347 77 8MB
English Pages 418 Year 2019
Nonlinear Systems and Complexity Series Editor: Albert C. J. Luo
Albert C. J. Luo
Bifurcation and Stability in Nonlinear Dynamical Systems
Nonlinear Systems and Complexity Volume 28
Series editor Albert C. J. Luo Southern Illinois University Edwardsville, IL, USA
Nonlinear Systems and Complexity provides a place to systematically summarize recent developments, applications, and overall advance in all aspects of nonlinearity, chaos, and complexity as part of the established research literature, beyond the novel and recent findings published in primary journals. The aims of the book series are to publish theories and techniques in nonlinear systems and complexity; stimulate more research interest on nonlinearity, synchronization, and complexity in nonlinear science; and fast-scatter the new knowledge to scientists, engineers, and students in the corresponding fields. Books in this series will focus on the recent developments, findings and progress on theories, principles, methodology, computational techniques in nonlinear systems and mathematics with engineering applications. The Series establishes highly relevant monographs on wide ranging topics covering fundamental advances and new applications in the field. Topical areas include, but are not limited to: Nonlinear dynamics; Complexity, nonlinearity, and chaos; Computational methods for nonlinear systems; Stability, bifurcation, chaos and fractals in engineering; Nonlinear chemical and biological phenomena; Fractional dynamics and applications; Discontinuity, synchronization and control.
More information about this series at http://www.springer.com/series/11433
Albert C. J. Luo
Bifurcation and Stability in Nonlinear Dynamical Systems
Albert C. J. Luo Southern Illinois University Edwardsville, IL, USA
ISSN 2195-9994 ISSN 2196-0003 (electronic) Nonlinear Systems and Complexity ISBN 978-3-030-22909-2 ISBN 978-3-030-22910-8 (eBook) https://doi.org/10.1007/978-3-030-22910-8 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher order singularity, which dramatically changes dynamical behaviors and possesses similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m + 1)th-degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. This book consists of eight chapters. The first chapter discusses the local theory of stability of equilibriums in nonlinear dynamical systems. The spiral stability of equilibriums on the eigenvector space is discussed. In addition, based on the Fourier series transformation, the spiral stability of equilibrium is presented. The extended Lyapunov stability theory is also presented. In Chap. 2, the local theory of bifurcations of equilibriums in nonlinear systems is presented on the specific eigenvector, and the Hopf bifurcation of equilibrium is discussed. In Chap. 3, the local analysis of stability and bifurcation for 1-dimensional and 2-dimensional dynamical systems is presented. In Chap. 4, equilibrium higher-order singularity in 1-dimensional systems is discussed globally. In Chap. 5, the global bifurcation theory for low-degree polynomial systems is presented. For a global view of bifurcation and stability of equilibriums in nonlinear dynamical systems, the bifurcation and stability of higher order singularity equilibriums are presented through the (2m)th and (2m + 1)th-degree polynomial systems in Chaps. 6 and 7, respectively. In Chap. 8, infinite-equilibrium systems are discussed through the local analysis of higher-order, singular dynamical
vii
viii
Preface
systems. The equilibrium computations and normal forms of equilibriums for nonlinear dynamical systems are presented. Finally, I would like to thank my wife for her support for this research work. The author hopes that the materials presented herein can last long for science and engineering. Such contributions will benefit human beings on their progress and development. Edwardsville, IL, USA
Albert C. J. Luo
Contents
1
Stability of Equilibriums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Continuous Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Equilibriums and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Stability and Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Hyperbolic Stability on Eigenvectors . . . . . . . . . . . . . . . 1.3.2 Spiral Stability on an Invariant Eigenplane . . . . . . . . . . 1.3.3 Spiral Stability Based on the Fourier Series Base . . . . . . 1.4 Spiral Stability in Second-Order Nonlinear Systems . . . . . . . . . 1.5 Lyapunov Functions and Stability . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
1 1 4 18 18 30 40 44 48 57
2
Bifurcations of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Hyperbolic Bifurcations on Eigenvectors . . . . . . . . . . . . . . . . . 2.3 Hopf Bifurcation on an Eigenvector Plane . . . . . . . . . . . . . . . . 2.4 Hopf Bifurcation Based on the Fourier Series Base . . . . . . . . . . 2.5 Hopf Bifurcations in Second-Order Nonlinear Systems . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
59 59 60 69 75 80 85
3
Low-Dimensional Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . 3.1 1-Dimensional Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Stability and Singularity . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Sampled Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 2-Dimensional Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Stability and Singularity . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Hopf Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
87 87 87 97 104 109 110 117 122
ix
x
Contents
4
Equilibrium Stability in 1-Dimensional Systems . . . . . . . . . . . . . . . 4.1 System Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Equilibrium Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 One-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Two-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Three-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
123 123 127 130 131 139 148
5
Low-Degree Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Quadratic Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Cubic Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Quartic Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .
149 149 151 164 186 229
6
(2m)th-Degree Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Global Stability and Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 6.2 Simple Equilibrium Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Appearing Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Switching and Appearing Bifurcations . . . . . . . . . . . . . . 6.3 Higher Order Equilibrium Bifurcations . . . . . . . . . . . . . . . . . . . 6.3.1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Appearing and Switching Bifurcations . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
231 231 248 248 255 260 265 265 276 281 288
7
(2m+1)th-Degree Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . 7.1 Global Stability and Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 7.2 Simple Equilibrium Bifurcations . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Appearing Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Switching and Appearing Bifurcations . . . . . . . . . . . . . . 7.3 Higher Order Equilibrium Bifurcations . . . . . . . . . . . . . . . . . . . 7.3.1 Higher Order Equilibrium Bifurcations . . . . . . . . . . . . . 7.3.2 Switching Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Switching and Appearing Bifurcations . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
289 289 306 306 319 324 331 331 351 356 363
8
Infinite-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Equilibrium Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Infinite-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 One-Infinite-Equilibrium Systems . . . . . . . . . . . . . . . . . 8.3.2 Two-Infinite-Equilibrium Systems . . . . . . . . . . . . . . . . . 8.3.3 Higher Order Infinite-Equilibrium Systems . . . . . . . . . .
. . . . . . .
365 365 373 385 386 388 393
Contents
8.4
Network-Infinite-Equilibrium Systems . . . . . . . . . . . . . . . . . . . 8.4.1 A Network-Infinite-Equilibrium System . . . . . . . . . . . . 8.4.2 Circular Infinite-Equilibrium Systems . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
. . . .
396 398 400 408
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Chapter 1
Stability of Equilibriums
In this chapter, basic concepts of nonlinear dynamical systems are introduced. A local theory of equilibrium stability for nonlinear dynamical systems is discussed. The spiral stability of equilibriums in nonlinear dynamical systems is presented through the Fourier series base. The higher order singularity and stability for nonlinear systems on the specific eigenvectors are developed. The Lyapunov function stability is briefly discussed, and the extended Lyapunov theory for equilibrium stability is also presented.
1.1
Continuous Dynamical Systems
Definition 1.1 For I R , Ω R n , and Λ R m , consider a vector function f : Ω I Λ ! R n which is Cr (r 1)-continuous, and there is an ordinary differential equation in a form of x_ ¼ fðx, t, pÞ for t 2 I, x 2 Ω and p 2 Λ
ð1:1Þ
where x_ ¼ dx=dt is differentiation with respect to time t, which is simply called the velocity vector of the state variables x. With an initial condition of x(t0) ¼ x0, the solution of Eq. (1.1) is given by xðtÞ ¼ Φðx0 , t t 0 , pÞ:
ð1:2Þ
(i) The ordinary differential equation with the initial condition is called a dynamical system. (ii) The vector function f(x, t, p) is called a vector field on domain Ω. (iii) The solution Φ(x0, t t0, p) is called the flow of dynamical systems.
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_1
1
2
1 Stability of Equilibriums
(iv) The projection of the solution Φ(x0, t t0, p) on domain Ω is called the trajectory, phase curve, or orbit of dynamical system, which is defined as Γ ¼ fxðtÞ 2 ΩjxðtÞ ¼ Φðx0 , t t 0 , pÞ for t 2 Ig Ω:
ð1:3Þ
Definition 1.2 If the vector field of the dynamical system in Eq. (1.1) is independent of time, such a system is called an autonomous dynamical system. Thus, equation (1.1) becomes x_ ¼ fðx, pÞ for t 2 I R , x 2 Ω R n and p 2 Λ R m
ð1:4Þ
Otherwise, such a system is called nonautonomous dynamical systems if the vector field of the dynamical system in Eq. (1.1) is dependent on time and state variables. Definition 1.3 For a vector function f 2 R n with x 2 R n , the operator norm of f is defined by kfk ¼
Xn
max
i¼1 kxk1, t2I
j f i ðx, tÞ j:
ð1:5Þ
For an n n matrix f(x, p) ¼ Ax with A ¼ (aij)nn, the corresponding norm is defined by kAk ¼
Xn j aij j: i, j¼1
ð1:6Þ
Definition 1.4 For a vector function xðtÞ ¼ ðx1 , x2 , . . . , xn ÞT 2 R n , the derivative and integral of x(t) are defined by T dxðtÞ dx1 ðtÞ dx2 ðtÞ dx ðtÞ ¼ , ,..., n , dt dt dt dt ð ð ð ð xðtÞdt ¼ ð x1 ðtÞdt, x2 ðtÞdt, . . . , xn ðtÞdtÞT :
ð1:7Þ
For an nn matrix A ¼ (aij)nn, the corresponding derivative and integral are defined by dAðtÞ ¼ dt
daij ðtÞ dt
nn
ð ð and AðtÞdt ¼ ð aij ðtÞdtÞ
nn
:
ð1:8Þ
Definition 1.5 For I R , Ω R n , and Λ R m , the vector function f(x, t, p) with f : Ω I Λ ! R n is differentiable at x0 2 Ω if
1.1 Continuous Dynamical Systems
3
∂fðx, t, pÞ fðx0 þ Δx, t, pÞ fðx0 , t, pÞ jðx0 , t, pÞ ¼ lim : Δx Δx!0 ∂x
ð1:9Þ
∂f/∂x is called the spatial derivative of f(x, t, p) at x0, and the derivative is given by the Jacobian matrix: ∂fðx, t, pÞ ¼ ð∂f i =∂xj Þnn : ∂x
ð1:10Þ
Definition 1.6 For I R , Ω R n , and Λ R m , consider a vector function f(x, t, p) with f : Ω I Λ ! R n , t 2 I, and x 2 Ω and p 2 Λ. The vector function f(x, t, p) satisfies the Lipschitz condition with respect to x for I Ω Λ, kfðx2 , t, pÞ fðx1 , t, pÞk Lkx2 x1 k
ð1:11Þ
with x1, x2 2 Ω and L being a constant. The constant L is called the Lipschitz constant. Theorem 1.1 Consider a dynamical system as x_ ¼ fðx; t; pÞ with xðt 0 Þ ¼ x0
ð1:12Þ
with t0, t 2 I ¼ [t1, t2], x 2 Ω ¼ {xjkx x0k d}, and p 2 Λ. If the vector function f(x, t, p) is Cr-continuous (r 1) in G ¼ Ω I Λ, then the dynamical system in Eq. (1.12) has one and only one solution Φ(x0, t t0, p) for j t t 0 j min ðt 2 t 1 , d=MÞ with M ¼ max kfk: G
ð1:13Þ
Proof The proof of this theorem can be referred to the book by Coddington and Levinson (1955). ∎ Theorem 1.2 (Gronwall) Suppose there is a continuous real valued function g (t) 0 to satisfy gðtÞ δ1
ðt
gðτÞdτ þ δ2
ð1:14Þ
t0
for all t 2 [t0, t1] and δ1 and δ2 are positive constants. For t 2 [t0, t1], one obtains gðtÞ δ2 eδ1 ðtt0 Þ : Proof The proof can be referred in Luo (2011).
ð1:15Þ ∎
4
1 Stability of Equilibriums
Theorem 1.3 Consider a dynamical system as x_ ¼ fðx, t, pÞ with x(t0) ¼ x0 in Eq. (1.12) with t0, t 2 I ¼ [t1, t2], x 2 Ω ¼ {xjkx x0k d}, and p 2 Λ. The vector function f(x, t, p) is Cr-continuous (r 1) in G ¼ Ω I Λ. The solution of x_ ¼ fðx, t, pÞ with x(t0) ¼ x0 is x(t) on G and the solution of y_ ¼ fðy, t, pÞ with y(t0) ¼ y0 is y(t) on G. For a given ε > 0, if kx0 y0k ε, then kxðtÞ yðtÞk εeLðtt0 Þ on I Λ
ð1:16Þ ∎
Proof The proof can be referred in Luo (2011).
1.2
Equilibriums and Stability
Definition 1.7 Consider a metric space Ω and Ωα Ω (α ¼ 1, 2, . . .). (i) A map h is called a homeomorphism of Ωα onto Ωβ (α, β ¼ 1, 2, ) if the map h : Ωα ! Ωβ is continuous and one to one, and h1 : Ωβ ! Ωα is continuous. (ii) Two sets Ωα and Ωβ are homeomorphic or topologically equivalent if there is a homeomorphism of Ωα onto Ωβ. Definition 1.8 A connected, metric space Ω with an open cover {Ωα} (i.e., Ω ¼ [αΩα) is called an n-dimensional, Cr (r 1) differentiable manifold if the following properties exist. (i) There is an open unit ball B ¼ fx 2 R n jkxk < 1g. (ii) For all α, there is a homeomorphism hα : Ωα ! B. (iii) If hα : Ωα ! B and hβ : Ωβ ! B are homeomorphisms for Ωα \ Ωβ 6¼ ∅, then there is a Cr-differentiable map h ¼ hα ∘h1 for hα ðΩα \ Ωβ Þ R n and β n hβ ðΩα \ Ωβ Þ R with h : hβ ðΩα \ Ωβ Þ ! hα ðΩα \ Ωβ Þ,
ð1:17Þ
and for all x 2 hβ(Ωα \ Ωβ), the Jacobian determinant det Dh(x) 6¼ 0. The manifold Ω is called to be analytic if the maps h ¼ hα ∘h1 β are analytic. Definition 1.9 Consider an autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4). A point x 2 Ω is called an equilibrium point or critical point of a nonlinear system x_ ¼ fðx, pÞ if fðx ; pÞ ¼ 0:
ð1:18Þ
The linearized system of the nonlinear system x_ ¼ fðx, pÞ in Eq. (1.4) at the equilibrium point x is given by
1.2 Equilibriums and Stability
5
y_ ¼ Dfðx , pÞy where y ¼ x x :
ð1:19Þ
Definition 1.10 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). The matrix Df(x , p) possesses n eigenvalues λk (k ¼ 1, 2, . . ., n). Set N ¼ {1, 2, . . . ,n} and N i ¼ fi1 , i2 , . . . , ini g [ ∅ with ij 2 N ( j ¼ 1, 2, . . ., ni; i ¼ 1, 2, 3) and Σ3i¼1 ni ¼ n. [3i¼1 N i ¼ N and Ni \ Nl ¼ ∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The corresponding vectors for the negative, positive, and zero eigenvalues of Df(x , p) are {vk} (k 2 Ni, i ¼ 1, 2, 3), respectively. The stable, unstable, and invariant subspaces of the linearized nonlinear system in Eq. (1.19) are defined as E s ¼ spanfvk jðDfðx , pÞ λk IÞvk ¼ 0, λk < 0, k 2 N 1 N [ ∅g; E
u
¼ spanfvk jðDfðx , pÞ λk IÞvk ¼ 0, λk > 0, k 2 N 2 N [ ∅g;
ð1:20Þ
E i ¼ spanfvk jðDfðx , pÞ λk IÞvk ¼ 0, λk ¼ 0, k 2 N 3 N [ ∅g: Definition 1.11 Consider a 2n-dimensional, autonomous dynamical system x_ ¼ f(x, p) in Eq. (1.4) with an equilibrium point x . The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). The matrix Df(x , p) has complex eigenvalues αk iβk with eigenvectors pffiffiffiffiffiffiffi uk ivk (k 2 {1, 2, . . . ,n}) and i ¼ 1, and the base of vector is B ¼ fu1 , v1 , . . . , uk , vk , . . . , un , vn g:
ð1:21Þ
The stable, unstable, and center subspaces of Eq. (1.19) are linear subspaces spanned by {uk, vk} (k 2 Ni, i ¼ 1, 2, 3), respectively. N i ¼ fi1 , i2 , . . . , ini g [ ∅ N [ ∅ and N ¼ {1, 2, . . . ,n} with ij 2 N ( j ¼ 1, 2, . . ., ni) and Σ3i¼1 ni ¼ n. [3i¼1 N i ¼ N and Ni \ Nl ¼ ∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The stable, unstable, and center subspaces of the linearized nonlinear system in Eq. (1.19) are defined as
E ¼ span s
E
u
f j f j
¼ span
αk < 0, βk 6¼ 0,
g g
ðuk , vk Þ ðDfðx , pÞ ðαk iβk ÞIÞðuk ivk Þ ¼ 0, ; k 2 N 1 f1, 2, . . . , ng [ ∅ αk > 0, βk 6¼ 0,
ðuk , vk Þ ðDfðx , pÞ ðαk iβk ÞIÞðuk ivk Þ ¼ 0, ; k 2 N 2 f1, 2, . . . , ng [ ∅
6
1 Stability of Equilibriums
E ¼ span c
f j
g
αk ¼ 0, βk 6¼ 0,
ðuk , vk Þ ðDfðx , pÞ ðαk iβk ÞIÞðuk ivk Þ ¼ 0, : k 2 N 3 f1, 2, . . . , ng [ ∅
ð1:22Þ
Theorem 1.4 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). The eigenspace of Df(x , p) (i.e., E R n ) in the linearized dynamical system is expressed by direct sum of three subspaces: E ¼E sE uE
ð1:23Þ
c
where E s , E u , and E c are the stable, unstable, and center spaces, respectively. ∎
Proof This proof can be referred in Luo (2011).
Definition 1.12 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p) ¼ Φt(x0). The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood kfðx þ y, pÞ Dfðx , pÞyk ¼ 0: kyk kyk!0 lim
ð1:24Þ
(i) A Cr invariant manifold S loc ðx; x Þ ¼ fx 2 Uðx Þj lim xðtÞ ¼ x ; xðtÞ 2 Uðx Þ for all t 0g t!1
ð1:25Þ
is called the local stable manifold of x , and the corresponding global, stable manifold is defined as S ðx, x Þ ¼ [t0 Φt ðS
loc ðx, x
ÞÞ:
ð1:26Þ
(ii) A Cr invariant manifold U
loc ðx, x
Þ ¼ fx 2 Uðx Þj lim xðtÞ ¼ x , xðtÞ 2 Uðx Þ for all t 0g t!1
ð1:27Þ
is called the unstable manifold of x , and the corresponding global, unstable manifold is defined as
1.2 Equilibriums and Stability
7
U ðx, x Þ ¼ [t0 Φt ðU
loc ðx, x
ÞÞ:
ð1:28Þ
(iii) A Cr 1 invariant manifold C loc ðx, x Þ is called the center manifold of x if C loc ðx, x Þ possesses the same dimension of E c for x 2 S ðx, x Þ, and the tangential space of C loc ðx, x Þ is identical to E c . The stable and unstable manifolds are unique, but the center manifold is not unique. If the nonlinear vector field f is C1-continuous, then a Cr center manifold can be found for any r < 1. Theorem 1.5 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with a hyperbolic equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p) ¼ Φt(x0). The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). Suppose there is a neighborhood of the hyperbolic equilibrium x as U(x ) Ω. If the homeomorphism between the local invariant subspace E(x, x ) U(x ) under the flow Φ(x0, t t0, p) of x_ ¼ fðx, pÞ in Eq. (1.4) and the eigenspace E of the linearized system exists with the condition in Eq. (1.24), the local invariant subspace is decomposed by Eðx, x Þ ¼ S
loc ðx, x
ÞU
(i) The local stable invariant manifold S properties:
loc ðx, x
loc ðx, x
Þ:
ð1:29Þ
Þ possesses the following
(a) For x 2 S loc ðx, x Þ, S loc ðx, x Þ possesses the same dimension of E s and the tangential space of S loc ðx, x Þ is identical to E s . (b) For x0 2 S loc ðx, x Þ, xðtÞ 2 S loc ðx, x Þ for all time t t0 and lim xðtÞ ¼ x . t!1
=S (c) For x0 2
loc ðx, x
Þ, kx x k δ for δ > 0 with t t1 t0.
(ii) The local unstable invariant manifold U properties:
loc ðx, x
Þ possesses the following
(a) For x 2 U loc ðx, x Þ, U loc ðx, x Þ possesses the same dimension of E u and the tangential space of U loc ðx, x Þ is identical to E u . (b) For x0 2 U loc ðx, x Þ, xðtÞ 2 U loc ðx, x Þ for all time t t0 and lim xðtÞ ¼ x . t!1
=U (c) For x0 2
loc ðx, x
Þ, kx x k δ for δ > 0 with t t1 t0 .
Proof The proof for stable and unstable manifold can be referred in Hartman (1964). The proof for center manifold can be referenced in Marsden and McCracken (1976) or Carr (1981). ∎ Theorem 1.6 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a
8
1 Stability of Equilibriums
neighborhood of the equilibrium x as U(x ) Ω; then f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p). The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). If the homeomorphism between the local invariant subspace E(x, x ) U(x ) under the flow Φ(x0, t t0, p) of x_ ¼ fðx, pÞ in Eq. (1.4) and the eigenspace E of the linearized system exists with the condition in Eq. (1.24), in addition to the local stable and unstable invariant manifolds, there is a Cr1 center manifold C loc ðx, x Þ. The center manifold possesses the same dimension of E c for x 2 C loc ðx, x Þ, and the tangential space of C loc ðx, x Þ is identical to E c . Thus, the local invariant subspace is decomposed by Eðx, x Þ ¼ S
loc ðx, x
ÞU
loc ðx, x
ÞC
loc ðx, x
Þ:
ð1:30Þ
Proof The proof for stable and unstable manifolds can be referred in Hartman (1964). The proof for center manifolds can be referenced in Marsden and McCracken (1976) or Carr (1981). ∎ Definition 1.13 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . (i) The equilibrium x is stable if for all ε > 0 there is a δ > 0 such that for all x0 2 Uδ(x ) at t = t0 where Uδ(x ) = {xjkx x k < δ} and t t0, xðtÞ ¼ Φðx0 , t t 0 , pÞ 2 U ε ðx Þ ¼ fxðtÞj kxðtÞ x k: < ε, t 2 ðt 0 , 1Þg: ð1:31Þ (ii) The equilibrium x is unstable if it is not stable or if for all ε > 0 there is a δ > 0 such that for all x0 2 Uδ(x ) at t = t0 where Uδ(x ) = {xjkx x k < δ} and t t0 > t1, xðtÞ ¼ Φðx0 , t t 0 , pÞ 2 = U ε ðx Þ ¼ fxðtÞj kxðtÞ x k: < ε, t 2 ðt 0 , 1Þg: ð1:32Þ (iii) The equilibrium x is asymptotically stable if for all ε > 0 there is a δ > 0 such that for all x0 2 Uδ(x ) at t = t0 where Uδ(x ) = {xjkx x k < δ} and t t0, lim t!1 Φðx0 , t t 0 , pÞ ¼ x :
ð1:33Þ
(iv) The equilibrium x is asymptotically unstable if for all ε > 0 there is a δ > 0 such that for all x0 2 Uδ(x ) at t = t0 where Uδ(x ) = {xjkx x k < δ} and t t0, lim t!1 Φðx0 , t t 0 , pÞ ¼ x :
ð1:34Þ
Definition 1.14 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is
1.2 Equilibriums and Stability
9
Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose U(x ) Ω is a neighborhood of equilibrium x , and there are n linearly independent vectors vk (k ¼ 1, 2, . . ., n). The independent eigenvector vk is called the covariant eigenvector. The corresponding contravariant vector of the independent eigenvector vk is defined by vk. For a perturbation of equilibrium y ¼ x x , let y ¼ ck(t)vk ¼ ck(t)vk (tensor notation convention). P ¼ ðv1 , v2 , . . . , vn Þ
ð1:35Þ
is called the eigenvector covariant matrix. Q ¼ ðv1 , v2 , . . . , vn Þ
ð1:36Þ
is called the eigenvector contravariant matrix. The eigenvector contravariant vector is defined as vk ¼ ðak1 , ak2 , . . . , akn ÞT with QT ¼ P1 ¼ ðaij Þ:
ð1:37Þ
The component ck(t) is called the contravariant component. The corresponding vector c ¼ ðc1 , c2 , . . . , cn ÞT
ð1:38Þ
is called a contravariant component vector. The component ck is called the covariant component. The corresponding vector is c ¼ ðc1 , c2 , . . . , cn ÞT
ð1:39Þ
which is called a covariant component vector. Remark For the Cartesian coordinate, the covariant and contravariant vectors and components are identical. Since the eigenvectors of the linearized systems of nonlinear systems are not orthogonal, the eigenvector space cannot be used for the Cartesian coordinate. However, the eigenvectors can be used to express the solutions of a dynamical system as y ¼ ck(t)vk ¼ ck(t)vk. The two classes of vk and vk are the covariant and contravariant eigenvectors. Definition 1.15 The metric tensors of the covariant and contravariant eigenvectors are defined as for i, j ¼ 1, 2, . . . , n:
10
1 Stability of Equilibriums
gij ¼ ðvi ÞT vj , gij ¼ ðvi ÞT vj , gij ¼ ðvi ÞT v j ¼ δij ;
ð1:40Þ
and the unit vectors of the covariant and contravariant eigenvectors are defined as pffiffiffiffiffi pffiffiffiffiffi ei ¼ vi = gii , ei ¼ vi = gii :
ð1:41Þ
Two transformations based on the covariant and contravariant eigenvectors are defined as y ¼ c i vi ¼ c j v j ,
ð1:42Þ
pffiffiffiffiffi pffiffiffiffiffi y ¼ ci gii ei ¼ cj gjj e j
ð1:43Þ
and
with T
T
T
ðv j Þ y ¼ ðv j Þ ci vi ¼ ci ðv j Þ vi ¼ ci δi j ¼ c j ; ðv j ÞT y ¼ ðv j ÞT ci vi ¼ ci ðv j ÞT vi ¼ ci δ ij ¼ c j :
ð1:44Þ
For the orthogonal eigenvectors, vi ¼ vi , gii ¼ gii ¼ 1, gij ¼ gij ¼ 0:
ð1:45Þ
Consider a solution in a 2-dimensional system for i, j ¼ 1, 2 as yðtÞ ¼ ci vi ¼ c1 v1 þ c2 v2 , yðtÞ ¼ cj v j ¼ c1 v1 þ c2 v2 :
ð1:46Þ
Based on unit covariant and contravariant eigenvectors, pffiffiffiffiffiffi pffiffiffiffiffiffi yðtÞ ¼ c1 g11 e1 þ c2 g22 e2 , pffiffiffiffiffiffi pffiffiffiffiffiffi yðtÞ ¼ c1 g11 e1 þ c2 g22 e2 :
ð1:47Þ
1.2 Equilibriums and Stability
11
The projected quantities on the covariant and contravariant eigenvectors are cj cj ci ðei ÞT y ¼ ðei ÞT cj vj ¼ pffiffiffiffiffi ðvi ÞT vj ¼ pffiffiffiffiffi δij ¼ pffiffiffiffiffi , gii gii gii cj cj ci ffi: ðei ÞT y ¼ ðei ÞT cj vj ¼ pffiffiffiffiffi ðvi ÞT vj ¼ pffiffiffiffiffi δji ¼ pffiffiffiffi gii gii gii Thus,
pffiffiffiffiffi T gii ðei Þ y; pffiffiffiffiffi cj ¼ ðvj ÞT y ¼ gjj ðej ÞT y:
ci ¼ ðvi ÞT y ¼
ð1:48Þ
ð1:49Þ
The covariant and contravariant eigenvectors as the coordinates to express a solution vector of dynamical system are presented in Fig. 1.1. The corresponding geometric interpretation of the relations of components is described. A vector y is depicted by the covariant and contravariant eigenvectors. The unit vectors and corresponding quantities based on the two eigenvectors are presented. Definition 1.16 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω; then f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds in U(x ) Ω. The corresponding solution is x(t) ¼ Φ(x0, t t0, p). For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x , p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. For y ¼ ckvk (summation of k ¼ 1, 2, , n ) and ck ¼ (vk)T y, c_k ¼ ðvk ÞT y_ with y_ ¼ Dfðx , pÞy ¼ Dfðx , pÞvj cj ¼ λj cj vj ; thus c_k ¼ λj cj δkj ¼ λk ck . (i) x at the equilibrium x on the direction vk is stable if lim ck ¼ lim ck0 eλk t ¼ 0 for λk < 0:
t!1
t!1
ð1:50Þ
(ii) x at the equilibrium x on the direction vk is unstable if lim j ck j¼ lim j ck0 eλk t j¼ 1for λk > 0:
t!1
t!1
ð1:51Þ
(iii) x at the equilibrium x on the direction vk is uncertain (critical) if lim ck ¼ lim eλk t ck0 ¼ ck0 for λk ¼ 0:
t!1
t!1
ð1:52Þ
Definition 1.17 Consider a 2n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω; then f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds in U(x ) Ω. The corresponding solution in
12
1 Stability of Equilibriums
Fig. 1.1 A solution vector based on the covariant and contravariant eigenvectors in a 2-dimensional dynamical system. The thick black and blue colors are used for covariant and contravariant eigenvectors, respectively
x(t) ¼ Φ(x0, t t0, p). For a linearized dynamical system in Eq. (1.19), consider a pffiffiffiffiffiffiffi pair of complex eigenvalue αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n}, i ¼ 1) of matrix Df(x , p) with a pair of eigenvectors v2k 1 iv2k. On the invariant plane of (v2k 1, v2k), for y_ ¼ Dfðx , pÞy ¼ Dfðx , pÞvj cj with j ¼ 2k1, 2k, consider
1.2 Equilibriums and Stability
13
c2k1 ¼ ðv2k1 ÞT y, c2k ¼ ðv2k ÞT y
ð1:53Þ
with Dx f v2k1 ¼ αk v2k1 βk v2k ,
ð1:54Þ
Dx f v2k ¼ βk v2k1 þ αk v2k : Thus, T
T
c_ 2k1 ¼ ðv2k1 Þ y_ ¼ ðv2k1 Þ Dfðx ; pÞv j c j ¼ αk c2k1 þ βk c2k , T
T
c_ 2k ¼ ðv2k Þ y_ ¼ ðv2k Þ Dfðx ; pÞv j c j ¼ βk c2k1 þ αk c2k :
ð1:55Þ
For ck ¼ (c2k 1, c2k)T, c_ k ¼ Ek ck ) ck ¼ eαk t Bk ck0
ð1:56Þ
where Ek ¼
αk
βk
βk
αk
and Bk ¼
cos βk t
sin βk t
sin βk t
cos βk t
:
ð1:57Þ
(i) y at the equilibrium x on the plane of (v2k 1, v2k) is spirally stable if lim kck k ¼ lim eαk t kBk k kck0 k ¼ 0 for Re λk ¼ αk < 0:
t!1
t!1
ð1:58Þ
(ii) y at the equilibrium x on the plane of (v2k1, v2k) is spirally unstable if lim kck k ¼ lim eαk t kBk k kck0 k ¼ 1 for Re λk ¼ αk > 0:
t!1
t!1
ð1:59Þ
(iii) y at the equilibrium x on the plane of (v2k1, v2k) is on the invariant circle if lim kck k ¼ lim eαk t kBk k kck0 k ¼ kck0 k for Re λk ¼ αk ¼ 0:
t!1
t!1
ð1:60Þ
(iv) y at the equilibrium x on the plane of (v2k1, v2k) is degenerate in the direction of v2k1 if Imλk ¼ 0. Definition 1.18 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds. The corresponding solution is
14
1 Stability of Equilibriums
x(t) ¼ Φ(x0, t t0, p). The linearized system of the nonlinear system at the equilibrium point x is y_ ¼ Dfðx , pÞy (y ¼ x x ) in Eq. (1.19). (i) The equilibrium x is called a hyperbolic equilibrium if none of the eigenvalues of Df(x , p) is zero real part (i.e., Reλk 6¼ 0 (k ¼ 1, 2, . . . , n)). (ii) The equilibrium x is called a sink if all of the eigenvalues of Df(x , p) have negative real parts (i.e., Re λk < 0 (k ¼ 1, 2, . . . , n)). (iii) The equilibrium x is called a source if all of the eigenvalues of Df(x , p) have positive real parts (i.e., Reλk > 0 (k ¼ 1, 2, . . . , n)). (iv) The equilibrium x is called a saddle if it is a hyperbolic equilibrium and Df(x , p) has at least one eigenvalue with a positive real part (i.e., Reλj > 0 ( j 2 {1, 2, . . . ,n}) and at least one with a negative real part (i.e., Reλk < 0 (k 2 {1, 2, . . . ,n}). (v) The equilibrium x is called a center if all of eigenvalues of Df(x , p) have zero real parts (i.e., Reλj ¼ 0 ( j ¼ 1, 2, . . . , n)) with distinct eigenvalues. (vi) The equilibrium x is called a stable node if all of eigenvalues of Df(x , p) are real λk < 0 (k ¼ 1, 2, . . . , n). (vii) The equilibrium x is called an unstable node if all of eigenvalues of Df(x , p) are real λk > 0 (k ¼ 1, 2, . . . , n). (viii) The equilibrium x is called a degenerate case if one of eigenvalues of Df(x , p) is zero λk ¼ 0 (k 2 {1, 2, . . . , n}). The generalized stability and bifurcation of flows in linearized, nonlinear dynamical systems in Eq. (1.4) will be discussed as follows. Definition 1.19 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds. The corresponding solution is x(t) ¼ Φ(x0, t t0, p). The matrix Df(x , p) in Eq. (1.19) possesses n eigenvalues λk (k ¼ 1, 2, . . . , n). Set N ¼ {1, 2, . . . ,m, m+1, . . . ,(n+m)/2} and N i ¼ fi1 , i2 , . . . , ini g [ ∅ with ij 2 N ( j ¼ 1, 2, . . . , ni; i ¼ 1, 2, . . . , 6), Σ3i¼1 ni ¼ m and 2Σ6i¼4 ni ¼ n m. [6i¼1 N i ¼ N with Ni \ Nl ¼ ∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The matrix Df(x , p) possesses n1-stable, n2-unstable, and n3-invariant real eigenvectors plus n4-stable, n5-unstable, and n6-center pairs of complex eigenvectors. Without repeated complex eigenvalues of Reλk ¼ 0 (k 2 N3 [ N6), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ is an (n1 : n2 : [n3; m3]j n4 : n5 : n6) flow in the neighborhood of x . However, with repeated complex eigenvalues of Reλk ¼ 0 (k 2 N3 [ N6), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ is an (n1 : n2 : [n3; π 3]j n4 : n5 : [n6, r; s]) flow with Nm3 ¼ Am3 ¼ 0 (π 3 2 {∅, m3}), and r ¼ (r1, r2, . . . ,rl), s ¼ (s1, s2, . . . ,sl) for l n/2 and qi 2 {∅, m6i} (i ¼ 1, 2, . . . , l). The meanings of notations in the aforementioned structures are defined as follows: (i) n1 represents exponential sinks on n1-directions of vk if λk < 0 (k 2 N1 and 1 n1 n) with distinct or repeated eigenvalues. (ii) n2 represents exponential sources on n2-directions of vk if λk > 0 (k 2 N2 and 1 n2 n) with distinct or repeated eigenvalues.
1.2 Equilibriums and Stability
15
(iii) n3 ¼ 1 represents an invariant center on 1-direction of vk if λk ¼ 0 (k 2 N3 and n3 ¼ 1). (iv) n4 represents spiral sinks on n4-pairs of (uk, vk) if Reλk < 0 and Imλk 6¼ 0 (k 2 N4 and 1 n4 n) with distinct or repeated eigenvalues. (v) n5 represents spiral sources on n5-pairs of (uk, vk) if Reλk > 0 and Imλk 6¼ 0 (k 2 N5 and 1 n5 n) with distinct or repeated eigenvalues. (vi) n6 represents invariant centers on n6-pairs of (uk, vk) if Reλk ¼ 0 and Imλk 6¼ 0 (k 2 N6 and 1 n6 n) with distinct eigenvalues. (vii) ∅ represents empty or none if ni ¼ 0 (i 2 {1, 2, . . . ,6}). (viii) [n3; m3] represents invariant centers on (n3 m3)-directions of vk3 (k3 2 N3) and sources in m3-directions of vj3 ( j3 2 N3 and j3 6¼ k3) if λk ¼ 0 (k 2 N3 and 3 þ1 n3 n) with the (m3 + 1)th-order nilpotent matrix Nm ¼ 0 (0 < m3 3 n2 1). (ix) [n3; ∅] represents invariant centers on n3-directions of vk if λk ¼ 0 (k 2 N3 and 1 < n3 n) with a nilpotent matrix N3 ¼ 0. (x) [n6, r; s] represents invariant centers on (ri m6i) pairs of ðuk6i , vk6i Þ (k6i 2 N6i), and sources in m6i pairs of ðuj6 , vj6 Þ ( j6 2 N6i and j6 6¼ k6i) if Reλk ¼ 0 and Imλk 6¼ 0 (k 2 N6i and n6 n/2) for (l + 1) pairs of repeated eigenvalues with m6i þ1 the ðm6i þ 1Þth-order nilpotent matrix N6i ¼ 0 (0 < m6i ri) and (i ¼ 1, 2, , l). (xi) [n6, r; ∅] represents invariant centers on n6 pairs of (uk, vk) if Reλk ¼ 0 and Imλk 6¼ 0 (k 2 N6 and 1 n6 n) for ( pi + 1) pairs of repeated eigenvalues with a nilpotent matrix N6i ¼ 0 (i ¼ 1, 2, , l ). Definition 1.20 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds. The corresponding solution is x(t) ¼ Φ(x0, t t0, p). The matrix Df(x , p) in Eq. (1.19) possesses n eigenvalues λk (k ¼ 1, 2, . . . , n). Set N ¼ {1, 2, . . . ,m, m + 1, . . . ,(n + m)/2} and N i ¼ fi1 , i2 , . . . , ini g [ ∅ with ij 2 N ( j ¼ 1, 2, . . . , ni; i ¼ 1, 2, . . . , 6), Σ3i¼1 ni ¼ m and 2Σ6i¼4 ni ¼ n m. [6i¼1 N i ¼ N with Ni \ Nl ¼ ∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The matrix Df(x , p) possesses n1-stable, n2-unstable, and n3-invariant real eigenvectors plus n4-stable, n5-unstable, and n6-center pairs of complex eigenvectors. I. Nondegenerate cases (i) The equilibrium point x is an (n1 : n2 : ∅j n4 : n5 : ∅) hyperbolic point (or saddle) for the nonlinear system. (ii) The equilibrium point x is an (n1 : ∅ : ∅j n4 : ∅ : ∅) sink for the nonlinear system. (iii) The equilibrium point x is an (∅ : n2 : ∅j ∅ : n5 : ∅) source for the nonlinear system. (iv) The equilibrium point x is an (∅ : ∅ : ∅j ∅ : ∅ : n/2) center for the nonlinear system.
16
1 Stability of Equilibriums
(v) The equilibrium point x is an (∅ : ∅ : ∅j ∅ : ∅ : [n/2, r; ∅]) center for the nonlinear system. (vi) The equilibrium point x is an (∅ : ∅ : ∅j ∅ : ∅ : [n/2, r; s]) point for the nonlinear system. (vii) The equilibrium point x is an (n1 : ∅ : ∅j n4 : ∅ : n6) point for the nonlinear system. (viii) The equilibrium point x is an (∅ : n2 : ∅j ∅ : n5 : n6) point for the nonlinear system. (ix) The equilibrium point x is an (n1 : n2 : ∅j n4 : n5 : n6) point for the nonlinear system. II. Simple degenerate cases (i) The equilibrium point x is an (∅ : ∅ : [n; ∅]j ∅ : ∅ : ∅)-invariant (or static) center for the nonlinear system. (ii) The equilibrium point x is an (∅ : ∅ : [n; m3]j ∅ : ∅ : ∅) point for the nonlinear system. (iii) The equilibrium point x is an (∅ : ∅ : [n3; ∅]j ∅ : ∅ : n6) point for the nonlinear system. (iv) The equilibrium point x is an (∅ : ∅ : [n3; m3]j ∅ : ∅ : n6) point for the nonlinear system. (v) The equilibrium point x is an (∅ : ∅ : [n3; ∅]j ∅ : ∅ : [n6, l; ∅]) point for the nonlinear system. (vi) The equilibrium point x is an (∅ : ∅ : [n3; m3]j ∅ : ∅ : [n6, l; ∅]) point for the nonlinear system. (vii) The equilibrium point x is an (∅ : ∅ : [n3; ∅]j ∅ : ∅ : [n6, l; m6]) point for the nonlinear system. (viii) The equilibrium point x is an (∅ : ∅ : [n3; m3]j ∅ : ∅ : [n6, l; m6]) point for the nonlinear system. III. Complex degenerate cases (i) The equilibrium point x is an (n1 : ∅ : [n3; ∅]j n4 : ∅ : ∅) point for the nonlinear system. (ii) The equilibrium point x is an (n1 : ∅ : [n3; m3]j n4 : ∅ : ∅) point for the nonlinear system. (iii) The equilibrium point x is an (∅ : n2 : [n3; ∅]j ∅ : n5 : ∅) point for the nonlinear system. (iv) The equilibrium point x is an (∅ : n2 : [n3; m3]j ∅ : n5 : ∅) point for the nonlinear system. (v) The equilibrium point x is an (n1 : ∅ : [n3; ∅]j n4 : ∅ : n6) point for the nonlinear system. (vi) The equilibrium point x is an (n1 : ∅ : [n3; m3]j n4 : ∅ : n6) point for the nonlinear system. (vii) The equilibrium point x is an (∅ : n2 : [n3; ∅]j ∅ : n5 : n6) point for the nonlinear system. (viii) The equilibrium point x is an (∅ : n2 : [n3; m3]j ∅ : n5 : n6) point for the nonlinear system.
1.2 Equilibriums and Stability
17
Definition 1.21 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds. The corresponding solution is x(t) ¼ Φ(x0, t t0, p). The matrix Df(x , p) in Eq. (1.19) possesses n eigenvalues λk (k ¼ 1, 2, . . . , n). Set N ¼ {1, 2, . . . ,n} and N i ¼ fi1 , i2 , . . . , ini g [ ∅, with ij 2 N ( j ¼ 1, 2, . . . , ni, i ¼ 1, 2, 3) and Σ3i¼1 ni ¼ n. [3i¼1 N i ¼ N and Ni \ Nl ¼ ∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The matrix Df(x , p) possesses n1-stable, n2-unstable, and n3-invariant real eigenvectors. Without repeated eigenvalues of λk ¼ 0 (k 2 N3), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ in Eq. (1.4) is a (n1 : n2 : ∅ j or (n1 : n2 : 1j local flow in the neighborhood of equilibrium point x . However, with repeated eigenvalues of λk ¼ 0 (k 2 N3), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ in Eq. (1.4) is a (n1 : n2 : [n3; m3]j local flow in the neighborhood of equilibrium point x . I. Nondegenerate cases (i) The equilibrium point x is an (n : ∅ : ∅ j-stable node for the nonlinear system. (ii) The equilibrium point x is an (∅ : n : ∅ j-unstable node for the nonlinear system. (iii) The equilibrium point x is an (n1 : n2 : ∅ j saddle for the nonlinear system. II. Degenerate cases (i) The equilibrium point x is an (n1 : n2 : 1j-critical state for the nonlinear system. (ii) The equilibrium point x is an (n1 : n2 : [n3; ∅]j point for the nonlinear system. (iii) The equilibrium point x is an (n1 : n2 : [n3; m3]j point for the nonlinear system. Definition 1.22 Consider a 2n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x . Suppose there is a neighborhood of the equilibrium x as U(x ) Ω, and in the neighborhood f(x, p) is Cr-continuous (r 1) and Eq. (1.24) holds. The corresponding solution is x(t) ¼ Φ(x0, t t0, p). The matrix Df(x , p) in Eq. (1.19) possesses n pairs of complex eigenvalues (k ¼ 1, 2, . . . , n). Set N ¼ {1, 2, . . . ,n} and N i ¼ fi1 , i2 , . . . , ini g [ ∅ with ij 2 N ( j ¼ 1, 2, . . . , ni; i ¼ 4, 5, 6) and Σ6i¼4 ni ¼ n. [6i¼4 N i ¼ N and Ni \ Nl ¼∅ (l 6¼ i). Ni ¼ ∅ if ni ¼ 0. The matrix Df(x , p) possesses n4-stable, n5-unstable, and n6-center pairs of complex eigenvectors. Without repeated eigenvalues of Reλk ¼ 0 (k 2 N6), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ in Eq. (1.4) is a jn4 : n5 : n6) local flow in the neighborhood of equilibrium point x . However, with repeated eigenvalues of Reλk ¼ 0 (k 2 N6), the flow Φ(t) of the nonlinear system x_ ¼ fðx, pÞ in Eq. (1.4) is a jn4 : n5 : [n6, r; s]) local flow in the neighborhood of equilibrium point x .
18
1 Stability of Equilibriums
I. Nondegenerate cases (i) The equilibrium point x is an jn : ∅ : ∅ )-spiral sink for the nonlinear system. (ii) The equilibrium point x is an j ∅ : n : ∅ )-spiral source for the nonlinear system. (iii) The equilibrium point x is an j ∅ : ∅ : n) center for the nonlinear system. (iv) The equilibrium point x is an jn4 : n5 : ∅ )-spiral saddle for the nonlinear system. II. Quasi-degenerate cases (i) The equilibrium point x is an jn4 : ∅ : n6) point for the nonlinear system. (ii) The equilibrium point x is an j ∅ : n5 : n6) point for the nonlinear system. (iii) The equilibrium point x is an jn4 : ∅ : [n6, r; ∅]) point for the nonlinear system. (iv) The equilibrium point x is an jn4 : ∅ : [n6, r; s]) point for the nonlinear system. (v) The equilibrium point x is an j ∅ : n5 : [n6, r; ∅]) point for the nonlinear system. (vi) The equilibrium point x is an j ∅ : n5 : [n6, r; s]) point for the nonlinear system.
1.3
Stability and Singularity
To extend the idea of Definitions 1.16 and 1.17, a new function will be defined to determine the stability and the stability-state switching as in Luo (2019).
1.3.1
Hyperbolic Stability on Eigenvectors
Definition 1.24 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose U(x ) Ω is a neighborhood of equilibrium x , and there are n linearly independent vectors vk (k ¼ 1, 2, . . . , n). For a perturbation of equilibrium (y ¼ x x ), let y ¼ ckvk ¼ ckvk and y_ ¼ c_k vk (summation with k ¼ 1, 2, . . . , n): ck ¼ ðvk ÞT y ¼ ðvk ÞT ðx x Þ:
ð1:61Þ
1.3 Stability and Singularity
19
Thus c_k ¼ Gk ðx, pÞ ¼ ðvk ÞT x_ ¼ ðvk ÞT fðx, pÞ ¼
1 X 1 ðmÞ ðx , pÞcj1 cj2 cjrk G r ! kðj1 j2 jm Þ r ¼1 k
ð1:62Þ
k
ðsummation of jr ¼ 1, 2, , n and r k ¼ 1, 2, , m Þ, where ð1Þ
Gkðj Þ ðx , pÞ ¼ ðvk ÞT Dc j1 fðx ðc1 , . . . , cn Þ, pÞ 1
¼ ðvk ÞT Dx fðx ðc1 , . . . , cn Þ, pÞ∂c j1 x
k T
ð1:63Þ
¼ ðv Þ Dx fðx ðc , . . . , c Þ, pÞv j1 1
n
ðj1 ¼ 1, 2, . . . , nÞ, ðmÞ
Gkðj
ðmÞ
1 j2 jm Þ
ðx , pÞ ¼ ðvk ÞT Dc j1 c j2 c jm fðx ðc1 , . . . , cn Þ, pÞ 1 n ¼ ðvk ÞT DðmÞ x fðx ðc , . . . , c Þ, pÞðvj1 vj2 . . . vjm Þ
ð1:64Þ
ðj1 , j2 , . . . , jm ¼ 1, 2, . . . , nÞ, ð0Þ
ðmÞ
with Gk ðx, pÞ ¼ Gk ðx, pÞ if m ¼ 0, and Dx f ðxðc1 , , c2 Þ is the (m + 1)th-order tensor. Definition 1.25 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose U(x ) Ω is a neighborhood of equilibrium x , and there are n linearly independent vectors vk (k ¼ 1, 2, . . . , n). For a perturbation of equilibrium y ¼ x x , let y ¼ ckvk and y_ ¼ c_k vk (summation of k). (i) x at the equilibrium x on the direction vk is stable if T
T
T
T
ðvk Þ ðxðt þ εÞ xðtÞÞ < 0 for ðvk Þ ðxðtÞ x Þ > 0, ðvk Þ ðxðt þ εÞ xðtÞÞ > 0 for ðvk Þ ðxðtÞ x Þ < 0
ð1:65Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a sink (or a stable node) on the direction vk.
20
1 Stability of Equilibriums
(ii) x at the equilibrium x on the direction vk is unstable if ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ < 0
ð1:66Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a source (or an unstable node) on the direction vk. (iii) x at the equilibrium x on the direction vk is increasingly unstable if ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ < 0
ð1:67Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called an increasing saddle (or an upper saddle) on the direction vk. (iv) x at the equilibrium x on the direction vk is decreasingly unstable if ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ < 0
ð1:68Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a decreasing saddle (or a lower saddle) on the direction vk. (v) x at the equilibrium x on the direction vk is invariant if ðvk ÞT ðxðt þ εÞ xðtÞÞ ¼ 0 for ðvk ÞT ðxðtÞ x Þ 6¼ 0
ð1:69Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called to be degenerate on the direction vk. Theorem 1.7 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x , p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Let y ¼ ckvk and y_ ¼ c_k vk (summation of k ¼ 1, 2, . . . , n). Define c_k ¼ ðvk ÞT y_ ¼ ðvk ÞT x_ ¼ ðvk ÞT fðx, pÞ:
ð1:70Þ
1.3 Stability and Singularity
21
(i) x at the equilibrium x on the direction vk is stable if and only if Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ < 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ > 0, Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ > 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ < 0
ð1:71Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (ii) x at the equilibrium x on the direction vk is unstable if and only if Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ > 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ > 0, Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ < 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ < 0
ð1:72Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iii) x at the equilibrium x on the direction vk is increasingly unstable if and only if Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ > 0 for sk ¼ ðvk ÞT ðxðtÞ x Þ > 0, Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ > 0 for sk ¼ ðvk ÞT ðxðtÞ x Þ < 0
ð1:73Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iv) x at the equilibrium x on the direction vk is decreasingly unstable if and only if Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ < 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ > 0, Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ < 0 for ck ¼ ðvk ÞT ðxðtÞ x Þ < 0
ð1:74Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (v) x at the equilibrium x on the direction vk is invariant if Gk ðx, pÞ ¼ ðvk ÞT fðx, pÞ ¼ 0 for all x 2 U(x ) Ω and all t 2 [t0, 1). Proof Because _ ðvk ÞT ðxðt þ εÞ xðtÞÞ ¼ ðvk ÞT ðxðtÞ þ xðtÞε þ oðεÞ xðtÞÞ _ ¼ ðvk ÞT xðtÞε þ oðεÞ, and x_ ¼ fðx, pÞ, we have ðvk ÞT ðxðt þ εÞ xðtÞÞ ¼ ðvk ÞT fðx, pÞε þ oðεÞ ¼ Gk ðx, pÞε þ oðεÞ:
ð1:75Þ
22
1 Stability of Equilibriums
(i) Due to any selection of ε > 0, for ck ¼ ðvk ÞT ðxðtÞ x Þ < 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 if Gk ðx, pÞ > 0, and vice versa; and for ck ¼ (vk)T (x(t) x ) > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 if Gk ðx, pÞ < 0, and vice versa. (ii) For ck ¼ (vk)T (x(t) x ) > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 if Gk ðx, pÞ > 0, and vice versa; and for ck ¼ (vk)T (x(t) x ) < 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 if Gk ðx, pÞ < 0, and vice versa. (iii) For ck ¼ (vk)T (x(t) x ) > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 if Gk ðx, pÞ > 0, and vice versa; and for sk ¼ ðvk ÞT ðxðtÞ x Þ < 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 if Gk ðx, pÞ > 0, and vice versa. (iv) For ck ¼ (vk)T (x(t) x ) > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 if Gk ðx, pÞ < 0, and vice versa; and for ck ¼ (vk)T (x(t) x ) < 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 if Gk ðx, pÞ < 0, and vice versa. (v) For ck ¼ (vk)T (x(t) x ) > 0, ðvk ÞT ðxðt þ εÞ xðtÞÞ ¼ 0 if Gk ðx, pÞ ¼ 0, and vice versa. Similarly, for ck ¼ (vk)T (x(t) x ) > 0,
1.3 Stability and Singularity
23
ðvk ÞT ðxðt þ εÞ xðtÞÞ ¼ 0 if Gk ðx, pÞ ¼ 0, and vice versa. The theorem is proved.
∎
Theorem 1.8 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x , p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Let y ¼ ckvk and y_ ¼ c_k vk (summation with k ¼ 1, 2, . . . , n ). ck ¼ (vk)T y and c_k ¼ ðvk ÞT y_ ¼ ðvk ÞT fðx, pÞ. ð2Þ Suppose kGk ðx , pÞk < 1 and Df(x , p)vj ¼ λjvj (j ¼ 1, 2, . . . , n). (i) x at the equilibrium x on the direction vk is stable if and only if λk < 0
ð1:76Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (ii) x at the equilibrium x on the direction vk is unstable if and only if λk > 0
ð1:77Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iii) x at the equilibrium x on the direction vk is increasingly unstable if and only if ð2Þ
λk ¼ 0, and Gkðj
1 j2 Þ
ðx , pÞcj1 cj2 > 0
ð1:78Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iv) x at the equilibrium x on the direction vk is decreasingly unstable if and only if ð2Þ
λk ¼ 0, and Gkðj
1 j2 Þ
ðx , pÞcj1 cj2 < 0
ð1:79Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (v) x at the equilibrium x on the direction vk is invariant if and only if ðmÞ
Gkðj
1 j2 jm Þ
ðx , pÞ ¼ 0 ðm ¼ 0, 1, 2, . . .Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1).
ð1:80Þ
24
1 Stability of Equilibriums
Proof For x ¼ x , ck ¼ 0. With Df(x , p)vj ¼ λjvj, the Taylor series expansion gives c_k ¼ ðvk ÞT fðx, pÞ ¼ ðvk ÞT ðfðx , pÞ þ Dx fðx , pÞvi ci Þ þ oðkckÞ ¼ ðvk ÞT ðDx fðx , pÞvi ci Þ þ oðkckÞ ð1Þ
¼ GkðiÞ ðx , pÞci þ oðkckÞ ¼ ðvk ÞT λi vi ci þ oðkckÞ ¼ ðλi δki Þci þ oðkckÞ ¼ λk ck þ oðkckÞ ð1Þ
¼ GkðkÞ ðx , pÞck þ oðkckÞ, and ð1Þ
GkðkÞ ðx , pÞ ¼ ðvk ÞT ðDx fðx , pÞvk Þ ¼ λk : (i) For ck > 0, c_k ¼ λk ck < 0, and for ck < 0, c_k ¼ λk ck > 0: ð1Þ
Thus, GkðkÞ ðx , pÞ ¼ λk < 0. (ii) For ck > 0, Gk ðx, pÞ ¼ c_k ¼ λk ck > 0, and for ck < 0, Gk ðx, pÞ ¼ c_k ¼ λk ck < 0: ð1Þ
Thus, GkðkÞ ðx , pÞ ¼ λk > 0.
1.3 Stability and Singularity
25
(iii) For ck > 0, Gk ðx, pÞ ¼ c_k ¼ λk ck > 0, and for ck < 0, Gk ðx, pÞ ¼ c_k ¼ λk ck > 0: ð1Þ
Thus, GkðkÞ ðx , pÞ ¼ λk ¼ 0 and the higher order should be considered. The higher order Taylor series expansion gives c_k ¼ ðvk ÞT fðx, pÞ ¼ ðvk ÞT ð½fðx , pÞ þ Dcj1 fðx , pÞcj1 : þ
1 ð2Þ D ðx , pÞcj1 cj2 þ oðkck2 Þ 2! cj1 cj2
1 k T ð2Þ ½ðv Þ Dx ðx , pÞðvj1 vj2 Þcj1 cj2 þ oðkck2 Þ 2! 1 ð2Þ ¼ Gkðj j Þ ðx , pÞcj1 cj2 þ oðkck2 Þ: 1 2 2!
¼
For ck > 0 with summation of j1, j2 ¼ 1, 2, . . . , n, Gk ðx, pÞ ¼ c_k ¼
1 ð2Þ G ðx , pÞcj1 cj2 > 0, 2! kðj1 j2 Þ
Gk ðx, pÞ ¼ c_k ¼
1 ð2Þ ðx , pÞcj1 cj2 > 0: G 2! kðj1 j2 Þ
and for ck < 0,
So we have ð2Þ
Gkðj
1 j2 Þ
ðx , pÞcj1 cj2 > 0:
ð1Þ
(iv) Similar to (iii), we have Gk ðx , pÞ ¼ λk ¼ 0. In addition, for ck > 0, Gk ðx, pÞ ¼ c_k ¼ and for sk < 0,
1 ð2Þ ðx , pÞcj1 cj2 < 0, G 2! kðj1 j2 Þ
26
1 Stability of Equilibriums
Gk ðx, pÞ ¼ c_k ¼
1 ð2Þ G ðx , pÞcj1 cj2 < 0: 2! kðj1 j2 Þ
So ð2Þ
Gkðj
1 j2 Þ
ðx , pÞcj1 cj2 < 0:
(v) Using the Taylor series expansion yields c_k ¼ ðvk ÞT fðx, pÞ XN 1 ðmÞ G ðx , pÞcj1 cj2 . . . cjm þ oðkckN Þ ¼ m¼1 m! kðj1 j2 jm Þ ¼0 ðN ¼ 1, 2, . . .Þ Thus only if ðmÞ
Gkðj
1 j2 jm Þ
ðx , pÞ ¼ 0 ðm ¼ 1, 2, . . .Þ,
the above equation of c_k ¼ 0 holds, and vice versa. The theorem is proved.
∎
Definition 1.26 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x , p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk T and let y ¼ ckvk. ck ¼ (vk)T y and c_k ¼ ðvk Þ y_ ¼ ðvk ÞT fðx, pÞ. (i) x at the equilibrium x on the direction vk is stable of the mkth order if ðr Þ ðx , pÞ 1 j2 jrk Þ
Gkðjk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ > 0,
ð1:81Þ
ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ < 0 for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a sink (or a stable node) of the mkth order on the direction vk.
1.3 Stability and Singularity
27
(ii) x at the equilibrium x on the direction vk is unstable of the mkth order if ðr Þ ðx , pÞ 1 j2 jrk Þ
Gkðjk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ > 0,
ð1:82Þ
ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ < 0 for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a source (or an unstable node) of the mkth order on the direction vk. (iii) x at the equilibrium x on the direction vk is increasingly unstable of the mkth order if ðr Þ ðx , pÞ 1 j2 jrk Þ
Gkðjk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ > 0,
ð1:83Þ
ðvk ÞT ðxðt þ εÞ xðtÞÞ > 0 for ðvk ÞT ðxðtÞ x Þ < 0 for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called an increasing saddle (or an upper saddle) of the mkth order on the direction vk. (iv) x at the equilibrium x on the direction vk is decreasingly unstable of the mkth order if ðr Þ ðx , pÞ 1 j2 jrk Þ
Gkðjk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ > 0,
ð1:84Þ
ðvk ÞT ðxðt þ εÞ xðtÞÞ < 0 for ðvk ÞT ðxðtÞ x Þ < 0 for all x 2 U(x ) Ω and all t 2 [t0, 1). The equilibrium x is called a decreasing saddle (or a lower saddle) of the mkth order on the direction vk. Theorem 1.9 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x , p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk and let y ¼ ckvk. ck ¼ (vk)T y and c_k ¼ ðvk ÞT y_ ¼ ðvk ÞT fðx, pÞ.
28
1 Stability of Equilibriums
(i) x at the equilibrium x on the direction vk is stable of the mkth order if and only if ðr Þ ðx , pÞ 1 j2...jr k Þ
Gkðjk
ðm þ1Þ
ck Gkðjk j ...j 1 2
2mk þ1
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1; jmk j1 j2 Þ ðx , pÞðc c c Þ < 0
ð1:85Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (ii) x at the equilibrium x on the direction vk is unstable of the mkth order if and only if ðr Þ ðx , pÞ 1 j2...jr k Þ
Gkðjk
c k
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðm Þ Gkðjk j ...j Þ ðx , pÞðcj1 cj2 cjmk Þ 1 2 mk
ð1:86Þ >0
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iii) x at the equilibrium x on the direction vk is increasingly unstable of the mkth order if and only if ðr Þ ðx , pÞ 1 j2...jr k Þ
Gkðjk
ðm Þ
Gkðjk j ...j 1 2
mk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
jmk j1 j2 Þ ðx , pÞðc c c Þ > 0
ð1:87Þ
for all x 2 U(x ) Ω and all t 2 [t0, 1). (iv) x at the equilibrium x on the direction vk is decreasingly unstable of the mkth order if and only if ðr Þ ðx , pÞ 1 j2...jr k Þ
Gkðjk
¼ 0, r k ¼ 0, 1, 2, . . . , mk 1;
ðm Þ Gkðjk j ...j Þ ðx , pÞðcj1 cj2 cjmk Þ 1 2 mk
ð1:88Þ 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ < 0, G mk ! kðj1 j2...jmk Þ
and for ck < 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ G ðx , pÞðcj1 cj2 cjmk Þ > 0: mk ! kðj1 j2...jmk Þ
Thus ðm Þ
ck Gkðjk j ...j 1 2
mk Þ
ðx , pÞðcj1 cj2 cjmk Þ < 0:
(ii) For ck > 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ > 0, G mk ! kðj1 j2...jmk Þ
and for ck < 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ < 0: G mk ! kðj1 j2...jmk Þ
Thus ðm Þ
ck Gkðjk j ...j 1 2
mk Þ
ðx , pÞðcj1 cj2 cjmk Þ > 0:
(iii) For ck > 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ > 0, G mk ! kðj1 j2...jmk Þ
30
1 Stability of Equilibriums
and for ck < 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ > 0: G mk ! kðj1 j2...jmk Þ
So we have ðm Þ
Gkðjk j ...j
mk Þ
1 2
ðx , pÞðcj1 cj2 cjmk Þ > 0:
(iv) Similar to (iii), for ck > 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ ðx , pÞðcj1 cj2 cjmk Þ < 0, G mk ! kðj1 j2...jmk Þ
and for ck < 0, Gk ðx, pÞ ¼ c_k ¼
1 ðmk Þ G ðx , pÞðcj1 cj2 cjmk Þ < 0: mk ! kðj1 j2...jmk Þ
So ðm Þ
Gkðjk j ...j 1 2
mk Þ
ðx , pÞðcj1 cj2 cjmk Þ < 0:
The theorem is proved.
1.3.2
∎
Spiral Stability on an Invariant Eigenplane
Definition 1.27 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalue αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n}, i ¼ 1) of matrix Df(x , p) with a pair of eigenvectors v2k 1 iv2k. On the invariant plane of (v2k 1, v2k), the contravariants are defined as c2k1 ¼ ðv2k1 ÞT y, c2k ¼ ðv2k ÞT y
ð1:89Þ
1.3 Stability and Singularity
31
with Dx f v2k1 ¼ αk v2k1 βk v2k ,
ð1:90Þ
Dx f v2k ¼ βk v2k1 þ αk v2k : The time change rates of the contravariants are c_2k1 ¼ G2k1 ðx, pÞ ¼ ðv2k1 ÞT fðx, pÞ ¼
1 X 1 ðrk Þ ðx , pÞcj1 cj2 cjrk , G r ! ð2k1Þðj1 j2 jrk Þ r ¼1 k k
c_2k ¼ G2k ðx, pÞ ¼ ðv2k ÞT fðx, pÞ ¼
ð1:91Þ
1 X 1 ðrk Þ Gð2kÞðj j j Þ ðx , pÞcj1 cj2 cjrk , 1 2 rk r ! k r ¼1 k
where for jrk 2 f1, 2, . . . , ng, r k ¼ 1, 2, . . . ðr Þ
k Gð2k1Þðj
1 j2 jr k Þ
ðx , pÞ ¼ ðv2k1 ÞT D
ðrk Þ j cj1 cj2 c rk
fðx , pÞ
¼ ðv2k1 ÞT Dxðrk Þ fðx , pÞvj1 vj2 vjrk , ðr Þ
k Gð2kÞðj
1 j2 jr k
2k T Þ ðx , pÞ ¼ ðv Þ D
ðrk Þ j cj1 cj2 c rk
fðx , pÞ
ð1:92Þ
¼ ðv2k ÞT Dxðrk Þ fðx , pÞvj1 vj2 vjrk : Thus, the time change rates of the contravariants in Eq. (1.91) become (
c_2k1 c_2k
)
" ¼
αk
βk
#( c2k1 )
βk
αk
c2k
1 X 1 þ r ! r ¼2 k k
f
ðr Þ
k Gð2k1Þðj
1 j2 jrk Þ
ðx , pÞ
ðrk Þ ðx , pÞ Gð2kÞðj 1 j2 jr k Þ
g
ð1:93Þ cj1 cj2 cjrk :
A radial variable is defined as ρk ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðc2k1 Þ2 þ ðc2k Þ2 ,
ð1:94Þ
32
1 Stability of Equilibriums
with c2k1 ¼ ρk cos θk , c2k ¼ ρk sin θk ,
ð1:95Þ
c_2k1 ¼ ρ_ k cos θk θ_ k ρk sin θk , c_2k ¼ θ_ k ρk cos θk þ ρ_ k sin θk :
ð1:96Þ
ρ_ k ¼ c_2k1 cos θk þ c_2k sin θk , θ_ k ρk ¼ c_2k1 sin θk c_2k cos θk
ð1:97Þ
where we have
Thus
and ρ_ k ¼
1 1 X X 1 ðrk Þ 1 ðrk Þ Gρk and θ_ k ¼ G r r ! ! θk k r ¼1 r ¼1 k k
ð1:98Þ
k
where ðr Þ
k Gρðrkk Þ ¼ ½Gð2k1Þðj
1 j2 jr k Þ
ðr Þ
k þ Gð2kÞðj
1 j2 jr k Þ
ðx , pÞcj1 cj2 cjrk cos θk
ðx , pÞcj1 cj2 cjrk sin θk ,
1 ðrk Þ ½G ðx , pÞcj1 cj2 cjrk sin θk ρk ð2k1Þðj1 j2 jrk Þ
ðr Þ
Gθkk ¼
ðr Þ
k Gð2kÞðj
1 j2 jr k Þ
ð1:99Þ
ðx , pÞcj1 cj2 cjrk cos θk
ðsummation of j1 , j2 , , jrk Þ: For ρk ! 0, the linearized equation is (
c_2k1 c_2k
)
" ¼
αk
βk
βk
αk
#(
c2k1 c2k
)
( þ
oðρk Þ oðρk Þ
) ð1:100Þ
Equation (1.98) becomes ρ_ k ¼ αk ρk þ oðρk Þ, θ_ k ρk ¼ βk ρk þ oðρk Þ:
ð1:101Þ
1.3 Stability and Singularity
33
For ρk ! 0, we have ρ_ k ¼ αk ρk , θ_ k ¼ βk :
ð1:102Þ
ρk ¼ ρk0 eαk , θk ¼ βk t þ θ0 :
ð1:103Þ
Thus
So c2k1 ¼ ρk0 eαk t cos ðβk t θ0 Þ ¼ eαk t ðc2k1 cos βk t þ c2k 0 0 sin βk tÞ,
ð1:104Þ
c2k ¼ ρk0 eαk t sin ðβk t θ0 Þ ¼ eαk t ðc2k1 sin βk t þ c2k 0 0 cos β k tÞ and (
c2k1
)
c2k
" ¼e
αk t
cos βk t
sin βk t
sin βk t
cos βk t
#(
c2k1 0
)
c2k 0
:
ð1:105Þ
Letting ck ¼ (c2k1, c2k)T, we have c_ k ¼ Ek ck ) ck ¼ eαk t Bk ck0
ð1:106Þ
where " Ek ¼
αk
βk
βk
αk
"
# and Bk ¼
cos βk t
sin βk t
sin βk t
cos βk t
# :
ð1:107Þ
Definition 1.28 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose U(x ) Ω is a neighborhood of equilibrium x . For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalue αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n},i ¼ 1) of matrix Df (x , p) with a pair of eigenvectors v2k 1 iv2k. On the invariant plane of (v2k 1, v2k), c2k1 ¼ ðv2k1 ÞT y, c2k ¼ ðv2k ÞT y with
ð1:108Þ
34
1 Stability of Equilibriums
Dx f v2k1 ¼ αk v2k1 βk v2k , Dx f v2k ¼ βk v2k1 þ αk v2k
ð1:109Þ
and ρk ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðc2k1 Þ2 þ ðc2k Þ2 ,
ð1:110Þ
c2k1 ¼ ρk cos θk , c2k ¼ ρk sin θk : For any arbitrarily small ε > 0, the stability of the equilibrium x on the invariant plane of (v2k 1, v2k) can be determined. (i) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally stable if ρk ðt þ εÞ ρk ðtÞ < 0:
ð1:111Þ
(ii) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally unstable if ρk ðt þ εÞ ρk ðtÞ > 0: ð1:112Þ (iii) x at the equilibrium x on the plane of (v2k 1, v2k) is stable with the mkth-order singularity if for θk 2 [0, 2π] Gρðrkk Þ ðx , pÞ ¼ 0 for r k ¼ 1, 2, . . . , mk 1 ρk ðt þ εÞ ρk ðtÞ < 0:
ð1:113Þ
(iv) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally unstable with the mkth-order singularity if for θk 2 [0, 2π] Grðsk k Þ ðθk Þ ¼ 0 for sk ¼ 0, 1, 2, . . . , mk 1 ρk ðt þ εÞ ρk ðtÞ > 0:
ð1:114Þ
(v) x at the equilibrium x on the plane of (v2k 1, v2k) is circular if for θk 2 [0, 2π] r k ðt þ εÞ r k ðtÞ ¼ 0:
ð1:115Þ
(vi) x at the equilibrium x on the plane of (uk, vk) is degenerate in the direction of uk if βk ¼ 0 and θk ðt þ εÞ θk ðtÞ ¼ 0:
ð1:116Þ
Theorem 1.10 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . The corresponding solution is
1.3 Stability and Singularity
35
x(t) ¼ Φ(x0, t t0, p). Suppose U(x ) Ω is a neighborhood of equilibrium x . For a linearized dynamical system in Eq. (1.19), consider a pair of complex eigenvalue pffiffiffiffiffiffiffi αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n}, i ¼ 1) of matrix Df(x , p) with a pair of eigenvectors v2k 1 iv2k. On the invariant plane of (v2k 1, v2k), c2k1 ¼ ðv2k1 ÞT y, c2k ¼ ðv2k ÞT y
ð1:117Þ
with Dx f v2k1 ¼ αk v2k1 βk v2k , Dx f v2k ¼ βk v2k1 þ αk v2k
ð1:118Þ
and ρk ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðc2k1 Þ2 þ ðc2k Þ2 ,
ð1:119Þ
c2k1 ¼ ρk cos θk , c2k ¼ ρk sin θk : For any arbitrarily small ε > 0, the stability of the equilibrium x on the invariant plane of (v2k 1, v2k) can be determined. (i) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally stable if and only if Gð1Þ ρk ðx , pÞ ¼ αk < 0:
ð1:120Þ
(ii) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally unstable if and only if Gð1Þ ρk ðx , pÞ ¼ αk > 0:
ð1:121Þ
(iii) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally stable with the mkth-order singularity if and only if for θk 2 [0, 2π] Gρðrkk Þ ðx , pÞ ¼ 0 for r k ¼ 1, 2, . . . , mk 1 and Gρðmk k Þ ðx , pÞ < 0:
ð1:122Þ
(iv) x at the equilibrium x on the plane of (v2k 1, v2k) is spirally unstable with the mkth-order singularity if and only if for θk 2 [0, 2π] Gρðrkk Þ ðx , pÞ ¼ 0 for r k ¼ 1, 2, . . . , mk 1 and Gρðmk k Þ ðx , pÞ > 0:
ð1:123Þ
36
1 Stability of Equilibriums
(v) x at the equilibrium x on the plane of (v2k 1, v2k) is circular if and only if for θk 2 [0, 2π] Gρðrkk Þ ðx , pÞ ¼ 0 for r k ¼ 1, 2, . . . : (vi) x at the equilibrium x on the plane of (v2k direction of v2k 1 if and only if
1, v2k)
ð1:124Þ is degenerate in the
ðs Þ
Imλk ¼ βk ¼ 0 and Gθkk ðθk Þ ¼ 0 for sk ¼ 2, 3, . . . : Proof For x ¼ x , c2k1 ! 0, and c2k ! 0, consider ρk ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðc2k1 Þ2 þ ðc2k Þ2 :
Assuming c2k1 ¼ ρk cos θk , c2k ¼ ρk sin θk , we have c_2k1 ¼ ρ_ k cos θk θ_ k ρk sin θk , c_2k ¼ θ_ k ρk cos θk þ ρ_ k sin θk : Thus ρ_ k ¼ c_2k1 cos θk þ c_2k sin θk , θ_ k ρk ¼ c_2k1 sin θk c_2k cos θk , where c_2k1 ¼ G2k1 ðx, pÞ ¼ ðv2k1 ÞT fðx, pÞ ¼
1 X 1 ðrk Þ Gð2k1Þðj j j Þ ðx , pÞcj1 cj2 cjrk , 1 2 rk r ! k r ¼1 k
c_2k ¼ G2k ðx, pÞ ¼ ðv2k ÞT fðx, pÞ ¼
1 X 1 ðrk Þ Gð2kÞðj j j Þ ðx , pÞcj1 cj2 cjrk , 1 2 rk r ! k r ¼1 k
ðjrk 2 f1, 2, , ng, r k ¼ 1, 2, Þ:
ð1:125Þ
1.3 Stability and Singularity
37
Therefore, 1 1 X X 1 ðrk Þ 1 ðrk Þ Gρk and θ_ k ¼ G , r r ! ! θk r ¼1 k r ¼1 k
ρ_ k ¼
k
k
where ðr Þ
k Gρðrkk Þ ðx , pÞ ¼ ½Gð2k1Þðj
1 j2 jrk Þ
ðr Þ
k þ Gð2kÞðj
1 j2 jrk Þ
ðr Þ
Gθkk ðx , pÞ ¼
ðx , pÞcj1 cj2 cjrk cos θk
ðx , pÞcj1 cj2 cjrk sin θk ,
1 ðrk Þ ½G ðx , pÞcj1 cj2 cjrk sin θk ρk ð2k1Þðj1 j2 jrk Þ ðr Þ
k Gð2kÞðj
1 j2 jrk Þ
ðx , pÞcj1 cj2 cjrk cos θk ,
ðsummation of j1 , j2 , . . . , jrk Þ: To the first-order approximation of c_2k1 and c_2k , c_2k1 ¼ αk c2k1 þ βk c2k þ oðρk Þ, c_2k ¼ βk c2k1 þ αk c2k þ oðρk Þ or
c_ 2k1 c_ 2k
αk ¼ βk
βk αk
oðρk Þ c2k1 : þ oðρk Þ c2k
Using ρ_ k ¼ c_2k1 cos θk þ c_2k sin θk , 2k 2k1 θ_ k ¼ ρ1 sin θk Þ, k ðc_ cos θ k c_
we obtain ρ_ k ¼ ðαk c2k1 þ βk c2k1 Þ cos θk þ ðβk c2k1 þ αk c2k Þ sin θk ¼ αk ρk þ oðρk Þ, θ_ k ρk ¼ ðβk c2k1 þ αk c2k Þ cos θk þ ðαk c2k1 þ βk c2k Þ sin θk ¼ βk ρk þ oðρk Þ:
38
1 Stability of Equilibriums
Further ρ_ k ¼ αk ρk þ oðρk Þ, θ_ k ρk ¼ βk ρk þ oðρk Þ: So ρ_ k ¼ αk ρk θ_ k ρk ¼ βk ρk ) θ_ k ¼ βk : Therefore, ð1Þ
Gð1Þ ρk ðx , pÞ ¼ αk ρk and Gθk ðx , pÞ ¼ β k θ k :
The corresponding higher order expression is given by ρ_ k ¼
Xmk 1 1 1 ðmk Þ k Gðsk Þ ðx , pÞ þ G ðx , pÞ þ oðρm k Þ: rk ¼1 r k ! ρk mk ! ρk
Because for ε > 0 and ε ! 0, ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε Xmk 1 1 1 ðmk Þ k ¼ ε r ¼1 Gðsk Þ ðx , pÞ þ ε G ðx , pÞ þ oðερm k Þ: k r k ! ρk mk ! ρk (i) For equilibrium stability, ρk > 0 and ρk ! 0. If αk 6¼ 0, we have ρ_ k ¼ Gð1Þ ρk ðx , pÞ ¼ αk ρk þ oðρk Þ:
Due to ρk > 0, if αk < 0, then ρ_ k < 0. Therefore, ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε < 0 which implies that x at the equilibrium x on the plane of (v2k1, v2k) is spirally stable, and vice versa. (ii) Due to ρk > 0, if αk > 0, then ρ_ k > 0. Thus, ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε > 0, which implies that x at the equilibrium x on the plane of (v2k1, v2k) is spirally unstable, and vice versa.
1.3 Stability and Singularity
39
(iii) If for θk 2 [0, 2π] the following conditions exist Gρðrkk Þ ðx , pÞ ¼ 0 for rk ¼ 1, 2, . . . , mk 1; Gρðmk k Þ ðx , pÞ 6¼ 0, and j Gρðrkk Þ ðx , pÞ j< 1 for r k ¼ mk þ 1, mk þ 2, . . . , then the higher order terms can be ignored, i.e., ρ_ k ¼
1 ðmk Þ k G ðx , pÞ þ oðρm k Þ: mk ! ρk
Due to ρk > 0, if Gρðmk k Þ ðx , pÞ < 0, then ρ_ k < 0. Therefore, ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε < 0: In other words, x at the equilibrium x on the plane of (v2k1, v2k) is spirally stable with the mkth-order singularity, and vice versa. (iv) Due to ρk > 0, if Gρðmk k Þ ðx , pÞ > 0, then ρ_ k > 0. Therefore, ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε > 0: In other words, x at the equilibrium x on the plane of (v2k1, v2k) is spirally unstable with the (mk1)th-order singularity, and vice versa. (v) If for θk 2 [0, 2π] the following conditions exist Gρðrkk Þ ðx , pÞ ¼ 0 for r k ¼ 1, 2, . . . , then ρk ðt þ εÞ ρk ðtÞ ¼ ρ_ k ε ¼ 0 and vice versa. Therefore ρk(t) is constant. x at the equilibrium x on the plane of (v2k1, v2k) is circular. (vi) Consider θk ðt þ εÞ θk ðtÞ ¼ θ_ k ε 1 Xmk 1 1 ðrk Þ 1 ðmk Þ k ¼ εfβk þ ½ r ¼2 G ðx , pÞ þ G ðx , pÞ þ oðρm k Þ g: k ρk r k ! θk mk ! θk If for θk 2 [0, 2π] the following conditions exist ðr Þ
βk ¼ 0 and Gθkk ðx , pÞ ¼ 0 for r k ¼ 2, 3, . . .
40
1 Stability of Equilibriums
then θk ðt þ εÞ θk ðtÞ ¼ θ_ k ε ¼ 0: Therefore, x at the equilibrium x on the plane of (v2k1, v2k) is degenerate in the direction of v2k1. This theorem is proved. ∎
1.3.3
Spiral Stability Based on the Fourier Series Base
From the previous method, the spiral stability of the equilibrium x is difficult, and such spiral stability is based on the circular assumption as in Eq. (1.119), which is difficult to separate ρk(t) and θk(t). For the linear case, it is very easy to do so. However, for the nonlinear case, only special cases can be discussed for the spiral stability. Thus, an alternative approach is presented to determine the spiral stability of the equilibrium x as in Luo (2019). Definition 1.29 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalue αk iβk (2k1, 2k 2 N ¼ {1, 2, , n},i ¼ 1) of matrix Df(x , p) with a pair of eigenvectors v2k1 iv2k. In the vicinity of x , for x ¼ x + y, there is a solution in the form of x ¼ x þ y ¼ x þ a0 ðtÞ þ
1 X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð1:126Þ
j¼1
with the condition of lim kAj k ¼ 0
j!1
ð1:127Þ
where a0 ¼ ða01 , a02 , . . . , a0n ÞT , bj ¼ ðbj1 , bj2 , . . . , bjn ÞT , cj ¼ ðcj1 , cj2 , . . . , cjn ÞT , Aj ¼ ðAj1 , Aj2 , . . . , Ajn ÞT , qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ajl ¼ b2jl þ c2jl ðj ¼ 1, 2, . . . ;l ¼ 1, 2, . . . , nÞ:
ð1:128Þ
1.3 Stability and Singularity
41
Thus, the approximate solution of x in the vicinity of the equilibrium x is for a large number N ! 1 as x ¼ x þ y x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ:
ð1:129Þ
j¼1
With the transformation in Eq. (1.129), Eq. (1.4) becomes a_ 0 ¼ F0 ða0 , b, cÞ, b_ ¼ βk kc þ Fc ða0 , b, cÞ,
ð1:130Þ
c_ ¼ βk kb þ F ða0 , b, cÞ s
where b ¼ ðb1 , b2 , . . . , bN ÞT , c ¼ ðc1 , c2 , . . . , cN ÞT , Fc ¼ ðFc1 , Fc2 , . . . , FcN ÞT , Fs ¼ ðFs1 , Fs2 , . . . , FsN ÞT , k ¼ diag ð1, 2, . . . , NÞ, A ¼ ðA1 , A2 , . . . , AN ÞT ; ð 1 T fðx, pÞdt, F0 ða0 , b, cÞ ¼ T 0 ð 2 T fðx, pÞ cos ðjβk tÞdt, Fcj ða0 , b, cÞ ¼ T 0 ð 2 T Fsj ða0 , b, cÞ ¼ fðx, pÞ sin ðjβk tÞdt, T 0 T¼
ð1:131Þ
ð1:132Þ
2π , ðj ¼ 1, 2, . . . , NÞ: βk
The equilibrium of Eq. (1.130) is given by 0 ¼ F0 ða 0 , b , c Þ, 0 ¼ βk kc þ Fc ða 0 , b , c Þ,
ð1:133Þ
0 ¼ βk kb þ Fs ða 0 , b , c Þ: If Eq. (1.133) has a zero solution, i.e., a 0 ¼ 0, b ¼ 0, c ¼ 0, and then the equilibrium x has the following stability.
ð1:134Þ
42
1 Stability of Equilibriums
(i) The equilibrium x is spirally stable if lim ka0 ðtÞk ¼ 0, lim kbðtÞk ¼ 0, lim kcðtÞk ¼ 0
t!1
t!1
t!1
ðor lim ka0 ðtÞk ¼ 0 lim kAðtÞk ¼ 0Þ: t!1
ð1:135Þ
t!1
(ii) The equilibrium x is spirally unstable if lim ka0 ðtÞk ¼ 1, or lim kbðtÞk ¼ 1, or lim kcðtÞk ¼ 1
t!1
t!1
t!1
ð or lim ka0 ðtÞk ¼ 1, or lim kAðtÞk ¼ 1Þ: t!1
ð1:136Þ
t!1
(iii) The equilibrium x is stable if lim ka0 ðtÞk ¼ 0, bðtÞ ¼ 0, cðtÞ ¼ 0
t!1
ðor lim ka0 ðtÞk ¼ 0, AðtÞ ¼ 0Þ:
ð1:137Þ
t!1
(iv) The equilibrium x is unstable if lim ka0 ðtÞk ¼ 1, bðtÞ ¼ 0, cðtÞ ¼ 0
t!1
ðor lim ka0 ðtÞk ¼ 1, AðtÞ ¼ 0Þ:
ð1:138Þ
t!1
Definition 1.30 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e.,U(x ) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). Suppose Eq. (1.24) holds in U(x ) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalue αk iβk (2k1, 2k 2 N ¼ {1, 2, . . . ,n},i ¼ 1) of matrix Df(x , p) with a pair of eigenvectors v2k1 iv2k. In the vicinity of x , there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð1:139Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.128). The corresponding dynamical system of j!1
coefficients is
1.3 Stability and Singularity
43
a_ 0 ¼ F0 ða0 , b, cÞ, b_ ¼ βk kc þ Fc ða0 , b, cÞ,
ð1:140Þ
c_ ¼ βk kb þ F ða0 , b, cÞ s
with Eqs. (1.131) and (1.132). The equivalent equation of Eq. (1.140) is z_ ¼ gðzÞ
ð1:141Þ
z ¼ ða0 , b, cÞT , g ¼ ðF0 , Fc , Fs ÞT :
ð1:142Þ
where
If Eq. (1.141) has an equilibrium of z ¼ 0 (i.e., a 0 ¼ 0, b ¼ 0, c ¼ 0), and in a neighborhood of z ¼ 0, the linearized equation with Δz ¼ zz is Δ_z ¼ Dgðz ÞΔz,
ð1:143Þ
and then the eigenvalues of Dg(z )determined by j Dgðz Þ λInð2Nþ1Þnð2Nþ1Þ j¼ 0
ð1:144Þ
yield the stability of the equilibrium x with a kind of ðn1 : n2 : n3 jn4 : n5 : n6 Þ
ð1:145Þ
with Σ6r¼1 nr ¼ nð2N þ 1Þ: (i) If Reλl < 0 (l ¼ 1, 2, . . . , n(2N + 1)) with at least b 6¼ 0 or c 6¼ 0, the equilibrium x is spirally stable. (ii) If Reλl > 0 (l 2 {1, 2, . . . ,n(2N + 1)}) with at least b 6¼ 0 or c 6¼ 0, the equilibrium x is spirally unstable. (iii) The boundary between the stable and unstable solutions of equilibrium x is determined by the higher singularity. Remark 1.1 (i) For A(t) ¼ 0, a0(t) 6¼ 0, Eq. (1.139) is recalled to Eq. (1.19) with n-eigenvalues, and the stability of the equilibrium x is determined identically by Eq. (1.19). (ii) For A(t) 6¼ 0, a0(t) ¼ 0, Eq. (1.144) gives the spiral stability of the equilibrium x without the shifted center. (iii) From eigenvectors of Eq. (1.144), the stability on each eigenvector direction for z in the vicinity of z ¼ 0 can be determined in the similar fashion.
44
1 Stability of Equilibriums
1.4
Spiral Stability in Second-Order Nonlinear Systems
The stability of equilibriums in the second-order dynamical systems can be discussed through the first-order dynamical system. Since second-order dynamical systems are used extensively in physics and engineering, the spiral stability of equilibrium is specially discussed as in Luo (2019). Definition 1.31 Consider a second-order, autonomous, nonlinear dynamical system with 2n-dimensions as € _ pÞ 2 Rn : x ¼ fðx, x,
ð1:146Þ
There is an equilibrium point (x , 0) determined by fðx , 0, pÞ ¼ 0,
ð1:147Þ
_ pÞ is Cr-continuous (r 1) in a neighborhood of the equilibrium (x , 0) and fðx, x, (i.e., U(x , 0) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). Suppose _ pÞ Dx fðx , 0, pÞΔx Dx_ fðx , 0, pÞΔxk _ kfðx, x, ¼0 _ kΔxk þ kΔxk _ kΔxkþkΔxk!0 lim
ð1:148Þ
in U(x , 0) Ω. The linearization of Eq. (1.146) is _ Δ€ x ¼ Dx fðx , 0, pÞΔx þ Dx_ fðx , 0, pÞΔx:
ð1:149Þ
For the linearized system, consider a pair of complex eigenvalues αk iβk (2k1, pffiffiffiffiffiffiffi 2k 2 N ¼ {1, 2, . . . ,2n},i ¼ 1) with a pair of eigenvectors v2k1 iv2k. In the vicinity of (x , 0), for x ¼ x + y, there is a solution in the form of x ¼ x þ y ¼ x þ a0 ðtÞ þ
1 X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð1:150Þ
j¼1
with the condition of lim kAj k ¼ 0
j!1
ð1:151Þ
where a0 ¼ ða01 , a02 , . . . , a0n ÞT , bj ¼ ðbj1 , bj2 , . . . , bjn ÞT , cj ¼ ðcj1 , cj2 , . . . , cjn ÞT , Aj ¼ ðAj1 , Aj2 , . . . , Ajn ÞT , qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ajl ¼ b2jl þ c2jl ðj ¼ 1, 2, . . . ;l ¼ 1, 2, . . . , nÞ:
ð1:152Þ
1.4 Spiral Stability in Second-Order Nonlinear Systems
45
Thus, the approximate solution of x in the vicinity of the equilibrium (x , 0) is for a large number N ! 1 as x ¼ x þ y x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ:
ð1:153Þ
j¼1
With the transformation in Eq. (1.153), Eq. (1.146) becomes _ c_ Þ, € a0 ¼ F0 ða0 , b, c, a_ 0 , b, _ c_ Þ, € ¼ 2βk k1 c_ þ β2 k2 b þ Fc ða0 , b, c, a_ 0 , b, b k
ð1:154Þ
_ c_ Þ €c ¼ 2βk k1 b_ þ β2k k2 c þ Fs ða0 , b, c, a_ 0 , b, where b ¼ ðb1 , b2 , . . . , bN ÞT , c ¼ ðc1 , c2 , . . . , cN ÞT , Fc ¼ ðFc1 , Fc2 , . . . , FcN ÞT , Fs ¼ ðFs1 , Fs2 , . . . , FsN ÞT , k1 ¼ diag ð1, 2, . . . , NÞ, k2 ¼ diag ð12 , 22 , . . . , N 2 Þ, A ¼ ðA1 , A2 , . . . , AN ÞT ; _ c_ Þ ¼ F0 ða0 , b, c, a_ 0 , b,
1 T
_ c_ Þ ¼ 2 Fcj ða0 , b, c, a_ 0 , b, T _ c_ Þ ¼ 2 Fsj ða0 , b, c, a_ 0 , b, T T¼
ðT
ð1:155Þ
_ pÞdt, fðx, x,
0
ðT
_ pÞ cos ðjβk tÞdt, fðx, x, ð1:156Þ
0
ðT
_ pÞ sin ðjβk tÞdt, fðx, x,
0
2π , ðj ¼ 1, 2, . . . , NÞ: βk
The equilibrium of Eq. (1.154) is given by 0 ¼ F0 ða 0 , b , c , 0, 0, 0Þ, 0 ¼ β2k k2 b þ Fc ða 0 , b , c , 0, 0, 0Þ,
ð1:157Þ
0 ¼ β2k k2 c þ Fs ða 0 , b , c , 0, 0, 0Þ: If Eq. (1.157) has a zero solution, i.e., a 0 ¼ 0, b ¼ 0, c ¼ 0,
ð1:158Þ
46
1 Stability of Equilibriums
then the equilibrium x has the following stability: (i) The equilibrium x is spirally stable if lim ka0 ðtÞk ¼ 0, lim kbðtÞk ¼ 0, lim kcðtÞk ¼ 0
t!1
t!1
t!1
ðor lim ka0 ðtÞk ¼ 0, lim kAðtÞk ¼ 0Þ: t!1
ð1:159Þ
t!1
(ii) The equilibrium x is spirally unstable if lim ka0 ðtÞk ¼ 1, or lim kbðtÞk ¼ 1, or lim kcðtÞk ¼ 1
t!1
t!1
t!1
ðor lim ka0 ðtÞk ¼ 1, or lim kAðtÞk ¼ 1Þ: t!1
ð1:160Þ
t!1
(iii) The equilibrium x is asymptotically stable if lim ka0 ðtÞk ¼ 0, bðtÞ ¼ 0, cðtÞ ¼ 0
t!1
ðor lim ka0 ðtÞk ¼ 0, AðtÞ ¼ 0Þ:
ð1:161Þ
t!1
(iv) The equilibrium x is asymptotically unstable if lim ka0 ðtÞk ¼ 0, bðtÞ ¼ 0, cðtÞ ¼ 0
t!1
ðor lim ka0 ðtÞk ¼ 0, AðtÞ ¼ 0Þ:
ð1:162Þ
t!1
Definition 1.32 Consider a 2n-dimensional, autonomous, nonlinear dynamical _ pÞ in Eq. (1.146) with an equilibrium point (x , 0) and fðx, x, _ pÞ system € x ¼ fðx, x, r is C -continuous (r 1) in a neighborhood of the equilibrium (x , 0) (i.e., U(x , 0) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). Suppose Eq. (1.148) holds in U(x , 0) Ω. For a linearized dynamical system in Eq. (1.149), consider a pair of complex eigenvalues αk iβk (2k1, pffiffiffiffiffiffiffi 2k 2 N ¼ {1, 2, . . . ,2n}, i ¼ 1) with a pair of eigenvectors v2k1 iv2k. In the vicinity of (x , 0), there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð1:163Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.152). The corresponding dynamical system of j!1
coefficients is
1.4 Spiral Stability in Second-Order Nonlinear Systems
47
_ c_ Þ, € a0 ¼ F0 ða0 , b, c, a_ 0 , b, € ¼ 2βk k1 c_ þ β2 k2 b þ Fc ða0 , b, c, a_ 0 , b, _ c_ Þ, b k €c ¼ 2βk k1 b_ þ
β2k k2 c
ð1:164Þ
_ c_ Þ þ F ða0 , b, c, a_ 0 , b, s
with Eqs. (1.155) and (1.156). The equivalent equation of Eq. (1.164) is €z ¼ gðz, z_ Þ
ð1:165Þ
_ c_ ÞT , g ¼ ðF0 , Fc , Fs ÞT : z ¼ ða0 , b, cÞT , z_ ¼ ða_ 0 , b,
ð1:166Þ
where
The equivalent first-order equation of Eq. (1.165) is u_ ¼ fðuÞ
ð1:167Þ
u ¼ ðz, z_ ÞT ;f ¼ ð_z, gÞT
ð1:168Þ
where
If Eq. (1.165) has an equilibrium of (z , 0) (i.e., u ¼ 0), and in a neighborhood of u ¼ 0 the linearized equation with Δu ¼ uu is Δu_ ¼ Dfðu ÞΔu
ð1:169Þ
with Þ ¼ Dfðu
0nð2Nþ1Þnð2Nþ1Þ Gnð2Nþ1Þnð2Nþ1Þ
Inð2Nþ1Þnð2Nþ1Þ Hnð2Nþ1Þnð2Nþ1Þ
ð1:170Þ
and ∂g ∂g G¼ ,H ¼ ∂z u ¼ 0 ∂_z u ¼0
ð1:171Þ
then the eigenvalues of Dfðu Þ determined by j Dfðu Þ λI2nð2Nþ1Þ2nð2Nþ1Þ j¼ 0 yield the stability of the equilibrium x with a kind of
ð1:172Þ
48
1 Stability of Equilibriums
ðn1 : n2 : n3 jn4 : n5 : n6 Þ
ð1:173Þ
with Σ6r¼1 nr ¼ 2nð2N þ 1Þ. (i) If Reλl < 0 (l ¼ 1, 2, . . . , 2n(2N + 1)) with at least b 6¼ 0 and c 6¼ 0, the equilibrium x is spirally stable. (ii) If Reλl > 0 (l 2 {1, 2, . . . ,2n(2N + 1)}) with at least b 6¼ 0 and c 6¼ 0, the equilibrium x is spirally unstable. (iii) The boundary between the stable and unstable solutions of the equilibrium x is determined by the higher singularity.
1.5
Lyapunov Functions and Stability
Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4). Let V : U ! R be a differentiable function defined in a neighborhood of equilibrium x on U/{x }. A function V_ : U ! R is defined by _ VðxÞ ¼ DVðxÞ ¼ nT fðx, tÞ
ð1:175Þ
where nT ¼ ð∂x1 V, . . . , ∂xn VÞ and f(x, t) ¼ ( f1, . . . ,fn)T. Definition 1.33 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . Suppose U(x ) Ω is a neighborhood of equilibrium x . There is a continuous function V : U ! R which is differentiable on U/{x }, such that V(x ) ¼ 0 and V(x) > 0 if x 6¼ x . (i) If V_ 0 in U/{x }, the function V is called a Lyapunov function for equilibrium x . (ii) If V_ < 0 in U/{x }, the function V is called a strict Lyapunov function for equilibrium x . Theorem 1.11 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x . Suppose U(x ) Ω is a neighborhood of equilibrium x . There is a continuous function V : U ! R which is differentiable on U/{x }, such that V(x ) ¼ 0 and V(x) > 0 if x 6¼ x . (i) If V_ 0 in U/{x }, the equilibrium x is stable. (ii) If V_ < 0 in U/{x }, the equilibrium x is asymptotically stable. Proof The proof can be referred in Hirsch et al. (2004).
∎
1.5 Lyapunov Functions and Stability
49
As in Luo (2012), to investigate the stability of the continuous systems in the vicinity of equilibrium x , a measuring function should be introduced through the relative position vector to equilibrium x . The relative position vector is given by r ¼ x x :
ð1:176Þ
Definition 1.34 For an equilibrium point x , consider a flow x 2 U(x ) in dynamical system of Eq. (1.4). A relative distance function for the flow x to the equilibrium x is defined by dðx, x Þ ¼ kx x k:
ð1:177Þ
If d(x, xp) ¼ C ¼ const, there is a surface given by kx x k ¼ C
ð1:178Þ
which is called the equi-distance surface of equilibrium x . Further, if there is a monotonically increasing or decreasing function of the relative distance d(x, x ), E ¼ Vðx, x Þ f ðdðx, x ÞÞ
ð1:179Þ
with the following property: Vðx, x Þ ¼ f ðdðx, x ÞÞ ¼ min ðor max Þ if dðx, x Þ ¼ 0:
ð1:180Þ
Such a monotonic function V(x, x ) is called a generalized measuring function of dynamical system in a neighborhood of the equilibrium x . If E ¼ C ¼ const, there is a surface given by Vðx, x Þ ¼ C
ð1:181Þ
which is called the equi-measuring function surface. To explain the concept of the measuring function, consider a domain U(x ) in phase space in the vicinity of the equilibrium x with big circular symbol, as shown in Fig. 1.2. Suppose a point x with a small circular symbol is the solution of the subsystem. The relative location vector to the equilibrium x is expressed by a vector r ¼ xx and the corresponding relative distance is expressed by d(x, x ). Such a point x is on the equi-measuring function surface of E ¼ V(d(x, x )). For different values of E ¼ Ei (i ¼ 1, 2, ), a set of the equi-measuring function surfaces will fill the entire domain of U(x), which are depicted by the thick curves in Fig. 1.2. Based on the equi-measuring function surface, there is a dynamical system.
50
1 Stability of Equilibriums
Fig. 1.2 A relative position vector from xp to x and a measuring function with n1 + n2 ¼ n
Definition 1.35 For any equi-measuring function surface in Eq. (1.181), there is a dynamical system as x_ m ¼ f m ðxm Þ
ð1:182Þ
with the initial condition ðxm 0 , t 0 Þ and the equi-measuring function surface can be expressed by Vðxm , x Þ ¼ Vðxm 0 , x Þ ¼ E:
ð1:183Þ
The dynamical system given in Eq. (1.182) is invariant in the sense of the measuring function in Eq. (1.181). The subscript or superscript “m” represents the flow on the “equi-measuring function surface.” To measure dynamical behaviors of dynamical system in Eq. (1.4) to the equi-measuring function surface, from Luo (2008a,b), the following functions are introduced. Definition 1.36 Consider a flow x(t) of the dynamical system with a vector field f(x, t, p) in Eq. (1.4). At time t, if the flow x(t) arrives to the equi-measuring function surface in Eq. (1.181), the kth-order, G-functions at the constant measuring function level are defined as
1.5 Lyapunov Functions and Stability GðkÞ m ðxðtÞ, x Þ ¼ ðk þ 1Þ! lim
ε!0
1 f½nðxm ðt þ εÞ, x Þ T xðt þ εÞ εkþ1
½nm ðxðtÞ, x Þ T xðtÞ ¼
Xkþ1 r¼1
51
k X 1
q! q¼1
q GðkÞ m ðxðtÞ, x Þε g
ð1:184Þ
Crkþ1 Dðkþ1rÞ ½nðxm ðtÞ, x Þ T ½Dðr1Þ fðxðtÞ, pÞ
Dðr1Þ f m ðxm , x Þ jxm ¼x for k ¼ 0,1,2,. . . . The normal vector of the equi-measuring function surface is nðxm , x Þ ¼
∂Vðxm , x Þ ∂V ∂V ∂V ¼ ð m , m , . . . , m ÞT ∂xm ∂x1 ∂x2 ∂xn
ð1:185Þ
where the total differential operator is given by D¼
∂ðÞ ∂ðÞ , x_ þ ∂x ∂t
DðrÞ ðÞ ¼ D∘Dðr1Þ ðÞ ¼ DðDðr1Þ ðÞÞ,
ð1:186Þ
and Dð0Þ ðÞ ¼ I with C rkþ1 ¼
ðk þ 1Þ! and r! ¼ 1 2 3 r: r!ðk þ 1 rÞ!
ð1:187Þ
From Eq. (1.181), the following relation holds: 0 ¼ x_ T
∂V ¼ ½nðxm , x Þ T f m ðxm , x Þ: ∂x
ð1:188Þ
For a zero-order G-function (k ¼ 0), one obtains m m m T T Gð0Þ m ðx, x Þ ¼ ½nðx , x Þ ½fðx, pÞ f ðx , x Þ jxm ¼x ¼ ½nðx, x Þ fðx, pÞ:
ð1:189Þ The zero-order G-function is the dot product of the vector field f(x, p) for the dynamical system and the normal vector n(xm, x ). Consider an instantaneous value of the equi-measuring function at time t. In other words, letting xm ¼ x, Eq. (1.179) gives
52
1 Stability of Equilibriums
EðtÞ ¼ Vðx, x Þ:
ð1:190Þ
The corresponding time change ratio of the measuring function is dEðtÞ ∂Vðx, x Þ ¼ x_ dt ∂x ¼ ½nðx, x Þ T fðx, pÞ
ð1:191Þ
¼ Gð0Þ m ðx, x Þ:
From the foregoing equation, the change of the equi-measuring function for the dynamical system for time t 2 [tk, tk+1] can be defined as in Luo (2008a,b). Definition 1.37 For a flow x(t) of the dynamical system with a vector field f(x, p) in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177). The total change of the equi-measuring function for the time interval [tk, t] is defined as ðt dEðtÞ ¼ Gð0Þ Lðx , t k , tÞ ¼ m ðx, x Þdt t k dt tk ðt ¼ ½nðx, x Þ T fðx, pÞdt ðt
ð1:192Þ
tk
¼ VðxðtÞ, x Þ Vðxk , x Þ where xk ¼ x(tk). For a given t ¼ tk+1>tk, the increment of the equi-measuring function to dynamical system in Eq. (1.4) for t 2 [tk, tk+1] is Lðx , t k , t kþ1 Þ ¼
ð tkþ1 tk
¼
ð tkþ1
dEðtÞ ¼ dt
ð tkþ1 tk
Gð0Þ m ðx, x Þdt
½nðx, x Þ T fðx, pÞdt
ð1:193Þ
tk
¼ Vðxkþ1 , x Þ Vðxk , x Þ: From Eq. (1.193), the equi-measuring function quantity is used to measure changes of the dynamical system. Thus such a function can be used to investigate the stability of dynamical systems. Definition 1.38 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177) in Uðx Þ R n . A flow x(t) at xk for t¼tk is:
1.5 Lyapunov Functions and Stability
53
(i) locally decreasing to the equi-measuring function surface in Uðx Þ R n if Vðxk , x Þ Vðxkε , x Þ < 0, Vðxkþε , x Þ Vðxk , x Þ < 0;
ð1:194Þ
(ii) locally increasing to the equi-measuring function surface in Uðx Þ R n if Vðxk , x Þ Vðxkε , x Þ > 0, Vðxkþε , x Þ Vðxk , x Þ > 0;
ð1:995Þ
(iii) locally tangential to the equi-measuring function surface in Uðx Þ R n if Vðxk , x Þ Vðxkε , x Þ < 0, either
Vðxkþε , x Þ Vðxk , x Þ > 0 Vðxk , x Þ Vðxkε , x Þ > 0,
or
Vðxkþε , x Þ Vðxk , x Þ < 0
for the external surface; ð1:196Þ gfor the interior surface:
From the previous definitions, the locally increasing and decreasing of a flow x(t) at xk to the measuring function surface are depicted in Fig. 1.3 in the vicinity of the point x . A flow x(t) at xk, locally tangential to the equi-measuring function surface, can be similarly sketched. Theorem 1.12 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x )in Eq. (1.179) to be monotonically increased to a metric function d (x, x ) in Eq. (1.177). A flow x(t) at xk for t¼tk in the domain Uðx Þ R n is: (i) locally decreasing to the equi-measuring function surface in Uðx Þ R n if and only if T Gð0Þ m ðxk , x Þ ¼ ½nðxk , x Þ fðxk , pÞ < 0;
ð1:197Þ
(ii) locally increasing to the equi-measuring function surface in Uðx Þ R n if and only if T Gð0Þ m ðxk , x Þ ¼ ½nðxk , x Þ fðxk , pÞ < 0;
ð1:198Þ
(iii) locally tangential to the equi-measuring function surface in Uðx Þ R n if and only if T Gð0Þ m ðxk , x , t k Þ ¼ ½nðxk , x Þ fðxk , pÞ ¼ 0 Gð1Þ m ðxk , x , t k Þ > 0 for the external surface; Gð1Þ m ðxk , x , t k Þ < 0 for the interior surface:
ð1:199Þ
54
1 Stability of Equilibriums
a
b Fig. 1.3 (a) A locally increasing flow and (b) a locally decreasing flow to a measuring function with n1 + n2 ¼ n
1.5 Lyapunov Functions and Stability
55
Proof Using G-function and the Taylor series expansion, the theorem can be proved directly. ∎ Definition 1.39 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177) in Uðx Þ R n . A flow x(t) for xk to xk+1 in U(x ) for t ¼ ts 2 (tk, tk+1) is: (i) uniformly decreasing to the equi-measuring function surface in Uðx Þ R n if Vðxs , x Þ Vðxsε , x Þ < 0, Vðxsþε , x Þ Vðxs , x Þ < 0;
ð1:200Þ
(ii) uniformly increasing to the equi-measuring function surface in Uðx Þ R n if Vðxs , x Þ Vðxsε , x Þ < 0, Vðxsþε , x Þ Vðxs , x Þ < 0;
ð1:201Þ
(iii) uniformly invariant to the equi-measuring function surface in Uðx Þ R n if Vðxsε , x Þ ¼ Vðxs , x Þ ¼ Vðxsþε , x Þ:
ð1:202Þ
Theorem 1.13 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177) in Uðx Þ R n . A flow x(t) for xk to xk + 1 for t 2 (tk, tk + 1) in Uðx Þ R n is: (i) uniformly decreasing to the equi-measuring function surface in Uðx Þ R n if and only if all points x(t) for t 2 [tk, tk+1] on the flow γ satisfy the following condition: T Gð0Þ m ðx, x Þ ¼ ½nðx, x Þ fðx, pÞ < 0;
ð1:203Þ
(ii) uniformly increasing to the equi-measuring function surface in Uðx Þ R n if and only if all points x(t) for t 2 [tk, tk+1] on the flow γ satisfy the following condition: T Gð0Þ m ðx, x Þ ¼ ½nðx, x Þ fðx, pÞ > 0;
ð1:204Þ
(iii) uniformly invariant to the equi-measuring function surface in Uðx Þ R n if and only if all points x(i)(t) for t 2 [tk, tk+1] on the flow γ satisfy the following condition: GðkÞ m ðx, x Þ ¼ 0 k ¼ 0, 1, 2, . . . :
ð1:205Þ
56
1 Stability of Equilibriums
Proof Using G-function and the Taylor series expansion, the theorem can be proved directly. ∎ Definition 1.40 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177) in Uðx Þ R n . A flow x(t) at xk for t¼tk is: (i) locally decreasing with the (2s)th order to the equi-measuring function surface in Uðx Þ R n if GðrÞ m ðxk ; x Þ ¼ 0,for r ¼ 0,1,2,. . . ,2s 1;
Vðxk ; x Þ Vðxkε ; x Þ < 0,
Vðxkþε ; x Þ Vðxk ; x Þ < 0;
g
ð1:206Þ
(ii) locally increasing with the (2s)th order to the equi-measuring function surface in Uðx Þ R n if GðrÞ m ðxk ; x Þ ¼ 0,for r ¼ 0,1,2,. . . ,2s 1
Vðxk ; x Þ Vðxkε ; x Þ > 0, Vðxkþε ; x Þ Vðxk ; x Þ > 0;
g
ð1:207Þ
(iii) locally tangential with the (2s + 1)th order to the equi-measuring function surface in Uðx Þ R n if GðrÞ m ðxk ; x Þ ¼ 0,for r ¼ 0,1,2,. . . ,2s;
Vðxk ; x Þ Vðxkε ; x Þ < 0, Vðxkþε ; x Þ Vðxk ; x Þ > 0 Vðxk ; x Þ Vðxkε ; x Þ > 0, Vðxkþε ; x Þ Vðxk ; x Þ < 0
g for the external surface,
ð1:208Þ
g for the interior surface:
Theorem 1.14 For a dynamical system in Eq. (1.4), consider the equi-measuring function V(x, x ) in Eq. (1.179) to monotonically increase to a metric function d(x, xp) in Eq. (1.177) in Uðx Þ R n . A flow x(t) at xk for t¼tk is: (i) locally decreasing with the (2s)th order to the equi-measuring function surface in Uðx Þ R n if and only if GðrÞ m ðxk , x Þ ¼ 0, for r ¼ 0, 1, 2, . . . , 2s 1; Gð2sÞ m ðxk , x Þ < 0;
ð1:209Þ
References
57
(ii) locally increasing with the (2s)th order to the equi-measuring function surface in Uðx Þ R n if and only if GðrÞ m ðxk , x Þ ¼ 0, for r ¼ 0, 1, 2, . . . , 2s 1; Gð2sÞ m ðxk , x Þ > 0;
ð1:210Þ
(iii) locally tangential with the (2s + 1)th order to the equi-measuring function surface in Uðx Þ R n if and only if GðrÞ m ðxk , x Þ ¼ 0, for r ¼ 0, 1, 2, . . . , 2s;
Gð2sþ1Þ ðxk , x Þ > 0 for the external surface, m
ð1:211Þ
Gð2sþ1Þ ðxk , x Þ < 0 for the interior surface: m Proof Using G-function and the Taylor series expansion, the theorem can be proved directly. ∎
References Carr, J.,1981, Applications of Center Manifold Theory, Applied Mathematical Science 35, Springer-Verlag, New York. Coddington, E.A. and Levinson, N., 1955, Theory of Ordinary Differential Equations, New York: McGraw-Hill. Hartman, P., Ordinary Differential Equations, Wiley, New York. (2nd ed. Birkhauser, Boston Basel Stuttgart, 1964). Hirsch, M.W., Smale, S. and Devaney, R.L., 2004, Differential Equations, Dynamical Systems, and An Introduction to Chaos, Amsterdam: Elsevier. Luo, A.C.J., 2008a, A theory for flow switchability in discontinuous dynamical systems, Nonlinear Analysis: Hybrid Systems, 2(4), pp. 1030–1061. Luo, A.C.J., 2008b, Global Transversality, Resonance and Chaotic Dynamics, Singapore: World Scientific. Luo, A.C.J., 2011, Regularity and Complexity in Dynamical Systems, New York: Springer. Luo, A.C.J., 2012, Continuous Dynamical Systems, HEP/L&H Scientific, Beijing/Glen Carbon. Luo, A.C.J., 2019, On stability and bifurcation of equilibriums in nonlinear systems, Journal of Vibration Testing and System Dynamics, 3(2), pp. 147–232. Marsden, J.E. and McCracken, M.F., 1976, The Hopf Bifurcation and Its Applications, Applied Mathematical Science 19, Springer-Verlag, New York.
Chapter 2
Bifurcations of Equilibrium
In this chapter, the hyperbolic bifurcations of equilibriums on the eigenvectors in nonlinear dynamical systems are discussed, and the Hopf bifurcation of an equilibrium on a specific eigenvector plane is presented. Based on the Fourier series base, the transformation for the spiral stability is introduced for the Hopf bifurcation of equilibriums. The Hopf bifurcation of equilibriums in the second-order nonlinear dynamical systems is discussed from the Fourier series transformation.
2.1
Bifurcations
The dynamical characteristics of equilibriums in nonlinear dynamical systems in Eq. (1.4) are based on the given parameters. With varying parameters in dynamical systems, the corresponding dynamical behaviors will change qualitatively. The qualitative switching of dynamical behaviors in dynamical systems is called bifurcation and the corresponding parameter values are called bifurcation values. To understand the qualitative changes of dynamical behaviors of nonlinear systems with parameters in the neighborhood of equilibriums, the bifurcation theory for equilibrium of nonlinear dynamical system in Eq. (1.4) will be presented. Dx() ¼ ∂()/∂x and Dp() ¼ ∂()/∂p will be adopted from now on. For no specific notice, D Dx. Definition 2.1 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point (x, p). Suppose there is a neighborhood of the equilibrium x as U(x) Ω, and in the neighborhood Eq. (1.24) holds. The linearized system of the nonlinear system at the equilibrium point (x, p) is y_ ¼ Dx fðx , pÞy (y ¼ x x) in Eq. (1.19). (i) The equilibrium point ðx0 , p0 Þ is called the switching point of equilibrium solutions if Dxf(x, p) at ðx0 , p0 Þ possesses at least one real eigenvalue (or one pair of complex eigenvalues) with zero real part. © Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_2
59
60
2 Bifurcations of Equilibrium
(ii) The value p0 in Eq. (1.4) is called a switching value of p if the dynamical characteristics at point ðx0 , p0 Þ change from one state into another state. (iii) The equilibrium point ðx0 , p0 Þ is called the bifurcation point of equilibrium solutions if Dxf(x, p) at ðx0 , p0 Þ possesses at least one real eigenvalue (or one pair of complex eigenvalues) with zero real part, and more than one branches of equilibrium solutions appear or disappear. (iv) The value p0 in Eq. (1.4) is called a bifurcation value of p if the dynamical characteristics at point ðx0 , p0 Þ change from one stable state into another unstable state.
2.2
Hyperbolic Bifurcations on Eigenvectors
Definition 2.2 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df (x, p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Suppose one of n independent solutions y ¼ ckvk and y_ ¼ c_k vk , ck ¼ ðvk ÞT y ¼ ðvk ÞT ðx x Þ
ð2:1Þ
c_k ¼ ðvk ÞT y_ ¼ ðvk ÞT x_ ¼ ðvk ÞT fðx, pÞ:
ð2:2Þ
and
In the vicinity of point ðx0 , p0 Þ, (vk)T f(x, p) can be expanded for (0 < θi < 1) and (0 < γ j < 1) with γ ¼ (γ 1, γ 2, . . . ,γ m)T as ðvk ÞT fðx, pÞ ¼ ðvk ÞT fðx0 þ y , p0 þ ΔpÞ ¼ akðkÞ zk þ bTk ðp p0 Þ þ
þ
q mk X X 1 r ðqr, rÞ C q akðj j j Þ zj1 zj2 zjqr ðp p0 Þr 1 2 qr q! q¼2 r¼0 m k þ1 X r¼0
1 ðm þ1r , rÞ ðθ zj1 Þðθ2 zj2 Þ Cr a k ðmk þ 1Þ! mk þ1 kðj1 j2 jmk þ1r Þ 1
ðθmk þ1r zjmk þ1r ÞðγT ðp p0 ÞÞr ,
ð2:3Þ
2.2 Hyperbolic Bifurcations on Eigenvectors
61
where zs ¼ ðvs ÞT y ¼ cs cs ðs ¼ 1; 2; . . . ; nÞ, 0 Δp ¼p p0 ; T
bkT ¼ ðvk Þ ∂p fðx; pÞjðx ;p0 Þ , 0
k T
akðj1 Þ ¼ ðv Þ ∂cj1 fðx; pÞjðx ;p0 Þ 0
k T
¼ ðv Þ ∂x fðx; pÞjðx ;p0 Þ vj1 0
¼ ðr;sÞ akðj j j Þ 1 2 r
ð1Þ Gkðj Þ ðx0 ; p0 Þ, 1 k T
¼ ðv Þ T
ð2:4Þ
ðrÞ ðsÞ ∂cj1 cj2 cjr ∂p fðx; pÞjðx ;p Þ 0 0 ðrÞ ðsÞ
¼ ðvk Þ ∂x ∂p fðx; pÞjðx ;p Þ vj1 vj2 vjr ; 0
ðr;0Þ akðj j j Þ 1 2 r
k T
¼ ðv Þ T
0
ðrÞ ∂cj1 cj2 cjr fðx; pÞjðx ;p Þ 0 0 ðrÞ
¼ ðvk Þ ∂x fðx; pÞjðx ;p0 Þ vj1 vj2 vjr 0
¼
ðrÞ Gkðj j ...j Þ ðx0 ; p0 Þ: 1 2 r
Definition 2.3 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df (x, p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Suppose one of n independent solutions y ¼ ckvk and y_ ¼ c_k vk . For a specific j 6¼ k, equilibrium equation in the vicinity of (x0, p0) is ðvj ÞT fðx0 þ y , p0 þ ΔpÞ ¼ 0 ðor λ0j zj þ bTj ðp p0 Þ 0Þ, ðj ¼ 1, 2, . . . , n but j 6¼ kÞ, λ0j 6¼ 0:
ð2:5Þ
62
2 Bifurcations of Equilibrium
For a specific k, if ak(k) ¼ λ0k ¼ 0 at (x0, p0), equilibrium equation is ðvk ÞT fðx0 þ y , p0 þ ΔpÞ ¼ 0 with λ0k ¼ 0; ð1Þ
ðor Gkðj Þ ðx0 , p0 Þzj1 þ bTk ðp p0 Þ 1
q sk X X 1 r ðqr, rÞ þ C q akðj j j Þ zj1 zj2 . . . zjqr ðp p0 Þr 0Þ 1 2 qr q! q¼2 r¼0
ð2:6Þ
equivalent to z_k ¼ Ak0 ðzk Þsk þ Ak1 ðzk Þsk 1 þ þ Aksk ¼ 0 Aki ¼ Aki ðz1 , z2 , , zk1 , zkþ1 , . . . , zn , pÞ, ði ¼ 0, 1, 2, . . . , sk Þ: Equations (2.5) and (2.6) give lk-equilibrium zk (0 < lk sk) with the eigenvector vk direction.
Plk
i¼1 αi
¼ mk on
(i) If ðr Þ ðx0 , p0 Þ 1 j2 ...jrkÞ
λ0k ¼ 0, Gkðjk ðm Þ
ðx0 , p0 Þzj1 zj2 2 ...jmkÞ
Gkðjk j 1
¼ 0 ðr k ¼ 1, 2, 3, . . . , mk 1Þ,
. . . zjmk > 0,
g
ð2:7Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an increasing saddlenode (or an upper-saddle-node) bifurcation of the (mk)th order on the eigenvector vk. The bifurcation point ðx0 , p0 Þ on the eigenvector vk is an increasing saddle (or an upper saddle) of the (mk)th order. (ii) If ðr Þ ðx0 , p0 Þ 1 j2 ...jrkÞ
λ0k ¼ 0, Gkðjk ðm Þ
Gkðjk j
1 2 ...jmk
¼ 0 ðr k ¼ 1, 2, 3, . . . , mk 1Þ,
jmk j1 j2 < 0, Þ ðx0 , p0 Þz z . . . z
g
ð2:8Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called a decreasing saddlenode (or a lower-saddle-node) bifurcation of the mkth order on the eigenvector vk. The bifurcation point ðx0 , p0 Þ on the eigenvector vk is a decreasing saddle (or a lower saddle) of the mkth order. (iii) If ðr Þ ðx0 , p0 Þ 1 j2 ...jrkÞ
λ0k ¼ 0, Gkðjk ðm Þ
zk Gkðjk j
¼ 0 ðr k ¼ 1, 2, 3, . . . , mk 1Þ,
jmk j1 j2 < 0, Þ ðx0 , p0 Þz z . . . z
1 2 ...jmk
g
ð2:9Þ
2.2 Hyperbolic Bifurcations on Eigenvectors
63
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an (mk)th-order sink bifurcation on the eigenvector vk. The bifurcation point ðx0 , p0 Þ on the eigenvector vk is an (mk)th-order sink. (iv) If ðr Þ ðx0 , p0 Þ 1 j2 ...jr kÞ
λ0k ¼ 0, Gkðjk ðm Þ
zk Gkðjk j
¼ 0 ðr k ¼ 1, 2, 3, . . . , mk 1Þ,
jmk j1 j2 > 0, Þ ðx0 , p0 Þz z . . . z
1 2 ...jmk
g
ð2:10Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an (mk)th-order source bifurcation of the eigenvector vk. The bifurcation point ðx0 , p0 Þ on the eigenvector vk is an (mk)th-order source. Definition 2.5 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df(x, p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Suppose one of n independent solutions y ¼ ckvk and y_ ¼ c_k vk . Consider alα ðlα Þ ¼ λlα 6¼ 0 (l 2 S ¼ {l1, l2, . . . ,lp} and S N ¼ {1, 2, . . . ,n}); the higher order term is ignorable in Eq. (2.3). The p equations for the corresponding directions are ðvlα ÞT fðx0 þ y , p0 þ ΔpÞ ¼ 0, ðor λ0lα zlα þ bTlα ðp p0 Þ 0Þ
ð2:10Þ
ðlα ¼ l1 , l2 , . . . , lp Þ, λ0lα 6¼ 0 and at p ¼ p0, for a specific kα, if akα ðkα Þ ¼ λkα ¼ 0 (kα 2 N\S ¼ {lp + 1, lp + 2, . . . ,ln} N ), the s equations (s ¼ n p) on the corresponding directions are given by ðvkα ÞT fðx0 þ y , p0 þ ΔpÞ ¼ 0 with λ0kα ¼ 0 ð1Þ
ðor Gkα ðj Þ zj1 þ bTk ðp p0 Þ 1
þ
sk X q¼2
q X
1 r ðqr, rÞ C q akα ðj j j Þ zj1 zj2 . . . zjqr ðp p0 Þr 0Þ; 1 2 qr q! r¼0
equivalent to z_kα ¼ Akα 0 ðzkα Þskα þ Akα 1 ðzkα Þsk 1 þ þ Akα skα ¼ 0, Akε i ¼ Akα i ðz1 , z2 , . . . , zk1 , zkþ1 , . . . , zn , pÞ, ði ¼ 0, 1, 2, . . . , skα ;kα ¼ lpþ1 , lpþ2 , . . . , ln Þ:
ð2:11Þ
64
2 Bifurcations of Equilibrium
Pl k α k α Equations (2.10) and (2.11) give lkα -equilibrium zkα with i¼1 αi ¼ mk α ð0 < mkα skα Þ on the eigenvector vkα direction. Such a bifurcation at equilibrium point ðx0 , p0 Þ is called the hyperbolic bifurcation of ðβlpþ1 : βlpþ2 : : βln Þ order on the eigenvectors of vkα (kα ¼ lp + 1, lp + 2, . . ., ln) with βα 2 {2mα, 2mα + 1}. (i) If ðr Þ
λ0kα ¼ 0, Gkαkðjα
1 j2 ...jrk α Þ
ðm Þ
ðx0 , p0 Þ ¼ 0 ðr kα ¼ 1, 2, 3, . . . , mkα 1Þ,
ðx0 , p0 Þzj1 zj2 z mkα > 0 j
Gkα ðjkα j
1 2 ...j2mkα Þ
ðkα 2 flpþ1 , lpþ2 , . . . , ln gÞ,
g
ð2:12Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an increasing saddlenode (or an upper-saddle-node) bifurcation of the ðmkα Þth order on the eigenvector vkα . The bifurcation point ðx0 , p0 Þ on the eigenvector vkα is an increasing saddle (or an upper saddle) of the (mk)th order. (ii) If ðr Þ
λ0kα ¼ 0, Gkαkðjα
1 j2 ...jrk α Þ
ðm Þ
ðx0 , p0 Þ ¼ 0 ðr kα ¼ 1, 2, 3, . . . , mkα 1Þ,
ðx0 , p0 Þzj1 zj2 z mkα < 0 j
Gkα ðjkα j
1 2 ...jmkα Þ
ðkα 2 flpþ1 , lpþ2 , . . . , ln gÞ,
g
ð2:13Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called a decreasing saddlenode (or a lower-saddle-node) bifurcation of the (mk)th order on the eigenvector vkα . The bifurcation point ðx0 , p0 Þ on the eigenvector vkα is a decreasing saddle (or a lower saddle) of the (mk)th order (iii) If ðr Þ
λ0kα ¼ 0, Gkαkðjα
1 j2 ...jrk α Þ
ðm Þ
zkα Gkα ðjkα j
1 2 ...jmkα Þ
ðx0 , p0 Þ ¼ 0 ðr kα ¼ 1, 2, 3, . . . , mkα 1Þ,
ðx0 , p0 Þzj1 zj2 . . . z mkα < 0
ðkα 2 flpþ1 , lpþ2 , . . . , ln gÞ,
j
g
ð2:14Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an ðmkα Þth-order sink bifurcation on the eigenvector vkα . The bifurcation point ðx0 , p0 Þ on the eigenvector vkα is an ðmkα Þth -order sink.
2.2 Hyperbolic Bifurcations on Eigenvectors
65
(iv) If ðr Þ
λ0kα ¼ 0, Gkαkðjα
1 j2 ...jr kα Þ
ðm Þ
ðx0 , p0 Þ ¼ 0 ðr kα ¼ 2, 3, . . . , mkα 1Þ,
ðx0 , p0 Þzj1 zj2 . . . z mkα < 0 j
zkα Gkα ðjkα j
1 2 ...jmkα Þ
ðk α 2 flpþ1 , lpþ2 , . . . , ln gÞ,
g
ð2:15Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an (mk)th-order source bifurcation on the eigenvector vkα . The bifurcation point ðx0 , p0 Þ on the eigenvector vkα is an (mk)th-order source. Definition 2.6 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix Df (x, p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Suppose one of n independent solutions y ¼ ckvk and y_ ¼ c_k vk . Three special cases of bifurcations are defined as follows. (i) Consider λs 6¼ 0 ðs ¼ 1, 2, . . . , n but s 6¼ kÞ
ð2:16Þ
with λs zs þ bTs ðp p0 Þ ¼ 0,
s ¼ 1, 2, . . . , n but s 6¼ k; bTk ðp p0 Þ þ
1 ð0, 2Þ ð1, 1Þ a ðp p0 Þ2 þ akðj Þ ðp p0 Þzj1 1 2! k
1 ð2, 0Þ j1 j2 a z z ¼ 0, 2! kðj1 j2 Þ equivalent to
þ
k 2
z_ ¼ Ak0 ðz Þ þ Ak1 z þ Ak2 ¼ 0; k
k
Aki ¼ Aki ðz1 , z2 , . . . , zk1 , zkþ1 , . . . , zn , pÞ ði ¼ 0, 1, 2Þ; Δk ¼ B2k1 4C k1 0 with Bk1 ¼
Ak1 A , C ¼ k2 , Ak0 k1 Ak0
ð2, 0Þ Ak1 ¼ 0, Ak0 ¼ akðkkÞ 6¼ 0, C1k 0,
g
ð2:17Þ
66
2 Bifurcations of Equilibrium
where ð2;0Þ 1 j2 Þ
akðj
T
ð2Þ
ð0Þ
T
ð2Þ
¼ ðvk Þ ∂cj1 cj2 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂cj1 cj2 fðx; pÞjðx ;p 0
k T
¼ ðv Þ ð1;1Þ
T
0
0
ð2Þ ∂x fðx; pÞðvj1 vj1 Þjðx ;p Þ 0 0
¼
ð1Þ ð1Þ
0Þ
ð2Þ Gkðj j Þ ðx0 ; p0 Þ, 1 2 T
akðj Þ ¼ ðvk Þ ∂cj1 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂x ∂p fðx; pÞvj1 jðx ;p Þ , 1
ð0;2Þ
T
bkT ¼ ðvk Þ ∂p fðx; pÞjðx ;p0 Þ , ak 0
ð2;0Þ
0
0
0
T
0
ð2:18Þ
ð2Þ
¼ ðvk Þ ∂p fðx, pÞ,
ð2Þ
akðkkÞ ¼ GkðkkÞ ðx0 ; p0 Þ 6¼ 0: If Eq. (2.17) has two equilibrium solutions, such a bifurcation at point ðx0 , p0 Þ is called the saddle-node bifurcation on the eigenvector vk. (i1) If ð2, 0Þ ð2Þ λk ¼ 0, akðj j Þ zj1 zj2 ¼ Gkðj j Þ ðx0 , p0 Þzj1 zj2 > 0 1 2
1 2
for j1 , j2 2 f1, 2, . . . , ng
ð2:19Þ
such a bifurcation at point ðx0 , p0 Þ is called an increasing saddle-node (or an upper-saddle-node) switching/appearing bifurcation on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is an increasing saddle (or an upper saddle) on the eigenvector vk. (i2) If ð2, 0Þ ð2Þ λk ¼ 0, akðj j Þ zj1 zj2 ¼ Gkðj j Þ ðx0 , p0 Þzj1 zj2 < 0 1 2
1 2
for j1 , j2 2 f1, 2, . . . , ng;
ð2:20Þ
such a bifurcation at point ðx0 , p0 Þ is called a decreasing saddle-node (or a lower-saddle-node) switching/appearing bifurcation of the second order on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is a decreasing saddle (or a lower saddle) of the second order on the eigenvector vk. (ii) Consider λs 6¼ 0 ðs ¼ 1, 2, . . . , n but s 6¼ kÞ
ð2:21Þ
with λs zs þ bTs ðp p0 Þ ¼ 0, s ¼ 1, 2, . . . , n but s 6¼ k;
ð2:22aÞ
2.2 Hyperbolic Bifurcations on Eigenvectors
bTk ðp p0 Þ þ
1 ð0, 2Þ ð1, 1Þ a ðp p0 Þ2 þ akðj Þ ðp p0 Þzj1 1 2! k
1 ð2, 0Þ j1 j2 a z z ¼ 0, 2! kðj1 j2 Þ equivalent to
þ
z_k ¼ Ak0 ðzk Þ2 þ Ak1 zk þ Ak2 ¼ 0; Aki ¼ Aki ðz1 , z2 , . . . , zk1 , zkþ1 , . . . , zn , pÞ ði ¼ 0, 1, 2Þ; Δk ¼ B2k1 4C k1 0 with Bk1 ¼
67
g
ð2:22bÞ
Ak1 A , C ¼ k2 , Ak0 k1 Ak0
ð2, 0Þ Ak2 ¼ 0, Ak0 ¼ akðkkÞ 6¼ 0, Ak1 2 ð1, 1Þ,
where ð2;0Þ 1 j2 Þ
akðj
T
ð2Þ
ð0Þ
ð2Þ
T
¼ ðvk Þ ∂cj1 cj2 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂cj1 cj2 fðx; pÞjðx ;p 0
0
T
0
ð2Þ
ð2Þ
¼ ðvk Þ ∂x fðx; pÞðvj1 vj2 Þjðx ;p Þ ¼ Gkðj 0
ð1;1Þ
T
0
ð1Þ ð1Þ
1 j2 Þ
0Þ
ðx0 ; p0 Þ,
T
akðj Þ ¼ ðvk Þ ∂cj1 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂cj1 ∂p fðx; pÞjðx ;p0 Þ 1
0
ð2:23Þ
0
0
T
¼ ðvk Þ ∂x ∂p fðx; pÞvj1 jðx ;p Þ 6¼ 0, 0
ð2;0Þ akðkkÞ
¼
ð2Þ GkðkkÞ ðx0 ; p0 Þ
0
6¼ 0:
If Eq. (2.20) has two solutions of equilibriums, such a bifurcation at point ðx0 , p0 Þ is called a saddle-node transcritical (or switching) bifurcation of the second order on the eigenvector of vk. (ii1) If ð2, 0Þ ð2Þ λk ¼ 0, akðj j Þ zj1 zj2 ¼ Gkðj j Þ ðx0 , p0 Þzj1 zj2 < 0 1 2
for j1 , j2 2 f1, 2, , ng,
1 2
ð2:24Þ
such a bifurcation at point ðx0 , p0 Þ is called an increasing transcritical (or an upper-saddle-node) switching bifurcation of the second order on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is an increasing saddle (or an upper saddle) of the second order on the eigenvector vk.
68
2 Bifurcations of Equilibrium
(ii2) If ð2, 0Þ ð2Þ λk ¼ 0, akðj j Þ zj1 zj2 ¼ Gkðj j Þ ðx0 , p0 Þzj1 zj2 > 0 1 2
ð2:25Þ
1 2
for j1 , j2 2 f1, 2, . . . , ng; such a bifurcation at point ðx0 , p0 Þ is called a decreasing transcritical (or a lower-saddle-node) switching bifurcation of the second order on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is a decreasing saddle (or a lower saddle) of the second order on the eigenvector vk. (iii) Consider λs 6¼ 0 ðs ¼ 1, 2, . . . , n but s 6¼ kÞ
ð2:26Þ
with λs zs þ bTs ðp p0 Þ ¼ 0, s ¼ 1, 2, . . . , n but s 6¼ k; ðvk ÞT fðx0 þ y , p0 þ ΔpÞ ¼ 0 with λ0k ¼ 0; q 3 P P 1 r ðqr, rÞ Cq akðj j j Þ zj1 zj2 . . . zjqr ðp p0 Þr þ bTk ðp p0 Þ 0 1 2 qr q! q¼2 r¼0
equivalent to z_k ¼ Ak0 ðzk Þ3 þ Ak1 ðzk Þ2 þ Ak2 zk þ Ak3 ¼ 0, Aki ¼ Aki ðz1 , z2 , . . . , zk1 , zkþ1 , . . . , zn , pÞ ði ¼ 0, 1, 2, 3Þ; ð3, 0Þ Ak3 ¼ Ak1 ¼ 0, Ak0 ¼ akðkkkÞ 6¼ 0, Ak2 Ak0 < 0,
g
ð2:27Þ
where ð3;0Þ 1 j2 j3 Þ
akðj
T
ð3Þ
ð0Þ
T
ð3Þ
¼ ðvk Þ ∂cj1 cj2 cj3 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂cj1 cj2 cj3 fðx; pÞjðx ;p 0
k T
¼ ðv Þ ð1;1Þ
T
0
ð3Þ ∂x fðx; pÞðvj1 vj2 vj3 Þjðx ;p Þ 0 0 ð1Þ ð1Þ
0
¼ T
akðj Þ ¼ ðvk Þ ∂cj1 ∂p fðx; pÞjðx ;p Þ ¼ ðvk Þ ∂cj1 ∂p fðx; pÞjðx ;p0 Þ 1
0
0
T
¼ ðvk Þ ∂x ∂p fðx; pÞvj1 jðx ;p Þ , 0
ð3;0Þ akðkkkÞ
¼
ð3Þ GkðkkkÞ ðx0 ; p0 Þ
6¼ 0:
0
0Þ
ð3Þ Gkðj j j Þ ðx0 ; p0 Þ, 1 2 3
0
ð2:28Þ
2.3 Hopf Bifurcation on an Eigenvector Plane
69
If Eq. (2.27) has three solutions, such a bifurcation at point ðx0 , p0 Þ is called the pitchfork-appearing bifurcation on the eigenvector of vk. (iii1) If ð3, 0Þ ð3Þ λk ¼ 0, zk akðj j j Þ zj1 zj2 zj3 ¼ zk Gkðj j
1 2 j3 Þ
1 2 3
ðx0 , p0 Þzj1 zj2 zj3 < 0
ð2:29Þ
for j1 , j2 , j3 2 f1, 2, . . . , ng,
such a bifurcation at point ðx0 , p0 Þ is called a stable pitchfork bifurcation of the third order (or a third-order sink) on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is a third-order sink on the eigenvector vk. (iii2) If ð3, 0Þ ð3Þ λk ¼ 0, zk akðj j j Þ zj1 zj2 zj3 ¼ zk Gkðj j
1 2 j3 Þ
1 2 3
ðx0 , p0 Þzj1 zj2 zj3 > 0
for j1 , j2 , j3 2 f1, 2, . . . , ng,
ð2:30Þ
such a bifurcation at point ðx0 , p0 Þ is called an unstable pitchfork bifurcation of the third order (or a third-order source) on the eigenvector vk. The bifurcation point at ðx0 , p0 Þ is a third-order source on the eigenvector vk.
2.3
Hopf Bifurcation on an Eigenvector Plane
Definition 2.7 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr (r 1)continuous in a neighborhood of the equilibrium x. The corresponding solution is x (t) ¼ Φ(x0, t t0, p). Suppose U(x) Ω is a neighborhood of equilibrium x. For a linearized dynamical system in Eq. (1.19), consider a pair of complex eigenvalue pffiffiffiffiffiffiffi αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n}, i ¼ 1) of matrix Df(x, p) with a pair of eigenvectors v2k 1 iv2k. On the invariant plane of (v2k 1, v2k), T
c2k1 ¼ ðv2k1 Þ y, c2k ¼ ðv2k ÞT y,
ð2:31Þ
with Dx f v2k1 ¼ αk v2k1 βk v2k , Dx f v2k ¼ βk v2k1 þ αk v2k , and
ð2:32Þ
70
2 Bifurcations of Equilibrium
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρk ¼ ðc2k1 Þ2 þ ðc2k Þ2 , c2k1 ¼ ρk cos θk , c2k ¼ ρk sin θk ,
ð2:33Þ
and c_2k1 ¼ Gð2k1Þ ðx, pÞ ¼ ðv2k1 ÞT fðx, pÞ, c_2k ¼ Gð2kÞ ðx, pÞ ¼ ðv2k ÞT fðx, pÞ,
ð2:34Þ
where Gð2k1Þ ðx, pÞ ¼ ðv2k1 ÞT fðx, pÞ ¼ aTð2k1Þ ðp p0 Þ þ að2k1Þð2k1Þ z2k1 þ að2k1Þð2kÞ z2k þ
q m X X 1 r ðqr, rÞ C q að2k1Þðj j j Þ ðx , p0 Þzj1 zj2 . . . zjqr ðp p0 Þr 1 2 qr q! q¼2 r¼0
þ
mþ1 X 1 ðmþ1r, rÞ Cr a ðx , p0 Þzj1 zj2 . . . zjmþ1r ðp p0 Þr , ðm þ 1Þ! r¼0 mþ1 ð2k1Þðj1 j2 jmþ1r Þ
Gð2kÞ ðx, pÞ ¼ ðv2k ÞT fðx, pÞ ¼ aTð2kÞ ðp p0 Þ þ að2kÞð2k1Þ z2k1 þ að2kÞð2kÞ z2k þ
q m X X 1 r ðqr, rÞ C q að2kÞðj j j Þ ðx , p0 Þzj1 zj2 . . . zjqr ðp p0 Þr 1 2 qr q! q¼2 r¼0
þ
mþ1 X 1 ðmþ1r, rÞ Cr a ðx , p0 Þzj1 zj2 . . . zjmþ1r ðp p0 Þr , ðm þ 1Þ! r¼0 mþ1 ð2kÞðj1 j2 jmþ1r Þ
ð2:35Þ
and ðrk , sk Þ að2k1Þðj
1 j2 jr k Þ
ðx , pÞ ¼ ðv2k1 ÞT ∂
ðrk Þ j cj1 cj2 c rk
ðs Þ
∂p k fðx , pÞ
ðr Þ ðs Þ
¼ ðv2k1 ÞT ∂x k ∂p k fðx , pÞvj1 vj2 . . . vjrk , ðr k , sk Þ að2kÞðj j
1 2 jr k Þ
ðx , pÞ ¼ ðv2k ÞT ∂
ðrk Þ j cj1 cj2 c rk
ðs Þ
∂p k fðx , pÞ
ðr Þ ðs Þ
¼ ðv2k ÞT ∂x k ∂p k fðx , pÞvj1 vj2 . . . vjrk ; aTð2k1Þ ¼ ðv2k1 ÞT ∂p fðx, pÞ, aTð2kÞ ¼ ðv2k ÞT ∂p fðx, pÞ;
ð2:36Þ
2.3 Hopf Bifurcation on an Eigenvector Plane
71
að2k1Þð2k1Þ ¼ ðv2k1 ÞT ∂x fðx, pÞv2k1 , að2k1Þð2kÞ ¼ ðv2k1 ÞT ∂x fðx, pÞv2k ;
ð2:37Þ
að2kÞð2k1Þ ¼ ðv2k ÞT ∂x fðx, pÞv2k1 , að2kÞð2kÞ ¼ ðv2k ÞT ∂x fðx, pÞv2k : Thus ρ_ k ¼ c_
2k1
qk 1 X X 1 ðqk rk , rk Þ cos θk þ c_ sin θk ¼ G q ! ρk q ¼1 r ¼0 k 2k
k
k
ð1, 1Þ ¼ ðαk þ aρ ðkÞ ðθk , p0 Þ ðp p0 ÞÞρk k q 1 X X 1 ðqr, rÞ þ aρ ðj j Þ ðθk , p0 Þzj1 . . . zjqr ðp p0 Þr , k 1 qr q! q¼2 r¼0 q 1 X X 1 ðqk rk , rk Þ 2k 2k1 _ _ ð c cos θ c sin θ Þ ¼ G θ_ k ¼ ρ1 k k k q ! θk qk ¼1 rk ¼0 k
ð2:38Þ
ð1, 1Þ ¼ βk þ aθk ðkÞ ðθk , p0 Þ ðp p0 Þ
þ
q 3 1 X X 1 ðqr, rÞ a ðθ , p Þzj1 . . . zjqr ðp p0 Þr , ρk q¼2 r¼0 q! θk ðj1 jqr Þ k 0
where ðs, rÞ Gρðsk, rÞ ¼ aρ ðj j k
1 2 js Þ
zj1 zj2 . . . zjs ðp p0 Þr ,
1 ðs, rÞ ðs, rÞ Gθk ¼ aθk ðj j j Þ zj1 zj2 . . . zjs ðp p0 Þr 1 2 s ρk
ð2:39Þ
ðsummation of j1 , j2 , . . . , js Þ, and ðs, rÞ aρ ðj j
ðs, rÞ ¼ cos θk að2k1Þðj
ðs, rÞ aθk ðj j
ðs, rÞ ¼ sin θk að2k1Þðj
k
1 2 js Þ 1 2 js Þ
1 j2 js Þ
1 j2
ðs, rÞ ðx , pÞ þ sin θk ðað2kÞðj
1 j2 js Þ
ðs, rÞ j Þ ðx , pÞ þ cos θ k ðað2kÞðj s
1 j2
ðx , pÞ,
j Þ ðx , pÞ:
ð2:40Þ
s
Definition 2.8 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a real eigenvalue λk of matrix
72
2 Bifurcations of Equilibrium
Df(x, p) (k 2 N ¼ {1, 2, . . . ,n}) with an eigenvector vk. Suppose one of n independent solutions y ¼ ckvk and y_ ¼ c_k vk . Consider as(s) ¼ λs 6¼ 0 (s 2 S ¼ {1, 2, . . . ,p} and S N ¼ {1, 2, . . . ,n}); the higher order term is ignorable in Eq. (2.3). The p equations for the corresponding directions are λsα zsα þ bTsα ðp p0 Þ ¼ 0
ð2:41Þ
λsα 6¼ 0 ðsα ¼ 1, 2, . . . , pÞ:
For p ffiffiffiffiffiffiaffi pair of complex eigenvalues αkα iβkα (2kα 1, 2kα 2 N ¼ {1, 2, . . . ,n}, i ¼ 1 ) of matrix Df(x , p) with a pair of eigenvectors v2kα 1 iv2kα . On the invariant plane of ðv2kα 1 , v2kα Þ and at p ¼ p0, for a specific kα, if akα ðkα Þ ¼ αkα ¼ 0 (kα 2 N=S ¼ f12 p þ 1, 12 p þ 2, . . . , 12 ng N), the s-paired equations (s ¼ (n p)/2) on the corresponding directions are given by ð1, 1Þ ðθkα , p0 Þ kα ðk α Þ
0 ¼ ðαkα þ aρ þ
ðp p0 ÞÞρkα
mkα X q X 1 ðqr, rÞ aρ ðj j Þ ðθkα , p0 Þzj1 . . . zjqr ðp p0 Þr , kα 1 qr q! q¼2 r¼0
equivalent to ρ_ kα ¼ Akα 0 ðρkα Þmkα þ Akα 1 ðρkα Þmkα 1 þ þ Akα mα ¼ 0, Akα i ¼ Akα i ðz1 , z2 , . . . , z2kα 2 , z2kα þ1 , . . . , zn , θkα , p0 Þ ði ¼ 0, 1, 2, . . . , mkα Þ, ð1, 1Þ θ_ kα ¼ βkα þ aθk ðkα Þ ðθkα , p0 Þ ðp p0 Þ
g
mk α X q 1 X 1 ðqr, rÞ þ ðθ , p Þzj1 . . . zjqr ðp p0 Þr , a ρkα q¼2 r¼0 q! θkα ðj1 jqr Þ kα 0
equivalent to 1 θ_ kα ¼ ½B ðρ Þmkα þ Bkα 1 ðρkα Þmkα þ þ Bkα mα , ρk α k α 0 k α Bkα i ¼ Bkα i ðz , z , . . . , z 1
2
2k α 2
,z
2k α þ1
ði ¼ 0, 1, 2, . . . , mkα Þ, 1 1 1 ðk α ¼ p þ 1, p þ 2, . . . , nÞ 2 2 2
, . . . , z , θ k α , p0 Þ n
g
ð2:42Þ
2.3 Hopf Bifurcation on an Eigenvector Plane
73
with ðmkα , 0Þ ðθkα , p0 Þzj1 kα ðj1 jmk Þ
kαÞ Gðm ¼ aρ ρk α
α
j
. . . z mkα 6¼ 0:
ð2:43Þ
Equations (2.41)–(2.43) possess lkα -branch spiral equilibriums x with Plkα kα i¼1 αi ¼ mkα ð0 < lkα mk αÞ. Such lk α -branch solutions are called the bifurcation solutions of equilibrium x on the eigenvector of vk in the neighborhood of ðx0 , p0 Þ. Such a bifurcation at point ðx0 , p0 Þ is called the Hopf bifurcation of ðm12pþ1 : m12pþ2 : : m12n Þ order on the eigenvector of ðv2kα 1 , v2kαÞ. (i) If kαÞ αkα ¼ 0, Gðr ¼ 0 ðr kα ¼ 2, 3, . . . , mkα 1Þ, ρk α
Gρðmk kαÞ α
¼
ðm , 0Þ j aρ kðjα j Þ ðθkα , p0 Þzj1 z mkα kα 1 mα
>0
1 1 1 ðk α 2 f p þ 1, p þ 2, . . . , ngÞ, 2 2 2
g
ð2:44Þ
(i1) The bifurcation of equilibrium x at point ðx0 , p0 Þ is called the source Hopf bifurcation of the ð2lkα þ 1Þth order on the eigenvector plane of ðv2kα 1 , v2kα Þ if mkα ¼ 2lkα þ 1. The bifurcation point ðx0 , p0 Þ on the eigenvector plane of ðv2kα 1 , v2kα Þ is the ð2lkα þ 1Þth-order source. (i2) The bifurcation of equilibrium x at point ðx0 , p0 Þ is called the upper-saddle Hopf bifurcation of the ð2lkα Þth order on the eigenvector plane of ðv2kα 1 , v2kα Þ if mkα ¼ 2lkα : The bifurcation point ðx0 , p0 Þ on the eigenvector plane of ðv2kα 1 , v2kα Þ is the ð2lkα Þth-order upper saddle. (ii) If αkα ¼ 0, GρðrkkαÞ ¼ 0 ðr kα ¼ 2, 3, . . . , mkα 1Þ α
Gρðmk kαÞ α
¼
ðm , 0Þ j aρ kðjα j Þ ðθkα , p0 Þzj1 z mkα kα 1 mα
1 1 1 ðk α 2 f p þ 1, p þ 2, . . . , ngÞ, 2 2 2
0, k
1 2 3
ð2:51Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called an unstable Hopf bifurcation of the third order on the eigenvector plane of (v2k 1, v2k). The bifurcation point ðx0 , p0 Þ on the eigenvector plane of (v2k 1, v2k) is a thirdorder source. (ii) If ð3, 0Þ j1 j2 j3 Gð3Þ ρk ¼ aρ ðj j j Þ ðθ k , p0 Þz z z < 0, k
1 2 3
ð2:52Þ
the bifurcation of equilibrium x at point ðx0 , p0 Þ is called a stable Hopf bifurcation of the third order on the eigenvector plane of (v2k 1, v2k). The bifurcation point ðx0 , p0 Þ on the eigenvector plane of (v2k 1, v2k) is a thirdorder sink.
2.4
Hopf Bifurcation Based on the Fourier Series Base
In the traditional Hopf bifurcation analysis, it is very difficult to determine the limit cycle and stability. As in Luo (2019), an alternative method was presented herein.
76
2 Bifurcations of Equilibrium
Definition 2.10 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalues αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n},i ¼ 1) of matrix Df(x, p) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of x, there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:53Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.128). The corresponding dynamical system of j!1
coefficients is a_ 0 ¼ F0 ða0 , b, cÞ, b_ ¼ βk kc þ Fc ða0 , b, cÞ,
ð2:54Þ
c_ ¼ βk kb þ F ða0 , b, cÞ s
with Eqs. (1.131) and (1.132). If Eq. (2.54) has a nonzero solution, i.e., ða0 , b , c Þ 6¼ 0,
ð2:55Þ
then in the vicinity of equilibrium x, there is a bifurcation solution of equilibriumx. (i) The point ðx0 , p0 Þ is called a hyperbolic bifurcation of the equilibrium (x, p) if a0 ðx , pÞ 6¼ 0 and
lim
ðx , pÞ!ðx0 , p0 Þ,
a0 ðx , pÞ ¼ 0;
A ðx , pÞ ¼ 0 ðor b ðx , pÞ ¼ 0, c ðx , pÞ ¼ 0Þ
ð2:56Þ
or βk ¼ 0: The new equilibrium x ¼ x þ a0 ðx , pÞ
ð2:57Þ
is called the bifurcation branch of the equilibrium (x, p). If there are l new branches of equilibrium points x , such a bifurcation is called the l-branch bifurcation of the equilibrium x. (i1) For l ¼ 1, the bifurcation at the point ðx0 , p0 Þ is called a transcritical bifurcation of the equilibrium x if x is linear with parameter p.
2.4 Hopf Bifurcation Based on the Fourier Series Base
77
(i2) For l ¼ 1, the bifurcation at the point ðx0 , p0 Þ is called a saddle-node bifurcation of the equilibrium x if x and x are parabolic with parameter p. (i3) For l ¼ 2, the bifurcation at the point ðx0 , p0 Þ is called a pitchfork bifurcation of the equilibrium x if two new equilibriums x and x form a pitchfork. (i4) For l ¼ 2m 1, the bifurcation at the point ðx0 , p0 Þ is called a (2m)th-order transcritical bifurcation of the equilibrium x if x is a (2m)th-order inflexion point at ðx0 , p0 Þ with parameter p. (i5) For l ¼ 2m 1, the bifurcation at the point ðx0 , p0 Þ is called a (2m)th-order saddle-node bifurcation of the equilibrium x if the (2m 1) branches of x and x are parabolic-alike of the (2m)th order with parameter p. (i6) For l ¼ 2m, the bifurcation at the point ðx0 , p0 Þ is called a (2m + 1)th-order pitchfork bifurcation of the equilibrium x if the (2m) branch of x and x forms a (2m + 1)th-order pitchfork with (2m + 1) branches. (ii) The point ðx0 , p0 Þ is called a Hopf bifurcation of the equilibrium (x, p) if a0 ðx , pÞ 6¼ 0 and
lim
a0 ðx , pÞ ¼ 0;
lim
A ðx , pÞ ¼ 0:
ðx , pÞ!ðx0 , p0 Þ,
A ðx , pÞ 6¼ 0 and
ðx , pÞ!ðx0 , p0 Þ,
ð2:58Þ
The periodic motion near the equilibrium (x, p), xðtÞ ¼ x þ a0 ðx , pÞ þ
N X
bj ðx , pÞ cos ðjβk tÞ þ cj ðx , pÞ sin ðjβk tÞ
ð2:59Þ
j¼1
is called the limit cycle (or periodic motion) near the equilibrium (x, p). Definition 2.11 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalues αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n},i ¼ 1) of matrix Df(x, p) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of x, there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:60Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.128). The corresponding dynamical system of j!1
coefficients is
78
2 Bifurcations of Equilibrium
a_ 0 ¼ F0 ða0 , b, cÞ, b_ ¼ βk kc þ Fc ða0 , b, cÞ, c_ ¼ βk kb þ Fs ða0 , b, cÞ
ð2:61Þ
with Eqs. (1.131) and (1.132). If the equilibrium of Eq. (2.61) has a nonzero solution, i.e., ða0 , b , c Þ 6¼ 0,
ð2:62Þ
the new steady-state motion or equilibrium is x ¼ x þ y ¼ x þ a0 þ
N X
bj cos ðjβk tÞ þ cj sin ðjβk tÞ:
ð2:63Þ
j¼1
1. The new solution x is stable if lim ka0 ðtÞ a0 k ¼ 0, lim kbðtÞ b k ¼ 0, lim kcðtÞ c k ¼ 0
t!1
t!1
t!1
ðor lim ka0 ðtÞ a0 k ¼ 0, lim kAðtÞ A k ¼ 0Þ: t!1
ð2:64Þ
t!1
2. The new solution x is unstable if lim ka0 ðtÞ a0 k ¼ 1, or lim kbðtÞ b k ¼ 1, or lim kcðtÞ c k ¼ 1
t!1
t!1
t!1
ðor lim ka0 ðtÞ a0 k ¼ 1, or lim kAðtÞ A k ¼ 1Þ: t!1
t!1
ð2:65Þ 3. The new equilibrium x ¼ x þ a0 is stable if lim ka0 ðtÞ a0 k ¼ 0, bðtÞ ¼ b ¼ 0, cðtÞ ¼ c ¼ 0:
t!1
ð2:66Þ
4. The new equilibrium x is unstable if lim ka0 ðtÞ a0 k ¼ 0, bðtÞ ¼ b ¼ 0, cðtÞ ¼ c ¼ 0:
t!1
ð2:67Þ
Definition 2.12 Consider an n-dimensional, autonomous, nonlinear dynamical system x_ ¼ fðx, pÞ in Eq. (1.4) with an equilibrium point x and f(x, p) is Cr-continuous (r 1) in a neighborhood of the equilibrium x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.24) holds in U(x) Ω. For a linearized dynamical system in Eq. (1.19), consider a pair of pffiffiffiffiffiffiffi complex eigenvalues αk iβk (2k 1, 2k 2 N ¼ {1, 2, . . . ,n}, i ¼ 1) of matrix
2.4 Hopf Bifurcation Based on the Fourier Series Base
79
Df(x, p) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of x, there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:68Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.128). The corresponding dynamical system of j!1
coefficients is a_ 0 ¼ F0 ða0 , b, cÞ, b_ ¼ βk kc þ Fc ða0 , b, cÞ,
ð2:69Þ
c_ ¼ βk kb þ Fs ða0 , b, cÞ with Eqs. (1.131) and (1.132). The equivalent equation of Eq. (2.69) is z_ ¼ gðzÞ
ð2:70Þ
z ¼ ða0 , b, cÞT , g ¼ ðF0 , Fc , Fs ÞT :
ð2:71Þ
where
If the equilibrium of Eq. (2.70) has a nonzero solution, i.e., z 6¼ 0 ) ða0 , b , c Þ 6¼ 0,
ð2:72Þ
and in a neighborhood of z the linearized equation with Δz ¼ z z is Δ_z ¼ Dgðz ÞΔz,
ð2:73Þ
then the eigenvalues of Dg(z) determined by j Dgðz Þ λInð2Nþ1Þ nð2Nþ1Þ j¼ 0
ð2:74Þ
yield the stability of the steady-state motion xðtÞ and equilibrium x of ðn1 : n2 : n3 jn4 : n5 : n6 Þ
ð2:75Þ
accordingly for Σ6r¼1 nr ¼ nð2N þ 1Þ and Σ6r¼1 nr ¼ n. The periodic motion xðtÞ generated by the Hopf bifurcation of the equilibrium x is determined as follows:
80
2 Bifurcations of Equilibrium
(i) If Reλl < 0 (l ¼ 1, 2, . . ., n(2N + 1)), the periodic motion xðtÞ near the equilibrium x is stable. (ii) If Reλl > 0 (l 2 {1, 2, . . . ,n(2N + 1)}), the periodic motion xðtÞ near the equilibrium x is unstable. (iii) The boundary between the stable and unstable periodic motions xðtÞ is determined by the higher singularity. The equilibrium x generated by the hyperbolic bifurcation of the equilibrium x is determined as follows: (iv) If Reλl < 0 (l ¼ 1, 2, . . ., n), the equilibrium x ¼ x þ a0 is stable. (v) If Reλl > 0 (l 2 {1, 2, . . . ,n}), the equilibrium x ¼ x þ a0 is unstable. (vi) The boundary between the stable and unstable equilibrium x ¼ x þ a0 is determined by the higher singularity.
2.5
Hopf Bifurcations in Second-Order Nonlinear Systems
In this section, the Hopf bifurcation of equilibrium for the second-order dynamical systems will be discussed through the finite Fourier series transformation as in Luo (2019). Definition 2.13 Consider a 2n-dimensional, autonomous, nonlinear dynamical _ pÞ in Eq. (1.146) with an equilibrium point (x, 0) and fðx, x, _ pÞ system € x ¼ fðx, x, r is C -continuous (r 1) in a neighborhood of the equilibrium (x, 0) (i.e., U(x, 0) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.148) holds in U(x, 0) Ω. For a linearized dynamical system in Eq. (1.149), consider a pair of complex eigenvalues αk iβk (2k 1, pffiffiffiffiffiffiffi 2k 2 N ¼ {1, 2, . . . ,2n}, i ¼ 1) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of (x, 0), there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:76Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.152). The corresponding dynamical system of j!1
coefficients is _ c_ Þ, € a0 ¼ F0 ða0 , b, c, a_ 0 , b, € ¼ 2βk k1 c_ þ β2 k2 b þ Fc ða0 , b, c, a_ 0 , b, _ c_ Þ, b k
_ c_ Þ €c ¼ 2βk k1 b_ þ β2k k2 c þ Fs ða0 , b, c, a_ 0 , b,
with Eqs. (1.155) and (1.156). The equilibrium of Eq. (2.77) is given by
ð2:77Þ
2.5 Hopf Bifurcations in Second-Order Nonlinear Systems
81
0 ¼ F0 ða0 , b , c , 0, 0, 0Þ, 0 ¼ β2k k2 b þ Fc ða0 , b , c , 0, 0, 0Þ, 0¼
β2k k2 c
þF
s
ð2:78Þ
ða0 , b , c , 0, 0, 0Þ:
If Eq. (2.78) has a nonzero solution, i.e., ða0 , b , c Þ 6¼ 0,
ð2:79Þ
then in the vicinity of equilibrium x, there is a bifurcation solution of equilibrium x. (i) The point ðx0 , p0 Þ is called a hyperbolic bifurcation of the equilibrium (x, p) if a0 ðx , pÞ 6¼ 0 and
lim
ðx , pÞ!ðx0 , p0 Þ,
a0 ðx , pÞ ¼ 0;
A ðx , pÞ ¼ 0 ðor b ðx , pÞ ¼ 0, c ðx , pÞ ¼ 0Þ
ð2:80Þ
or βk ¼ 0: The new equilibrium x ¼ x þ a0 ðx , pÞ
ð2:81Þ
is called a bifurcation branch of the equilibrium (x, p). If there are l new branches of equilibrium points x , such a bifurcation is called an l-branch bifurcation of the equilibrium x. (i1) For l ¼ 1, the bifurcation at the point ðx0 , p0 Þ is called a transcritical bifurcation of the equilibrium x if x is linear with parameter p. (i2) For l ¼ 1, the bifurcation at the point ðx0 , p0 Þ is called a saddle-node bifurcation of the equilibrium x if x and x are parabolic with parameter p. (i3) For l ¼ 2, the bifurcation at the point ðx0 , p0 Þ is called a pitchfork bifurcation of the equilibrium x if two new equilibriums x and x form a pitchfork. (i4) For l ¼ 2m 1, the bifurcation at the point ðx0 , p0 Þ is called the (2m)th-order transcritical bifurcation of the equilibrium x if x is a (2m)th-order inflexion point at ðx0 , p0 Þ with parameter p. (i5) For l ¼ 2m 1, the bifurcation at the point ðx0 , p0 Þ is called a (2m)th-order saddle-node bifurcation of the equilibrium x if the (2m 1) branches of x and x are parabolic-alike of the (2m)th order with parameter p. (i6) For l ¼ 2m, the bifurcation at the point ðx0 , p0 Þ is called a (2m + 1)th-order pitchfork bifurcation of the equilibrium x if the (2m) branch of x and x forms a (2m + 1)th-order pitchfork with (2m + 1) branches.
82
2 Bifurcations of Equilibrium
(ii) The point ðx0 , p0 Þ is called a Hopf bifurcation of the equilibrium (x, p) if a0 ðx , pÞ 6¼ 0 and
lim
a0 ðx , pÞ ¼ 0;
lim
A ðx , pÞ ¼ 0:
ðx , pÞ!ðx0 , p0 Þ,
A ðx , pÞ 6¼ 0 and
ðx , pÞ!ðx0 , p0 Þ,
ð2:82Þ
The periodic motion near the equilibrium (x, p), xðtÞ ¼ x þ a0 ðx , pÞ þ
N X
bj ðx , pÞ cos ðjβk tÞ þ cj ðx , pÞ sin ðjβk tÞ,
ð2:83Þ
j¼1
is called the limit cycle (or periodic motion) near the equilibrium (x, p). Definition 2.14 Consider a 2n-dimensional, autonomous, nonlinear dynamical _ pÞ in Eq. (1.146) with an equilibrium point (x, 0) and fðx, x, _ pÞ system € x ¼ fðx, x, r is C -continuous (r 1) in a neighborhood of the equilibrium (x, 0) (i.e., U(x, 0) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.148) holds in U(x, 0) Ω. For a linearized dynamical system in Eq. (1.149), consider a pair of complex eigenvalues αk iβk (2k 1, pffiffiffiffiffiffiffi 2k 2 N ¼ {1, 2, . . . ,2n}, i ¼ 1) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of (x, 0), there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:84Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.152). The corresponding dynamical system of j!1
coefficients is _ c_ Þ, € a0 ¼ F0 ða0 , b, c, a_ 0 , b, € ¼ 2βk k1 c_ þ β2 k2 b þ Fc ða0 , b, c, a_ 0 , b, _ c_ Þ, b k
ð2:85Þ
_ c_ Þ €c ¼ 2βk k1 b_ þ β2k k2 c þ Fs ða0 , b, c, a_ 0 , b, with Eqs. (1.155) and (1.156). If the equilibrium of Eq. (2.85) has a nonzero solution, i.e., ða0 , b , c Þ 6¼ 0,
ð2:86Þ
the new steady-state motion or equilibrium is x ¼ x þ y ¼ x þ a0 þ
N X j¼1
bj cos ðjβk tÞ þ cj sin ðjβk tÞ:
ð2:87Þ
2.5 Hopf Bifurcations in Second-Order Nonlinear Systems
83
(i) The new solution x is stable if lim ka0 ðtÞ a0 k ¼ 0, lim kbðtÞ b k ¼ 0, lim kcðtÞ c k ¼ 0
t!1
t!1
ðor lim ka0 ðtÞ t!1
a0 k
t!1
¼ 0, lim kAðtÞ A k ¼ 0Þ:
ð2:88Þ
t!1
(ii) The new solution x is unstable if lim ka0 ðtÞ a0 k ¼ 1, or lim kbðtÞ b k ¼ 1, or lim kcðtÞ c k ¼ 1
t!1
t!1
ðor lim ka0 ðtÞ t!1
a0 k
t!1
¼ 1, or lim kAðtÞ A k ¼ 1Þ: t!1
ð2:89Þ (iii) The new equilibrium x ¼ x þ a0 is stable if lim ka0 ðtÞ a0 k ¼ 0, bðtÞ ¼ b ¼ 0, cðtÞ ¼ c ¼ 0:
t!1
ð2:90Þ
(iv) The new equilibrium x ¼ x þ a0 is unstable if lim ka0 ðtÞ a0 k ¼ 1, bðtÞ ¼ b ¼ 0, cðtÞ ¼ c ¼ 0:
t!1
ð2:91Þ
Definition 2.15 Consider a 2n-dimensional, autonomous, nonlinear dynamical _ pÞ in Eq. (1.146) with an equilibrium point (x, 0) and fðx, x, _ pÞ system € x ¼ fðx, x, r is C (r 1)-continuous in a neighborhood of the equilibrium (x, 0) (i.e., U(x, 0) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Suppose Eq. (1.148) holds in U(x, 0) Ω. For a linearized dynamical system in Eq. (1.149), consider a pair of complex eigenvalues αk iβk (2k 1, pffiffiffiffiffiffiffi 2k 2 N ¼ {1, 2, . . . ,2n}, i ¼ 1) with a pair of eigenvectors v2k 1 iv2k. In the vicinity of (x, 0), there exists a transformation of x ¼ x þ y ¼ x þ a0 ðtÞ þ
N X
bj ðtÞ cos ðjβk tÞ þ cj ðtÞ sin ðjβk tÞ
ð2:92Þ
j¼1
under lim kAj k ¼ 0 with Eq. (1.152). The corresponding dynamical system of j!1
coefficients is _ c_ Þ, € a0 ¼ F0 ða0 , b, c, a_ 0 , b, € ¼ 2βk k1 c_ þ β2 k2 b þ Fc ða0 , b, c, a_ 0 , b, _ c_ Þ, b k _ c_ Þ €c ¼ 2βk k1 b_ þ β2k k2 c þ Fs ða0 , b, c, a_ 0 , b,
ð2:93Þ
84
2 Bifurcations of Equilibrium
with Eqs. (1.155) and (1.156). The equivalent equation of Eq. (2.93) is €z ¼ gðz, z_ Þ
ð2:94Þ
_ c_ ÞT , g ¼ ðF0 , Fc , Fs ÞT : z ¼ ða0 , b, cÞT , z_ ¼ ða_ 0 , b,
ð2:95Þ
where
The equivalent first-order equation of Eq. (2.94) is u_ ¼ fðuÞ
ð2:96Þ
u ¼ ðz, z_ ÞT ;f ¼ ð_z, gÞT :
ð2:97Þ
where
If the equilibrium of Eq. (2.94) has a nonzero solution, i.e., z 6¼ 0 ) ða0 , b , c Þ 6¼ 0,
ð2:98Þ
and in a neighborhood of u the linearized equation with Δu ¼ u u is Δu_ ¼ Dfðu ÞΔu
ð2:99Þ
with
Dfðu Þ ¼
0nð2Nþ1Þ nð2Nþ1Þ
Inð2Nþ1Þ nð2Nþ1Þ
Gnð2Nþ1Þ nð2Nþ1Þ
Hnð2Nþ1Þ nð2Nþ1Þ
ð2:100Þ
and ∂g ∂g ,H ¼ G¼ ∂z u ∂_z u
ð2:101Þ
then the eigenvalues of Dfðu Þ determined by j Dfðu Þ λI2nð2Nþ1Þ 2nð2Nþ1Þ j¼ 0
ð2:102Þ
yield the stability of the steady-state motion xðtÞ and equilibrium x of ðn1 : n2 : n3 jn4 : n5 : n6 Þ accordingly for Σ6r¼1 nr ¼ 2nð2N þ 1Þ.
ð2:103Þ
Reference
85
The periodic motion xðtÞ generated by the Hopf bifurcation of the equilibrium x is determined as follows: (i) If Reλl < 0 (l ¼ 1, 2, . . ., 2n(2N + 1)), the periodic motion xðtÞ near the equilibrium x is stable. (ii) If Reλl > 0 (l 2 {1, 2, . . . ,2n(2N + 1)}), the periodic motion xðtÞ near the equilibrium x is unstable. (iii) The boundary between the stable and unstable periodic motions xðtÞ is determined by the higher singularity. The equilibrium x ¼ x þ a0 generated by the hyperbolic bifurcation of the equilibrium x is determined as follows: (iv) If Reλl < 0 (l ¼ 1, 2, . . ., 2n), the equilibrium x ¼ x þ a0 is stable. (v) If Reλl > 0 (l 2 {1, 2, . . . ,2n}), the equilibrium x ¼ x þ a0 is unstable. (vi) The boundary between the stable and unstable equilibrium x is determined by the higher singularity.
Reference Luo, A.C.J., 2019, On stability and bifurcation of equilibriums in nonlinear systems, Journal of Vibration Testing and System Dynamics, 3(2), pp. 147–232.
Chapter 3
Low-Dimensional Dynamical Systems
In this chapter, low-dimensional nonlinear dynamical systems are discussed. The stability and bifurcations of the 1-dimensional systems are presented. The higher order singularity and stability for 1-dimensional nonlinear systems are developed. The stability and bifurcations of 2-dimensional systems are discussed and the Hopf bifurcation of equilibriums is presented.
3.1
1-Dimensional Nonlinear Systems
In this section, the stability and bifurcation with singularity for equilibriums will be discussed in 1-dimensional nonlinear systems and a few examples will be presented as in Luo (2012, 2019).
3.1.1
Stability and Singularity
The stability of equilibrium in 1-dimensional systems will be discussed for a better understanding of the stability and singularity theory in nonlinear dynamical systems. Definition 3.1 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ
ð3:1Þ
with an equilibrium x of f(x, p) ¼ 0 and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) ¼ (x δ, x + δ) Ω for an arbitrary δ > 0). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). Let y ¼ x x.
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_3
87
88
3 Low-Dimensional Dynamical Systems
(i) x(t) at the equilibrium x is stable if xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x < 0,
ð3:2Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called a sink (or stable node). (ii) x(t) at the equilibrium x is unstable if xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x < 0,
ð3:3Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called a source (or unstable node). (iii) x(t) at the equilibrium x is increasingly unstable if xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x < 0,
ð3:4Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called an increasing saddle (or upper saddle). (iv) x(t) at the equilibrium x is decreasingly unstable if xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x < 0,
ð3:5Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called a decreasing saddle (or lower saddle). (v) x(t) at the equilibrium x is invariant if xðt þ εÞ xðtÞ ¼ 0 for y ¼ xðtÞ x 6¼ 0,
ð3:6Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). x(t) in domain x 2 U(x) Ω is said to be static. Theorem 3.1 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in Eq. (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). In a neighborhood of x, y ¼ x x.
3.1 1-Dimensional Nonlinear Systems
89
(i) x(t) at the equilibrium x is stable if and only if Gðx, pÞ ¼ x_ ¼ f ðx, pÞ < 0 for y ¼ xðtÞ x > 0; Gðx, pÞ ¼ x_ ¼ f ðx, pÞ > 0 for y ¼ xðtÞ x < 0
ð3:7Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (ii) x(t) at the equilibrium x is unstable if and only if Gðx, pÞ ¼ x_ ¼ f ðx, pÞ > 0 for y ¼ xðtÞ x > 0; Gðx, pÞ ¼ x_ ¼ f ðx, pÞ < 0 for y ¼ xðtÞ x < 0
ð3:8Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iii) x(t) at the equilibrium x is increasingly unstable if and only if Gðx, pÞ ¼ x_ ¼ f ðx, pÞ > 0 for y ¼ xðtÞ x > 0; Gðx, pÞ ¼ x_ ¼ f ðx, pÞ > 0 for y ¼ xðtÞ x < 0
ð3:9Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iv) x(t) at the equilibrium x is decreasingly unstable if and only if Gðx, pÞ ¼ x_ ¼ f ðx, pÞ < 0 for y ¼ xðtÞ x > 0; Gðx, pÞ ¼ x_ ¼ f ðx, pÞ < 0 for y ¼ xðtÞ x < 0
ð3:10Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (v) x(t) at the equilibrium x is invariant if Gðx, pÞ ¼ x_ ¼ f ðx, pÞ ¼ 0 for all x 2 U(x) Ω and all t 2 [t0, 1). Proof Because _ xðt þ εÞ xðtÞ ¼ xðtÞ þ xðtÞε þ oðεÞ xðtÞ _ ¼ xðtÞε þ oðεÞ, and x_ ¼ f ðx, pÞ, we have xðt þ εÞ xðtÞ ¼ f ðx, pÞε þ oðεÞ ¼ Gðx, pÞε þ oðεÞ:
ð3:11Þ
90
3 Low-Dimensional Dynamical Systems
(i) Due to any selection of ε > 0, for y ¼ x(t) x < 0, xðt þ εÞ xðtÞ > 0 if Gðx, pÞ ¼ f ðx, pÞ > 0, and vice versa; and for y ¼ x(t) x > 0, xðt þ εÞ xðtÞ < 0 if Gðx, pÞ ¼ f ðx, pÞ < 0, and vice versa. (ii) For y ¼ x(t) x > 0, xðt þ εÞ xðtÞ > 0 if Gðx, pÞ ¼ f ðx, pÞ > 0, and vice versa; and for y ¼ x(t) x < 0, xðt þ εÞ xðtÞ < 0 if Gðx, pÞ ¼ f ðx, pÞ < 0, and vice versa. (iii) For y ¼ x(t) x > 0, xðt þ εÞ xðtÞ > 0 if Gðx, pÞ ¼ f ðx, pÞ > 0, and vice versa; and for y ¼ x(t) x < 0, xðt þ εÞ xðtÞ > 0 if Gðx, pÞ ¼ f ðx, pÞ > 0, and vice versa. (iv) For y ¼ x(t) x > 0, xðt þ εÞ xðtÞ < 0 if Gðx, pÞ ¼ f ðx, pÞ < 0, and vice versa; and for y ¼ x(t) x < 0, xðt þ εÞ xðtÞ < 0 if Gðx, pÞ ¼ f ðx, pÞ < 0, and vice versa. (v) For y ¼ x(t) x > 0, xðt þ εÞ xðtÞ ¼ 0 if Gðx, pÞ ¼ f ðx, pÞ ¼ 0, and vice versa. Similarly, for y ¼ x(t) x < 0, xðt þ εÞ xðtÞ ¼ 0 if Gðx, pÞ ¼ f ðx, pÞ ¼ 0, and vice versa. The theorem is proved.
∎
3.1 1-Dimensional Nonlinear Systems
91
Theorem 3.2 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in Eq. (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). In a neighborhood of x, y ¼ x x. Under the condition in Eq. (1.24), the linearized equation of Eq. (3.1) is y_ ¼ Df ðx , pÞy:
ð3:12Þ
There is a real eigenvalue λ ¼ Df(x, p) ¼ G(1)(x, p) for a specific p. Suppose jG(2)(x, p) j < 1 where G(2)(x, p) ¼ D2f(x, p). (i) x(t) at the equilibrium x is stable if and only if Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ λ < 0
ð3:13Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (ii) x(t) at the equilibrium x is unstable if and only if Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ λ > 0
ð3:14Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iii) x(t) at the equilibrium x is increasingly unstable if and only if Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ λ ¼ 0 and Gð2Þ ðx , pÞ ¼ D2 f ðx , pÞ > 0
ð3:15Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iv) x(t) at the equilibrium x is decreasingly unstable if and only if Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ λ ¼ 0 and Gð2Þ ðx , pÞ ¼ D2 f ðx , pÞ < 0
ð3:16Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (v) x(t) at the equilibrium x is invariant if and only if GðmÞ ðx , pÞ ¼ Dm f ðx , pÞ ¼ 0 ðm ¼ 0, 1, 2, . . .Þ for all x 2 U(x) Ω and all t 2 [t0, 1). Proof For x ¼ x, y ¼ 0. Using the Taylor series expansion gives y_ ¼ f ðx þ y, pÞ f ðx , pÞ ¼ Df ðx , pÞy þ oðyÞ ¼ Gð1Þ ðx , pÞy þ oðyÞ,
ð3:17Þ
92
3 Low-Dimensional Dynamical Systems
and Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ λ: Thus, y_ ¼ Gð1Þ ðx , pÞy þ oðyÞ ¼ λy þ oðyÞ: (i) For y ¼ x x > 0, Gðx, pÞ ¼ y_ ¼ λy < 0, and for y ¼ x x < 0, Gðx, pÞ ¼ y_ ¼ λy > 0: Thus, G(1)(x, p) ¼ Df(x, p) ¼ λ < 0. (ii) For y ¼ x x > 0, Gðx, pÞ ¼ y_ ¼ λy > 0, and for y ¼ x x < 0, Gðx, pÞ ¼ y_ ¼ λy < 0, Thus, G(1)(x, p) ¼ Df(x, p) ¼ λ > 0. (iii) For y ¼ x x > 0, Gðx, pÞ ¼ y_ ¼ λy > 0, and for y ¼ x x < 0, Gðx, pÞ ¼ y_ ¼ λy > 0: Thus, G(1)(x, p) ¼ Df(x, p) ¼ λ ¼ 0 and the higher order derivatives should be considered. The higher order Taylor series expansion gives y_ ¼ f ðx, pÞ f ðx , pÞ 1 ¼ Df ðx , pÞy þ D2 ðx , pÞy2 þ oðy2 Þ 2! 1 ¼ D2 ðx , pÞy2 þ oðy2 Þ 2! 1 ¼ Gð2Þ ðx , pÞy2 þ oðy2 Þ: 2!
3.1 1-Dimensional Nonlinear Systems
93
For y ¼ x x < 0, Gðx, pÞ ¼ y_ ¼
1 ð2Þ G ðx , pÞy2 > 0, 2!
and for y ¼ x x > 0, Gðx, pÞ ¼ y_ ¼
1 ð2Þ G ðx , pÞy2 > 0: 2!
So we have Gð2Þ ðx , pÞ ¼ D2 f ðx , pÞ > 0: ð1Þ
(iv) Similar to (iii), we have Gk ðx , pÞ ¼ λk ¼ 0. In addition, for y ¼ x x < 0, Gðx, pÞ ¼ y_ ¼
1 ð2Þ G ðx , pÞy2 < 0: 2!
and for y ¼ x x > 0, Gðx, pÞ ¼ y_ ¼
1 ð2Þ G ðx , pÞy2 < 0: 2!
So we have Gð2Þ ðx , pÞ ¼ D2 f ðx , pÞ < 0: (v) Using the Taylor series expansion yields y_ ¼ f ðx, pÞ f ðx , pÞ XN 1 Dm f ðx , pÞym þ oðyN Þ ¼ m¼1 m! XN 1 ¼ GðmÞ ðx , pÞym þ oðyN Þ m¼1 m! ¼0 ðN ¼ 1, 2, . . .Þ: Thus only if GðmÞ ðx , pÞ ¼ Dm f ðx , pÞ ¼ 0 ðm ¼ 1, 2, . . .Þ, the above equation of y_ ¼ 0 holds, and vice versa. The theorem is proved.
∎
94
3 Low-Dimensional Dynamical Systems
Definition 3.2 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). In a neighborhood of x, y ¼ x x. Under the condition in Eq. (1.24), the linearized equation of Eq. (3.1) is in Eq. (3.12). There is a real eigenvalue λ ¼ Df(x, p) ¼ G(1)(x, p) for a specific p. Suppose jG(m)(x, p) j < 1 where G(r)(x, p) ¼ Drf(x, p) (r ¼ 1, 2, . . .). (i) x(t) at the equilibrium x is stable of the (2m + 1)th order if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m; xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x < 0
ð3:18Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called the sink (or stable node) of the (2m + 1)th order. (ii) x(t) at the equilibrium x is unstable of the (2m + 1)th order if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x > 0;
ð3:19Þ
xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x < 0 for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called the source (or unstable node) of the (2m + 1)th order. (iii) x(t) at the equilibrium x is increasingly unstable of the (2m)th order if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m 1; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x > 0; xðt þ εÞ xðtÞ > 0 for y ¼ xðtÞ x < 0
ð3:20Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called the increasing saddle (or upper saddle) of the (2m)th order. (iv) x(t) at the equilibrium x is decreasingly unstable of the (2m)th order if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m 1; xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x > 0;
ð3:21Þ
xðt þ εÞ xðtÞ < 0 for y ¼ xðtÞ x < 0 for all x 2 U(x) Ω and all t 2 [t0, 1). The equilibrium x is called the decreasing saddle (or lower saddle) of the (2m)th order.
3.1 1-Dimensional Nonlinear Systems
95
Theorem 3.3 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in Eq. (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, t t0, p). In a neighborhood of x, y ¼ x x. Under the condition in Eq. (1.24), the linearized equation of Eq. (3.1) is in Eq. (3.12). There is a real eigenvalue λ ¼ Df(x, p) ¼ G(1)(x, p) for a specific p. Suppose jG(r)(x, p) j < 1 where G(r)(x, p) ¼ Drf(x, p) (r ¼ 1, 2, . . .). (i) x(t) at the equilibrium x is stable of the (2m + 1)th order if and only if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m; Gð2mþ1Þ ðx , pÞ ¼ D2mþ1 f ðx , pÞ < 0
ð3:22Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (ii) x(t) at the equilibrium x is unstable of the (2mk + 1)th order if and only if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m; Gð2mþ1Þ ðx , pÞ ¼ D2mþ1 f ðx , pÞ > 0
ð3:23Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iii) x(t) at the equilibrium x is increasingly unstable of the (2m)th order if and only if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m 1; Gð2mÞ ðx , pÞ ¼ D2m f ðx , pÞ > 0
ð3:24Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). (iv) x(t) at the equilibrium x is decreasingly unstable of the (2m)th order if and only if GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0, r ¼ 0, 1, 2, . . . , 2m 1; Gð2mÞ ðx , pÞ ¼ D2m f ðx , pÞ < 0
ð3:25Þ
for all x 2 U(x) Ω and all t 2 [t0, 1). Proof For x ¼ x, y ¼ 0. Using the Taylor series expansion gives y_ ¼ f ðx, pÞ f ðx , pÞ X2m 1 1 Dr f ðx , pÞyr þ D2mþ1 f ðx , pÞy2mþ1 þ oðy2mþ1 Þ ¼ r¼1 r! ð2m þ 1Þ! X2m 1 1 GðrÞ ðx , pÞyr þ Gð2mþ1Þ ðx , pÞy2mþ1 þ oðy2mþ1 Þ, ¼ r¼1 r! ð2m þ 1Þ!
96
3 Low-Dimensional Dynamical Systems
and GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0 for r ¼ 0, 1, 2, . . . , 2m; 1 D2mþ1 f ðx , pÞy2mþ1 ð2m þ 1Þ! 1 ¼ Gð2mþ1Þ ðx , pÞy2mþ1 : ð2m þ 1Þ!
y_ ¼
(i) For y > 0, Gðx, pÞ ¼ y_ ¼
1 Gð2mþ1Þ ðx , pÞy2mþ1 < 0, ð2m þ 1Þ!
and for y < 0 Gðx, pÞ ¼ y_ ¼
1 Gð2mþ1Þ ðx , pÞy2mþ1 > 0: ð2m þ 1Þ!
Thus, G(2m + 1)(x, p) ¼ D2m + 1f(x, p) < 0. (ii) For y > 0, Gðx, pÞ ¼ y_ ¼
1 Gð2mþ1Þ ðx , pÞy2mþ1 > 0, ð2m þ 1Þ!
and for y < 0, Gðx, pÞ ¼ y_ ¼
1 Gð2mþ1Þ ðx , pÞy2mþ1 < 0: ð2m þ 1Þ!
Thus, G(2m + 1)(x, p) ¼ D2m + 1f(x, p) > 0. (iii) For x ¼ x, sk ¼ 0. Using the Taylor series expansion gives y_ ¼ f ðx, pÞ f ðx , pÞ X2m1 1 1 ¼ Dr f ðx , pÞyr þ D2m f ðx , pÞy2m þ oðy2m Þ r¼1 r! ð2mÞ! X2m 1 1 GðrÞ ðx , pÞyr þ Gð2mÞ ðx , pÞy2m þ oðy2m Þ ¼ r¼1 r! ð2mÞ! and GðrÞ ðx , pÞ ¼ Dr f ðx , pÞ ¼ 0 for r ¼ 0, 1, . . . , 2m 1, y_ ¼
1 1 Gð2mÞ ðx , pÞy2m : D2m f ðx , pÞy2m ¼ ð2mÞ! ð2mÞ!
3.1 1-Dimensional Nonlinear Systems
97
For y > 0, Gðx, pÞ ¼ y_ ¼
1 Gð2mÞ ðx , pÞy2m > 0, ð2mÞ!
Gðx, pÞ ¼ y_ ¼
1 Gð2mÞ ðx , pÞy2m > 0: ð2mÞ!
and for y < 0,
Thus, G(2m)(x, p) ¼ D2mf(x, p) > 0. (iv) Similar to (iii), for y > 0, Gðx, pÞ ¼ y_ ¼
1 Gð2mÞ ðx , pÞy2m < 0, ð2mÞ!
Gðx, pÞ ¼ y_ ¼
1 Gð2mÞ ðx , pÞy2m < 0: ð2mÞ!
and for y < 0,
Thus, G(2m)(x, p) ¼ D2mf(x, p) < 0. The theorem is proved.
∎
To illustrate dynamical behaviors of 1-dimensional systems in the vicinity of equilibrium, the sink (unstable node), source (unstable node), increasing saddle (upper saddle), deceasing saddle (lower saddle), and invariant points are presented in Fig. 3.1a–e, respectively. Uδ(x) ¼ (xδ, x+δ) is a neighborhood of equilibrium x. The circular symbols are for initially selected points. The arrows are the moving directions of x(t). Saddle point is the half sink and half source.
3.1.2
Bifurcations
In this section, the local bifurcation theory for 1-dimensional system is presented. Definition 3.3 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in Eq. (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). In a neighborhood of x, y ¼ xx. Under the condition in Eq. (1.24), the linearized equation of Eq. (3.1) is in Eq. (3.12). There is a real eigenvalue λ ¼ Df(x, p) ¼ G(1)(x, p) for a specific p. Suppose jG(m)(x, p) j < 1 where G(r)(x, p) ¼ D(r)f(x, p) (r ¼ 1, 2, . . .). In the vicinity of point ðx0 , p0 Þ, f(x, p) can be expanded as
98
3 Low-Dimensional Dynamical Systems
a
b
c
d
e Fig. 3.1 Equilibrium x in a 1-dimensional nonlinear system: (a) stable node (sink), (b) unstable node (source), (c) increasing saddle (upper saddle), (d) decreasing saddle (lower saddle), (e) invariant point
f ðx , pÞ ¼ ay þ bT ðp p0 Þ þ
q m X X 1 r ðqr, rÞ qr Cq a y ðp p0 Þr q! q¼2 r¼0
1 ½y∂x þ ðp p0 Þ∂p mþ1 ðf ðx0 þ θy , p0 þ θΔpÞÞ, þ ðm þ 1Þ!
ð3:26Þ
where y ¼ x x0 , a ¼ ∂x f ðx; pÞjðx ;p0 Þ ¼ Df ðx; pÞjðx ;p0 Þ ¼ λ0 , 0
0
bT ¼ ∂p f ðx; pÞjðx ;p0 Þ , 0
a
ðr;sÞ
¼
ðrÞ ðsÞ ∂x ∂p f ðx; pÞjðx ;p Þ , 0 0
γ 2 ð0; 1Þ, θ ¼ ðθ1 ; θ2 ; . . . ; θm ÞT , θr 2 ð0; 1Þ, ðr ¼ 1; 2; . . . ; mÞ:
ð3:27Þ
3.1 1-Dimensional Nonlinear Systems
99
If λ0 ¼ 0 and p ¼ p0, the stability of current equilibrium x changes from stable to unstable state (or from unstable to stable state). The bifurcation branch of equilibrium is determined by
)
f ðx0 þ y , pÞ ¼ 0, or bTk ðp p0 Þ þ
q s X X 1 r ðqr, rÞ qr Cq a y ðp p0 Þr 0; q! q¼2 r¼0
equivalent to f ðx0 þ y , pÞ ¼ A0 ys þ A1 ys1 þ þ As ¼ 0,
) ð3:28Þ
Ai ¼ Ai ðx0 , pÞ ði ¼ 0, 1, 2, . . . , sÞ, A0 ¼ aðs, 0Þ ¼ Ds f ðx0 , p0 Þ 6¼ 0;
)
λ0 ¼ Df ðx0 , p0 Þ ¼ 0, Dr f ðx0 , p0 Þ ¼ 0 ðr ¼ 2, 3, . . . , s 1Þ, Ds f ðx0 , p0 Þ 6¼ 0:
In the neighborhood of ðx0 , p0 Þ, Eq. (3.1) possesses l-equilibrium y (0 < l s) P with s ¼ li¼1 αi : Such l-branch solutions are called the bifurcation solutions of an equilibrium x in the neighborhood of ðx0 , p0 Þ. Such a bifurcation at point ðx0 , p0 Þ is called a hyperbolic bifurcation of the sth order. (i) Consider f ðx0 þ y , pÞ ¼ 0 at point ðx0 , p0 Þ approximated by f ðx0 þ y , pÞ ¼ 0 with λ0 ¼ Df ðx0 , p0 Þ ¼ 0, or bTk ðp p0 Þ þ
2mþ1 P q¼2
q P 1 r ðqr, rÞ qr Cq a y ðp p0 Þr 0; q! r¼0
equivalent to f ðx0
þ y , pÞ ¼ A0 y Ai ¼
)
2mþ1
Ai ðx0 , pÞ
þ A1 y
2m
þ þ A2mþ1 ¼ 0,
)
ð3:29Þ
ði ¼ 0, 1, 2, , 2m þ 1Þ,
A0 ¼ að2mþ1, 0Þ ¼ D2mþ1 f ðx0 , p0 Þ 6¼ 0: (i1) If λ0 ¼ Df ðx0 , p0 Þ ¼ 0, Dr f ðx0 , p0 Þ ¼ 0 ðr ¼ 2, 3, . . . , 2mÞ, 2mþ1
D
f ðx0 , p0 Þ
< 0,
) ð3:30Þ
100
3 Low-Dimensional Dynamical Systems
the bifurcation of equilibrium at point ðx0 p0 Þ is called the pitchfork bifurcation of the (2m+1)th order. The special bifurcation point is the (2m+1)th order sink (stable node). (i2) If λ0 ¼ Df ðx0 , p0 Þ ¼ 0,
)
Dr f ðx0 , p0 Þ ¼ 0 ðr ¼ 2, 3, . . . , 2mÞ, 2mþ1
D
f ðx0 , p0 Þ
ð3:31Þ
> 0,
the bifurcation of equilibrium at point ðx0 , p0 Þ is called an unstable pitchfork bifurcation of the (2m+1)th order. The special bifurcation is a (2m+1)thorder source (unstable node). (ii) Consider f ðx0 þ y , pÞ ¼ 0 at point ðx0 , p0 Þ approximated by f ðx0 þ y , pÞ ¼ 0 with λ0 ¼ Df ðx0 , p0 Þ ¼ 0, or bTk ðp p0 Þ þ
q 2m P P 1 r ðqr, rÞ qr Cq a y ðp p0 Þr 0; q! q¼2 r¼0
equivalent to f ðx0
2m
þ y , pÞ ¼ A0 ðy Þ Ai ¼
)
Ai ðx0 , pÞ
2m1
þ A1 ðy Þ
þ þ A2m
) ¼ 0,
ð3:32Þ
ði ¼ 0, 1, 2, . . . , 2m 1Þ,
A0 ¼ að2m, 0Þ ¼ D2m f ðx0 , p0 Þ 6¼ 0: (ii1) If λ0 ¼ Df ðx0 , p0 Þ ¼ 0, Dr f ðx0 , p0 Þ ¼ 0 ðr ¼ 2, 3, . . . , 2m 1Þ, 2m
D
f ðx0 , p0 Þ
) ð3:33Þ
> 0,
the bifurcation of equilibrium at point ðx0 , p0 Þ is called an increasing saddlenode (or an upper-saddle-node) bifurcation of the (2m)th order. The special bifurcation point is a (2m)th-order increasing saddle (or upper saddle). (ii2) If λ0 ¼ Df ðx0 , p0 Þ ¼ 0, Dr f ðx0 , p0 Þ ¼ 0 ðr ¼ 2, 3, . . . , 2m 1Þ, 2m
D
f ðx0 , p0 Þ
)
ð3:34Þ
< 0,
the bifurcation at point ðx0 , p0 Þ is called a decreasing saddle-node (or a lower-saddle-node) bifurcation of the (2m)th order. The special bifurcation point is a (2m)th-order decreasing saddle (or lower saddle).
3.1 1-Dimensional Nonlinear Systems
101
Definition 3.4 Consider a 1-dimensional, autonomous, nonlinear dynamical system x_ ¼ f ðx, pÞ in Eq. (3.1) with an equilibrium x and f(x, p) is Cr-continuous (r 1) in a neighborhood of x (i.e., U(x) Ω). The corresponding solution is x(t) ¼ Φ(x0, tt0, p). In a neighborhood of x, y ¼ xx. Under the condition in Eq. (1.24), the linearized equation of Eq. (3.1) is in Eq. (3.12). There is a real eigenvalue λ ¼ Df(x, p) ¼ G(1)(x, p) for a specific p. Suppose jG(m)(x, p) j < 1 where G(r)(x, p) ¼ D(r)f(x, p) (r ¼ 1, 2, ). In the vicinity of point ðx0 , p0 Þ, f(x, p) can be expended in Eq. (3.26), and three special cases are defined as follows. (i) Consider λ0 ¼ Df ðx0 , p0 Þ ¼ 0, f ðx0 þ y , p0 þ ΔpÞ ¼ 0
)
or 1 ð0, 2Þ a ðp p0 Þ2 2! 1 það1, 1Þ ðp p0 Þy2 þ að2, 0Þ y2 0; 2! equivalent to y_ ¼ A0 y2 þ A1 y þ A2 ¼ 0 with bT ðp p0 Þ þ
)
1 ð2, 0Þ a , 2! A1 ðx0 , p0 Þ ¼ að1, 1Þ ðp p0 Þ þ λ0 ,
A0 ðx0 , p0 Þ ¼
A2 ðx0 , p0 Þ ¼ bT ðp p0 Þ þ
ð3:35Þ
1 ð0, 2Þ ðp p0 Þ2 , a 2!
with ð2Þ ð0Þ
að2;0Þ ¼ ∂x ∂p f ðx; pÞjðx ;p 0
0Þ
¼ D f ðx; pÞjðx ;p0 Þ ¼ Gð2Þ ðx0 ; p0 Þ 6¼ 0, 2
0
a
ð1;1Þ
¼
ð1Þ ð1Þ ∂x ∂p f ðx; pÞjðx ;p Þ , 0
ð3:36Þ
0
ð0Þ ð2Þ
ð2Þ
að0;2Þ ¼ ∂x ∂p f ðx; pÞjðx ;p Þ ¼ ∂p f ðx; pÞjðx ;p Þ , 0
0
0
0
bT ¼ ∂p f ðx; pÞjðx ;p0 Þ : 0
(i1) If the following conditions are satisfied in Eq. (3.35) A1 ¼ 0 ) að1, 1Þ ¼ 0 and λ0 ¼ Df ðx0 , p0 Þ ¼ 0; að2, 0Þ A < 0,
ð3:37Þ
2
such a bifurcation at point ðx0 , p0 Þ is called the saddle-node-appearing/ vanishing bifurcation.
102
3 Low-Dimensional Dynamical Systems
(i1a) For að2, 0Þ ¼ D2 f ðx, pÞjðx , p0 Þ ¼ Gð2Þ ðx0 , p0 Þ > 0, 0
ð3:38Þ
the saddle-node bifurcation is called an increasing saddle-node (or an upper-saddle-node)-appearing/vanishing bifurcation of the second order. The bifurcation point ðx0 , p0 Þ is an increasing saddle (or an upper saddle) of the second order. (i1b) For að2, 0Þ ¼ D2 f ðx, pÞjðx , p0 Þ ¼ Gð2Þ ðx0 , p0 Þ < 0, 0
ð3:39Þ
the saddle-node bifurcation is called a decreasing saddle-node (or a lower-saddle-node)-appearing/vanishing bifurcation. The bifurcation point ðx0 , p0 Þ is a decreasing saddle (or a lower saddle) of the second order. (i2) If the following conditions are satisfied in Eq. (3.35) A2 ¼ 0 ) að0, 1Þ ¼ 0 and að0, 2Þ ¼ 0, A1 6¼ 0 ) að1, 1Þ 6¼ 0,
ð3:40Þ
such a bifurcation at point ðx0 , p0 Þ is called a transcritical switching bifurcation, which is a kind of saddle-node-switching bifurcation. (i2a) For að2, 0Þ ¼ D2 f ðx, pÞjðx , p0 Þ ¼ Gð2Þ ðx0 , p0 Þ > 0, 0
ð3:41Þ
the transcritical saddle-node bifurcation is called an increasing saddlenode (or an upper-saddle-node)-switching bifurcation of the second order. The bifurcation point ðx0 , p0 Þ is an increasing saddle (or an upper saddle) of the second order. (i2b) For að2, 0Þ ¼ D2 f ðx, pÞjðx , p0 Þ ¼ Gð2Þ ðx0 , p0 Þ < 0, 0
ð3:42Þ
the transcritical saddle-node bifurcation is called a decreasing saddlenode (or a lower-saddle-node)-switching bifurcation of the second order. The bifurcation point ðx0 , p0 Þ is a decreasing saddle (or a lower saddle) of the second order.
3.1 1-Dimensional Nonlinear Systems
103
)
(ii) Consider λ0 ¼ Df ðx0 , p0 Þ ¼ 0, f ðx0 þ y , p0 þ ΔpÞ ¼ 0 or 1 ð0, 2Þ ðp p0 Þ2 þ að1, 1Þ ðp p0 Þy a 2! 1 1 1 þ að2, 0Þ y2 þ að0, 3Þ ðp p0 Þ3 þ að2, 1Þ ðp p0 Þy2 2! 3! 2! 1 1 þ að1, 2Þ ðp p0 Þ2 y þ að3, 0Þ y3 0; 2! 3! equivalent to bT ðp p0 Þ þ
ð3:43aÞ
)
y_ ¼ A0 y3 þ A1 y2 þ A2 y þ A3 ¼ 0 with 1 A0 ðx0 , p0 Þ ¼ að3, 0Þ , 3! 1 1 A1 ðx0 , p0 Þ ¼ að2, 1Þ ðp p0 Þ þ að2, 0Þ , 2! 2! 1 A2 ðx0 , p0 Þ ¼ λ0 þ að1, 1Þ ðp p0 Þ þ að1, 2Þ ðp p0 Þ2 , 2! 1 1 A3 ðx0 , p0 Þ ¼ bT ðp p0 Þ þ að0, 2Þ ðp p0 Þ2 þ að0, 3Þ ðp p0 Þ3 , 2! 3! ð3:43bÞ where ð3Þ ð0Þ
ð3Þ
að3;0Þ ¼ ∂x ∂p f ðx; pÞjðx ;p Þ ¼ ∂x f ðx; pÞjðx ;p0 Þ 0
0
0
¼ D3 f ðx; pÞjðx ;p0 Þ ¼ Gð3Þ ðx0 ; p0 Þ 6¼ 0,
ð3:44Þ
0
ðrÞ ðsÞ
aðr;sÞ ¼ ∂x ∂p f ðx; pÞjðx ;p Þ ðr; s ¼ 0; 1; 2; 3; r þ s ¼ 3Þ: 0
0
If the following conditions are satisfied, ð2, 0Þ
A1 ðx0 , p0 Þ ¼ 0 ) ak
ð2, 1Þ
¼ 0 and ak
A3 ðx0 , p0 Þ ¼ 0 ) b ¼ 0 and að0, 2Þ ¼ 0
¼ 0, ð3:45Þ
A1 y þ A0 y3 0 with A1 A0 < 0, such a bifurcation at point ðx0 , p0 Þ is called a pitchfork-switching and -appearing bifurcation of the third order.
104
3 Low-Dimensional Dynamical Systems
(ii1) For að3, 0Þ ¼ D3 f ðx, pÞjðx , p0 Þ ¼ Gð3Þ ðx0 , p0 Þ > 0, 0
ð3:46Þ
the pitchfork bifurcation is called a switching and appearing bifurcation of the third-order source. The corresponding bifurcation point is a third-order source (or unstable node). (iii2) For að3, 0Þ ¼ D3 f ðx, pÞjðx , p0 Þ ¼ Gð3Þ ðx0 , p0 Þ < 0, 0
ð3:47Þ
the pitchfork bifurcation is called a switching and appearing bifurcation of the third-order sink. The corresponding bifurcation point is a third-order sink (or stable node).
3.1.3
Sampled Systems
As in Luo (2012), the above three special cases can be discussed through 1-dimensional systems and intuitive illustrations are presented in Fig. 3.2. The bifurcation point is also represented by a solid circular symbol. The stable and unstable equilibrium branches are given by solid and dashed curves, respectively. The vector fields are represented by lines with arrows. If no equilibriums exist, such a region is shaded.
3.1.3a Saddle-Node-Appearing Bifurcation Consider a saddle-node bifurcation in 1-dimensional system: x_ ¼ f ðx, pÞ p x2 :
ð3:48Þ
pffiffiffi The equilibriums of the foregoing equation are x ¼ p ( p > 0) and no equilibriums exist for p < 0. From Eq. (3.48), the linearized equation in the vicinity of the equilibrium with y ¼ xx is y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ 2x y:
ð3:49Þ
pffiffiffi pffiffiffi For the branch of x ¼ p ( p > 0), due to Df ðx , pÞ ¼ 2 p < 0, the equilibrium is a stable node because y_ > 0 for y < 0 and y_ < 0 for y > 0. However, for the branch of pffiffiffi pffiffiffi x ¼ p ( p > 0), due to Df ðx , pÞ ¼ 2 p > 0, such an equilibrium is an unstable node because y_ > 0 for y > 0 and y_ < 0 for y < 0.
3.1 1-Dimensional Nonlinear Systems
105
x
x
LS
US
p
a
p
b x
x
US
LS
p
c
p
d x
x
3rd SO
3rd SI
p
p
e
f
Fig. 3.2 Bifurcation diagrams: (a, b) saddle-node-appearing/vanishing bifurcation, (c, d) transcritical switching bifurcation, (e) pitchfork-switching/appearing bifurcation for stable symmetry, and (f) pitchfork bifurcation for unstable symmetry
106
3 Low-Dimensional Dynamical Systems
For p ¼ p0 ¼ 0, x ¼ x0 ¼ 0 and Df ðx0 , p0 Þ ¼ 0. D2 f ðx0 , p0 Þ ¼ 2 is obtained. Thus y_ ¼
1 2 D f ðx0 , p0 Þy2 ¼ y2 : 2!
ð3:50Þ
In the vicinity of ðx0 , p0 Þ ¼ ð0, 0Þ, the flow vector field in Eq. (3.50) is always less than zero except for y ¼ 0. The equilibrium point ðx0 , p0 Þ ¼ ð0, 0Þ is a bifurcation point, which is a decreasing saddle (or lower saddle) of the second order. For p < 0, the vector field of Eq. (3.48) is always less than zero without any equilibriums. The equilibrium varying with parameter p is sketched in Fig. 3.2a. On the left side of xaxis, no equilibrium exists, so only the vector field is presented. Consider a dynamical system as x_ ¼ f ðx, pÞ p þ x2
ð3:51Þ
pffiffiffi and the corresponding equilibriums are x ¼ p with the variational equation pffiffiffi y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ 2 py
ð3:52Þ
pffiffiffi Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ 2x ¼ 2 p:
ð3:53Þ
where
pffiffiffi For Gð1Þ ðx , pÞ ¼ 2 p > 0, y_ < 0 for y < 0 and y_ > 0 for y > 0. So such an pffiffiffi pffiffiffi equilibrium of x ¼ p is an unstable node. If Gð1Þ ðx , pÞ ¼ 2 p < 0, y_ > 0 for p ffiffi ffi y < 0 and y_ < 0 for y > 0. So such an equilibrium of x ¼ p is a stable node. pffiffiffi For Gð1Þ ¼ Df ðx , pÞ ¼ 2 p ¼ 0 at x ¼ x0 ¼ 0 and p ¼ p0 ¼ 0, we have y_ ¼
1 ð2Þ 1 G ðx0 , p0 Þy2 ¼ D2 f ðx0 , p0 Þy2 ¼ y2 2! 2!
ð3:54Þ
Gð2Þ ðx0 , p0 Þ ¼ D2 f ðx0 , p0 Þ ¼ 2 > 0:
ð3:55Þ
where
Thus, the bifurcation point at ðx0 , p0 Þ ¼ ð0, 0Þ has y_ > 0 except for y ¼ 0. The bifurcation point is the increasing saddle (or upper saddle) of the second order. For p < 0, we have x_ > 0 always without any equilibrium. So the flow increases always for a specific p < 0. The bifurcation and flow behaviors are presented in Fig. 3.2b.
3.1 1-Dimensional Nonlinear Systems
107
3.1.3b Saddle-Node-Switching Bifurcation Consider a saddle-node-switching bifurcation through the following system: x_ ¼ f ðx, pÞ px x2
ð3:56Þ
The equilibriums of the foregoing equation are x ¼ 0, p. From Eq. (3.56), the linearized equation in the vicinity of the equilibriums with y ¼ xx is y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ ðp 2x Þy:
ð3:57Þ
For the branch of x ¼ 0 ( p > 0), due to Df(x, p) ¼ p > 0 the equilibrium is an unstable node because y_ < 0 for y < 0 and y_ > 0 for y > 0. For the branch of x ¼ p ( p > 0), such an equilibrium is a stable node due to Df(x, p) ¼ p < 0. However, for the branch of x ¼ 0 ( p < 0), the equilibrium is a stable node due to Df(x, p) ¼ p < 0. For the branch of x ¼ p ( p < 0), such an equilibrium is an unstable node due to Df(x, p) ¼ p > 0, which causes y_ < 0 for y < 0 and y_ > 0 for y > 0. For p ¼ p0 ¼ 0, x ¼ x0 ¼ 0 and Df ðx0 , p0 Þ ¼ p0 ¼ 0. D2 f ðx0 , p0 Þ ¼ 2 is obtained. Thus the higher order variational equation at the equilibrium is y_ ¼
1 ð2Þ 1 G ðx0 , p0 Þy2 ¼ D2 f ðx0 , p0 Þy2 ¼ y2 : 2! 2!
ð3:58Þ
At ðx0 , p0 Þ ¼ ð0, 0Þ, the flow vector field is always less than zero except for y ¼ 0. The equilibrium point ðx0 , p0 Þ ¼ ð0, 0Þ is a bifurcation point. This transcritical bifurcation is a decreasing saddle (lower saddle) of the second order. The equilibrium varying with parameter p is sketched in Fig. 3.2c. Consider another transcritical switching bifurcation of a dynamical system via x_ ¼ f ðx, pÞ px þ x2 :
ð3:59Þ
The equilibriums of the foregoing equation are x ¼ 0, p with the variational equation as y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ ðp þ 2x Þy,
ð3:60Þ
Gð1Þ ðx , pÞ ¼ Df ðx , pÞ ¼ p þ 2x :
ð3:61Þ
where
For G(1)(x, p) ¼ p < 0, y_ > 0 for y < 0 and y_ < 0 for y > 0. So such an equilibrium of x ¼ 0 is a stable node. For G(1)(x, p) ¼ p > 0, y_ < 0 for y < 0 and y_ > 0 for y > 0. So such an equilibrium of x ¼ 0 is an unstable node. If G(1)(x, p) ¼ p > 0, y_ < 0 for y < 0 and y_ > 0 for y > 0. So such an equilibrium of x ¼ p is an unstable
108
3 Low-Dimensional Dynamical Systems
node. If G(1)(x, p) ¼ p < 0, y_ > 0 for y < 0 and y_ < 0 for y > 0. So such an equilibrium of x ¼ p is a stable node. For G(1) ¼ Df(x, p) ¼ 0 at x ¼ x0 ¼ 0 and p ¼ p0 ¼ 0, the higher order variational equation is y_ ¼
1 ð2Þ 1 G ðx0 , p0 Þy2 ¼ D2 f ðx0 , p0 Þy2 ¼ y2 2! 2!
ð3:62Þ
Gð2Þ ðx0 , p0 Þ ¼ D2 f ðx0 , p0 Þ ¼ 2 > 0:
ð3:63Þ
where
Thus, the bifurcation point at ðx0 , p0 Þ ¼ ð0, 0Þ has y_ > 0 except for y ¼ 0. The transcritical bifurcation point is the increasing saddle (or upper saddle) of the second order. The bifurcation and flow behaviors are presented in Fig. 3.2d.
3.1.3c Pitchfork-Switching/Appearing Bifurcation Consider the pitchfork bifurcation with stable symmetry through x_ ¼ px x3 :
ð3:64Þ
pffiffiffi Setting x_ ¼ 0 gives the equilibriums of x ¼ 0, p ( p > 0) and x ¼ 0 ( p 0). From Eq. (3.64), in the vicinity of x with y ¼ xx, the variational equation is y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ ½p 3ðx Þ2 y:
ð3:64Þ
For the branch of x ¼ 0 ( p > 0), because of Df(x, p) ¼ p > 0, the equilibrium is pffiffiffi unstable. For the branches of x ¼ p ( p > 0), such equilibriums are stable due to Df(x, p) ¼ 2p < 0. However, for the branch of x ¼ 0 ( p < 0), the equilibrium is stable due to Df(x, p) ¼ p < 0. For p ¼ p0 ¼ 0, x ¼ x0 ¼ 0 and Df ðx0 , p0 Þ ¼ 0 are obtained. Because of ð2Þ G ðx0 , p0 Þ ¼ D2 f ðx0 , p0 Þ ¼ 6x0 ¼ 0, Gð3Þ ðx0 , p0 Þ ¼ D3 f ðx0 , p0 Þ ¼ 6 < 0 is needed. Further, the variational equation at ðx0 , p0 Þ ¼ ð0, 0Þis y_ ¼
1 ð3Þ 1 G ðx0 , p0 Þy3 ¼ D3 f ðx0 , p0 Þy3 ¼ y3 : 3! 3!
ð3:65Þ
In the vicinity of ðx0 , p0 Þ ¼ ð0, 0Þ, y_ < 0 for y > 0 and y_ > 0 for y < 0. The equilibrium point ðx0 , p0 Þ ¼ ð0, 0Þ is a bifurcation point, which is a sink of the third order. The equilibrium varying with parameter p is sketched in Fig. 3.2e.
3.2 2-Dimensional Nonlinear Systems
109
Consider the pitchfork bifurcation for unstable symmetry as x_ ¼ px þ x3 :
ð3:66Þ
pffiffiffiffiffiffiffi Setting x_ ¼ 0 gives equilibriums of x ¼ 0, p ( p < 0) and x ¼ 0 ( p 0). in the vicinity of x, the linearized equation with y ¼ xx is y_ ¼ Gð1Þ ðx , pÞy ¼ Df ðx , pÞy ¼ ½p þ 3ðx Þ2 y:
ð3:67Þ
For the branch of x ¼ 0 ( p < 0), due to Df(x, p) ¼ p < 0, the equilibrium is stable. In the vicinity of x, we have y_ < 0 for y > 0 and y_ > 0 for y < 0. For the branches of pffiffiffiffiffiffiffi x ¼ p ( p < 0), such two equilibriums are unstable due to Df(x, p) ¼ 2p > 0. However, for the branch of x ¼ 0 ( p > 0), the equilibrium is unstable due to Df(x, p) ¼ p > 0. For ðx , pÞ ¼ ðx0 , p0 Þ ¼ ð0, 0Þ, Df ðx0 , p0 Þ ¼ 0 and D2 f ðx0 , p0 Þ ¼ 6x0 ¼ 0 are obtained. Thus, D3 f ðx0 , p0 Þ ¼ 6 > 0 is needed, and the variational equation at ðx0 , p0 Þ ¼ ð0, 0Þ is y_ ¼
1 ð3Þ 1 G ðx0 , p0 Þy3 ¼ D3 f ðx0 , p0 Þy3 ¼ y3 : 3! 3!
ð3:68Þ
In the vicinity of ðx0 , p0 Þ ¼ ð0, 0Þ, y_ > 0 for y > 0 and y_ < 0 for y < 0. The equilibrium point ðx0 , p0 Þ ¼ ð0, 0Þ is a bifurcation point, which is a source of the third order. The equilibrium varying with parameter p is sketched in Fig. 3.2f. From the analysis, the bifurcation points possess the higher order singularity of the flow in dynamical systems. For the saddle-node bifurcation, the (2m)th-order singularity of the flow at the bifurcation point exists as a saddle of the (2m)th order. For the transcritical bifurcation, the (2m)th-order singularity of the flow at the bifurcation point exists as a saddle of the (2m)th order. However, for the stable pitchfork bifurcation, the (2m+1)th-order singularity of the flow at the bifurcation point exists as a sink of the (2m+1)th order. For the unstable pitchfork bifurcation, the (2m+1)th-order singularity of the flow at the bifurcation point exists as a source of the (2m+1)th order.
3.2
2-Dimensional Nonlinear Systems
In this section, the stability and bifurcation of equilibriums in a 2-dimensional dynamical system will be discussed for a better understanding of stability and bifurcation theory as in Luo (2019).
110
3.2.1
3 Low-Dimensional Dynamical Systems
Stability and Singularity
Consider a 2-dimensional nonlinear system as x_ ¼ fðx, pÞ 2 R2
ð3:70Þ
f ¼ ðf 1 , f 2 ÞT , x ¼ ðx1 , x2 ÞT , p ¼ ðp1 , p2 , . . . , pm ÞT :
ð3:71Þ
where
The equilibrium x is determined by fðx , pÞ ¼ 0 ) f 1 ðx1 , x2 , pÞ ¼ 0 and f 2 ðx1 , x2 , pÞ ¼ 0:
ð3:72Þ
In the vicinity of x, the linearized equation is y_ ¼ Dfðx , pÞy,
ð3:73Þ
where y ¼ xx with kyk δ for a small δ > 0: 2
∂f 1 6 ∂x1 Dfðx , pÞ ¼ 6 4 ∂f 2 ∂x1
3 ∂f 1 a ∂x2 7 7 ¼ 11 ∂f 2 5 a21 ∂x2 x
a12 a22
:
ð3:74Þ
The corresponding eigenvalues are determined by a11 λ a12 ¼ 0, j Dfðx , pÞ λI2 2 j¼ 0 ) a21 a22 λ
ð3:75Þ
λ2 TrðDfÞλ þ DetðDfÞ ¼ 0,
ð3:76Þ
and
where a11 TrðDfÞ ¼ a11 þ a12 , DetðDfÞ ¼ a21
a12 : a
ð3:77Þ
22
So the eigenvalues are TrðDfÞ λ1, 2 ¼ 2
pffiffiffiffi Δ
,
ð3:78Þ
3.2 2-Dimensional Nonlinear Systems
111
where Δ ¼ ðTrðDfÞÞ2 4DetðDfÞ:
ð3:79Þ
If Δ > 0, λ1, 2 are real eigenvalues. (i) If Tr(Df) < 0 and Det(Df) > 0, then λ1, 2 < 0. Thus the equilibrium x is a stable node. (ii) If Tr(Df) < 0 and Det(Df) < 0, then λ1 < 0 and λ2 < 0. Thus the equilibrium x is a saddle. (iii) If Tr(Df) > 0 and Det(Df) > 0, then λ1, 2 > 0. Thus the equilibrium x is an unstable node. (iv) If Tr(Df) > 0 and Det(Df) < 0, then λ1 < 0 and λ2 > 0. Thus the equilibrium x is a saddle. (v) If Tr(Df) ¼ 0, then λ1 < 0 and λ2 > 0. Thus the equilibrium x is a saddle. If Δ ¼ 0, λ1, 2 are repeated real eigenvalues: ðTrðDfÞÞ2 4DetðDfÞ ¼ 0
ð3:80Þ
A parabolic curve between Tr(Df) and Det(Df) exists. (vi) If Tr(Df) > 0, then λ1, 2 ¼ λ > 0. Thus the equilibrium x is an unstable node. (vii) If Tr(Df) < 0, then λ1, 2 ¼ λ < 0. Thus the equilibrium x is a stable node. (viii) If Tr(Df) ¼ 0, then λ1, 2 ¼ λ ¼ 0. Thus, for Df ¼ 0, then the equilibrium x is a critical case. For Df 6¼ 0, then the equilibrium x is an unstable node, and flow moves in one eigenvector direction. If Δ < 0, λ1, 2 are complex eigenvalues, i.e., λ1, 2 ¼ α þ βi,
ð3:81Þ
pffiffiffiffiffiffiffi 1, α ¼ TrðDfÞ=2, pffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ffi β ¼ Δ ¼ 4DetðDfÞ ðTrðDfÞÞ :
ð3:82Þ
where i¼
(ix) If Tr(Df) < 0, then Reλ1, 2 < 0. Thus the equilibrium x is a stable focus. (x) If Tr(Df) < 0, then Reλ1, 2 > 0. Thus the equilibrium x is an unstable focus. (xi) If Tr(Df) ¼ 0, then λ1, 2 ¼ βi. Thus the equilibrium x is a center. From the previous discussion, the equilibrium stability for stable node (sink), unstable node (source), saddle, unstable focus, stable focus, and centers is presented in Fig. 3.3.
112
3 Low-Dimensional Dynamical Systems
a
b
c
d
e
f
Fig. 3.3 Equilibrium stability: (a) stable node (sink), (b) unstable node (source), (c) saddle, (d) stable focus, (e) unstable focus, and (f) center. The eigenvectors may not always be orthogonal
3.2 2-Dimensional Nonlinear Systems
113
From the eigenvalues, the eigenvectors vj ( j ¼ 1, 2) are determined by ðDfðx , pÞ λj I2 2 Þvj ¼ 0 ) Dfðx , pÞvj ¼ λj vj ðj ¼ 1, 2Þ
ð3:83Þ
or
a11 λj
a12
v
a21
a22 λj
vj2
j1
¼
( ) 0
ðj ¼ 1, 2Þ:
ð3:84Þ
0
Thus a new transformation based on the covariant eigenvectors vj ( j ¼ 1, 2) is defined as x ¼ cj vj ¼ c1 v1 þ c2 v2 ðsummation of j ¼ 1, 2Þ,
ð3:85Þ
and the matrix of the covariant eigenvectors is P ¼ ðv1 , v2 Þ,
ð3:86Þ
and the contravariant eigenvectors v j ( j ¼ 1, 2) are defined as v1 ¼ ðb11 , b12 ÞT , v2 ¼ ðb21 , b22 ÞT and Q ¼ ðv1 , v2 Þ,
ð3:87Þ
QT ¼ P1 ¼ ðbij Þ2 2 :
ð3:88Þ
ck ¼ ðvk ÞT x, ck ¼ ðvk ÞT x ðk ¼ 1, 2Þ,
ð3:89Þ
c_k ¼ ðvk ÞT x_ ¼ ðvk ÞT fðx, pÞ ¼ Gk ðx, pÞ:
ð3:90Þ
zk ¼ ck ck ¼ ðvk ÞT ðx x Þ, z_k ¼ c_k ¼ ðvk ÞT x_ ¼ ðvk ÞT fðx þ Δx, pÞ ðk ¼ 1, 2Þ:
ð3:91Þ
where
Therefore,
and
Let
114
3 Low-Dimensional Dynamical Systems
In the neighborhood of equilibrium x, the linearized equation on the covariant eigenvector vk (k ¼ 1, 2) is ð1Þ
z_k ¼ GkðjÞ ðx , pÞzj ¼ λj δkj zj ¼ λk zk ð summation on j but not kÞ,
ð3:92Þ
where GkðjÞ ðx , pÞ ¼ ðvk ÞT Dfðx , pÞvj ¼ ðvk ÞT λj vj ¼ λj δkj :
ð3:93Þ
zk ¼ zk0 eλk ðtt0 Þ :
ð3:94Þ
Thus
(i) If λk < 0, zk ! 0 as t ! 1. Thus, the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a stable node. (ii) If λk > 0, zk ! 1 as t ! 1. Thus, the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is an unstable node. (iii) If λk ¼ 0, zk ¼ const. For linear systems, this is static. For a nonlinear system, in the vicinity of the equilibrium x, the higher order variation equations on the covariant eigenvector vk (k 2 {1, 2}) should be considered. In the neighborhood of equilibrium x, the higher order variational equation on the covariant eigenvector vk (k ¼ 1, 2) is ðr Þ 1 j2 ...jr k Þ
Gkðjk
z_k ¼
¼ 0, r k ¼ 1, 2, . . . , sk 1
1 ðsk Þ ðx , pÞzj1 zj1 . . . zjsk G mk ! kðj1 j2 ...jsk Þ
ð3:95Þ
ðsummation on j1 , j2 , . . . , jsk ¼ 1, 2Þ, where ðs Þ ðx , pÞ 1 j2 jsk Þ
Gkðjk
¼ ðvk ÞT Dðsk Þ fðx , pÞvj1 vj2 . . . vjsk :
ð3:96Þ
3.2 2-Dimensional Nonlinear Systems
115
For sk ¼ 2, ð1Þ
ð1Þ
Gkð1Þ ¼ λ1 δk1 ¼ 0, Gkð2Þ ¼ λ2 δk2 ¼ 0, 1 ð2Þ G ðx , pÞzj1 zj2 2! kðj1 j2 Þ 1 ð2Þ ð2Þ ¼ ½Gkð11Þ ðx , pÞz1 z1 þ Gkð12Þ ðx , pÞz1 z2 2!
z_k ¼
ð2Þ
ð3:97Þ
ð2Þ
þ Gkð21Þ ðx , pÞz2 z1 þ Gkð22Þ ðx , pÞz2 z2 ðk ¼ 1, 2Þ, where ð2Þ
Gkðj
1 j2 Þ
ðx , pÞ ¼ ðvk ÞT D2 fðx , pÞvj1 vj2
ðj1 , j2 ¼ 1, 2Þ:
ð3:98Þ
(i) If ð2Þ
Gkðj
1 j2 Þ
ðx , pÞzj1 zj2 > 0,
ð3:99Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is an increasing saddle (or upper saddle) of the second order. (ii) If ð2Þ
Gkðj
1 j2 Þ
ðx , pÞzj1 zj2 < 0,
ð3:100Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a decreasing saddle (or lower saddle) of the second order. (iii) If ð2Þ
zk Gkðj
1 j2 Þ
ðx , pÞzj1 zj2 > 0,
ð3:101Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a source of the second order. (iv) If ð2Þ
zk Gkðj
1 j2 Þ
ðx , pÞzj1 zj2 < 0,
ð3:102Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a sink of the second order.
116
3 Low-Dimensional Dynamical Systems
(v) If ð2Þ
Gkðj
1 j2 Þ
ðx , pÞ ¼ 0,
ð3:103Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a critical case of the second order. For this case, the higher order singularity should be considered for sk ¼ 3: ð1Þ
ð2Þ
Gkðj Þ ¼ λj1 δkj1 ¼ λk ¼ 0, Gkðj
1 j2 Þ
1
ðx , pÞ ¼ 0,
1 ð3Þ G ðx , pÞzj1 zj2 zj3 3! kðj1 j2 j3 Þ 1 ð3Þ ð3Þ ¼ ½Gkð111Þ ðx , pÞz1 z1 z1 þ Gkð112Þ ðx , pÞz1 z1 z2 3!
z_k ¼
ð3Þ
ð3Þ
ð3Þ
ð3Þ
ð3Þ
ð3Þ
ð3:104Þ
þ Gkð121Þ ðx , pÞz1 z2 z1 þ Gkð122Þ ðx , pÞz1 z2 z2 þ Gkð211Þ ðx , pÞz2 z1 z1 þ Gkð212Þ ðx , pÞz2 z1 z2 þ Gkð221Þ ðx , pÞz2 z2 z1 þ Gkð222Þ ðx , pÞz2 z2 z2 , where ð3Þ
Gkðj
1 j2 j3 Þ
ðx , pÞ ¼ ðvk ÞT D3 fðx , pÞvj1 vj2 vj3
ðj1 , j2 , j3 ¼ 1, 2Þ:
ð3:105Þ
(i) If ð3Þ
Gkðj
1 j2 j3 Þ
ðx , pÞzj1 zj2 zj3 > 0,
ð3:106Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is an increasing saddle of the third order (or an upper-saddle of the third-order). (ii) If ð3Þ
Gkðj
1 j2 j3 Þ
ðx , pÞzj1 zj2 zj3 < 0,
ð3:107Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a deceasing saddle of the third order (or an lower-saddle of the third-order). (iii) If ð3Þ
zk Gkðj
1 j2 j3 Þ
ðx , pÞzj1 zj2 zj3 > 0,
ð3:108Þ
3.2 2-Dimensional Nonlinear Systems
117
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is an unstable node of the third order (or a source of the third-order). (iv) If ð3Þ
zk Gkðj
1 j2 j3 Þ
ðx , pÞzj1 zj2 zj3 < 0,
ð3:109Þ
then the equilibrium x on the covariant eigenvector vk (k 2 {1, 2}) is a stable node of the third order (or a sink of the third-order).
3.2.2
Hopf Bifurcation
Consider a dynamical system as x_ ¼ ½αd þ aðx2 þ y2 Þx þ ½β þ αc þ bðx2 þ y2 Þy, y_ ¼ ½β þ αc þ bðx2 þ y2 Þy þ ½αd þ aðx2 þ y2 Þy:
ð3:110Þ
r 2 ¼ x2 þ y2 with x ¼ rcosθ and y ¼ rsinθ,
ð3:111Þ
Setting
Eq. (3.110) becomes r_ ¼ f r ðr, αÞ ¼ ½αd þ ar 2 r, θ_ ¼ f θ ðr, αÞ ¼ β0 þ αc þ br 2 :
ð3:112Þ
The equilibrium of Eq. (3.112) is r 1 ¼ 0 for α 2 ð1, þ1Þ, r 2 ¼ ðαd=aÞ1=2 for ðαdÞ a < 0:
ð3:113Þ
If d 6¼ 0, we have Df r ðr , αÞ ¼ αd þ 3ar 2 :
ð3:114Þ
(i) For r 1 ¼ 0, Dfr ¼ αd. For d > 0, such an equilibrium is stable as α < 0 or unstable as α > 0. The equilibrium is a critical point for α ¼ 0. However, for d < 0, the equilibrium is stable as α > 0 or unstable as α < 0. (ii) The equilibrium of r 2 ¼ ðαd=aÞ1=2 requires (αd) a < 0. For a d > 0, such an equilibrium solution exists for α < 0. For a d < 0, the equilibrium existence condition is α > 0. From Dfr ¼ 2αd, for a d > 0, the equilibrium is stable for
118
3 Low-Dimensional Dynamical Systems
(d > 0, a > 0) and unstable for (d < 0, a < 0) because of α < 0. For a d < 0, the equilibrium is stable for (d < 0, a > 0) and unstable for (d > 0, a < 0) because of α > 0. (iii) For α ¼ 0, we have r 2 ¼ r 1 r 0 ¼ 0 and Df r ðr 0 , αÞ ¼ αd ¼ 0 and Dα Df r ðr 0 , αÞ ¼ d:
ð3:115Þ
Therefore, for α ¼ 0, r 0 ¼ 0 is stable for d > 0 and r 0 ¼ 0 is unstable for d < 0. (iv) The bifurcation of equilibrium at point (r, α) ¼ (0, 0) is the Hopf bifurcation. On the other hand, D2fr(r0, α) ¼ 6ar0 ¼ 0 for r ¼ 0. D3fr(r0, α) ¼ 6a is obtained. Further, z_ ¼
1 3 D f r ðr 0 , αÞz3 ¼ az3 : 3!
ð3:116Þ
where z ¼ rr. (iv1) For a > 0, the vector field in Eq. (3.116) is greater than zero if y > 0 (r > r 0 ) and less than zero if y < 0 (r < r 0 ). If a > 0 and α ! 0+, r 2 ¼ ðαd=aÞ1=2 ! 0þ is unstable with d < 0. If a > 0 and α ! 0+, r 1 ! 0þ is stable. If a > 0 and α ! 0, r 1 ! 0þ is unstable. Thus, the bifurcation point possesses a source flow of the third order, and the bifurcation branch is unstable. From Eq. (3.115), we have αd < 0 for such an unstable bifurcation because of (αd) a < 0. (iv2) If a < 0, the vector field in Eq. (3.116) is less than zero if y > 0 (r > r 0 ) and greater than zero if y < 0 (r > r 0 ). If a < 0 and α ! 0+, r 2 ¼ ðαd=aÞ1=2 ! 0þ is stable with d > 0. If a > 0 and α ! 0+, r 1 ! 0þ is unstable. If a > 0 and α ! 0, r 1 ! 0þ is stable. Thus, for such a case, the bifurcation point possesses a sink flow of the third order. The bifurcation branch is stable. From Eq. (3.115), we have αd > 0 for such a stable bifurcation due to (αd) a < 0. The Hopf bifurcation with stable focus (d > 0) is supercritical. The Hopf bifurcation with unstable focus (d < 0) is subcritical. The supercritical and subcritical Hopf bifurcation is shown in Fig. 3.4a, b. The solid lines and curves represent stable equilibrium. The dashed lines and curves represent unstable equilibrium. Since θ_ ¼ β is constant and r 6¼ 0, one gets a periodic motion on the circle. Consider a dynamical system in a polar coordinate frame as r_ ¼ f r ðr, αÞ, θ_ ¼ f θ ðr, αÞ 6¼ 0
ð3:117Þ
3.2 2-Dimensional Nonlinear Systems
a
119
b
Fig. 3.4 Hopf bifurcations: (a) supercritical (d > 0, a > 0) and (b) subcritical (d < 0, a > 0)
and f r ðr , αÞ ¼ 0 ) r l ¼ Δl ðl ¼ 1, 2, . . . , l1 Þ
ð3:118Þ
1 m D f r ðr l , αÞðΔr l Þm for Δr l ¼ r l r l , m! Drl f r ðr l , αÞ ¼ 0 for r l ¼ 1, 2, . . . , m 1,
ð3:119Þ
with Δr_l ¼
which can be used to determine the stability of periodic motions near the equilibrium. At the bifurcation point r 0 , the corresponding variational equation is z_ ¼
1 m D f r ðr 0 , αÞzm , m!
ð3:120Þ
where z ¼ r r 0 . (i) For m ¼ 2l1, the periodic flow is stable of the (2l1)th order if Gð2l1Þ ¼ D2l1 f r ðr 0 , αÞ < 0: r
ð3:121Þ
The periodic flow is called a periodic flow of the (2l1)th-order sink. (ii) For m ¼ 2l1, the periodic flow is unstable of the (2l1)th order if Gð2l1Þ ¼ D2l1 f r ðr 0 , αÞ > 0: r
ð3:122Þ
The periodic flow is called a periodic flow of the (2l1)th-order source.
120
3 Low-Dimensional Dynamical Systems
(iii) For m ¼ 2l, the periodic flow is unstable of the (2l)th-order lower saddle if Gð2lÞ ¼ D2l f r ðr 0 , αÞ < 0: r
ð3:123Þ
The periodic flow is called a periodic flow of the (2l )th-order lower saddle. (iv) For m ¼ 2l, the periodic flow is of the (2l)th-order upper saddle if Gð2l1Þ ¼ D2l1 f r ðr 0 , αÞ > 0: r
ð3:124Þ
The periodic flow is called a periodic flow of the (2l )th-order upper saddle. From the above similar analysis, the Hopf bifurcation points possess the higher order singularity of the flow in dynamical system in the corresponding radial direction, as shown in Fig. 3.5. (i) For the stable Hopf bifurcation, the (2l1)th-order singularity of the flow at the bifurcation point exists as a sink of the (2l1)th order in the radial direction. þ Both upper and lower branches (r þ 1 and r 1 ¼ r 1 ) are stable. (ii) For the unstable Hopf bifurcation, the (2l1)th-order singularity of the flow at the bifurcation point exists as a source of the (2l1)th order in the radial þ direction. Both upper and lower branches (r þ 1 and r 1 ¼ r 1 ) are unstable. (iii) For the lower saddle Hopf bifurcation, the (2l)th-order singularity of the flow at the bifurcation point exists as a lower saddle of the (2l)th order in the radial þ direction. The upper branch r þ 1 is stable and the lower branch r 1 ¼ r 1 is unstable. (iv) For the upper saddle Hopf bifurcation, the (2l)th-order singularity of the flow at the bifurcation point exists as a source of the (2l )th order in the radial direction. þ The upper branch r þ 1 is unstable and the lower branch r 1 ¼ r 1 is stable. The stability and bifurcation of equilibrium for 2D nonlinear dynamic system are summarized with detðDfÞ ¼ detðDfðx0 , p0 ÞÞ and trðDfÞ ¼ trðDfðx0 , p0 ÞÞ in Fig. 3.6. The thick dashed lines are bifurcation lines. The stability of equilibriums is given by the eigenvalues in complex plane. The stability of equilibriums for higher dimensional systems can be identified by using a naming of stability for linear dynamical systems. The saddle-node bifurcation possesses stable saddle-node bifurcation (critical) and unstable saddle-node bifurcation (degenerate).
3.2 2-Dimensional Nonlinear Systems
121
a
b
c
d
Fig. 3.5 Hopf bifurcations: (a) (2l 1)th-order sink Hopf bifurcation and (b) (2l 1)th-order source Hopf bifurcation, (c) (2l )th-order lower-saddle-appearing/vanishing Hopf bifurcation, (d) (2l )th-order upper-saddle-appearing/vanishing Hopf bifurcation. The black branch is for existence solution. The red branch is the asymmetric branch of the black branch
122
3 Low-Dimensional Dynamical Systems
Im
Im
Re
Re tr( Df ) Saddle
Re
Re Im
Im
Im
Im
Unstable node
Unstable focus
Re
Re
Im
Hopf bifurcation
det( Df )
Im
Im
Re Re
Re
Stable focus
Im Stable node
Saddle-node bifurcation
Im
Im
Re Node-focus separatrix
Re
Re
Fig. 3.6 Stability and bifurcation diagrams through the complex plane of eigenvalues for 2D dynamical systems
References Luo, A.C.J., 2012, Continuous Dynamical Systems, HEP/L&H Scientific: Beijing/Glen Carbon. Luo, A.C.J., 2019, On stability and bifurcation of equilibriums in nonlinear systems, Journal of Vibration Testing and System Dynamics, 3(2). pp. 147–232.
Chapter 4
Equilibrium Stability in 1-Dimensional Systems
In this chapter, a global analysis of equilibrium stability in 1-dimensional nonlinear dynamical systems is presented. The classification of dynamical systems is given first, and infinite-equilibrium systems are defined. The 1-dimensional dynamical systems with single equilibrium are discussed first. The 1-dimensional dynamical systems with two and three equilibriums are discussed. Simple equilibriums and higher order equilibriums in 1-dimensional dynamical systems are analyzed, and herein a higher order equilibrium is an equilibrium with higher order singularity. The separatrix flow of equilibriums in 1-dimensional systems in phase space is illustrated for a better understanding of the global stability of equilibriums in 1-dimensional dynamical systems.
4.1
System Classifications
Definition 4.1 Consider a dynamical system as x_ ¼ fðx, t, pÞ for t 2 I, x 2 Ω and p 2 Λ
ð4:1Þ
f ¼ ðf 1 , f 2 , . . . , f n ÞT :
ð4:2Þ
where
(i) The dynamical system is static if f(x, t, p) 0 for t 2 I R and x 2 Ω. (ii) The dynamical system is of the constant velocity if f(x, t, p) constant for t 2 I R and x 2 Ω.
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_4
123
124
4 Equilibrium Stability in 1-Dimensional Systems
(iii) The dynamical system is independent of state space if f(x, t, p) g(t, p) for t 2 I R and x 2 Ω. (iv) The dynamical system is autonomous with equilibrium if f(x, t, p) g(x, p) and gðx, pÞjx ¼ x ¼ 0
ð4:3Þ
for t 2 I R and x 2 Ω. (v) The dynamical system is autonomous without equilibrium if f(x, t, p) g(x, p) and gðx, pÞjx¼x 6¼ 0
ð4:4Þ
for t 2 I R and x ¼ x 2 Ω. (vi) The dynamical system is nonautonomous if f(x, t, p) is explicitly relative to time for t 2 I R and x 2 Ω. Definition 4.2 Consider an autonomous dynamical system as x_ ¼ gðx, pÞ for t 2 I, x 2 Ω and p 2 Λ
ð4:5Þ
g ¼ ðg1 , g2 , . . . , gn ÞT :
ð4:6Þ
where
(i) Such a dynamical system is called an autonomous system without equilibrium in r-dimensional directions on domain Ω if for x 2 Ω, gk ðx, pÞjx ¼ x 6¼ 0 for k 2 fl1 , l2 , . . . , lr g f1, 2, . . . , ng:
ð4:7Þ
(ii) Such a dynamical system is called an autonomous system without equilibrium in all directions if for x 2 Ω, gk ðx, pÞjx ¼ x 6¼ 0 for k ¼ 1, 2, . . . , n:
ð4:8Þ
(iii) Such a dynamical system is called an autonomous system with equilibrium in r-dimensional directions if for x 2 Ω, gk ðx, pÞjx ¼ x ¼ 0 for k 2 fl1 , l2 , . . . , lr g f1, 2, . . . , ng:
ð4:9Þ
(iv) Such a dynamical system is called an autonomous system with equilibrium in all directions if for x 2 Ω, gk ðx, pÞjx ¼ x ¼ 0 for k ¼ 1, 2, . . . , n:
ð4:10Þ
4.1 System Classifications
125
Definition 4.3 Consider an autonomous dynamical system as x_ ¼ gðx; pÞ and gðx; pÞjx¼x ¼ 0 for t 2 I, x 2 Ω and p 2 Λ
ð4:11Þ
where g ¼ ðg1 , g2 , . . . , gn ÞT , A ¼
∂g : ∂x x¼x
ð4:12Þ
(i) Such a dynamical system is called an autonomous system with finite equilibriums if gðx , pÞ ¼ 0, and detðAÞ 6¼ 0:
ð4:13Þ
(ii) Such a dynamical system is called an autonomous system with infinite equilibriums if gðx , pÞ ¼ 0, and detðAÞ ¼ 0:
ð4:14Þ
(iii) Such a dynamical system is called an autonomous system with at least r-sets of infinite equilibriums if gðx , pÞ ¼ 0, and detðAÞ ¼ 0 with rankðAÞ ¼ n r:
ð4:15Þ
Definition 4.4 Consider an autonomous dynamical system as x_i ¼ gi1 ðx, pi1 Þgi2 ðx, pi2 Þ . . . giri ðx, piri Þ ði ¼ 1, 2, . . . , nÞ, r i 1
ð4:16Þ
where gi ðx, pÞ gi1 ðx, pi1 Þgi2 ðx, pi2 Þ . . . giri ðx, piri Þ:
ð4:17Þ
(i) Such a dynamical system is called an autonomous system without equilibrium in the direction of the ith component if gi ðx, pÞ 6¼ 0 or gij ðx, pij Þ 6¼ 0 for i 2 f1, 2, . . . , ng, j ¼ 1, 2, . . . , r i :
ð4:18Þ
126
4 Equilibrium Stability in 1-Dimensional Systems
(ii) Such a dynamical system is called an autonomous system with equilibrium in the direction of the ith component if gi ðx, pÞ ¼ 0 or gij ðx, pij Þ ¼ 0 for i 2 f1, 2, . . . , ng, j 2 f1, 2, . . . , r i g:
ð4:19Þ
(iii) There is an infinite-equilibrium surface of the zeroth order in such a dynamical system if gi ðx, pÞ ¼ 0, i ¼ 1, 2, . . . , n; gi1 j1 ðx, pi1 j1 Þ gi2 j2 ðx, pi2 j2 Þ ¼ 0 for i1 , i2 2 f1, 2, . . . , ng, i1 6¼ i2 ;
ð4:20Þ
j1 2 f1, 2, . . . , r i1 g, j2 2 f1, 2, . . . , r i2 g: (iv) There is an infinite-equilibrium surface of the first order in such a dynamical system as gi ðx, pÞ ¼ 0, i ¼ 1, 2, . . . , n; φðx, qÞ ¼ 0
ð4:21Þ
if lim gi1 j1 ðx, pi1 j1 Þ ¼ 0,
φðx, qÞ!0
lim Dφ gi1 j1 ðx, pi1 j1 Þ ¼
φðx, qÞ!0
lim Dφ gi2 j2 ðx, pi2 j2 Þ ¼
φðx, qÞ!0
lim gi2 j2 ðx, pi2 j2 Þ ¼ 0,
φðx, qÞ!0
lim
d
φðx, qÞ!0 dφ
lim
d
φðx, qÞ!0 dφ
gi1 j1 ðx, pi1 j1 Þ 6¼ 0, gi2 j2 ðx, pi2 j2 Þ 6¼ 0
ð4:22Þ
gi1 j1 ðx, pi1 j1 Þ Dφ gi1 j1 ðx, pi1 j1 Þ with lim ¼ lim ¼ Δ, φðx, qÞ!0 gi2 j2 ðx, pi2 j2 Þ φðx, qÞ!0 Dφ gi2 j2 ðx, pi2 j2 Þ 0 6¼j Δ j< 1 for i1 , i2 2 f1, 2, . . . , ng, i1 6¼ i2 ;j1 , j2 2 f1, 2, . . . , r i g: (v) There is an infinite-equilibrium surface of the rth order in such a dynamical system as gi ðx, pÞ ¼ 0, i ¼ 1, 2, . . . , n; φðx, qÞ ¼ 0 if
ð4:23Þ
4.2 Equilibrium Stability
127
lim gi1 j1 ðx, pi1 j1 Þ ¼ 0,
φðx, qÞ!0
lim gi2 j2 ðx, pi2 j2 Þ ¼ 0
φðx, qÞ!0
dk lim Dkφ gi1 j1 ðx, pi1 j1 Þ ¼ lim gi1 j1 ðx, pi1 j1 Þ ¼ 0, φðx, qÞ!0 φðx, qÞ!0 dφk ð k ¼ 1, 2, . . . , r 1Þ dk lim Dkφ gi2 j2 ðx, pi2 j2 Þ ¼ lim gi2 j2 ðx, pi2 j2 Þ ¼ 0, φðx, qÞ!0 φðx, qÞ!0 dφk ðk ¼ 1, 2, . . . , r 1Þ dr lim Drφ gi1 j1 ðx, pi1 j1 Þ ¼ lim r gi1 j1 ðx, pi1 j1 Þ 6¼ 0, φðx, qÞ!0 φðx, qÞ!0 dφ dr lim Drφ gi2 j2 ðx, pi2 j2 Þ ¼ lim r gi2 j2 ðx, pi2 j2 Þ 6¼ 0 φðx, qÞ!0 φðx, qÞ!0 dφ Drφ gi1 j1 ðx, pi1 j1 Þ gi1 j1 ðx, pi1 j1 Þ with lim ¼ lim ¼ Δ, r φðx, qÞ!0 gi2 j2 ðx, pi2 j2 Þ φðx, qÞ!0 Dφ gi2 j2 ðx, pi2 j2 Þ j Δ j< 1 but Δ 6¼ 0 for i1 , i2 2 f1, 2, . . . , ng, i1 6¼ i2 ; j1 , j2 2 f1, 2, . . . , r i g: ð4:24Þ
4.2
Equilibrium Stability
In this section, 1-dimensional nonlinear dynamical systems will be discussed first to help one understand the stability and bifurcation of nonlinear systems as in Luo (2019). Consider a dynamical system decomposed by x_ ¼ f ðx, pÞ ¼ g0 ðxÞg1 ðx a1 Þg2 ðx a2 Þ . . . gm1 ðx am1 Þgm ðx am Þ
ð4:25Þ
where g0 ðxÞ 6¼ 0 for x 2 R gk ðx ak Þ ¼ 0 with xk ¼ ak ðk ¼ 1, 2, . . . , mÞ: Thus, such a system has equilibriums as
ð4:26Þ
128
4 Equilibrium Stability in 1-Dimensional Systems
xk ¼ ak for k ¼ 1, 2, . . . , m:
ð4:27Þ
Note that gk(x ak) can be any type of functions but not necessary to be a polynomial function. Consider a polynomial dynamical system as x_ ¼ f ðx, pÞ ¼ g0 ðxÞðx a1 Þr1 ðx a2 Þr2 . . . ðx am1 Þrm1 ðx am Þrm
ð4:28Þ
where g0 ðxÞ 6¼ 0 for x 2 R ¼ ð1, 1Þ, ak < akþ1 with 1 < a1 and am < 1,
ð4:29Þ
ai 6¼ aj and r k 2 f1, 2, . . .g for i, j, k 2 f1, 2, . . . , mg: Thus, such a system has equilibriums as xk ¼ ak with the r k th order roots for k ¼ 1, 2, . . . , m:
ð4:30Þ
From local analysis, equilibriums of Eq. (4.28) are presented in Fig. 4.1. In Fig. 4.1a, b, g0(x) > 0 and g0(x) < 0. The acronyms LS, US, SI, and SO represent lower saddle, upper saddle, sink (stable node), and source (unstable node), respectively. The circular symbols are equilibrium points. For the case of g0(x) > 0, there are four basic equilibriums. (i) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if m Σm j¼kþ1 r j ¼ 2lk1 and Σj¼k r j ¼ 2lk2 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:31Þ
then such an equilibrium is an upper saddle of the rkth order because x_ > 0 always for x 2 ðxk1 , xk Þ and ðxk , xkþ1 Þ. (ii) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if m Σm j¼kþ1 r j ¼ 2lk1 1 and Σj¼k r j ¼ 2lk2 1 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:32Þ
then such an equilibrium is a lower saddle of the rkth order because x_ < 0 always for x 2 ðxk1 , xk Þ and ðxk , xkþ1 Þ. (iii) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if m Σm j¼kþ1 r j ¼ 2lk1 and Σj¼k r j ¼ 2lk2 1 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:33Þ
then such an equilibrium is a source of the rkth order because x_ > 0 for x 2 ðxk , xkþ1 Þ and x_ < 0 for x 2 ðxk1 , xk Þ. (iv) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if
4.2 Equilibrium Stability
129
a
b Fig. 4.1 Possible distributions of equilibriums stability of the first-order dynamical system (a) g0 > 0 and (b) g0 < 0. LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node) m Σm j¼kþ1 r j ¼ 2lk1 1 and Σj¼k r j ¼ 2lk2 for lk1 , lk2 2 f1, 2, 3, g,
ð4:34Þ
then such an equilibrium is a sink of the rkth order because x_ < 0 for x 2 ðxk , xkþ1 Þ and x_ > 0 forx 2 ðxk1 , xk Þ. For the case of g0(x) < 0, similarly, there are four basic equilibriums. (i) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if m Σm j¼kþ1 r j ¼ 2lk1 1 and Σj¼k r j ¼ 2lk2 1 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:35Þ
then such an equilibrium is an upper saddle of the rkth order because x_ > 0 for x 2 ðxk , xkþ1 Þ and x_ > 0 for x 2 ðxk1 , xk Þ. (ii) For an equilibrium point xk (k ¼ 1, 2, . . ., m), if
130
4 Equilibrium Stability in 1-Dimensional Systems m Σm j¼kþ1 r j ¼ 2lk1 and Σj¼k r j ¼ 2lk2 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:36Þ
then such an equilibrium is a lower saddle of the rkth order because x_ < 0 for x 2 ðxk , xkþ1 Þ and x_ < 0 for x 2 ðxk1 , xk Þ. (iii) For an equilibrium point xk (k ¼ 1, 2, . . . ,m), if m Σm j¼kþ1 r j ¼ 2lk1 1 and Σj¼k r j ¼ 2lk2 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:37Þ
then such an equilibrium is a source of the rkth order because x_ > 0 for x 2 ðxk , xkþ1 Þ and x_ < 0 for x 2 ðxk1 , xk Þ. (iv) For an equilibrium point xk (k ¼ 1, 2, . . . ,m), if m Σm j¼kþ1 r j ¼ 2lk1 and Σj¼k r j ¼ 2lk2 1 for lk1 , lk2 2 f1, 2, 3, . . .g,
ð4:38Þ
then such an equilibrium is a sink of the rkth order because x_ < 0 for x 2 ðxk , xkþ1 Þ and x_ > 0 for x 2 ðxk1 , xk Þ. From the above discussions, the properties of distributed equilibriums can be determined. Thus, a few examples are presented as follows.
4.3
One-Equilibrium Systems
Consider a 1-dimensional system with one equilibrium point as x_ ¼ a0 ðx a1 Þr with r ¼ 2m 1, 2m for m ¼ 1, 2, . . .
ð4:39Þ
where a0 6¼ 0. The rth-order equilibrium of x ¼ a1 is obtained easily and the corresponding stability is discussed. Thus, we have x€ ¼ ra0 ðx a1 Þr1 x_ ¼ ra20 ðx a1 Þ2r1 for x 6¼ x ¼ a1
ð4:40Þ
and f ðx, pÞ ¼ a0 ðx a1 Þr ¼ 0, DðjÞ f ¼ a0 rðr 1Þ . . . ðr j þ 1Þðx a1 Þrj ¼ 0, j ¼ 1, 2, . . . , r,
ð4:41Þ
_ 2, . . . : D f ¼ a0 r! with r ¼ 2m 1, 2m for m ¼ 1, ðrÞ
From Eqs. (4.39) and (4.40), the signs of x_ and x€ can be determined for x < a1 and x > a1, as tabulated in Table 4.1. From such signs, the flow direction in phase space _ can be determined. For a0 > 0, x_ ¼ a0 ðx a1 Þr > 0 if x > a1. For a0 > 0, x_ ¼ of ðx, xÞ a0 ðx a1 Þr > 0 if x < a1 for r ¼ 2m, but x_ ¼ a0 ðx a1 Þr < 0 if x1 < a1 for r ¼ 2m1.
4.4 Two-Equilibrium Systems
131
Table 4.1 Signs of x_ and x€ for the 1-dimensional system in Eq. (4.39)
r ¼ 2m 1
r ¼ 2m
x > a1 x < a1 x ¼ a1 x > a1 x < a1 x ¼ a1
a0 > 0 _ x x, x€, x_ +, ! +, " , , # (2m 1)th-order source (SO) +, ! +, " +, ! , # (2m)th-order upper saddle (US)
a0 < 0 _ x x, x€, x_ , +, " +, ! , # (2m 1)th-order sink (SI) , +, " , , # (2m)th-order lower saddle (LS)
Note: x_ ¼ a0 ðx a1 Þr and x€ ¼ ra20 ðx a1 Þ2r1 . LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
For a0 < 0, x_ ¼ a0 ðx a1 Þ < 0 if x > a1. For a0 < 0, x_ ¼ a0 ðx a1 Þr > 0 if x < a1 for r ¼ 2m but x_ ¼ a0 ðx a1 Þr < 0 if x < a1 for r ¼ 2m 1. For acceleration x€, for a0 > 0 and a0 < 0, x€ ¼ ra20 ðx a1 Þ2r1 > 0 if x > a1, but x€ ¼ ra20 ðx a1 Þ2r1 < 0 if x < a1. Because Drf ¼ a0r! with r ¼ 2m 1, 2m (m ¼ 1, 2, . . .), Drf ¼ a0r! > 0 if a0 > 0 and Drf ¼ a0r! < 0 if a0 < 0. Thus, the equilibrium should be four basic equilibriums, i.e., a source (unstable node) of the (2m 1)th order, a sink (stable node) of the (2m 1)th order, an upper saddle of the (2m)th order, and a lower saddle of the (2m 1)th order. _ the equilibrium and phase trajectory are presented in Fig. 4.2. In a plane of ðx, xÞ,
4.4
Two-Equilibrium Systems
Consider a 1-dimensional system with two equilibrium points as x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 , a0 6¼ 0, ai 2 R with a1 < a2 ,
ð4:42Þ
for r i ¼ 2mi 1, 2mi , i 2 f1, 2g and mi ¼ 1, 2, . . . : Thus x€ ¼ a0 ðr 1 þ r 2 Þðx a1 Þr1 1 ðx a2 Þr2 1 ðx a12 Þx_ ¼ a20 ðr 1 þ r 2 Þðx a1 Þ2r1 1 ðx a12 Þðx a2 Þ2r2 1 ,
ð4:43Þ
where a12 ¼
r 1 a2 þ r 2 a1 with a1 < a12 < a2 : r1 þ r2
ð4:44Þ
Using x_ and x€, trajectories and equilibriums are presented in Figs. 4.3–4.6. If a1 ¼ a2 ¼ a12, a bifurcation point exists. The two-equilibrium system becomes one
132
4 Equilibrium Stability in 1-Dimensional Systems
a
b
c
d
Fig. 4.2 Single equilibrium: (a) a source of the (2m 1)th order (SO) for a0 > 0, (b) a sink of the (2m 1)th order (SI) for a0 < 0, (c) an upper saddle of the (2m)th order (US) for a0 > 0, (d) a lower saddle of the (2m)th order (LS) for a0 < 0. (m ¼ 1, 2, . . .). LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
equilibrium system with the (r1 + r2)th-order singularity. This bifurcation generates two equilibriums with the r1th- and r2th-order singularity. The (1:1)-equilibrium points (i.e., r1 ¼ 1, r2 ¼ 1) are called simple equilibriums because the two equilibriums are without any singularity. For a0 > 0, using x_ ¼ a0 ðx a1 Þðx a2 Þ, x_ > 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ > 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a source (unstable node) and the equilibrium of x ¼ a1 is a sink (stable node), as shown in Fig. 4.3a. The (1:2)-equilibrium points (i.e., r1 ¼ 1, r2 ¼ 2) possess the first-order and second-order singularity for x ¼ a1 and x ¼ a2, respectively. For a0 > 0, with x_ ¼ a0 ðx a1 Þðx a2 Þ2 , x_ > 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, the equilibrium of x ¼ a2 is an upper-saddle of the second-order and the equilibrium of x ¼ a1 is a source (unstable node), as shown in Fig. 4.3b. The (2:1)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 1) possess the second-order and firstorder singularity for x ¼ a1 and x ¼ a2, respectively. For a0 > 0, with x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ, x_ > 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ < 0 for x < a1.
4.4 Two-Equilibrium Systems
133
a
b
c
d
e
f
Fig. 4.3 Two equilibriums (a0 > 0): (a) (1 : 1)-(SI:SO), (b) (1 : 2)-(SO:US), (c) (2 : 1)-(LS:SO), (d) (2 : 2)-(US:US), (e) (2 : 3)-(LS:SO), (f) (3 : 2)-(SO:US). LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
Therefore, the equilibrium of x ¼ a2 is a source (unstable node) and the equilibrium of x ¼ a1 is a lower saddle of the second order, as shown in Fig. 4.3c. The (2 : 2)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 2) possess the two second-order singularity for x ¼ a1 and x ¼ a2. For a0 > 0, with x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2 , obtained are (i) x_ > 0 for x > a2, (ii) x_ > 0 for a1 < x < a2, and (iii) x_ > 0 for x < a1. Thus, the equilibriums of x ¼ a1 and x ¼ a2 are two upper saddles of the second order (US), as shown in Fig. 4.3d.
134
4 Equilibrium Stability in 1-Dimensional Systems
a
b
c
d
e
f
Fig. 4.4 Two equilibriums (a0 < 0): (a) (1 : 1)-(SO:SI), (b) (1 : 2)-(SI:LS), (c) (2 : 1)-(US:SI), (d) (2 : 2)-(LS:LS), (e) (2 : 3)-(US:SI), (f) (3 : 2)-(SI:LS). SO: source (or unstable node), SI: sink (stable node), US: upper saddle, LS: lower saddle
The (2 : 3)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 3) possess the second-order and third-order singularity for x ¼ a1 and x ¼ a2, respectively. For a0 > 0, with x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ3 , in three intervals, x_ > 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ < 0 for x < a1 are determined. Thus, the equilibrium of x ¼ a2 is a source (unstable node) of the third order and the equilibrium of x ¼ a1 is a lower
4.4 Two-Equilibrium Systems
135
a
b
c
d
Fig. 4.5 Two equilibriums with general higher singularity: (a0 > 0) (a) (2m1 1 : 2m2 1)-(SI: SO), (b) (2m1 1 : 2m2)-(SO:US), (c) (2m1 : 2m2 1)-(LS:SO), (d) (2m1 : 2m2)-(US:US). LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
saddle of the second order, as shown in Fig. 4.3e. The (2 : 3)-equilibrium points are similar to the (2 : 1)-equilibrium points without singularity. The (3 : 2)-equilibrium points (i.e., r1 ¼ 3, r2 ¼ 2) possess the third-order and second-order singularity for x ¼ a1 and x ¼ a2, respectively. For a0 > 0, with x_ ¼ a0 ðx a1 Þ3 ðx a2 Þ2 , in three intervals, x_ > 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ < 0 for x < a1 are obtained. Thus, the equilibrium of x ¼ a2 is an upper saddle (unstable node) of the second order and the equilibrium of x ¼ a1 is a source of the third order, as shown in Fig. 4.3f. The (3 : 2)-equilibrium points are similar to the (1 : 2)-equilibrium points without singularity. The stability and singularity of two equilibriums of x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 for a0 > 0 are summarized in Table 4.2. Such analysis can help one understand the stability and singularity of equilibrium, which will be used to discuss the bifurcations of equilibriums later. For a0 < 0, the (1 : 1)-simple equilibrium points (i.e., r1 ¼ 1, r2 ¼ 1) are different from those for a0 > 0. Using x_ ¼ a0 ðx a1 Þðx a2 Þ, for a0 < 0, obtained are x_ < 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, the equilibrium of x ¼ a2
136
4 Equilibrium Stability in 1-Dimensional Systems
a
b
c
d
Fig. 4.6 Two equilibriums with general higher singularity: (a0 < 0) (a) (2m1 1 : 2m2 1)-(SO: SI), (b) (2m1 1 : 2m2)-(SI:LS), (c) (2m1 : 2m2 1)-(US:SI), (d) (2m1 : 2m2)-(LS:LS). LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node) Table 4.2 Equilibrium stability and multiplicity for two-equilibrium systems (a0 > 0) (r1 : r2) (1:1) (1:2) (2:1) (2:2) (2:3) (3:2)
x ¼ a1 Stability 1st-order sink (SI) 1st-order source (SO) 2nd-order lower saddle (LS) 2nd-order upper saddle (US) 2nd-order lower saddle (LS) 3rd-order source (SO)
Repeated r1 ¼ 1 r1 ¼ 1 r1 ¼ 2 r1 ¼ 2 r1 ¼ 2 r1 ¼ 3
x ¼ a2 Stability 1st-order source (SO) 2nd-order upper saddle (US) 1st-order source (SO) 2nd-order upper saddle (US) 3rd-order source (SO) 2nd-order upper saddle (US)
Repeated r2 ¼ 1 r2 ¼ 2 r2 ¼ 1 r2 ¼ 2 r2 ¼ 3 r2 ¼ 2
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
is a sink (stable node) and the equilibrium of x ¼ a1 is a source (stable node), as shown in Fig. 4.4a. For a0 < 0, the (1 : 2)-equilibrium points (i.e., r1 ¼ 1, r2 ¼ 2) possess the secondorder and first-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þðx a2 Þ2 , x_ < 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ > 0 for x < a1 are obtained. Thus, the equilibrium of x ¼ a2 is a lower saddle of the second
4.4 Two-Equilibrium Systems
137
Table 4.3 Equilibrium stability and singularity for two-equilibrium systems (a0 < 0) (r1 : r2) (1:1) (1:2) (2:1) (2:2) (2:3) (3:2)
x ¼ a1 Stability 1st-order source (SO) 1st-order sink (SI) 2nd-order upper saddle (US) 2nd-order lower saddle (LS) 2nd-order upper saddle (US) 3rd-order sink (SI)
Repeated r1 ¼ 1 r1 ¼ 1 r1 ¼ 2 r1 ¼ 2 r1 ¼ 2 r1 ¼ 3
x ¼ a2 Stability 1st-order sink (SI) 2nd-order lower saddle (LS) 1st-order sink (SI) 2nd-order lower saddle (LS) 3rd-order sink (SI) 2nd-order lower saddle (LS)
Repeated r2 ¼ 1 r2 ¼ 2 r2 ¼ 1 r2 ¼ 2 r2 ¼ 3 r2 ¼ 2
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
order and the equilibrium of x ¼ a1 is a sink of the first order (stable node) (SI), as shown in Fig. 4.4b. For a0 < 0, the (2 : 1)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 1) possess the secondorder and first-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ, x_ < 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ > 0 for x < a1. Therefore, the equilibrium of x ¼ a2 is a sink of the first order (stable node) (SI) and the equilibrium of x ¼ a1 is an upper saddle of the second order (US), as shown in Fig. 4.4c. For a0 < 0, the (2 : 2)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 2) also possess the two second-order singularity for x ¼ a1 and x ¼ a2. But the two second-order singularity is for the two lower saddles. With x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2 , obtained are x_ < 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, the equilibriums of x ¼ a2 and x ¼ a1 are two lower saddles of the second order, as shown in Fig. 4.4d. For a0 < 0, the (2 : 3)-equilibrium points (i.e., r1 ¼ 2, r2 ¼ 3) possess the secondorder and third-order singularity. With x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ3 , in three intervals, x_ < 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ > 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a sink (stable node) of the third order and the equilibrium of x ¼ a1 is an upper saddle of the second order, as shown in Fig. 4.4e. The two equilibriums are also similar to the (2 : 1)-equilibrium points. For a0 < 0, the (3 : 2)-equilibrium points (i.e., r1 ¼ 3, r2 ¼ 2) possess the thirdorder and second-order singularity. With x_ ¼ a0 ðx a1 Þ3 ðx a2 Þ2 , in three intervals, x_ < 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ > 0 for x < a1 are determined. Thus, the equilibrium of x ¼ a2 is a lower saddle of the second order and the equilibrium of x ¼ a1 is a sink (stable node) of the third order, as shown in Fig. 4.4f. The two equilibriums are also similar to the (1 : 2)-equilibrium points. The stability and singularity of two equilibriums of x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 for a0 < 0 are summarized in Table 4.3, which are different from the stability and singularity for a0 > 0. From the foregoing discussion, the general cases for stability and singularity for the two-equilibrium system of x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 are discussed as follows. For a0 > 0, the (2m1 1 : 2m2 1)-equilibrium points (i.e., r1 ¼ 2m1 1, r2 ¼ 2m2 1) possess the (2m1 1)th-order and (2m2 1)th-order singularity for
138
4 Equilibrium Stability in 1-Dimensional Systems
Table 4.4 Equilibrium stability and singularity of a two-equilibrium system in Eq. (4.42) (a0 > 0) (r1 : r2) (2m1 1 : 2m2 1) (2m1 1 : 2m2) (2m1 : 2m2 1) (2m1 : 2m2)
x ¼ a1 (2m1 1)th-order sink (SI) (2m1 1)th-order source (SO) (2m1)th-order lower saddle (LS) (2m1)th-order upper saddle (US)
x ¼ a2 (2m2 1)th-order source (SO) (2m2)th-order upper saddle (US) (2m2 1)th-order source (SO) (2m2)th-order upper saddle (US)
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 1 ðx a2 Þ2m2 1 , x_ > 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ > 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a source (unstable node) of the (2m1 1)th order and the equilibrium of x ¼ a1 is a sink (stable node) of (2m2 1)th order, as shown in Fig. 4.5a. For a0 > 0, the (2m1 1 : 2m2)-equilibrium points (i.e., r1 ¼ 2m1 1, r2 ¼ 2m2) possess the (2m1 1)th-order and (2m2)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 1 ðx a2 Þ2m2 , x_ > 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ < 0 for x < a1 are obtained. Thus, the equilibrium of x ¼ a2 is an upper saddle of the (2m2)th order and the equilibrium of x ¼ a1 is a source (unstable node) of the (2m1 1)th order, as shown in Fig. 4.5b. For a0 > 0, the (2m1 : 2m2 1)-equilibrium points (i.e., r1 ¼ 2m1, r2 ¼ 2m2 1) possess the (2m1)th-order and (2m2 1)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 ðx a2 Þ2m2 1 , obtained are x_ > 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a source (unstable node) of the (2m2 1)th order and the equilibrium of x ¼ a1 is a lower saddle of the (2m1)th order (LS), as shown in Fig. 4.5c. For a0 > 0, the (2m1 : 2m2)-equilibrium points (i.e., r1 ¼ 2m1, r2 ¼ 2m2) possess the (2m1)th-order and (2m2)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 ðx a2 Þ2m2 , obtained are x_ > 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ > 0 for x < a1. Thus, as shown in Fig. 4.5d, the equilibriums of x ¼ a1 and x ¼ a2 are two upper saddles of the (2m1)th order and (2m2)th order, respectively. The stability and higher order singularity of the two-equilibrium system for a0 > 0 are summarized in Table 4.4. Similarly, for a0 < 0, the stability and higher order singularity of the two-equilibrium system are discussed as follows. The (2m1 1:2m2 1)-equilibrium points (i.e., r1 ¼ 2m11, r2 ¼ 2m21) for a0 < 0 possess the (2m1 1)th-order and (2m2 1)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 1 ðx a2 Þ2m2 1 , obtained are x_ < 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a sink (stable node) of the (2m2 1)th order and the equilibrium of x ¼ a1 is a source (unstable node) of (2m1 1)th order, as shown in Fig. 4.6a. For a0 < 0, the (2m1 – 1:2m2)-equilibrium points (i.e., r1 ¼ 2m1 – 1, r2 ¼ 2m2) possess the (2m1 1)th-order and (2m2)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 1 ðx a2 Þ2m2 , x_ < 0 for x > a2, x_ < 0 for
4.5 Three-Equilibrium Systems
139
Table 4.5 Stability and singularity of a two-equilibrium system in Eq. (4.42) (a0 < 0) (r1 : r2) (2m1 1 : 2m2 1) (2m1 1 : 2m2) (2m1 : 2m2 1) (2m1 : 2m2)
x ¼ a1 (2m1 1)th-order source (SO) (2m1 1)th-order sink (SI) (2m1)th-order upper saddle (US) (2m1)th-order lower saddle (LS)
x ¼ a2 (2m2 1)th-order sink (SI) (2m2)th-order lower saddle (LS) (2m2 1)th-order sink (SI) (2m2)th-order lower saddle (LS)
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
a1 < x < a2, and x_ > 0 for x < a1 are obtained. Thus, the equilibrium of x ¼ a2 is a lower saddle of the (2m2)th order and the equilibrium of x ¼ a1 is a sink (stable node) of the (2m1 1)th order, as shown in Fig. 4.6b. For a0 < 0, the (2m1:2m2 1)-equilibrium points (i.e., r1 ¼ 2m1, r2 ¼ 2m2 1) possess the (2m1)th-order and (2m2 1)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 ðx a2 Þ2m2 1 , obtained are x_ < 0 for x > a2, x_ > 0 for a1 < x < a2, and x_ > 0 for x < a1. Thus, the equilibrium of x ¼ a2 is a sink (stable node) of the (2m2 1)th order and the equilibrium of x ¼ a1 is an upper saddle of the (2m1)th order, as shown in Fig. 4.6c. For a0 < 0, the (2m1:2m2)-equilibrium points (i.e., r1 ¼ 2m1, r2 ¼ 2m2) possess the (2m1)th-order and (2m2)th-order singularity for x ¼ a1 and x ¼ a2, respectively. With x_ ¼ a0 ðx a1 Þ2m1 ðx a2 Þ2m2 , obtained are x_ < 0 for x > a2, x_ < 0 for a1 < x < a2, and x_ < 0 for x < a1. Thus, as shown in Fig. 4.6d, the equilibriums of x ¼ a1 and x ¼ a2 are two lower saddles of the (2m1)th order and (2m2)th order, respectively. For a0 < 0, the stability and higher order singularity of two equilibriums of x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 are summarized in Table 4.5. The odd-order singularity is relative to the stable and unstable nodes (i.e., sink and source). The even-order singularity is relative to the upper and lower saddles.
4.5
Three-Equilibrium Systems
Consider a 1-dimensional system with three equilibrium points as x_ ¼ a0 ðx a1 Þr1 ðx a2 Þr2 ðx a3 Þr3 , a0 6¼ 0, ai 2 R with a1 < a2 < a3 , for r i ¼ 2mi 1, 2mi , i 2 f1, 2, 3g and mi ¼ 1, 2, . . . :
ð4:45Þ
140
4 Equilibrium Stability in 1-Dimensional Systems
Thus x€ ¼ a0 ðr 1 þ r 2 þ r 3 Þðx a1 Þr1 1 ðx a2 Þr2 1 ðx a3 Þr3 1 ðx2 þ a12 x þ a123 Þx_ ¼ a20 ðr 1 þ r 2 þ r 3 Þðx a1 Þ2r1 1 ðx a2 Þ2r2 1 ðx a3 Þ2r3 1 ðx2 þ a12 x þ a123 Þ ð4:46Þ where a12 ¼ a123 ¼
r 1 ða2 þ a3 Þ þ r 2 ða1 þ a3 Þ þ r 3 ða1 þ a2 Þ , r1 þ r2 þ r3
r 1 a2 a3 þ r 2 a1 a3 þ r 3 a1 a2 : r1 þ r2 þ r3
ð4:47Þ
Except for equilibrium points, the existence of the three-equilibrium system in Eq. (4.45) requires two points to make x€ ¼ 0, i.e., x2 þ a12 x þ a123 ¼ 0:
ð4:48Þ
Thus, the existence condition for such three-equilibrium systems is Δ ¼ a212 4a123 > 0,
ð4:49Þ
with x1, 2 ¼
a12 pffiffiffiffi Δ , a1 < x 1 < a2 < x 2 < a3 : 2
ð4:50Þ
If x1 ¼ a1 ¼ a2, the equilibrium is a bifurcation point with the (r1 + r2)th-order singularity. If x2 ¼ a2 ¼ a3, the equilibrium is a bifurcation point with the (r2 + r3)thorder singularity. If x1 ¼ x2 ¼ a2, the equilibrium of x ¼ a2 is a bifurcation point with the r2th-order singularity from the three-equilibrium systems becoming a two-equilibrium system. If x1 ¼ x2 ¼ a1 ¼ a2 ¼ a3, the equilibrium is a bifurcation point with the (r1 + r2 + r3)th-order singularity from the three-equilibrium systems becoming a one-equilibrium system. Consider a few lower order singularity of three equilibriums in the threeequilibrium system to demonstrate stability and singularity of equilibriums. First, consider a simple three-equilibrium system as x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ
ð4:51Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, there are three equilibriums x ¼ ai (i ¼ 1, 2, 3). The equilibrium of x ¼ a3 is a source point. The equilibrium of x ¼ a2 is a sink point. The equilibrium of x ¼ a1 is a source point. Two equilibriums are unstable and one equilibrium is stable. The three equilibriums without any singularity are named the (1 : 1 : 1)-equilibriums, which means that three _ for the (1 : 1 : 1)-equilibrium dynamical equilibriums are simple. The plane of ðx, xÞ
4.5 Three-Equilibrium Systems
141
a
b
c
d
e
f
Fig. 4.7 Three-equilibrium systems (a0 > 0): (a) (1 : 1 : 1)-(SO:SI:SO), (b) (2 : 1 : 1)-(US: SI:SO), (c) (1 : 2 : 1)-(SI: US:SO), (d) (1:1:2)-(SI:SO:US), (e) (2:2:1)-(LS:LS:SO), (f) (2:1:2)-(LS:SO:US), (g) (1:2:2)-(SO:US:US), (h) (3:1:1)-(SO:SI:SO), (i) (1:3:1)-(SO:SI:SO), (j) (1:1:3)-(SO:SI:SO)
system for a0 > 0 is presented in Fig. 4.7a from Eq. (4.51). Such a simple threeequilibrium has a third-degree polynomial. Consider a three-equilibrium system with a second-order singularity as x_ ¼ a0 ðx a1 Þ2 ðx a2 Þðx a3 Þ
ð4:52Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is a source point, the equilibrium of x ¼ a2 is a sink point,
142
4 Equilibrium Stability in 1-Dimensional Systems
g
h
i
j
Fig. 4.7 (continued)
and the equilibrium of x ¼ a1 is an upper saddle point. The three-equilibrium system possesses the (2:1:1)-equilibriums. Two equilibriums are unstable and one equilib_ for the (2:1;1)-equilibrium rium is stable. From Eq. (4.52), the plane of ðx, xÞ dynamical system for a0 > 0 is presented in Fig. 4.7b. If the double repeated equilibrium is considered as two independent equilibriums, such a system should be four equilibriums, and the corresponding equation is a fourth-degree polynomial. Consider a three-equilibrium system with the second-order singularity on the middle of equilibrium as x_ ¼ a0 ðx a1 Þðx a2 Þ2 ðx a3 Þ
ð4:53Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. In fact, such a three-equilibrium system in Eq. (4.53) is the same class as in Eq. (4.52). Just the double repeated equilibrium point is different from two simple equilibriums. For such a three-equilibrium system, the equilibrium of x ¼ a3 is a source point, the equilibrium of x ¼ a2 is a lower saddle point, and the equilibrium of x ¼ a1 is a sink point. The three-equilibrium system possesses the (1:2;1)-equilibriums. Two equilibriums are unstable and one equilib_ for the (1:2:1)-equilibrium rium is stable. From Eq. (4.53), the plane of ðx, xÞ
4.5 Three-Equilibrium Systems
143
dynamical system for a0 > 0 is presented in Fig. 4.7c. The three-equilibrium system also has four equilibriums with a fourth-degree polynomial. Consider a three-equilibrium system with the second-order singularity of x ¼ a3 as x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ2
ð4:54Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. The three-equilibrium system in Eq. (4.54) is a class of the dynamical systems in Eqs. (4.52 and 4.53). The three systems possess one double-equilibrium point with a fourth-degree polynomial. However, the threeequilibrium systems with the second-order singularity demonstrate the different dynamical behaviors. For such a three-equilibrium system, the equilibrium of x ¼ a3 is an upper saddle point, the equilibrium of x ¼ a2 is a source point, and the equilibrium of x ¼ a1 is a sink point. The three-equilibrium system possesses the (1 : 1 : 2)-equilibriums. Two equilibriums are unstable and one equilibrium is stable. _ for the (1 : 1 : 2)-equilibrium dynamical system From Eq. (4.54), the plane of ðx, xÞ for a0 > 0 is presented in Fig. 4.7d. From the aforementioned three plots, the three three-equilibrium dynamical systems have different dynamical characteristics. Consider a three-equilibrium system with two second-order singularities as x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2 ðx a3 Þ
ð4:55Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is a source point, the equilibrium of x ¼ a2 is a lower saddle point, and the equilibrium of x ¼ a1 is a lower saddle point. The three-equilibrium system possesses the (2 : 2 : 1)-equilibriums. The three equilibriums are unstable. _ for the (2 : 2 : 1)-equilibrium dynamical system is From Eq. (4.55), the plane of ðx, xÞ presented in Fig. 4.7e for a0 > 0. If a double repeated equilibrium is considered as two independent equilibriums, such a three-equilibrium system has five equilibriums and the corresponding equation should be a fifth-degree polynomial. Consider a three-equilibrium system with two second-order singularities as x_ ¼ a0 ðx a1 Þ2 ðx a2 Þðx a3 Þ2
ð4:56Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is an upper saddle point, the equilibrium of x ¼ a2 is a source point, and the equilibrium of x ¼ a1 is a lower saddle point. The three-equilibrium system possesses the (2:1:2)-equilibriums. Three equilibriums are unstable. From _ for the (2:1:2)-equilibrium dynamical system is Eq. (4.56), the plane of ðx, xÞ presented in Fig. 4.7f for a0 > 0. Such a three-equilibrium system also has five equilibriums with a fifth-degree polynomial. Consider a three-equilibrium system with two second-order singularities as x_ ¼ a0 ðx a1 Þðx a2 Þ2 ðx a3 Þ2
ð4:57Þ
144
4 Equilibrium Stability in 1-Dimensional Systems
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is an upper saddle point, the equilibrium of x ¼ a2 is an upper point, and the equilibrium of x ¼ a1 is a source point. The three-equilibrium system possesses the (1 : 2 : 2)-equilibriums. Three equilibriums are also unstable. From _ for the (1 : 2 : 2)-equilibrium dynamical system is Eq. (4.57), the plane of ðx, xÞ presented in Fig. 4.7g for a0 > 0. Such a three-equilibrium system also has five equilibriums with a fifth-degree polynomial. For a three-equilibrium system with a fifth-degree polynomial, consider the following three cases. Case I A three-equilibrium dynamical system with the third-order singularity is x_ ¼ a0 ðx a1 Þ3 ðx a2 Þðx a3 Þ
ð4:58Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is a source point, and the equilibrium of x ¼ a2 is a sink point, and the equilibrium of x ¼ a1 is a source point of the third order. The threeequilibrium system possesses the (3 : 1 : 1)-equilibriums. Two equilibriums are _ for the unstable and one equilibrium is stable. From Eq. (4.58), the plane of ðx, xÞ (3 : 1 : 1)-equilibrium dynamical system is presented in Fig. 4.7h for a0 > 0. Such a three-equilibrium system has five equilibriums with a fifth-degree polynomial. Case II A three-equilibrium dynamical system with the third-order singularity is x_ ¼ a0 ðx a1 Þðx a2 Þ3 ðx a3 Þ
ð4:59Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For such a three-equilibrium system, the equilibrium of x ¼ a3 is a source point, and the equilibrium of x ¼ a2 is a sink point of the third order, and the equilibrium of x ¼ a1 is a source point. The threeequilibrium system possesses the (1 : 3 : 1)-equilibriums. Two equilibriums are also _ for unstable and one equilibrium is also stable. From Eq. (4.59), the plane of ðx, xÞ the (1 : 3 : 1)-equilibrium dynamical system is presented in Fig. 4.7i for a0 > 0. Such a three-equilibrium system also has five equilibriums with a fifth-degree polynomial. Case III A three-equilibrium dynamical system with the third-order singularity is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ3
ð4:60Þ
with ai < ai+1 (i ¼ 1, 2, 3) and a0 > 0. For the three-equilibrium system, the equilibrium behaviors are changed. The equilibrium of x ¼ a3 is a source point of the third order, and the equilibrium of x ¼ a2 is a sink point, and the equilibrium of x ¼ a1 is a source point. The three-equilibrium system possesses the (1:1:3)equilibriums. Two equilibriums are also unstable and one equilibrium is also stable. _ for the (1:1:3)-equilibrium dynamical system is From Eq. (4.60), the plane of ðx, xÞ presented in Fig. 4.7j for a0 > 0. Such a three-equilibrium system also has five equilibriums with a fifth-degree polynomial.
4.5 Three-Equilibrium Systems
145
Table 4.6 Equilibrium stability and singularity of a three-equilibrium system in Eq. (4.45) (a0 > 0) (1:1:1) (2:1:1) (1:2:1) (1:1:2) (2:2:1) (2:1:2) (1:2:2) (3:1:1) (1:3:1) (1:1:3)
x ¼ a1 Source (SO) Upper saddle (2nd) Sink (SI) Sink (SI) Lower saddle (2nd) Lower saddle (2nd) Source (SO) Source (3rd) Source (SO) Source (SO)
x ¼ a2 Sink (SI) Sink (SI) Lower saddle (2nd) Source (SO) Lower saddle (2nd) Source (SO) Upper saddle (2nd) Sink (SI) Sink (3rd) Sink (SI)
x ¼ a3 Source (SO) Source (SO) Source (SO) Upper saddle (2nd) Source (SO) Upper saddle (2nd) Upper saddle (2nd) Source (SO) Source (SO) Source (3rd)
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
The stability and singularity of equilibriums for the three-equilibrium systems are summarized in Table 4.6 for a0 > 0. Similarly, equilibrium and trajectories in the _ for the three-equilibrium systems for a0 < 0 are presented in Fig. 4.8. plane of ðx, xÞ Only the stability and singularity of three equilibriums for a0 < 0 are summarized in Table 4.7. With singularity, stability for the other three-equilibrium systems can be discussed as for two-equilibrium dynamical systems. The readers can do the similar discussion as an exercise, which can help readers better understand stability and singularity of equilibriums. The equilibrium stability and singularity for the general cases of the three-equilibrium systems are tabulated in Tables 4.8 and 4.9 for a0 > 0 and a0 < 0, respectively. The odd-number-order singularity is for sink (stable node) and source (unstable node). The even-number-order singularity is for lower saddles and upper saddles. For an n-equilibrium dynamical system with a (r1 : r2 : . . . : rn) type, there are 2n-potential singularities of 2mi 1 and 2mj number combinations for given mi and mj (i, j ¼ 1, 2, . . . ,n).
146
4 Equilibrium Stability in 1-Dimensional Systems
a
b
c
d
e
f
Fig. 4.8 Three-equilibrium systems (a0 < 0): (a) (1 : 1 : 1)-(SI:SO:SI), (b) (2 : 1 : 1)-(LS: SO:SI), (c) (1 : 2 : 1)-(SO:US:SI), (d) (1:1:2)-(SO:SI:LS), (e) (2:2:1)-(US:US:SI), (f) (2:1:2)-(US:SI:LS), (g) (1:2:2)-(SI:LS:LS), (h) (3:1:1)-(SI:SO:SI), (i) (1:3:1)-(SI:SO:SI), (j) (1:1:3)-(SI:SO:SI)
4.5 Three-Equilibrium Systems
147
g
h
i
j
Fig. 4.8 (continued)
Table 4.7 Equilibrium stability and singularity of a three-equilibrium system in Eq. (4.45) (a0 < 0) (r1 : r2 : r3) (1:1:1) (2:1:1) (1:2:1) (1:1:2) (2:2:1) (2:1:2) (1:2:2) (3:1:1) (1:3:1) (1:1:3)
x ¼ a1 Sink (SI) Lower saddle (2nd) Source (SO) Source (SO) Upper saddle (2nd) Upper saddle (2nd) Sink (SI) Sink (3rd) Sink (SI) Sink (SI)
x ¼ a2 Source (SO) Source (SO) Upper saddle (2nd) Sink (SI) Upper saddle (2nd) Sink (SI) Lower saddle (2nd) Source (SO) Source (3rd) Source (SO)
x ¼ a3 Sink (SI) Sink (SI) Sink (SI) Lower saddle (2nd) Sink (SI) Lower saddle (2nd) Lower saddle (2nd) Sink (SI) Sink (SI) Sink (3rd)
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
148
4 Equilibrium Stability in 1-Dimensional Systems
Table 4.8 Equilibrium stability and singularity of a three-equilibrium system in Eq. (4.45) (a0 > 0) (r1 : r2 : r3) (2m1 1 : 2m2 1 : 2m3 1) (2m1 : 2m2 1 : 2m3 1) (2m1 1 : 2m2 : 2m3 1) (2m1 1 : 2m2 1 : 2m3) (2m1 : 2m2 : 2m3 1) (2m1 : 2m2 1 : 2m3) (2m1 1 : 2m2 : 2m3) (2m1 : 2m2 : 2m3)
x ¼ a1 Source Upper saddle Sink Sink Lower saddle Lower saddle Source Upper saddle
x ¼ a2 Sink Sink Lower saddle Source Lower saddle Source Upper saddle Upper saddle
x ¼ a3 Source Source Source Upper saddle Source Upper saddle Upper saddle Upper saddle
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
Table 4.9 Equilibrium stability and singularity of a three-equilibrium system in Eq. (4.45) (a0 < 0) (r1 : r2 : r3) (2m1 1 : 2m2 1 : 2m3 1) (2m1 : 2m2 1 : 2m3 1) (2m1 1 : 2m2 : 2m3 1) (2m1 1 : 2m2 1 : 2m3) (2m1 : 2m2 : 2m3 1) (2m1 : 2m2 1 : 2m3) (2m1 1 : 2m2 : 2m3) (2m1 : 2m2 : 2m3)
x ¼ a1 Sink Lower saddle Source Source Upper saddle Upper saddle Sink Lower saddle
x ¼ a2 Source Source Upper saddle Sink Upper saddle Sink Lower saddle Lower saddle
x ¼ a3 Sink Sink Sink Lower saddle Sink Lower saddle Lower saddle Lower saddle
LS: lower saddle, US: upper saddle, SI: sink (stable node), SO: source (unstable node)
Reference Luo, A.C.J., 2019, The global analysis of equilibrium stability in 1-dimensional systems, Journal of Vibration Testing and System Dynamics, 3(3), pp. 329–346.
Chapter 5
Low-Degree Polynomial Systems
In this chapter, the global stability and bifurcation of equilibriums in low-degree polynomial systems are discussed. Appearing and switching bifurcations of simple and higher order equilibriums are discussed, and such bifurcations of equilibriums are not only for simple equilibriums but also for higher order equilibriums. The thirdorder sink and source bifurcations for simple equilibriums are presented. The thirdorder sink and source switching bifurcations for saddle and nodes are discovered, and the fourth-order upper saddle and lower saddle switching and appearing bifurcations are obtained for two second-order upper saddles and two second-order lower saddles, respectively. Graphical illustrations of global stability and bifurcations of equilibriums are presented.
5.1
Linear Systems
In this section, the stability and stability switching of equilibriums in linear systems are discussed. The sink and source equilibriums are discussed. Definition 5.1 Consider a 1-dimensional linear dynamical system: x_ ¼ AðpÞx þ BðpÞ
ð5:1Þ
where two scalar constants A(p) and B(p) are determined by a vector parameter p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:2Þ
(i) If A(p) 6¼ 0, there is an equilibrium point of
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_5
149
150
5 Low-Degree Polynomial Systems
x ¼ a1 ðpÞ ¼
BðpÞ , with a0 ðpÞ ¼ AðpÞ AðpÞ
ð5:3Þ
and the corresponding dynamical system becomes x_ ¼ a0 ðx a1 Þ:
ð5:4Þ
(ii) If A(p) ¼ 0, equation (5.1) becomes x_ ¼ BðpÞ:
ð5:5Þ
For B(p) 6¼ 0, the 1-dimensional system is called a constant velocity system. For B(p) ¼ 0, the 1-dimensional system is called a permanent static system with zero velocity. (iii) For kpk ! kp0k ¼ β, if the following relations hold AðpÞ ¼ a0 ¼ ε ! 0, BðpÞ ¼ εa1 ðpÞ ! 0,
ð5:6Þ
then there is an instant equilibrium to the vector parameter p: x ¼ a1 ðpÞ:
ð5:7Þ
Theorem 5.1 Under assumption (5.6), a standard form of the 1-dimensional dynamical system in Eq. (5.1) is x_ ¼ f ðxÞ ¼ a0 ðx a1 Þ
ð5:8Þ
(i) If a0(p) < 0 (or df =dxjx¼a1 < 0), then equilibrium x ¼ a1(p) is stable. Such a stable equilibrium is called a sink or a stable node. (ii) If a0(p) > 0 (or df =dxjx¼a1 > 0), then equilibrium x ¼ a1(p) is unstable. Such an unstable equilibrium is called a source or an unstable node. (iii) If a0(p) ¼ 0, then the flow in the neighborhood of equilibrium x ¼ a1(p) is static (critical). Such a static equilibrium is called a critical case. _ Thus, equation (5.8) becomes Proof Let y ¼ xa1 and x_ ¼ y. y_ ¼ a0 y: The corresponding solution is y ¼ y0 ea0 ðtt0 Þ where y0 ¼ y(t0) ¼ x0a is an initial condition.
5.2 Quadratic Nonlinear Systems
151
a
b
Fig. 5.1 Stability of single equilibrium in the 1-dimensional linear dynamical system: (a) left stable equilibrium and (b) right stable equilibrium. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The stability switching is labeled by a circular symbol
(i) If a0(p) < 0, we have lim ðx a1 Þ ¼ lim y ¼ lim y0 ea0 ðtt0 Þ ¼ 0 ) lim xðtÞ ¼ a1
t!1
t!1
t!1
t!1
So equilibrium x ¼ a1(p) is stable. (ii) If a0(p) > 0, we have lim ðx a1 Þ ¼ lim y ¼ lim y0 ea0 ðtt0 Þ ¼ 1 ) lim xðtÞ ¼ 1:
t!1
t!1
t!1
t!1
So equilibrium x ¼ a1(p) is unstable. (iii) If a0(p) ¼ 0, we have lim ðx a1 Þ ¼ lim y ¼ lim y0 ea0 ðtt0 Þ ¼ y0 ) lim xðtÞ ¼ x0 :
t!1
t!1
t!1
t!1
So the flow in the neighborhood of equilibrium x ¼ a1(p) is static. ∎
The theorem is proved.
To illustrate the stability of equilibrium, one equilibrium point of x ¼ a1(p) changes with a vector parameter p. The stability of such an equilibrium is determined by the constant a0(p). The stability switching at the boundary p0 2 ∂Ω12 with a0 ¼ 0. The stable equilibrium on the left and right sides is presented in Fig. 5.1a, b, respectively. The stable and unstable portions of the equilibrium are presented by the solid and dash curves, respectively.
5.2
Quadratic Nonlinear Systems
In this section, the stability of equilibriums in 1-dimensional quadratic nonlinear systems is discussed. The upper-saddle-node and lower-saddle-node appearing and switching bifurcations are discussed as in Luo (2019).
152
5 Low-Degree Polynomial Systems
Definition 5.2 Consider a 1-dimensional quadratic nonlinear dynamical system: x_ ¼ AðpÞx2 þ BðpÞx þ CðpÞ
ð5:9Þ
where three scalar constants A(p) 6¼ 0, B(p), and C(p) are determined by a vector parameter p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:10Þ
Δ ¼ B2 4AC < 0 for p 2 Ω1 Rm ,
ð5:11Þ
(i) If
then the quadratic nonlinear system does not have any equilibriums. The flow without equilibrium is called a nonequilibrium flow. (i1) If a0(p) ¼ A(p) > 0, the nonequilibrium flow is called a positive flow. (i2) If a0(p) ¼ A(p) < 0, the nonequilibrium flow is called a negative flow. (ii) If Δ ¼ B2 4AC > 0 for p 2 Ω2 Rm ,
ð5:12Þ
then the quadratic nonlinear system has two different simple equilibriums as x ¼ a1 and x ¼ a2 ,
ð5:13Þ
and the corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þ,
ð5:14Þ
where pffiffiffiffi BðpÞ Δ with a1 < a2 : 2AðpÞ
ð5:15Þ
Δ ¼ B2 4AC ¼ 0 for p ¼ p0 2 ∂Ω12 Rm1 ,
ð5:16Þ
a0 ¼ AðpÞ, a1, 2 ¼ (iii) If
then the 1-dimensional dynamical system has a double-repeated equilibrium, i.e., x ¼ a1 and x ¼ a1 ,
ð5:17Þ
5.2 Quadratic Nonlinear Systems
153
with the corresponding standard form of x_ ¼ a0 ðx a1 Þ2 ,
ð5:18Þ
where a0 ¼ Aðp0 Þ, and a1 ¼ a2 ¼
Bðp0 Þ : 2Aðp0 Þ
ð5:19Þ
Such a flow with the equilibrium of x ¼ a1 is called a saddle flow of the second order. (iii1) If a0(p) > 0, then the equilibrium x ¼ a1(p) is an upper saddle. (iii2) If a0(p) < 0, then the equilibrium x ¼ a1(p) is a lower saddle. (iv) The equilibrium of x ¼ a1 for two equilibriums vanishing or appearance is called a saddle-node bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12, and the bifurcation condition is Δ ¼ B2 4AC ¼ 0:
ð5:20Þ
(iv1) If a0(p) > 0, the bifurcation at x ¼ a1(p) for two equilibriums appearing or vanishing is called an upper-saddle-node bifurcation. (iv2) If a0(p) < 0, the bifurcation at x ¼ a1(p) for two equilibriums appearing or vanishing is called a lower-saddle-node bifurcation. Theorem 5.2
(i) Under a condition of Δ ¼ B2 4AC < 0,
ð5:21Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.9) is 1B2 1 Þ þ 2 ðΔÞ x_ ¼ a0 ðx 2A 4A
ð5:22Þ
with a0 ¼ A(p), which has a nonequilibrium flow. (i1) If a0(p) > 0, the nonequilibrium flow is called a positive flow. (i2) If a0(p) > 0, the non-equilibrium flow is called a negative flow. (ii) Under a condition of Δ ¼ B2 4AC > 0,
ð5:23Þ
154
5 Low-Degree Polynomial Systems
a standard form of the 1-dimensional dynamical system in equation (5.9) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þ:
ð5:24Þ
(ii1) If a0(p) > 0, then equilibrium x ¼ a1(p) is stable (sink) df =dxjx¼a1 < 0, and equilibrium x ¼ a2(p) is unstable (source) df =dxjx¼a2 > 0. (ii2) If a0(p) < 0, then equilibrium x ¼ a1(p) is unstable (source) df =dxjx¼a1 > 0, and equilibrium x ¼ a2(p) is stable (sink) df =dxjx¼a2 < 0.
with with with with
(iii) Under a condition of Δ ¼ B2 4AC ¼ 0,
ð5:25Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.9) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ2 :
ð5:26Þ
(iii1) If a0(p) > 0, then the equilibrium x ¼ a1(p) is an upper saddle of the second order with d2 f =dx2 jx¼a1 > 0. The bifurcation at x ¼ a1(p) for two equilibriums appearing or vanishing is called an upper-saddle-node bifurcation. (iii2) If a0(p) < 0, then the equilibrium x ¼ a1(p) is a lower saddle of the second order with d2 f =dx2 jx¼a1 < 0. The bifurcation at x ¼ a1(p) for two equilibriums appearing or vanishing is called a lower-saddle-node bifurcation. Proof
(i) For Δ ¼ B2 4AC < 0,
(i1) If a0 > 0, we have x_ ¼ a0 ½ðx
1B2 1 Þ þ 2 ðΔÞ > 0: 2A 4A
Thus such a nonequilibrium flow is called a positive flow. (i2) If a0 < 0, we have x_ ¼ a0 ½ðx
1 1B2 Þ þ 2 ðΔÞ < 0: 2A 4A
5.2 Quadratic Nonlinear Systems
155
Thus such a nonequilibrium flow is called a negative flow. Let Δxi ¼ xai (i ¼ 1, 2) and x_ ¼ Δx_i . Thus, equation (5.24) becomes Δx_i ¼ a0 ðai aj ÞΔxi þ a0 Δx2i ði, j 2 f1, 2g, j 6¼ iÞ: Because Δxi is arbitrarily small, we have Δx_i λi Δxi for λi a0 ðai aj Þ: The corresponding solution is Δxi ¼ Δxi0 eλi ðtt0 Þ where Δxi0 ¼ x0ai is an initial condition. (ii) If λi < 0, we have lim ðx ai Þ ¼ lim Δxi ¼ lim Δxi0 eλi ðtt0 Þ ¼ 0 ) lim xðtÞ ¼ ai
t!1
t!1
t!1
t!1
So equilibrium x ¼ ai(p) is stable. (ii1) For λ1 ¼ a0(a1a2) < 0, due to a1a2 < 0, such an equilibrium of x ¼ a1(p) is stable (sink) for a0 > 0. (ii2) For λ2 ¼ a0(a2a1) < 0, due to a2a1 > 0, such an equilibrium of x ¼ a2(p) is stable (sink) for a0 < 0. (iii) If λi > 0, we have lim ðx ai Þ ¼ lim Δxi ¼ lim Δxi0 eλi ðtt0 Þ ¼ 1 ) lim xðtÞ ¼ 1
t!1
t!1
t!1
t!1
So equilibrium x ¼ ai(p) is unstable. (iii1) For λ1 ¼ a0(a1a2) > 0, due to a1a2 < 0, such an equilibrium of x ¼ a1(p) is unstable (source) for a0 < 0. (iii2) For λ2 ¼ a0(a2a1) > 0, due to a2a1 > 0, such an equilibrium of x ¼ a2(p) is unstable (source) for a0 > 0. (iv) If a1(p) ¼ a2(p), we have Δx_i ¼ a0 Δx2i ði, j 2 f1, 2g, j 6¼ iÞ For a0 > 0, Δx_i > 0 exists. So a flow of x reaches to x ¼ ai from the initial point of x0 < ai and it goes to the positive infinity from x0 > ai. Such an equilibrium is unstable of the second order, which is called an upper saddle. Similarly, for a0 < 0, Δx_i < 0 exists. So a flow of x reaches x ¼ ai from the initial point of
156
5 Low-Degree Polynomial Systems
x0 > ai and it goes to the negative infinity from x0 < ai. Such an equilibrium is unstable of the second order, which is called a lower saddle. ∎
The theorem is proved.
The stability and bifurcation of equilibriums for the 1-dimensional system in Eq. (5.9) are illustrated in Fig. 5.2. The stable and unstable equilibriums varying with the vector parameter are depicted by the solid and dashed curves, respectively. The bifurcation point of equilibriums occurs at the double-repeated equilibrium at the boundary of p0 2 ∂Ω12. In Fig. 5.2a, for a0 > 0, the equilibriums of x ¼ a2 and x ¼ a1 for Δ > 0 are unstable and stable, respectively. The bifurcation of equilibriums also occurs at Δ ¼ 0. The flow of x(t) is a forward upper flow for a0 > 0, and Bðp0 Þ the equilibrium point x ¼ 2Aðp at Δ ¼ 0 is termed an upper saddle. Such a 0Þ bifurcation is termed an upper-saddle-node bifurcation. For Δ < 0, no any equilibrium exists. Such a 1-dimensional system is termed the nonequilibrium system. For Δ < 0 and a0 > 0, the flow of x(t) is always toward the positive direction because of B 2 x_ ¼ a0 ½ðx þ 2A Þ þ ð 4AΔ2 Þ > 0. The corresponding-phase portrait is presented in Fig. 5.2b. In Fig. 5.2c, the equilibriums of x ¼ a2 and x ¼ a1 for a0 < 0 are stable and unstable, respectively. The bifurcation of equilibriums also occurs at Δ ¼ 0. The
a
b
c
d
Fig. 5.2 Stability and bifurcation of two equilibriums in the quadratic dynamical system: (a) an upper-saddle-node bifurcation and (b) phase portrait (a0 > 0), (c) a lower-saddle-node bifurcation and (d) phase portrait (a0 < 0). Stable and unstable equilibriums are represented by solid and dashed curves, respectively
5.2 Quadratic Nonlinear Systems
157
Fig. 5.3 Stability and bifurcation of a double equilibrium of the second order in the quadratic dynamical system. Unstable equilibriums are represented by a dashed curve. The stability switching from the lower saddle to upper saddle is labeled by a circular symbol
flow of x(t) is a forward lower flow for a0 < 0, and the equilibrium point of x ¼ Bðp0 Þ at Δ ¼ 0 is termed a lower saddle. Such a bifurcation of equilibrium is 2Aðp 0Þ termed a lower-saddle-node bifurcation. For Δ < 0 and a0 < 0, the flow of x(t) is B 2 always toward the negative direction because of x_ ¼ a0 ½ðx þ 2A Þ þ ð 4AΔ2 Þ < 0. The corresponding-phase portrait is presented in Fig. 5.2d. To illustrate the stability and bifurcation of equilibrium with singularity in a 1-dimensional, quadratic nonlinear system, the equilibrium of x_ ¼ a0 ðx a1 Þ2 is presented in Fig. 5.3. The upper saddle and lower saddle of equilibrium of x ¼ a1 with the second-order multiplicity are unstable, which are depicted by dashed curves. At a0 ¼ 0, the upper saddle and lower saddle equilibriums will be switched, which is marked by a circular symbol.
Definition 5.3 Consider a 1-dimensional dynamical system in Eq. (5.9) as x_ ¼ AðpÞx2 þ BðpÞx þ CðpÞ ¼ a0 ðpÞðx aðpÞÞðx bðpÞÞ:
ð5:27Þ
(i) For a < b, the corresponding standard form is x_ ¼ a0 ðx aÞðx bÞ
ð5:28Þ
with two equilibriums x ¼ a1 ¼ a and x ¼ a2 ¼ b with Δ ¼ a20 ða bÞ2 > 0:
ð5:29Þ
158
5 Low-Degree Polynomial Systems
(ii) For a > b, the corresponding standard form is x_ ¼ a0 ðx bÞðx aÞ
ð5:30Þ
with two equilibriums of x ¼ a1 ¼ b and x ¼ a2 ¼ a with Δ ¼ a20 ða bÞ2 > 0:
ð5:31Þ
(iii) For a ¼ b, the corresponding standard form is x_ ¼ a0 ðx aÞ2
ð5:32Þ
with a double-repeated equilibrium of x ¼ a. Such an equilibrium point is called a saddle of the second order. (iii1) If a0 > 0, the equilibrium is an upper saddle of the second order. (iii2) If a0 < 0, the equilibrium is a lower saddle of the second order. (iv) The equilibrium of x ¼ a for two equilibriums switching is called a saddlenode bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12, and the bifurcation condition is Δ ¼ a20 ða bÞ2 ¼ 0 or a ¼ b: Theorem 5.3
ð5:33Þ
(i) Under a condition of a < b and Δ ¼ a20 ða bÞ2 > 0
ð5:34Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.27) is x_ ¼ f ðx, pÞ ¼ a0 ðx aÞðx bÞ:
ð5:35Þ
(i1) If a0(p) > 0, then equilibrium x ¼ a is stable with df =dxjx ¼a < 0 and equilibrium x ¼ b is unstable with df =dxjx ¼b > 0. (i2) If a0(p) < 0, then equilibrium x ¼ a is unstable with df =dxjx ¼a > 0 and equilibrium x ¼ b is stable with df =dxjx ¼b < 0. (ii) Under a condition of a > b and Δ ¼ a20 ða bÞ2 > 0
ð5:36Þ
5.2 Quadratic Nonlinear Systems
159
a standard form of the 1-dimensional dynamical system in Eq. (5.9) is x_ ¼ a0 ðx bÞðx aÞ:
ð5:37Þ
(ii1) If a0(p) > 0, then equilibrium x ¼ b is unstable with df =dxjx ¼a > 0 and equilibrium x ¼ b < 0 is stable df =dxjx ¼b < 0. (ii2) If a0(p) < 0, then equilibrium x ¼ a is stable with df =dxjx ¼a < 0 and equilibrium x ¼ b is unstable df =dxjx ¼b > 0. (iii) For a ¼ b, the corresponding standard form with Δ ¼ 0 is x_ ¼ f ðx, pÞ ¼ a0 ðx aÞ2
ð5:38Þ
(iii1) If a0(p) > 0, then the equilibrium x ¼ a is an upper saddle of the second order with d2 f =dx2 jx ¼a > 0. The equilibrium x ¼ a for two equilibriums switching is an upper-saddle-node bifurcation of the second order. (iii2) If a0(p) < 0, then the equilibrium x ¼ a is a lower saddle of the second order with d 2 f =dx2 jx ¼a < 0. The equilibrium x ¼ a for two equilibriums switching is a lower-saddle-node bifurcation of the second order. Proof The theorem can be proved as for Theorem 5.2.
∎
Definition 5.4 If C(p) ¼ 0 in Eq. (5.9), a 1-dimensional quadratic system is x_ ¼ AðpÞx2 þ BðpÞx:
ð5:39Þ
(i) For A(p) B(p) < 0, the corresponding standard form is x_ ¼ a0 xðx aÞ
ð5:40Þ
x ¼ a1 ¼ 0 and x ¼ a2 ¼ a > 0 BðpÞ with a0 ¼ AðpÞ and a ¼ : AðpÞ
ð5:41Þ
with two equilibriums
(ii) For A(p) B(p) > 0, the corresponding standard form is x_ ¼ a0 ðx aÞx
ð5:42Þ
x ¼ a1 ¼ a < 0 and x ¼ a2 ¼ 0:
ð5:43Þ
with two equilibriums of
160
5 Low-Degree Polynomial Systems
(iii) For B(p) ¼ 0, the corresponding standard form is x_ ¼ a0 x2
ð5:44Þ
with a double-repeated equilibrium of x ¼ 0. Such an equilibrium is called a saddle of the second order. If a0 > 0, the equilibrium is an upper saddle of the second order. If a0 < 0, the equilibrium is a lower saddle of the second order. (iv) The bifurcation of x ¼ 0 for two equilibriums switching is called a saddle-node bifurcation at a point p ¼ p0 2 ∂Ω12, and the bifurcation condition is Bðp0 Þ ¼ 0: Theorem 5.4
ð5:45Þ
(i) Under a condition of AðpÞ BðpÞ < 0,
ð5:46Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.39) is x_ ¼ f ðx, pÞ ¼ a0 xðx aÞ:
ð5:47Þ
(i1) If a0(p) > 0, then equilibrium x ¼ 0 is stable with df =dxjx ¼0 < 0 and equilibrium x ¼ a > 0 is unstable with df =dxjx ¼a > 0. (i2) If a0(p) < 0, then equilibrium x ¼ 0 is unstable with df =dxjx ¼0 > 0 and equilibrium x ¼ a > 0 is stable with df =dxjx ¼a < 0. (ii) Under a condition of AðpÞ BðpÞ > 0,
ð5:48Þ
a standard form of the 1-dimensional quadratic system in Eq. (5.9) is x_ ¼ a0 ðx aÞx:
ð5:49Þ
(ii1) If a0(p) > 0, then equilibrium x ¼ 0 is unstable with df =dxjx ¼0 > 0 and equilibrium x ¼ a < 0 is stable with df =dxjx ¼a < 0. (ii2) If a0(p) < 0, then equilibrium x ¼ 0 is stable with df =dxjx ¼a < 0 and equilibrium x ¼ a < 0 is unstable with df =dxjx ¼a > 0. (iii) For B(p) ¼ 0, the corresponding standard form with Δ ¼ 0 is x_ ¼ f ðx, pÞ ¼ a0 x2 :
ð5:50Þ
5.2 Quadratic Nonlinear Systems
161
(iii1) If a0(p) > 0, then the equilibrium x ¼ 0 is an upper saddle of the second order with d2 f =dx2 jx ¼0 > 0. The equilibrium x ¼ 0 for two equilibriums switching is an upper-saddle-node bifurcation of the second order. (iii2) If a0(p) < 0, then the equilibrium x ¼ 0 is a lower saddle of the second order with d 2 f =dx2 jx ¼0 < 0. The equilibrium x ¼ 0 for two equilibriums switching is a lower-saddle-node bifurcation of the second order. Proof The theorem can be proved as for Theorem 5.2.
∎
The stability and bifurcation of two equilibriums for the 1-dimensional system in Eq. (5.27) with Δ ¼ B2 4AC ¼ a20 ða bÞ2 0 are presented in Fig. 5.4. The stable and unstable equilibriums varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation point of equilibriums occurs at the double-repeated equilibrium at the boundary of p0 2 ∂Ω12. With varying parameters, the two equilibriums of x ¼ a, b equal each other (i.e., x ¼ a ¼ b). Such an equilibrium is a bifurcation point at x ¼ a ¼ b for Δ ¼ 0. The equilibriums of x ¼ a, b with Δ 0 are presented in Fig. 5.4a, b for a0 > 0 and a0 < 0, respectively. The dynamical system in Eq. (5.39) is a special case of the dynamical system in Eq. (5.9) with C(p) ¼ 0. Thus Δ ¼ B24AC ¼ B2 0. The equilibriums exist in the entire domain. In Fig. 5.4c, for a0 > 0 and B < 0, the equilibriums of x ¼ 0 and x ¼ a are unstable and stable, respectively. However, for a0 > 0 and B > 0, the equilibriums of x ¼ 0 and x ¼ a are stable and unstable, respectively. The
a
b
c
d
Fig. 5.4 Stability and bifurcation of two equilibriums in the quadratic dynamical system: (a) an upper-saddle-node bifurcation (a0 > 0), (b) a lower-saddle-node bifurcation (a0 < 0), (c) an uppersaddle-node bifurcation (a0 > 0), (d) a lower-saddle-node bifurcation (a0 < 0). Stable and unstable equilibriums are represented by solid and dashed curves, respectively
162
5 Low-Degree Polynomial Systems
bifurcation of equilibriums occurs at B ¼ 0. The flow of x(t) is a forward upper flow for a0 > 0, and the equilibrium point x ¼ 0 at B ¼ 0 is termed an upper saddle. Such a bifurcation is termed an upper-saddle-node bifurcation. In Fig. 5.4d, for a0 < 0 and B < 0, the equilibriums of x ¼ 0 and x ¼ a are stable and unstable, respectively. However, for a0 < 0 and B > 0, the equilibriums of x ¼ 0 and x ¼ a are unstable and stable, respectively. The bifurcation of equilibriums also occurs at B ¼ 0. The flow of x(t) is a forward lower flow for a0 < 0, and the equilibrium point of x ¼ 0 at B ¼ 0 is termed a lower saddle. Such a bifurcation is termed a lower-saddle-node bifurcation. Definition 5.5 If B(p) ¼ 0 in Eq. (5.9), a 1-dimensional quadratic system is x_ ¼ AðpÞx2 þ CðpÞ:
ð5:51Þ
(i) For A(p) C(p) > 0, the system does not have any equilibriums. The nonequilibrium flow of the system is called a positive flow if A(p) > 0. The nonequilibrium flow is called a negative flow if A(p) < 0. (ii) For A(p) C(p) < 0, the corresponding standard form is x_ ¼ a0 ðx þ aÞðx aÞ
ð5:52Þ
with two symmetric equilibriums x ¼ a and x ¼ a,
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Cðp0 Þ with a0 ¼ Aðp0 Þ and a ¼ : Aðp0 Þ
ð5:53Þ
(iii) For C(p0) ¼ 0, the corresponding standard form with Δ ¼ 0 is x_ ¼ a0 x2
ð5:54Þ
x ¼ a ¼ 0 and x ¼ a ¼ þ0:
ð5:55Þ
with two equilibriums of
Such an equilibrium point of x ¼ 0 is called a saddle of the second order. If a0 > 0, the equilibrium is an upper saddle of the second order. If a0 < 0, the equilibrium is a lower saddle of the second order. (iv) The equilibrium of x ¼ 0 for two equilibriums appearaing or vanishing is called a saddle-node bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12, and the bifurcation condition is Cðp0 Þ ¼ 0:
ð5:56Þ
5.2 Quadratic Nonlinear Systems
163
Theorem 5.5 (i) Under a condition of AðpÞ CðpÞ < 0,
ð5:57Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.51) is x_ ¼ f ðx, pÞ ¼ a0 ðx þ aÞðx aÞ:
ð5:58Þ
(i1) If a0(p) > 0, then equilibrium x ¼ a is stable with df =dxjx ¼a < 0 and equilibrium x ¼ a is unstable with df =dxjx ¼a > 0. (i2) If a0(p) < 0, then equilibrium x ¼ a is unstable with df =dxjx ¼a > 0 and equilibrium x ¼ a is stable with df =dxjx ¼a < 0. (ii) Under a condition of CðpÞ ¼ 0,
ð5:59Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.38) is x_ ¼ f ðx, pÞ ¼ a0 x2 :
ð5:60Þ
(ii1) If a0(p) > 0, then the equilibrium of x ¼ 0 is an upper saddle of the second order with d2 f =dx2 jx ¼0 > 0. Such a bifurcation for two equilibriums appearing or vanishing is an upper-saddle-node bifurcation of the second order. (ii2) If a0(p) < 0, then the equilibrium x ¼ 0 is a lower saddle of the second order with d 2 f =dx2 jx ¼0 < 0. Such a bifurcation for two equilibriums appearing or vanishing is a lower-saddle-node bifurcation of the second order. Proof The proof is similar to Theorem 5.2. The theorem is proved.
∎
The stability and bifurcation of equilibriums for the quadratic nonlinear system in Eq. (5.51) are illustrated in Fig. 5.5 as a special case of the dynamical system in Eq. (5.9) with B(p) ¼ 0. The stable and unstable equilibriums varying with the vector parameter are depicted by solid and dashed curves, respectively. The bifurcation point of equilibrium occurs at the double equilibrium at the boundary of p0 2 ∂Ω12. In Fig. 5.5a, for Δ ¼ 4AC > 0 and a0 ¼ A > 0, the equilibriums of x ¼ a < 0 and x ¼ a > 0 for C < 0 are stable and unstable, respectively. The bifurcation of equilibrium also occurs at C ¼ 0. The flow of x(t) is a forward upper flow for a0 > 0, and the equilibrium point of x ¼ 0 at C ¼ 0 is termed the upper saddle. Such a bifurcation is termed the upper-saddle-node bifurcation. For Δ ¼ 4AC < 0 and a0 ¼ A > 0, we have C > 0. Thus, no equilibrium exists because of x_ ¼ Ax2 þ C > 0: Such a 1-dimensional system is termed a nonequilibrium system. For a0 ¼ A > 0 and
164
5 Low-Degree Polynomial Systems
a
b
Fig. 5.5 Stability and bifurcation of two equilibriums in the quadratic dynamical system: (a) an upper-saddle-node bifurcation (a0 > 0), (b) a lower-saddle-node bifurcation (a0 < 0). Stable and unstable equilibriums are represented by solid and dashed curves, respectively. SO: source, SI: sink
C > 0, the flow of x(t) is always toward the positive direction. In Fig. 5.5b, for Δ ¼ 4AC > 0 and a0 ¼ A < 0, the equilibriums of x ¼ a and x ¼ a for C > 0 are unstable and stable, respectively. The bifurcation of equilibrium also occurs at C ¼ 0. The flow of x(t) for the bifurcation point is a forward lower flow for a0 ¼ A < 0, and the equilibrium bifurcation point of x ¼ 0 at C ¼ 0 is termed a lower saddle. Such a bifurcation is termed a lower-saddle-node bifurcation. For Δ ¼ 4AC < 0 and a0 ¼ A < 0, we have C < 0. For a0 ¼ A < 0 and C < 0, the flow of x(t) is always toward the negative direction without any equilibrium because of x_ ¼ Ax2 þ C < 0.
5.3
Cubic Nonlinear Systems
In this section, the stability and stability switching of equilibriums in cubic polynomial systems are discussed. As in Luo (2019), the upper-saddle-node and lowersaddle-node appearing and switching bifurcations are discussed and the third-order sink and source switching bifurcations are discussed as well. Definition 5.6 Consider a cubic nonlinear dynamical system x_ ¼ AðpÞx3 þ BðpÞx2 þ CðpÞx þ DðpÞ a0 ðpÞðx aðpÞÞ½x2 þ B1 ðpÞx þ C1 ðpÞ
ð5:61Þ
where four scalar constants A(p) 6¼ 0, B(p), C(p), and D(p) are determined by A ¼ a0 , B ¼ ða þ B1 Þa0 , C ¼ ðaB1 þ C 1 Þa0 , D ¼ aa0 C 1 , p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:62Þ
5.3 Cubic Nonlinear Systems
165
(i) If Δ1 ¼ B21 4C 1 < 0 for p 2 Ω1 Rm
ð5:63Þ
then the cubic nonlinear system has a simple equilibrium only as x ¼ a for p 2 Ω1 Rm
ð5:64Þ
and the standard form of such a 1-dimensional system is 1 1 2 x_ ¼ a0 ðx aÞ½ðx B1 Þ þ ðΔ1 Þ: 2 4
ð5:65Þ
Δ1 ¼ B21 4C 1 > 0 for p 2 Ω2 Rm
ð5:66Þ
(ii) If
then there are three equilibriums with pffiffiffiffiffiffi 1 a0 ¼ AðpÞ, b1, 2 ¼ ðB1 ðpÞ Δ1 Þ with b1 > b2 ; 2 a1 ¼ min fa, b1 , b2 g, a3 ¼ max fa, b1 , b2 g, a2 2 fa, b1 , b2 g 6¼ fa1 , a3 g, Δij ¼ ðai aj Þ2 > 0 for i, j 2 f1, 2, 3g but i 6¼ j:
ð5:67Þ
(ii1) If ai 6¼ aj with Δij ¼ ðai aj Þ2 > 0 for i, j 2 f1, 2, 3g but i 6¼ j:
ð5:68Þ
the cubic nonlinear system has three different, simple equilibriums as x ¼ a1 , x ¼ a2 , and x ¼ a3
ð5:69Þ
and the corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ:
ð5:70Þ
(ii2) If at p ¼ p1 a1 ¼ b2 , a2 ¼ a, a3 ¼ b1 ; Δ12 ¼ ða1 a2 Þ ¼ ða b2 Þ2 ¼ 0,
ð5:71Þ
166
5 Low-Degree Polynomial Systems
the cubic nonlinear system has a double-repeated equilibrium and a simple equilibrium as x ¼ a1 , x ¼ a1 and x ¼ a2
ð5:72Þ
and the corresponding standard form is x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ:
ð5:73Þ
Such a flow at the equilibrium of x ¼ a1 is called a saddle flow of the second order.The equilibrium of x ¼ a1 for two different equilibriums switching is called a bifurcation point of equilibrium at a point p ¼ p1 with the second-order multiplicity, and the bifurcation condition is pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 a ¼ b1 ¼ min f ðB1 ðpÞ þ Δ1 Þ, ðB1 ðpÞ Δ1 Þg: 2 2
ð5:74Þ
If at p ¼ p2, a2 ¼ b1 , a3 ¼ a, a1 ¼ b2 , Δ23 ¼ ða2 a3 Þ ¼ ða b1 Þ2 ¼ 0,
ð5:75Þ
the cubic nonlinear system has three equilibriums as x ¼ a1 , x ¼ a2 , and x ¼ a2
ð5:76Þ
and the corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þ2 :
ð5:77Þ
Such a flow at the equilibrium of x ¼ a2 is called a saddle flow of the second order.The equilibrium of x ¼ a2 for two different equilibriums switching is called a bifurcation point of equilibrium at a point p ¼ p1 with the second-order multiplicity, and the bifurcation condition is pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 a ¼ b2 ¼ max f ðB1 ðpÞ þ Δ1 Þ, ðB1 ðpÞ Δ1 Þg: 2 2
ð5:78Þ
If at p ¼ p3, a1 ¼ b2 , a2 ¼ a, a3 ¼ b1 , Δ12 ¼ ða1 a2 Þ2 ¼ ða b2 Þ2 ¼ 0, Δ23 ¼ ða2 a3 Þ2 ¼ ða b1 Þ2 ¼ 0, Δ13 ¼ ða1 a3 Þ2 ¼ ðb2 b1 Þ2 ¼ 0,
ð5:79Þ
5.3 Cubic Nonlinear Systems
167
the cubic nonlinear system has three repeated equilibriums as x ¼ a1 ¼ a, x ¼ a2 ¼ a and x ¼ a3 ¼ a
ð5:80Þ
and the corresponding standard form is x_ ¼ a0 ðx aÞ3 :
ð5:81Þ
Such a flow at the equilibrium of x ¼ a is called a sink or source flow of the third order. The equilibrium of x ¼ a at a point p ¼ p3 for three different equilibriums switching is called a bifurcation point of equilibrium with the thirdorder multiplicity, and the bifurcation condition is 1 a ¼ b ¼ B1 ðpÞ: 2
ð5:82Þ
Δ1 ¼ B21 4A1 C 1 ¼ 0 for p ¼ p0 2 ∂Ω12 Rm1 ,
ð5:83Þ
(iii) If
then there exist 1 a0 ¼ Aðp0 Þ, and b1 ¼ b2 ¼ b ¼ B1 ðp0 Þ: 2
ð5:84Þ
(iii1) For a < b, the cubic nonlinear system has a double-repeated equilibrium plus a lower simple equilibrium: x ¼ a1 ¼ a, x ¼ a2 ¼ b and x ¼ a2 ¼ b
ð5:85Þ
with the corresponding standard form of x_ ¼ a0 ðx a1 Þðx a2 Þ2 :
ð5:86Þ
Such a flow at the equilibrium of x ¼ a2 is called a saddle flow of the second order. The equilibrium of x ¼ a2 for two different equilibrium switching is called a bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12 with the second-order multiplicity, and the bifurcation condition is Δ1 ¼ B21 4C1 ¼ 0 with a < b:
ð5:87Þ
(iii2) For a > b, the cubic nonlinear system has a lower double-repeated equilibrium plus an upper simple equilibrium:
168
5 Low-Degree Polynomial Systems
x ¼ a1 ¼ b and x ¼ a1 ¼ b, x ¼ a2 ¼ a
ð5:88Þ
with the corresponding standard form of x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ:
ð5:89Þ
Such a flow at the equilibrium of x ¼ a1 is called a saddle flow of the second order. The equilibrium of x ¼ a1 ¼ b for two different equilibriums switching is called a bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12 with the second-order multiplicity, and the bifurcation condition is also Δ1 ¼ B21 4C1 ¼ 0 with a > b:
ð5:90Þ
(iii3) For a ¼ b, the cubic nonlinear system has a triple-repeated equilibrium as x ¼ a1 ¼ a and x ¼ a1 ¼ a, x ¼ a2 ¼ a
ð5:91Þ
with the corresponding standard form of x_ ¼ a0 ðx a1 Þ3 :
ð5:92Þ
Such a flow at the equilibrium of x ¼ a1 is called a source or sink flow of the third order. The equilibrium of x ¼ a1 ¼ a for three equilibriums switching or two equilibriums switching is called a bifurcation point of equilibrium at a point p ¼ p0 2 ∂Ω12 with the third-order multiplicity, and the bifurcation condition is Δ1 ¼ B21 4C1 ¼ 0 with a ¼ b:
ð5:93Þ
Theorem 5.6 (i) Under a condition of Δ1 ¼ B21 4C 1 < 0
ð5:94Þ
a standard form of the 1-dimensional dynamical system in Eq. (5.61) is 1 1 x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ½ðx þ B1 Þ2 þ ðΔ1 Þ: 2 4
ð5:95Þ
(i1) If a0(p) > 0, then equilibrium x ¼ a1 is unstable (df =dxjx ¼a1 > 0). (i2) If a0(p) < 0, then equilibrium x ¼ a1 is stable (df =dxjx ¼a1 < 0).
5.3 Cubic Nonlinear Systems
169
(ii) Under the conditions of Δ1 ¼ B21 4C 1 > 0, a1 , a2 , a3 ¼ sortfb2 , a, b1 g, ai 6¼ aj , ai < aiþ1 ;
ð5:96Þ
2
Δij ¼ ðai aj Þ 6¼ 0 for i, j 2 f1, 2, 3g, a standard form of the 1-dimensional dynamical system in Eq. (5.61) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ:
ð5:97Þ
(ii1) If a0(p) > 0, then the equilibriums of x ¼ a1, x ¼ a2, and x ¼ a3 are unstable (df =dxjx ¼a1 > 0), stable (df =dxjx ¼a2 < 0), and unstable (df =dxjx ¼a3 > 0), respectively. (ii2) If a0(p) < 0, then the equilibriums of x ¼ a1, x ¼ a2, and x ¼ a3 are stable (df =dxjx ¼a1 < 0), unstable (df =dxjx ¼a2 > 0), and stable (df =dxjx ¼a3 < 0), respectively. (iii) Under a condition of Δ1 ¼ B21 4C 1 > 0, a1 , a2 , a3 ¼ sortfb2 , a, b1 g, ai 6¼ aj , ai aiþ1
ð5:98Þ
Δ12 ¼ ða1 a2 Þ2 ¼ 0, for i, j 2 f1, 2, 3g a standard form of the 1-dimensional dynamical system in Eq. (5.61) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ2 ðx a3 Þ:
ð5:99Þ
(iii1) If a0(p) > 0, then the equilibriums of x ¼ a1 and x ¼ a3 are unstable (lower saddle, d 2 f =dx2 jx ¼a1 < 0) and unstable (source, df =dxjx ¼a3 > 0), respectively. The bifurcation of equilibrium at x ¼ a1 for the two different equilibriums switching is a lower-saddle-node bifurcation of the second order at a point p ¼ p1. (iii2) If a0(p) < 0, then the equilibriums of x ¼ a1 and x ¼ a3 are unstable (upper saddle, d2 f =dx2 jx ¼a1 > 0) and stable (sink, df =dxjx ¼a3 < 0), respectively. The bifurcation of equilibrium at x ¼ a1 for the two different equilibriums switching is an upper saddle of the second order at a point p ¼ p1.
170
5 Low-Degree Polynomial Systems
(iv) For Δ1 ¼ B21 4C 1 > 0, a1 , a2 , a3 ¼ sortfb2 , a, b1 g, ai 6¼ aj , ai aiþ1
ð5:100Þ
2
Δ23 ¼ ða2 a3 Þ ¼ 0, for i, j 2 f1, 2, 3g a standard form of the 1-dimensional dynamical system in Eq. (5.61) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þ2 :
ð5:101Þ
(iv1) If a0(p) > 0, then the equilibriums of x ¼ a1 and x ¼ a2 are unstable (source, df =dxjx ¼a1 > 0) and unstable (upper saddle, d2 f =dx2 jx ¼a2 > 0), respectively. The bifurcation of equilibrium at x ¼ a2 for two different equilibriums switching is an upper-saddlenode bifurcation of the second order at a point p ¼ p1. (iv2) If a0(p) < 0, then the equilibriums of x ¼ a1 and x ¼ a2 are stable (sink, df =dxjx ¼a1 < 0) and unstable (lower saddle, d2 f =dx2 jx ¼a2 < 0), respectively. The bifurcation of equilibrium at x ¼ a2 for two equilibrium switching is a lower-saddle-node bifurcation of the second order at a point p ¼ p1. (v) For Δ1 ¼ B21 4C1 0, b1 ¼ b2 a1 , a2 , a3 ¼ sortfb2 , a, b1 g, ai aiþ1 ,
ð5:102Þ
2
Δij ¼ ðai aj Þ ¼ 0 for i, j ¼ 1, 2, 3 but i 6¼ j, a standard form of the 1-dimensional dynamical system in Eq. (5.61) is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ3 :
ð5:103Þ
(v1) If a0(p) > 0, then the equilibrium of x ¼ a1 is unstable (third-order source, d3 f =dx3 jx ¼a1 > 0). The bifurcation of equilibrium at x ¼ a1 for three different equilibriums switching is a source switching bifurcation of the third order at a point p ¼ p1. (v2) If a0(p) < 0, then the equilibrium of x ¼ a1 is stable (third-order sink, d3 f =dx3 jx ¼a1 < 0). The bifurcation of equilibrium at x ¼ a1 for three different equilibrium switching is a sink switching bifurcation of the third order at a point p ¼ p1.
5.3 Cubic Nonlinear Systems
171
(vi) For Δ1 ¼ B21 4A1 C1 ¼ 0, a < b a1 ¼ a, a2 ¼ b, Δ12 ¼ ða1 a2 Þ2 6¼ 0
ð5:104Þ
at p ¼ p0 2 ∂Ω12 Rm1, a standard form of the 1-dimensional dynamical system is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þ2 :
ð5:105Þ
(vi1) If a0(p) > 0, then the equilibriums of x ¼ a1 and x ¼ a2 are unstable (source, df =dxjx ¼a1 > 0) and unstable (upper saddle, 2 2 d f =dx jx ¼a2 > 0), respectively. The bifurcation of equilibrium at x ¼ a2 for two different equilibriums vanishing or appearance is an uppersaddle-node bifurcation of the second order at a point p ¼ p0 2 ∂Ω12. (vi2) If a0(p) < 0, then the equilibriums of x ¼ a1 and x ¼ a2 are stable (sink, df =dxjx ¼a1 < 0) and unstable (lower saddle, d2 f =dx2 jx ¼a2 < 0), respectively. The bifurcation of equilibrium at x ¼ a2 for two different equilibriums vanishing or appearance is a lower saddle of the second order at a point p ¼ p0 2 ∂Ω12. (vii) For Δ1 ¼ B21 4A1 C1 ¼ 0, a > b a1 ¼ b, a2 ¼ a, Δ12 ¼ ða1 a2 Þ2 6¼ 0
ð5:106Þ
at p ¼ p0 2 ∂Ω12 Rm1, a standard form of the 1-dimensional dynamical system is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ2 ðx a2 Þ:
ð5:107Þ
(vii1) If a0(p) > 0, then the equilibriums of x ¼ a1 and x ¼ a2 are unstable (lower saddle, d2 f =dx2 jx ¼a1 < 0) and unstable (source, df =dxjx ¼a2 > 0), respectively. The bifurcation of equilibrium at x ¼ a1 for two different equilibriums switching is a lower-saddle-node bifurcation of the second order at a point p ¼ p0 2 ∂Ω12. (vii2) If a0(p) < 0, then the equilibriums of x ¼ a1 and x ¼ a2 are unstable (upper saddle, d2 f =dx2 jx ¼a1 > 0) and stable (sink, df =dxjx ¼a2 < 0), respectively. The bifurcation of equilibrium at x ¼ a1 for two different equilibriums switching is an upper-saddle-node bifurcation of the second order at a point p ¼ p0 2 ∂Ω12.
172
5 Low-Degree Polynomial Systems
(viii) For Δ1 ¼ B21 4A1 C 1 ¼ 0, a ¼ b a2 ¼ a, a2 ¼ a3 ¼ b,
ð5:108Þ
2
Δ12 ¼ ða1 a2 Þ ¼ 0 at p ¼ p0 2 ∂Ω12 Rm1, a standard form of the 1-dimensional dynamical system is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ3 :
ð5:109Þ
(viii1) If a0(p) > 0, then the equilibrium of x ¼ a1 is unstable (third-order source, d3 f =dx3 jx ¼a1 > 0). The bifurcation of equilibrium at x ¼ a1 for one equilibrium to three different equilibriums switching is a source bifurcation of the third order at a point p ¼ p0 2 ∂Ω12. (viii2) If a0(p) < 0, then the equilibrium of x ¼ a1 is stable (third-order sink, d 3 f =dx3 jx ¼a1 < 0). The bifurcation of equilibrium at x ¼ a1 for one simple equilibrium to three different simple equilibriums switching is a sink bifurcation of the third order at a point p ¼ p0 2 ∂Ω12. Proof The proof is similar to Theorem 5.2.
∎
The 1-dimensional cubic nonlinear system can be expressed by a factor of (xa) and a quadratic form of a0(x2 + B1x + C1) as in Eq. (5.61). Three equilibriums do not have any intersections. Thus, only one bifurcation occurs at Δ1 ¼ B21 4C1 ¼ 0. The bifurcation of equilibrium occurs at the double-repeated equilibrium at the boundary of p0 2 ∂Ω12. For Δ1 ¼ B21 4C 1 > 0, x2 + B1x + C1 ¼ 0 gives two equilibriums of x ¼ b1, b2. For a0 > 0, if a > max {b1, b2}, then the equilibrium of x ¼ a3 ¼ a is unstable, and two equilibriums of x ¼ a2 ¼ max {b1, b2} and x ¼ a1 ¼ min {b1, b2} are stable and unstable, respectively. For Δ1 ¼ B21 4C 1 < 0, x2 + B1x + C1 ¼ 0 does not have any real solutions. For Δ1 ¼ B21 4C 1 ¼ 0, x2 + B1x + C1 ¼ 0 has a double-repeated equilibrium of x ¼ b ¼ 12 B1 . The condition of Δ1 ¼ B21 4C 1 ¼ 0 gives B1 2 ¼ 4C 1 :
ð5:110Þ
From Eq. (5.62), one obtains B1 ¼ a þ
B C B and C 1 ¼ þ aða þ Þ: A A A
ð5:111Þ
5.3 Cubic Nonlinear Systems
173
Thus, Eq. (5.110) gives a¼
ffi B 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B2 3AC : 3A 3A
ð5:112Þ
Further, the double-repeated equilibrium of x ¼ b ¼ 12 B1 is given by x ¼ b ¼
ffi B 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B2 3AC : 3A 3A
ð5:113Þ
If B2 > 3AC, such a double-repeated equilibrium exists. If B2 < 3AC, such a double-repeated equilibrium does not exist. From (5.111), another equilibrium is x ¼ a, which is different from x ¼ b. If B2 ¼ 3AC, such a double-repeated B equilibrium with equilibrium of x ¼ a has an intersected point at x ¼ 3A . The bifurcation diagram for a>max{b1, b2} and a0 > 0 is presented in Fig. 5.6a. The stable and unstable equilibriums varying with the vector parameter are presented by solid and dashed curves, respectively. Such an equilibrium of x ¼ b is a lower-saddle-node (LSN) bifurcation. The equilibrium of x ¼ a is a source, which is unstable. The equilibrium of x ¼ max {b1, b2} is a sink, which is stable. The equilibrium of x ¼ min {b1, b2} is a source, which is unstable. However, the bifurcation diagram for a >max {b1, b2} and a0 < 0 is presented in Fig. 5.6b. The equilibrium of x ¼ b is an upper-saddle-node (USN) bifurcation. The equilibrium of x ¼ a is a sink. The equilibrium of x ¼ max {b1, b2} is a source. The equilibrium of x ¼ min {b1, b2} is a sink. The bifurcation diagram for a < min {b1, b2} and a0 > 0 is presented in Fig. 5.6c. The equilibrium of x ¼ b is an upper-saddle-node (USN) bifurcation. The equilibrium of x ¼ max {b1, b2} is a source. The equilibrium of x ¼ min {b1, b2} is a sink. The equilibrium of x ¼ a is a source. The bifurcation diagram for a < min {b1, b2} and a0 < 0 is presented in Fig. 5.6d. The equilibrium of x ¼ b is a lower-saddle-node (LSN) bifurcation. The equilibrium of x ¼ max {b1, b2} is a sink. The equilibrium of x ¼ min {b1, b2} is a source. The equilibrium of x ¼ a is a sink. The stability and bifurcations of equilibriums of the 1-dimensional cubic nonlinear system are summarized in Table 5.1. For Δ1 ¼ B21 4C1 0, the 1-dimensional cubic nonlinear system in Eq. (5.61) has three equilibriums. Three equilibriums are x ¼ a, b1, b2. Assume ai ai + 1 for i ¼ 1, 2 with a1,2,3 ¼ sort(a, b1, b2). With varying parameters, two of three equilibriums (i.e., ai ¼ aj for i, j 2 {1, 2, 3} but i 6¼ j) will be intersected each other with the corresponding discriminant of Δij ¼ (aiaj)2 ¼ 0, and in the vicinity of the intersection point, Δij ¼ (aiaj)2 > 0. The two intersected points of a ¼ b1,2 give a¼
ffi B1 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B1 2 4C1 , 2 2
ð5:114Þ
174
5 Low-Degree Polynomial Systems
a
b
c
d
Fig. 5.6 Stability and bifurcation of three independent equilibriums in the 1-dimensional, cubic nonlinear dynamical system: For a > {b1, b2}: (a) a LSN bifurcation (a0 > 0), (b) an USN bifurcation (a0 < 0). For a < {b1, b2}: (c) an USN bifurcation (a0 > 0), (d) a LSN bifurcation (a0 < 0). LSN: lower saddle node, USN: upper saddle node. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
Table 5.1 Stability and bifurcation of a 1-dimensional cubic nonlinear system in Eq. (5.61) Fig. 5.6 (a) a0 > 0 (b) a0 < 0 (c) a0 < 0 (d) a0 < 0
a1 max {b1, b2} Unstable max {b1, b2} Stable min {b1, b2} Unstable min {b1, b2} Stable pffiffiffiffiffiffi Notice that b1, 2 ¼ 12 ðB1 Δ1 Þ, Δ1 ¼ B21 4C 1 . saddle node, USN: upper saddle node a> a> a< a
3AC, such an intersected point of x ¼ a and x ¼ b1 or x ¼ b2 exists. If B2 < 3AC, such an intersected point does not exist. Such an intersection point is for the two equilibriums switching, which is called the saddle-node bifurcation. The stability and bifurcation diagrams for a0 > 0 and a0 < 0 are presented in Fig. 5.7a, b, respectively. Three equilibriums are intersected at a point with B Δij ¼ (aiaj)2 ¼ 0 and a1 ¼ a2 ¼ a3 ¼ 3A , and in the vicinity of the intersection 2 point, Δij ¼ (aiaj) > 0 for i, j ¼ 1, 2, 3 but i 6¼ j. The intersection points for a0 > 0 and a0 < 0 are called the source and sink bifurcations of the third order, respectively. The corresponding stability and bifurcation diagrams for three equilibriums switching are presented in Fig. 5.7c, d.
a
b
c
d
Fig. 5.7 Stability and bifurcation of equilibriums switching in the 1-dimensional, cubic nonlinear dynamical system. For two equilibriums switching: (a) a0 > 0, (b) a0 < 0. For three equilibriums switching: (c) third-order source bifurcation (a0 > 0), (d) third-order sink bifurcation (a0 < 0). LSN: lower saddle node, USN: upper saddle node. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
176
5 Low-Degree Polynomial Systems
In the 1-dimensional cubic nonlinear system of Eq. (5.61), x2 + B1x + C1 ¼ 0 gives two equilibriums of x ¼ b1, b2 for Δ1 ¼ B21 4C1 > 0. One of the two equilibriums has one intersection with x ¼ a and there are three different equilibriums for a ¼ a2 2 (min{b1, b2}, max{b1, b2}). For this case, the intersection point occurs at a ¼ min {b1, b2} for p1 2 ∂Ω23 or a ¼ max {b1, b2} for p2 2 ∂Ω23. The bifurcation point of equilibrium occurs at the double-repeated equilibrium at Δ1 ¼ B21 4C1 ¼ 0 for p0 2 ∂Ω12. Such a bifurcation is a lower- or upper-saddle-node bifurcation. For a ¼ 12 B1 with Δ1 ¼ B21 4C 1 ¼ 0, three equilibriums are repeated with three multiplicities. The intersected point of a ¼ 12 B1 with Eq. (5.111) gives 1 B a ¼ ða þ Þ: 2 A
ð5:117Þ
Thus a¼
B : 3A
ð5:118Þ
Such a bifurcation at the intersection point is also a third-order source or sink bifurcation. The bifurcation diagrams for six cases of three equilibriums with one intersection are presented in Fig. 5.8a–f and the stability and bifurcations are listed in Table 5.2. The 1-dimensional cubic nonlinear system is expressed by a factor of (xa) and a quadratic form of a0(x2 + B1x + C1) as in Eq. (5.61). For Δ1 ¼ B21 4C 1 > 0, x2 + B1x + C1 ¼ 0 gives two equilibriums of x ¼ b1, b2. The two equilibriums do not have any intersections with x ¼ a. For Δ1 ¼ B21 4C 1 ¼ 0, there are two parameters of p1 2 ∂Ω12 and p2 2 ∂Ω12, and the two double-repeated equilibriums are at x ðpi Þ ¼ 12 B1 ðpi Þ (i ¼ 1, 2). With the two repeated equilibriums, the two equilibriums of x ¼ b1, b2 formed a closed path in the bifurcation diagram. The bifurcation points of equilibrium occur at the two double-repeated equilibriums of Δ1 ¼ B21 4C 1 ¼ 0 for pi 2 ∂Ω12 (x ¼ b1, b2). Such a bifurcation at the intersection point is also a lower- or upper-saddle-node bifurcation. The stable and unstable equilibriums varying with the vector parameter are also represented by solid and dashed curves, respectively. The bifurcation diagrams for four cases of three equilibriums are presented in Fig. 5.9a–d, and the stability and bifurcations are summarized in Table 5.3. If the two repeated equilibriums have two intersections with x ¼ a(pi) (i ¼ 1, 2), i.e., aðpi Þ ¼ 12 B1 ðpi Þ then there are two triple-repeated equilibriums at x ¼ a(pi) (i ¼ 1, 2), which are the third-order sink or source bifurcations. The stability and bifurcation diagrams of equilibriums are formed by the equilibrium of x ¼ a(p) and the closed loop of equilibriums of x ¼ b1, b2, as shown in Fig. 5.9e, f for a0 > 0 and a0 < 0, respectively. The stability and bifurcations are also summarized in Table 5.3. In the 1-dimensional cubic nonlinear system in Eq. (5.61), x2 + B1x + C1 ¼ 0 for Δ1 ¼ B21 4C 1 > 0 gives two equilibriums of x ¼ b1, b2, which have an
5.3 Cubic Nonlinear Systems
177
a
b
c
d
e
f
Fig. 5.8 Stability and bifurcation of equilibriums in the 1-dimensional, cubic nonlinear dynamical system: (a) the LSN (Δ1 ¼ 0) and USN (a ¼ max {b1, b2}) bifurcations (a0 > 0), (b) the USN (Δ1 ¼ 0) and LSN (a ¼ max {b1, b2}) bifurcations (a0 < 0), (c) the USN (Δ1 ¼ 0) and LSN (a ¼ min {b1, b2}) bifurcations (a0 > 0), (d) the LSN (Δ1 ¼ 0) and USN (a ¼ min {b1, b2}) bifurcations (a0 < 0), (e) the third-order SO bifurcation (Δ1 ¼ 0 and a ¼ b) (a0 > 0), (f) the thirdorder SI bifurcation (Δ1 ¼ 0 and a ¼ b) (a0 < 0). LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
intersection with x ¼ a. The intersected point is at a ¼ b1 or a ¼ b2 with Eq. (5.114). The double-repeated equilibrium requires Δ1 ¼ B21 4C1 ¼ 0 and the two equilibriums of x ¼ a, b1 under Δ1 ¼ B21 4C1 > 0 and x ¼ b2 for Δ1 ¼ B21 4C1 < 0. Similarly, the two equilibriums of x ¼ a, b2 under Δ1 ¼ B21 4C1 > 0 and x ¼ b2
178
5 Low-Degree Polynomial Systems
Table 5.2 Stability and bifurcation of a 1-dimensional cubic (x_ ¼ a0 ðx aÞ½x2 þ B1 ðpÞx þ C 1 ðpÞ,a 2 (min{b1, b2}, max{b1, b2})) Fig. 5.8 (a) a0 > 0 (b) a0 < 0 (c) a0 > 0 (d) a0 < 0 (e) a0 > 0
a1 Unstable Stable Unstable Stable Unstable
a2 Stable Unstable Stable Unstable Stable
a3 Unstable Stable Unstable Stable Unstable
B-I Second LSN Second USN Second USN Second LSN Δ1 ¼ 0
B-II Second USN Second LSN Second USN Second USN a ¼ 12 B1
nonlinear
system
B-III a ¼ max {b1, b2} a ¼ max {b1, b2} a ¼ min {b1, b2} a ¼ min {b1, b2} Third order SO
Unstable Stable Δ1 ¼ 0 Third order SI a ¼ 12 B1 pffiffiffiffiffiffi 2 Δ1 Þ, Δ1 ¼ B1 4C 1 . Bifurcation-I (B-I): Δ1 ¼ 0. Bifurcation-II Notice that b1, 2 ¼ B1 (B-II): a ¼ max {b1, b2} or a ¼ min {b1, b2}. Bifurcation-III (B-III): Δ1 ¼ 0and a ¼ 2A . LSN: 1 lower saddle node, USN: upper saddle node. SO: source, SI: sink (f) a0 < 0
Stable
12 ðB1
for Δ1 ¼ B21 4C1 < 0 are required. Such a bifurcation for two equilibriums appearing and vanishing is called a lower- or upper-saddle-node bifurcation. The stable and unstable equilibriums varying with the vector parameter are also represented by solid and dashed curves, respectively. The bifurcation diagrams for four cases of three equilibriums are presented in Fig. 5.10a–f. If the double-repeated B equilibrium has an intersection with x ¼ aðp0 Þ ¼ 12 B1 ¼ 3A , then there two triple-repeated equilibriums at x ¼ a(p0), which is the third-order sink and source bifurcations for a0 > 0 and a0 < 0, respectively. The stability and bifurcation diagrams of equilibriums are shown in Fig. 5.10e, f. Consider a 1-dimensional, cubic nonlinear dynamical system with a doublerepeated equilibrium and one simple equilibrium. (i) For b < a, the 1-dimensional, cubic nonlinear dynamical system is x_ ¼ a0 ðpÞðx bðpÞÞ2 ðx aðpÞÞ:
ð5:119Þ
For such a system, if a0 > 0, the double-repeated equilibrium of x ¼ b is a lower saddle, which is unstable, and the simple equilibrium of x ¼ b is a source, which is unstable. If a0 < 0, the double-repeated equilibrium of x ¼ b is an upper saddle, which is unstable, and the simple equilibrium of x ¼ a is a sink, which is stable. (ii) For b > a, the 1-dimensional cubic nonlinear dynamical system is x_ ¼ a0 ðpÞðx aðpÞÞðx bðpÞÞ2 :
ð5:120Þ
For such a system, if a0 > 0, the double-repeated equilibrium of x ¼ b is an upper saddle, which is unstable, and the simple equilibrium of x ¼ a is a source, which is unstable. If a0 < 0, the double-repeated equilibrium of x ¼ b is a lower saddle, which is unstable, and the simple equilibrium of x ¼ a is a sink, which is stable.
5.3 Cubic Nonlinear Systems
179
a
b
c
d
e
f
Fig. 5.9 Stability and bifurcation of three equilibriums in the 1-dimensional, cubic nonlinear dynamical system: For a < {b1, b2}: (a) two USN bifurcations (a0 > 0), (b) two LSN bifurcations (a0 < 0). For a > {b1, b2}: (c) two LSN bifurcations (a0 > 0), (d) two USN bifurcations (a0 < 0). (e) Two third-order SO bifurcations (a0 > 0), (f) two third-order SI bifurcations (a0 < 0). LSN: lower saddle node, USN: upper saddle node. SO: source, SI: sink. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
180
5 Low-Degree Polynomial Systems
Table 5.3 Stability and bifurcation of a 1-dimensional cubic (x_ ¼ a0 ðx aÞ½x2 þ B1 ðpÞx þ C 1 ðpÞ,a 2 (min{b1, b2}, max{b1, b2})) Fig. 5.9 (a) a0 > 0 (b) a0 < 0 (c) a0 > 0 (d) a0 < 0 (e) a0 < 0 (f) a0 < 0
nonlinear
system
a Unstable Stable Unstable Stable Unstable Stable
b1 b2 B-I B-I B-III Stable Unstable USN USN – Unstable Stable LSN LSN – Stable Unstable LSN LSN – Unstable Stable USN USN – Stable Unstable – – Third-order SO Unstable Stable – – Third-order SI pffiffiffiffiffiffi Notice that b1, 2 ¼ 12 ðB1 Δ1 Þ, Δ1 ¼ B21 4C 1 . Bifurcation-I (B-I): Δ1 ¼ 0. Bifurcation-II (B-II): a ¼ max {b1, b2}. Bifurcation-III (B-III): a ¼ min {b1, b2}. LSN: lower-saddle node, USN: upper-saddle-node
(iii) For b ¼ a, the dynamical system on the boundary is x_ ¼ a0 ðpÞðx bðpÞÞ3 :
ð5:121Þ
For such a system, if a0 > 0, the triple-repeated equilibrium of x ¼ b with the third-order multiplicity is a source bifurcation of the third-order for the (US: SO) to (SO:LS) equilibrium. If a0 < 0, the triple-repeated equilibrium of x ¼ b with the third-order multiplicity is a sink bifurcation of the third-order for the (LS:SI) to (SO:US) equilibrium. With parameter changes, the bifurcation diagram for the cubic nonlinear system is presented in Fig. 5.11. The acronyms LS, US, SI, and SO are for lower-saddle, upper-saddle, sink, and source, respectively. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation point is marked by a circular symbol. The third-order source bifurcation for the upper-saddle and source equilibriums to the source and lower-saddle equilibriums is presented in Fig. 5.11a. The third-order sink bifurcation for the lower-saddle and sink equilibriums to the sink and upper-saddle equilibriums is presented in Fig. 5.11b. To illustrate the stability and bifurcation of equilibrium with singularity in a 1-dimensional, cubic nonlinear system, the equilibrium of x_ ¼ a0 ðx a1 Þ3 is presented in Fig. 5.12. The third-order sink and source of equilibrium of x ¼ a1 with the third-order multiplicity are stable and unstable, respectively. The stable and unstable equilibriums are depicted by solid and dashed curves, respectively. At a0 ¼ 0, the third-order sink and source equilibriums are switched, which is marked by a circular symbol. For the 1-dimensional, cubic nonlinear systems, the equilibrium stability and bifurcation can be described through an alternative way as follows. Definition 5.7 Consider a 1-dimensional, cubic nonlinear dynamical system x_ ¼ AðpÞx3 þ BðpÞx2 þ CðpÞx þ DðpÞ i h B B a0 ðpÞ ðx þ Þ3 þ pðpÞðx þ Þ þ qðpÞ 3A 3A
ð5:122Þ
5.3 Cubic Nonlinear Systems
181
a
b
c
d
e
f
Fig. 5.10 Stability and bifurcation of equilibriums in the 1-dimensional, cubic nonlinear dynamical system: (a) the LSN (Δ1 ¼ 0) and USN (a ¼ max {b1, b2}) bifurcations (a0 > 0), (b) the USN (Δ1 ¼ 0) and LSN (a ¼ max {b1, b2}) bifurcations (a0 < 0), (c) the USN (Δ1 ¼ 0) and LSN (a ¼ min {b1, b2}) bifurcations (a0 > 0), (d) the LSN (Δ1 ¼ 0) and USN (a ¼ min {b1, b2}) bifurcations (a0 < 0), (e) the third-order SO bifurcation (Δ1 ¼ 0 and a ¼ b) (a0 > 0), (f) the thirdorder SI bifurcation (Δ1 ¼ 0 and a ¼ b) (a0 < 0). LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
182
5 Low-Degree Polynomial Systems
a
b
Fig. 5.11 Stability and bifurcation of a triple-repeated equilibrium with a simple equilibrium in a 1-dimensional, cubic nonlinear dynamical system: (a) a third-order source bifurcation for (US:SO) to (SO:LS) switching (a0 > 0), (b) a third-order sink bifurcation (a0 < 0) for (LS:SI) to (SI:US) switching. Stable and unstable equilibriums are represented by solid and dashed curves, respectively
Fig. 5.12 Stability of a triple equilibrium in the 1-dimensional, cubic nonlinear dynamical system: Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The stability switching is labeled by a circular symbol
where four scalar constants A(p) 6¼ 0, B(p), C(p), and D(p) satisfy C B2 D BC 2B3 2,q ¼ 2 þ A 3A A 3A 27A3 T p ¼ ðp1 , p2 , . . . , pm Þ : A ¼ a0 , p ¼
ð5:123Þ
(i) If Δ¼
q2 p3 þ >0 4 27
ð5:124Þ
5.3 Cubic Nonlinear Systems
183
the cubic nonlinear system has one equilibrium as q pffiffiffiffi 1=3 q pffiffiffiffi 1=3 B x ¼ a ð þ ΔÞ þ ð ΔÞ 2 2 3A
ð5:125Þ
and the corresponding standard form is 2 1 1 x_ ¼ a0 ðx aÞ½ðx þ B1 Þ þ ðΔ1 Þ 2 4 ¼ a0 ðx aÞ½x2 þ B1 x þ C 1 Þ:
ð5:126Þ
where A ¼ a0 , B ¼ ða þ B1 Þa0 , C ¼ ðaB1 þ C 1 Þa0 , D ¼ aa0 C1 :
ð5:127Þ
(ii) If Δ¼
q2 p3 þ b is x_ ¼ a0 ðx bÞ2 ðx aÞ:
ð5:136Þ
Such a flow at the equilibrium of x ¼ b is called a saddle flow of the second order. The bifurcation of equilibrium at x ¼ b for two equilibriums appearing or vanishing is called a saddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 1 1 1 Δ ¼ q2 þ p3 ¼ 0, q2 ¼ p3 6¼ 0, a > b: 4 27 4 27
ð5:137Þ
1 1 1 1 Δ ¼ q2 þ p3 ¼ 0, q2 ¼ p3 ¼ 0, 4 27 4 27
ð5:138Þ
(iv) If
the 1-dimensional dynamical system has a triple-repeated equilibrium as x ¼ a ¼
B B B , x ¼ b1 ¼ , x ¼ b2 ¼ : 3A 3A 3A
ð5:139Þ
5.3 Cubic Nonlinear Systems
185
The corresponding standard form is x_ ¼ a0 ðx aÞ3 :
ð5:140Þ
Such a flow at the equilibrium of x ¼ a is called a source or sink flow of the B third order. The bifurcation of equilibrium at x ¼ 3A for one equilibrium to three equilibriums is called a source or think bifurcation of the third order at p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 1 1 1 Δ ¼ q2 þ p3 ¼ 0, q2 ¼ p3 ¼ 0: 4 27 4 27
ð5:141Þ
From the afore-described stability and bifurcation of the 1-dimensional, cubic nonlinear dynamical systems, the equilibrium stability and bifurcations of equilibrium in Eq. (5.122) are similar to Theorem 5.6. The 1-dimensional cubic nonlinear system has the following four cases: (i) One real solution of equilibrium of x ¼ a requires Δ ¼ ðq2Þ2 þ ðp3Þ3 > 0 for Eq. (5.122), equivalent to Δ1 ¼ B21 4C 1 < 0 for Eq. (5.61): Aa3 þ Ba2 þ Ca þ D ¼ 0:
ð5:142Þ
(ii) Three different solutions of equilibriums of x ¼ a, b1, b2 require Δ < 0 for Eq. (5.122), equivalent to Δ1 ¼ B21 4C 1 > 0 for Eq. (5.61): 1 Aa3 þ Ba2 þ Ca þ D ¼ 0 and b1, 2 ¼ ðB1 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B21 4C1 Þ:
ð5:143Þ
(iii) The double-repeated equilibriums require Δ ¼ 0 and ðq2Þ2 ¼ ðp3Þ3 6¼ 0 for Eq. (5.122), equivalent to Δ1 ¼ B21 4C 1 ¼ 0 or a ¼ b1,2 for Eq. (5.61): a ¼ b1 , 2 ¼
ffi B 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B2 3AC with B2 > 3AC: 3A 3A
ð5:144Þ
(iv) The triple-repeated equilibriums require Δ ¼ 0 and ðq2Þ2 ¼ ðp3Þ3 ¼ 0 for Eq. (5.122), equivalent to Δ1 ¼ B21 4C 1 ¼ 0 and a ¼ b1,2 for Eq. (5.61): a ¼ b1 , 2 ¼
B with B2 ¼ 3AC: 3A
ð5:145Þ
186
5 Low-Degree Polynomial Systems
5.4
Quartic Nonlinear Systems
In this section, the stability and bifurcation of the quartic nonlinear systems will be presented as in Luo (2019). The fourth-order upper-saddle and lower-saddle appearing bifurcations of two second-order upper saddles and lower saddles will be presented. The third-order switching sink and source bifurcations of lower saddle with sink and upper saddle with source will be discussed. Definition 5.8 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞ½x2 þ B1 ðpÞx þ C 1 ðpÞ½x2 þ B2 ðpÞx þ C2 ðpÞ
ð5:146Þ
where A(p) 6¼ 0, and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:147Þ
Δi ¼ B2i 4Ci < 0 for i ¼ 1, 2
ð5:148Þ
(i) If
the quartic nonlinear dynamical system does not have any equilibrium, and the corresponding standard form is 2 2 1 1 1 1 x_ ¼ a0 ½ðx þ B1 Þ þ ðΔ1 Þ½ðx þ B2 Þ þ ðΔ2 Þ: 2 4 2 4
ð5:149Þ
The flow of such a system without equilibriums is called a nonequilibrium flow. (i1) If a0 > 0, the nonequilibrium flow is called the positive flow. (i2) If a0 < 0, the nonequilibrium flow is called the negative flow. (ii) If Δi ¼ B2i 4C i > 0 and Δj ¼ B2j 4C j < 0 for i, j 2 f1, 2g, i 6¼ j
ð5:150Þ
the quartic polynomial system has two simple equilibriums, i.e., pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ: 2 2
ð5:151Þ
5.4 Quartic Nonlinear Systems
187
The corresponding standard form is 1 2 1 x_ ¼ a0 ðx a1 Þðx a2 Þ½ðx þ Bj Þ þ ðΔj Þ 2 4
ð5:152Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
a1 ¼ min fb1 , b2 g and a2 ¼ max fb1 , b2 g:
ð5:153Þ
Such a flow of equilibriums is called a flow of two simple equilibriums. (iii) If Δi ¼ B2i 4C i ¼ 0 and Δj ¼ B2j 4C j < 0 for i, j 2 f1, 2g, i 6¼ j
ð5:154Þ
the quartic polynomial system has a double-repeated equilibrium, i.e., 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi : 2 2
ð5:155Þ
The corresponding standard form is 1 2 1 x_ ¼ a0 ðx a1 Þ2 ½ðx þ Bj Þ þ ðΔj Þ 2 4
ð5:156Þ
ðiÞ
ð5:157Þ
where ðiÞ
a1 ¼ b1 ¼ b2 :
Such a flow of the equilibrium of x ¼ a1 is called a saddle flow of the second order. The equilibrium of x ¼ a1 for two equilibriums switching or appearing or vanishing is called a bifurcation point of equilibrium at p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 Δi ¼ B2i 4Ci ¼ 0 ði 2 f1, 2gÞ and a1 ¼ Bi : 2
ð5:158Þ
Δi ¼ B2i 4Ci 0 for i ¼ 1, 2
ð5:159Þ
(iv) If
the quartic nonlinear dynamical system has four equilibriums, i.e., pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ for i ¼ 1, 2: 2 2
ð5:160Þ
188
5 Low-Degree Polynomial Systems
(iv1) A standard form is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þðx a4 Þ
ð5:161Þ
where Δi ¼ B2i 4Ci > 0, i ¼ 1, 2; ð1Þ
ð2Þ
bk 6¼ bl
for k, l 2 f1, 2g;
a1 , 2 , 3 , 4 2
ð1Þ ð1Þ ð2Þ ð2Þ fb1 , b2 , b1 , b2 g
ð5:162Þ with am < amþ1 :
Such a flow of equilibriums is called a flow of four simple equilibriums. (iv2) The corresponding standard form is x_ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ
ð5:163Þ
where Δi ¼ B2i 4C i > 0, Δj ¼ B2j 4C j > 0 for i, j ¼ 1, 2; ðiÞ
ðjÞ
ai1 ¼ bk ¼ bl , ði, kÞ 6¼ ðj, lÞ;i, j, k, l 2 f1, 2g
ð5:164Þ
ai12 = fai2 , ai3 g for iα 2 f1, 2, 3, 4g and α 2 f1, 2, 3, 4g: Such a flow of equilibrium x ¼ ai1 is called a saddle flow of the second order. The equilibrium of x ¼ ai1 for two equilibriums switching or appearing or vanishing is called a saddle bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is Δi ¼ B2i 4C i > 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4C j > 0 ðj 2 f1, 2gÞ ðiÞ bk
¼
ðjÞ bl , ði, kÞ
ð5:165Þ
6¼ ðj, lÞ, ði, j, k, l 2 f1, 2gÞ:
(iv3) The corresponding standard form is x_ ¼ a0 ðx ai1 Þ3 ðx ai2 Þ
ð5:166Þ
where Δi ¼ B2i 4C i > 0, Δj ¼ B2j 4C j ¼ 0 for i, j ¼ 1, 2; 1 ðiÞ ðiÞ ai1 ¼ Bj ¼ bl , ai2 ¼ bk , k 6¼ l;k, l 2 f1, 2g 2 ai1 ¼ ai3 for iα 2 f1, 2, 3, 4g and α 2 f1, 2, 3, 4g:
ð5:167Þ
5.4 Quartic Nonlinear Systems
189
Such a flow of the equilibrium of x ¼ ai1 is called a source and sink flow of the third order. The equilibrium of x ¼ ai1 for one equilibrium to three equilibrium is called a third-order source or sink bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is Δi ¼ B2i 4Ci > 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4Cj ¼ 0 ðj 2 f1, 2gÞ 1 ðiÞ ðiÞ ðiÞ bk ¼ Bj , bk 6¼ bl , ðk 6¼ l, k, l 2 f1, 2gÞ: 2
ð5:168Þ
(iv4) The corresponding standard form is x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2
ð5:169Þ
where Δi ¼ B2i 4C i ¼ 0, i ¼ 1, 2 1 1 ð1Þ ð1Þ ð2Þ ð2Þ b1 ¼ b2 ¼ B1 , b1 ¼ b2 ¼ B2 , B1 6¼ B2 ; 2 2 1 1 1 1 a1 ¼ min f B1 , B2 g, a2 ¼ max f B1 , B2 g: 2 2 2 2
ð5:170Þ
Such a flow with the two equilibriums of x ¼ a1 and x ¼ a2 is called a (US:US) or (LS:LS) flow. The equilibriums of x ¼ a1 and x ¼ a2 for two equilibriums switching are called two bifurcations of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is Δi ¼ B2i 4Ci ¼ 0, i ¼ 1, 2 1 1 ð1Þ ð1Þ ð2Þ ð2Þ b1 ¼ b2 ¼ B1 , b1 ¼ b2 ¼ B2 : 2 2
ð5:171Þ
(iv5) The corresponding standard form is x_ ¼ a0 ðx a1 Þ4
ð5:172Þ
Δi ¼ B2i 4Ci ¼ 0, i ¼ 1, 2 1 ðiÞ ðiÞ b1 ¼ b 2 ¼ B i , B 1 ¼ B 2 : 2
ð5:173Þ
where
Such a flow at the equilibrium of x ¼ a1 is called a saddle flow of the fourth order. The equilibrium of x ¼ a1 for two second-order equilibriums
190
5 Low-Degree Polynomial Systems
switching or four simple equilibriums appearing or from two equilibriums to four simple equilibriums switching is called a fourth-order saddle bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is ðiÞ
ðiÞ
Δi ¼ B2i 4C i ¼ 0, a1 ¼ b1 ¼ b2 , i ¼ 1, 2: Theorem 5.7
ð5:174Þ
(i) Under conditions of Δi ¼ B2i 4Ci < 0 for i ¼ 1, 2
ð5:175Þ
a standard form of Eq. (5.146) is ih i h 1 1 1 1 x_ ¼ f ðx, pÞ ¼ a0 ðx þ B1 Þ2 þ ðΔ1 Þ ðx þ B2 Þ2 þ ðΔ2 Þ 2 4 2 4
ð5:176Þ
with a0 ¼ A(p), which has a nonequilibrium flow. (i1) If a0(p) > 0, the nonequilibrium flow is called a positive flow. (i2) If a0(p) > 0, the nonequilibrium flow is called a negative flow. (ii) Under a condition of Δi ¼ B2i 4C i > 0 and Δj ¼ B2j 4C j < 0 for i, j 2 f1, 2g, i 6¼ j
ð5:177Þ
a standard form of Eq. (5.146) is h i 1 1 x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þ ðx þ Bj Þ2 þ ðΔj Þ 2 4
ð5:178Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
a1 ¼ min ðb1 , b2 Þ and a2 ¼ max ðb1 , b2 Þ, pffiffiffiffiffi ðiÞ pffiffiffiffiffi 1 1 ðiÞ b1 ¼ ðBi þ Δi Þ, b2 ¼ ðBi Δi Þ: 2 2
ð5:179Þ
(ii1) For a0(p) > 0, the equilibriums of x ¼ a1 and x ¼ a2 are stable (sink, df =dxjx ¼a1 < 0) and unstable (source, df =dxjx ¼a2 > 0), respectively. (ii2) For a0(p) < 0, the equilibriums of x ¼ a1 and x ¼ a2 are unstable (source, df =dxjx ¼a1 > 0) and stable (sink, df =dxjx ¼a2 < 0), respectively. (iii) Under conditions of
5.4 Quartic Nonlinear Systems
191
Δi ¼ B2i 4C i ¼ 0 and Δj ¼ B2j 4C j < 0 for i, j 2 f1, 2g, i 6¼ j
ð5:180Þ
a standard form of Eq. (5.146) is i h 1 1 x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ2 ðx þ Bj Þ2 þ ðΔj Þ 2 4
ð5:181Þ
1 ðiÞ ðiÞ a1 ¼ b1 ¼ b2 ¼ B i : 2
ð5:182Þ
where
(iii1) For a0(p) > 0, the equilibrium of x ¼ a1 is unstable (an upper saddle, d2 f =dx2 jx ¼a1 > 0). Such a flow at the equilibrium of x ¼ a1 is called an upper-saddle flow of the second order. The bifurcation of equilibrium of at x ¼ a1 for two equilibriums appearing or vanishing is called an upper-saddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12. (iii2) For a0(p) < 0, the equilibrium of x ¼ a1 is unstable (a lower saddle, d2 f =dx2 jx ¼a1 < 0). Such a flow at the equilibrium of x ¼ a1 is called a lower-saddle flow of the second order. The bifurcation of equilibrium of at x ¼ a1 for two equilibriums appearing or vanishing is called a lowersaddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12. (iv) Under conditions of Δi ¼ B2i 4Ci > 0, i ¼ 1, 2 ð1Þ
ð2Þ
bk 6¼ bl ðiÞ b1
for k, l 2 f1, 2g; pffiffiffiffiffi ðiÞ pffiffiffiffiffi 1 1 ¼ ðBi þ Δi Þ, b2 ¼ ðBi Δi Þ for i ¼ 1, 2 2 2
ð5:183Þ
a standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þðx a4 Þ
ð5:184Þ
where ðiÞ
ðiÞ
a1, 2, 3, 4 2 [2i¼1 fb1 , b2 g with am < amþ1 :
ð5:185Þ
(iv1) For a0(p) > 0, the equilibriums of x ¼ a1, a2, a3, a4 are stable, unstable, stable, and unstable, respectively. The flow is called a (SI:SO:SI:SO) flow.
192
5 Low-Degree Polynomial Systems
(iv2) For a0(p) < 0, the equilibriums of x ¼ a1, a2, a3, a4 are unstable, stable, unstable, and stable, respectively. The flow is called a (SO:SI:SO:SI) flow. The equilibrium of x ¼ ai (i ¼ 1, 2, 3, 4) is unstable (source, df =dxjx ¼ai > 0) and stable (sink, df =dxjx ¼ai < 0). (v) Under conditions of Δi ¼ B2i 4C i > 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4C j > 0 ðj 2 f1, 2gÞ, pffiffiffiffiffiffi ðαÞ pffiffiffiffiffiffi 1 1 ðαÞ b1 ¼ ðBα þ Δα Þ, b2 ¼ ðBα Δα Þ for α ¼ i, j 2 2 ðiÞ ðjÞ bk ¼ bl , ði, kÞ 6¼ ðj, lÞ, ði, j, k, l 2 f1, 2gÞ,
ð5:186Þ
a standard form of Eq. (5.146) is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ
ð5:187Þ
where ðiÞ
ðjÞ
ðiÞ
ðiÞ
ai1 ¼ bk ¼ bl 2 [2i¼1 fb1 , b1 g, ði, kÞ 6¼ ðj, lÞ;i, j, k, l 2 f1, 2g ðiÞ
ðiÞ
ai12 = fai2 , ai3 g [2i¼1 fb1 , b1 g for iα 2 f1, 2, 3g and α 2 f1, 2, 3g:
ð5:188Þ
The equilibriums of x ¼ ai2 , ai3 are unstable (source, df =dxjx ¼ai , ai > 0) and stable (sink, df =dxjx ¼ai , ai < 0). 2 3 2 3 (v2) The equilibrium of x ¼ ai1 is unstable (an upper saddle, d 2 f =dx2 jx ¼ai > 0) and unstable (a lower saddle, d 2 f =dx2 jx ¼ai < 0). 1 1 The bifurcation of equilibrium at x ¼ ai1 for two equilibriums switching or vanishing is called the upper-saddle-node or lower-saddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12.
(v1)
(vi) Under conditions of Δi ¼ B2i 4C i > 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4C j ¼ 0 ðj 2 f1, 2gÞ pffiffiffiffiffi ðiÞ pffiffiffiffiffi 1 1 ðiÞ b1 ¼ ðBi þ Δi Þ, b2 ¼ ðBi Δi Þ 2 2 1 ðjÞ ðiÞ ðiÞ b1, 2 ¼ Bj , bk ¼ bl , ðk 6¼ l, k, l 2 f1, 2gÞ 2 a standard form of Eq. (5.146) is
ð5:189Þ
5.4 Quartic Nonlinear Systems
193
x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai2 Þ
ð5:190Þ
where ðjÞ
ðiÞ
ðiÞ
ai1 ¼ b1, 2 ¼ bl , ai2 ¼ bk , a1 < a2 ; for i, j, l 2 f1, 2g, iα 2 f1, 2g and α 2 f1, 2g:
ð5:191Þ
(vi1) The equilibrium of x ¼ ai2 is unstable (source, df =dxjx ¼ai > 0) or 2 stable (sink, df =dxjx ¼ai < 0). 2 (vi2) The equilibrium of x ¼ ai1 is unstable (the third-order source, d3 f =dx3 jx ¼ai > 0) and stable (the third-order sink, d 3 f =dx3 jx ¼ai 1 1 < 0). The bifurcation of equilibrium at x ¼ ai1 for one equilibrium to three equilibriums is called the source or sink bifurcation of the third order at a point p ¼ p1 2 ∂Ω12. (vii) Under conditions of Δi ¼ B2i 4Ci ¼ 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4Cj ¼ 0 ðj 2 f1, 2gÞ 1 ðαÞ ðαÞ b1 ¼ b2 ¼ Bα for α ¼ i, j 2 B1 6¼ B2 ,
ð5:192Þ
a standard form of Eq. (5.146) is x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2
ð5:193Þ
where 1 1 1 1 a1 ¼ min f B1 , B2 g, a2 ¼ max f B1 , B2 g: 2 2 2 2
ð5:194Þ
(vii1) For a0(p) > 0, the equilibriums of x ¼ ai (i ¼ 1, 2) are unstable (upper saddle, d2 f =dx2 jx ¼ai > 0). The equilibrium of x ¼ ai for two equilibriums vanishing and appearing are called an upper-saddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12. (vii2) For a0(p) < 0, the equilibriums of x ¼ ai (i ¼ 1, 2) are unstable (lower saddle, d2 f =dx2 jx ¼ai < 0). The equilibrium of x ¼ a1 for two equilibriums vanishing and appearing are called a lower-saddle-node bifurcation of the second order at a point p ¼ p1 2 ∂Ω12.
194
5 Low-Degree Polynomial Systems
(viii) Under conditions of Δi ¼ B2i 4Ci ¼ 0 ði 2 f1, 2gÞ and Δj ¼ B2j 4Cj ¼ 0 ðj 2 f1, 2gÞ 1 ðαÞ ðαÞ b1 ¼ b2 ¼ Bα for α ¼ i, j 2 B1 6¼ B2 ,
ð5:195Þ
the corresponding standard form is x_ ¼ a0 ðx a1 Þ4
ð5:196Þ
1 1 a1 ¼ B1 ¼ B2 : 2 2
ð5:197Þ
where
(viii1) For a0(p) > 0, the equilibriums of x ¼ a1 are unstable (upper saddle, d 4 f =dx4 jx ¼a1 > 0). The equilibrium of x ¼ a1 for four equilibriums vanishing and appearing are called an upper-saddle-node bifurcation of the fourth order at a point p ¼ p1 2 ∂Ω12. (viii2) For a0(p) < 0, the equilibriums of x ¼ a1 are unstable (lower saddle, d4 f =dx4 jx ¼a1 < 0). The equilibrium of x ¼ a1 for four equilibriums vanishing and appearing are called a lower-saddle-node bifurcation of the fourth order at a point p ¼ p1 2 ∂Ω12. As discussed before, a quartic nonlinear system is expressed by the product of two quadratic polynomials, i.e., x_ ¼ a0 ðpÞ½x2 þ B1 ðpÞx þ C1 ðpÞ½x2 þ B2 ðpÞx þ C2 ðpÞ:
ð5:198Þ
Thus, for x_ ¼ 0, the equilibriums are determined by the roots of two quadratic polynomial equations, i.e., x2 þ B1 ðpÞx þ C 1 ðpÞ ¼ 0 and=or x2 þ B2 ðpÞx þ C2 ðpÞ ¼ 0:
ð5:199Þ
The roots of such quadratic polynomial equations are determined by the corresponding discriminant of the quadratic equations, i.e., Δi ¼ B2i 4C i for i ¼ 1, 2:
ð5:200Þ
If Δi < 0, the quadratic equation of x2 + Bi(p)x + Ci(p) ¼ 0 does not have any roots. If Δi > 0, the quadratic equation of x2 + Bi(p)x + Ci(p) ¼ 0 possesses two roots.
5.4 Quartic Nonlinear Systems
195
If Δi ¼ 0, the quadratic equation of x2 + Bi(p)x + Ci(p) ¼ 0 has a repeated root. With parameter variation, suppose one of the two quadratic polynomial equations has one root intersected with the roots of the other quadratic polynomial equation. There are ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ ðiÞ ðjÞ six cases for a0 > 0: (a) b2 ¼ b1 , (b) b1 ¼ b1 ¼ b2 ¼ 12 Bi , (c) b1 ¼ b1 , (d) ðiÞ
ðjÞ
ðjÞ
ðiÞ
ðiÞ
ðiÞ
ðjÞ
b2 ¼ b2 , (e) b2 ¼ b1 ¼ b2 ¼ 12 Bi , and (f) b1 ¼ b2 , as presented in Fig. 5.13. The intersected point for non-repeated roots is a saddle-node bifurcation for the subcritical case. The lower-saddle-node and upper-saddle-node bifurcations are shown in Fig. 5.13a, c and d, f, respectively. The bifurcation dynamics for the 1-dimensional quartic system is determined by x_ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ with iα, α 2 {1, 2, 3} for four equilibriums or x_ ¼ a0 ðx ai Þ2 ½ðx þ 12 Bj Þ2 14 Δj with i, j 2 {1, 2} for two equilibriums. If the intersected point occurs at the repeated root, the third-order source and sink bifurcations are presented in Fig. 5.13b, e, respectively. The corresponding bifurcation dynamics for the 1-dimensional quartic system is determined by x_ ¼ a0 ðx ai1 Þ2 ðx ai2 Þ with iα, α 2 {1, 2}. The stable and unstable equilibriums are presented by the solid and dashed curves, respectively. The intersected points are marked by circular symbols, which are the bifurcation points. Without losing generality, suppose the two roots of the quadratic polynomial equaðiÞ ðiÞ tion have a relation of b1 > b2 for i ¼ 1, 2. The repeated roots of the two quadratic polynomial equations are also the upper- or lower-saddle-node bifurcations for two equilibriums appearing and vanishing. Similarly, the six cases of stability and bifurcation diagrams varying with parameter for a0 < 0 are presented in Fig. 5.14. The stability and bifurcation conditions for a0 < 0 are opposite to a0 > 0. If the roots of two quadratic equations do not have any intersections, the open loops for stability and bifurcation diagrams of equilibriums for a0 > 0 and a0 < 0 are presented in Fig. 5.15. There are four cases of open loops for a0 > 0: (a) Bi < Bj, ðjÞ ðjÞ (b) Bi > Bj, (c) b2 < 12 Bi < b1 , and (d) Δi ¼ Δj, Bi 6¼ Bj and four cases of open ðjÞ
ðjÞ
loops for a0 < 0: (e) Bi < Bj, (f) Bi > Bj, (g) b2 < 12 Bi < b1 , and (h) Δi ¼ Δj ¼ 0, Bi 6¼ Bj. The two bifurcations occur at the same time because the quadratic equations have Δi ¼ Δj ¼ 0, Bi 6¼ Bj. The bifurcation points are only for two equilibriums appearing or vanishing from the discriminants of the quadratic equations. The bifurcation dynamics for the 1-dimensional quartic system is determined by x_ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ with iα, α 2 {1, 2, 3}. With varying vector parameter, the open loops of stability and bifurcation diagrams will become closed loops. Thus, the closed loops of stability and bifurcation diagrams of equilibriums for a0 > 0 and a0 < 0 are presented in Fig. 5.16. There are ðjÞ ðjÞ six cases of closed loops: (a) Bi < Bj, (b) Bi > Bj, and (c) b2 < 12 Bi < b1 for a0 > 0 ðjÞ
ðjÞ
and (d) Bi < Bj, (e) Bi > Bj, and (f) b2 < 12 Bi < b1 for a0 < 0 For such a closed loop, the bifurcation points are the upper- or lower-saddle bifurcations of the second order at both ends. The bifurcation points are determined from the discriminants of the quadratic equations. If Δi ¼ Δj ¼ 0 occurs at the same parameter, the bifurcation dynamics for the quartic dynamical system is determined by x_ ¼ a0 ðx a1 Þ4 , as shown in Fig. 5.17.
196
5 Low-Degree Polynomial Systems
a
d
b
e
c
f
Fig. 5.13 Open loops for stability and bifurcations of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ ðiÞ ðjÞ nonlinear dynamical system (a0 > 0): (a) b2 ¼ b1 , (b) b1 ¼ b1 ¼ b2 ¼ 12 Bi , (c) b1 ¼ b1 , ðiÞ
ðjÞ
ðjÞ
ðiÞ
ðiÞ
ðiÞ
ðjÞ
(d) b2 ¼ b2 , (e) b2 ¼ b1 ¼ b2 ¼ 12 Bi , (f) b1 ¼ b2 . LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
There are six cases: two closed loops (Δi > Δj, Bi ¼ Bj): (a) a0 > 0 and (b) a0 > 0; two open loops (Δi > Δj, Bi ¼ Bj): (c) a0 > 0 and (d) a0 > 0; and two open loops (Bi Bj): (e) a0 > 0 and (f) a0 > 0. The bifurcation points are the upper- and lower-saddle-node bifurcations of the fourth order. In Fig. 5.17a, b, the fourth-order upper- and lower-
5.4 Quartic Nonlinear Systems
197
a
d
b
e
c
f
Fig. 5.14 Open loops for stability and bifurcation of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ ðiÞ ðjÞ nonlinear dynamical system (a0 < 0): (a) b2 ¼ b1 , (b) b1 ¼ b1 ¼ b2 ¼ 12 Bi , (c) b1 ¼ b1 , ðiÞ
ðjÞ
ðjÞ
ðiÞ
ðiÞ
ðiÞ
ðjÞ
(d) b2 ¼ b2 , (e) b2 ¼ b1 ¼ b2 ¼ 12 Bi , (f) b1 ¼ b2 . LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
saddle-node bifurcations in the closed loop of bifurcation diagrams for a0 > 0 and a0 > 0 are presented, respectively. However, for the open loop of bifurcation diagrams, the fourth-order upper- and lower-saddle-node bifurcations for a0 > 0 and a0 > 0 are presented in Fig. 5.17c, d, respectively. The fourth-order saddle-node
198
5 Low-Degree Polynomial Systems
Fig. 5.15 Open loops of stability and bifurcation of equilibriums in the 1-dimensional, quartic ðjÞ ðjÞ nonlinear dynamical system. (a0 > 0): (a) Bi < Bj, (b) Bi > Bj, (c) b2 < 12 Bi < b1 , (d) Δi ¼ Δj ¼ 0, ðjÞ
ðjÞ
Bi 6¼ Bj. (a0 < 0): (e) Bi < Bj, (f) Bi > Bj, (g) b2 < 12 Bi < b1 , (h) Δi ¼ Δj ¼ 0, Bi 6¼ Bj. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
5.4 Quartic Nonlinear Systems
199
a
d
b
e
c
f
Fig. 5.16 Closed loops for stability and bifurcation of equilibriums in the 1-dimensional, quartic ðjÞ ðjÞ nonlinear dynamical system: (a0 > 0): (a) Bi < Bj, (b) Bi > Bj, (c) b2 < 12 Bi < b1 . (a0 < 0): ðjÞ
ðjÞ
(d) Bi < Bj, (e) Bi > Bj, (f) b2 < 12 Bi < b1 . LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
bifurcation possesses four branches rather than two branches for the second-order saddle-node bifurcation. For Bi Bj, the fourth-order upper- and lower-saddle-node bifurcations are presented in Fig. 5.17e, f. The quadratic equation gives the two equilibriums, which are of the same stability. That is, both equilibriums for the same quadratic equation are stable or unstable.
200
5 Low-Degree Polynomial Systems
a
b
c
d
e
f
Fig. 5.17 Stability and bifurcation of equilibriums in the 1-dimensional, quartic nonlinear dynamical system. Closed loop (Δi > Δj, Bi ¼ Bj) for (a) a0 > 0 and (b) a0 > 0; open loop (Δi > Δj, Bi ¼ Bj) for (c) a0 > 0 and (d) a0 > 0; open loop (Bi < Bj) for (e) a0 > 0 and (f) a0 > 0. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
If Δi ¼ 0 (i 2 {1, 2}) occurs for new equilibrium appearing or vanishing only, the open loop of the bifurcation diagrams for a0 > 0 is presented in Fig. 5.18. There are ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ four cases for a0 > 0: (a) b2 ¼ b1 , (b) b1 ¼ b1 , (c) b2 ¼ b2 , and (d) b1 ¼ b2 . The bifurcation points are the upper- and lower-saddle-node bifurcations of the
5.4 Quartic Nonlinear Systems
201
a
c
b
d
Fig. 5.18 Open loops of stability and bifurcation of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ nonlinear dynamical system (a0 > 0): (a) b2 ¼ b1 , (b) b1 ¼ b1 , (c) b2 ¼ b2 , (d) b1 ¼ b2 . LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
second order. In Fig. 5.19a–d, the upper- and lower-saddle-node bifurcations of the second order in the open loop of bifurcation diagrams for a0 < 0 are presented. Such a diagram of stability and bifurcation possesses three saddle-node bifurcations. If Δi ¼ 0 and Δj > 0 (i, j 2 {1, 2}, i 6¼ j) exist for equilibrium appearing or vanishing with the source and sink bifurcations of the third order, one closed loop of the bifurcation diagrams for a0 > 0 is presented in Fig. 5.20. Four cases for a0 > 0 ðiÞ ðjÞ exist with the four saddle-node bifurcations in one closed loop: (a) b2 ¼ b1 and ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
b1 ¼ b2 , (b) b1 ¼ b1 and b2 ¼ b2 , (c) b2 ¼ b2 and b1 ¼ b1 , (d) b1 ¼ b2 ðiÞ
ðjÞ
and b2 ¼ b1 . Two cases for a0 > 0 exist with the three saddle-node bifurcations ðjÞ
plus the source and sink bifurcations of the third order in two closed loops: (e) b1 ¼ ðiÞ
ðiÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðjÞ
ðiÞ
ðiÞ
b1 ¼ b2 ¼ 12 Bi with b1 ¼ b1 and b2 ¼ b2 , and (f) b2 ¼ b1 ¼ b2 ¼ 12 Bi ðiÞ
ðjÞ
ðiÞ
ðjÞ
with b1 ¼ b1 and b2 ¼ b2 . However, in Fig. 5.21a–f, the upper- and lower-
202
5 Low-Degree Polynomial Systems
a
c
b
d
Fig. 5.19 Open loops for stability and bifurcation of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ ðiÞ ðjÞ nonlinear dynamical system (a0 < 0): (a) b2 ¼ b1 , (b) b1 ¼ b1 , (c) b2 ¼ b2 , (d) b1 ¼ b2 . LSN: lower saddle-node, USN: upper-saddle-node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
saddle-node bifurcations of the second order plus the source and sink bifurcations of the third order in the closed loop of bifurcation diagrams for a0 < 0 are presented. Definition 5.9 Consider a 1-dimensional, quartic nonlinear dynamical system: x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞðx b1 Þ2 ½x2 þ B2 ðpÞx þ C 2 ðpÞ
ð5:201Þ
where A(p) 6¼ 0, and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:202Þ
5.4 Quartic Nonlinear Systems
203
a
d
b
e
c
f
Fig. 5.20 Closed loops of stability and bifurcation of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ nonlinear dynamical system (a0 > 0): (a) b2 ¼ b1 and b1 ¼ b2 , (b) b1 ¼ b1 ¼ b2 ¼ 12 Bi ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðjÞ
with b1 ¼ b1 and b2 ¼ b2 , (c) b1 ¼ b1 and b2 ¼ b2 , (d) b2 ¼ b2 and b1 ¼ b1 , (e) b2 ¼ ðiÞ b1
ðiÞ b2
ðiÞ b1
ðjÞ b1
ðiÞ b2
ðjÞ b2 ,
ðiÞ b1
ðjÞ b2
ðiÞ b2
ðjÞ b1 .
¼ ¼ 12 Bi with ¼ and ¼ (f) ¼ and ¼ LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
204
5 Low-Degree Polynomial Systems a0 < 0
a0 < 0
b1(i )
SI
SI
LSN
b1( j ) LSN
b2(i )
SO
SO LSN
USN
LSN
b2( j )
x*
Dj < 0 Dj = 0 Dj > 0
LSN
Dj > 0
Dj < 0 Dj = 0
|| p ||
a
b2(i )
SO
x*
b2( j )
SO
|| p ||
SI
b1( j )
SI LSN
b1(i )
USN
d
a0 < 0
a0 < 0
b1(i )
LSN
SI
b1( j )
SI
b1(i )
b1( j )
3rd SI
SO
LSN
b2(i )
SI
LSN
SO SI
3rd SO
b2( j )
LSN SO
x*
b2( j )
SO
x*
Dj < 0 Dj = 0 Dj > 0
|| p ||
b2(i )
LSN
Dj < 0 Dj = 0 Dj > 0
|| p ||
b
e
a0 < 0 SI
b1( j )
a0 < 0
b1( j )
SI
LSN
b1(i ) LSN
SO LSN
SI
b
SO
b2( j )
SO
b2( j )
SI
b1(i )
USN
USN (i ) 2
LSN
x*
x*
LSN
Dj < 0 Dj = 0 Dj > 0
|| p ||
LSN
LSN
b2(i ) SO
Dj < 0 Dj = 0 Dj > 0
|| p ||
c
f
Fig. 5.21 A closed loop for stability and bifurcations of equilibriums in the 1-dimensional, quartic ðiÞ ðjÞ ðiÞ ðjÞ ðjÞ ðiÞ ðiÞ nonlinear dynamical system (a0 < 0): (a0 > 0): (a) b2 ¼ b1 and b1 ¼ b2 , (b) b1 ¼ b1 ¼ b2 ¼ ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
ðiÞ
ðjÞ
12 Bi with b1 ¼ b1 and b2 ¼ b2 , (c) b1 ¼ b1 and b2 ¼ b2 , (d) b2 ¼ b2 and b1 ¼ b1 , ðjÞ b2
ðiÞ b1
ðiÞ b2
12 Bi
ðiÞ b1
ðjÞ b1
ðiÞ b2
ðjÞ b2 ,
ðiÞ b1
ðjÞ b2
ðiÞ b2
ðjÞ b1 .
¼ ¼ ¼ with ¼ and ¼ (f) ¼ and ¼ LSN: (e) lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
(i) If Δ2 ¼ B22 4C 2 < 0 the corresponding standard form is
ð5:203Þ
5.4 Quartic Nonlinear Systems
205
1 1 x_ ¼ a0 ðx b1 Þ2 ½ðx þ B2 Þ2 þ ðΔ2 Þ 2 4
ð5:204Þ
with a double equilibrium: x ¼ a1 ¼ b1 :
ð5:205Þ
(a) For a0 > 0, the flow is called an upper-saddle (US) flow. (b) For a0 < 0, the flow is called a lower-saddle (LS) flow. (ii) If Δ2 ¼ B22 4C 2 > 0
ð5:206Þ
the quartic nonlinear dynamical system has two more equilibriums as pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ð2Þ ð2Þ x ¼ b1 ¼ ðB2 þ Δ2 Þ, x ¼ b2 ¼ ðB2 Δ2 Þ: 2 2
ð5:207Þ
(ii1) The corresponding standard form is x_ ¼ a0 ðx a1 Þ2 ðx a2 Þðx a3 Þ
ð5:208Þ
where ð2Þ
ð2Þ
ð2Þ
ð2Þ
a1 ¼ b1 < min fb1 , b2 g, a2 ¼ min fb1 , b2 g, ð2Þ
ð2Þ
a3 ¼ max fb1 , b2 g:
ð5:209Þ
(a) For a0 > 0, the flow is called a (US:SI:SO) flow. (b) For a0 < 0, the flow is called an (LS:SO:SI) flow. (ii2) The corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þ2 ðx a3 Þ
ð5:210Þ
where ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
a1 ¼ min fb1 , b2 g, a2 ¼ b1 > min fb1 , b2 g, a3 ¼ max fb1 , b2 g > b1 : (a) For a0 > 0, the flow is called an (SI:LS:SO) flow. (b) For a0 < 0, the flow is called an (SO:US:SI) flow. (ii3) The corresponding standard form is
ð5:211Þ
206
5 Low-Degree Polynomial Systems
x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þ2
ð5:212Þ
where ð2Þ
ð2Þ
ð2Þ
ð2Þ
a1 ¼ min fb1 , b2 g, a2 ¼ max fb1 , b2 g, ð2Þ
ð2Þ
a3 ¼ b1 > max fb1 , b2 g:
ð5:213Þ
(a) For a0 > 0, the flow is called an (SI:SO:US) flow. (b) For a0 < 0, the flow is called an (SO:SI:LS) flow. (ii4) The corresponding standard form is x_ ¼ a0 ðx a1 Þ3 ðx a2 Þ
ð5:214Þ
where ð2Þ
ð2Þ
ð2Þ
ð2Þ
a1 ¼ b1 ¼ min fb1 , b2 g, a2 ¼ max fb1 , b2 g:
ð5:215Þ
(a) For a0 > 0, the flow is called a (3rd order-SI:SO) flow. The bifurcation of equilibrium for (US:SI:SO)-equilibriums to (SI:LS:SO)-equilibrium is called the sink bifurcation of the third order. (b) For a0 < 0, the flow is called a (3rd order-SO:SI) flow. The bifurcation of equilibrium for (LS:SO:SI)-equilibrium to (SO:US:SI)-equilibrium is called the source bifurcation of the third order. (ii5) The corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þ3
ð5:216Þ
where ð2Þ
ð2Þ
ð2Þ
ð2Þ
a1 ¼ min fb1 , b2 g, a2 ¼ b1 ¼ max fb1 , b2 g:
ð5:217Þ
(a) For a0 > 0, the flow is called a (SI:3rd order-SO) flow. The bifurcation of equilibrium for (SI:SO:US)-equilibriums to (SI:US:SO)-equilibrium is called the source bifurcation of the third order. (b) For a0 < 0, the flow is called a (SO:3rd order-SI) flow. The bifurcation of equilibrium for (SO:SI:LS)-equilibriums to (SO:US:SI)-equilibriums is called the sink bifurcation of the third order. (iii) If Δ2 ¼ B22 4C 2 ¼ 0 the quartic nonlinear dynamical system has two equilibriums as
ð5:218Þ
5.4 Quartic Nonlinear Systems
207
1 ð2Þ ð2Þ x ¼ b1 ¼ b2 ¼ b2 ¼ B2 : 2
ð5:219Þ
(iii1) The corresponding standard form for b1 < b2 is x_ ¼ a0 ðx b1 Þ2 ðx b2 Þ2 :
ð5:220Þ
(a) For a0 > 0, the flow is called a (US:US) flow. The bifurcation of equilibrium for the (US:SI:SO)-equilibrium appearance is called the upper-saddle bifurcation of the second order. (b) For a0 < 0, the flow is called an (LS:LS) flow. The bifurcation of equilibrium for (LS:SO:SI)-equilibrium appearance is called the lowersaddle bifurcation of the second order. (iii2) The corresponding standard form for b1 > b2 is x_ ¼ a0 ðx b2 Þ2 ðx b1 Þ2 :
ð5:221Þ
(a) For a0 > 0, the flow is called a (US:US) flow. The bifurcation of equilibrium for the (SI:SO:US)-equilibrium appearance is called the upper-saddle bifurcation of the second order. (b) For a0 < 0, the flow is called an (LS:LS) flow. The bifurcation of equilibrium for (SO:SI:LS)-equilibrium appearance is called the lowersaddle bifurcation of the second order. (iii3) The corresponding standard form with b1 ¼ b2 ¼ a1 is x_ ¼ a0 ðx a1 Þ4 :
ð5:222Þ
(a) For a0 > 0, the flow is called a fourth-order upper-saddle (US) flow. The bifurcation of equilibrium for the upper-saddle (US) equilibrium to (SO:LS:SI)-equilibriums is called the upper-saddle-node bifurcation of the fourth order. (b) For a0 < 0, the flow is called a fourth-order lower-saddle (LS) flow. The bifurcation of equilibrium for the lower-saddle (LS) equilibrium to (SO: US:SI)-equilibrium appearance is called the lower-saddle bifurcation of the fourth order. Definition 5.10 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞ½x2 þ B1 ðpÞx þ C1 ðpÞ2 where A(p) 6¼ 0, and
ð5:223Þ
208
5 Low-Degree Polynomial Systems
p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:224Þ
Δ1 ¼ B21 4C1 < 0,
ð5:225Þ
(i) If
the quartic nonlinear dynamical system does not have any equilibrium. (a) For a0 > 0, the nonequilibrium flow is called a positive flow. (b) For a0 < 0, the nonequilibrium flow is called a negative flow. (ii) If Δ1 ¼ B21 4C 1 > 0
ð5:226Þ
the 1-dimensional quartic nonlinear dynamical system has two double-repeated equilibriums as pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ð1Þ ð1Þ x ¼ b1 ¼ ðB1 þ Δ1 Þ, x ¼ b1 ¼ ðB1 Δ1 Þ: 2 2
ð5:227Þ
The corresponding standard form is x_ ¼ a0 ðx a1 Þ2 ðx a2 Þ2
ð5:228Þ
where ð1Þ
ð1Þ
ð1Þ
ð1Þ
a1 ¼ min fb1 , b2 g, a2 ¼ max fb1 , b2 g:
ð5:229Þ
(a) For a0 > 0, the flow is called a (US:US) flow. (b) For a0 < 0, the flow is called an (LS:LS) flow. (iii) If Δ1 ¼ B21 4C 1 ¼ 0
ð5:230Þ
the 1-dimensional quartic nonlinear dynamical system has two equilibriums as 1 ð2Þ ð2Þ x ¼ b1 ¼ b2 ¼ B 2 ¼ a1 : 2
ð5:231Þ
The corresponding standard form is x_ ¼ a0 ðx a1 Þ4 :
ð5:232Þ
5.4 Quartic Nonlinear Systems
209
(a) For a0 > 0, the flow is called a fourth-order US flow. The bifurcation of equilibrium for (US:US)-equilibrium appearance is called the upper-saddle bifurcation of the fourth order. (b) For a0 < 0, the flow is called a fourth-order LS flow. The bifurcation of equilibrium for the LS equilibrium to (LS:LS)-equilibrium appearance is called the lower-saddle bifurcation of the fourth order. From a 1-dimensional, quartic nonlinear system with singularity, the saddle equilibrium with and without intersection with simple equilibriums is presented in Figs. 5.22 and 5.23. In Fig. 5.22a, d, the upper-saddle equilibrium for a0 > 0 does not intersect with any branch of the simple equilibriums. In Fig. 5.23b, c, the uppersaddle equilibrium for a0 > 0 intersects with one branch of the simple equilibriums, and the upper-saddle equilibrium switches to the lower-saddle equilibrium with source and sink equilibriums, which are called the source and sink bifurcations of the third order, accordingly. In Fig. 5.22e, the upper-saddle equilibrium for a0 > 0 intersects with a double-repeated equilibrium with upper saddle. The intersected point is an unstable equilibrium, which is called a fourth-order upper-saddle-node bifurcation. In Fig. 5.22f, the two second-order upper-saddle equilibriums are presented. The two upper-saddle equilibriums appear at the bifurcation of the fourth-order upper-saddle bifurcation. Similarly, the lower-saddle equilibrium for a0 < 0 does not intersect with any branch of the simple equilibriums, as shown in Fig. 5.23a, d. In Fig. 5.23b, c, the lower-saddle equilibrium for a0 < 0 intersects with one branch of the simple equilibriums, and the lower-saddle equilibrium switches to the upper-saddle equilibrium with source and sink equilibriums, which are called the source and sink bifurcations of the third order, accordingly. In Fig. 5.23e, the lower-saddle equilibrium for a0 < 0 intersects with a repeated equilibrium with a lower saddle. The intersection point is an unstable equilibrium, which is called a fourth-order lowersaddle-node bifurcation. In Fig. 5.23f, the two second-order lower-saddle equilibriums are presented for a0 < 0. The two lower-saddle equilibriums appear at the fourthorder lower-saddle bifurcation. Consider a 1-dimensional, quartic nonlinear dynamical system with two double equilibriums. (i) For b 6¼ a, the dynamical system is x_ ¼ a0 ðpÞðx bðpÞÞ2 ðx aðpÞÞ2 :
ð5:233Þ
For such a system, if a0 > 0, two double-repeated equilibriums of x ¼ a, b are two upper saddles, which are unstable. If a0 < 0, two double-repeated equilibriums of x ¼ a, b are two lower saddles, which are unstable. (ii) For b ¼ a, the dynamical system on the boundary is x_ ¼ a0 ðpÞðx bðpÞÞ4 :
ð5:234Þ
210
5 Low-Degree Polynomial Systems
a
d
b
e
c
f
Fig. 5.22 Stability and bifurcation of three equilibriums with and without intersection in the ð2Þ 1-dimensional, quartic nonlinear dynamical system (a0 > 0): (a) without intersection b1 > b1 , ð2Þ
ð2Þ
ð2Þ
(b) an intersection at b1 ¼ b1 , (c) an intersection at b1 ¼ b2 , (d) without intersection b1 < b1 , (e) an intersection at b1 ¼ 12 Bi , (f) Δ1 ¼ 0. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
With parameter changes, the bifurcation diagram for the quartic nonlinear system is presented in Fig. 5.24. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation point is marked by a circular symbol. In Fig. 5.24a, if a0 > 0, two double-repeated equilibriums of x ¼ a, b are
5.4 Quartic Nonlinear Systems
211
a
d
b
e
c
f
Fig. 5.23 Stability and bifurcation of four equilibriums with intersection in the 1-dimensional, ð2Þ quartic nonlinear dynamical system (a0 < 0): (a) without intersection b1 > b1 , (b) an intersection ð2Þ ð2Þ ð2Þ at b1 ¼ b1 , (c) an intersection at b1 ¼ b1 , (d) without intersection b1 < b1 , (e) an intersection at b1 ¼ 12 Bi , (f) Δ1 ¼ 0. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
212
a
5 Low-Degree Polynomial Systems
b
Fig. 5.24 Stability and bifurcation of two US or LS equilibriums with intersection in the 1-dimensional, quartic nonlinear dynamical system: (a) (US:US)-flow (a0 > 0), (b) (LS:LS)-flow (a0 < 0). Fourth LS: fourth-order lower-saddle bifurcation, fourth US: fourth-order upper-saddle bifurcation. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
Fig. 5.25 Stability of a repeated equilibrium with the fourth multiplicity in the 1-dimensional, quartic nonlinear dynamical system: Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The stability switching is labeled by a circular symbol
the upper saddles of the second order. The two upper saddles intersect at a point of x ¼ a ¼ b with the fourth-order multiplicity, which is an upper-saddle bifurcation of the fourth order for the (US:US) to (US:US) equilibriums. If a0 < 0, two double equilibriums of x ¼ a, b are the lower saddle of the second order, which are intersected at a point of x ¼ a ¼ b, as shown in Fig. 5.24b. Such a quartic equilibrium with the fourth-order multiplicity is called a lower-saddle bifurcation of the fourth order for the (LS:LS) to (LS:LS) equilibrium. To illustrate the stability and bifurcation of equilibrium with singularity in a 1-dimensional, quadratic nonlinear system, the equilibrium of x_ ¼ a0 ðx a1 Þ4 is presented in Fig. 5.25. The fourth-order upper and lower saddles of equilibrium of
5.4 Quartic Nonlinear Systems
213
x ¼ a1 with the fourth-order multiplicity are unstable, and the fourth-order upperand lower-saddle equilibriums of the fourth order are invariant. At a0 ¼ 0, the lowersaddle equilibrium switches to the upper-saddle equilibrium, which is a switching point marked by a circular symbol. For further discussion on the switching bifurcations in the quartic nonlinear system, the following definitions are presented. Definition 5.11 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞðx aÞðx bÞ½x2 þ B2 ðpÞx þ C 2 ðpÞ
ð5:235Þ
where A(p) 6¼ 0 and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:236Þ
Δ2 ¼ B22 4C2 < 0, fa1 , a2 g ¼ sortfa, bg, a1 a2 ,
ð5:237Þ
(i) If
the quartic nonlinear dynamical system has two equilibriums. The standard form is 1 2 1 x_ ¼ a0 ðpÞðx a1 Þðx a2 Þ½ðx2 þ B2 Þ þ ðΔ2 Þ: 2 4
ð5:238Þ
(i1) For a0 > 0, the equilibrium flow is an (SI:SO) flow. The equilibrium of x = a1 is stable (sink, df =dxjx ¼a1 < 0) and the equilibrium of x = a2 is unstable (source, df =dxjx ¼a2 > 0). (i2) For a0 < 0, the equilibrium flow is an (SO:SI) flow. The equilibrium of x = a1 is unstable (source, df =dxjx ¼a1 > 0) and the equilibrium of x = a2 is stable (sink, df =dxjx ¼a2 < 0). (i3) Under Δ12 ¼ ða1 a2 Þ2 ¼ 0 with a1 ¼ a2 ,
ð5:239Þ
the quartic nonlinear dynamical system has a standard form as 1 2 1 x_ ¼ f ðx, pÞ ¼ a0 ðx a1 Þ2 ½ðx2 þ B2 Þ þ ðΔ2 Þ: 2 4
ð5:240Þ
214
5 Low-Degree Polynomial Systems
(a) For a0 (p) > 0, the equilibrium of x = a1 is unstable (an upper saddle of second order, d2 f =dx2 jx ¼a1 > 0). Such a flow is called an upper-saddle flow. The bifurcation of equilibrium at x = a1 for two equilibriums switching of x = a1, a2 is called an upper-saddle-node switching bifurcation of the second order at a point p = p1. (b) For a0 (p) < 0, the equilibrium of x = a1 is unstable (a lower saddle of the second order, d 2 f =dx2 jx ¼a1 < 0). Such a flow is called a lowersaddle flow. The bifurcation of equilibrium at x = a1 for two equilibriums switching of x = a1, a2 is called a lower-saddle-node switching bifurcation of the second order at a point p = p1. (ii) If Δ2 ¼ B22 4C2 > 0,
ð5:241Þ
the 1-dimensional quartic nonlinear dynamical system has four equilibriums as pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ð2Þ ð2Þ xk ¼ b1 ¼ ðB2 þ Δ2 Þ, xk ¼ b2 ¼ ðB2 Δ2 Þ 2 2 ð2Þ ð2Þ fa1 , a2 , a3 :a4 g ¼ sortfa, b, b1 , b2 g, ai < aiþ1
ð5:242Þ
The corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þðx a4 Þ:
ð5:243Þ
(ii1) For a0 > 0, the flow is called an (SI:SO:SI:SO) flow. (ii2) For a0 < 0, the flow is called an (SO:SI:SO:SO) flow. (ii3) Under Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, ai1 ¼ ai2 , i1 , i2 2 f1, 2, 3, 4g, i1 6¼ i2 ,
ð5:244Þ
the standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai3 Þðx ai4 Þ iα 2 f1, 2, 3, 4g, α ¼ 1, 3, 4
ð5:245Þ
(a) The equilibrium of x ¼ ai1 is unstable (an upper saddle of the second order, d2 f =dx2 jx ¼ai > 0). Such a flow is called an upper-saddle flow at 1 x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for two equilibriums switching of x ¼ ai1 , ai2 is called an upper-saddle-node switching bifurcation of the second order at a point p = p1.
5.4 Quartic Nonlinear Systems
215
(b) The equilibrium of x ¼ ai1 is unstable (a lower saddle of the second order, d2 f =dx2 jx ¼ai < 0). Such a flow is called a lower-saddle flow at 1 x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for two equilibriums switching of x ¼ ai1 , ai2 is called a lower-saddle-node switching bifurcation of the second order at a point p = p1. (ii4) Under Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0 ai1 ¼ ai2 ¼ a3 , i1 , i2 , i3 2 f1, 2, 3, 4g, i1 6¼ i2 6¼ i3 ,
ð5:246Þ
the standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai4 Þ iα 2 f1, 2, 3, 4g, α ¼ 1, 4:
ð5:247Þ
(a) The equilibrium of x ¼ ai1 is unstable (a source of the third order, d 3 f =dx3 jx ¼ai > 0). Such a flow is called a third-order source flow at 1 x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for three simple equilibrium bundle-switching of x ¼ ai1 , ai2 , ai3 is called a third-order source bundle-switching bifurcation at a point p = p1. (b) The equilibrium of x ¼ ai1 is stable (a sink of the third order, d 3 f =dx3 jx ¼ai < 0). Such a flow is called a third-order sink flow at 1 x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for three simple equilibrium bundle-switching of x ¼ ai1 , ai2 , ai3 is called a third-sink bundle-switching bifurcation at a point p = p1. (ii5) Under Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0, Δi3 i4 ¼ ðai4 ai4 Þ2 ¼ 0, ai1 ¼ ai2 ¼ ai3 ¼ ai4 ,
ð5:248Þ
i1 , i2 , i3 , i4 2 f1, 2, 3, 4g, i1 6¼ i2 6¼ i3 6¼ i4 , the standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ4 :
ð5:249Þ
(a) The equilibrium of x ¼ ai1 is unstable (an upper saddle of the fourth order, d4 f =dx4 jx ¼ai > 0). Such a flow is called a fourth-order upper1 saddle flow at x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for four simple equilibriums bundle-switching of x = a1,2,3,4 is called a fourth-order upper-saddle-node bundle-switching bifurcation at a point p = p1.
216
5 Low-Degree Polynomial Systems
(b) The equilibrium of x ¼ ai1 is unstable (a lower-saddle of the fourth order, d 4 f =dx4 jx ¼ai < 0). Such a flow is called a fourth-order lower1 saddle flow at x ¼ ai1. The bifurcation of equilibrium at x ¼ ai1 for four simple equilibriums bundle-switching of x = a1,2,3,4 is called a fourth-order lower-saddle bundle-switching bifurcation at a point p = p1. (iii) If Δ2 ¼ B22 4C2 ¼ 0,
ð5:250Þ
the 1-dimensional quartic nonlinear dynamical system has three equilibrium as 1 ð2Þ ð2Þ xk ¼ b1 ¼ b2 ¼ B2 ; 2 ð2Þ ð2Þ fa1 , a2 , a3 g ¼ sortfa, b, b1 ¼ b2 g, ai < aiþ1 ; ð2Þ b1
ð2Þ b2 , ai3
ð5:251Þ
ai1 , i2 ¼ ¼ ¼ a, ai4 ¼ b; iα 2 f1, 2, 3g, α 2 f1, 2, 3, 4g, and the corresponding standard form is x_ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ:
ð5:252Þ
(iii1) The equilibrium of x ¼ ai1 is unstable (an upper saddle, d2 f =dx2 jx ¼a1 > 0), the flow is an upper-saddle flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for the appearing or vanishing of two simple equilibriums is called the upper-saddle-node bifurcation of the second order. (iii2) The equilibrium of x ¼ ai1 is unstable (a lower saddle, d2 f =dx2 jx ¼a1 < 0), the flow is a lower-saddle flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for the appearing or vanishing of two simple equilibriums is called the lower-saddle-node bifurcation of the second order. (iii3) Under Δi3 i4 ¼ ðai3 ai4 Þ2 ¼ 0, ai3 ¼ ai4 , ai1 6¼ ai3 , iα 2 f1, 2, 3g, α 2 f1, 2, 3, 4g;
ð5:253Þ
the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai3 Þ2 iα 2 f1, 2g, α ¼ 1, 3
ð5:254Þ
5.4 Quartic Nonlinear Systems
217
The equilibriums of x ¼ ai1 , ai3 are unstable (an upper saddle of the second order, d2 f =dx2 jx ¼ai , ai > 0) and unstable (a lower saddle of the second 1 3 order, d 2 f =dx2 jx ¼ai , ai < 0). Such a flow is called an (US:US) or a (LS:LS) 1 3 flow. The bifurcation of equilibrium at x ¼ ai1 for two simple equilibrium onset of x ¼ ai1, ai2 and at x ¼ ai3 for two equilibrium switching of x ¼ ai3 , ai4 is called an (US:US) or a (LS:LS) bifurcation at a point p = p1. (iii4) Under Δi1 i3 ¼ ðai1 ai3 Þ2 ¼ 0, ai1 ¼ ai2 , ai1 ¼ ai3 ai1 6¼ ai4 , iα 2 f1, 2, 3g, α 2 f1, 2, 3, 4g;
ð5:255Þ
the standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai4 Þ iα 2 f1, 2g, α ¼ 1, 4:
ð5:256Þ
(a) The equilibrium of x ¼ ai1 is unstable (a third-order source, d 3 f =dx3 jx ¼ai > 0). Such a flow is called a third-order source flow. 1 The bifurcation of equilibrium at x ¼ ai1 for one simple equilibrium of x ¼ ai3 switching to three simple equilibriums of x ¼ ai1 , i2 , i3 is called a third-order source pitchfork bifurcation at a point p = p1. (b) The equilibrium of x ¼ ai1 is stable (a third-order sink, d 3 f =dx3 jx ¼ai < 0). Such a flow is called a third-order sink flow. 1 The bifurcation of equilibrium at x ¼ ai1 for one simple equilibrium of x ¼ ai1 switching to three simple equilibriums of x ¼ ai1 , i2 , i3 is called a third-order sink pitchfork-switching bifurcation at a point p = p1. (iii5) Under Δi1 i3 ¼ ðai1 ai3 Þ2 ¼ 0, Δi3 i4 ¼ ðai3 ai4 Þ2 ¼ 0; ai1 ¼ ai2 , ai1 ¼ ai3 ai1 ¼ ai4 , iα 2 f1, 2, 3g, α 2 f1, 2, 3, 4g;
ð5:257Þ
the standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ4 iα 2 f1, 2g, α ¼ 1, 3
ð5:258Þ
218
5 Low-Degree Polynomial Systems
(a) For a0 > 0, the equilibrium of x ¼ ai1 is unstable (a fourth-order upper saddle, d4 f =dx4 jx ¼ai > 0). Such a flow is called a fourth-order upper1 saddle flow. The bifurcation of equilibrium at x ¼ ai1 for two simple equilibriums switching to four simple equilibriums is called a fourthorder upper-saddle-node flower-bundle-switching bifurcation at a point p = p1. (b) For a0 > 0, the equilibrium of x ¼ ai1 is unstable (a fourth-order lower saddle, d 4 f =dx4 jx ¼ai < 0). Such a flow is called a fourth-order lower1 saddle flow. The bifurcation of equilibrium at x ¼ ai1 for two simple equilibriums switching to four simple equilibriums is called a fourthorder lower-saddle-node flower-bundle-switching bifurcation at a point p = p1. Based on the previous definition, the stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 > 0) are presented in Fig. 5.26. In Fig. 5.26a–c, upper-saddle-node (USN) and lower-saddle-node (LSN) switching bifurcations are at two locations for two simple equilibriums, and one upper-saddle-node (USN) appearing bifurcation is for two simple equilibriums. In Fig. 5.26d, a third-order sink (3rd SI) pitchfork-switching bifurcation for a switching of one sink equilibrium to three simple equilibriums is presented, and one uppersaddle-node (USN) switching bifurcation for two simple equilibriums switching is also presented. In Fig. 5.26e, a third-order source (3rd SO) bundle-switching bifurcation for three equilibrium bundle-switching is presented, and an upper-saddlenode (USN) appearing bifurcation for two equilibrium onset is also presented. In Fig. 5.26f, a fourth-order upper-saddle (4th US) flower-bundle-switching bifurcation for four simple equilibriums is presented. Similarly, the stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 < 0) are presented in Fig. 5.27. In Fig. 5.27 (a–c), lower-saddle-node (LSN) and upper-saddle-node (USN) switching bifurcations are at two locations for two simple equilibriums, and one lower-saddle-node (LSN) appearing bifurcation is for two simple equilibriums appearing. In Fig. 5.27 (d), a third-order source (3rd SO) pitchfork-switching bifurcation for a switching of one source equilibrium to three simple equilibriums is presented, and one lowersaddle-node (LSN) switching bifurcation for two simple equilibriums switching is also presented. In Fig. 5.27(e), a third-order sink (3rd SI) bundle-switching bifurcation for three equilibrium bundle-switching is presented, and a lower-saddle-node (LSN) appearing bifurcation for two equilibrium onset is also presented. In Fig. 5.27 (f), a fourth-order lower-saddle (4th LS) flower-bundle-switching bifurcation for four simple equilibriums is presented. For further discussion on the switching bifurcation, the following definition is given for the 1-dimensional, quartic nonlinear dynamical system.
5.4 Quartic Nonlinear Systems
219 b
a0 > 0
a0 > 0
SO USN SI
LSN
b
SO USN
b1(1)
SI
a
3rd SI
SO
b1(1)
SO
a
USN SI
x* || p ||
Δ2 < 0 Δ2 = 0
SI
b2(1) x*
Δ2 > 0
Δ2 < 0
|| p ||
a
b
(1) 2
Δ2 = 0 Δ2 > 0
d a0 > 0
a0 > 0
b USN
SO LSN SI
SO
b1(1)
SO
a
SI
3rd SO
SI
SO
b1(1) b a
SO USN
USN
b2(1)
SI
x*
x*
|| p ||
Δ2 < 0 Δ2 = 0
Δ2 > 0
SI
Δ2 < 0 Δ2 = 0
|| p ||
b
b2(1)
Δ2 > 0
e b
a0 > 0 USN
SO LSN SI
a0 > 0
SO
b1(1)
SI SO
a
b1(1) b
4thUS SO
SO
a
USN SI
x* || p ||
c
SI
Δ1 < 0 Δ1 = 0
b2(1)
SI
x*
Δ1 > 0
|| p ||
Δ2 < 0
Δ2 = 0
b2(1)
Δ2 > 0
f
Fig. 5.26 Stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 > 0): (a–c) Two (USN and LSN) switching and one (USN) appearing bifurcations, (d) 3rd SI pitchfork-switching bifurcation, (e) 3rd SO bundle-switching bifurcation, (f) 4th US flower-bundle-switching bifurcation. LSN: lower-saddle-node, USN: upper-saddle-node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
220
5 Low-Degree Polynomial Systems b
a0 < 0
a0 < 0
SI LSN SO
USN
b
SI LSN
b1(1)
SO
a
3rd SO
SI
b1(1)
SI
a
LSN
b2(1)
SO
x* || p ||
Δ2 < 0 Δ2 = 0
SO
x*
Δ2 > 0
Δ2 < 0
|| p ||
a
b
(1) 2
Δ2 = 0 Δ2 > 0
d a0 < 0
a0 < 0
b LSN
SI USN SO
SI
b1(1)
SI
a
SO
3rd SI
b1(1)
SO
b
SI
a
SI LSN
x* || p ||
Δ2 < 0 Δ2 = 0
LSN
b2(1)
SO
x*
Δ2 > 0
SO
Δ2 < 0 Δ2 = 0
|| p ||
b
b2(1)
Δ2 > 0
e a0 < 0
a0 < 0
b LSN
SI USN SO
SI
b1(1)
SO SI
a
b1(1) b
4th LS SI
SI LSN SO
x* || p ||
c
Δ2 < 0 Δ2 = 0
a SO
b
(1) 2
SO
x*
Δ2 > 0
|| p ||
Δ2 < 0
Δ2 = 0
b2(1)
Δ2 > 0
f
Fig. 5.27 Stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 < 0): (a–c) Two (LSN and USN) switching and one LSN appearing bifurcations, (d) 3rd SO pitchfork-switching bifurcation, (e) 3rd SI bundle-switching bifurcation, (f) 4th LSN flower-bundle-switching bifurcation. LSN: lower-saddle-node, USN: upper-saddlenode, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
5.4 Quartic Nonlinear Systems
221
Definition 5.12 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞðx aÞðx bÞðx cÞðx dÞ
ð5:259Þ
where A(p) 6¼ 0, and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:260Þ
fa1 , a2 , a3 , a4 g ¼ sortfa, b, c, dg, ai aiþ1 ,
ð5:261Þ
(i) If
the quartic nonlinear dynamical system has four simple equilibriums, and the standard form is x_ ¼ a0 ðpÞðx a1 Þðx a2 Þðx a3 Þðx a4 Þ:
ð5:262Þ
(i1) For a0 > 0, the equilibrium flow is an (SI:SO:SI:SO) flow. The equilibrium of x = a1,3 is stable (sink, df =dxjx ¼a1, 3 < 0) and the equilibrium of x = a2,4 is unstable (source, df =dxjx ¼a2, 4 > 0). (i2) For a0 < 0, the equilibrium flow is an (SO:SI:SO:SI) flow. The equilibrium of x = a1 is unstable (source, df =dxjx ¼a1 > 0) and the equilibrium of x = a2 is stable (sink, df =dxjx ¼a2 < 0). (ii) If Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0 with ai1 ¼ ai2 ;i1 , i2 2 f1, 2, 3, 4g,
ð5:263Þ
the quartic nonlinear dynamical system has a standard form as x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai3 Þðx ai4 Þ:
ð5:264Þ
(ii1) The equilibrium of x ¼ ai1 is unstable (an upper saddle of the second order, d2 f =dx2 jx ¼ai > 0). Such a flow is called an upper-saddle flow at 1 x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for two equilibriums switching of x ¼ ai1 , ai2 is called an upper-saddle-node bifurcation of the second order at a point p = p1. (ii2) The equilibrium of x ¼ ai1 is unstable (a lower saddle of the second order, d 2 f =dx2 jx ¼ai < 0). Such a flow is called a lower-saddle flow at x ¼ ai1 . 1 The bifurcation of equilibrium at x ¼ ai1 for two equilibriums switching
222
5 Low-Degree Polynomial Systems
of x ¼ ai1 , ai2 is called a lower-saddle-node bifurcation of the second order at a point p = p1. (iii) If Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0 ai1 ¼ ai2 ¼ ai3 ; i1 , i2 , i3 2 f1, 2, 3, 4g, i1 6¼ i2 6¼ i3 ,
ð5:265Þ
the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai4 Þ iα 2 f1, 2, 3, 4g, α ¼ 1, 4:
ð5:266Þ
(iii1) The equilibrium of x ¼ ai1 is unstable with d3 f =dx3 jx ¼ai > 0 (a third1 order source). Such a flow is called a third-order source flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle switching of three simple equilibriums of x ¼ ai1 , ai2 , ai3 is called a third-order source bundle-switching bifurcation at a point p = p1. (iii2) The equilibrium of x ¼ ai1 is stable with d3 f =dx3 jx ¼ai < 0 (a third-order 1 sink). Such a flow is called a third-order sink flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle switching of three simple equilibriums of x ¼ ai1 , ai2 , ai3 is called a third-order sink bundle-switching bifurcation at a point p = p1. (iv) If Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0, Δi3 i4 ¼ ðai4 ai4 Þ2 ¼ 0, ai1 ¼ ai2 ¼ ai3 ¼ ai4 ,
ð5:267Þ
i1 , i2 , i3 , i4 2 f1, 2, 3, 4g, i1 6¼ i2 6¼ i3 6¼ i4 the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ4
ð5:268Þ
(iv1) The equilibrium of x ¼ ai1 is unstable (a fourth-order upper saddle, d4 f =dx4 jx ¼ai > 0). Such a flow is called a fourth-order upper-saddle 1 flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle switching of four simple equilibriums of x = a1,2,3,4 is called a fourthorder upper-saddle-node bundle-switching bifurcation at a point p = p1. (iv2) The equilibrium of x ¼ ai1 is unstable (a fourth-order lower saddle, d4 f =dx4 jx ¼ai < 0). Such a flow is called a fourth-order lower-saddle 1 flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle
5.4 Quartic Nonlinear Systems
223
switching of four simple equilibriums of x = a1,2,3,4 is called a fourthorder lower-saddle bundle-switching bifurcation at a point p = p1. From the previous definition, stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system are presented in Fig. 5.28. For a0 > 0, the bifurcations and stability of equilibriums are presented in Fig. 5.28a–c. In Fig. 5.28a, four upper-saddle-node (USN) and two lower-saddle-
Fig. 5.28 Stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 > 0): (a) Four USN and two LSN switching bifurcation network, (b) thirdorder SI bundle-switching bifurcation, (c) fourth-order US bundle-switching bifurcation (a0 < 0): (d) Four LSN and two USN switching bifurcation network, (e) third-order SO bundle-switching bifurcation, (f) fourth-order LS bundle-switching bifurcation. LSN: lower-saddle-node, USN: upper-saddle-node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
224
5 Low-Degree Polynomial Systems
node (LSN) switching bifurcation network are presented for all possible switching bifurcation between two simple equilibriums. In Fig. 5.28b, a thirdorder sink (3rd SI) bundle-switching bifurcation for three simple equilibrium is presented, and there are three possible upper-saddle-node (USN) and lowersaddle-node (LSN) switching bifurcations for two simple equilibriums. In Fig. 5.28c a fourth-order upper-saddle (4th US) bundle-switching bifurcation for four simple equilibriums is presented. Similarly, For a0 < 0, the bifurcations and stability of equilibriums are presented in Fig. 5.28d–f. In Fig. 5.28d, four lower-saddle-node (LSN) and two upper-saddle-node (USN) switching bifurcation network are presented for all possible switching bifurcation between two simple equilibriums. In Fig. 5.28e, a third-order source (3rd SO) bundleswitching bifurcation for three simple equilibrium is presented, and there are three possible lower-saddle-node (LSN) and upper-saddle-node (USN) switching bifurcations for two simple equilibriums. In Fig. 5.28f a fourthorder lower-saddle (4th LS) bundle-switching bifurcation for four simple equilibriums is presented. For the switching bifurcation between the second-order and simple equilibriums, the following definition is given for the 1-dimensional, quartic nonlinear dynamical system. Definition 5.13 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞðx aÞ2 ðx bÞðx cÞ
ð5:269Þ
where A(p) 6¼ 0, and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:270Þ
fa1 , a2 , a3 g ¼ sortfa, b, cg, ai < aiþ1 i1 , i2 , i3 2 f1, 2, 3g,
ð5:271Þ
(i) If
the quartic nonlinear dynamical system has a standard form as x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai2 Þðx ai3 Þ:
ð5:272Þ
(i1) The equilibrium of x ¼ ai1 is unstable (an upper saddle of the second order, d 2 f =dx2 jx ¼ai > 0). Such a flow is called an upper-saddle flow at 1 x ¼ ai 1 . (i2) The equilibrium of x ¼ ai1 is unstable (a lower saddle of the second order, d2 f =dx2 jx ¼ai < 0). Such a flow is called a lower-saddle flow at x ¼ ai1 . 1
5.4 Quartic Nonlinear Systems
225
(ii) If a ¼ ai1 , b ¼ ai2 , c ¼ ai3 ; Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0, ai2 ¼ ai3 ; i1 , i2 , i3 2 f1, 2g, i1 6¼ i2 6¼ i3 ;
ð5:273Þ
the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ2 ðx ai2 Þ2 iα 2 f1, 2g, α ¼ 1, 2:
ð5:274Þ
The equilibriums of x ¼ ai1 , ai2 are unstable (an upper saddle of the second order, d 2 f =dx2 jx ¼ai , ai > 0 or a lower saddle of the second order, 1
2
d2 f =dx2 jx ¼ai , ai < 0). Such a flow is called an (US:US) or a (LS:LS) flow. 2 1 The bifurcation of equilibrium at x ¼ ai2 for two simple equilibriums switching of x = b, c is called an upper-saddle or lower-saddle switching bifurcation at a point p = p1. (iii) If a ¼ ai1 ;ai3 , ai2 2 fb, cg; Δi1 i3 ¼ ðai1 ai3 Þ2 ¼ 0, ai1 ¼ ai3 , ai3 6¼ ai2 ;
ð5:275Þ
i1 , i2 , i3 2 f1, 2, 3g, i1 6¼ i2 6¼ i3 , the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai2 Þ iα 2 f1, 2g, α ¼ 1, 2:
ð5:276Þ
(iii1) The equilibrium of x ¼ ai1 is unstable (a third-order source, d3 f =dx3 jx ¼ai > 0). Such a flow is called a third-order source flow at 1 x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a switching of one second-order and one simple equilibriums of x ¼ ai1 , ai2 is called a third-order source switching bifurcation at a point p = p1. (iii2) The equilibrium of x ¼ ai1 is stable (a third-order sink, d 3 f =dx3 jx ¼ai < 0). Such a flow is called a third-order sink flow at 1 x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a switching of one second-order and one simple equilibriums of x ¼ ai1 , ai2 is called a third-order sink switching bifurcation at a point p = p1.
226
5 Low-Degree Polynomial Systems
(iv) If Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, Δi2 i3 ¼ ðai2 ai3 Þ2 ¼ 0, i1 , i2 , i3 2 f1, 2, 3g, i1 6¼ i2 6¼ i3 ,
ð5:277Þ
the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ4 :
ð5:278Þ
(iv1) The equilibrium of x ¼ ai1 is unstable (a fourth-order upper saddle, d4 f =dx4 jx ¼ai > 0). Such a flow is called a fourth-order upper-saddle 1 flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle switching of one second-order and two simple equilibriums of x = a1,2,3 is called a fourth-order upper-saddle bundle-switching bifurcation at a point p = p1. (iv2) The equilibrium of x ¼ ai1 is unstable (a fourth-order lower saddle, d4 f =dx4 jx ¼ai < 0). Such a flow is called a fourth-order lower-saddle 1 flow at x ¼ ai1 . The bifurcation of equilibrium at x ¼ ai1 for a bundle switching of one second-order and two simple equilibriums of x = a1,2,3 is called a fourth-order lower-saddle bundle-switching bifurcation at a point p = p1. From Definition 5.13, stability and bifurcations of equilibriums in the 1dimensional, quartic nonlinear dynamical system are presented in Fig. 5.29. For a0 > 0, the bifurcations and stability of equilibriums are presented in Fig. 5.29a–c. In Fig. 5.29a, there is a switching bifurcation network with two third-order source switching bifurcations and one upper-saddle-node bifurcation. The two third-order source (3rd SO) switching bifurcations are for (LS:SO) switching to (US:SO) equilibriums and for (SO:US) switching to (SO:LS)equilibriums. The upper-saddle-node (USN) switching bifurcation is for two simple equilibriums. In Fig. 5.29b, a fourth-order upper-saddle (4th US) bundleswitching bifurcation for (SI:LS:SO) switching to (SO:LS:SI) equilibriums. In Fig. 5.29c, a fourth-order upper-saddle (4th US) bundle-switching bifurcation for (SI:SO:US) switching to (SO:SI:US) equilibriums. Similarly, for a0 < 0, the bifurcations and stability of equilibriums are presented in Fig. 5.29d–f. In Fig. 5.29d, the switching bifurcation network consists of two third-order sink switching bifurcations and one lower-saddle-node bifurcation. The two thirdorder sink (3rd SI) switching bifurcations are for the (LS:SO) switching to (US:SO)-equilibriums and for the (SO:US) switching to (SO:LS)-equilibriums. The upper-saddle-node (USN) switching bifurcation is for two simple equilibriums. In Fig. 5.29e, a fourth-order lower-saddle (4th LS) bundle-switching bifurcation for (SO:US:SI) switching to (SI:US:SO) equilibriums. In Fig. 5.29f, a fourth-order lower-saddle (4th LS) bundle-switching bifurcation for (SO:SI: LS) switching to (SI:SO:LS) equilibriums.
5.4 Quartic Nonlinear Systems
227
Fig. 5.29 Stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 > 0): (a) two third-order SO and USN switching bifurcation network, (b) fourth-order bundle-switching bifurcation, (c) fourth-order US bundle-switching bifurcation; (a0 < 0): (d) two third-order SI and LSN switching bifurcation network, (e) fourth-order LS bundle-switching bifurcation, (f) fourth-order LS bundle switching. LSN: lower-saddle-node, USN: upper-saddle-node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
228
5 Low-Degree Polynomial Systems
For the switching bifurcation between the third-order and simple equilibriums, the following definition is given for the 1-dimensional, quartic nonlinear dynamical system. Definition 5.14 Consider a 1-dimensional, quartic nonlinear dynamical system x_ ¼ AðpÞx4 þ BðpÞx3 þ CðpÞx2 þ DðpÞx þ EðpÞ ¼ a0 ðpÞðx aÞ3 ðx bÞ
ð5:279Þ
where A(p) 6¼ 0, and p ¼ ðp1 , p2 , . . . , pm ÞT :
ð5:280Þ
fa1 , a2 g ¼ sortfa, bg, ai < aiþ1 i1 , i2 2 f1, 2g,
ð5:281Þ
(i) If
the quartic nonlinear dynamical system has a standard form as x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ3 ðx ai2 Þ:
ð5:282Þ
(i1) The equilibrium of x ¼ ai1 is unstable (a third-order source, d3 f =dx3 jx ¼ai > 0). The equilibrium of x ¼ ai2 is stable (a sink, 1 df =dxjx ¼ai < 0). Such a flow is called a (3rd SO:SI) or an (SI:3rd SO) flow. 2 (i2) The equilibrium of x ¼ ai1 is stable (a third-order sink, d3 f =dx3 jx ¼ai < 0). The equilibrium of x ¼ ai2 is unstable (a source, 1 df =dxjx ¼ai > 0). Such a flow is called a (3rd SI:SO) or an (SO:3rd SI) flow. 2
(ii) If a ¼ ai1 , b ¼ ai2 ; Δi1 i2 ¼ ðai1 ai2 Þ2 ¼ 0, ai1 ¼ ai2 ;
ð5:283Þ
i1 , i2 2 f1, 2g, i1 6¼ i2 ; the corresponding standard form is x_ ¼ f ðx, pÞ ¼ a0 ðx ai1 Þ4
ð5:284Þ
(ii1) The equilibrium of x ¼ ai1 is unstable (a fourth-order upper saddle, d 4 f =dx4 jx ¼ai > 0). Such a flow is called a fourth-order upper-saddle 1 flow. The bifurcation of equilibrium at x ¼ ai1 for a switching of one
Reference
229 a0 < 0
a0 > 0
SI
SO 3rd SO
3rd SI
4th US
3rd SO SI
3rd SI
b
SO
a
4th LS
a x*
x* || p ||
b
D12 > 0 D12 = 0 D 21 > 0
a
|| p ||
D12 > 0 D12 = 0 D 21 > 0
b
Fig. 5.30 Stability and bifurcations of equilibriums in the 1-dimensional, quartic nonlinear dynamical system (a0 > 0): (a) fourth-order US switching bifurcation of (3rd SI:SO) to (SI:3rd SO), (a0 < 0): (b) fourth-order LS switching bifurcation of (3rd SO:SI) to (SO:3rd SI). LS: lower-saddle, US: upper-saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
third-order and one simple equilibriums of x = a1,2 is called a fourth-order upper-saddle switching bifurcation at a point p = p1. (ii2) The equilibrium of x ¼ ai1 is unstable (a fourth-order lower saddle, d 4 f =dx4 jx ¼ai < 0). Such a flow is called a fourth-order lower-saddle 1 flow. The bifurcation of equilibrium at x ¼ ai1 for a switching of one third-order and one simple equilibriums of x = a1,2 is called a fourth-order lower-saddle switching bifurcation at a point p = p1. From Definition 5.14, the stability and bifurcations of equilibriums in the 1dimensional, quartic nonlinear dynamical system are presented in Fig. 5.30. In Fig. 5.30(a), the fourth-order upper-saddle (4th US) switching bifurcation for a0 > 0 is presented for the third-order sink (3rd SI) with simple source (SO) equilibriums (i.e., (3rd SI:SO)) to the third-order source (3rd SO) with a simple sink (SI) equilibriums (i.e., (SI:3rd SO)). Similarly, in Fig. 5.30(b), the fourthorder lower-saddle (4th LS) switching bifurcation for a0 < 0 is presented for the third-order source (3rd SO) with simple sink (SI) equilibriums (i.e., (3rd SO:SI)) to the 3rd order sink (3rd SI) with a simple source (SO) equilibriums (i.e., (SO:3rd SI)). For the switching bifurcation between the two second-order equilibriums, the following definition was presented in Definition 5.10, and the corresponding illustrations are presented in Fig. 5.24.
Reference Luo, A.C.J., 2019, The stability and bifurcation of equilibriums in low-degree polynomial systems, Journal of Vibration Testing and System Dynamics, 3(4), pp. 403–451.
Chapter 6
(2m)th-Degree Polynomial Systems
In this chapter, the global stability and bifurcations of equilibriums in the (2m)thdegree polynomial system are discussed for a better understanding of the complexity of bifurcations and stability of equilibriums. The appearing and switching bifurcations for simple equilibriums are presented, and the appearing and switching bifurcations for higher order equilibriums are discussed as well. The parallel appearing bifurcations, spraying-appearing bifurcations, and sprinkler-spraying-appearing bifurcations for simple and higher order equilibriums are presented. The antennaswitching bifurcations for simple and higher order equilibriums are discussed and the parallel straw-bundle-switching bifurcations and flower-bundle-switching bifurcations for simple and higher order equilibriums are presented as well.
6.1
Global Stability and Bifurcations
In a similar fashion of low-degree polynomial systems in Chap. 5, the global stability and bifurcation of equilibriums in the (2m)th-degree polynomial nonlinear systems are discussed as in Luo (2020). The stability and bifurcation of each individual equilibrium are analyzed from the local analysis in Chaps. 1–3. Definition 6.1 Consider a (2m)th-degree polynomial nonlinear system: x_ ¼ A0 ðpÞx2m þ A1 ðpÞx2m1 þ þ A2m2 ðpÞx2 þ A2m1 x þ A2m ðpÞ ¼ a0 ðpÞ½x2 þ B1 ðpÞx þ C1 ðpÞ ½x2 þ Bm ðpÞx þ Cm ðpÞ
ð6:1Þ
where A0(p) 6¼ 0, and
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_6
231
6 (2m)th-Degree Polynomial Systems
232
T p ¼ p1 , p2 , . . . , pm 1 :
ð6:2Þ
Δi ¼ B2i 4C i < 0 for i ¼ 1, 2, . . . , m,
ð6:3Þ
(i) If
the 1-dimensional nonlinear dynamical system with a (2m)th-degree polynomial does not have any equilibrium, and the corresponding standard form is 1 2 1 1 2 1 x_ ¼ a0 ½ðx þ B1 Þ þ ðΔ1 Þ ½ðx þ Bm Þ þ ðΔm Þ: 2 4 2 4
ð6:4Þ
The flow of such a system without equilibriums is called a nonequilibrium flow. (a) If a0 > 0, the nonequilibrium flow is called a positive flow. (b) If a0 < 0, the nonequilibrium flow is called a negative flow. (ii) If Δi ¼ B2i 4C i > 0, i ¼ i1 , i2 , . . . , il 2 f1, 2, . . . , mg, Δj ¼ B2j 4C j < 0, j ¼ ilþ1 , ilþ2 , . . . , im 2 f1, 2, . . . , mg
ð6:5Þ
with l 2 f0, 1, . . . , mg, the 1-dimensional, (2m)th-degree polynomial system has 2l-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 fi1 , i2 , . . . , il g f1, 2, . . . , mg:
ð6:6Þ
(ii1) If ðjÞ bðiÞ r 6¼ bs for r,s 2 f1; 2g;i,j ¼ 1,2, . . . , l ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, as < asþ1 ,
ð6:7Þ
then the corresponding standard form is x_ ¼ a0
l Y i¼1
ðx a2i1 Þðx a2i Þ
m Y
1 2 1 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð6:8Þ
(a) If a0 > 0, the simple equilibrium separatrix flow is called a (SI : SO : : SI : SO : SI : SO) -flow.
6.1 Global Stability and Bifurcations
233
(b) If a0 < 0, the simple equilibrium separatrix flow is called a (SO : SI : : SO : SI : SO : SI) -flow. (ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ ¼ al 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 ,
ð6:9Þ
⋮ air aΣr1 ¼ ¼ aΣr1 ¼ a2l i¼1 li þ1 i¼1 li þlr r with Σs¼1 ls ¼ 2l,
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls
s¼1
m Y
1 1 2 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð6:10Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX)-flow. (a) For a0 > 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ;
,
ð6:11Þ where αp ¼
Xr
l: s¼p s
ð6:12Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð6:13Þ
6 (2m)th-Degree Polynomial Systems
234
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums switching is called an lpth XX bifurcation of lp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , i¼1 i¼1 Xβ l : aΣp1 l þ1 6¼ 6¼ aΣp1 l þl ; lp ¼ i¼1 pi i¼1 i
i¼1 i
ð6:14Þ
p
(iii) If Δi ¼ B2i 4Ci ¼ 0, i 2 fi11 , i12 , . . . , i1s g fi1 , i2 , . . . , il g f1, 2, . . . , mg, Δk ¼ B2k 4C k > 0, k 2 fi21 , i22 , . . . , i2r g fi1 , i2 , . . . , il g f1, 2, . . . , mg, Δj ¼ B2j 4Cj < 0, j 2 filþ1 , ilþ2 , . . . , im g f1, 2, . . . , mg, ð6:15Þ the 1-dimensional, (2m)th-degree polynomial system has 2l-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 , i12 , . . . , i1s g, 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ðk Þ ðk Þ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for k 2 fi21 , i22 , . . . , i2r g:
ð6:16Þ
If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ ¼ al 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮
ð6:17Þ
air aΣr1 ¼ ¼ aΣr1 ¼ a2l i¼1 li þ1 i¼1 li þlr r with Σs¼1 ls ¼ 2l,
then the corresponding standard form is x_ ¼ a0
r Y s¼1
ðx ais Þls
m Y
1 2 1 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð6:18Þ
6.1 Global Stability and Bifurcations
235
The equilibrium separatrix flow is called an (l1thXX : l2thXX : : lrth XX)flow. (a) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums appearing (or vanishing) is called an lpthXX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp ¼ Biq , i¼1 i¼1 2 2 with Δiq ¼ Biq 4C iq ¼ 0 iq 2 fi1 , i2 , , il g ,
ð6:19Þ
6¼ 6¼ aþ or a 6¼ 6¼ a : aþ Σp1 l þ1 Σp1 l þl Σp1 l þ1 Σp1 l þl i¼1 i
i¼1 i
i¼1 i
p
i¼1 i
p
(b) The equilibrium of x ¼ aiq for (lq > 1)-repeated equilibriums switching is called an lqth XX bifurcation of ðlq1 th XX : lq2 th XX : : lqβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aiq aΣq1 li þ1 ¼ ¼ aΣq1 li þlp , i¼1
a l þ1 Σq1 i¼1 i
i¼1
6¼ 6¼
a ; l þlq Σq1 i¼1 i
lq ¼
Xβ
ð6:20Þ
l : i¼1 qi
(c) The equilibrium of x ¼ aip for lp1 1 -repeated equilibriums appearing and lp2 2 -repeated equilibriums switching of lp21 th XX : lp22 th XX : : lp2β th XXÞ is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp i¼1
with Δiq ¼
i¼1
B2iq
4Ciq ¼ 0 ðiq 2 fi1 ; i2 ; . . . ; il gÞ
aþ 6¼ 6¼ aþ or ap1 1 Σp1 l þj Σp1 l þj i¼1 i
1
i¼1 i
p1
Σi¼1 li þj1
for fj1 ; j2 ; . . . ; jp1 g f1; 2; . . . ; lp g, a 6¼ 6¼ a Σp1 l þk Σp1 l þk i¼1 i
1
i¼1 i
p2
for fk1 ; k2 ; . . . ; k p2 g f1; 2; . . . ; lp g, Pβ with lp1 þ lp2 ¼ lp ; lp2 ¼ i¼1 lp2i :
6¼ 6¼ ap1 1
Σi¼1 li þjp1
, ð6:21Þ
6 (2m)th-Degree Polynomial Systems
236
(iv) If Δi ¼ B2i 4Ci > 0 for i ¼ 1, 2, . . . , m
ð6:22Þ
the 1-dimensional, (2m)th-degree polynomial system has (2m) equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 for i ¼ 1, 2, . . . , m:
ð6:23Þ
(iv1) If ðjÞ bðiÞ r 6¼ bs for r,s 2 f1; 2g;i,j ¼ 1,2, . . . , m ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 ; . . . ; a2m g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, as < asþ1 ,
ð6:24Þ
the corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þðx a4 Þ ðx a2m1 Þðx a2m Þ:
ð6:25Þ
Such a flow is formed with all the simple equilibriums. (a) If a0 > 0, the simple equilibrium separatrix flow is called a (SO : SI : : SO : SI : SO : SI) -flow. (b) If a0 < 0, the simple equilibrium separatrix flow is called a (SI : SO : : SI : SO : SI : SO) -flow. (iv2) If ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 ; . . . ; a2m g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ ¼ al 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮
ð6:26Þ
air aΣr1 ¼ ¼ aΣr1 ¼ a2m i¼1 li þ1 i¼1 li þlr r with Σs¼1 ls ¼ 2m,
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls :
ð6:27Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX)flow. The equilibrium of x ¼ aip for lp-repeated equilibriums switching is
6.1 Global Stability and Bifurcations
237
called an lpth XX bifurcation of lp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , i¼1
a l þ1 Σp1 i¼1 i
i¼1
6¼ 6¼
a ; l þlp Σp1 i¼1 i
lp ¼
Xβ
l : i¼1 pi
ð6:28Þ
Definition 6.2 Consider a 1-dimensional, (2m)th-degree polynomial nonlinear dynamical system as x_ ¼ A0 ðpÞx2m þ A1 ðpÞx2m1 þ þ A2m2 ðpÞx2 þ A2m1 x þ A2m ðpÞ n Y q ¼ a0 ðpÞ ½x2 þ Bi ðpÞx þ Ci ðpÞ i
ð6:29Þ
i¼1
where A0(p) 6¼ 0, and Xn T p ¼ p1 , p2 , . . . , pm1 , m ¼ q: i¼1 i
ð6:30Þ
Δi ¼ B2i 4C i < 0 for i ¼ 1, 2, . . . , n
ð6:31Þ
(i) If
the 1-dimensional nonlinear dynamical system with a (2m)th-degree polynomial does not have any equilibriums, and the corresponding standard form is x_ ¼ a0
n Y
1 2 1 q ½ðx þ Bi Þ þ ðΔi Þ i : 2 4 i¼1
ð6:32Þ
The flow of such a system without equilibriums is called a nonequilibrium flow. (a) If a0 > 0, the nonequilibrium flow is called the positive flow. (b) If a0 < 0, the nonequilibrium flow is called the negative flow. (ii) If Δi ¼ B2i 4C i > 0, i 2 fi1 , i2 , . . . , il g f1, 2, . . . , ng, Δj ¼ B2j 4C j < 0, j 2 filþ1 , ilþ2 , . . . , in g f1, 2, . . . , ng
ð6:33Þ
6 (2m)th-Degree Polynomial Systems
238
the 1-dimensional, (2m)th-degree polynomial system has 2l-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 fi1 , i2 , . . . , il g f1, 2, . . . , ng:
ð6:34Þ
(ii1) If ðjÞ bðiÞ r 6¼ bs for r,s 2 f1; 2g;i,j ¼ 1,2, . . . , l ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, as < asþ1 ,
ð6:35Þ
then the corresponding standard form is x_ ¼ a0
2l Y
ðx as Þls
s¼1
n Y
1 2 1 q ½ðx þ Bik Þ þ ðΔik Þ ik 2 4 k¼lþ1
ð6:36Þ
with ls 2 fqi1 ; qi2 ; . . . ; qil g: The equilibrium separatrix flow is called an (l1th XX : l2th XX : : l2lth XX) -flow. (a) For a0 > 0 and p ¼ 1, 2, . . . , 2l,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ;
,
ð6:37Þ where αp ¼
X2l
l: s¼p s
ð6:38Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , 2l,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð6:39Þ
6.1 Global Stability and Bifurcations
239
(ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ ¼ al 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 ,
ð6:40Þ
⋮ ¼ ¼ aΣr1 ¼ a2l air aΣr1 i¼1 li þ1 i¼1 li þlr r with Σs¼1 ls ¼ 2l,
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls
s¼1
n Y
qi 1 2 1 ½ðx þ Bik Þ þ ðΔik Þ : 2 4 k¼lþ1
ð6:41Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX)-flow. (a) For a0 > 0 and s ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ;
ð6:42Þ
where αp ¼
Xr
l: s¼p s
ð6:43Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð6:44Þ
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
6 (2m)th-Degree Polynomial Systems
240
aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , i¼1
a Σp1 l þ1 i¼1 i
i¼1
6¼ 6¼
a ; Σp1 l þlp i¼1 i
lp ¼
Xβ
l : i¼1 pi
ð6:45Þ
(iii) If Δi ¼ B2i 4C i ¼ 0, i 2 fi11 , i12 , . . . , i1s g fi1 , i2 , . . . , il g f1, 2, . . . , ng, Δk ¼ B2k 4C k > 0, k 2 fi21 , i22 , . . . , i2r g fi1 , i2 , . . . , il g f1, 2, . . . , ng, Δj ¼ B2j 4C j < 0, j 2 filþ1 , ilþ2 , . . . , in g f1, 2, . . . , ng with i 6¼ j 6¼ k, ð6:46Þ the 1-dimensional, (2m)th-degree polynomial system has 2l-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 , i12 , . . . , i1s g, 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ðk Þ ðk Þ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for k 2 fi21 , i22 , . . . , i2r g:
ð6:47Þ
If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2l g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ ¼ al 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮
ð6:48Þ
¼ ¼ aΣr1 ¼ a2l air aΣr1 i¼1 li þ1 i¼1 li þlr r with Σs¼1 ls ¼ 2l,
then the corresponding standard form is x_ ¼ a0
r Y s¼1
ðx ais Þls
n Y
qi 1 1 2 ½ðx þ Bik Þ þ ðΔik Þ : 2 4 k¼lþ1
ð6:49Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX) -flow. (a) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums appearing (or vanishing) is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
6.1 Global Stability and Bifurcations
241
1 aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp ¼ Biq i¼1 i¼1 2 ð6:50Þ
with Δiq ¼ B2iq 4C iq ¼ 0 ðiq 2 fi1 ; i2 ; ; il gÞ, aþ 6¼ 6¼ aþ or a 6¼ 6¼ a : Σp1 l þ1 Σp1 l þl Σp1 l þ1 Σp1 l þl i¼1 i
i¼1 i
i¼1 i
p
i¼1 i
p
(b) The equilibrium of x ¼ aiq for (lq > 1)-repeated equilibriums switching is called an lqth XX bifurcation of ðlq1 th XX : lq2 th XX : : lqβ th XXÞequilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aiq aΣq1 li þ1 ¼ ¼ aΣq1 li þlq , i¼1
i¼1
a 6¼ 6¼ a ; lq ¼ Σq1 l þ1 Σq1 l þl i¼1 i
i¼1 i
Xβ
l : i¼1 qi
q
ð6:51Þ
(iv) If Δi ¼ B2i 4C i > 0 for i ¼ 1, 2, . . . , n
ð6:52Þ
the 1-dimensional, (2m)th-degree polynomial system has (2n)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 for i ¼ 1, 2, . . . , n:
ð6:53Þ
(iv1) If ðjÞ bðiÞ r 6¼ bs for r,s 2 f1; 2g;i,j ¼ 1,2, . . . , n ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 ; . . . ; a2n g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, as < asþ1 ,
ð6:54Þ
the corresponding standard form is x_ ¼ a0
2n Y
ðx as Þls with ls 2 fqi1 ; qi2 ; . . . ; qin g:
ð6:55Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : l2nth XX)-flow.
6 (2m)th-Degree Polynomial Systems
242
(a) For a0 > 0 and p ¼ 1, 2, . . . , 2n, 8 ð2r p 1Þth order source, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > > > < ð2r 1Þth order sink, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ > ð2r p Þth order lower‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order upper‐saddle, for αp ¼ 2M p ,lp ¼ 2r p ;
ð6:56Þ
where αp ¼
X2n
l: s¼p s
ð6:57Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , 2n, 8 ð2r p 1Þth order sink, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > > > < ð2r 1Þth order source, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ th > ð2r p Þ order upper‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order lower‐saddle, for αp ¼ 2M p ,lp ¼ 2r p :
ð6:58Þ
(iv2) If ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 ; a2 ; . . . ; a2n g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, ai1 a1 ¼ ¼ al1 , ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮
ð6:59Þ
¼ ¼ aΣr1 ¼ a2n , air aΣr1 i¼1 li þ1 i¼1 li þlr r ls ¼ 2n, with Σs¼1
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls :
ð6:60Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX)-flow. The equilibrium of x ¼ aip for lp-repeated equilibriums switching is called a lpth XX bifurcation of ðlp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
6.1 Global Stability and Bifurcations
243
aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , i¼1
a Σp1 l þ1 i¼1 i
i¼1
6¼ 6¼
a ; Σp1 l þlp i¼1 i
lp ¼
Xβ
l : i¼1 pi
ð6:61Þ
Definition 6.3 Consider a 1-dimensional, (2m)th-degree polynomial nonlinear dynamical system x_ ¼ A0 ðpÞx2m þ A1 ðpÞx2m1 þ þ A2m2 ðpÞx2 þ A2m1 x þ A2m ðpÞ r n Y Y q ðx cis ðpÞÞls x2 þ Bi ðpÞx þ Ci ðpÞ i ¼ a0 ðpÞ s¼1
ð6:62Þ
i¼rþ1
where A0(p) 6¼ 0, and Xr
l s¼1 s
¼ 2l,
Xn
q i¼rþ1 i
T ¼ ðm lÞ, p ¼ p1 , p2 , . . . , pm1 :
ð6:63Þ
(i) If Δi ¼ B2i 4C i < 0 for i ¼ r þ 1, r þ 2, . . . , n, fa1 , a2 , . . . , ar g ¼ sortfc1 , c2 , . . . , cr g with ai < aiþ1
ð6:64Þ
the 1-dimensional nonlinear dynamical system with a (2m)th-degree polynomial has equilibriums of x ¼ ais ðpÞ (s ¼ 1, 2, . . . , r), and the corresponding standard form is x_ ¼ a0 ðpÞ
r Y s¼1
ðx ais Þls
n Y
1 2 1 l ½ðx þ Bi Þ þ ðΔi Þ i : 2 4 i¼rþ1
ð6:65Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lrth XX)flow. (a) For a0 > 0 and s ¼ 1, 2, . . . , r, 8 > ð2r p 1Þth order source, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > > > < ð2r 1Þth order sink, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ th > > ð2r p Þ order lower‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order upper‐saddle, for αp ¼ 2M p ,lp ¼ 2r p ; where
ð6:66Þ
6 (2m)th-Degree Polynomial Systems
244
Xr
αp ¼
l: s¼p s
ð6:67Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r, 8 > ð2r p 1Þth order sink, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > > > < ð2r 1Þth order source, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ th > > ð2r p Þ order upper‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order lower‐saddle, for αp ¼ 2M p ,lp ¼ 2r p :
ð6:68Þ
(ii) If Δi ¼ B2i 4C i > 0, i ¼ j1 , j2 , . . . , js 2 fl þ 1, l þ 2, . . . , ng, Δj ¼ B2j 4C j < 0, j ¼ jsþ1 , jsþ2 , . . . , jn 2 fl þ 1, l þ 2, . . . , ng
ð6:69Þ
with s 2 f1, . . . , n lg, the 1-dimensional, (2m)th-degree polynomial system has 2n2-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 fj1 ; j2 ; . . . ; jn1 g fl þ 1; l þ 2; . . . ; ng:
ð6:70Þ
If ðrþ1Þ
ðrþ1Þ
ðn Þ
ðn Þ
fa1 , a2 , . . . , a2n2 g ¼ sortfc1 , c2 , . . . , c2l , b1 , b2 , . . . , b1 1 , b2 1 g, |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qrþ1 sets
ai1 a1 ¼ ¼ al1 ,
qn1 sets
ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮
ð6:71Þ
ain1 aΣn1 1 li þ1 ¼ ¼ aΣn1 1 li þln ¼ a2n2 i¼1
i¼1
1
1 with Σns¼1 ls ¼ 2n2 ,
then the corresponding standard form is x_ ¼ a0
n1 Y s¼1
ðx ais Þls
n Y
qi 1 2 1 ½ðx þ Bi Þ þ ðΔi Þ : 2 4 i¼n þ1
ð6:72Þ
2
The equilibrium separatrix flow is called an ðl1 th XX : l2 thXX : : ln1 th XXÞ-flow.
6.1 Global Stability and Bifurcations
245
(a) For a0 > 0 and p ¼ 1, 2, . . . , r, r + 1, . . ., n1, 8 > ð2r 1Þth order source, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > p > > < ð2r 1Þth order sink, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ th > > ð2r p Þ order lower‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order upper‐saddle, for αp ¼ 2M p ,lp ¼ 2r p ;
ð6:73Þ
where αp ¼
Xn1
l: s¼p s
ð6:74Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r, r + 1, . . ., n1, 8 > ð2r 1Þth order sink, for αp ¼ 2M p 1,lp ¼ 2r p 1; > > p > > < ð2r 1Þth order source, for α ¼ 2M ,l ¼ 2r 1; p p p p p lp th XX ¼ th > > ð2r p Þ order upper‐saddle, for αp ¼ 2M p 1,lp ¼ 2r p ; > > > : ð2r p Þth order lower‐saddle, for αp ¼ 2M p ,lp ¼ 2r p :
ð6:75Þ
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums switching is called an lpth XX switching bifurcation of ðlp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , a 6¼ 6¼ a : Σp1 l þ1 Σp1 l þl i¼1
i¼1
i¼1 i
i¼1 i
p
ð6:76Þ
(iii) If Δi ¼ B2i 4C i ¼ 0, for i 2 fi11 , i12 , . . . , i1s g filþ1 , ilþ2 , . . . , in2 g fl þ 1, l þ 2, . . . , ng, Δk ¼ B2k 4Ck > 0, for k 2 fi21 , i22 , . . . , i2r g filþ1 , ilþ2 , . . . , in2 g fl þ 1, l þ 2, . . . , ng, Δj ¼ B2j 4C j < 0, for j 2 fin2 þ1 , in2 þ2 , . . . , in g fl þ 1, l þ 2, . . . , ng,
ð6:77Þ
6 (2m)th-Degree Polynomial Systems
246
the 1-dimensional, (2m)th-degree polynomial system has 2n2-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 , i12 , . . . , i1s g, 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ðk Þ ðk Þ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for i 2 fi21 , i22 , . . . , i2r g:
ð6:78Þ
If ðrþ1Þ
ðrþ1Þ
ðn Þ
ðn Þ
fa1 , a2 , . . . , a2n2 g ¼ sortfc1 , c2 , . . . , c2l , b1 , b2 , . . . , b1 1 , b2 1 g, |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qrþ1 sets
qn1 sets
ai1 a1 ¼ ¼ al1 , ai2 al1 þ1 ¼ ¼ al1 þl2 ,
ð6:79Þ
⋮ ain1 aΣn1 1 li þ1 ¼ ¼ aΣn1 1 li þln ¼ a2n2 i¼1
i¼1
1
1 with Σns¼1 ls ¼ 2n2 ,
then the corresponding standard form is x_ ¼ a0
n1 Y
ðx ais Þls
n Y i¼n2
s¼1
qi 1 2 1 ½ðx þ Bi Þ þ ðΔi Þ : 2 4 þ1
ð6:80Þ
The equilibrium separatrix flow is called an l1 th XX : l2 th XX : : ln1 th XXÞflow. (a) The equilibrium of x ¼ aip for (qp > 1)-repeated equilibriums appearing or vanishing is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp ¼ Biq i¼1 i¼1 2 2 with Δiq ¼ Biq 4Ciq ¼ 0 iq 2 fi1 , i2 , . . . , il g
ð6:81Þ
6¼ 6¼ aþ or a 6¼ 6¼ a : aþ Σp1 q þ1 Σp1 q þq Σp1 q þ1 Σp1 q þq i¼1
i
i¼1
i
p
i¼1
i
i¼1
i
p
(b) The equilibrium of x ¼ aiq for (lp > 1)-repeated equilibriums switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
6.1 Global Stability and Bifurcations
247
aiq aΣq1 li þ1 ¼ ¼ aΣq1 li þlp , a 6¼ 6¼ a ,l ¼ Σq1 l þ1 Σq1 l þl p i¼1
i¼1 i
i¼1
i¼1 i
Xβ
l : i¼1 pi
q
ð6:82Þ
(c) The equilibrium of x ¼ aip for ðlp1 1Þ-repeated equilibriums appearing (or vanishing) and ðlp2 2Þ-repeated equilibriums switching of ðlp21 th XX : lp22 th XX : : lp2β th XXÞ is called an qpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 q þ1 ¼ ¼ aΣp1 q þq i
i¼1
with Δiq ¼
B2iq
i¼1
i
p
4C iq ¼ 0 ðiq 2 fi1 ; i2 ; ; il gÞ
aþ 6¼ 6¼ aþ or ap1 1 Σp1 q þj Σp1 q þj i¼1
i
1
i¼1
p1
i
Σi¼1 qi þj1
6¼ 6¼ ap1 1
Σi¼1 qi þjp1
, ð6:83Þ
for fj1 , j2 , . . . , jp1g f1; 2; . . . ; qp g, a 6¼ 6¼ a Σp1 q þk Σp1 q þk i¼1
i
1
i¼1
i
p2
for fk 1 ; k 2 ; . . . ; kp2 g f1; 2; . . . ; qp g, with lp1 þ lp2 ¼ lp : (iv) If Δi ¼ B2i 4Ci > 0 for i ¼ l þ 1, l þ 2, . . . , n
ð6:84Þ
the 1-dimensional, (2m)th-degree polynomial system has (2m)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 for i ¼ l þ 1, l þ 2, . . . , n:
ð6:85Þ
If ðrþ1Þ
ðrþ1Þ
ðnÞ
ðnÞ
fa1 , a2 , . . . , a2m g ¼ sortfc1 , c2 , . . . , c2l , b1 , b2 , . . . , b1 , b2 g, |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} |fflfflfflffl{zfflfflfflffl} ai 1 a1 ¼ ¼ a l 1 , ai2 al1 þ1 ¼ ¼ al1 þl2 , ⋮ ain aΣn1 ¼ ¼ aΣn1 ¼ a2m i¼1 li þ1 i¼1 li þlr with Σns¼1 ls ¼ 2m,
qrþ1 sets
qn sets
ð6:86Þ
6 (2m)th-Degree Polynomial Systems
248
then the corresponding standard form is n Y
x_ ¼ a0
ðx ais Þls :
ð6:87Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : : lnth XX)-flow. The equilibrium of x ¼ aip for lp- repeated equilibriums switching is called an lpth XX switching bifurcation of ðlp1 th XX : lp2 thXX : : lpβ th XXÞ equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp , i¼1
a Σp1 l þ1 i¼1 i
6.2
i¼1
6¼ 6¼
a ; Σp1 l þlp i¼1 i
lp ¼
Xβ
l : i¼1 pi
ð6:88Þ
Simple Equilibrium Bifurcations
From the global analysis in Chap. 4, in this section, the bifurcations of simple equilibriums in the (2m)th-degree polynomial systems are discussed, which include appearing/vanishing bifurcations, switching bifurcations, and switching and appearing bifurcations as in Luo (2020).
6.2.1
Appearing Bifurcation
Consider a (2m)th-degree polynomial system in a form of x_ ¼ a0 QðxÞ
n Y x2 þ Bi x þ C i :
ð6:89Þ
i¼1
Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1 pffiffiffiffiffi ðiÞ Δi , Δi ¼ B2i 4Ci 0 ði ¼ 1, 2, , nÞ; b1,2 ¼ Bi 2 2 ð1Þ
ð1Þ
ð2Þ
ð2Þ
ðnÞ
ðnÞ
fa1 , a2 , , a2l g sortfb1 , b2 , b1 , b2 , , b1 , b2 g, as asþ1 ; Bi 6¼ Bj ði, j ¼ 1, 2, , n; i 6¼ jÞ at bifurcation: Δi ¼ 0 ði ¼ 1, 2, , nÞ
ð6:90Þ
6.2 Simple Equilibrium Bifurcations
249
The second-order singularity bifurcation is for the birth of a pair of simple sink and source. There are two appearing bifurcations for i 2 {1, 2, , n}:
ith quadratic factor
2 order US ! nd
appearing bifurcation
ith quadratic factor
2 order LS ! nd
appearing bifurcation
SO, for x ¼ a2i , SI, for x ¼ a2i1 : SI, for x ¼ a2i , SO, for x ¼ a2i1 :
ð6:91Þ ð6:92Þ
If Q(x) ¼ 1 and n ¼ m, a set of paralleled different simple upper-saddle appearing bifurcations in the (2m)th-degree polynomial nonlinear system is called the m-uppersaddle-node (m-USN) parallel appearing bifurcation. Such a bifurcation is also called the m-upper-saddle-node (m-USN) teeth comb appearing bifurcation. At the appearing bifurcation point, Δi ¼ 0 (i ¼ 1, 2, , m), and the m-USN teeth comb appearing bifurcation structure is
m‐USN
f
mth bifurcation
US !
SI, for x ¼ a2m1 ;
appearing
⋮ ith bifurcation
US !
1st bifurcation
SO, for x ¼ a2i , SI, for x ¼ a2i1 ;
appearing
⋮
SO, for x ¼ a2m ,
US !
ð6:93Þ
SO, for x ¼ a2 , SI, for x ¼ a1 :
appearing
Similarly, a set of paralleled different simple lower-saddle appearing bifurcations is called the m-lower-saddle-node (m-LSN) parallel appearing bifurcation for the (2m)th-degree polynomial nonlinear system. The lower-saddle-node bifurcation is called the m-lower-saddle-node (m-LSN) teeth comb appearing bifurcation. At the bifurcation point, Δi ¼ 0 (i ¼ 1, 2, . . . , m), and the m-LSN appearing bifurcation structure is
m‐LSN
f
mth bifurcation
LS !
SO, for x ¼ a2m1 ;
appearing
⋮ ith bifurcation
LS !
1st bifurcation
LS ! appearing
SI, for x ¼ a2i , SO, for x ¼ a2i1 ;
appearing
⋮
SI, for x ¼ a2m ,
SI, for x ¼ a2 , SO, for x ¼ a1 :
ð6:94Þ
6 (2m)th-Degree Polynomial Systems
250
Consider an appearing bifurcation for a cluster of sink and source equilibriums with the following conditions: Bi ¼ Bj ði, j 2 f1, 2, . . . , ng; i 6¼ jÞ Δi ¼ 0 ði ¼ 1, 2, . . . , nÞ
at bifurcation:
ð6:95Þ
Thus, the (2l )th-order appearing bifurcation is for a cluster of simple sinks and sources. Two (2l)th-order appearing bifurcations for l 2 {1, 2, . . ., s} are
th
cluster of l‐quadratics
f f
ð2lÞ order US ! appearing bifurcation
cluster of l‐quadratics
ð2lÞth order LS ! appearing bifurcation
SO, for x ¼ a2sl , SI, for x ¼ a2sl 1 , ⋮
ð6:96Þ
SO, for x ¼ a2s1 , SI, for x ¼ a2s1 1 :
SI, for x ¼ a2sl , SO, for x ¼ a2sl 1 , ⋮
ð6:97Þ
SI, for x ¼ a2s1 , SO, for x ¼ a2s1 1 :
A set of paralleled, different, higher order upper-saddle-node bifurcations with multiplicity is the ((2l1)thUS : (2l2)thUS : : (2ls)thUS) parallel appearing bifurcation in the (2m)th-degree polynomial system. (2li)thUS for (i ¼ 1, 2, . . . , s) with sources and sinks is the (2li)th-order upper saddle with li-pairs of simple source and sink equilibriums. With different orders of li-pairs of simple sources and sinks, the (2li)thUSN Pbifurcation possesses different spraying-appearing clusters of sinks and sources. si¼1 li ¼ n m where s, li 2 {0, 1, 2, , m}. If li ¼ 1 for i ¼ 1, 2, , m with n ¼ m, the simple upper-saddle-node parallel bifurcation or the upper-saddlenode teeth comb appearing bifurcation is recovered. Introduce ðð2l1 Þth US : ð2l2 Þth US : : ð2ls Þth USÞ ð2l1 : 2l2 : : 2ls Þth US:
ð6:98Þ
At the sprinkler-spraying-appearing bifurcation, Δi ¼ 0 (i ¼ 1, 2, , s) and Bi ¼ Bj (i, j 2 {1, 2, , s}; i 6¼ j). The sprinkler-spraying USN appearing bifurcation is
ð2l1 : 2l2 : : 2ls Þth US ¼
f
ð2ls Þth order US, ⋮ ð2l2 Þth order US, ð2l1 Þth order US:
ð6:99Þ
6.2 Simple Equilibrium Bifurcations
251
Thus, the (2l1 : 2l2 : : 2ls)th US appearing (or vanishing) bifurcation is called the (2l1 : 2l2 : : 2ls)th USN sprinkler-spraying-appearing (or vanishing) bifurcation. Similarly, a set of paralleled different lower-saddle appearing bifurcations with multiplicity is the ((2l1)thLS : (2l2)thLS : : (2ls)thLS) appearing bifurcation in the (2m)th-degree polynomial system. Thus, the (2l1 : 2l2 : : 2ls)th LS appearing (or vanishing) bifurcation is also called the (2l1 : 2l2 : : 2ls)th LS sprinklerspraying-appearing (or vanishing) bifurcation. Again, at the LS sprinkler-spraying bifurcation, Δi ¼ 0 (i ¼ 1, 2, . . . , n) and Bi ¼ Bj (i, j 2 {1, 2, . . ., n}; i 6¼ j). Thus, the sprinkler-spraying LSN appearing bifurcation is
ð2l1 : 2l2 : : 2ls Þth LS ¼
f
ð2ls Þth order LS, ⋮ ð2l2 Þth order LS,
ð6:100Þ
ð2l1 Þth order LS:
Two m-USN and m-LSN teeth comb appearing bifurcations are presented in Fig. 6.1a, b for a0 > 0 and a0 < 0, respectively. The set of paralleled (4thUS : : (2r)thUS : : 4thUS : 6thUS) appearing bifurcations for simple sinks and sources is presented P in Fig. 6.1c for a0 > 0, where l1 ¼ 2, . . ., li ¼ r, . . ., and ls 1 ¼ 2, ls ¼ 3 with si¼1 li ¼ m. The (4 : : 2r : : 4 : 6)th-USN appearing bifurcation is a USN sprinkler-spraying-appearing bifurcation. However, for a0 < 0, the (4thLS : : (2r)thLS : : 4thLS : 6thLS) appearing bifurcations for simple sources and sinks are presented in Fig. 6.1d. The (4 : : 2r : : 4 : 6)th-LSN appearing bifurcation is a LSN sprinkler-spraying-appearing bifurcation. For a cluster of m-quadratics, Bi ¼ Bj (i, j 2 {1, 2, . . ., m}; i 6¼ j) and Δi ¼ 0 (i ¼ 1, 2, . . . , m). The (2m)th-order upper-saddle-node appearing bifurcation for m-pairs of sink and source equilibriums is
cluster of m‐quadratics
ð2mÞth order US ! appearing bifurcation
f
SO, for x ¼ a2m , SI, for x ¼ a2m1 , ⋮ SO, for x ¼ a2 , SI, for x ¼ a1 :
ð6:101Þ
6 (2m)th-Degree Polynomial Systems
252
a
c
b
d
Fig. 6.1 (a) m-USN parallel bifurcation (a0 > 0), (b) m-LSN parallel bifurcation (a0 < 0), (c) ((2l1)thUS : (2l2)thUS : : (2ls)thUS) parallel bifurcation (a0 > 0), (d) ((2l1)thLS : (2l2)thLS : : (2ls)thLS) parallel bifurcation (a0 < 0) in a (2m)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6.2 Simple Equilibrium Bifurcations
253
The (2m)th-order lower-saddle-node appearing bifurcation for m-pairs of sink and source equilibriums is
th
cluster of m‐quadratics
ð2mÞ order LS ! appearing bifurcation
f
SI, for x ¼ a2m , SO, for x ¼ a2m1 , ⋮
ð6:102Þ
SI, for x ¼ a2 , SO, for x ¼ a1 :
The (2m)th-order upper-saddle-node appearing bifurcation with m-pairs of simple sources and sinks is a sprinkler-spraying cluster of the m-pairs of simple sources and sinks. The (2m)th-order lower-saddle-node appearing bifurcation with m-pairs of equilibriums is also a sprinkler-spraying cluster of the m-pairs of simple sources and sinks. Thus, the (2m)th-order USN appearing bifurcation (a0 > 0) and (2m)thorder LSN bifurcation (a0 < 0) are presented in Fig. 6.2a, b, respectively. The (2m)thorder upper-saddle-node appearing bifurcation is named the (2m)th-order USN sprinkler-spaying appearing bifurcation, and the (2m)th-order lower-saddle-node appearing bifurcation is named the (2m)th-order LSN sprinkler-spraying-appearing bifurcation. A series of the saddle-node bifurcations are aligned up with varying parameters, which is formed a special pattern. For m-quadratics in the (2m)th-order polynomial system, the following conditions should be satisfied: Bi Bj i, j 2 f1, 2, . . . , ng; i 6¼ j, Δi > Δiþ1 ði ¼ 1, 2, . . . , n; n mÞ,
ð6:103Þ
Δi ¼ 0 with kpi k < kpiþ1 k:
a
b
Fig. 6.2 (a) (2m)th-order USN bifurcation (a0 > 0), (b) (2m)th-order LSN bifurcation (a0 < 0) in the (2m)th polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
254
6 (2m)th-Degree Polynomial Systems
a
b Fig. 6.3 (a) m ‐ (US ‐ LS ‐ US ‐ ) series bifurcation (a0 > 0), (b) m ‐ (US ‐ LS ‐ US ‐ ) series bifurcation (a0 < 0) in the (2m)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
Thus, a series of m ‐ (USN ‐ LSN ‐ USN ‐ ) appearing bifurcations (a0 > 0) and a series of m ‐ (LSN ‐ USN ‐ LSN ‐ ) appearing bifurcations (a0 < 0) are presented in Fig. 6.3a, b. The bifurcation scenario is formed by the swapping pattern of USN and LSN appearing bifurcations. Such a bifurcation scenario is like the fish scale. Thus, such a bifurcation-swapping pattern of the USN and LSN is called the fishscale appearing bifurcation in the (2m)th-degree polynomial nonlinear system. There are two swapping bifurcations: (i) the USN-LSN fish-scale appearing bifurcation and (ii) the LSN-USN fish-scale appearing bifurcation.
6.2 Simple Equilibrium Bifurcations
6.2.2
255
Switching Bifurcations
Consider the roots of x2 + Bix + Ci ¼ 0 as ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ,Δi ¼ ðb1 b2 Þ2 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 ,Δi > 0 if b1 6¼ b2 ði ¼ 1; 2; . . . ; nÞ; Bi 6¼ B j ði; j ¼ 1; 2; . . . ; n; i 6¼ jÞ ðiÞ
ðiÞ
Δi ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . . ; nÞ
ð6:104Þ
at bifurcation:
The second-order singularity bifurcation is for the switching of a pair of simple sink and source. There are two switching bifurcations for i 2 {1, 2, . . ., n}: ith quadratic factor
2nd order US ! switching bifurcation
ith quadratic factor
2 order LS ! nd
switching bifurcation
ðiÞ
ðiÞ
SO, for a2i ¼ b2 ! b1 , ðiÞ
ðiÞ
SI, for a2i1 ¼ b1 ! b2 : ðiÞ
ð6:105Þ
ðiÞ
SI, for a2i ¼ b2 ! b1 , ðiÞ
ðiÞ
SO, for a2i1 ¼ b1 ! b2 :
ð6:106Þ
A set of m-paralleled pairs of different simple upper-saddle-node switching bifurcations in the (2m)th-degree polynomial nonlinear system is called the mupper-saddle-node (m-USN) parallel switching bifurcation. Such a bifurcation is also called the m-upper-saddle-node (m-USN) antenna-switching bifurcation. For ðiÞ ðiÞ non-switching point, Δi > 0 at b1 6¼ b2 (i ¼ 1, 2, . . . , n). At the bifurcation point, ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 (i ¼ 1, 2, . . . , n). The m-USN parallel switching bifurcation is
m‐USN
f
( mth bifurcation
US ! switching
⋮
(
US !
switching
¼ a2m1 " a2m ;
ðiÞ
SO # SI, for b2 ¼ a2i # a2i1 , SI " SO, for b1 ¼ a2i1 " a2i ;
(
US !
ðmÞ
ðiÞ
switching
1st bifurcation
¼ a2m # a2m1 ,
SI " SO, for b1
ith bifurcation
⋮
ðmÞ
SO # SI, for b2
ð6:107Þ
ð 1Þ
SO # SI, for b2 ¼ a2 # a1 , ð 1Þ
SI " SO, for b1 ¼ a1 " a2 :
Similarly, a set of paralleled different simple lower-saddle bifurcations is called the m-lower-saddle-node (m-LSN) parallel switching bifurcation for the (2m)thdegree polynomial nonlinear system. The lower-saddle-node switching bifurcation
6 (2m)th-Degree Polynomial Systems
256
is also called the m-lower-saddle-node (m-LSN) antenna switching bifurcation. For ðiÞ ðiÞ non-switching point, Δi > 0 at b1 6¼ b2 (i ¼ 1, 2, . . . , n). At the bifurcation point, ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 (i ¼ 1, 2, . . . , n). The m-LSN antenna switching bifurcation is
m‐LSN
f
( mth bifurcation
LS ! switching
⋮
(
LS !
switching
¼ a2m1 " a2m ;
ðiÞ
SI # SO, for b2 ¼ a2i # a2i1 , SO " SI, for b1 ¼ a2i1 " a2i ;
(
LS !
ðmÞ
ðiÞ
switching
1st bifurcation
¼ a2m # a2m1 ,
SO " SI, for b1
ith bifurcation
⋮
ðmÞ
SI # SO, for b2
ð6:108Þ
ð1Þ
SI # SO, for b2 ¼ a2 # a1 , ð1Þ
SO " SI, for b1 ¼ a1 " a2 :
Consider a switching bifurcation for a bundle of sink and source equilibriums with the following conditions: ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ,Δi ¼ ðb1 b2 Þ2 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 ,Δi > 0 if b1 6¼ b2 ði ¼ 1; 2; . . . ; nÞ; Bi ¼ B j ði; j 2 f1; 2; . . . ; ng; i 6¼ jÞ ðiÞ
ðiÞ
Δi ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . . ; nÞ
ð6:109Þ
at bifurcation:
Thus, the (2l)th-order switching bifurcation can be for a bundle of simple sinks and sources. Two (2l )th-order switching bifurcations for l 2 {1, 2, . . ., s} are
a bundle of ð2lÞ‐equilibriums
f f
ð2lÞth order US ! switching bifurcation
a bundle of ð2lÞ‐equilibriums
ð2lÞth order LS ! switching bifurcation
SO, for a2sl ! b2sl , SI, for a2sl 1 ! b2sl 1 , ⋮
ð6:110Þ
SO, for a2s1 ! b2s1 , SI, for a2s1 1 ! b2s1 1 :
SI, for a2sl ! b2sl , SO, for a2sl 1 ! b2sl 1 , ⋮ SI, for a2s1 ! b2s1 ,
SO, for a2s1 1 ! b2s1 1 :
ð6:111Þ
6.2 Simple Equilibrium Bifurcations
257
where Δij ¼ (ai aj)2 ¼ (bi bj)2 ¼ 0 with Bi ¼ Bj (i, j ¼ 2s1 1, 2s1, . . ., 2sl 1, 2sl) and fa2s1 1 ; a2s1 ; . . . ; a2sl 1 ; a2sl g fb2s1 1 ; b2s1 ; . . . ; b2sl 1 ; b2sl g
ð1Þ
before bifurcation
ð1Þ
ð1Þ
after bifurcation
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 g, ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 g:
ð6:112Þ
The (2l 1)th-order switching bifurcation can be for a bundle of simple sinks and sources. Two (2l 1)th-order switching bifurcations for l 2 {1, 2, , s} are
a bundle of ð2l1Þ‐equilibriums
ð2l 1Þth order SO ! switching bifurcation
f f
SO, for a2sl 1 ! b2sl 1 , ⋮ SI, for a2s1 ! b2s1 ,
ð6:113Þ
SO, for a2s1 1 ! b2s1 1 :
a bundle of ð2l1Þ‐equilibriums
ð2l 1Þth order SI ! switching bifurcation
SI, for a2sl 1 ! b2sl 1 , ⋮ SO, for a2s1 ! b2s1 ,
ð6:114Þ
SI, for a2s1 1 ! b2s1 1 :
where Δij ¼ (ai aj)2 ¼ (bi bj)2 ¼ 0 with Bi ¼ Bj (i, j ¼ 2s1 1, 2s1, . . ., 2sl 1) and fa2s1 1 ; a2s1 ; . . . ; a2sl 1 g fb2s1 1 ; b2s1 ; . . . ; b2sl 1 g
ð1Þ
before bifurcation
after bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 g, ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 g:
ð6:115Þ
A set of paralleled, different, higher order upper-saddle-node switching bifurcations with multiplicity is the ((α1)thXX : (α2)thXX : : (αs)thXX) parallel switching bifurcation in the (2m)th-degree polynomial system. At the straw-bundle switching bifurcation, Δi ¼ 0 (i ¼ 1, 2, . . . , n) and Bi ¼ Bj ( i, j 2 {1, 2, . . ., n}; i 6¼ j). Thus, the parallel straw-bundle switching bifurcation is ððα1 Þth XX : ðα2 Þth XX : : ðαs Þth XXÞ‐switching
¼
f
ðαs Þth order XX switching, ⋮
ð6:116Þ th
ðα2 Þ order XX switching, ðα1 Þth order XX switching;
6 (2m)th-Degree Polynomial Systems
258
where αi 2 f2li , 2li 1g with Σsi¼1 αi ¼ 2m, and XX 2 fUS, LS, SO, SIg:
ð6:117Þ
The (2li)thUS for (i ¼ 1, 2, , s) with sinks and sources is the (2li)th-order upper saddle for a switching of li-pairs of simple sinks and sources. With different orders of li-pairs of simple sinks and sources, the (2li)thUSN switching bifurcation possesses different straw-bundle switching for a bundle of stable and unstable equilibriums. The (2l1 : 2l2 : : 2ls)th USN bifurcation is called the (2l1 : 2l2 : : 2ls)th USN straw-bundle switching bifurcation:
ð2l1 : 2l2 : : 2ls Þth USN switching ¼
f
ð2ls Þth order USN switching, ⋮ ð2l2 Þth order USN switching,
ð6:118Þ
ð2l1 Þth order USN switching:
If li ¼ 1 for i ¼ 1, 2, . . . , m with n ¼ m, the simple upper-saddle-node parallel switching bifurcation or the upper-saddle-node antenna switching bifurcation is recovered. Similarly, a set of paralleled different lower-saddle switching bifurcations with multiplicity is the ((2l1)thLS : (2l2)thLS : : (2ls)thLS) parallel switching bifurcation in the (2m)th-degree polynomial system. Thus, the (2l1 : 2l2 : : 2ls)th LSN switching bifurcation is also called the (2l1 : 2l2 : : 2ls)th LSN straw-bundle switching bifurcation. Again, at the LSN straw-bundle switching bifurcation, Δi ¼ 0 (i ¼ 1, 2, . . . , n) and Bi ¼ Bj (i, j 2 {1, 2, . . ., n}; i 6¼ j). Thus, the LSN straw-bundle switching bifurcation is
ð2l1 : 2l2 : : 2ls Þth LSN switching ¼
f
ð2ls Þth order LSN switching, ⋮ ð2l2 Þth order LSN switching,
ð6:119Þ
ð2l1 Þth order LSN switching:
The set of m-upper-saddle-node (m-USN) parallel switching bifurcation is equivalent to the set of (2 : 2 : : 2)nd-USN bifurcations. The set of m-lower-saddle-node (m-LSN) parallel switching bifurcation is equivalent to the set of (2 : 2 : : 2)ndLSN bifurcations. Such two sets of parallel switching bifurcations are presented in Fig. 6.4a, b for a0 > 0 and a0 < 0, respectively. A set of paralleled (3rdSO : 2ndLS : : 4thLS : : 3rdSI) switching bifurcations for SI and SO equilibriums is presented in Fig. 6.4c for a0 > 0. However, for a0 < 0, the set of (3rdSI : 2ndUS : : 4thUS : : 3rdSI) switching bifurcations for sources and sinks is presented in Fig. 6.4d.
6.2 Simple Equilibrium Bifurcations
259
a
b
c
d
Fig. 6.4 Stability and bifurcations of equilibriums in a 1-dimensional (a0 < 0), (2m)th-degree polynomial system: (a) m-USN parallel switching bifurcation (a0 > 0), (b) m-LSN parallel switching bifurcation (a0 < 0), (c) (3rdSO : 2ndLS : : 3rdSI) parallel switching bifurcation (a0 > 0), (d) (3rdSI : 2ndUS : : 3rdSO) parallel switching bifurcation (a0 < 0). LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6 (2m)th-Degree Polynomial Systems
260
6.2.3
Switching and Appearing Bifurcations
Consider a (2m)th-degree 1-dimensional polynomial system in a form of x_ ¼ a0 QðxÞ
2n1 Y
ðx ci Þ
i¼1
n2 Y
ðx2 þ B j x þ C j Þ:
ð6:120Þ
j¼1
Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bjx + Cj ¼ 0 are 1 1 pffiffiffiffiffi ð jÞ Δj , Δj ¼ B2j 4Cj 0 ð j ¼ 1, 2, . . . , n2 Þ; b1,2 ¼ Bj 2 2
ð6:121Þ
either fa 1 , a2 , . . . , a2n1 g ¼ sortfc1 , c2 , . . . , c2n1 g, as asþ1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 þ þ faþ 1 , a2 , . . . , a2n3 g ¼ sortfc1 , . . . , c2n1 ; b1 , b2 , . . . , b1 , b2 g,
þ aþ s asþ1 , n3 ¼ n1 þ n2 after bifurcation;
ð6:122Þ or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 , a2 , . . . , a2n3 g ¼ sortfc1 , c2 , . . . , c2n1 ; b1 , b2 , . . . , b1 , b2 g, a s asþ1 , n3 ¼ n1 þ n2 before bifurcation;
ð6:123Þ
þ þ þ þ faþ 1 , a2 , . . . , a2n1 g ¼ sortfc1 , . . . , c2n1 g, as asþ1 after bifurcation;
and Bj1 ¼ Bj2 ¼ ¼ Bjs jk1 2 f1, 2, . . . , ng; jk1 6¼ jk2 ðk 1 , k 2 2 f1, 2, . . . , sg; k 1 6¼ k 2 Þ Δj ¼ 0 ðj 2 U f1, 2, . . . , n2 gÞ 1 ci 6¼ Bj ði ¼ 1, 2, . . . , 2n1 , j ¼ 1, 2, . . . , n2 Þ 2
g
at bifurcation: ð6:124Þ
th th th Consider a just before bifurcation of ððα 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs1 Þ XXs1 Þ for simple sources and sinks. For αi ¼ 2li 1, XXi 2 fSO, SIg and for
6.2 Simple Equilibrium Bifurcations
261
α i ¼ 2li , XXi 2 fUS, LSg (i ¼ 1, 2, . . . , s1). The detailed structures are as follows:
SI SO ⋮ SO SI SO SI ⋮ SO SI
g g
g g
SO !
2l i
1
th
SI
SI, and ⋮
th ! 2l i 1 SO;
SI
SO SI !
SO
th 2l US, i
and ⋮ SI SO
ð6:125Þ
th ! 2l LS: i
th th th The bifurcation set of ððα 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs1 Þ XXs1 Þ at the same parameter point is called a left-parallel-bundle switching bifurcation. th þ þ th þ þ þ th Consider a just after bifurcation of ððαþ 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs2 Þ XXs2 Þ þ þ þ for simple sources and sinks. For αi ¼ 2li 1, XXi 2 fSO, SIg and for þ αþ i ¼ 2li , XXi 2 fUS, LSg. The four detailed structures are as follows:
2lþ i
1
th
SI !
þ th 2li US !
f f
SI SO th ⋮ , and 2lþ i 1 SO ! SO SI
SO SI ⋮ ,
th and 2lþ LS ! i
SO SI
f
f
SO SI ⋮ ;
ð6:126aÞ
SI SO
SI SO ⋮ :
ð6:126bÞ
SI SO
þ þ þ þ þ The bifurcation set of ððαþ 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs2 Þ XXs2 Þ at the same parameter point is called a right-parallel-bundle switching bifurcation. th
th
th
6 (2m)th-Degree Polynomial Systems
262
(i) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ th ðα i Þ XXi ¼ ðα j Þ XX j ¼ α XX, for x ¼ ai ¼ a j
ði 2 f1; 2; . . . ; s1 g; j 2 f1; 2; . . . ; s2 gÞ, XX 2 fUS; LS; SO; SIg
ð6:127Þ
then the bifurcation is a αthXX switching bifurcation for simple equilibriums. (ii) Just for the just before bifurcation structure, if there exists a relation of th th ð2l i Þ XXi ¼ ð2lÞ XX, for x ¼ ai ¼ ai i 2 f1; 2; . . . ; s1 g, XX 2 fUS; LSg
ð6:128Þ
then the bifurcation is a (2l)thXX left-appearing (or right-vanishing) bifurcation for simple equilibriums. (iii) Just for the just after bifurcation structure, if there exists a relation of th þ þ ð2lþ i Þ XXi ¼ ð2lÞ XX, for x ¼ ai ¼ ai th
ði 2 f1; 2; . . . ; s1 gÞ, XX 2 fUS; LSg
ð6:129Þ
then the bifurcation is a (2l)thXX right-appearing (or left-vanishing) bifurcation for simple equilibriums. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ðα i Þ XXi 6¼ ðα j Þ XX j for x ¼ ai ¼ a j þ XX i , XX j 2 fUS; LS; SO; SIg
ð6:130Þ
ði 2 f1; 2; . . . ; s1 g; j 2 f1; 2; . . . ; s2 gÞ, then there are two flower-bundle switching bifurcations of simple equilibriums: (iv1) For αj ¼ αi + 2l, the bifurcation is called a αth j XX right flower-bundle switching bifurcation for αi to αj-simple equilibriums with the appearance (birth) of 2l-simple equilibriums. (iv2) For αj ¼ αi 2l, the bifurcation is called a αth i XX left flower-bundle switching bifurcation for αi to αj-simple equilibriums with the vanishing (death) of 2l-simple equilibriums.
6.2 Simple Equilibrium Bifurcations
263
A general parallel switching bifurcation is switching
th th th ððα 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs1 Þ XXs1 Þ ! bifucation
th þ ððαþ 1 Þ XX1
:
th þ ðαþ 2 Þ XX2
: ... :
th þ ðαþ s1 Þ XXs2 Þ:
ð6:131Þ
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th þ þ th ðα i Þ XXi ¼ ðαi Þ XXi ¼ α XX, th
þ for x ¼ a i ¼ ai ði ¼ 1, 2, . . . , sg
ð6:132Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ((α1)thXX : (α2)thXX : : (αs)thXX). If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ th þ ðα i Þ XXi ¼ ð2li Þ XX, ðα j Þ XX j ¼ ð2l j Þ YY, þ for x ¼ a i 6¼ ai ði ¼ 1; 2; . . . ; sg
ð6:133Þ
XX 2 fUS; LSg, YY 2 fUS; LSg then the parallel flower-bundle switching bifurcation becomes a combination of two independent left and right parallel appearing bifurcations: th th th parallel sprinkler(i) A ðð2l 1 Þ XX1 : ð2l2 Þ XX2 : : ð2ls1 Þ XXs1 Þ-left spraying-appearing (or right vanishing) bifurcation th þ th þ th þ þ þ (ii) A ðð2lþ 1 Þ XX1 : ð2l2 Þ XX2 : : ð2ls2 Þ XXs2 Þ-right parallel sprinklerspraying-appearing (or left vanishing) bifurcation.
The (6thUS : 4thLS : : 4thUS : SI) appearing bifurcation for a0 > 0 is presented in Fig. 6.5a. Compared to the case of a0 > 0, the bifurcation and stability conditions of equilibriums for a0 < 0 will be swapped. The (6thLS : 4thUS : : 4thLS : SO) parallel appearing bifurcation is shown in Fig. 6.5b. Such a kind of bifurcation is like a waterfall appearing bifurcation. The switching and appearing bifurcations of equilibriums exist at the same parameter. A set of paralleled, different switching and appearing bifurcations of higher order equilibrith th ums is also named the ðlth 1 XX : l2 XX : : ls XXÞ parallel switching and appearing th bifurcation in the (2m) -degree polynomial system. The lith XX switching and
6 (2m)th-Degree Polynomial Systems
264
a0 > 0
SO
a0 < 0
b1(i2 ) b2(i1 )
6th US SO
b1(i1 )
SI
SO
SI
SI
b2(i2 )
b2(i1 )
SI
4th US •
SI
SO SO
4th LS
b1(i1 ) b1(i2 )
6th LS
b2(i2 )
SI
SI
• •
SO
SI
• • •
SO
SO
SI
SO (2r)th LS
(2r)th US •
• •
SO
SO
SI
SI
SO
SO
b2(im )
Δ iq > 0
Δ iq < 0 Δ iq = 0
|| p ||
x*
SI
SO
b2(im )
Δ iq > 0
b
a SO
a0 > 0
SO
b1(i1 )
a0 < 0
( i2 ) 1
b
b2(i1 )
6th US SI
SO SI
SI
SO
• • •
SI
|| p ||
• •
SI
•
SI
b1(im ) SO
SI
Δ iq < 0 Δ iq = 0
SI
SI
(2r)th LS
5th SI
x*
• •
(2r)th US
b2(i2 )
SO
•
SO
SO
6th US
SI
SO
b1(i1 ) b1(i2 ) b2(i1 )
SI
6th LS
SI
6th LS
b2(i2 )
SI
SO
c
b1(im )
US
Δ iq < 0 Δ iq = 0
|| p ||
SO
•
SO 4th
SI
SI
SI
b1(im )
4th LS
x*
• •
SI
• • •
SO SI
b1(im )
5th SO
x* SO
b2(im )
Δ iq > 0
|| p ||
Δ iq < 0 Δ iq = 0
b2(im )
Δ iq > 0
d
Fig. 6.5 Stability and bifurcation of equilibriums in a (2m)th-degree polynomial system: (a) (6thUS : SO : 4thLS : : SI) appearing bifurcation (a0 > 0). (b) (6thLS : SI : 4thUS : : SO) appearing bifurcation (a0 < 0). (c) (6thUS : SO : 6thLS : : 5thSI) switching/appearing bifurcation (a0 > 0). (d) (6thLS : SI : 6thUS : : 5thSO) switching/appearing bifurcation (a0 < 0). LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6.3 Higher Order Equilibrium Bifurcations
265
appearing bifurcation possesses different clusters of stable and unstable equilibriums before and after the bifurcation. The set of (5thSI : : SO : 6thUS) flower-bundle switching bifurcation for SI and SO equilibriums is presented in Fig. 6.5c for a0 > 0. Such a flower-bundle switching bifurcation is from (SI : SO : SI : SO) to (5thSI : : SO : 6thUS) with a waterfall appearing. The set of (5thSO : : SI : 6thLS) flower-bundle switching bifurcation for SI and SO equilibriums is presented in Fig. 6.5d for a0 < 0. Such a flower-bundle switching bifurcation is from (SO : SI : SO : SI) to (5thSI : : SO : 6thUS) with a waterfall appearing. After the bifurcation, the waterfall equilibrium birth can be observed. The equilibriums before such a bifurcation are much less than after the bifurcation.
6.3
Higher Order Equilibrium Bifurcations
The afore-discussed appearing and switching bifurcations in the (2m)th-degree polynomial system are relative to simple sources and sinks. As in Luo (92019), the higher order singularity bifurcations in the (2m)th-degree polynomial system can be for higher order equilibriums (i.e., sink, source, upper saddle, lower saddle).
6.3.1
Appearing Bifurcations
Consider a (2m)th-degree polynomial system as x_ ¼ a0 QðxÞ
s Y
x2 þ Bi x þ C i
αi
,
ð6:134Þ
i¼1
where αi 2 {2l 1, 2l}. Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1pffiffiffiffiffi ðiÞ Δi ,Δi ¼ B2i 4C i 0; b1,2 ¼ Bi 2 2 ð1Þ ð1Þ ðsÞ ðsÞ fa1 ; a2 ; . . . ; a2s1 ; a2s g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 g, a j a jþ1 :
ð6:135Þ
266
6 (2m)th-Degree Polynomial Systems
There are four higher order bifurcations as follows: ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order US ! appearing bifurcation ( th ð2li 1Þ order SO, x ¼ a2i ,
ð6:136Þ
ð2li 1Þth order SI, x ¼ a2i1 ; ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order LS ! appearing bifurcation ( th ð2li 1Þ order SI, x ¼ a2i ,
ð6:137Þ
ð2li 1Þth order SO, x ¼ a2i1 ; ð2li Þth ‐order quadratics
ð2ð2li ÞÞth order US ! appearing bifurcation ( th ð2li Þ order US, x ¼ a2i ,
ð6:138Þ
ð2li Þth order US, x ¼ a2i1 ; ð2li Þth ‐order quadratics
ð2ð2li ÞÞth order LS ! appearing bifurcation ( th ð2li Þ order LS, x ¼ a2i ,
ð6:139Þ
ð2li Þth order LS, x ¼ a2i1 : (i) For αi ¼ 2li 1, the (2(2li 1))th-order upper-saddle (US) appearing bifurcation is for the onset of the (2li 1)th-order source (SO) (x ¼ a2i) and the (2l 1)th-order sink (SI) (x ¼ a2i 1) with a2i > a2i 1 for a0 > 0. (ii) For αi ¼ 2li 1, the (2(2li 1))th-order lower-saddle (LS) appearing bifurcation is for the onset of the (2li 1)th-order sink (SI) (x ¼ a2i) and the (2li 1)th-order source (SO) (x ¼ a2i 1) with a2i > a2i 1 for a0 < 0. (iii) For αi ¼ 2li, the (2(2li))th-order upper-saddle (US) appearing bifurcation is for the onset of two (2li)th-order upper saddles (US) (x ¼ a2i 1, a2i) with a2i 6¼ a2i 1 for a0 > 0. (iv) For αi ¼ 2li, the (2(2li))th-order lower-saddle (LS) appearing bifurcation is for the onset of two (2li)th-order lower saddles (LS) (x ¼ a2i 1, a2i) with a2i 6¼ a2i 1 for a0 < 0. From the higher order singular bifurcation conditions, in a (2m)th-degree polynomial system, the higher order saddle-node bifurcations for appearing and switching of the higher order equilibriums are discussed herein. A set of paralleled different higher order upper-saddle appearing bifurcations in the (2m)th-degree polynomial nonlinear system is called the ((2α1)thUS : (2α2)thUS : : (2αs)thUS) parallel appearing bifurcation for a0 > 0.
6.3 Higher Order Equilibrium Bifurcations
267
Define ðð2α1 Þth US : ð2α2 Þth US : : ð2αs Þth USÞ ¼ ð2α1 : 2α2 : : 2αs Þth US ð6:140Þ where αi 2 {2li 1, 2li} for i ¼ 1, 2, . . . , s. Such an appearing bifurcation is called the (2α1 : 2α2 : : 2αs)thUS teeth comb appearing bifurcation. Similarly, a set of paralleled different higher order lower-saddle appearing bifurcations in the (2m)th-degree polynomial nonlinear system is called the ((2α1)thLS : (2α2)thLS : : (2αs)thLS) parallel appearing bifurcation for a0 < 0. Define ðð2α1 Þth LS : ð2α2 Þth LS : : ð2αs Þth LSÞ ¼ ð2α1 : 2α2 : : 2αs Þth LS
ð6:141Þ
where αi 2 {2li 1, 2li} for i ¼ 1, 2, , s. Such an appearing bifurcation is called the (2α1 : 2α2 : : 2αs)thLS teeth comb appearing bifurcation. Consider a 1-dimensional polynomial system as x_ ¼ a0 QðxÞ
n Y
x2 þ Bi x þ C i
αi
:
ð6:142Þ
i¼1
where αi 2 {2ri 1, 2ri} (i ¼ 1, 2, , n). Without loss of generality, a function of Q (x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1pffiffiffiffiffi ðiÞ Δi ,Δi ¼ B2i 4C i 0; x1,2 ¼ Bi 2 2 Bi ¼ B j ði; j ¼ 1; 2; ; n; i 6¼ jÞ ð1Þ
ð1Þ
ð2Þ
ð2Þ
ð6:143Þ ðrÞ
ðrÞ
fa1 ; a2 ; ; a2l g ¼ sortfx1 ; x2 ; x1 ; x2 ; ; x1 ; x2 g, ai aiþ1 : The higher order singularity bifurcation can be for a cluster of higher order sinks, sources, upper saddles, and lower saddles. There are four higher order bifurcations as follows: For the higher order upper-saddle appearing bifurcation, the cluster of higher order sinks, sources, upper saddles, and lower saddles is given by the following two cases: (i) The (2(2l 1))thorder US spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is
6 (2m)th-Degree Polynomial Systems
268
8 ðα2n Þth order XX for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX for x ¼ a2n1 , th ð2ð2l 1ÞÞ order US ! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX for x ¼ a1 ; ð6:144Þ where 2ð2l 1Þ ¼ satisfy
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
and the minimum and maximum equilibriums
ð2r 2n Þth order US, for α2n ¼ 2r n , ð2r 2n 1Þth order SO, for α2n ¼ 2r n 1;
ð2r 1 Þth order US, for α1 ¼ 2r 1 ,
ð6:145Þ
ð2r 1 1Þth order SO, for α1 ¼ 2r 1 1:
(ii) The (2(2l))thorder US spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is 8 > ðα2n Þth order XX for x ¼ a2n , > > > < a cluster of 2n‐XX ðα2n1 Þth order XX for x ¼ a2n1 , ð2ð2lÞÞth order US ! appearing bifurcation > >⋮ > > : ðα1 Þth order XX for x ¼ a1 ; where 2ð2lÞ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( ðα1 Þth order XX ¼
ð6:146Þ
and the minimum and maximum equilibriums satisfy
ð2r 2n Þth order US, for α2n ¼ 2r n , ð2r 2n 1Þth order SO, for α2n ¼ 2r n 1;
ð2r 1 Þth order US, for α1 ¼ 2r 1 ,
ð6:147Þ
ð2r 1 1Þth order SI, for α1 ¼ 2r 1 1:
For the higher order lower-saddle bifurcation, the cluster of the higher order equilibriums is given by the following two cases. (iii) The (2(2l 1))thorder LS spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is
6.3 Higher Order Equilibrium Bifurcations
269
8 ðα2n Þth order XX, for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX, for x ¼ a2n1 , th ð2ð2l 1ÞÞ order LS ! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX, for x ¼ a1 ; ð6:148Þ where 2ð2l 1Þ ¼ satisfy
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
and the minimum and maximum equilibriums
ð2r 2n Þth order LS, for α2n ¼ 2r n , ð2r 2n 1Þth order SI, for α2n ¼ 2r n 1;
ð2r 1 Þth order LS, for α1 ¼ 2r 1 ,
ð6:149Þ
ð2r 1 1Þth order SI, for α1 ¼ 2r 1 1:
(iv) The (2(2l ))thorder LS spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is 8 > ðα2n Þth order XX, for x ¼ a2n , > > > < a cluster of 2n‐XX ðα2n1 Þth order XX, for x ¼ a2n1 , ð6:150Þ ð2ð2lÞÞth order LS ! appearing bifurcation > >⋮ > > : ðα1 Þth order XX, for x ¼ a1 ; where 2ð2lÞ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( ðα1 Þth order XX ¼
and the minimum and maximum equilibriums satisfy
ð2r 2n Þth order LS, for α2n ¼ 2r n , ð2r 2n 1Þth order SI, for α2n ¼ 2r n 1;
ð2r 1 Þth order LS, for α1 ¼ 2r 1 ,
ð6:151Þ
ð2r 1 1Þth order SO, for α1 ¼ 2r 1 1:
A set of paralleled, different, higher order upper-saddle-node appearing bifurcations with multiplicity in the (2m)th-degree polynomial system is the ((2β1)thUS : (2β2)thUS : : (2βs)thUS) parallel appearing bifurcation for clusters of higher order sinks, sources, upper saddles, and lower saddles. For the (2βi)thUS ( th
ð2βi Þ US ¼
ð2ð2li 1ÞÞth order US, for βi ¼ 2li 1, ð2ð2li ÞÞth order US, for βi ¼ 2li ;
:
ð6:152Þ
6 (2m)th-Degree Polynomial Systems
270
Similarly, the following notation is introduced as
ð2β1 Þth US : ð2β2 Þth US : : ð2βs Þth US ¼ ð2β1 : 2β2 : : 2βs Þth US: ð6:153Þ
Thus, the paralleled (2β1 : 2β2 : : 2βs)th US spraying-appearing bifurcation is called the (2β1 : 2β2 : : 2βs)th US sprinkler-spraying-appearing bifurcation for the higher order equilibriums. Similarly, a set of paralleled different lower-saddle appearing bifurcations for higher order singularity of equilibriums is called the ((2β1)thLS : (2β2)thLS : : (2βs)thLS) parallel appearing bifurcation in the (2m)thdegree polynomial system. Thus, the paralleled (2β1 : 2β2 : : 2βs)th LS bifurcation is also called the (2β1 : 2β2 : : 2βs)th LS sprinkler-spraying-appearing bifurcation for higher order equilibriums. The (2α1 : 2α2 : : 2αn)thUS and (2α1 : 2α2 : : 2αn)thLS teeth comb appearing bifurcations for the higher order singularity of equilibriums are presented in Figs. 6.6a, b for a0 > 0 and a0 < 0, respectively. The components of the teeth comb appearing bifurcation are th
αj ¼2rj
(
ð2αj Þ US !
ð2r j Þth US
ð j ¼ i, n 1, . . .Þ, ð2r j Þth US ( ð2r k 1Þth SO αk ¼2r k 1 th ð2αk Þ US ðk ¼ 1, n, . . .Þ; ! appearing ð2r k 1Þth SI appearing
ð6:154Þ
and th
αj ¼2rj
(
ð2αj Þ LS ! appearing
( th
ð2r j Þth LS ð2r j Þth LS
ð j ¼ i, n 1, . . .Þ,
αk ¼2rk 1
ð2r k 1Þth SI
appearing
ð2r k 1Þth SO
ð2αk Þ LS !
ð6:155Þ ðk ¼ 1, n, . . .Þ:
The (2β1 : 2β2 : : 2βn)thUS and (2β1 : 2β2 : : 2βs)thLS sprinkler-sprayingappearing bifurcations for the higher order singularity of equilibriums are presented in Fig. 6.6c, d for a0 > 0 and a0 < 0, respectively. The components of the sprinklerspraying-appearing bifurcation are ð2β1 : 2β2 : : 2βn Þth US ¼ ðð2ð2l1 1Þ : : 2ð2li Þ : : 2ð2ln1 Þ : 2ð2ln ÞÞth US
ð6:156Þ
6.3 Higher Order Equilibrium Bifurcations
271
a
b
c
d
Fig. 6.6 The teeth comb appearing bifurcations of (2(2r1 1) : : 2(2rn 1) : 2(2rn 1))thXX: (a) XX ¼ US (a0 > 0) and (b) XX ¼ LS (a0 < 0). The sprinkler-spraying-appearing bifurcations of (2(2l1 1) : : (2(2ln 1) : 2(2ln))thXX: (c) XX ¼ US (a0 > 0) and (d) XX ¼ LS (a0 < 0). LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6 (2m)th-Degree Polynomial Systems
272
and ð2β1 : 2β2 : : 2βn Þth LS ¼ ðð2ð2l1 1Þ : : 2ð2li Þ : : 2ð2ln1 Þ : 2ð2ln ÞÞth LS
ð6:157Þ
For a cluster of m-quadratics, Bi ¼ Bj (i, j 2 {1, 2, , n}; i 6¼ j) and Δi ¼ 0 (i ¼ 1, 2, , n). The (2m)th-order upper-saddle appearing bifurcation for n-pairs of the higher order singularity of equilibriums is 8 > ðα2n Þth order XX for x ¼ a2n , > > > < a cluster of 2n‐XX ðα2n1 Þth order XX for x ¼ a2n1 , ð2mÞth order US ! appearing bifurcation > >⋮ > > : ðα1 Þth order XX for x ¼ a1 ;
ð6:158Þ
where 2m ¼ 2ð2lÞ ¼
2n X i¼1
αi , 2m ¼ 2ð2l 1Þ ¼
2n X
αi :
ð6:159Þ
i¼1
The (2m)th-order lower-saddle-node appearing bifurcation for higher order equilibriums is 8 > ðα2n Þth order XX for x ¼ a2n , > > > < a cluster of 2n‐XX ðα2n1 Þth order XX for x ¼ a2n1 , ð2mÞth order LS ! appearing bifurcation > >⋮ > > : ðα1 Þth order XX for x ¼ a1 :
ð6:160Þ
The (2m)th-order upper-saddle appearing bifurcation with n-pairs of higher order singularity of equilibriums is a sprinkler-spraying cluster of the n-pairs of higher order singularity of equilibriums. The (2m)th-order lower-saddle appearing bifurcation with n-pairs of higher-order equilibriums is also a sprinkler-spraying cluster of the n-pairs of higher order singularity of equilibriums. Thus, the (2m)th-order US bifurcation (a0 > 0) and (2m)th-order LS bifurcation (a0 < 0) are presented in Fig. 6.7a–d, respectively. The (2m)th-order upper-saddle appearing bifurcation for higher order singularity of equilibriums is called the (2m)th-order US sprinkler-spraying-appearing bifurcation, and the (2m)th-order lower-saddle-node appearing bifurcation for higher order singularity of equilibriums is also called the (2m)th-order LS sprinkler-spraying-appearing bifurcation. A series of the saddle-node bifurcations for higher order singularity of equilibriums are aligned up with varying parameters, which is formed in a special pattern. For n-quadratics in the (2m)th-order polynomial systems, the following conditions should be satisfied:
6.3 Higher Order Equilibrium Bifurcations
273
Fig. 6.7 Spraying appearing bifurcations for higher-order equilibriums in the (2m)th polynomial system: (a) (2(2l 1))th US spraying-appearing bifurcation (a0 > 0), (b) (2(2l 1))th LS spraying appearing bifurcation (a0 < 0), (c) (2(2l ))th US spraying appearing bifurcation (a0 > 0), (d) (2(2l ))th US spraying appearing bifurcation (a0 < 0). LS: lower-saddle, US: upper-saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
Bi Bj i, j 2 f1, 2, . . . , sg; i 6¼ j, Δi > Δiþ1 ði ¼ 1, 2, . . . , s; s n < mÞ, Δi ¼ 0 with kpi k < kpiþ1 k:
ð6:161Þ
The two series of the fish-scale switching bifurcations in Fig. 6.8a, c for a0 < 0 have the following detailed structures: 8 ( ð2r 1 1Þth SO, > > th > ð ð 1 Þ Þ US ! 2 2r > 1 > > > ð2r 1 1Þth SI; > > > ( > > > ð2r 2 Þth LS, < ð2ð2r 2 ÞÞth LS ! ð2r 2 Þth LS; > > > > > ⋮ > ( > > > ð2r n 1Þth SO, > > th > > : ð2ð2r n 1ÞÞ US ! ð2r n 1Þth SI; and
ð6:162Þ
6 (2m)th-Degree Polynomial Systems
274
a
b
c
d Fig. 6.8 The fish-scale appearing bifurcation patterns in a (2m)th-degree polynomial system: (a) (2 (2r1 1))thUS ‐ (2(2r2))thLS ‐ (a0 > 0), (b) (2(2r1 1))thLS ‐ (2(2r2))thUS ‐ (a0 < 0), (c) (2 (2r1))thUS ‐ (2(2r2))thUS ‐ (a0 > 0), (d) (2(2r1))thLS ‐ (2(2r2 1))thLS ‐ (a0 < 0). LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6.3 Higher Order Equilibrium Bifurcations
8 ( ð2r 1 Þth US, > > th > ð 2 ð 2r Þ Þ US ! > 1 > > > ð2r 1 Þth US; > > > ( > > > ð2r 2 1Þth SO, < th ð2ð2r 2 1ÞÞ US ! ð2r 2 1Þth SI; > > > > > ⋮ > ( > > > ð2r n 1Þth SO, > > th > > : ð2ð2r n 1ÞÞ US ! ð2r n Þth SI:
275
ð6:163Þ
Two series of fish-scale appearing bifurcations in Fig. 6.8b, d for a0 < 0 have the following structures as 8 ( ð2r 1 1Þth SI, > > th > ð ð 1 Þ Þ LS ! 2 2r > 1 > > > ð2r 1 1Þth SO; > > > ( > > > ð2r 2 Þth US, < th ð2ð2r 2 ÞÞ US ! ð2r 2 Þth US; > > > > > ⋮ > ( > > > ð2r n 1Þth SI, > > th > ð ð 1 Þ Þ LS ! 2 2r > n : ð2r n 1Þth SO;
ð6:164Þ
8 ( ð2r 1 Þth LS, > > th > > ð2ð2r 1 ÞÞ LS ! > > > ð2r 1 Þth LS; > > > ( > > > ð2r 2 1Þth SI, < th ð2ð2r 2 1ÞÞ LS ! ð2r 2 1Þth SO; > > > > > ⋮ > ( > > > ð2r n 1Þth SI, > > th > ð ð 1 Þ Þ LS ! 2 2r > n : ð2r n Þth SO:
ð6:165Þ
and
The four fish-scale appearing bifurcation patterns for higher order equilibriums are different from the fish-scale appearing bifurcation patterns for simple equilibriums.
6 (2m)th-Degree Polynomial Systems
276
6.3.2
Switching Bifurcations α
Consider the roots of ðx2 þ Bi x þ C i Þ i ¼ 0 as ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ, Δi ¼ ðb1 b2 Þ2 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 , Δi > 0 if b1 6¼ b2 ði ¼ 1, 2, . . . , nÞ; ) Bi 6¼ Bj ði, j ¼ 1, 2, . . . , n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 ði ¼ 1, 2, . . . , nÞ
ð6:166Þ
The αth i -order singularity bifurcation is for the switching of a pair of higher order equilibriums (i.e., sinks, sources, upper saddles, and lower saddles). There are six switching bifurcations for i 2 {1, 2, . . ., n}: ði Þ
ðiÞ
li ¼r1 þr 2 1
ð2li Þth order US ! switching bifurcation 8 th ð i Þ < ð2r 1Þ order SO # SI, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ
th
ð6:167Þ
ðiÞ
ð2r 1 1Þ order SI " SO, for b1 ¼ a2i1 " a2i ; ði Þ
ði Þ
li ¼r1 þr2 1
ð2li Þth order LS ! switching bifurcation 8 th < ð2r ðiÞ 1Þ order SI # SO, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ
th
ð6:168Þ
ðiÞ
ð2r 1 1Þ order SO " SI, for b1 ¼ a2i1 " a2i ; ði Þ
ðiÞ
li ¼r1 þr 2
ð2li Þth order US ! switching bifurcation 8 th ð i Þ < ð2r Þ order US # US, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð6:169Þ
ðiÞ
ð2r 1 Þ order US " US for b1 ¼ a2i1 " a2i ; ði Þ
ði Þ
li ¼r1 þr2
ð2li Þth order LS ! switching bifurcation 8 th < ð2r ðiÞ Þ order LS # LS, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ðiÞ
ð2r 1 Þ order LS " LS for b1 ¼ a2i1 " a2i ;
ð6:170Þ
6.3 Higher Order Equilibrium Bifurcations
277
ðiÞ
ði Þ
li ¼r 1 þr2
ð2li 1Þth order SO ! switching bifurcation 8 th ð i Þ < ð2r 1Þ order SO # SO, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð6:171Þ
ðiÞ
ð2r 1 Þ order LS " US for b1 ¼ a2i1 " a2i ; ði Þ
ði Þ
li ¼r1 þr2
ð2li 1Þth order SI ! switching bifurcation 8 th < ð2r ðiÞ 1Þ order SI # SI, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð6:172Þ
ðiÞ
ð2r 1 Þ order US " LS for b1 ¼ a2i1 " a2i :
A set of n-paralleled higher order XX switching bifurcations is called the ðða1 Þth XX : ða2 Þth XX : . . . : ðan Þth XXÞ parallel switching bifurcation in the (2m)thdegree polynomial nonlinear system. Such a bifurcation is also called the nðða1 Þth XX : ða2 Þth XX : . . . : ðan Þth XXÞ antenna switching bifurcation. αi 2 {2li, 2li 1} ðiÞ ðiÞ and XX 2 {SO, SI, US, LS}. For non-switching points, Δi > 0 at b1 6¼ b2 (i ¼ 1, ðiÞ ðiÞ 2, . . . , n). At the bifurcation point, Δi ¼ 0 at b1 ¼ b2 (i ¼ 1, 2, . . . , n). The nðða1 Þth XX : ða2 Þth XX : . . . : ðan Þth XXÞ parallel antenna switching bifurcation is 8 8 < ðr ðnÞ Þth XXðnÞ > th > n bifurcation > 2 2 th > αn XXn ! > > > switching : ðnÞ th ðnÞ > ðr 1 Þ XX1 > > > > > ⋮ 8 > < < ðr ð2Þ Þth XXð2Þ 2nd bifurcation 2 2 th α XX ! 2 > > 2 switching : ð2Þ th ð2Þ > > > 8 ðr 1 Þ XX1 > > > < ðr ð1Þ Þth XXð1Þ > > 1st bifurcation > 2 2 th > XX α > 1 1 ! > : switching : ð1Þ th ð1Þ ðr 1 Þ XX1
ðnÞ
ðnÞ
ðnÞ
ðnÞ
ð2Þ
ð2Þ
# YY1 , for b2 ¼ a2n # a2n1 , " YY2 , for b1 ¼ a2n1 " a2n ; # YY1 , for b2 ¼ a4 # a3 , #
ð2Þ YY2 , ð1Þ YY1 ,
"
ð1Þ YY2 ,
"
¼ a3 " a4 ;
for
ð2Þ b1 ð1Þ b2
for
ð1Þ b1
¼ a1 " a2 :
for
ð6:173Þ
¼ a2 # a1 ,
Such eight sets of parallel switching bifurcations of ðða1 Þth XX : ða2 Þth XX : . . . : ðan Þth XXÞ are presented in Fig. 6.9(a, c, e, g) and (b, d, f, h) for a0 > 0 and a0 < 0, respectively. The eight switching bifurcation structures are as follows: (a) (b) (c) (d) (e) (f) (g) (h)
((2l1)thUS : : (2ln 1 1)thSO : (2ln)thUS) for a0 > 0, ((2l1)thLS : : (2ln 1 1)thSI : (2ln)thLS) for a0 < 0, ((2l1)thLS : : (2ln 1 1)thSI : (2ln 1)thSO) for a0 > 0, ((2l1)thUS : : (2ln 1 1)thSO : (2ln 1)thSI) for a0 < 0, ((2l1)thLS : : (2ln 1 1)thSI : (2ln 1)thSO) for a0 > 0, ((2l1)thUS : : (2ln 1 1)thSI : (2ln 1)thSI) for a0 < 0, ((2l1)thUS : : (2ln 1 1)thSO : (2ln)thUS) for a0 > 0, ((2l1)thLS : : (2ln 1 1)thSI : (2ln)thLS) for a0 < 0.
6 (2m)th-Degree Polynomial Systems
278
a
b
c
d
Fig. 6.9 Parallel antenna switching bifurcations for high-order equilibriums in a (2m)th-degree polynomial system. ðða1 Þth XX : ða2 Þth XX : . . . : ðan Þth XXÞ: (a, c, e, g) for a0 > 0. (b, d, f, h) for a0 < 0. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6.3 Higher Order Equilibrium Bifurcations
279
e
f
g
h
Fig. 6.9 (continued)
6 (2m)th-Degree Polynomial Systems
280
The same switching bifurcations with different higher order equilibriums are illustrated, which is different from the m-USN and m-LSN for simple sinks and sources. Consider a switching bifurcation for a cluster of higher order equilibriums with the following conditions: ðiÞ
ðiÞ
ðiÞ
ðiÞ
Bi ¼ ðb1 þ b2 Þ, Δi ¼ ðb1 b2 Þ2 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 , Δi > 0 if b1 6¼ b2 ði ¼ 1, 2, . . . , nÞ; ) Bi ¼ Bj ði, j 2 f1, 2, . . . , ng; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 ði ¼ 1, 2, . . . , nÞ
ð6:174Þ
Thus, the (αi)th-order switching bifurcation can be for a cluster of higher order equilibriums. The (αi)th-order switching bifurcations for i 2 {1, 2, . . ., s} are αi ¼
th
Pli
ði Þ r j¼1 j
ðαi Þ order XX ! switching bifurcation 8 th ðiÞ ðiÞ ðiÞ ðiÞ ð i Þ > ðr s Þ order XXli # YYli , for bli # ali , > > > > > > ⋮ > > < ðiÞ th ðiÞ ðiÞ ðiÞ ðiÞ ðr j Þ order XXj # YYj , for bj # aj , > > > > > ⋮ > > > > : ðiÞ th ðiÞ ðiÞ ðiÞ ðiÞ ðr 1 Þ order XX1 " YY1 , for b1 # a1 ,
ð6:175Þ
where ðiÞ
ðiÞ
ðiÞ
ðiÞ
fa1 ; a2 ; . . . ; ali1 ; ali g ðiÞ
ðiÞ
ðiÞ
ðiÞ
fb1 ; b2 ; . . . ; bli1 ; bli g
ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 g,
sortfb1 ; b2 ; . . . ; b1 ; b2 g:
before bifurcation After bifurcation
ð1Þ
ð1Þ
ðnÞ
ðnÞ
ð6:176Þ
A set of paralleled, different, higher order upper-saddle-node switching bifurcations with multiplicity is the ((α1)thXX : (α2)thXX : : (αs)thXX) parallel switching bifurcation in the (2m)th-degree polynomial system. At the straw-bundle switching bifurcation, Δi ¼ 0 (i ¼ 1, 2, . . . , n) and Bi ¼ Bj ( i, j 2 {1, 2, . . ., n}; i 6¼ j). The parallel straw-bundle switching bifurcation for higher order equilibriums is
6.3 Higher Order Equilibrium Bifurcations
281
ððα1 Þth XX : ðα2 Þth XX : : ðαs Þth XXÞ‐switching 8 ðαs Þth order XX switching, > > > > > ðα2 Þth order XX switching, > > > > : ðα1 Þth order XX switching,
ð6:177Þ
αi 2 f2li , 2li 1g and XX 2 fUS, LS, SO, SIg:
ð6:178Þ
where
th th Eight parallel straw-bundle switching bifurcations of αth 1 XX : α2 XX : . . . : αn XX are presented in Figs. 6.10 and 6.11 for a0 > 0 and a0 < 0, respectively.
6.3.3
Appearing and Switching Bifurcations
Consider a (2m)th-degree polynomial system in a form of x_ ¼ a0 QðxÞ
2n1 Y i¼1
ðx ci Þαi
n2 Y
x2 þ B j x þ C j
αj
:
ð6:179Þ
j¼1
Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bjx + Cj ¼ 0 are 1 1 pffiffiffiffiffi ð jÞ Δj , Δj ¼ B2j 4Cj 0 ð j ¼ 1, 2, . . . , n2 Þ; b1,2 ¼ Bj 2 2
ð6:180Þ
either fa 1 , a2 , . . . , a2n1 g ¼ sortfc1 ; c2 ; . . . ; c2n1 g, as asþ1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 þ þ faþ 1 , a2 , . . . , a2n3 g ¼ sortfc1 ; . . . ; c2n1 ; b1 ; b2 ; . . . ; b1 ; b2 g,
þ aþ s asþ1 , n3 ¼ n1 þ n2 after bifurcation;
ð6:181Þ
or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 , a2 , . . . , a2n3 g ¼ sortfc1 ; c2 ; . . . ; c2n1 ; b1 ; b2 ; . . . ; b1 ; b2 g,
ð6:182Þ
a s asþ1 , n3 ¼ n1 þ n2 before bifurcation; þ faþ 1 , a2 ,
. . . , aþ 2n1 g
¼ sortfc1 ; . . . ; c2n1 g, aþ s
aþ sþ1
after bifurcation;
6 (2m)th-Degree Polynomial Systems
282 a0 > 0 (2r2 n −2 −1) th SO (2ln ) th US
(2r2 n −1 ) th LS (2r2 n −1) th SI
a2n
(2r2 n −1) th SO
a2 n−1
(2r2 n −1 ) th LS
a0 > 0 (2r2 n −2 −1) th SO
a2 n−2
(2r2 n −2 −1) th SI
a2 n−3
(2r2 n −3 ) th US
(2ln −1) th SO
(2r2 n −1 ) th LS (2r2 n ) th LS
a2 n−3 •
•
(2r2 n −3 ) th US
(2r2i −2 ) th US th
(2r2i −3 −1) SO
•
(2r1 ) th LS
a3 a2
(2l1 −1) th SI
(2r2 −1) th SI
a2 n−3
a1
• •
(2r2i ) th US
•
Δ iq > 0
a3 a2
(2l1 −1) th SO (2r2 −1) th SO
x*
(2r2 ) th US
Δ iq > 0 Δ iq = 0
(2r2i −2 ) th LS (2r2i −3 −1) th SI
(2r2 −1) th SI (2r1 ) US
(2r2i −1 −1) th SO
(2li ) th US
(2r1 ) th US
th
(2r2 n −4 −1) th SI
(2r2i ) th US
•
(2r2i −1 −1) th SI
(2r3 ) th LS
a1
(2r3 ) th US (2r2 −1) th SO (2r1 ) th LS
(2r2 ) th LS
Δ iq > 0
Δ iq > 0 Δ iq = 0
|| p ||
b
a a0 > 0 (2r2 n −2 ) th US (2ln −1) th SO
(2r2 n −1 ) th US
a2n
(2r2 n −1) th SO
a2 n−1
(2r2 n −1 ) th LS
a2 n−2
th
(2r2 n −1) SO
a2 n−3
a0 > 0 (2r2 n −2 ) th US
th
(2r2 n −2 ) LS
(2ln −1) th SO
(2r2 n −1 −1) th SO th
th
(2r2 n ) LS
(2r2 n −3 ) LS
(2ln −1 −1) th SO
a2 n−3
(2r2i −1 −1) th SO
(2r2 n −4 −1) th SI
• •
(2r2i ) th US
•
(2r2i −1 −1) th SO
(2r2 n −3 ) US
(2r2i −2 ) th LS
th
(2r2i −1 −1) SI
(2r2i −1 −1) th SO
(2r2 n −2 ) th LS
a2 n−3
(2r2 n −3 ) th LS
(2r2 n −4 −1) th SI
(2r2i −3 −1) th SI
•
th
(2r1 ) US
(2l1 −1) th SI
a3 a2 a1
th
(2r2 ) LS
Δ iq > 0 Δ iq = 0
• •
(2r2i ) th US
•
(2r2i −1 −1) th SO
Δ iq > 0
(2li ) US
(2r2i −2 ) th LS (2r2i −1 −1) SI
(2r2i ) th US
(2r3 ) th US
(2r2i −3 −1) th SI •
• •
th
(2r1 ) US (2r2 −1) th SO
(2r2i −2 ) th LS
th
• •
|| p ||
a2 n−2
th
(2li ) LS
(2r2i −2 ) th LS
x*
(2r2 n −1 −1) th SO
a2 n−3
th
(2r2 −1) th SO
a2 n−1
th
(2r2i ) th US
(2r2 n ) th US
(2ln −1 −1) th SI
th
(2r2 n −3 ) US
a2n
(2r2 n −4 −1) th SI
(2r2 n −4 −1) th SI
c
(2r2 n −2 −1) th SO (2r2 n −3 ) th LS
•
(2r2i −2 ) th LS
• •
|| p ||
a2 n−2
•
(2r2i −1 −1) th SO
(2r2i −1 −1) SI
(2r2i −1 −1) th SO
x*
(2r2 n −1 ) th US
a2 n−3
th
(2li ) th LS
(2r2i −2 ) th US
(2r2 n −4 −1) th SO
(2r2i ) th LS
•
(2r2i ) th LS
a2 n−1
(2r2 n −4 −1) th SI
(2r2 n −4 −1) th SO
(2r2i −1 −1) th SI
(2r2 n ) th US
(2ln −1 −1) th SI
(2ln −1 −1) th SO
(2r2 n −3 ) th LS
a2n
(2r2 −1) th SO
(2l1 −1) th SO
(2r1 ) th LS
x*
a3 a2 a1
(2r3 ) th US (2r2 −1) th SO (2r1 ) th LS
th
(2r2 ) LS
|| p ||
Δ iq > 0 Δ iq = 0
Δ iq > 0
d
Fig. 6.10 (a–d) Four types of (r1th XX : r2th XX : : rmth XX) parallel switching bifurcation for a0 > 0 in the (2m)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6.3 Higher Order Equilibrium Bifurcations a0 < 0
a2n
(2r2 n −2 −1) th SI
a2 n−1
(2ln ) th LS
(2r2 n −1 ) th US (2r2 n −1) th SO
283 a0 < 0
(2r2 n −1) th SI
a2n
(2r2 n −2 −1) th SI
a2 n−2 a2 n−3
(2r2 n −3 ) th LS
(2r2 n −1 ) th US (2r2 n ) th US
th
(2ln −1 −1) SI
(2r2 n −4 −1) th SI
(2r2 n −3 ) th US
a2 n−3 (2r2 n −3 ) th LS
(2r2i ) th US
•
•
th
(2r2i −1 −1) SO
(2r2i −1 −1) th SI
•
(2r2i −2 ) th LS
(2r2i −1 −1) th SI • • •
a3
(2r1 ) th US
a2
(2l1 −1) th SO
th
(2r2 −1) SO
a1
q
• • •
a3
(2r1 ) th LS
a2
(2l1 −1) th SI
th
(2r2 −1) SO (2r2 −1) th SI
th
(2r1 ) LS
x*
Δi > 0
a1
a
(2r3 ) th LS (2r2 −1) th SI (2r1 ) th US
(2r2 ) th US
Δi > 0
Δi > 0 Δi = 0
|| p ||
q
q
(2r2i −3 −1) th SO
(2r2i ) th LS
(2r3 ) th US
(2r2 ) th LS
Δi > 0 Δi = 0
(2r2i −2 ) th US
(2r2i −1 −1) th SO
(2r2i −3 −1) SI
(2li ) LS
(2r2i −2 ) th US
th
(2r2i ) th US
(2r2i −1 −1) th SI
th
(2li ) US
(2r2i −2 ) th LS
(2r2 n −4 −1) th SO
(2r2i ) th LS
•
• th
q
q
q
b a0 < 0
a2n
(2r2 n −2 ) th LS
a2 n−1
(2ln −1) th SI
(2r2 n −1 ) th LS
a2 n−2
th
(2r2 n −1) SI
a2 n−3
a0 < 0
(2r2 n −1) th SI
(2r2 n −2 ) th LS (2ln −1) th SI
th
(2r2 n −1 ) US (2r2 n −1 −1) th SI
th
(2r2 n −2 ) US
th
th
(2r2 n ) US
(2r2 n −3 ) US
a2 n−4 •
(2r2 n −3 ) LS
th
(2r2i −1 −1) SI
(2li ) th LS
(2r2i −1 −1) th SI
(2r2i −2 ) th US
th
(2r2i −1 −1) SO
a2 n−3
(2r2 n −3 ) th US
(2r2 n −4 −1) th SO
a3 a2
th
(2l1 −1) SI
(2r2 −1) th SI
a1
q
q
(2r2i −1 −1) th SI
(2li ) th LS
(2r2i −2 ) th US
(2r2i −1 −1) SO
(2r2i ) th LS
(2r3 ) th LS
(2r2i −3 −1) th SO • • •
a3
th
(2r1 ) LS
(2l1 −1) SI
(2r2 −1) th SI
(2r2 −1) th SI
a2
th
(2r1 ) th US
x*
(2r2 ) th US
Δi > 0 Δi = 0
• •
•
th
(2r2i −3 −1) th SO
(2r2i ) th LS
•
(2r2i −2 ) th US
•
|| p ||
(2r2 n −2 ) th US
•
•
(2r2i −2 ) th US
x*
a2 n−2
a2 n−3
(2r2i ) th LS
•
(2r2i −1 −1) th SI
(2r1 ) LS
(2r2 n −1 −1) th SI
th
(2r2 n −3 ) LS
th
(2r2 n ) th LS
(2r2 n −4 −1) th SO
(2r2 n −4 −1) th SO
th
(2r2i ) th LS
a2n a2 n−1
(2ln −1 −1) th SI
(2ln −1 −1) th SO (2r2 n −4 −1) th SO
c
a2 n−3 (2ln −1 −1) SO
•
(2r2i −1 −1) th SO
|| p ||
a2 n−2
(2r2 n −4 −1) th SO
a2 n−3
x*
(2r2 n −1 ) th LS (2r2 n −2 −1) th SI
th
(2r2 n −4 −1) th SI
(2r2 n −3 ) th US
a2 n−1
(2ln −1) th SI
(2r2 n −1 ) th US (2r2 n −2 −1) th SO
(2r2 n ) th LS
Δi > 0
a1
(2r2 −1) th SI (2r1 ) th LS
(2r2 ) th US
|| p ||
q
(2r3 ) th LS
Δi > 0 Δi = 0 q
q
Δi > 0 q
d
Fig. 6.11 (a–d) Four types of (r1th XX : r2th XX : : rmth XX) parallel switching bifurcation for a0 < 0 in the (2m)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
6 (2m)th-Degree Polynomial Systems
284
and 9 Bj1 ¼ Bj2 ¼ ¼ Bjs jk1 2 f1, 2, . . . , ng; jk1 6¼ jk2 > > > > > > ðk1 , k2 2 f1, 2, . . . , sg; k1 6¼ k2 Þ = Δj ¼ 0 ðj 2 U f1, 2, . . . , n2 g 1 ci 6¼ Bj ði ¼ 1, 2, . . . , 2n1 , j ¼ 1, 2, . . . , n2 Þ 2
> > > > > > ;
at bifurcation:
ð6:183Þ
th th th Consider a just before bifurcation of ððβ 1 Þ XX1 : ðβ2 Þ XX2 : . . . : ðβ s1 Þ XXs1 Þ for higher order equilibriums. For βi ¼ 2li 1, XXi 2 fSO, SIg and for αi ¼ 2l i , XX 2 US, LS (i ¼ 1, 2, . . . , s ). The detailed structures are as follows: f g 1 i
9 th ðiÞ ðr ðsii Þ Þ order XXðsii Þ , x ¼ aks , > > i > > > > > ⋮ > > = βi ¼Pksi rðj iÞ j¼1 th ðiÞ ðiÞ th ðiÞ ðiÞ : ! ðβ ðr j Þ order XXj , x ¼ aj i Þ order XX switching bifurcation > > > > > ⋮ > > > > th ; ðiÞ ðiÞ ðiÞ ðr 1 Þ order XX1 , x ¼ aj ð6:184Þ th th th XX1 : β2 XX2 : . . . : ðβ The bifurcation set of ð β 1 s1 Þ XXs1 Þ at the same parameter point is called a left-parallel-straw-bundle switching bifurcation. th þ þ th þ th þ XX1 : β2 XX2 : . . . : ðβþ Consider a just after bifurcation of ð βþ 1 s2 Þ XXs2 Þ þ þ for simple sources and sinks. For βþ i ¼ 2li 1, XXi 2 fSO, SIg and for þ þ þ βi ¼ 2li , XXi 2 fUS, LSg. The detailed structures are as follows: 8 ðiÞþ ðiÞþ ðiÞþ th > > > ðr si Þ order XXsi , x ¼ aki , > > > > ⋮ > P s > ð i Þþ i < β ¼ r i j th j¼1 th ðiÞþ ðβþ ! ðr ðj iÞþ Þ order XXðj iÞþ , x ¼ aðj iÞþ i Þ order XX switching bifurcation > > > > > ⋮ > > > > : ðiÞþ th ðiÞþ ðiÞþ ðr 1 Þ order XX1 , x ¼ aj : ð6:185Þ th þ þ th þ th þ The bifurcation set of ð βþ XX1 : β2 XX2 : . . . : ðβþ 1 s2 Þ XXs2 Þ at the same parameter point is called a right-parallel-straw-bundle switching bifurcation.
6.3 Higher Order Equilibrium Bifurcations
285
(i) For the just before and after bifurcation structure, if there exists a relation of th th þ th þ þ ðβ i Þ XXi ¼ ðβ j Þ XX j ¼ ðβj Þ XX, for x ¼ ai ¼ a j
ði; j 2 f1; 2; . . . ; kgÞ, XX 2 fUS; LS; SO; SIg
ð6:186Þ
then the bifurcation is a (βj)thXXi switching bifurcation for higher order equilibriums. (ii) Just for the just before bifurcation structure, if there exists a relation of th th ð2li Þ XXi ¼ ð2li Þ XX, for x ¼ ai ¼ ai i 2 f1; 2; . . . ; s1 g, XX 2 fUS; LSg
ð6:187Þ
then the bifurcation is a (2l)thXX left-appearing (or right-vanishing) bifurcation for higher order equilibriums. (iii) Just for the just after bifurcation structure, if there exists a relation of th þ þ ð2lþ i Þ XXi ¼ ð2li Þ XX, for x ¼ ai ¼ ai ði 2 f1; 2; . . . ; s1 gÞ, XX 2 fUS; LSg th
ð6:188Þ
then the bifurcation is a (2l)thXX right-appearing (or left-vanishing) bifurcation for higher order equilibriums. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ þ þ ðβ i Þ XXi 6¼ ðβ j Þ XX j for x ¼ ai ¼ a j th
ð6:189Þ
þ XX i , XX j 2 fUS; LS; SO; SIg
ði 2 f1; 2; . . . ; s1 g; j 2 f1; 2; . . . ; s2 gÞ, then two flower-bundle switching bifurcations of higher order equilibriums are as follows. þ (iv1) For βj ¼ βi + 2l, the bifurcation is called a ðβþ j Þ XXj right flower-bundle th
th þ þ switching bifurcation for the ðβ i Þ XXi to ðβj Þ XXj switching of higher order equilibriums with the appearance (or birth) of (2l)thXX right-appearing (or left-vanishing) bifurcation. th (iv2) For βj ¼ βi 2l, the bifurcation is called a ðβ i Þ XXi left flower-bundle th
th þ þ switching bifurcation for the ðβ i Þ XXi to ðβj Þ XXj switching of higher order equilibriums with the vanishing ( or death) of (2l)thXX leftappearing (or right-vanishing) bifurcation. th
6 (2m)th-Degree Polynomial Systems
286
A general parallel switching bifurcation is switching
th th th ððβ 1 Þ XX1 : ðβ2 Þ XX2 : . . . : ðβs1 Þ XXs1 Þ ! bifucation
th þ ððβþ 1 Þ XX1
:
th þ ðβþ 2 Þ XX2
: ... :
th þ ðβþ s2 Þ XXs2 Þ:
ð6:190Þ
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations for higher order equilibriums. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th þ th þ ðβ i Þ XXi ¼ ðβ i Þ XXi ¼ β XX, th
þ for x ¼ a i ¼ ai ði ¼ 1; 2; . . . ; sg
ð6:191Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ((α1)thXX : (β2)thXX : : (βs)thXX). If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ þ þ ðα i Þ XXi ¼ ð2lj Þ XX, ðαj Þ XXj ¼ ð2lj Þ YY, th
th
þ for x ¼ a i 6¼ aj ði ¼ 1, 2, . . . , s1 ; j ¼ 1, 2, . . . , s2 Þ, XX 2 fUS, LSg, YY 2 fUS, LSg,
ð6:192Þ
then the parallel flower-bundle switching bifurcation for higher order equilibriums becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) a ðð2l 1 Þ XX1 : ð2l2 Þ XX2 : : ð2ls1 Þ XXs1 Þ left parallel sprinklerspraying-appearing (or right-vanishing) bifurcation and th þ th þ th þ þ þ (ii) a ðð2lþ 1 Þ XX1 : ð2l2 Þ XX2 : : ð2ls2 Þ XXs2 Þ right parallel sprinklerspraying-appearing (or left-vanishing) bifurcation.
The parallel switching and appearing bifurcations for higher order equilibriums are presented in Fig. 6.12a–d. The waterfall appearing bifurcations and the flowerbundle switching bifurcations for higher order equilibriums are presented.
6.3 Higher Order Equilibrium Bifurcations
287
a
c
b
d
Fig. 6.12 (r1th XX : r2th XX : : rnth XX) parallel switching/appearing bifurcations (a0 > 0): (a) without switching, and (b) with switching. The (r1th XX : r2th XX : : rnth XX) parallel switching/appearing bifurcation (a0 < 0): (c) without switching, and (d) with switching. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
288
6 (2m)th-Degree Polynomial Systems
Reference Luo, A.C.J., 2020, The stability and bifurcation of the (2m)th degree polynomial systems, Journal of Vibration Testing and System Dynamics, 4(1), pp. 1–42.
Chapter 7
(2m+1)th-Degree Polynomial Systems
In this chapter, the global stability and bifurcations of equilibriums in the (2m+1)th-degree polynomial systems are discussed for a better understanding of the complexity of bifurcations and stability of equilibriums in such a (2m+1)thdegree polynomial system. The appearing and switching bifurcations are presented for simple equilibriums and higher-order equilibriums. The broom-appearing bifurcations, broom-spraying-appearing and broom-sprinkler-spraying-appearing bifurcations for simple and higher-order equilibriums are presented. The antennaswitching bifurcations for simple and higher-order equilibriums are discussed and the parallel straw-bundle-switching and flower-bundle-switching bifurcations for simple and higher order equilibriums are also presented.
7.1
Global Stability and Bifurcations
In a similar fashion of low-degree polynomial systems, the global stability and bifurcation of equilibriums in the (2m+1)th-degree polynomial nonlinear systems are discussed as in Luo (2019). The stability and bifurcation of each individual equilibrium are analyzed from the local analysis in Chapters 1 and 2. Definition 7.1 Consider a (2m+1)th-degree polynomial nonlinear system x_ ¼ A0 ðpÞx2mþ1 þ A1 ðpÞx2m þ . . . þ A2m1 ðpÞx2 þ A2m x þ A2mþ1 ðpÞ ¼ a0 ðpÞðx aðpÞÞ x2 þ B1 ðpÞx þ C 1 ðpÞ . . . x2 þ Bm ðpÞx þ C m ðpÞ
ð7:1Þ
where A0(p) 6¼ 0, and p ¼ ð p1 , p2 , . . . , pm Þ T :
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_7
ð7:2Þ
289
7 (2m+1)th-Degree Polynomial Systems
290
(i) If Δi ¼ B2i 4C i < 0 for i ¼ 1, 2, . . . , m,
ð7:3Þ
the (2m+1)th-degree polynomial system has one equilibrium of x ¼ a, and the corresponding standard form is 1 2 1 1 1 2 x_ ¼ a0 ðx aÞ½ðx þ B1 Þ þ ðΔ1 Þ . . . ½ðx þ Bm Þ þ ðΔm Þ: 2 4 2 4
ð7:4Þ
The flow of such a system with one equilibrium is called a single-equilibrium flow. (a) If a0 > 0, the equilibrium flow with x ¼ a is called a source flow. (b) If a0 < 0, the equilibrium flow with x ¼ a is called a sink flow. (ii) If Δi ¼ B2i 4C i > 0, i ¼ i1 , i2 , . . . , il 2 f1, 2, . . . , mg, Δj ¼ B2j 4C j < 0, j ¼ ilþ1 , ilþ2 , . . . , im 2 f1, 2, . . . , mg with l 2 f0, 1, . . . , mg,
ð7:5Þ
the (2m+1)th-degree polynomial nonlinear system has (2l + 1)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 fi1 , i2 , . . . , il g f1, 2, . . . , mg:
ð7:6Þ
ðjÞ bðiÞ r 6¼ bs for r,s 2 f1; 2g;i,j ¼ 1,2, . . . , l ð1Þ ð1Þ ðlÞ ðlÞ fa1 ; a2 ; . . . ; a2l g ¼ sortfa, b1 , b2 , , b1 , b2 g, as < asþ1 ,
ð7:7Þ
(ii1) If
then the corresponding standard form is x_ ¼ a0
2Y lþ1 i1 ¼1
ðx ai1 Þ
m Y
1 1 2 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð7:8Þ
(a) If a0 > 0, the simple equilibrium separatrix flow is called a (SO : SI : . . .: SO : SI : . . .SI : SO)-flow.
7.1 Global Stability and Bifurcations
291
(b) If a0 < 0, the simple equilibrium separatrix flow is called a (SI : SO : . . .: SI : SO : . . .SO : SI)-flow. (ii2) If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2lþ1 g ¼ sortfa; b1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ . . . ¼ al 1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 , ⋮
ð7:9Þ
air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2lþ1 i¼1 li þ1 i¼1 li þlr
r with Σs¼1 ls ¼ 2l þ 1,
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls
s¼1
m Y
1 2 1 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð7:10Þ
The equilibrium separatrix flow is called a (l1th XX : l2th XX : . . . : lrth XX)flow. (a) For a0 > 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:11Þ
where αp ¼
Xr
l: s¼p s
ð7:12Þ
(b) For a0 < 0 and p ¼ 1, 2, , r,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:13Þ
7 (2m+1)th-Degree Polynomial Systems
292
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibrium switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ l : aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ i¼1 pi i¼1 i
i¼1 i
ð7:14Þ
p
(iii) If Δi ¼ B2i 4C i ¼ 0, i 2 fi11 ; i12 ; . . . ; i1s g fi1 ; i2 ; . . . ; il g f1; 2; . . . ; mg, Δk ¼ B2k 4C k > 0, k 2 fi21 ; i22 ; . . . ; i2r g fi1 ; i2 ; . . . ; il g f1; 2; . . . ; mg, Δ j ¼ B2j 4C j < 0, j 2 filþ1 ; ilþ2 ; . . . ; im g f1; 2; . . . ; mg, ð7:15Þ the (2m + 1)th-degree polynomial nonlinear system has (2l + 1)-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 , i12 , . . . , i1s g, 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ðk Þ ðk Þ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for k 2 fi21 , i22 , . . . , i2r g:
ð7:16Þ
If n o ð1Þ ð1Þ ðlÞ ðlÞ fa1 , a2 , . . . , a2lþ1 g ¼ sort a, b1 , b2 , . . . , b1 , b2 , ai 1 a 1 ¼ . . . ¼ al 1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 , ⋮ air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2lþ1 i¼1 li þ1 i¼1 li þlr
ð7:17Þ
with Σrs¼1 ls ¼ 2l þ 1, then the corresponding standard form is x_ ¼ a0
r Y s¼1
ðx ais Þls
m Y
1 2 1 ½ðx þ Bik Þ þ ðΔik Þ: 2 4 k¼lþ1
ð7:18Þ
7.1 Global Stability and Bifurcations
293
The equilibrium separatrix flow is called a (l1th XX : l2th XX : . . . : lrth XX)flow. (a) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums appearing or vanishing is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is 1 aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp ¼ Biq , i¼1 i¼1 2 with Δiq ¼ B2iq 4C iq ¼ 0 ðiq 2 fi1 ; i2 ; . . . ; il gÞ,
ð7:19Þ
6¼ . . . 6¼ aþ or a 6¼ . . . 6¼ a : aþ Σp1 l þ1 Σp1 l þl Σp1 l þ1 Σp1 l þl i¼1 i
i¼1 i
i¼1 i
p
i¼1 i
p
(b) The equilibrium of x ¼ aiq for (lq > 1)-repeated equilibriums switching is called an lqth XX bifurcation of ðlq1 th XX : lq2 th XX : . . . : lqβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the switching bifurcation condition is aiq aΣq1 li þ1 ¼ . . . ¼ aΣq1 li þlp , i¼1
a l þ1 Σq1 i¼1 i
ð7:20Þ
i¼1
6¼ . . . 6¼
a ;l l þlq q Σq1 i¼1 i
β ¼ Σi¼1 lqi :
(c) The equilibrium of x ¼ aip for l 1 -repeated equilibriums appearp 1 ance/vanishing and lp2 2 repeated equilibriums switching of ðlp21 th XX : lp22 th XX : . . . : lp2β th XXÞ is called an lpth XX bifurcation of equilibrium at a point p = p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ ¼ aΣp1 li þlp i¼1
i¼1
with Δiq ¼ B2iq 4Ciq ¼ 0 ðiq 2 fi1 ; i2 ; . . . ; il gÞ 6¼ 6¼ aþ or ap1 1 aþ Σp1 l þj Σp1 l þj i¼1 i
i¼1 i
1
p1
Σi¼1 li þj1
6¼ 6¼ ap1 1
Σi¼1 li þjp 1
for fj1 ; j2 ; . . . ; jp1 g f1; 2; . . . ; lp g, a Σp1 l þk 1 i¼1 i
6¼ 6¼
, ð7:21Þ
a Σp1 l þk p 2 i¼1 i
for fk1 ; k2 ; . . . ; k p2 g f1; 2; . . . ; lp g, β with lp1 þ lp2 ¼ lp ; lp2 ¼ Σi¼1 lp2i
(iv) If Δi ¼ B2i 4C i > 0 for i ¼ 1,2, . . . , m
ð7:22Þ
the (2m + 1)th-degree polynomial nonlinear system has (2m+1)-equilibriums as
7 (2m+1)th-Degree Polynomial Systems
294
pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2
ð7:23Þ
for i ¼ 1, 2, . . . , m: (iv1) If bðriÞ 6¼ bðs jÞ for r, s 2 f1, 2g; i, j ¼ 1, 2, . . . , m n o ð1Þ ð1Þ ðmÞ ðmÞ ðak < akþ1 Þ, fa1 , a2 , . . . , a2m g ¼ sort a, b1 , b2 , . . . , b1 , b2
ð7:24Þ
then the corresponding standard form is x_ ¼ a0 ðx a1 Þðx a2 Þðx a3 Þðx a4 Þ . . . ðx a2m Þðx a2mþ1 Þ:
ð7:25Þ
This flow is formed with all the simple equilibriums. (a) If a0 > 0, the separatrix flow with (2m + 1) equilibriums is called a (SO : SI : . . .: SO : SI : . . .SI : SO)-flow. (b) If a0 < 0, the separatrix flow with (2m + 1) equilibriums is called a (SI : SO : . . .: SI : SO : . . .SO : SI)-flow. (iv2) If ð1Þ
ð1Þ
ðmÞ
ðmÞ
fa1 ; a2 . . . ; a2mþ1 g ¼ sortfa; b1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ . . . ¼ al 1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 , ⋮ air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2mþ1 i¼1 li þ1 i¼1 li þlr
ð7:26Þ
r with Σs¼1 ls ¼ 2m þ 1,
then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls :
ð7:27Þ
s¼1
The equilibrium separatrix flow is called a (l1th XX : l2th XX : . . . : lrth XX)flow. The equilibrium of x ¼ aip for lp-repeated equilibriums switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the switching bifurcation condition is
7.1 Global Stability and Bifurcations
295
aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ l : i¼1 pi i¼1 i
i¼1 i
ð7:28Þ
p
Definition 7.2 Consider a (2m+1)th-degree polynomial nonlinear system as x_ ¼ A0 ðpÞx2mþ1 þ A1 ðpÞx2m þ . . . þ A2m1 ðpÞx2 þ A2m x þ A2mþ1 ðpÞ n Y q ¼ a0 ðpÞðx aðpÞÞ ½x2 þ Bi ðpÞx þ C i ðpÞ i
ð7:29Þ
i¼1
where A0(p) 6¼ 0, and p ¼ ðp1 ; p2 ; . . . ; pm ÞT , m ¼
Xn
qi :
ð7:30Þ
Δi ¼ B2i 4Ci < 0 for i ¼ 1,2, . . . , n
ð7:31Þ
i¼1
(i) If
the (2m+1)th-degree polynomial nonlinear system has one equilibrium of x ¼ a, and the corresponding standard form is x_ ¼ a0 ðx aÞ
n Y
qi 1 1 ½ðx þ Bi Þ2 þ ðΔi Þ : 2 4 i¼1
ð7:32Þ
The flow of such a system with one equilibrium is called a single equilibrium flow. (a) If a0 > 0, the equilibrium flow of x ¼ a is called a source flow. (b) If a0 < 0, the equilibrium flow of x ¼ a is called a sink flow. (ii) If Δi ¼ B2i 4C i > 0, i 2 fi1 ; i2 ; . . . ; il g f1; 2; . . . ; ng, Δ j ¼ B2j 4C j < 0, j 2 filþ1 ; ilþ2 ; . . . ; in g f1; 2; . . . ; ng
ð7:33Þ
the (2m + 1)th-degree polynomial nonlinear system has (2l + 1)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 fi1 , i2 , . . . , il g f1, 2, . . . , ng: (ii1) If
ð7:34Þ
7 (2m+1)th-Degree Polynomial Systems
296
bðriÞ 6¼ bðs jÞ for r, s 2 f1, 2g; i, j ¼ 1, 2, . . . , l ð1Þ
ð1Þ
ðr Þ
ðr Þ
fa1 , a2 , . . . , a2lþ1 g ¼ sortfa, b1 , b2 , . . . , b1 , b2 g, as asþ1 , |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ð7:35Þ
qr sets
then the corresponding standard form is x_ ¼ a0
2Y lþ1
n Y
s¼1
k¼lþ1
ðx as Þls
½ðx þ 12Bik Þ2 þ 14ðΔik Þ
qik
ð7:36Þ
with ls 2 fqi1 ; qi2 ; ; qil ; 1g: The equilibrium separatrix flow is called a (l1thXX : l2thXX :. . .: l2l+1th XX)flow. (a) For a0 > 0 and p ¼ 1, 2, . . . , 2l + 1,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:37Þ
where αp ¼
X2lþ1 s¼p
ls :
ð7:38Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , 2l + 1,
lp th XX ¼
(ii2) If
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:39Þ
7.1 Global Stability and Bifurcations
297 ð1Þ
ð1Þ
ðr Þ
ðr Þ
fa1 , a2 , . . . , a2lþ1 g ¼ sortfa, b1 , b2 , . . . , b1 , b2 g, |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ai1 a1 ¼ . . . ¼ al1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 ,
qr sets
ð7:40Þ
⋮ air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2lþ1 i¼1 li þ1 i¼1 li þlr with Σrs¼1 ls ¼ 2l þ 1, then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls
s¼1
n Y
qi 1 1 2 ½ðx þ Bik Þ þ ðΔik Þ k : 2 4 k¼lþ1
ð7:41Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : . . . : lrth XX)flow. (a) For a0 > 0 and s ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:42Þ
where αp ¼
Xr
l: s¼p s
ð7:43Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:44Þ
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the switching bifurcation condition is
7 (2m+1)th-Degree Polynomial Systems
298
aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ l : i¼1 pi i¼1 i
i¼1 i
ð7:45Þ
p
(iii) If Δi ¼ B2i 4Ci ¼ 0, i 2 fi11 ; i12 ; . . . ; i1s g fi1 ; i2 ; . . . ; il g f1; 2; . . . ; ng, Δk ¼ B2k 4Ck > 0, k 2 fi21 ; i22 ; . . . ; i2r g fi1 ; i2 ; . . . ; il g f1; 2; . . . ; ng, ð7:46Þ Δ j ¼ B2j 4C j < 0, j 2 filþ1 ; ilþ2 ; . . . ; in g f1; 2; . . . ; ng with i 6¼ j 6¼ k, the (2m+1)th-degree polynomial nonlinear system has (2l + 1)-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 ; i12 ; . . . ; i1s g, 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi 1 1 ðkÞ ðkÞ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for k 2 fi21 ; i22 ; . . . ; i2r g:
ð7:47Þ
If ð1Þ
ð1Þ
ðlÞ
ðlÞ
fa1 ; a2 ; . . . ; a2lþ1 g ¼ sortfa; b1 ; b2 ; . . . ; b1 ; b2 g, ai 1 a1 ¼ . . . ¼ al 1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 , ⋮
ð7:48Þ
air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2lþ1 i¼1 li þ1 i¼1 li þlr
r with Σs¼1 ls ¼ 2l þ 1,
then the corresponding standard form is x_ ¼ a0
r Y s¼1
ðx ais Þls
n Y
qi 1 2 1 ½ðx þ Bik Þ þ ðΔik Þ k : 2 4 k¼lþ1
ð7:49Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : . . . : lrth XX)flow. (a) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums appearing or vanishing is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
7.1 Global Stability and Bifurcations
299
1 aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp ¼ Biq i¼1 i¼1 2 with Δiq ¼ B2iq 4C iq ¼ 0 iq 2 fi1 , i2 , . . . , il g , aþ Σp1 l þ1 i¼1 i
6¼ . . . 6¼
aþ or Σp1 l þlp i¼1 i
a Σp1 l þ1 i¼1 i
6¼ . . . 6¼
ð7:50Þ
a : Σp1 l þlp i¼1 i
(b) The equilibrium of x ¼ aiq for (lq > 1)-repeated equilibriums switching is called an lqth XX bifurcation of ðlq1 th XX : lq2 th XX : . . . : lqβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aiq aΣq1 li þ1 ¼ . . . ¼ aΣq1 li þlp , i¼1
a Σq1 l þ1 i¼1 i
i¼1
6¼ . . . 6¼
a ; lp Σq1 l þlq i¼1 i
¼
Xβ
l : i¼1 pi
ð7:51Þ
(iv) If Δi ¼ B2i 4Ci > 0 for i ¼ 1,2, . . . , n
ð7:52Þ
the (2m + 1)th-degree polynomial nonlinear system has (2n + 1)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 for i ¼ 1, 2, . . . , n:
ð7:53Þ
(iv1) If bðriÞ 6¼ bðs jÞ for r, s 2 f1, 2g, ði, j ¼ 1, 2, . . . , nÞ; ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 , a2 , . . . , a2nþ1 g ¼ sortfa, b1 , b2 , . . . , b1 , b2 g ðas asþ1 Þ, |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ð7:54Þ
qn sets
then the corresponding standard form is x_ ¼ a0
2nþ1 Y
ðx as Þls with ls 2 fqi1 ; qi2 ; . . . ; qin ; 1g:
ð7:55Þ
s¼1
The equilibrium separatrix flow is called an (l1thXX : l2thXX :. . .: l2n+1th XX)-flow.
7 (2m+1)th-Degree Polynomial Systems
300
(a) For a0 > 0 and p ¼ 1, 2, . . . , 2n + 1,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:56Þ
where αp ¼
X2nþ1 s¼p
ls :
ð7:57Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , 2n + 1,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:58Þ
(iv2) If ð1Þ
ð1Þ
ðnÞ
ðnÞ
fa1 , a2 , . . . , a2nþ1 g ¼ sortfa, b1 , b2 , . . . , b1 , b2 g, |fflfflfflffl{zfflfflfflffl} |fflfflfflffl{zfflfflfflffl} q1 sets
ai 1 a1 ¼ . . . ¼ al 1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 ,
qn sets
ð7:59Þ
⋮ air aΣr1 ¼ . . . ¼ aΣr1 ¼ a2nþ1 , i¼1 li þ1 i¼1 li þlr with Σrs¼1 ls ¼ 2n þ 1, then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls :
ð7:60Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : . . . : lrth XX)flow. The equilibrium of x ¼ aip for lp-repeated equilibriums switching is called an lpth XX switching bifurcation of lp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium at a point p ¼ p1 2 ∂Ω12, and the switching bifurcation condition is
7.1 Global Stability and Bifurcations
301
aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ l : i¼1 pi i¼1 i
i¼1 i
ð7:61Þ
p
Definition 7.3 Consider a 1-dimensional, (2m + 1)th-degree polynomial nonlinear dynamical system x_ ¼ A0 ðpÞx2mþ1 þ A1 ðpÞx2m þ . . . þ A2m1 ðpÞx2 þ A2m x þ A2mþ1 ðpÞ r n Y Y q ¼ a0 ðpÞ ðx cis ðpÞÞls ½x2 þ Bi ðpÞx þ C i ðpÞ i s¼1
ð7:62Þ
i¼rþ1
where A0(p) 6¼ 0, and Xr
¼ 2l þ 1,
l s¼1 s
Xn i¼rþ1
qi ¼ ðm lÞ, p ¼ ðp1 ; p2 ; . . . ; pm ÞT :
ð7:63Þ
(i) If Δi ¼ B2i 4C i < 0 for i ¼ r þ 1,r þ 2, . . . , n, fa1 ; a2 ; . . . ; ar g ¼ sortfc1 ; c2 ; . . . ; cr g with ai < aiþ1
ð7:64Þ
the (2m+1)th-degree polynomial system has equilibriums of x ¼ ais ðpÞ (s ¼ 1, 2, . . . , r), and the corresponding standard form is x_ ¼ a0 ðpÞ
r Y j¼1
ðx ai j Þl j
n Y
1 1 ½ðx þ Bi Þ2 þ ðΔi Þli : 2 4 i¼rþ1
ð7:65Þ
The equilibrium separatrix flow is called an (l1th XX : l2th XX : . . . : lrth XX)flow. (a) For a0 > 0 and s ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:66Þ
7 (2m+1)th-Degree Polynomial Systems
302
where αp ¼
Xr
l: s¼p s
ð7:67Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:68Þ
(ii) If Δi ¼ B2i 4Ci > 0, i ¼ j1 , j2 , . . . , js 2 fl þ 1; l þ 2; . . . ; ng, ð7:69Þ
Δ j ¼ B2j 4C j < 0, j ¼ jsþ1 , jsþ2 , . . . , jn 2 fl þ 1; l þ 2; . . . ; ng with s 2 f1; . . . ; n lg,
the (2m+1)th-degree polynomial nonlinear system has 2n2-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 i 2 j1 , j2 , . . . , jn1 fl þ 1, l þ 2, . . . , ng:
ð7:70Þ
If ðrþ1Þ
ðrþ1Þ
ðn Þ
ðn Þ
fa1 , a2 , . . . , a2n2 þ1 g ¼ sortfc1 , c2 , . . . , c2lþ1 , b1 , b2 , . . . , b1 1 , b2 1 g, |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} |fflfflfflfflfflffl{zfflfflfflfflfflffl} qrþ1 sets
ai1 a1 ¼ . . . ¼ al1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 ,
qn1 sets
⋮ ain1 aΣn1 1 li þ1 ¼ . . . ¼ aΣn1 1 li þln ¼ a2n2 þ1 i¼1
i¼1
1
1 with Σns¼1 ls ¼ 2n2 þ 1,
ð7:71Þ
7.1 Global Stability and Bifurcations
303
then the corresponding standard form is x_ ¼ a0
n1 Y
ðx ais Þls
s¼1
n Y
qi 1 2 1 ½ðx þ Bi Þ þ ðΔi Þ : 2 4 i¼n þ1
ð7:72Þ
2
The equilibrium separatrix flow is called an ðl1 th XX : l2 th XX : . . . : ln1 th XXÞflow. (a) For a0 > 0 and p ¼ 1, 2, . . . , r, r + 1, . . ., n1,
lp th XX ¼
f
2r p 1
th th
order source, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order sink, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order lower‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order upper‐saddle, for αp ¼ 2M p , lp ¼ 2r p ,
ð7:73Þ
where αp ¼
Xn1
l: s¼p s
ð7:74Þ
(b) For a0 < 0 and p ¼ 1, 2, . . . , r, r + 1, . . ., n1,
lp th XX ¼
f
2r p 1
th th
order sink, for αp ¼ 2M p 1, lp ¼ 2r p 1;
2r p 1 order source, for αp ¼ 2M p , lp ¼ 2r p 1; th 2r p order upper‐saddle, for αp ¼ 2M p 1, lp ¼ 2r p ; th 2r p order lower‐saddle, for αp ¼ 2M p , lp ¼ 2r p :
ð7:75Þ
(c) The equilibrium of x ¼ aip for (lp > 1)-repeated equilibriums switching is called an lpth XX switching bifurcation of lp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ l : i¼1 pi i¼1 i
i¼1 i
p
ð7:76Þ
7 (2m+1)th-Degree Polynomial Systems
304
(iii) If Δi ¼ B2i 4C i ¼ 0, for i 2 fi11 , i12 , . . . , i1s g filþ1 , ilþ2 , . . . , in2 g fl þ 1, l þ 2, . . . , ng, Δk ¼ B2k 4Ck > 0, for k 2 fi21 , i22 , . . . , i2r g filþ1 , ilþ2 , . . . , in2 g fl þ 1, l þ 2, . . . , ng,
ð7:77Þ
Δj ¼ B2j 4C j < 0, for j 2 fin2 þ1 , in2 þ2 , . . . , in g fl þ 1, l þ 2, . . . , ng, the (2m + 1)th-degree polynomial nonlinear system has (2n2+1)-equilibriums as 1 1 ðiÞ ðiÞ x ¼ b1 ¼ Bi , x ¼ b2 ¼ Bi for i 2 fi11 , i12 , . . . , i1s g, 2 2 ffiffiffiffiffi ffi p pffiffiffiffiffiffi 1 1 ð k Þ ðk Þ x ¼ b1 ¼ ðBk þ Δk Þ, x ¼ b2 ¼ ðBk Δk Þ 2 2 for i 2 fi21 , i22 , . . . , i2r g:
ð7:78Þ
If ðr Þ
ðr Þ
ðn Þ
ðn Þ
fa1 ,a2 , ...,a2n2 þ1 g ¼ sortfa,c1 ,c2 , ...,c2l ,b1 ,b2 , ...,b1 1 ,b2 1 g, |fflfflfflffl{zfflfflfflffl} |fflfflfflfflffl{zfflfflfflfflffl} qr sets
ai1 a1 ¼ ... ¼ al1 ,
qn1 sets
ai2 al1 þ1 ¼ ... ¼ al1 þl2 ,
ð7:79Þ
⋮ ain1 aΣn1 1 li þ1 ¼ ... ¼ aΣn1 1 li þln ¼ a2n2 þ1 i¼1
i¼1
1
1 with Σns¼1 ls ¼ 2n2 þ1,
then the corresponding standard form is x_ ¼ a0
n1 Y s¼1
ðx ais Þls
n Y
qi 1 2 1 ½ðx þ Bi Þ þ ðΔi Þ : 2 4 i¼n þ1
ð7:80Þ
2
The equilibrium separatrix flow is called an l1 th XX : l2 th XX : . . . : ln1 th XXÞflow. (a) The equilibrium of x ¼ aip for (qp > 1)-repeated equilibriums appearing or vanishing is called an lpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is
7.1 Global Stability and Bifurcations
305
1 aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp ¼ Biq i¼1 i¼1 2 with Δiq ¼ B2iq 4Ciq ¼ 0 iq 2 fi1 , i2 , . . . , il g aþ Σp1 q þ1 i¼1 i
6¼ . . . 6¼
aþ or Σp1 q þqp i¼1 i
a Σp1 q þ1 i¼1 i
6¼ . . . 6¼
ð7:81Þ
a : Σp1 q þqp i¼1 i
(b) The equilibrium of x ¼ aiq for (lp > 1)-repeated equilibriums switching is called an lpth XX bifurcation of ðlp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium switching at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aiq aΣq1 li þ1 ¼ . . . ¼ aΣq1 li þlp , i¼1
a Σq1 l þ1 i¼1 i
6¼ . . . 6¼
i¼1
a , Σq1 l þlq i¼1 i
lp ¼
Xβ
l : i¼1 pi
ð7:82Þ
(c) The equilibrium of x ¼ aip for lp1 1 -repeated equilibriums appearing/ vanishing and lp2 2 -repeated equilibriums switching of lp21 th XX : lp22 th XX : . . . : lp2β th XXÞ is called an qpth XX bifurcation of equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 q þ1 ¼ . . . ¼ aΣp1 q þq p i¼1 i i¼1 i with Δiq ¼ B2iq 4C iq ¼ 0 iq 2 fi1 , i2 , . . . , il g 6¼ . . . 6¼ aþ or a 6¼ . . . 6¼ a , aþ p1 1 p1 1 q þj1 q þjp1 Σp1 Σp1 Σi¼1 Σi¼1 qi þj1 qi þjp1 i¼1 i i¼1 i for fj1 j2 . . . jp1 g 1, 2, . . . , qp ,
ð7:83Þ
6¼ . . . 6¼ a a Σp1 Σp1 qi þk p q þk 1 i¼1 i i¼1 2 for k 1 , k 2 , . . . , kp2 1, 2, . . . , qp , with lp1 þ lp2 ¼ lp : (iv) If Δi ¼ B2i 4C i > 0 for i ¼ l þ 1,l þ 2, . . . , n
ð7:84Þ
the (2m+1)th-degree polynomial nonlinear system has (2m + 1)-equilibriums as pffiffiffiffiffi pffiffiffiffiffi 1 1 ðiÞ ðiÞ x ¼ b1 ¼ ðBi þ Δi Þ, x ¼ b2 ¼ ðBi Δi Þ 2 2 for i ¼ l þ 1, l þ 2, . . . , n:
ð7:85Þ
7 (2m+1)th-Degree Polynomial Systems
306
If ðrþ1Þ
ðrþ1Þ
ðnÞ
ðnÞ
fa1 , a2 , . . . , a2mþ1 g ¼ sortfc1 , c2 , . . . , c2lþ1 , b1 , b2 , . . . , b1 , b2 g, |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} |fflfflfflffl{zfflfflfflffl} qrþ1 sets
ai1 a1 ¼ . . . ¼ al1 , ai2 al1 þ1 ¼ . . . ¼ al1 þl2 ,
qn sets
ð7:86Þ
⋮ ain aΣn1 ¼ . . . ¼ aΣn1 ¼ a2mþ1 i¼1 li þ1 i¼1 li þlr with Σns¼1 ls ¼ 2m þ 1, then the corresponding standard form is x_ ¼ a0
r Y
ðx ais Þls :
ð7:87Þ
s¼1
The equilibrium separatrix flow is called an (l1th XX : l2th XX : . . . : lrth XX)flow. The equilibrium of x ¼ aip for lp-repeated equilibriums switching is called an lpth XX switching bifurcation of lp1 th XX : lp2 th XX : . . . : lpβ th XXÞ equilibrium at a point p ¼ p1 2 ∂Ω12, and the bifurcation condition is aip aΣp1 li þ1 ¼ . . . ¼ aΣp1 li þlp , i¼1 i¼1 Xβ aΣp1 l þ1 6¼ . . . 6¼ aΣp1 l þl ; lp ¼ l : i¼1 pi i¼1 i
7.2
i¼1 i
ð7:88Þ
p
Simple Equilibrium Bifurcations
To illustrate the bifurcations in the (2m+1)th-degree polynomial system as in Luo (2019), the detailed discussion with graphical illustrations will be presented as follows.
7.2.1
Appearing Bifurcations
Consider a (2m+1)th-degree polynomial system as x_ ¼ a0 QðxÞðx aÞ
n Y i¼1
ðx2 þ Bi x þ Ci Þ
ð7:89Þ
7.2 Simple Equilibrium Bifurcations
307
where without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1pffiffiffiffiffi ðiÞ Δi , Δi ¼ B2i 4Ci 0 ði ¼ 1; 2; . . . ; nÞ; b1,2 ¼ Bi 2 2 ð1Þ ð1Þ ð2Þ ð2Þ ðnÞ ðnÞ fa1 ; a2 ; . . . ; a2l g sortfb1 , b2 , b1 , b2 , . . . , b1 , b2 g, as asþ1 ; Bi 6¼ B j ði; j ¼ 1; 2; . . . ; n; i 6¼ jÞ at bifurcation: Δi ¼ 0 ði ¼ 1; 2; . . . ; nÞ
ð7:90Þ
g
The second-order singularity bifurcation is for the birth of a pair of simple sink and source. There are two appearing bifurcations for i 2 {1, 2, . . ., n}: ith quadratic factor
2nd order US
! appearing bifurcation ith quadratic factor
2 order LS
! nd
appearing bifurcation
SO, for x ¼ a2i , SI, for x ¼ a2i1 :
ð7:91Þ
SI, for x ¼ a2i , SO, for x ¼ a2i1 :
ð7:92Þ
If x ¼ a 6¼ 12 Bi (i 2 {1, 2, . . ., m}), the equilibrium of x ¼ a breaks a cluster of teeth comb appearing bifurcations to two parts. The teeth comb appearing bifurcation generated by the m-pairs of quadratics becomes a broom appearing bifurcation. The two broom appearing bifurcations are l1 þl2 ¼m
SO ð x ¼ aÞ
! ðl1 ‐LSN : SO : l2 ‐USNÞ appearing bifurcation 8 l2 ‐USN, for x 2 fa2j , a2jþ1 , i ¼ l1 þ 1 . . . l1 þ l2 g, > > < ¼ SO, for x ¼ a ¼ a2ðl1 þ1Þ1 > > : l1 ‐LSN, for x 2 fa2i1 , a2i , i ¼ 1, 2, . . . , l1 g
ð7:93Þ
and l1 þl2 ¼m
SI ð x ¼ aÞ
! ðl1 ‐USN : SO : l2 ‐LSNÞ m‐appearing bifurcation 8 l2 ‐LSN, for x 2 fa2j , a2jþ1 : j ¼ l1 þ 1 . . . l1 þ l2 g, > > < ¼ SI, for x ¼ a ¼ a2ðl1 þ1Þ1 > > : l1 ‐USN, for x 2 fa2i1 , a2i : i ¼ 1, 2, . . . , l1 g where the lj-USN and lj-LSN ( j ¼ 1,2) are
ð7:94Þ
308
7 (2m+1)th-Degree Polynomial Systems
8 8 > < SO, for x ¼ a2ðs þl Þþδ2 , th > ðl þs Þ bifurcation j j > j j j > > US
! > > appearing : SI, for x ¼ a > > 2ðsj þlj Þ1þδ2j ; < lj ‐USN ⋮ 8 > > > < SO, for x ¼ a2sj þδ2j , > th > ðs Þ bifurcation j > > US
! > > appearing : SI, for x ¼ a2s 1þδ2 : j j
ð7:95Þ
8 8 > < SI, for x ¼ a2ðsj þlj Þþδ2j , th > ðlj þsj Þ bifurcation > > > LS
! > > appearing : SO, for x ¼ a2ðs þl Þ1þδ2 ; > > j j j < lj ‐LSN ⋮ 8 > > > < SI, for x ¼ a2sj þδ2j , > th > ðsj Þ bifurcation > > LS
! > > appearing : SO, for x ¼ a2s 1þδ2 : j j
ð7:96Þ
for sj 2 {0, 1, 2, . . ., m} and 0 lj m with 0 lj m. Four special broom appearing bifurcations are 8 SO ! SO, for x ¼ a ¼ a2mþ1 , > > 8 ( > > SI, for x ¼ a2m , > th > > m bifurcation > > > >
! > LS
> > > > appearing < > SO, for x ¼ a2m1 ; > < SO ðx ¼ aÞ ! > m‐LSN ⋮ > > > > ( > > > > > SI, for x ¼ a2 , > st > > 1 bifurcation > > > >
! > : : LS
appearing SO, for x ¼ a1 : 8 SI ! SI, for x ¼ a ¼ a2mþ1 , > > 8 ( > > SO, for x ¼ a2m , > > > mth bifurcation > > > > US
! > > > > > appearing < > SI, for x ¼ a2m1 ; > < SI ðx ¼ aÞ ! > m‐USN ⋮ > > > > ( > > > > > SO, for x ¼ a2 , > > > 1st bifurcation > > > >
! > : : US
appearing SI, for x ¼ a1 : and
ð7:97Þ
ð7:98Þ
7.2 Simple Equilibrium Bifurcations
309
8 ( 8 SO, for x ¼ a2mþ1 , th > > m bifurcation > > > > US
! > > > > > appearing > > > SI, for x ¼ a2m ; > > < > > < m‐USN ⋮ > SO ðx ¼ aÞ ! ( > > > > SO, for x ¼ a3 , > st > > 1 bifurcation > > > >
! > > : US
> appearing > > SI, for x ¼ a2 ; > : SO ! SO, for x ¼ a ¼ a1 :
ð7:99Þ
8 ( 8 SI, for x ¼ a2mþ1 , th > > m bifurcation > > > > LS
! > > > > > appearing > > > SO, for x ¼ a2m ; > > < > > < m‐LSN ⋮ > SI ðx ¼ aÞ ! ( > > > > SI, for x ¼ a3 , > > > 1st bifurcation > > > > > > : LS
! > appearing > > SO, for x ¼ a2 ; > : SI ! SI,for x ¼ a ¼ a1 :
ð7:100Þ
If x ¼ a ¼ 12 Bi (i 2 {1, 2, . . ., m}), the equilibrium of x ¼ a possesses a thirdorder SI or SO switching bifurcation (or pitchfork bifurcation). The teeth comb appearing bifurcation generated by the m-pairs of quadratics becomes a broom appearing bifurcation. The two broom appearing bifurcations are m¼l1 þl2 þ1
SO ðx ¼ aÞ
! ðl1 ‐LSN : 3rd SO : l2 ‐USNÞ appearing bifurcation 8 ‐USN, for x 2 fa2j , a2jþ1 , j ¼ l1 þ 2 . . . l1 þ l2 g, l > 2 > > > 8 > > > > > > SO, for x ¼ a2ðl1 þ2Þ1 > > < < ¼ 3rd SO ! SI, for x ¼ a ¼ a2ðl1 þ1Þ > > > > > > > : > SO, for x ¼ a2ðl1 þ1Þ1 > > > > : l1 ‐LSN, for x 2 fa2i1 , a2i , i ¼ 1, 2, . . . , l1 g
ð7:101Þ
and m¼l1 þl2 þ1
SI ð x ¼ aÞ
! ðl1 ‐USN : 3rd SI : l2 ‐LSNÞ appearing bifurcation 8 l2 ‐LSN, for x 2 fa2j , a2jþ1 , j ¼ l1 þ 2 . . . l1 þ l2 g, > > > > 8 > > SI, for x ¼ a2ðl1 þ2Þ1 > > > > > > < < ¼ 3rd SI ! SO, for x ¼ a ¼ a2ðl1 þ1Þ > > > > > > > : > SI, for x ¼ a2ðl1 þ1Þ1 > > > > : l1 ‐USN, for x 2 fa2i1 , a2i , i ¼ 1, 2, . . . , l1 g:
ð7:102Þ
7 (2m+1)th-Degree Polynomial Systems
310
Consider an appearing bifurcation for a cluster of sink and source equilibriums with the following conditions:
g
Bi ¼ B j ði; j 2 f1; 2; . . . ; ng; i 6¼ jÞ at bifurcation: Δ j ¼ 0 ði ¼ 1; 2; . . . ; nÞ
ð7:103Þ
Thus, the (2l)th-order appearing bifurcation is for a cluster of simple sinks and sources. Two (2l)th-order appearing bifurcations for l 2 {1, 2, . . ., s} are 8 SO, for x ¼ a2sl , > > > > > > < SI, for x ¼ a2sl 1 , cluster of l‐quadratics th ð2lÞ order USN
! ⋮ appearing bifurcation > > > SO, for x ¼ a2s , > 1 > > : SI, for x ¼ a2s1 1
ð7:104Þ
8 SI, for x ¼ a2sl , > > > > > > < SO, for x ¼ a2sl 1 , cluster of l‐quadratics th ð2lÞ order LSN
! ⋮ appearing bifurcation > > > SI, for x ¼ a2s , > 1 > > : SO, for x ¼ a2s1 1 :
ð7:105Þ
If x ¼ a 6¼ 12 Bi (i 2 {1, 2, . . ., n}), the equilibrium of x ¼ a breaks a cluster of sprinkler-spraying appearing bifurcations to two parts. The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broomsprinkler-spraying appearing bifurcation. The two broom-sprinkler-spraying appearing bifurcations are m¼m1 þm2
SO ð x ¼ aÞ
! ðr 1 ‐LSG : SO : r 2 ‐USGÞ appearing bifurcation 8 8 th > > > ð2lðr22 Þ Þ USN ðx ¼ ar1 þr2 þ1 Þ, > > > > > < > > > > r ‐USG ! ⋮ > 2 > > > > > > > > > : ð2Þ th > > ð2l1 Þ USN ðx ¼ ar1 þ2 Þ, > > < ¼ SO ða ¼ ar1 þ1 Þ ! SO ða ¼ a2ðm1 þ1Þ1 Þ, > > 8 > > th > > > > ð2lðr11 Þ Þ LSN ðx ¼ ar1 Þ, > > > > > < > > > > r 1 ‐LSG ! ⋮ > > > > > > > > > : : ð1Þ th ð2l1 Þ LSN ðx ¼ a1 Þ
ð7:106Þ
7.2 Simple Equilibrium Bifurcations
311
and
f
m¼m1 þm2
SI ð x ¼ aÞ
! ðr 1 ‐USG : SI : r 2 ‐LSGÞ
¼
appearing bifurcation
r 2 ‐LSG !
f
th
ð2lðr22 Þ Þ LSN ðx ¼ ar1 þr2 þ1 Þ, ⋮ ð2Þ th
ð2l1 Þ LSN ðx ¼ ar1 þ2 Þ, SI ða ¼ ar1 þ1 Þ ! SI a ¼ a2ðm1 þ1Þ1 ,
r 1 ‐USG !
f
ð7:107Þ
th
ð2lðr11 Þ Þ USN ðx ¼ ar1 Þ, ⋮ ð1Þ th
ð2l1 Þ USN ðx ¼ a1 Þ
P 1 ð1Þ P 2 ð2Þ li , m2 ¼ rj¼1 lj ; and the acronyms USG and LSG are the upperfor m1 ¼ ri¼1 saddle-node and lower-saddle-node bifurcation groups, respectively. Four special broom-sprinkler-spraying appearing bifurcations are 8 SO ða ¼ a2rþ1 Þ ! SO ða ¼ a2mþ1 Þ, > > 8 > Pr > < > ð2lr Þth LSN ðx ¼ ar Þ, m¼ li > i¼1 < SO ð x ¼ aÞ
! appearing bifurcation > r‐LSG ! ⋮ > > > > > : : ð2l1 Þth LSN ðx ¼ a1 Þ,
ð7:108Þ
8 SI ða ¼ a2rþ1 Þ ! SI ða ¼ a2mþ1 Þ, > > 8 > Pr > < > ð2lr Þth USN ðx ¼ ar Þ, m¼ li > i¼1 < SI ð x ¼ aÞ
! appearing bifurcation > r‐USG ! ⋮ > > > > > : : ð2l1 Þth USN ðx ¼ a1 Þ,
ð7:109Þ
and 8 8 > ð2lr Þth USN ðx ¼ arþ1 Þ, > > > < > Pr > < r‐USG ! m¼ l ⋮ i¼1 i > SO ð x ¼ aÞ
! > : appearing bifurcation > > ð2l1 Þth USN ðx ¼ a2 Þ, > > : SO ða ¼ a1 Þ ! SO ða ¼ a1 Þ,
ð7:110Þ
7 (2m+1)th-Degree Polynomial Systems
312
8 8 > ð2lr Þth LSN ðx ¼ arþ1 Þ, > > > < > Pr > < r‐LSG ! m¼ l ⋮ i¼1 i > SI ð x ¼ aÞ
! > : appearing bifurcation > > ð2l1 Þth LSN ðx ¼ a2 Þ, > > : SI ða ¼ a1 Þ ! SO ða ¼ a1 Þ
ð7:111Þ
If x ¼ a ¼ 12 Bi (i 2 {1, 2, . . ., l}), the equilibrium of x ¼ a possesses a (2l + 1)th-order SI or SO switching bifurcation (or broom-switching bifurcation). The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying switching bifurcation. The two broomswitching bifurcations are m¼m1 þm2 þl
SO ð x ¼ aÞ
! ðr 1 ‐LSG : ð2l þ 1Þrd SO : r 2 ‐USGÞ switching bifurcation 8 8 th > > > ð2lðr22 Þ Þ USN ðx ¼ ar2 þr1 þ1 Þ, > > > > > < > > > > ‐USG ! r ⋮ 2 > > > > > > > > > > : ð2Þ th > > ð2l1 Þ USN ðx ¼ ar1 þ2 Þ, > > < ¼ ð2l þ 1Þrd SO ða ¼ ar1 þ1 Þ; > > 8 > > th > > > > ð2lðr11 Þ Þ LSN ðx ¼ ar1 Þ, > > > > > < > > > > ‐LSG ! r ⋮ 1 > > > > > > > > > : : ð1Þ th ð2l1 Þ LSN ðx ¼ a1 Þ
ð7:112Þ
and m¼m1 þm2 þl
SI ð x ¼ aÞ
! ðr 1 ‐USG : ð2l þ 1Þrd SI : r 2 ‐LSGÞ switching bifurcation 8 8 th > > > ð2lðr22 Þ Þ LSN ðx ¼ ar2 þr1 þ1 Þ, > > > > > < > > > > ‐LSG ! r ⋮ 2 > > > > > > > > > > : ð2Þ th > > ð2l1 Þ LSN ðx ¼ ar1 þ2 Þ, > > < ¼ ð2l þ 1Þrd SI ða ¼ ar1 þ1 Þ; > > 8 > > th > > > > ð2lðr11 Þ Þ USN ðx ¼ ar1 Þ, > > > > > < > > > > r 1 ‐USG ! ⋮ > > > > > > > > > : : ð1Þ th ð2l1 Þ USN ðx ¼ a1 Þ,
ð7:113Þ
7.2 Simple Equilibrium Bifurcations
313
where
cluster of l‐quadratics
ð2l þ 1Þth order SO ðx ¼ aÞ
!
8 SO, for x ¼ a2sl þ1 , > > > > > > < SI, for x ¼ a2sl ,
⋮ > > > SI, for x ¼ a2s1 , > > > : SO, for x ¼ a2s1 1 8 SI, for x ¼ a2sl þ1 , > > > > > > < SO, for x ¼ a2sl , cluster of l‐quadratics ð2l þ 1Þth order SI ðx ¼ aÞ
! ⋮ appearing bifurcation > > > > SO, for x ¼ a2s1 , > > : SI, for x ¼ a2s1 1 appearing bifurcation
ð7:114Þ
ð7:115Þ
where x ¼ a 2 fa2s1 1 , . . . , a2sl , a2sl þ1 g. In Fig. 7.1a, b, the simple switching with two teeth comb appearing bifurcations is presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are (a) SO ! (l1 ‐ LSN : SO : l2 ‐ USN), (b) SI ! (l1 ‐ USN : SI : l2 ‐ LSN) with l1 + l2 ¼ m. In Fig. 7.1c, d, the third-order pitchfork switching bifurcation with two teeth comb appearing bifurcations is presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are (c) SO ! (l1 ‐ LSN : 3rdSO : l2 ‐ USN), (d) SI ! (l1 ‐ USN : 3rdSI : l2 ‐ LSN) with l1 + l2 ¼ m 1. In Fig. 7.2a, b, the simple switching with two sprinkler-spraying-appearing bifurcations is presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are (a) SO ! (r1 ‐ LSG : SO : r2 ‐ USG), (b) SI ! (r1 ‐ USG : SI : r2 ‐ LSG)
P 1 ð1Þ P 2 ð2Þ li , m2 ¼ rj¼1 lj . In with r1 + r2 + 1 ¼ n and m1 + m2 ¼ m where m1 ¼ ri¼1 Fig. 7.2c, d, the (2l + 1)th-order broom-switching with two sprinkler-sprayingappearing bifurcations is presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are (c) SO ! (r1 ‐ LSG : (2l + 1)thSO : r2 ‐ USG), (d) SI ! (r1 ‐ USG : (2l + 1)thSI : r2 ‐ LSG)
P 1 ð1Þ P 2 ð2Þ li , m2 ¼ rj¼1 lj . with r1 + r2 + 1 ¼ n and m1 + m2 + l ¼ m where m1 ¼ ri¼1 For a cluster of m-quadratics, Bi ¼ Bj (i, j 2 {1, 2, . . ., m}; i 6¼ j) and Δi ¼ 0 (i 2 {1, 2, . . ., m}). The (2m)th-order upper-saddle-node appearing bifurcation for mpairs of sink and source equilibriums is
7 (2m+1)th-Degree Polynomial Systems
314
a
b
c
d
Fig. 7.1 Simple broom-switching bifurcations: (a) (US : . . . : US : SO : LS : . . . : LS) (a0 > 0), (b) (LS : . . . : LS : SI : US : . . . : US) (a0 < 0), (c) (US : . . . : US : 3rdSO : LS : . . . : LS) (a0 > 0), (d) (LS : . . . : LS : 3rdSI : US : . . . : US) (a0 < 0) in a (2m + 1)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7.2 Simple Equilibrium Bifurcations
315
a
b
c
d
Fig. 7.2 Broom appearing bifurcation: (a) (r1 ‐ LSN : SO : r2 ‐ USN) (a0 > 0). (b) (r1 ‐ USN : SI : r2 ‐ LSN) (a0 < 0); broom-sprinkler-spraying-switching bifurcation. (c) (r1 ‐ LSG : (2lk + 1)thSO : r2 ‐ USG) (a0 > 0). (d) (r1 ‐ LSG : (2lk + 1)thSO : r2 ‐ USG) (a0 < 0) in a (2m + 1)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
316
7 (2m+1)th-Degree Polynomial Systems
8 SO, for x ¼ a2m , > > > > > > < SI, for x ¼ a2m1 ; cluster of m‐quadratics th ð2mÞ order US
! ⋮ appearing bifurcation > > > SO, for x ¼ a2 , > > > : SI, for x ¼ a1 :
ð7:116Þ
The (2m)th-order lower-saddle-node appearing bifurcation for m-pairs of sink and source equilibriums is 8 SI, for x ¼ a2m , > > > > > > < SO, for x ¼ a2m1 ; cluster of m‐quadratics th ð2mÞ order LS
! ⋮ appearing bifurcation > > > SI, for x ¼ a2 , > > > : SO, for x ¼ a1 :
ð7:117Þ
There are four simple switching and (2m)th-order saddle-node appearing bifurcations: The two switching bifurcations of SO ! ((2m)thUS : SO) and SI ! ((2m)thLS : SI) with two (2m)th-order USN and LSN spraying-appearing bifurcations are 8 SO ! SO, for x ¼ a ¼ a2mþ1 > > 8 > > SI, for x ¼ a2m , > > > > > > > > > > > > < SO, for x ¼ a2m1 ; > > < SO ðx ¼ aÞ ! > ð2mÞth order LSN ! ⋮ > > > > > > > > > > SI, for x ¼ a2 , > > > > > > > : : SO, for x ¼ a1 8 SI ! SI, for x ¼ a ¼ a2mþ1 > > 8 > > SO, for x ¼ a2m , > > > > > > > > > > > > < SI, for x ¼ a2m1 ; > > < SI ðx ¼ aÞ ! > ð2mÞth order USN ! ⋮ > > > > > > > > > > SO, for x ¼ a2 , > > > > > > > : : SI, for x ¼ a1
ð7:118Þ
ð7:119Þ
and the two switching bifurcations of SO ! (SO : (2m)thUS) and SI ! (SI: (2m)thLS) with two (2m)th-order USN and LSN spraying-appearing bifurcations are
7.2 Simple Equilibrium Bifurcations
8 8 SO, for x ¼ a2mþ1 , > > > > > > > > > > > > SI, for x ¼ a2m ; > > > > < > > < ð2mÞth order USN ! ⋮ > SO ðx ¼ aÞ ! > > > > > SO, for x ¼ a3 , > > > > > > > > : > > SI, for x ¼ a2 ; > > : SO ! SO, for x ¼ a ¼ a1 8 8 SI, for x ¼ a2mþ1 , > > > > > > > > > > > > SO, for x ¼ a2m ; > > > > < > > < ð2mÞth order LSN ! ⋮ > SI ðx ¼ aÞ ! > > > > > SI, for x ¼ a3 , > > > > > > > > : > > SO, for x ¼ a2 ; > > : SI ! SI, for x ¼ a ¼ a1 :
317
ð7:120Þ
ð7:121Þ
The (2m+1)th-order source broom-switching bifurcation is 8 SO, for x ¼ a2mþ1 , > > > > > > < SI, for x ¼ a2m , switching SOðx ¼ aÞ
! ð2m þ 1Þth order SO ⋮ > > > > SI, for x ¼ a2 , > > : SO, for x ¼ a1 :
ð7:122Þ
The (2m+1)th-order sink broom-switching bifurcation is 8 SI, for x ¼ a2mþ1 , > > > > > > < SO, for x ¼ a2m , switching SI ðx ¼ a1 Þ
! ð2m þ 1Þth order SI ⋮ > > > > SO, for x ¼ a2 , > > : SI, for x ¼ a1 :
ð7:123Þ
The switching bifurcation consists of a simple switching and the (2m)th-order saddle-node appearing bifurcation with m-pairs of source and sinks. The (2m)thorder saddle-node appearing bifurcation is a sprinkler-spraying cluster of the mpairs of sources and sinks. Thus, the four switching bifurcations of SO ! (SO : (2m)thUS) for a0 > 0, SI ! (SI : (2m)thLS) for a0 < 0, SO ! ((2m)thUS : SO) for a0 > 0, SI ! ((2m)thLS : SI) for a0 < 0
318
7 (2m+1)th-Degree Polynomial Systems
Fig. 7.3 (a) (SO : (2m)thLS)-switching bifurcation (a0 > 0), (b) (SI : (2m)thSO)-switching bifurcation (a0 < 0), (c) ((2m)thUS : SO)-switching bifurcation (a0 > 0), (d) ((2m)thLS : SI)-switching bifurcation (a0 < 0), (e) (2m + 1)th SO broom appearing bifurcation (a0 > 0), (f) (2m + 1)th SI broom appearing bifurcation (a0 < 0) in the (2m + 1)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
are presented in Fig. 7.3a–d, respectively. The (2m + 1)th-order source switching bifurcation is named the (2m+1)thSO broom-switching bifurcation and the (2m + 1)th-order sink switching bifurcation is named the (2m + 1)thSI broomswitching bifurcation. Such a (2m + 1)thXX broom-switching bifurcation is from
7.2 Simple Equilibrium Bifurcations
319
simple equilibrium to a (2m + 1)thXX broom-switching bifurcation. The two broomswitching bifurcations of SO ! (2m + 1)thSO for a0 > 0, SI ! (2m + 1)thSI for a0 < 0 are presented in Fig. 7.3e, f, respectively. A series of the third-order source and sink bifurcations is aligned up with varying parameters. Such a special pattern is from m-quadratics in the (2m+1)th-order polynomial systems, and the following conditions should be satisfied: 1 1 aðpi Þ ¼ Bi and a pj ¼ Bj 2 2 Bi Bj i, j 2 f1, 2, . . . , ng; i 6¼ j, Δi > Δiþ1 ði ¼ 1, 2, . . . , n; n mÞ, Δi ¼ 0 with kpi k < kpiþ1 k:
ð7:124Þ
Thus, a series of m ‐ (3rdSO ‐ 3rdSI ‐ 3rdSO ‐ . . .) switching bifurcations (a0 > 0) and a series of m ‐ (3rdSI ‐ 3rdSO ‐ 3rdSI ‐ . . .) switching bifurcations (a0 < 0) are presented in Fig. 7.4a, b. The bifurcation scenario is formed by the swapping pattern of third SI and third SO switching bifurcations. Such a bifurcation scenario is like the fish bone. Thus, such a bifurcation swapping pattern of third SI and third SO switching bifurcations is called the fish-bone switching bifurcation in the (2m+1)thdegree polynomial nonlinear system. There are two swaps of the third SI and third SO bifurcations: (a) the third SO-third SI fish-bone switching bifurcation and (b) the third SI-third SO fish-bone switching bifurcation.
7.2.2
Switching Bifurcations
In the (2m + 1)th-order polynomial system, among the possible (2m + 1) roots, there are two roots to satisfy x2 + Bix + Ci ¼ 0 with ðiÞ
ðiÞ
ðiÞ
ðiÞ 2
Bi ¼ ðb1 þ b2 Þ, Δi ¼ ðb1 b2 Þ 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 , Δi > 0 if b1 6¼ b2 ði ¼ 1, 2, . . . , nÞ; ) Bi 6¼ Bj ði, j ¼ 1, 2, . . . , n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 ði ¼ 1, 2, . . . , nÞ
ð7:125Þ
The second-order singularity bifurcation is for the switching of a pair of simple sink and source. There are two switching bifurcations for i 2 {1, 2, . . ., n}:
7 (2m+1)th-Degree Polynomial Systems
320
a
b Fig. 7.4 (a) m ‐ (3rdSO ‐ 3rdSI ‐ 3rdSO. . .) series bifurcation (a0 > 0), (b) m ‐ (3rdSI ‐ 3rdSO ‐ 3rdSI. . .) series switching bifurcation (a0 < 0) in the (2m + 1)th-degree polynomial system. SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
(
ðiÞ
SO, for a2i ¼ b2 ! b1 ,
switching bifurcation
SI, for a2i1 ¼ b1 ! b2
( ith quadratic factor
2 order LS
! nd
ðiÞ
ith quadratic factor
2 order US
! nd
switching bifurcation
ðiÞ
ðiÞ
ðiÞ
ðiÞ
SI, for a2i ¼ b2 ! b1 , ðiÞ
ðiÞ
SO, for a2i1 ¼ b1 ! b2 : ðiÞ
ðiÞ
ð7:126Þ
ð7:127Þ
For non-switching point, Δi > 0 at b1 6¼ b2 (i ¼ 1, 2, . . ., n). At the bifurcation ðiÞ ðiÞ point, Δi ¼ 0 at b1 ¼ b2 (i ¼ 1, 2, . . ., n). The l-USN parallel switching bifurcation for si 2 {0, 1, . . ., m} (i ¼ 1, 2, . . ., l) is
7.2 Simple Equilibrium Bifurcations
8 8 > < SO # SI, th > s bifurcation > l > > US
! > > switching : SI " SO, > > < l‐USN ⋮ 8 > > > < SO # SI, > th > s bifurcation l > > US
! > > switching : : SI " SO,
321 ðs Þ
for b2 l ¼ a2sl # a2sl 1 , ðs Þ
for b1 l ¼ a2sl 1 " a2sl ; ð7:128Þ for
ðs Þ b2 1
¼ a2s1 # a2s1 1 ,
ðs Þ
for b1 1 ¼ a2s1 1 " a2s1 :
The l-LSN antenna-switching bifurcation for si 2 {0, 1, . . ., m} (i ¼ 1, 2, . . ., l) is 8 8 > < SI # SO, th > s bifurcation > l > > LS
! > > switching : SO " SI, > > < l‐LSN ⋮ 8 > > > < SI # SO, > th > s bifurcation l > > LS
! > > switching : : SO " SI,
ðs Þ
for b2 l ¼ a2sl # a2sl 1 , ðs Þ
for b1 l ¼ a2sl 1 " a2sl ; ð7:129Þ for
ðs Þ b2 1
¼ a2s1 # a2s1 1 ,
ðs Þ
for b1 1 ¼ a2s1 1 " a2s1 :
Two antenna-switching bifurcation structures exist for the (2m + 1)th-order polynomial system. The (l1 ‐ LSN : SO : l2 ‐ USN)-switching bifurcation for a0 > 0 is 8 > < l2 ‐USN l1 þl2 ¼m ðl1 ‐LSN : SO : l2 ‐USNÞ
! SO ! SO, > : l1 ‐LSN
ð7:130Þ
and the (l1 ‐ USN : SI : l2 ‐ LSN)-switching bifurcation for a0 < 0 is 8 > < l2 ‐LSN, l1 þl2 ¼m ðl1 ‐USN : SI : l2 ‐LSNÞ
! SI ! SI, > : l1 ‐USN:
ð7:131Þ
As in the (2m + 1)th-order polynomial system, consider a switching bifurcation for a bundle of sink and source equilibriums with the following conditions: Bi ¼ Bj ði, j 2 f1, 2, . . . , ng; i 6¼ jÞ ðiÞ
ðiÞ
Δi ¼ 0 at b1 ¼ b2 ði ¼ 1, 2, . . . , nÞ
) at bifurcation:
Two (2l)th-order switching bifurcations for l 2 {1, 2, . . ., s} are
ð7:132Þ
7 (2m+1)th-Degree Polynomial Systems
322
8 SO, for a2sl ! b2sl , > > > > > > < SI, for a2sl 1 ! b2sl 1 , a bundle of ð2lÞ‐equilibriums th ð2lÞ order US
! ⋮ switching bifurcation > > > SO, for a2s ! b2s , > 1 1 > > : SI, for a2s1 1 ! b2s1 1 8 SI, for a2sl ! b2sl , > > > > > > < SO, for a2sl 1 ! b2sl 1 , a bundle of ð2lÞ‐equilibriums th ð2lÞ order LS
! ⋮ switching bifurcation > > > > > SI, for a2s1 ! b2s1 , > : SO, for a2s1 1 ! b2s1 1
ð7:133Þ
ð7:134Þ
where Δij ¼ (ai aj)2 ¼ (bi bj)2 ¼ 0 with Bi ¼ Bj (i, j ¼ 2s1 1, 2s1, . . ., 2sl 1, 2sl) and fa2s1 1 ; a2s1 ; . . . ; a2sl 1 ; a2sl g fb2s1 1 ; b2s1 ; . . . ; b2sl 1 ; b2sl g
ð1Þ
before bifurcation
after bifurcation
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 ; ag, ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 ; ag: ð7:135Þ
Two (2l + 1)th-order switching bifurcations for l 2 {1, 2, . . ., s} are 8 SO, for a2sl þ1 ! b2sl þ1 , > > > < ⋮ a bundle of ð2lþ1Þ‐equilibriums ð7:136Þ ð2l þ 1Þth order SO
! > switching bifurcation SI, for a2s1 ! b2s1 , > > : SO, for a2s1 1 ! b2s1 1 8 SI, for a2sl þ1 ! b2sl þ1 , > > > < ⋮ a bundle of ð2lþ1Þ‐equilibriums ð2l þ 1Þth order SI
! ð7:137Þ > switching bifurcation SO, for a ! b , 2s 2s > 1 1 > : SI, for a2s1 1 ! b2s1 1 where Δij ¼ (ai aj)2 ¼ (bi bj)2 ¼ 0 with Bi ¼ Bj (i, j ¼ 2s1 1, 2s1, . . ., 2sl þ 1) and fa2s1 1 ; a2s1 ; . . . ; a2sl þ1 g fb2s1 1 ; b2s1 ; . . . ; b2sl þ1 g
ð1Þ
ð1Þ
ðnÞ
ðnÞ
sortfb1 ; b2 ; . . . ; b1 ; b2 ; ag,
sortfb1 ; b2 ; . . . ; b1 ; b2 ; ag:
before bifurcation After bifurcation
ð1Þ
ð1Þ
ðnÞ
ðnÞ
ð7:138Þ
A set of paralleled, different, higher order upper-saddle-node switching bifurcations with multiplicity is the ((α1)thXX : (α2)thXX : . . . : (αs)thXX) parallel switching bifurcation in the (2m+1)th-degree polynomial system. At the straw-bundle
7.2 Simple Equilibrium Bifurcations
323
switching bifurcation, Δi ¼ 0 (i ¼ 1, 2, . . ., n) and Bi ¼ Bj (i, j 2 {1, 2, . . ., n}; i 6¼ j). Thus, the parallel straw-bundle switching bifurcation is ððα1 Þth XX : ðα2 Þth XX : . . . : ðαs Þth XXÞ‐switching 8 ðαs Þth order XX switching, > > > > >
> ðα2 Þth order XX switching, > > > : ðα1 Þth order XX switching
ð7:139Þ
where αi 2 f2li , 2li 1g with
Xs
α i¼1 i
¼ 2m þ 1;
and XX 2 fUS, LS, SO, SIg: ð jÞ
ð7:140Þ
th
ð jÞ
The ð2l1 : 2l2 : . . . : 2lðs jÞ Þ USN parallel switching bifurcation is called the
ð jÞ
th
ð jÞ
ð2l1 : 2l2 : . . . : 2lðs jÞ Þ USN parallel straw-bundle switching bifurcation: ð jÞ
ð jÞ
th
sj ‐USG ¼ ð2l1 : 2l2 : . . . : 2lðsjjÞ Þ USN switching 8 th > ð2lðs jÞ Þ order USN switching, > > > > >
> ð2l2 Þ order USN switching, > > > > : ð jÞ th ð2l1 Þ order USN switching: ð jÞ
ð7:141Þ
th
ð jÞ
The ð2l1 : 2l2 : . . . : 2lðs jÞ Þ LSN parallel switching bifurcation is called the
ð jÞ
ð jÞ
th
ð2l1 : 2l2 : . . . : 2lðs jÞ Þ LSN parallel straw-bundle switching bifurcation: ð jÞ
ð jÞ
th
sj ‐LSG ¼ ð2l1 : 2l2 : . . . : 2lðsjjÞ Þ LSN switching 8 th > 2lðs jÞ order LSN switching, > > > > >
> ð2l2 Þ order LSN switching, > > > > : ð jÞ th ð2l1 Þ order LSN switching:
ð7:142Þ
7 (2m+1)th-Degree Polynomial Systems
324 th
ð2Þ
The ðs1 ‐LSG : ð2l1 þ 1Þ SO : s3 ‐USGÞ-switching bifurcation for a0 > 0 is
th
ð 2Þ
ðs1 ‐LSG : ð2l1 þ 1Þ SO : s3 ‐USGÞ ¼
8 th ð3Þ > ð2l1 : . . . : 2lðs32 Þ Þ ‐USN, > > < ð2Þ
th
ð2l1 þ 1Þ SO, > > > th : ð1Þ ð2l1 : . . . : 2lðs11 Þ Þ ‐LSN
ð7:143Þ
th
ð2Þ
and the ðs1 ‐USG : ð2l1 þ 1Þ SI : s3 ‐LSGÞ-switching bifurcation for a0 < 0 is
ð2Þ
th
ðs1 ‐USG : ð2l1 þ 1Þ SI : s3 ‐LSGÞ ¼
8 th ð3Þ > ð2l1 : . . . : 2lðs33 Þ Þ ‐LSN, > > < ð2Þ
th
ð2l1 þ 1Þ SI, > > > th : ð1Þ ð2l1 : . . . : 2lðs11 Þ Þ ‐USN:
ð7:144Þ
The two (l1 ‐ USN : SO : l2 ‐ LSN) and (l1 ‐ LSN : SI : l2 ‐ USN) parallel switching bifurcations (l1 + l2 ¼ m) are presented in Fig. 7.5a, b for a0 > 0 and a < 0, respectively. A set of (3rdSO : . . . : SI : 3rdSO) parallel, switching bifurcations for SI and SO equilibriums is presented in Fig. 7.5c for a0 > 0. However, for a0 < 0, the set of (3rdSI : : SO : 3rdSI) switching bifurcations for sources and sinks is presented in Fig. 7.5d.
7.2.3
Switching and Appearing Bifurcations
Consider a (2m + 1)th-degree polynomial system in a form of x_ ¼ a0 QðxÞ
2n 1 þ1 Y i¼1
ðx ci Þ
n2 Y
ðx2 þ B j x þ C j Þ:
ð7:145Þ
j¼1
Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bjx + Cj ¼ 0 are 1 1 pffiffiffiffiffiffi ðjÞ Δ j ,Δ j ¼ B2j 4C j 0 ðj ¼ 1; 2; . . . ; n2 Þ; b1,2 ¼ B j 2 2
ð7:146Þ
7.2 Simple Equilibrium Bifurcations
325
a
b
c
d
Fig. 7.5 Parallel switching bifurcations: (a) (l1 ‐ USG : SO : l2 ‐ USG) (a0 > 0), (b) (l1 ‐ USG : SI : l2 ‐ LSG) (a0 < 0), (c) (3rdSI : . . . : USN : 3rdSO) (a0 > 0), (d) (3rdSO : . . . : LSN : 3rdSI) (a0 < 0) in the (2m + 1)th-degree polynomial nonlinear system. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7 (2m+1)th-Degree Polynomial Systems
326
either fa 1 , a2 , . . . , a2n1 þ1 g ¼ sortfc1 ; c2 ; . . . ; c2n1 þ1 g, a s asþ1 before bifurcation; ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 þ þ faþ 1 , a2 , . . . , a2n3 þ1 g ¼ sortfc1 ; . . . ; c2n1 þ1 ; b1 ; b2 ; . . . ; b1 ; b2 g,
ð7:147Þ
þ aþ s asþ1 , n3 ¼ n1 þ n2 after bifurcation
or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 , a2 , . . . , a2n3 þ1 g ¼ sortfc1 ; c2 ; . . . ; c2n1 ; b1 ; b2 ; . . . ; b1 ; b2 ; ag,
a s asþ1 , n3 ¼ n1 þ n2 before bifurcation; þ þ faþ 1 , a2 , . . . , a2n1 þ1 g ¼ sortfc1 ; . . . ; c2n1 ; ag, þ aþ s asþ1 after bifurcation
ð7:148Þ and Bj1 ¼ Bj2 ¼ . . . ¼ Bjs jk1 2 f1, 2, . . . , ng; jk1 6¼ jk2 ðk1 , k2 2 f1, 2, . . . , sg; k1 6¼ k 2 Þ Δj ¼ 0 ðj 2 U f1, 2, . . . , n2 g
g
at bifurcation:
ð7:149Þ
1 ci 6¼ Bj ði ¼ 1, 2, . . . , 2n1 , j ¼ 1, 2, . . . , n2 Þ 2 th th th Consider a just before bifurcation of α XX1 : α2 XX2 : . . . :ðα 1 s1 Þ XXs1 Ps1 with i¼1 αi ¼ 2m1 þ 1 for simple sources and sinks in the (2m +1)th-degree poly nomial system. For α i ¼ 2li 1, XXi 2 fSO, SIg and for αi ¼ 2li , XXi 2 fUS, LSg (i ¼ 1, 2, . . ., s1). The detailed structures are as follows:
7.2 Simple Equilibrium Bifurcations
327
9 9 SI > SO > > > > > > > > > > SO > SI > > > > = = th th ! 2li 1 SI, and ⋮ ! 2l ⋮ i 1 SO; > > > > > > > SO > SI > > > > > > > > ; ; SI SO 9 9 SO > SI > > > > > > > > > > SI > SO > > > > = = th th ! 2li US, and ⋮ ! 2l ⋮ LS: i > > > > > > > > SO > SI > > > > > > > ; ; SI SO
ð7:150Þ
th th th The bifurcation set of ððα 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs1 Þ XXs1 Þ at the same parameter point is called a left-parallel-bundle switching bifurcation. th þ þ th þ þ þ th Consider a just after bifurcation of ððαþ 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs2 Þ XXs2 Þ Ps 2 þ th with i¼1 αi ¼ 2m2 þ 1 for simple sources and sinks in the (2m + 1) -degree þ þ polynomial system. XXþ i 2 fSO, SIg for αi ¼ 2li 1, and XXi 2 fUS, LSg for þ þ αi ¼ 2li . The four detailed structures are as follows:
8 8 SI SO > > > > > > > > > > > > SO SI > > > > < < þ th þ th 2li 1 SI ! ⋮ , and 2li 1 SO ! ⋮ ; > > > > > > > > SO SI > > > > > > > > : : SI SO 8 8 SO SI > > > > > > > > > > > > SI SO > > > > < < þ th þ th 2li US ! ⋮ , and 2li LS ! ⋮ : > > > > > > > > SO SI > > > > > > > > : : SI SO
ð7:151Þ
þ þ þ þ þ The bifurcation set of ððαþ 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs2 Þ XXs2 Þ at the same parameter point is called a right-parallel:bundle switching bifurcation. th
th
th
7 (2m+1)th-Degree Polynomial Systems
328
(i) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ th ðα i Þ XXi ¼ ðα j Þ XX j ¼ α XX, for x ¼ ai ¼ a j
ði 2 f1; 2; . . . ; s1 g; j 2 f1; 2; . . . ; s2 gÞ, XX 2 fUS; LS; SO; SIg
ð7:152Þ
then the bifurcation is a αthXX switching bifurcation for simple equilibriums. (ii) Just for the just before bifurcation structure, if there exists a relation of th ð2l Þth XX i ¼ ð2lÞ XX, for x ¼ ai ¼ ai i i 2 f1; 2; . . . ; s1 g, XX 2 fUS; LSg
ð7:153Þ
then the bifurcation is a(2l)thXX left-appearing (or right-vanishing) bifurcation for simple equilibriums. (iii) Just for the just after bifurcation structure, if there exists a relation of th þ þ ð2lþ i Þ XXi ¼ ð2lÞ XX, for x ¼ ai ¼ ai ði 2 f1; 2; . . . ; s1 gÞ, XX 2 fUS; LSg th
ð7:154Þ
then the bifurcation is a (2l)thXX right-appearing (or left-vanishing) bifurcation for simple equilibriums. (iv) For the just before and after bifurcation structure, if there exists a relation of th þ th þ þ ðα i Þ XXi 6¼ ðα j Þ XX j for x ¼ ai ¼ a j
ð7:155Þ
þ XX i , XX j 2 fUS; LS; SO; SIg
ði 2 f1; 2; . . . ; s1 g; j 2 f1; 2; . . . ; s2 gÞ, then there are two flower-bundle switching bifurcations of simple equilibriums: þ (iv1) For αj ¼ αi + 2l, the bifurcation is called a ðαþ i Þ XXi right flower-bundle switching bifurcation for αi to αj-simple equilibriums with the appearance (birth) of 2l-simple equilibriums. th (iv2) For αj ¼ αi 2l, the bifurcation is called a α XXi left flower-bundle i switching bifurcation for αi to αj-simple equilibriums with the vanishing (death) of 2l-simple equilibriums. th
A general parallel switching bifurcation is switching
th th th ððα 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs1 Þ XXs1 Þ
! bifucation
þ þ þ þ þ ððαþ 1 Þ XX1 : ðα2 Þ XX2 : . . . : ðαs2 Þ XXs2 Þ: th
th
th
ð7:156Þ
7.2 Simple Equilibrium Bifurcations
329
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th th þ þ ðα i Þ XXi ¼ ðαi Þ XXi ¼ ðαi Þ XXi þ for x ¼ a i ¼ ai ði ¼ 1; 2; . . . ; sg th
ð7:157Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ((α1)thXX : (α2)thXX : . . . : (αs)thXX). If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ th þ th þ ðα i Þ XXi ¼ ð2li Þ XX, ðα j Þ XX j ¼ ð2l j Þ YY, þ for x ¼ a i 6¼ ai ði ¼ 1; 2; . . . ; sg
ð7:158Þ
XX 2 fUS; LSg, YY 2 fUS; LSg then the parallel flower-bundle switching bifurcation becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) A 2l1 XX1 : 2l2 XX2 : . . . : ð2l s1 Þ XXs1 -left parallel sprinklerspraying-appearing (or right vanishing) bifurcation þ th þ þ th þ th þ (ii) A 2l1 XX1 : 2l2 XX2 : . . . : ð2lþ s1 Þ XXs2 -right parallel sprinklerspraying-appearing (or left vanishing) bifurcation The (4thLS : . . . : SO : 6thUS) parallel appearing bifurcation for a0 > 0 is presented in Fig. 7.6a. The (4thUS : . . . : SI : 6thLS) parallel appearing bifurcation for a0 < 0 is shown in Fig. 7.6b. Such a kind of bifurcation is also like a waterfall appearing bifurcation. The (5thSO : . . . : 6thUS : 6thUS) parallel, flowerbundle switching bifurcation for SI and SO equilibriums is presented in Fig. 7.6c for a0 > 0. Such a parallel flower-bundle switching bifurcation is from (SO : SI : SO) to (5thSO : . . . : 6thUS : 6thUS) with a waterfall appearance. The set of (5thSI : . . . : 6thLS : 6thLS) flower-bundle switching bifurcation for SI and SO equilibriums is presented in Fig. 7.6d for a0 < 0. Such a parallel flower-bundle switching bifurcation is from (SI : SO : SI) to (5thSI : . . . : 6thLS : 6thLS) with a waterfall appearance. After the bifurcation, the waterfall equilibrium birth can be observed. The equilibriums before such a bifurcation are much less than after the bifurcation.
7 (2m+1)th-Degree Polynomial Systems
330
a
b
c
d
Fig. 7.6 Switching and appearing bifurcations. Simple switching: (a) (4thLSN : . . . : SO : 6thUSN) (a0 > 0), (b) (4thUSN : . . . : SI : 6thLSN) (a0 < 0). Higher order switching: (c) (5thSI : . . . : 6thUSN : 6thUSN) (a0 > 0), (d) (5thSO : . . . : 6thLSN : 6thLSN) (a0 < 0) in the (2m + 1)th-degree polynomial nonlinear system. LSN: lower saddle node, USN: upper saddle node, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7.3 Higher Order Equilibrium Bifurcations
7.3
331
Higher Order Equilibrium Bifurcations
The afore-discussed appearing and switching bifurcations in the (2m +1)th-degree polynomial system are relative to the simple sources and sinks. As similar to the (2m)th-degree polynomial system, the higher order singularity bifurcations in the (2m +1)th-degree polynomial system can be for higher order sinks, sources, upper saddles, and lower saddles as in Luo (2019).
7.3.1
Higher Order Equilibrium Bifurcations
Consider a (2m +1)th-degree polynomial system as x_ ¼ a0 QðxÞðx aÞ
s Y
αi
ðx2 þ Bi x þ C i Þ ,
ð7:159Þ
i¼1
where αi 2 {2li 1, 2li}. Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1pffiffiffiffiffi ðiÞ Δi ,Δi ¼ B2i 4C i 0; b1,2 ¼ Bi 2 2 ð1Þ ð1Þ ðsÞ ðsÞ fa1 ; a2 ; . . . ; a2s1 ; a2s ; a2sþ1 g ¼ sortfb1 ; b2 ; . . . ; b1 ; b2 ; ag, a j a jþ1 : ð7:160Þ For a 6¼ 12 Bi (i ¼ 1, 2, . . ., s), there are four higher order bifurcations as follows: ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order US
! appearing bifurcation 8 th < ð2li 1Þ order SO, x ¼ bðiÞ , 2 :
ð7:161Þ
ðiÞ
ð2li 1Þth order SI, x ¼ b1 ; ð2li 1Þth order quadratics
ð2ð2li 1ÞÞth order LS
! appearing bifurcation 8 th < ð2li 1Þ order SI, x ¼ bðiÞ , 2 :
ðiÞ
ð2li 1Þth order SO, x ¼ b1 ;
ð7:162Þ
7 (2m+1)th-Degree Polynomial Systems
332
ð2li Þth ‐order quadratics
ð2ð2li ÞÞth order US
! appearing bifurcation 8 < ð2li Þth order US, x ¼ bðiÞ , 2 :
ð7:163Þ
ðiÞ
ð2li Þth order US, x ¼ b1 ; ð2li Þth ‐order quadratics
ð2ð2li ÞÞth order LS
! appearing bifurcation 8 th < ð2li Þ order LS, x ¼ bðiÞ , 2
ð7:164Þ
: ð2l Þth order LS, x ¼ bðiÞ : i 1 (i) For αi ¼ 2li 1, the (2(2li 1))th-order upper-saddle (US) appearing bifurðiÞ cation is for the onset of the (2li 1)th-order source (SO) ðx ¼ b2 Þ and the ðiÞ ðiÞ ðiÞ th (2li 1) -order sink (SI) ðx ¼ b1 Þ with b2 > b1 . (ii) For αi ¼ 2li 1, the (2(2li 1))th-order lower-saddle (LS) appearing bifurcaðiÞ tion is for the onset of the (2li 1)th-order sink (SI) (x ¼ b2 ) and the ðiÞ
ðiÞ
ðiÞ
(2li 1)th-order source (SI) (x ¼ b1 ) with b2 > b1 . (iii) For αi ¼ 2li, the (2(2li))th-order upper-saddle (US) appearing bifurcation is for ðiÞ ðiÞ ðiÞ ðiÞ the onset of two (2li)th-order upper saddles (US) (x ¼ b1 , b2 ) with b2 > b1 . (iv) For αi ¼ 2li, the (2(2li))th order lower-saddle (LS) appearing bifurcation is for ðiÞ ðiÞ ðiÞ ðiÞ the onset of two (2li)th-order lower saddles (LS) (x ¼ b1 , b2 ) with b2 > b1 . The equilibrium of x ¼ a 6¼ 12 Bi (i ¼ 1, 2, . . ., s) breaks a cluster of teeth comb appearing bifurcations of higher order equilibrium to two parts. The teeth comb appearing bifurcation generated by the s-pairs of quadratics becomes a broom appearing bifurcation for higher order equilibriums. The two broom appearing bifurcations for higher order equilibriums are 8 th ð2Þ th > ðð2α1 Þ US : . . . : ð2αðs22 Þ Þ USÞ, > < j¼1 i¼1 SO ð x ¼ aÞ
! SO, for x ¼ a ¼ a2ðs1 þ1Þ1 , > appearing bifurcation > : th ð1Þ th ðð2α1 Þ LS : . . . : ð2αðs11 Þ Þ LSÞ
ð7:165Þ
8 th ð2Þ th > ðð2α1 Þ LS : . . . : ð2αðs22 Þ Þ LSÞ, > < j¼1 i¼1 SI ð x ¼ aÞ
! SI, for x ¼ a ¼ a2ðs1 þ1Þ1 , > appearing bifurcation > : th ð1Þ th ðð2α1 Þ US : . . . : ð2αðs11 Þ Þ USÞ
ð7:166Þ
sj 2 P P
ð jÞ
αi ¼m
and sj 2 P P
ð jÞ
αi ¼m
7.3 Higher Order Equilibrium Bifurcations
333
where 8 8 th < ðαðsjjÞ Þ XX, > > th > ð j Þ > ð2αsj Þ US ! > > > : ð jÞ th > ðαsj Þ XX; > < th th ð jÞ ð jÞ ðð2α1 Þ US : . . . : ð2αsj Þ USÞ ¼ ⋮ > 8 > th > > < ðαð jÞ Þ XX, > th > 1 ð j Þ > > ð2α1 Þ US ! > : : ð jÞ th ðα1 Þ XX;
ð7:167Þ
8 8 th < ðαðsjjÞ Þ XX, > > th > > ð2αðsjjÞ Þ LS ! > > > : ð jÞ th > ðαsj Þ XX; > < th th ð jÞ ðð2α1 Þ LS : . . . : ð2αðsjjÞ Þ LSÞ ¼ ⋮ > 8 > th > > < ðαð jÞ Þ XX, > th > 1 ð jÞ > > > ð2α1 Þ LS ! : : ð jÞ th ðα1 Þ XX
ð7:168Þ
for j ¼ 1,2. Four special broom appearing bifurcations for higher order equilibriums are Ps
α ¼m i¼1 i
SO ðx ¼ aÞ
!
ðð2α1 Þth LS : . . . : ð2αs Þth LSÞ
appearing bifurcation
Ps
α ¼m i¼1 i
SO, for x ¼ a ¼ a2sþ1 ,
SI ðx ¼ aÞ
! appearing bifurcation
SO, for x ¼ a ¼ a2sþ1 , ðð2α1 Þth US : . . . : ð2αs Þth USÞ
ð7:169Þ
ð7:170Þ
and Ps
α ¼m i¼1 i
(
SO ðx ¼ aÞ
! appearing bifurcation
Ps
α ¼m i¼1 i
SI ðx ¼ aÞ
! appearing bifurcation
(
ðð2α1 Þth US : . . . : ð2αs Þth USÞ SO, for x ¼ a ¼ a1 ðð2α1 Þth LS : . . . : ð2αs Þth LSÞ SI, for x ¼ a ¼ a1 :
ð7:171Þ
ð7:172Þ
7 (2m+1)th-Degree Polynomial Systems
334
For a ¼ 12 Bi (i 2 {1, 2, . . ., s}), there are four higher order bifurcations as follows: 8 ðiÞ > ð2l 1Þth orderSO, x ¼b2 , > < i SO ðx ¼aÞ! ð2ð2li 1Þþ1Þth SO¼ SI,x ¼a, > > : ðiÞ ð2li 1Þth orderSO,x ¼b1 ; 8 ðiÞ th > < ð2li 1Þ order SI, x ¼ b2 , th SI ðx ¼ aÞ ! ð2ð2li 1Þ þ 1Þ SI ¼ SO, x ¼ a, > : ðiÞ ð2li 1Þth order SI, x ¼ b1 ; 8 ðiÞ th > < ð2li Þ order US, x ¼ b2 , SI ðx ¼ aÞ ! ð2ð2li Þ þ 1Þth SO ¼ SO, x ¼ a, > : ðiÞ ð2li Þth order LS, x ¼ b1 ; 8 ðiÞ th > < ð2li Þ order LS, x ¼ b2 , SI ðx ¼ aÞ ! ð2ð2li Þ þ 1Þth SI ¼ SI, x ¼ a, > : ðiÞ ð2li Þth order US, x ¼ b1 :
ð7:173Þ
ð7:174Þ
ð7:175Þ
ð7:176Þ
(i) For αi ¼2li – 1, the (2(2li 1) + 1)th-order source (SO) switching bifurcation is ðiÞ with the (2li – 1)th-order source (SO) ðx ¼ b2 Þ and the (2l – 1)th-order sink ðiÞ ðiÞ ðiÞ (SI) ðx ¼ b1 Þ with b2 > a > b1 . (ii) For αi ¼ 2li – 1, the (2(2li 1) + 1)th-order sink (SI) switching bifurcation is ðiÞ with the (2li – 1)th-order sink (SI) ðx ¼ b2 Þ and the (2li 1)th-order source ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
(SO) ðx ¼ b1 Þ with b2 > a > b1 . (iii) For αi ¼ 2li, the (2(2li) + 1)th-order source (SO) switching bifurcation is with the ðiÞ (2li)th-order upper saddle (US) ðx ¼ b2 Þ and the (2li)th-order upper saddles (LS) ðx ¼ b1 Þ with b2 > a > b1 . (iv) For αi ¼ 2li, the (2(2li) + 1)th-order sink (SI) switching bifurcation is with the ðiÞ (2li)th-order upper saddle (LS) ðx ¼ b2 Þ and the (2li)th-order upper saddles (US) ðx ¼ b1 Þ with b2 > a > b1 . If x ¼ a ¼ 12 Bi (i 2 {1, 2, . . ., m}), the equilibrium of x ¼ a possesses a (2(2li 1) + 1)th and (2(2li) + 1)th-order SI or SO switching bifurcations (or pitchfork bifurcations) for higher order equilibriums. The teeth comb appearing bifurcation generated by the m-pairs of quadratics becomes a broom-switching bifurcation. Such a broom-switching bifurcation consists of a pitchfork-switching bifurcation and two
7.3 Higher Order Equilibrium Bifurcations
335
teeth comb appearing bifurcations in the (2m + 1)th-degree polynomial system. Four broom-switching bifurcations for higher order equilibriums are 8 ð2Þ th ð2Þ th > > > ðð2α1 Þ US : . . . : ð2αs2 Þ USÞ, > > 8 > > sj > 2 P P > > ð2ls1 þ1 Þth US, ð jÞ > αi þ2ls1 þ1 ¼m > > > < < j¼1 i¼1 SO ð x ¼ aÞ
! ð2ð2ls1 þ1 Þ þ 1Þth SO SO, x ¼ a, appearing bifurcation > > > > > > > : > > ð2ls1 þ1 Þth LS, > > > > > th : ð1Þ th ðð2α1 Þ LS : . . . : ð2αðs11 Þ Þ LSÞ; ð7:177Þ 8 th ð2Þ th > > ðð2α1 Þ US : . . . : ð2αðs22 Þ Þ USÞ, > > > 8 > > sj > 2 P P > > ð2ls1 þ1 1Þth SO, ð jÞ > αi þ2ls1 þ1 1¼m > > > < < j¼1 i¼1 SO ð x ¼ aÞ
! ð2ð2ls1 þ1 1Þ þ 1Þth SO SI, x ¼ a, appearing bifurcation > > > > > > > : > > ð2ls1 þ1 1Þth SO, > > > > > th : ð1Þ th ðð2α1 Þ LS : . . . : ð2αðs11 Þ Þ LSÞ; ð7:178Þ and 8 ð2Þ th ð2Þ th > > > ðð2α1 Þ LS : . . . : ð2αs2 Þ LSÞ, > 8 > s > j 2 P P > ð jÞ > ð2ls1 þ1 Þth LS, αi þ2ls1 þ1 ¼m > > > < < j¼1 i¼1 SI ð x ¼ aÞ
! ð2ð2ls1 þ1 Þ þ 1Þth SI SI, x ¼ a, ð7:179Þ appearing bifurcation > > > > > : th > > ð2ls1 þ1 Þ US, > > > > th th : ð1Þ ðð2α1 Þ US : . . . : ð2αðs11 Þ Þ USÞ; 8 th ð2Þ th > > ðð2α1 Þ LS : . . . : ð2αðs22 Þ Þ LSÞ, > > > 8 > > sj > 2 P P > > ð2ls1 þ1 1Þth SI, ð jÞ > > αi þ2ls1 þ1 1¼m > > < < j¼1 i¼1 SI ð x ¼ aÞ
! ð2ð2ls1 þ1 1Þ þ 1Þth SI SO, x ¼ a, > > appearing bifurcation > > > > > : > > ð2ls1 þ1 1Þth SI; > > > > > th : ð1Þ th ðð2α1 Þ US : . . . : ð2αðs11 Þ Þ USÞ: ð7:180Þ
7 (2m+1)th-Degree Polynomial Systems
336
Consider a (2m + 1)th-degree polynomial system as x_ ¼ a0 QðxÞðx aÞ
n Y
αi
ðx2 þ Bi x þ Ci Þ
ð7:181Þ
i¼1
where αi 2 {2ri 1, 2ri} (i ¼ 1, 2, . . ., n). Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bix + Ci ¼ 0 are 1 1pffiffiffiffiffi ðiÞ Δi ,Δi ¼ B2i 4Ci 0; x1,2 ¼ Bi 2 2 Bi ¼ B j ði; j 2 f1; 2; . . . ; ng; i 6¼ jÞ ð1Þ
ð1Þ
ð2Þ
ð2Þ
ðnÞ
ðnÞ
fa1 ; a2 ; . . . ; a2nþ1 g sortfx1 ; x2 ; x1 ; x2 ; . . . ; x1 ; x2 ; ag, ai aiþ1 : ð7:182Þ The higher order singularity bifurcation can be for a cluster of higher order equilibriums. There are four higher order bifurcations as follows: (i) The (2(2l 1))th-order upper-saddle (US) spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is ð2βÞth US ¼ ð2ð2l 1ÞÞth order US 8 ðα2n Þth order XX for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX for x ¼ a2n1 ,
! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX for x ¼ a1 ; where 2ð2l 1Þ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
ð7:183Þ
and
ð2r 2n Þth order US, for α2n ¼ 2r n , ð2r 2n 1Þth order SO, for α2n ¼ 2r n 1;
ð2r 1 Þth order US, for α1 ¼ 2r 1 ,
ð7:184Þ
ð2r 1 1Þth order SO, for α1 ¼ 2r 1 1:
(ii) The (2(2l))th-order upper-saddle (US) spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is
7.3 Higher Order Equilibrium Bifurcations
ð2βÞth US ¼ ð2ð2lÞÞth order US 8 ðα2n Þth order XX for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX for x ¼ a2n1 ,
! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX for x ¼ a1 where 2ð2lÞ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
337
ð7:185Þ
and
ð2r 2n Þth order US, for α2n ¼ 2r n , ð2r 2n 1Þth order SO, for α2n ¼ 2r n 1;
ð2r 1 Þth order US, for α1 ¼ 2r 1 ,
ð7:186Þ
ð2r 1 1Þth order SI, for α1 ¼ 2r 1 1:
For the higher order lower-saddle bifurcation, the cluster of the higher order equilibriums is given by the following two cases. (iii) The (2(2l 1))th-order lower-saddle (LS) spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is ð2βÞth LS ¼ ð2ð2l 1ÞÞth order LS 8 ðα2n Þth order XX, for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX, for x ¼ a2n1 ,
! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX, for x ¼ a1 where 2ð2l 1Þ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
ð7:187Þ
and
ð2r 2n Þth order LS, for α2n ¼ 2r n , ð2r 2n 1Þth order SI, for α2n ¼ 2r n 1;
ð2r 1 Þth order LS, for α1 ¼ 2r 1 ,
ð7:188Þ
ð2r 1 1Þth order SI, for α1 ¼ 2r 1 1:
(iv) The (2(2l))th-order lower-order spraying-appearing bifurcation for a cluster of higher order sinks, sources, upper saddles, and lower saddles is
7 (2m+1)th-Degree Polynomial Systems
338
ð2βÞth LS ¼ ð2ð2lÞÞth order LS 8 ðα2n Þth order XX, for x ¼ a2n , > > > > > th < ðα a cluster of 2n‐XX 2n1 Þ order XX, for x ¼ a2n1 ,
! appearing bifurcation > >⋮ > > > : ðα1 Þth order XX, for x ¼ a1 where 2ð2lÞ ¼
Pn
i¼1 αi
( th
ðα2n Þ order XX ¼ ( th
ðα1 Þ order XX ¼
ð7:189Þ
and
ð2r 2n Þth order LS, for α2n ¼ 2r n , ð2r 2n 1Þth order SI, for α2n ¼ 2r n 1;
ð2r 1 Þth order LS, for α1 ¼ 2r 1 ,
ð7:190Þ
ð2r 1 1Þth order SO, for α1 ¼ 2r 1 1:
If x ¼ a 6¼ 12 Bi (i 2 {1, 2, . . ., n}), the equilibrium of x ¼ a breaks a cluster of sprinkler-spraying appearing bifurcations for higher order equilibriums to two parts. The sprinkler-spraying appearing bifurcation generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying-appearing bifurcation. The two broom-sprinkler-spraying-appearing bifurcations in the (2m + 1)th-degree polynomial system are 8 th ð2Þ th > > ðð2β1 Þ US : . . . : ð2βðr22 Þ Þ USÞ, > > < m¼m1 þm2 SO ð x ¼ aÞ
! SO ða ¼ ar1 þ1 Þ ! SO a ¼ a2ðm1 þ1Þ1 , appearing bifurcation > > > > : ðð2βð1Þ Þth LS : . . . : ð2βð1Þ Þth LSÞ 1 r1 ð7:191Þ and 8 ð2Þ th ð2Þ th > > ðð2β > 1 Þ LS : . . . : ð2β r2 Þ LSÞ, > < m¼m1 þm2 SI ð x ¼ aÞ
! SI ða ¼ ar1 þ1 Þ ! SO a ¼ a2ðm1 þ1Þ1 , appearing bifurcation > > > > : ðð2βð1Þ Þth US : . . . : ð2βð1Þ Þth USÞ r1 1 ð7:192Þ P 1 ð1Þ P 2 ð2Þ for m1 ¼ ri¼1 βi , m2 ¼ rj¼1 βj ; and the acronyms USG and LSG are the uppersaddle-node bifurcation group and lower-saddle-node bifurcation group, respectively.
7.3 Higher Order Equilibrium Bifurcations
339
Four special broom-sprinkler-spraying-appearing bifurcations of the (2m + 1)thdegree polynomial system are m¼
(
Pr
β i¼1 i
SO ð x ¼ aÞ
! appearing bifurcation m¼
Pr
β i¼1 i
SI ð x ¼ aÞ
!
SO ða ¼ a2mþ1 Þ ! SO ða ¼ a2mþ1 Þ,
ðð2β1 Þth LS : . . . : ð2βr Þth LSÞ; ( SI ða ¼ a2mþ1 Þ ! SI ða ¼ a2mþ1 Þ,
appearing bifurcation
ðð2β1 Þth US : . . . : ð2βr Þth USÞ;
ð7:193Þ
ð7:194Þ
and m¼
Pr
β i¼1 i
(
SO ð x ¼ aÞ
! appearing bifurcation m¼
Pr
β i¼1 i
SI ð x ¼ aÞ
! appearing bifurcation
(
ðð2β1 Þth US : . . . : ð2βr Þth USÞ, SO ða ¼ a1 Þ ! SO ða ¼ a1 Þ; ðð2β1 Þth LS : . . . : ð2βr Þth LSÞ, SI ða ¼ a1 Þ ! SI ða ¼ a1 Þ:
ð7:195Þ
ð7:196Þ
If x ¼ a ¼ 12 Bi (i 2 {1, 2, . . ., l}), the equilibrium of x ¼ a possesses a (2l + 1)th-order SI or SO switching bifurcation (or broom-switching bifurcation) for higher order equilibriums. The sprinkler-spraying-appearing bifurcation generated by the m-pairs of quadratics becomes a broom-sprinkler-spraying-switching bifurcation. The two broom-switching bifurcations in the (2m + 1)th-degree polynomial system are m¼m1 þm2 þβ
SO ð x ¼ aÞ
! switching bifurcation 8 8 th > > > ð2βðr22 Þ Þ US ðx ¼ ar1 þr2 þ1 Þ, > > P > r > 2 ð 2Þ < > > m2 ¼ β th > j¼1 j > > ð2βð12Þ : . . . : 2βðr22 Þ Þ US
! ⋮ > > appearing > > > > > > > > : ð2Þ th > > ð2β1 Þ US ðx ¼ ar1 þ2 Þ; > > < th
ð2β þ 1Þ SO ða ¼ ar1 þ1 Þ; > > 8 > > > > ð2βð1Þ Þth LS ðx ¼ ar Þ, > > 1 > r1 > P r 1 ð 1Þ > > > < > m1 ¼ β th > i¼1 i ð1Þ > ð 1 Þ > ð2β1 : . . . : 2βr1 Þ LS
! ⋮ > > appearing > > > > > > > : : ð1Þ th ð2β1 Þ LS ðx ¼ a1 Þ; and
ð7:197Þ
7 (2m+1)th-Degree Polynomial Systems
340 m¼m1 þm2 þβ
SI ð x ¼ aÞ
! switching bifurcation 8 8 > ð2βð2Þ Þth LS ðx ¼ ar þr þ1 Þ, > > 1 2 > r2 P r 2 ð 2Þ > > > > < > m2 ¼ β th > j¼1 j ð 2Þ ð 2 Þ > > ð2β1 : . . . : 2βr2 Þ LS
! ⋮ > > appearing > > > > > > > > : ð2Þ th > > ð2β1 Þ LS ðx ¼ ar1 þ2 Þ; > >
> 8 > > > > ð2βð1Þ Þth US ðx ¼ ar Þ, > > 1 > r1 > Pr1 ð1Þ > > > < > m1 ¼ βi th > ð 1 Þ i¼1 > > ð2β1 : . . . : 2βðr12 Þ Þ US
! ⋮ > > appearing > > > > > > > : : ð1Þ th ð2β1 Þ US ðx ¼ a1 Þ where cluster of l‐quadratics
ð2β þ 1Þth order SOðx ¼ aÞ
! appearing bifurcation
8 ðα2sl þ1 Þth XX, for x ¼ a2sl þ1 , > > > > > > > > ðα2sl Þth XX, for x ¼ a2sl , > > > < ⋮ > > > > > > ðα2s1 Þth XX, for x ¼ a2s1 , > > > > > : ðα2s1 1 Þth XX, for x ¼ a2s1 1 :
ð7:199Þ
cluster of l‐quadratics
ð2β þ 1Þth order SI ðx ¼ aÞ
! appearing bifurcation
8 ðα2sl þ1 Þth XX, for x ¼ a2sl þ1 , > > > > > > > th > > ðα2sl Þ XX, for x ¼ a2sl , > > < ⋮ > > > > > > ðα2s1 Þth XX, for x ¼ a2s1 , > > > > > : ðα2s1 1 Þth XX, for x ¼ a2s1 1 where x ¼ a 2 fa2s1 1 , . . . , a2sl , a2sl þ1 g and 2β þ 1 ¼
ð7:200Þ
Pl
i¼1 α2si 1
þ α2si þ α2sl þ1 .
7.3 Higher Order Equilibrium Bifurcations
341
The two appearing bifurcations for the higher order singularity of equilibriums are (i) SO ! ((2α1)thLS : . . . : (2αi)thLS : SO : . . . : (2αn 1)thUS : (2αn)thUS), (ii) SO ! ((2α1)thUS : . . . : (2αi)thUS : SO : . . . : (2αn 1)thLS : (2αn)thLS), as presented in Figs. 7.7a, b for a0 > 0 and a0 < 0, respectively. The broom appearing bifurcation for the higher order equilibriums are illustrated. The components of the broom appearing bifurcation are 8 < 2r j th US 2αj US
! ð j ¼ i, n 1, . . .Þ, th appearing : 2r j US ( ð2r k 1Þth SO αk ¼2r k 1 th ð2αk Þ US
! ðk ¼ 1, n, . . .Þ; appearing ð2r k 1Þth SI
ð7:201Þ
8 < 2r j th LS ð j ¼ i, n 1, . . .Þ, 2αj LS
! th appearing : 2r j LS ( ð2r k 1Þth SI αk ¼2r k 1 th ð2αk Þ LS
ðk ¼ 1, n, . . .Þ:
! appearing ð2r k 1Þth SO
ð7:202Þ
th
αj ¼2r j
and
th
αj ¼2r j
The simple equilibrium does not interact with the bifurcation points. There are four switching and appearing bifurcations of the higher-order equilibriums. The two broom-sprinkler-spraying-switching bifurcations for the higher order singularity of equilibriums are (iii) (iv) (v) (vi)
((2(2r1 1)thLS : . . . : (2(2ri) + 1)SO : . . . : (2(2rn 1))thUS : (2(2rn 1))thUS), ((2(2r1 1)thUS : . . . : (2(2ri) + 1)SI : . . . : (2(2rn 1))thLS : (2(2rn 1))thLS), ((2(2r1 1)thLS : . . . : (2(2ri))LS : . . . : (2(2rn 1))thLS : (2(2rn 1) + 1)thSO), ((2(2r1 1)thUS : . . . : (2(2ri))US : . . . : (2(2rn 1))thUS : (2(2rn 1) + 1)thSI),
as presented in Figs. 7.7(c, e) and (d, g) for a0 > 0 and a0 < 0, respectively. The (2(2ri) + 1)thSO and (2(2ri) + 1)thSI switching bifurcations are
7 (2m+1)th-Degree Polynomial Systems
342
a
b
c
d
Fig. 7.7 Six bifurcations in a (2m + 1)th-degree polynomial system. (a, b) Two broom appearing bifurcations. (c–f) Broom-switching bifurcations. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7.3 Higher Order Equilibrium Bifurcations
e
343
f
Fig. 7.7 (continued)
8 > ð2r i Þth US, > < αj ¼2rj ð2ð2r i Þ þ 1Þth SO
! SO, appearing > > : ð2r i Þth LS, 8 > ð2r Þth LS, > < i α ¼2r j j ð2ð2r i Þ þ 1Þth SI
! SI appearing > > : ð2r i Þth US,
ð7:203Þ
and the (2(2rn 1) + 1)thSO and (2(2rn 1) + 1)thSI switching bifurcations are 8 > ð2r n 1Þth SO, > < αj ¼2rj ð2ð2r n 1Þ þ 1Þth SO
! SI, appearing > > : ð2r n 1Þth SO, 8 > ð2r n 1Þth SI, > < αj ¼2r j ð2ð2r n 1Þ þ 1Þth SI
! SO appearing > > : ð2r n 1Þth SI:
ð7:204Þ
7 (2m+1)th-Degree Polynomial Systems
344
In Fig. 7.8a, b, the simple switching with two sprinkler-spraying-appearing bifurcations are presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are (i) SO ! ((2β1)thLS : . . . : (2βi)thLS : SO : . . . : (2βn 1)thUS : (2βn)thUS), (ii) SI ! ((2β1)thUS : . . . : (2βi)thUS : SI : . . . : (2βn 1)thLS : (2βn)thLS), P where m ¼ ni¼1 βi , β1 ¼ (2l1 1), . . ., βi ¼ 2li, . . ., βn 1 ¼ 2ln 1, βn ¼ 2ln. In Fig. 7.8 (c, e) and (d, f), the (2l + 1)th-order broom-switching with two sprinklerspraying-appearing bifurcations are presented for a0 > 0 and a0 < 0, respectively. The two bifurcation structures are: (iii) (iv) (v) (vi)
SO ! ((2β1)thUS : . . . : (2βi + 1)thSO : . . . : (2βn 1)thUS : (2βn)thUS), SI ! ((2β1)thLS : . . . : (2βi + 1)thSI : . . . : (2βn 1)thLS : (2βn)thLS), SO ! ((2β1 + 1)thSO : . . . : (2βi)thUS : . . . : (2βn 1)thUS : (2βn)thUS), SI ! ((2β1 + 1)thSI : . . . : (2βi)thLS : . . . : (2βn 1)thLS : (2βn)thLS).
For a cluster of m-quadratics, Bi ¼ Bj (i, j 2 {1, 2, . . ., m}; i 6¼ j) and Δi ¼0 (i 2 {1, 2, . . ., m}). The (2m)th-order upper-saddle-node appearing bifurcation for higher-order equilibriums is 8 > ðα2s Þth XX, for x ¼ a2s , > > > < cluster of s‐quadratics ðα2s1 Þth XX, for x ¼ a2s1 , ð2mÞth order US
! appearing bifurcation > ⋮ > > > : ðα1 Þth XX, for x ¼ a1 , where 2m ¼
P2s
j¼1 αj
ð7:205Þ
and m ¼ (2l 1), (2l): ( th
ðα1 Þ XX ¼ ðα2s Þth XX ¼
ð2l1 Þth LS, for α1 ¼ 2l1 ,
ð2l1 1Þth SI, for α1 ¼ 2l1 1; ( ð2l2s Þth US, for α2s ¼ 2l2s ,
ð7:206Þ
ð2l2s 1Þth SI, for α2s ¼ 2l2s 1:
The (2m)th-order lower-saddle-node appearing bifurcation for higher-order equilibriums is 8 > ðα2s Þth XX, for x ¼ a2s , > > > < cluster of s‐quadratics ðα2s1 Þth XX, for x ¼ a2s1 ; ð2mÞth order LS
! appearing bifurcation > ⋮ > > > : ðα1 Þth XX, for x ¼ a1
ð7:207Þ
7.3 Higher Order Equilibrium Bifurcations
345
a
b
c
d
Fig. 7.8 Six types of bifurcations in a (2m + 1)th-degree polynomial system. (a, b) Broomsprinkler-spraying-appearing bifurcations, (c–f) broom-spraying-switching bifurcations with equilibrium clusters. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7 (2m+1)th-Degree Polynomial Systems
346
e
f
Fig. 7.8 (continued)
where ( th
ðα1 Þ XX ¼ ðα2s Þth XX ¼
ð2l1 Þth US, for α1 ¼ 2l1
ð2l1 1Þth SO, for α1 ¼ 2l1 1 ( ð2l2s Þth LS, for α2s ¼ 2l2s
ð7:208Þ
ð2l2s 1Þth SI, for α2s ¼ 2l2s 1
There are four simple switching and (2m)th-order saddle-node appearing bifurcations for higher order equilibriums: The two switching bifurcations of SO ! ((2m)thUS : SO) and SI ! ((2m)thLS : SI) with two (2m)th-order USN and LSN spraying-appearing bifurcations in the (2m + 1)th-degree polynomial system are SO ðx ¼ aÞ !
SI ðx ¼ aÞ !
SO ! SO, for x ¼ a ¼ a2mþ1 , ð2mÞth order LS
SI ! SI, for x ¼ a ¼ a2mþ1 , ð2mÞth order US
ð7:209Þ
ð7:210Þ
7.3 Higher Order Equilibrium Bifurcations
347
and the two switching bifurcations of SO ! (SO : (2m)thUS) and SI ! (SI : (2m)thLS) with two (2m)th-order USN and LSN spraying-appearing bifurcations in the (2m + 1)th-degree polynomial system are SO ðx ¼ aÞ !
ð2mÞth order US, SO ! SO, for x ¼ a ¼ a1 ;
SI ðx ¼ aÞ !
ð2mÞth order LS, SI ! SI, for x ¼ a ¼ a1 :
ð7:211Þ ð7:212Þ
The (2m + 1)th-order source broom-switching bifurcation for higher order equilibrium is 8 > ðα2sþ1 Þth XX, for x ¼ a2sþ1 , > > > < switching ðα2s Þth XX, for x ¼ a2s , SOðx ¼ aÞ
! ð2m þ 1Þth order SO > ⋮ > > > : ðα1 Þth XX, for x ¼ a1 ð7:213Þ where 2m þ 1 ¼
P2sþ1 j¼1
( th
ðα1 Þ XX ¼ th
ðα2sþ1 Þ XX ¼
αj , m ¼ (2l 1), (2l) and
ð2l1 Þth LS, for α1 ¼ 2l1 , ð2l1 1Þth SI, for α1 ¼ 2l1 1; ( ð2l2sþ1 Þth US, for α2sþ1 ¼ 2l2sþ1 ,
ð7:214Þ
ð2l2sþ1 1Þth SO, for α2sþ1 ¼ 2l2sþ1 1:
The (2m + 1)th-order sink broom-switching bifurcation is 8 th > > > ðα2sþ1 Þ XX, for x ¼ a2sþ1 , > < th switching ðα2s Þ XX, for x ¼ a2s , th SIðx ¼ aÞ
! ð2m þ 1Þ order SI >⋮ > > > : ðα1 Þth XX, for x ¼ a1 ð7:215Þ where
7 (2m+1)th-Degree Polynomial Systems
348
( th
ðα1 Þ XX ¼ ( th
ðα2sþ1 Þ XX ¼
ð2l1 Þth US, for α1 ¼ 2l1 , ð2l1 1Þth SO, for α1 ¼ 2l1 1; ð2l2sþ1 Þth LS, for α2sþ1 ¼ 2l2sþ1 ,
ð7:216Þ
ð2l2sþ1 1Þth SI, for α2sþ1 ¼ 2l2sþ1 1:
The switching bifurcation consists of a simple switching and the (2m)th-order saddle-node appearing bifurcation with m-pairs of source and sinks. The (2m)thorder saddle-node appearing bifurcation is a sprinkler-spraying cluster of the mpairs of sources and sinks. Thus, the four switching bifurcations of SO ! (SO : (2m)thUS) for higher order equilibriums for a0 > 0, SI ! (SI : (2m)thLS) for higher order equilibriums for a0 < 0, SO ! ((2m)thUS : SO) for higher order equilibriums for a0 > 0, SI ! ((2m)thLS : SI) for higher order equilibrium for a0 < 0 are presented in Fig. 7.9a–d, respectively. The (2m + 1)th-order source switching bifurcation is named the (2m + 1)thSO broom-sprinkle-spraying-switching bifurcation, and the (2m + 1)th-order sink switching bifurcation is named the (2m + 1)thSI broom-switching bifurcation. Such a (2m + 1)thXX broom-switching bifurcation is from simple equilibrium to a (2m + 1)thXX broom-switching bifurcation. The two broom-switching bifurcations for higher order equilibriums of SO ! (2m + 1)thSO for higher order equilibrium for a0 > 0, SI ! (2m + 1))thSI for higher order equilibrium for a0 < 0 are presented in Fig. 7.9e, f, respectively. A series of the (2αi + 1)th-order source and sink bifurcations are aligned up with varying parameters, which is formed in a special pattern. Such a special pattern is from m-quadratics in the (2m + 1)th-degree polynomial system; the following conditions should be satisfied: 1 1 aðpi Þ ¼ Bi and aðp j Þ ¼ ‐ B j 2 2 Bi B j i, j 2 f1; 2; . . . ; ng;i 6¼ j, Δi > Δiþ1 ði ¼ 1; 2; . . . ; n; n mÞ,
ð7:217Þ
Δi ¼ 0 with kpi k < kpiþ1 k: Four series of switching bifurcations in the (2m + 1)th-degree polynomial nonlinear system are (i) (ii) (iii) (iv)
(2(2r1 1) + 1)thSO ‐ (2(2r2) + 1)thSI ‐ . . . ‐ (2(2rn 1) + 1)thSO), (2(2r1 1) + 1)thSI ‐ (2(2r2) + 1)thSO ‐ . . . ‐ (2(2rn 1) + 1)thSI), (2(2r1) + 1)thSO ‐ (2(2r2 1) + 1)thSO ‐ . . . ‐ (2(2rn 1))thSO), (2(2r1) + 1)thSI ‐ (2(2r2 1) + 1)thSI ‐ . . . ‐ (2(2rn 1) + 1)thSI),
7.3 Higher Order Equilibrium Bifurcations
349
a
b
c
d
e
f
Fig. 7.9 Broom-switching bifurcations of equilibriums in (2m + 1)th polynomial system: (a) (SO : (2m)thUS)-appearing bifurcation (a0 > 0), (b) (SI : (2m)thUS)-appearing bifurcation (a0 < 0), (c) ((2m)thUS, SO)-appearing bifurcation (a0 > 0), (d) ((2m)thLS : SI)-appearing bifurcation (a0 < 0). (e) (2m + 1)thSO-switching-appearing bifurcation (a0 > 0), (f) (2m + 1)thSO-switchingappearing bifurcation (a0 < 0). LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
as presented in Fig. 7.10 (a, c)–(b, f) for (a0 > 0) and (a0 < 0), respectively. The swapping pattern of higher order sinks and sources switching bifurcations cannot be observed. Such a bifurcation scenario is like the fish bone for the higher order switching bifurcations for higher order equilibriums.
a
b
c
d Fig. 7.10 Four series of switching bifurcations of equilibriums in a (2m + 1)th polynomial system: (a, c) for a0 > 0, (b, d) for a0 < 0. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7.3 Higher Order Equilibrium Bifurcations
7.3.2
351
Switching Bifurcations α
Consider the roots of ðx2 þ Bi x þ C i Þ i ¼ 0 as ðiÞ
ðiÞ
ðiÞ 2
ðiÞ
Bi ¼ ðb1 þ b2 Þ, Δi ¼ ðb1 b2 Þ 0, ðiÞ
ðiÞ
ðiÞ
ðiÞ
x1,2 ¼ b1,2 , Δi > 0 if b1 6¼ b2 ði ¼ 1, 2, . . . , nÞ; ) Bi 6¼ Bj ði, j ¼ 1, 2, . . . , n; i 6¼ jÞ at bifurcation: ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 ði ¼ 1, 2, . . . , nÞ
ð7:218Þ
The ðαi Þth -order singularity bifurcation is for the switching of a pair of higher order equilibriums (i.e., sinks, sources, upper saddles, and lower saddles). There are six switching bifurcations for i 2 {1, 2, . . ., n}: ðiÞ
ði Þ
li ¼r 1 þr2 1
ð2li Þth order US
! switching bifurcation 8 th < ð2r ðiÞ 1Þ order SO # SI, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ
th
ð7:219Þ
ðiÞ
ð2r 1 1Þ order SI " SO, for b1 ¼ a2i1 " a2i ; ði Þ
ði Þ
li ¼r1 þr2 1
ð2li Þth order LS
! switching bifurcation 8 th ð i Þ < ð2r 1Þ order SI # SO, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ
th
ð7:220Þ
ðiÞ
ð2r 1 1Þ order SO " SI, for b1 ¼ a2i1 " a2i ; ði Þ
ðiÞ
li ¼r1 þr 2
ð2li Þth order US
! switching bifurcation 8 th < ð2r ðiÞ Þ order US # US, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð7:221Þ
ðiÞ
ð2r 1 Þ order US " US, for b1 ¼ a2i1 " a2i ; ði Þ
ði Þ
li ¼r1 þr2
ð2li Þth order LS
! switching bifurcation 8 th ð i Þ < ð2r Þ order LS # LS, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ðiÞ
ð2r 1 Þ order LS " LS, for b1 ¼ a2i1 " a2i ;
ð7:222Þ
7 (2m+1)th-Degree Polynomial Systems
352 ðiÞ
ði Þ
li ¼r 1 þr2
ð2li 1Þth order SO
! switching bifurcation 8 th ð i Þ < ð2r 1Þ order SO # SO, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð7:223Þ
ðiÞ
ð2r 1 Þ order LS " US for b1 ¼ a2i1 " a2i ; ðiÞ
ði Þ
li ¼r 1 þr2
ð2li 1Þth order SI
! switching bifurcation 8 th < ð2r ðiÞ 1Þ order SI # SI, for bðiÞ ¼ a2i # a2i1 , 2 2 :
ðiÞ th
ð7:224Þ
ðiÞ
ð2r 1 Þ order US " LS for b1 ¼ a2i1 " a2i :
A set of n-paralleled higher order XX switching bifurcations is called the ððα1 Þth XX : ðα2 Þth XX : . . . : ðαn Þth XXÞ parallel switching bifurcation in the (2m + 1)th-degree polynomial nonlinear system. Such a bifurcation is also called the ððα1 Þth XX : ðα2 Þth XX : . . . : ðαn Þth XXÞ antenna-switching bifurcation. αi 2 {2li, 2li 1} and XX 2 {SO, SI, US, LS}. For non-switching points, ðiÞ ðiÞ ðiÞ ðiÞ Δi > 0 at b1 6¼ b2 (i ¼ 1, 2, . . ., n). At the bifurcation point, Δi ¼ 0 at b1 ¼ b2 (i ¼ 1, 2, . . ., n). The parallel antenna-switching bifurcation for higher order equilibriums in the (2m + 1)th-degree polynomial system is 8 ð2Þ th ð2Þ th > > < ððα1 Þ XX1 : . . . : ðαl2 Þ XXl2 Þ SI ðor SOÞ, for x ¼ a ð7:225Þ > > th th : ð1Þ ð1Þ ððα1 Þ XX1 : . . . : ðαl1 Þ XXl1 Þ where th
si th bifurcation
ðαðsii Þ Þ XXsi
! switching 8 th > < ðr ð2si Þ Þ XXð2si Þ # YYð1si Þ , for bð2si Þ ¼ að2siÞ # að2siÞ 1 , i i
ð7:226Þ
> : ðr ðsi Þ Þth XXðsi Þ " YYðsi Þ , for bðsi Þ ¼ aðiÞ " aðiÞ ; 1 1 2 1 2si 1 2si ðsi ¼ 1, 2, . . . , li , i ¼ 1, 2Þ: Such eight sets of parallel switching bifurcations for higher order equilibrium are presented in Fig. 7.11(a, c, e, g) and (b, d, f, h) for a0 > 0 and a0 < 0, respectively. The eight switching bifurcation structures are as follows:
7.3 Higher Order Equilibrium Bifurcations
353
a
b
c
d
Fig. 7.11 Antenna parallel switching bifurcation of equilibriums for a (2m + 1)th-degree polynomial nonlinear dynamical system. (a, c, e, g) Four parallel bifurcations for a0 > 0. (b, d, f, h) Four parallel bifurcations for a0 < 0. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7 (2m+1)th-Degree Polynomial Systems
354
e
f
g
h
Fig. 7.11 (continued)
7.3 Higher Order Equilibrium Bifurcations
355
((2l1)thUS : . . . : SI : . . . : (2ln1 1)thSO : (2ln)thUS) for a0 > 0, ((2l1)thLS : . . . : SO : . . . : (2ln1 1)thSI : (2ln)thLS) for a0 < 0, ((2l1)thLS : . . . : SO : . . . : (2ln1 1)thSI : (2ln 1)thSO) for a0 > 0, ((2l1)thUS : . . . : SI : . . . : (2ln1 1)thSO : (2ln 1)thSI) for a0 < 0, ((2l1)thLS : . . . : SO : . . . : (2ln1 1)thSI : (2ln 1)thSO) for a0 > 0, ((2l1)thUS : . . . : SI : . . . : (2ln1 1)thSI : (2ln 1)thSI) for a0 < 0, ((2l1)thUS : . . . : SI : . . . : (2ln1 1)thSO : (2ln)thUS) for a0 > 0, ((2l1)thLS : . . . : SO : . . . : (2ln1 1)thSI : (2ln)thLS) for a0 < 0.
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
The switching bifurcations with different higher order equilibriums are similar to the (l1 ‐ LSN : SO : l2 ‐ USN) and (l1 ‐ USN : SI : l2 ‐ LSN) switching bifurcations for simple sinks and sources. Consider a switching bifurcation for a cluster of higher order equilibriums with the following conditions: Bi ¼ B j ði; j 2 f1; 2; . . . ; ng; i 6¼ jÞ g at bifurcation: ðiÞ ðiÞ Δi ¼ 0 at b1 ¼ b2 ði ¼ 1; 2; . . . ; nÞ
ð7:227Þ
Thus, the (2l)th-order switching bifurcation can be for a cluster of higher order equilibriums. Two (2l)th-order switching bifurcations for l 2 {1, 2, . . ., s} are th
αi ¼
Ps
ði Þ r j¼1 j
ðαi Þ order XX
! switching bifurcation 8 th ð i Þ > rs order XXðsiÞ # YYðsiÞ , for bðsiÞ # aðsiÞ > > > > > > ⋮ > > < ðiÞ th ðiÞ ðiÞ ðiÞ ðr j Þ order XXj # YYj , for bj # aðsiÞ > > > > >⋮ > > > > : ðiÞ th ðiÞ ðiÞ ðiÞ ðr 1 Þ order XX1 " YY1 , for b1 # aðsiÞ
ð7:228Þ
where fa2s1 1 ; a2s1 ; . . . ; a2sl 1 ; a2sl g fb2s1 1 ; b2s1 ; . . . ; b2sl 1 ; b2sl g
¼
ðs Þ
before bifurcation
¼
after bifurcation
ðs Þ
ðs Þ
ðs Þ
sortfb1 1 ; b2 1 ; . . . ; b1 l ; b2 l g, ðs Þ
ðs Þ
ðs Þ
ðs Þ
sortfb1 1 ; b2 1 ; . . . ; b1 l ; b2 l g: ð7:229Þ
A set of paralleled, different, higher order upper-saddle-node switching bifurcations with multiplicity is the ((α1)thXX : (α2)thXX : . . . : (αs)thXX) parallel switching bifurcation in the (2m+1)th-degree polynomial system. At the straw-bundle switching bifurcation, Δi ¼0 (i ¼ 1, 2, . . ., n) and Bi ¼ Bj (i, j 2 {1, 2, . . ., n}; i 6¼ j). The parallel straw-bundle switching bifurcation for higher order equilibriums is
7 (2m+1)th-Degree Polynomial Systems
356
ððα1 Þth XX : ðα2 Þth XX : . . . : ðαs Þth XXÞ switching 8 ðαs Þth order XX switching, > > > > > ðα2 Þth order XX switching, > > > > : ðα1 Þth order XX switching
ð7:230Þ
αi 2 f2li ; 2li 1g and XX 2 fUS; LS; SO; SIg:
ð7:231Þ
8 ð2Þ th ð2Þ th ð2Þ th > > < ððα1 Þ XX : ðα2 Þ XX : . . . : ðαs2 Þ XXÞ SI ðor SOÞ > > : ð1Þ th th ð1Þ th ððα1 Þ XX : ðα2 Þ XX : . . . : ðαðs11 Þ Þ XXÞ:
ð7:232Þ
where
Thus,
Eight parallel straw-bundle switching bifurcations of ððα1 Þth XX : ðα2 Þth XX : . . . : ðαn Þth XXÞ are presented in Figs. 7.12 and 7.13 for a0 > 0 and a0 < 0, respectively.
7.3.3
Switching and Appearing Bifurcations
Consider a (2m + 1)th-degree 1-dimensional polynomial system in a form of x_ ¼ a0 QðxÞ
n1 Y i¼1
ðx ci Þαi
n2 Y
αj
ðx2 þ B j x þ C j Þ :
ð7:233Þ
j¼1
P1 where ni¼1 αi ¼ 2s1 þ 1. Without loss of generality, a function of Q(x) > 0 is either a polynomial function or a non-polynomial function. The roots of x2 + Bjx + Cj ¼ 0 are 1 1 pffiffiffiffiffiffi ðjÞ Δ j ,Δ j ¼ B2j 4C j 0 ðj ¼ 1; 2; . . . ; n2 Þ; b 1 ,2 ¼ B j 2 2 either
ð7:234Þ
7.3 Higher Order Equilibrium Bifurcations
357
a
b
c
d
Fig. 7.12 (a–d) Four types of (r1th XX : r2th XX : . . . : rnth XX) parallel switching bifurcation for a0 > 0 in the (2m + 1)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7 (2m+1)th-Degree Polynomial Systems
358
a
b
c
d
Fig. 7.13 (a–d) Four types of (r1th XX : r2th XX : . . . : rnth XX) parallel switching bifurcation for a0 < 0 in the (2m + 1)th-degree polynomial system. LS: lower saddle, US: upper saddle, SI: sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
7.3 Higher Order Equilibrium Bifurcations
359
fa 1 , a2 , . . . , a2n1 þ1 g ¼ sortfc1 ; c2 . . . ; c2n1 ; ag, as asþ1 before bifurcation ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 þ þ faþ 1 , a2 , . . . , a2n3 þ1 g ¼ sortfc1 ; . . . ; c2n1 ; a; b1 ; b2 ; . . . ; b1 ; b2 g,
þ aþ s asþ1 , n3 ¼ n1 þ n2 after bifurcation
ð7:235Þ or ð1Þ
ð1Þ
ðn Þ
ðn Þ
2 2 fa 1 , a2 , . . . , a2n3 þ1 g ¼ sortfc1 ; c2 . . . ; c2n1 ; a; b1 ; b2 ; . . . ; b1 ; b2 g, a s asþ1 , n3 ¼ n1 þ n2 before bifurcation;
þ þ þ þ faþ 1 , a2 , . . . , a2n1 þ1 g ¼ sortfc1 ; . . . ; c2n1 ; ag, as asþ1 after bifurcation;
ð7:236Þ and 9 Bj1 ¼ Bj2 ¼ . . . ¼ Bjs jk1 2 f1, 2, . . . , ng; jk1 6¼ jk2 > > > > > = ðk1 , k2 2 f1, 2, . . . , sg; k1 6¼ k2 Þ Δj ¼ 0 ð j 2 U f1, 2, . . . , n2 gÞ 1 ci 6¼ Bj ði ¼ 1, 2, . . . , 2n1 , j ¼ 1, 2, . . . , n2 Þ 2
> > > > > ;
at bifurcation:
ð7:237Þ
th th th Consider a just before bifurcation of ððβ XX2 : . . . : ðβ 1 Þ XX1 : β 2 s1 Þ XXs1 Þ for higher order equilibriums. For β i ¼ 2li 1, XXi 2 fSO, SIg and for αi ¼ 2li , XXi 2 fUS, LSg (i ¼ 1, 2, . . ., s1). The detailed structures are as follows: 9 th ðiÞ ðr ðsiÞ Þ order XXðsiÞ , x ¼ aki , > > > > > > > ⋮ > > = βi ¼Pki rðj iÞ th j¼1 th ðiÞ ðiÞ ðiÞ order XXðiÞ :
! β ðr j Þ order XXj , x ¼ aj i switching bifurcation > > > > > ⋮ > > > > ðiÞ th ðiÞ ðiÞ ; ðr 1 Þ order XX1 , x ¼ aj ð7:238Þ th th th The bifurcation set of ððβ XX2 : . . . : ðβ 1 Þ XX1 : β 2 s1 Þ XXs1 Þ at the same parameter point is called a left-parallel-straw-bundle switching bifurcation. th þ th þ th þ þ þ Consider a just after bifurcation of ððβþ 1 Þ XX1 , ðβ2 Þ XX2 : . . . : ðβs2 Þ XXs2 Þ þ þ þ þ for simple sources and sinks. For βi ¼ 2li 1, XXi 2 fSO, SIg and for βi ¼ 2lþ i , XXþ 2 US, LS The four detailed structures are as follows: f g i
7 (2m+1)th-Degree Polynomial Systems
360
8 th ðiÞþ > ðr ðsii Þþ Þ order XXðsii Þþ , x ¼ aki , > > > > >⋮ > Psi ðiÞþ > > < βi ¼ r þ th th j¼1 j ðiÞþ βi order XX
! ðr ðj iÞþ Þ order XXðj iÞþ , x ¼ aðj iÞþ switching bifurcation > > > >⋮ > > > > > : ðiÞþ th ðiÞþ ðiÞþ ðr 1 Þ order XX1 , x ¼ aj : ð7:239Þ þ th þ th th þ þ The bifurcation set of ððβþ XX2 : . . . : ðβþ 1 Þ XX1 : β 2 s2 Þ XXs2 Þ at the same parameter point is called a right-parallel-straw-bundle switching bifurcation. (i) For the just before and after bifurcation structure, if there exists a relation of th th þ þ th þ βi XXi ¼ ðβþ j Þ XXj ¼ ðβ j Þ XX, for x ¼ ai ¼ aj ði, j 2 f1, 2, . . . , k gÞ, XX 2 fUS, LS, SO, SIg
ð7:240Þ
then the bifurcation is a ðβj Þth switching bifurcation for higher order equilibriums. (ii) Just for the just before bifurcation structure, if there exists a relation of
2l i
th
th XX i ¼ ð2lÞ XX, for x ¼ ai ¼ ai
ði 2 f1, 2, . . . , s1 g, XX 2 fUS, LSgÞ
ð7:241Þ
then the bifurcation is a (2l)thXX left-appearing (or right-vanishing) bifurcation for higher order equilibriums. (iii) Just for the just after bifurcation structure, if there exists a relation of
2lþ i
th
th þ XXþ i ¼ ð2lÞ XX, for x ¼ ai ¼ ai
ði 2 f1, 2, . . . , s1 gÞ, XX 2 fUS, LSg
ð7:242Þ
then the bifurcation is a (2l)thXX right-appearing (or left-vanishing) bifurcation for higher order equilibriums. (iv) For the just before and after bifurcation structure, if there exists a relation of
β i
th
þ þ þ XX i 6¼ ðβj Þ XXj for x ¼ ai ¼ aj th
þ XX i , XXj 2 fUS, LS, SO, SIg
ð7:243Þ
ði 2 f1, 2, . . . , s1 g, j 2 f1, 2, . . . , s2 gÞ, then two flower-bundle switching bifurcations of higher order equilibriums are as follows.
7.3 Higher Order Equilibrium Bifurcations
361
þ (iv1) For βj ¼ βi + 2l, the bifurcation is called a ðβþ j Þ XXj right flower-bundle th
th þ þ switching bifurcation for the ðβ i Þ XXi to ðβj Þ XXj switching of higher order equilibriums with the appearance (or birth) of (2l)thXX right-appearing (or left-vanishing) bifurcation. th (iv2) For βj ¼ βi 2l, the bifurcation is called a ðβ i Þ XXi left flower-bundle th
th þ þ switching bifurcation for the ðβ i Þ XXi to ðβj Þ XXj switching of higher order equilibriums with the vanishing ( or death) of (2l)thXX leftappearing (or right-vanishing) bifurcation. th
A general parallel switching bifurcation is th switching th th ððβ XX2 : . . . : ðβ
! 1 Þ XX1 : β2 s1 Þ XXs1 Þ
bifucation þ th þ th th þ þ ððβþ XX2 : . . . : ðβþ 1 Þ XX1 : β 2 s2 Þ XXs2 Þ:
ð7:244Þ
Such a general, parallel switching bifurcation consists of the left and right parallel-bundle switching bifurcations for higher order equilibriums. If the left and right parallel-bundle switching bifurcations are same in a parallel flower-bundle switching bifurcation, i.e., th þ th þ ðβ i Þ XXi ¼ ðβ i Þ XXi ¼ β XX, th
þ for x ¼ a i ¼ ai ði ¼ 1; 2; . . . ; sÞ
ð7:245Þ
then the parallel flower-bundle switching bifurcation becomes a parallel strawbundle switching bifurcation of ((α1)thXX : (β2)thXX : . . . : (βs)thXX). If the left and right parallel-bundle switching bifurcations are different in a parallel flower-bundle switching bifurcation, i.e., th th þ þ þ ðα i Þ XXi ¼ ð2li Þ XX, ðα j Þ XX j ¼ ð2l j Þ YY, th
th
þ for x ¼ a i 6¼ a j ði ¼ 1; 2; . . . ; s1 ; j ¼ 1; 2; . . . ; s2 Þ,
ð7:246Þ
XX 2 fUS; LSg, YY 2 fUS; LSg then the parallel flower-bundle switching bifurcation for higher order equilibriums becomes a combination of two independent left and right parallel appearing bifurcations: th th th (i) ð 2l XX1 : 2l2 XX2 : . . . : ð2l 1 s1 Þ XXs1 Þ-left parallel sprinkler-sprayingappearing (or right-vanishing) bifurcation and th þ þ th þ th þ (ii) ð 2lþ XX1 : 2l2 XX2 : . . . : ð2lþ 1 s2 Þ XXs2 Þ-right parallel sprinkler-sprayingappearing (or left-vanishing) bifurcation. The parallel switching and appearing bifurcations for higher order equilibriums are presented in Fig. 7.14a–d. The waterfall appearing bifurcations and the flowerbundle switching bifurcations for higher order equilibriums are presented.
7 (2m+1)th-Degree Polynomial Systems
362
a
c
b
d
Fig. 7.14 (r1th XX : r2th XX : . . . : rnth XX) parallel bifurcation (a0 > 0): (a) without switching, and (b) with switching. The (r1th XX : r2th XX : . . . : rnth XX) parallel bifurcation (a0 < 0): (c) without switching, and (d) with switching. LS: lower saddle, US: upper saddle, SI sink, SO: source. Stable and unstable equilibriums are represented by solid and dashed curves, respectively. The bifurcation points are marked by circular symbols
Reference
363
Reference Luo, A.C.J., 2019, The stability and bifurcation of the (2m + 1)th-degree polynomial systems, Journal of Vibration Testing and System Dynamics, in press.
Chapter 8
Infinite-Equilibrium Systems
In this chapter, dynamical systems with infinite equilibriums are discussed through the local analysis. A method for equilibriums in nonlinear dynamical systems is developed. The generalized normal forms of nonlinear dynamical systems at equilibriums are presented for a better understanding of singularity in nonlinear dynamical systems. The dynamics of infinite-equilibrium dynamical systems is discussed for the complexity and singularity of nonlinear dynamical systems. A few examples are presented for complexity and singularity in infinite-equilibrium systems.
8.1
Equilibrium Computations
In this section, a method for equilibriums in nonlinear dynamical systems is presented, which is the extension of the Newton-Raphson method. Using the local analysis, the existence of equilibriums is discussed as in Luo (2019). Definition 8.1 Consider an n-dimensional, dynamical system x_ ¼ fðx, pÞ:
ð8:1Þ
For a given point x0 with parameter p0, there is a neighborhood U(x0). Suppose for parameter p0, the dynamical system in Eq. (8.1) has an equilibrium x. The vector field in U(x0) is expanded as fðx , p0 Þ fðx0 , p0 Þ þ Dfðx0 , p0 Þðx x0 Þ ¼ 0:
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8_8
ð8:2Þ
365
366
8 Infinite-Equilibrium Systems
For the Jacobian matrix of the vector field at the given point (x0, p0), the corresponding distinct eigenvalues are given by j Dfðx0 , p0 Þ λI j¼ 0,
ð8:3Þ
and the eigenvectors vk (k ¼ 1, 2, . . . , n) for simple eigenvalues are computed by ðDfðx0 , p0 Þ λk IÞvk ¼ 0:
ð8:4Þ
The covariant matrix for the Jacobian matrix Df(x0, p0) is Q ¼ ðv1 , v2 , . . . , vn Þ ¼ ðaij Þnn ,
ð8:5Þ
and the contravariant matrix of the Jacobian matrix Df(x0, p0) is P ¼ ðv1 , v2 , . . . , vn Þ ¼ ðaij Þnn ¼ Q1 :
ð8:6Þ
Suppose a new transform is x ¼ ck vk , x0 ¼ ck0 vk ,
ð8:7Þ
and the covariant component is ck ¼ ðvk ÞT x ¼ ðvk ÞT cj vj ¼ cj δkj :
ð8:8Þ
Thus, the component of the vector field on the covariant direction of vk is expanded by f k ¼ðvk ÞT fðx, pÞ ¼ðvk ÞT fðx0 , p0 Þ þ Gkðj1 Þ zj1 þ þ
mk X 1
q! q¼2
ðqÞ
Gkðj
1 j2 ...jq Þ
ðzj1 zj2 . . . zjq Þ
1 ðm þ1Þ ðθ zj1 Þðθ2 zj2 Þ . . . ðθmk þ1 zjm k þ 1 Þ G k ðmk þ 1Þ! kðj1 j2 ...jmk þ1 Þ 1
ð8:9Þ
8.1 Equilibrium Computations
367
where T
z j ¼ ðv j Þ y ¼ c j c0j ðj ¼ 1; 2; . . . ; nÞ, T
Gkðj1 Þ ¼ ðvk Þ ∂cj1 fðx; pÞjðx0 ;p0 Þ T
¼ ðvk Þ ∂x fðx; pÞjðx0 ;p0 Þ vj1 , ðrÞ
Gkðj
T
1 j2 jr Þ
0
k T
¼ ðv Þ
0Þ
ðrÞ ∂x fðx; pÞjðx0 ;p0 Þ vj1 vj2
ðrÞ
¼ Gkðj
ð8:10Þ
ðrÞ
¼ ðvk Þ ∂cj1 cj2 ...cjr fðx; pÞjðx ;p
1 j2 ...jr Þ
. . . vj r
ðx0 ; p0 Þ:
Definition 8.2 Consider an n-dimensional, dynamical system in Eq. (8.1). For a given point x0 with parameter p0, there is a neighborhood U(x0). Suppose for parameter p0, the dynamical system in Eq. (8.1) has an equilibrium x. The Jacobian matrix of the vector field f(x, p) in U(x0) has distinct eigenvalues λk (k ¼ 1, 2, . . . , n) and the corresponding covariant and contravariant eigenvectors are vk and vk (k ¼ 1, 2, . . . , n), respectively. The covariant component of the vector field on the covariant direction of vk is f k ¼ ðvk ÞT fðx, pÞ:
ð8:11Þ
For a specific p ¼ p0, if λk 6¼ 0 ðk ¼ 1, 2, . . . , nÞ ð2Þ
j Gkðj
1 j2 Þ
ðx0 , p0 Þzj1 zj2 j 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, Δj ¼ B2j 4Cj < 0 for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g,
ð8:26Þ
r 1 þ r 2 ¼ mk , then Eq. (8.22) has r1-pairs of solutions in the neighborhood U(x0). Thus, there are 2r1-approximate solutions of equilibriums for a specific p ¼ p0,
370
8 Infinite-Equilibrium Systems
pffiffiffiffiffi 1 kðiÞ z1, 2 ¼ ðBi Δi Þ for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, 2 ðkÞ
ðkÞ
ðkÞ
kði1 Þ
fz1 , z2 , . . . , z2r1 g ¼ sortfz1
kði1 Þ
, z2
kðir1 Þ
, . . . , z1
kðir2 Þ
, z2
ð8:27Þ
g
ðkÞ
with zðkÞ s zsþ1 , and ðiÞ
ði1Þ
ði1Þ ði1Þ zj , ði
xj ¼ xj
þ Qj
ð0Þ
xj0 , zj
with xj ði1Þ
Qj
ð0Þ
ði1Þ
¼ ðvj1
ði1Þ
ðDfðxj
¼ 1, 2, . . . ;j ¼ 1, 2, . . . , 2r 1 Þ,
zj0 , Qð0Þ ¼ Q for i ¼ 1,
ði1Þ
, vj2
ði1Þ
, p0 Þ λjk
ði1Þ
, . . . , vjn ði1Þ
IÞvjk
ð8:28Þ
Þ for
¼0
ðk ¼ 1, 2, . . . , nÞ: If ðiÞ
kfðxj , p0 Þk ε,
ð8:29Þ
ðiÞ
then xj xj ( j ¼ 1, 2, . . . , 2r1) is called a set of approximate solutions of equilibrium for f(x, p0) 0 in the sense of ε. (c) If Δi ¼ B2i 4Ci ¼ 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, Δj ¼ B2j 4Cj > 0 for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g,
ð8:30Þ
Δl ¼ B2l 4Cl < 0 for l 2 fl1 , . . . , lr3 g f1, 2, . . . , mk g, r 1 þ r 2 þ r 3 ¼ mk ,
then Eq. (8.22) has r1-pairs of repeated solutions and r2-pairs of simple solutions in the neighborhood U(x0). Thus, there are (r1 + 2r2)-approximate solutions of equilibriums for a specific p ¼ p0, 1 kðiÞ z1, 2 ¼ Bi , Δi ¼ 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g 2 pffiffiffiffiffi 1 kðjÞ z1, 2 ¼ ðBj Δj Þ for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g, 2 ðkÞ
ðkÞ
ðkÞ
kði1 Þ
fz1 , z2 , . . . , z2ðr1 þr2 Þ g ¼ sortfz1
kði1 Þ
, z2
kðir1 Þ
, . . . , z2
kðj1 Þ
;z1
kðj1 Þ
, z2
kðjr2 Þ
, . . . , z2
g
ðkÞ
with zðkÞ s zsþ1 , ð8:31Þ
8.1 Equilibrium Computations
371
and ðiÞ
ði1Þ
xj ¼ xj
ð0Þ
with xj ði1Þ
Qj
ð0Þ
xj0 , zj ði1Þ
¼ ðvj1
ði1Þ
ðDfðxj
ði1Þ
þ Qði1Þ zj
, ði ¼ 1, 2, . . . ;j ¼ 1, 2, . . . , r 1 þ 2r 2 Þ
zj0 , Qð0Þ ¼ Q for i ¼ 1,
ði1Þ
, vj2
ði1Þ
, p0 Þ λjk
ði1Þ
, . . . , vjn ði1Þ
IÞvjk
Þ for
ð8:32Þ
¼0
ðk ¼ 1, 2, . . . , nÞ: If ðiÞ
kfðxj , p0 Þk ε,
ð8:33Þ
ðiÞ
then xj xj ( j ¼ 1, 2, . . . , r1 + 2r2) is called a set of approximate solutions of equilibrium for f(x, p0) 0 in the sense of ε. (ii2) Equation (8.22) is equivalent to f k A0 ðzk Þ2mk þ1 þ A1 ðzk Þ2mk þ þ A2mk zk þ A2mk þ1 ¼ 0 Ai ¼ Ai ðz1 , z2 , . . . , zk1 , zk , . . . , zn Þ ði ¼ 0, 1, 2, . . . , 2mk þ 1Þ,
ð8:34Þ
and the standard form for simple solutions is f k a0 ðzk aÞ
mk Y
½ðzk Þ2 þ Bi zk þ C i ¼ 0:
ð8:35Þ
i¼1
(a) If Δi ¼ B2i 4C i < 0 for i ¼ 1, 2, . . . , mk ,
ð8:36Þ
then Eq. (8.22) has a solution. Thus, the equilibrium has one solution of equilibrium in the neighborhood U(x0). (b) If Δi ¼ B2i 4Ci > 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, Δj ¼ B2j 4Cj < 0 for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g,
ð8:37Þ
r 1 þ r 2 ¼ mk , then Eq. (8.22) has (2r1 + 1)-simple solutions in the neighborhood U(x0). Thus, there exist (2r1 + 1)-approximate solutions of equilibriums for a specific p ¼ p0 as
372
8 Infinite-Equilibrium Systems
pffiffiffiffiffi 1 kðiÞ z1, 2 ðBi Δi Þ for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, 2 ðkÞ
ðkÞ
ðkÞ
kði1 Þ
fz1 , z2 , . . . , z2r1 þ1 g ¼ sortfa, z1
kði1 Þ
, z2
kðir1 Þ
, . . . , z1
kðir2 Þ
, z2
g
ð8:38Þ
ðkÞ
with zðkÞ s zsþ1 , and ðiÞ
ði1Þ
xj ¼ xj
ði1Þ
þ Qði1Þ zj
,
ði ¼ 1, 2, . . . ; j ¼ 1, 2, . . . , 2r 1 þ 1Þ with
ð0Þ xj
ð0Þ xj0 , zj
ð8:39Þ
zj0 for i ¼ 1:
If ðiÞ
kfðxj , p0 Þk ε,
ð8:40Þ
ðiÞ
then xj xj ( j ¼ 1, 2, . . . , 2r1 + 1) is called a set of approximate solutions of equilibrium for f(x, p0) 0 in the sense of ε. (c) If Δi ¼ B2i 4Ci ¼ 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g, Δj ¼ B2j 4Cj > 0 for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g, Δl ¼ B2l 4Cl < 0 for l 2 fj1 , . . . , jr3 g f1, 2, . . . , mk g,
ð8:41Þ
r 1 þ r 2 þ r 3 ¼ mk , then Eq. (8.22) has r1-pairs of repeated solutions and r2-pairs of simple solutions in the neighborhood U(x0). Thus, there are (r1 + 2r2 + 1)approximate solutions of equilibriums for a specific p ¼ p0, 1 kðiÞ z1, 2 Bi , Δi ¼ 0 for i 2 fi1 , . . . , ir1 g f1, 2, . . . , mk g 2 pffiffiffiffiffi 1 kðjÞ z1, 2 ðBj Δj Þ for j 2 fj1 , . . . , jr2 g f1, 2, . . . , mk g, 2 ðkÞ
ðkÞ
ð8:42Þ
ðkÞ
fz1 , z2 , . . . , z2ðr1 þr2 Þþ1 g kði1 Þ
¼ sortfa, z1
ðkÞ
with zðkÞ s zsþ1 and
kði1 Þ
, z2
kðir1 Þ
, . . . , z2
kðj1 Þ
;z1
kðj1 Þ
, z2
kðjr2 Þ
, . . . , z2
g
8.2 Normal Forms
373 ðiÞ
ði1Þ
xj ¼ xj
ði1Þ
þ Qði1Þ zj
,
ði ¼ 1, 2, . . . ; j ¼ 1, 2, . . . , r 1 þ 2r 2 þ 1Þ ð0Þ
ð0Þ
with xj
xj0 , zj
ði1Þ
ði1Þ
Qj
¼ ðvj1
ði1Þ
for ðDfðxj
zj0 , Qð0Þ ¼ Q for i ¼ 1
ði1Þ
, vj2
ði1Þ
, . . . , vjn ði1Þ
, p0 Þ λjk
Þ
ði1Þ
IÞvjk
ð8:43Þ
¼ 0:
ðk ¼ 1, 2, . . . , nÞ: If ðiÞ
kfðxj , p0 Þk ε,
ð8:44Þ
ðiÞ
then xj xj ( j ¼ 1, 2, . . . , r1 + 2r2 + 1) is called a set of approximate solutions of equilibrium for f(x, p0) 0 in the sense of ε. The afore-presented method is an extension of the Newton-Raphson method. For such an extension, the solutions of equilibriums of nonlinear dynamical systems are determined through the eigenvector space of the linearized systems at the initial guessed solutions rather than the state space of original nonlinear systems. In fact, such a new method is completely different from the NewtonRaphson method. The singularity of nonlinear systems in eigenvector space is employed to determine solution existence and multiplicity.
8.2
Normal Forms
In this section, a general normal form of dynamical systems is presented through the eigenvector space of equilibriums. As in Luo (2019), the eigenvector space is developed, and the corresponding normal forms are developed by the Taylor series expansion. Nonlinear dynamical systems experiencing the simple eigenvalues are discussed first, and the eigenvector space is developed through the following definition. Definition 8.4 Consider an n-dimensional, dynamical system x_ ¼ fðx, pÞ:
ð8:45Þ
There is an equilibrium point x with parameter p0, fðx , p0 Þ ¼ 0:
ð8:46Þ
374
8 Infinite-Equilibrium Systems
In a neighborhood U(x) at parameter p0, the vector field in Eq. (8.45) is linearized by fðx, p0 Þ ¼ Dfðx , p0 Þðx x Þ:
ð8:47Þ
For the Jacobian matrix, the corresponding eigenvalues are determined by j Dfðx , p0 Þ λI j¼ 0:
ð8:48Þ
Thus, the foregoing equation gives f ðλÞ ¼ ð1Þn λn þ a1 λn1 þ þ an1 λ þ an ¼ 0:
ð8:49Þ
(i) For n ¼ 2m, consider simple eigenvalues of Eq. (8.48) as f ðλÞ ¼ λ2m þ a1 λ2n1 þ þ a2m1 λ þ a2m ¼ 0 equivalent to f ðλÞ ¼
m Y
ð8:50Þ
ðλ þ Bi λ þ C i Þ ¼ 0: 2
i¼1
(i1) If Δi1 ¼ B2i1 4Ci1 > 0 ð1Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sð1Þ n1 g f1, 2, . . . , 2mgÞ, then
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 1 ði Þ B2i1 4C i1 , λ1,12 ¼ Bi1 2 2 ði Þ ði Þ ðDfðx , p0 Þ λj 1 IÞvj 1 ¼ 0 ðj ¼ 1, 2Þ, ð1Þ
ð8:51Þ
ð8:52Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sð1Þ n1 g f1, 2, . . . , mgÞ: (i2) If Δi2 ¼ B2i2 4Ci2 < 0 ð2Þ
ð2Þ
ði2 2 fs1 , s2 , . . . , sð2Þ n2 g f1, 2, . . . , mgÞ, then
ð8:53Þ
8.2 Normal Forms
375
1 1 ði Þ λ1,22 ¼ Bi2 2 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4Ci2 B2i2 i αði2 Þ βði2 Þ i,
ði Þ
ði Þ
ði Þ
Dfðx , p0 Þu1 2 ¼ αði2 Þ u1 2 þ βði2 Þ v1 2 , ði Þ
ði Þ
ði Þ
ð8:54Þ
Dfðx , p0 Þv1 2 ¼ βði2 Þ u1 2 þ αði2 Þ v1 2 , pffiffiffiffiffiffiffi ð2Þ ð2Þ i ¼ 1, ði2 2 fs1 , s2 , . . . , sð2Þ n2 g f1, 2, . . . , mgÞ: (i3) If Δi3 ¼ B2i3 4C i3 ¼ 0, Bi3 6¼ Bj3 ð3Þ
ð3Þ
ði3 , j3 2 fs1 , s2 , . . . , sð3Þ n3 g f1, 2, . . . , mgÞ,
ð8:55Þ
then 1 ði Þ λ1,32 ¼ Bi3 ¼ λði3 Þ , 2 ði Þ
ði Þ
ði Þ
ði Þ
Dfðx , p0 Þv1 3 ¼ λði3 Þ v1 3
ði Þ
Dfðx , p0 Þv2 3 ¼ λði3 Þ v2 3 þ δði3 Þ v1 3 , ði Þ
ðDfðx , p0 Þ λði3 Þ IÞvj 3 ¼ 0 for j ¼ 1, 2 and δði3 Þ ¼ 0;
ð8:56Þ
2 ði Þ
ðDfðx , p0 Þ λði3 Þ IÞ vj 3 ¼ 0 for j 2 f1, 2g and δði3 Þ ¼ 1 ð3Þ
ð3Þ
ði3 2 fs1 , s2 , . . . , sð3Þ n3 g f1, 2, . . . , mgÞ: (ii) For n ¼ 2m + 1, consider simple eigenvalues of Eq. (8.48) as f ðλÞ ¼ λ2mþ1 þ a1 λ2m þ þ a2m λ þ a2mþ1 ¼ 0 equivalent to f ðλÞ ¼ ðλ λ1 Þ
m Y
ð8:57Þ ðλ þ Bi λ þ Ci Þ ¼ 0: 2
i¼1
(ii1) For λ ¼ λ1 ðDfðx , p0 Þ λ1 IÞv1 ¼ 0:
ð8:58Þ
(ii2) If Δi1 ¼ B2i1 4Ci1 > 0 ð1Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sð1Þ n1 g f1, 2, . . . , mgÞ,
then
ð8:59Þ
376
8 Infinite-Equilibrium Systems
1 1 ði Þ λ1,12 ¼ Bi1 2 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B2i1 4C i1 ,
ði Þ
ði Þ
ðDfðx , p0 Þ λj 1 IÞvj 1 ¼ 0 ðj ¼ 1, 2Þ, ð1Þ
ð8:60Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sð1Þ n1 g f1, 2, . . . , mgÞ: (ii3) If Δi2 ¼ B2i2 4Ci2 < 0 ð2Þ
ð2Þ
ði2 2 fs1 , s2 , . . . , sð2Þ n2 g f1, 2, . . . , mgÞ, then 1 1 ði Þ λ1,22 ¼ Bi2 2 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4Ci2 B2i2 i αði2 Þ βði2 Þ i,
ði Þ
ði Þ
ði Þ
Dfðx , p0 Þu1 2 ¼ αði2 Þ u1 2 þ βði2 Þ v1 2 ,
ði Þ , p0 Þv1 2
ð8:61Þ
ði Þ βði2 Þ u1 2
ði Þ αði2 Þ v1 2 ,
ð8:62Þ
¼ þ Dfðx pffiffiffiffiffiffiffi ð2Þ ð2Þ i ¼ 1, ði2 2 fs1 , s2 , . . . , sð2Þ n2 g f1, 2, . . . , 2mgÞ: (ii4) If Δi3 ¼ B2i3 4C i3 ¼ 0, Bi3 6¼ Bj3 ð3Þ
ð3Þ
ði3 , j3 2 fs1 , s2 , . . . , sð3Þ n3 g f1, 2, . . . , mgÞ,
ð8:63Þ
then 1 ði Þ λ1,32 ¼ Bi3 ¼ λði3 Þ , 2 ði Þ
ði Þ
ði Þ
ði Þ
Dfðx , p0 Þv1 3 ¼ λði3 Þ v1 3
ði Þ
Dfðx , p0 Þv2 3 ¼ λði3 Þ v2 3 þ δði3 Þ v1 3 , ði Þ
ðDfðx , p0 Þ λði3 Þ IÞvj 3 ¼ 0
ð8:64Þ
for j ¼ 1, 2 and δði3 Þ ¼ 0; ði Þ
ðDfðx , p0 Þ λði3 Þ IÞ2 vj 3 ¼ 0 for j 2 f1, 2g and δði3 Þ ¼ 1 ð3Þ
ð3Þ
ði3 2 fs1 , s2 , . . . , sð3Þ n3 g f1, 2, . . . , mgÞ: Nonlinear dynamical systems experiencing the repeated eigenvalues are discussed first. The eigenvector space is developed through the following definition.
8.2 Normal Forms
377
Definition 8.5 Consider an n-dimensional, dynamical system of x_ ¼ fðx, pÞ in Eq. (8.45). An equilibrium point x with parameter p0 is given by f(x, p0) ¼ 0 in Eq. (8.46). In a neighborhood U(x) at parameter p0, the vector field in Eq. (8.45) is linearized, i.e., f(x, p0) ¼ Df(x, p0)(x x) in Eq. (8.47). For the Jacobian matrix of Df(x, p0), the corresponding eigenvalues are determined by Eq. (8.48). Thus, the eigenvalue equation is given in Eq. (8.49). Consider a general case for simple and repeated eigenvalues of f ðλÞ ¼ð1Þn λn þ a1 λn1 þ þ an1 λ þ an ¼ 0 equivalent to f ðλÞ ¼ð1Þn
li Y i1 ¼1
l3 Y i3 ¼1
ð1Þ
ðλ λi1 Þ
i2 ¼1
l4 Y
ð3Þ
ðλ λi3 Þqi3
l2 Y
i4 ¼1
ð2Þ
ð2Þ
ð2Þ
ð2Þ
ðλ αi2 βi2 iÞðλ αi2 þ βi2 iÞ ð4Þ
ð4Þ
ð4Þ
ð8:65Þ
ð4Þ
ððλ αi4 βi4 iÞðλ αi4 þ βi4 iÞÞqi4
¼ 0: (i) For simple real eigenvalues, if ð1Þ
λ ¼ λi 1
ð1Þ
ð1Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sl1 g f1, 2, . . . , ngÞ,
ð8:66Þ
then ð1Þ
ðDfðx , p0 Þ λi1 IÞvði1 Þ ¼ 0 ð1Þ
ð1Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sl1 g f1, 2, . . . , ngÞ:
ð8:67Þ
(ii) For complex eigenvalues with simple pairs, if ð2Þ
ð2Þ
ð2Þ
ð2Þ
λ1 ¼ αi2 þ βi2 i, λ2 ¼ αi2 βi2 i, pffiffiffiffiffiffiffi ð2Þ ð2Þ ð2Þ i ¼ 1, ði2 2 fs1 , s2 , . . . , sl2 g f1, 2, . . . , ngÞ, then
ð8:68Þ
378
8 Infinite-Equilibrium Systems ði Þ
ð2Þ ði Þ
ð2Þ ði Þ
Dfðx , p0 Þv1 2 ¼ αi2 v1 2 þ βi2 v2 2 , ði Þ
ð2Þ ði Þ
ð2Þ ði Þ
Dfðx , p0 Þv1 2 ¼ βi2 v1 2 þ αi2 v2 2 , ð2Þ
ð2Þ
ð8:69Þ
ð2Þ
ði2 2 fs1 , s2 , . . . , sl2 g f1, 2, . . . , ngÞ: (iii) For repeated real eigenvalues, if ð3Þ
λ ¼ λi3 with qi3 ‐repeated ð3Þ
ð3Þ
ð3Þ
ði Þ
ð3Þ ði Þ
ði Þ
ð3Þ ði Þ
ð8:70Þ
ði3 2 fs1 , s2 , . . . , sl3 g f1, 2, . . . , ngÞ, then
Dfðx , p0 Þv1 3 ¼ λi3 v1 3
ði Þ ði Þ
3 Dfðx , p0 Þvj 3 ¼ λi3 vj 3 þ δj 3 vj1 ,
ð8:71Þ
ði Þ
ðj ¼ 2, 3, , N i3 Þ, δj 3 2 f0, 1g ð3Þ
ð3Þ
ð3Þ
ði3 2 fs1 , s2 , . . . , sl3 g f1, 2, . . . , ngÞ: (iv) For complex eigenvalues with repeated pairs, if ð4Þ
ð4Þ
ð4Þ
ð4Þ
λ1 ¼ αi4 þ βi4 i, λ2 ¼ αi4 βi4 i, with qi4 ‐repeated: pffiffiffiffiffiffiffi ð4Þ ð4Þ ð4Þ i ¼ 1, ði4 2 fs1 , s2 , . . . , sl4 g f1, 2, . . . , ngÞ,
ð8:72Þ
then ði Þ
ð4Þ ði Þ
ð4Þ ði Þ
Dfðx , p0 Þu1 4 ¼ αi4 u1 4 þ βi4 v1 4 , ði Þ
ð4Þ ði Þ
ð4Þ ði Þ
Dfðx , p0 Þv1 4 ¼ βi4 u1 4 þ αi4 v1 4 , ði Þ
ð4Þ ði Þ
ð4Þ ði Þ
g ði Þ ði Þ
4 Dfðx , p0 Þuj 4 ¼ αi4 uj 4 þ βi4 vj 4 þ δj 4 uj1 ,
ði Þ
ð4Þ ði Þ
ð4Þ ði Þ
ði Þ ði Þ
4 Dfðx , p0 Þvj 4 ¼ βi4 uj 4 þ αi4 vj 4 þ δj 4 vj1 ,
ði Þ
δj 3 2 f0, 1g, ðj ¼ 2, 3, . . . , qi4 Þ ð4Þ
ð4Þ
ð4Þ
ði4 2 fs1 , s2 , . . . , sl4 g f1, 2, . . . , ngÞ: The covariant matrix for the Jacobian matrix Df(x0, p0) is
g
ð8:73Þ
8.2 Normal Forms
379
Q ¼ ðv1 , v2 , . . . , vn Þ ¼ ðaij Þnn , ð1Þ
ð1Þ
ðsl Þ
ðs Þ
fv1 , v2 , . . . , vn g ¼ inorderfv1 1 , . . . , vl1 1 ; ð2Þ
ð2Þ
ð2Þ
ðs Þ
ð2Þ
ðsl Þ
ðs Þ
ðsl Þ
u1 1 , v1 1 , . . . , ul2 2 , vl2 2 ; ði Þ
ð3Þ
ð8:74Þ
ð3Þ
v1 3 , . . . , vðiqi3 Þ ;ði3 ¼ s1 , . . . , sl3 Þ; 3 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl ffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} l3 ‐group
ði Þ
ði Þ
ð4Þ
ð4Þ
u1 4 , v1 4 , . . . , uðiqi4 Þ , vðiqi4 Þ ;ði4 ¼ s1 , . . . , sl3 Þg, 4 4 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} l4 ‐group
and the contravariant matrix of the Jacobian matrix Df(x0, p0) is P ¼ ðv1 , v2 , . . . , vn Þ ¼ ðaij Þnn ¼ Q1 :
ð8:75Þ
Thus PDfðx , p0 ÞQ ¼ Q1 Dfðx , p0 ÞQ ¼ diag ðAð1Þ , Að2Þ , Að3Þ , Að4Þ Þ,
ð8:76Þ
where ð1Þ
ð1Þ
ð1Þ
Að1Þ ¼ diag ðλ1 , λ2 , . . . , λl1 Þ; ð2Þ
ð2Þ
ð8:77Þ
ð2Þ
Að2Þ ¼ diag ðA1 , A2 , . . . , Al2 Þ, Að2Þ r
¼
½
ð2Þ
αi2
ð2Þ
βi2
ð2Þ
βi2
ð2Þ
αi2
ð3Þ
ði2 ¼ sð2Þ r ;r ¼ 1, 2, . . . , l2 Þ; ð3Þ
ð3Þ
Að3Þ ¼ diag ðB1 , B2 , . . . , Bl3 Þ,
Bð3Þ r ¼
½
λi 3
ð3Þ
δ1 3
ði Þ
0
0
0
λi 3
ð3Þ
0
0
⋮
⋮
⋱
⋮
⋮
0
0
λi3
ð3Þ
δqi3 1
0
0
0
ði Þ 3
ð3Þ
λi 3
ð8:78Þ
ð8:79Þ
qi3 qi3
ði3 ¼ sð3Þ r ;r ¼ 1, 2, . . . , l3 Þ, δðis 3 Þ 2 f0, 1g ðs ¼ 1, 2, . . . , qi3 1Þ;
380
8 Infinite-Equilibrium Systems ð4Þ
ð4Þ
ð4Þ
Að4Þ ¼ diag ðB1 , B2 , . . . , Bl4 Þ,
Bð4Þ r ¼
½
Ai4
ð4Þ
δ1 4
ði Þ
0
0
0
Ai4
ð4Þ
0
0
⋮
⋮
⋱
⋮
⋮
0
0
Ai4
0
ð4Þ
0
ði Þ
δqi4 1 4
ð4Þ Ai4
0
ð8:80Þ ð2qi4 2qi4 Þ
ði4 ¼ sð4Þ r , r ¼ 1, 2, . . . , l4 Þ, ð4Þ Ai4
¼
½
ð4Þ
αi4
ð4Þ
βi4
ð4Þ
β i4
ð4Þ
αi4
, δðis 4 Þ 22
¼
½
δðis 4 Þ
0
0
δðis 4 Þ
and 22
δðis 4 Þ 2 f0, 1g ðs ¼ 1, 2, . . . , qi4 1Þ: From the eigenvector space of the linearized Jacobian matrix of equilibriums, the corresponding normal forms are developed through the following definition. Definition 8.6 Consider an n-dimensional, dynamical system of x_ ¼ fðx, pÞ in Eq. (8.45). An equilibrium point x with parameter p0 is given by f(x, p0) ¼ 0 in Eq. (8.46). In a neighborhood U(x) at parameter p0, the vector field in Eq. (8.45) is linearized, i.e., f(x, p0) ¼ Df(x, p0)(x x) in Eq. (8.47). For the Jacobian matrix of Df(x, p0), the corresponding eigenvalues are determined by Eq. (8.48). Thus, the eigenvalue equation is given in Eq. (8.49). The covariant matrix for the Jacobian matrix Df(x0, p0) is Q ¼ ðv1 ; v2 ; . . . ; vn Þ ¼ ðaij Þnn ,
ð8:81Þ
and the contravariant matrix of the Jacobian matrix Df(x0, p0) is P ¼ ðv1 , v2 , . . . , vn Þ ¼ ðaij Þnn ¼ Q1 :
ð8:82Þ
Suppose a new transform is x ¼ ck vk , x ¼ ck vk ,
ð8:83Þ
and the covariant component is ck ¼ ðvk ÞT x ¼ ðvk ÞT cj vj ¼ cj δkj :
ð8:84Þ
8.2 Normal Forms
381
Thus, the component of the vector field on the covariant direction of vk is expanded by f k ¼ðvk ÞT fðx, pÞ ¼ðvk ÞT fðx , p0 Þ þ Gkðj1 Þ zj1 mk X 1 ðqÞ Gkðj j ...j Þ ðzj1 zj2 . . . zjq Þ þ 1 2 q q! q¼2 þ
ð8:85Þ
1 ðm þ1Þ ðθ zj1 Þðθ2 zj2 Þ . . . ðθmk þ1 zjmk þ1 Þ, G k ðmk þ 1Þ! kðj1 j2 jmk þ1 Þ 1
where z j ¼ ðv j Þ y ¼ c j cj ðj ¼ 1; 2; . . . ; nÞ, T
T
Gkðj1 Þ ¼ ðvk Þ ∂cj1 fðx; pÞjðx ;p0 Þ T
ðrÞ
Gkðj
1 j2
¼ ðvk Þ ∂x fðx; pÞjðx ;p0 Þ vj1 , ðrÞ k T j Þ ¼ ðv Þ ∂cj1 cj2 cjr fðx; p jðx ;p r
ð8:86Þ 0Þ
ðrÞ
T
¼ ðvk Þ ∂x fðx; pÞjðx ;p0 Þ vj1 vj2 . . . vjr ðrÞ
¼ Gkðj
1 j2 ...jr Þ
ðx ; p0 Þ:
(i) For simple real eigenvalues, consider ð1Þ
λ ¼ λi1
ð1Þ
ð1Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sl1 g f1, 2, . . . , ngÞ
ð8:87Þ
for a specific p ¼ p0 on the covariant direction of vi1 . If ð1Þ
ð1Þ
ð1Þ
ð1Þ
λk 6¼ 0 ðk ¼ i1 2 fs1 , s2 , . . . , sl1 g f1, 2, . . . , ngÞ ðs Þ ðx0 , p0 Þzj1 zj2 1 j2 ...jsi Þ
j Gkðjk
. . . zjsk j
1
ðs þ1Þ 1 j2 ...jsi
>>j Gkðjk
1
þ1
jsk þ1 j1 j2 j ε Þ ðx0 , p0 Þz z . . . z
ðj1 , j2 , . . . jsk þ1 ¼ 1, 2, . . . , nÞ, then the normal form on the covariant direction of vi1 is
ð8:88Þ
382
8 Infinite-Equilibrium Systems
ð1Þ
z_i1 λk zi1 þ ð1Þ
si1 X 1 ðqÞ Gi1 ðj j ...j Þ ðzj1 zj2 . . . zjq Þ 1 2 q q! q¼2
ð1Þ
ð8:89Þ
ð1Þ
ði1 2 fs1 , s2 , . . . , sl1 g f1, 2, . . . , ngÞ: (ii) For complex eigenvalues with simple pairs, consider ði Þ
ð2Þ
ð2Þ
ði Þ
ð2Þ
ð2Þ
λ1 2 ¼ αi2 þ βi2 i, λ2 2 ¼ αi2 þ βi2 i, ð2Þ
ð2Þ
ð8:90Þ
ð2Þ
ði2 2 fs1 , s2 , . . . , sl2 g f1, 2, . . . , ngÞ
ði Þ
ði Þ
for a specific p ¼ p0 on the covariant eigenvector plane of u1 2 and v1 2 . If ðsðkÞ1Þ 1 j2 ...js
j Gkðj
Þ ðx0 , p0 Þz
ðkÞ1
ðs þ1Þ >>j Gkðjk j ...j 1 2 s ðs Þ 1 j2 ...js
j Gkðjk
ðkÞ2
ðkÞ1 þ1
Þ ðx0 , p0 Þz
Þ ðx0 , p0 Þz
ðs þ1Þ >>j Gkðjk j ...j 1 2 s
ðkÞ2 þ1
j
z . . . z sðkÞ1 j
j1 j2
j
z . . . z sðkÞ1 þ1 j¼ ε,
j1 j2 j
z . . . z sðkÞ2 j
j1 j2
Þ ðx0 , p0 Þz
z ...z
j1 j2
ð8:91Þ js
ðkÞ2 þ1
j¼ ε,
ðj1 , j2 , . . . , jq ¼ 1, 2, . . . , nÞ, ð2Þ
ð2Þ
ðk ¼ i2 2 fs1 , s2 , . . . , sð2Þ n2 g f1, 2, . . . , ngÞ, ði Þ
ði Þ
then the normal form on the covariant eigenvector plane of u1 2 and v1 2 is ð2Þ
ð2Þ
ð2Þ
ð2Þ
z_ði2 Þ1 αi2 zði2 Þ1 βi2 zði2 Þ2 þ z_ði2 Þ2 βi2 zði2 Þ1 þ αi2 zði2 Þ2 þ ð2Þ
ð2Þ
X 1 ðqÞ Gði2 Þ ðj j ...j Þ ðzj1 zj2 . . . zjq Þ, q 1 1 2 q! q¼2
sði2 Þ1
X 1 ðqÞ Gði2 Þ ðj j ...j Þ ðzj1 zj2 . . . zjq Þ, q 2 1 2 q! q¼2
sði2 Þ2
ð2Þ
with ði2 2 fs1 , s2 , . . . , sl2 g f1, 2, . . . , ngÞ, ðj1 , j2 , . . . , jq ¼ 1, 2, . . . , nÞ: (iii) For repeated real eigenvalues, consider
ð8:92Þ
8.2 Normal Forms
383 ð3Þ
λ ¼ λi3 ði3 2
with qi3 ‐repeated
ð3Þ ð3Þ fs1 , s2 ,
ð3Þ
. . . , sl3 g f1, 2, . . . , ngÞ
ð8:93Þ
ði Þ
for a specific p ¼ p0 on the covariant space of vj 3 (j ¼ 2, 3, . . . , qi3 ). If ð3Þ
ð3Þ
ð3Þ
ð3Þ
λi3 6¼ 0 ðk ¼ i3 2 fs1 , s2 , . . . , sl3 g f1, 2, . . . , ngÞ ðsðkÞ Þ
j GðkÞ ðjj j
1 j2 ...js
ðkÞj
Þ ðx0 , p0 Þz
ðsðkÞ þ1Þ
>>j GðkÞ ðjj j
1 j2 ...jsðkÞ þ1 j
z ...z
j1 j2
js
ðkÞj
j
j1 j2 Þ ðx0 , p0 Þz z . . . z
js
ð8:94Þ ðkÞj þ1
j ε
ðj1 , j2 , . . . , jsðkÞ þ1 ¼ 1, 2, . . . , nÞ, j
ði Þ
then the normal form on the covariant space of vj 3 (j ¼ 1, 2, 3, . . . , qi3 ) is ð3Þ
z_ðkÞ1 λi3 zðkÞ1 þ ði Þ
sk 1 X 1 ðqÞ GðkÞ ðj j j Þ ðzj1 zj2 . . . zjq Þ q 1 1 2 q! q¼2
g
ð3Þ
z_ðkÞj δj 3 zðkÞj1 þ λi3 zðkÞj
sðkÞj ðj ¼ 2, 3, . . . , qi3 Þ, X 1 ðqÞ GðkÞ ðj j j Þ ðzj1 zj2 . . . zjq Þ þ q j 1 2 q! q¼2
ði Þ
ð3Þ
ð3Þ
ð8:95Þ
ð3Þ
δj 3 2 f0, 1g ðk ¼ i3 2 fs1 , s2 , . . . , sl3 g f1, 2, . . . , ngÞ: (iv) For complex eigenvalues with repeated pairs, consider ð4Þ
ð4Þ
ð4Þ
ð4Þ
λ1 ¼ αi4 þ βi4 i, λ2 ¼ αi4 βi4 i, with qi4 ‐repeated ð4Þ
ð4Þ
ð4Þ
ði4 2 fs1 , s2 , . . . , sl4 g f1, 2, . . . , ngÞ ði Þ
ði Þ
ð8:96Þ
on the covariant eigenvector space of uj 2 and vj 2 (j ¼ 1, 2, 3, . . . , qi4). If
384
8 Infinite-Equilibrium Systems ðsðkÞ Þ
j GðkÞ j1ðj j1
1 j2 ...jsðkÞ
Þ ðx0 , p0 Þz
ðsðkÞ þ1Þ 1 j2 ...jsðkÞ þ1 Þ j1
ðsðkÞ Þ
j GðkÞ j2ðj j2
1 j2 ...jsðkÞ
ðkÞj1
j
ðx0 , p0 Þzj1 zj2 . . . z
Þ ðx0 , p0 Þz
z ...z
j1 j2
js
ðkÞj2
js
ðkÞj1 þ1
j ε;
js
ðkÞj2 þ1
j ε;
j
j2
ðsðkÞ þ1Þ
>>j GðkÞ j2ðj j2
js
j1
>>j GðkÞ j1ðj j1
z ...z
j1 j2
1 j2 ...jsðkÞ þ1 j2
j1 j2 Þ ðx0 , p0 Þz z . . . z
ð8:97Þ
ðj1 , j2 , jq ¼ 1, 2, . . . , nÞ, ð4Þ
ð4Þ
ð4Þ
ðk ¼ i4 2 fs1 , s2 , . . . , sl2 g f1, 2, . . . , ngÞ, ðj ¼ 1, 2, . . . , qi4 Þ then ð4Þ
ð4Þ
z_ðkÞ11 αi4 zðkÞ11 βi4 zðkÞ12 þ
X 1 ðqÞ GðkÞ ðj j ...j Þ ðzj1 zj2 . . . zjq Þ, q 11 1 2 q! q¼2
sðkÞ11
ð2Þ
ð4Þ
z_ðkÞ12 βi4 zðkÞ11 þ αi4 zðkÞ12
g g
X 1 ðqÞ GðkÞ ðj j ...j Þ ðzj1 zj2 . . . zjq Þ; þ q 12 1 2 q! q¼2 sðkÞ12
ði Þ
ð4Þ
ð4Þ
z_ðkÞj1 δj 4 zðkÞðj1Þ1 þ αi4 zðkÞj1 βi4 zðkÞj2 s
þ
ðkÞj1 X 1
q! q¼2
ðqÞ
GðkÞ
j1 ðj1 j2 ...jq Þ
ði Þ
ðzj1 zj2 . . . zjq Þ,
ð2Þ
ð4Þ
z_ðkÞ12 δj 4 zðkÞðj1Þ2 þ βi4 zðkÞj1 þ αi4 zðkÞj2 s
þ
ðkÞj2 X 1
q! q¼2
ðqÞ
GðkÞ
j2 ðj1 j2 ...jq Þ
ðzj1 zj2 . . . zjq Þ;
ðj ¼ 2, 3, . . . , qi4 Þ, ð4Þ
ð4Þ
ð4Þ
with ðk ¼ i4 2 fs1 , s2 , . . . , sl4 g f1, 2, . . . , ngÞ ðj1 , j2 , . . . , jq ¼ 1, 2, . . . , nÞ:
ð8:98Þ
8.3 Infinite-Equilibrium Systems
385
The normal forms of nonlinear dynamical systems presented herein are based on the eigenvector space of the corresponding linearized systems at equilibriums in general. From simple and repeated eigenvalues of the linearized systems at equilibriums, the corresponding normal forms of the original nonlinear systems are developed through the differential geometry representation. The infinite-equilibrium systems in the following section can be introduced from the normal forms of nonlinear dynamical systems at bifurcation points via the local analysis.
8.3
Infinite-Equilibrium Systems
In this section, using singularity analysis, the stability of equilibriums in the infiniteequilibrium system will be discussed as in Luo (2019). Definition 8.7 Consider an autonomous dynamical system as x_i ¼ gi1 ðx, pi1 Þgi2 ðx, pi2 Þ . . . giri ðx, piri Þ ði ¼ 1, 2, . . . , nÞ, r i 1
ð8:99Þ
where gi ðx, pÞ gi1 ðx, pi1 Þgi2 ðx, pi2 Þ . . . giri ðx, piri Þ:
ð8:100Þ
Such a system is called an infinite-equilibrium system if the following conditions exist gi ðx, pÞ ¼ 0ði ¼ 1, 2, . . . , nÞ, gi1 j1 ðx, pi1 j1 Þ gi2 j2 ðx, pi2 j2 Þ ¼ φðx, pÞ ¼ 0 for i1 , i2 2 f1, 2, . . . , ng, i1 6¼ i2 ;
ð8:101Þ
j1 2 f1, 2, . . . , r i1 g, j2 2 f1, 2, . . . , r i2 g: The corresponding surface of φ(x, p) ¼ 0 is called an infinite-equilibrium surface in such a dynamical system. Definition 8.8 Consider an autonomous dynamical system as x_i ¼ φðx, p1 Þgi ðx, pÞ ði ¼ 1, 2, . . . , nÞ:
ð8:102Þ
(i) An (n 1)-dimensional surface of φ(x, p1) ¼ 0 is called an (n 1)-dimensional infinite-equilibrium surface if equilibrium x in Eq. (8.102) satisfies the following condition:
386
8 Infinite-Equilibrium Systems
φðx , p1 Þ ¼ 0:
ð8:103Þ
(ii) The equilibrium x is called a simple equilibrium if x 6¼ xα for x , xα 2 E and α ¼ 1, 2, . . .
with E ¼ fx jgi ðx , pÞ ¼ 0, i ¼ 1, 2, . . . , ng:
ð8:104Þ
(iii) The equilibrium x is called a r-repeated equilibrium (or rth-order equilibrium) if x ¼ x1 ¼ x2 ¼ ¼ xr1
for x , xα 2 E and α ¼ 1, 2, . . . , r 1
ð8:105Þ
with E ¼ fx jgi ðx , pÞ ¼ 0, i ¼ 1, 2, . . . , ng: (iv) The equilibrium x is called an intersection equilibrium on the infiniteequilibrium surface if φðx , p1 Þ ¼ 0,
g
gi ðx , pÞ ¼ 0, i ¼ i1 , i2 , . . . , in1 iα 2 f1, 2, . . . , ng and α ¼ 1, 2, . . . , n 1:
8.3.1
ð8:106Þ
One-Infinite-Equilibrium Systems
Consider a simple dynamical system with one infinite equilibrium as x_1 ¼ x2 , x_2 ¼ x1 x2 :
ð8:107Þ
x1 2 ð1, 1Þ, x2 ¼ 0; x1 ¼ 0, x2 ¼ 0:
ð8:108Þ
The equilibriums are
The first integral manifold of Eq. (8.107) is 1 x2 ¼ x21 þ C: 2 Consider the first integral manifolds going through the following points:
ð8:109Þ
8.3 Infinite-Equilibrium Systems
387
1 x2 ¼ x21 for ðx1 , x2 Þ ¼ ð0, 0Þ, 2 1 x2 ¼ ðx21 a2 Þ for ðx1 , x2 Þ ¼ ða, 0Þ, 2 1 1 x2 ¼ ðx21 þ b2 Þ for ðx1 , x2 Þ ¼ ð0, b2 Þ 2 2
ð8:110Þ
where a > 0. From Eq. (8.107), the variational equations at the equilibriums are ð1Þ
Δx_1 ¼ Δx2 ¼ G1ðj Þ zj1 , 1
Δx_2 ¼ x2 Δx1 þ x1 Δx2 þ Δx1 Δx2 1 ð2Þ ð1Þ ¼ G2ðj Þ zj1 þ A2ðj j Þ zj1 zj2 1 1 2 2!
ð8:111Þ
where zj ¼ Δxj ðj ¼ 1, 2Þ, ð1Þ
ð1Þ
ð1Þ
ð1Þ
G1ð1Þ ¼ 0, G1ð2Þ ¼ 1;G2ð1Þ ¼ x2 , G1ð2Þ ¼ x1 , ð2Þ G2ð11Þ
¼
ð2Þ G2ð22Þ
¼
ð2Þ 0, G2ð12Þ
¼
ð2Þ G2ð21Þ
ð8:112Þ
¼ 1:
For equilibrium of ðx1 , x2 Þ ¼ ð0, 0Þ, the variational equation is Δx_1 ¼ Δx2 and Δx_2 ¼ Δx1 Δx2 :
ð8:113Þ
On the x1-direction, Δx_1 ¼ Δx2 > 0 if Δx2 > 0. The equilibrium of (0, 0) is the firstorder upper saddle. However, Δx_1 ¼ Δx2 < 0 if Δx2 < 0. So the equilibrium of (0, 0) is the first-order lower saddle. On the x2-direction, for Δx2 > 0, Δx_2 ¼ Δx1 Δx2 < 0 if Δx1 < 0, and Δx_2 ¼ Δx1 Δx2 < 0 if Δx1 > 0. Thus, the equilibrium of (0, 0) is the second-order upper saddle for Δx2 > 0 on the x2-direction. For Δx2 < 0, Δx_2 ¼ Δx1 Δx2 > 0 if Δx1 < 0, and Δx_2 ¼ Δx1 Δx2 < 0 if Δx1 > 0. Thus, the equilibrium of (0, 0) is the second-order lower saddle for Δx2 > 0 on the x2-direction. Therefore, the equilibrium of (0, 0) on the first integral manifold is the second-order upper saddle. For ðx1 , x2 Þ ¼ ða, 0Þ, the variational equation is Δx_1 ¼ Δx2 and Δx_2 ¼ aΔx2 :
ð8:114Þ
On the x1-direction, Δx_1 ¼ Δx2 > 0 if Δx2 > 0 and Δx_1 ¼ Δx2 < 0 if Δx2 < 0. The equilibrium of (a, 0) is the first-order upper saddle for Δx2 > 0 and the first-order lower saddle for Δx2 < 0 on the x1-direction. On the x2-direction, for a > 0, Δx_2 ¼ aΔx2 < 0 if Δx2 < 0 and Δx_2 ¼ aΔx2 > 0 if Δx2 > 0. Thus, the equilibrium of (a, 0) is the second-order source on the x2-direction. Therefore, the equilibrium of (a, 0) is a source.
388
8 Infinite-Equilibrium Systems
x2
x2
SI
US
SO
US
x1 SI
a
SO
x1
b
Fig. 8.1 Equilibrium stability for an infinite-equilibrium system: (a) local analysis for equilibriums, (b) the first integral manifolds. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The parabolic curves are for the first integral manifolds. The filled circular symbol is for the upper saddle (US). The hollow circular symbols are for sink (SI) and source (SO) on the infinite-equilibrium line
For ðx1 , x2 Þ ¼ ða, 0Þ, the variational equation is Δx_1 ¼ Δx2 and Δx_2 ¼ aΔx2 :
ð8:115Þ
On the x1-direction, Δx_1 ¼ Δx2 > 0 if Δx2 > 0 and Δx_1 ¼ Δx2 < 0 if Δx2 < 0. The equilibrium of (a, 0) is the first-order upper saddle for Δx2 > 0 and the first-order lower saddle for Δx2 < 0 on the x1-direction. On the x2-direction, for a > 0, Δx_2 ¼ aΔx2 > 0 if Δx2 < 0 and Δx_2 ¼ aΔx2 < 0 if Δx2 > 0. Thus, the equilibrium of (a, 0) is the first-order sink on the x2-direction. Therefore, the equilibrium of (a, 0) is a sink. The infinite sink of (a, 0) and the infinite source of (a, 0) for a 2 (0, 1) with the second-order upper-saddle switching point (0, 0) form the entire infinite equilibrium. The phase portrait with the first integral manifolds is presented in Fig. 8.1. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The parabolic curves are for the first integral manifolds. The filled circular symbol is for the upper saddle (US) on the first integral manifold. The hollow circular symbols are for sink (SI) and source (SO) on the infinite-equilibrium line of x2 ¼ 0.
8.3.2
Two-Infinite-Equilibrium Systems
Consider a dynamical system with two infinite-equilibriums x_1 ¼ x2 ðx1 a1 Þðx2 b1 Þ, x_2 ¼ x1 ðx1 a1 Þðx2 b1 Þ
ð8:116Þ
where a1 > 0, b1 > 0. The one simple equilibrium and two infinite equilibriums are
8.3 Infinite-Equilibrium Systems
389
x1 ¼ a1 , x2 2 ð1, 1Þ, x1 2 ð1, 1Þ, x2 ¼ b1 ;
g
for two infinite equilbriums,
x1 ¼ a1 , x2 ¼ b1 ; for intersection equilbriums, x1 ¼ 0, x2 ¼ 0 for simple eqilibrium, x1 ¼ 0, x2 ¼ b1 ; x1 ¼ a1 , x2 ¼ 0
g
ð8:117Þ
for simple eqilibriums:
The stability of equilibriums is determined by the local analysis. The corresponding G-functions are as follows: ð1Þ
G1ð1Þ ¼ x2 ðx2 b1 Þ, ð1Þ
G1ð2Þ ¼ ðx1 a1 Þðx2 b1 Þ þ x2 ðx1 a1 Þ; ð1Þ
G2ð1Þ ¼ ðx1 a1 Þðx2 b1 Þ x1 ðx2 b1 Þ, ð1Þ G2ð2Þ
¼
x1 ðx1
a1 Þ;
ð2Þ
G1ð11Þ ¼ 0, ð2Þ
ð2Þ
G1ð12Þ ¼ G1ð21Þ ¼ 2½ðx2 b1 Þ þ x2 , ð2Þ
G1ð22Þ ¼ 2ðx1 a1 Þ, ð2Þ
G2ð11Þ ¼ 2ðx2 b1 Þ, ð2Þ
ð2Þ
G2ð12Þ ¼ G2ð21Þ ¼ ½ðx1 a1 Þ þ x1 , ð2Þ
G2ð22Þ ¼ 0:
g
g
for the first order,
ð8:118Þ
for the second order:
Consider the infinite equilibriums of x*1 ¼ a1, x*2 2 (1, 1). The corresponding G-functions and variational equations are given by ð1Þ
G1ð1Þ ¼ x2 ðx2 b1 Þ, ð1Þ
G1ð2Þ ¼ 0; ð1Þ
G2ð1Þ ¼ a1 ðx2 b1 Þ, ð1Þ G2ð2Þ
¼ 0;
g
ð1Þ
Δx_1 ¼ G1ð1Þ Δx1 ¼ x2 ðx2 b1 ÞΔx1 , ð1Þ
Δx_2 ¼ G2ð1Þ Δx1 ¼ a1 ðx2 b1 ÞΔx1 :
ð8:119Þ
390
8 Infinite-Equilibrium Systems
Thus, for x2 2 ðb1 , 1Þ, there exists Δx_1 > 0, Δx_2 < 0 for Δx1 > 0, Δx_1 < 0, Δx_2 > 0 for Δx1 < 0:
g
ð8:120Þ
Such an infinite-equilibrium interval of x2 2 ðb1 , 1Þ is a source of the first order. For x2 2 ð0, b1 Þ, we have Δx_1 < 0, Δx_2 > 0 for Δx1 > 0, Δx_1 > 0, Δx_2 < 0 for Δx1 < 0:
g
ð8:121Þ
Such an infinite-equilibrium interval of x2 2 ð0, b1 Þ is a sink of the first order. For x2 2 ð1, 0Þ, we have Δx_1 > 0, Δx_2 > 0 for Δx1 > 0, Δx_1 < 0, Δx_2 > 0 for Δx1 < 0:
g
ð8:122Þ
Such an infinite-equilibrium interval of x2 2 ð1, 0Þ is a source of the first order. Consider the infinite equilibriums of x1 2 (1, 1), x2 ¼ b1. The corresponding G-functions and variational equations are ð1Þ
G1ð1Þ ¼ 0, ð1Þ
G1ð2Þ ¼ b1 ðx1 a1 Þ; ð1Þ
G2ð1Þ ¼ 0, ð1Þ G2ð2Þ
¼
Δx_1 ¼
x1 ðx1
ð1Þ G1ð2Þ Δx1
a1 Þ;
g
ð8:123Þ
¼ b1 ðx1 a1 ÞΔx2 ,
ð1Þ
Δx_2 ¼ G2ð2Þ Δx1 ¼ x1 ðx1 a1 ÞΔx2 : Thus, for x1 2 ða1 , 1Þ, we have Δx_1 > 0, Δx_2 < 0 for Δx2 > 0, Δx_1 < 0, Δx_2 > 0 for Δx2 < 0:
g
ð8:124Þ
Such an infinite-equilibrium interval of x1 2 ða1 , 1Þ is a sink of the first order. For x1 2 ða1 , 0Þ, there exists Δx_1 < 0, Δx_2 > 0 for Δx2 > 0, Δx_1 > 0, Δx_2 < 0 for Δx2 < 0:
g
ð8:125Þ
8.3 Infinite-Equilibrium Systems
391
Such an infinite-equilibrium interval of x2 2 ð0, b1 Þ is a source of the first order. For x1 2 ð1, 0Þ, there exists Δx_1 < 0, Δx_2 < 0 for Δx2 > 0, Δx_1 > 0, Δx_2 > 0 for Δx2 < 0:
g
ð8:126Þ
Such an infinite-equilibrium interval of x1 2 ð1, 0Þ is a sink of the first order. For the equilibrium point of x1 ¼ 0, x2 ¼ b1 , the variational equation is ð1Þ
Δx_1 ¼ G1ð2Þ Δx2 ¼ a1 b1 Δx2 , Δx_2 ¼
1 ð2Þ ð2Þ þ G2ð21Þ Δx1 Δx2 ¼ a1 Δx1 Δx2 ; ½G 2! 2ð12Þ
where ð1Þ
ð1Þ
ð1Þ
ð8:127Þ
ð1Þ
G1ð1Þ ¼ 0, G1ð2Þ ¼ a1 b1 ;G2ð1Þ ¼ 0, G2ð2Þ ¼ 0; ð1Þ
ð1Þ
ð1Þ
G2ð11Þ ¼ 0, G2ð12Þ ¼ 2a1 , G2ð22Þ ¼ 0: On the x1-direction, Δx_1 > 0 for Δx2 < 0 and Δx_1 < 0 for Δx2 > 0. Thus, there is a lower saddle of the first order for Δx2 > 0, and there is an upper saddle of the first order for Δx2 < 0. However, on the x2-direction, as Δx1 > 0, we have Δx_2 > 0 for Δx2 < 0 and Δx_2 < 0 for Δx2 > 0. The second-order source exists. As Δx1 < 0, we have Δx_2 < 0 for Δx2 < 0 and Δx_2 > 0 for Δx2 > 0. The second-order sink exists. Thus, the second-order upper saddle is for the equilibrium point of x1 ¼ 0, x2 ¼ b1 . For the equilibrium point of x1 ¼ a1 , x2 ¼ 0, the variational equation is Δx_1 ¼
1 ð1Þ ð1Þ ½G þ G1ð21Þ Δx1 Δx2 ¼ b1 Δx1 Δx2 , 2! 1ð12Þ ð1Þ
Δx_2 ¼ G2ð1Þ Δx1 ¼ a1 b1 Δx1 ; where ð1Þ
ð8:128Þ
ð1Þ
G1ð1Þ ¼ 0, G1ð2Þ ¼ 0; ð1Þ
ð1Þ
ð1Þ
ð1Þ
G1ð11Þ ¼ 0, G1ð12Þ ¼ G1ð21Þ ¼ b1 , G1ð22Þ ¼ 0; ð1Þ
ð1Þ
G2ð1Þ ¼ a1 b1 , G2ð2Þ ¼ 0: On the x1-direction, as Δx2 > 0, we have Δx_1 > 0 for Δx1 < 0 and Δx_1 < 0 for Δx1 > 0. There is the second-order source. As Δx2 < 0, we have Δx_1 < 0 for Δx1 < 0 and Δx_1 > 0 for Δx1 > 0. There is a second-order source. On the x2-direction, Δx_2 > 0 for Δx1 > 0 and Δx_2 < 0 for Δx1 < 0. Thus, there is an upper saddle of the first order for Δx1 > 0, and there is a lower saddle of the first order for Δx1 < 0. Thus, the second-order lower saddle in the two directions is for the equilibrium point of x1 ¼ a1 , x2 ¼ b1 :
392
8 Infinite-Equilibrium Systems
For the equilibrium point of x1 ¼ a1 , x2 ¼ b1 , the variational equation is 1 ð2Þ ð2Þ ½G þ G1ð21Þ Δx1 Δx2 ¼ b1 Δx1 Δx2 , 2! 1ð12Þ 1 ð2Þ ð2Þ Δx_2 ¼ ½G2ð12Þ þ Gað21Þ Δx1 Δx2 ¼ a1 Δx1 Δx2 ; 2! where Δx_1 ¼
ð1Þ
ð1Þ
ð1Þ
ð1Þ
G1ð1Þ ¼ 0, G1ð2Þ ¼ 0;G2ð1Þ ¼ 0, G2ð2Þ ¼ 0; ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð8:129Þ
ð2Þ
G1ð11Þ ¼ 0, G1ð12Þ ¼ G1ð21Þ ¼ b1 , G1ð22Þ ¼ 0; ð2Þ
G2ð11Þ ¼ 0, G2ð12Þ ¼ G2ð21Þ ¼ a1 , G2ð22Þ ¼ 0: On the x1-direction, as Δx2 > 0, we have Δx_1 < 0 for Δx1 < 0 and Δx_1 > 0 for Δx1 > 0. There is the second-order source. As Δx2 < 0, we have Δx_1 > 0 for Δx1 < 0 and Δx_1 < 0 for Δx1 > 0. There is a second-order sink. On the x2-direction, as Δx1 > 0, we have Δx_2 > 0 for Δx2 < 0 and Δx_2 < 0 for Δx2 > 0. The second-order source exists. As Δx1 < 0, we have Δx_2 < 0 for Δx2 < 0 and Δx_2 > 0 for Δx2 > 0. The second-order sink exists. Thus, the second-order upper saddle for the diagonal direction is for the equilibrium point of x1 ¼ a1 , x2 ¼ b1 . For equilibrium of x1 ¼ 0, x2 ¼ 0, we have ð1Þ
Δx_1 ¼ G1ð2Þ Δx2 ¼ a1 b1 Δx2 , ð1Þ
Δx_2 ¼ G2ð1Þ Δx1 ¼ a1 b1 Δx1 ; where ð1Þ ð1Þ G1ð1Þ ¼ 0, G1ð2Þ ¼ a1 b1 ; ð1Þ
ð8:130Þ
ð1Þ
G2ð1Þ ¼ a1 b1 , G2ð2Þ ¼ 0: Thus, this equilibrium is a center. From the foregoing local analysis of equilibriums, the stability of equilibriums is summarized in Table 8.1. The equilibrium of (0, 0) is a center, which is not included. The rich dynamics in the infinite dynamical systems can be obtained. Such equilibriums possess higher order singularity, which cannot be analyzed by the traditional eigenvalue analysis. The first integral manifold of Eq. (8.116) is x21 þ x22 ¼ C:
ð8:131Þ
Consider the manifolds going through the simple and intersection equilibriums and the corresponding manifolds are
8.3 Infinite-Equilibrium Systems
393
Table 8.1 Summarization of equilibrium stability for Eq. (8.116) Infinite Infinite Simple
x1 2 (a1, 1), x2 ¼ b1 SI x1 ¼ a1, x2 2 (b1, 1), SO x1 ¼ a1, x2 ¼ 0, LS
x1 2 (0, a1), x2 ¼ b1 SO x1 ¼ a1, x2 2 (0, b1) SI x1 ¼ 0, x2 ¼ b1 US
x1 2 (1, 0), x2 ¼ b1 SI x1 ¼ a1, x2 2 (1, 0) SO x1 ¼ a1, x2 ¼ b1 US
Infinite Infinite equilibrium, Simple: Simple equilibrium, SI: sink, SO: source, US: upper saddle, LS: lower saddle
Table 8.2 Signs of ðx_1 , x_2 Þ in different domains for Eq. (8.116)
ðx_1 , x_2 Þ x2 2 (b1, 1) x2 2 (0, b1) x2 2 (1, 0)
x1 2 (a1, 1) (+, ) (, +) (+, +)
x1 2 (0, a1) (, +) (+, ) (, )
x1 2 (1, 0) (, ) (+, +) (, +)
x21 þ x22 ¼ a21 for x1 ¼ a1 , x2 ¼ 0; x21 þ x22 ¼ b21 for x1 ¼ 0, x2 ¼ b1 ; x21 þ x22 ¼ a21 þ b21 for x1 ¼ a1 , x2 ¼ b;
ð8:132Þ
x21 þ x22 ¼ 0 for x1 ¼ 0, x2 ¼ 0; x21 þ x22 ¼ C for others: From the differential equation in Eq. (8.116), in the different domains separated by the equilibriums, the signs of ðx_1 , x_2 Þ are presented in Table 8.2, which indicate the directions of the first-order integral manifolds. The illustrations for the signs in phase plane are presented in Fig. 8.2. From the local analysis of equilibrium stability, the complete picture of equilibriums with the first integral manifolds is presented in Fig. 8.3. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The circles are for the first integral manifolds. The filled circular symbol is for the upper saddle of the second order in two directions. The hollow circular symbols are for the center and two intersection points between infinite-equilibrium lines and coordinates.
8.3.3
Higher Order Infinite-Equilibrium Systems
Consider a dynamical system with an infinite equilibrium of the second-order singularity as x_1 ¼ x1 x22 , x_2 ¼ x1 x2 sin x1 where a1 > 0, b1 > 0.
ð8:133Þ
394
8 Infinite-Equilibrium Systems
Fig. 8.2 Local analysis of equilibriums for the first integral manifolds. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The filled circular symbol is for the intersection equilibrium. The hollow circular symbols are for the center and intersection equilibriums between infinite-equilibriums and coordinates. SI: sink, SO: source, US: upper saddle, LS: lower saddle
x2 SO SI
US
US
SO
SI
x2 = b1
SI
center
x1
LS
SO
x1 = a1
Fig. 8.3 Equilibrium stability for an infiniteequilibrium system in Eq. (8.116). The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The circles are for the first integral manifolds. The filled circular symbol is for the intersection equilibrium. The hollow circular symbols are for the center and intersection equilibriums between infiniteequilibriums and coordinates. SI: sink, SO: source, US: upper saddle, LS: lower saddle
x2
SO US SI
SI
US LS
x1
center
SO
The simple equilibriums and infinite equilibriums of the nonlinear dynamical system in Eq. (8.133) are x1 ¼ 0, x2 2 ð1, 1Þ; x1 2 ð1, 1Þ, x2 ¼ 0
g
for infintite‐equilibriums,
x1 ¼ 0, x2 ¼ 0 for intersection equilbriums, x1 ¼ kπ ðk ¼ 1, 2, . . .Þ, x2 ¼ 0 for simple equilbriums:
ð8:134Þ
8.3 Infinite-Equilibrium Systems
395
For the infinite equilibriums of x2 ¼ 0, x1 sin x1 6¼ 0, the variational equation is Δx_1 ¼ x1 Δx2 Δx2 , Δx_2 ¼ x1 sin x1 Δx2 :
ð8:135Þ
On the x1-direction, Δx_1 < 0 for x1 > 0 which implies the second-order lower saddle, and Δx_1 > 0 for x1 < 0 which implies the second-order upper saddle. On the x2-direction, the equilibrium is the first-order source for x1 sin x1 > 0, and sink for x1 sin x1 < 0. Thus, the infinite equilibrium of x2 ¼ 0, x1 sin x1 6¼ 0 is named a sink or source. For the infinite equilibrium of x1 ¼ 0, x2 6¼ 0, the variational equation is Δx_1 ¼ ðx2 Þ2 Δx1 , Δx_2 ¼ x2 cos x1 Δx1 Δx1 ¼ x2 Δx1 Δx1 :
ð8:136Þ
On the x1-direction, the equilibrium is the first-order sink. On the x2-direction, Δx_2 > 0 for x2 > 0 which implies the second-order upper-saddle, and Δx_2 < 0 for x2 < 0 which implies the second-order lower saddle. Thus, the infinite equilibrium of x1 ¼ 0, x2 6¼ 0 is named the sink with different type on the x2-direction. For the simple equilibriums of x2 ¼ 0, x1 ¼ mπ (m ¼ 1, 2, . . . ), the variational equation is Δx_1 ¼ x1 Δx2 Δx2 , Δx_2 ¼ x1 cos x1 Δx1 Δx2 :
ð8:137Þ
On the x1-direction, Δx_1 < 0 for x1 > 0 which implies the second-order lower saddle, and Δx_1 > 0 for x1 < 0 which implies the second-order upper saddle. On the x2-direction, (i) (ii) (iii) (iv)
Δx_2 Δx_2 Δx_2 Δx_2
> 0 for x1 cos x1 > 0 with Δx1 > 0, which implies the second-order source. < 0 for x1 cos x1 > 0 with Δx1 < 0, which implies the second-order sink. < 0 for x1 cos x1 < 0 with Δx1 > 0, which implies the second-order sink. > 0 for x1 cos x1 < 0 with Δx1 < 0, which implies the second-order source.
Thus, the equilibrium based on the x1-direction is called the second-order lower saddle or upper saddle. For the equilibrium of x1 ¼ 0, x2 ¼ 0, the variational equation is Δx_1 ¼ Δx1 Δx2 Δx2 , Δx_2 ¼ Δx1 Δx1 Δx2 :
ð8:138Þ
396
8 Infinite-Equilibrium Systems
Table 8.3 Summarization of equilibrium stability for Eq. (8.133) x2 ¼ 0 x2 ¼ 0 x1 ¼ 0 x2 ¼ 0 x2 ¼ 0
x1 2 ð4π, 3πÞ x1 2 ð3π, 2πÞ SI SO x1 2 ðπ, 0Þ x1 2 ð2π, πÞ SO SI x2 2 ð0, 1Þ SI x1 ¼ 2mπ x1 ¼ ð2m 1Þπ Second-order LS Second-order LS x1 ¼ 0 Center with third-order SI and SO
x1 2 ð2π, πÞ SI x1 2 ð3π, 2πÞ SO x2 2 ð1, 0Þ SI x1 ¼ 2mπ Second-order US
x1 2 ðπ, 0Þ SO x1 2 ð4π, 3πÞ SI
x1 ¼ ð2m 1Þπ Second-order US
SI: sink, SO: source, US: upper saddle, LS: lower saddle
On the x1-direction, the equilibrium is the third-order sink. On the x2-direction, the equilibrium is the third-order source. The equilibrium of ðx1 , x2 Þ ¼ ð0, 0Þ is named the third-order center herein. From the foregoing local analysis, the stability of equilibriums is tabulated in Table 8.3. The first integral manifold of Eq. (8.133) is 1 2 x cos x1 ¼ C: 2 2
ð8:139Þ
If the manifolds are going through the intersection equilibriums, the corresponding manifolds are given by 1 2 x cos x1 ¼ 1 for x1 ¼ ð2m 1Þπ, x2 ¼ 0; 2 2 1 2 x cos x1 ¼ 1 for x1 ¼ ð2mÞπ, x2 ¼ 0; 2 2 1 2 x cos x1 ¼ C for others: 2 2
ð8:140Þ
From the local analysis of equilibrium stability, equilibriums with the first integral manifolds are presented in Fig. 8.4. The solid and dashed thick lines are for sink and source infinite-equilibriums, respectively. The curves are for the first integral manifolds. The hollow circular symbols are for switching saddles. The filled circular symbol is for the center with third-order sink and source.
8.4
Network-Infinite-Equilibrium Systems
In this section, nonlinear dynamical systems with a network of infinite equilibriums are discussed as in Luo (2019).
8.4 Network-Infinite-Equilibrium Systems
397
x2 SI US SI
US
US SO
SI
LS SO
SO
LS
LS SI
SO
SI
x1
SI Fig. 8.4 Equilibrium stability for an infinite-equilibrium system. The solid and dashed thick lines are for sink and source infinite-equilibriums, respectively. The filled circular symbol is for the center with third-order sink and source. The hollow circular symbols are for upper-saddle (US) and lowersaddle (LS) on the infinite-equilibrium line
Definition 8.9 Consider an autonomous dynamical system as x_i ¼ φ1 ðx, p1 Þφ2 ðx, p2 Þ . . . φl ðx, pl Þgi ðx, pÞ ði ¼ 1, 2, . . . , nÞ, r i 1:
ð8:141Þ
(i) An (n 1)-dimensional surface network of φj(x, pj) ¼ 0 ( j ¼ 1, 2, . . . , l ) in phase space is called an infinite-equilibrium network of dynamical system in Eq. (8.141). (ii) An (n 1)-dimensional surface of φj(x, pj) ¼ 0 ( j 2 {1, 2, . . ., l}) is called an (n 1)-dimensional infinite-equilibrium surface if the equilibrium x of Eq. (8.141) satisfies the following condition, i.e., φj ðx , pj Þ ¼ 0 for j 2 f1, 2, . . . , lg:
ð8:142Þ
(iii) An (n 2)-dimensional intersection edge of φj1 ðx, pj1 Þ ¼ 0 and φj2 ðx, pj2 Þ ¼ 0 is called an (n 2)-dimensional infinite-equilibrium edge if the equilibrium x of Eq. (8.141) satisfies the following conditions, i.e., φj1 ðx , pj1 Þ ¼ 0, φj2 ðx , pj2 Þ ¼ 0 φj1 ðx, pj1 Þ 6¼ φj2 ðx, pj2 Þ and Dφj1 ðx, pj1 Þ 6¼ Dφj2 ðx, pj2 Þ for j1 , j2 2 f1, 2, . . . , lg:
ð8:143Þ
398
8 Infinite-Equilibrium Systems
(iv) An (n r)-dimensional intersection edge of φjα ðx, pjα Þ ¼ 0 (α ¼ 1, 2, . . . , r) is called an (n r)-dimensional infinite-equilibrium edge if the equilibrium x of Eq. (8.141) satisfies the following condition, i.e., φj1 ðx , pj1 Þ ¼ 0, φj2 ðx , pj2 Þ ¼ 0, . . . , φjr ðx , pjr Þ ¼ 0, φjα ðx, pjα Þ 6¼ φjβ ðx, pjβ Þ and Dφjα ðx, pjα Þ 6¼ Dφjβ ðx, pjβ Þ
ð8:144Þ
for j1 , j2 , . . . , jr 2 f1, 2, . . . , lg; α, β 2 f1, 2, . . . , rg, α 6¼ β: (v) An intersection vertex of φjα ðx, pjα Þ ¼ 0 (α ¼ 1, 2, . . . , n) is called an infiniteequilibrium vertex if the equilibrium x of Eq. (8.141) satisfies the following condition, i.e., φj1 ðx , pj1 Þ ¼ 0, φj2 ðx , pj2 Þ ¼ 0, . . . , φjn ðx , pjn Þ ¼ 0, φjα ðx, pjα Þ 6¼ φjβ ðx, pjβ Þ and Dφjα ðx, pjα Þ 6¼ Dφjβ ðx, pjβ Þ
ð8:145Þ
for j1 , j2 , . . . , jn 2 f1, 2, . . . , lg, α, β 2 f1, 2, . . . , ng, α 6¼ β: (vi) An (n 1)-dimensional surface of φj(x, pj) ¼ 0 ( j 2 {1, 2, . . ., l}) in phase space is called a rth-order, (n 1)-dimensional, infinite equilibrium if φj ðx, pj Þ φj1 ðx, pj1 Þ ¼ ¼ φjr ðx, pjr Þ for j1 , j2 , . . . , jr 2 f1, 2, . . . , lg:
8.4.1
ð8:146Þ
A Network-Infinite-Equilibrium System
To demonstrate the infinite-equilibrium network systems, consider a dynamical system of four infinite equilibriums, i.e., x_1 ¼ x2 ðx1 a1 Þðx2 b1 Þðx1 þ a1 Þðx2 þ b1 Þ, x_2 ¼ x1 ðx1 a1 Þðx1 b1 Þðx1 þ a1 Þðx2 þ b1 Þ
ð8:147Þ
where a1 > 0, b1 > 0. Such four infinite equilibriums form a network of the infinite equilibrium in phase space. The dynamical behaviors of the dynamical systems are separated in different subdomains. The simple equilibriums and infinite equilibriums are
8.4 Network-Infinite-Equilibrium Systems
399
Table 8.4 Summarization of equilibrium stability for Eq. (8.147) x2 ¼ b1 x2 ¼ b1 x1 ¼ a1 x1 ¼ a1 x1 ¼ a1 x1 ¼ 0 x1 ¼ a1
x1 2 (a1, 1), SI x1 2 (a1, 1), SO x2 2 (b1, 1), SO x2 2 (b1, 1), SI x2 ¼ b1, US x2 ¼ b1, US x2 ¼ b1, LS
x1 2 (0, a1) SO x1 2 (0, a1) SI x2 2 (0, b1) SI x2 2 (0, b1) SO x2 ¼ 0 LS x2 ¼ 0 Center x2 ¼ 0 US
x1 2 (a1, 0), SI x1 2 (a1, 0), SO x2 2 (b1, 0) SO x2 2 (b1, 0) SI x2 ¼ b1 US x2 ¼ b1 LS x2 ¼ b1 LS
x1 2 (1, a1) SO x1 2 (1, a1) SI x2 2 (1, b1) SI x2 2 (1, b1) SO
SI: sink, SO: source, US: upper saddle, LS: lower saddle
x1 ¼ a1 , x2 2 ð1, 1Þ; x1 ¼ a1 , x2 2 ð1, 1Þ; x1 2 ð1, 1Þ, x2 ¼ b1 ; x1 2 ð1, 1Þ, x2 ¼ b1
g
for infintite equilibriums,
x1 ¼ a1 , x2 ¼ b1 ;x1 ¼ a1 , x2 ¼ b1 ; x1 ¼ a1 , x2 ¼ b1 ;x1 ¼ a1 , x2 ¼ b1
g
for intersection equilbriums,
ð8:148Þ
x1 ¼ 0, x2 ¼ 0, for a simple equilbrium, x1 ¼ 0, x2 ¼ b1 ;x1 ¼ 0, x2 ¼ b1 ; x1 ¼ a1 , x2 ¼ 0;x1 ¼ a1 , x2 ¼ 0
g
for simple equilbriums:
The similar local analysis of equilibriums can be completed, and the stability of equilibriums is summarized in Table 8.4. The first integral manifold of Eq. (8.147) is x21 þ x22 ¼ C:
ð8:149Þ
If the first integral manifolds go through the simple and intersection equilibrium, the corresponding first integral manifolds are given by x21 þ x22 ¼ a21 for x1 ¼ a1 , x2 ¼ 0; x21 þ x22 ¼ b21 for x1 ¼ 0, x2 ¼ b1 ; x21 þ x22 ¼ a21 þ b21 for x1 ¼ a1 , x2 ¼ b; x21 þ x22 ¼ 0 for x1 ¼ 0, x2 ¼ 0; x21 þ x22 ¼ C for others:
ð8:150Þ
400
8 Infinite-Equilibrium Systems
x2
SI
SO US
LS
SI
SO US US
LS
center
x1
LS
SI
SO US
LS SO
SI
Fig. 8.5 Equilibrium stability for an infinite-equilibrium system in Eq. (8.147). The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The circles are for the first integral manifolds. The filled circular symbol is for the intersection equilibrium between two infinite equilibrium lines. The hollow circular symbols are for a simple equilibrium and the intersection points between infinite-equilibrium lines and coordinates. SI: Sink, SO: Source, US: upper saddle, LS: lower saddle
From the local analysis of equilibrium stability, equilibriums with the first integral manifolds are presented in Fig. 8.5. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The circles are for the first integral manifolds. The filled circular symbol is for the upper saddle of the second order in two directions. The hollow circular symbols are for lower-saddles and upper-saddles in one direction and the center. The network of four infinite equilibriums has nine (9) subdomains separated by the four infinite equilibriums.
8.4.2
Circular Infinite-Equilibrium Systems
In this section, a few dynamical systems of circular infinite-equilibrium systems will be presented. A. Harmonic motions: Consider a dynamical system of a circular infinite equilibrium with a harmonic motion, i.e., x_1 ¼ ðx21 þ x22 R2 Þm x2 , x_2 ¼ ðx21 þ x22 R2 Þm x1 where R > 0. The simple equilibriums and infinite equilibriums are
ð8:151Þ
8.4 Network-Infinite-Equilibrium Systems
401
2 2 x2 1 þ x2 ¼ R for the infintite equilibrium;
x1 ¼ R, x2 ¼ 0; x1 ¼ 0, x2 ¼ R
g
for intersection equilibrium;
ð8:152Þ
x1 ¼ 0, x2 ¼ 0 for simple equilbrium: Consider x1 ¼ ρ cos θ, x2 ¼ ρ sin θ; x_1 ¼ ρ_ cos θ ρθ_ sin θ,
ð8:153Þ
x_2 ¼ ρ_ sin θ þ ρθ_ cos θ: Thus, Eq. (8.151) becomes ρ_ ¼ 0 ) ρ ¼ C,
ð8:154Þ
θ_ ¼ ðρ RÞm ðρ þ RÞm : The infinite equilibrium is at ρ ¼ R. From Eq. (8.154), we have θ_ ¼ 0 for ρ ¼ R, θ_ ¼ ðρ RÞm ðρ þ RÞm > 0 for ρ < R, θ_ ¼ ðρ RÞm ðρ þ RÞm < 0 for ρ > R
g ð8:155Þ
for m ¼ 2l 1 with l ¼ 1, 2, . . . ; θ_ ¼ ðρ RÞm ðρ þ RÞm < 0 for ρ < R, θ_ ¼ ðρ RÞm ðρ þ RÞm < 0 for ρ > R
g
for m ¼ 2l with l ¼ 1, 2, . . . : The motions of ρ > R and ρ < R for m ¼ 2l 1 in phase space are clockwise and counterclockwise, respectively. With ρ ¼ R, the system is static, which is an infinite equilibrium. With decreasing ρ, the rotation is from negative to positive direction. Thus, the infinite equilibrium of ρ ¼ R is the (2l 1)th-order sink (SI). The motions of ρ > R and ρ < R for m ¼ 2l in phase space are clockwise and counterclockwise, respectively. With ρ ¼ R, the system is static, which is an infinite equilibrium. With decreasing ρ, the rotation is in the negative direction only. Thus, the infinite equilibrium of ρ ¼ R is the (2l)th-order lower saddle (LS). From Eq. (8.155), we have
402
8 Infinite-Equilibrium Systems
θ ¼ C 1 for ρ ¼ R, θ ¼ ðρ2 R2 Þm t þ θ0 for ρ < R,
ð8:156Þ
θ ¼ ðρ2 R2 Þm t þ θ0 for ρ > R: The first integral manifold of Eq. (8.151) is x21 þ x22 ¼ C:
ð8:157Þ
If the first integral manifolds go through the simple and intersection equilibrium, the corresponding first integral manifolds are given by 2 2 x2 1 þ x2 ¼ R for the infinite‐equilibrium;
x21 þ x22 ¼ C 21 for C 1 < R with counterclockwise rotation; x21
þ
x22
¼
C 22
ð8:158Þ
for C 2 > R with clockwise rotation:
From the local analysis of equilibrium stability, equilibriums with the first integral manifolds are presented in Fig. 8.6. The thick circle is for the infinite-equilibrium. The thin circles are for the first integral manifolds. The hollow circular symbols are for the center and intersection points between the infinite-equilibrium circle and coordinates. B. Linear motions: Consider a dynamical system of a circular infinite equilibrium with linear motions, i.e., x_1 ¼ ðx21 þ x22 R2 Þm x1 , x_2 ¼ ðx21 þ x22 R2 Þm x2
ð8:159Þ
where R > 0. The simple equilibriums and infinite equilibriums are 2 2 x2 1 þ x2 ¼ R for the infintite‐equilibrium;
x1 ¼ R, x2 ¼ 0; x1 ¼ 0, x2 ¼ R
g
for intersection equilibrium;
x1 ¼ 0, x2 ¼ 0 for simple equilbrium: Consider
ð8:160Þ
8.4 Network-Infinite-Equilibrium Systems Fig. 8.6 Equilibrium stability for an infiniteequilibrium system in Eq. (8.151). (a) The opposite directions of motion rotation and (b) the same directions of motion rotation on both sides of the infinite equilibrium. The solid thick circle is for lower-saddle infinite equilibriums. The thin circles are for the first integral manifolds. The hollow circular symbols are for the center and the intersection points between infinite-equilibrium circle and coordinates. LS: lower saddle, SI: sink
403
x2
(2l – 1) th SI
x1
center
a
x2
(2l ) th LS
x1
center
b x1 ¼ ρ cos θ, x2 ¼ ρ sin θ; x_1 ¼ ρ_ cos θ ρθ_ sin θ, x_2 ¼ ρ_ sin θ þ ρθ_ cos θ:
ð8:161Þ
ρ_ ¼ ρðρ2 R2 Þm ¼ ρðρ RÞm ðρ þ RÞm , θ_ ¼ 0 ) θ ¼ C:
ð8:162Þ
Thus, Eq. (8.159) becomes
The equilibriums are ρ ¼ 0 and ρ ¼ R for a specific θ ¼ C 2 [0, 2π). We have
404
8 Infinite-Equilibrium Systems
ρ_ ¼ 0 for ρ ¼ R, ρ_ ¼ ρðρ RÞm ðρ þ RÞm < 0 for ρ < R, ρ_ ¼ ρðρ RÞm ðρ þ RÞm > 0 for ρ > R
g ð8:163Þ
for m ¼ 2l 1 with l ¼ 1, 2, . . . ; m
m
ρ_ ¼ ρðρ RÞ ðρ þ RÞ > 0 for ρ < R, ρ_ ¼ ρðρ RÞm ðρ þ RÞm > 0 for ρ > R
g
for m ¼ 2l with l ¼ 1, 2, . . . ; ρ_ ¼ 0 for ρ ¼ 0, Δρ_ ¼ ðR2 Þm Δρ < 0 for Δρ > 0, for m ¼ 2l 1 with l ¼ 1, 2, . . . ;
ð8:164Þ
2 m
Δρ_ ¼ ðR Þ Δρ > 0 for Δρ > 0, for m ¼ 2l with l ¼ 1, 2, . . . : The motions of ρ > R and ρ < R for m ¼ 2l 1 in the radial direction are outwards and inwards the center, respectively. With ρ ¼ R, the system is static, which is an infinite-equilibrium. Thus, the infinite-equilibrium of ρ* ¼ R is the (2l)th-order source (SO) in the radial direction. The equilibrium of (0, 0) is a sink. The motions of ρ > R and ρ < R for m ¼ 2l in the radial direction are outwards the center. With ρ ¼ R, the system is static, which is an infinite equilibrium. Thus, the infinite equilibrium of ρ ¼ R is the (2l)th-order upper saddle (US) in the radial direction. The equilibrium of (0, 0) is a source. The corresponding equilibriums are ρ ¼ 0 for a simple equilibrium, ρ ¼ R for infinite‐equilbrium,
ð8:165Þ
1 3 θ ¼ 0, π, π, π;ρ ¼ R for intersection points: 2 2
The first integral manifold of Eq. (8.152) is x2 ¼ Cx1 :
ð8:166Þ
If the first integral manifolds go through the infinite equilibrium, the corresponding first integral manifolds are given by x2 ¼ Cx1 with C ¼ x2 =x1 ¼ tan θ , 2 2 x2 1 þ x2 ¼ R for the infinite‐equilibrium:
ð8:167Þ
8.4 Network-Infinite-Equilibrium Systems Fig. 8.7 Equilibrium stability for an infiniteequilibrium system in Eq. (8.159). (a) The sink of (0, 0) and the (2l 1)thorder source of infinite equilibrium, (b) the source of (0, 0) and the (2l )th-order upper saddle of infinite equilibrium. The solid circular curve is for infinite equilibriums. The straight lines are for the first integral manifolds. The hollow circular symbols are for a simple equilibrium and intersection points between the infinite-equilibrium circle and coordinates. SI: sink, SO: source, US: upper saddle
405
a
b From the local analysis of equilibrium stability, equilibriums with the first integral manifolds are presented in Fig. 8.7. The thick circle is for the infinite-equilibrium circle. The thin lines are for the first integral manifolds. The hollow circular symbols are for the simple equilibrium and the intersection points between the infiniteequilibrium circle and coordinates. C. Hyperbolic motion: Consider a dynamical system of a circular infinite equilibrium with hyperbolic motions, i.e., x_1 ¼ ðx21 þ x22 R2 Þm x2 , x_2 ¼ ðx21 þ x22 R2 Þm x1 where R > 0.The simple equilibriums and infinite equilibriums are
ð8:168Þ
406
8 Infinite-Equilibrium Systems 2 2 x2 1 þ x2 ¼ R for the infintite‐equilibrium;
x1 ¼ R, x2 ¼ 0; x1 ¼ 0, x2 ¼ R
g
for intersection equilibrium;
ð8:169Þ
x1 ¼ 0, x2 ¼ 0 for simple equilbrium: Consider x1 ¼ ρ cos θ, x2 ¼ ρ sin θ; x_1 ¼ ρ_ cos θ ρθ_ sin θ,
ð8:170Þ
x_2 ¼ ρ_ sin θ þ ρθ_ cos θ: Thus, Eq. (8.168) becomes ρ_ ¼ ρðρ RÞm ðρ þ RÞm sin 2θ, θ_ ¼ ðρ RÞm ðρ þ RÞm cos 2θ:
ð8:171Þ
The corresponding equilibriums are ρ ¼ 0, for simple equilibrium, ρ ¼ R, for infinite‐equilbrium, θ ¼ 0,
1 3 π, π, π;ρ ¼ R, 2 2
1 3 3 5 θ ¼ π, π, π, π;ρ ¼ R 4 4 4 4
g
ð8:172Þ for intersection points:
For the simple equilibrium of (0, 0), the linearized equation is Δx_1 ¼ ðR2 Þm Δx2 , Δx_2 ¼ ðR2 Þm Δx1
ð8:173Þ
with the corresponding eigenvalues are λ1 ¼ ðR2 Þm , λ2 ¼ ðR2 Þm :
ð8:174Þ
For m ¼ 2l 1, we have λ1 ¼ R2ð2l1Þ > 0, λ2 ¼ R2ð2l1Þ < 0: For m ¼ 2l, we have
ð8:175Þ
8.4 Network-Infinite-Equilibrium Systems
407
Table 8.5 Summarization of equilibrium stability for Eq. (8.168) ρ ¼ R m ¼ 2l 1 m ¼ 2l ρ ¼ R m ¼ 2l 1 m ¼ 2l ρ ¼ R m ¼ 2l 1 m ¼ 2l
θ 2 ð0, 12 πÞ, (2l 1)thSO (2l )thUS θ ¼ 0
θ 2 ð12 π, πÞ (2l 1)thSI (2l )thLS θ ¼ 12 π (2l )thUS (2l + 1)thUS θ ¼ 34 π (2l 1)thSI (2l )thLS
(2l )thUS (2l + 1)thUS θ ¼ 14 π (2l 1)thSO (2l )thUS
θ 2 ðπ, 32 πÞ (2l 1)thSO (2l )thUS θ ¼ π (2l )thLS (2l + 1)thLS θ ¼ 54 π (2l 1)thSO (2l )thUS
θ 2 ð32 π, 2πÞ (2l 1)thSI (2l )thLS θ ¼ 32 π (2l )thUS (2l + 1)thLS θ ¼ 74 π (2l 1)thSI (2l )thLS
SI: sink, SO: source, US: upper saddle, LS: lower saddle
λ1 ¼ R2ð2lÞ < 0, λ2 ¼ R2ð2lÞ > 0:
ð8:176Þ
Therefore, the equilibrium of (0, 0) is a saddle. From the local analysis, the behaviors of equilibriums are summarized in Table 8.5. The first integral manifold of Eq. (8.168) is x22 x21 ¼ C1 , x21 x22 ¼ C2 :
ð8:177Þ
If the first integral manifolds go through the simple and intersection equilibrium, and the infinite equilibrium, the corresponding first integral manifolds are given by x22 x21 ¼ R2 , x21 x22 ¼ R2
g
for the intersection equilibriums,
2 x22 x21 ¼ C 1 x2 2 x1 , 2 x21 x22 ¼ C 2 x2 1 x2 , 2 2 x2 1 þ x2 ¼ R
x2 ¼ x1 , x2 ¼ x1
g
g
for the infinite equilibrium,
ð8:178Þ
for the simple equilibrium of ð0, 0Þ:
From the local analysis of equilibrium stability, equilibriums with the first integral manifolds are presented in Fig. 8.8. The solid and dashed thick lines are for sink and source infinite equilibriums, respectively. The circles are for the first integral manifolds. The hollow circular symbols are for lower-saddles and uppersaddles in one direction, related to the infinte-equilibrium circle and coordinates. The equilibrium at the center point is a saddle-node point.
408 Fig. 8.8 Equilibrium stability for an infiniteequilibrium system in Eq. (8.159). (a) The saddle node of (0, 0) and (2l 1)th-order sources and sinks, and (b) the saddle node of (0, 0) and (2l )thorder upper saddles and lower saddles. The thick circle is for the infinite equilibrium. The hollow circular symbols are for simple equilibrium and intersection equilibriums between the infiniteequilibrium circle and coordinates. SI: sink, SO: source, US: upper saddle, LS: lower saddle, SN: saddle node
8 Infinite-Equilibrium Systems
a
b
Reference Luo, A.C.J., 2019, On dynamics of infinite-equilibrium systems, International Journal of Dynamics and Control, in press.
Index
A Antenna switching bifurcation, 255, 256, 277, 352 Appearing bifurcation, 248–254, 265–275, 306–319, 332–334, 336–339, 341, 344, 346–348 Asymptotically stable equilibrium, 8, 48 Asymptotically unstable equilibrium, 8, 46 Autonomous system, 2, 124
B Bifurcation, 59–60, 97–104, 231–237, 289–294 Bifurcation point, 60 Bifurcation value, 60 Broom appearing bifurcations, 307–309, 332, 333, 335 Broom-sprinkler-spraying appearing bifurcations, 310
C Center, 14–16 Center manifold, 7 Center subspace, 5 Circular-infinite-equilibrium systems, 400–407 Constant velocity system, 150 Continuous dynamical systems, 1–4 Contravariant component, 9, 366 Covariant component, 9, 366 Cubic nonlinear systems, 164–185
D Decreasing saddle, 20 Degenerate equilibrium, 13, 14, 20, 34 (2m)th -Degree polynomial systems, 231–286 (2m+1)th -Degree polynomial systems, 289–361 Dynamical systems, 1–4
E Eigenvector, 9 Eigenvector contravariant matrix, 9 Eigenvector contravariant vector, 9 Eigenvector covariant matrix, 9 Equi-distance surface, 49 Equilibrium, 4–18 Equilibrium computations, 365–366 Equilibrium stability, 127–130 Equi-measuring function surface, 49
F Finite-equilibrium system, 125 Fish-bone switching bifurcation, 273, 319 Fish-scale appearing bifurcation, 254, 275 Flow, 1 Flower-bundle switching bifurcation, 262, 263, 285, 286
G G-function, 51 Global stability, 231–237, 289–294
© Springer Nature Switzerland AG 2019 A. C. J. Luo, Bifurcation and Stability in Nonlinear Dynamical Systems, Nonlinear Systems and Complexity 28, https://doi.org/10.1007/978-3-030-22910-8
409
410 H Higher-order equilibrium bifurcation, 265–286, 331–361 Homeomorphism, 4 Hopf bifurcation, 69–85, 117–120 Hyperbolic bifurcation, 60–69 Hyperbolic equilibrium, 14, 15
I Increasing saddle, 20 Infinite-equilibrium system, 123, 365–407 Invariant circle, 13 Invariant manifold, 6 Invariant subspace, 5
J Jacobian matrix, 3
L Left-parallel-bundle switching bifurcation, 261, 284, 327, 359 Limit cycle, 77 Linear system, 149–151 Lipschitz condition, 3 Locally decreasing flow, 54 Locally decreasing flow of the (2s)th order, 56 Locally increasing flow, 54 Locally increasing flow of the (2s)th order, 56 Locally tangential flow of the (2s+1)th order, 56 Local stable manifold, 6, 7 Local unstable manifold, 6, 7 Low-degree polynomial system, 149–213 Lower saddle, 20, 88, 153, 157, 158, 160 Lower-saddle bifurcation, 207 Lower-saddle flow, 205, 207 Lower-saddle Hopf bifurcation, 73, 120 Lower-saddle-node bifurcation, 66, 68, 102, 154, 169–171, 191–194 Lower-saddle-node bifurcation of the mkth order, 62, 64 Lower-saddle-node bifurcation of the (2m+1)th order, 100 Lower-saddle-node switching bifurcation, 102 Lower saddle of the mkth order, 27 Lower-saddle of the (2m)th order, 94 Lyapunov functions, 48–57
M Measuring function, 49 Metric tensors, 9
Index N Negative flow, 152, 162, 186, 190, 208, 232, 237 Network-infinite-equilibrium system, 396–407 Non-autonomous system, 2, 124 Non-equilibrium flow, 152 Normal form, 373–385
O One-equilibrium system, 130–131 Operator norm, 2
P Periodic motion, 77 Permanent static system, 150 Pitchfork bifurcation, 69, 104, 109 Pitchfork bifurcation of the (2m+1)th order, 100 Positive flow, 152, 162, 186, 190, 208, 232, 237
Q Quadratic nonlinear system, 151–163 Quartic nonlinear system, 186–213
R Right-parallel-bundle switching bifurcation, 261, 284, 327, 360
S Saddle, 14, 15, 17 Saddle flow, 166–168, 187–189 Saddle-node appearing/vanishing bifurcation, 101 Saddle-node bifurcation, 66 Saddle-node switching bifurcation, 102, 104–106 Simple equilibrium, 165 Simple equilibrium bifurcation, 248–258, 306–319 Singularity, 18–43, 87–97, 110–117 Sink, 14, 15, 19, 88 Sink bifurcation, 170, 172, 193, 206 Sink bifurcation of the mkth order, 63, 64 Sink flow, 167, 168, 189, 290, 295 Sink Hopf bifurcation, 73 Sink of the mkth order, 26 Sink of the (2m+1)th order, 94
Index Source, 14, 15, 20, 88 Source bifurcation, 170, 172, 193, 206 Source bifurcation of the mkth order, 63, 65 Source flow, 167, 168, 189, 290, 295 Source Hopf bifurcation, 73 Source of the mkth order, 27 Source of the (2m+1)th order, 94 Spirally stable equilibrium, 13, 34, 43, 46, 48 Spirally stable equilibrium of the mkth order, 35, 39 Spirally unstable equilibrium, 13, 34, 46 Spirally unstable equilibrium of the mkth order, 34 Spiral saddle, 18 Spiral sink, 18 Spiral source, 18 Spiral stability, 30–43 Spraying appearing bifurcation, 250, 267–270, 272, 336, 337, 339, 344, 346 Sprinkler-spraying-appearing bifurcation, 250, 251, 253, 270–272, 310–313, 339, 344, 345 Stability, 4–43, 48–57, 87–97, 110–117 Stable equilibrium, 8, 11 Stable node, 14, 17, 19 Stable node of the mkth order, 26 Stable subspace, 5 Straw-bundle switching bifurcation, 257, 258, 263, 280, 281, 323, 355 Switching-appearing bifurcation, 260–265, 324–329, 356–361 Switching bifurcation, 66, 67, 255–258, 276–281, 319–324, 351–356 Switching point, 59 Switching value, 60
411 T Teeth comb appearing bifurcation, 249, 267 Three-equilibrium systems, 139–145 Transcritical bifurcation, 67 Transcritical switching bifurcation, 102 Two-equilibrium system, 131–139
U Uniformly decreasing flow, 55 Uniformly increasing flow, 55 Uniformly invariant flow, 55 Unstable equilibrium, 8, 11 Unstable node, 14, 17, 20 Unstable node of the mkth order, 27 Unstable pitchfork bifurcation of (2m+1)th order, 100 Unstable subspace, 5 Upper-saddle, 20, 153, 157, 160 Upper-saddle bifurcation, 205, 207 Upper saddle flow, 191 Upper-saddle Hopf bifurcation, 73, 120 Upper-saddle of the mkth order, 27 Upper-saddle of the (2m)th order, 100 Upper-saddle-node bifurcation, 66, 67, 102, 153, 170, 171, 191–194 Upper-saddle-node bifurcation of the mkth order, 62, 64 Upper-saddle-node switching bifurcation, 102
V Vector field, 1
Z Zero-order G-function, 51