Supply Management Research: Aktuelle Forschungsergebnisse 2023 3658426349, 9783658426347, 9783658426354

Dieses Buch stellt wissenschaftliche Fortschritte in den Bereichen Einkauf, Materialwirtschaft, Supply Chain Management

110 45 9MB

German Pages 286 Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Geleitwort
Vorwort
Inhaltsverzeichnis
Teil A Wissenschaftliche Forschungsbeiträge
Die digitale Transformation der Logistik aus menschenzentrierter Perspektive
Abstract
1 Einleitung
2 Theoretische Grundannahmen
3 Die Entwicklung von Logistik 4.0 als Konsequenz aus Industrie 4.0
4 Arbeitsplatzzufriedenheit und menschengerechte Arbeitsgestaltung in der digitalen Transformation
4.1 Die Beeinflussung von Arbeitszufriedenheit durch Digitalisierung und Automatisierung
4.2 Menschenzentrierte Arbeitsplatzgestaltung im Kontext von Industrie 4.0 und Logistik 4.0
5 Kommissionierung in Zeiten technologischen Wandels
5.1 Was ist Kommissionierung 4.0?
5.2 Hybride Kommissionierung — ein Ansatz mit Potenzial
6 Fazit
Literatur
Real-time information for disruption management in intermodal freight transport
Abstract
1 Introduction
Purpose and research questions
2 Frame of reference
2.1 Approaches to manage disruptions
2.2 Focus on managing disruptions in the thesis
2.3 Recovery actions in intermodal freight transport
2.4 Connecting coordination and disruption management
2.5 The phases of disruption management
Detection
Prediction
2.6 Synthesis of the studied literature
3 Research methodology
4 Discussion
4.1 RQ 1: How does real-time information support disruption management in intermodal freight transport?
How the content of real-time information supports disruption management
How the structure of real-time information influences its content
How the coverage of real-time information influences its content
4.2 RQ 2: How does coordination influence the availability of real-time information for disruption management in intermodal frei
4.3 RQ 3: What are the efficiency effects of real-time information on disruption management in intermodal freight transport?
4.4 Discussion on thesis contribution to purpose
Discussion beyond the scope of the thesis
4.5 Theoretical contributions
4.6 Practical contributions
5 Conclusions
List of papers included in the thesis
References
Implementation of Innovative Public Procurement: Conceptual foundation, success factors and recommendations for action
Abstract
1 Introduction
1.1 Motivation
1.2 Major research goal and article structure
2 Scientific foundations and conceptual groundwork of Innovative Public Procurement
3 Conceptual contributions from strategy implementation theory and derivation of an IPP implementation model
3.1 Relevant constituents of strategy implementation
3.2 IPP implementation levers
4 Research design and statistical validation of the hypothesized interrelationships of IPP implementation
5 Conclusion
5.1 Operational implications for the management of public procurement functions
5.2 Scientific implications for IPP research and limitations of the study
References
Appendix
Supply chain power structures — qualitative contributions on the influence of digitalization on power allocations along the supp
Abstract
1 Introduction
2 Theoretical foundations of the concept of power and digitalization in SCM
3 Power in SCM — a qualitative research approach
3.1 Developing a concept of power in traditional and digital supply chains
3.2 Strategies to deal with power asymmetries in a digital environment
4 Conclusion
References
Mind the gap: An initial empirical analysis of the gap between corporate intentions and actions regarding sustainability
Abstract
1 Introduction
2 Summary of findings
References
Local sourcing in response to Covid: Merely a theory from the ivory tower? An Austrian industry perspective
Abstract
1 Introduction
2 Literature review
3 Research methodology
Who participated in the survey?
4 Results of the industry survey
Where is the problem geographically located?
What is considered as ‘local sourcing’?
Is there a trend for local sourcing?
Do sourcing decisions depend on company size?
Do sourcing decisions depend on the type of industry?
What are the obstacles to local sourcing?
5 Conclusion
Managerial implications
Limitations and future research fields
References
How to do research on the future in purchasing and supply management (PSM): A literature review on the usage of futures studies
Abstract
1 Introduction
2 Conceptual background
2.1 Characterization of futures studies
2.2 Object in futures studies
2.3 Critique on futures studies
2.4 Institutionalization of futures studies
2.5 Assumptions in futures studies
2.6 Framework of studying the future from a future studies perspective
3 Methodology
4 Findings
4.1 Findings on the object of studying the future
4.2 Findings to the framework of studying the future
4.3 Findings to further directions for studying the future
4.4 Discussion and limitation
Appendix I
References
Decoupling of global supply chains: Drivers, constraints, and alternatives
Abstract
1 Introduction
2 Conceptual background
2.1 Inhouse and outsourced offshoring
2.2 Reshoring
2.3 Supply chain decoupling
3 Method
4 Results
4.1 Decoupling tendencies
Drivers
Constraints
4.2 Alternative approaches
5 Discussion
5.1 Theoretical implications
5.2 Managerial implications
5.3 Limitations and future research
References
Identification of asymmetric information in the supplier–buyer relationship: A structural review
Abstract
1 Introduction
2 Principal-agent theory
3 Methodical approach
4 Determination of information asymmetry influencing variables
4.1 Direct and indirect measurement methods for the determination of social as well as general information asymmetry influencing
Behavioral decisions as an information asymmetric influencing variable
Randomized-Response Technique based on an idealized questioning
4.2 Management systems as information asymmetry influencing factors
4.3 Key performance indicators as information asymmetry influencing factors
4.4 In-label and out-of-label information as information asymmetry influencing factors
5 Additional information asymmetry influencing factors
5.1 General aspects as information asymmetry influencing variables
5.2 Reliability aspects as information asymmetry influencing factors
5.3 Price-performance aspects as information asymmetry influencing variables
5.4 Digitization aspects as information asymmetry influencing variables
5.5 Product technical aspects as information asymmetry influencing factors
5.6 Employment law and social aspects as information asymmetry influencing factors
5.7 Environmental aspects as information asymmetry influencing factors
6 Discussion and conclusion
References
Teil B Anwendungsorientierte Forschungsbeiträge
Influences of additive manufacturing on logistics subsystems — an empirical study
Abstract
1 Introduction
2 Theoretical background
2.1 Basics of additive manufacturing
2.2 Functional principle of additive manufacturing
3 Methodology
3.1 Research approach and selection of interview experts
3.2 Data collection and analysis
4 Results of the empirical study
4.1 Impact on the logistic processes
Procurement
Warehousing
Production
Distribution
4.2 Potentials and barriers
4.3 Necessary preconditions and implications for practice and further research
Necessary preconditions
Practical implications
Further research
5 Conclusion and limitations
References
Einkauf 2030: Delphi-Studie zur Zukunft des Einkaufs
Abstract
1 Einleitung
2 Forschungsstand: Zukunft des Einkaufs
2.1 Literaturüberblick zur Zukunft des Einkaufs
2.2 Forschungsbedarf „Einkauf 2030“
3 Empirische Studie „Einkauf 2030“
3.1 Forschungsmethodik
3.2 Durchführung der Delphi-Befragung
3.3 Ergebnisse der Delphi-Befragung
Strategien & Bedeutung
Organisation & Führung
Personal
Prozesse & Technologien
Lieferketten- & Lieferantenmanagement
Herausforderungen
4 Diskussion und Handlungsempfehlungen
4.1 Zusammenfassende Diskussion
4.2 Handlungsempfehlungen
5 Schlussbetrachtung
Literatur
Anhang
Anhang 1: Eckdaten der Delphi-Befragung
Anhang 2: Ergebnisse der Delphi-Befragung
Autorenverzeichnis
Recommend Papers

Supply Management Research: Aktuelle Forschungsergebnisse 2023
 3658426349, 9783658426347, 9783658426354

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Christoph Bode Ronald Bogaschewsky Michael Eßig Rainer Lasch  Hrsg.

Supply Management Research Aktuelle Forschungsergebnisse 2023

Advanced Studies in Supply Management Reihe herausgegeben von Bundesverband Materialwirtschaft, Einkauf und Logistik, Frankfurt, Deutschland

Christoph Bode • Ronald Bogaschewsky Michael Eßig • Rainer Lasch (Hrsg.)

Supply Management Research Aktuelle Forschungsergebnisse 2023

Hrsg. Christoph Bode Universität Mannheim Mannheim, Deutschland

Ronald Bogaschewsky Universität Würzburg Würzburg, Deutschland

Michael Eßig Universität der Bundeswehr München Neubiberg, Deutschland

Rainer Lasch Technische Universität Dresden Dresden, Deutschland

ISSN 2626-2150 ISSN 2626-2169 (electronic) Advanced Studies in Supply Management ISBN 978-3-658-42635-4 (eBook) ISBN 978-3-658-42634-7 https://doi.org/10.1007/ 978- 3- 658- 42635-4 Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar. © Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen. Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten. Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral. Planung/Lektorat: Susanne Kramer Springer Gabler ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature. Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Das Papier dieses Produkts ist recyclebar.

Geleitwort

Der Bundesverband Materialwirtschaft Einkauf und Logistik e.V. (BME) fördert seit vielen Jahren den konstruktiven, offenen Austausch zwischen Wissenschaft und Praxis. Der BME unterstützt aktiv das Aufspüren von Trends und Innovationen, das Erarbeiten von Erfolgsansätzen, das Vermitteln von Erprobtem und das Vernetzen interessierter Menschen und ihrer Ideen. Für seine Mitglieder und eine breite Fachöffentlichkeit bietet er ein exzellentes Netzwerk zum Know-how-Transfer. Eine wichtige Säule der Verbandsarbeit ist die wissenschaftliche Auseinandersetzung mit den Themen Beschaffung und Logistik, verbunden mit der Unterstützung des wissenschaftlichen Nachwuchses. Dabei werden der Öffentlichkeit interessante Ansätze in der Forschung zum Thema Supply Management vorgestellt. Verfasser:innen von Habilitationen, Dissertationen und herausragenden Studienabschlussarbeiten werden mit den BME Science Awards ausgezeichnet. In der Buchreihe „Advanced Studies in Supply Management“ veröffentlicht der BME wichtige wissenschaftliche Erkenntnisse rund um aktuelle und vieldiskutierte Managementmethoden. Auch der 16. Band zeigt Lösungsansätze für aktuelle Herausforderungen auf. Beispiele dafür sind die Beiträge zur digitalen Transformation der Logistik aus einer menschenzentrierten Perspektive, zur Implementierung der innovativen öffentlichen Beschaffung, zu Supply Chain Power Structures und der Frage, welchen qualitativen Einfluss die Digitalisierung auf die Machtverteilung entlang der Lieferkette hat, sowie zu Einflüssen der additiven Fertigung auf logistische Teilsysteme. Mein herzlicher Dank gilt den Autor:innen für ihre Beiträge sowie insbesondere den Professoren Christoph Bode, Ronald Bogaschewsky, Michael Eßig und Rainer Lasch für ihre fachliche Unterstützung und ihr großes Engagement.

Eschborn, im Juni 2023 Dr. Helena Melnikov Hauptgeschäftsführerin Bundesverband Materialwirtschaft, Einkauf und Logistik e.V.

V

Vorwort

In dem vorliegenden 16. Band der Reihe „Advanced Studies in Supply Management“ werden erneut ausgewählte wissenschaftliche Fortschritte in diesem Forschungsfeld dargestellt. Er ist zugleich Tagungsband des 16. Wissenschaftlichen Symposiums „Supply Management“, das im März 2023 an der Universität Mannheim stattgefunden hat. Veranstalter dieser Tagung ist der Bundesverband Materialwirtschaft, Einkauf und Logistik e.V. (BME), der auch als Herausgeber der Buchreihe fungiert. Inhaltlich verantwortlich für die Durchführung des Wissenschaftlichen Symposiums und der daraus resultierenden Schriften ist der Wissenschaftliche Beirat des Bundesvorstandes des BME. Die außerordentlich große Bedeutung des gesamten Beschaffungsbereichs spiegelt sich in der seit Jahren deutlich ansteigenden Anzahl wissenschaftlicher Publikationen und anwendungsnaher Arbeiten wider. Das Wissenschaftliche Symposium „Supply Management“ hat sich zu einer zentralen Plattform für die Präsentation von und den Austausch über neueste Forschungsergebnisse aus den Gebieten Einkauf, Materialmanagement, Logistik und Supply Chain Management etabliert. Die in diesem Band veröffentlichten Beiträge wurden – gemäß den beiden Tracks auf dem Symposium – in strenger wissenschaftliche sowie stärker anwendungsorientierte Arbeiten unterschieden. Alle Einreichungen sind in einem Double-Blind-Review-Verfahren von unabhängigen Gutachtern eingehend geprüft worden. Diesen gilt unser besonderer Dank für die gewissenhafte Erstellung der Gutachten und die dort angeführten Verbesserungsvorschläge für die Beiträge. Aufgenommen wurden zudem die Arbeiten, die sich für das Vortragsfinale des BME Science Award 2023 (Kategorie: Dissertation) qualifizieren konnten. Der Jury des BME Science Award gilt ebenfalls unser Dank für die geleisteten Begutachtungen. Der vorliegende Band zeigt die große Breite und Tiefe der wissenschaftlichen und anwendungsnahen Arbeiten im Bereich Supply Management auf. Es ist dem Wissenschaftlichen Beirat und dem BME ein besonderes Anliegen, Forschungen in diesem Bereich weiterhin intensiv zu fördern.

Eschborn, im Juni 2023 Prof. Dr. Christoph Bode, Mannheim Prof. Dr. Michael Eßig, München

Prof. Dr. Ronald Bogaschewsky, Würzburg Prof. Dr. Rainer Lasch, Dresden

VII

Inhaltsverzeichnis

Geleitwort ................................................................................................................................. V Vorwort .................................................................................................................................. VII

Teil A Wissenschaftliche Forschungsbeiträge Die digitale Transformation der Logistik aus menschenzentrierter Perspektive Sven Winkelhaus Abstract ...................................................................................................................................... 3 1 Einleitung ............................................................................................................................ 3 2 Theoretische Grundannahmen ......................................................................................... 5 3 Die Entwicklung von Logistik 4.0 als Konsequenz aus Industrie 4.0 .......................... 6 4 Arbeitsplatzzufriedenheit und menschengerechte Arbeitsgestaltung in der digitalen Transformation ................................................................................................... 8 4.1 Die Beeinflussung von Arbeitszufriedenheit durch Digitalisierung und Automatisierung ............................................................................................ 8 4.2 Menschenzentrierte Arbeitsplatzgestaltung im Kontext von Industrie 4.0 und Logistik 4.0 ............................................................................. 11 5 Kommissionierung in Zeiten technologischen Wandels ............................................. 14 5.1 Was ist Kommissionierung 4.0? ......................................................................... 14 5.2 Hybride Kommissionierung – ein Ansatz mit Potenzial ................................ 16 6 Fazit ................................................................................................................................... 18 Literatur ................................................................................................................................... 19

Real-time information for disruption management in intermodal freight transport Per Wide Abstract .................................................................................................................................... 23 1 Introduction ...................................................................................................................... 23 Purpose and research questions ..................................................................................... 25 2 Frame of reference ............................................................................................................ 27 2.1 Approaches to manage disruptions................................................................... 27 2.2 Focus on managing disruptions in the thesis ................................................... 28 2.3 Recovery actions in intermodal freight transport ............................................ 29 2.4 Connectiong coordination and disruption management................................ 29

IX

Inhaltsverzeichnis

2.5 The phases of disruption management ............................................................. 30 2.6 Synthesis of the studied literature ..................................................................... 31 3 Research methodology .................................................................................................... 32 4 Discussion ......................................................................................................................... 33 4.1 RQ1: How does real-time information support disruption management in intermodal freight transport?......................................................................... 34 4.2 RQ 2: How does coordination influence the availability of real-time information for disruption management in intermodal freight transport? ... 36 4.3 RQ 3: What are the efficiency effects of real-time information on disruption management in intermodal freight transport? ............................. 37 4.4 Discussion on thesis contribution to purpose .................................................. 38 4.5 Theoretical contributions .................................................................................... 39 Practical contributions ......................................................................................... 40 4.6 5 Conclusions ...................................................................................................................... 41 List of papers included in the thesis..................................................................................... 43 References ................................................................................................................................ 43

Implementation of Innovative Public Procurement: Conceptual foundation, success factors and recommendations for action Markus Schaupp Abstract .................................................................................................................................... 49 1 Introduction ...................................................................................................................... 49 1.1 Motivation ............................................................................................................. 49 1.2 Major research goal and article structure.......................................................... 50 2 Scientific foundation and conceptual groundwork of Innovative Public Procurement ...................................................................................... 51 3 Conceptual contributions from strategy implementation theory and derivation of an IPP implementation model ................................................................. 55 3.1 Relevant constituents of strategy implementation .......................................... 55 3.2 IPP implementation levers .................................................................................. 57 4 Research design and statistical validation of the hypothesized interrelationships of IPP implementation ..................................................................................................... 59 5 Conclusion ......................................................................................................................... 61 5.1 Operational implications for the management of public procurement functions ................................................................................................................ 63 5.2 Scientific implications for IPP research and limitations of the study ............ 65 References ............................................................................................................................... 66 Appendix ................................................................................................................................. 70

X

Inhaltsverzeichnis

Supply chain power strucutures – qualitative contributions on the influence of digitalization on power allocations along the supply chain Janosch Brinker, Hans-Dietrich Haasis Abstract .................................................................................................................................... 73 1 Introduction ...................................................................................................................... 73 2 Theoretical foundations of the concept of power and digitalization in SCM ........... 75 3 Power in SCM – a qualitative research approach ......................................................... 77 3.1 Developing a concept of power in traditional and digital supply chains..... 78 3.2 Strategies to deal with power asymmetries in a digital environment........... 81 4 Conclusion ........................................................................................................................ 82 References ................................................................................................................................ 83

Mind the gap: An initial empirical analysis of the gap between corporate intentions and actions regarding sustainability (Extended abstract) Ruth Schültken, Christoph Bode, Matthias Schlipf Abstract .................................................................................................................................... 89 1 Introduction ..................................................................................................................... 89 2 Summary of findings ..................................................................................................... 90 References ................................................................................................................................ 91

Local sourcing in response to Covid: Merely a theory from the ivory tower? An Austrian industry perspective Uwe Brunner, Christian Baum, Christian Burkart, Martin Tschandl Abstract .................................................................................................................................... 93 1 Introduction ..................................................................................................................... 93 2 Literature review .............................................................................................................. 95 3 Research methodology .................................................................................................... 98 4 Results of the industry survey ...................................................................................... 102 5 Conclusion ....................................................................................................................... 109 References .............................................................................................................................. 112

How to do research on the future in purchasing and supply management (PSM): A literature review on the usage of futures studies in PSM Christine Freye, Christian von Deimling, Michael Eßig Abstract .................................................................................................................................. 117 1 Introduction ................................................................................................................... 118 2 Conceptual background ............................................................................................... 119

XI

Inhaltsverzeichnis

2.1 Characterization of futures studies.................................................................. 119 2.2 Object in futures studies.................................................................................... 120 Critique on futures studies ............................................................................... 122 2.3 2.4 Institutionalization of futures studies ............................................................. 123 2.5 Assumptions in futures studies ....................................................................... 123 2.6 Framework of studying the future from a future studies perspective ........ 124 3 Methodology ................................................................................................................... 126 4 Findings ........................................................................................................................... 129 4.1 Findings on the object of studying the future ................................................ 129 4.2 Findings to the framework of studying the future ........................................ 130 4.3 Findings to further directions for studying the future .................................. 131 Discussion and limitation ................................................................................. 133 4.4 Appendix I ............................................................................................................................. 136 References .............................................................................................................................. 140

Decoupling of global supply chains: Drivers, constraints, and alternatives Davide Burkhart, Christoph Bode, Kristian Peters Abstract .................................................................................................................................. 151 1 Introduction .................................................................................................................... 151 2 Conceptual background ................................................................................................ 152 2.1 Inhouse and outsourced offshoring................................................................. 152 2.2 Reshoring ............................................................................................................ 153 2.3 Supply chain decoupling .................................................................................. 154 3 Method ............................................................................................................................ 155 4 Results .............................................................................................................................. 157 4.1 Decoupling tendencies ...................................................................................... 157 4.2 Alternative approaches ..................................................................................... 161 5 Discussion........................................................................................................................ 163 5.1 Theoretical implications .................................................................................... 164 5.2 Managerial implications.................................................................................... 164 5.3 Limitations and future research ....................................................................... 165 References .............................................................................................................................. 165

Identification of asymmetric information in the supplier–buyer relationship: A structural review Abdulaziz Mardenli, Dirk Sackmann Abstract .................................................................................................................................. 169 1 Introduction .................................................................................................................... 170 2 Principal-agent theory ................................................................................................... 171 3 Methodical approach ..................................................................................................... 174

XII

Inhaltsverzeichnis

Determination of information asymmetry influencing variables ............................ 177 4.1 Direct and indirect measurement methods for the determination of social as well as general information asymmetry influence variables ........ 177 4.2 Management systems as information asymmetry influencing factors ....... 180 4.3 Key performance indicators as information asymmetry influencing factors ............................................................................................. 186 4.4 In-label and out-of-label information as information asymmetry influencing factors ............................................................................................. 190 5 Additional information asymmetry influencing factors ........................................... 194 5.1 General aspects as information asymmetry influencing variables .............. 194 5.2 Reliability aspects as information asymmetry influencing factors .............. 195 Price-performance aspects as information asymmetry 5.3 influencing variables ......................................................................................... 195 5.4 Digitization aspects as information asymmetry influencing variables ....... 195 5.5 Product technical aspects as information asymmetry influencing factors ............................................................................................. 196 5.6 Employment law and social aspects as information asymmetry influencing factors ............................................................................................. 196 5.7 Environmental aspects as information asymmetry influencing factors ..... 197 6 Discussion and conclusion ............................................................................................ 197 References .............................................................................................................................. 198 4

Teil B Anwendungsorientierte Forschungsbeiträge Influences of additive manufacturing on logistics subsystems – an empirical study Alexander Bade, Marcel André Hoffmann, Rainer Lasch Abstract .................................................................................................................................. 221 1 Indroduction .................................................................................................................. 221 2 Theoretical background ................................................................................................. 223 2.1 Basics of additive manufacturing..................................................................... 223 2.2 Functional principle of additive manufacturing ............................................ 224 3 Methodology ................................................................................................................... 224 3.1 Research approach and selection of interview experts ................................. 225 3.2 Data collection and analysis ............................................................................. 226 4 Results of the empirical study ...................................................................................... 227 4.1 Impact on the logistic processes ....................................................................... 227 4.2 Potentials and barriers....................................................................................... 231 4.3 Necessary preconditions and implications for practice and further research .................................................................................................. 233 5 Conclusion and limitations ........................................................................................... 235 References .............................................................................................................................. 236

XIII

Inhaltsverzeichnis

Einkauf 2030: Delphi-Studie zur Zukunft des Einkaufs Ramona Niederschweiberer, Florian C. Kleemann Abstract .................................................................................................................................. 239 1 Einleitung ........................................................................................................................ 239 2 Forschungsstand: Zukunft des Einkaufs ..................................................................... 241 2.1 Literaturüberlick zur Zukunft des Einkaufs................................................... 241 2.2 Forschungsbedarf „Einkauf 2030“ ................................................................... 244 3 Empirische Studie „Einkauf 2030“ ............................................................................... 247 3.1 Forschungsmethodik ......................................................................................... 247 3.2 Durchführung der Delphi-Befragung ............................................................. 248 3.3 Ergebnisse der Delphi-Befragung .................................................................... 249 4 Diskussion und Handlungsempfehlungen ................................................................ 255 4.1 Zusammenfassende Diskussion ....................................................................... 255 4.2 Handlungsempfehlungen ................................................................................. 259 5 Schlussbetrachtung ........................................................................................................ 260 Literatur ................................................................................................................................. 262 Anhang................................................................................................................................... 268

Autorenverzeichnis.............................................................................................................. 275

XIV

Teil A Wissenschaftliche Forschungsbeiträge

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Sven Winkelhaus

Abstract Die kumulative Dissertation befasst sich mit der digitalen Transformation in der Logistik unter besonderer Berücksichtigung der Auswirkungen des Transformationsprozesses auf die Beschäftigten in dieser Branche. Hierfür wird im ersten Teil der Dissertation der Begriff Logistik 4.0 definiert, bevor im zweiten Teil empirisch die Auswirkungen der Entwicklung zu Logistik 4.0 auf Arbeitsplatzmerkmale untersucht werden. Anschließend wird ein Analysewerkzeug vorgestellt, das es ermöglicht, die Auswirkungen der Einführung von Logistik-4.0-Elementen auf die involvierten Menschen zu untersuchen. Fürderhin wird die Kommissionierung 4.0 strukturiert und untersucht, welche technischen und prozessualen Lösungen eine gleichermaßen menschengerechte und ökonomische Kommissionierung ermöglichen. Es zeigt sich mittels Simulation, dass ein kollaboratives, hybrides Kommissioniersystem ein vielversprechender Ansatz ist, in dem Menschen und autonome Roboter gemeinsam Aufträge kommissionieren.

1

Einleitung

Logistik ist die Summe der Tätigkeiten von Unternehmen, die sich mit dem Transport und der Lagerung von Waren befassen, um diese für den Verbrauch verfügbar zu machen (Lummus et al., 2001). Diese Tätigkeiten sind nach wie vor in hohem Maße auf menschliche Arbeit angewiesen. Durch die aktuelle digitale Transformation großer Teile der Wirtschaft ist auch die Logistik einem neuen Strukturwandel ausgesetzt, dessen Auswirkungen auf die menschliche Arbeit noch nicht vollständig absehbar sind. In diesem Beitrag werden kurz die wesentlichen Inhalte der kumulativen Dissertation des Autors zusammengefasst, in der dieser Wandel der Logistik im Rahmen der sogenannten Vierten Industriellen Revolution (Culot et al., 2020; Kagermann et al., 2013) untersucht wird. Hierbei stehen insbesondere die Auswirkungen auf die Human Factors

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 C. Bode et al. (Hrsg.), Supply Management Research, Advanced Studies in Supply Management, https://doi.org/10.1007/978-3-658-42635-4_1

3

Wissenschaftliche Forschungsbeiträge

(HF) im Fokus, die sich „mit dem Verständnis der Wechselwirkungen zwischen Menschen und anderen Elementen eines Systems [...] befassen, um das menschliche Wohlbefinden und die gesamte Systemleistung zu optimieren“ (International Ergonomics Association, 2019). Darüber hinaus wird ein spezifischer Blick auf Intralogistik- und Lagerhaltungsprozesse geworfen, da in diesen Prozessen besonders manuelle und arbeitsintensive Tätigkeiten ausgeführt werden, insbesondere die Kommissionierung (de Koster et al., 2007). Daher sind diese Aufgaben im Zusammenhang mit den durch die Vierte Industrielle Revolution hervorgerufenen Veränderungen von besonderem Interesse. Ziel der kumulativen Dissertation ist es daher, durch die Beantwortung von vier übergreifenden Forschungsfragen tiefere Einblicke in die Entwicklungen zu Logistik 4.0 zu gewinnen:

 Was ist Logistik 4.0 und wie ist der aktuelle Stand der Forschung zu Logistik 4.0?  Wie wirken sich die Entwicklungen zu Logistik 4.0 auf die Arbeitsmerkmale von Intralogistikmitarbeitenden aus?

 Wie können Arbeitsplätze in der Entwicklung zu Industrie 4.0 und Logistik 4.0 systematisch analysiert werden?

 Wie verändert sich die Kommissionierung im Hinblick auf die Entwicklung zu Logistik 4.0 und welche Auswirkungen hat dies auf soziale und ökonomische Faktoren des Kommissionierprozesses?

Der Hauptteil dieses kumulativen Forschungsprozesses lässt sich in drei Teile gliedern: Der erste Teil der Dissertation bildet die Grundlage, indem ein konzeptionelles Verständnis von Logistik 4.0 entwickelt und die Veränderungen in Logistiksystemen durch verschiedene Push- und Pull-Faktoren im Kontext der digitalen Transformation skizziert werden. Der zweite Teil fokussiert auf empirische Forschungsergebnisse zur Veränderung von Arbeitseigenschaften in Logistik 4.0 und deren Anwendung. Daher wird aufbauend ein theoretisch fundierter Systemrahmen entwickelt, der die Analyse der Auswirkungen eines Industrie-4.0- oder Logistik-4.0-induzierten Wandels des Arbeitssystems auf menschliche Faktoren und das Gesamtsystem unterstützt. Anschließend wird im dritten Teil der Fokus noch einmal spezifischer auf die Kommissionierung gelegt. Zunächst wird das Feld Kommissionierung 4.0 strukturiert und überprüft, wobei festgestellt wird, dass hybride Kommissioniersysteme, bei denen menschliche Kommissionierende und Kommissionierroboter in einem gemeinsamen Arbeitsraum zusammenarbeiten, um die Kundenaufträge zu erledigen, in der Forschung weitgehend vernachlässigt werden; dieses wird abschließend untersucht. Diese drei Teile werden nachfolgend kurz entsprechend dieser Reihenfolge zusammengefasst; zuvor jedoch werden wesentliche methodische Grundlagen kurz aufgezeigt.

4

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

2

Theoretische Grundannahmen

Die drei Teile folgen dem in Abbildung 1 dargestellten Zyklus, der auf der soziotechnischen Perspektive basiert: Da sich durch die Entwicklungen zu Logistik 4.0 die Anforderungen und Anwendungen innerhalb der Logistiksysteme verändern, kommt es gleichzeitig zu einer Veränderung der bestehenden Arbeitssysteme. Der Theorie soziotechnischer Systeme folgend, können einzelne Teilsysteme nicht getrennt voneinander optimiert werden (Rose et al., 2013; van Eijnatten, 1998). Da logistische Systeme als soziotechnische Systeme verstanden werden können, verändern sich die sozialen und technischen Teilsysteme zusammen mit dem gesamten Arbeitssystem. Es reicht daher nicht aus, die technischen Möglichkeiten der digitalen Transformation auszuschöpfen, ohne auch das menschliche Teilsystem in der Logistik zu berücksichtigen, da dies zu „Phantomgewinnen“ führen kann (Rose et al., 2013). Diese entstehen, wenn die technologischen Wirkungen auf das System hinter den Erwartungen zurückbleiben, weil die Wirkungen des Subsystems „Mensch“ nicht ausreichend berücksichtigt wurden. Die Anpassungseffekte des Menschen als Folge des Arbeitssystemwechsels führen zu indirekten Systemeffekten, die zu einer Veränderung der geplanten Systemergebnisse führen können. Dementsprechend ist es von großer Bedeutung, die Auswirkungen des Strukturwandels in der Logistik im Hinblick auf die Entwicklungen zu Logistik 4.0 zu verstehen. Darauf aufbauend ist es möglich, ein gemeinsam optimiertes soziotechnisches System in der Logistik abzuleiten, auf dessen Basis der Wandel des Arbeitssystems aktiv gestaltet werden kann. Abbildung 1: Ablauf der Forschung (eigene Darstellung)

5

Wissenschaftliche Forschungsbeiträge

3

Die Entwicklung von Logistik 4.0 als Konsequenz aus Industrie 4.0

Forschung zu Logistik 4.0 gewinnt an Bedeutung, da sich das Geschäftsumfeld der Logistik verändert und neue Anforderungen an die Erfüllung der Ziele der Logistik stellt, womit sich der erste Artikel der kumulativen Dissertation auseinandersetzt (Winkelhaus, Grosse, 2020). Ein Teil dieses sich verändernden Geschäftsumfeldes ist das Aufkommen von Industrie 4.0, das mehr maßgeschneiderte Produkte für Unternehmen und Privatkunden ermöglicht (Kagermann et al., 2013). Darüber hinaus steigen die Anforderungen an die Logistik im Privatkundenbereich: So werden bspw. immer mehr Waren über den E-Commerce vertrieben und die Produktvielfalt steigt ebenso wie die Anforderung, Produkte in immer kürzeren Lieferzeiten bis hin zur taggleichen Lieferung zur Verfügung zu stellen (Boysen et al., 2019). Darüber hinaus gewinnen Nachhaltigkeitsziele für die Logistik an Bedeutung, einschließlich sozialer Ziele sowie einer Reduzierung der Emissionen (Kagermann et al., 2013). Gemäß der ersten Forschungsfrage wird damit gezeigt, dass Mass Customisation und Trends wie Nachhaltigkeit zu einer steigenden Komplexität und höheren Anforderungen an die Logistiksysteme führen. Die Bewältigung dieser Komplexität erfordert andere Planungs- und Steuerungsmechanismen, als heute verfügbar sind. Auf der anderen Seite dieser Entwicklung werden neue Technologien entwickelt, die einen effizienteren, komplizierteren und zeitnahen Betrieb der Logistik auf der Produktionsseite ermöglichen und neue Möglichkeiten in der Logistik eröffnen. Zu den Anwendungen gehören das Internet der Dinge, Cyber-Physische Systeme und Big-DataAnalytics (Hofmann, Rüsch, 2017). Auf der Grundlage dieser Aspekte wurde der Begriff Logistik 4.0 definiert, als das logistische System, das die Befriedigung individualisierter Kundenwünsche nachhaltig und ohne Kostensteigerung ermöglicht und diese Entwicklung in Industrie und Handel durch digitale Technologien unterstützt. Als Folge dieser komplementären Ströme aus Anforderungen und Technologien konzentriert sich die Forschung darauf, wie die neuen Anforderungen in der Logistik bewältigt werden können. Daher zeigt eine systematische Literaturrecherche die neuen technologischen Möglichkeiten im Kontext von Logistik 4.0 auf, die zuvor konzeptionell abgeleitet wurde. Basierend auf der systematischen Literaturrecherche konnten 114 Artikel gesichtet werden, die einem von sieben Technologiebausteinen zugeordnet sind. Innerhalb jedes Technologiebausteins werden die Artikel dahingehend diskutiert, ob sie sich auf einen Bereich der Logistik, wie die Distributionslogistik, oder auf eine bestimmte logistische Aufgabe, wie die Lagerhaltung, konzentrieren. Im Ergebnis wird der in Abbildung 2 dargestellte konzeptionelle Rahmen von Logistik 4.0 verfeinert und es werden Forschungsmöglichkeiten aufgezeigt, die neue Forschungsperspektiven eröffnen. In diesem Zusammenhang wird festgestellt, dass die empirische Forschung sowie die Forschung zu menschlichen Faktoren im Vergleich zu den technologischen Möglichkeiten in der Forschung unterrepräsentiert sind. Durch

6

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

diese Konzeptualisierung sowie die systematischen Übersichtsarbeit trägt der Artikel dazu bei, die Forschungslücke zu schließen, die die Entwicklung von Industrie 4.0 in der Logistik eröffnet. Für Forschende bietet diese Übersicht wichtige Erkenntnisse. Der Überblick und das erstellte Rahmenwerk geben ein Bild über den Stand der Forschung zu Logistik 4.0. Die Übersicht basiert auf der Annahme, dass neue Logistiksysteme kein Selbstzweck sind, sondern ein notwendiges Element künftiger Produktions- und Handelsnetze. Die Untersuchung berücksichtigt auch die Forschung im Zusammenhang mit Industrie 4.0 und bietet somit eine umfassende Grundlage für zukünftige Arbeiten. Zugleich bietet dieser Überblick Einblicke in Möglichkeiten zur Verbesserung bestehender Logistiksysteme, zur Integration von Industrie-4.0-Anwendungen und zur Verbesserung technologischer Lösungen. Darüber hinaus wird die Bedeutung des Menschen für die Entwicklung von Logistik 4.0 herausgestellt. Abbildung 2: Konzept von Logistik 4.0 (eigene Darstellung)

Für die Praxis zeigt dieser Überblick verschiedene Beispiele für Technologien, die angepasst und kombiniert werden können, um die Logistik hinsichtlich der Dimensionen Kosten, Zeit und Qualität zu verbessern, z.B. die Optimierung der Servicequalität oder die Reduzierung von Fehlern auch in komplexeren Umgebungen. Darüber hinaus bietet

7

Wissenschaftliche Forschungsbeiträge

Logistik 4.0 Ansätze, wie man mit Herausforderungen wie dem Fachkräftemangel in der Logistik umgehen kann. Neben der Nutzerperspektive bietet diese Übersicht auch Einblicke für die Hersteller dieser Anwendungen, indem bewertet wird, welche Technologien und Dienste in der Forschung als relevant angesehen werden. Damit unterstützt dieser Überblick den Wissenstransfer. Darüber hinaus können Technologien und Anwendungen, die nicht berücksichtigt wurden, als neue Angebote auf dem Markt untersucht werden. Insgesamt findet sich zudem, dass der Begriff „4.0“ in der Produktionsforschung weitverbreitet ist, aber es scheint, dass die Logistik diesen Begriff nicht systematisch übernommen hat. Und obwohl es eine wachsende Menge an wissenschaftlicher Literatur gibt, die sich mit Industrie 4.0 beschäftigt, wurde die Logistik nicht systematisch behandelt. Diese Übersicht könnte eine Grundlage für die Verknüpfung von Arbeiten im Bereich der intelligenten Logistiksysteme bieten und soll künftige Forschungen in dieser Richtung anregen.

4

Arbeitsplatzzufriedenheit und menschengerechte Arbeitsgestaltung in der digitalen Transformation

4.1

Die Beeinflussung von Arbeitszufriedenheit durch Digitalisierung und Automatisierung

Um einen Beitrag zu leisten, die identifizierten Forschungslücken zu schließen, wurde eine empirische Studie zur Arbeit von Intralogistik-Mitarbeitenden erarbeitet (Winkelhaus et al., 2022a). Dieser Beitrag bietet einen qualitativen Ansatz zur Vertiefung unseres Verständnisses der Auswirkungen von (Intra-)Logistik 4.0 auf die Arbeitsmerkmale und die Arbeitszufriedenheit in der Intralogistik. Da sich die Arbeit in der Logistik durch den Einsatz neuer Technologien im Rahmen von Logistik 4.0 verändert, verändern sich auch die Arbeitsmerkmale der Beschäftigten. Arbeitsmerkmale wirken sich auf die Motivation und Leistung der Mitarbeitenden sowie auf ihr Wohlbefinden und ihre Arbeitszufriedenheit aus (Morgeson et al., 2013; Morgeson, Humphrey, 2006). Es gibt also zwei Hauptgründe, warum die Untersuchung der Auswirkungen von Logistik 4.0 auf die Arbeitsmerkmale wichtig ist: Erstens ist das menschliche Wohlbefinden Teil der Nachhaltigkeitsziele, wie sie in Bezug auf die Triple-Bottom-Line-Konzepte diskutiert werden. Es kann somit als Wert an sich betrachtet werden (Braccini, Margherita, 2018). Zweitens wirken sich die Arbeitsmerkmale darauf aus, wie Menschen innerhalb des soziotechnischen Logistiksystems arbeiten. Diese

8

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Merkmale beeinflussen somit die Systemleistung (Rose et al., 2013). Die Nichtberücksichtigung menschlicher Arbeitsmerkmale kann die Nutzung von Technologien beeinflussen und zu Phantomgewinnen führen. Ziel dieses Studienabschnittes ist es daher, zu verstehen, wie sich der Reifegrad von Intralogistik 4.0 – von nicht digitalen Unternehmen bis zu hochdigitalisierten und automatisierten Unternehmen – auf die Arbeitscharakteristika auswirkt und welche Aspekte bei diesen Auswirkungen eine wesentliche Rolle spielen. Dazu wurden 16 semistrukturierte Interviews mit Intralogistikmitarbeitenden in sieben verschiedenen Unternehmen durchgeführt, um die Auswirkungen von Logistik 4.0 auf Arbeitsmerkmale in intralogistischen Prozessen empirisch abzuleiten und zu analysieren. Abbildung 3: Abhängigkeit von Technologie und Arbeitsmerkmalen (eigene Darstellung)

Das Ziel, die Auswirkungen von Digitalisierung und Automatisierung auf die Arbeitszufriedenheit der Beschäftigten empirisch abzuleiten, wurde mittels des Intralogistik4.0-Reifegrads operationalisiert. Hierdurch kann der Einfluss des Intralogistik-4.0-Reifegrads auf die Arbeitscharakteristika von Beschäftigten in der Intralogistik ermittelt werden. Im Ergebnis zeigen sich Erkenntnisse, wie sich Automatisierung und Digitalisierung in Arbeitssystemen auf die Arbeitscharakteristika manueller Arbeitsplätze auswirken. Dazu wird deutlich, welche Mechanismen, die als Vermittler zwischen implementierten Technologien und deren Auswirkungen auf die Arbeitscharakteristika durch z.B. Prozessveränderungen dienen, wesentlich erscheinen. Innerhalb der 16 Interviewfälle wurden drei Typen von Arbeitsplätzen gefunden: 1) Arbeitsplätze mit geringem Intralogistik-4.0-Reifegrad 2) Arbeitsplätze mit mittlerem bis hohem Intralogistik-4.0-Reifegrad, aber ohne oder mit nur geringem Automatisierungsgrad 3) Arbeitsplätze mit mittlerem bis hohem Intralogistik-4.0-Reifegrad und einem breiten Einsatz von Automatisierungstechnik

9

Wissenschaftliche Forschungsbeiträge

Als Ergebnis der Interviewstudien zeigt sich deutlich, dass diese unterschiedlichen Technologieausstattungen verschiedenen Einflüsse auf die Arbeit haben, vor allem an manuellen Arbeitsplätzen, wie sie in der Intralogistik häufig sind. Die verschiedenen bewerteten Arbeitsmerkmale wurden mit dem Intralogistik-4.0-Reifegrad und den eingesetzten Technologien in Verbindung gebracht. Die Ergebnisse zeigen, dass ein höherer Intralogistik-4.0-Reifegrad nicht unbedingt zur Arbeitszufriedenheit beiträgt, sondern von der eingesetzten Technologie und den ausgelösten Mechanismen abhängt. Diese Faktoren wirken sich auf die Arbeitszufriedenheit aus, jedoch nicht linear oder unidirektional. Obwohl die Auswirkungen und Mechanismen unterschiedlich waren, konnten Vorschläge für die Praxis abgeleitet werden, die zu einer verbesserten Umsetzung von Intralogistik 4.0 führen können. Die Ergebnisse zeigen Unterschiede zwischen den Auswirkungen von Automatisierungstechnologien, die sich in den meisten Fällen negativ auf die Arbeitsmerkmale auswirken, und digitalen Technologien, die Potenziale zur Anreicherung der Arbeitsplätze und damit auch zur Verbesserung der Arbeitsmerkmale aufweisen. So bietet diese Studie erste Erkenntnisse für die Arbeitsgestaltung im Hinblick auf die Entwicklungen von Intralogistik 4.0, insbesondere in Fällen, in denen neue Technologien eingesetzt werden und das Arbeitssystem neu definiert wird. Zwei wesentliche Erkenntnisse wurden gewonnen: 1) die Studie unterstützt die Entwicklung von Arbeitsplatzgestaltungen, die für das Unternehmen und die Beschäftigten vorteilhaft sind und damit ein bereicherndes und produktives Arbeitssystem ermöglichen; 2) die Entscheidung für oder gegen eine bestimmte Technologie kann beeinflusst werden. In jedem Fall sollte ein sorgfältiges Veränderungsmanagement angewendet werden, das ein direktes Feedback und die Berücksichtigung von Notwendigkeiten wie Schulung, Kommunikation und eine kooperativere Arbeitsgestaltung ermöglicht. Die Rolle der menschlichen Faktoren ist im Logistik- und Betriebsmanagement sehr wichtig und mehrere Studien haben die gemeinsame Zielsetzung von menschlichen Faktoren und Systemleistungszielen hervorgehoben (Neumann et al., 2021). Daher trägt es positiv zur Veränderung der Systemleistung des (soziotechnischen) Arbeitssystems bei, die Veränderungen zu beachten. Wie von Sgarbossa et al. (2020) dargelegt, „wäre es wichtig, die Auswirkungen der Einführung eines neuen Werkzeugs/Instruments auf den Menschen und in der Folge die Auswirkungen der HF auf die Systemleistung und nicht nur auf die Investitionskosten zu berücksichtigen und vorherzusagen“. In dieser Hinsicht leistet der Beitrag für Forschende aus verschiedenen Disziplinen eine wichtige Grundlage zur (Intra-)Logistik 4.0: Erstens erhalten die Forschenden eine qualitative Analyse, die die Auswirkungen der Automatisierung und der Digitalisierung auf die Arbeitsmerkmale ganzheitlich untersucht. Die Auswirkungen der Automatisierungstechnik übertrafen offensichtlich die der Digitalisierung in Bezug auf die Bedeutung oder Radikalität der Veränderungen. Darüber hinaus wurde in der Studie eine Untersuchung auf individueller Ebene über ein breites Spektrum von Einflussfaktoren wie Arbeitsplätzen und Unternehmen durchgeführt.

10

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Aus einer breiteren Perspektive betrachtet, trägt diese Studie auch zu einer resource-based view des Unternehmens bei. Wie von Neumann und Dul (2010) vorgeschlagen, kann der Mensch als eine Ressource in einem betrieblichen System betrachtet werden, die wiederum einen Einfluss auf den nachhaltigen Wettbewerbsvorteil des Unternehmens haben kann. Wenn die Auswirkungen einer Systemveränderung, z.B. durch die Einführung von Intralogistik-4.0-Technologien, auf die Beschäftigten nicht sorgfältig bedacht werden, steigt das Risiko von Phantomgewinnen (Neumann, Dul, 2010; Rose et al., 2013; Sgarbossa et al., 2020).

4.2

Menschenzentrierte Arbeitsplatzgestaltung im Kontext von Industrie 4.0 und Logistik 4.0

Nachdem also qualitativ festgestellt wurde, dass menschliche Faktoren, konkret Arbeitseigenschaften, von Technologieeinsatz im Kontext von Logistik 4.0 beeinflusst werden und es einen Mangel an Forschung im Kontext von Logistik 4.0 hierzu gibt, verifiziert dieser dritte Beitrag der kumulativen Dissertation (Neumann et al., 2021) zunächst die Forschungslücke mittels einer Inhaltsanalyse der Literatur, bevor ein Rahmenwerk zur expliziten Analyse und Gestaltung für Unternehmen entwickelt wird. Bei einer Inhaltsanalyse werden repräsentative Wörter für bestimmte Themen als Kodiereinheiten definiert (Krippendorff, 2013) und deren Vorkommen in der Stichprobe gemessen. Ziel dieses ersten Teils ist es – wiederum im Kontext der soziotechnischen Systemtheorie – zu zeigen, inwieweit menschliche Faktoren in der Forschung zu Industrie 4.0, insbesondere im Vergleich zu technischen Aspekten, berücksichtigt werden. Hierzu wurden alle Artikel mit dem Stichwort „Industrie 4.0“ im Titel, die in englischsprachigen, internationalen Fachzeitschriften im Peer-Review-Verfahren publiziert wurden, strukturiert analysiert – 646 Artikel insgesamt. Die Ergebnisse der quantitativen Inhaltsanalyse haben die mangelnde Aufmerksamkeit für HF in der aktuellen Industrie-4.0-Forschung hervorgehoben, die einen starken Fokus auf Technologien und nur gelegentlich auf die Interaktion zwischen Mensch und System zu haben scheint. Dieses Versäumnis, HF in der Industrie-4.0-Forschung zu berücksichtigen, wurde bereits in früheren Generationen industrieller Systeme beobachtet (z.B. Grosse et al., 2017; Neumann, Dul, 2010) und hatte negative Folgen für einzelne Mitarbeitende, Produktionsorganisationen und die Gesellschaft als Ganzes. Obwohl eine Inhaltsanalyse in der Lage ist, solche Muster zu identifizieren, indem sie quantitativ auf bestimmte Schlüsselwörter innerhalb einer Literaturstichprobe eingeht, berücksichtigt sie nicht den eigentlichen Inhalt des Beitrags, wie es bei einer herkömmlichen Literaturrecherche der Fall sein könnte. Die angewandte Sensitivitätsanalyse zielte daher darauf ab, Verzerrungen durch Mehrdeutigkeiten zu reduzieren und die Zuverlässigkeit der Ergebnisse zu erhöhen.

11

Wissenschaftliche Forschungsbeiträge

Bei der gesamten Analyse wurden nur Arbeiten mit „Industrie 4.0“ im Titel berücksichtigt, was relevante Arbeiten ausschließen könnte. Ein Beispiel hierfür sind die Arbeiten zu „Operator 4.0“ (Romero et al., 2018), die nicht in der Stichprobe enthalten sind, da „Industrie 4.0“ in diesen Arbeiten nicht im Titel erwähnt wird. Eine genauere Betrachtung aktueller Schriften zeigt jedoch, dass diese Ansätze den Beschäftigten eher als das „Problem“ sehen, das Industrie 4.0 mit technologischen Mitteln zu „lösen“ versucht. Diese Artikel befassen sich jedoch nicht unbedingt mit den Bedürfnissen der Menschen im System und den breiteren sekundären Auswirkungen, die diese Technologien haben können. Die Entwicklung eines Systems und die Berücksichtigung von HF als nachträgliche Überlegung führt nicht zu einem effizienten und produktiven System. Anstatt den Menschen neu zu gestalten (wie es das Konzept „Operator 4.0“ vorschlägt), schlagen wir einen „humanen“ soziotechnischen Systemgestaltungsansatz der Industrie-4.0-Implementierung vor, der zu Systemen führt, die besser an den Menschen angepasst sind und weniger wahrscheinlich durch negative menschliche Auswirkungen einer schlechten HF-Gestaltung beeinträchtigt werden. Daher geht der zweite Teil des Beitrags über die vorangegangenen hinaus, indem er sich stärker auf die Ableitung eines Systemrahmens konzentriert, der eine theoriegeleitete, systematische Analyse der menschlichen Auswirkungen der Einführung von technologischen Industrie-4.0-Elementen ermöglicht, um das aktive Management dieser Entwicklungen zu unterstützen. Ziel ist es somit, eine Forschungslücke zu schließen und auch finanzielle Kennzahlen des Unternehmens zu berücksichtigen. Der entwickelte Rahmen ermöglicht eine systematische Bewertung der Auswirkungen einer Einführung von Industrie-4.0-Technologien auf die Mitarbeitenden und die Systemleistung. Er basiert theoretisch auf fünf HF-Schlüsselkonzepten: 1) Industrie-4.0-Systeme sind soziotechnische Systeme, an denen Menschen beteiligt sind. 2) Die Bedürfnisse der Menschen müssen bei der Systemgestaltung berücksichtigt werden. 3) Menschen haben wahrnehmungsbezogene, kognitive und motorische Fähigkeiten und Einschränkungen. 4) Menschen haben psychosoziale Bedürfnisse. 5) Komplexe Systeme driften oft in unsichere Zustände ab. Obwohl diese Liste als unvollständig kritisiert werden könnte, bietet sie eine schlüssige Grundlage, um sowohl die Notwendigkeit als auch die Möglichkeit der Berücksichtigung von HF bei der Industrie-4.0-Entwicklung zu erklären. Die ersten vier Konzepte sind axiomatisch im HF-Engineering. Es gibt keine ingenieurmäßigen Systeme ohne Menschen. Menschen können nicht neu konstruiert werden, also müssen die Entwürfe an sie angepasst werden. Der Mensch hat bekannte Eigenschaften, die berücksichtigt

12

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

werden müssen. Das letzte Konzept, Rasmussens Behauptung der Tendenz, in unsichere Zustände abzudriften, wurde in einer Reihe von Katastrophenszenarien gut illustriert (Rasmussen, 1997; Woo, Vicente, 2003). Rasmussen beschrieb daraufhin einen Rahmen, der bei der Analyse komplexer Systeme helfen kann, um die Mechanismen zu isolieren, die zu Systemausfällen führen (Rasmussen, 2000). Fallstudien zur Automatisierung haben gezeigt, dass, während Arbeitsaufgaben (und Arbeitsplätze) wegfielen, einige Menschen, insbesondere diejenigen, die dem Roboter nachgeschaltet waren, vermehrt repetitive Bewegungen ausführten, was zu einem erhöhten Verletzungsrisiko führte (Neumann et al., 2002). Obwohl der Effekt des Abdriftens in unsichere Zustände kein unvermeidliches Muster ist, scheint er häufig aufzutreten. Schlüsselkonzept 5 warnt uns davor, dass Industrie 4.0 auch zu dem globalen Problem der arbeitsbedingten Erkrankungen beiträgt und es vergrößert, wenn HF nicht in die Entwicklungsphasen einbezogen werden. Der entwickelte Rahmen folgt dabei den nachfolgend beschriebenen Schritten:

 Schritt 1: Merkmale und Ziele der Technologienutzung werden aufgelistet.  Schritt 2: Stakeholder und menschliche Rollen werden definiert.  Schritt 3: Mögliche zusätzliche und wegfallende Arbeiten anhand von Aufgabenszenarien werden analysiert.

 Schritt 4: Analyse der Auswirkungen des Technologieeinsatzes auf die Menschen im System beschreiben. Die hinzugefügte und weggenommene Arbeit wird analysiert und die Auswirkungen des Technologieeinsatzes werden auf der Wahrnehmungs-, der kognitiven, der Wissens-, der physischen und der psychosozialen Ebene beschrieben.

 Schritt 5: Objektiv beschriebene Veränderungen werden im Hinblick auf mögliche Leistungsauswirkungen bewertet.

Der vorgeschlagene Ansatz ist umfassend aber subjektiv und hängt vom Wissen und der Vorstellungskraft der Benutzenden ab. Um dieser Einschränkung Rechnung zu tragen, wurde eine vorläufige Version des Rahmens Forschenden und Managern, die auf dem Gebiet der menschlichen Faktoren, des Betriebsmanagements und der Industrie 4.0 arbeiten, in einem Expertenworkshop vorgestellt, in dem die Gültigkeit und der Nutzen des Ansatzes bestätigt wurden. Der Ansatz wird daher sinnvollerweise in einem stufenweisen Top-down-Ansatz bearbeitet. Die oberste Führungsebene kann den Rahmen auf einer höheren Ebene für eine erste Machbarkeits- und Rentabilitätseinschätzung nutzen. Wenn die vorgeschlagene Innovation fortschreitet, können die am Ausarbeitungsprozess beteiligten Interessengruppen, die näher am endgültigen Arbeitsplatz sind, in funktionsübergreifenden Teams für die detaillierteren Analysen eingesetzt werden. Die Identifizierung der spezifischen Interessengruppen, die bei der Analyse zu berücksichtigen sind, hängt in hohem Maße vom organisatorischen Kontext und der betrachteten Innovation ab. 13

Wissenschaftliche Forschungsbeiträge

Eine der Stärken der vorgeschlagenen Methodik ist die Verwendung einer Lebenszyklusperspektive, die dabei hilft, relevante Rollen und Personen zu identifizieren, die berücksichtigt und einbezogen werden müssen. Die Beteiligung der wichtigsten Interessengruppen, die von der vorgeschlagenen Veränderung betroffen sind, ist eine Möglichkeit, ihr Wissen zu nutzen und ihre Unterstützung für das Innovationsprojekt sicherzustellen (de Looze et al., 2003). Dadurch wird zwar die Wahrscheinlichkeit verringert, bei der Analyse ein bestimmtes Thema zu übersehen, aber das Problem der „unbekannten Unbekannten“ in der Analyse wird dadurch nicht gelöst. Obwohl der Rahmen kein ganzheitliches Bild garantiert, hilft er, die vielfältigen Richtungen und Wechselwirkungen komplexer Industrie-4.0-Elemente zu strukturieren und Gedanken über die tatsächlichen Einflüsse auf die HF auf robuste Weise zu kanalisieren. Schließlich sind die Auswirkungen dieser Arbeit auch für die Unternehmensstrategie von Bedeutung (Dul, Neumann, 2009). Manager sollten sich darüber im Klaren sein, dass jede Technologie unweigerlich Auswirkungen auf ihre Mitarbeitenden hat – und dass Mitarbeitende einen schwer zu kopierenden strategischen Vorteil darstellen (Barney et al., 2011). Die Berücksichtigung der Bedürfnisse der Menschen bei der Gestaltung von Industrie-4.0-Systemen kann diese strategischen Ziele unterstützen. Manager können sich z.B. fragen: Wird das System genutzt, um die Arbeit zu erleichtern oder um die Menschen streng zu kontrollieren? Diese Fragen haben Auswirkungen sowohl auf die physischen als auch auf die psychosozialen Arbeitsbedingungen im betrieblichen System. Manager und Forschende sollten HF als Mittel, nicht als Ziel betrachten, um Leistung und Wohlbefinden zu erreichen. Wenn neue Technologien ohne Berücksichtigung von HF entwickelt oder implementiert werden, werden die Systeme unterdurchschnittlich abschneiden, „Phantomgewinne“ erzielen (Neumann, Dul, 2010; Rose et al., 2013) und dazu neigen, in unsichere Zustände abzudriften. Dies verursacht Kosten sowohl für die Gesellschaft als auch für die Organisation.

5

Kommissionierung in Zeiten technologischen Wandels

5.1

Was ist Kommissionierung 4.0?

Der Kommissionierprozess ist in der Forschung von großem Interesse, da er immer noch arbeitsintensiv und kapitalintensiv zu automatisieren ist (de Koster et al., 2007). Forschungsartikel befassen sich bspw. mit der Optimierung des Kommissionierprozesses, indem sie Strategien für die Routenplanung, die Lagerplatzzuweisung und die Zoneneinteilung bereitstellen. Darüber hinaus werden in der Literatur auch technische Lösungen analysiert (siehe z.B. Glock et al., 2021). Auf einer breiteren konzeptionellen

14

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Ebene fehlten jedoch Klassifikationen, die einen Überblick über die Kommissionierung aus technologischer und prozessualer Sicht geben. Folglich fehlte in der Forschung die Verbindung zwischen Technologieeinsatz, Prozessgestaltung und Ergebnissen. Um diese Lücke zu schließen, wird in diesem vierten Beitrag der kumulativen Dissertation (Winkelhaus et al., 2021) ein Rahmen für die Kommissionierung 4.0 geschaffen (Abbildung 4), der auf substituierenden und unterstützenden Technologien und verschiedenen Automatisierungsgraden basiert. Abbildung 4: Klassifizierung von Kommissioniersystemen (eigene Darstellung)

Auf der x-Achse sind unterstützende Technologien angegeben, bei denen es sich insbesondere um digitale Technologien im Kontext der Kommissionierung handelt, die aber nicht auf diese beschränkt sind. Pick-by-Technologien erleichtern bspw. die Informationsverarbeitung (Unterstützung mentaler/kognitiver Aufgaben) und Exoskelette können die Hebebelastung verringern (Unterstützung physischer Aufgaben), ersetzen diese Aufgaben jedoch nicht. Substitutive Technologien sind auf der y-Achse angegeben.

15

Wissenschaftliche Forschungsbeiträge

Diese Technologien ersetzen direkt mindestens eine bestimmte Aufgabe im Kommissionierprozess. Durch den Einsatz von automatischen Lager- und Bereitstellungssystemen (Automated Storage and Retrieval Systems; AS/RS) entfallen bspw. in den meisten Szenarien das Fahren (eine physische Aufgabe) und das Suchen (eine mentale Aufgabe). Beide Achsen bieten unterschiedliche Automatisierungsniveaus, einschließlich Beispieltechnologien hinsichtlich ihrer Fähigkeiten, bestimmte Aufgaben zu unterstützen oder zu ersetzen. Die Automatisierungsgrade der unterstützenden und ersetzenden Technologien basieren auf Davenport and Kirby (2016), sind aber an den aktuellen Forschungsstand im Bereich der Kommissionierung angepasst. Aufbauend auf dieser in Abbildung 4 dargestellten Klassifizierung wurde eine systematische Literaturanalyse durchgeführt, welche die Kommissionierung systematisch aus einer prozessualen Perspektive analysiert, um die möglichen technologischen Auswirkungen innerhalb des soziotechnischen Kommissioniersystems zu berücksichtigen. Damit wird ein Übergang von einem unstrukturierten und nur grob definierten Feld möglicher Entwicklungen zu einem systematischen und zielgerichteten Entwicklungspfad ermöglicht. Hybride Kommissioniersysteme, in denen Menschen und Automatisierungstechnologien kooperieren bzw. zusammenarbeiten, um den Kommissionierprozess in einem gemeinsamen Arbeitsraum durchzuführen, scheinen dabei aus soziotechnischer Sicht wertvoll zu sein, aber die Forschung zu diesen Kommissioniersystemen ist noch spärlich. Im Gegensatz hierzu sind Forschungsarbeiten zum Operator 4.0 relativ umfangreich, wenngleich die Ergebnisse sich der oben bereits beschriebenen Kritik ausgesetzt sehen müssen.

5.2

Hybride Kommissionierung — ein Ansatz mit Potenzial

Daher werden abschließend hybride Kommissioniersysteme weiter untersucht. Ziel des letzten Beitrags der Dissertation (Winkelhaus et al., 2022b) ist es, die Forschungslücke zu hybriden Kommissioniersystemen zu schließen und einen Beitrag zu einem umfassenden Verständnis der Möglichkeiten und Auswirkungen eines kollaborativen hybriden Kommissioniersystems mit autonomen Kommissionierrobotern zu leisten. Da in der Literatur nur wenige Beispiele für hybride Kommissioniersysteme zu finden und reale Anwendungen noch rar sind, wird ein Beispiel für ein hybrides Kommissioniersystem abgeleitet und in einer agentenbasierten Simulationsstudie untersucht. Das untersuchte hybride Kommissioniersystem ist so konzipiert, dass es HF-Anforderungen erfüllt. Neben der Untersuchung der Wechselwirkungen zwischen menschlichem und automatisiertem Kommissioniersystem wird insbesondere untersucht, welche wirtschaftlichen Faktoren dazu führen, dass hybride Kommissioniersysteme gegenüber rein manuellen oder rein automatischen Kommissioniersystemen vorzuziehen sind. Um die Praxistauglichkeit dieser Ergebnisse zu bewerten, werden die Annahmen der idealisierten agentenbasierten Simulationsstudie kritisch diskutiert.

16

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Um zu untersuchen, ob ein hybrides Kommissioniersystem die Kosten für die Kommissionierung senken kann, wurde eine Simulationsstudie verschiedener kollaborativer Szenarien durchgeführt, die sich auf unterschiedliche Bedarfshäufigkeiten, Routingstrategien und Kollaborationsstrategien konzentrierten. Die Ergebnisse lassen sich wie folgt zusammenfassen: Aus wirtschaftlicher Sicht sind hybride Kommissioniersysteme im Allgemeinen in der Lage, die Kommissioniervorgänge in Bezug auf Durchsatz und Kosten zu verbessern, obwohl die Vorteile auf bestimmte Systemdurchsätze beschränkt sind. Der Durchsatzbereich, für den ein hybrides Kommissioniersystem vorteilhaft ist, hängt von den Mengen und den Artikelklassen (A, B, C) ab, die dem Roboter- oder dem menschlichen Team zugewiesen sind. In unserer Studie schnitten hybride Kommissioniersysteme in den Fällen gut ab, in denen dem Roboterteam B- und C-Artikel zugewiesen wurden. Die Hauptverantwortlichen Parameter für dieses Ergebnis sind die Auswirkungen von Zonierung und Blockierungsvorgängen. Darüber hinaus hat die Teamkonfiguration einen großen Einfluss auf die Qualität der Zusammenarbeit, d.h., beide Teams – Mensch und Roboter – müssen in der Lage sein, ihren Teil der kollaborativen Kommissionieraufgabe zu bearbeiten, um keinen Rückstau für das andere Team zu erzeugen und die Gesamtkosten zu minimieren. Unsere Sensitivitätsanalysen haben gezeigt, dass zwei Modellannahmen besonders kritisch für die relative Leistung von hybriden Kommissioniersystemen sind. Erstens haben wir gezeigt, dass eine geringe Erhöhung der Kosten für das Roboterteam dazu führt, dass das hybride Kommissioniersystem die reinen Roboter- und reinen MenschKommissioniersysteme in Bezug auf die Kosten für fast alle Systemdurchsätze übertrifft. Da wir in der Simulation ein idealisiertes Lager untersucht haben, indem wir z.B. davon ausgegangen sind, dass alle Artikel für die Roboter greifbar sind und während der gesamten Roboterkommissionierung kein menschliches Eingreifen erforderlich ist, sind in der Praxis höhere Kosten für die Roboterkommissionierung (als ursprünglich in der Simulation angenommen) plausibel. Zudem ist das hybride Kommissioniersystem generell in der Lage, eine größere Lagerhöhe nutzbar zu machen, wodurch sich die nutzbare Lagerfläche deutlich erhöht. Für die Praxis zeigt diese Studie anhand von ca. 50 Parameterkonfigurationen, wie sich ein hybrides Kommissioniersystem im Gegensatz zur vollständig manuellen Kommissionierung und automatisierten Kommissioniersystemen durch den Einsatz von autonomen Kommissionierrobotern verhält und welche Wechselwirkungen wichtig zu sein scheinen. Mit der Sensitivitätsanalyse werden zusätzliche Informationen über reale Anwendungen gewonnen, die für eine erste Bewertung eines hybriden Kommissioniersystems in einem Unternehmen genutzt werden können.

17

Wissenschaftliche Forschungsbeiträge

6

Fazit

Die kumulative Dissertation befasste sich mit den Auswirkungen von Logistik 4.0 aus einer menschenzentrierten Perspektive. Steigende Anforderungen stellen Logistikprozesse vor neue Herausforderungen und neue Technologien ermöglichen effizientere und komplexere Prozesse, die sich auch auf die menschliche Arbeit in dieser immer noch arbeitsintensiven Branche auswirken. Daher wurden in dieser kumulativen Dissertation in fünf Beiträgen neue Möglichkeiten und Auswirkungen dieser Entwicklung untersucht. Entsprechend den vier übergreifenden Forschungsfragen, die in der Einleitung formuliert wurden, haben wir folgende Antworten gefunden:

 Hinsichtlich Forschungsfrage 1, was Logistik 4.0 ist und wie der aktuelle For-

schungsstand zu Logistik 4.0 aussieht, wurde eine Definition von Logistik 4.0 erstellt. Die Literatur zu Logistik 4.0 wurde eingehend analysiert und zukünftige Forschungsrichtungen identifiziert. Wesentliche Defizite in der Logistik-4.0-Forschung betreffen die empirische Forschung sowie die Einbeziehung menschlicher Faktoren. Die weiterhin angefertigte Inhaltsanalyse konzentrierte sich anschließend auf die Frage, inwieweit menschliche Faktoren in der Forschung zu Industrie 4.0 – die im Vergleich zu Logistik 4.0 als ein allgemeinerer Begriff betrachtet werden kann – berücksichtigt werden. Die erzielten Ergebnisse unterstützen die Erkenntnisse der systematischen Literaturrecherche.

 Dieser Erkenntnis folgend, wurde Forschungsfrage 2 untersucht, wie sich die Ent-

wicklungen zu Logistik 4.0 auf die Arbeitscharakteristika von Intralogistikern auswirken. Zur Beantwortung dieser Frage wurden 16 semistrukturierte Interviews in sieben Unternehmen durchgeführt und nach dem Reifegrad der Intralogistik 4.0 ausgewertet. Auf Basis dieser Daten wurden die Auswirkungen des Intralogistik4.0-Reifegrads auf Arbeitsmerkmale abgeleitet.

 Forschungsfrage 3, wie Arbeitsplätze in der Entwicklung zu Industrie 4.0 und Logistik 4.0 systematisch analysiert werden können, wurde mit einem umfassenden Analyseinstrument aufgegriffen, das auf fünf theoretischen Bausteinen basiert. Dieses Analysewerkzeug ermöglicht eine systematische Betrachtung der Auswirkungen auf den Menschen vor und während der Einführung von Industrie-4.0- oder Logistik-4.0-Elementen, wobei auch negative Nebeneffekte und indirekte Auswirkungen berücksichtigt werden.

 Forschungsfrage 4, wie sich die Kommissionierung in der Entwicklung zu Logistik

4.0 verändert und welche Auswirkungen dies auf die sozialen und wirtschaftlichen Faktoren des Kommissionierprozesses haben könnte, wurde schließlich durch die Forschungsbeiträge zur Kommissionierung 4.0 aufgegriffen. Dazu wurde ein Rahmenwerk entwickelt, das unterstützende und substituierende Technologien und

18

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

den jeweiligen Automatisierungsgrad berücksichtigt und zu vier Clustern von Kommissioniersystemen führt. Hierdurch rückten hybride Kommissioniersysteme in den Fokus, bei denen autonome Kommissionierroboter und menschliche Mitarbeitende gleichzeitig Artikel aus Regalen in einem gemeinsamen Arbeitsbereich entnehmen. Die Simulationsstudie und die Diskussion der Annahmen dieser Systeme zeigen das Potenzial für wirtschaftliche Rentabilität, während das System darauf ausgelegt ist, den physischen Aufwand zu begrenzen und die Arbeitseigenschaften zu verbessern. In diesem Bestreben weist diese Dissertation auch den Weg zur sogenannten Industrie 5.0, einem Konzept, das von der Europäischen Kommission vorgestellt wurde (Breque et al., 2021). In diesem Bericht wird Industrie 5.0 als ein industrielles System definiert, das nicht nur gewinnorientiert, sondern auch menschenzentriert, widerstandsfähig und nachhaltig ist. Dies wirft ein Licht auf den Menschen im Hinblick auf technologische Entwicklungen und fordert, „das Wohlbefinden der Industriearbeitenden in den Mittelpunkt des Produktionsprozesses zu stellen“ (Breque et al., 2021) innerhalb der Grenzen unseres Planeten und ergänzt somit die technozentrische Perspektive von Industrie 4.0, die in dieser Dissertation ermittelt wurde. In dieser Hinsicht trägt diese kumulative Dissertation nicht nur zur Strömung der menschenzentrierten Arbeit von Industrie 5.0 bei, sondern nimmt auch Hauptaspekte des Ansatzes in die Arbeitsdefinitionen von Logistik 4.0 und Kommissionierung 4.0 vorweg.

Literatur Barney, J. B., Ketchen Jr., D. J. & Wright, M. 2011. The future of resource-based theory: revitalization or decline? Journal of management, 37, 1299–1315. Boysen, N., De Koster, R. & Weidinger, F. 2019. Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277, 396–411. Braccini, A. & Margherita, E. 2018. Exploring Organizational Sustainability of Industry 4.0 under the Triple Bottom Line: The Case of a Manufacturing Company. Sustainability, 11, 36. Breque, M., De Nul, L. & Petridis, A. 2021. Industry 5.0 – towards a sustainable, humancentric and resilient European industry. Luxembourg: European Commission. Culot, G., Nassimbeni, G., Orzes, G. & Sartor, M. 2020. Behind the definition of Industry 4.0: Analysis and open questions. International Journal of Production Economics, 226, 107617. Davenport, T. H. & Kirby, J. 2016. Just how smart are smart machines? MIT Sloan Management Review, 57, 21–25. Dul, J. & Neumann, W. P. 2009. Ergonomics contributions to company strategies. Applied ergonomics, 40, 745–752.

19

Wissenschaftliche Forschungsbeiträge

Glock, C. H., Grosse, E. H., Neumann, W. P. & Feldman, A. 2021. Assistive devices for manual materials handling in warehouses: a systematic literature review. International Journal of Production Research, 59, 3446–3469. Grosse, E. H., Glock, C. H. & Neumann, W. P. 2017. Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 55, 1260–1276. Hofmann, E. & Rüsch, M. 2017. Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34. International Ergonomics Association. 2019. Definition and Domains of Ergonomics [Online]. Verfügbar unter: https://www.iea.cc/whats/. Kagermann, H., Wahlster, W. & Helbig, J. 2013. Recommendations for implementing the strategic initiative Industrie 4.0, Securing the future of German manufacturing industry, Final report of the Industrie 4.0 Working Group. De Koster, R., Le Duc, T. & Roodbergen, K. J. 2007. Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182, 481–501. Krippendorff, K. 2013. Content Analysis, An Introduction to Its Methodology, Thousand Oaks, Sage. De Looze, M., Van Rhijn, J., Van Deursen, J., Tuinzaad, G. & Reijneveld, C. 2003. A participatory and integrative approach to improve productivity and ergonomics in assembly. Production Planning & Control, 14, 174–181. Lummus, R. R., Krumwiede, D. W. & Vokurka, R. J. 2001. The relationship of logistics to supply chain management: developing a common industry definition. Industrial Management & Data Systems, 101, 426–432. Morgeson, F. P., Garza, A. S. & Campion, M. A. 2013. Work design. In: Schmitt, N. W., Highhouse, S. & Weiner, I. B. (eds.) Handbook of Psychology: Industrial and organizational psychology. 2nd ed. Hoboken: John Wiley & Sons. Morgeson, F. P. & Humphrey, S. E. 2006. The Work Design Questionnaire (WDQ): developing and validating a comprehensive measure for assessing job design and the nature of work. J Appl Psychol, 91, 1321–39. Neumann, W. P. & Dul, J. 2010. Human Factors: Spanning the Gap between OM & HRM. International Journal of Operations & Production Management, 30, 923–950. Neumann, W. P., Kihlberg, S., Medbo, P., Mathiassen, S. E. & Winkel, J. 2002. A case study evaluating the ergonomic and productivity impacts of partial automation strategies in the electronics industry. International journal of production research, 40, 4059–4075. Neumann, W. P., Winkelhaus, S., Grosse, E. H. & Glock, C. H. 2021. Industry 4.0 and the human factor–A systems framework and analysis methodology for successful development. International Journal of Production Economics, 233, 107992.

20

Die digitale Transformation der Logistik aus menschenzentrierter Perspektive

Rasmussen, J. 1997. Risk Management in a Dynamic Society: A Modelling Problem. Safety Science, 27, 183–213. Rasmussen, J. 2000. Human factors in a dynamic information society: where are we heading? Ergonomics, 43, 869–879. Romero, D., Mattsson, S., Fast-Berglund, A., Wuest, T., Gorecky, D. & Stahre, J. 2018. Digitalizing Occupational Health, Safety and Productivity for the Operator 4.0. In: Moon, I., Lee, G., Park, J., Kiritsis, D. & Von Cieminski, G. (eds.) IFIP International Conference on Advances in Production Management Systems (APMS), 2018. Seoul, South Corea: Springer. Rose, L. M., Orrenius, U. E. & Neumann, W. P. 2013. Work environment and the bottom line: Survey of tools relating work environment to business results. Human Factors and Ergonomics in Manufacturing & Service Industries, 23, 368–381. Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D. & Glock, C. H. 2020. Human factors in production and logistics systems of the future. Annual Reviews in Control, 49, 295–305. Van Eijnatten, F. M. 1998. Developments in socio-technical systems design (STSD). In: De Wolff, C., Drenth, P. J. D. & Henk, T. (eds.) Handbook of work and organizational psychology. 1st ed. London: Psychology Press. Winkelhaus, S. & Grosse, E. H. 2020. Logistics 4.0: a systematic review towards a new logistics system. International Journal of Production Research, 58, 18-43. Winkelhaus, S., Grosse, E. H. & Morana, S. 2021. Towards a conceptualisation of Order Picking 4.0. Computers & Industrial Engineering, 159, 107511. Winkelhaus, S., Grosse, E. H. & Glock, C. H. 2022a. Job satisfaction: An explorative study on work characteristics changes of employees in Intralogistics 4.0. Journal of Business Logistics. Winkelhaus, S., Zhang, M., Grosse, E. H. & Glock, C. H. 2022b. Hybrid order picking: A simulation model of a joint manual and autonomous order picking system. Computers & Industrial Engineering, 167, 107981. Woo, D. M. & Vicente, K. J. 2003. Sociotechnical systems, risk management, and public health: comparing the North Battleford and Walkerton outbreaks. Reliability Engineering & System Safety, 80, 253–269.

21

Real-time information for disruption management in intermodal freight transport

Per Wide

Abstract The thesis takes a starting point in the challenges of managing operational disruptions in intermodal freight transport and their impact on operational efficiency. The purpose of the thesis was to contribute to the understanding of the importance of real-time information for disruption management in intermodal freight transport. This thesis draws its results from the qualitative exploration of three cases regarding real-time information for disruption management, in four different studies. A fifth quantitative study was performed via discrete event simulation. The thesis contributes to intermodal freight transport by conceptualizing the role of real-time information for disruption management at the operational level and its effects. The connections of real-time information to actions made before or after impacts made in the thesis contribute to the developing hinterland freight transport literature to not be limited towards actions that react on an impact. The highlighted real-time information for recovery provides practical contributions as tools for transport managers to understand and evaluate their processes and available information when managing operational disruptions. The thesis includes 5 papers, which are all published in academic journals. Additionally, the previous version of the third paper received the Best Doctoral Paper NOFOMA 2019 award at the 31st Annual NOFOMA Conference, 13-14 June 2019, Oslo, Norway.

1

Introduction

Disruptions are frequently impacting freight transport operations. Recent disruptions provide examples of high impacts on the freight transport operations. Two prime examples have been the bankruptcy of Hanjin Shipping in 2017 and the container ship that ran aground and blocked the Suez Canal in 2021. Such types of disruptions, which have high impacts and low probability of occurring (Tang, 2006), are often highlighted in media and have been the main focus in previous research on disruptions in intermodal © Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 C. Bode et al. (Hrsg.), Supply Management Research, Advanced Studies in Supply Management, https://doi.org/10.1007/978-3-658-42635-4_2

23

Wissenschaftliche Forschungsbeiträge

freight transport (Li et al., 2018; Chen and Miller-Hooks, 2012), studied in this thesis. Nevertheless, the issue of disruptions is frequently present in the day-to-day freight transport operations (Meyer et al., 2014), as the transport operations are impacted by operational disruptions with frequent occurrence and lower impacts (Tang, 2006; SteadieSeifi et al., 2014). These operational disruptions, hereafter referred to as disruptions, have impacts on a smaller scale than those of the accident at the Suez Canal, which blocked a key route for transport operations for an entire week. Additional costs borne by the transport chain due to impacts from these disruptions are primarily connected to delays (Sanchez-Rodrigues, 2010). These extra costs impact the planned efficiency of intermodal freight transport operations (Hrušovský et al., 2021) and may add more costs (Goel, 2010). Intermodal freight transport chains are affected by various disruptions outside intermodal terminals, including late arrival of ships (Elbert and Walter, 2014) or of trucks (Li et al., 2018), or disruptions within intermodal terminals (Caris et al., 2011). In this thesis, the dynamic update of plans after disruptions has occurred is referred to as disruption management (Yu and Qi, 2014). The specific characteristics of intermodal transport can create issues when operational disruptions occur, and information is used for the management of those disruptions (Meyer et al., 2014; Hrušovský et al., 2021). First, intermodal freight transport entails increased handling of transport unit (e.g., container or trailer), such as during transshipments between modes. Due to this extra handling, intermodal freight transport has increased interdependencies compared to unimodal freight transport, with more actors involved and more interconnected processes to be performed (Monios and Bergqvist, 2015; Dürr and Giannopoulos, 2003). Such increased interdependencies influence the management of operational disruptions and need to be considered for rippling impacts between multiple actors (Ivanov et al., 2014). Second, disruption often originates from outside the action scope of one actor (Behdani, 2013), which provides the need for interorganizational information and coordination that have been reported as an issue in intermodal transport chains (van der Horst and De Langen, 2008). Third and last, when disruptions occur, decisions at the operational level are limited to a short time window (often minutes or hours) (Brehmer, 1992), which requires information about disruptions to be available close to real-time (Elbert and Walter, 2014; Wiegmans et al., 2018). In this thesis, real-time information is referred to as information about the transport flow status that is frequently updated as transport operations are executed (Goel, 2010; Wiegmans et al., 2018). To address some of the issues for disruption management raised above, researchers have emphasized the need for actors to make decisions for transport operators via realtime information when disruptions occur (Meyer et al., 2014; SteadieSeifi et al., 2014; Li et al., 2018). However, studies on real-time information for disruption management have been scarce and tended to provide fragmented approaches for specific disruptions (Li et al., 2018; Elbert and Walter, 2014), or highlighted various types of information (van der Spoel et al., 2017; Wiegmans et al., 2018). Moreover, research on real-time information for disruption management in intermodal freight transport (Hrušovský et al., 2021; Albertzeth et al., 2020; Li et al., 2018) has focused on which recovery actions to take

24

Real-time information for disruption management in intermodal freight transport

and why, particularly in terms of effects on operations, but has made few connections to what real-time information is available to achieve recovery actions. By assuming the availability of real-time information for decision-makers, those approaches have not fully captured the importance of real-time information in disruption management at the operational level. There has been a rule of thumb that real-time information is important when managing disruptions in the recovery phase without further elaborations or the focus has been on the technology to use. For instance, Meyer et al. (2014) proposed a novel prototype of a system to manage operational disruptions in freight transport and highlighted issues of using real-time information for the process of disruption management. For intermodal transport, Hrušovský et al. (2021) proposed a similar decision support system (DSS) but focused on the technology used to provide such DSS and lacked details on real-time information connected to transport operations performed to establish the process of disruption management. Even if real-time information is acknowledged to be an important component for the recovery phase, to gain the benefits of minimized impacts on efficiency by managing disruptions via real-time information, the process of disruption management needs to be considered to capture more than the actions made. The process not only includes the outcome, that is, recovery actions, but additionally, for example, the detection of disruptions (Blackhurst et al., 2005).

Purpose and research questions The purpose of this thesis is to contribute to the understanding of the importance of real-time information for disruption management in intermodal freight transport. The purpose aims to minimize impacts from disruptions on efficiency in intermodal transport operations. To cover the purpose, three research questions were derived as explained below. The time aspect of managing disruptions has been highlighted as important in minimizing the impacts of disruptions on efficiency (Sheffi, 2015), but there are few intermodal freight transport studies relating real-time information to the timepoint of managing disruptions. Early disruption management, that is, managing disruptions directly as they occur, can lower impacts or at least include the availability of more suitable actions for their management (Sheffi, 2015; Dunke et al., 2018). Obtaining real-time information has been highlighted as a mean to achieve early disruption management (Sheffi, 2015; Meyer et al., 2014). Even though ICT and information sharing have been key subjects in research on freight transport, the freight transport industry continues to suffer from limited adaptation of information technology (IT) systems for information sharing (Vural et al., 2020). Moreover, Carlan et al. (2019) identified manual working practices used by operators in transport planning that are needed to manage information between ICT tools. For disruption management, those practices create problems for accessing realtime information, and, in turn, delayed recovery and the increased impact of disruptions (Sheffi, 2015). Additionally, literature on information sharing in freight transport has focused either on technology that provides the information, including ICT and IT systems, and possibly enhances visibility (Dürr and Giannopoulos, 2003; Giannopoulos, 25

Wissenschaftliche Forschungsbeiträge

2004) or on the benefits of using the various information systems (Harris et al., 2015). Nevertheless, the limited use of ICTs in intermodal freight transport indicates that despite a heavy focus on information-sharing technology, the connection between improving information sharing and visibility to make real-time information available has remained unclear. In response, this thesis was first interested in understanding how realtime information supports disruption management before ICT can provide such information. Therefore, the first research question is: RQ 1: How does real-time information support disruption management in intermodal freight transport? Because factors of real-time information were found to constrain the process of disruption management, the thesis next set out to explore real-time information between different actors. The involvement of multiple actors, resources and activities in the intermodal freight transport chain creates interdependencies that need coordination (Monios and Bergqvist, 2015). Additionally, coordination influences the real-time information shared between actors (Gumuskaya et al., 2020b) and thus available at the operational level. Nevertheless, the operational coordination has not been connected to the disruption management. To gain insights to the purpose of this thesis, the importance of realtime information for disruption management, it is of interest to understand how the operational coordination influences the real-time information for disruption management. This leads to the second research question: RQ 2: How does operational coordination influence the availability of real-time information for disruption management in intermodal freight transport? Last, the third research question was guided by the aim to complement the conceptualizations made concerning real-time information and disruption management in studies conducted to answer research questions 1 and 2 with indications for the effects on efficiency. Previous research has shown improvements in costs and modal split for container transport, when different scenarios for information are applied when delays in transport operations connected to the seaside of a port (Gumuskaya et al., 2020a; Elbert and Walter, 2014). Instead of focusing on improving efficiency from various information about disruptions for planning purposes, this thesis is interested in effects on efficiency in terms of realizing planned efficiency even when disruptions occur, or at least mitigating impacts from disruptions on efficiency. RQ 3: What are the efficiency effects of real-time information on disruption management in intermodal freight transport?

26

Real-time information for disruption management in intermodal freight transport

2

Frame of reference

This chapter presents an overview of approaches to manage disruptions both from supply chain risk management and intermodal freight transport studies before connections are made between coordination and disruption management to address interorganizational aspects of the recovery phase.

2.1

Approaches to manage disruptions

The management of unplanned events in freight flows has been subject to research attention for decades, mainly from the perspective of logistics and the supply chain. The focus has mainly been on supply chains, evolving from supply chain risk management (Fan and Stevenson, 2018) to more recent adaptations of supply chain resilience (Wieland and Durach, 2021). The research stream on supply chain resilience has gotten additional attention via the COVID-19 pandemic broke out in 2020, with many journals have released special issues on the topic (Davis-Sramek and Richey Jr, 2021; IEEE, 2021). Because a key part of supply chain resilience is the management of transport disruptions (Ivanov et al., 2017), transport-focused research indicates value for literature on supply chains. To manage disruptions and avoid unwanted additional costs, various strategies have been proposed (Christopher and Holweg, 2017). Those strategies follow approaches based on risk management and involve the steps of identification, assessment, treatment and monitoring of risks (Fan and Stevenson, 2018), or the implementation of resilience strategies (van der Vegt et al., 2015). The objective is an optimal combination of those strategies to avoid, postpone, reduce, or transfer the risk of disruptions (Wagner and Bode, 2009). From a time perspective, researchers have divided those strategies into ones that generate actions taken before disruptions and ones that generate actions made after disruptions (Tomlin, 2006; Albertzeth et al., 2020). Another classification of those strategies was raised by Wagner and Bode (2009) by viewing what the strategies aim to manage, either the cause or the impact. Cause-oriented strategies focus on reducing the probability of a disruption. By considering the causes of disruptions, those strategies are performed before disruptions occur. The other class of proposed strategies focuses on limiting or mitigating the consequences of disruptions, that is, the impacts. Those strategies are from a time perspective represented both before and after disruptions occur. A distinction can be made that a strategy before a disruption occurs, preparing to mitigate potential disruptions and a strategy after disruptions occur consider responses to achieve recovery following actual disruptions (Behdani, 2013; Blackhurst et al., 2005).

27

Wissenschaftliche Forschungsbeiträge

2.2

Focus on managing disruptions in the thesis

To differentiate the approaches adopted before or after disruptions occur, mitigation actions are viewed as being taken before disruptions occur, whereas recovery actions are viewed as being taken afterwards (Tomlin, 2006; Albertzeth et al., 2020). Even though recovery actions aim for mitigation, in this thesis they are viewed as actions taken only if a disruption occurs to respond to a disruption and achieve recovery, whereas mitigation actions are taken no matter if a disruption occurs or not (Tomlin, 2006; Blackhurst et al., 2005). Resilience incorporates mitigation and recovery as an overarching umbrella term. Nevertheless, research on resilience has mainly taken an approach of designing transport and/or logistics chains before execution (i.e. mitigation) and not paid attention to recovery following disruptions (Behdani, 2013). Even though, aspects of operational recovery have been discussed in terms of transport resilience, the viewpoints have concentrated on contingency plans that should be implemented when disruptions occur or the increased need for information sharing (Woodburn, 2019). Actions in the recovery phase require exchange between actors (Bode et al., 2011). Nevertheless, mitigation actions, such as buffers (Bode et al., 2011), influences the information needed between actors in the recovery phase (Timmer and Kaufmann, 2019; Wieland and Wallenburg, 2012). The mitigation actions taken before disruptions occur stem from a risk-management tradition in which approaches are developed to identify risks that enable decision-makers to anticipate deviations from plans before operations are performed (van der Vegt et al., 2015). The mitigation actions are important for the recovery from disruptions, but often do not consider time aspects of the disruptions (Dunke et al., 2018; Heckmann et al., 2015). Without a given risk source, most of these approaches tend to fail to provide decision-makers with sufficient support (van der Vegt et al., 2015). Delivering predefined recovery actions that lack active anticipation via realtime information of disruptions and impact provides the limitations of these strategies for managing disruptions after they have occurred (Feldman et al., 2013). For recovery actions to minimize impacts, a high level of visibility has been proposed (Meyer et al., 2014; Gumuskaya et al., 2020a), such as via a decision support system (DSS) (Séguin et al., 1997), while the benefits of lower levels of product buffers or time buffers can be obtained as well (Christopher and Lee, 2004; Zuidwijk and Veenstra, 2014). The recovery phase is additionally in focus in this thesis because it has been studied less than the mitigation strategies (Nel et al., 2018; Behdani, 2013). Christopher and Holweg (2017) argued that previous approaches have revolved around planning ahead, not how to respond to events as they happen. Furthermore, despite the maturity of the field of supply chain risk management, little knowledge is present for monitoring risk, which is directly linked to recovery (Fan and Stevenson, 2018).

28

Real-time information for disruption management in intermodal freight transport

2.3

Recovery actions in intermodal freight transport

In the studied intermodal freight transport literature, two distinct categories of actions to achieve recovery are present. These are recovery actions via the use of real-time information as a common denominator (Li et al., 2018; Meyer et al., 2014; Hrušovský et al., 2021) and (mitigation and) recovery actions using buffers. The buffers provide no need for real-time information whereas the recovery actions of re-routing or transshipments requires that information. Predefined buffers of time and/or products then function as shock-absorbers (Bode et al., 2011) for disruptions and therefore support the operational planning in avoiding impacts from a disruption or at least mitigating its impacts. In connection to recovery via real-time information, disruption management has been highlighted as important to supporting the operational planning to minimize impacts on the intermodal transport chain (Hrušovský et al., 2021). With the study from Meyer et al. (2014) on road freight transport as an exception, no study has been devoted to the process of ending up in these actions, such as detection of a disruption (Blackhurst et al., 2005), as suggested to be achieved via cooperation and exchange between actors (Bode et al., 2011; Timmer and Kaufmann, 2019). Li et al. (2018) and Elbert and Walter (2014) touch upon the issue of real-time information and provided insights into specific types of information. Nevertheless, Burgholzer et al. (2013) even states their assumption that “each transport unit always has complete information." Thus, each transport unit knows immediately when a disruption occurs about its disruption parameters” (Burgholzer et al., 2013, p. 1581).

2.4

Connecting coordination and disruption management

The exchange between actors in the recovery phase, as discussed above, includes interorganizational aspects that influence the real-time information. An important approach to understand the relationships in intermodal transport has been the concept of coordination (Monios and Bergqvist, 2015; Xie et al., 2017; Zhou et al., 2018). Moreover, viewing intermodal freight transport as a network or chain gives rise to an increased number of interdependent transport operations that need coordination compared with a direct link in a network (Woxenius, 2007). To achieve recovery, such as via actions based on real-time information, operational coordination considered in this thesis is viewed as influencing the real-time information shared between actors. The focus on coordination is particularly present in the intermodal transport part of port hinterland transport (van der Horst and De Langen, 2008). The main focus has been on contractual issues in coordination (van der Horst et al., 2019) and incentives for alignments and alliances in coordination (van der Horst and van der Lugt, 2011). Gumuskaya et al. (2020b) identified a lack of operational coordination in the hinterland transport literature and highlighted its importance in supporting the dynamic nature of operational decisions.

29

Wissenschaftliche Forschungsbeiträge

2.5

The phases of disruption management

Following the terms of research on technological solutions used to manage disruptions, the main phases of disruption management are the detection of disruptions, the prediction of their impact and action of suitable alternatives (Séguin et al., 1997; Feldman et al., 2013). These terminologies for the phases in disruption management correspond to similar phases of recovery, viewed from a supply chain management perspective. For instance, Blackhurst et al. (2005) discussed disruption discovery, disruption recovery and supply chain redesign, which include the same phases of detection, understanding how companies can recover (i.e. acting) and the broader perspective on how the supply chains learn from disruptions, thereby leading to the redesign of the supply chain. Similarly, Macdonald and Corsi (2013) followed these phases for recovery from disruptions with high impact in supply chains. Behdani (2013) discussed the disruption management cycle that is performed after a disruption has occurred. The cycle includes the phases of disruption detection, disruption reaction, disruption recovery, and disruption learning. However, a clear distinction of disruption management at the operational level is not made in that model, for the step of predicting the impact of a disruption is missing. Including the prediction phase is important because a disruption can impact in various ways (Reis, 2019), such that predictions are needed to determine possible impacts.

Detection The detection phase of disruption management describes what has happened by gathering and understanding real-time information connected to the transport system (Mishra et al., 2017; Batalden et al., 2017). The time at which a disruption is detected is important because it initiates disruption management (Macdonald and Corsi, 2013). The time between finding out that a disruption has occurred and identifying its first impact on the business (e.g. transport chain) has been called detection lead time (Sheffi, 2015). Additionally, the secondary consequences of a disruption may be more amplified than the first impact (Świerczek, 2014). Detecting a difference between the planned status and the actual status for a predefined purpose (Otto, 2003) may detect a disruption in current operations (Blackhurst et al., 2005) or a disruption able to impact planned operations (Feldman et al., 2013). As pointed out by Dunke et al. (2018), a disruption can stem from many diverse sources of disruptive events, which creates a need for real-time information about many parts of the transport system (Meyer et al., 2014; van der Spoel et al., 2017). Detection can vary depending on how the monitoring of visible operations is performed to obtain real-time information related to disruptions (Fernández et al., 2016). Fernández et al. (2016) argued that detection is made via reactive monitoring based on realtime information about an occurred disruptive event, that is, monitoring information about performance indicators for an operation. Alternatively, the predictive monitoring of information from operations and the surrounding system environment are used to predict the disruptive event. 30

Real-time information for disruption management in intermodal freight transport

Where a disruption is detected in the logistics and transport system is another important aspect of when detection is made (Behdani, 2013; Nel et al., 2018). Wilson (2007) found different influence of transport disruptions on a supply chain depending on where they occurred. A system for freight transport can be adapted to the three levels of infrastructure, transport flow and material flow, according to Wandel et al. (1992).

Prediction After detection, the business impact of what could happen needs to be analyzed in the prediction phase (Mishra et al., 2017; Séguin et al., 1997). ICTs have enabled more visibility for operations and the surrounding environment and supported future time periods for predictions to have certain accuracy for a look-ahead period in the near future (Dunke et al., 2018). Prediction depends on the detection of disruption. If the detection is made before the impact by anticipating an impact from a disruption, then the prediction is of a future state that is undesirable (Feldman et al., 2013). Predictions can further be made about how long a disruption will impact the chain (Dunke et al., 2018). Predictions can be made by a system based on real-time information or historical data or can be manually performed based on human experience (Batalden et al., 2017; Knemeyer et al., 2009). For the prediction to be reliable, it needs to consider the surrounding environmental variables in the transport chain (van der Spoel et al., 2017). Meyer et al. (2014) described how the complex relations between shipments in a transport system complicate understanding impacts further down in a transport chain, while van der Spoel et al. (2017) indicated that more information than mere traffic updates on a route is needed for reliable predictions of arrival times at a terminal, for instance, truck drivers’ intentions and schedules.

2.6

Synthesis of the studied literature

The studied literature discusses different perspectives on minimizing impact from disruptions, with focus on avoidance, mitigation or recovery. As research area on disruptions in intermodal freight transport has matured, several researchers have recognized the importance of real-time information during recovery from disruptions. However, previous intermodal freight transport literature predominantly examines a limited scope of various actions that influence the impact with limited insights into the connection between real-time information and the process of disruption management prior to these actions. To illustrate a synthesis around real-time information for disruption management in intermodal freight transport, the discussed real-time information in the recovery phase is put in relation to the factors from Mohr and Nevin (1990). The factor of frequency has been discussed in terms of different updates of the information influencing the impacts (Goel, 2010). The content, such as the arrival of trucks or ships at a port, for instance, has

31

Wissenschaftliche Forschungsbeiträge

been viewed as being fixed for the specifically problem investigated (Li et al., 2018; Elbert and Walter, 2014). An additional factor of coverage, not included by Mohr and Nevin (1990), related to the content factor of real-time information with implications for the disruption management, raised from a logistics and supply chain perspective, is whether disruptions occur in operations from the own organizations’ part of a chain or in operations in other parts of the chain (Nel et al., 2018; Wilson, 2007). The factor of medium, as freight transport research in general, has been discussed as revolving around a DSS (Hrušovský et al., 2021), with different supports from information systems as well as manual parts to make information available (Meyer et al., 2014). No clear indication for the factor of direction related to real-time information for disruption management was found in the literature. In sum, mainly fragmented approaches on various aspects on information and disruption management have been found. These fragmented approaches provide little insights into connections between real-time information and a disruption management process of detection, prediction and action.

3

Research methodology

Studies 1–4 were conducted as case studies involving qualitative methods for data collection and analysis and Study 5 was a case study following a quantitative approach. To capture the parts of disruption management, qualitative case studies were deemed to be most suitable for studying disruption management within its real-world contexts (cf. Yin (2014)), to pinpoint multiple aspects and to gain in-depth understanding (Flick, 2014; Ellram, 1996). Research questions 1 and 2 are both “how” questions, which are suitable to answer by qualitative case study approaches (Ellram, 1996). After these studies were conducted, a quantitative study was designed, to give insights into the efficiency effects of real-time information for disruption management. That study was guided by the third research question which is a “what” question addressing efficiency effects, for which simulation provided a suitable approach (Ellram, 1996). Discrete event simulation has been shown to be suitable for simulating operational decision making in logistics research, such as decisions about distribution and transport planning (Tako and Robinson, 2012). The simulation enables performing what-if analyses of a real-world system without having to interrupt the ongoing operations (Banks, 2004). All studies can be viewed as single case studies, which were deemed suitable to be suitable for providing in-depth data regarding real-time information for disruption management (cf. Flyvbjerg (2006)). Table 1 provides an overview of the performed studies, their approaches for data collection and data analysis. Additionally, Table 1 connects back to the research questions that they originated from via last column of contribution to answering research questions (RQs).

32

Real-time information for disruption management in intermodal freight transport

Table 1:

Overview of studies and links to the research questions

Study

Study characteristics

Data collection

Data analysis

Contribution to answering RQs

Study 1 (led to Paper 1)

Qualitative case study

Semi-structured interviews, observations and a document review

Thematic coding around resource utilization

RQ 1: Initial description of real-time information in operational planning processes

Study 2 (led to Paper 2)

Qualitative case study

Semi-structured interviews and observations

Thematic coding around the phases of disruption management

RQ 1: Description of the phases of disruption management and connections to realtime information

Study 3 (led to Paper 3)

Qualitative case study

Semi-structured interviews and a focus group

Thematic coding about disruption management and transport system levels

RQ 1: Description of real-time information in different parts of the transport system influences the disruption management process

Study 4 (led to Paper 4)

Qualitative case study

Semi-structured interviews

Thematic coding about coordination and disruption management

RQ 2: Description of how approaches to coordination influence real-time information for disruption management

Study 5 (led to Paper 5)

Simulation study

Data generated from operational IT system and expert estimations

Cost representation for results from simulation software for efficiency measures

RQ 2: Description about buffers support for actions based on real-time information

4

RQ 3: Indications around the effects of different real-time information and actions on the efficiency of transport operations

Discussion

Four main contributions emerge of the thesis: (1) a detailed description of the connections between real-time information and the process of disruption management, (2) adding aspects of operational coordination to real-time information for disruption management in intermodal freight transport, (3) elaborating on the efficiency effects of real-time

33

Wissenschaftliche Forschungsbeiträge

information for disruption management and (4) exploring the importance of real-time information for disruption management in intermodal freight transport.

4.1

RQ 1: How does real-time information support disruption management in intermodal freight transport?

Real-time information supports disruption management to a varying extent related to delays found between the occurrence of a disruption and the initiation of disruption management. Such delays have previously been discussed in terms of detection lead time (Sheffi, 2015). The research in this thesis provided insights into how real-time information for disruption management influences this delay time. The representation of real-time information in connection to the phases of the disruption management process indicates how these delays for the disruption management process increase. Disruption management after impacts on the transport chain have occurred leads to adhoc fire-fighting of these impacts, instead of following the concepts of disruption management with detection and prediction of disruptions before they impact the transport chain and actions made with minor adjustments to the transport plan. For real-time information to support early disruption management, information is needed before impacts on the transport chain occur. Such support varies depending on whether the realtime information supports the detection of a disruption or its impacts. To highlight the support, the four factors from Mohr and Nevin (1990) are discussed, followed by more details around content and other factors found to support disruption management. The support from real-time information for disruption management was found to mainly be connected to the content of the information, that is, what the real-time information represents. The frequency factor of real-time information is secondary to content, for real-time information that provides content for the detection of impacts instead of disruptions can be updated every second without giving the same support to disruption management as real-time information about a disruption that is less frequently updated. Regarding the factor of medium, support was found to vary depending on manual parts in the disruption management process. In contrast to the focus on the medium for real-time information in literature on IT systems and ICT as tools to improve efficiency in intermodal freight transport (Harris et al., 2015; van der Spoel et al., 2017) as well as DSS for improving disruption management (Hrušovský et al., 2021), the detailed description of real-time information for disruption management in this research shows limitations even when IT systems are in place. For example, the real-time information from GPS does not guarantee early detection due to manual checks of the information. Because manual monitoring is not constantly executed, time delays arise between when real-time information is available and when detection is made. As a result, a continuous flow of real-time information about operations with suitable content is not enough to

34

Real-time information for disruption management in intermodal freight transport

realize early detection unless manual processes are integrated or replaced. Last, the direction factor of information was not observed to influence the support for disruption management.

How the content of real-time information supports disruption management The research for the thesis showed that content is the main factor supporting the time for when disruption management is initiated, given its connections to what is detected. The support for disruption management from the content factor of real-time information was mainly connected to the first step of disruption management, that is, detection of a disruption. The notion of a disruption is commonly used in literature on intermodal freight transport to indicate when a transport operation is impacted (Burgholzer et al., 2013; Albertzeth et al., 2020; Li et al., 2018) follows the logic of business impact (Wagner and Bode, 2008). Following this reasoning for the example of a traffic accident, it is not viewed as a disruption until the truck is delayed in the queue created by the accident. This has created limited discussion about what occurs before a transport disruption that may impact the transport operations, which is important for disruption management (Hrušovský et al., 2021). By broadening the focus from only recovery actions and separating a disruption and its impacts, following the disruption management idea of dynamic revision of plan due to negative impacts from disruptions (Yu and Qi, 2014), different detection types were identified. The content of real-time information is connected to support different detection types, including detection of disruptions, disruption impacts, primary impacts on the transport chain, secondary impacts on the transport chain and snowball impacts (see Paper 2 for further details). In regard to the shown importance of early detection of disruption to minimize impacts (Sheffi, 2015), the identification of these detection types becomes important. If a disruption can be detected before an impact, then it is possible to minimize or even avoid that impact. Once the impact has occurred, the possibility to act is fewer. Actions taken after the transport chain has been impacted require greater effort to adjust the transport operations, by creating a completely new plan or fire-fighting occurred impacts.

How the structure of real-time information influences its content Real-time information about the performance of transport operations, which is commonly used to identify disruptions (Fernández et al., 2016), was found to be used for detection (Paper 1). The structure of real-time information, which revolves around either continuously updated real-time information during transport operations (i.e. links) or at checkpoints (i.e. nodes). Because the performance measures were related to checkpoints in an aim to evaluate the system’s performance at checkpoints, these measures were of limited value for detecting disruptions. Since real-time information related to a

35

Wissenschaftliche Forschungsbeiträge

checkpoint provided input for detection types after the transport chain has been impacted. If detection before transport chain impact is wanted, then real-time information from operations (i.e. links) is needed.

How the coverage of real-time information influences its content Another factor of how real-time information supports disruption management was found in the coverage of real-time information. The coverage factor is from where in the transport system real-time information is available. Given its focus on real-time information, this thesis views coverage to represent where in a transport system that information is provided. This conceptualization of coverage was made by adopting the three levels from Wandel et al. (1992) for a transport system of infrastructure, transport flow and material flow (see Paper 3 for further details). The different levels provide real-time information for different detection types. For instance, real-time information from the infrastructure level, such as traffic information, has content that supports the detection of disruption and disruption impact. Real-time information from the transport flow and material flow levels has content that provides detection of primary and secondary impacts in the transport chain as well as snowball impacts. Real-time information was found available to a larger extent at the levels of material flow and transport flow, than at the infrastructure level. For real-time information to represent content connected to disruption in the infrastructure level, it needs to cover a scope outside the transport operations, because disruptions outside the operations that may impact the operations have to be captured. Low levels of information sharing reported in intermodal freight transport (Vural et al., 2020) therefore limit real-time information to have content that supports early disruption management.

4.2

RQ 2: How does coordination influence the availability of real-time information for disruption management in intermodal freight transport?

Previous research on intermodal freight transport has focused on ICT and IT systems as tools to enhance operational efficiency (Harris et al., 2015), among other approaches, via disruption management (Hrušovský et al., 2021), to provide increased competitiveness of intermodal freight transport (Vural et al., 2020). In contrast to the focus on these tools to provide real-time information, the research conducted for this thesis (Study 4) highlights operational coordination as a way to provide real-time information for disruption management between actors. Previous research on intermodal freight transport has provided little attention to the operational coordination (van der Horst et al., 2019; van der Horst and van der Lugt, 2011) and is therefore complemented with detailed descriptions of operational coordination from the research in this thesis. In addition to the previous operational coordination framework in intermodal freight transport (Gumuskaya et al.,

36

Real-time information for disruption management in intermodal freight transport

2020b), the information processing approaches for coordination contribute to the advancement of knowledge about operational coordination, as do the connections made between operational coordination and disruption management via real-time information. The buffers present in different parts of the studied intermodal freight transport chain, reduced the need for real-time information when a disruption occurred, which influenced the real-time information available for disruption management. When information was used for the purpose of coordination, such as when IT systems or relationships between actors were used to exchange information, this provided a setup for realtime information for the disruption management. A found aspect concerning use of IT systems for coordination was that they did not provide real-time information to all actors. Similarly, established relations were found to function in sharing information between certain actors, providing issues to cover all needed actors. Additionally, knowledge about which actor that needs what real-time information about a disruption, for example, the decision-maker for a certain part of the chain, was limited, which created gaps in the use of the coordination via information. For disruption management, these problems generated issues to quickly get hold of real-time information for the decision-makers, as the coordination did not provide the needed setup for information.

4.3

RQ 3: What are the efficiency effects of real-time information on disruption management in intermodal freight transport?

The effects of different actions, such as transshipments, re-routing, or the use of buffers when a disruption occurs, have been examined in research on intermodal freight transport (Hrušovský et al., 2021; Albertzeth et al., 2020; Burgholzer et al., 2013). The research conducted for this thesis (see Paper 5) has added to these approaches by examining the efficiency effects of different information scenarios for disruption management. Scenarios for various information about predictions of a train delay was given. The results indicate that different information scenarios enable disruption management with different effects on the efficiency. Similarly, positive efficiency effects have previously been indicated for different information scenarios in the context of ports, such as for known or unknown arrival times of containers at a port (Gumuskaya et al., 2020a). As an extension to the port focused research, this thesis provides insights into the scope regarding a train delay to an intermodal freight terminal, namely dry port. The studied scenarios provide insights into when lack of information can provide benefits. A lack of understanding of different actors’ preferences, such as how urgent prioritized containers are, influences the disruption management. The scope of the simulation model (Study 5) covers the prediction and action phases of disruption management but not disruption management between different levels or multiple transport operations, as discussed in research questions 1 and 2. For example, the detection was made outside

37

Wissenschaftliche Forschungsbeiträge

the scope, providing that the disruption management had no options to change routes, as the rail route was already in use. The scope exemplifies when detection of a disruption (in this case train delay) is made by another actor and different information for prediction is given, which in turn will impact various efficiency effects differently.

4.4

Discussion on thesis contribution to purpose

The thesis aimed to contribute to the understanding of the importance of real-time information for disruption management in intermodal freight transport. The real-time information was found to be of more importance for disruption management if it had an active role and of less importance if it had a passive role. The active role for real-time information provides disruption management that anticipates disruption impacts, whereas the passive role of real-time information provides disruption management that responds to transport impacts that have occurred due to a disruption. On the one hand, the active role represents detection, prediction and action in disruption management based on real-time information, which provides possibilities for early detection, the prediction of impacts and action while impacts can be minimized by finding valid options for actions. This approach sets certain prerequisites on the real-time information, such as discussed around research question 1, and on interorganizational aspects, such as discussed around research question 2. Additionally, real-time information for disruption management can provide anticipative actions before impacts, which can generate less sensitive intermodal freight transport, raising the competitiveness of intermodal freight transport. On the other hand, the passive role represents the phases of disruption management based on a lack of real-time information or based on real-time information connected to impacts.

Discussion beyond the scope of the thesis Disruption management within the intermodal freight transport chain influences the logistics and the supply chain (Wilson, 2007). This thesis did not investigate effects outside the intermodal freight transport chain, but indications can be made. Expanding the reasoning above regarding buffers and information, improved real-time information for disruption management can have consequences for the shippers of the freight. For example, in Study 4, the shipper had high levels of product buffers at the destination. If early disruption management via real-time information was achieved in that intermodal freight transport chain, these buffers could be viewed as excessive. Improved disruption management in the intermodal freight transport may lead to a changed mindset towards mitigation strategies (e.g. buffers) for the transport at a supply chain level. Moreover, the real-time information for disruption management in the intermodal freight transport can serve as input for predicting impacts on logistics operations (e.g. snowball impacts from transport impacts), which can support disruption management for logistics operations, not only for transport operations, as described in this thesis.

38

Real-time information for disruption management in intermodal freight transport

The process view on disruption management in this thesis provides an extended view on how to manage disruptions during the execution of operations. This view can provide insights to the literature on resilience regarding the operational part of recovery, such as risk monitoring, which has lacked attention than other parts of risk management in literature on supply chains (Fan and Stevenson, 2018). The resilience approaches mainly propose contingency plans to be carried out when disruptions occur (Woodburn, 2019). Via the operational perspective taken for the research in this thesis, it is possible for the resilience research in supply chains and logistics, to not only focus on disruptions with high impact and a low frequency of occurrence but to further include operational aspects found in this research in connection to pre-defined strategies. By viewing actions as flexible and not limited to a pre-defined plan, this research highlights the possibility for context specific disruption management by considering the information for the operations actually performed, not possible events before the operations are executed.

4.5

Theoretical contributions

For intermodal freight transport, the findings provide insights that can guide the disruption management process. Previous research on intermodal freight transport has examined impacts from disruptions depending on different actions (Albertzeth et al., 2020; Hrušovský et al., 2021), and with the research presented in this thesis, insights are added to the process of detecting disruptions and predicting impacts to achieve these actions. These insights were possible by adopting the phases of disruption management from the literature with a main focus outside the intermodal freight transport scope, such as road freight transport (Meyer et al., 2014) and supply chain management (Sheffi, 2015; Séguin et al., 1997; Otto, 2003). The detailed descriptions about real-time information and the phases of detection and prediction highlight the importance for understanding real-time information for disruption management. The results in this thesis aid the field of intermodal freight transport with insights into managing operational disruptions. In the literature on intermodal freight transport, the management of operational disruptions has been conceptualized around the idea that real-time information should provide support (Elbert and Walter, 2014; Li et al., 2018) and investigations of efficiency outputs without explicit links as to how the real-time information is made available (Burgholzer et al., 2013; Albertzeth et al., 2020). In this thesis, the exploration of various factors for real-time information contributes to increasing the understanding of how real-time information supports disruption management (or not). While the literature on intermodal freight transport has focused on real-time information that could be shared between actors (Wiegmans et al., 2018) or technologies to share this information (Harris et al., 2015), coordination as a source for information exchange between actors had not been extensively studied. The literature on coordination

39

Wissenschaftliche Forschungsbeiträge

in intermodal freight transport highlights important aspects of contracts and alliances (Monios and Bergqvist, 2015; van der Horst et al., 2019), but few studies have addressed the coordination taking place in the day-to-day business connected to the transport operations (Gumuskaya et al., 2020b). The results in this thesis connecting information in coordination to disruption management contribute is twofold. First, the results contribute to the lack of studies on operational coordination in intermodal freight transport by explaining how the coordination of interdependencies is performed at the operational level between multiple actors from the perspective of information processing. Second, by connecting the information processing perspective of coordination to disruption management, the results contribute to increased understanding of how coordination influences the real-time information available for disruption management. This thesis connects the real-time information to the efficiency effects of recovery actions, which adds to previous investigations into recovery actions under the assumption that real-time information was available (Burgholzer et al., 2013; Albertzeth et al., 2020). The research in this thesis highlights a disruption scenario in which different real-time information about prediction of an impact is given. Additionally, the investigated efficiency effects contribute with insights into intermodal freight transport by elaboration around that the effects fall on different actors and are influenced by constraints from another actor. This outlines the need for the actors in intermodal freight transport to discuss what actor that gain with benefits and losses in efficiency effects from different objectives in the disruption management, due to set constraints on the transport operations. By conceptualizing real-time information for disruption management, the research in this thesis engages in the discussion of approaches to manage disruptions. Research on product flows at the supply chain and logistics levels, where the transport disruptions studied in this thesis are one possible disruption (among production or supplier disruptions (Ivanov et al., 2017)), has predominantly focused on mitigation strategies instead of the recovery phase (Behdani, 2013; Nel et al., 2018). The research in this thesis contributes to this view by considering the interplay between information and buffers in the recovery phase. Buffers and information are mainly placed on opposite sides of a continuum (Bode et al., 2011), as this research similarly found empirical evidence of (Study 4). At the same time, buffers can provide possible action options for the recovery via disruption management (Study 5).

4.6

Practical contributions

The practical contributions from the results of the thesis include a description of disruption management for transport operations. Transport managers can use the proposed framework below to evaluate and understand their own recovery approach. Framework for real-time information for disruption management in intermodal freight transport:

40

Real-time information for disruption management in intermodal freight transport

i) Identify available real-time information for disruptions and impacts for three phases: (1) detection, (2) prediction and (3) action ii) Evaluate real-time information regarding, (a) the content of real-time information in relation to disruption and impacts, (b) the coverage of real-time information in relation to the levels of the transport system and (c) the structure of real-time information in relation to operations or checkpoints iii) Increase the needed information processing (e.g. by using coordination structures already in place) By identifying available real-time information concerning disruptions and impacts relating to the phases of detection, prediction and action, the managers can get an understanding of how their recovery is performed. In that process, a question is whether the real-time information supports actions before or after the impacts on transport operations occur. Thereafter, the real-time information can be evaluated in relation to the three factors of information proposed in this research. Thereby, the managers can evaluate the real-time information to gain knowledge of how their disruption management is performed. If this evaluation indicates issues about real-time information, such as content, then the managers can investigate how they can increase the information processing. The research highlights that already existing coordination structures could support this, not only implementing new ICT.

5

Conclusions

This research addressed the importance of real-time information for disruption management in intermodal freight transport. With high operational efficiency obtained via disruption management, intermodal freight transport can increase its competitiveness against road freight transport. The research adopted a focus on real-time information for disruption management after operational disruptions have occurred. Depending on the role of real-time information, the disruption management either leads to actions being taken before or after impacts on transport operations occurs. The thesis concludes that for intermodal freight transport to achieve management of disruptions with mitigated impacts after a disruption has occurred, an active role of real-time information is of importance. The active role of real-time information requires the content of real-time information to support early detection, such as detection of disruption or disruption impact, not of transport chain impacts. To achieve this, the real-time information mainly needs to be able to capture indications of disruptions that will impact transport operations and not be limited to provide detection of transport impacts. The research proposes how real-time information supports disruption management in generating recovery actions before intermodal freight transport operations are impacted by disruptions. Moreover, the research concludes that real-time information for the recovery phase is limited by a sole focus on mitigation strategies. This research indicates how operational coordination influences the real-time information by the balance between these two 41

Wissenschaftliche Forschungsbeiträge

phases (mitigation and recovery) through coordination via buffers or information. The research illustrates how buffers reduce the practical need for information flows and therefore limit the real-time information available for disruption management. Nevertheless, not all instances of buffers should be viewed as competitors to real-time information. Therefore, the research concludes that intermodal freight transport needs to strategically balance the use of buffers and the real-time information available to facilitate early recovery and not end up in recovery of fire-fighting impacts. Last, not all actors’ efficiency measures will be affected with the same magnitude when achieving early recovery. Therefore, it is important to understand the effects of early disruption management, it is important to consider a broader part of the intermodal freight transport chain beyond one actor’s boundaries. The presented research focuses on real-time information for the management of operational disruptions and discusses aspects in relation to buffers. The costs of real-time information, such as implementations of ICT, or of buffers were not quantified in this research. The occasions when real-time information mitigates impact need to be compared against the costs of the efficiency of the plan (i.e. including buffers) or the cost to generate the needed real-time information. Unlike buffers, which raise costs in operations no matter if disruptions occur or not, the disruption management based on real-time information is only performed when disruptions occur. In a future where sections of the transport system can be automated, such as autonomous trucks or ports, achieving an active role of real-time information for disruption management can generate a competitive advantage. Real-time information for disruption management, based on this research, investigated for autonomous transport systems could be subject to future research. Moreover, this thesis provides description of the disruption management process in relation to real-time information. It is possible that this process can be automated and steered by machine learning approaches or made manual and steered by individuals involved.

42

Real-time information for disruption management in intermodal freight transport

List of papers included in the thesis Paper 1 Wide, P. & Roso, V. (2021). Information on resource utilisation for operational planning in port hinterland transport. Transactions on Maritime Science, 10(2), 477–487. Paper 2 Wide, P. (2020). Improving decisions support for operational disruption management in freight transport. Research in Transportation Business & Management, Vol. 37, No. 100540. Paper 3 Wide, P. (2020). Real-time information for operational disruption management in hinterland road transport. World Review of Intermodal Transportation Research, 9(4), 358–375. Paper 4 Wide, P., Andersson, D., Roso, V. (2021). Operational coordination in intermodal hinterland transport as support for managing operational disruptions – an information processing perspective. Operations and Supply Chain Management: An International Journal, 14(4), 507–519. Paper 5 Wide, P., Kalahasthi, L., Roso, V. (2023). Efficiency effects of information on operational disruption management in port hinterland freight transport: simulation of a Swedish dry port case. International Journal of Logistics Research and Applications, 26(5), 524–547.

References Albertzeth, G., Pujawan, I.N., Hilletofth, P. & Tjahjono, B. (2020), “Mitigating transportation disruptions in a supply chain: A cost-effective strategy”, International Journal of Logistics Research and Applications, Vol. 23 No. 2, pp. 139–158. Banks, J. (2004), Getting started with automod, Chelmsford, MA, Brooks automation. Batalden, B., Leikanger, P. & Wide, P. (2017), “Towards autonomous maritime operations”, 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 26-28 June 2017, pp. 1–6. Behdani, B. (2013), Handling disruptions in supply chains: An integrated framework and an agent-based model, Doctoral thesis, TU Delft.

43

Wissenschaftliche Forschungsbeiträge

Blackhurst, J., Craighead, C.W., Elkins, D. & Handfield, R.B. (2005), “An empirically derived agenda of critical research issues for managing supply-chain disruptions”, International Journal of Production Research, Vol. 43 No. 19, pp. 4067–4081. Bode, C., Wagner, S.M., Petersen, K.J. & Ellram, L.M. (2011), “Understanding responses to supply chain disruptions: Insights from information processing and resource dependence perspectives”, Academy of Management Journal, Vol. 54 No. 4, pp. 833–856. Brehmer, B. (1992), “Dynamic decision making: Human control of complex systems”, Acta Psychologica, Vol. 81 No. 3, pp. 211–241. Burgholzer, W., Bauer, G., Posset, M. & Jammernegg, W. (2013), “Analysing the impact of disruptions in intermodal transport networks: A micro simulation-based model”, Decision Support Systems, Vol. 54 No. 4, pp. 1580–1586. Caris, A., Macharis, C. & Janssens, G.K. (2011), “Network analysis of container barge transport in the port of antwerp by means of simulation”, Journal of Transport Geography, Vol. 19 No. 1, pp. 125–133. Carlan, V., Naudts, D., Audenaert, P., Lannoo, B. & Vanelslander, T. (2019), “Toward implementing a fully automated truck guidance system at a seaport: Identifying the roles, costs and benefits of logistics stakeholders”, Journal of Shipping and Trade, Vol. 4 No. 1, pp. 12. Chen, L. & Miller-Hooks, E. (2012), “Resilience: An indicator of recovery capability in intermodal freight transport”, Transportation Science, Vol. 46 No. 1, pp. 109–123. Christopher, M. & Holweg, M. (2017), “Supply chain 2.0 revisited: A framework for managing volatility-induced risk in the supply chain”, International Journal of Physical Distribution & Logistics Management, Vol. 47 No. 1, pp. 2–17. Christopher, M. & Lee, H. (2004), “Mitigating supply chain risk through improved confidence”, International Journal of Physical Distribution & Logistics Management, Vol. 34 No. 5, pp. 388–396. Davis-Sramek, B. & Richey Jr, R.G. (2021), “New perspectives on supply chain resilience”, Journal of Business Logistics, Vol. 42 No. 3, pp. 312–314. Dunke, F., Heckmann, I., Nickel, S. & Saldanha-Da-Gama, F. (2018), “Time traps in supply chains: Is optimal still good enough?”, European Journal of Operational Research, Vol. 264 No. 3, pp. 813–829. Dürr, E. & Giannopoulos, G.A. (2003), “Sits: A system for uniform intermodal freight transport information exchange”, International Journal of Transport Management, Vol. 1 No. 3, pp. 175–186. Elbert, R. & Walter, F. (2014), “Information flow along the maritime transport chain – a simulation based approach to determine impacts of estimated time of arrival messages on the capacity utilization”, Proceedings of the Winter Simulation Conference 2014, 7-10 Dec. 2014, pp. 1795–1806.

44

Real-time information for disruption management in intermodal freight transport

Ellram, L.M. (1996), “The use of the case study method in logistics research”, Journal of Business Logistics, Vol. 17 No. 2, pp. 93–138. Fan, Y. & Stevenson, M. (2018), “A review of supply chain risk management: Definition, theory, and research agenda”, International Journal of Physical Distribution & Logistics Management, Vol. 48 No. 3, pp. 205–230. Feldman, Z., Fournier, F., Franklin, R. & Metzger, A., (2013), “Proactive event processing in action: A case study on the proactive management of transport processes (industry article)” in Proceedings of the 7th ACM international conference on Distributed event-based systems, in Arlington, Texas, USA, ACM, pp. 97–106 Fernández, E., Bogado, V., Salomone, E. & Chiotti, O. (2016), “Framework for modelling and simulating the supply process monitoring to detect and predict disruptive events”, Computers in Industry, Vol. 80 No. 30–42. Flick, U. (2014), An introduction to qualitative research, London, Sage publiations. Flyvbjerg, B. (2006), “Five misunderstandings about case-study research”, Qualitative Inquiry, Vol. 12 No. 2, pp. 219–245. Giannopoulos, G.A. (2004), “The application of information and communication technologies in transport”, European Journal of Operational Research, Vol. 152 No. 2, pp. 302-320. Goel, A. (2010), “The value of in-transit visibility for supply chains with multiple modes of transport”, International Journal of Logistics Research and Applications, Vol. 13 No. 6, pp. 475–492. Gumuskaya, V., Van Jaarsveld, W., Dijkman, R., Grefen, P. & Veenstra, A. (2020a), “Dynamic barge planning with stochastic container arrivals”, Transportation Research Part E: Logistics and Transportation Review, Vol. 144 No. 102161. Gumuskaya, V., Van Jaarsveld, W., Dijkman, R., Grefen, P. & Veenstra, A. (2020b), “A framework for modelling and analysing coordination challenges in hinterland transport systems”, Maritime Economics & Logistics, Vol. 22 No. 1, pp. 124–145. Harris, I., Wang, Y. & Wang, H. (2015), “Ict in multimodal transport and technological trends: Unleashing potential for the future”, International Journal of Production Economics, Vol. 159 No. 88–103. Heckmann, I., Comes, T. & Nickel, S. (2015), “A critical review on supply chain risk – definition, measure and modeling”, Omega, Vol. 52 No. 119–132. Van Der Horst, M., Kort, M., Kuipers, B. & Geerlings, H. (2019), “Coordination problems in container barging in the port of rotterdam: An institutional analysis”, Transportation Planning and Technology, Vol. 42 No. 2, pp. 187–199. Van Der Horst, M.R. & De Langen, P.W. (2008), “Coordination in hinterland transport chains: A major challenge for the seaport community”, Maritime Economics & Logistics, Vol. 10 No. 1, pp. 108–129.

45

Wissenschaftliche Forschungsbeiträge

Van Der Horst, M.R. & Van Der Lugt, L.M. (2011), “Coordination mechanisms in improving hinterland accessibility: Empirical analysis in the port of rotterdam”, Maritime Policy & Management, Vol. 38 No. 4, pp. 415–435. Hrušovský, M., Demir, E., Jammernegg, W. & Van Woensel, T. (2021), “Real-time disruption management approach for intermodal freight transportation”, Journal of Cleaner Production, Vol. 280 No. 124826. IEEE. 2021. IEEE transactions on engineering management: Special issue: Digital technologies and resilience in supply chain disruptions and outbreaks. Retrieved from: www.ieee-tems.org/call-for-papers-special-issue-digital-technologiesand- resilience-in-supply-chain-disruptions-and-outbreaks/ (accessed 16 August 2021). Ivanov, D., Dolgui, A., Sokolov, B. & Ivanova, M. (2017), “Literature review on disruption recovery in the supply chain”, International Journal of Production Research, Vol. 55 No. 20, pp. 6158–6174. Ivanov, D., Sokolov, B. & Dolgui, A. (2014), “The ripple effect in supply chains: Tradeoff ‘efficiency-flexibility-resilience’ in disruption management”, International Journal of Production Research, Vol. 52 No. 7, pp. 2154–2172. Knemeyer, A.M., Zinn, W. & Eroglu, C. (2009), “Proactive planning for catastrophic events in supply chains”, Journal of Operations Management, Vol. 27 No. 2, pp. 141–153. Li, N., Chen, G., Govindan, K. & Jin, Z. (2018), “Disruption management for truck appointment system at a container terminal: A green initiative”, Transportation Research Part D: Transport and Environment, Vol. 61 No. 261–273. Macdonald, J.R. & Corsi, T.M. (2013), “Supply chain disruption management: Severe events, recovery, and performance”, Journal of Business Logistics, Vol. 34 No. 4, pp. 270–288. Meyer, G.G., Buijs, P., Szirbik, N.B. & Wortmann , J.C.H. (2014), “Intelligent products for enhancing the utilization of tracking technology in transportation”, International Journal of Operations & Production Mangement, Vol. 34 No. 4, pp. 422– 446. Mishra, M., Sidoti, D., Avvari, G.V., Mannaru, P., Ayala, D.F.M., Pattipati, K.R. & Kleinman, D.L. (2017), “A context-driven framework for proactive decision support with applications”, IEEE Access, Vol. 5 No. 12475–12495. Mohr, J. & Nevin, J.R. (1990), “Communication strategies in marketing channels: A theoretical perspective”, Journal of Marketing, Vol. 54 No. 4, pp. 36–51. Monios, J. & Bergqvist, R. (2015), “Using a “virtual joint venture” to facilitate the adoption of intermodal transport”, Supply Chain Management: An International Journal, Vol. 20 No. 5, pp. 534–548.

46

Real-time information for disruption management in intermodal freight transport

Nel, J., De Goede, E. & Niemann, W. (2018), “Supply chain disruptions : Insights from south african third-party logistics service providers and clients”, Journal of Transport and Supply Chain Management, Vol. 12 No. 1, pp. 1–12. Otto, A. (2003), “Supply chain event management: Three perspectives”, The International Journal of Logistics Management, Vol. 14 No. 2, pp. 1–13. Reis, V. (2019), “A new theoretical framework for integration in freight transport chains”, Transport Reviews, Vol. 39 No. 5, pp. 589–610. Sanchez-Rodrigues, V. (2010), “Evaluating the causes of uncertainty in logistics operations”, The International Journal of Logistics Management, Vol. 21 No. 1, pp. 45–64. Séguin, R., Potvin, J.Y., Gendreau, M., Crainic, T.G. & Marcotte, P. (1997), “Real-time decision problems: An operational research perspective”, Journal of the Operational Research Society, Vol. 48 No. 2, pp. 162–174. Sheffi, Y. (2015), Preparing for disruptions through early detection, MIT Sloan Management Review, Cambridge Van Der Spoel, S., Amrit, C. & Van Hillegersberg, J. (2017), “Predictive analytics for truck arrival time estimation: A field study at a european distribution centre”, International Journal of Production Research, Vol. 55 No. 17, pp. 5062–5078. SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T. & Raoufi, R. (2014), “Multimodal freight transportation planning: A literature review”, European Journal of Operational Research, Vol. 233 No. 1, pp. 1–15. Świerczek, A. (2014), “The impact of supply chain integration on the “snowball effect” in the transmission of disruptions: An empirical evaluation of the model”, International Journal of Production Economics, Vol. 157 No. 89–104. Tako, A.A. & Robinson, S. (2012), “The application of discrete event simulation and system dynamics in the logistics and supply chain context”, Decision Support Systems, Vol. 52 No. 4, pp. 802–815. Tang, C.S. (2006), “Perspectives in supply chain risk management”, International Journal of Production Economics, Vol. 103 No. 2, pp. 451–488. Timmer, S. & Kaufmann, L. (2019), “Do managers’ dark personality traits help firms in coping with adverse supply chain events?”, Journal of Supply Chain Management, Vol. 55 No. 4, pp. 67–97. Tomlin, B. (2006), “On the value of mitigation and contingency strategies for managing supply chain disruption risks”, Management Science, Vol. 52 No. 5, pp. 639–657. Van Der Vegt, G.S., Essens, P., Wahlström, M. & George, G. (2015), “Managing risk and resilience”, Academy of Management Journal, Vol. 58 No. 4, pp. 971–980. Vural, C.A., Roso, V., Halldórsson, Á., Ståhle, G. & Yaruta, M. (2020), “Can digitalization mitigate barriers to intermodal transport? An exploratory study”, Research in Transportation Business & Management, Vol. No. 100525.

47

Wissenschaftliche Forschungsbeiträge

Wagner, S.M. & Bode, C. (2008), “An empirical examination of supply chain performance along several dimensions of risk”, Journal of Business Logistics, Vol. 29 No. 1, pp. 307–325. Wagner, S.M. & Bode, C. (2009), Dominant risks and risk management practices in supply chains. In: ZSIDISIN, G. A. & RITCHIE, B. (eds.) Supply chain risk: A handbook of assessment, management, and performance. Boston, MA, Springer US. Wandel, S., Ruijgrok, C. & Nemoto, T. (1992), Relationships among shifts in logistics, transport, traffic and informatics-driving forces, barriers, external effects and policy options, Lund, Sweden. Wiegmans, B., Menger, I., Behdani, B. & Van Arem, B. (2018), “Communication between deep sea container terminals and hinterland stakeholders: Information needs and the relevance of information exchange”, Maritime Economics & Logistics, Vol. 20 No. 4, pp. 531–548. Wieland, A. & Durach, C.F. (2021), “Two perspectives on supply chain resilience”, Journal of Business Logistics, Vol. 42 No. 3, pp. 315–322. Wieland, A. & Wallenburg, M.C. (2012), “Dealing with supply chain risks: Linking risk management practices and strategies to performance”, International Journal of Physical Distribution & Logistics Management, Vol. 42 No. 10, pp. 887–905. Wilson, M.C. (2007), “The impact of transportation disruptions on supply chain performance”, Transportation Research Part E: Logistics and Transportation Review, Vol. 43 No. 4, pp. 295–320. Woodburn, A. (2019), “Rail network resilience and operational responsiveness during unplanned disruption: A rail freight case study”, Journal of Transport Geography, Vol. 77 No. 59–69. Woxenius, J. (2007), “Generic framework for transport network designs: Applications and treatment in intermodal freight transport literature”, Transport Reviews, Vol. 27 No. 6, pp. 733–749. Xie, Y., Liang, X., Ma, L. & Yan, H. (2017), “Empty container management and coordination in intermodal transport”, European Journal of Operational Research, Vol. 257 No. 1, pp. 223–232. Yin, R. (2014), Case study research: Design and methods, Sage publications. Yu, G. & Qi, X. (2014), Disruption management: Framework, models, and applications, Singapore, UNITED STATES, World Scientific Publishing Co Pte Ltd. Zhou, C., Li, H., Lee, B.K. & Qiu, Z. (2018), “A simulation-based vessel-truck coordination strategy for lighterage terminals”, Transportation Research Part C: Emerging Technologies, Vol. 95 No. 149–164. Zuidwijk, R.A. & Veenstra, A.W. (2014), “The value of information in container transport”, Transportation Science, Vol. 49 No. 3, pp. 675–685.

48

Implementation of Innovative Public Procurement: Conceptual foundation, success factors and recommendations for action

Markus Schaupp

Abstract Innovation is a buzzword and strategic focus area in almost all scientific disciplines of business studies; this also applies to supply management, public management as well as strategic management, while for the latter there is even a dedicated sub-discipline called innovation management. Innovative Public Procurement (IPP) is an integrative concept on the intersection of the stated disciplines that draws from these conceptual foundations and is primarily targeted on promoting innovations in national economies as well as innovating public service in itself. Various political initiatives can be found that aim to transfer this concept into practice as well as scientific studies that confirm the advantageousness. But it widely remains a theoretic concept that lacks broad and purposive implementation within the numerous public procurement offices. This article is a condensed overview on the findings, methodology used and the IPP conception in general that is outlined in detail in the author’s doctoral thesis (Schaupp 2022). In essence, this study develops an actionable guideline for the management of public procurement functions in order to tackle the restraints and minimize the resistance within the organizations with an efficient and effective implementation process.

1

Introduction

1.1

Motivation

According to the World Economic Forum respectively its founder Klaus Schwab in the future the competitiveness of economies will be largely determined by its ability to innovate respectively to produce innovations (Schwab, 2013). Therefore, the innovation

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 C. Bode et al. (Hrsg.), Supply Management Research, Advanced Studies in Supply Management, https://doi.org/10.1007/978-3-658-42635-4_3

49

Wissenschaftliche Forschungsbeiträge

system is widely seen as a crucial factor for every country worldwide and one important lever for inducing innovations is seen within the usage of public procurement for innovative purposes (Hotz-Hart/Rohner, 2014) respectively as a demand-side innovation policy tool (Edler/Georghiou, 2007). In essence various studies even proof that public money spent on innovation in the form of procurement is an even more effective instrument than direct respectively supply-side innovation policy tools (see i.a. Aschhoff/ Sofka, 2009; Guerzoni/Raiteri, 2015). This innovation effect can best be illustrated by the sheer volume of public procurement, which is estimated to be around 350 billion EUR for the example of Germany (Eßig/Schaupp, 2016). If it would be possible to channel just 1% of this volume into innovative purposes it would likely induce a substantially higher pull effect for innovations than comparable innovation measures (Crasemann, 2013). Therefore, it is not surprising that the EU has introduced various political initiatives since 2004 in order to implement IPP amongst its member states in order to boost their innovation output while also the scientific debate is steadily growing in the attempt to analyze its context and requisites. As one example the goal of “innovation” is even seen as the highest stage in the maturity model of public procurement functions developed by Harland et al. (2007), thereby following the framework by Schapper et al (2006) by rating innovation as well as sustainability as strategic/policy targets that are hard to reach and that should only be tried on respectively implemented if the primary/operative target dimensions like economic orientation/value for money and the conformity to the guiding principles of procurement law (i.a. equal treatment, transparency, accountability) are to be secured beforehand. Therefore various studies amongst public procurement authorities can be found that confirm their struggle with adhering to the operative goal dimensions while strategic topics and especially the goal of innovation are of subordinate priority respectively are not even defined as an explicit strategic goal in their procurement strategy, making the lack of strategic focus even more obvious since the existence of a procurement strategy is itself not a matter of course for public procurement functions (see Appendix/Figure 7). But this is just one possible explanatory approach for the “implementation gap” in public procurement practice that is for example explicitly highlighted by Dale-Clough (2015). Hence this article and its underlying research is targeted on revealing the implementation-related context and interrelations in the field of tension between innovation and public procurement in order to gain insights on how to better advance its implementation and ultimately achieve the goal of innovation promotion.

1.2

Major research goal and article structure

Building on the introductory statements regarding starting point and research goal of this study it best can be subsumed under the following research question which can also be seen as the guiding principle for this article:

50

Implementation of Innovative Public Procurement

Which factors and interrelations are needed to be considered by the management/leadership of a public procurement agency in order to implement Innovative Public Procurement in an efficient and effective manner? Following up on this guiding research question, the following focus areas are to be addressed in the course of this article and also serves as a structure for this article:

 Ch. 2) Defining and detailing the concept of IPP as well as insights in its state of research respectively research gaps as affirmation of the research goal

 Ch. 3) Implementation theory in the context of procurement and public manage-

ment in order to extract valuable constituents for an IPP-oriented implementation model

 Ch. 4) Insights and outcomes into the statistical validation of the conceptualized IPP implementation contiguities

 Ch. 5) Illustration of the derived IPP implementation model and its contribution to

the scientific discussion and especially its potentials for IPP implementation within operations of public procurement offices/authorities

2

Scientific foundations and conceptual groundwork of Innovative Public Procurement

In the scientific literature various slightly different definitions and terms in the context of public procurement and innovation can be found like Innovation oriented (public) procurement (see i.a. Rothwell 1981), Public/Government Technology Procurement (see i.a. Edquist/Hommen 1999), Public Procurement for Innovation (see i.a. Edquist/Zabala-Iturriagagoitia 2012), Public Procurement of Innovation/innovative Solutions (see i.a. Edler/ Georghiou 2007) and Innovative/Innovation-friendly (Public) Procurement Process (see i.a. Uyarra/Flanagan 2010). In contrast this Innovative Public Procurement/IPP is basically a comparably new integration of those slightly different perspectives, goal dimensions as well as constituents in the context of innovation and public procurement. In this regard the following definition by Kautsch et al. (2015) reflects the overarching concept of IPP best and is also the adduced definition in the context of this study: Innovative [public] procurement means buying something in an innovative way – i.e. in a way that is not usual for the situation in which the procurement is being undertaken. This may or may not lead to innovation in a solution but arguably gives more opportunity for innovation to occur; innovation procurement is specifically about conducting a procurement process in a way to generate an innovative solution to meet the unmet needs of an organization.

51

Wissenschaftliche Forschungsbeiträge

In addition to this definition also other authors can be found that formulate a slightly different definition for the IPP concept like Guerzoni/Raiteri (2015) that see it as “the purchasing activities carried out by public agencies that may lead to innovation, even if indirectly or as a by-product” or Rainville (2016) who define it as “an approach to improve purchasing through process management, which may help the market uptake of innovative products and services.” One import aspect to be highlighted is the necessity of an adapted/innovative approach of the procurement process in order to put the concept of IPP to realization, as the interpretation and sizing of the procurement process is the main driver for the implementation of IPP to reach its goal of the procurement of innovative solutions. One aspect that is so far not really reflected in the IPP definitions but is rarely mentioned casually (i.a. Amann/Eßig 2015, Dale-Clough 2015) and comes along with beforehand mentioned concept of Schapper et al (2006) is the strategic approach to this topic respectively the necessity of a procurement strategy with a formulated strategic innovation goal. Hence in the following depiction of the IPP concept this aspect was added as the foundation and prerequisite for the whole concept, as without a clear direction and mandate an implementation is unlikely. This reasoning is especially underpinned out of (strategy) implementation theory that will be subject of discussion in chapter 3. Figure 1:

Visualization of the concept of Innovative Public Procurement

Realization

Innovative Procurement Process

Innovative Public Procurement

Driver

Target

Procurement of innovative solutions

Sourcing Strategy/ Strategic Procurement

Additionally, following the aforementioned maturity model for public procurement functions by Harland et al. (2007) as well as the various definitions mentioned it needs to be clarified, that not just the goal of innovation promotion in the economy as well as the optimization of public services respectively higher quality of services and customer satisfaction are goals of IPP. Additionally, also effects on sustainability respectively its operationalization in the form of environmental and social aspects is another strategic and tantamount goal dimension of public procurement. Following up on this the promotion of small and medium sized enterprises (see i.a. Reijonen et al. 2016, Stake 2017) and best value for money in the form of low life-cycle-cost (see i.a. Panagopoulos 2016, Stake 2017) are goals of public procurement that are also assumed to be affected by IPP

52

Implementation of Innovative Public Procurement

and as byproducts. All remaining public procurement goals are codified in procurement law and thereby part of the maturity model, thereby needed to be secured to achieve the last stage of innovation. The following Figure 2 tries to connect the principle of the most economically advantageous tender/value for money which is deep seated into procurement law (see for example § 58 VgV in German procurement law), the added value dimensions of innovative solutions according to Hauschildt et al. (2016) as well as the outlined goal dimensions of IPP: Figure 2:

Value for Money principle and its relationship to IPP goal dimensions

Principle of the most advantageous tender (MEAT)

Value added by innovative solutions

Goal dimensions/factors for success evaluation of IPP

technical benefits

Quality of public services / customer satisfaction Ecological effects

additional benefits

MEAT / = Value for Money

Benefit Cost

Social effects Promotion of innovation Promotion of SMEs

economical benefits

Life-Cycle Cost

With regard to IPP as well as its groundwork and related definitions 80 relevant publications in the scientific journal literature could be identified until the set due date/30th November 2018. As breakdown of the total, three phases of IPP related research could be identified. In a first phase from the years 1984 to 1994 six publications could be found that were focused on a first exploratory research of the topic, in detail the potential of public procurement as an instrument for innovation promotion coming from an innovation policy perspective. In the following years from 1995 to 2006 no additional research contributions could be identified, but in line with the advent of various political activities IPP experienced a renaissance as a research topic in the years 2007 to 2014. The explorative contributions from the first phase were continued by addressing the fundamentals and context of IPP with a total of 36 scientific publications. This steadily growing scientific interest on the IPP topic culminated in an IPP-specific special issue of “Innovation: The European Journal of Social Science Research” and a record of 13 publications could consequently been reached in 2015 and in the period from 2015 to 2018 in total 38 publications could be recorded. Coming along with this came an increase in intensity and degree of maturity of the research with a noticeable switch from explorative to explanatory research approaches. But still only a minor number/around one third of publications could be recorded within ranked journals (according to VHB Jourqual 3),

53

Wissenschaftliche Forschungsbeiträge

with only 8 articles in A-, 11 in B- and 8 in C-journals, also hinting on the still lower maturity level of this research stream. In search of research gaps and focal areas it could be concluded that a majority of journal publications focus on the policy perspective of PPI what means they generally assess within the economics discipline whether it makes sense to use this tool with as a demand-side innovation policy tool in an innovation system. Thus, a lack of scientific research with focus on the business management perspective is evident and publications with focus on the operation-focused procurement function are only available to a minor extent. Another focus area lies within case studies respectively the exploratory delineation of successful IPP cases, whereas the deduction of generalizable and recommendable actions on how to deal with IPP in the daily practice of public procurement functions are still quite rare. That also comes along with the ascertainment that just a few studies with an explanatory research approach are available to date. As a further backing of this thesis it comes with no surprise that so far the focus of scientific publications almost never tried to explain the IPP-related circumstances by drawing on proven organizational/management theories, especially not on the procurement level/perspective. Going further into the focal area of the public procurement function as the major actor in IPP implementation, Obwegeser/Müller (2018) as the only available structured review of IPP-related literature state that “Buyers in public procurement agencies find it difficult to relate to the abstract, theoretical concepts used in these [available] studies. Thus, this study confirms previous findings pointing to the gap between the needs of practitioners on the one hand and the output by the innovation research community on the other hand.” This gap between theory and practice is further supported by other authors (see i.a. Agren/Rolfstam 2013, Georghiou et al. 2014, Caloghirou et al. 2016). Dale-Clough (2015) explicitly name it as an “implementation gap” whereas Selviaridis (2016) attests a low degree of utilization of the IPP concept in public procurements daily business and constitutes: “The uptake of innovation procurement schemes is generally speaking rather slow and despite reported success cases there is not yet a widespread adoption of processes and practices. [Accordingly] most countries they are still at early stages of implementation or even piloting.” According to Amann/Eßig (2015) and Zelenbabic (2015) the root cause for the highlighted implementation gap especially lies within counteracting barriers on the organizational level of public procurement functions as well as a lack of strategic grounding. The latter can be supported by the fact that acc. to the survey underlying this study only around 50% of German public procurement offices signify to have an existent procurement strategy (Eßig/Schaupp 2016), while this general deficit of a strategy process within public procurement was also prominently brought up by Eßig et al. (2015). Accordingly the following statement by Amann/Eßig (2015) pays on the beforehand mentioned necessity of inclusion a procurement strategy dimension into the IPP definition and emphasizes the further need for the intake of strategy implementation research and groundwork into the IPP discussion: “In order to guide public procurement agencies within this complex range of objectives and policies, there is a clear necessity for an overall procurement strategy that adds clarity and direction of action.”

54

Implementation of Innovative Public Procurement

3

Conceptual contributions from strategy implementation theory and derivation of an IPP implementation model

3.1

Relevant constituents of strategy implementation

Following up on these findings within the IPP research literature the goal of the study was consequently directed towards the development and validation of a model for IPP implementation. Therefore, various conceptual approaches of strategy implementation research with focus on public management and the implementation of procurement strategies were discussed. One major explanatory approach in this context is the procedural model of strategy implementation within a private procurement environment by González-Benito (2007), visible in the following Figure 3. Coming from this systemization the implementation process und constituents could be translated into the public procurement hemisphere (right hand side) that has some unique features. This procedural sequence is also backed by some widely used models from the (New) Public Management discipline, like the policy cycle (Gellner/Shellinger 2010) or especially the model of rationales for policy implementation by Schedler/Proeller (2011) that best specifies the unique management context of the public sector. Figure 3:

Model of “Purchasing Competence” acc. to González-Benito (2007) and its translation into the public procurement hemisphere Strategy impl. in private procurement acc. to González-Benito (2007): Business strategy

Purchasing Function

Strategic alignment + Purchasing efficacy = Purchasing competence

Adaption on strategy implementation in public procurement: Policy

(e.g. cost leadership, differentiation)

(e.g. innovation, sustainability, public value)

Purchasing competitive priorities

(strategic) procurement goals

(e.g. cost, quality, flexibility, delivery, innovation)

(e.g. value for money, innovation, sustainability, customer satisfaction)

Purchasing choices / practices

Selection of appropriate procurement tools

(e.g. supplier evaluation & development, relationshiop mgmt)

Implementation

(definition and prioritization of tools)

Implementation

(target-oriented usage of tools within the procurement process)

Purchasing performance / capabilities

Procurement success / performance

Business performance

Policy performance (economics)

(e.g. cost, quality, flexibility, delivery, innovation)

(red. of COGS, EBITDA margin, ROA, growth)

(e.g. value for money, innovation, sustainability, customer satisfaction)

(promotion of innovation, sustainability, public value)

55

Wissenschaftliche Forschungsbeiträge

Furthermore, the generalized implementation model of Kolks (1990), which is often used as general guidance/manual in implementation research and is seen as a starting point for the formulation of specific implementation processes, was selected as the superordinate blueprint for an IPP implementation process model, as it is in consonance with the conceptualization shown beforehand but adds some further implementation details (see Figure 5 for an illustration of this implementation process). In addition to a procedural approach to strategy implementation, Raps (2008) explicitly recommends to also add a factor layer to implementation models in order to further specify them on the respective implementation goal/object and give recommendations on focal actionable topics in the sense of success factors for a specific strategy implementation. Overall, the topic of success factors is a predominant stream within the strategy implementation literature and therefore it also bears major inputs to this study respectively the following analysis is heavily influenced by the best practices and methodology of success factor research. This research design also fits the formulated research goal as it is predominantly focused on the formulation of operationalizable recommendations for practitioners and also sets the direction for the remainder of this article with its success factor-oriented view on IPP (ch. 3.2) as well as the quantitative research approach/structural equation modeling and need for quantitative data (ch. 4). With view on success factors models and IPP various valuable input could derived from studies in the context of procurement and/or innovation management like:

 Success factors of strategic innovation procurement by Castaldi et al. (2011)  (1) quality of purchasing function, (2) purchasing integration, (3) supplier involvement

 Success factors of sustainable public procurement implementation by Hepperle (2015)  e.g. (1) usage of tools in the procurement process, (2) procurement/product knowledge, (3) MEAT-criteria (pricing/amortization time)

 Success factors for strategic innovation/increase of innovation output by Schlegelmilch et al. (2003)  (1) process, (2) culture, (3) people, (4) resources.

 Success factors for innovation effectiveness/successful uptake of innovations by Loewe/

Dominiquini (2006)  (1) processes & tools, (2) leadership & organization, (3) cultures & values, (4) people & skills

Building on these scaffolding as well as the overall IPP concept and the derived implementation process of IPP three major success factors for the implementation of IPP within the various public procurement functions could be formulated and outlined in the following: 1) Innovation degree of procurement strategy: This variable relates to the mere existence of a procurement strategy in the first place respectively the degree of innovation emphasized in the procurement strategy if existent. 2) Innovation capability/quality of the procurement function: This variable relates to the ability of the procurement function to innovate which inherits the aspects of an innovation culture, availability of relevant skills and resources, the general application 56

Implementation of Innovative Public Procurement

of the MEAT-criterion as well as the status of the procurement function on eye-level with other functions of a public entity. 3) Innovation-conducing / innovative procurement process: This variable concerns the application of IPP-specific tools in the different phases of the public procurement process, namely (1) demand management, (2) market research, (3) tendering/contract award and (4) processing and performance monitoring of the procurement. All these success factors are supposed to have an influence on the target variable/the attainment of a certain implementation degree of IPP and therefore the achievement of the IPP goals. An illustration of this can be seen in Figure 4 which outlines the hypothesized effects, whereas Figure 5 outlines the final and validated IPP implementation model. In addition to the process and factors of the IPP implementation model it was also tried to substantiate the model with an approved theoretical explanatory approach from the business management discipline. With regard to the topic of strategy implementation the predominantly used approach is contingency theory respectively its evolution in the form of the strategic-fit-approach. In this respect the developed IPP implementation model perfectly aligns with the mode of action outlined by Ginsberg/Venkatraman (1985) in their “systems model of contingency theory-based strategic research” where the sequence of Input formulated in Strategy implemented by Process affects Output and the establishment of a fit between all variables for maximum output is emphasized.

3.2

IPP implementation levers

With regards to success factors respective further enablers and barriers, the relevant IPP literature was screened in order to derive a condensed set of potential levers for the implementation of IPP. In this respect it could be found that in total 54 publications address at least two or more potential tools/levers with an assumed effect on the uptake and success of the IPP concept, whereas 30 publications specifically take on potential barriers and 12 focus on enabling factors of the IPP concept. As an analysis result from this literature subset an essence of 42 potential IPP levers could be uncovered. But as the IPP implementation model is intended to focus the public procurement function and their opportunities to exert influence the following five levers on the policy level (Pol01 - 05) as well as two levers on supplier-level (Suppl01 & 02) will be neglected in the following course of the study, but stated here for the sake of completeness:

 Pol01:  Pol02:  Pol03:

Simplification and innovation-promoting design of public procurement law

 Pol04:

Clear commitment of the political leadership level to the procurement of innovative products

Centralization of public procurement bodies/offices Setting of clear and unambiguous strategic targets for public procurement on the policy level

57

Wissenschaftliche Forschungsbeiträge

 Pol05: Establishment of social and/or ecological standards  Suppl01: Supplier-side existence of public procurement law knowledge  Suppl02: Innovative ability and openness regarding risk-handling on the supplier-side The remaining 35 potential levers for IPP implementation that lie within the sphere of influence of the procurement function are presented in Table 2 in the Appendix. Additionally, the count of their mentioning in the IPP-related journal literature is also outlined there. Based on the mentionings, the following Table 1 illustrates the Top 10 of potential IPP-levers whereby the bold letters indicate whether it is predominantly described as a barrier or as an enabler for the IPP implementation: Table 1: #

Top 10 list of barriers/enablers for IPP Levers

Nr. of Mentions

Barrier

Enablers

1

Risk aversity or lack of openness to new solutions

Creation of a culture conducive to innovation within the procurement function

2

Too narrow / technical specification of performance criteria

Functional description of performance criteria of the service/product

26

3

Procurement based on the lowest purchase price or no calculation of life cycle costs

Calculation and consideration of life cycle costs in the course of supplier selection decisions

25

4

No application of new or innovationpromoting procurement procedures

Application of new procurement procedures (e.g. competitive dialogue, innovation partnership, pre-commercial procurement)

23

5

Lack of capabilities to procure innovative solutions or public procurement in general.

Professionalization of the procurement function

23

6

Lack of technical knowledge

Training in technical knowledge and product competence

20

7

Lack of market research in the run-up to the call for tenders

Conducting a market investigation/market research of innovative products/solutions in the run-up to the call for tenders

18

8

Lack of strategic guidance/leadership with respect to the IPP uptake

Specification of an innovation target in the course of a procurement strategy

18

9

No risk management methodology

Implementation of risk management methodology for the procurement function / the open handling of potential IPP-risks

17

10

Emphasis on the lowest purchasing price/a short-term oriented value perception

Establishment of a long-term oriented (strategic) value understanding in the sense of the MEAT-criteria

15

58

30

Implementation of Innovative Public Procurement

4

Research design and statistical validation of the hypothesized interrelationships of IPP implementation

Building on the conceptual foundations of IPP research and relevant constituents from implementation theory, a causal model comprising the beforehand outlined IPP success factors could be defined which also comprises potential cause-and-effect relationships/hypotheses. By assigning the identified IPP implementation levers to the obvious success factors “Innovation Capability/Quality of the Procurement Function” and “Innovation-conducive/Innovative Procurement Process” (see Table 2 in the Appendix) respectively using them as formative indicators in their measurement models (see greyedout blocks) the causal model could be extended to the shown structural equation model: Figure 4:

Structural equation model & highlighted validated causal effect relationships Qual01 Qual02 Qual03 Qual04 Qual05 Qual06 Qual07 Qual08 Qual09 Qual10 Qual11 Qual12 Qual13 Qual14 Qual15 Qual16

Strat01 Strat02 Strat03 Strat04

Quality of Proc. Function ProcFunc_Qual Degree of IPP Implementation IPP_ImplDegr

Innovation-Degr. of Proc. Strategy InnoDegr_Strat Innovative Proc. Process Inno_Proc

Degr01 Degr02 Degr03 Degr04 Degr05 Degr06

Proc01 Proc02 Proc03 Proc04 Proc05 Proc06 Proc07 Proc08 Proc09 Proc10 Proc11 Proc12 Proc13 Proc14 Proc15 Proc16 Proc17 Proc18

In order to analyze and validate the causal relationships of the IPP implementation model quantitative data from a broad study amongst German public procurement entities was utilized. This data stems from a survey that was conducted in 2016 and was a collaborative effort of the Research Center for Public Procurement Law and Management (FoRMöB) of the Bundeswehr University Munich together with the Competence Center for Innovative Procurement (KOINNO) that is administered by the German Association for Materials Management and Purchasing (BME).1 As a prerequisite for this study a total of 15.381 Ger-

1

For the descriptive survey results see: www.koinno-bmwk.de/koinno/publikationen/detail/ erfassung-des-aktuellen-standes-der-innovativen-oeffentlichen-beschaffung-in-deutschland/.

59

Wissenschaftliche Forschungsbeiträge

man public procurement entities were derived from an analysis of the EU-mandated Tenders Electronic Daily (TED; www.ted.europa.eu) database which captures all public procurement efforts that exceed the value thresholds stipulated by the European Public Procurement Law. In a next step all entities were contacted and a total of 444 questionnaires could be obtained. But due to a high degree of missing values only 207 of those data sets could be drawn for the statistical analysis of the structural equation model, whereat this still exceeds the calculated minimum sample size of 170 units of analysis. This exclusion of data sets stems from statistical requirements and various preliminary analyses (e.g. check for sample representativeness, check for normal distribution of data, exclusion of potential survey biases, validity and reliability of the measurement models) with regard to the scientific quality criteria that come along with the used Partial-LeastSquare (PLS) approach respectively the usage of SmartPLS as an analysis tool. As another consequence for example two indicators/IPP implementation levers needed to be excluded from the analysis (Proz08 & Proz18, also indicated in Figure 4 with dotted lines). But overall, the compliance of the data set and the defined measurement models with regard to the relevant scientific quality criteria could be proven. As a result of the performed structural equation modeling analysis it could verified that a significant direct cause-and-effect relationship between the constructs InnoDegr_Strat  ProcFunc_Qual, ProcFunc_Qual  Inno_Proc, Inno_Proc  IPP_ImplDegr is evident, whereas for the remaining hypothesized relationships a verifiable effect could not be detected. This is highlighted in Figure 4 with the greyed-out arrows while the proven relationships are kept in dark color. In addition to these direct effects, it was also detected that the constructs of InnoDegr_Strat and ProcFunc_Qual indeed have a significant total effect on the target variable/the Degree of IPP Implementation (IPP_ImplDegr). This means that this effect is indirect and mediated via the successive constructs. For InnoDegr_Strat the effect is forwarded through the causal chain of InnoDegr_Strat  ProcFunc_Qual  Inno_Proc  IPP_ImplDegr, whereas the effect of ProcFunc_Qual is passed through Inno_Proc. This is highlighted in Figure 4 with the dotted and dashed arrows that go via the mediating variables to the target variable. In a nutshell these outcomes imply an interpretation of the outlined causal chain as a procedural sequence of relevant implementation steps, where the existence of an innovative procurement strategy and a high-quality/innovation-capable procurement function will not have any perceptible influence on the IPP implementation target as long as you have not equally implemented an innovative procurement process with relevant tools. In reference to the different varieties of the strategicfit concept outlined by Venkatraman (1989), this finding can be concluded as an “Fit as Mediation” case. As a further interpretation of this results the success factor systematization by Miller (1997) suggests for the innovative procurement process variable an assignment as a “Realizer” variable, whereas the variables of the innovative procurement strategy and the innovation capability of the procurement function can be seen as “Enabler” success factors due to their indirect effect on the target variable. Additionally, as a consequence of the formulation of formative measurement models respectively the application of the PLS-approach a further analysis step could be performed 60

Implementation of Innovative Public Procurement

(Importance-Performance-Map-Analysis/IPMA) that contrasts the influence of the various levers on a successful IPP implementation towards the current on average degree of application of the levers in the daily practice of the consulted public procurement entities. Drawing on this comparison of importance and performance, a prioritization of implementation levers respectively five clusters could be deducted.2 The entire importance and performance scores as well as the prioritization clusters are outlined in the Appendix (Table 2). As a short summary it can be asserted that a procurement strategy with a formulated innovation goal is by far the most influential and important lever for IPP implementation. With regard to the other two success factors the setting up of an innovationrewarding incentive system (Qual08) and the calculation/consideration of life cycle costs in the course of the supplier selection and contract award process (Proz07) are the most influential IPP levers. Additionally, it could also be ascertained that there are levers that initially were presumed with a positive influence on IPP implementation but based on the IPMA are estimated to have even a negative effect (Cluster 5).

5

Conclusion

Based on the causal relationships of the IPP implementation model (see Figure 4), Figure 5 illustrates the validated cause-and-effect relationships within the developed IPP implementation model. This illustration and the following chapter regarding the implications for the management of a public procurement function are basically the answer to the overarching research question stated in chapter 1.2.

2

Prioritization = (100 – Performance / 2) × Importance

61

62

1

7

Trigger

8

Deviation 6 Analysis

Controlling of Strategy Realization

actual = intended state

Mgmt.-related Information Flow

Tasks of functional Impl. Mgmt.

Policy Objectives

7

General Impl. Process by Kolks (1990)

7

(responsible body of implementation)

7 7 Management

5

Realization 42 of Implementation Measures

Perspective of Analysis

4

Communication & Enforcement

6

Proc-Cluster 5

Qual-Cluster 5

Success Factors

3

Proc-Cluster 4

Qual-Cluster 4

(Livecycle-) Cost

Benefit / Performance

(actual state = IPP)

Review of Goal Achievement

Proc-Cluster 3

Qual-Cluster 3

Purchasing Decisions

Degree of IPP Implementation

actual state = intended state?

Implementation Controlling

Execution / Perpetuation

Proc-Cluster 2

Qual-Cluster 2

Implementation Style

Proc-Cluster 1

Qual-Cluster 1

Innovative Procurement Process

intended state

Up- / Downstream Phases of Strat. Mgmt.

2

Determination of Impl. Measures

3

Operationalization

Innov. Capab. / Quality of Proc. Function

initial state

Implementation/Realization

Target/Performance Indicator

Legend:

0

Derivation of Impl. Goals

(intended state = IPP)

Innov.-Degree of Proc. Strategy

Analysis of Strategy & Impl. Environment

StrategyFormuliation

Implementation Planning

initial state = traditional public procurement

Figure 5:

actual ≠ intended state

Public Procurement Function (= Implementation Context/Environment, Unit of Analysis)

Wissenschaftliche Forschungsbeiträge

Validated IPP implementation model

Implementation of Innovative Public Procurement

5.1

Operational implications for the management of public procurement functions

The IPP implementation model offers a procedural flow of tasks in different activity spheres that are specifically targeted on an efficient and effective IPP implementation: 1) Analysis of strategy & implementation environment: In this phase an existing procurement strategy should be analyzed with regard to the strategy content that should fit the implementation environment and not pose any deficits or inconsistencies. If necessary, the existing procurement strategy should be adapted or even reformulated to reflect the innovation goal. For an increased innovation intensity within the procurement strategy measurable target values can be defined like a minimum number of innovation-focused procurement projects per year and/or an application frequency of various IPP-conducive procurement tools. If no procurement strategy is in existence, strategy formulation should be the initial task (step 0) of the implementation process. 2) Derivation of implementation goals: Based on the procurement strategy, implementationspecific goals should be defined. For this task the systemization of relevant procurement goal dimensions acc. to Kolks (1990) was translated with regard to the IPP implementation and can serve as a manual for own implementation goals. Overall the systemic goals address the quality of implementation and are also ultimately the source for the determination of the implementation degree whereas the procedural goals refer to time and cost aspects of the implementation process: Goal dimensions of the IPP implementation Successful IPP implementation

Superordinate goal

Implementation degree of IPP (actual state = intended state)

of IPP

Enforcement of IPP Understanding of IPP

Abbility for IPP

Realization of IPP Willingness for IPP

Efficiency goals of IPP implementation

Degree of application (in %) of specific tools

Effectivity goals of IPP implementation

Customer satisfaction

Cost Ecological aspects

Process- and time targets of IPP implementation progress acc. to plan)

Promotion of innovation

Benefits Cost targets of IPP (Personnel- and cost, cost for external services etc.)

Promotion of SMEs

Procedural goals (How?)

Priorization of IPP levers/tools

Low livecycle cost

Systemic goals (What?) Knowledge

Social aspects

Figure 6:

63

Wissenschaftliche Forschungsbeiträge

3) Determination of implementing measures: The planning phase of the IPP implementation process is concluded with the definition of specific measures in the form of an action plan that should be focused on the efficiency and efficacy of the implementation process (operationalization of the procurement strategy). During this phase the derived prioritization of IPP levers/clusters shown in Table 2 (Appendix) can be a valuable input but should just be treated as a general recommendation and therefore critically be assessed towards the effort-benefit-ratio for the specific implementation context/procurement function as the management should have the best in detail knowledge on what potentially works best within their area of responsibility. 4) Communication & Enforcement: With the end of the planning phase the defined action plan needs to be communicated to the relevant stakeholders and at least at this point the backing of the superordinate management level should be secured for the further process. If the right implementation style is chosen, which is heavily dependent on the specific implementation context, the general resistance should be decreased to a minimum. Likewise, the motivation of employees towards the intended goal of IPP implementation and dedicated reward systems should not be neglected. 5) Realization of implementation measures: In this phase the defined action plan is processed and thereby the state within the procurement function is increasingly shifted towards the intended state of an implemented IPP concept. 6) Execution/Perpetuation: As soon as the various measures and IPP-conducing tools are applied, their contribution towards the IPP goals need to be maximized. Over the long run this needs to be viewed closely and from experience often requires additional efforts to keep a high implementation degree due to the erosion of implementation measures. Additionally, it also needs to be kept in mind that with the initiation of an implementation process the total output of the implementation context/procurement function will likely decrease in the first place due to confusion. 7) Review of goal achievement: After having worked through the action plan it should be reviewed whether the defined IPP implementation goals could be achieved. Based on this review it needs to be assessed whether the actual state of IPP degree conforms with the intended state of IPP implementation outlined in the procurement strategy. If this can be confirmed the implementation process was successful. 8) Deviation analysis: If a discrepancy between the actual and the intended state is detected, an in-detail analysis of the deviations and their root-causes should be performed. Additionally, it should be reviewed whether the action plan was potentially not perfectly aligned with the intended goals. Based on these facts an adjustment of the procurement strategy and/or the action plan can be reasonable which may also come along with another cycle through the whole IPP implementation process. With regard to the described IPP implementation process it should be noted that this describes an ideal top-down implementation concept which, in addition to the existence of a procurement strategy, also requires the backing of higher management levels. If

64

Implementation of Innovative Public Procurement

these preconditions are not or not yet in place, a bottom-up approach can also be pursued by the management of a public procurement function. In those cases, the focus should be put on the innovative procurement process with its IPP levers as they are “Realizers” with direct effect on the IPP implementation degree. As said before the respective tools should also be evaluated against an effort-benefit-ratio as the starting point for prioritization. For example, the invitation to bid explicitly for innovative products and solutions (Proc5) as well as the admission of variants in the award process (Proc1) are comparatively simple measures, quickly implemented and are associated with a positive effect on innovation output (see Table 2/Appendix), therefore ideal for an easy start into IPP. Those experiences with IPP and the potential positive effects on the IPP goals should be documented in order to be able to demonstrate the added value of IPP to superordinate management. Should this result in broader support, allocated resources and a mandate for an in-depth IPP implementation, it should be reverted to the idealistic top-down-approach of the implementation process. Additionally, the bottom-up approach is especially suited for smaller procurement offices that are still largely focused on operational issues and/or lack sufficient resources for an end-to-end implementation, even it could also be concluded in the course of a group analysis that there is no notable difference in the implementation characteristics between small and large public procurement functions as well as within their position on different administrative levels. On the other hand, larger procurement departments or those that have a formulated procurement strategy should always follow the ideal-typical top-down IPP implementation process.

5.2

Scientific implications for IPP research and limitations of the study

With regard to the scientific perspective, this study could contribute to various aspects and research gaps in the research stream of IPP. While it delivers a holistic view and updated state of research regarding IPP research, contributes to the lack of quantitative studies and thereby the generation of practically manageable recommended course of actions as well as adds founding to IPP from a theoretical standpoint by validating the strategic-fit approach as one explanatory approach, it especially provides valuable insights regarding the business/public management perspective of public procurement functions. Besides of uncovering and validating success factors and more precise the implementation levers of IPP, it also puts the procurement strategy respectively a strategic approach in the center of the discussion and also proposes it as another layer to the definition of IPP. Also, it proves that various perspectives of IPP need to be taken into the consideration while evaluating the effectiveness of IPP, not just the innovation promotion perspective as introduced by several publications. Bringing it to a broader scheme, the study and especially the developed implementation process contributes to the posed gap of strategy process within the public procurement discipline, from a scientific as well as an operative standpoint, that was brought up by 65

Wissenschaftliche Forschungsbeiträge

Eßig et al. (2015). Additionally, it was also shown that the model of different rationales by Schedler/Proeller (2011) also adds a valuable perspective for public procurement functions in their strategy development and implementation, also hinting the relevancy of New Public Management/strategic management models in this context. Ultimately the study with its range of 444 descriptive and 207 statistical unit of analysis is one of the biggest quantitative studies within the (scientific) realm of public procurement, especially with focus on Germany where it is the most extensive survey so far. Concluding it also needs to be mentioned that the study design comes along with various limitations like the fading-out the of influences by the policy level as well as the supplier market, the non-consideration of implementation styles/enforcement in the causal model and statistical validation as well the general points of criticism regarding the adducted methodology of success factor research and the strategic-fit approach. Furthermore, it needs to stated that a single-source measurement of the success/target variable is seen as detrimental, especially in the case of a polyadic construct such as the IPP success in this context. Correspondingly, according to the recommendations by Flynn (2018), that are explicitly targeted on supply management research, a multi-source measurement by additional stakeholders like the policy and supplier perspective would be necessary. But relating to the authors general guidelines it could also been attested that this is acceptable for this study and time being as IPP is still a new construct and comparably immature field of study. But with further research and maturity a multisource approach definitely needs to be taken into consideration for future IPP research and poses possibilities for future studies.

References Agren, R.; Rolfstam, M. (2013): A conjecture on institutional rationalities and property rights in public procurement of innovation, in: Rivista di Politica Economica, 2, 2013, pp. 137–157. Amann, M.; Eßig, M. (2015): Public procurement of innovation – Empirical evidence from EU public authorities on barriers for the promotion of innovation, in: Innovation: The European Journal of Social Science Research, 28(3), 2015, pp. 282–292. Aschhoff, B.; Sofka, W. (2009): Innovation on demand - Can public procurement drive market success of innovations?, in: Research Policy, 38(8), 2009, pp. 1235–1247. Caloghirou, Y.; Protogerou, A.; Panagiotopoulos, P. (2016): Public procurement for innovation - A novel eGovemment services scheme in Creek local authorities, in: Technological Forecasting and Social Change, 103, 2016, pp. 1–10. Castaldi, C.; ten Kate, C.; den Braber, R. (2011): Strategic purchasing and innovation – A relational view, in: Technology Analysis & Strategic Management, 23(9), 2011, pp. 983–1000.

66

Implementation of Innovative Public Procurement

Crasemann, W. (2013): Innovationsorientierte öffentliche Beschaffung, in: Eßig, M.; Bundesverband für Materialwirtschaft, Einkauf und Losgistik e.V. (BME) (Eds., 2013), pp. 89–117. Dale-Clough, L. (2015): Public procurement of innovation and local authority procurement - Procurement modes and framework conditions in three European cities, in: Innovation: The European Journal of Social Science Research, 28(3), 2015, pp. 220–242. Edler, J.; Georghiou, L. (2007): Public procurement and innovation – Resurrecting the demand side, in: Research Policy, 36(7), 2007, pp. 949–963. Edquist, C.; Hommen, L. (1999): Systems of innovation - theory and policy for the demand side, in: Technology in Society, 21(1), 1999, pp. 63-79. Edquist, C.; Zabala-Iturriagagoitia, J.M. (2012): Public Procurement for Innovation as mission-oriented innovation policy, in: Research Policy, 41(10), 2012, pp. 1757– 1769. Eßig, M.; Amann, M.; Glas, A.H. (2015): Strategies in Public Procurement. Is there a deficit? - Literature analysis and first empirical findings, in: Dethloff, J.; Haasis, H.D.; Kopfer, H.; Kotzab, H.; Schönberger, J. (Eds., 2015), pp. 369–386. Eßig, M.; Schaupp, M. (2016): Erfassung des aktuellen Standes der innovativen öffentlichen Beschaffung in Deutschland - Darstellung der wichtigsten Ergebnisse, Neubiberg 2016. Eßig, M.; Schaupp, M. (2016): Ermittlung des innovationsrelevanten Beschaffungsvolumens des öffentlichen Sektors als Grundlage für eine innovative öffentliche Beschaffung, Neubiberg 2016. Flynn, B.; Pagell, M.; Fugate, B.S. (2018): Editorial: Survey Research Design in Supply Chain Management - The Need for Evolution in Our Expectations, in: Journal of Supply Chain Management, 54(1), 2018, S. 1–15. Gellner, W.; Hammer, E.-M. (2010): Policyforschung, München 2010. Georghiou, L.;Edler, J.; Uyarra, E.; Yeow, J. (2014): Policy instruments for public procurement of innovation - Choice, design and assessment, in: Technological Forecasting and Social Change, 86, 2014, pp. 1–12. Ginsberg, A.; Venkatraman, N. (1985): Contingency Perspectives of Organizational Strategy - A Critical Review of the Empirical Research, in: The Academy of Management Review, 10(3), 1985, pp. 421–434. González-Benito, J. (2007): A theory of purchasing's contribution to business performance, in: Journal of Operations Management, 25(4), 2007, pp. 901–917. Guerzoni, M.; Raiteri, E. (2015): Demand-side vs. supply-side technology policies – Hidden treatment and new empirical evidence on the policy mix, in: Research Policy, 44(3), 2015, pp. 726–747.

67

Wissenschaftliche Forschungsbeiträge

Harland, C.M.; Telgen, J.; Knight, L.; Callendar, G.; Thai, K.V. (2007): Challenges facing public procurement, in: Knight, L.; Harland, C.M.; Telgen, J.; Thai, K.V.; Callendar, G.; McKen, K. (Eds., 2007), pp. 351–357. Hauschildt, J.; Kock, A.; Salomo, S.; Schultz, C. (2016): Innovationsmanagement, München 2016. Hepperle, F. (2015): Nachhaltigkeit in der öffentlichen Beschaffung – eine empirische Studie auf kommunaler Ebene in Baden-Württemberg, Wiesbaden 2015. Hotz-Hart, B.; Rohner, A. (2014): Nationen im Innovationswettlauf - Ökonomie und Politik der Innovation, Wiesbaden 2014. Kahlenborn, W.; Moser, C.; Frijdal, J.; Eßig, M. (2010): Strategic Use of Public Procurement in Europe - Final Report to the European Commission MARKT/2010/02/C., Berlin 2010. Kautsch, M.; Lichoń, M.; Whyles, G. (2015): Tools of innovative public procurement in health care in Poland, in: Innovation: The European Journal of Social Science Research, 28(3), 2015, pp. 312–323. Kolks, U. (1990): Strategieimplementierung: Ein anwenderorientiertes Konzept, Wiesbaden 1990. Loewe, P.; Dominiquini, J. (2006): Overcoming the barriers to effective innovation, in: Strategy & Leadership, 34(1), 2006, pp. 24–31. Miller, S. (1997): Implementing strategic decisions - Four key success factors, in: Organization Studies, 18(4), 1997, pp. 577–602. Obwegeser, N.; Müller, S.D. (2018): Innovation and public procurement - Terminology, concepts, and applications, in: Technovation, 74/75, 2018, pp. 1–17. Panagopoulos, S. (2016): Strategic EU public procurement and small and medium size enterprises, in: Bovis, C. (Ed., 2016), pp. 268–294. Rainville, A.M. (2016): From whence the knowledge came – Heterogeneity of innovation procurement across Europe., in: Journal of Public Procurement, 16(4), 2016, pp. 463–504. Raps, A. (2008): Erfolgsfaktoren der Strategieimplementierung – Konzeption, Instrumente und Fallbeispiele, 3. edition, Wiesbaden 2008. Reijonen, H., Tammi, T., Saastamoinen, J. (2016): SMEs and public sector procurement Does entrepreneurial orientation make a difference?, in: International Small Business Journal, 34(4), 2016, pp. 468–486 Rothwell, R. (1981): Pointers to government policies for technical innovation, in: Futures, 13(3), 1981, pp. 171-183. Schapper, P.; Veiga, J.; Gilbert, D. (2006): An analytical framework for the management and reform of public procurement, in: Journal of Public Procurement, 6(1/3), 2006, pp. 1–26.

68

Implementation of Innovative Public Procurement

Schaupp, M. (2022): Implementierung der Innovativen Öffentlichen Beschaffung – Konzeption, Erfolgsfaktoren und Handlungsempfehlungen, Wiesbaden, 2022. Schedler, K.; Proeller, I. (2011): New Public Management, 5. edition, Bern 2011. Schlegelmilch, B.B.; Diamantopoulos, A.; Kreuz, P. (2003): Strategic innovation - The construct, its drivers and its strategic outcomes, in: Journal of Strategic Marketing, 11(2), 2003, S. 117–132. Schwab, K. (2013): On the Innovation of Nations, in: The New York Times 15.12.2013. Selviaridis, K. (2016): Public procurement and innovation - A review of evidence on the alignment between policy and practice, conference paper, 25th International Purchasing & Supply Education and Research Association (IPSERA) Conference, Dortmund 2016. Stake, J. (2017), Evaluating quality or lowest price: Consequences für small and mediumsized enterprises in public procurement, in: The Journal of Technology Transfer, 42(5), 2017, S. 1143–1169. Uyarra, E.; Flanagan, K. (2010): Understanding the Innovation Impacts of Public Procurement, in: European Planning Studies, 18(1), 2010, pp. 123–143. Venkatraman, N. (1989): The Concept of Fit in Strategy Research - Toward Verbal and Statistical Correspondence, in: The Academy of Management Review, 14(3), 1989, pp. 423–444. Wegweiser GmbH Berlin Research & Strategy (2009): „Einkäufer Staat“ als Innovationstreiber – Entwicklungspotenziale und Handlungsnotwendigkeiten für eine innovativere Beschaffung im öffentlichen Auftragswesen Deutschlands, Wegweiser GmbH Berlin Research & Strategy 2009. Wegweiser GmbH Berlin Research & Strategy (2016): Evaluierung des Gesetzes über die Sicherung von Tariftreue und Sozialstandards sowie fairen Wettbewerb bei der Vergabe öffentlicher Aufträge (Tariftreue- und Vergabegesetz Schleswig-Holstein – TTG), Wegweiser GmbH Berlin Research & Strategy 2016. Zelenbabic, D. (2015): Fostering innovation through innovation friendly procurement practices - A case study of Danish local government procurement, in: Innovation: The European Journal of Social Science Research, 28(3), 2015, pp. 261–281.

69

Wissenschaftliche Forschungsbeiträge

Appendix Figure 7:

Empirical indications of an IPP implementation gap in public procurement practice

Relevance of targets in public procurement functions (“important” and “very important” added) Target group: German public procurement authorities

Source: Wegweiser GmbH Berlin Research & Strategy (2009), pp. 81.

Wirtschaftlichkeit Value for Money

100%

Kostenreduktion Cost reduction Qualitätssicherung / -steigerung Quality assurance/increase

96%

Transparenz des Beschaffungsprozesses Transparency of procurement process

94%

Versorgungssicherheit Security of supply Promotion of SMEs Mittelstandsförderung Promotion of innovation Innovationsförderung

241 235 241

88%

Wettbewerbsförderung Promotion of competition Regional development Regionale Entwicklung

244

96%

235

74%

233

66% 60% 56%

228 231 231

Are additional requirements or strategic goals requested in the award documents?

Which strat. targets are explicitly specified in your procurement strategy? (multiple answers possible)

Target group: Public proc. authorities & supplier in Schleswig-Holstein

Target Group: European public procurement authorities

Source: Wegweiser GmbH Berlin Research & Strategy (2016), pp. 65 & 96. Ja Nein

Source: Kahlenborn et al. (2010), pp. 39 (Annex IV: Web Survey).

Suppl. Anb.

Social Soziale aspects Aspekte

Suppl. Anb.

Innovative Innovative aspects Aspekte

70

Proc. Ag.

Umweltbezogene Ecological aspects Aspekte

Proc. Ag.

Proc. Ag.

57%

43%

53% 30%

47% 70%

52% 29%

Suppl. Anb. 14%

48% 71% 86%

133

Ecological targets Umweltziele

167

Social sozialetargets Ziele

135

Innovation targets Innovationsziele

172

None of them Keine der Genannten

132 158

32% 24%

737 543

12% 276 59%

1345

Implementation of Innovative Public Procurement

Table 2:

Extracted potential levers for IPP implementation

Driver

Tools / Actions

Journ. Ment.

Prio. (Imp. / Perf.) + Cluster

InnoDegr_Strat: Degree of innovation of the procurement strategy – 1 pot. lever for IPP implementation: Strat

Specification of an innovation target in the course of a procurement strategy

18

15,55 (0,188 / 34,5) 1

ProcFunc_Qual: Innovation capability / quality of procurement function – 16 pot. levers for IPP implementation: Qual01 Establishment of a long-term oriented (strategic) economic efficiency understanding

15

5,39 (0,074 / 54,4) 2

Qual02 Securing of sufficient resources (funding, manpower etc.)

12

1,05 (0,013 / 38,9) 4

Qual03 Execution of risk management and/or the open handling of possible risks

17

3,12 (0,042 / 51,3) 3

Qual04 Creation of cross-functional / interdisciplinary procurement teams

7

3,59 (0,048 / 50,3) 3

Qual05 Documentation and communication of IPP experiences

6

1,79 (0,022 / 37,6) 3

Qual06 Simplification of bidding / tendering through digital procurement technologies / systems

9

-0,46 (-0,006 / 45,4) 5

Qual07 Full control / overview of (total) cost within the procurement function

9

2,64 (0,035 / 48,9) 3

Qual08 Setting (monetary) incentives for employees to procure innovative solutions (incentive system)

13

6,00 (0,064 / 12,6) 1

Qual09 Creation of an opportunity for consulting by external experts / intermediaries

11

1,63 (0,021 / 45,1) 4

Qual10 Establishment of a continuous project management and/or execution of the procurement undertakings as projects

8

0,87 (0,012 / 54,7) 4

Qual11 Creation of more flexibility, possibilities for action and responsibility for the individual procurer

11

1,14 (0,015 / 48,3) 4

Qual12 Creation of an innovation-promoting culture within the procurement function

30

4,51 (0,059 / 47,0) 2

Qual13 Training of technical knowledge and product competence

20

-1,11 (-0,016 / 61,2) 5

Qual14 Setup of procurement market knowledge / knowledge about innovative products and solutions

8

5,00 (0,069 / 55,2) 2

Qual15 Training of economical knowledge and/or authority in the application of business methods

9

3,66 (0,051 / 56,6) 3

Qual16 Ensuring competency in public procurement law / public procurement

7

-0,79 (-0,013 / 78,5) 5

Inno_Proc: Procurement process conducive to innovation – 18 pot. Levers for IPP implementation: Proc01 Admission of variants in the award procedure

1

3,43 (0,044 / 44,3) 3

Proc02 Functional specification of needed product / service performance

26

-1,45 (-0,021 / 61,9) 5

Proc03

Consideration of other award criteria (performance criteria) in addition to cost in the award decision (value for money = performance/cost-ratio)

Proc04 Innovative design of contracts Invitation to submit offers for innovative products and solutions by explicitly naming the innovation objective in the invitation to tender

21

4,60 (0,070 / 68,7) 2

7

-1,14 (-0,015 / 48,5) 5

4

4,79 (0,060 / 40,3) 2

Proc06 Use of negotiated procedure

8

-1,08 (-0,014 / 46,0) 5

Proc07 Calculation and consideration of life cycle costs in the course of the supplier selection decision

25

6,86 (0,092 / 50,9) 1

Proc08 Equal treatment of all suppliers, ensuring fair and transparent competition

5

Proc09 Early communication of (innovative) requirements to the market

10

-1,08 (-0,015 / 55,7) 5

Proc10 Bundling of requirements with other procurement units (especially in the case of small order volume)

12

1,85 (0,023 / 39,4) 3

9

2,99 (0,042 / 57,7) 3

Proc05

Early integration of procurement function, already with the emergence of need at the demand / business owning department (anticipatory demand management) Execution of market investigation / market search of innovative products and solutions in the run-up of the invitaProc12 tion to tender Proc11

leliminated

-

18

3,25 (0,045 / 55,5) 3

Proc13 Application of lot-by-lot awarding (especially for large order volumes)

8

-1,66 (-0,025 / 67,5) 5

Proc14 Application of new award procedures (competitive dialog, innovation partnership, pre-commercial procurement)

23

4,95 (0,057 / 26,3) 2

Continuous communication between potential suppliers and the contracting/procurement agency (avoidance of information asymmetries, interactive learning)

12

3,25 (0,043 / 48,9) 3

Proc16 Evaluation of the actual costs / performance of procured products in the post-award phase (product evaluation)

7

3,49 (0,047 / 51,3) 3

Proc17 Creation of an opportunity to demonstrate prototypes or test innovative products (piloting)

6

-1,02 (-0,014 / 53,6) 5

Proc18 Avoidance of overly restrictive suitability criteria for potential suppliers

2

Proc15

leliminatedl

-

IPP_ImplDegr: Degree of IPP implementation – 6 target dimensions for IPP implementation: Degr01 Procurement of socially responsible solutions / compliance with social standards

7

-

Degr02 Promotion of small and medium-sized enterprises

7

-

Degr03 Promotion of innovations in the economy

8

-

Degr04 Procurement of ecological products and solutions

11

-

Degr05 Achieving a high level of customer / user satisfaction

13

-

Degr06 Achievement of low life cycle costs

3

-

71

Supply chain power structures — qualitative contributions on the influence of digitalization on power allocations along the supply chain

Janosch Brinker, Hans-Dietrich Haasis

Abstract While the complexity of supply chains increases, market power is more often centralized to a few players within the chains. As an amorphously constructed term, the concept of power has become a research objective in certain areas. Nevertheless, there need to be more empirical improvements in the research area of supply chain management (SCM). This research aims to close the gap by using qualitative data and developing a literature-based, empirically proven model assumption about how digitalization influences the mechanisms of power in SCM. A category system and theoretical assumptions are proposed based on a qualitative study comprising 15 expert interviews with senior supply chain managers and executive managers. This paper provides an overview to establish a more profound understanding of how the power mechanisms are substantiated in the supply chains and points out different influence strategies in SCM concerning the digitalization of the chain. Therefore, it offers a framework for how digitalization influences the power structures in the supply chain compared to the theoretical understanding of power in SCM.

1

Introduction

“The ability to combine massive data collection, previously unimagined information connectivity and visibility, and ever-improving analysis capabilities, combined with a physical network consisting of broad geographic network coverage, local fulfillment presence, and parcel/postal delivery, have positioned these twenty-first-century retailers as leaders of the digital supply chain era” (Stank et al., 2019). The importance of resource data, information availability and digital business models is steadily growing in SCM. The increasing market share of digital enterprises is consequently leading to a shift in the allocation of power. It centralizes power

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 C. Bode et al. (Hrsg.), Supply Management Research, Advanced Studies in Supply Management, https://doi.org/10.1007/978-3-658-42635-4_4

73

Wissenschaftliche Forschungsbeiträge

in the hands of a few companies. The growth of companies like Amazon, ALPHABET INC and Alibaba is part of this transformation. In May 2021, eight of the ten largest companies worldwide operated within a digital business model or sold digital products (Price Waterhouse Coopers, 2021). According to this, SMEs, or even less powerful companies, can become dependent and influenced by their more powerful suppliers (Johnsen & Ford, 2008). Against the backdrop of the disruptive characteristics of digitalization in SCM, considerations about the impact of digitalization on power structures and the integration of power in supply chain decisions are becoming increasingly important (Cox & Ireland, 2006, p. 263f.; Huo et al., 2016). The concept of power is one central variable for different economic and social scientific models and builds the foundation for different scientific theories, especially in the analysis of interhuman relationships. Numerous publications are developing power approaches and offer contributions about power structures in marketing relations and social relationships, as well as in business dyads (Dahl, 1957; El-Ansary & Stern, 1972; Emerson, 1962; Pfeffer & Salancik, 2003; Porter, 1980). The concept of power is not fully operationalized in SCM (Furubotn & Richter, 2010, p. 200f.), so the recognition of power structures in supply chain strategies and SCM theories is missing (Cox & Ireland, 2006, p. 263f.). The dyadic character of supply chain relationships and mutual influences generates the necessity to integrate institutional power into strategic decisions. At the same time, the notion of market power in a digitalized environment is no longer justified by the traditional approaches of substitutes in products or services alone. Digital platforms, products and services remove both spatial and product-related physical limitations from previous definitional approaches leading to the need to rethink existing approaches (Hovenkamp, 2021). This importance is reflected, for example, in the introduction of the EU’s Digital Markets Act at the end of 2022 to limit opportunistic, marketdominating behavior by platform-based companies and counteract the abuse of power (European Commission, Directorate-General for Communications Networks, 2020). Taking this into account, the following research question is formulated: RQ: How is the digitalization of supply chains influencing the construct of power within supply chains? This research merges supply chain digitalization and the concept of power in SCM. A qualitative research approach is applied to answer the question of how the concept of power is understood in supply chains nowadays and which dimensions of the construct of power in SCM change in the context of digitization. Due to the amorphous nature and fuzziness of power and the growing importance of digital business models and digitals actors in supply chains, this research aims to bridge the gap between the digitalized environment and power research within SCM, while also conducting the first steps within the iterative process of theory development. From this, three main research objectives can be derived:

74

Supply chain power structures

 RO1: Differentiating the theoretical understanding of power in SCM from the one prevailing in today’s supply chains

 RO2: Empirical validation of the concept of power in SCM  RO3: Identify the impact of digitalization on power in SCM The following sections present a theoretical and conceptual framework, based on the interviews. It compares the concept of power in traditional and digital supply chains. According to the definition of power in Section 2, the interview analysis in Section 3 will be structured in two parts: a comparison of the literature-based power concept with the qualitative validated concepts and a presentation of the sources of power, different influence strategies and types of applied power, even differentiating between traditional and digital supply chain concepts. Secondly, a presentation of strategies to deal with power asymmetries in the digitalized environment. The analysis starts with a short validation of the status quo regarding the level of digital transformation in the supply chains of industries.

2

Theoretical foundations of the concept of power and digitalization in SCM

“Power [...] is the probability that one actor within a social relationship will be in a position to carry out his own will despite resistance, regardless of the basis on which this probability resists” (Weber, 1976, p. 53). Max Weber postulated a definition of power in social and economic structures and highlighted the amorphic characterization of the construct of power. Summarizing approaches of defining power by Weber, El-Anasyr-Stern, Emerson, French and Raven, “power is the ability to influence the decision variables of other supply chain participants, based on a mutual dependency relationship, regarding the participants' individual preferences” (Brinker & Haasis, 2022). Based on this definition, three sub-areas of power can be conducted: Sources of power, influence strategies and types/targets of applied power. Power is rooted in dependency, which is usually established by a dependency on resources and induces an individual ability to exert targeted influence on decision variables of other supply chain actors (Brinker & Haasis, 2022). This influence aims to archive the opportunistic corporate goals (Benton & Maloni, 2005; Crook & Combs, 2007; Edirisinghe et al., 2011; Ghosh & Fedorowicz, 2008; Handley & Benton, 2012; Hingley, 2005; Maglaras et al., 2015; Meehan & Wright, 2011; Mysen et al., 2012; Pazirandeh & Norrman, 2014; Sheu & Gao, 2014; Sucky, 2006; Takashima & Kim, 2016). Different power sources are based on process dependencies and the integration of switching barriers into the supply chain relationship network (Benton & Maloni, 2005; Chicksand & Rehme, 2018; Gorton et al., 2015; Hingley, 2005; Takashima & Kim, 2016). This ability to influence is rooted in the dyadic relationship and is manifested in various strategies of

75

Wissenschaftliche Forschungsbeiträge

influence. French and Raven (1959) established the social science construct of power bases, mainly referred to in SCM research. The influence strategies or power bases are divided into mediated and non-mediated power. The use of coercion, rewards, or legally based legitimations is the basis of mediated power strategies. Non-mediated power strategies, which are considered expert power, are defined as informational power or referential power, where the application of all these strategies is rooted in the associated relationship dependence (Benton & Maloni, 2005; Flynn et al., 2008; French & Raven, 1959; Gorton et al., 2015; Reimann & Ketchen, 2017; Sutton-Brady et al., 2015). Simultaneously the research highlighted the negative influences of, especially, mediated power strategies on the relationship quality and the overall supply chain performance (Benton & Maloni, 2005). In this context, the influence is targeted to „quality and delivery requirements, prices and contractual terms to strategic orientation, product development and competitiveness” (Meehan & Wright, 2011). Similar to the research results of supply chain collaboration, these results highlight the negative influences of opportunistic behavior on the overall supply chain performance (Brito & Miguel, 2017; Essabbar et al., 2020; Kähkönen, 2014; Nyaga et al., 2013; Yenipazarli, 2017). The development of digitalization needs to be addressed within this field of research. For example, the analysis of Brinker and Haasis (2022) show the rudimentary state of research, including the digital environment in existing power research in SCM. The limited number of results are oriented toward the effects of information availability in collaborative supply chain management, the effects of information sharing along the chain (Byrne & Power, 2014; Subramaniam, 2020), as well as the impact of digitalization on retailing strategies (Reinartz et al., 2019). The term digitalization or supply chain digitalization is strongly linked to developments in information and communication technologies (ICT) and other technological developments, such as the use of big data algorithms, Internet of Things (IoT) technologies, or the use of cyber-physical systems (CPS). As such, the term digitalization, in distinction to the term digitization, can be defined as the creation of value based on a digitized data basis and a continuous, interactive review of the data against the background of an unknown end state. Examples can be found in various areas of economic cooperation and social life, e.g., online trading (Reis et al., 2020; Ritter & Pedersen, 2020; Ross, 2017). As such, it distinguishes it from digitization, which is understood as transforming analog to digital information within existing processes or structures. So, the term digitization is defined as the translation of analog to digital information within existing processes or structures. Examples can be found in introducing an enterprise resource planning (ERP) system or other operational process digitization that aims to map a standardized process and represent it concerning a known end state.

76

Supply chain power structures

Power in SCM — a qualitative research approach

3

A qualitative exploratory research approach was chosen based on the rudimentary state of research on the influence of digitalization on power structures and mechanisms within SCM and the lack of operationalizations behind the concept of power (Brinker & Haasis, 2022; Forza, 2002). This research approach makes it possible to grasp an unexplored object of investigation in its entire complexity and therefore provides the possibility to develop first approaches for further theory building (Eisenhardt, 1989; Flick et al., 2017, p. 27f.). Based on the analysis of 15 expert interviews, first steps in the iterative process of theory development can be made and basic approaches can be empirically established, substantiated and made operationalizable (Eisenhardt, 1989; Manuj & Mentzer, 2008). The analysis of the semi-structured interviews follows the approaches of Mayring and Fenzl, (2019) and Kuckartz and Rädiker, (2022), while the interview guideline is conducted based on the SPSS approach of Helfferich, 2009. All interviews were appropriately audio-recorded, transcribed and based on the guidelines of the coding tables, coded within the MAXQDA 2022 software. A corresponding example regarding the coding guidelines is presented in Table 11. The methodology of the expert interviews is largely based on the selection process of the corresponding interview partners. They should have in-depth access to information, process knowledge and be in daily contact with the research subject in their expert role (Bogner et al., 2021, p. 34). In selecting the interview partners, two objectives were predominant: on the one hand, the selection aimed to achieve an abstract representation of all levels of the supply chain. On the other hand, the interview partners had to have a deep insight into the supply chain structures and the power structures due to the complexity of the construct of power. Table 1:

Example of the coding rules

No.

Category

Definition

Anchor sample

Coding rule

1

Transparency

Summarizing SCM Challenges based on transparency

“From an operational point of view, that's one of the things that very much determines how transparent I have to be, am allowed to be, can be, and am as a service provider.”

Description of Challenges in Transparency, information sharing, availability of information, data transparency etc.

Due to this, managers and supply chain professionals were chosen as interview partners, who, due to many years of corporate experience and position in the company, had a corresponding far-sightedness concerning the design of supply chains and markets. The selected companies represent a supply chain structure at a very high level of abstraction. An overview of the selected participants and the selected categories is shown in Table 2. Business areas of the companies, hierarchical positions, companies’ sizes and

77

Wissenschaftliche Forschungsbeiträge

affiliations are used as a selection criterion for the experts to offer a broad inside view of the power structures of their supply chains. The interviews for this research were conducted within the time window of June-August 2022 in the presence of an online video conference. Based on an interview length of between 30 and 75 min, around 250 pages of text were generated by the transcription, which was used for the analysis. Table 2:

Sample characteristics

No.

Business area and hierarchical position

Company size [employs]

Company affiliation [years]

Interview duration [min]

1

Logistics Manager

>11000

5-10 years

49

2

Logistics Manager

8000

3-5 years

40

3

Logistics CDO

>11000

3-5 years

50

4

Logistics CEO

12000

5-10 years

39

5

Consulting CEO