Molecular Biology of Fungal Development (Mycology, 15) [1st ed.]
0824707443, 9780824707446, 9780824744526
Providing an overview of the fundamental aspects of molecular fungal development, this book covers different elements in
198
37
1MB
English
Pages 608
[586]
Year 2002
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Molecular Biology of Fungal Development......Page 2
Table of Contents......Page 8
Preface......Page 6
Contributors......Page 11
1.1 Definition and Importance of Yeasts......Page 15
Table of Contents......Page 0
1.2 Dimorphism......Page 16
2.1 The Yeast Form......Page 17
2.2 Pseudohyphae......Page 18
2.3 Hyphae......Page 19
3.1 Saccharomyces cerevisiae as Model for Molecular
Analysis of Pseudohyphal Growth......Page 20
3.2 Signals and Sensors......Page 21
3.3 Signal Transduction Pathways......Page 24
3.4 Cell Cycle Regulation......Page 26
3.5 Regulation of PH Cell Polarity......Page 27
3.6 PH Cell Morphogenesis......Page 30
3.7 Substrate Adhesion and Invasion......Page 31
4 CONCLUSIONS......Page 33
REFERENCES......Page 34
2 KEY STRUCTURES AND PROCESSES IN TIP GROWTH......Page 42
2.2.1 Organizer of Vesicle Traffic......Page 43
2.2.2 The Spitzenko rper as a Vesicle Supply Center......Page 45
2.2.3 Spitzenko rper Trajectory......Page 46
2.2.4 Growth Pulses and Satellite Spitzenko rper......Page 47
2.2.6 Questions......Page 48
2.3.2 Microtubular Cytoskeleton......Page 50
2.3.3 Questions......Page 51
2.4.1 Evolutionary and Ecological Significance......Page 52
2.4.2 Role of Turgor in Hyphal Growth and Morphogenesis......Page 53
2.4.3 Question......Page 54
3.1.1 Comments......Page 55
3.2.1 Comments......Page 56
3.3.1 Comments......Page 57
3.4.2 Signal Transduction......Page 59
3.4.3 Polarized Cell Wall Construction......Page 60
3.4.4 Comment......Page 61
3.5 Model Reconciliation......Page 62
REFERENCES......Page 63
1 INTRODUCTION......Page 72
2 THE CONIDIOPHORE—A SIMPLE SPORE-FORMING STRUCTURE?......Page 74
3 SIGNALS, SIGNAL TRANSDUCTION, AND DEVELOPMENTAL DECISIONS......Page 75
4 THE FLUFFY GENES......Page 78
5 BRISTLE AND ABACUS ARE DEVELOPMENT-SPECIFIC TRANSCRIPTION FACTORS......Page 81
6 STUNTED AND MEDUSA GENES......Page 85
7 COORDINATION OF DEVELOPMENT AND CELL BIOLOGY IN THE CONIDIOPHORE......Page 87
9 GENOMEWIDE APPROACHES TO UNDERSTAND DEVELOPMENT......Page 89
10 FUTURE PERSPECTIVES......Page 90
REFERENCES......Page 92
1 INTRODUCTION......Page 100
2.2.1 Environmental Control......Page 103
2.2.2 Genetic Control......Page 106
3 CONCLUSIONS AND PERSPECTIVES......Page 115
REFERENCES......Page 116
1 INTRODUCTION......Page 122
2 MANIFESTATIONS OF VEGETATIVE INCOMPATIBILITY......Page 123
3 GENETICS OF VEGETATIVE INCOMPATIBILITY......Page 126
4.1.1 The mat Locus and tol......Page 128
4.1.2 The het-c Locus......Page 130
4.1.3 The het-6 Region......Page 131
4.2.1 The het-s Locus......Page 132
4.2.2 The het-c and het-e Nonallelic Incompatibility Loci......Page 134
4.2.3 The mod-A Locus......Page 135
5 BIOLOGICAL SIGNIFICANCE OF VEGETATIVE INCOMPATIBILITY......Page 136
6 CONCLUSION......Page 138
REFERENCES......Page 139
1 INTRODUCTION......Page 145
2 TWO FORMS OF VEGETATIVE MYCELIUM: THE MONOKARYON AND THE DIKARYON......Page 146
3.1 Oidiophores and Oidia......Page 151
3.2 Chlamydospores......Page 155
3.3 Sclerotia......Page 157
4.1 Genetic Regulation......Page 159
4.2 Regulation by Environmental and Physiological Signals......Page 163
5 THE RELEVANCE OF ASEXUAL DEVELOPMENT FOR THE FUNGUS—CONCLUSIONS......Page 166
REFERENCES......Page 169
1 INTRODUCTION......Page 176
2 LIGHT AND DEVELOPMENT......Page 177
3 LIGHT REGULATION OF CAROTENOID BIOSYNTHESIS......Page 179
5.1 Genetic Dissection of the Light-Signaling Pathway......Page 182
5.2 Molecular Analysis of wc1 and wc2 Genes......Page 184
5.3 Biochemical Characterization of WC1 and WC2......Page 186
5.4 The Function of WC1 and WC2 in Blue Light Signal Transduction: A Model......Page 188
7 PHOTOADAPTATION AND DESENSITIZATION OF THE BLUE LIGHT SIGNALING PATHWAY......Page 189
ACKNOWLEDGMENTS......Page 191
REFERENCES......Page 192
1 INTRODUCTION......Page 197
2 N. CRASSA AS A MODEL SYSTEM FOR STUDYING CLOCKS......Page 200
3 ISOLATION OF CIRCADIAN RHYTHM MUTANTS IN NEUROSPORA......Page 202
4 MOLECULAR ANALYSIS OF THE FRQ AND WC GENES......Page 203
6 RESETTING THE CLOCK BY ENVIRONMENTAL INPUT SIGNALS......Page 209
7 OUTPUT FROM THE CLOCK......Page 213
8 COMPLEXITY OF THE NEUROSPORA CIRCADIAN SYSTEM......Page 216
REFERENCES......Page 218
1 INTRODUCTION......Page 224
2.1 Aspergillus nidulans and Its Relatives......Page 228
2.2 Sexual Phase in the Life of a Filamentous Ascomycete......Page 230
2.3 Fungal Fruit Bodies—The Products of Sexual Development......Page 231
2.4 Fertilization and Fruit Body Development......Page 232
2.5.1 Environmental Factors Affecting Sexual Development......Page 235
2.5.2 Genetic Determinants Regulating Fruit Body Development......Page 238
3 OUTLOOK......Page 246
REFERENCES......Page 247
1.1 Sexual Development and Mushroom Formation......Page 254
1.2 What Makes a Mushroom?......Page 255
2.1 Tetrapolar Mating Types in the Basidiomycetes......Page 257
2.1.1 The A Loci......Page 258
2.1.2 The B Genes......Page 261
2.1.3 Analysis of Mutant Mating-Type Genes......Page 268
3.1 Homo- Versus Heterobasidiomycetes......Page 269
3.2 Signal Transduction Cascades......Page 270
3.3 Differentially Regulated Genes......Page 271
5.1 Nuclear Exchange......Page 273
5.2 Dikaryon and Clamp Connections......Page 274
5.3 Fruit Body Formation......Page 275
5.4 Meiosis and Spore Formation......Page 277
6 CONCLUSIONS......Page 278
REFERENCES......Page 279
1 INTRODUCTION......Page 283
2 ASCUS DEVELOPMENT IN NEUROSPORA AND PODOSPORA......Page 285
3.1 Discovery of Spore Killers in N. sitophila and N. intermedia......Page 287
3.2 Expression of Spore Killer in the Ascus......Page 288
3.3 Chromosomal Basis of Spore Killers......Page 289
3.4 Spore Killer-3 and Its Interaction with Sk2 in Neurospora......Page 290
3.5 Spore Killer Behavior After Transfer into N. tetrasperma......Page 291
3.7 Spore Killers in Natural Populations of Neurospora......Page 293
4.1 Discovery of Spore Killers in P. anserina......Page 294
4.3 Chromosomal Basis......Page 295
4.5 Population Aspects......Page 297
6 SPORE KILLERS IN GIBBERELLA FUJIKUROI AND COCHLIOBOLUS HETEROSTROPHUS......Page 298
8.2 Mode of Action......Page 299
REFERENCES......Page 301
1 INTRODUCTION......Page 305
2 MYCORRHIZAS ARE ANCESTRAL SYMBIOTIC INTERACTIONS......Page 307
4 ECTOMYCORRHIZA ONTOGENESIS: THE DANCE IS THE SAME, THE COUPLES ARE DIFFERENT......Page 309
5 SIGNALING CHEMICALS IN THE RHIZOSPHERE AND IN SYMBIOTIC TISSUES......Page 313
6 CHANGING THE NATURE OF THE FUNGAL AND PLANT SURFACE......Page 316
6.1 Hydrophobins: Proteins That Function at the Symbiotic Interface?......Page 317
6.2 Symbiosis-Regulated Polypeptides with Adhesin-Type Motif......Page 318
7 ESTs AND cDNA ARRAYS FOR GENE EXPRESSION ANALYSIS......Page 319
REFERENCES......Page 323
1 INTRODUCTION......Page 332
2 PRESYMBIOTIC DEVELOPMENT......Page 333
2.1 Dormancy......Page 334
2.2 Germination......Page 335
2.3 Presymbiotic Mycelium......Page 336
3.1 Appressorium Development......Page 341
3.2 Root Colonization......Page 342
3.3 Extraradical Hyphae and Spore Production......Page 345
4 CONCLUSION......Page 346
REFERENCES......Page 347
1.1 General Comments......Page 356
1.2 Useful Features......Page 357
2.1 Life Cycle in Brief......Page 358
2.2 The Infectious Pathway......Page 359
2.2.1 Fusion of Haploid Cells and Generation of the Filamentous Dikaryotic Form......Page 360
2.2.3 Proliferation of the Fungus Within Host Cells......Page 362
2.2.4 Production of Mucilaginous Material, Karyogamy, Hyphal Fragmentation, and Cell Rounding— Reorganization of the Machinery for Polarized Growth and Secretion......Page 365
2.2.7 The a Locus and Pathogenicity......Page 367
2.3.1 fuz1, a Gene Specifically Required for Hyphal Fragmentation......Page 369
3.1.1 Molecular Structure and Organization......Page 370
3.1.2 The a Locus Governs Fusion of Haploid Cells......Page 371
3.1.4 The a Locus Governs Filamentous Growth—An Autocrinelike Response......Page 374
3.2.1 Molecular Structure and Organization......Page 375
3.2.3 Targets of the b Locus......Page 377
4.1.1 MAPK Cascade Components......Page 379
4.1.2 Gá-Protein Subunits......Page 381
4.1.3 A Transcription Activator That Regulates Pheromone Response Genes......Page 382
4.2 Components of the cAMP Pathway......Page 385
4.3.1 The cAMP Pathway Inhibits a MAPK Cascade......Page 386
4.3.2 cAMP Levels Determine Level of Expression of Pheromone Genes......Page 388
4.3.3 Nutritional Sensing and the Pheromone Response......Page 390
5.1 The Charcoal Plate Assay—An Assay for Filament Formation......Page 391
5.2.1 Identification of fuz Genes......Page 392
5.2.3 Restriction Enzyme–Mediated Integration (REMI) Mutagenesis......Page 393
5.4 High-Throughput Methods—Microarrays......Page 394
5.5 In Vitro Assay for Teliospore Formation......Page 395
REFERENCES......Page 397
1 INTRODUCTION......Page 406
2 INFECTION CYCLE......Page 407
3 GENERAL ASPECTS OF APPRESSORIUM FORMATION IN M. GRISEA......Page 409
4.1 The Melanin Layer......Page 411
4.2.3 APP Loci......Page 412
4.3 Sensing the Host Surface: Genes Involved in Surface Recognition and Signal Transduction Pathways......Page 413
4.3.1 Genes Sensing the Surface......Page 414
4.3.2 Signal Transduction Pathways......Page 415
REFERENCES......Page 420
1 INTRODUCTION......Page 426
2.1 Life Cycle......Page 427
2.2 Organ Specificity......Page 429
2.3 Ergot Virulence and Host Susceptibility......Page 430
3.1 Infection Site and Route......Page 431
3.2 Spore Adhesion, Primary Infection, and Colonization......Page 433
3.3 Sphacelial Stromata for Secondary Propagation......Page 434
3.4 Ergot Sclerotia......Page 435
4 MOLECULAR ASPECTS OF HOST–PATHOGEN INTERACTION......Page 436
4.1.1 Cell Wall–Degrading Enzymes (CWDE)......Page 437
4.1.2 Enzymes Involved in the Generation and Scavenging of Active Oxygen Species......Page 440
4.1.3 Hydrophobins......Page 450
4.1.4 Signal Chain Components......Page 451
4.2 Random Approach: In Planta–Expressed Genes (EST)......Page 452
5 PERSPECTIVES......Page 454
ACKNOWLEDGMENTS......Page 455
REFERENCES......Page 456
1 INTRODUCTION......Page 463
2 VIRAL HYPOVIRULENCE......Page 464
2.1 The Hypoviruses of C. parasitica......Page 466
2.3 Hypovirulence and Mitochondrial dsRNAs......Page 470
3.1 Mitochondrial DNA Mutations......Page 472
3.2 Mitochondrial Plasmids and Hypovirulence......Page 475
REFERENCES......Page 476
1 INTRODUCTION......Page 483
2 HOST RECOGNITION BY C. ALBICANS......Page 485
2.1.1 The Lectin Adhesins......Page 486
2.1.2 The Pseudomonas-like Adhesin......Page 487
2.1.3 The Complement Receptors and Extracellular Matrix Adhesins......Page 488
2.1.4 Adhesin-Encoding Genes......Page 489
3 MORPHOGENESIS......Page 493
3.2 Regulation of Morphogenesis......Page 494
4 INVASIVE ENZYMES OF C. ALBICANS......Page 497
4.1.1 Plb1......Page 498
4.2 Secreted Aspartyl Proteinases......Page 499
5 PHENOTYPIC SWITCHING......Page 502
5.1 The Rediscovery of Phenotypic Switching......Page 503
5.3 Differential Gene Expression in Switch Phenotypes......Page 504
5.4 Mechanism for Phenotypic Switching......Page 505
5.5 Phenotypic Switching as a Virulence Factor......Page 506
REFERENCES......Page 507
1 PREFACE......Page 518
2.1 The Life Cycle of C. neoformans......Page 519
2.1.1 The Sexual Cycle......Page 520
2.1.4 Nuclear Fusion and Meiosis......Page 521
2.1.6 How Might Diploid Strains Be Generated?......Page 523
2.1.7 Diploid Strains Are Thermally Dimorphic......Page 524
2.1.9 Haploid or Monokaryotic Fruiting......Page 525
2.2.1 C. neoformans—A True Basidiomycete......Page 527
2.2.3 Genetic Divergence of C. neoformans Varieties......Page 528
2.2.4 Ecological and Pathological Differences of C. neoformans Varieties......Page 530
2.2.5 Biochemical Differences in C. neoformans Varieties......Page 531
3 VIRULENCE OF CRYPTOCOCCUS NEOFORMANS......Page 532
3.1.1 Capsule Composition and Regulation......Page 533
3.1.2 Biological Activity of Capsular Polysaccharide......Page 534
3.2 Melanin......Page 535
3.3 Mating Type......Page 537
3.4 Growth Under Mammalian Physiological Conditions......Page 538
3.5 Extracellular Compounds and Enzymes......Page 540
4 SIGNALING PATHWAYS REGULATING DIFFERENTIATION AND PATHOGENICITY......Page 541
4.1 Pheromone-Activated MAP Kinase Cascade in C. neoformans......Page 542
4.2 cAMP-Mediated Signaling Cascades in C. neoformans......Page 544
4.3 RAS Signaling and Crosstalk Between cAMP and MAP Kinase Signaling Cascades......Page 545
4.4 Calcineurin Regulates Growth at 37°C and Virulence......Page 546
5 OUTLOOK......Page 547
ACKNOWLEDGMENTS......Page 548
REFERENCES......Page 549
1 INTRODUCTION......Page 563
2 BIOLOGY AND GENETICS OF ASPERGILLUS FUMIGATUS......Page 564
3.1 Overview......Page 566
3.3.1 Identification and Characterization of the pksP Gene......Page 567
3.3.2 The pksP Gene Is Part of a Cluster of 1,8-Dihydroxynaphthalene (DHN)–Melanin Biosynthesis Genes......Page 570
3.3.3 The Conidial Pigment of A. fumigatus Is Synthesized via the DHN-Melanin Pathway Which Does Not Seem to Be the Case for the Nonpathogenic A. nidulans......Page 572
3.3.4 Is It the Final Product (Pigment), Intermediates, or Other Metabolites in Whose Synthesis PksP Is Involved Which Could Explain Pathogenicity of A. fumigatus?......Page 574
3.3.5 PksP-Dependent Reduction of Phagosome–Lysosome Fusion and Intracellular Kill of Aspergillus fumigatus Conidia by Human Macrophages......Page 576
ACKNOWLEDGMENTS......Page 579
REFERENCES......Page 580