384 31 2MB
Russian Pages [208]
ю , .А. . . ю
. .
А
C
И
А
,
Ч EVIEWS
л
,
2011
65 33
И ы
: ,
ЦЭ
Е.Ю.
,
,
, , ю
, .
. .
.
33 Eviews: / , . . . – 2.: , 2011. – 206 .
. . .–
.
,
. .,
.
-
. ,
, ,
-
, ,
, . Eviews. , .
ISBN 978-5-209-04090-3
© ©
. .,
. .,
. ., 2011 ,
, 2011
. .,
ы
И. .
.А.,
Eviews
, Э
–
, ,
.
« 1910
»
.Ц
., . , ,
А
«…
,
,
»
(
). «
»
, .
: , , ,
. .
«Э
–
:
, ,
. ,
. Э .
,
– 3
,
– ,
. Э
–
. »1. :
,
, , ,
,
,
,
,
,
. «
– »( .
). , .
: (cross-sectional data) – ,
• ; •
(time-sectional data) – ,
, . ,
,
: ⎯
(y)
–
; ⎯
(x) –
. :
1
Frisch R. Editorial // Econometrica. – 1933. N1. P.2.
4
. .,
ы
.А.,
И. . Eviews
•
ы ) –
( (x);
•
ы )–
( (y);
•
–
, .
: yt – yt-1 – yt-2 – •
; ; . (
ы ) –
(xt, xt-1),
(yt-1). . :
1.
.
: Y = f(L, K) – D = f(P, Pk, I) 2.
. – ,
, ,
,
. –
-
:
– ;
-
– ;
ы
-
– .
5
.Э
3.
– , . , . . . -,
(
,
,
-
)
: -
; . :
1)
(
,
.), ; (
2)
)
; ; 3) 4) 5)
(
); ;
, -
, ;
6)
-
,
. .
; 7) Э
. . , . .
6
. .,
ы
И. .
.А.,
Eviews
. , . (
)
(
,
). — . ,
, . , —
,
. .
. , ы
, . orrelatio -
(
,
). — (
(
)
) (
)
. . . , xi (
y—
, y i,
. 0.1).
7
, x— x (i ) .
. 0.1. x y
—
: ; — ; —
,
, 1, . ryx 0,1 - 0,3 0,3 - 0,5 0,5 - 0,7 0,7 - 0,9 0,9 - 1,0 ,
.
ы (
, ,
) .
,
8
. .,
ы 2
И. .
.А.,
Eviews
. –
:
)
;
;
• • •
( ,
. .
. , ,
, ,
( . .
), (
,
,
), —
. . -,
-
. . (0.1). y i = α + βxi + ε i xi — (
( , , εi –
(0.1) , yi — , α, — . >0,
) ) .
,
0,
i
.
. .
rx , y =
Cov( x, y )
σ xσ y
.
(−1 ≤ rx, y ≤ 1). R2,
(rx2, y ) . «
» α
( ,
a
) , RSS (
) 13
b ,
1.
yi yˆ i , yˆ i = a + bxi . ei = y i − yˆ i ,
yi — yˆ i —
y; y;
RSS (a, b) = ( y i − yˆ i ) 2 = ( y i − a − bxi ) 2 = ei2i min n
n
n
i
i
i
(∑ei2 ), . RSS(a,b), a, b :
∂RSS = −2 y i + 2na + 2b xi = 0 ∂a ∂RSS = −2 y i xi + 2a xi + 2b xi2 = 0 ∂b
:
na + b xi = yi
a xi + b xi2 = yi xi , (
) b b=
Cov( x, y ) . Var ( x) a: 14
. .,
ы
И. .
.А.,
Eviews
a = y − bx . . «
»,
, Best Linear Unbiased Estimations). ,
(BLUE –
. , .
Э
, .
, – : Var ( y ) = Var ( yˆ ) + Var (e) , Var ( yˆ ) Var(e)
; -
, .
R2 =
Var ( yˆ ) Var ( y ) − Var (e) Var (e) . = = 1− Var ( y ) Var ( y ) Var ( y ) , , y,
15
1.
1- R2
. (
),
. R2 1.
, ,
,
a
b?
?
1.2. «
,
,
,
…» (
–
.
-
,
1795-1821).
ei. . , (0.1) ( ): 1) E(εi) = 0 (i=1, 2, …, n) – 0 2) Var (ε ) = const ( )
;
( –
. . homoscedasticity
). (heteroscedasticity – ,
),
, -
; 16
. .,
ы
И. .
.А.,
Eviews
3) ,
. . Э
Cov (ε i , ε j ) = 0 (i ≠ j ) .
. ,
,
,
; 4)
, . . Cov (ε i , x j ) = 0 (i ≠ j ) . Э , ;
5) ,
. . εi . Э «
, »
(
, ). , . 1. ei , ei = y i − yˆ i ,
y; yˆ i —
yi —
2.
S=
e n−2 1
n
2 i
i =1
17
.
y.
1.
e (
)
, .
3.
(e Var (e) =
e =
−e)
2
i
n−2
2 i
n−2
=S.
,
(
)
Var (e) = 1 − R 2 ⋅ Var ( y ) . R 2 = 1,
Var (e) = 0 ;
R2 = 0 ,
Var (e) = Var ( y ) .
, 0 ≤Var(e) ≤ Var(y). 4.
σ e = Var (e) , Var(e)— 5.
.
ϑ=
σu y
⋅ 100% ,
σu —
; y — . ϑ
-
(5-7%)
, . 18
. .,
ы
И. .
.А.,
Eviews
6.
b
Sb =
Sa = σ u
(x − x)2 σu
x
a
(x − x)
t-
.
2
.
2
.
t-
. . (b−, b+),
. . : b − = b − t ⋅ Sb , b + = b + t ⋅ Sb .
a. (
), . :
) )
n; ; 19
1.
)
.
1.3.
,
. ( «
» (
«
0)
.
1)
, . . .
» t-
. t-
,
,
, ,
(1 -
) |=|
|t
b |> t Sb
, , . . (
.
)
t-
. t( )
– k),
(n
n –
,
k ,
.
P-
( (p-value, Prob.) 20
Eviews)
. .,
ы
И. .
.А.,
Eviews
,
, n - k
,
,
, t-
. . P,
,
t-
H0 , . . .
H0
. P,
,
t-
. H0
,
. (
)
P,
. H0: ρx,y=0,
|r
| t ρ =0 |=
x, y
n−2
1 − rx , y
2
ρx,y –
|≥ t
(1.1)
, , . . (t )
rx,y
. .
21
1.
( y − y ) /(k − 1) ≥ F = e /(n − k )
2
i
F
2
.
i
F k-1 n-k
.
F-
,
F
= 0. >= F
,
,
.
. P. № 1. :
. .
86 ,
(
.) y ,
( .) x (
2006 ., «Э
economist.rudn.ru).
22
»
. .,
ы
И. .
.А.,
Eviews
1.
. (
2. 3.
)
5%-
.
.
4.
. . (
) .
5.
. 6.
(yhat)
y^
,
.
7.
: ; ; . №1 Eviews 1.
, Eviews
Excel.
Eviews,
. ,
o File/New/Workfile….
23
10% 10% 10%
1.
, Workfile structure type Observations
( 1.1): ,
).
ы -
: resid,
ы
Unstructed/undated , . UNTITLED, Save File). ( . . , , . ( ,
( ),
( ,
, o
ы,
,
ы . . Excel Proc/Load Workfile Page…
24
),
. .,
ы
.А.,
И. . Eviews
. 1.1.
Eviews
. Sheet Excel (
), Custom range,
, , (
.
.1.2).
25
1.
. 1.2.
, Excel (
), , (
.
.1.3, , c ). ,
– x, y –
, resid –
– Name (
.1.3).
26
.
. .,
ы
.А.,
И. . Eviews
. 1.3.
( )
View Graph Scatter Simple
Scatter. .1.4.
, x
,
. 27
1.
. ,
. , , .
,
, , .
. 1.4.
(
)
, Quick Sample 3 86 (
28
,
. .,
ы
И. .
.А.,
Eviews
,
,
)3.
. 2. View Descriptive Stats Common Sample. Freeze, . Name .
( -
)
, .
5%-
, ( -
)
0,05. (
.
, .
(
.1.5). .
2).
3
Range - Sample:3 86 – 84 obs.
29
,
1.
.
.
.
-
. -
. .
. 1.5.
, Correlations
3. View Common Sample. ryx=0,812
. ,
1(
.
1.1).
4. y= α + β x + ε Equation, ycx(
(mod1)
Quick Estimate
, ).
Method
30
. .,
ы
И. .
.А.,
Eviews
)
(LS- Least Squares Sample –
Name ( ).
3 86. ,
EQ01
).
(
.1.6. ,
(c
)
: y^= 3712+ 1,34 x
. 1.6.
mod1
.
:
(Dependent Variable), (Sample) (Included Observations).
,
, :
31
1.
t-
p-
C
3711.881
1028.453
3.609190
0.0005
x
1.343802
0.106495
12.61841
0.0000
. , ,
,
p-
0,05. .
2. :
0.660067
15335.60
R2 R2
0.655922
.
7145.774
*
4191.580
19.54306
S .
RSS
*
1.44E+09 -818.8087
F
1.870805
p-
19.60094 159.2243
**
(F-
_
0.000000
)
, (F
=159,2243, p2 R = 0,66
,
0,00). 66%
( . .
*
(
. [6,
,
.
11.4 ])
**
(
3.12])
32
) (
. 9,[
. .,
ы
И. .
.А.,
Eviews
) (
)
. , Freeze Name ( ).
. b=1,34 : 1
. ,
,
1 . 34 .
. , . . . View Actual, Fitted, Residual Actual, Fitted, Residual Graf, , , ( . 1.7). View Actual, Fitted, Residual Actual, Fitted, Residual Table, .
33
1.
. 1.7.
,
y^
, (Fitted)
.1.7,
.
x (Actual)
. (Residual), .
Eviews,
.
Normality Test. .1.8,
View Residual Tests Histogram – , , , 34
. .,
ы
И. .
.А.,
Eviews -13
(Mean=7.8*10 ).
,
.
.
. 1.8.
, . 5. Forecast.
: Forecast name
yhat
; S.E.
se
; 35
1.
Forecast sample (3 86);
(
. 1.9.
.1.9)
Forecast
yhat,
, (
.1.10). ( (
yhat yhat) , se). Freeze
Name.
(
).
36
ы
. .,
.А.,
И. . Eviews
. 1.10.
Eviews : o Root Mean Squared Error (RMSE) .
(y n
RMSE =
i
− yˆ i ) 2 / n ,
i =1
n– o Mean Absolute Error (MAE) – MAE = | y i − yˆ i | / n n
i =1
37
1.
o Mean Absolute Percentage Error . MAPE =
(MAPE)
–
1 n | y i − yˆ i | / y i * 100% n i =1
o Theil Inequality Coefficient
-
, Eviews [12]. 0 1,
0,
. .
,
. : y^ 4 y (Bias Proportion ),
o o
y^ y (Variance Proportion) (Covariance
o
Proportion) Э
1. 0( , .
1), .1.10, 28%,
. 10%.
6.
, . o Range 4
Bias Proportion=0
38
. .,
ы
И. .
.А.,
Eviews
(Data range
Observations: 89). x
o
( ENTER): x(87)=@mean(x)*1.1, x(88)=@min(x)*1.1, x(89)=@max(x)*1.1, @mean(x) – (
x ), @min(x) – @max(x) –
x,
3
86
x . x. x
, 87 88 89
9514.86 3216.4 32783.3
( ENTER): smpl 87 89 eq01.forecast yf se_yf yf –
, se_yf – . :
yf yf 1
se_yf.
,
86 y,
.
se_yf
39
87 –
1.
. Э : ,
. yf yf
se_yf
. CTRL Open as Group. ,
.1.11. .
. 1.11.
95% ( ENTER): series yf_l = yf-se_yf*@qtdist(0.975,82) series yf_r = yf+se_yf*@qtdist(0.975,82) yf_l – ,
95% yf_r –
(84 2,5%
.
2 . .
,
. @qtdist(0.975,82) – 82 ) Eviews 95%
40
. .,
ы
@qtdist
И. .
.А.,
Eviews
, . . 0.9755.
2,5%
( forecast –
). group forecast x yf yf_l yf_r
. ,
View Graph Scatter Simple Scatter.
. 1.12.
. 1.12, , 5
. . Eviews
.
41
1.
. , ,
. .
1
1.
Y
X,
. 2. 3. . . 4. 1%, 5%
10%
.
? 5. . 6. . 7. 107%
Y
X ,
.
8.
[7].
42
. .,
ы
И. .
.А.,
Eviews
1.
199
№– Y-
, , № 1 2 3 4 5 6
X 7 8 14 16 19 21
. .
. № 7 8 9 10 11 12
Y 7 2 8 17 9 10
X 20 32 42 22 40 36
Y 12 26 35 15 22 17
2.
№Y ,
.
X-
, №
.
X 1 2 3 4 5 6
. №
Y
7,3 15,2 4,32 4,07 22,12 15,3
X 7 8 9 10 11 12
200 500 50 125 1000 300
199
3.
№Y-
, ,
№
X 1 2 3
7,3 5,23 2,36 3,66 2,56 3,24
Y 200 300 20 200 20 165
.
. №
Y 77 85 79
. . X 7 8 9
23 52 40
43
Y 79 97 73
33 63 34
1.
№
X 4 5 6
№
Y 93 89 81
X 10 11 12
42 57 81
Y
95 84 108
55 32 65
4.
№XY-
,
.
. ,
№
X 1 2 3 4 5 6
№
Y
7,3 15,2 4,32 4,07 22,12 15,3
X 7 8 9 10 11 12
60 82 12 25 65 58
Y
7,8 5,23 2,36 3,66 2,56 3,24
63 29 10 23 25 26
5.
№XY-
,
.
. ,
№ 1 2 3 4 5 6
№. . Y-
X 79 91 77 87 84 76
№ 7 8 9 10 11 12
Y 34 54 28 38 33 44
X 84 94 79 98 81 115
Y 60 49 25 63 20 62
199
6.
, , 44
.
.
. .,
ы
И. .
.А.,
Eviews
№
X 1 2 3 4 5 6
№
Y
35,8 22,5 28,3 26 20 31,8
X 7 8 9 10 11 12
3,5 2,6 3,2 2,6 2,6 3,5
30,5 29,5 41,5 41,3 34,5 34,9
7.
№-
Y 3,1 2,9 3,4 4,8 3 3,1
199
,
.
. Y-
,
№
X 1 2 3 4 5 6
№
Y 2,4 3 2,2 2,1 4 2,5
X 7 8 9 10 11 12
4,8 5,7 5,1 5,5 6,2 4,9
. Y
5 2,3 3 3,4 3,9 3,1
8.
№. . Y-
.
7 4,7 4,9 5,5 5,6 4,4
200
, ,
№
X 1 2 3 4 5 6
№
Y 4,9 8,5 9,1 5,5 6,1 5,1
45
.
X 7 8 9 10 11 12
3,9 5,5 4,8 4 3,9 3,8
.
Y 4,2 3,8 11 6,9 7,5 5,5
4,1 3 6,3 4,8 5,2 3,7
1.
199
9.
№Y-
. ,
№
X 1 2 3 4 5 6
№
Y 2,4 3 2,2 2,1 4 2,5
.
Y 5 2,3 3 3,4 3,9 3,1
15 13 16 20 24 15
199
X 1 2 3 4 5 6
.
.
7 8 9 10 11 12
15 17 12 15 25 14
, ,
№
. X
10.
№Y-
,
№
Y
24,6 41,1 29,5 27,6 31,9 38,8
X 7 8 9 10 11 12
5 9 4,8 5,4 7,4 6,6
. . 39,2 40,2 41,6 41,3 47 54,7
. . Y 7,8 9,3 9,6 8 10,8 9,9
1. ? 2. 3.
? ?
4.
. 46
. .,
ы
И. .
.А.,
Eviews
5. ? 6. 7.
? ?
8. 9. 10.
? . ?
11. ?
47
2.
А
А 2.
2.1.
y = α + β 1 x1 + β 2 x 2 + ε ,
α,
1,
2
—
(2.1)
; x 1 , x2 — . , y,
y— 1
,
;
x1 .
x2
y = α + β 1 x1 + β 2 x 2 + ... + β k x k + ε , ,
α,
1,
…, k — ;y—
; x1,…, xk — .
: Y = α + Xβ + ε Y X α, β –
-
( ε-
; ; ), nxk;
-
-
. 48
. .,
ы
.А.,
И. . Eviews
, : 1. ( ). 2.
, , ,
.
3. ( ) . , .
ы
. .
bj
.
(Эj) ( β j ). ~
(Эj)
Эj =
m– Xj -
∂Y X j (j=1,…,m) * ∂X Y
; x j; 49
(2.2)
2.
Yj -
y. , y xj
1%
, .
Эj
: Эj = bj *
Xj
,
Y
(2.3)
bj –
j-
~
β j = bj ⋅
σx
.
j
(2.4)
σy
,
σy
y xj
σx
j
. (
), .
Ш
А
, Э
(
) , . 50
.
. .,
ы
И. .
.А.,
Eviews
№ 2.
: . . (
84
ы )y
.
x2 (
. 2006 ., «Э economist.rudn.ru).
( )
,
ы ы
, .) x1,
ы
ы x3 (
»
1.
. .
2. , . 84
. .
. . 3. . 4.
ы6. :
a.
, 6
Э
,
,
51
2.
b. . . 5.
(
) . (
). 6.
ы .
. ы
. 7. , (b1
b2)
. №2 Eviews.
,
1.
1, (
). .
REGION84_MLT.
, smpl 3 86. View Correlations Common Sample. ,
. 2.1. .2.1, ryx1 =0,81
52
. .,
ы
.А.,
И. . Eviews
ы
x1 (
ы
). ы
x3
-
(ryx3=-0,34). x2 (
(ryx2=0,21).
)
, , , .
. 2.1.
2. y= β0 + β1 x1 + β2 x2 + ε
(mod2) . ,
: ls y c x1 x2
53
2.
(
, ). .2.2. EQ01.
. 2.2.
(F
. 2.2, F
=89,75, p-
(
mod2
= 0,00).
t-
12,95 P-
2,74
). R2=0.69 ( . mod1)
, 54
.
. .,
ы
И. .
.А.,
Eviews
№1).
1.6
,
,
,
. .
. , R2.
0,68. Э ,
,
,
,
. .
(
).
3.
: (
(Akaike), (Wald),
)
(Schwarz), (RSS)
. . ,
Ewies,
(
.
,
2).
(
Э ,
, ). . -
, . 55
2.
. ,
. View Coefficient tests Wald – Coefficient Restrictions . (3)=0, x3 , . . Eviews y= (1) + (2)*x1+ (3)*x2 . .3.3. . 2.3, F7.55, P, , . , (
) .
. 2.3.
56
. .,
ы
И. .
.А.,
Eviews
x2 , . . ,
( (mod2)=19.48 < (mod1)=19.54, (mod2)=19.561)
. .,
ы
И. .
.А.,
Eviews
3.2.
,
, , . , . ,
b
– . . : β
yi = α ⋅ xi ⋅ ε i α,
,
—
.
x
x1
x2
...
xn
y
y1
y2
...
yn
ln y = ln α + β ⋅ ln x + ln ε . ln y
y', ln α
75
α', ln x
x', ln =ν.
3.
y' = α '+ βx'+ν . , , . :
a
ln x
ln x1
ln x2
...
ln xn
ln y
ln y1
ln y2
...
ln yn
b,
. b
α
a'.
a = e a′ .
b ,
1%.
y = ax1α ⋅ x 2β , a, α, β — y—
; x1 , x2 — . . 76
;
. .,
ы
.А.,
И. . Eviews
ln y = ln a + α ln x1 + β ln x2 . ,
a,
, . . . 3.1 . 3.1
(lin-lin
Yˆ = a + bX
)
1(
. )Y b
( Y) (loglog
log(Yˆ ) = a + b log( X )
1% Y
)– b%
(log-lin
)–
log(Yˆ ) = a + bX
1(
. )Y
b*100% (lin-log
)
Yˆ = a + b log( X )
1% Y b/100 ( .
77
Y)
3.
№3.
.
: ; . 493 ( .
.
.
) price . . .
kitsp totsp dist metrdist
. ,
,
. [6], http://econometrics.nes.ru/mkp/ , flat98s.xls, «Э » economist.rudn.ru flat98.wf1. 1. ,
. .
2.
(
) . 78
. .,
ы
.А.,
И. . Eviews
. . 3.
, -
. .
4. ,
: 13,5 . . 124 . . 5 11
5.
(
) .
.
. №3 Eviews.
1. , : price = β 0 + β1 totsp + β 2 kitsp + β 3 dist + β 4 metrdist + ε (mod 3.1)
: 1
-
1 , ,
2
-
.
., 1
. .,
3–
79
3.
1
,
4
– 1
. :
1
> 0,
2
> 0,
3