127 0 6MB
English Pages 212 [220] Year 2016
Annals of Mathematics Studies Number 59
A N N A L S OF M A T H E M A T IC S STU D IE S
Edited by Robert C. Gunning, John C. Moore, and Marston Morse 1. Algebraic Theory of Numbers,
by
H erm ann W eyl
by
3. Consistency of the Continuum Hypothesis,
and N.
B o g o l iu b o f f
edited by S.
21. Functional Operators, Vol. 1,
by
by N.
Ku r t G o d e l
20. Contributions to the Theory of Nonlinear Oscillations, Vol. I,
11. Introduction to Nonlinear Mechanics,
Kr y lo ff
Jo h n v o n N e u m a n n
edited by H. W .
24. Contributions to the Theory of Games, Vol. I,
edited by A.
25. Contributions to Fourier Analysis,
A. P. C a l d e r o n ,
and S.
edited by H. W .
30. Contributions to the Theory of Riemann Surfaces,
edited by L.
33. Contributions to the Theory of Partial Differential Equations,
and F.
T ucker M o r se ,
and A. W .
T ucker
Ku h n
A hlfors
et al .
edited by L.
B e rs , S. B o c h
Jo h n
34. Automata Studies,
edited by C. E.
Sh a n n o n
and J.
M cC arthy
edited by H. W .
38. Linear Inequalities and Related Systems,
and A. W .
Ku h n
edited by M.
39. Contributions to the Theory of Games, Vol. Ill,
and P.
and A. W .
T r a n s u e , M.
Ku h n
Zyg m u n d , W .
Bochner
28. Contributions to the Theory of Games, Vol. II,
ner,
L efschetz
T ucker
D r e s h e r , A. W . T u c k e r
W o lfe
40. Contributions to the Theory of Games, Vol. IV,
edited by R.
D uncan L uce
and A. W .
edited by S.
L efschetz
T ucker 41. Contributions to the Theory of Nonlinear Oscillations, Vol. IV, 42. Lectures on Fourier Integrals,
by S.
B ochner
43. Ramification Theoretic Methods in Algebraic Geometry,
by H.
44. Stationary Processes and Prediction Theory,
by S.
F urstenberg
45. Contributions to the Theory of Nonlinear Oscillations, Vol. V, Sa l l e ,
and
Abhyankar
edited by L.
C e s a r i , J. L a
S. L e f s c h e t z
by A.
46. Seminar on Transformation Groups, 47. Theory of Formal Systems,
by R.
48. Lectures on Modular Forms,
B orel
et al.
Sm u l l y a n
by R. C.
G u n n in g
49.
Composition Methods in Homotopy Groups of Spheres,
50.
Cohomology Operations,
lectures by N. E.
St e e n r o d ,
by H.
T oda
written and revised by D. B. A.
E p s t e in 51. Morse Theory,
by J. W .
M il n o r
edited by M.
52.
Advances in Game Theory,
53.
Flows on Homogeneous Spaces,
by L.
54. Elementary Differential Topology, 55. Degrees of Unsolvability, 56. Knot Groups,
by L. P.
by G. E.
D r e s h e r , L. Sh a p l e y ,
and A. W . T u c k e r
A u s l a n d e r , L. G r e e n , F. H a h n ,
by J. R.
et al.
M unkres
Sacks
N e u w ir t h
57. Seminar on the Atiyah-Singer Index Theorem, 58. Continuous Model Theory,
by C. C.
Chang
59. Lectures on Curves on an Algebraic Surface, 60. Topology Seminar, Wisconsin, 1965,
by R. S. P a l a i s and H. J. K e is l e r by
D a v id M u m f o r d
edited by R. H.
B in g
and R. J.
B ean
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
BY
David Mumford WITH A SECTION BY
G. M. Bergman
PRINCETON, NEW JERSEY PRINCETON UNIVERSITY PRESS
1966
Copyright ©
1966, by Princeton University Press All Rights Reserved L. C. Card: 66-17705
Printed in the United States of America
DEDICATION The c o n tr ib u to r s t o t h is volume d e d ic a te t h e ir work t o the memory o f M. K. P o r t , J r . whose warmth and good w i l l have been f e l t by the e n t ir e m ath em atical community.
INTRODUCTION These n o te s a re b e in g p r in te d in e x a c t ly the form in which th ey were f i r s t w r it t e n and d is t r ib u t e d : and w orkin g out my o r a l le c t u r e s . ask a l o t o f the r e a d e r .
supplem enting
In the words o f the e x - e d it o r o f a w ell-kn ow n
jo u r n a l th ey a re w r it t e n i n a s t y l e betw een c lo s e f r i e n d s . "
as c la s s n o te s ,
As such, th ey a re f a r from p o lis h e d and "seldom seen e x c e p t i n p e rs o n a l l e t t e r s
Be th a t as i t may, my hope i s
th a t a w e l l - i n t e n
tio n e d re a d e r w i l l s t i l l be a b le to p e n e tr a te th ese n o te s and le a r n some th in g o f the b e a u t if u l geom etry on an a lg e b r a ic s u rfa c e . I t was e x p e c te d , when th ese n o te s were w r it t e n , th a t the re a d e r had the f o l l o w i n g background:
he had taken a gradu ate course in
commutative a lg e b r a , he had stu d ie d some A lg e b r a ic Geometry and, in p a r t i c u la r , he had some acqu ain tan ce w ith the th e o ry o f c u rves, and the th e o ry o f schemes, and o f t h e i r cohom ology ( e . g . , D ieu d on n e's Maryland and M on treal L e c tu re N o t e s ).
N o n e th e le s s , b o th t o f i x
id e a s , and to p rove some s p e c ia l
iz e d r e s u lt s th a t a re needed l a t e r , L e c tu re s 3 - 1 0 a re d evo ted to a q u ick and r a th e r b r e e z y d ig r e s s io n in t o the g e n e r a l th e o ry o f schemes. summarizes what we need from the th e o ry o f cu rv e s .
L e c tu re
11
I a p o lo g iz e to any
r e a d e r who, hopin g th a t he would f in d here in th ese 60 odd pages an ea sy and c o n c is e in t r o d u c t io n t o schemes, in s te a d became h o p e le s s ly l o s t in a maze o f unproven a s s e r t io n s and u n developed s u g g e s tio n s .
From L e c tu re
12
on , we have p roven e v e r y th in g th a t we n e e d . The g o a l o f th ese le c t u r e s i s a com plete c l a r i f i c a t i o n o f one "th eorem " on A lg e b r a ic s u r fa c e s :
the s o - c a lle d com pleteness o f the ch arac
te r is tic
lin e a r system o f a good com plete a lg e b r a ic system o f c u rves, on a
s u rfa c e
F.
P o in c a re
( c f . R e fe r e n c e s )
If
the c h a r a c t e r is t ic i s in
0 , t h is theorem was f i r s t proven by
1910 by a n a ly t ic m ethods.
U n t il about i 960 ,
no a lg e b r a ic p r o o f o f t h is p u r e ly a lg e b r a ic theorem was known.* Igu sa had shown th a t the theorem , as s ta te d , was f a l s e
thus making the theorem appear even more a n a ly t ic in n a tu re .
1 9 60 , a t r u l y am azing developm ent o ccu rred :
In 1955,
in c h a r a c t e r is t ic
p
But about
in the course o f w ork in g out
the m aster p la n th a t he had l a i d out f o r A lg e b r a ic Geometry—in c o r p o r a tin g some o f the key id e a s o f K o d a ir a 's and S p e n c e r's d e fo rm a tio n th e o ry —G rothend ie c k had o c c a s io n to w r it e out some o f the C o r o lla r ie s o f h is th e o ry ( c f . h is Bourbaki expose 2 2 1 , pp. 2 3 - 2 ^ ) . P u ttin g h is r e s u lt s to g e th e r w ith a * A lth ou gh an e n d le s s and d e p re s s in g c o n tr o v e r s y obscured t h is f a c t . v ii
v iii
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
r e s u lt o f C a r t ie r —th a t group schemes in c h a r a c t e r is t ic
0
fin d s th a t t h is o ld problem has been c o m p le te ly s o lv e d : b r a ic p r o o f i s a v a ila b le in c h a r a c t e r is t ic
0,
b ) a l l the m achinery i s
rea d y a t hand f o r o b ta in in g , in c h a r a c t e r is t ic c o n d itio n s f o r the v a l i d i t y o f the theorem . p o in t w hich the I t a l i a n s had overlook ed ?
a re reduced—one a) a p u r e ly a l g e
p, n e cessa ry and s u f f i c i e n t
What was the key, the e s s e n t ia l
There i s no doubt a t a l l th a t i t
i s the sy s te m a tic use o f n ilp o t e n t elem en ts:
in p a r t ic u la r , a s y s te m a tic
a n a ly s is o f a l l fa m ilie s o f curves on a su rfa c e o v e r a param eter space w ith o n ly one p o in t , bu t w ith n o n - t r i v i a l n ilp o t e n t s tru c tu re s h e a f. ia n s had, in
The I t a l
a sen se, done t h i s , but o n ly when the r in g o f fu n c tio n s on the
base was S tu d y 's r in g
o f du al numbers
k [ e ] / ( e 2) .
in g a t f i r s t - o rd er d efo rm a tio n s o f a cu rve.
But
T h is i s the same as lo o k th ey ig n o re d h ig h e r o rd e r
n ilp o t e n t s and h ig h e r o rd er d e fo rm a tio n s . The o u t lin e o f th ese le c t u r e s i s as f o llo w s —L e c tu re s 1 and 2 g iv e an i n t u i t i v e in tr o d u c tio n t o the problem and p re s e n t in o u tlin e 2 an a l y t i c p r o o fs .
L e c tu re s 3 through 10 r e c a l l b a s ic n o tio n s about schemes.
L e c tu re s 11 through 21 d e a l w ith b a s ic q u e s tio n s on the th e o ry o f s u rfa c e s . In p a r t ic u la r ,
th ey g iv e a c o n s tru c tio n o f u n iv e r s a l fa m ilie s o f cu rves on
a s u rfa c e —the s o - c a lle d H ilb e r t scheme; and o f u n iv e r s a l f a m ilie s o f d i v i s o r c la s s e s on a s u rfa c e —the s o - c a lle d P ic a rd scheme.
L e c tu re s 22 through 27
d e a l w ith the a p p lic a t io n o f the whole th e o ry t o the main problem :
th ese
in c lu d e a lo n g le c t u r e by G. Bergman g i v i n g a s e lf- c o n t a in e d d e s c r ip t io n o f the W it t r i n g schemes. I would
lik e
t o c a l l a t t e n t io n t o s e v e r a l g e n e r a liz a t io n s and
a p p lic a t io n s o f our r e s u lt s which were o m itted so as to
g e t d i r e c t l y t o the
main r e s u l t . a)
The method by which we have co n s tru c te d the u n iv e r s a l
fa m ily o f cu rves on a s u rfa ce
F
g iv e s w ith o u t any change a c o n s tr u c tio n o f
the u n iv e r s a l f l a t fa m ily o f subschemes o f any scheme n o e th e ria n
S, i . e . ,
o f the H ilb e r t scheme.
X, p r o j e c t i v e o v e r a
In p a r t ic u la r ,
the e x p l i c i t
e s tim a te s ob ta in ed in L e c tu re 1^ en ab le ont t o c a r r y through t h is c o n s tru c tio n -w h ic h i s G ro th e n d ie c k 's o r i g i n a l cons tru e tion-^wi thou t the i n d i r e c t a r guments u s in g the con cept o f " l im it e d f a m i l i e s " which he used ( c f .
h is
"F o n d em en ts"). b) o f a s u rfa ce scheme over
F
The method by which we have co n s tru c te d the P ic a r d scheme g e n e r a liz e s so as t o c o n s tru c t the P ic a r d scheme o f any
X, p r o j e c t i v e and f l a t o v e r a n o e th e ria n S
S, whose g e o m e tric f i b r e s
a re reduced and connected and such th a t the components o f i t s a c
tu a l fib r e s over
S
are a b s o lu t e ly i r r e d u c ib le .
T h is c o n s tr u c tio n i s r e
la t e d to the one I o u tlin e d a t the I n t e r n a t io n a l Congress o f 1 9 6 2 , and t i e s up w ith the methods used in Chapters 3 and 7 o f my book T h e o ry .
G eom etric In v a r ia n t
INTRODUCTION c)
ix
One can use the r e s u lt s o f L e c tu re 18 t o g iv e a v e r y easy
p r o o f o f the Riemann H yp oth esis f o r cu rves o v e r f i n i t e p r o o f o f M attu ck -T ate ( c f .
R e fe r e n c e s ).
fie ld s .
T h is i s
the
I f you have rea d through L e c tu re 1 8 ,
and know the fo r m u la tio n o f the Riemann H yp oth esis v i a the F roben iu s mor phism, you can rea d t h e i r paper w ith o u t d i f f i c u l t y and you should.
Cambridge March,
1966
CONTENTS INTRODUCTION..................................................................................................................... LECTURES
1: 2:
Raw M a te r ia l on C urves on S u r fa c e s , and the .................................................................... Problem s S u gg este d The Fundam ental E x is t e n c e Problem and Two A n a ly t ic
3:
P ro o fs ............................................................................................... P re-schem es and t h e i r A s s o c ia te d "F u n cto r o f P o in ts '
b:
Uses o f th e F u n cto r o f P o in ts .............................................
Appendix to L e c tu re b:
1 7 11 17
Re R e p r e s e n ta b le F u n c to rs and Z a r i s k i
5:
Tangent Spaces ............................................................................. P ro j and I n v e r t i b l e Sheaves ..................................................
6: 7:
P r o p e r tie s o f Morphisms and Sheaves ................................ Resume o f the Cohomology o f C oheren t Sheaves on Pn
8: 9: 10:
F l a t t e n in g S t r a t i f i c a t i o n s .................................................. C a r t i e r D iv is o r s ........................................................................ F u n c t o r ia l P r o p e r t ie s o f E f f e c t i v e C a r t i e r D iv is o r s
11: 12:
B ack to the C l a s s i c a l C a s e .................................................. The O v e r - a l l C l a s s i f i c a t i o n o f C urves on S u rfa c e s .
13:
L in e a r System s and E x a m p le s ..................................................
1I4-:
Some V a n is h in g T h e o r e m s ..........................................................
15: 16: 17: 18: 1 9: 20: 21: 22: 23:
U n iv e r s a l F a m ilie s o f C urves ............................................. The Method o f Chow S c h e m e s .................................................. Good Curve s ...................................................................................... The Index Theorem ........................................................................ The P ic a r d Scheme: O u t l i n e .................................................. Independent 0 -c y c l e s on a S u rfa c e .................................... The P ic a r d Scheme: C o n clu sio n ............................................. The C h a r a c t e r i s t i c Map o f a F a m ily o f C urves . . . The Fundam ental Theorem V ia K o d a ira -S p en ce r . . . .
2b :
The S tr u c tu r e o f 0 .................................................................... The Fundam ental Theorem V ia G r o th e n d ie c k - C a r tie r . . R in g Schemes: The W itt Scheme, hy G.M. Bergman
25: 26:
v ii
25 27 37 bl
57 61 69 75 83 91 99 105
111 119 1 27
133 139 U5 1 51 1 57 1 61 167 1 71
Appendix to L e c tu re 26: .......................................................................................... 27: The Fundam ental Theorem in C h a r a c t e r i s t i c p . . .
1 89
BIBLIOGRAPHY-.....................................................................................................................
199
xi
193
LECTURE 1 RAW MATERIAL ON CURVES ON SURFACES, AND THE PROBLEMS SUGGESTED We s h a ll be concerned e n t i r e l y w ith a lg e b r a ic geom etry o v e r a f i x e d a l g e b r a i c a l l y c lo s e d f i e l d purpose i s
k
( o f a r b it r a r y c h a r a c t e r i s t i c ) .
p r o je c t iv e over
k, and, in p a r t ic u la r ,
the f a m ilie s o f cu rves
By a curve we mean e it h e r a f i n i t e a l s u b v a r ie t ie s o f c f.
Example 1 :
F.
C
Z
C
F,
on
F.
1 -dim en sion
or a sh eaf o f
[These a re e q u iv a le n t con cep ts—f o r p r e c is e d e f i n i
L e c tu re 9 . ] F = p2.
Then, as i s w ell-k n ow n , e v e r y curve
d e fin e d by a homogeneous form ta ch t o
sum o f i r r e d u c ib le ,
F, w ith p o s i t i v e m u l t i p l i c i t y :
p r in c ip a l id e a ls on t io n s ,
Our c h i e f
to study th e geom etry on a n o n -s in g u la r a lg e b r a ic s u rfa c e
its
d egree
curves o f d e g re e up to s c a la r s :
d i.e .,
F (x Q, x 1, x 2) .
d, i . e . ,
the d e g re e o f
F,
on
p2
is
one can a t
and the fa m ily o f a l l
i s p a ra m e trize d by the s e t o f a l l by a p r o j e c t i v e
C
In p a r t ic u la r , F
o f d eg ree
d,
Then e v e r y curve
C
space o f dim ension
4- 2 ) _
(d + i ) ( d 2
Example 2 : on
F
F = P 1 x P 1
(i.e .,
a q u a d ric in
p ^ ).
i s d e fin e d by a bi-hom ogeneous form F (x 0 , x 1 j y Q, y 1)
w ith two d e g re e s
d
and
e.
d
and
e
can be in t e r p r e t e d as the d e g re e s
o f the c o v e r in g s p, , p 2 : g iv e n by the two p r o je c t io n s o f and
e,
C — P,
P1 x P1
onto
P1 .
A g a in , f o r e v e r y
d
th e re i s a s in g le fa m ily o f cu rves p a ra m etrized by a p r o j e c t i v e
space, t h is tim e o f dim ension; (d + 1 ) (e + 1 ) - 1 The phenomenon o f the l a s t two exam ples can be g e n e r a liz e d by the con cept o f a lin e a r system . as u su a l,
(f)
If
f
i s an a lg e b r a ic fu n c tio n on
stand f o r the fo rm a l sum: 1
F,
le t,
2
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE E
°rd E ( f )
• E
a l l 1-d im en sio n a l i r r e d u c ib le s u b v a r ie t ie s E where
o r d g (f)
is
the o rd er o f the z e ro or p o le o f
s o c ia te d t o any curve o n ly a t
C
f
at
E.
Then a s
one has the v e c t o r space o f fu n c tio n s w ith p o le s
C: £ (C )
= Cf|
nieans a l l
(f)
+ C > 0}
(H ere
E nj_Ei > 0
£ (C ),
one then can d e fin e the f o llo w in g fa m ily o f
C'
> 0 .)
Ca
Ca
S in ce
-
If
f Q, . . . , f n
(2
♦ C
o n ly depends on the r a t i o s o f the
a^,
fa m ily o f cu rves p a ra m etrized by a p r o j e c t i v e dim
a re a b a s is o f
c u rves, w hich co n ta in s
£ (C )
t h is i s an ir r e d u c ib le
space o f dim ension:
- 1
L in e a r systems a re the s im p le s t f a m ilie s o f cu rves on a su rfa c e
F
and
the o n ly typ e o c c u rrin g in Examples 1 and 2. D e fin itio n :
Two cu rves C1
and
C2 a re l i n e a r l y e q u iv a le n t
if
e q u iv a
le n t ly : i)
3
ii)
a fu n c tio n
C1, C2
We w r it e Example 3:
f
a re i n
on
F such th a t
(f)
= C1- C2, or
the same lin e a r system.
C1 = C2 f o r t h is con cep t.
Let
g
be an
A g a in , g iv e n a curve
C
e l l i p t i c curve ( o v e r on
k ) , and
le t
F= P 1
F, we can a s s ig n t o Ctwo d e g re e s
x &.
d and
e,
as the o rd e rs o f the c o v e rin g s C —►P1 5 o b ta in ed by p r o je c t in g .
Both
d
C— &
> 0 and
e > 0
and e it h e r
d > 0
or
e > 0. Case
i)
form
a s in g le e -d im e n s io n a l l in e a r system .
d = 0:
Then C
Case
ii)
d > 0:
is
o f the form
The s e t o f a l l
C
E ? _ 1P. x
o f typ e (d , e )
6 , and a l l
form s
th ese
C
ani r r e d u c ib le
d (e + 1 ) -d im en sio n a l fa m ily o f cu rv e s , but i t i s n o t a l in e a r system . R ath er i t
i s fib r e d by
d (e + 1 )- 1 -d im en sio n a l l in e a r s u b fa m ilie s .
D e fin itio n :
Two cu rves C1, C2
C2
con ta in ed in one fa m ily o f curves p a ra m etrized by a connected
a re b o th
a re a l g e b r a i c a l l y e q u iv a le n t i f
C1
and
v a r ie ty . W ith t h is te rm in o lo g y , we can say th a t on l in e a r e q u iv a le n c e d i f f e r . form u la i n Case i i ) Case i )
when
P1 x g,
A nother p o in t to n o t ic e i s
a lg e b r a ic and
th a t the dim ension
does n ot s p e c ia liz e t o the d im en sion a l form u la in
d = 0:
t h is i s
the phenomenon o f superabundance.
3
RAW MATERIAL, AND THE PROBLEMS SUGOISTED Example in g o f
7
Let P1
be a " g e n e r ic " curve o f genus 2 , i . e . ,
n a tes o v e r th e prim e f i e l d
7.
It
a double c o v e r
branched a t s ix p o in ts w ith in dependent tra n s c e n d e n ta l c o o r d i ch ar. ^ 2 ) .
(if
Let
P
be the ja c o b ia n o f
R e c a ll th a t (1)
P
i s a n o n -s in g u la r a lg e b r a ic s u r fa c e ,
( 2)
P
i s a ls o an a lg e b r a ic grou p,
(3 )
i n a n a tu r a l way,
turns out th a t e v e r y curve
curve
d r,
y
it s e lf
i s a curve on
C
on
i s a l g e b r a i c a l l y e q u iv a le n t t o a
P
f o r a s u it a b le p o s i t i v e i n t e g e r
e q u iv a le n t t o a s u it a b le t r a n s la t io n o f group s t r u c t u r e ). d
M oreover,
dr ( i n the sense
C is lin e a r ly o f the g iv e n
The s e t o f a l l cu rves a l g e b r a i c a l l y e q u iv a le n t t o
i s an ir r e d u c ib le fa m ily o f dim ension have dim ension
d.
P.
2
- 1.
In f a c t ,
d
2
+ 1,
and i t s
one can d e fin e a map:
a l l cu rves a l g . e q u iv a le n t t o
dr
l in e a r e q u iv a le n c e where a «-*■ image o f
dr
lin e a r s u b -fa m ilie s
dr ' under t r a n s la t io n by
a.
J In f a c t ,
t h is map
f a c t o r s as f o llo w s : p m u lt, b y
d ^
cu rves a l g . e q u iv a le n t to dr
p b is e c t io n ^
l in e a r e q u iv a le n c e T h is in d ic a t e s a g e n e r a l p o in t : lin e a r e q u iv a le n c e ],
th e s e t [a lg e b r a ic e q u iv a le n c e modulo
tends t o be in depen den t o f th e fa m ily o f cu rves con
s id e r e d . One should c o n tr a s t t h is s u rfa c e K:
t h is i s d e fin e d
^ 2).
s e x t ic cu rve (c h a r . d • h,
(a )
h
w ith i t s P2
"Kummer" co u n te rp a rt
branched in a g e n e r ic
Here a l l cu rves a re l i n e a r l y
e q u iv a le n t to
the in v e r s e image o f a l i n e in p Q, and th e dimen2 s io n o f t h is fa m ily i s d + 1 (a s a b o v e ). I t i s s im ila r t o F a ls o in
th a t
where
P
as th e dou ble c o v e r in g o f
is
( y 2) = 2
on
P,
(h 2) = 2
t io n —c f . L e c tu re 1 2 ] , and (b )
b o th P
w ith n e it h e r z e ro s n or p o le s .
T h is
s u rfa c e s in
on
K [ (D2) d en otes s e l f - i n t e r s e c
and K
is
K
adm it double d i f f e r e n t i a l s
o f the same typ e as the q u a r tic
p^.
In f a c t , we have touched b r i e f l y on e v e r y c la s s o f a lg e b r a ic su r fa c e s a d m ittin g a double d i f f e r e n t i a l w ith no z e ro s ( i . e . , c a l lin e a r system ) :
an a n t i- c a n o n i
f o r rea son s stemming from S e rre d u a lit y ,
on th ese s u rfa c e s i s p a r t i c u l a r l y sim p le.
the geom etry
To b r in g out some fu r t h e r f e a
tu re s o f s u r fa c e s , we w i l l d is c u s s an oth er r a t i o n a l s u rfa c e : Example 5 : P2
in
Let
P
th e r a t i o n a l cu rves Let on
H be th e l i n e P
p1 x P ^ .
w hich a re the in v e r s e im ages o f in
P2
from P 1
to
P2,
C
on
F,
E1
Let P1
and l e t
w hich i s th e c lo s u r e o f the in v e r s e image o f
t o e v e r y cu rve
P1 ,
be th e s u rfa c e o b ta in ed by b lo w in g up two p o in ts
p 2 [o r b y b lo w in g up one p o in t i n
and D
and P2
on
P.
be th e curve
£ - P 1 - P2 .
one can a tta c h th re e c h a ra c te rs
E 2 be
Then
k1, k2, and
I,
k
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
where k1, k2
and
A
a re n o n -n e g a tiv e and n ot a l l z e r o ;
a l l cu rves w ith c h a ra c te rs
k1, k2, A
and the s e t o f
form the s in g le lin e a r system con
t a in in g k1E l + k2E2 + AD But u n lik e the s it u a t io n on
P 1 x P.,,
n o t a l l th ese systems a re "good "
systems o f cu rves. Case i )
£ > k2
I f A > k^,
cu rves
E1,
E2,or
c o n ta in in g
D
and
k1 + k2 > £,
then none o f the th re e
i s a component o f a l l cu rves in the lin e a r system
k1E1 + k2E2 + AD,
and t h is lin e a r system has the p r e d ic t a b le
dim ension: (A+1) ( £+2) --------g--
(* ) Case i i )
If E1 ,
cu rves
A
< ^ ,
E2, or
D
( A - k . ) (A -k . +1) ( A -k2) (A-kp+1) ^ ---------------------------------------
£ < k2,
or
k1 + k2 < £,
i s a component o f a l l the
1
then one o f the th re e cu rves in q u e s tio n , and,
in g e n e r a l, t h is fa m ily i s a ls o superabundant, i . e . ,
i t s dim ension i s
b ig g e r than th a t p r e d ic te d by ( * ) . Another way o f t e l l i n g the "g o o d " from the "bad" systems o f cu rves is
t h is : the system o f cu rves l i n e a r l y e q u iv a le n t t o k1El + k2E2 + AD
A > k1
i s the fa m ily o f h yp erp lan e s e c tio n s o f F f o r some embedding o f F in PN
A > k2 k1 + k2 > A
k1E 1 + k 2E2 +
Here th e c o n d itio n on the l e f t d e fin e s the n o tio n : AD
i s v e r y am ple. W ith a l l t h is d ata b e fo r e us, what q u e s tio n s emerge as th e n a tu r a l
ones t o pose in s tu d y in g the cu rves on a g e n e r a l su rfa c e
F ?
I th in k
fo u r b a s ic l in e s o f study a re su ggested : (i)
the problem o f Riemann-Roch:
G iven a curve
C,
t o d eterm in e the dim ension o f the lin e a r system o f curves c o n ta in in g
C.
We s h a ll see below th a t t h is i s e q u iv a le n t
t o the problem o f computing dim H° ( £ ) where Op
£
i s a s h ea f on
F , l o c a l l y isom orp h ic t o the sh ea f
o f r e g u la r fu n c tio n s . (ii)
the problem o f P ic a r d :
To d e s c r ib e the fa m ily o f
a l l a lg e b r a ic d efo rm a tio n s o f a curve s u b fa m ilie s . of
C,
if
C
modulo i t s
lin e a r
I t turns out th a t t h is q u o tie n t i s independent C
i s good, and t h is q u o tie n t le a d s t o the P ic a r d
scheme and/or v a r i e t y .
RAW MATERIAL, AND THE PROBLEMS SUGGESTED
(iii)
Good v s . Bad cu rv e s :
One can ask when i s
C
What makes
v e r y am ple,
C
when i s
good and bad? C
abundant, what a re the r e a l l y bad " e x c e p t io n a l" p la y the r o l e o f
E1 , Eg
and
D
super C
w hich
i n Example 5 above?
P a r t i c u l a r l y s i g n i f i c a n t i s th e q u e s tio n o f th e " r e g u l a r i t y o f the a d jo in t " (iv )
(= " K o d a ir a 's v a n is h in g th eorem ") c f .
the components o f th e s e t o f a l l cu rves
E s p e c ia lly , what f i n i t e n e s s
C
statem en ts can be made?
L e c tu re 1 on
P_:
Ex
amples a re the theorem o f the base o f Neron and S e v e r i, and the theorem th a t o n ly a f i n i t e number o f components r e p r e s e n t cu rves o f any g iv e n d e g re e .
LECTURE 2 THE FUNDAMENTAL EXISTENCE PROBLEM AND TWO ANALYTIC PROOFS We s h a l l a n a ly z e problem i i )
more c l o s e l y .
The r e a l n a tu re o f th e
problem becomes c le a r e r when one p a s s e s from c u rv e s to d i v i s o r s . By a d i v i s o r on F we mean e i t h e r a f i n i t e sum o f i r r e d u c i b l e , 1 -d im en sio n a l s u b v a r i e t i e s , w ith ( p o s i t i v e or n e g a tiv e ) m u l t i p l i c i t y : Z nj_C-p nj_ € Z, or a s h e a f o f f r a c t i o n a l i d e a l s , i . e . , a c o h eren t su b sh ea f o f th e c o n s ta n t sh e a f
K: K(U) = fu n c tio n f i e l d k ( F ) , a l l
U
( c f . L e c tu re 9 f o r p r e c i s e d e f i n i t i o n s ) . The s e t o f a l l d i v i s o r s on form s a grou p , w hich we d en ote G(F) . P u t:
F
Ga (F) = subgroup o f d i v i s o r s o f th e form C1 - C2 , where C1 , C2 a re a l g e b r a i c a l l y e q u iv a le n t c u r v e s , G^(F) = subgroup o f d i v i s o r s o f th e form
C1 - C2,
where
C1 = C2 , o r , e q u i v a l e n t l y , th e subgroup o f d i v i s o r s o f form ( f ) , f € k ( F ) . Now i f C i s any cu rve on F , and c u rv e s a l g e b r a i c a l l y e q u iv a le n t to
(C^l a € S) i s th e fa m ily o f a l l C = CQ, one can d e fin e a map:
o j moauio l i n e a r ' s u b fa m ilie s b y mapping
a
to th e d i v i s o r
C
- CQ.
One ch eck s im m ed iately th a t i t
i s a lw a y s i n j e c t i v e , and i t can be shown t h a t f o r s u f f i c i e n t l y "good" (?J) c u r v e s , i t i s s u r j e c t i v e . For t h i s r e a s o n , problem ( i i ) becomes in d epen d en t o f C, i n most c a s e s , and a s k s sim ply-w h at i s th e s tr u c tu r e and dim en sion o f th e group
G (F)/G^(F)
i n v a r i a n t l y a tta c h e d to
F ?
A g ain w ith o u t p r o o f s , we would l i k e to m ention th e co h o m o lo g ical i n t e r p r e t a t i o n o f th e s e grou p s: L et o* = sh e a f o f u n it s i n th e s tr u c t u r e s h e a f K* = s h e a f o f u n it s i n K. Then: le a d s to :
o_
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
8
o - H ° (K * )/ k *
-
H °(K ? o *)
?ll
group o f
Ga (F )/ G ^ (F ) F
H1(o * )
-
0
2II
G *(F ) T h e r e fo r e ,
-
G (F) i s a subgroup o f
H1 (o _*), the s o - c a lle d P ic a rd
(d e fin a b le on any r in g e d - s p a c e ).
Now the work o f C asteInuovo and Matsusaka has shown th a t the group G (F )/ G ^ (F )
can be g iv e n , in a n a tu r a l way, the s tru c tu re o f an a lg e b r a ic
group—i n f a c t , is
an a b e lia n v a r i e t y .
the dimension?
The e s s e n t ia l p o in t i s ,
Here we have an e x is te n c e problem :
how ever, what
can we p r e d ic t the
dim ension o f the s e t o f s o lu tio n s o f an e s s e n t i a l l y n o n -lin e a r problem by means o f some l i n e a r d a ta , e . g . ,
the cohomology o f a coh eren t sheaf?
It
was c o n je c tu re d by S e v e r i th a t: (A )
dim Ga (F )/ G ^ (F )
where
£ = s tru c tu re sh ea f on
F,
=
q = p - p ) . T h is g a k = c , and was d is p ro v e n by Igu sa
c h a r(k ) / 0 .
The s im p le s t way to m o tiv a te l e f t i s a subgroup o f
H1( £ * ) ,
kind o f "e x p o n e n tia l" from way i s
to tra n sform
a curve
C
on
H1 (o )
( i n h is lan gu age,
was proven by P o in ca re in 1 9 0 9 , when in 1953, when
dim
F,
(A )
(A ) i s to n ote th a t the term on the
and to guess th a t th e re should be some
H1 (o )
to
H1 ( £ * ) ,
( c f . b e lo w ).
and in t h is form , i t
i s a s p e c ia l case o f th e g e n e r a l
K od aira-S p en cer e x is te n c e problem f o r d e fo rm a tio n s . a g a in th a t
(Ca | ot e S)
To see t h i s ,
i s a fa m ily o f d efo rm a tio n s o f
be the sh ea f o f s e c tio n s o f the normal bundle t o n o n - s in g u la r ).
A second
in t o a statem ent con cern in g the d efo rm a tio n s o f
C
in
C = CQ. F
suppose Let
(assume
N C is
Then th e re i s a fundam ental c h a r a c t e r is t ic map: / Tangent Space \^ \ to S at a = o f
TrOm x M
Roughly sp eak in g, a sm all neighborhood o f t o the norm al bundle t o
C
in
F,
C
in
w h ile a curve
d e fin e s a s e c tio n o f t h is n eigh borh ood:
as
a -► 0
F
i s n e a r ly isom orph ic
Ca ,
fo r
a
t h e r e fo r e ,
n ear
0,
th ese cu rves
can be a s y m p to tic a lly i d e n t i f i e d w ith s e c tio n o f the normal bundle t o in
F.
C
The key e x is te n c e problem i s now:
(B)
f o r s u ita b le
(C ^ },
p
is b ije c tiv e
In c id e n t a lly , in t h is form , the c o n je c tu re can be e q u a lly w e l l posed f o r s u b v a r ie tie s in o th e r v a r i e t i e s o f a r b it r a r y codim ension, e . g . , fo rm a tio n s o f cu rves in
p^.
U n fo rtu n a te ly , i t i s f a l s e even in
fo r de ch ar. 0
f o r some p a t h o lo g ic a l space cu rves. To connect c o n je c tu re s sheave s :
(A ) and ( B ) , we use the e x a c t sequence o f
FUNDAMENTAL EXISTENCE PROBLEM: TWO ANALYTIC PROOFS n)
22
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE (* )
if
m C A
A p p lic a t io n 2:
F ib r e s o f a morphism.
pre-sch em es, and y
i s a maximal i d e a l ,
y e Y
then
Let
be any p o in t .
A/ m ^ n.
f : X -► Y
Let
K (y )
QED be a morphism o f
= re s id u e f i e l d
of
oy
d eterm in es a c a n o n ic a l morphism: K ( y ) -----
Spec v ia
/ th e p t . -► y Oy
I K (J)
( c a n o n ic a lly )
One form s the f i b r e p ro d u ct: X X Spec
T h is i s
the scheme-the ore t i c
i s a ge o m e tric
is
p o in t o f
K (y )
fib r e o f
Y,
f .
= f -1 ( y ) ,
or
S im ila r ly , i f
X^.
g: Spec n -*• Y
then the f i b r e p rod u ct:
c a lle d the g e o m e tric f i b r e o f
f
o ver the g iv e n g e o m e tric p o in t .
In
t h is lan gu age, one has the d r o l l r e s u l t : P r o p o s it io n :
Let
k C K
be two
induced by the in c lu s io n o f [K/k
is
k
a group i s
and l e t
f : Spec K -►
Spec k be
K. Then,
s e p a ra b le ] [~ one (and hence a l l ) g e o m e tric f i b r e s Lo f f a re reduced schemes (P r o o f i s
A p p lic a t io n 3:
fie ld s ,
in
l e f t t o r e a d e r .)
D ir e c t d e f i n i t i o n o f a group pre-schem e
sim ply a s e t
X
m u lt: in v e r s e : id e n tity : s a t i s f y i n g w ell-kn ow n r e l a t i o n s . s i s t s in th e fu n c to r morphisms o f fu n c to r s :
/S.
A fte r a l l ,
p lu s th re e maps:
h^. (on the
X x X — X X -► X ( e ) -► X T h e r e fo r e , a group pre-schem e
X/S
c a te g o r y o f pre-schem es /S)p lu s th re e
con
23
USES OP THE FUNCTOR OP POINTS m u lt:
h^. x h^. “ ►h^.
in v e r s e :
h^ -► .h^
id e n tity : {1 e l t . s a t i s f y i n g th e same i d e n t i t i e s . h^. XjgX>
But:
(a )
h^. x h^.
i s isom orp h ic t o
e l t * fu n c'to:i:>^ i s isom orp h ic to
f i n a l o b je c t i n our c a te g o r y . if
fu n c to r ) -►
T h e r e fo r e ,
X
hg,
S
b e in g the
i s a group pre-schem e
/S
one i s g iv e n th re e morphisms: m u lt:
X x X -► X S
in v e r s e :
X
id e n tity :
S -► X
X
s a t is f y in g th e same i d e n t i t i e s . A f i n a l p o in t n o t to be fo r g o t t e n : /S,
fo r a l l
T/S,
the
sense do the o rd in a ry p o in ts o f A p p lic a t io n 1^:
X -► X
X
D e f i n i t i o n o f a scheme. be the i d e n t i t y .
X X
i s a group pre-schem e
form a group:
form a group Let
X
(e v e n i f
but in no
S = Spec ft ).
be a pre-schem e, and l e t
The induced morphism
A = ( 1X , 1X ) : is
if
T -v a lu e d p o in ts o f
X
X x X
c a lle d th e d ia g o n a l.
P r o p o s it io n - D e f in it io n : i) ii)
a (X )
is
X
i s a scheme i f
c lo s e d in
e q u iv a le n t ly :
r
X x X,
f o r e v e r y p a ir o f morphisms
11
Y
X ,
f2
( y € Y| f 1(y ) P r o o f: X x X
ii) on
===> i ) X;
i)
= f 2( y ) )
by ta k in g
===> i i )
i s a c lo s e d subset o f
Y = X x X,
by fa c t o r in g
(■^1 >^ 2^ Y --------------
Y
f^ = i th p r o je c t io n
p^
of
f^ -^1
7 X ,
Xx X P2
and n o tin g th a t (y € Y| f^y = f 2y)
=
(f,, f 2 )- 1 [A(X)]
QED From now on, we w i l l d e a l o n ly w ith schemes, u n less o th e rw is e s p e c if ie d .
APPENDIX TO LECTURE k RE
REPRESENTABLE FUNCTORS AND ZARISKI TANGENT SPACES
As an a p p lic a t io n b o th o f th e con cep ts o f fu n c to r s and o f n ilp o t e n t s , we connect th ese t o the g e o m e tric con cep t o f the Z a r is k i ta n gen t space. Assume th a t
X
i s a scheme
r a t i o n a l p o in t , i . e . , phism
k
over a f i e l d
th e g iv e n
k,
and
homomorphism
th a t
k ox
x e X is a
in du ces
k-
an iso m o r
K (x ) .
D e fin itio n : 2 t o m/m is
If
m C o„
i s the maximal i d e a l ,
the Z a r is k i ta n gen t space
Tx
then the d u a l v e c t o r to
X
at
space
x.
Now c o n s id e r the i n t e r e s t i n g c la s s o f schemes: D e fin itio n :
If
V
i s a v e c t o r space (a lw a ys f i n i t e d im en sio n a l)
o ver
k,
le t
ly where
k 0 V
i s a r in g v ia
= V
Spec (k 0 V )
2
= (o ) .
,
N ote th a t one has two homomor
phism s: k CODIM 0 ' THE GENERIC ’ POINT
l STALK Q (X ,/X 0)
CODIM I
SPE SPEC(Z) ve.)
ioj
ioi
in
ipi
101
STALK Z(R) STALK Q E x e r c is e :
What i s
the p o in t ( * ) ?
A more w e ig h ty q u e s tio n i s what a re the S -valu ed p o in ts in i.e .,
what i s
the fu n c to r o f
h
.
pn ,
The answer to t h is q u e s tio n in v o lv e s
n us im m ed ia tely in a new c o n c e p t.: D e fin itio n :
If
X
i s a l o c a l r in g e d space, a sh eaf
such th a t th e re e x is t s a c o v e r in g
{U^}
of
X
£
of
£x -modules
f o r which
£| as is
c a lle d an i n v e r t i b l e
s h e a f.
More c o n c r e t e ly , what i s
0^ ,
p h ic t o
o^-m odules,
such an
the e s s e n t ia l p a r t o f
£
can be co n s tru c te d b y s t a r t in g w ith as sheaves o f
o^-modules on
Horn ' as sheaves o f o^-modules [where U j, o_x )
U^ n U^.
£ ? Since l o c a l l y i t i s in the p a tc h in g : on each
U^,
i s isom or i.e .,
£
and p a tc h in g th ese
But
(%'u.
h e Horn correspon ds to
h( 1 ) e rfU ^ n U j,
ox ) ;
and
f e r(U ^ n
correspon ds t o the homomorphism g iv e n by m u lt ip lic a t io n by
f ].
Now d e fin e : D e fin itio n : i) or
ii)
An elem ent
s e r (U ,
Oj)
i s a u n it i f e q u iv a le n t ly :
th e re e x is t s a m u l t i p l i c a t i v e in v e r s e fo r a l l
x e U, the induced elem en t
the maximal i d e a l
s
s " 1 € r (U , Oy.) -X '
in
i s n o t in
29
P ro j AND INVERTIBLE SHEAVES I t is
c le a r from ( i i )
denote
o*.
I t is
m u lt ip lic a t io n .
th a t the u n its form a subsheaf o f
c le a r from ( i )
Now i t
is
th a t
a*
o^. -w hich we w i l l
i s a sh e a f o f groups under
c le a r th a t the isom orphism s o f
w ith i t s e l f
a re: Isamas sheaves o f -module s T h e r e fo r e ,
to c o n s tru c t
i £,
m u lt ip lic a t io n by a u n it
a^.
s^
T h is means th a t
\
elem ent
• sj k
n U^ .
D Uj n U^,
• sk±
n Uj> 2%)
~ u ra ts l n r ( ui
must be patched to i t s e l f on over
tio n s must be com p a tib le on si j
° x lu ,n u J i j
t3
=
1
on
it
ui
n
by
Sin ce a l l th ese i d e n t i f i c a f o llo w s th a t:
n uj n uk •
(s ..) form a 1-C zech c o - c y c le , and we have d e fin e d an 1 1J H (X , oJ£) . The main, but elem en tary, r e s u lt in t h is d i
of
r e c t io n i s :
\
P r o p o s it io n 2:
depends o n ly on
betw een th e s e t o f i n v e r t i b l e set
£,
and t h is s e ts up an isom orphism
sheaves on
X-modulo isomorphismr-and th e
H1 (X , o £ ) .
D e fin it io n : Remarks:
P ic (X )
A)
P ic
= H1 (X ,
(X)
a sh e a f o f grou ps.
£1 0 £2 any
X
£ 1 0 £2;
(U ^ ),
is
B) f
and
if
£1
and i f
L2
and
£g
c le a r sin c e
o*
a re i n v e r t i b l e
i s g iv e n by the c o - c y c le
i s g iv e n by
t^ j
s^
is
sheaves, s^
f o r the same c o v e r in g ,
sim p ly the sh ea f g iv e n by th e p a tc h in g P ic
w ith then
• t^ .
(X)
i s a c o n tr a v a r ia n t fu n c to r w ith r e s p e c t t o X. G iven f* th e re i s a homomorphism o^. ----- o * , hence an induced
►Y ,
homomorphism o f H1 , s. then
i s a commutative group—t h is i s
More d i r e c t l y ,
t h e i r p rod u ct i s resp ect to
.
f* ( £ ) =
More
0 ^ £
g iv e n by the c o - c y c le
is s^ j
d ir e c t ly , i f
£
an i n v e r t i b l e
sh ea f on
X;
(U ^ ),
then
w it h r e s p e c t to
b y th e c o - c y c le
w ith r e s p e c t t o
i s an i n v e r t i b l e
( f “ 1 ( U ^ )).
sh ea f on
and i f
£
f* ( £ )
Y,
is i s g iv e n
N ote a ls o th a t s e c
tio n s s e r (Y ,
£ )
induce s e c tio n s f* (s ) C)
Suppose
Then a lth o u g h
s
sense to say of
£x
and
the v a lu e
g (x )
In p a r t ic u la r ,
.
i s a s e c t io n o f an i n v e r t i b l e
does n o t have v a lu e s a t p o in ts
s (x ) £x ,
s
€ r (X , f * ( £ ) )
=0
or
and i f € K (x )
s (x ) ^ 0.
s
0
£ it
on
X.
does make
Namely, i f we choose an isomorphism
correspon ds to
o f gi s
sh ea f
x e X,
g e £x ,
then a t l e a s t whether
o r n o t i s in dependent o f the isom orphism .
one has th e su bset o f
X:
Xg = tx € X | s ( x ) ^ 0) w hich i s e a s i l y seen to be open.
These open s e ts in c lu d e as s p e c ia l cases
30
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
the open s e ts P roj
(R)
used t o d e fin e the to p o lo g y b o th o f Spec (A ) and
( c f . below ( i v ) ) .
R etu rn in g t o P r o j (* )
Rn
is
spanned, as
Then we fin d th a t P r o j i)
X = P roj
[P r o o f: th a t a l l f
in
ii)
( R ) , assume t h a t : RQ-m odule,
If
x e X - U Xf , a re i n
pj
Xf n Xg,
f/ g
is
of
ox on
If
a
p
Rn C
C R such
p , c o n tr a d .]
T h e re fo re th e c o v e r in g
(X f ) (R ),
s h e a f.
0( 1 ).
T h is i s c a lle d o (i)® * 1
of
o (1 ),
one
homomorphism ■r (X , o ( n ) )
o (n )
i s d e fin e d by th e c o - c y c le
k € R ,
then
k
(f/ g )n
g iv e s r i s e t o th e s e c tio n s
d i f f e r p r e c i s e l y by f a c t o r s
th ey p a tch up as s e c tio n s o f
iv )
to
and
the nttl te n s o r power
Xf ; s in c e th ese
X f n Xg,
correspon ds C p,
the g e o m e tric s ig n ific a n c e o f the graded r i n g
[ C o n s tru c tio n : {X f } .
f €R1 .
d e fin e a 1-C zech c o - c y c le on P ro j
Rn
c o v e r in g
Ri
i s a u n it .
f/ g
has a c a n o n ic a l
w hich i s
Xf , f o r
then x
Thus
hence an i n v e r t i b l e I f o (n )
R ^ T T T ^ I r ., .
(R ) has more s tr u c tu r e :
and th e u n its
iii)
by
(R ) i s c o vered b y
R1
On
nx
One checks t h a t , f o r th e to p o lo g y on
X n, % d e fin e d as in cpn (k )
f o r the k / f31
( f / g ) n on
£ (n ) . ]
k € Rn ,
X = P roj
R.
th e open s e ts
(R)
Xk
d e fin in g
a re the same as th e open s e ts
C) above.
L e t us a p p ly t h is new in fo r m a tio n t o study th e s tru c tu re o f the fu n c to r s
hpr o j ^
•
G iven an S -va lu ed p o in t S —
o f P roj
( R ) , one o b ta in s on
P u ttin g t h is f u n c t o r i a l l y ,
S
►P r o f (R )
an induced i n v e r t i b l e
k p ro j (R ) T h is i s i n t e r e s t i n g from two P ic .
P lc
s ta n d p o in ts :
o f th e fu n c to r o f p o in ts o f a P r o j ; the fu n c to r
f* (o p ))
on S.
and i t
•
i t e x p la in s th e n o n - t r i v i a l i t y i s a b e g in n in g in r e p r e s e n tin g
A lth ou gh i t may seem stra n ge to v iew P r o j
as approxim ate group-schem es, r e a l l y r e p r e s e n tin g P ic , cu ra te in th e c a te g o r y (H o t ).
c pn ^
c p„ »
( R ) , or
pn ,
t h is i s q u it e a c
Here we have the CW-complex
p r o j e c t i v e n -sp a ce) and hence
sh ea f
one has a v e r y b a s ic morphism o f fu n c to r s :
c Pn
(com plex
P r o j AND INVERTIBLE SHEAVES
31
fu n c to r re p re s e n te d L^y C P* J
fu n c to r r e p r e s e n te d ! Lby C P„ J
l\ \
fu n c to r ~ S - H (S , z ) . l\\
fu n c to r S group o f t o p o lo g ic a l e q u iv . c la s s e s o f l i n e bundles on S v ia
c P^ s E ile n b e rg -M a c la n e Space
K( Z , 2)
.
We can now g iv e the e x p l i c i t d e s c r ip t io n o f the fu n c to r we have been d r iv in g a t .
X± € correspon d as in Then f o r a l l
rn
to
S
p.
i n th e
R1-component o f
£
=
f* (o (1 ))
s±
=
f * (X ± ) e r (S , £ )
z [X Q, . . . ,
Xn 3.
T h is g iv e s an isom orphism :
(S )
/ (£
> s n>
■'
£ an i n v e r t i b l e
sn)
sh ea f on S
sQ, • • •, sn s e c tio n s o f th e re i s an S± (x )
P r o o f:
Not a d i f f i c u l t e x e r c is e ,
by a c o l l e c t i o n
g e th e r ;
which
n' 0( 1 ))
r(
such th a t f o r a l l
g iv e n
•n
one o b ta in s :
P r o p o s it io n 3:
K
(iii)
h
Let
s in ce
( PR) X>
i
£
x e S,
modulo
such th a t
isom or phism.
f o
( c f . EGA 2, §1+) ;
f : S -*•
f . : SQ— ► ( pn) Y , 0 < i < n, w hich p a tch jL i ” — i s a f f i n e , use Theorem 1, L e c tu re 3.
Pn
is
to -
A n ic e C o r o lla r y t i e s t h is in w ith the elem en ta ry d e f i n i t i o n o f P r o j.
space o v e r a f i e l d
a lo c a l r in g C o r o lla r y ;
k—e x c e p t we may as w e l l a t le a s t r e p la c e
k
by
Pn
is
_o: If
£
i s a lo c a l r in g ,
the s e t o f o -v a lu e d p o in ts o f
isom orp h ic t o : { ( aQ, . . . ,
e o , n o t a l l a ^ i n th e max. i d e a l
ofn) |
. P r o o f:
S in ce Spec (£ )
i t s e l f is
c o n ta in in g the one c lo s e d p o in t , i t v e r tib le
s h e a f,
.°3 pec
•
a l l u n its x. e a*
the o n ly open subset o f Spec ( o )
f o llo w s th a t Spec (£ ) has o n ly one i n
Sin ce the automorphisms o f
c i s e l y m u lt ip lic a t io n s by u n its o f P r o p o s it io n 3.
),
m)
Ogpec
Pr e
x. e £ * , the C o r o lla r y i s a s p ecT a l case
32
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE As a f i n a l p o in t , i t
i s i n t e r e s t i n g t o g iv e th e g e n e r a liz a t io n o f
t h is l a s t P r o p o s it io n t o Grassmannians.
B e fo re d e fin in g the a c tu a l G rass-
mannian e x p l i c i t l y , we can c h a r a c te r iz e i t by g iv in g i t s fu n c to r : D e fin itio n :
A sh ea f
g
of
o^-modules i s
th e re e x i s t s an open c o v e r in g
X
l o c a l l y f r e e o f rank
{UjJ
of
g lui
S ^ lu ± •
r
if
such th a t
Then the fu n c to r i s : r l o c a l l y f r e e sheaves
Q
■
• • * > r-1
f o r any sequences THEOREM :
i 1, . . . ,
1 ® Pi 1 j i 2>
i p_ 1
and
j^ ...,
1 . 1 > >Jr+ i j p+1
=
0
.
The above morphism from the Grassmannian fu n c to r t o the
fu n c to r o f p r o j e c t i v e
space i s i n j e c t i v e and i t s image c o n s is ts p r e c i s e l y
o f the S -va lu ed p o in ts o f p r o j e c t i v e space s a t i s f y i n g ( # ) . P r o o f:
An S -va lu ed p o in t o f the Grassmannian can be reg a rd ed as
a s u r je c t iv e homomorphism: „n+1
Og
CP
cr . r\
---- * -► g -*• 0
Up t o isom orphism , t h is p o in t i s determ ined b y th e k e r n e l o f the k e r n e l i s a subsheaf o f a f i x e d d eterm in ed g l o b a l l y . T h e re fo re
s h e a f,
cp;
i f i t i s g iv e n l o c a l l y ,
the r e s u lt f o llo w s i f , g iv e n
sin c e i t is
any S -va lu ed
Proj AMD INVERTIBLE SHEAVES
33
p o in t of p ro je c tiv e space s a tis fy in g (# ), th e re i s an open covering of S such th a t over each open su b set, the S-valued p o in t l i f t s u niquely to a p o in t of the Grassm annian. T h erefo re, we can p ass to an open s e t where a fix ed Plticker co o rd in ate i . e . , th is p g en erates £ g lo b a lly . The re la tio n s (#) can then be "so lv ed ," and one checks th a t they take p re c is e ly the form F (• • • *P-^ j_ j * * *) • • • >Jr ^ , . . . , 1 ^ )«-! 1 1 , . . . ,-L k , . . . ,J -r , J ,
where a t le a s t two of the j ' s are n o t in the s e t , . . ., i and where P i s a homogeneous polynom ial of degree N in the r(n+1 - r) fre e v a ria b le s p. ? . On the o th er hand, fo r the S-valued p o in t cp of the Grassmannian fu n c to r to induce a p ro je c tiv e p o in t where p. . ^ 0, i t i s n ecessary and s u ffic ie n t th a t s. = cp(e. ) , . . . , s.
= cp(e. ) i s a b a s is of the sheaf g . Then the id e a l which i s the r r k ern el of © has a uniaue b a s is of the form: k=1 * (where eQ, . . . , en i s the stand ard b a s is of o^+1) . In term s of a^k, the Plucker co o rd in ates come o ut: Pi ± -j a jk, t = (-1) r - k -L 1 9 * * * 9 -L ] £ > * * * 9 J 9 ^- 2 9 • * • j i p
T herefore th e re i s one and only one choice of a^k e r(S , og) correspond in g to the given Plucker co o rd in a tes. QkIj C o ro llary 1 : The Grassmannian fu n cto r i s re p resen ted by t i M re la tio n s ) , G„ „ = P roj z [ . . . , p.^ 9 - - - 9 ±4r , • • • ] / (Q uadratic # C o ro llary 2 : The open s e t of G^ „ where p. . ^ o i s isom orphic r to a ffin e space of dim ension r(n+ l - r ) .
APPENDIX TO LECTURE 5 A fu r t h e r developm ent o f the th e o ry r e v e a ls th a t the o p e r a tio n P r o j , as d e fin e d ab ove, i s z a t io n l e t
R =
Rn
S -a lg e b r a ; as such i t
o ft e n to o s p e c ia l.
be a graded r in g .
To understand the g e n e r a li
Suppose
RQ
happens t o be an
g iv e s a q u a s i-c o h e re n t sh ea f 00
R = 1 n=o
of
^ -m o d u le s on
graded sh e a f o f is
«n
X = Spec ( S ) . o^-a lg e b r a s
Here
R
i s a c t u a lly a q u a s i-c o h e re n t
(a m ou th fu l, but sim ple en ou gh ).
The p o in t
th a t one can en cou n ter such sheaves even on n o n - a ffin e schemes
Thus say
R =
a f f i n e open
Rn
is
such a c re a tu re on some scheme
U C X,
X.
X.
Then f o r a l l
^ r (U ,
R)
=
£
r(TJ,
Rn)
n=o i s a graded r i n g o v e r R)
r (U , £x ) .
T h e r e fo r e one g e ts a scheme
P r o j[r (U ,
to g e th e r w it h a morphism 7T : P r o j r (U ,
R ) — ►U .
One checks ( c f . EGA, 2, §3) th a t th ese p a tc h to g e th e r c a n o n ic a lly t o a scheme
( R) t o g e th e r w ith a morphism: 7r : Proj^ ( R) —
The f o l l o w i n g i s s h ea f o f ran k power o f
E
r (a s
X .
th e most im p orta n t exam ple: on a scheme
X.
Put
£x -m o d u les), and
P
T h i s scheme g e n e r a l!z e s
Pn
Pn
^
Rn
Let
R = E Rf l .
=
i t s e If:
P[ ^ 35
E
be a l o c a l l y f r e e
eq u a l t o the
^
n^*1 symmetric
Then one w r it e s :
*
i.e .,
Xi ' ^Speo z ]
•
36
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
On the o th e r hand, i t i s n ot much more co m p lica ted than i s isom orph ic t o the f r e e then o ver
sh ea f
on
Pn,
°P en c o v e r in g
fo r i f (U^)
X,
U^: P (E )| n
s
P ((o x ) r )ly
s
p r _i
x
[T h is fo llo w s from the g e n e r a l f a c t th a t i f
f :
and
o ^ -a lg e b r a s , then:
R
E of
i s a qu asi-coh eren t, graded sh ea f o f Proj^ ( f * ( R ) ) s
X -► Y
i s any morphism,
x X .
c f . EGA 2. § 3 . 5 . ] F or
p (E ),
0( 1 )
i s co n s tru c te d e x a c t ly as b e fo r e , and one fin d s a
c a n o n ic a l homomorphism: E (if
tr
is
the p r o je c t io n from
induced homomorphism on
P (E )
s u r je c t iv e .
lift in g
onto the base
X ).
M oreover, the
P (E ): tt* (E )
is
ir * (o (1 ))
- ► o (l)
Now suppose a morphism
g : S -► X
i s g iv e n .
Then t o any
h: P (E )
S ------------- ------------ X we can a s s o c ia te th e i n v e r t i b l e
s h ea f
L = h * ( o ( 1 ) ) , and a s u r je c t iv e homo
morphism: cp:
g * (E )
= h*(7r*E) - * h * ( o ( 1 ) )
An easy g e n e r a liz a t io n o f the r e s u l t f o r
Pn
= L .
s ta te s th a t t h is s e ts up a
f u n c t o r ia l isomorphism betw een the s e t o f S -va lu ed p o in ts liftin g
g , and the s e t o f
L
and
cp.
h
of
P (E )
LECTURE 6
PROPERTIES OP MORPHISMS AND SHEAVES s
1
A f f i n e co n c e p ts :
R-m odules,
Let
X = Spec ( R ) .
M, one can d e fin e a sh ea f M
r(Xf, M) = M( f ) ,
We r e c a l l
of
a ll
th a t f o r a l l
o^-m odules, v i a : f € R .
T h is d e fin e s a f u l l y f a i t h f u l and e x a c t fu n c to r : C a teg o ry o f ] R-modules J [i.e .,
Homo
(M, N) s
C a tego ry o f sheaves o f o^-modules
Hom^(M, N ) ,
and
is exact i f
-X 0 —►M—► N - ^ P —►O
A sh e a f
D e fin itio n : m orphic t o Exam ple:
is e x a c t].
y of
M, f o r some Let
R
o^-modules i s
R-module
y
q u a s i-c o h e re n t i f
is is o
M.
be a d is c r e t e , rank 1 v a lu a t io n r in g w ith q u o tie n t f i e l d
K. Then th e re a re two nonempty open s e ts i n S p e c (R ): the whole space X, and the g e n e r ic p o in t i t s e l f U. A sh e a f y o f
o^-modules c o n s is t s , t h e r e fo r e ,
in a)
an R-module
b)
a homomorphism o v e r
A = y ( X ) ; a K -v e c to r A
T h is
y
i s q u a s i-c o h e re n t i f
space
B = ^ (U ),
R B .
and o n ly i f : B = A K . R
THEOREM 1 :
If
X
i s a f f i n e , and
(A )
y
(B)
H ^X, 5 ) = (0 ),
is
spanned, as
if
Wecan now g e n e r a liz e th ese D e fin itio n :
Let
c o h e re n t, i f
e q u iv a le n t ly :
i)
X
be a
y |TT i
i s q u a s i-c o h e r e n t, then s e c tio n s
r (X , 5 ) ,
i > 0. con cep ts in v a r io u s
scheme. A sh e a f
th e re e x i s t s a c o v e r in g such th a t
y
o^-m odule, by i t s
(U^}
yo f of
i s qua s i- c o h e r e n t ; 37
ways:
o-^-modules i s q u a s iX
by a f f i n e
open s e t s ,
38
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE ii)
YU C X,
U a f f i n e and open,
i s q u a s i-c o h e re n t.
A v e r y u s e fu l a p p lic a t io n o f t h is con cept i s in : P r o p o s itio n - D e f i n i t l o n :
Let
i s a l o c a l r in g e d space
Y
subspace o f
X
be a scheme.
A c lo s e d sub-scheme
X, and whose sh ea f o f r in g s
one has
(0
e q u iv a le n t ly
0
is
i s a q u o tie n t o f
a sh ea f o f id e a ls in
q u a s i-c o h e re n t, o r
The f a c t th a t i f
Y C X
whose u n d e rly in g t o p o lo g ic a l space i s a c lo s e d
Y
Y
is it s e lf
i s a scheme, then
0
o^:
i.e .,
o ^ ) , p ro v id e d th a t a scheme.
i s q u a s i-c o h e re n t comes
from : P r o p o s it io n 2 ; if
U C Y
in g ) .
is
Let
►Y
be a qu asi-com pact morphism o f schemes ( i . e .
open and a f f i n e ,
Then i f
R ^ f* (y )
f
X
y
f ” 1 (U)
adm its a f i n i t e a f f i n e
i s a q u a s i-c o h e re n t s h ea f on
a re q u a s i-c o h e re n t on
a re th e schemes
open c o v e r
a l l the sheaves
Y.
One fin d s , from the above d e f i n i t i o n : X = Spec (R )
X,
the c lo s e d subschemes o f
Y = Spec ( R / l ) ,
f o r id e a ls
ICR.
We
a ls o make th e d e f i n i t i o n : D e fin itio n : of
X,
f Y ---►X
If
then
D e fin itio n :
f
is
Let
X
i s an isom orphism o f
be a scheme.
scheme o f an open subset of
Y
One o f the
( nX red u ced ” ) . id e a ls
0
is
A sub-scheme
U C X.
w ith a subscheme o f
Example:
Y w ith a c lo s e d sub scheme
a c lo s e d im m ersion. Y fC X
An im m ersion
Y
i s a c lo s e d sub-
►X
i s an isomorphism
X.
most im p orta n t sub schemes o f a scheme X i s
As a c lo s e d su b set,
XL^^ = X,
but i t s d e fin in g sh ea f
of
the subsheaf: r (U , 0) = (s € r (U , £x )| E q u iv a le n t ly , sv € o x -x
One checks th a t i f I
U = Spec ( R ) ,
then
0
= (a € R | E q u iv a le n t ly , a or
a
s (x )
= o, a l l
x e U
i s n ilp o t e n t , a l l x € U) is €
the sh ea f
I
, where
e v e r y prim e i d e a l
is n ilp o te n t). o
T h e r e fo r e ,
0
i s q u a s i-c o h e re n t.
(Compare L e c tu re 3,
1 ).
Another g e n e r a liz a t io n o f the con cept o f ’’a f f i n e " i s : D e fin itio n : i)
A morphism
f
►Y
is a ffin e i f
e q u iv a le n t ly :
th e re e x i s t s an a f f i n e open c o v e r in g f " ' 1^ )
ii)
X
V
is a ffin e ,
fo r a l l
a f f i n e open s e ts
V C Y,
(U^)
of
i; f ” 1(V )
is a ffin e .
Y
such th a t
PROPERTIES OF MORPHISMS AND SHEAVES C o r o lla r y o f Theorem 1 :
If
modules i s q u a s i-c o h e r e n t, (A )
f X ---- ►Y
39
i s a f f i n e , and the sh ea f
5
of
o^-
then:
the c a n o n ic a l homomorphism: f * (f * S) is
?
s u r je c tiv e ;
(B )
= (o ),
fo r
i > o.
The con cep ts o f f i b r e p rod u ct and a f f i n e morphisms a re connected by the v e r y sim ple but im p o rta n t: P r o p o s it io n 3 :
f X ----- ►Y
Let
be an a r b it r a r y morphism.
be an a f f i n e morphism, and l e t
We w r it e
X1
fo r
X x Y’ y
l a b e l l e d as f o llo w s :
Y1
g
►Y
w ith morphisms
g Then
f 1
i s an a f f i n e morphism.
And i f
F
i s a q u a s i-c o h e re n t s h ea f on
X, )
a ( c a n o n ic a lly )
U g '* (
j
)
•
o
2 fin ite
We d e fin e s e v e r a l con cep ts by s p e c i a l i z i n g the above t o a more
s it u a t io n :
D e fin itio n :
A scheme
i) ii)
i s n o e th e ria n i f ,
e q u iv a le n t ly :
open a f f i n e c o v e r in g
such th a t
i s n o e th e ria n ;
X
r(U ^ , o^)
{U^}
i s qu asi-com p act, and f o r a l l open a f f i n e
r (U , o^) iii)
X
th e re e x i s t s a f i n i t e
of
X
U C X,
i s n o e th e ria n ;
the ord ered s e t o f c lo s e d subschemes o f
X
s a t i s f i e s the
d escen d in g ch ain c o n d itio n . D e fin it io n :
A q u a s i-c o h e re n t s h ea f
co h eren t i f ,
e q u iv a le n t ly :
i)
th e re e x i s t s an a f f i n e rtU ^ ,
ii) N o te .
Q u a si-coh eren t —A
x
is
(0 ),
D e fin itio n : fin ite
if
is a
is then
open c o v e r in g
{U^}
open
of
X
X
is
such th a t
ty p e ;
U C X .
subsheaves and q u o tie n t sheaves o f coh eren t sheaves c o h e re n t; i f
the s t a lk
5
o f a coh eren t sh ea f
X
$ ^ (0 ) in a n eighborhood o f
An a f f i n e morphism
e q u iv a le n t ly :
on a n o e th e ria n scheme
rCCJ^, o^) -module o f f i n i t e
same f o r a l l a f f i n e
a re c o h e re n t; , ov at
5 )
y
X
f
►Y ,
where
Y
x. i s n o e th e ria n , i s
SF
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
14-0 i)
f* (£ x )
ii)
f
i s coh eren t on
is
o f fin ite
co h eren t P r o p o s it io n p o in ts
If
f ” 1(y )
y X
on f
Y;
typ e (hence X,
►Y
f* ( 5 )
is fin it e ,
is fin it e ,
X
i s n o e th e ria n ) and f o r a l l
is
coh eren t on
then f o r a l l
Y.
y € Y,
the s e t o f
( t h i s p r o p e r ty i s what G roth en d ieck c a l l s
" q u a s i- fin ite ” ) . P r o o f:
If
A = f* (£ v )v
s c h e m e -th e o re tic f i b r e co h e re n t,
A
H (y ),
y
-y
f “ 1(y )
is
then i t i s e a s i l y seen th a t the
sim p ly Spec ( A ) .
i s a f i n i t e d im en sion a l
But s in ce
K (y ) - a l g e b r a , hence
f* (o x ) is
Spec (A ) i s
fin ite . QED C oncerning th e to p o lo g y o f n o e th e ria n schemes, the key p o in t i s th a t th ese a re n o e th e ria n t o p o lo g ic a l spaces, f o r c lo s e d su b sets.
i.e .,
s a t i s f y the d . c . c .
C on sequ en tly, e v e r y c lo s e d subset i s a f i n i t e union
o f ir r e d u c ib le c lo s e d su bsets which a re c a lle d i t s
components.
T h is i s ,
o f co u rse, the g lo b a l t o p o lo g ic a l a n a lo g o f th e d ecom p osition o f an i d e a l i n a n o e th e ria n r i n g in t o an in t e r s e c t io n o f p rim ary id e a ls .
The f i n e r
a s p e c ts o f the d ecom p osition theorem come in v i a the o p e r a tio n " A " : D e fin itio n :
Let
?
be a coh eren t sh ea f on a n o e th e ria n scheme
A ( 5 ) = (x € X| 3
a s e c tio n an i d e a l
s € J x I C ox
id e a l, i . e . , and is
th a t
which i s a n n ih ila te d by p rim ary t o th e maximal
an open neighborhood
of
x,
s
x)
f o r a thorough d is c u s s io n o f t h is con
I t fo llo w s im m ed ia tely from the d ecom p osition theorem f o r modules A( ? )
is a fin it e
s e t.
M oreover,
A( J )
in c lu d e s in p a r t ic u la r ,
the g e n e r ic p o in ts o f e v e r y component o f the support o f subset o f
X )- b u t, in g e n e r a l, i t
p o in t s . " Z
U
such th a t the support o f
the c lo s u re o f
[ c f . BOURBAKI, A lg . Comm., Ch. k, c e p t ].
3
s € r (U )
X.
On the o th e r hand, i f
y
(a s a c lo s e d
a ls o in c lu d e s ’’embedded a s s o c ia te d Z
i s a c lo s e d subset o f
X
and we make
in t o a c lo s e d subscheme v i a the sh ea f o f a l l fu n c tio n s which a re e v e r y
where
0 on
then A (o z )
Z
(t h is
i s known as the reduced subscheme s tru c tu re
i s p r e c is e ly
on
Z ),
the s e t o f g e n e r ic p o in ts o f the components o f
Z. o
3
F la tn e s s :
D e fin itio n : sh ea f o f
s io n
n
.
—X
fp
.
x* e X
W ith r e s p e c t
k3
PROPERTIES OF MORPHISMS AND SHEAVES
f*(v) € % C y ,
s in c e e x a c t ly th a t
in .
th e in v e r s e image o f the maximal i d e a l
f ( x ! ) = y.
[i.e .,
c-*
i
Spec (o y )
x
i
Y
]. x 1 € A( J ) .
The p r o p o s it io n w i l l t h e r e fo r e be proven i f we v e r i f y th a t ^£x i
is
use the diagram :
Spec ( o )
But
mx ,
By the rem ark f o l l o w i n g Theorem 1, L e c tu re 3, t h is means
i s p rim a ry f o r th e maximal i d e a l
the induced s e c t io n
s’ €
m^., C £x i ,
and i t
k ills
?x i • QED
Example 3 :
Now c o n s id e r
th e case o f a f i n i t e morphism
f
e t h e r ia n , and a c o h eren t s h e a f
f
X
on
X.
The c o n t in u it y
?
is
l o c a l l y f r e e on
-► Y ,
of
Y no
?o v e r
Y
e x p re s s e s i t s e l f as f o l l o w s : P r o p o s it io n 7: [ ? fla t P r o o f: X = Spec ( A ) , Let M
? is
over
[f*
The r e s u l t b e in g l o c a l on where
A
Y,
/B,
M.
hence f o r a l l prim e id e a ls
i.e .,
suppose
i s a B -a lg e b r a , and i s
corresp on d t o the f i n i t e A-module fla t B^,
fin ite
/Y] < = >
f* ( 5 )y =
If
typ e o v e r a n o e th e ria n
?
oy = Bp
.
Y = Spec ( B ) ;
o f fin ite
fp C B,
i s f l a t over
Y]
typ e as
is fla t
/Y,
Mp = M .
then
B-module. then is f la t
But a module o f
l o c a l r i n g i s f l a t o n ly i f i t
is
fr e e .
T h e r e fo r e , th e re i s an isomorphism
4 of
oy -m odules.
og in some n eighborhood o f at
y,
~
r*r
But such a homomorphism i s induced by a homomorphism:
y;
—*
f*(f)
and th e k e r n e l and c o k e rn e l, h a vin g
a ls o v a n is h i n a n eighborhood o f
y.
T h e re fo re
f* ( 5 )
0 s ta lk s is lo c a l
ly fr e e . The co n verse i s z a t io n o f th e
c l e a r , s in c e the s t a lk
£ f ( x ) -module
y
at
x e Xi s a l o c a l i
f # ( JF ) f ( x ) • QED
Example k : Y y,
We s h a ll fu r t h e r a n a ly ze th e s it u a t io n o f Example 3, i n case
i s reduced and ir r e d u c ib le .
Suppose
one has the diagram :
y e Y.
V ia th e f i b r e
„
i
| Y
i
Spec
K (y )
of
f
over
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
and 5 on X induces a sheaf J on Xy. Algebraically, if Y = Spec B, X = Spec (A), and 5 corresponds to the A-moduleM, then y comes from a primeideal p C B, K(y) is the quotient field of B / p , =
X
* 7
Spec (A 0 B
=
KCy))
y
A
Since A isafinite B-module, mutative algebra over K(y).
H(y))
B
A ^ H(y)
= M^0 B
is a finite
H(y) • dimensional com
Note first of all that (*)
r(x , 7 ) J
J
s f #(5) 0 K(y) s * M 0 Oy B
K(y) .
(Cf. Proposition 3 of this lecture.) Proposition 8 : [ ? flat /y] < = >
[the function
y
dim j((y)f*( y ) 0
K(y)
is constant] . Proof: The " = > " follows from Proposition 7 , Y being irreducible and hence connected. To prove it suffices to show that for all y € Y, f*(? )y i s a free o^-module. Lemma: Let A quotient field
be a noetherian local domain with residue field K. Let M be a finite A-module. Then
k,
and
[dinv M 0 K = dim, M 0 k] = > [M a free A-module] . K A k A Proof: Note that if m C A is the maximal ideal, M k ^ M/m • M. Let f 1,..., fn be elements of M whose images f^ in M/m • M form a basis over k. Then the f^ define a homomorphism cp: 0 — L — An — 2-»M — N — 0
(*) (L and obtain:
N
being the kernel and cokernel resp.). Tensoring with _ k11 M/m • M — N/m • N — 0 .
But cp is surjective since the f^ By Nakayama's lemma, N = (0). Now /A, we obtain:
k,
we
span M/m • N; therefore, N = m • N. tensor (*) with K. Since K is flat
0 — L 0 K — Kn - * M 0 K —►() . A A By hypothesis, K11 and M 0^ K are both K-vector spaces of dimension n. Therefore, L0, K = (0), i.e., L is a torsion module. But since L C n A , this implies that L = (0). QFD
h5
PROPERTIES OF MORPHISMS AND SHEAVES
Example 5 : As a final point, let us consider two completely concrete cases: (I) Y = Spec k[yj X = Spec k[x] 2 y = x . (k alg. closed). Then if
C k[y]
is the maximal ideal
(y - a ),
k[x]/p • k[x]
s
k[x]/(x - a) © k[x]/(x + a),
a ^ o
k [x ]/p • ktx]
s
k[x ]/(x ) ,
a =
o
and both are commutative algebras of dimension 2 over k. This being a constant f is flat. (One should also check non-closed points of Y.) (II)
Y = Spec k[x2, x.,x2, x2] X = Spec k[x1, x2]
Then if & C k[x.j, x ^ 2, x2 - p2), one finds 2
2 Xg]
is the maximal ideal
2
2
(x1 - oc ,
x i x2
“
k [ x 1, Xg]/«p * k [ x v x 2] s k [ x 1, X g ] / ( x 1 - a, x 2 - p) 0 k [ x 1, X g ] / ( x 1 + a, Xg + p) if
a
or
p / 0,
k [ x 1, Xg] /*> * k [ x 1, Xg] ^ k + x 1 ’ k + Xg-k (x2
= x1 Xg = x2= o)
if
a =
p = o.
The former is a commutative algebra of dimension 2 ; the latter is one of dimension 3. Therefore f is not flat.
LECTURE 7 RESUME OF THE COHOMOLOGY OF COHERENT SHEAVES ON Pn As above, let P R = Proj Z[XQ,..., X ^ , let o (1) be the canoni cal sheaf on Pn , and identify XQ,..., Xn with sections of 0(1 ). For all schemes S, on Pn x S, put £ ( 1) = P*( o (1))
Xi If 5
=
(by abuse of language)
the induced section p*(Xi) (by abuse of language).
is a coherent sheaf on ? (m) =
Pn x S, ?
®
put (o(1
f m) .
£pn * s 1 ° Serre's results. We look first at the readily visualized case S = Spec (k), k a field. Fix 5 (again coherent), and write Pn k for Pn x Spec (k): (i) (ii)
H^ and For H*^
Pn k, 5 ) is finite dimensional over k, for all is*(0) if i > n; all 5, there exists mQ such that if m > mQ Pn k, y(m)) * (0), i > o and 5 (m) spanned, as
i;
— pn ^.-module, by its global sections; (-1) 1 dimk Hi( Pn k, ?(m)) the Hilbert polynomial of 5 . Consider the functor:
(iii) (iv)
00
or :
5 -
©
r( P
m=o Here
5
’
is an object in the category
is a polynomial in
v, e
[
t € r ( Pn k, of
5 (m )),
then
^(m) £(1) s
kl
X^^ • t £(m+1)
5(m)) .
of coherent sheaves on C1
pn k5 and ^ ) is an object in the category XjJ-modules of finite type. If
m -
of graded
i s the section .
k[XQ,...,
t Xi
1+8
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
Take morphisms in to be: Home , (M, N) = liji o pre serving
©
m>m0
1VL
©
'm >mQ
N
1
m j
Then a is an equivalence of categories, especially a is exact, and takes Horn's into Horn's. The key step in proving this is the explicit con struction of the inverse of a. This functor is a graded generalization of the ~ operation in the affine case. Start with a graded module M, of finite type over k[XQ,..., X ^ . For each i, form the tensor product. M (1) = M
® k[XQ,..., ^ k[X] 0
J- ] , i
and let be the sub-module of degree o. Then is a module of finite type over the affine coordinate ring kl^/X^,..., Xn/Xi ] of ( Pn)x • One verifies that the sheaves on the affine spaces patch together in a natural way: verse of oc.
the result is called
M
and this is the in
(v) Before proceeding to generalizations, we want to make some attempt to describe the "yoga" cohomology. The cohomology of sheaves, in a general geometric setting, is just a piece of machinery designed to analyze the connection between the local and global structure of space; viz. given any local data, the set of all such local data will form a sheaf and its cohomology groups are a sequence of invariants describing how "twisted" these data can be from a global point of view. The essen tial point is that (a) these groups are almost always very computable, (b) the obstructions to making global constructions are elements of such cohomology groups. In the case of algebraic geometry, the objects of global geometric interest are the global sections of coherent sheaves. These arise for ex ample out of the desire to determine how many functions exist on some scheme with prescribed poles; in what projective spaces can a given scheme be embedded; how many global differential forms of a given type exist on some scheme; and in the infinitesimal linear form of many non-linear existence problems. But to compute the vector space of sections of a coherent sheaf y on Pn , the essential difficulty is that r is not a right exact functor. This was realized by the Italian geometers, who worked indirectly but still (as we now realize) very closely with the higher cohomology groups. It should be pointed out that the fancy definitions given cohomology recently—via standard resolutions, derived functors, especially in the category of all sheaves-^which look very uncomputable—are just technical devices to simplify somebody's general theory. One may as well treat the cohomology of a coherent sheaf on Pn just as the satellites of r in
RESUME OF THE COHOMOLOGY OF COHERENT SHEAVES ON
Pn
the workable category of coherent sheaves. [In technical terms, coho mology is effacable in this small category]: e.g., the group H1 ( p1, o p (-2 )) s k is nothing but the cokernel of the sequence: o —► r(
p 1#
o
(-2)) -► r(
p 1#
o p^-1))
r( Pl, H(x))
coming from the exact sequence of sheaves: 0 -
o
“
(-2 )
0 X.
----- — ► o p
*1
(- 1 ) -
K (x )
-
o
rl
on P1, where H(x) is the sheaf with support only at the point x whereX 1 = o, given by the module which is the residue class field of —x*
We must recall, for future use, the facts about the cohomology of £ p (m) itself: n H3^ Pnjk,o p (m)) = (o), if o < i < n (0), = (0), =
if i = n,
m > -n - 1
if i = 0 ,
m o
2 ° Grothendieck's globalization. Now suppose S is any noether ian scheme, and J is again coherent on pn x S. Let p: Pn x S -► S be the projection. Then: (i) RiP*( T) is coherent for all i; and is (o) if i > n . (ii)
For all
5, there exists
mQ
such that if
m > mQ,
H'Sp-kC ^(m )) = (0), i > 0 , and p p* ?(m) -► ^(m) is surjective* (iii)
Consider the functor: 00
a:
Here
?
? -►
© p*( ^(m)) . m=o is an object in the category £ of coherent sheaves of
qn modules; and a( y ) is an object in the category C 1 of quasi-coherent sheaves of graded £g[XQ, X-j,..., XR ]-modules of finite type-where the morphisms are given by: Horn e , ( * , * ) =
HomG ra d a tion 0
Then
a
m> m0
Jlks
©
m >m0
i s an e q u iv a le n c e o f c a t e g o r ie s . In f a c t ,
the in v e r s e ~ t o
s t a r t w ith the s h e a f say
©
p r e s e r v in g
£
S = Spec (R ) .
on Then
)R
S.
a
is
c o n s tru c te d e x a c t ly as in 1 ° :
F or s i m p lic it y , assume
i s n o th in g but a graded
S
is a ffin e ,
R [X Q, . . . ,
-module
50
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
of finite type.
For all i,
put
^7 ])
= degree o component of ( % R[XQ,..., R [X] Then
i
)R is patched together out of the sheaves
on:
r Xo Xn 1 Spec R|_jq;’- " ’ X ^ J = ( p n >< s)x^
.
3° Connection of higher direct images with cohomology on the fibres. The principle difficulty in using the results of 2 ° is in re lating R^p*( 5 ) to the cohomology along the fibres of p. Thus, if s € S, let pn s = t h e fibre of p over s, and let ? induce the co herent sheaf ya on p„ Is there any connection between; S Llj 3. rS
*^)
and
® K(S)
H5^ Pn s , fg) .
This is a special case of the more general problem; sion" g: T S, look at the diagram: Pn x T----- —
given a "base exten
. PR x S
What is the relation between S*R1 P*( 5 ) and R^-q^h* ? ) , for coherent sheaves has homomorphisms:
on
5
Pn x S?
But, for any open set
U C S,
one
pn x U, f ) - H1( Pn x g' 1 (U), h* J ) - H°(g_1 (U), R1 q*(h* 5) ) hence a homomorphism:
hence a homomorphism:
*
1
1
*
g R p*( ? ) -► R q*(h 5 ) .
If, for every g, this thi is an isomorphism, we shall say that commutes with base extension. First of all, there is a simple "stable" result when twisted sufficiently: (i)
For any 5, and any if m > mQ, then:
a
T —^
S,
there is an
J
R^p*
has been
mQ such that
g*p#( y(m))-^~ q*h*( ?(m)) (of course, both sets of higher direct images are zero).
RESUME OF THE COHOMOLOGY OF COHERENT SHEAVES ON
PR
51
Idea of proof: This really asserts nothing more than the compati bility of the equivalences of categories and with tensor pro ducts. Thus, over _S, y is defined by thesheaf of graded Og[X0,..., -modules: ^ «c( ? )= ft = © P*(-y(m)) D
and, over modules:
T,
h* y
m=0
is defined by the sheaf of graded a„(h*
5 )=
ft
=
1
e q*[h*( m=o
o,p[X0,..., ^ 3 -
5 (m)) ] .
One wants to know that the natural homomorphism from g* 5R to ft is an isomorphism in our funny category (where any finite number of graded pieces canbe ignored). To prove this, use the inverse ~ to a I Since and «T are equivalences of categories, it suffices to prove that g* % * h*( w )
.
But this is an immediate consequence of the definition of ~ [for de tails, cf EGA, Ch. 2 , §§2 .8 . 10 when S, T affine; 3.5.3 in general]. However, to obtain really precise relations between these higher direct images, we must look at the case when y is flat over S; (ii) Assume y is flat over S, and that for some i, and some sQ e S, the homomorphism: r
S . C ?
) ®
H(S
u
) -
p
IA>ao
,
y
0
)
is surjective. Then there is an open neighborhood U of sQ in S such that for any base extension g: T -*■ U, the homomorphism g V p ^ y ) is an isomorphism. (iii)
R^t^y)
(See EGA, Ch. 3, §7.7.)
With the same assumptions as in homomorphi sm: R1 _1 p*OF) ®
(ii), it follows that the
K(s0) - H 1- ^ Pn > v 5 Sq)
is alsosurjective if and only if Rip*( y) is a free sheaf of o^-modules in some neighborhood of sQ . (See EGA, Ch. 3, § 7.8.) Corollary 1 : In the flat case, if H^+1( P.. , y ) = (0), then there ---------n, sQ sQ is an open U C Scontaining sQ such that, for g: T -*■ U: g*R j p * (
Rjq*(h*5 ) .
In p a r t ic u la r :
R jP*( 5) ®
H(s) — * HJ( pn g,
?s) ,
52
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
Proof: C o r o lla r y 1^: then
Use (iii) for
i = j+1
In the f l a t c a se, i f
pn s9
for a 1 1
yB) =
and then
R'Lp * ( ? )
s e S,
=
(ii) for i = j. (0 ),
and all
fo r a l l
i >
i Q,
i > iQ .
Proof: Apply Corollary 1 first for j = n to prove that Hn ( Pn g, 5 ) = (o), all s € S; then for j = n- 1 to prove that B11-1 ( Pn>s, 7 S) = (0), Corollary 2 : homomorphism
all
s e Sj
etc.
In the flat case, givena coherent sheaf g on cp from g to p*( 5) such thatthe induced
s ® K(s) - H°( is an isomorphism for all ly free sheaf, and
s,
then
Pn s ,
and a
Js)
cp is an isomorphism,
g*P* 7 for all
S,
g
is a local
-n - 1 = free sheaf of o^-modules, with basis given by monomials in XQ,..., Xn of degree m, if i = 0 . Proof:
Use
3°
QED
(ii) and (iii) and 2 ° (v).
it seems worthwhile to give one non-trivial example of this
k°
theory: Let n = 1, S = Spec k[t], k an algebraically closed field P 1 x S = Proj k[ t j XQ, X 1 ]; let R = k[t;XQ-, X 1 3 . Forall integers m, and graded R-modules M, put M(m) equal to the R-module such that
(i)
(ii)
M (m >k = Define the graded module
(iii)
M
• as
l~R© R © R (-1 )/modulo the element (Xn, X., t) L of degree 1 . Put 3 = M. nel in:
Corresponding to its definition as module,
0 -,' - P 1 x S (_1) where
y = (XQ,
* ^ P,x S ® - P 1x S ® - P 1 x S (_1)
X 1, t) [i.e., tens oring with
— P x s(k)
to
£p
x s ^ ^
Since the map
Let 0 e S be the point ? 0 is defined by:
is the coker 0
o p x S (k) to
function
t maps
r
gotten by tensoring tJ with
K(x), (x e P^ x S), is never 0 , it follows that sheaf of rank 2 , and it is flat over S. (iv)
"* ?
X.^ maps
— P x S ^ ^ 1^ 181(1 multiplication by the ordinary
y
y
is a locally free
t = 0 . Then the induced sheaf
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
5^
(-1 )
(X0 , X ,, 0) o rp, —
o p (-0
® — o rp 1
—*i
? o -o
and one checks th a t t h is means: ?o - On the o th e r hand, i f
7* 0,
•( a € k ) ,
p
- p.
( + 1)
s e S
is a
(-1 )
k - r a t io n a l p o in t where
(-1 )
(- 1 )
where
makes
cpg
5s (v )
t = a
then th e d iagram :
i s d e fin e d by the 2 x 3
isom orph ic t o
1
0
0
1
p -o ^
P.
m a trix - V ° -X ,/ a
© o D
The c o h o m o lo g ic a lly in t e r e s t i n g p o in t i s : P, ( J ( - O )
= (o )
H ( P, f Q , ? o ( - 1) ) i.e .,
p#
which
is
= k ,
does n o t map onto the
H°
a lo n g th e f i b r e ;
c o n s is te n t w ith the th e o ry i n v ie w
o f:
H'( p1>0, S 0 ( - D ) * k R1P * ( ? (-■ > )) = Uq , i.e .,
th e sh ea f c o n cen tra ted a t
i s the re s id u e c la s s f i e l d
k
t =0, of
w hich as
module
Oq g .
[P ro v e t h is by s e t t in g up an e x a c t sequence
where
Z C P-, x S
3° to compute
is
th e c lo s e d subscheme
R1p# ( 5 ) ,
X1 = o ,
u s in g the r e s u lt s o f
and u s in g th e cohom ology s e q u en ce.]
LECTURE
8
FLATTENING STRATIFICATIONS The problem we want t o c o n s id e r i s ?
on
Pn x S,
th is :
G iven a co h eren t sh ea f g
S a n o e th e ria n scheme—f o r a l l morphisms
T ------- S,
one
has the induced s h e a f: 3g = O p x g ) * ?
on
Pn x T .
Can you d e s c r ib e the s e t o f a l l morphisms T ?
D e fin itio n : S ,,.;., s € S
If
Sm
S
O
such th a t
i s a scheme, a s t r a t i f i c a t i o n o f
o f l o c a l l y c lo s e d subschemes o f
i s i n e x a c t ly one su bset THEOREM:
..., y
g
5 o
To answer t h i s , we f i r s t make:
Sm
of
S
S
S
i s f l a t over
is a fin it e
set
such th a t e v e r y p o in t
S^.
In the above s it u a t io n , th e re i s a s t r a t i f i c a t i o n S ., g T ►S (T n o e th e r ia n ),
such th a t f o r a l l morphisms
i s f l a t over
T
if
and o n ly i f
the morphism
g
fa c to rs :
m T
g'
'
1=1
II
c— S .
We w i l l c a l l t h is a f l a t t e n i n g s t r a t i f i c a t i o n : is
o b v io u s ly u nique.
I f i t e x is ts , i t
There i s an analogous problem when
p la c e d b y any scheme
X
p ro p e r o v e r
S.
Pn x S
is re
G ro th en d ieck has then p roven a
s l i g h t l y weaker theorem , but by much d eep er methods. o 1 its e lf. if
it
Look f i r s t a t th e case
n = 0;
is
F ix a p o in t
sfo r
whose im ages in th ese
i s a co h eren t sh ea f on
fF i s sim p ly g * ( 5 ) , and i t i s f l a t o v e r o lo c a lly fr e e o v e r T. F or a l l s e S, le t e(s) = dim K (s )
v i a the
?
Now
a^
a w h ile , ®
le t
e = e (s ),
and
H (s ) a re a b a s is o f t h is
exten d t o s e c tio n s o f a^
K (s ))
( ys
5
55
if
S
and o n ly
.
choose a 1 , . . . ,
a0
v e c t o r space.
Then
in a neighborhood
one d e fin e s a homomorphism:
T
U1
of
s,
€ and
!Fg
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
56
4 - “— in
U1 .
a^
g e n e ra te
S in ce the
ai
in
a (p o s s ib ly ) s m a lle r neighborhood U2
s m a lle r neighborhood its
s e c tio n s o v e r
in
Ug ( f o r
g e n e ra te
5i t s e l f . U g,
Ug,
f) .
4
—
Let
Ug
if e
by Nakayama's
homomorphism of
s.
cp
P a s s in g
Ker (q>)
lemma, the
i s s u r je c t iv e t o an even
i s g e n e ra te d
by
4
y
be c a lle d 5
- o
Us .
i s g e n era ted by
e (s )
s e c tio n s e v e r y
hence:
(* ) i.e .,
K (s ),
th e
we may assume th a t
Note f i r s t o f a l l th a t where i n
®
and we have co n s tru c te d an e x a c t sequence:
U g,
some
5
T h e re fo re
*
s ’ € Ua ,
e ( s ')
i s upper sem i-con tin u ou s.
< e (s )
.
T h e re fo re th e s e t
ZQ = i s € S | e ( s ) = e ) is
l o c a l l y c lo s e d .
on ly i f
M oreover, i f
K ( s ') is
s' e U ,
o. T h e r e fo r e ,
t io n s on
Us ,
( ^ i j ) ai i i
j
(* )
T
if
if
^
f
>|r( s 1 )
i s ex p ressed by an
*ias suPPo r t g
►Us
P roof o f * : tio n s
i s e x a c t on
i f and
T,
e;
o f fu n c
d e fin e d by th e i d e a l Yg
has th e p r o p e r ty :
i s any morphism (T n o e th e r ia n ), then e = e (s )
i f and o n ly i f
0
on
T.
g
Yg
i f and o n ly i f a l l th e fu n c
But s in c e the sequence:
t h is i s e q u iv a le n t t o a s s e r t in g th a t
c o n v e r s e ly ,
say
g*(q>) .
g*( y ) is fa c to r s
Yg .
C e r t a in ly t h is in tu rn im p lie s th a t
be the k e r n e l o f
p o in t
= e (s )
e x f m a trix Us
I cla im th a t
g f a c t o r s through
&re
morphism.
of
2e n Ug .
through the c lo s e d subscheme
g
e ( s ')
p
—— — * H ( s ')
th e c lo s e d subscheme
l o c a l l y f r e e o f rank
o f rank
then
th e homomorphism
g* ( 5 )
is
g*(cp)
g * (5 )
is
i s an i s o
lo c a lly fre e
l o c a l l y f r e e o f rank e ,
T en s o rin g w ith the re s id u e f i e l d k
and l e t a t any
t € T, one f in d s : T o r 1 ( g* y , k) -*■ g ® k
- ^ k e - * 'g * ( 5 r ) k
0
ii
(o)
Sin ce
g * ( y ) k
i s a k - v e c t o r space o f dim ension
e,
g k = ( o ) ,
FLATTENING STRATIFICATIONS hence by Nakayama's lemma, w here, and
g*(cp)
g = (o )
n ear t .
57
T h e re fo re
g = (o )
every
i s an isom orphism . QED
Note th a t p r o p e r ty ( * ) a n eighborhood o f any p o in t o f any two p o in ts o f
Z _, e
c h a r a c t e r iz e s th e subscheme
Ze n Ug .
T h e r e fo r e , i f
i n th e open s e t
U n U0 s^ s2
s1
and
Ys s2
in are
the two subschemes
Y
and Y a re e q u a l. In o th e r w ords, the subschemes Y_ p a tch t o 1 *^2 ^ g e th e r t o endow the l o c a l l y c lo s e d subset Z0w ith a s tru c tu re o f subscheme.
C a ll t h is subscheme
t io n o f
S,
Y0 .
The c o l l e c t i o n
and, by v i r t u e o f ( * ) ,
2°
Y_ e
is a s t r a t ific a { YQ)
is
3 °, I want t o make e x p l i c i t th a t we have p roven
more than th a t a f l a t t e n i n g dexed th e subschemes
(Y g )
f o llo w s im m ed ia tely th a t
5.
a fla t te n in g s t r a t ific a t io n fo r For use i n
it
s t r a t i f i c a t i o n (Y e ) e x i s t s :
so th a t
5 %
o^
is
We have even i n
l o c a l l y f r e e o f rank
e.
e
B e fo re a t t a c k in g the g e n e r a l case o f the theorem , we
need an e le g a n t p ie c e o f "h a rd 11 a lg e b r a ( c f . EGA, Ch. k f § 6 .9 ) w hich g iv e s us som ething t o s t a r t w ith : f P r o p o s it io n : Let X ►Y
be a morphism o f f i n i t e
?
and ir r e d u c ib le .
Then th e re i s a non-empty open su bset
the r e s t r i c t i o n o f
be a c o h eren t s h ea f on ?
to
P r o o f: set
Spec ( A ) ;
su bsets
Vi ,
th a t a f f i n e le t M.
f
5
B
i s f l a t o ver
U.
i n t o an A - a lg e b r a , and l e t
Y
i s reduced
U C Y
such th a t
U. Y
be some a f f i n e
can be c o v e re d b y a f i n i t e
c l e a r l y s u f f i c e s t o fin d one
open p ie c e
make
X
Assume th a t
i s f l a t over
We may c l e a r l y r e p la c e
and s in ce it
h” 1(U)
X.
typ e o f n o e th e ria n
schemes, and l e t
U
f o r each
Vl
T h e r e fo r e , l e t
5
open sub
s e t o f a f f i n e open so th a t in
X = Spec (B ),
correspon d t o th e B-module
Then we s h a ll p ro v e :
(* )
th e re i s an elem en t
f
e A
such th a t
= M ^ Af
i s a f r e e Af -
m odule. Note f i r s t th a t i f 0 — L
M— N — 0
i s an e x a c t sequence o f B-m odules, and over
A g,
then
M^g i s f r e e o v e r
a E-module o f f i n i t e
such th a t each f a c t o r p.
C B
t o p rove ( * )
i s fr e e over
A^,
Ng i s f r e e
To use t h i s , r e c a l l th a t
M
b e in g
ty p e , adm its a co m p o sitio n s e r ie s : (0 )
id e a l
L^
A^g.
= MQ C M1 C M2 C . . . M^+1
C Mh = M
i s isom orp h ic to
B/^
(BOURBAKE, A l g . Comm. , Ch. k, § 1 . 10 .
f o r th ese
and then i t
f o r some prim e
T h e r e fo r e i t
i s p roven f o r any
M.
s u f f ic e s
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
58
T h e re fo re we may assume Let
K be the q u o tie n t f i e l d
M = B,
of
and
A , and
B
L
i s an i n t e g r a l domain.
the q u o tie n t f i e l d
We s h a ll p ro ve ( * ) by in d u c tio n on the transcendence d egree over
K.
B
K;i t
th a t
B ^ K
n
of
B.
of
L
F i r s t , a p p ly N o e th e r 's n o r m a liz a tio n lemma t o the K -a lg e b ra f o llo w s th a t th e re e x i s t
a lth o u g h
n
elem en ts
f 1, . . . ,
i s i n t e g r a l o v e r the p o ly n o m ia l r i n g
B i s n o t n e c e s s a r ily i n t e g r a l o v e r
f
c B
K tf^ ...,
A [fj,...,
such
f n] .
Then
th e re
are
o n ly a f i n i t e number o f denom inators o c c u rrin g in th e r e l a t i o n s o f i n t e g r a l dependence o f f o r some
th e g e n e ra to rs o f
(# )
Bf
Then
Bf
i s i n t e g r a l over
i s an Af [ f 1, . . . ,
can fin d
m
submodule
elem en ts
over K
[
f
f
o f Bf ,
Now
n] :
T h e r e fo r e ,
cm € B^
ty p e :
A ^ tf^ ...,
f*n J-
f n ]m — Bf — D — 0 .
is c le a r ly a fr e e
A^.-module, so i t
But, f i n a l l y , r e p la c in g D
Bf
c o n seq u en tly , we
g e n e r a tin g a f r e e
o f transcendence d egree
s u f f ic e s t o p ro ve
by the q u o tie n ts o f a s u f f i c i e n t l y
f i n e com p o sitio n s e r i e s , we a re reduced t o p r o v in g a lg e b r a s
.
such th a t the q u o tie n t i s a t o r s io n module
f n ]m f o r D.
A ^ C f^ ,..., f n ]
f n ]-m odule o f f i n i t e
c 1, . . . ,
0 -* Af [ f , , . . . ,
(* )
B
f € A,
le s s
( * ) fo r in t e g r a l A-
than no v e r
A. QED
3 Let
p
o
We a re l e f t w ith th e g e n e ra l c a s e ;
be the p r o je c t io n from
Pn x S 6m
As a f i r s t (* )
a coh eren t
S,
p* ( J (m ))
?
on
Pn x S.
and p u t: ’
s te p , we n o te :
th e re i s a of
=
to
fin ite
S such th a t
s e t o f l o c a l l y c lo s e d su bsets S = U Y^,
and such th a t i f
i t s reduced subscheme s tr u c tu r e ,
?
o^.
Immediate by 2° and th e d . c . c .
Y^
i s f l a t o v e r Y* . 1
“ *i P r o o f:
Y 1, . . . ,
Y^ i s g iv e n
f o r c lo s e d subsets o f
S.
From t h is we conclude s e v e r a l s im p lify in g f a c t s : (i)
t h e r e , i s a u n iform s € S,
mQ
H^C Pn g , 3rg (m ))
as in L e c tu re 7) and
such th a t s
if
(0 ),
® K( s)
m > mQ, then f o r a l l f o r i > 0 (n o ta tio n s
i s isom orp h ic t o
H°( PR g ,
y s (m ))P r o o f: schemes
Put to g e th e r ( * ) ;
§7, 2° p a r t ( i i )
Yi ; §7, 3 °, C o r o lla r y
and 3 °, p a r t ( i )
a p p lie d o v e r the base a p p lie d t o the in c lu s io n
Y ± C S. (ii)
O nly a f i n i t e number o f p o ly n o m ia ls p o ly n o m ia ls o f the sheaves
P .,,...,
J Q on the f i b r e s
P^ occur as H ilb e r t PR g
over
S.
FLATTENING STRATIFICATIONS F ix
m0
n o e t h e r ia n ).
as i n ( i ) ,
and l e t
g : T -► S
Suppose f i r s t o f a l l th a t Si:
be any base e x te n s io n
P x T g n Then by C o r o lla r y 2 in 3 ", L e c tu re 7, th e c a n o n ic a l map g * ( s m) i s an isom orphism , and
-► T
is
q *( J g (m )),
g*( 6 )
the p r o je c t io n ) .
5
59
is
fo r
l o c a l l y f r e e on
C o n v e rs e ly ,
suppose
S
then
S
q : Pn x T
^
i s f l a t over
have ” g . c . d .
fo r a l l T.
s tr a t ific a t io n ” :
,
and one can endow
W^j
the sum o f the sheaves o f id e a ls d e f in in g in g s t r a t i f i c a t i o n . fic a tio n fo r of a ll
y
Y^
m > mQ.
To be p r e c is e ,
fla t t e n in g s t r a t ific a t io n o f rank e . th a t,
Let fo r a l l
P^...,
Pk
Each f i n i t e
c lo s e d subscheme.
s
Let
U
Then I c la im
n
y (m )
m=m0 i Pi (m)
in t e r s e c t i o n i s ,
be in P. J
Yp
as ju s t e x p la in e d , a l o c a l l y
P j(m )
f o r th e n+1 v a lu e s o f
be the H i lb e r t p o ly n o m ia l o f
S in ce the h ig h e r cohom ology o f
Pp - P j
be the component o f the
becomes l o c a l l y f r e e o f
But, s e t - t h e o r e t i c a l l y , mn+n
Let
mn + n.
Y^m^
oo i
and
o f the f l a t t e n i n g s t r a t i f i c a t i o n s
le t
be th e H ilb e r t p o ly n o m ia ls o f ( i i ) .
i,
P r o o f:
By the
has an a s s o c ia te d f l a t t e n
onw hich
7
makes sen se:
Zy
and d e fin in g
What we have ju s t p roven i s th a t a f l a t t e n i n g s t r a t i
i s e s s e n t i a l l y the g . c . d .
fo r
W^j = Supp (Y ^ )
w ith a scheme s tru c tu re b y ta k in g
r e s u l t o f 1 °, each o f the co h eren t sheaves
But
Jg
(where is fla t ,
i s a ls o the union o f th e l o c a l l y c lo s e d su bsets
n Supp ( Z j ) ,
U
T.
g iv e n S = U Y± = U Z.
mn
T
g*( g )
then by C o r o lla r y 3 in 3 , L e c tu re 7, Now any two s t r a t i f i c a t i o n s o f
(T
i s f l a t over
m > m0
o
m > mQ:
i.e .,,
on
? s va n ish es by ( i i ) ,
= dim
® K (s )
has d e g re e a t most
n,
and
y
S
m on
between p
il y S
.
we have
= P1 (m)
n+1 z e r o e s :
. t h e r e fo r e i t
is
id e n t ic a lly zero. QED C on sequ en tly,
Zp
i s th e l i m i t o f a d escen d in g ch ain o f l o c a l l y
c lo s e d subschemes w it h f i x e d su p p ort, i . e . , f i x e d open s e t
U.
By the d . c . c .
Zp i s a c t u a lly a f i n i t e
5
over
S.
te rm in a te s and
in t e r s e c t i o n w hich makes sense.
I t i s now t r i v i a l th a t fo r
o f c lo s e d subschemes in a
f o r c lo s e d subschemes, i t
Z1, . . . ,
Zk
is a fla tte n in g s t r a t ific a t io n
60
LECTURES ON CURVES ON- AN ALGEBRAIC SURFACE An ob viou s s tre n g th e n in g o f the r e s u lt i s Let
C o r o lla r y :
where ?
i
f
X
S
t h is :
be a morphism w hich can be fa c t o r e d :
i s a c lo s e d im m ersion.
Let
d e fin e s a f l a t t e n i n g s t r a t i f i c a t i o n
5
be a co h eren t sh e a f on (Z i )
on
A n oth er im p ortan t consequence o f our method o f p r o o f i s s t r a t ific a t io n i)
(Z i )
can be in d exed by H ilb e r t p olyn o m ia ls
the induced sh ea f
J
o„
£s Pi ii)
if
on i
i
Pn * Zi>
^ j,
then
P1 ^ P j
.
X:
then
S. th a t the so th a t
has H ilb e r t p o ly n o m ia l
LECTURE 9 CARTIER DIVISORS 1°
We assume th a t
D e f i n i t i o n - P r o p o s it io n : X suoh th a t
X
i s a n o e th e ria n schemew ith s tru c tu re sh ea f
There i s a unique
sh ea f ( o f o^-m odules)
r (U , K^) = t o t a l q u o tie n t r i n g o f and f o r
U C V, P r o o f:
Spec ( R ) ,
th e r e s t r i c t i o n i s
b j ai
y
the n a tu r a l one.
and assume (a i /bi
" aj bj
is
R, p n o t a o - d i v i s o r i n i)
M u lt ip ly in g
R
0
R ( f £ )•
in
such th a t
a^
and
|
th a t
bi
Put
aj_bj = a j bi
c • b^
must go t o
* o, 0
in
t h is im p lie s th a t iii)
U =
Then we must fin d
aib^ - pa^ i s 0
by f ^
b - j,..., a ll
i.
R^f y
(fo r N »
But
in
a, R^
y
0, and a l l are in
Now say
(b ± )
c e R
and
i ) ,
R, and
N fV • c = 0.
S in ce
in R( f y
a ll i ) .
c • 91= ( o ) .
y
so
1€ ( f ^ . . . ,
f n) ,
b^ i s a n o n - 0 - d iv is o r i n
R( f
c
c = o.
But s in c e
R
i s n o e th e ria n , any
t a in s a non 0- d i v i s o r
p.
i s a c t u a lly a s e c t io n o f
a, e R,
b^
i s i n the i d e a l
bn e %.
i.e .,
a g re e on
R#
91 = {p € R | pa±
Then one checks th a t Then
Say
1 < i < n}
we can assume th a t a l l elem en ts
ii)
o^)
XL. = Spec \ a re g iv e n where U- , 1 < i < n, form i± i± U: i.e ., 1 e ( f ^ . . . , f R) . Suppose ai , b^ € y b^
n o t a o - d i v i s o r i n R^f U.j_ n U j, i . e . ,
r (U ,
E v e r y th in g i s e a s i l y reduced t o t h is p o in t :
and
a c o v e r in g o f
p €
on
f o r a f f i n e open U C X,
p * ai /bi
Now i t o^.
91
w ith t h is
p r o p e r ty con
f o llo w s th a t p • aj_A>j_
o yer
U, hence f o r some
= a. QED
61
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
62
We m ention th a t
i s n o t alw ays qua s i- c o h e r e n t !
checks th a t the s ta lk s the s ta lk s
£x .
of
K^-
F i n a l l y , we can d e fin e
o f the sh ea f o f r in g s
K^,
t o be the subsheaf o f u n its
i.e .,
r (U , K^) = i n v e r t i b l e elem en ts o f N ote th a t
C
D e fin itio n : K^/o^ .
and
A ls o , one
a re ju s t th e t o t a l q u o tie n t r in g s o f
o^ C
r (U , K^)
.
.
A C a r t ie r d i v i s o r
D
on
X
i s a s e c t io n o v e r
More c o n c r e t e ly , a C a r t ie r d i v i s o r i s
X
of
g iv e n b y a c o l l e c t i o n o f
elem en ts Dx e ^ / ° x such t h a t , f o r a l l elem ent
x , th e re i s an open neighborhood
f € r (U , K^)
w hich in du ces
w i l l be c a lle d a l o c a l e q u a tio n o f in
£.
{f^ }
Dx D
fo r a l l
in
U:
U
x € U.
of
X, and an The elem en t f
I t i s unique up t o a u n it
A C a r t ie r d i v i s o r can be d eterm in ed by s p e c ify in g l o c a l e q u a tio n s w ith r e s p e c t t o an open c o v e r in g
u n it in
(U ^ ),
so lo n g as
is a
n U^ . Note th a t th e s e t o f a l l C a r t ie r d iv is o r s from s a group.
A lth ou gh
t h is law comes from m u lt ip ly in g l o c a l e q u a tio n s , we f o l l o w h a llo w ed con v e n tio n and w r it e i t a d d i t i v e l y : +1 f 1 • f-^o f l o c a l e q u a tio n s .
i.e .,
as
A s s o c ia te d t o a C a r t ie r d i v i s o r
D
£x (D) w hich i s an i n v e r t i b l e
sh ea f o f
f
i s the elem ent o f
i s a coh eren t subsheaf:
£x -m odules.
U,
Namely, f o r a l l
x,
p u t:
’ 2.X C
induced b y a l o c a l e q u a tio n
T h is i s c l e a r l y independent o f th e c h o ic e o f e q u a tio n i n
f o r th e com bination
C
I ° x ( D> ] x = f x where
D- + Dp
f,
and, i f
f
f
of
D.
i s a lo c a l
then
—X I U m u lt, by
’ 2 x^
'u
f _1 i s an isomorphism o f sheaves o f
£x -m odules.
I t i s n o t hard t o check th a t t h is a c t u a lly g iv e s an isomorphism between the s e t o f C a r t ie r d i v i s o r s on h eren t subsheaves o f
K^.
X, and the s e t o f i n v e r t i b l e c o
CARTIER DIVISORS D e fin itio n :
A C a r t ie r d i v i s o r D
i) or
its
lo c a l
i i ) ox C £X (D)
or
i i i ) £X (-D )
We s h a ll w r i t e :
is e ffe c t iv e i f
e q u a tio n s f
a re
D > 0 t o mean
0
D
is e ffe c tiv e .
o^
Suppose
£X (-D ) -
£x “ ►
on th e t o p o l o g i c a l space w hich i s
la n gu age, we s h a ll a ls o c a l l t h is c lo s e d subscheme f
in
i s an e f f e c
— 0
o^, one o b ta in s a c lo s e d subscheme o f
subscheme d eterm in es i t s
D
denote th e c o k e r n e l:
one ta k es th e s tru c tu re sh e a f
l o c a l e q u a tio n s
£x ,
i s a sh eaf o f id e a ls .
(* )
the support o f
e q u iv a le n t ly :
s e c tio n s o f
C
t i v e C a r t ie r d i v i s o r , and l e t
If
63
s h e a f o f id e a ls ox ( v i a £X(-D )
term in ed by the c lo s e d subscheme
D
o ^ - D ),
= f
X:
D.
By abuse o f
Sin ce t h is c lo s e d
w hich in tu rn determ in e
* £x ) ,
th e C a r t ie r d i v i s o r
D> i s
and our co n fu s io n should n o t be dan
gerou s . M oreover, when in
D > o , the image
s o f the s e c tio n
r (X , £x ( D ) ) w i l l be c a lle d the g lo b a l
e q u a tio n o f
D.
1e r (X , £x ) In f a c t , i f we
le t £X (D) be any isom orphism o f m odules,
ox
cp(s)
M o reo ver, in the e x a c t sequence
i s a l o c a l e q u a tio n f o r
(* ),
th e in c lu s io n o f
can be in t e r p r e t e d as te n s o r in g w ith A C a r t ie r d i v i s o r D e fin itio n : x € X
The support o f
a t w hich
D e fin itio n :
D
1
is
D
£X(-D )
P ic
x. £x
s.
d eterm in es even more th in g s : D
is
the c lo s e d subset c o n s is t in g o f
those
n o t a l o c a l e q u a tio n .
The d i v i s o r c la s s a s s o c ia te d t o the C a r t ie r d i v i s o r
the elem ent o f
at
in
(X )
D
is
o b ta in e d by th e co-boundary: H °(X , K */ o *)
—
H1 (X , £ * ) II P ic
(X )
,
v i a th e e x a c t sequence: (# ) c
° -
One checks im m ed ia tely th e i n v e r t i b l e
sh e a f
oj -
K* -
th a t t h is elem en t o f P ic
D e fin it io n :
Two C a r t ie r d i v i s o r s e q u iv a le n t ly ,
i)
(X ) i s ,
in f a c t , g iv e n
by
£X( D ) .
D1 = D2) i f ,
ii)
K£/o* - 0
£X (D1) & £x (D2) ,
as
the d i v i s o r c la s s o f
D1, D2
a re l i n e a r l y e q u iv a le n t (w r it t e n
£x ~modules, D1
eq u a ls the d i v i s o r c la s s o f
Dg ,
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE iii)
th e re i s an
f e r (X , K^) f-o ^ D ,)
such th a t =
o
o % D e fin itio n :
If
f € r (X , K ^ ),
•
then the C a r t ie r d i v i s o r w ith
l o c a l e q u a tio n everyw here w i l l be denoted
(f).
(# )q , o n e
p r i n c i p a l , and by use o f the e x a c t sequence D1 = D2 i f and o n ly i f D1 = D2 + ( f ) , N e x t, suppose an i n v e r t i b l e a l l e f f e c t i v e C a r t ie r d i v is o r s say, lo o k f o r isomorphisms
D
sh e a f
L
f
as i t s
Such d i v i s o r s a re c a lle d see s :
f o r some
f € r (X , K^) .
i s g iv e n —c o n s id e r the s e t o f
whose d i v i s o r c la s s i s
L.
That i s t o
a: L 9
/
/
/
1°
ox C ox (D) L e t t in g
be the co m p osition in the diagram , one sees c o n v e r s e ly th a t
cp
f o r e v e r y i n j e c t i v e homomorphism such th a t
C Kx
th e re i s a unique C a r t ie r d i v i s o r D
cp,
a
o f £X (D)
can be determ in ed , f o r exam ple, b y l e t t i n g
s = q > 0 ),
cp
exten d s t o an isomorphism
and L .
Thus
D
and ch oosin g l o c a l
isom orphism s: L ^ Then the image o f we c a l l cp
s
s € r (X , L )
is in je c t iv e
in
'u ±
r(U ^ , £x )
•
i s a l o c a l e q u a tio n f o r
a g lo b a l eq u a tio n _£ o r
D. Note
correspon ds t o the f a c t th a t
D.
As above,
th a t th e f a c t th a t
si s n o t a o - d i v i s o r .
The
above re a s o n in g le a d s t o : P r o p o s it io n :
If
L
i s an i n v e r t i b l e s h e a f, then th e re i s a n a tu r a l i s o
morphism: e f f e c t i v e C a r t ie r d i v i s o r s I D s .t. £x (D) s L J
Example: X
Let
X = P r o j k [X Q, . . . ,
c a r r ie s the sh ea f
£x ( 1 ),
X^,
s e c tio n s s € r (X , L ) , n ot o - d i v i s o r s , modulo s ~ a • s, f o r a € r (X , £ j ) k
a fie ld .
Then as in L e c tu re 5,
and th e re a re homomorphisms:
j v e c t o r space o f homogeneous \ I form s i n X , . . . , X o f d eg ree dj o n T h e r e fo r e , each form
F (X Q, . . . ,
o f an e f f e c t i v e C a r t ie r d i v i s o r d
*
Xn) o f d egree D C X
d
such th a t
i s c a lle d th e h y p ersu rfa ce w ith e q u a tio n
h y p e r p la n e ).
^ f aw
F,
is
the g lo b a l e q u a tio n
£X(D) “ £^(6 .). (o r , i f
d = 1,
T h is the
CARTIER DIVISORS 2° If
C a r t ie r d i v i s o r s a re c l o s e l y r e la t e d t o the con cep t o f d epth . where d ep th ( o j hence —Zt = o ,* then K —Zi = o—Z e v e r y C a r t ie r d i v i s o r i s t r i v i a l i n a neighborhood
z € X i s a p o in t = t 1)*
of
z.
The rem arkable th in g i s
th a t C a r t ie r d iv is o r s a re determ ined by
t h e i r e q u a tio n s a t p o in ts o f dep th P r o p o s it io n :
Let
X.
Then D1 = D2
a re
equal fo r
D1
and
X
be a n o e th e ria n scheme, x where
It
D2
1 :
i f and o n ly i f
a ll
P r o o f: of
s u f f i c e s t o p ro ve th a t th e im ages
a re eq u a l i n a l l s ta lk s
(a .j), ( 0)
^
then i n
fP
I1 = I2
a s s o c ia te d t o
/a, * ( © ) '
( 0)
,
I1
0,
a1
t h is red u ces t o p r o v in g :
then
I1 = I2
( 0 )p
I 2.
if
And i f
^
depth
*
I.,(G
=
o f d ep th 1 . f o r a l l prim e
i s a s s o c ia te d to
i s a n o n -O -d iv is o r such th a t
a re 0 - d iv is o r s : i . e . ,
r
( Di ) x B ut, m u lt ip ly in g
I 1( 0 ) p = l 2( 0
if or
(K * / o * )x .
o ,
fo r a l l lo c a liz a tio n s
But c e r t a i n l y
(K * / o * )x
I 1, I 2, g e n e ra te d by n o n - 0 - d iv is o r s ,
in a l o c a l n o e th e ria n r i n g
id e a ls
two C - d iv is o r s on
d ep th (_o ) = 1 .
G iven two p r in c ip a l id e a ls I 2( 0 )p
D1, D2
t h e ir im ages i n th e s ta lk s
b o th by a s u ita b le n o n -O -d iv is o r in (* )
65
I1 =
a l l n o n -u n its i n
( 0 ) = 1. p
QED In a v e r y s im ila r way, i t i s e f f e c t i v e i f and o n ly i f
it
can be p roved th a t a C a r t ie r d i v i s o r
i s e f f e c t i v e a t a l l p o in ts
D
x , where depth
(o x ) = 1 . C o r o lla r y : £x
Let
X be a norm al n o e th e ria n scheme, i . e . ,
a re i n t e g r a l l y c lo s e d domains.
eq u a l i f and o n ly i f P r o o f:
th e y a re e q u a l a t
By th e p r in c ip a l
K r u ll dim ension
> 2
has d ep th
a l l lo c a l
Then two C a r t i e r - d i v i s o r s a l l p o in ts
x
r in g s
D1, D2 a re
o f codim ension 1,
i d e a l theorem , anorm al l o c a l r in g o f > 2. QED
Now assume f o r th e r e s t o f 2* th a t n o e th e ria n scheme. then
is
If
K
is
th e s t a lk o f
X
i s an ir r e d u c ib le normal
£x
a t the g e n e r ic p o in t o f X,
sim p ly th e co n sta n t s h e a f: r (U , Kx ) = K,
In c id e n ta lly ,
a ll
t h is p ro v e s im m ed ia tely th a t
th e e x a c t sequence
( # ) q ( 1#) :
U . 1
H (X , Kx ) = ( 0 ) ,
every in v e r t ib le
s h ea f
£
on
hence by X
d i v i s o r c la s s o f some C a r t i e r - d i v i s o r . D e fin itio n :
A W e il d i v i s o r on
X
i s a fo rm a l sum
n
I
r i E±
i= l where
E 1, . . . ,
En a re c lo s e d ir r e d u c ib le
su bsets o f codim ension 1.
is
the
66
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE If,
fo r a l l
x € Xo f codim ension 1, r (U , z T ) = r (0 ) x 1 Z
then one checks th a t
a W e il d i v i s o r i s
we d e fin e a sh ea f
Zx by:
x 4 u x e U
if if
the same th in g as a s e c tio n
of
the
sh eaf
1 zxx
x o f codim
*
Now th e re i s a c a n o n ic a l e x a c t sequence:
0 - O* - k £
(#)w w
—a
e
—
f e r (U , K^) = K *,
Namely, g iv e n
^
z
x o f codim 1
.
x
d e fin e i t s image t o b e :
ordx ( f ) • {50
,
X€U x o f codim 1 where
ordx ( f )
Spec (R ) .
i s th e o rd e r o f f
Then l e t
^
(t j = tpy
[= Rn(^*R )
IE i= l N ote th a t i f R:
(t
)
r.
s^
U=
(t ) *>n n
n ...n
.
P
n
in
In o th e r w ords, say
a re m inim al prim e i d e a l s , and
fp
power o f
x.
= g/h, where g , h € R, and l e t (S ,) ( s 2) (s ) (g ) =p1 n fP2 n . . .n pn , s± > o (h )
where the
at
f
^si~ ^i^
f ° l osure
= t^ f o r a l l
i s th e t ttl "s y m b o lic "
Then th e image o f f
i,
p o in t g iv e n by then
(g )
is :
p^} .
= ( h ) , hence
f
i s a u n it
t h is shows th a t ( # ) y i s e x a c t. P u ttin g ( # ) q and ( # ) y t o g e t h e r , we o b ta in an in c lu s io n —*/ —* c
®x zx
»
hence th e group o f C a r t ie r d i v i s o r s i s embedded i n the group o f W e il d i v is o r s . above: in
T h is i s , fo r i f
£x ,
ju s t an in t e r p r e t a t io n o f th e C o r o lla r y ju s t
has codim ension 1, and ( tt)
then the s t a lk o f a C a r t ie r d i v i s o r a t
o f the form
7rr ,
W e il d i v i s o r i s P r o p o s it io n : v is o r s i f
in f a c t ,
x e X
f o r a w e l l d eterm in ed in t e g e r then ju s t the sum o v e r
x
of
r
i s the maximal i d e a l x
has a l o c a l eq u a tio n
r.
The co rresp o n d in g
• {5 0 .
The group o f C a r t ie r d i v i s o r s eq u a ls th e group o f W e il d i
and o n ly i f a l l l o c a l r in g s
r e g u la r scheme.
ox
a re UFD's;
e .g .,
if
X
is a
CARTIER DIVISORS P r o o f:
The two ty p e s o f d i v i s o r s a re eq u a l i f
homomorphism o f s t a lk s in
s u r je c tiv e .
and o n ly i f
the
(#)y**
(5 j)v A y is
67
But t h is i s K*
-
0
r
i x o f codim 1
zx
Jy
sim p ly: -►
©
Z
* c Sr m inim al prim es a s s ig n in g t o
fp . i.e .,
T h is i s
f
* g/h
th e d if f e r e n c e o f the o rd e rs o f
s u r je c t iv e i f
i f and o n ly i f
ox
and o n ly i f e v e r y i s a UFD.
p C £x
g
and
h
at a ll
i s a p r i n c ip a l i d e a l :
LECTURE 10 FUNCTORIAL PROPERTIES OF EFFECTIVE CARTIER DIVISORS 1°
The s im p le s t o p e r a tio n t o p erform w ith C a r t ie r d iv is o r s i s
take in v e r s e im ages: and say
D
g
say
X ------►Y
i s an e f f e c t i v e C - d iv is o r on
Y.
g * (D )
ought t o mean:
F ix an open c o v e r in g
t io n s
f^
U^,
fo r
D
in
where
be d e fin e d by l o c a l eq u a tio n s However,
to
i s a morphism o f n o e th e ria n schemes, Then i t {U^}
f^ e r(U .p
g * (fi )
i s q u it e c le a r what
of
Oy) .
Y
Then
and l o c a l equa g *(D )
i n the open c o v e r in g
g * (f^ )
can
be a o - d i v i s o r , even
fo r
a ll
x € A (X ),
0.
should
g " 1(U ^ ).
The b e s t th in g
is to as
sume: (* ) Then
g * (f^ )
is
P r o o f: Then l e t
x T
th e s e c t io n
4
g (x )
n o t a o - d i v i s o r , and Suppose
a * g * (f^ )
g *(D )
=
0,
be th e g e n e r ic p o in t o f a
Supp (D)
of
a^
.
makes sense.
where
a e c>x ,
and
x e
X.
some component o f the support o f
(d e fin e d n ear
x) :
We maytake
x ' e Spec (o ) C X . Then o „ , has depth o s in c e the induced elem ent a ’ e o f i s k i l l e d —x e —x by a power o f the maximal i d e a l mx , ( c f . L e c tu re 8, 2 ) , and s in ce a ' ^ 0.
But then
x f e A (X ), f^
u n it a t
T h e r e fo r e , i n 4 £x ,:
x’.
fo r D
hence
c a l e q u a tio n
g ( x ')
i s a u n it a t
4 Supp ( D ) .
g ( x ') ;
a ' = [a 1 • g * (fi )]
T h e r e fo r e , the l o
t h e r e fo r e
*
=
g * (f^ )
is a
0 .
T h is c o n t r a d ic t io n p ro ves the r e s u l t . N ote th a t i f then f o r a l l
g
x e A (X ),
is fla t , g (x )
(* )
e A (Y ),
i s a u tom a tic. For i f (L e c tu r e 6 ),
hence
g g (x )
is f l a t , i s n o t in
the support o f any C - d iv is o r (L e c tu r e 8, 2 ) . 2 image
o
S *(D )
A more i n t e r e s t i n g q u e s tio n i s o f an e f f e c t i v e
when can one d e fin e a d i r e c t
C - d iv is o r
D
on
g is fin ite
and f l a t .
t r e a t the "e le m e n ta ry " ca se:
69
X. In t h is s e c t io n , we
70
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
Then
g*
sin ce i t Y,
can be d e fin e d by Norms!
is
l o c a l on
and l e t
Y:
on
Y , i f we take U a re then s e t
Theproblem i s e s s e n t i a l l y a lg e b r a ic ,
U = Spec
g ~ 1 (U) = Spec (B ) .
n i t e typ e as A-m odule. We
le t
Then
(A ) B
M oreover, s in c e
g# (o ^ ) i s a l o c a l l y f r e e
s u f f i c i e n t l y sm a ll,
up
be an open a f f i n e subset o f
i s an A - a lg e b r a , w hich i s
of f i
sh ea f
B i s a f r e e A-module to o .
f o r norms:
if
p € B,
le t
if
b 1, . . . ,
b
Tpi B -► B
be m u lt ip lic a t io n by
a re a b a s is o f
B
o v e r A,
p.
le t
n W
=
Z ai j b j • J-1
Then: Mn(p) = d e t ( aj_j) T h is i s n a t u r a lly independent o f th e b a s is
.
b^, and has th e obviou s p ro p
e r tie s : l®n( 01 • P2) = TBn( P ,) Nm(a)
=
a11,
• Mn( P2)
a e
if
A .
A lth ou gh the norm i s n o t alw ays a produ ct o f
p
and i t s
co n ju
g a te s , a t le a s t one has: (* )
fo r a l l P r o o f:
p o ly n o m ia l o f P (P )
=
p,
th e re i s a
Let T^.
P (X )
p’
such th a t
Nm(p) = p * p ’
= d e t (X • i d e n t i t y - T^)
be the c h a r a c t e r is t ic
Then (C a y le y -H a m ilto n theorem ) P (T ^ )
P ( T p ) ( l ) = 0,
o r , w r i t i n g out
.
= 0,
hence
P:
pn + a 1pn_1 + . . . + a n-1 • p + lta(p) = o. QED One a ls o has the im p o rta n t: (* * )
If
p e B
P r o o f: Lemma A : Let
x
then
Nm( p) i s n o t a o - d i v i s o r .
We use a sim ple g e n e r a l f a c t : g
Let
e X.
i s not a o - d iv is o r ,
X ---- ►Y I f g (x )
be a f i n i t e has dep th
f l a t morphism o f n o e th e ria n schemes. 0,
then x
has depth
0,
and
con
v e r s e ly . P r o o f:
I f d ep th
whose a n n ih ila t e r i s g * : £ g (x ) fin ite , mg (x )
£x mg ( x )
* £x k i H s
g (x )
=
i s i n j e c t i v e and * £x
0, then th e re e x is t s a e
mg ( x ) > t*16 maximal i d e a l . g * (a )
e ox
Sin ce
i s n o t 0.
i s P rim ary f o r the maximal i d e a l
S * (a ) ,
the d ep th o f
x
is
£ g (x ) ,a
^ 0,
gi s f l a t , Sin ce
mx :
g
is
sin ce
0. The con verse was
proven in L e c tu re 6.
QED
FUNCTORIAL PROPERTIES OF EFFECTIVE CARTIER DIVISORS R e tu rn in g t o
B/A:
i s a prim e i d e a l » C A i s a o - d iv is o r in
Suppose
Nin( p)
i s a o - d iv is o r .
such th a t d epth ( A * ) = 0, A^
[i.e .,
le t
by
Bv = B
tio n s
A. Then
have d ep th
B
is a
Nm
i s m u ltip lic a tiv e ,
Nm( p)
th a t Nin( P)
R ep la ce
A
*be a m inim al
by
Av
and
s e m i- lo c a l r i n g a l l o f whose l o c a l i z a
0 b y th e lemma.
in none o f th e maximal i d e a ls o f
Then th e re
and such
a • Nm( p) = o, and l e t
prim e i d e a l c o n ta in in g the a n n ih ila t e r o f a ] . B
71
Then i f B, i . e . ,
p p
i s not a o - d iv is o r , i s a u n it i n
B.
p is
S ince
i s a u n it t o o , w hich c o n tr a d ic ts our a s
sumption. To a p p ly th e norm t o the d e f i n i t i o n o f Lemma B : le t
L
[U^}
Let
X
►Y
of
Y
such th a t
=
g*,
we need:
be a f i n i t e morphism o f n o e th e ria n schemes, and
be an i n v e r t i b l e
P r o o f: B
g
sh e a f on L
F or a l l y e Y , S in ce g
X.
Then th e re e x is t s an open c o v e r in g
i s isom orp h ic t o
is
o^
i n each open s e t
lo o k a t the module
fin ite ,
B
M
= g * (L )y
g ” 1 (U^) . o ver
i s a s e m i- lo c a l r in g , and i f
31
i s i t s r a d ic a l, B/ sT s
®
K (x )
.
x over y T h e r e fo r e ,
M/si • M
is
c e r t a i n l y f r e e o f rank 1 :
ran k 1 o v e r B ( c f .
BOURBAKI, A l g . Comm. , Ch. I I ,
be a b a s is o f
th en ,
M;
an open n eighborhood
U1
hence
M
§3, P rop .
jx
i s induced b y a s e c t io n
of
y.
is fr e e o f
5 ).
\± o f
Let
iiy
g * (L )
in
\± d e fin e s a homo
M u lt ip lic a t io n b y
morphism: S* ( in
.
at U.J of
^
* S* ( h)
The k e r n e l andc o k e rn e l a re co h eren t sheaves
y a re o f y. o^
( 0 ) : t h e r e fo r e , b o th a re (0 ) Then in
g
(U 2) ,
on
Y
whose s ta lk s
in a whole neighborhood
m u lt ip lic a t io n by
UQC
n g iv e s an isomorphism
and L. QED Now in our ca s e , we a re g iv e n an e f f e c t i v e C - d iv is o r
By
the lemma, th e re i s an open a f f i n e
such th a t
D
is
p r in c ip a l in
g “ (U^)
c o v e r in g
U. =
D
on
X:
Spec (A . )
= Spec ( B ^ ) . T h e r e fo r e
D
o fY
i s de
f in e d by an e q u a tio n p. € B . , fo r a l l i , p. n o t a O - d iv is o r . —1 —1 checks th a t p^ • p^ i s a u n it in r ( g (U^n U j ) , o_x ) , hence
One
Nm( p^)• N m (P j)“ 1
s e c tio n s
Nm(Pi )
i s a u n it
d e fin e a C - d iv is o r
3°
in
r(U ^ n U j,
Rem arkably, the d i r e c t image
much more g e n e r a l c a se:
2
o f ca s e s , in each o f w hich
O y ).
T h e r e fo r e , the
g * (D ) .
g *(D )
can be d e fin e d in a v e r y
i s r e a l l y ju s t "ca se o " in an i n f i n i t e g *(D )
set
can be d e fin e d , bu t r e q u ir in g , i n each
s u c c e s s iv e ca s e , the com putation o f one more d eterm in a n t, among o th e r
72
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
th in g s .
We have in mind the f o llo w in g s it u a t io n : Pn X Y 0 X 0 V g
So
YOU where (a )
X
(b )
i s a c lo s e d subscheme o f
V = g “ 1(U ),
(c )
gQ
(d )
g
(e )
a l l p o in ts
Pn x Y ,
U
gQ i s the r e s t r i c t i o n o f
is
open in
Y,
g,
is fin it e , is
of fin ite
Tor-d im en sion ,
y e Y,
where
Oy
has d epth
o
or
1,
a re in
Then in t h is s it u a t io n th e re i s a n a tu r a l d e f i n i t i o n o f g * ( D ) . Mumford, G eom etric In v a r ia n t T h e o ry , Ch. a ls o f l a t ,
o
C - d iv is o r .
Suppose
typ e o f n o e th e ria n schemes.
-*(D ly) '
X
►Y
P r o p o s it io n - D e fin it io n :
D
i) or
ii)
is fla t
fo r a l l
An e f f e c t i v e C - d iv is o r Y
if
iii)
(ii)
c a l on
X
and
O - d iv is o r . t o (0 )
s a tis fy
:
be a prim e i d e a l .
Since
t h e r e fo r e a l l prim e id e a l s
.
A/p
F
i s n ot
A/p
of
B
a non-
/A,
B/p • B
is f l a t
C B/p
• B
a s s o c ia te d t o ( o ) ,
lo
F € B
a s s o c ia te d i.e .,
con
i s an i n t e g r a l domain ( t h i s i s Example 1,
T h e r e fo r e , a l l such
correspon ds t o i i i ) '*
x
y = f (x ),
B, a f l a t A - a lg e b r a , and
In o th e r w ords, a l l prim e id e a ls
* n A = p
B [q u o tie n t f i e l d y
at
a re o b v io u s ly e q u iv a le n t. To p ro ve them
then one has
i t s e l f s in c e
L e c tu re 6) .
D
n supp (D) = 0 .
c o n tr a c t to prim e id e a ls in
t r a c t (0 )
of
K ( y ) , where “Y
and ( i i i )
p CA
A/p
s a id t o be a
pass t o the a lg e b r a ic setu p , sin ce the problem i s
Y:
Let
i s f l a t over
F
£x
y e Y, A ( f _1 ( y ) )
P r o o f:
is
/Y,
x € X, the l o c a l eq u a tio n
fo r a l l
e q u iv a le n t t o ( i ) ,
D C X
f.
e q u iv a le n t ly :
a z e r o - d iv is o r in th e r i n g
if
i s a f l a t morphism o f f i n i t e
The q u e s tio n i s , when should a d i v i s o r
be re g a rd e d as a fa m ily o f C - d iv is o r s on the v a r io u s f i b r e s o f
r e la t iv e d iv is o r over
or
(C f.
f a c t , i f gQi s
In t h is s e c t io n , I want t o d e fin e the con cept o f a r e l a t i v e
(e ffe c tiv e ) D C X
In
g *(D ) i s u n iq u e ly d eterm in ed by the req u irem en t: g *(D ) Ip- -
4
5, § 3 .)
*
v C B
a s s o c ia te d t o
are a s s o c ia te d t o (0 )
p • B in
A/p ] , i . e . , such v correspon d t o x € A ( f _1 ( y ) ) p . T h e r e fo r e , h yp o th e s is ( i i i ) a s s e r t s :
i s n o t i n any a s s o c ia te d prim e i d e a l o f
f o r any prim e i d e a l
p CA .
p • B,
FTJNCTORIAL PROPERTIES OF EFFECTIVE CARTIER DIVISORS To p ro ve t h is i s
e q u iv a le n t t o the f la t n e s s
th a t f la t n e s s i s
e q u iv a le n t t o :
Tor^ (B/P-B, a l l prim e id e a ls § 4 ).
ip
C A,
A/p )
of
B/F • B
=
o ver
73 A,
r e c a ll
(0) ,
( t h i s i s easy— c f . BOURBAKE, Comm. A l g . , Ch. I ,
But u s in g :
Tor^ ^
A/p ^
and the fla t n e s s o f
x/t? ) -♦ B/p • B
TorA
B o v e r A,
the v a n is h in g o f t h is
* B/p B Tor
i s e q u iv a le n t
to ( i i i ) * . QED The im p ortan t p o in t c o n cern in g r e l a t i v e C a r t ie r d iv is o r s i s
t h is :
g iv e n a f i b r e p rod u ct s it u a t io n :
and an e f f e c t i v e C - d iv is o r alw ays d e fin e d . x* e A ( X ')
D
in
X, r e l a t i v e t o
A (f’
( y 1) ) ,
if
= f -1 (y ) Spec
y = g ( y r) «
g f ( x ! ) € A ( f ~ 1( y ) ) .
T h e r e fo r e
f ’
—
1 ( y 1)
y'
x H (y)
T h is im p lie s th a t
= f '( x ) . Spec
is
And
M (y ')
i s f l a t over
f
“ 1 (y ),
hence
T h e r e fo r e g ’ ( x ’ ) 4 Supp (D) g f* (D )
In p a r t ic u la r ,
i s d e fin e d .
one can take
(C f.
. 1 ° ).
Y T = Spec H (y)
and one o b ta in s a fa m ily o f C - d iv is o r s on the f i b r e s r e q u ir e d I
g '* ( D )
F o r, by th e remarks a t the end o f L e c tu re 6, a p o in t
i s a ls o in f ' -1 ( y ')
where
_f, then
f o r v a r io u s f ~ 1 (y )
of
y e Y, f ^as
LECTURE 11 BACK TO THE CLASSICAL CASE A f t e r spending so lo n g in the a r id g e n e r a lit y o f a r b it r a r y n o e th e r ia n schemes we r e tu r n t o our p ro p e r cu rves
on a g iv e n s u r fa c e .
w ork in g o v e r a f i e l d F ix ,
program^-to i n v e s t ig a t e th e s e t o f
In t h is le c t u r e , we sim p ly s e t the sta ge f o r
k, r e c a l l i n g w ith o u t p r o o f some o f the b a s ic f a c t s :
once and f o r a l l ,
an a l g e b r a i c a l l y c lo s e d f i e l d /k i s a scheme
typ e o v e r
h e n c e fo r th , w i l l be a lg e b r a ic
k.
A l l schemes,
X
k.
R e c a l l , an a lg e b r a ic scheme
o f fin ite ,
schemes, and a l l fu n c to r s w i l l be fu n c to r s on the c a te g o r y o f a lg e b r a ic schemes. and i r r e d u c ib le P r o j k [X Q, . . . , (I.)
R e c a ll, a v a r i e t y
scheme/k. X^,
From
now on,
(not- P r o j Z[XQ, . . . ,
(* )
If
X
2, p.
Xn l ) .
X,
scheme, th e re i s an in t e g e r
D e fin it io n : It
If
X
can be
X:
i s any scheme, l e t
thus
shown t h a t if
dim
dim (X )
n
D e fin itio n :
A scheme
X
be the maximum o f the
(X )
i s a ls o th e c o h o m o lo g ic a l dimen
H ^ X , J ) = ( 0)
i > dim X,
f o r a l l sheaves
5
197) •
is p r o je c t iv e
i t i s isom orp h ic t o a c lo s e d (r e s p .
(r e s p . q u a s i - p r o je c t iv e )
l o c a l l y c lo s e d )
subscheme o f
n ).
D e fin itio n :
An i n v e r t i b l e
sh e a f
L
on a scheme
th e re e x i s t s an im m ersion X ( f o r some
=
X.
GODEMENT, T h e o rie des fa is c e a u x , p.
( f o r some
H (x )/ k
x € X.
dim ensions o f th e components o f s io n o f
n,
such th a t
K r u ll dim (o x ) + tr a n s . deg. fo r a l l
(II.)
w i l l den ote
193):
i s an ir r e d u c ib le
the dim ension o f
if
i s a reduced
p
R e c a l l a ls o the main r e s u l t o f dim ension th e o ry in t h is case ( c f .
ZARISKI-SAMUEL, v o l .
(c f.
/k
n)
such th a t
q > * (o (i))
-
=L 75
pn .
X
i s v e r y ample i f
PR
76
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE There are several important remarks to make about this concept: a)
Suppose more generally that
L s cp*(_o(l))
for any morphism
cp: X -*■ Pn at all. Then the induced sections s^ = cp*(X^) of L span L. Conversely, if L is spanned by its global sections, one can choose a finite set sQ , s.,,..., s.,,..., ssof of sections sections which which span spanL. L.Then Then(L;(L; sQ,sQ, ..., sn)
defines an an X-valued X-valued point point of of Pn Pn,, i.e., i.e., a morphism
such that cp*(o(i)) = L . by its global sections.
cp: X -*• Pn ,
In particular, a very ample sheaf is spanned
b) Suppose H°(X, L) is finite-dimensional, e.g., suppose X is a projective scheme. Then if L is spanned by its sections, there is s q>*(£0)): q>*(_o( l)) : namely a nearly canonical morphism cp: X -► Pn such that L ^ namely, sQ, s1,..., sn of These cannot all vanish take a basis sQ, of H°(X, H°(X, L) L) .. These cannot all vanish at any one point, so (L; (L; sQ sQ,..., ,..., sn sn)) defines defines such such aa cp. More functorially, functorially this defines a morphism: tp:
°x)
n1 ( x >
® L _1 )
h1 ^x » II
(0 ) Since
dim H1(X , o^)
= pa ,
.
t h is i s a c o n t r a d ic t io n . QED
A fu r t h e r developm ent o f the th e o ry shows th a t s ta n t
rig,
sh ea f
L
depending o n ly on
Am. J .
Math. , 1964).
i s a t l e a s t nQ,
o n ly i f d eg (L ) > 0 . theorem th a t
X, such th a t when th e d e g re e o f the i n v e r t i b l e
th en
°o
L
i s v e ry ample ( c f .
MATSUSAKA-MUMFORD,
T h is g iv e s the e le g a n t C o r o lla r y r
L
i s ample i f and
[T o show th a t Mdeg L > 0M i s n e c e s s a ry , use S e r r e 's
ML am ple” im p lie s
X (L n) -♦*
th e re i s an oth er con
as n -*■
+oo,
H1(L n) = ( 0 ) ,
f o r la r g e
n, hence
hence, b y Theorem 1 deg (L ) > o . ]
BACK TO THE CLASSICAL CASE F in a lly ,
81
th e re i s a t h ir d p a r t o f th e Riemann-Roch theorem w hich we
s h a ll use i n the
n e x t l e c t u r e . T h is i s a r e s u l t w hich en a b les one
th e s h e a f
some c a s e s :
a>p i n
THEOREM 3:
Let
F
be a n o n -s in g u la r p r o j e c t i v e s u rfa c e .
Then th e re i s a c a n o n ic a l i n v e r t i b l e th e fo llo w in g p r o p e r ty : v is o r .
Then
t o compute
Let
D C
s h ea f
F
ft
on
F
w ith
be any e f f e c t i v e d i
Di s a cu rve and a>P s* [ft Op(D) ] Op .
Example:
If
F = p2 ,
th en , as i s
D C Poi s a p lan e curve 3
w ell-k n ow n ,
o f d e g ree d,
i.e .,
= o (- 3 ).
ft
o p (D)
Then suppose
= o (d ) .
Then Theorem
2
t e l l s us th a t cop a o (d - 3 ) ®
.
F or exam ple, i f d = 3, th en , Op)
a re d u a l, hence X (^ )
= 0
pa ( D) = 1 Such cu rves a re known as e l l i p t i c
.
cu rves when
D
i s n o n - s in g u la r .
LECTURE 12 THE OVER-ALL CLASSIFICATION OF CURVES ON SURFACES We now tu rn our a t t e n t io n t o geom etry on a f i x e d p r o j e c t i v e and non s in g u la r s u r fa c e ,
F.
On
F
we have d i v i s o r s
(W e il or C a r t ie r , i t makes no
d i f f e r e n c e ) , and th e group o f d i v i s o r c la s s e s
P ic
(F ).
Among d i v i s o r s ,
e f f e c t i v e d i v i s o r s w i l l be r e f e r r e d t o sim p ly as cu rv e s :
the
th ese a re now 1-
d im en sio n a l c lo s e d subschemes, but th ey a re n o t n e c e s s a r ily reduced or i r r e d u c ib le . 1°
Let
D CF
be a c u rve.
U n lik e the case o f e f f e c t i v e
d i v is o r s
on cu rves th em selves, one cannot count the number o f p o in ts in the support and c a l l i t can
th e d e g re e ,
s in c e th e support i s p o s i t i v e d im en sio n a l,
do i n th e way o f co u n tin g i s Let
D1 , D2
be two cu rves in
F
such th a t
dim (Supp (D 1) n Supp (D2) ) Let
{ x 1, . . . ,
x R} = Supp (D ) n Supp (D2) •
f^ (r e s p .
g^)
be a l o c a l e q u a tio n f o r
dimk c°x . ^ fi» S p ]
1=1
T h is makes sense because th e i d e a l w hich i s
its e lf.
some
•
(f^ ,
g^)
d e fin e s a subscheme o f
F
at
Supp (D 1) n Supp (D2) , i . e . ,
^ 4 .
N, and the dim ension i s f i n i t e . T h is i s
the in t e r s e c t io n number o f D1
and
D2,
and i t
is
check th a t i t
is
on cu rv e s , i t
depends o n ly on the d i v i s o r c la s s e s , n ot the d i v i s o r s :
P r o p o s it io n 1: (D ]
x^.
T h e r e fo r e o .
w hich has s t a lk
x 1, . . . ,
xn,
£x / ( f ,
and a t
x^
it
g)
at
is
isom orph ic to
V ( f i> gi> ' T h e r e fo r e , (D 1 • D2) = dim H °(F , ^
® o^)
=
® ° d 2)
=
- X[O p(-D .,) e C^,(-D2) ]
=
X( Op)
- X ( op ( — D i) )
+X (O p(-D .,- D g ))
“ X( op ( -D q) )
+
X( op ( —Di ~~ D g )) . QED
T h is m o tiv a te s : D e fin itio n :
Let (L.|
If
D1
and
L1
and
• Lg)
D2
L2
= X (O p )
be any i n v e r t i b l e - X ( L " 1)
a re any d iv is o r s on
- X (L ^ )
F,
i) ii) iii)
( (L ,
, )
+ X ( L ' 1 ® L g 1)
.
• c ^ (D g ))
.
i s a symmetric i n t e g r a l b i l i n e a r p a ir in g , i . e . ,
• Lg)
(L 1 ® Lj
F.
then
(D 1 • Dg) = ( ^ ( D , ) P r o p o s it io n 2 ;
sheaves on
= (Lg • L , ) • L g)
(L ^ 1 • L g)
= (L ,
= - (L ,
• Lg)
• Lg)
+ (L j .
• L g)
THE OVER ALL CLASSIFICATION OF CURVES ON SURFACES P r o o f:
(i)
i s o b vio u s, and ( i i i )
f o llo w s from ( i i )
85
i n v ir t u e o f
the ob viou s f a c t : (° p In fa c t ,
' L) = 0 .
I c la im : (Op(D)
f o r any curve
D
on
P. 0 -
• L)
= d e g p [L ®
Use the sequences: ^ ,(- D ) -
oF -
^
-
0
and 0 — L -1 ® Op(-D) -► L _1 — (L ® c ^ ) " 1 — 0
.
T h e r e fo r e , (Oj,(D)
• L)
= [x(O p ) = X(Op)
- X( Op( - D )) ] -
- X (L _1 ® Op( - ® )) ]
- X ( ( L ® ^ , ) ” 1)
= d egp tL ® c^ ] T h e r e fo r e , i f
[X (L -1 )
L 2 adm its a s e c t io n ,
.
( L 1 * L 2)
is
l i n e a r in
L 1,
by the
Riemann-Roch theorem (Theorem 1, L e c tu re 1 1 ). F in a lly ,
le t
i s any i n v e r t i b l e
£ (1 )
s h e a f on
S e r r e 's theorem s.
be a v e r y ample i n v e r t i b l e P , then
L (n )
sh e a f on
has a s e c t io n i f
n
is
P.
If
L
la r g e , by
Now by w r i t i n g the w hole th in g out one checks th a t the e x
p r e s s io n ( L 1 * L 2) + ( L ’ is
symmetric in the th re e v a r ia b le s
L 2 adm its a s e c t io n , i t o (n ),
i s a ls o
0
• L 2) L 1, when
- ( L 1 ® L» L.| and
• L 2)
L2.
Sin ce i t
LJadm its a s e c t io n .
is Takin g
0 when Lj
=
t h is im p lie s th a t ( L 1 • L 2)
But both
£ (n )
a re lin e a r in
and L2.
= ( L 1 (n )
• L 2) - (o (n )
• L 2)
.
L 1 (n ) adm its s e c t io n s , hence the two term s on the r i g h t T h e r e fo r e
( L 1 • L 2)
is
l i n e a r in
L2. QpD
T h is b i l i n e a r form on morphism on
P ic
(X )
fo r
X
P ic
(P )
ta k es the p la c e o f the d eg ree homo
a cu rve.
I t in du ces th e f o llo w in g decom posi
t io n : D e fin itio n : v e r tib le
P i c T (P )
sheaves
L
i s th e subgroup o f
(L a ll
• L r) = 0
L ' € P ic ( P ) .
D e fin itio n :
Num (P )
P ic
such th a t
= P ic
(F ) / P i c T (P )
.
(P )
c o n s is t in g
o f th ose i n
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
86
By d e f i n i t i o n ,
Num (F )
- the n u m erical d i v i s o r c la s s group o f
i s endowed w ith a n on -d egen erate symmetric i n t e g r a l p a ir in g in t o fundam ental r e s u lt co n cern in g p,
theorem
(fo r
F —
The
Num ( F ) , due t o S e v e r i and Neron, i s th a t i t
i s f i n i t e l y ge n e ra te d as an a b e lia n group; hence isom orph ic t o in t e g e r
z.
known as the base number o f
F.
Z p,
f o r some
We w i l l n o t need or p ro ve t h is
the b e s t p r o o f, how ever, c f . LANG-NERON, Am. J. Math. ,
1959,
R a t io n a l p o in ts o f a b e lia n v a r i e t i e s o v e r fu n c tio n f i e l d s )
2°
A lth ou gh t o understand th e w hole s it u a t io n con cern in g th e num eri
c a l c h a ra c te rs o f a d i v i s o r c la s s
(D)
o r , e q u iv a le n t ly , a t the numbers
one must lo o k a t i t s
(o-p(D)
• L ),
fo r a l l
image in
L,
Num (F )
n o n e th e le s s f o r
most purposes some o f th ese numbers a re more im p ortan t and u s u a lly s u f f i c e :
o ( 1)
D e fin itio n :
If
r e la t iv e to
o (1 )
d eg (L )
i s a f i x e d v e r y ample i n v e r t i b l e
sh ea f on
F,
then
one d e fin e s : = (L • 0 (1 ))
and deg (D)
= d eg[ Op(D) ]
I n c id e n t a lly , i f F
=
D
d e g ^ c ^ ® o (1 ) ] .
is e ffe c tiv e ,
then
d eg (D) > 0:
le t
o (1 )
i(x ),
x
on
be induced by: i:
Let
H C
Pn
F
^
Pn .
be a hyper p lan e n o t c o n ta in in g any o f the p o in ts
g e n e r ic p o in t o f
Supp ( D ) .
Then th e curve
H1 = i * ( H )
dim (Supp (D) n Supp (H 1) )
=0
a
i s d e fin e d and •
T h e r e fo r e , deg (D) = (o p (D)
• O p d T ))
= (D • H ') > But suppose choose a i(y )
€ H
d eg (D) = 0 ;
c lo s e d p o in t y w h ile i ( x )
is
then
e Supp
0 •
Supp (D) n Supp (H 1) = #. (D)
and choose
s t i l l n o t in
H
T h is i s c e r t a i n l y p o s s ib le , and, t h e r e fo r e
f o r g e n e r ic p o in ts
H
such th a t
x € Supp (D) .
deg (D) > 0.
R etu rn in g to an a r b it r a r y i n v e r t i b l e
sh e a f
L
on
number o f g r e a t im portance i s i t s E u le r c h a r a c t e r is t ic . by an i n t e r s e c t io n p rod u ct t o o .
To p re v e n t t h i s ,
th e hyperplan e
F,
the o th er
T h is number i s g iv e n
To d e r iv e t h i s , use the t h ir d p a r t o f the
Riemann-Roch theorem on cu rves. P r o p o s it io n 3:
Let
n o n ic a l i n v e r t i b l e
L
be an i n v e r t i b l e
sh ea f on x (L )
F =
sh ea f on
F,
and l e t
g iv e n by Theorem 3, L e c tu re 11. i(L
• L ® sT 1) + x(Op,)
.
ft
be th e ca Then
87
THE OVER-ALL CLASSIFICATION OF CURVES ON SURFACES P r o o f;
The form u la s t a t e s ; 2( x (L )
- X (O p ))
=
(L • L ® sT 1)
= - ( L _1
• L ® n_1)
= " x (°j? ) + X( L ) + x ( L _1 ® n)
- x (n )
or (# )
X (L )
If
- X (^ )
L -1 hag a s e c t io n ,
- x (n ® L ' 1) + x (n )
then
L = Op(-D)
0
0, —*■ D, ® L
=
o .
f o r sane curve
D.
Then
use the
e x a c t sequences; and
(c f.
Theorem 3, L e c tu re 1 1 ).
hence
(# )
fo llo w s whenever
F in a lly , l e t is if
n
is
By Theorem 2, L e c tu re 11,
be a v e r y ample i n v e r t i b l e F,
then
M~1(n ) and
la r g e , b y S e r r e 's theorem s.
the e x p re s s io n on th e l e f t i n (# ) [X (L ®
M) - x(O p)
+ x (^ )
= o,
L ” 1 has a s e c tio n .
£ ( 1)
any i n v e r t i b l e sh e a f on
—►0
o (n )
sh ea f on b o th
F.
have
If
M
s e c tio n s
Now a sim ple com putation shows th a t
i s lin e a r in
L.
Namely;
- x (n ® L " 1 ® M_1) + x (n ) ]
- [x (L )
- x(c^,) - x (n ® L _1) + x ( n ) ]
- tx(M )
- x(O p) - x (n ® M-1) + x (n ) ]
= +
(x(op) - x(L) - x(a ® L -1 ® M_ 1 ) Cx(Op) - x(M) - x(o ® L _1 ® M_ 1 )
-
fx (^ p ) - x ( L ® M) - x (n ® L -1 ® M_1) + x (n )
= =
But then the e x p r e s s io n in
(# )
th e f i r s t p a r t o f th e p r o o f.
( L -1
• n-1 ® L ® M) + (M-1
( L -1 ® M-1 0 is
• n -1
+ x(n ® M"1 ) + x(n ® L _ 1 ) ® L ® M)
• SI-1 ® L ® M)
.
0
fo r
T h e r e fo r e i t
L = M (-n ) is
0
fo r
and f o r
L = o (- n ) by
L = M. QED
T h is r e s u l t i s
the w eakest v e r s io n o f the Riemann-Roch theorem on F.
As one consequence o f t h is r e s u l t , we see th a t the o n ly r e a l l y im p ortan t n u m erica l c h a ra c te rs o f an i n v e r t i b l e
sh e a f
d eg (L )
= (L
L
a re
• 0 (1 ))
( L 2) = (L • L) and (L
• fl)
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
88
3 So far we have studied the discrete aspects of Pic (F), and hence the discrete aspects of the set of curves on F. To get at the exis tence questions of Lecture 2, we shall look at the continuous part of these two sets. The "glueing" which gives continuity must come from the concept of families of invertible sheaves and families of curves. We make the fol lowing definitions: Definition. Let S be a scheme (algebraic /k) . A family of curves on F, over S, is a relative effective Cartier divisor 3) C F x S, over S. A family of invertible sheaves on F, over S, is an invertible sheaf L on F x S: except that two invertible sheaves L 1, L2 will be said to define the same family of invertible sheaves if there is an invertible sheaf M on S such that: L, a L2 ® p2(M) . How does the concept of a family really provide the glueing? comes about because the collection of families forms a functor: a)
Curves F(S)
b)
Picp(S)
=
set of families of curves on
F
over
This
S
and
Given
=set of families of invertible
sheaves
onF over
S.
g
T —2— ► S, one obtains: P x T
►F x S ;
hence for 3) C Fx S (resp. L on F x S), (resp. h*(L) on F x T). This is a map g* a) Curve s^fS) --- ► Curves^fT) and b) Plcp (S) . PlOp(T) .
one obtains
h*( 2) )C Fx T
The glueing is now equivalent to the problem of representing these functors: to represent these functors is the same as to find a universal family of curves or invertible sheaves. And if you find such a family, say over S, then the set of k-rational points of S will be canonically isomorphic to the set of curves on F, or to the set Pic (F); i.e., you have put these sets together into whole schemes. Notice also that we have a morphism of functors: Curve Sp, — ► Plc-p which maps 3) C F x S to the invertible sheaf OpygC 3) ) • Consequently if C (resp. P) were schemes representing these two functors, one would auto matically get a morphism of schemes, cS —
p
which, on k-rational points, restricts to the obvious map from the set of curves on F to the set Pic (F) .
THE OVER-ALL CLASSIFICATION OF CURVES ON SURFACES
89
In terms of this glueing, we can say precisely why the numerical in variants of 1 ,2° are discrete. Say L1, L2 are two invertible sheaves on F x S. For each closed point s € S, they induce sheaves L« _ and Iy S L0 on the fibre F, and we can compute (L-1 ,_ 3•2L0 > 3 , 3_) : this number is constant on each connected component of S 1 [Since (L.I,S _ • L0 2,3_) is a sum of Euler characteristics and these are values of Hilbert polynomials, this follows from Corollary 3, Lecture 7.3 In other words, given any family of invertible sheaves over a connected base S, the image of each sheaf Ls in Num (F) is the same. Therefore, if an object P represents the functor PiCp, for each element of Num (F), the set ofinvertible sheaves inducing this element would form an open and closed set of P. The natural thing to do is to break up the functors PiCp and Curve^ accordingly into manage able pieces: Definition; Let | € Num (F) . For all schemes S, let PicJ,(S) be the sub set ofPiCp(S) consisting of those L on F x S such that for all closed points s e S, if L_ is the induced sheaf on F over s, then L_ has S » 3 numerical class |. Moreover, let CurveSp(S) be the subset of CurveSp(S) mapped by ® into PiCp(S) . Both form subfunctors denoted Curvesj, and Plc^, . The principal results at which we are aiming are: FIRST CONSTRUCTION THEOREM: For all t, Curves|, Is isomorphic to a functor h ^ ^ , where C(|) is a pro jective scheme. SECOND CONSTRUCTION THEOREM: For all Pic|, Is isomorphic to a functor h p ^ , where P(|) is a projective scheme. As a corollary, it follows readily that the full functors CurveSp and PiCp are represented by (non-algebraic) schemes which are the disjoint unions: II C( |) and H P( g) . I
5
LECTURE 13 LINEAR SYSTEMS AND EXAMPLES B e fo re lo o k in g a t the g e n e r a l problem o f c o n s tr u c tin g
C (£)
and
P ( g ) , we want t o d e s c r ib e some s p e c ia l ca ses in w hich the answer i s v e r y sim ple and
1 group
can now be t r e a t e d r ig o r o u s ly .
We s t a r t w ith a case in w hich the group
Num
Assume i )
H C F
i s an ir r e d u c ib le
ii)
F - H
is a ffin e ,
P r o p o s it io n 1: h
of
r (F
Then H;
- H, Op)
and hence the
P ic
(F )
P r o o f: t o nH
cu rve,
i s a unique f a c t o r i z a t i o n domain.
i s an i n f i n i t e c y c l i c group gen era ted by the
and P ic
le n t
P ic (F )
(F ) i s p a r t i c u l a r l y sim p le:
iii)
image
1 f a l l in t h is
then t o show how some o f th e Examples o f L e c tu re
c a te g o r y , hence
(F )
s Num ( F ) .
We must show th a t any d i v i s o r
f o r some i n t e g e r
n.
D
on
S in ce d iv is o r s
F
i s l i n e a r l y e q u iv a
a re W e il d i v i s o r s , e v e r y
d iv is o r is
the d if f e r e n c e o f two e f f e c t i v e d i v is o r s and we may as w e l l a s
sume th a t
D
is e ffe c t iv e .
L e t th e c lo s e d subscheme
D n ( F - H )
o f F - H
correspon d to the i d e a l 51 C R = r ( F - H, Op) Since 5i
in du ces a
p r in c ip a l i d e a l in each l o c a l i z a t i o n
fo llo w s th a t a l l prim e id e a ls a s s o c ia te d t o R
i s a UFD,
D
- ( f ) has
51
.
i t s e l f i s p r in c ip a l.
51
Let
n e it h e r z e ro e s nor p o le s in
51= ( f ) . F - H,
Rp o f
a re m in im a l ;
R,
hence,
it sin ce
Then the d i v i s o r
i.e .,
Supp [D - ( f ) ] C H.
T h is menas th a t D - (f) hence
D = nH.
T h e re fo re
rem ains t o check th a t
h
= nH,
g e n e ra te s
Num (F )
is
nH i s
v e r y ample f o r some
n e z ,
P ic
in fin ite
and th ese two groups a re iso m o rp h ic. sor
some
( F ) , and hence
But sin c e
n (i.e ., 91
Num (F ) .
c y c l i c —f o r then so i s Op(nH)
F
It
P ic (F )
is p r o je c tiv e ,
the d i v i
i s o f the form
o(1 )) .
92
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
T h e r e fo r e , as remarked in L e c tu re 12^ n(H • H) = (c ^ (H )
• Op(nH))
= (OpCH) • o ( l ) ) = deg H > and
t h e r e fo r e the image o f
h
in
0
Num (F )
has i n f i n i t e
o rd e r. QED
C le a r ly t h is r e s u l t a p p lie s t o r(
s in ce i f
P2,
P2 - H, o p ) g* k [X , Y ]
H
i s a h yp erp la n e,
.
2
T h e r e fo r e , a l l cu rves o
p (D) 2* £ p(d ) .
D
Sin ce
in
P2
in fh e homogeneous c o o rd in a te s curves on
have some d egree
H°( P2, o^ p ( d ) )
is
XQ, X 1^ X2
d , and
D = dH,
i.e .,
spanned by homogeneous form s
o f d egree
d, i t
fo llo w s th a t a l l
a re o f th e typ e we e x p e c t.
P2
I n c id e n t ly ,
th e P r o p o s it io n i s v a l i d in any dim ension, so i t
a p p lie d to v a r io u s Grassmannians, H yp erqu ad rics, e t c ,
can be
(a l s o t o h y p ersu rfa ces
o f some ty p e s , c f . ANDREOTTI, SAIMON, M on atsh efte fu r M a th .. 6 1 , 1957, p. 9 7 ). 2
o
a ls o f a i r l y
in cases where the P ic a r d group i s sim p le.
sim p le, the s e t o f cu rves i s
A c t u a lly , what i s alw ays sim ple are the f i b r e s in the
s e t o f cu rves over the P ic a r d group, i . e . , le n t to a f i x e d cu rve.
the s e t o f curves l i n e a r l y e q u iv a
However, t o s ta te t h e ir s tru c tu re p r o p e r ly , a g a in we
have t o fin d the glu e t o put th ese " l i n e a r system s" o f cu rves t o g e th e r . What i s r e q u ir e d i s fu n c to r
the f i b r e o f the morphism
$
from the fu n c to r CurveSp t o the
PiCp . Q u ite g e n e r a lly , G roth en d ieck has d e fin e d the f i b r e s o f a morphism
o f fu n c to r s . (S e t s ) .
ot e G(S) :
Let
Let
F, G F
G
be c o n tr a v a r ia n t fu n c to r s from a c a te g o r y be a morphism.
we s h a ll d e fin e the f i b r e
t o o , but n o t from o f o b je c t s o v e r
C
to (S e t s ).
S [i.e .,
of
Let
S
be an o b je c t in
over
a.
C,
t o the c a te g o r y ( S e t s ) .
]
C a ll i t
■£ 4a (T ----- ►S) = {0 € F (T ) | * ( p ) The r e s t o f the d e f i n i t i o n i s c le a r .
C/S
T — ►S, and a morphism
i s a commutative diagram
S
to and l e t
I t i s t o be a fu n c to r
I t i s a fu n c to r from the c a te g o r y
an o b je c t i s a morphism
C
= f* (a )
in
G (T )}
.
LINEAR SYSTEMS AND EXAMPLES In our ca s e , G.
over
Then
k
i s a g a in
because
p o in t i s
is
th is :
th e c a te g o r y o f a lg e b r a ic schemeso v e r
Spec (k ) If
P
a fu n c to r on th e c a te g o r y o f a lg e b r a ic
schemes The key
andG
th e f i n a l o b je c t in t h is c a te g o r y .
a re re p re s e n te d b y schemes
cc
X
q>: X -*■ Y ,
i s r e p re s e n te d by the a c tu a l
fib r e
cp” 1(a ) .
P iC p ,
th e f i b r e fu n c to r i s :
( P r o o f:
and
L
and
be an i n v e r t i b l e
sh ea f on
L in SysL ( S) = { ® C F x s | $ over
S
then
Q®
Y and
Let
a r e l a t i v e e f f e c t i v e C a r t ie r d i v i s o r
s) s
V ia th e u su a l maps,
P.
such th a t
P*(L) ® P^K)
some i n v e r t i b l e
sh e a f
K
for
on
S}
t h is i s a c o n tr a v a r ia n t fu n c to r in
. S.
In L e c tu re
1 we gave h e u r is t ic rea son s
fo r
a p r o j e c t i v e space.
The f u l l r e s u l t can now be
p roven :
P r o p o s it io n 2 ;
Y,
I s a c lo s e d p o in t o f
im m ed iate.)
In the case o f CurveSp, Let
and
is
*(M g)
t o s e c tio n s o f
c ) But as
Mg K( s)
=
( s ) , Mg
i n some n eighborhood o f
o^, th e s e c t io n 1
of
Opl i f t s
s. t o a s e c tio n :
a e r(U, P2j*(Ma)) = H°(P x U, M g) . d)
Then
a
d e fin e s a homomorphism: P; ( L S) - ^
in
F
x U. M oreover,
phism o f th e
s in c e a
induced sheaves
£
comes from La
and
* p. (L
fo r e
cp i s an isom orphism o f
cp
an isom orphism i n an open n eigh borh ood W
is
F x 3 —►S of
s
is
£
at
-1
p 2 ( s) .
I
T h e r e fo r e i f
s ' € Ug ,
L ,
L.
and
Lg
Then we have an open c o v e r in g
_* i
p0
( s) . T h eres,
S in ce
hence p2:
s
a re iso m o rp h ic. Sin ce
S
L a a re iso m o rp h ic. C a ll 3 ~ o f S such th a t p-j (L )
F x U^.
F i x isom orphism s p * (L )
P x
i s an isom or-
a l l p o in ts o v e r
of
S
a re isom orp h ic in each open s e t f)
in
£
con n ected , t h is im p lie s th a t a l l th e sheaves
t h is s h e a f and
and
cp
on th e f i b r e
F x Ug . e)
is
in Pp1( s ) ,
t o p o l o g i c a l l y c lo s e d , th e re i s an open neighborhood U C U * W 3 F x U . T h is p ro v e s th a t p . ( L „ ) and £ a re isom or-
such th a t
p h ic t o
)
1
£ H (s )
.
Then in
P x (U^ n U j ) ,
^ °
£ i s an automorphism o f
p * (L ).
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
96
T h is i s g iv e n by m u lt ip lic a t io n by a u n it : ° ij
€ r (p x % M
n
r(U± n uj( o^) (c f.
L e c tu re 1 1 , T V ).
in g
{U^}.
sh ea f
K
Then
i s a 1-C z e c h -c o -c y c le on
S
f o r the c o v e r
L e t t h is c o - c y c le be the t r a n s it io n fu n c tio n s f o r an i n v e r t i b l e on
S.
Then i t
p h ic g l o b a l l y t o
fo llo w s from our c o n s tr u c tio n th a t
£
i s isom or
p * (L ) p^ (K ) . QED
T h is r e s u lt i s c l o s e l y r e la t e d t o the see-saw p r i n c ip le o f LANG (c f.
h is A b e lia n V a r i e t i e s ) .
C o r o lla r y :
If
H1(F , o^)
union o f a ( i n f i n i t e ) CurveSp
= (0 ),
then
P ic ^
i s re p re s e n te d by the d i s j o i n t
d is c r e t e s e t o f p o in t s , i . e . ,
o f Spec (k )> s .
i s re p re s e n te d by th e d i s j o i n t union o f p r o j e c t i v e
T h e re fo re
spaces ( o f v a r i
ous dim ensions) . T h is com pletes our j u s t i f i c a t i o n o f our d e s c r ip t io n o f cu rves on P2 .
Perhaps t o add th e l a s t p o in t , we should compute: ( o (n )
[im m ediate b y b i l i n e a r i t y ,
E x e r c is e :
= n • m
.
and th e check: ( 0( 1 )
f o r two d i s t i n c t lin e s
* o(m))
E , , H2
• 0( 1 ) )
in
- H2) = 1
= (E,
p2 ] .
W r ite down e x p l i c i t l y the u n iv e r s a l f a m ilie s o f cu rves on
P2 .
W ith ou t p r o o fs , we want t o supplement Examples 2 and 5
F u rth er Exam ples:
o f L e c tu re 1 b y r e l a t i n g th e r e s u lt s th e re t o our p re s e n t th e o ry . th ese s u rfa c e s a re " b i r a t i o n a l ” t o open dense su b sets.
In f a c t ,
it
i.e .,
P2 ,
a re isom orph ic t o
Both o f p2
on
fo llo w s from t h is th a t
H1 (F , Op) = H ^ F , Op) = (0 ) in b o th th ese c a ses. Now, i n th e case
T h e re fo re b o th f a l l under
F =P 1 x P 1 ,
th e C o r o lla r y ju s t g iv e n .
then
P ic (F ) = Num (F )
^
Z ®z
.
I n f a c t , a b a s is i s g iv e n by th e two sheaves L1 = and th e d eg rees d
and
e
d
and
e
and L2 = P ^ * 1) ) o f a d iv is o r
D
d e s c r ib e d b e fo r e a re ju s t the
d e fin e d by: Op(D) as L® ® Lg •
LINEAR SYSTEMS AND EXAMPLES The p a ir in g i s
g iv e n by
(L,
•L,) = 0
(L i
• L 2) = 1
(Lg •L2)= 0 . Now i n case where
F
is
o b ta in e d by
P ic I n f a c t , a b a s is i s
(F )
b lo w in g up two p o in ts in
s Num (F )
s Z ® Z ® Z .
g iv e n b y th e th r e e sheaves L = SpW
M2 =
•
The p a ir in g i s g iv e n b y: (M,
•M ,)
= -1
(M n
•M2 )
=
0
(M.,
L)
= 1
(M2
•M ,)
= 0
(Mg
•M2 )
= -1
(Mg
L)
= 1
(L
•M ,)
=
(L
•Mg)
=
(L
L)
= -1
1
1
LECTURE 14 SOME VANISHING THEOREMS Some o f the d e e p e s t r e s u lt s i n a lg e b r a ic geom etry concern the p ro b lem o f g i v i n g c r i t e r i a f o r th e h ig h e r cohom ology groups o f a sh e a f t o be
0.
The p i v o t a l r o l e p la y e d b y th ese r e s u lt s i s due t o th e f a c t th a t the E u le r c h a r a c t e r is t ic o f a c o h eren t s h e a f on some v a r i e t y i s g e n e r a lly v e r y comput a b le : e i t h e r d i r e c t l y ,
o r b y use o f the v e r y p o w e rfu l H irzeb ru ch -G ro th en d ieck
form o f th e Riemann-Roch Theorem;
on the o th e r hand, i t
i s u s u a lly the group
o f s e c tio n s o f such sheaves w hich has g e o m e tric i n t e r e s t and d i r e c t s i g n i f i cance.
T h e r e fo r e , whenever one can p ro ve th a t the h ig h e r cohom ology i s
o,
one should e x p e c t many c o r o l l a r i e s . A f i r s t theorem o f t h is typ e was p ro ven in L e c tu re 11 .
The g e n e r a l
problem was fo rm u la te d by th e I t a l i a n s : i t was known as the problem o f p o stu la t io n
(i.e .,
when does th e dim ension o f som ething tu rn out t o eq u a l th e num
b e r which one had p o s tu la te d .1? ) .
P ic a r d p roved b y a n a ly t ic methods a v e r y
famous r e s u l t o f t h is kind (th e theorem o f the r e g u l a r i t y o f th e a d jo in t , c f ZARISKT's book on s u r fa c e s ); t h is r e s u l t was g r e a t l y exten ded by KODAIRA in one o f h is most famous papers (P r o c . N a t l. Acad. S c i . ,
1953, p.
1268: A
d i f f e r e n t i a l - g e o m e t r i c method in th e th e o r y o f a n a ly t ic s ta c k s ) , and tod a y it
i s known as K o d a ir a 's v a n is h in g theorem .
A n oth er r e s u l t in t h is d ir e c t io n
i s S e r r e 's d u a lit y theorem ( v a s t l y exten ded by G r o th e n d ie c k ): d i r e c t descen den t o f R o c h 's r e s u l t and i t s in g u la r v a r i e t y , how t o compute an
H1
te lls ,
t h is i s the
on an n -d im en sio n a l non-
b y means o f an
Hn~i ,
w hich a t
l e a s t cu ts the problem in h a l f . We s h a ll p ro ve h ere (w it h th e h e lp o f tech n iq u es d eve lo p e d and used by N ak ai, Matsusaka and K leim an)
o n ly a weak v a n is h in g theorem , bu t one w hich
i s u n ifo rm ly a p p lic a b le t o a la r g e c la s s o f sh eaves. s h e a f on
Let
?
be a coh eren t
pn :
D e fin it io n :
5
i s m -re g u la r i f
Hi ( Pn , ^ ( m - i ) )
= ( 0) fo r a l l
i > 0.
T h is a p p a re n tly s i l l y d e f i n i t i o n r e v e a ls i t s e l f as f o llo w s : P r o p o s it io n :
(C a s te ln u o v o )
Let
?
be an m -re g u la r co h eren t sh ea f on
Then a)
H °( Pn , ? ( k ) )
is
spanned by
H °( Pn , 5 ( k - i ) )
® H °( Pn , 0 ( 1 ) ) 99
if
k > mj
Pn .
100
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE b)
Hence
P , 5 ( k ))
a 1)
y (k )
= (0 )
whenever
i s g en era ted as
P r o o f;
k + i > m .
£ p -module by i t s
k > m.
g lo b a l s e c tio n s i f
n
We use in d u c tio n on
In g e n e r a l, g iv e n
i > 0,
5,
p o in ts i n th e f i n i t e
n:
fo r
choose a hyperplan e set
A( y ).
H
n = 0, the r e s u lt i s
o b vio u s.
n o t c o n ta in in g any o f the
Tensor the e x a c t sequence:
O - ^ o p (-H ) ■ ♦ O p n n
£ jt
0
21! £ w it h
y (k ).
For a l l
x € Pn ,
then m u lt ip lic a t io n b y
f
p
if
n
M ) f
i s a l o c a l e q u a tio n f o r
i s i n j e c t i v e in
i s a u n it a t a l l a s s o c ia te d prim es o f (* )k
o - * y (k - i) - * ( k ) -
i s e x a c t.
T h is im p lie s th a t i f J jj.
( ? oH) ( k ) -
H
x, f
T h e re fo re the r e s u l t i n g sequence o
y
-►
y H( m - i ) )
Hi+1 ( 5 ( m - i - 1 ) )
i s m -r e g u la r , the sh ea f
3^
on
H
H £* Pn__1, we use the in d u c tio n h y p o th e s is t o o b ta in
. i s m -re g u la r. a) and
b) f o r
In p a r t ic u la r , use HL+1 ( 5 ( m - i- 1 )) - H 1+1( 5 ( m - i ) ) — H^+1 ( ? H( m - i ) )
If
at
s in ce by c o n s tr u c tio n ,
In p a r t ic u la r , we g e t ;
y(m - i)) Sin ce
?x .
3^.
i > 0,
byb)
r e g u la r .
fo r
i s ( 0) .
f i r s t group
3 ^ , th e l a s t group i s
C on tin u in g i n t h is way we p ro ve To g e t
( 0)5
b y m - r e g u la r it y the ( 0 ) and
T h e r e fo r e , the m id d le group i s
.
3
is
(m + i)-
b) fo r y.
a ) , lo o k a t the diagram : H °( J (k - 1 ) )
( 1))
® H °(o
-2— H °( Sw( k - 1 ) )
® H ° (o h( i ) )
n t
\l
H °( ^ ( k - l ) ) Note th a t t
is
-
H °(
a
is
5 ( k ) ) -----------------------------► H °( f H( k ) )
s u r je c t iv e i f
s u r je c t iv e i f
i s the whole o f H °( y ( k - l ) ) .
k > m
H °( 3H( k ) ) ,
k > m
because
H1( S ( k - 2 ) )
by c o n c lu s io n a) f o r i.e .,
H °( y ( k ) )
is
3^.
= (0 ).
T h e r e fo r e ,
spanned by
Im ( m.)
But l e t
Then the Image o f H °( 3 ( k - i ) ) . s u r je c t iv e and
M oreover v (Im \i)
h € H °( Pn , £ p ( 1 ) ) be th e g lo b a l eq u a tio n o f n H^( 3 ( k - i ) ) in H ( 3 ( k ) ) i s morep r e c i s e l y h
I n o th e r w ords, t h is i s p a r t a) i s p roven f o r
y .
of
Im n
to o . T h e re fo re
and by H.
\± i s
101
SOME VANISHING THEOREMS Now by S e r r e 's theorem , we know th a t s e c tio n s p ro v id e d th a t im p lie s th a t modules i f
o
and w it h
la r g e enough.
? (k )
i s g en era ted b y i t s
P u ttin g t h is to g e th e r w ith a) of o p n o p (1 )
x:
t h is i d e n t i f i e s o p (k-m) w ith o_ at x, and ? (k ) o n n x. Then H (o_ (k -m )) becomes ju s t a v e c t o r space o f e l e -
at
ments o f th e l o c a l r i n g £x
is
H°( ^ (m )) ® H °(o p (k -m )) g e n e ra te s the sh ea f 5 (k ) “ n k » o. But f o r e v e r y x e Pn , f i x an isomorphism o f
at n 5(m)
k
n and the statem ent sim p ly says th a t
o ,
—x '
g e n e ra te s th e s t a lk
5r(m )x ,
i.e .,
5(m)
o H ( ^ (m ))
i s g e n era ted b y i t s
g lo b a l
s e c tio n s . QED Our main r e s u l t i s : THEOREM:
For a l l
n,
th e re i s a p o ly n o m ia l
Fn ( x Q, . . . ,
such th a t f o r a l l coh eren t sheaves o f id e a ls if
aQ, a 1, . . . ,
an
4
on
x n)
PR,
a re d e fin e d b y: n
x(J( m)) = £
ai ( i )
,
i= o then
4
P r o o f: is
o b vio u s.
is
H
aR) - r e g u l a r .
A g a in we use in d u c tio n on
G iven
a h yp erplan e
Fn (a Q, a 1, . . . ,
$,
le t
such th a t
Z C PR H
n
i s d i s j o i n t from
th e e x a c t sequ en ce: ®h
( *)m
*(m)---------- ► j (m+i ) -*■ ( j ® oH)(m+i)
0
sin c e f o r
n = 0
th e r e s u lt
be the c o rresp o n d in g subscheme; A (o z ) .
choose
As ab ove, we g e t
0
% w hich i s i n j e c t i v e H
on the l e f t
i s i n j e c t i v e i n the s h ea f
hand,
4„
s in c e m u lt ip lic a t io n by a l o c a l e q u a tio n f o r
4,
as i t
i s a s h ea f o f i d e a ls on
7 rL eq u a tio n f o r
H at
x.
H:
i s a subsheaf o f le t
x e P^ n
o p .
and l e t nf
On the o th e r be a l o c a l
Then 0
jx
- x , Pn
—x ,Z
0
g iv e s : T o r 1( - / f ‘ - x » —x,Z^ ■*
- x ,H
by t e n s o r in g w ith
o x / f ' o x = ox H.
s in c e
o „ 7 (s in c e f i s a u n it a t a l l a s s o c ia te d Xy T h is shows th a t i s a sh ea f o f id e a l s , and we can use
f
prim es o f in d u c tio n .
i s not a o - d iv is o r in ox z ) .
And
T o r 1 (o x / f- o x , ox z )
= (o )
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE Now, by ( * ) m, X (3 H(m +1))
= X ( 3(m+1) )
=
I
- X (3 (m ))
ai [ ( “ i 1 >
■ ?
" ( i )]
, , , ,
.
i=0 T h e re fo re we can assume th a t a b le p o ly n o m ia l
G-
^
is
GKa.,, a 2, . . . ,
depending o n ly on
n.
Put
an) - r e g u l a r , f o r a s u i t
m1 =
an) .
Then we
g e t , b y ( * ) m:
(i)
0 -
H°( 3(m)) - H°( 3(m+1) )
H°(3H(m+l ) )
— H1( 3(m)) — H1(3 (m+1) ) fo r (ii)
m > m.j-2. And f o r any
0
H^( 4(m )) -* ^ ( ^ m + l ) )
fo r Now s in c e
= (0 ),
H ^ (4 (m ))
th a t as f a r as
fo r
= (0 )
If
m >
m1-2 ,
i > 1
th a t
fo r
and
m»
0, t h is .la s t sequence ( i i )
i > 2
a re concerned,
and 4
then e it h e r
m = m2, where
pm+1
is
T h is means
m1- r e g u la r .
On
s u r je c t iv e or
dim H1 (0 (m )) m2 >
,
pm
P r o p o s it io n we know th a t
. is
s u r je c tiv e .
By the
2
H °(3 H(m2) )
i s su rjective.
m > n ^ - i.
i s a ls o
t e l l s us:
dim H1 (4 (m+1) ) < But suppose
we g e t :
-►0
as soon as
TP
H2, H3, . . . ,
the o th e r hand, sequence ( i ) (# )
i > 2,
m > m1- i .
H ^ K m ))
t e l l s us th a t
—0
® H ° (^ j(i)) -
H °(3 H(m2+ 1 ))
Therefore i t follow s that the image of
H°(3(mp) ) ® H °(op (1 )) / n
in
H °( $ (m2+ 1 ))
tio r i, Pm
is
(# ')
pw is m2+1
i s mapped s u r j e c t i v e l y onto s u r je c t iv e .
s u r je c tiv e , i t If
is
m > ml - 1,
as a fu n c tio n o f
H°( 4H(m2+ 1 ) ) .
In o th e r w ords, lo o k in g a t a l l
s u r je c t iv e f o r a l l la r g e r dim H1( 4 (m )) i s m,
m.
Hence, a f o r m > mn, i
once
Hence:
s t r i c t l y d e c r e a s in g ,
u n t i l i t rea ch es
0.
T h e re fo re c l e a r l y : 4
is
[m ^ dim H1( J (m1- i ) ) ] - r e g u l a r
Up to t h is p o in t , we have n ot used the f a c t th a t i d e a ls .
But now we compute:
.
$
i s a sh ea f o f
SOME VANISHING THEOREMS
103
= dim H°( I (m1- 1 ) )
dim H1( d (m1—1 ))
< dim H °(o p (m1 - 1 )) = H (a0 , a 1, . . . , where
H
i s a p o ly n o m ia l i n th e
a 's
and in
G K a ^ . . . , an ) + H (aQ, . . . ,
an ;
m1 .
^ (n ^ - 1 ) )
- x(
- x( )
In s h o rt,
an j G ( a , , . . . ,
j(m 1- 1 ))
4
is
an ) )
r e g u la r . QED A few rem arks:
F ir s t o f a l l ,
assumed t o be a sh e a f o f id e a l s .
the theorem i s f a l s e u n less
Thus, take
n = 1,
= £ P 1( + k) 0 £ pi ( “ k) Then
X( y k (m ))
such th a t
5^.
= 2 (m + l), w hich i s m -re g u la r i s
Second, suppose we a re j e c t i v e a lg e b r a ic scheme F ix
an im m ersion
i s in depen den t o f k:
is
hence
X C Pn ,
and l e t
M oreover, l e t
K
and say x^) x(
r = dim X;
then th e re
$ C ov
such th a t i f
0(m ))
j?
= £j__0
p ro
tru e —
rn &j_( ^ ) ,
is then
ap ) - r e g u l a r .
f o r a g iv e n 4,
Z C Pn ,
m
concerned w ith the geom etry on a f i x e d
F (x n, . . . ,
F (a Q, . . . ,
To p ro ve t h i s ,
bu t the l e a s t
m = |k| - 1 .
any sh e a f o f i d e a l s , and 4
is
•
X; then the analogous r e s u lt i s
i s a p o ly n o m ia l
4
and l e t
le t
i
d e fin e the c lo s e d
5 be the sh e a f o f id e a ls on
be th e sh ea f o f i d e a ls on
PR
Pn
d e fin in g
subscheme 7 C X, d e fin in g Z. X.
Then one has
the sequence:
I t f o llo w s th a t i f mQ+ 1,
then
$
5
is
is
mQ- r e g u la r , and
mQ- r e g u la r
H ^ K (m ))
as a sh ea f on
x ( 5 (m )) -= x (
X. But
= (0 ),
fo r
i+m =
sin ce
$(m )) + x ( K (m )) independent o f 4
the c o r o l l a r y fo llo w s from th e theorem . t io n th a t k > 0,
H °(
and th a t
I t a ls o fo llo w s from th e P r o p o s i
J (mQ+ k ) ) 0 H °(o x ( i ) ) -»■ H°( § (mQ+ k + 1 )) i s s u r je c t iv e i f s (m)
is
ge n e ra te d b y i t s
g lo b a l s e c tio n s i f
m > mQ.
LECTURE 15 UNIVERSAL FAMILIES OF CURVES o f L e c tu re 12
We a re now rea d y t o p ro ve th a t the scheme
C (| )
e x is ts .
F ix a n o n -s in g u la r p r o j e c t i v e
and f i x an embedding
F C Pn .
As u su a l, l e t
In L e c tu re
o( 1)
S
F,
be the induced v e r y ample i n v e r t i b l e
sh e a f.
12, we made the d eco m p o sitio n : C u rv e ts )
(fo r
s u rfa ce
connected ) .
=
H |eNum(F)
Curve s| (S )
A c t u a lly , f o r the purposes o f t h is p a r t ic u la r p r o o f
we w i l l o n ly need a c o a r s e r d e co m p o sitio n .
In f a c t ,
g iv e n
DCF,
we w i l l
o n ly lo o k a t the H i lb e r t p o ly n o m ia l: P (n )
= xCOpC-D + n ) )
In v i r t u e o f P r o p o s it io n 3, L e c tu re 1 2 , image and
§ b)
(# )
of
D.
In f a c t ,
the a r ith m e tic genus o
P (n )
P (n )
.
i s determ in ed by the n u m erical
i s determ in ed by a)
Pa ( D ) •
T h is i s
9_f ( - D + n) — c ^ (n ) - c ^ (n ) — o
the d eg ree
d
of
D,
seen by ,
hence
P(n) = x(c^,(n)) - x(c^(n)) = x (O p (n ))
- d • n - 1 +Pa ( D ) .
In any c a se, we w i l l use the d eco m p o sitio n :
IIp
Curves-^ S) = --------- F (fo r
S
OpxS(-D )
c o n n e c te d ), where
P CurveSp(S )
has H ilb e r t p o ly n o m ia l
i s n o t con n ected , then say
P
S =
is
the s e t o f
on each f i b r e . S^,
C u rves?( r S)
C u rves£(S) F
=
II a
where
Sa
CurveSp(S )
D C F x S
such th a t
To be p r e c is e , i f
.
I t i s v e r y ea sy to check th a t t h is i s a su b fu n ctor o f CurveSpj and i f i s re p re s e n te d by a (a lg e b r a ic )
scheme
105
C (P ),
then
S
i s con n ected , and l e t
C (P)
t h is
i s a d i s j o i n t union
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE of open subsets C(|) representing the various sub-functors CurveSp . Now fix some P. (I.) By Lecture ik, '\b9 there is an m0 mQ depending only on P, such th at i f D C F is any curve giving the H ilbert poly nomial P, then Op(-D) is m0-reg ular. We may as w ell also assume th at H1(Op(m0)) (o) •. H1(°p(m0) ) = (0) Then we conclude: (a) H1 H^Opt-D (Op( -D + mQ)) m0)) = H^Opf-D H^OpC-D + mQ)) m0)) = (0), and Op(-D + mQ) is spanned by i t s sections. Using the exact sequence (#) for n = mQ, we also conclude: (b) H1 (^(m 0)) = (o). (II.) Now suppose D C F x S is any family of curves giving the H ilbert polynomial P. F irs t of a ll, we get: (h)s P*(O£)(m0) ) is lo cally fre e , of rank (b)s r = x(Op(m0) ) - P(m0) P(mQ) , (depending only on P ), and the formation of p* commutes g with base extensions extensions TT ---------- SS . This follows from (b ), from Corollary 11,, 3°, Lecture 7, 7 , and from the exact sequence (#). The useful consequences of (a) w ill be: (a)g
R
+
=
>
and
P*P*[O fxs ("D ++ mo^ mo^]] °FxS( °FxS(“D “D ++ m0^ isis surj surjective ective •• P*P*[°FXS("D The ffirirsstt is trueis by Corollary true by C1 ,orollary 3°, Lecture 1, 3°, 7;Lecture and 7;the second and the is second true is true because P*t°pxs(~D P*[°jrxS^~D + mo ^ maps onto H°(Op(-Dg+ mQ)) for a l l closed points s € S;S; and and H°(Op(-Dg H°(Op(-Dg ++ mQ)) mQ)) generates generates opop(-Dg (-Dg+ +mQ)mQ)= = S(-D S(-D + mQ) mQ)00 K -® K(( 3s ).) . -® (III.) Again suppose D C F x S is a family of curves. From the sequence (#) for n = mQ and (a)g> we ge t: ■4-
n a n n o M rtQ
(M \
m
yn
o
( a\
t.tq
+■ •
a
211
“S 1 Fixing a basis eQ, e ^ . . . , of H°(Op(m0) ) , we have determined: a) a lo cally free sheaf P*[Op(m0)] of rank r , b) N + i-sectio n s s^ = a(i ® e^) which span P*[^,(m0)].
UNIVERSAL VAMILIES OF CURVES
107
T h is i s an S -va lu ed p o in t o f the Grassmannian (h ) g ,
th e fo rm a tio n o f
P*[O p(ia0) ]
G^
In v ir t u e o f
i s f u n c t o r i a l in
S, and the
w hole proced u re d e fin e s a morphism o f fu n c to r s :
P
o
Curve s-m ----- ►h^ ^F % r (IV .) of r
f S ----- ►G^ r
Now suppose we a re g iv e n an S -va lu ed p o in t ,
G^ r and*
.
Then
f
d e fin e s a l o c a l l y f r e e
(N + 1 ) - s e c t io n s
sQ, . . . ,
S^
s h ea f
£
&.
spanning
o f rank
T h is d e fin e s
a s u r je c t iv e homomorphism: O g g fl^ O p O O ,,)) Let
K
be the k e r n e l o f
—
a.
* ^
*0 *
Then p u llin g up v i a
p:
F x S -*■ S,
we o b ta in P*( X > -
P * [ o s j» H °(^ ,(m 0) ) ]
-
p* 6
-
0
^FxS^“V D e fin e
3
id e a ls on
to
be th e image o f
F x S.
p * ( K ) ( - m0)
in Op^g:
a sh ea f o f
T h is w hole procedu re d e fin e s a morphism o f
fu n c to r s : tu,
— ---- ► A l l Sub scheme Stp
\
(V .)
What i s
as in ( I V . ) .
Y 0 o ? Then
r
----------------------------- P
S t a r t w ith
D C F x S,
and c o n s tru c t
f
f o llo w in g the p roced u re o f ( I V . ) :
and K —
+ mo ^
But we saw i n ( a ) g th a t th e sub sh e a f was spanned b y th e s e c tio n s in t h is K, in
^px g ( m0)
O p^gt-D );
i s e x a c t ly
0£yg(-D + mQ) .
i.e .,
T h e r e fo r e
i
is
i.e ., Y o
n a tu r a l in c lu s io n o f Curves in A l l
(V T .)
+ m0) o f —FxS^m0^ the image o f p * ( K )
Sub schemes
We can a b s t r a c t th e r e s t o f th e argument:
g iv e n th e set-u p
o f morphisms o f fu n c to r s (fro m the c a te g o r y o f a lg e b r a ic schemes /k
t o th e c a te g o r y o f s e t s ) ,
assume th a t:
108 (#)
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
a e
fo r a l l a ll T
B (S), th e re i s a subscheme *■ S,
( ( \
g*(cif) € B(T) i s in th e su b se t
A( T)
/
Then th e re i s a subscheme th e in c lu s io n of
h^
in
Y CS
\ / g f a c to r s I I through Y
V
GQ C G such th a t
such t h a t f o r \
/
I
A s L
h^ .
0
,
$ b e in g
(P ro o f l e f t to th e r e a d e r .) (V II.) (# ) q
We must v e r i f y (#) .
In our ca se , i t means
f o r a l l c lo se d subschemes Z C P x S, such t h a t f o r a l l T ——►S,
j
Z x TCF x T
y
fam ily o f curves over T, whose sh eaf o f i d e a ls has H ilb e r t polynom ial P
is a
th e re i s a subscheme
Y CS
\
j
I g f a c to r s \ I through Y j
But by th e key r e s u l t on f l a t t e n i n g s t r a t i f i c a t i o n s , th e re i s a JL C S o O U . U 1 1 toh i j ja c l ot d x x j. ± u v c r x , w iith o n H x u ilb x u cerr t u sub scheme Y such Z T i sa -fl jl- cai ot over T, w a polynom ial X(oZxT )) "- pP(n) X(-ZxT (n )) = x (o (£ p (n )> (n ) S i f and only i f g f a c t o r s th ro u g h Y. I t rem ains to analyze when X x T i s a c tu a lly a C a r tie r d iv is o r . This i s d e a lt w ith by: S Lemma: L et Z C F x T be a cclo lose sedd subscheme, subscheme, ffllaa tt over over T. T. LLet et t t € € TT be be a clo se d p o in t such t h a t Z^ i iss aa curve curve on on F. F. Then Then ththeerere i iss an an open open nneeigighh borhood U of t in T such t h a t Z n (F x U) i s a C a r tie r d iv is o r on U. P ro o f: Since p: F x T -► T i s a c lo sed map, i t s u f f ic e s to prove onen neighborhood ffi of F x ( t) i n which Z i s a C a rtie r tie rr tth h a t th e re i s an open d.Jiv oXr .. L etU -ft. x fce I*F xX T be any inl l Ut asuch a t p(x) = tO.. L etU 3$x LC £x be U .V J is LBU ± UC C L U y jp J Uo- L u u i l th 0 1 J£LO = ±jfc? £ x u c th e i d e a l d e f in in g Z a t x , and l e t m^ C be th e maximal id e a l. Since ox /mt • ox i s th e lo c a l r in g o f x on F x ((tt)),, and and sin sincce e Z^ Z^ iiss aa C ar t i e r d iv is o r , Jx + mt • °x °X ■ r
z
the r e s t r i c t i o n
to f
S
of
such th a t f
to
sure o f the graph o f
CQ.
f Q,
fQ
such th a t:
R/*>
in
i t s q u o tie n t f i e l d ,
in du ces a morphism
m • (R f p ) ,
y = f(z ). Then
fQ
Let
f(x )
then
p
d e fin e s a
C0 = f _1 ( Y ) , and l e t f Q be
i s a CQ-v a lu e d p o in t o f Y,
Y which
i . e . , because in the c l o
4 Y.
We s h a ll show th a t t h is i s absurd. T h e r e fo r e
n U .
►U C Y .
prim e i d e a l l y i n g o v e r
e C
y,
dim[R /* • Rp ] = 1
i s n o t the r e s t r i c t i o n o f a C -valu ed p o in t o f
Curves^ .
.
C i s a 1 -d im en sio n a l n o n -s in g u la r v a r i e t y ,
Then
and th e g iv e n homomorphism from
If
GN
F ix
some prim e i d e a l p
be th e i n t e g r a l c lo s u r e o f the domain
and l e t
as a su bset o f
31 C m d e f in in g the c lo s e d subset (Y - Y)
an i d e a l
p C m,
Let
Y
y € Y - Y.
U = Spec ( R ) , an a f f i n e neighborhood o f y € Y ,
ii)
Then i t
Let
Then p ic k a c lo s e d p o in t
But
h^
i s isom orp h ic to
d e fin e s a fa m ily o f cu rves Dq C F x C0
( g i v i n g the p o ly n o m ia l over
C.
But s in c e
and d i v i s o r s on
p) w hich i s n o t th e r e s t r i c t i o n o f a fa m ily o f cu rves
C and
F
a re n o n -s in g u la r ,
F x C
F x C a re th e same as W e il d iv i s o r s .
Dn , as a W e il d i v i s o r , be w r it t e n out a s:
i s n o n -s in g u la r,
In p a r t ic u la r ,
le t
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
Bo - I ni Zi , 0 where
Q
i s a c lo s e d subset o f
th e c lo s u re o f
Z^ Q
in
an e f f e c t i v e d i v i s o r on because i t s T h e r e fo r e C to
F x C. F x C.
F x CQ Let
Then
D
D
Let
be
is c e r ta in ly
M oreover, i t i s a r e l a t i v e d i v i s o r o ver
support does n o t c o n ta in any o f the f i b r e s i s a fa m ily o f cu rves o v e r
i s con n ected , the H ilb e r t p o ly n o m ia l o f P.
o f codim ension 1 .
D = E
C
e x te n d in g Op( -D)
T h is c o n t r a d ic t io n p ro v e s th e theorem .
is
F x iz), DQ.
C
z e C.
F in a lly ,
sin ce
c o n s ta n t, hence e q u a l
LECTURE 16 THE METHOD OF CHOW SCHEMES Sin ce the e x is te n c e o f th ese u n iv e r s a l f a m ilie s has such p i v o t a l im portance in the p r o o f o f the main e x is te n c e theorem s, i t
seems rea so n a b le
t o sk etch th e o n ly o th e r known approach t o t h e ir c o n s tru c tio n —th a t o f Chow and van d er Waerden. fix
the d eg ree
d
A ga in l e t
o f a curve
F C Pn DCF,
be g iv e n .
In t h is approach we o n ly
n ot the p o ly n o m ia l
p
as above, i . e . ,
we decompose: Curve s^CS) p (fo r
S
c o n n e c te d ), where
such th a t th e induced cu rves Say
X
II Curve s^ (S ) d> o F
CurveSp( S) Dg
is a p r o je c tiv e
D iv x (S )
=
stands f o r the s e t o f
on th e f i b r e s a l l have d eg ree scheme:
= ( 3) C X x S|
D a r e l a t i v e e f f e c t i v e C a r t ie r ^
g e n e r a liz in g CurveSp .
In some cases where
t o study than
f o r some s u rfa c e s
Curves^
d.
then we can d e fin e a fu n c to r :
d iv is o r over
Grassmannian
D C F x S
S
J
dim (X ) > 2, t h is may be e a s ie r F.
For exam ple, i f
X
is a
G, the methods o f L e c tu re 13 en ab le one to prove th a t D iv n
where
D
broken up
i s a d i s j o i n t union o f p r o j e c t i v e
Ir
in t o D iv ^ ,
spaces.
In
k > 0,
and
one f o r each in t e g e r
f a c t , D iv n i s 1/^ D iv^ i s ju s t a
l in e a r system . The method o f Chow i s t o c o n s tru c t a morphism o f fu n c to r s : d Curve Sp f o r th e Grassmannian
G = Gn n_i .
®
d ► DiVg
To do t h i s , we f i r s t c o n s tru c t a subscheme
Z C pn x Gn ^n_ 1 H e u r i s t i c a l l y , e v e r y c lo s e d p o in t o f space
L C Pn
o f dim ension
n -2 .
Gn n-1
correspon ds t o a lin e a r sub
P u t t in g th ese to g e t h e r , th e y form
To be p r e c is e , r e c a l l from L e c tu re 5 th a t 111
GR n-1 = P r o j
(R ),
where
Z. R
is
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE a graded r in g g en era ted by elem ents pi If
j < k
i
...
i
’
9 n-1
o < 1
< i
< ... < 1
< n .
a re the two in t e g e r s om itted in th e sequences o f
i 's ,
we can
s im p lify n o ta tio n by p u ttin g
k = ^ -Lii f-L2 i 9' '
J Then
Z
*9 i n-1
i s d e fin e d as the scheme o f z e ro e s o f the s e c tio n s k-1 3k =
n
{ I
of
p ^ (o (i))
of
Pn_ 2,s
j=k +i
® P 2( o ( i ) ) ,
Z
fo r
Gn n -1 9
over
C la s s i c a l l y ,
I
k -
3=0 o < k < n.
Then, in f a c t ,
8111(1 a ls o a "bundle o f
Z
Gn-1 n_ 2' s
i s a bundle over
i s c a lle d the in c id e n c e correspon den ce, and
Z
pn * i t s e l f is
a f l a g m a n ifo ld . Now form the f i b r e p rod u ct
*
=
q
F x p Z: n
:
^ Gn,n-1
P F (i)
p
r
i s a f l a t morphism;
over
F
{1 ^ }
such th a t
P
-------------
n
in f a c t ,
in the sense th a t
F
p “ 1 (1 ^ ) s ^
*
i s a bundle o f
Gn_ 1 n_
adm its an open c o v e r in g x Gn-1 n_ 2 .
In p a r t ic u la r ,
dim * = dim F + dim Gn _ 1 n_ 2 = 2 + 2 (n -2 ) = 2 (n - 1) ■ dim Gn,n-1 and (ii)
*•
M oreover
q
i s a s u r je c t iv e morphism o f two n o n -s in g u la r
v a r i t i e s o f the same dim ension. an open subset dim ension (iii)
*
i s n o n -s in g u la r .
1
U C GR n-1 o v e r w hich
T h is im p lie s th a t th e re i s
c o n ta in in g a l l p o in ts o f co q
i s f i n i t e and f l a t .
More g e n e r a lly , you can make any base e x te n s io n to o b ta in a s it u a t io n :
113
THE METHOD OP CHOW SCHEMES * x S v
P/ p x s
° n ,n - i
* s
•
One s t i l l has: p fla t q o f fin ite
T or-d im en sion
th e re e x i s t s open subset
U C Gn n-1 x S
c o n ta in in g a l l p o in ts o f d ep th 1, o v e r w hich T h e r e fo r e , i f
D C F x S
q
is
f i n i t e and f l a t .
i s a fa m ily o f cu rves o v e r
S, we can
form : $(D ) o
a c c o rd in g t o 1
= q *p *(D )
o
and 3 , L e c tu re 10.
The r e s t o f th e work c o n s is ts i n showing, as in L e c tu re 15, th a t $
is in je c t iv e ,
scheme
Y C P jj
i f and o n ly i f f o llo w s th a t
and th a t i f
D iv^ ^ h P^ ,
then th e re e x i s t s a c lo s e d sub
such th a t an S -va lu ed p o in t o f
D iv^
i s i n th e image o f
the c o rre s p o n d in g p o in t o f P™- i s a p o in t o f Y . Then i t d Curvesg ^ hy. Even th e method i s s im ila r t o th a t o f L e c tu re
1 5 : one c o n s tru c ts an " in v e r s e " morphism: Y:
DiVg
A l l subschemesp
and then a p p lie s th e same c a t e g o r i c a l argument as in p a r t ( V I . ) , In 3ome sen se, th e d e e p e s t p a r t o f th e argument i s
L e c tu re 15.
th e same—the in v o k in g o f
th e e x is te n c e o f f l a t t e n i n g s t r a t i f i c a t i o n s t o v e r i f y th e h y p o th e s is in the c a t e g o r ic a l argument. An i n t e r e s t i n g c o r o l l a r y o f t h is approach i s the s tro n g e r f i n i t e ness theorem th a t i t
y ie ld s :
f i n i t e number o f elem en ts
f o r any g iv e n d eg ree
£ e Num (P )
d , th e re a re o n ly a
such th a t:
a)
d eg £ = d,
b)
£ i s r e p re s e n te d by a cu rve.
The e s s e n t i a l f a c t s behind t h is f i n i t e n e s s a re q u it e in t e r e s t i n g and u s e fu l. Whai: we want t o do i s
t o p ro ve c o m p le te ly a c l o s e l y r e l a t e d r e s u l t which
seems t o c o n ta in th e key p o in t , and w hich we w i l l use su b sequ en tly. THEOREM:
Let
Op(-D + d) P r o o f: Suppose
L C PR
is
D CF
be a cu rve o f d e g re e
spanned by i t s
We a re g iv e n an embedding
Then
F C Pn in d u c in g th e s h ea f
i s a lin e a r subspace o f dim ension
th e re i s a " p r o je c t io n " *:
d.
s e c t io n s .
( pn - L) -
P2
n -3 .
o ( 1) .
Then r e c a l l th a t
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE [ I n our
approach, we can d e fin e
Namely,
le t
h.
L =
*
H1 n H2 n H^,
c H°( Pn , 0 1 ) ) .
as a
F n L = 0, jt1:
a)
jr
is fin it e
T h e re fo re jt
then
F -
P2
Let
to a
morphism
fla t.
jrf i s a f f i n e because
i
denote th e in c lu s io n o f (i,
(i,
open s e ts and
p2" ^ i
jr“ 1( P2- j^ )
jt!
is
the r e s t r i c t i o n
jt 1)
F
in Pn »
i s an isom orphism o f
The f a c t th a t
F
P 2,* (£ p ) (where
co h eren t ( c f .
2 °, L e c tu re 7 ).
jt 1
Then
of
jtf
w ith a c lo s e d sub
the d i r e c t image sh ea f
* i(O p )
is
i s i d e n t i f i e d w ith
the s tru c tu re s h ea f o f the image o f is
F
i n Pn x P2) .
T h e re fo re jrf
be a r e g u la r l o c a l r in g o f dim ension A-m odule.
n, and l e t
B
I f a l l lo c a liz a t io n s o f
w ith r e s p e c t t o maximal id e a ls a re Cohen-Macaulay r in g s o f dim ension B
be an B n,
i s a f r e e A-module. (C f. NAGATA, L o c a l R in g s , ( 2 5 . 1 6 ) , Now suppose th a t
such a morphism.
Then
D CF
Jt^.(D)
and EGA h ,
Computation o f deg S t a r t w ith a l i n e p o in ts o f the s e t
jt^(D) :
i s a curve o f d egree
xn )
=
d
and
Jt!
d
is 10.
to o .
iri(D ) :
ft C P2 w hich d o e s n 't c o n ta in any o f th e g e n e r ic ft n Supp jt^(D) i s 0-d im e n s io n a l, and
then
d eg jti(D ) (x ^ ...,
§ 15.M
i s d e fin e d by Norms, as in 2 °, L e c tu re
T h is i s a p la n e c u rve, and I cla im th a t i t s d eg ree i s
Let
T h is
is fin it e .
i s f l a t f o llo w s from the g e n e r a l r e s u l t :
A - a g le b r a , f i n i t e l y g e n e ra te d as then
=
Jt')
PR x P 2 ,
ju s t the same as
A
0 ( 1 ) have
of
.
the th re e fundam ental li n e s )
scheme o f
Let
h^
to a c lo s e d subscheme.
Since
Lemma:
P2.
jr.]
jtr e s t r i c t s
pg i s c o vered by a f f i n e
fa c t o r s :
d)
of
is a ffin e .
Pn ~
c)
and
is a ffin e :
(J ^ , j£2, * 3
b)
h 1, h2 and
Pn ~ L, and th ey d e fin e the p o in t
In p a r t ic u la r , i f
th a t it1
L )- v a lu e d p o in t
i s the h yperplane d e fin e d by
Then the th re e s e c tio n s
no common z e ro e s in
I c la im
p-
(
where
= (ft • jt i(D ))
ft n Supp jt^(D) .
.
A t each p o in t
x^,
le t
o^ = o ^
,
THE METHOD OP CHOW SCHEMES f\
e
H, R^ =
a l o c a l e q u a tio n o f
tio n o f
D
115 € Ri
in a n eigh borh ood o f the s e t
ge n e ra te d f r e e
-m odule, and
Hm(g^)
a l o c a l equa
Then
is a fin it e ly
i s a l o c a l e q u a tio n o f
it^(D) .
M oreover, n
( i • *;(D)) = Yj djjnk - i / ( f i» 1611 S f
*
1=1 By an elem en ta ry r e s u l t on d e te rm in a n ts *,
dlmk
^
we g e t
8j_) = d3jnk Ri / ( f i» 8a.)
and, by d e f i n i t i o n : n I i= l
dimk
S i)
( « '* ( £ )
• D)
(o (1 ),
O p(D ))
=
d eg D d We now come t o the main p o in t : * !* ( * i ( D ) ) where
D’
= D + D*
i s e f f e c t i v e , b y statem en t ( * ) ,
sin ce the d i v i s o r c la s s o f (* i(D ))
i s a ls o
o (d ),
* * (D )
is
2 °, L e c tu re 101
o (d ),
And, in f a c t ,
th e d i v i s o r c la s s o f
hence th e d i v i s o r c la s s o f
D1
is
o^C-D + d) .
The theorem , t h e r e f o r e , w i l l be p roven i f we can show th e f o llo w in g (* )
/
F or a l l c lo s e d p o in ts
\
o f dim ension n-3 such th a t
j
th e d i v i s o r
v
through
D’ ,
x e P , th e re i s a lin e a r space L n F =
L
and such th a t
c o n s tru c te d as ab ove, does n o t pass
x.
In o th e r w ords, we r e q u ir e : * ! * ( * i ( D ) ) x = Dx F ir s t o f a l l ,
l e t 's
l o c a l r in g o f
P2
Let
g e R
m C R
* T:
Let
a n a ly ze what we need t o g e t t h is ou t: at
jt^ x ) ,
and l e t
be a l o c a l e q u a tio n o f
D
be th e maximal i d e a l such th a t
A
M -*■ M
.
R
a t a l l p o in ts Rm
be a 1 -d im e n s io n a l l o c a l r i n g ,
le t
be the s t a lk o f is
M
*1
o_ be the
* i(O p ) ( * 1( x ) ) ,
th e l o c a l r in g o f
F
a t 7r’ (x ) and l e t at
a f r e e A-module o f f i n i t e
an A - lin e a r i n j e c t i v e homomorphism.
Then:
le n g th (M /T(M )) = le n g th (A / (d e t T ) )
.
x.
ty p e ,
116
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
P a s s in g t o the co m p le tio n s , we fin d
R = R ® £ — The image o f Mn (g ) u n it .
in
( ^ 1)
each component
•
i s then the p rod u ct o f the Norms o f A
o .
to
® I
o th e r maximal id e a ls m1 C R
But we want
g
and
Mn ( g )
g
from
t o d i f f e r by a
T h e r e fo r e , f i r s t we need: a)
g
i s a u n it a t a l l o th e r l o c a l i z a t i o n s
t h is
of
R;
x' / x
such
ir 1 ( x 1) = ir 1 (x ) .
th a t
h o ld s , the image
T h e r e fo r e ,
Rm,
Supp (D) does n o t c o n ta in any p o in ts
i.e .,
If
o
= (V
Mn (g )
o
in
i s ju s t the Norm
from
(Rm)
o
to
secon d ly we can use /V
k)
£ —
i . e . , Rm
i s u n ra m ified o ver
o_,
th e map from the Z a r is k i ta n gen t space t o P2
Z a r is k i ta n gen t space t o If
t h is
h o ld s ,
Nm (g )
and g
at
Jt’ (x )
at
t o the
R^
What a re the c o rresp o n d in g g e o m e tric c o n d itio n s on a)
x
i s an isom orphism . /\ in Rm; t h e r e fo r e
d i f f e r o n ly by a u n it
th ey d i f f e r o n ly by a u n it in
or e q u iv a le n t ly F
L ?
C le a r ly
becomes: a ')
If and
L
is x,
n- 2
the lin e a r space o f dim ension
then
x
spanned by
i s the o n ly in t e r s e c t io n o f
L
L and
Supp (D ). On th e o th er
hand, lo o k a t the Z a r is k i tan gen t space
t h is c o n ta in s the ta n gen t space T£ gen t space
Tp
to
F, o f dim ension
induces an isomorphism o f T h e re fo re
T/T£
Pn
2.
at
x; ta n
M oreover, the f u l l p r o je c t io n P2
w ith the ta n gen t space to
The ta n gen t spaces t r a n s v e r s e ly a t
at
*
it(x ).
T£ and
Tp
to
L
and
F
in te r s e c t
x.
le t
M
be the 2 -d im en sio n a l lin e a r space through
space Tp
at
x.
The r e s t i s ea sy : w ith ta n gen t
F i r s t choose
r h (x ) = 0 \ h (y ) 7^ 0 , H
to
b) becomes: b’)
Let
T
L , o f dim ension n - 2 , and the
to
h € H °( Pn , 0 ( 1 ) ) such
x th a t
fo r y the g e n e r ic p o in t o f M or f o r y a g e n e r ic p o in t o f Supp ( D ) .
be th e co rresp o n d in g h y p erp la n e.
Second, choose
h T e H °( PR, c) ( 1 ) )
such th a t
r h '( x ) = 0 \ h '( y )
7^ 0 , f o r
y
th e g e n e r ic p o in t o f a g e n e r ic p o in t o f
M n H
or f o r
y
or f o r
y e (Supp (D ) n H) - { x } .
F n H
THE METHOD OF CHOW SCHEMES Let
H*
fiecL
be th e and
a 1'
space o f
L
of
c o rresp o n d in g h yp erp la n e. b 1)
and
L nF
Let
117
L =H n
i s 0 -d im e n s io n a l.
H1.Then
Let
L
s a tis -
L be a lin e a r sub-
dim ension n-3 n o t c o n ta in in g any o f the f i n i t e
set o f
p o in ts
L n F. QED The c o r o l l a r y o f th e theorem w hich can be used t o bound i n terms o f
deg (D)
is
x (O p (-D ))
t h is : If
D
i s a curve on
F,
then
(D • D) > -A • d eg (D )2 where
A = ( 0( 1 )
* 0( 1 )) - 2 .
We omit the p r o o f s in ce we have no o th e r a p p lic a t io n s f o r t h is f a c t .
LECTURE 17 GOOD CURVES In t h is le c t u r e , we want to g iv e a p a r t i a l answer to the t h ir d q u e s tio n posed in L e c tu re I :
What i s a good curve on our s u rfa c e
F ?
More
p r e c i s e l y , we d o n ’ t want to d is t in g u is h between l i n e a r l y e q u iv a le n t c u rves, so th e q u e s tio n becomes—what i s a
good d i v i s o r c la s s on
t h is :
G iven an a r b it r a r y i n v e r t i b l e
L (n )
should have e v e r y ’’good" p r o p e r ty one can ask f o r .
analogous q u e s tio n on a curve Then an i n v e r t i b l e 1
o
sh ea f
L
C on
sheaf
L e t ’ s be p r e c is e :
"g o o d ” i f i t s
fix
the induced i n v e r t i b l e
c la s s e s
P ic
has a f i x e d automorphism:
(I.) L
(II.) L
is
[hence
spanned by
c lo s e d p o in t
L *-► L ( 1) .
H ^ fL fn ))
= (o ) = (0 )
its
(IV .)
F C Pn
The f o llo w in g are
if
i
if
+ n = 0, i
+ n > 0, i > o ] .
s e c t io n s ; e q u iv a le n t ly , f o r e v e r y
x € F,
th e re i s a curve
D CF
such th a t
a L
1 x 4 Supp (D) L
la r g e enough.
s h e a f. Then the s e t o f d i v i s o r
ff^ L fn ))
, Op(D)
(IX I.)
d egree i s
L:
i s 0- r e g u la r : i > o,
the sh ea f
A ls o lo o k a t the
once and f o r a l l an embedding
£ ( 1) be (F )
The p o in t i s n
(C reduced and i r r e d u c ib le f o r exa m p le). C is
and l e t
v a r io u s good p r o p e r t ie s f o r
F ?
L, f o r v e r y la r g e
.
i s v e r y ample.
There i s a curve
D CF
w ith no m u ltip le components such
th a t Op(D) « L . What i s th a t i f a ll
the r e la t io n s h ip betw een th ese v a r io u s p r o p e r tie s ? L has any o f th ese p r o p e r t ie s ,
then
L (n )
Note f i r s t o f a l l ,
has th e same p r o p e r ty f o r
n > 0. P r o o f:
T h is i s
c le a r f o r
(I.) 119
and ( I I . ) .
F or ( I I I . )
we need:
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE LEMMA A: Assume
L
is
Let
L
and
spanned by i t s
M
be two i n v e r t i b l e
s e c tio n s and
M
sheaves on
i s v e r y ample.
F.
Then
L 0 M
i s v e r y ample. P r o o f o f Ternrna; a morphism
cp:
F -► P
S in ce
L
1 th e re i s a c lo s e d im m ersion
\|r:
th ese d e fin e a c lo s e d im m ersion
hand,
spanned by i t s
s e c t io n s , th e re i s
L s cp*(o(l)); sin c e M i s v e r y ample, ~ F -► P such th a t M s ^ * ( 0 ( 1 ) ) . T o g eth er m2
(cp, tyj) : On the o th e r
is
such th a t
Fx -+ P
x Pm2
one hasthe c a n o n ic a l
i
S egre immersion
ml m2+m1+m2
d
T h is i s d e fin e d by the req u irem en ts: 1
< 0 ( 1; j
= P ^ ( 0 ( 1; j
1
i*(Xj),
for
J
are the sections 0 < ^
(E x e r c is e : i
° (cp. t )
,
{
,
0 < j < m^g +
m] + m2 ,
P*(Xk) 0
0 < ^
for ^-n same order,.
check th a t t h is i s a c lo s e d im m ersion .)
I s a c lo s e d im m ersion o f [i
q* p 2 ( 0
o (q), t ) ] * ( 0 ( 1 ) )
F
in
Pw w w w ml m2+m1+m2
= (q>, t ) * ( p * ( o ( 1 ) )
T h e r e fo r e ,
and ® p*(o(1)))
= o
M
if
M.
i s v e r y ample.
la r g e enough n, say
(n , m) / (0 , 0 ). T h e r e fo r e ,
whenever
• M) i s p o s i t i v e f o r a l l v e r y ample sheaves
n > nQ,
M oreover,
L (n )
we saw in L e c tu re 17 th a t
w i l l be
v e r y ample, to o .
Then we
have a c o n t r a d ic t io n because (L n (- 1 )
• o(l))
= - (o(i)
• 0(1))
< 0
w h ile (L n (- 1 ) if
n
is
• L (n 0) )
= n (L • L)
- nQ( o ( l )
• o(1)) > 0
la r g e enough. QJ5D
G oing back t o the exam ples in L e c tu re F or
P 1 x P1, the p a ir in g on the 2-d im en sio n a l
13, we can check the r e s u l t . Num(F) 0 Q
i s g iv e n by the
m a trix
(i w ith one p o s i t i v e ,
I)
one n e g a tiv e e ig e n v a lu e .
p a ir in g on the 3 -d im en sion a l
Num(F) 0 Q
t(
_1 0 0 -1
V
00
For the second s u rfa c e , the
i s g iv e n by th e m a trix : 00 1
)'V
.
THE INDEX THEOREM One can p ic t u r e the s it u a t io n somewhat l i k e t h i s : Num(F) 0 R, and draw in the " l i g h t - c o n e ” (x
take th e r e a l v e c t o r space
• x)
=0.
Look a t the c lo s u re
o f the s e t o f p o s i t i v e r e a l lin e a r sums o f v e r y ample d i v i s o r c la s s e s :
I n term s o f t h is diagram , i t
i s u s e fu l to lo o k more c l o s e l y a t
the n u m erical c r i t e r i o n f o r v e r y ampleness i n L e c tu re 17: d e g (L ) > c 2
Let Let
X
x (L ) > “
€ Num(F) 0 Q
ftbe
be the image o f
the c a n o n ic a l i n v e r t i b l e
We use a d d it iv e n o t a t io n in Then u s in g
In f a c t , e,
L , and l e t s h ea f on
Num(F)
a)
d e g (x )
b)
d) + 2 X ( 0jj,) (X • X -
o 2 , > -
— 111— (h • h)
(x • h ) 2
.
I c la im t h a t , w it h a p o s s ib le m o d ific a t io n o f th e con sta n ts
b) i s im p lie d by the sim p ler c o n d itio n : b ')
(x
• x)
o (1) .
be i t s im age.
f o r p rod u cts o f i n v e r t i b l e
P r o p o s it io n 3, L e c tu re = (x
-------------2 (0 (1 ) • 0 ( 1 ) )
> — 1^2— " (h • h)
• (x
• h )2
.
c 2 and
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
130 P r o o f;
X
and suppose
In f a c t ,
le t
s’
be any p o s i t i v e number s m a lle r than
r
deg(x) > c
1
(x • x) >
L
Then I c la im th a t th e re i s a number
-e' — i— - — (x
f o llo w s im m ed ia tely
h)
•
A • (X
• h)
.
th a t b) h old s i f
A, use the f a c t th a t ( * )
curve f o r la r g e p o s i t i v e
.
A (In d ep en d en t o f X) such th a t
max { c 2, A ' s ( ^ ‘e , h) } To c o n s tru c t
2
(h • h)
|(X • a>) - 2X(Op) | < From t h is i t
e,
s a tis fie s
d e g (x )
is
la r g e r than
•
n\ i s re p re s e n te d by a
im p lie s
n (th e f i r s t P r o p o s it io n
o f t h is l e c t u r e ) ,
and
the f o llo w in g easy lemma: LEMMA: c^
G iven any i n v e r t i b l e
such th a t f o r a l l curves
|(Ojp(D)
P r o o f: ample;
then
Choose
(Op(D)
nQ
• M(nQ) )
the lemma f o llo w s i f
sh ea f
M
on
F, th e re i s a con stan t
DCF, • M) | < cM • deg D
such th a t and
(Qp(D)
M(nQ)
.
and
* M_1 (n Q) )
M_1 (n Q)
a re v e r y
a re p o s i t i v e , and
c^ = nQ. QED
COROLLARY:
There i s a p o s i t i v e e
such th a t i f
X e Num(F)
s a t
is fie s a ")
d eg(X ) > 0 ,
b")
(x • X) >
— 1-15— =
then a l l i n v e r t i b l e
sheaves
(X • h )2 ,
(h • h) L
r e p r e s e n tin g
X a re ample.
Note th a t th ese c o n d itio n s sim ply d e fin e the p o s i t i v e nappe o f a cone in
Num(F) ® R.
On the o th e r hand, c o n d itio n s a) and b ’ ) d e fin e the
p ie c e o f t h is cone above a c e r t a in p la n e , i . e . ,
a tru n ca ted in v e r t e d cone.
Hence, the s e t o f v e r y ample sheaves in c lu d e s such a c o n e .* more r e s u lt which f i t s what i s sheaves?
in v e r y n i c e l y w ith t h is m odel.
the e x a c t shape o f the r e a l c lo s e d cone
There i s
one
The q u e s tio n a r is e s :
CQ spanned by v e r y ample
I t w i l l c e r t a i n l y alm ost alw ays be b ig g e r than the cone spanned by
the p o in ts s a t i s f y i n g our n u m erical c r i t e r i o n .
But a theorem o f Nakai and
M oisezon a s s e r t s :
* T h is , a t l e a s t , makes i t q u ite c le a r th a t i f L i s any i n v e r t i b l e then L (n ) s a t i s f i e s a) and b) f o r la r g e enough n.
s h e a f,
131
THE INDEX THEOREM If
L
i s an i n v e r t i b l e
s h e a f on
F , then
L
i s ample i f and
o n ly i f : a)
f o r a l l cu rves D C F ,
(c f.
(° p (D )
• L) > o ,
(L • L) > 0 ,
b)
K leim an, Am. J . M ath .,
cone spanned by
i 96 ^ ).
In our m odel, l e t
C
be the r e a l c lo s e d
th e i n v e r t i b l e sheaves Op(D)f o r e f f e c t i v e
P r o p o s it io n ,
t h is c o n ta in s the p o s i t i v e n u m erica l cone:
d e g (x ) > 0 .
Then N a ica i's theorem im p lie s th a t
cones w ith r e s p e c t t o th e i n t e r s e c t i o n p a ir in g ]
C
and
D.
By the
(x , x ) > 0 , CQ
a re Just d u al
LECTURE 19 THE PICARD SCHEME : OUTLINE Our n e x t o b je c t iv e i s
to p ro ve th a t the schemes
12 e x i s t .
Or, e q u iv a le n t ly ,
in v e r t ib le
sheaves o f n u m erica l typ e
P (t)
o f L e c tu re
t o p ro ve th a t th e re i s a u n iv e r s a l fa m ily o f In t h is l e c t u r e , we s h a ll make
some g e n e r a l remarks about the problem , and sk etch our method f o r s o lv in g i t . P r e c is e ly , p r e s e n ta b le . iso m o rp h ic: in v e r tib le
1 1 , |2
say
sheaves on
as f o llo w s : M
the problem i s
t o show th a t each fu n c to r
The f i r s t th in g to n o t ic e i s
g iv e n
M
P
on
th a t the fu n c to r s
a re two p o in ts in r e p r e s e n tin g
F x S
Num (P), and say and
|2 .
PicJ, P icJ ,
is r e a re a l l
L] , L2
a re
D e fin e an isom orphism :
r e p r e s e n t in g an elem ent o f
PiC p . ( S ) , map
to M ® p * ( L 2 ® L " 1)
T h is r e p r e s e n ts an elem en t o f
PiC p (S )
.
and o b v io u s ly d e fin e s an isom or
phism. The o n ly problem , t h e r e fo r e ,
1 = 0.
T h is fu n c to r w i l l be denoted
fu n c to r i s , P iC p (S )
( a f t e r G r o th e n d ie c k ).
in a n a tu r a l way, a group fu n c to r :
i.e .,
T h is
each o f the s e ts
i s a group and each map betw een then w hich i s p a r t o f th e fu n c to r ,
i s a homomorphism. te n s o r p ro d u ct. a scheme
i s t o r e p r e s e n t the fu n c to r f o r
PiCp
P (t )
Nam ely, m u lt ip ly two i n v e r t i b l e
sheaves on
F x S by
T h e r e fo r e , a c c o rd in g t o the g e n e r a l remarks in L e c tu re r e p r e s e n t in g
PiCp
i s a u to m a tic a lly a group scheme.
Th is
i s e s s e n t i a l l y G ro th e n d ie c k 's P ic a r d scheme.
[A c t u a lly , he tak es the d i s
j o i n t union o f the schemes r e p r e s e n t in g each
PicJ,,
P ic a r d scheme.
In the p re s e n t c o n te x t,
t h is i s a s i l l y
c o n s tr u c tio n :
and c a l l s t h is the
o v e r an a l g e b r a i c a l l y c lo s e d f i e l d ,
one sees the p o in t o n ly o v e r more com p lica ted
base schem es.] In f a c t ,
i t w i l l be more c o n ven ien t t o r e p r e s e n t
f i x e d , but v e r y ample
|.
Our method i s
the n u m erical c r i t e r i o n o f L e c tu re IT :
133
to choose one
|
PiCp
f o r one
which s a t i s f i e s
t h is gu aran tees th a t any
L
o f type
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
i
i s O -re g u la r and v e r y ample.
Then we s h a ll c o n s tru c t a s e c t io n
s
of
®: C u rves* —
£l c |
.
s If
d>
adm its ja s e c t io n
scheme
P (| )
P r o o f: s ° $
s,
then
P ic |,
Byh y p o th e s is
i s a morphism o f
$ o s i s the i d e n t i t y .
CurvesJ,
sub-
On th e o th e r
hand,
in t o i t s e l f which p r o je c t s th e whole fu n c
t o r onto a su bfu n ctor isom orph ic t o th e re e x is t s a p r o j e c t i v e s o $
i s re p re s e n te d by a_ c lo s e d
o f C (| ).
scheme
PicJ, .
C (|)
But we know from L e c tu re 15 th a t
r e p r e s e n tin g
Curvesj,.
T h e re fo re
i s in d ic e d by a morphism o f schemes: f:
D e fin e
P (| )
0( |) -
C( g )
.
as the f i b r e produ ct in th e diagram : P ( ! ) ------- ----- ►C (|)
| C (D — where
►c ( s )
X
C( e)
a is the diagonal morphism. Then
Hom(S, C( | ) ) p x f(P ) P (| ))
4—
o ,f)
in
Hom(S, P ( | ) )
such th a t
a
Hom(S, C (|)
(« )
x C (| ))
a re
t o the su bset o f
Curves|,(S)
hp^^
a re isom orp h ic.
P ic| ,
F in a lly ,
s in c e
c lo s e d im m ersion so
P (| )
a
i.e .,
the same.
i s isom orp h ic t o the subset o f and
a, P € ot x a and
i s isom orp h ic t o th e s e t o f p a ir s = (1 , f ) ( P ) ,
th e p o in ts T h is means
Hom(S, C (| ))
l e f t f i x e d by
th a t
l e f t f i x e d by
s ° ®.
Hom(S, f,
i.e .,
T h e r e fo r e , the fu n c to r s
i s a c lo s e d im m ersion, the- morphism
i s a c lo s e d subscheme o f
g
is a
C (| ). QFP
To c o n s tru c t sh eaf
L on
s, we must do the fo llo w in g :
F x S, o f typ e
f e c t i v e C a r t ie r d i v i s o r
|
a lo n g
D C F x S
M c P ic (S ). (a )
a L ® p*(M )
The c o n s tr u c tio n must have two p r o p e r t ie s :
i f we r e p la c e
L
by
we should g e t the same (b )
g iv e n an i n v e r t i b l e
c o n s tru c t a r e l a t i v e e f
such th a t
o ^ gC D ) f o r some
the f i b r e s ,
L ® PgCM’ )
f o r any
i t should commute w ith base e x te n s io n s
The keys t o our c o n s tr u c tio n a re the f o llo w in g then f o r any c lo s e d p o in t
x
€ F, l e t
Mf
e P ic (S ),
D,
i
:
sheaves: S -*■
F x
T -► S
.
g iv e n L
on
F x
Sbe the s e c t io n
S,
o
THE PICARD SCHEME: OUTLINE w hich maps
S
onto the c lo s e d subscheme
135
(x ) x S C F x S.
Then l e t :
M oreover, l e t g = p2 * (L ) ^f
.
Then th e re i s a c a n o n ic a l homomorphism
V fo r every over
x;
i.e .,
F x U,
a s e c tio n o f
hence a s e c t io n o f
Now r e c a l l th a t o f L e c tu re IT . we know th a t p a r t ic u la r ,
H1 (F , L ' )
an i n v e r t i b l e
= H2(F , L ‘ ) = ( 0 ) ,
the r e s t r i c t i o n o f g
g o v e r U C S g iv e s a s e c t io n o f * “1 i x (L ) o v e r U = i x (F x U ) .
L
g was assumed t o s a t i s f y the n u m erical c r i t e r i o n
T h e r e fo r e , i f
f o r e weknow th a t
g a lo n e .
« ^
L
sh ea f
t o any f i b r e
is lo c a lly fre e
Now suppose we choose any
L'
and th a t of
and th a t i t s r-1
on L*
F
is
o f typ e g,
i s v e r y ample.
p2
i s o f typ e
rank
In
g.T h ere
r i s determ ined
by
x . , , . . . , x r _ 1 e F.
c lo s e d p o in ts
Then we have: ~ h =
^ > h : /t, i
r-i g ---- ► © i= i
hence
Ah:
A1*” 1 g —
AP " 1
©
i= i D u a liz in g ,
M
i
M i r-1 ® M i= l i
t h is g iv e s
^ r —1 (A h )*:---------M ^ ---- ► Hom(AP" 1 g, Og)
.
But
Hom(Ar_1 g, Og) s [i.e .,
AP g
g ® (Ap g ) ' 1
.
the can on ical p a ir in g o f ap_1 ( g ) and g in to the In v e r t ib le sheaf induces a homomorphism from g to Hom(a p~1 g, AP g ) , hence from
g ® AP g -1
to
Hom(a p~1 g , Og) .
I t i s c le a r th at th is i s an isomorphism].
P u ttin g a l l the in v e r t ib le sheaves togeth er
in cu rly brackets
t h is g iv e s a homomorphism: h' :
r-1 Og — g ® j ( A r g ) 1 ® [ L Mx. ] } 1=1
hence a g lo b a l s e c t io n :
a e r ( p x S, L ® p* | (A r g ) " 1 ® Suppose th a t Then
a = 0
a
\ L
does n ot v a n is h i d e n t i c a l l y on any o f the f i b r e s o f
d e fin e s a r e l a t i v e e f f e c t i v e C a r t ie r d i v i s o r
D C F x S
p2. such
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
[ r£
^ xS(D) = l ® p j | (Ar g r 1 ® w hich i s e x a c t ly what we want.
M oreover, i t
]
}
i s c le a r th a t a l l our step s
commute w ith base e x te n s io n , and th a t one winds up w ith the same D even * i f you r e p la c e L to s t a r t w ith by L ® p 2(M) . T h e re fo re our problem would be s o lv e d and
s
o
What does i t mean f o r p g 1( s )
?
a
would be c o n s tru c te d , p ro v id e d o n ly th a t
is h i d e n t i c a l l y on any o f the f i b r e s o f
Let Ls
does n ot van
pg .
to v a n is h i d e n t i c a l l y on the
be the i n v e r t i b l e
sh ea f induced by L
fib r e
on t h is f i b r e , and
le t s (F )
L e c tu re 1 1 ) .
F, the p o in ts
p ” 1( s ) .
( r - 1 ) - t u p l e w hich works f o r e v e r y
i s n o t con ta in ed in any p ro p er T h e r e fo r e f o r alm ost a l l ( r - 1 ) cp(x1) , . . . ,
The d i f f i c u l t y , s.
cpC x.^)
w i l l be
how ever, i s t o fin d one
THE PICARD SCHEME: We w i l l n o t s o lv e t h is problem : such ( r - 1 ) - t u p l e e x i s t s . s t r u c t in g the s e c t io n on
F.
137
OUTLINE
in d eed , i t may w e l l be th a t no
In s te a d we s h a ll g e n e r a liz e our method o f con s.
N *r- 1
We s t a r t by ch oosin g a t o t a l o f
We group them in t o
N-1 s e ts o f
r
p o in t s , and one s e t o f
p o in ts r -1
p o in t s : { x 1 , 1 , x 1^2, . . . ,
x 1^r )
{ x 2 - , x 2 2, . . . ,
x
}
Grouping (r)
^XN -1 ,1 ' XN -1 , 2 '* * * ' x N - l,r ^ ( XN, 1 * XN, 2 9
> xN , r - l
For the l a s t r-1 p o in t s , make the same c o n s tr u c tio n as above, o b ta in in g : e H ° ( f x S, L ® p * { ( A r S ) ' 1 ® [ V
J j ) .
For each o f the o th e r s e ts o f p o in t s , how ever, we form h = ) h
:
g
-*•
1,1 hence
Ar & -► k . 9
T h is c o n tr a d ic tio n p ro v e s th e c la im . Now say b 1 i s d i s j o i n t from L. L e t b 1 = and. l e t H (i) be th e span o f a l l th e p o in ts Qqq, .,.. ... , eexxcceeppt t QQ^. ±. On On ththee ooththeer r hand, l e t q = dim L and choose q+1 p o in ts PQ, P j^, . . . , P^ from 911 w hich span L. L e t P* be any p o in t i n 911 o th e r th a n PQ, P ^^ .. .. . , o r P^. S ince th e Q 's a re in d e p e n d e n t n H (i) = Qf . i=0 i=o T h e re fo re , th e re i s an i , say i Q, such t h a t P*
bT =
I
4
H (iQ) . Now l e t
% +p *
i=o 1 ^3-0 3-^0 and l e t 9T* = 21’ » ! - P* + ^ . S in ce P* 4 H ((iQ) i Q) , 1=0
b* s t i l l c o n s is ts o f n+1
X
1k 3
INDEPENDENT 0-CYCLES ON A SURFACE in dependent p o in t s . S in ce
b-
But now
i s d i s j o i n t from
lin e a r space b ig g e r than
31* L,
L:
c o n ta in s
4
Q.
so
L.
dim L
PQ, P1, . . . ,
P^
and
T h e r e fo r e th ese p o in ts span a was n o t m axim al. QJED
COROLLARY: k (n + l)- 1 .
Let
31
be a s t r o n g ly s ta b le 0- c y c le o f d egree
Then f o r a l l c lo s e d p o in ts
th e re i s a d eco m p o sitio n ( 7 ) :
Q € Pn ,
k-1 a =
bi
1=1
where
b - j , . . . , b k-1
i s a c y c le o f Q
4
a re c y c le s o f
+ bk
n+1 in dependent p o in t s , and where
n in dependent p o in ts spanning a hyperplan e
b£
such th a t
H. P r o o f:
A p p ly the P r o p o s it io n to
31 + Q.
The r e la t i o n s h ip betw een th e two con cep ts o f s tro n g s t a b i l i t y i s
Let
F
be a n o n -s in g u la r p r o j e c t i v e s u r fa c e , l e t
be a g iv e n v e r y ample sh ea f on
X.-independent (w it h r e s p e c t t o spanned by i t s
x.-independence and
g iv e n b y:
P r o p o s it io n 3:
0( 1 ) F
H
F, and l e t
£ ( 1 )) .
Let
L
31
be a 0- c y c le on
be an i n v e r t i b l e
F,
sh ea f on
s e c tio n s and l e t
p X .(n + i)(d e g L ) then qj*( 31) i s a s t r o n g ly s ta b le o - c y c le on P . P r o o f:
If
H C Pn
i s a h yp erp la n e, then
i s a curve in the d i v i s o r c la s s o f [Number o f p o in ts i n
L.
cp*(H)
i s d e fin e d and
T h e r e fo r e :
cp*( 31 )
< [Number o f p o in ts i n
in
H]
31
in
Supp q>*(H) ]
< X, * [d e g q>*(H)} 2 = X. • (d e g L ) 2
x • (d e g | ) 2
suppose
|
We s h a ll, a t a l a t e r p o in t , put more c o n d itio n s on
"be th e c lo s e d im m ersion d e fin e d by
Then
f o r a l l c lo s e d p o in ts
x e F,
s ta b le b y P r o p o s it io n 3 o f the l a s t le c t u r e .
L
and i t s
dim C (g Q)
m • n
But
In s te a d , l e t
be one n u m erical typ e s a t i s f y i n g a l l th e
(* )
C
such
appears on one f i b r e .
w hich i s awkward.
in
D (g ) £ =
S.
Note th a t
Let
\
JKn y J le t
= H°(S, S ® K )
be th e co rresp o n d in g s e c t io n . I f th e s c a la r s s € S, then
£ a a
have th e p r o p e r ty th a t f o r a l l c lo s e d p o in ts
y 7
then the image o f And e v e r y
L
£ a y ay
( S ^ X ) K(s)
i s not zero ,
m eets a l l th e re q u ire m e n ts .
mutes w ith base e x te n s io n ,
Oy
a^
the image o f th e s e c t io n
£ a y ay
so i f is
L
is
F or the w hole c o n s tr u c tio n com_i th e sh e a f induced by £ on p 2 ( s ) ,
th e c o rresp o n d in g
occu rs o v e r some p o in t
have q u it e a b i t o f freedom :
s.
£ &y Qy
in
H °(F , L) 0 K.
On the o th e r hand, th e s e c tio n s
f o r e v e r y c lo s e d p o in t
s € S,
the images
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
148
0^
o f the
g e n e ra te th e v e c t o r space
ju s t a b o v e ).
(g 0 K ) 0 H ( s ) ,
(b y the C o r o lla r y
E v e ry th in g now fo llo w s from an ea sy lemma o f S e rre :
LEMMA ( S e r r e ) : a lo c a lly fr e e
Let
sh ea f o f rank
X r
be an (a lg e b r a ic ) on
X. L e t
scheme, and
V C H °(X , S )
be
le t
S be
a fin ite
d i
m ensional v e c t o r space and assume: i)
r > dim X,
ii)
f o r a l l c lo s e d p o in ts
& > 0 H (x)
is
s e V
Then th e re i s an elem ent
x
e X,
the map from
V
to
s u r je c t iv e . whose image in e v e r y space 6
0 K (x ) i s
n o n -ze ro . P r o o f:
Let
N = dim V
C on stru ct a homomorphism
0 b y h (a 1, . . . , k e r n e l.
a^)
= Z a^e^.
Then ft
> Jt
H (x )
e 1, . . . ,
*
e^
be a b a s is o f
V.
T h is i s
o f any
0
Q)
s u r je c t iv e
i s l o c a l l y f r e e o f rank
the re s id u e f i e l d Tor
and l e t
h
by ( i i ) .
N -r : in f a c t ,
Let
ft
be i t s
te n s o r in g
w ith
x e X, we o b ta in :
( g , H ( x ) ) — ► ft H (x )
■■»
H (x )N— ■g ® K (x ) -
0
I (0) and
Tor ”
(ft, K ( x ) )
= (0 ).
Pass t o the d u a l e x a c t sequence: 0 -► Hom(S, ox ) — ►
Then
\
induces ( c f . EGA 2, (4 .1 ) P (x ):
Now
— — ►Hom(ft, o_x )
P [ Hcm(f t , o^.) ]
is
and ( 3 . 6 ) )
-► 0
a morphism:
P[H on(ft, ox ) ] — - P (o | ) l o c a l l y a p rod u ct o f
dim ension one le s s than the rank o f
.
= X
X x PN-1
.
w ith a p r o j e c t i v e
Hom(ft, £x ) .
space o f
T h e r e fo r e , by h y p o th esis
(i), dim P [Hom( ft, o^]
= dim X + N - r -
l < N - l
.
Look a t the com p osite: p2 o p (x ):
P[Hom(ft, ox ) ] -► PN-1
Because the dim ension o f th e domain i s s u r je c t iv e .
Let
le t
a^
is
a ^ ...,
a. e P^_-|
le s s than th a t o f
be a c lo s e d p o in t o u ts id e
be homogeneous c o o rd in a te s o f
the s o u g h t-fo r s e c t io n .
Suppose
Z aj_e j_
is
_a.
P ^ _ i>
it
i s n ot
Im (p 2 ° P ( x ) ) ,
Then I c la im th a t
and Z a^e
ze ro a t the c lo s e d p o in t
THE PICARD SCHEME: x e X.
Then ( a 1 J t. . , a N) i s in the s u b -v e c to r space
under the in c lu s io n t i o n a l on k ern el o f
\ .
T h e r e fo r e
Hom(ft, o-^) 0 H (x ),
a lg e b r a on b ra s :
CONCLUSION
Hom( ft, o-^) 0 K (x ) P
i.e .,
(a ^ ...,
a^)
ft 0 K (x )
H (x ) .
of
0 K (x ),
d e fin e s a l in e a r fu n c
hence a homomorphism to
H9
P
from the symmetric
The maximal i d e a l
mx
and the
d e fin e a graded sh e a f o f id e a ls i n t h is graded sh ea f o f a l g e a p o in t o f
lows im m ed ia tely th a t
P [Hom(ft, o ^ ) ] , p2 o ? ( \)
(c f.
L e c tu re 5, A p p e n d ix ).
maps t h is p o in t to
a,
It fo l
w hich i s a c o n tr a
d ic t io n . QED
LECTURE 22 THE CHARACTERISTIC MAP OP A FAMILY OP CURVES We a re now re a d y t o a t t a c k th e e x is te n c e problem s r a is e d i n L e c tu re 2.
We s h a ll c o n s id e r f i r s t problem B.
t o d e fin e p r e c i s e l y th e " c h a r a c t e r i s t i c map" tu re 2:
t h is i s
p
A
and
B
The f i r s t ste p i s
in d ic a t e d ro u g h ly i n L e c
th e fundam ental lin e a r e s tim a te f o r f a m ilie s o f cu rves.
F i r s t some p r e lim in a r ie s : (A )
We w i l l need th e f o llo w in g e a sy c r i t e r i o n f o r r e g u l a r i t y :
P r o p o s it io n :
Let
£
be a n o e th e ria n l o c a l r in g , and
s u b fie ld isom orp h ic t o the r e s id u e f i e l d .
Then
o
k C £
a
i s r e g u la r i f and o n ly
if: fo r a l l f in it e
d im en sio n a l l o c a l k -a lg e b r a s
and s u r je c t iv e k-hamamorphisms
A,
AQ,
A -► AQ, the map
Homk ( o , A ) — Homk ( o , AQ) is
s u r je c tiv e .
P r o o f:
The c o n d itio n th a t
o
i s r e g u la r and th e c o n d itio n ( * )
a re b o th e q u iv a le n t t o the same c o n d itio n s on the co m p letio n T h e re fo re assume l o c a l r in g s ,
o
is
co m p lete, hence by s tru c tu re theorem on com plete
M oreover, we can assume th a t q.
i s r e g u la r
cp
fo rm a l power s e r ie s r in g s . o - h _ L i f t i t v ia
o_.
th e re i s a s u r je c t iv e homomorphism k[ [X 1, . . . ,
Then i f
_o_ o f
(* )
X j ]- ^
cpX.,, . . . ,
cpXQ
0
indu ces a b a s is o f
i s an isom orphism and one e a s i l y checks ( * ) C o n v e rs e ly ,
2 /m2 ^ _ k [ [ X l , . . . ,
s t a r t w ith th e homomorphism XjjU A
x,
,...,
t o homomorphisms:
* O
p m/m (m C o) .
\ — ► k i i x , , . . . , X J 3 A X , , . . . , x^)m m
1 51
Xn) 2
.
fo r
152
LECTURES
ON CURVES ON AN ALGEBRAIC SURFACE
Passing to the limit, one obtains a homomorphism:
.
o
But it is clear that \|r o q> is an automorphism of kttX^..., andsince cp is surjective, this implies that q> is an isomorphism, i.e., o_ is regular. QED (B) Suppose A is a finite dimensional local k-algebra. We will look quite frequently at the schemes F x Spec(A), so it seems worth while to put together at the outset the basic facts on their structure: i) As a topological space, F x Spec(A) is just F. only thing changed is the structure sheaf.
The
—FxSpec(A) is canonically isomorphic to o^ A. Namely, notice that the projections p1: F x Spec (A) -+ F, and p2: F x Spec(A) -► Spec(A) make o.FxSpec(A) into a sheaf of o^-algebras and a sheaf of A-algebras respec tively. Therefore, there is a canonical homomorphism: -F ®k A -*■—FxSpec(A)
*
But since, for affine open sets U C F, r(U, op ®k A)
= r(U, op) ®k A
and r(u> ^FxSpec(A)^ = r(U> ^
®k A »
(*) is an isomorphism of sheaves. iii)
Now let 1 = e^, e2,..., en be a basis of A where e2,..., en span the maximal ideal M. n —FxSpec(A) ~ -F +
over k, Then
Z ei ' -2f
1=2
and
n * * V ^FxSpec(A) = -F + L ei 1=2
11
= -F ‘ (1 + ^ 1=2
ei ' 2p)
Moreover, the truncated exponential sequence defines a homo morphism: n^ n ( 1 e± • oF)+ ► (1 + e. • Op
\
1=2
provided
\.
1=2
e*3 = o,
all
e e M,
p = char(k) .
THE CHARACTERISTIC MAP OP A FAMILY OP CURVES LEMMA:
The tru n ca ted e x p o n e n tia l i s alw ays an isom orphism .
P r o o f:
Use the tru n ca ted l o g t o g e t an in v e r s e .
We now come t o the main p o in t o f t h is le c t u r e : the f a m ilie s o f cu rves on by
I.
Not o n ly i s
I
P
over
a scheme o v e r
d e fin e s a c lo s e d im m ersion o f cu rves o v e r
I
Spec k [ e ] / e 2 . k,
it
Spec k [ e ] / s 2
but th e augm entation
k [e ] / e2
-► k
S p ec(k )
in t o
I.
I n t h is way, a fa m ily o f
d e fin e s e x a c t ly one o rd in a ry curve on
a v e c t o r p e r s o n ifie d :
t o in v e s t ig a t e
We den ote
P.
I
i t s e l f i s lik e
i s a s in g le p o in t w ith the s m a lle s t p o s s ib le
amount o f ” t a n g e n t ia l m a t e r ia l” s t ic k in g out in one d ir e c t io n . cu rves o v e r
I
i s b a s i c a l l y a curve on
F,
A fa m ily o f
p lu s an i n f i n i t e s i m a l deform a
t io n o f t h is cu rve.
T h is i s an
F ix a curve
DCF.
D e fin itio n :
N^ =
in v e r t ib le
Q { £F (D ) } . —F
sh ea f on D,
shown to be the sh ea f o f germs
and i f
D
i s n o n -s in g u la r, i t
o f s e c tio n s o f the normal b u n dle.
can be Note the
e x a c t sequence: 0 -
P r o p o s it io n : f a m ilie s o f curves
P r o o f:
° p (D ) “* % “* 0
•
There i s a n a tu r a l isom orphism between the s e t o f
$ C F x I,
o f g lo b a l s e c tio n s o f
tc g iv e an
-
over
I,
w hich exten d
DCF,
and the s e t
N^.
To d e fin e a C a r t ie r d i v i s o r
open c o v e r in g
CU^} o f
F,
DC F x I
is
the same as
and l o c a l e q u a tio n s f o r
D.
In view
o f ( B ) , l o c a l eq u a tio n s a re o f the form : F.i
G± + e
• H.
where G± , H.
The induced curve on that this curve is
D.
F
£ r(U.,
op)
itself is defined by the first terms Recall that on
n Uj
Fj_ = (unit) • Pj
we must have: ,
or (Gi + eH^_) = ( &±3 + eb±j) • ( G. + e R . ) where a.. € r(U± n Uj, o£) L
e r(U. n Uj,
.
G^.
Assume
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE T h is g iv e s th e e q u a tio n s : Gi
= ai j
'
Hj_ =
+ ^
j Gj
hence % Hi 0 * “ G j = bi j But sin c e
G^
i s a l o c a l e q u a tio n f o r
and th ese e q u a tio n s say th a t T h is i s
D,
(H^/G^}
the s e c tio n co rresp o n d in g t o
' aj i
*
% /^i
J-3 a s e c tio n o f
o^,(D ),
p atch to g e th e r as s e c tio n s o f
N^ .
3).
Now suppose th a t w ith r e s p e c t to some open c o v e r in g s e ts o f l o c a l eq u a tio n s
F^,
gave the H
same s e c tio n s o f
s in c e
u n it
d^
Gj_
and
i n U^.
th a t e v e r y
D,^ / G .^ 1
is a
f o llo w s th a t
(G± + e ^ ) = (d ± + ec . hence the two d i v is o r s
*
a re b o th l o c a l eq u a tio n s f o r
Then i t
Then
H’
G7 " GT = c i 6 r (Ui ’ A ls o ,
two
N^.
3)
s e c tio n o f
and
3)'
• d± ) • (Gi l + e H ^ )
a re e q u a l.
d e fin e s a d i v i s o r
F in a lly , i t
3)
e x te n d in g
i s ea sy t o D
in t h is
check way. QED
COROIIARY 1 :G iven a fa m ily o f cu rves p o in t
s € S,
p: (where
Dg C F
3) C F
x S,
and a c lo s e d
th e re i s a c a n o n ic a l lin e a r homomorphism
i s the
r th e Z a r is k i tan gen t
-i
\ space
s }
Tg t o S a t
curve induced by
3 )).
E^F,
T h is i s the c h a r a c t e r is t ic map
o f the fa m ily . P r o o f:
g iv e n t e Tg ,
we have f :
w ith image
s
o b ta in a fa m ily
(c f.
I -+ S
L e c tu re kf A p p e n d ix ).
o f cu rves 3)f
C F x I
a c a n o n ic a l
Then, by base e x te n s io n
which exten d s
t io n ,
correspon ds to an elem ent
use the f u n c t o r ia l c h a r a c t e r iz a t io n o f th e sv e c t o r
on
Tg
€ H °(F ,
).
By
is
lin e a r ,
p (t)
Dg . To
f , we
the p r o p o s i show th a t
p
space s tru c tu re
(A pp en d ix, L e c tu re *0 , and check th a t t h is a g re e s w ith s tru c tu re we
have in tro d u c e d d i r e c t l y . COROLLARY 2: p
i s an
F or th e u n iv e r s a l fa m ily o f cu rves
isom orphism a t a l l c lo s e d p o in ts
s e C (| ).
3) C F x C (| ),
THE CHARACTERISTIC MAP OP A FAMILY OF CURVES P r o o f: of
t is
F o llo w in g the p r o o f o f the p re v io u s
alw ays isom orp h ic t o the s e t
of
f;
c o r o l l a r y , the s e t
and the
a e H °(F ,
set o f
Kp. ) i s isom orp h ic by the p r o p o s it io n to the s e t o f f a m ilie s 3)’ C F x I s e x te n d in g Dg . But by d e f i n i t i o n o f a u n iv e r s a l fa m ily , e v e r y 2)’ eq u a ls a
f o r a unique
f,
so th e s e t o f
3)’
and the s e t o f
f
a re isom or
p h ic to o . QRD T h is would appear t o answer the fundam ental Problem B o f L ectu re 2.
But i n
fa c t, i t
does n o t.
We have o n ly g e n e r a liz e d the con cept o f a
fa m ily o f cu rves from the i n t u i t i v e v a r ie ty ,
one where the base i s a n o n -s in g u la r
to a "phony" one where the Z a r is k i ta n gen t space to th e base can
be huge, but the base can s t i l l be o n ly one p o in t I lem o f r e a l l y c o n s tr u c tin g f a m ilie s o f cu rves i s
The burden o f the p ro b
s h ift e d to the q u e s tio n o f
a s c e r t a in in g whether th e u n iv e r s a l base i s redu ced, or ( b e t t e r ) n o n -s in g u la r. Exam ple:
The f o llo w in g i s due t o S e v e r i and Zappa:
curve o v e r fit
k, and c o n s id e r v e c t o r bundles
&
le t
o f rank
C 2
be an e l l i p t i c
over
C
which
in t o e x a c t sequences: 0 -► o^ -► 6
By th e g e n e r a l th e o ry o f sh eaves,
—►Oq
—►0 .
such e x te n s io n s a re c l a s s i f i e d by elem ents
o f:
~ h 1 (c ' 2 c } But
H1(C , o^,)
i s a 1-d im e n s io n a l v e c t o r space; l e t
n o n -ze ro elem en t. s u r fa c e , i . e . ,
We take
F = P (g ) ,
le t
F
P, Q,
in t o a bundle o v e r
P
and
C
F
&
L e c tu re 5 ).
correspon d t o a T h is i s a r u le d
C
w ith f i b r e P 1.
be two d i s t i n c t p o in ts on
p ly in g by a s c a la r , at
(c f.
th e re i s a c a n o n ic a l p r o je c t io n it:
making
•
C.
th e re i s a unique fu n c tio n
Q, and no o th e r p o le s .
We can be v e r y
e x p lic it :
Up t o addin g a co n sta n t and m u lt i f
on
C
w ith sim ple p o le s
The c o v e r in g
C = (C - P)
U (C - Q)
- Up u UQ and
f e r(Up n uQ, Oq ) g iv e a 1-C zech c o - c y c le on
C
w hich r e p r e s e n ts th e g e n e ra to r o f
(up t o a s c a l a r ) . Then one can check th a t F = [P, x D p l
U [P ,
x UQ]
H1(C , o^,)
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE and th a t i f
tp
i s a c o o rd in a te on P1
second, then the
( t p ,
X )
x € Up n Uq , t p - t ^
=
P,
€
( t Q, x ) when
t^
X
Up
f. x Up
and
the f i r s t has l o c a l eq u a tio n
eq u a tio n
t ^ 1 , and
(# )
t p 1A
q1
=
1 - f
• t p 1,
(oo) x Uq
t p 1,
the
c o in c id e o ver
second has l o c a l
a u n it in a neighborhood o f (oo) x (Up n UQ)
C a ll t h is curve
E.
E i s a s e c tio n o f the morphism
an ir r e d u c ib le n o n -s in g u la r curve on °p (E )
*,
— t p * Qp
Ng = Og
in E
n ( p 1 x Up)
^ Og
in E
n ( p 1 x UQ)
.
and t h e r e fo r e i s
F , isom orph ic to
- tQ ' % T h e r e fo r e ,
one i n the
e P, x UQ
Now the curves g iv e n by ( » ) Up n Uq :i . e . ,
in the f i r s t p a tch ,
p a tc h in g i d e n t i f i e s the c lo s e d p o in ts
C.
in
P 1 x Up
in
P, x U Q
M oreover,
.
and the p a tc h in g
on the in t e r s e c t io n i s d e fin e d by the r e s t r i c t i o n to
t p V t Q 1.
t h is i s
By ( # ) ,
i , hence
Ngs Og
g l o b a l l y on
H °(F , Ng) s H °(E , Og) s k T h is
means th a t th e u n iv e r s a l fa m ily
c o n ta in in g
E
On the o th e r hand, i t .
i s ea sy to check th a t
e’
[ I t would f o llo w
i n the same component o f th a t the sh eaf
Og 0 O g (E ')
E
th a t o f
d , genus i e
cor
as
a lo n e i s a com E'C
Fc o r r e
e , then
E D E’
was a d efo rm a tio n o f the sh ea f
E fl E 1,
and
E, Ng
of
Ngi but the
has a s e c tio n w hich
sin ce t h e ir E u ler c h a r a c t e r is t ic s are the same, t h is means
n E 1 = 0. ] E
O g(E r)
C g*1
would be a d efo rm a tio n , on
form er has a s e c tio n which va n ish es a t i s nowhere z e r o ;
e
For one can show th a t i f a second curve
sponded to a p o in t
th a t
o f cu rves o f d e g ree
E.
ponent o f Cg>1
O g (E ), hence
.
has a n o n - t r i v i a l Z a ri s k i-ta n g e n t space a t the p o in t
resp o n d in g to
= 0.
Cp’ 1
E of
E.T h e r e fo r e :
over
But a ls o th e d e g re e o f
C:
t h e r e fo r e
E’
over
C
must be
E 1 would a ls o be a s e c tio n o f
it
1
lik e
and would
have l o c a l e q u a tio n s : tp
Then
gp - g^ = f ,
= g p (x )
in
It-1 (U p ), gp e r (U p ,
t Q = 8 q (x )
in
« _1 (UQ) ,
and
f
g,-,
e r(U Q,
o j
.
i s a Czech co-boundary which i s a c o n t r a d ic t io n .
LECTURE 23 THE FUNDAMENTAL THEOREM V IA KODAIRA-SPENCER We a re now re a d y to p ro ve the theorem announced in L e c tu re 2, f o r which two a n a ly t ic p r o o fs were sketch ed. form o f t h is r e s u lt in the form D e fin itio n :
B
A cu rve
H1(O p (D ))
We w i l l p ro ve the s tr o n g e s t known
g iv e n a t th a t tim e.
D CF
-*■ H1(Np)
is
sem i- r e g u la r i f
i s th e zero-map .
THEOREM: ( S e v e ri-K o d a ira -S p e n c e r) . typ e
g.
Let
DQ
a)
c h a r(k )
b)
Dq
is
Let
A be a f i n i t e d im en sio n a l l o c a l k - a lg e b r a ,
A / i.
We must show
= 1,
i s n o n -s in g u la r a t
and l e t
open c o v e r in g
I
the c r i t e r i o n o f s e c tio n
th a t e v e r y curve D CF x Spec (A ) .
= i\ • A. of
fe r Uj
oF ®k A)
th a t th ese do n o t d e fin e a curve
a r b i t r a r i l y to
G1j €
h - Gio • pj
-
h^
eq u a l to
0.
of F^
D
A =
DQ a ls o dim I
in some a f f i n e
a r b i t r a r i l y to elem ents
. D
u n less
F^
andF j d i f G. .
on lj
U. n 1
• pj n U j,
(o ^ (2) A ) * ) .
Then
1 • hij> h j e r ^ ± n V
and we must show th a t f o r a s u ita b le c h o ic e o f a l l th e
L e ctu re 2 2 .
exten ds
any ca se, th e re a re u n its
F± ■ Gu L ift
F^
To s t a r t w ith , l i f t
by au n it in U. n U .. But, i n —* -L J in (Op ® A) such th a t:
(A ),
an i d e a l and
C le a r ly we can a ls o assume th a t
F ix l o c a l e q u a tio n s F.
I C A
D C F x S pec(A ) which
F± e r ^ , The tr o u b le i s
If
s.
We s h a ll use
(U^}
be a curve o f
= 0,
C (g )
exten d s to a curve
DQ C F
5 € C (g ).
s e m i-r e g u la r ,
then
P r o o f:
Let
correspon d to the c lo s e d p o in t
F^
F i r s t n o te the i d e n t i t y :
1 57
and
G^j
we can make
1 58
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
n(hij + Gij ‘ hJk> = Pi ” GijFj + Gij(Fj" Gjk^k^ = Fi " GijGjkFk = 11 • hi k + (Gi k - Gli5G jk)F k
Let get:
and
F^.0^
denote the images of
h i ni,J + Gij Since Fk°^ gives:
=
is a local equation for hij T °) pi
(+ )
• h njk
L k w tb pr
p
G^j
h i ( nik + V DQ, and
^k
f 1 L
pi
and
Fk
in
.
o^,.
Then we
GijGJk \ . _(0) (i ) Fk f|0^ = Gp^
• Fj°h
this
G ljG jkG ik ’I
hence S h ±J J- i f > i s a 1-C zech c o - c y c le f o r the sh ea f £ is then
D
I -*all i,,
Np.
L e t t h is correspond t o
the o b s tr u c tio n to f in d in g
e x is t s .
In f a c t ,
DJ
# € H (N p ),
L e t 's check th a t i f
§ = 0,
suppose we make the changes: F{
=
F± + r)f± ,
Gij' =
Gij + 11
gij
Then one computes: n • V
-
F ,'
= Fi
Gi j ' - Gi j Fj
+ n • f ± - IfJ
■ ^ hij + fi S ince
g^
e q u a l to
i s an a r b it r a r y elem ent o f 0
fo r a l l
i,
j
hi j by a s u ita b le c h o ice o f
+ q
- fJGij " W
r(U .
G ij - i P j g i j
•
n U j, O p),
{f^ }.
- f j Gi j ) e ( f S0 ) )
we can make
h^ .1
.
But t h is means th a t
h.
or th a t
•
i f we can make
.
- r fo ) Fi
e x is t s i f
•V
=
Z &) “ Fi
f . Fj
f , (mod ^ f }
- $ i s a Czech co-boundary in the sh ea f £ = o. Now by h yp o th e s is b ) , the homomorphism H1(Np) - 1 *
H2(Op)
coming from the e x a c t sequence 0 -► Op
Op(D) -*■ Np -*■ 0
Np.
» T h is p ro ves th a t
D
THE FUNDAMENTAL THEOREM V IA KODAIRA-SPENCER is in je c t iv e . th e s e c tio n s O p (D ), i t
T h e r e fo r e i t V
Fi 0) o f
d (§ ) = 0 .
s u f f i c e s t o p rove th a t Op(D)
lift
f o llo w s from form u la ( t )
But s in c e
the c o -c h a in r e p r e s e n tin g
th a t
d( £ )
§
in t o
i s re p re s e n te d by the Czech
2 c o - c y c le : 1 - Gl j
• G 1 k • GZk
"ijk But
i s an o b s tr u c tio n t o l i f t i n g
(Op ® A )*
t o a c o - c y c le i n
may choose
}
( o^ ® A ) * :
such th a t
0^
the 1- c o - c y c le i n fo r i f
it
= Gi k ,
(G-^j}
can be l i f t e d ,
i.e .,
ffi j k
= °*
in then we E v e ry th in g
fo llo w s now from : LEMMA:
(Op ® A )* -► (Op ® A )* — 1
s p lits .
P r o o f:
One m e re ly uses the e x p o n e n tia l, as the c h a r a c t e r is t ic
0:
is
(Op ® A)
------------------ ► (Op ® A)
a
a
(1 + Op ® M) -------- -
(1 + Op ® M)
2,|exp
ai exp
(Op ® M) +
(O p ® M ) + ------------ ►
Now s in c e
M -► M
s p l i t s as a s u r je c t io n o f v e c t o r sp aces,
s p l i t s as a s u r je c t io n o f sheaves o f a b e lia n grou ps.
Op < S> M -► Op M
T h is p ro v e s the lemma. QED
COROIIARY: Then
5
is
Let
D C P
s a t i s f y the h ypotheses o f the
co n ta in ed i n o n ly one component dim Z P r o o f:
=
Z
of
theorem .
C( |) and
dim H °(P , Np) .
S ince th e l o c a l r i n g
o^
of
C (|)
at 8
is
r e g u la r
dim Z = dim o^ = dim T& = dim H °(P , Np) by C o r o lla r y 2 o f L e c tu re 2 2 . T o 'p r o p e r ly understand t h is theorem , i t req u irem en t o f s e m i- r e g u la r it y i s v e r y w eak. by the q u it e p a t h o lo g ic a l cu rve
E
should be added th a t the
O f co u rse, i t must be v i o l a t e d
i n th e example o f L e c tu re 2 2 ;
but a 1 -
r e g u la r curve i s a s e m i-r e g u la r , and we know th a t f o r e v e r y i n v e r t i b l e L
on
P , th e re i s an
mQ
a re 1 - r e g u la r i f
sh eaf
such th a t a l l cu rves w ith g lo b a l eq u a tio n s in m > mQ.
L o o k in g back a t the exam ples o f L e c
tu re 1 , i t w i l l be seen th a t a l l the cu rves n o t d e s c r ib e d as superabundant a re 1 - r e g u la r , hence s e m i- r e g u la r . where
P
M o reover, lo o k a t th e analogous case
i s r e p la c e d by a n o n -s in g u la r curve
7
and
C (| )
i s re p la c e d by
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE C (d )—the u n iv e r s a l fa m ily o f 0 - c y c le s on 7 o f d eg ree
D C 7
is
s e m i-re g u la r sin c e
H1 (N p)
In f a c t , as i s w ell-k n ow n ,
C (d )
d.
Then e v e r y 0 - c y c le
has 0 -d im en sio n a l su pport, hence
Np
is
= (0 )
ju s t the
.
d - t h symmetric power o f
7
which i s n o n -s in g u la r . On the o th e r hand, the requ irem en t o f c h a r a c t e r is t ic c e n t r a l.
0
i s q u ite
For the l a s t fo u r le c t u r e s we s h a ll t r y to g e t c lo s e r to the h e a rt
o f the theorem so as t o b r in g out s e v e r a l ways in which the c h a r a c t e r is t ic r e s t r i c t i o n can be " e x p la in e d ." what the p r o o f r e a l l y does i s
To see what should come n e x t, n o te th a t
to reduce the l i f t i n g problem f o r
problem f o r i t s
a s s o c ia te d i n v e r t i b l e
c o - c y c le
Then why n o t e lim in a te
j .
p rove the theorem in form sheaves?
sh ea f D
2 px spe c ( A ) ^
D
to the
d e fin e d by the
e n t i r e l y from the problem , and
A o f L e c tu re 2 - e n t i r e l y in terms o f i n v e r t i b l e
2k
LECTURE
THE STRUCTURE OP 0 1°
In t h is le c t u r e we want to put to g e th e r our whole s e t-u p :
in L e c tu re 15, we co n s tru c te d the schemes L e c tu re 2 1 } we co n s tru c te d the schemes
C (£ )
P (£ )
p a r a m e tr iz in g c u rves;
p a r a m e tr iz in g i n v e r t i b l e
in sheaves.
The morphism o f fu n c to r s D h- o(D ) in du ces a fundam ental morphism o f schemes ®:
C (£) -
P (£ )
In L e c tu re 13 we d e s c r ib e d the f i b r e fu n c to r s rep i’ esen ted
Curves^
and
COROLLARY: if
the
sh ea f
L
P ic ^
$
a re p r o j e c t i v e
o ' 1 (X ) s P [H ° (L ) ] ®
C (£ )
spaces.
In f a c t ,
.
can be d e s c r ib e d somewhat s i m i l a r l y ( c f .
d ie c k * s Bourbaki t a l k , expos§ 2 3 2 , p . fo r d iffe r e n t
now th a t wehave
\ € P ( £ ), then c a n o n ic a lly :
correspon ds t o
The g lo b a l s tru c tu re o f
L in S ys^ :
we g e t the C o r o lla r y :
The f i b r e s o f
on F
.
£*s, th e schemes
1 1 ).
P (£ )
a re a l l
o v e r them are v e r y d iffe r e n t > - fo r
d e g (£ )
and i t s
< 0, th ey a re empty;
e x p l i c i t d e s c r ip t io n
T h e r e fo r e , we o n ly g iv e the r e s u l t Let
(* )
U C P (£ )
For exam ple, i f
F
D CF
correspon ds t o th e p o in t P ( £)s a t i s f i e s
(* ) (in
is a
r e q u ir e s some te c h of3
,
i n a s p e c ia l ca s e .
be g iv e n such th a t: x e U,
if
1^ i s
the i n v e r t i b l e
c o rresp o n d in g t o
x,
then
H1(F , L^)
f o r a l l c lo s e d p o in ts sh ea f on
fo r
£ ,0
For some
n i c a l con cep ts coming out in the fu r t h e r developm ent o f the th e o ry L e c tu re 7.
th a t,
iso m o rp h ic, whereas the schemes
d e g (£ ) ” *■ + 00, th ey in c r e a s e i n d e f i n i t e l y in dim ension. f a i r l y c o m p lica ted f i b e r i n g ,
G rothen-
The i n t e r e s t i n g th in g i s
i s a curve f o r w hich
5 e C (£ ),
H1 (F , £ p (D ))
then some neighborhood
= (0 ).
= (0 ), U
v i r t u e o f the r e s u lt s o f 3 °, L e c tu re 7 ).
1 61
of
and i f $ (5 ) €
D
162
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE P r o p o s it io n :
There i s a l o c a l l y f r e e
sh ea f
&
on
U,
and a
commutative diagram : ® '1(U ) st P( S )
C (| ) 3
P (l) 3 U
F x U.
P r o o f:
Let
L
A b b re v ia te
p2 :
F x U -*■ U
be the u n iv e r s a l fa m ily o f i n v e r t i b l e
i s a l o c a l l y f r e e sh ea f on
U,
sheaves on
to
p.
A c c o rd in g t o L e c tu re 7, 3 , P * (L )
and i f
g:
T
U
i s any morphism and i f
one
makes the base e x te n s io n : F x T •
F x U
g then
q * (h ( L ) )
p#( L ) ,
s g (p * (L )).
Now l e t
U 6
be th e d u al l o c a l l y f r e e sh e a f to
i.e ., 6 = HQTCo^ ( P * ( L ) , 0^)
We s h a ll now p ro ve th a t
4- 1 (U)
and
p( S )
a re iscm orp h ic o v e r
same method used in L e c tu re 13 t o show th a t je c tiv e
space:
L in Sys^
U
by the
i s re p re s e n te d by p r o
we s h a ll g iv e an isomorphism betw een t h e i r fu n c to r s o f p o in t s .
More p r e c i s e l y , g iv e n a T -v a lu e d p o in t
g:
T -► U
of
U,
n a tu r a l isomorphism between th e s e t o f T -v a lu e d p o in ts o f and the s e t o f T -va lu ed p o in ts o f w i l l be f u n c t o r i a l i n
P ( &) o v e r
g.
we s h a ll g iv e a $” 1(U)
over
g
S ince t h is isomorphism
g , the theorem w i l l be p roven .
But p roceed in s e v e r
a l s ta g e s :
{
s e t o f T -va lu ed p o in ts
)
of
j
(U) o v e r
g
( s e t o f f a m ilie s o f cu rves ^
)
( M T h is fo llo w s by the f u n c t o r i a l d e f i n i t i o n o f
(ii)
)
on
T,
and o f
C (|)
D C F x T
T , and s e c tio n s o f
on
M
opxT(D)
s
sheaves
on
h * (L ) ® q*(M )
F x (t)
over
T.
h * (L ) ® q*(M )
T h is f o llo w s because
D
is
ju s t a r e l a t i v e C a r t ie r d i v i s o r o v e r T * * h (L ) 0 q (M) ;
g lo b a l e q u a tio n i s a s e c tio n o f a sh ea f o f the form a r b it r a r y C a r t ie r d i v i s o r on
F x T
whose and an
i s a r e l a t i v e C a r t ie r d i v i s o r i f i t s
g lo b a l eq u a tio n i s a n o n -ze ro d i v i s o r in each f i b r e o v e r n o n -ze ro th e r e .
M
in d u c in g n o n -ze ro s e c tio n s in each I fib r e
T,
.
$.
set o f in v e r t ib le
such t h a t , f o r
sh ea f
Ojjyp(D) a h * (L ) ® q*(M )
s e t o f f a m ilie s o f cu rves some i n v e r t i b l e s h e a f
D C F x T
such t h a t, f o r some i n v e r t i b l e
T, i . e . ,
if it
is
THE STRUCTURE OP
a o f h * (L ) ® q*(M )
But a s e c t io n as a s e c t io n
t
over
4
T
163 over
F x T
i s th e same th in g
of
q*(h*(L) ®q*(M)) s q#h*(L) ® M s g * (p * (L )) ® M .
a
M o reover, the c o n d itio n th a t fib r e
over
T
is
should induce n o n -ze ro s e c tio n s on each
th e same as th e c o n d itio n th a t
should have a n o n -ze ro
t
image in { g * [ P * ( L) ] ® M) 0 f o r a l l c lo s e d p o in ts
t € T.
th in g as a homomorphism
K (t )
But a s e c t io n
Ham (g * (p * L ), lip
o j
g [p * L ] M
i s th e same
——-*■ M
i.e .,
g iv e n a homomorphism from
g (p * L )
® M,
one g e ts a s e c t io n o f
t h is i s an
t
of
t
h:
M:
i s e q u iv a le n t to th e c o n d itio n th a t Ham0
to h
£T h.
and a s e c tio n o f
g [p * L ]
M o reover, the c o n d itio n on
be s u r j e c t i v e .
F in a lly ,
sin c e
o ^ ) = g*[Ham0^ (p * L , o^j) ]
(g * (p * L ),
« g*6 we g e t : set o f in v e r tib le
sheaves
M
on
(iii)
fib r e
F x {t)
over
( s e t o f i n v e r t i b l e sheaves
T ,^
and s e c tio n s o f h ~ (L ) q*(M ) in \ n o n -ze ro s e c tio n s i n each
(
on
) M
T, and s u rje r je cclt io n s
«:
g * (S ) - M
.
T.
But by the Appendix t o L e c tu re 5, t h is l a t t e r s e t i s isom orp h ic t o the s e t o f T -v a lu e d p o in ts o f
P( & )
lift in g
th e g iv e n T -v a lu e d p o in t
g
of
U.
T h is g iv e s the s o u g h t-fo r isom orphism .
2 i.e .,
N ext we want to d e s c r ib e the i n f i n i t e s i m a l s tru c tu re o f P ( | ) ,
i t s I- v a lu e d p o in t s ,
s i c a l l y on we c a lle d
F.
ju s t as we have d e s c rib e d th ose o f
We may as w e l l lo o k a t th e case
P (t )
b e fo r e .
P (t )
ous in th e f o llo w in g sen se: i s an automorphism
T
of
if P (t )
% = 0:
i s a group scheme, and co n seq u en tly homogene x, y
a re two c lo s e d p o in ts o f
such th a t
T (x )
= y.
m e t id a t e ly im p lie s th a t a l l t o p o l o g i c a l components o f th a t th e y a re a l l isom orp h ic t o each o th e r ; p on en ts; and th a t
P ( T) r e ^
L e c tu re 11,
scheme i t s e l f ,
(V ). ]
In f a c t ,
u s in g Remark (V )
P (t ) ,
T h is , i n i t s e l f , P (t )
th e re im -
a re i r r e d u c ib le ;
th a t th e y have no embedded com-
i s n o n - s in g u la r .
the f a c t th a t th e re i s an open dense su bset l a r —c f .
C (|) —i n t r i n
t h is i s th e scheme
[The l a s t by hom ogeneity and U C P ( T)p ed
P ( T) r e a
o f L e c tu re 11.
w hich i s n o n -sin gu
i s e a s i l y checked t o be a group A ls o the component o f
P ( T) r e a
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE c o n ta in in g the i d e n t i t y v a r ie ty o f
e
i s a group scheme:
Because
P (t )
the c l a s s i c a l P ic a rd
i s a commutative group scheme, f o r any
th e re i s even a c a n o n ic a l automorphism la r ,
t h is i s
F.
T
such th a t
T (x )
= y.
x, y In p a r t ic u
th ese automorphisms g iv e c a n o n ic a l isomorphisms o f the Z a r is k i tan gen t
spaces a t a l l the c lo s e d p o in ts o f
P (t )
w ith each o th e r .
T h e r e fo r e , we
may l i m i t o u rs e lv e s t o c o n s id e r in g the I- v a lu e d p o in ts o f l y i n g k -va lu ed p o in t i s
the i d e n t i t y
0.
P (t )
whose under
Use the tru n ca ted e x p o n e n tia l s e
quence :_________________________________________ _______ 0
where
a (f)
= 1 + e • f
a ls o a sh ea f o f
£p—
(c f.
o£_-r ------►o£
► 0
—F x l
L e c tu re 22,
(B )).
T h is s p l i t s
o ^ -a lg e b ra s v i a the p r o je c t io n
p 1:
s in c e
F x I -► F.
Opyj i s
T h is g iv e s
the diagram o f groups: -
H1(o p ) P ic (F ) l\\
Group o f I- v a lu e d p ts . a t
0 e P(t) .
r Group o f I- v a lu e d 1
I" Group o f k -va lu ed
L p ts .
L p ts .
of
II P( I )
J
I n o th er w ords, the Z a r is k i ta n gen t space 1
i s c a n o n ic a lly isom orph ic t o
H (F , o^,) .
a l l y an isom orphism o f v e c t o r spaces.
Tn
of
] -
H P (0
a t th e i d e n t i t y
One must check th a t t h is i s a c tu
T h is i s
l e f t t o the r e a d e r :
it
can
be done v i a the methods o f the Appendix t o L e c tu re 4.
3 $ (5 ) .
Now suppose th a t
The morphism
(# )
$
r Z a r i s k i ta n g e n t"] 0
space to f i b r e at 6
5
i s a c lo s e d p o in t o f
C (| )*
Let
^ =
induces an e x a c t sequence o f v e c t o r spaces: r Z a r i s k i ta n g e n t"] -► _
space t o _at
C (|)
5
,
*
_
We want to in t e r p r e t t h is whole sequence i n t r i n s i c a l l y on
r Z a r is k i ►
_ at F.
tan gen t
space t o
P (| )
X .
But lo o k a t
the e x a c t sequence o f sheaves: °F where
D CF
is
Op(D)
the curve co rresp o n d in g to
quence o f v e c t o r spaces: ( o,-,(D))
%
0
T h is d e fin e s the e x a c t se-
THE STRUCTURE OF n irfN p j)
a)
T z a r is k i ta n gen t
165
$
~| by L e c tu re 22
= [_space to C (| ) a t s j
H1 ( a-,) -
b)
T Z a r is k l tan gen t I space t o P (| )
and
by the automorphism
*1
0 by 2 ;
a t XJ T of
U
P (| ) ta k in g
0
to
X
I i.e .,
T
t r a n s la t io n by
and
d i n ('#) and (# ) ’ a re
under th ese i d e n t i f i c a t i o n s o f th e v e c t o r spaces. Check o f c o m p a t i b i l i t y :
G^
X.
The homomorphisms 0*
P r o p o s it io n : th e same
is
in a f f i n e
open s e ts
{ U ^ }.
Let
D be
d e fin e d
Any s e c t io n o f
by l o c a l eq u a tio n s
i s d e fin e d by d a ta :
Oi, -Hj_ e r(U±, 0^)
H ^ , where
- Hj /Gj and the c o rresp o n d in g curve
2)
in F.
Then
th e i n v e r t i b l e sh e a f
e r(U± n nj(
F x I
is
= G± + eH i
®( 3) ) =
^ ,)
,
g iv e n by l o c a l e q u a tio n s : .
$ ) is
d e fin e d
b y th e 1 Czech c o
c y c le
on
F x I.
S in ce
T h is i s
(G^G-j1}
computed out a s: = (Gi
+ eHf
- ■ [
i s a 1 - c o - c y c le d e f in in g
* (Gj 1)
' *
O p(D ),
the I- v a lu e d p o in t term .
• (1 - sHj • G j1) • i.e .,
{a . .} back to the o r i g i n i n II P ( l ) 1J . 5 T h is g iv e s the 1- c o - c y c le
X,
one t r a n s la t e s
by d i v i d i n g by t h is
[ ' • • ( i - y ] w hich i s
the image under th e tru n c a te d e x p o n e n tia l o f th e 1 - c o - c y c le *
in
o . Then P the o th e r hand, of
{ t .
.}
is
- r 5 k - 5 n ' G_. G. '
1 ,
J______________________ _
H ( 0- ) co rre s p o n d in g t o ®( D ) . On -t* i s c e r t a i n l y th e coboundary o f the s e c t io n {H^/G^} the p o in t o f
Np. OLD
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
166
The f i n a l i d e n t i f i c a t i o n i s v iz .
th a t i f
H °(F , L)
L
i s an i n v e r t i b l e
correspon ds t o the cu rve
l e f t to the re a d e r t o c a r r y ou t:
sh ea f on D,
F , and i f
the s e c tio n
hence t o the c lo s e d p o in t
s e 8
in
the lin e a r system P = P [H ° (L )] of
L,
then the Z a r is k i ta n gen t space t o
p
p h ic t o : H °(P , L )/ k • s
at
8
is
c a n o n ic a lly iso m o r
LECTURE 2 5 THE FUNDAMENTAL THEOREM VIA GROTHENDIECK-CARTIER Suppose
D C F
is a curve of type
t, that
D
5 € C(|), that Ojj,(D) corresponds to X € P(|), and that H 1 (F, L) = (0), then the following are equivalent:
neighborhood the form
i)
p(|)
is non-singular at
x,
ii)
C(|)
is non-singular at
5,
iii) iv)
C(|) P( 5 )
is reduced at is reduced at
x U.
P( t )
8, x .
This implies that i) and ii) are equivalent, and that iii) Naturally, i) implies iv) .
is isomorphic to
hence
If
Proof: By the results of 1 ° of the last lecture, there is a U of X e P(|) such that the subset ~1(U) of C(|) is of
and iv) are equivalent. P(|>
corresponds to L = oF (D) .
P( t ), and
But conversely, since
is a group scheme, if
P( t )
P(|)
and
is reduced, then they are both non-singular (2°, Lecture 2 k ) . In characteristic 0, these conditions always occur because of: THEOREM 1
over
k. If
Proof: at
e.
(Cartier) : Let
char(k) = 0, Let
v
then G
G
be a (algebraic) group scheme
is non-singular.
be the completion of the local ring
Og
of
G
Multiplication is a morphism G x G
such that
ii(e x e) = e: *
11 :
v
-+
therefore
— ii
G defines a homomorphism
[completion of
A
o_ _] s u 0 -exe k v
where 0 is the completed tensor product [i.e., use the fact that Oexe is the localization of 0 with respect to the maximal ideal (c^ 0 m@ + me ® ^e) ^
since
v
is a group law, the restriction of
n
to either
G x (e) C G x G or (e) x G is just the identity from
G
to
G.
C G x G Algebraically, this means that if you 167
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE map
d
fie ld u.
v
0^.
v
onto
by mapping e i t h e r o f the two f a c t o r s onto i t s re s id u e
k, and compose t h is w ith
fi*, the r e s u l t i s
*
/ X-
fi(a ) must go t o
0
if
the i d e n t i t y from
a € m, the maximal i d e a l o f
T h is means th a t i f
v
to
u, then
1 0 a - a 0 1
v 0^. v
e i t h e r fa c t o r o f
i s mapped onto i t s re s id u e f i e l d ,
i.e ., (a )
| i ( a ) e 1 0 a
+ a 0 1 + m 0 m . k
We now p ro v e : (* )
f o r a l l lin e a r fu n c tio n a ls
v
D:
v
a n n ih ila t in g
P roof o f (* ) : th a t
F = 0
on
k
Extend
and on
Then
D
is
D
F: u -*■ k
by r e q u ir in g
be the co m p o sitio n : ►v 0 k = k
a n n ih ila t e s
k.
u
M oreover, by the e x p r e s
a € m, D (a )
= 1 0 F[ 1 0 a + a 0 1 + (R) ] , = F (a )
But
D
f.
t o a l i n e a r map
Let
c l e a r l y lin e a r and
if
f
m/m2 -*■ k, th e re i s a d e r iv a t io n
and in d u cin g
u — -— ► i) 0 v k
D:
s io n ( a ) ,
2
m .
f :
k
(1 ® F) (R) € m,
+ (1 ® F) (R ) hence
R € m®
m
.
D indu ces
f as
a map from m/m2
to
v/m = k.
I t rem ains t o check: D (a • b) if
a , b e m.
= a • Db + b • Da
But ju s t compute: fi* (a
• b)
= n * (a )
• fi* (b )
= (1 a + a ® 1+ R) = (a 0 1)
• (1®b + b®1
• |i*(b) + (b 0 1)
+[ l ® a b - a b ® l = (a 0 1) /s R, S e m 0 m,
where
D (a • b )
and
• n * (b )
^ p T e u 0 i + u 0 m
= ( i ® P ) [ (a ® 1) = a • [(1
+ R * I ® b
+ (b 0 1) .
+ S)
• n * (a ) • n * (a )
+S*
l ® a
+ R * S
+T
T h e r e fo r e ,
• n*b + (b ® 1)
• u*a + T]
® F)|i*b] + b • [(1 ® F )n * a ]
= a • Db + b * Da To com plete the Let of
f 1, . . . ,
v.
fn
W r it in g
p r o o f o f the theorem , l e t
X1, . . . , Xn
be a b a s is
of
m/m2 .
be a d u al b a s is , and exten d th ese to d e r iv a t io n s D1, . . . ,
Dn
THE FUNDAMENTAL THEOREM V IA GROTHENDIECK-CARTIER
a = ( « ! , - ■ , . . cc ) > nJ a at, x“
a l = a.T I 9, . ,. . - Of ] 9 n i a i = 2 a± , 00, > ° a QO Daf - D ,1 * .. . . • Dnn ■ ■ we can map
i>
ham om orphically in t o
ft -
k [[X j, . . . ,
^
D^f x“
Xn ] ]
v ia
= A(f)
0 < | a | < °° (where
bi s
the image o f
an elem ent
b € v
th e g e n e r a l th e o ry o f com plete l o c a l r in g s , B:
_
x^
in
k) . On the o th e r hand, by
th e re i s a s u r je c t io n
k [ [ X . , , . . . , X ^ J — - i)
g (mod m ) . Then
such
th a t B(X^) =
. . ,
Xq ] ] i n t o i t s e l f in d u c in g the i d e n t i t y modulo
fo r e
A o B
th a t
A
i s an automorphism;
A ° B
and sin c e
is B
a homomorphism is
of
( X - , , . . . , XQ) ~ . s u r je c tiv e ,
k[ [X 1, T h ere
t h is im p lie s
i s an isom orphism . QED COROLLARY:
n o n - s in g u la r .
If
c h a r(k )
= 0 , then a l l the schemes
P (| )
are
T h e re fo re dim P (S ) = dinij^H1( F , op )
.
P r o o f : By C a r t i e r 's theorem , and the isomorphism ta n gen t space o f
P (t)
at
0
w ith
H1(F ,
o f the
Z a r is k i
O p ).
T h is p ro v e s E x is te n c e Theorem ( A ) , and r e -p r o v e s the theorem o f L e c tu re 23, f o r cu rves
D
such th a t
H1(F , O p(D )) = ( 0 ) .
LECTURE
26
RING SCHEMES; THE WITT SCHEME §0.
O u tlin e I n s e c t io n 1, th e v ie w p o in t o f the r in g schemes i s in tro d u c e d ,
w ith some b a s ic d e f i n i t i o n s and c o n s tr u c tio n s . I n s e c tio n 2, we d e v e lo p th e W it t r i n g scheme a s s o c ia te d w ith a prim e
p
and a p p ly i t
to the problem f o r w hich i s was o r i g i n a l l y used—
th e in v e r s io n o f a fu n c to r which one would n o t o ffh a n d have su spected was in v e r t ib le I
The problem i s d e v e lo p e d i n p a r ts
i s d e s c rib e d i n p a r t C, and i t
A
and
B, the W it t scheme
i s used t o s o lv e the problem in p a r t D.
The
re a d e r w is h in g t o sk ip t h is t a n g e n t ia l d is c u s s io n can rea d p a r t C o n ly . I n s e c tio n 3, p a r t A , we d e v e lo p the " u n iv e r s a l W it t schem e," a m o d ific a t io n o f the c o n s tr u c tio n o f §2;
(a " g e n e r a liz a t io n " i n th e sense
th a t the W it t scheme a s s o c ia te d w ith any prim e c a t in g " the u n iv e r s a l schem e).
We use i t
lo g a r ith m s "- a r i n g whose a d d it iv e tiv e
1.
can be g o tte n by "tr u n
s tru c tu re i s isom orp h ic t o the m u lt ip lic a
s tru c tu re o f the s e t o f fo rm a l power s e r ie s
f i r s t c o e ffic ie n t
p
in p a r t B t o o b ta in a " r i n g o f (o v e r a g iv e n r in g
R) w ith
In p a r ts C, D and E, we d e s c r ib e c e r t a in mappings
and tru n c a tio n s o f the W it t scheme, f o r w hich we s h a ll have use l a t e r in d e a lin g w ith power s e r ie s . §1.
G e n e r a lit ie s In any c a te g o r y
o b je c t
P, we
H an o b je c t ,
C h a vin g d i r e c t p ro d u c ts , and h a vin g a f i n a l
can d e fin e " r i n g o,
i,
o b je c t s " :
v , a, and
s e x tu p le s
(H , o,
i,
v , a,
n ),
\± maps:
o:
P
“ *■ H ( z e r o elem en t)
i:
P
—*■ H (u n it y )
v:
H
a:
H x H -*■ H (a d d it io n )
H (a d d i t i v e in v e r s e )
ii:
H x
H
H
(m u lt ip lic a t io n )
which s a t i s f y the ob viou s g e n e r a liz a t io n s o f the r i n g axioms f o r s e ts and s e t maps.
*
We s h a ll n ot count 1 ^ 0 r in g .
among th e r i n g axiom s; we a llo w th e t r i v i a l 1 71
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE G iven any o th er o b je c t s tru c tu re i s induced on from
C
A
o f our c a te g o r y , we fin d th a t a r in g
h H( A ) , so th a t
h H becomes a c o n tr a v a r ia n t fu n c to r
to R in g s . We are a c t u a lly a lr e a d y f a m i l i a r w ith some examples o f r in g ob
j e c t s in the c a te g o r y o f schemes. non-commutative r in g scheme.
The v a r i e t y o f a l l
A sim p ler example i s
n x n
m a tric e s i s a
the a f f i n e l i n e , which
has an obviou s r in g scheme s tr u c tu r e . Though our d e f i n i t i o n s h old in the c a te g o r y Schemes^ over
an
a r b it r a r y scheme
over
Spec z
S, we s h a ll here
o f schemes
o n ly be w ork in g w ith r in g schem
(" a b s o lu t e r in g schemes") and c e r t a in lo c a l i z a t i o n s o f
Z.
A ls o , in a l l cases which we s h a ll d e a l w ith , the u n d e rly in g schemes w i l l be a ffin e .
The maps d e fin in g the r in g scheme s tru c tu re s w i l l thus be g iv e n by
r in g homomorphisms.
These w i l l go in the o p p o s ite d ir e c t io n t o the scheme
maps (s in c e the r e l a t i o n between a f f i n e
schemes and r in g s i s
c o n tr a v a r ia n t)
but th ey w i l l a c t u a lly be the ex p e c te d e q u a tio n s , look ed a t d i f f e r e n t l y . Thus, where we would be accustomed to d e s c r ib in g a d d itio n on the a f f i n e l i n e as the map (x , x 1) -► x " r in g term s, the map
(s e n d in g
Z [X ]
A1 x A1 —►A1)
Z[X]
0 z [X ]
(A le s s t r i v i a l example i s in g to each r in g
R
the r in g o f p a ir s Spec Z [X , Y ]
a (X )
= X 0 1 + 1
X
a (Y )
= Y 0 1 + 1 0 Y
(x , y )
h^ (Ct)
sake
of
eR , w ith
y ')
^i(X) = X 0 X - Y 0 Y n (Y ) = X 0 Y
(i
+ Y 0 X
.
( f o r the moment), t o what elem ent o f the
does the i d e n t i t y map corresp on d ?) We s h a ll here be in t e r e s t e d in r in g the a s s o c ia te d fu n c to rs
hH .
c la s s o f f u n c t o r ia l c o n s tru c tio n s o f r in g s tia lly
term wise a d d it io n ,
^ .(x x * - y y ', x y ' + x ’ y ' ) .
w ith a d d itio n
and m u lt ip lic a t io n
C a llin g t h is scheme r in g
X -*• X 0 1 + 1 0 X.
the "Argand plan e fu n c t o r ," a s s o c ia t -
and w ith m u lt ip lic a t io n g iv e n by (x , y ) ( x ' , I t i s re p re s e n te d by
x " = x + x 1, i t becomes, in
determ in ed by
schemes
The
H m a in ly f o r the
r in g schemesre p r e s e n t a c e r t a in
h u (R)
from r in g s
R.
(E ssen -
th ey g iv e th ose c o n s tru c tio n s in which the r e s u lt in g r in g can be d e
s c rib e d as the s e t o f a l l n -tu p le s
(n f i n i t e
or i n f i n i t e )
o f members o f
R
s a t i s f y i n g c e r t a in p o ly n o m ia l c o n d itio n s , and where a d d itio n and m u lt ip lic a t io n are g iv e n by p o ly n o m ia l fu n c t io n s .) A r in g scheme over some l o c a l i z a t i o n o f
z
w i l l correspon d to a
c o n s tr u c tio n i n ,which the p oly n o m ia ls used may in v o lv e c e r t a in f r a c t i o n a l c o e f f i c i e n t s , and which thus can o n ly be a p p lie d to th ose r in g s in which c e r * t a in in t e g e r s are i n v e r t i b l e . One fu n c to r which i t i s easy to r e p r e s e n t i s th a t a s s o c ia t in g t o a r in g
R
the r in g
R [[X ]]
o f fo rm a l power s e r ie s in an in d e te rm in a te . We
s h a ll c a l l the r e p r e s e n tin g r in g scheme Spec Z [A Q, A 1, . . . ] e ffic ie n t s
(where
v .
The u n d e rly in g scheme i s
the A 's a re in d e te rm in a te s , r e p r e s e n tin g the c o
o f the power s e r i e s ) , and the a d d it iv e and m u l t i p l i c a t i v e maps
a re g iv e n ( i n
terms o f the r in g
Z[A Q, A 1, . . . ] )
by
RING SCHEMES: THE WITT SCHEME
1 73
oc(A±) = A± ® 1 + 1 ® A^_ i
XAJ
= X Aj ® Ai - j J=0
The tru n c a te d power s e r ie s r in g s , th e (f in it e - d im e n s io n a l) schemes o f in t e g e r s
V.
schemes
R tX l/X 11,
vn = Spec z [A Q, . . . ,
These form a p r o j e c t i v e system :
m < n
'
fo r every
th e re i s a tru n c a tio n map from
to the in c lu s io n :
Z [A Q, . . . ,
C Z [A Q, . . . ,
a re re p re s e n te d by
A ^ .,], to
An-1 ] ,
q u o t ie n t - r in g — p a ir o f p o s i t i v e
Vm and
corresp o n d in g v
is
the i n
v e r s e l i m i t o f t h is system . ( Some random n o te s on r e p r e s e n t a b i l i t y o f fu n c to r s o f R in gs -*■ R in gs by r i n g schemes: Such fu n c to r s must have the p r o p e r ty h(R ® R ') = h (R ) h ( R ') , hence the fu n c to r sen din g e v e r y r in g t o a f i x e d r in g A cannot be r e p r e s e n te d . (But one can c o n s tru c t a scheme w hich sends e v e r y r in g w ith connected spectrum to Z — i t i s a d is c r e t e union o f c o p ie s o f Spec Z. If A i s i n f i n i t e , t h is i s no” a f f i n e , s in c e i t i s n o t compact. If A -+ B i s a 1-1 map o f r in g s , h (A ) -*■ h(B ) must be a 1 - 1 map o f r in g s . Hence th e fu n c to r R -*■ R/p cannot be r e p r e s e n te d : the 1-1 map z -*■ Q g iv e s
z /p —♦* 0 .
Though the ’’power s e r ie s r i n g ” fu n c to r can be r e p r e s e n te d , th e ( f i n i t e ) ’’p o ly n o m ia l r i n g ” fu n c to r a p p a re n tly c a n 't . What would be a "g e n e r ic f i n i t e n o ly n o m ia l? " I )
§2 .
p -a d ic r in g s and th e W it t fu n c to r Most o f t h is m a t e r ia l appears in S e r r e , Corps Locaux, but the
p r e s e n ta tio n th e re i s more r a p id , and i t
i s done somewhat d i f f e r e n t l y :
the
form a lism o f r i n g schemes i s n o t th e re used.
A: M u s ic a l C h airs ( w h ile s h rin k in g ) Let
p
Let
A
own r a d i c a l ( i . e . ,
be a prim e number. be any r i n g i n w hich
such th a t
A/p
a re in d i s t i n c t re s id u e c la s s e s (a - b )^ 4 0 (mod p) .
p
g e n e ra te s an i d e a l w hich i s i t s
has no n i l p o t e n t s ) . mod p ,
I n o th e r w ords:
Then i f
two elem ents
so a re t h e i r p - t h pow ers:
a^ - b^ =
the F roben iu s endomorphism o f
A/p
is
1 -1 . However, i f
two elem en ts a re the same c la s s mod p , t h e i r p - t h
powers w i l l be i n the same c la s s (a + p x )p =
2
mod p :
aP + (p )a p " 1px + ( ^ ) a p _ 2 ( p x ) 2 + . . . = aP (mod p 2)
More g e n e r a lly , r e p la c in g s ee:
i f two elem en ts a re congruent
w i l l be congruent be congruent
mod pk+1, k+n
mod p
a + px
by
modpk (k / 0 ) ,
a + p^x
i n the ab ove, we
then t h e i r p - t h powers
whence, by in d u c tio n , t h e i r pn- t h
powers w i l l
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
m
Thus th e o p e ra tio n o f r a i s i n g to the p - t h pow er, though i t the congruence c la s s e s
(mod p)
under the p -a d ic m e tr ic .
d is tin c t,
Sin ce the Froben iu s endomorphism o f
n o t, i n g e n e r a l, be the i d e n t i t y ,
keeps
causes each t o ’’ sh rin k down” A/p
w ill
th ese congruence c la s s e s w i l l be p la y in g
a w ild game o f m u sica l c h a irs as th ey sh rin k , c o n fu s in g the s it u a t io n a b i t . However, suppose th a t iu s endomorphism i s of
A.
F or e v e r y
in
[a ].
o th e r [a ]. in
1-1 o n t o .) n,
(I.e .,
th a t the Froben
be any congruence c la s s
(mod p)
(p n) - t h power
(p n) - t h powers ol* i t s members a re a l l congruent t o each
we g e t a c a n o n ic a l congruence c la s s
Furtherm ore, as [a ]
is p e r fe c t.
[a ]
some congruence c la s s w i l l have i t s
Sin ce the
mod pn+1,
A/p
Let
n
mod pn+1
d e fin e d in
in c r e a s e s , each s u c c e s s iv e su b -co n gru en ce-cla ss
w i l l b e lo n g t o the p re c e d in g . C le a r ly , what i s b e in g d e fin e d i s a member o f
co m p letio n o f
A.
make t h is m e a n in g fu l.) LEMMA 1 . such th a t
A/p
A , the p -a d ic
(We should here assume the p - a d ic to p o lo g y se p a ra te d , to Or, assuming Let
A
is p e r fe c t.
A
com plete t o b e g in w ith , we g e t :
be a r in g com plete under the p -a d ic to p o lo g y , Then th e re i s a c a n o n ic a l map
sen din g each re s id u e c la s s t o i t s unique member w hich has fo r a l l
n.
phism o f
f
can be c h a r a c te r iz e d
A / p -► A
which
f :
A/p
-► A
(p n) - t h r o o t s
as the unique m u l t i p l i c a t i v e homomor
s e c tio n s the q u o tie n t map A-** A/p.
(P r o o f o f
the
l a s t sentence l e f t to the r e a d e r .) E xam ple:
If
A
is
sim ply the r in g o f p -a d ic in t e g e r s
f (A/p)
c o n s is ts o f
th e ( p - l ) - s t r o o t s o f u n ity and z e r o .
B:
The T e ic h m u lle r c o n s tr u c tio n I t i s w ell-kn ow n th a t a p - a d ic number can be re p re s e n te d u n iq u e ly
by a ’’power s e r i e s ” t h is i s
of little
0, 1 , . . . ,
p -i
aQ + a ^
+ a 2p
+ ...
where
a^ = o ,
1 ,...,
p -i .
But
m ath em atical i n t e r e s t , because the s e t o f r e p r e s e n t a t iv e s
o f the r e s id u e c la s s e s
mod p
is
c l e a r l y r a th e r a r b it r a r y .
Now, how ever, we have a b e a u t if u l f u n c t o r i a l s e t o f r e p r e s e n ta t i v e s o f the re s id u e c la s s e s .’ r in g s
A
Making use o f them (and g e n e r a liz in g t o the
d e a lt w ith i n the p re v io u s s e c t io n — we need o n ly add the hypo
t h e s is th a t
p
n ot be a
z e ro d i v i s o r i n
A, so th a t th ese power s e r ie s w i l l
be u n iq u e ), we g e t : LEMMA 2 ; z e r o - d iv is o r ,
betw een members o f g iv e n by
Let
such th a t A
A A/p
be a com plete p - a d ic r i n g where is p e r fe c t.
and sequences
p
i s not a
Then th e re i s a 1-1 correspondence
(| Q, |. , , . . . )
o f elem en ts o f
A/p,
RING SCHEMES: THE WITT SCHEME
175
Suppose we can d is c o v e r how t o c a lc u la t e i n s e q u e n c e -re p re s e n ta tio n s . the s tru c tu re o f
A
Then i t
should f o l l o w
from th a t o f
A
u s in g th ese
th a t we can r e c o n s tr u c t
A/pJ
I t w i l l tu rn out th a t we can do t h i s , but the r e s u lt s w i l l be in a more co n v e n ie n t form i f we u se,
n o t p r e c i s e l y the above corresp on d en ce,
but th e correspondence t 2, . . 0
«-
f ( t 0 ) + p f ( e ? 1) + p 2 f (?2 2)+ •••
(1)
d 0, t ,,
(T h is can be
seen from th e example worked out in Appendix A .)
C:
The W it t Scheme (an apparen t in t e r lu d e )
in to
A'00 = Spec Z[WQ, . . . ]
Let
w
be th e scheme Spec Z[XQ,
(2 )
•
and l e t us map
w
by th e map g iv e n by th e W it t p o ly n o m ia ls :
WQ = XQ V,
= x P £+ pXl
W2 = X0 + PX? + P 2x2
Wn = xPn + pXPn (p
is
s t i l l a f i x e d p rim e.
the c o o rd in a te s o f
A°°,
+ ...
+
Note th e c o n fu s in g te rm in o lo g y :
and th e
X *s
the c o o rd in a te s o f
D e fin e a r i n g scheme s tru c tu re on
A**
the
W, s
a re
w .)
by the maps
a(W ) = Ws 0 1 + 1 ® Wg a ll n(Ws ) =
A00 r e p r e s e n ts th e fu n c to r th a t a s s ig n s to the r in g sequences
(wQ, w ^ . . . )
m u l t ip lic a t io n , i . e . ,
o f elem en ts o f
R
R, the r in g o f i n f i n i t e
under componentwise a d d it io n and
the d i r e c t p rod u ct o f i n f i n i t e l y many c o p ie s o f
We c la im th a t th e r i n g scheme s tru c tu re on scheme s tru c tu re on
s.
ws X ' ) )
+ term s in v o lv in g lo w er cp's
=
--------------------------------- ---------------------Pk
*
As b e fo r e , i f
p/n,
we s e t
W /n = 0.
Note th a t by ” lo w er X* s , " we
mean, o f co u rse, X*s whose in d ic e s a re p ro p er d iv is o r s o f
n.
RING SCHEMES: THE WITT SCHEME S in ce the "lo w e r cp's" a re " i n t e g r a l " d i v i s i b l e by
p) by in d u c t iv e h y p o th e s is , i t
(i.e .,
have no denom inators
s u f f i c e s to show
»(w n ( X ) , ¥n ( I ' ) )
I 1) ) (mod pk)
T h is we do e x a c t ly as b e fo r e : pk , and "commute" 0
and
.
we s u b s titu te our "wn (X )
mula in the le ft - h a n d s id e , now d is c a r d in g the " t a i l " v i s i b l e by
181
wn /p>
=" f o r
term s in c e i t
is d i
so th a t the d e s ir e d congruence
becomes wn /p (cp(Xp , X 'p ) )
s wn /p (q>p (X , X ' ) )
(mod pk)
.
T h is h o ld s by our sub lemma.
gum
Hence a l l the c o e f f i c i e n t s must l i e
in
So, as b e fo r e , we g e t a r in g scheme
Spec Z [X ,,
w ith a homomorphism
Spec ZIW ,, W2, . . . ]
w hich becomes an Isom orphism on t e n s o r ln g w ith
B:
w,
z .
Spec ( Q ) .
Logarithm s o f power s e r ie s R e c a llin g th a t
d e s ig n a te s the " fo r m a l- p o w e r - s e r ie s " r in g
V
scheme, l e t us d e s ig n a te by e q u a tio n
AQ = 1.
V°
the c lo s e d sub scheme co rresp o n d in g t o the
T h is r e p r e s e n ts power s e r ie s w ith co n sta n t term
1, and
i s a commutative group scheme under th e r e s t r i c t i o n o f m u lt ip lic a t io n in o We s h a ll w r it e the R -va lu ed p o in t (1 , a 1, a p, . . . ) of V i n the more f a m i l i a r form its
1 + a .jt + a gt
fu n c to r o f
2
+ ...
.
We s h a ll d e a l w ith
v°
v.
i n terms o f
R -va lu ed p o in ts i n o rd e r t o make a v a ila b le t o us w ell-know n
r e s u lt s about fo rm a l power s e r ie s . C on sid er the f o llo w in g maps o f schemes: v w_ W x Spec (Q) — > ^ > -»
A00 x Spec (q)
where ♦ (w ,, V2, . . . )
= exp|^- ^
■►v° x Spec (Q) w m
1 tm
We cla im th a t the co m p o sitio n exten d s t o an isom orphism o f the schemes and
V °.
To check t h i s , we f i r s t recom pute t h is map on R -va lu ed p o in t s ,
in the case
R J Q.
Say, X
ai t;L = '*r( wi>
= * 0 w (x t , x 2, . . . )
.
W
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE We g e t :
2 V - » p [-£ “
E n xn
«"] m
n
d
a
= exp [ E log (1 ■
]
n
00
- n o n-1 The
and th e
x^
v
n>
•
a re now c l e a r l y m u tu a lly r e la t e d b y p o ly n o m ia l equa
t io n s w ith i n t e g r a l c o e f f i c i e n t s . QED Now the map from
A°° x Spec Q
to
V° x Spec Q
i s a homomor
phism from the a d d it iv e group s tru c tu re o f th e form er t o th e ( m u lt ip lic a tiv e )
group s tru c tu re o f the l a t t e r .
homomorphism.
Hence th e com posite map i s
Hence th e scheme-isomorphism betw een
group homomorphism on a dense su b set, i s ,
w
and
such a
V °,
b e in g a
in f a c t , an isom orphism o f group
schemes: W i s a r i n g scheme whose a d d it iv e s tru c tu re i s (The q u e s tio n " t o what o p e r a tio n on
w
s tru c tu re o f
C:
th a t o f th e group scheme \_°. v°
does th e m u l t i p l i c a t i v e
corresp on d ?" i s in v e s t ig a t e d in Appendix B .)
T ru n ca tion s We can "tr u n c a te " th e p o w e r -s e r ie s rin g-scn em e
v
because i t s
a r ith m e tic o p e ra tio n s a re such th a t the n -th term o f the sum or p rod u ct d e pends o n ly on the n -th and lo w er term s o f th e elem en ts g iv e n . n -th term depends o n ly on th ose terms whose in d ic e s d iv id e is ,
th a t g iv e n any s e t
o f a number i f
it
g e rs "tr u n c a tio n s e t s . " T^:
w:
W -*• A00
of
W.
we s h a ll c a l l such s e ts
For any tru n c a tio n s e t
w, th e
The r e s u lt ws = S
o f in t e
S, we g e t a tru n c a tio n
W -► Wg.
V a rio u s f a c t s a re map
In
S o f p o s i t i v e in t e g e r s w hich c o n ta in s e v e r y d i v i s o r
co n ta in s th a t number, we g e t a r in g scheme
Spec z [ x s ] s€s> a " tr u n c a tio n " homomorphism
n.
tru n c a te s t o
t r i v i a l t o v e r i f y about th ese schemes: a map
wg :
Wg -♦ AS,
The
and th e r i n g s tru c tu re
RING SCHEMES: THE WITT SCHEME on
Wg
is
th e unique s tr u c tu r e making t h is a r i n g homomorphism.
tru n c a tio n s e ts TS S ' o
Wr 1 ^
S C S’ ,
we g e t a tr u n c a tio n homomorphism
G iven two
Tg g , : Wg,
° TS' S" = TS S" * W i t s e l f i s > co u rse, wz+ , and i is Wp , the scheme c o n s tru c te d in §2. The scheme
f •••J
q
W|-1 n -1 } are i somorP h ic to the tru n c a te d power s e r ie s groups Vn , hut the o th e r tru n c a tio n s do n o t corresp on d to any f a m i l i a r c o n s tr u c tio n w ith power s e r ie s r in g s . We neea some g e n e r a l nonsense a t t h is p o in t : f:
maps o f grou ps: if
the
hf (X )
hf (X ) :
h^(X)
-*■ h g(X ) a re 1-1 f o r
A homomorphism
" 1- 1" i f
A -*■ B o f commutative group schemes w i l l he c a lle d
X,
"o n to ”
a re a l l on to.
The p r o p e r ty o f b e in g 1-1 behaves q u it e n i c e l y . le n t , by d e f i n i t i o n ,
whose fu n c to r i s
(We c o n s tru c t
K
I t i s e q u iv a
to b e in g a monomorphism in the c a te g o r y o f schemes.
G iven an a r b it r a r y homomorphism K A
the induced
a l l schemes
f:
A -► B,
we can g e t a 1-1 homomorphism
the fu n c to r o f k e rn e ls o f the induced group maps.
as the f i b r e i n
A
o f the Z -va lu ed p o in t
do we show th a t th e group o p e r a tio n l i f t s
to
0
of
B.
How
K ?)
On the o th e r hand, th e p r o p e r ty we have c a lle d b e in g "o n to " i s s tro n g e r than b e in g an epimorphism b o th o f schemes and o f group schemes. I t i s e q u iv a le n t t o the e x is te n c e o f a scheme map w hich
" s e c t io n s " f — a r i g h t in v e r s e map.
see th a t i t
g
T h is i s
from
B
back t o
A
c le a r ly s u ffic ie n t ;
to
i s n e c e s s a ry , we n o te th a t by our d e f i n i t i o n o f " o n t o " , the
i d e n t i t y map i n
h g(B )
id e n tity .
g
(But
must come from a map
g
in
h^(B)
such th a t
fg =
w i l l n o t i n g e n e r a l be a group scheme homomorphism.1)
We cannot in g e n e r a l c o n s tru c t a group scheme w ith the p r o p e r t ie s
o f a c o k e rn e l o f
f.
Hence, though e x a c t sequences can be d e fin e d (b y
the c o n d itio n th a t the induced sequences
-► h^(X )
h g(X )
-»■ h^(X)
-►
a l l be e x a c t-n o te th a t t h is im p lie s th a t the k e r n e l o f each map i s a c o k e r n e l to the p r e c e d in g ), th e y a re n o t so ea sy t o come b y. an onto map
A
B
0,
we can g e t an e x a c t sequence
N ote th a t the c o n d itio n s " 1 - 1 , "
However, g iv e n
0 -► Ker f
A
B
0
"o n to " and " e x a c t " r e s p e c t
base e x te n s io n . The tru n c a tio n maps we have d e fin e d a re a l l on to: we g e t a s e c t io n X i
D:
Wg
back to
in any way we l i k e ,
Wg,
G iven
S C S’
by " f i l l i n g in " the m is s in g c o o rd in a te s
e . g . , w ith z e r o e s .
Ca n o n ic a l maps There a re two s e ts o f maps from
W
to
w
w hich a re u s e fu l.
1 8l*
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE a)
D e fin e
Vn :
» — W
by
V n 0
lf
n |m
o th e rw is e .
( I n terms o f R -va lu ed p o in t s , f o r in s ta n c e ,
(0, 0, x 1 , 0, 0, x 2 , . . . ) * ) i )'
x 2, . . . )
=
We c la im :
Vn o v m = Vnm
ii)
Vn
i s an a d d it iv e isom orphism from
o f the tru n c a tio n i)
is
o b vio u s, and one checks th a t
phism o f the scheme
w
onto the k e r n e l
Vn
i s a t l e a s t an iso m o r
w ith t h is k e r n e l by lo o k in g a t R -va lu ed p o in t s .
check th e a d d itiv e n e s s , i t induced map on
w
Tz+ _n z+
s u f f i c e s t o te n s o r w ith
A00 x Spec q
i s a d d it iv e .
To
and show th a t the
q
We f in d , in f a c t ,
th a t i t
is
d e s c rib e d by W
H*
■.f nWm/n if n|m L 0 o th e rw is e . QJED
F or any tru n c a tio n s e t
S, we ob serve th a t we have, s i m i l a r l y , a map VS ,n :
where
S/n = {me z|nm e S),
wS/n
“ *■ WS W5 /n
w hich i d e n t i f i e s
w ith th e k e r n e l o f
the t r u c a t io n
WS b)
D e fin e
isom orp h ic scheme e ffic ie n t
1.
wS-nz+
v°:
le t
P (t )
W -+ w
Fn :
by i t s a c t io n on R -va lu ed p o in ts o
be a power s e r ie s in
L e t us d e s ig n a te by
Tn
t
w ith f i r s t c o
the fo rm a l n -th r o o t s o f
t;
then the p rod u ct n p ( Ti ) i b e in g symmetric i n the
t
> s ,
w i l l a g a in be a power s e r ie s in
c o e f f i c i e n t s w i l l be p o ly n o m ia ls in the c o e f f i c i e n t s o f o f the map d e fin in g the r e l a t i o n between
v°
and
A00
P.
t,
and i t s
An exam in ation
shows us th a t
Fn
correspon ds t o th e map (W-| ) W2, . . . ) o f R -v a lu ed p o in ts o f Fn
A00.
i s a r i n g homomorphism.
-
(wn , w2n> . . . )
We n ote th a t t h is i s a r i n g homomorphism, so A ls o
Fn ° Fm = F ^
.
185
RING SCHEMES: THE WITT SCHEME
We deduce (b y the u su a l Mo n ly - t h o s e - in d ic e s - t h a t - d e v id e - m M a r guments) th a t s im ila r maps ( a l s o r i n g homomorphism) a re d e fin e d betw een the tru n ca ted schemes: P S ,n : c)
Look a t
WS
Fn ° Vn :
wS/n
•
ch eck in g i t
on R -v a lu e d p o in ts o f
we f in d :
-if n#
Fn o Vn = m u lt ip lic a t io n by I n some c a s e s ,
one can d iv id e by
LEMMA 5: P r o o f:
n
n:
i s i n v e r t i b l e in
W x Spec Z [ l/ n ],
We r e c a l l th a t one can tak e n -th r o o t s o f monic power
s e r ie s i f we a llo w d i v i s i o n o f th e c o e f f i c i e n t s by by
n
in
A00,
n;
hence one can d iv id e
w x Spec z [ i / n ] . QED Thus, o v e r Spec Z [ l / n ] ,
E:
Vn
i s a r i g h t in v e r s e to
D ir e c t p rod u ct d eco m p osition s The d i r e c t p rod u ct o f two r i n g schemes
w ith th e te n s o r p r o d u c t!) the schemes f o r
H
and
(Do
in
G :
G
th e elem en t ( 1 , 0 )
=
H
x
of
e
A00 = Spec z[W1, W2, . . . ]
I o f th e p o s i t i v e in t e g e r s ,
^
and
H '
S
is
S of
=
0
S -va lu ed idem potent s , and
H
and
H 1
are
r e s p e c tiv e ly . o v e r Spec z .
A00 has a ( Z -va lu ed ) * rij(Wi ) = 1
th e re i s a 1-1 c o r
G ,
i s an
H x H *
the k e r n e ls o f m u lt ip lic a t io n by 1-e and Look a t
ov e r
I t s u n d e r ly in g scheme i s th e p rod u ct o v e r
S t a r t in g w ith a commutative r i n g scheme e
H !
n o t confu se t h is
H 1 .
respondence betw een d eco m p o sitio n s p o in ts
and
H
d e fin e d ju s t l i k e the d i r e c t p rod u ct o f two r in g s .
set
Fn .
i
€ I
i
4 I
F or e v e r y sub
idem poten t p o in t
and c o r r e s p o n d in g ly decomposes:
We mean, o f c o u rse, the rin g-sch em e o p e r a tio n o f m u lt ip lic a t io n by n, which does n o t correspon d t o c o o r d in a te -w is e m u lt ip lic a t io n by n e x c e p t f o r th e c o o rd in a te s w^ o f A00. The same should be u nderstood in the f o l lo w in g lemma, co n cern in g m u l t ip lic a t io n by th e Spec z [ 1 /n] -v a lu e d p o in t ” i /n.
186
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE Hence
adm its a l l th ese d ecom p osition s t o o , o v e r
W
The q u e s tio n a r is e s :
suppose
P
Spec Q.
i s any s e t o f p rim es, and
9 = Spec z [ . . . , 1 / p ,. . . ] p^p Then how many o f th ese d ecom p osition s o f
9 ?
E q u iv a le n t ly , which o f the
no prim es
in
P
can be asked f o r su bsets Let
Q,
w by a tru n c a tio n
be the s e t o f prim es n o t in
d e s ig n a te the m u l t i p l i c a t i v e
by
P
(r e s p e c t iv e ly
Q)
P r o o f: L1£j
+
enZ +
is
the same ques
and
P.
Let
P( r e s p e c t i v e l y
semigroup o f p o s i t i v e in t e g e r s gen era ted
1.
Note th a t th e s e ts
nP
fo r
n € Q
Z+ . LEMMA 6:
s
9 — have
ICS.
Q)
p a r t it io n
a c t u a lly occur over
are r a t i o n a l o v e r
o c c u rrin g i n the denom inators o f t h e ir co o rd in a te s ?
C le a r ly , i f we r e p la c e t io n s
w 0 Spec Q
= w- 1 ( t ^ )
sim p ly
I t s e lf Is
For any For any
I V
11
1.1
n e Q, n e Q,
9.
we n ote th a t the p r o je c t io n g iv e n by
F , hence i s
r a tio n a l over
11
r a tio n a l.
9;
i n p a r t ic u la r ,
Now
EnP
T h is i s ,
en— e W i s r a t i o n a l o ver
=
( snZ *
” ep n z + )
fo r m a lly , an i n f i n i t e p rod u ct.
However, i t
"c o n v e rg e s "
c o o rd in a te w is e in the sense th a t each c o o rd in a te i s co n sta n t a f t e r a c e r t a in number o f term s.
T h is i s
c le a r in the
tru e in the w - c o o r d in a t e s .
COROLLARY: i s r a t i o n a l o ver
A°° c o o r d in a te s , hence i t
i s a ls o
Hence the le ft - h a n d term i s r a t io n a l.
For any tru n c a tio n s e t
S
and
n € Q,
enpns €
9.
LEMMA 7: L e t
S
X_
= b P r o o f:
If
p r o o f would be c le a r . w ith o u t f i n i t e n e s s .
neQ
be a tr u n c a tio n s e t . e„^-nQ( ^ b
wQ)
Then o ver
( a l l schemes ten s o re d w ith
9).
s
our s e t o f idem poten ts were f i n i t e , It
9
the method o f
turns out th a t we can here a p p ly the same p r o o f
We are t o v e r i f y th e u n iv e r s a l p r o p e r ty o f p rod u cts
on X -va lu ed p o in t s . G iven a fa m ily o f maps an : X -► enpng ( ws ^ 9 we take the map ocn : X Wg. T h is i n f i n i t e sum i s d e fin e d by e x a c t ly the same re a s o n in g used in the
l a s t lemma, and i s c l e a r l y the unique mapwhose
com p osition s w ith the p r o je c t io n s g iv e the
a .
187
RING SCHEMES: THE WITT SCHEME
tain
COROLLARY: n € Q, then LEMMA. 8:
If a set I is the union of sets is rational over 9 . Let n e Q,
enPhs^ WS^ Proof:
and “
S
for cer
be any truncation set.
Wpns/n
Then
^a11 scIieines tensored with
9) •
Consider the maps
,
PS,n
enpn s < V
nP n S
projection
WS .
truncation
wS/n
.
n ,. u/n;vS,n
»p n s/n
any section of truncation
All are rational over 9 . It will suffice to show that the com position of the maps going to the right and the composition of the maps go ing to the left are ring scheme homomorphisms, and are inverses to one an other. Tensoring with Spec Q and using the A-coordinates, we verify easily that this is so.
QED Hence we have, for every truncation set primes,
S
and set of
P:
en p n s ( * s ® ? )
*
"sns/n®
?
(One might want to know whether what we have achieved is al ways a maximal direct product decomposition of Wg 9; equivalently, whether the for I a union of sets if fl S (n e Q) are the onl^ idempotents of wg. We prove in Appendix C that this is so.)
APPENDICES TO LECTURE 26
A ).
(C f. end o f §2B, p.
175)
We s h a ll f ig u r e out e x p l i c i t l y how to add the f i r s t two terms o f s e r ie s fo r
o f th e typ e o r i g i n a l l y p roposed ( P 0) ) *
sQand (f(a )
+ p f(b ))
+ ( f ( a ')
R educing mod p , due c la s s
Whatwe must do
is
s o lv e ,
s 1, th e congru ence:
a,
we g e t
+ p f ( b ') )
= f ( s 0) + p f ( s , )
and r e c a l l i n g th a t
f(a )
(mod p 2) .
b e lo n g s t o th e r e s i
a + a* = sQ.
S u b s titu tin g t h is back in , and i s o l a t i n g the term in
s 1,
we g e t p f ( s 1) = p f ( b )
+ p f ( b ')
+ ( f(a )
+ f ( a 1) - f ( a + a 1) )
(mod p 2) .
We know th a t th e l a s t e x p r e s s io n i s a m u lt ip le o f cou ld e x p ress i t fin is h e d .
The problem i s
i s as f o l l o w s : a + a’,
as such, we cou ld " d iv id e th rou gh " t o g e t an e x p r e s s io n f o r
( f ( a 1/p ) + f ( a ,1 /p ) ) p
and, b e in g a
by
p
p.
I f we
and would be
f(a + a ! ) .
The s o lu tio n
b e lo n g s t o the congruence c la s s
p - t h pow er, must b e lo n g t o the su b class
mod p
of
f ( a + a 1) ! Now a p o ly n o m ia l i n
(x + y )p
can be w r it t e n
x
y
and
( f ( a 1/p ) + f ( a ' 1/p ) ) p
ee
f(a )
p f ( s 1) = p f ( b ) f ( s 1) = f ( b )
+ f ( a ')
+ p t fC a 1^ ) ,
+ p f ( b ' ) - p [ f ( a 1/p ) , + f ( b 1) - [ f ( a 1/p ) ,
s1 = b + b ' So
xp+ yp+ p [x , y ] , where
w ith i n t e g r a l c o e f f i c i e n t s .
Hence
[x , y ] i s f(a + a ! ) =
f ( a ,1 /p ) ] .
Hence
f ( a ,1 ^p ) ]
(mod p 2)
f ( a ,1//p) ]
(mod p)
- [ a 1/p , a ,1 ^p ]
(a , b , . . . ) + ( a ’ , b 1, . . . )
= (a + a T, b + b l - [ a 1^p , a ’ 1^p ] , . . . )
I f we would l i k e a s e t o f c o o rd in a te s in w hich we can compute p u r e ly by p o ly n o m ia l o p e r a tio n s , we should e it h e r s u b s titu te s u b s titu te
b = p1^p .
a = o;p
or
The f i r s t c h o ic e would be unw ise, sin c e when we
b r in g in the t h ir d term o f the exp an sion , we would have t o change a g a in , and so on.
The second c h o ic e i s
the exp an sion ( 1 ) , (a ,
0 ,...)
the one we made in the t e x t .
In terms o f
the above r e s u l t i s : + (a ’ , 0’ , . . . )
= (a + a 1, 0+0’ - [a , a 1] , . . . ) 189
.
.
190
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
B) .
(Cf. end of §3b, p. 182) We want to investigate the "multiplication" induced on V° by the isomorphism with w. We shall, as usual, look at R-valued points. What we have to describe is then a binary operation on power series, which we shall write "°". We find first of all, using the formula for the isomorphism between A°° x Spec Q and v° x Spec Q that (1-at)0(1-bt) = 1 - (ab)t, when a and b are members of any ring containing q. It follows that this must hold for a and b in any ring. Since o distributes with respect to multiplication, we get m n m,n
n 0 - “j_t)»n (1- Pjt) = n (1 -
•
For the sake of simplicity, let letus us call call the the a (rather a than (rather than the 1/a.) /a^) the "roots” "roots" of nm (1 - a.t) a^t) . (Under (Under this this definition, definition, aa polynomialhas hasan anindefinite indefinitenumber number of of zero zeroroots.) roots.) Over Overan an algebraically algebraically closed field k, then, we can describe °° precisely precisely for for thethe finite finite (i.e., (i.e., terminating) power series: it is the thefunction function sending sendingany pair any of poly pair ofpoly nomials to the polynomial whose roots are areall all the thepairwise pairwise products products of of those of the given two. It is easy to see from this that the rational functions (quotients of polynomials) form a subring, which has, in fact, the structure of the "group ring" on the group k.* The full power series ring is the completion of this ring under a metric that makes two points "close" if the first n symmetric functions on them agree (though, of course, it takes some rigging to define the "symmetric functions" on a family some of whose members occur with nega tive multiplicity). This interpretation goes through in a more or less formal way for any ring without zero divisors. We can construct over any such ring a unique polynomial whose roots are all the pairwise products of the roots of two given polynomials, even if these roots don’t lie in the ring itself. The rational functions in the monic-formal-power-series group form a sub ring which can be thought of as the "semigroup ring" on the nonzero elements— It is amusing to note that a somewhat similar construction turns up in algebraic topology. A complex vector bundle on a space X induces a "Chern class polynomial over the ring Heven(X). It turns out that the operation "©" on bundles corresponds to multiplication of polynomials, while the taking of tensor products of bundles corresponds to the opera tion associating to a pair of polynomials the polynomial whose roots are all the pairwise sums of the roots ("in" H )of the given two.' Such an operation cannot be "defined in our power-series context, because the "in definite number of zero roots," which can be ignored under our "multipli cative multiplication," wreaks havoc with an attempt to set up an "addi tive multiplication." The essence of the problem is that our polynomials are of indefinite degree in t, while the topologist's polynomials have a definite degree, corresponding to the dimension of the bundle.
191
APPENDICES TO LECTURE 26
but we now must a llo w n o t o n ly fo rm a l sums o f elem en ts a c t u a lly in the r in g , but a ls o sums o f elem en ts ( i n t e g r a l l y )
a lg e b r a ic o v e r th e r in g ,
th ey appear i n f u l l s e ts o f c o n ju g a te s .
so lo n g as
The f u l l r in g i s a g a in a com ple
t io n . The w
— the c o o rd in a te s o f the image in
A00 — a re the moments
Z o f. C ).
We s h a ll sk etch a p r o o f th a t the d i r e c t p rod u ct decompo
Wg 0 9
s itio n o f
g iv e n in our f i n a l theorem i s maximal.
We f i r s t n o te th a t e v e r y idem poten t o f wQ o ver 9 S A 9 and the o n ly idem poten ts o f the l a t t e r a re
g iv e s an
idem poten t o f subsets the
I
e-j-.
o f S;
hence th e o n ly
p o s s ib le idem p oten ts i n th e form er are
What we d e s ir e t o show then i s
and o n ly i f ment i s :
I
i s a union
fo r every
p €
fo r
th a t
o f s e ts nP n S Pand elem en ts
m,
9
i s r a t i o n a l o ver
(n € Q ) . pm
An e q u iv a le n t
e S,
we have
if
s ta te
m € I
< = >
pm e I . It
c l e a r l y s u f f i c e s to
check t h is i n th e case P = ( p ) ,
s in g le t o n .
So suppose we had a r a t i o n a l
c o n d itio n .
Then th e re would e x i s t
th a t
m, p m , . . . , pk_1m e I ,
m e Q
p^Sn e S - I
n e c e s s a r y ).
C on sider the f a c t o r o f
co n ven ien ce)
co rre s p o n d in g t o
a tr u n c a tio n o f w hich i s
w ith
mP n S. k-,
k
g r e a t e r than z e ro such I
and
S -I
(we s h a ll drop the " 5 »s " I t w i l l be isom orp h ic t o .
I f we now f o l l o w
• ;P * through a l l th ese tr a n s fo r m a tio n s , we fin d th a t i t
prod u ct d eco m p o sitio n o f t h is scheme from w hich i t
a
n ot s a t i s f y i n g t h is
(in te r c h a n g in g
Wg
Wr-
and
I
if fo r
Wpn gy-m,
our idem potent
g iv e s us a d i r e c t
can be deduced th a t the
tr u n c a tio n : Wr 1
s p lits .
Wr ^ k -1 1 U ,...,p 1
^ki j
But i f wetake z/ p -va lu ed
p o in t s ,
( a l l schemes ten sored w ith
t h is means by the r e s u lt s
§2D th a t: z/pk
z/pk_1
s p lits .
C o n tr a d ic tio n !
of
LECTURE 27 THE FUNDAMENTAL THEOREM IN CHARACTERISTIC
a l l schemes
1° .
Let
H
X
over
k, k:,
be any r i n g scheme o v e r th e f i e l d H
d e fin e s a sh ea f o f rr.in g s
r (U , < H > ) In p a r t ic u la r , i f
A1
is
g iv e n i t s < A
i.e .,
p.
k.
< H >x
Then, f o r on
X v ia
= Hem, (U , H ) c a n o n ic a l r i n g scheme s tr u c tu r e , then
>x
-
°x
we r e c o v e r th e s tr u c tu r e sh ea f on
the c h a r a c t e r is t ic i s
p
>
X.
On the o th e r hand, suppose
Then u s in g th e W it t rin g-sch em e f o r
p, we can
g e t an in t e r e s t i n g s h ea f o f r in g s , B«°,x
=
:x n,
•
we g e t a sh ea f o f r in g s from th e tru n ca ted
scheme: ®n,X = < W( i , p , p 2, . . . , p n _1 ) x Spec k These sheaves o f r in g s form a p r o j e c t i v e
system o f sh eaves,
under th e ob viou s tru n c a tio n s Tn , n ,: w ith in v e r s e l i m i t =
o^ .
x,
®n,X
® n ',X
and w ith f i r s t term
(n > n T) ffl1 x
=
< A1 >x
These sheaves^were in tro d u c e d by S erre a t^ th e M exico C onference
in T o p o lo g y ( 195 .6 ) .
To d e s c r ib e t h e i r cohom ology, S erre in tro d u c e d c e r t a in
fundam ental homomorphisms c a lle d the B o c k s te in o p e r a t io n s . th e s e , i t
,
i s c o n ven ien t t o take a v e r y Say
e , C1
a re two a b e lia n c a t e g o r ie s , and
F : C -*■
i s a l e f t e x a c t fu n c to r w ith d e r iv e d fu n c to r s
Assume th a t
a) b)
£ z+
To understand
g e n e r a l f u n c t o r i a l s e t t in g :
R1F.
and
s u r je c t iv e homomorphisms form an in v e r s e system . 193
An “ * A n , ,
a ll
n’ < n
1 9k
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
Let AQ = (0 ), and AQ AQ be the 0 homomorphism. Let Kq n t be the kernel of AR -► AQt. Then there is a spectral sequence, with Eh q
(Warning:
this
p
=
RP+q
f ( k p+ i
,p )
is not the characteristic of
•
k.)
In fact, if BP ,q
-
Z?’q
-
Im
R?+q p ( V r , P } ^ rP+x})
.
THE FUNDAMENTAL THEOREM IN CHARACTERISTIC
p
195
In p a r t ic u la r , E °’ q
and
Z ° ,q
=
B ^ X , ffl,1>x)
=
H ^ X , Oy)
i s th e subgroup o f D e fin itio n :
H ^ X , £x )
w hich l i f t s
The homomorphisms
c a lle d the B o c k s te in o p e r a t i cns
dp
to
H ^ X , Bp x ) .
Z^,q C H^CX, Oy)
on
a re
.
The p o in t i s : (* )
n k er (P r )
= f x € H ^ X , ox ) |x l i f t s
r
I
t o H ^ X , Br X)1
fo r a l l
r
’
J
To have a b e t t e r u n d erstan d in g o f t h is a p p aratu s, we need one more f a c t : K er P r o o f:
“* \ ,X ]
( ®n+ i , X
T h is f o llo w s
s
•
im m ed ia tely from th e co rre s p o n d in g r e s u lt
on W itt r in g schemes, v i z . , the k e r n e l o f the tr u n c a tio n : ff( i , p , p 2, . . . , p n }
"•
* { i , p , P a , . . . , P n- 1)
i s isom orph ic, as a d d it iv e group scheme, t o Lectu re 2 6 , §3D (a )
A1 .
T h is was remarked in
(ta k e V n )• P
T h e r e fo r e ,
QED
pr+1
i s a c a n o n ic a l homomorphism:
Ker O r )
H5L+1 (X , Oy) /im O r )
-
n I # (X , ox )
2 °.
Let
F
•
be a n o n -s in g u la r p r o j e c t i v e s u rfa c e o v e r
(a c t u a lly n e ith e r the n o n - s in g u la r it y , nor the dim ension b e in g s e n t ia l) .
2
k is es
We can now p ro ve th e fundam ental theorem c o n cern in g the f ami H e
o f curves on
F when
c h a r(k )
= p.
Let
P
be th e connected component o f
We know from L e c tu re 2k th a t the
the id e n t it y in the P ic a r d scheme o f
F.
tangent space
c a n o n ic a lly isom orp h ic t o
TQ p
to
v ia th is id e n t ific a t io n r -
P
at
0
is
H1 (F , Op)
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE
196
THEOREM: space o f
The ta n gen t space t o
H1 (F , Op) P r o o f:
t e T^ o ,r
Let
I (n ) and l e t
t
Pped
correspon ds to the sub
a n n ih ila te d by a l l the B o c k s te in o p e r a tio n s . Let = Spec ktsl/C ® 11)
>
correspon d t o the homomorphism
h2: a)
t
is
I (2 )
ta n gen t t o
lifts
* p
Ppec^ i f
t o a morphism
anh o n ly i f ,
fo r a l l
n,
h2
h^:
h2
I (2)- ± y V n
/
T
^
^
(n ) P roof o f a ): le t
h2
and
t
In terms o f l o c a l r in g s ,
f p: ft C v
Let it
r — ►k [e ] /e2
be th e i d e a l o f n ilp o t n e t s .
fo llo w s th a t
le t
v = Oq p ,
and
d e fin e
f 2( ft ) = 0.
in ( A ) , L e c tu re 22,
f g lifts
Sin ce to
v ----- ►u/ft
Then i f
u/ft
f
. t
i s ta n gen t t o
Ppecp
i s r e g u la r , by the P r o p o s it io n
:
p — -— ►k [ 6 ] / ( e 2)
fn X k [e ] / ( e ) hence
h^.
C o n v e rs e ly , i f
fo r every
h2
n, t o an
f
Suppose
Let
= a • e,
a € k.
f 2(x )
lifts
to
.
x € ft ;
h2 l i f t s then
to x 01 = 0
then
f 2 lifts ,
f o r some
m.
Then
0 =
+
= ^ m + l^ x ^ = [a • e + . . . ] m
T h e re fo re i.e .,
t
c P = 0, is
hence
tan gen t to
a = o. Pped •
T h is means th a t
f2
a n n ih ila t e s
ft,
THE FUNDAMENTAL THEOREM IN CHARACTERISTIC Now t r a n s la t e t h is i n t o fu n c to r s : H a m (I,ns, L (n ), P) r/
C H o m ((n)J I,-, u nuiiHx
fo r a l l
p
197
n,
II P ( | ) )
2II
;n h 1( f
, oi ) ^ y i (n ) 2II
H1(F , But
[Op 0 k [s ]/ e n ] * ^
H1 (F ,
oF • [1 + Op 0 ( e ) / ( s n) ]
e .
i d e a l g e n era ted b y
(o p 0 k [e ]/ 6 n) * )
.
where
(e )
d en otes the
T h e re fo re
[o p ® k [e ]/ e n ] * )
s H1 (F , oj!,) ® H1 (F ,
U op ® - ^ - )
.
I t f o llo w s t h a t : Subgroup o f
I ^ - v a l u e d p o in ts o f
P
at
0
211
H1 (F ,
1 + Op ®
) (e )
211
H1 (F , < V° >p )
Now we use the r e s u lt s o f L e c tu re 2 6 , (E ) .
We
r in g scheme o v e r a f i e l d
p,
is in v e r tib le .
T h e r e fo r e
o f c h a r a c t e r is t ic w
decomposes as
Q, = a l l prim es but
b)
p
ft
p
( E ) ,w ith
P = { 1 , p , p 2, . . . , )
P = £p)
T h e r e fo r e , i f
in
a re w ork in g w ith the W it t so e v e r y prim e e x c e p t
< n-1
and
p; p
0 4.1
Q = in t e g e r s prim e to > n,
we
p .
g e t:
V ia the tr u n c a tio n :
Wd , 2 , . . . , n - 1 5 x S p ec(k )
-
w( 1, p , p 2, ___,p ^ } * sPe 0 ( lc)
the l a t t e r r i n g scheme i s a d i r e c t summand o f th e fo rm er. T h e r e fo r e , f o r e v e r y
n,
we g e t a diagram :
LECTURES ON CURVES ON AN ALGEBRAIC SURFACE I^ - v a lu e d
i
ss
p o in ts o f P j at o
H1 (F , < * CT, 2 , . . . , n - i }> p >
,
Y
H
< Wn , p , . . . , p * } > F , I^ - v a lu e d
,
j p o in ts o f P
j
>
S H
p )
»
et H1(F , Op)
at o T h is shows th a t an elem ent 4)
if
and o n ly i f
it lifts
oc e H (F , Op) to
H1 (F ,