124 58 4MB
English Pages [57] Year 2014
O X
F O
R
D
I B
D
I P L O
M
A
P
R
O
G R
A
M
M
E
WORKED SOLUTIONS M AT H E M AT I C S
HI GH E R
LE V E L
C A LC U LU S
Josip Harcet
Lorraine Heinrichs
Palmira Mariz Seiler
Marlene Torres-Skoumal
:
WORKED SOLUTIONS
1
Patterns to infinity
Skills check
3
3(4 n 1) 3(4 n + 1) 3 3 = (4 n + 1)(4 n 1) 4n 1 4n 1
1 a
12n 3 12n 3 16n 2 1
=
6 16n 2 1
n 1 n = (n 1)(n 3) n (n 2) n2 n3 (n 2)(n 3)
b
⇒n>2∴m=3 4
n 2 n 3n 3 n 2 2n n 2 2n 3n 6 3 = 2 n 5n 6
=
0 3x 2 0 d x d b
2
2n 1 2n 1 5 1 n 8 1 No as this implies that n . 8
2 x t 7 or 2 x d 1
1
(1
n
n )(1
n 1
b
7 1 or x d 2 2
2n (1 n )
2n
3 a
n
n)
=
2n ( n 1) n 1
6
As n increases the terms get very close to 0.
7
1 § 1· §1· ¨ ¸ H n H n ! log 3 ¨ ¸ 3 © 3¹ ©H ¹
n
(n 1)( n n 1)
n 1
( n
n 1)( n
∴ ε = 0.01 ⇒ m = 6; ε = 0.001 ⇒ m = 7; ε = 0.0001 ⇒ m = 9
n 1) 8
(n 1)( n n 1) n n 1
(n 1)( n 1 n ) ( 1)n 1
4 a
b)
2n
d
( 1)n 1 n 1
c)
2n 1
∴ m = 1250 2 a
Investigation 1
1.1
u1(n) =
0.2 2
4
6
8
⇒ n > 1249.5
n+1 u1(n) = 3•n–1
.4
n+1 2•n+1
5 1 2n 1 500
Exercise 1A
1.1
.6
0.4
2
y 1 .8
0.6
0 –1
n 3 1 1 2n 6 2n 1 1 2n 1 2 1000 2(2n 1) 1000
Investigation 1 y 0.8
Exercise 1A 1
2n
|un – L| can take arbitrary small values as we consider just terms after an order m (as we increase this order the terms are closer to L).
2n 1 , n ' 2n
(1)n 1
1
n 1 2 1 2n 2 4 n 2 1 2n 1 N 5 10 2(2n 1) 10 0 .4
3
|2 x 3| t 4 2 x 3 t 4 or 2 x 3 d 4
xt
n 1 1 2n 2 2n 1 H H 2n 1 2 2(2n 1) 1 1§ 1 · 1¸ 2H n ! ¨ 2n 1 2 © 2H ¹
∴ ε = 0.01 ⇒ m = 25; ε = 0.001 ⇒ m = 250; ε = 0.0001 ⇒ m = 2500 5
|3 x 1| 1 1 3 x 1 1
2 a
n 1 1 1 2n 2 2n 1 1 2n 1 2 10 2(2n 1) 10 1 1 2n 1 5
.2 0 –.2
10 12 14 x
3
6
9 12 15 18 21 x
1 2
As n increases the terms get very close to .
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 1
1
WORKED SOLUTIONS b
n 1 1 1 3n 3 3n 1 1 3n 1 3 1000 3(3n 1) 1000
5
n cos 2 (na ) n2 3
n 2 n 3
2 na ) as 0 d cos 2 (na ) d 1. cos ( bounded
converges to zero
4 1 9n 3 1000 4003 n! 9
∴ m = 445 3 a y 2
n of
Exercise 1B n
1
b
n §3· · ©5¹ ¹
§ ©
3
6
9
2 a
12 15 18 21 x
4n 3 5 4n 3 4n 1 1 10000 2000 4n 4n 3 1 n 2000 4
Convergent to zero as the absolute value of the terms get close to zero quickly.
c
Divergent as while the terms of even order get close to zero, the terms of odd order increase without bound.
3n 1 3n sin(2n ) 3n 1 d d 4n 3 4n 3 4n 3
for all n ] ; as lim n of
lim n of
c
1.1 1.2
1000 1 10000 2 3 100000 4 1000000 5 10000000 C6
B
C =√('n) =√('n+1) 31.6228 31.6228 100 100.005 316.228 316.229 1000. 1000 3162.28 3162.28
1 n lim n of 3 4 n 1 3 n lim n of 3 4 n
3n 1 4n 3
lim n of
3n 1 4n 3
lim n of
n of
b
1§ n2 · 1 3 ¨ 2© 2n 3 ¸¹
n2 approaches zero as n increases. 2n 3 3
As
3n 1 4n 3
3 by the squeeze 4 3 4
2n 2 6n 6n 2 0 2 3n 1 3
1 2n 2 d for all n ] . 2 3n 1 3
1 2n 2 d for all n ] and 2 3n 1 3 §1· ©2¹
n
lim ¨ ¸ n of
Diverges as the terms of even order are equal to 1 and the terms of odd order get close to zero.
and
4n 3
which is true for all n ] .
Diverges as the terms follow the cyclic pattern 1, 0, −1, 0, 1, 0, −1, 0,….
1 n3 n 1 as 2 2n 3 3
3 4
3n sin(2n ) 4n 3
for all n ] ;
Diverges to positive infinity as the terms increase without bound.
Converges to
30 40
2n 1 t 4n t 3n 1 n t 1 which is true 3n 1 2
Therefore,
h
3 and 4
4n 3
theorem lim 3 a
30 40
As 3n 1 d 3n sin(2n ) d 3n 1 and 4n 3
Exercise 1A
3n 1 4n 3
3
3n 1 b lim n of 4 n 3
Converges to zero as the square roots of consecutive integers are approximately equal for large values of n. An
g
n
as 4 n 3 ! 0
Divergent as the terms of even order approach
b
f
0, by the
1 d sin(2n ) d 1, for all n ]
3 3 and the terms of odd order approach . 4 4
e
n
? 3n 1 d 3n sin(2n ) d 3n 1
∴m=7
d
§3· ©5¹
lim 2 ¨ ¸ n of
§3· ©5¹
n ! log 4 6000 4 a
n
squeeze theorem lim 2 (1)n 1 ¨ ¸ . n of
.5 0 –.5
n
lim ¨ 2 ¨ ¸ ¸ n of
n u1(n) = 4 –3 4n
1.5
0 , a ∈ R. QED
§3· §3· §3· 1 a 2 ¨ ¸ d 2 ( 1)n 1 ¨ ¸ d 2 ¨ ¸ ; as ©5¹ ©5¹ ©5¹
Exercise 1A
1.1
n cos 2 (na ) n2 3
Therefore lim
§ 2n · ¸ n of © 3n 1 ¹
lim ¨ 4
§3· ©4¹
n
lim ¨ ¸ n of
0 by the squeeze theorem,
n
0
Assumption: the sequence {an} converges to a real number a. As lim an 1 lim an a , then n of
lim an 1 n of
a 2 lim n a n of 3
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
n of
a2 a 3
1
Calculus: Chapter 1
2
WORKED SOLUTIONS
Investigation 2 1
1.1
y 20000
8
The absolute value of the terms of the sequence increase without upper bound.
Investigation 2
1.2
Investigation 3
16000
u1(n) = 3n–1
a
12000 8000
2
2
4
6
8
10 12
x
The terms of the sequence increase without upper bound. n 1
! 100 n ! 5.19... m
3
3
4
3n 1 t 1000 n t 7.28... m
b
6
8,
3n 1 t 10000 n t 9.38... m
1.1
1.2 1.3
log3(1000)+1
7.28771
log3(10000)+1
9.38361
log3(100000)+1
11.4795
10 and 12
2n d 1000 n ! 9.96... m
1.1
Investigation 3
1.1
Investigation 3
An
10 ,
n
2 d 10000 n ! 13.2... m
14 and 2 d 1000000 n ! 16.6... m 17 1.1
1.2 1.3
c
Investigation 2
9.96578
log2(10000)
13.2877
log2(100000)
16.6096
1.1 1.2 1.3
An
0
? lim c n
1
? lim dn
1
Investigation 3
B C =root(3,'n) 1.01105 1.0011 1.00011 1.00001
100 1 2 1000 3 10000 4 100000 5 B4 =1.0000109861832
3/99
n of
6
7
The terms of the sequence decrease without lower bound. 1.1
1.2 1.3
d
4.98289
log4(10000)
6.64386
log4(100000)
8.30482
1.1 1.2 1.3
An
Investigation 3
B C =root('n, 'n) 1.00693 100 1 1.00092 1000 2 1.00012 10000 3 1.00001 4 100000 1. 5 1000000 B5 =1.0000016118109
Investigation 2
log4(1000)
0
? lim bn n of
n
log2(1000)
n of
B C =('n)/3^('n) ='n/4^'n 0.33333333 1. 0.25 1 0.00016935 10. 0.00000954 2 3 100. 1.9403252E-46 6.2230153E-59 4 500. 1.3751265E-23... 4.6663181E-299 5 1000. 7.5638913E-47... 8.7098098E-600 C5 =8.7098098162032E-600
4/99
5
? lim an
B C ='n^2/3^('n) ='n^2/4^('n) 0.33333333 1. 0.25 1 0.00169351 2 10. 0.00009537 3 100. 1.9403252E-44 6.2230153E-57 4 500. 6.8756324E-23... 2.333159E-296 5 1000. 7.563891E-47... 8.7098098E-597 C5 =8.7098098162032E-597
Investigation 2
5.19181
C
Explore the limit for different values of k and b. For example: An
3n 1 t 100000 n t 11.47... m log3(100)+1
Investigation 3
B ='n/2^'n
0.5 1. 1 0.00976563 10. 2 7.8886091E-29 3 100. 1.5274682E-148 4 500. 5 1000. 9.3326362E-299 B5 =9.3326361850171E-299
4000 0
1.1 1.2 1.3
An
n of
3/99
e n
4 t 1000 n ! 4.98... m n
4 t 10000 n ! 6.64... m
4 n t 100000 n ! 8.30... m
lim en n of
f
5, 7 and
9
You need to use a powerful tool to calculate this one, e.g., Mathematica or its free version Wolfram Alpha.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 1
3
WORKED SOLUTIONS n
Exercise 1C 5
5n 3 n 1 a lim 3 n of 2n 6n 2 1
lim n of
n 6n 1 n of n 1
50 200
6 1 3 n n
2
6 1 n n2 1 1 n n2
1
2
lim
1 n2
1 5 2 n n lim n of 2 3 1 2 3 n n
n 2 5n b lim 3 n of n 2n 3
c
k
lim n of
00 1 0 0
d
2
lim(n n )
lim(n (n 1))
n of
2n 2 1
n of
1 n lim n of 1 2 2 n 1
n
0 l
¦ (2
lim k
k 1
0
n of
3
3
1 0 0 00
f
f
lim n n n of
ln( n n ) 1 lim n of n of
n of
lim
n5
n of
n 2
n5
n5
n 2
3
lim n of
3 f
n5 n2
n 2
lim n of
n5 n2
ln 1
1 n
1 b
0 lim n of
ln n n
lim n of
§5· © ¹
ln n k n
ln n n
0
0, by the squeeze
ln(n k ) n
0
n
lim n n lim
lim n n ¨ ¸ n of n
0
0
lim
n of
1 0 1 0
00 2
ln n ln(n k ) ln n k and d d n n n
theorem lim f
2n 1 n of 2 3n
As
n of
0
5 1 n lim n of 2 1 n
1 2
lim
1 §2· ¨ ¸ n 3 3 lim © ¹ n of 2
lim n 5 n 2
1 0 20
1 2n 1 lim 2 2n 1 n of 3
)
lim ln n e
n2 n n of 2n 2 1
lim
n
( f) u ( f)
n of
k 0
5 2
2 a 3
lim
2n 2 n lim 22 n of 2n 1
¦ (2k 1)
n of
n of
5 n
1u 0
0
n
n
g
§2· 1 ¨ ¸ lim ©n3 ¹ n of §4· ¨ ¸ 5 ©3¹
n
3 2 n of 4 n 5 3n
lim
1 0 f 5
Exercise 1D 0 1 a b
n
( 3)n 1 7 n h lim n of 4 n 1 e n
i
lim n of
n3n n
lim( x 2 1)
§ 3· ¨ ¸ 1 lim © 7n¹ n n of 1 §4· §e· ¨ ¸ ¨ ¸ 4 ©7¹ ©7¹
0 1 00
1.1
j
§ n n 1· lim ¨ ¸ n of n 1 n ¹ ©
4
4
{
–10
1.1
Exercise 1D
0 –4 –3 –2 –1 –1
1
( )
2
3
4
x
–2
lim sin(S x )
x o1
f
{
y sin(π•x), x < 1 2 f1(x) = π•x , x ≥ 1 cos 2 1
3
1 1 n 2 n3 1 1 n n2
1 0 0 00
2
2 f1(x) = x –1, x 1 the series does not
f
1 . n2 1
1 §§ 1 · §1 1 · § 1 1· ¨ ¨1 ¸ ¨ ¸ ¨ ¸ 2 ©© 3 ¹ ©2 4 ¹ © 3 5¹
n 1
n
3 6 9 12 ! 2 3 4 5
1 z 0, 2
1§ 1 1 · ¨ ¸ 2 © n 1 n 1¹
©
n 2
f
lim
g
1 2 n 2
n of
converge. f
1
lim
¦ 2 ¨ n 1 n 1¸
¦ ¨S n
1 1 2(n 1) 2(n 1)
1 § (n 1) (n 1) · ¨ ¸ 2© n2 1 ¹
2 z 0 , hence the series 3
is a geometric series with r = 1 , hence 7 21 1 converges to its sum, Sf 3 1 6 1 7 Hence S = 24.5 e
n of
2n 2 2n 1
hence the series diverges by the nth term test.
diverges. d
lim
n of f
b
2n 2 1 n 1
Corollary 2: Let g ( x )
³
x
a
³
b
a
=− ³x f (t ) dt. f ( x ) dx
F (a ) F (b )
f (t ) dt , a d x d b . If furthermore F is
any anti-derivative of f, then by the mean value theorem, F (x) = g (x) + c, for some constant c. Evaluating therefore F (b) − F (a),
> g (b ) c @ > g (a ) c @
F (b ) F (a )
g (b ) g (a ) =
³
b
a
³
b
a
³
b
a
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
a
f (t )dt ³ f (t ) dt a
f (t )dt 0 f (t )dt Calculus: Chapter 4
31
WORKED SOLUTIONS n
2
n
n
S
§ i 1·S ¸ n ¹n
i
i
i
i 1
i 1
i 1
³
c
¦ f (c 'x ) ¦ sin(c ) n ¦ sin ¨© S§
§S · § 2S · § 3S · ¨ sin ¨ ¸ sin ¨ ¸ sin ¨ ¸ n© n n © ¹ © ¹ © n ¹
§S · § 2S · ¨ sin ¨ ¸ sin ¨ ¸ n© ©n¹ © n ¹
b
F c( x )
c
F s( x )
S§
n of
§ 3S · § (n 1)S · · sin ¨ ¸ ! sin ¨ ¸¸ n n © ¹ © ¹¹
³
S
cos x |S0
sin x dx
0
³
F (4)
Hence,
x 2 9 ; F c( 4 ) x
f ( xi ) n
f ( x i )'x
³
5
0
ii
2 x dx
1 x x2
xi
1
5i ; n
n
50i
¦n
50 § n (n 1) · ¨ ¸ n2 © 2 ¹
n 1 25 n
0 ( 2) n
'x
(1 x x 2 )2
2
i 1
50 n2
0
i 1
2
lim ³ e x dx b of 0
0
sin x dx = lim
4 a b
³
4
2
x
1,
b
b
sin x dx = lim ( −cos x ⏐ ) b →∞
0
20i 12i 2 2 n n
³
f
0
ex 1 e
2x
dx
lim b of
³
ex
b
0
0
1 e
b 2x
dx
hence the integral converges to 4
³
∞
1
1 x
dx = lim ³ b →∞
1
b
1
x
x
lim ª¬arctan e º¼ b of 0
S . 4
S 4
,
b
dx = lim (2 x ⏐ ) = ∞, b →∞
1
hence the integral diverges. 5
³
f
0
b
cos S x dx
lim ³ cos S x dx b of 0
b
S lim sin x~ S lim(sin b 1). Since sinb b of
0
b of
oscillates between −1 and 1, the integral diverges.
(3x 2 x ) § 16 40 § n (n 1) · 24 § n (n 1)(2n 1) · · 2¨ ¸ 3¨ ¸¸ n © 2 6 ¹ n © ¹¹ © n
4
6
³
∞
0
b
x 2 e − x dx = lim ³ x 2 e − x dx . Using integration by b →∞ 0
parts, lim
3 4x
2 tan t dt
0
b →∞
2
f c( x )
b of
between −1 and 1, the integral diverges.
2i · 2i · § § 3 ¨ 2 ¸ 2 ¨ 2 ¸ n¹ n¹ © ©
lim ¨ n of
³
b →∞
16 40 § n (n 1) · 24 § n (n 1)(2n 1) · 2¨ ¸ 3¨ ¸ 2 6 n3 n © ¹ n © ¹ 2
lim e x~
= lim ( − cos b + 1). Since cosb oscillates
§ 16 40i 24i 2 · 2 3 ¸ f ( x i )'x ¦ ¨ n n ¹ i 1© n 16 40 n 24 n 2 2 ¦i 3 ¦i n n i 1 n i 1
³
2
b
b
e x dx
25
3
8
³
∞
n
0
1
hence the integral converges to 1.
n
¦i
1· § 25 lim ¨ 1 ¸ n of n¹ ©
§ 24i 12i 2 · 4i 2 ¸4 ¨ 12 n n n ¹ ©
³
f
§ 1 · lim ¨ b 1¸ b of © e ¹
2 ; n
2 2 i ; f ( xi ) n
(1 2 x )
Exercise 4C
5 0i n 10i n
n 1· § lim ¨ 25 ¸ n of n ¹ ©
5
y s ! (1 2 x ) ! 0, x <
·· ¸¸ ¹¹
¦ ¨© i
4
; F s(4)
x2 9
5
1
y s x
§ 10i · § 5 · ¸¨ ¸ n ¹© n ¹ 1
25
The curve will be concave up at f ″ (x) > 0. yc
S
'x
0
7
§S · § 2S · lim ¨ sin ¨ ¸ sin ¨ ¸ n of n ©n¹ © n ¹ ©
3 i
t 2 9t dt
G′(x) = sin x
S§
5 ;x n i 5i 2 n
4
4
And therefore,
50 n
x sec x
0
6
2
§ 3S · § (n 1)S sin ¨ ¸ ! sin ¨ n © n ¹ © 2
t
³ t sec t dt
t sec t dt
5 a
§ (n 1)S · · ! sin ¨ ¸¸ n © ¹¹
S lim
0
t
b →∞
x
³ 2 tan t dt 4
³
b
0
x 2 e − x dx = lim ª¬ −e − x ( x 2 − 2 x − 2 ) º¼ = 2, b →∞ 0 b
hence the integral converges. 2 tan x
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
32
WORKED SOLUTIONS
Exercise 4D 1
3 is x 1
From the GDC, f ( x )
9
The integral test cannot be applied since the function is not decreasing for all x ≥ 1.
10
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
³
f
1
3 dx x 1
3 dx x 1
b
lim ³1 b of
b
3 lim > ln( x 1)@1
³
b of
= 3 lim(ln(b + 1) − ln 2) = 3 lim ln n →∞
n →∞
1
³
1
x x2 +1
dx = lim b →∞
³
x
b
1
x2 +1
∞
1
1 dx = lim b →∞ x +1 2
dx = lim =
ln( x 2 + 1)
b
2
1
b →∞
11
⏐
1
5
12
0
ex dx 1 e 2x
b
lim ³0 b of
∞
1
ex dx 1 e 2x
³
lim
b
1
b of
ln x dx = lim b →∞ x2
S 4 13
b of
b
1
ln x § ln x + 1 · b dx = lim ¨ − ¸1 b →∞ x2 x © ¹
f
1
x2 e
x
b
x2
b of 1
x
lim ³
dx
e
b
lim( e x ( x 2 2 x + 2))~
dx
b of
1
Using the p-series test, p series converges. Using the p-series test, p series diverges.
7
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
3
1
³
1
lim b of
³
1
§ 1 1· lim ¨ 2 ¸ b of 2 3 5 b © ¹
1
The integral test cannot be applied since the function is not decreasing for all x ≥ 1.
2 2
1
3 3
S , S ! 1, hence the S S , 1, hence the 4 4 f
1 4 4
¦n
...
1 n
n 1
∞
1
n =1
n n
∞
=
¦ n =1
1 n
3 3
3 2
, p = 2 , 2 > 1,
hence the series converges. 4
1
1 5
4
1 5
9
1 5
16
f
...
¦ n 1
f
1 5
n
2
¦ n 1
1 n
2 5
.
Using the p-series test, p = 2 , 2 < 1 hence the series 5 5 diverges.
Hence, the series converges. 8
1
Using the p-series test, ¦
b
ª º lim « 2 » b of ¬ 2 x 3 ¼1
1 5
5 . e
Exercise 4E
2
4x dx (2 x 2 3)2
1
5· § lim ¨ ( e b (b 2 2b 2)) ¸ b of © e¹ Hence the series converges.
The integral test cannot be applied since the function is not decreasing for all x ≥ 1.
b
ln 2 2
From the GDC, the function is continuous, positive and decreasing for all x ≥ 2, hence we can apply the integral test.
³
S 2
b
lim ª¬arctan e x º¼ 0
³
6
4x dx (2 x 2 3)2
3S 2 32
Hence the series converges.
Hence, the series converges.
f
b
ª (arctan x )2 º lim « » b of 2 ¬ ¼1
arctan x x2 1
§ ln b 1 ln 2 · lim ¨ ¸ b of 2 ¹ b ©
2
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test. f
arctan x x2 1
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
³
The integral test cannot be applied since the function is increasing for x ≥ 1. However, since §1· lim x sin ¨ ¸ 1 z 0, the series diverges by the nth b of ©x¹ test for divergence.
³
1
Hence the series converges.
hence the series converges. 4
f
b
1
b of
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
³
f,
b 1 dx = lim arctan x⏐ →∞ b 1 x +1 S S lim ª¬arctan b arctan 1º¼ b of 2 4
³
x ln x
b →∞
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test.
³
b of 1
b
lim ln(ln( x ))~
dx
Hence the series diverges.
1 lim ª ln(b 2 + 1) ln 2 º¼ 2 b of ¬ hence the series diverges. 3
1
b
= lim ( In(In(b ) − In(In(1) ) = ∞
From the GDC, the function is continuous, positive and decreasing for all x ≥ 1, hence we can apply the integral test. ∞
x ln x
lim ³
dx
b +1 =∞ 4
hence the series diverges. 2
1
f
5
1 1 < 1, hence the series diverges. 2
p = 2,
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
33
WORKED SOLUTIONS
Exercise 4F 1
2
2
1 1 3 , n t 1. Since 1 converges by n 1 n n3 3
1
1
n
n1
, n t 2. Since 1 diverges by
diverges. 3
n 1
n
3
4
5
3n2 2 n
diverges.
2 5
2 Since ¦ n
n
§
¦¨ 2 ©
n
n
2n n of 2 n 1 n2 n5
¦
5
1 1 · ¸ 1 2n ¹
n
1, the series converges.
lim
.
1 4 n2 2 n 1 n of n2
n5 4 n5
· ¸ ¸ ¹
3.
1 , the series diverges. n
¦ 4n
2
1 1 . Compare with ¦ 2 . n 2n
p-series test, the original series converges.
converges by the p-series test, the series converges.
n1 2
n 1 n 1 1 1 5 for n ≥ 1. Since 5 ; 5 5 2 2 2 n n n n2
n
7
9 arctan x
¦
S ; 2
S 3 2 n 1
arctan n
1 3
n 1
¦
1
1
1
. Since
converges by
¦ 8
1 n of
n 2 1 1 n2
lim n of
n of
n
series diverges since ¦
n of
1 n2
1 . Hence, since 3
2 n
n2
diverges by the p-series test, the series diverges. n 2n n2
2n
by the ¦ n , which diverges n
n 2 n 1 3n2 2 n
n 2 2n n n of 3n 2 2 n 2n 2 n
lim
n
2 n
1
lim n of
3
2 lim
1 1 n1
2
n2
z 0.
1 n 2n 2 n
1 . 3
Hence the series diverges.
Exercise 4H
1 . Hence, n2 lim
n
. n
Compare with ¦
lim
1
n2 n2 1
1
n
n of
Exercise 4G
lim
n of
1
1 1 . Hence, since ¦ 2 n 4
nth term test for divergence, since lim
converges by the p-series test, the original series converges.
Compare with ¦
lim
n
ln(n) ≥ 2 for n ≥ e2 hence 1ln n d 12 . Since 12 n
n n2 1
n of
the p-series test, the original series also converges. n
n of
1
n3
n3
n2 4 n 2 2n
lim
Compare with ¦ lim 2
for n ≥ 1. Hence
n3
1.
1 diverges. n
lim
converges by the p-series test, the original series converges.
1
n
1 cos n 1 d 2 for n ≥ 1. Since 2 converges by the 2 n n n
n
10
n
n of
2
8
n
§ 3n 2 2n lim ¨ u 2 n of ¨ n ©
4 n5
lim
6
n of
2
Compare with ¦
n
diverges by the p-series test, the original series
lim
Compare with ¦ 1n , a convergent geometric series. Since lim
6 ln(n) > 1 for n ≥ 3, hence ln n t 1 for n ≥ 3. Since n n 1
7
n
1 2n 1 n of 1 2n
p-series test, the original series converges.
n
n n Compare with ¦ 1 . Hence lim 1 n of
The series diverges, since ¦
1 converges by the n3
; n t 1. Since
n n5
1
3
1 1 4 ln(n) ≤ n for n ≥ 2, hence t , n t 2. Since ln n n 1 diverges by the p-series test, the original series n 1
lim
2
converges.
n
p-series test, the original series converges.
2n 7 2n 2 n of 4 n 7 n 6 n 5
1 . The series 2 n2 1 converges since by the p-series test, ¦ 5 ¦ 3 n n
1 1 3 2 , n t 1. Since 12 converges by the (n + 1)! n n
1
2 n 2 1 4 n 5 n 1
n of
the p-series test, the original series also diverges.
5
n
lim
the p-series test, the original series also converges. 2
Compare with ¦ n 5 . Hence,
lim n of
2n 1 n 1 2n n
§ n 2 n 1 · n ¸ n of n 1 2 ¹ ©
lim ¨
n of
2.
Since L > 1 the series diverges.
1 1 n12
1
1, and the
1 ¦ n diverges.
2
lim ( n 11)! n of
n!
lim n of
n! (n 1)!
lim n of
1 n 1
0.
Since L < 1 the series converges. 3n 1
3
lim ( n31)! n of
n
n!
§ 3 n 1 n! · ¸ n n of 1)! ¹ ( n 3 ©
lim ¨
3 lim n of
1 n 1
0.
Since L < 1 the series converges. © Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
34
WORKED SOLUTIONS 4
lim
3 ( n 1)2n 1 3 n 2n
n of
n 2n (n 1)2n 1
lim n of
1 n lim n of 2 n 1
b
1 . 2
Since L < 1 the series converges. Sn
5
1
lim 3( n S1) 2
S lim n of
n
n of
3n 2
3n 2 3n 5
S.
5
6
lim ( n5 2 )! n of
(n 1)! (n 2)!
5 lim
n 2
n of
( n 1)!
5 lim n of
1 n2
n of
§ 2n n 1 · ¸ n of 2 n 1 n ¹ ©
n 1
n of
1 1· § lim ¨ 1 ¸ n of 2 n¹ ©
lim ¨
2n
1 . 2
sin n 2 ¦ 2 has terms of different signs, since n 1 n f 1 sin n 1 –1 ≤ sin n ≤ 1. Since 2 d 2 for all n, and ¦ 2 n n n n 1
converges by the p-series test, the series converges absolutely, therefore the series converges. 3 Using the ratio test, n of
2 lim
n
n of
n!
n! (n 1)!
2 lim n of
1 n 1
Using the comparison test, lim n of
The absolute value of the terms is decreasing, and lim un = 0, hence the series converges. For nof
the series of absolute values, using the ratio test,
absolutely.
lim n of
1 2 n! n
n of
n of
n! (n 1)!
lim n of
1 n 1
0.
The absolute value of the terms is decreasing, and lim un 0, hence the series converges. The n of series of absolute values converges because it is a geometric series, with |r| < 1. Hence the series converges absolutely.
f
¦
f
n
cos nS n 1
1
1 1 1 1 ... ( 1)n ... 2 3 4 n
The absolute value of the terms is decreasing, and lim un = 0, hence the series converges. The nof
series of absolute values is the harmonic series, which diverges. Hence the series converges conditionally. g
The absolute value of the terms is decreasing, and lim un = 0, hence the series converges.
2 n! 2n 1 (n 1)!
1 1 lim 2 n of n 1
The integral test can be used on the series 1 of absolute values, since f ( x ) is
0.
x ln x
continuous, positive and decreasing for all x ≥ 1.
n! 6 Since lim n z 0, the series does not converge n of e
Hence,
³
f
1
1 x ln x
b
lim ³1 b of
1 x ln x
b
lim > ln(ln x )@1 n of
lim > ln(ln b ) ln(ln1)@
absolutely.
n of
f.
Since the series of absolute values diverges, the series converges conditionally.
Exercise 4J The absolute value of the terms is decreasing, and lim un 0, hence the series converges. n of
For the series of absolute values, ln(n) ≤ n for n ≥ 2, hence
n!
lim
e
Since L < 1, the series converges. Hence the series converges absolutely.
1 a
n of
nof
n
lim
lim ( n 11)!
Since L < 1, the series converges absolutely.
Using the ratio test, 1 2n 1 ( n 1)!
1
un 1 n of u n
lim
S arctan n d 23 3 n n
1 for all n ≥ 1. Since ¦ 3 converges by the p-series n test, so does S ¦ 13 . Hence the series converges 2 n 5
1 . 2
d
0.
Since L < 1 the series converges by the ratio test. Since the series converges absolutely, the series converges. 4
1 · 1º ¸ n ¹ 2 »¼
The absolute value of the terms is decreasing, and lim un 0, hence the series converges. The n of series of absolute values diverges by the p-series test, hence the series converges conditionally.
f
2n 1
ª§ ¬©
c
Since L < 1 the series converges by the ratio test. Since the series converges absolutely, the series converges.
lim ( n21)!
2n
Since L < 1, the series converges absolutely.
Using the ratio test, n 1
n of
lim «
lim Ǭ 1
Exercise 4I lim 2 n
ª n 1 2n º » n of ¬ 2 n 1 n¼
n 1
lim 2 n
0.
Since L < 1 the series converges.
1
n 1
un 1 n of u n
lim
Since L > 1 the series diverges. n 3
The absolute value of the terms is decreasing, and lim un = 0, hence the series converges. nof Using the ratio test for the series of absolute values,
1 1 1 t , n t 2. Since diverges ln n n n
by the p-series test, the series of absolute values diverges by the comparison test. Hence the series converges conditionally.
h
The absolute value of the terms is decreasing, and lim un 0, hence the series converges. n of The series of absolute values converges by S comparison with ¦ 22 , hence the series n
converges absolutely.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
35
WORKED SOLUTIONS 2
The conditions for Leibniz’ theorem are met since the absolute value of the terms is decreasing, and lim un 0. Hence the truncation error is
³
u11 3
The conditions for Leibniz’ theorem are met since the absolute value of the terms is decreasing, and lim un 0, hence the series converges. un 1
5
5. Hence,
The conditions for Leibniz’ theorem are met since the absolute value of the terms is decreasing, and lim un 0, hence the series converges. n of Since the series begins with n = 2, and we want the first three terms, i.e., n = 2, 3, 4, therefore 1 1 u5 . S S3 u5 0.012644. 3 5 5 u3
5
6
30.
1
7
60
3n
1 3n 1
.
diverges by the p-series test, so does
n
. Hence the series does not converge
n 2
2
1
1
¦ ln n . Since n
¦ 2 ln n
1 for all ln n
n (n 1)
Since lim n of
n 3 5n 2
z 0, the series diverges by the
Since the absolute value of the terms of the series is decreasing, and lim un 0, the series converges. n of
0.
³
1
f
dx
x ln x
lim ³
1
b
b of 2
dx
x ln x b
§ 2 2n (n 1) 3n · n¸ n n of n2 ¹ © 33
lim ¨
lim ª¬2 ln x º¼ b of 2 2 n 1 lim n of 3 n
lim 2 ln b 2 ln 2 b of
f.
Hence, the series diverges absolutely, and converges conditionally.
2 . 3
Since L < 1, the series converges.
10 Using
This is a geometric series whose common ratio is 1 . Since |r| < 1, the series converges to its sum. e
4
1
3n 1, hence
Using the integral test, since the function representing the series is positive, decreasing and continuous for all x ≥ 2,
Using the ratio test,
2 1· § lim ¨ 1 ¸ 3 n of © n¹ 3
1
2
¦ ln n
2
(n 1)2n 1 n 1 lim 3 n n of n2 3n
1. Since L is a
n ≥ 2, the series diverges by comparison with the harmonic series.
9
Since L < 1, the series converges. 2
n of
2n 2 n 2n 2 3n 1
n 1 , or ¦ , 2 n n
Divergence Test.
§ 6 n 1 n! · lim ¨ n ¸ n of 6 ( 1)! ¹ n © 1 n 1
ln(cos(1)).
absolutely, and converges conditionally.
Using the ratio test,
n of
1
¦
3
Exercise 4K
6 lim
2
Since the absolute value of the terms of the series is decreasing, and lim un 0, the series converges.
Since ¦
8
6 n 1 (n 1)! lim of 6n n!
lim
For all n ≥ 1, 3n !
Hence, the truncated series has the required accuracy after the 29th term, since the first term corresponds to n = 2, and not n = 1.
1
§1· tan ¨ ¸ dx x ©x¹ 1
n of
The conditions for Leibniz’ theorem are met since the absolute value of the terms is decreasing, and lim un 0. n of un 1 d 10 5
1
positive real number, the series diverges since the harmonic series diverges.
30375
1 10 5 n 3 (n 1) ln(n 1)
³
Using the limit comparison test with ¦ 2n 1 2n 2 3n 1 lim n of 1 n
S5 | 0.948. 4
b of
b
f
n of
1 d 0.001 d 0.001 n (n 1) 4
lim
§ 1 · lim ln ¨ ¸ n of © cos x ¹b Hence the series converges.
1 S10 | 0.902. 1331
1 .S 1331
§1· tan ¨ ¸ dx x ©x¹ 1
2
1
n of
1 113
f
Using the GDC, we see that the function that represents the series is continuous, positive and decreasing for all n ≥ 1. Hence, we can use 1 the integral test. Using the substitution u = ,
4
lim n of
the ratio test,
n 1
(n 1)2 (n 1)! 4n n2 n!
§ 4 n 1 (n 1)2 n! · u n 2¸ n of ( n )! 1 n ¹ 4 ©
lim ¨ lim n of
4 (n 1) n2
0.
Since L < 1, the series converges.
x
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
36
WORKED SOLUTIONS 11
Using the ratio test,
b
(n 1)! 1 , n . (n 1)! (n 1)! 1 For n = 1, show that (n 1)!
(n 1)! 2 5 8 ... (3(n 1) 2) lim n of n! 2 5 8 ... (3n 2)
Pn : Sn
§ (n 1)! · 2 5 8 ... (3n 2) ¸ n of n ! 2 5 8 ... ( 3 n 2 ) ( 3 ( n 1 ) 2) ) © ¹
LHS:
lim ¨ lim n of
(n 1) 3n 5
2n
12
f
n
S k 1
(k 2)! 1 , k . (k 2)!
Sk 1
Sk uk 1
Using the limit comparison test with ¦ §1· sin ¨ ¸ ©n¹ n lim n of 1 n n
§1· sin ¨ ¸ n lim © ¹ n of 1 n
1 n n
n2
Pk 1
1, and 1 > 0, hence the
2
(k 2)! 1 (k 2)!
,
Since Pn is true for n = 1, and proven true for n = k + 1 when n = k, k , then by mathematical induction Pk 1 is true. ª (n 1)
b. Using the ratio test, lim « u n of ( n 2 )! ¬ Since L < 1, the series converges.
1
n2
f
n . Then n 1 ( n 1)! f f 1 1
n2
S e 2 S ¦ n 2
Review Exercise
b
The series does not have all non-negative terms.
1 a
The series does not have all non-negative terms. d i the sequence of absolute values is not decreasing. ii the limit of the nth term as n toes to infinity does not equal 0. c
§ n · ¸ n of n 4 © ¹
1 2 3 2! 3! 4!
( n 1)!
1
e 1.
n 1
n
§ · ¨ 1 ¸ lim ¨ ¸ n of ¨¨ 1 4 ¸¸ n¹ ©
n
1 z 0, hence the e4
series diverges.
sin
23 ; 24
1 n
Using the limit comparison test with ¦ ,
n 1
1 1 2 5 ; S2 ; S3 2! 2! 3! 6 1 2 3 4 119 S4 2 ! 3 ! 4 ! 5 ! 120 1 2 3 4 5 S5 2! 3! 4 ! 5! 6! 1 2 3 4 5 S6 2! 3! 4 ! 5! 6! (n 1)! 1 Conjecture: Sn (n 1)!
n 1
f
¦ n!
Using the nth term test for divergence, lim ¨
b
n
¦ (n 1)!.
n!
S ¦
Hence, S = 1.
The series is continuous and decreasing, but not positive for all n ≥ 1.
S1
0.
Let S denote ¦
15 a
16 a
(n 1)! º n »¼
*Finding the sum is best done after Chapter 5 using f(x) = ex and Taylor series.
series converges by the p-series test, the original series also converges.
f
(k 1)! 1 , k . (k 1)!
(k 2)! (k 2)! (k 2) k 1 (k 2)!
series converges since ¦ converges by the n n p-series test. S S arctan n 1 S 2 . 14 0 3 3 ¦ 23 ¦ 3 . Since this n2
1 = RHS 2!
(k 1)! 1 k 1 by assumption (k 1)! (k 2)! (k 2) > (k 1)! 1@ k 1
Hence, the series diverges. (This one is best done with the Root Test, which is not on the syllabus.) 13
2! 1 2!
n . (n 1)!
We want to show that Pk 1 is true, i.e.,
( 2) 4 . Using the ratio test, ¦ n n n n 1 n 1 n 4 n 1 § nn · 4 4n (n 1)n 1 lim lim u ¨ ¸ n of ( n 1)( n 1) n n of 4n 4n ¹ © nn 4n n lim 0. n of ( n 1)( n 1) n
¦
(1 1)! 1 (1 1)!
Assume Pk is true, i.e., Sk
1 3
Since L < 1 the series converges. f
Proof by Mathematical Induction:
lim n of
1 n
1 n
1, hence by comparison with the
harmonic series, the series diverges. 719 ; 720 6 5039 . 7 ! 5040
c
For n ≥ 2, and since 2 < e, ln(n) < n – 1. Hence, f f 1 1 1 1 ! ¦ !¦ ln n n 1 n 2 ln n n 2 n 1
f
1
¦ n . Since the n 1
harmonic series diverges, by the comparison test the given series will also diverge.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
37
WORKED SOLUTIONS d
By the ratio test, n
§ n 1 e · u ¸ n 1 n¹ ©e
lim ¨ n of
n
§ n 1 e · u n 1 ¸ e ¹ © n
lim ¨ n of
1 1. Hence e
the series converges. (n 10 ) cos nS (n 10 ) e Since cos nS ( 1) , . (1)n n 1 .4 n1.4 (n 10 ) Since lim 1.4 0 and the sequence is n of n n
decreasing, the given series is convergent by the alternating series test.
2
§
k! ·
k
k
0. u By the ratio test, lim ¨ ¸ lim n of ( k 1)! (k 1) ¹ n of k 2 1 © f
(k 1) k! 1
Hence the series converges. ¦ k
Furthermore, S
f
7
Using the limit comparison test with bn § §1·· ¨ 1 cos ¨ n ¸ ¸ © ¹¸ lim ¨ n of ¨ 1 ¸ 2 ¨ ¸ n © ¹
1 , n2
0 , an indeterminate form which 0
allows us to apply L’Hopital’s rule. Taking the derivative of numerator and denominator, we 1 1 · § ¨ sin n u n 2 ¸ obtain lim ¨ ¸ n of 2 ¨¨ ¸¸ 3 n © ¹
1· § ¨ sin n ¸ 1 lim ¨ ¸ 2 n of ¨ 1 ¸ ¨ ¸ © n ¹
1 sin n lim 2 n o0 n
1 . 2
1
¦k.
Since ¦
k 1
1 1 2 1 3 1 ... 1! 1! 2 ! 2 ! 3 ! 3 ! §1 1· § 1 1· §1 1· = 1 ¨ ¸ ¨ ¸ ¨ ¸ ... © 1! 1! ¹ © 2 ! 2 ! ¹ © 3 ! 3 ! ¹
1 converges by the p-series test, the given n2
series also converges. 8 a y
= 1. 3
lim n of
1 (n 1)7
0, and for all n, an t an 1, hence the
series converges by the alternating series test 4. 8–7 = 0.000000476837. The sum of the series therefore, correct to 6d.p., is 1 1 1 1 7 7 ... 7 2 3 7 4
0
0.992594
f
nn lim n of 1 n 2
1. Hence the series
n
f
Since ¦ an converges, then lim an n of
n 1
0 an 1
1 p
Since the area under the curve is between smaller areas and the larger f
converges. Similarly, bn 1 bn2 bn , and
6 a
un
n
n
b
. Using the ratio test,
23 n § · 3 3 n 1 2 ¨ ¸ lim ¨ n 1 u n of 3n 2 ¸¸ ¨ 23 © ¹
1 2 1. 3
b
un
2
n
1 2
lim n of
2n 1 2n 1
1 dx xp 1
¦n
p
n 1
f
1
. Then by the ratio test,
n § 2 ·¸ 2n 1 ¨ lim ¨ u n 1 n of 2n 1 ¸¸ ¨ 2 © ¹
1
³
Hence the series converges. 2n 1
³
f
f
1 § 3n 1 · 2 lim ¨ ¸ of n 3 © 3n 2 ¹
2
f
ª x p 1 º « » ¬ p 1 ¼1 f
1 . p 1
f 1 1 1 ³1 p dx p x 2n
1 ¦ n
1 p and n p p 1
Hence, 1
f f 1 1 1 . dx ¦ p p p ³ 1 x n 1 n 2 n
areas, ¦
hence ¦ bn2 converges because ¦ bn converges. 3n 2
.
n 1
By comparison, and since ¦ bn converges, then n n
x
5
1 . p n 2
¦n
for large n. Since bn ! 0 an bn bn .
¦a b
4
The sum of the areas of the larger rectangles is
f
b
3
is ¦
2
diverges by the limit comparison test. 5 a
2
The sum of the areas of the smaller rectangles
By comparison with the harmonic series, § 1 n n · lim ¨ u ¸ n of 1 n 2 1¹ ©
1
³
f
1
1
1 p 1
p . p 1
f 1 1 dx ¦ p . p x n 1 n
f 1 1 p ¦ p . p 1 n 1 n p 1
1.
Hence the series converges. © Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 4
38
WORKED SOLUTIONS 9 a
c i
When n = 8, S < 1.08243… and S > 1.08219.., hence S = 1.082 to 3 d.p.
ii
Substituting this value for S, S4
N| 10 a S2 n
1.082
The total area of the upper rectangles is f
1 . ¦ 4 i n i
b
general, S2m n ! Sn
1 . ¦ 4 i i n 1
S2m1 ! S2 c
infinity lies between the above two sums, hence 4
i n 1
b
³
f
n
f
³n
1 dx x4
1 dx x4 f
ª 1 º « 3 » ¬ 3x ¼ n
f
1.
¦i
11 i
4
i n
1 . Hence, 3n 3
f
1
¦i
4
i n 1
Replacing n by 2n, S4 n ! S2 n
1
! Sn 1.
2
3
f
The total area under the curve from x = n to 1
2
2
1 1 1 u1 u1 u 1 ... (n 1) 4 (n 2) 4 (n 3) 4
f
1 Sn .
1 2n
Continuing this way, S8n ! Sn . And in
The total area of the lower rectangles is
¦i
90 .
1 1 1 1 1 ... ! Sn ... 2n 2n 2n n 1 n 2
Sn
1 1 1 u1 u1 u 1 ... 4 4 n (n 1) (n 2) 4
| 90.0268... N
1 . 3n 3
ii
m 2
m 2
. Then, letting n = 2,
.
m ! N , or if m ! 2( N S2 ). 2 Hence the sequence is divergent. S2m1 ! N if S2
The sequence of absolute values is decreasing and the nth term tends to 0 as n tends to infinity, hence by the alternating series test, the series converges. The partial sums are 0.333, 0.111, 0.269,
n
1 Then, adding ¦ 4 to both sides of the i 1 i
0.148, 0.246. Sf lies between any pair of successive partial sums, hence it lies between
n
1 1 inequality, S ¦ 4 3 . In the same way 3n i 1 i n 1 1 1 1 ! 3 , and adding ¦ 4 to both sides, ¦ 4 3n i 1 i i n i f
0.148 and 0.246, therefore it is less than 0.25. 12 a
n 1
1 1 3 . Hence, the value of S lies 4 3n 1 i
S !¦ i
n 1 1 1 1 1 between ¦ 4 3 and ¦ 4 3 . 3n 3n i 1 i i 1 i n
b
The sequence of absolute values is decreasing and the nth term tends to 0 as n tends to infinity, hence by the alternating series test, the series converges. S4
1
1 3!
1 5!
1 7!
0.841468(6d.p.).
S4 error a5, hence error
1 9!
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
, or error 0.00000276.
Calculus: Chapter 4
39
WORKED SOLUTIONS
5
Everything polynomic Exercise 5B
Exercise 5A 1 a For f (x ) = r = 4x, 1 4x 1 1 1 º 1 1ª 4 x 1 x , x , x » , «. 4 4 4 ¼ 4 4¬
a
f
R = 1. At x = 1, f
1 4 x ( 4 x )2 ! ( 4 x )n !
n
0
1 1 ( 5 x )
Hence, c
f (x )
( 1)n n
f
n 0
1 ,r 1 5x 1 1 º 1 x , x » , 5 5 ¼ 5
1ª . In this interval, 5 «¬
b
3
1
¦ (1)n n is the alternating harmonic f
¦
n 0
( 1)2 n n
f
1
¦ n is the harmonic
n 0
x n 1 ( n 1)!
x lim
xn n!
n! (n 1)!
x lim
1 n 1
0.
1 (5 x ) ( 5x ) (5 x ) ! ( 5x ) !
n of
1 5x 52 x 2 ! ( 1)n (5x )n !
Hence, the interval of convergence is the set of Reals, and R = infinity.
f
1 1 5x
1 . 5
¦ (1)n (5x )n ; R
n
1 x 4
0
1 4 41 x 1
c
1 . 4 1 41 x
In this interval,
1 x 4
1 §1 · ¦ ¨ x¸ ; R 4 n 0© 4 ¹
n of
n of
Using the ratio test, lim
n of
2n 1 x n 1 ( n 2 )2 n
(n 1)2 n of ( n 2 ) 2
2 x lim
n
2 x ( n 1 ) 2
2 x . Hence, the series
converges in the interval 2|x|< 1, or 1 x=− , 2
n
f
4
f
¦
n 0
2n 12
n
f
( 1)n
¦ (n 1)
(n 1)2
2
1 1 x . At 2 2
. Since the absolute
n 0
value of the series is decreasing, and lim un n of
f (x )
1 3x
· 1§ 1 ¨ ¸ 3 © 1 ( x 1) ¹
1§ 1 · ¨ ¸ 3© x ¹
x.
Using the ratio test, lim
n
1 x 1 x 4, 4 x 4, x @4, 4>. 4
d
n n 1
series, which diverges. Hence, the interval of convergence is ]−1, 1[, and R = 1.
1 5
5x ; r 1 x ,
2
n of
series, which converges conditionally. At x = −1,
¦ (1)n
For f ( x )
x lim
n xn n
n 0
¦ ( 4 x )n ,
1 and R = . 4 b
( 1)
n of
The series converges in the interval |x| < 1, hence
In this interval, 1 1 4x
x n 1 n 1
( 1)n 1
Using the ratio test, lim
0,
1 2
the series converges conditionally. At x = , f
¦
· 1§ 1 ¨ ¸ ; x 1 1 0 x 2. 3 © 1 [ ( x 1)] ¹ 2 Hence, the interval is º» 0, ª« ¼ 3¬ f 1 In this interval, f ( x ) ¦ (1)n ( x 1)n ; R . 3 n 0
n 0
2n ( 12 )n (n 1)2
n
1
¦ (n 1)
2
. This series converges by
n 0
comparison with ¦
1 , which converges by the n2
p-series test. Hence, the interval of convergence is
[− 12 , 12 ], and R = 12 . n 1
e
(2 x 3) x ; x 1 1 x 1 , x @1, 1> . In this d Using the ratio test, lim ( 1) ( n 1) ln( n n 1) 1 x n of ( 1)n (2nxln 3)n x 2 n x (1 ( x ) ( x ) ! ( x ) !) interval, n ln n 1 x 2 x 3 lim 2 x 3 . The interval f f n o f ( n 1) ln( n 1) n n n n 1 x (1) x (1) x ; R 1
f (x )
¦
n
f
f (x )
¦
0
n
0
2 1 1 º 1 1ª ; 4 x 1 x , x » , «. 1 4x 4 4 ¼ 4 4¬
In this interval, 2 1 4x
2
2 ¦ (1)n (4 x )n n
0
f
¦ 2 (1)n (4 x )n ; R
n
0
At x = −2, ¦
1 is divergence by comparison with n ln n
the harmonic series, and when x = −1, the series converges conditionally. Hence, the interval of
n
2(1 (4 x ) (4 x ) ! ( 4 x ) !) f
of convergence is |2x + 3|< 1, or −2 < x < −1.
1 . 4
1 2
convergence is ]−2, −1], and R = .
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
40
WORKED SOLUTIONS e
( 1)n 2 ( x 1)n 2 n2
Using the ratio test, lim n of
( 1)n 1 ( x 1)n 1 n 1
n 1 n2
1( x 1) lim n of
j
x 1 . The interval of
convergence is |x – 1| < 1, or 0 < x < 2. At x = 0,
¦ (1) with
n 1
1 n
( 1)n 1 n 1
x 2 n 3 ( 2 n 3 )!
x 2 lim
x 2n+1 ( 2 n 1)!
n of
x n 1 ( n 1) n 13n
n of
x2 0
(2n + 3)! (2n 1)!
2 a
( kx )n 1
lim
0. Hence, the
n of
f
n3
n of
x
(n 1)
n
f
1 n n 3
¦n
n
n 1
f
p-series test. At x = −3, ¦ n 1
Using the ratio test, lim n of
x 3
1
x
n
3
¦
n
n 1
( 3)
1 n
converges by
3 2
n
f
¦
n n 3n
n 1
( 1) n
3 2
3n 1 n xn
3
Applying the ratio test, lim n of
n
x h k
n of
sin x n2
x n 1 lim 3 n of n
. The interval of convergence
1
n also diverges. Hence, the interval
n of
lim n of
x h
n n 1
k
. Since
x h k
1
Exercise 5C 2 1 x2
I
n 1
sin x lim
( x h )n
~x h~ k k x h k k h x k h Since the interval of convergence is ] 1, 7[ k h 1 and k h 7. Solving simultaneously, h = 4 and k = 3.
2
2 (1 x 2 x 4 ... x 2n ...)
1 ( x 1)2
f
2¦ x 2 n . n 0
@1, 1> , R
1.
1 1 1 x 1 x
f
f
n 0
n 0
¦ (1)n x n ¦ (1)n x n
f
¦ (1)n (n 1) x n . I @1, 1> ; R
Using the ratio test, lim
( n 1) k n 1 nk n
, the
n 1
sin n 1 x ( n 1 ) 2
( x k )2 . The interval
( x h )n 1
of convergence is ]−3, 3[, and R = 3. i
( n 1)4 ( x k )2n
of convergence is ( x k )2 1 1 x k 1 1 k x 1 k . Since the interval of convergence is given as [2, 4] 1 k 2 and k 1 4. Hence, k = 3.
f
x = −3 ¦ (1)
2.
n4
n4 ( x k ) lim n of ( n 1) 4
1 x 3. At x = 3, ¦ n diverges, and at n
kx. ª 1 1º
2
1 x 3.
f
1
3n
f
n of
1
.
3
3
n 1 x n 1
n of
( kx )n
n2 (n 1)2
k x 1 x . Since x « , » k k ¬ 2 2¼
series converges conditionally by the alternating series test. Hence the interval of convergence is [−3,3], and R = 3.
lim 1
x lim k
n2
n n
lim
3n
At x = 3, ¦
( n 1)2
b Applying the ratio test, lim n of
The interval of convergence is
3
x 1 . 3
Applying the ratio test,
(n 1) n 1 3
n of
3
x
x 1 3
( x k )2 (n 1)
x lim
xn n n 3n
x
is
n of
interval of convergence is ]−4, 2[, and R = 3.
Using the ratio test,
3
ex
3 f ( 3)n At x = −4, ¦ (1)n, which diverges. At ¦ 3 n 1 n 1 f f 3n x = 2, ¦ n ¦1 which also diverges. Hence, the n 13 n 1
interval of convergence is the set of Reals, and R = infinity.
x
n n 1
f
1 x 2 lim n o f (2n 3)(2n 2)
h
n of
This converges for x 1 1 4 x 2 .
, which diverges by the p-series test. At
Using the ratio test, lim
n of
lim
e nx n
n of
n 1
lim
e ( n 1 ) x n 1
lim
1 ¦ n 1 diverges by comparison
the alternating series test. Hence, the interval of convergence is ]0, 2], and R = 1.
g
e x lim
enx n
n of
Hence, the interval of convergence is ex < 1, or x < 0, and R = infinity. k Using the ratio test,
x = 2, ¦ (1)n 1 1 converges conditionally by
f
e( n 1) x n 1
Using the ratio test, lim
1.
n 0
n2 (n 1)2
sin x
The interval of convergence is |sin(x)| < 1, and this is true for all x. Hence, the interval of convergence is the set of Reals, and R = infinity.
3
1 4x 2 1
1 4 x 2 (4 x 2 )2 (4 x 2 )3 ... f
f
¦ (1)n (4 x 2 )n ¦ (1)n (2 x )2n . n 0
I
º 1 1ª » 2 , 2 «; R ¼ ¬
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
n 0
1 . 2 Calculus: Chapter 5
41
WORKED SOLUTIONS 4
This example should be done in 5F using the Binomial Series. The solution is shown here. 1
1 x
(1 x ) 2 1
2 § 1·x
1
1
3 § 1· § 3·x
1 x u ¨ ¸ u ¨ ¸ u ¨ ¸ ... 2 2 © 2 ¹ 2! 2 © 2 ¹ © 2 ¹ 3!
(1 x )
1 x
1 2
2 § 1 ·§ 3 · x
§ 1·
1 3 5 1 x x 2 x 3 ..., −1 < x < 1. 2 8 16
(1 x ) (1 x )
1 1 2 1 3 1 3 5 § ·§ · x ... ¸ ¨ 1 x x 2 x 3 ... ¸ ¨1 x x 2 8 16 2 8 12 © ¹© ¹
5
1 1 ³x;x
ln x
2( x 1) ( x 2) ( x 2)( x 1)
∞ 2 =¦ x + 2 n =0
1
x 2 x 3 3x 4 + + ...; º¼ −1, 1ª¬ ; R = 1 2 2 8
1 1 ( x 1)
f
1 x 1
³
1
1 dx 1 (t 1)
³
x
3x = 2 x + x −2
ª
= «t − ¬
§
= ¨x − ©
f
n 0
+
n=0
∞
∞
n =0
n =0
2, f (3 ) ( x )
24 f (1 x )5
(4)
(0 )
1 x x2 x3 x4
1
sin x x cos x f c(0)
hence R = 1.
f cc( x )
cos x cos x x sin x
x n 1 x , lim × x = which is 2 n 2 n → ∞ (n + 1) 2 2 n =1 n 2
For ¦
f
(3)
(x )
convergent for |x|< 2, so R = 2. Testing the end1 points, for x = 2, ¦ 2 is convergent by the p-series n n 1 f 1 test. For x = −2, ¦ (1)n 2 converges absolutely. n n 1
f
(4)
(x )
2
T4 ( x )
2,
(3)
(0 )
0,
3 cos x cos x x sin x 4 cos x x sin x f
Hence, the interval of convergence is [−2, 2]
convergent for |x|< 2. Testing the end points, at 1 f 1 1 f ( 1)n 1 x = 2, ¦ diverges, and at x = −2, ¦ 2n 1n 2n 1 n converges conditionally.
0,
2 sin x sin x x cos x 3 sin x x cos x f
f
n
0,
2 cos x x sin x f cc(0 )
2
x , which is also 2
6 (1 x ) 4
1 x 2 x 2 6 x 3 24 x 4 0! 1! 2! 3! 4!
f c( x )
nx n 1 n 1 , lim u x 2 n n of n 1 2 1 n 2
¼
24
x sin x f (0)
f
− 1» x n .
6,
f (x )
For ¦
¬
º
n
1,
2 f "(0) (1 x )3
T4 ( x )
b
n
ª 1
1.
¦ (an x n bn x n ) is convergent when |x| > 1, ∞
;
¦ − x n = ¦ « (−2)
1 f '(0) 1, (1 x )2
f (4) (x )
n 0
7
n
f '( x )
3
f
6
§1 ·
f ( 3 ) (0 )
( x 1)n 1 n 1
@0, 2> ; R
x 1 1 I
I
n
∞
¦ (−1)n ¨© 2 x ¸¹
1 f (0) 1 x
f "( x )
· ( x − 1) ( x − 1) + + ... ¸ − 1 2 3 ¹
¦ (1)
n
n 0
f (x )
3
º (t − 1) (t − 1) + + ...» 2 3 ¼1 2
¦ x
Exercise 5D
x
3
n
@1, 1> ; R
Hence, I
(1 (t 1) (t 1) (t 1) ...)dt 2
f
1 1 x 0
1 ¦
n 0
3
2
1
f
1
¦ 1 x
1 ( x 1) ( x 1) ( x 1) ... x
n=0
R = 2.
1 a
2
n
∞
§1 · ¦ (−1)n ¨© 2 x ¸¹ . I @2, 2> ;
=
§ 1 · 1− ¨ − x ¸ © 2 ¹
3x . x x 2 2
I = ]−1, 1[ ; R = 1.
1 2
=1+ x +
2 1 x 2 x 1
3 § 1 ·§ 3 ·§ 5 · x
1 ¨ ¸ x ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ... © 2¹ © 2 ¹ © 2 ¹ 2! © 2 ¹ © 2 ¹ © 2 ¹ 3!
1 2
convergence would be the same, except for possibly the end points. Hence, the interval of convergence is [−2, 2[. 8
1 1 1 1 x x 2 x 3 ...; 1 x 1 2 8 16 1
xn nx n 1 Since 2 n is the derivative of 2 n , the interval of n 2 n 2
2x 4 x 2! 4!
4
(4)
(0 )
4
1 6
x2 x4
1
c
f (x )
(1 x ) 3 f (0 ) 2 3
1,
1 (1 x ) f c(0) 3 5 − 2 f ′′( x ) = − (1 + x ) 3 f ′′(0) 9
f c( x )
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
1 , 3 2 9
=− , Calculus: Chapter 5
42
WORKED SOLUTIONS 8 10 (1 x ) 3 f 27
f (3 ) ( x )
(3 )
10 , 27
(0 )
c
x 2 cos x f (S )
f (x )
f ′( x ) = 2 x cos x − x 2 sin x f ′(π ) = − 2π ,
8 80 80 f ( x ) (1 x ) 3 f ( 4 ) (0) 81 81 80 2 2 10 3 1 x x x x4 1 3 T4 ( x ) 9 27 81 4! 3! 2! 0 ! 1! 1 1 2 5 3 10 4 = 1+ x − x + x − x 3 9 81 243
(4)
f ′′( x ) = 2 cos x − 2 x sin x − 2 x sin x − x 2 cos x = (2 − x 2 )cos x − 4 x sin x
f
(3)
2 x cos x (2 x 2 )sin x 4 sin x 4 x cos x
(x )
6 x cos x ( x 2 6)sin x
f '(0) = 1,
f "( x )
2e x xe x f "(0 )
f
(3)
(x )
3e x xe x f
(3)
f
(4)
(x )
4 e x xe x f
(4)
3,
(0 )
(π ) = −
=
f (x )
3
1
+−
π
a
5, f c(0 )
f (0 )
T3 ( x ) =
π2
(x − π ) +
2
π3
x 1 sin x f (S )
( x − π )2 −
3
b
1
π4
f cc(1)
( x − π )3
6, f 3 (1)
1
π
,
4
2
T1 ( x ) =
f (a ) f ′(a )( x − a ) + = f (a ) + f ′(a )( x − a ) 0! 1!
= f ′(a )( x − a ) y = f (a ) + f ′(a )( x − a )
−1
+ 2 x sin x + x sin x − x cos x 6 x 4 sin x 6 x 3 cos x 3x 2 sin x x 1 cos x S3
1
1
(x S )
S 2
2
5
f (1)
4, f c(1)
1, f cc(1)
3, f 3 (1)
2
4 1( x 1) 3( x 1)2 2( x 1)3 0! 1! 2! 3! 3 1 2 4 ( x 1) ( x 1) ( x 1)3 2 4 3 1 f (1.2) | T3 (1.2) 4 0.2 u 0.22 u 0.23 2 4
T3 ( x )
§ 6 1· 3 ¨ 3 ¸ (x S ) S S¹ © S S 1! 2! 3! 1 1 1 1 § · ( x S ) 2 ( x S )2 ¨ 3 ¸ ( x S )3 S S © 6S S ¹
T3 ( x )
6
12
Equation: y − y1 = m ( x − x1 ) y − f (a )
π2 f (3) ( x ) = − 6 x −4 sin x + 2 x −3 cos x + 4 x −3 cos x
4,
Equation of a tangent to the curve y f ( x ) at the point where x a is obtained in the following way: Point (a, f (a )), slope m = f ′(a )
2 x 3 sin x 2 x 2 cos x x 1 sin x
f (3) (S )
664
2 4 ( x 1) 3( x 1)2 2( x 1)3
2
−2
12 6
2, f c(1)
2 4 ( x 1) 6( x 1)2 12( x 1)3 0! 1! 2! 3!
T3 ( x )
2 x sin x x cos x x cos x x 1 sin x
−2
6, f (3) (0) = 12
−5 4 x −6 x 2 12 x 3 + + + 0! 1! 2! 3!
23 4 5
f (1)
0,
2
4, f cc(0 )
5 4 x 3x 2 2 x 3
3
1
f "(π ) = −
2 x 3 3 x 2 4 x 5 f ′( x ) = 6 x 2 − 6 x + 4
f (x )
f ′′( x ) = 12 x − 6 f (3) ( x ) = 12
f ′( x ) = − x −2 sin x + x −1 cos x f ′(π ) = f "( x )
§S2 · 1¸ ( x S )2 S ( x S )3 2 © ¹
S 2 2S ( x S ) ¨
1 1 x x x3 x4 2 6 2
1 2 1 1 (x S ) ( x S ) 2 2 ( x S )3 3 S S2 S S 0! 1! 2! 3!
T3 ( x )
b
π
6S
S 2 2S ( x S ) (S 2 2)( x S )2 6S ( x S )3 0! 1! 2! 3!
T3 ( x )
1 1 1 f (π ) = , f ′( x ) = − 2 2 a f (x ) = x π x 1 2 f ′(π ) = − 2 , f ′′( x ) = 3 π x 2 6 f ′′(π ) = 3 , f (3) ( x ) = − 4 π x 6 (3)
f
(S )
4
x 2 x 2 3x 3 4 x 4 1! 2! 3! 4!
T4 ( x )
(3)
f
2,
(0 )
S2 2
f cc(S )
f ( x ) = xe x f (0) = 0, f '( x ) = e x + xe x
d
S 2,
( x S )2
3.86267
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
43
WORKED SOLUTIONS
Exercise 5E
f
1
f (x ) =
f ( x ) cos x f c( x ) sin x f cc( x ) cos x f (3 ) ( x ) sin x f ( 4 ) ( x ) cos x We can summarize this into the following form (similar to the powers of the imaginary unit i):
f
(n )
sin x , n 4 k 3 ° cos x , n 4 k 2 ° , k ] ® ° sin x , n 4 k 1 °¯ cos x , n 4 k
(x )
f ( n 1) (t ) n 1 x f (n 1)!
Rn ( x ) 0
( n 1)
(n )
(n 1)!, n ]
(0 ) ∞
n =1
x
(3)
f
(4)
f
0
n of
6(cos x ) 4 u ( sin x ) u sin x
(x )
8(cos x ) 5 u ( sin x )(1 2(sin x )2 )
(x )
8 sin x (cos x ) 5 (2 (sin x )2 )
x 2n
8(cos x ) 5 (2 sin x (sin x )3 )
¦ (1)n (2n )! for all x \. sin 2 x
(5)
8(cos x )5 (2 cos x 3(sin x )2 cos x ) 8(cos x )6 (10(sin x )2 5(sin x )4 2(cos x )2 3(sin x )2 (cos x )2 )
§2 2x 4 1 · 6 §2 2 · 8 x x ¨ ¨ ¸ x ... 2 ¸ u 5! ¹ 3! 5! (3!) 7! 3! © ¹ © 2
3(sin x )2 (1 (sin x )2 ))
2x 2 8x 4 32 6 128 8 22 n 1 x 2 n x x ... ( 1)n ... 2! 4! 6! 8! (2n )!
16(sin x ) 4 88(sin x )2 16 (cos x )6
4
¦ (1)n n 1
22 n 1 x 2 n (2n )!
We use the expension of e of x we input 3x 0
1 3x
f cc( x )
f (0)
3
3
n
n
9x 27 x 3 x ... ... 2! 3! n!
ln(1 x ) f c( x )
f (n ) ( x )
2
(3 x ) (3 x ) (3 x ) (3 x ) ... 0! 1! 2! 3!
e3 x
f (x )
x where instead ¦ n 0 n!
x
1 f cc( x ) (1 x )2
f cc(0)
0 f c(0)
0 f c(0 )
(3)
2 f
(0 )
1.1
d dx
(
2 (1 x )3
0 f
(0 )
0 (5)
(0 )
16
Exercise 5E
(cos(x))6
(
)
0
)
272
|x = 0
d2 2∙(sin(x))4+88∙(sin(x))2+16 |x = 0 dx2 (cos(x))6
2/99
x
f (x )
=x + 1 f cc(0)
(4)
1 f cc(0 )
16∙(sin(x))4+88∙(sin(x))2+16
1 1 x
(n 1)! , n ] (1 x )n
ln(1)
f (0 ) f
n
f
1
2
c
8(cos x )6 (10(sin x )2 5(sin x ) 4 2(1 (sin x )2 )
2x 8x 12 + 20 6 16 + 112 8 x − x + ... − + 2! 4! 6! 8! 2
f
f (x )
40(cos x )6 u ( sin x )(2sin x (sin x )3 )
(x )
sin x u sin x
§ · § · x3 x5 x7 x3 x5 x7 ... ¸ u ¨ x ... ¸ ¨x 3! 5! 7! 3! 5! 7! © ¹ © ¹
b
x x xn ... ... 2 3 n
2(cos x ) 4 (1 2(sin x )2 )
f
=
3
2(cos x )3 u ( cos x )
n 0
f (x )
xn n
f ′′( x ) = − 2(cos x ) −3 × ( − sin x ) = 2(cos x )−3 sin x
(t ) d 1
0 lim Rn
f
2 a
n =1
−
2(cos x )4 4 sin x cos x
x (n 1)!
Hence cos x
∞
¦
f ( x ) = tan x f ′( x ) = (cos x )−2
n 1
n of
n!
xn =
2
d
f n 1 (t ) n 1 x n 1 x d (n 1)! (n 1)!
lim
( n − 1) !
−
¦
2 x 3 16 x 5 272 x 7 ... 3! 5! 7! x3 2 x 5 17 x 7 + + + ... 3 15 315
1
2
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
44
WORKED SOLUTIONS e
The derivatives are best found using a computer algebra system. arctan( x 2 ); f (0 )
f (x )
2x ; f c(0) x 1
f cc( x )
2(3 x 4 1) ; f cc(0) ( x 4 1)2
f ccc( x )
8 x 3 (3 x 4 5) ; f ccc(0) ( x 4 1)3
0
12
f
(0)
0
8
1 ix (4)
(0 )
2 eix
4
0 240(21x 16 336 x 12 546 x 8 120 x 4 1) ; ( x 4 1)6
f ( 6 ) (0 )
240
a
x6 x 10 x 14 x 4n+2 + ... + (−1)n + ... + − 3 5 7 2n + 1
§ ©
§ ©
= 2ix − § ©
b
· (2 x )2 (2 x ) 4 (2 x )6 1 1§ ... ¸ ¨1 2 2© 2! 4! 6! ¹
sin x x
1
n 1
§ · x2 ix 3 x4 ix 5 x6 ix 7 ... ¸ ¨ 1 ix 2! 3! 4! 5! 6! 7! © ¹ §
+ ¨ 1 − ix − ©
22 n 1 x 2 n (2n )!
=2−
§ · 1 x3 x5 x7 ... ¸ u ¨x 3! 5! 7! © ¹ x
§ ©
§ · sin x x2 x4 x6 = lim ¨ 1 − + ... ¸ + − x →0 x → 0 x 3! 5! 7! © ¹
1
· x2 x4 x6 − + + ... ¸ 2! 4! 6! ¹
2 cos x cos x
lim
02 04 06 ... 1 3! 5! 7!
· x 2 ix 3 x 4 ix 5 x 6 ix 7 − + + − + + ... ¸ 2! 3! 4 ! 5! 6! 7! ¹
2x 2 2x 4 2x 6 + − + ... 2! 4! 6!
= 2 ¨1 −
x 2n x2 x4 x6 + ... ... + ( −1)n (2n + 1)! 3! 5! 7!
6
eix − e −ix 2i
If we add equations (1) and (2) we obtain the following:
eix eix
1 1 2x 2 23 x 4 2 2 2! 4! f
· x3 x5 x7 + ... ¸ + − 3! 5! 7! ¹
= 2i sin x sin x =
1 1 cos(2 x ) 2 2
¦ (1)n
· x2 ix 3 x 4 ix 5 x 6 ix 7 + − + + ... ¸ + − 2! 3! 4 ! 5! 6! 7! ¹
2ix 3 2ix 5 2ix 7 + ... + − 3! 5! 7!
= 2i ¨ x −
1 1 5 x x2 x3 x ... 3 30
f (x )
· x2 ix 3 x4 ix 5 x6 ix 7 − + ... ¸ − + + − 2! 3! 4! 5! 6! 7! ¹
− ¨1 − ix −
1· 1· 1 1· §1 §1 §1 ¸ x3 ¨ ¸ x4 ¨ ¸ x 5 ... © 2! 3! ¹ © 3! 3! ¹ © 5! 2! u 3! 4 ! ¹
25 x 6 ... 6!
x2 ix 3 x4 ix 5 x6 ix 7 ... 2! 3! 2! 5! 6! 7!
eix − e−ix = ¨ 1 + ix −
x x2 ¨
4
( ix )6 ( ix )7 ... 6! 7!
If we subtract equation (2) from equation (1) we obtain the following:
§ · § · x2 x3 x3 x5 x7 ... ¸ u ¨ x ... ¸ ¨1 x 2! 3! 3! 5! 7! © ¹ © ¹
( ix )0 ( ix )1 ( ix )2 ( ix )3 ( ix ) 4 ( ix )5 0! 1! 2! 3! 4! 5!
1 ix
f ( x ) e x u sin x
sin 2 x
x2 ix 3 x4 ix 5 x6 ix 7 ... 2! 3! 2! 5! 6! 7!
0
f (6) ( x )
f (x )
(ix )6 (ix )7 ... 6! 7!
f (x ) = x 2 −
3
(ix )0 (ix )1 (ix )2 (ix )3 (ix ) 4 (ix )5 0! 1! 2! 3! 4! 5!
Hence,
f
eix
2
48 x (15 x 135 x 101x 5) ; ( x 4 1)5
f (5) ( x ) (5)
1
24 x 2 (5 x 8 22 x 4 5) ; f ( x 4 1) 4
f (4) (x )
xn where instead ¦ n 0 n! f
We use the expansion of e x
of x we input ix and ix respectively.
0
f c( x )
4
5
eix e ix 2
We can solve this question by using the results from the previous question directly or using algebra.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
45
WORKED SOLUTIONS Method I
e
T
2
3
4
5
6
c
7
iT T iT T iT ... 1 iT 2! 3! 4! 5! 6! 7!
iT
T2
T4
1
f (x )
1 4 x
§ · T3 T5 T7 ... i ¨ T ... ¸ 1 2! 4! 6! 3! 5! 7! © ¹
cos T
§ 2 · ¨ ¸ ©n ¹
sin T
( 1)n
2 u 3 u ... u (n 1) n!
( 1)n
(n 1)! n!
Method II
iT
e e 2
iT
iT
e e 2
eiT e iT cos T i sin T 2i iT
iT
2e 2
f
1 a
f (x )
f
n
(1 x )
4
6
§1· ¨ 2 ¸ ( x )n, we are ¦ ¨ ¸¸ n 0¨ ©n¹
1 º 1 1ª x » , « 4 ¼ 2 2¬
f
d
1
f (x )
4
1 2x 3
1 2x 3
( 1)n f
1 ¦ ( 1)n f
1 ¦ ( 1)n n 1
f
(2n )! 1 ¦ (1)n 1 n (1)n x n (2 u n !)2 (2n 1) n 0
n 0
n
(2n )! xn u n !)2 (2n 1)
2x 3 1 x 3
2
f (x )
b
f (x )
1 (1 x )3
(1 x )3
§ 3 · ©
( 3) u ( 4) u ... u ( 3 n 1) n!
(1)n
3 u 4 u ... u (n 2) n!
( 1)n
(n 1)(n 2) 2
f
§ 1· ¨ 2 ¸ ¨¨ ¸¸ © n ¹
1 1 x2
§ 1· ¨ 2 ¸ ( x 2 )n ¦ ¨ ¸¸ n 0¨ © n ¹
1 2
f
§ 1· § 3· § 1 · ¨ ¸ u ¨ ¸ u ... u ¨ n 1¸ © 2¹ © 2¹ © 2 ¹ n!
1 u 3 u 5 u ... u (2n 1) 2n u n !
§ n 2 ·, so ¸ © 2 ¹
( 1)n
(2n )! 2 u n ! u 2n u n !
( 1)n ¨
n
f
§n 2· n ¸x © 2 ¹
x 1 x @1, 1>
1 1 1 1 ª º x 3 x » 3 , 3 « 2 2 2 2¬ ¼
( 1)n
1 3x 6 x 2 10 x 3 21x 4 28 x 5 ..
1 u 5 u 9 u ... u (4 n 3) 3n x 2n u n !
(n 2)! 2un!
(1)n
¦ (1)n
¦ (1)n ¨ n 0
¹
going to simplify the binomial coefficient § 3 · ¨ ¸ ©n¹
(1 x 2 )
¦ ¨ n ¸ x n, we are n 0
1 u 5 u 9 u ... u (4 n 3) (2 x 3 ) n 4n u n !
arcsin x f c( x )
x 1 x @1,1> f
f
1 u 5 u 9 u ... u (4 n 3) , so 4n u n !
n 1
f
§ 1· ¨ 4 ¸ 2x 3 n , ¦ ¨ ¸¸ n 0¨ © n ¹
1 4
§ 1· § 5· § 9· § 1 · ¨ ¸ u ¨ ¸ u ¨ ¸ u ... u ¨ n 1¸ © 4¹ © 4¹ © 4¹ © 4 ¹ n!
§ 1· ¨ 4 ¸ ¨¨ ¸¸ © n ¹
(2n )! , so (2n u n !)2 (2n 1)
¦ (2
we are going to the binomial coefficient
1 u 3 u 5 u ... u (2n 3) 2n u n ! (2n )! (1)n 1 n 2 u n ! u 2n u n ! u (2n 1)
1
(n 1) x 2 n
1 8 x 48 x 256 x ..
(1)n 1
( 1)
n
n 0
2
1 § 1· § 3· §1 · u ¨ ¸ u ¨ ¸ u ... u ¨ n 1 ¸ 2 © 2¹ © 2¹ ©2 ¹ n!
n 1
¦4
(n 1)( 4 )n x 2 n
4x 2 1 x 2
1 x
),
¹
( 1)n (n 1) ,
n 0
eiT
going to simplify the binomial coefficient §1· ¨2¸ ¨¨ ¸¸ ©n¹
¦ (1)
so
Exercise 5F 1 2
©
( 2) u ( 3) u ... u ( 2 n 1) n!
cos T i sin T
cos T
n 0
2 n
we can simplify this binomial coefficient
T6
eiT e iT , sin T 2
§ 2 ·
f
¦ ¨ n ¸ ( 4 x
(1 4 x 2 )2
2 2
n 0
f
f (x )
³ ¦ (2
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
n 0
( 1)n
(2n )! ( 1)n x 2 n 2 (2 u n !) n
(2n )! , so (2 u n !)2 n
f
¦
n 0
(2n )! x 2n 2 (2 u n !) n
(2n )! x 2n dx u n !)2
n
Calculus: Chapter 5
46
WORKED SOLUTIONS (2n )! x 2 n 1 ¦ n 2 n 0 ( 2 u n !) 2n 1 f
1 6
x x3
3 5 x ... 40 §1·
1
3 a
x 3 1 9
9x
§
1 2
3 ¨1 u ©
1 6
1 x
f
§x· 0¨ ¸© ¹ ©n¹
1 (1 x ) 4
n
3 u ¦¨ 2 ¸¨ ¸ ¨ ¸ 9 n
· x 1 x2 1 x3 u u ... ¸ 9 8 81 16 729 ¹
sin c u x 6 º 1 1ª ; c » , «. 6! ¼ 3 3¬ 1 f (6)(c) is maximized when c = . 3
(1 x )4
f
3.017
(c ) x 6 6!
6
§1· ¨ ¸ © 3 ¹ u sin § 1 · | 6.2337 u 10 7. ¨ ¸ 6! ©3¹
§ 4 · ©
(6)
Hence, the maximum error is
¦¨ n ¸ xn n 0
f
R5 ( x )
1 2 1 x x 3 ... 216 3888
1 1 9 0.1 | 3 u 0.1 u 0.12 6 216
9.1 b
x ·2 § 3 ¨1 ¸ 9¹ ©
3 0.00005 n t 8. (n 1)! 1 1 1 Hence, e | 1 1 ... 2.7183. 2 3 8 x3 x5 4 sin x x R5 ( x ) ; 3! 5!
ec e 1 Rn (1)
¹
2
1 4 x 10 x 20 x 3 35 x 4 ... 1 1.034
5
1 (1 0.03) 4 2
3
| 1 4 u 0.03 10 u 0.03 20 u 0.03
0.8885
ex
1 x
x2 x3 xn ... ... 2! 3! n!
1 §1· Rn ¨ ¸ 3 ©3¹
For x
Exercises 5G
1
2
1
ex
When x = –1, 11
1 1 1 1 1 1 .... 2 6 24 120 720 5040
§1·
1
³ 1 x dx ³ ¦ (1)
n
xn
x
2
¦ (1)n n 1 c .
n 0
0 .5 0.0001 n 9 , and n 1
9
2
3
ex e1
1 x 11
1
0.405435
Since Rn (1)
1
3. Hence, e < 3.
4
2 9
5
2; f c(8)
10 38 x . 27
1 ; f cc(8) 12
1 . 144
f (8) f c(8)( x 8)
1
ec , and ex is a (n 1)!
strictly increasing function,
f cc(8) ( x 8)2 2!
and x 3 | T2 ( x ) . R2 ( x )
f ccc(c ) ( x 8)3 3!
10 38 ( x 8)3 c 27 3!
2
f ( n 1) (c ) (n 1)!
5
1 32 x ; 3
f cc( x ) x 3 ; f ccc( x )
Hence, T2 ( x )
1 1 1 1 .. d 1 1 2 3 ... 2 2 2! 3!
1
x 3 ; f c( x )
f (x )
3
§1· §1· §1· §1· ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ 1 3 3 3 3 1 © ¹ © ¹ © ¹ © ¹ | 1.3956. 4! 3! 2! 3 5! 1
6
f (8)
3
x x ... 2! 3!
1
§1· © ¹
T5 ¨ ¸ 3
n 1
n 1
( 0 .5 ) n 1 (1)n ¦ n 1 n 0
1 | 0.000006 0.00005 . (5 1)! u 35
Hence,
1 1 1 1 1 | 11 | . 2 6 24 120 720 f
1
Therefore, n = 5 since
hence
Rn un 1
1
n 1
Rn ¨ ¸ 0.00005 0.00005. (n 1)! u 3n ©3¹
1 , which is approximately 0.0002, Error < 5040
2 ln(1 x )
1 ,0c . 3
and we need
The series alternates and the last term is less than 0.001
e1
n 1
1 e3 §1· Hence, Rn §¨ ·¸ u ¨ ¸ . Since e < 27, e 3 3, (n 1)! © 3 ¹ ©3¹
3
x x 1 x ... 2! 3!
e1
§1· (c ) ¨ ¸ ©3¹ (n 1)!
( n 1)
f
5( x 8)3 , 8
81c 3
where 8 < c < x. Since 7 ≤ x ≤ 9, −1 ≤ (x − 8), or |x − 8| ≤ 1, and therefore 3
8
8
x 8 d 1 . x ! 7 c 3 ! 7 3 ! 179.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
47
WORKED SOLUTIONS 5 x 8
Hence, R2 ( x )
3
8
81c 3
5 u1 0.0004 , i.e., 81 u 179
lim x o0
the approximation is accurate to within 0.0004. 7
x
sin x
³
6 0
sin x x x3
x3 x5 ... sin 2 x 3! 5!
(sin x )(sin x ) S
x2
1 4 2 x x 6 ... 3 45
2x
ª x3 1 2 7º x5 x » « 15 315 ¼ 0 ¬3
³
6 0
lim
0.045294...
S
The exact integral is,
S
sin 2 x dx
³
6 0
x o0
1 2 cos x dx 2
c
lim x o0
8 lim
³
9
S 6
ª x º « » ¬ 2835 ¼ 0
x dx 315
8 8 x , 315
§1· © ¹
R5 ¨ ¸ 2 R5 ( x ) d
9
R4 (0.2)
f
(c ) § 1 · 1 u ¨ ¸ , 0 c , and f 6! 2 2 © ¹
(6)
8 lim x o0
d
(c ) u (0.2)5 ; 0 c 0.2. Since 5!
e0.2 u (0.2)5 | 0.0000326. 5!
sin ( n ) (1) . Since all derivates of sin(x) are (n 1)!
between −1 and 1, Rn (1) d 1 7!
sin 2 x
Hence, lim
1 . By trial and (n 1)!
x o0
e
lim x o0
x3 x5 x ... 3! 5!
1 8
8 lim x 6 x o0
1
x4 2 x 6 ... 3 45
x2
x 2 sin 2 x x 2 sin 2 x
1
lim 3
x 4 452 x 6 ...
x o0
6
x 4 x3 ...
1 . 3
(sin 3 x 3 x )2 (cos 5 x 1)3
lim x o0
sin 2 3 x 3 x sin 3 x 9 x 2 cos 5 x 3 cos 2 5 x 3 cos 5 x 1 3
ª ¬
Numerator: «(3 x )2
1 0.001 5050
Exercise 5H sin x
3 x 2 7 x 4 61x 6 ... 2 8 240
1
1 3 cos x 3 cos 2 x cos3 x x6
ª ¬
162 15625
º (3 x ) 4 2(3 x )6 ...» 3 45 ¼
3 x «3 x
The degree of the polynomial is therefore 5.
1 a
(1 cos x )3 x6
x 4 2x 6 ... 3 45
(cos x )(cos2 x )
cos x
(5)
error, n = 6,
2
x2 x4 x6 ... 2! 4 ! 6!
1 x 2
(c ) 1.
1 | 0.0000217. 6 ! u 26
hence R4 (0.2) d Rn (1) d
x o0
x o0
2x 2x 3 ... 2! 4!
(cos x )(cos x )
0.000001. The actual
f (5)(x) = ex, the maximum that f (5)(c) can be in this interval is e0.2,
10
8 lim
2 lim
6
(6)
f
1
cos2 x
error is 0.0452940 − 0.045293 = 0.000001 and |R4(x)| ≤ actual error. 8
1 6
1 3 cos x 3 cos 2 x cos3 x x6
cos x
The truncated term R4 ( x ) 8
x o0
0.045293. . .
2x 2 2x 4 ... 2! 4! x
(2 2 cos x )3 x6
S
S º6 ª sin » «x 3 « » 2 4 « » ¬ ¼0
1 x2 x4 lim ... 3! x o0 5! 7!
§ · § · x2 x2 .... ¸ ¨ 1 x ... ¸ ¨1 x 2! 2! © ¹ © ¹ b lim x o0 x
§ 2 1 4 2 6· x ¸ dx ¨x x 3 45 ¹ © S 6
S 6 0
§ · x3 x5 ... ¸ x ¨x 3 5 ! ! © ¹ lim 3 x o0 x
º (3 x )3 (3 x )5 ...» (3 x )2 6 120 ¼
Denominator: ª º 3(5 x )2 7(5 x ) 4 ...» 3 «1 2 8 ¬ ¼ ª
3 «1 ¬
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
ª º (5 x ) 4 2 ...» «1 (5x ) 3 ¬ ¼
º (5 x )2 (5 x )4 ...» 1 ¼ 2 24
Calculus: Chapter 5
48
WORKED SOLUTIONS 2
y (0) y c(0)
For c = 0, y
y cc(0 ) y ccc(0 ) .... 2! 3!
Review Exercise 1
Therefore, y(0) = 0;
§ (2n )! x n 1
yc
y 2 x ; y c(0)
y cc
2 yy c 1; y cc(0 )
y ccc
2 yy cc 2( y c)2 ; y ccc(0 )
1
lim ¨ n of ¨
1 4
n of
y (5)
2 yy ( 4 ) 8 y cy ccc 6( y cc)2 ; y ( 5 ) (0 ) 1 2
§ 2n (2n 1) · ¸x © n (n 1) ¹
14
1 1
if |4x|< 1, or x º» , ª« , hence R ¼ 4 4¬
66
4 3 14 4 66 5 x x x ... 3! 4! 5!
2 a i
y(0.2) = 1.2264 (4d.p.) 3
3 x 2 y;
y cc
3x 2 y c 6 xy
y ccc
6 y 6 xy c 36 x 3 y 9 x 4 y c
For (1,1), y c
3; y cc
1 ( x 1)(3)
Hence, f cc( x ) 2 f c( x ) 5 f ( x )
b
( x 1)2 ( x 1)3 (15) (87 ) 2! 3!
x yc
x
¦ nc
n
x
n 1
f
¦ nc
n
3 a
x n 1
f
b
1 x ¦ c n x n . Moving the
summation index on the left by −1, i.e., replace n = 1 with n = 2 and n with (n − 1) we obtain
¦ (n 1) c n 1x n n 2
c0
1 u c1
c4
3 u c3
1! ; c 3
f
x e
x
2
b
f
b of
x
Hence, y ( x )
1 x
Hence, e x
2!;
1 x
c
(n 1)!, n t 2 . f
2
e x sin x
¦ (n 1)!x . n
2
x 2
The radius of convergence is lim n of
n!
lim n of
2
º
b
1
1 . 2e
x2 x3 ... 2! 3!
1 x2
1 n
Therefore the series converges only for x = 0. Hence, the differential equation does not have a convergent power series solution.
0.
d
x4 x6 .. 2! 3!
3 5 7 § · x4 x6 2 .. ¸ §¨ x x x x ... ·¸ ¨1 x 2! 3! 3! 5! 7! © ¹© ¹
n 2
(n 1)!
ª 1
lim « e x » b of ¬ 2 ¼
x3 x5 x7 ... and 3! 5! 7!
n 2
3!; ... ; c n
2
lim ³1 xe x dx
dx
sin x ex
1 x c 0 c1 x ¦ c n x n . 2 u c2
3 2 11 3 7 4 x x x .... 2 6 24
Since the integral converges, the series converges.
n
n 1
f
0.
(0 )
2x 4 ... 3
1x
n 0
n 1
(n )
f is a continuous and positive decreasing function, hence we can use the integral test. 1
1 x ¦ c n x , so that
n 1
(0 ) 5 f
x2 x3 x4 ... and 2 6 24
1 2x 2
e x cos 2 x
³ f
1 x
( n 1)
Multiplying these,
y x 1,
f
e x
cos 2 x
¦ c n x n ; y c ¦ nc n x n 1.
Since x y c
(0 ) 2 f
87
In this example we will purposely take a different approach to show you another way of solving this type of problem. 2
(n 2)
f
15; y ccc
0.
Differentiating n times and putting x = 0,
ii
1 3( x 1) 7.5( x 1)2 14.5( x 1)3
2
4e x sin 2 x 3e x cos 2 x
4e x sin 2 x 5e x cos 2 x .
Therefore, using the Taylor series expansion,
2
f cc( x )
4e x sin 2 x 3e x cos 2 x 2e x cos 2 x
6 y 54 x 3 y 27 x 6 y
Let y
e x cos 2 x 2e x sin 2 x
6 xy 9 x 4 y
3x 2 (3x 2 y ) 6 xy
6 y 6 x (3x 2 y ) 36 x 3 y 9 x 4 (3x 2 y )
4
f c( x )
1 . 4
f cc( x ) 2 f c( x ) 5( x )
yc
y
· ¸ ¸ ¹
4 x . The series is convergent
lim ¨
2 yy ccc 6 y cy cc; y ( 4 ) (0 )
1 x x2
n !(n 1)! (2n 2)! x n
u
n !(n 1)!
©
y (4)
Hence, y
Using the ratio test,
e x sin x x x3
5 3 41 5 x x ... 6 120 5 41 2 x. 6 120 2
§ e x sin x x · Hence, lim ¨¨ ¸¸ x o0 x3 © ¹
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
5 . 6
Calculus: Chapter 5
49
WORKED SOLUTIONS an
4 a i
f
(0 ) or f n!
(n )
(0 )
7
n ! an.
When x = 0, (n 2)! an 2 n 2 u n ! an
a3
12 ; a5 2u3
0.
x
x2 x3 x4 ... c 2 3 4
Since ln(1) = 0, c = 0. ln(1 x )
12 32 . u 2u3 4u5
hence
12 × 32 ... (n − 2)2 Hence, an = , n ∈ Odds, n ≥ 3. n! b
1 x x 2 x 3 x 4 ....
1 x
ln(1 x )
n 2 an , n t 1.
Hence, (n 1)(n 2)an 2 ii
1
(n )
x
x2 x3 x4 ..., 2 3 4
1 §1 x · ln ¨ ¸ 2 ©1 x ¹
Using the ratio test, for odd n,
· 1 §§ x2 x3 x4 ... ¸ ¨¨ x ¨ 2 ©© 2 3 4 ¹
n2 x2 n of ( n 1)( n 2 )
¨ x
lim
§ ©
x 2. Hence, the series is
convergent for |x|< 1, and R = 1. c
1 ln(1 x ) ln(1 x 2
6
| 1u
· 1§ 2x 3 2x 5 ... ¸ ¨ 2x 2© 3 5 ¹
=
3
S
§1· © ¹
arcsin ¨ ¸ 2
5
1 1 §1· 3 §1· u¨ ¸ ¨ ¸. 2 6 ©2¹ 40 © 2 ¹
x
| 3.139.
x3 x5 ... 3 5
1
5
lim n of
( x 3 ) n 1 2 n 1
2n n n n 1 ( x 3)
converge for
u
8
(1 x ) 3 f c( x )
f (x )
| x 3| . The series will 2
| x 3| 1 | x 3| 2 1 x 5. 2
Checking the endpoints, x = 1, ¦ n 1
( 2)
n
f
¦
2n n
n 1
( 1) n
n
.
(2)n
¦2 n 1
n
n
f
¦ n 1
1 n
f
i 0
, which diverges by the p-series test. 9 3D
S u3 180
(0 ) i x i!
6
Maclaurin series for e x
x
¦ n ! , Rn ( x ) n 0
d
M x n 1. (n 1)!
sin x
0 .2
e Rn (0.2) d 0.2n 1 0.0005. (n 1)!
f
e 3 e0.2 e0.5 2
Then, Rn (0.2) d
2 0.2n 1 0.0005 n (n 1)!
Hence, e0.2 | 1 0.2
0.22 0.23 2! 3!
1
8
(1 x ) 3 . 1 1 5 x x 2 x3; 3 9 81
S . 60
f (0) xf c(0)
f (x ) n
27
(i )
Hence, the interval of convergence is [1, 5] f
10
9
Hence, f ( x ) | ¦
2
f (0.2) | 1.06272.
This converges by the alternating series test, since the terms decrease to zero. For x = 5, f
3
(1 x ) 3 ;
(1 x ) 3 ; f ccc( x ) 3
f
1
5
2
f cc( x )
·· x2 x3 x4 ... ¸ ¸¸ 2 3 4 ¹¹
( n 1)
x3
0x
3!
x2 2!
f cc(0) ... Rn
...
x n 1 f (n 1)!
r sin x or r cos x , then f
(x )
( n 1)
( n 1)
(c )
(c )
1.
n 1
3
S 60 Rn d d 0.000005 n (n 1)!
3.
1.221 3
§S · ¨ ¸ S 60 sin 3D | © ¹ | 0.05234. 60 3!
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
50
WORKED SOLUTIONS 10 a
e x ( 1)n e x 2
f (n ) ( x )
b Coefficient of x
f
n
12 y(0)
(n )
1 ( 1) 2n !
(0 ) n!
n
x2 x4 f (x ) 1 .... 2 24 c
1 2
1
1 1 8 16 u 24
error term
f ( n 1) (c ) n 1 x (n 1)!
f( )
433 . The Lagrange 384
11 a
f (x )
y ccc
2 ª¬( y c)2 yy ccº¼ ; y ccc(0)
sin x 1 (1 sin x )2
(4)
cos x ; 1 sin x
f ccc(0)
(4)
1; f
c
ln(1 sin x )
d
y tan x cos x , f c(0 )
y cc
y sec 2 x y c tan x sin x
y
1; b
2.
x2
e³
tan xdx
y cos x
y cos x x4 ... 6
1
S 2
integrating factor
x2 x3 x4 .... 2 6 12
x2 x3 x4 ... 2 6 12
ln cos2 x
x 3 2x 5 ..., 3 15
S S x2 x 2 4
Adding, ln(1 sin 2 x )
e
yc
2
x
x
which is the Maclaurin expansion of
13 a
ln(1 sin( x ))
x
2 x 3 16 x 5 ... 3! 5!
x
y
f cc(0)
Therefore,ln(1 sin x )
2
(x )
1; f cc(0)
(0)
0
2 ª¬3 y cc y cy ccc y cy ccc yy ( 4 ) º¼
y (5)
sin x (1 sin x ) 2(1 sin x ) cos x . (1 sin x )4
0; f c(0)
cos x
³ cos
2
1 (1 cos 2 x )dx 2³
xdx
x sin 2 x c 2 4
when
S, y
0 c
S 2
x
ln cos x
x2 x4 ... 2 12
ln sec x
x2 x4 ... 2 12
y cos x
x sin 2 x S 2 4 2
y
sin 2 x S · §x ¸ 4 2¹ ©2
ln sec x x x
x x2 x ... 2 12
Hence, lim x o0
ln sec x x x
16
y = tan(x).
2
f (0)
2; y (5) (0)
2 ª¬3( y cc)2 4 y cy cc yy ( 4 ) º¼
1 . 1 sin x
cos x ;f (1 sin x )2
0
2 > 2 y cy cc y cy cc yy ccc@
y (4)
0.000136 .
sin x (1 sin x ) cos x (1 sin x )2
f ccc( x )
2 yy c; y cc(0)
1
2 >3 y cy cc yy ccc@ ; y ( 4 ) (0)
2
b
y cc
5
ln(1 sin x ). Hence, f c( x )
f cc( x )
y 2 1; y c(0)
(c ) § 1 · u¨ ¸. 120 ©2¹
From the GDC, f (5) (c ) is an increasing function, hence the expression is maximized when x = 0.5. Therefore the upper bound (e 0.5 e 0.5 ) § 1 · u¨ ¸ 2 u 120 ©2¹
yc
5
(5)
f
=0
sec x ¨
0.
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
51
WORKED SOLUTIONS 1
1 x
14
16
(1 x ) 2 2 §1· § 1·x
§1·
1
S
1
4
1
1 2 x
1 2x
17 e x
3 § 1 · § 3 · § 5 · ( 2 x ) ... 3!
¨ ¸¨ ¸¨ ¸ © 2 ¹ © 2 ¹© 2 ¹
(1 x ) (1 2 x )
2
e
2
f
¦ (1)
e
2
3
§ x2 x3 · ¨x ¸ 2 6 ¹ ... © 6 x2 x3 x2 x3 ... 2 6 2 6 5 6
1 x x 2 x 3 ...
lim x o0
e
=lim x o0
x
1)
(e 1)
lim x o0
11 e(e
e
1
x
x 1)
(e x x 1)
1 x
u (e 1)
e(e e
x
1)
x
(e x 1)
1
1
√2•π
•
∫
0.341345
1
0
–x2 e 2 dx
1 1 |n = {0,1,2,3,4,5} • √2 • π (2 • n+3) • 2n+1) • (n+1)! {0.06649,0.009974,0.001187,0.000115,0.000009,6.65969E–7}
4
(
1
√2 • π
• (–1)π •
1
(2n+1) • 2n–n!
)
n=0
When n = 4, we have the appropriate approximation, i.e., 0.341354.
Using l’hopital’s rule, x
ª ( 1)n x 2 n 1 º ¦ « ». n n 0 ¬ ( 2n 1)2 n ! ¼ 0 f
Exercise 5E
1.1 3
§ x x · x ¸ § x2 x 3 · ¨© 2 6 ¹ 1 ¨x ¸ 2 6 ¹ © 2
e(e
1 2S
n =0
1
From the GDC:
x2 x3 ... 2 6
1 x
( −1)n x 2 n dx 0 2n n !
¦³
1 0.0001. (2n 3)2n 1 (n 1)!
un 1
2
e x 1
∞
1 2π
Since this is an alternating series,
º 1 1ª » 2 , 2 « ¼ ¬
x
x 2n 2n n !
3 2 5 3 § · ¨ 1 x x x ... ¸ 2 2 © ¹
3 15 51 x x 2 x 3 ... 2 8 16
ex 1
n
Hence, P(0 < x < 1) =
1 2
n
§ x2 · § x2 · ¸ ¨ ¨ ¸ § x · 1 ¨ ¸ © 2 ¹ ... © 2 ¹ ... © 2 ¹ 2! n!
x2 2
3 2 5 3 x x ... 2 2
1 1 2 1 3 § · x ... ¸ ¨1 x x 2 8 16 © ¹
I
x2 xn ... ... n! 2!
0
1 2
1
4 . 2n 1
n 1
1 x
º 1 1ª » 2 , 2 « ¼ ¬
I
15
¦ (1)
4 5 u 10 5 n t 4, 001 2n 1
1 2
1 3 ( 2 x )2 § 1· 1 ¨ ¸ ( 2 x ) §¨ ·¸ §¨ ·¸ © 2¹ © 2 ¹ © 2 ¹ 2!
1 x
f
n 1
1 1 1 1 x x 2 x 3 ... 2 8 16
@1,1>
1 1 1 § · 4 ¨ 1 ... ¸ 3 5 7 © ¹
3 x3
1
§ · § · § · 1 ¨ ¸ x ¨ ¸¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ... ©2¹ © 2 ¹ © 2 ¹ 2! © 2 ¹ © 2 ¹ © 2 ¹ 3 !
I
1 1 1 ... S 3 5 7
1 1
1 2
© Oxford University Press 2015: this may be reproduced for class use solely for the purchaser’s institute
Calculus: Chapter 5
52