302 19 7MB
English Pages XI, 430 [440] Year 2020
Nonlinear Physical Science
Albert C. J. Luo
Bifurcation Dynamics in Polynomial Discrete Systems
Nonlinear Physical Science Series Editors Albert C. J. Luo , Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, USA Dimitri Volchenkov , Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA Advisory Editors Eugenio Aulisa , Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA Jan Awrejcewicz , Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland Eugene Benilov , Department of Mathematics, University of Limerick, Limerick, Limerick, Ireland Maurice Courbage, CNRS UMR 7057, Universite Paris Diderot, Paris 7, Paris, France Dmitry V. Kovalevsky , Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany Nikolay V. Kuznetsov , Faculty of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russia Stefano Lenci , Department of Civil and Building Engineering and Architecture (DICEA), Polytechnic University of Marche, Ancona, Italy Xavier Leoncini, Case 321, Centre de Physique Théorique, MARSEILLE CEDEX 09, France Edson Denis Leonel , Departmamento de Física, Sao Paulo State University, Rio Claro, São Paulo, Brazil Marc Leonetti, Laboratoire Rhéologie et Procédés, Grenoble Cedex 9, Isère, France Shijun Liao, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China Josep J. Masdemont , Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain Dmitry E. Pelinovsky , Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada Sergey V. Prants , Pacific Oceanological Inst. of the RAS, Laboratory of Nonlinear Dynamical System, Vladivostok, Russia
Laurent Raymond Marseille, France
, Centre de Physique Théorique, Aix-Marseille University,
Victor I. Shrira, School of Computing and Maths, Keele University, Keele, Staffordshire, UK C. Steve Suh , Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA Jian-Qiao Sun, School of Engineering, University of California, Merced, Merced, CA, USA J. A. Tenreiro Machado Porto, Portugal
, ISEP-Institute of Engineering, Polytechnic of Porto,
Simon Villain-Guillot , Laboratoire Ondes et Matière d’Aquitaine, Université de Bordeaux, Talence, France Michael Zaks Germany
, Institute of Physics, Humboldt University of Berlin, Berlin,
Nonlinear Physical Science focuses on recent advances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications. Topics of interest in Nonlinear Physical Science include but are not limited to: • • • • • • • •
New findings and discoveries in nonlinear physics and mathematics: Nonlinearity, complexity and mathematical structures in nonlinear physics: Nonlinear phenomena and observations in nature and engineering: Computational methods and theories in complex systems: Lie group analysis, new theories and principles in mathematical modeling: Stability, bifurcation, chaos and fractals in physical science and engineering: Discontinuity, synchronization and natural complexity in physical sciences: Nonlinear chemical and biological physics
More information about this series at http://www.springer.com/series/8389
Albert C. J. Luo
Bifurcation Dynamics in Polynomial Discrete Systems
With 61 figures
123
Albert C. J. Luo Department of Mechanical and Industrial Engineering Southern Illinois University Edwardsville Edwardsville, IL, USA
ISSN 1867-8440 ISSN 1867-8459 (electronic) Nonlinear Physical Science ISBN 978-981-15-5207-6 ISBN 978-981-15-5208-3 (eBook) https://doi.org/10.1007/978-981-15-5208-3 Jointly published with Higher Education Press The print edition is not for sale in China Mainland. Customers from China Mainland please order the print book from Higher Education Press © Higher Education Press 2020 This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore
Preface
This book is the second part for bifurcation and stability of nonlinear discrete systems. The first part mainly presents a local theory for monotonic and oscillatory stability and bifurcations of nonlinear discrete systems, and such monotonic and oscillatory stability and bifurcations on specific eigenvectors of the corresponding linearized discrete systems are discussed. In this book, the bifurcation dynamics of one-dimensional polynomial nonlinear discrete systems is presented and bifurcation trees caused by period-doubling and monotonic saddle-node bifurcations are discussed for forward and backward polynomial discrete systems. The mechanism of bifurcation trees caused by monotonic saddle-node bifurcations is determined. The appearing and switching bifurcations of simple and higher-order period-1 fixed-points are discussed in this book. From this book, one will find more interesting research results in nonlinear discrete systems. This book consists of five chapters. In Chap. 1, a global bifurcation theory for quartic polynomial discrete systems is presented, and the bifurcation trees through period-doubling and monotonic saddle-node bifurcations are discussed for forward and backward quadratic discrete systems. In Chap. 2, a global bifurcation theory for cubic polynomial discrete systems is discussed, and the bifurcation trees through the period-doubling and monotonic saddle-node bifurcation are also presented, which is different from the quadratic discrete system. In Chap. 3, a global bifurcation theory for quartic polynomial discrete systems is presented for extension to the (2m)th degree polynomial discrete systems. The bifurcation and stability of the (2m)th and (2m+1)th degree polynomial discrete systems are presented in Chaps. 4 and 5 as a general theory of stability and bifurcations for polynomial nonlinear discrete systems. Finally, the author hopes the materials presented herein can last long for science and engineering. Some typos and errors may exist in the book, which can be corrected by readers during reading. Herein, the author would like to thank all supporting people during the difficult time period. Edwardsville, IL, USA
Albert C. J. Luo
vii
Contents
1 Quadratic Nonlinear Discrete Systems . . . . . . . . . . . . . . . . . . . . . 1.1 Linear Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Forward Quadratic Discrete Systems . . . . . . . . . . . . . . . . . . . . 1.2.1 Period-1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . 1.2.2 Period-1 Switching Bifurcations . . . . . . . . . . . . . . . . . . 1.3 Backward Quadratic Discrete Systems . . . . . . . . . . . . . . . . . . . 1.3.1 Backward Period-1 Appearing Bifurcations . . . . . . . . . . 1.3.2 Backward Period-1 Switching Bifurcations . . . . . . . . . . 1.4 Forward Bifurcation Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Period-2 Appearing Bifurcations . . . . . . . . . . . . . . . . . . 1.4.2 Period-Doubling Renormalization . . . . . . . . . . . . . . . . . 1.4.3 Period-n Appearing and Period-Doublization . . . . . . . . . 1.4.4 Period-n Bifurcation Trees . . . . . . . . . . . . . . . . . . . . . . 1.5 Backward Bifurcation Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 Backward Period-2 Quadratic Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Backward Period-Doubling Renormalization . . . . . . . . . 1.5.3 Backward Period-n Appearing and Period-Doublization . 1.5.4 Backward Period-n Bifurcation Trees . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
1 1 7 7 21 28 28 39 44 44 53 62 71 75
. . . . .
. . . . .
75 79 82 92 92
2 Cubic Nonlinear Discrete Systems . . . . . . . . . . . . . . . . . 2.1 Period-1 Cubic Discrete Systems . . . . . . . . . . . . . . . 2.2 Period-1 to Period-2 Bifurcation Trees . . . . . . . . . . . 2.3 Higher-Order Period-1 Switching Bifurcations . . . . . 2.4 Direct Cubic Polynomial Discrete Systems . . . . . . . . 2.5 Forward Cubic Discrete Systems . . . . . . . . . . . . . . . 2.5.1 Period-Doubled Cubic Discrete Systems . . . . 2.5.2 Period-Doubling Renormalization . . . . . . . . . 2.5.3 Period-n Appearing and Period-Doublization .
. . . . . . . . .
. . . . . . . . .
93 93 104 114 117 121 121 128 138
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
ix
x
Contents
2.5.4 Sampled Period-n Appearing Bifurcations . . . . . . . . . . . 2.6 Backward Cubic Nonlinear Discrete Systems . . . . . . . . . . . . . . 2.6.1 Backward Period-2 Cubic Discrete Systems . . . . . . . . . 2.6.2 Backward Period-Doubling Renormalization . . . . . . . . . 2.6.3 Backward Period-n Appearing and Period-Doublization . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
147 150 150 153 157 166
3 Quartic Nonlinear Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . 3.1 Period-1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 3.2 Period-1 to Period-2 Bifurcation Trees . . . . . . . . . . . . . . . . . . . 3.3 Higher-Order Period-1 Quartic Discrete Systems . . . . . . . . . . . 3.4 Period-1 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Simple Period-1 Switching Bifurcations . . . . . . . . . . . . 3.4.2 Higher-Order Period-1 Switching Bifurcations . . . . . . . . 3.5 Forward Quartic Discrete Systems . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Period-2 Quartic Discrete Systems . . . . . . . . . . . . . . . . 3.5.2 Period-Doubling Renormalization . . . . . . . . . . . . . . . . . 3.5.3 Period-n Appearing and Period-Doublization . . . . . . . . . 3.6 Backward Quartic Discrete Systems . . . . . . . . . . . . . . . . . . . . . 3.6.1 Backward Period-2 Quartic Discrete Systems . . . . . . . . 3.6.2 Backward Period-Doubling Renormalization . . . . . . . . . 3.6.3 Backward Period-n Appearing and Period-Doublization . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
167 167 179 188 200 201 215 223 224 227 231 239 239 243 247 256
4 (2m)th-Degree Polynomial Discrete Systems . . . . . . . . . . . . . 4.1 Global Stability and Bifurcations . . . . . . . . . . . . . . . . . . . 4.2 Simple Fixed-Point Bifurcations . . . . . . . . . . . . . . . . . . . 4.2.1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . . . 4.2.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . 4.2.3 Switching-Appearing Bifurcations . . . . . . . . . . . . . 4.3 Higher-Order Fixed-Points Bifurcations . . . . . . . . . . . . . . 4.3.1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . . . 4.3.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . 4.3.3 Appearing-Switching Bifurcations . . . . . . . . . . . . . 4.4 Forward Bifurcation Trees . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Period-Doubled (2m)th-Degree Polynomial Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Renormalization and Period-Doubling . . . . . . . . . . 4.4.3 Period-n Appearing and Period-Doublization . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
257 257 276 276 282 289 294 294 305 311 318
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
318 321 326 334
5 (2m + 1)th-Degree Polynomial Discrete Systems 5.1 Global Stability and Bifurcations . . . . . . . . . 5.2 Simple Fixed-Point Bifurcations . . . . . . . . . 5.2.1 Appearing Bifurcations . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
335 335 354 354
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Contents
5.2.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . 5.2.3 Switching-Appearing Bifurcations . . . . . . . . . . 5.3 Higher-Order Fixed-Point Bifurcations . . . . . . . . . . . . 5.3.1 Higher-Order Fixed-Point Bifurcations . . . . . . 5.3.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . 5.3.3 Switching-Appearing Bifurcations . . . . . . . . . . 5.4 Forward Bifurcation Trees . . . . . . . . . . . . . . . . . . . . . 5.4.1 Period-Doubled ð2m þ 1Þth -Degree Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Renormalization and Period-Doubling . . . . . . . 5.4.3 Period-n Appearing and Period-Doublization . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
369 374 379 379 398 407 410
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
410 415 419 428
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Chapter 1
Quadratic Nonlinear Discrete Systems
In this Chapter, the global stability and bifurcation of quadratic nonlinear discrete systems are discussed. Appearing and switching bifurcations of simple period-1 fixed-points are discussed. Period-1 and period-2 bifurcation trees with global stability are presented for forward and backward quadratic discrete systems. The period-2 appearing and period-doubling renormalizations of quadratic discrete systems are discussed, and the period-n appearing and period-doublization in quadratic discrete systems are presented. Similarly, backward period-2 appearing, backward period-doubling renormalization, and backward period-n appearing and period-doublization are also discussed. The forward and backward period-n bifurcations are presented, and the corresponding bifurcation dynamics can be determined as well.
1.1
Linear Discrete Systems
In this section, the stability and stability switching of fixed-points in linear discrete systems are discussed. The monotonic and oscillatory sink and source fixed-points are discussed. Definition 1.1
Consider a 1-dimensional linear discrete system xk þ 1 ¼ xk þ AðpÞxk þ BðpÞ
ð1:1Þ
where two scalar constants AðpÞ and BðpÞ are determined by a vector parameter p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:2Þ
(i) If AðpÞ 6¼ 0, there is a fixed-point of
© Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3_1
1
2
1 Quadratic Nonlinear Discrete Systems
xk ¼ a1 ðpÞ ¼
BðpÞ ; with a0 ðpÞ ¼ AðpÞ; AðpÞ
ð1:3Þ
and the corresponding discrete system becomes xk þ 1 ¼ xk þ a0 ðxk a1 Þ:
ð1:4Þ
(ii) If AðpÞ ¼ 0, Eq. (1.1) becomes xk þ 1 ¼ xk þ BðpÞ:
ð1:5Þ
(ii1) For BðpÞ 6¼ 0, the 1-dimensional linear discrete system is called a constant adding discrete system. (ii2) For BðpÞ ¼ 0, the 1-dimensional linear discrete system is called a permanent invariant discrete system. For kpk ! kp0 k ¼ b, if the following relations hold AðpÞ ¼ a0 ¼ e ! 0; BðpÞ ¼ ea1 ðpÞ ! 0;
ð1:6Þ
then there is an instant fixed-point to the vector parameter p xk ¼ a1 ðpÞ:
ð1:7Þ
Theorem 1.1 Under assumption in Eq. (1.6), a standard form of the 1-dimensional discrete system in Eq. (1.1) is xk þ 1 ¼ xk þ f ðxk Þ ¼ xk þ a0 ðxk a1 Þ
ð1:8Þ
(i) If j1 þ a0 ðpÞj\1 (or j1 þ df =dxk jxk ¼a1 j\1), then the fixed-point of xk ¼ a1 ðpÞ is stable. Such a stable fixed-point is called a sink or a stable node. (i1) If a0 ðpÞ 2 ð1; 0Þ (or df =dxk jxk ¼a1 2 ð1; 0Þ), then the fixed-point of xk ¼ a1 ðpÞ is monotonically stable. Such a stable fixed-point is called a monotonic sink or a monotonically stable node. (i2) If a0 ðpÞ 2 ð2; 1Þ (or df =dxk jxk ¼a1 2 ð2; 1Þ), then the fixed-point xk ¼ a1 ðpÞ is oscillatorilly stable. Such a stable fixed-point is called an oscillatory sink or an oscillatorilly stable node. (i3) If a0 ðpÞ ¼ 1 (or df =dxk jxk ¼a1 ¼ 1), then the fixed-point of xk ¼ a1 ðpÞ is invariantly stable. Such a stable fixed-point is called an invariant sink. (ii) If j1 þ a0 ðpÞj [ 1 (or j1 þ df =dxk jxk ¼a1 j [ 1), then the fixed-point of xk ¼ a1 ðpÞ is unstable. Such an unstable fixed-point is called a source or an unstable node.
1.1 Linear Discrete Systems
3
(ii1) If a0 ðpÞ 2 ð0; 1Þ (or 1 þ df =dxk jxk ¼a1 2 ð1; 1Þ), then the fixed-point of xk ¼ a1 ðpÞ is monotonically unstable. Such a stable fixed-point is called a monotonic source or a monotonically unstable node. (ii2) If a0 ðpÞ 2 ð1; 2Þ (or 1 þ df =dxk jxk ¼a1 2 ð1; 1Þ), then fixed-point of xk ¼ a1 ðpÞ is oscillatorilly unstable. Such a stable fixed-point is called an oscillatory source or an oscillatorilly unstable node. (iii) If a0 ðpÞ ¼ 0 (or 1 þ df =dxk jxk ¼a1 ¼ 1), then the flow in the neighborhood of fixed-point xk ¼ a1 ðpÞ is invariant. Such an invariant point is called a monotonic saddle switching. (iv) If a0 ðpÞ ¼ 2 (or 1 þ df =dxk jxk ¼a1 ¼ 1), then the flow in the neighborhood of fixed-point xk ¼ a1 ðpÞ is flipped. Such an invariant point is called an oscillatory saddle switching. Proof
Let yk ¼ xk a1 and yk þ 1 ¼ xk þ 1 xk . Thus, Eq. (1.8) becomes yk þ 1 ¼ ð1 þ a0 Þyk :
The corresponding solution is yk ¼ ð1 þ a0 Þk y0 where y0 ¼ x0 a is an initial condition. (i) If ja0 ðpÞ þ 1j\1, we have lim ðxk a1 Þ ¼ lim yk ¼ lim ð1 þ a0 Þk y0 :
k!1
(i1)
k!1
k!1
If a0 ðpÞ 2 ð1; 0Þ, we have 0\1 þ a0 \1 and lim ðxk a1 Þ ¼ lim yk ¼ lim ð1 þ a0 Þk y0 ¼ 0
k!1
k!1
k!1
) lim xk ¼ a1 : k!1
(i2)
Thus, the fixed-point of xk ¼ a1 ðpÞ is monotonically stable. Such a fixed-point is also called a monotonic sink. If a0 ðpÞ 2 ð2; 1Þ, we have 1\1 þ a0 \0 and lim ðxk a1 Þ ¼ lim yk ¼ lim j1 þ a0 jk ð1Þk y0 ¼ 0
k!1
k!1
k!1
) lim xk ¼ a1 : k!1
(i3)
Thus, the fixed-point of xk ¼ a1 ðpÞ is oscillatorilly stable. Such a fixed-point is also called an oscillatory sink. If a0 ðpÞ ¼ 1, we have 1 þ a0 ¼ 0 and
4
1 Quadratic Nonlinear Discrete Systems
ðxk a1 Þ ¼ yk ¼ ð1 þ a0 Þk y0 ¼ 0 ) xk ¼ a1 ðk ¼ 1; 2; . . .Þ: Thus, the fixed-point of xk ¼ a1 ðpÞ is invariant. Such a fixed-point is also called an invariant sink. So the fixed-point of xk ¼ a1 ðpÞ is stable. The fixed-point is called a sink or stable node. (ii) If ja0 ðpÞ þ 1j\1, we have (ii1)
If a0 ðpÞ 2 ð0; 1Þ, we have 1 þ a0 [ 1 and lim ðxk a1 Þ ¼ lim yk ¼ lim ð1 þ a0 Þk y0 ¼ 1
k!1
k!1
k!1
) lim xk ¼ 1: k!1
(ii2)
Thus, the fixed-point of xk ¼ a1 ðpÞ is monotonically unstable. Such a fixed-point is also called a monotonic source. If a0 ðpÞ 2 ð1; 2Þ, we have 1 þ a0 \ 1 and lim ðxk a1 Þ ¼ lim yk ¼ lim j1 þ a0 jk ð1Þk y0 k!1 k!1 1; k ¼ 2l ! 1; ¼ 1; k ¼ 2l þ 1 ! 1; 1; k ¼ 2l ! 1; ) lim xk ¼ k!1 1; k ¼ 2l þ 1 ! 1: k!1
Thus, the fixed-point of xk ¼ a1 ðpÞ is oscillatorilly unstable. Such a fixed-point is also called an oscillatory source. So the fixed-point of xk ¼ a1 ðpÞ is unstable. The fixed-point is called an oscillatory source or an oscillatorilly unstable node. (iii) If a0 ðpÞ ¼ 0, we have 1 þ a0 ¼ 1 and lim ðxk a1 Þ ¼ lim yk ¼ lim ð1 þ a0 Þk y0 ¼ y0 :
k!1
k!1
k!1
So the fixed-point of xk ¼ a1 ðpÞ is invariant. The fixed-point is called a monotonic saddle switching. (iv) If a0 ðpÞ ¼ 2, we have 1 þ a0 ¼ 1 and lim ðxk a1 Þ ¼ lim yk ¼ lim ð1Þk y0 ¼
k!1
k!1
k!1
y0 ; k ¼ 2l; y0 ; k ¼ 2l þ 1:
1.1 Linear Discrete Systems
5
So the fixed-point of xk ¼ a1 ðpÞ is flipped. The fixed-point is called an oscillatory saddle switching. ■
The theorem is proved.
As in Luo (2010, 2012), the theory for the positive and negative mappings in discrete systems are used herein. If the discrete system in Eq. (1.1) is a positive mapping for xk ðk ¼ 1; 2; . . .Þ via x0 , then the corresponding negative mapping is from xk þ 1 ¼ xk þ AðpÞxk þ BðpÞ
ð1:9Þ
for xk ðk ¼ 1; 2; 3; . . .Þ via x0 with the corresponding stability determined by dxk =dxk þ 1 jxk þ 1 : Such a negative mapping is equivalent to the following mapping xk ¼ xk þ 1 þ AðpÞxk þ 1 þ BðpÞ
ð1:10Þ
for xk ðk ¼ 1; 2; 3; . . .Þ via x0 with the corresponding stability determined by dxk þ 1 =dxk jxk : Such a linear discrete system with the negative mapping is called a linear backward discrete system. The linear discrete system with a positive mapping is called a linear forward discrete system. Definition 1.2
Consider a 1-dimensional, linear, backward discrete system xk ¼ xk þ 1 þ AðpÞxk þ 1 þ BðpÞ
ð1:11Þ
where two scalar constants AðpÞ and BðpÞ are determined by a vector parameter p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:12Þ
(i) If AðpÞ 6¼ 0, there is a fixed-point of xk ¼ a1 ðpÞ ¼
BðpÞ ; with a0 ðpÞ ¼ AðpÞ AðpÞ
ð1:13Þ
and the corresponding backward discrete system becomes xk ¼ xk þ 1 þ a0 ðxk þ 1 a1 Þ:
ð1:14Þ
(ii) If AðpÞ ¼ 0, Eq. (1.1) becomes xk ¼ xk þ 1 þ BðpÞ:
ð1:15Þ
For BðpÞ 6¼ 0, the 1-dimensional backward discrete system is called a constant adding discrete system. For BðpÞ ¼ 0, the 1-dimensional backward discrete system is called a permanent invariant discrete system.
6
1 Quadratic Nonlinear Discrete Systems
(iii) For kpk ! kp0 k ¼ b, if the following relations hold AðpÞ ¼ a0 ¼ e ! 0; BðpÞ ¼ ea1 ðpÞ ! 0;
ð1:16Þ
then there is an instant fixed-point to the vector parameter p xk ¼ a1 ðpÞ:
ð1:17Þ
Theorem 1.2 Under assumption in Eq. (1.16), a standard form of the 1-dimensional, linear, backward discrete system in Eq. (1.11) is xk ¼ xk þ 1 þ f ðxk þ 1 Þ ¼ xk þ 1 þ a0 ðxk þ 1 a1 Þ
ð1:18Þ
(i) If jð1 þ a0 ðpÞÞ1 j\1 (or jð1 þ df =dxk þ 1 jxk þ 1 ¼a1 Þ1 j\1), then the fixed-point of xk ¼ a1 ðpÞ is stable. Such a stable fixed-point is called a sink or a stable node. (i1) If a0 ðpÞ 2 ð1; 0Þ (or ð1 þ df =dxk þ 1 jx ¼a1 Þ1 2 ð1; 0Þ), then the kþ1 fixed-point of xk ¼ a1 ðpÞ is oscillatorilly stable. Such a stable fixed-point is called an oscillatory sink or an oscillatorilly stable node. (i2) If a0 ðpÞ 2 ð0; 1Þ (or ð1 þ df =dxk þ 1 jx ¼a1 Þ1 2 ð0; 1Þ), then fixedkþ1 point xk ¼ a1 ðpÞ is monotonically stable. Such a stable fixed-point is called a monotonic sink or a monotonically stable node. (ii) If jð1 þ a0 ðpÞÞ1 j [ 1 (or jð1 þ df =dxk þ 1 jxk þ 1 ¼a1 Þ1 j [ 1), then the fixedpoint of xk ¼ a1 ðpÞ is unstable. Such an unstable fixed-point is called a source or an unstable node. (ii1) If a0 ðpÞ 2 ð0; 1Þ (or ð1 þ df =dxk þ 1 jx ¼a1 Þ1 2 ð1; 1Þ), then the kþ1 fixed-point of xk ¼ a1 ðpÞ is monotonically unstable. Such a stable fixedpoint is called a monotonic source or a monotonically unstable node. (ii2) If a0 ðpÞ 2 ð1; 2Þ (or ð1 þ df =dxk þ 1 jx ¼a1 Þ1 2 ð1; 1Þ), then kþ1 fixed-point xk ¼ a1 ðpÞ is oscillatory unstable. Such a stable fixed-point is called an oscillatory source or an oscillatorilly unstable node. (iii) If a0 ðpÞ ¼ 0 (or ð1 þ df =dxk þ 1 jxk þ 1 ¼a1 Þ1 ¼ 1), then the discrete flow in the neighborhood of fixed-point xk ¼ a1 ðpÞ is invariant. Such an invariant point is called a monotonic saddle switching. (iv) If a0 ðpÞ ¼ 2 (or ð1 þ df =dxk þ 1 jxk þ 1 ¼a1 Þ1 ¼ 1), then the discrete flow in the neighborhood of fixed-point xk ¼ a1 ðpÞ is flipped. Such an invariant point is called an oscillatory saddle switching. Proof The proof is similar to the proof of Theorem 1.1. This theorem is proved.
1.1 Linear Discrete Systems
Invariant
7
Switch
Invariant
Flip
x = a1
xk∗
xk∗ = a1
xk∗ oSO
|| p ||
Switch
Flip
∗ k
a0 < −2
oSI
a0 = −2
mSI
a0 = −1
mSO
a0 = 0
a0 > 0
oSI
|| p ||
a0 < −2
(i)
oSO
a0 = −2
mSO
a0 = −1
a0 = 0
mSI
a0 > 0
(ii)
Fig. 1.1 Stability of single fixed-point in the 1-dimensional linear discrete system. (i) Positive mapping (forward), (ii) Negative mapping (backward). Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The stability switches are labelled by solid circular symbols. (Flip: flipped switch for oscillatorilly stable to unstable fixed-point; Switch: for monotonically stable and unstable fixed-points; Invariant: invariant sink; mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink.)
To illustrate the stability of fixed-points, one fixed-point of xk ¼ a1 ðpÞ changes with a vector parameter p. The stability of such a fixed-point is determined by the constant a0 ðpÞ: The stability switching is at the boundary p0 2 @X12 with a0 ¼ 0: The stability of the fixed-points for the positive (forward) and negative (backward) maps in the 1-dimensional discrete system is presented in Fig. 1.1i and ii, respectively. The stable and unstable portions of the fixed-point are presented by the solid and dash curves, respectively.
1.2
Forward Quadratic Discrete Systems
In this section, the stability of fixed-points in 1-dimensional quadratic nonlinear discrete systems are discussed. The upper-saddle-node and lower-saddle-node appearing and switching bifurcations are presented. The nonlinear discrete systems with positive and negative mappings will be discussed. As in Luo (2010, 2012), the discrete system with a map with a positive (forward) iteration is called a positive (forward) discrete system, and the discrete system with a map with a negative (backward) iteration is called a negative (backward) discrete system.
1.2.1
Period-1 Appearing Bifurcations
For one of the simplest nonlinear discrete systems, consider a positive (forward) quadratic nonlinear discrete system first.
8
1 Quadratic Nonlinear Discrete Systems
Definition 1.3 Consider a 1-dimensional quadratic nonlinear discrete system as xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ
ð1:19Þ
where three scalar constants AðpÞ 6¼ 0; BðpÞ and CðpÞ are determined by a vector parameter p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:20Þ
(i) If D ¼ B2 4AC\0 for
p 2 X1 Rm ;
ð1:21Þ
then the quadratic discrete system does not have any fixed-points. The discrete flow without fixed-points is called a non-fixed-point discrete flow. (i1) If a0 ðpÞ ¼ AðpÞ [ 0, the non-fixed-point discrete flow is called a positive discrete flow. (i2) If a0 ðpÞ ¼ AðpÞ\0, the non-fixed-point discrete flow is called a negative discrete flow. (ii) If D ¼ B2 4AC [ 0
for
p 2 X2 Rm ;
ð1:22Þ
then the quadratic discrete system has two different simple fixed-points as xk ¼ a1 and xk ¼ a2 ;
ð1:23Þ
and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þ; where a0 ¼ AðpÞ; a1;2
ð1:24Þ
pffiffiffiffi BðpÞ D with a1 \a2 : ¼ 2AðpÞ
ð1:25Þ
p ¼ p0 2 @X12 Rm1 ;
ð1:26Þ
(iii) If D ¼ B2 4AC ¼ 0
for
then the quadratic nonlinear discrete system has a double repeated fixed-point, i.e., xk ¼ a1 and xk ¼ a1 ;
ð1:27Þ
1.2 Forward Quadratic Discrete Systems
9
with the corresponding standard form of xk þ 1 ¼ xk þ a0 ðxk a1 Þ2 ; where a0 ¼ Aðp0 Þ;
and a1 ¼ a2 ¼
ð1:28Þ Bðp0 Þ : 2Aðp0 Þ
ð1:29Þ
Such a discrete flow with the fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is called a monotonic saddle discrete flow of the second order. (iii1) If a0 ðpÞ [ 0, then the fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is a monotonic upper-saddle of the second-order. (iii2) If a0 ðpÞ\0; then the fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is a monotonic lower-saddle of the second-order. (iv) The fixed-point of xk ¼ a1 for two fixed-points vanishing or appearance is called a monotonic saddle-node appearing bifurcation of the second-order at a point p ¼ p0 2 @X12 , and the bifurcation condition is D ¼ B2 4AC ¼ 0:
ð1:30Þ
(iv1) If a0 ðpÞ [ 0, the bifurcation at xk ¼ xk þ 1 ¼ a1 ðpÞ for two fixed-points appearance or vanishing is called a monotonic upper-saddle-node appearing bifurcation of the second-order. (iv2) If a0 ðpÞ\0, the bifurcation at xk ¼ xk þ 1 ¼ a1 ðpÞ for two fixed-points appearance or vanishing is called a monotonic lower-saddle-node appearing bifurcation of the second-order.
Theorem 1.3 (i) Under a condition of D ¼ B2 4AC\0;
ð1:31Þ
a standard form of the quadratic nonlinear discrete system in Eq. (1.19) is xk þ 1 ¼ xk þ a0 ½ðxk
1B 2 1 Þ þ 2 ðDÞ 2A 4A
ð1:32Þ
with a0 ¼ AðpÞ, which has a non-fixed-point flow. (i1) If a0 ðpÞ [ 0, the non-fixed-point discrete flow is called a positive discrete flow. (i2) If a0 ðpÞ [ 0, the non-fixed-point discrete flow is called a negative discrete flow.
10
1 Quadratic Nonlinear Discrete Systems
(ii) Under a condition of D ¼ B2 4AC [ 0;
ð1:33Þ
a standard form of the 1-dimensional discrete system in Eq. (1.19) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þ:
ð1:34Þ
(ii1) For a0 ðpÞ [ 0; the following cases exist. (ii1a) The fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is • monotonically stable (a monotonic sink) if df =dxk jx ¼a1 2 k ð1; 0Þ; • invariantly stable (an invariant sink) if df =dxk jxk ¼a1 ¼ 1; • oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼a1 2 ð2; 1Þ; • flipped if df =dxk jxk ¼a1 ¼ 2 (an oscillatory upper-saddle of the second order for d 2 f =dx2k jxk ¼a2 ¼ a0 [ 0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a1 2 ð1; 2Þ: (ii1b) The fixed-point of xk ¼ a2 ðpÞ is monotonically unstable (a monotonic source) if df =dxk jxk ¼a2 2 ð0; 1Þ: (ii2)
For a0 ðpÞ\0, the following cases exist. (ii2a) The fixed-point of xk ¼ xk þ 1 ¼ a2 ðpÞ is • monotonically stable (a monotonic sink) if df =dxk jx ¼a2 2 k ð1; 0Þ; • invariantly stable (an invariant sink) if df =dxk jx ¼a2 ¼ 1; k • oscillatorilly stable (an oscillatory sink) if df =dxjx ¼a2 2 k ð2; 1Þ; • flipped if df =dxk jxk ¼a2 ¼ 2 (an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼a2 ¼ a0 \0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a2 2 ð1; 2Þ: (ii2b) The fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is monotonically unstable (a monotonic source) if df =dxk jx ¼a1 2 ð0; 1Þ: k
(iii) Under a condition of D ¼ B2 4AC ¼ 0;
ð1:35Þ
a standard form of the 1-dimensional discrete system in Eq. (1.19) is
1.2 Forward Quadratic Discrete Systems
11
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ2 :
ð1:36Þ
(iii1) If a0 ðpÞ [ 0, then the fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is a monotonic upper-saddle of the second-order if d 2 f =dx2k jxk ¼a1 [ 0: The bifurcation at xk ¼ xk þ 1 ¼ a1 ðpÞ for the appearance or vanishing of two simple fixed-points is called a monotonic upper-saddle-node appearing bifurcation of the second-order. (iii2) If a0 ðpÞ\0, then the fixed-point of xk ¼ xk þ 1 ¼ a1 ðpÞ is a monotonic lower-saddle of the second order with d 2 f =dx2k jxk ¼a1 \0: The bifurcation at xk ¼ xk þ 1 ¼ a1 ðpÞ for the appearance or vanishing of two simple fixed-points is called a monotonic lower-saddle-node appearing bifurcation of the second-order. Proof (i) Consider D ¼ B2 4AC\0: (i1) If a0 [ 0, we have xk þ 1 xk ¼ a0 ½ðxk
B 2 1 Þ þ 2 ðDÞ [ 0: 4A 2A
Thus, such a non-fixed-point discrete flow is called a positive discrete flow. (i2) If a0 \0, we have xk þ 1 xk ¼ a0 ½ðxk
B 2 1 Þ þ 2 ðDÞ\0: 2A 4A
Thus, such a non-fixed-point discrete flow is called a negative discrete flow. (ii) Let DxkðiÞ ¼ xk ai ði ¼ 1; 2Þ and xk þ 1ðiÞ ¼ Dxk þ 1ðiÞ . Equation (1.34) becomes Dxk þ 1ðiÞ ¼ ½1 þ a0 ðai aj ÞDxkðiÞ þ a0 Dx2kðiÞ ði; j 2 f1; 2g; j 6¼ iÞ: Because Dxi is arbitrary small, we have Dxk þ 1ðiÞ ¼ ki DxkðiÞ for ki 1 þ df =dxk jxk ¼ai ¼ 1 þ a0 ðai aj Þ: The corresponding solution is
12
1 Quadratic Nonlinear Discrete Systems
DxkðiÞ ¼ ðki Þk Dx0ðiÞ where Dx0ðiÞ ¼ x0ðiÞ ai is an initial condition. (iia) For ki 2 ð0; 1Þ (or df =dxk jxk ¼ai 2 ð1; 0Þ), we have lim ðxkðiÞ ai Þ ¼ lim DxkðiÞ ¼ lim ðki Þk Dx0ðiÞ ¼ 0 ) lim xkðiÞ ¼ ai :
k!1
k!1
k!1
k!1
Consider ki ¼ 1 þ a0 ðai aj Þ 2 ð0; 1Þ ) a0 ðai aj Þ 2 ð1; 0Þ: (iia1) For a0 [ 0, we have ai \aj ) xk ¼ a1 : (iia2) For a0 \0, we have ai [ aj ) xk ¼ a2 : Thus, the fixed-point of xk ¼ ai is monotonically stable. (iib) For ki ¼ 0 (or df =dxk jxk ¼ai ¼ 1), we have ðxkðiÞ ai Þ ¼ DxkðiÞ ¼ ðki Þk Dx0ðiÞ ¼ 0 ) xkðiÞ ¼ ai ði ¼ 1; 2Þ: Consider ki ¼ 1 þ a0 ðai aj Þ ¼ 0 ) a0 ðai aj Þ ¼ 1: (iib1) For a0 [ 0, we have ai \aj ) xk ¼ a1 : (iib2) For a0 \0, we have ai [ aj ) xk ¼ a2 : Thus, the fixed-point of xk ¼ ai is invariantly stable. (iic) For ki 2 ð1; 0Þ (or df =dxk jxk ¼ai 2 ð2; 1Þ), we have
1.2 Forward Quadratic Discrete Systems
13
lim ðxkðiÞ ai Þ ¼ lim DxkðiÞ ¼ lim kki Dx0ðiÞ k!1 k!1 0 k k ¼ lim ðjki jÞ ð1Þ Dx0ðiÞ ¼ k!1 0þ
k!1
for k ¼ 2l 1; for k ¼ 2l:
Thus lim xkðiÞ ¼
k!1
a i aiþ
for k ¼ 2l 1; for k ¼ 2l:
Consider ki ¼ 1 þ a0 ðai aj Þ 2 ð0; 1Þ ) a0 ðai aj Þ 2 ð1; 0Þ: (iic1) For a0 [ 0, we have ai \aj ) xk ¼ a1 : (iic2) For a0 \0, we have ai [ aj ) xk ¼ a2 : Thus, the fixed-point of xk ¼ ai is monotonically stable. (iid) For ki ¼ 1 (or df =dxk jxk ¼ai ¼ 2), we have lim ðxkðiÞ ai Þ ¼ lim DxkðiÞ ¼ lim ð1Þk Dx0ðiÞ ;
k!1
k!1
k!1
so lim xkðiÞ ¼
k!1
ai þ Dx0ðiÞ ai þ Dx0ðiÞ ai þ Dx0ðiÞ
for k ¼ 2l 1; for k ¼ 2l:
Consider ki ¼ 1 þ a0 ðai aj Þ ¼ 1 ) a0 ðai aj Þ ¼ 2: (iid1) For a0 [ 0, we have ai \aj ) xk ¼ a1 : For the fixed-point of xk ¼ a1 , we have
14
1 Quadratic Nonlinear Discrete Systems
Dxk þ 1 ¼ ð1 þ a0 Dxk ÞDxk : Therefore, the fixed-point of xk ¼ a1 is an oscillatory lowersaddle of the second-order. (iid2) For a0 \0, we have ai [ aj ) xk ¼ a2 : For the fixed-point of xk ¼ a2 , we have Dxk þ 1 ¼ ð1 þ a0 Dxk ÞDxk : Thus, the fixed-point of xk ¼ a2 is an oscillatory upper-saddle of the second-order. (iie) For ki \ 1 (or df =dxk jxk ¼ai 2 ð1; 2Þ), we have lim ðxkðiÞ ai Þ ¼ lim DxkðiÞ ¼ lim kki Dx0ðiÞ k!1 k!1 1 for k ¼ 2l 1; k k ¼ lim ðjki jÞ ð1Þ Dx0ðiÞ ¼ k!1 þ 1 for k ¼ 2l:
k!1
Thus lim xkðiÞ ¼
k!1
ai 1 for k ¼ 2l 1; ai þ 1 for k ¼ 2l:
and ki ¼ 1 þ a0 ðai aj Þ\ 1 ) a0 ðai aj Þ\ 2: (iie1) For a0 [ 0, we have ai \aj ) xk ¼ a1 : (iie2) For a0 \0, we have ai [ aj ) xk ¼ a2 : Thus, the fixed-point of xk ¼ ai is oscillatorilly stable. (iif) If ki [ 1 (or df =dxk jxk ¼ai 2 ð0; 1Þ), we have the following cases.
1.2 Forward Quadratic Discrete Systems
15
lim ðxkðiÞ ai Þ ¼ lim DxkðiÞ ¼ lim ðki Þk Dx0ðiÞ ¼ 1 ) lim xkðiÞ ¼ 1
k!1
k!1
k!1
k!1
and ki ¼ 1 þ a0 ðai aj Þ 2 ð1; 1Þ ) a0 ðai aj Þ 2 ð0; 1Þ: (iif1) For a0 [ 0, we have ai [ aj ) xk ¼ a2 : (iif2) For a0 \0, we have ai \aj ) xk ¼ a1 : Thus, the fixed-point of xk ¼ ai is monotonically unstable. (iii) If a1 ðpÞ ¼ a2 ðpÞ, ki ¼ 1 (or df =dxk jxk ¼ai ¼ 0) and we have Dxk þ 1 ¼ Dxk þ a0 Dx2k ¼ ð1 þ a0 Dxk ÞDxk
and Dxk ¼ xk xk :
(iii1) For a0 [ 0, Dxk þ 1 [ Dxk [ 0 if Dxk [ 0 and 0 [ Dxk þ 1 [ Dxk if Dxk \0: So a flow of xk reaches to xk ¼ a1 from the initial point of xk0 \a1 and it goes to the positive infinity from xk0 [ a1 . Such a fixed-point is monotonically unstable of the second order, which is called a monotonic upper-saddle of the second-order. (iii2) Similarly, for a0 \0, 0\Dxk þ 1 \Dxk if Dxk [ 0 and Dxk þ 1 \Dxk \0 if Dxk \0: So a flow of xk reaches to xk ¼ a1 from the initial point of xk0 [ a1 and it goes to the negative infinity from xk0 \a1 . Such a fixed-point is monotonically unstable of the second order, which is called a monotonic lower-saddle of the second-order. The theorem is proved.
■
The stability and bifurcation of fixed-points for the quadratic nonlinear discrete system in Eq. (1.19) are illustrated in Fig. 1.2. The stable and unstable fixed-points varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation point of fixed-points occurs at the double-repeated fixed-points at p0 2 @X12 . In Fig. 1.2i, for a0 [ 0, the fixed-point of xk ¼ a2 for D [ 0 is monotonically unstable, and the fixed-point of xk ¼ a1 in a small neighborhood of D ¼ 0 þ is monotonically stable. The fixed point of xk ¼ a1 can be a monotonic sink, a zero-invariant sink, an oscillatory sink, a flipped invariance and an oscillatory source. The monotonic bifurcation of two simple fixed-points also occurs at D ¼ 0: The discrete flow of xk is a forward upper-branch discrete flow for a0 [ 0, and the fixed-point xk ¼ Bðp0 Þ=2Aðp0 Þ at D ¼ 0 is termed a monotonic upper-saddle of the second-order. Such a bifurcation is termed a monotonic upper-
16
1 Quadratic Nonlinear Discrete Systems xk∗ = a2
Δ0
P-2 mUS
mSI
xk∗ Non-fixed point
|| p ||
oSI iSI
Δ0
Δ=0
xk
(i)
(ii) xk∗ = a2
|| p 0 ||
oLS iSI
oSI
xk∗
a2
xk +1 = xk Δ>0
mSO
xk∗ = a1 Fixed point
Non-fixed point
Δ0
Δ=0
xk +1 − xk
Δ 0
Fig. 1.3 Stability and bifurcation of a repeated fixed-point of the second order in the quadratic forward discrete system. Unstable fixed-points is represented by a dashed curve. The stability switching from the monotonic lower-saddle to monotonic upper-saddle is labelled by a circular symbol. (mLS: monotonic lower-saddle; mUS: monotonic upper-saddle.)
þ ð4AD2 Þ\0: The corresponding phase portrait is presented in Fig. 1.2iv. The period-2 fixed-points based on the quadratic forward discrete map are also presented through red curves, labelled by P-2. To illustrate the stability and bifurcation of fixed-points with singularity in a 1-dimensional, quadratic nonlinear discrete system, the fixed-point of xk þ 1 xk ¼ a0 ðxk a1 Þ2 is presented in Fig. 1.3. The monotonic upper-saddle and lower-saddle fixed-points of xk ¼ a1 with the second-order are unstable, which are depicted by dashed curves. At a0 ¼ 0, the monotonic upper-saddle and lower-saddle fixedpoints will be switched, which is marked by a circular symbol. Consider a symmetric case for the appearing bifurcations in forward quadratic discrete systems. Such a special case can help one further understand the appearing bifurcation and the corresponding stability. Definition 1.4 If BðpÞ ¼ 0 in Eq. (1.19), a 1-dimensional quadratic discrete system is xk þ 1 ¼ xk þ AðpÞx2k þ CðpÞ:
ð1:37Þ
(i) For AðpÞ CðpÞ [ 0, the discrete system does not have any fixed-points. (i1) The non-fixed-point discrete flow of the discrete system is called a positive discrete flow if AðpÞ [ 0: (i2) The non-fixed-point discrete flow of the discrete system is called a negative discrete flow if AðpÞ\0: (ii) For AðpÞ CðpÞ\0, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk þ aÞðxk aÞ with two symmetric fixed-points
ð1:38Þ
18
1 Quadratic Nonlinear Discrete Systems
xk ¼ a and xk ¼ a; sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Cðp0 Þ : with a0 ¼ Aðp0 Þ and a ¼ Aðp0 Þ
ð1:39Þ
(iii) For Cðp0 Þ ¼ 0, the corresponding standard form with D ¼ 0 is xk þ 1 ¼ xk þ a0 x2k
ð1:40Þ
xk ¼ a ¼ 0 and xk ¼ a ¼ þ 0:
ð1:41Þ
with two fixed-points of
Such a fixed-point of xk ¼ 0 is called a monotonic saddle of the secondorder. (iii1) If a0 [ 0, the fixed-point is a monotonic upper-saddle of the secondorder. (iii2) If a0 \0, the fixed-point is a monotonic lower-saddle of the secondorder. (iv) The fixed-point of xk ¼ 0 for two fixed-points appearance or vanishing is called a monotonic saddle-node appearing bifurcation of the second-order at a point p ¼ p0 2 @X12 , and the appearing bifurcation condition is Cðp0 Þ ¼ 0:
ð1:42Þ
AðpÞ CðpÞ [ 0;
ð1:43Þ
Theorem 1.4 (i) Under a condition of
a standard form of the 1-dimensional forward, quadratic discrete system in Eq. (1.37) is C A
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ a0 ðx2k þ Þ:
ð1:44Þ
(i1) For AðpÞ [ 0, the non-fixed-point flow of the discrete system is a positive discrete flow. (i2) For AðpÞ\0, the non-fixed-point flow of the discrete system is a negative discrete flow.
1.2 Forward Quadratic Discrete Systems
19
(ii) Under a condition of AðpÞ CðpÞ\0;
ð1:45Þ
a standard form of the 1-dimensional forward, quadratic nonlinear discrete system in Eq. (1.37) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ a0 ðxk þ aÞðxk aÞ:
ð1:46Þ
(ii1) For a0 ðpÞ [ 0, there are two cases: (ii1a) The fixed-point of xk ¼ a is: • monotonically stable (a monotonic sink) if df =dxk jxk ¼a 2 ð1; 0Þ; • invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; • oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼a 2 ð2; 1Þ; • flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory upper-saddle of the second-order under d 2 f =dx2k jxk ¼a ¼ a0 [ 0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a 2 ð1; 2Þ: (ii1b) The fixed-point of xk ¼ a is monotonically unstable (a monotonic source) if df =dxk jx ¼a [ 0: k (ii2) For a0 ðpÞ\0, there are two cases: (ii2a) The fixed-point of xk ¼ a is monotonically unstable (a monotonic source) if df =dxk jxk ¼a [ 0: (ii2b) The fixed-point of xk ¼ a is: • monotonically stable (a monotonic sink) if df =dxk jxk ¼a 2 ð1; 0Þ; • invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; • oscillatorilly stable (an oscillatory source) if df =dxk jxk ¼a 2 ð2; 1Þ; • flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory lower-saddle of the second-order with d 2 f =dx2k jxk ¼a ¼ a0 \0); • oscillatorilly unstable (an oscillator source) if df =dxk jxk ¼a 2 ð1; 2Þ: (iii) Under a condition of CðpÞ ¼ 0;
ð1:47Þ
20
1 Quadratic Nonlinear Discrete Systems
a standard form of the 1-dimensional discrete system in Eq. (1.37) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 x2k :
ð1:48Þ
(iii1) If a0 ðpÞ [ 0, then the fixed-point of x ¼ 0 is a monotonic upper-saddle of the second-order for d 2 f =dx2 jx ¼0 [ 0: Such a bifurcation for two fixed-points appearance or vanishing is a monotonic upper-saddlenode appearing bifurcation of the second-order. (iii2) If a0 ðpÞ\0, then the fixed-point x ¼ 0 is a monotonic lower-saddle of the second-order for d 2 f =dx2 jx ¼0 \0: Such a bifurcation for two fixed-points appearance or vanishing is a monotonic lower-saddlenode appearing bifurcation of the second-order. Proof The proof is similar to Theorem 1.3. The theorem is proved.
■
The stability and bifurcation of fixed-points for the quadratic nonlinear system in Eq. (1.37) are illustrated in Fig. 1.4 as a special case of the discrete system in Eq. (1.19) with BðpÞ ¼ 0: The stable and unstable fixed-points varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation of fixed-point occurs at the double-repeated fixed-point at the boundary of p0 2 @X12 . In Fig. 1.4i, for D ¼ 4AC [ 0 and a0 ¼ A [ 0, the fixed-point of xk ¼ a [ 0 for C\0 is unstable, and the fixed-point of xk ¼ a\0 for C\0 is from monotonically stable to oscillatorilly unstable. The bifurcation of fixed-point also occurs at C ¼ 0: The discrete flow of xk is a forward upper-branch discrete flow for a0 [ 0, and the fixed-point of xk ¼ 0 at C ¼ 0 is termed an monotonic upper-saddle of the second-order. Such a bifurcation is termed a monotonic uppersaddle-node bifurcation of the second-order. For D ¼ 4AC\0 and a0 ¼ A [ 0, we have C [ 0: Thus, no any fixed-point exists because of xk þ 1 xk ¼ Ax2k þ C [ 0: Such a 1-dimensional discrete system is termed a non-fixed-point discrete system. For a0 ¼ A [ 0 and C [ 0, the discrete flow of xk is always toward the positive direction. In Fig. 1.4(ii), for D ¼ 4AC [ 0 and a0 ¼ A\0, the fixed-point of xk ¼ a for C [ 0 is unstable, and the fixed-point of xk ¼ a for C [ 0 is from monotonically stable to oscillatorilly unstable. The bifurcation of fixed-point also occurs at C ¼ 0: The discrete flow of xk for the bifurcation point is a forward monotonic lower-branch discrete flow for a0 ¼ A\0, and the bifurcation point of the fixed-point at xk ¼ 0 for C ¼ 0 is termed a monotonic lower-saddle of the second-order. Such a bifurcation is termed a monotonic lower-saddle-node bifurcation of the second-order. For D ¼ 4AC\0 and a0 ¼ A\0, we have C\0: For a0 ¼ A\0 and C\0, the discrete flow of xk is always toward the negative direction without any fixed-points because of xk þ 1 xk ¼ Ax2k þ C\0:
1.2 Forward Quadratic Discrete Systems mSO
xk∗ = a
|| p 0 ||
21
B=0
|| p 0 ||
B=0
xk∗ = a oSO
mSI P-2
xk∗
∗ k
x = −a
mLS
oSI oSO Fixed point
C0
mSI
P-2
mSO
xk∗ Non-fixed point
|| p ||
C0
(ii)
Fig. 1.4 Stability and bifurcation of two fixed-points in the quadratic forward discrete system: (i) a monotonic upper-saddle-node bifurcation ða0 [ 0Þ, (ii) a monotonic lower-saddle-node bifurcation ða0 \0Þ. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; iSI: invariant sink.)
1.2.2
Period-1 Switching Bifurcations
Definition 1.5 Consider a 1-dimensional discrete system in Eq. (1.19) as xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ ¼ xk þ a0 ðpÞðxk aðpÞÞðxk bðpÞÞ:
ð1:49Þ
(i) For a\b, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞðxk bÞ
ð1:50Þ
with two fixed-points xk ¼ a1 ¼ a and xk ¼ a2 ¼ b with D ¼ a20 ða bÞ2 [ 0:
ð1:51Þ
(ii) For a [ b, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk bÞðxk aÞ
ð1:52Þ
with two fixed-points of xk ¼ a1 ¼ b and xk ¼ a2 ¼ a with D ¼ a20 ða bÞ2 [ 0:
ð1:53Þ
22
1 Quadratic Nonlinear Discrete Systems
(iii) For a ¼ b, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞ2
ð1:54Þ
with a repeated fixed-point of xk ¼ a: Such a fixed-point is called a monotonic saddle of the second-order. (iii1) If a0 [ 0, the fixed-point is a monotonic upper-saddle of the secondorder. (iii2) If a0 \0, the fixed-point is a monotonic lower-saddle of the second-order. (iv) The fixed-point of xk ¼ a for two fixed-points switching is called a monotonic saddle-node switching bifurcation of fixed-points at a point p ¼ p0 2 @X12 , and the bifurcation condition is D ¼ a20 ða bÞ2 ¼ 0 or a ¼ b:
ð1:55Þ
a\b and D ¼ a20 ða bÞ2 [ 0
ð1:56Þ
Theorem 1.5 (i) Under a condition of
a standard form of the 1-dimensional discrete system in Eq. (1.49) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk aÞðxk bÞ:
ð1:57Þ
(i1) For a0 ðpÞ [ 0, there are two cases: (i1a) The fixed-point of xk ¼ a is: monotonically stable (a monotonic sink) if df =dxk jxk ¼a 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; oscillatorilly stable (an oscillatory source) if df =dxk jxk ¼a 2 ð2; 1Þ; flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory lower-saddle of the second-order with d 2 f =dx2k jxk ¼a ¼ a0 \0); • oscillatorilly unstable (an oscillator source) if df =dxk jxk ¼a 2 ð1; 2Þ:
• • • •
(i1b) The fixed-point of xk ¼ b is monotonically unstable (a monotonic source) if df =dxk jxk ¼b [ 0: (i2) For a0 ðpÞ\0, there are two cases: (i2a) The fixed-point of xk ¼ a is monotonically unstable (a monotonic source) if df =dxk jxk ¼a [ 0.
1.2 Forward Quadratic Discrete Systems
23
(i2b) The fixed-point of xk ¼ b is: • monotonically stable (a monotonic sink) if df =dxk jxk ¼b 2 ð1; 0Þ; • invariantly stable (an invariant sink) if df =dxk jxk ¼b ¼ 1; • oscillatorilly stable (an oscillatory source) if df =dxk jxk ¼b 2 ð2; 1Þ; • flipped if df =dxk jxk ¼b ¼ 2 (an oscillatory lower-saddle of the second-order with d 2 f =dx2k jxk ¼b ¼ a0 \0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼b 2 ð1; 2Þ: (ii) Under a condition of a [ b and D ¼ a20 ða bÞ2 [ 0
ð1:58Þ
a standard form of the 1-dimensional discrete system in Eq. (1.49) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk bÞðxk aÞ:
ð1:59Þ
(ii1) For a0 ðpÞ [ 0, there are two cases: (ii1a) The fixed-point of xk ¼ a is monotonically unstable with df =dxk jxk ¼a [ 0. (ii1b) The fixed-point of xk ¼ b is: monotonically stable (a monotonic sink) if df =dxk jxk ¼b 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼b ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼b 2 ð2; 1Þ; flipped if df =dxk jxk ¼b ¼ 2 (an oscillatory upper-saddle of the second-order with d 2 f =dx2k jxk ¼b ¼ a0 [ 0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼b 2 ð1; 2Þ:
• • • •
(ii2) For a0 ðpÞ\0, there are two cases: (ii2a) The fixed-point of xk ¼ a is: monotonically stable (a monotonic sink) if df =dxk jxk ¼a 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼a 2 ð2; 1Þ; flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory lower-saddle of the second-order with d 2 f =dx2k jxk ¼a ¼ a0 \0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a 2 ð1; 2Þ:
• • • •
(ii2b) The fixed-point of xk ¼ b is monotonically unstable (a monotonic source) if df =dxk jxk ¼b [ 0.
24
1 Quadratic Nonlinear Discrete Systems
(iii) For a ¼ b, the corresponding standard form with D ¼ 0 is xk þ 1 ¼ xk þ f ðx; pÞ ¼ xk þ a0 ðx aÞ2
ð1:60Þ
(iii1) If a0 ðpÞ [ 0, then the fixed-point x ¼ a is a monotonically uppersaddle of the second order with d 2 f =dx2 jx ¼a [ 0. The fixed-point xk ¼ a for two fixed-points switching is a monotonic upper-saddle-node switching bifurcation of the second order. (iii2) If a0 ðpÞ\0, then the fixed-point xk ¼ a is a monotonic lower-saddle of the second-order with d 2 f =dx2 jx ¼a \0. The fixed-point x ¼ a for two fixed-points switching is a monotonic lower-saddle-node switching bifurcation of the second-order. Proof The theorem can be proved as for Theorem 1.3.
■
Definition 1.6 If CðpÞ ¼ 0 in Eq. (1.19), a 1-dimensional quadratic discrete system is xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk :
ð1:61Þ
(i) For AðpÞ BðpÞ\0, the corresponding standard form is xk þ 1 ¼ xk þ a0 xk ðxk aÞ
ð1:62Þ
with two fixed-points of xk ¼ a1 ¼ 0 and xk ¼ a2 ¼ a [ 0 with a0 ¼ AðpÞ and a ¼
BðpÞ : AðpÞ
ð1:63Þ
(ii) For AðpÞ BðpÞ [ 0, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞxk
ð1:64Þ
xk ¼ a1 ¼ a\0 and xk ¼ a2 ¼ 0:
ð1:65Þ
with two fixed-points of
(iii) For BðpÞ ¼ 0, the corresponding standard form is xk þ 1 ¼ xk þ a0 x2k
ð1:66Þ
with a double fixed-point of xk ¼ 0. Such a fixed-point is called a monotonic saddle of the second order. (iii1) If a0 [ 0, the fixed-point is a monotonic upper-saddle of the second order.
1.2 Forward Quadratic Discrete Systems
25
(iii2) If a0 \0, the fixed-point is a monotonic lower-saddle of the second order. (iv) The bifurcation of x ¼ 0 for two fixed-points switching is called a monotonic saddle-node switching bifurcation at a point p ¼ p0 2 @X12 , and the bifurcation condition is Bðp0 Þ ¼ 0:
ð1:67Þ
AðpÞ BðpÞ\0;
ð1:68Þ
Theorem 1.6 (i) Under a condition of
a standard form of the 1-dimensional discrete system in Eq. (1.61) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 xk ðxk aÞ:
ð1:69Þ
(i1) For a0 ðpÞ [ 0 there are two cases: (i1a) The fixed-point of xk ¼ 0 is: monotonically stable (a monotonic sink) if df =dxk jxk ¼0 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼0 ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼0 2 ð2; 1Þ; flipped if df =dxk jxk ¼0 ¼ 2 (an oscillatory upper-saddle of the second-order with d 2 f =dx2k jxk ¼a ¼ a0 [ 0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼0 2 ð1; 2Þ:
• • • •
(i1b) The fixed-point of xk ¼ a is monotonically unstable with df =dxk jxk ¼a [ 0. (i2) For a0 ðpÞ\0, there are two cases: (i2a) The fixed-point of xk ¼ 0 is monotonically unstable with df =dxk jxk ¼0 [ 0. (i2b) The fixed-point of xk ¼ a is: • • • •
monotonically stable (a monotonic sink) if df =dxk jxk ¼a 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼a 2 ð2; 1Þ; flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory lower-saddle of the second kind with d 2 f =dx2k jxk ¼a ¼ a0 \0) • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a 2 ð1; 2Þ:
26
1 Quadratic Nonlinear Discrete Systems
(ii) Under a condition of AðpÞ BðpÞ [ 0;
ð1:70Þ
a standard form of the 1-dimensional quadratic system in Eq. (1.61) is xk þ 1 ¼ xk þ a0 ðxk aÞxk :
ð1:71Þ
(ii1) For a0 ðpÞ [ 0, there are two cases: (ii1a) The fixed-point of xk ¼ 0 is monotonically unstable with df =dxk jxk ¼0 [ 0. (ii1b) The fixed-point of xk ¼ a is: • • • •
monotonically stable (a monotonic sink) if df =dxk j xk ¼a 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼a ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk j xk ¼a 2 ð2; 1Þ; flipped if df =dxk jxk ¼a ¼ 2 (an oscillatory upper-saddle of the second-order with d 2 f =dx2k jxk ¼a ¼ a0 [ 0) • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼a 2 ð1; 2Þ: (ii2) For a0 ðpÞ\0, there are two cases: (ii2a) The fixed-point of xk ¼ 0 is: monotonically stable (a monotonic sink) if df =dxk jxk ¼0 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jxk ¼0 ¼ 1; oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼0 2 ð2; 1Þ; flipped if df =dxk jxk ¼0 ¼ 2 (an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼0 \0); • oscillatorilly unstable (an oscillatory source) if df =dxk jxk ¼0 2 ð1; 2Þ:
• • • •
(ii2b) The fixed-point of xk ¼ a is monotonically unstable if df =dxk jxk ¼a [ 0. (iii) For BðpÞ ¼ 0, the corresponding standard form with D ¼ 0 is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 x2k :
ð1:72Þ
(iii1) If a0 ðpÞ [ 0, then the fixed-point of xk ¼ 0 is a monotonic upper-saddle of the second-order with d 2 f =dx2k jxk ¼0 [ 0. The fixed-point of xk ¼ 0 for two fixed-point switching is a monotonic upper-saddle-node switching bifurcation of the second-order. (iii2) If a0 ðpÞ\0, then the fixed-point of xk ¼ 0 is a monotonic lower-saddle of the second-order with d 2 f =dx2k jxk ¼0 \0. The fixed-point of xk ¼ 0 for two fixed-points switching is a monotonic lower-saddle-node switching bifurcation of the second-order.
1.2 Forward Quadratic Discrete Systems
27
Proof The theorem can be proved as for Theorem 1.3.
■
The stability and bifurcation of two fixed-points for the 1-dimensional forward discrete system in Eq. (1.49) with D ¼ B2 4AC ¼ a20 ða bÞ2 0 are presented in Fig. 1.5. The stable and unstable fixed-points varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation point of fixed-points occurs at the double-repeated fixed-point at the boundary of p0 2 @X12 . With varying parameters, the two fixed-points of xk ¼ a; b equal each other (i.e., xk ¼ a ¼ b). Such a fixed-point is a switching bifurcation point at xk ¼ a ¼ b for D ¼ 0. The fixed-points of xk ¼ a; b with D 0 are presented in Fig. 1.5i and ii for a0 [ 0 and a0 \0, respectively. The quadratic discrete system in Eq. (1.61) is as a special case of the discrete system in Eq. (1.19) with CðpÞ ¼ 0. Thus D ¼ B2 4AC ¼ B2 0. The fixed-points exist in the entire domain. In Fig. 1.4iii, for a0 [ 0 and B\0, the fixed-point of xk ¼ 0 is unstable, and the fixed-point of xk ¼ a is from monotonically stable to oscillatorilly unstable. However, for a0 [ 0 and B [ 0, the fixed-point of xk ¼ a is stable, and the fixed-point of xk ¼ 0 is from monotonically stable to oscillatorilly unstable. The
Δ = a02 (a − b) 2
mUS
mSO
∗ k
x =b P-2
xk∗
|| p 0 ||
oSI
mSO
mSI
mSI
oSI
oSI
Δ=0
oSO
mSO
Δ>0 || p ||
a0 B>0
xk∗ = a
mUS
mSO
xk∗ = b oSO P-2
xk∗ = a
Δ>0 a>b
(ii)
|| p 0 ||
xk∗ = 0
oSI
mSO
xk∗
(i) C =0
mSI mLS
Δ>0 a>b
a=b
mSI
P-2
P-2
Δ>0 a0 B0 B>0
Δ=0 B=0
oSO
Δ>0 B0
Δ=0
Δ 0
Fig. 1.7 Stability and bifurcation of a double fixed-point of the second order in the quadratic backward discrete system. Unstable fixed-points is represented by a dashed curve. The stability switching from the lower-saddle to upper-saddle is labelled by a circular symbol. (mUS: monotonic upper-saddle; mLS: monotonic lower-saddle.)
xk is always toward the positive direction due to xk þ 1 xk ¼ a0 ½ðxk þ 1 þ 2AB Þ2 þ ð4AD2 Þ [ 0: The corresponding phase portrait is presented in Fig. 1.6iv. To illustrate the stability and bifurcation of fixed-points with singularity in a 1-dimensional, backward system, the fixed-point of xk þ 1 xk ¼ a0 ðxk þ 1 a1 Þ2 is presented in Fig. 1.7. The fixed-point of xk þ 1 ¼ a1 for a0 \0 and a0 [ 0 is the monotonic upper-saddle and lower-saddle of the second-order, respectively. The monotonic upper-saddle and lower-saddle fixed-points of xk þ 1 ¼ a1 with the second-order are unstable, which are depicted by dashed curves. At a0 ¼ 0, the monotonic upper-saddle and lower-saddle fixed-points will be switched, which is marked by a circular symbol.
1.3.2
Backward Period-1 Switching Bifurcations
Definition 1.8 Consider a 1-dimensional, backward discrete system in Eq. (1.73) as xk ¼ xk þ 1 þ AðpÞx2k þ 1 þ BðpÞxk þ 1 þ CðpÞ ¼ xk þ 1 þ a0 ðpÞðxk þ 1 aðpÞÞðxk þ 1 bðpÞÞ:
ð1:91Þ
(i) For a\b, the corresponding standard form is xk ¼ xk þ 1 þ a0 ðxk þ 1 aÞðxk þ 1 bÞ with two fixed-points
ð1:92Þ
40
1 Quadratic Nonlinear Discrete Systems
xk ¼ xk þ 1 ¼ a1 ¼ a and xk ¼ xk þ 1 ¼ a2 ¼ b with D ¼ a20 ða bÞ2 [ 0:
ð1:93Þ
(ii) For a [ b, the corresponding standard form is xk ¼ xk þ 1 þ a0 ðxk þ 1 bÞðxk þ 1 aÞ
ð1:94Þ
with two fixed-points of xk ¼ xk þ 1 ¼ a1 ¼ b and xk ¼ xk þ 1 ¼ a2 ¼ a with D ¼ a20 ða bÞ2 [ 0:
ð1:95Þ
(iii) For a ¼ b, the corresponding standard form is xk ¼ xk þ 1 þ a0 ðxk þ 1 aÞ2
ð1:96Þ
with a repeated fixed-point of xk ¼ xk þ 1 ¼ a. Such a fixed-point is called a monotonic saddle of the second order. (iii1) If a0 [ 0, the fixed-point is a monotonic lower-saddle of the second order. (iii2) If a0 \0, the fixed-point is a monotonic upper-saddle of the second order. (iv) The fixed-point of xk ¼ xk þ 1 ¼ a for two fixed-points switching is called a saddle-node switching bifurcation point of fixed-point at a point p ¼ p0 2 @X12 , and the bifurcation condition is D ¼ a20 ða bÞ2 ¼ 0 or a ¼ b:
ð1:97Þ
a\b and D ¼ a20 ða bÞ2 [ 0
ð1:98Þ
Theorem 1.8 (i) Under a condition of
a standard form of the 1-dimensional, backward discrete system in Eq. (1.91) is xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ a0 ðxk þ 1 aÞðxk þ 1 bÞ:
ð1:99Þ
1.3 Backward Quadratic Discrete Systems
41
(i1) For a0 ðpÞ [ 0, there are two cases: (i1a) The fixed-point of xk ¼ xk þ 1 ¼ a is: • monotonically unstable (a monotonic source) if df =dxk þ 1 jxk þ 1 ¼a 2 ð1; 0Þ; • infinitely unstable if df =dxk þ 1 jxk þ 1 ¼a ¼ 1, which is – monotonically unstable with a positive infinity eigenvalue with df =dxk þ 1 jxk þ 1 ¼a ¼ 1 þ ; – oscillatorilly unstable with a negative infinity eigenvalue with df =dxk þ 1 jxk þ 1 ¼a ¼ 1 ; • oscillatorilly unstable (an oscillatory source) if df =dxk þ 1 jxk þ 1 ¼a 2 ð2; 1Þ; • flipped if df =dxk þ 1 jxk þ 1 ¼a ¼ 2 with an oscillatory lower-saddle of the second-order for d 2 f =dx2k þ 1 jxk þ 1 ¼a ¼ a0 [ 0; • oscillatorilly stable (an oscillatory sink) if df =dxk þ 1 jxk þ 1 ¼a 2 ð1; 2Þ: (i1b) The fixed-point of xk ¼ xk þ 1 ¼ b is monotonically stable (a monotonic sink) if df =dxk þ 1 jxk þ 1 ¼b 2 ð0; 1Þ. (i2) For a0 ðpÞ\0, there are two cases: (i2a) The fixed-point of xk ¼ xk þ 1 ¼ a is monotonically stable (a monotonic sink) if df =dxk þ 1 jxk þ 1 ¼a 2 ð0; 1Þ. (i2b) The fixed-point of xk ¼ xk þ 1 ¼ b is: • monotonically unstable (a monotonic source) if df =dxk þ 1 jxk þ 1 ¼b 2 ð1; 0Þ; • infinitely unstable if df =dxk þ 1 jxk þ 1 ¼b ¼ 1; which is – monotonically unstable with a positive infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼b ¼ 1 þ ; – oscillatorilly unstable with a negative infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼b ¼ 1 ; • oscillatorilly unstable (an oscillatory source) if df =dxk þ 1 jxk þ 1 ¼b 2 ð2; 1Þ; • flipped if df =dxk þ 1 jxk þ 1 ¼b ¼ 2 with an oscillatory upper-saddle of the second-order with d 2 f =dx2k þ 1 j xk þ 1 ¼b ¼ a0 \0; • oscillatorilly stable (an oscillatory sink) if df =dxk þ 1 jxk þ 1 ¼b 2 ð1; 2Þ:
42
1 Quadratic Nonlinear Discrete Systems
(ii) Under a condition of a [ b and D ¼ a20 ða bÞ2 [ 0
ð1:100Þ
a standard form of the 1-dimensional, backward discrete system in Eq. (1.91) is xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ a0 ðxk þ 1 bÞðxk þ 1 aÞ
ð1:101Þ
(ii1) For a0 ðpÞ [ 0, there are two cases: (ii1a) The fixed-point of xk ¼ xk þ 1 ¼ a is monotonically stable (a monotonic sink) if df =dxk þ 1 jxk þ 1 ¼a [ 0. (ii1b) The fixed-point of xk ¼ xk þ 1 ¼ b is: • monotonically unstable (a monotonic source) if df =dxk þ 1 jxk þ 1 ¼b 2 ð1; 0Þ; • infinitely unstable if df =dxk þ 1 jxk þ 1 ¼b ¼ 1; which is: – monotonically unstable with a positive infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼b ¼ 1 þ ; – oscillatorilly unstable with a positive infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼b ¼ 1 ; • oscillatorilly unstable (an oscillatory source) if df =dxk þ 1 jxk þ 1 ¼b 2 ð2; 1Þ; • flipped if df =dxk þ 1 jxk þ 1 ¼b ¼ 2 with an oscillatory lowersaddle of the second-order with d 2 f =dx2k þ 1 jxk þ 1 ¼b ¼ a0 [ 0; • oscillatorilly stable (an oscillatory sink) if df =dxk þ 1 jxk þ 1 ¼b 2 ð1; 2Þ: (ii2) For a0 ðpÞ\0, there are two cases: (ii2a) The fixed-point of xk ¼ xk þ 1 ¼ a is: • monotonically unstable (a monotonic source) if df =dxk þ 1 jxk þ 1‘ ¼a 2 ð1; 0Þ; • infinitely unstable if df =dxk þ 1 jxk þ 1 ¼a ¼ 1; – monotonically unstable with a positive infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼a ¼ 1 þ ; – oscillatorilly unstable with a negative infinity eigenvalue if df =dxk þ 1 jxk þ 1 ¼a ¼ 1 ;
1.3 Backward Quadratic Discrete Systems
43
• oscillatorilly stable (an oscillatory sink) if df =dxk þ 1 jxk þ 1 ¼a 2 ð2; 1Þ; • flipped if df =dxk þ 1 jxk þ 1 ¼a ¼ 2 with an oscillatory uppersaddle of the second-order for d 2 f =dx2k þ 1 j xk þ 1 ¼b ¼ a0 \0; • oscillatorilly stable with df =dxk þ 1 jxk þ 1 ¼a 2 ð1; 2Þ: (ii2b) The fixed-point of xk ¼ xk þ 1 ¼ b is monotonically stable (a monotonic sink) if df =dxk þ 1 jxk þ 1 ¼b [ 0. (iii) For a ¼ b; the corresponding standard form with D ¼ 0 is xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ a0 ðxk þ 1 aÞ2 :
ð1:102Þ
(iii1) If a0 ðpÞ [ 0, then the fixed-point of xk ¼ xk þ 1 ¼ a is an monotonic lower-saddle of the second-order with d 2 f =dx2k þ 1 jxk þ 1 ¼a [ 0. The fixed-point of xk ¼ xk þ 1 ¼ a for the switching of two fixed-points is a monotonic lower-saddle-node switching bifurcation of the second-order. (iii2) If a0 ðpÞ\0, then the fixed-point of xk ¼ xk þ 1 ¼ a is a monotonic uppersaddle of the second order with d 2 f =dx2k þ 1 jxk þ 1 ¼a \0. The fixed-point of xk ¼ a for the switching of two fixed-points is a monotonic upper-saddle-node switching bifurcation of the second-order. Proof The theorem can be proved as for Theorem 1.7.
■
The stability and bifurcation of two fixed-points for the 1-dimensional backward discrete system in Eq. (1.91) with D ¼ B2 4AC ¼ a20 ða bÞ2 0 are presented in Fig. 1.8. The stable and unstable fixed-points varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation point of fixed-points occurs at the repeated fixed-point at the boundary of p0 2 @X12 . With Δ = a02 (a − b) 2 mSI
∗ k
x =b P-2
xk∗
|| p 0 ||
oSO
xk∗ = a
mSO
mSO
oSO oSI
oSO
oSI
a0 || p ||
a0 a>b
mSO
P-2
P-2
Δ=0
|| p 0 ||
Δ = a02 (a − b) 2
mLS
Δ>0 || p ||
mSI
Δ=0 a=b
Δ>0 a>b
(ii)
Fig. 1.8 Stability and bifurcation of two fixed-points in the quadratic backward discrete system: (i) a monotonic lower-saddle-node switching bifurcation ða0 [ 0Þ, (ii) a monotonic upper-saddle-node switching bifurcation ða0 \0Þ. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; iSI: invariant sink.)
44
1 Quadratic Nonlinear Discrete Systems
varying parameters, the two fixed-points of xk þ 1 ¼ a; b equal each other (i.e., xk ¼ a ¼ b). Such a fixed-point is a bifurcation point at xk þ 1 ¼ a ¼ b for D ¼ 0. The fixed-points of xk ¼ a; b with D 0 are presented in Fig. 1.8i and ii for a0 [ 0 and a0 \0, respectively. In Fig. 1.8i the switching bifurcation is a monotonic lower-saddle bifurcation. In Fig. 1.8ii the switching bifurcation is a monotonic upper-saddle bifurcation. The stable fixed-point is a monotonic sink, but the unstable fixed point is from a monotonic source, monotonic source with a positive infinity eigenvalue to oscillatory source with a negative infinity eigenvalue, flipped invariance with the oscillatory lower- or upper-saddle to the oscillatory sink. The period-2 fixed-point are unstable, which are generated through the oscillatory lower- or upper-saddle bifurcations.
1.4
Forward Bifurcation Trees
In this section, the analytical bifurcation scenario will be discussed. The period-doubling bifurcation scenario will be discussed first through nonlinear renormalization techniques, and the bifurcation scenario based on the saddle-node bifurcation will be discussed, which is independent of period-1 fixed-points.
1.4.1
Period-2 Appearing Bifurcations
After the period-doubling bifurcation of a period-1 fixed-point, the period-doubled fixed-points can be obtained. Consider the period-doubling solutions for a forward discrete quadratic nonlinear system. Theorem 1.9 Consider a 1-dimensional quadratic nonlinear discrete system xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ
ð1:103Þ
where three scalar constants AðpÞ 6¼ 0, BðpÞ and CðpÞ are determined by a vector parameter p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:104Þ
D ¼ B2 4AC [ 0;
ð1:105Þ
Under a condition of
there is a standard form of the 1-dimensional discrete system in Eq. (1.103) as
1.4 Forward Bifurcation Trees
45
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þ:
ð1:106Þ
where a0 ¼ AðpÞ; a1;2 ¼
pffiffiffiffi BðpÞ D with a1 \a2 ; 2AðpÞ
ð1:107Þ
If the fixed-point of xk ¼ xk þ 1 ¼ ai ðpÞ with df =dxk jxk ¼ai ¼ 2 is period-doubled, there is a form for period-2 fixed-points as xk þ 2 ¼ xk þ a0 ðxk a1 Þðxk a2 ÞðA1 x2k þ B1 xk þ C1 Þ
ð1:108Þ
A1 ¼ a20 ; B1 ¼ a0 ½2 a0 ða2 þ a1 Þ; C1 ¼ 2 a0 ða2 þ a1 Þ þ a20 a1 a2 :
ð1:109Þ
where
(i) For a0 ðpÞ [ 0, there are two cases: (i1) Under D1 ¼ B21 4A1 C1 [ 0;
ð1:110Þ
there is a standard form as xk þ 2 ¼ xk þ a30 ðxk a1 Þðxk a2 Þðxk b1 Þðxk b2 Þ 1
ð2Þ
¼ xk þ a30 *22 i¼1 ðxk ai Þ
ð1:111Þ
where ð2Þ
fai ; i ¼ 1; 2; . . .; 4g ¼ sort fa1 ; a2 ; b1 ; b2 g; 1 1 pffiffiffiffiffiffi b1;2 ¼ 2 B1 2 D1 2a0 2a0 1 1 pffiffiffiffiffiffi ¼ ½2 a0 ða1 þ a2 Þ 2 D1 ; 2a0 2a0
ð1:112Þ
D1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ: (i2) Under an oscillatory upper-saddle-node bifurcation of dxk þ 1 jx ¼a ¼ 1 þ a0 ða1 a2 Þ ¼ 1 dxk k 1 ) 2 þ a0 ða1 a2 Þ ¼ 0; d xk þ 1 jxk ¼a1 ¼ a0 [ 0; dx2k 2
ð1:113Þ
46
1 Quadratic Nonlinear Discrete Systems
the second quadratics of the period-2 fixed points has D1 ¼ B21 4A1 C1 b1;2
¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ ¼ 0; 1 ¼ ½2 a0 ða1 þ a2 Þ 2a0 1 ¼ ½2 þ a0 ða1 a2 Þ þ a1 ¼ a1 2a0
ð1:114Þ
and the corresponding standard form becomes xk þ 2 ¼ xk þ a30 ðxk a1 Þ3 ðxk a2 Þ:
ð1:115Þ
(ii) For a0 ðpÞ\0, there are two cases: (ii1) Under a condition of D1 ¼ B21 4A1 C1 [ 0;
ð1:116Þ
there is a standard form as xk þ 2 ¼ xk þ a30 ðxk a1 Þðxk a2 Þðxk b1 Þðxk b2 Þ 2
ð2Þ
¼ xk þ a30 *2i¼1 ðxk ai Þ
ð1:117Þ
where ð2Þ
fai ; i ¼ 1; 2; . . .; 4g ¼ sort fa1 ; a2 ; b1 ; b2 g; 1 1 pffiffiffiffiffiffi b1;2 ¼ 2 B1 2 D1 2a0 2a0 1 1 pffiffiffiffiffiffi ¼ ½2 a0 ða2 þ a1 Þ 2 D1 ; 2a0 2a0
ð1:118Þ
D1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ: (ii2) Under an oscillatory lower-saddle-node bifurcation of dxk þ 1 jx ¼a ¼ 1 þ a0 ða2 a1 Þ ¼ 1 dxk k 2 ) 2 þ a0 ða2 a1 Þ ¼ 0; d 2 xk þ 1 jxk ¼a1 ¼ a0 \0; dx2k
ð1:119Þ
1.4 Forward Bifurcation Trees
47
the second quadratics of the period-2 fixed-points has D1 ¼ B21 4A1 C1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ ¼ 0; 1 b1;2 ¼ ½2 a0 ða1 þ a2 Þ 2a0 1 ¼ ½2 þ a0 ða2 a1 Þ þ a2 ¼ a2 2a0
ð1:120Þ
and the corresponding standard form becomes xk þ 2 ¼ xk þ a30 ðxk a1 Þðxk a2 Þ3 :
ð1:121Þ
Proof The proof is straightforward through the simple algebraic manipulation. Consider Ax2k þ Bxk þ C ¼ 0: D ¼ B2 4AC 0; we have a0 ¼ AðpÞ; a1;2
pffiffiffiffi BðpÞ D with a1 \a2 : ¼ 2AðpÞ
Thus, we have Ax2k þ Bxk þ C ¼ ðxk a1 Þðxk a2 Þ: Therefore, xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þ: For xk þ 1 ¼ xk ¼ ai (i 2 f1; 2g, if dxk þ 1 d 2 xk þ 1 jx ¼ai ¼ 1 þ a0 ðai aj Þ ¼ 1; j ¼ a0 6¼ 0; dxk k dx2k xk ¼ai then period-2 fixed-points exists for the quadratic discrete system. Thus, consider the corresponding second iteration gives ð1Þ
xk þ 2 ¼ xk þ 1 þ a0 *2i1 ¼1 ðxk þ 1 ai Þ: The period-2 discrete system of the quadratic discrete system is
48
1 Quadratic Nonlinear Discrete Systems ð1Þ
xk þ 2 ¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i3 ¼1;i2 6¼i2 ðxk 2
2
ð1Þ
ai2 Þg
ð1Þ
¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þ½A1 x2k þ B1 xk þ C1 Þ where A1 ¼ a20 ; B1 ¼ a0 ½2 a0 ða2 þ a1 Þ; C1 ¼ 2 a0 ða2 þ a1 Þ þ a20 a1 a2 : If A1 x2k þ B1 xk þ C1 ¼ 0; we have D1 ¼ B21 4A1 C1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ 0; 1 1 pffiffiffiffiffiffi b1;2 ¼ ½2 a0 ða1 þ a2 Þ 2 D1 : 2a0 2a0 Thus A1 x2k þ B1 xk þ C1 ¼ a20 *2j2 ¼1 ðxk bj2 Þ; and xk þ 2 ¼ xk þ a30 ðxk a1 Þðxk a2 Þðxk b1 Þðxk b2 Þ 2
ð2Þ
¼ xk þ a30 *2i¼1 ðxk ai Þ where ð2Þ
fai ; i ¼ 1; 2; . . .; 4g ¼ sortfa1 ; a2 ; b1 ; b2 g: For the period-1 discrete systems, xk þ 1 ¼ xk þ a0 *2i¼1 ðxk ai Þ: (I) For a0 [ 0, the fixed-point of xk ¼ a2 is monotonically unstable due to dxk þ 1 jx ¼a ¼ 1 þ a0 ða2 a1 Þ 2 ð1; 1Þ; dxk k 2 and the fixed-point of xk ¼ a1 is from monotonically stable to oscillatorilly unstable due to dxk þ 1 jx ¼a ¼ 1 þ a0 ða1 a2 Þ 2 ð1; 1Þ: dxk k 1
1.4 Forward Bifurcation Trees
49
Under dxk þ 1 jx ¼a ¼ 1 þ a0 ða1 a2 Þ ¼ 1 dxk k 1 ) 2 þ a0 ða1 a2 Þ ¼ 0 or a0 ða1 a2 Þ ¼ 2; d 2 xk þ 1 jxk ¼a1 ¼ a0 [ 0; dx2k there is a flipped discrete system of the oscillatory upper-saddle of the second order. Thus, for the period-2 discrete system, D1 ¼ B21 4A1 C1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ ¼ 0; 1 1 b1;2 ¼ ½2 a0 ða1 þ a2 Þ ¼ ½2 þ a0 ða1 a2 Þ þ a1 ¼ a1 2a0 2a0 and the corresponding standard form of the period-2 discrete system becomes xk þ 2 ¼ xk þ a30 ðxk a1 Þ3 ðxk a2 Þ with dxk þ 2 jx ¼a ¼ 1 þ 3a30 ðxk a1 Þ2 ðxk a2 Þ þ a30 ðxk a1 Þ3 jxk ¼a1 ¼ 1; dxk k 1 d 2 xk þ 2 jxk ¼a1 ¼ 6a30 ðxk a1 Þðxk a2 Þ þ 6a30 ðxk a1 Þ2 jxk ¼a1 ¼ 0; dx2k d 3 xk þ 2 jxk ¼a1 ¼ 6a30 ðxk a2 Þ þ 18a30 ðxk a1 Þjxk ¼a1 ¼ 6a30 ða1 a2 Þ\0: dx3k Therefore, xk ¼ a1 for the period-2 discrete system is a monotonic sink of the third-order. (II) Similarly, for a0 ðpÞ\0, the fixed-point of xk ¼ a1 is monotonically unstable due to dxk þ 1 jx ¼a ¼ 1 þ a0 ða1 a2 Þ 2 ð1; 1Þ; dxk k 1 and the fixed-point of xk ¼ a2 is for monotonically stable to oscillatorilly unstable due to
50
1 Quadratic Nonlinear Discrete Systems
dxk þ 1 jx ¼a ¼ 1 þ a0 ða2 a1 Þ 2 ð1; 1Þ: dxk k 2 Under dxk þ 1 jx ¼a ¼ 1 þ a0 ða2 a1 Þ ¼ 1 dxk k 2 ) 2 þ a0 ða2 a1 Þ ¼ 0 or a0 ða2 a1 Þ ¼ 2; d 2 xk þ 1 jxk ¼a2 ¼ a0 \0; dx2k there is a flipped discrete system of the oscillatory lower-saddle of the second order. Thus, for the period-2 discrete system, D1 ¼ B21 4A1 C1 ¼ a20 ½2 þ a0 ða1 a2 Þ½2 þ a0 ða2 a1 Þ ¼ 0; 1 1 b1;2 ¼ ½2 a0 ða1 þ a2 Þ ¼ ½2 þ a0 ða2 a1 Þ þ a2 ¼ a2 2a0 2a0 and the corresponding standard form of the period-2 discrete system becomes xk þ 2 ¼ xk þ a30 ðxk a1 Þðxk a2 Þ3 with dxk þ 2 jx ¼a ¼ 1 þ 3a30 ðxk a1 Þðxk a2 Þ2 þ a30 ðxk a2 Þ3 jxk ¼a2 ¼ 1; dxk k 2 d 2 xk þ 2 jxk ¼a2 ¼ 6a30 ðxk a1 Þðxk a2 Þ þ 6a30 ðxk a2 Þ2 jxk ¼a2 ¼ 0; dx2k d 3 xk þ 2 jxk ¼a2 ¼ 6a30 ðxk a1 Þ þ 18a30 ðxk a2 Þjxk ¼a2 ¼ 6a30 ða2 a1 Þ\0: dx3k Thus, xk ¼ a2 for the period-2 discrete system is a monotonic sink of the third-order. ■
This theorem is proved. Based on the standardization, the above theorem can be stated as follows.
Theorem 1.10 Consider a 1-dimensional quadratic nonlinear discrete system as xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ
ð1:122Þ
where three scalar constants AðpÞ 6¼ 0, BðpÞ and CðpÞ are determined by a vector parameter
1.4 Forward Bifurcation Trees
51
p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:123Þ
D ¼ B2 4AC [ 0;
ð1:124Þ
Under a condition of
there is a standard form as ð1Þ
ð1Þ
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðx2k þ B1 xk þ C1 Þ ¼ xk þ a0 ðxk a1 Þðxk a2 Þ ¼
xk þ a0 *2i¼1 ðxk
ð1:125Þ
ð1Þ ai Þ
where B ð1Þ C ð1Þ a0 ¼ AðpÞ; B1 ¼ ; C1 ¼ ; A A 1 ð1Þ pffiffiffiffiffiffiffiffi 1 ð1Þ pffiffiffiffiffiffiffiffi ð1Þ ð1Þ ð1Þ b1 ¼ ðB1 þ D Þ; b2 ¼ ðB1 Dð1Þ Þ; 2 2 ð1Þ 2 ð1Þ ð1Þ D ¼ ðB1 Þ 4C1 0; ð1Þ
ð1Þ
ð1Þ
ð1:126Þ
ð1Þ
02i¼1 fai g ¼ sortf02i¼1 fbi gg; ai ai þ 1 for i ¼ 1; 2: (i) Consider a forward period-2 discrete system of Eq. (1.122) as ð1Þ
xk þ 2 ¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk 2
ð1Þ
2
ð2Þ
ð1Þ
ai2 Þg
ð2Þ
¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þ½a20 ðx2k þ B1 xk þ C1 Þ ð1Þ
ð2Þ
2 ¼ xk þ ½a0 *2j1 ¼1 ðxk ai1 Þ½a20 *j22 ¼1 ðxk bj2 Þ 2
ð2Þ
¼ xk þ a10 þ 2 *4i¼1 ðxk ai Þ ð1:127Þ where 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ b1;2 ¼ ðB1 þ Dð2Þ Þ; b2 ¼ ðB1 Dð2Þ Þ; 2 2 ð2Þ 2 ð2Þ ð2Þ D ¼ ðB1 Þ 4C1 0; with fixed-points
ð1:128Þ
52
1 Quadratic Nonlinear Discrete Systems ð2Þ
xk þ 2 ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 4Þ ð2Þ
ð1Þ
ð2Þ
04i¼1 fai g ¼ sortf02j1 ¼1 faj1 g; 02j2 ¼1 fbj2 gg ð2Þ
ð1:129Þ
ð2Þ
with ai \ai þ 1 : ð1Þ
(ii) For a fixed-point of xk þ 1 ¼ xk ¼ ai1 ði1 2 f1; 2gÞ, if dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1
ð1:130Þ
with • an oscillatory upper-saddle-node bifurcation ðd 2 xk þ 1 =dx2k jxk ¼a1 ¼ a0 [ 0Þ, • an oscillatory lower-saddle-node bifurcation ðd 2 xk þ 1 =dx2k jxk ¼a1 ¼ a0 \0Þ, then the following relations satisfy ð1Þ
1 ð2Þ 2
ð2Þ
ð2Þ
ð2Þ
ai1 ¼ Bi1 ; Di1 ¼ ðB1 Þ2 4C1 ¼ 0;
ð1:131Þ
and there is a period-2 discrete system of the quadratic discrete system in Eq. (1.122) as ð1Þ
ð2Þ
xk þ 2 ¼ xk þ a30 ðxk ai1 Þ3 ðxk ai2 Þ
ð1:132Þ
For i1 ; i2 2 f1; 2g; i1 6¼ i2 with dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i1 dx2k xk ¼ai1 d 3 xk þ 2 ð1Þ ð2Þ j ð1Þ ¼ 6a30 ðai1 ai2 Þ ¼ 12a20 \0: dx3k xk ¼ai1
ð1:133Þ
ð1Þ
Thus, xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-order, and the corresponding bifurcations is a monotonic sink bifurcation for the period-2 discrete system. (ii1) The period-2 fixed-points are trivial and unstable if ð1Þ
xk þ 2 ¼ xk ¼ ai1 for i1 ¼ 1; 2:
ð1:134Þ
(ii2) The period-2 fixed-points are non-trivial and stable if ð2Þ
xk þ 2 ¼ xk ¼ bi1 for i1 ¼ 1; 2: Proof See the proof of theorem 1.9. This theorem is proved.
ð1:135Þ ■
1.4 Forward Bifurcation Trees
1.4.2
53
Period-Doubling Renormalization
The generalized cases of period-doublization of quadratic discrete systems are presented through the following theorem. The analytical period-doubling trees can be developed for quadratic discrete systems. Theorem 1.11 Consider a 1-dimensional quadratic nonlinear discrete system xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ
ð1:136Þ
ð1Þ
¼ xk þ a0 *2i¼1 ðxk ai Þ:
(i) After l-times period-doubling bifurcations, a period-2l ðl ¼ 1; 2; . . .Þ discrete system for the quadratic discrete system in Eq. (1.136) is given through the nonlinear renormalization as ð2l1 Þ
22
xk þ 2l ¼ xk þ ½a0 f1 þ
2l1
ð2
2
l1
2l1
Þ
Þ
ð2l1 Þ
¼ xk þ ½a0
Þ
*j1 ¼1
22
l1
l1
ð2l Þ
Þ
22
l
l1
Þ
22
l1 1
l
*i¼1 ðxk
ð2l1 Þ
ai 2
Þg
Þ ð2l Þ
ð2l Þ
ðx2k þ Bj2 xk þ Cj2 Þ
ð2l1 Þ
l
*i¼1 ðxk
2
ai1
22 1 22 l1
*i2 ¼1;i2 6¼i1 ðxk
2l1 1
*i2 ¼1
ð2l1 Þ 1 þ 22
¼ xk þ ða0
2
*i1 ¼1; ðxk
ð2l1 Þ 22
½ða0
2
2l 1
Þ
Þ
2l1
ai 1
2
2l1
l1
ð2
*i1 ¼1 ðxk
ð2l1 Þ 2
½ða0
¼ xk þ a0
ð2l1 Þ
ai 1
*i1 ¼1 ½1 þ a0
ð2
¼ xk þ ½a0
l1
*i1 ¼1 ðxk
Þ ð2l Þ
ð1:137Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ ð2l Þ
ai Þ
ð2l Þ
ai Þ
with l dxk þ 2l ð2l Þ X22l ð2l Þ 22 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l d 2 xk þ 2 l ð2l Þ X22l X22l ð2l Þ 22 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk ð1:138Þ .. . l d r xk þ 2l X22l ð2l Þ X22l ð2l Þ 22 ¼ a0 i1 ¼1 . . . ir ¼1;ir 6¼i1 ;i2 ;...;ir1 *ir þ 1 ¼1;i3 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk l
for r 22 ; where
54
1 Quadratic Nonlinear Discrete Systems ð2l Þ
ð2Þ
ð2l1 Þ 1 þ 22
a0 ¼ ða0 Þ1 þ 2 ; a0 2l
¼ ða0 2l1
l
ð2 Þ
Þ
l1
; l ¼ 1; 2; 3; . . .;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
ð2l Þ
2
ai þ 1 ; 02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg; ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
2
ð2l Þ Di
¼
l1 Iqð21 Þ
2
ð2l Þ ðBi Þ2
ð2l Þ 4Ci
0 for i 2
l1 0Nq11¼1 Iqð21 Þ
00Nq ¼1 Iqð2 2 2
l1
2
Þ
;
¼ flðq1 1Þ2l1 þ 1 ; lðq1 1Þ2l1 þ 2 ; . . .; lq1 2l1 g f1; 2; . . .; M1 g0f∅g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 2l1 ;
ð1:139Þ
l
Iqð22 Þ ¼ flðq2 1Þ2l þ 1 ; lðq2 1Þ2l þ 2 ; . . .; lq2 2l g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ 22 1 22 1 ; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l; lN2 2l ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g with fixed-points ð2l Þ
l
xk þ 2l ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 22 Þ 2l
2l1
ð2l Þ
ð2l1 Þ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 l
ð2 Þ
ð2l Þ
ð2l Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð1:140Þ
l
ð2 Þ
with ai \ai þ 1 : ð2l1 Þ
(ii) For a fixed-point of xk þ 2l1 ¼ xk ¼ ai1
ð2l1 Þ
ði1 2 Iq
f1; 2; . . .; 2ð2
l1
Þ
gÞ, if
dxk þ 2l1 ð2l1 Þ 22l1 ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 1 þ a0 Pi2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; x ¼a dxk i1 k d 2 xk þ 2l1 j ð2l1 Þ [ 0 for the second order oscillatory upper saddle; xk ¼ai dx2k 1 d 2 xk þ 2l1 j ð2l1 Þ \0 for the second order oscillatory lower saddle; xk ¼ai dx2k 1 ð1:141Þ then there is a period-2l fixed-point discrete system
1.4 Forward Bifurcation Trees ð2l Þ
x k þ 2 l ¼ x k þ a0
*
55
ð2l1 Þ i1 2Iq
ð2l1 Þ 3
ðxk ai1
Þ
22
l
*j2 ¼1 ðxk
ð2l Þ
aj2 Þð1dði1 ;j2 ÞÞ ð1:142Þ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð1:143Þ
with dxk þ 2l d 2 xk þ 2 l j ð2l1 Þ ¼ 1; j ð2l1 Þ ¼ 0; dxk xk ¼ai1 dx2k xk ¼ai1 d 3 x k þ 2l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai2 Þ3 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k 2l
*2j2 ¼1 ðað2 i1 ði1 2 Iqð2
l1
Þ
l1
Þ
ð1:144Þ
l
ð2 Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
; q 2 f1; 2; . . .; N1 gÞ ð2l1 Þ
Thus, xk þ 2l at xk ¼ ai1
is
• a monotonic sink of the third-order if d 3 xk þ 2l =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order if d 3 xk þ 2l =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0.
1
(ii1) The period-2l fixed-points are trivial if ð2l1 Þ
xk þ 2l ¼ xk ¼ ai1
l1
for i1 ¼ 1; 2; . . .; 22 ;
ð1:145Þ
(ii2) The period-2l fixed-points are non-trivial if ð2l Þ
ð2l Þ
xk þ 2l ¼ xk ¼ bi1 ;1 ; bi1 ;2
i1 2 f1; 2; . . .; M2 g0f∅g:
ð1:146Þ
Such a period-2l fixed-point is • monotonically unstable if dxk þ 2l =dxk j
• monotonically invariant if dxk þ 2l =dxk j – a – a
ð2l Þ
xk ¼ai
1 ð2l Þ
2 ð1; 1Þ; ¼ 1, which is
xk ¼ai 1 1 monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jxk [ 0; th 2l1 2l1 monotonic lower-saddle the ð2l1 Þ order for d xk þ 2l =dxk jxk \ 0; 1 þ1 monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dx2l jxk k
– a [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 j xk \ 0;
56
1 Quadratic Nonlinear Discrete Systems
• monotonically unstable if dxk þ 2l =dxk j • invariantly zero-stable if dxk þ 2l =dxk j • oscillatorilly stable if dxk þ 2l =dxk j • flipped if dxk þ 2l =dxk j
ð2l1 Þ
xk ¼ai
ð2l Þ
xk ¼ai
1
ð2l Þ
xk ¼ai
¼ 0;
1
2 ð1; 0Þ;
ð2l Þ
xk ¼ai
2 ð0; 1Þ;
1
¼ 1, which is
1
– an oscillatory upper-saddle of the ð2l1 Þth order if d 2l1 xk þ 2l =dx2lk 1 jxk [ 0; – an oscillatory lower-saddle the ð2l1 Þth order with d 2l1 xk þ 2l =dx2lk 1 jxk \ 0; – an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk þ 2l =dx2lk 1 þ 1 jxk \ 0; – an oscillatory sink the ð2l1 þ 1Þth order with d 2l1 þ 1 xk þ 2l =dx2lk 1 þ 1 jxk [ 0; • oscillatorilly unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, this theorem can be proved. (I) For a quadratic system, if the period-1 fixed-points exists, there is a following expression. ð1Þ
xk þ 1 ¼ xk þ a0 *2i1 ¼1 ðxk ai1 Þ ð1Þ
For xk þ 1 ¼ xk ¼ ai1 (i1 2 f1; 2g, if dxk þ 1 ð1Þ ð2Þ ð2Þ j ð1Þ ¼ 1 þ a0 ðai1 aj2 Þ ¼ 1; dxk xk ¼ai1 d 2 xk þ 1 ð1Þ j ð2Þ ¼ a0 ¼ a0 6¼ 0 dx2k xk ¼ai1 then period-2 fixed-points exists for the quadratic discrete system. Thus, consider the corresponding second iteration gives ð1Þ
xk þ 2 ¼ xk þ 1 þ a0 *2i1 ¼1 ðxk þ 1 ai1 Þ: The period-2 discrete system of the quadratic discrete system is ð1Þ
xk þ 2 ¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk 2
ð1Þ
2
ð2Þ
ð2Þ
¼ xk þ ½a0 *2i1 ¼1 ðxk ai1 Þ½a20 ðx2k þ B1 xk þ C1 Þ: If ð2Þ
ð2Þ
x2k þ B1 xk þ C1 ¼ 0;
ð1Þ
ai2 Þg
1.4 Forward Bifurcation Trees
57
we have 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ b1 ¼ ðB1 þ Dð2Þ Þ; b2 ¼ ðB1 Dð2Þ Þ 2 2 ð2Þ 2 ð2Þ ð2Þ D ¼ ðB1 Þ 4C1 0: Thus ð2Þ
ð2Þ
ð2Þ
x2k þ B1 xk þ C1 ¼ *2j2 ¼1 ðxk bj2 Þ; and ð1Þ
ð2Þ
2 ðxk bj2 Þ xk þ 2 ¼ xk þ ½a0 *2j1 ¼1 ðxk ai1 Þ½a20 *j22 ¼1 ð2Þ
¼ x k þ a0
*i¼1 ðxk 4
2
ð2Þ
ai Þ;
ð2Þ
ð2Þ
where a0 ¼ a10 þ 2 . For a fixed-point of xk þ 2 ¼ xk ¼ ai1 ði1 2 f1; 2; . . .; 4gÞ, if dxk þ 2 ð2Þ ð2Þ ð2Þ j ð2Þ ¼ 1 þ a0 *4i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1 d 2 xk þ 2 ð2Þ X ð2Þ ð2Þ j ð2Þ ¼ a0 4i2 ¼1;i2 6¼i1 *4i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; dx2k xk ¼ai1 then, a period-2 discrete system of a quadratic discrete system has a perioddoubling bifurcation. (II) Such a period-2 discrete system can be renormalized nonlinearly. For k ¼ k1 þ 2, the previous period-2 discrete system becomes ð2Þ
xk1 þ 2 þ 2 ¼ xk1 þ 2 þ a0
*i¼1 ðxk1 þ 2 4
ð2Þ
ai Þ:
Because k1 is an index for iteration, it can be replaced by k. Thus, an equivalent form for the foregoing equations becomes ð21 Þ
xk þ 22 ¼ xk þ 21 þ a0 with
22
1
*i¼1 ðxk þ 21
ð21 Þ
ai
Þ;
58
1 Quadratic Nonlinear Discrete Systems ð21 Þ
x k þ 2 1 ¼ x k þ a0
22
1
*i¼1 ðxk
ð21 Þ
ai
Þ
xk þ 22 can be expressed as ð21 Þ
xk þ 22 ¼ xk þ a0
1
22
*i1 ¼1 ðxk
ð2Þ
21
ð21 Þ
ai1 Þf1 þ 1
¼ xk þ ða0 Þ1 þ 2
22
*i1 ¼1 ðxk
1
ð21 Þ
22
*i1 ¼1 ½1 þ a0 a0 2
ð21 Þ
1
ð22 22 Þ=2
ai1 Þ *i2 ¼1
1
ai2 Þg
ð22 Þ
ð22 Þ
22
*i2 ¼1;i2 6¼i1 ðxk
ð21 Þ
½ðx2k þ Bi2 xk þ Ci2 Þ:
If ð22 Þ
ð22 Þ
x2k þ Bi2 xk þ Ci2 ð221 Þ
for i2 2 0Nq11¼1 Iq1 Iqð2
21
Þ
¼0
00Nq ¼1 Iqð2 Þ with 2
2 2
2
¼ flðq1Þ21 þ 1 ; lðq1Þ21 þ 2 gf1; 2; . . .; M1 g;
for q 2 f1; 2; . . .; N1 g; M1 ¼ N1 2211 ; N1 ¼ 1 Iqð2 Þ ¼ flðq1Þ22 þ 1 ; lðq1Þ22 þ 2 ; . . .; lq22 gfM1 þ 1; M1 þ 2; . . .; Mg; 2
2
1
for q 2 f1; 2; . . .; N2 g; M2 ¼ ð22 22 Þ=2; then we have ffi ffi 1 ð22 Þ pffiffiffiffiffiffiffiffiffi 1 ð22 Þ pffiffiffiffiffiffiffiffiffi 2 2 ð22 Þ ð22 Þ bi2 ;1 ¼ ðB1 þ Dð2 Þ Þ; bi2 ;2 ¼ ðB1 Dð2 Þ Þ 2 2 ð22 Þ
ð22 Þ
Dð2 Þ ¼ ðB1 Þ2 4C1 2
0:
Thus ð22 Þ
ð22 Þ
x2k þ Bi2 xk þ Ci2
ð22 Þ
ð22 Þ
¼ ðxk bi2 ;1 Þðxk bi2 ;2 Þ;
and 21
ð21 Þ
xk þ 22 ¼ xk þ ða0 Þ1 þ 2
22
1
*j1 ¼1 ðxk
ð21 Þ
aj1 Þ *Nq¼1 *j
ð22 Þ
ð22 Þ
*j3 2J ð22 Þ ðxk bj3 ;1 Þðxk bj3 ;2 Þ ð4Þ
22
ð22 Þ
¼ xk þ ða0 Þ *2i¼1 ðxk ai where
Þ
ð22 Þ 2 2Iq
ð22 Þ
ð22 Þ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ
1.4 Forward Bifurcation Trees 22
ð22 Þ
02i¼1 fai ð22 Þ
59 21
ð2Þ
g ¼ sortf02i1 ¼1 fai1 g; 0Nq¼1 0
ð22 Þ
ð22 Þ
ð22 Þ
ð22 Þ
i2 2Iq
ð22 Þ
ð22 Þ
fbi2 ;1 ; bi2 ;2 gg;
ð22 Þ
ai þ 1 ; Di2 ¼ ðBi2 Þ2 4Ci2 0; qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi 1 ð22 Þ 1 ð22 Þ ð22 Þ ð22 Þ ð22 Þ ð22 Þ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ 2 2 21 2 i2 2 0Nq11¼1 Iqð21 Þ 00Nq22¼1 Iqð22 Þ ; ai
Iqð21
21
Þ
¼ flðq1 1Þ21 þ 1 ; lðq1 1Þ21 þ 2 gf1; 2; . . .; M1 g;
for q 2 f1; 2; . . .; N1 g; M1 ¼ N1 21 ; N1 ¼ 1; 2 Iqð22 Þ ¼ flðq2 1Þ22 þ 1 ; lðq2 1Þ22 þ 2 ; . . .; lq2 22 g fM1 þ 1; M1 þ 2; . . .; M2 g; for q2 2 f1; 2; . . .; N2 g; M2 ¼ 22 1 22 1 ; pffiffiffiffiffiffiffi ð22 Þ ð22 Þ ð22 Þ Di2 ¼ ðBi2 Þ2 4Ci2 \0; i ¼ 1; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð22 Þ 1 ð22 Þ ð22 Þ ð22 Þ ð22 Þ ð22 Þ bi2 ;1 ¼ ðBi2 þ i jDi2 jÞ; bi2 ;2 ¼ ðBi2 i jDi2 jÞ; 2 2 2 i2 2 J ð2 Þ ¼ flN2 22 þ 1 ; lN2 22 þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g: 2
1
Nontrivial period-22 fixed-points are ð4Þ
xk þ 22 ¼ xk ¼ ai
ð22 Þ
ð22 Þ
2 2 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 g;
2
i 2 f1; 2; . . .; 22 g0f∅g; and trivial period-22 fixed-points are ð4Þ
xk þ 22 ¼ xk ¼ ai
21
ð21 Þ
2 02i1 ¼1 fai1 g;
2
i 2 f1; 2; . . .; 22 g: Similarly, the period-2l discrete system ðl ¼ 1; 2; . . .Þ of the quadratic discrete system in Eq. (1.136) can be developed through the above nonlinear renormalization and the corresponding fixed-points can be obtained. (III) Consider a period-2l1 discrete system as ð2l1 Þ
xk þ 2l1 ¼ xk þ a0
22
l1
*i¼1
ð2l1 Þ
ðxk ai
Þ:
From the nonlinear renormalizations, let k1 ¼ k þ 2l1 , we have
60
1 Quadratic Nonlinear Discrete Systems ð2l1 Þ
22
xk1 þ 2l1 þ 2l1 ¼ xk1 þ 2l1 þ a0
l1
*i¼1
ð2l1 Þ
ðxk1 þ 2l1 ai
Þ:
Because k1 is an index for iteration, it can be replaced by k. Thus, an equivalent form for the foregoing equations becomes ð2l1 Þ
xk þ 2l ¼ xk þ 2l1 þ a0
22
l1
*i¼1
ð2l1 Þ
ðxk þ 2l1 ai
Þ:
With the period-2l1 discrete system, the foregoing equations becomes ð2l1 Þ
22
xk þ 2l ¼ xk þ ½a0 f1 þ
ð2l1 Þ
2l1
ai1
ð2
*i1 ¼1 ½1 þ a0 2
ð2
¼ xk þ ½a0
l1
*i1 ¼1 ðxk
l1
Þ
2
2l1
Þ
2l 1
2
*i2 ¼1
Þ
Þ
2l1
*i2 ¼1;i2 6¼i1 ðxk 2
ð2
*i1 ¼1 ðxk
ð2l1 Þ 2
½ða0
2l1
l1
ai1
l1
2l1 1
2
Þ
ð2l1 Þ
ai2
Þg
Þ ð2l Þ
ð2l Þ
ðx2k þ Bi2 xk þ Ci2 Þ:
If ð2l Þ
ð2l Þ
x2k þ Bi2 xk þ Ci2 ¼ 0 ð2l1 Þ
for i2 2 0Nq11¼1 Iq1 Iqð21
l1
Þ
00Nq ¼1 Iqð2 2 2
l1
Þ
2
with
¼ flðq1Þ2l1 þ 1 ; lðq1Þ2l1 þ 2 ; . . .; lq2l1 g f1; 2; . . .; M1 g0f∅g;
for q1 ¼ 1; 2; . . .; N1 ; M1 ¼ N1 2l1 ; l
Iqð22 Þ ¼ flðq1Þ2l þ 1 ; lðq1Þ2l þ 2 ; . . .; lq2l g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 ¼ 1; 2; . . .; N2 ; M2 ¼ 22 1 22
1
;
then we have 1 ð2l Þ ð2l Þ bi2 ;1 ¼ ðBi2 þ 2 ð2l Þ
ð2l Þ
qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ 2 ð2l Þ
Di2 ¼ ðBi2 Þ2 4Ci2 0: Thus
1.4 Forward Bifurcation Trees
61 ð2l Þ
ð2l Þ
ð2l Þ
ð2l Þ
x2k þ Bi2 xk þ Ci2 ¼ ðxk bi2 ;1 Þðxk bi2 ;2 Þ: Therefore ð2l1 Þ
22
xk þ 2l ¼ xk þ ½a0 ð2
½ða0
l1
2l1
2l1
2l
ð2l Þ
¼ xk þ a0
Þ
22
l1
l
22
Þ ð2l Þ
2 2
*i2 ¼1
ð2l1 Þ 1 þ 22
¼ xk þ ða0
ð2l1 Þ
ai1
Þ 2
Þ
l1
*i1 ¼1; ðxk
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ
l
ð2l Þ
*i¼1 ðxk
ai Þ
ð2l Þ
*i¼1 ðxk
ai Þ
where ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1 þ 2 ; a0 2l
ð2l1 Þ 1 þ 22
¼ ða0 2l1
l
ð2 Þ
Þ
l1
; l ¼ 1; 2; 3; . . .;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
ð2l Þ
2
ai þ 1 ; 02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ; 2 2
ð2l Þ
Di
Iqð21
l1
ð2l Þ
ð2l Þ
¼ ðBi Þ2 4Ci Þ
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
00Nq22¼1 Iqð22
l1
Þ
;
¼ flðq1 1Þ2l1 þ 1 ; lðq1 1Þ2l1 þ 2 ; . . .; lq1 2l1 g f1; 2; . . .; M1 g0f∅g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 2l1 ; l
Iqð22 Þ ¼ flðq2 1Þ2l þ 1 ; lðq2 1Þ2l þ 2 ; . . .; lq2 2l g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ 22 1 22 1 ; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ 2 ð2l Þ Di ¼ ðBi Þ 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l þ 1 ; lN2 2l þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g: For the period-2l discrete system, we have ð2l Þ
x k þ 2 l ¼ x k þ a0
22
l
*i¼1 ðxk
ð2l Þ
and the local stability and bifurcation at xk ¼ ai determined by
ð2l Þ
ai Þ l
ði 2 f1; 2; . . .; 22 gÞ can be
62
1 Quadratic Nonlinear Discrete Systems l dxk þ 2l ð2l Þ X22l ð2l Þ 22 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l d 2 xk þ 2l ð2l Þ X22l X22l ð2l Þ 22 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . l d r x k þ 2l X22l ð2l Þ X22l ð2l Þ 22 ¼ a0 i1 ¼1 . . . ir ¼1;ir 6¼i1 ;i2 ;...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk l
for r 22 ; and the period-doubling bifurcations are determined by l dxk þ 2l ð2l Þ X22l ð2l Þ 22 j ð2l Þ ¼ 1 þ a0 *i2 ¼1;i2 6¼i1 ðxk ai2 Þj ð2l Þ ¼ 1; i ¼1 1 xk ¼ai dxk xk ¼ai l l X 2l X 2l d 2 xk þ 2 l ð2 Þ 2 ð2l Þ 2 22 j ð2l Þ ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þjx ¼að2l Þ 6¼ 0: 2 x ¼a dxk i i k k
Non-trivial period-2l fixed-points are ð2l Þ
xk þ 22 ¼ xk ¼ ai
ð2l Þ
ð2l Þ
2 2 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 g;
l
i 2 f1; 2; . . .; 22 g; and trivial period-2l fixed-points are ð2l Þ
xk þ 22 ¼ xk ¼ ai
2l1
ð2l1 Þ
2 02i1 ¼1 fai1
g;
2l
i 2 f1; 2; . . .; 2 g: This theorem can be easily proved.
1.4.3
■
Period-n Appearing and Period-Doublization
The period-n discrete system for the quadratic nonlinear discrete systems will be discussed, and the period-doublization of the period-n quadratic discrete system is discussed through the nonlinear renormalization. Theorem 1.12 Consider a 1-dimensional quadratic nonlinear discrete system
1.4 Forward Bifurcation Trees
63
xk þ 1 ¼ xk þ AðpÞx2k þ BðpÞxk þ CðpÞ
ð1:147Þ
ð1Þ
¼ xk þ a0 *2i¼1 ðxk ai Þ:
(i) After n-times iterations, a period-n discrete system for the quadratic discrete system in Eq. (1.147) is xk þ n ¼ xk þ a0 *2i1 ¼1 ðxk ai2 Þf1 þ n
Xn
j¼1 Qj g ðnÞ
ðnÞ
¼ xk þ ða0 Þ2 1 *2i1 ¼1 ðxk ai1 Þ½*j22 ¼11 ðx2k þ Bj2 xk þ Cj2 Þ ¼
n ðnÞ xk þ a0 *2i¼1 ðxk
n1
ð1:148Þ
ðnÞ ai Þ
with dxk þ n n ðnÞ X n ðnÞ ¼ 1 þ a0 2i1 ¼1 *2i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk d 2 xk þ n n ðnÞ X n X n ðnÞ ¼ a0 2i1 ¼1 2i2 ¼1;i2 6¼i1 *2i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; dx2k .. . d r xk þ n n X n ðnÞ X n ðnÞ ¼ a0 2i1 ¼1 . . . 2ir ¼1;ir 6¼i1 ;i2 ...;ir1 *2ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk for r 2n ;
ð1:149Þ where n
ðnÞ
ð1Þ
a0 ¼ ða0 Þ2 1 ; Q1 ¼ 0; Q2 ¼ *2i2 ¼1 ½1 þ a0 *2i1 ¼1;i1 6¼i2 ðxk ai1 Þ; ð1Þ
Qn ¼ *2in ¼1 ½1 þ a0 ð1 þ Qn1 Þ *2in1 ¼1;in1 6¼in ðxk ain1 Þ; n ¼ 3; 4; . . .; n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2 2 ðnÞ ðnÞ ðnÞ Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þn þ 1 ; lðq1Þn þ 2 ; . . .; lqn gf1; 2; . . .; Mg0f∅g; for q 2 f1; 2; . . .; Ng; M ¼ 2n1 1; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flNn þ 1 ; lNn þ 2 ; . . .; lM g f1; 2; . . .; Mg0f∅g; ð1:150Þ
64
1 Quadratic Nonlinear Discrete Systems
with fixed-points ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 2n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ðnÞ
ð1:151Þ
ðnÞ
with ai \ai þ 1 : ðnÞ
ðnÞ
(ii) For a fixed-point of xk þ n ¼ xk ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), if dxk þ n n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 1 þ a0 *2i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1
ð1:152Þ
then there is a new discrete system for onset of the qth -set of period-n fixedpoints based on the second-order monotonic saddle-node bifurcation as ðnÞ
xk þ n ¼ x k þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
ðnÞ
ai1 Þ2 *2i2 ¼1 ðxk ai2 Þð1dði1 ;j2 ÞÞ
ð1:153Þ
ðnÞ
ð1:154Þ
n
where ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 : (ii1) If dxk þ n j ðnÞ ¼ 1 ði1 2 IqðnÞ Þ; dxk xk ¼ai1 d 2 xk þ n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 2a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ2 1 q 2 1 dx2k xk ¼ai1 ðnÞ
ð1:155Þ
ðnÞ
*2i3 ¼1 ðai1 ai3 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk þ n at xk ¼ ai1 is • a monotonic lower-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ k
i1
k
i1
\0; • a monotonic upper-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0. (ii2) The period-n fixed-points ðn ¼ 2n1 mÞ are trivial if
1.4 Forward Bifurcation Trees
65 ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 2 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
gg
)
for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 2n g0f∅g for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 2 f02i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 2n g0f∅g
)
ð1:156Þ
for n ¼ 2n2 : (ii3) The period-n fixed-points ðn ¼ 2n1 mÞ are non-trivial if ) 2n1 1 m ðnÞ ð1Þ ð2n1 1 mÞ gg xk þ n ¼ xk ¼ aj1 62 f02ii ¼1 fai1 g; 02i2 ¼1 fai2 for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 2n g0f∅g
for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 62 f02i2 ¼1 fai2
gg
)
ð1:157Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 2n g0f∅g for n ¼ 2n2 :
Such a period-n fixed-point is • monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is i1
k
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k xk [ 0; 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k xk \0;
1 þ1 – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l j xk k [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 xk \0;
• monotonically stable if dxk þ n =dxk jx ¼aðnÞ 2 ð0; 1Þ; i1
k
• invariantly zero-stable if dxk þ n =dxk jx ¼aðnÞ ¼ 0; k
i1
• oscillatorilly stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 0Þ; k
i1
• flipped if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is k
i1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k xk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k xk \0;
66
1 Quadratic Nonlinear Discrete Systems 1 þ1 – an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l jxk k \0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l1 þ 1 x [ 0;
k
k
• oscillatorilly unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ. k
i1
ðnÞ
ðnÞ
(iii) For a fixed-point of xk þ n ¼ xk ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), there is a period-doubling of the qth -set of period-n fixed-points if dxk þ n n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 1 þ a0 *2j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1 dxk xk ¼ai1
ð1:158Þ
with • an oscillatory upper-saddle for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0; k
i1
• an oscillatory lower saddle for d 2 xk þ n =dx2k jx ¼aðnÞ \0. k
i1
The corresponding period-2 n discrete system of the quadratic discrete system in Eq. (1.147) is ð2nÞ
xk þ 2n ¼ xk þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
2n
ð2nÞ ð1dði1 ;i2 ÞÞ
ai1 Þ3 *2i2 ¼1 ðxk ai2
Þ
ð1:159Þ with dxk þ 2n d 2 xk þ 2n jx ¼aðnÞ ¼ 1; jx ¼aðnÞ ¼ 0; i1 i1 k k dxk dx2k d 3 xk þ 2n ð2nÞ ðnÞ ðnÞ 3 jx ¼aðnÞ ¼ 6a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 2 q 2 1 i1 k dx3k 2n
ðnÞ
ð2nÞ ð1dði1 ;i3 ÞÞ
*2i3 ¼1 ðai1 ai3 ðnÞ
Þ
ð1:160Þ 6¼ 0:
ðnÞ
Thus, xk þ 2n at xk ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic sink of the third-order if d 3 xk þ 2n =dx3k jx ¼aðnÞ \0, k
i1
• a monotonic source of the third-order if d 3 xk þ 2n =dx3k jx ¼aðnÞ [ 0. k
i1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the quadratic discrete system in Eq. (1.147) is
1.4 Forward Bifurcation Trees
67
ð2l1 nÞ
22
xk þ 2l n ¼ xk þ ½a0
2l1 n
f1 þ ¼
2
*i1 ¼1
ð2l1 nÞ
ðxk ai1
ð2l1 nÞ 22 Þ ½ða0
l1 n
ð2
½ða0
nÞ 2
Þ
l1
ð2
¼ xk þ ða0
2
*j1 ¼1
l
Þ
2
2
*j2 ¼1
2l n
*i¼1
2
*i¼1
l1 n1
l1 n1
ð2 nÞ
ðxk ai
ð2l nÞ
xk þ Cj2
ð2l nÞ
Þ
ðx2k þ Bj2
ðxk bj2 l
ð2 nÞ
ðxk ai l
Þg
ð2l nÞ
Þ
ð2l1 nÞ ai1 Þ
22
2l n
ð2l1 nÞ
ai 2
ð2l1 nÞ ai1 Þ
22
2l n1
2l1 n
nÞ 2
ð2 nÞ
¼ x k þ a0
2l1 n
2l n1
ð2l1 nÞ 22l1 n xk þ ½a0 *i1 ¼1 ðxk l1
Þ
ð2l1 nÞ 22l1 n ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk
ð2l1 nÞ 22l1 n xk þ ½a0 *i1 ¼1 ðxk
¼
l1 n
*i1 ¼1
Þ
Þ ð1:161Þ
with dxk þ 2l n ð2l nÞ X22l n 22l n ð2l nÞ ¼ 1 þ a0 Þ; i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 dxk l d 2 xk þ 2l n ð2l nÞ X22l n X22l n ð2l nÞ 22 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 2 dxk .. . l d r xk þ 2l n X22l n ð2l nÞ X22l n ð2l nÞ 22 n ¼ a0 i1 ¼1 . . . ir ¼1;ir 6¼i1 ;i2 ...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk ð1:162Þ
l
for r 22 n , where ð2nÞ
a0
ð2l nÞ ð2l nÞ g 02i¼1 fai
ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l nÞ
Di
n
ðnÞ
ð2l nÞ
¼ ða0 Þ1 þ 2 ; a0 ¼
ð2l1 nÞ 1 þ 22
¼ ða0
l1 n
; l ¼ 1; 2; 3; . . .;
2l1 n ð2l1 nÞ ð2l nÞ ð2l nÞ 2 sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; 2 ð2l nÞ 2
¼ ðBi
Þ
ð2l nÞ
Þ 4Ci
0
68
1 Quadratic Nonlinear Discrete Systems
for i 2 0Nq11¼1 Iqð21 Iqð21
l1
nÞ
l1
nÞ
00Nq ¼1 Iqð2 nÞ 2 2
l
2
¼ flðq1 1Þð2l1 nÞ þ 1 ; lðq1 1Þð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f∅g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; l
Iqð22 nÞ ¼ flðq2 1Þð2l nÞ þ 1 ; lðq2 1Þð2l nÞ þ 2 ; . . .; lq2 ð2l nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ ð22 n1 22 n1 Þ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi ð2l nÞ ð2l nÞ 2 ð2l nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di i 2 flN2 ð2l nÞ þ 1 ; lN2 ð2l nÞ þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g
ð1:163Þ
with fixed-points ð2l nÞ
xk þ 2l n ¼ xk ¼ ai 2l n
ð2l nÞ
02i¼1 fai l
ð2 nÞ
with ai
l
; ði ¼ 1; 2; . . .; 22 n Þ 2l1 n
g ¼ sortf02i¼1
ð2l1 nÞ
fai
ð2l nÞ
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð1:164Þ
l
ð2 nÞ
\ai þ 1 : ð2l1 nÞ
(v) For a fixed-point of xk þ ð2l nÞ ¼ xk ¼ ai1
ð2l1 nÞ
ði1 2 Iq
f1; 2; . . .; M1 gÞ,
l
there is a period-ð2 nÞ discrete system if dxk þ 2l1 n ð2l1 nÞ 22l1 n ð2l1 nÞ ð2l1 nÞ j ð2l1 nÞ ¼ 1 þ a0 ai2 Þ ¼ 1 *i2 ¼1;i2 6¼i1 ðai1 xk ¼ai dxk 1 ð1:165Þ with • an oscillatory upper-saddle for d 2 xk þ 2l1 n =dx2k ð2l1 nÞ [ 0; x ¼a k i1 2 2 • an oscillatory lower-saddle for d xk þ 2l1 n =dxk ð2l1 nÞ \0. xk ¼ai
1
l
The corresponding period-ð2 nÞ discrete system is
1.4 Forward Bifurcation Trees
69 ð2l nÞ
xk þ 2l n ¼ xk þ a0
*
2l n
ð2l1 nÞ
i1 2Iq1
ð2l1 nÞ 3
ðxk ai1
ð2l nÞ ð1dði1 ;j2 ÞÞ
*2j2 ¼1 ðxk aj2
Þ
Þ
ð1:166Þ
;
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai1
ð2l nÞ
ð2l1 nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
6¼ ai1
ð1:167Þ
with dxk þ 2l n d 2 xk þ 2l n j ð2l1 nÞ ¼ 1; j ð2l1 nÞ ¼ 0; xk ¼ai xk ¼ai dxk dx2k 1 1 d 3 xk þ 2l n ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ð2l1 Þ ¼ 6a0 ðai1 ai2 Þ * ð2l1 nÞ 3 xk ¼ai i2 2Iq1 ;i2 6¼i1 dxk 1 2l n
ð2l1 nÞ
*2j2 ¼1 ðai1 ði1 2
l1 Iqð2 nÞ ; q
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
ð1:168Þ
6¼ 0
2 f1; 2; . . .; N1 gÞ: ð2l1 nÞ
Thus, xk þ 2l n at xk ¼ ai1
is
• a monotonic sink of the third-order if d 3 xk þ 2l n =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order if d 3 xk þ 2l n =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0.
1
(v1) The period-2l n fixed-points are trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
ð1Þ
2l1 n
for n 6¼ 2n1 ; ð2l nÞ l
for j ¼ 1; 2; ; 22 n
9 gg = ;
l
for j ¼ 1; 2; ; 22 n xk þ 2l n ¼ xk ¼ aj
ð2l1 nÞ
2 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
2l1 n
ð2l1 nÞ
2 02i2 ¼1 fai2
9 g= ;
for n ¼ 2n1 : (v2) The period-2l n fixed-points are non-trivial if
ð1:169Þ
70
1 Quadratic Nonlinear Discrete Systems ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
62 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
9 gg = ;
l
for j ¼ 1; 2; ; 2ð2 nÞ for n 6¼ 2n1 ; ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð2l1 nÞ
62 02i2 ¼1 fai2
9 g=
ð1:170Þ
;
l
for j ¼ 1; 2; ; 22 n for n ¼ 2n1 : Such a period-2l n fixed-point is • monotonically unstable if dxk þ 2l n =dxk j
2 ð1; 1Þ;
ð2l nÞ
xk ¼ai
• monotonically invariant if dxk þ 2l n =dxk j
1 ð2l nÞ
xk ¼ai
¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk [ 0 (independent ð2l1 Þ-branch appearance); 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0 (independent ð2l1 Þ-branch appearance); 1 þ1 jxk – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l k [ 0 (dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jxk \0 (dependent ð2l1 þ 1Þ-branch appearance from one branch);
• monotonically stable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• invariantly zero-stable if dxk þ 2l n =dxk j • oscillatorilly stable if dxk þ 2l n =dxk j • flipped if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð0; 1Þ;
1
¼ 0;
ð2l nÞ
xk ¼ai ð2l nÞ
xk ¼ai
1
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order if d 2l1 xk þ 2l n =dx2l k jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order with d 2l1 xk þ 2l n =dx2l k jxk \0;
1 þ1 – an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk þ 2l n =dx2l jxk k \0; 1 þ1 jxk – an oscillatory sink the ð2l1 þ 1Þth order with d 2l1 þ 1 xk þ 2l n =dx2l k [ 0;
• oscillatorilly unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
1
2 ð1; 1Þ.
1.4 Forward Bifurcation Trees
71
Proof Through the nonlinear renormalization, the proof of this theorem is similar to the proof of Theorem 1.11. This theorem can be easily proved. ■
1.4.4
Period-n Bifurcation Trees
Consider a period-n discrete system of the quadratic system as ðnÞ
x k þ n ¼ x k þ a0 ðnÞ
2n
*i¼1 ðxk
ðnÞ
ai Þ
ð1:171Þ
n
where a0 ¼ ða0 Þ2 1 . For n ¼ 1, Eq. (1.171) gives a period-1 discrete system of the quadratic system as ð1Þ ð1Þ xk þ 1 ¼ xk þ a0 *2i¼1 ðxk ai Þ: ð1:172Þ ð1Þ
• If ai ði ¼ 1; 2Þ are complex, none of fixed-points exists in such a quadratic discrete system. ð1Þ • If ai ði ¼ 1; 2Þ are real, two fixed-points exist in such a quadratic discrete system. For n ¼ 2, Eq. (1.171) gives a period-2 discrete system of the quadratic system as
ð2Þ
xk þ 2 ¼ x k þ a0
22
*i¼1 ðxk
ð2Þ
ai Þ:
ð1:173Þ
ð2Þ
• If ai ði ¼ 1; 2; . . .; 22 Þ are complex, the period-2 discrete system does not have any fixed-points. ð2Þ • If two of ai ði ¼ 1; 2; . . .; 22 Þ are real, the period-2 discrete system possesses two fixed-points, which are trivial. The two fixed-points are the same as the period-1 fixed-points. ð2Þ • If all of ai ði ¼ 1; 2; . . .; 22 Þ are real, the period-2 discrete system possesses four fixed-points, including two trivial fixed-points for period-1 and two non-trivial fixed-points for period-2. Such two non-trivial fixed points are generated through period-doubling bifurcation, and both of fixed-points are stable for period-2. Thus, the period-2 discrete system has one set of period-2 fixed-points on the period-1 to period-2 period-doubling bifurcation tree. Without any independent period-2 fixed-points exists.
72
1 Quadratic Nonlinear Discrete Systems
For n ¼ 3, Eq. (1.171) gives a period-3 discrete system of the quadratic system as
ð3Þ
x k þ 3 ¼ x k þ a0
23
*i¼1 ðxk
ð3Þ
ai Þ:
ð1:174Þ
ð3Þ
• If ai ði ¼ 1; 2; . . .; 23 Þ are complex, the period-3 discrete system does not have any fixed-points. ð3Þ • If two of ai ði ¼ 1; 2; . . .; 23 Þ are real, the period-3 discrete system possesses two trivial fixed-points which are the same as the period-1 fixed-points. ð3Þ • If all of ai ði ¼ 1; 2; . . .; 23 Þ are real, the period-3 discrete system possesses eight fixed-points, including two trivial fixed-points for period-1 and six non-trivial fixed-points for period-3. Such non-trivial fixed points are generated through the monotonic upper-saddle or monotonic lower-saddle bifurcations. The period-3 fixed-points are independent of the trivial fixed-points for period-1. Thus, the period-3 discrete system has at most one set of period-3 fixed-points, which is independent of the period-1 fixed-points. For n ¼ 4, Eq. (1.171) gives a period-4 discrete system of the quadratic system as 4 ð4Þ ð4Þ xk þ 4 ¼ xk þ a0 *2i¼1 ðxk ai Þ: ð1:175Þ ð4Þ
• If ai ði ¼ 1; 2; . . .; 24 Þ are complex, the period-4 discrete system does not have any fixed-points. ð4Þ • If two of ai ði ¼ 1; 2; . . .; 24 Þ are real, the period-4 discrete system possesses two trivial fixed-points which are the same as the period-1 fixed-points. ð4Þ • If four of ai ði ¼ 1; 2; . . .; 24 Þ are real, the period-4 discrete system possesses four trivial fixed-points which are the same as the period-1 and period-2 fixed-points. ð4Þ • If eight of ai ði ¼ 1; 2; . . .; 24 Þ are real, the period-4 discrete system possesses eight fixed-points, including two trivial fixed-points for period-1, two trivial fixed-points for period-2, and four non-trivial fixed-points for period-4. Such non-trivial fixed points are stable, which are generated through the period-doubling bifurcations. All trivial fixed-points for period-4 are unstable. ð4Þ • If all of ai ði ¼ 1; 2; . . .; 24 Þ are real, in addition to the period-4 fixed-points by the period-doubling bifurcation, the period-4 discrete system possesses eight non-trivial fixed-points for period-4, which are generated by the monotonic upper-saddle or lower-saddle bifurcations. The period-4 fixed-points are independent of the trivial fixed-points.
1.4 Forward Bifurcation Trees
73
Thus, the period-4 discrete system has at most two sets of period-4 fixed-points, one is dependent on the period-1 to period-4 period-doubling tree, and one set of period-4 fixed-points is independent of the period-1 to period-4 period-doubling bifurcation tree. For n ¼ 5, Eq. (1.171) gives a period-5 discrete system of the quadratic system as ð5Þ
x k þ 5 ¼ x k þ a0
25
*i¼1 ðxk
ð5Þ
ai Þ:
ð1:176Þ
ð5Þ
• If ai ði ¼ 1; 2; . . .; 25 Þ are complex, the period-5 discrete system does not have any fixed-points. ð5Þ • If two of ai ði ¼ 1; 2; . . .; 25 Þ are real, the period-5 discrete system possesses two trivial fixed-points which are the same as the period-1 fixed-points. ð5Þ • If twelve (12) of ai ði ¼ 1; 2; . . .; 25 Þ are real, the period-5 discrete system possesses 12 fixed-points, including two trivial fixed-points for period-1 and ten (10) non-trivial fixed-points for one set of period-5. Such non-trivial fixed points are generated through the monotonic upper-saddle or monotonic lower-saddle bifurcations. The period-5 fixed-points are independent of the trivial fixed-points for period-5. ð5Þ • If twenty-two (22) of ai ði ¼ 1; 2; . . .; 25 Þ are real, the period-5 discrete system possesses 20 fixed-points, including two (2) trivial fixed-points for period-1 and 20 non-trivial fixed-points for two sets of period-5. ð5Þ • If thirty-two (32) of ai ði ¼ 1; 2; . . .; 25 Þ are real, the period-5 discrete system possesses 32 fixed-points, including two (2) trivial fixed-points for period-1 and 30 non-trivial fixed-points for three sets of period-5. Thus, the period-5 discrete system has at most three (3) sets of period-5 fixed-points independent of the trivial period-5 fixed-points from the period-1 fixed-points. For n ¼ 6, Eq. (1.171) gives a period-6 discrete system of the quadratic system as ð6Þ
xk þ 6 ¼ x k þ a0 ð6Þ
26
*i¼1 ðxk
ð6Þ
ai Þ:
ð1:177Þ
• If ai ði ¼ 1; 2; . . .; 26 Þ are complex, the period-6 discrete system does not have any fixed-points. ð6Þ • If two of ai ði ¼ 1; 2; . . .; 26 Þ are real, the period-6 discrete system possesses two trivial fixed-points which are the same as the period-1 fixed-points. ð6Þ • If twelve (14) of ai ði ¼ 1; 2; . . .; 26 Þ are real, the period-6 discrete system possesses 14 fixed-points, including two (2) trivial fixed-points for period-1, six (6) trivial fixed-points for period-3, and six (6) non-trivial fixed-points for
74
1 Quadratic Nonlinear Discrete Systems
period-6. Such non-trivial fixed points are generated through the period-3 period-doubling bifurcation. The six trivial fixed-points for period-3 are unstable. The six non-trivial fixed-points for period-6 are stable. ð6Þ • If twenty-two (26) of ai ði ¼ 1; 2; . . .; 26 Þ are real, the period-6 discrete system possesses 26 fixed-points, including two (2) trivial fixed-points for period-1, 12 non-trivial fixed-points on the period-doubling bifurcation trees of period-3, and 12 non-trivial fixed-points for period-6 caused by monotonic upper- and lower-saddle-nodes bifurcations. ð6Þ • If thirty-two (62) of ai ði ¼ 1; 2; . . .; 26 Þ are real, in addition to 14 fixed-points for period-1 and period-3 bifurcation tree, there are 4 sets of period-6 fixedpoints, which are generated through the monotonic upper- and lower-saddlenode bifurcations. Thus, the period-6 discrete system has at most six sets of period-6 fixed-points including five sets of independent period-6 fixed-point, one set of period-6 fixed-points on the period-3 period-doubling bifurcation tree, and the period-1 fixed-pionts. For such a period-6 discrete system, there exist two complex fixed-points. Similarly, other period-n discrete systems can be discussed. From the previous discussion, the period-n fixed-points for a quadratic discrete system are tabulated in Table 1.1. The dependent sets of period-n fixed-points are on the period-doubling bifurcation trees. The independent sets of period-n fixed-points are generated through monotonic saddle-node bifurcations. From analytical expressions, the maximum sets of period-n fixed-points includes dependent and independent sets of period-n fixed-points. In addition to the period-1 trivial fixed-points, other fixed-points on the bifurcation trees relative to period-n fixed points are also trivial. From the period-n discrete systems of a quadratic discrete system, period-1 to period-4 bifurcation trees are sketched through period-n discrete systems, as shown in Fig. 1.9. The solid and dashed curves are for stable and unstable periodn fixed-points, respectively. The red and dark red colors are for period-n fixed points dependent on and independent of period-1 fixed-points on the bifurcation trees. The period-n fixed-points on the other period-doubling bifurcations are said to be dependent. The dependent period-n fixed-points are obtained from period-doubling bifurcation. However, the onsets of period-n fixed-points are not based on period-doubling bifurcations, which are said to be independent. The onsets of such independent period-n fixed-points are based on the monotonic saddle-node bifurcations. The numerical examples can be found from Luo and Guo (2013). Such dependent and independent period-n fixed-points for quadratic systems are presented. Through such a way, one can find all possible period-n fixed points.
1.5 Backward Bifurcation Trees
75
Table 1.1 Period-n fixed-points for a quadratic discrete system P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12
1.5
Dependent sets
Independent sets
N/A (1)P-1 N/A (1)P-1 N/A (1)P-3 N/A (1)P-1 (1)P-4 N/A (3)P-5
1 N/A 1 1 3 4 9 14
1 1 1 2 3 5 9 16
18 48
18 51
93 165
93 170
to P-2 to P-4 to P-6 to P-8 to P-8 to P-10
N/A (1)P-3 to P-12 (4)P-6 to P-12
Maximum sets
Trivial fixed-points N/A (1)P-1 (1)P-1 (1)P-1 to P-2 (1)P-1 (1)P-1, (1)P-3 (1)P-1 (1)P-1 to P-4 (1)P-4 (1)P-1 (1)P-1 (1)P-5 (1)P-1 (1)P-1 (1)P-3 to P-6 (4) P-6
Backward Bifurcation Trees
In this section, the analytical bifurcation scenario for backward quadratic discrete systems will be discussed as in a similar fashion through nonlinear renormalization techniques, and the backward bifurcation scenario based on the monotonic saddle-node bifurcations will be discussed, which is independent of period-1 fixed-points.
1.5.1
Backward Period-2 Quadratic Discrete Systems
After the backward period-doubling bifurcation of a period-1 fixed-point, the backward period-doubled fixed-points can be obtained and the corresponding stability is determined through dxk þ 1 =dxk . Theorem 1.13 Consider a 1-dimensional backward quadratic discrete system as xk ¼ xk þ 1 þ AðpÞx2k þ 1 þ BðpÞxk þ 1 þ CðpÞ
ð1:178Þ
where three scalar constants AðpÞ 6¼ 0, BðpÞ and CðpÞ are determined by a vector parameter
76
1 Quadratic Nonlinear Discrete Systems a0 > 0
P-1
a0 < 0
mSO
P-1 mSI-oSO
mUSN
mLSN mSI-oSO
mSO
∗ k
x
P-1
|| p ||
xk∗ P-1
|| p ||
(i)
(ii)
a0 > 0
P-1
P-2
a0 < 0
PD
mSO mUSN
P-1
mSI-oSO mSI-oSO
P-2
xk∗
P-1
PD
P-2
|| p ||
mSO
xk∗
P-1
|| p ||
(iii)
(iv)
a0 > 0
P-1 mSO
P-2
mUSN
mLSN
a0 < 0
P-3
mLSN
P-1
P-3
mUSN
mSI-oSO mSI-oSO
mLSN
P-3
xk∗
P-1 P-3
mUSN
|| p ||
P-1
|| p ||
(v)
(vi)
a0 > 0
P-1
mSO mUSN
PD
mSI-oSO
mLSN
P-4
mLSN
P-4
a0 < 0
mLSN
mLSN
P-2 PD
P-4
mSI-oSO
P-2 mUSN
mSO
xk∗
P-4
mUSN
P-4 P-2 P-4
mUSN
P-4
mUSN
P-4 P-1
|| p ||
(vii)
PD
mLSN
P-4
PD
P-1
PD
P-1
xk∗
P-4 P-4
P-4 P-2
PD
|| p ||
P-3
mUSN
mSO
xk∗
P-3
mUSN
mLSN
(vii)
Fig. 1.9 Sketched bifurcation trees based on period-doubling and monotonic saddle-node bifurcations. (i)-(viii) period-1 to period-4 bifurcation trees, based on period-n discrete systems. mUSN: monotonic upper-saddle-node, mLSN: monotonic lower-saddle-node. PD: period-doubling bifurcation. The solid and dashed curves are for stable and unstable fixed-points. The red and dark red colors are for dependent and independent period-n fixed points. mSO: monotonic source, mSI-oSO: monotonic sink to oscillatory source
1.5 Backward Bifurcation Trees
77
p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð1:179Þ
D ¼ B2 4AC [ 0;
ð1:180Þ
Under a condition of
there is a standard form for the backward discrete system as ð1Þ
ð1Þ
xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ a0 ðx2k þ 1 þ B1 xk þ 1 þ C1 Þ ¼ xk þ 1 þ a0 ðxk þ 1 a1 Þðxk þ 1 a2 Þ ¼
xk þ 1 þ a0 *2i¼1 ðxk þ 1
ð1:181Þ
ð1Þ ai Þ
where B ð1Þ C ;C ¼ ; A 1 A 1 ð1Þ pffiffiffiffiffiffiffiffi 1 ð1Þ pffiffiffiffiffiffiffiffi ð1Þ ð1Þ ð1Þ b1 ¼ ðB1 þ D Þ; b2 ¼ ðB1 Dð1Þ Þ; 2 2 ð1Þ 2 ð1Þ ð1Þ D ¼ ðB1 Þ 4C1 0; ð1Þ
a0 ¼ AðpÞ; B1 ¼
ð1Þ
ð1Þ
ð1Þ
ð1:182Þ
ð1Þ
02i¼1 fai g ¼ sortf02i¼1 fbi gg; ai ai þ 1 for i ¼ 1; 2: (i) Consider a backward period-2 discrete system of Eq. (1.178) as ð1Þ
xk ¼ xk þ 2 þ ½a0 *2i1 ¼1 ðxk þ 2 ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2 2
ð1Þ
2
ð2Þ
ð1Þ
ai2 Þg
ð2Þ
¼ xk þ 2 þ ½a0 *2i1 ¼1 ðxk þ 2 ai1 Þ½a20 ðx2k þ 2 þ B1 xk þ 2 þ C1 Þ ð1Þ
ð2Þ
2 ¼ xk þ 2 þ ½a0 *2j1 ¼1 ðxk þ 2 ai1 Þ½a20 *2j2 ¼1 ðxk þ 2 bj2 Þ 2
ð2Þ
¼ xk þ 2 þ a10 þ 2 *4i¼1 ðxk þ 2 ai Þ ð1:183Þ where 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ b1;2 ¼ ðB1 þ Dð2Þ Þ; b2 ¼ ðB1 Dð2Þ Þ; 2 2 ð2Þ 2 ð2Þ ð2Þ D ¼ ðB1 Þ 4C1 0; with fixed-points
ð1:184Þ
78
1 Quadratic Nonlinear Discrete Systems ð2Þ
xk ¼ xk þ 2 ¼ ai ; ði ¼ 1; 2; . . .; 4Þ ð2Þ
ð1Þ
ð2Þ
04i¼1 fai g ¼ sortf02j1 ¼1 faj1 g; 02j2 ¼1 fbj2 gg
ð1:185Þ
ð2Þ ð2Þ with ai \ai þ 1 : ð1Þ
(ii) For a fixed-point of xk ¼ xk þ 1 ¼ ai1 ði1 2 f1; 2gÞ, if dxk ð1Þ ð1Þ j ai2 Þ ¼ 1; ð1Þ ¼ 1 þ a0 ðai 1 dxk þ 1 xk þ 1 ¼ai1
ð1:186Þ
with • an oscillatory lower-saddle-node bifurcation ðd 2 xk =dx2k jxk þ 1 ¼a1 ¼ a0 [ 0Þ, • an oscillatory upper-saddle-node bifurcation ðd 2 xk =dx2k jxk þ 1 ¼a1 ¼ a0 \0Þ, then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi1 ; Di1 ¼ ðB1 Þ2 4C1 ¼ 0; 2
ð1:187Þ
and there is a backward period-2 discrete system of the quadratic discrete system in Eq. (1.178) as ð1Þ
ð2Þ
xk ¼ xk þ 2 þ a30 ðxk þ 2 ai1 Þ3 ðxk þ 2 ai2 Þ
ð1:188Þ
for i1 ; i2 2 f1; 2g; i1 6¼ i2 with dxk d 2 xk jx ¼að1Þ ¼ 1; 2 jx ¼að1Þ ¼ 0; dxk þ 2 k þ 2 i1 dxk þ 2 k þ 2 i1 d 3 xk ð2Þ 3 ð1Þ j ai2 Þ ¼ 12a20 \0: ð1Þ ¼ 6a ðai 0 1 dx3k þ 2 xk þ 2 ¼ai1
ð1:189Þ
ð1Þ
Thus, xk at xk þ 2 ¼ ai1 is a monotonic source of the third-order, and the corresponding bifurcations is a monotonic source bifurcation for the period-2 discrete system. (ii1) The backward period-2 fixed-points are trivial and unstable if ð1Þ
xk ¼ xk þ 2 ¼ ai1 for i1 ¼ 1; 2: (ii2) The backward period-2 fixed-points are non-trivial and stable if
ð1:190Þ
1.5 Backward Bifurcation Trees
79 ð2Þ
xk ¼ xk þ 2 ¼ bi1 for i1 ¼ 1; 2:
ð1:191Þ
Proof Following the corresponding proof for the forward quadratic discrete system. This theorem can be proved. ■
1.5.2
Backward Period-Doubling Renormalization
The generalized cases of period-doublization of backward quadratic discrete systems are presented through the following theorem. The analytical period-doubling trees can be developed for backward quadratic discrete systems. Theorem 1.14 Consider a 1-dimensional backward quadratic discrete system as xk ¼ xk þ 1 þ AðpÞx2k þ 1 þ BðpÞxk þ 1 þ CðpÞ
ð1:192Þ
ð1Þ
¼ xk þ 1 þ a0 *2i¼1 ðxk þ 1 ai Þ:
(i) After l-times period-doubling bifurcations, a period-2l ðl ¼ 1; 2; . . .Þ discrete system for the quadratic discrete system in Eq. (1.192) is produced through the nonlinear renormalization as ð2l1 Þ
xk ¼ xk þ 2l þ ½a0 f1 þ
2
l1
l1
Þ 2
Þ
Þ
2l1
ð2l1 Þ
¼ xk þ 2l þ ½a0
ð2l1 Þ 22
½ða0
Þ
ð2l Þ
with
ð2l1 Þ
2
2
2l 1
*j1 ¼1 22
2
2
2l1 1
l1
*i1 ¼1; ðxk þ 2l l
22 1 22
*i2 ¼1
Þ
22
l
l1
ai1
l1 2
22
ð2
ai1
l1
Þ
ð2l1 Þ
ai2
Þg
Þ ð2l Þ
ð2l Þ
ðx2k þ 2l þ Bj2 xk þ 2l þ Cj2 Þ ð2l1 Þ
ai1
Þ ð2l Þ
ð2l Þ
ðxk þ 2l bi2 ;1 Þðxk þ 2l bi2 ;2 Þ
l
*i¼1 ðxk þ 2l
*i¼1 ðxk þ 2l
Þ
2l1
*i2 ¼1;i2 6¼i1 ðxk þ 2l
2l1
ð2l1 Þ 1 þ 22
¼ xk þ 2 l þ a0
Þ
*i1 ¼1 ðxk þ 2l
l1
¼ xk þ 2l þ ða0
l1
ð2
*i1 ¼1 ½1 þ a0 ð2
ð2
l1
2l1
¼ xk þ 2l þ ½a0 ½ða0
22
*i1 ¼1 ðxk þ 2l
ð2l Þ
ai Þ
ð2l Þ
ai Þ
ð1:193Þ
80
1 Quadratic Nonlinear Discrete Systems l dxk ð2l Þ X22l ð2l Þ 22 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk þ 2l ai2 Þ; dxk þ 2l l d 2 xk ð2l Þ X22l X22l ð2l Þ 22 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l ai3 Þ; 2 dxk þ 2l
.. .
l d r xk X22l ð2l Þ X22l ð2l Þ 22 ¼ a0 i1 ¼1 . . . ir ¼1;ir þ 1 6¼i1 ;i2 ...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk þ 2l air þ 1 Þ r dxk þ 2l l
for r 22
ð1:194Þ where ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1 þ 2 ; a0 2l
ð2l1 Þ 1 þ ð2l1 Þ2
¼ ða0 2l1
l
ð2 Þ
Þ
; l ¼ 2; 3; . . .;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
ð2l Þ
2
ai þ 1 ; 02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg; ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ; 2 2
ð2l Þ
Di
l1
Iqð21
ð2l Þ
ð2l Þ
¼ ðBi Þ2 4Ci Þ
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
00Nq ¼1 Iqð2 Þ ; 2 2
l
2
¼ flðq1 1Þ2l1 þ 1 ; lðq1 1Þ2l1 þ 2 ; . . .; lq1 2l1 g f1; 2; . . .; M1 g0f∅g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 2l1 ;
ð1:195Þ
l
Iqð22 Þ ¼ flðq2 1Þ2l þ 1 ; lðq2 1Þ2l þ 2 ; . . .; lq2 2l1 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ 22 1 22 1 ; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l þ 1 ; lN2 2l þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g with fixed-points ð2l Þ
xk ¼ xk þ 2l ¼ ai ; ði ¼ 1; 2; . . .; 22l Þ 2l
2l1
ð2l Þ
ð2l1 Þ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 l
ð2 Þ
l
ð2 Þ
with ai \ai þ 1 :
ð2l1 Þ
ð2l1 Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð1:196Þ
1.5 Backward Bifurcation Trees
81 ð2l1 Þ
(ii) For a fixed-point of xk ¼ xk þ 2l1 ¼ ai1 dxk
dx
j
ð2l1 Þ x ¼a k þ 2l1 k þ 2l1 i1
ð2l1 Þ
¼ 1 þ a0
22
ð2l Þ
l
ði1 2 Iq
l1
ð2l1 Þ
*i2 ¼1;i2 6¼i1 ðai1
f1; 2; . . .; 22 gÞ, if ð2l1 Þ
ai 2
Þ ¼ 1 ð1:197Þ
then there is a backward period-2l fixed-point discrete system ð2l Þ
x k ¼ x k þ 2 l þ a0
*
ð2l1 Þ
i1 2Iq
ð2l1 Þ 3
ðxk þ 2l ai1
Þ
22
l
*j2 ¼1 ðxk þ 2l
ð2l Þ
aj2 Þð1dði1 ;j2 ÞÞ ð1:198Þ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð1:199Þ
with dxk d 2 xk j ð2l1 Þ ¼ 1; 2 j ð2l1 Þ ¼ 0; x ¼a dxk þ 2l k i1 dxk þ 2l xk ¼ai1 d 3 xk ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ða ai2 Þ3 i2 2Iq ;i2 6¼i1 i1 dx3k þ 2l xk ¼ai1 2l
ð2l1 Þ
*2j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
ð1:200Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
; q 2 f1; 2; . . .; N1 gÞ: ð2l1 Þ
Thus, xk at xk þ 2l ¼ ai1
is
• a monotonic source of the third-order if d 3 xk =dx3k þ 2l ð2l1 Þ \0; x l ¼ai kþ2 1 • a monotonic sink of the third-order if d 3 xk =dx3k þ 2l ð2l1 Þ [ 0. x
k þ 2l
¼ai
1
(ii1) The backward period-2l fixed-points are trivial if ð2l1 Þ
xk ¼ xk þ 2l ¼ ai1
l1
ð1:201Þ
:
ð1:202Þ
for i1 ¼ 1; 2; . . .; 22 ;
(ii2) The backward period-2l fixed-points are non-trivial if ð2l Þ
ð2l Þ
xk ¼ xk þ 2l ¼ bj1 ;1 ; bj1 ;2 l
l
j1 2 0Nq¼2 Iqð2 Þ f1; 2; . . .; 22 g0f∅g Such a backward period-2l fixed-point is
82
1 Quadratic Nonlinear Discrete Systems
• monotonically stable if dxk =dxk þ 2l j
2 ð1; 1Þ;
ð2l Þ
x
k þ 2l
• monotonically invariant if dxk =dxk þ 2l j
¼ai
1
¼ 1, which is
ð2l Þ
x
k þ 2l
¼ai
1
1 j – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ 2l x
k þ 2l
[ 0; 1 j – a monotonic upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ 2l x
k þ 2l
\0;
1 þ1 – a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2l j k þ 2l x
k þ 2l
[ 0;
– a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
k þ 2l
• monotonically unstable if dxk =dxk þ 2l j
ð2l Þ
x
k þ 2l
¼ai
2 ð0; 1Þ;
1
• monotonically unstable with infinite eigenvalue if dxk =dxk þ 2l j ¼0 ; • oscillatorilly unstable with infinite eigenvalue if dxk =dxk þ 2l j
x
• flipped if dxk =dxk þ 2l j
ð2l1 Þ x l ¼ai kþ2 1
x
ð2l Þ
kþ2
¼ai l
2 ð1; 0Þ;
k þ 2l
ð2l Þ
x
¼ai
ð2l Þ
¼ 0 ;
þ
• oscillatorilly unstable if dxk =dxk þ 2l j
\0;
k þ 2l
¼ai
1
1
1
¼ 1, which is
1 – an oscillatory lower-saddle of the ð2l1 Þth order if d 2l1 xk =dx2l j k þ 2l x
k þ 2l
[ 0; 1 j – an oscillatory upper-saddle the ð2l1 Þth order with d 2l1 xk =dx2l k þ 2l x
k þ 2l
\0; 1 þ1 j – an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk =dx2l k þ 2l x [ 0; – an oscillatory sink the ð2l1 þ 1Þth order with d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
k þ 2l
• oscillatorilly stable if dxk =dxk þ 2l j
x
k þ 2l
ð2l Þ
¼ai
k þ 2l
\0;
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, following the forward case, this theorem can be proved. ■
1.5.3
Backward Period-n Appearing and Period-Doublization
The period-n discrete system for backward quadratic nonlinear discrete systems will be discussed, and the period-doublization of a backward period-n discrete system is discussed through the nonlinear renormalization. Theorem 1.15 Consider a 1-dimensional backward quadratic discrete system as
1.5 Backward Bifurcation Trees
83
xk ¼ xk þ 1 þ AðpÞx2k þ 1 þ BðpÞxk þ 1 þ CðpÞ
ð1:203Þ
ð1Þ
¼ xk þ 1 þ a0 *2i¼1 ðxk þ 1 ai Þ:
(i) After n-times iterations, a period-n discrete system for the quadratic discrete system in Eq. (1.203) is ð1Þ
xk ¼ xk þ n þ a0 *2i1 ¼1 ðxk þ n ai1 Þf1 þ ¼
n xk þ a02 1 *2i1 ¼1 ðxk þ n
ðnÞ
¼ xk þ a0
2n
*i¼1 ðxk þ n
Xn
i¼1 Qj g ð1Þ ðnÞ 2n1 1 2 ai1 Þ½*j2 ¼1 ðxk þ n þ Bj2 xk þ n
ðnÞ
þ Cj2 Þ
ðnÞ
ai Þ ð1:204Þ
with
dxk n ðnÞ X n ðnÞ ¼ 1 þ a0 2i1 ¼1 *2i2 ¼1;i2 6¼i1 ðxk þ n ai2 Þ; dxk þ n d 2 xk n ðnÞ X n X n ðnÞ ¼ a0 2i¼1 2i2 ¼1;i2 6¼i1 *2i3 ¼1;i3 6¼i1 ;i2 ðxk þ n ai3 Þ; dx2k þ n .. . d r xk n X n ðnÞ X n ðnÞ ¼ a0 2i1 ¼1 . . . 2ir ¼1;ir 6¼1;i2 ;...;ir1 *2ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk þ n air þ 1 Þ dxrk þ n for r 2n ;
ð1:205Þ where ðnÞ
a0 ¼ ða0 Þ2
n
1
ð1Þ
; Q1 ¼ 0; Q2 ¼ *2i2 ¼1 ½1 þ a0 *2i1 ¼1;i1 6¼i2 ðxk þ n ai1 Þ; ð1Þ
Qn ¼ *2in ¼1 ½1 þ a0 ð1 þ Qn1 *2in1 ¼1;in1 6¼in ðxk þ n ain1 ÞÞ; n ¼ 3; 4; . . .; n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i2 2¼1 fbi2 ;1 ; bi2 ;2 gg; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2
ðnÞ
ðnÞ
2
ðnÞ
Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þn þ 1 ; lðq1Þn þ 2 ; . . .; lqn gf1; 2; . . .; Mg0f∅g; for q 2 f1; 2; . . .; Ng; M ¼ 2n1 1; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flNn þ 1 ; lNn þ 2 ; . . .; lM g f1; 2; . . .; Mg0f∅g; ð1:206Þ
84
1 Quadratic Nonlinear Discrete Systems
with fixed-points ðnÞ
xk ¼ xk þ n ¼ ai ; ði ¼ 1; 2; . . .; 2n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
02i¼1 fai g ¼ sortf02i1 ¼1 fai1 g; 0M i1 ¼1 fbi2 ;1 ; bi2 ;2 gg ðnÞ
ð1:207Þ
ðnÞ
with ai \ai þ 1 : ðnÞ
ðnÞ
(ii) For a backward fixed-point of xk ¼ xk þ n ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), if dxk ðnÞ 2n ðnÞ ðnÞ j ðnÞ ¼ 1 þ a 0 *i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk þ n xk þ n ¼ai1
ð1:208Þ
then there is a new discrete system for onset of the qth - set of period-n fixed-points based on the second-order monotonic saddle-node bifurcation as ðnÞ
x k ¼ x k þ n þ a0
*i 2I ðnÞ ðxk þ n 1 q
ðnÞ
ðnÞ
ai1 Þ2 *2j2 ¼1 ðxk þ n aj2 Þð1dði1 ;j2 ÞÞ ð1:209Þ n
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð1:210Þ
(ii1) If dxk ðnÞ j ðnÞ ¼ 1 ði1 2 I q Þ; dxk þ n xk þ n ¼ai1 d 2 xk ðnÞ ðnÞ ðnÞ 2 j ðnÞ ¼ 2a 0 *i2 2IqðnÞ ;i2 6¼i1 ðai1 ai2 Þ dx2k þ n xk þ n ¼ai1 ðnÞ
ð1:211Þ
ðnÞ
*2j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk at xk þ n ¼ ai1 is ðnÞ
• a monotonic upper-saddle of the second-order for d 2 xk =dx2k þ n jxk þ n ¼ ai1 \0; ðnÞ • a monotonic lower-saddle of the second-order for d 2 xk =dx2k þ n jxk þ n ¼ ai1 [ 0. (ii2) The backward period-n fixed-points ðn ¼ 2n1 mÞ are trivial
1.5 Backward Bifurcation Trees
85
ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f02ii ¼1 fai1 g; 02i2 ¼1 fai2 gg n for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 2 g0f∅g for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f02i2 ¼1 fai2
)
)
gg
ð1:212Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 2n g0f∅g for n ¼ 2n2 :
(ii3) The period-n fixed-points ðn ¼ 2n1 mÞ are non-trivial if ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 62 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
gg
)
for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 2n g0f∅g for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 62 f02i2 ¼1 fai2
)
gg
ð1:213Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 2n g0f∅g
for n ¼ 2n2 : Such a backward period-n fixed-point is • monotonically stable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
• monotonically invariant if dxk =dxk þ n jx
2 ð1; 1Þ;
1 ðnÞ
kþn
¼ai
¼ 1, which is
1
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jxk þ n [ 0; 1 – a monotonic upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jxk þ n \0;
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jxk þ n \0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jxk þ n [ 0;
• monotonically unstable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
2 ð0; 1Þ;
1
• monotonically infinity-unstable if dxk =dxk þ n jx • oscillatorilly infinity-unstable if dxk =dxk þ n jx • oscillatorilly unstable if dxk =dxk þ n jx • flipped if dxk =dxk þ n jx
kþn
kþn
ðnÞ
¼ai
kþn
ðnÞ
¼ai
ðnÞ
kþn
¼ai ðnÞ
¼ai
¼ 0þ ;
1
¼ 0 ;
1
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jxk þ n [ 0; 1 – an oscillatory upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jxk þ n \0;
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jxk þ n [ 0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jxk þ n \0;
86
1 Quadratic Nonlinear Discrete Systems
• oscillatorilly stable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
2 ð1; 1Þ.
1
ðnÞ
ðnÞ
(iii) For a fixed-point of xk ¼ xk þ n ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), there is a backward period-doubling of the qth -set of period-n fixed-points if dxk ðnÞ 2n ðnÞ ðnÞ j ðnÞ ¼ 1 þ a 0 *j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1 dxk þ n xk þ n ¼ai1
ð1:214Þ
with • an oscillatory lower-saddle for d 2 xk =dx2k þ n jx ¼aðnÞ [ 0; k
• an oscillatory upper-saddle for d 2 xk =dx2k þ n jx
kþn
i1
ðnÞ
¼ai
\0.
1
The corresponding period-2 n discrete system of the quadratic discrete system in Eq. (1.203) is ð2nÞ
xk ¼ xk þ 2n þ a0
*i1 2I n ðxk þ 2n q
ðnÞ
ai 1 Þ 3
ð1:215Þ
ð2nÞ ð1dði1 ;i2 ÞÞ
2n
*2i2 ¼1 ðxk þ 2n ai2
Þ
with dxk dxk þ 2n
j x
ðnÞ ¼ai k þ 2n 1
¼ 1;
d 2 xk j ðnÞ ¼ 0; dx2k þ 2n xk þ 2n ¼ai1
d 3 xk ð2nÞ ðnÞ ðnÞ 3 j ðnÞ ¼ 6a *i2 2I n ;i2 6¼i1 ðai1 ai2 Þ 0 q dx3k þ 2n xk þ 2n ¼ai1 2n
ðnÞ
ð2nÞ ð1dði1 ;i3 ÞÞ
*2i3 ¼1 ðai1 ai3 ðnÞ
Þ
ð1:216Þ 6¼ 0:
ðnÞ
Thus, xk at xk þ n ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic source of the third-order if d 3 xk =dx3k þ 2n jx
ðnÞ
¼ai
k þ 2n
• a monotonic sink of the third-order if d 3 xk =dx3k þ 2n jx
k þ 2n
ðnÞ
¼ai
\0,
1
[ 0.
1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a backward period-2l n discrete system of the backward quadratic discrete system in Eq. (1.203) is
1.5 Backward Bifurcation Trees
87
ð2l1 nÞ
xk ¼ xk þ 2l n þ ½a0 f1 þ
2
2l1 n
*i1 ¼1
22
l1 n
*i1 ¼1
ð2l1 nÞ
ðxk þ 2l n ai1
ð2l1 nÞ 22l1 n xk þ 2l n þ ½a0 *i1 ¼1 ðxk þ 2l n
¼
ð2l1 nÞ 22 Þ ½ða0
l1 n
2
2l n1
*j1 ¼1
2
2l1 n1
ð2l1 nÞ 22l1 n xk þ 2l n þ ½a0 *i1 ¼1 ðxk2l n
¼
l1
ð2
½ða0
nÞ 2
Þ
ð2l1 nÞ
ð2
¼ xk þ 2l n þ ða0
l
l1
2
2l n1
*j2 ¼1
nÞ 2
ð2 nÞ
¼ xk þ 2l n þ a0
Þ
ð2l1 nÞ 22l1 n ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2l n
Þ
2
2l1 n
ð2l nÞ
*i¼1
2 2
ð2l nÞ
*i¼1
Þg
ð2l1 nÞ ai1 Þ
ðx2k þ 2l n þ Bj2
2l1 nÞ1
2l n
ð2l1 nÞ
ai2
ð2l nÞ
xk þ 2l n þ Cj2
Þ
ð2l1 nÞ ai1 Þ ð2l nÞ
ðxk þ 2l n bj2 l
ð2 nÞ
ðxk þ 2l n ai l
ð2 nÞ
ðxk þ 2l n ai
Þ
Þ
Þ ð1:217Þ
with dxk
ð2l nÞ X22l n 22l n i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk þ 2l n
¼ 1 þ a0
ð2l nÞ
ai 2
Þ; dxk þ 2l n l d 2 xk ð2l nÞ X22l n X22l n ð2l nÞ 22 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l n ai3 2 dxk þ 2l n .. .
l d r xk X22l n ð2l nÞ X22l n ð2l nÞ 22 n ¼ a0 i1 ¼1 . . . ir ¼1;ir 6¼i1 ;i2 ...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk þ 2l n air þ 1 Þ r dxk þ 2l n l
for r 22 n ; ð1:218Þ where ð2nÞ
a0
ðnÞ
2l n
ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l nÞ
2n
ð2l1 nÞ 1 þ 22
¼ ða0
ð2l1 nÞ
l
ð2 nÞ
02i¼1 fai
Di
ð2l nÞ
¼ ða0 Þ1 þ 2 ; a0
2
ð2l nÞ 2
ð2l nÞ
Þ 4Ci
l1
ð2
g ¼ sortf02i1 ¼1 fai1 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; ¼ ðBi
Þ
0
nÞ
l1 n
; l ¼ 1; 2; 3; . . .; ð2l nÞ
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
88
1 Quadratic Nonlinear Discrete Systems
for i 2 0Nq11¼1 Iqð21 Iqð21
l1
nÞ
l1
nÞ
00Nq ¼1 Iqð2 nÞ ; l
2 2
2
¼ flðq1 1Þð2l1 nÞ þ 1 ; lðq1 1Þð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f∅g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; l
Iqð22 nÞ ¼ flðq2 1Þð2l nÞ þ 1 ; lðq2 1Þð2l nÞ þ 2 ; . . .; lq2 ð2l nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ 22 1 22 1 ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi l l l ð2 nÞ ð2 nÞ 2 ð2 nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di i 2 flNð2l nÞ þ 1 ; lNð2l nÞ þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g
ð1:219Þ
with fixed-points ð2l nÞ
xk ¼ xk þ 2l n ¼ ai 2l n
ð2l nÞ
02i¼1 fai
ð2l nÞ
with ai
l
; ði ¼ 1; 2; . . .; 22 n Þ 2l1 n
ð2l1 nÞ
g ¼ sortf02i1 ¼1 fai1
ð2l nÞ
ð2l nÞ
\ai þ 1 :
ð1:220Þ ð2l1 nÞ
(v) For a fixed-point of xk ¼ xk þ 2l n ¼ ai1 there is a period-2l n discrete system if dxk dxk þ 2l1 n
j
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð2l1 nÞ x l1 ¼ai kþ2 n 1
ð2l1 nÞ
¼ 1 þ a0
22
ð2l1 nÞ
ði1 2 Iq
l1 n
ð2l1 nÞ
*i2 ¼1;i2 6¼i1 ðai1
f1; 2; . . .; M1 gÞ,
ð2l1 nÞ
ai2
Þ ¼ 1 ð1:221Þ
with • an oscillatory lower-saddle for d 2 xk =dx2k þ 2l1 n jx
¼ai
• an oscillatory upper-saddle for d 2 xk =dx2k þ 2l1 n jx
¼ai
k þ 2l1 n
k þ 2l1 n
The corresponding period-ð2l nÞ discrete system is
ðnÞ
[ 0;
1
ðnÞ 1
\0.
1.5 Backward Bifurcation Trees
89 ð2l nÞ
xk ¼ xk þ 2l n þ a0
*
ð2l1 nÞ
i1 2Iq
2l n
ð2l1 nÞ 3
ðxk þ 2l n ai1
Þ
ð1:222Þ
ð2l nÞ ð1dði1 ;i2 ÞÞ
*2i2 ¼1 ðxk þ 2l n ai2
Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai1
ð2l nÞ
ð2l1 nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
6¼ ai1
ð1:223Þ
with dxk dxk þ 2l n
j
ð2l1 nÞ x l ¼ai k þ 2 n 1
¼ 1;
d 2 xk þ 2l n j ð2l1 nÞ ¼ 0; x l ¼ai dx2k k þ 2 n 1
d 3 xk ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ðai1 ai2 Þ * ð2l1 nÞ ¼ 6a0 ð2l1 nÞ 3 x ¼a i 2I ;i ¼ 6 i 2 q 2 1 dxk þ 2l n k þ 2l n i1 2l n
ð2l1 nÞ
*2i3 ¼1 ðai1 ði1 2
l1 Iqð2 nÞ ; q
Thus, xk at
xk þ 2l n
ð2l nÞ ð1dði2 ;i3 ÞÞ
ai3
Þ
6¼ 0
2 f1; 2; . . .; N1 gÞ ¼
ð2l1 nÞ ai1
ð1:224Þ is
• a monotonic source of the third-order if d 3 xk =dx3k þ 2l n j • a monotonic sink of the third-order if d 3 xk =dx3k þ 2l n j
ð2l1 nÞ
x
k þ 2l n
¼ai
ð2l1 nÞ
x
k þ 2l n
¼ai
\0;
1
[ 0.
1
(v1) The backward period-2l n fixed-points are trivial if ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
ð1Þ
2l1 n
ð2l1 nÞ
2 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 2ð2 nÞ for n 6¼ 2n1 ; ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
2l1 n
ð2l1 nÞ
2 02i2 ¼1 fai2
g
)
l
for j ¼ 1; 2; . . .; 22 n for n ¼ 2n1 : (v2) The backward period-2l n fixed-points are non-trivial if
ð1:225Þ
90
1 Quadratic Nonlinear Discrete Systems ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
62 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 2ð2 nÞ for n 6¼ 2n1 ; ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
2l1 n
ð2l1 nÞ
62 f02i2 ¼1 fai2
g
ð1:226Þ
)
l
for j ¼ 1; 2; . . .; 22 n for n ¼ 2n1 : Such a backward period-2l n fixed-point is • monotonically stable if dxk =dxk þ 2l n j
2 ð1; 1Þ;
ð2l nÞ
x
k þ 2l n
• monotonically invariant if dxk =dxk þ 2l n j
¼ai
1 ð2l nÞ
x
k þ 2l n
¼ai
¼ 1, which is
1
– a monotonic lower-saddle of the ð2l1 Þth order for dxk =dxk þ 2l n jx
k þ 2l n
[0
(independent ð2l1 Þ-branch appearance); – a monotonic upper-saddle the ð2l1 Þth order for dxk =dxk þ 2l n jx
\0
(independent ð2l1 Þ-branch appearance) – a monotonic sink of the ð2l1 þ 1Þth order for dxk =dxk þ 2l n jx
[0
(dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic source the ð2l1 þ 1Þth order for dxk =dxk þ 2l n jx
k þ 2l n
dent ð2l1 þ 1Þ-branch appearance from one branch); • monotonically unstable if dxk =dxk þ 2l n j
ð2l nÞ
x
k þ 2l n
¼ai
• monotonically infinity-unstable if dxk =dxk þ 2l n j • monotonically infinity-unstable if dxk =dxk þ 2l n j • oscillatorilly unstable if dxk =dxk þ 2l n j • flipped if dxk =dxk þ 2l n j
ð2l nÞ x l ¼ai k þ 2 n 1
x
k þ 2l n
k þ 2l n
\0 (depen-
2 ð0; 1Þ;
1 ð2l nÞ
x
¼ai
x
¼ai
k þ 2l n
1
ð2l nÞ
k þ 2l n
ð2l nÞ
¼ai
k þ 2l n
¼ 0þ ; ¼ 0þ ;
1
2 ð1; 0Þ;
1
¼ 1, which is
1 – an oscillatory lower-saddle of the ð2l1 Þth order if d 2l1 xk =dx2l j k þ 2l n x
k þ 2l n
1 – an oscillatory upper-saddle the ð2l1 Þth order with d 2l1 xk =dx2l j k þ 2l n x
th
– an oscillatory source of the ð2l1 þ 1Þ order if – an oscillatory sink the ð2l1 þ 1Þth order with • oscillatorilly stable if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
1
[ 0;
k þ 2l n
\0;
d xk =dxk2lþ1 þ2l1n jx l [ 0; k þ 2 n 1 þ1 d 2l1 þ 1 xk =dx2l j \0; k þ 2l n x l 2l1 þ 1
2 ð1; 1Þ:
k þ 2 n
1.5 Backward Bifurcation Trees a0 > 0
91 P-1
a0 < 0
mSI
P-1 mSO-oSI
mLSN
mUSN mSO-oSI
mSI
xk∗+1
P-1
|| p ||
xk∗+1 P-1
|| p ||
(i)
(ii) P-2
P-1
a0 > 0
UPD
mSI mLSN
P-1
mSO-oSI mSO-oSI
P-2
xk∗+ 2
P-1
UPD
P-2
|| p ||
mSI
xk∗+ 2
P-1
|| p ||
(iii)
(iv) P-1
a0 > 0 mSI
P-2
mUSN
mLSN
a0 < 0
P-3
mUSN
P-1
P-3
mLSN
mSO-oSI mSO-oSI
mLSN
P-3
xk∗+3
P-1
P-1
|| p ||
(v)
(vi)
a0 > 0
P-1
mSI mUSN
UPD
mSO-oSI
a0 < 0 mUSN
mUSN
P-4
mUSN
P-4
mUSN
P-2 UPD
mSO-oSI
P-2 mLSN
xk∗+ 4
mSI
P-4
mLSN
P-4 P-2 P-4
mLSN
P-4
mLSN
P-4 P-1
|| p ||
(vii)
UPD
mUSN
P-4
UPD
xk∗+ 4
P-1
UPD
P-4 P-1
P-4 P-4
P-4 P-2
UPD
|| p ||
P-3
mLSN
mSI
P-3
mUSN
|| p ||
xk∗+3
P-3
mLSN
mUSN
(vii)
Fig. 1.10 Sketched backward bifurcation trees based on period-doubling and monotonic saddle-node bifurcations for backward period-n discrete systems of quadratic discrete systems. (i)–(viii) period-1 to period-4 bifurcation trees, based on period-n discrete systems. mUSN: monotonic upper-saddle-node, mLSN: monotonic lower-saddle-node. UPD: unstable period-doubling bifurcation. The solid and dashed curves are for stable and unstable fixed-points. The red and dark red colors are for dependent and independent period-n fixed points. mSI: monotonic sink, mSO-oSI: monotonic source to oscillatory sink
92
1 Quadratic Nonlinear Discrete Systems
Proof Through the nonlinear renormalization, the proof of this theorem can follow the proof for the forward discrete system. This theorem can be easily proved. ■
1.5.4
Backward Period-n Bifurcation Trees
Similarly, from the period-n discrete systems of a backward quadratic discrete system, period-1 to period-4 bifurcation trees are sketched through period-n discrete systems, as shown in Fig. 1.10. As for the forward quadratic discrete system, solid and dashed curves are for stable and unstable period-n fixed-points. The red and dark red colors are for period-n fixed points dependent on and independent of period-1 fixed-points on the bifurcation trees. The backward period-n fixed-points on the other period-doubling bifurcations are also said to be dependent. The dependent period-n fixed-points are obtained from unstable period-doubling bifurcation. However, the onsets of period-n fixed-points are based on unstable period-doubling bifurcations, which are also said to be independent as well. The onsets of such independent backward period-n fixed-points are based on the monotonic saddle-node bifurcations.
References Luo ACJ (2010) A Ying-Yang theory for nonlinear discrete dynamical systems. International Journal of Bifurcation and Chaos 20(4):1085–1098 Luo ACJ (2012) Regularity and Complexity in Dynamical Systems. Springer, New York Luo ACJ (2019) The stability and bifurcation of fixed-points in low-degree polynomial systems. Journal of Vibration Testing and System Dynamics 3(4):403–451 Luo ACJ, Guo Y (2013) Vibro-Impact Dynamics. Wiley, New York
Chapter 2
Cubic Nonlinear Discrete Systems
In this Chapter, the stability and stability switching of fixed-points in cubic polynomial discrete systems are discussed. As in Luo (2019), the monotonic uppersaddle-node and lower-saddle-node appearing and switching bifurcations are discussed and the third-order monotonic sink and source switching bifurcations are discussed as well. The third-order monotonic sink and source flower-bundle switching bifurcations for simple fixed-points are presented. The third-order monotonic sink and source switching bifurcations for monotonic saddle and nodes are discovered. Graphical illustrations of global stability and bifurcations are presented. The bifurcation trees for cubic nonlinear discrete systems are discussed through period-doublization and monotonic saddle-node bifurcations.
2.1
Period-1 Cubic Discrete Systems
In this section, period-1 fixed-points in cubic nonlinear discrete systems will be discussed, and the stability and bifurcation conditions will be developed. Definition 2.1 Consider a cubic nonlinear discrete system xk þ 1 ¼ xk þ AðpÞx3k þ BðpÞx2k þ CðpÞxk þ DðpÞ xk þ a0 ðpÞðxk aðpÞÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ
ð2:1Þ
where four scalar constants AðpÞ 6¼ 0; BðpÞ; CðpÞ and DðpÞ are determined by A ¼ a0 ; B ¼ ða þ B1 Þa0 ; C ¼ ðaB1 þ C1 Þa0 ; D ¼ aa0 C1 ; p ¼ ðp1 ; p2 ; . . .; pm ÞT :
© Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3_2
ð2:2Þ
93
94
2 Cubic Nonlinear Discrete Systems
(i) If D1 ¼ B21 4C1 \0 for p 2 X1 Rm
ð2:3Þ
then the cubic nonlinear discrete system has a simple fixed-point only as xk ¼ a for p 2 X1 Rm
ð2:4Þ
and the standard form of such a 1-dimensional system is xk þ 1 ¼ xk þ a0 ðxk aÞðx2k þ B1 xk þ C1 Þ:
ð2:5Þ
D1 ¼ B21 4C1 [ 0 for p 2 X2 Rm
ð2:6Þ
(ii) If
then there are three fixed-points with 1 2
a0 ¼ AðpÞ; b1;2 ¼ ðB1 ðpÞ
pffiffiffiffiffiffi D1 Þ with b1 [ b2 ;
a1 ¼ minfa; b1 ; b2 g; a3 ¼ maxfa; b1 ; b2 g; a2 2 fa; b1 ; b2 g 6¼ fa1 ; a3 g;
ð2:7Þ
2
Dij ¼ ðai aj Þ [ 0 for i; j 2 f1; 2; 3g but i 6¼ j:
(ii1) If ai 6¼ aj with Dij ¼ ðai aj Þ2 [ 0 for i; j 2 f1; 2; 3g but i 6¼ j:
ð2:8Þ
the cubic forward discrete system has three different, simple fixed-points as xk ¼ a1 ; xk ¼ a2 ; xk ¼ a3
ð2:9Þ
and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ:
ð2:10Þ
(ii2) If at p ¼ p1 a1 ¼ b2 ; a2 ¼ a; a3 ¼ b1 ; D12 ¼ ða1 a2 Þ ¼ ða b2 Þ2 ¼ 0;
ð2:11Þ
the cubic nonlinear discrete system has a double-repeated fixed-point and a simple fixed-point as xk ¼ a1 ; xk ¼ a1 ; xk ¼ a2
ð2:12Þ
2.1 Period-1 Cubic Discrete Systems
95
and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ:
ð2:13Þ
Such a discrete flow at the fixed-point of xk ¼ a1 is called a monotonicsaddle discrete flow of the second-order. The fixed-point of xk ¼ a1 for two different fixed-points switching is called a switching bifurcation point of fixed-point at p ¼ p1 with the second-order multiplicity, and the switching bifurcation condition is pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 a ¼ b1 ¼ minf ðB1 ðpÞ þ D1 Þ; ðB1 ðpÞ D1 Þg ð2:14Þ 2
2
(ii3) If at p ¼ p2 , a2 ¼ b1 ; a3 ¼ a; a1 ¼ b2 ; D23 ¼ ða2 a3 Þ ¼ ða b1 Þ2 ¼ 0;
ð2:15Þ
the cubic forward discrete system has three fixed-points as xk ¼ a1 ; xk ¼ a2 ; xk ¼ a2
ð2:16Þ
and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þ2 :
ð2:17Þ
Such a discrete flow at the fixed-point of xk ¼ a2 is called a monotonic saddle discrete flow of the second-order. The fixed-point of xk ¼ a2 for two different fixed-points switching is called a switching bifurcation point of fixed-point at a point p ¼ p1 with the second-order multiplicity, and the switching bifurcation condition is pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 a ¼ b2 ¼ maxf ðB1 ðpÞ þ D1 Þ; ðB1 ðpÞ D1 Þg ð2:18Þ 2
2
(ii3) If at p ¼ p3 , a1 ¼ b2 ; a2 ¼ a; a3 ¼ b1 ; D12 ¼ ða1 a2 Þ2 ¼ ða b2 Þ2 ¼ 0; D23 ¼ ða2 a3 Þ2 ¼ ða b1 Þ2 ¼ 0; D13 ¼ ða1 a3 Þ2 ¼ ðb2 b1 Þ2 ¼ 0; the cubic nonlinear system has three repeated fixed-point as
ð2:19Þ
96
2 Cubic Nonlinear Discrete Systems
xk ¼ a1 ; xk ¼ a2 and xk ¼ a3
ð2:20Þ
and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞ3 :
ð2:21Þ
Such a discrete flow at the fixed-point of xk ¼ a1 is called a monotonic sink or source discrete flow of the third-order. The fixed-point of xk ¼ a1 at a point p ¼ p3 for three different fixed-points switching is called a switching bifurcation point of fixed-point with the third-order multiplicity, and the switching bifurcation condition is 1 2
a ¼ b ¼ B1 ðpÞ:
ð2:22Þ
(iii) If D1 ¼ B21 4A1 C1 ¼ 0 for p ¼ p0 2 @X12 Rm1 ;
ð2:23Þ
then there exist 1 2
a0 ¼ Aðp0 Þ; and b1 ¼ b2 ¼ b ¼ B1 ðp0 Þ: (iii1)
ð2:24Þ
For a\b; the cubic nonlinear system has a double-repeated fixedpoint plus a monotonic lower-branch simple fixed-point xk ¼ a1 ¼ a; xk ¼ a2 ¼ b and xk ¼ a2 ¼ b
ð2:25Þ
with the corresponding standard form of xk þ ! ¼ xk þ a0 ðxk a1 Þðxk a2 Þ2 :
ð2:26Þ
Such a discrete flow at the fixed-point of x ¼ a2 is called a monotonic saddle discrete flow of the second-order. The fixed-point of xk ¼ a2 for two different fixed-points appearing is called an appearing bifurcation point of fixed-points at a point p ¼ p0 2 @X12 with the second-order multiplicity, and the appearing bifurcation condition is D1 ¼ B21 4C1 ¼ 0 with a\b:
ð2:27Þ
2.1 Period-1 Cubic Discrete Systems
(iii2)
97
For a [ b; the cubic nonlinear system has a double-repeated fixed-point plus a simple fixed-point xk ¼ a1 ¼ b and xk ¼ a1 ¼ b; xk ¼ a2 ¼ a
ð2:28Þ
with the corresponding standard form of xk þ 1 ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ:
ð2:29Þ
Such a discrete flow at the fixed-point of xk ¼ a1 is called a monotonic saddle discrete flow of the second order. The fixed-point of xk ¼ a1 ¼ b for two different fixed-point appearing is called a bifurcation point of fixed-point at a point p ¼ p0 2 @X12 with the lower-branch second-order multiplicity, and the bifurcation appearing condition is also D1 ¼ B21 4C1 ¼ 0 with a [ b: (iii3)
ð2:30Þ
For a ¼ b; the cubic forward discrete system has a triple-repeated fixed-point as xk ¼ a1 ¼ a and xk ¼ a1 ¼ a; xk ¼ a2 ¼ a
ð2:31Þ
with the corresponding standard form of xk þ 1 ¼ xk þ a0 ðxk a1 Þ3 :
ð2:32Þ
Such a discrete flow at the fixed-point of x ¼ a1 is called a monotonic source or sink discrete flow of the third-order. The fixed-point of x ¼ a1 ¼ a for three fixed-points switching or two fixed-points switching is called a switching bifurcation of fixed-point at a point p ¼ p0 2 @X12 with the third-order multiplicity, and the switching bifurcation condition is D1 ¼ B21 4C1 ¼ 0 with a ¼ b:
ð2:33Þ
From the previous definitions, the conditions of stability and bifurcation in forward cubic nonlinear discrete systems are stated in the following theorem.
98
2 Cubic Nonlinear Discrete Systems
Theorem 2.1 (i) Under a condition of D1 ¼ B21 4C1 \0
ð2:34Þ
a standard form of the 1-dimensional discrete system in Eq. (2.1) is 1 2
1 4
xk þ 1 ¼ xk þ f ðxk þ 1 ; pÞ ¼ xk þ a0 ðxk a1 Þ½ðxk þ B1 Þ2 þ ðD1 Þ: ð2:35Þ (i1) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic source) with df =dxk jx ¼a1 2 ð0; 1Þ: k (i2) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is • monotonically stable with df =dxk jx ¼a1 2 ð1; 0Þ (a monotonic sink); k • invariantly stable with df =dxk jx ¼a1 ¼ 1 (an invariant sink); k • oscillatorilly stable with df =dxk jx ¼a1 2 ð2; 1Þ (an oscillatory k sink); • flipped with df =dxk jx ¼a1 ¼ 2; which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a1 k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a1 k \ 0; – an oscillatory source of the third-order for d 2 f =dx2k jx ¼a1 ¼ 0 and k
d 3 f =dx3k jx ¼a1 \0; k
• oscillatorilly unstable with df =dxk jx ¼a1 2 ð1; 2Þ (an oscillatory k source). (i3) If a0 ðpÞ ¼ 0; then the fixed-point of xk ¼ a1 is stability switching. (ii) Under the conditions of D1 ¼ B21 4C1 [ 0; a1 ; a2 ; a3 ¼ sortfb2 ; a; b1 g; ai 6¼ aj ; ai \ai þ 1 ;
ð2:36Þ
2
Dij ¼ ðai aj Þ 6¼ 0 for i; j 2 f1; 2; 3g; a standard form of the 1-dimensional forward discrete system in Eq. (2.31) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ:
ð2:37Þ
2.1 Period-1 Cubic Discrete Systems
99
(ii1a) if a0 ðpÞ [ 0; then the fixed-points of xk ¼ a1 is monotonically unstable with df =dxk jx ¼a1 2 ð0; 1Þ (a monotonic source). k (ii1b) If a0 ðpÞ [ 0; then the fixed-points of xk ¼ a2 is • monotonically stable with df =dxk jx ¼a2 2 ð1; 0Þ (a monotonic sink); k • invariantly stable with df =dxk jx ¼a2 ¼ 1 (an invariant sink); k • oscillatorilly stable with df =dxk jx ¼a2 2 ð2; 1Þ (an oscillatory k sink). • flipped with df =dxk jx ¼a2 ¼ 2; which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a2 k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a2 k \0; – an oscillatory sink of the third-order for d 2 f =dx2k jx ¼a2 ¼ 0 and k
d 3 f =dx3k jx ¼a2 [ 0; k
• oscillatorilly unstable with df =dxk jx ¼a2 2 ð1; 2Þ (an oscillatory k source). (ii1c) If a0 ðpÞ [ 0; then the fixed-points of xk ¼ a3 ; is monotonically unstable with df =dxk jx ¼a3 2 ð0; 1Þ (a monotonic source). k (ii2a) If a0 ðpÞ\0; then the fixed-points of xk ¼ a1 is • monotonically stable with df =dxk jx ¼a1 2 ð1; 0Þ (a monotonic sink); k • invariantly stable with df =dxk jx ¼a1 ¼ 1 (an invariant sink); k • oscillatorilly stable with df =dxk jx ¼a1 2 ð2; 1Þ (an oscillatory k sink); • flipped with df =dxk jx ¼a1 ¼ 2 (an oscillatory upper-saddle of the k
second-order if d 2 f =dx2k jx ¼a1 [ 0Þ; k • oscillatorilly unstable with df =dxk jx ¼a2 2 ð1; 2Þ (an oscillatory k source). (ii2b) If a0 ðpÞ\0; then the fixed-points of xk ¼ a2 is monotonically unstable with df =dxk jx ¼a2 2 ð0; 1Þ (a monotonic source). k (ii2c) If a0 ðpÞ\0; then the fixed-points of xk ¼ a3 is • monotonically stable with df =dxk jx ¼a3 2 ð1; 0Þ (a monotonic k sink); • invariantly stable with df =dxk jx ¼a3 ¼ 1 (an invariant sink); k
100
2 Cubic Nonlinear Discrete Systems
• oscillatorilly stable with df =dxk jx ¼a3 2 ð2; 1Þ (an oscillatory k source); • flipped with df =dxk jx ¼a3 ¼ 2 (an oscillatory lower-saddle of the k
second-order for d 2 f =dx2k jx ¼a3 \0Þ; k • oscillatorilly unstable with df =dxk jx ¼a3 2 ð1; 2Þ (an oscillatory k source). (iii) Under a condition of D1 ¼ B21 4C1 [ 0; a1 ; a2 ; a3 ¼ sortfb2 ; a; b1 g; ai 6¼ aj ; ai ai þ 1
ð2:38Þ
2
D12 ¼ ða1 a2 Þ ¼ 0; for i; j 2 f1; 2; 3g a standard form of the 1-dimensional forward discrete system in Eq. (2.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ:
ð2:39Þ
(iii1a) If a0 ðpÞ [ 0; then the fixed-points of xk ¼ a1 is monotonically unstable with d 2 f =dx2k jx ¼a1 \0 (a monotonic lower-saddle of the second-order). k (iii1b) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a2 is monotonically unstable with df =dxk jx ¼a2 2 ð0; 1Þ (a monotonic source). k (iii1c) The bifurcation of fixed-point at xk ¼ a1 for the two different fixed-points switching is a monotonic lower-saddle-node switching bifurcation of the second-order at a point p ¼ p1 . (iii2a) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is monotonically unstable with d 2 f =dx2k jx ¼a1 [ 0 (a monotonic upper-saddle of the secondk order). (iii2b) If a0 ðpÞ\0; then the fixed-point of xk ¼ a2 is • monotonically stable with df =dxk jx ¼a2 2 ð1; 0Þ (a monotonic k sink); • invariantly stable with df =dxk jx ¼a2 ¼ 1 (an invariant sink); k • oscillatorilly stable with df =dxk jx ¼a2 2 ð2; 1Þ (an oscillatory k sink); • flipped with df =dxk jx ¼a2 ¼ 2 (an oscillatory lower-saddle of the k
second-order if d 2 f =dx2k jx ¼a2 \0Þ; k • oscillatorilly unstable with df =dxk jx ¼a2 2 ð1; 2Þ (an oscillak tory source).
2.1 Period-1 Cubic Discrete Systems
101
(iii2c) The bifurcation of fixed-point at xk ¼ a1 for the two different fixed-point switching is a monotonic upper-saddle-node switching bifurcation of the second order at a point p ¼ p1 . (iv) For D1 ¼ B21 4C1 [ 0; a1 ; a2 ; a3 ¼ sortfb2 ; a; b1 g; ai 6¼ aj ; ai ai þ 1
ð2:40Þ
2
D23 ¼ ða2 a3 Þ ¼ 0; for i; j 2 f1; 2; 3g a standard form of the 1-dimensional discrete system in Eq. (2.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þ2 :
ð2:41Þ
(iv1a) If a0 ðpÞ [ 0; then the fixed-points of xk ¼ a2 is monotonically unstable with d 2 f =dx2k jx ¼a2 [ 0 (a monotonic upper-saddle of the secondk order). (iv1b) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable with df =dxk jx ¼a1 2 ð0; 1Þ (a monotonic source). k (iv1c) The bifurcation of fixed-point at xk ¼ a2 for the two different fixed-points switching is a monotonic upper-saddle-node switching bifurcation of the second order at a point p ¼ p1 . (iv2a) If a0 ðpÞ\0; then the fixed-point of xk ¼ a2 is monotonically unstable with d 2 f =dx2k jx ¼a2 \0 (a monotonic lower-saddle of the second-order). k (iv2b) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is • monotonically stable with df =dxk jx ¼a1 2 ð1; 0Þ (a monotonic k sink); • invariantly stable with df =dxk jx ¼a1 ¼ 1 (an invariant sink); • oscillatorilly stable with df =dxk jx ¼a1 2 ð2; 1Þ (an oscillatory sink); • flipped with df =dxk jx ¼a1 ¼ 2 (an oscillatory upper-saddle of the k
second-order for d 2 f =dx2k jx ¼a1 [ 0Þ; k • oscillatorilly unstable with df =dxk jx ¼a1 2 ð1; 2Þ (an oscillak tory source). (iv2c) The bifurcation of fixed-point at xk ¼ a2 for the two different fixed-point switching is a monotonic lower-saddle-node bifurcation of the second-order at a point p ¼ p1 .
102
2 Cubic Nonlinear Discrete Systems
(v) For D1 ¼ B21 4C1 0; a1 ; a2 ; a3 ¼ sortfb2 ; a; b1 g; ai 6¼ aj ; ai ai þ 1 ;
ð2:42Þ
2
Dij ¼ ðai aj Þ ¼ 0 for i; j ¼ 1; 2; 3 but i 6¼ j; a standard form of the 1-dimensional forward discrete system in Eq. (2.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ3 :
ð2:43Þ
(v1a) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable (a third-order monotonic source, d 3 f =dx3k jx ¼a1 [ 0Þ. k (v1b) The bifurcation of fixed-point at xk ¼ a1 for three different fixed-points switching is a monotonic source switching bifurcation of the third-order at a point p ¼ p1 . (v2a) If a0 ðpÞ\0; then the fixed-point of x ¼ a1 is monotonically stable (a third-order monotonic sink, d 3 f =dx3k jx ¼a1 \0Þ. k (v2b) The bifurcation of fixed-point at x ¼ a2 for three fixed-points switching is a monotonic sink switching bifurcation of the third-order at a point p ¼ p1 . (vi) For D1 ¼ B21 4A1 C1 ¼ 0; a\b a1 ¼ a; a2 ¼ b; D12 ¼ ða1 a2 Þ2 6¼ 0
ð2:44Þ
at p ¼ p0 2 @X12 Rm1 , a standard form of the 1-dimensional discrete system is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þ2 :
ð2:45Þ
(vi1a) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic source, df =dxk jx ¼a1 [ 0Þ. k (vi1b) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a2 is monotonically unstable (a monotonic upper-saddle of the second-order, d 2 f =dx2k jx ¼a2 [ 0Þ. k (vi1c) The bifurcation of fixed-point at x ¼ a2 for two different fixed-point vanishing or appearance is a monotonic upper-saddle-node appearing bifurcation of the second-order at a point p ¼ p0 2 @X12 . (vi2a) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is
2.1 Period-1 Cubic Discrete Systems
103
• monotonically stable with df =dxk jx ¼a1 2 ð1; 0Þ (a monotonic k sink); • invariantly stable with df =dxk jx ¼a1 ¼ 1 (an invariant sink); • oscillatorilly stable with df =dxk jx ¼a1 2 ð2; 1Þ (an oscillatory sink); • flipped with df =dxk jx ¼a1 ¼ 2 (an oscillatory upper-saddle of the k
second-order for d 2 f =dx2k jx ¼a1 [ 0Þ; k • oscillatorilly unstable with df =dxk jx ¼a1 2 ð1; 2Þ (an oscillak tory source). (vi2b) If a0 ðpÞ\0; then the fixed-point of xk ¼ a2 is monotonically unstable (a monotonic lower-saddle of the second-order, d 2 f =dx2k jx ¼a2 \0Þ. k (vi2c) The bifurcation of fixed-point at x ¼ a2 for two different fixed-points vanishing or appearance is a monotonic lower-saddle-node appearing bifurcation of the second order at a point p ¼ p0 2 @X12 . (vii) For D1 ¼ B21 4A1 C1 ¼ 0; a [ b a1 ¼ b; a2 ¼ a; D12 ¼ ða1 a2 Þ2 6¼ 0
ð2:46Þ
at p ¼ p0 2 @X12 Rm1 , a standard form of the 1-dimensional, forward discrete system is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ:
ð2:47Þ
(vii1a) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic lower-saddle of the second-order, d 2 f =dx2k jx ¼a1 \0Þ. k (vii1b) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a2 is monotonically unstable (a monotonic source, df =dxk jx ¼a2 [ 0Þ. k (vii1c) The bifurcation of fixed-point at x ¼ a1 for two different fixed-points vanishing or appearance is a monotonic lower-saddle-node appearing bifurcation of the second order at a point p ¼ p0 2 @X12 . (vii2a) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is monotonically unstable (a monotonically upper-saddle of the second-order, d 2 f =dx2k jx ¼a1 [ 0Þ. k (vii2b) If a0 ðpÞ\0; then the fixed-point of xk ¼ a2 is • monotonically stable with df =dxk jx ¼a2 2 ð1; 0Þ (a monotonic k sink); • invariantly stable with df =dxk jx ¼a2 ¼ 1 (an invariant sink); • oscillatorilly stable with df =dxk jx ¼a2 2 ð2; 1Þ (an oscillatory sink);
104
2 Cubic Nonlinear Discrete Systems
• flipped with df =dxk jx ¼a2 ¼ 2 (an oscillatory lower-saddle of the k
second-order if d 2 f =dx2k jx ¼a2 \0Þ; k • oscillatorilly unstable with df =dxk jx ¼a2 2 ð1; 2Þ (an oscillak tory source). (vii2c) The bifurcation of fixed-point at x ¼ a1 for two different fixed-points vanishing or appearance is a monotonically upper-saddle-node appearing bifurcation of the second-order at a point p ¼ p0 2 @X12 . (viii) For D1 ¼ B21 4A1 C1 ¼ 0; a ¼ b a2 ¼ a; a2 ¼ a3 ¼ b;
ð2:48Þ
2
D12 ¼ ða1 a2 Þ ¼ 0 at p ¼ p0 2 @X12 Rm1 , a standard form of the 1-dimensional, forward discrete system is xk þ 1 ¼ xk þ 1 þ f ðxk ; pÞ ¼ a0 ðxk a1 Þ3 :
ð2:49Þ
(viii1a) If a0 ðpÞ [ 0; then the fixed-point of xk ¼ a1 is monotonically unstable (a third-order monotonic source, d 3 f =dx3k jx ¼a1 [ 0Þ. k (viii1b) The bifurcation of fixed-point at xk ¼ a1 for one fixed-point to three different three fixed-point switching is a monotonic source switching bifurcation of the third order at a point p ¼ p0 2 @X12 . (viii2a) If a0 ðpÞ\0; then the fixed-point of xk ¼ a1 is monotonically stable (a third-order monotonic sink, d 3 f =dx3k jx ¼a1 \0Þ. k (viii2b) The bifurcation of fixed-point at xk ¼ a1 for one fixed-point to three different three fixed-point switching is a monotonic sink switching bifurcation of the third order at a point p ¼ p0 2 @X12 . Proof The proof is similar to Theorem 1.2.
2.2
■
Period-1 to Period-2 Bifurcation Trees
In this section, period-1 stability and bifurcation of cubic nonlinear discrete systems are discussed graphically and period-2 fixed-points are also presented for a better understanding of complex bifurcations. The 1-dimensional cubic nonlinear discrete system can be expressed by a factor of ðxk aÞ and a quadratic form of a0 ðx2k þ B1 xk þ C1 Þ as in Eq. (2.1). Three period-1 fixed-points do not have any intersections. Thus, only one bifurcation
2.2 Period-1 to Period-2 Bifurcation Trees
105
occurs at D1 ¼ B21 4C1 ¼ 0: The bifurcation of fixed-points occurs at the double or triple repeated fixed-point at the boundary of p0 2 @X12 . For D1 ¼ B21 4C1 [ 0; x2k þ B1 xk þ C1 ¼ 0 gives two fixed-points of xk ¼ b1 ; b2 . For a0 [ 0; if a [ maxfb1 ; b2 g, then the fixed-point of xk ¼ a3 ¼ a is monotonically unstable, and the fixed-point of xk ¼ a2 ¼ maxfb1 ; b2 g is from monotonically stable to oscillatorilly unstable, and the fixed-points of xk ¼ a1 ¼ minfb1 ; b2 g is monotonically unstable. For D1 ¼ B21 4C1 \0; x2k þ B1 xk þ C1 ¼ 0 does not have any real solutions. For D1 ¼ B21 4C1 ¼ 0; x2k þ B1 xk þ C1 ¼ 0 has a double repeated fixed-point of x ¼ b ¼ 12B1 . The condition of D1 ¼ B21 4C1 ¼ 0 gives B21 ¼ 4C1 :
ð2:50Þ
From Eq. (2.2), one obtains B1 ¼ a þ
B C B and C1 ¼ þ aða þ Þ: A A A
ð2:51Þ
Thus, equation (2.50) gives a¼
ffi B 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 3AC : 3A 3A
ð2:52Þ
Further, the double repeated fixed-point of xk ¼ b ¼ 12B1 is given by xk ¼ b ¼
ffi B 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B2 3AC : 3A 3A
ð2:53Þ
If B2 [ 3AC; such a double repeated fixed-point exists. If B2 \3AC; such a double repeated fixed-point does not exist. From Eq. (2.51), another fixed-point is xk ¼ a; which is different from xk ¼ b: If B2 ¼ 3AC; such a double repeated fixed-point with fixed-point of xk ¼ a has an intersected point at xk ¼ 3AB : The bifurcation diagram for a [ maxfb1 ; b2 g and a0 [ 0 is presented in Fig. 2.1 (i). The stable and unstable fixed-points varying with the vector parameter are presented by solid and dashed curves, respectively. Such a fixed-point of xk ¼ b is a monotonic lower-saddle-node (mLSN) appearing or vanishing bifurcation. • The fixed-point of xk ¼ a is a monotonic source (mSO), which is monotonically unstable. • The fixed-point of xk ¼ maxfb1 ; b2 g is – – – – –
a monotonic sink (mSI), an invariant sink (iSI), an oscillatory sink (oSI), an oscillatory saddle bifurcation (oUS or oLS), an oscillatory source (oSO).
106
2 Cubic Nonlinear Discrete Systems a0 > 0
a3
mSO
a0 < 0 iSI
oSI
mSI
oSO
oSO
oSI
mSI
a2
a3
P-2
mSO
a2
iSI
mLSN
mUSN
P-2
mSI
P-2
iSI
mSO
oSI
xk∗
oSO
xk∗
a1
a1
P-2
|| p ||
Δ1 < 0
Δ1 = 0
Δ1 > 0
|| p ||
Δ1 < 0
Δ1 = 0
(i)
Δ1 > 0
(ii) a3
a0 > 0
a0 < 0
mSO
oSO oSI
iSI
mLSN oSI
oSO
mSO
x
a2 mSO mSI
a1
P-2 iSI
oSI
∗ k
x || p ||
Δ1 < 0
Δ1 = 0
a2
iSI
mSI
∗ k
P-2
mSI
P-2 mUSN
a3
a1
P-2
Δ1 > 0
|| p ||
(iii)
oSO
Δ1 < 0
Δ1 = 0
Δ1 > 0
(iv)
Fig. 2.1 Stability and bifurcation of three independent fixed-points in the 1-dimensional, cubic nonlinear discrete system: For a [ fb1 ; b2 g: (i) a mLSN bifurcation (a0 [ 0Þ, (ii) a mUSN bifurcation (a0 \0Þ. For a\fb1 ; b2 g: (iii) a mUSN bifurcation (a0 [ 0Þ, (iv) a mLSN bifurcation (a0 \0Þ. mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; iSI: invariant sink). The period-2 fixed-points are presented on the period-1 bifurcation trees through red curves
• The fixed-point of xk ¼ minfb1 ; b2 g is a monotonic source (mSO), which is monotonically unstable. However, the bifurcation diagram for a [ maxfb1 ; b2 g and a0 \0 is presented in Fig. 2.1(ii). The fixed-point of xk ¼ b is a monotonic upper-saddle-node (mUSN) appearing or vanishing bifurcation. • The fixed-point of xk ¼ a is – a monotonic sink (mSI) first, – an invariant sink (iSI), – an oscillatory sink (oSI),
2.2 Period-1 to Period-2 Bifurcation Trees
107
– an oscillatory saddle bifurcation (oUS or oLS), – an oscillatory source (oSO). • The fixed-point of xk ¼ maxfb1 ; b2 g is a monotonic source (mSO). • The fixed-point of xk ¼ minfb1 ; b2 g is – – – – –
a monotonic sink (mSI) first, an invariant sink (iSI), an oscillatory sink (oSI), an oscillatory saddle bifurcation (oUS, oLS), an oscillatory source (oSO).
The bifurcation diagram for a\minfb1 ; b2 g and a0 [ 0 is presented in Fig. 2.1(iii). The fixed-point of xk ¼ b is a monotonic upper-saddle-node (mUSN) appearing or vanishing bifurcation. • The fixed-point of xk ¼ maxfb1 ; b2 g is a monotonic source (mSO). • The fixed-point of xk ¼ minfb1 ; b2 g is – – – – –
a monotonic sink (mSI) first, an invariant sink (iSI), an oscillatory sink (oSO), an oscillatory saddle bifurcation (oUS, oLS), an oscillatory source (oSO).
• The fixed-point of xk ¼ a is a monotonic source (mSO). The bifurcation diagram for a\minfb1 ; b2 g and a0 \0 is presented in Fig. 2.1(iv). The fixed-point of xk ¼ b is a monotonic lower-saddle-node (mLSN) appearing or vanishing bifurcation. • The fixed-point of xk ¼ maxfb1 ; b2 g is – – – – –
a monotonic sink (mSI) first, an invariant sink (iSI), an oscillatory sink (oSI), an oscillatory saddle bifurcation (oUS, oLS), an oscillatory source (oSO).
• The fixed-point of xk ¼ minfb1 ; b2 g is a monotonic source (mSO). • The fixed-point of xk ¼ a is – – – – –
a monotonic sink (mSI) first, an invariant sink (iSI), an oscillatory sink (oSI), an oscillatory saddle bifurcation (oUS, oLS), an oscillatory source (oSO).
108
2 Cubic Nonlinear Discrete Systems
Table 2.1 Stability and bifurcation of a 1-dimensional cubic nonlinear discrete system (xk þ 1 ¼ xk þ a0 ðxk aÞ½x2k þ B1 ðpÞxk þ C1 ðpÞÞ Figure 2.1
a2
a1
a3
Bifurcation
(i) a0 [ 0 (ii) a0 \0 (iii) a0 \0 (iv) a0 \0
a [ maxfb1 ; b2 g mSO mSI-oSO mSO 2nd mLSN a [ maxfb1 ; b2 g mSI-oSO mSO mSI-oSO 2nd mUSN a\minfb1 ; b2 g mSO mSI-oSO mSO 2nd mUSN a\minfb1 ; b2 g mSI-oSO mSO mSI-oSO 2nd mLSN ffiffiffiffiffi ffi p 2 Notice that b1;2 ¼ 12ðB1 D1 Þ; D1 ¼ B1 4C1 . Bifurcation condition: D1 ¼ 0: (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; mSI-oSO: for monotonic sink to oscillatory source via the oscillatory sink)
The stability and bifurcations of fixed-points of the 1-dimensional cubic nonlinear, forward discrete system are summarized in Table 2.1. The period-2 fixed-points are also presented as well through the period-doubling. For D1 ¼ B21 4C1 0; the 1-dimensional cubic nonlinear, forward discrete system in Eq. (2.1) have three fixed-points. Three fixed-points are xk ¼ a; b1 ; b2 : Assume ai ai þ 1 for i ¼ 1; 2 with a1;2;3 ¼ sortða; b1 ; b2 Þ. With varying parameters, two of three fixed-points (i.e., ai ¼ aj for i; j 2 f1; 2; 3g but i 6¼ jÞ will be intersected each other with the corresponding discriminant of Dij ¼ ðai aj Þ2 ¼ 0; and in the vicinity of the intersection point, Dij ¼ ðai aj Þ2 [ 0: The two intersected points of a ¼ b1;2 gives a¼
B1 1
2 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B21 4C1 ;
ð2:54Þ
or a2 þ aB1 ¼ C1 :
ð2:55Þ
With Eqs. (2.2) or (2.51), the foregoing equation gives a ¼ b1;2 ¼
ffi B 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 3AC : 3A 3A
ð2:56Þ
If B2 [ 3AC; such a intersected point of x ¼ a and x ¼ b1 or x ¼ b2 exists. If B \3AC; such an intersected point does not exist. Such the intersection point is for the two fixed-point switching, which is called the monotonic saddle-node bifurcation. The stability and bifurcation diagrams for a0 [ 0 and a0 \0 are presented in Fig. 2.2(i) and (ii), respectively. Three fixed-points are intersected at a point with Dij ¼ ðai aj Þ2 ¼ 0 and a1 ¼ a2 ¼ a3 ¼ 3AB ; and in the vicinity of the intersection point, Dij ¼ ðai aj Þ2 [ 0 for i; j ¼ 1; 2; 3 but i 6¼ j: The intersection points for a0 [ 0 and a0 \0 are called the monotonic source and sink bifurcations of the third 2
2.2 Period-1 to Period-2 Bifurcation Trees a0 > 0
109 a0 < 0
mSO
a3
mSO
oSI
mUSN
oSO oSO
P-2
mSI
mSO mSO mUSN
a3 mLSN
P-2
oSI mSI mLSN
P-2
P-2 mSO
P-2
xk∗
oSI
a2
mSO
mSI
mUSN mSO
mLSN
xk∗
mSO
P-2
Δ 23 = 0
Δ12 = 0 Δ13 = 0
oSO
P-2
mSI
a1 oSO Δ 23 = 0
Δ12 = 0 Δ13 = 0
|| p ||
(i) a0 > 0
oSO
P-1
a2
a1
|| p ||
oSI
oSI
mSI oSI
(ii) mSO
oSO
a0 < 0
oSO
P-2 mSO
3rd mSO mSO mSI
a3
P-2 P-2
3rd mSI
a3
mSO
mSI mSI
a2
a2 a1
|| p ||
oSI
oSI
P-2
xk∗
mSI
xk∗
mSO
Δ12 = 0 Δ 23 = 0 Δ13 = 0
(iii)
P-2
a1
|| p ||
oSI
oSO P-2
oSI
Δ12 = 0 Δ 23 = 0 Δ13 = 0
(iv)
Fig. 2.2 Stability and bifurcation of fixed-points switching in the 1-dimensional, cubic nonlinear discrete system. For two fixed-points switching: (i) a0 [ 0; (ii) a0 \0: For three fixed-point switching: (iii) 3rd order monotonic source bifurcation (a0 [ 0Þ, (iv) 3rd order monotonic sink bifurcation (a0 \0Þ. mLSN: mono lower-saddle-node, mUSN: monotonic upper-saddle-node. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; iSI: invariant sink). The period-2 fixed-points are presented on the period-1 bifurcation trees through red curves
order, respectively. The corresponding stability and bifurcation diagrams for three fixed-points switching are presented in Fig. 2.2(iii) and (iv). The period-2 fixed-points are also presented as well through the period-doubling. In the 1-dimensional cubic nonlinear, forward discrete system of Eq. (2.1), x2k þ B1 xk þ C1 ¼ 0 gives two fixed-points of xk ¼ b1 ; b2 for D1 ¼ B21 4C1 [ 0: One of the two fixed-points has one intersection with xk ¼ a and there are three different fixed-points for a ¼ a2 2 ðminfb1 ; b2 g; maxfb1 ; b2 gÞ: For this case, the intersection point occurs at a ¼ minfb1 ; b2 g for p1 2 @X23 or a ¼ maxfb1 ; b2 g for p2 2 @X23 . The bifurcation of fixed-point occurs at the double repeated fixed-point at D1 ¼ B21 4C1 ¼ 0 for p0 2 @X12 . Such a bifurcation is a monotonic lower- or upper-saddle-node bifurcation. For a ¼ 12B1 with D1 ¼ B21 4C1 ¼ 0; three fixed-points are repeated with three multiplicity. The intersected point of a ¼ 12B1 with Eq. (2.51) gives
110
2 Cubic Nonlinear Discrete Systems 1 2
B A
a ¼ ða þ Þ:
ð2:57Þ
Thus a¼
B : 3A
ð2:58Þ
Such a bifurcation at the intersection point is also a third-order monotonic source or sink bifurcation. The bifurcation diagrams for six cases of three fixed-points with one intersection are presented in Fig. 2.3(i)–(vi) and the stability and bifurcations are listed in Table 2.2. The corresponding period-2 fixed points are sketched as well. The 1-dimensional cubic nonlinear system is expressed by a factor of ðxk aÞ and a quadratic form of a0 ðx2k þ B1 xk þ C1 Þ as in Eq. (2.1). For D1 ¼ B21 4C1 [ 0; x2k þ B1 xk þ C1 ¼ 0 gives two fixed-points of xk ¼ b1 ; b2 . The two fixed-points do not have any intersections with xk ¼ a: For D1 ¼ B21 4C1 ¼ 0; there are two parameters of p1 2 @X12 and p2 2 @X12 , and the two double repeated fixed-points are at xk ðpi Þ ¼ 12B1 ðpi Þ (i ¼ 1; 2Þ. With the two repeated fixed-points, the two fixed-points of xk ¼ b1 ; b2 formed a closed path in the bifurcation diagram. The bifurcation points of fixed-point occur at the two double repeated fixed-points of D1 ¼ B21 4C1 ¼ 0 for pi 2 @X12 (xk ¼ b1 ; b2 ). Such a bifurcation at the intersection point is also a monotonic lower or upper-saddle-node bifurcation. The stable and unstable fixed-points varying with the vector parameter are also represented by solid and dashed curves, respectively. The bifurcation diagrams for four cases of three fixed-points are presented in Fig. 2.4(i)–(vi), and the stability and bifurcations are summarized in Table 2.3. If the two repeated fixed-points have two intersections with xk ¼ aðpi Þ (i ¼ 1; 2Þ, i.e., aðpi Þ ¼ 12B1 ðpi Þ: The two triple repeated fixed-points at xk ¼ aðpi Þ (i ¼ 1; 2Þ are the third-order, monotonic sink or source bifurcations. The stability and bifurcation diagrams of fixed-points are formed by the fixed-point of xk ¼ aðpÞ and the closed loop of fixed-points of xk ¼ b1 ; b2 , as shown in Fig. 2.4(v) and (vi) for a0 [ 0 and a0 \0; respectively. The stability and bifurcations are also summarized in Table 2.3, and the corresponding period-2 fixed-points are sketched as well. In the 1-dimensional cubic nonlinear system in Eq. (2.1), x2k þ B1 xk þ C1 ¼ 0 for D1 ¼ B21 4C1 [ 0 gives two fixed-points of xk ¼ b1 ; b2 , which have an intersection with xk ¼ a: The intersected point are at a ¼ b1 or a ¼ b2 with Eq. (2.55). The double repeated fixed-point requires D1 ¼ B21 4C1 ¼ 0 and the two fixed-points of xk ¼ a; b1 under D1 ¼ B21 4C1 [ 0 and xk ¼ b2 for D1 ¼ B21 4C1 \0: Similarly, the two fixed-points of xk ¼ a; b2 under D1 ¼ B21 4C1 [ 0 and xk ¼ b2 for D1 ¼ B21 4C1 \0: Such a bifurcation for two fixed-points appearance and vanishing is called a monotonic lower or upper-saddle-node appearing bifurcation. The stable and unstable fixed-points varying with the vector
2.2 Period-1 to Period-2 Bifurcation Trees a0 > 0
a0 < 0
mUSN
mSO
mSI oSI
a oSI mSI
oSO
xk∗
mUSN mSO
min(b1 , b2 )
Δ12 > 0
Δ1 < 0 Δ1 = 0 Δ1 > 0 Δ12 = 0 Δ12 > 0
xk∗
oSO
Δ12 > 0
(ii) max(b1 , b2 )
a0 > 0
mSO
oSO
a0 < 0
P-1
oSI
P-2
P-2
P-2 mLSN
mSO
mSI
xk∗
Δ 23 > 0 Δ1 < 0
Δ1 = 0 Δ1 > 0 Δ 23 = 0 Δ 23 > 0
a
oSO
mUSN
P-2
Δ 23 > 0
P-2
Δ1 = 0 Δ1 > 0 Δ 23 = 0 Δ 23 > 0
Δ1 < 0
|| p ||
mSO
oSI oSO
(iii)
(iv) max(b1 , b2 )
a0 > 0
mSO
P-1
3rd mSO
mSI
oSI
oSO
oSI
min(b1 , b2 ) xk∗
Δ1 = 0
Δ1 > 0
a=b
P-1
a min(b1 , b2 )
mSI
oSI
oSO P-2
P-2
P-2
|| p ||
(v)
mSO
3rd mSI mSI
oSO
xk∗ Δ1 < 0
P-2
mSI oSI
mSO
oSO
a
mSO
a=b
max(b1 , b2 )
a0 < 0
P-2
|| p ||
i∈{1,2}
mSO
a
|| p ||
P-1
a = min bi
mLSN
mSO
max(b1 , b2
mSI
oSO
mSI oSI mSI
x
P-2
Δ1 = 0 Δ1 > 0 Δ12 = 0 Δ12 > 0
Δ1 < 0
(i)
∗ k
min(b1 , b2 )
oSI
|| p ||
mUSN
P-2
mSI
P-1
mSO
P-1
mLSN mSO
a
P-2
P-2
mSI
oSI
oSO
P-2
mLSN
|| p ||
111
Δ1 < 0
Δ1 = 0
Δ1 > 0
(vi)
Fig. 2.3 Stability and bifurcation of fixed-points in the 1-dimensional, cubic nonlinear discrete system before the oscillatory saddle bifurcation for sink branches: (i) the mLSN (D1 ¼ 0Þ and mUSN (a ¼ maxfb1 ; b2 g) bifurcations (a0 [ 0Þ, (ii) the mUSN (D1 ¼ 0Þ and mLSN (a ¼ maxfb1 ; b2 g) bifurcations (a0 \0Þ. (iii) the mUSN (D1 ¼ 0Þ and mLSN (a ¼ minfb1 ; b2 g) bifurcations (a0 [ 0Þ, (iv) the mLSN (D1 ¼ 0Þ and mUSN (a ¼ minfb1 ; b2 g) bifurcations (a0 \0Þ, (v) the third order mSO bifurcation (D1 ¼ 0 and a ¼ bÞ (a0 [ 0Þ, (vi) the third-order mSI bifurcation (D1 ¼ 0 and a ¼ bÞ (a0 \0Þ. The bifurcation points are marked by circular symbols. (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle; oUS: oscillatory upper-saddle; oLS: oscillatory lower-saddle; iSI: invariant sink). The period-2 fixed-points are presented on the period-1 bifurcation trees through the red curves
a1 a2
a3 nd
B-I nd
B-II
B-III
mSO mSI-oSO-mSI mSO 2 mLSN 2 mUSN a ¼ maxfb1 ; b2 g mSI-oSO-mSI mSO mSI-oSO-mSI 2nd mUSN 2nd mLSN a ¼ maxfb1 ; b2 g mSO mSI-oSO-mSI mSO 2nd mUSN 2nd mUSN a ¼ minfb1 ; b2 g mSI-oSO-mSI mSO mSI-oSO-mSI 2nd mLSN 2nd mUSN a ¼ minfb1 ; b2 g mSO mSI-oSO-mSI mSO D1 ¼ 0 a ¼ 12B1 3rd order SO 1 mSI-oSO-mSI mSO mSI-oSO-mSI D1 ¼ 0 a ¼ 2B1 3rd order SI ffiffiffiffiffi ffi p Notice that b1;2 ¼ 12ðB1 D1 Þ; D1 ¼ B21 4C1 . Bifurcation-I (B-I): D1 ¼ 0: Bifurcation-II (B-II): a ¼ maxfb1 ; b2 g or a ¼ minfb1 ; b2 g. Bifurcation-III (B-III): D1 ¼ 0 and a ¼ 2AB11 : mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node. mSO: monotonic source, mSI: monotonic sink. mSI-oSO-mSI: from monotonic sink to oscillatory source then to monotonic sink
(i) a0 [ 0 (ii) a0 \0 (iii) a0 [ 0 (iv) a0 \0 (v) a0 [ 0 (vi) a0 \0
Figure 2.3
Table 2.2 Stability and bifurcation of a 1-dimensional cubic nonlinear system (_x ¼ a0 ðx aÞ½x2 þ B1 ðpÞx þ C1 ðpÞ; a 2 ðminfb1 ; b2 g; maxfb1 ; b2 gÞÞ
112 2 Cubic Nonlinear Discrete Systems
2.2 Period-1 to Period-2 Bifurcation Trees
113
(i)
(ii)
(iii)
( iv )
(v )
(v i)
Fig. 2.4 Stability and bifurcation of three fixed-points in the 1-dimensional, cubic nonlinear discrete system: For a\fb1 ; b2 g: (i) two mUSN bifurcations (a0 [ 0Þ, (ii) two mLSN bifurcations (a0 \0Þ. For a [ fb1 ; b2 g: (iii) two mLSN bifurcations (a0 [ 0Þ, (iv) two mUSN bifurcations (a0 \0Þ. (v) two 3rd order mSO bifurcations (a0 [ 0Þ, (vi) two 3rd mSI bifurcations (a0 \0Þ.Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. (mLSN: monotonic lower-saddle-node; mUSN: monotonic upper-saddle-node; (mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle). The period-2 fixed-points are presented on the period-1 bifurcation trees through red curves
114
2 Cubic Nonlinear Discrete Systems
Table 2.3 Stability and bifurcation of a 1-dimensional cubic nonlinear system (xk þ 1 ¼ xk þ a0 ðxk aÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ; a 2 ðminfb1 ; b2 g; maxfb1 ; b2 gÞÞ Figure 2.4
a
b1
b2
B-I
B-II
B-III
(i) a0 [ 0 (ii) a0 \0 (iii) a0 [ 0 (iv) a0 \0 (v) a0 \0 (iv) a0 \0
mSO mSI-oSO-mSI mSO mUSN mUSN – mSI-oSO mSO mSI-oSO mLSN mLSN – mSO mSI-oSO-mSI mSO mLSN mLSN – mSI-oSO mSO mSI-oSO mUSN mUSN – mSO mSI-oSO-mSI mSO – – 3rdmSO mSI-oSO-mSI mSO mSI-oSO-mSI – – 3rd mSI ffiffiffiffiffi ffi p Notice that b1;2 ¼ 12ðB1 D1 Þ; D1 ¼ B21 4C1 . Bifurcation-I (B-I): D1 ¼ 0: Bifurcation-II (B-II): a ¼ maxfb1 ; b2 g. Bifurcation-III(B-III): a ¼ minfb1 ; b2 g. (mLSN: monotonic lower-saddle-node; mUSN: monotonic upper-saddle-node; mSI-oSO: monotonic sink to oscillatory source via oscillatory sink.)
parameter are also represented by solid and dashed curves, respectively. The bifurcation diagrams for four cases of three fixed-points are presented in Fig. 2.5 (i)–(vi). If the double repeated fixed-point has an intersection with xk ¼ aðp0 Þ ¼ 12B1 ¼ 3AB : The two triple repeated fixed-points of xk ¼ aðp0 Þ for a0 [ 0 and a0 \0 are the third-order monotonic sink and source bifurcations, respectively. The stability and bifurcation diagrams of fixed-points are shown in Fig. 2.5(v) and (vi). The period-2 fixed-points are sketched through the red curves.
2.3
Higher-Order Period-1 Switching Bifurcations
Consider a 1-dimensional, cubic nonlinear, forward discrete system with a double repeated fixed-point and one simple fixed-point. (i) For b\a; the discrete system is xk þ 1 ¼ xk þ a0 ðpÞðxk bðpÞÞ2 ðxk aðpÞÞ;
ð2:59Þ
For such a system, if a0 [ 0; the double repeated fixed-point of xk ¼ b is a monotonic lower-saddle, which is unstable, and the simple fixed-point of xk ¼ a is a monotonic source, which is monotonically unstable. If a0 \0; the double repeated fixed-point of xk ¼ b is a monotonic upper-saddle, which is monotonically unstable, and the simple fixed-point of xk ¼ a is from a monotonic sink to the oscillatory source. Such a fixed-point is from monotonically stable to oscillatorilly unstable. (ii) For b [ a; the 1-dimensional cubic nonlinear, forward discrete system is xk þ 1 ¼ xk þ a0 ðpÞðxk aðpÞÞðxk bðpÞÞ2 :
ð2:60Þ
For such a system, if a0 [ 0; the double-repeated fixed-point of xk ¼ b is a monotonic upper-saddle, which is monotonically unstable, and the simple
2.3 Higher-Order Period-1 Switching Bifurcations
115
(i)
(ii)
(iii)
( iv )
(v)
(v i)
Fig. 2.5 Stability and bifurcation of fixed-points in the 1-dimensi, cubic nonlinear discrete system: (i) the LSN (D1 ¼ 0Þ and mUSN (a ¼ maxfb1 ; b2 g) bifurcations (a0 [ 0Þ, (ii) the mUSN (D1 ¼ 0Þ and mLSN (a ¼ maxfb1 ; b2 g) bifurcations (a0 \0Þ. (iii) the USN (D1 ¼ 0Þ and mLSN (a ¼ minfb1 ; b2 g) bifurcations (a0 [ 0Þ, (iv) the mLSN (D1 ¼ 0Þ and USN (a ¼ minfb1 ; b2 g) bifurcations (a0 \0Þ. (v) the third order mSO bifurcation (D1 ¼ 0 and a ¼ bÞ (a0 [ 0Þ, (vi) the third order mSI bifurcation (D1 ¼ 0 and a ¼ bÞ (a0 \0Þ. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. (mLSN: monotonic lower-saddle-node; mUSN: monotonic upper-saddle-node; mSO: monotonic source; mSI: monotonic sink; oSO: oscillatory source; oSI: oscillatory sink; mLS: monotonic lower-saddle; mUS: monotonic upper-saddle). The period-2 fixed-points are presented on the period-1 bifurcation trees through red curves
116
2 Cubic Nonlinear Discrete Systems
fixed-point of xk ¼ a is a monotonic source, which is monotonically unstable. If a0 \0; the double fixed-point of xk ¼ b is a monotonic lower-saddle, which is monotonically unstable, and the simple fixed-point of xk ¼ a is from a monotonic sink to oscillatory source. Such a fixed-point is from monotonically stable to oscillatorilly unstable. (iii) For b ¼ a; the discrete system on the boundary is xk þ 1 ¼ xk þ a0 ðpÞðxk bðpÞÞ3 :
ð2:61Þ
For such a system, if a0 [ 0; the triple fixed-point of xk ¼ b with the third multiplicity is a source switching bifurcation of the third-order for the (mUS: mSO) to (mSO:mLS) fixed-point. If a0 \0; the triple fixed-point of xk ¼ b with the third multiplicity is a sink switching bifurcation of the third- order for the (mLS:mSI-oSO) to (mSO:mUS) fixed-point. With parameter changes, the bifurcation diagram for the cubic nonlinear system is presented in Fig. 2.6. The acronyms mLSN, mUSN, mSI-oSO, and mSO are for monotonic lower-saddle-node, monotonic upper-saddle-node, monotonic sink to oscillatory source, and monotonic source, respectively. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation point is marked by a circular symbol. To illustrate the stability and bifurcation of fixed-point with singularity in a 1-dimensional, cubic nonlinear system, the fixed-point of xk þ 1 ¼ xk þ a0 ðxk a1 Þ3 is presented in Fig. 2.7. The third order monotonic sink and source of fixed-points of x ¼ a1 with the third order multiplicity are stable and unstable, respectively. The stable and unstable fixed-points are depicted by solid and dashed curves, respectively. At a0 ¼ 0; the fixed-points with the 3rd order monotonic sink and source are switched, which is marked by a circular symbol.
a0 > 0
xk∗ = a
|| p1 ||
xk∗ = b
a0 < 0
x =b
mSO
mUS
xk∗ || p ||
|| p1 || P-1
∗ k
mLS ∗ k
x =b
∗ k
x =a ab
xk∗ || p ||
P-2 mSI
xk∗ = a oSO
xk∗ = a
mSI
mLS
mSO
oSO oSI
mUS
oSI P-1 P-2
ab
(ii)
Fig. 2.6 Stability and bifurcation of a triple fixed-point with a simple fixed-point in a 1-dimensional, cubic nonlinear discrete system: (i) a 3rd order source switching bifurcation for (mUS:mSO) to (mSO:mLS) switching (a0 [ 0Þ, (ii) a 3rd order monotonic sink switching bifurcation (a0 \0Þ for (mLS:mSI-oSO) to (mSI-oSO:mUS) switching. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The period-2 fixed-points are depicted through red curves
2.4 Direct Cubic Polynomial Discrete Systems Fig. 2.7 Stability of a triple fixed-point in the 1-dimensional, cubic nonlinear, forward discrete system: Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The stability switching is labelled by a circular symbol
|| p 0 ||
xk∗ = a1
xk∗ 3rd order mSI
|| p ||
2.4
117
3rd order mSO
a0 = 0
a0 < 0
a0 > 0
Direct Cubic Polynomial Discrete Systems
For the 1-dimensional, cubic nonlinear, forward discrete systems, the stability and bifurcation of fixed-points can be described through an alternative way as follows. Definition 2.2 Consider a 1-dimensional, cubic nonlinear discrete system xk þ 1 ¼ xk þ AðpÞx3k þ BðpÞx2k þ CðpÞxk þ DðpÞ a0 ðpÞ½ðxk þ
B 3 Þ þ pðpÞðxk 3A
þ
ð2:62Þ
B Þ þ qðpÞ 3A
where four scalar constants AðpÞ 6¼ 0;BðpÞ;CðpÞ and DðpÞ satisfy A ¼ a0 ; p ¼
C A
B2 ;q 3A2
¼
D BC 2B3 2þ 3 A 3A 27A
ð2:63Þ
p ¼ ðp1 ; p2 ; . . .; pm ÞT : (i) If D¼
q2 p3 þ [ 0; 4 27
ð2:64Þ
the cubic nonlinear discrete system has one fixed-point as pffiffiffiffi q pffiffiffiffi q B xk ¼ a ð þ DÞ1=3 þ ð DÞ1=3 2
2
3A
ð2:65Þ
and the corresponding standard form is 1 2
1 4
xk þ 1 ¼ xk þ a0 ðxk aÞ½ðxk þ B1 Þ2 þ ðD1 Þ ¼ a0 ðxk aÞ½x2k þ B1 xk þ C1 Þ
ð2:66Þ
118
2 Cubic Nonlinear Discrete Systems
where A ¼ a0 ; B ¼ ða þ B1 Þa0 ; C ¼ ðaB1 þ C1 Þa0 ; D ¼ aa0 C1 :
ð2:67Þ
(ii) If D¼
q2 p3 þ \0 4 27
ð2:68Þ
the cubic nonlinear discrete system has three fixed-points as pffiffiffiffi q pffiffiffiffi q B xk ¼ a ¼ ð þ DÞ1=3 þ ð DÞ1=3 ; 2 2 3A pffiffiffiffi q pffiffiffiffi q B xk ¼ b1 ¼ xð þ DÞ1=3 þ x2 ð DÞ1=3 ; 2 2 3A pffiffiffiffi q pffiffiffiffi q B xk ¼ b2 ¼ x2 ð þ DÞ1=3 þ xð DÞ1=3 ; 2 2 3A pffiffiffi pffiffiffi pffiffiffiffiffiffiffi 1 þ i 3 2 1 i 3 x¼ ;x ¼ ; i ¼ 1: 2
ð2:69Þ
2
The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ
ð2:70Þ
a1 ¼ minðb1 ; b2 ; aÞ; a3 ¼ maxðb1 ; b2 ; aÞ; a2 2 fb1 ; b2 ; ag; a2 6¼ fa1 ; a3 g
ð2:71Þ
where
(iii) If D¼
q2 p3 q2 p3 þ ¼ 0; ¼ 6¼ 0 4 27 4 27
ð2:72Þ
the 1-dimensional, cubic nonlinear discrete system has the a double repeated fixed-point with the second multiplicity plus a simple fixed-point as q 2
xk ¼ a ¼ 2ð Þ1=3
B ; 3A
xk ¼ b1 ¼ b; xk ¼ b2 ¼ b; q 2 pffiffiffi 1 þ i 3 2 ;x 2
q B ; 2 3A pffiffiffi pffiffiffiffiffiffiffi 1 i 3 ; i ¼ 1: 2
b ¼ xð Þ1=3 þ x2 ð Þ1=3 x¼
¼
ð2:73Þ
2.4 Direct Cubic Polynomial Discrete Systems
119
(iii1) The corresponding standard form for a\b is xk þ 1 ¼ xk þ a0 ðxk aÞðxk bÞ2 :
ð2:74Þ
Such a discrete flow with the fixed-point of xk ¼ b is called – a monotonic upper-saddle discrete flow of the second-order at a point p ¼ p1 2 @X12 for a0 [ 0; – a monotonic lower-saddle discrete flow of the second-order at a point p ¼ p1 2 @X12 for a0 \0. The bifurcation of fixed-point at xk ¼ b for two different fixed-points appearance or vanishing is called – a monotonic upper-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 for a0 [ 0; – a monotonic lower-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 for a0 \0. The corresponding upper (or lower)-saddle-node appearing bifurcation condition is D¼
q2 p3 q2 p3 þ ¼ 0; ¼ 6¼ 0; a\b: 4 27 4 27
ð2:75Þ
(iii2) The corresponding standard form for a [ b is xk þ 1 ¼ xk þ a0 ðxk bÞ2 ðxk aÞ:
ð2:76Þ
Such a discrete flow with the fixed-point of xk ¼ b is called – a monotonic point p ¼ p1 – a monotonic point p ¼ p1
lower-saddle discrete flow of the second-order at a 2 @X12 for a0 [ 0; upper-saddle discrete flow of the second-order at a 2 @X12 for a0 \0:
The bifurcation of fixed-point at x ¼ b for two fixed-points appearing or vanishing is called – a monotonic lower-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 for a0 [ 0; – a monotonic upper-saddle-node appearing bifurcation of the second order at a point p ¼ p1 2 @X12 for a0 \0: and the corresponding lower (or upper)-saddle-node appearing bifurcation condition is 1 4
1 27
1 4
1 27
D ¼ q2 þ p3 ¼ 0; q2 ¼ p3 6¼ 0; a [ b:
ð2:77Þ
120
2 Cubic Nonlinear Discrete Systems
(iv) If 1 4
1 27
1 4
1 27
D ¼ q2 þ p3 ¼ 0; q2 ¼ p3 ¼ 0;
ð2:78Þ
the 1-dimensional discrete system has a triple fixed-point as xk ¼ a ¼
B B B ; x ¼ b1 ¼ ; xk ¼ b2 ¼ : 3A k 3A 3A
ð2:79Þ
The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞ3 :
ð2:80Þ
Such a discrete flow at the fixed-point of xk ¼ a is called – a monotonic source discrete flow of the third-order for a0 [ 0; – a monotonic sink discrete flow of the third-order for a0 \0: The bifurcation of fixed-point at xk ¼ 3AB for one fixed-point to three fixed-points is called – a monotonic source switching bifurcation of the third-order at p ¼ p1 2 @X12 for a0 [ 0; – a monotonic sink switching bifurcation of the third-order at p ¼ p1 2 @X12 for a0 [ 0. The corresponding switching bifurcation condition of the third-order source and sink is 1 4
1 27
1 4
1 27
D ¼ q2 þ p3 ¼ 0; q2 ¼ p3 ¼ 0:
ð2:81Þ
From the afore-described stability and bifurcation of the 1-dimensional, cubic nonlinear forward discrete systems, the stability and bifurcations of fixed-point in Eq. (2.62) are similar to Theorem 2.1. The 1-dimensional cubic nonlinear, forward discrete system has the following four cases: (i) One real solution of simple fixed-point of xk ¼ a requires D ¼ ðq2Þ2 þ ðp3Þ3 [ 0 for Eq. (2.62), equivalent to D1 ¼ B21 4C1 \0 for Eq. (2.1). Aa3 þ Ba2 þ Ca þ D ¼ 0:
ð2:82Þ
(ii) Three different solutions of simple fixed-points of xk ¼ a; b1 ; b2 require D\0 for Eq. (2.62), equivalent to D1 ¼ B21 4C1 [ 0 for Eq. (2.1).
2.4 Direct Cubic Polynomial Discrete Systems
121
1 Aa3 þ Ba2 þ Ca þ D ¼ 0 and b1;2 ¼ ðB1
2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B21 4C1 Þ
ð2:83Þ
(iii) The double repeated fixed-point requires D ¼ 0 and ðq2Þ2 ¼ ðp3Þ3 6¼ 0 for Eq. (2.62), equivalent to D1 ¼ B21 4C1 ¼ 0 or a ¼ b1;2 for Eq. (2.1). a ¼ b1;2 ¼
ffi B 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 3AC with B2 [ 3AC: 3A 3A
ð2:84Þ
(iv) The triple repeated fixed-point requires D ¼ 0 and ðq2Þ2 ¼ ðp3Þ3 ¼ 0 for Eq. (2.62), equivalent to D1 ¼ B21 4C1 ¼ 0 and a ¼ b1;2 for Eq. (2.1). a ¼ b1;2 ¼
2.5
B with B2 ¼ 3AC: 3A
ð2:85Þ
Forward Cubic Discrete Systems
In this section, the analytical bifurcation scenario will be discussed. The period-doubling bifurcation scenario will be discussed first through nonlinear renormalization techniques, and the bifurcation scenario based on the saddle-node bifurcation will be discussed, which is independent of period-1 fixed-points.
2.5.1
Period-Doubled Cubic Discrete Systems
After the period-doubling bifurcation of a period-1 fixed-point, the period-doubled fixed-points in the cubic discrete system can be obtained. Consider the period-doubling solutions for a forward cubic nonlinear discrete system first. Theorem 2.2 Consider a 1-dimensional cubic nonlinear discrete system as xk þ 1 ¼ xk þ AðpÞx3k þ BðpÞx2k þ CðpÞxk þ DðpÞ ¼ xk þ a0 ðpÞðxk aðpÞÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ
ð2:86Þ
where four scalar constants AðpÞ 6¼ 0;BðpÞ;CðpÞ and DðpÞ are determined by A ¼ a0 ; B ¼ ða þ B1 Þa0 ; C ¼ ðaB1 þ C1 Þa0 ; D ¼ aa0 C1 ; p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð2:87Þ
122
2 Cubic Nonlinear Discrete Systems
Under D1 ¼ B21 4C1 \0;
ð2:88Þ
the standard form of such a 1-dimensional forward discrete system is xk þ 1 ¼ xk þ a0 ðxk aÞðx2k þ B1 xk þ C1 Þ:
ð2:89Þ
D1 ¼ B21 4C1 [ 0;
ð2:90Þ
Under
the standard form of such a 1-dimensional forward discrete system is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ:
ð2:91Þ
Thus, a general standard form of such a 1-dimensional cubic discrete system is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ Ax3k þ Bx2k þ Cxk þ D xk þ a0 ðxk aÞ½x2k þ B1 xk þ C1 ¼
xk þ a0 *3i¼1 ðxk
ð2:92Þ
ð1Þ ai Þ
where ð1Þ
1 2
a0 ¼ AðpÞ; b1;2 ¼ ðB1 ðpÞ ð1Þ
pffiffiffiffiffiffiffiffi Dð1Þ Þ for Dð1Þ [ 0;
ð1Þ
ð2Þ
a1 ¼ minfa; b1 ; b2 g; a3 ¼ maxfa; b1 ; b2 g; a1 2 fa; b1 ; b2 g 6¼ fa1 ; a3 g; qffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi 1 ð1Þ b1;2 ¼ ðB1 ðpÞ i jDð1Þ jÞ; i ¼ 1 for Dð1Þ \0 2
ð1Þ a1
ð1Þ
ð1Þ
ð1Þ
ð1Þ
¼ a; a2 ¼ b1 ; a3 ¼ b2 : ð2:93Þ
(i) Consider a forward period-2 discrete system of Eq. (2.86) as ð1Þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk
ð1Þ
ð32 3Þ=2
ðx2k þ Bi2 xk þ Ci2 Þ
ð1Þ
ð32 3Þ=2
ðxk bj2 ;1 Þðxk bj2 ;2 Þ
xk þ 2 ¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þf1 þ
3
¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þ½a30 *i2 ¼1 ¼ xk þ ½a0 *3j1 ¼1 ðxk ai1 Þ½a30 *j2 ¼1
3
ð2Þ
ð2Þ
ð1Þ
ai2 Þg
ð2Þ
ð2Þ
ð2Þ
¼ xk þ a10 þ 3 *3i¼1 ðxk ai Þ 2
ð2:94Þ
2.5 Forward Cubic Discrete Systems
123
where ð2Þ
ð2Þ
1 2
bi;1 ¼ ðBi þ ð2Þ
Di
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð2Þ ð2Þ ð2Þ ð2Þ Di Þ; bi;2 ¼ ðBi Di Þ; 2
ð2Þ
ð2Þ
¼ ðBi Þ2 4Ci 0; i 2 Iqð2 Þ ; 0
Iqð2 Þ ¼ flðq1Þ20 m1 þ 1 ; lðq1Þ20 m1 þ 2 ; ; lq20 m1 g; 0
ð2:95Þ
m1 2 f1; 2g; q 2 f1; 2g; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i jDð2Þ jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0;
with fixed-points ð2Þ
xk þ 2 ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 32 Þ 2
ð2Þ
ð1Þ
ð2Þ
ð2Þ
ð2:96Þ
03i¼1 fai g ¼ sortf03j1 ¼1 faj1 g; 03j2 ¼1 fbj2 ;1 ; bj2 ;2 gg ð2Þ
ð2Þ
with ai \ai þ 1 : ð1Þ
(ii) For a fixed-point of xk þ 1 ¼ xk ¼ ai1 (i1 2 f1; 2; 3g), if dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1
ð2:97Þ
with • an oscillatory upper-saddle-node bifurcation (d 2 xk þ 1 =dx2k jx ¼að1Þ [ 0Þ, i1
k
• an oscillatory lower-saddle-node bifurcation (d 2 xk þ 1 =dx2k jx ¼að1Þ \0Þ, i1
k
• a third-order oscillatory sink bifurcation (d 3 xk þ 1 =dx3k jx ¼að1Þ [ 0Þ, k
i1
• a third-order oscillatory source bifurcation (d 3 xk þ 1 =dx3k jx ¼að1Þ \0Þ, k
i1
then the following relations satisfy ð1Þ
1 ð2Þ 2
ð2Þ
ð2Þ
ð2Þ
ai1 ¼ Bi1 ; Di1 ¼ ðBi1 Þ2 4Ci1 ¼ 0;
ð2:98Þ
and there is a period-2 discrete system of the cubic discrete system in Eq. (2.86), as xk þ 2 ¼ xk þ a40 *i
ð2 Þ 1 2Iq
ð1Þ
ð2Þ
ðxk ai1 Þ3 *3i2 ¼1 ðxk ai2 Þð1dði1 ;i2 ÞÞ 2
ð2:99Þ
124
2 Cubic Nonlinear Discrete Systems
for i1 2 f1; 2; 3g; i1 6¼ i2 with dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i1 dx2k xk ¼ai1
ð2:100Þ
ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-orderif d 3 xk þ 2 ð1Þ j ð1Þ ¼ 6a40 P ð20 Þ ðx ai1 Þ3 i2 2Iq ;i2 6¼i1 k dx3k xk ¼ai1
2 ð1Þ P3i3 ¼1 ðai1
ð2:101Þ
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ \0;
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the period-2 discrete system; ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a40 dx3k xk ¼ai1
*
ð20 Þ
i2 2Iq
2 *3i3 ¼1 ðað1Þ i1
ð1Þ
;i2 6¼i1
ðxk ai1 Þ3
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ
ð2:102Þ [ 0;
and the corresponding bifurcations is a third-order monotonic source bifurcation for the period-2 discrete system. (ii1) The period-2 fixed-points are trivial and unstable if ð1Þ
xk þ 2 ¼ xk ¼ ai1 for i1 ¼ 1; 2; 3:
ð2:103Þ
(ii2) The period-2 fixed-points are non-trivial and stable if ð2Þ
ð2Þ
xk þ 2 ¼ xk ¼ bi1 ;1 ; bi1 ;2 for i1 ¼ 1; 2; 3:
ð2:104Þ
Proof The proof is straightforward through the simple algebraic manipulation. Consider Ax2k þ Bxk þ C ¼ 0: Under D ¼ B2 4AC 0; we have a0 ¼ AðpÞ; b1;2
pffiffiffiffi BðpÞ D with b1 \b2 : ¼ 2AðpÞ
2.5 Forward Cubic Discrete Systems
125
Under D ¼ B2 4AC\0; we have a0 ¼ AðpÞ; b1;2
pffiffiffiffiffiffi pffiffiffiffiffiffiffi BðpÞ i jDj ; i ¼ 1: ¼ 2AðpÞ
Thus, we have Ax2k þ Bxk þ C ¼ ðxk ai2 Þðxk ai3 Þ: Therefore, xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ: where fa1 ; a2 ; a3 g ¼ sortfa; b1 ; b2 g for real b1;2 ; a1 ¼ a; a2;3 ¼ b1;2 ; and dxk þ 1 jx ¼a ¼ 1 þ a0 *3i1 ¼1;i1 6¼i ðai ai1 Þ; dxk k i d 2 xk þ 1 X jxk ¼ai ¼ a0 3i1 ¼1;i1 6¼i *3i2 ¼1;i2 6¼i1 ðai ai2 Þ; dx2k d 3 xk þ 1 jxk ¼ai ¼ a0 : dx3k For real xk þ 1 ¼ xk ¼ ai (i 2 f1; 2; 3g, if dxk þ 1 jx ¼a ¼ 1 þ a0 *3i1 ¼1;i1 6¼i ðai ai1 Þ ¼ 1; dxk k i with • an oscillatory upper-saddle-saddle bifurcation (d 2 xk þ 1 =dx2k jx ¼ai [ 0Þ, k
• an oscillatory lower-saddle-node bifurcation (d 2 xk þ 1 =dx2k jx ¼ai \0Þ, k • a third-order oscillatory sink bifurcation (d 2 xk þ 1 =dx2k jx ¼ai ¼ 0 and d 3 xk þ 1 = dx3k jx ¼ai [ 0Þ, k k • a third-order oscillatory source bifurcation (d 2 xk þ 1 =dx2k jx ¼ai ¼ 0 and d 3 xk þ 1 = dx3k jx ¼ai \0Þ, k
k
then period-2 fixed-points exists for the cubic discrete system. The period-2 discrete system of the cubic discrete system is
126
2 Cubic Nonlinear Discrete Systems ð1Þ
xk þ 2 ¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk 3
ð1Þ
3
ð32 3Þ=2
¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þ½ða0 Þ3 *i2 ¼1
ð2Þ
ð1Þ
ai2 Þg ð2Þ
ðx2k þ Bi2 xk þ Ci2 Þ
If ð2Þ
ð2Þ
x2k þ Bi xk þ Ci
¼ 0;
we have bi;1 ¼ ðBi þ
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð2Þ ð2Þ ð2Þ ð2Þ Di Þ; bi;2 ¼ ðBi Di Þ;
ð2Þ Di
ð2Þ 4Ci
ð2Þ
1 2
¼
ð2Þ
ð2Þ ðBi Þ2
2
0; i 2
0 Iqð2 Þ ;
Iqð2 Þ ¼ flðq1Þ20 m1 þ 1 ; lðq1Þ20 m1 þ 2 ; ; lq20 m1 g; 0
m1 2 f1; 2g; q 2 f1; 2g; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i jDð2Þ jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0; Thus ð2Þ
ð2Þ
x2k þ Bi xk þ Ci
ð2Þ
¼ *2j¼1 ðxk bi;j Þ;
and ð1Þ
ð32 3Þ=2
xk þ 2 ¼ xk þ a40 *3i1 ¼1 ðxk ai1 Þ *i2 ¼1 21
ð2Þ
ð2Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ
ð2Þ
¼ xk þ a40 *3i¼1 ðxk ai Þ where ð2Þ
ð1Þ
ð2Þ
ð2Þ
fai ; i ¼ 1; 2; . . .; 32 g ¼ sortf03i1 ¼1 fai1 g; 03i2 ¼1 fbi2 ;1 ; bi2 ;2 gg: For the period-1 cubic discrete systems, ð1Þ
xk þ 1 ¼ xk þ a0 *3i¼1 ðxk ai Þ: ð1Þ
The fixed-point of xk ¼ ai1 (i1 2 f1; 2; 3g) is monotonically unstable due to dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ 2 ð1; 1Þ; dxk xk ¼ai1
2.5 Forward Cubic Discrete Systems
127
ð1Þ
and the fixed-point of xk ¼ ai1 (i1 2 f1; 2; 3g) is from monotonically stable to oscillatorilly unstable due to dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ 2 ð1; 1Þ: dxk xk ¼ai1 Under dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1 dxk xk ¼ai1 ð1Þ
ð1Þ
) 2 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 0; • there is a flipped discrete system of the oscillatory upper-saddle of the second order if d 2 xk þ 1 X ð1Þ ð1Þ j ð1Þ ¼ a0 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ [ 0; dx2k xk ¼ai1 • there is a flipped discrete system of the oscillatory lower-saddle of the second order if d 2 xk þ 1 X ð1Þ ð1Þ j ð1Þ ¼ a0 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ\0; dx2k xk ¼ai1 • there is a flipped discrete system of the oscillatory sink of the third order if d 2 xk þ 1 d 3 xk þ 1 j j ð1Þ ¼ a0 [ 0; ð1Þ ¼ 0; dx2k xk ¼ai1 dx3k xk ¼ai1 • there is a flipped discrete system of the oscillatory source of the third order if d 2 xk þ 1 d 3 xk þ 1 j j ð1Þ ¼ a0 \0: ð1Þ ¼ 0; dx2k xk ¼ai1 dx3k xk ¼ai1 The corresponding standard form of the period-2 discrete system becomes xk þ 2 ¼ xk þ a40
*
ð20 Þ
i1 2Iq
ð1Þ
ðxk ai1 Þ3
32
*i ¼1 ðxk 2
ð2Þ
ai2 Þð1dði1 ;i2 ÞÞ
with dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i dx2k xk ¼ai ð1Þ
• xk ¼ ai if
for the period-2 discrete system is a monotonic sink of the third-order
128
2 Cubic Nonlinear Discrete Systems
d 3 xk þ 2 j ð1Þ ¼ 6a40 dx3k xk ¼ai1
*
ð20 Þ
i2 2Iq
ð1Þ
;i2 6¼i1
32
ðxk ai1 Þ3
ð1Þ
*i ¼1 ðai 1 3
ð2Þ
ai3 Þð1dði2 ;i3 ÞÞ \0;
ð1Þ
• xk ¼ ai for the period-2 discrete system is a monotonic source of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a40 dx3k xk ¼ai1
*
ð20 Þ
i2 2Iq
ð1Þ
;i2 6¼i1
ðxk ai1 Þ3
ð1Þ
32
*i ¼1 ðai 1 3
ð2Þ
ai3 Þð1dði2 ;i3 ÞÞ [ 0: ■
This theorem is proved.
2.5.2
Period-Doubling Renormalization
The generalized cases of period-doublization of cubic discrete systems are presented through the following theorem. The analytical period-doubling trees can be developed for cubic discrete systems. Theorem 2.3 Consider a 1-dimensional cubic nonlinear discrete system as xk þ 1 ¼ xk þ Ax3k þ Bx2k þ Cxk þ D
ð2:105Þ
ð1Þ
¼ xk þ a0 *3i¼1 ðxk ai Þ:
(i) After l-times period-doubling bifurcations, a period- 2l discrete system ( l ¼ 1; 2; . . .) for the cubic discrete system in Eq. (2.105) is given through the nonlinear renormalization as ð2l1 Þ
32
xk þ 2l ¼ xk þ ½a0 f1 þ ¼
l1
*i1 ¼1 ðxk
ð2
ð2l1 Þ 32l1 3 *i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk
l1
2l1
Þ 3
Þ
ð2l1 Þ
¼ xk þ ½a0
Þ
ð3 32
l1
l1
l
ð2l Þ
Þ
32
l1
l
*i¼1 ðxk
32
Þg
ð2l Þ
Þ=2
l
ð2l Þ
Þ ð2l Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ
*i¼1 ðxk
ai Þ
ð2l Þ
ðx2k þ Bj2 xk þ Cj2 Þ
ð2l1 Þ
ð32 32 l1
Þ=2
ai1
*i2 ¼1
ð2l1 Þ 1 þ 32
¼ xk þ ða0
l1
*j1 ¼1
32
ð2l1 Þ
ai 2
ð2l1 Þ ai1 Þ
2l
*i1 ¼1; ðxk
ð2l1 Þ 32
½ða0
¼ x k þ a0
Þ
2l1
ð2l1 Þ 32l1 xk þ ½a0 *i1 ¼1 ðxk
½ða0
ð2l1 Þ
ai1
ð2l Þ
ai Þ
ð2:106Þ
2.5 Forward Cubic Discrete Systems
129
with l dxk þ 2l ð2l Þ X32l ð2l Þ 32 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l d 2 xk þ 2 l ð2l Þ X32l X32l ð2l Þ 32 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . l d r xk þ 2 l X32l ð2l Þ X32l ð2l Þ 32 ¼ a0 i1 ¼1 ir ¼1;i3 6¼i1 ;i2 ...ir1 *ir þ 1 ¼1;i3 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk l
for r 32 : ð2:107Þ
where ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1 þ 3 ; a0 2l ð2l Þ 03i¼1 fai g
ð2l Þ
1 2
¼
Iqð21
l1
¼ Þ
Þ
l1
; l ¼ 1; 2; 3; ;
2l1 ð2l Þ ð2l Þ ð2l Þ 2 sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð2l Þ
bi;1 ¼ ðBi ð2l Þ Di
ð2l1 Þ 1 þ 32
¼ ða0
ð2l Þ ðBi Þ2
þ
qffiffiffiffiffiffiffiffiffi ð2l Þ ð2l Þ Di Þ; bi;2
ð2l Þ 4Ci
ð2l Þ
,ai qffiffiffiffiffiffiffiffiffi 1 ð2l Þ ð2l Þ ¼ ðBi Di Þ;
ð2l Þ
ai þ 1 ;
2
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
l
00Nq22¼1 Iqð22 Þ
¼ flðq1 1Þ2l1 m1 þ 1 ; lðq1 1Þ2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 with m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ2l m1 þ 1 ; lðq2 1Þ2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g
ð2:108Þ
with fixed-points ð2l Þ
l
xk þ 2l ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 32 Þ 2l
2l1
ð2l Þ
ð2l1 Þ
03i¼1 fai g ¼ sortf03i1 ¼1 fai1 ð2l Þ
ð2l Þ
with ai \ai þ 1 :
ð2l Þ
ð2l Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð2:109Þ
130
2 Cubic Nonlinear Discrete Systems ð2l1 Þ
(ii) For a fixed-point of xk þ 2l1 ¼ xk ¼ ai1
ð2l1 Þ
( i1 2 Iq
f1; 2; . . .; 3ð2
dxk þ 2l1 ð2l1 Þ 32l1 ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 1 þ a0 ai1 Þ ¼ 1; *i2 ¼1;i2 6¼j1 ðai1 x ¼a dxk i1 k d s xk þ 2l1 j ð2l1 Þ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk ¼ai1 d r xk þ 2l1 l1 j ð2l1 Þ 6¼ 0 for 1\r 32 ; xk ¼ai dxrk 1
l1
Þ
g), if
ð2:110Þ
with • a r th -order oscillatory sink for d r xk þ 2l1 =dxrk j th
• a r -order oscillatory source for d
r
ð2l1 Þ
xk ¼ai
[ 0 and r ¼ 2l1 þ 1;
1
xk þ 2l1 =dxrk j ð2l1 Þ \0 x ¼a k
i1
2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk þ 2l1 =dxrk j
r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l1 =dxrk j r ¼ 2l1 ;
ð2l1 Þ
xk ¼ai
and r ¼ [ 0 and
1
ð2l1 Þ
xk ¼ai
\0 and
1
then there is a period- 2l fixed-point discrete system ð2l Þ
x k þ 2 l ¼ x k þ a0
*
ð2l1 Þ i1 2Iq
ð2l1 Þ 3
ðxk ai1
Þ
32
l
*j2 ¼1 ðxk
ð2l Þ
aj2 Þð1dði1 ;j2 ÞÞ ð2:111Þ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð2:112Þ
dxk þ 2l d 2 xk þ 2 l j ð2l1 Þ ¼ 1; j ð2l1 Þ ¼ 0: dxk xk ¼ai1 dx2k xk ¼ai1
ð2:113Þ
and
ð2l1 Þ
• xk þ 2l at xk ¼ ai1
is a monotonic sink of the third-order if
d xk þ 2 l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai 2 Þ 3 3 x ¼a i 2I ;i ¼ 6 i 2 q 2 1 dxk i1 k 3
2l
ð2l1 Þ
*3j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
; q 2 f1; 2; . . .; N1 gÞ;
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
ð2:114Þ
2.5 Forward Cubic Discrete Systems
131 ð2l1 Þ
and such a bifurcation at xk ¼ ai1 is a third-order monotonic sink bifurcation. ð2l1 Þ • xk þ 2l at xk ¼ ai1 is a monotonic source of the third-order if d 3 x k þ 2l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai2 Þ3 3 x ¼a i 2I ;i ¼ 6 i 2 q 2 1 dxk i1 k 2l
ð2l1 Þ
*3j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ [ 0
ð2:115Þ
; q 2 f1; 2; . . .; N1 gÞ ð2l1 Þ
and such a bifurcation at xk ¼ ai1 bifurcation.
is a third-order monotonic source
(ii1) The period- 2l fixed-points are trivial if ð2l1 Þ
xk þ 2l ¼ xk ¼ ai1
l1
for i1 ¼ 1; 2; . . .; 32 ;
ð2:116Þ
(ii2) The period- 2l fixed-points are non-trivial if ð2l Þ
ð2l Þ
2 xk þ 2l ¼ xk ¼ 0M j1 ¼1 fbj1 ;1 ; bj1 ;2 g:
ð2:117Þ
Such a period- 2l fixed-point is • monotonically unstable if dxk þ 2l =dxk j
• monotonically invariant if dxk þ 2l =dxk j
2 ð1; 1Þ;
ð2l Þ
xk ¼ai
1 ð2l Þ
xk ¼ai
¼ 1; which is
1
– a monotonic upper-saddle of the ð2l1 Þth order for 1 d 2l1 xk þ 2l =dx2l k jx [ 0; k
1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \0; k
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx [ 0; k
– a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \0; k
• monotonically stable if dxk þ 2l =dxk j
• invariantly zero-stable if dxk þ 2l =dxk j • oscillatorilly stable if dxk þ 2l =dxk j • flipped if dxk þ 2l =dxk j
ð2l1 Þ
xk ¼ai
2 ð0; 1Þ;
ð2l Þ
xk ¼ai
1 ð2l Þ
xk ¼ai ð2l Þ
xk ¼ai
¼ 0;
1
2 ð1; 0Þ;
1
¼ 1; which is
1
– an oscillatory upper-saddle of the ð2l1 Þth order for 1 d 2l1 xk þ 2l =dx2l k jx [ 0; k
– an oscillatory lower-saddle of the ð2l1 Þth order for 1 d 2l1 xk þ 2l =dx2l k jx \0; k
132
2 Cubic Nonlinear Discrete Systems
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx\0; k
– an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, this theorem can be proved. (I) For a cubic discrete system, if the period-1 fixed-points exists, there is a following expression. ð1Þ
xk þ 1 ¼ xk þ a0 *3i1 ¼1 ðxk ai1 Þ ð1Þ
For xk þ 1 ¼ xk ¼ ai1 (i1 2 f1; 2; 3g, if dxk þ 1 ð1Þ 3 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a 0 *i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk þ 1 ¼ai1 d 2 xkþ1 ð1Þ X3 ð1Þ ð1Þ 3 j ð2Þ ¼ a 0 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðai1 ai4 Þ 6¼ 0 dx2k xk þ 1 ¼ai1 with d s xk þ 1 j ð2Þ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk þ 1 ¼ai1 d r xk þ 1 j ð2Þ 6¼ 0 for 1\r 3; dxrk xk þ 1 ¼ai1 then period-2 fixed-points exists for the cubic discrete system. Thus, consider the corresponding second iteration gives ð1Þ
xk þ 2 ¼ xk þ 1 þ a0 *3i1 ¼1 ðxk þ 1 ai1 Þ: The forward period-2 discrete system of the cubic discrete system is ð1Þ
xk þ 2 ¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þf1 þ ð1Þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk 3
3
ð2Þ
ð2Þ
3 ðx2k þ Bi2 xk þ Ci2 Þ: ¼ xk þ ½a0 *3i1 ¼1 ðxk ai1 Þ½a30 *3i2 ¼1 2
1
If ð2Þ
ð2Þ
x2k þ Bi2 xk þ Ci2 ¼ 0; we have
ð1Þ
ai2 Þg
2.5 Forward Cubic Discrete Systems
133
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ 2 2 0 ð2Þ ð2Þ Dð2Þ ¼ ðBi Þ2 4Ci 0; i 2 Iqð2 Þ ;
ð2Þ bi;1
Iqð2 Þ ¼ flðq1Þ20 m1 þ 1 ; lðq1Þ20 m1 þ 2 ; ; lq20 m1 g; 0
m1 2 f1; 2g; q 2 f1; 2g: Thus ð2Þ
ð2Þ
ð2Þ
ð2Þ
x2k þ Bi2 xk þ Ci2 ¼ ðxk bi2 ;1 Þðxk bi2 ;2 Þ; and xk þ 2 ¼ xk þ ½a0
*i ¼1 ðxk 1
¼ xk þ a10 þ 3
3
32
ð1Þ
ai1 Þ½a30
*i¼1 ðxk
ð32 31 Þ=2
*i ¼1 2
ð2Þ
ð2Þ
ðxk bi;1 Þðxk bi;2 Þ
ð2Þ
ai Þ: ð2Þ
For a fixed-point of xk þ 2 ¼ xk ¼ ai1 (i1 2 f1; 2; . . .; 32 g), if dxk þ 2 2 ð2Þ ð2Þ ð2Þ j ð2Þ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1 with d s xk þ 2 j ð2Þ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk ¼ai1 d r xk þ 2 j ð2Þ 6¼ 0 for 1\r 32 ; dxrk xk ¼ai1 then, the forward period-2 discrete system of a cubic discrete system has a period-doubling bifurcation. (II) Such a period-2 discrete system can be renormalized nonlinearly. For k ¼ k1 þ 2; the previous period-2 discrete system becomes ð21 Þ
xk 1 þ 2 þ 2 ¼ x k 1 þ 2 þ a0
32
*i¼1 ðxk1 þ 2
ð21 Þ
ai
Þ
Because k1 is index for iteration, it can be replaced by k: Thus, an equivalent form for the foregoing equations becomes ð21 Þ
xk þ 22 ¼ xk þ 21 þ a0 with
32
1
*i¼1 ðxk þ 21
ð21 Þ
ai
Þ:
134
2 Cubic Nonlinear Discrete Systems ð21 Þ
x k þ 2 1 ¼ x k þ a0
ð21 Þ
32
*i¼1 ðxk
ai
Þ
xk þ 22 can be expressed as ð21 Þ
xk þ 22 ¼ xk þ a0
32
1
*i1 ¼1 ðxk
ð21 Þ
¼ xk þ ða0 Þ1 þ 3
21
ð21 Þ
ai1 Þf1 þ 32
1
*i1 ¼1 ðxk
32
1
ð21 Þ
*i1 ¼1 ½1 þ a0 2
ð21 Þ
1
ð32 32 Þ=2
ai1 Þ *i2 ¼1
1
32
*i2 ¼1;i2 6¼i1 ðxk ð22 Þ
ð22 Þ
ð22 Þ
ð221 Þ
for i2 2 0Nq11¼1 Iq1 Iqð21
Þ
21
¼0
00Nq ¼1 Iqð2 Þ with 2 2
2
2
¼ flðq1 1Þ221 m1 þ 1 ; lðq1 1Þ221 m1 þ 2 ; ; lq1 221 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 221 m1 ; m1 2 f1; 2g; Iqð22 Þ ¼ flðq2 1Þ22 m1 þ 1 ; lðq2 1Þ22 m1 þ 2 ; ; lq2 22 m1 g 2
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; 2
21
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; then we have 1 ð22 Þ ð22 Þ bi2 ;1 ¼ ðBi2 þ 2 ð22 Þ
Di2
ð22 Þ
qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi 1 ð22 Þ ð22 Þ ð22 Þ ð22 Þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ 2 ð22 Þ
¼ ðBi2 Þ2 4Ci2 0
Thus ð22 Þ
ð22 Þ
x2k þ Bi2 xk þ Ci2
ð22 Þ
ð22 Þ
¼ ðxk bi2 ;1 Þðxk bi2 ;2 Þ:
and ð2Þ
xk þ 22 ¼ xk þ ða0 Þ1 þ 3
21
32
1
*j1 ¼1 ðxk
*Nq11¼1 *j
ð221 Þ 2 2Iq1
*Nq22¼1 *j
ð22 Þ 3 2Iq2
ð21 Þ
aj 1 Þ ð22 Þ
ð22 Þ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ ð22 Þ
ð22 Þ
ðxk bj3 ;1 Þðxk bj3 ;2 Þ ð22 Þ
ð22 Þ
*j4 2J ð22 Þ ðxk bj4 ;1 Þðxk bj4 ;2 Þ ð22 Þ
22
ð22 Þ
¼ xk þ ða0 Þ *3i¼1 ðxk ai where
Þ
ð22 Þ
½ðx2k þ Bi2 xk þ Ci2 Þ:
If x2k þ Bi2 xk þ Ci2
ð21 Þ
ai2 Þg
2.5 Forward Cubic Discrete Systems ð2Þ
ð22 Þ
a0 ¼ ða0 Þ1 þ 3 ; a0 22
135 ð221 Þ 1 þ 32
¼ ða0 221
ð2 Þ 2
Þ
21
;
ð2 Þ
ð22 Þ
2
ð22 Þ
ð22 Þ
2 g ¼ sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ,ai qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi 1 ð22 Þ 1 ð22 Þ ð22 Þ ð22 Þ ð22 Þ ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
03i¼1 fai ð22 Þ
bi;1
2
ð22 Þ Di
¼
ð22 Þ
ai þ 1 ;
2
ð22 Þ ðBi Þ2
ð22 Þ 4Ci
0 for i 2 0Nq11¼1 Iqð21 Þ 00Nq22¼1 Iqð22 1
2
Þ
Iqð21 Þ ¼ flðq1 1Þ21 m1 þ 1 ; lðq1 1Þ21 m1 þ 2 ; ; lq1 21 m1 g 1
f1; 2; ; M1 g0f∅g; for q1 2 f1; 2; ; N1 g; M1 ¼ N1 21 m1 ; m1 2 f1; 2g; Iqð22 Þ ¼ flðq2 1Þ22 m1 þ 1 ; lðq2 1Þ22 m1 þ 2 ; ; lq2 22 m1 g 2
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; 2
21
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð22 Þ 1 ð22 Þ ð22 Þ ð22 Þ ð22 Þ ð22 Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð22 Þ ð22 Þ ð22 Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; i 2 J ð2 Þ ¼ flN2 22 m1 þ 1 ; lN2 22 m1 þ 2 ; ; lM2 g 2
fM1 þ 1; M1 þ 2; ; M2 g0f∅g: Non-trivial period-22 fixed-points are ð22 Þ
xk þ 22 ¼ xk ¼ ai
ð21 Þ
ð21 Þ
2 2 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 g;
1
i 2 f1; 2; . . .; 32 g: and trivial period-22 fixed-points are ð22 Þ
xk þ 22 ¼ xk ¼ ai
221
ð221 Þ
2 03i1 ¼1 fai1
g;
1
i 2 f1; 2; . . .; 32 g: Similarly, the period-2l discrete systems (l ¼ 1; 2; . . .) of the cubic discrete system in Eq. (2.105) can be developed through the above nonlinear renormalization and the corresponding fixed-points can be obtained. (III) Consider a period-2l1 discrete system as ð2l1 Þ
xk þ 2l1 ¼ xk þ a0
32
l1
*i¼1
ð2l1 Þ
ðxk ai
Þ:
From the nonlinear renormalizations, let k1 ¼ k þ 2l1 , we have
136
2 Cubic Nonlinear Discrete Systems ð2l1 Þ
32
xk1 þ 2l1 þ 2l1 ¼ xk1 þ 2l1 þ a0
l1
*i¼1
ð2l1 Þ
ðxk1 þ 2l1 ai
Þ:
Because k1 is index for iteration, it can be replaced by k: Thus, an equivalent form for the foregoing equations becomes ð2l1 Þ
xk þ 2l ¼ xk þ 2l1 þ a0
32
l1
*i¼1
ð2l1 Þ
ðxk þ 2l1 ai
Þ:
With the period-2l1 discrete system, the foregoing equations becomes ð2l1 Þ
xk þ 2l ¼ xk þ ½a0
32
l1
*i1 ¼1 ðxk
2l1
f1 þ
ð2
*i1 ¼1 ½1 þ a0 3
ð2
¼ xk þ ½a0
l1
Þ
ð2l1 Þ 3
½ða0
Þ
ð2l1 Þ
ai1
2l1
*i1 ¼1 ðxk 3
2l1
2l
l1
Þ
*i2 ¼1;i2 6¼i1 ðxk 3
ð2
ai1
ð3 3
*i2 ¼1
Þ
2l1
2l1
l1
Þ
ð2l1 Þ
ai 2
Þ ð2l Þ
Þ=2
Þg
ð2l Þ
ðx2k þ Bi2 xk þ Ci2 Þ:
If ð2l Þ
ð2l Þ
x2k þ Bi2 xk þ Ci2 ¼ 0 ð2l1 Þ
for i2 2 0Nq11¼1 Iq1 Iqð21
l1
Þ
00Nq ¼1 Iqð2 Þ with 2 2
l
2
¼ flðq1 1Þ2l1 m1 þ 1 ; lðq1 1Þ2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ2l m1 þ 1 ; lðq2 1Þ2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; then we have 1 ð2l Þ ð2l Þ bi2 ;1 ¼ ðBi2 þ 2 ð2l Þ
ð2l Þ
qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ 2 ð2l Þ
Di2 ¼ ðBi2 Þ2 4Ci2 0: Thus ð2l Þ
ð2l Þ
ð2l Þ
ð2l Þ
x2k þ Bi2 xk þ Ci2 ¼ ðxk bi2 ;1 Þðxk bi2 ;2 Þ:
2.5 Forward Cubic Discrete Systems
137
Therefore ð2l1 Þ
32
xk þ 2l ¼ xk þ ½a0
ð2l1 Þ 3
Þ
½ða0
l1
*i1 ¼1; ðxk 2l1
ð2l Þ
¼ xk þ a0
Þ
32
2l
ð3 3
*i2 ¼1
ð2l1 Þ 1 þ 32
¼ xk þ ða0
ð2l1 Þ
ai1
l1
l
2l1
32
Þ=2
l
Þ ð2l Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ
*i¼1 ðxk
ð2l Þ
ai Þ
ð2l Þ
*i¼1 ðxk
ai Þ
where ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1þ3 ; a0 2l
ð2l1 Þ 1 þ 32
¼ ða0 2l1
l
ð2 Þ
Þ
l1
; l ¼ 1; 2; 3; ;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
2 03i¼1 fai g ¼ sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ,ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
2
ð2l Þ Di l1
Iqð21
¼ Þ
ð2l Þ ðBi Þ2
ð2l Þ
ai þ 1 ;
2
ð2l Þ 4Ci
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
00Nq ¼1 Iqð2 Þ ; 2 2
l
2
¼ flðq1 1Þ2l1 m1 þ 1 ; lðq1 1Þ2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ2l m1 þ 1 ; lðq2 1Þ2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g: For the period-2l discrete system, we have ð2l Þ
x k þ 2 l ¼ x k þ a0
32
l
*i¼1 ðxk
ð2l Þ
and the local stability and bifurcation at xk ¼ ai determined by
ð2l Þ
ai Þ l
(i 2 f1; 2; . . .; 32 g) can be
138
2 Cubic Nonlinear Discrete Systems l dxk þ 2l ð2l Þ X32l ð2l Þ 32 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l d 2 xk þ 2 l ð2l Þ X32l X32l ð2l Þ 32 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . l d r xk þ 2 l X32l ð2l Þ X32l ð2l Þ 32 ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;...ir1 *ir þ 1 ¼1;i3 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk l
for r 32 ; and the period-doubling bifurcations are determined by dxk þ 2l j ð2l Þ ¼ 1; dxk xk ¼ai d s xk þ 2 l j ð2l Þ ¼ 0; for s ¼ 2; 3; ; r 1; dxsk xk ¼ai d r xk þ 2l l j ð2l Þ 6¼ 0; for r 32 : r x ¼a dxk i k Nontrivial period-2l fixed-points are ð2l Þ
xk þ 22 ¼ xk ¼ ai
ð2l Þ
ð2l Þ
2 2 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 g;
l
i 2 f1; 2; . . .; 32 g; and trivial period-2l fixed-points are ð2l Þ
xk þ 22 ¼ xk ¼ ai
2l1
ð2l1 Þ
2 03i1 ¼1 fai1
g;
l
i 2 f1; 2; . . .; 32 g: This theorem is proved.
2.5.3
■
Period-n Appearing and Period-Doublization
A period-n discrete system for a cubic nonlinear discrete system will be discussed, and the period-doublization of period-n discrete systems is discussed through the nonlinear renormalization.
2.5 Forward Cubic Discrete Systems
139
Theorem 2.4 Consider a 1-dimensional, forward cubic discrete system as xk þ 1 ¼ xk þ Ax3k þ Bx2k þ Cxk þ D
ð2:118Þ
ð1Þ
¼ xk þ a0 *3i¼1 ðxk ai Þ:
(i) After n-times iterations, a period-n discrete system for the cubic discrete system in Eq. (2.118) is xk þ n ¼ xk þ a0 *3i1 ¼1 ðxk ai2 Þf1 þ ¼
ð3n 1Þ=2 3 x k þ a0 *i1 ¼1 ðxk ðnÞ
¼ x k þ a0
3n
*i¼1 ðxk
Xn
j¼1
Qj g
ð3n 3Þ=2 ai1 Þ½*j2 ¼1 ðx2k
ð2l Þ
ð2l Þ
þ Bj2 xk þ Cj2 Þ
ðnÞ
ai Þ ð2:119Þ
with dxk þ n n ðnÞ X n ðnÞ ¼ 1 þ a0 3i1 ¼1 *3i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk d 2 xk þ n n ðnÞ X n X n ðnÞ ¼ a0 3i1 ¼1 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; dx2k .. . d r xk þ n n X n ðnÞ X n ðnÞ ¼ a0 3i1 ¼1 3ir ¼1;ir 6¼i1 ;i2 ...;ir1 *3ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk
for r 3n ;
ð2:120Þ where n
ðnÞ
a0 ¼ ða0 Þð3 1Þ=2 ; Q1 ¼ 0; Q2 ¼ *3i2 ¼1 ½1 þ a0 Qn ¼
*i ¼1 ½1 þ a0 ð1 þ Qn1 Þ n 3
ðnÞ
n
3 ðxk in1 ¼1;in1 6¼in
ð1Þ
ðnÞ
*i ¼1;i 6¼i ðxk 1 1 2 3
ð1Þ
ai1 Þ;
ð1Þ
ain1 Þ; n ¼ 3; 4; ; ðnÞ
03i¼1 fai g ¼ sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2
ðnÞ Di2
¼
ðnÞ ðBi2 Þ2
2
ðnÞ 4Ci2
0 for i2 2 0Nq¼1 IqðnÞ ;
IqðnÞ ¼ flðq1Þn þ 1 ; lðq1Þn þ 2 ; ; lqn gf1; 2; ; Mg0f∅g; for q 2 f1; 2; ; Ng; M ¼ ð3n 3Þ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flNn þ 1 ; lNn þ 2 ; ; lM g f1; 2; ; Mg0f∅g; with fixed-points
ð2:121Þ
140
2 Cubic Nonlinear Discrete Systems ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 3n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
2 03i¼1 fai g ¼ sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ðnÞ
ð2:122Þ
ðnÞ
with ai \ai þ 1 : ðnÞ
ðnÞ
(ii) For a fixed-point of xk þ n ¼ xk ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), if dxk þ n n ðnÞ ðnÞ ð2l Þ jx ¼aðnÞ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk k i1
ð2:123Þ
d 2 xk þ n n ðnÞ X n ðnÞ ð2l Þ j ðnÞ ¼ a0 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; dx2k xk ¼ai1
ð2:124Þ
with
then there is a new discrete system for onset of the qth -set of period-n fixed-points based on the second-order monotonic saddle-node bifurcation as ðnÞ
x k þ n ¼ x k þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
ðnÞ
ai1 Þ2 *3j2 ¼1 ðxk aj2 Þð1dði1 ;j2 ÞÞ
ð2:125Þ
ðnÞ
ð2:126Þ
n
where ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 : (ii1) If dxk þ n j ðnÞ ¼ 1 ði1 2 IqðnÞ Þ; dxk xk ¼ai1 d 2 xk þ n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 2a0 *i 2I ðnÞ ;i 6¼i ðai1 ai1 Þ2 1 q 2 1 dx2k xk ¼ai1 ðnÞ
ð2:127Þ
ðnÞ
*3j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk þ n at xk ¼ ai1 is • a monotonic lower-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ \0; k
i1
• a monotonic upper-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0: k
(ii2) The period-n fixed-points (n ¼ 2n1 mÞ are trivial if
i1
2.5 Forward Cubic Discrete Systems
141
ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f03ii ¼1 fai1 g; 03i2 ¼1 fai2 gg n for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 3 g0f£g for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f03i2 ¼1 fai2
)
)
gg
ð2:128Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 3n g0f£g for n ¼ 2n2 :
(ii3) The period-n fixed-points (n ¼ 2n1 m) are non-trivial if ) 2n1 1 m ðnÞ ð1Þ ð2n1 1 mÞ xk ¼ xk þ n ¼ aj1 62 f03ii ¼1 fai1 g; 03i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 3n g0f£g
for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
gg xk ¼ xk þ n ¼ aj1 62 f03i2 ¼1 fai2 for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 3n g0f£g
)
ð2:129Þ
for n ¼ 2n2 : Such a period-n fixed-point is • monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk þ n =dxk jx ¼aðnÞ ¼ 1; which is i1
k
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jxk [ 0; 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
1 þ1 – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l jx k k [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx \0; k
• monotonically stable if dxk þ n =dxk jx ¼aðnÞ 2 ð0; 1Þ; i1
k
• invariantly zero-stable if dxk þ n =dxk jx ¼aðnÞ ¼ 0; k
i1
• oscillatorilly stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 0Þ; k
i1
• flipped if dxk þ n =dxk jx ¼aðnÞ ¼ 1; which is k
i1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
142
2 Cubic Nonlinear Discrete Systems
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n = dxk2l1 þ 1 jx \0; k
– an oscillatory sink the ð2l1 þ 1Þth order for 1 þ1 d 2l1 þ 1 xk þ n =dx2l jx [ 0; k k
• oscillatorilly unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ: i1
k
ðnÞ
ðnÞ
(iii) For a fixed-point of xk þ n ¼ xk ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), there is a period-doubling of the qth -set of period-n fixed-points if dxk þ n n ðnÞ ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *3j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; dxk k i1 d s xk þ n j ðnÞ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk ¼ai1 d r xk þ n j ðnÞ 6¼ 0 for 1\r 3n dxrk xk ¼ai1
ð2:130Þ
with • a r th -order oscillatory source for d r xk þ n =dxrk jx ¼aðnÞ \ 0 and r ¼ 2l1 þ 1; i1
k
• a r th -order oscillatory sink for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ 2l1 þ 1; i1
k
• a r th -order oscillatory upper-saddle for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ i1
k
2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ 2l1 . k
i1
The corresponding period- 2 n discrete system of the cubic discrete system in Eq. (2.118) is ð2nÞ
xk þ 2n ¼ xk þ a0
*i ¼I ðnÞ ðxk 1 q
ðnÞ
2n
ð2nÞ ð1dði1 ;j2 ÞÞ
ai1 Þ3 *3j2 ¼1 ðxk aj2
Þ
ð2:131Þ with dxk þ 2n d 2 xk þ 2n jx ¼aðnÞ ¼ 1; jx ¼aðnÞ ¼ 0; i1 i1 k k dxk dx2k d 3 xk þ 2n ð2nÞ ðnÞ ðnÞ 3 jx ¼aðnÞ ¼ 6a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 2 q 2 1 i1 k dx3k 2n
ðnÞ
ð2nÞ ð1dði1 ;j2 ÞÞ
*3j2 ¼1 ðai1 aj2
Þ
:
ð2:132Þ
2.5 Forward Cubic Discrete Systems
143
ðnÞ
ðnÞ
Thus, xk þ 2n at xk ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic sink of the third-order if d 3 xk þ 2n =dx3k jx ¼aðnÞ \0; k
i1
• a monotonic source of the third-order if d 3 xk þ 2n =dx3k jx ¼aðnÞ [ 0: k
i1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the cubic discrete system in Eq. (1.118) is ð2l1 nÞ
xk þ 2l n ¼ xk þ ½a0 f1 þ
ð2l1 nÞ
ð2l1 nÞ 3
¼
ð2l1 nÞ
ðxk ai1
Þ
3
2l1 n
*i1 ¼1 2l1 n
ð2l1 nÞ
ðxk ai1
l l1 ð32 n 32 n Þ=2
*j1 ¼1
ð2l1 nÞ 32l1 n xk þ ½a0 *i1 ¼1 ðxk ð2l1 nÞ 3
Þ
½ða0
2l1 n
ð3
*j2 ¼1
¼
Þ
l1 n
ð2l nÞ 32l n xk þ a0 *i¼1 ðxk
ð2l1 nÞ
ai2
Þg
Þ ð2l nÞ
ðx2k þ Bj2
ð2l nÞ
x k þ Cj 2
Þ
ð2l1 nÞ ai1 Þ
2l n
ð2l1 nÞ 1 þ 32
¼ xk þ ða0
Þ
l1 ð2l1 Þ 32l1 n 32 n *i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk
¼ xk þ ½a0 ½ða0
l1 n
32
*i1 ¼1
l1 n
32 l
32 n
*i¼1
Þ=2
ð2l nÞ
ð2l nÞ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ ð2l nÞ
ðxk ai
Þ
ð2l nÞ ai Þ
ð2:133Þ with dxk þ 2l n ð2l nÞ X32l n 32l n ð2l nÞ ¼ 1 þ a0 Þ; i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 dxk l d 2 xk þ 2l n ð2l nÞ X32l n X32l n ð2l nÞ 32 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 2 dxk .. . l d r xk þ 2l n X32l n ð2l nÞ X32l n ð2l nÞ 32 n ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk l
for r 32 n ; ð2:134Þ where
144
2 Cubic Nonlinear Discrete Systems ð2nÞ
ðnÞ
2l n
2n
ð2 nÞ
ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l nÞ
l1
ð2
Þ
l1
g ¼ sortf03i1 ¼1 fai1 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; 2 ð2l nÞ 2
¼ ðBi
nÞ
ð2l nÞ
Þ 4Ci
for i 2 0Nq11¼1 Iqð21 Iqð21
ð2l1 nÞ 1 þ 32
¼ ða0
2l1 n
l
03i¼1 fai
Di
ð2l nÞ
¼ ða0 Þ1 þ 3 ; a0
a0
l1
nÞ
nÞ
l1 n
; l ¼ 1; 2; 3; . . .; ð2l nÞ
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
0
00Nq ¼1 Iqð2 nÞ ; l
2 2
2
¼ flðq1 1Þð2l1 nÞ þ 1 ; lðq1 1Þð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f£g;
ð2:135Þ
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 n; l
Iqð22 nÞ ¼ flðq2 1Þð2l nÞ þ 1 ; lðq2 1Þð2l nÞ þ 2 ; . . .; lq2 ð2l nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f£g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ ð32 n 32 n Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi l l l ð2 nÞ ð2 nÞ 2 ð2 nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di i 2 flNð2l1 nÞ þ 1 ; lNð2l1 nÞ þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f£g with fixed-points ð2l nÞ
xk þ 2l n ¼ xk ¼ ai 2l n
ð2l nÞ
03i¼1 fai l
ð2 nÞ
with ai
l
; ði ¼ 1; 2; . . .; 32 n Þ 2l1 n
g ¼ sortf03i¼1
ð2l1 nÞ
fai
ð2l1 nÞ
2 g; 0M i¼1 fbi;1
ð2l1 nÞ
; bi;2
gg
l
ð2 nÞ
\ai þ 1 : ð2:136Þ l1
(v) For a fixed-point of xk þ ð2l nÞ ¼ xk ¼ aið21
nÞ
there is a period- ð2l nÞ discrete system if
(i1 2 Iqð2
l1
nÞ
; q 2 f1; 2; . . .; N1 g),
2.5 Forward Cubic Discrete Systems
145
dxk þ 2l1 n ð2l1 nÞ 32l1 n ð2l1 nÞ ð2l1 nÞ j ð2l1 nÞ ¼ 1 þ a0 ai2 Þ ¼ 1; *i2 ¼1;i2 6¼i1 ðai1 xk ¼ai dxk 1 d s xk þ 2l1 n j ð2l1 nÞ ¼ 0; for s ¼ 2; . . .; r 1; xk ¼ai dxsk 1 r d xk þ 2l1 n l1 j ð2l1 nÞ 6¼ 0 for 1\r 32 n r x ¼a dxk i1 k ð2:137Þ with • a r th -order oscillatory sink for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
2l1 þ 1; • a r th -order oscillatory source for d r xk þ 2l n =dxrk j
[ 0 and r ¼
1
ð2l nÞ
xk ¼ai
\0 and r ¼
1
2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l n =dxrk j r ¼ 2l1 ;
[ 0 and
1
ð2l nÞ
xk ¼ai
\0 and
1
The corresponding period- 2l n discrete system is ð2l nÞ
xk þ 2l n ¼ xk þ a0
l
32 n *j2 ¼1 ðxk
*
ð2l1 nÞ i1 2Iq
ð2l1 nÞ 3
ðxk ai1
Þ
ð2:138Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ aj 2 Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð2:139Þ with dxk þ 2l n d 2 xk þ 2l n j ð2l1 nÞ ¼ 1; j ð2l1 nÞ ¼ 0; xk ¼ai xk ¼ai dxk dx2k 1 1 d 3 xk þ 2l n ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ð2l1 Þ ¼ 6a0 ðai1 ai 2 Þ * ð2l1 nÞ 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k 2l n
ð2l1 nÞ
*3j2 ¼1 ðai1 ði1 2 Iqð2
l1
nÞ
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
6¼ 0
; q 2 f1; 2; . . .; N1 gÞ: ð2:140Þ
146
2 Cubic Nonlinear Discrete Systems ð2l1 nÞ
xk þ 2l n at xk ¼ ai1
is
• a monotonic sink of the third-order for d 3 xk þ 2l n =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order for d 3 xk þ 2l n =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0:
1
(v1) The period- 2l n fixed-points are trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
2 f03ii ¼1 fai1 g; 03i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 2ð2 nÞ for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð2l1 nÞ
2 03i2 ¼1 fai2
g
)
l
for j ¼ 1; 2; . . .; 32 n for n ¼ 2n1 : ð2:141Þ l
(v2) The period- 2 n fixed-points are non-trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
62 f03ii ¼1 fai1 g; 03i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 32 n for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð2l1 nÞ
62 03i2 ¼1 fai2
g
)
l
for j ¼ 1; 2; . . .; 32 n for n ¼ 2n1 : ð2:142Þ Such a period- 2l n fixed-point is • monotonically unstable if dxk þ 2l n =dxk j ð2l nÞ 2 ð0; 1Þ; x ¼ai • monotonically invariant if dxk þ 2l n =dxk j k 1ð2l nÞ ¼ 1; which is xk ¼ai th
1
1 – a monotonic upper-saddle of the ð2l1 Þ order for d 2l1 xk þ 2l n = dx2l k jxk [ 0 (independent ð2l1 Þ-branch appearance); 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0 (independent ð2l1 Þ-branch appearance) 1 þ1 jx – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l k k [ 0 (dependent ð2l1 þ 1Þ-branch appearance from one branch); 1 þ1 jx – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n = dx2l k k \0 (dependent ð2l1 þ 1Þ-branch appearance from one branch);
2.5 Forward Cubic Discrete Systems
147
• monotonically stable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• invariantly zero-stable if dxk þ 2l n =dxk j • oscillatorilly stable if dxk þ 2l n =dxk j • flipped if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð0; 1Þ;
1 ð2l1 nÞ
xk ¼ai ð2l nÞ
xk ¼ai
1
¼ 0;
2 ð1; 0Þ;
1
¼ 1; which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0; – an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n = dxk2l1 þ 1 jx \0; k
1 þ1 – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l jx k k [ 0;
• oscillatorilly unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, the proof of this theorem is similar to the proof of Theorem 2.3. This theorem can be easily proved. ■
2.5.4
Sampled Period-n Appearing Bifurcations
Consider a period-n discrete system of the cubic discrete system as ðnÞ
x k þ n ¼ x k þ a0
3n
*i¼1 ðxk
ðnÞ
ai Þ
ð2:143Þ
n
ðnÞ
where a0 ¼ ða0 Þð3 1Þ=2 . For n ¼ 1; Eq. (2.143) gives a period-1 discrete system of the cubic system as ð1Þ
xk þ 1 ¼ x k þ a0
*i¼1 ðxk 3
ð1Þ
ai Þ:
ð2:144Þ
ð1Þ
• If two of ai (i ¼ 1; 2; 3Þ are complex, only one fixed-point exists in such a cubic discrete system. ð1Þ • If ai (i ¼ 1; 2; 3Þ are real, three fixed-points exist in such a cubic discrete system. For n ¼ 2; equation (2.143) gives a period-2 discrete system of the cubic system as
148
2 Cubic Nonlinear Discrete Systems ð2Þ
x k þ n ¼ x k þ a0
32
*i¼1 ðxk
ð2Þ
ai Þ:
ð2:145Þ
ð2Þ
• If eight of ai (i ¼ 1; 2; . . .; 32 ) are complex, the period-2 discrete system has only one trivial fixed-point. ð2Þ • If three of ai (i ¼ 1; 2; . . .; 32 ) are real, the period-2 discrete system possesses three fixed-points. One fixed-point is trivial from period-1 and two fixed-points are for period-2, or the three fixed-points are the same as the period-1 fixed-points. Such two non-trivial fixed points are generated through period-doubling bifurcation. ð2Þ • If five of ai (i ¼ 1; 2; . . .; 32 ) are real, the period-2 discrete system possesses five fixed-points, including three trivial fixed-points for period-1 and two non-trivial fixed-points for period-2. Such two non-trivial fixed points are generated through period-doubling bifurcation, and both of fixed-points are stable for period-2. ð2Þ • If nine of ai (i ¼ 1; 2; . . .; 32 ) are real, the period-2 discrete system possesses nine fixed-points, including three trivial fixed-points for period-1 and six non-trivial fixed-points for period-2. Such six non-trivial fixed points are generated through different period-doubling bifurcation. Two sets of period-2 fixed-points are stable, and one set of period-2 fixed-points is unstable. With three unstable trivial period-2 fixed-points, we have five unstable fixed points. Thus, the period-2 discrete system of the cubic nonlinear discrete system has three sets of period-2 fixed-points on the period-1 to period-2 period-doubling bifurcation tree. No any independent period-2 fixed-points exists. For numerical simulations, one set of stable asymmetric period-2 fixed points can be obtained. For n ¼ 3; Eq. (2.143) gives a period-3 discrete system of the cubic nonlinear discrete system as ð3Þ
xk þ n ¼ x k þ a0 ð3Þ
33
*i¼1 ðxk
ð3Þ
ai Þ:
ð2:146Þ
• If one of ai (i ¼ 1; 2; . . .; 33 ) is real, the period-3 discrete system does have one trivial fixed-point from period-1. ð3Þ • If three of ai (i ¼ 1; 2; . . .; 33 ) is real, the period-3 discrete system does have three trivial fixed-points from period-1. ð3Þ • If nine of ai (i ¼ 1; 2; . . .; 33 ) are real, the period-3 discrete system possesses three trivial fixed-points and one set of six period-3 fixed points. ð3Þ • If all of ai (i ¼ 1; 2; . . .; 33 ) are real, the period-3 discrete system possesses 27 fixed-points, including three trivial fixed-points for period-1 and 4 sets of non-trivial fixed-points. Such non-trivial fixed points are generated through the
2.5 Forward Cubic Discrete Systems
149
monotonic upper-saddle or monotonic lower-saddle bifurcations. The period-3 fixed-points are independent of the trivial fixed-points for period-1. Thus, the period-3 discrete system has at most four sets of period-3 fixed-points, which are independent of the period-1fixed-points. For n ¼ 4; Eq. (2.143) gives a period-4 discrete system of the cubic system as ð4Þ
xk þ 4 ¼ x k þ a0
34
*i¼1 ðxk
ð4Þ
ai Þ:
ð2:147Þ
ð4Þ
• If one of ai (i ¼ 1; 2; . . .; 34 ) are real, the period-4 discrete system does have one trivial fixed-point from period-1. ð4Þ • If three of ai (i ¼ 1; 2; . . .; 34 ) are real, the period-4 discrete system possesses three trivial fixed-points from period-1 or period-2. ð4Þ • If nine of ai (i ¼ 1; 2; . . .; 34 ) are real, the period-4 discrete system possesses nine trivial fixed-points which are the same as the period-1 and period-2 fixed-points. ð4Þ • If 17 of ai (i ¼ 1; 2; . . .; 34 ) are real, the period-4 discrete system possesses eight fixed-points, including three trivial fixed-points for period-1, six trivial fixed-points for period-2, and eight non-trivial fixed-points for period-4. Such non-trivial fixed points are stable, which are generated through the period-doubling bifurcations from 4 period-2 branches. All trivial fixed-points for period-4 are unstable. ð4Þ • If all of ai (i ¼ 1; 2; . . .; 34 ) are real, in addition to the period-4 fixed-points by the period-doubling bifurcation, the period-4 discrete system possesses eight sets of non-trivial period-4 fixed-points, which are generated by the monotonic upper-saddle or lower-saddle bifurcations. The period-4 fixed-points are independent of the trivial fixed-points. Thus, the period-4 discrete system has at most nine sets of period-4 fixed-points, two sets are dependent on the period-1 to period-4 period-doubling trees, and eights set of period-4 fixed-points are independent of the period-1 to period-4 period-doubling bifurcation trees. Similarly, other period-n discrete systems can be discussed. From the previous discussion, the period-n fixed-points for a cubic discrete system are tabulated in Table 2.4. The dependent sets of period-n fixed-points are on the period-doubling bifurcation trees. The independent sets of period-n fixed-points are generated through monotonic saddle-node bifurcations. From analytical expressions, the maximum sets of period-n fixed-points includes dependent and independent sets of period-n fixed-points. In addition to the period-1 trivial fixed-points, other fixed-points on the bifurcation trees relative to period-n fixed points are also trivial.
150
2 Cubic Nonlinear Discrete Systems
Table 2.4 Period-n fixed-points for a cubic discrete system Dependent sets P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12
2.6
Independent sets
N/A (1)P-1 to P-2 N/A (2)P-1 to P-4 N/A (4)P-3 to P-6 N/A (2)P-1 to P-8 (8)P-4 to P-8 N/A (24)P-5 to P-10 N/A (4)P-3 to P-12 (57)P-6 to P-12
Maximum sets
3 1-3 4 8 24 57 156 401
3 3 4 10 24 61 156 411
1093 2928
1093 2952
8052 22082
8052 22143
Trivial fixed-points N/A (3)P-1 (3)P-1 (2)P-1 to P-2 (3)P-1 (3)P-1, (4)P-3 (3)P-1 (2)P-1 to P-4 (8)P-4 (3)P-1 (3)P-1 (24)P-5 (1)P-1 (3)P-1 (4)P-3 to P-6 (57)P-6
Backward Cubic Nonlinear Discrete Systems
In this section, the analytical bifurcation trees for backward cubic nonlinear discrete systems will be discussed, as in a similar fashion, through nonlinear renormalization techniques, and the bifurcation scenario based on the monotonic saddle-node bifurcations will be discussed, which is independent of period-1 fixed-points.
2.6.1
Backward Period-2 Cubic Discrete Systems
After the period-doubling bifurcation of a period-1 fixed-point in the backward cubic nonlinear discrete system, the period-doubled fixed-points can be obtained. Consider the period-doubling solutions for a backward cubic nonlinear discrete system as follows. Theorem 2.5 Consider a 1-dimensional backward cubic nonlinear discrete system as xk ¼ xk þ 1 þ AðpÞx3k þ 1 þ BðpÞx2k þ 1 þ CðpÞxk þ 1 þ DðpÞ ¼ xk þ 1 þ a0 ðpÞðxk þ 1 aðpÞÞ½x2k þ 1 þ B1 ðpÞxk þ 1 þ C1 ðpÞ
ð2:148Þ
where four scalar constants AðpÞ 6¼ 0;BðpÞ;CðpÞ and DðpÞ are determined by A ¼ a0 ; B ¼ ða þ B1 Þa0 ; C ¼ ðaB1 þ C1 Þa0 ; D ¼ aa0 C1 ; p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð2:149Þ
2.6 Backward Cubic Nonlinear Discrete Systems
151
Under D1 ¼ B21 4C1 \0;
ð2:150Þ
the standard form of such a 1-dimensional backward cubic discrete system is xk ¼ xk þ 1 þ a0 ðxk þ 1 aÞðx2k þ 1 þ B1 xk þ 1 þ C1 Þ:
ð2:151Þ
D1 ¼ B21 4C1 [ 0;
ð2:152Þ
Under
the standard form of such a backward cubic discrete system is xk ¼ xk þ 1 þ a0 ðxk þ 1 a1 Þðxk þ 1 a2 Þðxk þ 1 a3 Þ:
ð2:153Þ
Thus, a general standard form of such a backward cubic discrete system is xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ Ax3k þ 1 þ Bx2k þ 1 þ Cxk þ 1 þ D xk þ 1 þ a0 ðxk þ 1 aÞ½x2k þ 1 þ B1 xk þ 1 þ C1 Þ ¼ xk þ 1 þ a0 *3i¼1 ðxk þ 1
ð2:154Þ
ð1Þ ai Þ
where ð1Þ
1 2
a0 ¼ AðpÞ; b1;2 ¼ ðB1 ðpÞ ð1Þ
pffiffiffiffiffiffiffiffi Dð1Þ Þ for Dð1Þ [ 0;
ð1Þ
ð2Þ
a1 ¼ minfa; b1 ; b2 g; a3 ¼ maxfa; b1 ; b2 g; a1 2 fa; b1 ; b2 g 6¼ fa1 ; a3 g; pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi 1 ð1Þ b1;2 ¼ ðB1 ðpÞ i Dð1Þ Þ; i ¼ 1 for Dð1Þ \0
ð2:155Þ
2
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
a1 ¼ a; a2 ¼ b1 ; a3 ¼ b2
(i) Consider a backward period-2 discrete system of Eq. (2.148) as ð1Þ
xk ¼ xk þ 2 þ ½a0 *3i1 ¼1 ðxk þ 2 ai1 Þ f1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2 3
3
ð1Þ
ð1Þ
ai2 Þg ð2Þ
ð2Þ
¼ xk þ 2 þ ½a0 *3i1 ¼1 ðxk þ 2 ai1 Þ½a30 *3i2 ¼1 ðx2k þ 2 þ Bi2 xk þ 2 þ Ci2 Þ ð1Þ
ð2Þ
3 ¼ xk þ 2 þ ½a0 *3j1 ¼1 ðxk þ 2 ai1 Þ½a30 *j32 ¼1 ðxk þ 2 bj2 Þ 2
ð2Þ
¼ xk þ 2 þ a10 þ 3 *3i¼1 ðxk þ 2 ai Þ 2
ð2:156Þ where
152
2 Cubic Nonlinear Discrete Systems
1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ ð2Þ bi;1 ¼ ðBi þ Dð2Þ Þ; bi;2 ¼ ðBi 2 2 0 ð2Þ ð2Þ ð2Þ Di ¼ ðBi Þ2 4Ci 0; i 2 Iqð2 Þ ;
qffiffiffiffiffiffiffiffi ð2Þ Di Þ;
Iqð2 Þ ¼ flðq1Þ20 m1 þ 1 ; lðq1Þ20 m1 þ 2 ; ; lq20 m1 g; 0
ð2:157Þ
m1 2 f1; 2g; q 2 f1; 2g; qffiffiffiffiffiffiffiffi 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i Dð2Þ Þ; bi;2 ¼ ðBi i Di Þ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0;
with backward fixed-points ð2Þ
xk ¼ xk þ 2 ¼ ai ; ði ¼ 1; 2; . . .; 32 Þ ð2Þ
2
ð1Þ
ð2Þ
ð2Þ
ð2:158Þ
03i¼1 fai g ¼ sortf03j1 ¼1 faj1 g; 03j2 ¼1 fbj2 ;1 ; bj2 ;2 gg ð2Þ
ð2Þ
with ai \ai þ 1 : ð1Þ
(ii) For a backward fixed-point of xk þ 1 ¼ xk ¼ ai1 (i1 2 f1; 2; 3g), if dxk ð1Þ ð1Þ 3 j ð1Þ ¼ 1 þ a0 * i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk þ 1 xk þ 1 ¼ai1
ð2:159Þ
with • an oscillatory lower-saddle-saddle bifurcation (d 2 xk =dx2k þ 1 jx
ð1Þ
kþ1
• an oscillatory upper-saddle-node bifurcation (d
2
xk =dx2k þ 1 jx
ð1Þ
kþ1
• a third-order oscillatory source bifurcation (d 3 xk =dx3k þ 1 jx • a third-order oscillatory sink bifurcation (d
xk =dx3k þ 1 jx
kþ1
¼ai ð1Þ
kþ1
3
¼ai
¼ai
\0),
1
[ 0),
1
ð1Þ
¼ai
[ 0),
1
\0),
1
then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi1 ; Di1 ¼ ðBi1 Þ2 4Ci1 ¼ 0; 2
ð2:160Þ
and there is a backward period-2 discrete system of the cubic discrete system in Eq. (2.148) as xk ¼ xk þ 2 þ a40
*
ð20 Þ
i1 2Iq
ð1Þ
ðxk þ 2 ai1 Þ3
for i1 2 f1; 2; 3g; i1 6¼ i2 with
33
*i ¼1 ðxk þ 2 2
ð2Þ ai2 Þð1dði1 ;i2 ÞÞ ð2:161Þ
2.6 Backward Cubic Nonlinear Discrete Systems
153
dxk d 2 xk jx ¼að1Þ ¼ 1; 2 jx ¼að1Þ ¼ 0; dxk þ 2 k þ 2 i1 dxk þ 2 k þ 2 i1
ð2:162Þ
ð1Þ
• xk at xk þ 2 ¼ ai1 is a monotonic source of the third-order if d 3 xk j ð1Þ ¼ 6a40 dx3k þ 2 xk ¼ai1
*
ð20 Þ
i1 2Iq
ð1Þ
;i2 6¼i1
ð1Þ
ðai1 ai2 Þ3
ð2:163Þ
ð2Þ ð1dði2 ;i3 ÞÞ *3i3 ¼1 ðað1Þ \0; i1 ai3 Þ 3
and the corresponding bifurcations is a third-order monotonic source bifurcation for the backward period-2 discrete system; ð1Þ • xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-order if d 3 xk j ð1Þ ¼ 6a40 dx3k þ 2 xk ¼ai1
*
ð20 Þ
i1 2Iq
ð1Þ
;i2 6¼i1
ð1Þ 33 *i ¼1 ðai1 3
ð1Þ
ðai1 ai2 Þ3
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ
ð2:164Þ [ 0;
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the backward period-2 discrete system. (ii1) The backward period-2 fixed-points are trivial and unstable if ð1Þ
xk ¼ xk þ 2 ¼ ai1 for i1 ¼ 1; 2; 3:
ð2:165Þ
(ii2) The backward period-2 fixed-points are non-trivial and stable if ð2Þ
ð2Þ
xk ¼ xk þ 2 ¼ bi1 ;1 ; bi1 ;2 for i1 ¼ 1; 2; 3:
ð2:166Þ
Proof Following the corresponding proof for the forward cubic discrete system. This theorem can be proved. ■
2.6.2
Backward Period-Doubling Renormalization
The generalized cases of period-doublization of backward cubic discrete systems are presented through the following theorem. The analytical backward period-doubling trees can be developed for backward cubic discrete systems.
154
2 Cubic Nonlinear Discrete Systems
Theorem 2.6 Consider a 1-dimensional backward cubic discrete system as xk ¼ xk þ 1 þ AðpÞx3k þ 1 þ BðpÞx2k þ 1 þ CðpÞxk þ 1 þ DðpÞ
ð2:167Þ
ð1Þ
¼ xk þ 1 þ a0 *3i¼1 ðxk þ 1 ai Þ:
(i) After l-times backward period-doubling bifurcations, a backward period- 2l discrete system (l ¼ 1; 2; . . .) for the backward cubic discrete system in Eq. (2.167) is given through the nonlinear renormalization as ð2l1 Þ
xk ¼ xk þ 2l þ ½a0 f1 þ
3
ð2l1 Þ 2
Þ
l1
Þ
2l1
ð2l1 Þ
¼ xk þ 2l þ ½a0
ð2l1 Þ 22
Þ
ð2l Þ
with for r 22
Þ
3
3
2l
2l1
ð3 3
*j1 ¼1 32
Þ=2
l1
*i1 ¼1; ðxk þ 2l l
ð32 32
l1
*i2 ¼1
Þ
32
l
l1
Þ=2 32
ð2
ai1
l1
Þ
ð2l1 Þ
ai 2
Þg
Þ ð2l Þ
ð2l Þ
ðx2k þ 2l þ Bj2 xk þ 2l þ Cj2 Þ ð2l1 Þ
ai1
Þ ð2l Þ
ð2:168Þ
ð2l Þ
ðxk þ 2l bi2 ;1 Þðxk þ 2l bi2 ;2 Þ
l
*i¼1 ðxk þ 2l
*i¼1 ðxk þ 2l
Þ
*i2 ¼1;i2 6¼i1 ðxk þ 2l
*i1 ¼1 ðxk þ 2l
ð2l1 Þ 1 þ 32
¼ xk þ 2 l þ a0
ð2l1 Þ
ai1 2l1
2l1
l1
¼ xk þ 2l þ ða0
l1
ð2
*i1 ¼1 ½1 þ a0 ð2
½ða0
l1
2l1
¼ xk þ 2l þ ½a0 ½ða0
32
*i1 ¼1 ðxk þ 2l
ð2l Þ
ai Þ
ð2l Þ
ai Þ
l
l dxk ð2l Þ X32l ð2l Þ 32 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk þ 2l ai2 Þ; dxk þ 2l l d 2 xk ð2l Þ X32l X32l ð2l Þ 32 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l ai3 Þ; dx2k þ 2l
.. .
l d r xk X32l ð2l Þ X32l ð2l Þ 32 ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk þ 2l air þ 1 Þ r dxk þ 2l
ð2:169Þ where
2.6 Backward Cubic Nonlinear Discrete Systems ð2l Þ
ð2Þ
ð2l1 Þ 1 þ 32
a0 ¼ ða0 Þ1 þ 3 ; a0 2l
¼ ða0 2l1
l
ð2 Þ
Þ
l1
155
; l ¼ 2; 3; ;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
ð2l Þ
2 03i¼1 fai g ¼ sortf03i1 ¼1 fai1 g; 0M i2 2¼1 fbi2 ;1 ; bi2 ;2 gg ,ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
ai þ 1 ;
ð2l Þ Di
l
2
l1
Iqð21
¼ Þ
2
ð2l Þ ðBi Þ2
ð2l Þ 4Ci
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
00Nq22¼1 Iqð22 Þ ;
¼ flðq1 1Þ2l1 m1 þ 1 ; lðq1 1Þ2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ2l m1 þ 1 ; lðq2 1Þ2l m1 þ 2 ; ; lq2 m1 2l g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð32 32 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g f1; 2; ; M2 g0f∅g
ð2:170Þ
with fixed-points ð2l Þ
l
xk ¼ xk þ 2l ¼ ai ; ði ¼ 1; 2; . . .; 32 Þ 2l
2l1
ð2l Þ
ð2l1 Þ
03i¼1 fai g ¼ sortf02i¼1 fai l
ð2l1 Þ
2 g; 0M i¼1 fbi;1
ð2l1 Þ
; bi;2
gg
ð2:171Þ
l
ð2 Þ
ð2 Þ
with ai \ai þ 1 : ð2l1 Þ
(ii) For a backward fixed-point of xk ¼ xk þ 2l1 ¼ ai1 . . .; N1 g), if dxk dxk þ 2l1
j
x
kþ2
ð2l1 Þ
¼ai l1
ð2l1 Þ
¼ 1 þ a0
32
l1
ð2l1 Þ
*i2 ¼1;i2 6¼i1 ðai1
ð2l1 Þ
(i1 2 Iq ð2l1 Þ
ai 2
; q 2 f1; 2;
Þ ¼ 1 ð2:172Þ
1
then there is a backward period- 2l fixed-point discrete system ð2l Þ
xkl ¼ xk þ 2l þ a0
*
ð2l1 Þ i1 2Iq
ð2l1 Þ 3
ðxk þ 2l ai1
Þ
32
l
*j2 ¼1 ðxk þ 2l
ð2l Þ
aj2 Þð1dði1 ;j2 ÞÞ ð2:173Þ
156
2 Cubic Nonlinear Discrete Systems
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð2:174Þ
with dxk d 2 xk j j ð2l1 Þ ¼ 1; ð2l1 Þ ¼ 0; dxk þ 2l xk þ 2l ¼ai1 dx2k þ 2l xk þ 2l ¼ai1 d 3 xk ð2l Þ ð2l1 Þ ð2l1 Þ j ðai1 ai2 Þ3 * ð2l1 Þ ¼ 6a0 ð2l1 Þ 3 i2 2Iq ;i2 6¼i1 dxk þ 2l xk þ 2l ¼ai1 2l
ð2l1 Þ
*3j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0
; q 2 f1; 2; . . .; N1 gÞ
ð2l1 Þ
xk at xk þ 2l ¼ ai1
ð2:175Þ
is
• a monotonic sink of the third-order if d 3 xk =dx3k þ 2l j
ð2l1 Þ
x
k þ 2l
• a monotonic source of the third-order if d 3 xk =dx3k þ 2l j
¼ai
x
k þ 2l
[ 0;
1 ð2l1 Þ
¼ai
\0:
1
(ii1) The backward period- 2l fixed-points are trivial if ð2l1 Þ
xk ¼ xk þ 2l ¼ ai1
l1
for i1 ¼ 1; 2; ; 32 ;
ð2:176Þ
(ii2) The backward period- 2l fixed-points are non-trivial if ð2l Þ
ð2l Þ
xk ¼ xk þ 2l ¼ bj1 ;1 ; bj1 ;2
j1 2 1; 2; . . .; M2 g0f£g
:
ð2:177Þ
Such a period- 2l fixed-point is • monotonically stable if dxk =dxk þ 2l j
2 ð0; 1Þ;
ð2l Þ
x
¼ai
k þ 2l
• monotonically invariant if dxk þ 2l =dxk j
1
¼ 1; which is
ð2l Þ
xk ¼ai 1 th
1 j – a monotonic lower-saddle of the ð2l1 Þ order for d 2l1 xk =dx2l k þ 2 l x
k þ 2l
th
– a monotonic upper-saddle the ð2l1 Þ order for
[ 0;
1 d 2l1 xk =dx2l j \0; k þ 2l xk þ 2l
– a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l1 jx
k þ 2l
– a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
[ 0;
k þ 2l
• monotonically unstable if dxk =dxk þ 2l j
x
k þ 2l
2 ð0; 1Þ;
ð2l Þ
¼ai
1
• monotonically infinity-unstable if dxk =dxk þ 2l j
x
k þ 2l
ð2l Þ
¼ai
1
¼ 0þ ;
\0;
2.6 Backward Cubic Nonlinear Discrete Systems
157
• oscillatorilly infinity-unstable if dxk =dxk þ 2l j ð2l Þ ¼ 0 ; x l ¼ai kþ2 1 • oscillatorilly unstable if dxk =dxk þ 2l j ð2l Þ 2 ð1; 0Þ; x
• flipped if dxk =dxk þ 2l j
ð2l1 Þ x l ¼ai kþ2 1
k þ 2l
¼ai
1
¼ 1; which is
1 – an oscillatory lower-saddle of the ð2l1 Þth order if d 2l1 xk =dx2l j k þ 2 l x
k þ 2l
– an oscillatory upper-saddle the ð2l1 Þ
th
order with
[ 0;
1 d 2l1 xk =dx2l j k þ 2l xk þ 2l
\0; – an oscillatory sink of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
k þ 2l
\0;
1 þ1 – an oscillatory source the ð2l1 þ 1Þth order with d 2l1 þ 1 xk =dx2l j k þ 2l x
k þ 2l
[ 0; • oscillatorilly stable if dxk =dxk þ 2l j
ð2l Þ
x
k þ 2l
¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, following the forward case, this theorem can be proved. ■
2.6.3
Backward Period-n Appearing and Period-Doublization
The period-n discrete system for backward cubic nonlinear discrete systems will be discussed, and the backward period-doublization of period-n discrete systems is discussed through the nonlinear renormalization. Theorem 2.7 Consider a 1-dimensional backward cubic nonlinear discrete system xk ¼ xk þ 1 þ Ax3k þ 1 þ Bx2k þ 1 þ Cxk þ 1 þ D ð1Þ
¼ xk þ 1 þ a0 *3i¼1 ðxk þ 1 ai Þ:
ð2:178Þ
(i) After n-times iterations, a backward period-n discrete system for the cubic discrete system in Eq. (2.178) is xk ¼ xk þ n þ a0 *3i1 ¼1 ðxk þ n ai2 Þf1 þ ¼
n xk þ n þ a03 1 *3i1 ¼1 ðxk þ n n
ð3 3Þ=2
½*j2 ¼1
ðnÞ
¼ x k þ n þ a0
Xn
j¼1
ai1 Þ
l
ð2l Þ
ð2 Þ
ðx2k þ n þ Bj2 xk þ n þ Cj2 Þ 3n
*i¼1 ðxk þ n
ðnÞ
ai Þ
Qj g ð2:179Þ
158
2 Cubic Nonlinear Discrete Systems
with for r 3n dxk n ðnÞ X n ðnÞ ¼ 1 þ a0 3i1 ¼1 *3i2 ¼1;i2 6¼i1 ðxk þ n ai2 Þ; dxk þ n d 2 xk n ðnÞ X n X n ðnÞ ¼ a0 3i1 ¼1 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðxk þ n ai3 Þ; dx2k þ n .. . d r xk n X n ðnÞ X n ðnÞ ¼ a0 3i1 ¼1 3ir ¼1;ir 6¼i1 ;i2 ...;ir1 *3ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk þ n air þ 1 Þ dxrk þ n ð2:180Þ where ðnÞ
a0 ¼ ða0 Þð3
n
1Þ=2
ð1Þ
; Q1 ¼ 0; Q2 ¼ *3i2 ¼1 ½1 þ a0 *3i1 ¼1;i1 6¼i2 ðxk þ n ai1 Þ; ð1Þ
Qn ¼ *3in ¼1 ½1 þ a0 ð1 þ Qn1 Þ *3in1 ¼1;in1 6¼in ðxk þ n ain1 Þ; n ¼ 3; 4; . . .; n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
03i¼1 fai g ¼ sortf03i1 ¼1 fai1 g; 0M i1 ¼1 fbi2 ;1 ; bi2 ;2 gg; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2 2 ðnÞ ðnÞ ðnÞ Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þn þ 1 ; lðq1Þn þ 2 ; . . .; lqn gf1; 2; . . .; Mg0f£g; for q 2 f1; 2; . . .; Ng; M ¼ ð3n 3Þ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flNn þ 1 ; lNn þ 2 ; . . .; lM g f1; 2; . . .; Mg0f£g; ð2:181Þ
with backward fixed-points ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 3n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
2 03i¼1 fai g ¼ sortf03i¼1 fai g; 0M i¼1 fbi;1 ; bi;2 gg
ð2:182Þ
ðnÞ ðnÞ with ai \ai þ 1 : ðnÞ
ðnÞ
(ii) For a backward fixed-point of xk ¼ xk þ n ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), if dxk n ðnÞ ðnÞ ð2l Þ jx ¼aðnÞ ¼ 1 þ a0 *3i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk þ n k i1
ð2:183Þ
2.6 Backward Cubic Nonlinear Discrete Systems
159
with d 2 xk n ðnÞ X n ðnÞ ð2l Þ jx ¼aðnÞ ¼ a0 3i2 ¼1;i2 6¼i1 *3i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; 2 dxk þ n k þ n i1
ð2:184Þ
then there is a new discrete system for onset of the qth -set of period-n fixedpoints based on the second-order monotonic saddle-node bifurcation as ðnÞ
xk ¼ x k þ n þ a0
*i 2I ðnÞ ðxk þ n 1 q
ðnÞ
ðnÞ
ai1 Þ2 *3j2 ¼1 ðxk þ n aj2 Þð1dði1 ;j2 ÞÞ ð2:185Þ n
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð2:186Þ
(ii1) If dxk j ði1 2 IqðnÞ Þ; ðnÞ ¼ 1 dxk þ n xk þ n ¼ai1 d 2 xk ðnÞ ðnÞ ðnÞ 2 j ðnÞ ¼ 2a 0 *i2 2IqðnÞ ;i2 6¼i1 ðai1 ai2 Þ dx2k þ n xk þ n ¼ai1 ðnÞ
ð2:187Þ
ðnÞ
*3j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk at xk þ n ¼ ai1 is • a monotonic upper-saddle of the second-order for d 2 xk =dx2k þ n jx
¼ai
kþn
¼ai
\0; • a monotonic lower-saddle of the second-order for d 2 xk =dx2k þ n jx [ 0:
ðnÞ
kþn
1
ðnÞ 1
(ii2) The backward period-n fixed-points ( n ¼ 2n1 m) are trivial ) 2n1 1 m ðnÞ ð1Þ ð2n1 1 mÞ xk þ n ¼ xk ¼ aj1 2 f03ii ¼1 fai1 g; 03i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 3n g0f£g
for n 6¼ 2n2 ; ðnÞ
2n1 1 m
ð2n1 1 mÞ
g xk þ n ¼ xk ¼ aj1 2 03i2 ¼1 fai2 for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 3n g0f£g for n ¼ 2n2 :
)
ð2:188Þ
160
2 Cubic Nonlinear Discrete Systems
(ii3) The backward period-n fixed-points ( n ¼ 2n1 m) are non-trivial if ) 2n1 1 m ðnÞ ð1Þ ð2n1 1 mÞ xk ¼ xk þ n ¼ aj1 62 f03ii ¼1 fai1 g; 03i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 3n g0f£g
for n 6¼ 2n2 ; 2n1 1 m
ðnÞ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 62 03i2 ¼1 fai2
)
g
ð2:189Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 3n g0f£g for n ¼ 2n2 :
Such a backward period-n fixed-point is • monotonically stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk =dxk þ n jx
kþn
ðnÞ
¼ai
¼ 1; which is
1
th
– a monotonic lower-saddle of the ð2l1 Þ
1 order for d 2l1 xk =dx2l k þ n j x
kþn
[ 0; 1 – a monotonic upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jx \0; kþn
– a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx
kþn
[ 0; – a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx
kþn
\0; • monotonically stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonic infinity-unstable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
kþn
¼ai
• oscillatory infinity-unstable if dxk =dxk þ n jx • oscillatorilly unstable if dxk =dxk þ n jx • flipped if dxk =dxk þ n jx
kþn
kþn
ðnÞ
¼ai
ðnÞ
¼ai
1
ðnÞ
¼ 0þ ; ¼ 0 ;
1
2 ð1; 0Þ;
1
¼ 1; which is
1
1 – an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ n j x
kþn
[ 0; 1 – an oscillatory upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ n j x
kþn
\0; – an oscillatory sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx \0;
kþn
2.6 Backward Cubic Nonlinear Discrete Systems
161
– an oscillatory source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx
kþn
[ 0; • oscillatorilly stable if dxk =dxk þ n jx
kþn
ðnÞ
¼ai
2 ð1; 1Þ:
1
ðnÞ
ðnÞ
(iii) For a backward fixed-point of xk ¼ xk þ n ¼ ai1 ( i1 2 Iq , q 2 f1; 2; . . .; Ng), there is a backward period-doubling of the qth -set of period-n fixed-points if dxk n ðnÞ ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *3j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; dxk þ n k þ n i1 d s xk j ðnÞ ¼ 0; for s ¼ 2; . . .; r 1; dxsk þ n xk þ n ¼ai1 d r xk n j ðnÞ 6¼ 0 for 1\r 3 dxrk þ n xk þ n ¼ai1
ð2:190Þ
with • a r th -order oscillatory sink for d r xk =dxrk þ n jx
kþn
ðnÞ
¼ai
\0 and r ¼ 2l1 þ 1;
1
• a r th -order oscillatory source for d r xk =dxrk þ n jx
ðnÞ
kþn
¼ai
[ 0 and r ¼
1
2l1 þ 1; • a r th -order oscillatory lower-saddle for d r xk =dxrk þ n jx
ðnÞ
kþn
r ¼ 2l1 ; • a r th -order oscillatory upper-saddle for d r xk =dxrk þ n jx
¼ai
kþn
r ¼ 2l1 ;
[ 0 and
1
ðnÞ
¼ai
\0 and
1
The corresponding period- 2 n discrete system of the backward cubic discrete system in Eq. (2.178) is ð2nÞ
xk ¼ xk þ 2n þ a0
*i 2I ðnÞ ðxk þ 2n 1 q
ðnÞ
ai 1 Þ 3
ð2nÞ ð1dði1 ;j2 ÞÞ
2n
*3j2 ¼1 ðxk þ 2n aj2
Þ
ð2:191Þ
with dxk dxk þ 2n
j x
ðnÞ
¼ai k þ 2n
1
¼ 1;
d 2 xk þ 2n j ðnÞ ¼ 0; dx2k þ 2n xk þ 2n ¼ai1
d xk ð2nÞ ðnÞ ðnÞ 3 j ðnÞ ¼ 6a *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 0 2 q 2 1 dx3k þ 2n xk þ 2n ¼ai1 3
2n
ðnÞ
ð2nÞ ð1dði1 ;j2 ÞÞ
*3j2 ¼1 ðai1 aj2
Þ
ð2:192Þ 6¼ 0:
162
2 Cubic Nonlinear Discrete Systems ðnÞ
ðnÞ
Thus, xk at xk þ 2n ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic source of the third-order if d 3 xk =dx3k þ 2n jx
ðnÞ
¼ai
k þ 2n
• a monotonic sink of the third-order if d 3 xk =dx3k þ 2n jx
ðnÞ
k þ 2n
¼ai
\0;
1
[ 0:
1
(iv) After l-times backward period-doubling bifurcations of period-n fixed points, a period-2l n discrete system of the backward cubic discrete system in Eq. (2.178) is ð2l1 nÞ
xk ¼ xk þ 2l n þ ½a0 f1 þ ¼
ð2l1 nÞ
3
*i1 ¼1
32
l1 n
*i1 ¼1
ð2l1 nÞ
ðxk þ 2l n ai1
ð2l1 nÞ 32l1 n xk þ 2l n þ ½a0 *i1 ¼1 ðxk þ 2l n ð2
½ða0
l1
nÞ 3
Þ
ð2l1 nÞ
l1
ð2
¼ xk þ 2l n þ ½a0 ð2
½ða0
l1
nÞ 3
Þ
nÞ
ð2l1 nÞ
ð3
ð2 nÞ
¼ xk þ 2l n þ a0
2l n
*j1 ¼1 3
ð3
2l n
*j2 ¼1
Þ
3
l1 n
2l n
*i¼1
3
2l1 n
*i1 ¼1
ð2l1 nÞ 32
¼ xk þ 2l n þ ða0
l
Þ
ð2l1 nÞ 32l1 n ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2l n
2l1 n
Þ=2
ð2l nÞ
ðx2k þ 2l n þ Bj2 ð2
3
l
32 n
*i¼1
Þ=2
Þg
ð2l1 nÞ ai1 Þ
ðxk þ 2l n ai1 2l1 n
ð2l1 nÞ
ai 2
l1
nÞ
ð2l nÞ
xk þ 2l n þ Cj2
Þ
Þ ð2l nÞ
ð2l nÞ
ðxk þ 2l n bj2 ;1 Þðxk þ 2l n bj2 ;2 Þ ð2l nÞ
ðxk þ 2l n ai l
ð2 nÞ
ðxk þ 2l n ai
Þ
Þ
l
ð2:193Þ
with for r 32 n dxk ð2l nÞ X32l n 32l n ð2l nÞ ¼ 1 þ a0 Þ; i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk þ 2l n ai2 dxk þ 2l n l d 2 xk ð2l nÞ X32l n X32l n ð2l nÞ 32 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l n ai3 2 dxk þ 2l n
.. .
l d r xk X32l n ð2l nÞ X32l n ð2l nÞ 32 n ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ...;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk þ 2l n air þ 1 Þ r dxk þ 2l n
ð2:194Þ where
2.6 Backward Cubic Nonlinear Discrete Systems ð2nÞ
a0
ðnÞ
ð2l nÞ
¼ ða0 Þ1 þ 3 ; a0 2n
ð2l nÞ ð2l nÞ g 03i¼1 fai
ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l1 nÞ 1 þ 32
¼ ða0
l1 n
; l ¼ 1; 2; 3; . . .;
¼
qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; 2
ð2l nÞ
ð2l nÞ 2
ð2l nÞ
¼ ðBi
for i 2
l l 0Nq11¼1 Iqð21 nÞ 00Nq22¼1 Iqð22 nÞ ;
l1
Þ
2l1 n ð2l1 nÞ ð2l nÞ ð2l nÞ 2 sortf03i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
Di
Iqð21
163
nÞ
Þ 4Ci
0
¼ flðq1 1Þð2l1 nÞ þ 1 ; lðq1 1Þð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f£g;
ð2:195Þ
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; l
Iqð22 nÞ ¼ flðq2 1Þð2l nÞ þ 1 ; lðq2 1Þð2l nÞ þ 2 ; . . .; lq1 ð2l nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f£g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ ð32 n 32 n Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi i jDi jÞ; bi;2 2 pffiffiffiffiffiffiffi ð2l nÞ ð2l nÞ 2 ð2l nÞ Di ¼ ðBi Þ 4Ci \0; i ¼ 1; i 2 flNð2l1 nÞ þ 1 ; lNð2l1 nÞ þ 2 ; . . .; lM2 g fM1 þ 1; M1 þ 2; . . .; M2 g0f£g
with fixed-points ð2l nÞ
xk ¼ xk þ 2l n ¼ ai 2l n
ð2l nÞ
03i¼1 fai l
ð2 nÞ
with ai
l
; ði ¼ 1; 2; . . .; 32 n Þ 2l1 n
g ¼ sortf03i¼1
ð2l1 nÞ
fai
ð2l1 nÞ
2 g; 0M i¼1 fbi;1
ð2l1 nÞ
; bi;2
gg
l
ð2 nÞ
\ai þ 1 : ð2:196Þ
(v)
ð2
l1
nÞ
l1
ð2
nÞ
For a fixed-point of xk ¼ xk þ 2l n ¼ ai1 (i1 2 Iq ; q 2 f1; 2; . . .; l N1 g), there is a backward period-ð2 nÞ discrete system if
with
dxk j ð2l1 nÞ ¼ 1; dxk þ 2l1 n xk þ 2l1 n ¼ai1 d s xk j ð2l1 nÞ ¼ 0; for s ¼ 2; . . .; r 1; s dxk þ 2l1 n xk þ 2l1 n ¼ai1 d r xk 2l1 n j ð2l1 nÞ 6¼ 0 for 1\r 3 r dxk þ 2l1 n xk þ 2l1 n ¼ai1
ð2:197Þ
164
2 Cubic Nonlinear Discrete Systems
• a r th -order oscillatory source for d r xk =dxrk þ 2l n j
r ¼ 2l1 þ 1; • a r th -order oscillatory sink for d r xk =dxrk þ 2l n j
[ 0 and
ð2l nÞ
x
k þ 2l1 n
¼ai
1
ð2l nÞ
x
k þ 2l1 n
r ¼ 2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk =dxrk þ 2l n j and r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk =dxrk þ 2l n j
¼ai
ð2l nÞ
x
k þ 2l1 n
¼ai
k þ 2l1 n
¼ai
\0
1
ð2l nÞ
x
and r ¼ 2l1 .
\0 and
1
[0
1
The corresponding backward period- ð2l nÞ discrete system is ð2l nÞ
xk ¼ xk þ 2l n þ a0 l
32 n *j2 ¼1 ðxk þ 2l n
*
ð2l1 nÞ i1 2Iq
ð2l1 nÞ 3
ðxk þ 2l n ai1
Þ
ð2:198Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ aj2 Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai 1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð2:199Þ
with dxk dxk þ 2l n
j
ð2l1 nÞ x l ¼ai k þ 2 n 1
¼ 1;
d 2 xk j ð2l1 nÞ ¼ 0; dx2k þ 2l n xk þ 2l n ¼ai1
d 3 xk ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ða ai 2 Þ * ð2l1 nÞ ¼ 6a0 ð2l1 nÞ i2 2Iq ;i2 6¼i1 i1 dx3k þ 2l n xk þ 2l n ¼ai1 2l n
ð2l1 nÞ
*3j2 ¼1 ðai1 ði1 2 Iqð2
l1
nÞ
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
6¼ 0
; q 2 f1; 2; . . .; N1 gÞ ð2:200Þ ð2l1 nÞ
xk at xk þ 2l n ¼ ai1
is
• a monotonic source of the third-order if d 3 xk =dx3k þ 2l n j • a monotonic sink of the third-order if d 3 xk =dx3k þ 2l n j
x
k þ 2l n
k þ 2l n
(v1) The backward period- 2l n fixed-points are trivial if
ð2l1 nÞ
x
¼ai
ð2l1 nÞ
¼ai
1
\0;
1
[ 0:
2.6 Backward Cubic Nonlinear Discrete Systems ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
165 2l1 n
ð1Þ
ð2l1 nÞ
2 f03ii ¼1 fai1 g; 03i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 32 n for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð2l1 nÞ
2 03i2 ¼1 fai2
g
ð2:201Þ
)
l
for j ¼ 1; 2; . . .; 32 n for n ¼ 2n1 : (v2) The backward period- 2l n fixed-points are non-trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
62 f03ii ¼1 fai1 g; 03i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 32 n for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð2l1 nÞ
62 03i2 ¼1 fai2
g
ð2:202Þ
)
l
for j ¼ 1; 2; . . .; 32 n for n ¼ 2n1 : Such a backward period- 2l n fixed-point is • monotonically stable if dxk =dxk þ 2l n j
ð2l nÞ
x
k þ 2l n
• monotonically invariant if dxk =dxk þ 2l n j
¼ai
2 ð1; 1Þ;
1 ð2l nÞ
x
k þ 2l n
¼ai
¼ 1; which is
1
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l j k þ 2l n x
[ 0 (independent ð2l1 Þ-branch appearance); 1 j – a monotonic upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ 2l n x
k þ 2l n
k þ 2l n
\0
(independent ð2l1 Þ-branch appearance) 1 þ1 j – a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2l k þ 2l n x [ 0 (dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l1n jx (dependent ð2l1 þ 1Þ-branch appearance from one branch); • monotonically unstable if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
• monotonically infinity-unstable if dxk =dxk þ 2l n j • oscillatorilly infinity-unstable if dxk =dxk þ 2l n j
x
x
ð2l nÞ
k þ 2l n
k þ 2l n
k þ 2l n
2 ð0; 1Þ;
1
¼ai
1
ð2l nÞ
¼ai
1
¼ 0þ ;
¼ 0 ;
k þ 2l n
\0
166
2 Cubic Nonlinear Discrete Systems
• oscillatorilly unstable if dxk =dxk þ 2l n j • flipped if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
x
ð2l nÞ
k þ 2l n
¼ai
2 ð1; 0Þ;
1
¼ 1; which is
1
1 – an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l j k þ 2l n x
k þ 2l n
[ 0; 1 j – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ 2l n x
k þ 2l n
\0; 1 þ1 j – an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2l k þ 2l n x
k þ 2l n
[ 0; 1 þ1 j – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk = dx2l k þ 2l n x
k þ 2l n
\ 0; • oscillatorilly stable if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, the proof of this theorem can follow the proof for the forward cubic discrete system. This theorem can be easily proved. ■
Reference Luo ACJ (2019) The stability and bifurcation of fixed-points in low-degree polynomial systems. J Vib Test Syst Dyn 3(4):403–451
Chapter 3
Quartic Nonlinear Discrete Systems
In this Chapter, the stability and bifurcation of the quartic nonlinear discrete systems will be presented, which is similar to Luo (2019). The fourth-order monotonic upper-saddle and monotonic lower-saddle appearing bifurcations of two second-order monotonic upper-saddles or monotonic lower-saddles will be presented. The 3rd order monotonic sink and source switching bifurcations of monotonic lower-saddle with monotonic sink and monotonic upper-saddle with monotonic source will be discussed. Graphical illustrations of global stability and bifurcations are presented. The bifurcation trees for quartic nonlinear discrete systems are discussed through period-doublization and monotonic saddle-node bifurcations.
3.1
Period-1 Appearing Bifurcations
In this section, period-1 fixed-points in quartic nonlinear discrete systems will be discussed, and the stability and appearing and switching bifurcation conditions for period-1 fixed points will be developed. Definition 3.1 Consider a 1-dimensional, forward, quartic nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ ¼
xk þ a0 ðpÞ½x2k
þ B1 ðpÞxk þ C1 ðpÞ½x2k
ð3:1Þ
þ B2 ðpÞxk þ C2 ðpÞ
where AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
© Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3_3
ð3:2Þ
167
168
3 Quartic Nonlinear Discrete Systems
(i) If Di ¼ B2i 4Ci \0 for i ¼ 1; 2
ð3:3Þ
the quartic nonlinear discrete system does not have any fixed-point, and the corresponding standard form is 1 2
1 4
1 2
1 4
xk þ 1 ¼ xk þ a0 ½ðxk þ B1 Þ2 þ ðD1 Þ½ðxk þ B2 Þ2 þ ðD2 Þ:
ð3:4Þ
The discrete flow of such a discrete system without fixed-points is called a non-fixed-points discrete flow. (i1) If a0 [ 0, the non-fixed-point discrete flow is called the positive discrete flow. (i2) If a0 \0, the non-fixed-point discrete flow is called the negative discrete flow. (ii) If Di ¼ B2i 4Ci [ 0 and Dj ¼ B2j 4Cj \0 for i; j 2 f1; 2g; i 6¼ j
ð3:5Þ
the quartic polynomial discrete system has two simple fixed-points, i.e., ðiÞ
1 2
xk ¼ b1 ¼ ðBi þ
pffiffiffiffiffi pffiffiffiffiffi 1 ðiÞ Di Þ; xk ¼ b2 ¼ ðBi Di Þ: 2
ð3:6Þ
The corresponding standard form is 1 2
1 4
xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þ½ðxk þ Bj Þ2 þ ðDj Þ
ð3:7Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
a1 ¼ minðb1 ; b2 Þ and a2 ¼ maxðb1 ; b2 Þ
ð3:8Þ
Such a discrete flow of fixed-points is called a discrete flow of two simple fixed-points. (iii) If Di ¼ B2i 4Ci ¼ 0 and Dj ¼ B2j 4Cj \0 for i; j 2 f1; 2g; i 6¼ j
ð3:9Þ
the quartic polynomial, forward discrete system has a double repeated fixedpoint, i.e., ðiÞ
1 2
ðiÞ
1 2
xk ¼ b1 ¼ Bi ; xk ¼ b2 ¼ Bi :
ð3:10Þ
3.1 Period-1 Appearing Bifurcations
169
The corresponding standard form is 1 2
1 4
xk þ 1 ¼ xk þ a0 ðxk a1 Þ2 ½ðxk þ Bj Þ2 þ ðDj Þ
ð3:11Þ
ðiÞ
ð3:12Þ
where ðiÞ
a1 ¼ b1 ¼ b2 : Such a discrete flow of the fixed-point of xk ¼ a1 is called
• a monotonic upper-saddle discrete flow of the second-order for a0 [ 0; • a monotonic lower-saddle discrete flow of the second-order for a0 \0. The fixed-point of x ¼ a1 for two fixed-points appearance or vanishing is called • a monotonic upper-saddle two fixed-points at p ¼ p1 • a monotonic lower-saddle two fixed-points at p ¼ p1
appearing bifurcation of the second-order for 2 @X12 for a0 [ 0; appearing bifurcation of the second-order for 2 @X12 for a0 \0.
The appearing bifurcation condition of the upper or lower-saddle is 1 2
Di ¼ B2i 4Ci ¼ 0ði 2 f1; 2gÞ and a1 ¼ Bi : (iv) If
Di ¼ B2i 4Ci 0 for i ¼ 1; 2;
ð3:13Þ
ð3:14Þ
the quartic nonlinear discrete system has four fixed-points, i.e., ðiÞ
1 2
xk ¼ b1 ¼ ðBi þ
pffiffiffiffiffi pffiffiffiffiffi 1 ðiÞ Di Þ; xk ¼ b2 ¼ ðBi Di Þ for i ¼ 1; 2: 2
ð3:15Þ
(iv1) A standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þðxk a4 Þ
ð3:16Þ
where Di ¼ B2i 4Ci [ 0; i ¼ 1; 2; ð1Þ
ð2Þ
bk 6¼ bl
for k; l 2 f1; 2g;
a1;2;3;4 2
ð1Þ ð1Þ ð2Þ ð2Þ fb1 ; b2 ; b1 b2 g
ð3:17Þ with am \am þ 1 :
Such a discrete flow of fixed-points is called a discrete flow of four simple fixed-points.
170
3 Quartic Nonlinear Discrete Systems
(iv2) The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ
ð3:18Þ
where Di ¼ B2i 4Ci [ 0; Dj ¼ B2j 4Cj [ 0 for i; j ¼ 1; 2; ðiÞ
ðjÞ
ai1 ¼ bk ¼ bl ; ði; kÞ 6¼ ðj; lÞ; i; j; k; l 2 f1; 2g;
ð3:19Þ
ai1 62 fai2 ; ai3 g for ia 2 f1; 2; 3; 4g and a 2 f1; 2; 3; 4g: (iv2a) Such a discrete flow of fixed-point xk ¼ ai1 ðai1 \minfai2 ; ai3 g or ai1 [ maxfai2 ; ai3 gÞ is called • a monotonic upper-saddle discrete flow of the second-order for a0 [ 0; • a monotonic lower-saddle discrete flow of the second-order for a0 \0. The fixed-point of xk ¼ ai1 ðai1 \minfai2 ; ai3 g or ai1 [ maxfai2 ; ai3 gÞ for two fixed-points switching is called • a monotonic upper-saddle switching bifurcation of order for fixed-points at a point p ¼ p1 2 @X12 for • a monotonic lower-saddle switching bifurcation of order for fixed-points at a point p ¼ p1 2 @X12 for
the seconda0 [ 0; the seconda0 \0.
(iv2b) Such a discrete flow of fixed-point xk ¼ ai1 ðminfai2 ; ai3 g\ai1 \maxfai2 ; ai3 gÞ is called • a monotonic lower-saddle discrete flow of the second order for a0 [ 0; • a monotonic upper-saddle discrete flow of the second order for a0 \0. The fixed-point of xk ¼ ai1 ðminfai2 ; ai3 g\ai1 \maxfai2 ; ai3 gÞ for two fixed-points switching is called • a monotonic lower-saddle switching bifurcation of the secondorder for fixed-points at a point p ¼ p1 2 @X12 for a0 [ 0; • a monotonic upper-saddle switching bifurcation of the secondorder for fixed-points at a point p ¼ p1 2 @X12 for a0 \0. (iv2c) The corresponding monotonic supper- or lower-saddle switching bifurcation condition for switching of two fixed-points is
3.1 Period-1 Appearing Bifurcations
171
Di ¼ B2i 4Ci [ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj [ 0 ðj 2 f1; 2gÞ; ðiÞ bk
¼
ðjÞ bl ; ði; kÞ
ð3:20Þ
6¼ ðj; lÞ; ði; j; k; l 2 f1; 2gÞ:
(iv2d) The corresponding monotonic upper-or lower-saddle appearing bifurcation condition for appearance or vanishing of two fixed-points is Di ¼ B2i 4Ci ¼ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj [ 0 ðj 2 f1; 2g; j 6¼ iÞ; ðiÞ bk
¼
ðiÞ bl ; ði; kÞ
ð3:21Þ
6¼ ðj; lÞ; ði; j; k; l 2 f1; 2gÞ:
(iv3) The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai2 Þ
ð3:22Þ
where Di ¼ B2i 4Ci [ 0; Dj ¼ B2j 4Cj ¼ 0 for i; j ¼ 1; 2; 1 2
ðiÞ
ðiÞ
ai1 ¼ Bj ¼ bl ; ai2 ¼ bk ; k 6¼ l; k; l 2 f1; 2g;
ð3:23Þ
ai1 ¼ ai3 for ia 2 f1; 2; 3; 4g and a 2 f1; 2; 3; 4g: (iv3a) Such a discrete flow of the fixed-point of xk ¼ ai1 ðai1 \ ai2 Þ is called • a monotonic sink discrete flow of the third-order for a0 [ 0; • a monotonic source discrete flow of the third-order for a0 \0. The fixed-point of x ¼ ai1 for one fixed-point to three fixed-points is called • a monotonic sink switching bifurcation of the third-order for fixed-point at point p ¼ p1 2 @X12 for a0 [ 0; • a monotonic source switching bifurcation of the third-order for fixed-points at point p ¼ p1 2 @X12 for a0 \0. (iv3b) Such a discrete flow of the fixed-point of xk ¼ ai1 ðai1 [ ai2 Þ is called • a monotonic source discrete flow of the third-order for a0 [ 0; • a monotonic sink discrete flow of the third-order for a0 \0. The fixed-point of x ¼ ai1 for one fixed-point to three fixed-points is called • a monotonic source switching bifurcation of the third-order at point p ¼ p1 2 @X12 for a0 [ 0; • a monotonic sink switching bifurcation of the third-order at point p ¼ p1 2 @X12 for a0 \0.
172
3 Quartic Nonlinear Discrete Systems
(iv3c) The corresponding monotonic sink or source switching bifurcation condition of the third-order is Di ¼ B2i 4Ci [ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj ¼ 0 ðj 2 f1; 2gÞ; ðiÞ bk
¼
1 ðiÞ Bj ; bk 2
6¼
ðiÞ bl ; ðk
:
ð3:24Þ
6¼ l; k; l 2 f1; 2gÞ:
(iv4) The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ2
ð3:25Þ
where Di ¼ B2i 4Ci ¼ 0; i ¼ 1; 2; ð1Þ
ð1Þ
ð2Þ
1 2
ð2Þ
1 2
b1 ¼ b2 ¼ B1 ; b1 ¼ b2 ¼ B2 ; B1 6¼ B2 ; a1 ¼
1 1 minf B1 ; B2 g; a2 2 2
¼
ð3:26Þ
1 1 maxf B1 ; B2 g: 2 2
Such a discrete flow with the two fixed-points of xk ¼ a1 and xk ¼ a2 is called • a (2nd mUS:2nd mUS) discrete flow for a0 [ 0; • a (2nd mLS:2nd mLS) discrete flow for a0 \0. The fixed-points of xk ¼ a1 and xk ¼ a2 for two sets of two fixed-points switching or appearing are called two upper- or lower-saddle switching or appearing bifurcations of the second-order at a point p ¼ p1 2 @X12 , and the bifurcation condition is Di ¼ B2i 4Ci ¼ 0; i ¼ 1; 2 ; ð1Þ
ð1Þ
ð2Þ
1 2
ð2Þ
1 2
b1 ¼ b2 ¼ B1 ; b1 ¼ b2 ¼ B2 :
ð3:27Þ
(iv5) The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þ4
ð3:28Þ
where Di ¼ B2i 4Ci ¼ 0; i ¼ 1; 2; ðiÞ
ðiÞ
1 2
b1 ¼ b2 ¼ Bi ; B1 ¼ B2 :
ð3:29Þ
3.1 Period-1 Appearing Bifurcations
173
Such a discrete flow at the fixed-point of xk ¼ a1 is called • a monotonic upper-saddle discrete flow of the fourth-order for a0 [ 0; • a monotonic lower-saddle discrete flow of the fourth-order for a0 \0. The fixed-point of xk ¼ a1 for two double repeated fixed-points switching or four simple fixed-points appearance is called • a monotonic upper-saddle switching or appearing bifurcation of the fourth-order at point p ¼ p1 2 @X12 for a0 [ 0; • a monotonic lower-saddle switching or appearing bifurcation of the fourth-order at point p ¼ p1 2 @X12 for a0 \0. The corresponding upper- or lower-saddle bifurcation condition is ðiÞ
ðiÞ
Di ¼ B2i 4Ci ¼ 0; a1 ¼ b1 ¼ b2 ; i ¼ 1; 2:
ð3:30Þ
Theorem 3.1 (i) Under conditions of Di ¼ B2i 4Ci \0 for i ¼ 1; 2
ð3:31Þ
a standard form of Eq. (3.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ 1 2
1 4
1 2
1 4
¼ xk þ a0 ½ðxk þ B1 Þ2 þ ðD1 Þ½ðxk þ B2 Þ2 þ ðD2 Þ
ð3:32Þ
with a0 ¼ AðpÞ, which has a non-fixed-point discrete flow. (i1) If a0 ðpÞ [ 0, the non-fixed-point discrete flow is called a positive discrete flow. (i2) If a0 ðpÞ [ 0, the non-fixed-point discrete flow is called a negative discrete flow. (ii) Under a condition of Di ¼ B2i 4Ci [ 0 and Dj ¼ B2j 4Cj \0 for i; j 2 f1; 2g; i 6¼ j
ð3:33Þ
a standard form of Eq. (3.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ 1 2
1 4
¼ xk þ a0 ðxk a1 Þðxk a2 Þ½ðxk þ Bj Þ2 þ ðDj Þ
ð3:34Þ
174
3 Quartic Nonlinear Discrete Systems
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
a1 ¼ minðb1 ; b2 Þ and a2 ¼ maxðb1 ; b2 Þ; pffiffiffiffiffi ðiÞ pffiffiffiffiffi 1 1 ðiÞ b1 ¼ ðBi þ Di Þ; b2 ¼ ðBi Di Þ: 2
ð3:35Þ
2
(ii1a) For a0 ðpÞ [ 0, the fixed-point of xk ¼ a1 is • • • •
monotonically stable (a monotonic sink) if df =dxk jx ¼a1 2 ð1; 0Þ; k invariantly stable (an invariant sink) if df =dxk jx ¼a1 ¼ 1; k oscillatorilly stable (an oscillatory sink) if df =dxk jx ¼a1 2 ð2; 1Þ; k slipped if df =dxk jx ¼a1 ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a1 k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a1 k \0; • oscillatorilly unstable (an oscillatory source) if df =dxk jx ¼a1 2 k ð1; 2Þ. (ii1b) For a0 ðpÞ [ 0, the fixed-point of xk ¼ a2 is monotonically unstable (a monotonic source) if df =dxk jx ¼a2 2 ð0; 1ÞÞ. k (ii2a) For a0 ðpÞ\0, the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic source) if df =dxk jx ¼a1 2 ð0; 1Þ. k (ii2b) For a0 ðpÞ\0, the fixed-point of xk ¼ a2 is • • • •
monotonically stable (a monotonic sink) if df =dxk jx ¼a2 2 ð1; 0ÞÞ; k invariantly stable (an invariant sink) if df =dxk jx ¼a2 ¼ 1; k oscillatorilly stable (an oscillatory sink) if df =dxk jx ¼a2 2 ð2; 1ÞÞ; k slipped if df =dxk jx ¼a2 ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a2 k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a2 k \0; • oscillatorilly unstable (an oscillatory source) if df =dxk jx ¼a2 2 k ð1; 2Þ.
3.1 Period-1 Appearing Bifurcations
175
(iii) Under conditions of Di ¼ B2i 4Ci ¼ 0 and Dj ¼ B2j 4Cj \0 for i; j 2 f1; 2g; i 6¼ j
ð3:36Þ
a standard form of Eq. (3.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ 1 2
1 4
¼ a0 ðxk a1 Þ2 ½ðxk þ Bj Þ2 þ ðDj Þ
ð3:37Þ
where ðiÞ
ðiÞ
1 2
a1 ¼ b1 ¼ b2 ¼ Bi :
ð3:38Þ
(iii1) For a0 ðpÞ [ 0, the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic upper-saddle, d 2 f =dx2k jx ¼a1 [ 0Þ. k
• Such a discrete flow at the fixed-point of xk ¼ a1 is called a monotonic upper-saddle discrete flow of the second-order. • The bifurcation of fixed-point of at xk ¼ a1 for two fixed-points appearance or vanishing is called a monotonic upper-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 . (iii2) For a0 ðpÞ\0, the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic lower-saddle, d 2 f =dx2k jx ¼a1 \0Þ. k
• Such a discrete flow at the fixed-point of xk ¼ a1 is called a monotonic lower-saddle discrete flow of the second-order. • The bifurcation of fixed-point of at xk ¼ a1 for two fixed-points appearance or vanishing is called a monotonic lower-saddle-node bifurcation of the second-order at a point p ¼ p1 2 @X12 . (iv) Under conditions of Di ¼ B2i 4Ci [ 0; i ¼ 1; 2 ð1Þ
ð2Þ
bk 6¼ bl ðiÞ b1
¼
for k; l 2 f1; 2g;
pffiffiffiffiffi ðiÞ 1 ðBi þ Di Þ; b2 2
¼
1 ðBi 2
pffiffiffiffiffi Di Þ for i ¼ 1; 2
ð3:39Þ
a standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þðxk a4 Þ where
ðiÞ
ðiÞ
a1;2;3;4 2 02i¼1 fb1 ; b2 g with am \am þ 1 :
ð3:40Þ
ð3:41Þ
176
3 Quartic Nonlinear Discrete Systems
(iv1) For a0 ðpÞ [ 0, the fixed-points of xk ¼ a1 ; a2 ; a3 ; a4 are monotonically stable to oscillatorilly unstable, monotonically unstable, monotonically stable to oscillatorilly unstable, and monotonically unstable, respectively. The discrete flow is called a (mSI-oSO:mSO:mSI-oSO:mSO) discrete flow. (iv2) For a0 ðpÞ\0, the fixed-points of xk ¼ a1 ; a2 ; a3 ; a4 are monotonically unstable, monotonically stable to oscillatorilly unstable, monotonically unstable, and monotonically stable to oscillatorilly unstable, respectively. The discrete flow is called a (mSO:mSI-oSO:mSO:mSI-oSO) discrete flow. (iv3) The fixed-point of xk ¼ ai ði ¼ 1; 2; 3; 4Þ is • • • • •
monotonically unstable (a monotonic source) if df =dxk jxk ¼ai 2 ð0; 1Þ; monotonically stable (a monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ; k invariantly stable (an invariant sink) if df =dxk jx ¼ai ¼ 1; k oscillatorilly stable (an oscillatory sink) if df =dxk jx ¼ai 2 ð2; 1Þ; k flipped if df =dxjx ¼ai ¼ 2, which is – an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼ai k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼ai k \0;
• oscillatorilly unstable (an oscillatory source) if df =dxjxk ¼ai 2 ð1; 2Þ. (v)
Under conditions of Di ¼ B2i 4Ci [ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj [ 0ðj 2 f1; 2gÞ; pffiffiffiffiffiffi ðaÞ pffiffiffiffiffiffi : 1 1 ðaÞ b1 ¼ ðBa þ Da Þ; b2 ¼ ðBa Da Þ for a ¼ i; j 2
ðiÞ
ð3:42Þ
2
ðjÞ
bk ¼ bl ; ði; kÞ 6¼ ðj; lÞ; ði; j; k; l 2 f1; 2gÞ; a standard form of Eq. (3.1) is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ
ð3:43Þ
where ðiÞ
ðjÞ
ðiÞ
ðiÞ
ai1 ¼ bk ¼ bl 2 02i¼1 fb1 ; b1 g; ði; kÞ 6¼ ðj; lÞ; i; j; k; l 2 f1; 2g; ðiÞ
ðiÞ
ai1 62 fai2 ; ai3 g 02i¼1 fb1 ; b1 g for ia 2 f1; 2; 3g and a 2 f1; 2; 3g:
ð3:44Þ
(v1) The fixed-points of xk ¼ ai2 ; ai3 are • • • •
monotonically unstable (a monotonic source) if df =dxk jxk ¼ai2 ;ai3 2 ð0; 1Þ; monotonically stable (a monotonic sink) if df =dxk jxk ¼ai2 ;ai3 2 ð1; 0Þ; invariantly stable (an invariant sink) if df =dxk jx ¼ai ;ai ¼ 1; k 2 3 oscillatorilly stable (an oscillatory sink) if df =dxk jxk ¼ai2 ;ai3 2 ð2; 1Þ;
3.1 Period-1 Appearing Bifurcations
• flipped if df =dxk jx ¼ai k
177
2
¼ 2, which is
;ai3
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼ai2 ;ai3 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼ai2 ;ai3 \0; • oscillatorilly unstable (an oscillatory source, df =dxk jxk ¼ai2 ;ai3 2 ð1; 2Þ). (v2) The fixed-point of xk ¼ ai1 is • monotonically unstable (a monotonic upper-saddle, d 2 f =dx2k jxk ¼ai1 [ 0Þ, • monotonically unstable (a monotonic lower-saddle, d 2 f =dx2k jxk ¼ai1 \0). (v3) The bifurcation of fixed-point at x ¼ ai1 for two fixed-points switching or appearing is called • a monotonic upper-saddle-node ðd 2 f =dx2k jx ¼ai [ 0Þ switching or k 1 appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 ; • a monotonic lower-saddle-node ðd 2 f =dx2k jx ¼ai \0Þ switching or k 1 appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 . (vi) Under conditions of Di ¼ B2i 4Ci [ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj ¼ 0 ðj 2 f1; 2gÞ; pffiffiffiffiffi ðiÞ pffiffiffiffiffi 1 1 ðiÞ b1 ¼ ðBi þ Di Þ; b2 ¼ ðBi Di Þ; ðjÞ
b1;2 ¼
2 1 ðiÞ Bj ; bk 2
ð3:45Þ
2
ðiÞ
¼ bl ; ðk 6¼ l; k; l 2 f1; 2gÞ
a standard form of Eq. (3.1) is where
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai2 Þ ðjÞ
ðiÞ
ð3:46Þ
ðiÞ
ai1 ¼ b1;2 ¼ bl ; ai2 ¼ bk ; a1 \a2 ; for i; j; l 2 f1; 2g; ia 2 f1; 2g and a 2 f1; 2g:
ð3:47Þ
(vi1) The fixed-point of xk ¼ ai2 is • monotonically unstable (a monotonic source) if df =dxk jxk ¼ai2 2 ð0; 1Þ; • monotonically stable (a monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ; k 2 • invariantly stable (an invariant sink) if df =dxk jx ¼ai ¼ 1; k
2
178
3 Quartic Nonlinear Discrete Systems
• oscillatorilly stable (an oscillatory sink if df =dxk jx ¼ai 2 ð2; 1Þ; k 2 • flipped if df =dxk jx ¼ai ¼ 2, which is k
2
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼ai k 2 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼ai k 2 \0; • oscillatorilly unstable (an oscillatory source) if df =dxk jx ¼ai 2 k 2 ð1; 2Þ. (vi2) The fixed-point of xk ¼ ai1 with df =dxk jx ¼ai ¼ 0 and d 2 f =dx2k jx ¼ai k k 1 1 ¼ 0 is • unstable of the third-order monotonic source for d 3 f =dx3k jx ¼ai [ 0; k
1
• stable of the third-order monotonic sink for d 3 f =dx3k jx ¼ai \0. k
(vi3) The bifurcation of fixed-point at d
2
f =dx2k jx ¼ai k 1
xk
1
¼ ai1 with df =dxk jx ¼ai ¼ 0 and k
1
¼ 0 for one fixed-point to three fixed-points is called
• a monotonic source switching bifurcation of the third-order at a point p ¼ p1 2 @X12 ðd 3 f =dx3k jx ¼ai [ 0Þ, k 1 • a monotonic sink switching bifurcation of the third-order at a point p ¼ p1 2 @X12 ðd 3 f =dx3k jx ¼ai \0Þ. 1
(vii) Under conditions of Di ¼ B2i 4Ci ¼ 0ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj ¼ 0ðj 2 f1; 2gÞ; ðaÞ
ðaÞ
ð3:48Þ
1 2
b1 ¼ b2 ¼ Ba for a ¼ i; j; B1 6¼ B2 ; a standard form of Eq. (3.1) is where
xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ2 ðxk a2 Þ2 1 2
1 2
1 2
1 2
a1 ¼ minf B1 ; B2 g; a2 ¼ maxf B1 ; B2 g:
ð3:49Þ
ð3:50Þ
(vii1a) For a0 ðpÞ [ 0, the fixed-points of xk ¼ ai ði ¼ 1; 2Þ are unstable of a monotonic upper-saddle of the second-order if d 2 f =dx2k jx ¼ai [ 0. k (vii1b) The fixed-points of xk ¼ ai ði ¼ 1; 2Þ for two fixed-points vanishing and appearance are called a monotonic upper-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 .
3.1 Period-1 Appearing Bifurcations
179
(vii2a) For a0 ðpÞ\0, the fixed-points of xk ¼ ai ði ¼ 1; 2Þ are unstable of a monotonic lower-saddle of the second-order if d 2 f =dx2k jx ¼ai \0. k (vii2b) The fixed-point of xk ¼ ai ði ¼ 1; 2Þ for two fixed-points vanishing and appearance are called a monotonic lower-saddle-node appearing bifurcation of the second-order at a point p ¼ p1 2 @X12 . (viii) Under conditions of Di ¼ B2i 4Ci ¼ 0 ði 2 f1; 2gÞ and Dj ¼ B2j 4Cj ¼ 0 ðj 2 f1; 2gÞ; ðaÞ
ðaÞ
1 2
b1 ¼ b2 ¼ Ba for a ¼ i; j;
ð3:51Þ
B1 6¼ B2 ; the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk a1 Þ4
ð3:52Þ
where 1 2
1 2
a1 ¼ B1 ¼ B2 :
ð3:53Þ
(viii1a) For a0 ðpÞ [ 0, the fixed-point of xk ¼ a1 is unstable of a monotonic upper-saddle of the fourth-order if d 4 f =dx4k jx ¼a1 [ 0. k (viii1b) The fixed-point of xk ¼ a1 for four fixed-points vanishing and appearance are called a upper-saddle-node appearing bifurcation of the fourth order at a point p ¼ p1 2 @X12 . (viii2a) For a0 ðpÞ\0, the fixed-point of xk ¼ a1 is unstable of a monotonic lower-saddle of the fourth-order if d 4 f =dx4k jx ¼a1 \0. k (viii2b) The fixed-point of xk ¼ a1 for four fixed-points vanishing and appearance are called a monotonic lower-saddle-node appearing bifurcation of the fourth-order at a point p ¼ p1 2 @X12 . Proof As for quadratic discrete systems, the proof is completed.
3.2
■
Period-1 to Period-2 Bifurcation Trees
In this section, period-1 stability and bifurcation of quartic nonlinear discrete systems are discussed graphically and period-2 fixed-points on the period-1 to period-2 bifurcation trees are also presented for a better understanding of complex bifurcations.
180
3 Quartic Nonlinear Discrete Systems
As discussed before, a quartic nonlinear discrete system is expressed by the product of two quadratic polynomials, i.e., xk þ 1 ¼ xk þ f ðxk ; pÞ
ð3:54Þ
¼ xk þ a0 ðpÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ½x2k þ B2 ðpÞxk þ C2 ðpÞ:
Thus, for xk þ 1 ¼ xk , the period-1 fixed-points are determined by the roots of two quadratic polynomial equations, i.e., x2 k þ B1 ðpÞxk þ C1 ðpÞ ¼ 0;
ð3:55Þ
x2 k þ B2 ðpÞxk þ C2 ðpÞ ¼ 0:
• If x2 k þ Bi ðpÞxk þ Ci ðpÞ 6¼ 0 for i ¼ 1; 2, such a quartic discrete system does not have any period-1 fixed-points. • If x2 k þ Bi ðpÞxk þ Ci ðpÞ ¼ 0 for i ¼ 1; 2, such a quartic discrete system has four period-1 fixed-points. 2 • If x2 k þ Bi ðpÞxk þ Ci ðpÞ ¼ 0 and xk þ Bj ðpÞxk þ Cj ðpÞ 6¼ 0 for i; j 2 f1; 2g and i 6¼ j, such a quartic discrete system has two period-1 fixed-points.
The roots of such quadratic equations are determined by the corresponding discriminant of the quadratic equations, i.e., Di ¼ B2i 4Ci for i ¼ 1; 2:
ð3:56Þ
If Di \0, the quadratic equation of x2k þ Bi ðpÞxk þ Ci ðpÞ ¼ 0 does not have any roots. If Di [ 0, the quadratic equation of x2k þ Bi ðpÞxk þ Ci ðpÞ ¼ 0 has two roots. If Di ¼ 0, the quadratic equation of x2k þ Bi ðpÞxk þ Ci ðpÞ ¼ 0 has a repeated root. With parameter variation, suppose one of two quadratic polynomial equations has one root intersected with the roots of the other quadratic polynomial equation. ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ There are six cases for a0 [ 0: (i) b2 ¼ b1 ; (ii) b1 ¼ b1 ¼ b2 ¼ 12Bi : ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðjÞ
ðiÞ
ðiÞ
ðiÞ
ðjÞ
(iii) b1 ¼ b1 , (iv) b2 ¼ b2 (v) b2 ¼ b1 ¼ b2 ¼ 12Bi , (vi) b1 ¼ b2 , as presented in Fig. 3.1. The intersected points for simple fixed-roots is a monotonic saddle-node bifurcation of the second-order for the subscritical case. The monotonic lower-saddle-node and monotonic upper-saddle-node bifurcations are shown in Fig. 3.1(i, ii) and (iv, vi), respectively. P-2 is for period-2 fixed-point. Open curves of P-2 are for mSI-oSO. Closed loops of P-2 is for mSI-oSO-mSI. The bifurcation dynamics for the 1-dimensional quartic nonlinear, forward, discrete system is determined by xk þ 1 ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ with ia ; a 2 f1; 2; 3g for four fixed-points or
ð3:57Þ
3.2 Period-1 to Period-2 Bifurcation Trees
181
b1(i )
a0 > 0 mSO
mSO
mSI-oSO
mLSN
b2( j )
mLSN
mUSN
P-2
mSO mUSN
x
b
∗ k
x
Δj >0
|| p ||
(iv)
a0 > 0
b1(i )
mSO
a0 > 0
3rd mSO
mUSN
mSI-oSO
b2(i )
mSO
b2( j ) P-2
|| p ||
P-2
b1(i )
mSI-oSO
mSO 3rd mSI
b2( j )
mSI-oSO
xk∗
b2(i ) P-2
Δj >0
Δj 0
Δj 0
Δj 0
mSO mUSN
b1( j )
a0 > 0
mSO
( j) 1
b
P-1
P-2
mSI-oSO
P-1 P-2
mUSN
b1(i )
mSI-oSO-mSI
mSI-oSO-mSI mUSN
mLSN P-2
P-2
mSO
b2(i )
xk∗
b2( j )
mSI-oSO
Δj 0
b2( j )
mSO mUSN
xk∗
b2(i )
mSI-oSO
P-2
|| p ||
mLSN
P-2
|| p ||
Δj 0
(vi)
Fig. 3.1 Stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ ðiÞ ðjÞ ðiÞ ðjÞ system ða0 [ 0Þ: (i) b2 ¼ b1 , (ii) b1 ¼ b1 ¼ b2 ¼ 12Bi . (iii) b1 ¼ b1 , (iv) b2 ¼ b2 ðjÞ ðiÞ ðiÞ ðiÞ ðjÞ 1 (v) b2 ¼ b1 ¼ b2 ¼ 2Bi , (vi) b1 ¼ b2 : mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node, mSI-oSO: monotonic sink to oscillatory source, mSI-oSO-mSI: monotonic sink to oscillatory source to monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: Period-2 fixed-point. Open curve for P-2 is for mSI-oSO. Closed loop for P-2 is for mSI-oSO-mSI
182
3 Quartic Nonlinear Discrete Systems 1 2
1 4
xk þ 1 ¼ xk þ a0 ðxk ai Þ2 ½ðxk þ Bj Þ2 Dj
ð3:58Þ
with i; j 2 f1; 2g for two fixed-points. If the intersected point occurs at the repeated root, the third-order monotonic source and monotonic sink switching bifurcations are presented in Fig. 3.1(ii) and (iv), respectively. The corresponding bifurcation dynamics for the 1-dimensional quartic, forward discrete system is determined by xk þ 1 ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai2 Þ
ð3:59Þ
with ia ; a 2 f1; 2g. The stable and unstable fixed pints are presented by solid and dashed curves, respectively. The intersected points are marked by circular symbols, which are for bifurcation points. Without losing generality, suppose the two roots of ðiÞ ðiÞ the quadratic polynomial equation have a relation of b1 [ b2 for i ¼ 1; 2. The repeated roots of the two quadratic polynomial equations are also the monotonic upper or lower-saddle-node bifurcations for two fixed-points appearance and vanishing. The period-2 fixed-points are sketched as well. Similarly, the six cases of stability and bifurcation diagrams varying with parameter for a0 \0 are presented in Fig. 3.2. The stability and bifurcation conditions for a0 \0 are opposite to a0 [ 0: If the roots of two quadratic equations do not have any intersections, the open loops for stability and bifurcation diagrams of fixed-points for a0 [ 0 and a0 \0 are presented in Fig. 3.3. There are four cases of open loops for a0 [ 0: (i) Bi \Bj , ðjÞ
ðjÞ
(ii) Bi [ Bj , (iii) b2 \ 12Bi \b1 , (vi) Di ¼ Dj ; Bi 6¼ Bj and four cases of open ðjÞ
ðjÞ
loops for a0 \0: (v) Bi \Bj , (vi) Bi [ Bj , (vii) b2 \ 12Bi \b1 ; (viii) Di ¼ Dj ; Bi 6¼ Bj . The two bifurcations occur at the same time because the quadratic equations have Di ¼ Dj ; Bi 6¼ Bj . The bifurcation points are only for two fixed-points appearance or vanishing from the discriminants of the quadratic equations. The bifurcation dynamics for the 1-dimensional quartic discrete system is from xk þ 1 ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ
ð3:60Þ
with ia ; a 2 f1; 2; 3g. With varying vector parameter, the open loops of stability and bifurcation diagrams will become closed loops. Thus, the closed loops of stability and bifurcation diagrams of fixed-points for a0 [ 0 and a0 \0 are presented in Fig. 3.4. There are ðjÞ ðjÞ six cases of closed loops: (i) Bi \Bj , (ii) Bi [ Bj , (iii) b2 \ 12 Bi \b1 for a0 [ 0; ðjÞ
ðjÞ
(iv) Bi \Bj , (v) Bi [ Bj , (vi) b2 \ 12 Bi \b1 for a0 \0. For such a closed loop, the bifurcation points are the upper and lower-saddle bifurcations of the second order at both ends. The bifurcation points are determined from the discriminants of the quadratic equations. The corresponding period-2 fixed-points are sketched as well.
3.2 Period-1 to Period-2 Bifurcation Trees a0 < 0
183
b1(i )
mSI-oSO
b1( j )
a0 < 0
mSI-oSO
P-2
P-2 mSO
mLSN
b1( j )
mUSN
mSO
b2( j )
mSI-oSO-mSI
mUSN
P-2
(i ) 2
b
mSO
x
x
(iv) P-2
b1(i )
mSI-oSO
a0 < 0
b
P-2
mLSN
mSO
b2(i ) b2( j )
Δj >0
mSO
|| p ||
b1(i )
P-2 mLSN
(iii)
b1( j )
mSI-oSO P-2
P-1
mSO
b1(i )
mSO mLSN
Δj 0
Δj 0
a0 < 0 mSO
mSI-oSO-mSI
b1( j )
b1( j )
P-2
P-2
b1(i )
4th mUSN
mSO
x
Δi, j = 0
4th mLSN
4th mLSN
P-2
b2(i )
b
mSI-oSO-mSI
b2( j ) ∗ k
x
mSI-oSO-mSI
|| p ||
mSO
4th mUSN
(i ) 2
P-2 ∗ k
b1(i )
Δi, j > 0
Δi, j = 0
b2( j )
mSO
Δi, j > 0
Δi, j = 0
|| p ||
(i)
Δi , j = 0
(ii)
a0 > 0
P-2
a0 < 0
b1( j )
mSO
b1( j )
mSI-oSO
(i ) 1
b1(i )
b
P-2
mSI-oSO 4th mUSN
mSO 4th
− Bi = − B j 1 2
1 2
− 12 Bi = − 12 B j
mLSN mSI-oSO
mSO
b2(i )
xk∗
mSI-oSO
( j) 2
b
P-2
b2(i )
xk∗
b2( j )
mSO
P-2
|| p ||
Δj >0
Δj 0
Δj >0
Δj 0
Δj 0
Δj 0
a0 > 0 P-1
P-2
LSN
mSI-oSO-mSI
P-2
mLSN mUSN
b2( j )
mSO
mSO
b2(i )
P-2
mUSN
xk∗
b1(i )
mSI-oSO
b1( j )
mUSN
b1( j )
mSO
mSO
b2(i )
mSI-oSO
b2( j )
mSI-oSO-mSI
xk∗
mUSN
P-2
Δj >0
Δj 0
b1( j )
b1( j )
a0 > 0
mUSN
mSO
mSO
b1(i )
P-2
mSI-oSO-mSI
mLSN
x
mLSN P-2 mSO
mSO
mUSN
b2( j )
b2( j )
mUSN
mSI-oSO-mSI
∗ k
Δj >0
Δj 0
a0 > 0
mSO
mSO
mUSN
P-2 (i ) 2
mUSN
b
b1( j ) mUSN
mLSN
P-2 mSO
b1(i )
( j) 1
b
mSI-oSO-mSI mUSN
P-2
mLSN
mSO P-2
mUSN
b2( j )
xk∗
Δj 0
|| p ||
b
xk∗
mSI-oSO-mSI
Δj 0
|| p ||
(iv)
a0 > 0
a0 > 0
b1(i )
3rd mSO mSO
mUSN
b2(i )
P-2 mSO
mSI-oSO-mSI mSO
b2( j ) mUSN
xk∗
P-2
|| p ||
b2(i )
Δj 0
(ii)
(v)
a0 > 0
a0 > 0
mSO
mSO
P-2
b1(i )
mUSN
P-2
mLSN
mSO
(i ) 2
b
( j) 2
b
b2( j ) LSN
mSO P-2
b1( j )
mUSN
b1( j )
mUSN
(i ) 1
b
mUSN
mUSN mSI-oSO-mSI
xk∗
b1(i )
P-2
3rd mSI
Δj 0
mUSN
mUSN
mUSN mSI-oSO-mSI
|| p ||
b1( j )
P-2
P-2
b2( j )
xk∗
mSO
mUSN
mSO
b1( j )
mUSN mSI-oSO-mSI
(i)
mUSN
b2(i )
( j) 2
P-2
(i ) 2
b
xk∗ mSI-oSO-mSI
|| p ||
Δj 0
|| p ||
Δj 0
(iii)
(vi)
Fig. 3.8 Closed loops of stability and bifurcation of fixed-points in the 1-dimeisonal, quartic ðiÞ ðjÞ ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ nonlinear discrete system (a0 [ 0): (i) b2 ¼ b1 andb1 ¼ b2 , (ii) b1 ¼ b1 ¼ b2 ¼ 12 Bi with ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ b1 ¼ b1 and b2 ¼ b2 , (iii) b1 ¼ b1 and b2 ¼ b2 , (iv) b2 ¼ b2 and b1 ¼ b1 , ðjÞ
ðiÞ
ðiÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
(v) b2 ¼ b1 ¼ b2 ¼ 12Bi with b1 ¼ b1 and b2 ¼ b2 , (vi) b1 ¼ b2 and b2 ¼ b1 . mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node, mSI-oSO-mSI: monotonic sink to oscillatory source to monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: Period-2 fixed-point. Closed loop of P-2 are for mSI-oSO-mSI
3.3 Higher-Order Period-1 Quartic Discrete Systems
191
b1(i )
a0 < 0
a0 < 0
P-2
mLSN
mSO
mLSN
b1( j )
P-2
mSO
b2(i ) mLSN
mUSN
mLSN
P-2
b1( j ) P-2
mLSN
xk∗ || p ||
( j) 2
b
b2( j )
mSO
b2(i ) mLSN
mSO
xk∗
Δj 0
b1(i )
USN
Δj >0
Δj 0
197 a0 > 0
b1(2) mSO
mUS
P-2
mSO
b1(2)
mUSN
b2(2)
mUSN mSI-oSO
mSI-oSO P-2
xk∗
b2(2)
|| p ||
Δ2 > 0
Δ2 < 0 Δ2 = 0
xk∗
mUS
|| p ||
Δ2 < 0 Δ2 = 0
(i)
b1
Δ2 > 0
(iv)
a0 > 0 3rd
mUS
mSO
mSO
a0 > 0
b1(2)
b1(2)
mSO
b1
b1
mLS 4th
USN
mUSN
mUS
mLS
mSI-oSO
xk∗
P-2
b2(2)
xk∗
mSI-oSO
b2(2)
P-2
|| p ||
Δ2 > 0
Δ2 < 0 Δ2 = 0
|| p ||
Δ2 < 0 Δ2 = 0
(ii)
Δ2 > 0
(v)
a0 > 0 mSO
a0 > 0
b1(2)
b1(1) mUS
4th mUS
mUSN mUS
mLS
b1
3rd SI
∗ k
x
mSI-oSO
b2(2)
xk∗
mUS
b2(1)
P-2
|| p ||
Δ2 < 0 Δ2 = 0
(iii)
Δ2 > 0
|| p ||
Δ1 < 0 Δ1 = 0
Δ1 > 0
(vi)
Fig. 3.10 Stability and bifurcation of three fixed-points with intersection in the 1-dimensional, ð2Þ quartic nonlinear forward discrete system ða0 [ 0Þ: (i) without intersection b1 [ b1 , (ii) an ð2Þ ð2Þ ð2Þ intersection at b1 ¼ b1 , (iii) an intersection at b1 ¼ b2 , (iv) without intersection b1 \b1 , (v) an intersection at b1 ¼ 12B1 , (vi) D1 ¼ 0: mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: Period-2 fixed-point. Open curves of P-2 are for mSI-oSO
198
3 Quartic Nonlinear Discrete Systems b1
a0 < 0
a0 < 0
b1(2) mSI-oSO
mLS
P-2
mSI-oSO
b1(2)
mLSN
b2(2)
mLSN mSO
P-2
mSO
xk∗
b2(2)
|| p ||
Δ2 > 0
Δ2 < 0 Δ2 = 0
xk∗
b1
mLS
Δ2 < 0 Δ2 = 0
|| p ||
(i)
Δ2 > 0
(iv)
a0 < 0
a0 < 0
P-2 3rd
b1(2)
P-2
b1
mLS mSI-oSO
b1(2)
mSI-oSO
mSI mUS 4th
mLSN
mLSN
mLS
mUS
b1
mSO
xk∗
b2(2)
|| p ||
Δ2 > 0
Δ2 < 0 Δ2 = 0
xk∗
mSO
|| p ||
Δ2 < 0 Δ2 = 0
(ii)
b2(2)
Δ2 > 0
(v)
a0 < 0
a0 < 0
b1(2)
mSI-oSO
mLS
b1(1)
P-2
4th mLS
LSN mLS
mUS
x
|| p ||
b1
3rd mSO
∗ k
mSO
Δ2 < 0 Δ2 = 0
(iii)
Δ2 > 0
b2(2)
xk∗ || p ||
mLS
Δ1 < 0 Δ1 = 0
b2(1)
Δ1 > 0
(vi)
Fig. 3.11 Stability and bifurcation of three fixed-points with intersection in the 1-dimensional, ð2Þ quartic nonlinear forward discrete system ða0 \0Þ: (i) without intersection b1 [ b1 , (ii) an ð2Þ ð2Þ ð2Þ intersection at b1 ¼ b1 , (iii) an intersection at b1 ¼ b2 , (iv) without intersection b1 \b1 , (v) an intersection at b1 ¼ 12B1 , (vi) D1 ¼ 0: mLSN: monotonic lower-saddle-node, mUSN: monotonic upper-saddle-node, mSI: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: Period-2 fixed-point. Open curves of P-2 are for mSI-oSO
3.3 Higher-Order Period-1 Quartic Discrete Systems
199
sink bifurcations of the third order, accordingly. In Fig. 3.11(v), the monotonic lower-saddle fixed-point for a0 \0 intersects with a repeated fixed-point with a monotonic lower-saddle. The intersection point is an unstable fixed-point, which is called a 4th order monotonic lower-saddle-node bifurcation. In Fig. 3.11(vi), the two monotonic second-order lower saddle fixed-points are presented for a0 \0. The two monotonic lower-saddle fixed-points appear at the monotonic lower-saddle bifurcation of the fourth-order. Consider a 1-dimensional, quartic nonlinear, forward, discrete system with two double fixed-points. (i) For b 6¼ a, the forward discrete system is xk þ 1 ¼ xk þ a0 ðpÞðxk bðpÞÞ2 ðxk aðpÞÞ2 :
ð3:93Þ
For such a system, if a0 [ 0, two repeated fixed-points of xk ¼ a; b are two monotonic upper-saddles, which are monotonically unstable. If a0 \0, two repeated fixed-points of xk ¼ a; b are two monotonic lower-saddles, which are monotonically unstable. (ii) For a ¼ b, the discrete system on the boundary is xk þ 1 ¼ xk þ a0 ðpÞðxk bðpÞÞ4 :
ð3:94Þ
With parameter changes, the bifurcation diagram for the quartic nonlinear discrete system is presented in Fig. 3.12. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation point is marked by a circular symbol. In Fig. 3.12(i), if a0 [ 0, two repeated fixed-points of xk ¼ a; b
a0 > 0
a0 < 0
a
a
mLS
mUS 4th mUS
4th mUS
b xk∗
|| p ||
b xk∗
mUS
b2 < b1
b1 = b2
(i)
b2 > b1
mLS
|| p ||
b2 < b1
b1 = b2
b2 > b1
(ii)
Fig. 3.12 Stability and bifurcation of two mUS or mLS fixed-points with intersection in the 1-dimensional, quartic nonlinear discrete system: (i) (mUS:mUS)-flow ða0 [ 0Þ, (i) (LS:LS)-flow ða0 \0Þ. 4th mLS: 4th order monotonic lower-saddle bifurcation, 4th mUS- 4th order monotonic upper-saddle bifurcation. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
200
3 Quartic Nonlinear Discrete Systems
|| p 0 ||
xk∗ = a1
xk∗ 4th mLS
|| p ||
a0 < 0
4th mUS
a0 = 0
a0 > 0
Fig. 3.13 Stability of a repeated fixed-point with the fourth multiplicity in the 1-dimensional, quartic nonlinear discrete system: Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The stability switching is labelled by a circular symbol. 4th mLS: fourth-order monotonic lower-saddle bifurcation, 4th mUS: fourth-order monotonic upper-saddle bifurcation
are the monotonic upper-saddles of the second order. The two monotonic uppersaddles intersect at a point of xk ¼ a ¼ b with the fourth multiplicity, which is a monotonic upper-saddle bifurcation of the fourth-order for the (mUS:mUS) to (mUS:mUS) fixed-points. If a0 \0, two repeated fixed-points of xk ¼ a; b are the monotonic lower-saddle of the second order, which are intersected at a point of xk ¼ a ¼ b, as shown in Fig. 3.12(ii). Such a quartically repeated fixed-point is called a monotonic lower-saddle bifurcation of the fourth order for the (mLS:mLS) to (mLS:mLS) fixed-point. To illustrate the stability and bifurcation of fixed-point with singularity in a 1-dimensional, quadratic nonlinear system, the fixed-point of xk þ 1 ¼ xk þ a0 ðxk a1 Þ4 is presented in Fig. 3.13. The fourth-order, monotonic upper and lower-saddles of fixed-point of xk ¼ a1 with the other order multiplicity are monotonically unstable, and the monotonic upper and lower saddle fixed-points of the fourth-order are invariant. At a0 ¼ 0, the monotonic lower-saddle fixed-point switches to the monotonic upper-saddle fixed-point, which is a switching point marked by a circular symbol.
3.4
Period-1 Switching Bifurcations
For further discussion on the switching bifurcations in the quartic nonlinear system, the following definitions are presented.
3.4 Period-1 Switching Bifurcations
3.4.1
201
Simple Period-1 Switching Bifurcations
Definition 3.4 Consider a 1-dimensional, quartic nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ ¼ xk þ a0 ðpÞðxk aÞðxk
bÞ½x2k
ð3:95Þ
þ B2 ðpÞxk þ C2 ðpÞ
where AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð3:96Þ
(i) If D2 ¼ B22 4C2 \0;
ð3:97Þ
fa1 ; a2 g ¼ sortfa; bg; a1 a2 ;
the quartic nonlinear discrete system has any two fixed-points. The corresponding standard form is 1 2
1 4
xk þ 1 ¼ xk þ a0 ðpÞðxk a1 Þðxk a2 Þ½ðxk þ B2 Þ2 þ ðD2 Þ:
ð3:98Þ
(i1) For a0 [ 0, the discrete fixed-point flow is a (mSI-oSO:mSO) discrete flow. (i1a) The fixed-point of xk ¼ a1 is • • • •
monotonically stable (monotonic sink) if df =dxk jx ¼a1 2 ð1; 0Þ; k invariantly stable (zero-invariant sink) if df =dxk jx ¼a1 ¼ 1; k oscillatorilly stable (oscillatory sink) if df =dxk jx ¼a1 2 ð2; 1Þ; k flipped if df =dxk jx ¼a1 ¼ 2, where is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a1 [ 0; k
– an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a1 \0; k
• oscillatorilly unstable (oscillatory source) if df =dxk jx ¼a1 2 ð1; 2Þ. k
xk
(i1b) The fixed-point of ¼ a2 is monotonically unstable (monotonic source) if df =dxk jx ¼a2 2 ð0; 1Þ. k
202
3 Quartic Nonlinear Discrete Systems
(i2) For a0 \0, the fixed-point flow is a (mSO:mSI-oSO) flow. (i2a) The fixed-point of xk ¼ a1 is monotonically unstable (monotonic source) if df =dxk jx ¼a1 2 ð0; 1Þ. k (i2b) The fixed-point of xk ¼ a2 is • • • •
monotonically stable (monotonic sink) if df =dxk jx ¼a2 2 ð1; 0Þ; k invariantly stable (zero-invariant sink) if df =dxk jx ¼a2 ¼ 1; k oscillatorilly stable (oscillatory sink) if df =dxk jx ¼a2 2 ð2; 1Þ; k flipped if df =dxk jx ¼a2 ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼a2 [ 0; k
– an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼a2 \0; k
• oscillatorilly unstable (oscillatory source) if df =dxk jx ¼a2 2 ð1; 2Þ. k
(i3) Under D12 ¼ ða1 a2 Þ2 ¼ 0 with a1 ¼ a2
ð3:99Þ
the quartic nonlinear discrete system has a standard form as 1 2
1 4
xk þ 1 ¼ xk þ a0 ðpÞðxk a1 Þ2 ½ðxk þ B2 Þ2 þ ðD2 Þ:
ð3:100Þ
(i3a) For a0 ðpÞ [ 0, the fixed-point of xk ¼ a1 is monotonically unstable (a monotonic upper-saddle of second-order, d 2 f =dx2k jx ¼a1 [ 0Þ. k
• Such a discrete flow is called a monotonic upper-saddle discrete flow of the second-order. • The bifurcation of fixed-point at xk ¼ a1 for two fixed-points switching of xk ¼ a1 ; a2 is called a monotonic upper-saddle-node switching bifurcation of the second-order at a point p ¼ p1 . (i3b) For a0 ðpÞ\ 0, the fixed-point of xk ¼ a1 is monotonically unstable (an lower-saddle of second-order, d 2 f =dx2k jx ¼a1 \ 0Þ. • Such a discrete flow is called a lower-saddle discrete flow of the second-order. • The bifurcation of fixed-point at xk ¼ a1 for two fixed-points switching of xk ¼ a1 ; a2 is called a monotonic lower-saddle-node switching bifurcation of the second-order at a point p ¼ p1 .
3.4 Period-1 Switching Bifurcations
203
(ii) If D2 ¼ B22 4C2 [ 0;
ð3:101Þ
the 1-dimensional quartic nonlinear discrete system has four fixed-points as ð2Þ
1 2
xk ¼ b1 ¼ ðB2 þ
pffiffiffiffiffiffi pffiffiffiffiffiffi 1 ð2Þ D2 Þ; xk ¼ b2 ¼ ðB2 D2 Þ 2
ð2Þ
ð2Þ
fa1 ; a2 ; a3 :a4 g ¼ sortfa; b; b1 ; b2 g; ai \ai þ 1:
ð3:102Þ
(ii1) The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þðxk a4 Þ:
ð3:103Þ
(ii1a) For a0 [ 0, the discrete flow is called an (mSI-oSO:mSO: mSI-oSO:mSO) discrete flow. (ii1b) For a0 \ 0, the discrete flow is called an (mSO:mSI-oSOI:mSO: mSI-oSO) discrete flow. (ii2) The fixed-point of xk ¼ ai1 ði1 2 f1; 2; 3; 4gÞ is • • • • •
monotonically unstable (monotonic source) if df =dxk jxk ¼ai1 2 ð0; 1Þ; monotonically stable (monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ; k 1 invariantly stable (zero-invariant sink) if df =dxk jx ¼ai ¼ 1; k 1 oscillatorilly stable (oscillatory sink) if df =dxk jx ¼ai 2 ð2; 1Þ; k 1 flipped if df =dxk jx ¼ai ¼ 2, which is k
1
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼a1 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼a1 \0; • oscillatorilly unstable (oscillatory source) if df =dxk jxk ¼ai1 2 ð1; 2Þ. (ii3) Under Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; ai1 ¼ ai2 ; i1 ; i2 2 f1; 2; 3; 4g; i1 6¼ i2
ð3:104Þ
the standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai3 Þðxk ai4 Þ ia 2 f1; 2; 3; 4g; a ¼ 1; 3; 4:
ð3:105Þ
(ii3a) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic upper-saddle of second-order, d 2 f =dx2k jx ¼ai [ 0Þ. k
1
204
3 Quartic Nonlinear Discrete Systems
• Such a discrete flow is called an upper-saddle discrete flow at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for two fixed-points switching of xk ¼ ai1 ; ai2 is called a monotonical upper-saddlenode switching bifurcation of the second-order at a point p ¼ p1 . (ii3b) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic lower-saddle of second-order, d 2 f =dx2k jx ¼ai \0Þ. k
1
• Such a discrete flow is called a lower-saddle discrete flow of the second-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for two fixed-points switching of xk ¼ ai1 ; ai2 is called a lower-saddle-node switching bifurcation of the second-order at a point p ¼ p1 . (ii4) Under Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; ai1 ¼ ai2 ¼ a3 ; i1 ; i2 ; i3 2 f1; 2; 3; 4g; i1 6¼ i2 6¼ i3 ;
ð3:106Þ
the standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai4 Þ ia 2 f1; 2; 3; 4g; a ¼ 1; 4:
ð3:107Þ
(ii4a) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic source of the third-order, d 3 f =dx3k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic source flow of the third-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for three simple fixedpoint bundle-switching of xk ¼ ai1 ; ai2 ; ai3 is called a source bundle-switching bifurcation of the third-order at a point p ¼ p1 . (ii4b) The fixed-point of xk ¼ ai1 is monotonically stable (a monotonic sink of the third-order, d 3 f =dx3k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic sink discrete flow of the third-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for three simple fixed-point bundle-switching of xk ¼ ai1 ; ai2 ; ai3 is called a monotonic sink bundle-switching bifurcation of the third-order at a point p ¼ p1 .
3.4 Period-1 Switching Bifurcations
205
(ii5) Under Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; ð3:108Þ
Di3 i4 ¼ ðai4 ai4 Þ2 ¼ 0; ai1 ¼ ai2 ¼ ai3 ¼ ai4 ; i1 ; i2 ; i3 ; i4 2 f1; 2; 3; 4g; i1 6¼ i2 6¼ i3 6¼ i4 the standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ4 :
ð3:109Þ
(ii5a) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic upper-saddle of the fourth-order, d 4 f =dx4k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic upper-saddle flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for four simple fixed-points bundle-switching of xk ¼ a1;2;3;4 is called a monotonic upper-saddle-node bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . (ii5b) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic lower-saddle flow of the third-order, d 4 f =dx4k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic lower-saddle flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for four simple fixed-points bundle-switching of xk ¼ a1;2;3;4 is called a monotonic lower-saddle-node bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . (iii) If D2 ¼ B22 4C2 ¼ 0;
ð3:110Þ
the 1-dimensional quartic nonlinear discrete system has three fixed-point as ð2Þ
ð2Þ
1 2
xk ¼ b1 ¼ b2 ¼ B2 ; ð2Þ
ð2Þ
fa1 ; a2 ; a3 g ¼ sortfa; b; b1 ¼ b2 g; ai \ ai þ 1 ; ð2Þ
ð2Þ
ai1 ;i2 ¼ b1 ¼ b2 ; ai3 ¼ a; ai4 ¼ b; ia 2 f1; 2; 3g; a 2 f1; 2; 3; 4g:
ð3:111Þ
206
3 Quartic Nonlinear Discrete Systems
The corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ:
ð3:112Þ
(iii1) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic upper-saddle, d 2 f =dx2k jx ¼ai [ 0Þ. k
1
• The discrete flow is a monotonic upper-saddle flow of the secondorder at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for the appearing or vanishing of two simple fixed-points is called the monotonic uppersaddle-node appearing bifurcation of the second-order. (iii2) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic lower-saddle, d 2 f =dx2k jx ¼ai \ 0Þ. k
1
• The discrete flow is a monotonic lower-saddle discrete flow at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for the appearing or vanishing of two simple fixed-points is called the monotonic lowersaddle-node appearing bifurcation of the second-order. (iii3) Under Di3 i4 ¼ ðai3 ai4 Þ2 ¼ 0; ai3 ¼ ai4 ; ai1 6¼ ai3 ; ia 2 f1; 2; 3g; a 2 f1; 2; 3; 4g;
ð3:113Þ
the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai3 Þ2 ia 2 f1; 2g; a ¼ 1; 3:
ð3:114Þ
The fixed-point of xk ¼ ai1 ; ai3 is monotonically unstable (a monotonic upper-saddle of the second-order, d 2 f =dx2k jx ¼ai ;ai [ 0Þ and monok 1 3 tonically unstable (a monotonic lower-saddle of the second-order, d 2 f =dx2k jx ¼ai ;ai \ 0Þ. k
1
3
• Such a discrete flow is called a (mUS:mUS) or (mLS:mLS) discrete flow. • The bifurcation of fixed-point at xk ¼ ai1 for two simple fixed-point onset of xk ¼ ai1 ; ai2 and at xk ¼ ai3 for two fixed-point switching of xk ¼ ai3 ; ai4 is called a (mUS:mUS) or (mLS:mLS) switching bifurcation at a point p ¼ p1 .
3.4 Period-1 Switching Bifurcations
207
(iii4) Under Di1 i3 ¼ ðai1 ai3 Þ2 ¼ 0; ai1 ¼ ai2 ; ai1 ¼ ai3 ai1 6¼ ai4 ; ia 2 f1; 2; 3g; a 2 f1; 2; 3; 4g;
ð3:115Þ
the standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai4 Þ ia 2 f1; 2g; a ¼ 1; 4:
ð3:116Þ
(iii4a) The fixed-point of xk ¼ ai1 is monotonically unstable (a thirdorder monotonic source, d 3 f =dx3k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic source pitchfork discrete flow of the third-order. • The bifurcation of fixed-point at xk ¼ ai1 for one simple fixedpoint of xk ¼ ai1 switching to three simple fixed-points of xk ¼ ai1 ;i2 ;i3 is called a monotonic upper-saddle-node pitchfork switching bifurcation of the third-order at a point p ¼ p1 . (iii4b) The fixed-point of xk ¼ ai1 is monotonically stable (a third-order monotonic sink, d 3 f =dx3k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic sink discrete flow of the third-order. • The bifurcation of fixed-point at xk ¼ ai1 for one simple fixed-point of xk ¼ ai1 switching to three simple fixed-points of x ¼ ai1 ;i2 ;i3 is called a monotonic sink pitchfork switching bifurcation of the third-order at a point p ¼ p1 . (iii5) Under Di1 i3 ¼ ðai1 ai3 Þ2 ¼ 0; Di3 i4 ¼ ðai3 ai4 Þ2 ¼ 0; ai1 ¼ ai2 ; ai1 ¼ ai3 ai1 ¼ ai4 ; ia 2 f1; 2; 3g; a 2 f1; 2; 3; 4g;
ð3:117Þ
the standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ4 :
ð3:118Þ
(iii5a) For a0 [ 0, the fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic upper-saddle of the fourth-order, d 4 f =dx4k jxk ¼ai1 [ 0Þ. • Such a discrete flow is called a monotonic upper-saddle discrete flow of the fourth-order.
208
3 Quartic Nonlinear Discrete Systems
• The bifurcation of fixed-point at xk ¼ ai1 for two simple fixed-points switching to four simple fixed-points is called a monotonic upper-saddle-node flower-bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . (iii5b) For a0 [ 0, the fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic lower-saddle of the fourth-order, d 4 f =dx4k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic lower-saddle discrete flow of the fourth-order. • The bifurcation of fixed-point at xk ¼ ai1 for two simple fixed-points switching to four simple fixed-points is called a monotonic lower-saddle-node flower-bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . Based on the previous definition, the stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system ða0 [ 0Þ is presented in Fig. 3.14. In Fig. 3.14(i)–(iii), monotonic upper-saddle-node (mUSN) and monotonic lower-saddle-node (mLSN) switching bifurcations are at two locations for two simple fixed-points, and one monotonic upper-saddle-node (mUSN) appearing bifurcation is for two simple fixed-points. In Fig. 3.14(iv), a third-order monotonic sink (3rd mSI) pitchfork-switching bifurcation for a switching of one monotonic sink fixed-point to three monotonic simple fixed-points is presented, and one monotonic upper-saddle-node (mUSN) switching bifurcation for two monotonic simple fixed-points switching is also presented. In Fig. 3.14(v), a third-order source (3rd mSO) bundle-switching bifurcation for three fixed-point bundle-switching is presented, and a monotonic upper-saddle-node (mUSN) appearing bifurcation for two fixed-point onsets is also presented. In Fig. 3.14(vi), a fourth-order upper-saddle (4th mUS) flower-bundle switching bifurcation for four simple fixed-points are presented. Similarly, the stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system ða0 \ 0Þ is presented in Fig. 3.15. In Fig. 3.15(i)– (iii), monotonic-lower-saddle-node (mLSN) and monotonic-upper-saddle-node (mUSN) switching bifurcations are at two locations for two simple fixed-points, and one monotonic-lower-saddle-node (mLSN) appearing bifurcation is for two simple fixed-points appearing. In Fig. 3.15(iv), a third-order monotonic source (3rd mSO) pitchfork-switching bifurcation for a switching of one monotonic source fixed-point to three monotonic simple fixed-points is presented, and one monotoniclower-saddle-node (mLSN) switching bifurcation for two simple fixed-points switching is also presented. In Fig. 3.15(v), a third-order monotonic sink (3rd mSI) bundle-switching bifurcation for three fixed-point bundle-switching is presented, and a monotonic lower-saddle-node (mLSN) appearing bifurcation for two fixed-point onset is also presented. In Fig. 3.15(vi), a fourth-order order monotonic-lower-saddle (4th mLS) flower-bundle switching bifurcation for four simple fixed-points are presented. The period-2 fixed-points are also sketched for mSI-oSO or mSI-oSO-mSI. For the further discussion on the switching bifurcation, the following definition is given for the 1-dimensional, quartic nonlinear discrete system.
3.4 Period-1 Switching Bifurcations
209 b
a0 > 0
mSO
a0 > 0
P-2
mUSN
b1(1)
mLSN
mSI-oSO
P-2
P-2
a
P-2 P-2
b
mSO mUSN
3rd mSI
mSO
mSO
b1(1) P-2
a
mUSN
b2(1)
mSI-oSO
xk∗
Δ2 < 0 Δ2 = 0
b
xk∗
P-2
|| p ||
(1) 2
Δ2 > 0
P-2
Δ2 < 0
|| p ||
Δ2 = 0 Δ2 > 0
(i)
(iv)
a0 > 0
a0 > 0
b mSO
mUSN
mLSN
P-2
mSO
b1(1) P-2
a
P-2
mSO
b1(1) P-2
b
3rd mSO
mSI-oSO
P-2
a
mSO
mSO mUSN
x
Δ2 < 0 Δ2 = 0
P-2
b2(1)
∗ k
x
P-2
|| p ||
USN
b2(1)
mSI-oSO ∗ k
Δ2 > 0
mSI-oSO
Δ2 < 0 Δ2 = 0
|| p ||
(ii)
(v) b
a0 > 0
a0 > 0
P-2
b1(1)
mLSN
b mSO
a
P-2
4thmUS mSO
mSO
mSI-oSO
xk∗
|| p ||
a
P-2
USN
Δ1 0
b1(1)
mSO
P-2
mSO
mUSN P-2
Δ2 > 0
mSI-oSO
b2(1)
xk∗
|| p ||
mSI-oSO
Δ2 < 0
Δ2 = 0
b2(1)
Δ2 > 0
(vi)
Fig. 3.14 Stability and bifurcations of fixed-points in the 1-dimeisonal, quartic nonlinear discrete system (a0 [ 0): (i)-(iii) Two (mUSN and mLSN) switching and one mUSN appearing bifurcations, (iv) 3rd mSI pitchfork-switching bifurcation, (v) 3rd mSO bundle-switching bifurcation, (vi) 4thm mUS flower-bundle switching bifurcation. mLSN: monotonic-lower-saddle-node, mUSN: monotonic-upper-saddle-node, mSI-oSO: monotonic-sink to oscillatory source, mSI-oSO-mSI: monotonic-sink to oscillatory source to monotonic sink, mSO: monotonic-source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: Period-2 fixed-point. Open curves of P-2 are for mSI-oSO. Closed loop of P-2 are for mSI-oSO-mSI
210
3 Quartic Nonlinear Discrete Systems b
a0 < 0 mLSN
P-2 mSO mUSN
P-2
P-2
LSN
b1(1) P-2
mSO
a b2(1)
mSO
Δ2 < 0 Δ2 = 0
mSO
b2(1)
Δ2 < 0
|| p ||
(i)
mLSN mUSN
Δ2 < 0 Δ2 = 0
a
mSO
P-2 mSI-oSO
mLSN
b2(1) ∗
Δ2 < 0 Δ2 = 0
|| p ||
(ii)
Δ2 > 0
(v) P-2
a0 < 0
b1(1)
a0 < 0
b
mSI-oSO mLSN
P-2
b1(1)
mUSN mSO
4th mLS
a
mSO
Δ2 < 0 Δ2 = 0
(iii)
Δ2 > 0
b
mSO
mSI-oSO
P-2
xk∗
|| p ||
mSI-oSO
P-2
P-2 mLSN
b2(1)
mSO
xk
Δ2 > 0
P-2
b
mSO
P-2
a
mSO-oSO
xk
mSI-oSO 3rd mSI
P-2
P-2
∗
P-2 mSI-oSO
P-2 b (1) 1
mSO
b1(1)
a0 < 0
b
mSI-oSO
|| p ||
Δ2 = 0 Δ2 > 0
(iv)
a0 < 0
mLSN
P-2
xk∗
Δ2 > 0
P-2
b1(1)
mSI-oSO
3rd mSO
P-2
P-2
xk∗
b
mSI-oSO
a mLSN
|| p ||
a0 < 0
mSI-oSO
mSI-oSO
mSO
(1) 2
b
mSO
xk∗
|| p ||
Δ2 < 0
Δ2 = 0
a P-2
b2(1)
Δ2 > 0
(vi)
Fig. 3.15 Stability and bifurcations of fixed-points in the 1-dimeisonal, quartic nonlinear discrete system (a0 \0): (i)-(iii) Two (mLSN and mUSN) switching and one mLSN appearing bifurcations, (iv) 3rd mSO pitchfork switching bifurcation, (v) 3rd mSI bundle-switching bifurcation, (vi) 4th mLS flower-bundle switching bifurcation. mLSN: monotonic-lower-saddle-node, mUSN: monotonic-upper-saddle-node, mSI-oSO: monotonic-sink to oscillatory source, mSI-oSO: monotonic-sink to oscillatory source to monotonic sink, mSO: monotonic-source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. Open curves of P-2 are for mSI-oSO. Closed loop of P-2 are for mSI-oSO-mSI
3.4 Period-1 Switching Bifurcations
211
Definition 3.5 Consider a 1-dimensional, quartic nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ
ð3:119Þ
¼ a0 ðpÞðxk aÞðxk bÞðxk cÞðxk dÞ where AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð3:120Þ
(i) If fa1 ; a2 ; a3 ; a4 g ¼ sortfa; b; c; dg; ai ai þ 1 ;
ð3:121Þ
the quartic nonlinear discrete system has any four simple fixed-points. The standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðpÞðxk a1 Þðxk a2 Þðxk a2 Þðxk a3 Þ:
ð3:122Þ
(i1) For a0 [ 0, the fixed-point flow is a (mSI-oSO:mSO:mSI-oSO:mSO) flow. (i1a) The fixed-point of xk ¼ a1;3 is • • • •
monotonically stable (monotonic sink) if df =dxk jx ¼a1;3 2 ð1; 0Þ, k invariantly stable (invariant sink) if df =dxk jx ¼a1;3 ¼ 1, k oscillatorilly stable (oscillatory sink) if df =dxk jx ¼a1;3 2 ð2; 1Þ, k flipped if df =dxk jx ¼a1;3 ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼a1;3 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼a1;3 \0; • oscillatorilly stable (oscillatory source) if df =dxk jx ¼a1;3 2 ð1; 2Þ. k
(i1b) The fixed-point of x ¼ a2;4 is monotonically unstable (a monotonic source) if df =dxk jx ¼a2;4 2 ð0; 1Þ. k (i2) For a0 \ 0, the fixed-point flow is a (mSO:mSI-oSO:mSO:mSI-oSO) flow. (i2a) The fixed-point of xk ¼ a1;3 is monotonically unstable (a monotonic source) if df =dxk jx ¼a1;3 2 ð0; 1Þ. k (i2b) The fixed-point of xk ¼ a2;4 is
212
3 Quartic Nonlinear Discrete Systems
• • • •
monotonically stable (monotonic sink) if df =dxk jx ¼a2;4 2 ð1; 0Þ, k invariantly stable (invariant sink) if df =dxk jx ¼a2;4 ¼ 1, k oscillatorilly stable (oscillatory sink) if df =dxk jx ¼a2;4 2 ð2; 1Þ, k flipped if df =dxk jx ¼a2;4 ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼a2;4 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼a2;4 \0; • oscillatorilly stable (oscillatory source) if df =dxk jx ¼a2;4 2 ð1; 2Þ. k
(ii) If Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0 with ai1 ¼ ai2 ; i1 ; i2 2 f1; 2; 3; 4g;
ð3:123Þ
the quartic nonlinear discrete system has a standard form as xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai3 Þðxk ai4 Þ:
ð3:124Þ
(ii1) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic-uppersaddle of second-order, d 2 f =dx2k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic-upper-saddle discrete flow of the second-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for two fixed-points switching of xk ¼ ai1 ; ai2 is called a monotonic-upper-saddle-node switching bifurcation of the second-order at a point p ¼ p1 . (ii2) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic-lowersaddle of second-order, d 2 f =dx2k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a lower-saddle discrete flow of the second-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for two fixed-points switching of xk ¼ ai1 ; ai2 is called a lower-saddle-node switching bifurcation of the second-order at a point p ¼ p1 . (ii3) The fixed-point of xk ¼ aj ðj ¼ i3 ; i4 Þ is • monotonically unstable (monotonic source) if df =dxk jxk ¼aj 2 ð0; 1Þ; • monotonically stable (monotonic sink) if df =dxk jx ¼aj 2 ð1; 0Þ; k • invariantly stable (invariant sink) if df =dxk jx ¼aj ¼ 1; k
3.4 Period-1 Switching Bifurcations
213
• oscillatorilly stable (oscillatory sink) if df =dxk jx ¼aj 2 ð2; 1Þ; k • flipped if df =dxk jx ¼aj ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼aj [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼aj \0; • oscillatorilly stable (oscillatory source) if df =dxk jx ¼aj 2 ð1; 2Þ. k
(iii) If Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; ai1 ¼ ai2 ¼ a3 ; i1 ; i2 ; i3 2 f1; 2; 3; 4g; i1 6¼ i2 6¼ i3 ;
ð3:125Þ
the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai4 Þ ia 2 f1; 2; 3; 4g; a ¼ 1; 4:
ð3:126Þ
(iii1) The fixed-point of xk ¼ ai1 is monotonically unstable (a third-order monotonic source,d 3 f =dx3k jx ¼ai [ 0). k
1
• Such a discrete flow is called a monotonic source discrete flow of the third-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of three simple fixed-points of xk ¼ ai1 ; ai2 ; ai3 is called a third-order monotonic source bundle-switching bifurcation at a point p ¼ p1 . (iii2) The fixed-point of xk ¼ ai1 is monotonically stable (a third-order monotonic sink, d 3 f =dx3k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic sink discrete flow of the third-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of three simple fixed-points of xk ¼ ai1 ; ai2 ; ai3 is called a monotonic sink bundle-switching bifurcation of the third-order at a point p ¼ p1 . (iii3) The fixed-point of xk ¼ ai4 is • monotonically unstable (monotonic source) if df =dxk jxk ¼ai4 2 ð0; 1Þ; • monotonically stable (monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ; k 4 • invariantly stable (invariant sink) if df =dxk jx ¼ai ¼ 1; k
4
214
3 Quartic Nonlinear Discrete Systems
• oscillatorilly stable (oscillatory sink) if df =dxk jx ¼ai 2 ð2; 1Þ; k 4 • flipped if df =dxk jx ¼ai ¼ 2, which is k
4
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jxk ¼ai4 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jxk ¼ai4 \0; • oscillatorilly stable (oscillatory source) if df =dxk jxk ¼ai4 2 ð1; 2Þ. (iv) If Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; Di3 i4 ¼ ðai4 ai4 Þ2 ¼ 0; ai1 ¼ ai2 ¼ ai3 ¼ ai4 ;
ð3:127Þ
i1 ; i2 ; i3 ; i4 2 f1; 2; 3; 4g; i1 6¼ i2 6¼ i3 6¼ i4 ; the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ4 :
ð3:128Þ
(iv1) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonic-uppersaddle of the fourth-order, d 4 f =dx4k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic-upper-saddle discrete flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of four simple fixed-points of xk ¼ a1;2;3;4 is called a monotonicupper-saddle-node bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . (iv2) The fixed-point of xk ¼ ai1 is monotonically unstable (a 4th order monotonic-lower-saddle, d 4 f =dx4k jx ¼ai \ 0Þ. k
1
• Such a flow is called a monotonic-lower-saddle discrete flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of four simple fixed-points of xk ¼ a1;2;3;4 is called a monotonic-lowersaddle bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . From the previous definition, stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system is presented in Fig. 3.16. For a0 [ 0, the bifurcations and stability of fixed-points are presented in Fig. 3.16(i)–(iii). In Fig. 3.16(i), four monotonic-upper-saddle-node (mUSN) and two monotonic-lowersaddle-node (mLSN) switching bifurcation network are presented for all possible switching bifurcation between two simple fixed-points. In Fig. 3.16(ii), a third-order
3.4 Period-1 Switching Bifurcations
215
monotonic-sink (3rd mSI) bundle-switching bifurcation for three simple fixed-point is presented, and there are three possible monotonic-upper-saddle-node (mUSN) and monotonic-lower-saddle-node (mLSN) switching bifurcations for two simple fixed-points. Figure 3.16(iii) a fourth-order monotonic-upper-saddle (4th mUS) bundle-switching bifurcation for four simple fixed-points are presented. Similarly, For a0 \ 0, the bifurcations and stability of fixed-points are presented in Fig. 3.16 (iv)–(vi). In Fig. 3.16(iv), four monotonic-lower-saddle-node (mLSN) and two monotonic-upper-saddle-node (mUSN) switching bifurcation network are presented for all possible switching bifurcation between two simple fixed-points. In Fig. 3.16 (v), a third-order monotonic source (mSO) bundle-switching bifurcation for three simple fixed-point is presented, and there are three possible monotonic-lower-saddle-node (mLSN) and monotonic-upper-saddle-node (mUSN) switching bifurcations for two simple fixed-points. Figure 3.16(vi) a fourth-order monotonic-lower-saddle (4th mLS) bundle-switching bifurcation for four simple fixed-points are presented. The corresponding period-2 fixed points are sketched as well. For the switching bifurcation between the second-order and simple fixed-points, the following definition is given for the 1-dimensional, quartic nonlinear discrete system.
3.4.2
Higher-Order Period-1 Switching Bifurcations
Definition 3.6 Consider a 1-dimensional, quartic nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ
ð3:129Þ
2
¼ xk þ a0 ðpÞðxk aÞ ðxk bÞðxk cÞ where AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð3:130Þ
(i) If fa1 ; a2 ; a3 g ¼ sortfa; b; cg; ai \ai þ 1 i1 ; i2 ; i3 2 f1; 2; 3g
ð3:131Þ
the quartic nonlinear discrete system has a standard form as xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ2 ðxk ai2 Þðxk ai3 Þ:
ð3:132Þ
216
3 Quartic Nonlinear Discrete Systems
a0 > 0
P-2
c
mUSN
a0 < 0
P-2
mSO
c
P-2 P-2
mUSN mLSN P-2
mLSN
mLSN
mLSN
P-1
b
mUSN mUSN
b
mSO P-2
mUSN
a
mSO
P-2
mUSN
mLSN
mSI-oSO
mLSN
a
mSI-oSO
xk∗ d
Δ12 > 0
|| p ||
P-2
xk∗
P-2
mSO
d Δ12 = 0 Δ 21 > 0
Δ12 > 0
|| p ||
Δ12 = 0 Δ 21 > 0
(i)
(iv) c
mSO
a0 > 0
mUSN
P-2
P-2 P-2
a0 < 0
P-2
mUSN
mSI-oSO
P-2
mLSN
P-2
a mSI-oSO
d
P-2
b
a0 > 0
d
Δ 23 > 0 Δ 23 = 0 Δ 32 > 0
Δ12 > 0 Δ12 = 0 Δ 21 > 0
|| p ||
(v) a0 < 0
mSO
c 4th mUS P-2
P-2 P-2
mSI-oSO
4th mLS
b
mSO
xk∗ P-2
(iii)
P-2
P-2
a
xk∗ Δ ij = 0
b mSI-oSO
P-2 mSI-oSO
d
c
mSO
P-2
mSO
Δ ij > 0
a
P-2
Δ 23 > 0 Δ 23 = 0 Δ 32 > 0
Δ12 > 0 Δ12 = 0 Δ 21 > 0
3rd mSO mSO
xk∗
(ii)
|| p ||
mSO
c
mSI-oSO
P-2
3rd mSI
|| p ||
mLSN P-2
mUSN
P-2
xk∗
P-2
mLSN
b
mSO
mSI-oSO
Δ ji > 0 i, j = 1,2,3,4; i ≠ j
|| p ||
a
d Δ ij > 0
Δ ij = 0
Δ ji > 0 i, j = 1,2,3,4; i ≠ j
(vi)
Fig. 3.16 Stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system ða0 [ 0Þ: (i) Four USN and two LSN switching bifurcation network, (ii) 3rd order mSI bundle-switching bifurcation, (iii) 4th order mUS bundle-switching bifurcation, ða0 \0Þ: (iv) Four mLSN and two mUSN switching bifurcation network, (v) 3rd order mSO bundle-switching bifurcation, (vi) 4th order mLS bundle-switching bifurcation. mLSN: monotonic lower-saddle-node, mUSN: upper-saddle-node, mSI-oSO: sink, mSO: source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. Open curves of P-2 are for mSI-oSO. Closed loop of P-2 are for mSI-oSO-mSI
3.4 Period-1 Switching Bifurcations
217
(i1a) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotonicupper-saddle of second-order, d 2 f =dx2k jx ¼ai [ 0Þ. Such a discrete flow k 1 is called a monotonic upper-saddle discrete flow of the second-order at xk ¼ ai1 . (i1b) The fixed-point of xk ¼ ai1 is monotonically unstable (a monotoniclower-saddle of second-order, d 2 f =dx2k jx ¼ai \ 0Þ. Such a discrete flow k 1 is called a monotonic lower-saddle discrete flow of the second-order at xk ¼ ai1 . (i1c) The fixed-point of xk ¼ aj ðj ¼ i2 ; i3 Þ is • • • • •
monotonically unstable (monotonic source) if df =dxk jx ¼aj 2 ð0; 1Þ; k monotonically stable (monotonic sink) if df =dxk jx ¼aj 2 ð1; 0Þ; k invariantly stable (invariant sink) if df =dxk jx ¼aj ¼ 1; k oscillatorilly stable (oscillatory sink) if df =dxk jx ¼aj 2 ð2; 1Þ; k flipped if df =dxk jx ¼aj ¼ 2, which is k
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼aj k [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼aj \ 0; k
• oscillatorilly stable (oscillatory source) if df =dxk jx ¼aj 2 ð1; 2Þ. k
(ii) If
a ¼ ai1 ; b ¼ ai2 ; c ¼ ai3 ; ð3:133Þ
Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; ai2 ¼ ai3 ; i1 ; i2 ; i3 2 f1; 2g; i1 6¼ i2 6¼ i3 ; the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðx ai1 Þ2 ðx ai2 Þ2 ia 2 f1; 2g; a ¼ 1; 2:
ð3:134Þ
The fixed-points of xk ¼ ai1 ; ai2 are monotonically unstable (a monotonicupper-saddle of the second-order, d 2 f =dx2k jx ¼ai orai [ 0 or a monotonick
lower-saddle of the second-order, d 2 f =dx2k jx ¼ai k
1
2
orai1 \ 2
0Þ.
• Such a discrete flow is called a (mUS:mUS) or (mLS:mLS) discrete flow. • The bifurcation of fixed-point at xk ¼ ai2 for two simple fixed-points switching of xk ¼ b; c is called a monotonic-upper-saddle or monotoniclower-saddle switching bifurcation of the second-order at a point p ¼ p1 .
218
3 Quartic Nonlinear Discrete Systems
(iii) If a ¼ ai1 ; ai3 ; ai2 2 fb; cg; ð3:135Þ
Di1 i3 ¼ ðai1 ai3 Þ2 ¼ 0; ai1 ¼ ai3 ; ai3 6¼ ai2 ; i1 ; i2 ; i3 2 f1; 2; 3g; i1 6¼ i2 6¼ i3 ; the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðx ai1 Þ3 ðx ai2 Þ
ð3:136Þ
ia 2 f1; 2g; a ¼ 1; 2:
(iii1) The fixed-point of xk ¼ ai1 is monotonically unstable (a 3rd order monotonic source, d 3 f =dx3k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic source discrete flow of the third-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a switching of secondorder and simple fixed-points of xk ¼ ai1 ; ai2 is called a monotonic source switching bifurcation of the third-order at a point p ¼ p1 . (iii2) The fixed-point of xk ¼ ai1 is monotonically stable (a third-order monotonic sink, d 3 f =dx3k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic sink discrete flow of the third-order at xk ¼ ai1 . • The bifurcation offixed-point at xk ¼ ai1 for a switching of one secondorder and one simple fixed-points of xk ¼ ai1 ; ai2 is called a monotonic sink switching bifurcation of the third-order at a point p ¼ p1 . (iii3) The fixed-point of xk ¼ ai2 is • • • • •
monotonically unstable (monotonic source) if df =dxk jx ¼ai 2 ð0; 1Þ; k 2 monotonically stable (monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ; k 2 invariantly stable (invariant sink) if df =dxk jx ¼ai ¼ 1; k 2 oscillatorilly stable (oscillatory sink) if df =dxk jx ¼ai 2 ð2; 1Þ; k 2 flipped if df =dxk jx ¼ai ¼ 2, which is k
2
– an oscillatory upper-saddle of the second-order for d 2 f =dx2k jx ¼ai k 2 [ 0; – an oscillatory lower-saddle of the second-order for d 2 f =dx2k jx ¼ai k 2 \0; • oscillatorilly stable (oscillatory source) if df =dxk jx ¼ai 2 ð1; 2Þ. k
2
3.4 Period-1 Switching Bifurcations
219
(iv) If Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; Di2 i3 ¼ ðai2 ai3 Þ2 ¼ 0; i1 ; i2 ; i3 2 f1; 2; 3g; i1 6¼ i2 6¼ i3 ;
ð3:137Þ
the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ4 :
ð3:138Þ
(iv1) The fixed-point of xk ¼ ai1 is monotonically unstable (a fourth-order monotonic-upper-saddle, d 4 f =dx4k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a monotonic-upper-saddle discrete flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of one second-order and two simple fixed-points of xk ¼ a1;2;3 is called a upper-saddle bundle-switching bifurcation of the fourthorder at a point p ¼ p1 . (iv2) The fixed-point of xk ¼ ai1 is monotonically unstable (a fourth-order monotonic lower-saddle, d 4 f =dx4k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a monotonic-lower-saddle discrete flow of the fourth-order at xk ¼ ai1 . • The bifurcation of fixed-point at xk ¼ ai1 for a bundle switching of one second-order and two simple fixed-points of xk ¼ a1;2;3 is called a monotonic-lower-saddle bundle-switching bifurcation of the fourth-order at a point p ¼ p1 . From Definition 3.6, stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system is presented in Fig. 3.17. For a0 [ 0, the bifurcations and stability of fixed-points are presented in Fig. 3.17(i)–(iii). In Fig. 3.17(i), there is a switching bifurcation network with two third-order monotonic-source switching bifurcations and one monotonic upper-saddle-node bifurcation. The two third-order monotonic source (3rd mSO) switching bifurcations are for (mLS:mSO) switching to (mUS:mSO) fixed-points and for (mSO:mUS) switching to (mSO:mLS)fixed-points. The upper-saddle-node (mUSN) switching bifurcation is for two simple fixed-points. In Fig. 3.17(ii), a fourth-order monotonic-upper-saddle (4th US) bundle-switching bifurcation for (mSI-oSO:mLS:mSO) switching to (mSO: mLS:mSI-oSO) fixed-points. In Fig. 3.17(iii), a fourth-order monotonic-uppersaddle (4th mUS) bundle-switching bifurcation for (mSI-oSO:mSO:mUS) switching to (mSO:mSI-oSO:mUS) fixed-points. Similarly, for a0 \0, the bifurcations and stability of fixed-points are presented in in Fig. 3.17(iv)–(vi). In Fig. 3.17(iv), the switching bifurcation network consists of two third-order monotonic sink switching
220
3 Quartic Nonlinear Discrete Systems
(i)
(iv)
(ii)
(v)
(iii)
(vi)
Fig. 3.17 Stability and bifurcations of fixed-points in the 1-dimeisonal, quartic nonlinear discrete system (a0 [ 0): (i) two 3rd order mSO and mUSN switching bifurcation network, (ii) 4th mUS bundle switching bifurcation, (iii) 4th order mUS bundle-switching bifurcation, (a0 \0): (iv) two 3rd order mSI and mLSN switching bifurcation network, (v) 4th order mLS bundle-switching bifurcation, (vi) 4th order mLS bundle switching. mLSN: monotonic-lower-saddle-node, mUSN: monotonic-upper-saddle-node, mSI-oSO: monotonic-sink to oscillatory source, mSI-oSO-mSI: monotonic-sink to oscillatory source to monotonic sink, mSO: monotonic-source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: period-2 fixed-point. Open curves of P-2 are for mSI-oSO. Closed loop of P-2 are for mSI-oSO-mSI
3.4 Period-1 Switching Bifurcations
221
bifurcations and one monotonic lower-saddle-node bifurcation. The two 3rd order monotonic sink (3rd mSI) switching bifurcations are for the (mLS:mSO) switching to (mUS:mSO)-fixed-points and for the (mSO:mUS) switching to (mSO:mLS)fixed-points. The monotonic upper-saddle-node (mUSN) switching bifurcation is for two simple fixed-points. In Fig. 3.17(v), a fourth-order monotonic lower-saddle (4th mLS) bundle-switching bifurcation for (mSO:mUS:mSI-oSO) switching to (mSI-oSO:mUS:mSO) fixed-points. In Fig. 3.17(vi), a fourth-order monotonic-lowersaddle (4th mLS) bundle-switching bifurcation for (mSO:mSI-oSO:mLS) switching to (mSI-oSO:mSO:mLS) fixed-points. For the switching bifurcation between the third-order and simple fixed-points, the following definition is given for the 1-dimensional, quartic nonlinear discrete system. Definition 3.7 Consider a 1-dimensional, quartic nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ
ð3:139Þ
3
¼ xk þ a0 ðpÞðxk aÞ ðxk bÞ where AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð3:140Þ
(i) If fa1 ; a2 g ¼ sortfa; bg; ai \ai þ 1
ð3:141Þ
i1 ; i2 2 f1; 2g; the quartic nonlinear discrete system has a standard form as xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ3 ðxk ai2 Þ:
ð3:142Þ
(i1a) The fixed-point of xk ¼ ai1 is monotonically unstable (a third-order monotonic-source, d 3 f =dx3k jx ¼ai [ 0Þ. k 1 (i1b) The fixed-point of xk ¼ ai2 is • • • • •
monotonically stable (monotonic sink) if df =dxk jx ¼ai 2 ð1; 0Þ, k 2 invariantly stable (invariant sink) if df =dxk jx ¼ai ¼ 1, k 2 oscillatorilly stable (oscillatory sink) if df =dxk jx ¼ai 2 ð2; 1Þ, k 2 flipped if df =dxk jx ¼ai ¼ 2, k 2 oscillatorilly stable (oscillatory source) if df =dxk jx ¼ai 2 ð1; 2Þ. k
2
222
3 Quartic Nonlinear Discrete Systems
(i1c) Such a discrete flow is called a (3rd mSO:mSI-oSO) or (mSI-oSO:3rd mSO)-discrete flow. (i2a) The fixed-point of x ¼ ai1 is monotonically stable (a third-order monotonic-sink, d 3 f =dx3k jx ¼ai \ 0Þ. k 1 (i2b) The fixed-point of x ¼ ai2 is monotonically unstable (a monotonic source, df =dxk jx ¼ai 2 ð0; 1ÞÞ. k 2 (i2c) Such a discrete flow is called a (3rd mSI:mSO) or (mSO:3rd mSI)discrete flow. (ii) If
a ¼ ai1 ; b ¼ ai2 ; Di1 i2 ¼ ðai1 ai2 Þ2 ¼ 0; ai1 ¼ ai2 ;
ð3:143Þ
i1 ; i2 2 f1; 2g; i1 6¼ i2 ; the corresponding standard form is xk þ 1 ¼ xk þ f ðxk ; pÞ ¼ xk þ a0 ðxk ai1 Þ4 :
ð3:144Þ
(ii1) The fixed-point of xk ¼ ai1 is monotonically unstable (a fourth-order monotonically upper-saddle, d 4 f =dx4k jx ¼ai [ 0Þ. k
1
• Such a discrete flow is called a fourth-order monotonic upper-saddle discrete flow. • The bifurcation of fixed-point at xk ¼ ai1 for a switching of one third-order and one simple fixed-points of xk ¼ a1;2 is called a fourth-order upper-saddle switching bifurcation at a point p ¼ p1 . (ii2) The fixed-point of xk ¼ ai1 is monotonically unstable (a fourth-order monotonic-lower-saddle, d 4 f =dx4k jx ¼ai \ 0Þ. k
1
• Such a discrete flow is called a fourth-order monotonic-lower-saddle discrete flow. • The bifurcation of fixed-point at xk ¼ ai1 for a switching of one third-order and one simple fixed-points of xk ¼ a1;2 is called a fourth-order monotonic lower-saddle switching bifurcation at a point p ¼ p1 . From the Definition 3.7, the stability and bifurcations of fixed-points in the 1-dimensional, quartic nonlinear discrete system is presented in Fig. 3.18. In Fig. 3.18(i), the fourth-order monotonic upper-saddle (4th mUS) switching bifurcation for a0 [ 0 is presented for the third-order monotonic sink (3rd mSI) with a
3.4 Period-1 Switching Bifurcations
(i)
223
(ii)
Fig. 3.18 Stability and bifurcations of fixed-points in the 1-dimeisonal, quartic nonlinear discrete system (a0 [ 0): (i) 4th order US switching bifurcation of (3rdmSI: mSO) to (mSI-oSO: 3rd mSO), (a0 \ 0):(ii) 4th order mLS switching bifurcation of (3rd mSO: mSI-oSO) to (mSO: 3rd mSI). mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic-source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: period-2 fixed-point. Open curves of P-2 are for mSI-oSO. Closed loop of P-2 are for mSI-oSO-mSI
simple monotonic source (mSO) fixed-points (i.e., (3rd mSI:mSO)) to the third-order monotonic source (3rd mSO) with a simple sink to oscillatory source (mSI-oSO) fixed-points (i.e., (mSI-oSO:3rd mSO)). Similarly, in Fig. 3.18(ii), the fourth-order lower-saddle (4th mLS) switching bifurcation for a0 \ 0 is presented for the third-order source (3rd mSO) with a simple monotonic sink to oscillatory source (mSI-oSO) fixed-points (i.e., (3rd mSO:mSI-oSO)) to the 3rd order monotonic sink (3rd mSI) with a simple monotonic source (mSO) fixed-points (i.e., (mSO: 3rd mSI)). For the switching bifurcation between the two second-order monotonic fixed-points, the following definition was presented in Definition 3.3, and the corresponding illustrations are presented in Fig. 3.12.
3.5
Forward Quartic Discrete Systems
In this section, the analytical bifurcation scenario of a quartic nonlinear discrete system will be discussed. The period-doubling bifurcation scenario will be discussed first through nonlinear renormalization techniques, and the bifurcation scenario based on the saddle-node bifurcation will be discussed, which is independent of period-1 fixed-points.
224
3 Quartic Nonlinear Discrete Systems
3.5.1
Period-2 Quartic Discrete Systems
After the period-doubling bifurcation of a period-1 fixed-point, the period-doubled fixed-points of a quartic nonlinear discrete system can be obtained. Consider the period-doubling solutions of a forward quartic nonlinear discrete system first. Theorem 3.2 Consider a 1-dimensional, forward, quartic nonlinear discrete system xk þ 1 ¼ xk þ AðpÞx4k þ BðpÞx3k þ CðpÞx2k þ DðpÞxk þ EðpÞ ¼ xk þ a0 ðpÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ½x2k þ B2 ðpÞxk þ C2 ðpÞ
ð3:145Þ
where a0 ðpÞ ¼ AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm ÞT :
ð3:146Þ
Di ¼ B2i 4Ci [ 0; for i ¼ 1; 2 with 1 1 pffiffiffiffiffiffi 1 1 pffiffiffiffiffiffi a1;2 ¼ B1 D1 ; a3;4 ¼ B2 D2 ; 2 2 2 2
ð3:147Þ
Under
the standard form of such a 1-dimensional system is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þðxk a4 Þ:
ð3:148Þ
Thus, a general standard form of such a 1-dimensional quartic discrete system is xk þ 1 ¼ xk þ Ax4k þ Bx3k þ Cx2k þ Dxk þ E ð1Þ
¼ xk þ a0 *4i¼1 ðxk ai Þ
ð3:149Þ
where ð1Þ bi;1
¼
1 ð1Þ ðBi þ 2
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð1Þ ð1Þ ð1Þ ð1Þ Di Þ; bi;2 ¼ ðBi Di Þ 2
ð1Þ for Di 0; i 2 f1; 2g; ð1Þ ð1Þ ð1Þ ð1Þ 04i¼1 ai ¼ sortf02i¼1 fbi;2 ; bi;2 gg; ai
pffiffiffiffiffiffiffi ð1Þ for Di \0; i 2 f1; 2g; i ¼ 1; ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ðiÞ
ai þ 1 ; ð1Þ
a1 ¼ b1;1 ; a2 ¼ b1;2 ; a3 ¼ b2;1 ; a4 ¼ b2;2 :
ð3:150Þ
3.5 Forward Quartic Discrete Systems
225
(i) Consider a forward period-2 discrete system of Eq. (3.145) as ð1Þ
xk þ 2 ¼ xk þ ½a0
*i ¼1 ðxk 1
ai1 Þf1 þ
¼ xk þ ½a0
*i ¼1 ðxk 1
ai1 Þ½a40
¼ xk þ ½a0
*j ¼1 ðxk 1
ai1 Þ½a40
4 4 3
¼ xk þ a10 þ 4
42
ð1Þ ð1Þ
*i¼1 ðxk
*i ¼1 ½1 þ a0 *i ¼1;i 6¼i ðxk 1 2 2 1 4
4
ð42 4Þ=2
ðx2k þ Bi2 xk þ Ci2 Þ
42 4
bj2 Þ
*i ¼1 2
*j ¼1 ðxk 2
ð2Þ
ð1Þ
ai2 Þg
ð2Þ
ð2Þ
ð2Þ
ai Þ ð3:151Þ
where bi;1 ¼ ðBi þ
qffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 1 ð2Þ ð2Þ ð2Þ Dð2Þ Þ; bi;2 ¼ ðBi Di Þ;
ð2Þ Di
ð2Þ 4Ci
ð2Þ
ð2Þ
1 2
¼
ð2Þ ðBi Þ2
2
0; i 2
0 0Nq11¼1 Iqð21 Þ
00Nq ¼1 Iqð2 Þ 2 2
2
2
Iqð21 Þ ¼ flðq1 1Þ 20 m1 þ 1 ; lðq1 1Þ 20 m1 þ 2 ; ; lq1 20 m1 g 0
f1; 2; ; M1 g0f∅g; q1 2 f1; 2; ; N1 g; M1 ¼ N1 20 m1 ; m1 2 f1; 2g; Iqð22 Þ ¼ flðq2 1Þ 21 m1 þ 1 ; lðq2 1Þ 21 m1 þ 2 ; ; lq2 21 m1 g 1
fM1 þ 1; M1 þ 2; ; M2 g0f∅g;
ð3:152Þ
q2 2 f1; 2; ; N2 g; M2 ¼ ð42 4Þ=2; qffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i D Þ; bi;2 ¼ ðBi i Di Þ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0; i 2 J ð2 Þ ¼ flN2 21 m1 þ 1 ; lN2 21 m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g 1
with fixed-points ð2Þ
xk þ 2 ¼ xk ¼ ai ði ¼ 1; 2; . . .; 42 Þ ; ð2Þ
ð1Þ
ð2Þ
ð2Þ
2 04i¼1 fai g ¼ sortf04j1 ¼1 faj1 g; 0M j2 ¼1 fbj2 ;1 ; bj2 ;2 gg 2
with
ð2Þ ð2Þ ai \ai þ 1 ;
ð3:153Þ
M2 ¼ ð42 4Þ=2: ð1Þ
(ii) For a fixed-point of xk þ 1 ¼ xk ¼ ai1 ði1 2 f1; 2; . . .; 4gÞ, if dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *4i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1 with
ð3:154Þ
226
3 Quartic Nonlinear Discrete Systems
• a r th -order oscillatory upper-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ k
i1
k
i1
[ 0; r ¼ 2l1 Þ; • a r th -order oscillatory lower-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ \0; r ¼ 2l1 Þ; • a r th -order oscillatory sink bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ [ 0; r ¼ k
i1
k
i1
2l1 þ 1Þ; • a r th -order oscillatory source bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ [ 0; r ¼ 2l1 þ 1Þ; then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi1 ; Di1 ¼ ðBi1 Þ2 4Ci1 ¼ 0; 2
ð3:155Þ
and there is a period-2 discrete system of the quartic discrete system in Eq. (3.145) as ð1Þ
ð2Þ
ð3:156Þ
dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i1 dx2k xk ¼ai1
ð3:157Þ
xk þ 2 ¼ xk þ a50
*
ð20 Þ
i2 2Iq1
ðxk ai2 Þ3
42
*i ¼1 ðxk 3
ai3 Þð1dði2 ;i3 ÞÞ :
For i1 2 f1; 2; . . .; 4g; i1 6¼ i2 with
ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a50 dx3k xk ¼ai1
*
ð1Þ
ð20 Þ
i2 2Iq1 ;i2 6¼i1
ð1Þ
ðai1 ai2 Þ3
ð3:158Þ
ð2Þ ð1dði2 ;i3 ÞÞ
*4i3 ¼1 ðað1Þ \ 0; i1 ai3 Þ 2
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the period-2 discrete system; ð1Þ • xk þ 2 at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a50 dx3k xk ¼ai1
*
ð1Þ
ð20 Þ
i2 2Iq1 ;i2 6¼i1
ð1Þ 42 *i ¼1 ðai 1 3
ð1Þ
ðai1 ai2 Þ3 ð2Þ ai3 Þð1dði2 ;i3 ÞÞ
ð3:159Þ [ 0;
3.5 Forward Quartic Discrete Systems
227
and the corresponding bifurcations is a third-order monotonic source bifurcation for the period-2 discrete system. (ii1) The period-2 fixed-points are trivial and unstable if ð2Þ
xk þ 2 ¼ xk ¼ ai
ð1Þ
2 04i1 ¼1 fai1 g:
ð3:160Þ
(ii2) The period-2 fixed-points are non-trivial and stable if ð2Þ
ð2Þ
ð2Þ
2 2 0M i1 ¼1 fbi1 ;1 ; bi1 ;2 g:
xk þ 2 ¼ xk ¼ ai
ð3:161Þ
Proof The proof is straightforward through the simple algebraic manipulation. Following the proof of quadratic discrete system, this theorem is proved. ■
3.5.2
Period-Doubling Renormalization
The generalized cases of period-doublization of quartic discrete systems are presented through the following theorem. The analytical period-doubling bifurcation trees can be developed for quartic discrete systems. Theorem 3.3 Consider a 1-dimensional quartic nonlinear discrete system as xk þ 1 ¼ xk þ Ax4k þ Bx3k þ Cx2k þ Dxk þ E
ð3:162Þ
ð1Þ
¼ xk þ a0 *4i¼1 ðxk ai Þ:
(i) After l-times period-doubling bifurcations, a period-2l ðl ¼ 1; 2; . . .Þ discrete system for the quartic discrete system in Eq. (3.162) is given through the nonlinear renormalization as ð2l1 Þ
42
xk þ 2l ¼ xk þ ½a0
f1 þ
l1
*i1 ¼1 ðxk
2l1
ð2
*i1 ¼1 ½1 þ a0 4
2l1
ð2l1 Þ
¼ xk þ ½a0
*i1 ¼1 ðxk 4
2l1
ð2l1 Þ 4
½ða0
Þ
ð2l1 Þ
¼ xk þ ½a0
Þ
2l
22
l1
l1
l
ð2l Þ
¼ x k þ a0
Þ
42
Þ
l
*i¼1 ðxk
Þ=2
42
Þ=2
l
ð2l Þ
ð2l Þ
ð2l Þ
Þ ð2l Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ
*i¼1 ðxk
ai Þ
Þg
Þ
ð2l1 Þ
l1
ð2l1 Þ
ai 2
ðx2k þ Bj2 xk þ Cj2 Þ
ai1
ð42 42 l1
4
ð2l1 Þ
2l1
Þ
2l1
*i2 ¼1;i2 6¼i1 ðxk
ai1
*i2 ¼1
ð2l1 Þ 1 þ 42
¼ xk þ ða0
l1
ð4 4
*j1 ¼1
*i1 ¼1; ðxk
ð2l1 Þ 42
½ða0
ð2l1 Þ
ai1
ð2l Þ
ai Þ
ð3:163Þ
228
3 Quartic Nonlinear Discrete Systems
with l dxk þ 2l ð2l Þ X42l ð2l Þ 42 ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l d 2 xk þ 2 l ð2l Þ X42l X42l ð2l Þ 42 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . l d r xk þ 2 l X42l ð2l Þ X42l ð2l Þ 42 ¼ a0 i1 ¼1 ir ¼1;i3 6¼i1 ;i2 ir1 *ir þ 1 ¼1;i3 6¼i1 ;i2 ;ir ðxk air þ 1 Þ r dxk
ð3:164Þ 2l
for r 4 where ð2l Þ
ð2Þ
2l
ð2l Þ 04i¼1 fai g ð2l Þ
bi;1
ð2l Þ
Di
Iqð21
l1
¼
l1
ð2l1 Þ 1 þ 42
a0 ¼ ða0 Þ1 þ 4 ; a0
¼ ða0
Þ
; l ¼ 1; 2; 3; ;
2l1
ð2l Þ ð2l Þ ð2l Þ 2 sortf04i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð2l Þ
ð2l Þ
,ai ai þ 1 ; qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ; 2
2
ð2l Þ
ð2l Þ
¼ ðBi Þ2 4Ci Þ
l1
0 for i 2 0Nq11¼1 Iqð21
Þ
00Nq ¼1 Iqð2 Þ ; 2 2
l
2
¼ flðq1 1Þ 2l1 m1 þ 1 ; lðq1 1Þ 2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ 2l m1 þ 1 ; lðq2 1Þ 2l m1 þ 2 ; ; lq2 2l m1 g
ð3:165Þ
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð42 42 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \ 0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g;
with fixed-points ð2l Þ
l
xk þ 2l ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 42 Þ 2l
2l1
ð2l Þ
ð2l1 Þ
04i¼1 fai g ¼ sortf04i1 ¼1 fai1 l
ð2 Þ
l
ð2 Þ
with ai \ai þ 1 :
ð2l Þ
ð2l Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð3:166Þ
3.5 Forward Quartic Discrete Systems
229 ð2l1 Þ
(ii) For a fixed-point of xk þ 2l1 ¼ xk ¼ ai1
ð2l1 Þ
ði1 2 Iq
Þ, if
l1 dxk þ 2l1 ð2l1 Þ ð2l1 Þ ð2l1 Þ 42 j ð2l1 Þ ¼ 1 þ a0 *i ¼1;i 6¼i ðai1 ai2 Þ ¼ 1; 2 2 1 dxk xk ¼ai1 d s xk þ 2l1 j ð2l1 Þ ¼ 0; for s ¼ 2; ; r 1; xk ¼ai dxsk 1 r d xk þ 2l1 l1 j ð2l1 Þ 6¼ 0 for 1\ r 42 ; r x ¼a dxk i1 k
ð3:167Þ
with • a rth -order oscillatory sink for d r xk þ 2l1 =dxrk j
ð2l1 Þ
xk ¼ai
• a r th -order oscillatory source for d r xk þ 2l1 =dxrk j
[ 0 and r ¼ 2l1 þ 1;
1 ð2l1 Þ
xk ¼ai
\0 and r ¼ 2l1 þ 1;
1
• a r th -order oscillatory upper-saddle for d r xk þ 2l1 =dxrk j
ð2l1 Þ
xk ¼ai
2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l1 =dxrk j
[ 0 and r ¼
1
ð2l1 Þ
xk ¼ai
\0 and r ¼
1
2l1 ; then there is a period-2l fixed-point discrete system ð2l Þ
x k þ 2 l ¼ x k þ a0
*
ð2l Þ
i1 2Iq
ð2l1 Þ 3
ðxk ai1
42
Þ
l
*j2 ¼1 ðxk
ð2l Þ
aj2 Þð1dði1 ;j2 ÞÞ
ð3:168Þ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð3:169Þ
dxk þ 2l d 2 xk þ 2 l j ð2l1 Þ ¼ 1; j ð2l1 Þ ¼ 0: dxk xk ¼ai1 dx2k xk ¼ai1
ð3:170aÞ
and
ð2l1 Þ
• xk þ 2l at xk ¼ ai1
is a monotonic sink of the third-order if
d xk þ 2l ð2l Þ ð2l1 Þ ð2l1 Þ j ða ai2 Þ3 * ð2l1 Þ ¼ 6a0 ð2l1 Þ i2 2Iq ;i2 6¼i1 i1 dx3k xk ¼ai1 3
2l
l1
ð2
ði1 2 Iq
Þ
ð2l1 Þ
*4j2 6¼1 ðai1
ð3:170bÞ
; q 2 f1; 2; . . .; N1 gÞ; ð2l1 Þ
and such a bifurcation at xk ¼ ai1 bifurcation. ð2l1 Þ
• xk þ 2l at xk ¼ ai1
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
is a third-order monotonic sink
is a monotonic source of the third-order if
230
3 Quartic Nonlinear Discrete Systems
d 3 xk þ 2l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai2 Þ3 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k 2l
ð2l1 Þ
ði1 2 Iq
ð2l1 Þ
ð3:171Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ [ 0
*4j2 6¼1 ðai1
; q 2 f1; 2; . . .; N1 gÞ ð2l1 Þ
and such a bifurcation at xk ¼ ai1 cation.
is a third-order monotonic source bifur-
(ii1) The period-2l fixed-points are trivial if 2l1
ð2l Þ
xk þ 2l ¼ xk ¼ ai1 2 04i1
ð2l1 Þ
fai1
g;
ð3:172Þ
(ii2) The period-2l fixed-points are non-trivial if ð2l Þ
ð2l Þ
ð2l Þ
2 xk þ 2l ¼ xk ¼ ai1 2 0M j1 ¼1 fbj1 ;1 ; bj1 ;2 g:
ð3:173Þ
Such a period-2l fixed-point is • monotonically unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
• monotonically invariant if dxk þ 2l =dxk j
2 ð1; 1Þ;
1 ð2l Þ
xk ¼ai
¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx [ 0; k
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \ 0; k
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jxk [ 0;;
– a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \ 0; k
• monotonically stable if dxk þ 2l =dxk j
xk ¼ai
• invariantly zero-stable if dxk þ 2l =dxk j • oscillatorilly stable if dxk þ 2l =dxk j • flipped if dxk þ 2l =dxk j
ð2l1 Þ
xk ¼ai
2 ð0; 1Þ;
ð2l Þ 1
ð2l1 Þ
xk ¼ai
1
ð2l1 Þ
xk ¼ai
¼ 0;
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx [ 0; k
1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \ 0; k
– an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \ 0; k
– an oscillatory sink the ð2l1 þ 1Þth order with d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, this theorem can be proved.
■
3.5 Forward Quartic Discrete Systems
3.5.3
231
Period-n Appearing and Period-Doublization
The forward period-n discrete system for the quartic nonlinear discrete systems will be discussed, and the period-doublization of period-n discrete systems is discussed through the nonlinear renormalization. Theorem 3.4 Consider a 1-dimensional quartic nonlinear discrete system xk þ 1 ¼ xk þ Ax4k þ Bx3k þ Cx2k þ Dxk þ E
ð3:174Þ
ð1Þ
¼ xk þ a0 *4i¼1 ðxk ai Þ:
(i) After n-times iterations, a period-n discrete system for the quartic discrete system in Eq. (3.174) is xk þ n ¼ xk þ a0 *4i1 ¼1 ðxk ai2 Þf1 þ n
ð4 1Þ=3
¼ x k þ a0
ðnÞ
¼ x k þ a0
4n
*i1 ¼1 ðxk 4
*i¼1 ðxk
Xn
j¼1 Qj g ð4n 4Þ=2
ai1 Þ½*j2 ¼1
ð2l Þ
ð2l Þ
ðx2k þ Bj2 xk þ Cj2 Þ
ðnÞ
ai Þ ð3:175Þ
with
dxk þ n n ðnÞ X n ¼ 1 þ a0 4i1 ¼1 *4i2 ¼1;i2 6¼i1 ðxk aðnÞ i2 Þ; dxk d 2 xk þ n n ðnÞ X n X n ¼ a0 4i1 ¼1 4i2 ¼1;i2 6¼i1 *4i3 ¼1;i3 6¼i1 ;i2 ðxk aðnÞ i3 Þ; dx2k .. . d r xk þ n n X n ðnÞ X n ¼ a0 4i1 ¼1 4ir ¼1;ir 6¼i1 ;i2 ;ir1 *4ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk aðnÞ ir þ 1 Þ r dxk
for r 4n ;
ð3:176Þ
where ðnÞ
a0 ¼ ða0 Þð4 Qn ¼ n
n
1Þ=3
; Q1 ¼ 0; Q2 ¼
*i ¼1 ½1 þ a0 *i ¼1;i 6¼i ðxk 2 1 1 2 4
4
*i ¼1 ½1 þ a0 ð1 þ Qn1 Þ *i ¼1;i 6¼i ðxk n n1 n1 n 4
ðnÞ
4
ð1Þ
ðnÞ
ð1Þ
ain1 Þ; n ¼ 3; 4; ;
ðnÞ
04i¼1 fai g ¼ sortf04i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2
2
ð1Þ
ai1 Þ;
232
3 Quartic Nonlinear Discrete Systems ðnÞ
ðnÞ
ðnÞ
Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þ n þ 1 ; lðq1Þ n þ 2 ; ; lq n gf1; 2; ; Mg0f∅g; for q 2 f1; 2; ; Ng; M ¼ ð4n 4Þ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flN n þ 1 ; lN n þ 2 ; ; lM g f1; 2; ; Mg0f∅g;
ð3:177Þ
with fixed-points ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; 4n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
04i¼1 fai g ¼ sortf04i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ðnÞ
ð3:178Þ
ðnÞ
with ai \ ai þ 1 : ðnÞ
ðnÞ
(ii) For a fixed-point of xk þ n ¼ xk ¼ ai1 ði1 2 Iq ; q 2 f1; 2; . . .; NgÞ, if dxk þ n n ðnÞ ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *4i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk k i1
ð3:179Þ
d 2 xk þ n n ðnÞ X n ðnÞ ðnÞ j ðnÞ ¼ a0 4i2 ¼1;i2 6¼i1 *4i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; dx2k xk ¼ai1
ð3:180Þ
with
then there is a new discrete system for onset of the qth - set of period-n fixed-points based on the second-order monotonic saddle-node bifurcation as ðnÞ
xk þ n ¼ x k þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
ðnÞ
ai1 Þ2 *4j2 ¼1 ðxk aj2 Þð1dði1 ;j2 ÞÞ n
ð3:181Þ
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð3:182Þ
3.5 Forward Quartic Discrete Systems
233
(ii1) If dxk þ n j ðnÞ ¼ 1 ði1 2 IqðnÞ Þ; dxk xk ¼ai1 d 2 xk þ n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 2a0 *i 2I ðnÞ ;i 6¼i ðai1 ai1 Þ2 1 q 2 1 dx2k xk ¼ai1 ðnÞ
ð3:183Þ
ðnÞ
*4j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk þ n at xk ¼ ai1 is • a monotonic lower-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ \ 0; k
i1
k
i1
• a monotonic upper-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0. n1
(ii2) The period-n fixed-points ðn ¼ 2 mÞ are trivial if ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f04ii ¼1 fai1 g; 04i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 4n g0f∅g for n 6¼ 2n2 ; ðnÞ
2n1 1 m
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 2 f04i2 ¼1 fai2
)
)
gg
ð3:184Þ
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 4n g0f∅g
for n ¼ 2n2 : (ii3) The period-n fixed-points ðn ¼ 2n1 mÞ are non-trivial if ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 62 f04ii ¼1 fai1 g; 04i2 ¼1 fai2 gg n for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 4 g0f∅g for n 6¼ 2n2 ; ðnÞ
2n1 1 m
ð2n1 1 mÞ
xk ¼ xk þ n ¼ aj1 62 f04i2 ¼1 fai2
)
)
gg
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 4n g0f∅g
for n ¼ 2n2 : Such a forward period-n fixed-point is • monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is k
i1
ð3:185Þ
234
3 Quartic Nonlinear Discrete Systems 1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx [ 0; k
1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \ 0; k
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jxk [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx \0; k
• monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð0; 1Þ; i1
k
• invariantly zero-stable if dxk þ n =dxk jx ¼aðnÞ ¼ 0; k
i1
• oscillatorilly stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 0Þ; k
i1
• flipped if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is k
i1
– an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2lk 1 jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jxk \ 0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ. k
ðnÞ
i1
ðnÞ
(iii) For a fixed-point of xk þ n ¼ xk ¼ ai1 ði1 2 Iq ; q 2 f1; 2; . . .; NgÞ, there is a period-doubling of the qth -set of period-n fixed-points if
with
dxk þ n n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 1 þ a0 *4j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; dxk xk ¼ai1 d s xk þ n j ðnÞ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk ¼ai1 d r xk þ n j ðnÞ 6¼ 0 for 1\r 4n dxrk xk ¼ai1
ð3:186Þ
• a r th -order oscillatory sink for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ 2l1 þ 1; i1
k
• a r th -order oscillatory source for d r xk þ n =dxrk jx ¼aðnÞ \ 0 and r ¼ 2l1 þ 1; k
i1
• a r th -order oscillatory upper-saddle for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ i1
k
2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ 2l1 .
k
i1
3.5 Forward Quartic Discrete Systems
235
The corresponding period-2 n discrete system of the quartic discrete system in Eq. (3.174) is ð2 nÞ
xk þ 2 n ¼ xk þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
ð2 nÞ ð1dði1 ;j2 ÞÞ
2 n
ai1 Þ3 *4j2 ¼1 ðxk aj2
Þ
ð3:187Þ with dxk þ 2 n d 2 xk þ 2 n jx ¼aðnÞ ¼ 1; jx ¼aðnÞ ¼ 0; i1 i1 k k dxk dx2k d 3 xk þ 2 n ð2 nÞ ðnÞ ðnÞ 3 jx ¼aðnÞ ¼ 6a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 1 q 2 1 i1 k dx3k ðnÞ
2 n
ð2 nÞ ð1dði1 ;j2 ÞÞ
*4j2 ¼1 ðai1 aj2 ðnÞ
Þ
ð3:188Þ
:
ðnÞ
Thus, xk þ 2 n at xk ¼ ai1 for i1 2 Iq , q 2 f1; 2; ; Ng is • a monotonic sink of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ \ 0, k
i1
• a monotonic source of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ [ 0. k
i1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the quartic discrete system in Eq. (3.174) is ð2l1 nÞ
42
xk þ 2l n ¼ xk þ ½a0
f1 þ
4
ð2
¼ xk þ ½a0
l1
ð2
½ða0
ð2
¼ xk þ ½a0
ð2
2l1 n
nÞ
Þ
4
*i1 ¼1 ð2l1 nÞ
4
nÞ 4
Þ
ð2l1 nÞ 42
¼ xk þ ða0
l
ð2 nÞ
¼ x k þ a0
Þ
4
*i¼1
*i2 ¼1;i2 6¼i1 ðxk 4
ð2
ð4
ð4
4
ð2
4
l
42 n
*i¼1
l1
2l1 n
nÞ
ð2l nÞ
ðx2k þ Bj2
nÞ
Þ
Þ=2
Þg
Þ
ð2l nÞ
ð2l nÞ
xk þ Cj2
Þ
ð2l nÞ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ
ð2l nÞ
l
ð2l1 nÞ
ai2
Þ=2
ðxk ai
ð2 nÞ
ðxk ai
l1
2l1 n
ðxk ai1 2l n
Þ
2l1 n
ðxk ai1
*j2 ¼1
l1 n
2l n
Þ
*j1 ¼1
*i1 ¼1 2l1 n
l1
2l n
2l1 n
nÞ
ð2l1 nÞ
ðxk ai1
½1 þ a0
nÞ 4
l1
l1
ð2
½ða0
2l1 n
*i1 ¼1 l1
l1 n
*i1 ¼1
Þ
Þ ð3:189Þ
with
236
3 Quartic Nonlinear Discrete Systems
dxk þ 2l n ð2l nÞ X42l n 42l n ð2l nÞ ¼ 1 þ a0 Þ; i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 dxk l d 2 xk þ 2l n ð2l nÞ X42l n X42l n ð2l nÞ 42 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 2 dxk .. . l d r xk þ 2l n X42l n ð2l nÞ X42l n ð2l nÞ 42 n ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ r dxk l
for r 42 n ; ð3:190Þ
where ð2 nÞ
a0
ðnÞ
2l n
ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l nÞ
2 n
ð2
l1
g ¼ sortf04i1 ¼1 fai1 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; 2 ð2l nÞ 2
¼ ðBi
for i 2 0Nq11¼1 Iqð21 ð2l1 nÞ
ð2l nÞ
Þ 4Ci
l1
Iq1
ð2l1 nÞ 1 þ 42
¼ ða0
2l1 n
l
ð2 nÞ
04i¼1 fai
Di
ð2l nÞ
¼ ða0 Þ1 þ 4 ; a0
nÞ
Þ
nÞ
l1 n
; l ¼ 1; 2; 3; . . .; ð2l nÞ
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
0 l
00Nq22¼1 Iqð22 nÞ
¼ flðq1 1Þ ð2l1 nÞ þ 1 ; lðq1 1Þ ð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f£g;
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; ð2l nÞ
Iq2
¼ flðq2 1Þ ð2l nÞ þ 1 ; lðq2 1Þ ð2l nÞ þ 2 ; . . .; lq2 ð2l1 nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f£g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ ð42 n 42 n Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi ð2l nÞ ð2l nÞ 2 ð2l nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di i 2 flN ð2l nÞ þ 1 ; lN ð2l nÞ þ 2 ; . . .; lM2 g f1; 2; . . .; M2 g0f£g with fixed-points
ð3:191Þ
3.5 Forward Quartic Discrete Systems ð2l nÞ
xk þ 2l n ¼ xk ¼ ai 2l n
ð2l nÞ
04i¼1 fai with
237 l
; ði ¼ 1; 2; . . .; 42 n Þ 2l1 n
ð2l1 nÞ
g ¼ sortf04i1 ¼1 fai1
ð2l1 nÞ
2 g; 0M i2 ¼1 fbi2 ;1
ð2l1 nÞ
; bi2 ;2
gg
ð2l nÞ ð2l nÞ \ai þ 1 : ai
ð3:192Þ ð2l1 nÞ
ð2l1 nÞ
(ii) For a fixed-point of xk þ ð2l nÞ ¼ xk ¼ ai1 N1 gÞ, there is a period-2
l1
ði1 2 Iq
; q 2 f1; 2; . . .;
n discrete system if
dxk þ 2l1 n ð2l1 nÞ 42l1 n ð2l1 nÞ ð2l1 nÞ j ð2l1 nÞ ¼ 1 þ a0 ai2 Þ ¼ 1; *i2 ¼1;i2 6¼i1 ðai1 x ¼a dxk i1 k d s xk þ 2l1 n j ð2l1 nÞ ¼ 0; for s ¼ 2; . . .; r 1; xk ¼ai dxsk 1 r d xk þ 2l1 n l1 j ð2l1 nÞ 6¼ 0 for 1\r 42 n xk ¼ai dxrk 1 ð3:193Þ with • a r th -order oscillatory sink for d r xk þ 2l n =dxrk j • a r -order oscillatory source for d th
r
ð2l nÞ
xk ¼ai
[ 0 and r ¼ 2l1 þ 1;
1
xk þ 2l n =dxrk j ð2l nÞ \0 x ¼a
and r ¼ 2l1 þ 1;
i1
k
• a r th -order oscillatory upper-saddle for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
r ¼ 2l1 .
[ 0 and
1
\ 0 and
1
The corresponding period-2l n discrete system is ð2l nÞ
xk þ 2l n ¼ xk þ a0
*
2l n
ð2l1 nÞ
i1 2Iq
ð2l1 nÞ 3
ðxk ai1
Þ
ð3:194Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ
*4j2 ¼1 ðxk aj2
Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2 with
ð2l1 nÞ
¼ ai1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð3:195Þ
238
3 Quartic Nonlinear Discrete Systems
dxk þ 2l n d 2 xk þ 2l n j ð2l1 nÞ ¼ 1; j ð2l1 nÞ ¼ 0; xk ¼ai xk ¼ai dxk dx2k 1 1 3 l d xk þ 2l n ð2 nÞ ð2l1 nÞ ð2l1 nÞ 3 j ð2l1 nÞ ¼ 6a0 ðai1 ai 2 Þ * ð2l1 nÞ 3 xk ¼ai i2 2Iq ;i2 6¼i1 dxk 1 2l n
ði1 2
ð2l1 nÞ Iq ;q
ð2l1 nÞ
*4j2 ¼1 ðai1
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj 2
Þ
6¼ 0
2 f1; 2; . . .; N1 gÞ: ð3:196Þ ð2l1 nÞ
Thus, xk þ 2l n at xk ¼ ai1
is
• a monotonic sink of the third-order if d 3 xk þ 2l n =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order if d 3 xk þ 2l n =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0.
1
(ii1) The period-2l n fixed-points are trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
ð2l1 nÞ
2 f04ii ¼1 fai1 g; 04i2 ¼1 fai2
;
l
for j ¼ 1; 2; ; 42 n for n 6¼ 2n1 ; ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
9 gg =
2l1 n
ð2l1 nÞ
2 04i2 ¼1 fai2
9 g=
ð3:197Þ
;
l
for j ¼ 1; 2; ; 42 n for n ¼ 2n1 :
(ii2) The period-2l n fixed-points are non-trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
2l1 n
ð1Þ
for n 6¼ 2n1 ; ð2l nÞ
9 gg = ;
l
for j ¼ 1; 2; ; 4ð2 nÞ xk þ 2l n ¼ xk ¼ aj
ð2l1 nÞ
62 f04ii ¼1 fai1 g; 04i2 ¼1 fai2
2l1 n
ð2l1 nÞ
62 04i2 ¼1 fai2
9 g=
ð3:198Þ
;
l
for j ¼ 1; 2; ; 42 n for n ¼ 2n1 : Such a period-2l n fixed-point is • monotonically unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• monotonically invariant if dxk þ 2l n =dxk j
1 ð2l nÞ
xk ¼ai
1
2 ð1; 1Þ; ¼ 1, which is
3.5 Forward Quartic Discrete Systems
239
– a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2lk 1 jxk [ 0 (independent ð2l1 Þ-branch appearance); 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \ 0 (independent ð2l1 Þ-branch appearance) 1 þ1 jx – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n = dx2l k k [ 0 (dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jx \ 0 k (dependent ð2l1 þ 1Þ-branch appearance from one branch); • monotonically stable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• invariantly zero-stable if dxk þ 2l n =dxk j • oscillatorilly stable if dxk þ 2l n =dxk j • flipped if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð0; 1Þ;
1
¼ 0;
ð2l nÞ
xk ¼ai ð2l nÞ
xk ¼ai
1
2 ð1; 0Þ;
1
¼ 1, which is
1
– an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2lk 1 jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jx \0 k
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jxk \ 0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2lk 1 þ 1 jxk [ 0; • oscillatorilly unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, the proof of this theorem is similar to the proof of Theorem 1.11. This theorem can be easily proved. ■
3.6
Backward Quartic Discrete Systems
In this section, the analytical bifurcation scenario for backward quartic discrete systems will be discussed in a similar fashion through nonlinear renormalization techniques, and the backward bifurcation scenario based on the monotonic saddle-node bifurcations will be discussed, which is independent of period-1 fixed-points.
3.6.1
Backward Period-2 Quartic Discrete Systems
After the period-doubling bifurcation of a period-1 fixed-points in the backward quartic nonlinear discrete systems, the backward period-doubled fixed-point systems can be obtained. Consider the period-doubling fixed-points for a backward quartic nonlinear discrete system as follows.
240
3 Quartic Nonlinear Discrete Systems
Theorem 3.5 Consider a 1-dimensional, backward, quartic nonlinear discrete system xk ¼ xk þ 1 þ f ðxk þ 1 ; pÞ ¼ xk þ 1 þ AðpÞx4k þ 1 þ BðpÞx3k þ 1 þ CðpÞx2k þ 1 þ DðpÞxk þ 1 þ EðpÞ ¼ xk þ 1 þ a0 ðpÞ½x2k þ 1 þ B1 ðpÞxk þ 1 þ C1 ðpÞ½x2k þ 1 þ B2 ðpÞxk þ 1 þ C2 ðpÞ ð3:199Þ
where a0 ðpÞ ¼ AðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; ; pm ÞT :
ð3:200Þ
Di ¼ B2i 4Ci [ 0; for i ¼ 1; 2 with pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 a1;2 ¼ ðB1 D1 Þ; a3;4 ¼ ðB2 D2 Þ; 2 2
ð3:201Þ
Under
the standard form of such a backward discrete system is xk ¼ xk þ 1 þ a0 ðxk þ 1 a1 Þðxk þ 1 a2 Þðxk þ 1 a3 Þðxk þ 1 a4 Þ:
ð3:202Þ
Thus, a general standard form of such a backward quartic discrete system is xk ¼ xk þ 1 þ Ax4k þ 1 þ Bx3k þ 1 þ Cx2k þ ! þ Dxk þ ! þ E ð1Þ
¼ xk þ 1 þ a0 *4i¼1 ðxk þ 1 ai Þ
ð3:203Þ
where ð1Þ bi;1
¼
1 ð1Þ ðBi þ 2
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð1Þ ð1Þ ð1Þ ð1Þ Di Þ; bi;2 ¼ ðBi Di Þ 2
ð1Þ for Di 0; i 2 f1; 2g; ð1Þ ð1Þ ð1Þ ð1Þ 04i¼1 ai ¼ sortf02i¼1 fbi;2 ; bi;2 gg; ai
ðiÞ
ai þ 1 ; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ð1Þ 1 ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ 2 2 pffiffiffiffiffiffiffi ð1Þ for Di \0; i 2 f1; 2g; i ¼ 1; ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
a1 ¼ b1;1 ; a2 ¼ b1;2 ; a3 ¼ b2;1 ; a4 ¼ b2;2 :
ð3:204Þ
3.6 Backward Quartic Discrete Systems
241
(i) Consider a backward period-2 discrete system of Eq. (3.199) as ð1Þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2
ai2 Þg
ð1Þ
ð42 4Þ=2
ð2Þ
xk ¼ xk þ 2 þ ½a0 *4i1 ¼1 ðxk þ 2 ai1 Þf1 þ
4
¼ xk þ 2 þ ½a0 *4i1 ¼1 ðxk þ 2 ai1 Þ½a40 *i2 ¼1 ð1Þ
4
ð2Þ
ð1Þ
ðx2k þ 1 þ Bi2 xk þ 1 þ Ci2 Þ ð2Þ
4 ¼ xk þ 2 þ ½a0 *4j1 ¼1 ðxk þ 2 ai1 Þ½a40 *4j2 ¼1 ðxk þ 2 bj2 Þ 2
ð2Þ
¼ xk þ 2 þ a10 þ 4 *4i¼1 ðxk þ 2 ai Þ 2
ð3:205Þ
where ð2Þ
1 2
ð2Þ
bi;1 ¼ ðBi þ ð2Þ
Di
pffiffiffiffiffiffiffiffi ð2Þ Dð2Þ Þ; bi;2
ð2Þ
qffiffiffiffiffiffiffiffi 1 ð2Þ ð2Þ ¼ ðBi Di Þ; 2
ð2Þ
¼ ðBi Þ2 4Ci 0; i 2 0Nq11¼1 Iqð21
0
Þ
00Nq ¼1 Iqð2 Þ 2
2 2
2
Iqð21 Þ ¼ flðq1 1Þ 20 m1 þ 1 ; lðq1 1Þ 20 m1 þ 2 ; ; lq1 20 m1 g 0
f1; 2; ; M1 g0f∅g; q1 2 f1; 2; ; N1 g; M1 ¼ N1 20 m1 ; m1 2 f1; 2g; Iqð22 Þ ¼ flðq2 1Þ 21 m1 þ 1 ; lðq2 1Þ 21 m1 þ 2 ; ; lq2 21 m1 g 1
fM1 þ 1; M1 þ 2; ; M2 g0f∅g;
ð3:206Þ
q2 2 f1; 2; ; N2 g; M2 ¼ ð42 4Þ=2; qffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i Dð2Þ Þ; bi;2 ¼ ðBi i Di Þ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \ 0; i 2 J ð2 Þ ¼ flN2 21 m1 þ 1 ; lN2 21 m1 þ 2 ; ; lM2 g 1
fM1 þ 1; M1 þ 2; ; M2 g
with fixed-points ð2Þ
xk ¼ xk þ 2 ¼ ai ; ði ¼ 1; 2; . . .; 42 Þ ð2Þ
ð1Þ
ð2Þ
ð2Þ
2 04i¼1 fai g ¼ sortf04j1 ¼1 faj1 g; 0M j2 ¼1 fbj2 ;1 ; bj2 ;2 gg 2
ð2Þ
ð3:207Þ
ð2Þ
with ai \ai þ 1 ; M2 ¼ ð42 4Þ=2: ð1Þ
(ii) For a fixed-point of xk ¼ xk þ 1 ¼ ai1 ði1 2 f1; 2; . . .; 4gÞ, if dxk ð1Þ ð1Þ 4 j ð1Þ ¼ 1 þ a0 * i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk þ 1 xk þ 1 ¼ai1 with
ð3:208Þ
242
3 Quartic Nonlinear Discrete Systems
• a r th -order oscillatory lower-saddle-node bifurcation ðd r xk =dxrk þ 1 jx
kþ1
[ 0; r ¼ 2l1 Þ; • a r th -order oscillatory upper-saddle-node bifurcation ðd r xk =dxrk þ 1 jx \ 0; r ¼ 2l1 Þ; • a r th -order oscillatory source bifurcation ðd r xk =dxrk þ 1 jx
kþ1
kþ1
[ 0; r ¼
2l1 þ 1Þ; • a r th -order oscillatory sink bifurcation ðd r xk =dxrk þ 1 jx \ 0; r ¼ 2l1 þ 1Þ; kþ1
then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi1 ; Di1 ¼ ðBi1 Þ2 4Ci1 ¼ 0; 2
ð3:209Þ
and there is a period-2 discrete system of the backward quartic discrete system in Eq. (3.199) as xk ¼ xk þ 2 þ a50
*
ð20 Þ
i1 2Iq1
42
*i ¼1 ðxk þ 2 2
ð1Þ
ðxk þ 2 ai1 Þ3 ð2Þ
ai2 Þð1dði1 ;i2 ÞÞ
ð3:210Þ
for i1 2 f1; 2; . . .; 4g; i1 6¼ i2 with dxk d 2 xk jx ¼að1Þ ¼ 1; 2 jx ¼að1Þ ¼ 0; dxk þ 2 k þ 2 i1 dxk þ 2 k þ 2 i1
ð3:211Þ
ð1Þ
• xk at xk þ 2 ¼ ai1 is a monotonic sink of the third-order if d 3 xk 5 j ð1Þ ¼ 6a0 dx3k þ 2 xk þ 2 ¼ai1
*
ð1Þ
ð20 Þ
i2 2Iq1 ;i2 6¼i1
ð1Þ 42 *i ¼1 ðai1 3
ð1Þ
ðai1 ai2 Þ3
ð3:212Þ
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ \0;
and the corresponding bifurcations is a third-order monotonic source bifurcation for the period-2 discrete system; ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk 5 j ð1Þ ¼ 6a 0 dx3k þ 2 xk þ 2 ¼ai1
*
ð20 Þ
i2 2Iq1 ;i2 6¼i1
ð1Þ
ð1Þ
ðai1 ai2 Þ3
ð3:213Þ
ð2Þ ð1dði2 ;i3 ÞÞ
*4i3 ¼1 ðað1Þ \0; i1 ai3 Þ 2
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the period-2 discrete system.
3.6 Backward Quartic Discrete Systems
243
(ii1) The backward period-2 fixed-points are trivial and unstable if ðtÞ
xk ¼ xk þ 2 2 U4i1 ¼1 fai g: 1
ð3:214Þ
(ii2) The backward period-2 fixed-points are non-trivial and stable if ð2Þ
ð2Þ
xk ¼ xk þ 2 ¼2 U4i1 ¼1 fbi1 ;1 ; fbi1 ;2 g: 2
ð3:215Þ
Proof The proof is straightforward through the simple algebraic manipulation. Following the proof of quadratic discrete system, this theorem is proved. ■
3.6.2
Backward Period-Doubling Renormalization
The generalized case of period-doublization of a backward quartic discrete system is presented through the following theorem. The backward period-doubling bifurcation trees can be developed for backward quartic discrete systems. Theorem 3.6 Consider a 1-dimensional, backward quartic discrete system as xk ¼ xk þ 1 þ Ax4k þ 1 þ Bx3k þ 1 þ Cx2k þ 1 þ Dxk þ 1 þ E ð1Þ
¼ xk þ a0 *4i¼1 ðxk þ 1 ai Þ:
ð3:216Þ
(i) After l-times period-doubling bifurcations, a period-2l ðl ¼ 1; 2; . . .Þ discrete system for the quartic discrete system in Eq. (3.216) is given through the nonlinear renormalization as ð2l1 Þ
xk ¼ xk þ 2l þ ½a0
f1 þ
ð2l1 Þ
ð2l1 Þ 2 ½ða0 Þ4
l1
ð2l1 Þ
¼ xk þ 2l þ ½a0
ð2l1 Þ 42
½ða0
l1
Þ
2l1
*i1 ¼1 ðxk þ 2l 4
l
ð42 42 *j1 ¼1 22
ð2l Þ
Þ=2
l1
l
ð42 42
l1
*i2 ¼1
ð2l1 Þ 1 þ 42
¼ xk þ 2 l þ a0
l1
*i1 ¼1; ðxk þ 2l
l1
¼ xk þ 2l þ ða0 with
ð2l1 Þ
ai1
Þ
l1 ð2l1 Þ 42l1 42 *i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk þ 2l
¼ xk þ 2l þ ½a0
42
*i1 ¼1 ðxk þ 2l
Þ
42
l
l1
Þ=2 42
ð2l1 Þ
ai1
Þg
Þ ð2l Þ
ð2l Þ
ðx2k þ 2l þ Bj2 xk þ 2l þ Cj2 Þ ð2l1 Þ
ai1
Þ ð2l Þ
ð2l Þ
ðxk þ 2l bi2 ;1 Þðxk þ 2l bi2 ;2 Þ
l
*i¼1 ðxk þ 2l
*i¼1 ðxk þ 2l
ð2l1 Þ
ai 2
ð2l Þ
ai Þ
ð2l Þ
ai Þ
ð3:217Þ
244
3 Quartic Nonlinear Discrete Systems
dxk 2l 2l ð2l Þ ð2l Þ ¼ 1 þ a0 R4i1 ¼1 *4i2 ¼1;i2 6¼i1 ðxk þ 2l ai2 Þ; dxk þ 2l l d 2 xk ð2l Þ X42l X42l ð2l Þ 42 ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l ai3 Þ; 2 dxk þ 2l
.. .
l l d r xk X42l ð2l Þ X42 ð2l Þ 42 ¼ a0 *ir þ 1 ¼1;i3 6¼i1 ;i2 ...;ir ðxk þ 2l air þ 1 Þ i ¼1;i ¼ 6 i ;i ...i r i ¼1 r 3 1 2 r1 1 dxk þ 2l l
for r 42 : ð3:218Þ
where ð2l Þ
ð2Þ
ð2l1 Þ 1 þ 42
a0 ¼ ða0 Þ1 þ 4 ; a0 2l
¼ ða0 2l1
l
ð2 Þ
Þ
l1
; l ¼ 2; 3; ;
l
ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
2 04i¼1 fai g ¼ sortf04i1 ¼1 fai1 g; 0M i2 ¼1 0I ð2l Þ fbi2 ;1 ; bi2 ;2 gg ,ai q qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
2
ð2l Þ Di l1
Iqð21
¼ Þ
ð2l Þ
ai þ 1 ;
2
ð2l Þ ðBi Þ2
ð2l Þ 4Ci
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
l
00Nq22¼1 Iqð22 Þ ;
¼ flðq1 1Þ 2l1 m1 þ 1 ; lðq1 1Þ 2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2g; l
Iqð22 Þ ¼ flðq2 1Þ 2l m1 þ 1 ; lðq2 1Þ 2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ð42 42 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g ð3:219Þ
with fixed-points ð2l Þ
l
xk ¼ xk þ 2l ¼ ai ; ði ¼ 1; 2; . . .; 42 Þ 2l
2l1
ð2l Þ
ð2l1 Þ
04i¼1 fai g ¼ sortf04i¼1 fai l
ð2 Þ
l
ð2 Þ
with ai \ai þ 1 :
ð2l Þ
ð2l Þ
2 g; 0M i¼1 fbi;1 ; bi;2 gg
ð3:220Þ
3.6 Backward Quartic Discrete Systems
245 ð2l1 Þ
(ii) For a fixed-point of xk ¼ xk þ 2l1 ¼ ai1 dxk
j
2l1
ð2l1 Þ
ði1 2 Iq
ð2l1 Þ
; q 2 f1; 2; . . .; N1 gÞ, if ð2l1 Þ
ai 2 dxk þ 2l1 d s xk j ð2l1 Þ ¼ 0; for s ¼ 2; . . .; r 1; dxsk þ 2l1 xk þ 2l1 ¼ai1 d r xk 2l1 j ; ð2l1 Þ 6¼ 0 for 1\r 4 dxrk þ 2l1 xk þ 2l1 ¼ai1 ð2l1 Þ x l1 ¼ai kþ2 1
¼ 1 þ a0 *4i2 ¼1;i2 6¼i1 ðai1
Þ ¼ 1; ð3:221Þ
with • a rth-order oscillatory source for d r xk =dxrk þ 2l1 j 2l1 þ 1; • a rth-order oscillatory sink for d r xk =dxrk þ 2l1 j
ð2l1 Þ
x
k þ 2l1
¼ai
ð2l1 Þ
x
k þ 2l1
2l1 þ 1; • a rth-order oscillatory lower-saddle for d r xk =dxrk þ 2l1 j
¼ai
ð2l1 Þ
k þ 2l1
¼ai
k þ 2l1
[ 0 and
1
ð2l1 Þ
x
r ¼ 2l1 ;
\ 0 and r ¼
1
x
r ¼ 2l1 ; • a rth-order oscillatory upper-saddle for d r xk =dxrk þ 2l1 j
[ 0 and r ¼
1
¼ai
\ 0 and
1
then, there is a backward period-2l fixed-point discrete system ð2l Þ
xk ¼ x k þ 2 l þ a 0
*
ð2l1 Þ
i1 2Iq
2l
ð2l1 Þ 3
ðxk þ 2l ai1
Þ
ð3:222Þ
ð2l Þ
*4j2 ¼1 ðxk þ 2l aj2 Þð1dði1 ;j2 ÞÞ where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð3:223Þ
and dxk d 2 xk j j ð2l1 Þ ¼ 1; ð2l1 Þ ¼ 0: x ¼a dxk þ 2l k þ 2l i1 dx2k þ 2l xk þ 2l ¼ai1 ð2l1 Þ
• xk at xk þ 2l ¼ ai1
ð3:224Þ
is a monotonic source of the third-order if
246
3 Quartic Nonlinear Discrete Systems
d 3 xk ð2l Þ ð2l1 Þ ð2l1 Þ j ðai1 ai2 Þ3 * ð2l1 Þ ¼ 6a0 ð2l1 Þ 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk þ 2l k þ 2l i1 2l
ð2l1 Þ
ði1 2 Iq
ð2l1 Þ
ð3:225Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \ 0
*4j2 ¼1 ðai1 ; q 2 f1; 2; . . .; N1 gÞ;
ð2l1 Þ
and such a bifurcation at xk þ 2l ¼ ai1 source bifurcation. ð2l1 Þ
• xk at xk þ 2l ¼ ai1
is a third-order monotonic
is a monotonic sink of the third-order if
d 3 xk ð2l Þ ð2l1 Þ ð2l1 Þ j ðai1 ai2 Þ3 * ð2l1 Þ ¼ 6a0 ð2l1 Þ 3 i2 2Iq ;i2 6¼i1 dxk þ 2l xk þ 2l ¼ai1 2l
ð2l1 Þ
ði1 2 Iq
ð2l1 Þ
ð3:226Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ [ 0
*4j2 ¼1 ðai1 ; q 2 f1; 2; . . .; N1 gÞ
ð2l1 Þ
and such a bifurcation at xk þ 2l ¼ ai1 bifurcation.
is a third-order monotonic sink
(ii1) The period-2l fixed-points are trivial if ð2l Þ
xk ¼ xk þ 2l ¼ ai
2l1
ð2l1 Þ
2 04i1 ¼1 ai1
;
ð3:227Þ
ð2l Þ
ð3:228Þ
(ii2) The period-2l fixed-points are non-trivial if ð2l Þ
xk ¼ xk þ 2l ¼ ai
ð2l Þ
2 2 0M j1 ¼1 fbj1 ;1 ; bj1 ;2 g:
Such a backward period-2l fixed-point is • monotonically stable if dxk =dxk þ 2l j
x
ð2l Þ
k þ 2l
• monotonically invariant if dxk =dxk þ 2l j
¼ai
x
2 ð1; 1Þ;
1
k þ 2l
ð2l Þ
¼ai
¼ 1, which is
1
– a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2lk þ1 2l jx
[ 0;
k þ 2l
th
– a monotonic upper-saddle of the ð2l1 Þ order for
1 d 2l1 xk =dx2l j \ k þ 2l xk þ 2l
– a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
k þ 2l
– a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l 1 jx
0;
[ 0;
k þ 2l
\0;
3.6 Backward Quartic Discrete Systems
247
• monotonically unstable if dxk =dxk þ 2l j • invariantly zero-stable if dxk =dxk þ 2l j • oscillatorilly unstable if dxk =dxk þ 2l j • flipped if dxk =dxk þ 2l j
x
k þ 2l
ð2l Þ
¼ai
2 ð0; 1Þ;
ð2l Þ
x
k þ 2l
¼ai
1
¼ 0;
ð2l Þ
x
k þ 2l
¼ai
1
ð2l Þ
x
k þ 2l
¼ai
2 ð1; 0Þ;
1
¼ 1, which is
1
– an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2lk þ1 2l jx
k þ 2l
th
– an oscillatory upper-saddle of the ð2l1 Þ order for d th
– an oscillatory source of the ð2l1 þ 1Þ order for
2l1
[ 0;
1 xk =dx2l j \ k þ 2l xk þ 2l
d 2l1 þ 1 xk =dxk2lþ1 þ2l1 jx k þ 2l
0;
[ 0;
– an oscillatory sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2lk þ1 þ2l1 jx l \0; kþ2
• oscillatorilly stable if dxk =dxk þ 2l j
ð2l Þ
x
k þ 2l
¼ai
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, this theorem can be proved.
3.6.3
■
Backward Period-n Appearing and Period-Doublization
The period-n discrete system for a backward quartic nonlinear discrete system will be discussed, and the period-doublization of a backward period-n discrete system is discussed through the nonlinear renormalization. Theorem 3.7 Consider a 1-dimensional, backward quartic discrete system as xk ¼ xk þ 1 þ Ax4k þ 1 þ Bx3k þ 1 þ Cx2k þ 1 þ Dxk þ 1 þ E ð1Þ
¼ xk þ 1 þ a0 *4i¼1 ðxk þ 1 ai Þ:
ð3:229Þ
(i) After n-times iterations, a backward period-n discrete system for the backward quartic discrete system in Eq. (3.229) is xk ¼ xk þ n þ a0 *4i1 ¼1 ðxk þ n ai2 Þ½1 þ n
ð4 1Þ=3
¼ x k þ n þ a0
ð4n 4Þ=2 ½*j2 ¼1 ðx2k þ n ðnÞ
¼ xk þ n þ a0 with
*i1 ¼1 ðxk þ n
4n
4
j¼1 Qj
ai1 Þ
ð2n Þ þ Bj2 xk þ n
*i¼1 ðxk þ n
Xn
ðnÞ
ai Þ
ð2n Þ
þ Cj2 Þ
ð3:230Þ
248
3 Quartic Nonlinear Discrete Systems
dxk n ðnÞ X n ¼ 1 þ a0 4i1 ¼1 *4i2 ¼1;i2 6¼i1 ðxk þ n aðnÞ i2 Þ; dxk þ n d 2 xk n ðnÞ X n X n ¼ a0 4i1 ¼1 4i2 ¼1;i2 6¼i1 *4i3 ¼1;i3 6¼i1 ;i2 ðxk þ n aðnÞ i3 Þ; dx2k þ n .. . d r xk n X n ðnÞ X n ¼ a0 4i1 ¼1 4ir ¼1;ir 6¼i1 ;i2 ;ir1 *4ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk þ n aðnÞ ir þ 1 Þ r dxk þ n
for r 4n ;
ð3:231Þ
where ðnÞ
a0 ¼ ða0 Þð4
n
1Þ=2
ð1Þ
; Q1 ¼ 0; Q2 ¼ *4i2 ¼1 ½1 þ a0 *4i1 ¼1;i1 6¼i2 ðxk þ n ai1 Þ; ð1Þ
Qn ¼ *4in ¼1 ½1 þ a0 ð1 þ Qn1 Þ *4in1 ¼1;in1 6¼in ðxk þ n ain1 Þ; n ¼ 3; 4; . . .; n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
04i¼1 fai g ¼ sort½04i1 ¼1 fai1 g; 0Nq¼1 0i 2I ðnÞ fbi2 ;1 ; bi2 ;2 g; 2 q qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2 2 ðnÞ ðnÞ ðnÞ Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þ n þ 1 ; lðq1Þ n þ 2 ; ; lq n gf1; 2; . . .; g0f£g; for q 2 f1; 2; . . .; Ng; M ¼ ð4n 4Þ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flN n þ 1 ; lN n þ 2 ; . . .; lM g f1; 2; . . .; Mg0f£g; ð3:232Þ
with backward fixed-points ðnÞ
xk ¼ xk þ n ¼ ai ; ði ¼ 1; 2; . . .; 4n Þ n
ðnÞ
ð1Þ
ðnÞ
ðnÞ
04i¼1 fai g ¼ sortf04i1 ¼1 fai1 g; 0M i¼1 fbi2 ;1 ; bi2 ;2 gg ðnÞ
ð3:233Þ
ðnÞ
with ai \ ai þ 1 : ðnÞ
ðnÞ
(ii) For a backward fixed-point of xk ¼ xk þ n ¼ ai1 ði1 2 Iq ; q 2 f1; 2; . . .; NgÞ, if dxk ðnÞ 4n ðnÞ ð2l Þ j ðnÞ ¼ 1 þ a 0 *i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk þ n xk þ n ¼ai1 with
ð3:234Þ
3.6 Backward Quartic Discrete Systems
249
d 2 xk n ðnÞ X n ðnÞ ð2l Þ jx ¼aðnÞ ¼ a0 4i2 ¼1;i2 6¼i1 *4i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; 2 i dxk þ n k þ n 1
ð3:235Þ
then there is a new discrete system for onset of the qth -set of period-n fixedpoints based on the second-order monotonic saddle-node bifurcation as ðnÞ
x k ¼ x k þ n þ a0
*i 2I ðnÞ ðxk þ n 1 q
ðnÞ
ðnÞ
ai1 Þ2 *4j2 ¼1 ðxk þ n aj2 Þð1dði1 ;j2 ÞÞ ð3:236Þ n
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð3:237Þ
(ii1) If dxk ðnÞ j ðnÞ ¼ 1 ði1 2 Iq Þ; dxk þ n xk þ n ¼ai1 d 2 xk ðnÞ ðnÞ ðnÞ 2 j ðnÞ ¼ 2a 0 *i2 2IqðnÞ ;i2 6¼i1 ðai1 ai2 Þ dx2k þ n xk þ n ¼ai1 ðnÞ
ð3:238Þ
ðnÞ
*4j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 n
ðnÞ
xk at xk þ n ¼ ai1 is • a monotonic upper-saddle of the second-order for d 2 xk =dx2k þ n jx
¼ai
• a monotonic lower-saddle of the second-order for d 2 xk =dx2k þ n jx
¼ai
ðnÞ
kþn
kþn
1
ðnÞ
\ 0; [ 0.
1
(ii2) The backward period-n fixed-points ðn ¼ 2n1 mÞ are trivial if ðnÞ
2n1 1 m
ð1Þ
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 2 f04ii ¼1 fai1 g; 04i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 4n g0f∅g for n 6¼ 2n2 ; ðnÞ
2n1 1 m
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 2 f04i2 ¼1 fai2
gg
)
)
for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 4n g0f∅g
for n ¼ 2n2 : (ii3) The period-n fixed-points ðn ¼ 2n1 mÞ are non-trivial if
ð3:239Þ
250
3 Quartic Nonlinear Discrete Systems ðnÞ
ð1Þ
2n1 1 m
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 62 f04ii ¼1 fai1 g; 04i2 ¼1 fai2
gg
)
for n1 ¼ 1; 2; . . .; m ¼ 2l1 þ 1; j1 2 f1; 2; . . .; 4n g0f∅g
for n 6¼ 2n2 ; ðnÞ
2n1 1 m
ð2n1 1 mÞ
xk þ n ¼ xk ¼ aj1 62 f04i2 ¼1 fai2 gg for n1 ¼ 1; 2; . . .; m ¼ 1; j1 2 f1; 2; . . .; 4n g0f∅g
)
ð3:240Þ
for n ¼ 2n2 : Such a backward period-n fixed-point is • monotonically stable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
• monotonically invariant if dxk =dxk þ n jx
2 ð1; 1Þ;
1 ðnÞ
kþn
¼ai
¼ 1, which is
1
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l k þ n j x
kþn
– a – a – a
[ 0;
th
1 monotonic upper-saddle the ð2l1 Þ order for d 2l1 xk =dx2l k þ n jxk þ n \ 0; monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx [ 0; kþn monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jx kþn
\ 0;
• monotonically unstable if dxk =dxk þ n jx
ðnÞ
kþn
¼ai
2 ð1; 0Þ;
1
• monotonically unstable with infinity eigenvalue if dxk =dxk þ n jx • oscillatorilly source with infinity eigenvalue if dxk =dxk þ n jx • oscillatorilly unstable if dxk =dxk þ n jx • flipped if dxk =dxk þ n jx
kþn
ðnÞ
kþn
ðnÞ
¼ai
¼ai
2 ð1; 0Þ;
kþn
ðnÞ
kþn
¼ai
ðnÞ
¼ai
¼ 0þ ;
1
¼ 0 ;
1
1
¼ 1, which is
1
– an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2lk þ1 n jxk þ n [ 0; 1 – an oscillatory upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ n jx \0; kþn
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2lk þ1 þn 1 jxk þ n [ 0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þn 1 jxk þ n \ 0; • oscillatorilly stable if dxk =dxk þ n jx
kþn
ðnÞ
¼ai
2 ð1; 1Þ.
1
ðnÞ
ðnÞ
(iii) For a backward fixed-point of xk ¼ xk þ n ¼ ai1 ði1 2 Iq ;q 2 f1; 2; . . .; NgÞ, there is a period-doubling of the qth -set of period-n fixed-points if
3.6 Backward Quartic Discrete Systems
251
dxk n ðnÞ ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *4j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; i k þ n dxk þ n 1 d s xk j ðnÞ ¼ 0; for s ¼ 2; . . .; r 1; dxsk þ n xk þ n ¼ai1 d r xk n j ðnÞ 6¼ 0 for 1\r 4 dxrk þ n xk þ n ¼ai1
ð3:241Þ
with • a rth-order oscillatory sink for d r xk =dxrk þ n jx • a rth-order oscillatory source for d
r
ðnÞ
\0 and r ¼ 2l1 þ 1;
¼ai 1 xk =dxrk þ n jx ¼aðnÞ i kþn kþn
[ 0 and r ¼
1
2l1 þ 1; • a rth-order oscillatory lower-saddle for d r xk =dxrk þ n jx
ðnÞ
kþn
r ¼ 2l1 ; • a rth-order oscillatory upper-saddle for d r xk =dxrk þ n jx
¼ai
ðnÞ
kþn
r ¼ 2l1 .
[ 0 and
1
¼ai
\0 and
1
The corresponding period-2 n discrete system of the backword quartic discrete system in Eq. (3.229) is ð2 nÞ
xk ¼ xk þ 2 n þ a0
*i 2I ðnÞ ðxk þ 2 n 1 q
ðnÞ
ai 1 Þ 3
ð3:242Þ
ð2 nÞ ð1dði1 ;j2 ÞÞ
2 n
*4j2 ¼1 ðxk þ 2 n aj2
Þ
with dxk dxk þ 2 n
jx
ðnÞ
¼ai k þ 2 n
1
¼ 1;
d 2 xk j ðnÞ ¼ 0; dx2k þ 2 n xk þ 2 n ¼ai1
d xk ð2 nÞ ðnÞ ðnÞ 3 j ðnÞ ¼ 6a *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 0 1 q 2 1 dx3k þ 2 n xk þ 2 n ¼ai1 3
2 n
ðnÞ
ð2 nÞ ð1dði1 ;j2 ÞÞ
*4j2 ¼1 ðai1 aj2 ðnÞ
Þ
ð3:243Þ
:
ðnÞ
Thus, xk at xk þ 2 n ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic source of the third-order if d 3 xk =dx3k þ 2 n jx
ðnÞ
k þ 2 n
• a monotonic sink of the third-order if d
3
xk =dx3k þ 2 n jx
k þ 2 n
¼ai
ðnÞ
¼ai
\0,
1
[ 0.
1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the quartic discrete system in Eq. (3.216) is
252
3 Quartic Nonlinear Discrete Systems ð2l1 nÞ
42
xk ¼ xk þ 2l n þ ½a0
f1 þ
4
2l1 n
*i1 ¼1
ð2
¼ xk þ 2l n þ ½a0 ð2
½ða0
l1
nÞ 4
Þ
ð2l1 nÞ 4
½ða0
Þ
nÞ
4
l1
nÞ
2l1 n
¼
Þ
ð4
*j1 ¼1
ð2l1 nÞ
ðxk þ 2l n ai1 4
ð2
ðxk þ 2l n ai1
4
ð2l1 nÞ
4
*i ¼1 1 2l n
ð4
*j2 ¼1
Þ
2l1 n
2l1 n
l
42 n
*i¼1
Þ=2
nÞ
l1
nÞ
ð2l nÞ
xk þ 2l n þ Cj2
Þ
Þ
ð2l nÞ
ð2l nÞ
ðxk þ 2l n bj2 ;1 Þðxk þ 2l n bj2 ;2 Þ ð2l nÞ
ðxk þ 2l n ai
ð2l nÞ 42l n xk þ 2l n þ a0 *i¼1 ðxk þ 2l n
Þg
Þ ð2l nÞ
ð2
4
ai 2
ðx2k þ 2l n þ Bj2
ðxk þ 2l n ai1
2l1 n
l1 n
Þ=2
l1
Þ ð2l1 nÞ
*i2 ¼1;i2 6¼i1 ðxk þ 2l n
2l1 n 2l n
ð2l1 nÞ 42
¼ xk þ 2l n þ ða0
l1
*i1 ¼1
ð2l1 nÞ
ð2
¼ xk þ 2l n þ ½a0
ð2
½1 þ a0
l1
l1 n
*i1 ¼1
Þ
ð2l nÞ ai Þ
ð3:244Þ
with dxk
ð2l nÞ X42l n 42l n i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk þ 2l n
ð2l nÞ
¼ 1 þ a0
ai2 Þ; dxk þ 2l n l d 2 xk ð2l nÞ X42l n X42l n ð2l nÞ 42 n ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk þ 2l n ai3 2 dxk þ 2l n
.. .
l d r xk X42l n ð2l nÞ X42l n ð2l nÞ 42 n ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk þ 2l n air þ 1 Þ dxrk þ 2l n l
for r 42 n ;
ð3:245Þ
where ð2l nÞ
a0
2l n
ð2l1 nÞ 1 þ 42
¼ ða0
ð2l nÞ ð2l nÞ
bi;2
ð2l nÞ
l1 n
; l ¼ 1; 2; 3; . . .;
2l1 n
l
ð2 nÞ
04i¼1 fai bi;1
Þ
ð2l1 nÞ
g ¼ sortf04i1 ¼1 fai1 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ¼ ðBi Di Þ; 2 ð2l nÞ 2
ð2l nÞ
Di
¼ ðBi
for i 2
l1 l 0Nq11¼1 Iqð21 nÞ 00Nq22¼1 Iqð22 nÞ ;
ð2l1 nÞ
Iq1
Þ 4Ci
ð2l nÞ
ð2l nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
0
¼ flðq1 1Þ ð2l1 nÞ þ 1 ; lðq1 1Þ ð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f£g;
3.6 Backward Quartic Discrete Systems
253
for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; ð2l nÞ
Iq2
¼ flðq2 1Þ ð2l nÞ þ 1 ; lðq2 1Þ ð2l nÞ þ 2 ; . . .; lq2 ð2l nÞ g f1; 2; . . .; M1 g0f£g; l
l1
for q2 2 f1; 2; . . .; N2 g; M2 ¼ ð42 42 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi l l l ð2 nÞ ð2 nÞ 2 ð2 nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di l
i 2 J ð2 nÞ ¼ flN2 ð2l nÞ þ 1 ; lN2 ð2l1 nÞ þ 2 ; . . .; lM2 g f1; 2; . . .; M2 g0f£g
ð3:246Þ
with backward fixed-points ð2l nÞ
xk ¼ xk þ 2l n ¼ ai 2l n
ð2l nÞ
04i¼1 fai l
ð2 nÞ
with ai
l
; ði ¼ 1; 2; . . .; 42 n Þ 2l1 n
g ¼ sortf04i¼1
ð2l1 nÞ
fai
ð2l nÞ
2 g; 0M i¼1 fbi;1
ð2l nÞ
; bi;2
ð3:247Þ
gg
l
ð2 nÞ
\ai þ 1 : ð2l1 nÞ
ð2l1 nÞ
(ii) For a fixed-point of xk ¼ xk þ 2l n ¼ ai1 ði1 2 Iq l there is a backward period-2 n discrete system if
; q 2 f1; 2; . . .; N1 gÞ,
l1 dxk ð2l1 nÞ ð2l1 nÞ 42 n j ai2 Þ ¼ 1; ð2l1 nÞ ¼ 1 þ a0 *i ¼1;i 6¼i ðai1 2 2 1 dxk þ 2l1 n xk þ 2l1 n ¼ai1 d s xk j ð2l1 nÞ ¼ 0; for s ¼ 2; . . .; r 1; s dxk þ 2l1 n xk þ 2l1 n ¼ai1 d r xk 2l1 n j ð2l1 nÞ 6¼ 0 for 1\r 4 r dxk þ 2l1 n xk þ 2l1 n ¼ai1
ð3:248Þ with • a rth-order oscillatory source for d r xk =dxrk þ 2l1 n j r ¼ 2l1 þ 1; • a rth-order oscillatory sink for d r xk =dxrk þ 2l1 n j
x
ð2l1 nÞ
x
k þ 2l1 n
k þ 2l1 n
[ 0 and
1
ð2l1 nÞ
¼ai
2l1 þ 1; • a rth-order oscillatory lower-saddle for d r xk =dxrk þ 2l1 n j and r ¼ 2l1 ;
¼ai
\0 and r ¼
1
x
k þ 2l1 n
ð2l1 nÞ
¼ai
1
[0
254
3 Quartic Nonlinear Discrete Systems
• a rth-order oscillatory upper-saddle for d r xk =dxrk þ 2l1 n j
ð2l1 nÞ
x
and r ¼ 2l1 .
k þ 2l1 n
¼ai
\0
1
The corresponding period-2l n discrete system is ð2l nÞ
xk ¼ xk þ 2l n þ a0
*
ð2l nÞ
i1 2Iq
2l n
ð2l1 nÞ 3
ðxk þ 2l n ai1
Þ
ð3:249Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ
*4j2 ¼1 ðxk þ 2l n aj2
Þ
where ð2l nÞ
ð2l1 nÞ
dði1 ; j2 Þ ¼ 1 if aj2
¼ ai 1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð3:250Þ
with dxk
j
ð2l1 nÞ x l ¼ai k þ 2 n 1
¼ 1;
d 2 xk j ð2l1 nÞ ¼ 0; dx2k þ 2l n xk þ 2l n ¼ai1
dxk þ 2l n d 3 xk ð2l nÞ 42l1 n ð2l1 nÞ ð2l1 nÞ 3 j ai 2 Þ *i2 ¼1;i2 6¼i1 ðai1 ð2l1 Þ ¼ 6a0 3 x ¼a dxk þ 2l n k þ 2l n i1 2l n
ði1 2
ð2l1 nÞ Iq ;q
ð2l1 nÞ
*4j2 ¼1 ðai1
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
ð3:251Þ
6¼ 0
2 f1; 2; . . .; N1 gÞ: ð2l1 nÞ
Thus, xk at xk þ 2l n ¼ ai1
xk þ 2l n is
• a monotonic source of the third-order if d 3 xk =dx3k þ 2l n j • a monotonic sink of the third-order if d 3 xk =dx3k þ 2l n j
k þ 2l n
ð2l nÞ
ð1Þ
2l1 n
k þ 2l n
ð2l1 nÞ
2 f04ii ¼1 fai1 g; 04i2 ¼1 fai2
¼ai
gg
¼ai
\0;
1
ð2l1 Þ
x
(ii1) The period-2l n fixed-points are trivial if xk ¼ xk þ 2l n ¼ aj
ð2l1 Þ
x
[ 0.
1
)
l
for j ¼ 1; 2; . . .; 4ð2 nÞ for n 6¼ 2n1 ; ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
2l1 n
ð2l1 nÞ
2 04i2 ¼1 fai2
g
)
l
for j ¼ 1; 2; . . .; 42 n for n ¼ 2n1 : (ii2) The backward period-2l n fixed-points are non-trivial if
ð3:252Þ
3.6 Backward Quartic Discrete Systems ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
255 2l1 n
ð1Þ
ð2l1 nÞ
62 f02ii ¼1 fai1 g; 02i2 ¼1 fai2
gg
)
l
for j ¼ 1; 2; . . .; 2ð2 nÞ for n 6¼ 2n1 ; ð2l nÞ
xk ¼ xk þ 2l n ¼ aj
2l1 n
ð2l1 nÞ
62 f02i2 ¼1 fai2
g
ð3:253Þ
)
l
for j ¼ 1; 2; . . .; 22 n for n ¼ 2n1 : Such a backward period-2l n fixed-point for the quartic discrete system is • monotonically unstable if dxk =dxk þ 2l n j
• monotonically invariant if dxk =dxk þ 2l n j
2 ð1; 1Þ;
ð2l nÞ
x
k þ 2l n
¼ai
1
¼ 1, which is
ð2l nÞ
x
k þ 2l n
¼ai
1
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2l j k þ 2l n x
[0
k þ 2l n
(independent ð2l1 Þ-branch appearance); 1 j – a monotonic upper-saddle the ð2l1 Þth order for d 2l1 xk =dx2l k þ 2l n x
\0
(independent ð2l1 Þ-branch appearance); – a monotonic sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l1 n jx
[0
(dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic source the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dx2lk þ1 þ2l1 n jx
\0
k þ 2l n
k þ 2l n
k þ 2l n
(dependent ð2l1 þ 1Þ-branch appearance from one branch); • monotonically unstable if dxk =dxk þ 2l n j
ð2l nÞ
x
k þ 2l n
¼ai
• monotonically infinity-unstable if dxk =dxk þ 2l n j • oscillatorilly infinity-unstable if dxk =dxk þ 2l n j • oscillatorilly unstable if dxk =dxk þ 2l n j • flipped if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
k þ 2l n
ð2l nÞ
x
k þ 2l n
k þ 2l n
¼ai
¼ai
1
ð2l nÞ
x
ð2l nÞ
x
2 ð0; 1Þ;
1
¼ai
¼ 0þ ;
¼ 0 ;
1
2 ð1; 0Þ;
1
¼ 1, which is
1
– an oscillatory lower-saddle of the ð2l1 Þth order for d 2l1 xk =dx2lk þ1 2l n jx
k þ 2l n
th
– an oscillatory upper-saddle of the ð2l1 Þ order for d
2l1
– an oscillatory sink of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk =dxk2lþ1 þ2l1 n jx
k þ 2l n
th
– an oscillatory source the ð2l1 þ 1Þ order for d • oscillatorilly stable if dxk =dxk þ 2l n j
x
k þ 2l n
ð2l nÞ
¼ai
2l1 þ 1
[ 0;
1 xk =dx2l j \ k þ 2l n xk þ 2l n
xk =dxk2lþ1 þ2l1 n jx k þ 2l n
0;
\ 0; [ 0;
2 ð1; 1Þ.
1
Proof Through the nonlinear renormalization, this theorem can be easily proved. ■
256
3 Quartic Nonlinear Discrete Systems
Reference Luo ACJ (2019) The stability and bifurcation of fixed-points in low-degree polynomial systems. J Vib Test Syst Dyn 3(4):403–451
Chapter 4
(2m)th-Degree Polynomial Discrete Systems
In this Chapter, the global stability and bifurcations of period-1 fixed-points in the (2m)thdegree polynomial discrete system are presented. The parallel-appearing, spraying-appearing, sprinkler-spraying-appearing bifurcations for simple and higher-order period-1 fixed-points are presented, and the antenna-switching, straw-bundle-switching bifurcations and flower-bundle-switching bifurcations for simple and higher-order period-1 fixed-points are presented. From the period-doubling bifurcation, the period-2 fixed-point solutions and the corresponding period-doubling renormalization of such a forwarded (2m)th-degree polynomial discrete system are discussed. For multiple iterations, the appearing bifurcations of period-n fixed-points and the corresponding period-doublization of the forward (2m)th-degree polynomial discrete system are presented as well.
4.1
Global Stability and Bifurcations
In a similar fashion in Chaps. 1–3, the global stability and bifurcation of fixed-points in the (2m)th-degree polynomial nonlinear discrete systems are discussed as in Luo (2020a, b). The stability and bifurcation of each individual fixed-point are analyzed from the local analysis. Definition 4.1 Consider a (2m)th-degree polynomial nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ 2m1 ¼ xk þ A0 ðpÞx2m þ þ A2m2 ðpÞx2k þ A2m1 ðpÞxk þA2m ðpÞ k þ A1 ðpÞxk
¼ xk þ a0 ðpÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ ½x2k þ Bm ðpÞxk þ Cm ðpÞ ð4:1Þ
© Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3_4
257
4 (2m)th-Degree Polynomial Discrete Systems
258
where A0 ðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm1 ÞT :
ð4:2Þ
(i) If Di ¼ B2i 4Ci \0 for i ¼ 1; 2; . . .; m;
ð4:3Þ
the 1-dimensional nonlinear discrete system with a (2m)th-degree polynomial does not have any period-1 fixed-point, and the corresponding standard form is 1 2
1 4
1 2
1 4
xk þ 1 ¼ xk þ a0 ½ðxk þ B1 Þ2 þ ðD1 Þ ½ðxk þ Bm Þ2 þ ðDm Þ:
ð4:4Þ
The flow of such a discrete system without fixed-points is called a non-fixedpoint discrete flow. (a) If a0 [ 0, the non-fixed-point discrete flow is called a positive discrete flow. (b) If a0 \0,the non-fixed-point discrete flow is called a negative discrete flow. (ii) If Di ¼ B2i 4Ci [ 0; i ¼ i1 ; i2 ; . . .; il 2 f1; 2; . . .; mg; Dj ¼ B2j 4Cj \0; j ¼ il þ 1 ; il þ 2 ; . . .; im 2 f1; 2; . . .; mg with l 2 f0; 1; . . .; mg;
ð4:5Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has 2l-fixed-points as pffiffiffiffiffi pffiffiffiffiffi ðiÞ ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; xk ¼ b2 ¼ 12ðBi Di Þ ð4:6Þ i 2 fi1 ; i2 ; . . .; il gf1; 2; . . .; mg: (ii1) If ðiÞ
ðjÞ
br 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; l ð1Þ ð1Þ ðlÞ ðlÞ fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; as \as þ 1 ;
ð4:7Þ
then, the corresponding standard form is 1 2
1 4
2 xk þ 1 ¼ xk þ a0 *li¼1 ðxk a2i1 Þðxk a2i Þ *m k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ:
ð4:8Þ (a) If a0 [ 0, the simple fixed-point discrete flow is called a ðmSI-oSO: mSO:. . . : mSI-oSO:mSO) discrete flow.
4.1 Global Stability and Bifurcations
259
(b) If a0 \0, the simple fixed-point discrete flow is called a ðmSO: mSI-oSO:. . . : mSO:mSI-oSO) discrete flow. (ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð4:9Þ
P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2l i¼1 i i¼1 i
with
Pr
s¼1 ls
¼ 2l;
then, the corresponding standard form is 2 xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *m k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ:
1 2
1 4
ð4:10Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ discrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; r, 8 > ð2r 1Þth mSO ð2rp 1Þth order monotonic source, > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink, > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth mLS ð2rp Þth order monotonic lower-saddle, > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mUS ð2rp Þth order monotonic upper-saddle, > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:11Þ where ð2rp 1Þth mSI mSI-oSO for rp ¼ 1 and ap ¼ (b) For a0 \0 and p ¼ 1; 2; . . .; r,
Xr
s¼p ls :
ð4:12Þ
4 (2m)th-Degree Polynomial Discrete Systems
260
lp th mXX ¼
8 > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source; > > > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; > > ðð2rp 1Þth mUS 2rp Þth order monotonic upper-saddle; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > th th > > > ð2rp 1Þ mLS ð2rp Þ order monotonic lower-saddle; > > > : for a ¼ 2M ; l ¼ 2r : p
p
p
p
ð4:13Þ (c) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : . . . : lpb th mXXÞ fixed-points at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
a Pp1 l i¼1
i þ1
i¼1
6¼ 6¼ a Pp1 l i¼1
i þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:14Þ
(iii) If Dj1 ¼ B2j1 4Cj1 ¼ 0; j1 2 fi11 ; i12 ; . . .; i1s1 gfi1 ; i2 ; . . .; il gf1; 2; . . .; mg; Dj2 ¼ B2j2 4Cj2 [ 0; j2 2 fi21 ; i22 ; . . .; i2s2 gfi1 ; i2 ; . . .; il gf1; 2; . . .; mg; Dj3 ¼ B2j3 4Cj3 \0; j3 2 fil þ 1 ; il þ 2 ; . . .; im gf1; 2; . . .; mg;
ð4:15Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has 2l-fixedpoints as 9 1 ðj Þ xk ¼ b1 1 ¼ Bj1 ; > = 2
xk xk
¼
ðj Þ b2 1
1 > ¼ Bj1 ;
¼
ðj Þ b1 2
¼
ðj Þ
xk ¼ b2 2
2 1 ðBj2 2
for j1 2 fi11 ; i12 ; . . .; i1s1 g;
pffiffiffiffiffiffi 9 Dj2 Þ; > = pffiffiffiffiffiffi > for j2 2 fi21 ; i22 ; . . .; i2s2 g: 1 ¼ ðBj2 Dj2 Þ ; 2
þ
ð4:16Þ
4.1 Global Stability and Bifurcations
261
If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð4:17Þ
P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2l i¼1 i i¼1 i
with
Pr
s¼1 ls
¼ 2l;
then, the corresponding standard form is 2 xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *m j¼l þ 1 ½ðxk þ Bij Þ þ ðDij Þ:
1 2
1 4
ð4:18Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ discrete flow. (a) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-point appearance or vanishing is called an lp th mXX appearing bifurcation of fixed-points at a point p ¼ p1 2 @X12 , and the appearing bifurcation condition is 1 2
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ¼ Bip ; i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; . . .; il gÞ; þ
aPp1 l
i¼1 i
þ
þ1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
or aPp1 l
i¼1 i
þ1
ð4:19Þ
6¼ 6¼ aPp1 l
i¼1 i
þ lp
:
(b) The fixed-point of xk ¼ aiq for ðlq [ 1Þ-repeated fixed-points switching is called an lq th XX bifurcation of ðlq1 th mXX : lq2 th mXX : : lqb th mXXÞ fixed-point switching at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aiq aPq1 li þ 1 ¼ ¼ aPq1 li þ lq ; i¼1
aPq1 l
i¼1 i
þ1
i¼1
6¼ 6¼ aPq1 l
i¼1 i
þ lq
; lq ¼
Xb
i¼1 lqi :
ð4:20Þ
(c) The fixed-point of xk ¼ aip for ðlp1 1Þ-repeated fixed-points appearance/ vanishing and ðlp2 2Þ repeated fixed-points switching of ðlp21 th mXX : lp22 th mXX : : lp2b th mXXÞ-fixed-point switching is called an lp th mXX bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the flowerswitching bifurcation condition is
4 (2m)th-Degree Polynomial Discrete Systems
262
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp i¼1
i¼1
with Diq ¼ B2iq 4Ciq ¼ 0 ðiq 2 fi1 ; i2 ; . . .; il gÞ þ aP p1 l
i¼1 i
þ j1
þ 6¼ 6¼ aP p1 l
i¼1 i
þ jp1
or a Pp1 1 i¼1
li þ j1
6¼ 6¼ a Pp1 1 i¼1
li þ jp1
;
for fj1 ; j2 ; . . .; jp1 gf1; 2; . . .; lp g; a Pp1 l
i¼1 i
þ k1
6¼ 6¼ a Pp1 l
i¼1 i
ð4:21Þ
þ kp2
for fk1 ; k2 ; . . .; kp2 gf1; 2; . . .; lp g; with lp1 þ lp2 ¼ lp ; lp2 ¼
Pb
i¼1 lp2i
(iv) If Di ¼ B2i 4Ci [ 0 for i ¼ 1; 2; . . .; m
ð4:22Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has (2m) fixed-points as ðiÞ
1 2 1 ðBi 2
pffiffiffiffiffi 9 Di Þ; = for i ¼ 1; 2; . . .; m: pffiffiffiffiffi Di Þ ;
xk ¼ b1 ¼ ðBi þ ðiÞ
xk ¼ b2 ¼
ð4:23Þ
(iv1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; m ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 . . .; a2m g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; as \as þ 1 :
ð4:24Þ
The corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þðxk a3 Þ. . .ðxk a2m1 Þðxk a2m Þ: ð4:25Þ Such a discrate flow is formed with all the simple fixed-points. (a) If a0 \0, the simple fixed-point discrete flow is called a ðmSO : mSI-oSO : . . . : mSO : mSI-oSOÞ discrete flow. (b) If a0 [ 0, the simple fixed-point discrete flow is called a ðmSI-oSO : mSO : . . . : mSI-oSO : mSOÞ discrete flow.
4.1 Global Stability and Bifurcations
263
(iv2) If ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 . . .; a2m g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai1 a1 ¼ . . . ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð4:26Þ
P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2m i¼1 i i¼1 i
with
Xr
s¼1 ls
¼ 2m;
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls :
ð4:27Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ-discrete flow. The fixed-point of xk ¼ aip for lp -repeated fixed-points switching is called an lp th XX bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed-point switching at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
a Pp1 l
i¼1 i
þ1
i¼1
6¼ 6¼ a Pp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:28Þ
Definition 4.2 Consider a 1-dimensional, (2m)th-degree polynomial nonlinear forward discrete system as xk þ 1 ¼ xk þ f ðxk ; pÞ 2m1 ¼ xk þ A0 ðpÞx2m þ þ A2m2 ðpÞx2k þ A2m1 xk þ A2m ðpÞ k þ A1 ðpÞxk
¼ a0 ðpÞ *ni¼1 ½x2k þ Bi ðpÞxk þ Ci ðpÞqi
ð4:29Þ where A0 ðpÞ 6¼ 0, and p ¼ ðp1 ; p2 ; . . .; pm1 ÞT ; m ¼
Xn
i¼1 qi :
ð4:30Þ
(i) If Di ¼ B2i 4Ci \0 for i ¼ 1; 2; . . .; n;
ð4:31Þ
4 (2m)th-Degree Polynomial Discrete Systems
264
the 1-dimensional nonlinear discrete system with a (2m)th-degree polynomial does not have any fixed-point, and the corresponding standard form is xk þ 1 ¼ xk þ a0 *ni¼1 ½ðxk þ Bi Þ2 þ ðDi Þqi : 1 2
1 4
ð4:32Þ
The discrete flow of such a system without fixed-points is called a non-fixed-point discrete flow. (a) If a0 [ 0, the non-fixed-point discrete flow is called a positive discrete flow. (b) If a0 \0, the non-fixed-point discrete flow is called a negative discrete flow. (ii) If Di ¼ B2i 4Ci [ 0; i 2 fi1 ; i2 ; . . .; il gf1; 2; . . .; ng; Dj ¼ B2j 4Cj \0; j 2 fil þ 1 ; il þ 2 ; . . .; in gf1; 2; . . .; ng;
ð4:33Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has (2l) fixed-points as ðiÞ
1 2 1 ðBi 2
pffiffiffiffiffi 9 Di Þ; = pffiffiffiffiffi Di Þ ;
xk ¼ b1 ¼ ðBi þ ðiÞ
xk ¼ b2 ¼
ð4:34Þ
i 2 fi1 ; i2 ; . . .; il gf1; 2; . . .; ng: (ii1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; l; ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; as \as þ 1 ;
ð4:35Þ
then, the corresponding standard form is ls n 2 qik xk þ 1 ¼ xk þ a0 *2l s¼1 ðxk as Þ *k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ
1 2
with ls 2 fqi1 ; qi2 ; . . .; qil g:
1 4
ð4:36Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : l2l th mXXÞ discrete flow.
4.1 Global Stability and Bifurcations
265
(a) For a0 [ 0 and p ¼ 1; 2; . . .; 2l, 8 > ð2r 1Þth mSO ð2rp 1Þth order monotonic source; > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp 1Þth mLS ð2rp Þth order monotonic lower-saddle, > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mUS ð2rp Þth order monotonic upper-saddle, > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:37Þ where ð2rp 1Þth mSI mSI-oSO for rp ¼ 1 and ap ¼
X2l
s¼p ls :
ð4:38Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; 2l, 8 > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink, > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth mUS ð2rp Þth order monotonic upper-saddle; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mLS ð2rp Þth order monotonic lower-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp : ð4:39Þ (ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai 1 a1 ¼ ¼ al 1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2l i¼1 i i¼1 i
with
Pr
s¼1 ls
¼ 2l;
then, the corresponding standard form is
ð4:40Þ
4 (2m)th-Degree Polynomial Discrete Systems
266
xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *nj¼l þ 1 ½ðxk þ Bij Þ2 þ ðDij Þqik : ð4:41Þ 1 2
1 4
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ-discrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; r, 8 > ð2r 1Þth mSO ð2rp 1Þth order monotonic source; > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp 1Þth mLS ð2rp Þth order monotonic lower-saddle; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mUS ð2rp Þth order monotonic upper-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:42Þ where ap ¼
Xr
s¼p ls :
ð4:43Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; r, 8 > ð2r 1Þth mSI ð2rp 1Þth order monotonic sink; > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp 1Þth mUS ð2rp Þth order monotonic upper-saddle; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mLS ð2rp Þth order monotonic lower-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp : ð4:44Þ (c) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed point switching at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is
4.1 Global Stability and Bifurcations
267
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
aPp1 l
i¼1 i
þ1
i¼1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:45Þ
(iii) If Di ¼ B2i 4Ci ¼ 0; i 2 fi11 ; i12 ; . . .; i1s gfi1 ; i2 ; . . .; il gf1; 2; . . .; ng; Dk ¼ B2k 4Ck [ 0; k 2 fi21 ; i22 ; . . .; i2r gfi1 ; i2 ; . . .; il gf1; 2; . . .; ng; Dj ¼ B2j 4Cj \0; j 2 fil þ 1 ; il þ 2 ; . . .; in gf1; 2; . . .; ngwith i 6¼ j 6¼ k;
ð4:46Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has (2l) fixedpoints as 9 1 ðj Þ xk ¼ b1 1 ¼ Bj1 ; > = 2
xk ¼
ðj Þ b2 1
1 > ¼ Bj1 ;
xk
ðj Þ b1 2
¼
¼
ðj Þ
xk ¼ b2 2
2 1 ðBj2 2
for j1 2 fi11 ; i12 ; . . .; i1s g;
pffiffiffiffiffiffi 9 Dj2 Þ; > = pffiffiffiffiffiffi >for j2 2 fi21 ; i22 ; . . .; i2r g: 1 ¼ ðBj2 Dj2 Þ ; þ
ð4:47Þ
2
If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 . . .; a2l g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai 1 a1 ¼ ¼ al 1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð4:48Þ
P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2l i¼1 i i¼1 i
with
Pr
s¼1 ls
¼ 2l;
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *nk¼l þ 1 ½ðxk þ Bik Þ2 þ ðDik Þqik : ð4:49Þ 1 2
1 4
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ-discrete flow.
4 (2m)th-Degree Polynomial Discrete Systems
268
(a) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points appearance or vanishing is called an lp th mXX appearing bifurcation of fixed-points at a point p ¼ p1 2 @X12 , and the appearing bifurcation condition is 1 2
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ¼ Bip i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; . . .; il gÞ; þ
aPp1 l
i¼1 i
þ
þ1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
or aPp1 l
i¼1 i
ð4:50Þ
þ1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
:
(b) The fixed-point of xk ¼ aip for ðlp [ 1Þ- repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ-fixed-points switching at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
a Pp1 l
i¼1 i
þ1
i¼1
6¼ 6¼ a Pp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:51Þ
(iv) If Di ¼ B2i 4Ci [ 0 for i ¼ 1; 2; . . .; n
ð4:52Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has 2n-fixedpoints as ðiÞ
1 2 1 ðBi 2
pffiffiffiffiffi 9 Di Þ; = for i ¼ 1; 2; . . .; n: pffiffiffiffiffi Di Þ ;
xk ¼ b1 ¼ ðBi þ ðiÞ
xk ¼ b2 ¼
ð4:53Þ
(iv1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; n; ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 . . .; a2n g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; as \as þ 1 ;
ð4:54Þ
then the corresponding standard form is ls xk þ 1 ¼ xk þ a0 *2n s¼1 ðxk as Þ with ls 2 fqi1 ; qi2 ; . . .; qin g:
ð4:55Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : l2n th mXXÞ-discrete flow.
4.1 Global Stability and Bifurcations
269
(a) For a0 [ 0 and p ¼ 1; 2; . . .; 2n, 8 > ð2r 1Þth mSO ð2rp 1Þth order monotonic source, > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink, > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth mLS ð2rp Þth order lower-saddle, > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp Þth mUS ð2rp Þth order upper-saddle, > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:56Þ where ð2rp 1Þth mSI mSI-oSO for rp ¼ 1, and ap ¼
X2n
s¼p ls :
ð4:57Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; 2n, 8 > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink, > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source, > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp 1Þth mUS ð2rp Þth order montonic upper-saddle, > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp 1Þth mLS ð2rp Þth order monotonic lower-saddle, > > > : for ap ¼ 2Mp ; lp ¼ 2rp : ð4:58Þ (iv2) If ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 . . .; a2n g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . P air aPr1 l þ 1 ¼ ¼ a r1 l þ lr ¼ a2n ; i¼1 i i¼1 i
with
Pr
s¼1 ls
¼ 2n;
then, the corresponding standard form is
ð4:59Þ
4 (2m)th-Degree Polynomial Discrete Systems
270
xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls :
ð4:60Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞ-discrete flow. The fixed-point of xk ¼ aip for lp - repeated fixed-points switching is called a lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed-point at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
a Pp1 l i¼1
i þ1
i¼1
6¼ 6¼ a Pp1 l i¼1
i þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:61Þ
Definition 4.3 Consider a 1-dimensional, (2m)th-degree polynomial nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ 2m1 ¼ xk þ A0 ðpÞx2m þ þ A2m2 ðpÞx2k þ A2m1 xk þ A2m ðpÞ k þ A1 ðpÞxk
¼ a0 ðpÞ *rs¼1 ðxk cis ðpÞÞls *ni¼r þ 1 ½x2k þ Bi ðpÞxk þ Ci ðpÞqi ð4:62Þ
where A0 ðpÞ 6¼ 0, and Xr
Xn
¼ ðm lÞ; p ¼ ðp1 ; p2 ; . . .; pm1 ÞT :
ð4:63Þ
Di ¼ B2i 4Ci \0 for i ¼ r þ 1; r þ 2; . . .; n; fa1 ; a2 ; . . .; ar g ¼ sortfc1 ; c2 ; . . .; cr g with ai \ai þ 1 ;
ð4:64Þ
s¼1 ls
¼ 2l;
i¼r þ 1 qi
(i) If
the 1-dimensional nonlinear discrete system with a (2m)th-degree polynomial have a fixed-point of xk ¼ ais ðpÞ ðs ¼ 1; 2; . . .; r Þ, and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðpÞ *rs¼1 ðxk ais Þls *ni¼r þ 1 ½ðxk þ Bi Þ2 þ ðDi Þli : 1 2
1 4
ð4:65Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : lr th mXXÞdiscrete flow.
4.1 Global Stability and Bifurcations
271
(a) For a0 [ 0 and s ¼ 1; 2; . . .; r, 8 > ð2r 1Þth mSO ð2rp 1Þth order monotonic source, > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink, > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth mLS ð2rp Þth order monotonic lower-saddle, > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp Þth mUS ð2rp Þth order monotonic upper-saddle, > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:66Þ where ap ¼
Xr
s¼p ls :
ð4:67Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; r, 8 > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink; > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ th th > > ð2rp Þ mUS ð2rp Þ order monotonic upper-saddle; > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp Þth mLS ð2rp Þth order monotonic lower-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp : ð4:68Þ (ii) If Di ¼ B2i 4Ci [ 0; i ¼ j1 ; j2 ; . . .; js 2 fl þ 1; l þ 2; . . .; ng; Dj ¼ B2j 4Cj \0; j ¼ js þ 1 ; js þ 2 ; . . .; jn 2 fl þ 1; l þ 2; . . .; ng with s 2 f1; . . .; n lg;
ð4:69Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has 2n2 -fixedpoints as
4 (2m)th-Degree Polynomial Discrete Systems
272 ðiÞ
1 2
xk ¼ b1 ¼ ðBi þ
pffiffiffiffiffi pffiffiffiffiffi 1 ðiÞ Di Þ; xk ¼ b2 ¼ ðBi Di Þ
ð4:70Þ
2
i 2 fj1 ; j2 ; . . .; jn1 gfl þ 1; l þ 2; . . .; ng: If ðr þ 1Þ
ðr þ 1Þ
ðn Þ
ðn Þ
; b2 ; . . .; b1 1 ; b2 1 g; fa1 ; a2 . . .; a2n2 g ¼ sortfc1 ; c2 . . .; c2l ; b1 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qr þ 1 sets
ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
qn1 sets
ð4:71Þ
ain1 aPn1 1 li þ 1 ¼ ¼ aPn1 1 li þ ln ¼ a2n2
with
Pn 1
i¼1
i¼1
1
s¼1 ls ¼ 2n2 ;
then, the corresponding standard form is 1 ðxk ais Þls *ni¼n2 þ 1 ½ðxk þ Bi Þ2 þ ðDi Þqi : xk þ 1 ¼ xk þ a0 *ns¼1
1 2
1 4
ð4:72Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : ln1 th mXXÞdiscrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; r; r þ 1; . . .; n1 ,
lp th mXX ¼
8 > ð2rp 1Þth mSO ð2rp 1Þth order monotonc source; > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSI ð2rp 1Þth order monotonic sink; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; > ð2rp Þth mLS ð2rp Þth order monotonic lower-saddle; > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > > ð2rp 1Þth mUS ð2rp Þth order monotonic upper-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp ; ð4:73Þ
where ð2rp 1Þth mSI mSI-oSO for rp ¼ 1, and ap ¼
Xn1
s¼p ls :
ð4:74Þ
4.1 Global Stability and Bifurcations
273
(b) For a0 \0 and p ¼ 1; 2; . . .; r; r þ 1; . . .; n1 , 8 > ð2r 1Þth mSI ð2rp 1Þth order monotonic sink; > > p > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > > > ð2rp 1Þth mSO ð2rp 1Þth order monotonic source; > > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth mUS ð2rp Þth order monotonic upper-saddle; > > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2rp Þth mLS ð2rp Þth order monotonic lower-saddle; > > > : for ap ¼ 2Mp ; lp ¼ 2rp : ð4:75Þ (c) The fixed-point of xk ¼ aip for lp [ 1 -repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed-point at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; a Pp1 l i¼1
i¼1
i¼1 i
þ1
6¼ 6¼ a Pp1 l
i¼1 i
þ lp
: ð4:76Þ
(iii) If Di ¼ B2i 4Ci ¼ 0; for i 2 fi11 ; i12 ; . . .; i1s gfil þ 1 ; il þ 2 ; . . .; in2 gfl þ 1; l þ 2; . . .; ng; Dk ¼ B2k 4Ck [ 0; for k 2 fi21 ; i22 ; . . .; i2r gfil þ 1 ; il þ 2 ; . . .; in2 gfl þ 1; l þ 2; . . .; ng; Dj ¼ B2j 4Cj \0; for j 2 fin2 þ 1 ; in2 þ 2 ; . . .; in gfl þ 1; l þ 2; . . .; ng;
ð4:77Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has ð2n2 Þ-fixedpoints as 9 1 ðj Þ xk ¼ b1 1 ¼ Bi ; > = 2 for j1 2 fi11 ; i12 ; . . .; i1s g; 1 > ðj Þ xk ¼ b2 1 ¼ Bi ; 2 ð4:78Þ pffiffiffiffiffiffi 9 1 ðj2 Þ xk ¼ b1 ¼ ðBj2 þ Dj2 Þ; > = 2 pffiffiffiffiffiffi > for j2 2 fi21 ; i22 ; . . .; i2r g: 1 ðj Þ xk ¼ b2 2 ¼ ðBj2 Dj2 Þ ; 2
4 (2m)th-Degree Polynomial Discrete Systems
274
If ðr þ 1Þ
ðr þ 1Þ
ðn Þ
ðn Þ
; b2 ; . . .; b1 1 ; b2 1 g; fa1 ; a2 . . .; a2n2 g ¼ sortfc1 ; c2 . . .; c2l ; b1 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qr þ 1 sets
ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
qn1 sets
ð4:79Þ
ain1 aPn1 1 li þ 1 ¼ ¼ aPn1 1 li þ ln ¼ a2n2
with
Pn 1
i¼1
s¼1 ls
i¼1
1
¼ 2n2 ;
then, the corresponding standard form is 1 xk þ 1 ¼ xk þ a0 *ns¼1 ðxk ais Þls *ni¼n2 þ 1 ½ðxk þ Bi Þ2 þ ðDi Þqi :
1 2
1 4
ð4:80Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : ln1 th mXXÞdiscrete flow. (a) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points appearance or vanishing is called an lp th mXX appearing bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the appearing bifurcation condition is 1 2
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ¼ Bip i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; . . .; il gÞ þ aP p1 l
i¼1 i
þ1
þ 6¼ 6¼ aP p1 l
i¼1 i
þ lp
or a Pp1 l
i¼1 i
þ1
ð4:81Þ
6¼ 6¼ a Pp1 l
i¼1 i
þ lp
:
(b) The fixed-point of xk ¼ aip for ðlp [ 1Þ- repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed-point at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
aPp1 l
i¼1 i
þ1
i¼1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:82Þ
(c) The fixed-point of xk ¼ aip for ðlp1 1Þ-repeated fixed-points appearance/ vanishing and ðlp2 2Þ repeated fixed-points switching of ðlp21 th mmXX : lp22 th mXX : : lp2b th mXXÞ is called an lp th mXX switching bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the flower-bundle witching bifurcation condition is
4.1 Global Stability and Bifurcations
275
aip aPp1 qi þ 1 ¼ ¼ aPp1 qi þ qp i¼1
i¼1
with Diq ¼ B2iq 4Ciq ¼ 0 ðiq 2 fi1 ; i2 ; . . .; il gÞ þ aP p1 l
i¼1 i
þ j1
þ 6¼ 6¼ aP p1 l
i¼1 i
þ jp1
or a Pp1 1 l i¼1
i
þ j1
6¼ 6¼ a Pp1 1 l i¼1
i
þ jp1
;
for fj1 ; j2 ; . . .; jp1 gf1; 2; . . .; lp g; a Pp1 l
i¼1 i
þ k1
6¼ 6¼ a Pp1 l
i¼1 i
þ kp 2
for fk1 ; k2 ; . . .; kp2 gf1; 2; . . .; lp g;
ð4:83Þ
with lp1 þ lp2 ¼ lp :
(iv) If Di ¼ B2i 4Ci [ 0 for i ¼ l þ 1; l þ 2; . . .; n
ð4:84Þ
the 1-dimensional, (2m)th-degree polynomial discrete system has (2m) fixedpoints as ðiÞ
1 2 1 ðBi 2
pffiffiffiffiffi 9 Di Þ; = for i ¼ l þ 1; l þ 2; . . .; n: pffiffiffiffiffi Di Þ ;
xk ¼ b1 ¼ ðBi þ ðiÞ
xk ¼ b2 ¼
ð4:85Þ
If ðr þ 1Þ
ðr þ 1Þ
ðnÞ
ðnÞ
fa1 ; a2 . . .; a2m g ¼ sortfc1 ; c2 . . .; c2l ; b1 ; b2 ; . . .; b1 ; b2 g; |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflffl{zfflfflfflffl} ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
qr þ 1 sets
qn sets
ð4:86Þ
P ain aPn1 l þ 1 ¼ ¼ a n1 l þ lr ¼ a2m i¼1 i i¼1 i
with
Pn
s¼1 ls
¼ 2m;
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *ns¼1 ðxk ais Þls :
ð4:87Þ
The fixed-point discrete flow is called an ðl1 th mXX : l2 th mXX : : ln th mXXÞdiscrete flow. The fixed-point of xk ¼ aip for lp -repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX : lp2 th mXX : : lpb th mXXÞ fixed-point switching at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is
4 (2m)th-Degree Polynomial Discrete Systems
276
aip aPp1 li þ 1 ¼ ¼ aPp1 li þ lp ; i¼1
aPp1 l
i¼1 i
4.2
þ1
i¼1
6¼ 6¼ aPp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð4:88Þ
Simple Fixed-Point Bifurcations
From the global analysis, the bifurcations of simple fixed-points in the (2m)th-degree polynomial discrete systems are discussed, which include appearing/vanishing bifurcations, switching bifurcations, and switching and appearing bifurcations.
4.2.1
Appearing Bifurcations
Consider a (2m)th-degree polynomial discrete system in a form of xk þ 1 ¼ xk þ a0 Qðxk Þ *ni¼1 ðx2k þ Bi xk þ Ci Þ:
ð4:89Þ
Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are 1 1 pffiffiffiffiffi ðiÞ b1;2 ¼ Bi Di ; Di ¼ B2i 4Ci 0ði ¼ 1; 2; . . .; nÞ 2 2 ð1Þ ð1Þ ð2Þ ð2Þ ðnÞ ðnÞ fa1 ; a2 ; . . .; a2l g sortfb1 ; b2 ; b1 ; b2 ; . . .; b1 ; b2 g; as as þ 1 Bi 6¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ at bifurcation: Di ¼ 0ði ¼ 1; 2; . . .; nÞ
ð4:90Þ
The second-order singularity bifurcation is for the birth of a pair of simple fixed points with monotonic sink and monotonic source. There are two appearing bifurcations for i 2 f1; 2; . . .; ng 2
nd
ith quadratic factor
order mUS ! appearing bifurcation
2
nd
mSO; for xk ¼ a2i ; mSI-oSO; for xk ¼ a2i1 :
ith quadratic factor
order mLS ! appearing bifurcation
mSI-oSO; for xk ¼ a2i ; mSO; for xk ¼ a2i1 :
ð4:91Þ ð4:92Þ
4.2 Simple Fixed-Point Bifurcations
277
If Qðxk Þ ¼ 1 and n ¼ m, a set of paralleled different simple monotonic upper-saddle appearing bifurcations in the ð2mÞth degree polynomial nonlinear discrete system is called an m-monotonic-upper-saddle-node (m-mUSN) parallel appearing bifurcation. Such a bifurcation is also called an m-monotonic-uppersaddle-node (m-mUSN) teethcomb appearing bifurcation. At the appearing bifurcation point, Di ¼ 0ði ¼ 1; 2; . . .; mÞ, and the m-mUSN teethcomb appearing bifurcation structure is ( 8 mSO, for xk ¼ a2m ; th > m bifurcation > > mUS ! > > appearing > mSI-oSO, for xk ¼ a2m1 ; > > > > > > > ... > > > > ( > < mSO, for xk ¼ a2i ; ith bifurcation m-mUSN mUS ! appearing > mSI-oSO, for xk ¼ a2i1 ; > > > > > .. > > > . > > > ( > > > mSO, for xk ¼ a2 ; > 1st bifurcation > > mUS ! : appearing mSI-oSO, for xk ¼ a1 :
ð4:93Þ
Similarly, a set of paralleled different simple monotonic lower-saddle appearing bifurcations is called an m-monotonic-lower-saddle-node (m-mLSN) parallel appearing bifurcation for the (2m)th degree polynomial nonlinear discrete system. The monotonic lower-saddle-node bifurcation is called the m-monotonic-lowersaddle-node (m-mLSN) teethcomb appearing bifurcation. At the bifurcation point, Di ¼ 0ði ¼ 1; 2; . . .; mÞ, and the m-mLSN appearing bifurcation structure is ( 8 mSI-oSO; for xk ¼ a2m ; > mth bifurcation > > mLS ! > > appearing > mSO; for xk ¼ a2m1 ; > > > > > . > > > .. > > > ( > < mSI-oSO; for xk ¼ a2i ; ith bifurcation m-mLSN mLS ! appearing > mSO; for xk ¼ a2i1 ; > > > > > .. > > > . > > > ( > > > mSI-oSO; for xk ¼ a2 ; > 1st bifurcation > > mLS ! : appearing mSO; for xk ¼ a1 :
ð4:94Þ
Consider an appearing bifurcation for a cluster of fixed-points with monotonic sink to oscillatory source and monotonic source with the following conditions.
4 (2m)th-Degree Polynomial Discrete Systems
278
Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ Di ¼ 0 ði ¼ 1; 2; . . .; nÞ
) at bifurcation:
ð4:95Þ
Thus, the (2l)th-order appearing bifurcation is for a cluster of fixed-points with simple monotonic sinks to oscillatory sources and monotonic sources. Two (2l)th order appearing bifurcations for l 2 f1; 2; . . .; sg are 8 mSO; for xk ¼ a2sl ; > > > > > > > > mSI-oSO; for xk ¼ a2sl 1 ; > < cluster of l-quadratics ð2lÞth order mUS ! ... appearing bifurcation > > > > > > mSO; for xk ¼ a2s1 ; > > > : mSI-oSO; for xk ¼ a2s1 1 :
ð4:96Þ
8 mSI-oSO; for xk ¼ a2sl ; > > > > > > > > mSO; for xk ¼ a2sl 1 ; > < cluster of l-quadratics ð2lÞth order mLS ! ... appearing bifurcation > > > > > > mSI-oSO; for xk ¼ a2s1 ; > > > : mSO; for xk ¼ a2s1 1 :
ð4:97Þ
A set of paralleled, different, higher-order upper-saddle-node bifurcations with multiplicity is a ðð2l1 Þth mUS : ð2l2 Þth mUS : : ð2ls Þth mUSÞ parallel appearing bifurcation in the (2m)th degree polynomial discrete system. ð2li Þth mUS for ði ¼ 1; 2; . . .; sÞ with monotonic sources and monotonic sinks to oscillatory source is the ð2li Þth -order monotonic upper-saddle with li -pairs of simple monotonic source and monotonic sink to oscillatory source fixed-points. With different orders of li pairs of fixed points with simple monotonic sources and monotonic sinks to oscillatory sources, the ð2li Þth mUSN bifurcation possesses different spraying appearing clusters of fixed points with monotonic sinks to oscillatory sources and monotonic sources. Psi¼1 li ¼ n m where s; li 2 f0; 1; 2; . . .; mg . If li ¼ 1 for i ¼ 1; 2; . . .; m with n ¼ m, the monotonic upper-saddle-node parallel bifurcation or the monotonic upper-saddle-node teethcomb appearing bifurcation is recovered. Introduce ðð2l1 Þth mUS:(2l2 Þth mUS: : ð2ls Þth mUSÞ ð2l1 : 2l2 : : 2ls Þth mUS: ð4:98Þ At the sprinkler-spraying appearing bifurcation, Di ¼ 0ði ¼ 1; 2; . . .; sÞ and Bi ¼ Bj ð i; j 2 f1; 2; . . .; sg; i 6¼ jÞ: The sprinkler-spraying mUSN appearing bifurcation is
4.2 Simple Fixed-Point Bifurcations
ð2l1 : 2l2 : : 2ls Þth mUS ¼
279
8 > ð2ls Þth order mUS, > > > > > < .. .
> > ð2l2 Þth order mUS, > > > > : ð2l Þth order mUS: 1
ð4:99Þ
Thus, the ð2l1 : 2l2 : : 2ls Þth mUS appearing (or vanishing) bifurcation is called a ð2l1 : 2l2 : : 2ls Þth mUSN sprinkler-spraying appearing (or vanishing) bifurcation. Similarly, a set of paralleled different lower-saddle appearing bifurcations with multiplicity is the ðð2l1 Þth mLS:(2l2 Þth mLS: :ð2ls Þth mLSÞ appearing bifurcation in the (2m)th degree polynomial system. Thus, the ð2l1 :2l2 : :2ls Þth mLS appearing (or vanishing) bifurcation is also called a ð2l1 :2l2 : :2ls Þth mLS sprinkler-spraying appearing (or vanishing) bifurcation. Again, at the mLS sprinkler-spraying bifurcation, Di ¼ 0 ði ¼ 1; 2; . . .; nÞ and Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ: Thus, the sprinkler-spraying mLSN appearing bifurcation is
ð2l1 : 2l2 : : 2ls Þth mLS ¼
8 > ð2ls Þth order mLS; > > > > > < .. .
> > ð2l2 Þth order mLS; > > > > : ð2l Þth order mLS: 1
ð4:100Þ
Two m-mUSN and m-mLSN teethcomb appearing bifurcations are presented in Fig. 4.1(i) and (ii) for a0 [ 0 and a0 \0, respectively. The set of paralleled ð4th mUS: : ð2rÞth mUS: : 4th mUS:6th mUSÞ appearing bifurcations for simple monotonic sinks to oscillatory sources and monotonic sources is presented in Fig. 4.1(iii) for a0 [ 0, where l1 ¼ 2; . . .; li ¼ r; . . .; ls1 ¼ 2; ls ¼ 3 with Psi¼1 li ¼ m: The ð4 : : 2r : : 4 : 6Þth -mUSN appearing bifurcation is a mUSN sprinkler-spraying appearing bifurcation. However, for a0 \0, the ð4th mLS: : ð2rÞth mLS: : 4th mLS:6th mLS) appearing bifurcations for simple sources and sinks is presented in Fig. 4.1(iv). The ð4 : : 2r : : 4 : 6Þth -mLSN appearing bifurcation is a mLSN sprinkler-spraying appearing bifurcation. For a cluster of m-quadratics,Bi ¼ Bj ði; j 2 f1; 2; . . .; mg; i 6¼ jÞ and Di ¼ 0 ði ¼ 1; 2; . . .; mÞ: The (2m)th order monotonic upper-saddle-node appearing bifurcation for m-pairs of fixed points with monotonic sink to oscillatory source and monotonic sources is
4 (2m)th-Degree Polynomial Discrete Systems
280 a0 > 0
b1(i1 )
mSO
a0 < 0
mSI-oSO
P-2
P-2 mUSN
mSI-oSO
LSN
( i1 ) 2
b
mSO
( i2 ) 1
b
mSO
b1(i1 )
mSI-oSO
b2(i1 ) b1(i2 ) P-2
P-2
mUSN
mLSN ( i2 ) 2
b
mSI-oSO •
mSO •
•
•
•
•
mSO
mSI-oSO P-2
P-2
mUSN
mLSN
mSI-oSO • •
b1(im )
mSO mUSN
mSI-oSO
mSI-oSO
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
xk∗
mSO
(i)
(iii) mSO
a0 > 0
b1(i1 )
mSI-oSO
b2(i1 )
6th mLS
( i2 ) 2
b
mSO
P-2
mSI-oSO
• •
b2(i2 )
mSI-oSO
mSO
4th mUS
b1(i1 ) b1(i2 ) P-2
b2(i1 )
6th mUS
mSI-oSO
a0 < 0
b1(i2 )
•
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
b1(im ) P-2
mLSN
P-2
xk∗
mSO
• • •
•
|| p ||
b2(i2 )
4th LS
P-2
mSO
• •
P-2
•
mSO
mSI-oSO P-2
P-2
(2r)th mUS
• • •
4th
mSI-oSO
P-2
mSO
b1(im )
P-2
• • •
mSO
mSI-oSO
mUS
b1(im ) P-2
4th mLS
xk∗
xk∗ mSI-oSO
|| p ||
(2r)th mLS
Δ iq < 0 Δ iq = 0
(ii)
Δ iq > 0
mSO
b2(im ) || p ||
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
(iv)
Fig. 4.1 (i) m-mUSN parallel bifurcation ða0 [ 0Þ, (ii) m-mLSN parallel bifurcation ða0 \0Þ, (iii) ðð2l1 Þth mUS:(2l2 Þth mUS: : ð2ls Þth mUSÞ parallel bifurcation ða0 [ 0Þ: (iv) ðð2l1 Þth mLS: ð2l2 Þth mLS: : ð2ls Þth mLSÞ parallel bifurcation ða0 \0Þ in a (2m)th-degree polynomial discrete system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4.2 Simple Fixed-Point Bifurcations
281
8 mSO; for xk ¼ a2m ; > > > > > mSI-oSO; for xk ¼ a2m1 ; > > < cluster of m quadratics ð2mÞth order mUS ! ... appearing bifurcation > > > > > mSO; for xk ¼ a2 ; > > : mSI-oSO; for xk ¼ a1 :
ð4:101Þ
The (2m)th order lower-saddle-node appearing bifurcation for m-pairs of fixedpoints with monotonic sink to oscillatory source, and monotonic source is 8 mSI-oSO; for xk ¼ a2m ; > > > > > > mSO; for xk ¼ a2m1 ; > > > < cluster of m quadratics ð2mÞth order mLS ! ... appearing bifurcation > > > > > > > mSI-oSO; for xk ¼ a2 ; > > : mSO; for xk ¼ a1 :
ð4:102Þ
The (2m)th order monotonic upper-saddle-node appearing bifurcation with mpairs of fixed-points with monotonic sources and monotonic sinks to oscillatory sources is a sprinkler-spraying cluster of the m-pairs of fixed-points with monotonic sources and monotonic sinks to oscillatory sources. The (2m)th order monotonic lower-saddle-node appearing bifurcation with m-pairs of fixed-points is also a sprinkler-spraying cluster of the m-pairs of monotonic sources and monotonic sinks to oscillatory sources. Thus, the (2m)th order mUSN appearing bifurcation ða0 [ 0Þ and (2m)th order mLSN bifurcation ða0 \0Þ are presented in Fig. 4.2(i) and (ii), respectively. The (2m)th order monotonic-upper-saddle-node appearing bifurcation is named a (2m)th order mUSN sprinkler-spaying appearing bifurcation, and the (2m)th order monotonic-lower-saddle-node appearing bifurcation is named a (2m)th order mLSN sprinkler-spraying appearing bifurcation. A series of the monotonic saddle-node bifurcations is aligned up with varying with parameters, which is formed a special pattern. For m-quadratics in the (2m)th order polynomial discrete system, the following conditions should be satisfied. Bi Bj i; j 2 f1; 2; . . .; ng; i 6¼ j; Di [ Di þ 1 ði ¼ 1; 2; . . .; n; n mÞ; Di ¼ 0 with jjpi jj\jjpi þ 1 jj:
ð4:103Þ
Thus, a series of m-(mUSN-mLSN-mUSN-. . .Þ appearing bifurcations ða0 [ 0Þ and a series of m-(mLSN-mUSN-mLSN-. . .Þ appearing bifurcations ða0 \0Þ are presented in Fig. 4.3(i) and (ii), respectively. The bifurcation scenario is formed by the swapping pattern of mUSN and mLSN appearing bifurcations. Such a bifurcation scenario is like the fish-scale. Thus, such a bifurcation swapping pattern of the mUSN and mLSN is called a fish-scale appearing bifurcation in the (2m)th
4 (2m)th-Degree Polynomial Discrete Systems
282 a0 > 0
a0 < 0
a2m
mSO
mSI-oSO
P-2
P-2 (2m)th mLS
(2m)th mUS P-2
P-2
a2
x∗
Δ iq > 0
Δ iq < 0 Δ iq = 0
a2
x∗
a1
mSI-oSO
|| p ||
a2m
|| p ||
mSO
Δ iq > 0
Δ iq < 0 Δ iq = 0
(i)
a1
(ii)
Fig. 4.2 (i) (2m)th order mUSN bifurcation ða0 [ 0Þ, (ii) (2m)th order mLSN bifurcation ða0 \0Þ in the (2m)th polynomial system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
degree polynomial nonlinear discrete system. There are two swapping bifurcations: (i) the USN-LSN fish-scale appearing bifurcation and (ii) the mLSN-mUSN fish-scale, appearing bifurcation.
4.2.2
Switching Bifurcations
Consider the roots of x2k þ Bi xk þ Ci ¼ 0 as ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ ðiÞ ðiÞ ðiÞ xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ; Bi 6¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ
ð4:104Þ
The 2nd order singularity bifurcation is for the switching of a pair of fixed point with simple monotonic sink to oscillatory source and monotonic source. There are two switching bifurcations for i 2 f1; 2; . . .; ng ( ith quadratic factor
2 order mUS ! nd
switching bifurcation
ðiÞ
ðiÞ
mSO, for a2i ¼ b2 ! b1 ; ðiÞ
8 ðiÞ < mSI-oSO, for a2i ¼ bðiÞ 2 ! b1 ; 2 order mLS ! ðiÞ ðiÞ switching bifurcation : mSO, for a2i1 ¼ b1 ! b2 : nd
ith quadratic factor
ðiÞ
mSI-oSO, for a2i1 ¼ b1 ! b2 :
ð4:105Þ
ð4:106Þ
4.2 Simple Fixed-Point Bifurcations
283
a0 > 0
P-2
b1( r )
mSO
mUS
mLS
x∗
mUS
• • •
mSI-oSO
|| p ||
mLS
• • •
P-2
Δr < 0
P-2
mUS
P-2
b2( r )
P-2
Δr > 0
Δr = 0
(i) a0 < 0
P-2
P-2
mSI-oSO
mLS
xk∗
|| p ||
mUS
mLS
• • •
mUS
mSO
• • •
mLS
b2( r )
P-2
Δr < 0
Δr = 0
P-2
b1( r )
P-2
Δr > 0
(ii) Fig. 4.3 (i) m-(mUS-mLS-mUS-. . .Þ series bifurcation ða0 [ 0Þ, (ii) mð-(mUS-mLS-mUS-. . .Þ series bifurcation ða0 [ 0Þ in the (2m)th-degree polynomial discrete system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
A set of m-paralleled-pairs of different simple-monotonic-upper-saddle-node switching bifurcations in the (2m)thdegree polynomial nonlinear discrete system is called an m-monotonic-upper-saddle-node (m-mUSN) parallel switching bifurcation. Such a bifurcation is also called an m-monotonic-upper-saddle-node (mðiÞ mUSN) antenna switching bifurcation. For non-switching point, Di [ 0 at b1 6¼ ðiÞ
ðiÞ
ðiÞ
b2 ði ¼ 1; 2; . . .; nÞ: At the bifurcation point, Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ: The m-mUSN parallel switching bifurcation is
284
4 (2m)th-Degree Polynomial Discrete Systems
8 8 < mSO # mSI-oSO; > th > m bifurcation > > mUS ! > > switching bifurcation : > > mSI-oSO " mSO; > > > > > . > .. > > > > 8 > > > < < mSO # mSI-oSO; th i bifurcation m-mUSN mUS ! switching bifurcation : > > mSI-oSO " mSO; > > > > > .. > > > . > > > 8 > > > < mSO # mSI-oSO; > st > 1 bifurcation > > mUS ! > : switching bifurcation : mSI-oSO " mSO;
ðmÞ
¼ a2m # a2m1 ;
ðmÞ
¼ a2m1 " a2m ;
for b2 for b1
ðiÞ
for b2 ¼ a2i # a2i1 ; ðiÞ
for b1 ¼ a2i1 " a2i ;
ð1Þ
for b2 ¼ a2 # a1 ; ð1Þ
for b1 ¼ a1 " a2 : ð4:107Þ
Similarly, a set of paralleled different simple monotonic-lower-saddle bifurcations is called an m-monotonic-lower-saddle-node (m-mLSN) parallel switching bifurcation for the (2m)th degree polynomial nonlinear system. The monotoniclower-saddle-node switching bifurcation is also called an m-monotonic-lowersaddle-node (m-mLSN) antenna switching bifurcation. For non-switching point, ðiÞ ðiÞ ðiÞ ðiÞ Di [ 0 at b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ: At the bifurcation point, Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ: The m-mLSN antenna switching bifurcation is 8 8 < mSI-oSO # mSO, for bðmÞ > th > 2 ¼ a2m # a2m1 ; m bifurcation > > mLS ! > > ðmÞ switching bifurcation : > > mSO " mSI-oSO, for b1 ¼ a2m1 " a2m ; > > > > > .. > > > . > > 8 > > > < < mSI-oSO # mSO, for bðiÞ th 2 ¼ a2i # a2i1 ; i bifurcation m-mLSN mLS ! ðiÞ switching bifurcation : > > mSO " mSI-oSO, for b1 ¼ a2i1 " a2i ; > > > > > . > > > .. > > > 8 > > > < mSI-oSO # mSO, for bð1Þ > st 2 ¼ a2 # a1 ; > 1 bifurcation > > mLS ! > : ð1Þ switching bifurcation : mSO " mSI-oSO, for b1 ¼ a1 " a2 : ð4:108Þ Consider a switching bifurcation for a bundle of fixed-points with monotonic sink to oscillatory source and monotonic source with the following conditions,
4.2 Simple Fixed-Point Bifurcations ðiÞ
285
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ
ðiÞ
ðiÞ
ðiÞ
xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ; ) Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ
ð4:109Þ
Thus, the (2l)th order switching bifurcation can be for a bundle of simple monotonic sinks to oscillatory sources, and monotonic sources. Two (2l)th order monotonic upper- and lower-saddle switching bifurcations for l 2 f1; 2; . . .; sg are 8 mSO; for a2sl > > > > > mSI-oSO, for > > < a bundle of ð2lÞ fixed points ð2lÞth order mUS ! ... switching bifurcation > > > > > mSO, for a2s1 > > : mSI-oSO, for
! b2sl ; a2sl 1 ! b2sl 1 ; ð4:110Þ ! b2s1 ; a2s1 1 ! b2s1 1 :
8 mSI-oSO, for a2sl ! b2sl ; > > > > > > > > mSO, for a2sl 1 ! b2sl 1 ; > < a bundle of ð2lÞ fixed points ð2lÞth order mLS ! ... switching bifurcation > > > > > > mSI-oSO, for a2s1 ! b2s1 ; > > > : mSO, for a2s1 1 ! b2s1 1 :
ð4:111Þ
where Dij ¼ ðai aj Þ2 ¼ ðbi bj Þ2 ¼ 0 with Bi ¼ Bj ði; j ¼ 2s1 1; 2s1 ; . . .; 2sl 1; 2sl Þ and fa2s1 1 ; a2s1 ; . . .; a2sl 1 ; a2sl g fb2s1 1 ; b2s1 ; . . .; b2sl 1 ; b2sl g
ð1Þ
before bifurcation
after bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .b1 ; b2 g; ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .b1 ; b2 g:
ð4:112Þ
The ð2l 1Þth order switching bifurcation can be for a bundle of simple fixed-points with monotonic-sinks to oscillatory-sources and monotonic-sources. Two ð2l 1Þth order monotonic sink and monotonic source switching bifurcations for l 2 f1; 2; . . .; sg are 8 mSO, for a2sl 1 ! b2sl 1 ; > > > > > < .. abundle of ð2l1Þ-fixed points ð2l 1Þth order mSO ! . switching bifurcation > > mSI-oSO, for a2s1 ! b2s1 ; > > > : mSO, for a2s1 1 ! b2s1 1 : ð4:113Þ
4 (2m)th-Degree Polynomial Discrete Systems
286
8 mSI-oSO, for a2sl 1 ! b2sl 1 ; > > > > > < .. a bundle of ð2l1Þ-fixed points ð2l 1Þth order mSI ! . switching bifurcation > > mSO, for a2s1 ! b2s1 ; > > > : mSI-oSO, for a2s1 1 ! b2s1 1 : ð4:114Þ where Dij ¼ ðai aj Þ2 ¼ ðbi bj Þ2 ¼ 0 with Bi ¼ Bj ði; j ¼ 2s1 1; 2s1 ; . . .; 2sl 1Þ and fa2s1 1 ; a2s1 ; . . .; a2sl 1 g fb2s1 1 ; b2s1 ; . . .; b2sl 1 g
ð1Þ
before bifurcation
after bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .b1 ; b2 g; ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .b1 ; b2 g:
ð4:115Þ
A set of paralleled, different, higher-order upper-saddle-node switching bifurcations with multiplicity is the ðða1 Þth mXX:(a2 Þth mXX: : ðas Þth mXXÞ parallel switching bifurcation in the (2m)th degree polynomial discrete system. At the straw-bundle switching bifurcation, Di ¼ 0ði ¼ 1; 2; . . .; nÞ and Bi ¼ Bj ð i; j 2 f1; 2; . . .; ng; i 6¼ jÞ: Thus, the parallel straw-bundle switching bifurcation is ðða1 Þth mXX:ða2 Þth mXX: : ðas Þth mXXÞ-switching 8 ðas Þth order mXX switching, > > > > > > > < ... ¼ > > > ða2 Þth order mXX switching, > > > > : ða1 Þth order mXX switching;
ð4:116Þ
where ai 2 f2li ; 2li 1g withPsi¼1 ai ¼ 2m; and XX 2 fUS; LS; SO; SIg:
ð4:117Þ
The ð2li Þth mUS for ði ¼ 1; 2; . . .; sÞ with monotonic-sinks to oscillatory sources, and monotonic-sources is the ð2li Þth order monotonic-upper-saddle for a switching of li -pairs of simple monotonic-sinks to oscillatory-sources, and monotonic-sources. With different orders of li -pairs of simple monotonic-sinks to oscillatory-sources, and monotonic-sources, the ð2li Þth mUSN switching bifurcation possesses different straw-bundle switching for a bundle of stable and unstable fixed-points. The ð2l1 :
4.2 Simple Fixed-Point Bifurcations
287
2l2 : : 2ls Þth mUSN bifurcation is called the ð2l1 : 2l2 : : 2ls Þth mUSN strawbundle switching bifurcation. 8 > ð2ls Þth order mUSN switching, > > > > > < .. . th ð2l1 : 2l2 : : 2ls Þ mUSN switching ¼ > > ð2l2 Þth order mUSN switching, > > > > : ð2l Þth order mUSN switching: 1
ð4:118Þ If li ¼ 1 for i ¼ 1; 2; . . .; m with n ¼ m, the simple upper-saddle-node parallel switching bifurcation or the upper-saddle-node antenna switching bifurcation is recovered. Similarly, a set of paralleled different monotonic lower-saddle switching bifurcations with multiplicity is a ðð2l1 Þth mLS:(2l2 Þth mLS: : ð2ls Þth mLSÞ parallel switching bifurcation in the (2m)th degree polynomial discrete system. Thus, the ð2l1 : 2l2 : : 2ls Þth mLSN switching bifurcation is also called a ð2l1 : 2l2 : : 2ls Þth mLSN straw-bundle switching bifurcation. Again, at the mLSN straw-bundle switching bifurcation, Di ¼ 0ði ¼ 1; 2; . . .; nÞ and Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ: Thus, the mLSN straw-bundle switching bifurcation is
ð2l1 : 2l2 : : 2ls Þth mLSN switching ¼
8 th > > > ð2ls Þ order mLSN switching, > > > < .. .
> > ð2l2 Þth order mLSN switching, > > > > : ð2l1 Þth order mLSN switching: ð4:119Þ
The set of m-monotonic-upper-saddle-node (m-mUSN) parallel switching bifurcation is equivalent to the set of ð2 : 2 : : 2Þnd -mUSN bifurcations. The set of m-lowersaddle-node (m-mLSN) parallel switching bifurcation is equivalent to the set of ð2 : 2 : : 2Þnd -mLSN bifurcations. Such two sets of parallel switching bifurcations are presented in Fig. 4.4(i) and (ii) for a0 [ 0 and a0 \0, respectively. A set of paralleled ð3rd mSO:2nd mLS: : 4th mLS: : 3rd mSIÞ switching bifurcations for mSI-oSO and mSO fixed-points is presented in Fig. 4.4(iii) for a0 [ 0: However, for a0 \0, the set of ð3rd mSI:2nd mUS: : 4th mUS: : 3rd mSIÞ switching bifurcations for monotonic-sources and monotonic-sink-to-oscillatorysources is presented in Fig. 4.4(iv).
4 (2m)th-Degree Polynomial Discrete Systems
288 a0 > 0
a2m
a0 < 0
a2 m−1
P-2
P-2
mUS mSI-oSO
P-2
P-2
mLS mSO
a2 m−2
mSO
a2m
mSI-oSO
mSO
a2 m−1 a2 m−2
mSI-oSO
mUS
P-2
mLS mSI-oSO
a2 m−3
mSO
P-2
•
P-2
P-2
a2 m−3
•
• •
• •
mSO
mSI-oSO P-2
mLS
mUS
P-2 mSO
mSI-oSO P-2
•
•
•
P-2
•
•
•
a2
mSO
a2
mSI-oSO
mUS
P-2
mLS mSI-oSO
xk∗
P-2
a1
a1
mSO
xk∗
P-2 P-2
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(iii)
(i) a2m
a0 > 0
a0 < 0
mSO 3rd mSO
mSO
a2 m−2
mSI-oSO
a2 m−3
mSO
P-2
a2 m−1
a2 m−2
mSI-oSO P-2
P-2
mSO
a2 m−3
mUS
P-2
mSI-oSO
• • •
P-2
3rd mSI
P-2
mLS
a2m
mSI-oSO
P-2
a2 m−1
P-2
P-2
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
• •
P-2
mSI-oSO
P-2
mSO
•
P-2 4th mLS
4th
P-2
P-2
mUS
P-2
mSO
mSI-oSO
• • •
P-2 3rd
•
P-2
mSI-oSO
mSO
a2
mSI
xk∗
3rd mSO
a1
mSI-oSO P-2
P-2
• •
P-2
a2
P-2
mSO
x∗
a1
P-2
|| p ||
Δ iq > 0 Δ iq = 0
(ii)
Δ iq > 0
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.4 Stability and bifurcations of fixed-points in a 1-dimensional, (2m)th-degree polynomial discrete system: (i) m-mUSN parallel switching bifurcation ða0 [ 0Þ, (ii) m-mLSN parallel switching bifurcation ða0 \0Þ, (iii) ð3rd mSO:2nd mLS: : 3rd mSIÞ parallel switching bifurcation ða0 [ 0Þ: (iv) ð3rd mSI: 2nd mUS: : 3rd mSOÞ parallel switching bifurcation. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4.2 Simple Fixed-Point Bifurcations
4.2.3
289
Switching-Appearing Bifurcations
Consider a (2m)th degree 1-dimensional polynomial discrete system in a form of n2 2 1 xk þ 1 ¼ xk þ a0 Qðxk Þ *2n i¼1 ðxk ci Þ *j¼1 ðxk þ Bj xk þ Cj Þ:
ð4:120Þ
Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bj xk þ Cj ¼ 0 are ðjÞ
1 2
b1;2 ¼ Bj
1pffiffiffiffiffi Dj ; Dj 2
¼ B2j 4Cj 0ðj ¼ 1; 2; . . .; n2 Þ;
ð4:121Þ
either fa 1 ; a2 ; . . .; a2n1 g ¼ sortfc1 ; c2 . . .; c2n1 g; as as þ 1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
þ g ¼ sortfc1 ; . . .; c2n1 ; b1 ; b2 ; . . .; b1 2 ; b2 2 g; fa1þ ; a2þ ; . . .; a2n 3
asþ
asþþ 1 ;
ð4:122Þ
n3 ¼ n1 þ n2 after bifurcation;
or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 ; a2 ; . . .; a2n3 g ¼ sortfc1 ; c2 . . .; c2n1 ; b1 ; b2 ; . . .; b1 ; b2 g;
a s as þ 1 ; n3 ¼ n1 þ n2 before bifurcation;
þ fa1þ ; a2þ ; . . .; a2n g 1
¼ sortfc1 ; . . .; c2n1 g;
asþ
ð4:123Þ asþþ 1
after bifurcation;
and 9 Bj1 ¼ Bj2 ¼ ¼ Bjs ðjk1 2 f1; 2; . . .; ng; jk1 6¼ jk2 Þ > > = ðk1 ; k2 2 f1; 2; . . .; sg; k1 6¼ k2 Þ at bifurcation: Dj ¼ 0 ðj 2 U f1; 2; . . .; n2 g > > ; 1 ci 6¼ 2Bj ði ¼ 1; 2; . . .; 2n1 ; j ¼ 1; 2; . . .; n2 Þ
ð4:124Þ
th th Consider a just before bifurcation of ðða 1 Þ mXX1 : ða2 Þ mXX2 : . . . : th ða s1 Þ mXXs1 Þ for simple sources and sinks. For ai ¼ 2li 1; mXXi 2 fmSO, mSIg and for ai ¼ 2li ; mXXi 2 fmUS, mLSgði ¼ 1; 2; . . .; s1 Þ. The detailed structures are as follows.
290
4 (2m)th-Degree Polynomial Discrete Systems
9 9 mSI-oSO > mSO > > > > > > > > > > > mSO mSI-oSO > > > > > > = = th th .. . . ! ð2l ! ð2l 1Þ mSI; and i i 1Þ mSO; . . > > > > > > > > > > > > mSO mSI-oSO > > > > > > ; ; mSI-oSO mSO ð4:125Þ 9 9 mSO mSI-oSO > > > > > > > > > > > mSI-oSO > mSO > > > > > > = = th .. . th . ! ð2l ! ð2l Þ mUS; and i i Þ mLS: . . > > > > > > > > > > > mSO mSI-oSO > > > > > > > ; ; mSI-oSO mSO th th th The bifurcation set of ðða 1 Þ mXX1 ; : ða2 Þ mXX2 : . . . : ðas1 Þ mXXs1 Þ at the same parameter point is called a left-parallel-bundle switching bifurcation Consider a just after bifurcation of ðða1þ Þth mXX1þ :ða2þ Þth mXX2þ : : ðasþ2 Þth mXXsþ2 Þ for simple fixed-points with monotonic sources and monotonic sinks to oscillatory sources. For aiþ ¼ 2liþ 1; mXXiþ 2 fmSO, mSIg and for aiþ ¼ 2liþ ; mXX i 2 fmUS, mLSg. The four detailed structures are as follows.
8 8 mSI-oSO mSO > > > > > > > > > > > > mSO mSI-oSO > > > > > > < < ; and ð2liþ 1Þth mSO ! ... ; ð2liþ 1Þth mSI ! ... > > > > > > > > > > > > mSO mSI-oSO > > > > > > : : mSI-oSO mSO 8 8 mSO mSI-oSO > > > > > > > > > > > > mSI-oSO mSO > > > > > > < < ð2liþ Þth mUS ! ... ; and ð2liþ Þth mLS ! ... : > > > > > > > > > > > > mSO mSI-oSO > > > > > > : : mSI-oSO mSO ð4:126Þ The bifurcation set of ðða1þ Þth mXX1þ : ða2þ Þth mXX2þ : . . . : ðasþ2 Þth mXXsþ2 Þ at the same parameter point is called a right-parallel-bundle switching bifurcation
4.2 Simple Fixed-Point Bifurcations
291
(i) For the just before and after bifurcation structure, if there exists a relation of th þ th þ th þ ða i Þ mXXi ¼ ðaj Þ mXXj ¼ a mXX, for xk ¼ ai ¼ aj
ði 2 f1; 2; . . .; s1 g; j 2 f1; 2; . . .; s2 gÞ; XX 2 fUS, LS, SO, SIg
ð4:127Þ
then the bifurcation is a ath mXX switching bifurcation for simple fixed-points. (ii) Just for the just before bifurcation structure, if there exists a relation of th th ð2l i Þ mXXi ¼ ð2lÞ mXX, for xk ¼ ai ¼ ai
ði 2 f1; 2; . . .; s1 g; XX 2 fUS, LSg
ð4:128Þ
then, the bifurcation is a ð2lÞth mXX left appearing (or right vanishing) bifurcation for simple fixed-points. (iii) Just for the just after bifurcation structure, if there exists a relation of ð2liþ Þth mXXiþ ¼ ð2lÞth mXX, for xk ¼ aiþ ¼ ai ði 2 f1; 2; . . .; s1 gÞ; XX 2 fUS, LSg
ð4:129Þ
then, the bifurcation is a ð2lÞth mXX right appearing (or left vanishing) bifurcation for simple fixed-points. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ða i Þ mXXi 6¼ ðaj Þ mXXj for xk ¼ ai ¼ aj þ XX i ; XXj 2 fUS, LS, SO, SIg
ð4:130Þ
ði 2 f1; 2; . . .; s1 g; j 2 f1; 2; . . .; s2 gÞ; then, there are two flower-bundle switching bifurcations of simple fixed-points: (iv1) for aj ¼ ai þ 2l, the bifurcation is called a ath j mXX right flower-bundle switching bifurcation for ai to aj -simple fixed-points with the appearance (birth) of 2l-simple fixed-points. (iv2) for aj ¼ ai 2l, the bifurcation is called a ath i mXX left flower-bundle switching bifurcation for ai to aj -simple fixed-points with the vanishing (death) of 2l-simple fixed-points. A general parallel switching bifurcation is switching
th th th ðða 1 Þ mXX1 : ða2 Þ mXX2 : : ðas1 Þ mXXs1 Þ !
ðða1þ Þth mXX1þ : ða2þ Þth mXX2þ : :
bifurcation þ th þ ðas2 Þ mXXs2 Þ:
ð4:131Þ
292
4 (2m)th-Degree Polynomial Discrete Systems
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th þ th þ th ða i Þ mXXi ¼ ðai Þ mXXi ¼ a mXX, þ for xk ¼ a i ¼ ai ði ¼ 1; 2; . . .; sg;
ð4:132Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ðða1 Þth mXX:ða2 Þth mXX: : ðas Þth mXXÞ: If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ þ th ða i Þ mXXi ¼ ð2li Þ mXX, ðaj Þ mXXj ¼ ð2lj Þ mYY, þ for xk ¼ a i 6¼ ai ði ¼ 1; 2; . . .; sg
ð4:133Þ
mXX 2 fmUS; mLSg; mYY 2 fmUS; mLSg; then the parallel flower-bundle switching bifurcation becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) a ðð2l 1 Þ mXX1 : ð2l2 Þ mXX2 : : ð2ls1 Þ mXXs1 Þ-left parallel sprinklerspraying appearing (or right vanishing) bifurcation and (ii) a ðð2l1þ Þth mXX1þ : ð2l2þ Þth mXX2þ : : ð2lsþ2 Þth mXXsþ2 Þ-right parallel sprinkler-spraying appearing (or left vanishing) bifurcation.
The ð6th mUS:4th mLS: : 4th mUS:mSI-oSOÞ appearing bifurcation for a0 [ 0 is presented in Fig. 4.5(i). Compared to the case of a0 [ 0, the bifurcation and stability conditions of fixed-points for a0 [ 0 will be swapped. The ð6th mLS: 4th mUS: : 4th mLS:mSOÞ parallel appearing bifurcation is shown in Fig. 4.5(ii). Such a kind of bifurcation is like a waterfall appearing bifurcation. The switching and appearing bifurcations of fixed-points exist at the same parameter. A set of paralleled, different switching and appearing bifurcations of higher-order th th fixed-points is also named an ðlth 1 mXX:l2 mXX: : ls mXXÞ parallel switching th and appearing bifurcation in the (2m) degree polynomial discrete system. The lth i mXX switching and appearing bifurcation possesses different clusters of stable and unstable fixed-points before and after the bifurcation. The set of ð5th mSI : : mSO:6th mUSÞ flower-bundle switching bifurcation for mSI-oSO and mSO fixed-points is presented in Fig. 4.5(iii) for a0 [ 0: Such a flower-bundle switching bifurcation is from ðmSI-oSO: mSO : mSI oSO : mSOÞ to ð5th mSI : : mSO:6th mUSÞ with a waterfall appearing. The set of ð5th mSO : : mSI-oSO:6th mLSÞ flower-bundle switching bifurcation for mSI-oSO and mSO
4.2 Simple Fixed-Point Bifurcations a0 > 0
mSO
b1(i1 )
mSI-oSO
mSO
mSI-oSO
4th mLS
a0 < 0
b1(i2 ) b2(i1 )
6th mUS mSO
293
P-2
mSO
4th mUS
P-2 • •
(2r)th mUS
mSI-oSO mSO
P-2
(2r)th LS
P-2 • •
P-2 • •
mSI-oSO
•
mSO
b1(im )
mSI-oSO
P-2
mLS
4th
mSI-oSO
mSO
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
mSO
mSI-oSO
b2(im )
mUS
mSO
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
( i1 ) 1
b
a0 < 0
b1(i2 )
P-2
b2(i1 )
6th mUS mSI-oSO
mSO
b1(im )
(ii) mSO
mSI-oSO
P-2
mSO
xk∗
(i) a0 > 0
mSO
•
mSI-oSO
mSO
|| p ||
mSI-oSO
mSO P-2
xk∗
mSI-oSO P-2
6th LS mSI-oSO
mSI-oSO
b1(i1 ) b1(i2 )
mSO
b2(i2 )
mSO
P-2
b2(i1 )
6th mLS
b2(i2 )
mSO
mSI-oSO
6th mUS P-2
P-2
mSO
• • •
mSI-oSO
mSO
• •
P-2
•
mSO
mSI-oSO mSI-oSO P-2
P-2 (2r)th mUS
(2r)th mLS
P-2 • •
P-2
• •
mSI-oSO
•
mSI-oSO
b1(im )
mSO
mSO
P-2 mSI-oSO
|| p ||
Δ iq < 0 Δ iq = 0
(iii)
mSO
•
5th mSI mSI-oSO
xk∗
P-2
•
P-2 mSI-oSO
P-2
b2(i2 )
mSI-oSO P-2
•
4th
mSO
b2(i1 )
mSO
•
b1(i1 ) b1(i2 )
6th mLS
b2(i2 )
P-2 •
mSI-oSO
Δ iq > 0
b2(im )
b1(im )
5th mSO
xk∗ mSO
|| p ||
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
(iv)
Fig. 4.5 Stability and bifurcation. (i)ð6th mUS:mSO:4th mLS: : mSI-oSOÞ appearing bifurcation ða0 [ 0Þ: (ii) ð6th mLS:mSI-oSO:4th mUS: : mSOÞ appearing bifurcation ða0 \0Þ: (iii) ð6th mUS:6th mLS: : 5th mSIÞ switching-appearing bifurcation ða0 [ 0Þ: (iv) ð6th mLS:mSIoSO : 6th US: : 5th mSOÞ switching-appearing bifurcation in a (2m)th-degree polynomial discrete system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4 (2m)th-Degree Polynomial Discrete Systems
294
fixed-points is presented in Fig. 4.5(iv) for a0 \0: Such a flower-bundle switching bifurcation is from ðmSO:mSI-oSO:mSO:mSI-oSOÞ to ð5th mSI : : mSO:6th mUSÞ with a waterfall appearing. After the bifurcation, the waterfall fixed-points birth can be observed. The fixed-points before such a bifurcation are much less than after the bifurcation.
4.3
Higher-Order Fixed-Points Bifurcations
The afore-discussed appearing and switching bifurcations in the (2m)th degree polynomial system are relative to simple monotonic sources and monotonic sinks. As in Luo (2020a), the higher-order singularity bifurcations in the (2m)th degree polynomial discrete system can be for higher-order fixed-points (i.e., monotonic sinks, monotonic sources, monotonic upper-saddles, monotonic lower-saddles).
4.3.1
Appearing Bifurcations
Consider a (2m)th degree polynomial discrete system as xk þ 1 ¼ xk þ a0 Qðxk Þ *si¼1 ðx2k þ Bi xk þ Ci Þai ;
ð4:134Þ
where ai 2 f2l 1; 2lg . Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are ðiÞ
1 2
b1;2 ¼ Bi
1pffiffiffiffiffi Di ; Di 2
¼ B2i 4Ci 0; ð1Þ
ð1Þ
ðsÞ
ðsÞ
fa1 ; a2 ; . . .; a2s1 ; a2s g ¼ sortfb1 ; b2 ; . . .; b1 ; b2 g; aj aj þ 1 :
ð4:135Þ
There are four higher-order bifurcations as follows: ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order mUS ! appearing bifurcation 8 < ð2li 1Þth order mSO, xk ¼ a2i ; : ð2l 1Þth order mSI, x ¼ a ; i 2i1 k
ð4:136Þ
4.3 Higher-Order Fixed-Points Bifurcations
295
ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order mLS ! appearing bifurcation ( ð2li 1Þth order mSI, xk ¼ a2i ;
ð4:137Þ
ð2li 1Þth order mSO, xk ¼ a2i1 ; ð2li Þth order quadratics
ð2ð2li ÞÞth order mUS ! switching bifurcation 8 < ð2li Þth order mUS, xk ¼ a2i ;
ð4:138Þ
: ð2l Þth order mUS, x ¼ a ; i 2i1 k ð2li Þth order quadratics
ð2ð2li ÞÞth order mLS ! switching bifurcation 8 < ð2li Þth order mLS, xk ¼ a2i ;
ð4:139Þ
: ð2l Þth order mLS, x ¼ a : i 2i1 k (i) For ai ¼ 2li 1; the ð2ð2li 1ÞÞth order monotonic upper-saddle (mUS) appearing bifurcation is for the onset of the ð2li 1Þth order monotonic source (mSO) ðx ¼ a2i Þ and the ð2l 1Þth order monotonic sink (mSI) ðx ¼ a2i1 Þ with a2i [ a2i1 for a0 [ 0: (ii) For ai ¼ 2li 1; the ð2ð2li 1ÞÞth order monotonic lower-saddle (mLS) appearing bifurcation is for the onset of the ð2li 1Þth order monotonic sink (mSI) ðx ¼ a2i Þ and the ð2li 1Þth order monotonic source (mSO) ðx ¼ a2i1 Þ with a2i [ a2i1 for a0 \0: (iii) For ai ¼ 2li ; the ð2ð2li ÞÞth order monotonic upper-saddle (mUS) appearing bifurcation is for the onset of two ð2li Þth order monotonic upper-saddles (mUS) ðx ¼ a2i1 ; a2i Þ with a2i 6¼ a2i1 for a0 [ 0: (iv) For ai ¼ 2li ; the ð2ð2li ÞÞth order monotonic lower-saddle (mLS) appearing bifurcation is for the onset of two ð2li Þth order monotonic lower-saddles (mLS) ðx ¼ a2i1 ; a2i Þ with a2i 6¼ a2i1 for a0 \0: From the higher-order singular bifurcation conditions, in a (2m)th degree polynomial discrete system, the higher-order saddle-node bifurcations for appearing and switching of the higher-order fixed-points are discussed herein. A set of paralleled different higher order monotonic upper-saddle appearing bifurcations in the (2m)th degree polynomial nonlinear discrete system is called a ðð2a1 Þth mUS:(2a2 Þth mUS: : ð2as Þth mUSÞ parallel appearing bifurcation for a0 [ 0:
4 (2m)th-Degree Polynomial Discrete Systems
296
Define ðð2a1 Þth mUS:(2a2 Þth mUS: : ð2as Þth mUSÞ ¼ ð2a1 : 2a2 : : 2as Þth mUS ð4:140Þ where ai 2 f2li 1; 2li g for i ¼ 1; 2; . . .; s: Such an appearing bifurcation is called a ð2a1 : 2a2 : : 2as Þth mUS teethcomb appearing bifurcation. Similarly, a set of paralleled different higher order lower-saddle appearing bifurcations in the (2m)th degree polynomial nonlinear system is called a ðð2a1 Þth mLS:(2a2 Þth mLS: : ð2as Þth mLSÞ parallel appearing bifurcation for a0 \0: Define ðð2a1 Þth mLS:(2a2 Þth mLS: : ð2as Þth mLSÞ ¼ ð2a1 : 2a2 : : 2as Þth mLS ð4:141Þ where ai 2 f2li 1; 2li g for i ¼ 1; 2; . . .; s: Such an appearing bifurcation is called a ð2a1 : 2a2 : : 2as Þth mLS teethcomb appearing bifurcation. Consider a 1-dimensional polynomial system as xk þ 1 ¼ xk þ a0 Qðxk Þ *ni¼1 ðx2k þ Bi xk þ Ci Þai
ð4:142Þ
where ai 2 f2ri 1; 2ri g ði ¼ 1; 2; . . .; nÞ: Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are ðiÞ
1 2
xk;1;2 ¼ Bi
1pffiffiffiffiffi Di ; Di 2
¼ B2i 4Ci 0; ð4:143Þ
Bi ¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ ð1Þ
ð1Þ
ð2Þ
ð2Þ
ðrÞ
ðrÞ
fa1 ; a2 ; . . .; a2l g 2 sortfxk;1 ; xk;2 ; xk;1 ; xk;2 ; . . .; xk;1 ; xk;2 g; ai ai þ 1 : The higher-order singularity bifurcation can be for a cluster of higher-order monotonic sinks, monotonic sources, monotonic upper-saddles, and monotonic lower-saddles. There are four higher-order bifurcations as follows: For the higher-order upper-saddle appearing bifurcation, the cluster of higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower saddles is given by the following two cases: (i) The ð2ð2l 1ÞÞth order US spraying appearing bifurcation for a cluster of fixed points with higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic-lower-saddles is
4.3 Higher-Order Fixed-Points Bifurcations
297
a cluster of 2nmXX
ð2ð2l 1ÞÞth order mUS ! appearing bifurcation 8 ða Þth order mXX for xk ¼ a2n ; > > > 2n > > > th > < ða2n1 Þ order mXX for xk ¼ a2n1 ;
ð4:144Þ
.. > > > . > > > > : ða1 Þth order mXX for xk ¼ a1 ; where 2ð2l 1Þ ¼ Pni¼1 ai and the minimum and maximum fixed-points satisfy 8 < ð2r2n Þth order mUS, for a2n ¼ 2rn ;
ða2n Þth order mXX =
ða1 Þth order mXX =
: ð2r 1Þth order mSO, for a ¼ 2r 1; 2n 2n n 8 < ð2r1 Þth order mUS, for a1 ¼ 2r1 ;
ð4:145Þ
: ð2r 1Þth order mSI, for a ¼ 2r 1: 1 1 1
(ii) The ð2ð2lÞÞth order mUS spraying-appearing bifurcation for a cluster of fixed points with higher-order monotonic sinks, monotonic sources, monotonic uppersaddles and monotonic lower-saddles is a cluster of 2nmXX
ð2ð2lÞÞth order mUS ! appearing bifurcation 8 ða2n Þth order mXX for xk ¼ a2n ; > > > > > > th > < ða2n1 Þ order mXX for xk ¼ a2n1 ;
ð4:146Þ
.. > > > . > > > > : ða1 Þth order mXX for xk ¼ a1 ; where 2ð2lÞ ¼ Pni¼1 ai and the minimum and maximum fixed-points satisfy ða2n Þth order mXX ¼
ða1 Þth order mXX ¼
8 < ð2r2n Þth order mUS, for a2n ¼ 2rn ;
: ð2r 1Þth order mSO, for a ¼ 2r 1; 2n 2n n 8 th < ð2r1 Þ order mUS, for a1 ¼ 2r1 ; : ð2r 1Þth order mSI, for a ¼ 2r 1: 1 1 1
ð4:147Þ
4 (2m)th-Degree Polynomial Discrete Systems
298
For the higher-order monotonic lower-saddle bifurcation, the cluster of the higher-order fixed-points is given by the following two cases. (iii) The ð2ð2l 1ÞÞth order mLS spraying-appearing bifurcation for a cluster of fixed-points with higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower-saddles is a cluster of 2nmXX
ð2ð2l 1ÞÞth order mLS ! appearing bifurcation 8 ða2n Þth order mXX, for xk ¼ a2n ; > > > > > > th > < ða2n1 Þ order mXX, for xk ¼ a2n1 ;
ð4:148Þ
.. > > > . > > > > : ða1 Þth order mXX, for xk ¼ a1 ; where 2ð2l 1Þ ¼ Pni¼1 ai and the minimum and maximum fixed-points satisfy ða2n Þth order mXX =
ða1 Þth order mXX =
8 < ð2r2n Þth order mLS, for a2n ¼ 2rn ;
: ð2r 1Þth order mSI, for a ¼ 2r 1; 2n 2n n 8 th < ð2r1 Þ order mLS, for a1 ¼ 2r1 ;
ð4:149Þ
: ð2r 1Þth order mSO, for a ¼ 2r 1: 1 1 1
(iv) The ð2ð2lÞÞth order LS spraying-appearing bifurcation for a cluster of fixedpoints with higher-order monotonic sinks, monotonic sources, monotonic uppersaddles and monotonic lower-saddles is a cluster of 2nmXX
ð2ð2lÞÞth order mLS ! appearing bifurcation 8 ða2n Þth order mXX, for xk ¼ a2n ; > > > > > > th > < ða2n1 Þ order mXX, for xk ¼ a2n1 ;
ð4:150Þ
.. > > > . > > > > : ða1 Þth order mXX, for xk ¼ a1 ; where 2ð2lÞ ¼ Pni¼1 ai and the minimum and maximum fixed-points satisfy
4.3 Higher-Order Fixed-Points Bifurcations
ða2n Þth order mXX =
ða1 Þth order mXX =
299
8 < ð2r2n Þth order mLS, for a2n ¼ 2rn ;
: ð2r 1Þth order mSI, for a ¼ 2r 1; 2n 2n n 8 < ð2r1 Þth order mLS, for a1 ¼ 2r1 ;
ð4:151Þ
: ð2r 1Þth order mSO, for a ¼ 2r 1: 1 1 1
A set of paralleled, different, higher-order monotonic upper-saddle-node appearing bifurcations in the (2m)th-degree polynomial system is the ðð2b1 Þth mUS: ð2b2 Þth mUS: : ð2bs Þth mUSÞ parallel appearing bifurcation for clusters of fixed-points with higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower saddles. For the ð2bi Þth mUS ( th
ð2bi Þ mUS =
ð2ð2li 1ÞÞth order mUS, for bi ¼ 2li 1; ð2ð2li ÞÞth order mUS, for bi ¼ 2li :
ð4:152Þ
Similarly, the following notation is introduced as ðð2b1 Þth mUS:(2b2 Þth mUS: : ð2bs Þth mUSÞ¼ð2b1 : 2b2 : : 2bs Þth mUS: ð4:153Þ Thus, the paralleled ð2b1 : 2b2 : : 2bs Þth mUS spraying appearing bifurcation is called the ð2b1 : 2b2 : : 2bs Þth mUS sprinkler-spraying appearing bifurcation for the higher-order fixed-points. Similarly, a set of paralleled different lower-saddle appearing bifurcations for higher-order singularity of fixed-points is called the ðð2b1 Þth mLS:(2b2 Þth mLS: : ð2bs Þth mLSÞ parallel appearing bifurcation in the (2m)th-degree polynomial discrete system. Thus, the paralleled ð2b1 : 2b2 : : 2bs Þth mLS bifurcation is also called the ð2b1 : 2b2 : : 2bs Þth mLS sprinklerspraying appearing bifurcation for higher-order fixed-points. The ð2a1 : 2a2 : : 2an Þth mUS and ð2a1 : 2a2 : : 2an Þth mLS teethcomb appearing bifurcations for the higher-order singularity of fixed-points are presented in Figs. 4.6(i) and (ii) for a0 [ 0 and a0 \0, respectively. The components of the teethcomb appearing bifurcation are aj1 ¼2rj1
ð2aj1 Þth mUS !
8 < ð2rj1 Þth mUS
ðj ¼ i; n 1; Þ; : ð2r Þth mUS 1 j1 8 < ð2rj2 1Þth mSO aj2 ¼2rj2 1 ðj2 ¼ 1; n; Þ; ð2aj2 Þth mUS ! appearing : ð2rj2 1Þth mSI appearing
ð4:154Þ
4 (2m)th-Degree Polynomial Discrete Systems
300 a0 > 0
(2rn − 1) th mSO
b1(i1 )
a0 < 0
(2rn − 1) th mSI
(2(2rn − 1)) th mUS
b2(i1 )
b1(i2 )
(2rn −1 ) th mLS
b1(i2 )
(2rn −1 ) th mLS
b2(i2 )
(2(2rn −1 )) th mLS
2((2rn −1 )) th mUS th
(2rn −1 ) mUS • • •
b2(i2 )
• • •
(2ri ) th mUS
(2ri ) th mLS
(2(2ri )) th mLS
(2(2ri )) th mUS
(2ri ) th mLS
th
(2ri ) mUS •
•
Δ Δ
• •
(2r1 − 1) th mSO
• •
Δ
(2r1 − 1) th mSI
( in ) 1
b
(2(2r1 − 1)) th mUS
x
(2r1 − 1) th mSI
∗ k
x b2(in )
Δ iq > 0
Δ iq < 0 Δ iq = 0
(2r1 − 1) th mSO
b2(in )
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(i)
(ii) (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 1) th mSI
(2rn − 1) th mSO
2((2ls )) th mUS
th
(2(2ls )) mLS
(2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO
(2rn −3 − 1) th mSO
(2rn −3 − 1) th mSI
(2rn − 4 − 1) th mSI
(2rn − 4 − 1) th mSO
(2(2ls −1 )) th mUS
(2(2ls −1 )) th mLS (2rn −3 − 1) th mSO
(2rn −3 − 1) th mSI
(2rn − 4 − 1) th mSI
• • •
(2rn − 4 − 1) th mSO
• • •
th
(2ri ) mUS
(2ri ) th mLS
(2ri −1 ) th mUS (2ri − 2 − 1) th mSO
(2ri −1 ) th mLS (2ri − 2 − 1) th mSI
th
(2ri −3 − 1) mSI 2((2lr )) th mUS
(2ri −3 − 1) th mSO (2(2lr )) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
(2ri −1 ) th mLS
(2ri −1 ) th mUS
th
• •
(2ri −3 − 1) mSI
• •
(2ri ) th mUS
•
(2ri −3 − 1) th mSO (2ri ) th mLS
•
(2r2 ) th mUS
(2r2 ) th mLS
(2r1 − 1) th mSO
(2r1 − 1) th mSI
(2(2l1 − 1)) th mUS
(2(2l1 − 1)) th mLS
xk∗
(2r1 − 1) th mSI
xk∗
(2r1 − 1) th mSO
(2r2 ) th mUS
|| p ||
b1(in )
[2(2r1 − 1)]th mLS
∗ k
|| p ||
b1(i1 )
(2rn − 1) th mSO
(2(2rn − 1)) th mLS
b2(i1 ) (2rn −1 ) th mUS
(2rn − 1) th mSI
Δ iq < 0 Δ iq = 0
(iii)
Δ iq > 0
(2r2 ) th mLS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.6 The teethcomb appearing bifurcations of ð2ð2r1 1Þ : : 2ð2rn1 Þ : 2ð2rn 1ÞÞth mXX: (i) XX ¼ USða0 [ 0Þ and (ii) XX ¼ LSða0 \0Þ. The sprinkler-spraying appearing bifurcations of ð2ð2l1 1Þ : : ð2ð2ln1 Þ : 2ð2ln ÞÞth mXX: (iii) XX ¼ USða0 [ 0Þ and (iv) XX ¼ LSða0 \0Þ: mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4.3 Higher-Order Fixed-Points Bifurcations
301
and aj1 ¼2rj1
ð2aj1 Þth mLS !
8 < ð2rj1 Þth mLS
ðj1 ¼ i; n 1; Þ; ð2rj1 Þth mLS 8 < ð2rj2 1Þth mSI a ¼2r 1 j j 2 2 th ðj2 ¼ 1; n; Þ: ð2aj2 Þ mLS ! appearing : ð2rj2 1Þth mSO appearing :
ð4:155Þ
The ð2b1 : 2b2 : : 2bn Þth mUS and ð2b1 : 2b2 : : 2bs Þth mLS sprinklerspraying appearing bifurcations for the higher-order singularity of fixed-points are presented in Figs. 4.6(iii) and (iv) for a0 [ 0 and a0 \0, respectively. The components of the sprinkler-spraying appearing bifurcation are ð2b1 : 2b2 : : 2bn Þth mUS ¼ ðð2ð2l1 1Þ : : 2ð2li Þ : : 2ð2ln1 Þ : 2ð2ln ÞÞth mUS
ð4:156Þ
and ð2b1 : 2b2 : : 2bn Þth mLS ¼ ðð2ð2l1 1Þ : : 2ð2li Þ : : 2ð2ln1 Þ : 2ð2ln ÞÞth mLS:
ð4:157Þ
For a cluster of m-quadratics, Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ and Di ¼ 0 ði ¼ 1; 2; . . .; nÞ: The (2m)th order monotonic upper-saddle appearing bifurcation for n-pairs of the higher-order singularity of fixed-points is 8 > ða2n Þth order mXX for xk ¼ a2n ; > > > > > < ða2n1 Þth order mXX for xk ¼ a2n1 ; a cluster of 2n-mXX th ð2mÞ order mUS ! . >. appearing bifurcation > . > > > > : ða Þth order mXX for x ¼ a ; 1 1 k ð4:158Þ where 2m ¼ 2ð2lÞ ¼
X2n
i¼1 ai ; 2m
¼ 2ð2l 1Þ ¼
X2n
i¼1 ai :
ð4:159Þ
The (2m)th order monotonic lower-saddle-node appearing bifurcation for higher-order fixed-points is
302
4 (2m)th-Degree Polynomial Discrete Systems
8 > ða2n Þth order mXX for xk ¼ a2n ; > > > > > < ða2n1 Þth order mXX for xk ¼ a2n1 ; a cluster of 2n-mXX th ð2mÞ order mLS ! . appearing bifurcation > >. . > > > > : ða Þth order mXX for x ¼ a : 1 1 k ð4:160Þ The (2m)th order upper-saddle appearing bifurcation with n-pairs of higher-order singularity of fixed-points is a sprinkler-spraying cluster of the n-pairs of higher-order singularity of fixed-points. The (2m)thorder monotonic lower-saddle appearing bifurcation with n-pairs of fixed-points is also a sprinkler-spraying cluster of the n-pairs of higher-order singularity of fixed-points. Thus, the (2m)th order mUS bifurcation ða0 [ 0Þ and (2m)th order mLS bifurcation ða0 \0Þ are presented in Fig. 4.7(i)–(iv), respectively. The (2m)th order monotonic upper-saddle appearing bifurcation for higher-order singularity of fixed-points is called the (2m)th order mUS sprinkler-spaying appearing bifurcation, and the (2m)th order monotonic lower saddle-node appearing bifurcation for higher-order singularity of fixed-points is also called the (2m)th order mLS sprinkler-spraying appearing bifurcation. A series of the monotonic saddle-node bifurcations for higher-order singularity of fixed-points is aligned up with varying with parameters, which is formed a special pattern. For n-quadratics in the (2m)th order polynomial discrete systems, the following conditions should be satisfied. Bi Bj i; j 2 f1; 2; . . .; sg; i 6¼ j; Di [ Di þ 1 ði ¼ 1; 2; . . .; s; s n\mÞ; Di ¼ 0 with jjpi jj\jjpi þ 1 jj:
ð4:161Þ
The two series of the fish-scale switching bifurcations in Fig. 4.8(i) and (iii) for a0 \0 have the following detailed structures. 8 8 < ð2r1 1Þth mSO, > > th > > ð2ð2r1 1ÞÞ mUS ! > > : ð2r 1Þth mSI; > > 1 > > > 8 > > th > < ð2r2 Þ mLS, > > > < ð2ð2r2 ÞÞth mLS ! : ð2r Þth mLS; ð4:162Þ 2 > > > > .. > > . > > > 8 > > > < ð2rn 1Þth mSO, > > th > > ð2ð2r 1ÞÞ mUS ! n > : : ð2r 1Þth mSI; n
4.3 Higher-Order Fixed-Points Bifurcations
303
(2r1 − 1) th mSO
a0 > 0
(2r1 − 1) th mSI
a0 < 0
(2r2 ) th mLS
(2r2 ) th mUS
(2r3 ) th mLS
(2r3 ) th mUS
(2ri − 1) th mSI
(2(2l − 1)) th mUS
(2ri − 1) th mSO
th
(2rl − 1) mSO (2(2l − 1)) th mLS
(2ri − 1) th mSI
x∗
(2r2 ) th mLS
(2rl − 1) th mSI
x∗
(2r2 ) th mUS
(2r1 − 1) th mSI
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(2r1 − 1) th mSO
|| p ||
Δ iq > 0
Δ iq < 0 Δ iq = 0
(i)
(ii) (2r1 ) th mUS
a0 > 0
(2r1 ) th mLS
a0 < 0
(2r2 − 1) th mSO
(2r2 − 1) th mSI
(2r3 ) th mLS
(2r3 ) th mUS
(2ri − 1) th mSI
(2ri − 1) th mSO
th
(2rn ) mUS
(2(2l )) th mUS
(2ri − 1) th mSO
(2ri − 1) th mSI
(2r3 ) th mLS
(2r3 ) th mUS
(2r2 − 1) th mSI
(2rn ) th mUS
x∗
(2r2 − 1) th mSO
(2r1 ) th mUS
Δ iq > 0
Δ iq < 0 Δ iq = 0
(iii)
(2rn ) th mLS
(2(2l )) th mLS
(2rn ) th mLS
x∗
|| p ||
(2ri − 1) th mSO
(2r3 ) th mLS
(2r3 ) th mUS (2rl − 1) th mSO
(2rl − 1) th mSI
(2r1 ) th mLS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.7 Spraying appearing bifurcations for higher-order fixed-points in the (2m)th polynomial system: (i) ð2ð2l 1ÞÞth mUS spraying-appearing bifurcation ða0 [ 0Þ, (ii) ð2ð2l 1ÞÞth mLS spraying appearing bifurcation ða0 \0Þ, (iii) ð2ð2lÞÞth mUS spraying appearing bifurcation ða0 [ 0Þ, (iv)ð2ð2lÞÞth mUS spraying appearing bifurcation ða0 \0Þ: mLS: monotonic-lowersaddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
and 8 8 < ð2r1 Þth mUS, > > th > > ð2ð2r1 ÞÞ mUS ! > > : ð2r Þth mUS; > > 1 > > > 8 > > > < ð2r2 1Þth mSO, > > th > < ð2ð2r2 1ÞÞ mUS ! : ð2r 1Þth mSI; 2 > > > > .. > > . > > > 8 > > > < ð2rn 1Þth mSO, > > th > > ð2ð2r 1ÞÞ mUS ! n > : : ð2r 1Þth mSI: n
ð4:163Þ
4 (2m)th-Degree Polynomial Discrete Systems
304 a0 > 0
(2r2 ) th mLS
(2r1 − 1) th mSO
(2(2r1 − 1)) th mUS
(2(2r2 )) th mLS (2(2r3 )) th mLS
(2(2ri − 1)) th mLS
• • •
(2r3 ) th mLS
(2ri − 1) th mSI
(2rn − 1) th mSO
(2(2rn − 1)) th mUS
• • •
x∗ (2r1 − 1) th mSI
|| p ||
(2r2 ) th mLS
Δr < 0
(2r3 ) th mLS
(2ri − 1) th mSO
(2rn − 1) th mSI
Δr > 0
Δr = 0
(i) a0 < 0
[2(2r1 − 1)]th mLS
(2r1 − 1) th mSI
(2(2r2 )) th mUS (2(2r3 )) th mUS
• • •
(2r2 ) th mUS
(2(2ri − 1)) th mUS
(2r3 ) th mUS
(2ri − 1) th mSO
(2rn − 1) th mSI
(2(2rn − 1)) th mLS
• • •
x∗ (2r1 − 1) th mSO
|| p ||
Δr < 0
(2r2 ) th mUS
Δr = 0
(2r3 ) th mUS
(2ri − 1) th mSI
(2rn − 1) th mSO
Δr > 0
(ii) a0 > 0
(2(2r1 )) th mUS
(2r1 ) th mUS
(2(2r2 − 1)) th mUS (2(2r3 )) th mLS
(2(2ri − 1)) th mLS
• • •
(2r3 ) th mLS
(2r2 − 1) th mSO
(2ri − 1) th mSI
(2rn − 1) th mSO
(2(2rn − 1)) th mUS
• • •
x∗ (2r1 ) th mUS
|| p ||
(2r3 ) th mLS
(2r2 − 1) th mSI
Δr < 0
Δr = 0
(2ri − 1) th mSO
(2rn − 1) th mSI
Δr > 0
(iii) a0 < 0
(2(2r1 )) th mLS
th
(2r2 − 1) th mSI
(2r1 ) mLS
(2(2r2 − 1)) th mLS (2(2r3 )) th mUS
• • •
(2(2ri − 1)) th mUS
(2r3 ) th mUS
• • •
(2ri − 1) th mSO
(2rn − 1) th mSI
(2(2rn − 1)) th mLS
x∗ (2r1 ) th mLS
|| p ||
(2r2 − 1) th mSO
Δr < 0
Δr = 0
(2r3 ) th mUS
(2ri − 1) th mSI
(2rn − 1) th mSO
Δr > 0
(iv) Fig. 4.8 The fish-scale appearing bifurcation patterns in a (2m)th-degree polynomial discrete system: (i) ð2ð2r1 1ÞÞth mUS - (2ð2r2 ÞÞth mLS - . . .ða0 [ 0Þ, (ii) ð2ð2r1 1ÞÞth mLS - (2ð2r2 ÞÞth mUS - . . .ða0 \0Þ, (iii) ð2ð2r1 ÞÞth mUS - (2ð2r2 ÞÞth mUS - . . .ða0 [ 0Þ, (iv)ð2ð2r1 ÞÞth mLS ð2ð2r2 1ÞÞth mLS - . . .ða0 [ 0Þ: mLS: monotonic-lower-saddle, mUS: monotonic-uppersaddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4.3 Higher-Order Fixed-Points Bifurcations
305
Two series of fish-scale appearing bifurcations in Fig. 4.8(ii) and (iv) for a0 \0 have the following structures as 8 8 < ð2r1 1Þth mSI, > > th > > ð2ð2r1 1ÞÞ mLS ! > > : ð2r 1Þth mSO; > > 1 > > > 8 > > th > < ð2r2 Þ mUS, > > > < ð2ð2r2 ÞÞth mUS ! : ð2r Þth mUS; ð4:164Þ 2 > > > > . > .. > > > > 8 > > > < ð2rn 1Þth mSI, > > th > > ð2ð2r 1ÞÞ mLS ! n > : : ð2r 1Þth mSO; n and 8 8 < ð2r1 Þth mLS, > > th > > ð2ð2r ÞÞ mLS ! 1 > > : ð2r Þth mLS; > > 1 > > > 8 > > > < ð2r2 1Þth mSI, > > th > < ð2ð2r2 1ÞÞ mLS ! : ð2r 1Þth mSO; 2 > > > > .. > > . > > > 8 > > > < ð2rn 1Þth mSI, > > th > > > : ð2ð2rn 1ÞÞ mLS ! : ð2rn 1Þth mSO:
ð4:165Þ
The four fish-scale appearing bifurcation patterns for higher-order fixed-points are different from the fish-scale appearing bifurcation patterns for simple fixed-points.
4.3.2
Switching Bifurcations
Consider the roots of ðx2k þ Bi xk þ Ci Þai ¼ 0 as
4 (2m)th-Degree Polynomial Discrete Systems
306 ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ
ðiÞ
ðiÞ
ðiÞ
xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ; ) Bi 6¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ
ð4:166Þ
The ath i -order singularity bifurcation is for the switching of a pair of higher order fixed-points (i.e., monotonic sinks, monotonic sources, monotonic-upper-saddles and monotonic-lower-saddles). There are six switching bifurcations for i 2 f1; 2; . . .; ng ðiÞ
ðiÞ
li ¼r1 þ r2 1
ð2li Þth order mUS ! switching bifurcation 8 ðiÞ th < ð2r2 1Þ order mSO # mSI, for bðiÞ 2 ¼ a2i # a2i1 ;
ð4:167Þ
: ð2r ðiÞ 1Þth order mSI " mSO, for bðiÞ ¼ a 2i1 " a2i ; 1 1 ðiÞ
ðiÞ
li ¼r1 þ r2 1
ð2li Þth order mLS ! switching bifurcation 8 ðiÞ < ð2r2 1Þth order mSI # mSO, for bðiÞ 2 ¼ a2i # a2i1 ;
ð4:168Þ
: ð2r ðiÞ 1Þth order mSO " mSI, for bðiÞ ¼ a 2i1 " a2i ; 1 1 ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li Þth order mUS ! switching bifurcation 8 < ð2r2ðiÞ Þth order mUS # mUS, for bðiÞ 2 ¼ a2i # a2i1 ; :
ðiÞ
ð4:169Þ
ðiÞ
ð2r1 Þth order mUS " mUS for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li Þth order mLS ! switching bifurcation 8 ðiÞ th < ð2r2 Þ order mLS # mLS, for bðiÞ 2 ¼ a2i # a2i1 ; :
ðiÞ
ð4:170Þ
ðiÞ
ð2r1 Þth order mLS " mLS for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li 1Þth order mSO ! switching bifurcation 8 ðiÞ th < ð2r2 1Þ order mSO # mSO, for bðiÞ 2 ¼ a2i # a2i1 ; :
ðiÞ
ðiÞ
ð2r1 Þth order mLS " mUS for b1 ¼ a2i1 " a2i ;
ð4:171Þ
4.3 Higher-Order Fixed-Points Bifurcations ðiÞ li ¼r1
307 ðiÞ þ r2
ð2li 1Þth order mSI ! switching bifurcation 8 ðiÞ th < ð2r2 1Þ order mSI # mSI, for bðiÞ 2 ¼ a2i # a2i1 ;
ð4:172Þ
: 2r ðiÞ Þth order mUS " mLS for bðiÞ ¼ a 2i1 " a2i : 1 1 A set of n-paralleled higher-order mXX switching bifurcations is called a ðða1 Þth mXX:ða2 Þth mXX: : ðan Þth mXXÞ parallel switching bifurcation in the (2m)th degree polynomial nonlinear discrete system. Such a bifurcation is also called a ðða1 Þth mXX:ða2 Þth mXX: : ðan Þth mXXÞ antenna switching bifurcation. ai 2 f2li ; 2li 1g and XX 2 fSO, SI, US, LSg. For non-switching points, Di [ 0 ðiÞ ðiÞ ðiÞ ðiÞ at b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ: At the bifurcation point, Di ¼ 0 at b1 ¼ b2 th th th ði ¼ 1; 2; . . .; nÞ: The ðða1 Þ mXX:ða2 Þ mXX: : ðan Þ mXXÞ parallel antenna switching bifurcation is 8 8 ðnÞ ðnÞ < ðr2ðnÞ Þth mXXðnÞ > th > th 2 # mYY1 ; for b2 ¼ a2n # a2n1 ; n bifurcation > > a mXX ! n > n > ðnÞ ðnÞ ðnÞ switiching : ðnÞ th > > ðr1 Þ mXX1 " mYY2 ; for b1 ¼ a2n1 " a2n ; > > > > > .. > > > . > < 8 ð2Þ ð2Þ < ðr2ð2Þ Þth mXXð2Þ nd 2 # mYY1 ; for b2 ¼ a4 # a3 ; 2 bifurcation > th > a mXX2 ! > > ð2Þ ð2Þ ð2Þ switiching : ð2Þ th > 2 > ðr1 Þ mXX1 " mYY2 ; for b1 ¼ a3 " a4 ; > > > 8 > > ð1Þ ð1Þ > < ðr2ð1Þ Þth mXXð1Þ > > 2 # mYY1 ; for b2 ¼ a2 # a1 ; 1st bifurcation th > > ! > : a1 mXX1 ð1Þ ð1Þ ð1Þ switiching : ð1Þ th ðr1 Þ mXX1 " mYY2 ; for b1 ¼ a1 " a2 : ð4:173Þ Such eight sets of parallel switching bifurcations of ðða1 Þth mXX:ða1 Þth mXX: : ðan Þth mXXÞ are presented in Fig. 4.9(i, iii, v, vii) and (ii, iv, vi, viii) for a0 [ 0 and a0 \0, respectively. The eight switching bifurcation structures are as follows: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
ðð2l1 Þth mUS: : ð2ln1 1Þth mSO:(2ln Þth mUSÞ for a0 [ 0, ðð2l1 Þth mLS: : ð2ln1 1Þth mSI:(2ln Þth mLSÞ for a0 \0, ðð2l1 Þth mLS: : ð2ln1 1Þth mSI:(2ln 1Þth mSOÞ for a0 [ 0, ðð2l1 Þth mUS: : ð2ln1 1Þth mSO:(2ln 1Þth mSIÞ for a0 \0, ðð2l1 Þth mLS: : ð2ln1 1Þth mSI:(2ln 1Þth mSOÞ for a0 [ 0, ðð2l1 Þth mUS: : ð2ln1 1Þth mSI:(2ln 1Þth mSIÞ for a0 \0, ðð2l1 Þth mUS: : ð2ln1 1Þth mSO:(2ln Þth mUSÞ for a0 [ 0, ðð2l1 Þth mLS: : ð2ln1 1Þth mSI:(2ln Þth mLSÞ for a0 \0:
4 (2m)th-Degree Polynomial Discrete Systems
308 a0 > 0
(2r2 n − 1) th mSO
a2n
a0 < 0
(2r2 n − 1) th mSI
th
(2ln ) mUS
(2ln ) mLS (2r2 n −1 − 1) th mSI
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSI
a2 n−1 (2r2 n − 1) th mSI
th
(2r2 n − 2 ) mUS
a2 n−1 (2r2 n − 1) th SO
a2 n−2
(2r2 n −3 − 1) th mSI
a2 n−3
(2ln −1 − 1) th mSI
(2r2 n −3 − 1) th mSO
(2r2 n −3 − 1) th mSI (2r2 n −3 − 1) th mSO
a2 n−3 th
th
(2r2 n − 2 ) mLS
(2r2 n − 2 ) mUS
•
•
•
•
•
•
(2r2i ) th mLS
(2r2i −1 − 1) th mSI
(2r2i ) th mUS
(2r2i −1 − 1) th mSO
(2li − 1) th mSO
(2li − 1) th mSI
(2r2i −1 − 1) th mSI
(2r2i −1 − 1) th mSO
•
th
(2r2i ) mUS
•
th
(2r2i ) mLS
• • th
(2r2 ) mUS
(2r1 ) th mUS
• •
a2 (2r1 ) th mLS
(2l1 ) th mUS
(2r2 ) th mLS
(2r1 ) th mUS
a1
Δ iq > 0
Δ iq > 0 Δ iq = 0
(2r1 ) th mLS
xk∗
|| p ||
Δ iq > 0
Δ iq > 0 Δ iq = 0
(ii)
a0 > 0
(2r2 n ) th mUS
a2n
a0 < 0
(2r2 n ) th mLS
(2ln − 1) th mSO
a2n
(2ln − 1) th mLS (2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSI
(2r2 n −1 − 1) th mSI
a2 n−1 (2r2 n ) th mLS
th
(2r2 n − 2 ) mLS
a2 n−1 (2r2 n ) th mUS
a2 n−2
(2r2 n − 2 ) mUS
a2 n−2
(2r2 n −3 − 1) th mSO
a2 n−3
th
(2ln −1 − 1) th mSI
(2ln −1 − 1) th mSO
(2r2 n −3 − 1) th mSI
(2r2 n −3 − 1) th mSO (2r2 n −3 − 1) th mSI
(2r2 n − 2 ) th mUS
a2 n−3 (2r2 n − 2 ) th mLS
•
•
• •
• •
(2r2i ) th mUS
(2r2i −1 − 1) th mSO
(2r2i ) th mLS
(2r2i −1 − 1) th mSI
(2li − 1) th mSO
(2li − 1) th mSI
(2r2i −1 − 1) th mSO • • •
(2r2i ) th mLS
(2r2i −1 − 1) th mSI
a2 (2r1 ) th mUS
(2l1 ) th mLS
(2r1 ) th mLS
(iii)
(2r2 ) th mUS
a2
(2l1 ) th mUS
(2r2 ) th mLS
Δ iq > 0 Δ iq = 0
• • •
(2r2i ) th mUS
(2r2 ) th mLS
(2r1 ) th mLS
|| p ||
a1
(2r2 ) th mLS
(i)
xk∗
a2
(2l1 ) th mLS
(2r2 ) th mUS
|| p ||
(2r2 n − 2 ) mLS
a2 n−2
th
(2ln −1 − 1) th mSO
xk∗
a2n
th
Δ iq > 0
a1 xk∗
(2r1 ) th mUS
a1
(2r2 ) th mUS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.9 Parallel antenna switching bifurcations for high-order fixed-points in a (2m)th-degree th th polynomial discrete system. ðath 1 mXX:a2 mXX:. . . : an mXXÞ: (i, iii, v, vii) for a0 [ 0: (ii, iv, vi, viii) for a0 \0: mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. Continued
4.3 Higher-Order Fixed-Points Bifurcations a0 > 0
(2r2 n − 1) th mSO
309
a2n
a0 < 0
(2r2 n − 1) th mSI
th
(2ln − 1) mSO
(2ln − 1) mSI (2r2 n −1 ) th mLS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mLS
a2 n−1 (2r2 n − 1) th mSO
th
(2r2 n − 2 ) mLS
a2 n−1 (2r2 n − 1) th mSI
a2 n−2
(2r2 n −3 − 1) th mSI
(2r2 n − 2 ) th mLS
• • •
• •
(2r2i ) th mUS
(2r2i −1 − 1) th mSO
(2r2i ) th mLS
(2r2i −1 − 1) th mSI
(2li − 1) th mSO
(2li − 1) th mSI
(2r2i −1 − 1) th mSO
(2r2i −1 − 1) th mSI
•
•
th
(2r2i ) mUS
• • th
(2r2 ) mLS
(2r1 ) th mLS
• •
a2
(2r1 ) th mLS
a1 x∗
Δ iq > 0
Δ iq > 0 Δ iq = 0
(2r1 ) th mUS
|| p ||
Δ iq > 0
Δ iq > 0 Δ iq = 0
(vi)
a0 > 0
(2r2 n ) th mUS
a2n
a0 < 0
(2r2 n ) th mLS
(2ln ) th mUS
a2n
(2ln ) th mLS (2r2 n −1 ) th mUS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mLS
(2r2 n −1 ) th mLS
a2 n−1 (2r2 n ) th mUS
(2r2 n − 2 ) th mUS
a2 n−1 (2r2 n ) th mLS
a2 n−2
(2r2 n − 2 ) th mLS
a2 n−2
(2r2 n −3 − 1) th mSI
a2 n−3
(2ln −1 − 1) th mSI
(2ln −1 − 1) th mSO (2r2 n −3 − 1) th mSO
(2r2 n −3 − 1) th mSI (2r2 n −3 − 1) th mSO
(2r2 n − 2 ) th mLS
a2 n−3 (2r2 n − 2 ) th mUS
•
•
• •
• •
(2r2i ) th mLS
th
(2r2i −1 − 1) mSI
(2r2i ) th mUS
th
(2r2i −1 − 1) SO
(2li − 1) th mSI
(2li − 1) th SO
(2r2i −1 − 1) th mSI
(2r2i −1 − 1) th mSO
•
(2r2i ) th mUS
(2r2 ) th mUS
(2r1 ) th mLS
a2
(2l1 ) mLS
(2r1 ) th mUS (2r2 ) th mUS
Fig. 4.9 (continued)
(2r2 ) th mLS
th
(2l1 ) mUS
(vii)
• •
a2
th
Δ iq > 0 Δ iq = 0
•
(2r2i ) th mLS
• •
(2r1 ) th mUS
|| p ||
a1
(2r2 ) th mUS
(v)
xk∗
a2
(2l1 ) th mUS
(2r2 ) th mLS
|| p ||
(2r2 ) th mUS
(2r1 ) th mUS
(2l1 ) th mLS
xk∗
a2 n−3
(2r2 n −3 − 1) th mSO
a2 n−3
•
(2r2i ) mLS
(2r2 n −3 − 1) th mSO
(2ln −1 − 1) th mSI
(2r2 n −3 − 1) th mSI
th
(2r2 n − 2 ) mUS
a2 n−2
th
(2ln −1 − 1) th mSI
(2r2 n − 2 ) th mUS
a2n
th
Δ iq > 0
a1 xk∗
(2r1 ) th mLS (2r2 ) th mLS
|| p ||
Δ iq > 0 Δ iq = 0
(viii)
Δ iq > 0
a1
4 (2m)th-Degree Polynomial Discrete Systems
310
The same switching bifurcations with different higher-order fixed-points are illustrated, which is different from the m-mUSN and m-mLSN for simple monotonic sinks and monotonic sources. Consider a switching bifurcation for a cluster of higher-order fixed-points with the following conditions, ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ
ðiÞ
ðiÞ
ðiÞ
xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ; 9 Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ = at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 = b2 ði ¼ 1; 2; . . .; nÞ ;
ð4:174Þ
Thus, the ðai Þth order switching bifurcation can be for a cluster of higher-order fixed-points. The ðai Þth order switching bifurcations for i 2 f1; 2; . . .; sg are ai ¼
Pl i
ðiÞ r j¼1 j
ðai Þth order mXX ! switching bifurcation 8 ðiÞ ðiÞ ðiÞ ðiÞ > ðrsðiÞ Þth order mXXli # mYYli ; for bli # ali ; > > > > > > .. > > > . > > < ðiÞ ðiÞ ðiÞ ðiÞ ðrj Þth order mXXj # mYYj ; for bj # aðiÞ s ; > > > > > .. > > > . > > > > : ðiÞ th ðiÞ ðiÞ ðiÞ ðr1 Þ order mXX1 " mYY1 ; for b1 # aðiÞ s ;
ð4:175Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
fa1 ; a2 ; . . .; ali1 ; ali g ðiÞ
ðiÞ
ðiÞ
ðiÞ
fb1 ; b2 ; . . .; bli1 ; bli g
ð1Þ
before bifurcation
After bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .; b1 ; b2 g; ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . .; b1 ; b2 g:
ð4:176Þ
A set of paralleled, different, higher-order upper-saddle-node switching bifurcations with multiplicity is the ðða1 Þth mXX:(a2 Þth mXX: : ðas Þth mXXÞ parallel switching bifurcation in the (2m)th degree polynomial discrete system. At the straw-bundle switching bifurcation, Di ¼ 0 ði ¼ 1; 2; . . .; nÞ and Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ: The parallel straw-bundle switching bifurcation for higher order fixed-points is
4.3 Higher-Order Fixed-Points Bifurcations
311
ðða1 Þth mXX:ða2 Þth mXX: : ðas Þth mXXÞ-switching 8 ðas Þth order mXX switching, > > > > > > > < ... ¼ > > > ða2 Þth order mXX switching, > > > > : ða1 Þth order mXX switching;
ð4:177Þ
ai 2 f2li ; 2li 1g and mXX 2 fmUS; mLS; mSO; mSIg:
ð4:178Þ
where
th Eight parallel straw-bundle switching bifurcations of ðath 1 mXX:a2 mXX: : are presented in Fig. 4.10 and Fig. 4.11 for a0 [ 0 and a0 \0, respectively.
ath n mXXÞ
4.3.3
Appearing-Switching Bifurcations
Consider a (2m)th degree polynomial discrete system in a form of ai n2 aj 2 1 xk þ 1 ¼ xk þ a0 Qðxk Þ *2n i¼1 ðxk ci Þ *j¼1 ðxk þ Bj xk þ Cj Þ :
ð4:179Þ
Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bj xk þ Cj ¼ 0 are ðjÞ
1 2
b1;2 ¼ Bj
1pffiffiffiffiffi Dj ; Dj 2
¼ B2j 4Cj 0
ð j ¼ 1; 2; . . .; n2 Þ;
ð4:180Þ
either fa 1 ; a2 ; . . .; a2n1 g ¼ sortfc1 ; c2 . . .; c2n1 g; as as þ 1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
þ g ¼ sortfc1 ; . . .; c2n1 ; b1 ; b2 ; . . .; b1 2 ; b2 2 g; fa1þ ; a2þ ; . . .; a2n 3
asþ
asþþ 1 ;
ð4:181Þ
n3 ¼ n1 þ n2 after bifurcation;
or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 ; a2 ; . . .; a2n3 g ¼ sortfc1 ; c2 . . .; c2n1 ; b1 ; b2 ; . . .; b1 ; b2 g;
a s as þ 1 ; n3 ¼ n1 þ n2 before bifurcation;
þ fa1þ ; a2þ ; . . .; a2n g 1
¼ sortfc1 ; . . .; c2n1 g;
asþ
ð4:182Þ asþþ 1
after bifurcation;
4 (2m)th-Degree Polynomial Discrete Systems
312 a0 > 0
a2n
(2r2 n − 2 − 1) th mSO
a2 n−1
th
(2ln ) mUS (2r2 n −1 ) th mLS (2r2 n − 1) th mSI
a0 > 0
(2r2 n − 1) th mSO
(2r2 n − 2 − 1) th mSO th
(2ln − 1) mSO
th
(2r2 n −1 ) mLS
a2 n−2
(2r2 n − 2 − 1) th mSI
a2 n−3
(2r2 n −3 ) th mUS
(2r2 n −1 ) th mLS (2r2 n ) th LS
(2ln −1 − 1) mSO
a2 n−3
(2r2 n − 4 − 1) th mSO
(2r2 n −3 ) mLS
• • •
(2r2i −1 − 1) mSI
(2li ) th mLS
• • •
(2r2i ) th mLS (2r1 ) th mLS
(2r2i − 2 ) th mUS
(2r2i − 2 ) th mLS
(2r2i −3 − 1) th mSO
(2r2i −1 − 1) th mSI
a3
a1
(2r2 n − 4 − 1) th mSI
a0 > 0
a2 n−1
(2ln − 1) mSO (2r2 n −1 ) th mUS (2r2 n − 1) th mSO
a2
(2l1 − 1) th SO (2r2 − 1) th mSO
xk∗
a3
a1
(2r3 ) th mUS
(2r2 − 1) th mSO (2r1 ) th mLS
(2r2 ) th mLS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(ii) a2n
th
(2r2i −1 − 1) th mSO
(2r2i − 2 ) th mLS
• • •
(2r2 − 1) th mSI (2r1 ) th mUS
(2r2i ) th mUS
(2r2i −3 − 1) th mSI
(2r1 ) th mUS
Δ iq > 0
Δ iq > 0 Δ iq = 0
(2r2 n − 2 ) th mUS
a0 > 0
(2r2 n − 1) th mSO
(2r2 n − 2 ) th mUS th
(2ln − 1) mSO
th
(2r2 n −1 ) mLS
a2 n−2
(2r2 n − 2 ) th mLS
a2 n−3
(2r2 n −3 ) th mLS
(2r2 n −1 − 1) th mSO (2r2 n ) th mLS
a2n
(2r2 n ) th mUS
a2 n−1
(2r2 n −1 − 1) th mSO
a2 n−2
(2r2 n − 2 ) th mLS
a2 n−3
(2r2 n −3 ) th mLS
th
th
(2ln −1 − 1) mSO
(2ln −1 − 1) mSI (2r2 n − 4 − 1) th mSI
(2r2 n − 4 − 1) th mSI
a2 n−3
(2r2 n − 4 − 1) th mSI
a2 n−3
(2r2 n − 4 − 1) th mSI
th
th
(2r2 n −3 ) mUS
• •
(2r2i −1 − 1) th mSI
(2r1 ) th mUS (2l1 − 1) th mSI
a3 a2 a1
(2r2 ) th mLS
Δ iq > 0 Δ iq = 0
(iii)
Δ iq > 0
(2r2i −1 − 1) th mSO
(2r2i −1 − 1) th mSO
(2r2i − 2 ) th mLS
(2r2i − 2 ) th mLS
(2r2i −3 − 1) th mSI
(2r2i −1 − 1) th mSI
(2li ) th mUS
(2r2i −3 − 1) th mSI
•
(2r1 ) th mUS
(2r2 − 1) th mSO
(2l1 − 1) th mSO
(2r1 ) th mLS
xk∗
(2r2i − 2 ) th mLS
• •
(2r2i ) th US
(2r3 ) th mUS
(2r2 − 1) th mSO
(2r2i ) th mUS
• •
(2r2i −1 − 1) mSO
(2li ) th mLS
(2r2i ) th mUS
•
th
(2r2i −1 − 1) th mSO
• • •
(2r2 n −3 ) mUS
(2r2i ) th mUS
•
|| p ||
(2r2 n −3 ) th mLS
(2li ) th mUS
(i)
xk∗
a2 n−3
• • •
(2r2i ) th mUS
(2r3 ) mLS
(2r2 ) th mUS
(2r2 − 1) th mSO
(2r2 n − 2 − 1) th mSO
(2r2i −1 − 1) th mSO
th
a2
(2l1 − 1) th mSI
(2r2 n −3 ) mUS
th
(2r2i −1 − 1) th mSO
(2r2i − 2 ) th mLS
a2 n−2
a2 n−3
(2r2i ) th mLS
(2r2i −1 − 1) th mSI
|| p ||
(2r2 n −1 ) th mUS
th
th
xk∗
a2 n−1
(2r2 n − 4 − 1) th mSI
(2r2 n − 4 − 1) th mSO
(2r2 − 1) th mSI
(2r2 n ) th mUS
(2ln −1 − 1) th mSI
th
(2r2i − 2 ) th mUS
a2n
a3 a2 a1
(2r3 ) th mUS
(2r2 − 1) th mSO (2r1 ) th mLS
(2r2 ) th mLS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.10 (i)–(iv) Four types of ðr1 th mXX:r2 th mXX: : rm th mXXÞ parallel switching bifurcation for a0 [ 0 in the (2m)th-degree polynomial system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4.3 Higher-Order Fixed-Points Bifurcations a0 < 0
a2n
(2r2 n − 2 − 1) th mSI
a2 n−1
th
(2ln ) mLS (2r2 n −1 ) th mUS (2r2 n − 1) th mSO
313 a0 < 0
(2r2 n − 1) th mSI
(2r2 n − 2 − 1) th mSI th
(2ln − 1) mSI
th
(2r2 n −1 ) mUS
a2 n−2
(2r2 n − 2 − 1) th mS
a2 n−3
(2r2 n −3 ) th mLS
(2r2 n −1 ) th mUS (2r2 n ) th mUS
(2ln −1 − 1) th mSI
a2 n−3 • •
(2r2 n − 4 − 1) th mS
th
(2r2i −1 − 1) mSO
(2r2i −1 − 1) th mSO
(2li ) mUS
(2r2i − 2 ) th mLS
(2r2i −1 − 1) mSI
th
(2r2i −3 − 1) mSI
•
(2r1 ) mUS
(2r2 n − 4 − 1) th mS
(2r2i ) th mLS
•
(2r2i −1 − 1) th mSI
(2r2i − 2 ) th mUS
th
(2r2i −1 − 1) mSO
(2r2i −3 − 1) th mSO •
a3 a2
th
(2l1 − 1) mSO
a1
•
th
(2r1 ) mLS
(2r1 ) th mLS
(2l1 − 1) mSI (2r2 − 1) th mSI
xk∗
Δ iq > 0
a3 a2
th
(2r2 − 1) th mSO
(2r2 ) mLS
Δ iq > 0 Δ iq = 0
•
(2r2i ) th LS
(2r3 ) th mUS
th
a1
(2r3 ) th mLS
(2r2 − 1) th mSI (2r1 ) th mUS
th
(2r2 ) mUS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(i)
(ii)
a0 < 0 (2r2 n − 2 ) th mLS (2ln − 1) th mSI (2r2 n −1 ) th mLS (2r2 n − 1) th mSI
a2n
(2r2 n − 1) th mSI
a2 n−1
(2r2 n −1 ) th mUS
a0 < 0 (2r2 n − 2 ) th mLS
a2 n−2
(2r2 n − 2 ) th mUS
a2 n−3
(2r2 n −3 ) th mUS
(2ln − 1) th mSI (2r2 n −1 − 1) th mSI (2r2 n ) th mUS
a2n
(2r2 n ) th mLS
a2 n−1
(2r2 n −1 − 1) th mSI
a2 n−2
(2r2 n − 2 ) th mUS
a2 n−3
(2r2 n −3 ) th mUS
th
th
(2ln −1 − 1) mSO
(2ln −1 − 1) mSI
(2r2 n − 4 − 1) th mSO
(2r2 n − 4 − 1) th mSO
a2 n−4
(2r2 n − 4 − 1) th mSO
a2 n−3
(2r2 n − 4 − 1) th mSO
th
th
(2r2 n −3 ) mLS
• •
(2r2 n −3 ) LS
(2r2i ) th mLS
•
th
(2r2i −1 − 1) mSI
(2r2i −1 − 1) th mSI
(2li ) th mLS
th
(2r2i −1 − 1) mSO
• •
(2r2i ) th mLS (2r1 ) th mLS (2l1 − 1) th mSI
a3 a2
(2r2 ) th mUS
(iii)
(2r2i ) th mLS
•
(2r2i −1 − 1) th mSI
(2r2i − 2 ) th mUS
(2r2i − 2 ) th mUS
(2r2i −3 − 1) th mSO
(2r2i −1 − 1) th mSO
(2li ) th mLS
(2r2i − 2 ) th mUS (2r2i −3 − 1) th mSO •
a1
Δ iq > 0 Δ iq = 0
• •
(2r2i −1 − 1) th mSI
•
|| p ||
(2r2 n −3 ) th mUS
(2li ) mLS
(2r2i − 2 ) th mUS
•
th
xk∗
a2 n−3
• •
•
(2r2i ) th mUS
(2r2 − 1) th mSI
(2r2 n − 2 − 1) th mS
th
th
(2r2i − 2 ) th mUS
a2 n−2
(2r2i −1 − 1) th mSI
th
|| p ||
(2r2 n −1 ) th mLS
a2 n−3 (2r2 n −3 ) th mLS
(2r2i ) th mUS
•
xk∗
a2 n−1
(2r2 n − 4 − 1) th mSO
(2r2 n −3 ) th mUS
(2r2 − 1) th mSO
(2r2 n ) th mLS
(2ln −1 − 1) th mSO
(2r2 n − 4 − 1) th mSI
(2r2i − 2 ) th mLS
a2n
Δ iq > 0
• •
(2r2i ) th mLS
(2r3 ) th mLS
(2r1 ) th mLS
(2r2 − 1) th mSI
(2r2 − 1) th mSI
(2l1 − 1) th mSI
th
(2r1 ) mUS
xk∗
a3 a2 a1
(2r3 ) th mLS
(2r2 − 1) th mSI (2r1 ) th mLS
(2r2 ) th mUS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.11 (i)–(iv) Four types of ðr1 th mXX:r2 th mXX: : rm th mXXÞ parallel switching bifurcation for a0 [ 0 in the (2m)th-degree polynomial discrete system. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4 (2m)th-Degree Polynomial Discrete Systems
314
and 9 Bj1 ¼ Bj2 ¼ ¼ Bjs ðjk1 2 f1; 2; . . .; ng; jk1 6¼ jk2 Þ > > = ðk1 ; k2 2 f1; 2; . . .; sg; k1 6¼ k2 Þ at bifurcation: Dj ¼ 0 ðj 2 U f1; 2; . . .; n2 g > > ; ci 6¼ 12Bj ði ¼ 1; 2; . . .; 2n1 ; j ¼ 1; 2; . . .; n2 Þ
ð4:183Þ
th th Consider a just before bifurcation of ððb 1 Þ mXX1 : ðb2 Þ mXX2 : : th ðb s1 Þ mXXs1 Þ for higher-order fixed-points. For bi ¼ 2li 1; XXi 2 fSO,SIg and for ai ¼ 2li ; XXi 2 fUS,LSg ði ¼ 1; 2; . . .; s1 Þ. The detailed structures are as follows.
9 Þth order mXXðiÞ ; xk ¼ aðiÞ ðrsðiÞ s si ; > > i > > > > > .. > > . > > > = bi ¼Psi rðiÞ j¼1 j ðiÞ th ðiÞ ðiÞ th ðiÞ !ðb ðrj Þ order mXXj ; xk ¼ aj i Þ order mXX switching bifurcation > > > > > .. > > . > > > > > ðiÞ th ðiÞ ðiÞ ; ðr1 Þ order mXX1 ; xk ¼ a1 ð4:184Þ th th th The bifurcation set of ððb 1 Þ mXX1 : ðb2 Þ mXX2 : : ðbs1 Þ mXXs1 Þ at the same parameter point is called a left-parallel-straw-bundle switching bifurcation. Consider a just after bifurcation of ððb1þ Þth mXX1þ : ðb2þ Þth mXX2þ : : ðbsþ2 Þth mXXsþ2 Þ for monotonic sources and monotonic sinks. For biþ ¼ 2liþ 1; XXiþ 2 fSO,SIg and for biþ ¼ 2liþ ; XXiþ 2 fUS,LSg . The detailed structures are as follows.
ðbiþ Þth order mXXðiÞ þ
8 ðiÞ þ th þ þ > ðrsi Þ order mXXðiÞ ; xk ¼ aðiÞ ; si si > > > > > > .. > > . > > > Psi ðiÞ þ < b ¼ r i j¼1 j ðiÞ þ ðiÞ þ ðiÞ þ ! ðrj Þth order mXXj ; xk ¼ aj switching bifurcation > > > > > .. > > . > > > > > : ðiÞ þ th ðiÞ þ ðiÞ þ ðr1 Þ order mXX1 ; xk ¼ a1 : ð4:185Þ
4.3 Higher-Order Fixed-Points Bifurcations
315
The bifurcation set of ððb1þ Þth mXX1þ : ðb2þ Þth mXX2þ : : ðbsþ2 Þth mXXsþ2 Þ at the same parameter point is called a right-parallel-straw-bundle switching bifurcation (i) For the just before and after bifurcation structure, if there exists a relation of th þ th th þ þ ðb i Þ mXXi ¼ ðbj Þ mXXj ¼ bj mXX, for xk ¼ ai ¼ aj
ði; j 2 f1; 2; . . .; kgÞ; XX 2 fUS,LS,SO,SIg
ð4:186Þ
then the bifurcation is a ðbj Þth mXXj switching bifurcation for higher-order fixed-points. (ii) Just for the just before bifurcation structure, if there exists a relation of th th ð2l i Þ mXXi ¼ ð2li Þ mXX, for xk ¼ ai ¼ ai
ði 2 f1; 2; . . .; s1 g; mXX 2 fmUS,mLSg
ð4:187Þ
then, the bifurcation is a ð2lÞth mXX left appearing (or right vanishing) bifurcation for higher-order fixed-points. (iii) Just for the just after bifurcation structure, if there exists a relation of ð2liþ Þth mXXiþ ¼ ð2li Þth mXX, for xk ¼ aiþ ¼ ai ði 2 f1; 2; . . .; s1 gÞ; XX 2 fUS,LSg
ð4:188Þ
then, the bifurcation is a ð2lÞth mXX right appearing (or left vanishing) bifurcation for higher-order fixed-points. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ðb i Þ mXXi 6¼ ðbj Þ mXXj for xk ¼ ai ¼ aj þ XX i ; XXj 2 fUS,LS, SO,SIg
ð4:189Þ
ði 2 f1; 2; . . .; s1 g; j 2 f1; 2; . . .; s2 gÞ; then, two flower-bundle switching bifurcations of higher-order fixed-points are as follows. (iv1) For bj ¼ bi þ 2l, the bifurcation is called a bth j mXX right flower-bundle th switching bifurcation for the bth i mXX to bj mXX switching of higher-
order fixed-points with the appearance (or birth) of ð2lÞth mXX right appearing (or left vanishing) bifurcation. (iv2) For bj ¼ bi 2l, the bifurcation is called a bth i mXX left flower-bundle th th switching bifurcation for the bi mXX to bj mXX switching of higher-order
316
4 (2m)th-Degree Polynomial Discrete Systems
fixed-points with the vanishing (or death) of ð2lÞth mXX left appearing (or right vanishing) bifurcation. A general parallel switching bifurcation is switching
th th th ððb ! 1 Þ mXX1 : ðb2 Þ mXX2 : : ðbs1 Þ mXXs1 Þ
ððb1þ Þth mXX1þ : ðb2þ Þth mXX2þ : :
bifurcation þ th þ ðbs2 Þ mXXs2 Þ:
ð4:190Þ
Such a general, parallel switching bifurcation consists of the left and right parallelbundle switching bifurcations for higher-order fixed-points. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th þ th th þ ðb i Þ mXXi ¼ ðbi Þ mXXi ¼ b mXX,
þ for xk ¼ a i ¼ ai ði ¼ 1; 2; . . .; sg
ð4:191Þ
then the parallel flower-bundle switching bifurcation becomes a parallel straw-bundle switching bifurcation of ðða1 Þth mXX:ðb2 Þth mXX: : ðbs Þth mXXÞ: If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ þ th ða i Þ mXXi ¼ ð2li Þ mXX, ðaj Þ mXXj ¼ ð2lj Þ mYY, þ for xk ¼ a i 6¼ aj ði ¼ 1; 2; . . .; s1 ; j ¼ 1; 2; . . .; s2 Þ;
ð4:192Þ
XX 2 fUS; LSg; YY 2 fUS; LSg: then the parallel flower-bundle switching bifurcation for higher-order fixed-points becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) a ðð2l 1 Þ mXX1 : ð2l2 Þ mXX2 : : ð2ls1 Þ mXXs1 Þ-left parallel sprinklerspraying appearing (or right vanishing) bifurcation and (ii) a ðð2l1þ Þth mXX1þ : ð2l2þ Þth mXX2þ : : ð2lsþ2 Þth mXXsþ2 Þ-right parallel sprinkler-spraying appearing (or left vanishing) bifurcation.
The parallel switching and appearing bifurcations for higher-order fixed-points are presented in Fig. 4.12(i)–(iv). The waterfall appearing bifurcations and the flower-bundle switching bifurcations for higher-order fixed-points are presented.
4.3 Higher-Order Fixed-Points Bifurcations
317
(2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 1) th mSI
(2rn − 1) th mSO (2ls ) th mUS
(2ls ) th mLS
(2rn − 2 ) th mLS (2rn − 2 − 1) th mSI
(2ris ) th mUS
(2ris ) th mUS
(2rn − 2 ) th mUS
(2rn − 2 − 1) th mSO
(2ris ) th mLS (2ris ) th mLS
(2rn −3 − 1) th mSO (2rn − 4 − 1) th mSI
(2rn − 4 − 1) th mSO
(2ls −1 ) th mUS
(2ls −1 ) th mLS (2rn −3 − 1) th mSO
• • •
(2rik − 1) th mSO
(2rik − 1) th mSO
(2ri ) th mUS
(2rn −3 − 1) th mSI
• • •
(2rn − 4 − 1) th mSI (2rik − 1) th mSI
(2rn − 4 − 1) th mSO th
(2rik − 1) mSI
(2ri −1 ) th mUS (2ri − 2 − 1) th mSO (2ri −3 − 1) mSI (2lr ) th mUS
(2ri −3 − 1) th mSO (2lr ) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
th
(2ri −1 ) mLS • • •
(2ri −1 ) th mUS
(2ri −3 − 1) th mSI (2ri2 − 1) th mSI
• • •
(2ri ) th mUS
(2ri −3 − 1) th mSO (2ri2 ) th mSO
(2r1 − 1) th mSI
(2r1 − 1) th mSO
th
(2l1 ) mUS
(2l1 ) th mLS th
(2r1 − 1) mSI
(2ri1 ) th mUS th
(2r2 ) th mUS
(2ri1 ) mUS
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(2r1 − 1) th mSO
(2ri1 ) th mUS
xk∗
(2r2 ) th mLS (2ri1 ) th mUS
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(i)
(iii) (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
th
(2rn − 2 ) mUS
(2rn − 1) th mSI
(2rn − 1) th mSO (2ls ) th mUS
(2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2ls ) th mLS
(2rn − 2 − 1) th mSI
(2ris ) th mUS
(2rn − 2 − 1) th mSO
(2ris ) th mLS
th
(2ris ) mUS
(2ris ) th mLS (2rn −3 − 1) th mSI
(2rn −3 − 1) th mSO
(2ls −1 ) th mUS
(2rn − 4 − 1) th mSO
(2ris−2 − 1) th mSO
(2ls −1 ) th mLS
(2ris−2 − 1) th mSI
(2ris−1 − 1) th mSO
(2rn − 4 − 1) th mSI
(2ris−1 − 1) th mSI
(2ris−1 − 1) th mSI (2rn −3 − 1) th mSO
th
(2ris−2 − 1) mSI
• • •
(2rn − 4 − 1) th mSI
(2ris−1 − 1) th mSO (2rn −3 − 1) th mSI
(2ris−2 − 1) th mSO
(2rn − 4 − 1) th mSO
• • •
(2ri ) th mUS
(2ri ) th mLS
(2ri −1 ) th mUS (2ri − 2 − 1) th mSO
(2ri −1 ) th mLS (2ri − 2 − 1) th mSI
th
(2ri −3 − 1) mSI (2lr ) th mUS
(2ri −3 − 1) th mSO (2lr ) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
(2ri −1 ) th mLS • • •
(2ri −1 ) th mUS
(2ri −3 − 1) th mSI
• • •
(2ri ) th mUS
(2r2 ) th mUS
(2ri −3 − 1) th mSO (2ri ) th mLS
(2r2 ) th mLS
(2r1 − 1) th mSO
(2r1 − 1) th mSI
th
(2l1 ) mUS
xk∗
(2l1 ) th mLS
(2ri1 ) th mLS
(2ri1 ) th mLS
(2r1 − 1) th mSI
x∗
(2ri1 ) th mUS
(2ri1 ) th mUS
(2r1 − 1) th mSO
(2r2 ) th mUS
|| p ||
(2ri ) th mLS
(2r2 ) th mLS
(2ri2 − 1) th mSO
(2r2 ) th mUS
(2ri2 − 1) th mSI
(2ri ) th mLS (2ri −1 ) th mLS (2ri − 2 − 1) th mSI
th
xk∗
(2rn −3 − 1) th mSI
Δ iq < 0 Δ iq = 0
(ii)
Δ iq > 0
(2r2 ) th mLS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 4.12 ðr1 th mXX:r2 th mXX: : rn th mXXÞ parallel switching-appearing bifurcations. ða0 [ 0Þ: (i) without switching, and (ii) with switching. ða0 [ 0Þ: (iii) without switching, and (vi) with switching. mLS: monotonic-lower-saddle, mUS: monotonic-upper-saddle, mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
4 (2m)th-Degree Polynomial Discrete Systems
318
4.4
Forward Bifurcation Trees
In this section, the analytical bifurcation scenario of a (2m)th-degree polynomial nonlinear discrete system will be discussed. The period-doubling bifurcation scenario will be discussed first through nonlinear renormalization techniques, and the bifurcation scenario based on the monotonic saddle-node bifurcation will be discussed, which is independent of period-1 fixed-points.
4.4.1
Period-Doubled (2m)th-Degree Polynomial Discrete Systems
After the period-doubling bifurcation of a period-1 fixed-point, the period-doubled fixed-points of a (2m)th-degree polynomial nonlinear discrete system can be obtained. Consider the period-doubling solutions of a forward (2m)th-degree polynomial nonlinear discrete system. Theorem 4.1 Consider a (2m)th-degree polynomial nonlinear discrete system 2m1 þ þ A2m2 ðpÞx2k þ A2m1 ðpÞxk þ A2m ðpÞ xk þ 1 ¼ xk þ A0 ðpÞx2m k þ A1 ðpÞxk
¼ xk þ a0 ðpÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ ½x2k þ Bm ðpÞxk þ Cm ðpÞ ð4:193Þ where A0 ðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; . . .; pm1 ÞT :
ð4:194Þ
If Di ¼ B2i 4Ci [ 0; i ¼ i1 ; i2 ; . . .; il 2 f1; 2; . . .; mg0f∅g; Dj ¼ B2j 4Cj \0; j ¼ il þ 1 ; il þ 2 ; . . .; im 2 f1; 2; . . .; mg0f∅g with l 2 f0; 1; . . .; mg;
ð4:195Þ
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *2m i¼1 ðxk ai Þ:
ð4:196Þ
4.4 Forward Bifurcation Trees
319
where ð1Þ
ð1Þ
bi;1 ¼ 12ðBi þ ð1Þ
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi ð1Þ ð1Þ ð1Þ ð1Þ Di Þ; bi;2 ¼ 12ðBi Di Þ
for Di 0; i 2 f1; 2; . . .; lg0f∅g; ð1Þ ð1Þ ð1Þ ð1Þ ðiÞ l ; b gg; ai ai þ 1 ; 02l i¼1 fai g ¼ sortf0 i1 ¼1 fb qffiffiffiffiffiffiffiffiffiffi ffi i1 ;2 i1 ;2 qffiffiffiffiffiffiffiffiffiffiffi ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ bi;1 ¼ 12ðBi þ i jDi jÞ; bi;2 ¼ 12ðBi i jDi jÞ p ffiffiffiffiffiffi ffi ð1Þ for Di \0; i 2 fl þ 1; l þ 2; . . .; mg0f∅g; i ¼ 1; ð1Þ ð1Þ ð1Þ m 02m i¼2l þ 1 fai g ¼ f0i1 ¼l þ 1 fbi1 ;2 ; bi1 ;2 gg:
ð4:197Þ
(i) Consider a forward period-2 discrete system of Eq. (4.193) as ð1Þ
xk þ 2 ¼ xk þ ½a0 *2m i1 ¼1 ðxk ai1 Þf1 þ
*i1 ¼1 ½1 þ a0 *i2 ¼1;i2 6¼i1 ðxk 2m
2m
ð1Þ
ðð2mÞ2 2mÞ=2
ð1Þ
ð2mÞ2 2m
2m ¼ xk þ ½a0 *2m i1 ¼1 ðxk ai1 Þ½a0 *i2 ¼1
¼ xk þ ½a0 *3j1 ¼1 ðxk ai1 Þ½a2m 0 *j2 ¼1 ð2mÞ2
ð2Þ
ð1Þ
ai2 Þg ð2Þ
ðx2k þ Bi2 xk þ Ci2 Þ ð2Þ
ðxk bj2 Þ
ð2Þ
¼ xk þ a10 þ 2m *i¼1 ðxk ai Þ ð4:198Þ where
qffiffiffiffiffiffiffiffi 1 ð2Þ pffiffiffiffiffiffiffiffi ð2Þ 1 ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ Dð2Þ Þ; bi;2 ¼ ðBi Di Þ; 2 2 0 2 ð2Þ ð2Þ ð2Þ Di ¼ ðBi Þ2 4Ci 0; i 2 0Nq11¼1 Iqð21 Þ 00Nq22¼1 Iqð22 Þ Iqð21 Þ ¼ flðq1 1Þ 20 m1 þ 1 ; lðq1 1Þ 20 m1 þ 2 ; ; lq1 20 m1 g 0
f1; 2; ; M1 g0f∅g; q1 2 f1; 2; ; N1 g; M1 ¼ N1 20 m1 ; m1 2 f1; 2; ; mg; Iqð22 Þ ¼ flðq2 1Þ 21 m1 þ 1 ; lðq2 1Þ 21 m1 þ 2 ; ; lq2 21 m1 g 1
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; q2 2 f1; 2; ; N2 g; M2 ¼ ðð2mÞ2 2mÞ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i jDð2Þ jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0; i 2 J ð2 Þ ¼ flN2 21 m1 þ 1 ; lN2 21 m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g 1
ð4:199Þ
4 (2m)th-Degree Polynomial Discrete Systems
320
with fixed-points ð2Þ
xk þ 2 ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; ð2mÞ2 Þ 2
ð2mÞ
ð2Þ
ð1Þ
ð2Þ
ð2Þ
ð4:200Þ
M 0i¼1 fai g ¼ sortf02m j1 ¼1 faj1 g; 0j2 ¼1 fbj2 ;1 ; bj2 ;2 gg
with
ð2Þ ð2Þ ai \ai þ 1 ;
2
M ¼ ðð2mÞ 2mÞ=2: ð1Þ
(ii) For a fixed-point of xk þ 1 ¼ xk ¼ ai1 ði1 2 f1; 2; . . .; 2mgÞ, if dxk þ 1 ð1Þ ð1Þ j ð1Þ ¼ 1 þ a0 *2m i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1
ð4:201Þ
with • a r th -order oscillatory upper-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ k
i1
k
i1
[ 0; r ¼ 2l1 Þ, • a r th -order oscillatory lower-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ \0; r ¼ 2l1 Þ, • a r th -order oscillatory sink bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ \0; r ¼ k
i1
2l1 þ 1Þ, • a r th -order oscillatory source bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ [ 0; r ¼ k
2l1 þ 1Þ,
i1
then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi1 ; Di1 ¼ ðBi1 Þ2 4Ci1 ¼ 0; 2
ð4:202Þ
and there is a period-2 discrete system of the quartic discrete system in Eq. (4.193) as 1 þ ð2mÞ
xk þ 2 ¼ x k þ a0
*
ð20 Þ i2 2Iq1
ð1Þ
ð2mÞ2
ð2Þ
ðxk ai2 Þ3 *i3 ¼1 ðxk ai3 Þð1dði2 ;i3 ÞÞ ð4:203Þ
for i1 2 f1; 2; . . .; 2mg; i1 6¼ i2 with dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i1 dx2k xk ¼ai1
ð4:204Þ
4.4 Forward Bifurcation Trees
321
ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-order if d 3 xk þ 2 ð1Þ ð1Þ j ð1Þ ¼ 6a10 þ 2m * ð20 Þ ða ai2 Þ3 i2 2Iq1 ;i2 6¼i1 i1 dx3k xk ¼ai1
ð2mÞ2 ð1Þ *i3 ¼1 ðai1
ð4:205Þ
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ \0;
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the period-2 discrete system; ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk þ 2 ð1Þ ð1Þ j ð1Þ ¼ 6a10 þ 2m * ð20 Þ ða ai2 Þ3 i2 2Iq1 ;i2 6¼i1 i1 dx3k xk ¼ai1
ð2mÞ2 ð1Þ *i3 ¼1 ðai1
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ
ð4:206Þ
[ 0;
and the corresponding bifurcations is a third-order monotonic source bifurcation for the period-2 discrete system. (ii1) The period-2 fixed-points are trivial and unstable if ð2Þ
xk þ 2 ¼ xk ¼ ai
ð1Þ
2 02m i1 fai1 g:
ð4:207Þ
(ii2) The period-2 fixed-points are non-trivial and stable if ð2Þ
xk þ 2 ¼ xk ¼ ai
ð2Þ
ð2Þ
2 2 0M i1 ¼1 fbi1 ;1 ; bi1 ;2 g :
ð4:208Þ
Proof The proof is straightforward through the simple algebraic manipulation. Following the proof of quadratic discrete system, this theorem is proved. ■
4.4.2
Renormalization and Period-Doubling
The generalized case of period-doublization of a (2m)th-degree polynomial discrete system is presented through the following theorem. The analytical period-doubling bifurcation trees can be developed for such a (2m)th-degree polynomial discrete systems.
4 (2m)th-Degree Polynomial Discrete Systems
322
Theorem 4.2 Consider a 1-dimensional (2m)th-degree polynomial discrete system as 2m1 þ þ A2m2 x2k þ A2m1 xk þ A2m xk þ 1 ¼ xk þ A0 x2m k þ A 1 xk
¼ xk þ a0 *2m i¼1 ðxk ai Þ:
ð4:209Þ
(i) After l-times period-doubling bifurcations, a period-2l discrete system ðl ¼ 1; 2; . . .Þ for the (2m)th-degree polynomial discrete system in Eq. (4.209) is given through the nonlinear renormalization as ð2l1 Þ
ð2mÞ2
xk þ 2l ¼ xk þ ½a0
f1 þ
ð2mÞ
ð2l1 Þ
ð2
ð2mÞ
Þ 4
Þ
ð2l1 Þ
¼ xk þ ½a0
Þ
ð2l Þ
¼ x k þ a0
2l1
ðð2mÞ2 ð2mÞ2
l1
ð2mÞ2
l
l1
ð2mÞ2
*i¼1
l
ð2l1 Þ
ai 2
Þg
Þ
Þ=2
ð2l1 Þ
ðxk ai1
*i2 ¼1
Þ
*i¼1
ð2l1 Þ
ðxk ai1
l
l1
l1
*i ¼1;i 6¼i ðxk 2 2 1
ðð2mÞ ð2mÞ l1
Þ
ð2mÞ2
Þ
*j1 ¼1
ð2l1 Þ 1 þ ð2mÞ2
¼ xk þ ða0
l1
2l
ð2mÞ2 *i1 ¼1;
ð2l1 Þ 42
½ða0
ð2
*i1 ¼1 2l1
ð2l1 Þ
ðxk ai1
½1 þ a0 2l1
¼ xk þ ½a0
½ða0
2l1
*i1 ¼1
l1
l1
*i1 ¼1
ð2l Þ
ð2l Þ
ðx2k þ Bj2 xk þ Cj2 Þ
ð4:210Þ
Þ
Þ=2
ð2l Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ ð2l Þ
ðxk ai Þ
ð2l Þ
ðxk ai Þ
with l l dxk þ 2l ð2l Þ Xð2mÞ2 ð2mÞ2 ð2l Þ ¼ 1 þ a0 * i1 ¼1 i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk l l l d 2 xk þ 2l ð2l Þ Xð2mÞ2 Xð2mÞ2 ð2mÞ2 ð2l Þ ¼ a * 0 i ¼1 i2 ¼1;i2 6¼i1 i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 1 dx2k .. . l l l d r xk þ 2 l Xð2mÞ2 ð2l Þ Xð2mÞ2 ð2mÞ2 ð2l Þ ¼ a0 i1 ¼1 ir ¼1;i3 6¼i1 ;i2 ...ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ...;ir ðxk air þ 1 Þ r dxk
ð4:211Þ l
for r ð2mÞ2 where
4.4 Forward Bifurcation Trees
323 ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1 þ 2m ; a0 2l
ð2l Þ
ð2mÞ
ð2l1 Þ 1 þ ð2mÞ2
¼ ða0 ð2mÞ
Þ
2l1
l1
; l ¼ 1; 2; 3; ;
ð2l Þ
ð2l Þ
ð2l Þ
ð2l Þ
2 0i¼1 fai g ¼ sortf0i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg, ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ bi;1 ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
2
ð2l Þ
Di
Iqð21
l1
2
ð2l Þ
ð2l Þ
¼ ðBi Þ2 4Ci Þ
ð2l Þ
ai þ 1 ;
l1
0 for i 2 0Nq11¼1 Iqð21
Þ
00Nq ¼1 Iqð2 Þ ; 2 2
l
2
¼ flðq1 1Þ 2l1 m1 þ 1 ; lðq1 1Þ 2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2; ; mg; l
Iqð22 Þ ¼ flðq2 1Þ 2l m1 þ 1 ; lðq2 1Þ 2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ðð2mÞ2 ð2mÞ2 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN2 2l m1 þ 1 ; lN2 2l m1 þ 2 ; ; lM2 g
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; ð4:212Þ
with fixed-points ð2l Þ
l
xk þ 2l ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; ð2mÞ2 Þ ð2mÞ2
l
ð2l Þ
ð2mÞ2
0i¼1 fai g ¼ sortf0i1 ¼1 l
ð2 Þ
l
ð2 Þ
l1
ð2l1 Þ
fai1
ð2l Þ
ð2l Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð4:213Þ
with ai \ai þ 1 : ð2l1 Þ
(ii) For a fixed-point of xk þ 2l1 ¼ xk ¼ ai1
ð2l1 Þ
ði1 2 Iq
Þ, if
l1 dxk þ 2l1 ð2l1 Þ ð2mÞ2 ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 1 þ a0 ai2 Þ ¼ 1; *i ¼1;i 6¼i ðai1 2 2 1 dxk xk ¼ai1 d s xk þ 2l1 j ð2l1 Þ ¼ 0; for s ¼ 2; ; r 1; dxsk xk ¼ai1 l1 d r xk þ 2l1 j ð2l1 Þ 6¼ 0 for 1\r ð2mÞ2 ; r x ¼a dxk i1 k
ð4:214Þ
4 (2m)th-Degree Polynomial Discrete Systems
324
with • a rth-order oscillatory sink for d r xk þ 2l1 =dxrk j
ð2l1 Þ
xk ¼ai
• a rth-order oscillatory source for d r xk þ 2l1 =dxrk j • a r
th
r
[ 0 and r ¼ 2l1 þ 1;
1 ð2l1 Þ
xk ¼ai
\0 and r ¼ 2l1 þ 1;
1
-order oscillatory upper-saddle for d xk þ 2l1 =dxrk j
ð2l1 Þ
xk ¼ai
r ¼ 2l1 ; • a rth-order oscillatory lower-saddle for d r xk þ 2l1 =dxrk j r ¼ 2l1 ;
[ 0 and
1
ð2l1 Þ
xk ¼ai
\0 and
1
then there is a period- 2l fixed-point discrete system ð2l Þ
x k þ 2 l ¼ x k þ a0
ð2mÞ2 *j2 ¼1
l
*
ð2l1 Þ
i1 2Iq1
ðxk
ð2l1 Þ 3
ðxk ai1
Þ
ð4:215Þ
ð2l Þ aj2 Þð1dði1 ;j2 ÞÞ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð4:216Þ
and dxk þ 2l d 2 xk þ 2 l j ð2l1 Þ ¼ 1; j ð2l1 Þ ¼ 0: dxk xk ¼ai1 dx2k xk ¼ai1 ð2l1 Þ
• xk þ 2l at xk ¼ ai1
ð4:217Þ
is a monotonic sink of the third-order if
d 3 xk þ 2l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai 2 Þ 3 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k ð2mÞ2
l
ð2l1 Þ
*j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
ð4:218Þ
; q 2 f1; 2; . . .; N1 gÞ; ð2l1 Þ
and such a bifurcation at xk ¼ ai1 bifurcation.
is a third-order monotonic sink
4.4 Forward Bifurcation Trees
325
ð2l1 Þ • xk þ 2l at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk þ 2 l ð2l Þ ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 6a0 * ð2l1 Þ ðai1 ai2 Þ3 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k ð2mÞ2
l
ð2l1 Þ
*j2 ¼1 ðai1 ði1 2 Iqð2
l1
Þ
ð4:219Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ [ 0
; q 2 f1; 2; . . .; N1 gÞ ð2l1 Þ
and such a bifurcation at xk ¼ ai1 bifurcation.
is a third-order monotonic source
(ii1) The period- 2l fixed-points are trivial if ð2l Þ
xk þ 2l ¼ xk ¼ ai
ð2mÞ2
2 0i1 ¼1
l1
ð2l1 Þ
fai1
l1
g for i1 ¼ 1; 2; . . .; ð2mÞ2 :
ð4:220Þ
(ii2) The period- 2l fixed-points are non-trivial if ð2l Þ
xk þ 2l ¼ xk ¼ ai
ð2mÞ2
2 0i1 ¼1
l1
ð2l Þ
ð2l Þ
fbi1 ;1 ; bi1 ;2 g
j1 2 f1; 2; . . .; M2 g0f∅g
:
ð4:221Þ
Such a period-2l fixed-point is • monotonically unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
• monotonically invariant if dxk þ 2l =dxk j
2 ð1; 1Þ;
1 ð2l Þ
xk ¼ai
¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l = dx2l k jx [ 0; k
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \0; k
1 þ1 – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l = dx2l jx k k [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \0; k
• monotonically stable if dxk þ 2l =dxk j
• invariantly zero-stable if dxk þ 2l =dxk j • oscillatorilly stable if dxk þ 2l =dxk j • flipped if dxk þ 2l =dxk j
ð2l1 Þ
xk ¼ai
2 ð0; 1Þ;
ð2l Þ
xk ¼ai
1 ð2l1 Þ
xk ¼ai ð2l1 Þ
xk ¼ai
1
¼ 0;
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l = dx2l k jx [ 0; k
1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \0; k
4 (2m)th-Degree Polynomial Discrete Systems
326
1 þ1 – an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk þ 2l = dx2l jx k k \0; th 2l1 þ 1 2l1 þ 1 xk þ 2l = dxk jx – an oscillatory sink the ð2l1 þ 1Þ order with d k [ 0;
• oscillatorilly unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, this theorem can be proved.
4.4.3
■
Period-n Appearing and Period-Doublization
The forward period-n discrete system for the (2m)th-degree polynomial quartic nonlinear discrete systems will be discussed, and the period-doublization of periodn discrete systems is discussed through the nonlinear renormalization. Theorem 4.3 Consider a 1-dimensional (2m)th-degree polynomial discrete system as 2m1 xk þ 1 ¼ xk þ A0 x2m þ þ A2m2 x2k þ A2m1 xk þ A2m k þ A 1 xk
¼ xk þ a0 *2m i¼1 ðxk ai Þ:
ð4:222Þ
(i) After n-times iterations, a period-n discrete system for the quartic discrete system in Eq. (4.222) is xk þ n ¼ xk þ a0 *2m i1 ¼1 ðxk ai2 Þ½1 þ n
ðð2mÞ 1Þ=ð2m1Þ
¼ xk þ a 0
ðnÞ
¼ xk þ a 0
ð2mÞ
*i¼1
n
Xn
*i1 ¼1 ðxk 2m
j¼1
Qj ðð2mÞn 2mÞ=2
ai1 Þ½*j2 ¼1
ðnÞ
ðnÞ
ðx2k þ Bj2 xk þ Cj2 Þ
ðnÞ
ðxk ai Þ
ð4:223Þ with dxk þ n ðnÞ Xð2mÞn ð2mÞn ðnÞ ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk d 2 xk þ n ðnÞ Xð2mÞn Xð2mÞn ð2mÞn ðnÞ ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . d r xk þ n Xð2mÞn ðnÞ Xð2mÞn ð2mÞn ðnÞ ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ r dxk
for r ð2mÞn ;
ð4:224Þ
4.4 Forward Bifurcation Trees
327
where ðnÞ
a0 ¼ ða0 Þðð2mÞ
n
1Þ=ð2m1Þ
ð1Þ
2m ; Q1 ¼ 0; Q2 ¼ *2m i2 ¼1 ½1 þ a0 *i1 ¼1;i1 6¼i2 ðxk ai1 Þ; ð1Þ
2m Qn ¼ *2m in ¼1 ½1 þ a0 ð1 þ Qn1 Þ *in1 ¼1;in1 6¼in ðxk ain1 Þ; n ¼ 3; 4; ; ð2mÞn
ðnÞ
ð1Þ
ðnÞ
ðnÞ
M 0i¼1 fai g ¼ sortf02m i1 ¼1 fai1 g; 0i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi2 ;1 ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ; 2 2 ðnÞ ðnÞ ðnÞ Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ;
IqðnÞ ¼ flðq1Þ n þ 1 ; lðq1Þ n þ 2 ; ; lq n gf1; 2; ; Mg0f∅g; for q 2 f1; 2; ; Ng; M ¼ ðð2mÞn 2mÞ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flN n þ 1 ; lN n þ 2 ; ; lM g f1; 2; ; Mg0f∅g; ð4:225Þ
with fixed-points ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; ð2mÞn Þ n
ð2mÞ
ðnÞ
ð1Þ
ðnÞ
ðnÞ
M 0i¼1 fai g ¼ sortf02m i1 ¼1 fai1 g; 0i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
with
ð4:226Þ
ðnÞ ðnÞ ai \ai þ 1 :
ðnÞ
ðnÞ
(ii) For a fixed-point of xk þ n ¼ xk ¼ ai1 ði1 2 Iq ; q 2 f1; 2; . . .; NgÞ, if dxk þ n ðnÞ ð2mÞn ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk k i1
ð4:227Þ
d 2 xk þ n ðnÞ Xð2mÞn ð2mÞn ðnÞ ðnÞ jx ¼aðnÞ ¼ a0 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; 2 i1 k dxk
ð4:228Þ
with
then there is a new discrete system for onset of the qth-set of period-n fixed-points based on the second-order monotonic saddle-node bifurcation as ðnÞ
x k þ n ¼ x k þ a0
*i 2I ðnÞ ðxk 1 q
ðnÞ
ð2mÞn
ðnÞ
ai1 Þ2 *j2 ¼1 ðxk aj2 Þð1dði1 ;j2 ÞÞ
ð4:229Þ
4 (2m)th-Degree Polynomial Discrete Systems
328
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð4:230Þ
(ii1) If dxk þ n j ðnÞ ¼ 1 ði1 2 IqðnÞ Þ; dxk xk ¼ai1 d 2 xk þ n ðnÞ ðnÞ ðnÞ j ðnÞ ¼ 2a0 *i 2I ðnÞ ;i 6¼i ðai1 ai1 Þ2 1 q 2 1 dx2k xk ¼ai1 ð2mÞn
ðnÞ
ð4:231Þ
ðnÞ
*j2 ¼1 ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0 ðnÞ
xk þ n at xk ¼ ai1 is • a monotonic lower-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ \0; i1
k
• a monotonic upper-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0: k
i1
(ii2) The period-n fixed-points ðn ¼ 2n1 sÞ are trivial if xk
¼
xk þ n
¼
ðnÞ aj1
2
ð1Þ ð2mÞ2 f02m ii ¼1 fai1 g; 0i2 ¼1
n1 1 s
ð2n1 1 sÞ fai2 gg
for n1 ¼ 1; 2; . . .; s ¼ 2l1 þ 1; j1 2 f1; 2; . . .; ð2mÞn g0f∅g for n 6¼ 2n2 ; ðnÞ
ð2mÞ2
xk ¼ xk þ n ¼ aj1 2 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
9 = ; ð4:232Þ
9 =
g
for n1 ¼ 1; 2; . . .; s ¼ 1; j1 2 f1; 2; . . .; ð2mÞn g0f∅g
;
for n ¼ 2n2 : (ii3) The period-n fixed-points ðn ¼ 2n1 sÞ are non-trivial if ðnÞ
ð2mÞ2
ð1Þ
xk ¼ xk þ n ¼ aj1 62 f02m ii ¼1 fai1 g; 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
gg
for n1 ¼ 1; 2; . . .; s ¼ 2l1 þ 1; j1 2 f1; 2; . . .; ð2mÞn g0f∅g for n 6¼ 2n2 ; ðnÞ
ð2mÞ2
xk ¼ xk þ n ¼ aj1 62 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
g
for n1 ¼ 1; 2; . . .; s ¼ 1; j1 2 f1; 2; . . .; ð2mÞn g0f∅g for n ¼ 2n2 :
9 = ;
9 = ; ð4:233Þ
4.4 Forward Bifurcation Trees
329
Such a forward period-n fixed-point is • monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is i1
k
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx [ 0; k
1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
1 þ1 – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l jx k k [ 0; – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx \0; k
• monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð0; 1Þ; i1
k
• invariantly zero-stable if dxk þ n =dxk jx ¼aðnÞ ¼ 0; k
i1
• oscillatorilly stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 0Þ; k
i1
• flipped if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is k
i1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx [ 0; k
1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
1 þ1 – an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dx2l jx k k \0; – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ: k
ðnÞ
i1
ðnÞ
(iii) For a fixed-point of xk þ n ¼ xk ¼ ai1 ði1 2 Iq ; q 2 f1; 2; . . .; NgÞ, there is a period-doubling of the qth -set of period-n fixed-points if dxk þ n ðnÞ ð2mÞn ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; dxk k i1 d s xk þ n j ðnÞ ¼ 0; for s ¼ 2; . . .; r 1; dxsk xk ¼ai1 d r xk þ n j ðnÞ 6¼ 0 for 1\r ð2mÞn dxrk xk ¼ai1
ð4:234Þ
with • a r th -order oscillatory sink for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ 2l1 þ 1; k
i1
• a r th -order oscillatory source for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ 2l1 þ 1; k
i1
• a r th -order oscillatory upper-saddle for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ i1
k
2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ k
2l1 .
i1
4 (2m)th-Degree Polynomial Discrete Systems
330
The corresponding period-2 n discrete system of the (2m)th-degree polynomial discrete system in Eq. (4.222) is ð2 nÞ
xk þ 2 n ¼ xk þ a0
ð2mÞ2 n
ðnÞ
ð2 nÞ ð1dði1 ;j2 ÞÞ
ai1 Þ3 *j2 ¼1 ðxk aj2
*i 2I ðnÞ ðxk 1 q
Þ
ð4:235Þ with dxk þ 2 n d 2 xk þ 2 n jx ¼aðnÞ ¼ 1; jx ¼aðnÞ ¼ 0; i1 i1 k k dxk dx2k d 3 xk þ 2 n ð2 nÞ ðnÞ ðnÞ 3 jx ¼aðnÞ ¼ 6a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 1 q 2 1 i1 k dx3k ð2mÞ2 n
*j2 ¼1 ðnÞ
ðnÞ
ð2 nÞ ð1dði1 ;j2 ÞÞ
ðai1 aj2
Þ
ð4:236Þ :
ðnÞ
Thus, xk þ 2 n at xk ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic sink of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ \0, i1
k
• a monotonic source of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ [ 0: i1
k
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the (2m)th-degree polynomial discrete system in Eq. (4.222) is ð2l1 nÞ
ð2mÞ2
xk þ 2l n ¼ xk þ ½a0
f1 þ
2l1 n
ð2mÞ
*i1 ¼1
ð2l1 nÞ
¼ xk þ ½a0 ð2
½ða0
l1
ð2mÞ
2l1 n
ð2mÞ
*i1 ¼1
ð2l nÞ
Þ
2l n
ð2mÞ
ðð2mÞ
ð2mÞ
ð2l1 nÞ
ðxk ai1
ðð2mÞ2 n ð2mÞ2
l1 n
l
ð2mÞ2 n
*i¼1
l1 n
Þg
Þ
2l1 n
Þ=2
Þ=2
ð2l nÞ
ðx2k þ Bj2
ð2l nÞ
xk þ Cj2
ð2l nÞ
ð2l nÞ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ
ð2l nÞ
ðxk ai
ð2l nÞ
ðxk ai
ð2l1 nÞ
ai2
Þ
*j2 ¼1
2l n
*i¼1
ð2l1 nÞ
l
l1 n
ð2l1 nÞ ð2mÞ2
¼ xk þ ða0
ð2mÞ
*i ¼1;i 6¼i ðxk 2 2 1
*j1 ¼1 2l1 n
Þ
Þ
Þ
2l1 n
ðxk ai1
ð2l1 nÞ
ð2l1 nÞ ð2mÞ2
½ða0
l1
ð2
*i1 ¼1
Þ
ð2l1 nÞ
ð2l1 nÞ
ðxk ai1
½1 þ a0
nÞ ð2mÞ
¼ xk þ ½a0
¼ x k þ a0
l1 n
*i1 ¼1
Þ
Þ
ð4:237Þ with
Þ
4.4 Forward Bifurcation Trees
331
l l dxk þ 2l n ð2l nÞ Xð2mÞ2 n ð2mÞ2 n ð2l nÞ ¼ 1 þ a0 Þ; *i ¼1;i 6¼i ðxk ai2 i1 ¼1 2 2 1 dxk l l l d 2 xk þ 2l n ð2l nÞ Xð2mÞ2 n Xð2mÞ2 n ð2mÞ2 n ð2l nÞ ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 2 dxk .. . l l l d r xk þ 2l n Xð2mÞ2 n ð2l nÞ Xð2mÞ2 n ð2mÞ2 n ð2l nÞ ¼ a0 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ i1 ¼1 r dxk l
for r ð2mÞ2 n ;
ð4:238Þ where ð2 nÞ
a0
ðnÞ
l
2 n
ð2mÞ2 n ð2l nÞ 0i¼1 fai g ð2l nÞ bi;1 ð2l nÞ
bi;2
ð2l nÞ
¼ ða0 Þ1 þ ð2mÞ ; a0
ð2l nÞ
¼
¼
ð2l1 nÞ 1 þ ð2mÞ2
¼ ða0 l1 n
ð2mÞ2 sortf0i1 ¼1 qffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l nÞ 12 ðBi
þ
Þ
l1 n
; l ¼ 1; 2; 3; . . .;
ð2l1 nÞ ð2l nÞ ð2l nÞ 2 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg;
ð2l nÞ
Di Þ; qffiffiffiffiffiffiffiffiffiffiffiffiffi l l ð2 nÞ ð2 nÞ ¼ 12 ðBi Di Þ; ð2l nÞ
ð2l nÞ
Di ¼ ðBi Þ2 4Ci 0 l ð2l1 nÞ N1 00Nq22¼1 Iqð22 nÞ for i 2 0q1 ¼1 Iq1 ð2l1 nÞ
Iq 1
¼ flðq1 1Þ ð2l1 nÞ þ 1 ; lðq1 1Þ ð2l1 nÞ þ 2 ; . . .; lq1 ð2l1 nÞ g f1; 2; . . .; M1 g0f∅g; for q1 2 f1; 2; . . .; N1 g; M1 ¼ N1 ð2l1 nÞ; ð2l nÞ Iq 2 ¼ flðq2 1Þ ð2l nÞ þ 1 ; lðq2 1Þ ð2l nÞ þ 2 ; . . .; lq2 ð2l1 nÞ g fM1 þ 1; M1 þ 2; . . .; M2 g0f∅g; l l1 ¼ ðð2mÞ2 n ð2mÞ2 n Þ=2; for q2 2 f1; 2; . . .; N2 g; M q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2l nÞ
bi;1
ð2l nÞ
bi;2
ð2l nÞ
¼ 12 ðBi
þi
ð2l nÞ
jDi jÞ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi l l nÞ ð2
nÞ ð2 ¼ 12 ðBi i jDi jÞ;
pffiffiffiffiffiffiffi ð2l nÞ ð2l nÞ 2 ð2l nÞ Di ¼ ðBi Þ 4Ci \0; i ¼ 1; i 2 flN ð2l nÞ þ 1 ; lN ð2l nÞ þ 2 ; . . .; lM2 g f1; 2; . . .; M2 g0f∅g
ð4:239Þ with fixed-points ð2l nÞ
xk þ 2l n ¼ xk ¼ ai l
ð2mÞ2 n
0i¼1
l
ð2l nÞ
fai
ð2 nÞ
with ai
l
; ði ¼ 1; 2; ; ð2mÞ2 n Þ ð2mÞ2
g ¼ sortf0i1 ¼1 l
ð2 nÞ
l1 n
ð2l1 nÞ
fai1
ð2 nÞ
ð2 nÞ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
\ai þ 1 : ð4:240Þ ð2l1 nÞ
(v) For a fixed-point of xk þ ð2l nÞ ¼ xk ¼ ai1 N1 gÞ, there is a period- 2
l1
ð2l1 nÞ
ði1 2 Iq
n discrete system if
; q 2 f1; 2; . . .;
4 (2m)th-Degree Polynomial Discrete Systems
332
l1 dxk þ 2l1 n ð2l1 nÞ ð2mÞ2 n ð2l1 nÞ ð2l1 nÞ j ð2l1 nÞ ¼ 1 þ a0 ai2 Þ ¼ 1; *i ¼1;i 6¼i ðai1 2 2 1 xk ¼ai dxk 1 d s xk þ 2l1 n j ð2l1 nÞ ¼ 0; for s ¼ 2; . . .; r 1; xk ¼ai dxsk 1 r l1 d xk þ 2l1 n j ð2l1 nÞ 6¼ 0 for 1\r ð2mÞ2 n r x ¼a dxk i1 k
ð4:241Þ with • a r th -order oscillatory sink for d r xk þ 2l1 n =dxrk j
ð2l1 nÞ
xk ¼ai
2l1 þ 1; • a r th -order oscillatory source for d r xk þ 2l1 n =dxrk j
[ 0 and r ¼
1
ð2l1 nÞ
xk ¼ai
\0 and r ¼
1
2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk þ 2l1 n =dxrk j and r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l1 n =dxrk j
ð2l1 nÞ
xk ¼ai
ð2l1 nÞ
xk ¼ai
r ¼ 2l1 .
[0
1
\0 and
1
The corresponding period- 2l1 n discrete system is ð2l nÞ
xk þ 2l n ¼ xk þ a0
*
ð2l1 nÞ i1 2Iq
l
ð2mÞ2 n ðxk *j2 ¼1
ð2l1 nÞ 3
ðxk ai1
Þ
ð4:242Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ aj 2 Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð4:243Þ with dxk þ 2l n d 2 xk þ 2l n j ð2l1 nÞ ¼ 1; j ð2l1 nÞ ¼ 0; xk ¼ai xk ¼ai dxk dx2k 1 1 d 3 xk þ 2l n ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ð2l1 Þ ¼ 6a0 ðai1 ai2 Þ * ð2l1 nÞ 3 x ¼a i 2I ;i ¼ 6 i 2 2 1 q dxk i1 k l
ð2mÞð2 nÞ
*j2 ¼1 ði1 2
l1 Iqð2 nÞ ; q
ð2l1 nÞ
ðai1
ð2l nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
6¼ 0
2 f1; 2; . . .; N1 gÞ ð4:244Þ
4.4 Forward Bifurcation Trees
333 ð2l1 nÞ
Thus, xk þ 2l n at xk ¼ ai1
is
• a monotonic sink of the third-order if d 3 xk þ 2l n =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order if d 3 xk þ 2l n =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0:
1
(v1) The period- 2l n fixed-points are trivial if ð2l nÞ
ð2mÞ
xk þ 2l n ¼ xk ¼ aj
ð2mÞ2
ð1Þ
2 f0ii ¼1 fai1 g; 0i2 ¼1
l1 n
ð2l1 nÞ
fai2
l
for j ¼ 1; 2; . . .; ð2mÞð2 nÞ for n 6¼ 2n1 ð2l nÞ
ð2mÞ2
xk þ 2l n ¼ xk ¼ aj
2 f0i2 ¼1
l1 n
ð2l1 nÞ
fai2
l
for j ¼ 1; 2; . . .; ð2mÞ2 n
9 gg = ; ð4:245Þ
9 g= ;
for n ¼ 2n1 : (v2) The period- 2l n fixed-points are non-trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
ð2mÞ2
ð1Þ
62 f02m ii ¼1 fai1 g; 0i2 ¼1
l1 n
l
for j ¼ 1; 2; . . .; ð2mÞ2 n for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
ð2mÞ2
62 f0i2 ¼1
l1 n
ð2l1 nÞ
fai2
l
for j ¼ 1; 2; . . .; ð2mÞ2 n
ð2l1 nÞ
fai2
9 gg = ;
ð4:246Þ
9 g= ;
for n ¼ 2n1 :
Such a period- 2l n fixed-point is • monotonically unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• monotonically invariant if dxk þ 2l n =dxk j
1 ð2l nÞ
xk ¼ai
2 ð1; 1Þ; ¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk [ 0 (independent ð2l1 Þ-branch appearance); 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0 (independent ð2l1 Þ-branch appearance) 1 þ1 jx – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l k k [ 0 (dependent ð2l1 þ 1Þ-branch appearance from one branch); 1 þ1 jx \0 – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l k k (dependent ð2l1 þ 1Þ-branch appearance from one branch);
4 (2m)th-Degree Polynomial Discrete Systems
334
• monotonically stable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• invariantly zero-stable if dxk þ 2l n =dxk j • oscillatorilly stable if dxk þ 2l n =dxk j • flipped if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð0; 1Þ;
1
¼ 0;
ð2l nÞ
xk ¼ai ð2l nÞ
xk ¼ai
1
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk [ 0; 1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jx \0 k
1 – an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0; 1 þ1 jx – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l k k [0
• oscillatorilly unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð1; 1Þ:
1
Proof Through the nonlinear renormalization, the proof of this theorem is similar to the proof of Theorem 5.11. This theorem can be easily proved. ■
References Luo ACJ (2020a) The stability and bifurcations of the (2m)th degree polynomial systems. J Vib Test Syst Dyn 4(1):1–42 Luo ACJ (2020b) Bifurcation and stability in nonlinear dynamical systems. Springer, New York
Chapter 5
(2m + 1)th-Degree Polynomial Discrete Systems
In this chapter, the global stability and bifurcations of period-1 fixed-points in a forward ð2m þ 1Þth -degree polynomial discrete system are presented. The broom-appearing, broom-spraying-appearing and broom-sprinkler-spraying-appearing bifurcations for simple and higher-order period-1 fixed-points are discussed, and the antenna switching, straw-bundle-switching and flower-bundle-switching bifurcations for simple and higher-order period-1 fixed-points are also presented. As in cubic nonlinear discrete systems, the period-2 fixed-point solutions and the corresponding period-doubling renormalization of such a forwarded ð2m þ 1Þth -degree polynomial discrete system are discussed. For multiple iterations, the period-n appearing and perioddoublization of the forward ð2m þ 1Þth -degree polynomial discrete system are discussed.
5.1
Global Stability and Bifurcations
In a similar fashion of low-degree polynomial discrete systems, the global stability and bifurcation of fixed-points in the ð2m þ 1Þth -degree polynomial nonlinear discrete systems are discussed as in Luo (2020a, b). The stability and bifurcation of each individual fixed-point are analyzed from the local analysis. Definition 5.1 Consider a ð2m þ 1Þth -degree polynomial nonlinear forward discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ þ1 2 þ A1 ðpÞx2m ¼ xk þ A0 ðpÞx2m k k þ þ A2m1 ðpÞxk þ A2m xk þ A2m þ 1 ðpÞ
¼ xk þ a0 ðpÞðxk aðpÞÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ ½x2k þ Bm ðpÞxk þ Cm ðpÞ ð5:1Þ © Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3_5
335
5 (2m + 1)th-Degree Polynomial Discrete Systems
336
where A0 ðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; ; pm ÞT :
ð5:2Þ
(i) If Di ¼ B2i 4Ci \0 for i ¼ 1; 2; . . .; m;
ð5:3Þ
the ð2m þ 1Þth -degree polynomial discrete system has one fixed-point of xk ¼ a, and the corresponding standard form is 1 2
1 4
1 2
1 4
xk þ 1 ¼ xk þ a0 ðxk aÞ½ðxk þ B1 Þ2 þ ðD1 Þ ½ðxk þ Bm Þ2 þ ðDm Þ:
ð5:4Þ
The discrete flow of such a system with one fixed-point is called a singlefixed-point flow. (a) If a0 [ 0, the fixed-point discrete flow with xk ¼ a is called a monotonic source discrete flow for df =dxk jx ¼a 2 ð0; 1Þ. k (b) If a0 \0, the fixed-point discrete flow with x ¼ a is called • • • •
a monotonic sink discrete flow for df =dxk jx ¼a 2 ð1; 0Þ, k an invariant sink discrete flow for df =dxk jx ¼a ¼ 1, k an oscillatory sink discrete flow for df =dxk jx ¼a 2 ð2; 1Þ, k a flipped discrete flow for df =dxk jx ¼a ¼ 2 k
– of the oscillatory upper-saddle (d 2 f =dx2k jx ¼a [ 0), k
– of the oscillatory lower-saddle (d 2 f =dx2k jx ¼a \0). k
• an oscillatory source discrete flow for df =dxk jx ¼a 2 ð1; 2Þ. k
(ii) If Di ¼ B2i 4Ci [ 0; i ¼ i1 ; i2 ; ; il 2 f1; 2; . . .; mg; Dj ¼ B2j 4Cj \0; j ¼ il þ 1 ; il þ 2 ; ; im 2 f1; 2; . . .; mg
ð5:5Þ
with l 2 f0; 1; . . .; mg; the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2l þ 1Þfixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; pffiffiffiffiffi ðiÞ ð5:6Þ xk ¼ b2 ¼ 12ðBi Di Þ for i 2 fi1 ; i2 ; ; il g f1; 2; ; mg:
5.1 Global Stability and Bifurcations
337
(ii1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; l ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; a2l g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g;as \as þ 1 ;
ð5:7Þ
then, the corresponding standard form is 1 2
1 4
2 þ1 m xk þ 1 ¼ xk þ a0 *2l i1 ¼1 ðxk ai1 Þ *k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ:
ð5:8Þ
(a) If a0 [ 0, the simple fixed-point discrete flow is called a ðmSI-oSO: mSO: :mSO : mSI-oSOÞ-discrete flow. (b) If a0 \0, the simple fixed-point discrete flow is called a ðmSO:mSIoSO : :mSI-oSO:mSO)-discrete flow. (ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; a2l þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . air aRr1 ¼ ¼ aRr1 ¼ a2l þ 1 i¼1 li þ 1 i¼1 li þ lr
ð5:9Þ
with Rrs¼1 ls ¼ 2l þ 1;
then, the corresponding standard form is 2 xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *m k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ:
1 2
1 4
ð5:10Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: :lr th mXX)-discrete flow. (a) for a0 [ 0 and p ¼ 1; 2; . . .; r, 8 > ð2rp 1Þth order monotonic source, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic sink, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2r Þth order monotonic upper-saddle, > : p for ap ¼ 2Mp ; lp ¼ 2rp ;
ð5:11Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
338
where ap ¼
Xr
s¼p ls :
ð5:12Þ
(b) for a0 \0 and p ¼ 1; 2; . . .; r, 8 > ð2rp 1Þth order monotonic sink, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic source, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic upper-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic lower-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:13Þ
(c) The fixed-point of xk ¼ aip for (lp [ 1)-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX:lp2 th mXX: : lpb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the corresponding switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l i¼1
i þ1
i¼1
6¼ 6¼ a Rp1 l i¼1
i þ lp
; lp ¼
Xb
i¼1 lpi :
ð5:14Þ
(iii) If Di ¼ B2i 4Ci ¼ 0; i 2 fi11 ; i12 ; ; i1s g fi1 ; i2 ; ; il g f1; 2; ; mg; Di ¼ B2i 4Ci [ 0; i 2 fi21 ; i22 ; ; i2r g fi1 ; i2 ; ; il g f1; 2; ; mg; Di ¼ B2i 4Ci \0; i 2 fil þ 1 ; il þ 2 ; ; im g f1; 2; ; mg; ð5:15Þ the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2l þ 1Þfixed-points as ðiÞ
xk ¼ b1 ¼ 12Bi ; ðiÞ
xk ¼ b2 ¼ 12Bi
) for i 2 fi11 ; i12 ; ; i1s g;
pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; for i 2 fi21 ; i22 ; ; i2r g: pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ
If
ð5:16Þ
5.1 Global Stability and Bifurcations
339 ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; a2l þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð5:17Þ
air aRr1 ¼ ¼ aRr1 ¼ a2l þ 1 i¼1 li þ 1 i¼1 li þ lr
with Rrs¼1 ls ¼ 2l þ 1;
then the corresponding standard form is 2 xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *m k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ:
1 2
1 4
ð5:18Þ
The fixed-point discrete flow is called an ðl1 th mXX: l2 th mXX: :lr th mXX)discrete flow. (a) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points appearance or vanishing is called an lp th mXX appearing bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is 1 2
aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ¼ Bip ; i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; ; il gÞ; aRþp1 l þ 1 i¼1 i
6¼ 6¼
aRþp1 l þ l or p i¼1 i
a Rp1 l þ1 i¼1 i
6¼ 6¼
ð5:19Þ a : Rp1 l þ lp i¼1 i
(b) The fixed-point of xk ¼ aiq for ðlq [ 1Þ-repeated fixed-points switching is called an lq th mXX switching bifurcation of ðlq1 th mXX:lq2 th mXX: : lqb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aiq aRq1 li þ 1 ¼ ¼ aRq1 li þ lq ; i¼1
a Rq1 l i¼1
i þ1
i¼1
6¼ 6¼ a Rq1 l i¼1
i þ lq
; lq ¼
Xb
i¼1 lqi :
ð5:20Þ
(c) The fixed-point of xk ¼ aip for ðln [ 1Þ-repeated fixed-points appearance or vanishing and ðlp2 2Þ repeated fixed-points switching of lp11 th mXX : lp22 th mXX: :lp2b th mXX)-fixed-point switching is called an lp th mXX bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the flower-switching bifurcation condition is
5 (2m + 1)th-Degree Polynomial Discrete Systems
340
aip aRp1 li þ 1 ¼ ¼ aRp1 þ li þ lp i¼1 i¼1 with Dip ¼ B2ip 4Cip ¼ 0 ip 2 fi1 ; i2 ; ; il g for j1 ; j2 ; ; jp1 1; 2; . . .; lp for k1 ; k2 ; ; kp2 1; 2; . . .; lp with lp1 þ lp2 ¼ lp ; lp2 ¼
ð5:21Þ
Xb
i¼1 lp2i
(iv) If Di ¼ B2i 4Ci [ 0 for i ¼ 1; 2; . . .; m
ð5:22Þ
the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2m þ 1Þfixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; for i ¼ 1; 2; . . .; m: pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ
ð5:23Þ
(iv1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; m ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 ; a2m g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 gðas \as þ 1 Þ; ð5:24Þ then, the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk a1 Þðxk a2 Þ ðxk a2m Þðxk a2m þ 1 Þ: ð5:25Þ This discrete flow is formed with all the simple fixed-points. (a) If a0 [ 0, the fixed-point discrete flow with ð2m þ 1Þ fixed-points is called a ðmSO:mSI-oSO: :mSI-oSO:mSO)-discrete flow. (b) If a0 \0, the fixed-point discrete flow with ð2m þ 1Þ fixed-points is called a ðmSI-oSO:mSO: :mSO : mSI-oSO)-discrete flow.
5.1 Global Stability and Bifurcations
341
(iv2) If ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 ; a2m þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; ai 1 a1 ¼ ¼ al 1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð5:26Þ
air aRr1 ¼ ¼ aRr1 ¼ a2m þ 1 i¼1 li þ 1 i¼1 li þ lr
with Rrs¼1 ls ¼ 2m þ 1;
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls :
ð5:27Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX : : lr th mXX)-discrete flow. The fixed-point of xk ¼ aip for lp -repeated fixedpoints switching is called an lp th mXX bifurcation of ðlp1 th mXX: lp2 th mXX: :lpb th mXX) fixed-point switching at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l i¼1
i þ1
i¼1
6¼ 6¼ a Rp1 l i¼1
i þ lp
; lp ¼
Xb
i¼1 lpi :
ð5:28Þ
Definition 5.2 Consider a ð2m þ 1Þth -degree polynomial nonlinear discrete system as xk þ 1 ¼ xk þ f ðxk ; pÞ þ1 2 ¼ xk þ A0 ðpÞx2m þ A1 ðpÞx2m k k þ þ A2m1 ðpÞxk þ A2m xk þ A2m þ 1 ðpÞ
¼ a0 ðpÞðxk aðpÞÞ *ni¼1 ½x2k þ Bi ðpÞxk þ Ci ðpÞqi
ð5:29Þ where A0 ðpÞ 6¼ 0; and p ¼ ðp1 ; p2 ; ; pm ÞT ; m ¼
Xn
i¼1 qi :
ð5:30Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
342
(i) If Di ¼ B2i 4Ci \0 for i ¼ 1; 2; . . .; n
ð5:31Þ
the ð2m þ 1Þth -degree polynomial nonlinear system has one fixed-point of xk ¼ a, and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðxk aÞ *ni¼1 ½ðxk þ Bi Þ2 þ ðDi Þqi : 1 2
1 4
ð5:32Þ
The discrete flow of such a system with one fixed-point is called a single fixed-point discrete flow. (a) If a0 [ 0, the fixed-point discrete flow of xk ¼ a is called a monotonic source discrete flow for df =dxk jx ¼a 2 ð0; 1Þ: k (b) If a0 \0, the fixed-point discrete flow of xk ¼ a is called • • • •
a monotonic sink discrete flow for df =dxk jx ¼a 2 ð1; 0Þ; k an invariant sink discrete flow for df =dxk jx ¼a ¼ 1; k an oscillatory sink discrete flow for df =dxk jx ¼a 2 ð2; 1Þ; k a flipped discrete flow for df =dxk jx ¼a ¼ 2 with k
– an oscillatory upper-saddle (d f =dx2k jx ¼a [ 0), 2
k
– an oscillatory lower-saddle (d 2 f =dx2k jx ¼a \0), k
• an oscillatory source discrete flow for df =dxk jx ¼a 2 ð1; 2Þ: k
(ii) If Di ¼ B2i 4Ci [ 0; i 2 fi1 ; i2 ; ; il gf1; 2; . . .; ng; Dj ¼ B2j 4Cj \0; j 2 fil þ 1 ; il þ 2 ; ; in gf1; 2; . . .; ng
ð5:33Þ
the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2l þ 1Þ fixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; for i 2 fi1 ; i2 ; ; il gf1; 2; . . .; ng: ð5:34Þ pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ
5.1 Global Stability and Bifurcations
343
(ii1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; i; j ¼ 1; 2; . . .; l ð1Þ
ð1Þ
ðrÞ
ðrÞ
fa1 ; a2 ; a2l þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ð5:35Þ
qr sets
as as þ 1 ; then, the corresponding standard form is ls n 2 qik þ1 xk þ 1 ¼ xk þ a0 *2l s¼1 ðxk as Þ *k¼l þ 1 ½ðxk þ Bik Þ þ ðDik Þ
1 2
1 4
with ls 2 fqi1 ; qi2 ; ; qil ; 1g: ð5:36Þ The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: :l2l þ 1 th mXXÞ-discrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; 2l þ 1, 8 > ð2rp 1Þth order montonic source, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > 1Þth order monotonic sink, ð2r > > < p for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic upper-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp ;
ð5:37Þ
where ap ¼
X2l þ 1
s¼p
ls :
ð5:38Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; 2l þ 1, 8 > ð2r 1Þth order monotonic sink, > > p > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic source, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic upper-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic lower-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:39Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
344
(ii2) If ð1Þ
ð1Þ
ðrÞ
ðrÞ
fa1 ; a2 ; a2l þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
qr sets
ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð5:40Þ
air aRr1 ¼ ¼ aRr1 ¼ a2l þ 1 i¼1 li þ 1 i¼1 li þ lr with Rrs¼1 ls ¼ 2l þ 1; then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *nk¼l þ 1 ½ðxk þ Bik Þ2 þ ðDik Þqik : 1 2
1 4
ð5:41Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: : lr th mXX)discrete flow. (a) For a0 [ 0 and s ¼ 1; 2; . . .; r, 8 > ð2r 1Þth order monotonic source, > > p > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic sink, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic upper-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp ;
ð5:42Þ
where ap ¼
Xr
s¼p ls :
ð5:43Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; r, 8 > ð2r 1Þth order monotonic sink, > > p > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > th > ð2r > p 1Þ order monotonic source, > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic upper-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic lower-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:44Þ
5.1 Global Stability and Bifurcations
345
(c) The fixed-point of xk ¼ aip for (lp [ 1)-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX:lp2 th XmX: :lpb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l i¼1
i þ1
i¼1
6¼ 6¼ a Rp1 l i¼1
i þ lp
; lp ¼
Xb
i¼1 lpi :
ð5:45Þ
(iii) If Di ¼ B2i 4Ci ¼ 0; i 2 fi11 ; i12 ; ; i1s gfi1 ; i2 ; ; il gf1; 2; . . .; ng; Dk ¼ B2k 4Ck [ 0; k 2 fi21 ; i22 ; ; i2r gfi1 ; i2 ; ; il gf1; 2; . . .; ng; Dj ¼ B2j 4Cj \0; j 2 fil þ 1 ; il þ 2 ; ; in gf1; 2; . . .; ng with i 6¼ j 6¼ k; ð5:46Þ the ð2m þ 1Þth -degree polynomial nonlinear system has ð2l þ 1Þ - fixed-points as ) ðiÞ xk ¼ b1 ¼ 12Bi ; for i 2 fi11 ; i12 ; ; i1s g; ðiÞ xk ¼ b2 ¼ 12Bi ð5:47Þ pffiffiffiffiffiffi ) ðkÞ xk ¼ b1 ¼ 12ðBk þ Dk Þ; for i 2 fi21 ; i22 ; ; i2r g: pffiffiffiffiffiffi ðkÞ xk ¼ b2 ¼ 12ðBk Dk Þ If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; a2l þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . air aRr1 ¼ ¼ aRr1 ¼ a2l þ 1 i¼1 li þ 1 i¼1 li þ lr with Rrs¼1 ls ¼ 2l þ 1;
ð5:48Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
346
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls *nk¼l þ 1 ½ðxk þ Bik Þ2 þ ðDik Þqik : 1 2
1 4
ð5:49Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: :lr th mXX)discrete flow. (a) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points appearance or vanishing is called an lp th mXX appearing bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is 1 2
aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ¼ Bip i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; ; il gÞ; aRþp1 l þ 1 i¼1 i
6¼ 6¼
aRþp1 l þ l or p i¼1 i
a l þ1 Rp1 i¼1 i
6¼ 6¼
ð5:50Þ a : l þ lp Rp1 i¼1 i
(b) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points switching is called an lp th mXX switching bifurcation lp th mXX of ðlp1 th mXX : lp2 th mXX : :lpb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the corresponding switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l
i¼1 i
lp ¼
þ1
i¼1
6¼ 6¼ a Rp1 l
i¼1 i
þ lp
ð5:51Þ
Xb
i¼1 lpi :
(iv) If Di ¼ B2i 4Ci [ 0 for i ¼ 1; 2; . . .; n
ð5:52Þ
the ð2m þ 1Þth -degree polynomial nonlinear system has ð2n þ 1Þ-fixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; for i ¼ 1; 2; . . .; n: pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ
ð5:53Þ
5.1 Global Stability and Bifurcations
347
(iv1) If ðjÞ bðiÞ r 6¼ bs for r; s 2 f1; 2g; ði; j ¼ 1; 2; . . .; nÞ; ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 ; a2n þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ð5:54Þ
qn sets
as as þ 1 ; then, the corresponding standard form is ls þ1 xk þ 1 ¼ xk þ a0 *2n s¼1 ðxk as Þ with ls 2 fqi1 ; qi2 ; ; qin ; 1g: ð5:55Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: : l2n þ 1 th mXX)-discrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; 2n þ 1, 8 > ð2rp 1Þth order monotonic source, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic sink, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic upper-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp ;
ð5:56Þ
where ap ¼
X2n þ 1
s¼p
ls :
ð5:57Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; 2n þ 1, 8 > ð2rp 1Þth order montonic sink, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic source, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order montonic upper-saddle, > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > ð2r Þth order monotonic lower-saddle, > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:58Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
348
(iv2) If ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 ; a2n þ 1 g ¼ sortfa; b1 ; b2 ; ; b1 ; b2 g; |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
qn sets
ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. .
ð5:59Þ
air aRr1 ¼ ¼ aRr1 ¼ a2n þ 1 ; i¼1 li þ 1 i¼1 li þ lr
with Rrs¼1 ls ¼ 2n þ 1;
then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls :
ð5:60Þ
The fixed-point discrete flow is called an ðl1 th mXX: l2 th mXX: :lr th mXXÞ-discrete flow. The fixed-point of xk ¼ aip for lp -repeated fixed-points switching is called an lp th XX switching bifurcation of ðlp1 th mXX:lp2 th mXX: :lpb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l
i¼1 i
þ1
i¼1
6¼ 6¼ a Rp1 l
i¼1 i
þ lp
; lp ¼
Xb
i¼1 lpi :
ð5:61Þ
Definition 5.3 Consider a 1-dimensional, ð2m þ 1Þth -degree polynomial nonlinear discrete system xk þ 1 ¼ xk þ f ðxk ; pÞ þ1 2 þ A1 ðpÞx2m ¼ xk þ A0 ðpÞx2m k k þ þ A2m1 ðpÞxk þ A2m xk þ A2m þ 1 ðpÞ
¼ xk þ a0 ðpÞ *rs¼1 ðxk cis ðpÞÞls *ni¼r þ 1 ½x2k þ Bi ðpÞxk þ Ci ðpÞqi ð5:62Þ where A0 ðpÞ 6¼ 0; and Xr
s¼1 ls
¼ 2l þ 1;
Xn
i¼r þ 1 qi
¼ ðm lÞ; p ¼ ðp1 ; p2 ; ; pm ÞT :
ð5:63Þ
5.1 Global Stability and Bifurcations
349
(i) If Di ¼ B2i 4Ci \0 for i ¼ r þ 1; r þ 2; . . .; n; fa1 ; a2 ; . . .; ar g ¼ sortfc1 ; c2 ; . . .; cr g with ai \ai þ 1
ð5:64Þ
the ð2m þ 1Þth -degree polynomial discrete system has fixed-points of xk ¼ ais ðpÞ (s ¼ 1; 2; . . .; r), and the corresponding standard form is xk þ 1 ¼ xk þ a0 ðpÞ *rj¼1 ðxk aij Þlj *ni¼r þ 1 ½ðxk þ Bi Þ2 þ ðDi Þli : 1 2
1 4
ð5:65Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: : lr th mXX)discrete flow. (a) For a0 [ 0 and s ¼ 1; 2; . . .; r, 8 > ð2rp 1Þth order monotonic source, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2r 1Þth order monotonic sink, > > < p for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > ð2r Þth order monotonic upper-saddle, > : p for ap ¼ 2Mp ; lp ¼ 2rp ;
ð5:66Þ
where ap ¼
Xr
s¼p ls :
ð5:67Þ
(b) For a0 \0 and p ¼ 1; 2; . . .; r, 8 > ð2rp 1Þth order monotonic sink, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic source, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ > ð2rp Þth order monotonic upper-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2r Þth order monotonic lower-saddle, > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:68Þ
(ii) If Di ¼ B2i 4Ci [ 0; i ¼ j1 ; j2 ; ; js 2 fl þ 1; l þ 2; . . .; ng; Dj ¼ B2j 4Cj \0; j ¼ js þ 1 ; js þ 2 ; ; jn 2 fl þ 1; l þ 2; . . .; ng with s 2 f1; . . .; n lg;
ð5:69Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
350
the ð2m þ 1Þth -degree polynomial nonlinear discrete system has 2n2 -fixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ
ð5:70Þ
for i 2 fj1 ; j2 ; ; jn1 gfl þ 1; l þ 2; . . .; ng: If ðr þ 1Þ
ðr þ 1Þ
ðn Þ
ðn Þ
; b2 ; ; b1 1 ; b2 1 g; fa1 ; a2 ; a2n2 þ 1 g ¼ sortfc1 ; c2 ; c2l þ 1 ; b1 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qr þ 1 sets
qn1 sets
ai1 a1 ¼ ¼ al1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . ain1 aRn1 1 li þ 1 ¼ ¼ aRn1 1 li þ ln ¼ a2n2 þ 1 i¼1
1 with Rns¼1 ls ¼ 2n2 þ 1;
i¼1
1
ð5:71Þ
then, the corresponding standard form is 1 xk þ 1 ¼ xk þ a0 *ns¼1 ðxk ais Þls *ni¼n2 þ 1 ½ðxk þ Bi Þ2 þ ðDi Þqi :
1 2
1 4
ð5:72Þ
The fixed-point discrete flow is called an ðl1 th mXX:l2 th mXX: :ln1 th mXXÞdiscrete flow. (a) For a0 [ 0 and p ¼ 1; 2; . . .; r; r þ 1; . . .; n1 , 8 > ð2r 1Þth order monotonic source, > > p > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic sink, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; ð5:73Þ lp th mXX ¼ > ð2rp Þth order monotonic lower-saddle, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > Þth order monotonic upper-saddle, ð2r > : p for ap ¼ 2Mp ; lp ¼ 2rp ; where ap ¼
Xn1
s¼p ls :
ð5:74Þ
5.1 Global Stability and Bifurcations
351
(b) For a0 \0 and p ¼ 1; 2; . . .; r; r þ 1; . . .; n1 , 8 > ð2rp 1Þth order monotonic sink, > > > > for ap ¼ 2Mp 1; lp ¼ 2rp 1; > > > > ð2rp 1Þth order monotonic source, > > < for ap ¼ 2Mp ; lp ¼ 2rp 1; lp th mXX ¼ th > > > ð2rp Þ order monotonic upper-saddle, > > for ap ¼ 2Mp 1; lp ¼ 2rp ; > > > > > ð2r Þth order monotonic lower-saddle, > : p for ap ¼ 2Mp ; lp ¼ 2rp :
ð5:75Þ
(c) The fixed-point of xk ¼ aip for (lp [ 1)-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX:lp2 th mXX: : lpb th mXX) fixed-point at p ¼ p1 2 @X12 , and the corresponding switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l þ1 i¼1 i
6¼ 6¼
i¼1
a ;l Rp1 l þ lp p i¼1 i
¼
Xb
i¼1 lpi :
ð5:76Þ
(iii) If Di ¼ B2i 4Ci ¼ 0; for i 2 fi11 ; i12 ; ; i1s gfil þ 1 ; il þ 2 ; ; in2 gfl þ 1; l þ 2; . . .; ng; Dk ¼ B2k 4Ck [ 0; for k 2 fi21 ; i22 ; . . .; i2r gfil þ 1 ; il þ 2 ; ; in2 gfl þ 1; l þ 2; . . .; ng; Dj ¼ B2j 4Cj \0; for j 2 fin2 þ 1 ; in2 þ 2 ; . . .; in gfl þ 1; l þ 2; . . .; ng;
ð5:77Þ
the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2n2 þ 1Þfixed-points as ) ðiÞ xk ¼ b1 ¼ 12Bi ; for i 2 fi11 ; i12 ; . . .; i1s g; ðiÞ xk ¼ b2 ¼ 12Bi ð5:78Þ pffiffiffiffiffiffi ) ðkÞ xk ¼ b1 ¼ 12ðBk þ Dk Þ; for i 2 fi21 ; i22 ; . . .; i2r g: pffiffiffiffiffiffi ðkÞ xk ¼ b2 ¼ 12ðBk Dk Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
352
If
fa1 ; a2 ; a2n2 þ 1 g ¼ sortfa; c1 ; c2 ; c2l ; bð1rÞ ; bð2rÞ ; ; bð1n1 Þ ; bð2n1 Þ g; |fflfflffl{zfflfflffl} |fflfflfflfflffl{zfflfflfflfflffl} qr sets
qn1 sets
ai1 a1 ¼ ¼ al1 ; ai 2 al 1 þ 1 ¼ ¼ al 1 þ l 2 ; .. . ain1 aRn1 1 li þ 1 ¼ ¼ aRn1 1 li þ ln ¼ a2n2 þ 1 i¼1
i¼1
1 with Rns¼1 ls ¼ 2n2 þ 1;
1
ð5:79Þ then, the corresponding standard form is 1 xk þ 1 ¼ a0 *ns¼1 ðxk ais Þls *ni¼n2 þ 1 ½ðxk þ Bi Þ2 þ ðDi Þqi :
1 2
1 4
ð5:80Þ
The fixed-point discrete flow is called an l1 th mXX:l2 th mXX: :ln1 th mXXÞdiscrete flow. (a) The fixed-point of x ¼ aip for ðlp [ 1Þ-repeated fixed-points appearance (or vanishing) is called an lp th mXX appearing bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is 1 2
aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ¼ Biq i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; ; il gÞ aRþp1 l þ 1 i¼1 i
6¼ 6¼
aRþp1 l þ l or p i¼1 i
a Rp1 l þ1 i¼1 i
6¼ 6¼
ð5:81Þ a : Rp1 l þ lp i¼1 i
(b) The fixed-point of xk ¼ aip for ðlp [ 1Þ-repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX:lp2 th mXX: :lpb th mXX) fixed-point at a point p ¼ p1 2 @X12 , and the corresponding switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l
i¼1 i
lp ¼
þ1
i¼1
6¼ 6¼ a Rp1 l
i¼1 i
þ lp
;
ð5:82Þ
Xb
i¼1 lpi :
(c) The fixed-point of xk ¼ aip for ðlp1 1Þ-repeated fixed-points appearance (or vanishing) and ðlp2 2Þ repeated fixed-points switching of ðlp21 th mXX: lp22 th mXX : :lp2b th mXX) is called an lp th mXX switching bifurcation of fixed-point at a point p ¼ p1 2 @X12 , and the corresponding bifurcation condition is
5.1 Global Stability and Bifurcations
353
aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp i¼1
i¼1
with Dip ¼ B2ip 4Cip ¼ 0 ðip 2 fi1 ; i2 ; ; il gÞ aRþp1 l
i¼1 i
þ j1
6¼ 6¼ aRþp1 l
i¼1 i
þ j p1
or a p 1 R1 l i¼1
i
þ j1
6¼ 6¼ a p 1 R1 l i¼1
i
þ jp1
; ð5:83Þ
for fj1 ; j2 ; ; jp1 gf1; 2; . . .; lp g; a Rp1 l þ k1 i¼1 i
a Rp1 l þ k p2 i¼1 i
6¼ 6¼
for fk1 ; k2 ; . . .; kp2 gf1; 2; . . .; lp g; with lp1 þ lp2 ¼ lp : (iv) If Di ¼ B2i 4Ci [ 0 for i ¼ l þ 1; l þ 2; . . .; n
ð5:84Þ
the ð2m þ 1Þth -degree polynomial nonlinear discrete system has ð2m þ 1Þ fixed-points as pffiffiffiffiffi ) ðiÞ xk ¼ b1 ¼ 12ðBi þ Di Þ; for i ¼ l þ 1; l þ 2; . . .; n: ð5:85Þ pffiffiffiffiffi ðiÞ xk ¼ b2 ¼ 12ðBi Di Þ If ðr þ 1Þ
ðr þ 1Þ
ðnÞ
ðnÞ
; b2 ; ; b1 ; b2 g; fa1 ; a2 ; a2m þ 1 g ¼ sortfc1 ; c2 ; c2l þ 1 ; b1 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflffl{zfflfflfflffl} qr þ 1 sets
qn sets
ai 1 a1 ¼ ¼ a l 1 ; ai2 al1 þ 1 ¼ ¼ al1 þ l2 ; .. . ain aRn1 ¼ ¼ aRn1 ¼ a2m þ 1 i¼1 li þ 1 i¼1 li þ lr with Rns¼1 ls ¼ 2m þ 1; ð5:86Þ then, the corresponding standard form is xk þ 1 ¼ xk þ a0 *rs¼1 ðxk ais Þls :
ð5:87Þ
The fixed-point discrete flow is called an ðl1 th mXX: l2 th mXX: :lr th mXX)discrete flow. The fixed-point of xk ¼ aip for lp -repeated fixed-points switching is called an lp th mXX switching bifurcation of ðlp1 th mXX:lp2 th mXX : :
5 (2m + 1)th-Degree Polynomial Discrete Systems
354
lpb th mXX) fixed-point at p ¼ p1 2 @X12 , and the corresponding switching bifurcation condition is aip aRp1 li þ 1 ¼ ¼ aRp1 li þ lp ; i¼1
a Rp1 l þ1 i¼1 i
5.2
i¼1
a ;l Rp1 l þ lp p i¼1 i
6¼ 6¼
¼
Xb
i¼1 lpi :
ð5:88Þ
Simple Fixed-Point Bifurcations
To illustrate the bifurcations in the ð2m þ 1Þth -degree polynomial discrete system, the detailed discussion with graphical illustrations will be presented as follows.
5.2.1
Appearing Bifurcations
Consider a ð2m þ 1Þth -degree polynomial nonlinear discrete system as xk þ 1 ¼ xk þ a0 Qðxk Þðxk aÞ *ni¼1 ðx2k þ Bi xk þ Ci Þ:
ð5:89Þ
without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are ðiÞ
1 2
b1;2 ¼ Bi
1pffiffiffiffiffi Di ; Di 2
¼ B2i 4Ci 0ði ¼ 1; 2; . . .; nÞ; ð1Þ
ð1Þ
ð2Þ
ð2Þ
ðnÞ
ðnÞ
fa1 ; a2 ; ; a2l g sortfb1 ; b2 ; b1 ; b2 ; ; b1 ; b2 g; as as þ 1 ; Bi 6¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ at bifurcation: Di ¼ 0ði ¼ 1; 2; . . .; nÞ
ð5:90Þ
The 2nd order singularity bifurcation is for the birth of a pair of simple monotonic sink to oscillatory source, and simple monotonic source. There are two appearing bifurcations for i 2 f1; 2; . . .; ng ith quadratic factor
2nd order mUS ! appearing bifurcation ith quadratic factor
2nd order mLS ! appearing bifurcation
mSO, for xk ¼ a2i ; mSI-oSO, for xk ¼ a2i1 ;
ð5:91Þ
mSI-oSO, for xk ¼ a2i ; mSO, for xk ¼ a2i1 :
ð5:92Þ
5.2 Simple Fixed-Point Bifurcations
355
If xk ¼ a 6¼ 12 Bi ði 2 f1; 2; . . .; mgÞ, the fixed-point of xk ¼ a breaks a cluster of teethcomb appearing bifurcations to two parts. The teethcomb appearing bifurcation generated by the m-pairs of quadratics becomes a broom appearing bifurcation. The two broom appearing bifurcations are l1 þ l2 ¼m
mSO ( xk ¼ aÞ !ðl1 -mLSN:mSO:l2 -mUSNÞ appearing bifurcation 8 > < l2 -mUSN, for x 2 fa2j ; a2j þ 1 ; j ¼ l1 þ 1; ; l1 þ l2 g; ¼
> :
mSO; for x ¼ a ¼ a2ðl1 þ 1Þ1
ð5:93Þ
l1 -mLSN, for x 2 fa2i1 ; a2i ; i ¼ 1; 2; . . .; l1 g
and l1 þ l2 ¼m
mSI-oSO(xk ¼ aÞ !ðl1 -mUSN:mSI-oSO:l2 -mLSNÞ appearing bifurcation 8 > < l2 -mLSN, for xk 2 fa2j ; a2j þ 1 : j ¼ l1 þ 1; ; l1 þ l2 g; ¼ mSI-oSO; for xk ¼ a ¼ a2ðl1 þ 1Þ1 > : l1 -mUSN, for xk 2 fa2i1 ; a2i : i ¼ 1; 2; . . .; l1 g ð5:94Þ where the lj -mLSN and lj -mUSN ðj ¼ 1; 2Þ are 8 ( mSO, for xk ¼ a2ðsj þ lj Þ þ d2j ; > ðlj þ sj Þth bifurcation > > mUS ! > > mSI-oSO, for xk ¼ a2ðsj þ lj Þ1 þ d2j ; > appearing > < lj -mUSN .. . ( > > > mSO, for xk ¼ a2sj þ d2j ; > ðsj Þth bifurcation > > mUS ! > : mSI-oSO, for xk ¼ a2sj 1 þ d2j : appearing
ð5:95Þ
8 ( mSI-oSO, for xk ¼ a2ðsj þ lj Þ þ d2j ; > ðlj þ sj Þth bifurcation > > mLS ! > > mSO, for xk ¼ a2ðsj þ lj Þ1 þ d2j ; > appearing > < lj -mLSN .. . ( > > > mSI-oSO, for xk ¼ a2sj þ d2j ; > ðsj Þth bifurcation > > mLS ! > : mSO, for xk ¼ a2sj 1 þ d2j : appearing
ð5:96Þ
for sj 2 f0; 1; 2; . . .; mg and 0 lj m with 0 lj m. Four special broom appearing bifurcations are
5 (2m + 1)th-Degree Polynomial Discrete Systems
356
8 a2m þ 1 ; mSO ! mSO, for xk ¼ a ¼ 8 > 8 > > > mSI-oSO, > > > > > > < > > > > for xk ¼ a2m ; mth bifurcation > > > > mLS ! > > > > mSO, > > appearing > > > > > > : > < for xk ¼ a2m1 ; > < mSO (xk ¼ aÞ ! > m-mLSN ... > 8 > > > > > > mSI-oSO, > > > > > > < > > > > for xk ¼ a2 ; 1st bifurcation > > > > mUS ! > > > > mSO, > > appearing > > > > : : : for xk ¼ a1 ;
ð5:97Þ
8 mSI ! mSI, > 8 for xk ¼ a ¼ a2m8þ 1 ; > > > mSO, > > > > > > < > > th > > for xk ¼ a2m ; m bifurcation > > > > mUS ! > > > > mSI-oSO, > > appearing > > > > > > : > < for xk ¼ a2m1 ; > < mSI-oSO (xk ¼ aÞ ! . m-mUSN . > > . 8 > > > > > > > > > > mSO, > > < > > > > for xk ¼ a2 ; 1st bifurcation > > > > mUS ! > > > > > > appearing > mSI-oSO, > > > : : : for xk ¼ a1 ; ð5:98Þ and 8 > > > > > > > > > > > > > > >
> > > < > th > for xk ¼ a2m þ 1 ; m bifurcation > > mUS ! > > mSI-oSO, > appearing > > > > : > for xk ¼ a2m ; > < m-mUSN .. . mSO (xk ¼ aÞ ! 8 > > > > mSO, > > > > > > > < > > st > for xk ¼ a3 ; 1 bifurcation > > > > > mUS ! > > > > mSI-oSO, > appearing > > > > > : : > > for xk ¼ a2 ; > : mSO ! mSO, for xk ¼ a ¼ a1 ;
ð5:99Þ
5.2 Simple Fixed-Point Bifurcations
8 > > > > > > > > > > > > > > >
> > > < > > for xk ¼ a2m þ 1 ; mth bifurcation > > mLS ! > > mSO, > appearing > > > > : > for xk ¼ a2m ; > < m-mLSN .. . mSI-oSO (xk ¼ aÞ ! 8 > > > > > > mSI-oSO, > > > > > < > > st > for xk ¼ a3 ; 1 bifurcation > > > > > mLS ! > > > > mSO, > appearing > > > > > : : > > for xk ¼ a2 ; > : mSI-oSO ! mSI-oSO, for xk ¼ a ¼ a1 :
357
ð5:100Þ If xk ¼ a ¼ 12Bi (i 2 f1; 2; . . .; mg), the fixed-point of xk ¼ a possess a third-order mSI or mSO switching bifurcation (or pitchfork bifurcation). The teethcomb appearing bifurcation generated by the m-pairs of quadratics becomes a broom appearing bifurcation. The two broom appearing bifurcations are m¼l1 þ l2 þ 1
mSO ( xk ¼ aÞ !ðl1 -mLSN:3rd mSO:l2 -mUSNÞ appearing bifurcation 8 l2 -mUSN, for xk 2 fa2j ; a2j þ 1 ; i ¼ l1 þ 2; ; l1 þ l2 g; > > 8 > > > > > < < mSO, for xk ¼ a2ðl1 þ 2Þ1 ¼ 3rd mSO ! mSI-oSO, for xk ¼ a ¼ a2ðl1 þ 1Þ > > > : > mSO, for xk ¼ a2ðl1 þ 1Þ1 > > > : l1 -mLSN, for xk 2 fa2i1 ; a2i ; i ¼ 1; 2; . . .; l1 g
ð5:101Þ
and m¼l1 þ l2 þ 1
mSI-oSO ( xk ¼ aÞ !ðl1 -mUSN:3rd mSI:l2 -mLSNÞ appearing bifurcation 8 l2 -mLSN, for xk 2 fa2j ; a2j þ 1 ; j ¼ l1 þ 2; ; l1 þ l2 g; > > 8 > > > > > < < mSI-oSO, for xk ¼ a2ðl1 þ 2Þ1 ¼ 3rd mSI ! mSO, for xk ¼ a ¼ a2ðl1 þ 1Þ > > > : > mSI-oSO, for xk ¼ a2ðl1 þ 1Þ1 > > > : l1 -mUSN, for xk 2 fa2i1 ; a2i ; i ¼ 1; 2; . . .; l1 g:
ð5:102Þ
Consider an appearing bifurcation for a cluster of fixed-points with monotonic sink to oscillatory source, and monotonic source with the following conditions. Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ Dj ¼ 0ði ¼ 1; 2; . . .; nÞ
at bifurcation:
ð5:103Þ
Thus, the ð2lÞth -order appearing bifurcation is for a cluster of simple monotonic sinks to monotonic-sources and monotonic sources. Two ð2lÞth order appearing bifurcations for l 2 f1; 2; . . .; sg are
5 (2m + 1)th-Degree Polynomial Discrete Systems
358
8 mSO, for xk ¼ a2sl ; > > > > mSI-oSO, for xk ¼ a2sl 1 ; > < cluster of l quadratics ð2lÞth order mUSN ! ... appearing bifurcation > > > > mSO, for xk ¼ a2s1 ; > : mSI-oSO, for xk ¼ a2s1 1 : 8 mSI-oSO, for xk ¼ a2sl ; > > > > > < mSO, for xk ¼ a2sl 1 ; cluster of l quadratics ð2lÞth order mLSN ! ... appearing bifurcation > > > > mSI-oSO, for xk ¼ a2s1 ; > : mSO, for xk ¼ a2s1 1 :
ð5:104Þ
ð5:105Þ
If xk ¼ a 6¼ 12Bi (i 2 f1; 2; . . .; ng), the fixed-point of xk ¼ a breaks a cluster of sprinkler-spraying appearing bifurcations to two parts. The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broomsprinkler-spraying appearing bifurcation. The two broom-sprinkler-spraying appearing bifurcations are m¼m1 þ m2
mSO ( xk ¼ aÞ !ðr1 -mLSG:mSO:r2 -mUSGÞ appearing bifurcation 8 8 ð2Þ th > > ð2l Þ mUSN (xk ¼ ar2 þ 1 Þ; > > > < r2 > > > > r2 -mUSG ! ... > > > > > > : ð2Þ th > > ð2l1 Þ mUSN (xk ¼ ar1 þ 2 Þ; > < ¼ mSO (a ¼ ar1 þ 1 Þ ! mSO ða ¼ a2ðm1 þ 1Þ1 Þ; > 8 ð1Þ th > > > > ð2lr1 Þ mLSN (xk ¼ ar1 Þ; > > > < > > > > r1 -mLSG ! ... > > > > > > : ð1Þ th : ð2l1 Þ mLSN (xk ¼ a1 Þ;
ð5:106Þ
and m¼m1 þ m2
mSI-oSO ( xk ¼ aÞ !ðr1 -mUSG:mSI-oSO:r2 -mLSGÞ appearing bifurcation 8 8 ð2Þ th > > ð2l Þ mLSN (xk ¼ ar2 þ 1 Þ; > > > < r2 > > . > > > r2 -mLSG ! > .. > > > > : ð2Þ th > > ð2l1 Þ mLSN (xk ¼ ar1 þ 2 Þ; > < ¼ mSI-oSO (a ¼ ar1 þ 1 Þ ! mSI-oSO ða ¼ a2ðm1 þ 1Þ1 Þ; > 8 ð1Þ th > > > > ð2l Þ mUSN (xk ¼ ar1 Þ; > > > < r1 > > > > r1 -mUSG ! ... > > > > > > : : ð1Þ ð2l1 Þth mUSN (xk ¼ a1 Þ;
ð5:107Þ
5.2 Simple Fixed-Point Bifurcations ð1Þ
359
ð2Þ
1 2 for m1 ¼ Pri¼1 li ; m2 ¼ Prj¼1 lj ; and the acronyms USG and LSG are the upper-saddle-node and lower-saddle-node bifurcation groups, respectively. Four special broom-sprinkler-spraying appearing bifurcations are
m¼
Pr
i¼1 li
mSO ( xk ¼ aÞ ! appearing bifurcation 8 mSO ða ¼ a2r þ 1 Þ ! SmO (a ¼ a2m þ 1 Þ; > > > 8 > > < ð2l Þth mLSN (xk ¼ ar Þ; > > < r > r-mLSG ! ... > > > > > > : : ð2l1 Þth mLSN (xk ¼ a1 Þ; m¼
ð5:108Þ
Pr
i¼1 li
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation 8 mSI-oSO ða ¼ a2r þ 1 Þ ! mSI-oSO (a ¼ a2m þ 1 Þ; > > > 8 > > ð5:109Þ < ð2l Þth mUSN (xk ¼ ar Þ; > > < r > r-mUSG ! ... > > > > > > : : ð2l1 Þth mUSN (xk ¼ a1 Þ; and m¼
Pr
i¼1 li
mSO ( xk ¼ aÞ ! appearing bifurcation 8 8 > ð2lr Þth mUSN (xk ¼ ar þ 1 Þ; > > > > < > > < r-mUSG ! .. . > > : > > > ð2l1 Þth mUSN (xk ¼ a2 Þ; > > : mSO ða ¼ a1 Þ ! mSO (a ¼ a1 Þ; m¼
ð5:110Þ
Pr
i¼1 li
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation 8 8 > ð2lr Þth mLSN (xk ¼ ar þ 1 Þ; > > > > < > > < r-mLSG ! .. . > > : > > > ð2l1 Þth mLSN (xk ¼ a2 Þ; > > : mSI-oSO ða ¼ a1 Þ ! mSI-oSO (a ¼ a1 Þ;
ð5:111Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
360
If xk ¼ a ¼ 12Bi (i 2 f1; 2; . . .; lg), the fixed-point of xk ¼ a possesses a ð2l þ 1Þth -order mSI or mSO switching bifurcation (or broom-switching bifurcation). The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying switching bifurcation. The two broom switching bifurcations are m¼m1 þ m2 þ l
rd mSO ( xk ¼ aÞ !ðr1 -mLSG:(2l þ 1Þ mSO:r2 -mUSGÞ switching bifurcation 8 ð2Þ th 8 > ð2l Þ mUSN (xk ¼ ar2 þ r1 þ 1 Þ; > > > < r2 > > > . > > > r2 -mUSG ! > .. > > > > : ð2Þ th > > ð2l1 Þ mUSN (xk ¼ ar1 þ 2 Þ; > < ¼ ð2l þ 1Þth mSO (a ¼ ar1 þ 1 Þ; > 8 ð1Þ th > > > > ð2l Þ mLSN (xk ¼ ar1 Þ; > > > < r1 > > > > r1 -mLSG ! ... > > > > > > : : ð1Þ ð2l1 Þth mLSN (xk ¼ a1 Þ;
ð5:112Þ
and m¼m1 þ m2 þ l
th mSI-oSO ( xk ¼ aÞ !ðr1 -mUSG:(2l þ 1Þ mSI:r2 -mLSGÞ switching bifurcation 8 ð2Þ th 8 > > ð2l Þ mLSN (xk ¼ ar2 þ r1 þ 1 Þ; > > < r2 > > > > r -mLSG ! ... > > > 2 > > > > : ð2Þ th > > ð2l1 Þ mLSN (xk ¼ ar1 þ 2 Þ; > < ð5:113Þ ¼ ð2l þ 1Þth mSI (a ¼ ar1 þ 1 Þ; > 8 ð1Þ th > > > > ð2l Þ mUSN (xk ¼ ar1 Þ; > > > < r1 > > > > r1 -mUSG ! ... > > > > > > : : ð1Þ th ð2l1 Þ mUSN (xk ¼ a1 Þ;
where 8 mSO, for > > > > > mSI-oSO, > > < cluster of l-quadratics th ð2l þ 1Þ order mSO (xk ¼ aÞ ! ... appearing bifurcation > > > > > mSI-oSO, > > : mSO, for
xk ¼ a2sl þ 1 ;
for xk ¼ a2sl ; for xk ¼ a2s1 ;
xk ¼ a2s1 1 :
ð5:114Þ
5.2 Simple Fixed-Point Bifurcations
361
and 8 mSI-oSO, > > > > > mSO, for > > < cluster of l quadratics ð2l þ 1Þth order mSI (xk ¼ aÞ ! ... appearing bifurcation > > > > > mSO, for > > : mSI-oSO,
for xk ¼ a2sl þ 1 ;
xk ¼ a2sl ;
xk ¼ a2s1 ;
for xk ¼ a2s1 1 ð5:115Þ
where xk ¼ a 2 fa2s1 1 ; ; a2sl ; a2sl þ 1 g. In Fig. 5.1i and ii, the simple switching with two teethcomb appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: (i) mSO ! ðl1 -mLSN:mSO:l2 -mUSN), (ii) mSI-oSO ! ðl1 -mUSN:mSI-oSO:l2 -mLSN) with l1 þ l2 ¼ m. In Fig. 5.1iii and iv, the 3rd-order pitchfork switching bifurcation with two teethcomb appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: (iii) mSO ! ðl1 -mLSN:3rd mSO:l2 -mUSN), (iv) mSI-oSO ! ðl1 -mUSN:3rd mSI:l2 -mLSN) with l1 þ l2 ¼ m 1. The period-2 fixed points are sketched as well through red curves. In Fig. 5.2i and ii, the simple switching with two sprinkler-spraying appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: (i) mSO ! ðr1 -mLSG:mSO:r2 -mUSG), (ii) mSI-oSO ! ðr1 -mUSG:mSI-oSO:r2 -mLSG) ð1Þ
ð2Þ
1 2 with r1 þ r2 þ 1 ¼ n and m1 þ m2 ¼ m where m1 ¼ Pri¼1 li ; m2 ¼ Prj¼1 lj . In
Fig. 5.2iii and iv, the ð2l þ 1Þth order broom-switching with two sprinkler-spraying appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: (iii) mSO ! ðr1 -mLSG:(2l þ 1Þth mSO:r2 -mUSG), (iv) mSI-oSO ! ðr1 -mUSG:(2l þ 1Þth mSI:r2 -mLSG) ð1Þ
ð2Þ
1 2 with r1 þ r2 þ 1 ¼ n and m1 þ m2 þ l ¼ m where m1 ¼ Pri¼1 li ; m2 ¼ Prj¼1 lj . The period-2 fixed points are sketched as well through red curves.
5 (2m + 1)th-Degree Polynomial Discrete Systems
362 a0 > 0
b1(i1 )
mSO
a0 < 0
mUSN
mSI-oSO
P-2
b2(i1 )
mLSN
mSO
b1(i2 )
mSO
b2(i1 ) b1(i2 )
mSI-oSO
P-2
P-2
mUSN
b1(i1 )
mSI-oSO
P-2
LSN • • •
mSI-oSO
b2(i2 )
mSO
a
• • •
mSO
b2(i2 )
mSI-oSO
a
mSI-oSO
mSO
mSO
mSI-oSO P-2
mUSN
P-2
mUSN
mSO • • •
•
mSI-oSO
mSI-oSO
• •
b1(im )
b1(im )
mSO
P-2
mUSN
mUSN
xk∗
mSO
|| p ||
mSO
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
x
mSI-oSO
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(ii)
(i) a0 > 0
P-2
∗ k
b1(i1 )
mSO
a0 < 0
b1(i1 )
mSI-oSO
P-2 mUSN
P-2
mSI-oSO
b2(i1 )
mSO
b1(i2 )
mSO
mUSN
mLSN
b2(i1 )
b1(i2 )
mSI-oSO
P-2
P-2
mLSN •
mSI-oSO
b2(i2 )
• •
•
mSO
mSO
mSI-oSO
a
3rd mSI mSI-oSO
P-2 mSO
mSO
• • •
•
P-2 mSI-oSO
P-2 mSI-oSO
a
3rd mSO
P-2
mSI-oSO
• •
b1(im )
b1(im )
mSO
P-2
mUSN
mUSN
xk∗ || p ||
b2(i2 )
mSO
• •
mSO
Δ iq < 0 Δ iq = 0
(iii)
Δ iq > 0
( im ) 2
b
P-2
∗ k
x
|| p ||
mSI-oSO
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
(iv)
Fig. 5.1 Simple broom switching bifurcations: (i) ðmUS: :mUS : mSO:mLS: :mLSÞ(a0 [ 0), (ii) ðmLS: :mLS:mSI-oSO:mUS: : mUSÞ(a0 \0), (iii) ðmUS: :mUS : 3rd mSO:mLS : :mLSÞ (a0 [ 0). (vi) ðLS: :LS : 3rd SI:US: :USÞ (a0 \0) in a ð2m þ 1Þth -degree polynomial system. mLS: monotonic lower saddle, mUS: monotonic upper saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: period-2 fixed points
5.2 Simple Fixed-Point Bifurcations mSO
a0 > 0
363 b1(i1 ) b
b2(i1 )
6th mUS mSI-oSO
mSI-oSO
a0 < 0
( i2 ) 1
b2(i1 )
6th mLS
b2(i2 )
mSO
P-2
P-2
4th mLS
4th mUS
mSI-oSO mSO
•
P-2
P-2
mSO
• •
a
mSI-oSO
•
mSI-oSO
mSO
•
mSO
• •
mSI-oSO 4th
P-2
(2r)th mUS
(2r)th mLS
• •
mSI-oSO mSO
b1(im ) 4th
mLS
a
mSO
mSI-oSO
mSO
•
b2(i2 )
mSI-oSO
mSO
• •
b1(i1 ) b1(i2 )
P-2
b1(im )
mUS
xk∗
xk∗ mSO
|| p ||
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
mSI-oSO
|| p ||
(i)
(ii) mSO
a0 > 0
b1(i1 ) b
b2(i1 ) mSI-oSO
mSI-oSO
a0 < 0
( i2 ) 1
6th mUS
b
mSO mSI-oSO
P-2
4th mUS
• • •
mSI-oSO
mSO (2r+1)th mSO • •
4th mLS
• •
P-2
P-2
mSO mSI-oSO
P-2
P-2
a
mSI-oSO
P-2
(2r+1)th mSI
a
P-2
mSO
• • •
•
mSI-oSO
b2(i2 )
P-2
•
mSO
b1(i1 ) b1(i2 ) b2(i1 )
6th mLS
( i2 ) 2
mSO
mSI-oSO mSO
b1(im )
P-2
b1(im )
4th mUS
4th mLS
xk∗
∗ k
x
mSO
|| p ||
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
Δ iq < 0 Δ iq = 0
(iii)
Δ iq > 0
b2(im )
mSI-oSO
|| p ||
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
(iv)
Fig. 5.2 Broom appearing bifurcation: (i) ðr1 -mLSN:mSO:r2 -mUSNÞ(a0 [ 0); (ii)ðr1 -mUSN: mSI-oSO:r2 -mLSNÞ (a0 \0); broom-sprinkler-spraying switching bifurcation: (iii)ðr1 - mUSG : ð2lk þ 1Þth mSO:r2 -mLSGÞ (a0 [ 0). (iv)ðr1 -mLSG:ð2lk þ 1Þth mSI:r2 -mUSGÞ(a0 \0) in a ð2m þ 1Þth degree polynomial system. mLS: monotonic lower-saddle, mUS: monotonic-uppersaddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: period-2 fixed points
5 (2m + 1)th-Degree Polynomial Discrete Systems
364
For a cluster of m-quadratics, Bi ¼ Bj (i; j 2 f1; 2; . . .; mg; i 6¼ j) and Di ¼ 0 (i 2 f1; 2; . . .; mg). The ð2mÞth -order upper-saddle-node appearing bifurcation for m-pairs of fixed-points with monotonic sink to oscillatory source and monotonic source is 8 mSO, for > > > > mSI-oSO, > < cluster of m-quadratics ð2mÞth order mUS ! ... appearing bifurcation > > > > mSO, for > : mSI-oSO,
xk ¼ a2m ; for xk ¼ a2m1 ; ð5:116Þ xk
¼ a2 ; for xk ¼ a1 :
The ð2mÞth -order lower-saddle-node appearing bifurcation for m-pairs of fixed-points with monotonic sink to oscillatory source and monotonic source is 8 mSI-oSO, > > > mSO, for > > < cluster of m-quadratics ð2mÞth order mLS ! ... appearing bifurcation > > > > mSI-oSO, > : mSO, for
for xk ¼ a2m ; xk ¼ a2m1 ; ð5:117Þ xk
for ¼ a2 ; xk ¼ a1 :
There are four simple switching and ð2mÞth -order saddle-node appearing bifurcations: The two switching bifurcations of mSO ! ðð2mÞth mUS:mSOÞ and mSI-oSO ! ðð2mÞth mLS:mSIÞ with two ð2mÞth -order mUSN and mLSN spraying appearing bifurcations are
mSO (xk ¼ aÞ !
8 mSO ! mSO, for xk > > > > > > > < ð2mÞ > > > > > > > :
th
¼8a ¼ a2m þ 1 > mSI-oSO, > > > > < mSO, for order mLSN ! ... > > > > mSI-oSO, > : mSO, for
for xk ¼ a2m ; xk ¼ a2m1 ; for xk ¼ a2 ; xk ¼ a1 ; ð5:118Þ
mSI-oSO (xk ¼ aÞ !
8 mSI-oSO ! mSI-oSO, > > > > > > > < ð2mÞ > > > > > > > :
th
for 8 xk ¼ a ¼ a2m þ 1 mSO, for xk ¼ a2m ; > > > > > < mSI-oSO, for xk ¼ a2m1 ; order mUSN ! ... > > > > mSO, for xk ¼ a2 ; > : mSI-oSO, for xk ¼ a1 :
ð5:119Þ
5.2 Simple Fixed-Point Bifurcations
365
and the two switching bifurcations of mSO ! ðmSO : ð2mÞth mUSÞ and mSI-oSO ! ðmSI-oSO : ð2mÞth mLSÞ with two ð2mÞth -order mUSN and mLSN spraying appearing bifurcations are 8 > > > > > > >
> > mSI-oSO, > > < ð2mÞth order mUSN ! ... mSO (xk ¼ aÞ ! > > > > > > mSO, for > > > : > > mSI-oSO, > : mSO ! mSO, for xk ¼ a ¼ a1
xk ¼ a2m þ 1 ; for xk ¼ a2m ; xk ¼ a3 ; for xk ¼ a2 ; ð5:120Þ
8 > > > > > > >
> > > > < mSO, for xk ¼ a2m ; th . ð2mÞ order mLSN ! .. mSI-oSO (xk ¼ aÞ ! > > > > > > mSI-oSO, for xk ¼ a3 ; > > > : > > mSO, for xk ¼ a2 ; > : mSI-oSO ! mSI-oSO, for xk ¼ a ¼ a1 : ð5:121Þ The ð2m þ 1Þth order monotonic source broom switching bifurcation is 8 mSO, for > > > > > mSI-oSO, > > < switching mSO(xk ¼ aÞ ! ð2m þ 1Þth order mSO ... > > > > > mSI-oSO, > > : mSO, for
xk ¼ a2m þ 1 ; for xk ¼ a2m ; for xk ¼ a2 ; xk ¼ a1 : ð5:122Þ
The ð2m þ 1Þth order monotonic sink broom-switching bifurcation is 8 mSI-oSO, > > > > > mSO, for > > < switching th . mSI-oSO (xk ¼ a1 Þ ! ð2m þ 1Þ order mSI .. > > > > > mSO, for > > : mSI-oSO,
for xk ¼ a2m þ 1 ;
xk ¼ a2m ; xk ¼ a2 ;
for xk ¼ a1 : ð5:123Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
366
The switching bifurcation consist of a simple switching and the ð2mÞth order monotonic saddle-node appearing bifurcation with m-pairs of monotonic sources and monotonic sink to oscillatory sources. The ð2mÞth order monotonic saddle-node appearing bifurcation is a sprinkler-spraying cluster of the m-pairs of monotonic sources and monotonic sinks to oscillatory sources. Thus, the four switching bifurcations of mSO ! ðð2mÞth mLS:mSOÞ for a0 [ 0; mSI-oSO ! ðð2mÞth mUS:mSI-oSOÞ for a0 \ 0; mSO ! ðmSO : ð2mÞth mUS) for a0 [ 0; mSI-oSO ! ðmSI-oSO:ð2mÞth mLSÞ for a0 \ 0; are presented in Fig. 5.3i–iv, respectively. The ð2m þ 1Þth -order monotonic source switching bifurcation is named the ð2m þ 1Þth mSO broom switching bifurcation and the ð2m þ 1Þth -order monotonic sink switching bifurcation is named the ð2m þ 1Þth mSI broom switching bifurcation. Such a ð2m þ 1Þth mXX broomswitching bifurcation is from simple fixed-point to a ð2m þ 1Þth mXX broomswitching bifurcation. The two broom-switching bifurcations of mSO ! ð2m þ 1Þth mSO for a0 [ 0; mSI-oSO ! ð2m þ 1Þth mSI for a0 \0; are presented in Fig. 5.3v–vi, respectively. The period-2 fixed points are sketched as well through red curves. A series of the third-order monotonic source and monotonic sink bifurcations is aligned up with varying with parameters. Such a special pattern is from m-quadratics in the ð2m þ 1Þth order polynomial systems, the following conditions should be satisfied. 1 2
1 2
aðpi Þ ¼ Bi and aðpj Þ ¼ Bj Bi Bj i; j 2 f1; 2; . . .; ng; i 6¼ j; Di [ Di þ 1 ði ¼ 1; 2; . . .; n; n mÞ;
ð5:124Þ
Di ¼ 0 with jjpi jj\jjpi þ 1 jj: Thus, a series of m-ð3rd mSO-3rd mSI- Þ switching bifurcations (a0 [ 0) and a series of m-ð3rd mSI-3rd mSO- Þ switching bifurcations (a0 \0) are presented in Fig. 5.4i and ii. The bifurcation scenario is formed by the swapping pattern of 3rd mSI and 3rd mSO switching bifurcations. Such a bifurcation scenario is like the fish-bone. Thus, such a bifurcation swapping pattern of 3rdmSI and 3rdmSO switching bifurcations is called the fish-bone switching bifurcation in the ð2m þ 1Þth
5.2 Simple Fixed-Point Bifurcations a0 > 0
mSO mSO
mSI-oSO
mSO
367 a a2m
a0 < 0
mSI-oSO mSI-oSO
mSI-oSO P-2
P-2 P-2
(2m)th mLS
(2m)th mUS
P-2
a2
xk∗
mSO
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
a1
P-2
a2
xk∗
mSI-oSO
Δ iq < 0 Δ iq = 0
|| p ||
(i) a0 > 0
Δ iq > 0
a2m
a0 < 0
mSI-oSO
(2m)th mUS
(2m)th mLS
P-2
P-2
P-2
a2 mSI-oSO
a1
mSO
a
mSO
Δ iq < 0 Δ iq = 0
|| p ||
Δ iq > 0
a2
mSI-oSO
xk∗
mSI-oSO
Δ iq < 0 Δ iq = 0
|| p ||
(iii)
mSO
a1
mSI-oSO
a
Δ iq > 0
(iv)
a0 > 0 mSO
a0 < 0
a2m
mSI-oSO
P-2 (2m+1)th mSI
a mSO
xk∗
mSO
Δ iq < 0 Δ iq = 0
(v)
Δ iq > 0
a1
a
mSI-oSO
P-2
a2
a2m P-2
(2m+1)th mSO
|| p ||
a2m P-2
P-2
xk∗
a1
(ii) mSO
mSO
a a2m
mSO
P-2
P-2
a2
xk∗ || p ||
mSI-oSO
Δ iq < 0 Δ iq = 0
a1
Δ iq > 0
(vi)
Fig. 5.3 (i) ðð2mÞth mLS:mSO)-switching bifurcation ða0 [ 0Þ, (ii) ðð2mÞth mUS:mSI-oSOÞswitching bifurcation ða0 \0Þ, (iii) ðmSO:ð2mÞth mUS)-switching bifurcation ða0 [ 0Þ, (iv) ðmSI-oSO:ð2mÞth mLSÞ-switching bifurcation ða0 \0Þ, (v) ð2m þ 1Þth mSO broom appearing bifurcation (ða0 [ 0Þ, (vi) ð2m þ 1Þth mSI-oSO broom appearing bifurcation ða0 \0Þ in the ð2m þ 1Þth degree polynomial system. mLS: monotonic lower saddle, mUS: monotonic upper saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, which are sketched though red curves
5 (2m + 1)th-Degree Polynomial Discrete Systems
368 a0 > 0
P-2
P-2
b1( r )
mSO
3rd mSO mSO
3rd mSI
3rd mSO mSO
P-2
xk∗
3rd mSI
• • •
• • •
a
mSI-oSO
b2( r )
P-2
Δr < 0
P-2
mSO
P-2
mSO
|| p ||
3rd mSO
P-2
Δr > 0
Δr = 0
(i)
a0 < 0
P-2
P-2 mSO
3rd mSI P-2
x∗
3rd mSO
3rd mSI
mSO
• • •3rd
P-2
mSO
3rd mSI
a
P-2
mSO
mSO
mSI-oSO mSO
P-2
|| p ||
• • •
P-2
b1( r )
Δr < 0
Δr = 0
P-2
b2( r )
P-2
Δr > 0
(ii) Fig. 5.4 (i) m-ð3rd mSO-3rd mSI- Þ series bifurcation ða0 [ 0Þ, (ii) m-ð3rd mSI-3rd mSO- Þ series switching bifurcation ða0 \0Þ in the ð2m þ 1Þth -degree polynomial system. mSI: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, which are sketched though red curves
degree polynomial nonlinear system. There are two swaps of the 3rdmSI and 3rdmSO bifurcations: (i) the 3rdmSO-3rdmSI fish-bone switching bifurcation and (ii) the 3rdmSI-3rdmSO fish-bone, switching bifurcation. The period-2 fixed-points are presented by P-2, which is sketched by red curves. The period-2 fixed-points are relative to the monotonic sink to the oscillatory source (mSI-oSO), and the monotonic sink to oscillatory source and back to monotonic sink (mSI-oSO-mSI).
5.2 Simple Fixed-Point Bifurcations
5.2.2
369
Switching Bifurcations
In the ð2m þ 1Þth order polynomial discrete system, among the possible ð2m þ 1Þ roots, there are two roots to satisfy x2k þ Bi xk þ Ci ¼ 0 with ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ
ðiÞ
ðiÞ
ðiÞ
xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; ; nÞ; ) Bi 6¼ Bj ði; j ¼ 1; 2; ; n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; ; nÞ
ð5:125Þ
The second-order singularity bifurcation is for the switching of a pair of fixedpoints with a simple monotonic sink to oscillatory source, and monotonic source. There are two switching bifurcations for i 2 f1; 2; . . .; ng ( ith quadratic factor
2nd order mUS ! appearing bifurcation
( ith quadratic factor
2 order mLS ! nd
switching bifurcation
ðiÞ
ðiÞ
mSO, for a2i ¼ b2 ! b1 ; ðiÞ ðiÞ mSI-oSO, for a2i1 ¼ b1 ! b2 ; ðiÞ
ðiÞ
mSI-oSO, for a2i ¼ b2 ! b1 ; ðiÞ ðiÞ mSO, for a2i1 ¼ b1 ! b2 : ðiÞ
ð5:126Þ
ð5:127Þ
ðiÞ
For non-switching point, Di [ 0 at b1 6¼ b2 (i ¼ 1; 2; . . .; n). At the bifurcation ðiÞ
ðiÞ
point, Di ¼ 0 at b1 ¼ b2 (i ¼ 1; 2; . . .; n). The l-mUSN antenna switching bifurcation for si 2 f0; 1; . . .; mg (i ¼ 1; 2; . . .; l) is 8 ( > sth mSO # mSI-oSO, > l bifurcation > mUS ! > > > switching mSI-oSO " mSO, > < . l-mUSN . . ( > > > > sth mSO # mSI-oSO, > l bifurcation > > : mUS ! switching mSI-oSO " mSO,
ðs Þ
for b2 l ¼ a2sl # a2sl 1 ; ðs Þ for b1 l ¼ a2sl 1 " a2sl ; ðs Þ
for b2 1 ¼ a2s1 # a2s1 1 ; ðs Þ for b1 1 ¼ a2s1 1 " a2s1 : ð5:128Þ
The l-mLSN antenna switching bifurcation for si 2 f0; 1; . . .; mg (i ¼ 1; 2; . . .; l) is
370
5 (2m + 1)th-Degree Polynomial Discrete Systems
8 ( > sth mSI-oSO # mSO, > l bifurcation > > mLS ! > > switching mSO " mSI-oSO, > < l-mLSN .. . ( > > > > sth mSI-oSO # mSO, > l bifurcation > > : mLS ! switching mSO " mSI-oSO,
ðs Þ
for b2 l ¼ a2sl # a2sl 1 ; ðs Þ for b1 l ¼ a2sl 1 " a2sl ; ðs Þ
for b2 1 ¼ a2s1 # a2s1 1 ; ðs Þ for b1 1 ¼ a2s1 1 " a2s1 : ð5:129Þ
Two antenna switching bifurcation structures exist for the ð2m þ 1Þth -order polynomial discrete system. The ðl1 -mLSN:mSO:l2 -mUSNÞ-switching bifurcation for a0 [ 0 is 8 < l2 -mUSN l1 þ l2 ¼m ðl1 -mLSN:mSO:l2 -mUSNÞ ! mSO ! mSO, : l1 -mLSN;
ð5:130Þ
and the ðl1 -mUSN:mSI-oSO:l2 -mLSNÞ-switching bifurcation for a0 \0 is 8 < l2 -mLSN, l1 þ l2 ¼m ðl1 -mUSN:mSI-oSO:l2 -mLSNÞ ! mSI-oSO ! mSI-oSO, ð5:131Þ : l1 -USN: As in the ð2m þ 1Þth -order polynomial system, consider a switching bifurcation for a bundle of fixed-points with monotonic-sink-to-oscillatory-source and monotonic-source with the following conditions, Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ ðiÞ ðiÞ Di ¼ 0 at b1 = b2 ði ¼ 1; 2; . . .; nÞ
at bifurcation:
ð5:132Þ
Two ð2lÞth order switching bifurcations for l 2 f1; 2; . . .; sg are 8 mSO, for > > > > mSI-oSO, > < a bundle of ð2lÞ-fixed-points ð2lÞth order mUS ! ... switching bifurcation > > > > mSO, for > : mSI-oSO,
a2sl ! b2sl ; for a2sl 1 ! b2sl 1 ; a2s1 ! b2s1 ; for a2s1 1 ! b2s1 1 : ð5:133Þ
8 mSI-oSO, > > > > > < mSO, for a bundle of ð2lÞ-fixed-points th ð2lÞ order mLS ! ... switching bifurcation > > > > > mSI-oSO, : mSO, for
for a2sl ! b2sl ; a2sl 1 ! b2sl 1 ; ð5:134Þ for a2s1 ! b2s1 ; a2s1 1 ! b2s1 1 :
5.2 Simple Fixed-Point Bifurcations
371
where Dij ¼ ðai aj Þ2 ¼ ðbi bj Þ2 ¼ 0 with Bi ¼ Bj ði; j ¼ 2s1 1; 2s1 ; ; 2sl 1; 2sl Þ and fa2s1 1 ; a2s1 ; ; a2sl 1 ; a2sl g fb2s1 1 ; b2s1 ; ; b2sl 1 ; b2sl g
ð1Þ
before bifurcation
ð1Þ
after bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; b1 ; b2 ; ag; ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; b1 ; b2 ; ag:
ð5:135Þ
Two ð2l þ 1Þth order switching bifurcations for l 2 f1; 2; . . .; sg are 8 mSO, for a2sl þ 1 ! b2sl þ 1 ; > > > > .. < a bundle of ð2l þ 1Þ-fixed-points ð2l þ 1Þth order mSO ! . switching bifurcation > > mSI-oSO, for a2s1 ! b2s1 ; > > : mSO, for a2s1 1 ! b2s1 1 : ð5:136Þ 8 mSI-oSO, for a2sl þ 1 ! b2sl þ 1 ; > > > > .. < a bundle of ð2l þ 1Þ-fixed-points ð2l þ 1Þth order mSI ! . switching bifurcation > > mSO, for a2s1 ! b2s1 ; > > : mSI-oSO, for a2s1 1 ! b2s1 1 : ð5:137Þ where Dij ¼ ðai aj Þ2 ¼ ðbi bj Þ2 ¼ 0 with Bi ¼ Bj ði; j ¼ 2s1 1; 2s1 ; ; 2sl 1Þ and fa2s1 1 ; a2s1 ; ; a2sl þ 1 g fb2s1 1 ; b2s1 ; ; b2sl þ 1 g
ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; b1 ; b2 ; ag;
sortfb1 ; b2 ; b1 ; b2 ; ag:
before bifurcation After bifurcation
ð1Þ
ð1Þ
ðnÞ
ðnÞ
ð5:138Þ
A set of paralleled, different, higher-order, monotonic upper-saddle-node switching bifurcations is the ðða1 Þth mXX:(a2 Þth mXX: :ðas Þth mXXÞ parallel switching bifurcation in the ð2m þ 1Þth -degree polynomial discrete system. At the strawbundle switching bifurcation, Di ¼ 0ði ¼ 1; 2; . . .; nÞ and Bi ¼ Bj (i; j 2 f1; 2; . . .; ng; i 6¼ j). Thus, the parallel straw-bundle switching bifurcation is ðða1 Þth mXX:ða2 Þth mXX: :ðas Þth mXXÞ-switching 8 > ðas Þth order mXX switching, > > > > < .. ¼ . > > ða2 Þth order mXX switching, > > > : ða1 Þth order mXX switching;
ð5:139Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
372
where X
ai 2 f2li ; 2li 1gwith si¼1 ai ¼ 2m þ 1; and mXX 2 fmUS; mLS; mSO; mSIg: ðjÞ
ðjÞ
ð5:140Þ
ðjÞ
The ð2l1 : 2l2 : : 2ls Þth mUSN parallel switching bifurcation is called a
ðjÞ
ðjÞ
ðjÞ
ð2l1 : 2l2 : : 2ls Þth mUSN parallel straw-bundle switching bifurcation. ðjÞ
ðjÞ
th sj -mUSG ¼ ð2l1 : 2l2 : : 2lðjÞ sj Þ mUSN switching 8 ðjÞ th > ð2l Þ order mUSN switching, > > s > > < .. ¼ . ðjÞ > > ð2l2 Þth order mUSN switching, > > > : ðjÞ th ð2l1 Þ order mUSN switching: ðjÞ
ðjÞ
ð5:141Þ
ðjÞ
The ð2l1 : 2l2 : : 2ls Þth mLSN parallel switching bifurcation is called a
ðjÞ
ðjÞ
ðjÞ
ð2l1 : 2l2 : : 2ls Þth mLSN parallel straw-bundle switching bifurcation. ðjÞ
ðjÞ
th sj -mLSG ¼ ð2l1 : 2l2 : : 2lðjÞ sj Þ mLSN switching 8 ðjÞ th > ð2l Þ order mLSN switching, > > s > > < .. ¼ . ðjÞ > > ð2l2 Þth order mLSN switching, > > > : ðjÞ th ð2l1 Þ order mLSN switching:
ð5:142Þ
ð2Þ
The ðs1 -mLSG:ð2l1 þ 1Þth mSO:s3 -mUSGÞ-switching bifurcation for a0 [ 0 is 8 ð3Þ ð3Þ th > < ð2l1 ; ; 2ls2 Þ -mUSN, ð2Þ th ðs1 -mLSG; ð2l1 þ 1Þth mSO; s3 -mUSGÞ ¼ ð2lð2Þ ð5:143Þ 1 þ 1Þ mSO; > : ð1Þ ð1Þ th ð2l1 ; ; 2ls1 Þ -mLSN; ð2Þ
and the ðs1 -mUSG:ð2l1 þ 1Þth mSI:s3 -mLSGÞ-switching bifurcation for a0 \ 0 is 8 ð3Þ ð3Þ th > < ð2l1 ; ; 2ls3 Þ -mLSN, ð2Þ th ðs1 -mUSG:ð2l1 þ 1Þth mSI:s3 -mLSGÞ ! ð2lð2Þ 1 þ 1Þ mSI; > : ð1Þ ð1Þ ð2l1 ; ; 2ls1 Þth -mUSN;
ð5:144Þ
The two ðl1 -mUSN:mSO:l2 -mLSNÞ and ðl1 -mLSN:mSI-oSO:l2 -mUSNÞ parallelswitching bifurcations (l1 þ l2 ¼ m) are presented in Fig. 5.5i and ii for a0 [ 0 and
5.2 Simple Fixed-Point Bifurcations
373 a2m
a0 > 0
a0 < 0
mSO mUSN
P-2 mSI-oSO
P-2
P-2
mLSN
a2 m−1
mSO
P-2
a2 m−2
mSO
a2m
mSI-oSO
a2 m−1 a2 m−2
mSI-oSO
mUSN
P-2
mLSN mSI-oSO
a2 m−3
mSO
P-2
•
P-2
P-2
a2 m−3
• • •
• •
mSO
mSI-oSO
mSO
P-2
mSO
mSI-oSO • • •
• •
P-2
a2
mSI-oSO
•
P-2
mUSN
a1
mSO
xk∗
a2
mSO P-2
mLSN
a1
mSI-oSO
xk∗
P-2 P-2
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(ii)
(i) a2m
a0 > 0
a0 < 0
mSO 3rd mSO
a2 m−1
P-2 mSO
a2 m−2
mSI-oSO
a2 m−3
a2m
mSI-oSO
P-2
P-2
3rd mSI
a2 m−2
mSI-oSO P-2
P-2
mSO
P-2
a2 m−1
a2 m−3
mSO
mSI-oSO P-2 • •
P-2
•
• • •
mSO P-2
mSI-oSO
P-2
4th
P-2
USN
4thmLSN P-2
P-2
mSI-oSO • •
P-2
•
P-2
•
P-2
• •
mSO
P-2
a2
3rd mSO
mSO
xk∗
mSO
P-2
mSI-oSO
a2
3rd mSI
a1
a1
mSI-oSO
xk∗
P-2 P-2
|| p ||
Δ iq > 0 Δ iq = 0
(iii)
Δ iq > 0
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.5 Parallel switching bifurcations: (i) ðl1 -mUSG:mSO:l2 -mUSGÞ ða0 [ 0Þ, (ii) ðl1 -mUSG: mSI oSO : l2 -mLSGÞ ða0 \0Þ; (iii)ð3rd mSI: :mUSN:3rd mSOÞ ða0 [ 0Þ, (vi) ð3rd mSO: : mLSN : 3rd mSIÞ (ða0 \0Þ in the ð2m þ 1Þth -degree polynomial nonlinear system. mLSN: monotonic lower saddle-node, mUSN: monotonic upper saddle-node, mSI-oSO: monotonic sink, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2: period-2 fixed points which is sketched through red curves
5 (2m + 1)th-Degree Polynomial Discrete Systems
374
a0 \ 0, respectively. A set of ð3rd mSO: :mSI-oSO:3rd mSOÞ parallel, switching bifurcations for mSI-oSO and mSO fixed-points is presented in Fig. 5.5iii for a0 [ 0. However, for a0 \ 0, the set of ð3rd mSI: :mSO:3rd mSIÞ switching bifurcations for monotonic sources and monotonic sinks is presented in Fig. 5.5iv. The period-2 fixed-points are sketched through red curves, which is relative to the monotonic sink to the oscillatory source.
5.2.3
Switching-Appearing Bifurcations
Consider a ð2m þ 1Þth degree polynomial discrete system in a form of 2n1 þ 1 2 ðxk ci Þ *nj¼1 ðx2k þ Bj xk þ Cj Þ: xk þ 1 ¼ xk þ a0 Qðxk Þ *i¼1
ð5:145Þ
Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bj xk þ Cj ¼ 0 are ðjÞ
1 2
b1;2 ¼ Bj
1pffiffiffiffiffi Dj ; Dj 2
¼ B2j 4Cj 0ðj ¼ 1; 2; . . .; n2 Þ;
ð5:146Þ
either fa 1 ; a2 ; ; a2n1 þ 1 g ¼ sortfc1 ; c2 ; c2n1 þ 1 g; a s as þ 1 before bifurcation; ð1Þ
ð1Þ
ðn Þ
ðn Þ
þ fa1þ ; a2þ ; ; a2n g ¼ sortfc1 ; ; c2n1 þ 1 ; b1 ; b2 ; ; b1 2 ; b2 2 g; 3 þ1
ð5:147Þ
asþ asþþ 1 ; n3 ¼ n1 þ n2 after bifurcation; or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 ; a2 ; ; a2n3 þ 1 g ¼ sortfc1 ; c2 ; c2n1 ; b1 ; b2 ; ; b1 ; b2 ; ag;
a s as þ 1 ; n3 ¼ n1 þ n2 before bifurcation;
þ fa1þ ; a2þ ; ; a2n g ¼ sortfc1 ; ; c2n1 ; ag; 1 þ1
asþ asþþ 1 after bifurcation; ð5:148Þ and 9 Bj1 ¼ Bj2 ¼ ¼Bjs ðjk1 2 f1; 2; . . .; ng; jk1 6¼ jk2 Þ > > = ðk1 ; k2 2 f1; 2; . . .; sg; k1 6¼ k2 Þ at bifurcation: Dj ¼ 0ðj 2 U f1; 2; . . .; n2 g > > ; ci 6¼ 12Bj ði ¼ 1; 2; . . .; 2n1 ; j ¼ 1; 2; . . .; n2 Þ
ð5:149Þ
th th th Consider a just before bifurcation of ðða 1 Þ mXX1 :ða2 Þ mXX2 : : ðas1 Þ Ps1 mXXs1 Þ with i¼1 ai ¼ 2m1 þ 1 for simple monotonic-sources and monotonic-
5.2 Simple Fixed-Point Bifurcations
375
sink-to-oscillatory-sources in the ð2m þ 1Þth degree polynomial nonlinear discrete system. For a i ¼ 2li 1; mXXi 2 fmSO,mSIg and for ai ¼ 2li ; mXXi 2 fmUS,mLSg ði ¼ 1; 2; . . .; s1 Þ. The detailed structures are as follows. 9 mSI-oSO > > > > > mSO > = .. th ! ð2l . i 1Þ mSI; and > > > > mSO > > ; mSI-oSO 9 mSO > > > > mSI-oSO > > = .. th ! ð2l and . i Þ mUS; > > > > mSO > > ; mSI-oSO
9 mSO > > > > mSI-oSO > > = .. th ! ð2l . i 1Þ mSO; > > > mSI-oSO > > > ; mSO 9 mSI-oSO > > > > > mSO > = .. th ! ð2l . i Þ mLS: > > > mSI-oSO > > > ; SO ð5:150Þ
th th th The bifurcation set of ðða 1 Þ mXX1 :ða2 Þ mXX2 : :ðas1 Þ mXXs1 Þ at the same parameter point is called a left-parallel-bundle switching bifurcation Consider a just after bifurcation of ðða1þ Þth mXX1þ :ða2þ Þth mXX2þ : : ðasþ2 Þth 2 mXXsþ2 Þ with Psi¼1 aiþ ¼ 2m2 þ 1 for simple monotonic sources and monotonic sinks
to oscillatory sources in the ð2m þ 1Þth degree polynomial nonlinear discrete system. þ mXXiþ 2 fmSO,mSIg for aiþ ¼ 2liþ 1; and mXX i 2 fmUS,mLSg for ai ¼ þ 2li . The four detailed structures are as follows. 8 mSI-oSO > > > > mSO < . ; ð2liþ 1Þth mSI ! .. > > > > : mSO mSI-oSO 8 mSO > > > mSI-oSO > < . ð2liþ Þth mUS ! .. ; > > > mSO > : mSI-oSO
8 mSO > > > > mSI-oSO < . and ð2liþ 1Þth mSO ! .. ; > > > > : mSI-oSO mSO 8 mSI-oSO > > > mSO > < . þ th and ð2li Þ mLS ! .. : > > > mSI-oSO > : mSO ð5:151Þ
The bifurcation set of ðða1þ Þth mXX1þ :ða2þ Þth mXX2þ : :ðasþ2 Þth mXXsþ2 Þ at the same parameter point is called a right-parallel-bundle switching bifurcation.
376
5 (2m + 1)th-Degree Polynomial Discrete Systems
(i) For the just before and after bifurcation structure, if there exists a relation of th þ th þ th þ ða i Þ mXXi ¼ ðaj Þ mXXj ¼ a mXX, for xk ¼ ai ¼ aj
ði 2 f1; 2; ; s1 g; j 2 f1; 2; ; s2 gÞ; mXX 2 fmUS,mLS,mSO,mSIg ð5:152Þ then the bifurcation is a ath mXX switching bifurcation for simple fixed-points. (ii) Just for the just before bifurcation structure, if there exists a relation of th th ð2l i Þ mXXi ¼ ð2lÞ mXX, for xk ¼ ai ¼ ai ði 2 f1; 2; ; s1 g; mXX 2 fmUS,mLSg
ð5:153Þ
then, the bifurcation is a ð2lÞth mXX left appearing (or right vanishing) bifurcation for simple fixed-points. (iii) Just for the just after bifurcation structure, if there exists a relation of ð2liþ Þth mXXiþ ¼ ð2lÞth mXX, for xk ¼ aiþ ¼ ai ði 2 f1; 2; ; s1 gÞ; mXX 2 fmUS,mLSg
ð5:154Þ
then, the bifurcation is a ð2lÞth mXX right appearing (or left vanishing) bifurcation for simple fixed-points. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ða for xk ¼ a i Þ mXXi 6¼ ðaj Þ mXXj i ¼ aj þ XX i ; XXj 2 fmUS,mLS, mSO,mSIg
ð5:155Þ
ði 2 f1; 2; ; s1 g; j 2 f1; 2; ; s2 gÞ; then, there are two flower-bundle switching bifurcations of simple fixedpoints: (iv1) for aj ¼ ai þ 2l, the bifurcation is called a ath j mXX right flower-bundle switching bifurcation for ai to aj -simple fixed-points with the appearance (birth) of 2l-simple fixed-points. (iv2) for aj ¼ ai 2l, the bifurcation is called a ath i mXX left flower-bundle switching bifurcation for ai to aj -simple fixed-points with the vanishing (death) of 2l-simple fixed-points. A general parallel switching bifurcation is
5.2 Simple Fixed-Point Bifurcations
377 switching
th th th ðða ! 1 Þ mXX1 ; ða2 Þ mXX2 ; ; ðas1 Þ mXXs1 Þ bifucation
ðða1þ Þth mXX1þ ; ða2þ Þth mXX2þ ; ; ðasþ2 Þth mXXsþ2 Þ:
ð5:156Þ
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ ða i Þ mXXi ¼ ðai Þ mXXi ¼ ðai Þ mXXi ;
þ for xk ¼ a i ¼ ai ði ¼ 1; 2; ; sg
ð5:157Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ðða1 Þth mXX:ða2 Þth mXX: :ðas Þth mXXÞ. If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ þ th ða i Þ mXXi ¼ ð2li Þ mXX, ðaj Þ mXXj ¼ ð2lj Þ mYY, þ for xk ¼ a i 6¼ ai ði ¼ 1; 2; ; sg
ð5:158Þ
mXX 2 f mUS,mLSg ,mYY 2 f mUS,mLSg then the parallel flower-bundle switching bifurcation becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) a ðð2l 1 Þ mXX1 : ð2l2 Þ mXX2 : : ð2ls1 Þ mXXs1 Þ-left parallel sprinklerspraying appearing (or right vanishing) bifurcation and (ii) a ðð2l1þ Þth mXX1þ : ð2l2þ Þth mXX2þ : : ð2lsþ2 Þth mXXsþ2 Þ-right parallel sprinklerspraying appearing (or left vanishing) bifurcation.
The ð4th mLS: :mSO:m6th USÞ parallel appearing bifurcation for a0 [ 0 is presented in Fig. 5.6i. The ð4th mUS: :mSI-oSO:6th mLSÞ parallel appearing bifurcation for a0 \0 is shown in Fig. 5.6ii. Such a kind of bifurcation is also like a waterfall appearing bifurcation. The ð5th mSO: :6th mUS:6th mUSÞ parallel, flowerbundle switching bifurcation for mSI and mSO fixed-points is presented in Fig. 5.6iii for a0 [ 0. Such a parallel flower-bundle switching bifurcation is from ðmSO:mSI-oSO:mSOÞ to ð5th mSO: :6th mUS:6th mUSÞ with a waterfall appearance. The set of ð5th mSI: :6th mLS:6th mLSÞ flower-bundle switching bifurcation for mSI and mSO fixed-points is presented in Fig. 5.6iv for a0 \0. Such a parallel flower-bundle switching bifurcation is from ðmSI-oSO:mSO:mSI-oSOÞ to ð5th mSI: :6th mLS:6th mLSÞ with a waterfall appearance. After the bifurcation, the waterfall fixed-points birth can be observed. The fixed-points before such a bifurcation are much less than after the bifurcation.
5 (2m + 1)th-Degree Polynomial Discrete Systems
378 a0 > 0
mSO
mSI-oSO
mSO
mS-oSOI
4th mLSN
b
mSO
SI
SI mSO
P-2
4th mUSN
•
mSO
mSO
(2r)th mLSN
P-2 • •
• •
mSI-oSO
•
mSO
mSO
•
mSI-oSO
mSO
mSI-oSO
mSO mSO
P-2 (2r)th mUSN
P-2
mSI-oSO
• •
mSI-oSO
b2(i2 )
P-2
•
P-2
b1(i1 ) b1(i2 ) b2(i1 )
6th mLSN
( i2 ) 2
P-2 • •
mSI-oSO
a0 < 0
b1(i2 ) b2(i1 )
6th mUSN mSO
b1(i1 )
b1(im )
P-2
mSI-oSO
mSO
b1(im )
4th mUSN
4th mLSN
xk∗
xk∗ mSO
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
b2(im )
mSI-oSO
(i)
(ii) mSO
a0 > 0
( i1 ) 1 ( i2 ) 1
b b
mSI-oSO
b2(i2 )
mSO
P-2
mSI-oSO
a0 < 0
b2(i1 )
6th mUSN
mSO
b2(i1 ) mSO mSI-oSO
P-2
P-2 mSI-oSO
P-2
• • •
P-2 6th mLSN mSO
mSI-oSO
•
mSO
• •
mSO
mSO
P-2 (2r)th mLSN
P-2 (2r)th mUSN
P-2
• •
P-2 • •
mSI-oSO
•
mSI-oSO
b1(im ) 5th
mSO
xk∗
xk∗ mSO
Δ iq < 0 Δ iq = 0
(iii)
mSI-oSO
•
mSI-oSO
|| p ||
b2(i2 )
mSI-oSO
P-2
mSO
b1(i1 ) b1(i2 )
6th mLSN
6th mUSN
5th
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
Δ iq > 0
b2(im )
b1(im )
mSI
mSI-oSO P-2
|| p ||
mSI-oSO
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
(iv)
Fig. 5.6 Switching and appearing bifurcations. Simple switching: (i)ð4th mLSN: : mSO : 6th mUSNÞ ða0 [ 0Þ, (ii) ð4th mUSN: :mSI-oSO:6th mLSNÞ ða0 \0Þ. Higher-order switching: (iii) ð5th mSI: :6th mUSN : 6th mUSNÞ ða0 [ 0Þ), (vi) ð5th mSO: :6th mLSN : 6th mLSNÞ ða0 \0Þ in the ð2m þ 1Þth -degree polynomial nonlinear system. mLSN: monotonic lower saddlenode, mUSN: monotonic upper saddle-node, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. The period-2 fixed points are represented by P-2, which are sketched through red curves
5.3 Higher-Order Fixed-Point Bifurcations
5.3
379
Higher-Order Fixed-Point Bifurcations
The afore-discussed appearing and switching bifurcations in the ð2m þ 1Þth degree polynomial discrete system are relative to the simple monotonic sources and monotonic sinks to oscillatory sources. As similar to the ð2mÞth degree polynomial nonlinear discrete system, the higher-order singularity bifurcations in the ð2m þ 1Þth degree polynomial discrete system can be for higher-order monotonic sinks, monotonic sources, monotonic upper-saddles, and monotonic lower-saddles.
5.3.1
Higher-Order Fixed-Point Bifurcations
Consider a ð2m þ 1Þth degree polynomial nonlinear discrete system as xk þ 1 ¼ xk þ a0 Qðxk Þðxk aÞ *si¼1 ðx2k þ Bi xk þ Ci Þai ;
ð5:159Þ
where ai 2 f2li 1; 2li g. Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are ðiÞ
1 2
b1;2 ¼ Bi
1pffiffiffiffiffi Di ; Di 2
¼ B2i 4Ci 0; ð1Þ
ð1Þ
ðsÞ
ðsÞ
fa1 ; a2 ; ; a2s1 ; a2s ; a2s þ 1 g ¼ sortfb1 ; b2 ; ; b1 ; b2 ; ag;
ð5:160Þ
aj a j þ 1 : For a 6¼ 12Bi ði ¼ 1; 2; . . .; sÞ, there are four higher-order bifurcations as follows: ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order mUS ! appearing bifurcation ( ðiÞ ð2li 1Þth order mSO, xk ¼ b2 ;
ð5:161Þ
ðiÞ
ð2li 1Þth order mSI, xk ¼ b1 ; ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order mLS ! appearing bifurcation ( ðiÞ ð2li 1Þth order mSI, xk ¼ b2 ; ðiÞ
ð2li 1Þth order mSO, xk ¼ b1 ;
ð5:162Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
380
ð2li Þth -order power of quadratics ð2ð2li ÞÞth order mUS ! appearing bifurcation ( ðiÞ ð2li Þth order mUS, xk ¼ b2 ;
ð5:163Þ
ðiÞ
ð2li Þth order mUS, xk ¼ b1 ; ð2li Þth -order quadratics ð2ð2li ÞÞth order mLS ! appearing bifurcation ( ðiÞ ð2li Þth order mLS, xk ¼ b2 ;
ð5:164Þ
ðiÞ
ð2li Þth order mLS, xk ¼ b1 : (i) For ai ¼ 2li 1; the ð2ð2li 1ÞÞth -order monotonic upper-saddle (mUS) appearing bifurcation is for the onset of the ð2li 1Þth -order monotonic source ðiÞ ðiÞ (mSO) (xk ¼ b2 ) and the ð2li 1Þth -order monotonic sink (mSI) (xk ¼ b1 ) ðiÞ
ðiÞ
ðiÞ
ðiÞ
with b2 [ b1 . (ii) For ai ¼ 2li 1; the ð2ð2li 1ÞÞth -order monotonic lower-saddle (mLS) appearing bifurcation is for the onset of the ð2li 1Þth -order monotonic sink ðiÞ ðiÞ (mSI) (xk ¼ b2 ) and the ð2li 1Þth -order monotonic source (mSO) (xk ¼ b1 ) with b2 [ b1 . (iii) For ai ¼ 2li ; the ð2ð2li ÞÞth -order monotonic upper-saddle (mUS) appearing bifurcation is for the onset of two ð2li Þth -order monotonic upper-saddles (mUS) ðiÞ ðiÞ ðiÞ ðiÞ (xk ¼ b1 ; b2 ) with b2 [ b1 . (iv) For ai ¼ 2li ; the ð2ð2li ÞÞth order monotonic lower-saddle (mLS) appearing bifurcation is for the onset of two ð2li Þth -order monotonic lower-saddles (mLS) ðiÞ ðiÞ ðiÞ ðiÞ (xk ¼ b1 ; b2 ) with b2 [ b1 . The fixed-point of xk ¼ a 6¼ 12Bi ði ¼ 1; 2; . . .; sÞ breaks a cluster of teethcomb appearing bifurcations of higher order fixed-point to two parts. The teethcomb appearing bifurcation generated by the s-pairs of quadratics becomes a broom appearing bifurcation for higher-order fixed-points. The two broom appearing bifurcations for higher-order fixed-points are 8 ð2Þ th ð2Þ th > < ðð2a1 Þ mUS; ; ð2as2 Þ mUSÞ; j¼1 mSO (xk ¼ aÞ ! mSO; for xk ¼ a ¼ a2ðs1 þ 1Þ1 ; appearing bifurcation > : ð1Þ ð1Þ ðð2a1 Þth mLS; ; ð2as1 Þth mLS); P2 Ps j
ðjÞ
a ¼m i¼1 i
and
ð5:165Þ
5.3 Higher-Order Fixed-Point Bifurcations
381
8 ð2Þ th ð2Þ th > < ðð2a1 Þ mLS; ; ð2as2 Þ mLSÞ; j¼1 mSI-oSO ( xk ¼ aÞ ! mSI-oSO; for xk ¼ a ¼ a2ðs1 þ 1Þ1 ; appearing bifurcation > : ð1Þ ð1Þ ðð2a1 Þth mUS; ; ð2as1 Þth mUS); P2 Ps j
ðjÞ a ¼m i¼1 i
ð5:166Þ where 8 8 th < ðaðjÞ > > sj Þ mXX; th > > ð2aðjÞ Þ mUS ! s > j > : ðaðjÞ Þth mXX; > > sj < ðjÞ th . ðð2a1 Þth mUS; ; ð2aðjÞ Þ mUSÞ ¼ sj .. > ( ðjÞ th > > > > ða1 Þ mXX; > ðjÞ th > > : ð2a1 Þ mUS ! ðjÞ ða1 Þth mXX; ð5:167Þ 8 8 th < ðaðjÞ > > sj Þ mXX; ðjÞ th > > ð2asj Þ mLS ! > > : ðaðjÞ Þth mXX; > > sj < ðjÞ th . ðð2a1 Þth mLS; ; ð2aðjÞ Þ mLSÞ ¼ sj .. > ( ðjÞ th > > > > ða1 Þ mXX; > ðjÞ th > > ð2a1 Þ mLS ! : ðjÞ ða1 Þth mXX; ð5:168Þ for j ¼ 1; 2: Four special broom appearing bifurcations for higher-order fixed-points are Ps
i¼1 ai ¼m
mSO ( xk ¼ aÞ !
mSO; for xk ¼ a ¼ a2s þ 1 ; ðð2a1 Þth mLS; ; ð2as Þth mLS);
appearing bifurcation Ps
i¼1 ai ¼m
mSI-oSO ( xk ¼ aÞ !
appearing bifurcation
ð5:169Þ
mSo-oSO; for xk ¼ a ¼ a2s þ 1 ; ð5:170Þ ðð2a1 Þth mUS; ; ð2as Þth mUS)
and mSO (
xk
mSI-oSO (
Ps
i¼1 ai ¼m
¼ aÞ ! appearing bifurcation
xk
Ps
i¼1 ai ¼m
ðð2a1 Þth mUS; ; ð2as Þth mUS), mSO; for xk ¼ a ¼ a1 ;
¼ aÞ ! appearing bifurcation
ð5:171Þ
ðð2a1 Þth mLS; ; ð2as Þth mLS), ð5:172Þ mSI-oSO; for xk ¼ a ¼ a1 :
5 (2m + 1)th-Degree Polynomial Discrete Systems
382
For a ¼ 12Bi ði 2 f1; 2; . . .; sgÞ, there are four higher-order bifurcations as follows: mSO (xk ¼ aÞ ! ð2ð2li 1Þ þ 1Þth mSO 8 ðiÞ th > < ð2li 1Þ order mSO, xk ¼ b2 ; ¼ mSI-oSO, xk ¼ a; > : ðiÞ ð2li 1Þth order SO, xk ¼ b1 ;
ð5:173Þ
mSI-oSO (xk ¼ aÞ ! ð2ð2li 1Þ þ 1Þth mSI 8 ðiÞ th > < ð2li 1Þ order mSI, xk ¼ b2 ; ¼ mSO, x ¼ a; > : ðiÞ ð2li 1Þth order mSI, xk ¼ b1 ;
ð5:174Þ
mSI-oSO (xk ¼ aÞ ! ð2ð2li Þ þ 1Þth mSO 8 ðiÞ th > < ð2li Þ order mUS, xk ¼ b2 ; ¼ mSO, xk ¼ a; > : ðiÞ ð2li Þth order mLS, xk ¼ b1 ;
ð5:175Þ
mSI-oSO (xk ¼ aÞ ! ð2ð2li Þ þ 1Þth mSI 8 ðiÞ th > < ð2li Þ order mLS, xk ¼ b2 ; ¼ mSI-oSO, x ¼ a; > : ðiÞ ð2li Þth order mUS, xk ¼ b1 :
ð5:176Þ
(i) For ai ¼ 2li 1, the ð2ð2li 1Þ þ 1Þth order monotonic source (mSO) switchðiÞ ing bifurcation is with the ð2li 1Þth order monotonic source (mSO) (xk ¼ b2 ) ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
and the ð2li 1Þth order monotonic sink (mSI) (xk ¼ b1 ) with b2 [ a [ b1 . (ii) For ai ¼ 2li 1 the ð2ð2li 1Þ þ 1Þth order monotonic sink (mSI) switching ðiÞ bifurcation is with the ð2li 1Þth order monotonic sink (mSI) (xk ¼ b2 ) and
the ð2li 1Þth order monotonic source (mSO) (xk ¼ b1 ) with b2 [ a [ b1 . (iii) For ai ¼ 2li the ð2ð2li Þ þ 1Þth order monotonic source (mSO) switching bifurðiÞ cation is with the ð2li Þth order monotonic upper-saddle (mUS) (xk ¼ b2 ) and ðiÞ
ðiÞ
the ð2li Þth order monotonic upper-saddles (mLS) (xk ¼ b1 ) with b2 [ a ðiÞ
[ b1 .
5.3 Higher-Order Fixed-Point Bifurcations
383
(iv) For ai ¼ 2li the ð2ð2li Þ þ 1Þth order monotonic sink (mSI) switching bifurcation ðiÞ is with the ð2li Þth order monotonic upper-saddle (mLS) (xk ¼ b2 ) and the ðiÞ
ðiÞ
ðiÞ
ð2li Þth order monotonic upper-saddles (mUS) (xk ¼ b1 ) with b2 [ a [ b1 .
If xk ¼ a ¼ 12Bi ði ¼ 1; 2; . . .; mÞ, the fixed-point of xk ¼ a possesses a ð2ð2li 1Þ þ 1Þth and ð2ð2li Þ þ 1Þth -order mSI or mSO switching bifurcations (or pitchfork bifurcations) for higher-order fixed-points. The teethcomb appearing bifurcation generated by the m-pairs of quadratics becomes a broom switching bifurcation. Such a broom switching bifurcation consists of a pitchfork switching bifurcation and two teethcomb appearing bifurcations in the ð2m þ 1Þth -degree polynomial system. Four broom switching bifurcations for higher-order fixed-points are P2 Ps j
ðjÞ a i¼1 i
j¼1
þ 2ls1 þ 1 ¼m
mSO ( xk ¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ > ðð2a1 Þ mUS; ; ð2as2 Þth mUSÞ; > > 8 > > th > > > < < ð2ls1 þ 1 Þ mUS, th ð2ð2ls1 þ 1 Þ þ 1Þ mSO mSO, x ¼ a; > > > : > > ð2ls1 þ 1 Þth mLS, > > > : ð1Þ ð1Þ ðð2a1 Þth mLS; ; ð2as1 Þth mLS); mSO (
xk
P2 Ps j j¼1
ðjÞ a i¼1 i
ð5:177Þ
þ 2ls1 þ 1 1¼m
¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ > ðð2a1 Þ mUS; ; ð2as2 Þth mUSÞ; > > 8 > > th > > > < < ð2ls1 þ 1 1Þ mSO, ð2ð2ls1 þ 1 1Þ þ 1Þth mSO mSI-oSO, xk ¼ a; > > > : > > ð2ls1 þ 1 1Þth mSO, > > > : ð1Þ ð1Þ ðð2a1 Þth mLS; ; ð2as1 Þth mLS);
ð5:178Þ
and P2 Ps j j¼1
ðjÞ a i¼1 i
þ 2ls1 þ 1 ¼m
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ > ðð2a1 Þ mLS; ; ð2as2 Þth mLSÞ; > > 8 > > th > > > < < ð2ls1 þ 1 Þ mLS, ð2ð2ls1 þ 1 Þ þ 1Þth mSI mSI-oSO, xk ¼ a; > > > : > > ð2ls1 þ 1 Þth mUS, > > > : ð1Þ ð1Þ ðð2a1 Þth mUS; ; ð2as1 Þth mUS);
ð5:179Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
384 P2 Psj j¼1
ðjÞ a i¼1 i
þ 2ls1 þ 1 1¼m
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ > ðð2a1 Þ mLS; ; ð2as2 Þth mLSÞ; > > 8 > > th > > > < < ð2ls1 þ 1 1Þ mSI, ð2ð2ls1 þ 1 1Þ þ 1Þth mSI mSO, xk ¼ a; > > > : > > ð2ls1 þ 1 1Þth mSI; > > > : ð1Þ ð1Þ ðð2a1 Þth mUS; ; ð2as1 Þth mUS):
ð5:180Þ
Consider a ð2m þ 1Þth degree polynomial nonlinear discrete system as xk þ 1 ¼ xk þ a0 Qðxk Þðxk aÞ *ni¼1 ðx2k þ Bi xk þ Ci Þai
ð5:181Þ
where ai 2 f2ri 1; 2ri g ði ¼ 1; 2; . . .; nÞ. Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bi xk þ Ci ¼ 0 are ðiÞ
1 2
b1;2 ¼ Bi
1pffiffiffiffiffi Di ; Di 2
¼ B2i 4Ci 0;
Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ ð1Þ
ð1Þ
ð2Þ
ð2Þ
ðnÞ
ðnÞ
fa1 ; a2 ; ; a2n þ 1 g sortfb1 ; b2 ; b1 ; b2 ; ; b1 ; b2 ; ag; ai ai þ 1 : ð5:182Þ The higher-order singularity bifurcation can be for a cluster of higher-order fixed-points. There are four higher-order bifurcations as follows: (i) The ð2ð2l 1ÞÞth order monotonic upper-saddle (mUS) spraying appearing bifurcation for a cluster of higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower-saddles is ð2bÞth mUS ¼ ð2ð2l 1ÞÞth order mUS 8 > ða2n Þth order mXX for xk ¼ a2n ; > > > > < ða2n1 Þth order mXX for xk ¼ a2n1 ; a cluster of 2n-mXX ! . appearing bifurcation > .. > > > > : ða1 Þth order mXX for xk ¼ a1 ; ð5:183Þ where 2ð2l 1Þ ¼ Pni¼1 ai and
5.3 Higher-Order Fixed-Point Bifurcations
( th
ða2n Þ order mXX ¼ ( ða1 Þth order mXX ¼
385
ð2r2n Þth order mUS, for a2n ¼ 2rn ; ð2r2n 1Þth order mSO, for a2n ¼ 2rn 1;
ð2r1 Þth order mUS, for a1 ¼ 2r1 ; ð2r1 1Þth order mSI, for a1 ¼ 2r1 1: ð5:184Þ
(ii) The ð2ð2lÞÞth order monotonic upper-saddle (mUS) spraying-appearing bifurcation for a cluster of higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower-saddles is ð2bÞth mUS ¼ ð2ð2lÞÞth order mUS 8 > ða Þth order mXX for xk ¼ a2n ; > > 2n > > < ða2n1 Þth order mXX for xk ¼ a2n1 ; a cluster of 2n-mXX ! . appearing bifurcation > > > .. > > : ða1 Þth order mXX for xk ¼ a1 ; ð5:185Þ where 2ð2lÞ ¼ Pni¼1 ai and ( ða2n Þ
th
order mXX ¼ (
ða1 Þth order mXX ¼
ð2r2n Þth order mUS, for a2n ¼ 2rn ; ð2r2n 1Þth order mSO, for a2n ¼ 2rn 1;
ð2r1 Þth order mUS, for a1 ¼ 2r1 ; ð2r1 1Þth order mSI, for a1 ¼ 2r1 1: ð5:186Þ
For the higher-order monotonic lower-saddle bifurcation, the cluster of the higher-order fixed-points is given by the following two cases. (iii) The ð2ð2l 1ÞÞth order monotonic lower-saddle (mLS) spraying-appearing bifurcation for a cluster of higher-order monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower-saddles is ð2bÞth mLS ¼ ð2ð2l 1ÞÞth order mLS 8 > ða2n Þth order mXX, for xk ¼ a2n ; > > > > < ða2n1 Þth order mXX, for xk ¼ a2n1 ; a cluster of 2n-mXX ! . appearing bifurcation > .. > > > > : ða1 Þth order mXX, for xk ¼ a1 ; ð5:187Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
386
where 2ð2l 1Þ ¼ Pni¼1 ai and ( th
ða2n Þ order mXX ¼ ( ða1 Þth order mXX ¼
ð2r2n Þth order mLS, for a2n ¼ 2rn ; ð2r2n 1Þth order mSI, for a2n ¼ 2rn 1;
ð2r1 Þth order mLS, for a1 ¼ 2r1 ; ð2r1 1Þth order mSO, for a1 ¼ 2r1 1: ð5:188Þ
(iv) The ð2ð2lÞÞth -order lower-order spraying-appearing bifurcation for a cluster of higher-order sinks, sources, upper-saddles and lower-saddles is ð2bÞth mLS ¼ ð2ð2lÞÞth order mLS 8 > ða2n Þth order mXX, for xk ¼ a2n ; > > > > < ða2n1 Þth order mXX, for xk ¼ a2n1 ; a cluster of 2n-mXX ! . appearing bifurcation > .. > > > > : ða1 Þth order mXX, for xk ¼ a1 ; ð5:189Þ where 2ð2lÞ ¼ Pni¼1 ai and ( th
ða2n Þ order mXX ¼ ( th
ða1 Þ order mXX ¼
ð2r2n Þth order mLS, for a2n ¼ 2rn ; ð2r2n 1Þth order mSI, for a2n ¼ 2rn 1;
ð2r1 Þth order mLS, for a1 ¼ 2r1 ;
ð5:190Þ
ð2r1 1Þth order mSO, for a1 ¼ 2r1 1:
If xk ¼ a 6¼ 12Bi ði ¼ 1; 2; . . .; nÞ, the fixed-point of xk ¼ a breaks a cluster of sprinkler-spraying appearing bifurcations for higher-order fixed-points to two parts. The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying appearing bifurcation. The two broomsprinkler-spraying appearing bifurcations in the ð2m þ 1Þth -degree polynomial system are m¼m1 þ m2
mSO ( x ¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ th > > < ðð2b1 Þ mUS: :ð2br2 Þ mUSÞ; mSO (a ¼ ar1 þ 1 Þ ! mSO ða ¼ a2ðm1 þ 1Þ1 Þ; > > ð1Þ : th ðð2b1 Þth mLS: :ð2bð1Þ r1 Þ mLSÞ;
ð5:191Þ
5.3 Higher-Order Fixed-Point Bifurcations
387
and m¼m1 þ m2
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation 8 ð2Þ th ð2Þ th > > < ðð2b1 Þ mLS: : ð2br2 Þ mLSÞ; mSI-oSO (a ¼ ar1 þ 1 Þ ! mSO ða ¼ a2ðm1 þ 1Þ1 Þ; > > ð1Þ : th ðð2b1 Þth mUS: :ð2bð1Þ r1 Þ mUSÞ; ð1Þ
ð5:192Þ
ð2Þ
1 2 for m1 ¼ Pri¼1 bi ; m2 ¼ Prj¼1 bj .
Four special broom-sprinkler-spraying appearing bifurcations the ð2m þ 1Þth degree polynomial nonlinear discrete system are m¼
Pr
i¼1 bi
mSO ( xk ¼ aÞ ! appearing bifurcation ( mSO (a ¼ a2m þ 1 Þ ! mSO ða ¼ a2m þ 1 Þ;
ð5:193Þ
ðð2b1 Þth mLS; ; ð2br Þth mLSÞ; m¼
Pr
i¼1 bi
mSI-oSO ( xk ¼ aÞ ! appearing bifurcation ( mSI-oSO (a ¼ a2m þ 1 Þ ! mSI-oSO ða ¼ a2m þ 1 Þ;
ð5:194Þ
ðð2b1 Þth mUS; ; ð2br Þth mUSÞ;
and m¼
Pr
i¼1 bi
mSO ( xk ¼ aÞ ! appearing bifurcation ( ðð2b1 Þth mUS; ; ð2br Þth mUSÞ;
ð5:195Þ
mSO (a ¼ a1 Þ ! mSO ða ¼ a1 Þ; m¼
Pr
i¼1 bi
mSI-oSO( xk ¼ aÞ ! appearing bifurcation ( ðð2b1 Þth mLS; ; ð2br Þth mLSÞ; mSI-oSO (a ¼ a1 Þ ! mSI-oSO ða ¼ a1 Þ:
ð5:196Þ
If xk ¼ a ¼ 12Bi (ði ¼ 1; 2; . . .; lÞ, the fixed-point of xk ¼ a possesses a ð2l þ 1Þth -order mSI or mSO switching bifurcation (or broom-switching bifurcation) for higher-order fixed-points. The sprinkler-spraying appearing bifurcation
5 (2m + 1)th-Degree Polynomial Discrete Systems
388
generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying switching bifurcation. The two broom switching bifurcations in the ð2m þ 1Þth degree polynomial system are m¼m1 þ m2 þ b
mSO (xk ¼ aÞ ! switching bifurcation 8 ð2Þ th > ð2b1 ; ; 2bð2Þ > r2 Þ mUS > > 8 > > ð2Þ th > > > > ð2br2 Þ mUS (xk ¼ ar1 þ r2 þ 1 Þ; > Pr2 ð2Þ < > m ¼ b > 2 j¼1 j > > ! ... > > > appearing > > > > : ð2Þ > > ð2b1 Þth mUS (xk ¼ ar1 þ 2 Þ; > < ð2b þ 1Þth mSO (a ¼ ar1 þ 1 Þ; > > > ð1Þ th > ð2b1 ; ; 2bð1Þ > r1 Þ mLS > > > 8 > ð1Þ th > > > > > ð2br1 Þ mLS (xk ¼ ar1 Þ; > P r1 ð1Þ < > m ¼ b 1 > i¼1 i > > ! ... > > appearing > > > > : : ð1Þ ð2b1 Þth mLS (xk ¼ a1 Þ;
ð5:197Þ
and m¼m1 þ m2 þ b
mSI-oSO (xk ¼ aÞ ! switching bifurcation 8 ð2Þ th > ð2b1 ; ; 2bð2Þ > r2 Þ mLS > > 8 > > ð2Þ th > > ð2br2 Þ mLS (xk ¼ ar1 þ r2 þ 1 Þ; > > Pr2 ð2Þ > < > m2 ¼ j¼1 bj > > > ! ... > > > appearing > > > > : ð2Þ > > ð2b1 Þth mLS (xk ¼ ar1 þ 2 Þ; > < ð2b þ 1Þth mSI (a ¼ ar1 þ 1 Þ; > > > ð1Þ th > ð2b1 ; ; 2bð1Þ > r2 Þ mUS > > > 8 > th > ð2bð1Þ > > r1 Þ mUS (xk ¼ ar1 Þ; > > > P r1 < ð1Þ > m1 ¼ i¼1 bi > > > ! ... > > appearing > > > > : : ð1Þ ð2b1 Þth mUS (xk ¼ a1 Þ; where
ð5:198Þ
5.3 Higher-Order Fixed-Point Bifurcations
389
cluster of l-quadratics ð2b þ 1Þth order mSO(xk ¼ aÞ ! appearing bifurcation 8 > ða2sl þ 1 Þth mXX, for xk ¼ a2sl þ 1 ; > > > > th > > > ða2sl Þ mXX, for xk ¼ a2sl ; < .. . > > > > > ða2s1 Þth mXX, for xk ¼ a2s1 ; > > > : ða2s1 1 Þth mXX, for xk ¼ a2s1 1 ;
ð5:199Þ
cluster of l-quadratics ð2b þ 1Þth order mSI (xk ¼ aÞ ! appearing bifurcation 8 > ða2sl þ 1 Þth mXX, for xk ¼ a2sl þ 1 ; > > > > th > > > ða2sl Þ mXX, for xk ¼ a2sl ; < .. . > > > > > ða2s1 Þth mXX, for xk ¼ a2s1 ; > > > : ða2s1 1 Þth mXX, for xk ¼ a2s1 1 :
ð5:200Þ
where xk ¼ a 2 fa2s1 1 ; ; a2sl ; a2sl þ 1 g and 2b þ 1 ¼ Pli¼1 a2si 1 þ a2si þ a2sl þ 1 : The two appearing bifurcations for the higher-order singularity of fixed-points are (i) mSO ! ðð2a1 Þth mLS: :ð2ai Þth mLS:mSO: :ð2an1 Þth mUS:ð2an Þth mUS), and (ii) mSO ! ðð2a1 Þth mUS: :ð2ai Þth UmS:mSO: :ð2an1 Þth mLS:ð2an Þth mLS), as presented in Fig. 5.7i and ii for a0 [ 0 and a0 \ 0, respectively. The broom appearing bifurcation for the higher-order fixed-points are illustrated. The components of the broom appearing bifurcation are th
(
aj1 ¼2rj1
ð2aj1 Þ mUS ! appearing
th
aj2 ¼2rj2 1
(
ð2aj2 Þ mUS ! appearing
ð2rj1 Þth mUS ð2rj1 Þth mUS
ðj1 ¼ i; n 1; . . .Þ;
ð2rj2 1Þth mSO ð2rj2 1Þth mSI
ð5:201Þ ðj2 ¼ 1; n; . . .Þ;
and th
aj1 ¼2rj1
(
ð2aj1 Þ mLS ! appearing
th
aj2 ¼2rj2 1
ð2aj2 Þ mLS ! appearing
(
ð2rj1 Þth mLS ð2rj1 Þth mLS
ðj1 ¼ i; n 1; Þ;
ð2rj2 1Þth mSI ð2rj2 1Þth mSO
ð5:202Þ ðj2 ¼ 1; n; . . .Þ;
The simple fixed-point does not interact with the bifurcation points. The four switching and appearing switching bifurcation
5 (2m + 1)th-Degree Polynomial Discrete Systems
390 a0 > 0
(2rn − 1) th mSO
b1(i1 )
a0 < 0
(2rn − 1) th mSI
[2(2rn − 1)]th mUS
(2rn −1 ) mUS
b2(i1 )
( i2 ) 1
(2rn −1 ) mLS
b1(i2 )
(2rn −1 ) th mLS
b2(i2 )
th
b
(4rn −1 ) th mUS
(4rn ) th mLS th
•
(2rn −1 ) mUS mSO
•
( i2 ) 2
b
• •
a
•
mSI-oSO
•
(2ri ) th mLS
mSO
(2ri ) th mUS
mSI-oSO
(4ri ) th mLS
P-2
(2ri ) th mUS
•
•
• •
•
(2r1 − 1) th mSI
•
b1(in )
th
[2(2r1 − 1)] mLS
(2r1 − 1) th mSO
b1(in )
(2r1 − 1) th mSI
b2(in )
th
[2(2r1 − 1)] mUS
xk∗
(2r1 − 1) th mSO
∗ k
x b2(in )
Δ iq > 0
Δ iq < 0 Δ iq = 0
a0 > 0
|| p ||
(ii) (2rn − 1) th mSO
b1(i1 )
a0 < 0
(2rn − 1) th mSI
[2(2rn − 1)]th mUS
Δ iq > 0
Δ iq < 0 Δ iq = 0
(i)
(2rn − 1) th mSI
b1(i1 )
(2rn − 1) th mSO
[2(2rn − 1)]th mLS
b2(i1 ) (2rn −1 ) th mUS
b2(i1 )
b1(i2 )
(2rn −1 ) th mLS
b1(i2 )
(2rn −1 ) th mLS
b2(i2 )
(2(2rn )) th mLS
(2(2rn −1 )) th mUS th
• • •
(2rn −1 ) mUS
b2(i2 )
• • •
(2ri ) th mUS
(2ri ) th mLS
a
(2(2ri ) + 1) th mSO
a
(2(2rn ) + 1) th mSI
mSO
mSI-oSO mSI-oSO
(2ri ) th mLS • • •
(2r1 − 1) th mSI
x
•
(iii)
(2r1 − 1) th mSO
b1(in )
(2r1 − 1) th mSI
b2(in )
th
[2(2r1 − 1)] mUS
(2r1 − 1) th mSO
Δ iq < 0 Δ iq = 0
(2ri ) th mUS
b1(in )
[2(2r1 − 1)] mLS ∗ k
P-2
• •
P-2
th
|| p ||
a P-2
(4rn ) th mUS
(2ri ) th mLS
|| p ||
b1(i1 )
(2rn − 1) th mSO
[2(2rn − 1)]th mLS
b2(i1 ) th
(2rn − 1) th mSI
Δ iq > 0
∗ k
x b2(in )
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.7 Six bifurcations in a ð2m þ 1Þth -degree polynomial system. (i) and (ii) two broom appearing bifurcations. (iii)–(vi) broom-switching bifurcations. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, which sketched by red curves
5.3 Higher-Order Fixed-Point Bifurcations a0 > 0
(2rn − 1) th mSO
391
b1(i1 )
a0 < 0
(2rn − 1) th mSI
P-2 mSI-oSO
[2(2rn − 1) + 1]th mSO
mSO
(2rn − 1) th mSO
(2rn −1 ) th mUS
a
[2(2rn − 1) + 1]th mSI
a b2(i1 )
mSO
mSI-oSO
b1(i2 )
(2rn − 1) th mSI
b2(i1 )
(2rn −1 ) th mLS
b1(i2 )
(2rn −1 ) th mLS
b2(i2 )
P-2
(4rn ) th mLS
(4rn −1 ) th mUS
•
(2rn −1 ) th mUS
b2(i2 )
•
•
•
•
•
(2ri ) th mUS
(2ri ) th mLS
(4rn ) th mSI
(4ri + 1) th mSO (2ri ) th mLS
(2ri ) th mUS
• • •
(2r1 − 1) th mSI
• • •
b1(in )
(2r1 − 1) th mSO
b1(in )
(2r1 − 1) th mSI
b2(in )
[2(2r1 − 1)]th mUS
[2(2r1 − 1)]th mLS
xk∗
|| p ||
b1(i1 )
(2r1 − 1) th mSO
Δ iq > 0
Δ iq < 0 Δ iq = 0
(v)
b2(in )
xk∗
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(vi)
Fig. 5.7 (continued)
The two broom-sprinkler-spraying switching bifurcations for the higher-order singularity of fixed-points are ðiiiÞ ðð2ð2r1 1Þth mLS: :ð2ð2rn1 ÞÞth mUS : ð2ð2rn 1ÞÞth mUS) ðivÞ ðð2ð2r1 1Þth mUS: :ð2ð2rn1 ÞÞth mLS : ð2ð2rn 1ÞÞth mLS) ðvÞ ðð2ð2r1 1Þth mLS: :ð2ð2rn1 ÞÞth mLS : ð2ð2rn 1Þ þ 1Þth mSO) ðviÞ ð2ð2r1 1Þth mUS: :ð2ð2rn1 ÞÞth mUS : ð2ð2rn 1Þ þ 1Þth mSI) as presented in Fig. 5.7iii, v and iv, vi for a0 [ 0 and a0 \0, respectively. The ð2ð2ri Þ þ 1Þth mSO and ð2ð2ri Þ þ 1Þth mSI switching bifurcations are 8 th > < ð2ri Þ mUS, aj ¼2rj th ð2ð2ri Þ þ 1Þ mSO ! mSO, appearing > : ð2ri Þth mLS, 8 th > < ð2ri Þ mLS, aj ¼2rj th ð2ð2ri Þ þ 1Þ mSI ! mSI-oSO appearing > : ð2ri Þth mUS,
ð5:203Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
392 (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 1) th mSI
(2rn − 1) th mSO
(2(2ls )) th mUS
(2(2ls )) th mLS
(2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 2 − 1) th mSI
(2rn − 2 − 1) th mSO
(2rn −3 − 1) th mSO
(2rn −3 − 1) th mSI
(2rn − 4 − 1) th mSI
(2rn − 4 − 1) th mSO
(2(2ls −1 )) th mUS
(2(2ls −1 )) th mLS
(2rn −3 − 1) th mSO •
mSO
mSO
(2rn − 4 − 1) th mSO
• •
(2ri ) th mLS (2ri −1 ) th mLS (2ri − 2 − 1) th mSI
mSO
(2rn −3 − 1) th mSI
•
(2rn − 4 − 1) th mSI
• •
P-2
mSI-oSO
(2ri −3 − 1) th mSO (2(2lr )) th mLS
P-2
(2(2lr )) th mUS
(2ri − 2 − 1) th mSO
(2ri −1 ) th mUS
(2ri −1 ) th mLS
th
(2ri −3 − 1) mSO
•
• •
th
(2ri ) mLS
•
(2ri −3 − 1) th mSI
(2ri ) th mUS
•
(2r2 ) th mLS
(2r2 ) th mUS
(2r1 − 1) th mSI
(2r1 − 1) th mSO
th
(2(2l1 − 1)) mLS
th
(2(2l1 − 1)) mUS
xk∗
th
(2r1 − 1) mSO
xk∗
(2r1 − 1) th mSI
(2r2 ) th mLS
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(2r2 ) th mUS
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(i)
(ii) (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO
(2rn − 2 ) mUS
(2rn − 2 ) th mLS
(2rn − 1) th mSO
(2rn − 1) th mSI
th
(2(2ls )) th mUS
(2(2ls )) th mLS
(2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 2 − 1) th mSI
(2rn − 2 − 1) th mSO
(2rn −3 − 1) th mSO
(2rn −3 − 1) th mSI
(2rn − 4 − 1) th mSI
(2rn − 4 − 1) th mSO
(2(2ls −1 )) th LS
(2(2ls −1 )) th mUS (2rn −3 − 1) th mSO •
(2rn −3 − 1) th mSI (2rn − 4 − 1) th mSO
• • •
(2rn − 4 − 1) th mSI
• •
(2ri ) th mUS
(2ri ) th mLS (2ri −1 ) th mLS
(2ri −1 ) th mUS th
mSO
(2ri − 2 − 1) mSO
(2ri − 2 − 1) th mSI
(2ri −3 − 1) th mSI
(2ri −3 − 1) th mSO
mSI-oSO
mSO
mSI-oSO
(2ri − 2 − 1) th mSI
(2(2lr ) + 1) th mSO
(2ri − 2 − 1) th mSO
(2(2lr ) + 1) th mSI
th
(2ri −1 ) mUS
P-2
(2ri −3 − 1) th mSO
• • •
(2ri −1 ) th mLS
•
(2ri −3 − 1) th mSI
• •
(2ri ) th mLS
(2r2 ) th mLS
(2ri ) th mLS (2r2 ) th mLS
(2r1 − 1) th mSI
(2r1 − 1) th mSO
(2(2l1 − 1)) th mUS
(2(2l1 − 1)) th mLS
xk∗
(2r1 − 1) th mSO
xk∗
(2r1 − 1) th mSI
(2r2 ) th mLS
|| p ||
(2ri ) th mUS (2ri −1 ) th mUS (2ri − 2 − 1) th mSO (2ri −3 − 1) th mSI
(2ri − 2 − 1) th mSI •
a
mSI-oSO
Δ iq < 0 Δ iq = 0
(iii)
Δ iq > 0
(2r2 ) th mUS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.8 Six types of bifurcations in a ð2m þ 1Þth -degree polynomial system. (i) and (ii) broom-sprinkler–spraying appearing bifurcations, (iii)–(vi) broom-spraying switching bifurcations with fixed-points clusters. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed-points, sketched by red curves and such period-2 fixed points are relative to the monotonic sinks to oscillatory sources
5.3 Higher-Order Fixed-Point Bifurcations
393
(2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 1) th mSI
(2rn − 1) th mSO
(2(2ls )) th mUS
(2(2ls )) th mLS
(2rn − 2 ) th mLS
(2rn − 2 ) th mUS
(2rn − 2 − 1) th mSI
(2rn − 2 − 1) th mSO
(2rn −3 − 1) th mSO
(2rn −3 − 1) th mSI
(2rn − 4 − 1) th mSI
(2rn − 4 − 1) th mSO (2(2ls −1 )) th mLS
(2(2ls −1 )) th mUS (2rn −3 − 1) th mSO • •
(2rn − 4 − 1) th mSI
•
(2ri ) th mUS
(2rn −3 − 1) th mSI (2rn − 4 − 1) th mSO
• •
(2ri ) th mLS
•
(2ri −1 ) th mUS
(2ri −1 ) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
th
(2ri −3 − 1) mSI (2(2lr ) + 1) th mSO
(2ri −3 − 1) th mSO
(2(2lr )) th mSI
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
(2ri −1 ) th mLS th
•
(2ri −3 − 1) mSI
• •
(2ri ) mUS
(2r2 ) th mUS th
(2r1 − 1) mSO (2(2l1 − 1) + 1) th mSI
(2ri −1 ) th mUS
• • •
th
(2ri −3 − 1) th mSO
(2ri ) th mLS (2r2 ) th mLS (2r1 − 1) th mSI
(2(2l1 − 1) + 1) th mLS
mSI-oSO
mSO mSI-oSO
mSO
xk∗
th
(2r1 − 1) mSO
∗ k
x
P-2
(2r1 − 1) th mSI
(2r2 ) th mLS
|| p ||
Δ iq < 0 Δ iq = 0
(v)
Δ iq > 0
(2r2 ) th mUS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(vi)
Fig. 5.8 (continued)
and the ð2ð2rn 1Þ þ 1Þth mSO and ð2ð2rn 1Þ þ 1Þth mSI switching bifurcations are 8 th > < ð2rn 1Þ mSO, aj ¼2rj th ð2ð2rn 1Þ þ 1Þ mSO ! mSI-oSO, appearing > : ð2rn 1Þth mSO, 8 th > < ð2rn 1Þ mSI, a ¼2r j j ð2ð2rn 1Þ þ 1Þth mSI ! mSO appearing > : ð2rn 1Þth mSI:
ð5:204Þ
In Fig. 5.8i and ii, the simple switching with two sprinkler-spraying appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: ðiÞ mSO ! ðð2b1 Þth mLS: :ð2bn1 Þth mUS:ð2bn Þth mUS), ðiiÞ mSI ! ðð2b1 Þth mUS: :ð2bn1 Þth mLS:ð2bn Þth mLS), where m ¼ Pni¼1 bi ;b1 ¼ ð2l1 1Þ; ; bi ¼ 2li ; ; bn1 ¼ 2ln1 ;bn ¼ 2ln : In Fig. 5.8iii, v and vi, iv, the ð2l þ 1Þth -order broom-switching with two sprinkler-
5 (2m + 1)th-Degree Polynomial Discrete Systems
394
spraying appearing bifurcations are presented for a0 [ 0 and a0 \0, respectively. The two bifurcation structures are: (iii) (iv) (v) (vi)
mSO ! ðð2b1 Þth mUS: :ð2bn1 Þth mUS:ð2bn Þth mUS), mSI-oSO ! ðð2b1 Þth mLS: :ð2bn1 Þth mLS:ð2bn Þth mLS), mSO ! ðð2b1 þ 1Þth mSO: :ð2bn1 Þth mUS:ð2bn Þth mUS), mSI-oSO ! ðð2b1 þ 1Þth mSI: :ð2bn1 Þth mLS:ð2bn Þth mLS):
For a cluster of m-quadratics, Bi ¼ Bj ði; j 2 f1; 2; . . .; mg; i 6¼ jÞ and Di ¼ 0 ði 2 f1; 2; . . .; mgÞ. The ð2mÞth -order monotonic upper-saddle-node appearing bifurcation for s-pairs of higher-order fixed-points is 8 ða2s Þth mXX, for xk ¼ a2s ; > > > < ða2s1 Þth mXX, for xk ¼ a2s1 ; cluster of s-quadratics ð2mÞth order mUS ! . appearing bifurcation > > .. > : ða1 Þth mXX, for xk ¼ a1 ;
ð5:205Þ
where 2m ¼ P2s j¼1 aj and 2m ¼ 2ð2l 1Þ; 2ð2lÞ. ( th
ða1 Þ mXX ¼ ða2s Þth mXX ¼
ð2l1 Þth mUS, for a1 ¼ 2l1 ;
ð2l1 1Þth mSI, for a1 ¼ 2l1 1; ( ð2l2s Þth mUS, for a2s ¼ 2l2s ;
ð5:206Þ
ð2l2s 1Þth mSO, for a2s ¼ 2l2s 1:
The ð2mÞth -order monotonic lower-saddle-node appearing bifurcation for mpairs of higher-order fixed points is 8 ða2s Þth mXX, for xk ¼ a2s ; > > > th < ða cluster of s-quadratics 2s1 Þ mXX, for xk ¼ a2s1 ; ð2mÞth order mLS ! . appearing bifurcation > . > > : . th ða1 Þ mXX, for xk ¼ a1 :
ð5:207Þ
where ( th
ða1 Þ mXX ¼ ( th
ða2s Þ mXX =
ð2l1 Þth mLS, for a1 ¼ 2l1 ; ð2l1 1Þth mSO, for a1 ¼ 2l1 1; ð2l2s Þth mLS, for a2s ¼ 2l2s ; ð2l2s 1Þth mSI, for a2s ¼ 2l2s 1:
ð5:208Þ
5.3 Higher-Order Fixed-Point Bifurcations
395
There are four simple switching and ð2mÞth -order saddle-node appearing bifurcations for higher-order fixed-points: The two switching bifurcations of mSO ! ðð2mÞth mUS:mSO) and mSI-oSO ! ðð2mÞth mLS:mSI-oSO) with two ð2mÞth -order mUSN and mLSN spraying appearing bifurcations in the ð2m þ 1Þth -degree polynomial system are mSO (xk ¼ aÞ ! mSI-oSO (xk ¼ aÞ !
mSO ! mSO, for xk ¼ a ¼ a2m þ 1 ; ð2mÞth order mLS:
mSI-oSO ! mSI-oSO, for xk ¼ a ¼ a2m þ 1 ; ð2mÞth order mUS:
ð5:209Þ ð5:210Þ
and the two switching bifurcations of mSO ! ðmSO:ð2mÞth mUS) and mSI-oSO ! ðmSI-oSO:ð2mÞth mLS) with two ð2mÞth -order mUSN and mLSN spraying appearing bifurcations in the ð2m þ 1Þth -degree polynomial nonlinear discrete system are mSO
mSI-oSO
(xk
(xk
¼ aÞ !
¼ aÞ !
ð2mÞth order mUS, mSO ! mSO, for xk ¼ a ¼ a1 :
ð2mÞth order mLS; mSI-oSO ! mSI-oSO, for xk ¼ a ¼ a1 :
ð5:211Þ ð5:212Þ
The ð2m þ 1Þth order source broom-switching bifurcation for higher-order fixedpoints is 8 > ða2s þ 1 Þth mXX, for xk ¼ a2s þ 1 ; > > > > < ða2s Þth mXX, for xk ¼ a2s ; switching mSO(xk ¼ aÞ ! ð2m þ 1Þth order mSO . > .. > > > > : ða1 Þth mXX, for xk ¼ a1 ;
ð5:213Þ þ1 where m þ 1 ¼ P2s j¼1 aj and m ¼ 2ð2l 1Þ; 2ð2lÞ.
( th
ða1 Þ mXX ¼ th
ða2s Þ mXX ¼
ð2l1 Þth mLS, for a1 ¼ 2l1 ;
ð2l1 1Þth mSI, for a1 ¼ 2l1 1; ( ð2l2s Þth mUS, for a2s ¼ 2l2s ; ð2l2s 1Þth mSO, for a2s ¼ 2l2s 1:
ð5:214Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
396
The ð2m þ 1Þth order monotonic sink broom-switching bifurcation is 8 > ða Þth mXX, for xk ¼ a2s þ 1 ; > > 2s þ 1 > > < ða2s Þth mXX, for xk ¼ a2s ; switching mSI-oSO(xk ¼ aÞ ! ð2m þ 1Þth order mSI . > .. > > > > : ða1 Þth mXX, for xk ¼ a1 ;
ð5:215Þ where ( th
ða1 Þ mXX ¼ th
ða2s Þ mXX ¼
ð2l1 Þth mUS, for a1 ¼ 2l1 ;
ð2l1 1Þth mSO, for a1 ¼ 2l1 1; ( ð2l2s Þth mLS, for a2s ¼ 2l2s ;
ð5:216Þ
ð2l2s 1Þth mSI, for a2s ¼ 2l2s 1:
The switching bifurcation consist of a simple switching and the ð2mÞth order saddle-node appearing bifurcation with s-pairs of fixed-points. The ð2mÞth order saddle-node appearing bifurcation is a sprinkler-spraying cluster of the s-pairs of higher-order fixed-points. Thus, the four switching bifurcations of mSO ! ðð2mÞth mLS:mSO) for higher order fixed-points for a0 [ 0, mSI-oSO ! ðð2mÞth mUS:mSI-oSO) for higher order fixed-points for a0 \0, mSO ! ðmSO:ð2mÞth mUS) for higher order fixed-points for a0 [ 0, mSI-oSO ! ðmSI-oSO:ð2mÞth mLS) for higher order fixed-point for a0 \ 0 are presented in Fig. 5.9i–iv, respectively. The ð2m þ 1Þth -order monotonic source switching bifurcation is named a ð2m þ 1Þth mSO broom-sprinkle-spraying switching bifurcation, and the ð2m þ 1Þth -order monotonic sink switching bifurcation is named a ð2m þ 1Þth mSI broom switching bifurcation. Such a ð2m þ 1Þth mXX broomswitching bifurcation is from simple fixed-point to a ð2m þ 1Þth mXX broomswitching. The two broom-switching bifurcations for higher-order fixed-points of mSO ! ð2m þ 1Þth mSO mSI-oSO ! ð2m þ 1ÞÞth mSI are presented in Fig. 5.9v–vi, respectively.
5.3 Higher-Order Fixed-Point Bifurcations
a0 > 0
397 a0 < 0
mSO (2r1 − 1) th mSI
mSO
(2r2 ) th mUS
a
mSI-oSO mSI-oSO
mSI-oSO
P-2
(2r1 − 1) th mSO (2r2 ) th mLS (2r3 ) th mLS
(2r3 ) th mUS
mSO
(2ri − 1) th mSO
(2(2l − 1)) th mLS
(2ri − 1) th mSI
P-2
(2rl − 1) th mSI (2(2l − 1)) th mUS
(2rl − 1) th mSO
(2ri − 1) th mSI
(2ri − 1) th mSO
(2r3 ) mLS
(2r3 ) th mUS
(2rl − 1) th mSI
(2rl − 1) th mSO
th
xk∗
(2r2 ) th mUS
xk∗
(2r2 ) th mLS
(2r1 − 1) th mSO
Δ iq < 0 Δ iq = 0
|| p ||
Δ iq > 0
(2r1 − 1) th mSI
Δ iq < 0 Δ i = 0 q
|| p ||
(i)
Δ iq > 0
(ii) th
(2r1 − 1) mSO
a0 > 0
(2r1 − 1) th mSI
a0 < 0
(2r2 ) th mLS
(2r2 ) th mUS (2r3 ) th mUS
(2r3 ) th mLS
(2ri − 1) th mSO
(2ri − 1) th mSI
(2(2l − 1)) th mUS
th
(2rl − 1) mSO
(2(2l − 1)) th mLS
(2rl − 1) th mSI
(2ri − 1) th mSO
th
(2ri − 1) mSI
(2r3 ) th mLS
(2r3 ) th mUS
mSO
(2r2 ) th mLS (2r1 − 1) th mSI
xk∗
mSO
P-2
xk∗
(2r2 ) th mUS (2r1 − 1) th mSO
mSI-oSO
mSI-oSO
mSO
Δ iq < 0 Δ i = 0 q
|| p ||
(2rl − 1) th mSI
mSI-oSO
(2rl − 1) th mSO
Δ iq < 0 Δ iq = 0
|| p ||
Δ iq > 0
Δ iq > 0
P-2
(iv)
(iii) (2r1 ) th mUS
a0 > 0
(2r1 ) th mLS
a0 < 0
(2r2 − 1) th mSO
(2r2 − 1) th mSI
(2r3 ) th mLS
(2r3 ) th mUS
(2ri − 1) th mSI
(2m + 1) th mSO
(2ri − 1) th mSO
(2rn − 1) th mSO
(2m + 1) th mSI
mSO
mSI-oSO mSO
a
(2ri − 1) th mSO
xk∗
(2r3 ) mLS
(2r2 − 1) th mSO
mSI-oSO
th
(2rn − 1) th mSI
Δ iq < 0 Δ iq = 0
(v)
Δ iq > 0
(2rn − 1) th mSI (2r3 ) th mUS
P-2
(2rn − 1) th mSO
xk∗
(2r2 − 1) th mSI
(2r1 ) th mLS
|| p ||
(2rl − 1) th mSI
(2r1 ) th mUS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(vi)
Fig. 5.9 Broom-switching bifurcations of fixed-points in ð2m þ 1Þth polynomial discrete system: (i) ðð2mÞth mLS:mSOÞ-appearing bifurcation ða0 [ 0Þ, (ii) ðð2mÞth mUS:mSI-oSOÞ-appearing bifurcation ða0 \0Þ, (iii) ðmSO : ð2mÞth mUSÞ-appearing bifurcation ða0 [ 0Þ, (iv) ðmSI-oSO : ð2mÞth mLSÞ-appearing bifurcation ða0 [ 0Þ. (v) ð2m þ 1Þth mSO switching-appearing bifurcation ða0 [ 0Þ, (vi) ð2m þ 1Þth mSI switching-appearing bifurcation ða0 \0Þ. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed-points, sketched by red curves and such period-2 fixed points are relative to the monotonic sinks to oscillatory sources
5 (2m + 1)th-Degree Polynomial Discrete Systems
398
A series of the ð2ai þ 1Þth -order monotonic source and monotonic sink bifurcations is aligned up with varying with parameters, which is formed a special pattern. Such a special pattern is from n-quadratics in the ð2m þ 1Þth degree polynomial nonlinear discrete system, and the following conditions should be satisfied. 1 2
1 2
aðpi Þ ¼ Bi and aðpj Þ ¼ Bj Bi Bj i; j 2 f1; 2; . . .; sg; i 6¼ j; Di [ Di þ 1 ði ¼ 1; 2; . . .; s; s n\mÞ;
ð5:217Þ
Di ¼ 0 with jjpi jj\jjpi þ 1 jj: Four series of switching bifurcations in the ð2m þ 1Þth degree polynomial nonlinear discrete system are (i) (ii) (iii) (iv)
ð2ð2r1 1Þ þ 1Þth mSO-(2(2r2 Þ þ 1Þth mSI- ð2ð2rn 1Þ þ 1Þth mSOÞ; ð2ð2r1 1Þ þ 1Þth mSI-(2(2r2 Þ þ 1Þth mSO- ð2ð2rn 1Þ þ 1Þth mSIÞ; ð2ð2r1 Þ þ 1Þth mSO-(2(2r2 1Þ þ 1Þth mSO- ð2ð2rn 1ÞÞth mSOÞ; ð2ð2r1 Þ þ 1Þth mSI-(2(2r2 1Þ þ 1Þth mSI- ð2ð2rn 1Þ þ 1Þth mSIÞ;
as presented in Fig. 5.10i, iii–ii, vi for ða0 [ 0Þ and ða0 \0Þ, respectively. The swapping pattern of higher-order sinks and sources switching bifurcations cannot be observed. Such a bifurcation scenario is like the fish-bone for the higher-order switching bifurcations of higher-order fixed-points.
5.3.2
Switching Bifurcations
Consider the roots of ðx2k þ Bi xk þ Ci Þai ¼ 0 as ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ; Di ¼ ðb1 b2 Þ2 0; ðiÞ
ðiÞ
ðiÞ
ðiÞ
xk;1;2 ¼ b1;2 ; Di [ 0 if b1 6¼ b2 ði ¼ 1; 2; . . .; nÞ; ) Bi 6¼ Bj ði; j ¼ 1; 2; . . .; n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ
ð5:218Þ
The ðai Þth -order singularity bifurcation is for the switching of a pair of higher order fixed-points (i.e., monotonic sinks, monotonic sources, monotonic upper-saddles and monotonic lower-saddles). There are six switching bifurcations for i 2 f1; 2; . . .; ng
5.3 Higher-Order Fixed-Point Bifurcations a0 > 0
399
(2r1 − 1) th mSO
[2(2r1 − 1) + 1]th mSO
(2(2r2 ) + 1) th mSI
mSO
P-2
(2(2r3 ) + 1) th mSI
(2r2 ) th mLS
(2r3 ) th mLS
[2(2ri − 1) + 1]th mSI
• • •
[2(2rn − 1) + 1]th mSO
mSO
P-2
(2r1 − 1) th mSO
|| p ||
P-2
• • •
P-2
xk∗
(2rn − 1) th mSO
(2ri − 1) th mSI
(2r2 ) th mUS
Δr < 0
a
mSI-oSO
(2r3 ) th mUS
(2ri − 1) th mSI
(2rn − 1) th mSO
Δr > 0
Δr = 0
(i) a0 < 0
(2r2 ) th mUS
(2r1 − 1) th mSI
(2r3 ) th mUS
(2ri − 1) th mSO
(2rn − 1) th mSI
[2(2r1 − 1) + 1]th mSI (2(2r2 ) + 1) th mSO
mSO
(2(2r3 ) + 1) th mUS
[2(2ri − 1) + 1]th mSO
• • •
mSO
• • •
[2(2rn − 1) + 1]th mSI
mSO
P-2
P-2
xk∗
(2r1 − 1) th mSI
|| p ||
(2r3 ) th mLS
(2r2 ) th mLS
Δr < 0
Δr = 0
a
mSO
(2ri − 1) th mSO
(2rn − 1) th mSI
Δr > 0
(ii) a0 > 0
(2r1 ) th mUS
(2r2 − 1) th mSO
(2(2r1 ) + 1) th mSO [2(2r2 − 1) + 1]th mSO (2(2r3 ) + 1) th mSO • • •
mSO
(2r3 ) th mLS
[2(2ri − 1) + 1]th mLS • • •
mSO P-2
xk∗ || p ||
(2rn − 1) th mSO
[2(2rn − 1)]th mUS
P-2
a
mSO
P-2
(2r1 ) th mUS
(2ri − 1) th mSI
mSI-oSO
(2r2 − 1) th mSO
Δr < 0
(2r3 ) th mUS
(2ri − 1) th mSI
(2rn − 1) th mSI
Δr > 0
Δr = 0
(iii) a0 < 0
(2(2r1 ) + 1) th mSI
(2r1 ) th mLS
[2(2r2 − 1) + 1]th mSI
P-2
P-2
xk∗ || p ||
(2(2r3 ) + 1) th mSO
(2r2 − 1) th mSI
• • •
mSO
[2(2ri − 1) + 1]th mSO
(2r3 ) th mUS
• • •
(2ri − 1) th mSO
[2(2rn − 1) + 1]th mSI
mSO P-2
(2r1 ) th mUS
(2rn − 1) th mSI
(2r2 − 1) th mSI
Δr < 0
Δr = 0
(2r3 ) th mLS
mSO
(2ri − 1) th mSO
a
(2rn − 1) th mSI
Δr > 0
(iv) Fig. 5.10 Four series switching bifurcations of fixed-points in a ð2m þ 1Þth polynomial system: (i, iii) for a0 [ 0, (ii, iv) for a0 \0. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI-oSO: monotonic sink to oscillatory source, mSO: monotonic source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed-points, sketched by red curves and such period-2 fixed points are relative to the monotonic sinks to oscillatory sources or the monotonic sinks to oscillatory source back to monotonic sinks
5 (2m + 1)th-Degree Polynomial Discrete Systems
400 ðiÞ
ðiÞ
li ¼r1 þ r2 1
ð2li Þth order mUS ! switching bifurcation ( ðiÞ ðiÞ ð2r2 1Þth order mSO # mSI, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:219Þ
ðiÞ
ð2r1 1Þth order mSI " mSO, for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2 1
ð2li Þth order mLS ! switching bifurcation ( ðiÞ ðiÞ ð2r2 1Þth order mSI # mSO, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:220Þ
ðiÞ
ð2r1 1Þth order mSO " mSI, for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li Þth order mUS ! switching bifurcation ( ðiÞ ðiÞ ð2r2 Þth order mUS # mUS, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:221Þ
ðiÞ
ð2r1 Þth order mUS " mUS for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li Þth order mLS ! switching bifurcation ( ðiÞ ðiÞ ð2r2 Þth order mLS # mLS, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:222Þ
ðiÞ
ð2r1 Þth order mLS " mLS for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li 1Þth order mSO ! switching bifurcation ( ðiÞ ðiÞ th ð2r2 1Þ order mSO # mSO, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:223Þ
ðiÞ
ð2r1 Þth order mLS " mUS for b1 ¼ a2i1 " a2i ; ðiÞ
ðiÞ
li ¼r1 þ r2
ð2li 1Þth order mSI ! switching bifurcation ( ðiÞ ðiÞ ð2r2 1Þth order mSI # mSI, for b2 ¼ a2i # a2i1 ; ðiÞ
ð5:224Þ
ðiÞ
ð2r1 Þth order mUS " mLS for b1 ¼ a2i1 " a2i : A set of n-paralleled higher-order mXX switching bifurcations is called the th th mXX,ath 2 mXX, ; an mXXÞ parallel switching bifurcation in the ð2m þ 1Þ degree polynomial nonlinear discrete system. Such a bifurcation is also called a th th ðath 1 mXX,a2 mXX, ; an mXXÞ antenna switching bifurcation. ai 2 f2li ; 2li 1g ðath 1
ðiÞ
and mXX 2 fmSO, mSI, mUS, mLSg. For non-switching points, Di [ 0 at b1 6¼ ðiÞ
ðiÞ
ðiÞ
b2 ði ¼ 1; 2; . . .; nÞ. At the bifurcation point, Di ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . .; nÞ.
5.3 Higher-Order Fixed-Point Bifurcations
401
The parallel antenna switching bifurcation for higher-order fixed-points in the ð2m þ 1Þth degree polynomial nonlinear discrete system is 8 ð2Þ th ð2Þ th > < ðða1 Þ mXX: :ðal2 Þ mXXÞ mSI-oSO ( or mSO), for xk ¼ a ð5:225Þ > : ððað1Þ Þth mXX: :ðað1Þ Þth mXXÞ 1 l1 where sth i bifurcation
th ðaðiÞ si Þ mXXsi ! switching ( ðsi Þ th ðs Þ ðs Þ ðs Þ ðiÞ ðiÞ ðr2 Þ mXX2 i # mYY1 i ; for b2 i ¼ a2si # a2si 1 ; ðs Þ ðr1 i Þth
ðs Þ mXX1 i
"
ðs Þ mYY2 i ;
for
ðs Þ b1 i
¼
ðiÞ a2si 1
"
ð5:226Þ
ðiÞ a2si ;
ðsi ¼ 1; 2; . . .; li ; i ¼ 1; 2Þ Such eight sets of parallel switching bifurcations for higher-order fixed-points are presented in Fig. 5.11i, iii, v, vii and ii, iv, vi, viii for a0 [ 0 and a0 \0, respectively. The eight switching bifurcation structures are as follows: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
ðð2l1 Þth mUS: :mSI-oSO: :ð2ln1 1Þth mSO:(2ln Þth mUSÞ for a0 [ 0, ðð2l1 Þth mLS :mSO: ð2ln1 1Þth mSI :(2ln Þth mLSÞ for a0 \0, ðð2l1 Þth mLS :mSO: ð2ln1 1Þth mSI :(2ln 1Þth mSOÞ for a0 [ 0, ðð2l1 Þth mUS :mSI: ð2ln1 1Þth mSO :(2ln 1Þth mSIÞ for a0 \ 0, ðð2l1 Þth mLS :mSO: ð2ln1 1Þth mSI :(2ln 1Þth mSOÞ for a0 [ 0, ðð2l1 Þth mUS :mSI-oSO: ð2ln1 1Þth mSI:(2ln 1Þth mSIÞ for a0 \ 0, ðð2l1 Þth mUS :mSI: ð2ln1 1Þth mSO:(2ln Þth mUSÞ for a0 [ 0, ðð2l1 Þth mLS : mSO: ð2ln1 1Þth mSI:(2ln Þth mLSÞ for a0 \ 0.
The switching bifurcations with different higher-order fixed-points are similar to the ðl1 -mLSN:mSO:l2 -mUSN) and ðl1 -mUSN:mSI-oSO:l2 -mLSN) switching bifurcations for simple sinks and sources. Consider a switching bifurcation for a cluster of higher-order fixed-points with the following conditions, Bi ¼ Bj ði; j 2 f1; 2; . . .; ng; i 6¼ jÞ ðiÞ ðiÞ Di ¼ 0 at b1 = b2 ði ¼ 1; 2; . . .; nÞ
at bifurcation:
ð5:227Þ
Thus, the ðai Þth order switching bifurcation can be for a cluster of higher-order fixed-points. The ðai Þth order switching bifurcations for i 2 f1; 2; . . .; sg are
5 (2m + 1)th-Degree Polynomial Discrete Systems
402 a0 > 0
a2n
(2r2 n − 1) th mSO
a0 < 0
a2n
(2r2 n − 1) th mSI (2ln ) th mLS
th
(2ln ) mUS (2r2 n −1 − 1) th mSI
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSI
a2 n−1
a2 n−1
(2r2 n − 1) th mSI
(2r2 n − 1) th mSO
a2 n−2
(2r2 n − 2 ) th mUS
a2 n−2
(2r2 n −3 − 1) th mSI
a2 n−3
(2ln −1 − 1) th mSI
(2ln −1 − 1) th mSO (2r2 n −3 − 1) th mSO
(2r2 n −3 − 1) th mSI
a2 n−3
(2r2 n −3 − 1) th mSO (2r2 n − 2 ) th mLS
(2r2 n − 2 ) th mLS
(2r2 n − 2 ) th mUS
•
• •
• •
•
mSO
mSI-oSO
mSO
mSI-oSO
P-2
a
P-2
• • •
• • •
a2
(2r2 ) th mUS
(2r1 ) th mUS
(2r1 ) th mLS
a1
(2r1 ) th mUS
xk∗
(2r2 ) th mUS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
th
(2r2 n ) mUS
a2n
a0 < 0
a2n
(2r2 n ) th mLS
th
th
(2ln − 1) mSO
(2ln − 1) mLS
(2r2 n −1 − 1) th mSO
(2r2 n −1 − 1) th mSO
th
(2r2 n − 2 ) mLS
(2r2 n −1 − 1) th mSI
(2r2 n −1 − 1) th mSI
a2 n−1
(2r2 n ) th mLS
a2 n−2
a2 n−1
(2r2 n ) th mUS
th
(2r2 n − 2 ) mUS
a2 n−2
(2r2 n −3 − 1) th mSO
a2 n−3
th
th
(2ln −1 − 1) mSI
(2ln −1 − 1) mSO
(2r2 n −3 − 1) th mSI th
(2r2 n −3 − 1) mSI
(2r2 n −3 − 1) th mSO
a2 n−3
(2r2 n − 2 ) th mLS
•
• •
• •
•
mSO
mSI-oSO
mSO mSO
mSI-oSO
P-2
a
a
•
• • •
• •
(2r2 ) th mLS
th
(2r1 ) mLS
a2
(2r1 ) th mUS
th
(2l1 ) mLS
(iii)
(2r2 ) th mUS
a2
(2l1 ) mUS
(2r1 ) th mLS
Δ iq > 0 Δ iq = 0
P-2
th
(2r2 ) th mLS
|| p ||
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(ii)
a0 > 0
xk∗
a1
(2r1 ) th mLS (2r2 ) th mLS
(i)
(2r2 n − 2 ) th mUS
a2
(2r2 ) th mLS
(2l1 ) th mLS
(2l1 ) th mUS
xk∗
mSO
a
Δ iq > 0
a1 xk∗
(2r1 ) th mUS
a1
th
(2r2 ) mUS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.11 Antenna parallel switching bifurcation of fixed-points for a ð2m þ 1Þth -degree polynomial nonlinear discrete system. (i, iii, vi, vii) four parallel bifurcations for a0 [ 0. (ii, iv, vi, viii) four parallel bifurcations for a0 \0. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI: monotonic sink, mSO: monotonic source. mSI-oSO: monotonic sink to oscillatory source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, sketched by red curves. The period-2 fixed-points are relative to the monotonic sinks to oscillatory sources
5.3 Higher-Order Fixed-Point Bifurcations a0 > 0
(2r2 n − 1) th mSO
403
a2n
a0 < 0
a2n
(2r2 n − 1) th mSI
(2ln − 1) th mSO
(2ln − 1) th mSI
(2r2 n −1 ) th mLS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mLS
a2 n−1 (2r2 n − 1) th mSO
(2r2 n − 2 ) th mLS
a2 n−1 (2r2 n − 1) th mSI
a2 n−2
(2ln −1 − 1) th mSI
(2ln −1 − 1) th mSI
(2r2 n −3 − 1) th mSI (2r2 n −3 − 1) th mSI (2r2 n − 2 ) th mUS
a2 n−2
(2r2 n − 2 ) th mUS
(2r2 n −3 − 1) th mSO
a2 n−3
a2 n−3
(2r2 n −3 − 1) th mSO (2r2 n − 2 ) th mLS
• • •
• • •
mSO
mSI-oSO
mSO
mSO
a • • •
(2r2 ) th mLS
(2r1 ) th mLS
mSI-oSO
P-2
a
a2
a2
(2l1 ) th mUS
(2r1 ) th mLS
a1 xk∗
(2r2 ) th mLS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(2r2 ) th mUS
(2r1 ) th mUS
(2l1 ) th mLS
xk∗
P-2
• • •
(2r1 ) th mUS
a1
(2r2 ) th mUS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(v)
(vi)
a0 > 0
a2n
(2r2 n ) th mUS
a0 < 0
(2r2 n ) th mLS
a2n
(2ln ) th mLS
(2ln ) th mUS (2r2 n −1 ) th mUS
(2r2 n −1 ) th mUS
(2r2 n −1 ) th mLS
(2r2 n −1 ) th mLS
a2 n−1
a2 n−1 (2r2 n ) th mUS
(2r2 n ) th mLS
a2 n−2
(2r2 n − 2 ) th mUS
(2r2 n − 2 ) th mLS
a2 n−2
(2r2 n −3 − 1) th mSI
a2 n−3
(2ln −1 − 1) th mSI
(2ln −1 − 1) th mSO (2r2 n −3 − 1) th mSO
(2r2 n −3 − 1) th mSI
a2 n−3
(2r2 n −3 − 1) th mSO
th
th
(2r2 n − 2 ) mLS
(2r2 n − 2 ) mUS
•
• •
• •
•
mSO
mSI-oSO
mSO mSO
mSI-oSO
P-2
a
a • • • (2r2 ) th mUS
(2r1 ) th mUS
•
P-2
• •
a2
th
(2r1 ) mLS
(2r1 ) th mUS th
(2r2 ) mUS
|| p ||
Δ iq > 0 Δ iq = 0
(vii) Fig. 5.11 (continued)
a2
(2l1 ) mLS
(2l1 ) mUS
xk∗
(2r2 ) th mLS
th
th
Δ iq > 0
a1
xk∗
(2r1 ) th mLS th
(2r2 ) mLS
|| p ||
Δ iq > 0 Δ iq = 0
(viii)
Δ iq > 0
a1
5 (2m + 1)th-Degree Polynomial Discrete Systems
404 ai ¼
Pl i
ðiÞ r j¼1 j
ðai Þth order mXX ! switching appearing 8 ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ > ðrs Þth order mXXli # mYYli ; for bli # ali ; > > > > > . > > > .. < ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ ðrj Þth order mXXj # mYYj ; for bj # as ; > > > > .. > > > . > > : ðiÞ th ðiÞ ðiÞ ðiÞ ðiÞ ðr1 Þ order mXX1 " mYY1 ; for b1 # as ;
ð5:228Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
fa1 ; a2 ; ; ali1 ; ali g ðiÞ
ðiÞ
ðiÞ
ðiÞ
fb1 ; b2 ; ; bli1 ; bli g
ð1Þ
before bifurcation
After bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; ; b1 ; b2 g; ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; ; b1 ; b2 g:
ð5:229Þ
A set of paralleled, different, higher-order monotonic upper-saddle-node switching bifurcations with multiplicity is a ðða1 Þth mXX:ða2 Þth mXX: :ðas Þth mXXÞ parallel switching bifurcation in the ð2m þ 1Þth degree polynomial discrete system. At the straw-bundle switching bifurcation, Di ¼ 0 (i ¼ 1; 2; . . .; n) and Bi ¼ Bj ði; j 2 f1; 2; . . .; ng i 6¼ j). The parallel straw-bundle switching bifurcation for higher order fixed-points is ðða1 Þth mXX:ða2 Þth mXX: :ðas Þth mXXÞ-switching 8 > ðas Þth order mXX switching, > > > > < .. ¼ . > > ða2 Þth order mXX switching, > > > : ða1 Þth order mXX switching;
ð5:230Þ
ai 2 f2li ; 2li 1g and mXX 2 fmUS, mLS, mSO, mSIg:
ð5:231Þ
where
Thus, 8 ð2Þ th ð2Þ ð2Þ < ðða1 Þ mXX:ða2 Þth mXX: :ðas2 Þth mXXÞ mSI-oSO (or mSO) : ð1Þ th ð1Þ ð1Þ ðða1 Þ mXX:ða2 Þth mXX: :ðas1 Þth mXXÞ ath n
ð5:232Þ
th Eight parallel straw-bundle switching bifurcations of ðath 1 mXX : a2 mXX: : mXXÞ are presented in Figs. 5.12 and 5.13 for a0 [ 0 and a0 \0, respectively.
5.3 Higher-Order Fixed-Point Bifurcations a0 > 0
a2n
(2r2 n − 2 − 1) th mSO
a2 n−1
th
(2ln ) mUS (2r2 n −1 ) th mLS (2r2 n − 1) th mSI
405 a0 > 0
(2r2 n − 1) th mSO
(2r2 n − 2 − 1) th mSO th
(2ln − 1) mSO
th
(2r2 n −1 ) mLS
a2 n−2
(2r2 n − 2 − 1) th mSI
a2 n−3
(2r2 n −3 ) th mUS
(2r2 n −1 ) th mLS (2r2 n ) th mLS
a (2r2 n −3 ) th mLS
• • •
mSO
(2r2 n −3 ) th mUS
• •
(2r2i ) th mLS
a3 a2
(2l1 − 1) th mSI
a1
•
(2r2i − 2 ) th mUS
(2r2i − 2 ) th mLS
(2r2i −3 − 1) th mSO
(2r2i −1 − 1) th mSI
(2r2i −1 − 1) th mSO
(2r2i − 2 ) th mLS
(2r2i −3 − 1) th mSI
Δ iq > 0 Δ iq = 0
• •
(2r2i ) th mUS
(2r3 ) th mLS
•
a0 > 0
th
(2r1 ) mUS
(2r2 − 1) th mSO
xk∗
a1
(2ln − 1) mSO
(2r2 n −1 ) th mUS (2r2 n − 1) th mSO
(2r3 ) th mUS
(2r2 − 1) th mSO (2r1 ) th mLS
(2r2 ) th mLS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(ii) a2 n−1
th
a2
(2l1 − 1) th mSO
(2r2 − 1) th mSI
Δ iq > 0
a2n
(2r2 n − 2 ) th mUS
a3
(2r1 ) th mUS
(2r2 ) th mUS
a0 > 0
(2r2 n − 1) th mSO
(2r2 n − 2 ) th mUS th
(2ln − 1) mSO
th
(2r2 n −1 ) mLS
a2 n−2
(2r2 n − 2 ) th mLS
a2 n−3
(2r2 n −3 ) th mLS
(2r2 n −1 − 1) th mSO (2r2 n ) th mLS
mSI-oSO
a2n
(2r2 n ) th mUS
a2 n−1
(2r2 n −1 − 1) th mSO
a2 n−2
(2r2 n − 2 ) th mLS
a2 n−3
(2r2 n −3 ) th mLS
mSI-oSO mSI-oSO
P-2
a
(2r2 n −3 + 1) th mSI (2r2 n −3 ) th mUS
• • •
mSI-oSO
P-2
(2r2 n −3 ) th mUS
th
(2r2i −3 − 1) mSI
(2r2i − 2 ) th mLS
•
th
(2r1 ) mUS (2l1 − 1) th mSI
a3 a2
(2r2 ) th mLS
(iii)
(2r2i − 2 ) th mLS
(2r2i −3 − 1) th mSI
•
a1
Δ iq > 0 Δ iq = 0
(2li ) th mUS
(2r2i −1 − 1) th mSI
• •
(2r2i ) th mUS
(2r2i −1 − 1) th mSO
(2r2i −1 − 1) mSO
th
(2r2i − 2 ) th mLS
P-2 (2r2i ) th mUS
th
(2r2i −1 − 1) mSO
(2li ) mLS
• • •
(2r2i −1 − 1) th mSO
(2r2i −1 − 1) th mSI
a
(2r2 n −3 + 1) th mSI
P-2 (2r2i ) th mUS
th
|| p ||
P-2 (2r2i ) th mUS
(2li ) th mUS
(i)
xk∗
(2r2 n −3 ) th mLS
(2r2i −1 − 1) mSO
(2r1 ) th mLS
(2r2 − 1) th mSO
a2 n−3
•
•
(2r2i − 2 ) th mLS
(2r2 n − 2 − 1) th mSO
th
(2li ) th mLS
|| p ||
a2 n−2
•
(2r2i −1 − 1) th mSI
(2r2i −1 − 1) th mSO
xk∗
(2r2 n −1 ) th mUS
a
(2r2 n −3 + 1) th mSI
(2r2i −1 − 1) mSI
(2r2 − 1) th mSI
a2 n−1
mSI-oSO
P-2
(2r2i ) th mLS
th
(2r2i − 2 ) th mUS
(2r2 n ) th mUS
mSI-oSO
(2r2 n −3 + 1) th mSO
mSO
a2n
Δ iq > 0
• •
(2r2i ) th mUS
(2r3 ) th mUS
(2r1 ) th mUS (2r2 − 1) th mSO
(2r2 − 1) th mSO
(2l1 − 1) th mSO
(2r1 ) th mLS
xk∗
a3 a2 a1
(2r3 ) th mUS
(2r2 − 1) th mSO (2r1 ) th mLS
(2r2 ) th mLS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.12 (i)–(iv) Four types of ðr1 th mXX:r2 th mXX: :rm th mXXÞ parallel switching bifurcation for a0 [ 0 in the ð2m þ 1Þth -degree polynomial discrete system. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI: monotonic sink, mSO: monotonic source, mSI-oSO: monotonic sink to oscillatory source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, sketched by red curves, which are relative to the monotonic sinks to oscillatory sources
5 (2m + 1)th-Degree Polynomial Discrete Systems
406 a0 < 0
a2 n−1
th
(2ln ) mLS
(2r2 n −1 ) th mUS
a2 n−2
th
(2r2 n − 1) mSO
a0 < 0
(2r2 n − 1) th mSI
a2n
(2r2 n − 2 − 1) th mSI
a2 n−3
(2r2 n − 2 − 1) th mSI
(2ln − 1) th mSI
th
(2r2 n −1 ) mUS
(2r2 n −1 ) th mUS
th
(2r2 n − 2 − 1) mSO
th
th
(2r2 n ) US
(2r2 n −3 ) mLS
mSI-oSO
a
(2r2 n −3 + 1) th mSI (2r2 n −3 ) th mUS
P-2
•
(2r2i ) mUS
• •
(2r2i −1 − 1) th mSO
(2r2i −1 − 1) th mSO
(2li ) th mUS
(2r2i − 2 ) th mLS
(2r2 n −3 ) th mLS
th
(2r2i −1 − 1) th mSI
x∗
• •
(2r2i − 2 ) th mUS
(2r2i −3 − 1) th mSI
(2r2i −1 − 1) th mSO
a2
•
(2r2i ) th mLS (2r2i −1 − 1) th mSI
(2r1 ) mLS
xk∗
a3 a2
(2l1 − 1) th mSI
(2r2 − 1) th mSI
th
a1
(2r3 ) th mLS
(2r2 − 1) th mSI (2r1 ) th mUS
th
(2r2 ) mUS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
(i)
(ii)
(2r2 n − 2 ) th mLS (2ln − 1) th mSI (2r2 n −1 ) th mLS (2r2 n − 1) mSI
(2r2 n − 1) mSI
a2 n−1
(2r2 n −1 ) th mUS
a2 n−3
a0 < 0
th
a2n
a2 n−2
th
(2r2 n − 2 ) th mLS
th
(2r2 n − 2 ) mUS
(2ln − 1) th mSI (2r2 n −1 − 1) th mSI
th
th
(2r2 n −3 ) mUS
(2r2 n ) mUS
th
(2r2 n −3 + 1) mSO
a2n
(2r2 n ) th mLS
a2 n−1
(2r2 n −1 − 1) th mSI
a2 n−2
(2r2 n − 2 ) th mUS
a2 n−3
(2r2 n −3 ) th mUS
a
mSO
th
(2r2 n −3 + 1) mSO
mSO
a mSO
th
th
(2r2 n −3 ) mLS
• •
(2r2 n −3 ) mLS
(2r2i ) th mLS
•
(2li ) th mLS
(2r2i − 2 ) th mUS
(2r2i −1 − 1) mSO
(2r2i −3 − 1) th mSO
•
•
th
(2l1 − 1) mSI
a3 a2
(2r2i − 2 ) th mUS
a1 th
(2r2 ) mUS
Δ iq > 0 Δ iq = 0
(iii)
Δ iq > 0
(2li ) th mLS
(2r2i − 2 ) th mUS
th
(2r2i −1 − 1) mSO
(2r2i −3 − 1) th mSO • •
(2r2i ) th mLS
(2r3 ) th mLS
•
(2r1 ) th mLS
(2r2 − 1) th mSI
(2r2i −1 − 1) th mSI
(2r2i −1 − 1) th mSI
• •
(2r1 ) th mLS
(2r2i ) th mLS
•
(2r2i −1 − 1) mSI
th
(2r2i ) th mLS
•
th
(2r2i −1 − 1) th mSI
|| p ||
mSO
•
(2r2 − 1) th mSO
Δ iq > 0
Δ iq > 0 Δ iq = 0
a0 < 0
xk∗
a
(2r2i −3 − 1) th mSO
(2r2i ) th mLS
(2r2 ) mLS
(2r2 − 1) th mSI
(2r2 n −3 ) th mUS
(2r2i − 2 ) th mUS
(2r1 ) th mLS
a1
(2r2i − 2 ) th mUS
a2 n−3
(2li ) th LS
(2r2i − 2 ) th mLS
th
mSO
(2r2 n − 2 − 1) th mSI
(2r2i −1 − 1) th mSI
(2r3 ) th mUS
a3
(2l1 − 1) th mSO
|| p ||
a2 n−2
•
(2r1 ) th mUS (2r2 − 1) th mSO
(2r2 n −1 ) th mLS
• • •
• (2r2i ) th mUS
(2r2 n ) th mLS
a2 n−1
(2r2 n −3 + 1) th SO
mSO
mSI-oSO
P-2
a2n
(2r2 − 1) th SI
th
(2l1 − 1) mSI
(2r1 ) th mUS
xk∗
a3 a2 a1
(2r3 ) th mLS
(2r2 − 1) th mSI (2r1 ) th mLS
th
(2r2 ) mUS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.13 (i)–(iv) Four types of ðr1 th mXX:r2 th mXX: :rm th mXXÞ parallel switching bifurcation for a0 \0 in the ð2m þ 1Þth -degree polynomial discrete system. mLS: monotonic lowersaddle, mUS: monotonic upper-saddle, mSI: monotonic sink, mSO: monotonic source, mSI-oSO: monotoic sink to oscillatory source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, sketched by red curves. The period-2 fixed-points are relative to the monotonic sinks to oscillatory sources
5.3 Higher-Order Fixed-Point Bifurcations
5.3.3
407
Switching-Appearing Bifurcations
Consider a ð2m þ 1Þth degree 1-dimensional polynomial nonlinear discrete system in a form of 1 2 xk þ 1 ¼ xk þ a0 Qðxk Þ *ni¼1 ðxk ci Þai *nj¼1 ðx2k þ Bj xk þ Cj Þaj :
ð5:233Þ
1 where Pni¼1 ai ¼ 2s1 þ 1. Without loss of generality, a function of Qðxk Þ [ 0 is either a polynomial function or a non-polynomial function. The roots of x2k þ Bj xk þ Cj ¼ 0 are
ðjÞ
1 2
b1;2 ¼ Bj
1pffiffiffiffiffi Dj ; Dj 2
¼ B2j 4Cj 0ðj ¼ 1; 2; . . .; n2 Þ;
ð5:234Þ
either fa 1 ; a2 ; ; a2n1 þ 1 g ¼ sortfc1 ; c2 ; c2n1 ; ag; as as þ 1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
þ g ¼ sortfc1 ; ; c2n1 ; a; b1 ; b2 ; ; b1 2 ; b2 2 g; fa1þ ; a2þ ; ; a2n 3 þ1
asþ asþþ 1 ; n3 ¼ n1 þ n2 after bifurcation; ð5:235Þ or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 ; a2 ; ; a2n3 þ 1 g ¼ sortfc1 ; c2 ; c2n1 ; a; b1 ; b2 ; ; b1 ; b2 g; a s as þ 1 ; n3 ¼ n1 þ n2 before bifurcation;
þ fa1þ ; a2þ ; ; a2n g ¼ sortfc1 ; ; c2n1 ; ag; asþ asþþ 1 after bifurcation; 1 þ1
ð5:236Þ and 9 Bj1 ¼ Bj2 ¼ ¼Bjs ðjk1 2 f1; 2; . . .; ng; jk1 6¼ jk2 Þ > > = ðk1 ; k2 2 f1; 2; . . .; sg; k1 6¼ k2 Þ at bifurcation: Dj ¼ 0ðj 2 f1; 2; . . .; n2 g > > ; 1 ci 6¼ 2Bj ði ¼ 1; 2; . . .; 2n1 ; j ¼ 1; 2; . . .; n2 Þ
ð5:237Þ
th th th A just before bifurcation of ððb 1 Þ mXX1 :ðb2 Þ mXX2 : : ðb31 Þ mXXsi Þ for higher-order fixed-points is considered. For bi ¼ 2li 1 mXXi 2 fmSO,mSIg and for a i ¼ 2li ; mXXi 2 fmUS,mLSg ði ¼ 1; 2; . . .; s1 Þ, the detailed structures are as follows.
408
5 (2m + 1)th-Degree Polynomial Discrete Systems
9 ðiÞ ðiÞ > ðrsi Þth order mXXðiÞ s ; xk ¼ asi ; > > > > > .. > > > . = bi ¼Psi rðiÞ j¼1 j th ðiÞ th ðiÞ ðiÞ ðiÞ ! ðb ðrj Þ order mXXj ; xk ¼ aj i Þ order mXX > switching bifurcation > > > .. > > . > > > ðiÞ th ðiÞ ðiÞ ; ðr1 Þ order mXX1 ; xk ¼ a1
ð5:238Þ th th th The bifurcation set of ððb 1 Þ mXX1 : ðb2 Þ mXX2 : : ðbs1 Þ mXXs1 Þ at the same parameter point is called a left-parallel-straw-bundle switching bifurcation A just after bifurcation of ððb1þ Þth mXX1þ :ðb2þ Þth mXX2þ : : ðbsþ2 Þth mXXsþ2 Þ for higher-order singularity fixed-points is considered. For bjþ ¼ 2ljþ 1, mXXiþ 2 fmSO,mSIg and for b þ ¼ 2l þ ; mXXiþ 2 fmUS,mLSg. The detailed structures are as follows. 8 ðiÞ þ ðiÞ þ þ > ðrsi Þth order mXXðiÞ ; xk ¼ asi ; > si > > > > . > > > .. ðiÞ þ Ps i < bi ¼ j¼1 rj þ ðiÞ þ ðbiþ Þth order mXXðiÞ þ ! ðrjðiÞ þ Þth order mXXðiÞ ; x k ¼ aj j switching bifurcation > > > > .. > > > . > > : ðiÞ þ th ðiÞ þ ðiÞ þ ðr1 Þ order mXX1 ; xk ¼ a1 :
ð5:239Þ The bifurcation set of ððb1þ Þth mXX1þ : ðb2þ Þth mXX2þ : : ðbsþ2 Þth mXXsþ2 Þ at the same parameter point is called a right-parallel-straw-bundle switching bifurcation (i) For the just before and after bifurcation structure, if there exists a relation of th þ th th þ þ ðb i Þ mXXi ¼ ðbj Þ mXXj ¼ bj mXX, for x ¼ ai ¼ aj
ði; j 2 f1; 2; . . .; kgÞ; mXX 2 fmUS,mLS,mSO,mSIg
ð5:240Þ
then the bifurcation is a ðbj Þth mXXj switching bifurcation for higher-order fixed-points. (ii) Just for the just before bifurcation structure, if there exists a relation of
5.3 Higher-Order Fixed-Point Bifurcations
409
th th ð2l i Þ mXXi ¼ ð2li Þ mXX, for x ¼ ai ¼ ai
ði 2 f1; 2; . . .; s1 g; mXX 2 fmUS,mLSg
ð5:241Þ
then, the bifurcation is a ð2lÞth mXX left appearing (or right vanishing) bifurcation for higher-order fixed-points. (iii) Just for the just after bifurcation structure, if there exists a relation of ð2liþ Þth mXXiþ ¼ ð2li Þth mXX, for x ¼ aiþ ¼ ai ði 2 f1; 2; . . .; s1 gÞ; mXX 2 fmUS,mLSg
ð5:242Þ
then, the bifurcation is a ð2lÞth mXX right appearing (or left vanishing) bifurcation for higher-order fixed-points. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ðb for x ¼ a i Þ mXXi 6¼ ðbj Þ mXXj i ¼ aj þ mXX i ; mXXj 2 fmUS,mLS, mSO,mSIg
ð5:243Þ
ði 2 f1; 2; . . .; s1 g; j 2 f1; 2; . . .; s2 gÞ; then, two flower-bundle switching bifurcations of higher-order fixed-points are as follows. (iv1) For bj ¼ bi þ 2l, the bifurcation is called a ðbj Þth mXX right flowerbundle switching bifurcation for the ðbi Þth mXX to ðbj Þth mXX switching of higher-order fixed-points with the appearance (or birth) of ð2lÞth mXX right appearing (or left vanishing) bifurcation. (iv2) For bj ¼ bi 2l, the bifurcation is called a ðbi Þth mXX left flowerbundle switching bifurcation for the ðbi Þth mXX to ðbj Þth mXX switching of higher-order fixed-points with the vanishing (or death) of ð2lÞth mXX left appearing (or right vanishing) bifurcation. A general parallel switching bifurcation is switching
th th th ððb 1 Þ mXX1 : ðb2 Þ mXX2 : : ðbs1 Þ mXXs1 Þ !
ððb1þ Þth mXX1þ : ðb2þ Þth mXX2þ : :
bifurcation þ th þ ðbs2 Þ mXXs2 Þ:
ð5:244Þ
Such a general, parallel switching bifurcation consists of the left and right parallelbundle switching bifurcations for higher-order fixed-points. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e.,
5 (2m + 1)th-Degree Polynomial Discrete Systems
410
th th þ th þ ðb i Þ mXXi ¼ ðbi Þ mXXi ¼ ðbi Þ mXXi
þ for xk ¼ a i ¼ ai ði ¼ 1; 2; . . .; sÞ:
ð5:245Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ððb1 Þth mXX1 : ðb2 Þth mXX2 : : ðbs1 Þth mXXs Þ. If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ þ th þ ða i Þ mXXi ¼ ð2li Þ mXXi ; ðaj Þ mXXj ¼ ð2lj Þ mXXj þ for xk ¼ a i 6¼ aj ði ¼ 1; 2; . . .; s1 ; j ¼ 1; 2; . . .; s2 Þ;
mXX i
2
fmUS,mLSg; mXXjþ
ð5:246Þ
2 fmUS,mLSg;
then the parallel flower-bundle switching bifurcation for higher-order fixed-points becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) a ð2l 1 Þ mXX1 : ð2l2 Þ mXX2 : : ð2ls1 Þ mXXs1 -left parallel sprinklerspraying appearing (or right vanishing) bifurcation and (ii) a ð2l1þ Þth mXX1þ : ð2l2þ Þth mXX2þ : : ð2lsþ2 Þth mXXsþ1 -right parallel sprinklerspraying appearing (or left vanishing) bifurcation.
The parallel switching and appearing bifurcations for higher-order fixed-points are presented in Fig. 5.14i–iv. The waterfall appearing bifurcations and the flower-bundle switching bifurcations for higher-order fixed-points are presented. The period-2 fixed point is presented through red curves.
5.4
Forward Bifurcation Trees
In this section, the analytical bifurcation scenario of a ð2m þ 1Þth -degree polynomial nonlinear discrete system will be discussed. The period-doubling bifurcation scenario will be discussed first through nonlinear renormalization techniques, and the bifurcation scenario based on the saddle-node bifurcation will be discussed, which is independent of period-1 fixed-points.
5.4.1
Period-Doubled ð2m þ 1Þth -Degree Polynomial Systems
After the period-doubling bifurcation of a period-1 fixed-point, the period-doubled fixed-points of a ð2m þ 1Þth -degree polynomial nonlinear discrete system can be obtained. Consider the period-doubling solutions of a forward quartic nonlinear discrete system first.
5.4 Forward Bifurcation Trees
411 (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO (2rn − 2 ) th mLS
(2rn − 2 ) th mUS th
(2rn − 1) mSO (2ls ) th mUS
(2rn − 1) th mSI (2ls ) th mLS
(2rn − 2 ) th LS (2rn − 2 − 1) th mSI
(2ris ) th mUS
(2ris ) th mUS
(2rn − 2 ) th mUS (2rn − 2 − 1) th mSO
(2ris ) th mLS (2ris ) th mLS
(2rn −3 − 1) th mSO (2rn − 4 − 1) th mSI
(2ls −1 ) th mUS
(2ls −1 ) th mLS
(2rn −3 − 1) th mSO
• • •
(2rn −3 − 1) th mSI
•
(2rn − 4 − 1) th mSI
mSO
•
mSI-oSO
•
(2ri ) th mUS
mSO
(2lr ) th mUS
(2ri −1 ) th mLS (2ri − 2 − 1) th mSI
P-2
(2ri −3 − 1) th mSI
(2ri −3 − 1) th mSO (2lr ) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
(2ri −1 ) th mLS (2ri −3 − 1) mSI
•
(2ri ) th mUS
•
(2ri −1 ) th mUS
th
•
(2ri2 − 1) th mSI
• (2ri2 ) th mSO
(2r1 − 1) th mSO
(2r1 − 1) th mSI
(2l1 ) th mLS
(2r1 − 1) th mSI
(2ri1 − 1) th mSO th
(2ri1 − 1) mSO
(2r2 ) th mUS
(2r2 ) th mLS (2ri1 − 1) th mSI
Δ iq > 0
Δ iq < 0 Δ iq = 0
(2r1 − 1) th mSO
(2ri1 − 1) th mSI
xk∗
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
(i)
(iii) (2rn − 1) th mSO
a0 > 0
(2rn − 1) th mSI
a0 < 0
(2rn −1 − 1) th mSI
(2rn −1 − 1) th mSO
th
(2rn − 2 ) mUS
(2rn − 2 ) th mLS
(2rn − 1) th mSO
(2ls ) th mUS
(2rn − 1) th mSI
(2rn − 2 ) th mLS
(2ls ) mLS
th
(2ris−2 − 1) mSI
oSI-oSO
(2ls −1 ) mLS
(2rn − 4 − 1) th mSO
(2rn − 4 − 1) th mSI
mSI-oSO
mSO
(2rn −3 − 1) th mSO
• •
(2rn −3 − 1) th mSI
(2ris−2 − 1) th mSO
th
P-2 (2ris−2 − 1) th mSI
(2ris ) th mLS
P-2
(2rn −3 − 1) th mSO
mSO
(2rn − 2 − 1) th mSO
(2ris ) th LS
(2ris ) th mUS
(2ls −1 ) th mUS
(2rn − 2 ) th mUS
th
(2rn − 2 − 1) th mSI
(2ris ) th US
(2rn − 4 − 1) th mSI
(2rn −3 − 1) th mSI
(2ris−2 − 1) th mSO
(2rn − 4 − 1) th mSO
• • •
(2ri ) th mUS
•
(2ri −1 ) th mUS (2ri − 2 − 1) th mSO
(2ri ) th mLS (2ri −1 ) th mLS (2ri − 2 − 1) th mSI
th
(2ri −3 − 1) mSI
(2lr ) th mUS
(2ri −3 − 1) th mSO (2lr ) th mLS
(2ri − 2 − 1) th mSO
(2ri − 2 − 1) th mSI
(2ri −1 ) th mLS • •
(2ri −1 ) th mUS
(2ri −3 − 1) th mSI
• • •
(2ri ) th mUS
•
(2r2 ) th mUS
(2ri −3 − 1) th mSO
(2ri ) th mLS (2r2 ) th mLS
(2r1 − 1) th mSO th
(2l1 − 1) mSO
xk∗
(2r1 − 1) th mSI
(2ri1 − 1) th mSI
(2ri1 − 1) th mSO
(2r1 − 1) th mSO
(2l1 − 1) th mSI
xk∗
(2ri1 − 1) th mSO
(2ri1 − 1) th mSI
(2r1 − 1) th mSI
(2r2 ) th mLS
|| p ||
(2ri ) th mLS (2r2 ) th mLS
(2ri2 − 1) th mSO
(2l1 ) th mUS
|| p ||
(2ri −3 − 1) th mSO
• •
(2r2 ) th mUS
(2ri2 − 1) th mSI
(2rn − 4 − 1) th mSO (2ri ) th mLS
mSI-oSO
(2ri −1 ) th mUS (2ri − 2 − 1) th mSO
xk∗
(2rn −3 − 1) th mSI (2rn − 4 − 1) th mSO
Δ iq < 0 Δ iq = 0
(ii)
Δ iq > 0
(2r2 ) th mUS
|| p ||
Δ iq < 0 Δ iq = 0
Δ iq > 0
(iv)
Fig. 5.14 ðr1 th mXX:r2 th mXX: :rn th mXXÞ parallel bifurcation (a0 [ 0): (i) without switching, and (ii) with switching. The ðr1 th mXX:r2 th mXX: :rn th mXXÞ parallel bifurcation ða0 \0Þ: (iii) without switching, and (vi) with switching. mLS: monotonic lower-saddle, mUS: monotonic upper-saddle, mSI: monotonic sink, mSO: monotonic source, mSI-oSO: monotonic sink to oscillatory source. Stable and unstable fixed-points are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols. P-2 is for period-2 fixed points, sketched by red curves. The period-2 fixed-points are relative to the monotonic sinks to oscillatory sources
5 (2m + 1)th-Degree Polynomial Discrete Systems
412
Theorem 5.1 Consider a ð2m þ 1Þth -degree polynomial nonlinear discrete system þ1 2 þ A1 ðpÞx2m xk þ 1 ¼ xk þ A0 ðpÞx2m k k þ þ A2m1 ðpÞxk þ A2m xk þ A2m þ 1 ðpÞ
¼ xk þ a0 ðpÞðxk aðpÞÞ½x2k þ B1 ðpÞxk þ C1 ðpÞ ½x2k þ Bm ðpÞxk þ Cm ðpÞ ð5:247Þ where A0 ðpÞ 6¼ 0 and p ¼ ð p1 ; p2 ; ; pm 1 Þ T :
ð5:248Þ
If Di ¼ B2i 4Ci [ 0; i ¼ i1 ; i2 ; . . .; ii 2 f1; 2; . . .; mg0f£g Dj ¼ B2j 4Cj \0; j ¼ it þ 1 ; il þ 2 ; ; im 2 f1; 2; . . .; mg0f£g with l 2 f0; 1; . . .; mg
ð5:249Þ
then, the corresponding standard form is ð1Þ
þ1 xk þ 1 ¼ xk þ a0 *2m i¼1 ðxk ai Þ:
ð5:250Þ
where ð1Þ
1 2
ð1Þ
bi;1 ¼ ðBi þ
qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ð1Þ ð1Þ ð1Þ ð1Þ Di Þ; bi;2 ¼ ðBi Di Þ 2
ð1Þ
for Di 0; i 2 f1; 2; . . .; lg0f£g; ð1Þ
ð1Þ
ð1Þ
ð1Þ
ð1Þ
l 02l i¼1 fai g ¼ sortf0i1 ¼1 fbi1 ; bi1 ;2 gg; ai ai þ 1 ; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ð1Þ 1 ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ 2 2 pffiffiffiffiffiffiffi ð1Þ for Di \0; i 2 fl þ 1; l þ 2; . . .; mg0f£g; i ¼ 1; ð1Þ
ð1Þ
ð5:251Þ
ð1Þ
þ1 m 02m i¼2l þ 1 fai g ¼ f0i1 ¼l þ 1 fbi1 ; bi1 ;2 g; ag:
(i) Consider a forward period-2 discrete system of Eq. (5.247) as ðxk ai1 Þf1 þ
2m þ 1
ðxk ai1 Þ
*i ¼1 1
¼ xk þ ½a0
*i ¼1 1
þ1
½a2m 0
¼ xk þ ½a0
ðð2m þ 1Þ2 ð2m þ 1ÞÞ=2
2m þ 1
*j ¼1 1
2m þ 1
*i ¼1 1
½1 þ a0
2m þ 1
*i ¼1;i 6¼i ðxk 2 2 1
ð1Þ
ai2 Þg
ð1Þ
*i ¼1 2
1 þ ð2m þ 1Þ
¼ xk þ a0
ð1Þ
2m þ 1
xk þ 2 ¼ xk þ ½a0
ð1Þ
ð2Þ
þ1 ðxk ai1 Þ½a2m 0 ð2m þ 1Þ2
*i¼1
ð2Þ
ðx2k þ Bi2 xk þ Ci2 Þ ð2m þ 1Þ2 ð2m þ 1Þ
*j ¼1 2
ð2Þ
ðxk bj2 Þ
ð2Þ
ðxk ai Þ ð5:252Þ
5.4 Forward Bifurcation Trees
413
where ð2Þ
ð2Þ
1 2
bi;1 ¼ ðBi þ ð2Þ
Di
qffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 1 ð2Þ ð2Þ ð2Þ Dð2Þ Þ; bi;2 ¼ ðBi Di Þ; 2
ð2Þ
ð2Þ
¼ ðBi Þ2 4Ci 0; i 2 0Nq11¼1 Iqð21 Þ 00Nq22¼1 Iqð22 0
2
Þ
Iqð21 Þ ¼ flðq1 1Þ 20 m1 þ 1 ; lðq1 1Þ 20 m1 þ 2 ; ; lq1 20 m1 g 0
f1; 2; ; M1 g0f∅g; q1 2 f1; 2; ; N1 g; M1 ¼ N1 20 m1 ; m1 2 f1; 2; ; mg; Iqð22 Þ ¼ flðq2 1Þ 21 m1 þ 1 ; lðq2 1Þ 21 m1 þ 2 ; ; lq2 21 m1 g 1
ð5:253Þ
fM1 þ 1; M1 þ 2; ; M2 g0f∅g; q2 2 f1; 2; ; N2 g; M2 ¼ ðð2mÞ2 2mÞ=2; qffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 1 ð2Þ 1 ð2Þ ð2Þ ð2Þ ð2Þ bi;1 ¼ ðBi þ i Dð2Þ Þ; bi;2 ¼ ðBi i Di Þ; 2 2 pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1; Di ¼ ðBi Þ2 4Ci \0; i 2 J ð2 Þ ¼ flN2 21 m1 þ 1 ; lN2 21 m1 þ 2 ; ; lM2 g 1
fM1 þ 1; M1 þ 2; ; M2 g with fixed-points ð2Þ
xk þ 2 ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; ð2m þ 1Þ2 Þ ð2m þ 1Þ2
0i¼1
ð2Þ
ð2Þ
ð1Þ
ð2Þ
ð2Þ
ð5:254Þ
þ1 M fai g ¼ sortf02m j1 ¼1 faj1 g; 0j2 ¼1 fbj2 ;1 ; bj2 ;2 gg ð2Þ
with ai \ai þ 1 ; M ¼ ðð2m þ 1Þ2 ð2m þ 1ÞÞ=2: ð1Þ
(ii) For a fixed-point of xk þ 1 ¼ xk ¼ ai1 (i1 2 f1; 2; . . .; 2m þ 1g), if dxk þ 1 ð1Þ ð1Þ þ1 j ð1Þ ¼ 1 þ a0 *2m i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk xk ¼ai1
ð5:255Þ
with • a r th -order oscillatory upper-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ k
i1
k
i1
[ 0, r ¼ 2l1 Þ, • a r th -order oscillatory lower-saddle-node bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ \0, r ¼ 2l1 Þ, • a r th -order oscillatory source bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ \0, r ¼ 2l1 þ 1Þ,
k
i1
5 (2m + 1)th-Degree Polynomial Discrete Systems
414
• a r th -order oscillatory sink bifurcation ðd r xk þ 1 =dxrk jx ¼að1Þ [ 0, r ¼ k
2l1 þ 1Þ,
i1
then the following relations satisfy 1 ð2Þ ð2Þ ð1Þ ð2Þ ð2Þ ai1 ¼ Bi ; Di1 ¼ ðBi Þ2 4Ci1 ¼ 0; 2
ð5:256Þ
and there is a period-2 discrete system of the quartic discrete system in Eq. (5.247) as 1 þ ð2m þ 1Þ
xk þ 2 ¼ x k þ a0
*
ð20 Þ
i2 2Iq1
ð1Þ
ðxk ai2 Þ3
ð5:257Þ
2
þ 1Þ ð2Þ
*ð2m ðxk ai3 Þð1dði2 ;i3 ÞÞ i3 ¼1 ð20 Þ
for i1 2 Iq1 f1; 2; . . .; 2m þ 1g; i1 6¼ i2 with dxk þ 2 d 2 xk þ 2 jx ¼að1Þ ¼ 1; j ð1Þ ¼ 0; dxk k i1 dx2k xk ¼ai1
ð5:258Þ
ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic sink of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a10 þ 2m dx3k xk ¼ai1
*
ð1Þ
ð20 Þ
i2 2Iq1 :i2 6¼i1
ð2m þ 1Þ2 ð1Þ *i ¼1 ðai1 3
ð1Þ
ðai1 ai2 Þ3
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ \
ð5:259Þ 0
and the corresponding bifurcations is a third-order monotonic sink bifurcation for the period-2 discrete system; ð1Þ
• xk þ 2 at xk ¼ ai1 is a monotonic source of the third-order if d 3 xk þ 2 j ð1Þ ¼ 6a10 þ 2m dx3k xk ¼ai1
*
ð20 Þ
ð1Þ
i2 2Iq1 :i2 6¼i1
ð2m þ 1Þ2 ð1Þ *i ¼1 ðai1 3
ð1Þ
ðai1 ai2 Þ3
ð2Þ ai3 Þð1dði2 ;i3 ÞÞ
ð5:260Þ
[0
and the corresponding bifurcations is a third-order monotonic source bifurcation for the period-2 discrete system. (ii1) The period-2 fixed-points are trivial and unstable if
5.4 Forward Bifurcation Trees
415 ð2Þ
xk þ 2 ¼ xk ¼ ai
ð1Þ
þ1 2 02m i1 ¼1 fai1 g :
ð5:261Þ
(ii2) The period-2 fixed-points are non-trivial and stable if ð2Þ
xk þ 2 ¼ xk ¼ ai
ð2Þ
ð2Þ
2 2 0M i1 ¼1 fbi1 ;1 ; bi1 ;2 g :
ð5:262Þ
Proof The proof is straightforward through the simple algebraic manipulation. Following the proof of quadratic discrete system, this theorem is proved. ■
5.4.2
Renormalization and Period-Doubling
The generalized cases of period-doublization of a ð2m þ 1Þth -degree polynomial discrete system are presented through the following theorem. The analytical period-doubling bifurcation trees can be developed for such a ð2m þ 1Þth -degree polynomial discrete systems. Theorem 5.2 Consider a 1-dimensional ð2m þ 1Þth -degree polynomial discrete system as þ1 2 xk þ 1 ¼ xk þ A0 x2m þ A1 x2m k k þ þ A2m1 xk þ A2m xk þ A2m þ 1
ð5:263Þ
þ1 ¼ xk þ a0 *2m i¼1 ðxk ai Þ:
(i) After l-times period-doubling bifurcations, a period- 2l discrete system ðl ¼ 1; 2; . . .Þ for the ð2m þ 1Þth -degree polynomial discrete system in Eq. (5.263) is given through the nonlinear renormalization as ð2l1 Þ
ð2m þ 1Þ2
xk þ 2l ¼ xk þ ½a0
f1 þ
2l1
ð2m þ 1Þ
*i ¼1 1
ð2l1 Þ
ð2
½ða0
Þ 4
Þ
ð2l1 Þ
ð2
½ða0
l1
2l1
ð2l Þ
¼ xk þ a0
ð2m þ 1Þ2
l1
ð2l1 Þ
ðxk ai1
ð2l1 Þ
ðð2m þ 1Þ ð2m þ 1Þ
ð2m þ 1Þ2
l
l1
ð2m þ 1Þ2
*i¼1
l
Þg
Þ=2
ð2l Þ
ð2l Þ
ðx2k þ Bj2 xk þ Cj2 Þ
Þ
2l1
*i ¼1 2
ð2l1 Þ
ðxk ai2
Þ
2l1
ðxk ai1 2l
l1
*i ¼1;i 6¼i 2 2 1
ðð2m þ 1Þ ð2m þ 1Þ
Þ
*i¼1
Þ
*j ¼1 1
ð2l1 Þ 1 þ ð2m þ 1Þ2
¼ xk þ ða0
Þ
2l
*i ¼1; 1
Þ 4
Þ
2l1
ð2m þ 1Þ2
¼ xk þ ½a0
l1
ð2
*i ¼1 1 2l1
ð2l1 Þ
ðxk ai1
½1 þ a0
ð2m þ 1Þ
¼ xk þ ½a0
l1
l1
*i ¼1 1
Þ=2
ð2l Þ
ð2l Þ
ðxk bi2 ;1 Þðxk bi2 ;2 Þ ð2l Þ
ðxk ai Þ
ð2l Þ
ðxk ai Þ ð5:264Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
416
with l l dxk þ 2l ð2l Þ Xð2m þ 1Þ2 ð2m þ 1Þ2 ð2l Þ ¼ 1 þ a0 *i ¼1;i 6¼i ðxk ai2 Þ; i1 ¼1 2 2 1 dxk l l l d 2 xk þ 2 l ð2l Þ Xð2m þ 1Þ2 Xð2m þ 1Þ2 ð2m þ 1Þ2 ð2l Þ ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . l l l d r xk þ 2 l Xð2m þ 1Þ2 ð2l Þ Xð2m þ 1Þ2 ð2m þ 1Þ2 ð2l Þ ¼ a0 ir ¼1;i3 6¼i1 ;i2 ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ i1 ¼1 r dxk l
for r ð2m þ 1Þ2
ð5:265Þ where ð2l Þ
ð2Þ
a0 ¼ ða0 Þ1 þ ð2m þ 1Þ ; a0 2l
ð2l Þ
ð2l Þ Di l1
Iqð21
ð2 Þ
ð2m þ 1Þ
l1
l
; l ¼ 1; 2; 3; ; ð2l Þ
ð2 Þ
ð2l Þ
ð2l Þ
2 fai g ¼ sortf0i1 ¼1 fai1 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ,ai qffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l1 Þ ð2l Þ ¼ ðBi þ Di Þ; bi;2 ¼ ðBi Di Þ;
0i¼1 bi;1
Þ
2l1
l
ð2m þ 1Þ
ð2l1 Þ 1 þ ð2m þ 1Þ2
¼ ða0
2
¼ Þ
ð2l Þ ðBi Þ2
ð2l Þ
ai þ 1 ;
2
ð2l Þ 4Ci
0 for i 2 0Nq11¼1 Iqð21
l1
Þ
l
00Nq22¼1 Iqð22 Þ ;
¼ flðq1 1Þ 2l1 m1 þ 1 ; lðq1 1Þ 2l1 m1 þ 2 ; ; lq1 2l1 m1 g f1; 2; ; M1 g0f∅g;
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 2l1 m1 ; m1 2 f1; 2; ; mg; l
Iqð22 Þ ¼ flðq2 1Þ 2l m1 þ 1 ; lðq2 1Þ 2l m1 þ 2 ; ; lq2 2l m1 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ðð2m þ 1Þ2 ð2m þ 1Þ2 Þ=2; qffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l Þ 1 ð2l Þ ð2l Þ ð2l Þ ð2l Þ ð2l Þ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ð2l Þ ð2l Þ ð2l Þ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1; l
i 2 J ð2 Þ ¼ flN 2l m1 þ 1 ; lN 2l m1 þ 2 ; ; lM2 g fM1 þ 1; M1 þ 2; ; M2 g0f∅g; ð5:266Þ with fixed-points
5.4 Forward Bifurcation Trees
417
ð2l Þ
l
xk þ 2l ¼ xk ¼ ai ; ði ¼ 1; 2; ; ð2m þ 1Þ2 Þ ð2m þ 1Þ2
0i¼1
l
ð2 Þ
l
ð2l Þ
ð2m þ 1Þ2
fai g ¼ sortf0i1 ¼1
l1
ð2l1 Þ
fai1
ð2l Þ
ð2l Þ
2 g; 0M i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð5:267Þ
l
ð2 Þ
with ai \ ai þ 1 : ð2l1 Þ
ð2l1 Þ
(ii) For a fixed-point of xk þ 2l1 ¼ xk ¼ ai1
ði1 2 Iq
Þ, if
l1 dxk þ 2l1 ð2l1 Þ ð2m þ 1Þ2 ð2l1 Þ ð2l1 Þ j ð2l1 Þ ¼ 1 þ a0 ai2 Þ ¼ 1; *i ¼1;i 6¼i ðai1 2 2 1 x ¼a dxk i1 k d s xk þ 2l1 j ð2l1 Þ ¼ 0; for s ¼ 2; ; r 1; dxsk xk ¼ai1 l1 d r xk þ 2l1 j ð2l1 Þ 6¼ 0 for 1\r ð2m þ 1Þ2 ; xk ¼ai dxrk 1
ð5:268Þ
with
• a r th -order oscillatory sink for d r xk þ 2l1 =dxrk
ð2l1 Þ
xk ¼ai
• a r th -order oscillatory source for d r xk þ 2l1 =dxrk
[ 0 and r ¼ 2l1 þ 1;
1
ð2l1 Þ
xk ¼ai
\0 and r ¼
1
2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk þ 2l1 =dxrk
ð2l1 Þ
xk ¼ai
r ¼ 2l1 ; • a r th -order oscillatory lower-saddle for d r xk þ 2l1 =dxrk
[ 0 and
1
ð2l1 Þ
xk ¼ai
\0 and
1
r ¼ 2l1 ; then there is a period- 2l fixed-point discrete system ð2l Þ
x k þ 2 l ¼ x k þ a0
*
ð2m þ 1Þ2 *j ¼1 2
l
ð2l1 Þ i1 2Iq1
ðxk
ð2l1 Þ 3
ðxk ai1
Þ
ð5:269Þ
ð2l Þ aj2 Þð1dði1 ;j2 ÞÞ
where ð2l Þ
ð2l1 Þ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1
ð2l Þ
ð2l1 Þ
; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1
ð5:270Þ
and dxk þ 2l d 2 xk þ 2l j ð2l1 Þ ¼ 1; j ð2l1 Þ ¼ 0: dxk xk ¼ai1 dx2k xk ¼ai1
ð5:271Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
418 ð2l1 Þ
• xk þ 2i at xk ¼ ai
is a monotonic sink of the third-order if
d 3 xk þ 2 l ð2l Þ j ð2l1 Þ ¼ 6a0 dx3k xk ¼ai1
ði1 2 Iqð21
l1
Þ
*
ð2l1 Þ
i2 2Iq1
ð2m þ 1Þ2
l
*j ¼1 2
ð2l1 Þ
;i2 6¼i1
ð2l1 Þ
ðai1
ð2l1 Þ
ð2l1 Þ
l1
Þ
Þ
ð5:272Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ \0
is a third-order monotonic sink
is a monotonic source of the third-order if
d 3 xk þ 2l ð2l Þ j ð2l1 Þ ¼ 6a0 3 x ¼a dxk i1 k ði1 2 Iqð21
ð2l1 Þ 3
ai 2
; q1 2 f1; 2; ; N1 gÞ;
and such a bifurcation at xk ¼ ai bifurcation. • xk þ 2l at xk ¼ ai
ðai1
*
ð2l1 Þ i2 2Iq1 ;i2 6¼i1
ð2m þ 1Þ2
*j ¼1 2
l
ð2l1 Þ
ðai1
ð2l1 Þ
ðai1
ð2l1 Þ 3
ai2
Þ
ð5:273Þ
ð2l Þ
aj2 Þð1dði2 ;j2 ÞÞ [ 0
; q1 2 f1; 2; ; N1 gÞ ð2l1 Þ
and such a bifurcation at xk ¼ ai1
is a third-order monotonic source bifurcation.
ðii1 Þ The period- 2l fixed-points are trivial if ð2l1 Þ
xk þ 2l ¼ xk ¼ ai
ð2m þ 1Þ2
2 0i1 ¼1
l1
ð2l1 Þ
fai1
g:
ð5:274Þ
ðii2 Þ The period- 2l fixed-points are non-trivial if ð2l1 Þ
xk þ 2l ¼ xk ¼ ai
ð2l Þ
ð2l Þ
2 2 0M i1 ¼1 fbj1 ;1 ; bj1 ;2 g:
ð5:275Þ
Such a period- 2l fixed-point is • monotonically unstable if dxk þ 2l =dxk j
ð2l Þ
xk ¼ai
• monotonically invariant if dxk þ 2l =dxk j
1 ð2l Þ
xk ¼ai
2 ð1; 1Þ; ¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx [ 0; k
1 – a monotonic lower-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jx \0; k
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx [ 0; k
– a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \0; k
5.4 Forward Bifurcation Trees
419
• monotonically stable if dxk þ 2l =dxk j
• invariantly zero-stable if dxk þ 2l =dxk j • oscillatorilly stable if dxk þ 2l =dxk j • flipped if dxk þ 2l =dxk j
ð2l1 Þ
xk ¼ai
2 ð0; 1Þ;
ð2l Þ
xk ¼ai
1 ð2l1 Þ
xk ¼ai
1
ð2l1 Þ
xk ¼ai
¼ 0;
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l k jxk [ 0; – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l =dx2l1 \0
k
xi
– an oscillatory source of the ð2l1 þ 1Þth order if d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx \0; k
– an oscillatory sink the ð2l1 þ 1Þth order with d 2l1 þ 1 xk þ 2l =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ 2l =dxk j
2 ð1; 1Þ.
ð2l Þ
xk ¼ai
1
Proof Through the nonlinear renormalization, this theorem can be proved.
5.4.3
■
Period-n Appearing and Period-Doublization
The forward period-n discrete system for the quartic nonlinear discrete systems will be discussed, and the period-doublization of period-n discrete systems is discussed through the nonlinear renormalization. Theorem 5.3 Consider a 1-dimensional ð2m þ 1Þth -degree polynomial discrete system as þ1 2 þ A1 x2m xk þ 1 ¼ xk þ A0 x2m k k þ þ A2m1 xk þ A2m xk þ A2m þ 1 þ1 ¼ xk þ a0 *2m i¼1 ðxk ai Þ:
ð5:276Þ
(i) After n-times iterations, a period-n discrete system for the quartic discrete system in Eq. (5.276) is xk þ n ¼ x k þ a0
2m þ 1
*i ¼1 1
ð1Þ
ðxk ai1 Þf1 þ Rnj¼1 Qj g
ðð2m þ 1Þn 1Þ=ð2mÞ
¼ xk þ a0
2m þ 1
*i ¼1 1
n
ð1Þ
ðxk ai1 Þ
þ 1Þ ð2m þ 1ÞÞ=2 2 ðnÞ ðnÞ
½ *jðð2m ðxk þ Bj2 xk þ Cj2 Þ 2 ¼1 ðnÞ
¼ x k þ a0 with
ð2m þ 1Þn
*i¼1
ðnÞ
ðxk ai Þ
ð5:277Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
420
dxk þ n ðnÞ Xð2m þ 1Þn ð2m þ 1Þn ðnÞ ¼ 1 þ a0 i1 ¼1 *i2 ¼1;i2 6¼i1 ðxk ai2 Þ; dxk d 2 xk þ n ðnÞ Xð2m þ 1Þn Xð2m þ 1Þn ð2m þ 1Þn ðnÞ ¼ a0 i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 Þ; 2 dxk .. . d r xk þ n Xð2m þ 1Þn ðnÞ Xð2m þ 1Þn ð2m þ 1Þn ðnÞ ¼ a0 i1 ¼1 ir ¼1;ir 6¼i1 ;i2 ;ir1 *ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ r dxk
for r ð2m þ 1Þn ;
ð5:278Þ where n
ðnÞ
a0 ¼ ða0 Þðð2m þ 1Þ 1Þ=ð2mÞ ; Q1 ¼ 0; Q2 ¼ Qn ¼
2m þ 1
*i ¼1 n
ð2m þ 1Þn
ðnÞ
ðnÞ
2m þ 1 ðxk n1 ¼1;in1 6¼in
*i
ð1Þ
½1 þ a0
2m þ 1
*i ¼1;i 6¼i ðxk 1 1 2
ð1Þ
ai1 Þ;
ð1Þ
ain1 Þ; n ¼ 3; 4; ;
ðnÞ
ðnÞ
þ1 M fai g ¼ sortf02m i1 ¼1 fai1 g; 0i2 ¼1 fbi2 ;1 ; bi2 ;2 gg ; qffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ¼ ðBi2 þ Di2 Þ; bi2 ;2 ¼ ðBi2 Di2 Þ;
0i¼1 bi2 ;1
½1 þ a0 ð1 þ Qn1 Þ
2m þ 1
*i ¼1 2
ðnÞ
2
2
ðnÞ
ðnÞ
Di2 ¼ ðBi2 Þ2 4Ci2 0 for i2 2 0Nq¼1 IqðnÞ ; IqðnÞ ¼ flðq1Þ n þ 1 ; lðq1Þ n þ 2 ; ; lq n gf1; 2; ; Mg0f∅g; for q 2 f1; 2; ; Ng; M ¼ ðð2m þ 1Þn ð2m þ 1ÞÞ=2; qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi 1 ðnÞ 1 ðnÞ ðnÞ ðnÞ ðnÞ ðnÞ bi;1 ¼ ðBi þ i jDi jÞ; bi;2 ¼ ðBi i jDi jÞ; 2 2 pffiffiffiffiffiffiffi ðnÞ ðnÞ ðnÞ Di ¼ ðBi Þ2 4Ci \0; i ¼ 1 i 2 flN n þ 1 ; lN n þ 2 ; ; lM g f1; 2; ; Mg0f∅g; ð5:279Þ
with fixed-points ðnÞ
xk þ n ¼ xk ¼ ai ; ði ¼ 1; 2; . . .; ð2m þ 1Þn Þ ð2m þ 1Þn
0i¼1
ðnÞ
ðnÞ
ð1Þ
ðnÞ
ðnÞ
þ1 M fai g ¼ sortf02m i1 ¼1 fai1 g; 0i2 ¼1 fbi2 ;1 ; bi2 ;2 gg
ð5:280Þ
ðnÞ
with ai \ai þ 1 : ðnÞ
ðnÞ
(ii) For a fixed-point of xk þ n ¼ xk ¼ ai1 (i1 2 Iq , q 2 f1; 2; . . .; Ng), if dxk þ n ðnÞ ð2m þ 1Þn ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *i2 ¼1;i2 6¼i1 ðai1 ai2 Þ ¼ 1; dxk k i1 with
ð5:281Þ
5.4 Forward Bifurcation Trees
421
d 2 xk þ n ðnÞ Xð2m þ 1Þn ð2m þ 1Þn ðnÞ ðnÞ jx ¼aðnÞ ¼ a0 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðai1 ai3 Þ 6¼ 0; 2 i k dxk 1
ð5:282Þ
then there is a new discrete system for onset of the qth-set of period-n fixed-points based on the second-order monotonic saddle-node bifurcation as ðnÞ
x k þ n ¼ x k þ a0
*i 2I ðnÞ ðxk 1 q
ð2m þ 1Þn
ðnÞ
ai1 Þ2 *j2 ¼1
ðnÞ
ðxk aj2 Þð1dði1 ;j2 ÞÞ
ð5:283Þ
where ðnÞ
ðnÞ
ðnÞ
ðnÞ
dði1 ; j2 Þ ¼ 1 if aj2 ¼ ai1 ; dði1 ; j2 Þ ¼ 0 if aj2 6¼ ai1 :
ð5:284Þ
(ii1) If dxk þ n j ðnÞ ¼ 1 ði1 2 IqðnÞ Þ; dxk xk ¼ai1 d 2 xk þ n ðnÞ ðnÞ 2 j ðnÞ ¼ 2a0 *i 2I ðnÞ ;i 6¼i ðaðnÞ i1 ai2 Þ 2 q 2 1 dx2k xk ¼ai1
ð2m þ 1Þn
*j ¼1 2
ðnÞ
ð5:285Þ
ðnÞ
ðai1 aj2 Þð1dði2 ;j2 ÞÞ 6¼ 0
ðnÞ
xk þ n at xk ¼ ai1 is – a monotonic lower-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ \0; k
i1
– a monotonic upper-saddle of the second-order for d 2 xk þ n =dx2k jx ¼aðnÞ [ 0. k
i1
n1
(ii2) The period-n fixed-points ðn ¼ 2 sÞ are trivial n o n1 1 s ðnÞ ð2m þ 1Þ2 ð2n1 1 sÞ þ 1 ð1Þ xk ¼ xk þ n ¼ aj1 2 02m fa g; 0 fa g i1 i2 i2 ¼1 ii ¼1 for n1 ¼ 1; 2; . . .; s ¼ 2l1 þ 1; j1 2 f1; 2; . . .; ð2m þ 1Þn g0f£g for n 6¼ 2n2 ; ðnÞ
ð2m þ 1Þ2
xk ¼ xk þ n ¼ aj1 2 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
g
9 = ;
)
for n1 ¼ 1; 2; . . .; s ¼ 1; j1 2 f1; 2; . . .; ð2m þ 1Þn g0f£g for n ¼ 2n2 : ð5:286Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
422
ðii3 Þ The period-n fixed-points ðn ¼ 2n1 sÞ are non-trivial if ðnÞ
ð2m þ 1Þ2
ð1Þ
þ1 xk ¼ xk þ n ¼ aj1 62 f02m ii ¼1 fai1 g; 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
gg
)
for n1 ¼ 1; 2; . . .; s ¼ 2l1 þ 1; j1 2 f1; 2; . . .; ð2mÞn g0f£g for n 6¼ 2n2 ; ð2m þ 1Þ2
ðnÞ
xk ¼ xk þ n ¼ aj1 62 0i2 ¼1
n1 1 s
ð2n1 1 sÞ
fai2
g
ð5:287Þ
)
for n1 ¼ 1; 2; . . .; s ¼ 1; j1 2 f1; 2; . . .; ð2m þ 1Þn g0f£g
for n ¼ 2n2 : Such a forward period- n fixed-point is • monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ; i1
k
• monotonically invariant if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is i1
k
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx [ 0; k
1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \ 0; k
– a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx [ 0; k
– a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx \ 0; k
• monotonically unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð0; 1Þ; i1
k
• invariantly zero-stable if dxk þ n =dxk jx ¼aðnÞ ¼ 0; k
i1
• oscillatorilly stable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 0Þ; k
i1
• flipped if dxk þ n =dxk jx ¼aðnÞ ¼ 1, which is k
i1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx [ 0; k
1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ n =dx2l k jx \0; k
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx \ 0; k
– an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ n =dxk2l1 þ 1 jx [ 0; k
• oscillatorilly unstable if dxk þ n =dxk jx ¼aðnÞ 2 ð1; 1Þ. k
ðnÞ
i1
ðnÞ
For a fixed-point of xk þ n ¼ xk ¼ ai1 ði1 2 Iq , q 2 f1; 2; . . .; NgÞ, there is a period-doubling of the qth -set of period-n fixed-points if dxk þ n ðnÞ ð2mÞn ðnÞ ðnÞ jx ¼aðnÞ ¼ 1 þ a0 *j2 ¼1;j2 6¼i1 ðai1 aj2 Þ ¼ 1; dxk k i1 d s xk þ n j ðnÞ ¼ 0; for s ¼ 2; ; r 1; dxsk xk ¼ai1 d r xk þ n j ðnÞ 6¼ 0 for 1\r ð2mÞn dxrk xk ¼ai1
ð5:288Þ
5.4 Forward Bifurcation Trees
423
with • a r th -order oscillatory sink for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ 2l1 þ 1; i1
k
• a r th -order oscillatory source for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ 2l1 þ 1; i1
k
• a r th -order oscillatory upper-saddle for d r xk þ n =dxrk jx ¼aðnÞ [ 0 and r ¼ 2l1 ; i1
k
• a r th -order oscillatory lower-saddle for d r xk þ n =dxrk jx ¼aðnÞ \0 and r ¼ 2l1 . i1
k
The corresponding period- 2 n discrete system of the ð2m þ 1Þth -degree polynomial discrete system in Eq. (5.276) is ð2 nÞ
xk þ 2 n ¼ xk þ a0
*i 2I ðnÞ ðxk 1 q
ð2m þ 1Þ2 n
ðnÞ
ai1 Þ3 *j2 ¼1
ð2 nÞ ð1dði1 ;j2 ÞÞ
ðxk aj2
Þ
ð5:289Þ with dxk þ 2 n d 2 xk þ 2 n jx ¼aðnÞ ¼ 1; jx ¼aðnÞ ¼ 0; i1 i1 k k dxk dx2k d 3 xk þ 2 n ð2 nÞ ðnÞ ðnÞ 3 jx ¼aðnÞ ¼ 6a0 *i 2I ðnÞ ;i 6¼i ðai1 ai2 Þ 1 q 2 1 i1 k dx3k ð2m þ 1Þ2 n
*j2 ¼1 ðnÞ
ðnÞ
ð5:290Þ
ð2 nÞ ð1dði1 ;j2 ÞÞ
ðai1 aj2
Þ
:
ðnÞ
Thus, xk þ 2 n at xk ¼ ai1 for i1 2 Iq , q 2 f1; 2; . . .; Ng is • a monotonic sink of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ \0, k
i1
• a monotonic source of the third-order if d 3 xk þ 2 n =dx3k jx ¼aðnÞ [ 0. k
i1
(iv) After l-times period-doubling bifurcations of period-n fixed points, a period2l n discrete system of the ð2m þ 1Þth degree polynomial discrete system in Eq. (5.276) is ð2l1 nÞ
xk þ 2l n ¼ xk þ ½a0
f1 þ
ð2m þ 1Þ
ð2l1 nÞ
ð2
2l1 n
*i1 ¼1
¼ xk þ ½a0
½ða0
ð2m þ 1Þ2
l1
ð2l1 nÞ
ðxk ai1 ð2l1 Þ
½1 þ a0
ð2m þ 1Þ
2l1 n
*i1 ¼1
nÞ ð2m þ 1Þ
Þ
l1 n
*i1 ¼1
ð2l1 nÞ
ð2m þ 1Þ
*i ¼1;i 6¼i 2 2 1 ð2l1 nÞ
ðxk ai1 ðð2m þ 1Þ
*j1 ¼1
Þ
2l1 n
2l n
ð2l1 nÞ
ðxk ai2
Þg
Þ
ð2m þ 1Þ2
l1 n
Þ=2
ð2l nÞ
ðx2k þ Bj2
ð2l nÞ
xk þ Cj2
Þ
5 (2m + 1)th-Degree Polynomial Discrete Systems
424 ð2l1 nÞ
¼ xk þ ½a0 ð2
½ða0
l1
ð2m þ 1Þ2
nÞ ð2m þ 1Þ
Þ
ð2l nÞ
ð2m þ 1Þ
ð2m þ 1Þ2 n
*i¼1
ð2l nÞ
ðxk ai
Þ
ð2m þ 1Þ2
l
l1 n
2l n
*i¼1
ðð2m þ 1Þ
*j2 ¼1
Þ
¼ xk þ a 0
ð2l1 nÞ
ðxk ai1
2l n
2l1 n
ð2l1 nÞ ð2m þ 1Þ2
¼ xk þ ða0
l1 n
*i1 ¼1
l1 n
Þ=2
ð2l nÞ
ðxk ai
ð2l nÞ
ð2l nÞ
ðxk bj2 ;1 Þðxk bj2 ;2 Þ
Þ
Þ ð5:291Þ
with l l dxk þ 2l n ð2l nÞ Xð2m þ 1Þ2 n ð2m þ 1Þ2 n ð2l nÞ ¼ 1 þ a0 Þ; *i ¼1;i 6¼i ðxk ai2 i1 ¼1 2 2 1 dxk l l l d 2 xk þ 2l n ð2l nÞ Xð2m þ 1Þ2 n Xð2m þ 1Þ2 n ð2m þ 1Þ2 n ð2l nÞ ¼ a0 Þ; i1 ¼1 i2 ¼1;i2 6¼i1 *i3 ¼1;i3 6¼i1 ;i2 ðxk ai3 2 dxk .. . l l l d r xk þ 2l n Xð2m þ 1Þ2 n ð2l nÞ Xð2m þ 1Þ2 n ð2m þ 1Þ2 n ð2l nÞ ¼ a * i1 ¼1 0 ir ¼1;ir 6¼i1 ;i2 ;ir1 ir þ 1 ¼1;ir þ 1 6¼i1 ;i2 ;ir ðxk air þ 1 Þ r dxk l
for r ð2m þ 1Þ2 n ; ð5:292Þ where ð2 nÞ
ðnÞ
2 n
ð2l nÞ
2l1 n
ð2l1 nÞ
¼ ða0 Þ1 þ ð2m þ 1Þ ; a0 ¼ ða0 Þ1 þ ð2m þ 1Þ ; l ¼ 1; 2; 3; . . .; 2l n 2l1 n l l1 ð2m þ 1Þ ð2 nÞ ð2m þ 1Þ ð2 nÞ ð2l nÞ ð2l nÞ 2 fai g ¼ sort 0i1 ¼1 0i¼1 ai1 ; 0M g; i2 ¼1 bi2 ;1 ; bi2 ;2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ Di Þ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi Di Þ; 2
a0
ð2l nÞ
Di
l1
Iqð21
ð2l nÞ 2
¼ ðBi
nÞ
ð2l nÞ
Þ 4Ci
l
0 ; for i 2 0Nq22¼1 Iqð22 nÞ
¼ flðq1 1Þ ð2l1 nÞ þ 1 ; lðq1 1Þ ð2l1 nÞ þ 2 ; ; lq1 ð2l1 nÞ g f1; 2; ; M1 g0f£g;
5.4 Forward Bifurcation Trees
425
for q1 2 f1; 2; ; N1 g; M1 ¼ N1 ð2l1 nÞ; l
Iqð22 nÞ ¼ flðq2 1Þ ð2l nÞ þ 1 ; lðq2 1Þ ð2l nÞ þ 2 ; ; lq2 ð2l1 nÞ g fM1 þ 1; M1 þ 2; ; M2 g0f£g; l
l1
for q2 2 f1; 2; ; N2 g; M2 ¼ ðð2m þ 1Þ2 n ð2m þ 1Þ2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ ¼ ðBi þ i jDi jÞ; bi;1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2l nÞ ð2l nÞ ð2l nÞ bi;2 ¼ ðBi i jDi jÞ; 2 pffiffiffiffiffiffiffi ð2l nÞ ð2l nÞ 2 ð2l nÞ ¼ ðBi Þ 4Ci \0; i ¼ 1; Di
n
Þ=2;
i 2 flN2 ð2l nÞ þ 1 ; lN2 ð2l nÞ þ 2 ; ; lM2 g f1; 2; ; M2 g0f£g
ð5:293Þ
with fixed-points ð2l nÞ
l
xk þ 2l n ¼ xk ¼ ai ; tði ¼ 1; 2; . . .; ð2m þ 1Þ2 n Þ l l1 ð2l nÞ ð2l nÞ ð2m þ 1Þ2 n ð2l nÞ ð2m þ 1Þ2 n ð211 nÞ 2 fai1 0i¼1 ai ¼ sortf0i1 ¼1 ; 0M g i2 ¼1 bi2 ;1 ; bi2 ;2 ð2i nÞ
with ai
ð2l nÞ \ai þ 1 ð5:294Þ ð2l1 nÞ
(v) For a fixed-point of xk þ ð2l nÞ ¼ xk ¼ ai1
ð2l1 nÞ
ði1 2 Iq
; q 2 f1; 2; . . .; N1 gÞ,
there is a period- 2l1 n discrete system if l1 dxk þ 2l1 n ð2l1 nÞ ð2m þ 1Þ2 n ð2l1 nÞ ð2l1 nÞ j ð2l1 nÞ ¼ 1 þ a0 ðai1 ai2 Þ ¼ 1; *i ¼1;i 6¼i 2 2 1 xk ¼ai dxk 1 d s xk þ 2l1 n j ð2l1 nÞ ¼ 0; for s ¼ 2; ; r 1; xk ¼ai dxsk 1 r l1 d xk þ 2l1 n j ð2l1 nÞ 6¼ 0 for 1\r ð2m þ 1Þ2 n r x ¼a dxk i1 k
ð5:295Þ with • a r th -order oscillatory sink for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
[ 0 and r ¼ 2l1 þ 1;
1
• a r th -order oscillatory source for d r xk þ 2l n =dxrk j
ð2l nÞ
xk ¼ai
2l1 þ 1; • a r th -order oscillatory upper-saddle for d r xk þ 2l n =dxrk j r ¼ 2l1 ;
\0 and r ¼
1
ð2l nÞ
xk ¼ai
1
[ 0 and
5 (2m + 1)th-Degree Polynomial Discrete Systems
426
• a r th -order oscillatory lower-saddle for d r xk þ 2l n =dxrk j r ¼ 2l1 .
ð2l nÞ
xk ¼ai
\0 and
1
The corresponding period- 2l n discrete system is ð2l nÞ
xk þ 2l n ¼ xk þ a0
*
ð2l1 nÞ i1 2Iq
l
ð2m þ 1Þ2 n ðxk *j2 ¼1
ð2l1 nÞ 3
ðxk ai1
Þ
ð5:296Þ
ð2l nÞ ð1dði1 ;j2 ÞÞ aj2 Þ
where ð2l nÞ
dði1 ; j2 Þ ¼ 1 if aj2
ð2l1 nÞ
¼ ai1
ð2l nÞ
; dði1 ; j2 Þ ¼ 0 if aj2
ð2l1 nÞ
6¼ ai1
ð5:297Þ
with dxk þ 2l n d 2 xk þ 2l n j ð2l1 nÞ ¼ 1; j ð2l1 nÞ ¼ 0; x ¼a xk ¼ai dxk dx2k i1 k 1 d 3 xk þ 2l n ð2l nÞ ð2l1 nÞ ð2l1 nÞ 3 j ð2l1 Þ ¼ 6a0 ðai1 ai 2 Þ * ð2l1 nÞ 3 xk ¼ai i2 2Iq ;i2 6¼i1 dxk 1 ð2l nÞ
ð2m þ 1Þ
*j2 ¼1 ði1 2 Iqð2
l1
nÞ
l1
ð2
ðai1
nÞ
l
ð2 nÞ ð1dði2 ;j2 ÞÞ
aj2
Þ
ð5:298Þ
6¼ 0
; q 2 f1; 2; . . .; N1 gÞ ð2l1 nÞ
Thus, xk þ 2l n at xk ¼ ai1
is
• a monotonic sink of the third-order if d 3 xk þ 2l n =dx3k j
ð2l1 Þ
xk ¼ai
• a monotonic source of the third-order if d 3 xk þ 2l n =dx3k j
\0;
1 ð2l1 Þ
xk ¼ai
[ 0.
1
(v1) The period- 2l n fixed-points are trivial if ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
ð1Þ
ð2m þ 1Þ2
þ1 2 f02m ii ¼1 fai1 g; 0i2 ¼1
l1 n
l
for j ¼ 1; 2; ; ð2m þ 1Þð2 nÞ for n 6¼ 2n1 ð2l nÞ
xk þ 2l n ¼ xk ¼ aj
ð2m þ 1Þ2
2 f0i2 ¼1 l
for j ¼ 1; 2; ; ð2m þ 1Þ2 n
l1 n
ð2l1 nÞ
fai2
g
ð2l1 nÞ
fai2
gg
9 = ;
9 = ;
for n ¼ 2n1 : ð5:299Þ
5.4 Forward Bifurcation Trees
427
(v2) The period- 2l n fixed-points are non-trivial if xk þ 2l n
¼
xk
¼
ð2l nÞ aj
62
ð1Þ ð2mþ 1Þ2 þ1 f02m ii ¼1 fai1 g; 0i2 ¼1
l1 n
9
= ð2l1 nÞ fai2 gg ;
l
for j ¼ 1; 2; ; ð2m þ 1Þ2 n for n 6¼ 2n1 xk þ 2l n
¼
xk
¼
ð2l nÞ aj
62
ð2mþ 1Þ2 f0i2 ¼1
l1 n
9
ð2l1 nÞ = fai2 g
;
l
for j ¼ 1; 2; ; ð2m þ 1Þ2 n for n ¼ 2n1 :
ð5:300Þ Such a period- 2l n fixed-point is • monotonically unstable if dxk þ 2l n =dxk j
2 ð1; 1Þ;
ð2l nÞ
xk ¼ai
• monotonically invariant if dxk þ 2l n =dxk j
1 ð2l nÞ
xk ¼ai
¼ 1, which is
1
1 – a monotonic upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk [ 0 (independent ð2l1 Þ-branch appearance); 1 – a monotonic lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jxk \0 (independent ð2l1 Þ-branch appearance) – a monotonic source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jx [ 0 k (dependent ð2l1 þ 1Þ-branch appearance from one branch); – a monotonic sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jx \0 k (dependent ð2l1 þ 1Þ-branch appearance from one branch);
• monotonically stable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
• invariantly zero-stable if dxk þ 2l n =dxk j • oscillatorilly stable if dxk þ 2l n =dxk j • flipped if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
2 ð0; 1Þ;
1
¼ 0;
ð2l nÞ
xk ¼ai ð2l nÞ
xk ¼ai
1
2 ð1; 0Þ;
1
¼ 1, which is
1
1 – an oscillatory upper-saddle of the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jx [ 0; k
1 – an oscillatory lower-saddle the ð2l1 Þth order for d 2l1 xk þ 2l n =dx2l k jx \0; k
– an oscillatory source of the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dxk2l1 þ 1 jx \0; k – an oscillatory sink the ð2l1 þ 1Þth order for d 2l1 þ 1 xk þ 2l n =dx2l1 þ 1 [ 0; k
• oscillatorilly unstable if dxk þ 2l n =dxk j
ð2l nÞ
xk ¼ai
1
2 ð1; 1Þ.
xi
428
5 (2m + 1)th-Degree Polynomial Discrete Systems
Proof Through the nonlinear renormalization, the proof of this theorem is similar to the proof of Theorem 1.11. This theorem can be easily proved. ■
References Luo ACJ (2020a) The stability and bifurcation of the (2m + 1)th-degree polynomial systems. J Vibr Test Syst Dynam 4(2):93–144 Luo ACJ (2020b) Bifurcation and stability in nonlinear dynamical system. Springer, New York
Index
A Antenna switching bifurcation, 284, 307, 369, 401 Appearing bifurcation, 9, 11, 276, 294, 346, 352, 354 B Backward bifurcation tree, 75 Backward cubic nonlinear discrete system, 150 Backward period-1 appearing bifurcation, 28 Backward period-1 switching bifurcation, 39 Backward period-2 quadratic discrete system, 75 Backward period-2 quartic discrete system, 240 Backward period-3 cubic discrete system, 148 Backward period-doubling renormalization, 79, 153, 243 Backward period-n appearing, 82, 157, 247 Backward period-n bifurcation tree, 92 Backward quadratic discrete system, 28 Backward quartic discrete system, 239 Broom appearing bifurcation, 355, 357, 380, 381 Broom-sprinkle-spraying appearing bifurca-tion, 358–360, 386, 388, 391 C Constant adding discrete system, 2, 5 Cubic nonlinear discrete system, 93 D (2m)th -degree polynomial discrete system, 258
F Flower-bundle switching bifurcation, 290–292, 316, 376, 377, 409 Forward bifurcation tree, 44, 318 Forward cubic discrete system, 121 Forward quadratic discrere system, 7 Forward quartic discrete system, 223 I Instant fixed-point, 2 Invariant sink, 2 L Linear backward discrete system, 5 Linear discrete system, 1 lpth mXX appearing bifurcation, 261, 268, 274, 339 lpth mXX switching bifurcation, 260, 261, 263, 266, 268, 270, 273–275, 338, 339, 341, 345, 348, 351–354 M Monotonically stable node, 2, 6 Monotonically unstable node, 3, 6 Monotonic backward saddle discrete flow, 29 Monotonic lower-saddle, 9, 18, 25, 30, 40, 100, 101, 103 Monotonic lower-saddle discrete flow, 119, 169, 170, 192, 212, 217, 219, 222 Monotonic lower-saddle-node appearing bifurcation, 9, 20, 103–105, 169, 171, 173, 194, 196, 206
© Higher Education Press 2020 A. C. J Luo, Bifurcation Dynamics in Polynomial Discrete Systems, Nonlinear Physical Science, https://doi.org/10.1007/978-981-15-5208-3
429
430 Monotonic lower-saddle-node bundle-switching bifurcation, 205, 214, 219, 221 Monotonic lower-saddle-node flower-bundle-switching bifurcation, 208 Monotonic lower-saddle-node switching bifurcation, 7, 18, 26, 27, 43, 100, 101, 170, 173, 195, 212, 217 Monotonic saddle, 22, 40 Monotonic saddle discrete flow, 9, 95–97 Monotonic saddle-node appearing bifurcation, 9, 18 Monotonic saddle-node switching bifurcation, 22, 25, 43 Monotonic saddle switching, 3, 6 Monotonic sink, 2, 6, 10 Monotonic sink bundle-switching bifurcation of the third-order, 213 Monotonic sink discrete flow, 96, 97, 171, 213, 218 Monotonic sink switching bifurcation of the third-order, 171, 193, 194, 207, 218 Monotonic source, 3, 6, 10 Monotonic source bundle-switching bifurcation of the third-order, 213 Monotonic source discrete flow, 96, 97, 171, 213, 218 Monotonic source switching bifurcation of the third-order, 171, 193, 207, 215 Monotonic upper-saddle, 9, 18, 24, 29, 100–102, 106 Monotonic upper-saddle discrete flow, 119, 169, 170, 173, 192, 212, 217, 219 Monotonic upper-saddle-node appearing bifurcation, 9, 20, 30, 38, 102, 106, 107, 169, 171, 173, 194, 196, 206 Monotonic upper-saddle-node bundle-switching bifurcation, 205, 214, 215 Monotonic upper-saddle-node flower-bundle-switching bifurcation, 194, 208 Monotonic upper-saddle-node switching bifurcation, 18, 26, 27, 101, 170, 173, 194 N Negative backward discrete flow, 28 Negative discrete flow, 8, 9, 18, 168, 195, 258
Index O Oscillatorilly stable node, 2, 6 Oscillatorilly unstable node, 3, 6 Oscillatory lower-saddle, 10, 19, 22 Oscillatory saddle switching, 3, 6 Oscillatory sink, 2, 6 Oscillatory source, 3, 6 Oscillatory upper-saddle, 10, 19 P Period-1 appearing bifurcation, 7, 167 Period-1 cubic discrete system, 93 Period-1 quartic discrete system, 224 Period-1 switching bifurcation, 21 Period-2 appearing bifurcation, 44 Period-doubled cubic discrete system, 121 Period-doubling renormalization, 53, 128, 227 Period-doublization, 62, 82, 138, 157, 231, 326 Period-n appearing, 62, 138, 231, 326, 419 Period-n appearing bifurcation, 147 Period-n bifurcation tree, 71 Permanent invariant discrete system, 2, 5 Positive backward discrete flow, 28 Positive discrete flow, 8, 9, 18, 168, 195, 258 Q Quadratic nonlinear discrete system, 1 Quartic nonlinear discrete system, 167 S Sink, 2, 6 Source, 2 Spraying appearing bifurcation, 278, 279, 281, 296, 299, 301 Sprinkler-spraying appearing bifurcation, 278, 279, 281, 299, 301 Stable node, 2, 6 Straw-bundle switching bifurcation, 286, 310, 315, 371, 404, 408 Switching-appearing bifurcation, 289, 311, 374, 407 Switching bifurcation, 21, 24, 39, 95, 114, 282, 305, 369, 398 T Teethcomb appearing bifurcation, 277, 296 U Unstable node, 2