243 56 3MB
Spanish Pages [191]
Antonio Calomarde Palomino
Electrónica Del dispositivo al sistema
Primera edición: febrero de 2000
©
Antonio Calomarde, 2000
©
Edicions UPC, 2000 Edicions de la Universitat Politècnica de Catalunya, SL Jordi Girona Salgado 31, 08034 Barcelona Tel.: 934 016 883 Fax: 934 015 885 Edicions Virtuals: www.edicionsupc.es e-mail: [email protected]
Producció:
CPDA Av. Diagonal 647, ETSEIB, 08028 Barcelona
Depósito legal: B-2814-2000 ISBN: 84-8301-385-1 Quedan rigurosamente prohibidas, sin la autorización escrita de los titulares del copyright, bajo las sanciones establecidas en las leyes, la reproducción total o parcial de esta obra por cualquier medio o procedimiento, comprendidos la reprografía y el tratamiento informático, y la distribución de ejemplares de ella mediante alquiler o préstamo públicos, así como la exportación e importación de ejemplares para su distribución y venta fuera del ámbito de la Unión Europea.
Índice
Física del estado sólido ...................................................................................... 1 Unión PN.......................................................................................................... 13 Transistor bipolar.............................................................................................. 27 Transistor MOS ................................................................................................ 41 Aplicación con diodos....................................................................................... 53 Aplicaciones con BJT ....................................................................................... 69 Aplicaciones con MOS ................................................................................... 101 Respuesta frecuencial de los amplificadores ................................................. 123 Amplificadores multietapa .............................................................................. 139 Amplificador Operacional ............................................................................... 155 Realimentación............................................................................................... 177
© A. Calomarde, Edicions Virtuals
Transparencia 1-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
)tVLFDGHOHVWDGRVyOLGR &RQGXFFLyQ
(OHFWUyQLFD
(OHFWUyQLFD
&DUDFWHUtVWLFDVGHORV6HPLFRQGXFWRUHV • 6HPLFRQGXFWRULQWUtQVHFR60&SXUR6L*H*D$V – %DQGDGHYDOHQFLDHOHFWURQHV
• &DUDFWHUtVWLFDVD. – &DGDiWRPRHVWiURGHDGRGHHOHFWURQHVH – /RVHGHODEDQGDGHYDOHQFLDHVWiQFRPSDUWLGRVFRQORViWRPRV YHFLQRV – &DGDSDUGHHFRPSDUWLGRVIRUPDQXQHQODFHFRYDOHQWH – 7RGRVORVHHVWiQHQODEDQGDGHYDOHQFLD%9 +4
+4
+4
+4
+4
+4
+4
+4
+4
(VTXHPDELGLPHQVLRQDO 60&D.
© A. Calomarde, Edicions Virtuals
Transparencia 1-2
(OHFWUyQLFD
*HQHUDFLyQGHSDUHVHOHFWUyQKXHFR +4
+4
+4
+4
+4
+4
e-
h+ +4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
7!.
• $7!.HOHVDOWDDODEDQGDGHFRQGXFFLyQ • /DFRQGXFFLyQVHSURGXFLUiSRU – HHQODEDQGDGHFRQGXFFLyQ – KHQODEDQGDGHYDOHQFLD
w Nº de electrones en la BC = Nº de huecos en la BV © A. Calomarde, Edicions Virtuals
Transparencia 1-3
(OHFWUyQLFD
0RYLPLHQWRGHOKXHFR +4
+4
+4
+4
+4
+4
+4
+4
+4
+4
h+ +4
+4
h+ +4
+4
+4
+4
+4
+4
• 3XHGHFRQVLGHUDUVHHOPRYLPLHQWRGHOKGHELGRD ODWUDQVIHUHQFLDGHODLRQL]DFLyQDRWURiWRPRD FDXVDGHOVDOWRGHOH
© A. Calomarde, Edicions Virtuals
Transparencia 1-4
(OHFWUyQLFD
60&H[WUtQVHFRV • 60&LQWUtQVHFR60&FULVWDOLQRVLQLPSXUH]DV • 60&H[WUtQVHFR60&FULVWDOLQRHQHOTXHVHKDQ LQWURGXFLGRLPSXUH]DVGHXQDIRUPDFRQWURODGD
,PSXUH]DVJUXSR,,,60&WLSR3 %$O,Q*D 0D\RUQ~PHURGHKXHFRV³OLEUHV´
© A. Calomarde, Edicions Virtuals
,PSXUH]DVJUXSR960&WLSR1 3$V6E 0D\RUQ~PHURGHHOHFWURQHVHQ%&
Transparencia 1-5
(OHFWUyQLFD
60&H[WUtQVHFRV Tipo N
QHOHFWURQHVOLEUHV
Tipo P
+4
+4
+4
+4
+4
+4
+4
+5
+4
+4
+3
+4
+4
+4
+4
+4
+4
,RQL]DFLyQLPSXUH]DV5RWXUD
QHOHFWURQHVOLEUHV
+4 5RWXUDHQODFHVFRYDOHQWHV
HQODFHVFRYDOHQWHV QKXHFRVOLEUHV
5RWXUDHQODFHVFRYDOHQWHV
QKXHFRVOLEUHV
,RQL]DFLyQLPSXUH]DV5RWXUD HQODFHVFRYDOHQWHV
QHOHFWURQHVOLEUHV!QKXHFRVOLEUHV
QHOHFWURQHVOLEUHVQKXHFRVOLEUHV
© A. Calomarde, Edicions Virtuals
Transparencia 1-6
(OHFWUyQLFD
5HODFLyQHQWUHFRQFHQWUDFLRQHV HQHTXLOLEULRGHORVSRUWDGRUHV • /H\GHDFFLyQGHPDVDV » Q FRQFHQWUDFLyQGHHOHFWURQHVOLEUHVQHOHFWURQHVYROXPHQ » S FRQFHQWUDFLyQGHKXHFRVOLEUHVQKXHFRVYROXPHQ – $XQDWHPSHUDWXUDGDGDODJHQHUDFLyQGHSRUWDGRUHV\OD UHFRPELQDFLyQVHSURGXFLUiQDODPLVPDYHORFLGDG » /DVFRQFHQWUDFLRQHVQ\SVHPDQWHQGUiQFRQVWDQWHVHQHOWLHPSR – (QXQVHPLFRQGXFWRULQWULQVHFRWHQGUHPRV n = p = ni GRQGHQLHVODFRQFHQWUDFLyQGHH\KHQXQPDWHULDOLQWUtQVHFR 3XHGHGHPRVWUDUVHTXH
QL2 (7 ) = $ ⋅ 7 3 ⋅ H © A. Calomarde, Edicions Virtuals
− ( JR
.7
Transparencia 1-7
(OHFWUyQLFD – 3DUDHO*H\HO6L
QL2 (7 ) = 3,1 ⋅1032 ⋅ 7 3 ⋅ H −9100 / 7 FP −6 *H QL2 (7 ) = 1,5 ⋅1033 ⋅ 7 3 ⋅ H −14000 / 7 FP −6 6L
– 3XHGHGHPRVWUDUVHTXHSDUDFXDOTXLHUVHPLFRQGXFWRUVH FXPSOHODUHODFLyQ
Q ⋅ S = Q 2 (7 ) L
– TXHHVOD/( p » 6HPLFRQGXFWRUH[WUtQVHFRWLSRSp >> n – 5HODFLyQHQWUHSRUWDGRUHV
Q ⋅ S = QL2 (7 )
1' + S = 1$ + Q –&RUULHQWHVHQXQ60& »3RUDUUDVWUHSURYRFDGDSRUHOFDPSRHOpFWULFR »3RUGLIXVLyQSURYRFDGDSRUODGLIHUHQFLDGHFRQFHQWUDFLRQHV
© A. Calomarde, Edicions Virtuals
Transparencia 1-20
© A. Calomarde, Edicions Virtuals
Transparencia 2-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
8QLyQ31
(OHFWUyQLFD
(OHFWUyQLFD
8QLyQ31VLQSRODUL]DU 1'1$ =RQD3
=RQD1
&RQFHQWUDFLyQGH LPSXUH]DV
[
QQ
SS QS
&RQFHQWUDFLyQGH SRUWDGRUHVDQWHV GHODXQLyQ
SQ [
KXHFRVPD\RULWDULRV HOHFWURQHVPLQRULWDULRV
HOHFWURQHVPD\RULWDULRV KXHFRVPLQRULWDULRV
© A. Calomarde, Edicions Virtuals
Transparencia 2-2
(OHFWUyQLFD V R L U D W L U R X \ I D L ' P H G Q y L V
Q
[
H G H U W V D U U $
[
[
V R L U D W L U R Q L P
[
Q
Q
S
2
9
[
ρ
H
ω
Q
ω
Q
$
1 T
[ (
0
(
'
[ 9
1 T
S
S
S
ω
S
ω
S
ω
K
ω
ω
Q
ω
Q
S
S
Q
H G O L I U H 3
R G D S R '
© A. Calomarde, Edicions Virtuals
H G G D G L V
D W H Q D Q J H U D ' F
R S P D &
R F L U W F p O
(
O D L F Q H W
R 3
Transparencia 2-3
(OHFWUyQLFD
'HQVLGDGGHFDUJD –3XHGHDGPLWLUVHTXHODVFDUJDVHQOD]RQD1VRQ ρ(x) = q [ND(x) - nn(x)] –> 97
,
© A. Calomarde, Edicions Virtuals
Transparencia 2-22
(OHFWUyQLFD
0HFDQLVPRVGHUXSWXUD • $ODXPHQWDUODWHQVLyQLQYHUVDGHSRODUL]DFLyQ OOHJDXQSXQWRHQHOFXDOODFRUULHQWHDXPHQWDXQ HOHYDGRLQFUHPHQWRGHELGRDGRVPHFDQLVPRV , GLIHUHQWHV – (IHFWR]HQHU – (IHFWRDYDODQFKD
9= 9
© A. Calomarde, Edicions Virtuals
Transparencia 2-23
(OHFWUyQLFD – 5XSWXUD]HQHU » 3UHGRPLQDHQGLRGRVFRQWHQVLyQGHUXSWXUDEDMD » 3URGXFLGRHQXQLRQHVGRQGHORVGRSDGRVVRQHOHYDGRVORV FXDOHVSURGXFHQXQHOHYDGRFDPSRHOpFWULFRTXHHVFDSD] GHDUUDQFDUHOHFWURQHVGHORVHQODFHVFRYDOHQWHVHQOD]FH » 6HGHPXHVWUDTXHVHSURGXFHSDUDWHQVLRQHVTXHFXPSOHQ VZ ≤ 4Ego/q – 5XSWXUDDYDODQFKD » 3UHGRPLQDHQGLRGRVFRQWHQVLyQGHUXSWXUDDOWD » 3URGXFLGRSRUODDFHOHUDFLyQGHORVHHQOD]FHGHELGRD ODSUHVHQFLDGHOFDPSRHOpFWULFR/DHQHUJtDFLQpWLFDTXH DGTXLHUHQODHPSOHDQSDUDLRQL]DUSRULPSDFWRiWRPRVGHOD ]FHJHQHUDQGRQXHYRVSRUWDGRUHVTXHVHDFHOHUDQDVX YH]GDQGROXJDUDXQHIHFWRPXOWLSOLFDWLYR » 6HGHPXHVWUDTXHVHSURGXFHSDUDWHQVLRQHVTXHFXPSOHQ VZ ≥ 6Ego/q
Ego= Energía del gap
© A. Calomarde, Edicions Virtuals
Transparencia 2-24
(OHFWUyQLFD
&RQFOXVLRQHV • 8QLyQ31'LVSRVLWLYRIRUPDGRSRUXQH[WUHPRSRU 60&WLSR1\HQHORWUR60&WLSR3 • $SDUHFHQHQODXQLyQPHFDQLVPRVGH – – – –
'LIXVLyQGHPD\RULWDULRV 'HQVLGDGGHFDUJDQRQXOD &DPSRHOpFWULFRTXHSURYRFDDUUDVWUHGHPLQRULWDULRV 3RWHQFLDOGHFRQWDFWR
• 6XFDUDFWHUtVWLFD,9HV ,'
9' = , 6 H 97 − 1
– &RQXQDIXHUWHGHSHQGHQFLDGHODFRUULHQWHFRQODWHPSHUDWXUD © A. Calomarde, Edicions Virtuals
Transparencia 2-25
(OHFWUyQLFD
• (QUpJLPHQGLQiPLFRDSDUHFHQWUHVHIHFWRV – &DSDFLGDGGHWUDQVLFLyQ – &DSDFLGDGGHGLIXVLyQ – 5HVLVWHQFLDGLQiPLFD
• &RQWHQVLRQHVLQYHUVDVHOHYDGDVDSDUHFHHO HIHFWR]HQHURDYDODQFKD • $SDUWLUGHDKRUDOHGHQRPLQDUHPRV',2'2\VX UHSUHVHQWDFLyQHVTXHPiWLFDVHUi
© A. Calomarde, Edicions Virtuals
]RQD3
]RQD1
È12'2
&È72'2
Transparencia 2-26
© A. Calomarde, Edicions Virtuals
Transparencia 3-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
7UDQVLVWRU%LSRODU
(OHFWUyQLFD
(OHFWUyQLFD
,QWURGXFFLyQ • 'LVSRVLWLYREDVDGRHQGRVXQLRQHV31 – WLSRV Unión Emisora Emisor
Unión Emisora
Unión Colectora
P
N
Emisor
P
Unión Colectora
N
Base
P
N
Colector
Base
BJT PNP
BJT NPN Colector
Colector Base
Base
Emisor
Emisor © A. Calomarde, Edicions Virtuals
Transparencia 3-2
(OHFWUyQLFD
3RODUL]DFLRQHV • ([LVWLUiQWLSRVGHSRODUL]DFLyQ 3RODUL]DFLyQ 6DWXUDFLyQ $FWLYD $FWLYDLQYHUVD &RUWH
8QLyQHPLVRUD 'LUHFWD 'LUHFWD ,QYHUVD ,QYHUVD
8QLyQ&ROHFWRUD 'LUHFWD ,QYHUVD 'LUHFWD ,QYHUVD
• 7HQVLRQHV\FRUULHQWHVHQSRODUL]DFLyQDFWLYD VBC
VCB IC
IB
VEB
© A. Calomarde, Edicions Virtuals
IC IB
IE
VEC VBE
IE
VCE
Transparencia 3-3
(OHFWUyQLFD
3RODUL]DFLyQHQDFWLYD • (OHPLVRUVXHOHHVWDUDOWDPHQWH GRSDGR\ODEDVHVXHOHVHUHVWUHFKD
p+
n++
n
» 2EWHQHPRVXQDLQ\HFFLyQGHSRUWDGRUHV HQHOFROHFWRUSURYHQLHQWHVGHOHPLVRU GHELGRDODJUDQGLIXVLyQGHSRUWDGRUHV PLQRULWDULRVHQODEDVH e
-
0 ωE
ωB
© A. Calomarde, Edicions Virtuals
ωC
Transparencia 3-4
(OHFWUyQLFD
&RUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
IBB
ICN
IB
r r r r r
IEP&RUULHQWHGHKXHFRVHQHOHPLVRU IEN&RUULHQWHGHHOHFWURQHVHQHOHPLVRU ICP&RUULHQWHGHKXHFRVHQHOFROHFWRU ICN&RUULHQWHGHHOHFWURQHVHQHOFROHFWRU IBB+XHFRVUHFRPELQDGRVHQODEDVH IE =IEP + IEN IC =ICP + ICN IBB =IEP - ICP
© A. Calomarde, Edicions Virtuals
Transparencia 3-5
(OHFWUyQLFD
'HQVLGDGGHSRUWDGRUHVPLQRULWDULRV • %DVH – $SDUWLUGHODFRUULHQWHGHGLIXVLyQ GHPLQRULWDULRV 2 '3 δ S2 Q − SQ − SQ0 = 0 τS δ[ –/DFXDOWHQGUiXQDVROXFLyQGHOWLSR SQ ( [ ) = SQ 0 + F1H
[
/S
+ F2 H
−[
B
E
ω
0
-XE
C
XC
ωB
/S
–4XHFRQODVVLJXLHQWHVFRQGLFLRQHVGHFRQWRUQR 9 S (0 ) = S H (% 97 Q0 Q SQ (ω ) = 0 –6HREWLHQH 9(%
SQ ( [ ) = SQ 0H
97
[ ω − [ VLQK VLQK / /3 3 + SQ 0 1 − − 1 ω ω VLQK / VLQK / 3 3
© A. Calomarde, Edicions Virtuals
Transparencia 3-6
(OHFWUyQLFD
'HQVLGDGGHSRUWDGRUHVPLQRULWDULRV – 3XHGHQGLIHUHQFLDUVHGRVFDVRV ω / >>&RPSRUWDPLHQWRH[SRQHQFLDO 3 ω IB1>IB0
ACTIVA
VBE
ACTIVA INVERSA
CORTE
VCE
££6LPLODUDXQD XQLyQ31HQGLUHFWD
© A. Calomarde, Edicions Virtuals
Transparencia 3-24
(OHFWUyQLFD
&RQFOXVLRQHV • WLSRVGHWUDQVLVWRUELSRODU
NPN
PNP
Colector
Colector Base
Base
Emisor
Emisor
– &XDWURWLSRVGHIXQFLRQDPLHQWR » $FWLYD » &RUWH » 6DWXUDFLyQ » $FWLYDLQYHUVD – (QDFWLYD ,& ,(
= α 0 + , &%2 = ,& + , %
= β, % © A. Calomarde, Edicions Virtuals ,&
+ , &(2 Transparencia 3-25
© A. Calomarde, Edicions Virtuals
Transparencia 4-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
7UDQVLVWRU026
(OHFWUyQLFD
(OHFWUyQLFD
,QWURGXFFLyQ • (VWiIRUPDGRSRUXQDHVWUXFWXUDGH0HWDOÏ[LGR 6HPLFRQGXFWRU026 • 6LQGXGDDOJXQDHVHOGLVSRVLWLYRPiVXWLOL]DGRHQ HOHFWUyQLFDDFWXDOPHQWH • /DJUDQYHQWDMDTXHSUHVHQWDUHVSHFWRDO%-7HV VXJUDQFDSDFLGDGGHLQWHJUDFLyQ • 3DUDVXHVWXGLRHOXGLUHPRVODWHRUtDGHEDQGDV\ XVDUHPRVHOSRWHQFLDOGHFRQWDFWR\HOSULPHU SDVRVHUiFRQRFHUODHVWUXFWXUD026SDUD GHVSXpVHVWXGLDUHOWUDQVLVWRU026
© A. Calomarde, Edicions Virtuals
Transparencia 4-2
(OHFWUyQLFD
3RWHQFLDOGHFRQWDFWR • 'RVPDWHULDOHVGHGLVWLQWDFRQFHQWUDFLyQGH SRUWDGRUHVDOSRQHUORVHQFRQWDFWRJHQHUDQHO OODPDGRSRWHQFLDOGHFRQWDFWR Fe Cu – (OHJLPRVXQPDWHULDOGHUHIHUHQFLDHO YDFtR\SRGUHPRVGHILQLUHOSRWHQFLDOGH FRQWDFWRGHOPDWHULDOUHVSHFWRGHOYDFtR Φ 0 1,9$&,2 = Φ 0 1 − Φ9$&,2 = Φ 0 1
Vo
– 6LFRQHFWiUDPRVHQVHULHYDULRVPDWHULDOHVWHQGUtDPRV
M1
M2
M3
M4
ΦM1,M2 ΦM2,M3 ΦM3,M4 Φ 0 1, 0Q = Φ 0 1, 0 2 + Φ 0 2, 0 3 +
MN- 1 MN
K
ΦMn-1,Mn
Φ 0Q −1, 0Q = = (Φ 0 1 − Φ 0 2 ) + (Φ 0 2 − Φ 0 3 ) + + (Φ 0Q −1 − Φ 0Q ) = = Φ 0 1 − Φ 0Q
© A. Calomarde, Edicions Virtuals
K
Transparencia 4-3
(OHFWUyQLFD
7HQVLyQGHEDQGDSODQD Estructura M.O.S.
– $SDUHFHUiXQSRWHQFLDOHQWUH ODSXHUWD\HOVXEVWUDWRTXHVHUi
Metal Óxido (SiO2)
Puerta
EXON
SRWHQFLDO = Φ *$7( −Φ %8/. ≡ Φ 06 ∑ JDWH GHFRQWDFWR
Si (P ó N) Sustrato
– 6LΦMS≠ DSDUHFHUiQFDUJDV DDPERVODGRVGHOy[LGRVLPLODUDODFDSDFLWDQFLDCV = Q – (VWDVFDUJDVGHVDSDUHFHUiQVLDSOLFDPRVXQDWHQVLyQH[WHUQDVGB TXHVHD H[DFWDPHQWHLJXDODΦMSSHURGHVLJQRFRQWUDULR
9*% = Φ 06 – (VWRQRHVWRWDOPHQWHFLHUWRGHELGRDTXHH[LVWHQFDUJDVSURYHQLHQWHVGH – LPSXUH]DVHQODLQWHUIDFHy[LGR60&\HQHOy[LGR
© A. Calomarde, Edicions Virtuals
Transparencia 4-4
(OHFWUyQLFD – (VWDVFDUJDV4 SURYRFDUiQTXHODWHQVLyQSDUDKDFHU GHVDSDUHFHUWRGDVODVFDUJDVVHDDKRUD 4 9*% = Φ 06 + Φ 2; = Φ 06 − 0 &0
4XHSRUGHILQLFLyQHVOD7(16,Ï1'(%$1'$3/$1$ 9)% = Φ 06 −
40 &0
9DORUHVWtSLFRV Q0/C0 = - 0.45v
ΦMS
ΦM(Al) = 4.1 v ΦM(Poli N++) = 4.15 v; ΦM(Poli P++) = 5.25 v ΦS= 4.71 VT ln N/ni ≅0.29 v VFB SMC P(NA=1015) SMC N(ND=1015)
© A. Calomarde, Edicions Virtuals
Al -1.35 -0.77
Poli N++ -1.3 -0.72
-Q0/C0
Poli P++ -0.2 +0.38
Transparencia 4-5
(OHFWUyQLFD
%DODQFHGHSRWHQFLDO\FDUJDSDUD XQDWHQVLyQH[WHUQD V GB
w VGB =ΦMS +ΦOX +ΦS – &XDQGRKD\DXQDYDULDFLyQGH9
HVWDVHUi
*%
DEVRUELGDSRUΦOX \RΦS SRU\DTXHΦMS HVFRQVWDQWH
QG Q0 z.c.e.
» ∆VGB =∆ΦOX +∆ΦS
ΦOX ΦS
QSC
w Q’G + Q’0 + Q’SC = 03DUDQHXWUDOLGDG – 6LKD\XQLQFUHPHQWRGHFDUJDHQHO³JDWH´VHUi – DEVRUELGRSRUQSC\DTXHQ0HVFRQVWDQWH » ∆Q’G +∆Q’SC =
© A. Calomarde, Edicions Virtuals
Transparencia 4-6
(OHFWUyQLFD
(IHFWRGHVGB\VFBHQODVXSHUILFLH GHOVHPLFRQGXFWRU
• &RQVLGHUDUHPRVVXEVWUDWRWLSRP\JDWHGHAl (VFB =v) w VGB < VFB ⇒$&808/$&,Ï1 – /DFDUJDDGLFLRQDOHQ³JDWH´HVQHJDWLYDSRUORTXHDWUDHDODVXSHUILFLHGHO 60&FDUJDSRVLWLYDGHO6L\H[LVWHXQD³DFXPXODFLyQ´GHKXHFRV
− ΦS < 0 r Q’SC > 0
w VGB = - v = VFB⇒&RQGLFLyQGH%$1'$3/$1$ − ΦS = 0 r Q’G = - Q’0⇒Q’SC = 0
w VGB > VFB = -⇒'(3/(;,Ï1 – /DFDUJDHQ³JDWH´HVSRVLWLYDSRUORTXHDWUDHDODVXSHUILFLHGHO60&FDUJD QHJDWLYDGHO6L\H[LVWHXQD³GHSOH[LyQ´R]FHHQODVXSHUILFLHGHO60&
− ΦS > 0 , Q’SC < 0 © A. Calomarde, Edicions Virtuals
Transparencia 4-7
(OHFWUyQLFD
w VGB >> VFB⇒,19(56,Ï1 – /DFDUJDHQ³JDWH´HVSRVLWLYD\HOHYDGDSRUORTXHDWUDHDOD VXSHUILFLHGHO60&XQDHOHYDGDFDUJDQHJDWLYDHQODVXSHUILFLH GHWDOPDQHUDTXHqNAHVLQVXILFLHQWHSDUDFRPSHQVDUODFDUJD HQHOJDWH\DSDUHFHXQDEDQGDGHHHQODVXSHUILFLHGHO60& TXHDODXPHQWDUVGBKDUiTXHSUHGRPLQHQORVe-VREUHORVh+
− ΦS > 0 , Q’SC < 0
Balance de cargas para diferentes tensiones de V GB y SMC tipo P O
M
S
M
O
S
O
M
S
QG
h+
O
M
S
QG
QG
qNa
Acumulación QG < 0
Banda Plana VGB = VFB
Deplexión VGB > VFB
Inversión VGB >> VFB
VG B © A. Calomarde, Edicions Virtuals
Transparencia 4-8
(OHFWUyQLFD
&DUJDOLEUHLQYHUWLGD – /DFDUJDOLEUHLQYHUWLGDFRUUHVSRQGHDODFDUJDHQODVXSHUILFLH GHOVHPLFRQGXFWRUFXDQGRHO026HVWiHQLQYHUVLyQ – 6HJ~QODUHODFLyQGH%ROW]PDQ
Qsup = QEXON H
Φ6
97
– &RPR
S% Q% = QL2 \ S% ≅ 1 $ ⇒Q% ≅
QL2 1$
– 7HQHPRVTXH
Qsup =
QL2 Φ 6 97 H 1$
© A. Calomarde, Edicions Virtuals
Transparencia 4-9
(OHFWUyQLFD – /DH[SUHVLyQGHOSRWHQFLDOGHFRQWDFWRGHO60&3HV Φ3 1$ 1 Φ ⇒ $ = H 97 3 = 97 ln QL QL
– 6XVWLWX\HQGR HQ REWHQHPRV Qsup = QL H
(Φ 6 − Φ 3 ) 9
ns(log)
7
– 0
VT0
V’T
© A. Calomarde, Edicions Virtuals
VGS
VDS
Transparencia 4-19
(OHFWUyQLFD
([SUHVLRQHVI-VVLPSOLILFDGDV – 3XHGHQ REWHQHUVH H[SUHVLRQHV PiV VHQFLOODV SDUD HO FiOFXOR µD PDQR¶ GH ODV H[SUHVLRQHVI-VWHQLHQGRHQFXHQWDODWHQVLyQVTO\REWHQLHQGRXQDUHODFLRQI-V SDUDFDGDXQDGHODV]RQDVGHIXQFLRQDPLHQWR IDS – 3DUDOD]RQDOLQHDO β VGS3 >V GS2 2 ,' = 2(9*6 − 97 0 )9'6 − 9'6 2
[
]
– 4XHHVYiOLGDSDUDWHQVLRQHV VDS < VGS - VT0 – 9DORUTXHFRUUHVSRQGHDODWHQVLyQ GUHQDGRUVXUWLGRUSDUDODFXDOHO WUDQVLVWRUHVWiHQVDWXUDFLyQ – $VtSDUDHOUpJLPHQGHVDWXUDFLyQ , ' , VDW
= , ' (9'6 = 9'6 , VDW ) =
VGS2 >VGS 1
VGS1 VDS =V GS-VTO
β (9*6 − 97 0 )2 2
VDS
.1 = β
– (QDOJXQRVOLEURVVHXWLOL]DKnR(Kp)HQOXJDUGHβ
2
© A. Calomarde, Edicions Virtuals
=
µ&2; ω 2/
Transparencia 4-20
(OHFWUyQLFD
2WURVWLSRVGH026 NMOS de acumulación(enrequecimiento) NMOS de deplexión(empobrecimiento). Puerta
Fuente
Drenador
n+
Puerta
Fuente
n+
n+
p
Drenador n+
Canal N
p
Substrato
PMOS
NMOS D
L'
B Y+ '6
G
+
-
Y6* +
S
D
+
B
G
-
S
D
D
L'
+
Y' 6
G
+
Y*6 -
© A. Calomarde, Edicions Virtuals
G
-
D
L'
Y 6* +
S
+
B
G
Y6'
D
D
Y6'
G
-
Y* 6 - S
+
-
PMOS
-
+
S
Y6* +
S
L'
L'
B Y+ '6
Y6'
Y *6 -
VGS =0
Substrato NMOS
L'
+
Y'6
G
+
Y *6 -
S
Y 6* +
+
-
Y6'
G
-
S
L'
D
L'
Transparencia 4-21
© A. Calomarde, Edicions Virtuals
Transparencia 5-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
$SOLFDFLRQHVFRQ'LRGRV
(OHFWUyQLFD
(OHFWUyQLFD
&RQFHSWRGHPRGHOR ID
• &DUDFWHUtVWLFDGHOGLRGR 9
' , ' = , 6 H 97 − 1
– $OWDPHQWHQROLQHDO – 'HEHUiEXVFDUVHXQDVROXFLyQSDUD SRGHUUHDOL]DUDQiOLVLVGHFLUFXLWRV FRQGLRGRV
• 6ROXFLyQ – 8WLOL]DUPRGHORVHTXLYDOHQWHVTXH GHQXQUHVXOWDGREDVWDQWH DSUR[LPDGRDOUHDOSHURTXH SHUPLWDQXQDQiOLVLVVHQFLOOR
VD
© A. Calomarde, Edicions Virtuals
Transparencia 5-2
(OHFWUyQLFD
7LSRVGHPRGHORV • +DELWXDOPHQWH\GHELGRDODVFDUDFWHUtVWLFDVGHODV VHxDOHV\HOFRPSRUWDPLHQWRGHORVGLVSRVLWLYRVVHVXHOHQ REWHQHUGRVPRGHORV – &RPSRUWDPLHQWRHQ'& – &RPSRUWDPLHQWRHQ$&
• (ODQiOLVLVVHKDFHSRUVHSDUDGR\HOUHVXOWDGRHVODVXPD GHORVGRV vd
Modelo en AC
id
vD = f (iD )
iD
iD
t VD t
ID
VD = f (ID) t
© A. Calomarde, Edicions Virtuals
t Modelo en DC
t t
Transparencia 5-3
(OHFWUyQLFD
0RGHORHQ'&SDUDHO'LRGR • 8WLOL]DUHPRVGLIHUHQWHVJUDGRVGHSUHFLVLyQSDUD ODDSUR[LPDFLyQ i
i
i
DON
m=1/RD
DOFF Vγ
Vγ
i
i
i Vγ
+
v
+
-
v
-
+
i=0 para v ≤ Vγ v=Vγ para i ≥ 0
i=0 para v ≤ 0 v=0 para i ≥ 0
RD
Vγ
v
-
i=0 para v ≤ Vγ i=(V-Vγ)/RD para v ≥ Vγ
© A. Calomarde, Edicions Virtuals
Transparencia 5-4
(OHFWUyQLFD
• 6LPLODUPHQWHSDUDHOGLRGR]HQHU i VZ
RR
i m=1/RD RD
Vγ +
VZ Vγ m=1/RR
v
-
i=0 para VZ ≤ v ≤ Vg i=(V-Vg)/RD para v ≥ Vg i=(V-VZ)/RR para VZ ≥ v
• &RQHVWDVVXEVWLWXFLRQHVDXQTXHHOQGH HOHPHQWRVDXPHQWDODUHVROXFLyQHVPiVVHQFLOOD © A. Calomarde, Edicions Virtuals
Transparencia 5-5
(OHFWUyQLFD
• (MHPSOR – 6XEVWLWXLUGLRGRVUHDOHVSRUGLRGRVLGHDOHV +
+
R D1
+
vi v1
vo
vi
-
-
v2
-
+
R
D2
D1
D2
vg1
vg2
v1
v2 -
– (QODPD\RUtDGHFDVRVFRQVLGHUDUHPRVRD = 0
© A. Calomarde, Edicions Virtuals
Transparencia 5-6
(OHFWUyQLFD 3ODQWHDUODVHFXDFLRQHVGHPDOODFRQVLGHUDQGR D /DFRUULHQWHVHQORVGLRGRVLQGHSHQGLHQWHV E 8QDFDtGDGHWHQVLyQHQORVGLRGRV
iD1-iD2
vi
R
iD1 D1
D2
vγ1
vγ2
v1
v2
iD2
vo
YL = (L'1 − L' 2 )5 + Y'1 + Yγ 1 + Y1
YL = (L'1 − L' 2 )5 − Y' 2 − Yγ 2 − Y 2
© A. Calomarde, Edicions Virtuals
vo
Transparencia 5-7
(OHFWUyQLFD 3ODQWHDUWRGDVODVVLWXDFLRQHVSRVLEOHVSDUDORVGLRGRV\ UHVROYHUSDUDFDGDXQRGHORVFDVRV D1 D2 OFF OFF OFF ON ON OFF ON ON (QFDGDXQRGHORVFDVRVSDUWLFXODUL]DUFDGDXQDGHODV VLWXDFLRQHVGHORVGLRGRV D1 OFF⇒iD1 = 0 D2 OFF⇒iD2 = 0
YL = Y'1 + Y1 + Yγ 1 YL = −Y' 2 − Y 2 − Yγ 2
© A. Calomarde, Edicions Virtuals
Transparencia 5-8
(OHFWUyQLFD 2EWHQHUODVFRQGLFLRQHVSDUDODVFXDOHVVHGDUiHOFDVR FRQVLGHUDGR D1 OFF⇒vD1 ≤ 0 D2 OFF⇒vD2 ≤ 0 3RUORWDQWR\GHODVHFXDFLRQHVGHPDOODSDUWLFXODUL]DGDV
Y'1 ≤ 0 ⇒ YL ≤ Y1 + Yγ 1 Y' 2 ≤ 0 ⇒ YL ≥ −Y 2 − Yγ 2 > 9 Y' = L' + , 6 L' 97 ,6 ⋅ H
• 3RUORTXHHOPRGHORHQSHTXHxDVHxDOTXHGD WHQLHQGRHQFXHQWDODVFDSDFLGDGHVGHWUDQFLVLyQ \GLIXVLyQ CD
rd CJ © A. Calomarde, Edicions Virtuals
Transparencia 5-12
(OHFWUyQLFD
)XHQWHVGHDOLPHQWDFLyQ • /DPD\RUtDGHHTXLSRVHOHFWUyQLFRVQHFHVLWDQ IXHQWHGHDOLPHQWDFLyQ 220vef/50Hz
Fuente de Alimentación
M1
M2
M3
• (VGHELGRDTXHODWHQVLyQGHUHGQRHVDSURSLDGD SDUDHOIXQFLRQDPLHQWRGHHVWRVHTXLSRV HOHFWUyQLFRV
© A. Calomarde, Edicions Virtuals
Transparencia 5-13
(OHFWUyQLFD
3DUWHVGHXQDIXHQWHGHDOLPHQWDFLyQ • /DWUDQVIRUPDFLyQVHUHDOL]DHQYDULRVSDVRV
Y+]
5HFWLILFDFLyQ
)LOWUDGR
5HJXODFLyQ
– (QFDGDXQRGHORVSDVRVVHREWLHQHXQDPD\RUDSUR[LPDFLyQ DOUHVXOWDGRGHVHDGR – (QDOJXQRVFDVRVHOUHJXODGRUVHVXHOHRPLWLU © A. Calomarde, Edicions Virtuals
Transparencia 5-14
(OHFWUyQLFD
3URSLHGDGHVGHXQD)$ • $ILQGHSRGHUVHOHFFLRQDURGLVHxDU XQDEXHQD IXHQWHGHDOLPHQWDFLyQGHEHQFRQRFHUVHORV SDUiPHWURVTXHODFDUDFWHUL]DQ – (OSULPHUIDFWRUGHPpULWRFRUUHVSRQGHUiDOQLYHOGHFDTXH TXHVHREWLHQHDODVDOLGD =
)DFWRUGHUL]DGR
9DORUHILFD]FD
9DORUFRPSRQHQWHFRQWLQXD
– (OVHJXQGRIDFWRUQRVGHEHLQGLFDUFXDQWDSRWHQFLDDEVRUEHOD IXHQWHGHDOLPHQWDFLyQ\HYLGHQWHPHQWHQRHQWUHJDODODFDUJD 5HQGLPLHQWR
© A. Calomarde, Edicions Virtuals
= η=
3RWHQFLDHQGFHQODFDUJD [ 3RWHQFLDWRWDOGHHQWUDGD
Transparencia 5-15
(OHFWUyQLFD – &RPR ~OWLPR IDFWRU GHEH FRQRFHUVH VL OD IXHQWH GH DOLPHQWDFLyQ HQWUHJD D OD FDUJD OD PLVPD WHQVLyQ FXDQGR WUDEDMD D SOHQD FDUJD HQWUHJDQGR OD Pi[LPD SRWHQFLD TXH FXDQGRQRWLHQHQLQJXQDFDUJD 7HQVLyQGFVLQFDUJD7HQVLyQGFD SOHQDFDUJD 5HJXODFLyQ [
=
7HQVLyQGFD SOHQDFDUJD
– 8QDEXHQDIDVHFDUDFWHUL]DUiSXHVSRU » 8QIDFWRUGHUL]DGREDMR » 8QUHQGLPLHQWRHOHYDGR » 8QDUHJXODFLyQEDMD
© A. Calomarde, Edicions Virtuals
Transparencia 5-16
(OHFWUyQLFD
(WDSDVGHXQD)$(OWUDQVIRUPDGRU • (OREMHWLYRGHOWUDQVIRUPDGRUHVFDPELDUHOQLYHO GHODWHQVLyQGHUHGDOYDORUGHVHDGR i1
n 1:n2
i2
v1 =220vef/50Hz
i1
n1:n2
v1=220vef/50Hz
i2 v2
v2 v3 n1:n3
Q2 Y1 Q1 3 = 32 Q 1 L2 = 1 L1 Q2
Y2 =
© A. Calomarde, Edicions Virtuals
i3
Q Q2 Y1 Y3 = 3 Y1 Q1 Q1 3 = 32 + 33 Q1 Q 1 L2 = L1 L3 = 1 L1 Q2 Q3
Y2 =
Transparencia 5-17
(OHFWUyQLFD
(WDSDVGHXQD)$5HFWLILFDGRUHV • ([LVWHQGLIHUHQWHVWLSRVGHUHFWLILFDGRUHVDXQTXH EiVLFDPHQWHVHSXHGHQFODVLILFDUHQGRVFODVHV 5HFWLILFDFLyQGHRQGDFRPSOHWD
5HFWLILFDFLyQGHPHGLDRQGD
• /DGLIHUHQFLDEiVLFDHV – /DUHFWLILFDFLyQGHRQGDFRPSOHWD³FRQYLHUWH´ODVHPLRQGD QHJDWLYDHQSRVLWLYD – /DUHFWLILFDFLyQGHPHGLDRQGD³GHVDSURYHFKD´ODVHPLRQGD QHJDWLYD
© A. Calomarde, Edicions Virtuals
Transparencia 5-18
(OHFWUyQLFD
5HFWLILFDGRUHVGHPHGLDRQGD • (OPiVFOiVLFR\FRQRFLGRHV id + vi
vd
vo
RL
– 6XSRQLHQGRTXHRD≈WHQHPRVODVVLJXLHQWHVWHQVLRQHV vi,vo
vD
vi vi-vγ
6LY ≤ Yγ Y − Yγ Y = 6LY < Yγ 0 L
L
R
L
vγ
-vi © A. Calomarde, Edicions Virtuals
Transparencia 5-19
(OHFWUyQLFD
5HFWLILFDGRUHVGHPHGLDRQGD • /DIXQFLyQGHWUDQVIHUHQFLDVHUi vo
m=1 vi vγ –