Probabilistic Safety Assessment in the Chemical and Nuclear Industries
9780750672085, 0-7506-7208-0
Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subj
335
111
679KB
English
Pages 545
Year 2000
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Contents......Page 8
1.1.1 Beginnings......Page 32
1.1.2 Industrial Revolution......Page 33
1.1.3 This Century......Page 34
1.2 Risk Assessment Objectives......Page 36
1.4.1 Actuarial or Linear Risk......Page 37
1.4.2 Shortcomings of Linear Risk......Page 38
1.4.3 Presentation of Risk......Page 39
1.4.4 Public Perception of Risk......Page 43
1.5 Safety Goals......Page 44
1.6 Emergency Planning Zones......Page 46
1.7 Use of PSA by Government and Industry......Page 48
1.8.2 Regulatory Structure......Page 49
1.8.3 Licensing Process......Page 50
1.8.5 Advisory Committee on Reactor Safety (ACRS)......Page 51
1.8.8 Accident Severity Criteria......Page 52
1.9.1 Environmental Law......Page 53
1.9.2 Occupational Risk Protection: the PSM Rule......Page 58
1.10 Summary......Page 64
1.11 Problems......Page 65
2.1 Boolean Algebra......Page 66
2.2 Venn Diagram and Mincuts......Page 68
2.3 Probability and Frequency......Page 70
2.4.2 Union or Addition......Page 72
2.5 Distributions......Page 73
2.5.1 Discrete Distributions......Page 74
2.5.2 Continuous Distributions......Page 75
2.5.3 Confidence Limits......Page 78
2.5.4 Markov Modeling......Page 79
2.5.5 Summary of Functions and their Generating Functions......Page 80
2.6.1 Bayes' Equation......Page 81
2.6.2 Bayes Conjugates for Including New Information......Page 82
2.6.3 Constant Failure Rate Model......Page 83
2.6.4 Failure on Demand Model......Page 85
2.6.5 Interpretations of Bayes Statistics......Page 86
2.7.1 Convolution......Page 87
2.7.3 Taylor's Series......Page 88
2.7.4 Monte Carlo......Page 90
2.7.5 Discrete Probability Distribution (DPD)......Page 91
2.8.1 Sensitivity Analysis......Page 92
2.8.2 Importance Measures......Page 93
2.8.3 Relationships between the Importance Measures......Page 94
2.8.4 Interpretation and Usage......Page 95
2.9 Summary......Page 96
2.10 Problems......Page 97
3.1.2. Employee Involvement in Process Safety......Page 98
3.1.3. Process Safety Information......Page 99
3.2.1 Overview......Page 101
3.2.4 Contractors......Page 102
3.2.6 Mechanical Integrity......Page 103
3.2.8 Managing Change......Page 104
3.2.10 Emergency Preparedness......Page 105
3.2.11 Compliance Audits......Page 106
3.3 Qualitative Methods of Accident Analysis......Page 107
3.3.1 Checklist......Page 108
3.3.2 What-If Analysis......Page 112
3.3.3 What-If/Checklist Analysis......Page 115
3.3.4 Hazard and Operability (HAZOP)......Page 117
3.3.5 Failure Mode and Effects Analysis......Page 125
3.4 Quantitative Methods of Accident Analysis......Page 128
3.4.1 Parts Count......Page 129
3.4.2 FMEA/FMECA......Page 130
3.4.3 Reliability Block Diagram (RBD)......Page 131
3.4.4 Fault Tree Analysis......Page 132
3.4.5 Event Trees......Page 142
3.4.6 Alternatives to Fault Tree Analysis......Page 150
3.5 Common Cause of Failure......Page 154
3.5.1 Known Deterministic Coupling......Page 155
3.5.4 Modeling Known Dependencies......Page 156
3.5.6 Beta Factor......Page 157
3.5.8 Common Cause Multiparameter Models......Page 158
3.6 Computer Codes for System Reliability Analysis......Page 159
3.6.1 Codes for Finding Minimal Cutsets and Tree Quantification......Page 161
3.6.2 Truncation of a Fault Tree......Page 164
3.6.5 Importance Calculations......Page 165
3.6.6 Processing Cutset Information......Page 166
3.7.1 SAPHIRE......Page 167
3.7.2 PSAPACK......Page 172
3.7.3 RISKMAN......Page 174
3.7.4 R&R Workstation......Page 0
3.7.5 WinNUPRA, NUCAP+, and SAFETY MONITOR......Page 176
3.9 Problems......Page 178
4.1.2 Some Reliability Data Compilations......Page 182
4.2 Incident Reports......Page 189
4.3.2 Making a Database......Page 191
4.3.3 Test Reports and Procedures......Page 192
4.3.6 Control Room Log......Page 193
4.4.1 Human Error in System Accidents......Page 194
4.4.2 Lack of Human Error Considerations......Page 197
4.4.3 Cases Involving Human Error......Page 199
4.5.1 Human Reliability Analysis Models......Page 204
4.5.2 Quantifying Human Error Probabilities (HEPs)......Page 206
4.5.3 Human Factors Data......Page 210
4.5.4 Example of Human Error Analysis......Page 211
4.5.5 HRA Event Tree (NUREG/CR-1278)......Page 212
4.5.6 Comparison of Human Factors in PSAs......Page 214
4.8 Problems......Page 215
5.1.1 Overview......Page 216
5.1.2 Richter Magnitude - Frequency of Occurrence Distribution......Page 219
5.1.4 Shaking Model of the Plant......Page 221
5.1.5 Fragility Curves......Page 223
5.1.6 System Analysis......Page 225
5.2.1 Introduction......Page 226
5.2.2 Procedures for Fire Analysis......Page 227
5.2.4 Fire Frequencies......Page 228
5.2.5 Fire Growth Modeling......Page 229
5.2.7 Systems Analysis......Page 230
5.3.2 Internal Flooding Incidents......Page 231
5.3.3 Internal Flood Modeling......Page 233
5.3.4 External Flooding......Page 234
5.4 Summary......Page 235
6.1 Nuclear Power Reactors......Page 236
6.1.1 U.S. Light Water Reactors......Page 237
6.1.2 Pressurized Water Reactors......Page 239
6.1.3 Boiling Water Reactors......Page 242
6.1.4 Advanced Light Water Reactors......Page 244
6.2.1 The TMI-2 Accident......Page 252
6.2.2 The Chernobyl Accident......Page 254
6.3 Preparing a Nuclear Power Plant PSA......Page 258
6.3.2 Preparing for the PSA......Page 259
6.3.3 PSA Construction......Page 267
6.4 Example: Analyzing an Emergency Electric Power System......Page 269
6.4.2 Overview of FTAPSUIT......Page 270
6.6 Problems......Page 274
7.1.1 The Nature of Process Accidents......Page 276
7.1.2 Some Deadly and Severe Chemical Accidents......Page 278
7.2.1 The Topography of Chemical Processes......Page 292
7.2.2 Inorganic Chemicals......Page 293
7.2.3 Fertilizer Production......Page 295
7.2.4 Halogens and Their Compounds......Page 297
7.2.5 Organic Chemicals......Page 300
7.2.6 Explosives......Page 303
7.2.7 Plastics and Resins......Page 307
7.2.8 Paints and Varnishes......Page 314
7.2.9 Petrochemical Processing......Page 317
7.3 Chemical Process Accident Analysis......Page 324
7.3.1 Scoping Analysis......Page 326
7.3.2 Performing a Detailed Probabilistic Safety Analysis......Page 330
7.4.1 Defining the Problem with Fault Tree Analysis......Page 335
7.4.2 Applying FTAPSUIT to Chemical Process Tank Rupture......Page 336
7.5 Summary......Page 338
7.6 Problems......Page 339
8.1.1 Defense in Depth Barriers Providing Public Protection......Page 340
8.1.2 Qualitative Description of Core Melt......Page 341
8.2.1 Background on the Source Term......Page 345
8.2.2 Computer Codes for Fission Product Release and In-Plant Transport......Page 347
8.2.3 Comparison with WASH-1400......Page 351
8.3.1 Atmospheric Transport Models......Page 352
8.3.2 Health Effects......Page 354
8.3.3 Radiation Shielding and Dose......Page 356
8.3.4 Computer Codes for Consequence Calculation......Page 360
8.5 Problems......Page 362
9.1.1 Pipe and Vessel Rupture......Page 364
9.1.2 Discharge through a Pipe......Page 366
9.1.3 Gas Discharge from a Hole in a Tank......Page 368
9.1.5 Unconfined Vapor Cloud Explosions (UVCE)......Page 369
9.1.6 Vessel Rupture (Physical Explosion)......Page 373
9.1.7 BLEVE, Fireball and Explosion......Page 374
9.1.8 Missiles......Page 376
9.2 Chemical Accident Consequence Codes......Page 377
9.2.1 Source Term and Dispersion Codes......Page 378
9.2.2 Explosions and Energetic Events......Page 393
9.2.3 Fire Codes......Page 396
9.3.1 IMES......Page 399
9.3.4 SIDS......Page 402
9.3.5 THERDCD......Page 403
9.4 Summary......Page 404
10.1.2 Assembling the PSA......Page 406
10.2 Insights and Criticisms......Page 408
10.2.2 Criticism of Past PSAs......Page 409
11.1.1 Commercial Nuclear PSAs before IPE......Page 414
11.1.2 ATWS......Page 415
11.1.4 Use of PSA in Decision Making......Page 416
11.1.7 Special Studies......Page 417
11.1.8 Individual Plant Evaluation PSAs......Page 423
11.1.9 Risk-Based Regulation......Page 431
11.1.10 Practical Application of PSA: Utility Experience and NRC Perspective......Page 433
11.2.1 Reactor Description......Page 435
11.2.2 CANDU-2 PSA......Page 436
11.2.3 CANDU-6 PSA......Page 437
11.2.4 CANDU-9 PSA......Page 438
11.3.1 Advanced Test Reactor PSA......Page 439
11.3.2 High Flux Beam Reactor PSA......Page 442
11.3.3 HFIR PSA......Page 445
11.3.4 K-Reactor PSA......Page 447
11.3.5 N-Reactor PSA......Page 453
11.3.6 Omega West Reactor PSA......Page 457
11.4.1 Canvey Island......Page 459
11.4.2 PSA of a Butane Storage Facility (Oliveira, 1994)......Page 469
11.4.3 Comparative Applications of HAZOP, Facility Risk Review, and Fault Trees......Page 471
11.4.4 Probabilistic Safety Analysis of an Ammonia Storage Plant......Page 476
11.5 Problems......Page 480
12.1 ANSPIPE......Page 482
12.2 BETA......Page 483
12.4 FTAPSUIT......Page 484
12.5 Lambda......Page 488
12.6 UNITSCNV......Page 489
B......Page 490
D......Page 491
G......Page 492
M......Page 493
P......Page 494
R......Page 495
V......Page 496
Z......Page 497
14.1 Nuclear Regulatory Commission Reports Identified by NUREG Numbers......Page 498
14.2 Nuclear Regulatory Commission Contractor Reports Identified by NUREG/CR Numbers......Page 499
14.3 Electric Power Research Institute Reports Identified by NP Number......Page 502
14.4 References by Author and Date......Page 503
15.1 Chapter 1......Page 524
15.2 Chapter 2......Page 526
15.3 Chapter 3......Page 527
15.4 Chapter 4......Page 531
15.5 Chapter 6......Page 532
15.7 Chapter 8......Page 535
15.8 Chapter 11......Page 537
Index......Page 540