Table of contents : Numbers................................................1 The Real Numbers......................................1 Order Relation and Arithmetic on R...........................5 Machine Numbers......................................8 Rounding...........................................10 Exercises...........................................11 Real-Valued Functions......................................13 Basic Notions........................................13 Some Elementary Functions...............................17 Exercises...........................................23 Trigonometry............................................27 Trigonometric Functions at the Triangle.......................27 Extension of the Trigonometric Functions to R..................31 Cyclometric Functions..................................33 Exercises...........................................35 Complex Numbers........................................39 The Notion of Complex Numbers...........................39 The Complex Exponential Function..........................42 Mapping Properties of Complex Functions.....................44 Exercises...........................................46 Sequences and Series.......................................49 The Notion of an Infinite Sequence..........................49 The Completeness of the Set of Real Numbers...................55 Infinite Series........................................58 Supplement: Accumulation Points of Sequences..................62 Exercises...........................................65 Limits and Continuity of Functions..............................69 The Notion of Continuity.................................69 Trigonometric Limits...................................74
ix
Zeros of Continuous Functions.............................75 Exercises...........................................78
The Derivative of a Function..................................81 Motivation..........................................81 The Derivative........................................83 Interpretations of the Derivative............................87 Differentiation Rules....................................90 Numerical Differentiation................................96 Exercises..........................................101 Applications of the Derivative................................105 Curve Sketching......................................105 Newton’s Method.....................................110 Regression Line Through the Origin.........................115 Exercises..........................................118 Fractals and L-systems.....................................123 Fractals............................................124 Mandelbrot Sets......................................130 Julia Sets...........................................131 Newton’s Method in C..................................132 L-systems..........................................134 Exercises..........................................138 Antiderivatives..........................................139 Indefinite Integrals....................................139 Integration Formulas...................................142 Exercises..........................................146 Definite Integrals.........................................149 The Riemann Integral..................................149 Fundamental Theorems of Calculus.........................155 Applications of the Definite Integral.........................158 Exercises..........................................161 Taylor Series...........................................165 Taylor’s Formula.....................................165 Taylor’s Theorem.....................................169 Applications of Taylor’s Formula..........................170 Exercises..........................................173 Numerical Integration.....................................175 Quadrature Formulas...................................175 Accuracy and Efficiency................................180 Exercises..........................................182 Curves...............................................185 Parametrised Curves in the Plane...........................185 Arc Length and Curvature...............................193 Plane Curves in Polar Coordinates..........................200 Parametrised Space Curves...............................202 Exercises..........................................204 Scalar-Valued Functions of Two Variables........................209 Graph and Partial Mappings..............................209 Continuity..........................................211 Partial Derivatives....................................212 The Fréchet Derivative.................................216 Directional Derivative and Gradient.........................221 The Taylor Formula in Two Variables.......................223 Local Maxima and Minima...............................224 Exercises..........................................228 Vector-Valued Functions of Two Variables.......................231 Vector Fields and the Jacobian............................231 Newton’s Method in Two Variables.........................233 Parametric Surfaces...................................236 Exercises..........................................238 Integration of Functions of Two Variables........................241 Double Integrals......................................241 Applications of the Double Integral.........................247 The Transformation Formula.............................249 Exercises..........................................253 Linear Regression........................................255 Simple Linear Regression................................255 Rudiments of the Analysis of Variance.......................261 Multiple Linear Regression...............................265 Model Fitting and Variable Selection........................267 Exercises..........................................271 Differential Equations.....................................275 Initial Value Problems..................................275 First-Order Linear Differential Equations.....................278 Existence and Uniqueness of the Solution.....................283 Method of Power Series.................................286 Qualitative Theory....................................288 Second-Order Problems.................................290 Exercises..........................................294 Systems of Differential Equations..............................297 Systems of Linear Differential Equations.....................297 Systems of Nonlinear Differential Equations...................308 The Pendulum Equation.................................312 Exercises..........................................317 Numerical Solution of Differential Equations......................321 The Explicit Euler Method...............................321 Stability and Stiff Problems..............................324 Systems of Differential Equations..........................327 Exercises..........................................328