CRC materials science and engineering handbook [3rd ed] 0849326966, 9780849326967

The CRC Materials Science and Engineering Handbook, Third Edition is the most comprehensive source available for data on

360 122 8MB

English Pages 1928 Year 2001

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Table of Contents......Page 0
Materials Science and Engineering Handbook......Page 1
TABLE OF CONTENTS......Page 5
Dedication......Page 21
Materials Science and Engineering Handbook......Page 22
CHAPTER 1 Structure of Materials......Page 23
ELECTRONIC STRUCTURE OF SELECTED ELEMENTS......Page 25
AVAILABLE STABLE ISOTOPES OF THE ELEMENTS......Page 27
PERIODIC TABLE OF THE ELEMENTS......Page 38
PERIODIC TABLE OF ELEMENTS IN METALLIC MATERIALS......Page 39
PERIODIC TABLE OF ELEMENTS IN CERAMIC MATERIALS......Page 40
PERIODIC TABLE OF ELEMENTS IN POLYMERIC MATERIALS......Page 41
PERIODIC TABLE OF ELEMENTS IN SEMICONDUCTING MATERIALS......Page 42
PERIODIC TABLE OF ELEMENTS IN SUPERCONDUCTING METALS......Page 43
ATOMIC AND IONIC RADII OF THE ELEMENTS......Page 44
BOND LENGTH VALUES BETWEEN ELEMENTS......Page 49
PERIODIC TABLE OF CARBON BOND LENGTHS (Å)......Page 53
CARBON BOND LENGTHS......Page 54
CARBON BOND LENGTHS IN POLYMERS......Page 56
BOND ANGLE VALUES BETWEEN ELEMENTS......Page 59
KEY TO TABLES OF CRYSTAL STRUCTURE OF THE ELEMENTS......Page 60
THE SEVEN CRYSTAL SYSTEMS......Page 61
THE FOURTEEN BRAVAIS LATTICES......Page 62
PERIODIC TABLE OF THE BODY CENTERED CUBIC ELEMENTS......Page 63
PERIODIC TABLE OF THE FACE CENTERED CUBIC ELEMENTS......Page 64
PERIODIC TABLE OF THE HEXAGONAL CLOSE PACKED ELEMENTS......Page 65
PERIODIC TABLE OF THE HEXAGONAL ELEMENTS......Page 66
STRUCTURE OF CERAMICS......Page 67
ATOMIC MASS OF SELECTED ELEMENTS......Page 73
SOLID DENSITY OF SELECTED ELEMENTS......Page 77
DENSITY OF IRON AND IRON ALLOYS......Page 80
DENSITY OF WROUGHT STAINLESS STEELS......Page 82
DENSITY OF STAINLESS STEELS AND HEAT-RESISTANT ALLOYS......Page 84
DENSITY OF ALUMINUM ALLOYS......Page 87
DENSITY OF COPPER AND COPPER ALLOYS......Page 89
DENSITY OF MAGNESIUM AND MAGNESIUM ALLOYS......Page 92
DENSITY OF NICKEL AND NICKEL ALLOYS......Page 93
DENSITY OF LEAD AND LEAD ALLOYS......Page 94
DENSITY OF TIN AND TIN ALLOYS......Page 95
DENSITY OF WROUGHT TITANIUM ALLOYS......Page 96
DENSITY OF TITANIUM AND TITANIUM ALLOYS......Page 97
DENSITY OF ZINC AND ZINC ALLOYS......Page 98
DENSITY OF PERMANENT MAGNET MATERIALS......Page 99
DENSITY OF PRECIOUS METALS......Page 100
DENSITY OF SUPERALLOYS......Page 101
DENSITY OF SELECTED CERAMICS......Page 102
DENSITY OF GLASSES......Page 105
SPECIFIC GRAVITY OF POLYMERS......Page 115
DENSITY OF 55MSI GRAPHITE/6061 ALUMINUM COMPOSITES......Page 122
DENSITY OF SI 3 N 4 COMPOSITES......Page 123
Materials Science and Engineering Handbook......Page 125
CHAPTER 2 Composition of Materials......Page 126
COMPOSITION LIMITS OF TOOL STEELS......Page 128
COMPOSITION LIMITS OF GRAY CAST IRONS......Page 131
COMPOSITION LIMITS OF DUCTILE IRONS......Page 132
COMPOSITION RANGES FOR MALLEABLE IRONS......Page 133
COMPOSITION RANGES FOR CARBON STEELS......Page 134
COMPOSITION RANGES FOR RESULFURIZED CARBON STEELS......Page 135
COMPOSITION RANGES FOR ALLOY STEELS......Page 136
COMPOSITION OF STAINLESS STEELS......Page 139
COMPOSITION OF WROUGHT COPPERS AND COPPER ALLOYS......Page 147
CLASSIFICATION OF COPPER AND COPPER ALLOYS......Page 158
COMPOSITION RANGES FOR CAST ALUMINUM ALLOYS......Page 159
COMPOSITION RANGES FOR WROUGHT ALUMINUM ALLOYS......Page 162
COMPOSITION OF TIN AND TIN ALLOYS......Page 165
COMPOSITIONS OF ACI HEAT-RESISTANT CASTING ALLOYS......Page 166
COMPOSITION OF ZINC DIE CASTING ALLOYS......Page 168
COMPOSITIONS OF WROUGHT SUPERALLOYS......Page 169
TYPICAL COMPOSITION OF GLASS-CERAMICS......Page 171
Materials Science and Engineering Handbook......Page 172
CHAPTER 3 Phase Diagram Sources......Page 173
PHASE DIAGRAM SOURCES......Page 174
Materials Science and Engineering Handbook......Page 175
CHAPTER 4 Thermodynamic and Kinetic Data......Page 176
BOND STRENGTHS IN DIATOMIC MOLECULES......Page 178
BOND STRENGTHS OF POLYATOMIC MOLECULES......Page 196
SOLUBILITY OF COPPER AND COPPER ALLOYS......Page 203
HEAT OF FORMATION OF INORGANIC OXIDES......Page 204
PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS......Page 220
PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES......Page 227
MELTING POINTS OF THE ELEMENTS......Page 237
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS......Page 241
MELTING POINTS OF CERAMICS......Page 254
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS......Page 265
HEATS OF SUBLIMATION OF METALS AND THEIR OXIDES......Page 281
KEY TO TABLES OF THERMODYNAMIC COEFFICIENTS......Page 282
THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS......Page 286
THERMODYNAMIC COEFFICIENTS FOR OXIDES......Page 300
ENTROPY OF THE ELEMENTS......Page 323
VAPOR PRESSURE OF THE ELEMENTS AT VERY LOW PRESSURES......Page 326
VAPOR PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES......Page 328
VAPOR PRESSURE OF THE ELEMENTS AT HIGH PRESSURES......Page 331
VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS......Page 334
VALUES OF THE ERROR FUNCTION......Page 339
DIFFUSION IN METALLIC SYSTEMS......Page 341
DIFFUSION OF METALS INTO METALS......Page 376
DIFFUSION IN SEMICONDUCTORS......Page 387
Materials Science and Engineering Handbook......Page 395
CHAPTER 5 Thermal Properties of Materials......Page 396
SPECIFIC HEAT OF THE ELEMENTS AT 25 °C......Page 398
HEAT CAPACITY OF CERAMICS......Page 402
SPECIFIC HEAT OF POLYMERS......Page 404
SPECIFIC HEAT OF FIBERGLASS REINFORCED PLASTICS......Page 408
THERMAL CONDUCTIVITY OF METALS (PART 1)......Page 409
THERMAL CONDUCTIVITY OF METALS (PART 2)......Page 411
THERMAL CONDUCTIVITY OF METALS (PART 3)......Page 413
THERMAL CONDUCTIVITY OF METALS (PART 4)......Page 415
THERMAL CONDUCTIVITY OF ALLOY CAST IRONS......Page 417
THERMAL CONDUCTIVITY OF IRON AND IRON ALLOYS......Page 418
THERMAL CONDUCTIVITY OF ALUMINUM AND ALUMINUM ALLOYS......Page 419
THERMAL CONDUCTIVITY OF COPPER AND COPPER ALLOYS......Page 421
THERMAL CONDUCTIVITY OF MAGNESIUM AND MAGNESIUM ALLOYS......Page 424
THERMAL CONDUCTIVITY OF NICKEL AND NICKEL ALLOYS......Page 425
THERMAL CONDUCTIVITY OF LEAD AND LEAD ALLOYS......Page 426
THERMAL CONDUCTIVITY OF TIN, TITANIUM, ZINC AND THEIR ALLOYS......Page 427
THERMAL CONDUCTIVITY OF PURE METALS......Page 428
THERMAL CONDUCTIVITY OF CERAMICS......Page 429
THERMAL CONDUCTIVITY OF GLASSES......Page 441
THERMAL CONDUCTIVITY OF CRYOGENIC INSULATION......Page 446
THERMAL CONDUCTIVITY OF CRYOGENIC SUPPORTS......Page 447
THERMAL CONDUCTIVITY OF SPECIAL CONCRETES......Page 448
THERMAL CONDUCTIVITY OF SIC-WHISKER-REINFORCED CERAMICS......Page 449
THERMAL CONDUCTIVITY OF POLYMERS......Page 450
THERMAL CONDUCTIVITY OF FIBERGLASS REINFORCED PLASTICS......Page 460
THERMAL EXPANSION OF WROUGHT STAINLESS STEELS......Page 461
THERMAL EXPANSION OF WROUGHT TITANIUM ALLOYS......Page 463
THERMAL EXPANSION OF GRAPHITE MAGNESIUM CASTINGS......Page 465
LINEAR THERMAL EXPANSION OF METALS AND ALLOYS......Page 466
THERMAL EXPANSION OF CERAMICS......Page 474
THERMAL EXPANSION OF SIC-WHISKER-REINFORCED CERAMICS......Page 508
THERMAL EXPANSION OF GLASSES......Page 509
THERMAL EXPANSION OF POLYMERS......Page 530
THERMAL EXPANSION COEFFICIENTS OF MATERIALS FOR INTEGRATED CIRCUITS......Page 543
THERMAL EXPANSION OF SILICON CARBIDE SCS–2–AL......Page 544
ASTM B 601 TEMPER DESIGNATION CODES FOR COPPER AND COPPER ALLOYS......Page 545
TEMPER DESIGNATION SYSTEM FOR ALUMINUM ALLOYS......Page 547
TOOL STEEL SOFTENING AFTER 100 HOURS......Page 548
THERMOPLASTIC POLYESTER SOFTENING WITH TEMPERATURE......Page 549
HEAT-DEFLECTION TEMPERATURE OF CARBON- AND GLASS-REINFORCED ENGINEERING THERMOPLASTICS......Page 550
Materials Science and Engineering Handbook......Page 552
CHAPTER 6 Mechanical Properties of Materials......Page 553
TENSILE STRENGTH OF TOOL STEELS (SHEET 1 OF 2)......Page 561
TENSILE STRENGTH OF GRAY CAST IRON BARS......Page 563
TENSILE STRENGTH OF DUCTILE IRONS......Page 564
TENSILE STRENGTH OF MALLEABLE IRON CASTINGS......Page 565
TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS......Page 566
TENSILE STRENGTH OF FERRITIC STAINLESS STEELS......Page 571
TENSILE STRENGTH OF PRECIPITATION-HARDENING AUSTENITIC STAINLESS STEELS......Page 573
TENSILE STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS......Page 574
TENSILE STRENGTH OF MARTENSITIC STAINLESS STEELS......Page 575
TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS......Page 578
TENSILE STRENGTH OF ALUMINUM CASTING ALLOYS......Page 589
TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS......Page 592
TENSILE STRENGTH OF COBALT-BASE SUPERALLOYS......Page 599
TENSILE STRENGTH OF NICKEL-BASE SUPERALLOYS......Page 600
TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 605
TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE......Page 608
TENSILE STRENGTH OF REFRACTORY METAL ALLOYS......Page 612
TENSILE STRENGTH OF CERAMICS......Page 615
TENSILE STRENGTH OF GLASS......Page 619
TENSILE STRENGTH OF POLYMERS......Page 622
TENSILE STRENGTH OF FIBERGLASS REINFORCED PLASTICS......Page 634
TENSILE STRENGTH OF CARBON- AND GLASS-REINFORCED ENGINEERING THERMOPLASTICS......Page 635
STRENGTH OF GRAPHITE FIBER REINFORCED METALS......Page 637
TENSILE STRENGTH OF GRAPHITE/MAGNESIUM CASTINGS......Page 638
TENSILE STRENGTH OF GRAPHITE/ALUMINUM COMPOSITES......Page 639
ULTIMATE TENSILE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL......Page 640
TENSILE STRENGTH OF SIC-WHISKER–REINFORCED ALUMINUM ALLOY......Page 641
ULTIMATE TENSILE STRENGTH OF ALUMINUM ALLOY REINFORCED WITH SIC WHISKERS VS. TEMPERATURE......Page 642
ULTIMATE TENSILE STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE......Page 643
TENSILE STRENGTH OF BORON/ALUMINUM COMPOSITES......Page 644
COMPRESSIVE STRENGTH OF GRAY CAST IRON BARS......Page 645
COMPRESSIVE STRENGTH OF CERAMICS......Page 646
COMPRESSIVE STRENGTH OF FIBERGLASS REINFORCED PLASTIC......Page 649
ULTIMATE COMPRESSIVE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL......Page 650
YIELD STRENGTH OF TOOL STEELS......Page 651
YIELD STRENGTH OF DUCTILE IRONS......Page 652
YIELD STRENGTH OF MALLEABLE IRON CASTINGS......Page 653
YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS......Page 654
YIELD STRENGTH OF FERRITIC STAINLESS STEELS......Page 659
YIELD STRENGTH OF MARTENSITIC STAINLESS STEELS......Page 661
YIELD STRENGTH OF PRECIPITATION-HARDENING AUSTENITIC STAINLESS STEELS......Page 664
YIELD STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS......Page 665
YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS......Page 666
YIELD STRENGTH OF CAST ALUMINUM ALLOYS......Page 677
YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS......Page 680
YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 687
YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE......Page 690
YIELD STRENGTH OF COBALT-BASE SUPERALLOYS......Page 694
YIELD STRENGTH OF NICKEL-BASE SUPERALLOYS......Page 695
YIELD STRENGTH OF COMMERCIALLY PURE TIN......Page 699
YIELD STRENGTH OF POLYMERS......Page 700
YIELD STRENGTH OF SIC-WHISKER–REINFORCED ALUMINUM ALLOY......Page 702
YIELD STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE......Page 703
YIELD STRENGTH OF POLYCRYSTALLINE–ALUMINA–REINFORCED ALUMINUM ALLOY......Page 704
COMPRESSIVE YIELD STRENGTH OF POLYMERS......Page 705
FLEXURAL STRENGTH OF POLYMERS......Page 707
FLEXTURAL STRENGTH OF FIBERGLASS REINFORCED PLASTICS......Page 713
SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS......Page 714
TORSION SHEAR STRENGTH OF GRAY CAST FE......Page 720
HARDNESS OF GRAY CAST IRON BARS......Page 721
HARDNESS OF MALLEABLE IRON CASTINGS......Page 722
HARDNESS OF DUCTILE IRONS......Page 723
HARDNESS OF TOOL STEELS......Page 724
HARDNESS OF AUSTENITIC STAINLESS STEELS......Page 726
HARDNESS OF FERRITIC STAINLESS STEELS......Page 727
HARDNESS OF MARTENSITIC STAINLESS STEELS......Page 728
HARDNESS OF PRECIPITATION-HARDENING AUSTENITIC STAINLESS STEELS......Page 729
MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS......Page 730
HARDNESS OF WROUGHT ALUMINUM ALLOYS......Page 739
HARDNESS OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 744
HARDNESS OF CERAMICS......Page 746
MICROHARDNESS OF GLASS......Page 752
HARDNESS OF POLYMERS......Page 754
HARDNESS OF SI 3 N 4 AND AL 2 O 3 COMPOSITES......Page 761
COEFFICIENT OF STATIC FRICTION FOR POLYMERS......Page 762
ABRASION RESISTANCE OF POLYMERS......Page 763
FATIGUE STRENGTH OF WROUGHT ALUMINUM ALLOYS......Page 765
REVERSED BENDING FATIGUE LIMIT OF GRAY CAST IRON BARS......Page 769
IMPACT ENERGY OF TOOL STEELS......Page 770
IMPACT STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 772
IMPACT STRENGTH OF POLYMERS......Page 773
IMPACT STRENGTH OF FIBERGLASS REINFORCED PLASTICS......Page 780
IMPACT STRENGTH OF CARBON- AND GLASS-REINFORCED ENGINEERING THERMOPLASTICS......Page 781
FRACTURE TOUGHNESS OF SI 3 N 4 AND AL 2 O 3 COMPOSITES......Page 783
TENSION MODULUS OF TREATED DUCTILE IRONS......Page 784
TENSILE MODULUS OF FIBERGLASS REINFORCED PLASTICS......Page 785
TENSILE MODULUS OF INVESTMENT CAST SILICON CARBIDE SCS–AL......Page 786
TENSILE MODULUS OF SILICON CARBIDE SCS–2–AL......Page 787
YOUNG’S MODULUS OF CERAMICS......Page 788
YOUNG’S MODULUS OF GLASS......Page 795
ELASTIC MODULUS OF WROUGHT STAINLESS STEELS......Page 797
MODULUS OF ELASTICITY OF WROUGHT TITANIUM ALLOYS......Page 799
MODULUS OF ELASTICITY IN TENSION FOR POLYMERS......Page 800
MODULUS OF ELASTICITY OF 55MSI GRAPHITE/6061 ALUMINUM COMPOSITES......Page 806
MODULUS OF ELASTICITY OF GRAPHITE/MAGNESIUM CASTINGS......Page 807
MODULUS OF ELASTICITY OF GRAPHITE FIBER REINFORCED METALS......Page 808
MODULUS OF ELASTICITY OF SIC-WHISKER–REINFORCED ALUMINUM ALLOY......Page 809
MODULUS OF ELASTICITY OF BORON/ALUMINUM COMPOSITES......Page 810
MODULUS OF ELASTICITY IN COMPRESSION FOR POLYMERS......Page 811
BULK MODULUS OF GLASS......Page 812
SHEAR MODULUS OF GLASS......Page 813
TORSION MODULUS OF TREATED DUCTILE IRONS......Page 815
MODULUS OF ELASTICITY IN FLEXURE FOR POLYMERS......Page 816
FLEXURAL MODULUS OF FIBERGLASS REINFORCED PLASTICS......Page 829
FLEXURAL MODULUS OF CARBON- AND GLASS-REINFORCED ENGINEERING THERMOPLASTICS......Page 830
MODULUS OF RUPTURE FOR CERAMICS......Page 832
RUPTURE STRENGTH OF REFRACTORY METAL ALLOYS......Page 842
RUPTURE STRENGTH OF SUPERALLOYS......Page 844
MODULUS OF RUPTURE FOR SI 3 N 4 AND AL 2 O 3 COMPOSITES......Page 847
POISSON'S RATIO OF WROUGHT TITANIUM ALLOYS......Page 848
POISSON’S RATIO FOR CERAMICS......Page 849
POISSON’S RATIO OF GLASS......Page 851
POISSON'S RATIO OF SILICON CARBIDE SCS–2–AL......Page 852
TORSION POISSON’S RATIO OF TREATED DUCTILE IRONS......Page 853
ELONGATION OF TOOL STEELS......Page 854
ELONGATION OF DUCTILE IRONS......Page 855
ELONGATION OF MALLEABLE IRON CASTINGS......Page 856
ELONGATION OF FERRITIC STAINLESS STEELS......Page 857
ELONGATION OF MARTENSITIC STAINLESS STEELS......Page 859
ELONGATION OF PRECIPITATION-HARDENING AUSTENITIC STAINLESS STEELS......Page 862
ELONGATION OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS......Page 863
TOTAL ELONGATION OF CAST ALUMINUM ALLOYS......Page 864
ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS......Page 867
ELONGATION OF COMMERCIALLY PURE TIN......Page 878
ELONGATION OF COBALT-BASE SUPERALLOYS......Page 879
ELONGATION OF NICKEL-BASE SUPERALLOYS......Page 880
DUCTILITY OF REFRACTORY METAL ALLOYS......Page 885
ELONGATION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 888
ELONGATION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE......Page 891
TOTAL ELONGATION OF POLYMERS......Page 895
ELONGATION AT YIELD FOR POLYMERS......Page 905
ULTIMATE TENSILE ELONGATION OF FIBERGLASS REINFORCED PLASTICS......Page 908
TOTAL STRAIN OF SILICON CARBIDE SCS–2–AL......Page 909
AREA REDUCTION OF TOOL STEELS......Page 910
REDUCTION IN AREA OF AUSTENITIC STAINLESS STEELS......Page 912
REDUCTION IN AREA OF FERRITIC STAINLESS STEELS......Page 916
REDUCTION IN AREA OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS......Page 917
REDUCTION IN AREA OF PRECIPITATION-HARDENING AUSTENITIC STAINLESS STEELS......Page 918
REDUCTION IN AREA OF MARTENSITIC STAINLESS STEELS......Page 919
REDUCTION IN AREA OF COMMERCIALLY PURE TIN......Page 921
AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE......Page 922
AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE......Page 924
MODULUS DENSITY RATIO OF GRAPHITE FIBER REINFORCED METALS......Page 927
VISCOSITY OF GLASSES......Page 928
INTERNAL FRICTION OF SIO2 GLASS......Page 943
SURFACE TENSION OF ELEMENTS AT MELTING......Page 944
SURFACE TENSION OF LIQUID ELEMENTS......Page 950
Materials Science and Engineering Handbook......Page 965
CHAPTER 7 Electrical Properties of Materials......Page 966
ELECTRICAL CONDUCTIVITY OF METALS......Page 968
ELECTRICAL RESISTIVITY OF METALS......Page 975
ELECTRICAL RESISTIVITY OF ALLOY CAST IRONS......Page 982
RESISTIVITY OF CERAMICS......Page 983
VOLUME RESISTIVITY OF GLASS......Page 989
VOLUME RESISTIVITY OF POLYMERS......Page 1002
CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS......Page 1010
DISSIPATION FACTOR FOR POLYMERS......Page 1012
DIELECTRIC STRENGTH OF POLYMERS......Page 1020
STEP DIELECTRIC STRENGTH OF POLYMERS......Page 1032
DIELECTRIC CONSTANT OF POLYMERS......Page 1035
DIELECTRIC BREAKDOWN OF POLYMERS......Page 1049
DIELECTRIC BREAKDOWN OF POLYMERS......Page 1050
TANGENT LOSS IN GLASS......Page 1051
ELECTRICAL PERMITTIVITY OF GLASS......Page 1056
ARC RESISTANCE OF POLYMERS......Page 1062
Materials Science and Engineering Handbook......Page 1070
CHAPTER 8 Optical Properties of Materials......Page 1071
TRANSMISSION RANGE OF OPTICAL MATERIALS......Page 1072
TRANSPARENCY OF POLYMERS......Page 1074
REFRACTIVE INDEX OF POLYMERS......Page 1081
DISPERSION OF OPTICAL MATERIALS......Page 1086
Materials Science and Engineering Handbook......Page 1099
CHAPTER 9 Chemical Properties of Materials......Page 1100
WATER ABSORPTION OF POLYMERS......Page 1102
STANDARD ELECTROMOTIVE FORCE POTENTIALS......Page 1114
GALVANIC SERIES OF METALS......Page 1132
GALVANIC SERIES OF METALS IN SEA WATER......Page 1133
CORROSION RATE OF METALS IN ACIDIC SOLUTIONS......Page 1135
CORROSION RATE OF METALS IN NEUTRAL AND ALKALINE SOLUTIONS......Page 1136
CORROSION RATE OF METALS IN AIR......Page 1137
CORROSION RATES OF 1020 STEEL AT 70°F......Page 1138
CORROSION RATES OF GREY CAST IRON AT 70°F......Page 1146
CORROSION RATES OF NI–RESIST CAST IRON AT 70°F......Page 1155
CORROSION RATES OF 12% CR STEEL AT 70°......Page 1163
CORROSION RATES OF 17% CR STEEL AT 70°F......Page 1172
CORROSION RATES OF 14% SI IRON AT 70°F......Page 1181
CORROSION RATES OF STAINLESS STEEL 301 AT 70°F......Page 1190
CORROSION RATES OF STAINLESS STEEL 316 AT 70°F......Page 1199
CORROSION RATES OF ALUMINUM AT 70°F......Page 1208
CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS......Page 1217
CORROSION RATES OF 70-30 BRASS AT 70°F......Page 1227
CORROSION RATES OF COPPER, SN-BRAZE, AL-BRAZE AT 70°F......Page 1236
CORROSION RATES OF SILICON BRONZE AT 70°F......Page 1245
CORROSION RATES OF HASTELLOY AT 70°F......Page 1254
CORROSION RATES OF INCONEL AT 70°F......Page 1263
CORROSION RATES OF NICKEL AT 70°F......Page 1271
CORROSION RATES OF MONEL AT 70°F......Page 1280
CORROSION RATES OF LEAD AT 70°F......Page 1289
CORROSION RATES OF TITANIUM AT 70°F......Page 1297
CORROSION RATES OF ACI HEAT–RESISTANT CASTINGS ALLOYS IN AIR......Page 1302
CORROSION RATES FOR ACI HEAT–RESISTANT CASTINGS ALLOYS IN FLUE GAS......Page 1303
FLAMMABILITY OF POLYMERS......Page 1304
FLAMMABILITY OF FIBERGLASS REINFORCED PLASTICS......Page 1315
Materials Science and Engineering Handbook......Page 1316
CHAPTER 10 Selecting Structural Properties......Page 1317
SELECTING ATOMIC RADII OF THE ELEMENTS......Page 1318
SELECTING IONIC RADII OF THE ELEMENTS......Page 1321
SELECTING BOND LENGTHS BETWEEN ELEMENTS......Page 1326
SELECTING BOND ANGLES BETWEEN ELEMENTS......Page 1328
SELECTING DENSITY OF THE ELEMENTS......Page 1329
Materials Science And Engineering Handbook......Page 1332
CHAPTER 11 Selecting Thermodynamic and Kinetic Properties......Page 1333
SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES......Page 1334
SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES......Page 1352
SELECTING HEAT OF FORMATION OF INORGANIC OXIDES......Page 1358
SELECTING SPECIFIC HEAT OF ELEMENTS......Page 1367
SELECTING SPECIFIC HEAT OF POLYMERS......Page 1371
SELECTING MELTING POINTS OF THE ELEMENTS......Page 1374
SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS......Page 1378
SELECTING MELTING POINTS OF CERAMICS......Page 1390
SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS......Page 1401
SELECTING ENTROPY OF THE ELEMENTS......Page 1416
SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS......Page 1419
Materials Science and Engineering Handbook......Page 1452
CHAPTER 12 Selecting Thermal Properties......Page 1453
SELECTING THERMAL CONDUCTIVITY OF METALS......Page 1454
SELECTING THERMAL CONDUCTIVITY OF METALS AT TEMPERATURE......Page 1483
SELECTING THERMAL CONDUCTIVITY OF ALLOY CAST IRONS......Page 1513
SELECTING THERMAL CONDUCTIVITY OF CERAMICS......Page 1514
SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE......Page 1526
SELECTING THERMAL CONDUCTIVITY OF POLYMERS......Page 1545
SELECTING THERMAL EXPANSION OF TOOL STEELS......Page 1549
SELECTING THERMAL EXPANSION OF TOOL STEELS AT TEMPERATURE......Page 1551
SELECTING THERMAL EXPANSION OF ALLOY CAST IRONS......Page 1553
SELECTING THERMAL EXPANSION OF CERAMICS......Page 1554
SELECTING THERMAL EXPANSION OF GLASSES......Page 1570
SELECTING THERMAL EXPANSION OF POLYMERS......Page 1581
SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS......Page 1586
SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE......Page 1592
Materials Science And Engineering Handbook......Page 1597
CHAPTER 13 Selecting Mechanical Properties......Page 1598
SELECTING TENSILE STRENGTH OF TOOL STEELS......Page 1601
SELECTING TENSILE STRENGTH OF GRAY CAST IRONS......Page 1602
SELECTING TENSILE STRENGTH OF DUCTILE IRONS......Page 1603
SELECTING TENSILE STRENGTHS OF MALLEABLE IRON CASTINGS......Page 1604
SELECTING TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS......Page 1605
SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS......Page 1608
SELECTING TENSILE STRENGTHS OF CERAMICS......Page 1615
SELECTING TENSILE STRENGTHS OF GLASS......Page 1619
SELECTING TENSILE STRENGTHS OF POLYMERS......Page 1621
SELECTING COMPRESSIVE STRENGTHS OF GRAY CAST IRON BARS......Page 1626
SELECTING COMPRESSIVE STRENGTHS OF CERAMICS......Page 1627
SELECTING COMPRESSIVE STRENGTHS OF POLYMERS......Page 1630
SELECTING YIELD STRENGTHS OF TOOL STEELS......Page 1633
SELECTING YIELD STRENGTHS OF DUCTILE IRONS......Page 1634
SELECTING YIELD STRENGTHS OF MALLEABLE IRON CASTINGS......Page 1635
SELECTING YIELD STRENGTHS OF CAST ALUMINUM ALLOYS......Page 1636
SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS......Page 1639
SELECTING YIELD STRENGTHS OF POLYMERS......Page 1646
SELECTING COMPRESSIVE YIELD STRENGTHS OF POLYMERS......Page 1648
SELECTING FLEXURAL STRENGTHS OF POLYMERS......Page 1650
SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS......Page 1654
SELECTING TORSIONAL SHEAR STRENGTHS OF GRAY CAST IRON BARS......Page 1660
SELECTING HARDNESS OF TOOL STEELS......Page 1661
SELECTING HARDNESS OF GRAY CAST IRON BARS......Page 1662
SELECTING HARDNESS OF DUCTILE IRONS......Page 1663
SELECTING HARDNESS OF MALLEABLE IRON CASTINGS......Page 1664
SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS......Page 1665
SELECTING HARDNESS OF CERAMICS......Page 1670
SELECTING MICROHARDNESS OF GLASS......Page 1676
SELECTING HARDNESS OF POLYMERS......Page 1677
SELECTING COEFFICIENTS OF STATIC FRICTION FOR POLYMERS......Page 1682
SELECTING ABRASION RESISTANCE OF POLYMERS......Page 1683
SELECTING FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS......Page 1684
SELECTING REVERSED BENDING FATIGUE LIMITS OF GRAY CAST IRON BARS......Page 1688
SELECTING IMPACT ENERGY OF TOOL STEELS......Page 1689
SELECTING IMPACT STRENGTHS OF POLYMERS......Page 1690
SELECTING TENSILE MODULI OF TREATED DUCTILE IRONS......Page 1695
SELECTING YOUNG’S MODULI OF CERAMICS......Page 1696
SELECTING YOUNG’S MODULI OF GLASS......Page 1702
SELECTING MODULI OF ELASTICITY IN TENSION FOR POLYMERS......Page 1704
SELECTING MODULUS OF ELASTICITY IN COMPRESSION FOR POLYMERS......Page 1707
SELECTING BULK MODULI OF GLASS......Page 1708
SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS......Page 1709
SELECTING SHEAR MODULI OF GLASS......Page 1715
SELECTING TORSIONAL MODULI OF TREATED DUCTILE IRONS......Page 1717
SELECTING MODULI OF RUPTURE FOR CERAMICS......Page 1718
SELECTING POISSON’S RATIOS FOR CERAMICS......Page 1723
SELECTING POISSON’S RATIOS OF GLASS......Page 1725
SELECTING TORSION POISSON’S RATIOS OF TREATED DUCTILE IRONS......Page 1727
SELECTING ELONGATION OF TOOL STEELS......Page 1728
SELECTING ELONGATION OF DUCTILE IRONS......Page 1729
SELECTING ELONGATION OF MALLEABLE IRON CASTINGS......Page 1730
SELECTING TOTAL ELONGATION OF CAST ALUMINUM ALLOYS......Page 1731
SELECTING TOTAL ELONGATION OF POLYMERS......Page 1734
SELECTING ELONGATION AT YIELD OF POLYMERS......Page 1738
SELECTING AREA REDUCTION OF TOOL STEELS......Page 1739
Materials Science and Engineering Handbook......Page 1740
CHAPTER 14 Selecting Electrical Properties......Page 1741
SELECTING ELECTRICAL RESISTIVITY OF ALLOY CAST IRONS......Page 1743
SELECTING RESISTIVITY OF CERAMICS......Page 1744
SELECTING VOLUME RESISTIVITY OF GLASS......Page 1749
SELECTING VOLUME RESISTIVITY OF POLYMERS......Page 1762
SELECTING CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS......Page 1768
SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ......Page 1770
SELECTING DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ......Page 1775
SELECTING DIELECTRIC STRENGTH OF POLYMERS......Page 1779
SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ......Page 1784
SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ......Page 1789
SELECTING TANGENT LOSS IN GLASS......Page 1793
SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE......Page 1798
SELECTING TANGENT LOSS IN GLASS BY FREQUENCY......Page 1803
SELECTING ELECTRICAL PERMITTIVITY OF GLASS......Page 1808
SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY......Page 1814
SELECTING ARC RESISTANCE OF POLYMERS......Page 1820
Materials Science and Engineering Handbook......Page 1823
CHAPTER 15 Selecting Optical Properties......Page 1824
SELECTING TRANSMISSION RANGE OF OPTICAL MATERIALS......Page 1825
SELECTING TRANSPARENCY OF POLYMERS......Page 1827
SELECTING REFRACTIVE INDICES OF GLASSES......Page 1830
SELECTING REFRACTIVE INDICES OF POLYMERS......Page 1836
Materials Science and Engineering Handbook......Page 1838
CHAPTER 16 Selecting Chemical Properties......Page 1839
SELECTING WATER ABSORPTION OF POLYMERS......Page 1840
SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM......Page 1845
SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM......Page 1861
SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM......Page 1878
SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM......Page 1896
SELECTING CORROSION RATES OF METALS......Page 1914
SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS......Page 1919
SELECTING FLAMMABILITY OF POLYMERS......Page 1924
Recommend Papers

CRC materials science and engineering handbook [3rd ed]
 0849326966, 9780849326967

  • Commentary
  • eBook
  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Shackelford, James F. et al “Frontmatter” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001

CRC

MATERIALS SCIENCE AND

ENGINEERING HANDBOOK THIRD EDITION

©2001 CRC Press LLC

CRC

MATERIALS SCIENCE AND

ENGINEERING HANDBOOK THIRD EDITION James F. Shackelford Professor of Materials Science and Engineering Division of Materials Science and Engineering and Associate Dean of the College of Engineering University of California, Davis

William Alexander Research Engineer Division of Materials Science and Engineering University of California, Davis

CRC Press Boca Raton London New York Washington, D.C.

©2001 CRC Press LLC

Library of Congress Cataloging-in-Publication Data CRC materials science and engineering handbook / [edited by] James F. Shackelford, William Alexander.—3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-2696-6 (alk. paper) 1. Materials—Handooks, manuals, etc. I. Shackelford, James F. II. Alexander, William, 1950 Feb. 13TA403.4 .C74 2000 620.1′1—dc21

00-048567

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-2696-6 Library of Congress Card Number 00-048567 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

©2001 CRC Press LLC

T A B LE O F C O N T E N T S

CHAPTER 1

S tr u c tu r e o f M a te r ia ls Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Structure of Ceramics Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N 4 Composites

CHAPTER 2

C o m p o s itio n o f M a te r ia ls Composition Limits of Tool Steels Composition Limits of Gray Cast Irons Composition Limits of Ductile Irons Composition Ranges for Malleable Irons Composition Ranges for Carbon Steels Composition Ranges for Resulfurized Carbon Steels Composition Ranges for Alloy Steels

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Composition of Stainless Steels Composition of Wrought Coppers and Copper Alloys Classification of Copper and Copper Alloys Composition Ranges for Cast Aluminum Alloys Composition Ranges for Wrought Aluminum Alloys Composition of Tin and Tin Alloys Compositions of ACI Heat-Resistant Casting Alloys Composition of Zinc Die Casting Alloys Compositions of Wrought Superalloys Typical Composition of Glass-Ceramics

CHAPTER 3

P h a s e D ia g r a m S o u r c e s Phase Diagram Sources

CHAPTER 4

T h e r m o d y n a m ic a n d K in e tic D a ta Bond Strengths in Diatomic Molecules Bond Strengths of Polyatomic Molecules Solubility of Copper and Copper Alloys Heat of Formation of Inorganic Oxides Phase Change Thermodynamic Properties for The Elements Phase Change Thermodynamic Properties of Oxides Melting Points of the Elements Melting Points of Elements and Inorganic Compounds Melting Points Of Ceramics Heat of Fusion For Elements and Inorganic Compounds Heats of Sublimation of Metals and Their Oxides Key to Tables of Thermodynamic Coefficients Thermodynamic Coefficients for Selected Elements Thermodynamic Coefficients for Oxides Entropy of the Elements Vapor Pressure of the Elements at Very Low Pressures Vapor Pressure of the Elements at Moderate Pressures Vapor Pressure of the Elements at High Pressures Vapor Pressure of Elements and Inorganic Compounds

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Values of The Error Function Diffusion in Metallic Systems Diffusion of Metals into Metals Diffusion in Semiconductors

CHAPTER 5

T h e r m a l P r o p e r tie s o f M a te r ia ls Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals Thermal Conductivity of Ceramics Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics

CHAPTER 6

M e c h a n ic a l P r o p e r tie s o f M a te r ia ls Tensile Strength of Tool Steels Tensile Strength of Gray Cast Irons Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N 4 and Al2O 3 Composites Coefficient of Static Friction for Polymers Abrasion Resistance of Polymers Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness of Si3N 4 and Al2O 3 Composites Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus of Ceramics Young’s Modulus of Glass Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus of Glass Shear Modulus of Glass Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N 4 and Al2O 3Composites Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity of Glasses Internal Friction of SiO 2 Glass Surface Tension of Elements at Melting Surface Tension of Liquid Elements

CHAPTER 7

E le c tr ic a l P r o p e r tie s o f M a te r ia ls Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Critical Temperature of Superconductive Elements Dissipation Factor for Polymers Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss in Glass Electrical Permittivity of Glass Arc Resistance of Polymers

CHAPTER 8

O p tic a l P r o p e r tie s o f M a te r ia ls Transmission Range of Optical Materials Transparency of Polymers Refractive Index of Polymers Dispersion of Optical Materials

CHAPTER 9

C h e m ic a l P r o p e r tie s o f M a te r ia ls Water Absorption of Polymers Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability of Polymers Flammability of Fiberglass Reinforced Plastics

CHAPTER 1 0

S e le c tin g S tr u c tu r a l P r o p e r tie s Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Selecting Density of the Elements

CHAPTER 1 1

S e le c tin g T h e r m o d y n a m ic a n d K in e tic P r o p e r tie s Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Selecting Heat of Formation of Inorganic Oxides Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Selecting Heat of Fusion For Elements and Inorganic Compounds Selecting Entropy of the Elements

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Selecting Diffusion Activation Energy in Metallic Systems

CHAPTER 1 2

S e le c tin g T h e r m a l P r o p e r tie s Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature

CHAPTER 1 3

S e le c tin g M e c h a n ic a l P r o p e r tie s Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Selecting Yield Strengths of Tool Steels

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers Selecting Flexural Strengths of Polymers Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Selecting Coefficients of Static Friction for Polymers Selecting Abrasion Resistance of Polymers Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Selecting Area Reduction of Tool Steels

CHAPTER 1 4

S e le c tin g E le c tr ic a l P r o p e r tie s Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Selecting Critical Temperature of Superconductive Elements Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency

©2001 CRC Press LLC

Ta b le o f C o n t e n t s Selecting Arc Resistance of Polymers

CHAPTER 1 5

S e le c tin g O p tic a l P r o p e r tie s Selecting Transmission Range of Optical Materials Selecting Transparency of Polymers Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers

CHAPTER 1 6

S e le c tin g C h e m ic a l P r o p e r tie s Selecting Water Absorption of Polymers Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Selecting Flammability of Polymers

©2001 CRC Press LLC

D e d ic a t io n

To Penelope and Scott Li-Li and Cassie

©2001 CRC Press LLC

Shackelford, James F. et al “Structure of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001

CHAPTER 1

S t ru c t u re o f M a t e ria ls

L is t o f T a b le s

S u b a to m ic S tr u c tu r e Electronic Structure of Selected Elements Available Stable Isotopes of the Elements

A to m ic S tr u c tu r e Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals

B o n d S tr u c tu r e Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements

C r y s ta l S tr u c tu r e Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems

©2001 CRC Press LLC

1

L is t o f T a b le s (C o n tin u e d )

The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements Structure of Ceramics

D e n s ity Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N 4 Composites

©2001 CRC Press LLC

2

Table 1. ELECTRONIC

At. Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

STRUCTURE OF SELECTED ELEMENTS

Sym H He Li Be B C N O F N Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Electronic Configuration 1s 2s 2p 3s 3p 1 2 . 1 . 2 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . . . 1 . . . 2 . . . 2 1 . . . 2 2 . . . 2 3 . . . 2 4 . . . 2 5 . . . 2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3d 4s

1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . . .

1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . . .

4p 4d

1 2 3 4 5 6 . . . . . . . . . . . . . . . . . .

1 2 4 5 6 7 8 10 10 10 10 10 10 10 10 10

4f

5s

5p 5d

5f

6s

6p 6d 7s

1 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2

1 2 3 5 5 6

©2001 CRC Press LLC

3

At. Element No.

Sym

Electronic Configuration 1s

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Cesium Barium Lantium Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Asatine Radon Francium Radium Actinium Thorium Protoactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium

©2001 CRC Press LLC

4

Ce Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw

2s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2p 3s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3p 3d 4s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4p 4d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4f

5s

2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5p 5d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5f

6p 6d 7s

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 2 3 4 5 6 9 9 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . .

6s

2 3 4 6 7 7 9 10 11 12 13 14 14

1 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . .

1 2 3 4 5 6 . . . . . . . . . . . . . . . . .

1 2 1 1 1 1

1

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 1 OF 11) Natural

Element

Mass No.

Abundance (%)

Hydrogen

1

99.985

2

0.015

Helium

3 4

0.00013 ≈100.0

Lithium

6 7

7.42 92.58

Beryllium

9

100.0

Boron

10 11

19.78 80.22

Carbon

12 13

98.89 1.11

Nitrogen

14 15

99.63 0.37

Oxygen

16 17 18

99.76 0.04 0.20

Fluorine

19

100.0

Neon

20 21 22

90.92 0.26 8.82

Sodium

23

100.0

Magnesium

24 25 26

78.70 10.13 11.17

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

5

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 2 OF 11) Natural

Element

Mass No.

Abundance (%)

Aluminum

27

100.0

Silicon

28 29 30

92.21 4.70 3.09

Phosphorus

31

100.0

Sulfur

32 33 34 36

95.0 0.76 4.22 0.014

Chlorine

35 37

75.53 24.47

Argon

36 38 40

0.34 0.06 99.60

Potassium

39 40a 41

0.01

Calcium

40 42 43 44 46 48

96.97 0.64 0.14 2.06 0.003 0.18

Scandium

45

100.0

93.1 6.9

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

6

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 3 OF 11) Natural Mass No.

Abundance (%)

Titanium

46 47 48 49 50

7.93 7.28 73.94 5.51 5.34

Vanadium

50 51

0.24 99.76

Chromium

50 52 53 54

4.31 83.76 9.55 2.38

Manganese

55

100.0

Iron

54 56 57 58

5.82 91.66 2.19 0.33

Cobalt

59

100.0

Nickel

58 60 61 62 64

67.84 26.23 1.19 3.66 1.08

Copper

63 65

69.09 30.91

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

7

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 4 OF 11) Natural Mass No.

Abundance (%)

Zinc

64 66 67 68 70

48.89 27.81 4.11 18.57 0.62

Gallium

69 71

60.4 39.6

Germanium

70 72 73 74 76

20.52 27.43 7.76 36.54 7.76

Arsenic

75

100.0

Selenium

74 76 77 78 80 82

0.87 9.02 7.58 23.52 49.82 9.19

Bromine

79 81

50.54 49.46

Krypton

78 80 82 83 84 86

0.35 2.27 11.56 11.55 56.90 17.37

Rubidium

85 87

72.15 27.85

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

8

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 5 OF 11) Natural Mass No.

Abundance (%)

Strontium

84 86 87 88

0.56 9.86 7.02 82.56

Yttrium

89

100.0

Zirconium

90 91 92 94 96

51.46 11.23 17.11 17.40 2.80

Niobium

93

100.0

Molybdenum

92 94 95 96 97 98 100

15.84 9.04 15.72 16.53 9.46 23.78 9.63

Ruthenium

96 98 99 100 101 102 104

5.51 1.87 12.72 12.62 17.07 31.61 18.60

Rhodium

103

100.0

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

9

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 6 OF 11) Natural Mass No.

Abundance (%)

Palladium

102 104 105 106 108 110

0.96 10.97 22.23 27.33 26.71 11.81

Silver

107 109

51.82 48.18

Cadmium

106 108 110 111 112 113 114 116

1.22 0.88 12.39 12.75 24.07 12.26 28.86 7.58

Indium

113 115

4.28 95.72

Tin

112 114 115 116 117 118 119 120 122 124

0.96 0.66 0.35 14.30 7.61 24.03 8.58 32.85 4.72 5.94

Antimony

121 123

57.25 42.75

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

10

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 7 OF 11) Natural Mass No.

Abundance (%)

Tellurium

120 122 123 124 125 126 128 130

0.09 2.46 0.87 4.61 6.99 18.71 31.79 34.48

Iodine

127

100.0

Xenon

124 126 128 129 130 131 132 134 136

0.096 0.090 1.92 26.44 4.08 21.18 26.89 10.44 8.87

Cesium

133

100.0

Barium

130 132 134 135 136 137 138

0.101 0.097 2.42 6.59 7.81 11.30 71.66

Lanthanum

138 139

0.09 99.91

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

11

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 8 OF 11) Natural Mass No.

Abundance (%)

136 138 140 142d

0.193 0.250 88.48

11.07

141

100.0

Neodymium

142 143 144 146 148 150

27.11 12.17 23.85 17.22 5.73 5.62

Samarium

144 147e 148f 149g 150 152 154

Element

Cerium

Praseodymium

3.09

14.97 11.24 13.83 7.44 26.72 22.71

Europium

151 153

47.82 52.18

Gadolinium

152h 154 155 156 157 158 160

0.20 2.15 14.73 20.47 15.68 24.87 21.90

159

100.0

Terbium

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

12

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 9 OF 11) Natural Mass No.

Abundance (%)

156i 158 160 161 162 163 164

0.052

Holmium

165 186

100.0 28.41

Erbium

162 164 166 167 168 170 186

0.136 1.56 33.41 22.94 27.07 14.88 1.59

Thulium

169 189

100.0 16.1

Ytterbium

168 170 171 172 173 174 176

0.135 3.03 14.31 21.82 16.13 31.84 12.73

Lutetium

175 176j

97.40

Element

Dysprosium

0.090 2.29 18.88 25.53 24.97 28.18

2.60

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

13

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 10 OF 11) Natural Mass No.

Abundance (%)

174k 176 177 178 179 180

0.18 5.20 18.50 27.14 13.75 35.24

Tantalum

180 181

0.012 99.988

Tungsten

180 182 183 184

0.14 26.41 14.40 30.64

Rhenium

185 187

37.07 62.93

Osmium

184 187 188 190 192

0.018 1.64 13.3 26.4 41.0

Iridium

191 193

37.3 62.7

Platinum

190m 192 194 195 196 198

0.013

197

100.0

Element

Haffiium

Gold

0.78 32.9 33.8 25.3 7.2

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

©2001 CRC Press LLC

14

Table 2. AVAILABLE

STABLE ISOTOPES OF THE ELEMENTS (SHEET 11 OF 11) Natural Mass No.

Abundance (%)

Mercury

196 198 199 200 201 202 204

0.146 10.02 16.84 23.13 13.22 29.80 6.85

Thallium

203 205

29.50 70.50

Lead

204 206 207 208

1.48 23.6 22.6 52.3

Bismuth

209

100.0

Thorium

232n†

100.0

Uranium

234o† 235p† 238q†

0.0006 0.72 99.27

Element

Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.

a b c d e f g h

i

half-life = half-life > half-life = half-life = half-life = half-life = half-life = half-life = half-life =

1.3 x 109 y. 1015 y 5 x 1014 y 5 x 1014 y 1.06 x 1011 y 1.2 x 1013 y 1.2 x 1014 y 1.1 x 1014 y 2 x 1014 y

j

half-life = 2.2 x 1010 y k half-life = 4.3 x 1015 y l half-life = 4 x 1010 y m half-life = 6 x 1011 y n half-life = 1.4 x 1010 y o half-life = 2.5 x 105 y p half-life = 7.1 x 108 y q half-life = 4.5 x 109 y † naturally occurring.

©2001 CRC Press LLC

15

1 IA

3

4

5

TABLE OF THE ELEMENTS

6

9

13

14

15

16

17

IIA

IIIA

IVA

VA

VIA

VIIA

3 Li

4 Be

5 B

6 C

7 N

8 O

9 F

10 Ne

11 Na

12 Mg

IIIB

IVB

VB

VIB

VIIB

-----

VIII

-----

IB

IIB

13 Al

14 Si

15 P

16 S

17 Cl

18 Ar

19 K

20 Ca

21 Sc

22 Ti

23 V

24 Cr

25 Mn

26 Fe

27 Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

33 As

34 Se

35 Br

36 Kr

37 Rb

38 Sr

39 Y

40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

45 Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

52 Te

53 I

54 Xe

55 Cs

56 Ba

72 Hf

73 Ta

74 W

75 Re

76 Os

77 Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

84 Po

85 At

86 Rn

87 Fr

88 Ra

1 H

2

Table 3. PERIODIC 7

8

10

11

12

57 La

58 Ce

59 Pr

60 Nd

61 Pm

62 Sm

63 Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70 Yb

71 Lu

89 Ac

90 Th

91 Pa

92 U

93 Np

94 Pu

95 Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101 Md

102 No

103 Lw

©2001 CRC Press LLC

18 VIIA 2 He

Table 4. PERIODIC 1 IA

2

3

4

5

6

TABLE OF ELEMENTS IN METALLIC MATERIALS 7

8

9

10

11

12

13

14

15

16

17

IIA

IIIA

IVA

VA

VIA

VIIA

3 Li

4 Be

5 B

11 Na

12 Mg

IIIB

IVB

VB

VIB

VIIB

-----

VIII

-----

IB

IIB

13 Al

19 K

20 Ca

21 Sc

22 Ti

23 V

24 Cr

25 Mn

26 Fe

27 Co

28 Ni

29 Cu

30 Zn

31 Ga

37 Rb

38 Sr

39 Y

40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

45 Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

55 Cs

56 Ba

72 Hf

73 Ta

74 W

75 Re

76 Os

77 Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

87 Fr

88 Ra

57 La

58 Ce

59 Pr

60 Nd

61 Pm

62 Sm

63 Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70 Yb

71 Lu

89 Ac

90 Th

91 Pa

92 U

93 Np

94 Pu

95 Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101 Md

102 No

103 Lw

©2001 CRC Press LLC

18 VIIA

Table 5. PERIODIC 1 IA

2

3

4

5

6

TABLE OF ELEMENTS IN CERAMIC MATERIALS

7

8

9

10

11

12

13

14

15

16

17

IIA

IIIA

IVA

VA

VIA

VIIA

3 Li

4 Be

5 B

6 C

7 N

8 O

11 Na

12 Mg

IIIB

IVB

VB

VIB

VIIB

-----

VIII

-----

IB

IIB

13 Al

14 Si

15 P

16 S

19 K

20 Ca

21 Sc

22 Ti

23 V

24 Cr

25 Mn

26 Fe

27 Co

28 Ni

29 Cu

30 Zn

31 Ga

32 Ge

37 Rb

38 Sr

39 Y

40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

45 Rh

46 Pd

47 Ag

48 Cd

49 In

50 Sn

51 Sb

55 Cs

56 Ba

72 Hf

73 Ta

74 W

75 Re

76 Os

77 Ir

78 Pt

79 Au

80 Hg

81 Tl

82 Pb

83 Bi

87 Fr

88 Ra

57 La

58 Ce

59 Pr

60 Nd

61 Pm

62 Sm

63 Eu

64 Gd

65 Tb

66 Dy

67 Ho

68 Er

69 Tm

70 Yb

71 Lu

89 Ac

90 Th

91 Pa

92 U

93 Np

94 Pu

95 Am

96 Cm

97 Bk

98 Cf

99 Es

100 Fm

101 Md

102 No

103 Lw

©2001 CRC Press LLC

18 VIIA

1 IA 1 H

2

3

Table 6. PERIODIC

TABLE OF ELEMENTS IN POLYMERIC MATERIALS

4

7

5

6

8

9

10

11

12

IIA

IIIB

©2001 CRC Press LLC

IVB

VB

VIB

VIIB

-----

VIII

-----

IB

IIB

13

14

15

16

17

IIIA

IVA

VA

VIA

VIIA

6 C

7 N

8 O

9 F

14 Si

18 VIIA

Table 7. PERIODIC 1 IA

2

3

4

5

6

TABLE OF ELEMENTS IN SEMICONDUCTING MATERIALS 7

8

9

10

11

12

IIA

13

14

15

16

17

IIIA

IVA

VA

VIA

VIIA

8 O

IIIB

IVB

VB

VIB

VIIB

-----

VIII

-----

IB

IIB

13 Al

14 Si

15 P

16 S

30 Zn

31 Ga

32 Ge

33 As

34 Se

48 Cd

49 In

50 Sn

51 Sb

52 Te

80 Hg

©2001 CRC Press LLC

18 VIIA

Table 8. PERIODIC 1 IA

2

3

4

5

6

TABLE OF ELEMENTS IN SUPERCONDUCTING METALS 7

8

9

10

11

12

IIA

13

14

15

16

17

IIIA

IVA

VA

VIA

VIIA

50 Sn

51 Sb

4 Be

IIIB

IVB

VB

22 Ti

23 V

40 Zr

41 Nb

42 Mo

43 Tc

44 Ru

73 Ta

74 W

75 Re

76 Os

57 La 90 Th

©2001 CRC Press LLC

91 Pa

VIB

VIIB

-----

VIII

77 Ir

-----

IB

IIB

13 Al

30 Zn

31 Ga

48 Cd

49 In

80 Hg

82 Pb

18 VIIA

Table 9. ATOMIC AND IONIC

RADII OF THE ELEMENTS

(SHEET 1 OF 5) Atomic Number

Symbol

Atomic Radius (nm)

Ion

Ionic Radius (nm)

1 2 3 4

H He Li Be

0.046 – 0.152 0.114

H– – Li+ Be2+

0.154 – 0.078 0.054

5 6 7 8

B C N O

0.097 0.077 0.071 0.060

B3+ C4+ N 5+ 02–

0.02 1770

UBr 4

789

1813

Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.

©2001 CRC Press LLC

237

Table 72. M ELTING

POINTS OF CERAMICS

(SHEET 10 OF 11) Compound

(K)

UC UCl4

2863 843

UF4 UI4

1233

UN UO 2

3123 3151

USi2 US2

>1375

VB2 VC VCl4

2373 3600 245

VF3

>1075

FI2 VN V2O 5

1048 2593 947

VSi2

2023

V2S3 WB WC WCl6

>875 3133 2900 548

WO 3

1744

WSi2 WS2

2320

ZnBr 2

667

ZnCl2 ZnF2

1145

ZnI2 ZnO

719 2248

779

1970

1523

548

Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.

©2001 CRC Press LLC

238

Table 72. M ELTING

POINTS OF CERAMICS

(SHEET 11 OF 11) Compound

(K)

ZnSO 4

873

ZrB2 ZrBr 2

3313

ZrC ZrCl2 ZrF4 ZrI4

>625 3533 623 873

ZrN

772 3250

ZrO 2

3123

Zr(SO 4) 2

683

ZrS2

1823

Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.

©2001 CRC Press LLC

239

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 16) Heat of fusion

Compound

Formula

Melting point ˚C

Actinium 227 Aluminum Aluminum bromide

Ac

1050±50

(11.0)

Al

658.5

94.5

2550

Al2Br 6

Aluminum chloride

Al2Cl6

87.4 192.4

10.1 63.6

5420 19600

Aluminum iodide

Al2I6

Aluminum oxide Antimony Antimony pentachloride

Al2O 3

190.9 2045.0

9.8 (256.0)

7960 (26000)

Sb SbCl5

630

39.1

4770

4.0

8.0

2400

Antimony tribromide Antimony trichloride

SbBr 3

96.8 73.3 655.0 546.0

9.7 13.3 (46.3) 33.0

3510 3030 (26990) 11200

190.2 816.8

7.25 (22.0)

290 (6620)

80.8 30.0

16.5 8.9

2800 2810

–16.0 –6.0 312.8

13.3 18.9 22.2

2420 2486 8000

725

13.3

1830

SbCl3

Antimony trioxide

Sb 4O 6

Antimony trisulfide

Sb 4S6

Argon Arsenic Arsenic pentafluoride Arsenic tribromide

Ar As AsF5 AsBr 3

Arsenic trifluoride

AsCl3 AsF3

Arsenic trioxide Barium

As4O 6 Ba

Arsenic trichloride

cal/g

cal/g mole

(3400)

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

240

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 16)

cal/g

cal/g mole

846.8 959.8 1286.8 710.8

21.9 25.9 17.1 (17.3)

6000 5370 3000 (6800)

Ba(NO 3) 2

594.8

(22.6)

(5900)

BaO

1922.8

93.2

13800

Ba3(PO 4) 2 BaSO 4

1727 1350

30.9 41.6

18600 9700

Be BeBr 2

1278

260.0



487.8

(26.6)

(4500)

BeCl2 BeO

404.8 2550.0

(30) 679.7

(3000) 17000

Compound

Formula

Barium bromide

BaBr 2

Barium chloride

BaCl2 BaF2

Barium fluoride Barium iodide Barium nitrate Barium oxide Barium phosphate Barium sulfate Beryllium Beryllium bromide Beryllium chloride Beryllium oxide Bismuth Bismuth trichloride

Heat of fusion

Melting point ˚C

BaI2

Bismuth trifluoride

Bi BiCl3 BiF3

Bismuth trioxide

Bi2O 3

Boron Boron tribromide Boron trichloride

B BBr 3

Boron trifluoride

BF3

BCl3

271

12.0

2505

223.8 726.0 815.8

8.2 (23.3) 14.6

2600 (6200) 6800

2300

(490)

(5300)

–48.8 –107.8 –128.0

(2.9) (4.3) 7.0

(700) (500) 480

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

241

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 16)

cal/g

cal/g mole

BrF5

448.8 –7.2 –61.4

78.9 16.1 7.07

5500 2580 1355

Cd

320.8

12.9

1460

CdBr 2 CdCl2

(18.4) 28.8 (35.9) 10.0

(5000) 5300 (5400) 3660

Compound

Formula

Boron trioxide

B2O 3 Br 2

Bromine Bromine pentafluoride Cadmium

Heat of fusion

Melting point ˚C

Cadmium iodide

CdI2

567.8 567.8 1110 386.8

Cadmium sulfate Calcium Calcium bromide

CdSO 4

1000

22.9

4790

Ca CaBr 2

851

55.7

2230

Calcium carbonate

CaCO 3

729.8 1282

20.9 (126)

4180 (12700)

Calcium chloride Calcium fluoride

CaCl2

Calcium metasilicate

CaSiO 3

Calcium nitrate

Ca(NO 3) 2

782 1382 1512 560.8

55 52.5 115.4 31.2

6100 4100 13400 5120

Calcium oxide Calcium sulfate

CaO CaSO 4 CO 2

2707

(218.1)

(12240)

1297 –57.6

49.2 43.2

6700 1900

CO

–205

7.13

199.7

Cadmium bromide Cadmium chloride Cadmium fluoride

Carbon dioxide Carbon monoxide

CdF2

CaF2

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

242

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 16)

Compound

Formula

Cyanogen Cyanogen chloride Cerium Cesium

C2N 2 CNCl Ce Cs

Cesium chloride Cesium nitrate Chlorine Chromium

CsCl CsNO 3

Heat of fusion

Melting point ˚C

cal/g

cal/g mole

–27.2

39.6

2060

–5.2 775 28.3

36.4 27.2 3.7

2240 2120 500

38.5

21.4

3600

Cl2

406.8 –103±5

16.6 22.8

3250 1531

Cr

1890

62.1

3660

Chromium (II) chloride

CrCl2

Chromium (III) sequioxide

Cr 2O 3

Chromium trioxide Cobalt

CrO 3 Co

814 2279 197

65.9 27.6 37.7

7700 4200 3770

1490

62.1

3640

Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride

CoCl2

727

56.9

7390

Cu CuCl2

1083

49.0

3110

430

24.7

4890

CuCl

429

26.4

2620

Cu 2(CN) 2

473

(30.1)

(5400)

CuI CuO Cu 2O

587 1446

(13.6) 35.4

(2600) 2820

1230

(93.6)

(l3400)

Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

243

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 16) Heat of fusion

Melting point ˚C

cal/g

cal/g mole

Compound

Formula

Copper (I) sulfide Dysprosium Erbium Europium

Cu 2S Dy Er Eu

1129

62.3

5500

1407 1496 826

25.2 24.5 16.4

4100 4100 2500

Europium trichloride Fluorine Gadolinium Gallium

EuCl3 F2

622 –219.6

(20.9) 6.4

(8000) 244.0

Gd Ga

1312 29

23.8 19.1

3700 1336

Germanium Gold Hafnium Holmium

Ge Au Hf Ho

959 1063 2214 1461

(114.3) (15.3) (34.1) 24.8

(8300) 3030 (6000) 4100

Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride

H2 HBr HCl HF

–259.25

13.8

28

–86.96 –114.3 83.11

7.1 13.0 54.7

575.1 476.0 1094

Hydrogen iodide Hydrogen nitrate

HI HNO 3

–50.91

5.4

686.3

Hydrogen oxide (water)

H 2O

Deuterium oxide

D2O

–47.2 0 3.78

9.5 79.72 75.8

601 1436 1516

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

244

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 16)

Compound

Formula

Hydrogen peroxide

H 2O 2

Hydrogen selenate

H 2SeO 4

Hydrogen sulfate

H 2SO 4

Hydrogen sulfide

H 2S

Heat of fusion

Melting point ˚C

cal/g

cal/g mole

–0.7 57.8 10.4 –85.6

8.58 23.8 24.0 16.8

2920 3450 2360 5683

27.3 12.9

1805 1670

Hydrogen sulfide, di–

H 2S2

Hydrogen telluride Indium lodine

H 2Te

–89.7 –49.0

In I2

156.3

6.8

781

112.9

14.3

3650

lodine chloride ( α) lodine chloride ( β) Iron Iron carbide

ICl ICl

17.1 13.8

16.4 13.3

2660 2270

Fe Fe3C

1530.0

63.7

3560

1226.8

68.6

12330

Fe2Cl6 FeCl2

303.8 677

63.2 61.5

20500 7800

FeO Fe3O 4

1380

(107.2)

(7700)

1596

142.5

33000

Fe(CO) 5

–21.2

16.5

3250

FeS La Pb

1195 920 327.3

56.9 17.4 5.9

5000 2400 1224

Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

245

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 16)

Compound

Formula

Leadbromide

PbBr 2

Lead chloride

PbCl2 PbF2

Lead fluoride Lead iodide

PbI2

Heat of fusion

Melting point ˚C

cal/g

cal/g mole

487.8 497 8 823 412

11 7 20.3 7.6 17.9

4290 5650 1860 5970 (25800)

Lead molybdate Lead oxide Lead sulfate Lead sulfide

PbMoO 4 PbO PbSO 4

1065

70.8

890

12.6

2820

1087

31.6

9600

PbS

1114

17.3

4150

Lithium Lithium bromide Lithium chloride Lithium fluoride

Li LiBr LiCl LiF

178.8 552 614 896

158.5 33 4 75.5 (91.1)

1100 2900 3200 (2360)

Lithium hydroxide Lithium iodide Lithium metasilicate

LiOH LiI Li2SiO 3

462 440

103.3 (10.6)

2480 (1420)

Lithium molybdate

Li2MoO 4

1177 705

80.2 24.1

7210 4200

Lithium nitrate

LiNO 3

Lithium orthosilicate

Li4SiO 4

Lithium sulfate

Li2SO 4

Lithium tungstate

Li2WO 4

250 1249 857 742

87.8 60.5 27.6 (25.6)

6060 7430 3040 (6700)

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

246

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 16) Heat of fusion

Melting point ˚C

cal/g

cal/g mole

1651 650

26.3 88.9

4600 2160

45.0 82.9

8300 8100

Compound

Formula

Lutetium Magnesium Magnesium bromide

Lu Mg MgBr 2

Magnesium chloride

MgCl2

711 712

Magnesium fluoride Magnesium oxide Magnesium silicate

MgF2

1221

94.7

5900

MgO MgSiO 3

2642

459.0

18500

Magnesium sulfate

MgSO 4

1524 1327

146.4 28.9

14700 3500

Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide

Mn MnCl2

1220

62.7

3450

MnSiO 3

650 1274

58.4 (62.6)

7340 (8200)

MnO

1784

183.3

13000

Manganese oxide Mercury Mercury bromide

Mn 3O 4

1590

(170.4)

(39000)

Hg HgBr 2

–39

2.7

557.2

Mercury chloride

HgCl2

241 276.8

10.9 15.3

3960 4150

Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride

HgI2 HgSO 4

250 850

9.9 (4.8)

4500 (1440)

Mo MoCl2

2622

(68.4)

(6600)

726.8

3.58

6000

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

247

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 16)

Compound

Formula

Molybdenum hexafluoride

MoF6

Molybdenum trioxide Neodymium Neon

MoO 3 Nd Ne

Nickel Nickel chloride

Ni NiCl2

Nickel subsulfide Niobium

Ni3S2 Nb

Niobium pentachloride

NbCl5

Niobium pentoxide Nitric oxide Nitrogen

Nb 2O 5 NO N2

Nitrogen tetroxide

N 2O 4

Nitrous oxide Osmium Osmium tetroxide (white)

N 2O

Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid

Heat of fusion

Melting point ˚C

cal/g

cal/g mole

17 795

11.9 (17.3)

2500 (2500)

1020 – 248.6

11.8 3.83

1700 77.4

1452

71.5

4200

1030 790

142 5 25.8 1

18470 5800

2496

(68.9)

(6500)

21.1 1511

30 8 91.0

8400 24200

–163.7

18.3

549.5

–210

6.15

172.3

–13.2 –90.9

60.2 35.5

5540 1563

Os OsO 4

2700

(36.7)

(7000)

41.8

9.2

2340

OsO 4

55.8 –218.8

15.5 3.3

4060 106.3

1555

38.6

4120

42.3

25.8

2520

O2 Pd H 3PO 4

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

248

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 16)

Compound

Formula

Phosphoric acid. hypo–

H 4P2O 6

Heat of fusion

Melting point ˚C

cal/g

cal/g mole

54.8 17.3 73.8 1.0

51.2 35.0 37.4 20.3

8300 2310 3070 3110

Phosphorus acid, hypo–

H 3PO 2

Phosphorus acid, ortho–

H 3PO 3

Phosphorus oxychloride

POCl3

Phosphorus pentoxide

P4O 10

Phosphorus trioxide

P4O 6 P4

569.0 23.7 44.1

60.1 15.3 4.8

17080 3360 600

Pt

1770

24.1

4700

K KBO 2

63.4

14.6

574

947

(69.1)

(5660)

Phosphorus, yellow Platinum Potassium Potassium borate, meta– Potassium bromide Potassium carbonate

KBr K2CO 3

Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate

KCl K2CrO 4 KCN K2Cr 2O 7

Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate

KF KOH Kl KNO 3

742

42.0

5000

897

56.4

7800

770

85.9

6410

984

35.6

6920

623

(53.7)

(3500)

398

29.8

8770

875 360 682

111.9 (35.3) 24.7

6500 (1980) 4100

338

78.1

2840

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

249

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 16)

Compound

cal/g

cal/g mole

490 1340 1092 1074

55.3 41.9 42.4 46.4

6100 8900 14000 8100

179 931 3167±60

23.1 19.0 (42.4)

2250 2700 (7900)

296

30.1

15340

Formula

Potassium peroxide

K2O 2

Potassium phosphate

K3PO4

Potassium pyro– phosphate

K4P2O 7

Potassium sulfate

K2SO 4

Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide

KSCN Pr Re Re2O 7

Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride

ReF6 Rb RbBr RbCl

Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium

RbF Rbl RbNO 3 Sm

Scandium Selenium Seleniumoxychloride

Sc Se SeOCl3

Silane, hexaHuoro–

Si2F6

Heat of fusion

Melting point ˚C

19.0

16.6

5000

38 .9 677 717

6. 1 22.4 36.4

525 3700 4400

833 638

39.5 14.0

4130 2990

305

9.1

1340

1072

17.3

2600

1538 217

84.4 15.4

3800 1220

9.8 –28.6

6.1 22.9

1010 3900

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

250

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 16)

Compound

Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride Silver

Heat of fusion

Formula

Melting point ˚C

cal/g

cal/g mole

Si

1427

337.0

9470

SiO 2

1723

35.0

2100

SiCl4

–67.7

10.8

1845

Ag

961

25.0

2700

Silver bromide Silver chloride Silver cyanide Silver iodide

AgBr AgCl AgCN AgI

430 455 350 557

11.6 22.0 20.5 9.5

2180 3155 2750 2250

Silver nitrate

AgNO 3

16.2 (13.7) 13.5

2755 (4280) 3360

Silver sulfate

Ag2SO 4

Silver sulfide Sodium

Ag2S

209 657 841

Na

97.8

27.4

630

Sodium borate, meta– Sodium bromide Sodium carbonate

NaBO 2

966

134.6

8660

NaBr Na2CO 3

747

59.7

6140

Sodium chlorate

NaClO 3

854 255

66.0 49.7

7000 5290

Sodium chloride Sodium cyanide Sodium fluoride Sodium hydroxide

NaCl NaCN NaF NaOH

800 562 992 322

123.5 (88.9) 166.7 50.0

7220 (4360) 7000 2000

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

251

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 13 OF 16)

Compound

Formula

Sodium iodide Sodium molybdate Sodium nitrate

NaI Na2MoO 4 NaNO 3

Sodium peroxide

Na2O 2

Sodium phosphate, meta–

NaPO 3

Sodium pyrophosphate

Na4P2O 7

Sodiumsilicate,aluminum–

NaAlSi3O 8

Sodium silicate, di–

Na2Si2O 5

Sodium silicate, meta–

Na2SiO 3

Sodium sulfate

Na2SO 4

Sodium sulfide Sodium thiocyanate

Melting point ˚C

Heat of fusion cal/g

cal/g mole

662

35.1

5340

687 310 460

17.5 44.2 75.1

3600 3760 5860

988 970 1107 884

(48.6) (51.5) 50.1 46.4

(4960) (13700) 13150 8460

Na2S

1087 884 920

84.4 41.0 15.4

10300 5830 (1200)

NaSCN

323

54.8

4450

Sodium tungstate Strontium Strontium bromide Strontium chloride

Na2WO 4 Sr SrBr 2

702

19.6

5800

757

25.0

2190

643 872

19.3 26.5

4780 4100

Strontium fluoride Strontium oxide Sulfur (monatomic) Sulfur dioxide

SrF2 SrO S SO 2

SrCl2

1400

34.0

4260

2430 119

161.2 9.2

16700 295

–73.2

32.2

2060

For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.

Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)

©2001 CRC Press LLC

252

Table 73. H EAT OF

FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 14 OF 16) Heat of fusion

Compound

Formula

Melting point ˚C

Sulfur trioxide ( α)

SO 3 SO 3 SO 3

16.8 32.3 62.1

25.8 36.1 79.0

2060 2890 6310

Ta

2996 ± 50

34.6–41.5

(7500)

Tantalum pentachloride

TaCl5

Tantalum pentoxide Tellurium Terbium

Ta2O 5

206.8 1877

25.1 108.6

9000 48000

Te Tb

453 1356

25.3 24.6

3230 3900

Thallium Thallium bromide, mono– Thallium carbonate Thallium chloride, mono–

Tl TlBr Tl2CO 3 TICl

302.4 460

5.0 21.0

1030 5990

273

9.5

4400

427

17.7

4260

Thallium iodide, mono– Thallium nitrate

TlI TINO 3

Thallium sulfate

Tl2SO 4

Thallium sulfide

Tl2S

Thorium Thorium chloride

Th ThCl4 ThO 2 Tm

Sulfur trioxide ( β) Sulfur trioxide ( γ) Tantalum

Thorium dioxide Thulium

cal/g

cal/g mole

440

9.4

3125

207 632 449

8.6 10.9 6.8

2290 5500 3000

1845

(1030

+4

1.5x10

3.25

940–1030

3.0x10–4

1.52

A95 (Shore) M87 M71—95 75 (Barcol)

E94—97, M116—120 M116—120

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

734

CRC Handbook of Materials Science & Engineering

Table 206. H ARDNESS OF SI3 N 4 AND

AL2O 3 COMPOSITES

Matrix

Dispersed Phase

Knoop Hardness (GPa)

Si3N 4+ 6 wt % Y2O 3

None

13.4 ± 0.3

Si3N 4+ 6 wt % Y2O 3

TiC (Ti, W) C WC

15.21 ± 0.3 14.06 ± 0.3 14.4 ± 0.4

TaC HfC SiC

12.6 ± 0.2 14.1 ± 0.4 13.6 ± 0.2

TiC

17.2 ± 0.2

Al2O 3

Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).

©2001 CRC Press LLC Shackelford & Alexander

735

Table 207. COEFFICIENT OF STATIC

FRICTION FOR POLYMERS

Class

Polymer

Coefficient of Static Friction (Against Self) (Dimensionless)

ABS–Polycarbonate Alloy

ABS–Polycarbonate Alloy

0.2

Polycarbonates

Polycarbonate

0.52

Nylons; Molded, Extruded

Type 6

Polyacetals

Cast

0.32 (dynamic )

6/6 Nylon General purpose molding

0.04—0.13

Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow

Polyester; Thermoplastic

0.15 (against steel) 0.15 (against steel) 0.15 (against steel) (ASTM D1894)

Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing Polyester; Thermoplastic

0.1—0.3 (against steel) 0.1—0.3 (against steel) 0.05—0.15 (against steel)

Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing

0.17 0.16 0.16

0.13 (against steel) 0.14 (against steel) 0.14 (against steel)

Phenylene oxides (Noryl)

Standard

0.67

Polyarylsulfone

Polyarylsulfone

0.1—0.3

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3 , CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

73 6

CRC Handbook of Materials Science & Engineering

Table 208. ABRASION

RESISTANCE OF POLYMERS

(SHEET 1 OF 2) Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)

Class

Polymer

Fluorocarbons; Molded,Extruded

Polytrifluoro chloroethylene (PTFCE)

0.008 (g/cycle)

Polyvinylidene— fluoride (PVDF)

0.0006—0.0012 (g/cycle)

Polycarbonates

Polycarbonate Polycarbonate (40% glass fiber reinforced) Nylons; Molded, Extruded Type 6 General purpose Cast

Nylons; Molded, Extruded

10 40

5 2.7

6/6 Nylon General purpose molding General purpose extrusion

3—8 3—5

PVC–Acrylic Alloy

PVC–acrylic sheet PVC–acrylic injection molded

0.073 (CS—10 wheel) 0.0058 (CS—10 wheel)

Polymides

Unreinforced Unreinforced 2nd value Glass reinforced

0.08 0.004 20

Polyacetals

Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow

14—20 33 9 14 40 14

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC Shackelford & Alexander

737

Table 208. ABRASION

RESISTANCE OF POLYMERS

(SHEET 2 OF 2) Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)

Class

Polymer

Polyester; Thermoplastic

Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing

6.5 9—50 11

SE—100 SE—1 Glass fiber reinforced

100 20 35

Phenylene oxides (Noryl)

Standard

20

Polyarylsulfone

Polyarylsulfone

40

Polystyrenes; Molded

Glass fiber -30% reinforced

164

Phenylene Oxides

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

73 8

CRC Handbook of Materials Science & Engineering

Table 209. FATIGUE STRENGTH OF

W ROUGHT ALUMINUM ALLOYS

(SHEET 1 OF 4)

Alloy AA No.

Temper

Fatigue Strength (MPa)

1060

0 H12 H14 H16 H18

21 28 34 45 45

1100

0 H12 H14 H16 H18

34 41 48 62 62

1350 2011

H19 T3 T8

48 125 125

2014

0 T4 T6

90 140 125

2024

0 T3 T4, T351 T361

90 140 140 125

2036 2048

T4

125 220

2219

T62 T81, T851 T87

105 105 105

2618 3003 Alclad

All 0 H12

125 48 55

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).

©2001 CRC Press LLC Shackelford & Alexander

73 9

Table 209. FATIGUE STRENGTH OF

W ROUGHT ALUMINUM ALLOYS

(SHEET 2 OF 4)

Alloy AA No.

Temper

Fatigue Strength (MPa)

3003

H14 H16 H18

62 69 69

3004 Alclad

0 H32

97 105

3004

H34 H36 H38 T6

105 110 110 110

5050

0 H32 H34 H36 H38

83 90 90 97 97

5052

0 H32 H34 H36 H38

110 115 125 130 140

5056

0 H18 H38 H321

140 150 150 160

5154

0 H32 H34 H36 H38 H112

115 125 130 140 145 115

5182 5254

0 0

140 115

4032

5083

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).

©2001 CRC Press LLC

74 0

CRC Handbook of Materials Science & Engineering

Table 209. FATIGUE STRENGTH OF

W ROUGHT ALUMINUM ALLOYS

(SHEET 3 OF 4)

Alloy AA No.

Temper

Fatigue Strength (MPa)

5254

H32 H34 H36 H38 H112

125 130 140 145 115

5652

0 H32 H34 H36 H38

110 115 125 130 140

6005

T1 T5

97 97

6009 6010

T4 T4

115 115

6061

0 T4, T451 T6, T651

62 97 97

6063

0 T1 T5 T6

55 62 69 69

6066 6070

T6, T651 0 T4 T6

110 62 90 97

6205 6262 6351

T5 T9 T6

105 90 90

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).

©2001 CRC Press LLC Shackelford & Alexander

74 1

Table 209. FATIGUE STRENGTH OF

W ROUGHT ALUMINUM ALLOYS

(SHEET 4 OF 4)

Alloy AA No.

Temper

Fatigue Strength (MPa)

6463

T1 T5 T6

69 69 69

7005

T53 T6,T63,T6351

140 125

7049 7050 7075

T73 T736 T6,T651

295 240 160

7175

T66 T736 T7351

160 160 220

7475

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).

©2001 CRC Press LLC

74 2

CRC Handbook of Materials Science & Engineering

Table 210. REVERSED

BENDING FATIGUE LIMIT OF GRAY CAST IRON BARS

ASTM Class

Reversed Bending Fatigue Limit (MPa)

20 25 30

69 79 97

35 40 50 60

110 128 148 169

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).

©2001 CRC Press LLC Shackelford & Alexander

74 3

Table 211. IMPACT

ENERGY OF TOOL STEELS

(SHEET 1 OF 2) Type

Condition

Impact Energy (J)

L2

Oil quenched from 855 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C

28(a) 19(a) 26(a) 39(a) 125(a)

Annealed

93 HRB

Oil quenched from 845 ˚C and single tempered at: 315 ˚C 425 ˚C 540 ˚C 650 ˚C

12(a) 18(a) 23(a) 81(a)

L6

S1

S5

Oil quenched from 930 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C

249(b) 233(b) 203(b) 230(b)

Oil quenched from 870 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C

206(b) 232(b) 243(b) 188(b)

(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).

©2001 CRC Press LLC

74 4

CRC Handbook of Materials Science & Engineering

Table 211. IMPACT

ENERGY OF TOOL STEELS

(SHEET 2 OF 2) Type

Condition

Impact Energy (J)

S7

Fan cooled from 940 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C

244(b) 309(b) 243(b) 324(b) 358(b)

(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).

©2001 CRC Press LLC

Shackelford & Alexander

74 5

Table 212. IMPACT

STRENGTH OF W ROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE

Class

Alloy

Condition

Charpy Impact Strength (J)

Commercially Pure

99.2Ti 99.1Ti 99.0 Ti 99.2Ti-0.2Pd

Annealed Annealed Annealed Annealed

43 38 20 43

Alpha Alloys

Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O 2)

Annealed Annealed

26 27

Near alpha alloys

Ti-8Al-1Mo-1V Ti-6Al-2Nb-1Ta-1Mo

Duplex Annealed As rolled 2.5 cm (1 in.) plate

32 31

Alpha-Beta Alloys

Ti-6Al-4V Ti-6Al-4V(low O 2) Ti-6Al-6V-2Sn Ti-7Al-4Mo

Annealed Annealed Annealed Solution + age

19 24 18 18

Beta Alloys

Ti-13V-1Cr-3Al Ti-3Al-8V-6Cr-4Mo-4Zr

Solution + age Solution + age

11 10

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).

©2001 CRC Press LLC

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 1 OF 7)

Class

Polymer

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

ABS Resins; Molded, Extruded

Medium impact

2.0—4.0

High impact Very high impact Low temperature impact Heat resistant

3.0—5.0 5.0—7.5 6—10 2.0—4.0

Acrylics; Cast, Molded, Extruded

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II

0.4 0.4

Moldings: Grades 5, 6, 8 High impact grade

0.2—0.4 0.8—2.3

Thermoset Carbonate

Allyl diglycol carbonate

0.2—0.4

Alkyds; Molded

Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)

0.25—0.35 2.2

Cellulose Acetate Butyrate; Molded, Extruded

0.30—0.35 8—12

ASTM Grade: H4 MH S2

3 4.4—6.9 7.5—10.0

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC Shackelford & Alexander

74 7

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 2 OF 7)

Class

Polymer

Cellusose Acetate Propionate; Molded, Extruded

ASTM Grade:

Chlorinated Polymers

Polycarbonate Diallyl Phthalates; Molded

Fluorocarbons; Molded,Extruded

Epoxies; Cast, Molded, Reinforced

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

1 3 6

1.7—2.7 3.5—5.6 9.4

Chlorinated polyether Chlorinated polyvinyl chloride

0.4 (D758)

Polycarbonate

12—16

Orlon filled

0.5—1.2

Dacron filled Asbestos filled Glass fiber filled

1.7—5.0 0.30—0.50 0.5—15.0

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible

6.3

3.50—3.62 2.0—4.0 No break 3.0—10.3

0.2—0.5 0.3—0.2

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

74 8

CRC Handbook of Materials Science & Engineering

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 3 OF 7)

Class

Polymer

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

Epoxies; Cast, Molded, Reinforced (Con’t)

Molded

0.4—0.5

General purpose glass cloth laminate High strength laminate Epoxies—Molded, Extruded

12—15 60—61

High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded

0.5 0.3—0.5

Epoxy novolacs

Cast, rigid

13—17

Melamines; Molded

Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral

0.27—0.36 0.5—12.0 0.30—0.35, 0.2(mineral)

Nylons; Molded, Extruded

Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers

0.6—1.2 2.2—3.4 1.2 1.5—19

Type 8 Type 11 Type 12

>16 3.3—3.6 1.2—4.2

6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion

(ASTM D638) 0.55—1.0,2.0 2.5—3.4 1.3

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC Shackelford & Alexander

74 9

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 4 OF 7)

Class

Polymer

Nylons; Molded, Extruded (Con’t)

6/10 Nylon

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

General purpose Glass fiber (30%) reinforced Phenolics; Molded

ABS–Polycarbonate Alloy PVC–Acrylic Alloy

Polymides

Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber

0.6–1.6 3.4

0.24—0.50 0.4—1.0 0.6—8.0 10—33

Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos

0.30—0.45

ABS–Polycarbonate Alloy

10 (ASTM D638)

PVC–acrylic sheet PVC–acrylic injection molded

15

Unreinforced Unreinforced 2nd value Glass reinforced

Polyacetals

0.34—1.0 2.0—2.3 0.3—0.4

15 0.5 0.5 17 (ASTM D638)

Homopolymer: Standard 20% glass reinforced 22% TFE reinforced

1.4 0.8 0.7

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

750

CRC Handbook of Materials Science & Engineering

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 5 OF 7)

Class

Polymer

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

Polyacetals (Con’t)

Copolymer: Standard 25% glass reinforced High flow

1.3 1.8 1

Polyester; Thermoplastic

Polyesters: Thermosets

Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing

1.8

General purpose grade Glass reinforced grade Asbestos—filled grade

1 1 0.5

Cast polyyester Rigid Flexible

0.18—0.40 4

Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose Phenylene Oxides

Phenylene oxides (Noryl)

1.0—1.2 1.3—2.2

1—10 0.45—1.0 5—15

SE—100 SE—1 Glass fiber reinforced

(ASTM D638) 5 5 2.3

Standard

1.2—1.3

Glass fiber reinforced

1.8—2.0

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

751

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 6 OF 7)

Class

Polymer

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

Polyarylsulfone

Polyarylsulfone

1.6—5.0

Polypropylene

General purpose High impact

0.4—2.2 1.5—12

Asbestos filled Glass reinforced Flame retardant

0.5—1.5 0.5—2 2.2

Polyphenylene sulfide

Standard 40% glass reinforced

0.3 1.09

Polyethylenes; Molded, Extruded

Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight

4.0—14 0.4—6.0 1.2—2.5 >20

Ethylene butene

0.4

Propylene—ethylene Ionomer Polyallomer

1.1 9—14 1.5

Polystyrenes General purpose Medium impact High impact

(ASTM D638) 0.2—0.4 0.5—1.2 0.8—1.8

Glass fiber —30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN

2.5 0.29—0.54

Olefin Copolymers; Molded

Polystyrenes; Molded

1.35—3.0

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

752

CRC Handbook of Materials Science & Engineering

Table 213. IMPACT

STRENGTH OF POLYMERS

(SHEET 7 OF 7)

Class

Polymer

Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)

Polyvinyl Chloride And Copolymers; Molded, Extruded

Nonrigid—general

Variable

Nonrigid—electrical Rigid—normal impact Vinylidene chloride

Variable 0.5—10 2—8

Silicones; Molded, Laminated

Ureas; Molded

Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled

10 0.34 10—25

0.20—0.35 0.20—0.275 0.25—0.35

To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC Shackelford & Alexander

753

Table 214. IMPACT

STRENGTH OF FIBERGLASS REINFORCED PLASTICS

Class

Material

Glass fiber content (wt%)

Glass fiber reinforced thermosets

Sheet molding compound (SMC)

15 to 30

8 to 22

Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester

15 to 35 25 to 50 20 to 30

2 to 10 10 to 20 9 to 12

Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic

30 to 50 30 to 80 40 to 80 5 to 25

4 to 12 40 to 60 45 to 60 1 to 8

Glass–fiber–reinforced thermoplastics

Izod Impact strength (ft • Ib/in. of notch)

Acetal

20 to 40

0.8 to 2.8

Nylon Polycarbonate Polyethylene

6 to 60 20 to 40 10 to 40

0.8 to 4.5 1.5 to 3.5 1.2 to 4.0

Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)

20 to 40 20 to 35 20 to 40 20 to 40

1 to 4 0.4 to 4.5 1.3 to 2.5 1 to 2.4

PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester

15 to 35 20 to 40 20 to 40 20 to 35

0.8 to 1.6 1.6 to 2.2 0.4 to 2.4 1.0 to 2.7

To convert (ft • Ib/in. of notch) to (J/cm of notch), multiply by 0.534 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC

754

CRC Handbook of Materials Science & Engineering

Table 215. IMPACT

STRENGTH OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2)

Class

Resin Type

Composition

Impact Strength, Notched/Unnotched (J/cm)

Amorphous

Acrylonitrile-butadiene-styrene(ABS)

30% glass fiber 30% carbon fiber

0.75/3.5 0.59/2.4

Nylon

30% glass fiber 30% carbon fiber

0.64/3.7 0.64/4.3

Polycarbonate

30% glass fiber 30% carbon fiber

2.0/9.34 0.96/5.34

Polyetherimide

30% glass fiber 30% carbon fiber

0.75/5.60 0.75/6.67

Polyphenylene oxide (PPO)

30% glass fiber 30% carbon fiber

1.2/5.1 0.53/3.0

Polysulfone

30% glass fiber 30% carbon fiber

0.96/7.5 0.64/3.5

Styrene-maleic-anhydride (SMA)

30% glass fiber

0.59/2.4

Thermoplastic polyurethane

30% glass fiber

5.1/15

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).

©2001 CRC Press LLC

Shackelford & Alexander

755

Table 215. IMPACT

STRENGTH OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2)

Class

Resin Type

Composition

Impact Strength, Notched/Unnotched (J/cm)

Crystalline

Acetal

30% glass fiber 20% carbon fiber

0.96/4.8 0.53/1.6

Nylon 66

30% glass fiber 30% carbon fiber

1.5/11 0.80/6.4

Polybutylene telphthalate (PBT)

30% glass fiber 30% carbon fiber

1.4/9.1 0.64/3.5

Polythylene terephthalate (PET)

30% glass fiber

1.0/—

Polyphenylene sulfide (PPS)

30% glass fiber 30% carbon fiber

0.75/4.5 0.59/2.9

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).

©2001 CRC Press LLC

756

CRC Handbook of Materials Science & Engineering

Table 216. FRACTURE

TOUGHNESS OF SI3N 4 AND AL2O 3 COMPOSITES

Matrix

Dispersed Phase

Fracture Toughness (KIc), (MPa √m)

Si3N 4+ 6 wt % Y2O 3

None

4.8 ± 0.3

Si3N 4+ 6 wt % Y2O 3

TiC (Ti, W) C WC

4.4 ± 0.5 3.5 ± 0.3 5.2 ± 0.4

TaC HfC SiC

4.6 ± 0.4 3.6 ± 0.2 3.65 ± 0.5

TiC

3.2 ± 0.4

Al2O 3

Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).

©2001 CRC Press LLC

Shackelford & Alexander

757

Table 217. TENSILE

MODULUS OF GRAY CAST IRONS

ASTM Class

Tensile Modulus (GPa)

20 25 30 35

66 to 97 79 to 102 90 to 113 100 to 119

40 50 60

110 to 138 130 to 157 141 to 162

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).

Table 218. TENSION

MODULUS OF TREATED D UCTILE IRONS

Treatment

Tension Modulus (MPa)

60-40-18 65-45-12 80-55-06 120 90-02

169 168 168 164

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

©2001 CRC Press LLC

758

CRC Handbook of Materials Science & Engineering

Table 219. TENSILE

MODULUS OF FIBERGLASS REINFORCED PLASTICS Glass fiber content (wt%)

Tensile modulus (105 psi)

Class

Material

Glass fiber reinforced thermosets

Sheet molding compound (SMC)

15 to 30

16 to 25

Bulk molding compound(BMC) Preform/mat(compression molded)

15 to 35 25 to 50

16 to 25 9 to 20

Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic

30 to 50 30 to 80 40 to 80 5 to 25

8 to l8 40 to 90 40 to 60 26 to 29

Glass–fiber–reinforced thermoplastics

Acetal

20 to 40

8 to 15

Nylon Polycarbonate Polyethylene

6 to 60 20 to 40 10 to 40

2 to 20 7.5 to 17 4 to 9

Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)

20 to 40 20 to 35 20 to 40 20 to 40

4.5 to 9 8.4 to 12.1 15 6 to 10

PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester

15 to 35 20 to 40 20 to 40 20 to 35

10 to 18 9.5 to 15 9 to 18.5 13 to 15.5

To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC Shackelford & Alexander

759

Table 220. TENSILE

MODULUS OF GRAPHITE/ALUMINUM COMPOSITES Composite

Fiber loading (vol %)

Wire diameter (mm)

Tensile Modulus (GPa)

VS0054/201 Al GY70SE/201 Al

48 to 52 37 to 38

0.64 (2-strand) 0.71(8-strand)

345 207

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).

Table 221. TENSILE

MODULUS OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation

Fiber vol (%)

Tensile Modulus (GPa)

Range of Measurement (%)

0°3/90°6/0°3 90°3/0°6/90°3 0°

33 33 34

122.0 124.8 172.4

107 110 100

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).

©2001 CRC Press LLC

760

CRC Handbook of Materials Science & Engineering

Table 222. TENSILE

MODULUS OF SILICON CARBIDE SCS–2–AL

Fiber orientation

No. of plies

Tensile Modulus (GPa)

0° 90°

6, 8, 12 6, 12,40

204.1 118.0

[0°/90°/0°/90°] s [02 °99°20°] s [902/0°/90°] s

8 8 8

136.5 180.0 96.5

± 45° [0°±45°/0°] s+2s [0°±45°/90°] s

8, 12, 40 8, 16 8

94.5 146.2 127.0

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).

©2001 CRC Press LLC

Shackelford & Alexander

761

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 1 OF 7) Class

Ceramic

Young’s Modulus (psi)

Borides

Chromium Diboride (CrB2)

30.6x106

Tantalum Diboride (TaB2)

37 x106

Titanium Diboride (TiB2)

53.2x106

(6.0 µm grain size, ρ=4.46g/cm )

81.6x106

(3.5 µm grain size, ρ=4.37g/cm 3,

75.0x106

3

0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm 3,

0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm 3,

9.6wt% Ni)

Carbides

Temperature

77.9x106 6.29x106

Zirconium Diboride (ZrB2)

49.8-63.8x106

(22.4% density,foam)

3.305x106

Boron Carbide (B4C)

42-65.2x106

room temp.

( ρ = 11.94 g/cm 3)

61.55x106

room temp.

Silicon Carbide (SiC) (pressureless sintered)

43.9x106

room room room room

Hafnium Monocarbide (HfC)

6

(hot pressed)

63.8x10

(self bonded)

59.5x106

(cubic, CVD)

60.2-63.9x106

temp. temp. temp. temp.

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

762

CRC Handbook of Materials Science & Engineering

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 2 OF 7) Class

Ceramic

Young’s Modulus (psi)

Temperature

Carbides (Con’t)

( ρ = 3.128 g/cm 3)

58.2x106

room temp.

( ρ = 3.120 g/cm 3) (hot pressed)

59.52x106 62.4-65.3x10

(sintered)

54.38-60.9x106

(reaction sintered)

50.75-54.38x106

6

6

55x10

53x106 51x106 55.1x106

room temp. 20˚C 20˚C 20˚C 400˚C 800˚C 1200˚C

(sintered)

43.5-58.0x10

(reaction sintered)

29-46.4x106

1400˚C 1400˚C 1400˚C

Tantalum Monocarbide (TaC)

41.3-91.3x106

room temp.

Titanium Monocarbide (TiC)

63.715x106

room temp. 1000˚C

(hot pressed)

6

6

45-55x10 Trichromium Dicarbide (Cr 3C2) Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC)

54.1x106 96.91-103.5x106 6

28.3-69.6x10

room temp. room temp.

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

Shackelford & Alexander

763

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 3 OF 7) Class

Ceramic

Young’s Modulus (psi)

Nitrides

Aluminum Nitride (AlN)

50x106

Boron Nitride (BN) parallel to c axis

25˚C

6

46x10

1000˚C

40x106

1400˚C

4.91x106

23˚C

6

300˚C

6

700˚C

3.47x10 0.51x10 parallel to a axis

12.46x106

23˚C

6

300˚C

6

700˚C 1000˚C

8.79x10 1.54x10

1.65x106 Titanium Mononitride (TiN)

Temperature

11.47-36.3x106

Trisilicon tetranitride (Si3N 4) (hot pressed)

Oxides

36.25-47.13x106 6

(sintered)

28.28-45.68x10

(reaction sintered)

14.5-31.9x106

20˚C 20˚C

(hot pressed)

25.38-36.25x10

(reaction sintered)

17.4-29.0x106

20˚C 1400˚C 1400˚C

Aluminum Oxide (Al2O 3)

50-59.3x106

room temp.

6

6

50-57.275 x10 6

51.2 x10

45.5-50 x106

500˚C 800˚C 1000˚C

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

764

CRC Handbook of Materials Science & Engineering

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 4 OF 7) Class

Ceramic

Young’s Modulus (psi)

Temperature

Oxides (Con’t)

Aluminum Oxide (Al2O 3) (Con’t)

39.8-53.65 x106

1200˚C

32 x106

1250˚C 1400˚C 1500˚C

6

32.7 x10

25.6 x106 Beryllium Oxide (BeO)

42.8-45.5x106 6

40 x10

33 x106 20 x106 Cerium Dioxide (CeO 2)

24.9x106

Dichromium Trioxide (Cr 2O 3)

>14.9x106

Hafnium Dioxide (HfO 2)

8.2x106

Magnesium Oxide (MgO)

30.5-36.3x106

4 x106

room temp. 600˚C 1000˚C 1200˚C 1300˚C

42.74x106

room temp.

6

29.5 x10

21 x106 10 x106

( ρ = 3.506 g/cm 3)

room temp. 800˚C 1000˚C 1145˚C

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC Shackelford & Alexander

765

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 5 OF 7) Class

Ceramic

Young’s Modulus (psi)

Temperature

Oxides (Con’t)

Thorium Dioxide (ThO 2)

17.9-34.87x106

room temp.

18-18.5x106

800˚C 1000˚C 1200˚C

6

17.1x10

12.8x106 Titanium Oxide (TiO 2)

41x106

Uranium Dioxide (UO 2)

21x106

0-1000˚C 20˚C room temp.

6

25x10 ( ρ=10.37 g/cm 3)

27.98x106

Zirconium Oxide (ZrO 2) (partially stabilized)

29.7x106 6

(fully stabilized)

14.1-30.0x10

(plasma sprayed)

6.96x106 6

24.8-27x10 36x106 2x106 18.9x106

6

18.5-25x10 3.05x106

17.1-18.0x106 6

14.2x10

12.8x106

room temp. room temp. room temp. room temp. 20˚C 500˚C 800˚C 1000˚C 1100˚C 1200˚C 1400˚C 1500˚C

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

766

CRC Handbook of Materials Science & Engineering

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 6 OF 7) Young’s Modulus (psi)

Temperature

(stabilized, ρ=5.634 g/cm 3)

19.96x106

room temp.

Cordierite (2MgO 2Al2O 3 5SiO 2)

20.16x106

(glass)

13.92x106

Class

Ceramic

Oxides (Con’t)

Uranium Dioxide (UO 2) (Con’t)

Mullite (3Al2O 3 2SiO 2) ( ρ=2.779 g/cm 3)

20.75x106

( ρ=2.77 g/cm )

18.42x10

room temp. 25˚C

( ρ=2.77 g/cm )

18.89x106

400˚C

( ρ=2.77 g/cm 3)

14.79x106

800˚C 1200˚C room temp.

3

3

6

( ρ=2.77 g/cm ) (full density)

33.35x106

Spinel (Al2O 3 MgO)

34.5x106

3

6

4.00x10

6

34.4x10

34.5x106 34x106 6

32.9x10

30.4x106 25.0x106 6

20.1x10 ( ρ=3.510 g/cm ) 3

38.23x106

room temp. 200˚C 400˚C 600˚C 800˚C 1000˚C 1200˚C 1300˚C room temp.

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

Shackelford & Alexander

767

Table 223. YOUNG’S

MODULUS OF CERAMICS

(SHEET 7 OF 7) Class

Ceramic

Young’s Modulus (psi)

Temperature

Oxides (Con’t)

Zircon (SiO 2 ZrO 2)

24x106

room temp.

Silicide

Molybdenum Disilicide (MoSi2)

39.3-56.36x106

room temp.

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

768

CRC Handbook of Materials Science & Engineering

Table 224. YOUNG’S

MODULUS OF GLASS

(SHEET 1 OF 2) Class

Young’s Modulus (GPa)

Temperature

72.76–74.15 79.87 80.80

20˚C 998˚C (annealing point) 1096˚C (straining point)

64.4 62.0

room temp. room temp.

(25% mol Na2O)

56.9 61.4 53.9

–196˚C room temp. 200–250˚C

(30% mol Na2O)

60.5

room temp.

(33% mol Na2O) (33% mol Na2O)

54.9 60.3 51.0

–196˚C room temp. 200–250˚C

(35% mol Na2O)

60.2

room temp.

(40% mol Na2O)

51.9 46.1

–196˚C 200–250˚C

Glass

SiO 2 glass

SiO 2–Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (25% mol Na2O)

(33% mol Na2O)

(40% mol Na2O) SiO 2–PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)

47.1 50.1 46.3

(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)

52.8 51.7 44.1

(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)

49.3 43.6 41.2

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.

©2001 CRC Press LLC

Shackelford & Alexander

769

Table 224. YOUNG’S

MODULUS OF GLASS

(SHEET 2 OF 2) Class

Glass

SiO 2–B2O 3 glass

(60% mol B2O 3) (65% mol B2O 3) (70% mol B2O 3) (75% mol B2O 3) (80% mol B2O 3) (85% mol B2O 3)

Temperature

23.3 22.5 23.5 24.1 22.8

(95% mol B2O 3)

21.2 20.9 21.2

B2O 3 glass

17.2–17.7

room temp.

31.4 43.2

15˚C 15˚C

53.7 59.4 57.1

15˚C 15˚C 15˚C

(90% mol B2O 3)

B2O 3 glass

Young’s Modulus (GPa)

B2O 3–Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.

©2001 CRC Press LLC

770

CRC Handbook of Materials Science & Engineering

Table 225. ELASTIC

MODULUS OF W ROUGHT STAINLESS STEELS* (SHEET 1 OF 2)

Type

UNS Designation

Elastic Modulus (GPa)

201 205 301 302

S20100 S20500 S30100 S30200

197 197 193 193

302B 303 304 S30430

S30215 S30300 S30400 S30430

193 193 193 193

304N 305 308 309

S30451 S30500 S30800 S30900

196 193 193 200

310 314 316 316N

S31000 S31400 S31600 S31651

200 200 193 196

317 317L 321 330

S31700 S31703 S32100 N08330

193 200 193 196

347 384 405 410

S34700 S38400 S40500 S41000

193 193 200 200

414 416 420 429

S41400 S41600 S42000 S42900

200 200 200 200

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993).

©2001 CRC Press LLC Shackelford & Alexander

771

Table 225. ELASTIC

MODULUS OF W ROUGHT STAINLESS STEELS* (SHEET 2 OF 2)

Type

UNS Designation

Elastic Modulus (GPa)

430 430F 431 434 436 440A

S43000 S43020 S43100 S43400 S43600 S44002

200 200 200 200 200 200

440C 444 446 PH 13–8 Mo

S44004 S44400 S44600 S13800

200 200 200 203

15–5 PH 17–4 PH 17–7 PH

S15500 S17400 S17700

196 196 204

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). *

Annealed Condition .

©2001 CRC Press LLC

772

CRC Handbook of Materials Science & Engineering

Table 226. M ODULUS OF

ELASTICITY OF W ROUGHT TITANIUM ALLOYS

Class

Metal or Alloy

Modulus of Elasticity (GPa)

Commercially Pure

99.5 Ti 99.2 Ti 99.1 Ti

102.7 102.7 103.4

99.0Ti 99.2 Ti–0.2Pd

104.1 102.7

Alpha Alloys

Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O 2)

110.3 110.3

Near Alpha Alloys

Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo

124.1 113.8 113.8

Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo

113.8 113.8

Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O 2)

113.1 106.9 113.8 113.8

Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo

110.3 113.8 113.8

Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al

122.0 111.7

Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Ti-11.5Mo-6Zr-4.5Sn

101.4 106.9 105.5 103.4

Alpha-Beta Alloys

Beta Alloys

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).

©2001 CRC Press LLC Shackelford & Alexander

773

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

ABS Resins; Molded, Extruded

Medium impact High impact Very high impact Low temperature impact Heat resistant

3.3—4.0 2.6—3.2 2.0—3.1 2.0—3.1 3.5—4.2

Acrylics; Cast, Molded, Extruded

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade

3.5—5.0 2.3—3.3

Chlorinated polyether Chlorinated polyvinyl chloride

1.5 3.7

Chlorinated Polymers

3.5—4.5 4.0—5.0

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

Polycarbonates

Polycarbonate Polycarbonate (40% glass fiber reinforced)

3.45 17

Diallyl Phthalates; Molded

Orlon filled Asbestos filled

6 12

Fluorocarbons; Molded,Extruded

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

1.9—3.0 0.38—0.65 1.5—2.0 0.5—0.7 1.7—2

Epoxies; Cast, Molded, Reinforced

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible

4.5 0.5—2.5

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

Epoxies; Cast, Molded, Reinforced (Con’t)

Molded: General purpose glass cloth laminate High strength laminate Filament wound composite

33—36 57—58 72—64

Melamines; Molded

High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate

4.8—5.0 27.5

Unfilled Cellulose electrical

10—11

4—5 32—33

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 4 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

Phenolics; Molded

Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber

8—13 8—12 9—14 30—33

Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos

10—30 4—6 3.5—6 5—9

Cast polyyester Rigid Flexible

1.5—6.5 0.001—0.10

Polyesters: Thermosets

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 5 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

Polyesters: Thermosets (Con’t)

Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose

16—20 12—15 15—20

Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26

0.21—0.27 0.20—0.24

Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced

D638 4.6—5.0 2.6—4.7 1.50—3.80 12.1

Polyethylenes; Molded, Extruded

Polystyrenes; Molded

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 227. M ODULUS OF

ELASTICITY IN TENSION FOR POLYMERS (SHEET 6 OF 6) Modulus of Elasticity in Tension, (ASTM D638)

Class

Polymer

(l0 5 psi)

SAN

Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN

4.0—5.2 17.5

Polyvinyl Chloride And Copolymers;

ASTM D412 Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride

0.004—0.03 0.01—0.03 3 5—4.0 0.7—2.0

Woven glass fabric/ silicone laminate

ASTM D651 28

Alpha—cellulose filled (ASTM Type l) Woodflour filled

13—16 11—14

Silicones; Molded, Laminated

Ureas; Molded

To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 228. M ODULUS OF

ELASTICITY OF 55MSI GRAPHITE/6061 ALUMINUM COMPOSITES Material

Reinforcement content (vol % )

Fiber orientation

Modulus of Elasticity (GPa)

55MSI graphite/6061 aluminum composites 55MSI graphite/6061 aluminum composites

34 34

0° 90°

182.2±6.6 33

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).

©2001 CRC Press LLC

Table 229. M ODULUS OF

ELASTICITY OF GRAPHITE/MAGNESIUM CASTINGS* Modulus of Elasticity,90° (GPa)

179

86

228

30

Fiber content

P75

40% plus 9% 40%

±16° 90° ± 16°

Hollow cylinder Hollow cylinder

Filament wound Filament wound Filament wound

40% 30% 10% 20% 20%

0° 0° plus 90° 0° plus 90°

Plate Plate

Prepreg Prepreg

159 83

21 34

Plate

Prepreg

90

90

P55

Casting

Modulus of Elasticity, 0° (GPa)

Fiber Type

P100

Fiber orientation

Fiber Preform Method

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). *

Pitch-base fibers

©2001 CRC Press LLC

Table 230. M ODULUS OF

ELASTICITY OF GRAPHITE/ALUMINUM COMPOSITES

Thornel Fiber

Longitudinal Modulus of Elasticity (GPa)

Transverse Modulus of Elasticity (GPa)

P55 P75 P100

207 to 221 276 to 296 379 to 414

28 to 41 28 to 41 28 to 41

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).

Table 231. M ODULUS OF

ELASTICITY OF GRAPHITE FIBER REINFORCED METALS

Composite

Fiber content (vol%)

Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium

41 35 35 42

Modulus of Elasticity (106psi)

29.0 17.4 16.9 26.6

(a) Thornel 75 fiber (b) Courtaulds HM fiber To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).

©2001 CRC Press LLC

782

CRC Handbook of Materials Science & Engineering

Table 232. M ODULUS OF

ELASTICITY OF SIC-WHISKER–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)

(GPa)

Standard Deviation

Range of Measurement

0 12 16 20

71.9 95.3 90.0 111.0

4.5 1.6 3.7 5.0

13 6 9 13

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).

©2001 CRC Press LLC

Shackelford & Alexander

783

Table 233. M ODULUS OF

ELASTICITY OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)

(GPa)

Standard Deviation

Range of Measurement

0 5 12 20

71.9 78.4 83.0 95.2

4.5 2.3 7.8 2.7

13 6 21 7

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).

Table 234. M ODULUS OF

ELASTICITY OF BORON /ALUMINUM COMPOSITES *

Matrix

Fiber Orientation

Modulus of Elasticity (GPa)

Al-6061

0° 90°

207 138

Al-2024

0° 90°

207 145

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). *

These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply.

©2001 CRC Press LLC

784

CRC Handbook of Materials Science & Engineering

Table 235. COMPRESSION

MODULUS OF TREATED D UCTILE IRONS

Treatment

Compression Modulus (MPa)

60-40-18 65-45-12 80-55-06 120 90-02

164 163 165 164

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

Table 236. M ODULUS OF

ELASTICITY IN COMPRESSION FOR POLYMERS Modulus of Elasticity in Compression, (ASTM D638)

Polymer

(l0 5 psi)

Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

1.8 0 70—0.90 1.5—2.0 0.6—0.8 1.7—2

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

785

Table 237. BULK MODULUS OF

Glass

Bulk Modulus (GPa)

GLASS

Temperature

SiO 2 glass SiO 2-Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O)

31.01-37.62 33.8 34.8 36.5

room temp. room temp. room temp.

(30% mol Na2O)

38.2 40.1 39.8

room temp. room temp. room temp.

(33% mol Na2O) (35% mol Na2O) SiO 2-PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)

33.9 25.6 31.1

(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)

25.1 30.6 30.5

(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)

29.5 33.1 31.6

B2O 3-Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)

23.2 33.6

15˚C 15˚C

39.2 44.4 42.1

15˚C 15˚C 15˚C

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983

©2001 CRC Press LLC

786

CRC Handbook of Materials Science & Engineering

Table 238. SHEAR

MODULUS OF GLASS

(SHEET 1 OF 2) Shear Modulus (GPa)

Temperature

SiO 2 glass

31.38 33.57 34.15

20˚C 998˚C (annealing point) 1096˚C (straining point)

(5% mol Na2O)

27.2 27.4 27.6 27.2

–100˚C 0˚C 80˚C 160˚C

26.9 27.2

–100—160˚C room temp.

25.8 25.0 24.8 24.2

–100˚C 0˚C 80˚C 160˚C

25.8 25.2

room temp. room temp.

24.5 24.2 24.1

room temp. room temp. room temp.

Class

Glass

SiO 2 glass

SiO 2–Na2O glass

(5% mol Na2O) (5% mol Na2O) (5% mol Na2O) (7.5% mol Na2O) (15% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O) (35% mol Na2O)

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.

©2001 CRC Press LLC Shackelford & Alexander

787

Table 238. SHEAR

MODULUS OF GLASS

(SHEET 2 OF 2) Class

Glass

Shear Modulus (GPa)

SiO 2–PbO glass

(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)

20.4 21.4 18.5

(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)

23.0 21.2 17.5

(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)

20.2 17.0 16.1

B2O 3 glass

B2O 3–Na2O glass

(10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)

Temperature

6.55 6.29 6.07 5.78

room temp. 250˚C 260˚C 270˚C

5.49 5.15 4.75

280˚C 290˚C 300˚C

12.3 16.8

15˚C 15˚C

21.1 23.2 22.4

15˚C 15˚C 15˚C

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.

©2001 CRC Press LLC

788

CRC Handbook of Materials Science & Engineering

Table 239. TORSIONAL

MODULUS OF GRAY CAST IRONS

ASTM Class

Torsional Modulus (GPa)

20 25 30

27 to 39 32 to 41 36 to 45

35 40 50 60

40 to 48 44 to 54 50 to 55 54 to 59

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).

Table 240. TORSION

MODULUS OF TREATED D UCTILE IRONS

Treatment

Torsion Modulus (MPa)

60-40-18 65-45-12 80-55-06 120 90-02

63 64 62 63.4

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

©2001 CRC Press LLC

Shackelford & Alexander

789

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 1 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

ABS Resins; Molded, Extruded

Medium impact High impact Very high impact

3.5—4.0 2.5—3.2 2.0—3.2

Low temperature impact Heat resistant

2.0—3.2 3.5—4.2

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II

3.5—4.5 4.0—5.0

Moldings: Grades 5, 6, 8 High impact grade

3.5—5.0 2.7—3.6

Acrylics; Cast, Molded, Extruded

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 2 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Thermoset Carbonate

Allyl diglycol carbonate

2.5—3.3

Alkyds; Molded

Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)

22—27 22—27 22—28

Cellulose Acetate; Molded, Extruded

ASTM Grade: H4—1 H2—1

(ASTM D747) 2.0—2.55 1.50—2.35

MH—1, MH—2 MS—1, MS—2 S2—1

1.50—2.15 1.25—1.90 1.05—1.65

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 3 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

Cellulose Acetate Butyrate; Molded, Extruded

(105 psi)

(ASTM D747) ASTM Grade: H4 MH S2

1.8 1.20—1.40 0.70—0.90

ASTM Grade: 1 3 6

1.7—1.8 1.45—1.55 1.1

Chlorinated Polymers

Chlorinated polyether Chlorinated polyvinyl chloride

1.3 (0.1% offset) 3.85

Polycarbonates

Polycarbonate Polycarbonate (40% glass fiber reinforced)

3.4 12

Cellusose Acetate Propionate; Molded, Extruded

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 4 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Fluorocarbons; Molded,Extruded

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE)

2.0—2.5 0.6—1.1 4.64

Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

0.8 1.75—2.0

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded

4.5—5.4 0.36—3.9 15—25

General purpose glass cloth laminate High strength laminate Filament wound composite

36—39 53—55 69—75

Epoxies; Cast, Molded, Reinforced

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 5 OF 13) Modulus of Elasticity in Flexure (ASTM D790) (105 psi)

Polymer Class

Polymer

Epoxies—Molded, Extruded

High performance resins (cycloaliphatic diepoxides) Cast, rigid Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate

4.4—4.8 32—35

Filler & type Unfilled Cellulose electrical Glass fiber

10—13 10—13 24

Melamines; Molded

4—5 28—31

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 6 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Nylons; Molded, Extruded

Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers

1.4—3.9 1.0—1.4 5.05 0.92—3.2

Type 8 Type 11

0.4 1.51

6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion

1.75–4.5 10—18 11—13 1.75—4.1

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 7 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Nylons; Molded, Extruded (Con’t)

6/10 Nylon General purpose Glass fiber (30%) reinforced

1.6–2.8 8.5

Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber

8—12 8—12 9—13 30—33

Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos

10—30 4—6 3.5 5

ABS–Polycarbonate Alloy

4

Phenolics; Molded

ABS–Polycarbonate Alloy

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 8 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

PVC–Acrylic Alloy

PVC–acrylic sheet PVC–acrylic injection molded

4 3

Polymides

Unreinforced Unreinforced 2nd value Glass reinforced

7 5 38.4

Polyacetals

Homopolymer: Standard 20% glass reinforced 22% TFE reinforced

4.1 8.8 4

Copolymer: Standard 25% glass reinforced High flow

3.75 11 3.75

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 9 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Polyester; Thermoplastic

Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing

3.4 12—15 12

General purpose grade Glass reinforced grade Asbestos—filled grade

33 87 90

Cast polyyester Rigid Flexible

1—9 0.001—0.39

Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose

15—25 15—18

Polyesters: Thermosets

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 10 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Phenylene Oxides

SE—100 SE—1 Glass fiber reinforced

3.6 3.6 7.4—10.4

Phenylene oxides (Noryl)

Standard Glass fiber reinforced

3.9 12, 15.5

Polyarylsulfone

4

General purpose High impact

1.7—2.5 1.0—2.0

Asbestos filled Glass reinforced Flame retardant

3.4—6.5 4—8.2 1.9—6.1

Polypropylene:

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 11 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Polyphenylene sulfide:

Standard 40% glass reinforced

5.5—6.0 17—22

Polyethylenes; Molded, Extruded

(ASTM D747) Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200

0.13—0.27 0.12—0.3 0.1

Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9

0.35—0.5 0.35—0.5

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 12 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Polyethylenes; Molded, Extruded (Con’t)

Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight

1.3—1.5 0.9—0.25 1.5 0.75

Olefin Copolymers; Molded

Ethylene butene Propylene—ethylene Polyallomer

165 (psi) 140 (psi) 0.7—1.3

Polystyrenes; Molded

Polystyrenes: General purpose Medium impact High impact Glass fiber -30% reinforced

4—5 3.5—5.0 2.3—4.0 12

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 241. M ODULUS OF

FOR

ELASTICITY IN FLEXURE

POLYMERS

(SHEET 13 OF 13) Modulus of Elasticity in Flexure (ASTM D790)

Polymer Class

Polymer

(105 psi)

Styrene acrylonitrile (SAN):

Glass fiber (30%) reinforced SAN

14.5

Polyvinyl Chloride And Copolymers; Molded, Extruded

Rigid—normal impact

3.8—5.4

Silicones; Molded, Laminated

Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate

25 14—17 26—32

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 242. FLEXURAL

MODULUS OF FIBERGLASS REINFORCED PLASTICS Glass fiber content (wt%)

Flexural modulus (105 psi)

Class

Material

Glass fiber reinforced thermosets

Sheet molding compound (SMC)

15 to 30

14 to 20

Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester

15 to 35 25 to 50 20 to 30

14 to 20 13 to 18 13 to 19

Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic

30 to 50 30 to 80 40 to 80 5 to 25

10 to 12 50 to 70 40 to 60 30

Acetal

20 to 40

8 to 13

Nylon Polycarbonate Polyethylene

6 to 60 20 to 40 10 to 40

2 to 28 7.5 to 15 2.1 to 6

Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)

20 to 40 20 to 35 20 to 40 20 to 40

3.5 to 8.2 8 to 12 8 to 15 9.2 to 15

PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester

15 to 35 20 to 40 20 to 40 20 to 35

9 to 16 8 to 15 8.0 to 18 8.7 to 15

Glass–fiber–reinforced thermoplastics

To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC

Shackelford & Alexander

803

Table 243. FLEXURAL

MODULUS OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class

Resin Type

Composition

Flexural Modulus (GPa)

Amorphous

Acrylonitrile-butadiene-styrene(ABS)

30% glass fiber 30% carbon fiber

7.6 12.4

Nylon

30% glass fiber 30% carbon fiber

7.9 15.2

Polycarbonate

30% glass fiber 30% carbon fiber

8.3 13.1

Polyetherimide

30% glass fiber 30% carbon fiber

8.6 17.2

Polyphenylene oxide (PPO)

30% glass fiber 30% carbon fiber

9.0 11.7

Polysulfone

30% glass fiber 30% carbon fiber

8.3 14.5

Styrene-maleic-anhydride (SMA)

30% glass fiber

9.0

Thermoplastic polyurethane

30% glass fiber

1.3

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).

©2001 CRC Press LLC

804

CRC Handbook of Materials Science & Engineering

Table 243. FLEXURAL

MODULUS OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class

Resin Type

Composition

Flexural Modulus (GPa)

Crystalline

Acetal

30% glass fiber 20% carbon fiber

9.7 9.3

Nylon 66

30% glass fiber 30% carbon fiber

9.0 20.0

Polybutylene telphthalate (PBT)

30% glass fiber 30% carbon fiber

9.7 15.9

Polythylene terephthalate (PET)

30% glass fiber

9.0

Polyphenylene sulfide (PPS)

30% glass fiber 30% carbon fiber

11.0 16.9

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).

©2001 CRC Press LLC

Shackelford & Alexander

805

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 1 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Borides

Titanium Diboride (TiB2)

19x103

(98% dense)

5.37x103

(6.0 µm grain size, ρ=4.46g/cm 3)

6.2x103

(3.5 µm grain size, ρ=4.37g/cm 3, 0.8wt% Ni)

5.7x103

(6.0 µm grain size, ρ=4.56g/cm 3, 0.16wt% Ni)

11.0x103 6.29x103

(12.0 µm grain size, ρ=4.66g/cm , 9.6wt% Ni) 3

Carbides

Temperature

Hafnium Monocarbide (HfC) ( ρ = 11.9 g/cm 3)

34.67x103

( ρ = 11.9 g/cm )

3

3

( ρ = 11.9 g/cm 3)

12.64x10 4.78x103

room temp. 2000 oC 2200 oC

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 2 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Temperature

Carbides (Con’t)

Silicon Carbide (SiC)

27x103

room temp.

3

11x103

1300 oC 1400 oC

15x103

1800 oC

25x10

(with 1 wt% Be addictive)

58x103

(with 1wt% B addictive)

42x103

(with 1wt% Al addictive)

136x103

Titanium Monocarbide (TiC) ( ρ = 4.85 g/cm 3) ( ρ = 4.85 g/cm ) 3

32.67x103 13.6x103

room temp. 2000oC

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 3 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Temperature

Carbides (Con’t)

Tungsten Monocarbide (WC)

55.65-84x103

room temp.

Carbides (Con’t)

Zirconium Monocarbide (ZrC)

16.6-22.5x103

room temp.

Nitrides

Aluminum Nitride (AlN) (hot pressed)

3

8.3x10

1250 oC

5.14x103 2.5x103

1750 oC 2000 oC

38.5x103

25oC

27x103

1000oC 1400oC

3

18.1x10

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 4 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Temperature

Nitrides (Con’t)

Boron Nitride (BN) parallel to c axis

7.28-13.2x103

25 oC

7.03x10

300 oC

1.90x103 1.08x103

700 oC 1000 oC

1.25x103

1500 oC

1.50x103

1800 oC 2000 oC

3

3

2.45x10

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 5 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Temperature

Nitrides (Con’t)

parallel to a axis

15.88x103

25 oC

15.14x103

300 oC

3.84x103

700 oC 1000 oC

3

2.18x10 Titanium Mononitride (TiN)

34x103

(10wt% AlO and 10wt% AlN)

13.34x103

(30wt% AlO and 10wt% AlN)

23.93x103

(30wt% AlO and 30wt% AlN)

33.25x103

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 6 OF 10) Class

Ceramic

Nitrides (Con’t)

Trisilicon Tetranitride (Si3N 4)

Modulus of Rupture (psi)

Temperature

(hot pressed)

65.3-159.5x103

(sintered)

39.9-121.8x103

20oC 20oC

(reaction sintered)

7.25-43.5x103

20oC

Aluminum Oxide (Al2O 3)

Oxides

(single crystal)

131 x103 60 x103

room temp.

(80% dense, 3µm grain size)

56x103

20 oC

(80% dense, 3µm grain size) (80% dense, 3µm grain size)

62x103 58x103

600 oC 900 oC

(80% dense, 3µm grain size)

42x103

1100 oC

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 7 OF 10) Modulus of Rupture (psi)

Temperature

(80% dense, 20µm grain size)

30x103

20 oC

(80% dense, 20µm grain size)

3

Class

Ceramic

Oxides (Con’t)

Aluminum Oxide (Al2O 3) (Con’t)

(80% dense, 20µm grain size)

28x10 31x103

600 oC 900 oC

(80% dense, 20µm grain size)

30x103

1100 oC

(zirconia toughened alumina, 15 vol% ZrO 2) (zirconia toughened alumina, 25 vol% ZrO 2)

137x103 139x103

(zirconia toughened alumina, 50 vol% ZrO 2)

145x103

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 8 OF 10) Class

Ceramic

Modulus of Rupture (psi)

Temperature

Oxides (Con’t)

Beryllium Oxide (BeO)

24-29 x103

room temp.

Dichromium Trioxide (Cr 2O 3)

3

Hafnium Dioxide (HfO 2)

>38x10 10x103

Titanium Oxide (TiO 2)

10-14.9x103

room temp.

20-35x103

room temp. room temp.

Zirconium Oxide (ZrO 2) (5-10 CaO stabilized)

3

(MgO stabilized)

30x10

(hot pressed yittria doped zirconia)

222x103

(sintered yittria doped zirconia)

148x103

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 9 OF 10) Modulus of Rupture (psi)

Temperature

( ρ=2.3g/cm )

16x103 15x103

25oC 400oC

( ρ=2.1g/cm 3)

8x103

800oC

( ρ=1.8g/cm 3)

3.4x103

1200oC

Mullite (3Al2O 3 2SiO 2)

6-27x103

25oC

( ρ=2.77g/cm 3)

8.5x103

25oC

( ρ=2.77g/cm 3) ( ρ=2.77g/cm )

13.5x103 16.7x103

400oC 800oC

( ρ=2.77g/cm 3)

11.5x103

1200oC

Class

Ceramic

Oxides (Con’t)

Cordierite (2MgO 2Al2O 3 5SiO 2) ( ρ=2.51g/cm 3) 3

3

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. M ODULUS OF

RUPTURE FOR CERAMICS

(SHEET 10 OF 10) Modulus of Rupture (psi)

Temperature

( ρ = 5.57 g/cm 3)

18.57x103

room temp.

(sintered)

50.7x103

room temp.

(sintered)

3

67.25x10

980oC

(sintered)

86.00x103

1090oC

(hot pressed)

36-57x103

room temp.

(hot pressed)

3

Class

Ceramic

Silicide

Molybdenum Disilicide (MoSi2)

(hot pressed)

72.00x10

3

55.00x10

1090oC 1200oC

To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 245. RUPTURE STRENGTH OF

REFRACTORY METAL ALLOYS

(SHEET 1 OF 2) Class

Alloy

Alloying Additions (%)

Form

Condition

Temperature (°F)

10-h rupture (ksi)

Niobium and Niobium Alloys

Pure Niobium



All

Recrystallized

2000

5.4

Nb–1Zr SCb291

1 Zr 10 Ta, 10 W

All Bar, Sheet

Recrystallized Recrystallized

2000 2000

14 9

C129 FS85 SU31

10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si

Sheet Sheet Bar, Sheet

Recrystallized Recrystallized Special Thermal Processing

2400 2400 2400

15 12 22

Pure Molybdenum



All

Stress-relieved Annealed

1800

25

Low C Mo TZM

None 0.5 Ti, 0.08 Zr, 0.015 C

All All

Stress-relieved Annealed Stress-relieved Annealed

1800 2400

24 23

TZC Mo–5Re Mo–30W

1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W

All All All

Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed

2400 3000 2000

28 1 20

Molybdenum and Molybdenum Alloys

To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC

Table 245. RUPTURE STRENGTH OF

REFRACTORY METAL ALLOYS

(SHEET 2 OF 2) Class

Alloy

Alloying Additions (%)

Form

Condition

Temperature (°F)

10-h rupture (ksi)

Tantalum Alloys

Unalloyed TA–10W

None 10 W

All All

Recrystallized Recrystallized

2400 2400

2.5 20

Tungsten Alloys

Unalloyed

None

Stress-relieved Annealed

3000

6.8

W–2 ThO 2

2 ThO 2

Stress-relieved Annealed

3000

18

W–3 ThO 2 W–4 ThO 2

3 ThO 2 4 ThO 2

Stress-relieved Annealed Stress-relieved Annealed

3000 3000

18 18

W–15 Mo W–50 Mo

15 Mo 50 Mo

Stress-relieved Annealed Stress-relieved Annealed

3000 3000

12 12

W–25 Re

25 Re

Stress-relieved Annealed

3000

10

Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar Bar, Wire Bar, Wire Bar, Sheet, Wire

To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC

Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 1 OF 3) Stress Rupture

Alloy *

Temperature (°C)

100 h (MPa)

1000 h (MPa)

Incoloy 800

650 760 870

220 115 45

145 69 33

Incoloy 801

650 730 815

250 145 62

— — —

Incoloy 802

650 760 870

240 145 97

170 105 62

Inconel 600

815 870

55 37

39 24

Inconel 601(a)

540 870 980

— 48 23

400 30 14

Inconel 617(b)

815 925 980

140 62 41

97 — —

Inconel 625(a)

650 815 870

440 130 72

370 93 48

Inconel 718(c)

540 595 650

— 860 690

951 760 585

Inconel 751(d)

815 870

200 120

125 69

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).

©2001 CRC Press LLC

818

CRC Handbook of Materials Science & Engineering

Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 2 OF 3) Stress Rupture

Alloy *

Temperature (°C)

100 h (MPa)

1000 h (MPa)

Inconel X–750(e)

540 870 925

— 83 58

827 45 21

N–155, bar(f)

650 730 870

360 195 97

295 150 66

N–155(g)

650

380

290

N–155, sheet(f)

980

39

20

Nimonic 75(h)

815 870 925 980

38 23 14 —

24 15 10 7.6

Nimonic 80A(j)

540 815 870

— 185 105

825 115 —

Nimonic 90(j)

815 870 925

240 150 69

155 69 —

Nimonic 105(k)

815 870

325 210

225 135

Nimonic 115(m)

815 870 925

425 315 205

315 205 130

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).

©2001 CRC Press LLC Shackelford & Alexander

819

Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 3 OF 3) Stress Rupture

Alloy *

Temperature (°C)

100 h (MPa)

1000 h (MPa)

Nimonic 263(n)

815 870 925

170 93 45

105 46 —

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). *

(a) Solution treat 1150 °C. (b) Solution treat 1175 °C. (c) Heat treat to 980 °C plus 720 °C hold for 8 h, furnace cool to 620 °C hold for 8 h. (d) 730 °C hold for 2h. (e) Heat treat to 1150 °C plus 840 °C hold for 24h, plus 705 °C hold for 20h. (f) Solution treated and aged. (g) Stress-relieved forging. (h) Heat treat to 1050 °C hold for 1 h. (j) Heat treat to 1080 °C hold for 8 h, plus 700 °C hold for 16 h. (k) Heat treat to 1150 °C hold for 4 h, plus 1050 °C hold for 16 h, plus 850 °C hold for 16 h. (m) Heat treat to 1190 °C hold for 1.5 h, plus 1100 °C hold for 6 h. (n) Heat treat to 1150 °C hold for 2 h, water quench, plus 800 °C hold for 8 h.

©2001 CRC Press LLC

820

CRC Handbook of Materials Science & Engineering

Table 247. M ODULUS OF

RUPTURE FOR SI3N 4 AND AL2O 3COMPOSITES Modulus of Rupture (MPa)

Matrix

Dispersed Phase

RT

1000 °C

1200 °C

Si3N 4+ 6 wt % Y2O 3

None

110.9 ± 1.6

88.3 ± 3.5

49.2 ± 5.0

Si3N 4+ 6 wt % Y2O 3

TiC (Ti, W) C WC

80.6 ± 5.9 75.5 ± 3.2 89.1 ± 31.8

120.4 ± 12.2 86 ± 0 136.4 ± 1.6

64.4 ± 2.9 52.9 ± 0.5 55.7 ± 0.5

TaC HfC SiC

86.2 ± 7.3 86 ± 0.8 97.6 ± 8.5

124.5 ± 16.0 — 94.0 ± 4.9

43.2 ± 2.0 68.6 ± 0.5 52.3 ± 3.2

TiC

72.2 ± 13.0

69.4 ± 4.3

57.0 ± 4.1

Al2O 3

Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).

©2001 CRC Press LLC Shackelford & Alexander

821

Table 248. POISSON 'S

RATIO OF W ROUGHT TITANIUM ALLOYS Class

Metal or Alloy

Poisson's Ratio

Commercially Pure

99.5 Ti 99.2 Ti 99.1 Ti

0.34 0.34 0.34

99.0Ti 99.2 Ti–0.2Pd

0.34 0.34

Near Alpha Alloys

Ti-8Al-1Mo-1V Ti-5Al-5Sn-2Zr-2Mo-0.25Si

0.32 0.326

Alpha-Beta Alloys

Ti-6Al-4V Ti-6Al-4V (low O 2) Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si

0.342 0.342 0.327

Beta Alloys

Ti-13V-11Cr-3Al

0.304

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).

©2001 CRC Press LLC

822

CRC Handbook of Materials Science & Engineering

Table 249. POISSON ’S

RATIO FOR CERAMICS

(SHEET 1 OF 2) Class

Ceramic

Poisson’s Ratio

Borides

Titanium Diboride (TiB2)

0.09-0.28

(6.0 µm grain size, ρ=4.46g/cm ) 3

(3.5 µm grain size, ρ=4.37g/cm , 0.8wt% Ni)

0.10 0.12

(6.0 µm grain size, ρ=4.56g/cm 3, 0.16wt% Ni)

0.11

(12.0 µm grain size, ρ=4.66g/cm , 9.6wt% Ni)

0.15

Zirconium Diboride (ZrB2)

0.144

Boron Carbide (B4C) Hafnium Monocarbide (HfC)

0.207 0.166

3

3

Carbides

Silicon Carbide (SiC) ( ρ = 3.128 g/cm 3)

0.183-0.192 at room temp.

Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Tungsten Monocarbide (WC)

0.1719 -0.24 0.187-189 0.24

Zirconium Monocarbide (ZrC) ( ρ = 6.118 g/cm 3)

0.257

Nitrides

Trisilicon tetranitride (Si3N 4) (presureless sintered)

0.24 0.22-0.27

Oxides

Aluminum Oxide (Al2O 3) Beryllium Oxide (BeO) Cerium Dioxide (CeO 2)

0.21-0.27 0.26-0.34

0.27-0.31

Magnesium Oxide (MgO) ( ρ = 3.506 g/cm 3)

0.163 at room temp.

Thorium Dioxide (ThO 2) ( ρ=9.722 g/cm 3)

0.275

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC Shackelford & Alexander

823

Table 249. POISSON ’S

RATIO FOR CERAMICS

(SHEET 2 OF 2) Class

Ceramic

Poisson’s Ratio

Oxides (Con’t)

Titanium Oxide (TiO 2)

0.28

Uranium Dioxide (UO 2) ( ρ=10.37 g/cm 3)

0.302

Zirconium Oxide (ZrO 2) (partially stabilized) (fully stabilized) (plasma sprayed)

0.324-0.337 at room temp. 0.23 0.23-0.32 0.25

Cordierite (2MgO 2Al2O 3 5SiO 2) ( ρ=2.3g/cm 3) ( ρ=2.1g/cm ) (glass) 3

0.21 0.17 0.26

Mullite (3Al2O 3 2SiO 2) ( ρ=2.779 g/cm 3)

0.238

Spinel (Al2O 3 MgO)

Silicide

( ρ=3.510 g/cm 3)

0.294

Molybdenum Disilicide (MoSi2)

0.158-0.172

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

824

CRC Handbook of Materials Science & Engineering

Table 250. POISSON ’S

RATIO OF GLASS

(SHEET 1 OF 2) Class

Composition

Poisson’s Ratio

Temperature

0.166–0.177

room temp.

0.183 0.203 0.219

room temp. room temp. room temp.

(35% mol Na2O)

0.236 0.249 0.248

room temp. room temp. room temp.

(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)

0.249 0.174 0.252

(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)

0.150 0.219 0.259

(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)

0.222 0.281 0.283

SiO 2 glass SiO 2–Na2O glass

(15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O)

SiO 2–PbO glass

B2O 3 glass

0.288–0.309

room temp.

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983

©2001 CRC Press LLC Shackelford & Alexander

825

Table 250. POISSON ’S

RATIO OF GLASS

(SHEET 2 OF 2) Class

Composition

Poisson’s Ratio

Temperature

B2O 3–Na2O glass

(5.5% mol Na2O)

0.279 0.2740 0.271

15˚C

(10% mol Na2O) (15.4% mol Na2O) (20% mol Na2O)

0.2860 0.272 0.2713 0.274

(22.8% mol Na2O) (25% mol Na2O) (29.8% mol Na2O) (33.3% mol Na2O)

15˚C 15˚C

0.2771 0.2739 0.292

(37% mol Na2O) (37.25% mol Na2O)

15˚C 15˚C

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983

Table 251. POISSON 'S

RATIO OF SILICON CARBIDE SCS–2–AL Fiber orientation

No. of plies

Poisson's Ratio

0° 90° ± 45°

6, 8, 12 6, 12,40 8, 12, 40

0.268 0.124 0.395

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).

©2001 CRC Press LLC

826

CRC Handbook of Materials Science & Engineering

Table 252. COMPRESSION

POISSON ’S RATIO OF TREATED D UCTILE IRONS

Treatment

Compression Poisson’s Ratio

60-40-18 65-45-12 80-55-06 120 90-02

0.26 0.31 0.31 0.27

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

Table 253. TORSION

POISSON ’S RATIO OF TREATED D UCTILE IRONS

Treatment

Torsion Poisson’s Ratio

60-40-18 65-45-12 80-55-06 120 90-02

0.29 0.29 0.31 0.28

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

©2001 CRC Press LLC Shackelford & Alexander

827

Table 254. ELONGATION OF

TOOL STEELS Elongation (%)

Type

Condition

L2

Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C

25

Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C

25

Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C

24

Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C

25

Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C

25

L6

S1

S5

S7

5 10 12 15 25

4 8 12 20

4 5 9 12

5 7 9 10 15

7 9 10 10 14

Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).

©2001 CRC Press LLC

828

CRC Handbook of Materials Science & Engineering

Table 255. ELONGATION OF

D UCTILE IRONS

Specification Number

Grade or Class

Elongation (%)

ASTM A395-76 ASME SA395

60-40-18

18

ASTM A476-70(d); SAE AMS5316

80-60-03

3

60-40-18 65-45-12

18 12

80-55-06 100-70-03 120-90-02

6 3 2

SAE J434c

D4018 D4512 D5506 D7003

18 12 6 3

MlL-I-24137(Ships)

Class A Class B Class C

15 7 20

ASTM A536-72, MIL-1-11466B(MR)

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).

©2001 CRC Press LLC

Shackelford & Alexander

829

Table 256. ELONGATION OF

Specification Number

Ferritic ASTM A47, A338; ANSI G48.1; FED QQ-I-666c

MALLEABLE IRON CASTINGS

Grade or Class

32510 35018

10 18 5

40010 45008 45006 50005

10 8 6 5

60004 70003 80002 90001

4 3 2 1

M3210 M4504(a) M5003(a)

10 4 3

M5503(b) M7002(b) M8501(b)

3 2 1

ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL-I-11444B

Automotive ASTM A602; SAE J158

Elongation (%)

(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).

©2001 CRC Press LLC

830

CRC Handbook of Materials Science & Engineering

Table 257. ELONGATION OF

FERRITIC STAINLESS STEELS

(SHEET 1 OF 2) Type

ASTM Specification

Form

Condition

Elongation (%)

Type 405 (UNS S40500)

A580 A580

Wire

Annealed Annealed, Cold Finished

20 16

Type 409 (UNS S40900) Type 429 (UNS S42900)

— —

Bar Bar

Annealed Annealed

25(a) 30(a)

Type 430 (UNS S43000)

A276 A276

Bar

Annealed, Hot Finished Annealed, Cold Finished

20 16

Type 430Ti(UNS S43036)



Bar

Annealed

30(a)

Type 434 (UNS S43400) Type 436 (UNS S43600)

— —

Wire Sheet, Strip

Annealed Annealed

33(a) 23(a)

(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).

©2001 CRC Press LLC

Table 257. ELONGATION OF

FERRITIC STAINLESS STEELS

(SHEET 2 OF 2) Type

ASTM Specification

Form

Condition

Elongation (%)

Type 442 (UNS S44200) Type 444 (UNS S44400)

— A176

Bar Plate, Sheet, Strip

Annealed Annealed

20(a) 20

Type 446 (UNS S44600)

A276 A276

Bar

Annealed, Hot Finished Annealed, Cold Finished

20 16

(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).

©2001 CRC Press LLC

Table 258. ELONGATION OF

MARTENSITIC STAINLESS STEELS

(SHEET 1 OF 3) Type

ASTM Specification

Form

Condition

Elongation (%)

Type 403 (UNS S40300)

A276 A276 A276 A276 A276 A276

Bar

Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished

20 16 15 12 12 12

Type 410 (UNS S41000)

A276 A276 A276 A276 A276 A276

Bar

Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished

20 16 15 12 12 12

Type 410S (UNS S41008)

A176

Plate, Sheet, Strip

Annealed

22

Type 410Cb (UNS S41040)

A276 A276 A276 A276

Bar

Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished

13 12 13 12

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).

©2001 CRC Press LLC

Table 258. ELONGATION OF

MARTENSITIC STAINLESS STEELS

(SHEET 2 OF 3) Type

ASTM Specification

Form

Condition

Elongation (%)

Type 414 (UNS S41400)

A276 A276

Bar

Intermediate temper, hot finished Intermediate temper, cold finished

15 15

Type 414L Type 420 (UNS S42000)

— —

Bar Bar

Annealed Tempered 205 °C

20 8

Type 422 (UNS S42200)

A565

Bar

for high-temperature service

13

Type 431 (UNS S43100)

— —

Bar

Tempered 260 °C Tempered 595 °C

16 19

Type 440A (UNS S44002)

— —

Bar

Annealed Tempered 315 °C

20 5

Type 440B (UNS S44003)

— —

Bar

Annealed Tempered 315 °C

18 3

Type 440C (UNS S44004)

— —

Bar

Annealed Tempered 315 °C

14 2

Intermediate and hard tempers

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).

©2001 CRC Press LLC

Table 258. ELONGATION OF

MARTENSITIC STAINLESS STEELS

(SHEET 3 OF 3) Type

ASTM Specification

Form

Condition

Elongation (%)

Type 501 (UNS S50100)

— —

Bar, Plate

Annealed Tempered 540 °C

28 15

Type 502 (UNS S50200)



Bar, Plate

Annealed

30

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).

©2001 CRC Press LLC

Table 259. ELONGATION OF

PRECIPITATION -H ARDENING AUSTENITIC STAINLESS STEELS Type

Form

Condition

Elongation (%)

PH 13–8 Mo (UNS S13800)

Bar, Plate, Sheet, Strip

H950 H1000

6-10 6-10

15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)

Bar, Plate, Sheet, Stript

H900 H925 H1025 H1075

10(a) 10(a) 12(a) 13(a)

H1100 H1150 H1150M

14(a) 16(a) 18(a)

RH950 TH1050

6 6

17–7 PH (UNS S17700)

Bar

(a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).

©2001 CRC Press LLC

Table 260. ELONGATION OF

H IGH –N ITROGEN AUSTENITIC STAINLESS STEELS

Type

ASTM Specification

Form

Condition

Elongation (%)

Type 201 (UNS S20100)

A276

Bar

Annealed

40

Type 202 (UNS S20200)

A276

Bar

Annealed

40

Type 205 (UNS S20500)



Plate

Annealed *

58

Type 304N (UNS S30451)

A276

Bar

Annealed

30

Type 304HN (UNS S30452)



Bar

Annealed

30

Type 316N (UNS S31651)

A276

Bar

Annealed

30

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *

Typical values

©2001 CRC Press LLC

Table 261. TOTAL ELONGATION OF

CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No.

Temper

Elongation (in 2 in.) (%)

201.0

T4 T6 T7

20 7 4.5

206.0, A206.0 208.0

T7 F

11.7 2.5

242.0

T21 T571 T77

1.0 0.5 2.0

T571 T61

1.0 0.5

295.0

T4 T6 T62

8.5 5.0 2.0

296.0

T4 T6 T7 F

9.0 5.0 4.5 2.0

319.0

F T6 F T6

2.0 2.0 2.5 3.0

336.0

T551 T65 T61

0.5 0.5 6.0

T51 T6 T61 T7

1.5 3.0 1.0 0.5

308.0

354.0 355.0

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).

©2001 CRC Press LLC

838

CRC Handbook of Materials Science & Engineering

Table 261. TOTAL ELONGATION OF

CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No.

Temper

Elongation (in 2 in.) (%)

355.0 (Con’t)

T71 T51 T6

1.5 2.0 4.0

T62 T7 T71

1.5 2.0 3.0

T51 T6 T7

2.0 3.5 2.0

T71 T6 T7

3.5 5.0 6.0

357.0, A357.0 359.0

T62 T61 T62

8.0 6.0 5.5

360.0 A360.0 380.0

F F F

3.0 5.0 3.0

383.0 384.0, A384.0 390.0

F F F T5

3.5 2.5 1.0 1.0

A390.0

F,T5 T6 T7

1015

General purpose, type II

>1015

Moldings: Grades 5, 6, 8

>1014

High impact grade

2.0 x 1016 4 x 1014

Thermoset Carbonate

Allyl diglycol carbonate

Alkyds; Molded

Putty (encapsulating)

1014

Rope (general purpose)

1014

Granular (high speed molding) Glass reinforced (heavy duty parts) Cellulose Acetate; Molded, Extruded

1014 — 1015 1014

ASTM Grade: H6—1

1010—1013

H4—1

1010—1013

H2—1

1010—1013

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC Shackelford & Alexander

975

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 2 OF 8)

Polymer

Cellulose Acetate; Molded, Extruded (Con’t)

Cellulose Acetate Butyrate; Molded, Extruded

Cellusose Acetate Propionate; Molded, Extruded

Chlorinated Polymers

Polycarbonates

Diallyl Phthalates; Molded

Volume Resistivity, (ASTM D257) ( Ω • cm)

Type

MH—1, MH—2

1010—1013

MS—1, MS—2

1010—1013

S2—1

1010—1013

ASTM Grade: H4

1011—1014

MH

1011—1014

S2

1011—1014

ASTM Grade: 1

1011—1014

3

1011—1014

6

1011—1014 1.5 x 1016

Chlorinated polyether Chlorinated polyvinyl chloride

1 x 1015—2 x 1016

Polycarbonate Polycarbonate (40% glass fiber reinforced)

2.1 x 1016 1.4 x 1015

Orlon filled

6 x 104—6 x 106

Dacron filled

102—2.5 x 104

Asbestos filled

102—5 x 103

Glass fiber filled

104—5 x 104

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

976

CRC Handbook of Materials Science & Engineering

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 3 OF 8)

Polymer

Fluorocarbons; Molded,Extruded

Type

Polytetrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

Epoxies; Cast, Molded, Reinforced

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded High strength laminate

Epoxies—Molded, Extruded

High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded

Volume Resistivity, (ASTM D257) ( Ω • cm)

1018 >1018 1015 >2 x 1018 5 x 1014

6.1 x 1015 9.1 x 105—6.7 x 109 1—5 x 1015 6.6 x 107—109

2.10 x 1014 1.4—5.5 x 1014 >1016

Epoxy novolacs

Cast, rigid

Melamines; Molded

Filler & type Cellulose electrical

1012—1013

Glass fiber

1—7 x 1011

Alpha cellulose and mineral

1012

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

977

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 4 OF 8)

Polymer

Nylons; Molded, Extruded

Volume Resistivity, (ASTM D257) ( Ω • cm)

Type

Type 6

4.5 x 1013

General purpose Glass fiber (30%) reinforced

2.8 x 1014—1.5 x 1015

Cast

2.6 x 1014

Type 8

1.5 x 1011

Type 11

2 x 1013

Type 12

1014 —1015

6/6 Nylon

1014—1015

General purpose molding

2.6—5.5 x 1015

Glass fiber reinforced

1015

General purpose extrusion 6/10 Nylon

1015

General purpose Phenolics; Molded

Type and filler General: woodflour and flock Shock: paper, flock, or pulp

109—1013 1—50 x 1011 >1010

High shock: chopped fabric or cord

10

— 1011

Very high shock: glass fiber

10

Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric

1010 — 1012

Rubber phenolic—asbestos

108—1011 1011 1011

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

978

CRC Handbook of Materials Science & Engineering

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 5 OF 8)

Polymer

Phenolics; Molded (Con’t)

Polymides

Polyacetals

Polyester; Thermoplastic

Type

ABS—Polycarbonate Alloy

2.2 x 1016

PVC—Acrylic Alloy PVC—acrylic Sheet

l—5 x 1013

PVC—acrylic injection molded

5 x l015

Unreinforced

4 x 1015

Glass reinforced

9.2 x 1015

Homopolymer: Standard

1 x 1015

20% glass reinforced

5 x 1014

Copolymer: Standard

1 x 1014

25% glass reinforced

1.2 x 1014

High flow

1.0 x 1014

Injection Moldings: General purpose grade

1—4 x 1016

Glass reinforced grades

3.2—3.3 x 1016

Glass reinforced self extinguishing

Polyesters: Thermosets

Volume Resistivity, (ASTM D257) ( Ω • cm)

3.4 x 1016

General purpose grade

2 x 1015

Asbestos—filled grade

3 x 1014

Cast polyyester Rigid

1013

Flexible

1012

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

979

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 6 OF 8)

Polymer

Polyesters: Thermosets (Con’t)

Volume Resistivity, (ASTM D257) ( Ω • cm)

Type

Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose

Phenylene oxides (Noryl)

6.4 x 1015 —2.2 x 1016

1017

SE—1

1017

Glass fiber reinforced

1017

Standard

5 x 1016 1017

Polyarylsulfone

3.2—7.71 x l016

General purpose

>1017

High impact

Polyphenylene sulfide

1 x 1012 —1 x 1013

Phenylene Oxides SE—100

Glass fiber reinforced

Polypropylene

1 x 1012 —1 x 1013

1017

Asbestos filled

1.5 x 1015

Glass reinforced

1.7 x 1016

Flame retardant

4 x 1016—1017

40% glass reinforced

4.5 x 1014

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

980

CRC Handbook of Materials Science & Engineering

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 7 OF 8)

Polymer

Polyethylenes; Molded, Extruded

Olefin Copolymers; Molded

Type

Type I—lower density (0.910—0.925) Melt index 0.3—3.6

1017—1019

Melt index 6—26

1017—1019

Melt index 200

1017—1019

Type II—medium density (0.926—0.940) Melt index 20

>1015

Melt index l.0—1.9

>1015

Type III—higher density (0.941—0.965) Melt index 0.2—0.9

>1015

Melt Melt index 0.l—12.0

>1015

Melt index 1.5—15

>1015

High molecular weight

>1015

EEA (ethylene ethyl acrylate)

2.4 x 1015

EVA (ethylene vinyl acetate)

0.15 x 1015

Ionomer

Polystyrenes; Molded

Volume Resistivity, (ASTM D257) ( Ω • cm)

10 x 1015

Polyallomer

>1016

Polystyrenes General purpose

>1016

Medium impact

>1016

High impact

>1016

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

981

Table 293. VOLUME RESISTIVITY OF

POLYMERS

(SHEET 8 OF 8)

Polymer

Polystyrenes; Molded (Con’t)

Volume Resistivity, (ASTM D257) ( Ω • cm)

Type

Glass fiber -30% reinforced

3.6 x 1016

Styrene acrylonitrile (SAN)

>1016

Glass fiber (30%) reinforced SAN Polyvinyl Chloride And Copolymers; Molded, Extruded

Nonrigid—general

1—700 x 1012

Nonrigid—electrical

4—300 x 1011

Rigid—normal impact

1014—1016

Vinylidene chloride

1014—1016

Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Ureas; Molded

4.4 x 1016

Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2)

(dry) 9 x 1014 5 x 1014 2—5 x 1014 0.5—5 x 1011 5—8 x 1010

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

982

CRC Handbook of Materials Science & Engineering

Table 294. CRITICAL

TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2)

a

Element

Tc(K)

Al Be Cd

1.175 0.026 0.518-0.52

Ga Ga ( β) Ga ( γ) Ga ( δ)

5.90-6.2 7.62 7.85

Hg ( α) Hg ( β)

4.154 3.949

In Ir

3.405 0.11-0.14

La ( α) La ( β) Mo Nb

4.88 6.00 0.916 9.25

Os Pa Pb Re

0.655 1.4 7.23 1.697

Ru Sb Sn Ta

2.6-2.7a 3.721 4.47

Tc Th

7.73-7.78 1.39

1.0833

0.493

Metastable.

Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.

©2001 CRC Press LLC

Shackelford & Alexander

983

Table 294. CRITICAL

TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2)

a

Element

Tc(K)

Ti Ti

0.39 2.332-2.39

V W Zn Zr Zr ( ω)

5.43-5.31 0.0154 0.875 0.53

0.65

Metastable.

Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.

©2001 CRC Press LLC

984

CRC Handbook of Materials Science & Engineering

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 1 OF 8) Dissipation Factor (ASTM D150)

Class

ABS Resins; Molded, Extruded

Acrylics; Cast, Molded, Extruded

60 Hz

10 6 Hz

Medium impact

0.003—0.006

0.008—0.009

High impact Very high impact Low temperature impact Heat resistant

0.005—0.007 0.005—0.010 0.005—0.01 0.030—0.040

0.007—0.015 0.008—0.016 0.008—0.016 0.005—0.015

Polymer

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade

0.05—0.06 0.05—0.06

0.02—0.03 0.02—0.03

0.04—0.06 0.03—0.04

0.02—0.03 0.01—0.02

Thermoset Carbonate

Allyl diglycol carbonate

0.03—0.04

0.1—0.2

Alkyds; Molded

Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)

0.030—0.045 0.019

0.016—0.020 0.023

0.030—0.040

0.017—0.020

0.02—0.03

0.015—0.022

0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06

0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10

Cellulose Acetate; Molded, Extruded

ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

985

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 2 OF 8) Dissipation Factor (ASTM D150)

Class

Cellulose Acetate Butyrate; Molded, Extruded

Polymer

Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride

Diallyl Phthalates; Molded

0.01—0.04 0.01—0.04 0.01—0.04

0.02—0.05 0.02—0.05 0.02—0.05

0.01—0.04 0.01—0.04 0.01—0.04

0.02—0.05 0.02—0.05 0.02—0.05

0.011 0.0189— 0.0208

0.011

0.0009

0.01

0.006

0.007

0.023—0.015 (Dry) 0.004—0.016 (Dry) 0.05—0.03 (Dry) 0.004—0.015 (Dry)

0.045—0.040 (Wet) 0.009—0.017 (Wet) 0.154—0.050 (Wet) 0.012—0.020 (Wet)

ASTM Grade: 1 3 6

Polycarbonates

10 6 Hz

ASTM Grade: H4 MH S2

Cellulose Acetate Propionate; Molded, Extruded

60 Hz

Polycarbonate Polycarbonate (40% glass fiber reinforced) Orlon filled Dacron filled Asbestos filled Glass fiber filled

0.02

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

986

CRC Handbook of Materials Science & Engineering

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 3 OF 8) Dissipation Factor (ASTM D150)

Class

Fluorocarbons; Molded,Extruded

Epoxies; Cast, Molded, Reinforced

Epoxies—Molded, Extruded

Polymer

60 Hz

10 6 Hz

0.02

0.007—0.010

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

0.0002

0.0002

0.0005–0.0015

0.0005–0.0015

0.0003

0.0003

0.05

0.184

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate High strength laminate

0.0074 0.0048-0.0380 0.011-0.018

0.032 0.0369-0.0622 0.013—0.020

0.004-0.006

0.024—0.026



0.010-0.017

High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid

0.0055— 0.0074 0.0071—0.025 — 0.001—0.007

0.029—0.028 — 0.0158 —

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

987

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 4 OF 8) Dissipation Factor (ASTM D150)

Class

Melamines; Molded

Nylons; Molded, Extruded

Polymer

Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose Mineral

60 Hz

10 6 Hz

0.048—0.162 0.026—0.192 0.14—0.23 — —

0.031—0.040 0.032—0.12 0.020—0.03 0.028 0.030

0.06—0.014

0.03—0.04

0.022—0.008

0.019—0.015

0.015 0.007—0.010

0.05 0.010—0.015

0.19 0.03

0.08 0.02

Type 6

General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Type 8 Type 11 Type 12

0.04 (103 Hz)

6/6 Nylon

General purpose molding Glass fiber reinforced 6/10 Nylon General purpose Phenolics; Molded

Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber

0.014—0.04 0.009—0.018

0.04 0.017—0.018

0.04

0.05—0.30

0.03—0.07

0.08—0.35

0.03—0.07

0.08—0.45

0.03—0.09

0.02—0.03

0.02

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

988

CRC Handbook of Materials Science & Engineering

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 5 OF 8) Dissipation Factor (ASTM D150)

60 Hz

10 6 Hz

0.13—0.16

0.1

0.15—0.60

0.1—0.2

0.5

0.09

0.15

0.13

ABS–Polycarbonate Alloy

0.0026

0.0059

PVC–acrylic sheet PVC–acrylic injection molded

0.076

0.094

0.037

0.031

Polyimides

Unreinforced Glass reinforced

0.003 0.0034

0.011 0.0055

Polyacetals

Homopolymer: Standard 20% glass reinforced Copolymer: Standard 25% glass reinforced High flow

0.0048 0.0047

0.0048 0.0036

0.001 (100 Hz) 0.003 (100 Hz) 0.001 (100 Hz)

0.006 0.006 0.006

Class

Phenolics: Molded

PVC–Acrylic Alloy

Polyester; Thermoplastic

Polymer

Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic— chopped fabric Rubber phenolic— asbestos

Injection Moldings: General purpose grade Glass reinforced grades

0.002 (103 Hz) 0.002—0.003 (103 Hz)

Glass reinforced self extinguishing General purpose grade

0.002 (103 Hz)

Asbestos—filled grade

0.015 (103 Hz)

0.023 (103 Hz)

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford & Alexander

989

Table 295. D ISSIPATION

FACTOR FOR POLYMERS

(SHEET 6 OF 8) Dissipation Factor (ASTM D150)

60 Hz

10 6 Hz

0.003—0.04 0.01—0.18

0.006—0.04 0.02—0.06

0.0087—0.04

0.0086—0.022

0.0007 0.0007 0.0009

0.0024 0.0024 0.0015

0.0008 0.0019

0.0034 0.0049

Polyarylsulfone

0.0017—0.003

0.0056—0.012

General purpose

0.0005–0.0007

0.0002–0.0003 0.0002— 0.0003 0.002 0.003 0.0006–0.003

Class

Polyesters: Thermosets

Reinforced polyester moldings Phenylene Oxides

Polypropylene

Polymer

Cast polyyester Rigid Flexible Sheet molding compounds, general purpose SE—100 SE—1 Glass fiber reinforced Phenylene oxides (Noryl) Standard Glass fiber reinforced

High impact Asbestos filled Glass reinforced Flame retardant Polyphenylene sulfide

Polyethylenes; Molded, Extruded

92 90

Thermoset Carbonate

Allyl diglycol carbonate

89—92

Alkyds; Molded

Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)

Opaque Opaque Opaque Opaque

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 2 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Cellulose Acetate; Molded, Extruded

ASTM Grade: H6—1 H4—1 H2—1

75—90 75—90 80—90

MH—1, MH—2 MS—1, MS—2 S2—1

80—90 80—90 80—95

ASTM Grade: H4 MH S2

75—92 80—92 85—95

ASTM Grade: 1 3 6

80—92 80—92 80—92

Cellulose Acetate Butyrate; Molded, Extruded

Cellusose Acetate Propionate; Molded, Extruded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 3 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Chlorinated Polymers

Chlorinated polyether Chlorinated polyvinyl chloride

Opaque Opaque

Polycarbonates

Polycarbonate Polycarbonate (40% glass fiber reinforced)

75—85 Translucent

Fluorocarbons; Molded,Extruded

Polytrifluoro chloroethylene (PTFCE)

80—92

Epoxies; Cast, Molded, Reinforced

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded

90 85

General purpose glass cloth laminate High strength laminate Filament wound composite

Opaque Opaque Opaque

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 4 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Epoxies—Molded, Extruded

High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate

Opaque Opaque

Epoxy novolacs

Glass cloth laminate

Opaque

Melamines; Molded

Filler & type Unfilled Cellulose electrical

Good Opaque

6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion

Translucent Opaque Opaque Opaque

Nylons; Molded, Extruded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 5 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Nylons; Molded, Extruded (Con’t)

6/10 Nylon General purpose Glass fiber (30%) reinforced

Opaque Opaque

ABS–Polycarbonate Alloy

ABS–Polycarbonate Alloy

Opaque

PVC–Acrylic Alloy

PVC–acrylic sheet PVC–acrylic injection molded

Opaque Opaque

Poliymides

Unreinforced Unreinforced 2nd value Glass reinforced

Opaque Opaque Opaque

Polyesters: Thermosets

Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose

Opaque Opaque Opaque

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 6 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Phenylene Oxides

SE—100 SE—1 Glass fiber reinforced

Opaque Opaque Opaque

Phenylene oxides (Noryl)

Glass fiber reinforced

Opaque

Polypropylene

General purpose High impact

Translucent—opaque Translucent—opaque

Asbestos filled Glass reinforced Flame retardant

Opaque Opaque Opaque

Standard 40% glass reinforced

Opaque Opaque

Polyphenylene sulfide

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 305. TRANSPARENCY OF

POLYMERS

(SHEET 7 OF 7)

Polymer

Type

Transparency (visible light) (ASTM D791) (%)

Polystyrenes; Molded

General purpose Medium impact High impact Glass fiber -30% reinforced

Transparent Opaque Opaque Opaque

Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN

Transparent Opaque

Silicones; Molded, Laminated

Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate

Opaque Opaque Opaque

Ureas; Molded

Alpha—cellulose filled (ASTM Type 1) Cellulose filled (ASTM Type 2) Woodflour filled

21.8 Opaque Opaque

Styrene acrylonitrile (SAN)

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 306. REFRACTIVE INDEX OF

POLYMERS

(SHEET 1 OF 5)

Polymer

Type

Refractive index, (ASTM D542) (n D )

Acrylics; Cast, Molded, Extruded

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II

1.485—1.500 1.485—1.495

Moldings: Grades 5, 6, 8 High impact grade

1.489—1.493 1.49

Thermoset Carbonate

Allyl diglycol carbonate

1.5

Cellulose Acetate; Molded, Extruded

ASTM Grade: H6—1 H4—1 H2—1

1.46—1.50 1.46—1.50 1.46—1.50

MH—1, MH—2 MS—1, MS—2 S2—1

1.46—1.50 1.46—1.50 1.46—1.50

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 306. REFRACTIVE INDEX OF

POLYMERS

(SHEET 2 OF 5)

Polymer

Type

Refractive index, (ASTM D542) (n D )

Cellulose Acetate Butyrate; Molded, Extruded

ASTM Grade: H4 MH S2

(D543) 1.46—1.49 1.46—1.49 1.46—1.49

Cellusose Acetate Propionate; Molded, Extruded

ASTM Grade: 1 3 6

1.46—1.49 1.46—1.49 1.46—1.49

Polycarbonate

1.586

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

1.43 1.35 1.34 1.42

Fluorocarbons; Molded,Extruded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 306. REFRACTIVE INDEX OF

POLYMERS

(SHEET 3 OF 5)

Polymer

Type

Refractive index, (ASTM D542) (n D )

Epoxies; Cast, Molded, Reinforced

Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded

1.61 1.61

Homopolymer: Standard 20% glass reinforced 22% TFE reinforced

Opaque Opaque Opaque

Copolymer: Standard 25% glass reinforced High flow

Opaque Opaque Opaque

Cast polyyester Rigid Flexible

1.53—1.58 1.50—1.57

Polyacetals

Polyesters: Thermosets

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 306. REFRACTIVE INDEX OF

POLYMERS

(SHEET 4 OF 5)

Polymer

Type

Refractive index, (ASTM D542) (n D )

Phenylene oxides (Noryl)

Standard

1.63

Polyarylsulfone

Polyarylsulfone

1.651

Polyethylenes; Molded, Extruded

Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200

1.51 1.51 1.51

Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9

1.51 1.51

Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15

1.54 1.54 1.54

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 306. REFRACTIVE INDEX OF

POLYMERS

(SHEET 5 OF 5)

Polymer

Type

Refractive index, (ASTM D542) (n D )

Polystyrenes; Molded

Polystyrenes General purpose Medium impact High impact

1.6 Opaque Opaque

Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN

Opaque 1.565—1.569 Opaque

Vinylidene chloride

1.60—1.63

Polyvinyl Chloride And Copolymers; Molded, Extruded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 1 OF 13) Material

Dispersion Equation at 298 K

3

Alumina (Sapphire, Single Crystal)

2

n -1=

Σ i=1

Aiλ 2 λ2

-

where i

1 2 3 ( λ in mm)

( λ in µm)

λ2 i λi2 0.00377588 0.0122544 321.3616

Ai 1.023798 1.058264 5.280792

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 2 OF 13) Material

Dispersion Equation at 298 K

5

ArsenicTrisulfide (Glass)

2

n -1=

Σ i=1

Kiλ 2 λ 2 − λi2

where i

1 2 3 4 5 ( λ in µm)

( λ in µm)

λi2 0.0225 0.0625 0.1225 0.2025 0.705

Ki 1.8983678 1.9222979 0.8765134 0.1188704 0.9569903

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 3 OF 13) Material

Dispersion Equation at 298 K

3

Barium Fluoride (Single Crystal)

2

n -1=

Σ

Aiλ 2

( λ in µm)

λ2 - λ2 i i=1

where i

1 2 3 ( λ in µm)

λi 0.057789 0.10968 46.3864

Ai 0.643356 0.50676 3.8261

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 4 OF 13) Material

Cadmium Sulfide (Bulk and Hexagonal Single Crystal)

Dispersion Equation at 298 K

n 2o=5.235+

1.891x107 λ 2-1.651x107

for ordinary ray, and

2.076x10 7 2 ne =5.239+ λ 2-1.651x10 7 for extraordinary ray. ( λ in µm)

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 5 OF 13) Material

Dispersion Equation at 298 K

3

Calcium Fluoride (Single Crystal)

2

n -1=

Aiλ 2

Σ i=1

λ2

-

( λ in µm)

λ2 i Ai 0.5675888 0.4710914 3.8484723

i 1 2 3

Cesium Bromide (Single Crystal)

2 -6 n = 5.640752–3.338x10 λ2 +

0.0018612 λ

2

λι 0.050263605 0.1003909 34.64904

41110.49 0.0290764 + 2 + 2 λ -14390.4 λ -0.024964

( λ in µm)

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 6 OF 13) Material

Dispersion Equation at 298 K

5

Cesium Iodide (Single Crystal)

2

n -1=

Σ i=1

Kiλ 2 λ 2 − λi2

where i

1 2 3 4 5 ( λ in mm)

( λ in µm)

λi2 0.00052701 0.02149156 0.28551800 0.39743178 3.3605359

Ki 0.3461725 1.0080886 0.02149156 0.044944 25921

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 7 OF 13) Material

Dispersion Equation at 298 K

Germanium (Intrinsic Single Crystal)

n = A + Bλ + Cλ2 + D λ2 + Eλ4

where A=3.99931 B=0.391707 C=0.163492 D=–0.0000060 E=0.000000053 for 2.0µm ≤ λ ≤ 13.5 µm

Lithium Fluoride (Single Crystal)

n = A + BL + CL2 + D λ2 + Eλ4

where A=1.38761 B=0.001796 C=–0.000041 D=–0.0023045 E=–0.00000557 for 0.5µm ≤ λ ≤ 6.0 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 8 OF 13) Material

Dispersion Equation at 298 K

Magnesium Fluoride (Single Crystal)

no =1.36957 +

0.0035821 λ -0.14925

for ordinary wavelengths, and

ne =1.38100 +

0.0037415 λ -0.14947

for wavelengths within 0.4µm ≤ λ ≤ 0.7 µm

2 -5 n =2.956362-0.1062387 λ 2 –2.04968 x10 λ4

Magnesium Oxide (Single Crystal)



0.0219577 λ2

-0.01428322

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 9 OF 13) Material

Potassium Bromide (Single Crystal)

Potassium Chloride (Single Crystal)

Dispersion Equation at 298 K

2

n = 2.3618102–0.00058072 λ 2 +

0.02305269

λ2– 0.02425381 for 0.4µm ≤ λ ≤ 0.7 µm

n2= 2.174967+

0.08344206 λ 2-0.0119082

+

0.00698382 λ2 -0.025555

– 0.000513495 λ2 – 0.06167587 λ 4 for ultraviolet wavelengths

n2=3.866619+

0.08344206 λ 2 – 0.0119082



0.00698382 λ 2–

0.025555



5569.715 λ 2–

3292.472

for the visible light

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 10 OF 13) Material

Silica (High Purity Fused)

Silicon (Single Crystal)

Dispersion Equation at 298 K

n2=2.978645 +

0.008777808 λ 2–

0.010609

+

84.06224 λ 2–

96.0000

n = 3.41696 + 0.138497L + 0.013924L2 – 0.0000209λ2 + 0.000000148λ4

where L = ( λ2 – 0.028) –1

Silver Bromide (Single Crystal)

n2 – 1 0.10279 λ2 =0.48484+ λ2– 0.0900 n2 + 2

– 0.004796 λ 2

for 0.54µm ≤ λ ≤ 0.65 µm

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 11 OF 13) Material

Dispersion Equation at 298 K

Silver Chloride (Single Crystal)

n = 4.00804 – 0.00085111λ2 – 0.00000019762λ4 + 0.079086/( λ2 – 0.04584)

Strontium Titanate (Single Crystal)

n = A + BL + CL2 + D λ2 + Eλ4

where A=2.28355 B=0.035906 C=0.001666 D=–0.0061355 E=–0.00001502 for 1.0 µm ≤ λ ≤ 5.3 µm

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 12 OF 13) Material

Dispersion Equation at 298 K

5

Thallium Bromoiodide (KRS-5, Mixed Crystal)

2

n -1=

Σ i=1

Kiλ 2 λ 2 − λi2

where i

1 2 3 4 5 ( λ in µm)

λi2 0.0225 0.0625 0.1225 0.2025 27089.737

Ki 1.8293958 1.6675593 1.1210424 0.4513366 12.380234

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 307. D ISPERSION OF

OPTICAL MATERIALS

(SHEET 13 OF 13) Material

Titanium Dioxide (Rutile, Single Crystal)

Dispersion Equation at 298 K

n 2o=5.913+

2.441x107 λ 2– 0.803x107

for ordinary wavelengths, and

2 n =7.197 e

+

3.322x10

7

λ 2– 0.843x107

for extraordinary wavelengths. ( λ in Å)

Zinc Sulfide (Single Crystal, Cubic)

7 n = 5.164+ 1.208x107 l2 – 0.732 x10 ( λ in Å)

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Shackelford, James F. & Alexander, W. “Chemical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001

CHAPTER 9

L is t o f T a b le s

C h e m ic a l P ro p e r t ie s o f M a t e ria ls

A b s o rp tio n Water Absorption of Polymers

E M F P o te n tia ls a n d G a lv a n ic S e rie s Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water

C o rro s io n Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F

©2001 CRC Press LLC

1071

L is t o f T a b le s (C o n tin u e d )

C o rro s io n (c o n ’t) Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas

F la m m a b ility Flammability of Polymers Flammability of Fiberglass Reinforced Plastics

©2001 CRC Press LLC

1072

CRC Handbook of Materials Science & Engineering

Table 308. W ATER

ABSORPTION OF POLYMERS (SHEET 1 OF 12)

Polymer

Type

Water Absorption in 24 hr, ASTM D570) (%)

ABS Resins; Molded, Extruded

Medium impact High impact

0.2—0.4 0.2—0.45

Very high impact Low temperature impact Heat resistant

0.2—0.45 0.2—0.45 0.2—0.4

Cast Resin Sheets, Rods: General purpose, type I General purpose, type II

0.3—0.4 0.2—0.4

Moldings: Grades 5, 6, 8 High impact grade

0.3—0.4 0.2—0.4

Allyl diglycol carbonate

0.2

Acrylics; Cast, Molded, Extruded

Thermoset Carbonate

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 308. W ATER

ABSORPTION OF POLYMERS (SHEET 2 OF 12)

Polymer

Type

Water Absorption in 24 hr, ASTM D570) (%)

Alkyds; Molded

Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)

0.10—0.15 0.05—0.08 0.08—0.12 0.007—0.10

Cellulose Acetate; Molded, Extruded

ASTM Grade: H4—1 H2—1

1.7—2.7 1.7—2.7

MH—1, MH—2 MS—1, MS—2 S2—1

1.8—4.0 2.1—4.0 2.3—4.0

ASTM Grade: H4 MH S2

2 1.3—1.6 0.9—1.3

Cellulose Acetate Butyrate; Molded, Extruded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 308. W ATER

ABSORPTION OF POLYMERS (SHEET 3 OF 12)

Polymer

Type

Water Absorption in 24 hr, ASTM D570) (%)

Cellusose Acetate Propionate; Molded, Extruded

ASTM Grade: 1 3 6

1.6—2.0 1.3—1.8 1.6

Chlorinated Polymers

Chlorinated polyether Chlorinated polyvinyl chloride

0.01 0.11

Polycarbonates

Polycarbonate Polycarbonate (40% glass fiber reinforced)

0.15 0.08

Orlon filled Dacron filled Asbestos filled Glass fiber filled

(122 •F, 48 hr), % 0.2—0.5 0.2—0.5 0.4—0.7 0.2—0.4

Diallyl Phthalates; Molded

Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.

©2001 CRC Press LLC

Table 308. W ATER

ABSORPTION OF POLYMERS (SHEET 4 OF 12)

Polymer

Type

Water Absorption in 24 hr, ASTM D570) (%)

Fluorocarbons; Molded,Extruded

Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)

0 0.01

Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)

>0.2