. https://doi.org/10.1007/s13659-­018-­0160-­3 Tang Y, Zhao ZZ, Yao JN, Feng T, Li ZH, Chen HP, Liu JK (2018b) Irpeksins A–E, 1, 10-seco-­ eburicane-type triterpenoids from the medicinal fungus Irpex lacteus and their anti-NO activity. J Nat Prod 81(10):2163–2168. https://doi.org/10.1021/acs.jnatprod.7b00845 Tang Y, Zhao ZZ, Hu K, Feng T, Li ZH, Chen HP, Liu JK (2019a) Irpexolidal represents a class of triterpenoid from the fruiting bodies of the medicinal fungus Irpex lacteus. J Org Chem 84(4):1845–1852. https://doi.org/10.1021/acs.joc.8b02764 Tang Y, Zhao ZZ, Feng T, Li ZH, Chen HP, Liu JK (2019b) Triterpenes with unusual modifications from the fruiting bodies of the medicinal fungus Irpex lacteus. Phytochemistry 162:21–28. https://doi.org/10.1016/j.phytochem.2019.02.017 Wang W, Ma YM, Zhang HC, Liu G, Zhang X (2013) Metabolites from the strain E21, an endophytic fungus in Lycium ruthenicum. Chin J New Drugs 22:460–464 Wang J, Song J, Wang D, Zhang N, Lu J, Meng Q, Zhou Y, Wang N, Liu Y, Teng L (2016) The anti-membranous glomerulonephritic activity of purified polysaccharides from Irpex lacteus Fr. Int J Biol Macromol 84:87–93 Wang J, Li C, Hu W, Li L, Cai G, Liu Y, Wang D (2019) Studies on the anti-fatigue activities of Irpex lacteus polysaccharide-enriched extract in mouse model. Pak J Pharm Sci 32(3):1011 Wang M, Du JX, Hui-Xiang Y, Dai Q, Liu YP, He J, Wang Y, Li ZH, Feng T, Liu JK (2020) Sesquiterpenoids from cultures of the basidiomycetes Irpex lacteus. J Nat Prod 83(5):1524–1531. https://doi.org/10.1021/acs.jnatprod.9b01177 Wang DL, Yang XQ, Shi WZ, Cen RH, Yang YB, Ding ZT (2021a) The selective anti-fungal metabolites from Irpex lacteus and applications in the chemical interaction of Gastrodia elata, Armillaria sp., and endophytes. Fitoterapia 155:105035. https://doi.org/10.1016/j. fitote.2021.105035 Wang M, Li ZH, Isaka M, Liu JK, Feng T (2021b) Furan derivatives and polyketides from the fungus Irpex lacteus. Nat Prod Bioprospect 11(2):215–222. https://doi.org/10.1007/ s13659-­020-­00282-­w Wu YM, Zhou QY, Yang XQ, Luo YJ, Qian JJ, Liu SX, Yang YB, Ding ZT (2019) Induction of antiphytopathogenic metabolite and squalene production and phytotoxin elimination by adjustment of the mode of fermentation in cocultures of phytopathogenic Nigrospora oryzae and Irpex lacteus. J Agric Food Chem 67(43):11877–11882 Wu YM, Yang XQ, Chen JX, Wang T, Li TR, Liao FR, Liu RT, Yang YB, Ding ZT (2022) A new butenolide with antifungal activity from solid co-cultivation of Irpex lacteus and Nigrospora oryzae. Nat Prod Res 11:1–5. https://doi.org/10.1080/14786419.2022.2037589 Yin HY, Yang XQ, Wang DL, Zhao TD, Wang CF, Yang YB, Ding ZT (2021) Antifeedant and antiphytopathogenic metabolites from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. Fitoterapia 148:104781. https:// doi.org/10.1016/j.fitote.2020.104781 Ying YM, Xu YL, Yu HF, Zhang CX, Mao W, Tong CP, Zhang ZD, Tang QY, Zhang Y, Shan WG, Zhan ZJ (2019) Biotransformation of Huperzine A by Irpex lacteus-A fungal endophyte of Huperzia serrata. Fitoterapia 138:104341 Zhang N, Liu Y, Lu JH, Wang J, Yang S, Zhang N, Meng QF, Teng LR (2012) Isolation, purification andbioactivities of polysaccharides from Irpex lacteus. Chem Res Chin Univ 28(2):249–254 Zhou QY, Yang XQ, Zhang ZX, Wang BY, Hu M, Yang YB, Zhou H, Ding ZT (2018) New azaphilones and tremulane sesquiterpene from endophytic Nigrospora oryzae cocultured with Irpex lacteus. Fitoterapia 130:26–30. https://doi.org/10.1016/j.fitote.2018.07.018

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE Yusufjon Gafforov, Michal Tomšovský, Lei Cai, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Milena Rašeta, Sunil K. Deshmukh, and Sylvie Rapior

Laetiporus sulphureus (Bull.) Murrill Synonyms: Agaricus speciosus Battarra; A. stipticus Paulet; Boletus caudicinus Scopoli; B. tenax Lightfoot; B. coriaceus Hudson; B. imbricatus Bulliard; B. citrinus J.J. Planer; B. ramosus Bulliard; B. sulphureus Bulliard; B. lingua-cervina Schrank; B. lobatus Humboldt; B. amaricans Persoon; Cladomeris. sulphurea (Bulliard) Quélet; Cladoporus sulphureus (Bulliard) Teixeira; Grifola sulphurea (Bulliard) Pilát; Leptoporus sulphureus (Bulliard) Quélet; L. speciosus Battarra ex Murrill; Merisma sulphureus (Bulliard) Gillet; Polyporus sulphureus

Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] L. Cai State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] P. Angelini · G. Cusumano · R. Venanzoni · G. Angeles Flores Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy e-mail: [email protected]; [email protected]; roberto.venanzoni@ unipg.it; [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_115

1219

1220

Y. Gafforov et al.

(Bulliard) Fries; P. ceratoniae Risso; P. todari Inzenga; Polyporellus caudicinus P. Karsten; Polypilus sulphureus (Bulliard) P. Karsten; P. imbricatus (Bulliard) P.  Karsten; Sistotrema sulphureum (Bulliard) Rebentisch; Stereum speciosum Fries; Tyromyces sulphureus (Bulliard) Donk.

Local Names Uzbek: Kulrang-sarg‘ish pukak, English: Bracket fungus, crab-of-the-woods, sulphur polypore, sulphur shelf, and chicken-of-the-woods; Russian: Трутовик серно-желтый; Chinese: ◲Ⰽ帵㞬䝏; French: Polypore soufré; German: Schwefelporling; Hindi: Korean: 덕다리버섯; Persian: ‫ ;جوجه چوب‬Turkish: Kükürtmantarı; Serbian: šumsko pile, žuti hleb, vrbara, vrbovača.

Short Morphological Description Basidiomata annual, sessile to substipitate, pilei single or growing in large clusters up to 50 cm in diameter and weight up to 5 kg. Pilei semicircular to fan-shaped, 5–25 cm in long and up to 20 cm wide; up to 3 cm thick; flat to convex; surface undulate, smooth or finely wrinkled; bright yellow to orange when fresh, fading to pale yellow or brownish when old and dry. Margin thick, undulate, rounded, concolorous with upper surface. Hymenophore sulfur yellow to yellow ochraceous, pores round to angular, 3–4 per mm, with thin and entire dissepiments, quickly becoming lacerate. Tube layer up to 5 mm deep, yellow. Context yellowish or white, azonate, watery, fleshy and sappy when fresh and chalky, crumbly and brittle when dry, up to 2  cm thick. Hyphal system dimitic. Generative hyphae rarely apparent, simple-­ septate, thin-walled, branched, colorless, 6–12 μm in diameter; contextual binding hyphae branched and interlocked, nonseptate, firm to thick-walled, colorless, 3–20 μm wide, dominant in the context tissue; tramal hyphae more parallel than

M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected] S. K. Deshmukh R&D Division, Greenvention Biotech Pvt. Ltd, Uruli-Kanchan, France e-mail: [email protected] S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected]

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1221

those in context; regularly septate-simple, thin-walled, colorless 3–7 μm in diam. Cystidia and other sterile hymenial elements absent. Basidia clavate, thin-walled, with 4 sterigmata, simple-septate at the base, 18–25  ×  6–9  μm. Basidiospores broadly ellipsoid to ovoid, smooth, thin-walled, colorless, 5.4–7.5 × (3.5)4–6 μm, negative in Melzerʼs reagent. White spore powder (Ryvarden and Gilbertson 1993; Burdsall and Banik 2001; Tarafder et al. 2017; Song et al. 2018; Bernicchia and Gorjón 2020; Wright et al. 2022).

Ecology and Distribution Laetiporus sulphureus has been treated as cosmopolitan species presented on all continents, except Antarctica, from boreal to subtropical and tropical zones (Bulam et al. 2019). Anyway, recent phylogenetic studies (Song et al. 2018) confirmed this is in fact a complex of sibling species. The most common hosts of L. sulphureus in Europe are hardwoods as Quercus, Fagus, Populus, Prunus, Pyrus, Robinia, and Salix, rarely also conifers as Cupressus or Taxus (Breitenbach and Kränzlin 1986; Ryvarden and Gilbertson 1993; Bernicchia and Gorjón 2020; Gafforov et al. 2020). Fruiting bodies of L. sulphureus intensively grow in late spring and early summer, but may be produced until the early autumn depending on weather (Ryvarden and Gilbertson 1993; Bernicchia and Gorjón 2020). L. sulphureus was recorded on Acacia, Acer, Juglans, Prunus, Robinia and Quercus in Uzbekistan (Gafforov et al. 2020), but the specimens may belong to recently established species L. xinjiangensis. Similar species L. montanus is growing on Larix and Picea in boreal and montane areas of temperate Euroasia (Song et al. 2018) (Figs. 1, 2, 3, and 4).

Fig. 1  Laetiporus sulphureus (Fomitopsidaceae), Uzbekistan. (Photo Yusufjon Gafforov)

1222

Y. Gafforov et al.

Fig. 2  Laetiporus sulphureus (Fomitopsidaceae), Germany. (Photo Ewald Langer)

Fig. 3  Laetiporus sulphureus (Fomitopsidaceae), Germany. (Photo Rolf Faber)

Mycochemistry The sulphur Polypore has a broad spectrum of nutritional and bioactive compounds as β-1,3-glucans, fatty acids, sterols and triterpenes as well as vitamins, and microand macroelements. Pigments and volatile organic compounds responsible for its color and odor, respectively, are also cited.

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1223

Fig. 4  Laetiporus sulphureus (Fomitopsidaceae), Germany. (Photo Rolf Faber)

Nutrient Content Carbohydrates and proteins are the most abundant compounds (72.64 g per 100 g dry weight and 15.97 g per 100 g d.w., respectively). Ash content is reported to be low (9.03 g per 100 g d.w.). L. sulphureus is also poor in fat content (2.35 g per 100 g d.w.) and caloric value (375 kcal per 100 g d.w.). Trehalose was the dominant sugar (4 g per 100 g d.w.), followed nearly by mannitol (3.54 g per 100 g d.w.) while fructose was present in minor amount (Petrović et al. 2014). According to Kovács and Vetter (2015), crude protein contents of L. sulphureus varied from 8.38 ± 0.11% d.w. to 12.84 ± 0.07% d.w. (average as 10.61 ± 3.15% d.w.). In the fruiting bodies of L. sulphureus is reported the presence of essential amino acids as arginine, histidine, isoleucine, leucine, lysine, methionine, threonine, and tryptophan (Agafonova et al. 2007; Bulam et al. 2019).

Polysaccharides In the fruiting bodies of L. sulphureus were identified some exopolysaccharides as linear water-insoluble β-1,3-glucan named laminaran, and a fuco-galactomannan; the latter was a heteropolysaccharide consisting of the main chain of (1→6)-linked α-D-galactopyranosyl residues (Alquini et  al. 2004). Water-soluble endopolysaccharides were isolated in subsequent studies. They constituted 3.67% of the fruiting body, a dominant structure was a β-1,3-glucan named laetiporan where the sugar as fucose, galalactose, mannose, galactose, rhamnose or xylose, can be attached at position C6 (Olennikov et al. 2009a). Another fraction isolated from fruiting bodies

1224

Y. Gafforov et al.

were polysaccharides soluble in the alkaline solution. The main component of this fraction was latiglucan I, a linear β-1,3-glucan; furthermore, the structures latiglucan II and latiglucan III were determined (Olennikov et al. 2009b).

Volatile Compounds Laetiporus sulphureus was investigated for volatile compounds by GC-MS and twenty-six components were identified in the fruiting bodies; (Z)-3-methylcinnamic aldehyde (27.5%), 2-phenylethanol (6.4%), benzaldehyde (4.0%) and N-phenylethylformamide (3.8%) were the major constituents. Sulphur compounds, i.e., 3-methylthiopropanal (0.6%) and 2,2′-bithiophene (0.1%) were also detected from the sulphur shelf. 3-Methylthiopropanal probably contributes to the disagreeable odour of L. sulphureus which develops when it ages. Among the volatile flavour components, the arenic derivatives (benzaldehyde, phenylethanal, 2-phenylethanol, 2-phenylpropenal, benzoic acid, phenethyl acetate, N-phenylethylformamide, phenethyl valerate) represented 17.6% of the volatile fraction (Rapior et al. 2000). The studies on volatile fraction confirmed that its composition varies depending on the age of the fruiting body, tree species colonized by the fungus, and the place of collection. The young fruiting bodies contained oct-1-­ en-3-one, oct-1-en-3-ol, methylbutanoic acid, phenylethanol and phenylacetic acid. In turn, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and phenylacetic acid were predominant in older specimens (Wu et al. 2005; Sułkowska-Ziaja et al. 2018).

Sterol Composition, Fatty Acids and Lipids Previously studied reported the presence of sterols such as ergost-7,22-dien-3β-ol, ergosterol, ergost-7-en-3β-ol, and 24-ethylcholestan-3β-ol (Kac et al. 1984), benzofuran glycoside, acetylenic acids (Yokoyama et al. 1975; Yokokawa 1980; Yoshikawa et al. 2001), and laetiporic acid (Weber et al. 2004; Davoli et al. 2005). The latter is a new polyene pigment from L. sulphureus; it carries a decaene skeleton as part of its chromophore and contains double bonds with a stable cis configuration. Laetiporic acid represents the main pigment in mushroom fruit body; it is therefore the main pigment responsible for the orange coloration of L. sulphureus fruit bodies, where it is found at a concentration of 250 μg g−1 d.w. (Weber et al. 2004). The sterol fraction analysis was performed by Ericsson and Ivonne (2009) through GC-MS from the chloroformic extract of L. sulphureus. This fraction contained seven fatty acid ethyl esters (ethyl hexadecanoate, ethyl heptadecanoate, ethyl 9,12-octadecadienoate, ethyl octadecanoate, ethyl tetracosanoate, ethyl pentacosanoate and ethyl 9,12-tetracosadienoate), five fatty acids (in order of abundance: palmitic, margaric, oleic, stearic and arachidonic acids) and nine sterols

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1225

(ergost-7-en-3-ol, ergost-7,22-dien-3-ol, ergost-5,7,22-trien-3-ol (ergosterol), ergost-5,7,9(11),22-tetraen-3-ol (dehydroergosterol), ergost-3,5,7,9(11),22-­ pentaen, 24-methylenelanost-7,9-dien-3-ol, 24-methylenelanost-8-en-3-ol (obtusifoldienol), 4,4-dimethylergost-24-en-3-ol, 4-methylergost-5,7,25-trien-3-ol, and two isomers (probably epimers) from 4-methyllergost-7,14,25-trien-3-ol) and one unsaturated ergostane-type hydrocarbon. Moreover, ergosterol peroxide and cerevisterol were isolated (Ericsson and Ivonne 2009). Regarding the fatty acid composition, linoleic acid was the most abundant (63.27%), followed by oleic acid (14.52%) and palmitic acid (11.68%). L. sulphureus is rich in polyunsaturated fatty acids (PUFA; 64.14%), while saturated and monounsaturated fatty acids are present in lower amounts as 20.54% and 15.32%, respectively (Petrović et al. 2014). Sinanoglou et al. (2015) investigated the fatty acid composition of L. sulphureus chloroform and n-hexane extracts; thirty-one saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids were identified. The main saturated fatty acid of mushroom lipids was found to be palmitic acid, the main monounsaturated was oleic acid and the main polyunsaturated fatty acid was linoleic acid (Sinanoglou et  al. 2015). In addition, the lipid composition of L. sulphureus chloroform and n-hexane extracts was also investigated; individual neutral and polar lipids were separated by TLC-FID. Neutral lipids predominated in all extracts, mainly consisted of triglycerides followed by sterols. Concerning the mushroom polar lipids, phosphatidylcholine seemed to have the highest content followed by phosphatidylethanolamine (Sinanoglou et al. 2015). Recently, Younis et al. (2019) revealed a high amount of oleic acid, octadecenoic acid and ergosterol derivatives in the lipid composition of the fruiting bodies was studied with GC-MS.

Triterpenes Triterpene compounds present in fruiting bodies of L. sulphureus are lanostane derivatives: 3-oxosulfurenic acid and eburicoic acid, as well as 15α-hydroxy-­ trametenolic acid and sulfurenic acid were determined among the triterpene acids (Léon et al. 2004). Recently, Hassan et  al. (2021) investigated the chemical composition of the crude extracts of L. sulphureus fruiting body through the HPLC analyses, leading to the isolation of two previously undescribed lanostane triterpenoids for which the trivial names laetiporins C and D were assigned. In addition, four known triterpenoids: fomefficinic acid, eburicoic acid, 15α-hydroxytrametenolic acid and trametenolic acid were also isolated from the same crude extract. According to Hassan et al. (2021), the latter compounds except for fomefficinic acid were already isolated previously by Chepkirui et al. (2017).

1226

Y. Gafforov et al.

Phenolic Compounds Phenolic compounds were determined in methanolic and chloromethane extracts. Gallic acid and protocatechuic acid were quantitatively dominant among the determined phenolic acids (Karaman et al. 2010). It was determined that the ethyl acetate fraction of L. sulphureus, was chromatographically separated into seven compounds identified as (+)-catechin, kaempferol and quercetin as well as caffeic, chlorogenic, p-coumaric and gallic acids (Olennikov et al. 2011).

Macro- and Microelements The estimated macroelements included potassium that is the most abundant, followed by calcium, magnesium and sodium (Ayaz et  al. 2011). The study of Luangharn et  al. (2014) on a sample of L. sulphureus collected from Northern Thailand revealed that the most abundant element was found to be sodium, followed by calcium, iron, zinc, and magnesium. Manganese and copper were found at low concentrations whereas potassium is not found in this mushroom sample (Luangharn et al. 2014). Other complementary analyzes will have to confirm or not these large differences in results depending on the origin of the harvest and the age of the samples studied. In turn, the contents of microelements were as follows: chromium (58.3 mg kg−1 dry matter), manganese (30.7  mg  kg−1 d.m.), lead (24.5  mg  kg−1 d.m.), copper (22.7 mg kg−1 d.m.), nickel (22.7 mg kg−1 d.m.), cadmium (0.68 mg kg−1 d.m.) and silver (0.26 mg kg−1 d.m.) (Doğan et al. 2006). Other studies confirmed the presence of aluminum (53.9 mg kg−1 d.m.), boron (16.4 mg kg−1 d.m.), cobalt (1.2 mg kg−1 d.m.) and tin (4.5 mg kg−1 d.m.) (Durkan et al. 2011).

Vitamins L. sulphureus may be considered as one of the best source of vitamins such as vitamin B, E and D (Khatua et al. 2017). Petrović et al. (2014) studied the chemical composition of L. sulphureus and was found that α-tocopherol was the most abundant isoform followed by γ-tocopherol and δ-tocopherol; β-tocopherol was not present. It was found that L. sulphureus contains significant amounts of vitamin A, E and C.  The amounts of vitamins were determined 121.64  μg  g−1, 547.38  μg  g−1, 0.084 μg g−1 for A, E and C, respectively (Türkekul et al. 2018).

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1227

Local Medicinal Uses L. sulphureus fruit bodies are thought to be capable of regulating the human body, improving health and defending the body against illnesses (Ying et al. 1987). It has also been used to repel mosquitoes and midges by burning fruit bodies (Ying et al. 1987). L. sulphureus has long been used in Asian herbal medicine (Davoli et al. 2005). In folk medicine, it is used in powders, water and alcohol tinctures. It is widely used in the treatment of diseases such as pyretic diseases, coughs, gastric cancer and rheumatism (Khatua et al. 2017).

Modern Medicinal Uses L. sulphureus is known as a source of antimicrobial, antitumor, anti-inflammatory, anticoagulant, antioxidant, cytostatic, hypoglycaemic and immunostimulative agents as well as a producer of HIV-1 reverse transcriptase inhibitors (Davoli et al. 2005; Sułkowska-Ziaja et al. 2018). Due to their long history of medicinal uses, the biologically active compounds and extracts from L. sulphureus exhibit a broad spectrum of pharmacological activities as antidiabetic, anti-malarial, anti-thrombin, anti-ulcer, antiviral, hepatoprotective and immunomodulating (Khatua et al. 2017; Elkhateeb et al. 2021).

Antiviral and Antimicrobial Activities Regarding the antiviral property, Mlinarič et  al. (2005) prepared methanol and dichloromethane extracts from 57 species of wood damaging fungi and investigated for their ability to inhibit HIV-1 reverse transcriptase activity. The strongest inhibiting activity of the reverse transcriptase of HIV-1 virus was demonstrated for methanol extracts of L. sulphureus with inhibitory potentials of 90.1%. The presence of acidic compounds with amino groups was noted in the most active fraction (Mlinarič et al. 2005). At the same time, in the mid-2000s, the first mention of the antibacterial effect of L. sulphureus can be found in the study of Suay et al. (2000), who investigated antimicrobial activity of 204 basidiomycetes. Cultured strains of L. sulphureus exhibit antimicrobial activity against gram-negative and gram-positive bacteria, including methicillin-resistant Staphylococcus aureus strains, and Leuconostoc mesenteroides strains resistant to glycopeptides (Ershova et al. 2003). Fruiting bodies extracts demonstrated an action against the following strains: Bacillus subtilis, Micrococcus luteus (Turkoglu et  al. 2006), B. cereus, M. flavus (Turkoglu et  al. 2006; Šiljegović et  al. 2011), Enterococcus faecium, Proteus

1228

Y. Gafforov et al.

vulgaris (Demir and Yamaç 2008), Enterobacter cloacae, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, and S. aureus (Šiljegović et al. 2011). Šiljegović et al. (2011) evaluated the antimicrobial potential of aqueous extract of L. sulphureus fruit bodies; among the tested bacteria, the aqueous extract of L. sulphureus strongly inhibited M. flavus and L. monocytogenes (Šiljegović et al. 2011). In a separated study, Petrović et al. (2014) isolated two fractions from L. sulphureus fruit bodies obtained from Serbia, as methanol and polysaccharide extracts and tested the antimicrobial activity of the extracts against Gram-positive and Gram-negative bacteria strains and fungal strains. The polysaccharidic extract showed higher antibacterial activity than methanolic extract, except for M. flavus and S. typhimurium. Regarding the polysaccharidic extract and methanol extract of L. sulphureus extract, the same feature was observed for antifungal properties, with exception of Penicillium ochrochloron. Comparing antibacterial and antifungal activities of the tested extracts, it could be noted that bacteria were more sensitive to both extracts than fungi (Petrović et al. 2014). The antifungal activity was also investigated and result that the extracts from mycelium of L. sulphureus affected an inhibition of the growth of fungal strains pathogenic to plants, humans and animals as Alternaria alternata, Aspergillus wentii, Fusarium tricinctum, Microsporum gypseum and P. griseofulvum (Sakeyan 2006); the ethanol extracts from fruiting bodies exhibited strong antifungal activity against Candida albicans (Turkoglu et al. 2006). Furthermore, water-ethanol extract showed an antifungal activity against the following strains: A. niger, Botrytis cinerea, F. oxysporum f. sp. tulipae, P. gladioli and Sclerotinia sclerotiorum. The minimum concentration inhibiting the growth of these microorganisms was comparable to that of the known antifungal fluconazole (Pârvu et al. 2010). Recently, according to Younis et al. (2019), the freeze-dried fruiting bodies of L. sulphureus were added to polar and non-polar solvents at a concentration of 10% (w/v in water, ethanol, acetone, ethyl acetate and chloroform). Extracts of L. sulphureus were shown to have antimicrobial activity against all fungal strains tested as A. fumigatus, A. niger, C. albicans, Curvularia clavata, Geotrichum candidum, and F. oxysporum, as well as strains of gram-positive (S. aureus and S. pyogenes) and gram-negative bacteria (E. coli, K. pneumoniae, P. aeruginosa and Shigella enterica). The authors showed antimicrobial activity of the ethanol and aqueous extracts much higher than that of the other extracts on the basis of a greater inhibitory activity at a lower minimum inhibitory concentration (MIC) range (MIC of ethanol = 15.6–62.5 μg/mL and water = 15.6–125 μg/mL).

Antioxidant Activity Ethanolic extracts of fruiting bodies showed antioxidant activity confirmed by several studies, including DPPH radical scavenging assay, linolenic acid emulsion stability test, and also based on the measurement of the total content of flavonoids and phenolic compounds. 320 μg of the fungus fruiting bodies ethanol extract showed

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1229

an antioxidant effect in DPPH test corresponding to 40  μg of α-tocopherol. Antioxidant activity is proportional to the applied concentration of the extract and phenolic compounds content. Laetiporan A, isolated from fruiting bodies demonstrated strong antioxidant activity in vitro, preventing an occurrence of hepatitis in test animals treated with carbon tetrachloride (Olennikov et  al. 2011). The high antioxidant potential of extracts from fruiting bodies of L. sulphureus is probably caused by oxalic acid (Karaman et  al. 2010). Among seven species of polyporoid fungi, L. sulphureus showed the highest ability to scavenge hydroxyl radicals. Methanol extracts of L. sulphureus revealed approximately 40% inhibition of the lipid peroxidation process in vitro (Karaman et al. 2010). Petrović et al. (2014) determined antioxidant activity of L. sulphureus inhabiting in Northern Serbia using two fractions, methanol and crude polysaccharide prepared by hot water extraction method. Results exhibited that the polysaccharide fraction was more potent than methanol extract for DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition assays. While the methanol extract performed higher activity in thiobarbituric acid reactive substances inhibition method. p-Hydroxybenzoic acid and cinnamic acid were detected chromatographically in the methanol extract (Petrović et al. 2014). Likewise, an additional study has been performed using methanol extract prepared from fruit bodies collected from India to determine antioxidant activity. The fraction showed potent activity in superoxide radical scavenging, DPPH radical scavenging, chelating ability of ferrous ion, reducing power and total antioxidant assays where EC50 values ranged from 0.11 to 1.38 mg/mL concentration. In addition, the fraction was determined to be composed of different bioactive compounds such as phenolics, flavonoids, carotenoids and ascorbic acid. Moreover, preliminary chemical screening detected presence of cardiac glycosides, flavonoids, phenol derivatives, saponin derivatives and terpenoids (Acharya et al. 2016).

Anti-inflammatory Activity Exopolysaccharides (EPS) isolated from L. sulphureus demonstrated an anti-­ inflammatory activity; in BV2 microglial cells, the exopolysaccharides significantly inhibited the production of inflammatory mediators induced by lipopolysaccharides, such as nitric oxide, prostaglandin E2, and tumor necrosis factor-α without significant cytotoxicity. This is a very important discovery, since uncontrolled or abnormal activation of microglial cells in the brain can cause serious damage to neurons, and may consequently lead to Alzheimer’s and Parkinson’s diseases, septic shock, atherosclerosis or multiple sclerosis (Jayasooriya et al. 2011). Also, the presence of lanostane triterpenoids which were identified as eburicoic acid derivatives could be responsible for the antioxidant activity. These triterpenoids inhibited the NO production and supressed the production of pro-inflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6 and TNF-α (Saba et al. 2015).

1230

Y. Gafforov et al.

Anti-ulcer Activity Wang et al. (2015) investigated on anti-inflammatory and tumor inhibiting effects of eburicoic acid, the main bioactive component in L. sulphureus, on gastric ulcers. The results showed that oral administration of eburicoic acid protected gastric mucosa from gastric lesions morphologically and especially attenuated H+/K+ATPase activity. Computer aided molecular docking simulated interaction between eburicoic acid and H+/K+-ATPase. The study indicated that gastric protective effect of eburicoic acid might inhibit gastric acid.

Hypoglycemic Effect Dehydrotrametenolic acid isolated from fruiting bodies exhibits potential anti-­ diabetic properties. This triterpene compound demonstrates biological activity similar to the effects induced by PPAR-γ receptor agonists  – thiazolidinediones. It induces the differentiation of adipocytes in vitro, and reduces hyperglycemia in mice with induced non-insulin-dependent diabetes mellitus. Dehydrotrametenolic acid is therefore, the compound of potential hypoglycemic properties, which mechanism involves tissues sensitizing to insulin (Sato et al. 2002). EPS isolated from L. sulphureus also demonstrated hypoglycemic effect in vivo. Administered orally to rats 48 h after streptozotocin injection, it decreased mean plasma glucose concentration to 43.5% compared to the control group, decreased cholesterol and triglyceride levels to near normal. EPS caused an increased proliferation and regeneration of pancreatic islet β-cells and also increased an activity of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase (Hwang et al. 2008).

Cytotoxic and Anticancer Activity Benzofurans as demethoxyegonol, egonol and egonol glucoside isolated from L. sulphureus var. miniatur showed cytotoxic activity in vitro against human gastric cancer cell line KATO III (Yoshikawa et al. 2001). Triterpenes as lanostan derivatives isolated from the fruiting bodies of L. sulphureus demonstrated cytotoxic activity. The strongest activity was noted for acetyl derivative of the eburic acid, which has apoptosis inducing properties by an activation of caspase-3 and degradation of poly(ADP-ribose) polymerase, one of the enzymes repairing DNA damages. Acetyl-eburic acid is a valuable source of structures that may lead to the discovery of new anticancer drugs (Léon et al. 2004). Polysaccharides of L. sulphureus have potential anticancer activity. Carboxymethyl derivatives of α-(1,3)-d-­glucans isolated from fruiting bodies of L. sulphureus have a significant activity to inhibit

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1231

tumor cell lines metabolism, and they do not inhibit significantly normal cells metabolism (Wiater et al. 2011). Recently, as for the antimicrobial activities, Younis et al. (2019) investigated for the antitumor activities five extracts of L. sulphureus as water, ethanol, acetone, ethyl acetate and chloroform extracts. Four cell lines including human liver carcinoma cells (Hep G2) (ATCC® HB-8065™), human colonic epithelial carcinoma (HCT 116) (ATCC® CCL-247™), human cervical cancer cells (HeLa) (ATCC® CCL-2™) from an adenocarcinoma, and human breast adenocarcinoma cells (MCF-7) (ATCC® HTB-22™) were used to assay the antitumor cell activities from the five extracts of L. sulphureus freeze-dried fruiting bodies. The ethanol extract exhibited sthe highest anti-proliferative activity against threecarcinoma cell lines and did not differ from the aqueous extract against HeLa cells with half maximal inhibitory concentrations (IC50) of 3.1 ± 1.5 and 5.1 ± 1.2 μg/mL against HCT 116 and MCF-7 cells, respectively and IC50 of 11.5 ± 2.1 and 12.1 ± 1.7 μg/mL against Hep G2 and HeLa cells, respectively.

Anti-malaria Malaria is one of the most threatening diseases especially in tropical world as it causes hundreds of millions of illnesses and hundreds of thousands of deaths in each year (https://www.who.int/news-­room/fact-­sheets/detail/malaria). According to Lovy et  al. (2000), L. sulphureus demonstrated activity against Plasmodium falciparum (a unicellular protozoan parasite belonging to the genus Plasmodium and one of causative agents of malaria (Sato 2021). Two extracts, dimethyl sulfoxide and ethanol fractions, were prepared from the fruit bodies that exhibited 0.6% and 2.4% inhibition respectively. Thus, the mushroom presented an advantageous characteristic of potential anti-malarial drugs (Lovy et  al. 2000). Parasitic resistance to drugs has limited the efficacies of many antimalarial drugs (Cui et al. 2015). Antimalarial drug resistance means the capacity of a parasite strain to survive and/or to multiply in spite of the administration and absorption of medicine given in the same or higher doses than those normally recommended (Shibeshi et al. 2020); for this, strategies to counteract or prevent drug resistance are crucial for the design of new antimalarials drugs (Duffey et al. 2021). Sivanandhan et al. (2018) investigated in their works the mosquitocidal activity of 6 mushroom species including L. sulphureus on eggs and larvae of Culex quinquefasciatus and Anopheles stephensi (vectors of malaria). Their results reported that the L. sulphureus methanol extract was the most active against mosquitoes with 96% larvicidal activity against A. stephensi and 76% larvicidal activity against C. quinquefasciatus and after 120 hours of treatment, L. sulphureus methanol extract displayed significant ovicidal activity against A. stephensi eggs (100% activity) and C. quinquefasciatus eggs (91% activity) (Sivanandhan et al. 2018, 2019). These works on the insecticidal activity of methanol extract of L. sulphureus mushroom extracts suggests that they are a good natural source for controlling mosquitoes like A. stephensi and C. quinquefasciatus (Happi et al. 2022).

1232

Y. Gafforov et al.

Environmental Applications Due to its enzymatic potential, L. sulphureus may also have environmental applications based on bioremediation and detoxification. Kobayashi and Kim (2003) purified and characterized aspartic proteinases having milk-clotting activity from L. sulphureus. Mtui and Masalu (2008) purified the extracellular enzymes of L. sulphureus by gel chromatography and investigated their characteristics. The fungal filtrate had maximum manganese peroxidase of 2.5  U/mL and lignin peroxidase of 1  U/mL, but showed no laccase activity. The enzyme extracts were able to oxidize rhemazol brilliant blue-R dye and phenol derivatives, and could remove up to 90% color from raw textile effluent in immobilized culture. This suggests the potential of L. sulphureus for bioremediation of polluted coastal and marine ecosystems (Mtui and Masalu 2008). A thermostable extracellular xylanase was purified and characterized from L. sulphureus (Lee et al. 2009); using thin layer chromatography experiments the authors showed that purified L. sulphureus xylanase is an endoxylanase that hydrolyzes xylotriose, xylotetraose, and xylopentaose but not xylobiose.

Local Food Uses Edibility, aroma and flavor Edible when young, strong odor and pleasant taste. Strong odor and pleasant taste (Tarafder et al. 2017; Bernicchia and Gorjón 2020). L. sulphureus has a long history of consumption especially in North America, Japan and Thailand where it is considered a delicacy. L. sulphureus produces large and strong fruiting bodies which are edible when young, and whose wet biomass sometimes reaches a few kilograms (Sinanoglou et al. 2015). The English names “chicken polypore”, “chicken of the woods” or “chicken fungus” suggest that properly prepared fruiting bodies may resemble the taste of chicken meat (Sułkowska-Ziaja et al. 2018). In certain parts of Germany and North America it is therefore considered a delicacy and it can also be used as a substitute for chicken in a vegetarian diet. However, gastrointestinal problems have been reported after eating this fungus and were reported severe adverse effects including fever, vomiting and allergic reactions (Jordan 1995; Watling 1997). L. sulphureus consumption has also been reported to cause hallucinations. It has therefore been assumed that this species might contain alkaloids similar to those found in psychoactive plants (Appleton et al. 1988). However, it is very likely that such hallucinogenic effects might rather be associated with a closely related polypore species (Grienke et al. 2014).

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1233

Culinary Notes Laetiporus sulphureus is generally rated as a good edible fungus (unless growing on wood such as Yew, which itself contains dangerous toxins that could be taken up by the fungus); however, it is best picked when young and moist. A popular way of cooking this fungus is to cut it into slices, brush them with oil, and then fry them in breadcrumbs; serve with lemon juice. The taste is quite like chicken; however, although most people find this a good edible species a small minority find that it causes feelings of nausea. If frozen (uncooked), this fungus retains most of its flavour, and so it is a good species for storing in preparation for the winter months.

References Acharya K, Ghosh S, Khatua S, Mitra P (2016) Pharmacognostic standardization and antioxidant capacity of an edible mushroom Laetiporus sulphureus. J Verbr Lebensm 11(1):33–42 Agafonova SV, Olennikov DN, Borovskii GB, Penzina TA (2007) Chemical composition of fruiting bodies from two strains of Laetiporus sulphureus. Chem Nat Compd 43(6):687–688 Alquini G, Carbonero ER, Rosado FR, Cosentino C, Iacomini M (2004) Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. FEMS Microbiol Lett 230(1):47–52 Appleton RE, Jan JE, Kroeger PD (1988) Laetiporus sulphureus causing visual hallucinations and ataxia in a child. Can Med Assoc J 139(1):48–49 Ayaz FA, Torun H, Ozel A, Col M, Duran C, Sesli E, Colak A (2011) Nutritional value of some wild edible mushrooms from Black Sea region (Turkey). Turkish J Biochem 36(4):385–393 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar, Segrate, Italy, p 903 Breitenbach J, Kränzlin F (1986) Fungi of Switzerland. A contribution to the knowledge of the fungal flora of Switzerland. Vol 2. Heterobasidiomycetes, Aphyllophorales, Gasteromycetes. — Lucerne: Verlag Mykologia, 412 Bulam S, Üstün N, Peksen A (2019) Nutraceutical and food preserving importance of Laetiporus sulphureus. Turkish J Agric Food Sci Technol 7:94–100 Burdsall H, Banik M (2001) The Genus Laetiporus in North America. Harv Pap Bot 6:43–55 Chepkirui C, Matasyoh JC, Decock C, Stadler M (2017) Two cytotoxic triterpenes from cultures of a Kenyan Laetiporus sp. (Basidiomycota). Phytochem Lett 20:106–110 Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93(3):57–68 Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, fungi). Phytochemistry 66(7):817–823 Demir MS, Yamaç M (2008) Antimicrobial activities of Basidiocarp, submerged mycelium and exopolysaccharide of some native Basidiomycetes strains. JABS 2(3):89–93 Doğan HH, Şanda MA, Uyanöz R, Öztürk C, Çetin Ü (2006) Contents of metals in some wild mushrooms. Biol Trace Elem Res 110:79–94 Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D (2021) Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 37(8):709–721

1234

Y. Gafforov et al.

Durkan N, Ugulu I, Unver MC, Dogan Y, Baslar S (2011) Concentrations of trace elements aluminum, boron, cobalt and tin in various wild edible mushroom species from Buyuk Menderes River Basin of Turkey by ICP-OES. Trace Elements Electrol 28(4):242–248 Elkhateeb W, Elghwas D, Gundoju N, Tiruveedhula S, Akram M, Daba G (2021) Chicken of the woods Laetiporus sulphureus and Schizophyllum commune treasure of medicinal mushrooms. J Microbiol Biotechnol 6:1–7 Ericsson DCB, Ivonne JNR (2009) Sterol composition of the macromycete fungus Laetiporus sulphureus. Chem Nat Compd 45(2):193–196 Ershova E, Tikhonova OV, Lur’e LM, Efremenkova OV, Kamzolkina OV, Dudnik IV (2003) Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture. Antibiot Khimioter 48(1):18–22 Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-­ inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321. https://doi. org/10.3389/fmicb.2020.598321 Grienke U, Zöll M, Peintner U, Rollinger JM (2014) European medicinal polypores – a modern view on traditional uses. J Ethnopharmacol 154(3):564–583 Happi GM, Meikeu LZ, Sikam KG, Dzouemo LC, Wansi JD (2022) Mushrooms (Basidiomycetes) as a significant source of biologically active compounds for malaria control. Nat Resour Human Health 2(2):129–141 Hassan K, Matio KB, Stadler M (2021) Two new triterpenes from Basidiomata of the medicinal and edible mushroom, Laetiporus sulphureus. Molecules 26:7090 https://ultimate-­mushroom.com/edible/38-­laetiporus-­sulphureus.html https://www.patee.ru/cookingpedia/foods/mushrooms/polypore/ Hwang HS, Lee SH, Baek YM, Kim SW, Jeong YK, Yun JW (2008) Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl Microbiol Biotechnol 78(3):419–429 Jayasooriya RG, Kang CH, Seo MJ, Choi YH, Jeong YK et  al (2011) Exopolysaccharide of Laetiporus sulphureus var. miniatus downregulates LPS-induced production of NO, PGE, and TNF-α in BV2 microglia cells via suppression of the NF-κB pathway. Food Chem Toxicol 49:2758–2764 Jordan M (1995) Evidence of severe allergic reactions to Laetiporus sulphureus. Mycologist 9(4):157–158 Kac D, Barbieri G, Falco MR, Seldes AM, Gros EG (1984) The major sterols from three species of polyporaceae. Phytochemistry 23(11):2686–2687 Karaman M, Jovin E, Malbaša R, Matavuly M, Popović M (2010) Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 24(10):1473–1481 Khatua S, Ghosh S, Acharya K (2017) Laetiporus sulphureus (Fr.) Murr. as food as medicine. Pharm J 9(6s):s1–s15 Kobayashi H, Kim H (2003) Characterization of Aspartic Proteinase from Basidiomycete, Laetiporus sulphureus. Food Sci Technol Res 9(1):30–34.9 Kovács D, Vetter J (2015) Chemical composition of the mushroom Laetiporus sulphureus (Bull.) Murill. Acta Aliment 44(1):104–110 Lee JW, Park JY, Kwon M, Choi IG (2009) Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J Biosci Bioeng 107(1):33–37 Léon F, Quintana J, Rivera A, Estévez F, Bermejo J (2004) Lanostanoid triterpenes from Laetiporus sulphureus and apoptosis induction on HL-60 human myeloid leukemia cells. J Nat Prod 67(12):2008–2011 Lovy A, Knowles B, Labbe R, Nolan L (2000) Activity of edible mushrooms against the growth of human T4 leukemic cancer cells, HeLa cervical cancer cells, and Plasmodium falciparum. J Herbs Spices Med Plants 6(4):49–57 Luangharn T, Hyde K, Chukeatirote E (2014) Proximate analysis and mineral content of Laetiporus sulphureus strain MFLUCC 12-0546 from Northern Thailand. Chiang Mai J Sci 41:765–770

Laetiporus sulphureus (Bull.) Murrill - FOMITOPSIDACEAE

1235

Mlinaric A, Kac J, Pohleven F (2005) Screening of selected wood-damaging fungi for the HIV-1 reverse transcriptase inhibitors. Acta Pharma 55(1):69–79 Mtui G, Masalu R (2008) Extracellular enzymes from brown-rot fungus Laetiporus sulphureus isolated from mangrove forests of Coastal Tanzania. Sci Res Essay 3:154–161 Olennikov DN, Tankhaeva LM, Agafonova SV (2011) Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. Fruit Bodies. Prikladnaya Biokhimiya i Mikrobiologiya 47(4):462–468 Olennikov DN, Agafonova SV, Borovskii GB, Penzina TA, Rokhin AV (2009a) Water-soluble endopolysaccharides from the fruiting bodies of Laetiporus sulphureus (Bull.:Fr.) Murr. Prikladnaya Biokhimiya i Mikrobiologiya 45(5):597–605 Olennikov DN, Agafonova SV, Borovskii GB, Penzina TA, Rokhin AV (2009b) Alkali-soluble polysaccharides of Laetiporus sulphureus (Bull.: Fr.) Murr fruit bodies. Prikladnaya Biokhimiya i Mikrobiologiya 45(6):693–697 Pârvu M, Andrei AŞ, Roşca-Casian O (2010) Antifungal activity of Laetiporus sulphureus mushroom extract. Contribuţii Botanice 45:65–70 Petrovic J, Stojković D, Reis F, Barros L, Glamoclija J, Ciric A, Ferreira I, Soković M (2014) Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food Funct 5:1441 Rapior S, Konska G, Guillot J, Andary C, Bessière JM (2000) Volatile composition of Laetiporus sulphureus. Cryptogam Mycol 21:67–72 Ryvarden L, Gilbertson RL (1993) European Polypores. 1. Abortiporus—Lindtneria. Fungi Flora, Oslo, p 387 Saba E, Son Y, Jeon BR, Kim SE, Lee IK et  al (2015) Acetyl Eburicoic acid from Laetiporus sulphureus var. miniatus suppresses inflammation in murine macrophage RAW 264.7 cells. Mycobiology 43:131–136 Sakeyan CZ (2006) Antifungal activity of several xylotrophic medicinal mushrooms against filamentous fungi-potentially pathogenic for humans and animals. Electron J Nat Sci 6(1):21–24 Sato M, Tai T, Nunoura Y, Yajima Y, Kawashima S, Tanaka K (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25(1):81–86 Sato S (2021) Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 40:1. https://doi.org/10.1186/s40101-­020-­00251-­9 Shibeshi MA, Kifle ZD, Atnafie SA (2020) Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect Drug Resist 13:4047–4060 Šiljegović J, Stojković D, Nikolić M, Glamočlija J, Soković M, Ćirić A (2011) Antimicrobial activity of aqueous extract of Laetiporus sulphureus (Bull.: Fr.) Murill. Matica Srpska Proc Nat Sci 120:297–303 Sinanoglou VJ, Zoumpoulakis P, Heropoulos G, Proestos C, Ćirić A, Petrovic J, Glamoclija J, Sokovic M (2015) Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties. J Food Sci Technol 52(6):3264–3272 Sivanandhan S, Ganesan P, David RHA, Paulraj MG, Ignacimuthu S (2019) Mosquitocidal activity of the pale brittle sem mushroom, Psathyrella candolleana (Agaricomycetes), against three vector mosquitoes. Int J Med Mushrooms 21:725–734 Sivanandhan S, Ganesan P, Paulraj MG, Ignacimuthu S (2018) Larvicidal, ovicidal, and histopathological effects of the Sulphur polypore mushroom, Laetiporus sulphureus (Agaricomycetes), collected from Tamil Nadu, India against mosquitoes. Int J Med Mushrooms 20:1197–1207 Song J, Sun Y-F, Ji X, Dai Y-C, Cui B-K (2018) Phylogeny and taxonomy of Laetiporus (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 37:57–71 Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA et al (2000) Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek 78:129–140 Sułkowska-Ziaja K, Muszyńska B, Gawalska A, Sałaciak K (2018) Laetiporus sulphureus—chemical composition and medicinal value. Acta Scientiarum Polonorum Hortorum Cultus 17:87–96

1236

Y. Gafforov et al.

Tarafder E, Dutta A, Pradhan P, Mondal B, Chakraborty N, Paloi S, Roy A, Acharya K (2017) Contribution to the Macromycetes of West Bengal, India: 13–17. Res J Pharm Technol 10:1123–1130 Türkekul İ, Bengü A, Çinar YH, Işık H (2018) Determination of vitamins A, C, E and total protein of wild edible Laetiporus sulphureus Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K (2006) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 101(1):267–273 Wang J, Sun W, Luo H, He H, Deng W et  al (2015) Protective effect of Eburicoic acid of the chicken of the woods mushroom, Laetiporus sulphureus (higher basidiomycetes), against gastric ulcers in mice. Int J Med Mushrooms 17:619–626 Watling R (1997) Poisoning by fungi: interesting cases. Mycologist 11:101 Weber RWS, Mucci A, Davoli P (2004) Laetiporic acid, a new polyene pigment from the wood-rotting basidiomycete Laetiporus sulphureus (Polyporales, fungi). Tetrahedron Lett 45(5):10751–11078 Wiater A, Paduch R, Pleszczyńska M, Próchniak K, Choma A, Kandefer-Szerszeń M, Szczodrak J (2011) α-(1→3)-d-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnol Lett 33(4):787–795 Wright R, Woof K, Douglas B, Gaya E (2022) The genome sequence of the chicken of the woods fungus, Laetiporus sulphureus (Bull.) Murrill, 1920 [version 1; peer review: awaiting peer review]. Wellcome Open Res 7:83 Wu S, Zorn H, Krings U, Berger RG (2005) Characteristic volatiles from young and aged fruiting bodies of wild Polyporus sulfureus (Bull.: Fr.) Fr. J Agric Food Chem 53(11):4524–4528 Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icones of medical fungi from China. Science Press, Beijing, p 576 Yokokawa H (1980) Fatty acid and sterol compositions in mushrooms of ten species of polyporaceae. Phytochemistry 19(12):2615–2618 Yokoyama A, Natori S, Aoshima K (1975) Distribution of tetracyclic triterpenoids of lanostane group and sterols in the higher fungi especially of the polyporaceae and related families. Phytochemistry 14(2):487–497 Yoshikawa K, Bando S, Arihara S, Matsumura E, Katayama S (2001) A benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. miniatus. Chem Pharm Bull 49(3):327–329 Younis AM, Yosri M, Stewart JK (2019) In vitro evaluation of pleiotropic properties of wild mushroom Laetiporus sulphureus. Ann Agric Sci 64(1):79–87

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE Yusufjon Gafforov, Bożena Muszyńska, Katarzyna Sułkowska-Ziaja, Michal Tomšovský, Manzura Yarasheva, Lorenzo Pecoraro, Oksana Mykchaylova, and Sylvie Rapior

Laricifomes officinalis (Vill.) Kotl. & Pouzar Synonyms: Agaricum officinale (Vill.) Donk; A. laricis (F. Rubel) Lamarck; Boletus agaricum Pollini; B. laricis F.  Rubel; B. officinalis Vill.; B. purgans J.F.  Gmel.; Cladomeris officinalis (Vill.) Quél; Fomes fuscatus Lázaro Ibiza; F. laricis (F. Rubel) Murrill; F. officinalis (Vill.) Bres.; Fomitopsis officinalis (Vill.) Bondartsev & Singer; Leptoporus officinalis (Vill.) Quél.; Piptoporus officinalis (Vill.) P. Karst.; Placodes officinalis (Vill.) Ricken; Polyporus officinalis (Vill.) Fr.; Ungulina officinalis (Vill.) Pat. Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] B. Muszyńska · K. Sułkowska-Ziaja Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland e-mail: [email protected]; [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] L. Pecoraro School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_116

1237

1238

Y. Gafforov et al.

Local Names Uzbek: Agarikon; English: Agarikon, eburiko, quinine conk, Larch Bracket Mushroom, Brown trunk rot, Eburiko; Russian: Лиственничная губка; Chinese: 桦拟层孔菌; French: Polypore du mélèze; German: Birkenporling, Bitterer Lärchen-Baumschwamm, “Apothekerschwamm”; Japanese: エブリコ; Polish: pniarek (modrzewnik) lekarski; Czech: verpáník lékařský; Nederland’s: Larikszwam; Slovak: práchnovček lekársky.

Short Morphological Description Basidiomata perennial, sessile, solitary, ungulate to columnar, rarely applanate or irregulary shaped up to 0.5  m. Upper surface chalky white or cream-coloured, becomes brownish or grey, inhabited by green algae with age, sulcate, azonate or slightly zonate. Margin obtuse, glabrous, rounded, concolorous with upper surface. Hymenium white to cream, later brownish; pores roundish, 4–5 per mm, sometimes up to 1 mm in diam., dissepiments thick and entire becoming thin lacerate with age. Context chalky white, yellowish when fresh, soft when young, hard with age, azonate, up to 12 cm thick. Tube layers concolorous with the context or pale brownish, indistinctly stratified, each layer up to 1 cm thick. Hyphal system dimitic. Generative hyphae thin-walled, colorless, with clamps, rarely branched, 2.5–7 μm wide; skeletal hyphae thick-walled, aseptate, yellowish, rarely branched, 5–6 μm wide, blackish in KOH; gloeoplerous (lactiferous) hyphae abundant, thin-walled, sinuous and branching, up to 13 μm wide, some with simple septa, staining strongly in cotton blue; sclerids present in context, colorless and irregularly shaped, thick-walled, up to 9 μm thick. Cystidia absent, fusoid cystidioles present, 12–20 × 3–5.5 μm, inconspicuous (not projecting). Basidia clavate, pedunculate 4-sterigmate, 18–25 × 6–8 μm, with a basal clamp. Basidiospores cylindrical to ellipsoid colorless, thin-walled, smooth, negative in Melzer’s reagent, 6–9 × 3–4 μm (Bondartsev 1953; Ryvarden and Gilbertson 1993; Bernicchia and Gorjón 2020).

O. Mykchaylova Department of Mycology, M. G. Kholodny Institute of Botany National Academy of Science of Ukraine, Kyiv, Ukraine e-mail: [email protected] S. Rapior Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France e-mail: [email protected]

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1239

Ecology and Distribution Laricifomes officinalis is distributed in north hemisphere, in temperate and boreal zones, often in montane conifer forests. It occurs on Larix and Cedrus in Euroasia or North Africa, reported also from Abies, Picea, Pinus, Pseudotsuga and Tsuga in North America. The species is commonly distributed in Siberia, from the foothills of the Ural Mountains to the shores of the Pacific Ocean (Chlebicki et al. 2003). In Europe, L. officinalis resides on old larches in area of native distribution of the host (Bondartsev 1953; Ryvarden and Gilbertson 1993; Łuszczynski 2000; Mukhin et al. 2005; Piętka and Szczepkowski 2011; Ryvarden and Melo 2014; Bernicchia and Gorjón 2020; Hayova et al. 2019; Girometta et al. 2021) (Figs. 1 and 2). Fig. 1  Laricifomes officinalis (Fomitopsidaceae), China. (Photo Yu-Cheng Dai)

Fig. 2  Laricifomes officinalis (Fomitopsidaceae), Poland. (Photo Jacek Piętka)

1240

Y. Gafforov et al.

Mycochemistry Several mycochemical studies have shown that lanostane-type triterpenes, drimane sesquiterpenoids and sterol derivatives as fefresin F-G acids, fomefficinic F-G acids, fomefficinols A-B, fomlactones A-C, laricinolic acid as well as ergosterol and ergota-7,22,dien-3-β-ol were mainly isolated from Laricifomes officinalis (Epstein et al. 1979; Erb et al. 2000; Wu et al. 2004, 2009; Feng and Yang 2015). According to Wu et  al. (2014), terpenes and steroid compounds have been identified as the main active substances of the species, and are responsible for the observed crude material’s effects. Later, the researchers have isolated two new terpenoid acids of the lanostane-­ type from the methanol-based L. officinalis extract, i.e. 12β,15α-dihydroxy-24-­ methyl-3,23-dioxo-lanosta-7,9(11)-dien-26-oic acid, and 3α,12β-dihydroxy-24-methyl-7,23-dioxo-lanosta-8-en-26-oic acid (Han and Yuan 2017). Currently, the most important compounds present in the crude material included, among others: 3-keto-dehydrosulfurenic acid, dehydrosulfurenic acid, dehydroeburicoic acid, fomitopsin C and the laricinolic acid (Erb et  al. 2000; Muszyńska et al. 2020). Polysaccharides obtained from L. officinalis are becoming more and more popular (Zuo et al. 2003; Yi et al. 2006). Due to its successful anti-cancer effect (Ren et al. 2012; Meng et al. 2016) and its anti-inflammatory activity (Muszyńska et al. 2018), they are perceived as highly valuable and desired substances. The researchers have characterized the structure of mannofucogalactan, the main ingredient of the L. officinalis fruiting bodies water-based extract (Golovchenko et al. 2018). From indole compounds, 5-hydroxy-L-tryptophan was found in the largest amount in the L. officinalis mycelium extracts, with the content of 517.99 mg/100 g d.w. However, it was not found in the fruiting body extract (Fijałkowska et al. 2020). L-Tryptophan was found in both types of samples, and its content was 70.08 mg/100 g d.w. in the fruiting body extract and 8.06 mg/100 g d.w. in the mycelium extract. 6-Methyl-D,L-tryptophan and melatonin were also identified in samples from both fruiting body and mycelium extracts (Fijałkowska et al. 2020). Among the 21 analyzed phenolic compounds, the presence of two of them was confirmed (catechin, gallic acid), and additionally exogenous amino acid phenylalanine were identified in the extract from in vitro L. officinalis cultures. In the fruiting body extract, however, p-hydroxybenzoic acid was observed (Fijałkowska et al. 2020). The analysis showed that the mycelium and fruiting bodies of L. officinalis can accumulate zinc, copper, iron, and magnesium. The average zinc content of mycelium from in vitro cultures was 15.34 mg/100 g d.w. and was significantly higher than that of fruiting bodies (9.62 mg/100 g d.w.). The iron content was three times higher in mycelium (12.06 mg/100 g d.w.) than in fruiting bodies (4.15 mg 100 g d.w.). The mycelium obtained from the mycelial cultures had an increased content of magnesium as compared to that in the fruiting bodies, i.e., 218.9 mg/100 g d.w. Only for copper, a higher accumulation of this trace element was noted in fruiting

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1241

bodies of L. officinalis (3.22 mg/100 g d.w.) than in mycelium from in vitro cultures (0.72 mg/100 g d.w.) (Fijałkowska et al. 2020). Vedenicheva et al. (2018a) studied of cytokinins content dynamics in mycelial biomass of L. officinalіs at the different stages of cultivation. The free cytokinins levels in L. officinalis raised when no sharp fluctuations in growth parameters of mycelial biomass occurred. Changes in all cytokinins content during mycelia biomass growth were specific and indicated the involvement of these phytohormones in the regulation of growth and development of the L. officinalіs. The fact that during mycelium growth the content of all cytokinins changes indicate that these substances are certainly not just metabolites, and their dynamics plays a specific physiological role in the development of fungal biomass. Also detected the presence of large amounts of cytokinin nucleosides (mainly zeatin riboside) and significant amount of zeatin-O-glucoside was found in the mycelial biomass of L. officinalis. It can be assumed that an excess amount of zeatin-type hormones is stored as zeatin-­ O-­glucoside in the mycelial biomass. Thus, the accumulation of the O-conjugate seems to be a mechanism for neutralizing cytokinin hypersynthesis in some fungal species (Vedenicheva et al. 2018b).

Local Medicinal Uses Laricifomes officinalis commonly known as Agarikon or Gharikon is in appearance “dense, like wood, yellow, smooth in the places of breaking, sweet in taste, means good”. The first evidence of the use of ‘agarikon’ dates back as far as the 1st century, when Dioscorides – a Greek doctor and philosopher – referred to it as a panacea for ‘consumption’ (Grienke et  al. 2014; Tayjanov et  al. 2021). Hence, the “substance” was widely-known in both ancient Rome and Greece under the name of ‘agarikon’ or ‘agaricum’, as an anti-tuberculosis agent (Gregori et al. 2007). The species can also be found under its Persian name of ‘ghariqoun’, which is derived from traditional Arabic medicine and it is a treatment against consumption illnesses such as pulmonary tuberculosis (Ahmadbegi et  al. 2016; Vazirian et  al. 2016; Tayjanov et al. 2021). Agarikon aka gharikon obtained from L. officinalis is a material known and used outside the areas of its natural occurrence. Reports of its use in folk medicine may be found, among the others, in the literature of Arabic countries (Emami et al. 2012), Nigeria (Oyetayo 2011), Mongolia (Naranmandakh et al. 2018) and Iran (Vazirian et al. 2016). In 9th century, one of the Arabic doctors  – Ali ibn Abbas Majussi Ahwazi Arrajani  – would define cancer as a disease resulting from the accumulation of black bile (Sahebkar et al. 2012). He recommended that the patients be given the raw material as a laxative (purgativum) in order to cleanse the body of bile (Emami et al. 2012), which, in turn, was reflected in the mushroom’s name – Boletus purgans J.F. Gmel. 1792 (Stamets 2005). From 9th to 10th centuries the species was used in the treatment of pain, inflammation, jaundice, fever, insect bites, muscular diseases, bladder problems, sciatica,

1242

Y. Gafforov et al.

rheumatism and hemorrhoids. In addition, the authors emphasized its diuretic effect, the ability to potentiate menstrual bleeding, anticoagulant effect and increasing the body’s immunity (Wuliya and Bai 2003; Sahebkar et al. 2012; Amiri and Joharchi 2013; Vazirian et al. 2016; Tayjanov et al. 2021). In the Middle Ages, the inhabitants of today’s Ukraine and southern Russia would use the raw material to medicate wounds sustained during battle (Vazirian et al. 2016). L. officinalis was described as one of the mushrooms of medical importance in the Cracovian Herbarium by Syrenius, published in 1613 (Majewski 2005). ‘Agarikon’ is also one of the ingredients of ‘Swedish Bitters’, the so-called Swedish herbs that have been popular across Europe since 1730. During this time the composition of the product has changed, but in its original form it contained seven ingredients: aloe juice, mustard seeds, turmeric, myrtle, medicinal rhubarb, saffron and ‘agarikon’ (Durgo et al. 2013; Grienke et al. 2014). More recently, a broad spectrum of uses of the raw material have been described in literature, including its alleged laxative and antiparasitic effects. The species was believed to be one of the most important anti-inflammatory agents (Stamets 2005). The use of raw material in curing respiratory ailments, such as asthma and tuberculosis, as well as rheumatism, is associated with the presence of lanostane-type triterpenoids. This seems particularly important in light of the increasing antibiotic resistance of some microorganisms (Naranmandakh et  al. 2018). Preparations of this species have also been used in homeopathy as the active ingredient of anti-­ migraine drugs (West and Phillips 2013). Agarikon helps to normalize metabolism, reduce weight in diabetes or obesity, promotes bile secretion, and normalizes blood pressure. A decoction of a larch sponge is taken as a sedative for neurosis, headaches, rheumatism and gout, as a light sleeping pill. Agarikon treatment is recommended in the complex therapy of oncological diseases. The properties of agarikon to break down and remove fats are in demand for various disorders of the liver, including cirrhosis, viral hepatitis B and C.  An infusion of agaricon is used in case of constipation and dysbacteriosis. Decoctions and infusions are effective in the treatment of tuberculosis, acute and chronic bronchitis, pleurisy, and other respiratory diseases. Decoctions and infusions can help to cope with sweating in fevers of various etiologies. Agarikon powder acts as a hemostatic and antimicrobial agent (Lindequist et al. 1990; Ren et al. 2012; Vazirian et al. 2016; Blagodatski et al. 2018; Elkhateeba et al. 2019; https:// lektrava.ru/encyclopedia/agarikus/).

Modern Medicinal Uses L. officinalis was used as a source of an antibacterial, antifungal, anti-inflammatory, antitumor, antiviral, and immunostimulant agents (Lindequist et al. 1990; Ren et al. 2012; Vazirian et al. 2016; Blagodatski et al. 2018; Elkhateeba et al. 2019). In addition, this fungus would be used to cure gastrointestinal problems, asthma or night sweats (Vitak et  al. 2017). Many experiments have proved the antimicrobial

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1243

properties of L. officinalis, indicating its potential use as a raw material for the production of antibacterial, antiparasitic, and antiviral drugs.

Antimicrobial Properties In the study of raw ethanol extracts of four medicinal species of basidiomycetes and their effects on Gram(+) (Bacillus thuringiensis, Staphylococcus aureus) and Gram(−) (Enterobacter aerogenes, Klebsiella pneumoniae) bacteria, it was proven that L. officinalis was capable of inhibiting those bacterial strains; MIC (minimum inhibitory concentration) was however very high (Hleba et al. 2016). Hwang et al. (2013) used L. officinalis mycelium to isolate two chlorinated coumarin derivatives; the biological activity of coumarin derivatives can be characterized by a wide spectrum of pharmacological effects as analgesic, antibacterial, antifungal, antiparasitic and antiviral properties. It is also believed that both chlorination and bromination are factors responsible for increasing the antimicrobial activity against Vibrio sp. (Al-Majedy et al. 2016). The anti-tuberculosis effect of the raw material has also been described; indeed, the bactericidal activities against Mycobacterium tuberculosis was reported by Hwang et al. (2013). Due to the increasing resistance to antibiotic therapy, other medicinal substances are still being sought. Hwang et al. (2013) also reported the inhibitory effect of coumarin compounds isolated from the L. officinalis, against the following bacteria and fungi strains: Agrobacterium tumefaciens, Bacillus subtilis, B. cereus, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, as well as its weaker inhibition against Acinetobacter baumanii, Candida albicans, Enterococcus faecalis, Mycobacterium smegmatis, M. tuberculosis Pseudomonas aeruginosa, and Streptococcus pneumoniae. Some authors concluded that anti-tuberculosis properties indicated a significant potential of selected compounds, particularly 6-chloro-4-phenyl-coumarin ethyl 6-chloro-2-oxo-4-phenyl-2H-chromen-3-carboxylate from L. officinalis (Hwang et  al. 2013; Grienke et  al. 2014). Sidorenko and Buzoleva (2012) reported that research conducted so far proved the antibacterial activity of the species’ mycelium against Gram(−) bacteria. On this basis it was hypothesized that the L. officinalis species could be used as a treatment for pseudotuberculosis, as well as against the bacteria of the genus Pseudomonas (Sidorenko and Buzoleva 2012). Mykchaylova and Poyedinok (2021) reported an in vitro studied of the antimicrobial activity of ethylacetate extracts of culture fluid and aqueous-ethyl extracts of mycelial mass for L. officinalis strains against bacteria Gram(+), i.e., B. subtilis, and S. aureus as well as bacteria Gram(−), i.e., E. coli, K. pneumonia, and P. aeruginosa. High antimicrobial activity of tinder fungus culture fluid and mycelial mass extracts against Staphylococcus aureus was established after the 21st day of cultivation, while on the 28th day the zone of growth retardation was maximal. Antimicrobial activity against K. pneumoniae in culture fluid extracts was manifested on the 21st and 28th days of cultivation. Mycelial mass’s extracts showed moderate activity on

1244

Y. Gafforov et al.

the 14th day of cultivation, maximal activity was recorded on the 28th day. No antimicrobial activity against test organisms was detected in the following studied bacteria as B. subtilis, E coli, and P. aeruginosa.

Antiviral Properties In vitro research conducted in the USA proved that almost 100 species of mushrooms exhibited strong antiviral properties, particularly against the chickenpox virus (Stamets 2005). A study based on the use of L. officinalis in Iranian medicine confirmed its antiviral effect, particularly against smallpox, influenza subtype H5N1 and hepatitis C (Vazirian et al. 2016). The species’ activity results mostly from the content of triterpenoids of lanostane-type. Another study also indicated the activity of fomitopsin D against herpes simplex virus type 1 (HSV-1), and fomitopsin F against B. cereus (Girometta 2019). In this regard it is worth mentioning, that direct antiviral activity of this species against cowpox (Orthopoxvirus) has been described (Girometta 2019). As a little as 1–2% of L. officinalis extract is able to inhibit virus-­ induced cell damage by 50%. The crude extract diluted in a ratio of 1:106 is still effective against type A and B viruses and the herpes virus (Girometta 2019). It has also been suggested that the vast anti-viral effects of L. officinalis could prevent neuropathies associated with infections caused by the herpes viruses or Hepatitis C (Stamets 2016).

Antiparasitic Properties Based on the activity study of eight lanostane-type terpenoids isolated from L. officinalis, it may be concluded that those substances have an inhibitory effect on Trypanosoma congolense (nagana trypanosome). This trypanosome, being one of the most pathogenic parasites which causes fatal diseases in animals, mostly farm livestock, which is the main source of income for the majority of the population. Therefore, this information seems extremely valuable when it comes to the medicinal use of the species, which, however, requires further detailed study (Oyetayo 2011; Hwang et al. 2013; Feng and Yang 2015; Naranmandakh et al. 2018).

Antioxidant Properties Against Cancer Free radicals are defined as molecules or atoms with one or more unpaired electrons. With unpaired electrons, free radicals are usually unstable and highly reactive. The superoxide radical is the key factor in lipid peroxidation and contributes to the destruction of cell membrane, and thus tissue damage. Hydrogen peroxide and

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1245

hydroxyl radicals, whose formation is correlated with radiation, are also generated by the organism’s metabolic processes. Reactive oxygen species, which are produced continuously in in  vivo conditions, damage tissues and induce cell death. Specific enzymes (superoxide dismutase, catalase and glutathione peroxidase) or compounds (ascorbic acid, glutathione, tocopherol) ensure the body’s protection against the effects of free radicals. Antioxidant and repair defense systems, which have evolved to prevent cells from oxidation, are insufficient to completely protect them. The excess of oxidizing factors disturbs the balance between the level of oxidative stress and oxidant activity, contributing to the development of numerous diseases. These include, but are not limited to: cancer, atherosclerosis, cardiovascular disease, infections and allergies, as well as premature ageing of the body. Therefore, providing antioxidants with food is justified to support the body’s natural defenses (Wu et al. 2004). In recent years, it has been proved that some of the higher mushroom species inhibited the growth of cancer cell lines. So far, approximately two hundred species have been identified, exhibiting this activity (Ferreira et al. 2010), with L. officinalis being one of them. Many new compounds isolated from the raw material are believed to have an effect on cancer cells. Feng and Yang et al. (2015) isolated a new sesquiterpenoid fomeffic acid and a new triterpene lactone fomefficinin from L. officinalis. The effect of new biologically active substances on cytotoxicity against cancer lines HL-60, Bel-7402, and KB was studied in vitro. The sesquiterpenoid fomeffic acid and the triterpene lactone (fomefficinin) have shown significant anti-cancer effects. Similar properties have been observed in a group of triterpene compounds called the officimalonic acids A-H (triterpenes type with a 24-methyl-lanostane skeleton) isolated from the methanol extract of L. officinalis. Their anti-inflammatory and cytotoxic activity in in vitro conditions were confirmed in contact with human cancer cells H460, HepG2 and BGC-823 (Han and Yuan 2017).

 ntioxidant and Anti-inflammatory Properties, A and Neurodegenerative Diseases Additionally, an in vivo experiment was carried out to assess the antioxidant effect of total flavonoids from L. officinalis on mice. The results showed an inhibitory effect of flavonoids, contained in the fruiting bodies, against aging processes, caused by the antioxidant properties of the compounds. Three groups of mice were administered different doses: 100 mg/kg, 200 mg/kg and 400 mg/kg of flavonoids obtained from the raw material. It was found that each of the administered doses of L. officinalis flavonoids may, to a various extent, increase the index of antioxidative activity in the brain, spleen and thymus, glutathione peroxidase activity in brain tissues, catalase and superoxide dismutase in liver tissues (Sha 2016).

1246

Y. Gafforov et al.

To date, there are only a few studies directly linking the bioactive compounds of L. officinalis with brain functions. By administering flavonoids daily for 6 weeks in doses ranging from 100 to 400 mg/kg, Sha (2016) has shown that L. officinalis can counteract oxidative stress in the aging brain of mice. Due to its high energy and oxygen demands (~20% of the oxygen available in the human body is consumed by the brain), nervous tissue is particularly vulnerable to overproduction of reactive oxygen species, which can lead to neurodegenerative disorders such as Alzheimer’s disease, multiple sclerosis, Huntington’s disease or Parkinson’s disease (Teleanu et al. 2019). However, the implications of antioxidative activity of L. officinalis in the brain reach beyond neurodegeneration, since oxidative insults are also a factor in the etiology of both epilepsy and clinical depression (Pitsillou et  al. 2019). Moreover, dietary flavonoids are known to exert their action in the brain by directly regulating a group of intracellular kinases, that converge on a transcription factor (cAMP response element-binding protein, CREB) crucial for modulating the strength of connections between neurons (i.e. synaptic plasticity) (Spencer 2010). One of the ways in which CREB affects synaptic plasticity and neuronal survival is by regulating the level of the BDNF protein. Therefore, it is possible that the BDNF-mediated antidepressant and pro-cognitive (Brandalise et  al. 2017) effects observed after supplementation with other mushrooms, are driven by flavonoids, and therefore could be obtained with L. officinalis. Recent studies also point to the flavonoid-­ induced CREB-BDNF pathway activation as a mechanism responsible for the anti-­ epileptic activity of flavonoids (Sharma et al. 2019). Among the bioactive compounds of L. officinalis, lanostane-type triterpenoids constitute the biggest group (Grienke et  al. 2014). Recently, one of these compounds  - found specifically in L. officinalis (dehydrosulfurenic acid)  - has been patented as a potential pharmaceutical treatment for ischemic stroke (Simi and Prisco 2018). At a dose of 50 mg/kg, dehydrosulfurenic acid administered 10 minutes before an ischemic insult, significantly reduced the level of motoric deficits and neuronal injury monitored in rats for up to 24 hours after the injury. Eburicoic acid, which is another triterpenoid found in L. officinalis, has anti-­ inflammatory properties, which could be neuroprotective. When tested in macrophages cell lines, eburicoic acid inhibits proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor and nitric oxide), without any cytotoxic effects (Saba et al. 2015). This profile of action is identical to the one recently observed in microglia (i.e., resident macrophages of the brain) exposed to a different, naturally occurring triterpenoid  – platycodigenin, which promotes regeneration of neurons (Yang et al. 2019). Moreover, since all of the aforementioned proinflammatory cytokines are upregulated in clinical depression (Pitsillou et al. 2019), eburicoid acid could further prove to have antidepressant effects. Triterpenoids are also known to activate peroxisome proliferator-activated receptors (PPARs) (Yang et al. 2019) – a quality shared by a growing list of mushrooms (Park et al. 2014: Aoki et al. 2018; Komiya et al. 2019), which could prove effective in treating neurodevelopmental disorders, such as autism spectrum disorder (Barone et al. 2019).

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1247

Surely, further research will elucidate the full potential of L. officinalis in regulating central nervous system’s functions and hopefully point to novel mechanisms, which could be used to improve the treatment of this complex organ.

Folk Recipes Local Food Uses Edibility, aroma and flavor Inedible species, with floury smell. It is strongly bitter in taste (Piętka 2004).

Local Handicraft and Other Uses By the ancient North American Indians, shamans made figurines from mushroom fruiting bodies were indispensable elements of rituals performed. They were believed to have supernatural powers facilitating contact with spirits. Upon a shaman’s death, the mushroom figurine was placed on his grave, to keep those who might approach at bay, as it was believed that the shaman’s ghost resided inside. Many of such figurines – ‘grave sentinels’ – may be found in museums (Blanchette et al. 1992). Fruiting bodies of L. officinalis were also used in veterinary medicine. Based on the results of ethnobotanical research, it was found that ‘agarikon’ was a specific medicine used in preventing digestive disorders in cattle grazing the Western Alps in Italy (Stamets 2005). According to Fijałkowska et al. (2020), this species was thought to be a unique panacea, effective in treatment of numerous ailments such as excessive sweating; dizziness; rheumatism; respiratory, digestive, and excretory diseases; cancer; hemorrhoids; and dysmenorrhea and also as an anti-inflammatory agent. In addition, the mushroom was believed to be a helminthagogue; furthermore, it was reckoned that large doses of this mushroom would induce vomiting, while smaller ones acted as a diuretic.

References Ahmadbegi S, Jafarian A, Aliasl J, Rostami A (2016) Typical absence seizure similarity to “Shokhous” in Iranian traditional medicine. Iran Red Crescent Med J 18:e21048 Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB (2016) Coumarins: the antimicrobial agents. Syst Rev Pharm 8:62–70 Amiri MS, Joharchi MR (2013) Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J Phytomed 3:254–271

1248

Y. Gafforov et al.

Aoki H, Hanayama M, Mori K, Sato R (2018) Grifola frondosa (Maitake) extract activates PPARδ and improves glucose intolerance in high-fat diet-induced obese mice. Biosci Biotechnol Biochem 82:1550–1559 Barone R, Rizzo R, Tabbí G, Malaguarnera M, Frye RE, Bastin J (2019) Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int J Mol Sci 20:1878 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar, Segrate, p 903 Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL (2018) Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 9:29259–29274. https://doi.org/10.18632/oncotarget.25660 Blanchette RA, Compton BD, Turner NJ, Gilbertson RL (1992) Nineteenth century Shaman grave guardians are carved Fomitopsis officinalis Sporophores. Mycologia 84:119–124 Bondartsev AS (1953) Polyporaceous fungi of the European part of the USSR and the Caucasus. Moskow; Lenin-grad: Acad. Sci. USSR, 1106 p Brandalise F, Cesaroni V, Gregori A, Repetti M, Romano C, Orrù G, Botta L, Girometta C, Guglielminetti ML, Savino E, Rossi P (2017) Dietary supplementation of Hericium erinaceus increases Mossy fiber-CA3 Hippocampal neurotransmission and recognition memory in wild-­ type mice. Evid Based Complement Alternat Med 2017:3864340 Chlebicki A, Mukhin VA, Ushakova N (2003) Fomitopsis officinalis on Siberian Larch in the Urals. Mycologist 17:116–120 Durgo K, Koncar M, Komes D, Belscak-Cvitanovic A, Franekic J, Jakopovich I, Jakopovich N, Jakopovich B (2013) Cytotoxicity of blended versus single medicinal mushroom extracts on human cancer cell lines: contribution of polyphenol and polysaccharide content. Int J Med Mushrooms 15:435–448 Elkhateeba WA, Dabaa GM, Elnahasa MO, Thomasb PW (2019) Fomitopsis officinalis mushroom: ancient gold mine of functional components and biological activities for modern medicine. Egypt Pharm J 18(4):285–289. https://doi.org/10.4103/epj.epj_46_19 Emami SA, Sahebkar A, Tayarani-Najaran N, Tayarani-Najaran Z (2012) Cancer and its treatment in main ancient books of islamic Iranian traditional medicine (7th to 14th century AD). Iran Red Crescent Med J 14:747–457 Epstein WW, Sweat FW, Van Lear G, Lovell FM, Gabe EJ (1979) Structure and stereochemistry of officinalic acid, a novel triterpene from Fomes officinalis. J Am Chem Soc 101:2748–2750 Erb B, Borschberg HJ, Arigoni D (2000) The structure of laricinolic acid and its biomimetic transformation into officinalic acid. J Chem Soc Perkin Trans 1:2307–2309 Feng W, Yang JS (2015) A new drimane sesquiterpenoid and a new triterpene lactone from fungus of Fomes officinalis. J Asian Nat Prod Res 17:1065–1072 Ferreira ICFR, Vaz J, Vasconcelos MH, Martins A (2010) Compounds from wild mushrooms with antitumor potential. Anti Cancer Agents Med Chem 10:424–436 Fijałkowska A, Muszyńska B, Sułkowska-Ziaja K, Kała K, Pawlik A, Stefaniuk D, Matuszewska A, Piska K, Pękala E, Kaczmarczyk P, Piętka J, Jaszek M (2020) Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Sci Rep 10:20081. https://doi.org/10.1038/s41598-­020-­76899-­1 Girometta C (2019) Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology 10:32–39 Girometta CE, Rovelli L, Bracco F, Brescia F, Baiguera RM, Chiatante G, Picco AM, Savino E (2021) The medicinal wood-decay species Laricifomes officinalis in the alpe veglia–alpe devero natural park (Italian alps): spatial analysis and growth tests of pure cultures. Acta Mycol 56. https://doi.org/10.5586/am.569 Golovchenko V, Khramova DS, Shinen N, Jamsranjav G, Chizhov AO, Shashkov AS (2018) Structure characterization of the mannofucogalactan isolated from fruit bodies of Quinine conk Fomitopsis officinalis. Carbohydrate Polym i 199:161–169

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1249

Gregori A, Piskur B, Gregori M, Jurc D (2007) Spread of the Fomitopsis officinalis inoculated in stems of living larch in Slovenia. In: The fourth international medicinal mushroom conference, Ljubljana, pp 304–305 Grienke U, Zöll M, Peintner U, Rollinger JM (2014) European medicinal polypores - a modern view on traditional uses. J Ethnopharmacol 154:564–583 Han JX, Yuan T (2017) Two new triterpenoid acids from Uighur medicine Fomes officinalis. Zhongguo Zhong Yao Za Zhi 42:1225–1228 Hayova VP, Heluta VP, Shevchenko MV (2019) Fomitopsis officinalis (Polyporales): are there any records of the fungus known from Ukraine? Ukrainian Botan J 77(1):40–43 Hleba L, Kompas M, Hutková J, Rajtar M, Petrová J, Čuboň J, Kántor A, Kačániová M (2016) Antimicrobial activity of crude ethanolic extracts from some medicinal mushrooms. J Microbiol Biotechnol Food Sci 5:60–63 Hwang CH, Jaki BU, Klein LL, Lankin DC, McAlpine JB, Napolitano JG, Fryling NA, Franzblau SG, Cho SH, Stamets PE, Wang Y, Pauli GF (2013) Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against mycobacterium tuberculosis. J Nat Prod 76:1916–1922 https://lektrava.ru/encyclopedia/agarikus/ Komiya Y, Nakamura T, Ishii M, Shimizu K, Hiraki E, Kawabata F, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W (2019) Increase in muscle endurance in mice by dietary Yamabushitake mushroom (Hericium erinaceus) possibly via activation of PPARδ. J Anim Sci 90:781–789 Lindequist U, Teuscher E, Narbe G (1990) New active ingredients from Basidiomycetes. Ration Phytother 11:139–149 Łuszczynski J (2000) Fomitopsis officinalis [Coriolaceae] in Poland. Fragmenta Floristica et Geobotanica Polonica 7:271–276 Majewski T (2005) An attempt to identify to cryptogamic plants in Syreniusz’s herbal. Kwart Hist Nauki Tech 50:183–196 Meng X, Liang H, Luo L (2016) Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 424:30–41 Mukhin VA, Kotiranta H, Knudsen H, Ushakova NV, Votintseva AA, Corfixen PS, Chlebicki A (2005) Distribution, frequency and biology of Laricifomes officinalis in the Asian part of Russia. Mikologija i fitopatologija 39(5):34–42 Naranmandakh S, Murata T, Odonbayar B, Suganuma K, Batkhuu J, Sasaki K (2018) Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. J Nat Med 72:523–529 Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J (2018) Anti-inflammatory properties of edible mushrooms: a review. Food Chem 243(3):373–381 Muszynska B, Fijałkowska A, Sułkowska-Ziaja K, Włodarczyk A, Kaczmarczyk P, Nogaj E, Piętka J (2020) Fomitopsis officinalis: a species of arboreal mushroom with promising biological and medicinal properties. Chem Biodiv Mykchaylova O, Poyedіnok N (2021) Antimicrobial activity of Fomitopsis officinalis (Vill.) Bondartsev & Singer in pure culture. Innov Biosyst Bioeng 5:220–227 Oyetayo OV (2011) Medicinal uses of mushrooms in Nigeria: towards full and sustainable exploitation. Afr J Tradit Complement Altern Med 8:267–274 Park HJ, Yun J, Jang SH, Kang SN, Jeon BS, Ko YG, Kim HD, Won CK, Kim GS, Cho JH (2014) Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway. PLoS One 9:e105809 Piętka J (2004) The development of Fomitopsis officinalis mycelium grown on organic media and larch wood under laboratory conditions. Sylwan 148:34–42 Piętka J, Szczepkowski A (2011) Assessment of the present of occurrence, threats and protection of Fomitopsis officinalis (Vill.: Fr.) Bond. & Sing in Poland. Sylwan 155:31–45

1250

Y. Gafforov et al.

Pitsillou E, Bresnehan SM, Kagarakis EA, Wijoy SJ, Liang J, Hung A, Karagiannis TC (2019) The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep. https://doi.org/10.1007/s11033-­019-­05129-­3 Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3:1118–1130 Ryvarden L, Gilbertson RL (1993) European Polypores. 1. Abortiporus—Lindtneria. Fungi Flora, Oslo, p 387 Ryvarden L, Melo I (2014) Poroid fungi of Europe. Fungiflora, Oslo, p 455 Saba E, Son Y, Jeon BR, Kim SE, Lee IK, Yun BS, Rhee MH (2015) Acetyl eburicoic acid from Laetiporus sulphureus var. miniatus suppresses inflammation in murine macrophage RAW 264.7 cells. Mycobiology 43:131–136 Sahebkar A, Tayarani-Najaran N, Tayarani-Najaran Z, Emami SA (2012. [cited 2022 Jun 05]. Available from: https://www.intechopen.com/chapters/41480) Cancer and its treatment in main ancient books of Islamic Iranian traditional medicine (7th to 14th century AD). In: Sakagami H (ed) Alternative medicine [Internet]. IntechOpen, London. https://doi.org/10.5772/55249 Sha AL (2016) Effects of the Fomes officinalis flavonoids on anti-senile action in the aging model mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 32:121–123 Sharma P, Kumar A, Singh D (2019) Dietary flavonoids interaction with CREB-BDNF pathway: an unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol 17:1158–1175 Sidorenko ML, Buzoleva LS (2012) Search for new types of raw materials for antibacterial drugs. Antibiot Chemother 57:7–10 Simi M, Prisco GM (2018) Patent application publication US 2018 / 0250085 A1 Spencer JPE (2010) Nutrition society silver medal lecture: beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc Nutr Soc 69:244–260 Stamets PE (2005) Antipox properties of Fomitopsis officinalis (Vill.: Fr.) Bond. et Singer (Agarikon) from the Pacific Northwest of North America. Int J Med Mushrooms 7:496–506 Stamets PE (2016) Antiviral activity from medicinal mushrooms. U.S.  Patent Application No. 11/728,613 Tayjanov K, Khojimatov O, Gafforov Y, Makhkamov T, Bussmann RW, Normakhamatov N (2021) Plants and fungi in the ethnomedicine of the medieval East  - a review. Ethnobot Res Appl 22:1–20. Retrieved from https://ethnobotanyjournal.org/index.php/era/article/view/3271 Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM (2019) Antioxidant therapies for neuroprotection-a review. J Clin Med 8:1659 Vazirian M, Faridfar S, Eftekhari M (2016) “Gharikon”/“Agharikon” a valuable medicinal mushroom in Iranian traditional medicine. Iranian J Med Sci 41(3):34 Vedenicheva NP, Al-Maali GA, Bisko NA, Shcherbatiuk MM, Lomberg ML, Mytropolska NY, Mykchaylova OB, Kosakivska IV (2018a) Comparative analysis of Cytokinins in mycelial biomass of medicinal mushrooms. Int J Med Mushrooms 20:837–847. https://doi.org/10.1615/ IntJMedMushrooms.2018027797 Vedenicheva NP, Al Maali GA, Mykhaylova OB, Lomberg ML, Bisko NA, Shcherbatiuk MM, Kosakivska IV (2018b) Endogenous Cytokikins dynamics in mycelial biomass of Basidiomycetes at different stages of cultivation. Int J Biochem Physiol 3:000122. https://doi. org/10.23880/ijbp-­16000122 Vitak T, Yurkiv B, Wasser S, Nevo E, Sybirna N (2017) Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 8:187–201 West A, Phillips R (2013) Chiropractic management of a patient with persistent headache. J Chiropr Med 12:281–287 Wu HT, Lu FH, Su YC, Ou HY, Hung HC, Wu JS, Yang YC, Chang CJ (2014) In vivo and in vitro anti-tumor effects of fungal extracts. Molecules 19:2546–2556 Wu X, Yang J, Zhou L, Dong YS (2004) New lanostane-type triterpenes from Fomes officinalis. Chem Pharm Bull 52:1375–1377

Laricifomes officinalis (Vill.) Kotl. & Pouzar - FOMITOPSIDACEAE

1251

Wu X, Yang JS, Yan M (2009) Four new triterpenes from fungus of Fomes officinalis. Chem Pharm Bull 57:195–197 Wuliya P, Ba L (2003) The immune-potentiating effect of Fomes officinalis polysaccharides. J Xinjiang Med Univ 6:563–565 Yang Z, Liu B, Yang L, Zhang C (2019) Platycodigenin as potential drug candidate for Alzheimer’s disease via modulating microglial polarization and neurite regeneration. Molecules 24:3207 Yi B, Ma Y, Ba S (2006) Scavenging activity of Fomes officinalis polysaccharides on oxygen free radicals. J Xinjiang Med Univ 29:15–17 Zuo L, Pa L, Bai L, Du N (2003) The immune-potentiating effect of Fomes officinalis polysaccharides. J Xinjiang Med Univ 26:563–565

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus ciliatus (Fr.) Zmitr.; Lentinus squarrosulus Mont.; Lentinus tigrinus (Bull.) Fr. - POLYPORACEAE Yusufjon Gafforov, Paola Angelini, Gaia Cusumano, Roberto Venanzoni, Giancarlo Angeles Flores, Michal Tomšovský, Manzura Yarasheva, Milena Rašeta, Rainer W. Bussmann, and Sylvie Rapior

Lentinus arcularius (Batsch) Zmitr. Synonyms: Boletus arcularius Batsch; Favolus alveolarius (Bosc) Fr.; Heteroporus arcularius (Batsch) Lázaro Ibiza. Polyporellus arcularius (Batsch) P.  Karst.; Polyporus arcularius (Batsch) Fr. Lentinus brumalis (Pers.) Zmitr. Synonyms: Boletus brumalis Pers.; Polyporellus brumalis (Pers.) P.  Karst.; Polyporus brumalis (Pers.) Fr.

Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] P. Angelini · G. Cusumano · R. Venanzoni · G. Angeles Flores Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy e-mail: [email protected]; [email protected]; [email protected]; [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_117

1253

1254

Y. Gafforov et al.

Lentinus ciliatus (Fr.) Zmitr. Synonyms: Boletus substrictus Bolton; Lentinus ciliatus (Fr.) Zmitr.; Lentinus substrictus (Bolton) Zmitr. and Kovalenko; Polyporellus ciliatus (Fr.) P.  Karst.; Polyporus ciliatus Fr., P. substrictus (Bolton) Sacc. Lentinus squarrosulus Mont. Synonyms: Lentinus tigrinus f. squarrosulus (Mont.) Pilát; Pleurotus squarrosulus (Mont.) Singer; Pocillaria squarrosula (Mont.) Kuntze. Lentinus tigrinus (Bull.) Fr. Synonyms: Agaricus dunalii DC.; A. tigrinus Bull.; Clitocybe tigrina (Bull.) P. Kumm.; Lentinula tigrinus (Bull.) S. Kulshreshtha, N. Mathur & P. Bhatnagar; Panus tigrinus (Bull.) Singer; Pleurotus tigrinus (Bull.) Kühner

Local Names Lentinus arcularius: Uzbek: Chuqurchasimon pukak, bahorgi pukak zamburug‘; English: Fringed polypore, Spring polypore; Russian: Полипорус ямчатый, Трутовик ямчатый; Chinese: 漏斗多孔菌; French: Polypore alvéolé; German: Weitlöcheriger Stielporling; Korean: 좀벌집구멍장이버섯; Serbian: dlakava rupičarka; Turkish: Delikli kaplanmantarı. Lentinus brumalis: Uzbek: Qishki pukak zamburug‘; English: Polyporus brumalis, Winter Polypore; Russian: Трутовик зимний; Chinese: 冬生多孔菌; French: Polypore d’hiver; German: Winter-Stielporling; Korean: 겨울구멍장이버섯; Serbian: zimska rupičavka; Turkish: Küt kaplanmantarı. Lentinus ciliatus: Uzbek: Kipriksimon pukak, yolli pukak zamburug‘; English: Fringed Polypore; Russian: Трутовик реснитчатый; Chinese: 缘毛多孔菌; French: Polypore cilié; German: Mai-Stielporling; Serbian: четинаста рупичавка; Turkish: Kor kaplanmantarı. M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected]; [email protected] R. W. Bussmann Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected] S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected]

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1255

Lentinus squarrosulus: Uzbek: no; Thailand: Hed khon khao Lentinus tigrinus: Uzbek: Yulbars arrasi, English: Tiger Sawgill; Russian: Пилолистник тигровый; Chinese: 蹄層孔菌; French: Lentin tigré; German: Getigerte Sägeblättling; Korean: 털참버섯; Serbian: tigrica, vrbina žilavka; Turkish: Kaplanmantarı.

Short Morphological Description Lentinus arcularius: Basidiomata annual, pileate with central stipe, solitary, roundish. Pileus 2.5–5 cm wide, up to 5 mm or thick at center. Upper surface yellowish, ochraceous to dark brown; hirsute, fibrillose to squamose, depressed at center to subinfundibuliform. Margin acute, concolorous, finely ciliated. Hymenium whitish to cream, Pores markedly hexagonal, radially arranged, 1–2 per mm, dissepiments very thin, lacerate with age. Context corky, homogeneous, white to pale brown, 1–2 mm thick. Tube layer concolorous and continuous with the context, up to 5 mm thick. Stipe, central to slightly curved, glabrous, scaly concolorous with upper surface, 2–4 cm long and 2–4 mm thick. Hyphal system dimitic. Generative hyphae thin-walled, often branched, colorless, with numerous clamps, 2.5–5  μm wide; skeleto-­binding hyphae thick-walled, aseptate, tortuous, with dendroid branches and tapering hyphal ends 2–12 μm wide in the context, tramal hyphae similar, difficult to separate; hyphae of pileus surface thin-walled, parallely arranged, clamped, 1–1.3 μm wide. Cystidia absent, infrequent fusoid cystidioles present. Basidia clavate, with 4-sterigmata, 20–35 × 4–6 μm with a basal clamp. Basidiospores cylindric and suballantoid, smooth, thin-walled, colorless, 6–9 × 2.5–3 μm, negative in Melzer’s reagent (Zmitrovich 2010; Ryvarden and Melo 2014; Bernicchia and Gorjón 2020). Lentinus brumalis: Basidiomata annual, pileate with central stipe, solitary or several basidiomes growing from a common branched base. Pileus up to 6(8) cm wide, 2–5 mm thick at centre, roundish. Upper surface broadly convex then spreading, depressed at center, azonate, greyish brown to reddish or purplish brown, dark brown when old. Margin inrolled at first, then acute, reflexed with age, finely fringed to ciliate, concolorous with sterile surface. Hymenium glancing, whitish to pale cream. Pores angular to radially elongated, especially towards the base, 3–4 per mm or wider, with thin dissepiments, that become lacerate, finely pubescent. Context thin, corky, azonate, whitish, up to 4 mm thick. Tube layer slightly decurrent on the stipe, whitish, up to mm thick. Stipe central, cylindrical, lighter than upper surface 4–5 cm long and 2–6 mm thick. Hyphal system dimitic. Generative hyphae thin-­ walled, occasionally branched, colorless, 3–5  μm wide in subhymenium, up to 10 μm wide in the context; skeleto-binding hyphae in context thick-walled, colorless, aseptate, tortuous, much interwoven, with dendroid branches and tapering hyphal ends, often 4–10 μm wide, with swellings up to 13 μm; tramal hyphae similar, 2.5–6 μm. Cystidia and other sterile hymenial elements absent. Basidia clavate,

1256

Y. Gafforov et al.

with 4-sterigmata, 16–22 × 5–6.5 μm, with a basal clamp. Basidiospores cylindric and suballantoid, smooth, colorless, 5.5–7 × 2–2.5 μm, negative in Melzer’s reagent (Zmitrovich 2010; Bernicchia and Gorjón 2020). Lentinus ciliatus: Basidiomata annual, pileate with central stipe. Pileus 6–8(10) cm wide and 4–7 mm thick, circular, flat to convex, rarely concave or umbonate. Upper surface smooth or minutely squamose, azonate, finely reticulate, greyish, pale brown to grey-brown, then ochre or amber. Margin thin, ciliate at first, glabrous with age. Hymenium whitish, cream to pale ochraceous; pores very small, circular 5–7(8) per mm, slightly decurrent on the stipe, dissepiments thin, dentate. Context hard, white, 1–4 mm thick. Tube layer slightly decurrent on the stipe, white cream, darker and more dense than the context, up to 2 mm thick. Stipe slender, central, cylindrical, slightly widened towards the base, with fine tomentum, later glabrous, pale ochraceous to brown, 4–6(8) cm long and 5–8  mm thick. Hyphal system dimitic. Generative hyphae colorless, thin-walled, branched with clamps, 2–3.5 μm wide in the subhymenium, up to 10  μm wide in the context, weakly amyloid in stipe,; skeleto-binding hyphae thick-walled, colorless, aseptate, tortuous, much interwoven, with dendroid branches and tapering hyphal ends, up to 10 μm wide in the context, very numerous in the stipe. Cystidia absent, fusoid cystidioles present in hymenium 11–24 × 4–5 μm; gloeoplerous hyphae present in the context. Basidia clavate, 4-sterigmate, 16–22 × 3.5–6.5 μm with a basal clamp. Basidiospores cylindrical to allantoid, smooth, thin-walled, colorless, 5–7  ×  1.5–2  μm, negative in Melzer’s reagent (Ryvarden and Melo 2014; Zmitrovich et al. 2019; Bernicchia and Gorjón 2020). Lentinus squarrosulus: Basidiomata annual, single or in groups. Pileus 1.5–6.9 cm wide, first convex and narrowly depressed in the centre then infundibuliform, fleshy, flexible when fresh, tough with age, hard and brittle when dry; margin entire, curved then inflected, straight and lobed, acute, becoming eroded jagged, without veil; pileipellis creamy-white or fawn, sometimes ochraceous or light brown, dry, radially striated, scaly to squarrose, scales, concentric, concolorous or brownish, sometimes completely washed by rain. Hymenophore with lamellae decurrent, arcuate, tight, uneven, thin, narrow (2–3  mm high), rarely forked, slightly interveined at base, lamellulae in subregular series (3–4/lamella), white then creamy-white; edge irregularly denticulate, concolorous. Flesh fibrous, elastic in cap, tough and hard in stipe, white to creamy. Stipe 2.4–6.1 × 0.7–1.3 cm, central, eccentric or sublateral, grouped at base, cylindrical, attenuated downwards, curved, solid, white, sometimes brown-stained at base, hairy to scaly, partial veil leaves a slight ring or zone toward the top of the stem, which may disappear in age, or veil may remain intact, covering lamellae, irregularly squarrose when young, sometimes becoming glabrous or sub-smooth, free of the membranous annulus. Flesh fibrous, elastic in cap, tough and hard in stipe, white to creamy. Hyphal system dimitic. Basidia clavate, with 4 sterigmata, 15–20(−25) × 4–5(−7) μm. Cheilocystidia sinuous, cylindricoclavate. Clamp connections present. Lamellae edge sterile, sometimes with emergent nodule-like skeletal hyphae. Basidiospores are cylindrical, smooth, and 6.6–8.9 × 2.5–3.3 μm (Ndong et al. 2011; De Leon et al. 2013; Hermawan 2020).

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1257

Lentinus tigrinus: Basidiomata annual, pileate with central stipe, single or in groups. Pileus 4–10 cm wide, fleshy-skinny, convex, later depressed in the center or funnel-shaped, Upper surface dry, white, slightly yellowish, creamy, covered with dark brown, almost black fibrous scales, often thicker and darker in the center. Margin acute, undulating and split in age. Hymenophore cream colored to yellowish, lamellae decurrent, crowded, with slightly jagged (serrate) edges; short lamellulae frequent. Flesh tough, dense, whitish, thin, whitish, sometimes turns yellow with age. Stipe; central or eccentric, cylindrical, dense, rigid, even or curved, narrowed towards the base, cream or whitish, with small concentric, brownish, sparse scales, sometimes with annular zone when young, 2–5 cm long and 4–8 mm thick, root-like elongated base often immersed in wood. Hyphal system dimitic. Generative hyphae 2.5–8 μm wide, with buckles, moderately branching in the stipe and tissue of the pileus, in the cuticle (epicutis) radially located colorless or with thickened brownish walls, strongly swollen (up to 8 μm in diameter). Skeletal hyphae 2–5 μm in diameter, colorless, predominate in the stem. Cheilocystidia similar to basidioles 30–50 × 3–7.5 μm, cylindrical to almost club-shaped, thick-walled, hyaline. Fusoid cystidioles (marginal cells) 20–25  ×  2–3  μm, slendery clavate 4-sterigmata, 20–30 × 4–5.5 μm, with a basal clamp. Basidiospores 6–8 × 2.7–3.5 μm; cylindrical to ellipsoid, smooth, colorless in KOH; negative in Melzer’s reagent (Breitenbach and Kränzlin 1991).

Ecology and Distribution Lentinus arcularius: Saprotroph on dead deciduous wood, very rarely on conifers, causing white rot of dead branches and stumps. Cosmopolitan species, common in warmer region of temperate Euroasia (Bernicchia and Perez 2020). Reported from 22 host genera in Europe (Ryvarden and Gilbertson 1993). In Uzbekistan, it is reported on Juglans regia and Salix interior (Gafforov et  al. 2020; Gafforov and Ordynets 2022). Lentinus brumalis: Saprotroph on dead deciduous, rarely coniferous wood, causing white rot of dead branches and stumps. This species forms basidiomes during late autumn or beginning of winter (basidiomes persist to spring). The species is distributed through North hemisphere in temperate and boreal zone. Reported from 26 host genera in Europe (Ryvarden and Gilbertson 1993). In Uzbekistan, it is reported on Celtis australis subsp. caucasica, Salix, Betula, and Populus (Gafforov et al. 2020; Gafforov and Ordynets 2022). Lentinus squarrosulus: Saprotroph, L. squarrosulus grows on dead wood, commonly found growing in the wild on decaying logs of trees or on buried or exposed roots of trees during rainy season; humid dense forest, open forest, miombo, savanna, plantation (De Leon et al. 2013). It usually develops in caespitose clusters, consisting of three to six basidiocarps, but sometimes, a tuft of up to thirty basidiocarps may be found (Mortimer et al. 2014). In its natural habitat, the mushroom

1258

Y. Gafforov et al.

propagates rapidly with a short life-span, quickly decays, and is easily shredded by rain. The basidiocarps are fully formed about 4 days after the appearance of primordia and they generally last for another 3–6 days in mature stage. Wide distribution extending throughout central Africa, Indonesia, Asia, the Pacific islands, Australia, India, Indonesia (Lau and Abdullah 2017; Atri et  al. 2019; Ndong et  al. 2020; Hermawan 2020). Tropical species which has not been reported from Uzbekistan. Lentinus ciliatus: Saprotroph on dead deciduous, rarely coniferous wood, causing white rot of dead small branches. Fungus forms basidiomes during spring or early summer. The species is distributed in temperate and boreal zone of Euroasia. Reported from 24 host genera in Europe (Ryvarden and Gilbertson 1993). In Uzbekistan, it is found on Betula, Populus, and Salix (Gafforov et al. 2020; Gafforov and Ordynets 2022). Lentinus tigrinus: Saprotroph on hardwood, usually in floodplain regularly moistened forests. Occurs from spring and autumn. This starts fruiting in April in the southern mountainous regions of Uzbekistan. It grows mainly on Salix and Populus, less common on other hardwoods causing the white rot. Distributed in the Northern Hemisphere: EuroAsia and North America. In Central Asia, it is common in forests, gardens, and along roadsides, especially where walnuts, poplars, and willows occur (Gafforov et al. 2020; Gafforov and Ordynets 2022) (Figs. 1, 2, 3, 4, 5, 6, and 7).

Mycochemistry Lentinus arcularius: The fungus has been chemically investigated for the first time by Fleck et al. (1996) yielding drimenediol, isodrimenediol, and related sesquiterpenes. The fungus mycelium produced cryptoporic acid H as well as isocryptoporic acid H and isocryptoporic acid I.  The isocryptoporic acids are isomers of the Fig. 1  Lentinus arcularius (Polyporaceae), Italia. (Photo Giorgio Fantaulli)

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1259

Fig. 2  Lentinus arcularius (Polyporaceae), Italia. (Photo Giorgio Fantaulli)

Fig. 3  Lentinus brumalis (Polyporaceae), Germany. (Photo Ewald Langer)

cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment (Cabrera et al. 2002). Two new isodrimene sesquiterpenes, 2(S)-hydroxyalbicanol and 2(S)-hydroxyalbicanol 11-acetate, were isolated from the culture broth together with two phenylpropanediols, (1S,2S)-1-phenyl-1,2-dihydroxypropane and (1R,2S)-1-­phenyl-­1,2-dihydroxypropane (Otaka and Araya 2013); one of the phenylpropanediols namely (1S,2S)-1-phenyl-1,2-dihydroxypropane, was identified as a natural product for the first time. It should be noted that these compounds have not been reported by other scientists from culture of this fungus. Lentinus brumalis: This mushroom species is an excellent source of natural products, such as sesquiterpenoids derived from farnesyl pyrophosphate (FPP) as well as cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives with key biological and medicinal properties (Fraga 1999). L. brumalis, like others white-rot fungi, produces oxidative extracellular enzymes, including lignin peroxidase,

1260

Y. Gafforov et al.

Fig. 4  Lentinus tigrinus (Polyporaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 5  Lentinus tigrinus (Polyporaceae), Uzbekistan. (Photo Yusufjon Gafforov)

manganese-dependent lignin peroxidase and laccase enzymes through which these fungi degrade lignin and a broad range of diverse aromatic pollutants (Ryu et al. 2014). The biosynthesis of metabolites produced by the mycelium of L. brumalis was investigated by Lee et al. (2016); the authors identified propionic acid, mevalonic acid lactone, cadinene and also two sesquiterpenoids compounds namely β-eudesmane and β-eudesmol. Lentinus ciliatus: From the mycelia of this fungus were isolated 5-­hydroxymethyl furan-­3-carboxylic acid (that has not been previously isolated as a natural product, but has been reported as a synthetic intermediate), a methyl ester of cryptoporic acid H and cryptoporic acid H. Like others white-rot fungi, L. ciliatus produced radicalgenerating enzymes, such as lignin peroxidase, manganese peroxidase, and laccase; so, the fungus has ligninolytic ability (Cabrera et al. 2002; Rigas et al. 2003).

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1261

Fig. 6  Lentinus tigrinus (Polyporaceae), Uzbekistan. (Photo Qunduz Avezova)

Fig. 7  Lentinus tigrinus (Polyporaceae), Türkiye. (Photo Hakan Alii)

Lentinus squarrosulus: The fruiting bodies of L. squarrosulus was found to be rich in carbohydrates, with moderate level of proteins and low levels in both dietary fibers and fats (Lau and Abdullah 2017). Previous studies indicated that the basidiocarp of L. squarrosulus had a broad spectrum of minerals (Obodai et  al. 2014; Borokini et al. 2016) with high concentration of calcium, magnesium, phosphorous, potassium, and sodium as well as appreciable amounts of copper, iron, manganese, and zinc (Agbagwa et al. 2022). The analysis of vitamins composition revealed the presence of vitamin A, vitamins group B as thiamine, riboflavin, and folic acid (Omar et al. 2011; Agbagwa et al. 2022) as well as vitamin C namely ascorbic acid (Sharma and Atri 2014). Regarding the fatty acid composition of L. squarrosulus basidiocarp, Obodai et al. (2014) identified linoleic acid (62.4–63.4%) as the most abundant, followed by palmitic acid (18.0–19.6%) and oleic acid (7.9–8.7%). The

1262

Y. Gafforov et al.

aqueous and methanolic extracts of L. squarrosulus basidiocarp were reported to be enriched in a number of phenolic compounds (Obodai et al. 2014). The quantification of the individual phenolic acids and flavonoids was carried out using HPLC analyses; they revealed high amount of phenolic acids as gallic acid and protocatechuic acid, and other phenolic acids at lower levels (caffeic, chlorogenic, cinnamic, ellagic, ferulic, gentisic, p-coumaric, p-­hydroxybenzoic, tannic and vanillic acids) as well as the presence of flavonoids, i.e., catechin and its isomer, epicatechin, eriodictyol, isoquercetin, kaempferol, quercetin, quercitrin and rutin (Lau and Abdullah 2017). From the analysis of anti-­nutrients (chemical components that interfere with the absorption of nutrients) results that lignans was the highest, followed by alkaloids, flavonoids, glycosides, polyphenols, saponins and tannins (Ugbogu et  al. 2019; Ndong et al. 2021; Agbagwa et al. 2022). GC-MS analysis of the aqueous extract of L. squarrosulus revealed the presence of 15 chemical compounds including 1-tetradecene, fumaric acid, 6-ethyloct-3-yl ester, 9-eicosene, phytol, octahydropyrrolo[1,2-a]pyrazine, and 3-­ trifluoroacetoxypentadecane (Ugbogu et al. 2019). Reena et al. (2020) studied L. squarrosulus basidiocarps using GC-MS and reported 38 myco-compounds including fatty acids and esters (39%), alkanes (23%), alkenes (13%), ketones (11%), alcohols (8%), aldehyde (3%) and others (3%); the most prevailing myco-­compounds were fatty acid methyl esters as methyl 2-oxo-1-pyrrolidine acetate, methyl palmitate, methyl linoleate, and 9-octadecenoic acid, methyl ester as well as a steroid namely ergosterol (Reena et al. 2020). Lentinus tigrinus: Previous studies reported that fruiting bodies of L. tigrinus contained laccases, which belong to multicopper oxidases, a widespread class of enzymes involved in many oxidative functions, in the pathogenesis, immunogenesis and morphogenesis of organisms, as well as in the metabolic cycle of complex organic substances (Ferraroni et al. 2007). L. tigrinus also exhibited high amounts of carbohydrates, fibers, proteins and minerals; total carbohydrates consisted of reducing sugars (RSs) and dietary fibres (DFs), which consisted of soluble polysaccharides and crude fibres, respectively. L. tigrinus showed 88.6% moisture, 0.7% ash, 3.7% protein, 0.2% fat and 6.8% carbohydrates (0.1% RSs and 6.7% DFs). The dried pileus possessed higher amounts of crude protein (25.9%), crude fat (2.1%), ash (7.4%), and moisture (12.2%). The dried stipe contained a significantly higher amount of total carbohydrates (67.7%) consisting of DFs (63.0%) and RSs (4.7%). Indeed, total carbohydrate content is higher in the stipe than in the pileus. These results indicated that L. tigrinus is richly endowed with nutrients. Fruiting bodies of L. tigrinus contained soluble polysaccharides ranging from 30.1% (in the pileus) to 38.3% (in the stipe), whereas crude fiber contents ranged from 17.4% (in the pileus) to 24.7% (in the stipe) (Dulay et al. 2014). For the minerals content in L. tigrinus, Adejumo and Awosanya (2005) reported the presence of macrominerals such as magnesium (11  g/kg), sodium (0.2  g/kg), calcium, and potassium and microminerals such iron (497 mg/kg), copper (6 mg/kg), and manganese (50 mg/kg). At the same time, Sadi et al. (2015) reported that the n-hexane extracts of L. tigrinus contained flavonoids. Furthermore, Ragasa et al. (2018) demonstrated sterols

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1263

from extract of L. lentinus as cerevisterol, ergosterol, and stellasterol, that have antibacterial, anticancer, anti-inflammatory, and antioxidant properties (Ragasa et al. 2018). Recently were identified two novel fungal immunomodulatory proteins (FIPs) from L. tigrinus; they were named Fip-lti1 and Fip-lti2 (Gao et al. 2019).

Local Medicinal Uses Lentinus arcularius: For L. arcularius we have not found articles about the local medicinal uses. Lentinus brumalis: For L. brumalis we have not found articles about the local medicinal uses. Lentinus squarrosulus: In ethnomedicine, L. squarrosulus was used for the treatment of ulcer, anaemia, cough and fever; furthermore, since it is high in protein including all the essential amino acids, low in fat, L. squarrosulus is recommended as nutritional supplement for patients with cardiac problems. High level of potassium in mushroom extract suggests its utilization in antihypertensive diet (Omar et al. 2015). L. squarrosulus is considered to be of great interest in traditional medicine, especially in Africa where it is featured in some Nigerian folklore and mythology. In Anambra (Nigeria), L. squarrosulus is prepared as pepper soup and is claimed to be effective in treating anaemia and infertility in both men and women; it is also used for treating mumps and heart diseases (Omar et al. 2015). In Thailand, L. squarrosulus is appreciated for its curative and tonic properties (Lau and Abdullah 2017). Lentinus ciliatus: For L. ciliatus we have not found articles about the local medicinal uses. Lentinus tigrinus: This fungus is widely used as food, medicine, brain tonic and against anger. Powder taken in hot water relieve dry cough and asthma, raw is useful for wet cough. Mixing raw fruit with lemon juice improves gastrointestinal function and enhances digestion (Malik et al. 2017). Indigenous communities considered this mushroom as potential sources of antibacterial drugs and as remedy for arthritis, cough, and colds, fever, headache, hypertension, skin diseases, stomach-ache, and toothache. They usually boil or grind the mushroom to obtain the extract and take it by drinking the broth or putting the mushroom directly to infected body parts (Torres et al. 2020).

1264

Y. Gafforov et al.

Modern Medicinal and Environmental Uses Lentinus arcularius: Antitumor activity was studied by Ohtsuka et  al. (1973). Polysaccharides extracted from the mycelial culture of L. arcularius and administered intraperitoneally into white mice at a dosage of 300  mg/kg inhibited the growth of Sarcoma 180 and Ehrlich solid cancers by 90% and 100%, respectively. Suay et al. (2000) studied the antimicrobial activity of the extracts of L. arcularius against bacteria (Bacillus subtilis, Enterococcus faecium, Mycobacterium smegmatis, Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus) and yeasts (Candida albicans and Saccharomyces cerevisiae); from this study it was found that yeasts were resistant to the extracts and S. aureus was the most sensitive bacteria to the extracts. Another study highlighted that both the aqueous and organic fractions from an extract of the mycelial culture of L. arcularius showed antibacterial activity against B. subtilis, Escherichia coli, Salmonella typhimurium, and S. aureus (Yamac and Bilgili 2006). Recently, Yen et al. (2022) investigated the antimicrobial and antioxidant activities of the culture liquid extract and mycelium biomass extract of L. arcularius. The antimicrobial activity was tested against bacteria (E. coli, P. aeruginosa and Staphylococcus aureus) and fungi (Aspergillus niger, C. albicans and S. cerevisiae), the results showed that the ethyl acetate and n-butanol fractions were the extracts with the best antimicrobial activity. The same extracts were tested for the antioxidant activity and also in this case, the ethyl acetate and n-butanol fractions showed the highest antioxidant activity by α,α-­ diphenyl-­β-picrylhydrazyl as a free-radical agent or the highest percentage at 75–100% inhibition. These results suggested that L. arcularius might be a potential medicinal mushroom with antioxidant and antimicrobial effects (Yen et al. 2022). Lentinus brumalis: Potential applications in treating a variety of aromatic and nonaromatic, halogenated and non-halogenated organopollutants and environmental pollutants, such as chlorophenols, PCBs, PAHs, TNT, nitroaromatics, synthetic dyes, thanks to the production of manganese-dependent lignin peroxidase. L. brumalis fungi are very interesting from ecological and biotechnological applications (Rigas et al. 2003). The study of Ohtsuka et al. (1973) highlighted anti-tumor properties, an extract of culture mycelia was able to inhibit the growth of Sarcoma 180 solid cancer in mice by 90%, and antibacterial and antifungal properties. L. brumalis also have cytotoxic, antiviral, antibiotic, as well as anti-herbivory and antioxidant properties thanks to the production of sesquiterpenes as cadinene, β-eudesmane and β-eudesmol (Ohtsuka et al. 1973; Lee et al. 2016). Lentinus squarrosulus: It showed to have nutritional content as well as antidiabetic (Abiodun et  al. 2021), antihyperglycemic (Rungprom 2018), antimicrobial (Borokini et al. 2016), antioxidant (Obodai et al. 2014), antitumoral (Prateep et al. 2017), antiulcerogenic (Borokini et  al. 2016) and immunomodulatory properties (Jonathan et al. 2012). Abiodun et al. (2021) evaluated the in vitro antiobesity, anti-­ diabetic and cytotoxic potential of the chloroform/methanol extract and aqueous

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1265

extract of L. squarrosulus; this study revealed that chloroform/methanol extract of the mushroom, rich in polyphenols and flavonoids possessed considerable inhibitory activities against alpha-glucosidase and lipase. Borokini et al. (2016) tested the antimicrobial activity of aqueous, ethanolic and methanolic extracts of L. squarrosulus against P. aeruginosa, S. typhi and S. aureus; only the ethanolic extract showed activity against P. aeruginosa, S. typhi was also susceptible to an aqueous and methanolic extracts and only alcoholic extract showed inhibitory activities against S. aureus (Borokini et al. 2016). The antifungal activity of the crude extract of L. squarrosulus was tested against Aspergillus fumigatus, A. ochraceus and C. albicans; results showed that A. fumigatus was the most sensitive, followed by A. ochraceus while C. albicans was resistant to the extract (Mossebo et  al. 2020). Recently Sutthisa and Chaiyacham (2022) studied the antibacterial capacity of the mycelia extracts of L. squarrosulus against B. cereus, E. coli, P. aeruginosa, and S. aureus. The extracts inhibited the growth of B. cereus and showed a slight inhibition of S. aureus at low levels but did not inhibit the growth of E. coli and P. aeruginosa. For the antiulcerogenic property, L. squarrosulus mycelia extract significantly reduced the ulcer index and afforded significant protection against ethanol induced ulcer by inhibiting the production of proinflammatory cytokines (Omar et al. 2011). In addition, L. squarrosulus mycelial extract has good antioxidant properties in vitro and it has no toxic effects, even at high doses (Omar et al. 2015; Ndong et al. 2021). The analysis of the aqueous extract of L. squarrosulus reveals the presence some chemical compounds with pharmacological activities, 1-tetradecene (that has anti-­ tuberculosis activity), fumaric acid, monochloride, 6-ethyloct-3-yl ester (used for treatment of psoriasis), phytol (that has antinociceptive and antioxidant effects), octahydropyrrolo[1,2-a]pyrazine (that has antioxidant property) and 3-­trifluoroacetoxypentadecane (that exhibits anti-nephrotoxic and antioxidant properties) (Ugbogu et al. 2019). Lentinus ciliatus: Extensive research has shown that L. ciliatus, as others white-­rot fungi, have developed unique non-specific enzyme systems with the ability not to attack only lignin but also a variety of organopollutants such as chlorophenols, polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), Trinitrotoluene (TNT), nitroaromatics, and synthetic dyes (Rigas et al. 2003). These soil or water depollution applications aim to protect health. This mushroom has been shown to be potent degraders of a variety of environmental organic pollutants due to the production and secretion of certain radical-generating enzymes, such as lignin peroxidase, manganese peroxidase, and laccase (Rigas et al. 2003). Lentinus tigrinus: This mushroom has antimicrobial and antioxidant (Sevindik 2018), hypoglycaemic and antidiabetic (Dulay et  al. 2014), anti-inflammatory (Ragasa et al. 2018), anticancer (Mohammadnejad et al. 2019) and immunomodulatory (Gao et al. 2019) properties. Dulay et al. (2014) studied the antibacterial activity of the extracts of L. tigrinus; results showed that the ethanol extract of the fruiting body had antibacterial activities against S. aureus; the same result was obtained by Dulay et  al. (2017) testing the acetonitrile extract of fruiting body of L. tigrinus

1266

Y. Gafforov et al.

against S. aureus. Also, Sevindik (2018) evaluated the antimicrobial activity of extracts of L. tigrinus against bacterial and fungal strains such as Acinetobacter baumannii, E. faecalis, E. coli, P. aeruginosa, and S. aureus as well as C. albicans, C. glabrata and C. krusei. The mushroom extracts exhibited activity against E. coli and P. aeruginosa while were not effective on A. baumannii and were generally more active on fungal strains. This lead to establish that L. tigrinus can be consumed as a natural antimicrobial source against the microorganism. The acetonitrile and hexane extracts of L. tigrinus exhibit radical scavenging activity and the acetonitrile extract also contain appreciable amounts of total phenolics which strongly indicate the great potential of L. tigrinus as source of antioxidant compounds (Dulay et al. 2017). Laccase isolated from L. tigrinus mycelial broth showed an inhibitory effect activity against HIV-1 reverse transcriptase with IC50 value of 2.4  μM (Xu et al. 2012). The hypoglycaemic and antidiabetic properties were studied by Dulay et  al. (2014) determining the reduction of blood glucose level in alloxan-induced diabetic mice and results showed that the glucose level was significantly reduced in diabetic mice treated with lyophilized extract of L. tigrinus; considering these biological properties, this mushroom could have great potential health benefits in the management of diabetes mellitus. Two fungal immunomodulatory proteins (FIPs) as Fip-lti1 and Fip-lti2 isolated from L. tigrinus showed hepatoprotective and immunomodulatory activities, protected the liver from induced oxidative damage, as evidenced by a decrease in serum aminotransferase (AST, ALT) levels (Gao et al. 2019). In addition, Mohammadnejad et  al. (2019) reported the anticancer potentiality of a soluble protein fraction of L. tigrinus that showed greater antiproliferative and cytotoxic activities against PC3 cells; this suggests that the soluble protein fraction of this mushroom may be considered as a potent anticancer compound.

Local Food Uses Edibility, aroma and flavor Lentinus arcularius: Inedible, faintly fragrant odor and indistinct flavor Lentinus brumalis: Inedible, faint odor and mild flavor Lentinus ciliatus: Inedible, indistinct odor and flavor Lentinus squarrosulus: Edible, mild or none odor, indistinct flavor Lentinus tigrinus: Edible, fruity and pleasant odor and pleasant mushroom but later astringent flavour

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1267

Cooking Note Lentinus arcularius: This fungus is well known in Japan as an edible but essentially unpalatable mushroom due to its tough texture. The dried fruiting bodies have been used as source material for Japanese style broth (Otaka and Araya 2013). Lentinus brumalis: too tough and insubstantial to be of any culinary interest. Lentinus squarrosulus: appreciated by the local communities in Africa and Asia for its taste and meaty texture as well as its purported medicinal benefits. The basidiocarps are soft and brittle when harvested young (12–36 hours) but become very tough and leathery when fully matured in approximately 3–5  days’ time. Nevertheless, a method to soften the basidiocarp has been noted among the Igbo people. It involves shredding the basidiocarp into pieces before rubbing them with the red oil from Elaeis guinensis (African oil palm). Sometimes, the mushroom is prepared in the form of soup as the boiling process can make the mushrooms softer (Lau and Abdullah 2017). Lentinus ciliatus: too tough and insubstantial to be of any culinary interest. Lentinus tigrinus: Leathery flesh, strong aroma, and taste that makes it applicable in gourmet preparations (Dulay et  al. 2014). L. tigrinus is considered edible, is locally consumed in the areas where it is most commonly found. This mushroom is unpopular with mushroom pickers, firstly, because of the rather modest size, despite the fact that only young mushrooms can be eaten, as they become tough over time; second, it’s pretty tasteless; thirdly, there are reports that its smell is highly dependent on the wood on which it grows, and sometimes the fungus stinks a lot. Cases of gastrointestinal disorders are reported sporadically but are little or nothing documented both from a clinical point of view and for the information relating to the treatments carried out (or not) before consumption. Among the potential causes, the hypothesis of the consumption of specimens grown in polluted environments or in a poor state of conservation is certainly plausible. It is therefore a species not recommended; in any case consumption should be limited to young specimens only, subject to mandatory pre-boiling treatments with elimination of water and subsequent complete cooking (Sitta et al. 2021). In Ukrainian and Russian cuisine, mushrooms are rarely cooked, unless there are other, more valuable species. But among the Koreans, Japanese and Chinese, this representative of the mushroom kingdom is well known and widespread. It is believed that with regular use it prevents the development of tumors and helps strengthen the immune system. Thus, the scaly sawfly is not a very common edible mushroom. The sawflies are not suitable for boiling or frying. They can only be prepared by salting or pickling. They need advance preparation. These mushrooms should be washed well and soaked for 10–12 hours. Then they should be boiled in salted water for 20–25 minutes. It is taste mediocre (­ https://fermer.blog/bok/griby/ uslovno-­sedobnye-­griby/13015-­pilolistnik-­cheshujchatyj.html).

1268

Y. Gafforov et al.

References https://fermer.blog/bok/griby/uslovno-­sedobnye-­griby/13015-­pilolistnik-­cheshujchatyj.html Abiodun O, Alege A, Ezurike P, Nkumah A, Adelowo O, Oke T (2021) Lentinus squarrosulus (Mont.) mushroom: molecular identification, in vitro anti-diabetic, anti-obesity and cytotoxicity assessment. Turkish. J Pharm Sci. https://doi.org/10.4274/tjps.galenos.2021.72798 Adejumo T, Awosanya O (2005) Proximate and mineral composition of four edible mushroom species from South Western Nigeria. Afr J Biotechnol 4(10):1084–1088 Agbagwa SS, Chuku EC, Amadi GK, Sampson CE (2022) Determination of nutrient and phytochemical compositions of wild edible Lentinus squarrosulus (Mont.) singer found in Rivers State. Res J Pure Sci Technol 8(1):2695–2696 Atri N, Chadha M, Lata SR, Upadhyay R (2019) Taxonomic and domestication studies on Lentinus squarrosulus. pp 121–143 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region Borokini F, Lajide L, Olaleye T, Boligon A, Athayde M, Adesina I (2016) Chemical profile and antimicrobial activities of two edible mushrooms (Termitomyces robustus and Lentinus squarrosulus). J Microbiol Biotechnol Food Sci 5:416–423 Breitenbach J, Kränzlin F (1991) Fungi of Switzerland. Volume 3, Boletes and agarics 1st part. Lucerne. 361 p. Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61(2):189–193 De Leon A, Reyes R, Dela Cruz TE (2013) Lentinus squarrosulus and Polyporus grammocephalus: newly domesticated, wild edible macrofungi from The Philippines. Philippine Agric Sci 96:411–418 Dulay RM, Miranda LA, Malasaga JS, Kalaw SP, Reyes RG, Hou CT (2017) Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatal Agric Biotechnol 9:141–144 Dulay RM, Arenas MC, Kalaw SP, Reyes RG, Cabrera EC (2014) Proximate composition and functionality of the culinary-medicinal tiger sawgill mushroom, Lentinus tigrinus (higher Basidiomycetes), from The Philippines. Int J Med Mushrooms 16(1):85–94 Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60 Fleck WF, Schlegel B, Hoffmann P, Ritzau M, Heinze S, Grafe U (1996) Isolation of isodrimenediol, a possible intermediate of drimane biosynthesis from Polyporus arcularius. J Nat Prod 59(8):780–781 Fraga BM (1999) Natural sesquiterpenoids. Nat Prod Rep 16:711–730 Gafforov Y, Ordynets A (2022) Aphyllophoroid fungi of Uzbekistan. Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan. Occurrence Dataset. Available online at: GBIF.org. Accessed 13 Aug. https://doi.org/10.15468/vsru5z Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-­ inhabiting Poroid and Corticioid fungi in Uzbekistan. Front Microbiol 11:598321 Gao Y, Wáng Y, Wang Y, Wu Y, Chen H, Yang RH, Bao D (2019, 2019) Protective function of novel fungal immunomodulatory proteins Fip-lti1 and Fip-lti2 from Lentinus tigrinus in Concanavalin A-induced liver oxidative injury. Oxidative Med Cell Longev:1–15 Hermawan R (2020) Study of Lentinus squarrosulus from West Java on the basis of molecular and morphological data. J Biota 7:1–9 Jonathan S, Olawuyi O, Oluranti O (2012) Studies on immunomodulatory and prophylactic properties of some wild Nigerian mushrooms. Academia Arena 4:39–45

Lentinus arcularius (Batsch) Zmitr.; Lentinus brumalis (Pers.) Zmitr.; Lentinus…

1269

Lau BF, Abdullah N (2017) Bioprospecting of Lentinus squarrosulus Mont., an underutilized wild edible mushroom, as a potential source of functional ingredients: a review. Trends Food Sci Technol 61:116–131 Lee SY, Choi IG, Kim M (2016) Biosynthesis of Eudesmane-type Sesquiterpenoids by the wood-­ rotting fungus, Polyporus brumalis, on specific medium, including inorganic magnesium source. J Korean Wood Sci Technol 44:253–263 Malik AR, Wani AH, Bhat MY, Parveen S (2017) Ethnomycologicl knowledge of some wild mushrooms of northern districts of Jammu and Kashmir, India. Asian J Pharm Clin Res 10(9):399–405 Mohammadnejad S, Pourianfar H, Drakhshan A, Jabaleh I, Rezayi M (2019) Potent antiproliferative and pro-apoptotic effects of a soluble protein fraction from culinary-medicinal mushroom Lentinus tigrinus on cancer cells. J Food Measure Char 13:3015 Mortimer PE, Xu J, Karunarathna SC, Hyde KD (2014) Mushrooms for trees and people: a field guide to useful mushrooms of the Mekong region. The World Agroforestry Centre, Kunming, p 125 Mossebo DC, Metsebing BP, Oba R, Tsigaing TF, Ryvarden L, Fonkui TY, Mungoh TC, Ndinteh DT (2020) Comparative evaluation of antifungal and antibacterial activities of crude extracts of Pleurotus sajor-caju, Pleurotus tuber-regium and Lentinus squarrosulus (Basidiomycota, Pleurotaceae, Lentinaceae) from Cameroon. European Journal of Biology and Biotechnology 1(5). mushrooms. Curr J Appl Sci 2018(18):75–82 Ndong H, Degreef J, Kesel A (2011) Champignons comestibles des forêts denses d'Afrique centrale Taxonomie et identification. 10:1–254 Ndong HCE, Ntoutoume C, Cognet S (2020) Essai de domestication de Lentinus squarrosulus Mont. a partir d’une souche du Gabon. Afr J Online 33(1):13–20 Ndong HCE, Orango-Bourdette JO, Iwangou G, Engonga LCO (2021) A study of the therapeutic potential of Lentinus squarrosulus (Agaricomycetes) from Gabon. Int J Med Mushrooms 23(4):39–45 Obodai M, Ferreira ICFR, Fernandes A, Barros L, Mensah DLN, Dzomeku M, Urben AF, Prempeh J, Takli RK (2014) Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules 19(12):19532–19548 Ohtsuka S, Ueno S, Yoshikumi C, Hirose F, Ohmura Y, Wada T, Fujii T, Takahashi E (1973) Polysaccharides having an anticarcinogenic effect and a method of producing them from species of Basidiomycetes. UK Patent 1331513 Omar MNA, Abdullah N, Kuppusamy UR, Abdulla MA, Sabaratnam V (2011) Nutritional composition, antioxidant activities, and antiulcer potential of Lentinus squarrosulus (Mont.) Mycelia extract. Evid Based Complement Alternat Med 2011:539356 Omar MNA, Abdullah S, Abdullah N, Kuppusamy UR, Abdulla MA, Sabaratnam V (2015) Lentinus squarrosulus (Mont.) mycelium enhanced antioxidant status in rat model. Drug Des Devel Ther 9:5957–5964 Otaka J, Araya H (2013) Two new isodrimene sesquiterpenes from the fungal culture broth of Polyporus arcularius. Phytochem Lett 6:598–601 Prateep A, Sumkhemthong S, Suksomtip M, Chanvorachote P, Chaotham C (2017) Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm Biol 55(1):1792–1799 Ragasa C, Tan M, De Castro ME, De Los Reyes M, Oyong G, Shen CC (2018) Sterols from Lentinus tigrinus. Pharm J 10(6):1079–1081 Reena RD, Kandagalla S, Krishnappa M (2020) Exploring the ethnomycological potential of Lentinus squarrosulus Mont. through GC–MS and chemoinformatics tools. Mycology 11:1–12 Rigas F, Dritsa V, Chatzidakis J, Marchant R (2003) Detoxification characteristics of selected Polyporus species for bioremediation applications. Proceedings of the International Conference on Environmental Science and Technology pp 739–746 Rungprom W (2018) Antioxidant and antihyperglycemic activities of four edible Lentinus. Curr J Appl Sci Technol 18:75–82

1270

Y. Gafforov et al.

Ryu SH, Kim B, Kim B, Seo JH (2014) Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis. Bioprocess Biosyst Eng 37:393–400 Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synop Fungorum 31:1–455 Ryvarden L, Gilbertson RL (1993) European Polypores. 1. Abortiporus—Lindtneria. Fungi Flora, Oslo, p 387 Sadi G, Emsen B, Kaya A, Kocabas A, Cinar S, Kartal DI (2015) Cytotoxicity of some edible mushroom extracts over liver hepatocellular carcinoma cells in conjunction with their antioxidant and antibacterial properties. Pharmacogn Mag 11(1):6–18 Sevindik M (2018) Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv Pharmacol Sci 2018:1718025 Sharma SK, Atri N (2014) Nutraceutical composition of wild species of genus Lentinus Fr. from Northern India. Current Research in Environmental and Applied Mycology 4:11–32 Sitta N, Davoli P, Floriani M, Suriano E (2021) Guida ragionata alla commestibilità dei funghi Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diez MT, Garcia JB, Val AG, Gorrochategui J, Hernandez P, Peláez F, Vicente MF (2000) Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek 78:129–139 Sutthisa W, Chaiyacham P (2022) Antibacterial activity of Ethanolic extracts of Lentinus squarrosulus Mont. against human pathogenic bacteria. J Pure Appl Microbiol 16(1):441–447 Torres ML, Reyes R, Tadiosa E, Ontengco D (2020) Ethnomycological studies on the Bugkalot indigenous Community in Alfonso Castañeda, Nueva Vizcaya, Philippines. International Journal of Pharmaceutical Research and Allied Sciences 9(4):43–54 Ugbogu EA, Akubugwo IE, Ude VC, Gilbert J, Ekeanyanwu B (2019) Toxicological evaluation of phytochemical characterized aqueous extract of wild dried Lentinus squarrosulus (Mont.) mushroom in rats. Toxicological research 35(2):181–190 Xu L, Wang H, Ng T (2012) A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. J Biomed Biotechnol 536725. https://doi.org/10.1155/2012/536725 Yamac M, Bilgili F (2006) Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol 44(9):660–667 Yen LTH, Thanh TH, Anh DTH, Linh NM, Nhan VD, Kiet TT (2022) Antimicrobial and antioxidant activity of the polypore mushroom Lentinus arcularius (Agaricomycetes) isolated in Vietnam. International Journal of Medicinal Mushrooms 24(3):15–23 Zmitrovich IV (2010) The taxonomical and nomenclatural characteristics of medicinal mushrooms in some genera of Polyporaceae. International Journal of Medicinal Mushrooms 12(1):87–89 Zmitrovich IV, Vlasenko VA, Stavishenko IV, Vlasenko AV (2019) A stipe reduction series in Lentinus substrictus (=Polyporus ciliatus) (Polyporaceae, Agaricomycetes). Mikologiya I Fitopatologiya 53(5):319–322

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.) Cooke - TRICHOLOMATACEAE Yusufjon Gafforov, Mustafa Yamaç, Milena Rašeta, Manzura Yarasheva, Rainer W. Bussmann, and Sylvie Rapior

Lepista irina (Fr.) H.E. Bigelow Synonyms: Agaricus irinus Fr.; Clitocybe irina (Fr.) H.E.  Bigelow & A.H.  Sm.; C. irina var. luteospora H.E.  Bigelow & A.H.  Sm.; Gyrophila irina (Fr.) Quél.; Lepista irina var. montana Bon.; Rhodopaxillus irinus (Fr.) Métrod; Tricholoma irinum (Fr.) P. Kumm. Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] M. Yamaç Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey e-mail: [email protected] M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] R. W. Bussmann Department of Ethnobotany, State Museum of Natural History, Karlsruhe, Germany Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi, Georgia e-mail: [email protected]; [email protected]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_118

1271

1272

Y. Gafforov et al.

Lepista nuda (Bull.) Cooke Synonyms: Agaricus bicolor Pers.; A. bulbosus Bolton; A. nudus Bull.; A. nudus var. aggregatus Pers.; A. nudus var. allochrous Pers.; A. nudus var. majus Cooke; A. nudus var. praticola Alb. & Schwein.; A. nudus var. sylvaticus Alb. & ­Schwein.; A. tyrianthinus Fr.; Clitocybe nuda (Bull.) H.E. Bigelow & A.H. Sm.; C. tyrianthina (Fr.) P.  Karst.; Collybia lilacea Quél.; C. lilacea var. distantelamellata Rick; Cortinarius bicolor Gray; C. nudus (Bull.) Gray; Gyrophila nuda (Bull.) Quél.; Lepista nuda f. gracilis Noordel. & Kuyper; L. nuda var. armeriophila BlancoDios; L. nuda var. lilacina; L. nuda var. pruinosa (Bon) Bon ex Courtec.; L. nuda var. pruinosa Poisy; L. nuda var. tridentina (Singer) Singer; L. nuda var. tucumanensis Singer; L. nuda var. tyrianthina (Fr.) Bon; L. nuda var. violaceofuscidula (Singer) Singer; Omphalia tyrianthina (Fr.) Quél.; Rhodopaxillus nudus (Bull.) Maire; R. nudus var. pruinosus Bon; R. nudus var. tridentinus Singer. R. nudus var. tucumanensis (Singer) Raithelh.; R. nudus var. violaceofuscidulus Singer; Tricholoma nudum (Bull.) P. Kumm.; T. nudum var. lilaceum Quél. T. nudum var. majus Cooke. T. personatum var. nudum (Bull.) Rick.

Local Names Lepista irina: Uzbek: Binafsha lepista, English: Flowery blewit; Russian: Рядовка, леписта фиалковая; Chinese: 肉色香蘑; French: Tricholome à odeur d’iris; German: Veilchen-Rötelritterling; Korean: 광릉자주방방이버섯; Turkish: Süslü cincile Lepista nuda: Uzbek: Siyohrang lepista, English: Wood Blewit; Russian: Рядовка фиолетовая; Chinese: 裸香蘑; French: Pied bleu; German: Violetter Rötelritterling; Japanese: ムラサキシメジ; Korean: 민자주방망이버섯; Turkish: Mavi cincile, Morbacak, Mor mantar; Serbian: modrikača.

Short Morphological Description Lepista irina: Basidiocarps large. Pileus 5–13 cm in diameter, obtuse and rounded to the disc or convex at the beginning, then spreading or almost, sometimes hilly, viscidule, quickly dry, smooth, with slightly detachable cuticle, whitish at the beginning, quickly pinkish cream, buff pale or dark, with watery blotches often dark hazel, whitish when dry, with rolled and cottony margin at first, then straight, sometimes lobed or wavy, sometimes furrowed by the pressure of the lamellae. Lamellae broadly adnate, sinuate to subdecurrent, narrow to moderately broad, 4–7  mm, S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected]

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1273

easily detachable, very close together, whitish at first, soon pinkish cream to pinkish. Stipe 4–8 × 1–2.5 cm, equal to clavate towards base, sometimes bulbous up to 4 cm wide, stout, solid, fibrous to rough, then more or less streaked longitudinally, sometimes scaly by torn cuticle, whitish to yellowish cream, sometimes mottled brownish, sordid hazel to yellowish-grayish brown, with copious basal mycelium, connected to the substrate. Flesh thick, soft, whitish, pinkish to pale yellowish brown and soft. Basidia with 4-sterigmate (rarely 2), 28–42 × 7–10 μm. Basidiospores ellipsoid, smooth to warty in the same specimen, inactive in Melzer, with cyanophilic ornamentation, 7–9(10) × 4–5.5 μm. Hymenial cystidia absent. Spore print creamy-white to pale greyish pink (Bigelow 1959; Moser 1983; https://ultimate-­ mushroom.com/edible/240-­lepista-­irina.html). Lepista nuda: Basidiocarps large sized. Pileus fleshly, 4–13 even 17 cm in diameter, broadly convex then spreading, broadly ombnate or depressed, viscidule when moist, glabrous, smooth, often appearing bordered on the disc, watery in appearance when cool, sometimes lustrous when dry, subhygrophanous, purple, purple tinted brown to gray when cool and humid, soon brownish, vinous buff, meaty, tan, etc., but often purple around edges until ripe. Margin enrolled at first, then sometimes raised, often wavy or irregular and slightly translucent short-streaked to moisture. Surface very smooth, moist, bare, except the extreme edge which is pruinose when young. Lamellae adnate, adnexate, sometimes decurrent, narrow to fairly wide, 4–8  mm wide, easily detachable, close to very close together, pale purple, purple, bluish purple, grayish purple to bluish lilac at first, then buff, pinkish, pinkish-­buff, brownish to purple, entire or uneven awns. Stipe 2.5–8(10) × 1–2.5(3) cm, often relatively short, stocky, equal, often broadened at base or bulbous, sometimes marginate, solid, fibrillose to furfuraceous towards apex, fibrillose- whitish streaked towards base, dry, pale purple, purple to bluish lilac, fading to dark lavender when crumpled, browning from base, often with purple downy basal mycelium. Flesh thick, fairly soft, flexible, watery at first, purplish, dull lilac to lilac buff, then whitish, tinged with pale winey tawny in the stipe. Hymenial cystidia absent. Pileipellis in ixocutis formed of cylindrical hyphae, 1.5–4 μm in diameter. Clamp connections present. Basidia with 4-sterigmate, 21–33 × 5.5–7.5 μm. Basidiospores ellipsoidal, warty, sometimes smooth, inactive in Melzer, cyanophilic, 5.5–8 × 3.5–5 μm. Spore print pinkish cream, pinkish buff to vinous buff (Kuo 2007; Læssøe and Petersen 2019).

Ecology and Distribution Lepista irina: Saprotroph on deciduous or coniferous forest floors, sometimes also in open areas, on grassy ground. Most common in beech woodland in many parts of mainland Europe (Moser 1983; Kirk et al. 2008; https://ultimate-­mushroom.com/ edible/240-­lepista-­irina.html, https://www.mycodb.fr/fiche.php?genre=Lepista&es pece=irina). Lepista nuda: Saprotroph growing on decaying leaf litter. Grows on soil, on litter, near piles of brushwood and straw, on fallen needles, in coniferous (with pine, with

1274

Y. Gafforov et al.

Fig. 1  Lepista irina (Tricholomataceae), Canada. (Photo https:// www.inaturalist.org/ observations/9593215)

Fig. 2  Lepista nuda (Tricholomataceae), Turkey. (Photo Hakan Alli)

spruce) and mixed (with oak and spruce) forests, as well as in gardens, on compost heaps. Tolerates light frost well. Fruiting bodies appear singly or in groups, sometimes forming “witch circles”. The fungus is common in the temperate zone of the Northern Hemisphere to Australia (Ye et al. 2016; Du et al. 2018; Wang et al. 2019; McKnight et al. 2021) (Figs. 1 and 2).

Mycochemistry Lepista irina: This fungus is known as a strongly perfumed species which can be distinguished by its typical odor reminding of “iris oil” or “orange blossoms” (Moser 1983). Three sesquiterpenes with bisabolane skeleton were isolated and identified from submerged cultures of L. irina during 4-week of incubation period and the major one was named as lepistirone (Abraham et al. 1991). Several years later, volatile (β-ionone, β-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone) and non-volatile (β-apo-10′-carotenal)

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1275

flavor compounds have been formed by mycelium-free culture supernatants of L. irina as breakdown products of β,β-carotene (Zorn et al. 2003). L. irina really looked like a good candidate for the production of flavor and fragrance-compounds important for the food, feed, cosmetic and pharmaceutical industries (Dubal et al. 2008). Moreover, as an edible fungus L. irina has moderate protein content compare to other species. Protein, carbohydrate, and ash content of L. irina were reported as 26.12, 20.20, and 3.16 g/100 g, respectively. On the other hand, carbohydrate content of it was relatively high among 15 wild edible mushroom species (Kumar et al. 2013). Lepista nuda: To determine the release of odorous compounds L. nuda, Noel-­ Suberville et  al. (1996) investigated the volatile organic compounds (VOC) and fatty acids in stipe, pileus and gills of newly cultivated fresh fruiting body samples. As a result, 1-octen-3-ol (“mushroom alcohol”) and linoleic acid were the major smelling compound and fatty acid, respectively. The highest amounts of three VOC (1-octen-3-ol, 1-octen-3-one, and 3-octanone) and fatty acids were obtained in gills which designated as the most aromatic tissue. Polyunsaturated fatty acids (PUFA) and the linoleic acid are the main group of fatty acids and the major fatty acid (51.5%) in L. nuda (Barros et al. 2008; Toledo et al. 2016). It has also been claimed that the gills are the major compartment for the metabolic interconversion of fatty acids into VOC. Because of releases the largest quantities of VOC (more than 90%), the cap (pileus with gills) considered to aromatically more qualified compared to the stipe. Audouin et al. (1989) isolated α- and β-bisabolenes from aroma of fruit bodies of L. nuda, well-known as termite trail attractants (Argenti et al. 1994). Monoterpenes as linalool and both linalool oxides were identified from L. nuda (Breheret et al. 1997; Rapior et al. 2003). A sterol, 5α,9α-epidioxy-(22E)-ergosta-7,22-diene-3β,6β-­ diol, was isolated from L. nuda together with Panellus serotinus and Tricholoma matsutake (Yaoita et al. 2001). A ceramide constituent as (2S,29R,3R,4E,8E)-N-29-­ hydroxyhexadecanoyl-2-amino-9-methyl-4,8-octadecadiene-1,3-diol have been obtained from commercial fresh Lepista nuda (Yaoita et al. 2002). Lepista nuda is also well-known to contain a broad spectrum nutritional, functional and medicinal components. Primary metabolites from L. nuda: The two main components of the mushroom are carbohydrates and crude proteins (Kalač 2009). Significant differences are reported for them for L. nuda (Lee et  al. 2006a). Ouzouni et  al. (2009) summarized that L. nuda contain 56.33 ± 0.15 g/100 g d.w. of carbohydrates, 34.37 ± 0.15 g/100 g d.w. of proteins, and 3.23 ± 0.01 g/100 g d.w. of fats, respectively. In general, the protein and carbohydrate contents of L. nuda were reported within the range of between 3.70–60.38 g/100 g d.w. and 4.17–71.00 g/100 g d.w., respectively in previous studies (Lee et al. 2006a; Colak et al. 2007; Ouzouni et al. 2007, 2009; Egwim et al. 2011; Toledo et al. 2016; Shu et al. 2019).

1276

Y. Gafforov et al.

Lee et  al. (2006a) reported this species contains relatively low carbohydrate, protein, and fat content as 4.34%, 3.70%, and 0.47%, respectively. Galactose (51.98 mg) and trehalose (22.48 mg) were determined as major carbohydrates. On the other hand, Shu et al. (2019) reported that water-soluble polysaccharides of this species contains excellent food components including 56.39% protein, 45.0% total carbohydrates, 7.92% fiber, and 3.87% fat. The differences between amounts of L. nuda primary metabolites (Lee et al. 2006a; Shu et al. 2019) can be caused by used samples, whereas Shu et al. (2019) worked on quantification of extracted and purified polysaccharides. L. nuda polysaccharides (LNP), based on their nutritional composition, are expected to be developed as a new efficacy factor in the food industry (Shu et al. 2019). Sari et al. (2017) reported that the vast majority of total glucans in the cap and stipe from wild fruiting body of L. nuda was β–glucan polysaccharides, 92.91% and 82.81%, respectively. Most of the studies have focused on the fruiting body; however exopolysaccharide from submerged culture was also produced by L. nuda (Özdal 2018). Recently, two novel polysaccharides (LNP-1, LNP-2) with antioxidant activity were isolated from fresh basidiomata of L. nuda and purified by DEAE Cellulose-52 and Sephadex G-150 chromatography. The molecular weight, polysaccharide and protein contents of LNP-1 and LNP-2 were 11.703  Da, 87.71%, 0.97% and 13.369 Da, 81.20%, 0.68%, respectively. LNP-1 and LNP-2 are mainly composed of mannose, glucose, galactose, arabinose and fucose, while LNP-1 also contains xylose (Shu et al. 2019). It should be noted that L. nuda was also reported as a rich source of essential amino acids as isoleucine, leucine, lysine, threonine, and valine as well as minerals as K and Mg (Lee et al. 2006a). Furthermore, a metalloprotease, with molecular weight of 20.9 kDa, have been isolated from dried fruiting bodies of the wild L. nuda (Wu et al. 2011). Other metabolites from L. nuda: Chen et  al. (2012) isolated for the first time 2-methoxy-5-methyl-6-­­ methoxymethyl-p-benzoquinone, 6-hydroxy-2H-pyran-3-carbaldehyde, and indole-­3-carbaldehyde from the most active fraction of L. nuda broth culture (cited as Clitocybe nuda). As regards phenolic content, the ethanol extract of L. nuda prepared by reflux and microwave assisted methods gave 12.06 and 11.84 mg/g total phenol content while fresh L. nuda contained 1.87 mg/g total phenol compounds (Lee et al. 2006b). In a comparative study (Pinto et al. 2013), the content of total phenolic compounds of mycelial biomass in produced different media (max. 33.57 mg GAE/g extract) were distinctly higher than cultivated and wild basidiomata samples (max. 20.54 mg GAE/g extract) of L. nuda. Toledo et al. (2016) reported that total phenolic content of L. nuda was 27.34 mg GAE/g extract. Total phenol, α-tocopherol, and β-carotene contents of dried L. nuda basidiomata were reported as 7.7, 1.4, and 0.007 mg/g, respectively (Elmastas et  al. 2007). Also, vitamins in the form of α-, β-, and γ-tocopherol content of dried L. nuda basidiomata were reported as 7.95, 12.13, and 14.64 ng/g fresh weight, respectively (Barros et al. 2008).

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1277

Pinto et al. (2013) concluded that the habitat and growth conditions of the mushroom have an effect on its mycochemical and bioactive properties. After a study to compare the chemical composition and antioxidant potential of L. nuda samples from different habitats and mycelia produced by in vitro culture using different culture media, they have reported that cultivated basidiomata of L. nuda was better in levels of energy, proteins, carbohydrates, polyunsaturated fatty acids and phenolic compounds, while the wild sample from the oak forest gave the highest level of organic acids. On the other hand, mycelia produced in submerged conditions showed impressive results in terms of bioactive compounds and antioxidant activity results.

Local Medicinal Uses Lepista irina: In traditional Chinese medicine, L. irina has been used as antitumor agent (Dai et al. 2009). Lepista nuda: In traditional Chinese medicine, L. nuda has been used for regulation of sugar metabolism and support the nervous system (Hobbs 1995), and as antibacterial and antitumor agent (Dai et al. 2009). Dulger et al. (2002) informed that infusion and decoction of L. nuda is used to prevent beriberi disease and to treat abscesses and wounds, respectively. In addition, L. nuda was reported as a mushroom with antitumor activity which occupied in Qinling Mountain in central China (Shen et al. 2009). Kotowski et al. (2019) summarized traditional uses of 92 wild mushroom species from Mazovia (Poland). Among them 76 species were eaten, 21 were known as toxic, and 11 were used for non-culinary purposes; based on these results, L. nuda was traditionally consumed as food in this region of Poland.

Modern Medicinal Uses Lepista irina: The literature on modern medicinal uses of Lepista irina is not abundant. Antimicrobial activity of intact and injured L. nuda specimens were compared by Stadler and Sterner (1998). The L. irina versatile peroxidase represents the first microbial enzyme capable of carotenoid degradation that has been characterized on a molecular level, proving the participation of extracellular enzymes of white rot mushrooms in biotic carotenoid degradation processes (Zorn et al. 2003). No change was determined between the antimicrobial activity of intact and injured fruit bodies while the nematocidal activity increases in response to injury. For antioxidant activity, the petroleum ether, ethyl acetate, and ethanol extracts, as well as polysaccharides of the dried powder of fruit body of L. irina have radical scavenging activity for DPPH and hydroxyl radicals. Ethanol and petroleum ether extracts showed the highest activities in DPPH radical scavenging assay (85.64% and 83.47%, at concentration of 10 mg/mL, respectively). On the other hand, all the extracts except

1278

Y. Gafforov et al.

petroleum ether have higher activity than positive control, butylated hydroxytoluene (BHT) (Chen et al. 2009). As regards antitumor activity, ethyl acetate extract of the dried powder of fruit body of L. irina showed the highest antiproliferative effect (73.8% and 82.7% at 400 and 800 μg/mL concentration, respectively) on H446 cell line which was followed by polysaccharide that equivalent to cisplatin (Chen et al. 2009). Antioxidant and antitumor activities of the species were emphasized in a review for Chinese edible, medicinal and poisonous mushroom (Wu et al. 2019). Lepista nuda: The mycelia, culture broth and fruiting bodies of L. nuda have been found to contain very useful chemical compounds and possess interesting biological properties. Numerous studies have confirmed the antidiabetic (Chen et  al. 2014; Shih et al. 2014), antihyperlipidemic (Chen et al. 2014; Shih et al. 2014), antimicrobial (Suay et al. 2000; Dulger et al. 2002; Mercan et al. 2006; Yamac and Bilgili 2006; Barros et  al. 2008; Alves et  al. 2012), antioxidant (Mercan et  al. 2006; Elmastas et al. 2007; Egwim et al. 2011; Keleş et al. 2011; Xu et al. 2015; Bal et al. 2019; Shu et al. 2019; Emsen et al. 2020; Cerig 2021), antitumor (Hobbs 1995; Lee et  al. 2005; Shen et  al. 2009; Beattie et  al. 2011; Wu et  al. 2011; Özmen and Değirmenci 2021), and antiviral (Li et al. 2009; Wu et al. 2011; Zhu et al. 2016) activities of L. nuda, amongst others.

Antimicrobial Activity Numerous data have been confirmed the potential of L. nuda as an antimicrobial agent. Although Barros et al. (2008) informed that L. nuda had strong antimicrobial activity only against gram-positive bacteria (Bacillus cereus, B. subtilis and Staphylococcus aureus) in both broth dilution method with 5 μg/mL MIC value and disc diffusion method, several reports highlighted the antimicrobial activity of this species against both gram-negative and gram-positive bacteria (Hobbs 1995; Suay et  al. 2000; Dulger et  al. 2002; Mercan et  al. 2006). The extracts from mycelial cultures of L. nuda have strain dependent antibacterial activity against Enterococcus faecium, S. aureus as well as antifungal activity against Candida albicans (Suay et al. 2000). The growth inhibition zones in the agar-well diffusion method were 4–20  mm against the medically important pathogens (Mercan et  al. 2006). The aqueous and organic fractions of culture broth of L. nuda showed moderate antimicrobial activity on Salmonella typhimurium and S. aureus (Yamac and Bilgili 2006). In addition, L. nuda fruiting body extract exhibited antimicrobial activity against Proteus mirabilis and Pasteurella multocida with MIC values of 20 and 5 mg/mL, respectively (Alves et al. 2012). The ethanol extract of the fruiting body of L. nuda not only has antimicrobial activity on four foodborne pathogens (Listeria monocytogenes, S. typhimurium, E. coli O157:H7, and S. aureus), but in addition the antibacterial activity of the ethanol extract was both temperature-stable up to 121 °C and resistant to low and high pH values also (Bo 2012).

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1279

The phytopathogenic fungi and bacteria, Phytophthora capsici and Xanthomonas axonopodis pv. vesicatoria, were also sensitive to the culture broth of L. nuda (Chen and Huang 2009; Chen et al. 2012). The activity was strain dependent. The active compounds are hydrophilic and negative charged with the molecular weights between 500 and 1000 Da (Chen and Huang 2009). The three compounds isolated from ethanol extract of freeze-dried culture broth of L. nuda as 2-methoxy-5-methyl-6-methoxymethyl-p-benzoquinone, 6-hydroxy-­2H-pyran-3-carbaldehyde, and indole-3-carbaldehyde, exhibited 86–100% inhibition of zoospore germination of Phytophthora capsici which is responsible for the Phytophthora blight in cucumber, watermelon, honeydew melon, and especially pepper (Chen et  al. 2012); among them, indole-3-carbaldehyde showed complete inhibition of P. capsici zoospore germination (Chen et al. 2012). Some reports confirm the antiviral activity of L. nuda (Li et al. 2009; Wu et al. 2011). The antiviral activity of aqueous and polysaccharide extracts of L. nuda were analyzed on the infection of Tobacco Mosaic Virus (TMV) on Nicotiana glutinosa; the aqueous and polysaccharide extracts had over 80% and 70% inhibition percentage, respectively (Li et  al. 2009). A metalloprotease isolated from dried fruiting bodies of L. nuda expressed inhibitory activity on HIV-1 reverse transcriptase with an IC50 value of 4.00 μM (Wu et al. 2011). Recently, a laccase enzyme produced in submerged culture of L. nuda, 56 kDa, had also inhibitory activity against HIV-1 reverse transcriptase with an IC50 concentration of 0.65  μM which is lower than metalloprotease mentioned above (Zhu et al. 2016).

Antioxidant Activity A lot of reports confirmed that the extracts of L. nuda prepared with different solvents revealed antioxidant activity. Mercan et al. (2006) reported IC50 as 212 μg/mL and 84.3% for DPPH free radical scavenging and linoleic acid inhibition values, respectively. According to Elmastas et  al. (2007), among other edible mushroom species, the superoxide anion radical scavenging and metal chelating activities of dried L. nuda basidiomata were the highest with 91.23%, and the second highest with 85%. In the linoleic acid system, the inhibitory activity of L. nuda was 97.9% at the concentration of 100  μg/mL, and it was higher than activities of standard compounds α-tocopherol, BHA and BHT (77%, 85%, and 97%, respectively) at the concentration of 400 μg/mL. The IC50 values for DPPH scavenging activity, reducing power, β-carotene bleaching inhibition, and lipid peroxidation inhibition were determined as 4.41, 3.53, 4.21, and 5.80 mg/mL by Barros et al. (2008). Among ten mushroom species, antioxidant activity of wild L. nuda was the highest with lipid peroxidation method (Egwim et al. 2011). The DPPH radical scavenging activity of methanol extract of L. nuda fruiting body was reported as 85.61% by Keleş et al. (2011). Pinto et al. (2013) compared the effect of the habitat and growth conditions on antioxidant activity of mushrooms, and the mycelia produced in incomplete solid

1280

Y. Gafforov et al.

Melin-Norkans medium expressed 1.18–9.39 times better antioxidant activity (DPPH radical scavenging activity, inhibition of lipid peroxidation, and reducing power) results than cultivated or wild fruiting body samples of L. nuda. ABTS radical scavenging and metal ion chelating activities of partially purified polysaccharide of L. nuda were moderate and relatively low, respectively (Xu et al. 2015) On the other hand, the reducing power activity (4.65 mmol Fe/g) was the second highest, which was in agreement with the results of Toledo et al. (2016). Compared with the antioxidant activity of crude (LNP) and purified (LNP-1 and LNP-2) polysaccharide fractions of L. nuda, almost the same pattern was obtained for the scavenging ability on superoxide and DPPH radicals and the chelating activity of ferrous ion. The antioxidant activity of polysaccharides has increased in a concentration dependent manner. All LNP showed higher activity than both purified polysaccharide and LNP-1 slightly higher activity than LNP-2  in all three assay methods (Shu et  al. 2019). Based on the dose-dependent DPPH radical scavenging activity and low total oxidant status, it was concluded that L. nuda can be used as a good antioxidant source (Bal et al. 2019). Recently, after the antioxidant activity, genotoxicity and safety analysis of aqueous and methanol extracts of mycelium and fruiting bodies of L. nuda in human blood cultures, it has been reported that L. nuda is a new resource for therapeutics with their nonmutagenic and antioxidant properties (Emsen et al. 2020; Cerig 2021).

Antitumor Activity L. nuda has been showed pronounced antitumor activity against sarcoma according to Hobbs (1995). In a study with the aim to determine the effect of the extraction method on antitumor activity of L. nuda, the extracts strongly inhibited the growth of human HepG2, KATO III, and AGS cancer cell lines by 71.4–91.8% (Lee et al. 2005). The inhibitory effect of hot water extracts against AGS cells was up to 90.7% at a concentration of 1 mg/mL, while the microwave fraction gave the highest value of 91.8%. The hot water and microwave fractions presented 86.6% and 88.9% inhibition against KATO III cells, respectively. Finally, these fractions inhibited HepG2 cells by 85.5% and 85.2%, respectively (Lee et al. 2005). In a study to screen cytotoxic activity of ethanol, cold and hot water extracts of fifteen mushroom species against six different cancer cell lines, some L. nuda extracts displayed significant cytotoxic activity (Beattie et  al. 2011). A metalloprotease enzyme isolated from dried fruiting bodies of L. nuda had in vitro cytotoxic activity on Hep G2 and leukemia L1210 cells with IC50 values of 4.99  μM and 3.67  μM, respectively (Wu et al. 2011). Among the four analyzed extracts, methanol extract of L. nuda was the most effective against HL60 (leukemia) and MCF-7 (breast cancer) cell lines with an IC50 of approximately 15 mg/mL (Özmen and Değirmenci 2021). Cerig (2021) published for the first time comprehensive evaluation of the antioxidant and cytotoxic effects of hot water extracts of L. nuda and Trametes versicolor at different dose ranges and exposure times on human blood cells. Examined

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1281

hot water extracts did not cause oxidative damage and cytotoxicity in whole blood and lymphocyte cell cultures at dose intervals of 0.01–1 g/L and for 1- and 2-days exposure times, and they can be considered as a nutritional supplement (Cerig 2021).

Against Metabolic Diseases Amongst others, antidiabetic and antihyperlipidemic activities of L. nuda were also reported (Chen et  al. 2014; Shih et  al. 2014). Antidiabetic activity of L. nuda occurred as a result of decreased hepatic glucose production via enzyme glucose-­6-­ phosphatase (G6Pase) downregulation and improved insulin sensitization, while body weight gain, weights of white adipose tissue and hepatic triacylglycerol content were reduced according to its dislipidemic activity. Thus, amelioration of diabetic and dyslipidemic states by L. nuda in high-fet-fed mice occurred by regulation of different factors (glucose transporter 4, G6Pase, phospho-AMP-activated protein kinase) (Chen et al. 2014).

Local Food Uses Edibility, aroma and flavor Lepista irina: It is edible, however, it has been known to cause an upset stomach in some individuals. Weak or strong aromatic odor, pleasant, faintly fragrant, floral, of iris, and mild flavor (https://ultimate-­mushroom.com/edible/240-­lepista-­ irina.html). Lepista nuda: Edible, pleasant smell, slightly aniseed and orange juice-frozen or crisp hay odor, fruity, characteristic, reminiscent of that of hygrophanous mushroom species. Sweet flavor a pleasant taste.

Culinary Note Lepista irina: This fungus must be cooked; never eat them raw. Edible blewits are very good if sauteed and served with pale meat such as veal meat; they are also fine with cheese, rice and pasta dishes (https://ultimate-­mushroom.com/edible/240-­ lepista-­irina.html). Lepista nuda: Conditionally edible mushroom of good quality. Before use, it is subject to heat treatment (preliminary boiling for 10–20 minutes), since in its raw form it can cause stomach upsets, as well as to eliminate the specific smell and taste characteristic of mushrooms growing on rotting organic matter. Grilled, with lime and salt, added to black beans in Guatemala (Mérida Ponce et  al. 2019). Wood

1282

Y. Gafforov et al.

blewits can be used to dye fabrics or paper a grass green color rather than lilac, purple or blue. To make a green dye the fungi are chopped up and then boiled in water in an iron cooking pot (https://www.first-­nature.com/fungi/lepista-­nuda.php).

References Abraham WR, Hanssen HP, Urbasch I (1991) Lepistirones, major volatile metabolites from liquid cultures of Lepista irina (Basidiomycotina). Zeitschrift für Naturforschung C 46:169–171 Alves MJ, Ferreira ICFR, Martins A, Pintado M (2012) Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J Appl Microbiol 113(2):466–475 Argenti L, Bellina F, Carpita A, Dell'Amico N, Rossi R (1994) Termite trail attractants: new syntheses of racemic (E)-α-, (Z)-α- and β-bisabolenes. Synth Commun 24(22):3167–3188 Audouin P, Vidal JP, Richard H (1989) Volatile compounds from aroma of some edible mushrooms: morel (Morchella conica), wood blewit (Lepista nuda), clouded agaric (Clitocybe nebularis), and false chanterelle (Hygrophoropsis aurantiaca). Sci Aliment 9:185–193 Bal C, Sevindik M, Akgul H, Selamoglu Z (2019) Oxidative stress index and antioxidant capacity of Lepista Nuda collected from Gaziantep/Turkey. Sigma J Eng Nat Sci 37(1):1–5 Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR (2008) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56:3856–3862 Beattie KD, Ulrich R, Grice ID, Uddin SJ, Blake TB, Wood KA, Steele J, Iu F, May TW, Tiralongo E (2011) Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro. Mycologia 103(3):458–465 Bigelow HE (1959) Notes on fungi from northern Canada: IV.  Tricholomataceae. Can J Bot 37(5):769–779 Bo L (2012) Antibacterial activities of Clitocybe nuda extract on foodborne pathogens. MSc thesis, Auburn University, 61 pp Breheret S, Talou T, Rapior S, Bessière JM (1997) Monoterpenes in the aromas of fresh wild mushrooms (Basidiomycetes). J Agric Food Chem 45:831–836 Cerig S (2021) A safety assessment of hot aqueous mycelium extracts from Trametes versicolor and Lepista nuda as a food supplement. Biologia 76:2381–2391 Chen J, Huang J (2009) Control of plant diseases with secondary metabolite of Clitocybe nuda. New Biotechnol 26:193–198 Chen Y, Sun H, Zhang SB, Wang LA (2009) Antioxidant and antitumor activities of extracts from Lepista irina. Food Sci 30:214–217 Chen JT, Su HJ, Huang JW (2012) Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici. J Agric Food Chem 60:7341–7344 Chen MH, Lin CH, Shih CC (2014) Antidiabetic and antihyperlipidemic effects of Clitocybe nuda on glucose transporter 4 and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Evid Based Complement Alternat Med. https://doi.org/10.1155/2014/981046 Colak A, Kolcuoglu Y, Sesli E, Dalmar O (2007) Biochemical composition of some Turkish fungi. Asian J Chem 19:2193–2199 Dai YC, Yang ZL, Cui BK, Yu CY, Zhou ZW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11(3):287–302 Du J, Guo HB, Li Q, Forsythe A, Chen XH, Yu XD (2018) Genetic diversity of Lepista nuda (Agaricales, Basidiomycota) in Northeast China as indicated by SRAP and ISSR markers. PLoS One 13(8):e0202761

Lepista irina (Fr.) H.E. Bigelow; Lepista nuda (Bull.)...

1283

Dubal SA, Tilkari YP, Momin SA, Borkar IV (2008) Biotechnological routes in flavour industries. Adv Biotechnol 6(9):20–31 Dulger B, Ergul CC, Gucin F (2002) Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia 73:695–697 Egwim EC, Elem RC, Egwuche RU (2011) Proximate composition, phytochemical screening and antioxidant activity of ten selected wild edible Nigerian mushrooms. Am J Food Nutr 1(2):89–94 Elmastas M, Isildak O, Turkekul TN (2007) Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal 20:337–345 Emsen B, Guven B, Uzun Y, Kaya A (2020) Antioxidant and genotoxic effects of aquaeous and methanol extracts from two edible mushrooms from Turkey in human peripheral lymphocytes. Int J Med Mushrooms 22(2):161–170 Hobbs C (1995) Medicinal mushrooms. An exploration of tradition, healing and culture. Botanica Press, Summertown, p 251 https://ultimate-­mushroom.com/edible/240-­lepista-­irina.html https://www.mycodb.fr/fiche.php?genre=Lepista&espece=irina Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16 Keleş A, Koca I, Gençcelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2(6):2–6 Kotowski MA, Pietras M, Łuczaj Ł (2019) Extreme levels of mycophilia documented in Mazovia, a region of Poland. J Ethnobiol Ethnomed 15:12 Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford Kumar R, Tapwal A, Pandey S, Borah RK, Borah D, Borgohain J (2013) Macro-fungal diversity and nutrient content of some edible mushrooms of Nagaland, India. Nusantara Biosci 5(1):1–7 Kuo M (2007) 100 edible mushrooms. University of Michigan Press, Ann Arbor, p 329 Lee YS, Han JY, Joo EY, Shin SR, Kim NW (2005) Study on the anti-tumor effects of extracts from Lepista nuda mushroom. J Korean Soc Food Sci Nutr 3483:317–322 Lee YS, Kim JB, Shin SR, Kim NW (2006a) Analysis of nutritional components of Lepista nuda. Korean J Food Preserv 13(3):375–381 Lee YS, Joo EY, Kim NW (2006b) Polyphenol contents and antioxidant activity of Lepista nuda. J Korean Soc Food Sci Nutr 35(10):1309–1314 Li D, Zhao W, Kong B, Ye M, Chen H (2009) Inhibition effects of the extract and polysaccharide in macrofungus on TMV. J Yunnan Agric Univ 24(2):175–180 Læssøe TL, Petersen JH (2019) Fungi of temperature Europe (in 2 volumes). Princeton University Press, Princeton, p 1715 Mercan N, Duru ME, Turkoglu A, Gezer K, Kivrak I, Turkoglu I (2006) Antioxidant and antimicrobial properties of ethanolic extract from Lepista nuda (Bull.) Cooke. Ann Microbiol 56(4):339–344 McKnight KB, Rohrer JR, Ward KM, McKnight KH (2021) Peterson field guide to mushrooms of North America, 2nd edn. Houghton Mifflin Harcourt, p 416 Mérida Ponce JP, Hernández Calderón MA, Comandini O, Rinaldi AC, Flores Arzú R (2019) Ethnomycological knowledge among Kaqchikel, indigenous Maya people of Guatemalan Highlands. J Ethnobiol Ethnomed 15(36). https://doi.org/10.1186/s13002-­019-­0310-­7 Moser M (1983) Keys to Agarics and Boleti. Gustav Fischer Verlag, Stuttgart Noel-Suberville C, Cruz C, Guinberteau J, Montury M (1996) Correlation between fatty acid content and aromatic compound release in fresh blewit (Lepista nuda). J Agric Food Chem 44:1180–1183 Ouzouni PK, Riganakos KA (2007) Nutritional value and metal content profile of Greek wild edible fungi. Acta Aliment 36:99–110 Ouzouni PK, Petridis D, Koller WD, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580

1284

Y. Gafforov et al.

Özdal M (2018) Sıvı Kültürde Lepista Nuda Tarafından Miselyal Biyokütle ve Ekzopolisakkarit Üretimi İçin Karbon ve Azot Kaynaklarının Belirlenmesi. Türk Tarım - Gıda Bilim ve Teknoloji Dergisi 6(5):581–585 Özmen A, Değirmenci EH (2021) In vitro anticancer and apoptotic activity of edible mushroom Lepista nuda (Bull.) Cooke on leukemia and breast cancer compared with protocatechuic acid, paclitaxel and doxorubicin. Indian J Exp Biol 59:147–152 Pinto S, Barros L, Sousa MJ, Ferreira ICFR (2013) Chemical characterization and antioxidant properties of Lepista nuda fruiting bodies and mycelia obtained by in vitro culture: effects of collection habitat and culture media. Food Res Int 51:496–502 Rapior S, Fons F, Pélissier Y, Bessière JM (2003) Volatile flavor constituents of Lepista nebularis (Clouded Clitocybe). Cryptogam Mycol 24:159–166 Sari M, Prange A, Lelley JI, Hambitzer R (2017) Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem 216:45–51 Shen Q, Chen W, Yan Z, Xie Z (2009) Potential pharmaceutical resources of the Qinling Mountain in Central China: medicinal fungi. Front Biol China 4(1):89–93 Stadler M, Sterner O (1998) Production of bioactive secondary metabolites in the fruit bodies of macrofungi as a response to injury. Phytochemistry 49(4):1013–1019 Shih CC, Chen MH, Lin CH (2014) Validation of the antidiabetic and hypolipidemic effects of Clitocybe nuda by assessment of glucose transporter 4 and gluconeogenesis and AMPK phosphorylation in streptozotocin-induced mice. Evid Based Complement Alternat Med 15. https:// doi.org/10.1155/2014/705636 Shu X, Zhang Y, Jia J, Ren X, Wang Y (2019) Extraction, purification and properties of water-­ soluble polysaccharides from mushroom Lepista nuda. Int J Biol Macromol 128:858–869 Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diez MT, Garcia JB, Val AG, Gorrochategui J, Hernandez P, Pelaez F, Vicente MF (2000) Screening of Basidiomycetes for antimicrobial activites. Antonie Van Leeuwenhoek 78:129–139 Toledo CV, Barroetaveña C, Fernandes A, Barros L, Ferreira ICFR (2016) Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus spp. Forest, Argentina. Molecules 21:1201 Wang S, Guo H, Li J, Li W, Wang Q, Yu X (2019) Evaluation of five regions as DNA barcodes for identification of Lepista species (Tricholomataceae, Basidiomycota) from China. PeerJ 7:e7307 Wu YY, Wang HX, Tb N (2011) A novel metalloprotease from the wild basidiomycete mushroom Lepista nuda. J Microbiol Biotechnol 21(3):256–262 Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Divers 98:1–76 Yamaç M, Bilgili F (2006) Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol 44(9):660–667 Yaoita Y, Matsuki K, Iijima T, Nakano S, Kakuda R, Machida K, Kikuchi M (2001) New sterols and triterpenoids from four edible mushrooms. Chem Pharm Bull 49(5):589–594 Yaoita Y, Kohata R, Kakuda R, Machida K, Kikuchi M (2002) Ceramide constituents from five mushrooms. Chem Pharm Bull 50:681–684 Ye F, Yu XD, Wang Q, Zhao P (2016) Identification of SNPs in a nonmodel macrofungus (Lepista nuda, Basidiomycota) through RAD sequencing. Springerplus 5(1):1793 Xu L, Wang Q, Wang G, Wu JY (2015) Contents and antioxidant activities of polysaccharides in 14 wild mushroom species from the forest of Northeastern China. Int J Med Mushrooms 17(12):1161–1170 Zhu M, Zhang G, Meng L, Wang H, Gao K, Ng T (2016) Purification and characterization of a white laccase with pronounced dye decolorizing ability and HIV-1 reverse transcriptase inhibitory activity from Lepista nuda. Molecules 21:415 Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves β,β-carotene to flavor compounds. J Biol Chem 384(7):1049–1056

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE Yusufjon Gafforov, Şule İnci, Milena Rašeta, Jonathan Cazabonne, Erol Semra S., Manzura Yarasheva, and Sylvie Rapior

Morchella esculenta (L.) Pers. Synonyms: Helvella esculenta (L.) Sowerby; Morchella abietina Leuba; M. conica Pers; M. conica f. cylindrica (Velen.) Svrček; M. conica var. angusticeps Peck; M. conica var. ceracea Krombh.; M. conica var. cilicicae Clowez; M. conica var. crassa Clowez; M. conica var. distans (Fr.) Clowez; M. conica var. elata Henn.; M. conica var. flexuosa Clowez & Luc Martin; M. conica var. meandriformis Clowez & Moyne; M. conica var. metheformis Pers.; M. conica var. nigra Clowez & Moyne; M. conica var. pusilla Krombh.; M. conica var. pygmaea Clowez & Delaunoy; M. conica var. rigida Krombh.; M. conica var. serotina Peck; M. conica var. violeipes Clowez & Y.  Mourgues; M. cylindrica Velen.; M. distans Fr.; M. distans f. longissima Jacquet.; M. distans f. spathulata Jacquet.; M. dunensis (Castañera, J.L. Alonso & G. Moreno) Clowez; M. dunensis f. sterilis Picón; M. esculenta f. alba Galli; M. esculenta f. dunensis Castañera, J.L. Alonso & G.  Moreno; M. esculenta f. rotunda (Pers.) Reichert; M. esculenta f. sterilis (Picón) Blanco-Dios; M. esculenta subsp. pubescens Pers.; M. esculenta var. abietina (Leuba) Sacc. & Trotter; M. esculenta var. alba Mérat; M. esculenta var. albida (Boud.) Sacc.; M. esculenta var. atrotomentosa M.M. Moser; M. esculenta Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] Ş. İnci Department of Biology, Faculty of Science, Firat University, Elazığ, Turkey e-mail: [email protected]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_119

1285

1286

Y. Gafforov et al.

var. aurantiaca Clowez; M. esculenta var. brunnea Clowez; M. esculenta var. cinerea Mérat; M. esculenta var. conica (Pers.) Fr.; M. esculenta var. corrugata Sacc.; M. esculenta var. dunensis (Castañera, J.L. Alonso & G. Moreno) BlancoDios; M. esculenta var. fulva Fr.; M. esculenta var. grisea Pers.; M. esculenta var. lutescens (Leuba) Sacc. & Traverso; M. esculenta var. mahoniae Clowez & R. Durand bis; M. esculenta var. ovalis Fr. ex Sacc.; M. esculenta var. prunarii (Schulzer & Hazsl.) Sacc.; M. esculenta var. pubescens (Pers.) Sacc. & Traverso; M. esculenta var. rigida (Krombh.) I.R. Hall, P.K. Buchanan, Y. Wang & Cole; M. esculenta var. roseostraminea Clowez; M. esculenta var. rotunda (Pers.) Sacc.; M. esculenta var. rubroris Clowez & Luc Martin; M. esculenta var. stipitata Lenz; M. esculenta var. theobromichroa Clowez & Vanhille; M. esculenta var. umbrina (Boud.) S. Imai; M. esculenta var. umbrinoides Clowez; M. esculenta var. violacea Lév.; M. esculenta var. viridis (Leuba) Sacc. & D. Sacc.; M. esculenta rotunda Pers.; M. lutescens Leuba; M. ovalis f. pallida (Jacquet.) Clowez & Luc Martin; M. prunarii Schulzer & Hazsl.; M. pubescens (Pers.) Krombh.; M. rigida (Krombh.) Boud.; M. rotunda (Pers.) Boud.; M. rotunda var. alba (Mérat) Sacc.; M. rotunda var. alba Boud.; M. rotunda var. cinerea Grelet; M. rotunda var. cinerea Boud.; M. rotunda var. crassipes Jacquet.; M. rotunda var. esculenta (L.) Jacquet.; M. rotunda var. fulva Grelet; M. rotunda var. minutula Jacquet.; M. rotunda var. pallida Jacquet.; M. rotunda var. pallida Jacquet.; M. rotunda var. pubescens (Pers.) Boud.; M. rotunda var. rigida (Krombh.) Jacquet.; M. tremelloides (Vent.) Pers.; M. umbrina Boud.; M. umbrina f. macroalveola Jacquet.; M. viridis Leuba; M. vulgaris var. alba Boud.; M. vulgaris var. alba (Bull.) Clowez; M. vulgaris var. albida Boud.; M. vulgaris var. atrogrisea Clowez; M. vulgaris var. aucupariae Clowez & J.-M. Moingeon; M. vulgaris var. cinerascens Boud.; M. vulgaris var. griseosordida Clowez & Franç. Petit; M. vulgaris var. parvipilea Clowez; M. vulgaris var. parvula Bánhegyi; M. vulgaris var. tremelloides (Vent.) Boud; Morellus esculentus (L.) Eaton; Morilla conica (Pers.) Quél; M. esculenta (L.) Quél. M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected] J. Cazabonne Groupe de recherche en écologie de la MRC-Abitibi (GREMA), Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Amos, QC, Canada e-mail: [email protected] E. Semra S. Neomisel Tarım Üretim A.Ş, Yalova, Turkey e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected]

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1287

Morilla tremelloides (Vent.) Quél.; Phalloboletus esculentus (L.) Kuntze; Phallus esculentus L., Ph. esculentus var. albus Bull.; Ph. esculentus var. cinereus Bull.; Ph. esculentus var. fuscus Bull., Ph. esculentus var. rotundus Pers.; Ph. tremelloides Vent. Morchella steppicola Zerova Synonyms: None

Local Names Morchella esculenta: Uzbek: Oddiy morshella, sariq morshella; English: common morel, morel, yellow morel, true morel, morel mushroom, and sponge morel; Russian: Сморчок съедобный; Japanese: アミガサタケ; French: Morille commune; German: Speise-Morchel; Hindi: गु; Korean: 곰보버섯; Turkish: Kuzugöbeği; Arabic: ‫ ;غوشنة حلوة‬Serbian: okrugli smrčak, kruti smrčak. Morchella steppicola: Uzbek: Cho‘l morshella zamburug‘, Russian: Сморчок степной; Serbian: stepski smrčak.

Short Morphological Description Morchella esculenta: Ascomata 5–12 cm high and 3–8cm wide, sometimes conical, but more often globular or an elongated vertically oval, with waxy flesh. Pileus is hollow and covered in an irregular array of pits separated by narrow ridges. The colour varies from pale cream to ochre, to yellowish-brown or mid-brown, usually darkening somewhat with age. The ribs along the ridges between pits are usually slightly paler than the interior of the pits. Pileus margins are enrolled and fused to the stem. The fertile surfaces, which are lined with spore-producing asci, are within the pits, while the ridges are infertile. Stipe white or pale cream, sometimes marked with brown blotches near the base; flesh tough; hollow; smooth; 3–12 cm tall and 1.5–6 cm diameter at the base, usually tapering towards the apex. Asci typically 260 by 20 μm, cylindrical, hyaline; 8-spored per ascus. Ascospores ellipsoidal, smooth, 17.5–22 × 9–11 μm; hyaline. Spore print light yellow creamy white or pale ochre (Olfati et al. 2009; Clowez and Moreau 2020). Morchella steppicola: Ascomata 5–12 cm high. Pileus nearly round to ovoid, subconical, 3–10 cm high, 3–9 cm wide, pitted and ridged, yellowish-grey, brownish-­ grey with rusty brown ridges when freshly collected, yellowish-brown in dry condition; with large sterile inner cavity; margin attached to the stipe. Hairs on stipe surface cylindrical, lageniform or ampulliform, 70–115 × 13–25 μm. Ridges thick, pits irregular, anastomosing, forming deep, narrow, branching channels,

1288

Y. Gafforov et al.

which in longitudinal section sometimes appear as isolated loculi. Stipe cylindrical or widened below, 4–6 cm high, 5–6 cm wide, dirty white, solid when young, developing several lacunae with maturity, base markedly ridged. Asci cylindrical, 8-spored, hyaline, when fresh, 300–370  ×  19–23 (−26) μm, pars sporifera 120–160 μm, apices rounded or slightly flattened, asci undulate and bifurcate in the lower part. Paraphyses clavate, hyaline, septate, in fresh material 200–220 × 9–11 μm, apices swollen up to 15 μm. Ascospores from dried specimens 18–24 (−29)  ×  (10−) 11.5–14 (−16.5) μm; smooth, ellipsoid, hyaline, immature spores filled with granular content, mature spores with longitudinal striations (Yatsiuk et al. 2016).

Ecology and Distribution Morchella esculenta: This mushroom can spread from low plains to 3200 m above sea level (Wu et al. 2021), on chalky soil under deciduous trees; occasionally with dwarf willow on calcareous dune slacks. It seems likely that at different phases in their development, the underground mycelia of the yellow morel, as well as for Morels, may be able to behave either symbiotically with trees (in an ectomycorrhizal relationship) or as saprotrophs (Buscot 1993). Grows from March to the end of May in Uzbekistan (Gafforov, unpublished data). The yellow morel is distributed throughout the temperate zone of the Northern Hemisphere - from Eurasia to Japan and North America, as well as in Australia and Tasmania. Occurs singly, rarely in groups; quite rare, although the most common, healthy, valuable, and highly prized species among morel mushrooms (Sahin et  al. 2021; Wang et al. 2021). Morchella steppicola: This thermophilic fungus is an ecologically distinctive species compared to close morel representatives, such as M. esculenta or M. crassipes (Dunaev et  al. 2020), and represents the earliest diverging lineage of the genus (O’Donnell et al. 2011). It is widely distributed in central Eurasia (Vasilkov 1948; Gorlenko 1976; Batyrov 1977), especially in temperate grasslands and East European steppes on steppe meadows, grassy, fallow areas on clayey soils, steep slopes of rivers, Artemisia-dominated steppes, pastures, old vineyards and various areas subjected to fire or other human disturbance (Yatsiuk et  al. 2016). Can be considered to a certain extent a rare species (Gorlenko 1976) as it is currently included in some Red Lists or Data Books from eastern countries (e.g Didukh 2009; Red Data Book of the Belgorod region 2019). However, the distribution of this species may be largely underestimated due to its complex phenology (Dunaev et al. 2020). Occur in steppes and semi-deserts from April through May in Uzbekistan (Yatsiuk et al. 2016) (Figs. 1, 2, 3, 4, and 5).

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE Fig. 1  Morchella esculenta (Morchellaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 2  Morchella esculenta (Morchellaceae), Germany. (Photo Rolf Faber)

Fig. 3  Morchella esculenta (Morchellaceae), Turkey. (Photo Yenir)

1289

1290

Y. Gafforov et al.

Fig. 4  Morchella steppicola (Morchellaceae), Uzbekistan. (Photo Shahob Sulaymonov)

Fig. 5  Morchella steppicola (Morchellaceae), Uzbekistan. (Photo Shahob Sulaymonov)

Mycochemistry A mushroom species of the genus Morchella is generally called true morels and “yang du jun” in Mandarin (lamb’s stomach mushroom) as their outer appearance resembles lamb stomachs (Li et al. 2022). Most morel mushrooms contain a wide range of active constituents which include carotenoids (β-carotene and lycopene), organic acids (citric acid, oxalic acid, fumaric acid, quinic acid and malic acid), phenolic compounds (p-coumaric acid, gallic acid, p-hydroxybenzoic acid, protocatechuic acid, and vanillic acid), and tocopherols as α-tocopherol, γ-tocopherol, and δ-tocopherol (Du et al. 2015; Liu et al. 2018; Wu et al. 2021; Sarikurkcu et al. 2022). They also contain many nutritional compounds, including dietary fibers, minerals, proteins, trace elements, and vitamins (Liu and Wang 2007; Gençcelep et al. 2009; Meng et al. 2019). In addition to this, some of them contain cis-3-amino-­ L-proline, a non- protein amino acid, in a free state (Hatanaka 1969). Morchella esculenta: M. esculenta or "true"morel mushroom is an edible and one of the most highly prized edible mushrooms in the world (Gursoy et  al. 2009; Heleno et al. 2013). M. esculenta contain all the important nutrients including carbohydrates, polyunsaturated fatty acids, proteins, and several bioactive compounds such as organic acids, polyphenolic compounds, polysaccharides, and tocopherols (Li et al. 2022).

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1291

The fruiting body of M. esculenta contains a wide variety of active ingredients such as minerals, polynucleotides, polysaccharides, proteins, steroids, and vitamins (Sunil and Xu 2022). Its fruiting body is difficult to collect in nature, and the quality is not always reliable (Li et al. 2022). For this reason, the cultivation of its mycelia represents a useful alternative for large-scale production (Li et al. 2022), and scientists in France and the United States from 1883 began with the experiments on morel production including M. crassipes and M. esculenta in submerged cultivation (Roze 1883), and the first commercial product, “Morel mushroom flavoring”, was produced in the 1950s by the special products division of Mid-America Dairymen Inc. (Tietel and Masaphy 2018). Moreover, Li et al. (2022) highlighted that the cultivation of M. esculenta fruiting bodies takes a long time, requires a large volume of substrates and space, and it is difficult to control the product quality, therefore the submerged culture of M. esculenta appears to be a promising alternative method for its production. In relation to this, M. esculenta mycelium is extensively used as an innovative food flavoring agent, which is safe for human consumption which providing high-­ quality nutrients (Gursoy et al. 2009; Li et al. 2022). Many scientific reports revealed M. esculenta nutritional composition, whereas the main nutritional components of M. esculenta were described as follows: fat 2.0%, ash 9.7%, fiber 17.6%, proteins 32.7%, and carbohydrates 38.0% (Wahid et al. 1988). In a different study, crude protein, carbohydrate and crude fat contents of the mycelium of the same species were determined as 417.1 mg/g, 349.3 mg/g and 120.3  mg/g, respectively (Tsai et  al. 2006). Seven years later, Heleno et  al. (2013), published a study with two strains of M. esculenta (Portugal and Serbia) which revealed that carbohydrates were also the most present macronutrients (74.55–78.36 g/100 g d.w.), followed by proteins (11.49–11.52 g/100 g d.w.) and ash (7.89–11.34 g/100 g d.w.), while fat (2.26–2.59 g/100 g d.w.) contents were the lowest and similar in both samples. Similar to these results, Papazav et al. (2020) determined crude protein, crude fat and total carbohydrate contents of M. esculenta as follows 11.31 g/100 g d.w., 2.45 g/100 g d.w. and 78.33 g/100 g d.w., respectively. Recently, the mycelium of M. esculenta has been shown to contain 0.32  ±  0.07% total ash, 4.20  ±  0.49% moisture, 17.17  ±  0.07% crude lipid, 38.96  ±  4.60% carbohydrates, 39.35  ±  0.35% crude protein, and 467.77 ± 0.21 kcal/100 g energy, which provides similar proportions of macronutrients as the U.S. Dietary Reference Intakes recommend (Li et al. 2022). On the other hand, M. esculenta is known to contain low molecular weight compounds including alkaloids, anthocyanins, anthraquinone, flavonoids, glycosides, phenols, saponins, tannins and terpenoids (Thakur and Lakhanpal 2014). Thakur et al. (2021) summarized that the fruiting body of M. esculenta contains various bioactive compounds such as carotenoids, organic acids, phenolic compounds (p-coumaric, p-­ hydroxybenzoic, and protocatechuic acids as the most common), polysaccharides (MEP-1, MEP-2, and MEP-3), tocopherols, and various aromatic compounds (acids, aldehydes, esters, ketones, and terpenes).

1292

Y. Gafforov et al.

Carbohydrate and Polysaccharide Composition Arabitol, glucose, mannitol and trehalose were detected in the mycelium of M. esculenta and the total amount of sugars was reported as 74.83 mg/g (Tsai et al. 2006). The highest exopolysaccharide production from M. esculenta was detected in the presence of glucose as a carbon source (2301 ± 212 mg/L) in the medium (Meng et al. 2010a, b). In a different study, two fractions of polysaccharides of the same species (MEP-I and MEP-II) were purified (Cui et al. 2011). A novel polysaccharide (MEP-II) has been isolated from the fermentation broth of M. esculenta. Mannitol and trehalose were detected in M. esculenta strains collected from Serbia and Portugal, while fructose was not detected in the sample from Serbia (Heleno et al. 2013). Three main fractions named as MP-1, MP-3 and MP-4 were obtained from crude polysaccharides of M. esculenta fermented with soybean residue. Recovery rates of these polysaccharides were 26.2%, 29.1% and 18.7% for MP-1, MP-3 and MP-4, respectively (Li et  al. 2017). Based on the extraction method described, M. esculenta polysaccharides were extracted as the fruiting body polysaccharide (FB-MEP) by grinding the fruiting body and soaking it in hot water (Cai et  al. 2018). Cai et al. (2018) isolated polysaccharide named as FB-MEP with a molecular weight of 4.7  ×  103  Da and reported that this structure consists of galactose, glucose, and mannose. The arabinose, glucose, maltose and sucrose contents of wild-growing M. esculenta were reported as 1.79, 74.27, 52.98 and 1.01  μg/g, respectively (Akyüz et al. 2019). Extracellular polysaccharide with a molecular weight of 1391.5  kDa was extracted from M. esculenta cultured under submerged fermentation. The main chemical structure of this polysaccharide was reported to consist of 1,3,4-linked-­ Manp, 1,2-linked-Manp and 1,6-linked-Glcp (Li et al. 2021). M. esculenta polysaccharides mainly contain mannose, galactose, glucose, rhamnose and N-acetyl glucosamine as monosaccharide units (Wu et  al. 2021). Crude proteinized- and deproteinized-polysaccharides were isolated from the fruiting bodies of M. esculenta. Their yields were reported as 3% and 1.3%, respectively (Badshah et  al. 2021). A new polysaccharide with a molecular weight of 1.69 × 105 Da was isolated from M. esculenta and it was determined that this polysaccharide consisted of galactose, glucose, and mannose (Wang et al. 2021). A new polysaccharide FMP-2 composed of mannose, glucuronic acid, glucose, galactose and arabinose was purified from M. esculenta (Zhang et al. 2022).

Protein and Amino Acids Composition Wei et al. (2001) separated glycoproteins from the fermentation media of M. esculenta by high-speed countercurrent chromatography (Wei et al. 2001). At the end of 2010s, in another study, Morchella protein hydrolysate was produced from M. esculenta (Zhang et  al. 2018). In the same year, Dospatliev et  al. (2018) worked on

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1293

the determination of amino acid composition of the fruiting bodies of M. esculenta, and the authors showed that  it was possible to determine in mushrooms cap and stem 19 free amino acids (γ-amino butyric acid, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, 4-hydroxyproline, leucine, isoleucine, lysine, orn dihydrochloride, phenylalanine, proline, threonine, tryptophan, tyrosine, serine, and valine), whereas the total free amino acid contents were 26.17 mg/kg d.w. and 42.75 mg/kg d.w. for the cap and the stem, respectively. Of all quantified 19 amino acids, only six were found in larger amounts in the cap than in the stem, with glutamine as the most present ones in both of them (7.71 ± 0.59 mg/kg d.w. and 7.39 ± 0.56 mg/kg d.w. for the cap and the stem, respectively).

Fatty Acids Regarding the fatty acid composition, polyunsaturated fatty acids were found to be the most prevailing in M. esculenta collected from Serbia and Portugal as 75.94 ± 0.08% and 72.45 ± 0.03%, respectively (Heleno et al. 2013). The authors also reported that α-linolenic acid was more dominant in the sample collected from Serbia (7.21 ± 0.08%). In another study, fatty acid (1-octadecanoic acid) has been isolated from M. esculenta (Lee et al. 2018). One year later, Akyüz et al. (2019) determined that wild M. esculenta contained fatty acids such as eicosadienoic acid (0.28%), linolenic acid (0.45%), heneicosanoic acid (0.99%), stearic acid (2.51%), palmitoleic acid (3.49%), oleic acid (8.31%), palmitic acid (12.54%), and linoleic acid (71.41%). Unsaturated fatty acid such as linoleic acid and unsaturated fatty acid ester such as ethyl linoleate were detected in M. conica (Yang et  al. 2019). Similar to the study obtained by Heleno et al. (2013), Papazav et al. (2020) determined that the content of unsaturated fatty acids (linoleic acid, oleic acid, arachidonic acid and linolenic acid) of M. esculenta was the highest (67.7%), in comparison with the content of saturated fatty acids (myristic acid, palmitic acid, stearic acid, arachidic acid) (32.3%), and monounsaturated fatty acids (9.0%) (Papazav et  al. 2020). A recent data (Haq et al. 2022) generated a mycochemical profile from the extracts of M. esculenta using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) which include compounds as follows: acenocoumarol, linoleic acid, naringenin-7-O-glucoside, N-succinyl-L-diamino pimelic acid, oleic acid, oleamide, and palmitic acid.

Volatile Aromatic Compounds (VOC) Taşkın (2013) determined VOC from two Morchella species, including M. esculenta by headspace gas chromatography mass spectrometry (HS-GC/MS). Of a total 31 aroma compounds, in M. esculenta samples were identified 17 compounds as acids (propanoic acid), alcohols (cyclooctylalcohol, 1-octen-3-ol, 1-octadecanol,

1294

Y. Gafforov et al.

trans-­2-­undecen-1-ol), aldehydes (decanal, nonanal), esters (butyl ester of butanoic acid, decyl isobutyl ester, 2-ethylhexyl-2-ethylhexanoate, methyl ester of carbamic acid, phthalic acid, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate), ketones (2,5-­cyc lohexadiene-­1,4-dione,2,6-bis(1,1-dimethylethyl), 2,6-di-tert-butyl-4methylene-2,5-­cyclohexadiene-­1-one, 7,9-­di-­tert-­butyl-­1-­oxaspiro(4.5)deca-­6,9-­ diene-­ 2,8-­ dione), phenol derivative (phenol,2,6-bis(1,1-dimethylethyl)-4-methyl, known as DTBSBP), and terpene (trans-alpha-bisabolene) (Taşkın 2013). Phenol DTBSBP was determined as the major VOC in with content of 50.888% in M. esculenta (Taşkın 2013). Six years later, Yang et al. (2019) determined for the first time in M. esculenta such  as in  M. conica, the aromatic ester (2,4-dichlorophenyl)-2,4-dichlorobenzoate.

Phenolic Compounds The total phenolic content of the methanol extracts of M. esculenta was determined to be 238.52  mg gallic acid equivalents/g d.w. (Thakur and Lakhanpal 2014). In another study, the total phenolic (2.02  μg/mL) and total flavonoid contents (6.00 μg/g) of wild M. esculenta have been reported by Akyüz et al. (2019). The total content of polyphenols isolated from M. angusticeps was reported as 6.890 ± 0.013 mg GAE/g d.w., and among all determined polyphenols, orientin was the most present (552.80  μg/g d.w.), followed by protocatechuic acid (207.46 ± 7.55 μg/g d.w.) and caffeic acid (75.08 μg/g d.w.) (Wang et al. 2019). Bound phenolic contents of the three M. conica ranged from 0.188 to 0.250  mg GAE/g d.w and their free phenolic contents ranged from 4.928 to 6.157 mg GAE/g d.w. Polyphenols in M. conica were dominated by phenolic acids, particularly for gallic acid (Liao et al. 2017). Li et al. (2020) identified a total of six phenolic compounds (caffeic acid, chlorogenic acid, gallic acid, p-hydroxybenzoic acid, orientin and protocatechuic acid) from M. angusticeps. The authors reported that the main phenolic compounds among them were chlorogenic acid (104.44 mg/g) and orientin (113.01  mg/g). Total phenolic and flavonoid contents were 394.10  mg GAE and 21.10 mg/RE g, respectively (Li et al. 2020).

Steroids Five sterols have been isolated from M. esculenta (Lee et al. 2018). The next year, Akyüz et al. (2019) quantified ergosterol (491.75 μg/g) and stigmasterol contents from M. esculenta (110.45 μg/g), However, in the same study, it was determined that M. esculenta did not have β-sitosterol content (Akyüz et al. 2019).

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1295

Minerals and Vitamins Gençcelep et al. (2009) determined the mineral composition of M. esculenta as followed macroelements: 23.5 mg/g K, 3.49 mg/g P, 1.82 mg/g Mg, 0.85 mg/g Ca, 0.18 mg/g Na, and microelements: 195 mg/g Fe, 98.9 mg/g Zn, 62.6 mg/g Cu, and 54.7 mg/g Mn. Heleno et  al. (2013) determined and quantified regarding tocopherols as α-tocopherol (2.38–2.40 mg/100 g dry weight), γ-tocopherol (12.41–20.30 mg/100 g dry weight) and δ-tocopherol (48.85–98.60 mg/100 g dry weight) to be found in both samples (Serbia and Portugal) (Heleno et al. 2013). Vitamin values of M. esculenta such as K1, K2, D2, D3, α-tocopherol, retinol and retinolast were determined as 21.05, 0.95, 6.75, 3.45, 43.65, 0.10 and 0.05 μg/g, respectively (Akyüz et al. 2019). Morchella steppicola: To date, only Sarikurkcu et al. (2022) worked on the mycochemical characterization of M. steppicola, and determined thirty-two minerals, which included essential macro- (Ca, K, Mg, and Na) and micro-elements (Fe, Co, Cu, Mn, Zn, etc.), and some of them are heavy metals (Ag, Cr, Pb, etc.). The most present among them was K (36,525  ±  1039  mg/kg d.w.), followed by Mg (2041 ± 97 mg/kg d.w.), Fe (1159 ± 170 mg/kg d.w.), and Ca (818 ± 78 mg/kg d.w.). The authors compared amounts of determined minerals with theoretical data values for the Health Risk Index (HRI) and Daily Intake of Metal (DIM) (Sarikurkcu et al. 2022), and based on determined results, daily consumption of M. steppicola can make some health issues considering the HRI values for Fe and Co. It could provide a beneficial effect due to the high levels of essential biogenic elements, especially Ca and Mg, which are necessary for the bones but also associated with lowering the risk of diabetes (Haro et al. 2020). Beside mineral composition, Sarikurkcu et al. (2022) determined phenolic profile, whereas the three analyzed extracts (ethyl acetate, methanol and water) of M. steppicola contained four hydroxybenzoic acid derivatives (gallic, p-­ hydroxybenzoic, protocatechuic, and vanillic acids) with protocatechuic acid as the major phenolic compound in the methanol and water extracts (44.54 ± 0.72 μg/g extract and 45.35 ± 0.72 μg/g extract, respectively). On the other hand, gallic acid was determined in the lowest amounts in both methanol and water extracts (3.03  ±  0.41  μg/g extract and 2.83  ±  0.41  μg/g extract, respectively), while this compound was not determined in the ethyl acetate extract (Sarikurkcu et al. 2022).

Local Medicinal Uses Morchella esculenta: Morels are used in traditional Chinese medicine to treat indigestion, excess phlegm, and shortness of breath (Ying et al. 1987). In the Palas Valley (Pakistan), morels have been traditionally used as a food supplement and as medicine in a number of diseases by healers of different ethnic communities (Sher et al. 2015). Gujar

1296

Y. Gafforov et al.

nomads from Pakistan traditional beliefs are heavily dependent on wild collection of morels, and their traditional transhumant system involves mass migration of the whole families, with seasonal camps, to and from alpine pastures (Sher et al. 2015). Sud and Sud (2017) summarized that M. esculenta has medicinal values noticed in the ancient Sanskrit works, and also present delicious food with alleged aphrodisiac properties. Curly (“Gushna”, “Futr”), or M. esculenta shrivels like cartilage, its shape is like a small, shriveled cup. They wash their dress and eat with sour condiments. By Beruni, the curly (“Gushana”) is also mentioned as a laundry detergent (Tayjanov et al. 2021). When dried, the curls become white and inside red. They are put in an antimony vessel, they have the color of dust with a black tint, and are a medicine for the eyes, applying such an ointment with a stick (Tayjanov et al. 2021). Thakur et  al. (2021) summarized that people from the rural areas have immense traditional knowledge about the use in the prevention and treatment of various diseases of M. esculenta from one generation to another. Recently, Li et  al. (2022) summarized that morels in general have a long history of human consumption in Chinese medicine in treatment of a variety of stomach problems, which are recorded in the ancient Chinese book "Compendium of Materia Medica "written in 1596 by the Ming Dynasty physician Li Shi-Zhen; In India, Japan, Malaysia, and Pakistan, morels are used as natural aphrodisiacs based on ethnomycological studies. Morchella steppicola: There is no available data about traditional use of M. steppicola.

Modern Medicinal Uses Morels, a group of the world’s highly valued edible and medicinal mushrooms, have very important economic and scientific value (Thakur et al. 2021). These mushroom species exhibit a wide range of medicinal and pharmacological properties including anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunostimulatory among others (Du et al. 2015; Kumar Raman et al. 2018; Liu et al. 2018). They are also used for the treatment of indigestion, excessive phlegm, and asthma. Laboratory experiments using rodent models suggest that the polysaccharides from the morel fruiting bodies have multiple medicinal properties, including antitumor effects, immunomodulatory properties, anti-allergenic (Duncan et  al. 2002; Heleno et  al. 2013) fatigue resistance, and antiviral effects (Wasser 2005; Nitha and Janardhanan 2008; Rotzoll et al. 2005). The multiple sugars from the mycelium of morel mushrooms are active ingredients in a number of drugs with the aim to support the immune system and inhibit tumor growth (Gang et al. 2013), as well as antioxidant activity sometimes stronger than activity of well-known antioxidant compound, α-tocopherol (Elmastas et al. 2006; Gursoy et al. 2009; Meng et al. 2010a, b). Morchella esculenta: It is known that M. esculenta and its active compounds have antibacterial, antidiabetic, antiparasitic, antitumor, antiviral, cardioprotective, hepatoprotective, and immunomodulatory properties (Sunil and Xu 2022). Morchella

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1297

polysaccharides possessed a variety of bioactivities, such as anti-­inflammatory (Li et al. 2019), anti-melanogenesis (Cai et al. 2018), antioxidant (Gursoy et al. 2009; Gang et  al. 2013; Heleno et  al. 2013; Xiong et  al. 2020), antitumor (Tang et  al. 2019), atherosclerosis-reducing (Wang et  al. 2021), immunomodulatory (Meng et al. 2019; Wen et al. 2019), and neuroprotective (Xiong et al. 2016) effects. The fruiting bodies and mycelia of M. esculenta have revealed that they have antiinflammatory, antimicrobial, antioxidant, hepatoprotective, immunomodulatory, and nephroprotective activities (Duncan et al. 2002; Mau et al. 2004; Nitha et al. 2007; Nitha and Janardhanan 2008; Gursoy et al. 2009; Nitha et al. 2010; Cui et al. 2011; Kim et al. 2011; Fu et al. 2013; Heleno et al. 2013; Nitha et al. 2013).

Nephroprotective Activity Aqueous-ethanolic extracts of the mycelium of M. esculenta were found to have significant nephroprotective activity. These extracts showed a restoration of 78.15% and 67.88% catalase activity in animals with cisplatin-induced kidney injury at doses of 500 mg/kg and 250 mg/kg, respectively. In gentamicin-treated animals, the extract at a dose of 500  mg/kg helped to restore catalase activity by 71.81%. Similarly, GPx activity, which had decreased as a result of treatment with cisplatin and gentamicin, was also restored to 55.36% and 54.73%, respectively, with the higher dose of the extract (Nitha and Janardhanan 2008).

Hepatoprotective Activity The aqueous-ethanolic extract obtained from the M. esculenta mycelium was found to have significant hepatoprotective activity. In the study, it was determined that this extract decreased high serum alkaline phosphatase (ALP), glutamic-oxaloacetic transaminase (GOT), and glutamate-pyruvate transaminase (GPT) activities in a dose-dependent manner (Nitha and Janardhanan 2013).

Antioxidant Properties Based on an available literature data on the antioxidant activity of M. esculenta, its methanolic extracts exhibited excellent activity patterns in β-carotene/linoleic acid, DPPH, metal chelating effect systems, and reducing power (85.4–94.7%, 78.8–94.1%, 90.3–94.4%, and 0.97–1.02 at different concentrations, respectively) (Mau et al. 2004). In a study obtained by Elmastas et al. (2006), the ethanol extracts of M. esculenta had expressed free radical scavenging activity (hydrogen peroxide, superoxide anion radical), metal chelating activity, and reducing power at the

1298

Y. Gafforov et al.

concentrations of 50, 100 and 150 μg/mL. In the same study, the percent of inhibition on peroxidation in β-carotene/linoleic acid system has been determined as 80 and 87%, respectively at different experimental concentrations, and it was greater than that of α-tocopherol (50 and 77%), and similar to butylated hydroxyanisole (87%) (Elmastas et al. 2006). Similar to previous study, Ramírez-Anguiano et al. (2007) analyzed the ethanol extracts as well as water extracts of four edible mushroom species including M. esculenta, whereas obtained results have showed a high antioxidant activity by scavenging more than 90% of the DPPH radical. Two years later, Gursoy et al. (2009) analyzed seven Morchella species including M. esculenta var. umbrina for their antioxidant activities in different test systems including β-carotene/linoleic acid (86.77–96.89%), chelating effect (87.25–94.87%), reducing power (0.116–0.943), and scavenging effect on the ABTS (52.44–76.38%) and DPPH (10.78–62.57%) assays, whereas analyzed activity of the methanol extracts increased with the concentration. Exopolysaccharides (EPS) isolated from M. esculenta were given to mice at different doses (25, 50, 100, 200, 400 mg EPS/kg) and the antioxidant effect was determined in vivo. Blood samples and tissues such as livers, hearts, spleens and kidneys were taken from mice fed this way for 28 days (Meng et al. 2010a, b). The results obtained showed that the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of blood, spleen, liver, heart, and kidney were increased by 125%, 46.11%, 23.33%, 12.19%, 41.29%, and 63.24%, 63.12%, 166.54%, 98.01%, 57.68%, respectively, and that malondialdehyde of blood, spleen, liver, heart, and kidney were decreased by 21.80%, 67.84%, 28.48%, 56.15%, 41.62% (Meng et al. 2010a, b). Nitha et al. (2010) reported the radical scavenging activity of ethanolic extract of M. esculenta. Methylene chloride extract of M. esculenta showed high antioxidant activity (Kim et al. 2011). Antioxidant effects of the methanol extracts of M. esculenta were detected by five different methods Folin-Ciocalteu test, Ferricyanide/Prussian blue test, DPPH scavenging activity, β-carotene/linoleate and TBARS test results of these extracts were reported as 34.64–32.17  mg GAE/g, 6.34–1.26 mg/mL, 6.06–3.03 mg/mL, 0.81–2.39 mg/mL, 1.01–2.23 mg/mL, respectively (Heleno et al. 2013). In vitro antioxidant effects of M. esculenta extracellular polysaccharides were determined. It has been reported that this polysaccharide exhibited strong hydroxyl radical scavenging activity. In addition, in in vivo antioxidant studies, M. esculenta extracellular polysaccharides were orally administered to D-galactose-induced aged mice for 60 days. Based on the obtained results, these polysaccharides significantly inhibited the formation of malondialdehyde livers and serums and increased the activities of the antioxidant enzymes and total antioxidant capacity in a dose-­ dependent manner (Fu et al. 2013). It was determined that mycelial polysaccharides of the same species have antioxidant potential at the concentration of 0.04 mg/ml, the scavenging rate was 79.34% (Gang et al. 2013). It was determined that heteropolysaccharide extracted from M. esculenta could scavenge hydroxyl, DPPH and superoxide anion radicals with IC50 values of 74.26, 119.32 and 161.49 μg/mL, respectively (Cai et al. 2018). The in vitro scavenging

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1299

rates of the enzyme-supported polysaccharide of M. esculenta on superoxide anion, hydroxyl and 1,1-diphenyl-2-picrylhydrazine radicals were 76.92%, 66.74% and 75.78%, respectively (Dong et al. 2018). It was determined that acetylated derivatives of polysaccharides obtained from M. angusticepes had higher antioxidant effect (EC50 0.384–0.454  mg/mL). It has been reported that proteinized polysaccharides obtained from M. esculenta do not have DPPH radical scavenging effects, but protein-free polysaccharides have moderate (7.88–66.92%) antioxidant effects depending on the concentration (Badshah et al. 2021). Recently, M. esculenta collected from Derebucak (Konya/Turkey) expressed high antioxidant and antibacterial activity (Eraslan et al. 2021).

Antibacterial Activity The methanol and chloroform extracts of M. esculenta showed antimicrobial activity against Bacillus subtilis, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Vibrio cholerae (Badshah et  al. 2012). The antimicrobial effects of the methanol extracts of the two samples of M. esculenta originated from Portugal and Serbia at 2 mg/disc and 1 mg/disc concentration against E. coli, E. cloacae, Listeria monocytogenes, Salmonella typhimurium, and S. aureus was determined (Heleno et al. 2013). Both samples showed antibacterial activity against five bacteria, which was in some cases even better than activity of standard antibiotics (Heleno et  al. 2013). The most sensitive samples were to be against L. monocytogenes, and the lowest inhibition zone was recorded for E. coli (6.31 mm for Portugal strain and 6.44 mm for Serbia strain, respectively). There were no determined inhibition zones on E. coli and S. typhimurium tested with 1 mg of extracts per disc. In addition, commercial antibiotic, streptomycin exhibited better antibacterial potential, with larger inhibition zones which ranging from 6.12–18.13 mm (Heleno et al. 2013). The authors concluded that the extract from Serbia exhibited higher antibacterial activity than Portugal samples, which had higher organic acids and tocopherols contents and could be involved in its higher antimicrobial activity. Hot water extract of M. esculenta has been proven to show effective antibacterial activity against B. atrophaeus, Citrobacter freundii, E. coli, P. aeruginosa, S. aureus, and Xanthomonas oryzae. In addition, the cold-water extract was found to be effective against K. penumoniae, S. typhi, S. epidermidis, Trichoderma citrinoviride, and Trichophyton rubrum microorganisms (Khan et al. 2019). The newest data reported the antibacterial activity of the extracts of two Morchella species including M. esulenta against S. aureus, MRSA, and S. pyogenes with inhibitory zone (10.66 ± 0.3 to 21.00 ± 1.5 mm) (Haq et al. 2022). All examined extracts inhibited growth of tested bacterials, which minimum inhibitory concentration (MIC) ranged from 3.33 to 16.0 mg/mL, whereas the examined extracts were more effective against MRSA than currently available antibiotics (Haq et al. 2022).

1300

Y. Gafforov et al.

Anti-inflammatory Activity It has been reported that the ethanolic extract of the cultured mycelium of M. esculenta has potent anti-inflammatory activity (Nitha et al. 2007). Zhao et al. (2018) in their study observed the anti-inflammatory activity of total flavonoids extracted from fermentation broth of the co-culture of M. esculenta and C. comatus named as DCMM. Also, it was determined that polysaccharides obtained from M. esculenta had a protective effect against inflammation caused by fine particulate matter (Li et al. 2019).

Antitumor Activity The antitumor activity of the ethanolic extract of the cultured mycelium of M. esculenta was determined using both DLA cell line-induced solid tumor and EAC cell line-induced acid tumor models. It showed significant antitumor activity especially against solid tumor models (Nitha et al. 2007). Polysaccharides isolated from the fermentation broth of M. esculenta inhibited the proliferation of human hepatoma cells (HepG2) via the apoptotic pathway (Hu et al. 2013). It was determined that polysaccharides extracted from M. esculenta can inhibit the proliferation and growth of human colon cancer (HT-29) cells in a time- and dose-dependent manner within 48 hours (Liu et al. 2016). It was determined that M. esculenta polysaccharides had a stronger inhibitory effect on HepG-2 cell line compared to Hela cell line (Li et al. 2017). The anti-melanogenesis effect of heteropolysaccharide extracted from M. esculenta was determined in the studies. In the study, heteropolysaccharides mediated the inhibition of CREB and p38 signaling pathways and downregulated melanogenesis-related proteins (Cai et al. 2018). The cytotoxic effects of the methanol extract of the dried fruiting bodies of M. esculenta against four different human lung adenocarcinoma cell lines (A549, H1264, H1299 and Calu-6) were determined. It was reported that the cell viability significantly decreased (from 0.49 to 1.35 mg/mL) depending on the increasing dose (Lee et al. 2018). Some polysaccharides extracted from M. esculenta are potentially tumor-­ resistant (Li et al. 2013) and can be used to treat skin cancer (Badshah et al. 2021). Zhang et al. (2020) determined the inhibitory effects of DCMM on human glioma U251 cells in vitro and its possible underlying mechanisms. DCMM with different concentrations (10 μg/mL, 20 μg/mL, and 40 μg/mL) significantly increased caspase-­3 and Bax, and decreased Bcl-2 expressions at both mRNA and protein levels. Zhang et al. (2020) concluded that DCMM remarkably inhibit the proliferation and promote cell apoptosis of human glioma U251 cells, which could be related by mitochondrial intrinsic pathway. Alkaline extracts of polysaccharides extracted from the dried fruiting bodies of M. esculenta were found to have not cytotoxicity to RAW264.7 cells. However, it

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1301

was reported in the same study that it could stimulate phagocytosis in RAW264.7 cells and stimulate the secretion of cytokines such as NO, reactive oxygen species and IL-6, IL-1 β and TNF-α (Zhang et al. 2022).

Immunomodulatory Activity It was determined that galactomannan isolated from M. esculenta exhibited immunostimulatory activity (Duncan et  al. 2002). Later, polysaccharides determined from M. esculenta showed significant immunomodulatory activity (Cui et al. 2011). Li et al. (2017) reported that the proliferation activity on macrophages is maximum at a polysaccharide concentration of 25 μg/mL. Moreover, M. esculenta also acted as immune-stimulant (Kumar Raman et al. 2018). Recently, a novel polysaccharide purified from M. esculenta has recently been shown to exhibit immunomodulatory ability by promoting the function of phagocytes and the secretion of NO, IL-1β, IL-6 and TNF-α from macrophages (Li et al. 2021). Then immunomodulatory properties of M. esculenta have been characterized via the identification of an alkali-­ extracted galactomannan from the fruiting bodies (Zhang et al. 2022).

Toxic Neurological Effects Although M. esculenta is a medicinal important mushroom, it also has toxic effects (Saviuc and Harry 2008; Saviuc et al. 2010; Rapior and Fons 2011; Sud and Sud 2017; Thakur et al. 2021). Retrospective study of morel poisonings collected in the French Poison Control Centers from 1976 to 200 was firstly reported by Saviuc et al. (2010); 146 patients presented gastrointestinal syndrome (median time to onset: 5 h) and 129 presented a neurological syndrome (NS: tremor or dizziness/inebriation or unsteadiness/ataxia ± associated with gastrointestinal symptoms) 12 h after morel consumption. According to Saviuc and Harry (2008) the rapid resolution of symptoms suggests functional, cerebellar and brainstem impairment. These patients more frequently ingested a large quantity of morels (Saviuc et al. 2010). Later, M. esculenta showed toxicity only if it is eaten in large amount of freshly collected specimens (Sud and Sud 2017). Some of the reason could be that M. esculenta assumed neurotoxins in small quantities (Sud and Sud 2017). Thakur et al. (2021) summarized some of the toxic effects of M. esculenta: it has cerebellar effects within 6–12 hours after consumption, and these cerebellar syndromes was induced by neurological symptoms; in relation to this, some of the symptoms of the neurological syndrome are dizziness/inebriation, gait ataxia/postural instability with similarity to cerebellar ailments, and tremor, as a consequence after the consumption of half-cooked or uncooked morels. Thakur et al. (2021) reviewed that monomethylhydrazine from M. esculenta could be responsible for its poisoning and leads to gastrointestinal symptoms (coma, jaundice, loss of coordination, weakness,

1302

Y. Gafforov et al.

and death. Also, when people consume M. esculenta with alcoholic beverages, they could induce gastrointestinal irritation (chills, diarrhea, disoriented, gastrointestinal distress, headache, muscle spasms, nausea, severe cramps, sweating, vomiting, and weakness (Thakur et al. 2021). Recently, Li et al. (2022) revealed the results whereas 90-day repeated oral dose toxicity study demonstrated that administering the mycelium of M. esculenta does not exhibit toxicity in male and female rats under the experimental conditions adopted in the present study. Hence, the no-observed-­ adverse-effects level (NOAEL) for this study was greater than the dose of 3000 mg/kg/day. Morchella steppicola: The fungus was investigated for antioxidant and enzymatic properties.

Antioxidant Potential Király and Czövek (2007) examined the antioxidant potential of M. steppicola by measuring malondialdehyde content of the mycelium at the site of the formation of pseudosclerotium, which was in a relation to the acceleration of lipid peroxidation and oxidative stress. Beside malondialdehyde content, the glucose and trehalose contents of M. steppicola mycelium during pseudosclerotium formation were also observed (Király and Czövek 2007). Results have been showed that the glucose concentration was minimal, while trehalose concentration reached a maximum in the zone of pseudosclerotium formation. The obtained correlation between trehalose accumulation, oxidative burst, and pseudosclerotium formation was determined (Király and Czövek 2007). Recently, Sarikurkcu et al. (2022) examined biological potential of extracts of M. steppicola by measuring antioxidant potential as well as inhibitory potential against two enzymes, α-amylase and tyrosinase. The water extracts showed the highest antioxidant potential in FRAP reducing, and ABTS scavenging assays (42.61  ±  1.75 and 99.08  ±  2.28  mg trolox equivalents/g, respectively), while the ethyl acetate extract had the best antioxidant potential in phosphomolybdenum cation reduction assay as 178.00 ± 15.05 mg trolox equivalent/g (Sarikurkcu et al. 2022).

Enzymatic Potential Similar to the antioxidant activity assays, the water and ethyl acetate extracts have showed the highest anti-tyrosinase activity as 57.06 ± 5.22 and 71.47 ± 10.41 mg kojic acid equivalents/g, respectively in relation to melanin production (Sarikurkcu et  al. 2022). Moreover, the authors determined very high Pearson’s coefficients between the p-hydroxybenzoic acid derivative contents and the anti-tyrosinase activity, indicating that these acids could be responsible for the enzymatic activities, in particular the inhibition of tyrosinase.

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1303

On the other hand, ethyl acetate and methanolic extracts (387.72  ±  5.91 and 312.06  ±  3.53  mg acarbose equivalents/g, respectively) showed the highest and similar inhibitory activities against α-amylase. They concluded that M. steppicola in the form of its extracts can be used for medicinal purposes, similar to other Morchella spp. (Sarikurkcu et al. 2022).

Local Food Uses Edibility, aroma and flavor Morchella esculenta: Edible, third category Morchella steppicola: Edible after heat treatment (poisonous when raw), choice

Local Food Uses Morchella esculenta: Culinary Notes: Fresh products may be used, but in many cases, dried products are rehydrated with enough water then soaked into water before cooking. Since the reconstituted juice also has a good flavour, it is used for cooking after being strained once to remove sand grains. It is reported to be compatible with fresh cream and butter and is often used in gratin and stews. It is often used as a material for pizza, fries, soups, omelettes, etc. (Ajmal et al. 2015). In China, it is often cooked in soups such as meat ribs and chicken soup, or by filling the cavities inside with meat (Prasad et al. 2002). Morchella steppicola: Culinary Notes: In Uzbekistan, it is often cooked in fried oil with onions and potatoes after washing thoroughly in water. In very rare cases, the dish is prepared as a soup (local people note). This fungus is mainly collected by local people in the spring in Samarkand and Navoi regions (Gafforov unpublished data).

References Ajmal M, Abida A, Anum A, Shaista A, Brian GN (2015) Morchella esculenta: an edible and health beneficial mushroom. Pak J Food Sci 25(2):71–78 Akyüz M, Özşahin Kireçci AD, Gökçe Z, Kırbağ S, Yılmaz Ö (2019) Biochemical constituents and antioxidant activities of some mushrooms from Turkey: Agaricus spp., Pleurotus spp., Morchella esculenta and Terfezia boudieri. Istanbul J Pharm 49(1):1–6 Badshah H, Qureshi RA, Khan JB, Ullah F, Fahad S, Ullah F, Khan AM, Hussain I, Khan NH (2012) Pharmacological screening of Morchella esculenta (L.) Pers., Calvatia gigantea (Batsch ex Pers.) Lloyd and Astraeus hygrometricus Pers., mushroom collected from South Waziristan (FATA.). J Med Plants Res 6(10):1853–1859

1304

Y. Gafforov et al.

Badshah SL, Riaz A, Muhammad A, Tel Çayan G, Çayan F, Emin Duru M, Ahmad N, Emwas AH, Jaremko M (2021) Isolation, characterization, and medicinal potential of polysaccharides of Morchella esculenta. Molecules 26(5):1459 Batyrov SS (1977) Edible and poisons fungi of Copetdag, their recourses and possibility of use. Izvestiya of AN TSSR. Ser Biol Sci 2:48–51 Buscot F (1993) Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. J Plant Physiol 141(1):12–17 Cai ZN, Li W, Mehmood S, Pan WJ, Wu QX, Chen Y, Lu YM (2018) Effect of polysaccharide FMP-1 from Morchella esculenta on melanogenesis in B16F10 cells and zebrafish. Food Funct 9(9):5007–5015 Clowez P, Moreau PA (2020) Morilles de France et d’Europe. Publisher: Cap Editions Régions Cui HL, Chen Y, Wang SS, Kai GQ, Fang YM (2011) Morchella esculenta'dan polisakkaritin izolasyonu, kısmi karakterizasyonu ve immünomodülatör aktiviteleri. Gıda ve Tarım Bilimi Dergisi 91(12):2180–2185 Didukh YP (2009) Red data book of Ukraine: Flora. Ukrainian Scientific Publisher, Kiev, p 900 Dong Y, Qi Y, Liu M, Song X, Zhang C, Jiao X, Wang W, Zhang J, Jia L (2018) Antioxidant, anti-­ hyperlipidemia and hepatic protection of enzyme-assisted Morehella esculenta polysaccharide. Int J Biol Macromol 120:1490–1499 Dospatliev L, Lozanov V, Ivanova M, Papazov P, Sugareva P, Petkova Z, Bozhilov D (2018) Comparison of free amino acid compositions of stem and cap in wild edible mushrooms, Bulgaria. Oxid Commun 41:542–549 Du XH, Zhao Q, Yang ZL (2015) A review on research advances, issues, and perspectives of morels. Mycology 6(2):78–85 Dunaev AV, Zelenkova VN, Dunaeva EN, Tokhtar VK, Lyashenko IV, Doborovich AN (2020) Morchella steppicola (Morchellaceae) in the Belgorod region of The Russian Federation. EurAsian J BioSci 14(2):3773–3778 Duncan CJ, Pugh N, Pasco DS, Ross SA (2002) Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta. J Agric Food Chem 50(20):5683–5685 Eraslan EC, Altuntas D, Hayri BABA, Celal BAL, Akgül H, Akata I, Sevindik M (2021) Some biologicalactivities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma Journal of Engineeringand Natural Sciences, 39(1):24-28 Elmastas M, Turkekul I, Ozturk L, Gulcin I, Isildak O, Aboul-Enein HY (2006) Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculenta) from North Turkey. Combin Chem High Throughput Screen 9(6):443–448 Fu L, Wang Y, Wang J, Yang Y, Hao L (2013) Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food Funct 4(6):871–879 Gang J, Fang Y, Wang Z, Liu Y (2013) Fermentation optimization and antioxidant activities of mycelia polysaccharides from Morchella esculenta using soybean residues. Afr J Biotechnol 12(11):1239–1249 Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-­ grown edible mushrooms. Food Chem 113:1033–1036 Gorlenko MV (1976) Plant life, vol 2. Fungi. Ed. by. Prosveshchenie, Moscow, p 479 Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47(9):2381–2388 Haq F, Imran M, Saleem S, Aftab U, Ghazal A (2022) Investigation of Morchella esculenta and Morchella conica for their antibacterial potential against methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and streptococcus pyogenes. Arch Microbiol 204(7):391 Haro A, Trescastro A, Lara L, Fernández-Fígares I, Nieto R, Seiquer I (2020) Mineral elements content of wild growing edible mushrooms from the southeast of Spain. J Food Compos Anal 91:103504

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1305

Hatanaka S (1969) A new amino acid isolated from Morchella esculenta and related species. Phytochemistry 8:1305–1308 Heleno SA, Stojković DS, Barros L, Glamočlija J, Soković MD, Martins A, Queiroz MJ, Ferreira IC (2013) A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Res Int 51(1):236–243 Hu M, Chen Y, Wang C, Cui H, Duan P, Zhai T, Yang Y, Li S (2013) Induction of apoptosis in HepG2 cells by polysaccharide MEP-II from the fermentation broth of Morchella esculenta. Biotechnol Lett 35(1):1–10 Khan W, Bibi Z, Uddin MN, Gul H, Khan H (2019) Antimicrobial potential of different solvent extracts of Morchella esculenta (L.) Pers. Bangladesh. J Bot 48(4):943–949 Kim JA, Lau E, Tay D, De Blanco EJC (2011) Antioxidant and NF-κB inhibitory constituents isolated from Morchella esculenta. Nat Prod Res 25(15):1412–1417 Király I, Czövek P (2007) Oxidative burst induced pseudosclerotium formation of Morchella steppicola Zerova on different malt agar media. Can J Microbiol 53(8):975–982 Lee SR, Roh HS, Lee S, Park HB, Jang TS, Ko YJ, Baek K, Kim KH (2018) Bioactivity-guided isolation and chemical characterization of antiproliferative constituents from morel mushroom (Morchella esculenta) in human lung adenocarcinoma cells. J Funct Foods 40:249–260 Li FH, Zheng SJ, Zhao JC, Liao X, Wu SR, Ming J (2020) Phenolic extract of Morchella angusticeps peck inhibited the proliferation of HepG2 cells in vitro by inducing the signal transduction pathway of p38/MAPK. J Integr Agric 19(11):2829–2838 Li I, Chiang L, Wu S, Shih Y, Chen C (2022) Nutrition profile and animal-tested safety of Morchella esculenta mycelia produced by fermentation in bioreactors. Foods 11:1385 Li J, Wu H, Liu Y, Nan J, Park HJ, Chen Y, Yang L (2021) The chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food Funct 12(19):9327–9338 Li S, Gao A, Dong S, Chen Y, Sun S, Lei Z, Zhang Z (2017) Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. Int J Biol Macromol 96:26–34 Li SH, Sang YX, Zhu D, Yang YN, Lei ZF, Zhang ZY (2013) Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue. Ind Crop Prod 50:666–672 Li W, Cai ZN, Mehmood S, Liang LL, Liu Y, Zhang HY, Chen Y, Lu YM (2019) Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-­ treated NR8383 cells. Int J Biol Macromol 129:904–915 Liao X, Li F, Tan Y, Lu K, Wu S, Yin R, Ming J (2017) Cellular antioxidant and antiproliferative activities of Morchella conica Pers. Polyphenols in vitro. J Food Nutr Res 5(10):742–749 Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N (2016) Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int J Mol Sci 17(6):986 Liu Q, Ma H, Zhang Y, Dong C (2018) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38(2):259–271 Liu Y, Wang F (2007) Structural characterization of an active polysaccharide from Phellinus ribis. Carbohydr Polym 70(4):386–392 Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87(1):111–118 Meng F, Liu X, Jia L, Song Z, Deng P, Fan K (2010a) Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydr Polym 79(3):700–704 Meng F, Zhou B, Lin R, Jia L, Liu X, Deng P, Fan K, Wang G, Wang L, Zhang J (2010b) Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresour Technol 101(12):4564–4569

1306

Y. Gafforov et al.

Meng X, Che C, Zhang J, Gong Z, Si M, Yang G, Cao L, Liu J (2019) Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. Int J Biol Macromol 129:608–614 Nitha B, De S, Adhikari S, Devasagayam T, Janardhanan K (2010) Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: a potential source of therapeutically useful antioxidants. Pharm Biol 48(4):453–460 Nitha B, Fijesh PV, Janardhanan KK (2013) Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Exp Toxicol Pathol 65(1–2):105–112 Nitha B, Janardhanan KK (2008) Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food Chem Toxicol 46(9):S3193–S3199 Nitha B, Meera CR, Janardhanan KK (2007) Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Curr Sci 92:235–239 O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA (2011) Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet Biol 48(3):252–265 Olfati J, Peyvast G, Mami Y (2009) Identification and chemical properties of popular wild edible mushrooms from Northern Iran. J Hortic Forest 1(3):48–51 Papazav P, Vassilev D, Valchev N, Denev P (2020) Chemical and lipid composition of wild edible mushrooms (Morchella esculenta) in Bulgaria. Oxid Commun 43(2):194–203 Prasad P, Chauhan K, Kandari LS, Maikhuri RK, Purohit AN, Bhatt RP, Rao KS (2002) Morchella esculenta (Guchhi): need for scientific intervention for its cultivation in central Himalaya. Curr Sci 82:1098–1100 Raman VK, Saini M, Sharma A, Parashar B (2018) Morchella esculenta: a herbal boon to pharmacology. Int J Dev Res 30:3 Ramírez-Anguiano AC, Santoyo S, Reglero G, Soler-Rivas C (2007) Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. J Sci Food Agric 87(12):2272–2278 Rapior S, Fons F (2011) Mise au point sur les nouveaux syndromes et les syndromes connus d’intoxications par les champignons. Annales de la Société d’Horticulture et d’Histoire Naturelle de l’Hérault 151(2):64–74 Red Data Book of the Belgorod region (2019) Rare and endangered plants, lichens, fungi, and animals. Eds. Yu.A. Prisnyi. Belgorod: ID «BelGU» NIU «BelGU». 668 Rotzoll N, Dunkel A, Hofmann TF (2005) Activity-guided identification of (S)-malic acid 1-O-D-­ glucopyranoside (morelid) and gamma-aminobutyric acid as contributors to umami taste and mouth-drying oral sensation of morel mushrooms (Morchella deliciosa Fr.). J Agric Food Chem 53(10):4149–4156 Roze ME (1883) Le Parasitisme du Morchella esculenta Pers. sur l’Helianthus tuberosus L. Bulletin de la Société botanique de France 30:139–143 Sahin E, Keskin E, Akata I (2021) The unique genome organization of two novel fusariviruses hosted by the true morel mushroom Morchella esculenta. Virus Res 302:198486 Sarikurkcu C, Solak MH, Tarkowski P, Ćavar Zeljković S (2022) Minerals, phenolics, and biological activity of wild edible mushroom, Morchella steppicola Zerova. Nat Prod Res 1–5. https:// doi.org/10.1080/14786419.2022.2050910 Saviuc P, Harry P (2008) Existe t'il un syndrome neurologique d'intoxication par les morilles? Analyse des données des Centres antipoison et de toxicovigilance (1976–2007). Auto saisine des centres antipoison et de toxicovigilance et du comité de coordination de toxicovigilance. Rapport définitif, janvier 2008. 37 p Saviuc P, Harry P, Pulce C, Garnier R, Cochet A (2010) Can morels (Morchella sp.) induce a toxic neurological syndrome? Clin Toxicol 48(4):365–372 Sher H, Aldosari AA, Bussmann RW (2015) Morels of Palas Valley, Pakistan: a potential source for generating income and improving livelihoods of mountain communities. Econ Bot 69:345–359

Morchella esculenta (L.) Pers.; Morchella steppicola Zerova - MORCHELLACEAE

1307

Sud DV, Sud VK (2017) A review of toxic effects and aphrodisiac action of Morchella esculenta (Wild morel- Guchhi mushroom)-a Himalayan delight. Eur J Pharm Med Res 4(8):726–730 Sunil C, Xu B (2022) Mycochemical profile and health-promoting effects of morel mushroom Morchella esculenta (L.) - a review. Food Res Int 2022:111571 Tang Y, Chen J, Li F, Yang Y, Wu S, Ming J (2019) Antioxidant and antiproliferative activities of modified polysaccharides originally isolated from Morchella angusticepes Peck. J Food Sci 84(3):448–456 Taşkın H (2013) Detection of volatile aroma compounds of Morchella by headspace gas chromatography mass spectrometry (HS-GC/MS). Notulae Botanicae Horti Agrobotanici Cluj-­ Napoca 41(1):122–125 Tayjanov K, Khojimatov O, Gafforov Y, Makhkamov T, Normakhamatov N, Bussmann RW (2021) Plants and fungi in the ethnomedicine of the medieval East a review. Ethnobot Res Appl 22:1–20 Thakur M, Lakhanpal T (2014) Qualitative phytochemical screening, total phenolic content and in-vitro antioxidant activity in methanolic extracts of Morchella esculenta Fr. 8th international conference on mushroom biology and mushroom products (ICMBMP8), 19th–22nd Nov. Citeseer Thakur M, Sharma I, Tripathi A (2021) Ethnomedicinal aspects of morels with special reference to Morchella esculenta (Guchhi) in Himachal Pradesh (India): a review. Curr Res Environ Appl Mycol (J Fungal Biol) 11(1):284–293 Tietel Z, Masaphy S (2018) True morels (Morchella)-nutritional and phytochemical composition, health benefits and flavor: a review. Crit Rev Food Sci Nutr 58(11):1888–1901 Tsai SY, Weng CC, Huang SJ, Chen CC, Mau JL (2006) Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. LWT-Food Sci Technol 39(10):1066–1071 Vasilkov BP (1948) Edible and poisons fungi of middle belt European party of USSR. Izd-vo AN USSR, Moscow, Leningrad, p 144 Wahid M, Sattar A, Khan S (1988) Composition of wild and cultivated mushrooms of Pakistan. Mushroom J Trop 8:47–51 Wang D, Yin Z, Ma L, Han L, Chen Y, Pan W, Gong K, Gao Y, Yang X, Chen Y, Han J, Duan Y (2021) Polysaccharide MCP extracted from Morchella esculenta reduces atherosclerosis in LDLR-deficient mice. Food Funct 12(11):4842–4854 Wang Q, Lu K, Li F, Lei L, Zhao J, Wu S, Yin R, Ming J (2019) Polyphenols from Morchella angusticepes Peck attenuate D-galactosamine/lipopolysaccharide-induced acute hepatic failture in mice. J Funct Foods 58:248–254 Wasser SP (2005) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60(3):258–274 Wei Y, Zhang T, Ito Y (2001) Counter-current chromatographic separation of glycoprotein components from Morchella esculenta (L.) with a polymer phase system by a cross-axis coil planet centrifuge. J Chromatogr A 917(1–2):347–351 Wen Y, Peng D, Li C, Hu X, Bi S, Song L, Peng B, Zhu J, Chen Y, Yu R (2019) A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. Int J Biol Macromol 137:8–19 Wu H, Chen J, Li J, Liu Y, Park HJ, Yang L (2021) Recent advances on bioactive ingredients of Morchella esculenta. Appl Biochem Biotechnol 193:4197–4213 Xiong C, Li P, Luo Q, Yan JY, Zhang J, Jin X, Huang WL (2020) Effect of γ-irradiation on the structure and antioxidant activity of polysaccharide isolated from the fruiting bodies of Morchella sextelata. Biosci Rep 40(9):BSR20194522 Xiong C, Li Q, Chen C, Chen Z, Huang W (2016) Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed Pharmacother 83:569–576 Yang C, Meng Q, Zhou X, Cui Y, Fu S (2019) Separation and identification of chemical constituents of Morchella conica isolated from Guizhou Province China. Biochem Syst Ecol 86:103919

1308

Y. Gafforov et al.

Yatsiuk I, Saar I, Kalamees K, Sulaymonov S, Gafforov Y, O’donnell K (2016) Epitypification of Morchella steppicola (Morchellaceae, Pezizales), a morphologically, phylogenetically and biogeographically distinct member of the Esculenta Clade from Central Eurasia. Phytotaxa 284(1):31–40 Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icones of medicinal fungi from China. Y. Xu, Trans.; Science Press, Beijing. Seiten, pp 38–45 Zhang NN, Ma H, Zhang ZF, Zhang WN, Chen L, Pan WJ, Wu QX, Lu YM, Chen Y (2022) Characterization and immunomodulatory effect of an alkali-extracted galactomannan from Morchella esculenta. Carbohydr Polym 278:118960 Zhang Q, Wu C, Fan G, Li T, Sun Y (2018) Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction. CYTA-J Food 16(1):238–246 Zhao X, Zou X, Li Q, Cai X, Li L, Wang J, Wang H (2018) Total flavones of fermentation broth by co-culture ofCoprinus comatus and Morchella esculenta induces an anti-inflammatory effect on LPS-stimulated RAW264. 7 macrophagescells via the MAPK signaling pathway. Microbial pathogenesis, 125:431-437

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus tremulae (Bondartsev) Bondartsev & P.N. Borisov - HYMENOCHAETACEAE Yusufjon Gafforov, Oksana Mykchaylova, Masoomeh Ghobad-Nejhad, Michal Tomšovský, Manzura Yarasheva, Hasan Hüseyin Doğan, Sylvie Rapior, and Li-Wei Zhou

Phellinus igniarius (L.) Quél. Synonyms: Agaricus igniarius (L.) E.H.L.  Krause; Boletus igniarius L.; Fomes igniarius (L.) Fr.; Mucronoporus igniarius (L.) Ellis & Everh.; Ochroporus igniarius (L.) J.  Schröt.; Phellinus igniarius var. trivialis (Bres.) Niemelä; P. trivialis (Bres.); Placodes igniarius (L.) Quél.; Polyporites igniarius (L.) Heer; Polyporus igniarius (L.) Fr.; Pyropolyporus igniarius (L.) Murrill; Scindalma igniarium (L.) Kuntze; Phellinus pomaceus (Pers.) Maire Synonyms: Boletus pomaceus Pers.; B. tuberculosus Baumg.; Fomes fuscus (Lázaro Ibiza) Sacc. & Trotter; F. igniarius var. pomaceus (Pers.) Gillot & Lucand; F. lazaroi Sacc. & Trotter; F. pomaceus (Pers.) Lloyd; F. pomaceus f. crataegi D.V.  Baxter; Hemidiscia prunorum Lázaro Ibiza; Ochroporus pomaceus (Pers.) Donk; O. tuberculosus (Niemelä) Fiasson & Niemelä; Phellinus igniarius f. corni (Velen.) Pilát; P. igniarius subsp. pomaceus (Pers.) Quél.; P. pomaceus var. prunastri (Pers.) Pat.; P. tuberculosus Niemelä; Pseudofomes prunicola Lázaro Ibiza;

Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] O. Mykchaylova Department of Mycology, M. G. Kholodny Institute of Botany National Academy of Science of Ukraine, Kyiv, Ukraine e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_120

1309

1310

Y. Gafforov et al.

Phellinus tremulae (Bondartsev) Bondartsev & P.N. Borisov Synonyms: Fomes igniarius f. tremulae Bondartsev; F. tremulae (Bondartsev) P.N. Borisov; Ochroporus tremulae (Bondartsev) Fiasson & Niemelä

Local Names Phellinus igniarius: Uzbek: Majnuntol pukak; English: willow bracket or fire sponge; Russian: Феллинус обожженный; Japanese: メシマコブ; French: Faux amadouvier; German: Gemeine Feuerschwamm; Chinese: 火木层孔菌; Korean: 말똥진흙버섯; Persian: ‫ ;تاقچه بید‬Turkish: Karatoynak. Phellinus pomaceus: Uzbek: Soxta olxo‘ri pukak, notekist fellinus; English: Bracket fungus; Russian: Сливовый трутовик, Феллинус сливовый, Феллинус бугорковидный, Феллинус бугорчатый; Chinese: 苹果木层孔菌; French: Phellin des arbres fruitiers; German: Pflaumen-Feuerschwamm; Persian: ،‫قارچ آلوچه‬ ‫ ;فلینوس سیب سانان‬Turkish: Toptoynak; Serbian: šljivin plutnjak. Phellinus tremulae: Uzbek: Soxta tog‘terak pukak; English: aspen bracket; Russian: Ложный осиновый трутовик; Chinese: 窄盖木层孔菌; French: Phellin du tremble; German: Espen-Feuerschwamm; Korean: 버들진흙버섯; Turkish: Titrektoynak.

M. Ghobad-Nejhad Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran e-mail: [email protected] M. Tomšovský Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] H. H. Doğan Biology Department, Science Faculty of Selçuk University, Konya, Türkiye e-mail: [email protected]; [email protected] S. Rapior Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France e-mail: [email protected] L.-W. Zhou State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected]

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1311

Short Morphological Description Phellinus igniarius: Basidiomata perennial, sessile or rarely effused-reflexed, small to large in size – up to 25 cm in diameter and 15 cm thick, hard, woody, first nodulose, then ungulate or triangular in section. Basidiocarp can live many years. The sterile surface is crusty, brown, gray, to gray-black concentrically sulcate, deeply cracked. Margin blunt to rounded, yellowish, brown to grey. Hymenophore poroid brown, cinnamon brown, reddish-brown. Pores roundish, 4–6 per mm, dissepiments entire, variable in thickness. Context zonate, woody, very hard, reddish brown or cinnamon brown, up to 3  cm thick. Tube layers stratified, and concolorous with context including white mycelium, each layer 4–5  mm thick. Cystidia absent. Hymenial setae ventricose to subulate 12–20  ×  4.5–9  μm, thick-walled, reddish brown. Hyphal system dimitic. Generative hyphae thin-walled, 2–3 μm wide with simple septa. Skeletal hyphae brown, aseptate, thick-walled, 2–5 μm wide. Basidia broadly clavate, 4-spored, 8–12 × 6–7 μm, with simple septa at the base. Basidiospores subglobose to broadly ovoid, 5–6.5 × 4.5–6 μm, thick-walled, colorless, negative in Melzerʼs reagent (Ryvarden and Gilbertson 1994; Bernicchia and Gorjón 2020). Phellinus pomaceus: Basidiomata perennial, sessile to effused-reflexed, nodulous to ungulate, small in size, up to 7 cm in greatest dimension, single or imbricate, woody. The surface is initially slightly tomentose, then glabrous, sulcate, becoming blackened and cracked, brown to reddish-brown, later grayish to blackish. Margin obtuse, rounded brown to cinnamon brown. Hymenophore yellowish, reddish-­ brown to tobacco-brown, pores circular to slightly elongated, 7–9 per mm, dissepiments thick, entire. Context zonate, woody, very hard, yellowish-brown or cinnamon brown, up to 1 cm thick. Tube layers stratified, concolorous with context including white mycelium, each layer 2–3 mm thick. Cystidia absent. Hymenial setae, rare ventricose to subulate 14–25 × 4.5–7 μm, thick-walled, reddish brown. Hyphal system dimitic. Generative hyphae thin-walled, 2–3  μm wide with simple septa. Skeletal hyphae yellowish brown, aseptate, thick-walled, 2.5–4.5 μm wide. Basidia broadly clavate, 4-spored, 10–12  ×  5–6  μm, with simple septa at the base. Basidiospores broadly ellipsoid to ovoid, 5–6.5(−7) × 4–5 μm, thick-walled, colorless, negative in Melzerʼs reagent (Bondartseva and Parmasto 1986; Ryvarden and Gilbertson 1994; Bernicchia and Gorjón 2020). Phellinus tremulae: Basidiomata perennial, sessile, often developing at branch scars, up to 20 cm in diameter and 15 cm thick, hard, woody, first nodulose, then triangular or ungulate in section. The sterile surface is crusty, coarse, gray to gray-­ black, concentrically sulcate, deeply cracked. Margin dark brown. Hymenophore poroid, brown, rusty brown. Pores roundish, small 5–7 per mm, dissepiments entire, thick. Context woody, very hard, reddish brown up to 3 cm thick, with a brown, granular mycelial core at the place of attachment to substrate. Tube layers stratified, concolorous with context including white mycelium, each layer 1–3  mm thick. Cystidia absent. Hymenial setae few to numerous, ventricose to subulate 12–30 × 6–8 μm, thick-walled, reddish brown; core setae globose, tuberculate and irregularly shaped, intermingled with hyphae. Hyphal system dimitic. Generative

1312

Y. Gafforov et al.

hyphae thin-walled, 2–3 μm wide with simple septa. Skeletal hyphae dark reddish brown, aseptate, thick-walled, 2–5 μm wide. Granular core composed of branching hyphae. Basidia broadly clavate, 4-spored, 7–11 × 5–7 μm, with simple septa at the base. Basidiospores subglobose to broadly ellipsoid, 4.5–6  ×  3.5–4.5  μm, thick-­ walled when mature, colorless, negative in Melzerʼs reagent (Ryvarden and Gilbertson 1994; Bernicchia and Gorjón 2020).

Ecology and Distribution Phellinus igniarius: The fungus causes white rot of trunks and thick branches of hardwood living, and later dead trees. During last decades a complex of cryptic species was revealed within Phellinus igniarius group (Dai 2010; Tomšovský et al. 2010; Zhou et al. 2016). These closely regarded species are usually associated with specific host genera (P. igniarius – Salix, P. nigricans – Betula, P. populicola – Populus) or large range of hosts, e.g. Alnus, Malus and Sorbus (P. alni). P. igniarius in the narrow sense seems to occur in Uzbekistan and other Central Asian countries; the critical review of the P. igniarius group has not yet been studied in detail, but records of this fungus are known from Acer, Juglans, Lonicera and Salix (Gafforov et al. 2020). Phellinus pomaceus: It grows on living and dead trunks and branches of rosaceous trees, сommonly found on Prunus spp., mostly on fruit and amenity trees in gardens, orchards and parks. The species is widely distributed in the temperate zone of Eurasia (Ryvarden and Gilbertson 1994; Gafforov et al. 2020). Phellinus tremulae: The fungus causes white rot of trunks and thick branches of living trees, typically in branch scars, causing white rot of heartwood of Populus spp. (Boulet 2003), in Eurasia mostly on P. tremula and P. alba (Ryvarden and Gilbertson 1994). In Uzbekistan recorded on the living trunk of Populus tremula (Gafforov et al. 2020) (Figs. 1, 2, 3, 4, 5, 6, 7 and 8).

Mycochemistry Phellinus igniarius: Minerals of P. igniarius as chromium (84.5 mg/kg dry mass), manganese (30.9 mg/kg d.m.), and copper (28.9 mg/kg d.m.) have been detected in the fruiting bodies. Lead (9.6  mg/kg d.m.), nickel (6.48  mg/kg d.m.), and silver (0.06 mg/kg d.m.) were found in smaller amounts (Doğan et al. 2006). According to the scientific literature, P. igniarius has a broad spectrum of biologically active substances such as polysaccharides, especially β-glucans (Wu et al. 2006; Yang et al. 2007, 2009; Yuan et al. 2018), steroids (Zjawiony 2004; Liu 2015; Yin et al. 2015), flavonoids (Mo et al. 2003a, c), coumarin derivatives (Mo et al. 2003b), styrylpyranones (Wang et al. 2005a, 2007; Lee and Yun 2011; Suabjakyong et al. 2015; Chepkirui et al. 2018), and terpenes (Wu et al. 2010; Wu et al. 2011; Liu 2015; Yin et al. 2015; Wu et al. 2020), etc.

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

Fig. 1  Phellinus igniarius (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 2  Phellinus igniarius (Hymenochaetaceae), Germany. (Photo Rolf Faber)

1313

1314

Fig. 3  Phellinus igniarius (Hymenochaetaceae), Germany. (Photo Rolf Faber) Fig. 4  Phellinus igniarius (Hymenochaetaceae), Turkey. (Photo Mustafa Yamac)

Y. Gafforov et al.

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus… Fig. 5  Phellinus pomaceus (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 6  Phellinus pomaceus (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

1315

1316

Y. Gafforov et al.

Fig. 7  Phellinus pomaceus (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Fig. 8  Phellinus tremulae (Hymenochaetaceae), Uzbekistan. (Photo Yusufjon Gafforov)

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1317

Polysaccharides The main chemical components of the P. igniarius are polysaccharides. In recent years, intracellular and extracellular polysaccharides isolated from P. igniarius have attracted great attention due to their various biological functions (Wu et al. 2006; Zheng et al. 2007; Dong et al. 2009; Chen et al. 2011; Zhu et al. 2011; He et al. 2012). Polysaccharides are one of the main active metabolites in both the fruiting bodies and mycelial cultures of Phellinus mushrooms, where mannose, glucose, xylose, fructose, and galactose are the most common monosaccharide units in the fruiting bodies. Active polysaccharides typically have a basic structure of a (1–6)-β-branched (1–3)-β-D-glucan and heteroglycan, or heteroglycan/protein complex, as the major components (Wasser 2010). Yang et al. (2007) isolated polysaccharides from P. igniarius and identified as 3-O-methyl-D-galactose-containing heteropolysaccharides. Water-soluble polysaccharides isolated from cultured mycelium of P. igniarius showed antitumor activity attributed to the presence of 1,3-linked glucose in the main and side chains of the polysaccharide (Wu et  al. 2006). An extracellular polysaccharide (EPS) from P. igniarius was purified and characterized and its production investigated. The weight-average molar mass of the EPS was determined to be 3.430 × 105 g/mol (He et al. 2012). Recently, Yuan et al. (2018) separated from the mycelia of P. igniarius a high-molecular-weight polysaccharide composed of glucose, galactose, and mannose and containing a triple helical structure. Polysaccharides showed the activity of scavenging hydroxyl and 1,1-diphenyl-­2picrylhydrazyl (DPPH) radicals and chelating ferrous metal ions and also exhibited potential to inhibit the growth of HT-29 and MCF-7 cancer cells.

Terpenoids According to He et al. (2021), the terpenoids reported in the Phellinus genus mainly included sesquiterpenes, triterpenes, and a small number of diterpenes. Firstly, Wang et al. (2006) reported that an abietane-type diterpene, 12-hydroxy-­7oxo-5,8,11,13-tetraene-18,6-abietanolide, was purified from the fruit bodies of P. igniarius. Then, four new lanostanol-type triterpenoids, igniarens A-D, were isolated from the fruit body of P. igniarius. These four new compounds were identified by spectroscopic analysis as 22R-hydroxy-24-methylene-29-norlanost-7,9(11)-dien-3-one (igniaren A), 3α,22R-dihydroxy-24-methylene-29-norlanost-7,9(11)-diene (igniaren B), 3α,22R-dihydroxy-24-methylene-29-norlanost-8-ene (igniaren C), and 3α,22R-dihydroxy-24-methylenelanost-8-ene (igniaren D) (Wang et al. 2009). Over several decades, nine new tremulane sesquiterpenes were isolated from cultures of P. igniarius, and determined to be (+)-(3S,6R,7R)-tremulene-6,11,12-­ triol, (+)-(3S,6S,7S,10S)-tremulene-10,11,12-triol, (+)-(3S,6R,7R,10S)tremulene-6,10,12-triol, (−)-(2S,3S,6S,7S,9R)-tremul-1(10)-ene-11,12,14-triol,

1318

Y. Gafforov et al.

(−)-(2S,3S,6S,7S,9S)-tremul-1(10)-ene-11,12,15-triol, (−)-(2R,3S,6S,7S,9R)tremul-1(10)-ene-11,12,14-triol, (−)-(2S,3S,4S,6S,7S)-tremul-1(10)-ene-4,11,12-­ triol, (+)-(2S,3R,6S,7S)-tremul-1(10)-ene-2,12-diol, and (+)-(1R,6S,7S)-tremul2-ene-12(11)-lactone (Wu et  al. 2010). Later, five new tremulane sesquiterpenes were isolated from cultures of the fungus P. igniarius; the compounds were established as 6β,11,12-trihydroxy-tremul-1(10)-ene, 11,12-dihydroxyl-7β-peroxyhydroxyl-tremul-1(10)-ene, 6β,12-dihydroxy-­tremulene, 10β,12-dihydroxytremulene, and 12,15-dihydroxy-tremulene on the basis of their MS and NMR data (Yin et al. 2014). Then, Wu et al. (2020) obtained four novel tremulane-type sesquiterpenes, phellinignins A-D, and 11,12-epoxy-12β-­hydroxy-1-tremulen-5-one, tremulenediol B, and conocenols A-B. In addition, Thanh et  al. (2018) identified a new tirucallane-type triterpenoid named igniarine from the methanol extract of the fruiting bodies of P. igniarius.

Steroids Steroids are a class of main metabolites in the fungus of the genus Phellinus. Wang et  al. (2009) reported two steroid derivatives as ergosterol peroxide and 5α-ergosta-7,22-dien-3-one from P. igniarius. Chemical investigation of P. igniarius led to the isolation of an unusual 4-methyl homopregnane derivative and three incisterols named phellinignincisterols A, B, and C, with a highly degraded 1,2,3,4,5,10,19-heptanorergosterane skeleton (Wu et  al. 2010). Yin et  al. (2015) characterized two novel steroids as 3α,17α,19,20-tetrahydroxy-4α-methylpregn-8-­­ ene and 3α,12α,17α,20-tetrahydroxy-4α-methylpregn-8-ene from the P. igniarius. In addition, 8,9-epoxyergosta-5,22-dien-3β,15-diol, 5α,6β-dihydroxy-daucosterol, daucosterin and ergosta-4,6,8(14),22-tetraen-3-one were also reported in P. igniarius (Song et al. 2014; Jiang et al. 2018).

Flavones, Coumarins, and Furans Derivatives Mo et al. (2003a, b) described the isolation and chemical structural analysis of two new benzylated dihydroflavones, phelligrins A and B, together with five other flavones including aromadendrin, eriodictyol, folerogenin, naringenin, sakuranetin, and two coumarin compounds from the fruiting bodies of P. igniarius. Structures of phelligrins A and B were elucidated as 5,7,4′-trihydroxyl-6-O-­ hydroxylbenzyldihydroflavone and 5,7,4′-trihydroxyl-8-O-hydroxylbenzyldihydroflavone by spectroscopy (Mo et al. 2003c).

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1319

Styrylpyranones and Related Compounds Phelligridin A is a polyphenol isolated from the fruiting body of P. igniarius, a fungus collected in Liaoning Province, China in 2003 (Mo et al. 2003d). A year later, phelligridins C-F, three unique pyrano[4,3-c][2]benzopyran-1,6-dione derivatives and a new furo[3,2-c]pyran-4-one, named phelligridins C-F were isolated and identified from the ethanolic extract of P. igniarius. The structures of the new compounds were characterized as 3-(4-hydroxystyryl)-8,9-dihydroxypyrano[4,3-c]isochromene-4-one (phelligridin C), 3-(3,4-hydroxystyryl)-8,9-dihydroxypyrano[4,3-c]isochromene-4-one (phelligridin D), 8,9-dihydroxy-3-{5′,6′-dihydroxy-5″-methyl-3″-oxo-­ spiro[fural-2″(3’‘H),1′-indene]-2′-yl}-1H,6H-pyrano[4,3-c][2]benzopyran1,6-dione (phelligridin E), and (3Z)-3-(3,4-dihydroxybenzylidene)-6-(3,4dihydroxystyryl)-2,3-dihydro-2-­methoxy-2-(2-oxo-propyl)furo[3,2-c]pyran-4-one (phelligridin F), respectively (Mo et al. 2004). A new unique pyrano[4,3-c][2]benzopyran-1,6-dione derivative with an unprecedented carbon skeleton – phelligridin G, has been isolated from the fruiting body of P. igniarius; the structure of phelligridin G was established as 8,9-dihydroxy-3-{5′,6′-dihydroxy-5′′-(trans-5′′′,6′′′dihydroxystyryl)-3′′-oxo-­s piro[furan-2′′(3′′H),1′-inden]-2′-yl}-1H,6Hpyrano[4,3-c][2]benzopyran-1,6-­dione (Wang et al. 2005a). Phelligridimer A were new pigments isolated from the fruiting bodies of P. igniarius, among which phelligridimer A is a rare unsaturated 26-membered macrocycle dimerized by hypholomine B (Wang et al. 2005b). Suabjakyong et al. (2015) identified five phenolic compounds as phelligridin D, inoscavin C, inonoblin C, interfungin B, and phelligridin C from the ethanolic extract of P. igniarius. Chepkirui et al. (2018) reported the isolation of phelligridin L, an unprecedented spiro[furan-2,1′indene]-3-one derivative, from P. igniarius, which was collected in Kenya.

Other Secondary Metabolites From the fruiting bodies of P. igniarius, Sułkowska-Ziaja et  al. (2017) identified phenolic acids such as 3,4-dihydroxyphenylacetic, gallic, protocatechuic, and syringic acids, while non-hallucinogenic indole derivatives were identified as serotonin, tryptamine, and L-tryptophan. Li et al. (2022) identified active components from the fruiting bodies of P. igniarius included protocatechuic aldehyde, hispidin, and hispidin analog named davallialactone. After analyzing the mycochemical composition of the fruiting bodies and mycelia of P. igniarius, we can conclude that it is an excellent source of diverse and unique bioactive secondary metabolites that have promising therapeutic effects in various diseases.

1320

Y. Gafforov et al.

Phellinus pomaceus: Mycochemical investigations on both fruiting bodies and pure cultures of P. pomaceus demonstrated the availability of secondary metabolites with various biological activities (Zhou et al. 2011; He et al. 2014, 2015; Sułkowska-­ Ziaja et  al. 2017; Badalyan and Gharibyan 2020; Dokhaharani et  al. 2021; Sułkowska-Ziaja et al. 2021).

Terpenoids From the fruiting bodies of P. pomaceus, González et al. (1984) identified four pentacyclic triterpenoids as friedelin, β-boswellic acid, taraxerol and ursolic acid. Later, compounds with the structure of triterpene acids, 4β,14α-dimethyl-3-nor-5α-­­ pregn-8-ene-4α,20α-dicarboxylic acid and 4β,14α-dimethyl-20-oxo-3-nor-5αpregn-8-ene-4α-carboxylic acid were isolated from extracts of P. pomaceus fruiting bodies (González et al. 1986). Further investigation on this fungus afforded pomacerone, and senexdiolic acid (González et  al. 1990, 1993). The fruiting bodies of P. pomaceus contained also drimane-type sesquiterpenoids named phellinuins A-G (He et al. 2014), and illudin-type sesquiterpenoid named phellinuin J (He et al. 2015).

Styrylpyranones and Related Compounds Chemical investigation of the fruiting bodies of P. pomaceus revealed hispidin, a compound with the structure 6-(3,4-dihydroxystyryl)-4-hydroxy-2-pyrone and one of its dehydrodimers as 3,14′-bihispidinyl (Klaar and Steglich 1977). Dokhaharani et al. (2021) reported the isolation of flavogallonic acid dilactone, and phaeolschidins A-C (hispidin derivatives). Phelligridin C (meshimakobnol A) and phelligridin D (meshimakobnol B), two benzopyran derivatives from the styrylpyrone type family were also isolated from fruiting bodies of P. pomaceus (Dokhaharani et al. 2021).

Steroids González et  al. (1984) reported the isolation of two steroids as ergosta-7,22diene-­3one and ergosta-7,22-diene-3-ol from fruiting bodies of P. pomaceus.

Other Secondary Metabolites Free phenolic acids and non-hallucinogenic indole compounds were determined in extracts of fruiting bodies of P. pomaceus; phenolic acids were identified as 3,4-dihydroxyphenylacetic, gallic, protocatechuic, and syringic acids, while

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1321

non-­hallucinogenic indole derivatives were identified as serotonin, tryptamine, and L-tryptophan (Sułkowska-Ziaja et al. 2017). Phellinus tremulae: The mycochemical investigations from the fruiting bodies of P. tremulae demonstrated various secondary metabolites (Serck-Hanssen and Wikstrom 1978; Nelson et al. 1993; Ayer and Cruz 1993; Cruz 1997).

Terpenoids The tremulanes, a new group of sesquiterpenes from P. tremulae were identified for the first time by Ayer and Cruz (1993). Indeed, a new series of sesquiterpenes, the tremulanes, possessing a previously unreported substituted perhydroazulene carbon skeleton, has been isolated from liquid cultures P. tremulae. Tremulane-type sesquiterpenes from P. tremulae, were characterized and named tremulenolides A-B, tremulenedial, and tremulenediols A-D. The structures were determined by NMR techniques (1H-1HCOSY, HMQC, and HMBC) and other physical methods including, in the case of tremulenolide A, X-ray crystallography. The chemical correlation of tremulenediol A with tremulenolide A was described as was the correlation of tremulenedial with tremulenediol B. The absolute configuration of the compounds was assigned by application of the olefin octant rule to the allylic alcohol tremulenediol A. These new sesquiterpenes do not obey the biogenetic isoprene rule and it is suggested that they may not be derived from farnesyl pyrophosphate (Ayer and Cruz 1993).

Other Secondary Metabolites In addition, oxidized phenylheptanes as 7-phenyheptan-3-one, and 1-­phenylheptane-1,5-dione, were isolated and identified from P. tremulae (Serck-­ Hanssen and Wikstrom 1978; Nelson et al. 1993).

Local Medicinal Uses Phellinus igniarius: This fungus has been used in traditional medicine in Asia for many years. The fruiting bodies of P. igniarius, have been historically used as a folk medicine for the treatment of endometrorrhagia in gynecology (He et al. 2021). This species has the ability to scavenge free radicals and prevent other diseases in traditional medicine, to reduce the risk of heart attack or stroke, to reduce the risk of cancer, and drink its tinctures and broths as a treatment for various injuries, various inflammations (Meunink 2015). P. igniarius was burned, mixed with tobacco and chewed. The alkaline properties of ash are known to increase the penetration of nicotine into the bloodstream. The Arctic tribes boiled the pulp of the fruit and

1322

Y. Gafforov et al.

drank it as a broth to relieve stomach ailments or pain. A tincture or tobacco of the fungus has also been used to protect the liver in patients with liver damage from alcohol abuse. P. igniarius tea is a very popular antioxidant, which is believed to inhibit cancer (Blanchette et al. 2002). Phellinus pomaceus: The species of the genus Phellinus spp. have become a part of folk and traditional medicine due to their unique medicinal properties (Hobbs 2002; He et al. 2021). The fruit bodies of the P. pomaceus have been traditionally used for medicinal purposes in Asian countries such as China, Japan, Korea, and Mongolia. P. pomaceus has been used as an effective remedy for ailments related to gastrointestinal dysfunction, diarrhea, and hemorrhages. In Australia, the Aborigines used aqueous extracts prepared from charred fragments of various Phellinus species to treat coughs, sore throats, and diarrhea (Hobbs 2002; Azeem et al. 2018; SułkowskaZiaja et al. 2021).

Modern Medicinal Uses Phellinus igniarius: This fungus is rich in biologically active substances with therapeutic potential. Mycochemical studies have proved the presence of polysaccharides, phenolic compounds, and terpenoids. These compounds showed biological activities such as anticancer, antioxidant, antiangiogenic, and antiviral. Research studies conducted using modern analytical methods have advanced the knowledge on the potential therapeutic use of compounds isolated not only from the fruiting bodies but also from biomass obtained with in vitro biotechnological methods (Badalyan and Gharibyan 2020; He et al. 2021; Sułkowska-Ziaja et al. 2021).

Antitumor Effect Polysaccharides isolated from the fruiting body of P. igniarius and mycelium demonstrated excellent antitumor activity, and immune system regulation (Chen et al. 2011). Polysaccharides from P. igniarius showed inhibitory effects on carcinogenesis and pulmonary inflammation (Shon et  al. 1999; Shon and Nam 2001, 2002, 2004; Kim et al. 2000). The ethanolic extract from the fruiting body of P. igniarius presented antiproliferative and antimetastatic effects in human hepatocarcinoma (SK-Hep-1) and rat heart vascular endothelial (RHE) cells (Song et al. 2008). Water-­ soluble polysaccharides isolated from cultured mycelium of P. igniarius exhibited antitumor activity attributed to the presence of 1,3-linked glucose in the main and side chains of the polysaccharide (Wu et al. 2006). It was also reported that crude extracellular polysaccharides from P. igniarius when used to treat S180 sarcoma and H22 hepatoma inhibited tumor growth and protected the liver without toxic

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1323

effects (Dong et al. 2009). Protocatechuic acid which is part of the fruiting bodies of P. igniarius is as well as exhibiting anticancer action on gastrointestinal cancers and squamous cancers (Masella et al. 2012). Recently, it has been established that the fungus not only inhibits tumor growth, but also prevents its metastasis. Some Chinese scientists suggested that false tinder fungus can simultaneously act both directly on cells and stimulate the synthesis of y-­interferon in the body. Wang et al. (2018) reported ethanol extract of P. igniarius had antitumor activities against five human tumor cell lines of HepG-2, AGS, SGC-7901, Hela and A-549. Extract of P. igniarius was found the most cytotoxicity against gastric cancer SGC-7901 in vitro, and strongly inhibited the tumor growth in xenograft nude mice in vivo. Typical morphological changes due to cell apoptosis including chromatin condensation, and nuclear fragmentation with the formation of apoptotic bodies were observed in the SGC-7901 cells after extract of P. igniarius treatment. These findings suggested that P. igniarius could be a potential natural derived therapeutic agent for the prevention and treatment of gastric cancer, as it could induce the cancer cell apoptosis through a mitochondria-dependent pathway (Wang et al. 2018). Highly oxygenated compounds such as phelligridimer A and phelligridins G-J isolated from this mushroom were found to inhibit rat liver microsomal lipid peroxidation and exhibit cytotoxic activities against human cancer cell lines (Wang et al. 2005b). Phellinignin D isolated from P. igniarius showed moderate cytotoxicity to three human cancer cell lines (HL-60, SMMC-7721, and SW480) with the IC50 values of 21.1, 12.3, and 13.9 μM, respectively (Wu et al. 2020). Due to the presence of hispolon in P. igniarius, it is used against various cancers (lung, liver, stomach). Several reports have demonstrated that hispolon exhibits anticancer effects through the inhibition of cell growth or metastasis in various types of tumor cells, such as Hep3B cells (Huang et al. 2011), NB4 human leukemia (Chen et al. 2013) acute myeloid leukemia (AML) cells (Hsiao et al. 2013) B16-F10 melanoma cells (Chen et al. 2014). Also, scientific investigations demonstrated that hispolon isolated from P. igniarius induced apoptosis of lung cancer by increasing apoptosis-­ related protein expressions, such as the cleavage of caspase 3, caspase 8 and polymerase (Chen et al. 2013; Wu et al. 2014). Further research on the pharmacological properties of P. igniarius may provide new compounds that could revolutionize the therapy of cancer and other diseases. The species of Phellinus makes up a vast and yet largely untapped source of powerfully new pharmaceutical products. In particular, and most importantly for modern medicine, the species of Phellinus presents an unlimited source of polysaccharides (especially β-glucans) and polysaccharide-­protein complexes with anticancer and immunostimulating properties, different types of biologically active high-molecular-weight and low-­molecular-­ weight compounds in fruit bodies, cultured mycelia, and cultured broth (Dong et al. 2019).

1324

Y. Gafforov et al.

Anti-inflammatory Activity Jiang et al. (2018) reported anti-inflammatory activity of chemical constituents isolated from the P. igniarius. Activity evaluation revealed that compounds from P. igniarius showed moderate inhibition of NF-кB with fold values of with fold values of 0.48 ± 0.02 and 0.55 ± 0.09, in HeLa cells at 100 μmol/L. These results suggest that some of the ingredients from P. igniarius could be developed into anti-­ inflammatory agents for use in clinical applications. The polyphenols from P. igniarius demonstrated significant anti-inflammatory activity by suppressing the expression of ICAM-1, IL-1β and IL-6 and by reducing the ankle joint swelling degree in an MSU-induced acute gouty arthritis rat model (Li et al. 2022).

Antioxidant Action Phelligridimer A isolated from P. igniarius exhibited antioxidant activity with an IC50 value of 10.2 μM (Wang et al. 2005b). Phelligridin G showed antioxidant activity inhibiting rat liver microsomal lipid peroxidation (Wang et  al. 2005a). Protocatechuic acid which is part of the fruiting bodies of P. igniarius is characterized by strong antioxidant activity (Masella et al. 2012). The polysaccharide (PIP1) isolated from P. igniarius mycelium has also been shown to exhibit antioxidant properties (Yuan et al. 2018).

Neuroprotective Property Potential neuroprotective properties have been demonstrated for the water-ethanol extract precipitate of P. igniarius. The study used a model of transient cerebral ischemia and showed that the administered extract inhibited neuronal death in the hippocampus and prevented oxidative damage, microglia activation, and blood-brain barrier disruption. Thus, it can be speculated that this extract has beneficial effects on stroke-induced damage and may have high therapeutic potential in clinical conditions (Kim et al. 2015). Similar results were obtained in the experiment with an ethanolic extract of P. igniarius containing numerous polyphenolic compounds. This extract has been shown to protect cells against acrolein, which damages cells during oxidative stress. Oxidative stress plays a significant role in the development of stroke. The impact of this extract were also investigated in mice with experimentally induced stroke and showed beneficial effects compared to a control group in which no extract was used. These results suggest that the polyphenol-containing extract of P. igniarius could be used in the prevention of ischemic stroke (Suabjakyong et al. 2015). The results of another study showed that an extract of P. igniarius may have beneficial effects in patients with multiple sclerosis. The polysaccharide fraction is responsible for this effect (Li et al. 2014).

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1325

Vascular Activities Mycochemical investigation of the culture of P. igniarius afforded three cadinane-­ type sesquiterpenoids namely 12-hydroxy-α-cadinol, 3α,12-dihydroxy-δ-cadinol, and 3α,6α-dihydroxyspiroax-4-ene, with vascular relaxing activities in vitro (Song et al. 2014). Yin et al. (2015) reported sesquiterpenes from cultures of P. igniarius showed vascular relaxing activities against phenylephrine-induced vasoconstriction. Sesquiterpenes as 12-hydroxy-α-cadinol and 3α,12-dihydroxy-δ-cadinol were tested for the vascular activities against phenylephrine-induced vasoconstriction. They exhibited the vascular activities with the relaxing rates of 11.0% and 7.0% at 3 × 10−4 M, respectively.

Anti-viral Property The sesquiterpenoid named eudesm-1β,6α,11-triol identified from P. igniarius, presented an inhibitory effect on the influenza virus (Song et al. 2014). Furthermore, the authors reported that edesm-1β,6α,11-triol inhibited the H5N1 (bird flu) influenza A virus with the EC50 value of 0.14 μM and inhibited neuraminidase with the IC50 value of 0.657  μM.  Zanamivir was the control antiviral medicine (Song et al. 2014).

Other Biological Activities Syringic acid showed cholagogue and choleretic activities by a direct spasmolytic action on smooth muscles, while 3,4-dihydroxyphenylacetic acid was effective in the treatment of breast cancer (Kampa et al. 2004). Protocatechuic acid which is part of the fruiting bodies of P. igniarius is characterized by strong antibacterial, and antifungal action (Masella et al. 2012). Other studies suggest that polyphenol-rich P. igniarius extract has potential antidiabetic properties by reducing hyperglycemia, improving glucose tolerance, and normalizing insulin levels. These effects are partially due to the activation of GLUT4 translocation through the modulation of the AMPK pathway (Zheng et al. 2018). The research by Li et al. (2021) on fruiting bodies of P. igniarius showed cardioprotective activity of 22-hydroxyanostane triterpenoids as phellinols A, B, and F against oxygenglucose deprivation/reoxygenation injury in H9c2 cells at a concentration of 20 μM. Recently, extracts of P. igniarius with bioactive compounds as davallialactone, hispidin, hypholomine B, inoscavin A, phelligridimer A, and protocatechuic aldehyde, displayed activities in reducing uric acid levels through inhibiting xanthine oxidase (XO) activity and down-regulating the levels of uric acid (UA), urea nitrogen (UN) and creatinine (Cr); they also had anti-inflammatory activities through down-regulating the secretions of ICAM-1, IL-1β and IL-6 in the hyperuricaemia rat model (Li et al. 2022).

1326

Y. Gafforov et al.

Phellinus pomaceus: The bioactive compounds isolated from P. pomaceus showed antioxidant, antitumor, anti-inflammatory, antibacterial, antifungal, hypolipidemic, hypoglycemic, and neuroprotective properties (Badalyan and Gharibyan 2020; He et al. 2021; Sułkowska-Ziaja et al. 2021).

Cytotoxic Effect In vitro studies of synthetic hispidin, a compound naturally occurring in the fruiting bodies of P. pomaceus, inhibited the β-isoform of protein kinase C (IC50 = 2 μM), an enzyme involved in cell metabolism and affecting cell membrane permeability. In addition, hispidin was shown to have cytotoxic activity against human pancreatic ductal epithelial cancer cells and keratinocytes (Gonindard et  al. 1997). Recent studies demonstrated that hispidin but not polysaccharides or flavonols determined the antitumor property of Phellinus fruiting bodies extracts (Zhang et al. 2019). At the same time, the Ames test, in vitro chromosome aberration test, acute oral toxicity test, and bone marrow micronucleus test showed a very low toxicity for human consumptions (Li et  al. 2020). The alternative mechanism of cytotoxic effect of hispidin was described for the human papillomavirus-related endocervical adenocarcinoma SGC-7901 cell line. According to Lv et al. (2017) this polyketide induces autophagic and necrotic death of adenocarcinoma cells but does not show the cytotoxic effect on control cells such as human liver cell line L02 and stomach cell line GES-1. Hispidin activates phosphorylation of stathmin-1 at Ser16 which causes depolymerization of microtubules in SGC-7901. Cancer cell microtubules oscillate and increase the membrane permeability of peripheral lysosomes, which become large and fragile compared to the normal ones (Piao and Amaravadi 2016).

Antioxidant Activity The antioxidant properties of hispidin are noted in many studies (Jung et al. 2008; Park et al. 2004a; El Hassane et al. 2014; Zan et al. 2011). Recently, bis-hispidin compounds (or bis styrylpyrone) named paeolschidin A-C, and flavogallonic acid dilactone (one of the hydrolysable tannins) detected in P. pomaceus presented significant antioxidant activity (Dokhaharani et al. 2021).

Hepatoprotective Activity Bhat and Shaw (2015) reported different extracts from P. pomaceus showing promising hepatoprotective activity.

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1327

Multidirectional Therapeutic Activity Besides cytotoxic and antioxidant properties hispidin displays potentially antiviral (Ali et al. 2003), hypoglycemic (Lee et al. 2008), anti-inflammatory (Wangun et al. 2006) and neuroprotective properties (Park et al. 2004b). Hispidin can inhibit HIV integrase, which is an enzyme required for the incorporation of viral cDNA into the host genome – an essential step in the life cycle of this retrovirus (Singh et al. 2003). Later, veratric and ellagic acids detected from P. pomaceus have shown antimicrobial, antioxidant, anti-inflammatory, and photo-protective effects (García-Niño and Zazueta 2015). More recently, Sułkowska-Ziaja et  al. (2017) reported non-­ hallucinogenic indole compounds and free phenolic acids (3,4-­dihydroxyphenylacetic, gallic, protocatechuic, and syringic acids) from fruiting bodies extracts of P. pomaceus with multidirectional therapeutic activities as antibacterial, antifungal, anti-inflammatory, and antioxidant. Phellinus tremulae: Data on the mycochemical composition of P. tremulae are limited. To our knowledge the data on the therapeutic properties of this mushroom are not known.

Folk Recipes Phellinus igniarius: This fungus has been widely used as traditional fungi therapy in China, Korea, Japan, and other Asian countries for centuries. In China, P. igniarius, P. linteus, and P. baumii are the most common species, which are collectively called “Shanghuang”. As a traditional fungus medicine, the history of “Shanghuang” in China can be traced back to more than 2000  years in the book “Shen Nong Materia Medica”, in which Shanghuang was called “Sang’er” (ear-like mushroom growing on Morus alba L) (Wu et  al. 2003; He et  al. 2021). Since then, various ancient Chinese classical books have recorded the traditional medicinal uses of Phellinus mushrooms such as “A New Compendium of Materia Medica” in the Tang dynasty, “Illustrated Classics of Materia Medica” in the Song dynasty, and “Compendium of Materia Medica” in the Ming dynasty (Su 1981; Cao 2004; Bao et al. 2017). In the Korean folk medicinal system, Phellinus mushrooms, which are called “Sanghwang”, were reported in “Donguibogam”, a classic work on eastern medicine (Wu et al. 2016). In China, the extract of P. igniarius was used as a traditional Chinese medicine for the treatment of festering, abdominalgia, bloody gonorrhea, and antidiarrheal (He et al. 2021), and also administered as an effective remedy for stomach and intestinal ailments, diarrhea, and hemorrhages (Sułkowska-Ziaja et al. 2017; Sułkowska-Ziaja et al. 2021; Zapora et al. 2016). Phellinus pomaceus: The Phellinus spp. are important mushrooms in traditional medicine, especially in Traditional Chinese Medicine. They have been previously used as an effective remedy for gastrointestinal dysfunction, diarrhea, hemorrhage, cough, and sore throat (Azeem et al. 2018).

1328

Y. Gafforov et al.

Local Food Uses Edibility, aroma and flavor All Phellinus species are inedible Phellinus tremulae: delicate and pleasant odor, especially during growth, the interior of the basidiome and the freshly felled decayed wood giving off a sweet scent of methyl salicylate or wintergreen, set sweet or weakly acidic flavor.

Local Handicraft and Other Uses Phellinus igniarius: The fruiting body of P. igniarius is very hard and even needs to be removed with a saw. Mushroom cigarette boxes were made by local Indians in North America. These boxes are made of wonderful materials  – bone, ivory and wood.

References Ali NAA, Awadh Ali NA, Mothana RAA, Lesnau A, Pilgrim H, Lindequist U (2003) Antiviral activity of Inonotus hispidus. Fitoterapia 74:483–485 Ayer WA, Cruz ER (1993) The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. J Org Chem 58(26):7529–7534 Azeem U, Dhingra GS, Shri R (2018) Pharmacological potential of wood inhabiting fungi of genus Phellinus Quél.: an overview. J Pharmacogn Phytochem 7:1161–1171 Badalyan SM, Gharibyan NG (2020) Pharmacological properties and resource value of Hymenochaetoid fungi (Agaricomycetes) distributed in Armenia: review. Int J Med Mushrooms 22:1135–1146 Bao H, Yang YS, Li QJ, Bau T, Li Y (2017) Supplementary textual research on “Sanghuang”. J Fungal Res 15:264–270 Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean Region. Romar, Segrate, p 903 Bhat GA, Shaw AS (2015) Medicinal and chemical aspects of some wild mushrooms occurring in Kashmir. In: Developments in medicinal mushroom biology and therapeutic properties. Daya Publishing House, New Delhi Blanchette RA, Renner CC, Held BW, Enoch C, Angstman S (2002) The current use of Phellinus igniarius by the Eskimos of Western Alaska. Mycology 16:142–145 Bondartseva MA, Parmasto E (1986) Clavis diagnostica fungorum URSS. Ordo Aphyllophorales. Fasc. 1. Leningrad (in Russ.), Nauka Boulet B (2003) The tree fungi of eastern North America. Quebec Publications Cao H (2004) Essentials of materia medica distinctions (Ben Cao Pin Hui Jang Yao). People’s Medical Publishing House, Beijing Chen L, Pan J, Li X, Zhou Y, Meng Q, Wang Q (2011) Endo-polysaccharide of Phellinus igniarius exhibited anti-tumor effect through enhancement of cell mediated immunity. Int Immunopharmacol 11:255–259

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1329

Chen YC, Chang HY, Deng JS, Chen JJ, Huang SS, Lin IH, Wan LK, Chao W, Huang GJ (2013) Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in Nb4 human leukaemia cells. Am J Chin Med 41:1439–1457 Chen YS, Lee SM, Lin CC, Liu CY (2014) Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-­ associated transcription factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int J Mol Sci 15:1201–1215 Chepkirui C, Cheng T, Matasyoh J, Decock C, Stadler M (2018) An unprecedented spiro [furan-2, 1′-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaceae, Basidiomycota) collected in Kenya. Phytochem Lett 25:141–146 Cruz ER (1997) The biosynthesis of the new tremulane sesquiterpenes isolated from Phellinus tremulae. Can J Chem 75:834–839 Dai YC (2010) Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 45:131–343. https:// doi.org/10.1007/s13225-­010-­0066-­9 Doğan HH, Şanda MA, Uyanöz R, Öztürk C, Çetin CÜ (2006) Contents of metals in some wild mushrooms: its impact in human health. Biol Trace Elem Res 110:79–94 Dokhaharani SC, Ghobad-Nejhad M, Moghimi H, Farazmand A, Rahmani H (2021) Biological activities of two polypore macrofungi (Basidiomycota) and characterization of their compounds using HPLC–DAD and LC–ESI–MS/MS. Folia Microbiol 66(5):775–786 Dong W, Ning L, Lu W-D, Cui-cui Li C-C, Chen R-P, Jia X-N, Wang L, Guo L-Z (2009) Tumor-­ inhibitory and liver-protective effects of Phellinus igniarius extracellular polysaccharides. World J Microbiol Biotechnol 25:633–638 Dong Y, Ma H, Zhou C, Moses GK, Ye X, Zhang H, Sun L, Abdualrahman MAY (2019) Review of advances in bioactive low-molecular-weight compounds, extracts, and biology of Phellinus sensu lato mushrooms (Agaricomycetes) from 2011 to 2017. Int J Med Mushrooms 21:875–894 El Hassane A, Shah SAA, Hassan NB, El Moussaoui N, Ahmad R, Zulkefeli M, Weber J-FF (2014) Antioxidant activity of hispidin oligomers from medicinal fungi: a DFT study. Molecules 19:3489–3507 Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-­ inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321. https://doi. org/10.3389/fmicb.2020.598321 García-Niño WR, Zazueta C (2015) Ellagic acid: Pharmacological activities and molecular mechanisms involved inliver protection. Pharmacol Res 97:84–103 Gonindard C, Bergonzi C, Denier C, Sergheraert C, Klaebe A, Chavant L, Hollande E (1997) Synthetic hispidin, a PKC inhibitor, is more cytotoxic toward cancer cells than normal cells in vitro. Cell Biol Toxicol 13:141–153 González GA, Barrera JA et al (1984) Ouimica de Hongos, Parte III. Componentes químicos del Basidiomycete Phellinus pomaceus. Anales de Quimica 80:314–315 González AG, Barrera JB, Pérez MM, Marante FT, Perales A (1986) Two new triterpene acids from Phellinus pomaceus. J Chem Soc Perkin Trans 1:551–554 González GA et al (1990) Pomacerone, a furanoid triterpen from Phellinus pomaceus. Heterocycles 31(5):841–845 González AG, Expósito TS, Barrera JB, Castellano G, Toledo Marante FJ (1993) The absolute stereochemistry of Senexdiolic acid at C-22. J Nat Prod 56:2170–2174 He P, Geng L, Wang J, Wang Z, Mao D, Xu C (2012) Purification, characterization and bioactivity of an extracellular polysaccharide produced from Phellinus igniarius. Ann Microbiol 62:1697–1707 He JB, Feng T, Zhang S, Dong ZJ, Li ZH, Zhu HJ, Liu JK (2014) Seven New Drimane-Type Sesquiterpenoids from Cultures of Fungus Phellinus tuberculosus. Nat Prod Bioprospect 4:21–25. https://doi.org/10.1007/s13659-­014-­0002-­x

1330

Y. Gafforov et al.

He JB, Tao J, Miao XS, Feng YP, Bu W, Dong ZJ, Li ZH, Feng T, Liu JK (2015) Two new illudin type sesquiterpenoids from cultures of Phellinus tuberculosus and Laetiporus sulphureus. J Asian Nat Prod Res 17:1054–1058 He P, Zhang Y, Li N (2021) The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: a review. Food Funct 12(5):1856–1881. https://doi.org/10.1039/d0fo02342f Hobbs C (2002) Medicinal mushrooms: an exploration of tradition, healing, and culture. Botanica Press, Summertown, ISBN 9781570679506 Hsiao PC, Hsieh YH, Chow JM, Yang SF, Hsiao M, Hua KT, Lin CH, Chen HY, Chien MH (2013) Hispolon induces apoptosis through JNK1/2-mediated activation of a caspase-8, -9, and -3-dependent pathway in acute myeloid leukemia (AML) cells and inhibits AML xenograft tumor growth in vivo. J Agric Food Chem 61:10063–10073 Huang GJ, Deng JS, Huang SS, Hu ML (2011) Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem 59:7104–7113 Jiang Z, Jin M, Zhou W, Li R, Zhao Y, Jin X, Li G (2018) Anti-inflammatory activity of chemical constituents isolated from the willow bracket medicinal mushroom Phellinus igniarius, (Agaricomycetes). Int J Med Mushrooms 20(2):119–128 Jung J-Y, Lee I-K, Seok S-J, Lee H-J, Kim Y-H, Yun B-S (2008) Antioxidant polyphenols from the mycelial culture of themedicinal fungi Inonotus xeranticus and Phellinus linteus. J Appl Microbiol 104:1824–1832 Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential of action. Breast Cancer Res 6:63–74 Kim SY, ShonYH LJS, Kim CH, Nam KS (2000) Antimutagenic activity of soybeans fermented with basidiomycetes in Ames/Salmonella test. Biotechnol Lett 22:1197–1202 Kim JH, Choi BY, Kim HJ, Kim IY, Lee BE, Sohn M et al (2015) A water-ethanol extract from the willow bracket mushroom, Phellinus igniarius (higher Basidiomycetes), reduces transient cerebral ischemia-induced neuronal death. Int J Med Mushrooms 17:879–889 Klaar M, Steglich W (1977) Pilzpigmente, XXVII. Isolierung von Hispidin und 3,14’-Bihispidinyl aus Phellinus pomaceus (Poriales). Chem Ber 110:1058–1062 Lee I-K, Yun B-S (2011) Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J Antibiot 64:349–359. https://doi.org/10.1038/ ja.2011.2 Lee YS, Kang Y-H, Jung J-Y, Kang I-J, Han S-N, Chung J-S, Shin H-K, Lim SS (2008) Inhibitory constituents of aldosereductase in the fruiting body of Phellinus linteus. Biol Pharm Bull 31:765–768 Li L, Wu G, Choi BY, Jang BG, Kim JH, Sung GH et  al (2014) A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord. Biomed Res Int 2014:218274. https://doi. org/10.1155/2014/218274 Li I-C, Chen CC, Sheu S-J, Huang I-H, Chen C-C (2020) Optimized production and safety evaluation of hispidin-enriched Sanghuangporus sanghuang mycelia. Food Sci Nutr 8:1864–1873 Li YT, Zhang Z, Feng Y, Cheng Y, Li S, Li C, Tian LW (2021) Cardioprotective 22-­ hydroxylanostane triterpenoids from the fruiting bodies of Phellinus igniarius. Phytochemistry 191:112907. https://doi.org/10.1016/j.phytochem.2021.112907 Li H, Zhang X, Gu L, Li Q, Ju Y, Zhou X, Hu M, Li Q (2022) Anti-gout effects of the medicinal fungus Phellinus igniarius in hyperuricaemia and acute gouty arthritis rat models. Front Pharmacol 12:801910. https://doi.org/10.3389/fphar.2021.801910 Liu J-K (2015) Steroids and sesquiterpenes from cultures of the fungus Phellinus igniarius. Nat Prod Bioprospect 5:17–22 Lv L-X, Zhou Z-X, Zhou Z, Zhang L-J, Yan R, Zhao Z, Yang L-Y, Bian X-Y, Jiang H-Y, Li Y-D (2017) Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1331

cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization. Oncotarget 8:26992–27006 Masella R, Santangelo C, D’Archivio M, Li Volti G, Giovannini C, Galvano F (2012) Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem 19:2901–2917 Meunink J (2015) Basic illustrated edible and medicinal mushrooms. Publishing House Falcon Guides. 112 p Mo SY, He WY, Yang YC, Shi JG (2003a) Two benzyl dihydroflavones from Phellinus igniarius. Chin Chem Lett 14(8):810–813 Mo SY, Yang YC, Shi JG (2003b) Studies on chemical constituents of Phellinus igniarius. Zhongguo Zhong Yao Za Zhi 28:339–341 Mo SY, Yang YC, Shi JG (2003c) Isolation and synthesis of phelligrins A and B. Acta Chim Sin 61:1161–1163 Mo SY, Yang YC, He WY, Shi JG (2003d) Two pyrone derivatives from fungus Phellinus igniarius. Chin Chem Lett 14:704–706 Mo S, Wang S, Zhou G, Yang Y, Li Y, Chen X et al (2004) Phelligridins C-F: cytotoxic pyrano[4,3­c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius. J Nat Prod 67:823–828 Nelson GJ, Matthees DP, Lewis DE (1993) 1-Phenylheptane-1,5-dione, from Phellinus tremulae. J Nat Prod 53:1182–1183 Park I-H, Chung S-K, Lee K-B, Yoo Y-C, Kim S-K, Kim G-S, Song K-S (2004a) An antioxidant hispidin from the mycelialcultures of Phellinus linteus. Arch Pharm Res 27:615–618 Park I-H, Jeon S-Y, Lee H-J, Kim S-I, Song K-S (2004b) A beta-secretase (BACE1) inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med 70:143–146 Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371:45–54 Ryvarden L, Gilbertson RL (1994) European Polypores. Part. 2. Meripilus  – Tyromyces. Fungiflora, Oslo, pp 388–743 Serck-Hanssen K, Wikstrom C (1978) Novel 7-phenyheptan-3-ones from the fungus Phellinus tremulus. Phytochemisry 17:1678–1679 Shon YH, Nam KS (2001) Antimutagenicity and induction of anticarcinogenic phase II enzyme by basidiomycetes. J Ethnopharmacol 77:103–109 Shon YH, Nam KS (2002) Cancer chemoprevention: inhibitory effect of soybeans fermented with basidiomycetes on 7, 12-dimethylbenz[a]anthracene /12-O-tetradecanoylphorbol-13-acetate-­­ induced mouse skin carcinogenesis. Biotechnol Lett 24:1005–1010 Shon YH, Nam KS (2004) Inhibition of cytochrome P450 isozymes and ornithine decarboxylase activities bypolysaccharides from soybeans fermented with Phellinus igniarius or Agrocybe cylindracea. Biotechnol Lett 26:159–163 Shon YH, Lee JS, Lee HW, Nam KS (1999) Antimutagenic potential of Phellinus igniarius. J Microbiol Biotechnol 9:525–528 Singh SB, Jayasuriya H, Dewey R, Polishook JD, Dombrowski AW, Zink DL, Guan Z, Collado J, Platas G, Pelaez F, Felock PJ, Hazuda DJ (2003) Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J Ind Microbiol Biotechnol 30:721–731 Song TY, Lin HC, Yang N-C, Hu M-L (2008) Antiproliferative and antimetastatic effects of the ethanolic extract of Phellinus igniarius (Linnearus: Fries). J Ethnopharmacol 115:50–56 Song R, Sun XL, Kong C, Zhao C, Qin D, Huang F, Yang S (2014) Discovery of a new sesquiterpenoid from Phellinus igniarius, with antiviral activity against influenza virus. Arch Virol 159:753–760 Su J (1981) Tang Materia Medica. Anhui Science and Technology Publishing House, Hefei Suabjakyong PS, Saiki R, Van Griensven LJ, Higashi K, Nishimura K, Igarashi K, Toida T (2015) Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model. PLoS One 10:e0122733

1332

Y. Gafforov et al.

Sułkowska-Ziaja K, Maślanka A, Szewczyk A, Muszyńska B (2017) Physiologically active compounds in four species of Phellinus. Nat Prod Commun 12(3):363–366 Sułkowska-Ziaja K, Balik M, Muszyńska B (2021) Selected species of the genus Phellinus – chemical composition, biological activity, and medicinal applications. Chem Biodivers 18:e2100609. https://doi.org/10.1002/cbdv.202100609 Thanh NT, Tuan NN, Kuo PC, Dung DM, Phuong DL, Giang D, Wu TS, Thang TD (2018) Chemical constituents from the fruiting bodies of Phellinus igniarius. Nat Prod Res 32:2392–2397. https://doi.org/10.1080/14786419.2017.1413572 Tomšovský M, Vampola P, Sedlák P, Byrtusová Z, Jankovský L (2010) Delimitation of central and northern European species of the Phellinus igniarius group (Basidiomycota, Hymenochaetales) based on analysis of ITS and translation elongation factor 1 alpha DNA sequences. Mycol Prog 9:431–445 Wang Y, Mo S-Y, Wang S-J, Li S, Yang Y-C, Shi J-G (2005a) A unique highly oxygenated pyrano[4,3-c][2]benzopyran- 1,6-dione derivative with antioxidant and cytotoxic activities from the fungus Phellinus igniarius. Org Lett 7:1675–1678 Wang Y, Wang S-J, Mo S-Y, Li S, Yang Y-C, Shi J-G (2005b) Phelligridimer A, a highly oxygenated and unsaturated 26-membered macrocyclic metabolite with antioxidant activity from the fungus Phellinus igniarius. Org Lett 7:4733–4736 Wang Y, Wang SJ, Mo SY, Li S, Yang YC, Shi JG (2006) An abietane diterpene and a sterol from fungus Phellinus igniarius. Chin Chem Lett 17:481–484 Wang Y, Shang X-Y, Wang S-J, Mo S-Y, Li S, Yang Y-C, Ye F, Shi J-G, He L (2007) Structures, biogenesis, and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the fungus Phellinus igniarius. J Nat Prod 70:296–299 Wang GJ, Tsai TH, Chang TT, Chou CJ, Lin LC (2009) Lanostanes from Phellinus igniarius and their iNOS inhibitory activities. Planta Med 75:1602–1607. https://doi.org/10.1055/s-­0029-­1185813 Wang FF, Shi C, Yang Y, Fang Y, Sheng L, Li N (2018) Medicinal mushroom Phellinus igniarius induced cell apoptosis in gastric cancer SGC-7901 through a mitochondria-dependent pathway. Biomed Pharmacother 102:18–25. https://doi.org/10.1016/j.biopha.2018.03.038 Wangun HVK, Härtl A, Tam Kiet T, Hertweck C (2006) Inotilone and related phenylpropanoid polyketides from Inonotus sp. and their identification as potent COX and XO inhibitors. Org Biomol Chem 4:2545–2548 Wasser SP (2010) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms 12:1–16 Wu P, Sun YX, Sun FY (2003) Sheng Nong Ben Cao Jing. Scientific and Technical Documentation Press, Beijing Wu MJ, Jiang DZ, Liu TM, Zhang LP (2006) Structural analysis of water-soluble polysaccharide PIP1 extracted from the cultured mycelium of Phellinus igniarius. Chem Res Chin Univ 22:708–711 Wu X, Lin S, Zhu C, Yue Z, Yu Y, Zhao F, Liu B, Dai J, Shi J (2010) Homo- and heptanor-sterols and tremulane sesquiterpenes from cultures of Phellinus igniarius. J Nat Prod 73:1294–1300 Wu XL, Lin S, Zhu CG, Zhao F, Yu Y, Yue ZG, Liu B, Yang YC, Dai JG, Shi JG (2011) Studies on constituents of cultures of fungus Phellinus igniarius. Chin Med J 36:874–880 Wu Q, Kang Y, Zhang H, Wang H, Liu Y, Wang J (2014) The anticancer effects of hispolon on lung cancer cells. Biochem Biophy Res Commun 453:385–391 Wu SH, Huang GZ, Chen YP, Dai YC, Zhou LW (2016) Taxonomy and development prospects of Sanghuang (Sanghuangporus sanghuang). J Fungal Res 14:187–200 Wu PF, Ding R, Tan R, Liu J, Hu EM, Li CY, Liang GY, Yi P (2020) Sesquiterpenes from cultures of the fungus Phellinus igniarius and their Cytotoxicities. Fitoterapia 140:104415 Yang Y, Zhang JS, Liu YF, Tang QJ, Zhao ZG, Xia WS (2007) Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius. Carbohydr Res 342:1063–1070 Yang Y, Ye L, Zhang J, Liu Y, Tang Q (2009) Structural analysis of a bioactive polysaccharide, PISP1, from the medicinal mushroom Phellinus igniarius. Biosci Biotech Bioch 73:134–139

Phellinus igniarius (L.) Quél.; Phellinus pomaceus (Pers.) Maire; Phellinus…

1333

Yin RH, Zhao ZZ, Chen HP, Yin X, Ji X, Dong ZJ et al (2014) Tremulane sesquiterpenes from cultures of the fungus Phellinus igniarius and their vascular-relaxing activities. Phytochem Lett 10:300–303 Yin R-H, Zhao Z-Z, Ji X, Dong Z-J, Li Z-H, Feng T, Liu J-K (2015) Steroids and sesquiterpenes from cultures of the fungus Phellinus igniarius. Nat Prod Bioprospect 5:17–22 Yuan Q, Zhao L, Li Z, Harqin C, Peng Y, Liu J (2018) Physicochemical analysis, structural elucidation and bioactivities of a high-molecular-weight polysaccharide from Phellinus igniarius mycelia. Int J Biol Macromol 120:1855–1864 Zan L-F, Qin J-C, Zhang Y-M, Yao Y-H, Bao H-Y, Li X (2011) Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus. Chem Pharm Bull 59:770–772 Zapora E, Wolkowyckia M, Bakiera S, Zjawiony JK (2016) Phellinus igniarius: a pharmacologically active polypore mushroom. Nat Prod Commun 11:1043–1046 Zhang H, Chen R, Zhang J, Bu Q, Wang W, Liu Y, Li Q, Guo Y, Zhang L, Yang Y (2019) The integration of metabolome and proteome reveals bioactive polyphenols and hispidin in ARTP mutagenized Phellinus baumii. Sci Rep 9:16172 Zheng L, Shen Y, Ji J, Li Y (2007) Preliminary study on pharmacological activities of exopolysaccharides of Phellinus igniarius. Shipin Kexue (Beijing, China) 28:318–321 Zheng S, Deng S, Huang Y, Huang M, Zhao P, Ma X, Wen Y, Wang Q, Yang X (2018) Anti-diabetic activity of a polyphenol-rich extract from: Phellinus igniarius in KK Ay mice with spontaneous type 2 diabetes mellitus. Food Funct 9:614–623 Zhou J, Xie G, Yan X (2011) Encyclopedia of traditional Chinese medicines: molecular structures, pharmacological activities, natural sources and applications: volume 2 D-G. https://doi. org/10.1007/978-­3-­642-­16738-­6 Zhou LW, Vlasák J, Qin WM, Dai YC (2016) Global diversity and phylogeny of the Phellinus igniarius complex (Hymenochaetales, Basidiomycota) with the description of five new species. Mycologia 108(1):192–204. https://doi.org/10.3852/15-­099 Zhu H, Sun S, Zhang S (2011) Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresour Technol 102:1747–1751 Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod 67:300–310

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.) P. Kumm. - PLEUROTACEAE Yusufjon Gafforov, Mustafa Yamaç, Şule İnci, Sylvie Rapior, Manzura Yarasheva, and Milena Rašeta

Pleurotus eryngii (DC.) Quél. Synonyms: Agaricus eryngii DC.; A. ferulae Lanzi; Dendrosarcus eryngii (DC.) Kuntze; Pleurotus eryngii var. elaeoselini Venturella, Zervakis & La Rocca; P. eryngii Y. Gafforov (*) New Uzbekistan University, Tashkent, Uzbekistan Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China e-mail: [email protected] M. Yamaç Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey e-mail: [email protected] Ş. İnci Department of Biology, Faculty of Science, Firat University, Elazığ, Turkey e-mail: [email protected] S. Rapior CEFE, CNRS, Univ Montpellier, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Montpellier, France e-mail: [email protected] M. Yarasheva Tashkent International University of Education, Tashkent, Uzbekistan e-mail: [email protected] M. Rašeta Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia e-mail: [email protected]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. K. Khojimatov et al. (eds.), Ethnobiology of Uzbekistan, Ethnobiology, https://doi.org/10.1007/978-3-031-23031-8_121

1335

1336

Y. Gafforov et al.

var. ferulae (Lanzi) Sacc.; P. eryngii var. ferulaginis Stropnik, Tratnik & Seljak; P. eryngii var. laserpitii Angeli & Scandurra; P. eryngii var. thapsiae Venturella, Zervakis & Saitta; P. eryngii var. tingitanus Lewinsohn; P. fuscus Battarra ex Bres.; P. fuscus var. ferulae (Lanzi) Bres. Pleurotus ostreatus (Jacq.) P. Kumm. Synonyms: Agaricus fuligineus Pers.; A. glandulosus Bull.; A. glandulosus var. horizontalis Alb. & Schwein.; A. macropus (Bagl.) Bagl.; A. ochraceus Pers.; A. ostreatus Jacq.; A. ostreatus subsp. gyrinus Pers.; A. ostreatus var. atroalbus Pers.; A. ostreatus var. dryadeus Fr.; A. ostreatus var. flavocinereus Pers.; A. ostreatus var. flavovirens V. Brig.; A. ostreatus var. fuscescens Alb. & Schwein.; A. ostreatus var. glaucoumbrinus Schumach.; A. ostreatus var. macropus Bagl.; A. ostreatus var. melanoderma V. Brig.; A. ostreatus var. nigripes Inzenga; A. ostreatus var. reticulatus (Schumach.) Fr.; A. reticulatus Schumach.; A. revolutus J. Kickx; A. salignus Pers.; A. salignus var. fuligineus Pers.; A. salignus var. ochraceus Pers.; Clitocybe ostreata (Jacq.) P. Karst.; C. ostreata var. glandulosa (Bull.) P. Karst.; C. saligna (Pers.) P. Karst.; Crepidopus ostreatus (Jacq.) Gray; C. ostreatus var. atroalbus Gray; C. ostreatus var. atroalbus Gray; Dendrosarcus glandulosus (Bull.) Kuntze; D. nigripes (Inzenga) Kuntze; D. ostreatus (Jacq.) Kuntze; D. revolutus (J. Kickx f.) Kuntze; D. suberis (Pat.) Kuntze; Panus carpathicus Fr. ex Kalchbr.; Pleurotus glandulosus (Bull.) Gillet; P. ostreatus f. carpathicus (Fr. ex Kalchbr.) Pilát; P. ostreatus f. florida Cetto; P. ostreatus f. peregrinus (Hazsl.) Pilát; P. ostreatus f. polonicus F.  Teodorowicz; P. ostreatus f. salignus (Pers.) Pilát; P. ostreatus f. subalutaceus Malençon & Bertault; P. ostreatus f. suberis (Pat.) Malençon & Bertault; P. ostreatus subf. glandulosus (Bull.) Pilát; P. ostreatus subf. hirsutus Pilát; P. ostreatus subf. typicus Pilát; P. ostreatus var. appalachiensis O.  Hilber; P. ostreatus var. flavocinereus (Pers.) Sacc.; P. ostreatus var. flavovirens (V. Brig.) Sacc.; P. ostreatus var. glandulosus (Bull.) Fr.; P. ostreatus var. magnificus Peck; P. ostreatus var. melanodon (V.  Brig.) Sacc.; P. ostreatus var. nudipes Boud.; P. ostreatus var. praecox E. Ludw.; P. ostreatus var. stipitatus Scalia; P. peregrinus Hazsl.; P. revolutus (J. Kickx f.) Gillet; P. revolutus var. anglicus Massee; P. salignus (Pers.) P. Kumm.; P. suberis Pat.

Local Names Pleurotus eryngii: Uzbek: Cho‘l quzqoroni; English: king trumpet mushroom, French horn mushroom, eryngi, king oyster mushroom, king brown mushroom, boletus of the steppes, trumpet royale, aliʻi oyster; Russian: Вёшенка степная; Chinese: 杏鮑菇; Japanese: エリンギ; Korean: 큰느타리; French: pleurote de panicaut, encore argouane, bérigoule, girboulot; German: Königs Trompetenpilz; Persian: ‫قارچ‬ ‫ ;شاه شیپور‬Turkish: Çakşır mantarı; Arabic: ‫ ;حماري ايرنغي‬Serbian: kraljevska bukovača. Pleurotus ostreatus: Uzbek: Oddiy quzqorin; English: Oyster mushroom; Russian: Вешенка обыкновенная; Chinese: 平菇; Japanese: ヒラタケ; Korean: 느타리; French: Pleurote en huître; German: Striegeliger Schichtpilz; Persian: ‫;قارچ صدیف‬ Turkish: İstiridye mantarı, Kavak mantarı; Arabic: ‫ ;حماري شائع‬Serbian: bukovača.

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1337

Short Morphological Description Pleurotus eryngii: Basidiocarps large. Pileus 4.5–13 cm in diameter, at an early age with a tubercle in the center, then becomes flat and depressed, fleshy. Surface basidiocarps first red-brown, then brownish to pale ocher, paler towards the edge. The surface, especially in the center, is finely scaly or fibrous. Lamellae descending to the stem, quite frequent, pinkish-cream in color, with an evenly colored entire edge. Stipe 2–5  cm in height and up to 2.5  cm thick, central or eccentric, cylindrical, thickened at the base, whitish, then brownish-buffy, in old mushrooms often with “cotton” cobweb pulp. Flesh is whitish, sometimes brownish or pinkish. Basidia clavate, with 2 and 4 sterigmata. Basidiospores 10.0–12.5 × 4.5–5.5 μm, narrowly elliptical to cylindrical (Rajarathnam et al. 1987; Zervakis et al. 2001). Pleurotus ostreatus: Basidiocarps large. Pileus 4–15(−25) cm in diameter, conchoid, spatulate to fan-shaped, convex then spreading, finely downy or pubescent white at point of attachment, smooth elsewhere, moist at first, soon dry, greyish-­ brownish at first, sometimes tan pale, cinnamon-beige, pale cinnamon-pink to dark brown or beige around edges, soon pale, yellowish to greyish-yellow, whitish when ripe. Margin rolled up at first, and then slightly rolled up on right. Lamellae converging towards point of attachment, adnate to often decurrently, broad, 5–15 mm, sometimes anastomosing and sometimes forming a reticulum at point of attachment, with lamellae, close together to very close together, dull whitish to pale pinkish buff, tinged with gray, entirely awned at first, then eroded with age. Stipe absent, rudimentary or well developed, (0.5)1–4 × 0.3–3.5 cm, eccentric to lateral or even central, subequal or enlarged at both ends, stocky, firm, full, dry, whitish to yellow dark, pubescent to striguously white at base. Flesh up to 1–2 cm thick, firm, slightly fibrous, white. Basidia tightly clavate, thin-walled, with 4 sterigmata, curled at base, hyaline, 24–36 × 5–7 μm. Basidiospores narrowly ellipsoid to ellipsoid-cylindrical, smooth, thin-walled, with small hilar appendage, guttulate, hyaline, inactive in Melzer’s reagent, 7–10 × 3–4 μm. Pleurocystidia similar to cheilocystidia. Cheilocystidia infrequent to numerous, often present towards lamellar ridge, clavate-­capitate, thin-walled, hyaline, 14–30 × 3.5–8 μm. Pileipellis in cutis formed of densely tangled, irregular, wavy, branched hyphae with hard-to-see loops, gelatinized walls and brown pigmentation, 2–4 μm in diameter. Spore print white, tinged with lilac to lilac-grey, sometimes pale wine-purple (Watling and Gregory 1989; Bas et al. 1990).

Ecology and Distribution Pleurotus eryngii: It grows associated with several plants of the Apiaceae family, especially those of Erynginum campestre L., Ferula communis var. communis L., Ferula orientalis L., Heracleum antasiaticum Maden, Prangos ferulacea (L.) Lindley and Prangos uechtritzii Boiss. & Hausskn. (Zervakis et al. 2014). It usually

1338

Y. Gafforov et al.

fruits in the fall, particularly if the soil has received abundant rainfall and temperatures are mild. May occasionally fruit in spring, provided it has been rainy and warm. It is frequently attacked by larvae, mainly those collected in spring (Lewinsohn et  al. 2002; Moonmoon et  al. 2010; Zervakis et  al. 2014; Dai et  al. 2019). This species is particularly distributed in the temperate Mediterranean region, Southern Germany, Hungary, Slovakia, Central Asia, Romania, China, Iran and North Africa (Chinan and Venturella 2013; Dai et al. 2019). The species is also cultured by providing the necessary culture conditions. The temperature should be 25 ± 1 °C for mycelium growth and 15–25 ± 1 °C for cap formation. During the mycelium development stages, light is not required, but in other stages it is kept in the range of about 180–2000 lux (Moonmoon et al. 2010; Melanouri et al. 2022; Zhou et  al. 2022). Culture rooms should be kept constant at 75–85% humidity (Zhou et al. 2022). When culturing P. eryngii, agricultural wastes such barley straw, cotton straw and waste, garlic waste, lentil waste, millet straw, oat straw, peanut shells, rice bran, sawdust, soybean straw, sugar cane pulp, and wheat brand and straw are used (Zervakis et al. 2001; Moonmoon et al. 2010; Sanli and Peksen 2020; Melanouri et al. 2022). Zhou et al. (2022) established that the supplementation of substrates with SSP scallop shell powder enhanced both the yield and nutritional content of P. eryngii. Pleurotus ostreatus: This mushroom is a wood-destroying fungus-saprotroph (xylotroph), widespread in the temperate zone (Kay and Vilgalys 1992; Li et al. 2020). It grows in groups, less often – singly, on stumps, deadwood, dead or living trees of various deciduous (ash, aspen, birch, mountain oak, willow), very rarely conifers in deciduous and mixed forests, parks and gardens. Oyster mushroom causes white rot of deciduous less often coniferous trees. Infection usually occurs through frost cracks (Kay and Vilgalys 1992; Imtiaz et al. 2011; Piska et al. 2017; Li et al. 2020). P. ostreatus is distributed all over the world except the arctic biomes (Piska et al. 2017). It was successfully cultivated in Germany during the First World War, and then it continued to be successfully cultivated in many places (Piska et al. 2017). The incubation room should be 25 ± 1°C for mycelial growth of this species, and the temperature should be 18 ± 1°C for cap formation (Akyüz et al. 2021). Several types of agro-cultural and agricultural wastes such as alfalfa straw, bamboo sawdust, barley, beech wood shavings, cocoa, coconut, coffee, corn, eucalyptus, hazelnut, oat, Pinus sawdust, rice, ripe peels, sugarcane, sweet orange, walnut and wheat were exploited for the culture of P. ostreatus (Condé et al. 2017; Rodríguez 2018; Yamauchi et al. 2019; Rugolo et al. 2020; Melanouri et al. 2022; Nwafor et al. 2022) (Figs. 1 and 2).

Mycochemistry The biodiversity of mushrooms of the genus Pleurotus is impressive due to its complexity and diversity related to their high molecular weight primary metabolites such as polysaccharides (α-glucans, and β-glucans), proteins (as eryngin and

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1339

Fig. 1  Pleurotus eryngii (Pleurotaceae), Uzbekistan. (Photo Zokir Qosimov)

Fig. 2  Pleurotus eryngii (Pleurotaceae), Turkey. (Photo Hakan Alli)

pleurostrin), glycoproteins, lectins and also low molecular weight secondary metabolites (alkaloids, betalains, fatty acids and its esters, flavonoids (as chrysin, myricetin, naringenin, quercetin, and rutin), polyphenols (as caffeic, cinnamic, chlorogenic, p-coumaric, ferulic, gallic, and protocatechuic acids), and triglycerides, amongst others (Mattila et al. 2001; Wang and Ng 2004; Valverde et al. 2015; Calabretti et al. 2021; Sharma et al. 2021; Karaman et al. 2022; Torres-Martínez et  al. 2022). Among the published data about the chemical characterization of Pleurotus spp. polysaccharides, it was observed structural variations, arising from the different sources (fruiting body of mycelium) and different procedures of preparation, extraction and purification (Abreu et al. 2021a). Among the polysaccharides of Pleurotus spp., the most abundant are chitin, galactans, α- and β-glucans, hemicellulose, mannans, and xylans; the polysaccharide compounds that stimulated the greatest interest are the high molecular weight polysaccharides. Within them, it should be note especially β-glucans (β-(1,3)→(1,6)-glucans), which interact with

1340

Y. Gafforov et al.

the immune system to increase/decrease specific aspects of host response and they are known as biological response modifiers (Calabretti et  al. 2021). The 3-O-methylated mannogalactans, of mushrooms from the Pleurotus genus, having the main chain composed of (1→6) linked α-D-Galp units substituted at O-2 by β-D-Manp units have been described for P. eryngii, P. ostreatus, P. pulmonarius, and P. sajor-caju (Abreu et al. 2021a). Pleurotus spp. are considered to be one of the most efficient producers of food protein (Ogundana and Okogbo 1981; Manzi et al. 1999; Dabbour and Takruri 2002) and an excellent source of dietary fiber (Cheung and Lee 2000; Mattila and Pizzoferrato 2000). These species also produced vitamins as B1, B2, B3, B9, B12, C, and D (Mattila et al. 2001) and minerals (Manzi et al. 1999; Mattila et al. 2001). The presence of fatty acids such as linoleic, oleic, and palmitic acids have been detected in Pleurotus species (Miyazawa et  al. 2011; Usami et al. 2014). Furthermore, it has been determined that P. eryngii and P. ostreatus have high monounsaturated fatty acid levels (Reis et al. 2012). In addition, it is known that the volatile organic compounds of P. eryngii and P. ostreatus originate from various classes of compounds such as alcohols, aldehydes, alkanes, ketones, and terpenes (Tagkouli et al. 2021). Pleurotus is the second genus that includes the largest number of the most cultivated and distributed edible mushroom species in the world after Agaricus bisporus, due to its adaptation capability. This genus includes many white-rot fungi with significant culinary interest and medicinal properties as well as potential biotechnological and environmental applications (Calabretti et al. 2021; Karaman et al. 2022; Melanouri et al. 2022). In particular, this genus comprises about 40 species, commonly referred to as “Oyster mushroom” including P. eryngii and P. ostreatus, which have attracted special attention due to their high nutritional value and medicinal importance (Melanouri et al. 2022). Pleurotus eryngii: P. eryngii, known as the “King Oyster” mushroom or “Cardoncello”, is traditionally consumed mushroom in culinary preparations, like gourmet products and it has longer shelf life (Moonmoon et al. 2010; Abreu et al. 2021a). In general, P. eryngii contains 85–90% moisture, 39–40 g/100 g dry weight carbohydrates, 28–29 g/100 g d.w. fibers, 11–12 g/100 g d.w. protein content, 7–8 g/100 g d.w. fats, and 4–5 g/100 g d.w. minerals (Khan and Tania 2012). Many scientific reports also revealed its potential applications in the food and pharmaceutical industries as functional food and therapeutic product, due to the biological potential observed primarily for its polysaccharide content (Abreu et al. 2021a).

Polysaccharide Composition It was determined that α-glucan, β-glucan and total glucan contents of P. eryngii were higher than P. otreatus (Vetvicka et al. 2019a, b). Many studies have shown that P. eryngii contains partially methylated mannogalactans and partially methylated galactans (Carbonero et al. 2008; Zhang et al. 2013; Biscaia et al. 2017; Yan

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1341

et al. 2019; Abreu et al. 2021a, b). Calabretti et al. (2021) demonstrated that wildgrowing isolates of P. eryngii had a low dry matter content but a high value of water, fiber and β-glucans content. Therefore, P. eryngii is considered to be a low-­calorie medicinal mushroom due to its content of high value minerals, proteins, unsaturated fatty acids, vitamins, and the low amount of carbohydrates and cholesterol (Calabretti et al. 2021). Also, Calabretti et al. (2021) concluded that wild-­growing P. eryngii isolates were characterized by higher water and β-glucans contents compared to the commercial ones. This species is also a rich source of the disaccharide, trehalose (Reis et al. 2012; Zhang et al. 2020a). The polysaccharides are the main active ingredients in P. eryngii, which have been identified to possess multiple bioactivities (Sharma et al. 2021; Cateni et al. 2022) Firstly, Synytsya et  al. (2009) isolated specific glucans from the stems of P. eryngii and P. ostreatus by subsequent boiling water and alkali extraction. Their water soluble (L1), alkali soluble (L2) and insoluble (S) fractions were characterised and then spectroscopic analysis showed that P. eryngii and P. ostreatus contain branched β-(1,3)→(1,6)-glucans and linear α-1,3-glucan as the major components of their cell wall (Synytsya et al. 2009). Other polysaccharides (α-1,4-glucans, chitin and galactomannans) are present in small amount in some of the fractions, and chitin was a minor component of chitin–glucan complexes in S fraction (Synytsya et al. 2009). Later, the water-soluble polysaccharides mainly composed of glucose (PEPE-1, PEPE-2 and PEPE-3; molecular weight 2.08 × 105, 1.20 × 104, and 4.13 × 105 Da, respectively) have been isolated from P. eryngii residue (Ma et al. 2014). Liu et al. (2015) have been purified a polysaccharide composed of glucose, mannose and arabinose (designated as KOMAP; molecular weight 2.10 × 104 Da). The purified polysaccharides PEPE-A1 and PEPE-A2 from P. eryngii were characterized by a β-(1→3)-glucan as the backbone followed by α-(1→6)-D-glucosyl residue side chains (Fu et al. 2016). In addition, Ren et  al. (2016) reported two heteropolysaccharides (PEP-1 and PEP-2) from P. eryngii fruiting bodies, which were mainly composed of glucose with the average molecular weights of 2.54 × 104 Da (PEP-1) and 4.63 × 105 Da (PEP-2), respectively. Zhang et  al. (2018) also isolated two exopolysaccharides (molecular weight 2.33 × 103 and 1.02 × 103 Da). It was determined that α-glucan, β-glucan and total glucan contents of P. eryngii were higher than P. otreatus (Vetvicka et  al. 2019a, b). Studies have shown that P. eryngii contains partially methylated mannogalactans and partially methylated galactans (Carbonero et  al. 2008; Zhang et al. 2013; Biscaia et al. 2017; Yan et al. 2019; Abreu et al. 2021b). At the same time, Xu et al. (2016) identified the homogeneous, water soluble polysaccharide named as EPA-1, from P. eryngii by ion-exchange and gel filtration chromatography with the molecular weight of 9.97 × 104 Da. Monosaccharide analysis showed that EPA-1 consisted of mannose, gucose and galactose in a molar ratio of 2.2:1.0:3.2, respectively and it had a molecular weight of 9.97 × 104 Da. GC–MS, FTIR and NMR analyses showed that the characterized fragment structures of EPA-1 were consisted of seven sugar residues and two branches, whereas the (1→6)-linked Gal residue was the main linkage mode of EPA-1 (Xu et al. 2016).

1342

Y. Gafforov et al.

Then, Biscaia et  al. (2017) isolated from P. eryngii a mannogalactan with the main chain of (1→6)-linked-α-D-galactopyranosyl and 3-O-methyl-α-D-­­ galactopyranosyl residues. Ma et al. (2017) determined the homogeneous P. eryngii polysaccharide, named PEP with a molecular weight of 426 kDa. Analysis revealed that PEP mainly consisted of glucose with β-glycosidic linkages without any nucleic acid and protein presence. Jin et al. (2018) isolated and characterized two purified polysaccharide fractions named as PPEP-1 and PPEP-2 from P. eryngii. The atomic force microscope analysis revealed that PPEP-1 and PPEP-2 showed different polysaccharide chain conformations with similar monosaccharide composition (Jin et al. 2018). Recenlty, two different polysaccharides (named as PEPS-A1 and PEPS-A2) were isolated from the cultivated P. eryngii, C-142-c strain (Cateni et  al. 2022). From the basidiomata of the P. eryngii var. elaeoselini Cateni et al. (2022) also isolated three water-soluble glucans (named as PELPS-A1, PELPS-A2 and PELPS-A3). Acid hydrolysis, periodate oxidation and NMR experiments (1H-, 13C-NMR, DQF-­ COSY, TOCSY, ROESY, HMQC and HMBC) have been provided information of their structures, whereas PELPS-A1 had α-D-Glcp structure and it was a new polysaccharide, isolated and identified for the first time from P. eryngii var. elaeoselini (Cateni et al. 2022).

Protein Composition An aspartic protease, pleureryn, with molecular weight of 11.5 kDa, has been isolated from the fresh fruiting bodies of P. eryngii as a bioactive protein (Wang and Ng 2001). Eryngin, a 10 kDa peptide, was isolated from fruiting bodies of P. eryngii (Wang and Ng 2004). Then, Ngai and Ng (2006) isolated eryngeolysin, a functional protein (kind of hemolysin), from the fresh fruiting body of P. eryngii). An acidic glycosphingolipid has been purified from P. eryngii fruiting body (Nozaki et al. 2008). Ergothioneine, an amino acid derivative, was found in P. eryngii in large amount (Dubost et al. 2006) and produced in solid state fermentation (Chen et al. 2012b). P. eryngii contained the highest ergothioneine content (1514.6 mg/kg d.w.) among seventeen species of mushroom mycelia, while fruiting body had 840.4 mg/kg d.w. ergothioneine (Chen et  al. 2012c). The ergothioneine contents of the mycelium under solid state and submerged fermentation were determined as maximum 1.52 mg/g d.w. (Chen et al. 2012b) and 5.84 mg/g d.w. (Liang et al. 2013). Bioactive protein from P. eryngii (named as PEP), with molecular weight of 63 kDa, has been purified from the powder of fruiting body from P. eryngii (Mariga et al. 2014). Recently, Cateni et al. (2022) summarized that different proteins, peptides and lectins (carbohydrate-binding proteins) were determined from P. eryngii (eryngin, laccase, protease (pleureryn), and PEP 1b) amongst others.

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1343

Terpene and Sterol Derivatives Composition The first member of C20 diterpenoids with the skeleton deriving from a cyclododecane core fused with two γ-lactone units has been isolated from the solid culture of P. eryngii was eryngiolide A (Wang et al. 2012). Besides, three triterpene compounds, 2,3,6,23-tetrahydroxyurs-12-en-28-oic acid, 2,3,23-trihydroxyurs-12-en-28-oic acid and lupeol, have been purified from fruiting body of P. eryngii by Xue et al. (2015). Fu et al. (2016) isolated ubiquinone­9 from the chloroform extract of P. eryngii. Souilem et al. (2017) reported that the ergosterol content in wild isolates of P. eryngii was 20 mg/100 g d.w., although a higher value was measured in commercial samples (Cateni et al. 2022). Cateni et al. (2022) summarized the chemical structure composition of mycochemicals from P. eryngii as a diterpenoid named eryngiolide A (Wang et al. 2012; Fu et  al. 2016) and triterpenoids, i.e., bisabolane-type sesquiterpenes and sterols (triterpenes which are based on the cyclopentane perhydrophenantrene ring system) as ergosterol and ergosterol-type derivatives, and ergostane-type sterols as strophasterols E and F, as well as pentacyclic triterpenoids.

Phenolic Compound Broad Spectrum Mishra et al. (2013) concluded that P. eryngii had the highest contents of phenolic compounds among seven Pleurotus species. Lin et al. (2014) reported that P. eryngii contains phenolic acids such as p-anisic acid, chlorogenic acid, ferulic acid, p-hydroxybenzoic acid, sinapic acid, syringic acid and vanillic acid; it also contained flavonoids such as flavanols (catechin, epicatechin), flavanones (hesperidin), flavonols (myricetin, quercetin) and flavonoid glycoside (rutin). Calabretti et  al. (2021) reported that among commercial and wild-growing isolates from the Southern Italy, higher amounts of ferulic and gallic acids, epicatechingallate and epigallocatechingallate have been determined from commercial isolates (0.88  ±  0.08  mg/g, 1.53  ±  0.16  mg/g, 0.39  ±  0.04  mg/g, and 0.51  ±  0.05  mg/g, respectively).

Vitamins and Minerals As regards niacin (= nicotinic acid, vitamin B3), a significantly high content (5.9 mg/ kg) was found in P. eryngii var. eryngii, hence sufficient to satisfy 55–82% of the recommended dietary allowance (RDA) of nicotinic acid, and higher than that of other mushroom species such as P. ostreatus (4.95 mg), A. bisporus (3.8 mg) and Boletus spp. (0.8 mg); the riboflavin (vitamin B2) content (0.2 mg/kg) was similar

1344

Y. Gafforov et al.

for all previously cited species, while the value of biotin (vitamin B8) was higher for P. eryngii (7.45 μg) (Venturella et al. 2015). Sakellari et al. (2019) determined microelement composition (Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Rb, Sr, V, and Zn) by using inductively coupled plasma-mass spectrometry (ICP-MS) and macroelement composition (K, Na) by atomic emission spectrometry (AES) from P. eryngii, P. nebrodensis, and P. ostreatus, cultivated on various agricultural by-products. Among them, P. eryngii exhibited higher concentrations of Ba, Cr, Cs, Na, Ni, Pb, Sr, and V; in addition, Al and Zn were determined in the highest amounts (81 μg/g d.w. and 64 μg/g d.w., respectively) in P. eryngii. A recent study of Zięba et al. (2020) have been reported the high efficiency of cultivated P. eryngii species to concentrate Zn and Se. Teniou et  al. (2022) determined mineral composition in P. eryngii using the inductively coupled plasma-mass spectrometry (ICP-MS). The results indicated that this edible wild mushroom had the highest amount of Zn (74.34 ± 5.34 μg/g of mushroom), followed by Cu (8.04 ± 0.29 μg/g of mushroom) and Se (0.33 ± 0.04 μg/g of mushroom). Therefore, Teniou et al. (2022) recommended P. eryngii as a functional food based on the high amount of trace essential elements and particularly to struggle Zn deficiency.

Other Mycochemical Compounds P. eryngii is a significant source of lovastatin (a naphthalene derivative), also known as monocline k, one of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statin) was reported in the fruiting body and mycelium of P. eryngii as 119.9 and 44.5 mg/kg d.w., respectively (Chen et al. 2012c). Zięba et al. (2020) also determined lovastatin content in P. eryngii mycelium (27.02 mg/100 g d.w.), while supplementation with Zn and Se strongly desreased lovastatin content (1.02 mg/100 g d.w.). Recently, total fatty acids value for P. eryngii was 42.60 mg/10 g d.w., whereas linoleic and oleic fatty acids were the main determined fatty acids. Unsaturated fatty acids/saturated fatty acids ratio was 3.23 (Cateni et al. 2022). Pleurotus ostreatus: P. ostreatus can be produced on various media including lignocellulosic materials and its fruiting body is a rich source of amino acids, edible fibers, fatty acids, minerals, proteins, statins and vitamins (Alarcón and Aguila 2006). Therefore, a broad spectrum of bioactive mycochemicals were reported from fresh and dried samples of this species such as flavonoid compounds, functional proteins (ubiquinone-9, ubiquitin-like peptide, pleurostrin and glycoprotein), lectins, phenolic acids, polysaccharides including exopolysaccharides, proteoglycan, and terpenoids as well as essential and non-essential amino acids, and essential fatty acids (Chu et al. 2005; Alarcón and Aguila 2006; Tong et al. 2009; El-Fakharany et al. 2010; Mohamed and Farghaly 2014; Oloke and Adebayo 2015; Vargas-­ Sánchez et al. 2018; Karaman et al. 2022).

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1345

P. ostreatus are rich in nutrients and have a pleasant flavour (Hsieh et al. 2020). But they brown easily during storage, reducing consumer acceptance and decreasing market value. Therefore, Hsieh et  al. (2020) designed study with the aim to assess the inhibitory effect of an alternating current electric field (ACEF) on the browning of P. ostreatus. Their results revealed that treatment of P. ostreatus with an ACEF (600 kV/m, 50 Hz, 120 min) reduced the browning of P. ostreatus by 40% after 12 days of storage at 40 °C, and the effect was closely related to the inactivation of polyphenol oxidase, and lower malondialdehyde levels that may be a consequence of decreased lipoxygenase activity. Hsieh et al. (2020) showed that treatment with high electric field strength for 2 h during low-temperature storage can effectively delay the browning of P. ostreatus during shelf life and increases consumer willingness to buy. In relation to this, the sweet flavor compound p-anisaldehyde of P. ostreatus has been produced by this mushroom species only under static culture conditions (Okamoto et al. 2002). P. ostreatus also contained phenolic compounds such as t-cinnamic, p-coumaric, p-ferulic, hydroxybenzoic, protocatechin, and vanillic acids (Gąsecka et al. 2016). The protein, fat and carbohydrate content of P. ostreatus were reported as 14.7–24.9%, 0.5–5%, and 37.0–78.1%, respectively (Maftoun et al. 2015). Karaman et al. (2022) summarized that P. ostreatus is considered as a functional food because of its high nutritional value, mainly due to high carbohydrate (51.90%), and protein contents (30.50%), while fat (1.50%), minerals, and vitamins (ascorbic acid, ergosterine, niacin, riboflavin, thiamine, α-tocopherol) are determined in lower concentrations (Karaman et al. 2022). Recently, Rašeta et al. (2022) summarized that the fiber content of P. ostreatus ranges from 7.4 to 45.5 g/100 g. The major biological function of α-tocopherol (vitamin E) is to protect polyunsaturated fatty acids, and other components of mushroom cell-wall from oxidation by free radicals (Gallotti et  al. 2020). However, the amount of α-tocopherol in biological membranes was approximately one part per 1000 lipid molecules, and the replenishment of α-tocopherol was primarily achieved through dietary food components (Gallotti et al. 2020) (Figs. 3, 4, 5 and 6).

Fatty Acids and Lipids Ergönül et al. (2013) determined 35 fatty acids in P. ostreatus; the most dominant were unsaturated fatty acids, cis-linoleic acid (18:2) followed by cis-oleic, palmitic, and stearic acids. Kırbağ and Korkmaz (2014) showed that the amount of crude fat in P. ostreatus cultured using wheat straw, walnut shell and sugar beet pulp was in the range of 0.5–1.8%. Crude fat content of P. ostreatus obtained from different compost materials was determined as 3.0–3.5 wt% d.b. by Grimm et al. (2021). At the same time, Mitsou et al. (2020) studied cultivated P. ostreatus on various substrates as olive pruining residues, two-phase olive mill wastes and wheat straw mushrooms; after 24 h of fermentation, a significant decrease in the molar ratio of acetate and an increase in the molar ratio of butyrate were detected. Sales-Campos

1346

Y. Gafforov et al.

Fig. 3  Pleurotus ostreatus (Pleurotaceae), Uzbekistan. (Photo Olim Khojimatov)

Fig. 4  Pleurotus ostreatus (Pleurotaceae), Germany. (Photo Ewald Langer)

et al. (2021) established that the basidiocarps obtained from the culture of P. ostreatus contained 2.15–2.26% lipids. Arachidic acid, linoleic acid, myristic acid, oleic acid, palmitic acid, palmitoleic acid, and stearic acid, contents of P. ostreatus obtained from different compost materials were determined by Abou Fayssal et al. (2021). Recenlty, Pellegrino et al. (2022) for the first time performed lipidomic analysis of P. ostreatus. Their results highlighted the large variety of lipid classes, and annotated 931 lipid species distributed in twenty-seven lipid classes, including polar and non-polar lipid classes, whereas free fatty acids were the predominant fraction, followed by fatty acid ester of hydroxyl fatty acid and ceramide fractions (Pellegrino et al. 2022). Their study showed that the combination of lipidomics analysis with chemometrics is a powerful tool for discrimination of mushrooms.

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1347

Fig. 5  Pleurotus ostreatus (Pleurotaceae), Germany. (Photo Rolf Faber)

Fig. 6  Pleurotus ostreatus (Pleurotaceae), Turkey. (Photo Hakan Alli)

Polysaccharides P. ostreatus is an excellent source of β-glucans, with the concentration of 28.80–29.50% d.w. (Carrasco-González et  al. 2017; Kerezoudi et  al. 2021). It is many scientific reports about it, and in some of them he approximately total glucan content, content of digestible α-glucans by amylolytic enzymes, and β-glucan content of P. ostreatus basidiocarps were determined in the range of 18.8–58.2%, 2.5–16.7%, and 15.9–51.5%, respectively (Baeva et al. 2020). Mitsou et al. (2020) also worked on quantification of total glucan, α-glucan and β-glucan contents of P. ostreatus cultured in different compost materials, and they were determined as 34.3–39.9% w/w dry weight, 3.4–8.7% w/w dry weight, 27.7–35.1% w/w dry

1348

Y. Gafforov et al.

weight, respectively (Mitsou et al. 2020). Specific glucans have been isolated from basidiocarps of P. ostreatus, and the resulting water-soluble (L1), alkali-soluble (L2) and insoluble (S) fractions were characterized by various analytical methods. These fractions showed a wide range of non-starch glucan (44.2–90.1%) contents (Synytsya et al. 2009). Mycelial biomass of P. ostreatus included bioactive metabolites such as hepatoprotective insoluble non-starch polysaccharides (Refaie et al. 2010). β-D-glucan is composed of a backbone of linear α-(1→3)-linked D-glucan or a β-(1→3),(1→6)-linked glucan on every fourth residue, being substituted at O-6 with single D-glucopyranosyl groups (Villares et  al. 2012). On the other hand, less known polysaccharides of P. ostreatus is α-(1→3)–glucans, which can be found in the deepest layer of the mushroom cell wall (Golak-Siwulska et al. 2018). Pleuran is the best known β-D-glucan isolated from the fruiting bodies of P. ostreatus (Jayakumar et  al. 2011; Golak-Siwulska et  al. 2018; Gallotti et  al. 2020). β-D-­ Glucan (pleuran) has been isolated from the fruiting bodies of P. ostreatus (Karacsonyi and Kuniak 1994). Pleuran is β-1,3-glucan with galactose, and mannose monosaccharide units, and it is one of the most known bioactive polysaccharides from mushroom origin (El Enshasy et al. 2012). P. ostreatus β-glucan with good processing functionality can be conjugated with oat protein isolate, leading to an improved utilization of protein in food industry (Zhong et al. 2019). It is known that oat protein isolate is nutritious but with poor processing functionality (Zhong et al. 2019). Therefore, Zhong et al. (2019) worked on production of conjugate of P. ostreatus β-glucan with oat protein isolate, whereas it was mainly formed between the carbonyl group of P. ostreatus β-glucan and cysteine and lysine of oat protein isolate via Maillard reaction. Barbosa et al. (2020) worked on chemical characterizations of P. ostreatus polysaccharide extracts, and showed that are a mixture of heteropolysaccharides, β-glucans, α-glucans and oligosaccharides. Boureghda et al. (2021) obtained from P. ostreatus a high yield (41.1%) of copolymer product, chitin-glucan complex. Polysaccharide isolation was made from P. ostreatus by subcritical water extraction method (Rizkyana et al. 2022). Karaman et al. (2022) summarized that P. ostreatus is an important source of biologically active glucans and other polysaccharides.

Amino Acids, Proteins and Lectins Proteins, peptides and lectins are other high molecular weight metabolites acquired from P. ostreatus with important medicinal properties (Golak-Siwulska et al. 2018). It is emphasized that P. ostreatus is very rich in terms of protein source and can be an excellent food that can be used in a balanced diet with its low fat content (Akyüz et al. 2021). The protein content of P. ostreatus ranged from 17.70–41.6% (Yang et al. 2001; Çağlarırmak 2007; Khan et al. 2008; Akyüz and Kırbağ 2010; Johnsy et al. 2011; Bengu et al. 2019; Grimm et al. 2021; Sales-Campos et al. 2021). On the other hand, protein contents of P. ostreatus calculated from elemental nitrogen has been reported to be in the range of from 6.2 to 17.5% (Baeva et al. 2020).

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1349

A glycoprotein with an ubiquitin-like N-terminal sequence was prepared from the fruiting bodies of the fungus P. ostreatus (Wang and Ng 2000). P. ostreatus contained pleurostrin (Erjavec et al. 2012) and ribotoxin-like protein, named ostreatin (Landi et al. 2020). Pleurostrin, a peptide with molecular weight of 7 kDa peptide was isolated from fresh fruiting bodies of the P. ostreatus (Karaman et al. 2022). P. ostreatus lectins included polysaccharide-protein and polysaccharide-peptide complexes (Golak-Siwulska et al. 2018). The mycelium of P. ostreatus has great nutritional value, due to the presence of high contents of amino acids (arginine, alanine, glutamine, glutamic acid). Oyster mushroom proteins contained all nine essential amino acids required by humans (Gomes Correa et al. 2016), with higher concentrations of aspartic acid and methionine than other edible mushrooms (Jayakumar et al. 2011). It has been determined that P. ostreatus has amino acid compositions such as alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine and cysteine (Oyetayo and Ariyo 2013). Ivarsson et al. (2021) determined that arginine, aspartic acid and glutamic acids were the most dominant amino acids in the fruiting bodies of P. ostreatus, while ornithine was also present, but in lower concentration. Variability was found by Chen et  al. (2012c) in terms of ergothioneine (944.1–1829  mg/kg d.w.) and γ-aminobutyric acid (GABA; 0–23.6  mg/kg d.w.) contents of P. ostreatus fruiting bodies from different localities. It was also determined that P. ostreatus cultivated from Ethiopia contained a very high amount of ergothioneine with 3.78 mg/g d.w. (Woldegiorgis et al. 2014). Sales-Campos et  al. (2021) summarized that molecular weight of lectin in P. ostreatus ranging from 3.5 to 105 kDa, while fibrinolytic enzymes were described at 12 kDa for P. ostreatus.

Lovastatin One of the most important compounds in P. ostreatus was the lovastatine, a cholesterol lowering drug approved by FDA (Gunde-Cimerman and Cimerman 1995). The presence of lovastatin was reported by different authors in mostly caps of the P. ostreatus (Gunde-Cimerman and Cimerman 1995; Gunde-Cimerman 1999; Bobek et  al. 1998b; Alarcón and Aguila 2006; Atlı and Yamaç 2012; Atlı et  al. 2013, 2019). Among 29 mushroom species, the highest lovastatin amount, 606.5 mg/kg, was determined in a Japanese strain of freeze-dried P. ostreatus (Chen et al. 2012c). The production of lovastatin was optimized with P. ostreatus under submerged fermentation. In the results obtained by Atlı et al. (2013), the maximum production of lovastatin (114.82 mg/L) was reached after 6 days of fermentation under optimized culture conditions (30 g/L glucose, 10 g/L yeast extract, 200 rpm, 28 °C and pH 6). A different study found that the solid substrate barley, yeast extract and particle size had a significant effect on lovastatin production. In the results obtained, high lovastatin production (34.97 mg/g) was achieved at the optimized conditions of

1350

Y. Gafforov et al.

barley (8  g), yeast extract (1% w/w), and particle size of the solid substrate (0.5–1 mm) at 28 °C for 6 days (Atlı et al. 2019). Lovastatin content of P. ostreatus was determined using ultraviolet-visible spectroscopy (UV-Vis) (930  mg/kg dry sample) and LC-MS (1.11 mg/kg dry sample) (Tsiantas et al. 2021).

Vitamins and Minerals It has been determined that P. ostreatus has high amounts of folate (vitamin B9) and niacin (vitamin B3) as 640 μg/100 g d.w. and 65 mg/100 g d.w., respectively (Mattila et al. 2001). In 100 g of fresh mycelia, the level of vitamin C (ascorbic acid) represents 15% of the recommended daily intake for humans (Barros et al. 2007; Piska et al. 2017). Vitamin A, vitamin E, and vitamin C contents of wild and cultivated P. ostreatus were detected as 9.62 μg/g, 998.24 μg/g, 1,481.25 μg/g, respectively (Bengu et al. 2019). In a different study, vitamin C, thiamine, riboflavin and niacin of the same species were determined as 3.38, 0.15, 0.21, 4.44 mg/100 g d.w., respectively (Çağlarırmak 2007). Recent research by Rašeta et  al. (2022) shown that P. ostreatus is a significant source of B vitamins (B1, B2, B3, B5, and B6), ranging from 0.11 to 4.96 mg/100 g d.w. In addition, it was reported that the amount of thiamine increased as the amount of light increased in P. ostreatus obtained by exposure to different amounts of light (Zawadzka et al. 2022). Çağlarırmak (2007) determined mineral composition of P. ostreatus: Zn, Fe, P, Ca, Mg, K, Na in the followed amounts: 11.18, 14.80, 998.47, 81.16, 221.9, 2225.00, 773.67 mg/kg d.w., respectively (Çağlarırmak 2007). It has been demonstrated that P. ostreatus cultured on different agricultural wastes contained 102.9–176.6 mg/kg Na, 194.7–239.9 mg/kg K, 0–40 mg/kg Cu, 53–739 mg/kg Fe, 280–508 mg/kg Zn, 3.51–14.65  mg/kg Pb (Kırbağ and Korkmaz 2014). According to Maftoun et  al. (2015), P. ostreatus fruiting bodies are a good mineral source of especially K (3793  mg/g dry weight), P (1347  mg/g d.w.), Zn (26.56–837  mg/g d.w.), Fe (15.20–55.45 mg/g d.w.), and Ca (33.00–35.90 mg/g d.w.). High contents of mineral salts of Ca, Cu, Fe, K, Mg, P, Se, and Zn were found in the mycelium of P. ostreatus (Rašeta et al. 2022). The highest amounts of N (4.17%), P (1.49%), K (2.69%), Ca (1.96%), Mg (0.79%), Fe (525.48 ppm), S (0.33%) and Zn (15.54%) content were obtained from P. ostreatus harvested from compost consisting of 19 kg of straw and 6 g of different chemical components (Shalahuddin et al. 2019). It has been reported that the cultivated P. ostreatus is an effective accumulator for Cr, Fe and Zn (Sakellari et al. 2019). Mg (1.8–2.0 g/kg) Ca (0.3–0.8 g/kg), K (29.3–36.2 g/ kg), P (10.2–10.5 g/kg), S (1.9–2.1 g/kg) and Na (1.2–3.1 g/kg) amounts of P. ostreatus cultured in three different substrates with increasing amounts of fiber and the addition of wheat bran to the compost medium (20% by weight) were determined. (Grimm et al. 2021). Abou Fayssal et al. (2021) determined that Fe, Mg, Ca, K, Mn and Na element contents of the same species obtained from different compost materials were 0.001–0.002%, 0.013–0.019%, 0.0015–0.0027, 0.25–0%, 0.00010–0.00090% and 0.007–0.042% d.w., respectively. In the same study, it was

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1351

determined that heavy metal contents such as Cu, Zn, Ni and Pb were in the range of 4.70–14.20, 59.30–72.80, 10.50–15.70 and 22.70–25.40 ppm, respectively (Abou Fayssal et al. 2021). It was detected that the amount of Cd in the reported heavy metal contents of P. ostreatus was low as 0.2 mg/kg (Ivarsson et al. 2021).

Other Mycochemical Compounds It was determined that the P. ostreatus water extract contained 798.55 mg gallic acid equivalents (GAE)/100 g phenolic content (Yim et al. 2010). Other scientists showed that P. ostreatus contained phenolic compounds such as caffeic acid, t-­cinnamic acid, p-coumaric acid, gallic acid, p-hydroxybenzoic acid, ferulic acid, naringenin, protocatechin and vanillic acid (Karaman et  al. 2010; Woldegiorgis et  al. 2014; Gąsecka et al. 2016). At the same time, 3-(2-aminopheny1thio)-3-­hydroxypropanoic acid with biological activity was purified from P. ostreatus (Younis et al. 2015). It should be noted that the content of reducing sugars and flavonoids was higher in the aqueous extract of mature fruiting bodies of P. ostreatus, while total phenols were increased in the extract of primordia (Beltran Delgado et al. 2021). According to Hamad et al. (2022), phenolic and flavonoid contents of polar extracts of P. ostreatus were determined as 6.94 and 0.15 mg/g, respectively (Hamad et al. 2022). Beside phenolics, water and methanol extracts of this species were determined to contain alkaloids, glycosides, and saponins (Nwobodo et al. 2021). Alcohols, carboxylic acids, cholanic acid, lactones, nucleosides, nucleotides, polyphenols, and some non-polar compounds were also identified from P. ostreatus extracts by HPLC-MS method (di Piazza et al. 2021; Karaman et al. 2022). Hamad et al. (2022) worked on analysis of polar extracts of P. ostreatus and revealed that ethyl iso-­ allocholate (62.5%) was determined as the major compound followed by 3(2H)-furanone,dihydro-2,2-dimethyl-5-phenyl (11.23%), amphetamine (6.4%), acetic acid, [(benzoyl amino)oxy] or benzadox (2.74%), 7,8-epoxylanostan-­11Ol,3-acetoxy (2.45%), toosendanin (2.06%), flavone 4′-OH,5-OH,7-DI-O-­glucoside (2.01%), 1,3,2-dioxaborolane,2,4,diethyl (1.82%), benzaldehyde, 4-(dimethylamino) (1.79%), pentacosan (1.79%), tetraacetyl-D-xylonic nitrile (1.35%), hexadecane (1.32%), 2-butenoic acid,2-methyl-2(acetyloxy)-1,1a,2,3,4,6,7,10,11, 11a-decahydro-7,10-dihydroxy-1,1,3,6,9-pentamethyl-4a,7a-­e poxy-5H-­ cyclopenta[a]cyclopropa[f]cycloundecen-11-yl ester (0.95%), 2-hexadecanol (0.9%), and phytophylene (0.69%).

Local Medicinal Uses According to Hobbs (1995), Pleurotus has been mentioned as “the mushroom of flower heaven” in a poem written during the Sung dynasty (A.D. 420–479). The awareness of medicinal properties of the Pleurotus species comes from folklore of

1352

Y. Gafforov et al.

different continents such as Asia, central Europe, South America and Africa. Historically, Pleurotus spp. have been used directly, in health tonics, tinctures, teas, soups or herbal formula as whole mushroom, hot water extract, concentrate, liquor or powder (Mariga et al. 2014). Pleurotus eryngii: In traditional Chinese medicine, although most of P. eryngii preparations are regarded as tonics, the powdered fruiting bodies were used for the treatment of cancer and lumbago, for immunostimulation, skin-care, and wound-­ healing without known negative side-effects (Mariga et al. 2014). This mushroom has also been used as herbal medicine to cure respiratory system diseases and as antiviral, antioxidant and anti-inflammatory agent in Macedonia (Rexhepi and Reka 2020). Pleurotus ostreatus: According to Hobbs (1995), the dietary preparations containing the extract of P. ostreatus fruiting bodies as the main ingredient have been recommended for the prevention of high cholesterol in Czech Republic. In traditional Chinese medicine, P. ostreatus has been used for treating lumbago and skelalgia, limb numbness, tendon discomfort, as well as improving of the system of meridians and collaterals; it was mentioned as potential antitumor agent (Hobbs 1995; Dai et al. 2009). In India, P. ostreatus is used locally for the treatment of hypertension, diabetes, jaundice, and asthma. It is also believed that it can be reduce the chances of tumor (Pala et al. 2013). In traditional Pakistani medicine, P. ostreatus considered as an energetic food (Ullah et al. 2017), is developed for lowering cholesterol, blood flow, cardiac problems and as liver tonic, antibiotic, antiviral, and immunomodulating agent (Yasin et  al. 2019). Besides, it has been utilized for curing respiratory problems and as anticancer, anti-inflammatory, and antioxidant agent in Macedonia (Rexhepi and Reka 2020). In Serbia, it has been exploited for regulation of blood glucose levels and strengthening the immune system (Živković et al. 2021).

Modern Medicinal Uses After the first report for hypotensive activities of Pleurotus spp. using a mouse model (Tam et al. 1986), a number of studies have been conducted for the medicinal potential of Pleurotus species, and comprehensive reviews have been presented for their nutritional and medicinal aspects (Patel et al. 2012; Valverde et al. 2015; Anusiya et  al. 2021; Sharma et  al. 2021). Moreover, the number of patents regarding the genus Pleurotus spp. has exponentially increased (Corrêa et al. 2016). Extracts and/ or bioactive compounds of Pleurotus spp. showed antiaging, antiallergic, anticancer, antigenotoxic, anti-inflammatory, antihyperglycemic, antihypertensive, antimicrobial, antimutagenic, antioxidant, antitumor, antiviral, cytotoxic, hematological, hepatoprotective, hypocholesterolemic, hypolipidemic, DNA protective effects and immunomodulatory effects (Gunde-Cimerman 1999; Freitas et al. 2018; Dkhil et al. 2020a, b; Goswami et al. 2021; Sharma et al. 2021; Venturella et al. 2021; Cateni et al. 2022; İnci et al. 2022; Koutrotsios et al. 2022).

Pleurotus eryngii (DC.) Quél.; Pleurotus ostreatus (Jacq.)…

1353

Pleurotus eryngii: It has been noted that the bioactive metabolites of the fruiting bodies, mycelial biomass as well as culture broth of this mushroom were used in modern medicine for its antiallergic (Han et al. 2011; Choi et al. 2013), antiatherosclerotic (Mori et al. 2008), anti-fatigue (Zhao et al. 2020b), antigenotoxic (Hu et al. 2009), antimicrobial (Wang and Ng 2004; Ngai and Ng 2006; Akyüz et al. 2010; Schillaci et al. 2013), antidiabetic (Li et al. 2014; Chen et al. (2016), antiobesity (Kleftaki et al. 2022), antioxidant (Jing et al. 2013; Sun et al. 2013; Li and Shah 2014; Chen et  al. 2015; Zhang et  al. 2016b; Yu et  al. 2018; Zhao et  al. 2020b; Calabretti et al. 2021; Teniou et al. 2022), antitumor (Jeong et al. 2008; Wang et al. 2012; Jing et al. 2013; Yang et al. 2013; Cui et al. 2014; Ma et al. 2014; Xue et al. 2015; Ren et al. 2016), estrogen-like (Kim et al. 2006; Shimizu et al. 2006), hepatoprotective (Chen et al. 2012a; Zhang et al. 2016b), hypolipidemic (Mizutani et al. 2010; Alam et  al. 2011; Jin et  al. 2018; Zhao et  al. 2020a), immunomodulatory (Nozaki et al. 2008, 2010; Jeong et al. 2010; Ike et al. 2012; Mariga et al. 2014; Xu et al. 2016), neuroprotective (Kushairi et al. 2020; Teniou et al. 2022), and prebiotic (Chou et al. 2013; Vlassopoulou et al. 2022) activities and so on. The polysaccharides are the main active ingredients in P. eryngii, which have been identified to possess multiple bioactivities such as anti-atherosclerosis, antitumor and hepatoprotective (Kim et al. 2006; Ren et al. 2016). Kleftaki et al. (2022) determined for the first time effects of polysaccharides of P. eryngii on postprandial glucose, insulin, gastrointestinal hormones and appetite scores. Vlassopoulou et al. (2022) examined the link between prebiotic activity of P. eryngii polysaccharide and the genoprotective, antitumor, and immunomodulatory properties of mushrooms. As a result, gene expression levels of TNF-α, IL-1β, cytokines (IL-10, IL-1Rα) showed that the presence of P. eryngii in the fermentation process led to modifications in immune response.

Antitumor Activity Many biological studies have demonstrated that polysaccharides from P. eryngii played a main role in the enhancement of the antitumor activity (Fu et al. 2016). An acidic glycosphingolipids (AGLs) has been purified from the fruiting body of P. eryngii (Nozaki et  al. 2008). Its immunomodulating activity was showed by increasing of interferon (IFN)-γ, interleukin (IL)-2, and interleukin (IL)-4 production (Nozaki et al. 2008, 2010). The antitumor effects of intraperitoneal administered exo- and endo-polysaccharides produced from submerged mycelial cultures of P. eryngii have been investigated on Sarcoma 180 bearing BALB/c mice by Jeong et al. (2008, 2010). The findings proved that after 4 weeks of its administration to mice with Sarcoma 180 cells, solid tumor growth was reduced by 14.0% and 29.4% with exo- and endo-polysaccharide administration, respectively. Ex vivo chorioallantoic membrane assay showed that exopolysaccharides from P. eryngii significantly inhibited angiogenesis which plays a key role in tumor growth and metastasis (Shenbhagaraman et  al. 2012). Eryngiolide A, was the first member of C20

1354

Y. Gafforov et al.

diterpenoids with the skeleton deriving from a cyclododecane core fused with two γ-lactone units and it was isolated from the solid culture of P. eryngii, and have been showed moderate cytotoxicity against two human cancer lines Hela and Hep G2 (Wang et al. 2012). A water-soluble polysaccharide named as EPw, isolated from the fruiting bodies of P. eryngii significantly inhibited in vivo the tumor growth in Renca-­bearing mice in a dose-dependent manner (Yang et  al. 2013). Jing et  al. (2013) determined the concentration-dependent antitumor and antioxidant activity of exopolysaccharide fractions obtained from the culture filtrates of P. eryngii. They were designed as Fr-I and Fr-II with molecular weight of 4.098  ×  104 and 1.114 × 104 g/mol, respectively and tested on in vitro experiment against Hep G2 cells using the MTT assay. The results indicated that Fr-II exhibited higher antitumor (61.4% at the concentration of 400 μg/mL) and antioxidant activity than Fr-I, which might be attributed to the different molecular weights and chemical compositions of the exopolysaccharide fractions (Jing et al. 2013). Yang et al. (2013) isolated from the fruiting bodies of P. eryngii water-soluble polysaccharide named as PEPw, with an average molecular weight of 2.5 × 104 Da, and evaluated for the immunomodulatory and antitumor activity. As a result, the tumor growth was significantly inhibited by PEPw treatment at the doses of 50, 100 and 200  mg/kg in a dose-dependent manner (Yang et  al. 2013). According to Fontana et al. (2014), the cold water extracts of P. eryngii var. ferulae inhibited the viability of human colon cancer HCT116 cells and promoted apoptosis. Besides, the extract can inhibit cell migration, and affect both homotypic and heterotypic cell-­ cell adhesion. Cui et al. (2014) reported for the first time the changes of macromolecular composition at five developmental stages of P. eryngii fruiting bodies and their effect on the cytotoxic activity using the colorimetric MTT assay on two cancer cell lines and one normal human liver L-02. Among used fractions, the polysaccharide-­protein fractions had the highest antitumor effect on the human gastric SGC-7901 cells and human hepatoma Hep G2 cells in vitro in comparison with polysaccharide fractions and ethanol extract. Cui et al. (2014) concluded that the cytotoxic activity increased with growing maturity of P. eryngii fruiting body, and after purification and electrophoresis identified that polysaccharide-protein named as PEG-1 was the possible target cytotoxic compound. Ma et al. (2014) isolated and further purified a novel water-soluble polysaccharide from P. eryngii to yield three heteropolysaccharides named as PEPE-1, PEPE-2 and PEPE-3. All three heteropolysaccharides, PEPE-1, PEPE-2 and PEPE-3 from P. eryngii residue suppressed the proliferation and enhanced lactate dehydrogenase (LDH) release of Hep G2 cells in a dose- and time-dependent manner, whereas the antitumor effect increased in the order of PEPE-1