137 2 9MB
English Pages [178] Year 2012
O X
F O
R
D
I B
D
I P L O
M
A
P
R
O
G R
A
M
M
E
WORKED SOLUTIONS
M at h e M at i c s
s ta N D a R D C O U R S E
C O M PA N I O N
Laurie Buchanan
Jim Fensom
Ed Kemp
Paul La Rondie
Jill Stevens
le v e l
WORKED SOLUTIONS
1
Functions
Answers
b
y 16 14 12 10 8 6 4 2
Skills check 1 a
y 4 F 3 2 1
D
–4 –3 –2 –1–10 –2 –3 –4
2
A
C
–2 –1 0
1 2 3 4 5 x E
b
A(0, 2), B(1, 0), C(−1, 0), D(0, 0), E(2, 1), F(−2, −2), G(3, −1), H(−1, 1)
a
4x + 3y = 4(4) + 3(6)
y
c
B
6 4 2 –3
–2
= 16 + 18 z 2 − 3y = (−10)2 − 3(6)
–1 0 –2
5
a
b
y − z = 6 − (−10)
c
= 16 =
=− a
85 60 13 60
3x − 6 = 6
3x = 12 x= b
= x 2 + x − 20
Investigation – handshakes Represents one person. 1
4 So 4 people require 6 handshakes.
5x = −3 − 7 = −10 x= c
b
Number of people
12 = 22 x=
4 a
−2
+ 6 = 11
x+
10
y 4 3 2 1 –4 –3 –2 –1–10 –2 –3 –4
Represents one handshake
a
5x + 7 = −3
x 2
(x + 5)(x − 4) = x 2 − 4x + 5x − 20
2(4) 5 6 ( 10)
=− 3
(x − 1)(x − 3) = x 2 − 3x − x + 3 = x 2 − 4x + 3
= 6 + 10 d
3 x
= x 2 + 9x + 20
= 82
2x 5 yz
2
(x + 4)(x + 5) = x 2 + 5x + 4x + 20
= 100 − 18 c
1
–4
= 34 b
1 2 3 4 5 x
1 2 3 4 5 6 7 x
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Number of handshakes
2
1
3
3
4
6
5
10
6
15
7
21
8
28
9
36
10
45 Worked solutions: Chapter 1
1
WORKED SOLUTIONS c Number of handshakes
y
4
45
3 2
25
1
15
–2 –1 0 –1
5 2 4 6 8 Number of people 1
2
x
0
Function. All x values are different
b
Function. All x values are different
c
Relation. The domain contains more than one 4
d
Relation. The domain contains two ones
e
Relation. The domain contains two – 4s and two –3s
0 –1
f
Function. All x values are different.
–2
a
The domain is {0, 1, 2, 3, 4} The range is {0, 1, 2} It is a function because the domain has exactly one of each value.
4x
3
y
a
b
2
Relation. Crosses twice d
H = 2 n (n – 1)
1
–2
10 x
Exercise 1A 1
y
35
0
d
c
Function. Crosses only once e
y 2 1 1
x
2
Relation. Crosses twice f
y
The domain is {–1, 0, 1, 2, 3}
x
0
The range is {–1, 0, 1, 2} Not a function as domain contains two −1s. 3
It is a function because the domain has exactly one of each value. g
Exercise 1B 1
a
Function. Crosses only once y 2
y
1 0 –1
Function. Crosses only once b
y
2
3
4
5 x
–2
x
0
1
Relation. Crosses twice y
h
3 2 1
0
x
–5 –4 –3 –2 –1 0 –1
1
2
3x
–2
Function. Crosses only once
Function. Crosses only once
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
2
WORKED SOLUTIONS 4
y
i 2
y2 = 4 − x 2, y = ± 4 − x 2
1 –2 –1 0 –1
1
There are two possible values of y for any given x. For example, When x = 1, y = 3, − 3. The same value in the domain has two possible values in the range. Therefore x 2 + y 2 = 4 is not a function.
2 x
–2
Function. Crosses only once 2
a
Manipulate the equation to make y the subject:
y=x
Exercise 1C 1
y
y=0
3
y 18 16 14 12 10 8 6 4 2
2 1 –2 –1 0 –1
1
2
3x
–2
b
y=x+2 y 3 2 1
–1 –0.5 0 0.5 1 1.5 2 2.5 x
–3 –2 –1–10 –2
c
1 2 3 4
2
x
y
y 2 1 1
y = 0, x = 0. 8 6 4 2
y = 2x – 3
–2 –1 0 –1
f(x) = 3x
2
3
4
–8 –6 –4 –2–20 –4 –6 –8
x
–2
2 4 6 8 x
–3
d
3
y=4 5
y
y
8 6 4 2
4 3 2
–8 –6 –4 –2–20 –4 –6 –8
1 –2 –1 0 –1
1
2
3 x
–2
3
e
Yes. A vertical line will only cross them once.
f
No, vertical lines such as x = 3 are not functions. 3 2 1
y = 0, x = –1.
4
y = 2, x = – 2. y 8
y
–2 –1–10 –2 –3
2 4 6 8 x
6 4 1 2 3 4x
2 –5 –4 –3 –2 –1 0 –2
Not a function as a vertical line crosses the region in many places
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
1
2
3
4
5 x
–4 –6 –8
Worked solutions: Chapter 1
3
WORKED SOLUTIONS 5
y = 2, x = 1.
y
b
16
y 8 6 4 2
14 12 2 4 6 8 x
–8 –6 –4 –2–20 –4 –6 –8
6
y = x2
10 8 4
y = 0, x = – 3, x = 3.
–4
y
–2
0
4 x
2
Domain x ∈ R, Range y ≥ 0
8 6 4 2
c
y 20 y = x2 + 5x + 6
15
2 4 6 8 x
–8 –6 –4 –2–20 –4 –6 –8
10 5 a –6
Exercise 1D 1
It is a function. Domain of {2, 3, 4, 5, 6, 7, 8, 9, 10} has no value repeated.
–4
Domain x ∈ R, Range y ≥ – 0.25 d
y 10
Range {1, 3, 6, 10, 15, 21, 28, 36, 45}. 2
3
–2
a
Domain {x : −4 < x ≤ 4}, Range { y : 0 ≤ y ≤ 4}
b
Domain {x : 1 x 5}, Range { y : 0 y 4}
c
Domain {x : −∞ < x < ∞}, Range {y : 0 ≤ y < ∞}
d
Domain{x : −2 ≥ x >2}, Range { y : 3 ≥ y ≥ 4}
e
Domain{x : −5 ≤ x ≤ 5}, Range { y : −3 ≤ y ≤ 4}
f
Domain {x : −∞ < x < ∞}, Range {y : −1 ≤ y ≤ 1}
8
g
Domain{x : −2 ≤ x ≤ 2}, Range { y : −2 ≤ y ≤ 2}
6
h
Domain{x : x }, Range { y : y }
i
Domain x ∈ R, x ≠ 1, Range y ∈ R, y ≠ 0.
1
x
2
–10 a
–15
Domain x ∈ R, Range y ∈ R e
y 10 y = √x
4 2 0
20
40
80 100 x
60
Domain x ≥ 0, Range y ≥ 0
12 y = 2x – 3 10 8 6 4 2 2 4 6 8
0
–1
–5
y
–2 –1–20 –4 –6 –8
y = x3 – 4
5
Note that domain and range can be expressed in many ways.
a
2x
0
–2
y
f a
10 y = √4 – x
8 6
x
Domain x ∈ R, Range y ∈ R
4 2 100 80
60
40
20
0
x
Domain x ≤ 4, Range y ≥ 0
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
4
WORKED SOLUTIONS g
l
y 8
y=
4 –8
0
–4
1 x
4
Exercise 1E
Domain x ∈ R, x ≠ 0, Range y ∈ R, y ≠ 0 h
y 8 7 6 5 4 3 2 1
1
a
y = ex
b
0
–1
1
2
x
Domain x ∈ R, Range y > 0
c
y 10 8 6 4 2
1 y= x+2
2 4 6x
–8 –6 –4 –2–20 –4 –6 –8 –10
d
Domain x ∈ R, x ≠ – 2, Range y ∈ R, y ≠ 0 j
y
e
10 8 6 4 2
y=
x+4 x–2
10
x
20
2
c d
y 4 –3
a b
Domain x ∈ R, x ≠ 2, Range y ∈ R, y ≠ 1 k
i
f (7) = 7 – 2 = 5
ii
f (–3) = –3 – 2 = – 5
iii
f ( 2 ) = 2 – 2 = –1 2
iv
f (0) = 0 – 2 = – 2
v
f (a) = a – 2
i
f (3) = 3(7) = 21
ii
f (–3) = 3(–3) = – 9
iii
f ( 1 ) = 3( 1 ) = 1 2
iv
f (0) = 3(0) = 0
v
f (a) = 3(a) = 3a
i
f (7) = 1 × 7 =
ii
f (–3) = 1 × − 3 = − 3
1
y=
–10 1 –4
x2 – 9 x+3 3
e 5
7
x
–8
Domain x ∈ R, x ≠ –3, Range y ∈ R, y ≠ – 6
3
a
1
1
1
2
2
4
4 1 4
1 2
7 4 4
1 2
1 8
iii
f( )= × =
iv
f (0) = 1 × 0 = 0
v
f (a) = × a =
i
f (7) = 2(7) + 5 = 19
ii
f (–3) = 2(–3) + 5 = –1
iii
f ( 1 ) = 2( 1 ) + 5 = 6
iv
f (0) = 2(0) + 5 = 5
v
f (a) = 2(a) + 5 = 2a + 5
i
f (7) = 72 + 2 = 51
ii
f (–3) = (–3)2 + 2 = 11
iii
f ( 1 ) = ( 1 )2 + 2 = 2 4
4 1 4
2
a 4
2
1
2
2
f (0) = (0)2 + 2 = 2 v f (a) = (a)2 + 2 = a2 + 2 f (–a) = (–a)2 – 4 = a2– 4 f (a + 5) = (a + 5)2 – 4 = a2 + 10a + 25 – 4 = a2 + 10a + 21 f (a – 1) = (a – 1)2 – 4 = a2 – 2a + 1 – 4 = a2 – 2a – 3 f (a2 – 2) = (a2 – 2)2 – 4 = a4 – 4a2 + 4 – 4 = a4 – 4a2 f (5 – a) = (5 – a)2 – 4 = 25 – 10a + a2 – 4 = a2 – 10a + 21 g(x) = 3, so 4 x – 5 = 3 4x = 8 x=2 iv
–10 –20 –4 –6 –8 –10
2 x2 + 1
Domain x ∈ R, Range 0 < y ≤ 2
–8
i
y=
–5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
x
8
–4
–2
y 2 1.5 1 0.5
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
5
WORKED SOLUTIONS b
c
h(x) = –15 7 – 2x = –15
a
The initial velocity occurs when t = 0. V(0) = (02 – 9) ms –1 = –9 ms–1
2x = 22
b
V(4) = (42 – 9) ms–1 = 7 ms-1
x = 11
c
V(10) = (102 – 9) ms–1 = 91 ms–1
d
The particle comes to rest when V(t) = 0.
7
g(x) = h(x), so 4 x – 5 = 7 – 2x
t 2 – 9 = 0 ⇒ t 2 = 9 ⇒ t = 3s.
4x + 2x = 7 + 5 6x = 12
8
x=2 4
5
6
1 =−1 −3 − 6 9
a
f (2 + h) = (
(2 + h ) + h ) − (2 + h )
b
f (3 h)
3 h h 3 h
a
h(−3) =
b
x = 6, as the denominator is zero and h(x) is undefined.
Exercise 1F
a
f (5) = 5 = 125
1
b
The volume of a cube of side 5
a
b
c d
3
i
3 6 +1 g(6) = ( ) = 19 (6) − 2 4
ii
3 −2 + 1 g(−2) = ( ) = − 5 = 1.25 ( −2 ) − 2 − 4
iii
3 0 +1 g(0) = ( ) = 1 = − 0.5 ( 0 ) − 2 −2
iv
⎛ 1⎞ 3⎜ − ⎟ +1 ⎛ 1⎞ g ⎜ − ⎟ = ⎝ 3 ⎠ = 07 ⎝ 3⎠ ⎛− 1⎞ −2 − ⎜ ⎟ 3 ⎝ 3⎠
= 4.75
h
= 2 + h + h − 2 − h = h =1 h
h
3 h h 3 h h 1 h
a
(f
g )( 3 ) = 3 ( 3 + 1) = 12
b
(f
g )( 0 ) = 3 ( 0 + 1) = 3
c
(f
D g ) ( − 6 ) = 3 ( − 6 + 1) = −15
d
(f
g )( x ) = 3 ( x + 1) = 3 x + 3
e
( g f )( 4 ) = (3 ( 4 ) ) + 1 = 13
f
( g f )( 5 ) = (3 ( 5 ) ) + 1 = 16
h
( g D f ) ( − 6 ) = (3 ( − 6 ) ) + 1 = −17 ( g f )( x ) = (3 ( x ) ) + 1 = 3x + 1
i
(f
j
( h f )( 2 ) = (3 ( 2 ) )
k
iii
3 1 .9 + 1 g(1.9) = ( ) = 6.7 = − 67 (1.9 ) − 2 − 0.1
(f
l
( h f )( x ) = (3 ( x ) )
iv
3 1.99 + 1 g(1.99) = ( ) = 6.97 = − 697 (1.99 ) − 2 − 0.01
m
i
3 1 +1 g(1) = ( ) = 4 = − 4 (1) − 2 −1
ii
3 1 .5 + 1 g(1.5) = ( ) = 5.5 = −11 (1.5 ) − 2 − 0.5
v
3 1.999 ) + 1 g(1.999) = ( = 6.997 = − 6997 (1.999 ) − 2 − 0.001
vi
3 1.9999 ) + 1 g(1.9999) = ( = 6.9997 = − 69997 (1.9999 ) − 2 − 0.0001
The value of g(x) is getting increasingly smaller as x approaches 2. 2 because the denominator equals zero when x = 2. Division by zero is undefined.
e
y
–8
o p 2
a b c
e
10 –4 0 –10
n
d
20 f
g
=0
4
8
12
16
x
–20
There is a vertical asymptote at x = 2, as x = 2 makes the denominator zero and g(x) is undefined.
f g
(
h
h
)
h )( 2 ) = 3 ( 2 ) + 2 = 18 2
(
2
+ 2 = 38
)
h )( x ) = 3 ( x ) + 2 = 3 x 2 + 6
( g h )(3 ) = ( (3 )
2
2
2
+ 2 = 9x 2 + 2
)
+ 2 + 1 = 12
( h g )(3 ) = (3 + 1) ( g h )( x ) = ( ( x )
2
2
+ 2 = 18
)
+ 2 +1= x2 + 3
( h g )( x ) = ( x + 1)
2
( g f )(1) = 3 − ( (1)
+ 2 = x 2 + 2x + 3
)
2
−1 = 3
( g f )(2) = 3 − ( (2)2 − 1) = 4 − 2 2 = 0
( g f )( 4 ) = 3 − ( ( 4 ) − 1) = −12 2 ( f g )(3 ) = (3 − (3 ) ) − 1 = −1 2
( g D f )(3 ) = 3 − ( (3 ) (f (f
2
)
−1 = −5
D g ) ( − 4 ) = ( 3 − ( − 4 ) ) − 1 = 48 2
g ) ( x + 1) = ( 3 − ( x + 1) ) − 1 = (2 – x)2 – 1 2
= (4 – 2x + x 2) – 1 = 3 – 2x + x 2 h
g x 2 3 x 2 1 = (1 – x)2 – 1 = (1 – 2x + x 2) – 1 = x 2 – 2x
f
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
2
Worked solutions: Chapter 1
6
WORKED SOLUTIONS 3
4
a
(f
g )( x ) = ( x + 2 ) = x 2 + 4x + 4
b
(f
g )( 3 ) = ( ( 3 ) + 2 ) = 25
(f
g )( x ) = 5 ( x 2 + 1) = 5 x 2 + 5
a
5
b c
x – 8x + 19 = x – 1
a
No inverse function. Horizontal line crosses the graph more than once.
2
( g f )( x ) = ( 5x ) + 1 = 25x 2 + 1 2 ( g h )( x ) = ( x − 4 ) + 3 = x2 – 8x + 19 ( h g )( x ) = ( x 2 + 3 ) − 4 = x 2 – 1
b
d
2
y 2 1
2
2
–4 –3 –2 –1 0 1 2 3 4 5 x
2
a
y 8
2
4
–8x + 19 = –1 –8x = –20
–8
–4
( r s )( x ) = ( x )
2
b
No inverse function. Horizontal line crosses the graph twice. 7 6 5 4 3 2 1
–8
–4
0
x
4
8
x
4
8
x
–4 –8 c
y 8 4
1 2 x
–5 –4 –3 –2 –1 0
–8
Has an inverse function. Any horizontal line crosses the graph once only.
–4
7 6 5 4 3 2 1 –6 –5 –4 –3 –2 –1–10 –2 a –3
0 –4 –8
y
d
y 8 4 –8
1 2 3 4 x
Has an inverse function. Any horizontal line crosses the graph once only.
–4
0 –4 –8
e
y 8
y
4
3 2 1 0
8
4
y
c
4
8
The following have inverse functions. b, c.
b
x
y
Exercise 1G a
8
–8
− 4 = x2– 4
Domain x ∈ R, Range y ≥ – 4
1
4
–4
x = 2.5 6
0
–4 –3 –2 –1 0 1 2 3 4 5 6 x
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
1 2 3 4 x
–4
Worked solutions: Chapter 1
7
WORKED SOLUTIONS y
f
xy = y= 1 2 3 4 5 x
–3 –2 –1 0
f
–4
4
Exercise 1H 1
a
f g 1 ii
2
iii
( f g )( x ) = (
2(x ) − 4) + 4
iv
( g f ) ( x ) = 2 ⎛⎜⎝ x +2 4 ⎞⎟⎠ − 4 = x
2
a
x = 3 y −1 x +1 = 3 y f (x ) =
x +1 3
x = 1 y +5 4
d
4( x − 5) = y h −1( x ) = 4( x − 5)
( x + 3)
3
f f
y
y=
g (x ) = x=
y 3+ y
b
( x ) = ( x + 3)
3
h −1( x ) = 3 h
x=
2y 5− y
5x 2+ x
x=1–y y+x=1 y=1–x f –1(x) = 1 – x x=y f
(x) = x
–1
5x x +2
x −2 y +1 y −2
x ( y − 2) = y + 1 xy − 2 x = y + 1 xy − y = 2 x + 1 y ( x −1) = 2 x + 1 y = 2x + 1 x −1
f (x ) = 2x + 1 −1
=y
f −1( x ) =
4⎝x ⎠ 1 ⎞ 1 17 17 ⎛2 −1 (5) = ⎜ + 3 ⎟ = × = 4⎝5 ⎠ 4 5 20
f (x ) = x + 1 x=
x −3 2
3x 1− x
3x 1− x
f 5
x (5 − y ) = 2 y 5x − xy = 2 y 5x = 2 y + xy 5x = y (2 + x )
=y
f −1( x ) = 1 ⎛⎜ 2 + 3 ⎞⎟
x = 2 y3 + 3 x − 3 = 2 y3
x (3 + y ) = y 3x + xy = y 3x = y − xy 3x = y (1 − x ) f −1( x ) = a
1 x +2
2 4y −3 4 y −3 = 2 x 4y = 2 +3 x 1⎛2 y = ⎜ + 3 ⎞⎟ 4⎝x ⎠
=y
x −3 = y3 2 x −3 3 =y 2
1 x +2
−1
−1
2 4x − 3
x=
x = 3 y −3 x +3= 3 y
y
3
3
x −5 = 1 y
x = 1 −2
f (x ) =
c
g (x ) = x + 2
x +2= 1
g
x +2 = y −1
4
e
x = y3 − 2 3
10 x +7
10 y +7 y + 7 = 10 x 10 y = −7 x −1 f ( x ) = 10 − 7 x 10 −1 f (5) = − 7 = − 5 5
x + 2 = y3
y
−1
c
f (x) = x=
they are inverses of each other
x +1 = 3
1 x
b
=x
b
b
(x) =
–1
f (x) = 6 – x x=6–y x – 6 = –y 6–x=y f –1(x) = 6 – x f –1(5) = 6 – 5 = 1
2 1 4 4
2 4 1 2 2 −3+ 4 1 f (−3) = = and 2 2 34 g f 3 2 2 1 4 3 4 2 2
1
1 x
a
g(1) = 2(1) – 4 = –2 and
i
1 y
x=
c
6 4 2
6
x −1
x –3 –2 –1 0 1 2 3 4 5 6 f (x) 0.125 0.25 0.5 1 2 4 8 16 32 64 y 8 4
–2
0
2
4
x
–4
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
8
WORKED SOLUTIONS f (x). Domain x ∈R, Range y > 0
d
f 7
–1
2
(x). Domain x > 0, Range y ∈R.
Changing the x-coefficient alters the gradient of the line. y
x has domain x ≥ 0.
g(x) =
First, find g –1(x): x=
5
y, x ≥ 0
3
x 2 = y, x ≥ 0 g –1(x)
1
= x 2, x ≥ 0
–6
The graph of g (x) is shown below.
–2 0 –2
–4
–1
2
x
4
y
3
y = |x + h| is a translation of –h along the x-axis y
g–1(x) 0
y =|x – 3|
y =|x + 2|
7 5
x
y =|x|
3
You can see that g –1(x) has domain x ≥ 0 range g –1(x) ≥ 0. Now, the graph of f (x) = x 2 is shown below: y
1 –5
4
–3
–1 0 1
3
5
x
The negative sign reflects the graph in the x-axis. Increasing the value of a means the graph increases more steeply.
f(x)
y 4
0
x
3 2
You can see that f (x) has domain x ∈R range f (x) ≥ 0. Hence, f (x) and g –1(x) are different. 8
m
f (x) = –1
1 x m
–3 –2 –1 0 –1
1 m
1
should be –1 but m ×
1 m
a
y 8 6 4 2
= 1.
Changing the constant term translates y = x along the y-axis.
–4
b
y 6 4 2
5 3 1 –4
–2 0 –2
2
4
6 x
2 4 6 8 x
–8 –6 –4 –2–20
y
–6
3 x
Exercise 1I
−c m
Investigation – functions 1
2
–3
For graphs of f(x) and f –1(x) to be perpendicular, m×
1
–2
Let f (x) = mx + c. x = my + c x – c = my x c =y m
1
–8 –6 –4 –2–20 –4 –6
2 4 6 8 x
–4
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
9
WORKED SOLUTIONS c
a
y 6 4 2 –8 –6 –4 –2–20 –4
2 4 6 8
y
x
8 6 4 2
y
d
6 4 2
–8 –6 –4 –2–20 –4
–8 –6 –4 –2–20
2 4 6 8 x
y 6
e
b
2 –8
–4 0 –4
f
4
8
10 x
3
4
y 10 8 6 4 2
4 2
–6
–4
–f (2x) + 3 has domain –3 ≤ x ≤ 1, and has range 0 ≤ y ≤ 5. 5
a
f (x + 1) is a horizontal translation of f (x) by –1 units. y 4
–8 –6 –4 –2–20 –4 –6
2 4 6 8 x
g is a vertical translation of 2 units, so g(x) = f (x) + 2. h is is a vertical translation of – 4 units, so h(x) = f (x) – 4. q is a horizontal stretch of scale factor 2, so 1 q(x) = f ( 2 x). q is a horizontal translation of – 4 and a vertical translation of –2, so q(x) = f (x + 4) – 2 s is a horizontal translation of – 4, so s(x) = f (x + 4). t is a horizontal translation of 2, so t(x) = f (x – 2). y
2
g –4
f (x)
0
–2
2
4
x
–2 –4
b
f (x) + 1 is a vertical translation of f (x) by +1 unit. y 4 A1
2
–4 f –2
1 2
A
A1
f
g
3
0 –6 –4 –2 –1
2 x
0
–2
–2
–8 –6 –4 –2–20 2 4 6 8 x –4 –6 –8 y
2
–f (2x) + 3 is a horizontal stretch of scale factor 1 followed by reflection in the 2 x-axis, followed by a vertical translation of 3. y
6 4 2
2
2 4 6 8 x
2f (x – 5) has domain –1 ≤ x ≤ 7, and has range –4 ≤ 2f (x – 5) ≤ 6.
–4
g
2f (x – 5) is a horizontal translation of 5, followed by a vertical stretch of scale factor 2.
x
A 0
2
4 x
–2 –4
–2
This is the graph of f (x). It has domain –6 ≤ x ≤ 2 It has range −2 ≤ f (x) ≤ 3 © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
10
WORKED SOLUTIONS c
f (–x) is a reflection of f (x) in the y-axis.
3
y
f ( x ) = 3x + 17
a
g f –4
A 2
–2
4
x
2 x − 17 3
f −1( x ) = 2 x − 17
–4
d
2f (x) is a vertical stretch of f (x) by scale factor 2.
4
4 A1
2 g 0 –2
–2
A 2
4
5 1 x = − y −1 5 x +1 = − 1 y 5
f
f
–8 –4 –2–20 –4
6
a b c
−1
( x ) = −5 x − 5 y 6 4
y
g
–6
b
–4 –3 –2 –1 0
2 4 6 8 10 x
5
a
f ( x ) = 3x + 5 x = 3y + 5 x − 5 = 3y x −5 = 3
f (x ) =
1 − (1 − x )
–2
a
b
8
(f
D g )( x ) = 2 (1 − x
) + 7 = 2 − 2x
2
y2
x3 2 y
x −5 3
) x3 2 f 1 ( x b
a
0 –2 –4
2
4 x
y 4 3 2 1 –1 –10 –2 –3
1
2
x
Domain x ∈R,Range y ≥ 0 Domain x ∈R, x ≠ 3, Range y ∈R, y ≠ 0 Reflect in the y-axis. f (x) = –x Vertical stretch scale factor 2. f (x) = –2x 1 3
f (x – 3) = 2(x – 3)2 – 3(x – 3) + 1 = 2x 2 – 12x + 18 – 3x + 9 + 1 = 2x 2 – 15x + 28 2
a b
x
x 2
x y2
2
7
3
3
3
y
1 2 3 4 x
g(a – 2) = 4(a – 2) –5 = 4a – 8 – 5 = 4a – 13. 1 + (1 − x ) 2 − x = b h (1 − x ) =
f ( x ) x
4 (0,–1)
a
6 x
Reflect each graph in the line y = x a
Review exercise
2
b
y
−1
6
a
4
f
–6
f
1
2
–4
g(x) is a horizontal translation of f (x) by –3 units, followed by a vertical translation of –2 units.
✗
–2 0 –2
–4
A
y 5 4 3 2 1
2
(0,–1) A1
Reflection in the x-axis. Horizontal translation of 3 units. A vertical stretch of scale factor 2 followed by a reflection in the x-axis and then a vertical translation of 5 units.
7
x +4 5
f ( x ) = − 1 x −1
f (x – 2) + 3 is a horizontal translation of f (x) by 2 units, followed by a vertical translation of 3 units. 6 4 2
3
−5( x + 1) = y −5x − 5 = y
x
–4
e
g −1( x ) =
3
y
f –4
=y
x +4 = y3 5 x +4 3 =y 5
2x = 3 y + 17 2x −17 = 3 y
2 0
–2
2
x = 3 y + 17
4 A1
g ( x ) = 5x 3 − 4 x = 5 y3 − 4 x + 4 = 5 y3
b
2
Horizontal stretch scale factor . f (x) = –2(3x) Translate 3 units left. f (x) = –2(3x + 3) Translate 2 units up. f (x) = –2(3x + 3) + 2
+ 7 = −2 x + 9 2
Expand and simplify. f (x) = –6x – 4 = –2(3x +2)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
11
WORKED SOLUTIONS b
Reflect in the x axis. f (x) = – (x 2 ) Stretch vertically by scale factor 1 . 1
f (x ) = − 4 ( x )
13 a
4
2
b
9
a
b
f (x ) Translate 5 units right.
2
Translate 1 unit down. f ( x)
1 1 x 5 43
2
c
1
1
2 4 6 8
Domain: x ≥ – 2 Range: y > 0
2
y 16 14 12 10 8 6 4 2 0 –4 –3 –2 –1 –2 –4
(f
x
Domain: x ∈R Range: y ≥ – 4 3
y 12 10 8 6 4 2
g )( 0 ) = 2 ( −2 ) + 3 = −16 + 3 = −13 3
y3 x −3 2
1 2 x
0 –6 –5 –4 –3 –2 –1 –2 –4 –6 –8
f ( x ) = 2x 3 + 3 x = 2 y3 + 3 x − 3 = 2 y3 f −1 ( x ) = 3
Domain: x ∈R, x ≠ – 2 Range: y ∈R, y ≠ 0 4
a
y 8 6 4 2
f (–x) is a reflection of f (x) in the line x = 0. y 5 4 3 2 1
b
12 a b
–3
–4 –3 –2 –1 0 1 2 x 1 g(x) = 2 f (x – 1) describes
the transformation: Horizontal translation by 1 unit, followed by 1 vertical stretch, scale factor 2 . so P is (4, 1) ( f ° g) (x) = 3(x + 2) = 3x + 6 x f –1(x) = 3 and g –1(x) = x – 2
f (12) = –1
12 3
b 5
–2
0 –2 –4 –6 –8
–1
2 x
1
x-intercept –1.5, y-intercept 3. y
a 6 4 2
=4
g (12) = 12 – 2 = 10 f –1(12) + g –1(12) = 4 + 10 f –1(12) + g –1(12) = 14 –1
x
1 2 3 4
3
g (0) = 3(0) –2 = –2
x −3 = 2
11 a
2
y=x 1
6x − 3 =0 2x − 3
Review exercise
y = 2x – 2
–8 –6 –4 –2–20 –4 –6 –8
b
y = 2x + 3
6x − 3 2x − 3
x=1
The graph of an inverse function is the reflection of the graph of the original function in the line y = x. Graph a line with a y-intercept of 3 and slope of 2. Draw the line y = x. To graph its inverse, sketch the mirror image of the original line. y
10 a
⎠
1 1 x 5 43
8 6 4 2
=
( 2 x − 1) − 2
6x − 3 = 0 6x = 3
Stretch horizontally scale factor 3. 2 f ( x ) = − 1 ⎜⎛ 1 x ⎞⎟ 4⎝3
3(2 x − 1)
(h ° g) (x) =
–6
b c
–4
–2
0
2
4
6
x
0 Domain: x ∈R, x ≠ 0. Range: y > 0.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
12
WORKED SOLUTIONS 6
a
x = –2, y = 2.
10 a
y 16
b
12 4
f
–12 –8 –4 0 –4
4
8
12 x
–8
c 7
y
a
(x) =
x +2 3
c
( f −1 g ) = ( x − 33) + 2 = x 3− 1
d
( f −1 g ) ( x ) = ( g −1 f ) ( x ), so
–1
x −1 = 3x + 1 3
x −1 = 3(3x + 1) x −1 = 9 x + 3 8x = −4
4 2 –1 0 –2
3
( g ° f ) (x) = (3x − 2) + 3 = 3x + 1
6
–2
−1
b
(2.5, 0), (0, –2.5)
–3
x +2
y=
8 f
f (x) = 3x − 2 x = 3y − 2 x + 2 = 3y
1
2
3 x
x =−1
2
–4
e
–6
8
b
± 2
a
f (x) = x3 − 3 x = y3 − 3
–6 –4 –2–20 –4
x+3=y
3
y = 3 x +3 f
−1
f
(x) = 3 x + 3
b
y 12 10 8 6 y=3 4 2
x=3 2 4 6 8 x
x = 3, y = 3
y 6 4 2 –6
–2 0 –2
–4
2
4
6 x
–4
c
1.67
9
y 20 x = –1
10
y=0 –5 –4 –3 –2 –1 0
1 2 x
–10
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 1
13
WORKED SOLUTIONS
2
Quadratic functions and equations
Answers Skills check 3a − 5 = a + 7 2a = 12 a = 6
d
(x + 5) (x − 5) = 0 x = ±5
1 a
4 x 2 + 1 = 21 4x 2 = 20 x 2 = 5 x = ± 5 b
3(n − 4) = 5(n + 2) 3n − 12 = 5n + 10 2n = −22 n = −11 c
2 a 2k(k
− 5) b 7a(2a2 + 3a − 7) 2 c 2 x + 4 xy + 3 x + 6 y 2 x ( x + 2 y ) + 3 ( x + 2 y )
x 2 − 25 = 0
e
x 2 + 2x − 48 = 0
x 2
+ 8x − 6x − 48 = 0
x(x + 8) − 6(x + 8) = 0 (x + 8) (x − 6) = 0 x = −8 or x = 6 f
b 2 + 6b + 9 = 0
b 2 + 3b + 3b + 9 = 0 b(b + 3) + 3(b + 3) = 0 (b + 3)2 = 0 b = −3 2 a 6x 2
+ 5x − 4 = 0
6x + 8x − 3x − 4 = 0 2
2x(3x + 4) − 1(3x + 4) = 0
( 2 x + 3 ) ( x + 2 y )
(3x + 4)(2x − 1) = 0
5a 2 − 10a − ab + 2b 5a ( a − 2 ) − b ( a − 2 ) ( 5a − b ) ( a − 2 ) e (n + 1)(n + 3) f (2x − 3)(x + 1) g (m + 6)(m − 6) h (5x + 9y)( 5x − 9y)
x = − 3 or x =
d
Exercise 2A 1 a
x 2 − 3x + 2 = 0 x 2 − x − 2x + 2 = 0 x(x − 1) − 2(x − 1) = 0 (x − 1)(x − 2) = 0 x = 1 or x = 2 b a 2 + a − 56 = 0 a 2 + 8a − 7a − 56 = 0 a(a + 8) − 7(a + 8) = 0 (a + 8)(a − 7) = 0 a = −8 or a = 7 c m 2 − 11m + 30 = 0 m 2 − 5m − 6m + 30 = 0 m(m − 5) − 6(m − 5) = 0 (m − 5) (m − 6) = 0 m = 5 or m = 6
4
b
1 2
5c 2 + 6c − 8 = 0 5c 2 + 10c − 4c – 8 = 0 5c (c + 2) − 4 (c + 2) = 0 (c + 2) (5c − 4) = 0 4
c = −2 or c = 5 2h 2 − 3h − 5 = 0 2h 2 − 5h + 2h − 5 = 0 c
h(2h − 5) + 1(2h − 5) = 0 (h + 1) (2h − 5) = 0 5
h = −1 or h = 2 4x 2 − 16x − 9 = 0 4x 2 − 18x + 2x – 9 = 0 2x(2x – 9) + 1(2x – 9) = 0 (2x + 1) (2x − 9) = 0 d
9
x = − 1 or x = 2 2
3t 2 + 14t + 8 = 0 3t 2 + 12t + 2t + 8 = 0 3t (t + 4) + 2(t + 4) = 0 (t + 4) (3t + 2) = 0 e
2
t = −4 or t = − 3
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 2
1
WORKED SOLUTIONS 6x 2 + x − 12 = 0 6x 2 + 9x − 8x − 12 = 0 3x(2x + 3) − 4(2x + 3) = 0 (2x + 3) (3x − 4) = 0 f
4
3 x = − 2 or x = 3
Exercise 2B 1 a
x 2 + 2x − 7 = 13 + x x 2 + x − 20 = 0 x 2 + 5x − 4x − 20 = 0 x(x + 5) − 4(x + 5) = 0 (x + 5) (x − 4) = 0 x = −5 or x = 4 b 2n 2 + 11n = 3n − n2 − 4 3n 2 + 8n + 4 = 0 3n 2 + 6n + 2n + 4 = 0 3n(n+ 2) + 2(n + 2) = 0 (n + 2) (3n + 2) = 0 n = −2 or
2 n=−3
3z 2 + 12z = −z 2 − 9 4z 2 + 12z + 9 = 0 4z 2 + 6z + 6z + 9 = 0 2z(2z + 3) + 3(2z + 3) = 0 (2z + 3) (2z + 3) = 0 c
z = − 3
2a 2 − 50 = 21a 2a 2 − 21a − 50 = 0 2a 2 − 25a + 4a – 50 = 0 a(2a – 25) + 2(2a – 25) = 0 (a + 2) (2a − 25) = 0 d
a = −2 or a =
25 2
x 2 + 5x = 36 x 2 + 5x − 36 = 0 x 2 + 9x − 4x – 36 = 0 x(x + 9) − 4(x + 9) = 0 (x + 9) (x − 4) = 0 x = −9 or x = 4 f 4x 2 − 2x = x + 1 4x 2 − 3x − 1 = 0 4x 2 − 4x + x – 1 = 0 4x(x – 1) + 1(x – 1) = 0 (4x + 1) (x − 1) = 0 e
x
or x = 1
x 2 − x = 12 x 2 − x − 12 = 0 x 2 − 4x + 3x − 12 = 0 x(x – 4) + 3(x − 4) = 0 (x + 3) (x − 4) = 0 x = −3 or x = 4 2
2
If x = , the leg 5x − 3 would have a negative length. 5 Therefore, the only answer is x = 3.
Investigation – perfect square trinomials 1
2
3
4
5 6
2
=−1 4
(x + 2) 2 + (5x − 3) 2 = (4x + 1) 2 x 2 + 4x + 4 + 25x 2 −30x + 9 = 16x 2 + 8x + 1 10x 2 −34x + 12 = 0 2(5x 2 −17x + 6) = 0 2(5x 2 – 15x – 2x + 6) = 0 2(5x(x – 3) – 2(x – 3) = 0 2(5x − 2) (x − 3) = 0 x=3 3
x 2 + 10x + 25 = 0 → (x + 5) (x + 5) = (x + 5) 2 = 0 x = −5 x 2 + 6x + 9 = 0 → (x + 3) (x + 3) = (x + 3) 2 = 0 x = −3 x 2 + 14x + 49 = 0 → (x + 7) (x + 7) = (x + 7) 2 = 0 x = −7 x 2 − 8x + 16 = 0 → (x − 4) (x − 4) = (x − 4) 2 = 0 x=4 x 2 − 18x + 81 = 0 → (x − 9) (x − 9) = (x − 9) 2 = 0 x=9 x 2 − 20x + 100 = 0 → (x − 10) (x − 10) = (x − 10) 2 = 0 x = 10
Exercise 2C x 2 + 8x + 16 = 3 + 16 (x + 4) 2 = 19 x + 4 = ± 19 x = −4 ± 19 1
25 4
2
x 2 − 5x +
5 ⎞ 37 ⎛ ⎜x − ⎟ = 2⎠ 4 ⎝
x−
x=
=3+
25 4
2
37 5 ± 37 =± = 2 4 2 5 ± 37 2
x 2 − 6x = −1 x 2 − 6x + 9 = −1 + 9 (x − 3) 2 = 8 x −3 = ± 8 = ± 2 2 3
x =3±2 2
4
x 2 + 7x = 4 49 x 2 + 7x + 4 = 4 +
2
7⎞ 65 ⎛ ⎜x + ⎟ = 2⎠ 4 ⎝
x+
x = −7 ±
7 2
=±
65 4
=
49 4
± 65 2
65
2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 2
2
WORKED SOLUTIONS x 2 − 2x = 6 x 2 − 2x + 1 = 6 + 1 (x − 1) 2 = 7 x −1 = ± 7 5
x =1± 7
6
x 2 + x = 3 x2 + x + 1 = 3 +
4
⎛ ⎜x ⎝
6
1 4
2
1⎞ 13 ⎟ = 2⎠ 4
+
x +
1 2
13 4
x=
−1 ± 13 2
=±
=
± 13 2
Exercise 2D x 2 + 6x = 3 x 2 + 6x + 9 = 3 + 9 (x + 3) 2 = 12 x + 3 = ± 12 = ±2 3 x = −3 ± 2 3 1
C
M
Y
CM
MY
CY
CMY
K
x − 2x = 1 x 2 − 2x + 1 = 1 + 1 (x − 1) 2 = 2 x −1 = ± 2 2
2
x =1± 2
3
5 ( x 2 − 2 x ) = −2
x 2 − 2x = − 2
x 2 − 2x + 1 = − 2 + 1 5
4
x2 + 3 x = 2
3 ⎞ x⎟ 2 ⎠
+
x2 + 3 x + 2 ⎛ ⎜x ⎝
+
3 5
3 5
4 ⎛⎜ x 2 ⎝
=5
5 4 9 16
=
5 4
9
+ 16
2
3⎞ 29 ⎟ = 4⎠ 16
x
3 4
x=
−3 ± 29 4
5
2 ⎛⎜ x 2 − 1 x ⎟⎞ = 6 2
x2 − 2 x = 3
x 2 − 2 x + 16 = 3 + 16
⎛ ⎜x ⎝
⎝
29 16
29
4
⎠
1
1
1
2
− 4 ⎟⎞ = 1
⎠
x=
1 7 ± 4 4
49 16
=±
7
=±4
49 16
x = −2, 2 10 ⎛⎜ x 2 + 2 x ⎟⎞ = 5 ⎝
1
⎠ 1 2 1 25
5
x2 +
x2 +
⎛ ⎜x ⎝
1⎞ ⎟ 5⎠
x +5=±
x=
+
= +
2
=
1
=2+
1 25
27 50
1
27 50
=±
3 3 5 2
±3 6 10
=
−2 ± 3 6 10
Exercise 2E 2 9 4 4 7 24
9
1 x
x=
2
x=
x
x
9
81 112 8
−9 ± 193 8
2 −2 ± ( 2 ) − 4 ( 3 ) ( −8 ) 2 (3) −2 ± 10 = 6 = − 2, 4 3
3 x
2 ( x − 1) = 35
x =1±
1 4
2 x 5 2 x 5
5
x −1= ±
x−
3
=
6 2 4 5 1
6
−2 ± 4 + 96 6
6
=
−2 ± 100 6
36 20
2 5 10
−6 ± 4 10 1 −1, − 5
6 16 10
x=
x=
4
x 2 − 6x + 4 = 0
x=
x=
5
x 2 − x + 3 = 0
x =1±
no solution since 11 is undefined.
6
3x 2 + 10x − 5 = 0
x=
x
7
2x 2 − 3x − 1 = 0
x = 3±
x = 3±
2 6 ± ( −6 ) − 4 (1)( 4 ) 2 (1)
6±2 5 2
6 ± 36 − 16 2
=
6 ± 20 2
=3± 5
( −1)2 − 4 (1) (3 ) 2 (1)
−10 ±
=
=1±
(10 ) − 4 (3 ) ( −5 ) = 2 (3 ) 2
10 4 10 6
1 − 12 1 ± −11 = 2 2
−10 ± 100 + 60 6
=
−10 ± 160 6
5 2 10 3
( −3 )2 − 4 ( 2 ) ( −1) 3 ± 9 + 8 = 2 (2) 4 17 4
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 2
3
WORKED SOLUTIONS 8
2x 2 − 9x − 4 = 0
x = 9±
x=9±
( −9 )2 − 4 ( 2 ) ( −4 ) 2 (2)
=
9 ± 81 + 32 4
2 2 2
x
9
x=
−9 ± 129 4
9 4 2 6
9
10
(5 x − 2)( x ) = ( x + 3)( x + 1)
5x 2 − 2 x = x 2 + 4 x + 3
4 x 2 − 6x − 3 = 0 2 6 ± ( −6 ) − 4 ( 4 ) ( −3 ) 2 (4)
x =6±
84 8
=
6 ± 2 21 8
=
81 48 4
6 ± 36 + 48 8
=3±
21 4
Let the two numbers be x and y. x + y = 50 → y = 50 − x xy = 576 → x (50 − x) = 576 50x − x 2 = 576 → x 2 − 50x 2 + 576 = 0 (x − 18)(x − 32) = 0 The possible values for x are 18 and 32. Since y = 50 – x, the two numbers are 18 and 32.
1
This quadratic equation could also be solved using completing the square or the quadratic formula.
Let l represent the length, and w represent the width. 2l + 2w = 70 → l + w = 35 → l = 35 − w lw = 264 → (35 − w)w = 264 35w − w 2 = 264 → w 2 − 35w + 264 = 0 (w − 11)(w − 24) = 0 The dimensions are 24 m and 11 m. 2
(x + 6) 2 + (3x)2 = (4x − 6)2 x 2 + 12x + 36 + 9x 2 = 16x 2 − 48x + 36 6x 2 − 60x = 0 6x (x − 10) = 0 x = 10 (we cannot have x = 0, since this would mean one side has zero length). 3
(23 − x)(16 + x) = 378 368 + 7x − x 2 = 378 → x 2 − 7x + 10 = 0 (x − 5)(x − 2) = 0 x = 2, 5 The dimensions are 18 cm and 21 cm. 4
−14 ±
(14 ) − 4 ( −4.9 )( 2 ) = 2 ( −4.9 ) 2
−14 ± 235.2 −9.8
Investigation – roots of quadratic equations 1 a
Exercise 2F
t=
approximately 2.99 seconds. We cannot have ‘negative time’, so we take only the positive value.
6 − 2x 2 = 9x 2x 2 + 9x − 6 = 0
x=
113 4
9
h = 2 + 14t − 4.9t 2 The ball hits the ground when h = 0. 0 = 2 + 14t − 4.9t 2
5
x = 8±
b
x=
c
x=
2 a
x=
( −8 )2 − 4 (1) (16 ) 2 (1)
=
2 12 ± ( −12 ) − 4 ( 4 ) ( 9 ) 2(4)
= 12 ±
(10 ) − 4 ( 25 )(1) = 2 ( 25 ) 2
−10 ±
b
2 −5 ± ( 5 ) − 4 (1) ( −14 ) 2 (1)
x =8±
x c
3 a
=
2
0
=
= 12 = 8
−10 ± 0 50 −5 ± 81 2
=8±
40 6
= =
3 2
−10 50
= −1 5
−5 ± 9 2
=8±2
10
6
4 ± 10 3
x =3± x=
( −8 )2 − 4 (3 ) ( 2 ) 2 (3 )
=8=4
8
x = −7, 2
8± 0 2
( −3 )2 − 4 ( 5 ) ( −4 ) 2 (5)
2 −3 ± (3 ) − 4 (1) ( 6 ) 2 (1)
=3±
89
10
=
−3 ±
2 4 ± ( −4 ) − 4 ( 2 ) ( 5 ) 2 (2)
=
4±
( 2 )2 − 4 ( 4 )(1) 2(4)
=
−2 ±
−15 2
no solution b
x=
no solution c
x=
−2 ±
no solution
−24 4 −12 8
Exercise 2G Δ = 52 − 4(1)(−3) = 37 two different real roots b Δ = 42 − 4(2)(1) = 8 two different real roots c Δ = (−1)2 − 4(4)(5) = −79 no real roots d Δ = (8)2 − 4(1)(16) = 0 two equal real roots e Δ = (−3)2 − 4(1)(8) = −23 no real roots f Δ = (−20)2 − 4(12)(25) = −800 no real roots 2 a 42 − 4(1)( p) > 0 16 > 4p p < 4 b 52 − 4( p)(2) > 0 25 > 8p 1 a
p
0 p2 > 32 ⇒ p < − 32 or p > 32, so p > 32 p >4 2 c
Investigation – graphs of quadratic functions a
Δ = (−3)2 − 4(1)(−5) = 29 y
(3p)2 − 4( 1)(1) > 0 9p2 > 4 2 −2 4 2 p > ⇒ p < or p > , so d
p >
9 2 3
3
− 4( 1)(k) = 0 100 = 4k k = 25
x
3 a 102
b
0
3
b
Δ = (−6)2 − 4(3)(4) = −12 y
(−3)2 − 4( 2)(k) = 0 9 = 8k 9
k = 8 (−2k)2 − 4( 3)(5) = 0 4k 2 = 60 k 2 = 15 k = ± 15 c
c
0
x
Δ = (2)2 − 4(1)(7) = −24
(−4k)2 − 4( 1)(−3k) = 0 16k 2 + 12k) = 0 4k(4k + 3) = 0 d
y
3
k = 0, − 4 4 a (−6)2
− 4( 1)(m) < 0 36 < 4m m > 9
d
0
x
Δ = (3)2 − 4(4)(5) = −71
(5m)2 − 4( 1)(25) < 0 25m2 < 100 m2 < 4 −2 < m < 2 b
y
(−8)2 − 4( 3m)(1) < 0 64 < 12m m > 16 c
3
(6)2 − 4(1)( m − 3) < 0 36 < 4m − 12 48 < 4m m > 12 d
(−4q)2 − 4( q)(5 − q) < 0 16q2 − 20 q + 4q2 < 0 20q 2 − 20q < 0 20q (q − 1) < 0 0 0: (0, ∞) decreasing when f ′(x) < 0 : (−∞, 0) f (x ) = x 4 − 2x 2 f ′( x ) = 4 x 3 − 4 x 4 x ( x 2 − 1) = 0 4 x ( x + 1)( x − 1) = 0 x = 0, −1, 1
f
( x − 3)
=
1 (t + 1)2
a(t) = = + as t > 0 a(t) > 0 therefore velocity is never decreasing.
In questions 1-3, if y increases as x increases the function is increasing. If y decreases as x increases the function is decreasing. y 1 decreasing (−∞, ∞)
+
–
–1
+
0
1
−5 ( x − 3) 2
signs of f ' x
f
′(x) ≠ 0
f
′(x) undefined when x = 3
–
– –3
decreasing when f ′(x) < 0 : (−∞, 3) and (3, ∞) f (x ) =
7
1 x
=x
f ′( x ) = − 1 x 2
=
4 3 2 1
−1 2
−3 2
signs of f ' x 0
–
−1 3
2x 2
f
–4 –3 –2 –1–10 –2 –3 –4
decreasing when f ′(x) > 0 : (0, ∞) 8
y
1 2 3 4 5 6 x
′(x) ≠ 0
domain x > 0
1 2 3 4 x
1 –3 –2 –1–10 –2 –3 –4 –5 –6
–
0
x −3 ( x − 3)(1) − ( x + 2)(1) ′( x ) = ( x − 3) 2
= ( x − 3)(1) − ( x2 + 2)(1)
Exercise 7Q
2
signs of f ' x
+
f (x ) = x + 2
6
t2 + t − 2 = 0 (t + 2)(t − 1) = 0 when t = 1 b
2 x
increasing when f ′(x) > 0: (−1, 0) and (1, ∞) decreasing when f ′(x) < 0: (−∞, −1) and (0, 1)
particle at rest when v(t) = 0
1 t 2
1
–2
1 s(t) = 4 t2 − ln (t + 1) ds 1 1 v(t) = dt = 2 t − t + 1
dv dt
0
–1
–1
Since the signs of v (0.3) and a (0.3) are different the particle is slowing down at 0.3 seconds. 4
increasing (−1, 1) decreasing (−∞, −1) and (1, ∞)
y 2
increasing (−∞, 2) decreasing (2, ∞)
f ( x ) = x 3e x
signs of f ' x
f ’( x ) = ( x 3 )(e x ) + (e x )(3 x 2 )
–
+ –3
+ 0
e x x 2 ( x + 3) = 0 x = 0, − 3 increasing when f ′(x) > 0: (−3, ∞) decreasing when f ′(x) < 0: (−∞, −3)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
14
WORKED SOLUTIONS 9
f (x ) =
x3 x2 −1
f ′( x ) = ( x
2
5
3
− 1)(3 x 2 ) − ( x 3 )(2 x ) ( x 2 − 1)2
− 3x ( x 2 − 1)2
=x
4
2
signs of f ' x
5 3
f ′( x ) = x
+
–
–√3
–
–
–1
0
– 1
+ 5 3
√3
( x − 3) ( x 2 − 1)2
=x
2
2
decreasing when f ′(x) < 0: ( − 3 , − 1) (−1, 1) (1, 3 ) f is increasing when f ′(x) > 0: (−∞, −2) and (4, ∞)
f (x ) = 2x 2 − 4 x − 3 f ′( x ) = 4 x − 4 4x − 4 = 0 4 ( x − 1) = 0 x =1 f (1) = −5
4
4 3 2 1
4x3 − 4x = 0 4 x ( x + 1)( x − 1) = 0 + – + signs of f ' – x = −1, 0, 1 x –1 0 1 f (0 ) = 0 f ( −1) = −1 f (1) = −1 Since f ′(x) changes from negative to positive at x = −1 and x =1 there are relative minimums at x = −1 and x = 1
y = f'(x)
–4 –3 –2 –1–10 –2 –3 –4
f (x ) = x 4 − 2x 2 f ʹ( x ) = 4 x 3 − 4 x
1 2 3 4 5 x
The relative minimum points are(−1, −1) and (1, −1) signs of f ' x
–
+
Since f ′(x) changes from positive to negative at x = 0 there is a relative maximum at x = 0. The relative maximum point is (0, 0)
1
5
Since f ′(x) changes from negative to positive at x = 1 there is a relative minimum at x = 1
= ( x + 3) 2 ( 4 x + 3) ( x + 3) 2 ( 4 x + 3) = 0
f ( x ) = x 3 − 12 x − 5
x = −3, − 3
f ′( x ) = 3 x 2 − 12
4
3 x 2 − 12 = 0 + – + signs of f ' 3( x + 2)( x − 2) = 0 x –2 2 x = −2, 2 f ( −2) = 11 f (2) = −21 Since f ′(x) changes from negative to positive at x = 2 there is a relative minimum at x = 2
signs of f ' x
⎛ ⎞ f ⎜ − 3 ⎟ = − 2187 256 ⎝ 4⎠
–
– –3
+ 3
–4
Since f ′(x) changes from negative to positive at x = − 3 there is a relative minimum at x = − 3 4
4
The relative minimum point is
2187 ⎞ ⎛ 3 ⎜− , − ⎟ 256 ⎠ ⎝ 4
There is no relative extremum at x = −3 since f ′(x) does not change signs at x = −3
The relative minimum point is (2, −21) Since f ′(x) changes from positive to negative at x = −2 there is a relative maximum at x = −2. The relative maximum point is (−2, 11)
f ( x ) = x ( x + 3 )3 f ′( x ) = ( x ) ⎡⎣3( x + 3)2 (1) ⎤⎦ + ( x + 3)3 (1)
The relative minimum point is (1, −5) 2
+ 0
Since f ′(x) does not change signs there are no relative maximum or minimum points.
y
f is
1
x =0
+
signs of f ' x
for x > 0, f ′(x) > 0
increasing when f ′(x) > 0: ( −∞, − 3 ) and ( 3 , ∞ )
Exercise 7R
2 3
for x < 0, f ′(x) > 0
f ′( x ) = 0 when x 2 ( x 2 − 3) = 0 or x = 0, − 3 , 3.
decreasing when f ′(x) < 0: (−2, 4)
2 3
x =0
f ′( x ) undefined when ( x 2 − 1)2 = 0 or x = −1, 1.
10
f (x ) = x 3
6
f ( x ) = x 2e − x f ′( x ) = ( x 2 ) ⎡⎣(e − x )( −1) ⎤⎦ + (e − x )(2 x ) = xe − x ( − x + 2)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
15
WORKED SOLUTIONS xe − x ( − x + 2) = 0 x = 0, 2 f (0 ) = 0 f (2) =
–
signs of f '' x
+
–
0
2
2
4 x 3 12 x 2 f ( x ) f ( x ) 12 x 2 24 x f ( x ) 0 for inflexion points
4 e
2
12 x 2 24 x 0
Since f ′(x) changes from negative to positive at x = 0 there is a relative minimum at x = 0
12 x ( x 2) 0 x 0,2 f (0) 0
The relative minimum point is (0, 0) Since f ′(x) changes from positive to negative at x = 2 there is a relative maximum at x = 2. The relative maximum point is ⎛⎜ 2, ⎝
f (x ) =
7
1 ( x + 1)2
= f
−2 ( x + 1)3
signs of f '' x
4⎞ ⎟ e2 ⎠
+
3
– –1
f
− 2x + 1 x +1 ( x + 1)(2 x − 2) − ( x 2 − 2 x + 1)(1) ′( x ) = ( x + 1)2 2
− 2) − ( x 2 − 2 x + 1) ( x + 1)2 signs of f '' 2 x = x + 2 x −2 3 ( x + 1) = ( x + 3)( x 2− 1) ( x + 1)
= (2 x
+
– –3
– –1
+ 1
′(−3) = −8
Since f ′(x) changes from negative to positive at x = 1 there is a relative minimum at x = 1 The relative minimum point is (1, 0) Since f ′(x) changes from positive to negative at x = −3 there is a relative maximum at x = −3. The relative maximum point is (−3, −8)
Exercise 7S f (x ) 2x 2 4 x 3 f ( x ) 4 x 4 f ( x ) 4 Since f ″(x) > 0 for all x, f is concave up on (−∞, ∞)
There are no inflexion points.
0
2
–
+ 2
concave down when f ″(x) < 0: (−∞, 2)
2
f (1) = 0
1
–
f (2) 8 concave up when f ″(x) > 0: (2, ∞)
f ′( x ) undefined when ( x + 1)2 = 0 or x = −1 f ′(x) = 0 when ( x + 3)( x − 1) = 0 or x = −3, 1 f
+
f ( x ) x 3 6 x 2 12 x f ( x ) 3 x 2 12 x 12 f ( x ) 6 x 12 f ( x ) 0 for inflexion points 6 x 12 0 6( x 2) 0 signs of f '' x x 2
Although f changes signs at x = −1, there is no relative extremum since f is undefined at x = −1 f (x ) = x
–
concave down when f ″(x) < 0: (−∞, 0) and (2, ∞) inflexion points: (0, 0) and (2, 16)
′(x) ≠ 0 f ′( x ) undefined when ( x + 1)3 = 0 or x = −1
8
signs of f '' x
f (2) 16 concave up when f ″(x) > 0: (0, 2)
= ( x + 1)−2
f ′( x ) = −2( x + 1)−3 (1)
f (x ) x 4 4 x 3
inflexion point: (2, 8) 4
f (x ) x 4 4x3 f ( x ) f ( x ) 12 x 2 f ( x ) 0 for inflexion points + signs of f '' 12 x 2 0 x x 0 concave up when f ″(x) > 0: (−∞, ∞)
+ 0
There are no inflexion points since f ″(x) does not change sign either side of x = 0. f ( x ) 2 xe x 5 f ( x ) (2 x )(e x ) (e x )(2) 2e x ( x 1) f ( x ) (2e x )(1) ( x 1)(2e x ) 2e x ( x 2) f ( x ) 0 for inflexion points 2e x ( x 2) 0 x 2
signs of f '' x
–
+ –2
f ( 2) 4 e
2
concave up when f ″(x) > 0: (−2, ∞) concave down when f ″(x) < 0: (−∞, −2) inflexion point: ⎛⎜ −2, − 42 ⎞⎟ ⎝
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
e ⎠
Worked solutions: Chapter 7
16
WORKED SOLUTIONS 6
f (x ) =
1 = ( x 2 + 1)−1 x2 +1
− 4) ( x + 12)3
f ′′( x ) = 1442( x
ii
f ′( x ) = −( x 2 + 1)−2 (2 x ) = f ′′( x ) = =
f ′′( x ) = 0 when 144( x 2 − 4 ) = 0. x = −2, 2
−2 x ( x 2 + 1)2 2
2
⎡⎣( x 2 + 1)2 ⎤⎦
2
f
−2( x 2 + 1) ⎡⎣( x 2 + 1) − 4 x 2 ⎤⎦
f
( x 2 + 1)4
= −2(−23x
+ 1) ( x + 1)3 2
x 1 or 3
⎝
+
–
3 3
⎛ 3⎞ 3 ⎜⎜ − ⎟⎟ = 3 ⎝ ⎠ 4 ⎛ 3⎞ 3 ⎜⎜ ⎟⎟ = ⎝ 3 ⎠ 4
3⎞ ⎟ 3 ⎟⎠
⎝
⎛
concave down when f ″(x) < 0: ⎜⎜ − ⎝
⎛
inflexion points: ⎜⎜ − ⎝
a
f
3 3⎞ , ⎟ 3 4 ⎟⎠
+
√3 –3
concave up when f ″(x) > 0: ⎛⎜⎜ −∞, −
7
and
8
√3 3
and
⎛ 3 ⎞ , ∞ ⎟⎟ ⎜⎜ 3 ⎝ ⎠
⎞ 3 , 3 ⎟⎟ 3 3 ⎠
2
The graph of the second derivative of f is positive for x < −2 and x > 4, so f is concave up on (−∞, −2) and (4, ∞). The graph of the second –4 derivative of f is negative for −2 < x < 4, so f is concave down on (−2, 4).
⎛ 3 3⎞ , ⎟⎟ ⎜⎜ ⎝ 3 4⎠
2
= 48( x
2
1 2 3 4 5 x
⇒ (3 x − 2)( x + 4 ) = 0 ⇒ x = 2 , − 4 3
+ 12)[−( x 2 + 12) + 4 x 2 ] ( x 2 + 12)4
⎛ ⎞ The x -intercepts are ⎜ 2 , 0 ⎟ and ( −4, 0 ). 3 ⎝ ⎠ f ′( x ) = 6 x + 10
+ 12)(3 x − 12) ( x 2 + 12)4 2
2 + 12)( x 2 − 4 ) ( x 2 + 12)4
f ′( x ) = 0 ⇒ 6 x + 10 = 0 ⇒ x = − 5 3
2 = 1442( x − 43 ) ( x + 12)
i
–3 –2 –1–10 –2 –3 –4
y = f''(x)
f ( x ) = 0 ⇒ 3 x 2 + 10 x − 8 = 0
= 144( x
b
y 4 3 2 1
f ( x ) = 3 x 2 + 10 x − 8 f (0 ) = −8 ⇒ the y -intercept is (0, −8).
1
⎡⎣( x 2 + 12)2 ⎤⎦ 2 2 2 2 = ( x + 12) (−482 ) + 1924 x ( x + 12) ( x + 12) 2
2⎠
⎝
2⎠
Exercise 7T
+ 12)2 ( −48) − ( −48 x )[2( x 2 + 12)(2 x )]
= 48( x
+ 2
The inflexion points occur at x = −2, 4 since f ″(x) changes sign at x = −2, 4.
′( x ) = −2 48x 2 ( x + 12)
f ′′( x ) = ( x
–
–2
inflexion points are ⎛⎜ −2, 3 ⎟⎞ and ⎛⎜ 2, 3 ⎞⎟ .
x
f
+
signs of f '' x
Since f ′(x) changes signs at x = −2, 2 the
f ( x ) 0 for inflexion points 2(3x 2 1) 0 signs of f '
f
24 x 2 + 12 (−2) = 3 2 3 (2) = 2
f (x ) =
( x + 1) ( −2) − ( −2 x ) ⎡⎣2( x + 1)(2 x ) ⎤⎦ 2
2
signs of f ' x
–
+
f ( x ) 2 48x
⎛ ⎞ f ⎜ − 5 ⎟ = − 49 3 ⎝ 3⎠
f ( x ) 0 for relative extrema 48x 0 signs of f ' x x 0
⎛ ⎞ f has a relative minimum point at ⎜ − 5 , − 49 ⎟ . 3 3 ⎝ ⎠ f ′′( x ) = 6 > 0 ⇒ f is always concave up.
( x 12)2
f (x )
+
– 0
24 x 2 12
f (0) 2 Since f ′(x) changes from positive to negative at x = 0 there is a relative maximum at x = 0.The relative maximum point is (0, 2).
5 –3
y (–4, 0)
4
( 23 , 0)
–4 –3 –2 –1 0 1 2 3 4 x –4 –8 (0, –8) –12 5 49 – ,– –16 3 3
(
)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
17
WORKED SOLUTIONS 2
f ( x ) = x 3 + x 2 − 5x − 5 f (0 ) = −5 ⇒ the y -intercept is (0, − 5). f ( x ) = 0 ⇒ x 3 + x 2 − 5x − 5 = 0 ⇒
f ′( x ) is undefined when ( x − 4 )2 = 0 or when x = 4 f ′ is decreasing on (−∞, 4 ) and (4, ∞) There are no relative extrema.
x 2 ( x + 1) − 5( x + 1) = 0 ⇒
f ′′( x ) = 12( x − 4 )−3 (1) =
( x + 1)( x 2 − 5) = 0 ⇒ x = −1, ± 5 ⇒
f ′′( x ) is undefined ( x − 4 )3 = 0 ⇒ x = 4 f is concave down on (−∞, 4 ) and concave up on (4, ∞) There are no inflection points.
(
the x -iintercepts are ( −1, 0 ) , − 5 , 0
(
and − 5 , 0
)
)
f ′( x ) = 0 ⇒ 3 x 2 + 2 x − 5 = 0 ⇒ (3 x + 5)( x − 1) = 0 ⇒ signs of f ' x
3
⎛ ⎞ f ⎜− 5 ⎟ = ⎝ 3⎠
40 27
+
–
+
5
and f (1) = −8
⎛ ⎞ f has a relative maximum point at ⎜ − 5 , 40 ⎟ 3 27 ⎝ ⎠ and a relative minimum point at (1, − 8 ) . f ′′( x ) = 6 x + 2 f ′′( x ) = 0 ⇒ 6 x + 2 = 0 ⇒ x
–
signs of f '' x =−1 3
4
–2
( 3
+
–4
signs of f ' x
+
x = 3 ⇒ x -intercept is ( 3, 0 ) .
1
–3
– 3
f ′( x ) = 4 (3 − x )3 ( −1) = −4 (3 − x )3 f ′(( x ) = 0 ⇒ −4 (3 − x )3 = 0 ⇒ x = 3 f has a relative minimum point at ( 3, 0 ) .
⎛ ⎞ at ⎜ − 1 , − 88 ⎟ 27 3 ⎝ ⎠
(–√5, 0)
–
f ( x ) = (3 − x )4 f (0 ) = 81 ⇒ the y -intercept is (0, 81). f ( x ) = 0 ⇒ (3 − x )4 = 0 ⇒
+
⎛ ⎞ f ⎜ − 1 ⎟ = − 88 ⇒ f has an inflexion point 27 ⎝ 3⎠
f ″( x ) = −12(3 − x )2 ( −1) = 12(3 − x )2 f ″( x ) = 0 ⇒ 12(3 − x )2 = 0 ⇒ + signs of f '' x =3 x 3 f ″ do oes not change signs at x = 3, so f does not have an inflection point.
y
(– 53 , 4027 )
signs of f '' x
2 4 6 8 10 12 x
–6 –4 –2 0 –2 –4 –6 –8
1
–3
≠0
y x=4 8 6 (0, –2) 4 2 y=1
f ′( x ) = 3 x 2 + 2 x − 5 x = − 5 ,1
12 ( x − 4 )3
(–1, 0) (√5, 0) 0 –1 1 2 –2 1 , 88 –4 (0, –5) 3 27 –6 –8 (1, –8) –10
x
)
y 10 8 6 4 2
f (x ) = x + 2 x −4
f ( x ) is undefined when x − 4 = 0 ⇒ vertical asymptote at x = 4 1
f (0) = − 1 ⇒ the y -intercept is 2
signs of f '' x 1⎞ ⎛ 0 , − ⎜ ⎟ 2⎠ ⎝
f ( x ) = 0 when x + 2 = 0 ⇒ x = −2 ⇒ signs of f ' the x − intercept is (−2, 0) (x − 4)
−6 ( x − 4 )2
x
(3, 0)
0
Horizontal asymptote at y = 1 or y = 1
f ′( x ) = ( x − 4 )(1) − ( x2 + 2)(1) =
+
–
+ –4
5
1 2 3 4 5 6 x
f (x ) = e
x
− e −x 2
= 1 (e x − e − x ) 2
f (0) = 0 ⇒ the y -intercept is (0, 0) f ( x ) = 0 ⇒ 1 (e x − e − x ) = 0 ⇒ x = 0 ⇒ 2
–
– –4
x -intercept is ( 0, 0 ) f ′( x ) = 1 (e x − e − x (−1)) = 1 (e x + e − x ) 2
2
f ′( x ) ≠ 0 for any x ⇒ f has no relative extrema.. f ″( x ) = 1 (e x + e − x (−1)) = 1 (e x − e − x ) f
2
2
″( x ) = 0 ⇒ 1 (e x 2
−e ) = 0⇒ x = 0
signs of f '' x
–
−x
+ 0
f has an inflection point at (0, 0) © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
18
WORKED SOLUTIONS When y = f ′(x) is increasing and y = f (x) is concave up the graph of y = f ″(x) is positive and when y = f ′(x) is decreasing and y = f (x) is concave down the graph of y = f ″(x) is negative.
y 10 8 6 4 2 (0, 0) –4 –3 –2 –1–20 –4 –6 –8
6
y 1 2 3 4 x
y = f ''(x)
y = f '(x)
–3 –2 –1 0
f (x ) = x 2 − 1
1 2 3 x
2
x +1
y = f(x)
Horizontal asymptote at y = 1 or y = 1
2
1
f (0) = −1 ⇒ the y -intercept is ( 0, −1) f ( x ) = 0 when x 2 −1 = 0 ⇒ x = −1, 1 ⇒ the x − intercepts are (−1, 0) and (1, 0) f ′( x ) = ( x
+ 1)(2 x ) − ( x 2 − 1)(2 x ) = 24 x 2 ( x + 1) ( x 2 + 1)2 ⇒ 4 x = 0 ⇒ x = 0 signs of f ' x
2
–
f ′( x ) = 0 f has a relative minimum m point at (0, −1) f ″( x ) = =
x =± ⎛
f ⎜⎜ − ⎝
0
2
4 ( x 2 + 1) ⎡⎣( x 2 + 1) − 4 x 2 ⎤⎦ ( x 2 + 1)4
= 4(12− 3x 3 ) 2
( x + 1)
f ″( x ) = 0 ⇒ 4(1 − 3x 2 )=0 ⇒ 1 3
When the graph of y = f ′(x) has a relative maximum or minimum the graph of y = f ″(x) has zeros. The graph of y = f ″(x) is positive when the graph of y = f ′(x) is increasing and the graph of y = f (x)is concave up. The graph of y = f ″(x) is negative when the graph of y = f ′(x) is decreasing and the graph of y = f (x) is concave down.
+
( x 2 + 1)2 ( 4 ) − ( 4 x ) ⎡⎣2( x 2 + 1)(2 x ) ⎤⎦ ⎡⎣( x 2 + 1)2 ⎤⎦
or ±
3⎞ 1 ⎟=− 3 ⎟⎠ 2
signs of f '' x
3 3
and f
–
+ √3
–3
–
y = f '(x)
y = f(x)
–3 –2 –1 0
⎛ ⎞ 3 , − 1 ⎟⎟ ⎜⎜ − 3 2 ⎝ ⎠
⎛ 3 1⎞ , ⎟⎟ . ⎝ 3 2⎠
and ⎜⎜
3
1
(–√33 , – 12 )
–1 (0, –1)
(1, 0) 1 2 3 4 x
( √33 , – 12 )
Exercise 7U 1
1 2 3 x
y = f ''(x)
y
(–1, 0) –4 –3 –2 –1 0
y
√3 3
⎛ 3⎞ 1 ⎜⎜ ⎟⎟ = − 2 3 ⎝ ⎠
f has inflection points at
When the graph of y = f ′(x) has a zero and changes from positive to negative the graph of y = f (x) has relative maximums and when the graph of y = f ′(x) has a zero and changes from negative to positive the graph of y = f (x) has a relative minimum.
When y = f (x) has a relative minimum or maximum, f ′(x) = 0 and so y = f ′(x) has an x-intercepts. When y = f (x) is increasing the graph of y = f ′(x) is positive and when y = f (x) is decreasing the graph of y = f ′(x) is negative. When y = f ′(x) has a relative minimum, f ″(x) = 0 and so y = f ″(x) as an x-intercept.
When the graph of y = f ″(x) has a zero and changes from negative to positive the graph of y = f ′(x) has a relative minimum and when the graph of y = f ″(x) has a zero and changes from positive to negative the graph of y = f ′(x) has a relative maximum. When the graph of y = f ′(x) has a zero and changes from positive to negative the graph of y = f (x) has relative maximums and when the graph of y = f ′(x) has a zero and changes from negative to positive the graph of y = f (x) has a relative minimum. When the graph of y = f ″(x) is positive the graph of y = f (x) is concave up and when the graph of y = f ″(x) is negative the graph of y = f (x) is concave down.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
19
WORKED SOLUTIONS y y = f(x)
–8 –6 –4 –2 0
5 y = f '(x)
f ( x ) = ( x − 1)4 f ′( x ) = 4 ( x − 1)3 (1) = 4 ( x − 1)3
2 4 6 8
f ′( x ) = 0 ⇒ 4 ( x − 1)3 = 0 ⇒ x = 1
x
f ″(( x ) = 12( x − 1)2 (1) = 12( x − 1)2 f ″(1) = 0 ⇒ second derivative test faails ⇒ use first derivative test. f ′(x) changes sign from negative to positive at x = 1 ⇒ relative minimum. signs of f ' – + f (1) = 0 x 1 relative minimum: (1, 0)
y = f ''(x)
Exercise 7V 1
2
3
4
f ( x ) = 3 x 2 − 18 x − 48 f ′( x ) = 6 x − 18 f ′( x ) = 0 ⇒ 6 x − 18 = 0 ⇒ x = 3 f ″( x ) = 6 ⇒ f ″(3) = 6 > 0 ⇒ relative minimum f (3) = −75 relative minimum : (3, − 75) f ( x ) = ( x 2 − 1)2 f ′( x ) = 2( x 2 − 1)(2 x ) = 4 x ( x 2 − 1) f ′( x ) = 0 ⇒ 4 x ( x 2 − 1) = 0 ⇒ x = 0, −1,1 f ″( x ) = ( 4 x )(2 x ) + ( x 2 − 1)( 4 ) = 12 x 2 − 4 f ″(0 ) = −4 < 0 ⇒ relativee maximum at x = 0 f ″( −1) = 8 > 0 ⇒ relative minimum at x = − 1 f ″(1) = 8 > 0 ⇒ relative minimum at x = 1 f (0 ) = 1; f ( −1) = 0; f (1) = 0 relative maximum: (0, 1) relative minimums: ( −1, 0 ) and (1, 0 ) f (x ) = x 4 − 4x 3 f ′( x ) = 4 x 3 − 12 x 2 f ′( x ) = 0 ⇒ 4 x 3 − 12 x 2 = 0 ⇒ 4 x 2 ( x − 3) = 0 ⇒ x = 0, 3 f ″( x ) = 12 x 2 − 24 x f ″(0 ) = 0 ⇒ second derivative test fails ⇒ usse first derivative test Since f ′( x ) does not change signs at x = 0 there is no relative extremum at x = 0. f ″(3) = 36 > 0 ⇒ relative minimum at x = 3 – – signs of f ' f (3) = −27 x 0 3 relative minimum: (3, − 27 ) f ( x ) = xe
x
f ′( x ) = ( x )(e ) + (e )(1) = e ( x + 1) x
x
x
f ′( x ) = 0 ⇒ e ( x + 1) = 0 ⇒ x = −1 x
f ″( x ) = (e x )(1) + ( x + 1)(e x ) = e x ( x + 2)
6
f (x ) =
1 = ( x 2 + 1)−1 x2 +1
f ′( x ) = −1( x 2 + 1)−2 (2 x ) = f ′( x ) = 0 ⇒ f ″( x ) = =
−2 x ( x 2 + 1)2
= 0 ⇒ −2x = 0 ⇒ x = 0
( x 2 + 1)2 ( −2) − ( −2 x ) ⎡⎣2( x 2 + 1)(2 x ) ⎤⎦ ⎡⎣( x 2 + 1)2 ⎤⎦ ( x 2 + 1)4
2 − 1) ( x + 1)3
= 2(32x
f ″(0) = −2 < 0 ⇒ relative maximum f (0) = 1 relative maximum : (0, 1)
Exercise 7W 1
2
3
Neither A nor C can be relative extrema because relative extrema do not occur at endpoints. A is neither an absolute nor a relative A extrema. B is an absolute minimum. C is an absolute maximum. Neither A nor D can be relative extrema because relative extrema do not occur at endpoints. A is A neither an absolute nor a relative extrema. B is a relative minimum C is an absolute maximum. D is an absolute minimum.
C
B C
B D
f ( x ) ( x 2) for 0 x 4 3
f ( x ) 3( x 2)2 (1) 3( x 2)2 f ( x ) 0 3( x 2)2 0 x 2 f (0) 8 f (2) 0 f (4) 8
f ( −1) = − 1e
abolute maximum: 8
⎛ ⎞ relative minimum:⎜ −1, − 1e ⎟ ⎝ ⎠
2
−2( x 2 + 1) ⎡⎣( x 2 + 1) − 4 x 2 ⎤⎦
f ″( −1) = 1 > 0 ⇒ relative miniimum e
−2 x ( x 2 + 1)2
abolute minimum: 8
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
20
WORKED SOLUTIONS 4
5
P 50 4 0 relative maximum
f ( x ) = 8 x − x 2 for − 1 ≤ x ≤ 7 f ′( x ) = 8 − 2 x f ′( x ) = 0 ⇒ 8 − 2 x = 0 ⇒ x = 4 f ( −1) = −9 f ( 4 ) = 16 f (7 ) = 7 absolute maximum: 16 absolute minimum: − 9
x 200 2 y x 200 2(50) 100 The numbers are 100 and 50 3
y = width A = xy 2 x + 3 y = 400 ⇒ x = 200 − 3 y 2
⎛ ⎞ A = ⎜ 200 − 3 y ⎟ ( y ) = 200 y − 3 y 2 2 2 ⎝ ⎠ A′ = 200 − 3 y
f ( x ) = x − 3 x for − 1 ≤ x ≤ 2 3
2
2
f ′( x ) = 3 x 2 − 3 x = 3 x ( x − 1) f ′( x ) = 0 ⇒ 3 x ( x − 1) = 0 ⇒ x = 0, 1
x
3
A″ = −4
f (0 ) = 0 f (1) =
y
A′ = 0 ⇒ 200 − 3 y = 0 ⇒ y = 200
−5 2
f ( −1) =
x = length
⎛ ⎞ A″ ⎜ 200 ⎟ = −4 < 0 ⇒ relaative maximum 3 ⎝ ⎠
−1 2
⎛ ⎞ x = 200 − 3 y ⇒ x = 200 − 3 ⎜ 200 ⎟ = 100 2 2⎝ 3 ⎠
f (2) = 2 absolute maximum: 2
The dimensions are 100 ft by
ab bsolute minimum: − 5
200 3
ft.
2
Exercise 7Y
Exercise 7X 1
x = the first positive number y = the second positive number S =x+ y x + y = 20 ⇒ x = 20 − y S = 20 − y + y = 20 − y + y −1
S ʹ= −1 + 1 y 2 = 2
Sʹ = 0 ⇒
1 2 y
S ʺ ⎛⎜ 1 ⎞⎟ = ⎝4⎠
⎛1⎞ 4 ⎜ ⎟ ⎝4⎠
3
The numbers
x
S ″ ( 40 ) = 6 > 0 ⇒ relative minimum h = 32002 0 ⇒ h = 32000 = 20 2 x
40
The dimensions are 40 m by 40 m by 20 m. 2
C ( x ) = x 3 − 3 x 2 − 9 x + 30
x the first positive number
C ′( x ) = 3 x 2 − 6 x − 9
y the second positive number P xy x 2 y 200 x 200 2 y
C ′( x ) = 0 ⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x + 1)( x − 3) = 0 ⇒ x = −1, 3 The only ciritcal number in [0,10] is 3. C ( 0 ) = 30 C (3) = 3 C (10 ) = 640 Three items should be produced to minimizze the cost.
P (200 2 y )( y ) 200 y 2 y 2 P 200 4 y P 0 200 4 y 0 y 50 P 4
x
S ″ = 2 + 256,000 x −3 = 2 + 256,3000
= −2 < 0 ⇒ relative maximum = 20 − 1 = 79 4 4 79 are and 1 4 4
x
2x 3 = 128,000 ⇒ x 3 = 64000 ⇒ x = 40
4 y3
x = 20 − y ⇒ x
2
4
−1
−1
h
2
−1 2
−3 2
x = length of square base h = height S = x 2 + 4 xh x 2h = 32000 ⇒ h = 32000
x2 ⎛ 32000 ⎞ S = x + 4 x ⎜ 2 ⎟ = x 2 + 128,000 x −1 ⎝ x ⎠ S ′ = 2x −128,000 x −2 = 2 x − 128, 2000 x S ′ = 0 ⇒ 2x − 128, 2000 = 0 ⇒ x
1 2
−1 = 0 ⇒ 1 = y ⇒ y = 1
Sʺ = − 1 y = 4
1 2 y
1
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
21
WORKED SOLUTIONS 3
s (t ) = t 3 − 12t 2 + 36t − 10 for 0 ≤ t ≤ 7 s ′(t ) = 3t 2 − 24 t + 36 s ′(t ) = 0 ⇒ 3t 2 − 24 t + 36 = 0 ⇒ 3(t − 2)(t − 6) = 0 ⇒ t = 2, 6 s (0 ) = −10 s (2) = 22 s (6) = −10 s (7 ) = −3 The maximum distance is 22
4
a
c
d ⎛ 3 ⎞ d ⎜ ⎟= dx ⎝ x 4 ⎠ dx
d
d dx
6x 4x
2 x 3 x 2 6 x 2 2 x 1
4 4
2x 3 2x 2
e
d ⎡ x − 4 ⎤ ( x + 7 )(1) − ( x − 4 )(1) = = 11 2 dx ⎢⎣ x + 7 ⎥⎦ ( x + 7 )2 ( x + 7)
ABC and ADE are similar triangles, so
f
⎡⎣e 4 x ⎤⎦ = (e 4 x )( 4 ) = 4 e 4 x
10 − h r
d dx
g
d dx
⎡⎣( x 3 + 1)4 ⎤⎦ = 4 ( x 3 + 1)3 (3 x 2 ) = 12 x 2 ( x 3 + 1)3
h
d⎡ ln(2x + 3) ⎤⎦ = ⎜⎛ 1 ⎞⎟ (2) = 2 x⎣ 2x + 3 ⎝ 2x + 3 ⎠
i
d ⎡ ln x ⎤ = dx ⎢⎣ x 2 ⎥⎦
j
d ⎡ 4 x − 2x ⎤ d ⎡1 4 1 ⎤ 1 2 ⎢ ⎥= ⎢ (4 x − 2 x )⎥⎦ = 6 (8x − 2) = 3 x − 3 dx ⎣ 6 ⎦ dx ⎣ 6
k
d dx
= 10 ⇒ 10 − h = 5 ⇒ r = 30 − 3h 6
3
r
5
V= π r 2 h ⇒V= π ⎛⎜ 30 − 3h ⎞⎟ h or 5
⎝
⎠
A
10 cm 9π (100h − 20h2 + h3 ) 25 9π (100 − 40h + 3h2 ) 25 9π (−40 + 6h) = 18π (3h − 20) 25 25
= V dV = dh d 2V = dh 2
d
( x 2 1)(2 x 3 x 2 x )
10 x 4 4 x 3 3 x 2 2 x 1
9π (100h − 20h2 + h3 ) 25
c
10 – h B
r
C
h D
E 6 cm
l m
3
dV dh 2
r
h =10
= 180 25
⎛1⎞ ( x 2 ) ⎜ ⎟ − (ln x )(2 x ) ⎝x⎠ = x − 2 x4 ln x ( x 2 )2 x
⎛ 10 ⎞ 30 − 3 ⎜ ⎟ ⎝ 3 ⎠ = 5
⎡⎣(3 x 2 + 1)(e x ) ⎤⎦ = (3 x 2 + 1)(e x ) + (e x )(6 x )
x d ⎡ 2e x ⎤ (e x − 3)(2e x ) − (2e x )(e x ) = −x 6e 2 ⎢ x ⎥= x 2 dx ⎣ e − 3 ⎦ ( e − 3) ( e − 3)
d ⎡ 3 dx ⎢⎣
2 x − 5 ⎤⎥ = ⎦
= n
=4
d dx
o
3
b
p( x ) = 4 x − 2x 2 = 4 x 2 − 2x 2
1
dp dx
−1
= 2x 2 − 4 x =
2 x
− 4x
−3
−1
−4
d2 p dx 2
c
dp dx
= −x 2 − 4 =
=0⇒
d2 p dx 2
2 x
x3
2
1
f ′( x ) = lim [2( x + h )
= −6 < 0 ⇒ relative maximum
(4x
d dx
b
d ⎛3 ⎜ dx ⎝
x
3
4
4 ⎞ = d ⎜⎛ x 3 ⎟ ⎠ dx ⎜⎝
⎞ 4 1 ⎟ = x3 ⎟ 3 ⎠
− 6( x + h )] − (2 x 3 − 6 x ) h→0 h 2 x 3 + 6 x 2 h + 6 xh 2 + 2h3 − 6 x − 6h − 2 x 3 + 6 x = lim h→0 h 6 x 2 h + 6 xh 2 + 2h3 − 6h = lim h→0 h h ( 6 x 2 + 6 xh + 2 h 2 − 6 ) = lim h→0 h 3
= lim(6 x 2 + 6 xh + 2h 2 − 6) h→0
= 6x 2 − 6 c
+ 3 x 2 − 2 x + 6 ) = 12 x 2 + 6 x − 2
d ⎡ ⎛ 1 ⎞⎤ ln ⎜ ⎟ = d ⎡ ln x −1 ⎤⎦ = ⎛⎜ 1−1 ⎞⎟ (− x −2 ) dx ⎢⎣ ⎝ x ⎠ ⎥⎦ dx ⎣ ⎝x ⎠ = ( x ) ⎜⎛ −12 ⎞⎟ = −1 x ⎝x ⎠
b
x ≈0.630
a
−1
⎦
( x + h )3 = x 3 + 3 x 2 h + 3 xh 2 + h3
0.630 thousand units or 630 units maximize the profit.
✗
1⎤
)2 ⎥⎥ = 32 (2x − 5) 2 (2)
a
− 4 x = 0 ⇒ x ≈ 0.630
Review exercise
(
= 2 xe 2 x ( x + 1)
radius is 4in and the height is 10 in. p( x ) = 4 x − 2x 2
d ⎡ ⎢3 2 x − 5 dx ⎢⎣ 3 2x − 5
⎡⎣ x 2 e 2 x ⎤⎦ = ( x 2 ) ⎡⎣(e 2 x )(2) ⎤⎦ + (e 2 x ) ( 2 x )
Maximum volume occurs when the
a
x
2
> 0 ⇒ relative minimum
= 30 − 3h ⇒ r 5
= 1 − 2 3ln x
= e x (3 x 2 + 6 x + 1)
dV = 0 ⇒ 9 (100 − 40h + 3h2 ) = 0 ⇒ dh 25 9 (10 − 3h)(10 − h) ⇒ h = 10 , 10 25 3 −180 d 2V = < 0 ⇒ relative maximum 25 dh 2 h=10 2
5
5
( x 2 1)(6 x 2 2 x 1) (2 x 3 x 2 x )(2 x )
2
b
(3x −4 ) = −12x −5 = −x12
f ′( x ) = 6 x 2 − 6 f ′( x ) = 0 ⇒ 6 x 2 − 6 = 0 ⇒ 6( x + 1)( x − 1) = 0 ⇒ x = −1, 1 signs of f ' x
+
– –1
+ 1
f ( x ) 0 for 1 x 1, so p 1 and q 1.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
22
WORKED SOLUTIONS d
f ″( x ) = 12 x
e
f ″( x ) = 0 ⇒ 12 x = 0 ⇒ x = 0 signs of f '' x
iii
–
+
f ( x ) = 4 xe x
2
−1
2
−1
= 0 ⇒ 12x ( x − 2) = 0 ⇒ x = 0, 2
)(2 x ) ⎤ + (e x ⎦
2
−1
c
2
y−4 =− 4
− 1)
f ( x ) = 2 x 3 − 3 x + 1; tangent line parallel to y = 5x − 2 f ′( x ) = 6x2 − 3 6x − 3 = 5 ⇒ x = ± 2
f
2 3 3
=
9−2 3 9
, f
7
5
b
−2 3 3
=
9+2 3 9
6
a
and
−2 3 3
,
i
i
ii
s (t ) = 20t − 100 ln t , t ≥ 1. v (t ) = s ′(t )
v (t ) = 0 ⇒ 20 − 100 = 0 ⇒ t = 5 t
signs of v t 0
c
y 4 3 2 1
5
0 –1 –2
v (t ) 20 100 20 100t 1 t 100 2 t
Since 100 0 and t 2 0, v (t ) 0 for all t 1. Therefore velocity is always increasing. 1 2 3 4 5 x
Review exercise 1
a
lim x →2
1 x −2 y
dy = 4 x 3 − 12 x 2 dx d2y = 12x 2 − 24 x dx 2
x 3 ( x − 4 ) = 0 ⇒ x = 0, 4 ⇒ x -intercepts are (0, 0 ) and ( 4, 0 ) dy = 4 x 3 −12 x 2 = 4 x 2 ( x − 3) dx dy = 0 ⇒ 4 x 2 ( x − 3) = 0 ⇒ x = 0, 3 dx d2 y = 12 x 2 − 24 x = 12x ( x − 2) dx 2 d2 y =0 dx 2 x = 0
= 36 > 0 ⇒ relative minimum x =3
+
v (t ) a (t ) 100t 2
y = f(x)
y = x 3 (x − 4) = x 4 − 4 x 3
d2 y dx 2
–
The particle is moving to the left on the interval (1, 5)
9+2 3 9
f ″(2) > 0 since the graph of f is concave up, f (2) = 0 and f ′(2) < 0 since the graph of f is decreasing
ii b
9−2 3 9
f ″(2) > f (2) > f ′(2)
a b
,
a
v (t ) = 20 − 100 t
2 3 3
The tangent line is parallel to y = 5 x + 2 at the points 2 3 3
+ 2
(4, 0) (0, 0) 0 –4 –3 –2 –15 1 2 3 4 x 10 15 20 (2, –16) 25 (3, –27)
1 12
1 (x 12
– 0
y 20 15 10 5
)( 4 )
= 2e x −1 ( 4 x 2 + 2) mtangent = f ′(1) = 12 mnormal = −
+
y (0) 0; y (2) 23 (2 4) 16 inflexion points: (0,0) and (2, 16)
; normal line at (1, 4 )
f ′( x ) = ( 4 x ) ⎡(e x ⎣
= 12x 2 − 24 x = 12 x ( x − 2)
signs of f '' x
0
f ″( x ) > 0 for x > 0 so f is concave up on (0, ∞ ). 3
d2 y dx 2 d2 y dx 2
y (3) = 33 (3 − 4 ) = −27 relative minimum point: (3, − 27)
4 3 2 1 –5 –4 –3 –2 –1–10 –2 –3 –4
1 2 3 4 5 x
x 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
f(x) −2.0000 −2.5000 −3.3333 −5.0000 −10.0000 10.0000 5.0000 3.3333 2.5000 2.0000
lim 1 does not exist at 2 since the function x →2 x − 2 approaches −∞ from the left side of 2 and ∞ on the right side of 2.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
23
WORKED SOLUTIONS b
lim 1 x →3 x − 2 y 4 3 2 1 –5 –4 –3 –2 –1–10 –2 –3 –4
1 2 3 4 5 x
lim 1 = 1 = 1 x →3 x − 2 3−2 c
2 − 16 x −4
lim x x →4
y 8 6 4 2 –10 –8 –6 –4 –2–20 –4 –6 –8 16 x 4
lim x x 4
2
2 4 6 8 10 x
lim ( x 4)( x 4) x 4
x 4
lim( x 4) 4 4 8 x 4
d
+3 x −1
lim x x →1
2
y 16 12 8 4 –16–12 –8 –4–40 –8 –12 –16
+3 x −1
lim x x →1
2
4 8 12 16 x
x 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
f(x) 2.0000 1.6667 1.4286 1.2500 1.1111 1.0000 0.9091 0.8333 0.7692 0.7143 0.6667
x 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5
f(x) 7.5000 7.6000 7.7000 7.8000 7.9000
x 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
b
i
−1
L′( x ) = 1 ( x 2 + 100) 2 (2 x ) + 2
1
− 1 2 ( x − 60 x + 1525) 2 (2 x − 60) 2 x x − 30
=
x 2 + 100
25 ft
30 – x
x
ii
x 2 − 60 x + 1525
z
y
10 ft
+
L′( x ) = 0 ⇒
x x 2 + 100
= 0 ⇒ x ≈ 8.57
+
x − 30 x 2 − 60 x + 1525
Signs of L′(x) signs of L'(x)
– 0
+ 8.57
L(x) has a minimum at x = 8.57 The stake should be placed 8.47 ft from the 10 foot post.
8.1000 8.2000 8.3000 8.4000 8.5000
f(x) −6.5000 −8.4000 −11.6333 −18.2000 −38.1000 42.1000 22.2000 15.6333 12.4000 10.5000
does not exist at 1 since the function
approaches −∞ from the left side of 1 and ∞ on the right side of 1. 2
a
i
x 2 + 10 2 = y 2 ⇒ y = x 2 + 100
ii
(30 − x )2 + 252 = z 2 ⇒ z = (30 − x )2 + 625 ⇒ z = x 2 − 60 x + 1525
iii
L ( x ) y z x 2 100 x 2 60 x 1525 1
1
( x 2 100) 2 ( x 2 60 x 1525) 2 © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 7
24
WORKED SOLUTIONS
8
Descriptive statistics
Answers
b
c
Frequency
y
4
12 10 8 6 4 2
a b
0 Red Blue Pink Purple Black x
2
Mean = 4 + 7 + 7 + 8 + 6 = 32 = 6.4 5 5 b The number that occurs most often is 8 a
c
Arrange the data in order of size. 2, 4, 4, 6, 7, 8, 11. The median is the middle member, 6 5, 7, 9, 11, 13, 15. The middle member is in between 9 and 11. 1 (9 + 11) = 10
i
ii
2
6, 8, 11, 11, 14, 17. The middle member is between the two number elevens. 11
iii
a c
2
Discrete. Continuous.
c
1 2
b d
Continuous. Discrete
a
2
b
17
c
2 3
Number of teachers
3
a
10 20 30 40 50 60 70 x Age (years)
Continuous
50
14
f 1 2 4 4 2 2 1 1
b
9 1 2
c
18 and 24
and 2.
170 ≤ t < 180
∑x 66 + 57 + 71 + 69 + 58 + 54 375 = = 6 = 62.5 kmh −1 n 6 ∑ x 1.79 + 1.61 + 1.96 + 2.08 7.44 = Mean = n = = $1.86 4 4
Mean =
a
Discrete Calls per day (x) 2 3 4 5 6 7 8 9 Totals
Mean = a c
5 4 3 2 1
18
b
b
4 y
0
24
5 mins
1
15 30 45 60 75 90 x Time in minutes
Continuous
8
10 15 20 25 30 35 40 45
a
y
a
< < < < < < <
0
= 3 x 2 ; 1 ⎛⎜ du ⎞⎟ = x 2 3 ⎝ dx ⎠
⌠ ⎡ 1 ⎛ du ⎞ 4 ⎤ 4 1 1⎛1 5 ⎞ ⎮ ⎢ ⎜ ⎟ u ⎥ dx = 3 ∫ u du = 3 ⎜ 5 u ⎟ + C ⎝ ⎠ ⌡ ⎣ 3 ⎝ dx ⎠ ⎦
t 2 − 9 dt ≈ 119 m
distance travelled =
7
x3 +C
+C
du
c
3 7
( x 3 + 1)4 dx ⇒ u = x 3 + 1;
3
3
7
x 3 + C=
⌠ 5x 4 − 3x ⎛ 5 2 1 ⎛ 1 ⎞⎞ dx ⌠ ⎮ 6 x 2= ⎮ ⎜ 6 x − 2 ⎜ x ⎟ ⎟ dx ⎝ ⎠⎠ ⌡ ⌡⎝ 5⎛1 3⎞ 1 = ⎜ x ⎟ − ln x + C 6⎝3 ⎠ 2 5 3 1 = x − ln x + C , x 18 2
s( t ) = ∫ v ( t ) dt = ∫ ( t 2 − 9 ) dt = 1 t 3 − 9 t + C
1
dt ≈ 240 cm3
20
2
0
18.4 e 20 dt ≈ 239 billions of barrels
1.5
= 1 (6)(6) + 1 ( 4 + 2)(2) = 24 m 2
t
∫ ∫ (1375t
1
g
⌠ 1= dx ⎮ ⌡ 2x + 3
h
ln x dx u x 1 ln x x dx
2 4 6 8 10 12 14 16 18
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
1 5 u 15
+C =
1 ln(2 x + 3) + C , 2
+ 1)5 + C
x >−3
2
ln x ; du 1 dx x du u dx dx
ud u
1 (x 3 15
1 2 u C 2
1 (ln x )2 C , 2
x 0
Worked solutions: Chapter 9
12
WORKED SOLUTIONS i
u j
u 3x 2 1; du 6 x
(3x 2 1)(6 x )dx du dx
dx
1 2 u 2
u du
dx 1 (3x 2 2
C
∫
e
1)
2e dx u e x 3; du e x x dx e 3 x 2e dx 2 1 (e x )dx x x e 3 e 3
12
2
f
2ln u C 2ln(e x 3) C
∫3
3
= (2 x − 5) + C
2 xe dx 2 xe 2x
2x
2
=
1 2
[ ln(2(2) + 1)] − 21 [ ln(2(0) + 1)]
1 2
1 eu 2
u
2
∫
=
1
1 2x e 2
C
2
∫
=
C
2
∫
c
1
4
2
1
2
⎡ ⎤ ( x − 1)dx = ⎢ 1 x 3 − x ⎥ 3 ⎣ ⎦1
1
( x 2 − 1)dx − ∫ ( x 2 − 1)dx −1
π ∫ ( x 2 − 1)2 dx 1
f ′( x ) = 3 x − 2; (2, 6)
0
dx ⇒ u = 3 x 2 + 3;
3 (2)2 2
du dx
∫ 6 xe 0
2
3 x +3
5
⌠ ⎛ ⎞ dx = ⎮ ⎜ d u ⎟ e u dx ⌡ x = 0 ⎝ dx ⎠ =
∫
u =3
u
3 2
6
6
3
x 2 − 2x + 4
f ( x )dx = 20 5
Given ∫ f ( x )dx = 20 . 1
5
e du= ⎡⎣e ⎤⎦= e − e 3 u
5
1
a
x =1
u =6
∫
x 2 − 2x + C
− 2(2) + C =6 ⇒ 6 − 4 + C =6 ⇒ C =4
f (x ) =
= 6x ;
when x = 0 then u = 3(0)2 + 3 = 3 and when x = 1 then u = 3(1)2 + 3 = 6 1
3 2
=
= 4 ⎡⎣ ln e 2 ⎤⎦ − 4 [ ln1] = 4(2) − 4(0) = 8 3 x 2 +3
⎛ ⎞ 3⎜ 1 x 2 ⎟ − 2x + C 2 ⎝ ⎠
∫ (3x − 2 ) dx=
f ( x )=
2
e2 ⌠ ⌠ = ⎮ 4x dx 4= ⎮ 1x dx 4 [ ln x ]1 ⌡1 ⌡1
1
3 x
2
d
16
∫ 6 xe
2
⎡ ⎤ ⎡ ⎤ = ⎢ 1 (2)3 − 2 ⎥ − ⎢ 1 (1)3 − 1⎥ 3 3 ⎣ ⎦ ⎣ ⎦ ⎛ ⎞ = 2 −⎜− 2 ⎟ = 4 3 ⎝ 3⎠ 3
16 1 16 − ⎡ 12 ⎤ ⌠ 4 2 = = d t 4 t d t 4 ⎮ ⎢ 2t ⎥ ∫4 ⌡4 t ⎣ ⎦4
1 1 ⎡ 12 ⎤ ⎡ ⎤ ⎡ ⎤ 2 2 = ⎢= 8t ⎥ ⎢8(16) ⎥ − ⎢8(4) ⎥ ⎣ ⎦4 ⎣ ⎦ ⎣ ⎦ = 32 − 16 = 16
d
B
2
2
e
1
Area of region B
b
2 ⎡ ⎛1 3⎞ ⎤ 2 3 ∫0 (3x − 6)dx =⎢⎣3 ⎜⎝ 3 x ⎟⎠ − 6 x ⎥⎦ 0 =⎣⎡ x − 6 x ⎦⎤ 0
e
2
–2
16
c
y 3
–3 –2 –1 0 A 1 –1
2
2
ln 5 2
( x 2 − 1)dx
3 3 = −4 ⎣⎡ (2) − 6(2) ⎦⎤ − ⎣⎡ (0) − 6(0) ⎦⎤ =
b
1 (ln 5) − 1 ln1= 2 2
Area of region B
dx
e du
2
f (x) = x 2 − 1 a
1 du u 2 x 2 ; du 4 x ; x dx 4 dx 2 2 xe 2 x dx 2 1 du e u dx 4 dx
a
[ ln(2 x + 1)]0
=
3 2
2
1 2
2 x − 5dx= 3∫ (2 x − 5) dx 3 ⎡ ⎛ ⎞⎤ = 3 ⎢ 1 ⎜ 2 (2 x − 5) 2 ⎟ ⎥ + C ⎢⎣ 2 ⎝ 3 ⎠ ⎥⎦
l
⌠ 1 dx ⎮ = ⌡0 2 x + 1
1 2
2
1
1
⎤ ⎤ ⎡ − 1) ⎥ = ⎢ 1 (3 x − 1)4 ⎥ 12 ⎦ −1 ⎣ ⎦ −1 4
= 16 − 256 = −20 12
u
u dx
1 ⎡1 (3 x 3⎢ ⎣4
⎤ ⎤ ⎡ ⎡ = ⎢ 1 (3(1) − 1)4 ⎥ − ⎢ 1 (3( −1) − 1)4 ⎥ 12 12 ⎦ ⎦ ⎣ ⎣
x
1 du 1 2 dx 2 du
k
(3 x − 1) dx = 3
−1
C
2
1
⌠ ⎮ ⌡1
1 4
f ( x )dx =
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
1 4
∫
5
1
f ( x )dx = 41 (20 ) = 5;
Worked solutions: Chapter 9
13
WORKED SOLUTIONS 5
5
dx ∫ ∫1 [ f ( x ) + 2]= 1
b
2
5
f ( x ) dx + ∫ 2 dx
a
1
a (t ) = v ′(t ) = 4 t − 11
= 20 + [ 2 x ]1 = 20 + (10 − 2) = 28 5
6
t0
v (t ) = 4 e + 2; s (0 ) = 8 b
1 2x − 1
c 3
dx = ln 5
a
1 1 dx ln(2 x 1) 2 1 2 x 1 1
b
1 ln(2(k ) 1) 1 ln(2(1) 1) 2 2 1 ln(2k 2
1 ln(2k 2
Particle moves left for a < t < b
∫
5
2
2t 2 − 11t + 12 dt ≈ 7.83 m
f ( x ) =x 3 − 2 ⇒ f ( −1) =−3
Use a GDC to solve : x 3 − 2 = 3 x x =2 f ( 2 ) = 23 − 2 = 6
1)
The point is (2, 6) c
1) ln 5 ln 2k 1 ln 5
y 8 6 4 2
2k 1 5 2k 1 25 k 13
Review exercise f (x ) = 4 − x
y
2
2
−2
–2 –1 (–1, –3)
4
V = ∫ ( 4 − x 2 ) dx ≈ 107.2 2
right
f ′( x ) = 3 x 2 ⇒ m = f ′( −1) = 3 y + 3= 3( x + 1) or y= 3 x
k
k
4 left
2t 2 − 11t + 12 = 0 ⇒ x = 1.5, 4 a = 1.5 and b = 4
s ( t )= 2e 2 t + 2t + 6 k
1.5
+
v (t ) = 2t 2 − 11t + 12
2e 2(0) + 2(0) + C =8 ⇒ 2 + C =8 ⇒ C =6
⌠ ⎮ ⌡1
–
right
⎛ ⎞ s (= t ) ∫ ( 4 e + 2 )= dt 4 ⎜ 1 e 2 t ⎟ + 2 t + C 2 ⎝ ⎠ 2t = 2e + 2 t + C
1
+
signs of v
2t
2t
7
v (t ) = 2t 2 − 11t + 12 , t ≥ 0
0 –2 –4
y = 3x
(2, 6) y = f(x)
1
2
x
3 2
d
1 –4 –3 –2 –1 0 –1
1
2
3
4
∫
2
−1
⎡⎣3 x − ( x 3 − 2) ⎤⎦ dx = 6.75
x
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 9
14
WORKED SOLUTIONS
10
Bivariate analysis
Answers Skills check 4
Evaluate 25 = 32
2
33 = 27
3
73 = 343
4
⎛1⎞ ⎜ ⎟ ⎝2⎠
5
⎛3⎞ ⎜ ⎟ ⎝4⎠
6
0.0013 = 0.000 000 001
7
4
Rainfall (cm)
1
y 60
a
40 20
= 1 128 =
0 1999 2001 2003 2005 2007 2009 x
81 256
State the value of n in the following equations
5
b
Strong, negative.
c
As the years increase the rainfall decreases
a
y
n=4
80
2
3 = 243
n=5
60
3
7n = 343
n=3
5 = 625 5 (−4)n = −64
n=4 n=3
4
6
⎛1⎞ ⎜ ⎟ ⎝2⎠
n
=1 8
Science
2n = 16
n
0
3
20
n=3 b
40 60 80 100 x Mathematics
Strong, positive, linear.
6
y
Scatterplot of lean vs year
750
a
Positive
Strong
b
Negative
Weak
c
Negative
Strong
675
d
Positive
Weak
650
e
No correlation
a
i
positive,
ii
linear,
iii
strong,
a
Strong, positive.
b
i
negative,
ii
linear,
iii
strong,
b
The lean is increasing as the years increase.
c
i
positive,
ii
linear,
iii
Moderate.
d
i
No association, ii
iii
zero.
e
i
positive,
f
i
Negative, ii
a
If the independent and dependent variables show a positive correlation then as the independent variable increases the dependent variable increases.
b
lean
725
1975 1977 1980 1982 1985 1987 year
Non linear,
linear,
iii
weak.
non linear,
iii
strong.
If the independent and dependent variables show a negative correlation then as the independent variable increases the dependent variable decreases.
x
Exercise 10B 1
ii
700
a
Mean point = (mean of x, mean of y) = (96.7, 44.1)
b
y 70
Relationship between leaf length and width
60 Width (mm)
2
40 20
Exercise 10A 1
Scores
100
1
n
Rainfall in Tennessee
50
M
40 30 20 10 0
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
40
120 80 Length (mm)
160 x
Worked solutions: Chapter 10
1
WORKED SOLUTIONS 2
a
182 +173 +162 +178 +190 +161+180 + 172 +167 +185 10
i
2
a
= 175 cm
73 + 68 + 60 + 66 +75 + 50 + 80 + 60 + 56 +72 10
y 80 75 70 65 60 55 50 45
Weight (kg)
b
0
3
a
= 66 kg
b
M
Increase
sum of sales number of sales
= 528 = 75.4 7
Note the values of m and b in the equation y = mx + b are approximate.
y 120
150
160 170 180 Height (cm)
190
200
x
100 80 60 40 0 160
14 12 10 8 6 4 2
e Mean Point
4
6
x
8
Strong, positive
d
An increase in the number of hours spent studying mathematics produces an increase in the grade.
280
x
Approximately 70 houses.
70
72
74
76
78
80
12.3
9.5 7.7 6.1
4.3
2.3
The slope is –0.3. As a student plays one more day of sport per year they do 18 mins less homework per week. The y-intercept is 40, which means that the average student who does no sport does 40 hours of homework per week.
2
Exercise 10C Temperature, (x) °F Percentage of diseased leaves, (y)
240 200 Price ($000)
Exercise 10D 1
2
y = –x + 300
20
c
The slope is 6. For every criminal a person knows, they will generally have been convicted of 6 more crimes. The y-intercept is 0.5, which means that people who do not know any criminals will, on average, have been convicted 0.5 times.
3
The slope is 2.4. For every pack of cigarettes smoked per week a person will, on average, take 2.4 more sick days per year. The y-intercept is 7, which means that the average person that does not smoke has 7 sick days per year.
y Percentage diseased
7
140
Hours
1
Mean sales =
c and d
y
0
= 1540 = 220
The mean number of sales is estimated at 75.4
Mean point = (mean of x, mean of y) = (4, 6.67)
b
sum of prices number of prices
The mean house price is $220 000
Sales figure
ii
Mean house price =
12.3
4
2.3 70
80
The y-intercept is –5, which means that –5 people visited his shop in year zero, the y-intercept is not suitable for interpretation.
x
Temperature
a
( x , y ) = (75, 7.03)
b
y = –0.96x + 79
c
% diseased = (–0.96 × Temperature) + 79 % diseased = (–0.96 × 79) + 79 = 3.2%
The slope is 100. 100 more customers come to his shop every year.
5
The slope is 0.8. Every 1 mark increase in mathematics results in a 0.8 increase in science. The y-intercept is –10 which is not suitable for interpretation as a zero in mathematics would mean a –10 in science.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 10
2
WORKED SOLUTIONS
Exercise 10E 1
a
fairly constant and therefore extrapolating with a linear function is unsuitable.
y
5
Concentration
14
Revisit the data from the leaning tower of Pisa.
12
a
(1981, 694)
10
b
y
8 6
725 lean
4 2 1
2 3 4 5 Time (hours)
6
x
650 1975 1977 1980 1982 1985 1987 year
b
y = 1.84 x + 1.99
c
Concentration after 3.5 hours: y = 1.99 + 1.84 × 3.5 = 8.43
a
y = 9.32x – 17 767
e
Lean = (9.32 × year) – 17 767 = (9.32 × 1990 ) – 17 767 = 780
Cost ($1000)
25
Exercise 10F
20
1
r = 0.863. There is a strong, positive correlation.
2
a
0.789
b
Strong, positive correlation.
c
The income increases as the number of years of education increases.
a
0.907
15 10 5 0
1
2
3 4 Age (yrs)
5
6
7
x
b
y = –2.67x + 28.1
c
Cost = (–2.67 × Age) + 28.1 = (–2.67 × 4.5) + 28.1 = MYR16 085
b
The stopping distance increases, as the car gets older.
d
The relationship may not be linear. Old cars are often more expensive after 50 yrs than when new.
c
Strong positive correlation.
a
–0. 887
b
Strong, negative correlation.
c
Yes, Kelly’s grade would increase if the chat time decreased.
a
0.026
b
Positive, weak correlation.
c
No. Mo’s grade would not increase if the game time decreased.
6
r = 0.994. Strong, positive correlation.
a
3
4
y
Hours of exercise
10 8
5
6 4 2 0
2 4 6 8 10 12 14 Months of membership
x
b
y = –0.665x + 9.86
c
Hours of exercise = (–0.665 × months of membership) + 9.86 = (–0.665 × 3) + 9.86 = 7.865 hrs.
✗
Review exercise 1
a
ii
2
a
b
c
iii
d
i
y 60 50
No. The equation gives –6.1 hrs of exercise!
Fifty years = 600 months, and the line would predict Sarah’s height at 50 years to be about 302 cm = 3.02 meters. Clearly there is a major difficulty with extrapolation. In fact, most females reach their maximum height in their mid to late teens, and from then on, their height is
v
b
Fuel
d 4
x
d
y 30
3
700 675
0
2
Scatterplot of lean vs year
750
40 30 20 10 0
c
200
600 400 Distance
800
x
32. See the dotted lines on the graph.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 10
3
WORKED SOLUTIONS 3
5
y
a, c
a, c, f
13.6 12.8 Height (cm)
Time (seconds)
13.2 12.4 12.0
Mean point
11.6 11.2 10.8
b
d
20
50
30 40 Age (years)
x
Mean Age =
sum of ages number of policemen
Mean time =
sum of times number of policemen
(4, 30) d i r = 0.986 ii (very) strong positive correlation e y = 1.83x + 22.7 g Height = (1.83 × week number) + 22.7 = (1.83 × 4.5) + 22.7 = 30.9 cm h Not possible to find an answer as the value lies too far outside the given set of data.
10
=
120 10
= 12
Mean age = 34 years. Mean time = 12 secs. Approximately 11.7 secs. y
6
c d 2
a b
3
a c
4
a
Behaviour problems
35
x
Time, minutes
As the time increases, the number of push-ups decreases. y = –1.29x + 9 r = –0.929. There is a strong, negative correlation. w = –22.4 + 55.5h w = –22.4 + 55.5 × 1.6 = 66.4 kg r = 0.785 b y = 30.7 + 0.688x IQ = 30.6 + (0.688 × 100) = 99.4. This should be reasonably accurate since the product moment correlation coefficient shows fairly strong correlation.
a
b c d e f g
Test 2
a b
20 10 0
c d e
20
40 Test 1
60
80
x
Positive, strong. Students with a high score on test 1 tend to have a high score on test 2. y = 0⋅50x + 0⋅48 Test 2 Score = (0.50 × Test 1 score) + 0.48 = (0.50 × 40) + 0.48 = 20.48
20 15
0
7
30
25
5
y 40
30
10
50
b
y 40
0
b
1 2 3 4 5 6 7 8 x Week
b
= 340 = 34
Number of push ups
a
L
0
Review exercise 1
y 38 36 34 32 30 28 26 24 22
c d
1
2 3 4 5 Agreeableness
6 x
Behavior problems decrease –0.797 Strong, negative correlation. Teenagers who were more agreeable tended to have fewer behavior problems. y = –10.2x + 51.0 Number of behavior problems = (–10.2 × Agreeableness score) + 51.0 = (–10.2 × 4.5)+51.0 = 5.1 y = 10.7x + 121 (3sf) i Every coat on average costs $10.66 to produce, ii When the factory does not produce any clothes then x = 0, it has to pay costs of $121. Cost = (10.7 × 70) + 121 = $870 19.99x > 10.66x + 121 9.33x > 121 x > 12.969 13 coats should be produced in one day in order to make a profit.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 10
4
WORKED SOLUTIONS
11
Trigonometry
Skills check 1
x° + 49° + 41° = 180° x = 90° x° + 2x° + (x − 20)° = 4x° − 20° = 180° x = 50° x° + 56° + 56° = 180° x = 68° (4x)° + (x + 20)° + (x + 20)° = 6x° + 40° = 180° x = 70 °
a b c d
3
e
x 2 = (2.4)2 + (5.6)2 = 37.12
f
x = 37.12 ≈ 6.09 x 2 + (19)2 = (24)2
7
+ ( 5 x − 1) = ( x 2 + 1) 4 x 2 + 25 x 2 − 10 x + 1 = x 4 + 2 x 2 + 1 x 4 − 27 x 2 + 10 x = 0 using GDC, x = 5
(2x )
2
tan B =
2
1
cos40 = 3
4
→B=
→c=
37 cos 40
4 .5 b →b 4.5
cos B =
2
2
sin 45 =
≈ 53.1°
sin 30 = sin 60 =
sin B = 5
b 11 c
c →
tan 35 11 sin 35
2
tan A =
8 .5 9 .7
→ A = tan
tan B = 9.7 → B 8 .5
−1 ⎛ 8.5 ⎞
⎜ ⎟ ≈ 41.2° ⎝ 9 .7 ⎠ = tan −1 ⎛⎜ 9.7 ⎞⎟ ≈ 48.8° ⎝ 8 .5 ⎠
9 9 = sin 45 ⎛ 1 ⎞ ⎜ ⎟ ⎝ 2⎠
a 4 .5 b 4 .5
(5 2 ) + b 2
e
→ b = 4.5 sin 60 = 9 ⎛⎜⎜
)
2
(
2
= (10 ) 2
(
tan A = 5
2 5 2
3⎞ ⎟ 2 ⎝ 2 ⎟⎠
→ a2 = 4 3 6 ⎞ ⎟ ⎝4 3⎠
)
2
=9
3 4
cm
− 62 = 12
= 30°
2
→ b 2 = (10 ) − 5 2 b = 50 = 5 2 cm
2
= 9 2 cm
→ a = 4.5 sin 30 = 2.25 cm
B = 180 − 90 − 30 = 60°
19.2 cm
c = 166.34 ≈ 12.9 cm
c=
4 3
53.1°
2
= 60°
⎜ ⎟ ⎝2⎠
a = 12 = 2 3 cm cos A = 6 → A = cos−1 ⎛⎜
2
c 2 8.5 9.7 166.34
9 9 → c
(
B = 180 − 35 − 90 = 55° 11 ≈ 15.7 cm tan35 = 11 → b = sin35 =
6
B=
⎝ 60 ⎠ sin −1 ⎛⎜ 48 ⎟⎞ ≈ ⎝ 60 ⎠
→ B = cos
a 2 + 62 = 4 3
d
a 1296 36 cos A = 48 → A = cos−1 ⎛⎜ 48 ⎞⎟ ≈ 36.9° 60 48 → 60
=
⎝2⎠
−1 ⎛ 1 ⎞
A = 180 − 60 − 90 = 30 °
c
≈ 48.3 cm
2
1 2
a tan 45 tan 45 9 cm → a 9
4.5sin 55 3.69 cm
2
2
12 24
B = 180 − 45 − 90 = 45°
b
a + 48 = 60 → a = 60 − 48 = 1296 2
≈ 67.4°
sin A = 12 = 1 → A = sin −1 ⎛⎜ 1 ⎞⎟ = 30° 24
⎝ 20 ⎠ cos−1 ⎛⎜ 12 ⎞⎟ ⎝ 20 ⎠
⎜ ⎟ ⎝ 10 ⎠
b = 432 = 12 3 cm
A = 180 − 55 − 90 = 35° cos 55 = a → a = 4.5 cos 55 ≈ 2.58 cm sin55
→ B = tan
122 + b 2 = 24 2 → b 2 = 24 2 − 122 = 432
a
2
B = 180 − 40 − 90 = 50° tan 40 = a → a = 37 tan 40 ≈ 31.0 cm 37 37 c
−1 ⎛ 24 ⎞
of the questions in this section can be answered in your head, if you remember the patterns of these special right triangles.
sin A = 12 → A = sin −1 ⎛⎜ 12 ⎟⎞ ≈ 36.9° cos B
⎝ 24 ⎠
24 10
Note: many
122 + b2 = 202 → b2 = 202 − 122 = 256 b = 256 = 16 cm 20 = 12 20
24
Exercise 11B
Exercise 11A 1
2
2
tan A = 10 → A = tan −1 ⎛⎜ 10 ⎞⎟ ≈ 22.6°
x = (24) − (19) = 215 x = 215 ≈ 14.7 2
2
)
2
= 100 − 50 = 50
= 1 → A = tan −1 (1) = 45°
B = 180 − 90 − 45 = 45° 2 2 x = ( 8 ) + ( 8 ) = 128 2
x = 128 = 8 2 cm tan30 =
1 3
=
8 y +8
→ y +8=8 3
y = 8 3 − 8 cm sin30 = 1 = 8 → z = 16 cm z 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
1
WORKED SOLUTIONS 3
a
3 2
sin60 =
x +2 x2 − 4
=
=
1 x −2
x 3 −2 3 =2 → x 3 =2+2 3 → x = b
→
22 3 3
3 AC x 2
2+4 3 ⎛ 1 ⎞ ⎜ ⎟ 3 ⎝ 3⎠
AC =
tan 45 = 1 =
2
22 3 3
2+2 3 3 2 3 3
4x − 1 x2 + 2
=
2+4 3 3
3
cm
y
→ x 2 + 2 = 4x − 1
B
i 2
AB
2
If x = 1, AB = 2 ( 4 (1) − 1) = 2 ( 3 ) = 3 2 cm If x = 3, AB = 2 (4(3) −1) = 2 (11) = 11 2 cm
w 2 = 4 2 + 9 2 = 16 + 81 = 97 → w = 97 w x w 2 97 2 194 x y
sin65
=
194 z
x z
→ z=
x = 3 sin 35 ≈ 1.7207
cos35
y = 3 cos 35 ≈ 2.457456 2
194 → y = tan 65
194 y
A x → 3 y = → 3
sin35 =
AC 2 = x 2 + ( y + 2 ) → AC ≈ 4.778
sin 45
tan65 =
35°
→ x 2 − 4x + 3 = 0 x =1, 3 1 4x 1 → AB = 2 ( 4 x − 1) sin 45
5
→
9 12.5
tan 1 9 2 12.5 9 1 → 2tan 71.5 12.5 tan 12.5 → tan 1 12.5 9 2 2 9 12.5 1 → 2tan 108.5 9 5 x C 2
24 3 3
4
x +2 AC
tan60 = 3 =
tan
→ 3 ( x − 2) = 2
sin
194 sin 65
x AC
1.7207 → 21.1 4.778
4.78 km, N21.1°W
w ≈ 9.8 cm, x ≈ 13.9 cm, y ≈ 6.5 cm, z ≈ 15.4 cm
6
Exercise 11C 1
a b
40° A
a
ˆ tan AED
28 8
7
ˆ tan EBA
28 20
ˆ = → EBA
A BX AB
cos47 =
AX = AX → AX = 35 cos 47 ≈ 23.8699 35 AB YC YC = → YC = 15 sin15 ≈ 3.882 15 BC
cos15 =
9°
x
120 tan 9
≈ 758 m
Ship
Z
sin 47 =
sin15 =
120
tan9 = 120 → x =
C
47°
54.5°
Observer
x
15° Y
35 km
ˆ EBA ˆ 51.5 180 AED
4
B
15 km
ˆ AED ˆ (alternate angles), so EAB ˆ EBA ˆ 180 EAB ˆ AEB 3
→ x = 70 tan 40 ≈ 58.737
X
ˆ = tan −1 ⎛⎜ 28 ⎞⎟ ≈ 74.1° → AED ⎝ 8 ⎠ −1 ⎛ 28 ⎞ tan ⎜ ⎟ ≈ ⎝ 20 ⎠
x 70
height = x + 12 ≈ 70.7 m
AE = 282 + 82 = 848 ≈ 29.1 cm BE = 282 + 20 2 = 1184 ≈ 34.4 cm
b
E 12
70
12
tan 40 =
ˆ 38.9 180 2 BAC 2
B
x
h = 152 − 52 = 200 = 10 2 cm ˆ 5 → BAC ˆ = cos−1 5 ≈ 70.5° cos BAC 15 15 ˆ BCA ˆ ˆ 180 BAC ABC
BY BC
=
=
BX 35
BY 15
→ BX = 35 sin 47 ≈ 25.597
→ BY = 15 cos15 ≈ 14.4889
AZ = BX + BY ≈ 40.086 CZ = AX − YC ≈ 19.988
AC = AZ 2 + CZ 2 ≈ 44.793
b a
18
ˆ = tan −1 ⎛⎜ AZ ⎟⎞ ≈ 63.498° ACZ ⎝ CZ ⎠
44.8 km, bearing approx. (180 + 63.5)° = 243.5° 25
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
2
WORKED SOLUTIONS 8
tan17 = a
X
Y
tan55 =
t=
b
≈ 4.01 s
ˆ tan HAD
b
ˆ tan ABE
c
HA = 9 2 + 24 2 = 657 18 ˆ tan GAH
→ a = 95 tan 35 ≈ 66.5197 → b = 95 tan 55 ≈ 135.674
d
C
10 tan 5 tan 17 − tan 5
12 a
9 24 9 18
ˆ = tan −1 9 ≈ 20.6° → HAD 24 ˆ = tan −1 → ABE
9 18
≈ 26.6°
657
X is 135.7 m tall, Y is (135.7 + 66.5) = 202.2 m tall 9
10 and t in the diagram represent 10v and tv (the distance travelled in 10 seconds and in t seconds).
t ( tan17 − tan 5 ) = 10 tan 5
55° 95
tan35 =
→ h = t tan17
→ ( t + 10 ) tan 5 = t tan17
35°
a 95 b 95
h t
ˆ = tan −1 ⎛⎜ → GAH
18 ⎞ ⎟ ⎝ 657 ⎠
d
T
x
≈ 35.1°
DG = 9 2 + 182 = 405 24 ˆ tan AGD 405
B
ˆ = tan −1 ⎛⎜ → AGD
24 ⎞ ⎟ ⎝ 405 ⎠
24°
≈ 50.0°
Exercise 11D 1 240
a b c e
(cos74, sin74) → (0.276, 0.961) (cos90, sin90) → (0, 1)
a
cos−1 0.408 ≈ 66° or sin−1 0.913 ≈ 66°
b
cos−1 0.155 ≈ 81° or sin−1 0.988 ≈ 81°
c
cos−1 0.707 ≈ 45° or sin−1 0.707 ≈ 45°
d
cos−1 0.970 ≈ 14° or sin−1 0.242 ≈ 14°
a
A=
b
A=
c
A=
d
A=
d 72°
2
A
tan72 = tan24 =
x + 240 → x = d tan72 d x → x = d tan24 d
− 240
d tan 24 = d tan 72 − 240 → d ( tan 72 − tan 24 ) = 240 d=
240 tan 72 − tan 24
≈ 91.2 m
3
10 h
A
20
x
B
1
tan 40 h → x = h − 20 tan 40 x 20 h h tan55 = → x = x tan 55 h h = − 20 → h ⎛⎜ 1 − 1 ⎞⎟ tan 55 tan 40 tan 55 ⎠ ⎝ tan 40
h=
20 ⎛ 1 ⎜ ⎝ tan 40
−
1 2 1 2 1 2
(cos70)(sin70) ≈ 0.161
1 2
(cos30)(sin70) ≈ 0.217
(cos38)(sin70) ≈ 0.243 (cos24)(sin70) ≈ 0.186
Investigation – obtuse angles
55°
40°
(cos20, sin20) → (0.940, 0.342) (cos17, sin17) → (0.956, 0.292) (cos60, sin60) → (0.5, 0.866)
1 ⎞ ⎟ tan 55 ⎠
≈ 40.7 cm
(–0.766, 0.643)
(0.766, 0.643) 140°
40°
2 (–0.906, 0.423)
= 20
155° 25°
(0.906, 0.423)
3 (–0.375, 0.927)
(0.375, 0.927) 68°
11 5° A
10
tan5 =
h t + 10
B
112°
h
17° t
→ h = ( t + 10 ) tan 5
Exercise 11E 1
a
B (cos30, sin30) → B (0.866, 0.5), C (− 0.866, 0.5)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
3
WORKED SOLUTIONS b c d e 2
a b
4
B (0.545, 0.839),
sin 84.056 c
B (0.087, 0.996),
sin 40 a
cos (−0.332) ≈ 109.4° → 180 − 109.4 = 70.6° cos−1 (−0.955) ≈ 162.7° → 180 − 162.7 = 17.3°
sin15 ≈ 0.2588, 180 − 15 = 165°
b
sin36 ≈ 0.5878, 180 − 36 = 144°
c
sin81 ≈ 0.9877, 180 − 81 = 99°
d
sin64 ≈ 0.8988, 180 − 64 = 116°
a
sin 0.871 ≈ 60.6°, 180 − 60.6 = 119.4°
b
sin−1 0.436 ≈ 25.8°, 180 − 25.8 = 154.2°
c
sin−1 0.504 ≈ 30.3°, 180 − 30.3 = 149.7°
d
sin−1 0.5 ≈ 30°, 180 − 30 = 150°
2
=
sin 125 c
2
sin 55 4.5
→c=
4.5 sin 84.056 sin 55
sin 15 60
→a=
→c=
sin 15 60
=
60 sin 40 sin 15
sin 110 5.8
→ a = 5.8 sin 27 ≈ 2.80 cm
sin 43 b
=
sin 110 5 .8
→ b = 5.8 sin 43 ≈ 4.21 cm
sin 110
sin 110
ˆ = 180 − 68.2 − 68.2 = 43.6° YXZ =
sin 68.2 XY
→ XY =
20 sin 68.2 sin 43.6
3
A
2
40°
tan117.5 ≈ − 1.92
c
tan137.7 ≈ − 0.910
C
d
tan45 = 1
a
tan 0.738 → y = 1.09x, θ ≈ 48°
ˆ = 180 − 75 = 105° ABT ˆ = 180 − 40 − 105 = 35° ATB
b
tan
sin 35 2
=
sin 105 AT
c
tan
sin 35 2
=
sin 40 BT
d
tan
e
y = − 0.75x, θ = 180° − α,
B 75°
0.674 0.882 → = 1.87x, θ ≈ 62° 0.471 0.942 → y = −2.80x, θ ≈ 110° 0.336 1.64 → y = −1.21x, θ ≈ 129° 1.35
b
Bˆ = 180 − 40 − 72 = 68° sin 40 sin 72 = a 2 .5
→ a = 2.5 sin 40 ≈ 1.69 cm
sin 68 sin 72 = b 2.5
→ b = 2.5 sin 68 ≈ 2.44 cm
sin 72
sin 72
≈ 2.24 km
K
35
ˆ = 180 − 50 − 36 = 94° AFK sin 94 35
=
sin 36 FK
sin50 =
→ a = 24 sin 47 ≈ 17.7 cm ≈ 18.5 cm
2 sin 40 sin 35
≈ 3.37 km
50°
36°
Cˆ = 180 − 47 − 83 = 50°
→c
→ BT =
2 sin 105 sin 35
F
A
Exercise 11G sin 83
→ AT =
h
1.59
= 24 sin 50 sin 83
T
4
tan 3.76 → y = 2.36x, θ ≈ 113°
sin 50 sin 83 = c 24
≈ 26.9
XY = XZ ≈ 26.9 cm
b
sin 47 sin 83 = a 24
≈ 189 9 190.cm
=
tan56.3 ≈ 1.50
a
≈ 149 cm
60 sin 125 sin 15
a
f
≈ 5.46 cm
sin 27 a
sin 43.6 20
−1
=
Cˆ = 180 – 27 – 43 = 110°
e
tan 0.6 ⇒ α = 36.9 0.8 ⇒ θ = 180 − 36.9 = 143°
1
Aˆ = 180 – 15 – 125 = 40°
d
−1
a
4.5
Cˆ ≈ 180 – 55 – 40.9 ≈ 84.1°
B (0.974, 0.225),
d
3.6 sin 55 → sin Bˆ 4.5
sin Bˆ 3.6
→ Bˆ sin 1 3.6 sin 55 40.9
Exercise 11F 1
sin 55 4.5
c
B (0.707, 0.707),
cos−1 (−0.903) ≈ 154.6° → 180 − 154.6 = 25.4° cos−1 (−0.769) ≈ 140.3° → 180 − 140.3 = 39.7°
c 3
B (cos57, sin57) → C (− 0.545, 0.839) B (cos45, sin45) → C (− 0.707, 0.707) B (cos13, sin13) → C (− 0.974, 0.225) B (cos85, sin85) → C (− 0.087, 0.996)
h FK
→ FK = 35 sin 36 ≈ 20.6227 sin 94
→ h = FK sin 50 ≈ 15.8 m
Investigation – ambiguous triangles 1
sin 32 3
=
sin C 5
5 sin 32 → sin C = 3
→ Cˆ = sin −1 ⎛⎜ 5 sin 32 ⎞⎟ ≈ 62.0° 1 ⎝
3
⎠
Cˆ2 = 180 − Cˆ1 ≈ 118° The angles are supplementary.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
4
WORKED SOLUTIONS 2
Bˆ1 = 180 − 32 − Cˆ1 ≈ 86.0° 3 sin B1 sin 32 ≈ 5.65 cm = sin B1 → AC = 3
C 2 = 180 − 70 − B2 ≈ 7.8°
sin 32
AC
Bˆ 2 = 180 − 32 − Cˆ2 ≈ 30.0° sin 32 3
=
sin B2 AC
g
3 sin B → AC = sin 322 ≈ 2.83 cm
1
a
=
sin C1 7
7 sin 30 4
→ sin C1 = ⎝
h
4
sin B1 b1
b
sin 56 45
sin 30
sin 56 45
2
→ a1
17sin A1 sin50
a
b
19.0 cm
sin 50 17
sin A2 a2
→ a2
sin 20 2 .5
=
sin B1 6 .8
→ sin B1 = ⎝
17 sin A2 sin 50
2 .5
sin A1 a1
→ a1 =
8.0 cm
d
= =
sin A2 a2 sin C 25
⎠
≈ 7.3 cm
2.5 sin A → a2 = sin 20 ≈ 5.5 cm 2
→ sin C =
c
3
33
sin A2 a2
=
33 sin 70 25
=
b1 sin B 28
f
sin 70 25
=
sin B1 26
8 10
45 sin A2 sin 56
≈ 10.4 cm
⎝ 10 ⎠
→ BCE = sin −1 ⎛⎜ 10 ⎟⎞ ≈ 53.1° 8
⎝
⎠
= sin BDC → BDC = sin −1 ⎛⎜ 10 ⎝
B
10 sin BCD ⎞ ⎟ ≈ 28.1° 17 ⎠
A 40°
⎠
230° 20 km
sin 42
L
→ sin B1 =
26 sin 70 25
b
B
25
X
→ c1 =
230°
16
⎠
25 sin C1 sin 70
B2 = 180 − B1 ≈ 102.2°
A 40° 20
C1 = 180 − 70 − B1 ≈ 32.2° sin C1 c1
→ a2 =
ABD = 180 − EAB − BDC ≈ 98.8° CBD 180 BCD BDC 25.1 Given side BD = 17 m in triangle ABD and angle Dˆ = 28.1°, and side AB = 10, then there are 2 possible triangles fitting this data, namely DBA and DBC.
→ sin B ≈ 1.05 → triangle does not exist
⎝
=
≈ 45.5 cm
DE 2 + 82 = 172 → DE = 172 − 82 = 15 m AEB = 90° cos EAB = 6 → EAB = cos−1 ⎛⎜ 6 ⎞⎟ ≈ 53.1°
→ B1 = sin −1 ⎛⎜ 26 sin 70 ⎞⎟ ≈ 77.8° sin 70 25
45 sin A1 sin 56
BE 2 + 62 = 102 → BE = 102 − 62 = 8 m
B1 180 42 30.5 107.5 33sin B1 sin 42 47.0 cm sin B1 → b1
e
→ a1 =
a
25 sin 42 33
→ C = sin −1 ⎛⎜ 25 sin 42 ⎞⎟ ≈ 30.5° ⎝
sin A1 a1
=
sin BCD 17
B2 = 180 − B1 ≈ 111.5° A2 = 180 − 20 − B2 ≈ 48.5° sin 20 2 .5 sin 42 33
→ c=
BCD = 180 – BDC ≈ 126.9°
6.8 sin 20 2 .5
2.5 sin A1 sin 20
=
sin BCE =
A1 = 180 − 20 − B1 ≈ 91.5° =
22 sin C ≈ 29.5 cm sin 45 50 sin 56 → sin C1 = 45 sin −1 ⎛⎜ 50 sin 56 ⎞⎟ ≈ 67.1° ⎝ 45 ⎠
sin C c sin C1 50
=
BCE = EAB ≈ 53.1°
→ B1 = sin −1 ⎛⎜ 6.8 sin 20 ⎞⎟ ≈ 68.5° sin 20 2 .5
26.7
10
C 2 = 180 − C1 ≈ 108.9° Aˆ 2 180 50 Cˆ2 21.1
c
22
CE 2 + 82 = 102 → CE = 102 − 82 = 6 m
Aˆ 1 180 50 Cˆ1 58.9 sin A1 a1
A2 = 180 − 56 − C 2 ≈ 11.1°
sin B2 b2
22
1 14 sin 45
C 2 = 180 − C1 ≈ 112.9°
= → b2 = 4 sin B2 ≈ 4.1 cm sin 30 sin C1 → sin 50 sin C1 = 21sin 50 = 17 17 21 21 sin 50 ⎞ ⎛ → C1 = sin −1 ⎜ ⎟ ≈ 71.1° ⎝ 17 ⎠ sin 50 17
→ sin B1 14 sin 45
A1 = 180 − 56 − C1 ≈ 56.9°
→ b1 = 4 sin B1 ≈ 8.0 8.00cm
C 2 = 180 − C1 ≈ 119.0° Bˆ 2 = 180 − 30 − Cˆ2 ≈ 31.0° sin 30 4
sin 45 22 sin 56 45
→ C1 =
⎠
Bˆ1 = 180 − 30 − Cˆ1 ≈ 89.0° =
=
25 sin C → c 2 = sin 70 2 ≈ 3.6 cm
C = 180 − 45 − B ≈ 108.3°
→ C1 = sin −1 ⎛⎜ 7 sin 30 ⎞⎟ ≈ 61.0° sin 30 4
sin C 2 c2 sin B 14
=
→ B1 sin
Exercise 11H sin 30 4
sin 70 25 sin 45 22
L
≈ 14.2 cm sin 40 16
= sin AXL → AXL sin 1 20sin 40 20
16
180 53.464 126.536 © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
5
WORKED SOLUTIONS sin 31 sin A = b 10
ALX = 180 − 40 − AXL ≈ 13.464° sin 40 16
= sin ALX → AX = 16 sin ALX ≈ 5.80 km
c
e B
X
230°
16
= sin ABL 20
→ 16
⎝
f ⎠
a
sin ABL
⎛ ⎝
2 B
= sin B → B = sin −1 ⎛⎜ ⎝
43
43 sin 64 ⎞ ⎟ ≈ 36.0° a ⎠
+ 412 − 20 2 2 ( 33 )( 41)
cos A = 33
→ A = cos
⎜⎜ ⎝
+ 412 − 20 2 ⎞ ⎟ ≈ 28.9° 2 ( 33 )( 41) ⎟⎠
8
A
→d = 52 + 82 − 2 ( 5 ) ( 8 ) cos135 ≈ 12.1 km
3
A
B
2
4.5 E
+ 412 − 332 → 2 ( 20 )( 41)
cos B = 20
2
D
AD = BC = 4.5 + 3 − 2 ( 4.5 )( 3 ) cos 62 ≈ 4.07 cm
+ 2 .4 2 − 3 .6 2 ⎞ ⎟ ≈ 44.4° 2 ( 4.9 )( 2.4 ) ⎟⎠
⎝
2
+ 2 .4 2 − 4 .9 2 2 ( 3.6 )( 2.4 )
cos B = 3.6
2
⎛
2 + 2 .4 2 − 4 .9 2 ⎞ ⎟ ≈ 107.8° 2 ( 3.6 )( 2.4 ) ⎟⎠
→ B = cos−1 ⎜⎜ 3.6 ⎝
C = 180 − A − B ≈ 27.8° d
b 2 = 102 + 14 2 − 2 (10 )(14 ) cos 31
2
ˆ = 180 − 62 = 118° AEB AB = CD = 4.52 + 32 − 2 ( 4.5 )( 3 ) cos118 ≈ 6.48 cm
cos A = 4.9
→ A = cos−1 ⎜⎜ 4.9
C 2
C = 180 − A − B ≈ 98.4° 2 + 2 .4 2 − 3 .6 2 2 ( 4.9 )( 2.4 )
62° 3
2 2 ⎛ 2 ⎞ = cos−1 ⎜⎜ 20 + 41 − 33 ⎟⎟ ≈ 52.8° 2 20 41 ( )( ) ⎝ ⎠
⎛
C
d
ˆ = 270 − 32 −103 = 135° ABC 2 d = 52 + 82 − 2 ( 5 ) ( 8 ) cos135
2
−1 ⎛ 33
103°
32° 58° 5
C = 180 − 64 − B ≈ 80.0°
c
+ 582 − 50 2 ⎞ ⎟ ≈ 56.4° 2 ( 45 )( 58 ) ⎟⎠ 2
C = 180 − A − B ≈ 75.0°
a2 = 432 + 722 − 2 ( 43 )(72 ) cos 64
B
2
→ B = cos−1 ⎜⎜ 45
→ a = 432 + 722 − 2 ( 43 )( 72 ) cos64 ≈ 65.7 m
b
2
+ 582 − 50 2 2 ( 45 )( 58 )
cos B = 45
bearing = 90 + ABL ≈ 143.5°
sin 64 a
+ 582 − 452 ⎞ ⎟ ≈ 48.6° 2 ( 50 )( 58 ) ⎟⎠
⎝
Exercise 11I 1
2
⎛
= sin BLX → BX = 16 sin BLX ≈ 19.1 km BX
+ 582 − 452 2 ( 50 )( 58 )
cos A = 50
→ A = cos−1 ⎜⎜ 50
BLX = 180 − 2 ( ABL ) ≈ 73.07°
d
75 sin 70 = sin A → A = sin −1 ⎛⎜ c ⎞⎟ ≈ 49.4° ⎠ ⎝ 75
B = 180 − 70 − A ≈ 60.6°
ABL = sin −1 ⎛⎜ 20 sin 40 ⎞⎟ ≈ 53.464°
sin ABL 16
c 2 = 752 + 862 − 2 (75 ) ( 86 ) cos 70
sin 70 c
20
L sin 40 16
10 sin 31 ⎞ ⎟ ≈ 43.5° b ⎠
→ c = 752 + 862 − 2 (75 ) ( 86 ) cos 70 ≈ 92.8 m
A 40°
16
⎝
C = 180 − 31 − A ≈ 105.5°
sin 40
AX
→ A = sin −1 ⎛⎜
4
C
B 20 15
36° 27° A
ˆ = 36 + 27 = 63° BAC BC = 152 + 202 − 2 (15 )( 20 ) cos 63 ≈ 18.8 km
→ b = 102 + 14 2 − 2 (10 )(14 ) cos 31 ≈ 7.5 m © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
6
WORKED SOLUTIONS
Exercise 11J
B1
5 49 28
P
1
36
a b
A
c
Area = 1 ( 6.8 )( 9.4 ) sin 56.5 ≈ 26.7 cm2
2 1 Area = 10 2 A
( )( 9 ) sin115 ≈ 40.8 cm2
36
49
13.4 25.1
B2
ˆ 49 cos APB
2 282 362 2 49 28
ˆ = cos−1 ⎛⎜ 49 → APB ⎜
B
+ 282 − 362 ⎞ ⎟ ≈ 46.5° 2 ( 49 )( 28 ) ⎟⎠
⎝
2
C sin 32 sin B = 13.4 25.1
E46.5°N or E46.5°S which is a bearing of 043.5° or 136.5° (since 90 − 46.5 = 43.5 and 90 + 46.5 = 136.5). 6
a
A
32°
A 7.88
8.47
cos A =
Triangle ABD is an isosceles right triangle, so angle ABD = 45°
C
10.98
B C
8.74 2 + ( 7.88 ) − 10.982 2 ( 8.74 )( 7.88 ) 2
2 2 2 ⎞ ⎛ → Aˆ = cos−1 ⎜ 8.74 + (7.88) − 10.98 ⎟ ⎟ ⎜ 2 ( 8.74 )( 7.88 ) ⎠ ⎝ ≈ 82.524°
E
24
⎟ ≈ 83.03° ⎠
2
15
b
13.4
Area = 1 (13.4 )( 25.1) sin A ≈ 152 cm2 d
D
⎜ ⎝
A = 180 − 32 − B ≈ 64.97°
B
15
→ B = sin
−1 ⎛ 25.1 sin 32 ⎞
Area = 1 ( 8.74 )( 7.88 ) sin A ≈ 34.1 cm2 2
24
e
A 46
15
D
C
ˆ 24 cos EDC
41
152 24 2 2 24 15 2
ˆ = cos−1 ⎛⎜ 24 → EDC ⎜ ⎝
+ 152 − 24 2 ⎞ ⎟ ≈ 71.8° 2 ( 24 )(15 ) ⎟⎠ 2
B sin 58 sin C = 46 41
E
c
C
58°
⎛ 41 sin 58 ⎞ ⎟ ≈ 49.10° 46 ⎠
→ C = sin −1 ⎜⎝
A = 180 − 58 − C ≈ 72.899° 24
Area = 1 ( 41)( 46 ) sin A ≈ 901 cm2 2
24
f
A
A
AC = 152 + 152 = 15 2 ˆ 24 cos EAC
2
⎛
15 2
⎜ ⎝
2
C 46°
24 2
B
2 24 15 2
C = 180 − 86 − 46 = 48°
(
)
sin 48 sin 86 = BC 30
ˆ = cos−1 ⎜ 24 EAC ⎜
86°
30
C
− 24 2 ⎞⎟ ⎟ ≈ 63.8° 2 ( 24 ) 15 2 ⎟ ⎠
2
+ 15 2
(
2
)
→ BC =
30 sin 86 ≈ 40.27 sin 48
Area = 1 ( 30 ) ( BC ) sin 46 ≈ 435 cm2 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
7
WORKED SOLUTIONS 2
→ sin 1 1 (x ) 2
100
O
324 ≈ 22.7 ⎛1 ⎞ . sin . 33 9 57 4 ( ) ⎜ ⎟ ⎠ ⎝2
B
cm
ˆ cos AOP
+ 10.22 − 17.22 2 (16.4 )(10.2 )
cos A = 16.4
a
2
5
2
1 2
( 2x + 3)( 4 x + 5) sin 30 = 30
1 2
( 8x 2 + 22x + 15) ⎛⎜ 1 ⎞⎟ = 30 → 8x 2 + 22x + 15 = 120
1 2
area of sec tor APB
2.5
( 8)(11) sin A ≈ 20
→ x = 112 + 82 − 2 (11)( 8 ) cos 27.0357 ≈ 5.31 mm x 2 = 112 + 82 − 2 (11)( 8 ) cos152.9643
Exercise 11L 5 180 12
b
240
c
80
d
330
a
56
b
107
perimeter = radius + radius + arc length
c
324
perimeter = 50 + 50 + 2.4 ( 50 ) = 220 cm
d
230
a
5 6
b
5 3
1
Exercise 11K 1.7 ( 5.6 ) = 9.52 cm
3.25 (12 ) = 39 cm 3 2.5 12.5 ⇒ θ = 5 rad
( 2.4 ) ( 50 ) = 3000 cm 2
2 2
area = 1 ( 5.1) ( 32 ) = 22.95 cm2 2
perimeter = 3 + 3 + 5.1( 3 ) = 21.3 cm
1 2
3
27.2 r
c
r 2 217.6 → 435.2 2 r
27.2 435.2 = 2 r r 27.2 16
→ 27.2r = 435.2 → r =16 cm
1.7 rad
(1.01072 ) ( 62 ) ≈ 18.19296
≈ 7.96 cm2
75
2
≈1 2
overlapping area ≈ 13.004 + 18.19296 − 23.2379
a
r 27.2 →
overlapping area = area of sec tor AOB + area of sec tor APB −area of quadrilateral OAPB
→ x = 112 + 82 − 2 (11)( 8 ) cos152.9643 ≈ 18.5 mm
6
42
2
x 2 = 112 + 82 − 2 (11)( 8 ) cos 27.0357
5
2
8 62 2 4 8
2
⎝ 44 ⎠
4
42
23.2379 1 area of sec tor AOB ≈ (1.6255 ) ( 4 2 ) ≈ 13.004
⎝2⎠
area = 1 2
1
ˆ area of quadrilateral OAPB 2 1 6 8 sin OPA
→ A = sin −1 ⎛⎜ 20 ⎟⎞ ≈ 27.0357° or 152.9643°
1
ˆ → AOP cos
2 2 2 2 62 8 ˆ 6 8 4 → OPA ˆ cosOPA cos 1 2 6 8 2 6 8 0.50536 rad ˆ P 2OPA 1.01072 rad
→ 8x 2 + 22x −105 = 0 6
2
ˆ 1.6255 rad O 2 AOP
Area = 1 (16.4 )(10.2 ) sin A ≈ 81.4 cm2
x=
4 2 8 62 2 4 8
0.812756 rad
2 2 2 ⎛ ⎞ → Aˆ = cos−1 ⎜⎜ 16.4 + 10.2 − 17.2 ⎟⎟ ⎝ 2 (16.4 )(10.2 ) ⎠ ≈ 76.7°
b
P
8
(33.9 ) sin 57.4 ≈ 324
→x= 4
6
4
47.8 1 15 18 2
3
A
7
15 18 sin 100
1 2
d 4
a b
4 3 180
4 9 180
11 6 180
0.977 180
rad
1.87 180
rad
5.65 rad 180
4.01 180
rad
180 150 °
180 300 ° 3 180 270 ° 2 5 4
180 225 ° 1.5 180 85.9° 0.36 180 20.6 °
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
8
WORKED SOLUTIONS c d
Review exercise
2.38 180 136 °
3.59 180 206°
1 h
Exercise 11M 1
a b c
2
3
sin sin 45 4 2 cos 3
1 2
cos120
2 2
1 3 3 2
tan tan30 6
36°
1 2
h tan36 == → h 100tan36 ≈ 72.7 m 100
3 3
2
d
sin sin60
a
0.892
b
0.949
c
–1.12
d
0.667
a
( 4.5)( 4.5) sin1.3 ≈ 9.76 cm2 BC = 4.52 + 4.52 − 2 ( 4.5 )( 4.5 ) cos1.3 ≈ 5.45 cm
b
3
1.3(4.5)2 2
4
= 50.5 cm2 (3 sf ) 4
a
= sin B 3
→ B = sin
−1 ⎛ 3 sin 0.94 ⎞
⎜ ⎝
11
( cos32 ,sin32 ) → (0.848, 0.530)
b
ˆ ,sin AOC ˆ ⎞⎟ C ⎛⎜ cos AOC
⎟ ≈ 0.222 ⎠
rad
5
ˆ = AOC ˆ + 54 ≈ 126.96° AOD ⎛ ˆ ˆ ⎞⎟ = (−0.600, 0.800) D ⎜ cos AOD ,sin AOD
a
Yˆ =180 − 42.4 − 82.9 =54.7 °
b
sin 82.9 13.2
→ XZ = sin 54.7 =
a
PR =
9.5 + 11.52 − 2 ( 9.5 )(11.5 ) cos118 ≈ 18.03 m
b
sin118 sin Pˆ = = → Pˆ PR 11.5
a
1 2
)( )
shaded area ≈ 15.141 − 4.23 ≈ 10.9 m 1 5 a Area of ∆ POQ = ( 6 )( 6 ) sin1.25 ≈ 17.1 cm2 2 2 2 ⎛ 2 ⎞ ˆ = cos−1 ⎜⎜ 6 + 6 − 11.2 ⎟⎟ ≈ 2.407 rad b QOR 2 6 6 ( )( ) ⎝ ⎠ 1 ˆ ≈ 12.1 cm2 Area of ∆ QOR = ( 6 )( 6 ) sin QOR 2 ˆ ≈ 2.63 rad c θ =2π − 1.25 − QOR 2
7 AB
6
ˆ = sin XZY
b
ˆ = tan30 tan XZY =
8 = 16
1 2
→ YZ = 8 3 cm
ˆ = 30° → XZY
7
tanθ
4
1 2
5
a
2.5 (10 ) = 25 cm
b
1 2
( 2.5= ) (10 ) ( 2.5= )(100 ) 2
1 2
24 + 38 − 2 ( 24 )( 38 ) cos120 ≈ 54.1 km 2
2
→ x sin
1
8sin 82 15
a
sin 82 sin x = 15 8
b
ˆ = 180 − 82 − x ≈ 66.12° ADC ˆ
31.9°
ˆ
= sin ADC → AC = 15sin ADC ≈ 13.9 cm sin 82
AC 2
+ 9 − AC 2 ( 7 )( 9 ) 2
2
⎞ ⎟⎟ ≈ 119° ⎠
(7 ) ( 9 ) sin y ≈ 27.6 cm2
d
1 2
a
Bˆ =− π 1.75 − 0.93 ≈ 0.4616 rad sin Bˆ 12
1 = 8 3 YZ
10 ) sin30 1= ( 4 )(= ( 4 )(10 ) ⎛⎜⎝ 12 ⎞⎟⎠ 2
⎠
ˆ = 170 − 50 = 120° APB
sin 82 15
8
b
=2 5
3
PR
a
AB=
→ AB = 7 2 cm
a
⎝
2 2 AB = 4 + 5.83 − 2 ( 4 )( 5.83 ) cosCˆ ≈ 8.60 cm
⎝
2
sin −1 ⎛⎜ 11.5sin118 ⎞⎟ ≈ 34.3°
( 4 )( 5.83) sinCˆ = 10
⎛
sin 45 =
≈ 10.9 cm
2
7 = c y cos−1 ⎜⎜
Review exercise 1
13.2 sin 54.7 sin 82.9
b
θ ( 6 ) ≈ 15.8 cm
1 = 2
XZ
10 ⎞ 121° ⎟≈ 1 ⎛ ⎜⎜ ⎜ ( 4 )( 5.83 ) ⎞⎟ ⎟⎟ ⎠⎠ ⎝⎝2
( )( )
✗
⎠
→ Cˆ = sin −1 ⎜⎛
Area of ∆ OAB = 1 3 11 sin A ≈ 15.141 2 2 1 Area of sector = 0.94 3 = 4.23 2
d
⎠
c
A = π − 0.94 − B ≈ 1.9795 rad
(
⎝
⎝
3
Shaded area = area of circle − area of sector = π(4.5)2 −
a
ˆ → AOC = cos−1 0.294 ≈ 72.9°
These values are found by using your GDC in radians mode.
1 2
sin 0.94 11
100
O
= sin 0.93 = → BC BC
sin 0.93 sin1.75 = BC AB
12 sin 0.93 ≈ 21.6 sin Bˆ
→ AB =
cm
BC sin1.75 ≈ 26.512 sin 0.93
DB = AB −12 ≈ 14.5 cm
10 cm2
50 = ( 2.5) 125 cm
c
0.93 (12 ) = 11.16 ≈ 11.2 cm
d
DB + arcDEC + BC ≈ 47.3 cm
2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 11
9
WORKED SOLUTIONS
12
Vectors
Skills check
z
1
2
a
A = (3, 0, 0)
b
B = (3, 4, 0)
H D
c
E = (3, 0, 2)
2
d
F = (3, 4, 2)
O
e
H=
3 , 2
y
4 E
⎛3⎞ c = 3i + 8j = ⎜ ⎟ ⎝8⎠ 0 d 6 j 6
B
3 A
x 2 = 32 + 62
x
= 9 + 36
3 e 3i 6 j 6
= 45 x 3
a
45 6.71
X = 180 − 110 = 70 cos X = z ⇒ z = 15 cos 70 15
sin X =
y 15
C
≈ 5 .13 ⇒ y = 15 sin 70
15
≈ 14.1 ( AC ) y (9 z )2 2
110°
2
(14.1) (9 5.13) 2
A
9
21cm to the nearest centimetre
3 4
b
1 3
c
2i 5 j
d
2.8 4.5
e
2i 5 j
32 4 2
25 5
2 12 ( 3)
2 2 52
2.8
2
10 3.16 29 5.39
(4.5)2 5.3
2 22 ( 5)
29 5.39
3 2 5
ˆ ABC = cos−1 ⎡⎢ (8.6)
b
4 1 3
c
2i 2 j k
22 22 12
9 3 49 7
≈ 101.4
Exercise 12A
2
B
y
a
Using the Cosine Rule ˆ ) 5 a (AC )2 = (AB )2 + (BC )2 − 2(AB ) (BC ) cos (ABC ˆ ) (9.7)2 = (8.6)2 + (3..1)2 − 2(8.6) (3.1) cos (ABC ⎣
1
X
4
2
AC 432.5 20.8 b
3 a 3i 5 j 5
⎛ −2 ⎞ b = − 2i + 4 j = ⎜ ⎟ ⎝ 4⎠
F
C
2
4,
3
G
+ (3.1)2 − (9.7 )2 ⎤ ⎥ 2(8.6)(3.1) ⎦
2
32 2 2 52
38 6.16
2 4 2 ( 1)2 ( 3)
a
x 2i 3 j
b
y 7j
c
zi jk
d
a
2 AB = 3
3 2 2 2 2 ( 3) 2 6 6
e
j k
0 1 6 1
b
CD =
c
0 EF = 0 1
12 ( 1)2
26 5.10
2 1.41
Exercise 12B 2 2 1 a , b 4 1 6 2 c 3b 3 3 1 1 2 1 d 1a 2 4 2 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
1
WORKED SOLUTIONS 2 − 10 e = = −5 − 1 = −5b 5
3
a
⎛ −4 ⎞ f =⎜ ⎟ ⎝ −8 ⎠
4
k = 144 =2
We must have s & t so that
7
t = −12k
−5 = 2 s + 2t
(1)
8 4s t 2 (2) 16 8 s 2t
(2)
= −12 × 2
(3)
= −24 b
−21 10 −84 −t 10 8 − 84 10 −2 5
s = from (2): − 8 = t = =
so f = −2 a
2 4
0.1 0.7 1 1 10 7 1 i 7j 10
2a
7
7
(1) + (3) : − 21 = 10 s
2
For parallel vectors, r = k s for some k (4 i + t j) = k (14 i − 12 j) 4 = 14k
For parallel vectors, a k b for some k t 7 k 8 10 8 10k 8 10 4. 5
k
2 so t 7k
−1
7 4 5 28 5
4
a is parallel to i 7 j with
1 10
the magnitude.
1 b 7 1 i 7 j
s
b is parallel to i 7 j with opposite direction. 0.05 is not parallel to i 7 j 0.03 10 is not parallel to i 7 j d 70 c
e = 60 i + 420 j = 60 ( i + 7 j )
ude. e is parallel to ( i + 7 j ) with 60 times the magnitu f 6i 42 j is not parallel to i 7 j
For parallel vectors, v k w for some k t i 5 j 8k k (5i j s k) 5 k so t 5k t 5( 5) 25 8 sk ( 5)s
5
a b c d
6
a b c d
8 5
OG = j + k BD = − i − j + k AD = − i + k
1 OM = 2 i + j + k OG = 4 j + 3k BD = −5i − 4 j + 3k AD = −5i + 3k
5
OM = 2 i + 4 j + 3k
g i 7 j is not parallel to i 7 j
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
2
WORKED SOLUTIONS
Exercise 12C 1
6
⎛ 7 ⎞ ⎛ 2 ⎞ OP = ⎜ ⎟ OQ = ⎜ ⎟ ⎝4⎠ ⎝3 ⎠ ⎛ 2 ⎞ ⎛ 7 ⎞ PQ = OQ − OP = ⎜ ⎟ − ⎜ ⎟ ⎝3 ⎠ ⎝ 4 ⎠ ⎛ −5 ⎞ =⎜ ⎟ ⎝ −1 ⎠
b
c
d
3
a
b
4
5
(1)
y−3−4=0⇒y−7=0
(2)
−2 + z −(x + y) ⇒ −x − y + z − 2 = 0
(3)
Exercise 12D 1
AB = OB − OA = (−2i + 3j−k) − (i−2j+3k) = ( −2 − 1)i + (3 − ( −2)) j + ( −1 − 3) k = −3i + 5 j − 4 k AC = OC − OA = ( 4 i − 7 j + 7 k ) − ( i − 2 j + 3k )
= ( 4 − 1)i + ( −7 − ( −2)) j + (7 − 3) k = 3i − 5 j + 4 k we see AB = − AC , so AB and AC are parallel. Since they contain a common point A, they must lie on the same line. ⎛5⎞ ⎛ 2⎞ ⎛ 3⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 a AB = OB − OA = 1 − ⎜ ⎟ ⎜ 3 ⎟ = ⎜ −2 ⎟ ⎜ 5 ⎟ ⎜ −3 ⎟ ⎜ 8 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ 1⎞ ⎜ ⎟ vector is − ⎜ −5 ⎟ = −i + 5j − 6k ⎜ 6⎟ ⎝ ⎠
c
⎛ 1⎞ ⎛ 2 ⎞ ⎛ −1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ vector is ⎜ 2 ⎟ − ⎜ −3 ⎟ = ⎜ 5 ⎟ = −i + 5 j − 6 k ⎜ −1⎟ ⎜ 5 ⎟ ⎜ −6 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
d
⎛ 2 ⎞ ⎛ 1⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ vector is ⎜ −3 ⎟ − ⎜ 2 ⎟ = ⎜ −5 ⎟ = i − 5 j + 6 k ⎜ 5 ⎟ ⎜ −1⎟ ⎜ 6 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ 8⎞ ⎛ 2⎞ ⎛ 6⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ b AC = OC − OA = −1 − ⎜ ⎟ ⎜ 3 ⎟ = ⎜ −4 ⎟ ⎜ 13 ⎟ ⎜ −3 ⎟ ⎜ 16 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ we see AC = 2 AB , so AC and AB are parallel. Since they contain a common point A, then A, B, & C are collinear. ⎛ −2 ⎞ ⎛ 1 ⎞ ⎛ −3 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3 P1 P2 = OP 2 − OP1 = 1⎟ ⎜ 1⎟ − ⎜ 2 ⎟ = ⎜ −1 ⎜ 4⎟ ⎜4⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ −5 ⎞ ⎛ 1⎞ ⎛ −6 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ P1 P3 = OP 3 − OP1 = ⎜ 0 ⎟ − ⎜ 2 ⎟ = ⎜ −2 ⎟ ⎜ 4⎟ ⎜4⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ we see P1 P3 = 2 P1 P2 . Since they contain a common point, they are collinear.
⎛ 1⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ LM = LN + NM = ⎜ −2 ⎟ + ⎜ −2 ⎟ = ⎜ −4 ⎟ ⎜ 0 ⎟ ⎜ −3 ⎟ ⎜ −3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
T
U S
1 + 2x − 1 = 0 ⇒ 0 + 2x = 0
z=9
⎛ 1 ⎞ ⎛ 5 ⎞ ⎛ −4 ⎞ AB = B − A = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ ⎝ −3 ⎠ ⎝ 1 ⎠ ⎝ −4 ⎠ ⎛ 4 ⎞ BA = − AB = ⎜ ⎟ ⎝4⎠ ⎛ −2 ⎞ ⎛ 5 ⎞ ⎛ −7 ⎞ AC = C − A = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ ⎝ 4 ⎠ ⎝1 ⎠ ⎝ 3 ⎠ ⎛ 1 ⎞ ⎛ −2 ⎞ ⎛ 3 ⎞ CB = B − C = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ ⎝ −3 ⎠ ⎝ 4 ⎠ ⎝ −7 ⎠ ⎛ 2⎞ ⎜ ⎟ OP = ⎜ −3 ⎟ = 2i − 3 j + 5k ⎜ 5⎟ ⎝ ⎠
From the diagram, we see US = −TU + TS = −( i − 4 j + 2 k ) + (3i + 4 j − k ) = ( −1 + 3)i + ( 4 + 4 ) j + ( −2 − 1)k = 2i + 8 j − 3k
C B
(1) ⇒ x = 0 (2) ⇒ y = 7 (3) ⇒ −2 + z − 7 = 0
⎛ 1⎞ ⎛5⎞ ⎛ −2 ⎞ A=⎜ ⎟ B =⎜ ⎟ C =⎜ ⎟ ⎝ −3 ⎠ ⎝1 ⎠ ⎝ 4⎠ a
A
1⎞ ⎛ 0 ⎞ ⎛ 1⎞ ⎛ 2 x ⎞ ⎛ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 4⎟ = ⎜0⎟ ⎜ y ⎟ + ⎜ −3 ⎟ − ⎜ ⎜ −2 ⎟ ⎜ z ⎟ ⎜ x + y ⎟ ⎜ 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ 5 ⎞ QP = − PQ = ⎜ ⎟ ⎝1 ⎠ 2
From the diagram, AB + BC − AC = 0
Since P4 collinear with P1, P2, P3, we have P1 P4 = k P1 P2 for some k ∈ R 1⎞ ⎛ 2 ⎞ ⎛1 ⎞ ⎛ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ P1 P4 = ⎜ s ⎟ − ⎜ 2 ⎟ = ⎜ s − 2 ⎟ for some s & t ⎜t ⎟ ⎜4⎟ ⎜t − 4⎟ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
3
WORKED SOLUTIONS Distance BC = 22 + 10 2 + 52 = 129
1⎞ ⎛ ⎛ −3 ⎞ ⎜ ⎟ ⎜ Now ⎜ s − 2 ⎟ = k ⎜ −1⎟⎟ ⎜ t − 4⎟ ⎜ 0⎟ ⎠ ⎝ ⎝ ⎠ 1 = −3k ⇒ k =
Distance AB = Distance BC, so ABC is isosceles. B
−1 3
√129 1
7
s − 2 = −k ⇒ s = 2 − k = 2 + 3 = 3 t −4=0⇒t =4 ∴ P4 = ⎛⎜ 2, 7 , 4 ⎞⎟ ⎝ 3 ⎠ 4 OA = 3i + 4 j, OB = xi, OC = i − 2 j AB = OB − OA = ( x − 3)i − 4 j AC = OC − OA = (1 − 3)i + ( −2 − 4 ) j = −2i − 6 j If A, B, C are collinear, AB = k AC for some k ∈ R
A
3
x=9−4=5
−4 3
2
4 + 9 + t 2 = 49 t 2 = 36 t = ±6 4
a = xi + 6 j − 2 k 2
a = x 2 + 62 + ( −2 ) = 3x x2 + 36 + 4 = 9x2 8x2 = 40 x2 = ± 5 5
3
3 3 −4 so AB = 3 i − 4 j
u = v ,so a 2 + ( −a ) + ( 2a ) = 22 + ( −4 ) + ( −2 ) 2
= ( i − 2 j) − 5 i = 3
AB : BC =
−2 i 3
2
a2 = 4 a = ±2
⎛ −4 ⎞ ⎛ −2 ⎞ ⎜ 3 ⎟:⎜ 3 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ −4 ⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠
6
a
b
b = −3a Then |a + b|=|−2a|=2|a|=10
⎛ 4 ⎞ ⎛ −1⎞ ⎛ 5 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ AB = OB − OA = ⎜ 5 ⎟ − ⎜ 5 ⎟ = ⎜ 0 ⎟ ⎜ −1⎟ ⎜ 1⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Distance AB = 52 + ( −2 )
b = 2a Then a + b = 3a = 3 a = 15
Exercise 12E
2
2
6a 2 = 24
− 2j
= 2 :1
1
2
a 2 + a 2 + 4 a 2 = 4 + 16 + 4
BC = OC − OB
129 + 242 − 129 2 129 242
CÂB = 46.8°
C
√242
)
a = 7,so 22 + ( −3 ) + t 2 = 7
∴ ( x − 3)i − 4 j = k ( −2i − 6 j) j components ⇒ − 4 = − 6k ⇒ k = 2 3 so x − 3 = −2k =
(
cos CÂB =
√129
c
a+b
b
2
a Using Pythagoras |a|2 + |b|2 = |a + b|2 Hence |a + b| = 52 + 122 = 13
= 29 ≈ 5.39 ⎛ 6 ⎞ ⎛ −5 ⎞ ⎛ 11⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ AB = ⎜ 0 ⎟ − ⎜ 2 ⎟ = ⎜ −2 ⎟ ⎜6⎟ ⎜ 4 ⎟ ⎜ 2⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Exercise 12F
Distance AB = 112 + 22 + 22 = 129
1
j=
⎛ 8 ⎞ ⎛ −5 ⎞ ⎛ 13 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ AC = ⎜ 10 ⎟ − ⎜ 2 ⎟ = ⎜ 8 ⎟ ⎜ 1⎟ ⎜ 4 ⎟ ⎜ −3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
3 i+ 4 5 5
2
1 i+2 3 3
j + 2k =
2
3
= 2
Distance AC = 132 + 82 + ( −3 ) = 242 ⎛ 8⎞ ⎛ 6⎞ ⎛ 2⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ BC = ⎜ 10 ⎟ − ⎜ 0 ⎟ = ⎜ 10 ⎟ ⎜ 1⎟ ⎜ 6 ⎟ ⎜ −5 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2
9 16 ⎛3⎞ ⎛4⎞ + ⎜ ⎟ +⎜ ⎟ = 25 25 ⎝5⎠ ⎝5⎠
= 1 =1
1 22 22 + + 32 32 32 1 4 4 + + 9 9 9
= 1 =1 3
4 i − 3 j = 42 + ( −3 ) = 25 = 5 2
So unit vector is
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
1 5
( 4i − 3 j ) = 45 i − 35 j Worked solutions: Chapter 12
4
WORKED SOLUTIONS
4
⎛ −1⎞ ⎟ ⎜ ⎜ −5 ⎟ ⎟ ⎜ ⎟ ⎜ 4 ⎠ ⎝
2
2
= ( −1) + ( −5 ) + 4 = 42
⎛3⎞ ⎛1⎞ ⎛ 2⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ P1P2 = ⎜⎜ 2 ⎟⎟ − ⎜⎜ 0 ⎟⎟ = ⎜⎜ 2 ⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 0 ⎠ ⎝ 1 ⎠ ⎝ −1⎠ 2
Exercise 12G 1
a
= 5i + j b
= 2i + 3 j
= 5a
7
2i − j = 2 + ( −1) 2
=
1 5
5
×
5
=
5
c
5
2
= 2i + 4 j d
1 5
8
1 3 2
a + b + d = ( 2 i − j ) + ( 3i + 2 j ) + ( 3i + 3 j ) = ( 2 + 3 + 3 ) i + ( −1 + 2 + 3 ) j
( 2i − j )
Vector of magnitude 5 is 1 3 2
c + d = ( − i + j ) + ( 3i + 3 j )
= ( −1 + 3 ) i + (1 + 3 ) j
5
= 5 So unit vector is
b + c = ( 3i + 2 j ) + ( − i + j ) = ( 3 − 1) i + ( 2 + 1) j
2
ai + 2aj = a 2 + ( 2a ) = 5a 2 1
a + b = ( 2 i − j ) + ( 3i + 2 j )
= ( 2 + 3 ) i + ( −1 + 2 ) j
⎛ 2⎞ ⎜ ⎟ 1⎜ ⎟ 2 ⎟ 3⎜ ⎜ ⎟ − 1 ⎠ ⎝
Now 5a = 1, so a =
2
= 8i + 4 j
5 5
( 2i − j ) =
5 ( 2i − j )
e
a − b = ( 2 i − j ) − ( 3i + 2 j )
= ( 2 − 3 ) i + ( −1 − 2 ) j = −i − 3 j
22 14 f
d − b + a = ( 3i + 3 j ) − ( 3i + 2 j ) + ( 2 i − j ) = ( 3 − 3 + 2 ) i + ( 3 − 2 − 1) j
1 unit vector is 3 14 2 1
1 7 and vector magnitude7 is 3 14 2 9
a
sec2α
1 cosα 1 1 cosα So uniit vector is = secα tanα sinα
P1P2 = 22 + 22 + ( −1) = 9 = 3
6
12 + tan2α
= secα =
So unit vector is
1 = tanα =
⎛ −1⎞ ⎟ ⎜ 1 ⎜ −5 ⎟⎟ ⎜ 42 ⎟ ⎜ ⎝ 4⎠
So unit vector is
5
b
2
= 2i + 0 j = 2i 1 14 3 2 2
⎛ 2 cos ⎞ 2 2 2 2 ⎜ ⎟ = 2 cos + 2 sin ⎝ 2 sin ⎠ = 4 ( cos 2 + sin 2 ) = 2 (1) = 2 ⎛ 2 cos ⎞ ⎛ cos ⎞ So uniit vector is 1 ⎜ ⎟ or ⎜ ⎟ 2 2 sin ⎝ ⎠ ⎝ sin ⎠
2
a
⎛ 2 ⎞ ⎛ −4 ⎞ ⎛ 2 −4 ⎞ ⎛ −2 ⎞ a + b=⎜ ⎟+⎜ ⎟=⎜ ⎟=⎜ ⎟ ⎝ −3 ⎠ ⎝ 5 ⎠ ⎝ −3 +5 ⎠ ⎝ 2 ⎠
b
⎛ −4 ⎞ ⎛ −5 ⎞ ⎛ −4 −( −5) ⎞ ⎛ 1 ⎞ b−c =⎜ ⎟−⎜ ⎟ =⎜ ⎟=⎜ ⎟ ⎝ 5 ⎠ ⎝ −3 ⎠ ⎝ 5 −( −3) ⎠ ⎝ 8 ⎠
c
⎡ ⎤ ⎛ 1 1 ⎢ ⎛⎜ 2 ⎞⎟ ⎛⎜ −5 ⎞⎟ ⎥ 1 ⎜ 2 + = a + c = ( ) 2 2 ⎢ ⎜ −3 ⎟ ⎜ −3 ⎟ ⎥ 2 ⎜ −3 ⎠⎦ ⎠ ⎝ ⎝ ⎣⎝
d
−5 ⎞⎟ 1 ⎛⎜ −3 ⎞⎟ = +(−3) ⎟⎠ 2 ⎜⎝ −6 ⎟⎠
⎛ −4 ⎞ ⎛ −5 ⎞ ⎛ 2⎞ a + 3b − c = ⎜ ⎟ + 3 ⎜ ⎟ − ⎜ ⎟ ⎝ 5 ⎠ ⎝ −3 ⎠ ⎝ −3 ⎠ ⎛ 2 + 3(−4) − (−5) ⎞ =⎜ ⎟ ⎝ −3 + 3(5) − (−3) ⎠ ⎛ −5⎞ =⎜ ⎟ ⎝ 15 ⎠
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
5
WORKED SOLUTIONS e
⎛ −5 ⎞ ⎛ −4 ⎞ ⎛ 2 ⎞ 3c − 2 b + 5a = 3 ⎜ ⎟ − 2 ⎜ ⎟ + 5 ⎜ ⎟ ⎝ −3 ⎠ ⎝ 5 ⎠ ⎝ −3 ⎠ ⎛ 3( −5) −2( −4 ) +5(2) ⎞ =⎜ ⎟ ⎝ 3( −3) −2(5) +5( −3) ⎠ ⎛ −15 +8 +10 ⎞ =⎜ ⎟ ⎝ −9 −10 − 15 ⎠ ⎛ 3⎞ =⎜ ⎟ ⎝ −34 ⎠
3
a
3 z 0 2 + 1 = −5 z2 0 6 + z1 = 0 ⇒ z1 = − 6 −10 + z2 = 0 ⇒ z22 = 10 z = − 6i + 10 j 5
a + b = ( 3i − j − 2 k ) + ( 5i − k )
= ( 3 + 5 ) i + ( −1) j + ( −2 − 1) k = 8i − j − 3 k
b
= − i + 2 j + 3k
d
4
a
y = 21 2
2a − b = 2(3i − j − 2k) − (5i − k) = (6 − 5)i + (−2)j + (−4 + 1)k = i − 2j − 3k 4(a − b) + 2(b + a) = 4((3 − 5)i − j + (−2 + 1)k) + 2(8i − j − 3k) from Q3a = −8i − 4j − 4k + 16i − 2j − 6k = (−8 + 16)i − (4 + 2)j + (−4 − 6)k = 8i − 6j − 10k
x = 6 − y = 6 − ⎛⎜ 21 ⎟⎞ = −9 ⎝ 2 ⎠
6
2x − 3p = q
12 −7 −20 − 28 = 3y 19 −48 = 3y 1 So y = 3 (19i − 48j)
⎛3⎞ ⎛t − s ⎞ ⎜ ⎟ ⎜ ⎟ 3a = 2 b ⇒ 3 ⎜ t ⎟ = 2 ⎜ 3 s ⎟ ⎜u⎟ ⎜t + s ⎟ ⎝ ⎠ ⎝ ⎠
(2) ⇒ t = 2s (1) ⇒ 9 = 2 ( 2s − s ) = 2s s =9
2
(2) ⇒ t = 9
4 x= −5.5
3 −1 4 − 3(y) = 7 −5 4 −7 12 −20 − 3y = 28
2
(1) 9 = 2 ( t − s ) (2) 3t = 6s (3) 3u = 2 ( t + s )
3 −1 2x − 3 = −5 4 −1 +9 8 2x = = 4 −15 −11
b
⎛ x ⎞ ⎛ 6− y ⎞ a=b⇒⎜ ⎟=⎜ ⎟ ⎝ x + y ⎠ ⎝ −2 x − 3 ⎠ x =6− y (1) x + y = − 2x − 3 (2) y = − 3x − 3 Sub (1) into (2) y = −3 ( 6 − y ) − 3 y = −18 + 3 y − 3 −2y = −21
b − 2a = ( 5i − k ) − 2 ( 3i − j − 2 k ) = ( 5 − 6 ) i − 2 ( −1) j + ( −1 − 2 ( −2 ) ) k
c
2p + z = 0
c
(3) ⇒ 3u = 2 ⎛⎜ 9 +
9⎞ ⎟ 2⎠ ⎝ 27 u= =9 3 t = 9, s = 9 , u = 9 2
Exercise 12H P
1 A
N
a O
a b
b
Q
B
AP = OA = a
AB = − OA + OB = −a + b =b−a
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
6
WORKED SOLUTIONS c
d
e
PQ = − AP − OA + OB + BQ = − a − a + b + 3b = 4b b − 2a
ii
PN = 1 PQ = 1 ( 4 b − 2a ) 2
2
= 2b − a ON = OA + AP + PN
iii
= a + a + (2b − a ) = a + 2b
f
AN = AP + PN = a + ( 2b − a ) iv
a = OA, b = OB, AC :CB = 3 :1 a
b
AB = − OA + OB = −a + b =b−a
AC = 3 AB 4 =3 b− 4 1
c
a)
CB = AB =
d
v
(
4 1 b 4
(
− a)
3
OA = a, OC = c, CB = 3a a b
c
5
1 2
d
a
4
a
i
AB = − FA + FB = −a + b
3
2 3
AP =
b
(b − a)
M is mid point of OA, so
MA = 1 OA = 1 a 2
2
MP = MA + AP = 1a +
CD = CB − AB
FA = a, FB = b
AB = − OA + OB = −a + b =b−a
2 1
(
FD = FC + CD By symmetry, CD = − FA = − a so FD = 2 ( b − a ) − a = 2b − 3a
since AP = 2 AB
( c + 2a )
2 1 = 3a − c + 2a 2 = 2a − 1 c 2
= 2a + 1 c
BC = BE + EC = BO + OC + EC = − OB + OC + EC = −a − a + b = b − 2a
OA = a, OB = b
2
=a +
FD = 2b − 3a AC = AF + FC (see iii) = −a + 2(b − a)
OB = OC + CB = c + 3a AB = − OA + OC + CB = − a + c + 3a = c + 2a OD = OA + 1 AB
= −3a + 2b FD = AC ∴ FD and AC are parallel
= a ⎛⎜ 1 − 3 ⎞⎟ + b 3 4
c
(b − a)
⎝ 4⎠ 1 = a + 3b 4 4
FC = FO + OE + EC By symmetry, OE = BO = − a and EC = FB = b so FC = ( b − a ) − a + b
AB is parallel to and half the length of FC
3 4
b
OC = OA + AC =a +
FO = FB + BO By symmetry, OB = FA = a so FO = FB − OB =b −a
= 2( b − a )
= 2b 2
=
)
= c
(
)
2 b−a 2 3 2 ⎛1 2⎞ ⎜ − ⎟a + b 3 ⎝2 3⎠ 2 b − 1a 3 6
MX = MP + PB + BX
PB = 1 AB = 1 ( b − a ) 3
3
BX = OB = b
so MX = ⎛⎜ 2 b − 1 a ⎞⎟ + = 2b
−1 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
⎝3
a
6
⎠
1 3
(b − a) + b
Worked solutions: Chapter 12
7
WORKED SOLUTIONS d
MP
2 3
MX
2b −
b
1 a 6 1 a 2
d
MX = 3 MP ∴ MX is parallel to MP Since MX and MP share the common point M, MPX is a straight line
e
2 u ⋅ w = 2 ( −29 ) = − 58
( u − v )⋅( u + w ) =
Exercise 12I 1
a
b
c
=
a ⋅ b = ( 2i + 4 j ) ⋅ ( i − 5 j )
= ( 2 × 1) + ( 4 × −5 ) = 2 − 20 = −18 b ⋅ c = ( i − 5 j ) ⋅ ( −5i − 2 j )
3
= (1 × − 5 ) + ( −5 × − 2 ) = − 5 + 10 =5 a ⋅ a = ( 2i + 4 j ) ⋅ ( 2i + 4 j )
a
b
2
c
= ( −3 × 1) + ( 2 × −5 ) = − 3 −10 = −13
b
c
− 9 − ⎡⎣1 +
− 30 ⎤⎦
0 = = − 9 + 29 = 20
2
= − 32 − 2 − 2 = − 36 2
u v = 18 × 72 = 36 = − u ⋅ v ⇒ paarallel. d
a = 3i − 2 j + k b = 3i − 2 j − k a ⋅ b = ( 3 × 3) + ( −2 × − 2 ) + (1 × −1) = 9 + 4 −1 = 12 a = 32 + 22 + 12 = 9 + 4 + 1 = 14
= −4 + 0 − 5 = −9 ⎛ −1⎞ ⎛ 4 −(−1) ⎞ ⎛ −1⎞ ⎛ 5 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ ⎟ u ⋅ ( v − w ) = ⎜⎜ 0 ⎟⎟ ⋅ ⎜⎜ −3 −(3) ⎟⎟ = ⎜⎜ 0 ⎟⎟ ⋅ ⎜⎜ −6 ⎟⎟ ⎜ ⎟ ⎜⎜ 5 ⎟⎟⎠ ⎜⎝ −1 −(−6) ⎟⎠ ⎜⎜⎝ 5 ⎟⎟⎠ ⎜⎜⎝ 5 ⎟⎟⎠ ⎝
= − 9 − ⎡⎣⎢ ( −1) × ( −1) + 0 × 3 + 5 × ( −6 ) ⎤⎦⎥
= ( −8 × 4 ) + ( 2 × −1) + ( 2 × −1)
v = 4 2 + 12 + 12 = 16 + 1 + 1 = 18
= ( −1 × 4 ) + ( 0 × − 3) + ( 5 × −1)
= ( −1 × 5 ) + ( 0 × − 6 ) + ( 5 × 5 ) = − 5 + 0 + 25 = 20 ⎛ −1⎞ ⎛ −1 ⎞ ⎟ ⎟ ⎜ ⎜ u ⋅ v − u ⋅ w = − 9 − ⎜⎜ 0 ⎟⎟ ⋅ ⎜⎜ 3 ⎟⎟ ⎜⎜ 5 ⎟⎟⎠ ⎜⎜⎝ −6 ⎟⎟⎠ ⎝
u ⋅v =
⎛ −8 ⎞ ⎛ 4 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 2 ⎟ ⋅ ⎜ −1⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ 2 − 1 ⎝ ⎠ ⎝ ⎠
u = 8 + 2 + 2 = 64 + 4 + 4 = 72
( c + a ) ⋅ b = ⎡⎢⎣ ( −5i − 2 j ) + ( 2i + 4 j ) ⎤⎥⎦ ⋅ ( i − 5 j )
u ⋅v =
⎠
2
= ⎡⎣ −3i + 2 j ⎤⎦ ⋅ ( i − 5 j )
a
= ( 2 × 1) + (1 × 2 ) = 4
|c|| |d| = ⎛⎜ 5 ⎞⎟ = 5 ≠ c ⋅ d
= ( −5 × 3) + ( −2 × −1) = 15 + 2 = − 13
2
⎛2⎞ ⎛1⎞ ⎟ ⋅⎜ ⎟ ⎜1⎟ ⎜2⎟ ⎝ ⎠ ⎝ ⎠
c ⋅d = ⎜
So neither parallel, nor perpendicular.
c ⋅ ( a + b ) = ( −5i − 2 j) ⋅ ( 2i + 4 j) + ( i − 5j )
⎛ −1⎞ ⎛ 4 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ ⋅ ⎜ −3 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ 5 − 1 ⎝ ⎠ ⎝ ⎠
⎛ −5 ⎞ ⎛ −2 ⎞ ⎟ ⎟ ⎜ ⎜ ⎜ 3 ⎟ ⋅⎜ 3 ⎟ ⎟ ⎟ ⎜ ⎜ ⎟⎟ ⎟⎟ ⎜⎜ ⎜⎜ 6 − 1 ⎠ ⎝ ⎝ ⎠
= 10 + 9 − 6 = 13 a ⋅ b = (2 × 4 ) + ( 4 × − 2) =8−8 = 0 ⇒ perpendicular.
⎝
= ( − 5i − 2 j) ⋅ 3i − j
e
−4 ⎤⎥ ⎡⎢ −1 +(−1) ⎤⎥ − (−3) ⎥⎥ ⋅ ⎢⎢ 0 +3 ⎥⎥ ⎥ ⎢ ⎥ −(−1) ⎥⎦ ⎢⎣ 5 +(−6) ⎥⎦
|c| = 22 + 12 = 5 |d| = 5
= (2 × 2) + ( 4 × 4) = 4 + 16 = 20
d
⎡ −1 ⎢ ⎢ ⎢ 0 ⎢ ⎢⎣ 5
b = 32 + 22 + 12 = 9 + 4 + 1 = 14 a b=
(
14
)
2
= 14 ≠ a ⋅ b
⇒ neither parallel, nor perpendicular e
OX ⋅OZ =
⎛1⎞ ⎛0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ ⋅⎜ 0 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎝0⎠ ⎝1⎠
= (1 × 0 ) + ( 0 × 0 ) + ( 0 × 1) = 0
⇒ perpendicular f
n ⋅ m = ( 2i − 8 j )( −i + 4 j )
= ( 2 × −1) + ( −8 × 4 ) = − 2 − 32 = −34
n = 22 + 82 = 4 + 64 = 68 m = 12 + 4 2 = 1 + 16 = 17
− 2 j ) ⋅ ( 2i + 4 j ) + ( −i − 5 j )
University Press 2012: this may be reproduced for class use solely for the purchaser’s institute − 2 j ) ⋅ i −©jOxford
× 1) + ( −2 × −1)
Worked solutions: Chapter 12
8
WORKED SOLUTIONS n m = 17 × 68 = 34 = − n ⋅ m ⇒ parallel. g
b
AB ⋅ CD = ⎛ 2 ⎞ ⋅ ⎛ −1⎞ = ( 2 × −1) + ( 2 × −1) ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ −1⎠ = −2 − 2 | AB | 22 22 8 |CD | 12 12 2 | AB | ⋅ |CD | 28
4 3 4 3 0 1 12 0 1 4 42 4 0 3 2 2 3 1 1 12 4 10 cos
= −4
3 cos 1 161.6 10 c 2 i 5 j 2 i 5 j 2 5
16 = 4 = − AB ⋅ CD
⇒ parallel
4
vectors a 3 b i j 2 k 3 3i 2 j k
4 25 21
1 3 3 i 1 3 2 j 2 3 1 k 10 i 7 j k 2a b 2 i j 2 k 3i 2 j k
2 1 3 i 2 1 2 j 2 2 1 k
i 5k (a + 3b) · (2a − b) = (10i + 7j − k) · (−i + 5k)
= (10 × −1) + (−1 × 5) = −10 − 5 = −15 5
Let d d1i d2 j d3 k
a d 3d1 5 d3 9 b d 2d1 7d 2 11 c d d1 d 2 d3 6 using GDC, d1 = 2, d2 = 1, d3 = 3 ⎛2⎞ ⎜ ⎟ So, d = ⎜⎜ 1 ⎟⎟
2i 5 j
c
cos
2 3
cos
7
a
45
9
2
2 2 2 2 1 5 4 5 1 1 5 2 1
22 12
2 5
2 5 2
2
5 4 25
1 5 29 cos 1 cos 1 94.8 145
29
29
2i 5 j
a
1 1 5 2
= −1 −10 = −11 | AB | 12 52 26 | AC | 12 22 5 AB ⋅ AC = | AB || AC |cosθ 11
6 2 3 cos 1
2 2 52
21 cos 1 136.4 29 1 2 1 8 a AB = 9 4 5 3 2 1 AC = 2 4 2 1 1 b AB ⋅ AC = 5 2
a b a b cos
6
21 29 cos
⎜⎜ ⎟⎟ 3 ⎝ ⎠
6
10
5 26 cos 11 130
⎛ −1⎞ ⎛ 2 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 2 ⎟ ⋅ ⎜ −3 ⎟ = − 2 − 6 + 12 = 4 ⎜ 2⎟ ⎜ 6 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ −1⎞ ⎜ ⎟ 2 2 2 ⎜ 2⎟ = 1 + 2 + 2 = 9 = 3 ⎜ 2⎟ ⎝ ⎠ ⎛ 2⎞ 2 ⎜ ⎟ 2 2 ⎜ −3 ⎟ = 2 + ( −3 ) + 6 = 4 + 9 + 36 = 7 ⎜ 6⎟ ⎝ ⎠ so 4 = 3 × 7 cos cos =
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
4 , 21
= 79°
Worked solutions: Chapter 12
9
WORKED SOLUTIONS b
c
12 a ⎛2⎞ ⎛ 4 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 3 ⎟ ⋅ ⎜ −2 ⎟ = 8 − 6 − 2 = 0 ⇒ perpendicular vectors ⎜ 1 ⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠ θ = 90° ( 2i − 7 j + k ) ⋅ ( i + j − k )
= ( 2 × 1) + ( −7 × 1) + (1 × −1) = −6
( 2i − 7 j + k ) = 22 + 72 + 12 (i + j − k) = 1+ 1+ 1 = 3
b
= 54
= −3i − 2j + 7k 2 2 | AB | 3 2 72 13
6 cos 1 118.1 162
b
17, AC
2
14
a − b = (5 − 1)i + (−3 − 1)j + (7 − λ)k = 4i − 4j + (7 − λ)k 26
Now (a + b) ⋅ (a − b) = (6 × 4) + (−2 × −4) + (λ + 7)(7 − λ) = 24 + 8 + 49 − λ2 = 0
λ2 = 81
1 cos 442 Area ABC = 1 | AB || AC |sin BÂC 2
1 442 sin cos 1 1 2 442
10.5cm 2
p 2 15 a b 2 p p 3 p 2 a b 2 p p 3
1 2 1 1 and 1 1
so 1 3 cos 1 cos 1 54.7 3
1 1 1
3
p 2 2 p p 3
λ = ±9
p 2 p 2 a b a b 2 p 2 p p 3 p 3
1 11 The x-axis has unit direction vector 0 0 1 1 1 so 1 0 1 0
1 0 0
a + b = (5 + 1)i + (−3 + 1)j + (7 + λ)k = 6i − 2j + (7 + λ)k
1 1 AB ⋅ AC 4 0 1 0 5 AB ⋅ AC = | AB || AC |cosθ
(2i + λj + k) ⋅ (i − 2j + 3k) = (2 × 1) + (λ × −2) + (3 × 1)
5 = 2λ
1 17 26 cos
c
62 7.87
= 2 − 2λ + 3 = 0 for perpendicular vectors.
2 1 1 AB = 3 1 4 4 4 0 AB = 12 4 2 17 2 1 1 ⎛⎜ ⎞⎟ ⎛⎜ ⎞⎟ ⎛⎜ ⎟⎞ AC = ⎜ −1⎟ − ⎜ −1⎟ = ⎜ 0 ⎟ ⎜ −1⎟ ⎜ 4 ⎟ ⎜ −5 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 AC 12 5 26 so AB
= 4 + 8 −12 = 0 = OA and OB are perpendicular AB = OB − OA = (1 − 4)i + (2 − 4)j +(3 − (−4))k
so 6 162 cos
10 a
OA = 4i + 4j − 4k, OB = i + 2j + 3k (OA) . (OB ) = (4 × 1) + (4 × 2) + (−4 × 3)
p
2
4 4 p2 9 p2
p 2 9 0 for perpendicular vectors. 9, p p2 3
Exercise 12J 1
a
⎛ −1⎞ ⎛ 3 ⎞ r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ 2⎠ ⎝2⎠
b
⎛ −1⎞ ⎛ 5 ⎞ r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ 0 ⎠ ⎝ −2 ⎠
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
10
WORKED SOLUTIONS
2
c
⎛ 3⎞ ⎛ 3⎞ ⎜ ⎟ ⎜ ⎟ r = ⎜ 1⎟ + t ⎜ −2 ⎟ , t ∈ . ⎜ −2 ⎟ ⎜ 8 ⎟ ⎝ ⎠ ⎝ ⎠
d
r = 2 j − k + t ( 3i − j + k ) , t ∈ .
Then a ⋅ p = 0, and line is
b
⎛4⎞ 3 Position vectors are ⎜ ⎟ and ⎝5⎠ 2 Line joining the 2 points has direction ⎛ 3 −4 ⎞ ⎛ −1 ⎞ ⎜ ⎟=⎜ ⎟ ⎝ −2 − 5 ⎠ ⎝ −7 ⎠ a
c
⎛ 4 ⎞ ⎛1⎞ Line is r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ 5 ⎠ ⎝ 7 ⎠ 4 5 b Position vectors and 2 2 Line joining 2 points has direction ⎛ 5 −4 ⎞ ⎛ 1 ⎞ ⎜ ⎟=⎜ ⎟ ⎝ −2 ( +2) ⎠ ⎝ 0 ⎠
d
⎛ 4⎞ ⎛1⎞ Line is r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ −2 ⎠ ⎝0⎠ c
d
3 2 Position vectors 5 and 4 2 5 Line joining 2 points has direction −2 ⎞ ⎛ 1⎞ ⎛3 ⎜ ⎟ ⎜ ⎟ ⎜ 5 − ( −4 ) ⎟ = ⎜ 9 ⎟ ⎜2 −5 ⎟⎠ ⎜⎝ −3 ⎟⎠ ⎝
⎛3⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ Line is r = ⎜ 5 ⎟ + t ⎜ 9 ⎟ , t ∈ . ⎜2⎟ ⎜ −3 ⎟ ⎝ ⎠ ⎝ ⎠ 0 1 Position vectors 0 and 1 1 0
Take p1 = 0, p2 = 4, p3 = 3 for example Then line is r = 5k + t ( 4 j + 3k ) , t ∈ . 4
a
b
a
⎛ p1 ⎞ We need a vector p = ⎜ ⎟ which is ⎝ p2 ⎠ perpendicular to a ⎛3⎞ ⎛ p ⎞ a ⋅ p = 0 ⇒ ⎜ ⎟ ⋅ ⎜ 1 ⎟ = 3 p1 + 2 p2 = 0 ⎝ 2 ⎠ ⎝ p2 ⎠ Take p1 = 2, p2 = −3
We need to know if there is a value of t for which ⎛2⎞ ⎛1⎞ ⎛ 4 ⎞ r = ⎜ ⎟ + t⎜ ⎟ = ⎜ ⎟ ⎝1⎠ ⎝2⎠ ⎝ 5⎠ ⎛1⎞ ⎛ 4 ⎞ ⎛2⎞ Take t = 2 Then ⎜ ⎟ = ⎜ ⎟ + 2 ⎜ ⎟ ⎝2⎠ ⎝ 5⎠ ⎝1⎠ so (4, 5) lies on the line. 5 4 5 Is there t so that ? t 1 3 2 5 + t ( 4 ) = 5 and 1 − 3t = − 2 t = 0 and t = 1 ⇒ no such t.
c
⎛0⎞ ⎛ −1⎞ ⎜ ⎟ ⎜ ⎟ Line is r = ⎜ 0 ⎟ + t ⎜ 1⎟ ⎜1⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠ 3
⎛4⎞ ⎛1⎞ ⎜ ⎟ line is r = ⎜ 2 ⎟ + t ⎜⎜ 0 ⎟⎟ , t ∈ . ⎜1⎟ ⎜3⎟ ⎝ ⎠ ⎝ ⎠ ⎛ p1 ⎞ ⎜ ⎟ We require p = ⎜ p2 ⎟ so that p ⋅ a = 0 ⎜p ⎟ ⎝ 3⎠ p ⋅ a = p1 − 3 p2 + 4 p3 = 0
Line joining 2 points has direction −1⎞ ⎛ −1⎞ ⎛0 ⎜ ⎟ ⎜ ⎟ ⎜ 0 − ( −1) ⎟ = ⎜ 1⎟ ⎜1 −0 ⎟⎠ ⎜⎝ 1⎟⎠ ⎝
⎛ 2⎞ ⎛ −1⎞ r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ 6⎠ ⎝ −3 ⎠ Using the same technique as in part a, we see ⎛2⎞ 5 ⎜ ⎟ is perpendicular 5 ⎝ ⎠ 2 ⎛ −1⎞ ⎛2⎞ Line is r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ . ⎝ 0⎠ ⎝5⎠ ⎛1⎞ 3 ⎜ ⎟ is perpendicular to 0 ⎜ ⎟ 0 ⎜3⎟ 1 ⎝ ⎠
d
so (5, –2) does not lie on the line. 1 1 3 Is there t so that 5 t 0 5 ? 3 2 1 −1 + t = −3 ⇒ t = −2 5 + 0(t) = 5 ⇒ t = anything −3 − 2t = 1 ⇒ t = −2 3 1 1 so 5 5 2 0 i.e. (−3, 5, 1) lies on 1 3 2 line. Is there t so that (2i + j + k) = (2i – j – 3k) + t(–2j –3k) 1 = − 1 − 2t and 1 = − 3 − 3t 4 = − 3t −2 = 2t
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
11
WORKED SOLUTIONS t = −1
and t =
−4 3
5 5 4 s No such s ⇒ 3 1 3 lines NOT co-incident.
⇒ no such t.
so (2,1,1) does not lie on line. ⎛ −2 ⎞ ⎛2⎞ ⎜ ⎟, t ⎟ ⎜ 5 r = 4 +t ⎜ 3⎟ ⎜ ⎟ ⎜ 8⎟ ⎜5 ⎟ ⎝ ⎠ ⎝ ⎠ 10 = 4 + 3t ⇒ 6 = 3t, t = 2 p = 2 − 2 t = 2 − 2( 2 ) = − 2 q = 5 + 8t = 5 + 8(2) = 21
d
−1 . Then 3 lines parallel. (2)
Are lines parallel? ⎛ 1⎞ ⎛1 ⎞ Is there t so that ⎜ ⎟ = t ⎜ ⎟ No such t ⎝ 1⎠ ⎝2⎠ ⇒ NOT parallel.
(2)
⎛0⎞ 6 A vertical line will have direction ⎜ ⎟ ⎝1 ⎠ 6 0 − ⎛ ⎞ ⎛ ⎞ so r = ⎜ ⎟ + t ⎜ ⎟ , t ∈ 5 ⎝ ⎠ ⎝1 ⎠ 7 a (1) Are the 2 lines parallel? 2 6 Is there t such that t 1 3 Take t =
(1)
Are lines perpendicular? Take dot product of direction vectors: ⎛ 1 ⎞ ⎛ 1⎞ ⎜ ⎟ . ⎜ ⎟ = 1 + 2 = 3 ⇒ NOT perpendicular. ⎝ 2 ⎠ ⎝ 1⎠
e
(1)
Are lines parallel? Is there t so that ⎛4⎞ ⎛ 4⎞ ⎜ ⎟ = t ⎜ ⎟ No such t ⇒ ⎝3 ⎠ ⎝ −3 ⎠
⎛ 2 ⎞ −1 ⎛ −6 ⎞ ⎜ ⎟= ⎜ ⎟ so ⎝ −1⎠ 3 ⎝ 3 ⎠
lines not parallel. Are lines perpendicular?
(2)
Take dot product of direction vectors: ⎛ 4⎞ ⎛4⎞ ⎜ ⎟ . ⎜ ⎟ = 16 − 9 = 7 ⇒ ⎝ −3 ⎠ ⎝ 3 ⎠
Are 2 lines co-incident? ⎛ −9 ⎞ Does ⎜ ⎟ lie on r1? ⎝ 10 ⎠ ⎛ 2⎞ ⎛ −9 ⎞ ⎛ 3 ⎞ ⎜ ⎟ = ⎜ ⎟ + s ⎜ ⎟ . Take s = –6. ⎝ −1⎠ ⎝ 10 ⎠ ⎝ 4 ⎠ ⎛ 2⎞ ⎛ −9 ⎞ ⎛ 3 ⎞ ⎜ ⎟ = ⎜ ⎟ −6 ⎜ ⎟ ⎝ −1⎠ ⎝ 10 ⎠ ⎝ 4 ⎠
NOT perpendicular. 1 8
a
(1)
(2)
Are lines parallel? ⎛ 1⎞ ⎛ −4 ⎞ Is there t so that ⎜ ⎟ = t ⎜ ⎟ ⇒ No such ⎝2⎠ ⎝ 2⎠ t, so NOT parallel.
b
(2)
Are lines co-incident? ⎛5⎞ Does ⎜ ⎟ lie on r1? ⎝3⎠
−1
0 ⋅ −2
Are lines perpendicular?
Are the lines parallel? ⎛ 8⎞ ⎛ 4⎞ Is there t so that ⎜ ⎟ = t ⎜ ⎟ ⎝ −6 ⎠ ⎝ −3 ⎠ t = 2 gives ⎛ 8⎞ ⎛ 4⎞ ⎜ ⎟ = 2 ⎜ ⎟ ⇒ lines parallel. ⎝ −6 ⎠ ⎝ −3 ⎠
1
2
cos A
1
3 = 1
2
−1
0
3
−2
1
cos A
−2 − 2 = 22 + (−2)2 (−1)2 + 32 + 12 cos A −4 =
8 11 cos A −4 A = cos−1 = 115.2° 8 11
⎛ −4 ⎞ ⎛ 1 ⎞ ⎜ ⎟ . ⎜ ⎟ = − 4 + 4 = 0 ⇒ perpendicular. ⎝ 2⎠ ⎝2⎠ (1)
4 ⋅ 1 = 4 0 1 0
6 = 17 6 cos A ⎛ 6 ⎞ A = cos−1 ⎜ ⎟ = 53.6° ⎝ 17 6 ⎠
Take dot product of direction vectors:
c
2
2 + 4 = 12 + 42 22 + 12 + 12 cos A
⎛ −9 ⎞ so ⎜ ⎟ lies on r1 ⇒ lines co-incident ⎝ 10 ⎠ b
1
2
9
a
⎛ −2 ⎞ ⎜ ⎟ A has position vector ⎜ −3 ⎟ . We require t so ⎜ −4 ⎟ that ⎝ ⎠ 2 1 1 3 1 t 2 Taking t = –1, we see: 4 2 6
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
12
WORKED SOLUTIONS
b
−2 = − 1 + ( −1)1 −3 = − 1 + ( −1)2 −4 = 2 + ( −1) 6 6 2 4 AB 7 3 4 2 4 2 Taking dot product,
⎛ −4 ⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ −4 ⎟ . ⎜ 2 ⎟ = − 4 − 8 + 12 = 0 ⎜ 2⎟ ⎜6⎟ ⎝ ⎠ ⎝ ⎠ ⇒ AB perpendicularr toL1
10 a
b
c
OF = 2i + 5j + 3k ii AG = −2i + 5j + 3k i |OF | = 22 52 32 38 ii | AG | = 22 + 52 + 32 = 38 iii OF . AG = (2i + 5j + 3k) . (−2i + 5j + 3k) = 30 OF . AG = |OF | | AG |cosθ 30 = 38 38 cos
e
1 P= 177
b
1
2
(1)
−2 + 2 s = − 3 + 6t (1) ⇒ 8 s = 2 + 9t
(2)
(1) ⇒ s
30 177
+ 5j − 2k + µ(7i − 8j − 8k) = OA + µ AB which is the position vector of a point on the line that passes through A with direction vector AB , and hence also passes through B. OP . AB = 0
⎛ 1 + 7μ ⎜ ∴ ⎜ 5 − 8μ ⎜ ⎝ −2 + 8μ
⎞ ⎛ 7⎞ ⎟ ⎟ ⎜ ⎟ . ⎜ −8 ⎟ = 0 ⎟ ⎜ 8⎟ ⎠ ⎠ ⎝
7 + 49μ − 40 + 64μ − 16 + 64μ = 0 49 μ= 177
1 2 8
54 15
4 intersec at 2
49
= (i
2 9t
t
30 177
Let r be the position vector for the point P.
1 8
(2) ⇒ 2 1 2 9t 3 6t 4 −8 + 2 + 9t = − 12 + 24 t 6 = 15t
|AO||AB| −1 × 7 + (−5) × (−8) + 2 × 8
Then r = (1 + 7µ)i + (5 − 8µ)j + (−2 + 8µ)k
d
4 + 8 s = 6 + 9t
AO . AB
= c
Equating components:
s
30 cos 7.9 38 AB = OB – OA = 7i – 8j + 8k
=
Equating components of r1 & r2: (1) 4 2 11 (2) 2 4 16 2 (1) ⇒ = − 7 + 2 (2) ⇒ 2 − 4 = 16 + 2 ( −7 + 2 ) 2−4 = 2+4 =0 (1) ⇒ = − 7 so intercept at (4,2)
i
cos OAB =
⎛ 520 ⎞ ⎜ ⎟ ⎜ 493 ⎟ ⎜ 38 ⎟ ⎝ ⎠
Exercise 12K
1
11 a
Use the value of µ from part d to get:
3
5 + 2t = 3 + 2 s
6 15
7 10
48 5 8 48 7 1 10 2 3 5 3 5 (1)
−1 + t = − 2 + s
(2)
2 − t = − 4 + 2s (2) ⇒ s = 1 + t
(3)
(1) ⇒ 5 + 2t = 3 + 2 (1 + t ) 5 + 2t = 5 + 2t
(so (1) & (2) are consistent)
(3) 2 − t = − 4 + 2 (1 + t ) 2 − t = − 2 + 2t 4 = 3t t = (2) ⇒ s 1
4 3 4 7 3 3
Thus l1 & l2 intersect.
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
13
WORKED SOLUTIONS 3 2 23 7 1 23 , 1 , 2 r 2 1 1 at 3 3 3 4 3 2 3 2 4
1 + 3t = − 1
(1)
1− t = s (1) ⇒ 3t = − 2
(2)
t
7
a
3 2 1 a a 5.
2 3
5 (2) ⇒ s 1 2 3 3
j, i.e. at 1, 5 3 5 If lines intersect then there are s & t so that
Intersect at i
5 3
3 − t =1+ s
(1)
t =4+s 5 + 2t = s
(2)
b
s = −13 in (2) ⇒ t = 4 − 13 = − 9 check in (1): 3 − ( −9 ) ≠ 1 − 13 12 ≠ − 12 so there are no such s & t ⇒ skew a
3 − s = 14 + 3t
18
(1)
(2) −2 + 3s = −20 − 4t 5 − 5 s = 6 − 3t (3) (1) ⇒ s = − 11 − 3t (2) ⇒ 2 3(11 3t ) 20 4 t −35 − 9t = − 20 − 4 t −15 = 5t t = −3 (1) ⇒ s = −11 −3(−3) = −2 check in (3): 5 − 5(−2) = 6 − 3(−3) 15 = 15 so lines intersect. Point of intersection = 14i − 20j + 6k − 3(3i − 4j − 3k) when t = −3 = 5i − 8j + 15k b
6 1 b 9 t 2 13 3 2 1 9 2t 13 t 2. 6 2 b b 8. ⎛6⎞ ⎜ ⎟ OP has position vector ⎜ 9 ⎟ + ⎜3 ⎟ ⎝ ⎠
Take dot product of direction vectors: (−i + 3j − 5k) ⋅ (3i − 4j − 3k) = (−1 × 3) + (3 × −4) + (−5 × −3) = −3 −12 + 15 =0 ⇒ perpendicular.
⎛ 1⎞ ⎜ ⎟ t ⎜ 2 ⎟ for some t ⎜ −2 ⎟ ⎝ ⎠
8 5 3 AB = 13 7 6 1 5 6 6 t 3 0 (OP ) ⋅ ( AB ) = 0 9 2t . 6 3 2t 6 3 6 t 6 9 2t 6 3 2t 0
(3)
sub (2) into (3): s = 5 + 2 (4 + s), s = 13 + 2s
6
6 1 5 9 t 2 7 3 2 a 6 t 5 t 1
3t
54
12t
18 12t 27t 54 t
so OP
c
|OP |
8
a
0 0 −2
6
1
4
9 −2 3
2 = 5 , P is (4, 5, 7) 2 7
42 + 52 + 72 = 3 10
AB = b − a = ( 3 − 2 ) i + ( −2 − ( −1) ) j + ( −1 − 2 ) k
= i − j − 3k line is 2i j 2 k i j 3k for b
2 + = 7 + 2s −1 − = s 2 − 3 = 3 + 2 s sub (2) in (1) ⇒ 2
(1) (2) (3) + = 7 + 2 ( −1 − )
2 + = 5 − 2 3 = 3 ⇒ = 1 (2) ⇒ s = −1 − 1 = −2 (3) ⇒ 2 = − 3(1) − 1 = 3 + 2(−2)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
14
WORKED SOLUTIONS ∴ lines intersect.
1
(2) ⇒ t = (5 × 3 − 7) = 4
point is ( 2 + 1) i + ( −1 − 1) j + ( 2 − 3 ) k
c
2
20 When t = 4, LS = + −8
a − c = (2 − 3)i + ( −1 − ( −2)) j + (2 − ( −1)) k = − i + j + 3k
4 When s = 3, RS = + 3 −8
AC = 1 + 1 + 32 = 11 d
3
Take dot product of direction vectors: ( i − j − 3k ) .( 2i + j + 2k ) = 2 − 1 − 6 = −5
a
want to find when a = b .
Exercise 12L Position of ship relative to buoy is
2
a
b
15 10
152
velocity =
10 2
displacement time
122
52
speed = v(t)
d
s( t )
4i
j
t (12i
5 j)
s(3)
4i
j
3(12i
5 j)
(1)
−8 − 2t = − 1 − 5 s (2) ⇒ t 1 (5 s 7) (2) ⇒ −7 + 5 s = 2t 2
(1) ⇒ 20
5 2
(5 s
7)
4
(2)
b
Collide at (3i + 3 j) + 1( 4 i + 3 j) = 7 i + 6 j
a
⎛ 11⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ rx = ⎜ 3 ⎟ + t ⎜ −1⎟ ⎜ −3 ⎟ ⎜ 4 ⎟ ⎝ ⎠ ⎝ ⎠
⎛2⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ry = ⎜ −7 ⎟ + t ⎜ 1 ⎟ ⎜9⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠
Vy = 22 + 12 + 9 2 = 86 ms−1 b
40 i
402 + 162 = 8 29 m ⎛ 5⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 20 ⎞ want ⎜ ⎟ + t ⎜ ⎟ = ⎜ ⎟ + s ⎜ ⎟ ⎝ −2 ⎠ ⎝ −1⎠ ⎝ −5 ⎠ ⎝ −8 ⎠ for collision
20 + 5t = 4 + 12 s
3 + 3t = 3 + 3s (2) ⇒ t = s
Vx = 12 + ( −1)2 + 4 2 = 18 = 3 2 ms−1 Meet if rx = ry at the same time ⎛2⎞ ⎛ 1⎞ ⎛ 1⎞ ⎛ 11⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 3 ⎟ + t ⎜ −1⎟ = ⎜ −7 ⎟ + s ⎜ 1 ⎟ ⎜9⎟ ⎜ 4 ⎟ ⎜ −2 ⎟ ⎜ −3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
13 ms−1
distance =
e
4
⎛ 20 ⎞ ⎛ 5⎞ s(t ) = ⎜ ⎟ + t ⎜ ⎟ ⎝ −8 ⎠ ⎝ −2 ⎠ ⎛ 20 ⎞ ⎛ 5 ⎞ ⎛ 50 ⎞ = ⎜ ⎟ + 6⎜ ⎟ = ⎜ ⎟m ⎝ −8 ⎠ ⎝ −2 ⎠ ⎝ −20 ⎠
c
(1)
They collide 1 hour after 3 pm, ie at 4 pm.
5 13 km ⎛ 20 ⎞ ⎜ 4 ⎟ ⎛ 5⎞ = ⎜ −8 ⎟ = ⎜ ⎟ ms −1 ⎜⎜ ⎟⎟ ⎝ −2 ⎠ ⎝ 4 ⎠
3 + 4t = 4 + 3s
(1) ⇒ s = t = 1
⎛ 60 ⎞ ⎛ 45 ⎞ ⎛ 15 ⎞ ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ ie 10Km North, 15Km East ⎝ 30 ⎠ ⎝ 20 ⎠ ⎝ 10 ⎠ b
Let A’s position be given by a (3i 3 j) t (4 i 3 j) Let B’s position be given by b = ( 4 i + 3 j) + s (3i + 3 j)
⎛ −5 ⎞ = cos −1 ⎜ ⎟ = − 120º (nearest degree) ⎝ 3 11 ⎠
a
12 40 = −16 −5
Hence particles will collide.
Then −5 = 11 9 cos
1
20 40 = −16 −8
3i − 2 j − k ie (3, −2, −1)
16 j
11 + t = 1 + 2 s
(1)
3 − t = −7 + s
(2)
−3 + 4 t = − 2 + 9 s (1) ⇒ t = 2s − 10
(3)
(2) ⇒ 3 − (2 s − 10 ) = − 7 + s 13 − 2 s = − 7 + s 20 = 3 s , s =
20 3
⎛ ⎞ (1) ⇒ t = 2 ⎜ 20 ⎟ − 10 = ⎝3⎠ so ships do not collide.
10 3
≠s
12 s
40 + 25 s − 35 = 8 + 24 s s=3
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
15
WORKED SOLUTIONS ⎛ 1⎞ ⎛ 21⎞ ⎛ 11⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ rx (10 ) = ⎜ 3 ⎟ + 10 ⎜ −1⎟ = ⎜ −7 ⎟ ⎜ 4 ⎟ ⎜ 37 ⎟ ⎜ −3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 1 ⎛ 2 ⎞ ⎛ 21⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ry (10 ) = ⎜ −7 ⎟ + 10 ⎜ 1 ⎟ = ⎜ 3 ⎟ ⎜ 9 ⎟ ⎜ 88 ⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
c
3
6 4 (a b ).(a b) 2 . 4 24 8 16 0 8 2 ⇒ a − b and a + b are perpendicular.
⎛ 0⎞ ⎜ ⎟ ry − rx = ⎜ 10 ⎟ , ⎜ 51⎟ ⎝ ⎠ ry − rx
10 2 512
2701 51.97m
4
Review exercise 1
2 1 AB 3 2 5 3
3 1 2
We need s & t so that 7 s = 3 + 2t 6 + 3s = 1 + 4t
(1)
−1 + s = 2 − t (3) ⇒ s = 3 − t
(3)
(2)
(1) ⇒ 7 (3 − t ) = 3 + 2t 21 − 7t = 3 + 2t 18 = 9t t =2 (3) ⇒ s = 3 − 2 = 1 check in (2) ⇒ 6 + 3(1) = 1 + 4 (2)
7 2 9 BC 0 3 3 1 5 6
⎛ 9⎞ ⎛ −3 ⎞ ⎜ ⎟ ⎟ 1⎜ Now AB = ⎜ 1 ⎟ = − 3 ⎜ −3 ⎟ = ⎜ −6 ⎟ ⎜ 2⎟ ⎝ ⎠ ⎝ ⎠
5 1 6 a b 1 3 2 3 ( 5) 8 5 1 4 a b 1 3 4 3 ( 5) 2
−1 3
BC
LS = RS = 9 so s and t exist. ⎛ 0⎞ ⎛7 ⎞ ⎛7 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ so P has position vector ⎜ 6 ⎟ + ⎜ 3 ⎟ = ⎜ 9 ⎟ ⎜ −1⎟ ⎜ 1 ⎟ ⎜ 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Since they contain a common point (B ), A, B, C are collinear.
Point (7, 9, 0) 2
The sides of the triangle are given by the vectors AB, AC, and BC
5
a
AB = (2l + 2J) – (5i – j + 6k) = – 3i + 3j – 6k AC = (–3i – 5j + 8k) – (5i – j + 6k)
b
= –8i – 4j + 2k Now AB · AC = (–3i + 3j – 6k) · (–8i – 4j + 2k)
c
1 2 3 AB 7 4 3 3 2 1 AC 2 4 2 3 1 AB ⋅ AC . 3 6 9 3 2 ˆ AB ⋅ AC = | AB || AC | cos BAC
ˆ ( 1)2 ( 2)2 cos BAC
= (–3 × –8) + (3 × –4) + (–6 × 2)
9
= +24 – 12 – 12 =0
ˆ 9 18 5 cos BAC ˆ 9 3 2 5 cos BAC
Since AB · AC = 0, the vectors are perpendicular. Hence, A, B, and C form a right-angled triangle.
32 32
ˆ cos BAC
3 2 5
6
a
P has position vector 6 2 4 3
2 6 8 2 2 2 8 10 1 3 4 1
P is (−2, 10, 1) © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
16
WORKED WORKED SOLUTIONS SOLUTIONS ⎛ −1⎞ ⎛ −−22⎞ ⎛ 00⎞ ⎟⎞ ⎜⎛ −1⎟⎞ ⎜⎛ ⎟⎞ ⎜⎛ b Suppose ⎜10 ⎟ = ⎜−12 ⎟ + t ⎜11 ⎟ for some t b Suppose ⎜ 10⎟ = ⎜ −12⎟ + t⎜ 11⎟ for some t ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎝⎜ 11⎠⎟ ⎝⎜ 77⎠⎟ ⎝⎜−−33⎠⎟ ⎝ ⎠ ⎠ ⎝ ⎠ ⎝ (1) −2 = − t (1) −2 = − t (2) 10 = − 12 + 11t (2) 10 = − 12 + 11t (3) 1 = 7 − 3t (3) 1 = 7 − 3t t =2 (1) ⇒ (1) ⇒ t = 2 10 = − 12 + 11(2) = 10 (2) ⇒ (2) ⇒ 10 = − 12 + 11(2) = 10 (3) ⇒ 1 = 7 − 3(2) = 7 − 6 = 1 (3) ⇒ 1 = 7 − 3(2) = 7 − 6 = 1 so equations are consistent. so equations are consistent. ⎛ −−22⎞ ⎜⎛ ⎟⎞ so t = 2 gives ⎜⎜10 ⎟⎟ ∴ P lies on L so t = 2 gives ⎜ 10 ⎟ ∴ P lies on L22 ⎜ 1⎟ ⎝⎜ 1⎠⎟ ⎝ ⎠ 7 a 7 a
⎛⎛22⎞⎞ ⎛⎛11⎞⎞ ⎟ ⎜ ⎟ ⎜ L2: r = ⎜2 ⎟ + s ⎜3 ⎟ L2: r = ⎜ 2⎟ + s⎜ 3⎟ ⎜⎜⎜2 ⎟⎟⎟ ⎜⎜⎜4 ⎟⎟⎟ ⎝⎝ 4⎠⎠ ⎝⎝ 2⎠⎠
⎛ 11⎞ ⎛ 44⎞ ⎜⎛ ⎟⎞ ⎜⎛ ⎟⎞ 0 = ⎜⎜7 ⎟⎟. ⎜⎜x ⎟⎟= 4 + 7 x + 3 = 7 + 7 x ⇒ x = − 1 0 = ⎜ 7 ⎟ . ⎜ x ⎟ = 4 + 7x + 3 = 7 + 7x ⇒ x = − 1 ⎜ 3 ⎟ ⎜1 ⎟ ⎝⎜ 3⎠⎟ ⎝⎜ 1 ⎠⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 44⎞ ⎛1 ⎞ ⎛ 7 ⎞ ⎛ 22⎞ ⎛ ⎟⎞ ⎜⎛ 1⎟⎞ ⎜⎛ 7⎟⎞ ⎜⎛ ⎟⎞ ⎜ c t q + = + − 3 7 5 ⎜−1 ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ c ⎜ −3⎟ + t⎜ 7⎟ = ⎜ 5⎟ + q⎜ −1⎟ ⎜⎜ 1⎟⎟ ⎜⎜−3 ⎟⎟ ⎜⎜3 ⎟⎟ ⎜⎜1 ⎟⎟ ⎝⎜ 1⎠⎟ ⎝⎜ −3⎠⎟ ⎝⎜ 3⎠⎟ ⎝⎜ 1⎠⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 + t = 7 + 4q (1) 2 + t = 7 + 4q (1) −3 + 7t = 5 − q (2) −3 + 7t = 5 − q (2) (3) −3 + 3t = 1 + q (3) −3 + 3t = 1 + q b b
8 8
Suppose r1 = r2 Suppose r1 = r2 ⎛ 4⎞ ⎛4⎞ ⎛ −12 ⎞ ⎛ −4 ⎞ Then ⎜⎛ −4⎟⎞ + ⎜⎛ 4⎟⎞ = ⎜⎛ 4⎟⎞ + ⎜⎛ −12⎟⎞ Then⎝⎜ 3 ⎠⎟ + ⎝⎜17 ⎠⎟ = ⎝⎜9 ⎠⎟ + ⎝⎜ 5 ⎠⎟ ⎝ 17 ⎠ ⎝ 9 ⎠ ⎝ 5⎠ ⎝ 3⎠ −4 + 4 = 4 − 12 (1) −4 + 4 = 4 − 12 (1) (2) 3 + 17 = 9 + 5 (2) 3 + 17 = 9 + 5 4 = 8 − 12 (1) ⇒ (1) ⇒ 4 = 8 − 12 = 2 − 3 = 2 − 3 (2) ⇒ 17 (2 − 3 ) = 6 + 5 (2) ⇒ 17 (2 − 3 ) = 6 + 5 34 − 51 = 6 + 5 34 − 51 = 6 + 5 28 = 56 28 = 56 1 = 1 =2 2 3 1 3= 1 (1) ⇒ = 2 − (1) ⇒ = 2 − 2 = 2 2 2 1 So ships collide after 1 So ships collide after 2 2
hour, ie 12.30 pm. hour, ie 12.30 pm. 2 4 4 2 collide at 4 11 4 23 collide at 3 2 17 3 2 17 223 2
3 44 1 44 3 At 12.15, A has position 1 At 12.15, A has position 4 29 33 417 17 429 4 so after 12:15, A’s position given by so after 12:15, A’s position given by ⎛⎛−−33⎞⎞ ⎛ 16 ⎞ rr1 == ⎜⎜29 ⎟⎟ ++ tt⎜⎛ 16⎟⎞ where t is time after 12:15 ⎜⎜⎜ 29⎟⎟⎟ ⎝⎜17 ⎠⎟ where t is time after 12:15 1 17 ⎝ ⎠ ⎝⎝⎜ 44 ⎠⎟⎠ b b
At At12.30, 12.30, A’s A’s position position isis ⎛⎛−−33⎞⎞ ⎛1 ⎞ ⎛⎛16 ⎞⎞ ⎜⎛ 1 ⎟⎞ 1 ⎜ ⎟ 16 rr1 == ⎜29 ⎟ ++ 1 ⎜ ⎟ == ⎜23 ⎟ ⎜⎜ 29 ⎟⎟ 44 ⎝⎜17 ⎠⎟ ⎜⎜ 23⎟⎟ 1 ⎝ 17 ⎠ ⎝ 22 ⎠ ⎝⎝ 44 ⎠⎠ ⎝ ⎠ 2 1 2 1 33 Distance is Distance is 23 23 23 23 0 22 22 0 so soships ships are are 3km 3km apart. apart.
Review Review exercise exercise –– GDC GDC 1 1
2 3 33 ⋅⋅ 2 == 3 55 55 −4 −4
22 cos cos AA −4 −4
2 2 2 2 66 −− 20 20 == 332 ++ 552 222 ++ (−4) (−4)2 cos cos AA −14 −14 = cos A = cos A 34 34 20 20 AA == 122.4 122.4 ≈≈ 122° 122°
2 a 2 a
LQR : QR = OR − OQ 2 = OR − OQ 2 3 −1 ⎛ 2⎛⎜⎞ ⎞⎟⎛ 3⎛⎜⎞ ⎞⎟⎛ −1⎛⎜⎞ ⎞⎟ ⎜ ⎟−1 ⎜ − ⎟−1 ⎜ = ⎟ 0 −1⎜⎟ −⎟⎜ −1⎜⎟ =⎟⎜ 0⎜⎟ ⎟ = ⎜= ⎜ 5⎜⎝⎟ 5 ⎟⎠⎜ 0⎜⎝⎟ 0 ⎟⎠⎜ 5⎜⎝⎟ 5 ⎟⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = OP − OQ QPQP = OP − OQ 3 3 0 ⎛ 3⎛⎜⎞ ⎞⎟⎛ 3⎛⎜⎞ ⎞⎟⎛ 0⎛⎜⎞ ⎞⎟ ⎜ ⎟−2 ⎜ − ⎟−1 ⎜ = ⎟−1 −2⎜⎟ −⎟⎜ −1⎜⎟ =⎟⎜ −1⎜⎟ ⎟ = ⎜= ⎜ 1⎜⎝⎟ 1 ⎟⎠⎜ 0⎜⎝⎟ 0 ⎟⎠⎜ 1⎜⎝⎟ 1 ⎟⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
b b
⎛ −1 ⎞ ⎛ −1 ⎞ ⎛ 0 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ ⋅ ⎜ −1 ⎟ = ⎜ 0 ⎟ ⎜ 5⎟ ⎜ 5⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 0+0+5=
⎛ 0⎞ ⎜ ⎟ ˆ ⎜ −1 ⎟ cos PQR ⎜ 1⎟ ⎝ ⎠
(−1)2 + 02 + 52
ˆ 02 + (−1)2 + 12 cos PQR 5 26 2
ˆ = cos PQR = 46.1 ≈ 46°
c c
1 1|QR||QP| sin 46 = Area 2 |QR||QP| sin 46 = Area 2 == 11 52 52 sin sin 46 46 2 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
2 == 2.60 2.60 units units2
Worked solutions: Chapter 12 Worked solutions: Chapter 12
17 17
WORKED SOLUTIONS 3
a
b
i
OC = 4j
ii
OB = i +
iii
OD = 2i + 4j
i
BC = BO + OC
22 − 12 k = i + 3 k
b
c
= −i − 3k + 4j = −i + 4j − 3k
c
i
|BC| =
12 + 16 + 3 =
20 = 2 5
1=2+µ
ii
|BD| =
12 + 16 + 3 =
20 = 2 5
−1 + 6λ = −1 − 3µ
iii
(−i + 4j −
3k)·(i + 4j − 3k) = −1 + 16 + 3 = 18 ˆ 18 = 2 5 × 2 5 cos DBC =
9 10
3 + 2λ = 2 − 2µ
∴ x3 − 2x(x − 2) − 12x = 0 x3 − 2x2 + 4x − 12x = 0 x(x2 − 2x − 8) = 0 x(x − 4)(x + 2) = 0 x = 0, x = 4, or x = −2
a
1 2
in r1
⎛ 0⎞ ⎛ 1⎞ ⎛ 0⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 6 ⎟ ⋅ ⎜ −3 ⎟ = ⎜ 6 ⎟ ⎜ −3 ⎟ cos A ⎜ 2 ⎟ ⎜ −2 ⎟ ⎜ 2 ⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ −18 + −4 =
11 149 cos C
= cos C
PQ = OQ − OP ⎛ 1⎞ ⎛ 1⎞ ⎛ 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎜ 5 ⎟ − ⎜ −1 ⎟ = ⎜ 6 ⎟ ⎜ 5⎟ ⎜ 3⎟ ⎜ 2⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ 1⎞ ⎛ 0⎞ OP.PQ = ⎜⎜ −1 ⎟⎟ . ⎜⎜ 6 ⎟⎟ = 0 − 6 + 6 = 0 ⎜ 3⎟ ⎜ 2⎟ ⎝ ⎠ ⎝ ⎠ ∴OP is perpendicular to PQ
02 + 62 + 22
12 + (−3)2 + (−2)2 cos A
−22 = 40 14 cos A
−22 40 14
(−1)2 + (−3)2 + 12
82.9° = C 5
=4
d
= cos A 22
A = 158°
12 + 22 + 122 cos C
11 149
1 2
⎛ 1 + 0 ⎞ ⎛ 1⎞ Position vector = ⎜⎜ −1 + 3 ⎟⎟ = ⎜ 2 ⎟⎟ ⎜ ⎜ 3 + 1 ⎟ ⎜ 4⎟ ⎝ ⎠ ⎝ ⎠
a⋅b = |a||b| cos C
5
LHS 3 + 2 ×
1 2
consistent values for λ and µ in all 3 equations
Let x = −1. a = −1i + −3j + k, b = i + 2j + 12k
5=
∴ 6λ = −3µ = 3 ∴ λ =
RHS 2 − 2 × −1 = 2 + 2 = 4
Let λ =
If perpendicular, a ∴ b = 0
−1 + −6 + 12 =
∴ µ = −1
∴ lines intersect
ˆ cos DBC
(xi + (x − 2)j + k) ∴ (x2i − 2x j − 12x k) = 0
b
If intersect, r1 = r2 ⎛ 1⎞ ⎛ 0⎞ ⎛ 2⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ −1 ⎟ + λ ⎜ 6 ⎟ = ⎜ −1 ⎟ + µ ⎜ −3 ⎟ ⎜ 3⎟ ⎜ 2⎟ ⎜ 2⎟ ⎜ −2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
BD = i + 4j − 3k
ˆ 25.8° = DBC a
⎛ 0⎞ ⎜ ⎟ ⎜ 6⎟ ⎜ 2⎟ ⎝ ⎠
ii
18 20
4
⎛ 1⎞ r1 = ⎜⎜ −1 ⎟⎟ + λ ⎜ 3⎟ ⎝ ⎠
158 158
22
acute angle between lines is 22° ⎛ 0⎞ ⎜ ⎟ 6 a t = 0 A = ⎜ 0⎟ ⎜ 6⎟ ⎝ ⎠ ⎛ 6⎞ ⎜ ⎟ t = 2 B = ⎜ −2⎟ ⎜ 6⎟ ⎝ ⎠ AB = OB − OA ⎛ 6⎞ ⎛ 0⎞ ⎛ 6⎞ ⎜ ⎟ = ⎜⎜ −2⎟⎟ − ⎜ 0 ⎟ = ⎜⎜ −2⎟⎟ ⎜ 6 ⎟ ⎜⎝ 6 ⎟⎠ ⎜ 0 ⎟ ⎝ ⎠ ⎝ ⎠ b
Position vector = initial position + t (directional vector of AB) ⎛ 3⎞ = initial position + t ⎜⎜ −1⎟⎟ ⎜ 0⎟ ⎝ ⎠
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
18
WORKED SOLUTIONS c
(36, 18, 0)
d
−3 ν = −4 , speed = |ν| = 1
(−3)2 + (−4)2 + 12
= 9 + 16 + 1 =
26
= 5.10 ms−1 e
⎛ 36 ⎞ ⎜ ⎟ ⎜ 18 ⎟ + t ⎜ 1⎟ ⎝ ⎠
⎛ −3 ⎞ ⎛ 0 ⎞ ⎛ 3⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ −4 ⎟ = ⎜ 0 ⎟ + s ⎜ −1 ⎟ ⎜ 1⎟ ⎜ 6⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
36 − 3t = 3s 36 − 18 = 18 ∴ s = 6 18 − 4t = −s 18 − 24 = −s ∴ s = 6 consistent t=6 t = 6 seconds f
c = (36 −18, 18 −24, 0 + 6) = (18, −6, 6)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 12
19
WORKED SOLUTIONS
13
Circular functions
Answers
5
Skills check You should know these values,without using your GDC. a
2 2
b
3
c
3 − 2
d
2 − 2
a
3 2
b
–1
c
–1
d
–0.5
3
a
–1.48
b
±2
4
a
–0.182, 2.40
b
±1.14
1
2
–90° (0, –1)
sin(–90°) = –1, cos(–90°) = 0, tan(–90°) does not exist 6
(–1, 0) –180°
Investigation 1
sin(–180°) = 0, cos(–180°) = –1, tan(–180°) = 0 7
(0, 1) 90°
(1, 0)
sin90° = 1, cos90° = 0, tan90° does not exist 2
(–1, 0)
sin0 = 0, cos0 = 1, tan0 = 0 8
(0, 1) r 2
180°
π
sin180° = 0, cos180° = –1, tan180° = 0 9
3 270°
sin π = 1, cos π = 0, tan 2 does not exist 2
2
r
(–1, 0)
(0, –1)
sin270° = –1, cos270° = 0, tan270° does not exist 4
sinπ = 0, cosπ = –1, tanπ = 0 10 3r 2
360° (1, 0)
(0, –1) 3π
sin360° = 0, cos360° = 1, tan360° = 0
sin 3π = –1, cos 2 = 0, tan 3π does not exist 2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
2
Worked solutions: Chapter 13
1
WORKED SOLUTIONS 11
c
(0, 1)
d
2
e
sin⎛⎜ − 3π ⎞⎟ = 1, cos ⎛⎜ − 3π ⎞⎟ = 0, tan − 3π does not exist ⎝
11r 6
r 2
– 3r
2 ⎠
⎝
2 ⎠
f
2
12 r 3
4r
5r 6
(1, 0)
g
h
sin4π = 0, cos4π = 1, tan4π = 0
2r
3
Exercise 13A 1
a
b
For questions 3–8, there are many other possible correct answers.
75°
110°
3
a 60° O
c
d
250°
120°, –240°, –300°
330°
b
200°
e
f
100°
340°, –20°, –160°
270°
c g
h 75° 40° 180°
255°, 285°, –105° d 2
a
b 115° 5r 3 r 6
65°, –245°, –295° © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
2
WORKED SOLUTIONS 4
d
a
25°
35°
155°, 335°, –205°
–35°, ±325° 6
b
a r 3
130°
2π 4π 5π ,− ,− 3 3 3
–130°, ±230° c
b 5r 4
295°
7π π 3π ,− ,− 4 4 4
–295°, ±65° d
c 240°
4:1
240°, ±120° 5
3π – 4.1, 4.1 – 2π, π – 4.1
a
d 50° 3
230°, –130°, –310° b
π + 3, 2π – 3, 3 – π 7
a r 6
100°
280°, – 80°, – 260° c
−
π 6
,±
11π 6
b 220°
40°, –140°, –320°
1
–1, ±(1 – 2π)
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
3
WORKED SOLUTIONS c
2 2.5
–2.5, ±(2.5 – 2π) d
3
a
sin ⎛⎜ 7π ⎞⎟ = − sin ⎛⎜ π ⎞⎟ = − 1
b
cos ⎛⎜ 5π ⎞⎟ = − cos ⎜⎛ π ⎞⎟ = − 3 2 ⎝ 6 ⎠ ⎝6⎠
c
sin ⎜⎛ − π ⎟⎞ = − sin ⎛⎜ π ⎞⎟ = − 1
d
cos ⎛⎜ − 11π ⎞⎟ = cos ⎛⎜ π ⎞⎟ =
a
sin (180 − A ) = sin ( A ) = 0.8
b c
3r 5
3π 7π ,± 5 5
8
a r 4
4
5π 3π 7π ,− ,− 4 4 4
b 1.3
c
⎝6⎠
⎝ 6⎠
⎝6⎠
6 ⎠
⎝
2
2
⎝6⎠
3 2
cos ( − A ) = cos ( A ) = 0.6
cos ( 360 − A ) = cos ( A ) = 0.6
d
sin (180 + A ) = − sin ( A ) = −0.8
e
tan ( A ) =
f
tan ( − A ) = − tan ( A ) = − 4
g
sin ( 360 − A ) = − sin ( A ) = −0.8
h
tan (180 + A ) = tan ( A ) = 4
sin( A ) 0.8 4 = = cos ( A ) 0.6 3 3
3
= sin θ = a cos θ b
a
tanθ
b
sin (π −θ ) = sinθ = a
c
cos (π + θ ) = − cosθ = −b
d
tan (π + θ ) = tanθ = a
e
sin (π + θ ) = − sinθ = −a
f
cos ( −θ ) = cosθ = b
g
sin ( 2π −θ ) = − sinθ = −a
h
1.3 + π, 1.3 – π, 1.3 – 2π
⎝ 6 ⎠
b
cos (θ − π ) = − cosθ = −b
Exercise 13C 1
a
5r 7
60° O
12π 2π 9π ,− ,− 7 7 7
d
x = –300°, –240°, 60°, 120° b 120°
5
2π – 5, π – 5, –5 – π
Exercise 13B 1
a
sin110 = sin 70 = 0.940
b
cos ( −70 ) = cos 70 = 0.342
c
cos 250 = − cos 70 = −0.342
d
sin 290 = − sin 70 = −0.940
x = ±120°, ±240° c 45°
x = –315°, –135°, 45°, 225°
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
4
WORKED SOLUTIONS d
d
r 2
x = –360°, –180°, 0°, 180°, 360° e
cos x = ±
θ=
1 2
e
π 3π − , 2 2
tan 2 θ = 3 tanθ = ± 3
45°
r 3
x = ±45°, ±135°, ±225°, ±315° f
tan x = ±
π
θ = ±3,±
1 3
f
2π 4π 5π ,± ,± 3 3 3
tan = 1
r 4
30°
x = ±30°, ±150°, ±210°, ±330° 2
a
θ=− 3
7π 3π π 5π ,− , , 4 4 4 4
a
r 6
θ=−
11π 7π π 5π ,− , , 6 6 6 6
θ = 0°, 360°, 720° b
b
45°
θ = −135°, −45°, 225°, 315°, 585°, 675°
θ = 0, ±π, ±2π c
c
tan θ = −1
r 6
45°
θ=
π 11π ± ,± 6 6
θ = −225°, −45°, 135°, 315°, 495°, 675°
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
5
WORKED SOLUTIONS d
3 tan2 θ = 9
Exercise 13D
3 tan θ = 3 tanq = ± 3
1
2
a
30° 60°
2x = ±30, ±330 x = ±15°, ±165°
θ = ±60°, ±120°, 240°, 300°, 420°, 480°,
600°, 660° 4
b
a
6sin(2x) = 3 sin ( 2 x ) = 1 2
30°
x= b
π 2
2sin x = −1 sin x = −1
2x = −330, −210, 30, 150
2
x = −165°, −105°, 15°, 75° c
r 6
sin ⎛⎜ x ⎞⎟ = cos ⎛⎜ x ⎞⎟ ⎝2⎠
⎝2⎠
tan ⎛⎜ x ⎞⎟ = 1 ⎝2⎠
x = − 5π , − π 6
c
6
45°
5 1 = 10 2 =± 1 2
sin 2 x = sin x
x 2
r 4
x = 90° d
x = d
tan 2 ⎛⎜ x ⎟⎞ = 3 ⎝3⎠
tan ⎛⎜ x ⎞⎟ = ± 3
± p , ± 3p 4 4
3 4cos2 x = 3 cos2 x = 4
= 45
⎝3⎠
cos x =
±
3 2
60°
r 6
x 3
x = ± p , ± 5p 6
= ± 60
x = ±180°
6
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
6
WORKED SOLUTIONS 2
a
b
(2sin x + 1)(sin x +1) = 0 sin x = − 1 or sin x = −1 2
r 6
r 6
x =
7p 3p 11p , , 6 2 6
2q = − 5p , − p , 7p , 11p
q =
6 6 6 6 5p p 7p 11p − ,− , , 12 12 12 12
c
b
(tan x + 1)(tan x + 1) = 0 tan x = −1
r 4
r 4
3q = − 11p − 7p , − 3p , p , 5p , 9p 4
4
4 4 4
4
d
q = − 11p , − 7p , − p , p 12
c
5p 3p , , 4 12 12 4
12
cos ⎛⎜ q ⎞⎟ = ± ⎝2⎠
1 2
x =
sin2 x − 6 sin x + 5 = 0 (sin x − 1)(sin x − 5) = 0 The second factor gives sin x = 5, which has no solution. sin x −1 = 0
r 4
q 2
q = d
x =
= ±p
1
a
= ±1
2
=
q = ± 3p
11 6
⎛ 11 ⎞ ⎟ 6 ⎝ ⎠ ⎝ 6 ⎟⎠
2
⎝6⎠
sin ( 2q ) cos ( 2q )
a
sin2 x + cos2 x = 1
2
sin 2 x +
⎛ 2⎞ ⎜− ⎟ ⎝ 3⎠
sin x =
5 3
2
=
⎛ 5 11 ⎞ ⎜⎜ ⎟⎟ ⎝ 18 ⎠ ⎛ 7 ⎞ ⎜− ⎟ ⎝ 18 ⎠
x =
2p 4p , 3 3
36
= −5
2
⎝ 3⎠
⎛ 5 ⎞⎛ 2 ⎞ ⎟⎟ ⎜ − ⎟ ⎝ 3 ⎠⎝ 3 ⎠
b
c
7 18
11 7
= 1 → sin 2 x = 1 − ⎜⎛ − 2 ⎞⎟ =
sin ( 2x ) = 2 sin x cos x = 2 ⎜⎜ 2r 3
5 11 18
2
tan ( 2q ) =
The second factor gives cos x = 3, which has no solution. cos x = − 1
=
cos ( 2 ) = 1 − 2 sin2 = 1 − 2 ⎛⎜ 5 ⎞⎟ = 1 − 50 = −
c
4
11 36
⎝6⎠
sin ( 2 ) = 2 sin cos = 2 ⎛⎜ 5 ⎞⎟ ⎜⎜
±p 2
(2cos x + 1)(cos x −3) = 0
2
+ cos2 q = 1 → cos2 q = 1 − ⎛⎜ 5 ⎞⎟ =
cosq =
b
a
sin 2 θ + cos 2 θ = 1 ⎛5⎞ ⎜ ⎟ ⎝6⎠
2q 3
3
p 2
Exercise 13E
4 ±p 2
sin ⎛⎜ 2q ⎞⎟ ⎝ 3 ⎠
3p 7p , 4 4
= −4
5 9
5 9
2
cos(2x) = 2cos 2 x −1 = 2 ⎛⎜ − 2 ⎟⎞ −1 = 8 −1 = − 1 tan = ( 2x )
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
sin ( 2 x ) = cos ( 2 x )
⎝ 3⎠ ⎛ 4 5⎞ ⎜⎜ − ⎟ 9 ⎟⎠ ⎝ = ⎛ 1⎞ ⎜− ⎟ ⎝ 9⎠
9
9
4 5
Worked solutions: Chapter 13
7
WORKED SOLUTIONS 3
a
sin2 θ + cos2 θ = 1 sin q + 2
⎛5⎞ ⎜ ⎟ ⎝6⎠
sin q cosq
tanq =
c
4
1 − ⎛⎜ 5 ⎞⎟ ⎝6⎠
= 1 → sin q = 2
=
sin ( 2q ) cos ( 2q )
a
sin 2 x + cos 2 x = 1
=
⎛ 5 11 ⎞ ⎜⎜ ⎟⎟ ⎝ 18 ⎠ ⎛7 ⎞ ⎜ ⎟ ⎝ 18 ⎠
5
=
sin x =
=
7 18
c
sin ( 2x ) = 2 sin x cos x = 2 ⎜
63 64
d
63 ⎞ ⎟ 8 ⎟⎠
= 1 − 2 ⎛⎜ − 1 ⎞⎟ ⎝ 8⎠
⎛ 63 ⎞ ⎜⎜ ⎟⎟ ⎝ 32 ⎠ ⎛ 31 ⎞ ⎜ ⎟ ⎝ 32 ⎠
2
=
= 1− 1 32
63 32
=
31 32
1
a
63 31
=
⎛ ⎞ 2 ⎜⎜ 63 ⎟⎟ ⎛⎜ 31 ⎞⎟ 32 ⎝ ⎠ ⎝ 32 ⎠
=
31 63 512
5
sinq =
3 5
b
cosq =
4 5
c
sin ( 2 ) = 2 sin cos = 2 ⎛⎜ 3 ⎞⎟ ⎛⎜ 4 ⎞⎟ =
d
cos ( 2 ) = 2 cos2 −1 = 2 ⎛⎜ 4 ⎞⎟ −1 =
a
sin 2 (2x) + cos 2 (2x) = 1
⎝ 5 ⎠⎝ 5 ⎠
24 25
⎝5⎠
⎛
⎞ ⎟ 2 2 ⎝ a +b ⎠
cos ( 2x ) = cos2 x − sin2 x = ⎜
b
2
−
⎛ ⎞ a ⎜ 2 ⎟ 2 ⎝ a +b ⎠
2
b 2 − a2 a2 + b 2
2sin x cos x = cos x 2sin x cos x − cos x = 0 cos x (2sin x − 1) = 0 cos x = 0 or 2sin x −1 = 0 cos x = 0
or sin x =
x = 90°
or
1 2
x = 30°, 150°
tan(2x) = 1 2x = 45, 225 x = 22.5°, 112.5°
c
sin x + cos x = 0 sinx = −cos x tan x = −1 x = 135°
d
cosx = ±
32 −1 25
2
=
a
1 2
2
→ cos2 ( 2x ) = 1 − ⎛⎜ 24 ⎞⎟ = ⎝ 25 ⎠
cos ( 2x ) = −
49 625
=
⎛ 24 ⎞ ⎜ ⎟ ⎝ 25 ⎠ ⎛ 7 ⎞ ⎜− ⎟ ⎝ 25 ⎠
=
24 − 7
3 2
b
sin x − sin2 x = cos2 x sin x = sin2 x + cos2 x = 1 x = 90°
c
cos2 x − sin 2 x = cos2x =
7 25
sin ( 2 x ) cos ( 2 x )
sin2 x =
2x = −300, −240, 60, 120 x = −150°, −120°, 30°, 60°
7 25
+ cos2 ( 2x ) = 1
tan ( 2x ) =
⎞⎛ ⎞ a b ⎟⎜ 2 ⎟ 2 2 2 + + a b a b ⎝ ⎠⎝ ⎠ 2ab a2 + b 2
x = 45°, 135°
2
b
⎛
b
i
2
a2 + b 2
Exercise 13F
a
⎛ 24 ⎞ ⎜ ⎟ ⎝ 25 ⎠
b
cos x =
4
6
a a2 + b 2
b
sin ( 4 x ) = 2 sin ( 2x ) cos ( 2x )
3
625
√a2 + b2
=
= 1 − 2 sin2 x
=
⎝ 25 ⎠
63 8 ⎛
tan ( 2x ) =
2
=
⎝ 8 ⎠⎝
d
50 −1 36
⎝ 8⎠
sin ( 2 x ) cos ( 2 x )
336 625
a
5 11 18
2
cos ( 2x )
cos ( 4 x ) = 1 − 2 sin 2 ( 2 x ) = 1 − 2 ⎛⎜ 24 ⎞⎟ = − 527
−
b
5 11 7
=
sin ( 2x ) = 2 sin x cos x = 2 ⎛⎜ − 1 ⎞⎟ ⎜⎜ −
c
=
+ cos2 x = 1 → cos2 x = 1 − ⎜⎛ − 1 ⎞⎟ =
cos x = −
d
⎝ 25 ⎠ ⎝ 25 ⎠
X ⎛ ⎞ 2 ⎜⎜ 11 ⎟⎟ ⎛⎜ 5 ⎞⎟ 6 ⎝ ⎠⎝ 6 ⎠ ⎝6⎠
tan ( 2q ) =
sin ( 4 x ) = 2 sin ( 2x ) cos ( 2x ) = 2 ⎛⎜ 24 ⎞⎟ ⎛⎜ − 7 ⎞⎟ =
a
2
d
b
=
c
11 5
=
cos ( 2 ) = 2 cos2 −1 = 2 ⎛⎜ 5 ⎞⎟ −1 =
2
11 36
7
⎛ 11 ⎞ ⎜⎜ ⎟⎟ ⎝ 6 ⎠ ⎛5⎞ ⎜ ⎟ ⎝6⎠
sin ( 2 ) = 2 sin cos =
⎛ 1⎞ ⎜− ⎟ ⎝ 8⎠
2
11 6
sinq =
b
2
1 2
1 2
2x = ±60, ±300 x = ±30°, ±150°
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
8
WORKED SOLUTIONS d
1 − 2 sin2 x = sin x 2 sin2x + sinx −1 = 0 (2 sin x −1)(sin x + 1) = 0) sin x = 1 or sin x = −1
b
2
x = 30°, 150° 3
a
b
sin x cos x
or
c
= sin x
2
c
x = d
2
2 3
or
x =0
2
cos4x − sin4x = (cos2x − sin2x)(cos2x + sin2x) cos2x × 1 = cos2x
cos4x = cos2(2x) = 1 − 2sin2(2x) = 1 − 2(sin(2x))2 = 1 − 2(2sin x cos x)2 = 1 − 2(4sin2 x cos2 x) = 1 − 8sin2 x cos2 x ⇒b=8
Exercise 13G 1
2 5 , 3 3 5 , 6 6
x =
−346°, −194°, 14°, 166° 2
sin2 2x + 2 sin 2x cos 2x + cos2 2x = 2 2 sin 2x cos2x + 1 = 2 sin 4x = 1 4 x = p , 5p x =
b
+ cosq
2 sin (2x) cos(2x) = sin(2x) 2 sin (2x) cos(2x) − sin(2x) = 0 (sin(2x))(2 cos(2x) −1) = 0 sin(2x) = 0 or 2cos(2x) −1 = 0 sin(2x) = 0 or cos(2 x ) = 1 x = 0, , or
a
sin 2q cosq
7
2x = 0, , 2 or 2x =
4
=
+ cosq
2sin3x cos3x = sin 2(3x) = sin 6x ⇒k=6
p 7p , 4 4 p 7p , 8 8
2 cos2 x −1 = cos x 2 cos2 x − cos x −1 = 0 (2 cos x + 1)(cos x −1) = 0 cos x = − 1 or cos x = 1
1 cosq
sinq cosq
6
2x = x =
= sinq
1 = sin2 θ + cos2 θ
x = − 90°
sinx = sinx cosx sinx cosx − sinx = sinx (cosx −1) = 0 sin x = 0 or cosx = 1 x = 0, π cos 2x = 1
1 cosq
2 2 p 5p , 8 8
sin x −1 = 1 − sin2 x sin2 x + sin x −2 = 0 (sin x − 1)(sin x + 2) = 0 sin x = 1 or sin x = −2 which is invalid x =p
±27°, 333° 3
2
c
d
cos 2 x = 2 cos2 x −1 cos 2 x = 1 cos x = ±1 x = 0, π sin 2 x = 1 2
sin x = x = 5
±
244°, 296°
1 2
p 3p , 4 4
working may vary a sin2 x + 2 sin x cos x + cos2 x = 1 + sin(2x) LHS: 1 + 2 sin x cos x = 1 + sin(2x) RHS
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
9
WORKED SOLUTIONS Investigation: graphing tan x
4
1
Angle measure (x) (degrees)
Tangent value (tan x)
0
0
-30, +30
55°, 235°, 415°
-45, +45 -60, +60
5
−
1 3
- 3 , - 3
135
-1 -
3
3
1 3
0
180
1
210
6
1
-1, 1
120
150
−5.33, −4.10, 0.955, 2.19
,
3
225
1
240
3
300 315
- 3 -1
330
−
360
1 3
0
3 tan ± 90° and tan ± 270° are undefined. The limit of the
tangent as the angle approaches ± 90° or ± 270° is infinite. Asymptotes are often shown on graphs for values that do not exist.
±1.71, 4.58 7
Exercise 13H 1
−0.739 8
−297°, −117°, 63°, 243° 2
−0.637, 1.41 −107°, 73°, 253° 3
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
10
WORKED SOLUTIONS 124° , 304° 4
Investigation – transformations of sinx and cosx
38°, 142°, 398°, 502° 5
1
−5.88, −2.74, 0.405, 3.55 6
−1.88, 1.26
2
3
7
4.55
4
8
5
−4.66, 1.20, 2.28, 4.77
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
11
WORKED SOLUTIONS
Exercise 13I
10
Sine curve shifted upwards by 1 unit. y = sin x + 1
1
11
π⎞ ⎛ Tangent curve shifted right by 4 . y = tan ⎜ x − 4 ⎟
y 1 –2r
0
–r
12
2r x
r
Cosine curve shifted right
Exercise 13J
–6
2
1
y 4 3 2 1 –r
y –0.5 –2r
0
–r
4
2r x
r
2
y
0
r 2
2 –2
r
3r 2
–r
2r x
–2r
0
r
–r
0
–4
4
y 1
y 1 0
–r
r
–2r – 3r –r – r 0 2 2 –1
2r x
5
–1
6
r
2r x
–2r
–r
3r 2r x 2
0
r
2r x
r
2r x
–1
–4
–2
7
y
6
0
–r
r
y
2r x
3
–1
1
–2 –2r
–3
–r
0 –1 –3
y
7
8
y
4
3
–2r –r 0 –4
r
1
2r x
for questions 9 − 12, answers may vary.
9
r
1
–2r –r 0 –2
8
r 2
y 2
y
–2r
2r x
–2
2r x
–1
–2r
r
y 4 2
1
5
2r x
–4
3
y
–r
0 –2
–4
–2r
r
2 –2r
4
2r x
y 4
2 –r – r
r
–0.5 0
3
2
and downwards by
4⎠
⎝
–4
–2r – 3r
⎠
1.5= units. y cos ⎛⎜ x − π ⎞⎟ −1.5
–2
–2r
⎝
by 4
Cosine curve shifted to the right by y = cos ⎛⎜ x − 2π ⎞⎟ ⎝
2 . 3
–2r – 3r –r – r –10 2 2 –3
r 2
r
3r 2r x 2
3 ⎠
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
12
WORKED SOLUTIONS 8
1 –2r
3
2r x
r
–1
5
2 1 3
x
10
Cosine graph, period of functions is 8π. y = cos(0.25x)
Vertical shift =
Tangent graph, period of functions is 4π. y = tan(0.25x)
12
Cosine graph, reflected in x-axis, amplitude is 3, period is 4π. y = −3 cos(0.25x)
Exercise 13K Want to write as y = asin(b(x + c)) + d and y = pcos(q (x + r)) + s
3
3
–3r –2r –r –10
6
4
Vertical shift = y –r –r 0 2 –1
= 5.
So b = q =
7
–2
–r
3, x
2 . 3 2
y
0
r
x
–2
8
s
Amplitude = 2, period:
2 x
1 , x = 4π. 2
Vertical shift = 4, horizontal shift = 0. y 6
2 –3r –2r –r
0
r
2r 3r x
Exercise 13L
= 2. 31 2
1
=1
period: 2 − 0 = 2 amplitude: 11.8 − 2.2 = 4.8 2
5 ( 5) 2
a
4
y 2cos 2 x So y = 2sin(2x) + 1,
= 5.
4
vertical shift :
1 b
11.8 + 2.2 2
=7
horizontal shift: 0 (first maximum) 2 y = 4.8cos ⎛⎜ x ⎞⎟ + 7
Period = 2π − (−π) = 3π. 2 3
2 x
4
Horizontal shift: c = 0, r
So b = q =
x
r
–1
4
Amplitude: a = p =
= −2, x = −π.
= −1, horizontal shift = 4 .
02 2
Amplitude = 1.5, period:
2
Vertical shift: d = s =
4
r 2
2 x
Vertical shift = 0, horizontal shift = .
2
2r 3r x
–2
3 = π. 2
r
Amplitude = 1, period:
Amplitude: a = p = 3 − (−1) = 2. Period =
6
–1
5 12 7 4 3 3 3 So b = q = 2 1 4 2 3 1 Vertical shift = = −2 = d = 2 c 4 ,r Horizontal shift: 3 3 1 4 y sin x 2 , So 3 2
= 2, horizontal shift = .
2
Period =
y
3
4
Amplitude: a = p = 1
= 1,
6
Amplitude: a = p =
cos 1 x 2
5 1 2
2 x
5 4
y
11
2
3
= 6π.
Sine graph, amplitude of functions is 7.5. y = 7.5 sin x
2 ( 5) = 3.5 2 2 Period = 2π. So b = q = 2 = 1. 2 ( 5) Vertical shift = 2 = −1.5 = d Horizontal shift: c = 2 , r 5 3 6 2 So y 3.5sin x 1.5, 3 y = 3.5cos x + 5 1.5 6
2
Amplitude = 3, period:
9
1
5 4
,r
So y 5sin 2 x , y 5cos 2 x
0
–r
2
Horizontal shift: c
y
⎝ 2
⎠
2 3
Vertical shift: d = s = 0 © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
13
WORKED SOLUTIONS c
d
d
3
a
period: 20 − 4 = 16 amplitude: 2.1 − 0.5 = 0.8 vertical
2 2 .1 + 0 .5 shift: 2
= 1 .3
horizontal shift: 4 (first maximum) b
y = 0.8cos ⎛⎜ 2 ( x − 4 ) ⎞⎟ + 1.3 ⎝ 16
⎠
c
2
a
period: 55 − 25 = 30 21.9 − 9.3 = 6 .3 2 shift: 21.9 + 9.3 = 15.6 2
amplitude: vertical
horizontal shift: 25 (first maximum) b c
y = 6.3cos ⎛⎜ 2 ( x − 25) ⎞⎟ + 15.6 ⎝ 30
⎠
d
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
14
WORKED SOLUTIONS
Exercise 13M 1
a
period:
2π 0.5236
approximately 12 hours b
d(0) = 5.6 sin(0.5236(0 − 2.5)) + 14.9 ≈ 9.49 m
c
d(14) = 5.6 sin(0.5236(14 − 2.5)) + 14.9 ≈ 13.5 m
d
about 90 days 3
a b
after 10 minutes, the wheel will be at the maximum height, 46 m period: 20 min amplitude: 46 − 1 = 22.5 vertical
2 shift: 46 + 1 2
= 23.5
horizontal shift: 5 min
c
ht
22.5sin
2 20
t 5
23.5
h3
22.5sin
2 20
3 5
23.5
10.3 m
d
first maximum at about 05:30 2
a b
T (32) = 17.5 cos(0.0172(32 − 187)) + 12.5 ≈ − 3.06 °C high temp: 12.5 + 17.5 = 30 °C
4
a
4.8 minutes period: 12 37 − 5 = 2 shift: 37 + 5 2
amplitude:
16
vertical
= 21
horizontal shift: 1 (first minimum) or 7 (first maximum) g ( x ) = −16 cos ⎛⎜ 2p ( x −1) ⎟⎞ + 21 day 187 (about 6 July) c
⎝ 12
b
g(x ) =
−16 cos ⎛⎜ 2p ⎝ 12
⎠
( 4 −1) ⎟⎠⎞ + 21 = 21 gallons
c
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 13
15
WORKED SOLUTIONS
✗
2
3
21 2
tan ( x ) =
c
sin ( 2x ) = 2 sin x cos x = 2 ⎜⎜
=
⎛ 21 ⎞ ⎛ 2 ⎞ ⎟⎟ ⎜ ⎟ ⎝ 5 ⎠⎝ 5 ⎠
=
4 21 25
y –3 –2 –10 1 2 3 4 5 x –2
Review exercise 1
=
⎛ 21 ⎞ ⎜⎜ ⎟⎟ ⎝ 5 ⎠ ⎛2⎞ ⎜ ⎟ ⎝5⎠
b
7
early May and late August
sin ( x ) cos ( x )
–4 –6
a
cos110 = − cos70 = −0.342
b
cos250 = − cos70 = −0.342
Review exercise
c
cos(−290) = cos70 = 0.342
1
a
sin 140 = sin 40 = 0.643
b
sin 320 = − sin 40 = −0.643
c
sin(−140) = − sin 40 = −0.643
a
cos x = − 1
a
2
x = ±120°, ±240° b
tan x =
48.6°, 131.4°
1 3
b
x = −330°, −150°, 30°, 210° c
2 sin2 x − sin x = 1 2 sin2 x − sin x −1 = 0 (2 sin x +1)(sin x −1) = 0 sin x = − 1 or
sin x = 1
2
x = −150°, −30°, 210°, 330°, or x = −270°, 90° 4
±129°, 231° c
sin 2x + sin x = 0 2 sin x cos x + sin x = 0 sin x (2 cos x +1) = 0
5
sin x = 0
or
cos x =
x = 0,
or
x =
a
i
−
2 3
amplitude: a =
1 2
11 − 1 2
=5
−70.3°, 109.7°, 289.7°
horizontal shift: c = 4 vertical shift: d = ii
6
b=
2p , period
11 + 1 2
2
=6
and the period is 8. b =
b
4 0
du sin x
3
cos( x ) C
5
sin x dx cos x
cos 1 x dx
x 2dx 1 3 x 3
4
cos x
(2cos x 3sin x )dx 2 cos xdx 3 sin xdx 2(sin x ) 3( cos x ) C 2sin x − 3cos x + C
2
3
sin x dx , 10
3 4
2 2 cos x dx 3 0
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
0
1.30 and
3 3 4
1.30
Worked solutions: Chapter 14
5
WORKED SOLUTIONS 4
∫
ln
ln
3
= ln 4 = ln 3
when x when x ln
∫
5
ex cos ( ex ) dx ⇒ u = ex ; du = ex ;
f ( x ) = a sin(bx )
a
dx
4
3
ln 4
u= 4 u= 3
then then
ex cos ( ex ) dx =
∫
x = ln
3
x = ln 4
The sine function has a vertical stretch by a factor of 2 ⇒ a = 2.
and
Since the period of f is 4π we have
⎛ du ⎞ ⎜ ⎟ cos ( u ) dx ⎝ dx ⎠
=
∫
u=
u=
3
4
2π = b
cos udu
y
= ⎡⎣ sin u ⎤⎦ = sin ⎛⎜ ⎞⎟ − sin ⎛⎜ ⎞⎟ = 3 − 2 2 ⎝3⎠ ⎝4⎠
∫
ln
3
4
ex cos ( ex ) dx ≈ 0.159 and
3− 2 2
1 2
(r, 2)
2
3 4
ln
4π ⇒ b =
1
≈ 0.159
0 –1
r 2
r
3r 2r 5r 3r 7r 4r x 2 2 2
–2
Exercise 14G 1
2
0
y = x sin x and 2x – 6 y 3 2 1
6
y = xsin x
2
y = cos x + sin2 x 2
x
1 2 3
1
A
0 –1
2
a
i
y cos x sin2 x
y cos x 2sin x cos x y cos x (1 2sin x ) y cos x (c d sin x ) c 1 and d 2
ii
cos x (1 + 2sin x ) = 0 ⇒ cos x = 0 or sin x = −1
∫ ( x sin x − 2x + 6 ) dx ≈ 12.1 3.041
0
y = x 2 − 2 and y = x + cosx y 3 2 1
y = x2 – 2
π 7π
⇒ x =,
y = x + cos x
b
1 2 3
1.891
k
cos xdx 0
(x
2
− 2)
c
⎤ ≈ 6.31 ⎥⎦
1 and 0 ≤ k ≤ π 2
2
k 1 sin x 0 2
1 2 1 1 sin k sin0 sin k 2 2
1
6
a
y 8 6 f(x) = tan √x 4 2 0 –2
1
2
x=2 2
3
b
2
0
tan
x dx 38.3 2
0
∫
7 6
2
=2
⎡ cos x + sin(2 x ) ⎤ dx ⎣ ⎦
⎡ cos x + sin(2 x ) ⎤ ⎣ ⎦
2
= 4.25
dx ≈ 9.12
s (t ) e t sin t v (t ) s (t ) e t (cos t ) (sin t ) e t e t (cos t sin t )
b
v(t) = e t (cos t sin t ) a(t ) v (t ) e t ( sin t cos t ) (cos t sin t ) e t 2e t cos t
a
s (t ) = 1 − 2 sin t v (t ) = s′(t ) = −2 cos t ⇒ v (0) = −2 cos(0) = −2 ms−1
b
−2 cost = 0 for 0 < t < π ⇒ t =π s
c
s ⎛⎜ π ⎞⎟ =1 − 2sin ⎛⎜ π ⎞⎟ =1 − 2 =−1m ⎝2⎠ ⎝2⎠
2
0
∫
2
⎡ cos x + sin(2 x ) ⎤ dx ⎣ ⎦
a
x
tan x dx 3.97
0
Exercise 14H
k
4
2
2−
ii
⌠ ⎡ ( x + cos x ) − ⎮ ⌡−1.135 ⎢⎣ cos xdx 0
∫
i
x
x 2 − 2 = x + cos x ⇒ x ≈ −1.135,1.891
k
2
2 6
–3 –2 –1–10 –2
3
4 x
B
–2
x sin x = 2 x − 6 ⇒ x = 3.1 2
y y = 2x – 6
–3 –2 –1–10 –2 –3 –4 –5 –6
2sin 1 x dx 8
2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 14
6
WORKED SOLUTIONS 3
a
v (t ) esin t cos t during the interval
i
b
v (t ) = e2sin t −1
i
0 ≤ t ≤ 2π ⇒ cos t = 0 ⇒ t = π , 3π 2
sign of v
ii
+
–
t0
v
2
6
+ 3r 2
r 2
5 2r
4
which is on the interval b
π 2
2
< t < 3π
1
2
v (t ) esin t cos t v( t ) esin t ( sin t ) (cos t ) esin t (cos t )
0 –1
sin tesin t esin t cos2 t c
esin t cos tdt
u sin t ; du cos t
s t
esin t cos tdt
eu
dt
du dt
a
c
3
4
5
6
7
8
9
10 12 13 t
iii
No, the particle does not return to the origin. Looking at the area between the curve and the t-axis, there is more area above the axis than below indicating that the particle moves to the right a greater distance than to the left, so it never returns to the origin.
dt
v (t ) = 4 sin t + 3 cos t , t ≥ 0 displacement after 4 seconds =
2
e2sin t 1 5 t 1.11 s, 2.03 s, 7.39 s, 8.31 s.
eudu eu C esin x C e sin0 C 4 C 4 1 3 s (t ) e sin t 3 4
1
ii
s (0) 4 s t
v(t) = e2sint − 1
3
The particle moves left when v(t) < 0
∫
12 0
e2sin t −1 dt ≈ 24.1 m
4
∫ ( 4 sin t + 3 cost ) dt 0
5
b
∫ ( 4 sin t + 3 cos t ) dt ≈ 4.34 m
a
i
4
✗
0
v (t ) (t 1)sin t
2
ii
2
v(1.5) = −2.26 m
c
– 3.54
4
a
tan t 1 ⎞ = e 2 2 ⎟ cos t cos t ⎝ ⎠ 1
d
0
(t 1)sin t
dt 2 2
⎡
−
⎢⎣ 2
1
⎤
x cos x 2
⎥⎦
sin x 2
e
f ( x ) = x 2 cos x f ′( x )= ( x 2 )(− sin x ) + (cos x )(2 x ) = − x 2 sin x + 2 x cos x
f
y = ln(tan x ) 1 ⎞⎛ 1 ⎞ ⎟⎜ ⎟ 2 ⎝ tan x ⎠ ⎝ cos x ⎠
y ′ = ⎛⎜
7.37 m
v ( t ) e2sin t 1 for 0 t 12 Use a GDC to evaluate a(1) a(1) v (1) 5.82 ms2
f ( x ) = sin x 2 = ( sin ( x 2 ) ) 2 f ʹ( x ) = ⎢ 1 ( sin ( x 2 ) ) 2 ⎥ ⎡⎣⎢ ( cos( x 2 ) ) (2x ) ⎤⎦⎥ =
2r
The particle changes direction when velocity changes sign at 2.51 s and 3.54 s.
s (t ) = etan t s′(t ) = etan t ⎛⎜
2
+
3
2
2
2.51
y = sin3 x = ( sin x )
y ′ = 3 ( sin x ) (cos x ) = 3 sin 2 x cos x
t (t 1)sin t 2.51,3.54 0 for 0 t 4
–
f ( x ) = cos (1 − 2x )
f ′( x ) = ⎡⎣ − sin (1 − 2x ) ⎤⎦ (−2) = 2 sin (1 − 2x ) b
t0
6
a
Use a GDC to evaluate a (1.5) a (1.5) v (1.5) 2.52 ms2
sign of v
c
1
where t 0
Since velocity and acceleration are both negative at 1.5 seconds, the particle is speeding up. b
Review exercise
g
1 ⎞ 1 ⎟= 2 ⎝ sin x ⎠ ⎝ cos x ⎠ sin x cos x
or ⎛⎜ cos x ⎞⎟ ⎜⎛
f ( x ) = (ln x )(sin x ) f ′( x ) = (ln x )(cos x ) + (sin x ) ⎛⎜ 1 ⎞⎟ ⎝x⎠
= (ln x )(cos x ) + sin x x
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 14
7
WORKED SOLUTIONS h
y = 2 sin x cos x or y = sin 2x y ʹ = ( 2 sin x ) (− sin x ) + (cos x )(2 cos x )
g
2
2
a
2
3 x dx 4 1 x 4 ( cos x ) C 4 x sin 4
c
x )dx cos(3
1 2
du dx
2
sin(4 x 1)dx
1 4
2
x cos(2x )dx u 2x
2
sin(2 t 1) dt cos (2t 1) u 2
1 2
4 x 1 du 4 dx
; du dx
x
2
1 u
2
1 2
(2 t 1)
u ln x ; du dx
=6∫ u −2du =6 ( −u −1 ) + C = 3
a
∫
3 −
3
−6 2 + sin x
+C 3
sin x dx = [ − cos x ]
−
3
⎛ ⎞ ⎛ ⎞ = − cos ⎜ ⎟ + cos ⎜ − ⎟ ⎝3⎠ ⎝ 3⎠ =−1 + 1 =0 b
∫
0
2
2
(1 + sin x ) dx = [ x − cos x ]0
= [ − cos( )] − [ 0 − cos(0 )] = ( + 1) − (0 − 1) = 2 +
c
∫
0
( sin x + cos 2 x ) dx = ⎡⎢ − cos x + 12 sin 2 x ⎤⎥ ⎦0 ⎣
⎤ ⎡ ⎤ ⎡ = ⎢ − cos( ) + 1 sin(2 ) ⎥ − ⎢ − cos(0 ) + 1 sin(0 ) ⎥ 2 2 ⎦ ⎦ ⎣ ⎣ = (1 + 0 ) − ( −1 + 0 ) = 2
1 x
1 sin(ln x ) x dx sin(ln x ) x dx sin(u ) du dx dx
C
1 ⎛ du ⎞ ⎟ dx 2 ⎜ ⌡ u ⎝ dx ⎠
C
sin(ln x ) f x dx sin(ln x ) 1x dx
C
= 6⌠ ⎮
1 du 2 dt dt
1 2 cos(2 t 1)
1 u e 2
1 cos x ) dx ⇒ 2 ( ⌡ (2 + sin x ) u= 2 + sin x ; du = cos x dx 1 ⌠ 6 cos x dx = 6⌠ cos x ) dx ⎮ ⎮ 2 2 ( ⌡ (2 + sin x ) ⌡ (2 + sin x )
sin(2t 1) dt
1 u 2du 1 1 u 1 C 2 1 2
dx
⌡ (2 + sin x )
2
2sin(2t 1) 1 du 2 dt sin(2t 1)
du dx
⌠ 6 cos x = dx 6⌠ h ⎮ ⎮ 2
1 sin(2t 1) dt cos (2t 1) cos(2t 1);
du dt
eu d u
1 esin x 2 2
1 1 cos udu sin u C 4 4 1 sin(2x 2 ) C 4
sin(2t 1) dt cos (2t 1) cos
1 2
eu
cos(4 x 1) C
2
x cos x 2 esin x ( x cos x 2 )dx
1 sin(3x ) C 3
1 du 2 x cos(2x )dx 4 dx cos(u )dx
e
cos x 2 (2 x )
xesin x cos x 2dx
1 cos(4 x 1) C 4 d
sin x 2 ;
du dx
x 4 cos x C
b
e sin x ( x cos x 2 )dx
u
= −2 sin x + 2 cos x or y ʹ = ( cos 2x ) (2) = 2 cos 2 x 2
2
xesin x cos x 2dx
d
∫
2
3 2
5 sin x cos xdx ⇒ u = sin x ;
0
du dx
= cos x ;
cos u C sin(u )du
hen x = when x = 0 then u = 0 and wh
cos(ln x ) C
then u = 1
2
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 14
8
WORKED SOLUTIONS
∫
2
∫ =5 ∫
3 2
x=
5 sin x cos xdx = 5
0
2
x =0 u =1
a
3 2
⎛ ⎞ u ⎜ du ⎟ dx ⎝ dx ⎠
The sine graph has been stretched by a scale factor of 2 and shifted up 2. So p = 2 and q = 2.
3 2
u du
b
u =0
∫
Area =
1
⎡ 5⎤ = 5⎢2 u2 ⎥ ⎣ 5 ⎦0
3
⎡ ⎛ ⎞ ⎛ ⎞⎤ = ⎢ −2 cos ⎜ 3 ⎟ + 2 ⎜ 3 ⎟ ⎥ ⎝ 2 ⎠ ⎝ 2 ⎠⎦ ⎣ − ⎡⎣ −2 cos ( 0 ) + 2 ( 0 ) ⎤⎦ = 3 + 2
y = cos ( 3 x − 6 )
Review exercise
y (2) = cos(0 ) = 1 y′ =
− 1 sin 3
1
(3x − 6 )
a
y = 2cos 2x + cosx + 1, x = 0, x = 2 and the x-axis y
mtan = y′(2) =
− 1 sin(0 ) = 0 3
4 3 2 1
Therefore at (2, 1) the tangent line is horizontal, so the normal line is the vertical line through (2, 1) or the line x = 2 5
( 2 sin( x ) + 2 ) dx
0
= [ −2 cos x + 2 x ]02
5 5 ⎤ ⎡ = 5 ⎢ 2 (1) 2 − 2 (0 ) 2 ⎥ 5 ⎦ ⎣5 =2
4
3 2
Tangent line parallel to y = 1 x + 3 ⇒ m = 4
0
1 4
2
b
3
∫ ( 2 cos 2
Area =
⎛ ⎞ ⎛ ⎞ = y sin ⎜ x ⎟ , 0 ≤ x ≤= π ⇒ y′ 1 cos ⎜ x ⎟ , 0 ≤ x ≤ π 2 2 ⎝ ⎠ ⎝2⎠ ⎛ ⎞ ⎛ ⎞ 1 cos ⎜ x ⎟ = 1 ⇒ cos ⎜ x ⎟ = 1 ⇒ x = π ⇒ x = 2π 2 2 4 2 3 3 ⎝ ⎠ ⎝2⎠ 2 ⎛ ⎛ 2π ⎞ ⎞ ⎛π ⎞ 3 = sin ⎜ 1 = ⎜ 3 ⎟ ⎟ sin ⎜3⎟ 2 2 ⎝ ⎠ ⎝ ⎝ ⎠⎠
The point is
1
2
0
4
x
x + cos x + 1) dx ≈ 4.53
y = 2sin x and y = 0.5x 2 sin x = 0.5 x ⇒ x = 0, 2.366 y 2 1
(2.366, 1.183)
0
⎛ 2π 3⎞ , ⎜⎜ ⎟ 2 ⎟⎠ ⎝ 3
1
2
Area =
3
4
2.366
x
2sin x 0.5 x dx 1.36
0
6
f (0) 2 f ( x ) x sin x f (x)
2
a
y = sinx and the x-axis for 0 ≤ x ≤ π y
x sin x dx 1 1 2
1 (0)2 2
cos x C
cos(0) C 1 2
f (x ) 7
x
2
x2
2
C
cos x 1
1
0
3r 4
r 2
Volume =
∫
0
5r x 4
r
( sin x )
2
dx ≈ 4.93
, x 0 and x 2 b y e cos x
f ( x ) = p sin( x ) + q , p, q ∈ `
y
y
3
4
2 1
2
0
0
r 4
r 2
r
3r 2
2r x
r 4
Volume =
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
3r 4
r 2
∫
2 0
r
(e )
5r 4
cos x 2
3r 2
7r 2
2r
x
dx ≈ 45.0
Worked solutions: Chapter 14
9
WORKED SOLUTIONS 3
The area under the curve y = cosx between x = 0 and x = k, where 0 < k < π , is 0.942.
iii
2
k 0
cos xdx 0.942 sin x 0 0.942 k
sin(k ) sin(0) 0.942 sin k 0.942
k ≈ 1.23 4
a
i
⎛ ⎞ ⎛π ⎞ s′ ⎜ π = ⎟ 0 and s ″ ⎜ 5 ⎟ ≈ 18.4 > 0 5 ⎝ ⎠ ⎝ ⎠ Therefore by the second derivative test s has a relative minimum at t = π . 5
b
Total distance =
s (t ) 2ecos(5t ) 4 s (t ) 2e
cos(5 t )
( sin 5t )(5)
2 0
10 sin(5t )ecos (5 t ) dt
14.2 m
10 sin(5t )ecos(5 t ) ii
s (t ) 10 sin(5t ) ecos(5t ) ( sin(5t ))(5) ecos(5 t ) 10(cos(5t ))(5).
50ecos(5t ) sin 2 (5t ) 50ecos(5 t ) cos(5t ) s (t ) 50e cos(5t ) sin 2 (5t ) cos(5t )
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 14
10
WORKED SOLUTIONS
15
Probability distributions
Answers
P (2 sixes) =
Skills check
P (1 six) =
1
a
x
= b
x
= 2
3
fx f
P (1 six) =
(3 3) (4 5) (5 7) (6 9) (7 6) (8 2) 357962
6 2
b
8 5
8! 8 7 6 5!3! 3 2 1 = 56
c
9 6
(0.3)3 (0.7)6 = 0.267
a
5.5 x
b
x 2.5 1.2
c
9x 0.2
6! 6 5 2!4! 2
= 1.71875
∴ x − 2.5 = 0.48 ∴ x = 2.98
= 1.6 ∴ 9 − x = 0.32 ∴ x = 9 − 0.32 = 8.68
Exercise 15A 1
2
a
discrete
b
continuous
c b
× ×
5 6 1 6
5 6
×
1 6
=
1 36
5
= 36 5 = 36 5 6
=
25 36
0
1
2
25 36
10 36
1 36
1
1 1
2 1
3 1
4 1
5 1
6 1
2
1
2
2
2
2
2
3
1
2
3
3
3
3
4
1
2
3
4
4
4
5
1
2
3
4
5
5
6
1
2
3
4
5
6
c
= 3.2 ∴ 5.5 = 3.2x ∴ x = = 0.4
n P (N = n)
= 15
5.5 3.2
×
P (0 sixes) =
176 = 5.5 32 (10 3) (12 10) (15 15) (17 9) (20 2) 3 10 15 9 2 568 = 14.6 (3 sf) 39
a
1 6 5 6
1 6
n
1 2 3 4 5 6
P (N = n)
11 9 7 5 3 1 36 36 36 36 36 36
1
2
3
4
5
6
1
1
2
3
4
5
6
discrete
2
2
4
6
8
10 12
continuous
3
3
8
9
12 15 18
d
2 3
3 4
4 5
5 6
6 7
4
4
10 12 16 20 24
1
1 2
5
5
12 15 20 25 30
2
3
4
5
6
7
8
6
6
14 18 24 30 36
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10 11
6
7
8
9
10 11 12
a
p P (P = p) p P (P = p)
s 2 3 4 5 6 7 8 9 10 11 12 P(S = s) 1 2 3 4 5 6 5 4 3 2 1 36 36 36 36 36 36 36 36 36
b
1 6 1 6
5 6
6
6 P(2 sixes) =
5 6
6' P(1 six)
1 6
6 P(1 six)
1 1 1 × = 6 6 36
5 1 5 = × = 6 6 36
=
5 5 1 × = 6 6 36
6' P(0 sixes) =
1 5 5 × = 6 6 36
6' 5 6
36
36
3
a
1
2
3
4
5
6
8
9 10
1 36
2 36
2 36
3 36
2 36
4 36
2 36
1 36
2 36
12 15 16 18 20 24 25 30 36 4 36
2 36
1 36
2 36
2 36
2 36
1 36
2 36
1 36
The faces are numbered 1, 2, 2, 3, 3, 3 1
2
2
3
3
3
1
2
3
3
4
4
4
2
3
4
4
5
5
5
2
3
4
4
5
5
5
3
4
5
5
6
6
6
3
4
5
5
6
6
6
3
4
5
5
6
6
6
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 15
1
WORKED SOLUTIONS t P (T = t)
4
2
3
4
5
6
1 36
4 36
12 36
12 36
9 36
12 36
9 + 36 =
a
no. on dice
1
2
3
4
5
6
s
2
1
6
2
10
3
b
P (S > 2) =
a
1 3
b
1 3
+
1
2
3
6
10
1 6
2 6
1 6
1 6
1 6
3 6
=
1 3
∴ c=
= 31 × 61 + 31 ×
+1×1= 6 3 6 18
5 = 31 16 31 32 18
1 P(C = 6) = P(A = 3 and B = 3) = 31 16 18
c P (C = c)
1 6
P(1 < X < 4) = P(X = 2) + P(X = 3) = 31 + 16 =
2
3
4
5
6
1 18
5 18
6 18
5 18
1 18
Investigation – dice scores
P(Y = y) = cy 3 y = 1, 2, 3 2 8c
1 2
3 27c
1
1 0
2 1
3 2
4 3
5 4
6 5
1 36c = 1 ∴ c = 36
2
1
0
1
2
3
4
3
2
1
0
1
2
3
2k + 4k + 6k + k = 1
4
3
2
1
0
1
2
10k + 3k − 1 = 0
5
4
3
2
1
0
1
(5k − 1) (2k + 1) = 0
6
5
4
3
2
1
0
2
1
2
k = 15 (k cannot be negative) P(X = x) = k x P (X = x)
9
2 3
P(C = 5) = P(A = 2 and B = 3) + P(A = 3 and B = 2)
2
8
1 = 5 = 92 + 18 18
P(C = 4) = P(A = 1 and B = 3) + P(A = 2 and B = 2) + P(A = 3 and B = 1)
1 2
1 c
1 6
1 P(C = 2) = P(A = 1 and B = 1) = 31 16 18
b
+c+c=1
y P (Y = y)
7
7 = 12
P (T > 4) =
2c =
6
= 31 × 32 + 31 ×
b
s P (S = s)
5
21 36
P(C = 3) = P(A = 1 and B = 2) + P(A = 2 and B = 1)
10 a
1 k 9
k+
1 k 3
40 k 27
=1
a
x P (X = x)
+
x 1
1 3
d P (D = d )
x = 1, 2, 3, 4
1
2
3
4
k
1 3k
1 k 9
1k 27
+
1 k= 27
∴ k=
2
1 3
27 40
0
1
2
3
4
5
a
a
a
b
b
b
3a + 3b = 1
(1)
P(X ≥ 2) = 3P(X < 2)
a + 3b = 6a substitute (2) and (1)
b
b=
P(5, 3) =
5 24
P(5, 4) =
25 576
2
3
4
5
10 36
8 36
6 36
4 36
2 36
Mean =
0
1
2
3
4
5
6
10
8
6
4
2
(0 6) (1 10) (2 8) (3 6) (4 4) (5 2) 36
70 36
35 = 18
d Expected frequency
0
1
2
3
4
5
150 9
250 9
200 9
150 9
100 9
50 9
Mean =
3b = 5a (2) a = 18
1
6 36
d Expected frequency
= 4
0
0 1509 1 2509 2 2009 3 1509 4 1009 5 509
3a + 5a = 1
100
5 24
=
5 25 24 576
P(sum > 7) =
P(3, 5) =
P(4, 5) = 125 576
25 576
25 576
P(5, 5) =
25 576
35 18
5
The means are the same
6
35 18
Exercise 15B
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 15
2
WORKED SOLUTIONS 1
P (R = 1) =
2 10
51
P (R = 2) =
8 10
92
P (R = 3) =
8 10
79 82
P (R = 4) =
8 10
79 86 72
P (R = 5) =
8 10
79 86 75 62
E(Z ) = 5 ∴
P (R = 6) =
17 2 16 3 16 5 16 7x 11y 3
8 10
79 86 75 46 52
P (R = 7) =
8 10
79 86 75 46 35 42
7x + 11y = 4
8 7654322 P (R = 8) = 10 9 8 7 6 5 4 3
x P (X = x)
E (X) = = 2
3 6
1
4
9
16
24
36
1 6
1 6
1 6
1 6
1 6
1 6
8
a
1 16 4 16 9 16 16 16 25 16 36 16 91 6
15.2 (3 sf) 1 2
+x+y=1 ∴x+y=
(1)
2
3
(2)
Solving (1) and (2), x = 38 , 3
x P (X = x)
y = 18
P (R = 9) =
1
2
3
5
8
13
1 6
1 6
1 6
1 6
1 6
1 6
1 6
16 3
E(X ) = (1 + 2 + 3 + 5 + 8 + 13) = 4
x P (X )
E(X ) = = 5
a
1 36
204 36
1
2
3
4
5
6
7
8
1 36
2 36
3 36
4 36
5 36
6 36
7 36
8 36
4 36
9 36
16 36
x
1
2
a
3
4
5
7
8 9
x
2
3
0.2
1−k
k − 0.2
2 90
10 90
5 45 8 90
4 45
6 90
4 90
3 45 2 45
1 45
1
2
3
4
5
6
7
8
9
9 45
8 45
7 45
6 45
5 45
4 45
3 45
2 45
1 45
1 45
(9 + 16 + 21 + 24 + 25 + 24 + 21
b
P (R = 3) =
c
P (R = n) = 0.8n−1 × 0.2
d
1
10 a
4 25
16 (108 ) × 102 = 125 2
P (Z = 0) + 0.2 + 0.05 + 0.001 + 0.0001 = 1 P (Z = 0) = 1 − 0.2511
and 0 ≤ k − 0.2 ≤ 1 0.2 ≤ k ≤ 1.2
= 0.7489 E (Z ) = 0 + 0.4 + 1 + 0.2 + 0.1
A ticket costs $2, but you only expect to win $1.70. Therefore you expect to lose $0.30
Investigation – the binomial quiz You would expect to get 2.5 questions right P (3 right) =
= 0.2 + 2 − 2k + 3k − 0.6 = k + 1.6 2
4
a
0.3
b
mean = 2.8
∴ a + 0.6 + 4b = 2.8 a + 4b = 2.2
solving (1) and (2),
1
(0.5)3 (0.5)2 = 0.3125
X~ B 4, 12
( ) ( 12 )
⎛4⎞ 1 ⎝ ⎠ 2
1
3
=
1 4
a
P (X = 1) = ⎜ 1 ⎟
b
P (X < 1) = P (X = 0) =
c
1 +1= 5 P (X ≤ 1) = P (X = 0 or 1) = 16 4 16
d
1 15 = 16 P (X ≥ 1) = 1 − P (X = 0) = 1 − 16
(2)
a = 0.2, b = 0.5
5 3
Exercise 15C
1
(1)
∴ P (x = 1) = 0.2
6 45
79 86 75 46 35 42 31 22
8 × 2 = 16 = P (R = 2) = 10 10 100
c
Mean = 0.2 + 2(1 − k) + 3(k − 0.2)
a + b = 0.7
12 90
$1.70 is the expected winnings on a ticket
∴ 0.2 ≤ k ≤ 1
x P (x = x)
7 45
= 1.7
1
0≤1−k≤1
14 90
a
b
1≥k≥0
7
9
64 36
6
Mean =
8 45
+ 16 + 9) = 3 32
1 25
−1 ≤ − k ≤ 0
c
b
From symmetry, E (X) = 5 P (X = x)
b
49 36
2k 3k 4k 5k 4k 3k 2k k
25k = 1 ∴ k =
6
36 36
r P (R = r)
= 5 32
P (X = x) k
b
25 36
5 31
or
8 10
16 90
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
12 161 4
Worked solutions: Chapter 15
3
WORKED SOLUTIONS using a GDC: a 0.329 b 0.351 c 0.680 d 0.649 3 using a GDC: 2
a b c d
P(X = 5) = 0.0389 P(X < 5) = 0.952 P(X > 5) = 0.00870 P(X ≥ 1) = 0.932
2
X ~ B (n, 0.01) P (x = 0) > 0.5 n 0.99 > 0.5 n log 0.99 > log 0.5 log 0.5 n < log 0.99 = 68.9, so the largest sample size is 68
3
P (X ≥ 1) > 0.75
X ~ B (n, 0.2)
1 − P (X = 0) > 0.75 1 − 0.8n > 0.75 0.25 > 0.8n
Exercise 15 D
0.8n < 0.25
(Using a GDC where possible) 1 X ~ B (4, 0.25)
n log 0.8 < log 0.25 n>
x 0 1 2 3 4 P (X= x) 0.316 0.422 0.211 0.0469 0.00391
Most likely outcome is 1 red face with probability 0.422 2
3
4
5
n > 6.21 ∴ least value of n = 7 4
P (x ≥ 1) > 0.95
X ~ B (n, 0.3)
X ~ B (8, 0.55)
1 − P (x = 0) > 0.95
a
P (X= 5) = 0.257
1 − 0.7n > 0.95
b
P (at least 5 times) = P (X < 3) = 0.260
0.05 > 0.7n
X ~ B (16, 0.01)
0.7n < 0.05
a
P (X = 0) = 0.851
n log 0.7 < log 0.05
b
P (13 not faulty) = P (X = 3) = 0.000491
n>
c
P (X ≥ 2) = 0.0109
n > 8.399
X ~ B (10, 0.25) a
P (X = 5) = 0.0584
b
P (at least 3 free) = P (X ≤ 7) = 0.9996
5
P (X ≥ 1) > 0.99
X ~ B (n, 0.5)
1 − P (X = 0) ≥ 0.99
X ~ B (5, 0.4)
1 − 0.5n ≥ 0.99
7
P (X > 1) = 0.224
b
P (X = 1) = 0.399
0.5n ≤ 0.01 n log 0.5 ≤ log 0.01 n≥
X ~ B (15, 0.05) a
b
P (X = 3) = 0.0307
ii
P (X = 0) = 0.463
iii
P (X ≥ 2) = 0.171
Exercise 15F
i
(0.46329...)2 = 0.215
1
ii
(0.17095....)2 = 0.0292 0.46329..... × 0.17095.... × 2 = 0.158
Exercise 15 E X ~ B (n, 0.6) P (X < 1) = 0.0256 P (X = 0) = 0.0256 (0.4)n = 0.0256 n log 0.4 = log 0.0256 n=4
log 0.01 log 0.5
n > 6.64 so the coin must be tossed 7 times.
i
iii
1
0.01 ≥ 0.5n
X ~ B (6, 0.15) a
log 0.05 log 0.7
∴ least number of attempts is 9
P (X ≤ 3) = 0.913 6
log 0.25 log 0.8
2
a
X ~ B (40, 0.5)
b
X ~ B 40,
c
X ~ B (40, 0.25)
X ~ B (n, p)
1 6
E (X) = 40 × 0.5 = 20 E (X) = 40 ×
1 6
= 6 32
E (X) = 40 × 0.25 = 10
mean = 10 p = 0.4 np = 10
n × 0.4 = 10 ∴ n = 25 3
a
X ~ B (15, 0.25)
b
mean = 15 × 0.25 = 3.75
c
P (X ≥ 10) = 0.000795
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 15
4
WORKED SOLUTIONS 4
a
total number of girls = (1 × 34) + (2 × 40) + (3 × 13) = 158
7
X ~ B(n, p) E(X) = 7.8
total number of children = 100 × 3 = 300 153 300
∴ P(girl) = b
p = 0.3
= 0.51
X ~ B (3, 0.51)
a
E(X ) = np = 7.8
P (x = 2) = 0.382
0.3n = 7.8
expected number of families = 0.382 × 100 = 38.2
n=
n = 26 b
Exercise 15G 1
( )
= 26 × 0.3 × 0.7
1 4
= 5.46
=0
(
1 4
Variance = 0 × 2
1 4
× 1−
)=0
B(12, 0.6) Variance = 12 × 0.6 × 0.4 = 2.88 Standard deviation = 2.88 =1.70 (3 sf)
(
X ~ B 40, 12
)
Mean = 40 ×
5
6
X ~ B(n, p) E(X) = 9.6 E(X) = np = 9.6 Var(X) = npq = np(1 – p) = 1.92 9.6(1 – p) = 1.92 9.6 – 9.6p = 1.92
1 2
= 20
Variance = 40 × 4
8
Var(X) = 1.92
Mean = 12 × 0.6 = 7.2
3
Var(X ) = npq = np(1 – p)
X ~ B 0, 41
Mean = 0 ×
7.8 0.3
1 2
×
9.6p = 7.68 1 2
= 10
p = 0.8 9.6 0.8
Standard deviation = 10 = 3.16 (3 sf)
n=
X ~ B 10, 16
n = 12
(
)
1 6
=
5 3
1 6
×
a
E(X ) = 10 ×
b
Var(X ) = 10 ×
c
P(X < μ) = P X < 35 = 0.485 (3 sf ) (using binomial CDF on the GDC)
(
(
X ~ B 22, 15
5 6
=
)
25 18
)
22 5
a
E(X) = 22 ×
1 5
=
b
Var(X) = 22 ×
1 5
c
P(X < 4) = 0.332 (3 sf ) using binomial CDF on the GDC)
×
4 5
=
88 25
X ~ B(n, p) E(X ) = 4.5, Var (X) = 3.15 E(X ) = np = 4.5 Var(X ) = npq = np(1 – p) = 3.15 4.5(1 – p) = 3.15 1–p=
3.15 4.5
= 0.7 p = 1 – 0.7 = 0.3 np = 4.5 n=
4.5 p
=
4.5 0.3
= 15
P(X = 6) = 0.0155 (using binomial PDF on the GDC)
Exercise 15H Using GDC: 1 a 0.683 b 0.954 c 0.997 2 a P (1 < Z < 2) + P (−2 < Z < −1) = 0.272 b P (0.5 < Z < 1.5) + P (−1.5 < Z < −0.5) = 0.483 3 a P (Z > 1) = 0.159 b P (Z > 2.4) = 0.00820 4 a P (Z < −1) = 0.159 b P (Z < −1.75) = 0.0401 5 a 0.742 b 0.236 c 0.0359 d 0.977 e 0.390 6 a 0.306 b 0.595 c 0.285
P(X ≥ 3) = 1 – P(X < 3) = 1 – 0.126828 = 0.873 (3 sf ) © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
Worked solutions: Chapter 15
5
WORKED SOLUTIONS 7
a b
P (|Z| < 0.4) = P (−0.4 < Z < 0.4) = 0.311 P (|Z| > 1.24) = 1 − P (|Z| < 1.24) = 1 − P (−1.24 < Z < 1.24) = 0.215 3
Exercise 15I
0.997
c
0.494
2
∴ P (Z < a) = 0.9452 4
4
5
2
a
P (Z < a) = 0.95
∴ a = 1.64
b
P (Z < a) = 0.8
∴ a = 0.842
X ~ N (5.5, 0.22) P (X > a) = 0.235 P (x < a) = 0.765 ∴ a = 5.64 2 M ~ N (420, 102) a P (M < a) = 0.25 ∴ a = 413 b P (M < b) = 0.9 ∴ b = 433 1
X ~ N (100, 20 ) 2
a
P(X < 130) = 0.933
b
P(X > 90) = 0.691
c
P(80 < X < 125) = 0.736
X ~ N (4, 0.252)
X ~ N (14, 42) a
P (X > 20) = 0.0668
b
P (X > 10) = 0.159 = 15.9%
3
X ~ N (502, 1.62) a P (x < 500) = 0.106 b P (500 < x < 505) = 0.864 or 86.4% c P (x < b) = 0.975 b = 505.1 a = 498.9 a = 499 b = 505
4
X ~ N (550, 252) a P (520 < X < 570) = 0.673 b P (X > a) = 0.1 ∴ P (X < a) = 0.9 ∴ a = 582
5
a
X ~ N (55, 152), P(x > d) = 0.05, d = 79.7 P (x < f ) = 0.90, f = 35.8
b
X ~ N (551.3, 152)
Exercise 15M
P (X > 550) = 0.535 = 53.6%
1
X ~ N (500, 202) a
P (X < 475) = 0.106
b
(0.1056 …) = 0.00118
a
P (Z < a) = 0.922, a = 1.42
b
P (Z > a) = 0.342 ∴ P (Z < a) = 0.658, a = 0.407
c
P (Z > a) = 0.005 ∴ P (Z < a) = 0.995, a = 2.58
a
P (1 < Z < a) = 0.12 P (Z < 1) = 0.8413 ∴ P (Z < a) = 0.9613 ∴ a = 1.77 P (a < Z < 1.6) = 0.787 P (Z > 1.6) = 0.0548 ∴ P (Z < a) = 1 − (0.787 + 0.0548) = 0.1582 ∴ a = −1.00
b
X ~ N (30, σ2) Z= ∴
3
Exercise 15K 1
∴ a = 1.60
Exercise 15L
P (3.5 < X < 4.5) = 0.9545 number of acceptable bolts = 0.9545 × 500 = 477 3
∴ a = 0.385
P (|Z| > a) = 0.1096
b
Exercise 15J 1
a
∴ P (Z < a) = 0.65
Using GDC: 1 a 0.655 b 0.841 c 0.186 d 0.5 2 a 0.672 b 0.748 c 0.345 3 a 0.994 b
P (a < Z < −0.3) = 0.182 P (Z > −0.3) = 0.6179 ∴ P (Z < a) = 1 − (0.182 + 0.6179) = 0.2001 ∴ a = −0.841 P (−a < Z < a) = 0.3
c
2
40 30
10
10
= 1.2004 ∴ σ = 8.33
X ~ N ( μ, 42) 20.5 4 20.5 = 4
Z= ∴
P (X > 40) = 0.115
P (X < 20.5) = 0.9
∴ P Z
20.5 4
= 0.9
1.28155
∴ μ = 15.4 3
X ~ N (μ, σ 2) P (X > 58.39) = 0.0217 P (X < 41.82) = 0.0287 Z=
P Z
59.39
58.39
∴ P Z
P Z
Z=
∴ � = 49.9
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
= 0.0217
58.39
41.82
41.82
= 0.9783 ∴
= 0.0287 ∴
58.39
41.82
= 2.0198
= −1.9003
σ = 4.23 Worked solutions: Chapter 15
6
WORKED SOLUTIONS 4
X ~ N( �, σ 2) P (X < 89) = 0.90 P (X < 94) = 0.95 89
Z=
P Z
P Z
= 0.90 ∴
89
94
= 0.95 ∴
94
145 130
6
9
11
= 1.64485
P
X ~ N (�, 20 )
P (X < 500) = 0.01
= 0.01 ∴
x + 4 = ± 19
X ~ N (0.85, σ2) Z=
a
1.1
P Z
0.25
✗
= −2.326
1
X ~ N (�, 72)
3 k
= 0.01
2 k
+ 0.1 + 2.1 = 1
= 0.5 ∴ k = 6
E (X ) = (−2 × 0.3) + 1 16 + (1 × 0.1) + (2 × 0.1)
= 0.6433
−7 15
=
P Z
∴
68 7
68 7
= 0.025 ∴ P Z
= 1.95996
X ~ N (2.9, σ2) 3 2.9 5
Z=
P Z ∴
2
P (X > 68) = 0.025
a
68 7
Z=
10 a
490
P (x > 1) = 0.350 = 35.0%
b
9
1 k
0.3 +
a
∴ σ = 0.389 kg 8
= 0.99 ∴ P Z
= −2.32635 (2)
b 0.25
= 0.05
Review exercise
∴
495
Solving (1) and (2) simultaneously gives � = 507.1, σ = 7.34
= 0.74
490
490
P (X < 1.1) = 0.74
=
= 0.95 ∴ P Z
= −1.64485 (1)
∴
∴ � = 546.5 or 547 g 7
495
Z 50020 200 20
495
Z
P Z
∴P Z 9 = 0.88 ∴ σ = 7.66 cm
2
490
∴
= 1.175
P Z
X ~ N ( �, σ 2) P (X > 495) = 0.95 P (X > 490) = 0.99 495
P (X > 145) = 0.12
P Z 9 = 0.12 ∴
= 1.28155
9
σ = 13.8
X ~ N (136, σ2) Z=
yes, this is consistent with the normal distribution
89
∴ � = 71.4 5
94
Z=
P (X > 117) = 0.605 = 60.5%
b
0.1
0.1
= 0.35
Px= P
Z
−7 ± 65 2
154 Z 154
∴
1 4
X ~ N ( �, σ 2) P (X < 10.8) = 0.3 P (X > 154) = 0.2 Z
154
4
108
= 0.2 ∴ P
Z
= −0.5244 154
= 0.8
= 0.8416
∴ � = 125.7
σ = 33.67
� = 126
σ = 33.7
5
P (X = x)
5c
8c
9c
8c
5c
+
1 4
+
1 8
1 4
+ x = 1 ∴ x = 38
38 81 81 38 41 = 13 64 2
2
4
4
1
2
2
4
4
2
4
4
8
8
3
6
6
12 12
4
8
8
16 16
a
= 0.3 ∴
4
P (6) = P (2, 4) + P (3, 3) + P (4, 2)
0.1 ∴ P Z = 0.65
∴ σ = 0.260 m
108
3
from symmetry, E (X) = 3
b 3
2
1 ∴ c = 35
∴ � = 54.3 cm
0.1
1
35c = 1
= 0.975
P (X > 3) = 0.35
= 0.3853
68 7
x
possible values of P are 2, 4, 6, 8, 12, 16 b
x
2
4
6
8
P (X = x)
1 8
2 8
1 8
2 8
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
12 16 1 8
1 8
Worked solutions: Chapter 15
7
WORKED SOLUTIONS c
E (P) =
2 8
88
6 8
16 12 8 8
4
6 8
X ~ B (10, 0.2)
a
= 7.5 x
d
£10
£5
1 4
3 4
1 4
+5×
P (X = x)
E (X ) = 10 ×
X ~ B 5, 31
3 4
= 6.25
7
a
P (X > 5) = 0.00637
5 3
1 3
= 3) = 0.201 the probabilities continue to decrease after this
∴ most likely number is 2
3
P (X ≥ 1) > 0.95
X ~ B (n, 0.2)
c
1 − P (X = 0) > 0.95 0.05 > P (X = 0)
2
2 3
P (X = 0) < 0.05
1 4 10 27 9
X ~ B (2, 0.1)
ii
P (X
P (X = 3) =
6
P (X = 4) = 0.0881
P (X = 0) = 0.107 P (X = 1) = 0.268 P (X = 2) = 0.302
b
After 10 weeks, expected total = 6.25 × 10 = £62.50 5
i
(0.8)n < 0.05
40 243
n log 0.8 < log 0.05
E (X) = nP = 2 × 0.1 = 0.2
n>
log 0.05 log 0.8
n > 13.4 ∴ need 14 points in this sample 5
P (| Z | ≤ a) = 0.85 P (−a ≤ Z ≤ a) = 0.85 ∴ P (Z ≤ a) = 0.925 ∴ a = 1.44
0.954 6
65
75
Z=
x
a
1 0.954 2
7
1
a
X ~ B 3,
b
x P (X = x)
c
i
ii 2
3
P P (X ≥ 1) =
−5
1
8 27
19 27
E (X) = −5 ×
8 27
+1×
19 27
30
30
= 0.15 ∴
30
= −1.03643
50 50 P Z = 0.1 ∴ P Z = 0.9 50
= 1.28155
� = 38.9 hours = −$
= 1.0364 ∴ σ = 8.68
50
Z=
Z
∴ 19 27
9
X ~ N(�, σ2) P (X < 30) = 0.15 P (X > 50) = 0.1 Z=
Review exercise 1 3
p (x < 80) = 0.85
9
P (X > 65) = 0.755
b
= 0.023
From symmetry, a = 85 P (X > a) =
80 71
P Z 9 = 0.85 ∴
P (X < 65) = P (X > a) b
X ~ N (71, σ 2)
a
7 9
or −$0.78
8
a
X ~ N(�, 2)
σ = 8.63 hours P (x > 35) = 0.2
35 2
∴ lose $0.78 (or $ 79 )
Z=
7 9
35 35 P Z 2 = 0.2 ∴ P Z 2 = 0.8
× 9 = 7 ∴ lose $7
X ~ B (8, 0.3) a
P (X = 3) = 0.254
b
P (X ≥ 3) = 0.448
1 X ~ B 6, 6
∴
= 0.8416
∴ � = 33.3
P (X = 3) = 0.05358
Y ~ B (5, 0.05358)
35 2
P (Y = 2) = 0.0243
b
X ~ P (5, 0.2)
c
P (X ≥ 2) = 0.263
© Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute
P (X = 0) = 0.328
Worked solutions: Chapter 15
8