Airfield Compatibility: Key Principles for Landing Gear Design 146860466X, 9781468604665

Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. Designed

298 101 22MB

English Pages 193 [194] Year 2022

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Front Cover
Title Page
Copyright Page
Dedication Page
Contents
Acknowledgements
Preface
A Note on Units
Introduction
About this Book
CHAPTER 1 Flotation/Ground Vehicle Compatibility
Common Concepts in Ground Compatibility
General Overview
California Bearing Ratio
Modulus of Subgrade Reaction, k
Ground Compatibility Nomenclature
Ground Contact Pressure
Landing Gear Arrangement Nomenclature
Ground Compatibility (Flotation) Analysis
Unpaved Surfaces
Soil and Grass
Unpaved Analysis Method ASD-TR-68-34
Alternative Unpaved Analysis Methods
Gravel/Aggregate Airfields
Paved Surfaces
Pavement Design Analysis
Layered Elastic and Finite Element Analysis
Flexible Pavements-Historic Approach
Rigid Pavements-Historic Approach
Pavement Strength Reporting Methods
Load Classification Number/Load Classification Group Method
Modern Methods for Paved Runways—ACN/PCN and ACR/PCR
ACN/PCN
ACR/PCR
Membrane and Mat Surfaces
PCASE Software for Flotation Analysis
Engineered Materials Arresting Systems (EMAS)
Snow and Ice Runways
Prepared Snow Runways
Ice Runways
Helidecks and Heliports
Naval Vessels/Aircraft Carriers
Aircraft Carriers
Amphibious Warfare Ships
CHAPTER 2 Maneuvering
ICAO Airport Standards
Required Maneuvers—NAS3601
Required Maneuvers—Land-Based Military Aircraft
Required Maneuvers—Shipboard Military Aircraft
CHAPTER 3 Surface Texture and Profile
Paved Runways
Micro/Macrotexture
Runway Roughness/Profile and Obstacles
Roughness Measurement Techniques
Power Spectral Density Approach
Boeing Bump Method
International Roughness Index
Short Wavelength Roughness
ProFAA Roughness Evaluation Tool
Industry Standard Roughness Profiles
Bomb Damage Repair
Arrestor Cables
Unsurfaced Runways
Deck/Helideck
Appendix A: 100 Busiest airports showing runway size and strength
Appendix B: Example ACN values for a variety of aircraft
Appendix C: Runway Roughness Profiles
References
Index
Back Cover
Recommend Papers

Airfield Compatibility: Key Principles for Landing Gear Design
 146860466X, 9781468604665

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Key Principles for Landing Gear Design R. Kyle Schmidt

The author’s two volume treatise, The Design of Aircraft Landing, was the inspiration for this book. The Design of Aircraft Landing is a landmark work for the industry and utilizes over 1,000 pages to present a complete, in-depth study of each component that must be considered when designing an aircraft’s landing gear. While recognizing that not everyone may need the entire treatise, Airfield Compatibility: Key Principles for Landing Gear Design is one of three quick reference guides focusing on one key element of aircraft design and landing gear design. This volume centers on how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. R. Kyle Schmidt has over 25 years’ experience across three countries and has held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service.

RELATED RESOURCES BY R. KYLE SCHMIDT: The Design of Aircraft Landing Gear 978-0-7680-9942-3 Aircraft Tires: Key Principles for Landing Gear Design 978-1-4686-0463-4

Aircraft Wheels, Brakes, and Brake Controls: Key Principles for Landing Gear Design 978-1-4686-0469-6

Cover image used under license from Shutterstock.com

Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. Designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.), this book presents a specific element of landing gear design in an accessible way.

Airfield Compatibility: Key Principles for Landing Gear Design  | Schmidt

Airfield Compatibility

more related resources inside...

SAE INTERNATIONAL

ISBN: 978-1-4686-0466-5

Airfield Compatibility Key Principles for Landing Gear Design

R. Kyle Schmidt

Airfield Compatibility Key Principles for Landing Gear Design

Airfield Compatibility Key Principles for Landing Gear Design R. KYLE SCHMIDT

Warrendale, Pennsylvania, USA

400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) FAX: 724-776-0790

Copyright © 2022 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International. For permission and licensing requests, contact SAE Permissions, 400 Commonwealth Drive, Warrendale, PA 15096-0001 USA; e-mail: [email protected]; phone: 724-772-4028. Library of Congress Catalog Number 2022936962 http://dx.doi.org/10.4271/9781468604672 Information contained in this work has been obtained by SAE International from sources believed to be reliable. However, neither SAE International nor its authors guarantee the accuracy or completeness of any information published herein and neither SAE International nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that SAE International and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. ISBN-Print 978-1-4686-0466-5 ISBN-PDF 978-1-4686-0467-2 ISBN-ePub 978-1-4686-0468-9 To purchase bulk quantities, please contact: SAE Customer Service E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-0790 Visit the SAE International Bookstore at books.sae.org

Chief Growth Officer Frank Menchaca Publisher Sherry Dickinson Nigam Product Manager Amanda Zeidan Director of Content Management Kelli Zilko Production and Manufacturing Associate Erin Mendicino

Dedication For my wife, Natalie, and my children, Jacob, Dylan, and Hunter.

©2022 SAE International

v

Contents Acknowledgements

xi

Preface

xiii

A Note on Units

xv

Introduction

xvii

About this Book

xxiii

CHAPTER 1

Flotation/Ground Vehicle Compatibility

1

Common Concepts in Ground ­Compatibility

3

General Overview California Bearing Ratio Modulus of Subgrade Reaction, k

3 5 10

Ground Compatibility Nomenclature

11

Ground Contact Pressure

13

Landing Gear Arrangement Nomenclature

15

Ground Compatibility (Flotation) Analysis

17

Unpaved Surfaces

17

Soil and Grass

18

Unpaved Analysis Method ASD-TR-68-34

19

Alternative Unpaved Analysis Methods

33

Gravel/Aggregate Airfields

33

Paved Surfaces Pavement Design Analysis Layered Elastic and Finite Element Analysis Flexible Pavements-Historic Approach Rigid Pavements-Historic Approach

Pavement Strength Reporting Methods Load Classification Number/Load Classification Group Method Modern Methods for Paved Runways—ACN/PCN and ACR/PCR ACN/PCN ACR/PCR

35 36 36 42 47

51 51 54 54 60

Membrane and Mat Surfaces

62

PCASE Software for Flotation Analysis

65

©2022 SAE International

vii

viii

Contents

Engineered Materials Arresting Systems (EMAS)

67

Snow and Ice Runways

69

Prepared Snow Runways Ice Runways

69 71

Helidecks and Heliports

75

Naval Vessels/Aircraft Carriers

77

Aircraft Carriers

79

Amphibious Warfare Ships

79

CHAPTER 2

Maneuvering

81

ICAO Airport Standards

81

Required Maneuvers—NAS3601

86

Required Maneuvers—Land-Based Military Aircraft

88

Required Maneuvers—Shipboard Military Aircraft

88

CHAPTER 3

Surface Texture and Profile Paved Runways Micro/Macrotexture

Runway Roughness/Profile and Obstacles

89 89 89

92

Roughness Measurement Techniques

93

Power Spectral Density Approach

93

Boeing Bump Method

95

International Roughness Index

96

Short Wavelength Roughness

96

ProFAA Roughness Evaluation Tool

96

Industry Standard Roughness Profiles Bomb Damage Repair

97 103

Arrestor Cables

107

Unsurfaced Runways

108

Deck/Helideck

108

Contents

ix

Appendix A: 100 Busiest airports showing runway size and strength

111

Appendix B: Example ACN values for a variety of aircraft

121

Appendix C: Runway Roughness Profiles

131

References

161

Index

165

Acknowledgements

T

he book you are reading, while itself a stand-alone book, originally constituted a single chapter of The Design of Aircraft Landing Gear. Below are the acknow­ ledgements for that book—they remain true and valid for this excerpt. The idea for this stand-alone book was Sherry Nigam’s and I thank her, Erin Mendicino, Amanda Zeidan, and the other staff at SAE International Books for their assistance with this project. I would like to thank my family: Natalie, Jacob, Dylan and Hunter, for their patience, support, and encouragement, without which I would not have been able to dedicate the time to writing this book. I would also like to thank my father, Bob Schmidt, who was the first to read and comment on each chapter as it was produced. I thank my colleagues in Canada, France, the USA, and the UK who have read sections and chapters of this work and provided me with suggestions, corrections, and encouragement. In particular, I would like to thank those who gave up their time to review and comment: Bruno Aldebert, Steve Amberg, Rod Van Dyk, Andrew Ellis, Jack Hagelin, Dan Hetherington, Marianna Lakerdas, Grant Minnes, Andy Paddock, Michael Saccoccia, Jon Smith, and Peter Taylor. Monica Nogueira at SAE International has supported me from the outset of this project, gently prodding to ensure that it was completed! I would also like to thank the industry expert reviewers who reviewed portions of the book on behalf of SAE International: CB Alsobrook, Gregg Butterfield, David Brill, Bob Knieval, and Henry Steele. Finally, I would like to thank Ian Bennett and Mark Shea who reviewed the entire manuscript in detail and provided a number of excellent comments and suggestions.

©2022 SAE International

xi

Preface

T

he author has been fortunate enough to work in the field of aircraft landing gear for over twenty-five years and in three countries: Canada, France, and the UK, and to have held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service. Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. This book is an excerpt of The Design of Aircraft Landing Gear intended to present a specific element of landing gear design in an accessible way. The content here and in the original book was born of the author’s desire to learn ever more about landing gear — their history and the ways in which others have addressed their problems and challenges; in continuously striving to learn more about the field, it was considered advantageous to put these learnings into print in the hope that they can assist others. The book is intended, broadly, for two audiences: experienced aircraft and landing gear design engineers, for whom it is hoped that the book will act as a reference as well as an ‘idea book’, and for those new to the field who are, perhaps, working on their first landing gear design (maybe as part of their education). For the latter, it is hoped that the book provides the information needed to aid in their design and studies, and that they are as intrigued and compelled by the beautiful complexity of landing gear to consider this challenging field for their future employment. No single book can provide all the answers; throughout the chapters there are a number of references to additional documents which can aid in the design, development, and support of landing gears and their associated systems. In particular, documents produced by the SAE International A-5 committees on aircraft landing gear are widely referenced and participation in these committees is highly recommended to readers of the book and practitioners of landing system engineering. The opinions and approaches outlined in this book are those of the author and do not necessarily represent those of his employer (Safran Landing Systems). Although a great deal of care has been taken in the preparation and review of this work to ensure that the approaches, methods, and data provided are accurate, the author and publisher are not liable for any damages incurred as a result of usage of this book, for typographical errors, or for any misinterpretations.

©2022 SAE International

xiii

A Note on Units

W

herever possible, units in this book follow the International System of Units (SI, also known as the metric system) approach. However, aircraft and landing gear are international in nature and many components and analysis approaches are conducted in US Customary units. In particular, some empirical formulas are based on US Customary measures and do not lend themselves to conversion to another system of measure. In general, most calculations can be performed using either SI or US Customary units, provided two different measurement systems are not mixed in the same calculation and that the units utilized are self-consistent. An area where attention needs to be paid is the use of the US customary unit of weight and force, the pound, which is often colloquially used as a unit of mass (with an implicit assumption of earthly gravity); calculations conducted in US customary units which require units of mass can employ the ‘slug’ – which is defined as the mass that is accelerated by 1 foot per second per second when a force of one pound is exerted on it. A familiarity with both systems of measure is recommended due to the international nature of the aircraft business.

©2022 SAE International

xv

Introduction

T

he aircraft landing gear and its associated systems represent a compelling design challenge: the retractable landing gear is simultaneously system, structure, and machine; it supports the aircraft on the ground, absorbs landing and braking energy, permits maneuvering, and retracts to minimize aircraft drag. As the system is not required during flight it represents dead weight and significant effort must be made to minimize its total mass. The landing gear is one of the most complex and diverse systems on an aircraft. An article in Flight magazine [1] in 1940 expressed this, “for on no other part of the aeroplane is there such scope for engineering ingenuity and no other part can boast of so many ways of achieving the desired result”. This remains true today, many decades later. An expert in landing gear must be conversant with a wide range of engineering disciplines including materials, mechanisms, structures, heat transfer, aerodynamics, tribology, and many more. Depending on the given aircraft’s needs a landing system may be little more than wheels and tires attached to suitable aircraft structure or it may be a complicated system enabling performance on unpaved runways, steering, kneeling, retracting, and permitting further aircraft operations. Very few aircraft are designed for no other purpose than to carry the landing gear (perhaps only the Messier Laboratoire test aircraft qualifies); rather, the aircraft is designed to perform a function and the landing system must enable this function with high reliability and low mass. The aircraft landing gear and system provides a number of functions:

•• The landing gear, wheels, and tires support the aircraft on the ground •• The tires and shock absorber absorb vertical energy during landing and minimize shocks during ground maneuvering

©2022 SAE International

xvii

xviii

Introduction

•• The brakes absorb forward energy and hold the aircraft when stopped and parked

•• Differential braking and steering permit turning and maneuvering on the ground

•• Specific structure and attachments permit towing, jacking, and tie down of the aircraft

•• The landing gear can retract to minimize airframe drag •• The landing gear can articulate to change the aircraft geometry – assisting takeoff or kneeling for loading

•• The landing gear can include driven wheels to maneuver the aircraft without relying on main engine thrust

•• The landing gear can comprise attachments to permit catapult launch from ships as well as airframe mounted arresting gear

•• The landing gear can include a tail bumper for protection of tail cone structure To operate successfully an aircraft must be able to take-off, land, and maneuver appropriately and safely on the types of surfaces that are relevant for its intended use. These airport and aerodrome surfaces (Figure 1) can range from large international airports to small regional airfields as well as general aviation airfields with grass surfaces. Many aircraft service remote areas where for economic, environmental, or operational reasons flights are required from unimproved or slightly improved surfaces such as dirt, sand, or gravel. Still other aircraft fly to polar regions and need to land and take-off on snow and ice. Aircraft operating to ships and oil or wind generation rigs at sea are required to land and takeoff from metal platforms. It is imperative that the aircraft and landing gear be  designed from the outset to accommodate the expected range of operational environments. Consideration of the ability of the surface to support the aircraft is required as well as maneuvering requirements such as the space available to execute a turn and the friction available from the surface in order to support turning and braking operations. The variability of the surface over its length (its roughness) can influence the design of the shock absorber as well as the ride comfort of the aircraft and the landing gear and aircraft fatigue life. A successful landing gear design starts with the consideration of these airfield compatibility concerns. Early aircraft typically used a single tire per landing gear which worked reasonably while aircraft masses were relatively small (single tires per landing gear remains an appropriate configuration for lighter weight aircraft). As overall aircraft size and mass grew, the limits of reasonable single tire capacity were met. The peak of large aircraft on single wheel landing gears was reached with the XB-36, which first flew in 1946. With a maximum weight of around 280,000 pounds (127 000 kg), this aircraft used a single 110 inch (2.8 m) diameter main tire (Figure 2, left) and was only suitable for operation from highly reinforced concrete surfaces (the high point load exerted by the single main tires would overload most lower strength ground surfaces).

Introduction

xix

Tim Roberts Photography/Shutterstock.com.

 FIGURE 1   Airport showing runway and taxiways.

Later versions of the aircraft were designed using one of the first multiple wheel units to enter service. Tracked systems (Figure 2, right) were also tested on this aircraft. Arrangements of multiple smaller wheels improved the ability of ground surfaces to support higher loads and in many cases, stowage of a grouping of smaller wheels was more readily facilitated. The production B-36, Sud Aviation Caravelle, and de Havilland Comet all used four wheel main landing gears where each pair of wheels was fitted to a lever arm, with a mechanism joining the levers to a common shock absorber. Following this brief flirtation with paired wheels on levers, most multiple wheel (more than two) landing gears have mounted the wheels to a rigid bogie beam, pivoted at the bottom of a cantilevered shock strut. Early large high speed aircraft such as the Convair B-58, Tupolev Tu-144, and Avro Vulcan utilized eight small  FIGURE 2   Convair XB-36 main wheel (left); XB-36 with tracked landing

© SAE International.

gears (right).

xx

Introduction

diameter tires fitted in pairs to four wheels, mounted on a bogie beam. Advances in tire technology (as well as changing constraints on the required retracted position volume) have permitted a reduction in the total number of required tire positions; large aircraft today utilize multiple wheels on bogie beams almost exclusively (the rare exceptions being certain military transport aircraft). An early task for the aircraft and landing gear designer is to find the best configuration of tires (size, pressure, and position) to meet the required aircraft performance goals, ensure appropriate compatibility with the intended airfields, all while minimizing weight, cost, and complexity. As was shown for the B-36 above, attempts have been made to use alternative ground interfaces to pneumatic tires: skids, tracks, and air cushions have been explored with limited success. Caterpillar track designs were trialed on a number of aircraft, including the P-40, A-20, C-82, B-36 (Figure 3), and B-50 (Figure 4) with the prime intention to lower the ground contact pressure through a significant increase in the ground contact area. While the feasibility of tracks as alternatives to tires was demonstrated, development was halted – the weight and mechanical complexity of the track suspension and guidance mechanisms as well as increased maintenance and exposure to snow, ice, and debris rendered the tracks sub-optimal when compared to pneumatic tires. Air cushion landing systems (effectively the marriage of the aircraft and the hovercraft) have been developed and demonstrated, as shown in Figure 5. While an air cushion landing system permits aircraft alighting on virtually any surface (including those with low/no surface strength), power is required to operate the system and the low friction created by the film of blown air results in challenges for directional control and braking, especially with the aircraft at low speed or when stationary.

© SAE International.

 FIGURE 3   Track main landing gear of XB-36.

Introduction

xxi

© SAE International.

 FIGURE 4   Track main landing gear of B-50.

© SAE International.

 FIGURE 5   Air cushion landing system on XC-8A.

Regardless of the choice of ground interface, aircraft and landing gear design must begin with an understanding of the properties of the ground surface itself. Knowledge of the behavior, methods, and vocabulary of ground compatibility are important to permit the designer to select the most appropriate ground interface as well as to communicate the limits of that interface to the vehicle operators so that they may use the aircraft at appropriate airfields.

About this Book

T

his book is designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.). Additionally, references to further information are provided when it is available. This book is excerpted from the author’s two volume treatise, The Design of Aircraft Landing Gear [2], which provides details on the entirety of landing system design. Much of the beauty of interesting design problems such as aircraft landing gear is that any one subject could fill an entire book, whether it be the tribology of wearing surfaces, the interaction of gas and oil in shock absorbers, or the kinematic arrangement and analysis of mechanisms. It is therefore impossible to provide every last detail on every problem which the landing system engineer may face, but an effort has been made to tackle many of the subjects one is likely to face when designing new products or supporting the operation of systems in service. This particular volume outlines a key element of aircraft design and landing gear design: how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. In the author’s experience many problems that must be confronted have already been addressed by others in the past, but the information is not widely known or shared, leading to the observation that there are few new problems, but many new people. This book is intended to share much of the information available and provide avenues for further exploration. A career in landing system design, development, and support can be spent while continually facing fresh and interesting challenges. No two aircraft are exactly alike; regulators and customers are always increasing their expectations, elevating the design challenge and making landing system engineering an exciting and rewarding discipline. Chapter 1 of the book begins with an overview of some common concepts in ground compatibility, including nomenclature and soil mechanics. Relevant ©2022 SAE International

xxiii

xxiv

About this Book

methodologies (including some historical methods) for the analysis of ground strength are provided for unprepared, semi-prepared, and paved surfaces. The design and analysis of paved aircraft surfaces (such as runways) is often independent of the means by which the pavement strength is reported; internationally standardized reporting methods are explained in Chapter 1. Means of temporary surface reinforcement (mats and membranes) are outlined, followed by a discussion of the available analytical tools for prepared surface analysis. The chapter concludes with a review of snow and ice runways as well as heliport and ship deck surfaces. With any prepared surface comes geometrical limits to its size. An aircraft must then be designed to operate within the given dimensions of the surface. Chapter 2 is dedicated to this aspect, termed maneuverability. ICAO standards for civil airports and aircraft are reviewed, along with typical requirements for land and shipboard military aircraft. No prepared surface is perfectly smooth; aircraft and landing gears must be designed to cope with the roughest surface they are likely to experience in their lifetime. Chapter 3 discusses deviation from smooth surfaces in order of increasing scale. Initially, surface micro and macrotexture (key determinants of a paved surface’s ability to disperse water and to generate friction in cooperation with a pneumatic tire) are outlined, followed by general roughness and specific bumps (including those arising from expedient repairs). The chapter includes discussion on the analytical means to address bumps and roughness. Relevant international surface roughness values are included in an appendix to aid in analysis. The specific names used for various components of the landing gear vary depending on geographic location as well as company history. A consistent set of terms is used throughout this book but as an aid to comprehension, the various components are identified and their commonly used names indicated as an aid to the reader. Further terminology is explained in document AIR1489 [3]. The common names for a variety of landing gear components that occur in this book are shown in Figure 1.

© SAE International.

 FIGURE 1   C-160 Transall main landing gear (cutaway).

1 Flotation/Ground Vehicle Compatibility

A

key consideration in establishing the conceptual design of an aircraft, and of its landing gear, is that of ensuring an appropriate and acceptable interaction with the ground. The study of this interaction is historically called Flotation, likely stemming from analysis approaches which considered the underlying soil behavior to be approximated as a dense liquid. The modern study is more appropriately titled Ground Compatibility as there is the clear need to ensure that the aircraft can operate on the required surface repeatedly, with a manageable level of cumulative damage to the surface. An aircraft which is operating on a compatible surface will leave little to no trace of its passage; by way of contrast, aircraft operating on non-compatible surfaces can lead to premature degradation of prepared surfaces or even direct breach of the surface (Figure 1.1). Ground compatibility is a function of the aircraft weight and the way in which that weight is supported on the ground. Equally important is the type of contact surface on the ground [concrete (rigid) paving, asphalt (flexible) paving, aggregate, soil, grass, etc.] and the underlying soil strength (subgrade strength). Each type of surface has its own particular analysis methodology, and there is a rich history of evolution of these calculation methodologies. The evolutionary nature of ground compatibility analysis can drive a level of confusion as to the correct approach to take for a particular aircraft or use case. To aid in the selection of the appropriate method, the agreed modern methodologies are listed in Table 1.1.

©2022 SAE International

1

2

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from Stuck in the Mud, Staff Sgt. Matthew Lohr, USAF.

 FIGURE 1.1   Breach of incompatible surface.

The following sections outline the modern approaches as well as the historical approaches which remain relevant. Additional information about analysis techniques can be found in industry documents AIR1780 [4] and ARP1821 [5]. Most flotation/ground compatibility analysis is concerned with ensuring that an aircraft can operate an acceptable number of times on the type of surface in question. In other words, the studies are concerned with the fatigue or endurance of the surface under the rolling action of the aircraft. Breakdown of the surface over time can lead to cracking and crumbling of the paving (if present), rutting, or other modes of deterioration which mean that aircraft can no longer utilize the surface. In general, the analysis methods are not concerned with the static strength capability of the surface, which in many cases is significantly greater than the acceptable repeated load on the surface. However, for some surfaces (ice, platforms, and some mats, for instance) the flexural strength and any load amplification resulting from the dynamics of the surface and aircraft interaction may be more critical than repeated loading. The need to publicly share the load bearing capability of runway surfaces has led to standardized reporting techniques, which may or may not be the same as the calculation technique used to determine corresponding aircraft capability. Given the complexity of the ground compatibility topic, the following sections decompose the topics in an effort to provide a more complete understanding. Some topics which are common to a variety of analysis and reporting methods are outlined, followed by methods which are appropriate for unpaved fields, aggregate surfaced fields, paved (rigid and flexible), mat and membrane surfaces, snow, ice, and structural decks.

Airfield Compatibility: Key Principles for Landing Gear Design

3

TABLE 1.1  Ground compatibility analysis methods. Surface Application Authority type Civil

ICAO

FAA

Transport Canada

Military

US Military

Analysis method

Reporting

Comments

Rigid

Layered Elastic/ FEA

ACR/PCR

Expected to be effective in year 2024

Flexible

Layered Elastic

Rigid

PDILB

ACN

Flexible

S-77-1

Standard reporting method until adoption of ACR/PCR

Rigid

Layered Elastic/ FEA

PCN

Flexible

Layered Elastic

FAA Advisory Circular 150/5320-6F details pavement design rules; FAARFIELD and COMFAA for PCN analysis

Unpaved

Transport Canada Advisory Circulars AC 300-004 and AC 700011; Boeing D6-45222-1 for aggregate runways

---

---

Aggregate Boeing Method

---

Ice

AC 301-003

---

Transport Canada Advisory Circular AC 301-003

Rigid

UFC 3-260-02

ACN/PCN

UFC 3-260-02 provides multiple methods for pavement design; PCASE analysis tool

ASD-TR-68-34

---

Flexible Unpaved

UK Military

Aggregate S-70-5

---

Mat

FM 5-430-00-2 Membrane AFJPAM 32-8013

---

Rigid

LCN/LCG

Flexible

DEF STAN 00970

CBR-Beta system is proposed as replacement for S-70-5

--ACN/PCN system is used for existing aircraft procured to a military specification

Common Concepts in Ground ­Compatibility General Overview For all surfaces which are supported by the ground (ignoring ship decks and helipads), some understanding of soil mechanics is required to appreciate the role of the ground in the aircraft/ground compatibility relationship. Naturally occurring soils vary considerably in their composition and in their ability to support a load applied to them. Cohesive soils such as clay and loam are characterized by fine particles that bind to one another on the molecular level in the absence of confining pressure.

4

Airfield Compatibility: Key Principles for Landing Gear Design

Cohesionless soils, such as sands and gravels, require confinement to develop bearing strength. Both cohesive and cohesionless soils can support significant loads under appropriate conditions. In ground compatibility and airport design nomenclature, the soil under a prepared surface (or simply the soil for an unprepared field) is referred to as the subgrade. The strength of the subgrade is typically evaluated by forcing a rod or a cone into the soil and measuring the force required to deflect or indent the soil a predetermined amount (similar to hardness measurements for metallic materials). While rapid, field deployable, methods are available such as the “cone index,” in which a cone is pressed into the soil, the more standard measure of subgrade strength is the California Bearing Ratio (CBR). While a somewhat arbitrary, empirical measurement, the CBR has formed the basis for a significant number of airfield engineering approaches, and is therefore indispensable in the understanding of aircraft/ground compatibility. The subgrade strength is of great importance. As no infinitely stiff material exists from which to create a runway, any material placed on the subgrade will deflect under applied loads, and this deflection must ultimately be supported by the subgrade. For the same applied loads, a stronger subgrade (characterized by higher CBR and higher modulus) requires less pavement thickness to protect it. Although bare soil and grass fields are in use for aircraft operations throughout the world, a paved surface is often desired—to improve the load bearing capacity as well as to improve the braking and handling behavior of the aircraft using the surface. Paved airfields are divided into two fundamental types: flexible and rigid. In rigid pavements, loads are resisted by concrete slabs, while flexible pavements are built up from a series of progressively stronger materials, bound or unbound, each of which protects the layer below it. Technically, aggregate (gravel) surfaced pavements found at some airfields are a type of flexible pavement, but most flexible pavements at major airfields have hard asphaltic surfaces. A typical airfield flexible pavement consists of a surface course of hot-mix asphalt laid on a base course of compacted granular stone, which is in turn laid on sub-base courses of suitable aggregate. The thickness of the pavement is considered to be the thickness from the surface to the subgrade; typical thicknesses range from 0.2 to 1.5 m. Rigid pavement airfields are those surfaced with Portland cement concrete (PCC). A variety of concrete construction techniques are employed (reinforced, non-­ reinforced, jointed, pre-stressed, etc.) While courses of suitable aggregate may be employed between the subgrade and the concrete surface, the thickness of pavement in this construction is considered to be the thickness of the concrete layer only; typical thicknesses range from 0.2 to 0.36 m. Other pavement types exist, but are less common. Airport pavements have been constructed using interlocking pavers, compacted snow and ice, sea coral, and other innovative designs. For many years, the Port Authority of New York and New Jersey used a unique construction type at its Newark and JFK airports based on a mixture of lime, cement, and flyash (LCF) mixed with sand. The Port Authority devised a comprehensive pavement design analysis to accompany its LCF construction method. Airfields may vary the thickness of pavements, placing more material where needed for the anticipated loading. US military airport design standards provide for additional thickness in areas where aircraft loads are static. Runway ends, taxiways,

Airfield Compatibility: Key Principles for Landing Gear Design

5

and ramps are seen as critical and receive the thickest pavement. Dynamically loaded areas such as central areas of runways may have a thickness which is 10–20% less than the adjoining critical areas. Most civil airports maintain a constant cross-section throughout the runway, perhaps reducing the strength in over-run areas or in displaced threshold areas. While the Federal Aviation Administration (FAA) allows a reduction in thickness for less-trafficked areas outside the keel, from a construction point of view it is generally more economical to maintain a uniform section across the width of the runway. Airfields evolve over time, so different runways and taxiways at the same airport may have different load bearing capabilities. For airfield pavements serving aircraft with gross weights higher than 12,500 pounds, pavement strength is often reported using the aircraft classification number (ACN)/pavement classification number (PCN) or aircraft classification rating (ACR)/pavement classification rating (PCR) reporting systems. These reporting systems are discussed in detail in a subsequent section. A low value of PCN or PCR may reveal insufficient strength for the anticipated traffic. It is possible to overlay pavements to provide additional strength or to improve surface characteristics. Most overlays are flexible asphalt, but rigid concrete overlays have been used on both rigid and flexible pavements.

California Bearing Ratio California Bearing Ratio, routinely referred to by its abbreviation CBR, is a test to determine the strength of unpaved surfaces (including naturally occurring soil, prepared subgrades, and prepared base courses under roadways, runways, and taxiways). The technique was developed by the California Department of Transportation in the 1930s. The CBR value is expressed as the percentage of the force (or pressure) required to press a 2 inch diameter (nominally a 3 square inch area) rod into the soil compared to the value achieved on a reference sample of compressed crushed California limestone (this reference sample is considered to have a CBR of 100). The calculation is performed at 0.1 or 0.2 inches of penetration. The standard curve (CBR = 100) results in 0.1 inch of penetration with an applied pressure of 1000 psi and 0.2 inches of penetration at 1500 psi; a CBR of 50 would result from an applied pressure of 500 psi achieving a penetration of 0.1 inch. The test procedure is standardized in ASTM D1883-05 [6] (for laboratory samples) and D4429 [7] (for field testing). A diagram of the laboratory CBR test is shown in Figure 1.2 along with the typical behavior of a number of materials. The higher the CBR value, the higher the bearing capacity of the surface. A range of typical values, according to the Unified Soil Classification System [59] are shown in Table 1.2; plowed farmland has a CBR of 3 and moist sand may achieve a CBR of 10. Values above 100 are possible. CBR values determined through testing to ASTM D4429 are the benchmark values. However, this test is often difficult to perform in remote areas or for unimproved runways (it requires considerable time and equipment). A number of alternative testing methods have been developed which can provide estimates of CBR values. It is important when dealing with values generated by these methods to be aware of the test type as different tests have different empirical correlations to the ASTM CBR value. A number of different field tests to estimate CBR exist, provided by a variety

6

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 1.2   Laboratory CBR test.

of vendors, and endorsed by various aircraft manufacturers. Some of the more common test approaches are listed below. Unlike the D4429 method, no consideration of soil moisture content is made in these simplified procedures—care is then required to ensure that the measurements are made at a time when the moisture content is high or is representative of the expected service condition—in areas with freeze/thaw cycles, a measurement after the spring thaw is likely to be a reasonable estimate of the effective minimum (CBR will increase as moisture drains/evaporates through the summer).

•• The Boeing “High Load Penetrometer” test method (Boeing Reference

D6-24555 [60]) uses a hydraulic cylinder with a cone shaped, 50.8 mm (2 inch) diameter probe mounted to the rod end. Typically, the hydraulic cylinder is positioned against the frame of a heavy vehicle to provide a solid surface from which to work. According to the test procedure, a hydraulic hand pump is used to drive the probe at a steady rate to a 100 mm depth into the surface. A hydraulic pressure reading is taken within 30 seconds after movement of the penetrometer has stopped at 100 mm. The soil failure pressure is calculated as the penetrometer force (hydraulic pressure multiplied by the working area of the hydraulic cylinder) divided by the projected area of the 50.8 mm diameter cone tip. An empirically derived formula relates the measured pressure to the CBR value. In order to achieve valid readings, the soil must be homogeneous through and beyond the 100 mm measurement depth—the presence of large stones will introduce errors which need to be detected by the operator of the test equipment (a rapid increase in measured pressure occurs). Generally, performing the test in several widely separated positions is recommended.

•• A Sliding Weight Shock Penetrometer is used by some aircraft manufacturers

and in some regions. This device uses a long rod with a cone shaped point and a sliding weight (typically 3 kg). The rod and cone are driven into the soil by raising and dropping the sliding rod a number of times. An estimate of CBR

Coarsegrained soils

Soil types

Sands and sandy gravels

Gravels and gravelly sands

Symbol

Good Fair to good

Gravel-silt (liquid GMu limit > 28)

Gravel-clay

Sands >12% fines

SMd SMu SC

Sand-silt (liquid limit < 28)

Sand-silt (liquid limit > 28)

Sand-clay

Fair to good

Fair to good

Good

Fair to good

Sand, poorly graded

SP

Good

GC

Good to excellent

Good to excellent

Excellent

Gravel-silt (liquid GMd limit < 28)

GP

GW

Compressibility and expansion

None to Almost none very slight

Potential frost action

Slight

Slight

Very slight

None to Almost none very slight

Slight to medium

Slight to medium

Slight to medium

Not suitable

Not suitable

Poor

Slight to high

Slight to high

Slight to high

Fair to poor

Excellent

Excellent

Poor to impervious

Poor to impervious

Fair to poor

Excellent

Excellent

Drainage characteristics

Slight to medium Poor to impervious

Slight to medium Poor to impervious

Very slight

Poor to not None to Almost none suitable very slight

Poor

Poor

Poor

Fair to good

Poor to fair None to Almost none very slight

Good

Value as Value as subbase or base subgrade course

Sands Sand, well graded sw 12% fines

Gravel, poorly graded

Gravels Gravel, well 50)

CL

Clay-low compressibility

Symbol ML

Description

Silt-low compressibility

Silts and clays (liquid limit 1, all of the fatigue life will have been used up and the pavement will have failed. The definition of failure which is employed is a particular structural failure mode according to the assumptions and definitions on which the design procedures are based. A value of CDF greater than one does not necessarily mean that the pavement will no longer support traffic, but that it will have failed according to the definition of failure used in the design procedure (and within the constraints of uncertainties in material property assumptions, etc.) Notwithstanding the potential variation in the type of failure mode, the pavement thickness design is based on the assumption that failure occurs when CDF is equal to unity. The damage done to the pavement from different aircraft types is accounted for by using Miner’s linear damage accumulation rule, where:

CDF CDF1 CDF2  CDFn 1 CDFn Many analysis tools compute a separate CDF for each failure mode included in the design procedure. For example, in flexible pavement design, a CDF is likely to be calculated for the asphalt as well as the subgrade; failure of the pavement is driven by the highest CDF in the structure. The effect of aircraft wander is addressed explicitly in linear elastic and finite element approaches. In the FAA pavement design software FAARFIELD, CDF is calculated for each 254 mm (10 inch) wide strip along the pavement over a total width of 20.8 m (820 inches). Pass-to-coverage ratio is computed for each strip based on a normally distributed airplane wander pattern with standard deviation of 775 mm (30.5 inches), equivalent to airplane operation on a taxiway. A CDF is calculated for all resulting 82 strips, with the maximum resulting CDF being the value considered for design. Even with the same gear geometry, aircraft with different main gear track widths will have different pass to coverage ratios in each of the 254 mm strips and may show little cumulative effect on the maximum CDF. The damage model used depends on the design code and the country where the pavement is designed. For pavements in the USA, Advisory Circular 150/5320-6F [12] specifies the use of the FAARFIELD tool. Other countries have similar but subtly different methods and tools. France requires the use of the ALIZE tool while Australia specifies the use of the ASPDS code. A description of the failure models used in FAARFIELD are provided as they are indicative of the methodology used in most codes. For flexible pavement design in FAARFIELD, subgrade vertical strain and horizontal strain at the bottom of all asphalt layers are the design criteria. The subgrade failure model used to find the number of coverages to failure for a given vertical strain at the top of the subgrade is:

log C

0.60586

1 0.1638 185.19

, for C 1000 coverages, and v

40

Airfield Compatibility: Key Principles for Landing Gear Design

0.004141

8.1

, for C 1000 coverages C v where C is the number of coverages to failure εv is the vertical strain at the top of the subgrade For asphalt fatigue, the failure model is based on the concept that the number of coverages to failure is determined by a quantity called Ratio of Dissipated Energy Change (RDEC) [24]. In a large number of asphalt beam fatigue tests it has been found that the Plateau Value (PV) of RDEC is a reliable predictor of the number of cycles to fatigue failure (Nf ). For a broad range of asphalt mixes, this relationship is given by:

0.9007

N f 0.4801 PV For a given horizontal strain at the bottom of the asphalt layer, the value of RDEC can be estimated by: 0.4063

PV 44.422 h5.14 S 2.993 GP where PV is the estimated value of the RDEC plateau value (dimensionless) S is the hot mix asphalt initial flexural stiffness, in psi; this is not the same as the modulus, E, used to compute strain in the layered elastic analysis εh is the horizontal strain at the bottom of the asphalt layer Va VP is the volumetric parameter: VP Va Vb Va is the volume of air voids V b is the asphalt content by volume PNMS PPCS GP is the gradation parameter: GP P200 PNMS is the percentage of aggregate passing the nominal maximum size sieve PPCS is the percentage of aggregate passing the primary control sieve P200 is the percentage of aggregate passing the #200 (0.075 mm) sieve Default values of these parameters are assigned in FAARFIELD to represent typical hot mix asphalt (P-401) mixtures. The values are: S = 600,000 psi; Va = 3.5%; V b = 12.0%; PNMS = 95%; PPCS = 58%; P200 = 4.5%. For rigid pavement design in FAARFIELD, the CDF is calculated using the larger of the horizontal edge stress at the bottom of the concrete layer, or the horizontal interior slab stress. To account for load transfer to adjacent slabs, the free edge stress is computed for the gear load and reduced by 25%. For gear loading along the slab edge, it is necessary to consider the orientation of the landing gear. The general procedure is take the higher of the edge stress with the gear oriented parallel to the slab edge and the edge stress with the gear oriented perpendicular to the slab edge. Edge stresses for rigid pavements are computed using the three-dimensional finite element model. Interior stresses are computed using the layered elastic model. The interior stress is assumed to be 95% of the maximum horizontal stress computed by

Airfield Compatibility: Key Principles for Landing Gear Design

41

the layered elastic calculation. The rigid pavement failure model used in FAARFIELD has the general form:



1

Fs bd

DF FCAL

1

SCI 100

d b

log C Fs b

SCI ad bc 100 SCI 1 d b 100

Fs bc



Fs b

where SCI is the Structural Condition Index, an indicator of the condition of the pavement where 100 is fully structurally sound. An SCI of 80 is the FAA definition of structural failure of a rigid pavement and is consistent with 50% of slabs in the traffic area exhibiting a structural crack. DF is the design factor; it is defined as R/σ, where R is the concrete flexural strength and σ is the computed concrete tensile stress FCAL is the stress calibration factor; FCAL = 1.0 for FAARFIELD Fs is the stabilized base compensation factor; the failure model above assumes that the SCI deteriorates under traffic as a linear function of the logarithm of coverages (after first reaching the first structural crack). The factor Fs is used to adjust the slope of the line when the structure includes a higher quality (stabilized) base. When the concrete slab is placed on an 8 in. thick crushed aggregate (P-209) layer, or on a 4 in. thick stabilized layer (500,000 psi), the value of Fs is one and the basic (uncompensated) failure model is recovered. But if the thickness or quality of the base/sub-base structure is greater than either of these two conditions, Fs decreases, and the number of coverages to failure increases. Adjusting the slope of the line in this way recognizes that a concrete slab placed on a stabilized base will not deteriorate as rapidly following the appearance of a first crack compared to a similar slab on a conventional (aggregate) base. a, b, c, and d are parameters whose value depends on the subgrade modulus. Parameters used in FAARFIELD were obtained by analyzing failures of full-scale rigid pavement test pavements at the National Airport Pavement Test Facility (NAPTF), as well as previous full-scale tests. In such failure data there is inherently a considerable amount of scatter. Lines were drawn encompassing 50% and 85% of the failure points, from which the following parameters were obtained: Parameter

50% failure envelope

85% failure envelope

a

0.760

1.027

b

0.160

0.160

c

0.857

1.100

d

0.160

0.160

42

Airfield Compatibility: Key Principles for Landing Gear Design

The values of a and c transition linearly from the 50% values for low strength subgrades represented by E = 4500 psi (approximately CBR 3), to the 85% values for higher strength subgrades represented by E = 15,000 psi (approximately CBR 10). This transition reflects the fact that thinner concrete pavements on strong foundations are more likely to experience top-down cracking (e.g., corner breaks) than pavements on weaker foundations. Since the top-down cracking failure mode is not considered in FAARFIELD design, the use of the more conservative 85% failure curve is justified for higher subgrade strengths. Failure for a rigid pavement in FAARFIELD is defined as SCI = 80. For a new rigid pavement, the program iterates on the thickness of the concrete layer (the design layer) until the failure model predicts a value of SCI = 80 at the end of the design life (20 years for standard designs). The number of coverages to failure (C) is therefore the number of coverages for SCI = 80 at any given value of R/σ. Flexible Pavements-Historic Approach. Determination of how to design air-

field flexible pavements came originally from extrapolating a California highway design method. The method is empirically based, deriving from traffic tests performed at various wheel loadings, pavement thickness, and subgrade strengths. Flexible pavement design methods have evolved over a number of years (US Army Corps of Engineers report TR-12-16 [25] provides an excellent history of the development of flexible pavement design methods). Modern flexible pavement design methods such as the FAA’s FAARFIELD computer code use layered elastic theory, while historical methods employ empirical relationships based on the subgrade CBR. An update to the historical approach, the CBR-beta method [25] has been proposed by the US Army Corps of Engineers. The most relevant formulation to the landing gear designer is published by the US Army Corps of Engineers in their document S-77-1 [26], and is based on the CBR of the subgrade. This method is relevant as the ICAO standardized this method as the means of computing an Aircraft Classification Number. Unlike the layered elastic approach, the CBR method is purely empirical and no direct stress calculation is performed. Document S-77-1 gives the CBR equation which determines the required pavement thickness, T, when designing for 10,000 coverages: T

Ac

0.0481 1.562 log

CBR P

0.6414 log

CBR P

2

0.473 log

CBR P

3



where T is the pavement thickness in inches Ac is the tire contact area in square inches P is the tire load in pounds for a single wheel gear, or the ESWL for multiple wheel gears CBR is the California Bearing Ratio strength of the subgrade

Airfield Compatibility: Key Principles for Landing Gear Design

43

This formulation can be used directly when designing for single wheel landing gears. But for multiple wheel landing gears, a means of calculating the influence of the additional wheels is required. Additional wheels influence the pavement behavior in two ways: the interaction of the loads applied by the group of wheels and the relationship between passes and coverage. The means of addressing the interaction of the applied wheel loads is the calculation of an equivalent single wheel load (ESWL), a fictional load applied by a single wheel (having the same contact area as one wheel of the assembly) which induces the same deflections (at a given depth) in the pavement as the multi-wheel group. The model for determining pavement deflection is Boussinesq’s one-layer theory. The pavement and the subgrade combined are considered as a semi-infinite, homogeneous, isotropic, and elastic medium. The deflection in the subgrade soil is given by the following formula:

z

pr F E

where Δz is the vertical deflection of the subgrade at a depth, z, in inches p is the ground contact pressure in pounds per square inch; it is assumed to be equal to the tire pressure r is the radius of the tire contact area in inches; the tire contact patch is assumed to be circular E is the modulus of elasticity of the subgrade material in pounds per square inch F is the deflection factor (a function of the depth and the radial distance to the load center line), determined through values tabulated or plotted in S-77-1 Determining the ESWL employs the principle of superposition (Figure 1.29), which posits that the effect of a multi-wheel assembly at any given point in the

Reprinted from U.S. Army Core of Engineers, Engineer Research and Development Center ERDC/GSL TR-12-16.

 FIGURE 1.29   Superposition of individual wheel loads.

44

Airfield Compatibility: Key Principles for Landing Gear Design

subgrade is equal to the summation of the effects of each tire at that point. Once the total deflection at a point in the subgrade is known, the load required by a single tire of the same contact area as one wheel of the multi-wheel assembly to achieve the same deflection can be calculated. This load is the ESWL. The ESWL is not a constant value, but varies with depth:

ESWL

P

FM FE

where P is the load on one tire of the multi-wheel assembly FM is the maximum deflection factor achieved for the multi-wheel assembly at any depth FE is the maximum deflection factor due to the ESWL Determination of FM requires computation of the maximum deflection factors beneath one wheel at several depths and add the deflection factors for the other wheels (considering their offset from the wheel being considered) at the same depths. From this, a plot of deflection factors versus depth can be made for the wheel being considered. The worst case deflection may not be under one of the wheel positions: for a dual wheel assembly, the critical point is midway between the two wheels, for a twintandem, the maximum deflection varies with depth—from a point under one wheel at the surface to the centroid of the assembly at depth. As a result, the calculation of maximum deflection factors versus depth must be made for the critical locations in addition to the wheel positions. The typical procedure is to plot the deflection factors versus depth for one wheel position and for the critical location, then join the two together, forming a smooth curve. Using this curve, an additional curve of ESWL in percent of the assembly load is generated as a function of depth. This curve, along with the CBR equation, can be used to find the required CBR for a given thickness, or can be used to iteratively solve for pavement thickness. The pavement thickness calculated by the CBR equation must be further modified to address the effect of load repetitions, coming from the required number of coverages as well as the effect of multi-wheel gears. A factor, α, is introduced:

t

T

where t is the adjusted pavement thickness α is the adjustment factor, empirically determined based on traffic testing T is the pavement thickness from the CBR equation The alpha factors depend on the desired number of coverages as well as the number of wheels in the landing gear assembly. Wheels in sequence drive an independent load impulse into the pavement but the effect is found to generate a less damaging result than the same number of passes of independent wheel groups. The accepted alpha values have evolved over time, supported by extended testing, with the values in document S-77-1 now replaced by the values shown in Figure 1.30, taken from the COMFAA software. It can be seen (Table 1.7) that at 10,000 coverages (the ACN computation is

45

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from COMFAA freeware program from FAA.

 FIGURE 1.30   Alpha values.

TABLE 1.7  Alpha values at 10,000 coverages. Number of wheels

1

2

4

6

8

12

18

24

Alpha

0.995

0.900

0.800

0.720

0.690

0.660

0.640

0.630

based on 10,000 coverages) for a single wheel the correction is very close to unity. Due to the refinement in alpha factors which has occurred, take care when comparing old and new calculations of ACN (or recompute using the new values to be sure). The number of wheels to be considered is the number of wheels in a main landing gear group. For instance, a Boeing 777 has a triple tandem gear arrangement, for six wheels on each main landing gear. The Antonov 124 has five pairs of wheels for 10 wheels in each main landing gear group. The final element in the analysis is to understand the relationship between aircraft passes and pavement coverages. This analysis considers that there is variation, wander, in the lateral position of aircraft wheels from one operation to the next, and that this wander is normally distributed about the center line. Based on analysis of US Air Force aircraft operations [27] it is considered that the wander is the width over which the center line of the aircraft traffic is distributed 75% of the time and that a wander width of 1.8 m (70 inches) is appropriate for taxiways and the first 305 m (1000 feet) of each runway end. The associated standard deviation for this 1.8 m wander width is 0.773 m (30.43 inches). A wander width double that value is used for the runway interior. To understand the relationship between aircraft passes and pavement coverages, the individual wheel distributions need to be summed; trailing wheels multiply the summed distribution. Figure 1.31 shows the principle of summing the overlapping distributions of wheel position.

46

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from US Army IR S-77-1.

 FIGURE 1.31   Summation of traffic distribution.

Considering a normal distribution of aircraft position, the pass to coverage ratio can be computed: Pass 1 Coverage f xoc Wt where Wt is the width of the tire f(xoc) is the maximum ordinate of the combined frequency distribution for wheel positions For a wander width of 1.8 m the frequency distributions of the left and right hand wheel assemblies do not overlap when the distance between the center lines of the inboard wheels is equal to 2.54 m (100 inches) or more. The frequency distribution is given by:

f x

1

f z

x

where σx is the standard deviation (30.43 inches for a wander width of 70 finches) f(z) is the frequency distribution function for the normalized standard deviation; historically the values of this function were tabulated, but the values can be easily generated with the Excel function NORM.S.DIST(z, False)

Airfield Compatibility: Key Principles for Landing Gear Design

47

In practice, conversion of the lateral wheel spacing coordinate to the “z” coordinate is achieved by centering a local coordinate system around each wheel centerline, such that each wheel is located at 0. The local coordinates are then divided by the standard deviation such that local distances are expressed in multiples of the standard deviation. With reference to Figure 1.31, the approach for an aircraft with a track of 265 inches, wheel spacing, S, of 34 inches, for a wander width of 70 inches (standard deviation of 30.43 inches). In this case, the value of f(xoc) is 0.0224. If this layout were for a twin-tandem (four-wheel) bogie landing gear, the value would need to be doubled to include the trailing axle. For the two-wheel case above, if the tire width was 13.5 inches, then the pass to coverage ratio would be: Pass Coverage



1 f xoc Wt

1 0.0224 13.5

3.3

While it is important to understand the derivation of this form of flotation calculation, modern calculations tend to be performed automatically by software applications such as COMFAA, ICAO-ACN, or PCASE, significantly simplifying the task for the landing gear designer. Rigid Pavements-Historic Approach. The analysis to determine the required

thickness of slab was originally developed by Westergaard and is based on the theory of thin plates. The rigid pavement slab is considered to be supported by a dense, inviscid liquid, as shown in Figure 1.32. Furthermore, the slab is assumed to be a

Reprinted from US Army CR-S-75-8.

 FIGURE 1.32   Westergaard idealization of rigid pavement.

48

Airfield Compatibility: Key Principles for Landing Gear Design

homogenous, isotropic, elastic material of uniform thickness; loads on the top and bottom of the slab are considered to occur normal to the surface. The slab deflection then must follow the differential equation: D 2 q p where 2 σ2 is a Laplace differential operator in polar coordinates: 2 r Eh 3 D is the flexural rigidity: D 12 1 2

1 r r

1 r2

2 2

2

z2

E is the Young’s modulus for the slab; can be  assumed to be  27 580  MPa (4,000,000 psi) v is the Poisson’s ratio for the slab; can be assumed to be 0.15 h is the thickness of the slab ω is the slab deflection q is the intensity of slab loading p is the intensity of reactive pressure between the slab and subgrade As the subgrade is assumed to have the properties of a dense liquid, then: p k where k is the modulus of subgrade reaction. Solutions to this were developed in 1951 [28] for a concentrated load and a uniformly loaded sector. The uniformly loaded sector has the dimensions shown in Figure 1.33. The moment, M, in the slab is given through the use of Hankel functions: M

ql 2 Re 8 1



1 sin 2

2

2

1

sin 2

a i I a i H1 l l 1

a i I a i H1 2l l

H sI

a i l

0.5

© SAE International.

 FIGURE 1.33   Uniformly loaded sector.

Airfield Compatibility: Key Principles for Landing Gear Design

49

The tensile stress at the bottom of the slab associated to this moment is:

fc

6M h2

where l is the “radius of relative stiffness”= 4

D k

4

Eh 3 12 1 2 k

Re is the “real part of” the expression i is the “imaginary” number 1 H sI , H1I are Hankel functions of order zero and one q is the uniform load acting on the area

The physical meaning of the radius of relative stiffness, l, is shown in Figure 1.34. Tire contact patches are represented as ellipses and the combined moments of all tire contacts are computed, typically with one tire of the group placed at the origin. Determining the maximum moment may require rotating the tire imprints around the origin. The maximum moment of a multi-wheel gear typically occurs close to the center of the tire contact closest to the centroid of the group; typically it is taken as occurring at the tire contact center of this tire. Historically, a graphical solution to this problem was conducted using influence charts such as that shown in Figure 1.35. To use the influence chart, the pattern of the landing gear is traced onto the chart (or onto transparent paper over the chart). The tires are represented as rectangles with rounded ends, with an aspect ratio of 0.6:

L

Area ; Width 0.6L 0.5227

© SAE International.

 FIGURE 1.34   Physical meaning of Westergaard’s radius of relative stiffness.

50

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 1.35   Influence chart for moment in rigid pavement.

The dimensions used on the influence chart are scaled according to the radius of relative stiffness, l, a scale for which is indicated on the chart:

Tracing dimensions Actual dimensions

Scale l on chart Calculated l of pavement

All of the enclosed whole blocks, then the partial blocks are counted (value N) to determine the total area encompassed by the tire imprints. The moment is then calculated using the formula on the chart:

MN

ql 2 N 10, 000

Airfield Compatibility: Key Principles for Landing Gear Design

51

Stress in the slab can then be calculated:

fc

6M N h2

For a given allowable stress in the pavement (including safety factors), a design thickness can be computed. The influence chart approach has been replaced by computer-based solutions and modern calculations can be performed rapidly from the landing gear design input using either COMFAA or PCASE software applications. Pavement Strength Reporting Methods The history of flotation analysis is one of continuous evolution. A variety of historical methods exist which may still be required from time to time. These include the Load Classification Number (LCN) and ALR methods. Details on these approaches can be found in SAE AIR1780 [4]. Most of these methods used variations of the flexible and rigid pavement analysis outlined previously, but provided different tools for reporting and comparison. Load Classification Number/Load Classification Group Method. At one point this method was widely used around the world but it has now been generally replaced by the ACN/PCN method. However, some jurisdictions still refer to this method, including the UK Ministry of Defence, which codifies it within DEF STAN 00-970 [29]. The LCN/LCG method is similar to but distinct from the LCN method, which was an earlier approach. The LCN/LCG method does not distinguish between rigid and flexible pavements and is based on an assumed rigid pavement with a radius of relative stiffness of 40 inches and a modulus of subgrade reaction of 400 pounds per cubic inch. The classification number is a representation of the strength of the pavement (both required by the aircraft and provided by the pavement). The classification group is a Roman numeral indicator which groups a range of classification numbers as shown in Table 1.8. Calculation of a specific equivalent single wheel load is required:



ESWL

Total load on one landing gear Reduction factor

The reduction factor is determined from Figure 1.36 for twin wheel landing gears and Figure 1.37 for twin-tandem landing gears. The wheel arrangements are assumed TABLE 1.8  Load classification number/load classification group. LCG

Type of runway

LCN

I

High quality pavement

101-120

II

Good quality pavement

76-100

III

Moderate quality pavement

51-75

IV

Low grade asphalt

31-50

V

Reinforced soil

16-30

VI

Good condition soil

11-15

VII

Boggy soil/loose sand

10

52

Airfield Compatibility: Key Principles for Landing Gear Design

© Crown Copyright. Licensed under the Open Government Licence v3.0.

 FIGURE 1.36   Reduction factor for twin or tandem wheel configuration.

Airfield Compatibility: Key Principles for Landing Gear Design

© Crown Copyright. Licensed under the Open Government Licence v3.0.

 FIGURE 1.37   Reduction factors for twin-tandem wheel configurations.

53

54

Airfield Compatibility: Key Principles for Landing Gear Design

to be symmetrical, with each wheel in the group equally loaded; it is also assumed that all wheels of the group are at least 1.5 m from the nearest wheel on any other landing gear group. The reduction factor chart of Figure 1.36 is valid for twin wheel (wheels side by side) and tandem (two wheels in a line) configurations. The wheel spacing for the twin wheel configuration is the distance between the tire centers. The wheel spacing for a tandem configuration is the axle to axle distance. With the ESWL defined, the LCN (and LCG) can be determined from Figure 1.38 or from the approximate expression: 0.91

LCN 5.7 10 4 ESWL p0.34 where ESWL is the equivalent single wheel load in pounds p is the tire pressure in pounds per square inch Modern Methods for Paved Runways—ACN/PCN and ACR/PCR. Almost all jurisdictions have converted to using the ACN/PCN reporting system as advocated by the International Civil Aviation Organization (ICAO). Starting in the year 2020 and to be fully in force by the year 2024, the ACR/PCR system will replace the ACN/ PCN methodology, by agreement of the ICAO. ACN/PCN. The modern approach for paved runways is the ACN/PCN method. This method has been standardized by ICAO in their Aerodrome Design Manual, part 3, Pavements since 1983 [62]. The method has been adopted by most countries and provides a uniform approach to classifying aircraft and pavements. The method follows a standardized approach to determining the aircraft classification number; the pavement classification number is the load rating of the most critical aircraft which the pavement will support without restriction. Determination of the pavement classification number can be through a technical evaluation or by experience of aircraft operating on the pavement. Technical approaches to determining the PCN continue to evolve and include software codes such as COMFAA and PCASE, among others. The ACN/PCN method is applicable for aircraft with a mass of 5700 kg (12,500 pounds) and above. Aircraft below this value exert loads on the pavement less than common highway road traffic and generally any reporting or restrictions for these classes of aircraft are based on overall weight and tire pressure. Caution is required as some helicopters and military training aircraft have masses less than 5700 kg but can have very high tire pressures; this can lead to problems on limited quality flexible pavements. The ACN/PCN method divides the subgrades into eight standard ranges (four rigid pavement subgrade values and four flexible pavement subgrade values). Table 1.9 shows the adopted values and their associated codes. For flexible pavements, the subgrade strength is measured in terms of CBR. For rigid pavements, the subgrade strength is considered in terms of Westergaard’s modulus of subgrade reaction, k, measured in MN/m3. It is considered that tire pressure effects are secondary compared to the effects of applied load and wheel spacing. On flexible pavements with thin asphalt concrete

Airfield Compatibility: Key Principles for Landing Gear Design

55

© Crown Copyright. Licensed under the Open Government Licence v3.1.

 FIGURE 1.38   LCN and LCG in terms of ESWL, tire pressure, and tire contact area.

56

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 1.9  ACN/PCN subgrade values. Subgrade strength Subgrade code level

Flexible pavement

Rigid pavement

A

High strength

Nominal CBR of 15; Represents all CBR values above 13

Nominal k = 150 MN/m3; Represents k > 120 MN/m3

B

Medium strength

Nominal CBR of 10; Nominal k = 80 MN/m3; Represents all CBR Represents 60 < k < 120 values between 8 and 13 MN/m3

C

Low strength

Nominal CBR of 6; Represents all CBR values between 4 and 8

Nominal k = 40 MN/m3; Represents 25 < k < 60 MN/m3

D

Ultra-low strength

Nominal CBR of 3; Represents all CBR values below 4

Nominal k = 20 MN/m3; Represents k < 25 MN/m3

k values determined using a 75 cm diameter plate.

surfaces or weak upper layers, tire pressure can have an increased effect. The ACN/ PCN method categorizes tire pressures into four groups as outlined in Table 1.10. The ACN/PCN method employs the concept of a “mathematically derived” single wheel load—the combination of loads from one or many wheels on a single landing gear are numerically combined and represented as a single load. The computation determines the required pavement thickness for the landing gear arrangement, then determines the load required to achieve the equivalent thickness when applied by a single wheel with a standard tire pressure of 1.25 MPa. The ACN of an aircraft is defined as two times the mathematically derived single wheel load, expressed in thousands of kilograms. The derived single wheel load is a function of the subgrade strength (as provided in Table 1.9); the net result is that for any given aircraft eight different ACN values need to be calculated (four for flexible pavements and four for rigid pavements). The factor of two is used to ensure a suitable ACN versus aircraft mass scale such that whole number ACNs may be used with suitable accuracy. The rigid calculation is based on the computer program PDILB which was developed by the Portland Cement Association [30] and uses a standard pavement stress of 2.75 MPa for reporting purposes. The flexible calculation is based on a computer program developed to solve the United States Army Corps of Engineers CBR method of design of flexible pavements [26], in line with document S-77-1, outlined previously. As nose landing gears typically only support a small fraction of the aircraft’s weight, they are usually not as critical as the main landing gears; as a result, the ACN/PCN method only considers the main landing gear behavior. TABLE 1.10  ACN/PCN tire pressure ranges. Maximum tire pressure

Code letter

Description

No pressure limit

W

Unlimited

1.75 MPa (254 psi)

X

High

1.25 MPa (181 psi)

Y

Medium

0.5 MPa (72 psi)

Z

Low

Airfield Compatibility: Key Principles for Landing Gear Design

57

Conveniently, the United States Federal Aviation Administration has taken the original FORTRAN codes provided by ICAO and converted them into a single interactive application (written in Visual Basic) which runs under the Windows operating system. This application, COMFAA, performs the required calculations rapidly and generates all eight ACN values for a given landing gear configuration. In addition to performing the ACN calculations, COMFAA computes PCN values according to the FAA’s standard and performs various additional pavement design calculations. The aircraft and landing gear designer will be principally interested in the ACN calculation mode. The program (and source code, if desired) can be downloaded from the FAA website1; FAA advisory circular AC150/5335-5C [63] provides comprehensive details regarding the background and use of the tool. The FAA also makes available a modified version of COMFAA, called ICAO-ACN, expressly for the generation of ACN values (it has the same interface as COMFAA but omits the PCN calculation components). Both COMFAA and ICAO-ACN include an extensive library of existing aircraft which can be modified, or used as the basis for a user-defined landing gear layout. The user interface to the program is shown in Figure 1.39 with one of the library aircraft selected (in this case, the Airbus A350).

Reprinted from COMFAA freeware program from FAA.

 FIGURE 1.39   COMFAA user interface.

 At the time of writing, COMFAA is available at: https://www.faa.gov/airports/engineering/design_­ software/.

1

58

Airfield Compatibility: Key Principles for Landing Gear Design

The ACN calculation mode is selected by clicking on the “MORE>>>” button. This provides the ability to calculate (shown in Figure 1.40) the flexible and rigid ACN values. The “ACN” radio button is selected, then the “Flexible” and “Rigid” buttons are pressed and the program will fill the results table. The aircraft gross weight, percentage of the gross weight on the main landing gears, and the number of main gears on the aircraft can be adjusted directly from the screen shown in Figure 1.40. However, it is desirable to change the tire pressure to the appropriate value to correspond to the gross weight selected. To make this change, the definition of the aircraft needs to be changed—this is performed by ensuring that the aircraft is in the “external library”—for the A350-900 example, this can be done clicking the “Add Aircraft” button. The program will prompt for a new name to be given and the aircraft will be copied to the external library. Aircraft in the external library can be fully edited. Figure 1.41 shows the example A350 adapted to indicate the ACN values for a production weight variant with a maximum ramp weight of 275 900 kg. Compared to the default aircraft, the gross weight, percentage weight on the main landing gear group, and tire pressure have been adapted. The ACN and PCN are reporting tools: the PCN values are reported by airports and ACN values are reported by aircraft manufacturers. Pavement classification values are generally provided by airports (or airport regulatory authorities) through an airport data publication. As an example, runway information is typically provided as follows: RWY 08L-26R: PCN 62 R/A/W/T which indicates that for the runway 08 left (which is also 26 right), the PCN is 62 on a rigid (R) pavement with a high strength

Reprinted from COMFAA freeware program from FAA.

 FIGURE 1.40   COMFAA ACN result for A350-900.

Airfield Compatibility: Key Principles for Landing Gear Design

59

Reprinted from COMFAA freeware program from FAA.

 FIGURE 1.41   COMFAA ACN result for Airbus A350 at 275 900 kg.

subgrade (A). There is no tire pressure limitation (W) and the classification was determined on the basis of a technical (T) analysis. The alternative to a technical evaluation is a code U which indicates that the PCN was determined based on usage. ACN values are reported by aircraft manufacturers in an airport compatibility document. This document (governed by standard NAS3601 [31]) provides a variety of information regarding the servicing and catering of the aircraft, but also includes the landing gear footprint and flotation information. The ACN values are provided in the form of a graph, such as that shown in Figure 1.42 for the A330. Comparing the A350-900 example in Figure 1.41 to the example runway provided earlier, the aircraft has an ACN of 65.4 on a “rigid A” runway and the runway’s PCN is 62, so this aircraft could not generally operate on that runway. However, periodic use of runways by aircraft with an ACN greater than the PCN is generally accepted, provided that this usage is less than 5% of the total annual usage. In this case, operation of an aircraft with an ACN 10% greater than the PCN can be accepted on a flexible pavement and operation of an aircraft with an ACN 5% greater than the PCN can be accepted on rigid or composite pavements.2 Recent research work by the FAA has shown that overloads of rigid pavements can be tolerated up to an ACN 10% greater than the PCN. It is anticipated this will be formalized by the ICAO. In the A350 example, the aircraft is unlikely to operate on the runway at its maximum ramp weight (which generates the ACN of 65.4). Using COMFAA (or interpolating from   ICAO Annex 14, attachment 28.

2

60

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.42   Flexible pavement ACN values for A330-200.

a plot) indicates a PCN (rigid A) of 65.1 for the A350-900 at its maximum take-off weight of 275 000 kg, which is exactly equal to 1.05 times the reported PCN of 62, so periodic operations of the A350-900 would be permissible on that runway. Exceedances beyond that permitted by these factors could be negotiated with the airport authority as the overloads would lead to cumulative damage and a reduced life of the pavement. The US Military permits full operations provided that the ACN/PCN ratio is less than or equal to 1.1. For a ratio between 1.1 and 1.4, limited operations up to 10 aircraft passes are acceptable, provided the pavement is inspected after each pass. For a ratio greater than 1.4, no operations are permitted except for emergencies. Appendix A provides a listing of the 100 busiest airports in the world with their runway lengths and strengths provided. Appendix B provides a list of aircraft with representative ACN values tabulated (note that ACN values can evolve as aircraft are modified to increase their maximum take-off and ramp weights). In addition to the tabulated values, a web application available at: https://transportation.erdc.dren.mil/ acnpcn/ will generate ACN values and plots for a wide variety of existing aircraft. ACR/PCR. An update to the ACN/PCN method is anticipated to be standardized

by the ICAO in 2020 with full international adoption in the year 2024. This change is to take advantage of current methods of mechanistic pavement analysis and to eliminate the need for various empirical factors (such as alpha factors) that are a fundamental part of the ACN/PCN method. The replacement methodology is termed the ACR/PCR (Aircraft Classification Rating/Pavement Classification Rating) system. The system adopts the same concepts as the ACN/PCN method (namely, that an aircraft with an ACR less than the declared PCR may operate without restriction on that surface) and a similar reporting format. For both flexible and rigid pavements, the PCR is calculated using layered elastic analysis in which the subgrade strength is characterized by modulus of elasticity, E (rather than CBR or k). Thus, the ACR/PCR method defines a single, unified set of four standard sub-

Airfield Compatibility: Key Principles for Landing Gear Design

61

TABLE 1.11  ACR/PCR subgrade values. Subgrade code Subgrade strength level

Subgrade modulus of elasticity, E

A

High strength

200 MPa (29,008 psi); Represents all values of E 150 MPa

B

Medium strength

120 MPa (17,405 psi); Represents all values of E in the range 100 E < 150 MPa

C

Low strength

80 MPa (11,603 psi); Represents all values of E in the range 60 E < 100 MPa

D

Ultra-low strength

50 MPa (7252 psi); Represents all values of E < 60 MPa

grade categories based on E, which applies to both types of pavements (Table 1.11). In a further departure from the ACN system, the standard number of coverages for computing flexible ACR has been raised from 10,000 to 36,500. The pavement response to the main landing gear is still related to a mathematically derived single wheel load (DSWL), but the standard tire pressure has been increased to 1.5 MPa (218 psi). While ACN in all cases determined the DSWL from a single main landing gear group (e.g., a four wheel group in the case of a dual-tandem gear), the ACR method for flexible pavements considers the contribution of all tires in the main landing gear (Rigid ACR continues to be based on a single main gear group). Table 1.12 lists the elastic properties of the standard pavement layers used to compute rigid and flexible ACR. In addition to the listed properties, a large number of other parameters of the computation must be defined, including the method of assigning variable elastic properties to aggregate base layers, the functional relationship between computed strain and allowable coverages (the failure model), and the exact locations of layered elastic strain evaluation points. Due to the complexity of the computation, it must be performed by a standard computer program. The standard program adopted by ICAO for this purpose is ICAO-ACR, which is supported by the FAA and is available as a standalone program or as a dynamic-link library (DLL) for linking to other programs (e.g., for PCR computation). The FAA’s pavement design software FAARFIELD (beginning with FAARFIELD version 2.0) incorporates ICAOACR as part of its PCR computation function. Sample outputs from ICAO-ACR for

TABLE 1.12  Standard pavement structures for ACR computation. Rigid

Flexible

MLG type

All MLG configurations

Aircraft with 1 or 2 wheel MLG

Aircraft with more than 2 wheels in MLG

Surface layer

E1 = 27,579 MPa, ν1 = 0.15, t1 is the design variable

Hot-Mix Asphalt E1 = 1379 MPa, ν1 = 0.35, t1 = 76 mm

Hot-Mix Asphalt E1 = 1379 MPa, ν1 = 0.35, t1 = 127 mm

Base layer

E2 = 500 MPa, ν1 = 0.2, t2 = 200 mm

Crushed aggregate E2 = f(t), ν2 = 0.35, t2 is the design variable

Crushed aggregate E2 = f(t), ν2 = 0.35, t2 is the design variable

Subgrade layer

Subgrade A,B,C, and D – infinite depth

Subgrade A,B,C, and D – infinite depth

Subgrade A,B,C, and D – infinite depth

62

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted with permission from David Brill at the FAA.

 FIGURE 1.43   Flexible ICAO-ACR result for Airbus A350 at 275 900 kg.

a flexible ACR calculation and a rigid ACR calculation are shown in Figures 1.43 and 1.44, respectively. The numerical value of ACR is defined as two times the DSWL, expressed in hundreds of kilograms. Those who are already familiar with the ACN/PCN system will note that the resulting ACR values are on the order of 10 times greater than the corresponding ACN value. This change was intended to allow easy comparison between the two methods, but at the same time, avoid confusion during transition to the new system. Periodic use of runways by an aircraft with an ACR greater than the PCR is generally accepted up to an ACR 10% greater than the PCR for both rigid and flexible pavements.

Membrane and Mat Surfaces During World War II a temporary mat surface was developed for use directly on soil in order to increase the load bearing capability. This interlocking steel mat (Figure 1.45) was named pierced steel planking (but often called Marston mat after the location where it was first trialed) and provided an effective surface in the 1940s and 1950s. However, it was found that vegetation grew through the holes in the planking and high jet exhaust velocities would disturb the surface and raise debris.

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted with permission from David Brill at the FAA.

 FIGURE 1.44   Rigid ICAO-ACR result for Airbus A350 at 275 900 kg.

Reprinted from http://www.nationalmuseum.af.mil/Upcoming/Photos/ igphoto/2000355636/.

 FIGURE 1.45   F-86 Sabre parked on pierced steel planking.

63

64

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 1.13  Runway mat types and capabilities.* Mat type

M8A1

XM18

M19

AM-2

Truss Web

User

US Army

US Army

US Army

US Airforce, Navy & Marines

US Army

Category

Light

Medium

Medium

Medium

Heavy

Load Capacity 1000 coverages of a 30,000 poundsingle wheel load at 100 psi tire pressure on a subgrade with CBR 4

1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4

1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4

1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4

1000 coverages of a 50,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4

Mat weight per square foot

4.7 pounds

4.25 pounds

5.8 pounds

6.3 pounds

7.5 pounds

* Appendix N of FM 5-430-00-2/AFJPAM 32-8013, Vol ll.

Aluminum extrusion based mats were developed to counter these issues, providing a solid surface while retaining the interlocking capability and light weight of the pierced steel planking. A number of mats are available for expeditionary airfields as shown in Table 1.13. The AM-2 mat in particular (Figure 1.46) has proven popular with a number of militaries. In many cases the AM-2 mat is used to produce a semipermanent airfield; it can also be used to provide temporary repairs to bomb-damaged conventional runways.

Reprinted from https://media.defense.gov/2014/Sep/08/2000935943/-1/-1/0/ 140904-M-ZZ999-002.JPG.

 FIGURE 1.46   Installation of AM-2 matting.

Airfield Compatibility: Key Principles for Landing Gear Design

65

Flexible membranes also exist which can be used in lieu of matting or can be used beneath matting to control vegetation and to protect the surface of the subgrade. Flexible membranes do not improve the load bearing capability of the subgrade but provide dust control and waterproofing. Flexible membranes such as the WX-18 and T-17 membrane are provided with nonskid compounds to provide effective braking performance in inclement weather. The WX-18 heavy-duty membrane can resist the braking action of a C-130 Hercules aircraft. In comparison to membranes, mats provide a significant improvement to the load bearing capability. The PCASE application can be used to analyze a given aircraft for operability on the three categories of mat outlined in Table 1.13.

PCASE Software for Flotation Analysis The PCASE (Pavement Computer Aided Structural Engineering) software3 is a public domain application written and maintained by the Transportation Systems Center and Engineering Research and Development Center of the US Army Corps of Engineers. The application can be used for pavement design and technical evaluation but also for landing gear evaluation on flexible, rigid, aggregate, unpaved, and membrane/mat surfaces. Given the landing gear geometry and load, PCASE can compute ACN values and plots as well as indicating the acceptable number of passes for all surface types. PCASE provides a large library of existing aircraft and permits new designs to be developed. This functionality is through the “Vehicle Edit” Module (Figure 1.47). With the geometry, loading, and tire pressures configured, the “ACN Curves” tab of the module will provide the ACN calculations (Figure 1.48). The “Evaluation” module can be used to determine the acceptable number of passes for a given aircraft configuration on a wide variety of surfaces. The anticipated traffic needs to be established in the “Traffic” module prior to running an evaluation. New traffic patterns can be created or an existing pattern can be selected or modified. Figure 1.49 shows the traffic module with a special operations pattern selected for unpaved surfaces. With a pattern selected, the Evaluation module can be loaded and the specific type of soil or pavement is selected. Figure 1.50 shows the variety of surface layers available to the analyst. For each surface layer a number of options exist. A number of layers can be added to appropriately model a pavement and the subgrade. An analysis for a Dornier DO-328 (C-146A) turboprop is shown in Figure 1.51 for an unsurfaced natural subgrade with a CBR of 5. The analysis indicates that the aircraft could make 64 passes at the design load or 100 passes if the aircraft weight was reduced to 26,700 pounds. The PCASE software represents the most adaptable tool for the aircraft and landing gear designer as it can model most soils, aggregates, and pavements.

  Available at: https://transportation.erdc.dren.mil/pcase/.

3

66

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.47   PCASE Vehicle Edit Module.

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.48   PCASE ACN Curves for 747.

Airfield Compatibility: Key Principles for Landing Gear Design

67

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.49   PCASE traffic module.

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.50   PCASE layer options.

Engineered Materials Arresting Systems (EMAS) While not relevant for the study of flotation, the landing gear designer should be aware of the existence of engineered materials arresting systems (EMAS) which are becoming more common at airports around the world. An EMAS is a system of crushable concrete or other material placed at the end of a runway—typically at airports where the airport boundary or other obstructions are close to the runway end. An aircraft leaving the runway surface enters the EMAS which collapses progressively, absorbing the kinetic energy of the aircraft and bringing it to a stop. Figure 1.52 shows the main landing gear of an aircraft decelerated by an EMAS. The FAA guidelines [32] for EMAS installations stipulated that the system be designed for aircraft leaving the

68

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from PCASE freeware program from US Military.

 FIGURE 1.51   PCASE evaluation module – results.

Reprinted from NTSB http://lessonslearned.faa.gov/ll_main.cfm?TabID= 4&LLID=56&LLTypeID=2.

 FIGURE 1.52   Main landing gear in EMAS.

Airfield Compatibility: Key Principles for Landing Gear Design

69

runway (entering the EMAS) at 130 km/h (70 knots) and that the system be designed to work by exerting predictable deceleration forces on the landing gear, minimizing the potential for structural damage to the aircraft. EMAS systems will react differently to different sized aircraft and it may be difficult to predict the performance of the EMAS for aircraft weighing less than 11 300 kg (25,000 pounds).

Snow and Ice Runways In certain areas of the world operation on ice is the only effective way to provide a landing and maneuvering surface for aircraft. Typically these runway surfaces are used in Arctic or Antarctic operation. Traditionally only military or suitably adapted rugged aircraft (such as the de Havilland Twin Otter) operated into these environments, but an Airbus A319 aircraft operates to the glacial blue ice runways at McMurdo and Wilkins in Antarctica. Figure 1.53 shows an Antonov AN-74 on a sea ice floe. Prepared Snow Runways The strength of snow is highly variable and depends on the amount of compaction (density), age hardening (sintering), and temperature. A prepared, compacted snow runway can be considered analogous to an aggregate surface runway. Rather than CBR as a measure of the strength of the snow (CBR measurements are difficult to conduct in Polar environments and not appropriate for soft snow), varying cone penetrometers are employed. An empirical relationship [33] has been developed to

Akimov Igor/Shutterstock.com.

 FIGURE 1.53   Antonov AN-74P on Arctic Ice Floe near the North Pole.

70

Airfield Compatibility: Key Principles for Landing Gear Design

relate the required ram hardness (units resulting from the use of the Rammsonde cone penetrometer) to the wheel load, contact pressure, and coverages:

R

e

4.94 apW 0.146

0.5

e 0.7 logn

where R is the required mean ram hardness (for the snow pavement thickness from the surface to a depth of r) r is the radius of a circle with equivalent contact area as the tire p is the average contact pressure W is the wheel load a is equal to 0.044 when p is in units of kg/cm2 and W is in kg; equal to 0.00281 when p is expressed in pounds per square inch and W in pounds n is the number of repetitive wheel coverages (within a short period of time) Tire contact area can be computed as outlined previously for unpaved surfaces:



A 2.36d

d

DO b DO

d w d DF

200



where A is the tire contact area in square inches d is the tire radial deflection in inches DO is the tire outside diameter in inches w is the tire section width in inches b is the tire deflection in percent DF is the wheel flange diameter in inches This expression for R gives the ram hardness required in the top layer of snow (from the surface to a depth of r) which is typically between 0.2 and 0.3 m. For convenience, the relationship between ram hardness and other hardness measurements is provided in Figure 1.54. The wheel coverages value, n, is for wheels in a row: a single or two wheel main landing gear would have an n value of 1, a four wheel bogie an n value of 2, and a C-5 Galaxy an n value of 4. It is important to note that naturally occurring snow is unlikely to have sufficient strength to support wheeled aircraft; a C-130 requires a ram hardness of about 500, a DC-3 a ram hardness of about 250. Experimental work in Antarctica using specialized snow milling machinery, grading, and levelling have achieved ram hardness values over 300 and multiple additional compacting runs have achieved ram hardness levels of more than 600.

Airfield Compatibility: Key Principles for Landing Gear Design

71

© SAE International.

 FIGURE 1.54   Relationship between various snow strength measurements and CBR.

Ice Runways The key consideration for wheeled aircraft operation (Figure 1.56) on ice is to ensure that the ice is thick and strong enough to support both the static loads imparted by the aircraft and the dynamic loads created in a floating ice sheet by the take-off, landing, and movement of the aircraft. In addition, the surface of the ice needs to be prepared to ensure sufficient friction is created to permit directional control and braking of the aircraft. This is typically done by ensuring a frozen, compacted snow surface is above the ice. Once an aircraft is parked they can slowly sink into the snow and ice due to creep deformation of the ice; aircraft have to be tended and moved periodically to avoid excessive sinking when parked. The rate of creep depends on the ice temperature. For aircraft such as the C-17 and C-130 a deformation of the ice of 25 mm can occur in 1 hour at an ice temperature of −2.5°C and 3 hours at −10°C [34]. The behavior of ice is similar to that of concrete—it is strong in compression but relatively weak in tension. In addition, it has very low fracture toughness. The properties of ice vary depending on the type of ice, the density, and temperature. In general, ice tensile strength [35] varies between 0.7 and 3.1 MPa while the compressive strength is between 5 and 25 MPa for temperatures between −10°C and −20°C. It is possible to analyze ice sheet runways as if they were rigid pavement runways, but with the appropriate properties for the relevant ice. The flexural strength used for the now defunct Pegasus glacial ice runway in Antarctica was 39.2 kPa. Operating a C-17 at 263 000 kg mass requires an ice thickness of 2.25 m (safety factor 1). Considering a safety factor of three, a thickness of 6.8 m is recommended. The thickness of the Pegasus ice sheet was around 30 m while the Wilkins runway in Antarctica is estimated to have a thickness of around 700 m. The use of proof rollers (rolling the surface with a load and tire pressure similar to the aircraft) prior to utilization of the runway is recommended to ensure that the ice surface will withstand the aircraft loads. Glacial runway surfaces are often topped with “white ice” pavement—a pavement made from compacted and frozen snow. This white ice helps protect the ice surface from solar radiation and melting and provides better friction characteristics for braking and maneuvering. The white ice layer, being compacted snow, is similar to a prepared

72

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 1.14  Minimum white ice pavement strength. Aircraft

Tire pressure (psi)

Minimum RSP Maximum Index DCP Index

Minimum CBR Minimum Ram Index Hardness

C-130

95

55

29

6.8

69

C-5A

111

56

28

6.9

70

C-17

155

61

26

7.7

75

757-200

180

65

24

8.4

80

P-3

200

69

22

9.1

86

767-300ER

205

70

22

9.3

87

A319

210

72

21

9.5

89

snow runway and must be tested to ensure that there is sufficient strength to resist the contact pressure from the tires. Typically, a penetrometer such as the Russian snow penetrometer or a dynamic cone penetrometer is used. These penetrometers are similar but enhanced versions of the Rammsonde penetrometer. Tire pressure dominates the local behavior of the white ice pavement—hardness values for various aircraft are shown in Table 1.14 and required snow hardness versus tire pressure is shown in Figure 1.55. These values are from the US Air Force document FC 3-260-06F [35]. An analysis for wheeled aircraft operation on sea or fresh water ice is best performed with expert information on the strength of ice. Sea and fresh water ice have a significantly larger flexural strength than glacial ice; as a result, a much thinner layer of ice can support an aircraft compared to glacial ice. However, the strength of ice remains highly variable and depends on a variety of factors, including the ice temperature and the temperature history (ice can become brittle following a significant drop in temperature). Three aspects need to be considered for operating an aircraft on a floating ice sheet: the strength of the ice, the creep deformation of the ice for stationary loads, and the dynamic behavior of the ice and supporting water

Reprinted from NTSB http://lessonslearned.faa.gov/ll_main. cfm?TabID=4&LLID=56&LLTypeID=2.

 FIGURE 1.55   Strength criteria for white ice pavement.

Airfield Compatibility: Key Principles for Landing Gear Design

73

 FIGURE 1.56   Airbus A319 and DC-3 Turbo conversion on blue ice runway

Stu Shaw/Shutterstock.com.

in Antarctica.

during aircraft movement. For the largest aircraft operating into floating ice runways, such as the C-17 operating to McMurdo in Antarctica, finite element solutions have been performed to produce thickness requirements which are based on temperature and season [34]. These guidelines also provide parking time limits to avoid creep failure of the ice. Typically, the amount of creep deformation accepted is equal to the freeboard of the ice sheet (more deformation than this and water will begin to seep through ice cracks and pool). For the C-17 at McMurdo, the minimum allowable ice thickness at maximum aircraft weight is about 1.8 m and the parking times are on the order of 1–3 hours. An approach [36] to determining safe working loads for ice sheets which has been used historically is of the form:

P

Ah 2

where P is the working load A is an empirically determined value h is the thickness of the ice sheet Transport Canada [37] has used that relationship to develop safe ice thickness curves for aircraft. Reducing those curves to an expression for the required ice thickness gives:

h 2110a

0.565

P

where h is the minimum safe ice thickness in millimeters; must always be greater than 250 mm for aircraft operations a is the allowable ice flexural stress in kPa P is the gross weight of the aircraft in kN The minimum safe ice thickness is considered to be acceptable for limited aircraft movements (up to three operations per day). Use beyond that requires expert

74

Airfield Compatibility: Key Principles for Landing Gear Design

Adapted from Ice Aerodrome Development – Guidelines and Recommended Practices, Advisory Circular AC 301-002, Transport Canada, 2011.

 FIGURE 1.57   Allowable ice flexural stress.

examination of the ice strength. The allowable ice flexural stress is given by Figure 1.57. Ice temperature is measured at a depth of 800 mm or estimated as the average air temperature for the preceding 9 days. The Transport Canada recommendation for parking of aircraft is to ensure that aircraft are separated by at least one “load influence radius” from other loads, open cracks, and free ice edges. The load influence radius is given by:

R 0.41h 0.75

where R is the load influence radius in meters h is the ice thickness in millimeters When loads move on a floating ice sheet, the ice deflects in response to the load and displaces the water beneath it. The displacement of the water produces waves under the ice sheet. At a vehicle speed termed the “critical speed” a resonant amplification of the stresses in the ice sheet will occur; this can lead to ice sheet failure. The critical speed is dependent on the thickness of the ice sheet and the depth of the water beneath the sheet. Brief periods of time where the speed of the aircraft match the critical speed are acceptable [38]—it is sustained travel at the critical speed which will lead to resonant amplification. The critical taxiing speeds are given Figure 1.58. An analysis conducted for the Il-76 [39] aircraft, considering an allowable flexural strength of sea ice of 2.35 MPa, produced a minimum acceptable sheet thickness of 1 m. This analysis matches the Transport Canada approach very well (which predicts a minimum ice thickness of 1010 mm at that ice strength). The Il-76 analysis indicated that the take-off phase generated higher loads than the landing loads. The dynamic amplification of the stress induced in the ice compared to when the aircraft was static was approximately 1.25 for ice thicknesses of 1, 2, and 3 meters.

Airfield Compatibility: Key Principles for Landing Gear Design

75

Reprinted from https://tc.canada.ca/en/aviation/reference-centre/advisory-circulars/ advisory-circular-ac-no-301-003.

 FIGURE 1.58   Critical taxiing speeds.

Helidecks and Heliports Rotorcraft operating to elevated platforms, ships, and off-shore installations alight on fabricated decks which have dynamic properties which runways and helipads supported by soil do not. Typically these decks are designed for a specific rotorcraft but situations may arise where new aircraft are being designed to utilize existing installations. In terms of off-shore oil installations, many regulatory agencies have standards dictating the required strength, but the UK Civil Aviation Authority’s document CAP 437 [40] and the ICAO Heliport Manual [41] provide the most mature guidance. The ICAO standard requires that the deck be designed to accommodate a heavy normal landing—a descent rate of 1.8 m/s, resulting in an impact force 1.5 times the maximum take-off mass of the helicopter and an emergency landing—a descent rate of 3.6 m/s, resulting in an impact force 2.5 times the maximum take-off mass of the helicopter. The standard requires that the landing be considered as a “two point” landing—landing on both main gear groups (or skids). In addition, the standard requires that the effect of sympathetic response of the platform be included in the loads. In the absence of an analysis considering the dynamic response of the helicopter, landing gears, and platform, the CAA recommends a structural response factor of

76

Airfield Compatibility: Key Principles for Landing Gear Design

corlaffra/Shutterstock.com.

 FIGURE 1.59   Helicopter landing on offshore platform.

1.3 be  added to the dynamic loads calculated for the heavy normal and emergency landings.

Heavy normal landing load N



Emergency landing load N

MTOM kg

MTOM kg

m s2

1.5 9.81

2.5 9.81

m s2

1.3

1.3

Many rooftop platforms are manufactured with reinforced concrete, but platforms at sea tend to be made from steel or aluminum. It can be seen from the image in Figure 1.59 that the platform surface is analogous to the surface of a drum and that an aircraft landing upon it will excite it into oscillation. When the natural frequency of the deck is 20 Hz or lower, dynamic amplification of the applied landing load will occur [42]. Considering a platform designed to meet the CAA criteria and originally conceived to support the Sikorsky S61N as its largest helicopter (the S61N has a maximum take-off mass of 9298 kg) then the relevant dynamic loads according to the standard are: Heavy normal landing load N

9298 kg 296, 323 N

m s2 178 kN

1.5 9.81

177, 794 N

Emergency landing load N

9298 kg

m s2 296 kN

2.5 9.81

1.3

1.3

Airfield Compatibility: Key Principles for Landing Gear Design

77

© SAE International.

 FIGURE 1.60   Helideck spring-mass-damper system.

Every helideck’s dynamic response will vary according to its method of construction. A refined calculation for the actual dynamic loads could be conducted considering the dynamics of the helicopter, the landing gears, and the helipad. In general, the helideck can be modeled as a spring-mass-damper system as shown (for an arbitrary helideck) in Figure 1.60; the damping arises from friction in the joints of the structure so it can be modeled as Coulomb damping. Specific values of mass (M), stiffness (K), and damping coefficient (C) will need to be sought from the designer or operator of the helideck. An analysis [43] performed for a Bell 214 Helicopter (maximum take-off mass of 6260 kg) indicates a deck size of 6.1 m by 7.6 m in reinforced concrete with a thickness of 0.18 m, which would have an approximate mass of 20 000 kg and an estimated natural frequency of 5–7 Hz. An example response for a hypothetical large helicopter landing on a helideck with a 13 Hz natural frequency is shown in Figure 1.61. The ICAO has standardized helideck point loads in the ranges provided in Table 1.15; note that these are static loads for when the rotorcraft is parked. The helideck manufacturer may need to know the actual wheel spacing and tire footprint areas in order to perform a refined deck strength analysis.

Naval Vessels/Aircraft Carriers The US Navy provides maximum wheel reactions for carrier and amphibious warfare vessels in their specification MIL-A-8863C [44]. The maximum allowable deck reaction is a function of the type of vessel, location on the vessel, tire capacity and pressure, and tire spacing. The maximum deck reaction, F, is given in thousands of pounds by an equation (or in the specification, a nomogram) specific to each deck type and location.

78

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 1.61   Helideck response for hypothetical landing.

TABLE 1.15  ICAO helideck static load ranges. Helicopter category

Maximum take-off mass

Point load for each wheel

Landing gear wheel centers

kg

kN

kN

m

1

Up to 2300

up to 22.6

12.0

1.75

2

2301–5000

22.6–49.2

25.0

2.0

3

5001–9000

49.2–88.5

45.0

2.5

4

9001–13 500

88.5–133.0

67.0

3.0

5

13 501–19 500

133.0–192.0

96.0

3.5

6

19 501–27 000

192.0–266.0

133.0

4.5

To  determine the value, an intermediate value, C, must be  computed from the following expressions:



C

K

K

0.7

P p

p 0.3 r

where P is the rated load of the tire, in pounds p is the operational pressure of the tire, in pounds per square inch r is the rated pressure of the tire, in pounds per square inch

Airfield Compatibility: Key Principles for Landing Gear Design

79

In the case of dual wheel landing gears, the value F must be adjusted by a factor based on the wheel spacing to determine the maximum deck reaction F′. Aircraft Carriers In the catapult area, the maximum deck reaction force per landing gear is given by:

F

14C 3 175C 2 1343C 169.5 100, 000, 000 1, 000, 000 10, 000

In the landing area, the maximum deck reaction force per landing gear is given by:

F

12C 3 171C 2 1379C 169.5 100, 000, 000 1, 000, 000 10, 000

Note that these expressions have been determined by digitizing the nomogram in MIL-A-8863C(AS) and are valid only for values of C in the range of 15–600. While they generate values of F which are within the reading error of the nomogram, in case of any dispute, the nomogram should be used. In the case of dual wheel landing gear, the deck reaction F′ is given by:

F

F Ke

where

Ke

6b 1.01 1000

b′ is the center to center wheel spacing in inches. Amphibious Warfare Ships The maximum deck reaction force (in thousands of pounds) per landing gear for an amphibious assault ship is given by:

F

4C 3 475C 2 58C 49.3 100, 000, 000 10, 000, 000 1000

Note that this expression has been determined by digitizing the nomogram in MIL-A-8863C(AS) and is valid only for values of C in the range of 15–600. While it generates values of F which are within the reading error of the nomogram, in case of any dispute, the nomogram should be used. In the case of dual wheel landing gear, the deck reaction F′ is given by:

F

F Ke

80

Airfield Compatibility: Key Principles for Landing Gear Design

where

Ke

3

32 b

1163 b

2

112b 1 1, 000, 000 1, 000, 000 10, 000

b′ is the center to center wheel spacing in inches. The equation is valid only for values of b′ between 0 and 25 inches

Example For an aircraft having a single wheel landing gear with a 30 × 7.7 tire with the properties: P = 21,300 pounds p = 400 pounds per square inch r = 360 pounds per square inch The value K is computed:



K

0.7

400 0.3 1.04 360

The value C is computed:



C 1.04

21300 55 400

For a carrier landing deck, the value F would be:



F

12 55

3

171 55

2

1379 55

100,000,000 1,000,000

10,000

169.5 177

The maximum deck reaction for a single wheel landing gear having a 30 × 7.7 tire would be 177,000 pounds. For a dual wheel landing gear with the same tires spaced at 14 inches from center to center, then the value of Ke is:



Ke

6 14 1000

1.01 0.93

The resulting maximum deck reaction is:



F

177 190 0.93

The maximum deck reaction for a dual wheel landing gear having a 30 × 7.7 tire would be 190,000 pounds.

2 Maneuvering

A

side from taking off and landing, an aircraft must also be able to maneuver around an airport: enter and exit runways, follow taxiways, etc. The International Civil Aviation Organization has standardized runway and taxiway sizes for different dimensions of aircraft. In addition, an aircraft must be able to perform certain maneuvers, such as turning 180° on a runway. An aircraft and its landing gear must be designed to operate at the anticipated airports, which as Figure 2.1 shows, can be a complicated network of runways, taxiways, and aprons. The aircraft must be sufficiently maneuverable to remain on the paved surface, which requires that the wheel span of the aircraft fit within the width of the runways and taxiways and that sufficient steering authority is provided to perform required maneuvers (turning onto and off of runways, etc.). The concept of wheelbase, track, and wheel span are shown in Figure 2.2.

ICAO Airport Standards Table 2.1 provides the ICAO codes for different sized aircraft: the main gear wheel span is the distance between the outside edges of the main gear wheels. The aircraft reference field length is the “balanced field length”—essentially the distance required to accelerate for take-off, reject the take-off at decision speed, and stop the aircraft at the maximum take-off mass, considering standard sea level atmospheric conditions. Example aircraft for each class are shown in Table 2.2. The defined minimum runway widths for each class of runway are provided in Table 2.3 and the minimum taxiway widths are provided in Table 2.4. Given the defined runway and taxiway widths, aircraft must observe specific clearances (Table 2.5) to ©2022 SAE International

81

82

Airfield Compatibility: Key Principles for Landing Gear Design

Josef Hanus/Shutterstock.com.

 FIGURE 2.1   Aerial view of airport.

© SAE International.

 FIGURE 2.2   Wheelbase, track, and wheel span.

TABLE 2.1  ICAO aerodrome reference code. Code number

Aircraft reference field length

Code letter

Wingspan

Outer main gear wheel span

1

Less than 800 m

A

Up to but not including 15 m

Up to but not including 4.5 m

2

800 m up to but not including 1200 m

B

15 m up to but not including 24 m

4.5 m up to but not including 6 m

3

1200 m up to but not including 1800 m

C

24 m up to but not 6 m up to but not including 36 m including 9 m

4

1800 m and over

D

36 m up to but not 9 m up to but not including 52 m including 14 m

E

52 m up to but not 9 m up to but not including 65 m including 14 m

F

65 m up to but not 14 m up to but not including 80 m including 16 m

Source: ICAO Annex 14, page 1–12.

Airfield Compatibility: Key Principles for Landing Gear Design

83

TABLE 2.2  Representative aircraft for various ICAO codes. Code 1A

Code 1B

Code 1C

Code 1D

Beech 23-100 Britten BN2 Cessna 152421 Fuji FA200180 Grumman G164 Mitsubishi MU2 Piper PA18PA60 Pitts 2A

Beech 80 Beech 90 Beech 200 Cessna 402 Cessna 414 Cessna 441 Dornier D0228 DHC-6 Twin Otter

DHC-4 Caribou DHC-7

DHC-5E

Code 2A

Code 2B

Code 2C

Lear Jet 24F Lear Jet 28/29

Beech 1900 Casa C212 Embraer EMB110 Shorts SD3-30 Metro III

DHC-8 ATR42 Cessna 550

Code 3A

Code 3B

BAe125-400 Dassault DA-10 Lear Jet 25D Lear Jet 36A

BAe125-800 Canadair CL600 Canadair CRJ200 Cessna 650 Dassault DA-20 Dassault DA-50 Dassault Falcon 900 EMB145 F28 - 2000 Shorts SD3-60

Lear Jet 55 IAI 1124 Westwind

Code 1E

Code 1F

Code 2D

Code 2E

Code 2F

Code 3C

Code 3D

Code 3E

Code 3F

BAe146 BAe748 BAe Jetstream 31 BAe Jetstream 41 DC-3 DC-9-20 EMB120 EMB170 F27-500 F28-3000/ 4000 F50 F100 Saab SF340

Airbus A300 B2 Q400

84

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 2.2  (Continued) Representative aircraft for various ICAO codes. Code 4A

Code 4B

Code 4C

Code 4D

Code 4E

Code 4F

Airbus A320 Airbus A321 B717 B727 B737 Concorde DC-9/MD80 EMB190

Airbus A300 Airbus A310 B707 B757 B767 DC-8 DC-10/MD11 Lockheed L100 (C130) Lockheed L188 Lockheed L1011

Airbus A330 Airbus A340 B747 B747 SP B777

Airbus A380

TABLE 2.3  ICAO minimum runway widths. Code number

Code letter A

B

C

D

E

F

1a

18 m

18 m

23 m







2a

23 m

23 m

30 m







3

30 m

30 m

30 m

45 m





4





45 m

45 m

45 m

60 m

Source: ICAO Annex 14, page 3-3. a  The width of a precision approach runway should be not less than 30 m where the code is 1 or 2. TABLE 2.4  ICAO taxiway widths. Code letter

Taxiway width (dimension “x” in Figure 2.3)

A

7.5 m

B

10.5 m

C

15 m if intended to be used by aircraft with a wheel base less than 18 m; 18 m if intended to be used by aircraft with a wheel base equal to or greater than 18 m.

D

18 m if intended to be used by aircraft with outer main gear wheel spans less than 9 m; 23 m if intended to be used by aircraft with outer main gear wheel spans equal to or greater than 9 m.

E

23 m

F

25 m

Airfield Compatibility: Key Principles for Landing Gear Design

85

TABLE 2.5  ICAO required clearances – wheel to turn pad or taxiway edge

Code letter

Outer main wheel to edge clearance (dimension “y” in Figure 2.3 and Figure 2.4) (Cockpit centered over taxiway/turn pad markings)

A

1.5 m

B

2.25 m

C

3 m if intended to be used by aircraft with a wheel base less than 18 m; 4.5 m if intended to be used by aircraft with a wheel base equal to or greater than 18 m.

D

4.5 m

E

4.5 m

F

4.5 m

Wheel base means the distance from the nose gear to the geometric center of the main gear

Reprinted with permission from © ICAO.

 FIGURE 2.3   Taxiway width and wheel to pavement edge diagram.

the taxiway edges as shown in Figure 2.3. Ongoing work at ICAO will result in some amendments to these dimensions, expected to be ratified in 2020 and 2022; slight reductions in required runway and taxiway widths (aimed at reducing infrastructure costs) should be anticipated. For a code D, E, or F runway which is not provided with taxiway access, a turn pad is provided to permit aircraft to taxi down the runway and turn through 180° at the runway end. Figure 2.4 shows the typical turn pad arrangement. The dimensions of each turn pad depend on the size (code letter) of the runway. In addition to typical 90° runway to taxiway turns, runways may be fitted with rapid exits in order to permit a higher flow of traffic, as shown in Figure 2.5. The turn-off radius is typically at least 550 m for code numbers 3 and 4 and at least 275 m for code numbers 1 and 2. These radii are designed to permit exit speeds of 93 km/h for codes 3 and 4 and 65 km/h for codes 1 and 2, in wet conditions. The intersection angle is typically 30° but may be between 25° and 45°.

86

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted with permission from © ICAO.

 FIGURE 2.4   Turn pad layout.

Reprinted with permission from © ICAO.

 FIGURE 2.5   Rapid exit taxiway.

Required Maneuvers—NAS3601 For manufacturers of large civil aircraft, it is typical to require the presentation of data regarding the maneuverability of the aircraft on the ground in accordance with NAS3601 [31]. The required data include the aircraft turn radii for a variety of nose wheel steering angles, the clearance radii: swept positions of the extremities of the aircraft (wing tips, tail cone, etc.), runway and taxiway turn paths (90°, 135°, and 180° turns), and runway holding bay clearance data. A limited set of examples are shown in Figures 2.6 and 2.7.

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 2.6   Aircraft turn radius.

© SAE International.

 FIGURE 2.7   Composite of typical turn maneuvers.

87

88

Airfield Compatibility: Key Principles for Landing Gear Design

Required Maneuvers—Land-Based Military Aircraft Large military aircraft will be required to perform the same maneuvers as civil aircraft—and may be required, by operational necessity, to perform tighter turns than civil aircraft. These requirements will typically arise from the definition of the specific aircraft mission. The UK Ministry of Defence requires1 that military aircraft execute the turns at the speeds indicated in Table 2.6. These turns are to be considered to be constant radius turns at the indicated speeds with zero aircraft bank or considering bank and rate of roll effects if they are worse.

Required Maneuvers—Shipboard Military Aircraft A ship presenting a very confined space for aircraft operations and stowage, aircraft designed for operations to and from ships must be designed for maximum maneuverability, and typically require nose wheels which permit 360° rotation. Taxiing maneuvers for parking are generally conducted with a tug or other vehicle. A variety of constraints on aircraft and landing gear sizing exist—many of which are specific to certain classes of vessels—so it is important to carefully check the requirements. For instance, the wheel span on carrier based aircraft may be limited to a maximum of around 7.6 m to ensure clearance to obstructions when using the catapult system. TABLE 2.6  Military aircraft turn maneuvers. Radius (m)

2

3

4

5

10

15

20

30

50

Speed (knots)

5

6

7

8

11

14

16

20

25

  DEF STAN 00-970 leaflet 42, paragraph 4.5.

1

3 Surface Texture and Profile

T

he aircraft and landing gear are required to operate in contact with the ground, which does not provide a uniform surface texture or profile. The contact surface type and texture are key elements in determining the available friction coefficient; this can be altered with various contaminants such as snow or water, and is further elaborated in Chapter 3 of The Design of Aircraft Landing Gear, (see also Aircraft Tires: Key Principles for Landing Gear Design).

Paved Runways A paved runway, while nominally designed as a flat, smooth surface, presents irregularities at a number of scales. At the largest scale, the runway may not be perfectly horizontal—it may follow the path of the land and have significant elevation changes (Figure 3.1). These large scale elevation changes typically do not present an issue for the landing gear and only impact the aircraft performance for take-off and landing distances. At a closer scale, the runway will exhibit roughness—local elevation changes (bumps and hollows) which can have a significant effect on the aircraft and on the landing gear. At the closest scale, the texture of the top course of pavement partly determines the drainage behavior of the runway and interacts with the tires to generate friction for directional control and braking.

Micro/Macrotexture Microtexture is the texture of the individual stones which form the aggregate used in the pavement (Figure 3.2). This microtexture is a key element in ensuring skid ©2022 SAE International

89

90

Airfield Compatibility: Key Principles for Landing Gear Design

FotoLot/Shutterstock.com.

 FIGURE 3.1   Aircraft landing on runway with elevation change.

Reprinted from TSB report A10H0004.

 FIGURE 3.2   Microtexture and macrotexture.

resistance on dry runways and at low speed on wet runways as the local asperities on the material interact with the rubber tire to generate friction and the irregularity provides a path for the water film to escape. The pavement designer should select a crushed material aggregate that will withstand polishing to ensure the desired microtexture is retained over time. Covering or masking of the local asperities (by water film or by buildup of debris, such as tire rubber) will significantly change the local friction performance of the surface course. Macrotexture, by contrast, is the texture among the aggregate, and can be judged by eye. The runway surface of Figure 3.3 shows a coarse macrotexture. The macrotexture results typically from the size of the aggregate selected or from the surface treatment applied to the surface course. The macrotexture is of particular importance in determining the high speed friction characteristics of the runway. An open macrotexture is desired which provides significant pathways for water evacuation under the action of the tire. A closed macrotexture, as might be found on roadway and highway surfaces, can contribute to low friction being generated on airport runways as the aircraft speeds and tire pressures are higher, contact patches are smaller, and aircraft tires do not

Airfield Compatibility: Key Principles for Landing Gear Design

91

Akimov Igor/Shutterstock.com.

 FIGURE 3.3   Surface texture of an asphalt concrete taxiway.

support the type of tread designs which road vehicles employ. The optimum macrotexture for an asphalt concrete runway can be achieved with a porous friction course. For rigid (Portland cement) runways, the provision of lateral grooving (typical groove dimensions shown in Figure 3.4) is considered the most effective means of ensuring an appropriate macrotexture. Both approaches provide good standing water drainage paths as well as good tire-ground interface drainage. An accepted macrotexture classification based on the depth of the macrotexture is shown in Table 3.1. An indication of the importance of macrotexture to the effective drainage of water from the surface is shown [45] in Figure 3.5, which shows the relationship between macrotexture, runway cross slope (crown), and the rainfall rate to flood the runway. It can be seen that for low values of macrotexture, the amount of rainfall required to flood the runway is quite low, even with large values of cross slope.

© SAE International.

 FIGURE 3.4   Typical runway groove dimensions.

92

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 3.1  Macrotexture classification. ESDU 71026 classificationa

Macrotexture depth (mm)

A

0.10–0.14

B

0.15–0.24

C

0.25–0.50

D

0.51–1.00

E

1.01–2.54

 Frictional and Retarding Forces on Aircraft Tyres Part II: Estimation of Braking Force, ESDU Data Item No. 71026, June 1995, now superseded by: Definitions for Runway Contaminants and the Classification and Distribution of Hard Runway Surfaces, ESDU Data Item No. 15002, July 2015.

a

© SAE International.

 FIGURE 3.5   Rainfall rate to flood runway surface.

Runway Roughness/Profile and Obstacles The local hollows and bumps of a runway surface can cause concerns for the aircraft and the crew. In general, the landing gear must be designed to accommodate the roughest runways anticipated during operation of the aircraft. Typically, the landing gear is designed against known rough profiles—those for which historical pilot reports indicated that the runway was rough—and dynamic analyses are conducted to ensure that the shock absorption characteristics of the landing gear are suitable and that the airframe structural capability is sufficient for these surfaces. ICAO Annex 14 suggests that newly surfaced runways have no greater than a 3 mm variation over a 3 meter

Airfield Compatibility: Key Principles for Landing Gear Design

93

TABLE 3.2  ICAO Annex 14 acceptable runway variation. Minimum acceptable length of irregularity (m) Surface irregularity

3

6

9

12

15

20

30

45

60

Maximum surface irregularity (height or depth) – mm

30

35

40

50

55

60

65

80

100

Temporarily acceptable surface irregularity (height or depth) - mm

35

55

65

75

80

90

110

130

150

length (when measured with a straightedge). As the runway is used, wear and differential settlement of the runway foundations can lead to increased irregularity. These variations can be accommodated [46] if over greater lengths, as outline in Table 3.2. When the temporarily acceptable limits of Table 3.2 are exceeded, it is recommended by the ICAO that the surface be corrected. Typical correction techniques include cold planing of high spots and over-coating/filling of low spots.

Roughness Measurement Techniques The optimum method to determine response to runway surface variation is to perform a dynamic simulation including the aircraft stiffness as well as the dynamic behavior of the landing gear and tire. Through this modeling approach, the design of the landing gear shock absorber can be tuned to accommodate the desired runway profile. In general, a resulting maximum incremental acceleration of ±0.4 g at the cockpit has been judged as the acceptable limit [47] before pilot complaints. The landing gear and aircraft structure can typically tolerate significantly more. A variety of techniques have been developed to quantify runway roughness.

Power Spectral Density Approach One approach for the comparison of runway roughness is to analyze the surface elevation profile in terms of its power spectral density (PSD). This approach is beneficial in the calculation of aircraft loads. PSD1 is typically applied to time varying signals, but as a runway profile is a distribution in space rather than time, the frequency argument, Ω, is defined in terms of radians per unit length. Typically, for time varying signals, the frequency argument is defined as ω, in radians per second. For a runway profile y(x), the power spectral density function is defined as:

lim

x

1 2 x

2

x

y x e

x

dx

x

where the bars indicate the modulus of the complex quantity. The standard deviation, σ (root mean square value) of the profile is given by:

d

2 0

  Derivation of power spectral density from [48].

1

94

Airfield Compatibility: Key Principles for Landing Gear Design

The PSD approach is useful to provide an indication of the average roughness of a runway, but it does not distinguish between many small amplitude bumps and a few large amplitude bumps (for bumps of the same wavelength). An example (drawn from the US Military) of an aircraft level requirement for paved runway roughness, expressed in terms of power spectral density, is shown in Figure 3.6. The PSD method is not particularly relevant for the determination of a rough runway versus a smooth runway (it has no use for those engaged with runway maintenance, for instance) but it can be used for the analysis of landing gear fatigue. Due to the non-linear response

Reprinted from JSSG-2006.

 FIGURE 3.6   Power spectral density roughness specification for prepared runways.

Airfield Compatibility: Key Principles for Landing Gear Design

95

of landing gears it is advised to not generate static design loads directly from a PSD analysis but rather to use an analysis based on specific runway profiles.

Boeing Bump Method The Boeing Bump Method is an approach to quantify the roughness of a runway in terms of single bumps and is primarily a tool for addressing runway issues but can be used for aircraft and landing gear design. The approach [49] has been developed to facilitate the evaluation of runways and is based on both aircraft response—aiming to keep the incremental acceleration below ±0.4 g—as well as a fatigue damage assessment conducted on a Boeing 737 aircraft (although for design purposes, the tool is not particularly useful for fatigue analysis as it is based on a single bump). The Boeing method stems from recognition that some other approaches, such as the PSD approach, do not identify the location where a runway is out of tolerance. As a result, they do not aid in the identification and repair of problematic locations. An example of the Boeing method is shown in Figure 3.7. The acceptability ranges shown here are those captured in ICAO Annex 14 and they align to the Boeing criteria from 1975 to 1994. From 1995, Boeing revised their acceptability criteria to eliminate the “temporarily acceptable” region, growing the acceptable region to include everything under the “excessive” line, based on their in-service experience.

Reprinted with permission from © ICAO.

 FIGURE 3.7   Boeing bump method with ICAO acceptability values.

96

Airfield Compatibility: Key Principles for Landing Gear Design

This approach is useful to evaluate specific runway profiles to identify areas of concern and to evaluate the acceptability of certain repairs and repair approaches. The acceptable slope of temporary ramping utilized during off-peak resurfacing activities can be evaluated using this method. For example, a 50 mm overlay would require a 5 m ramp length (1 in 100 slope) to meet the acceptability limit. Overlays greater than 50 mm would require a 1 in 200 slope. In some analyses, the Boeing Bump Index may be presented. This is the bump height divided by the acceptable bump height for that bump length.

International Roughness Index The International Roughness Index (IRI) is a roughness index typically used for roads and defined by ASTM E1926-08 [50]. As it is used worldwide it can sometimes be applied to runway surfaces. The index is calculated by using a quarter-car model with set properties: a tire spring, an axle mass, a body mass suspended over the axle with a suspension spring and damper. The index is based on the response of the body mass to the input profile. The IRI scale is linearly proportional to roughness—if all of the profile elevation values are increased by some amount, the IRI increases by the same proportion. An IRI of zero indicates that the surface profile is perfectly flat. Most airport runways fall into the IRI range of 0.25–2 m/km. An older road may have values in the range of 2–6 m/km. Roughness values greater than 8 m/km are only passable in road vehicles at reduced speeds. Information on the IRI is included here for completeness—it is generally not applied to landing gear and aircraft analysis.

Short Wavelength Roughness Most runway roughness evaluations for aircraft and landing gear focus on single bump events (typically determining the static strength of the landing gear) or on long wavelength variations which impact the landing gear fatigue loads. However, short wavelength variations can have a significant impact on multi-wheel landing gears which use a bogie beam. The short wavelength variations can establish resonant oscillations of the bogie beam which drive the bogie pivot joint to operate in a high pressure-velocity regime and can lead to significant (and damaging) heat buildup in the joint. Bogie pitch oscillation mode tends to be in the range of 10–20 Hz, responding to short wavelength roughness at 2–7 m wavelength. This phenomenon has been noted predominantly in Russia and in countries which were formerly part of the USSR; however, some other international airports have induced problems with bogie pivots as a result of short wavelength roughness. No current standard exists to quantify this roughness although Boeing has proposed to utilize the PSD analysis approach, focusing on the 2–7 m wavelengths. Detail design considerations for bogie pivot joints resulting from this issue are provided in Chapter 12 of The Design of Aircraft Landing Gear.

ProFAA Roughness Evaluation Tool The Federal Aviation Administration makes available a software tool, ProFAA,2 for the analysis and manipulation of runway profiles. The tool permits the calculation   Available at: http://www.airporttech.tc.faa.gov/Download/Airport-Pavement-Software-Programs.

2

Airfield Compatibility: Key Principles for Landing Gear Design

97

Reprinted from PROFAA freeware program from FAA.

 FIGURE 3.8   ProFAA application showing San Francisco 28R values.

of the Boeing Bump Index, variable length straightedge deviations, IRI and other values. Figure 3.8 shows the ProFAA application with the evaluations run for an example runway. Detailed instructions on the use of the software are included in FAA advisory circular 150/5380-9 [51]. The application includes the ability to simulate a number of aircraft and examine their response to the runway profile being analyzed. Using the “In/Out” button, the airframe properties of the aircraft can be  adjusted (Figure 3.9). With appropriate values for the aircraft selected, a dynamic analysis can be conducted, providing the incremental acceleration at the center of gravity and at the cockpit as well as main and nose gear vertical force (Figure 3.10).

Industry Standard Roughness Profiles Accepted industry standard runway profiles are provided in Appendix C. The profile for San Francisco 28R (which is also runway 10L) is generally considered to be the benchmark for large civil aircraft for western operation and is extracted from advisory circular AC25.491-1 [52]. The profile for San Francisco 28R was originally published by NASA in 1964 and the values provided include a typographical correction from the original source along with a severe bump mitigation to bring the profile into agreement with ICAO standards. The runway has been resurfaced (likely several times) since the original survey, but the adjusted survey data remains the reference “rough runway” for the certification of large civil aircraft. In addition to the consideration of runway roughness, the static load impact of traversing one bump or two bumps must be  addressed (additional details are found in AC25.491-1).

98

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from PROFAA freeware program from FAA.

 FIGURE 3.9   ProFAA adjustments.

Reprinted from PROFAA freeware program from FAA.

 FIGURE 3.10   ProFAA aircraft simulation.

Airfield Compatibility: Key Principles for Landing Gear Design

99

Certification of aircraft intended to operate in Russia and countries which were formerly part of the USSR require the consideration of different profiles (Appendix C), typically considered types A, B, and C. The type A runway is based on a historical survey of the Moscow international airport Domodedovo while the B type runway is based on a historical survey of Novosibirsk airport and the C type runway profile is a historical survey of Bukhara airport (the current runway profiles at these airports may no longer match the published A, B, and C data). A type D profile exists, based on a purely military runway, but this profile is not generally required for the certification of civil aircraft, and operation on this runway generally reaches or exceeds the limit loads required by Western certification authorities. The Russian runway profiles exhibit a greater degree of roughness and short wavelength elevation change than many other runways. This is due in part to some of the runways (and taxiways) being constructed from pre-cast, pre-stressed concrete paving slabs which can exhibit discontinuities and significant local elevation variation (Figure 3.11). The slabs are available in three thicknesses: 140, 180, and 200 mm and have dimensions of 6 m by 2 m. The Russian standard3 for the installation of the pre-cast slabs permits not more than 2% of roughness readings (vertical deviation under a 3 m straightedge) to be up to 10 mm, the rest must be less than 5 mm. At the seams between slabs, no more than 10% of the slabs may have a step up to 6 or 10 mm (depending on the direction of travel), the rest must be less than 3 or 5 mm. However, these are the installation standards and differential settlement and freeze–thaw cycles lead to greater height and slab angle variation over time. Longer and shorter slabs, as well as hexagonal paving slabs have also been used historically in Russia and the Commonwealth of Independent States [53].

Grigorii Pisotsckii/Shutterstock.com.

 FIGURE 3.11   Precast pavement surface at Nadym airport.

 СВОДПРАВИЛ, АЭРОДРОМЫ, АКТУАЛИЗИРОВАННАЯ РЕДАКЦИЯ, СНиП 32-03-96, ­Aerodromes, 30 June 2012. СП 121.13330.2012.

3

100

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 3.3  DEF STAN 00-970 runway classes. Class

Runway description

Factor

A

Paved runways laid on a stable base and regularly maintained

1.0

B

Poor quality paved runways and unpaved runways which have been fully graded

1.5

C

Unpaved runways which have been partially graded

2.5

D

Unpaved runways on virgin ground

4.0

TABLE 3.4  DEF STAN 00-970 bumps and hollows. Class

Height of step (mm)

Height of bump (mm); Depth of hollow (mm)

A

25

30

B

40

45

C

60

75

D

100

120

Military specifications typically require operation on rougher runways than civil aircraft. The UK Ministry of Defence [54] specifies a profile, included in Appendix C, for a variety of surface types. They define four classes of runway surface, A through D, with appropriate height multiplication factors for the baseline profile as outlined in Table 3.3. The profile is derived from an actual survey; however, it has been enhanced for wavelengths between 20 and 40 m and elevation changes with a wavelength greater than 120 m have been attenuated. Should a profile longer than the provided 1499 m be required, the standard shape should be extended by reflection of both the height (h) and distance (x) coordinates. The following equation shows the approach for a desired profile length of 2800 m:

h x

h 2800 x ;1499 x 2800

In addition, aircraft designed to meet the DEF STAN 00-970 requirements must be able to traverse steps, bumps, and hollows with heights as shown in Table 3.4.

Reprinted from DEF STAN 00-97. © Crown Copyright. Licensed under the Open Government Licence v3.0.

 FIGURE 3.12   DEF STAN 00-970 bump profile.

Airfield Compatibility: Key Principles for Landing Gear Design

101

Steps are 90° rectangular steps. Bumps and hollows (Figure 3.12—a hollow has the same profile but the value of hx is negative) are defined by the expression:

H s 1 cos



hx

2

2 x L

; L is assumed to be between 0.25 and 1.25 m

A comparison of the various runway profiles available in Appendix C is shown in Figure 3.13. Consistent slopes have been removed to more easily visualize the profiles. The US military specifies runway roughness [44] as a series of 1-cosine bumps (the same bump profile as the UK military, Figure 3.14). This specification was originally only for US Navy aircraft, but the US Air Force equivalent specification has been canceled and superseded by the Navy specification. The height of the bumps depends on the type of runway and the bump wavelength; the values are shown in Table 3.5. The profile generated should have all relevant combinations of height and length using the relevant expression for the runway type. The aircraft must be able to traverse this infinite series of bumps at all angles up to and including 45° to the lateral axis of the contour. Joint services guidance [55] for discrete bumps differentiates between the operational speed range (taxiing versus landing/take-off). For low speed (below 50 knots), the bump/hollow height as a function of wavelength is shown in Figure 3.15 and for speeds above 50 knots, the relationship is shown in Figure 3.16.

© SAE International.

 FIGURE 3.13   Comparison of runway profiles.

102

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 3.14   1-cos roughness profile.

TABLE 3.5  US Military runway roughness requirement. Expression for bump height, H (in.) in terms of L (ft)

Runway type

Applicable aircraft

Paved runway

Carrier based, land based, land H4 = 0.01L (0 based trainer, and STOL

Semi-prepared fields

Carrier based, STOL, and skiequipped

H3 = 0.048L + 2 (0

Unprepared field

STOL

H1 = 0.01765L + 32.35 (150 L 1000) H2 = 0.2067L + 4 (0 L 150)

L

1000) L

1000)

Reprinted from MIL-A-88721.

 FIGURE 3.15   Dimensions of obstacles – low speed.

Airfield Compatibility: Key Principles for Landing Gear Design

103

Reprinted from MIL-A-88722.

 FIGURE 3.16   Dimensions of obstacles – high speed.

Bomb Damage Repair In addition to the roughness profiles provided by military authorities, it is often desired that military aircraft operate from rapidly repaired runways. Given enough time, a bomb damaged runway can be repaired such that the repair is level with the remaining surface; however, it may be more advantageous to perform a rapid repair and have aircraft which are capable of operating from the resulting profile. The directives for runway repair acknowledge the need to have the runway in “near perfect’ condition [56]. Nevertheless, some disturbance will remain. Some munitions may only spall the surface of the runway (removing a small quantity of material) while others will generate a crater. The typical crater (Figure 3.17) has significant material removed from the runway and sub-base as well as upheaval of material around the edges. Some of the runway surface in the upheaval area remains useable, so an expedient repair is to backfill the crater with the debris and compact it in place, and then to cover it with a temporary surface such as AM-2 matting (Figure 3.18) or a glass fiber reinforced repair mat (Figures 3.19 and 3.20). The expedient repair will typically sag with time, under the action of multiple aircraft passes, resulting in increased compaction of the crater in-fill, as shown in Figure 3.21. This behavior makes identifying standard repair profiles a difficult task. A number of classes of expedient bomb damage repair have been proposed for analysis purposes. A set of profiles are outlined in Table 3.6 corresponding to the diagram shown in Figure 3.22. It is advisable that any landing gear designer attempting to design to a contractual “repair class” confirm the specific dimensions of the repair as a number of repair classes have been proposed historically. As important as the height and ramp to the repair are the number of repairs in sequence and the spacing

104

Airfield Compatibility: Key Principles for Landing Gear Design

© SAE International.

 FIGURE 3.17   Representative crater profile.

© SAE International.

 FIGURE 3.18   AM-2 matting crater class E repair.

Reprinted from AGARD-R-731.

 FIGURE 3.19   Fiberglass mat repair cross section.

Airfield Compatibility: Key Principles for Landing Gear Design

Reprinted from Feel the Thunder of the Mustangs! Staff Seargent Scottie T. McCord, USAF.

 FIGURE 3.20   Installation of a folded fiberglass repair mat.

Reprinted from AGARD-R-731.

 FIGURE 3.21   Repair compaction with increasing traffic.

105

106

Airfield Compatibility: Key Principles for Landing Gear Design

TABLE 3.6  Repair classes and dimensions.

Repair class

Repair height, h [mm, (in.)]

Maximum nominal sag, Zn [mm, (in.)]

Peak sag, Zp [mm, (inches)]

Ramp length, R [m, (ft)]

A

38 (1.5)

13 (0.5)

25 (1.0)

1.25 (4)

B

64 (2.5)

13 (0.5)

25 (1.0)

1.25 (4)

C

64 (2.5)

50 (2.0)

64 (2.5)

1.25 (4)

D

76 (3.0)

50 (2.0)

64 (2.5)

1.5 (5)

E

114 (4.5)

50 (2.0)

64 (2.5)

2.5 (8)

Notes: Ramp lengths are typical—up to a 5% slope may be required. Repair lengths may vary—6.5, 12.5, and 22.5 m are specified by DEF STAN 00-970. Nominal sag represents the average position of the depression; local sag may occur to the value of Zp.

© SAE International.

 FIGURE 3.22   Repair profile.

between them. What is found acceptable for one aircraft may not be acceptable for another due to the landing gear spacing, shock absorber dynamics, and fuselage frequency response. The UK specification [57] suggests that standardized repair heights as originally suggested by NATO (through the Advisory Group for Aerospace Research and Development—AGARD) be used for initial mathematical evaluation. The associated profile is shown in Figure 3.23. Values of repair length, L, are to be taken as 6.5, 12.5, and 22.5 m. The minimum standard heights, h, to be considered are 38 and 52 mm. The normal standard heights to be considered are 52 and 78 mm. The spacing, S, between subsequent repairs is to be calculated as a function of the dynamics of the landing gears and aircraft to aid in the definition of the minimum operating strip

 FIGURE 3.23   Generic repair.

Reprinted from DEF STAN 00-97. © Crown Copyright. Licensed under the Open Government Licence v3.0.

.

Airfield Compatibility: Key Principles for Landing Gear Design

107

(MOS) for the aircraft. The MOS represents the minimum combination of length and repairs in order to operate the aircraft from a damaged area.

Arrestor Cables Military airfields often have arrestor cables, typically a wire rope connected to an arresting device (historically this was chains laid alongside the runway, but may now be a hydraulic braking device, or other method of retardation) which slows the aircraft once it captures the cable. All tires and landing gears must be able to accommodate passing over an arrestor cable. The cable is typically supported above the runway surface by spacers (rubber disks) or ramps (which ensure that an arrestor hook can capture the cable). As a tire traverses the cable, it excites the cable as the cable is pushed downwards and at times forwards. This generates a wave in the cable which travels outwards from the contact point along the cable. This wave can be augmented by the passing of another wheel, such as the main wheels passing after the nose wheel, or by another aircraft in formation. These cable waves can lead to the cable rising above the ground and contacting the aircraft; some cables are fitted with tie-downs to restrict this motion. The UK Ministry of Defence recommends [58] the clearances shown in Table 3.7 between the ground and any item likely to be  damaged by cable contact. Typical values for the diameter of the arrestor cable, d, are 32 mm and for the spacer, D, 180 mm. An example is shown in Figure 3.24. Traversing the cable or the TABLE 3.7  Recommended arrestor cable clearances. Without tie-down

With tie-down

Aircraft zone

Hook cable

Support

Hook cable

Support

Forward of nose wheel

0.5(D + d)

D

0.5(D + d)

D

Aft of nose wheel 1.25(D + d)

2D

D+d

1.5D

Aft of main wheels

2.625D

D+d

1.5D

1.8(D + d)

Where D is the diameter of the support disk and d is the diameter of the arrestor cable.

© SAE International.

 FIGURE 3.24   Arrestor cable and support disk.

108

Airfield Compatibility: Key Principles for Landing Gear Design

cable support can induce significant loads into the landing gear and airframe structure. If operation on runways with these systems is anticipated, a dynamic analysis should be conducted considering the cable diameter, the support (donut) shape, and a deflected support shape. As the induced load into the landing gear is exacerbated by increased traversing speed, commercial aircraft operating to airfields with arrestor gears are typically provided with speed limits in an effort to ensure that the induced dynamic loads stay below the certification bump loads.

Unsurfaced Runways A variety of assumed elevation profiles for unsurfaced runways are provided in the previous section—typically as factors to be considered on a baseline profile, such as that offered by DEF STAN 00-970 which increased the vertical dimension of the profile by a factor of 4 compared to a paved runway (Table 3.3) and by a factor of 2.5 for a semi-prepared runway. The US military proposes the power spectral density values shown in Figures 3.25 and 3.26 for semi-prepared (graded soil and matted runways) and unprepared runways, respectively.

Deck/Helideck Helidecks in general present a flat uniform surface, and as the helicopter is not rolling for any significant distance, waviness or unevenness does not generally present a problem. The deck is generally treated with a non-slip coating and helidecks in the North Sea, which fall under UK CAA authority, need to present a minimum surface friction value of 0.6 on a fixed helideck and 0.65 on a moving helideck (shipborne). These values need to be tested regularly using a device that employs a braked wheel having a tire made of the same material as helicopter tires. Aircraft carrier decks, while generally flat, do present various obstacles that present themselves as single bumps. Carrier decks are provided with a non-slip coating and the expected range of friction coefficient is from 0.3 to 0.6, although significantly higher friction coefficients can be achieved, with values greater than 1 possible. The landing gear must be able to negotiate taxiing and landing over the arrestor cable, with a 41.3 mm diameter, and also a guide light cover plate with a height of 32 mm.

Airfield Compatibility: Key Principles for Landing Gear Design

 FIGURE 3.25   Power spectral density roughness specification for soil and

Reprinted from JSSG-2006.

matted runways.

109

110

Airfield Compatibility: Key Principles for Landing Gear Design

 FIGURE 3.26   Power spectral density roughness specification for

Reprinted from JSSG-2006.

unprepared runways.

Appendix A: 100 Busiest airports showing runway size and strength

TABLE A.1  100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

AMSTERDAM, NL (AMS)

AMS

04/22

2014

45

Asphalt

39/F/D/W/T

AMSTERDAM, NL (AMS)

AMS

06/24

3500

45

Asphalt

82/R/C/X/T

AMSTERDAM, NL (AMS)

AMS

09/27

3453

45

Asphalt

95/F/C/W/T

AMSTERDAM, NL (AMS)

AMS

18C/36C

3300

45

Asphalt

82/R/C/X/T

AMSTERDAM, NL (AMS)

AMS

18R/36L

3800

60

Asphalt

95/F/C/W/T

AMSTERDAM, NL (AMS)

AMS

18L/36R

3400

45

Asphalt

82/R/C/X/T

ANTALYA, TR (AYT)

AYT

18L/36R

3400

45

Concrete

110/R/A/W/T

ANTALYA, TR (AYT)

AYT

18C/36C

3400

45

Concrete

80/R/A/X/T

ANTALYA, TR (AYT)

AYT

18R/36L

2990

45

Asphalt

45 LCN

ATHENS, GR (ATH)

ATH

03R/21L

4000

45

Asphalt

64/F/B/W/T 64/F/B/W/T

ATHENS, GR (ATH)

ATH

03L/21R

3800

45

Asphalt

ATLANTA GA, US (ATL)

ATL

08R/26L 3048

46

Concrete, grooved 74/R/A/W/T

ATLANTA GA, US (ATL)

ATL

08L/26R 2743

46

Concrete, grooved 62/R/A/W/T

ATLANTA GA, US (ATL)

ATL

09R/27L 2744

48

Concrete, grooved 68/R/A/W/T

ATLANTA GA, US (ATL)

ATL

09L/27R 3624

46

Concrete, grooved 62/R/A/W/T

ATLANTA GA, US (ATL)

ATL

10/28

46

Concrete, grooved 74/R/A/W/T

AUCKLAND, NZ (AKL)

AKL

BALTIMORE MD, US (BWI) BWI

2743

05R/23L 3635

45

Concrete

120/R/D/W/T

10/28

46

Asphalt, grooved

105/F/A/W/T

3201

BALTIMORE MD, US (BWI) BWI

15L/33R

1524

30

Asphalt, grooved

15/F/A/W/T

BALTIMORE MD, US (BWI) BWI

15R/33L

2896

46

Asphalt, grooved

70/F/A/W/T

©2022 SAE International

111

112

Appendix A: 100 Busiest airports showing runway size and strength

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

BANGKOK, TH (BKK)

BKK

4000

137/F/D/X/T

01R/19L

60

Asphalt

BANGKOK, TH (BKK)

BKK

01L/19R

3700

60

Asphalt

137/F/D/X/T

BARCELONA, ES (BCN)

BCN

02/20

2540

45

Asphalt

86/F/A/W/T

BARCELONA, ES (BCN)

BCN

07R/25L 2660

60

Asphalt

76/F/C/W/T

BARCELONA, ES (BCN)

BCN

07L/25R 3552

45

Asphalt

86/F/A/W/T

BEIJING, CN (PEK)

PEK

01/19

60

Concrete

117/R/B/W/T

3802

BEIJING, CN (PEK)

PEK

18L/36R

3802

60

Asphalt

108/F/B/W/T

BEIJING, CN (PEK)

PEK

18R/36L

3202

50

Asphalt

95/F/B/W/T

BERLIN, DE (TXL)

TXL

08R/26L 2428

46

Asphalt

120/F/A/W/T

BERLIN, DE (TXL)

TXL

08L/26R 3023

46

Asphalt

120/F/A/X/T

BOGOTA, CO (BOG)

BOG 13R/31L

3800

45

Asphalt

80/F/C/W/T

BOGOTA, CO (BOG)

BOG 13L/31R

3800

45

Asphalt

104/F/D/W/T

BOSTON MA, US (BOS)

BOS

04R/22L 3050

46

Asphalt, grooved

90/F/C/W/T

BOSTON MA, US (BOS)

BOS

04L/22R 2396

46

Asphalt, grooved

90/F/C/W/T

BOSTON MA, US (BOS)

BOS

09/27

2134

46

Asphalt, grooved

90/F/C/W/T

BOSTON MA, US (BOS)

BOS

15R/33L

3073

46

Asphalt, grooved

90/F/C/W/T

BOSTON MA, US (BOS)

BOS

15L/33R

779

30

Asphalt

90/F/C/W/T

BOSTON MA, US (BOS)

BOS

14/32

1524

30

Asphalt, grooved

85/F/C/W/T

BRASILIA, BR (BSB)

BSB

11R/29L

3300

45

Asphalt

68/F/B/W/T

BRASILIA, BR (BSB)

BSB

11L/29R

3200

45

Asphalt

76/F/B/X/T

BRISBANE, AU (BNE)

BNE

01/19

3560

45

Asphalt

108/F/D/W/T

BRISBANE, AU (BNE)

BNE

14/32

1700

30

Asphalt

15/F/A/Y/T

2987

BRUSSELS, BE (BRU)

BRU

02/20

BRUSSELS, BE (BRU)

BRU

07R/25L 3211

BRUSSELS, BE (BRU)

BRU

CHARLOTTE NC, US (CLT) CLT

50

Asphalt

59/F/A/W/T

45

Asphalt

62/F/A/W/T

07L/25R 3638

45

Asphalt

80/F/A/W/T

05/23

46

Asphalt, concrete, grooved

73/R/B/W/T

2287

CHARLOTTE NC, US (CLT) CLT

18R/36L

2743

46

Concrete, grooved 75/R/B/W/T

CHARLOTTE NC, US (CLT) CLT

18C/36C

3048

46

Concrete, grooved 75/R/B/W/T

CHARLOTTE NC, US (CLT) CLT

18L/36R

2645

46

Concrete, grooved 68/R/B/W/T

CHENGDU, CN (CTU)

CTU

02/20

3600

60

Concrete

80/R/B/W/T

CHICAGO IL, US (MDW)

MDW 13L/31R

1567

46

Asphalt, concrete, grooved

59/R/B/W/T

CHICAGO IL, US (MDW)

MDW 13C/31C

1988

46

Asphalt, concrete, grooved

61/F/D/X/T

CHICAGO IL, US (MDW)

MDW 13R/31L

1176

18

Asphalt

42/R/B/X/T

CHICAGO IL, US (MDW)

MDW 4L/22R

1679

46

Asphalt, grooved

69/F/D/X/T

Appendix A: 100 Busiest airports showing runway size and strength

113

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

CHICAGO IL, US (MDW)

MDW 4R/22L

1964

46

Asphalt, concrete, grooved

62/F/D/X/T

CHICAGO IL, US (ORD)

ORD 10L/28R

3962

46

Asphalt, concrete, grooved

120/R/B/W/T

CHICAGO IL, US (ORD)

ORD 10C/28C 3292

61

Concrete, grooved 96/R/C/W/T

CHICAGO IL, US (ORD)

ORD 15/33

2952

61

Asphalt, concrete, grooved

108/R/C/ W/U

CHICAGO IL, US (ORD)

ORD 4R/22L

2461

46

Asphalt, grooved

108/R/C/ W/U

CHICAGO IL, US (ORD)

ORD 9R/27L

2428

46

Asphalt, concrete, grooved

108/R/C/ W/U

CHICAGO IL, US (ORD)

ORD 4L/22R

2286

46

Asphalt, grooved

108/R/C/ W/U

CHICAGO IL, US (ORD)

ORD 9L/27R

2286

46

Concrete, grooved 91/R/B/W/T

CHICAGO IL, US (ORD)

ORD 10R/28L

2286

46

Concrete, grooved 104/R/B/ W/U

COPENHAGEN, DK (CPH)

CPH

04L/22R 3600

45

Asphalt

80/F/C/X/U

COPENHAGEN, DK (CPH)

CPH

04R/22L 3300

45

Asphalt

80/F/C/X/U

12/30

80/F/C/X/U

COPENHAGEN, DK (CPH)

CPH

3070

45

Asphalt, concrete

DALLAS/FORT WORTH TX, US (DFW)

DFW 13R/31L

2835

46

Concrete, grooved 83/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 13L/31R

2743

61

Concrete, grooved 97/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 17C/35C

4085

46

Concrete, grooved 82/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 17R/35L

4085

61

Concrete, grooved 78/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 17L/35R

2591

46

Concrete, grooved 97/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 18R/36L

4084

46

Concrete, grooved 82/R/B/W/T

DALLAS/FORT WORTH TX, US (DFW)

DFW 18L/36R

4084

61

Concrete, grooved 83/R/B/W/T

DENVER CO, US (DEN)

DEN

07/25

3658

46

Concrete, grooved 92/R/B/W/T

DENVER CO, US (DEN)

DEN

08/26

3658

46

Concrete, grooved 92/R/B/W/T

DENVER CO, US (DEN)

DEN

16R/34L

4877

61

Concrete, grooved 92/R/B/W/T

DENVER CO, US (DEN)

DEN

16L/34R

3658

46

Concrete, grooved 92/R/B/W/T

DENVER CO, US (DEN)

DEN

17R/35L

3658

46

Concrete, grooved 92/R/B/W/T

DENVER CO, US (DEN)

DEN

17L/35R

3658

46

Concrete, grooved 92/R/B/W/T

DETROIT MI, US (DTW)

DTW 03R/21L

3048

46

Concrete, grooved 91/R/B/W/T

DETROIT MI, US (DTW)

DTW 03L/21R

2591

61

Asphalt, concrete, grooved

77/R/A/W/T

DETROIT MI, US (DTW)

DTW 04R/22L 3659

61

Concrete, grooved 126/R/B/W/T

DETROIT MI, US (DTW)

DTW 04L/22R 3048

46

Concrete, grooved 126/R/B/W/T

DETROIT MI, US (DTW)

DTW 09R/27L 2591

46

Concrete, grooved 78/R/A/W/T

114

Appendix A: 100 Busiest airports showing runway size and strength

TABLE A.1  (Continued) 100 busiest airports. Length Width (m) (m) Surface

Airport

Code Runway

DETROIT MI, US (DTW)

DTW 09L/27R 2654

61

PCN

Concrete, grooved 73/R/A/W/T

DOHA, QA (DOH)

DOH 16/34

4572

46

Asphalt

60/F/A/X/T

DUBAI, AE (DXB)

DXB

12R/30L

4000

46

Asphalt

65/F/B/X/U

DUBAI, AE (DXB)

DXB

12L/30R

4000

60

Asphalt

122/F/B/X/T

DUBLIN, IE (DUB)

DUB

10/28

2637

45

Asphalt

70/R/B/W/T

DUBLIN, IE (DUB)

DUB

16/34

2072

61

Asphalt

75/R/D/W/T

DÜSSELDORF, DE (DUS)

DUS

05R/23L 3000

45

Concrete

100/R/B/ W/T

DÜSSELDORF, DE (DUS)

DUS

05L/23R 2700

45

Concrete

100/R/B/ W/T

FORT LAUDERDALE, FL, US (FLL)

FLL

10L/28R

2743

46

Asphalt, grooved

69/F/B/W/T

FORT LAUDERDALE, FL, US (FLL)

FLL

10R/28L

2438

46

Concrete, grooved 74/R/B/W/T

FRANKFURT, DE (FRA)

FRA

07R/25L 4000

45

Concrete

74/R/A/W/T

FRANKFURT, DE (FRA)

FRA

07L/25R 4000

60

Asphalt

74/F/A/W/T

FRANKFURT, DE (FRA)

FRA

18/36

4000

45

Concrete

90/R/A/W/T

FUKUOKA, JP (FUK)

FUK

16/34

2800

60

Asphalt

97/F/D/X/T

GUANGZHOU, CN (CAN)

CAN

02R/20L 3800

60

Concrete

109/R/B/W/T

GUANGZHOU, CN (CAN)

CAN

02L/20R 3600

45

Concrete

109/R/B/W/T

HANGZHOU, CN (HGH)

HGH

07/25

3600

45

Concrete

95/R/B/W/T

HELSINKI, FI (HEL)

HEL

04R/22L 3440

60

Asphalt

102/F/B/W/T

HELSINKI, FI (HEL)

HEL

04L/22R 3060

60

Asphalt

100/F/A/W/T

HELSINKI, FI (HEL)

HEL

15/33

60

Asphalt

108/F/B/W/T

2901

HONG KONG, HK (HKG)

HKG

07R/25L 3800

60

Asphalt

72/F/B/W/T

HONG KONG, HK (HKG)

HKG

07L/25R 3800

60

Asphalt

72/F/B/W/T

HOUSTON TX, US (IAH)

IAH

08R/26L 2866

46

Concrete, grooved 72/R/A/W/T

HOUSTON TX, US (IAH)

IAH

08L/26R 2743

46

Concrete, grooved 72/R/A/W/T

HOUSTON TX, US (IAH)

IAH

09/27

3048

46

Concrete, grooved 67/R/A/W/T

HOUSTON TX, US (IAH)

IAH

15R/33L

3048

46

Concrete, grooved 94/R/B/W/T

HOUSTON TX, US (IAH)

IAH

15L/33R

3658

46

Concrete, grooved 72/R/A/W/T

INCHEON, KR (ICN)

ICN

15R/33L

3750

60

Asphalt, concrete

86/R/B/X/T

INCHEON, KR (ICN)

ICN

15L/33R

3750

60

Asphalt, concrete

86/R/B/X/T

ISTANBUL, TR (IST)

IST

06/24

2300

60

Concrete

100/R/A/X/T

ISTANBUL, TR (IST)

IST

18R/36L

3000

45

Concrete

100/R/A/W/T

ISTANBUL, TR (IST)

IST

18L/36R

3000

45

Concrete

100/R/A/W/T

JAKARTA, ID (CGK)

CGK

07R/25L 3660

60

Concrete

120/R/D/W/T

JAKARTA, ID (CGK)

CGK

07L/25R 3600

60

Concrete

120/R/D/W/T

JEDDAH, SA (JED)

JED

16L/34R

4000

45

Asphalt

80/F/A/W/T

JEDDAH, SA (JED)

JED

16C/34C 4000

60

Asphalt

80/F/A/W/T

Appendix A: 100 Busiest airports showing runway size and strength

115

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

JEDDAH, SA (JED)

JED

3800

80/F/A/W/T

16R/34L

60

Asphalt

JEJU, KR (CJU)

CJU

06/24

3000

45

Asphalt

70/F/B/W/T

JEJU, KR (CJU)

CJU

13/31

1910

45

Asphalt

64/F/A/W/T

JOHANNESBURG, ZA (JNB)

JNB

03R/21L

3400

60

Asphalt

50/F/A/W/U

JOHANNESBURG, ZA (JNB)

JNB

03L/21R

4418

61

Asphalt

56/F/A/W/U

KUALA LUMPUR, MY (KUL)

KUL

14R/32L

4050

60

Asphalt

90/R/C/W/T

KUALA LUMPUR, MY (KUL)

KUL

14L/32R

4124

60

Asphalt

90/R/C/W/T 55/R/B/W/T

KUNMING, CN (KMG)

KMG 03/21

3400

45

Concrete

LAS VEGAS NV, US (LAS)

LAS

01R/19L

2979

46

Concrete, grooved 100/R/B/ W/T

LAS VEGAS NV, US (LAS)

LAS

01L/19R

2739

46

Concrete, grooved 100/R/B/ W/T

LAS VEGAS NV, US (LAS)

LAS

07R/25L 3208

46

Concrete, grooved 100/R/B/ W/T

LAS VEGAS NV, US (LAS)

LAS

07L/25R 4423

46

Asphalt, grooved

70/F/B/W/T

LISBON, PT (LIS)

LIS

03/21

3805

45

Asphalt

80/F/B/W/T

17/35

2304

LISBON, PT (LIS)

LIS

45

Asphalt

52/F/B/W/T

LONDON, GB (LGW)

LGW 08R/26L 3159

45

Asphalt

78/R/B/W/T

LONDON, GB (LGW)

LGW 08L/26R 2565

45

Asphalt

76/R/B/W/T

LONDON, GB (LHR)

LHR

09R/27L 3658

45

Asphalt

083/F/A/W/T

LONDON, GB (LHR)

LHR

09L/27R 3901

50

Asphalt

083/F/A/W/T 86/R/C/W/T

LONDON, GB (STN)

STN

05/23

46

Asphalt

LOS ANGELES CA, US (LAX)

LAX

06R/24L 3135

3048

46

Concrete, grooved 70/R/A/W/T

LOS ANGELES CA, US (LAX)

LAX

06L/24R 2720

46

Concrete, grooved 70/R/A/W/T

LOS ANGELES CA, US (LAX)

LAX

07R/25L 3382

61

Concrete, grooved 70/R/A/W/T

LOS ANGELES CA, US (LAX)

LAX

07L/25R 3685

46

Asphalt, concrete, grooved

75/R/A/W/T

MADRID, ES (MAD)

MAD 15R/33L

4100

60

Asphalt

91/F/B/W/T

MADRID, ES (MAD)

MAD 15L/33R

3500

60

Asphalt

91/F/B/W/T

MADRID, ES (MAD)

MAD 18R/36L

4350

60

Asphalt

87/F/C/W/U

MADRID, ES (MAD)

MAD 18L/36R

3500

60

Asphalt

80/F/B/W/U

MANCHESTER, GB (MAN) MAN 06R/24L 3047

46

Concrete

79/R/C/W/T

MANCHESTER, GB (MAN) MAN 06L/24R 3048

46

Asphalt

94/F/C/W/T

MANILA, PH (MNL)

60

Asphalt

114/F/D/W/U

MNL

06/24

3737

MANILA, PH (MNL)

MNL

13/31

2258

45

Asphalt

91/F/D/W/U

MELBOURNE, AU (MEL)

MEL

09/27

2286

45

Asphalt

79/F/C/W/U

116

Appendix A: 100 Busiest airports showing runway size and strength

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

MELBOURNE, AU (MEL)

MEL

3657

79/F/C/W/U

16/34

45

Asphalt

MEXICO CITY, MX (MEX)

MEX

05R/23L 3900

45

Asphalt

100/F/D/X/T

MEXICO CITY, MX (MEX)

MEX

05L/23R 3952

45

Asphalt

100/F/D/X/T

MIAMI FL, US (MIA)

MIA

08R/26L 3202

61

Asphalt, grooved

70/F/A/X/T

MIAMI FL, US (MIA)

MIA

08L/26R 2621

46

Asphalt, grooved

70/F/A/X/T

MIAMI FL, US (MIA)

MIA

09/27

46

Asphalt, grooved

70/F/A/X/T

3962

MIAMI FL, US (MIA)

MIA

12/30

2851

46

Asphalt, grooved

70/F/A/X/T

MILAN, IT (MXP)

MXP

17R/35L

3920

60

Asphalt

91/F/A/W/T 100/F/A/W/T

MILAN, IT (MXP)

MXP

17L/35R

3920

60

Asphalt

MINNEAPOLIS MN, US (MSP)

MSP

04/22

3355

46

Concrete, grooved 80/R/B/W/T

MINNEAPOLIS MN, US (MSP)

MSP

12R/30L

3048

61

Concrete, grooved 80/R/B/W/T

MINNEAPOLIS MN, US (MSP)

MSP

12L/30R

2499

46

Concrete, grooved 80/R/B/W/T

MINNEAPOLIS MN, US (MSP)

MSP

17/35

2438

46

Concrete, grooved 80/R/B/W/T

MOSCOW, RU (DME)

DME

14L/32R

3794

53

Concrete

78/R/C/W/T

MOSCOW, RU (DME)

DME

14C/32C

2600

45

Concrete

57/R/A/W/T

MOSCOW, RU (DME)

DME

14R/32L

3500

70

Concrete

53/R/C/X/U

MOSCOW, RU (SVO)

SVO

07L/25R 3550

60

Concrete

70/R/B/W/T

MOSCOW, RU (SVO)

SVO

07R/25L 3700

60

Concrete

76/R/C/W/T

MUMBAI, IN (BOM)

BOM 09/27

3445

45

Asphalt

101/F/B/W/T

MUMBAI, IN (BOM)

BOM 14/32

2925

46

Asphalt

64/F/B/W/T

MUNICH, DE (MUC)

MUC 08R/26L 4000

60

Concrete

90/R/A/W/T

MUNICH, DE (MUC)

MUC 08L/26R 4000

60

Concrete

90/R/A/W/T

NEW DELHI, IN (DEL)

DEL

09/27

2813

46

Asphalt

45/F/B/W/T

NEW DELHI, IN (DEL)

DEL

10/28

3810

46

Asphalt

55/F/B/W/T 90/F/B/W/T

NEW YORK NY, US (JFK)

JFK

04R/22L 2560

61

Asphalt, grooved

NEW YORK NY, US (JFK)

JFK

04L/22R 3460

46

Concrete, grooved 90/R/B/W/T

NEW YORK NY, US (JFK)

JFK

13R/31L

4442

46

Concrete, grooved 98/R/B/W/T

NEW YORK NY, US (JFK)

JFK

13L/31R

3048

46

Asphalt, grooved

90/F/B/W/T

NEW YORK NY, US (LGA)

LGA

04/22

2134

46

Asphalt, concrete, grooved

63/F/B/W/T

NEW YORK NY, US (LGA)

LGA

13/31

2134

46

Asphalt, concrete, grooved

63/F/B/W/T

NEWARK NJ, US (EWR)

EWR 04R/22L 3048

46

Asphalt, grooved

96/R/B/X/T

NEWARK NJ, US (EWR)

EWR 04L/22R 3353

46

Asphalt, concrete, grooved

96/R/B/X/T 96/R/B/X/T

NEWARK NJ, US (EWR)

EWR 11/29

2073

46

Asphalt, grooved

ORLANDO FL, US (MCO)

MCO 17R/35L

3048

46

Concrete, grooved 106/R/B/W/T

Appendix A: 100 Busiest airports showing runway size and strength

117

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

ORLANDO FL, US (MCO)

MCO 17L/35R

2743

46

Concrete, grooved 116/R/B/W/T

ORLANDO FL, US (MCO)

MCO 18R/36L

3659

61

Asphalt, concrete, grooved

104/R/B/W/T

ORLANDO FL, US (MCO)

MCO 18L/36R

3659

61

Asphalt, concrete, grooved

97/R/B/W/T

PCN

OSLO, NO (OSL)

OSL

01L/19R

3600

45

Asphalt

75/F/A/W/T

OSLO, NO (OSL)

OSL

01R/19L

2950

45

Asphalt

75/F/A/W/T

PALMA DE MALLORCA, ES (PMI)

PMI

06L/24R 3270

45

Asphalt

64/F/A/W/T

PALMA DE MALLORCA, ES (PMI)

PMI

06R/24L 3000

45

Asphalt

59/F/B/W/T

PARIS, FR (CDG)

CDG

08R/26L 2700

60

Concrete

68/R/C/W/T

PARIS, FR (CDG)

CDG

08L/26R 4215

45

Asphalt

100/R/B/ W/T

PARIS, FR (CDG)

CDG

09R/27L 4200

45

Asphalt

100/R/B/ W/T

PARIS, FR (CDG)

CDG

09L/27R 2700

60

Asphalt

77/F/C/W/T

PARIS, FR (ORY)

ORY

02/20

60

Concrete

70/R/C/W/U

2400

PARIS, FR (ORY)

ORY

06/24

3650

45

Asphalt, concrete

140/R/C/W/T

PARIS, FR (ORY)

ORY

08/26

3320

45

Concrete

85/R/B/W/U

PHILADELPHIA PA, US (PHL)

PHL

08/26

1524

46

Asphalt, grooved

27/F/A/X/T

PHILADELPHIA PA, US (PHL)

PHL

09R/27L 3202

61

Asphalt, grooved

60/F/A/X/T

PHILADELPHIA PA, US (PHL)

PHL

09L/27R 2896

46

Asphalt, grooved

60/F/A/X/T

PHILADELPHIA PA, US (PHL)

PHL

17/35

1664

46

Asphalt, grooved

27/F/A/X/T

PHOENIX AZ, US (PHX)

PHX

07R/25L 2377

46

Concrete, grooved 79/R/B/W/T

PHOENIX AZ, US (PHX)

PHX

07L/25R 3139

46

Concrete, grooved 70/R/B/W/T

PHOENIX AZ, US (PHX)

PHX

08/26

3502

46

Concrete, grooved 74/R/B/W/T

RIO DE JANEIRO, BR (GIG)

GIG

10/28

4000

45

Concrete

78/R/A/W/T

RIO DE JANEIRO, BR (GIG)

GIG

15/33

3180

47

Asphalt

73/F/B/X/T

RIYADH, SA (RUH)

RUH

15R/33L

4205

60

Asphalt

80/F/A/W/T

RIYADH, SA (RUH)

RUH

15L/33R

4205

60

Asphalt

80/F/A/W/T

ROME, IT (FCO)

FCO

07/25

3307

45

Asphalt

73/F/B/X/T

ROME, IT (FCO)

FCO

16R/34L

3902

60

Asphalt

94/F/A/W/T

ROME, IT (FCO)

FCO

16C/34C 3602

45

Asphalt

72/F/B/X/T

118

Appendix A: 100 Busiest airports showing runway size and strength

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

Length Width (m) (m) Surface

PCN

ROME, IT (FCO)

FCO

16L/34R

3902

60

Asphalt

146/F/A/W/T

SALT LAKE CITY UT, US (SLC)

SLC

16L/34R

3658

46

Asphalt, grooved

67/F/C/W/T

SALT LAKE CITY UT, US (SLC)

SLC

16R/34L

3658

46

Concrete, grooved –

SALT LAKE CITY UT, US (SLC)

SLC

17/35

2925

46

Asphalt, grooved

51/F/C/W/T

SALT LAKE CITY UT, US (SLC)

SLC

14/32

1491

46

Asphalt, grooved

24/F/C/W/T

SAN DIEGO CA, US (SAN) SAN

09/27

2865

61

Asphalt, concrete, grooved

75/F/A/W/T

SAN FRANCISCO CA, US (SFO)

SFO

01R/19L

2636

61

Asphalt, grooved

100/F/B/X/T

SAN FRANCISCO CA, US (SFO)

SFO

01L/19R

2286

61

Asphalt, grooved

90/F/B/X/T

SAN FRANCISCO CA, US (SFO)

SFO

10R/28L

3231

61

Asphalt, grooved

80/F/B/X/T

SAN FRANCISCO CA, US (SFO)

SFO

10L/28R

3618

61

Asphalt, grooved

80/F/B/X/T

SÃO PAULO, BR (CGH)

CGH

17R/35L

1940

45

Asphalt

50/F/B/X/T

1435

SÃO PAULO, BR (CGH)

CGH

17L/35R

SÃO PAULO, BR (GRU)

GRU

09R/27L 3000

45

Asphalt

38/F/B/X/U

45

Asphalt

85/F/B/W/T

SÃO PAULO, BR (GRU)

GRU

09L/27R 3700

45

Asphalt

85/F/B/W/T

SAPPORO, JP (CTS)

CTS

01R/19L

61

Asphalt

83/F/C/X/T 83/F/C/X/T

2999

SAPPORO, JP (CTS)

CTS

01L/19R

2999

61

Asphalt

SEATTLE WA, US (SEA)

SEA

16L/34R

3627

46

Concrete, grooved 110/R/B/W/T

SEATTLE WA, US (SEA)

SEA

16C/34C 2873

46

Concrete, grooved 96/R/B/W/T

SEATTLE WA, US (SEA)

SEA

16R/34L

46

Concrete, grooved 89/R/B/W/T

2591

SEOUL, KR (GMP)

GMP

14R/32L

3200

60

Asphalt

79/F/C/W/T

SEOUL, KR (GMP)

GMP

14L/32R

3600

45

Asphalt

70/F/B/W/T

SHANGHAI, CN (PVG)

PVG

16/34

3800

60

Concrete

109/R/B/W/T

SHANGHAI, CN (PVG)

PVG

17/35

4000

60

Concrete

121/R/B/W/T

SHANGHAI, CN (SHA)

SHA

18/36

3400

58

Asphalt

74/R/B/W/T

SHENZHEN, CN (SZX)

SZX

15/33

3400

45

Concrete

72/R/B/W/T

SINGAPORE, SG (SIN)

SIN

02C/20C 4000

60

Asphalt

72/F/B/W/U

SINGAPORE, SG (SIN)

SIN

02R/20L 2748

59

Asphalt

72/F/B/W/T

SINGAPORE, SG (SIN)

SIN

02L/20R 4000

60

Asphalt

72/F/B/W/U

STOCKHOLM, SE (ARN)

ARN

01R/19L

45

Asphalt

90/F/B/X/T

2500

STOCKHOLM, SE (ARN)

ARN

01L/19R

3301

45

Concrete

97/R/B/X/T

STOCKHOLM, SE (ARN)

ARN

08/26

2500

45

Concrete

78/R/B/X/T

SYDNEY, AU (SYD)

SYD

07/25

2530

45

Asphalt

67/F/A/W/U

SYDNEY, AU (SYD)

SYD

16R/34L

3962

45

Asphalt

67/F/A/W/U

SYDNEY, AU (SYD)

SYD

16L/34R

2438

45

Asphalt

67/F/A/W/U

Appendix A: 100 Busiest airports showing runway size and strength

119

TABLE A.1  (Continued) 100 busiest airports. Airport

Code Runway

TAIPEI, TW (TPE)

TPE

Length Width (m) (m) Surface

05L/23R 3660

60

PCN

Asphalt

75/F/B/X/T 94/F/C/X/T

TAIPEI, TW (TPE)

TPE

05R/23L 3800

60

Asphalt, concrete

TAMPA FL, US (TPA)

TPA

01L/19R

3356

46

Concrete, grooved 85/R/B/W/T

TAMPA FL, US (TPA)

TPA

01R/19L

2530

46

Asphalt, concrete, grooved

76/R/B/W/T

TAMPA FL, US (TPA)

TPA

10/28

2133

46

Asphalt, concrete, grooved

61/F/A/W/T

TOKYO, JP (HND)

HND 04/22

2499

61

Asphalt

63/F/B/X/T

TOKYO, JP (HND)

HND 16R/34L

2999

61

Asphalt

63/F/B/X/T

TOKYO, JP (HND)

HND 16L/34R

2999

61

Asphalt

140/F/B/X/T

TOKYO, JP (NRT)

NRT

4000

60

Asphalt

140/F/C/X/T

16R/34L

TOKYO, JP (NRT)

NRT

16L/34R

2180

60

Asphalt

129/F/C/X/T

TORONTO ON, CA (YYZ)

YYZ

05/23

3389

61

Asphalt, concrete

79/R/B/W/T

TORONTO ON, CA (YYZ)

YYZ

06R/24L 2743

61

Asphalt

79/R/B/W/T

TORONTO ON, CA (YYZ)

YYZ

06L/24R 2956

61

Asphalt

79/R/B/W/T

TORONTO ON, CA (YYZ)

YYZ

15R/33L

2770

61

Asphalt

79/R/B/W/T

TORONTO ON, CA (YYZ)

YYZ

15L/33R

3368

61

Asphalt

79/R/B/W/T

VANCOUVER BC, CA (YVR)

YVR

08R/26L 3505

61

Asphalt

93/R/C/W/T

VANCOUVER BC, CA (YVR)

YVR

08L/26R 3030

61

Concrete

79/R/B/W/T

VANCOUVER BC, CA (YVR)

YVR

12/30

61

Concrete

93/R/C/W/T

2225

VIENNA, AT (VIE)

VIE

11/29

3500

45

Asphalt

55/F/B/W/T

VIENNA, AT (VIE)

VIE

16/34

3600

45

Asphalt

70/F/A/W/T

WASHINGTON DC, US (DCA)

DCA

01/19

2185

46

Asphalt, grooved

57/F/B/X/T

WASHINGTON DC, US (DCA)

DCA

15/33

1586

46

Asphalt, grooved

57/F/B/X/T

WASHINGTON DC, US (DCA)

DCA

04/22

1524

46

Asphalt, grooved

57/F/B/X/T

WASHINGTON, DC, US (IAD)

IAD

1L/19R

2865

46

Concrete, grooved 81/R/C/W/T

WASHINGTON, DC, US (IAD)

IAD

1C/19C

3505

46

Concrete, grooved 81/R/C/W/T

WASHINGTON, DC, US (IAD)

IAD

1R/19L

3505

46

Concrete, grooved 81/R/C/W/T

WASHINGTON, DC, US (IAD)

IAD

12/30

3201

46

Concrete, grooved 81/R/C/W/T

XIAMEN, CN (XMN)

XMN 05/23

3400

45

Asphalt

83/F/B/W/T

ZURICH, CH (ZRH)

ZRH

2500

60

Concrete

60/R/B/W/T

10/28

ZURICH, CH (ZRH)

ZRH

14/32

3300

60

Concrete

60/R/B/W/T

ZURICH, CH (ZRH)

ZRH

16/34

3700

60

Concrete

60/R/B/W/T

Appendix B: Example ACN values for a variety of aircraft

These values are provided for reference only; not to be used for aircraft operations. TABLE B.1  Example ACN values.

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3) A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Airbus A319-100

75 865 38 952 1380

39 18

40 18

44 50 20 22

44 20

46 21

48 22

50 23

Airbus A320-200

77 395 44 968 1440

41 22

42 22

47 24

53 28

46 24

49 26

51 27

53 28

Airbus A320-200 (Bogie)

73 900 42 000 1220

18 9

19 9

22 10

31 13

18 9

21 10

25 12

28 13

Airbus A321-100

78 414 47 000 1280

42 23

44 24

49 55 25 30

47 25

50 27

52 29

54 30

©2022 SAE International

121

122

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Airbus A330-300

233 900

58

67

73

98

54

62

74

86

120 000 1420

26

27

30 36

28

27

30

35

Airbus A340-300

271 000 129 300 1380

59 24

64 25

74 28

100 50 34 25

58 24

69 26

80 30

Airbus A340500,600

366 072 178 448 1420

70 29

76 31

90 121 34 42

60 29

70 28

83 32

97 37

Airbus A350-900

275 000 140 000 1680

68 30

72 31

82 33

113 40

65 32

73 33

85 36

98 40

Airbus A350-1000 308 000 160 000 1520

55 23

61 25

75 28

104 57 38 27

72 27

92 33

111 42

Airbus A380-800

562 000 300 000 1500

59 27

64 29

75 31

106 56 40 29

68 29

88 34

110 42

Antonov An124-100

391 972 203 940 1030

51 20

60 23

77 27

107 35 40 17

48 18

73 23

100 32

Antonov An-225

600 000 458 865 1130

63 41

75 48

95 62

132 88

45 30

61 39

89 55

125 75

ATR 42

18 559 11 217 720

9 5

10 5

11 6

13 7

10 6

11 6

12 7

12 7

ATR 72

21 516 12 746 790

11 6

12 6

14 7

15 8

13 7

14 7

14 8

15 8

Boeing B707320C

152 407 67 495 1240

44 16

50 17

60 76 19 25

41 15

49 16

58 19

66 22

Boeing B717

54 885 32 110 1048

31 16

33 17

37 19

35 18

37 19

38 20

40 21

40 22

Appendix B: Example ACN values for a variety of aircraft

123

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

Boeing B727-200

78 517

42

44

50 55

47

50

52

54

45 887 1150

23

23

25

30

24

26

28

29

Boeing B737-300

63 527 33 140 1400

35 16

37 17

41 18

45 21

40 19

42 20

44 21

46 22

Boeing B737-400

68 320 35 689 1280

38 18

40 18

45 49 20 23

43 20

45 21

47 22

49 23

Boeing B737-500

60 774 32 630 1340

33 16

35 16

39 18

43 21

38 18

40 19

42 20

43 21

Boeing B737-600

65 770 36 400 1300

35 18

36 18

40 45 19 22

39 19

41 21

44 22

45 23

Boeing B737-700

70 359 37 728 1390

38 18

40 19

44 49 20 23

43 21

46 22

48 23

50 24

Boeing B737-800

79 230 41 400 1470

44 21

46 21

51 23

56 26

51 23

53 25

55 26

57 27

Boeing B737-900

79 230 42 827 1470

44 21

46 22

51 24

56 28

51 24

53 25

55 27

57 28

Boeing B747-400

398 192 183 546 1380

59 23

66 24

82 27

105 54 35 20

65 23

77 27

88 31

Boeing B757-200

115 634 58 123 1240

34 14

38 15

47 17

60 23

32 13

38 15

45 18

52 20

Boeing B767-200

141 520 80 890 1172

37 19

40 19

48 22

66 28

32 16

38 18

45 21

53 25

Boeing B767-200 ER

157 400 80 890 1260

42 19

46 20

55 22

75 28

37 17

44 19

53 22

61 25

D 3

A B C D k = 150 k = 80 k = 40 k = 20

124

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Boeing B767-300

159 685

44

49

59

79

40

48

57

65

87 694 1380

21

22

25

33

19

22

25

29

Boeing B777200LR

348 358 145 150 1500

62 20

29 21

87 24

117 31

64 23

82 23

105 27

127 34

Boeing B777300ER

352 441 167 829 1520

64 24

71 25

89 29

120 66 40 27

85 28

109 34

131 43

Boeing B787-8

228 384 107 683 1570

60 24

66 25

81 28

106 61 36 24

71 26

84 30

96 35

Boeing B787-9

253 558 110 676 1540

66 24

73 25

87 27

117 34

65 25

76 26

90 30

104 34

BAe 125-800

12 483 6858 1007

7 3

7 3

8 3

9 4

8 4

8 4

9 4

9 5

BAe 146-200

42 419 23 962 970

22 11

23 12

26 13

29 15

24 12

26 13

27 14

29 15

Beech 1900

7750 5710 670

3 2

4 3

4 3

5 4

4 3

4 3

5 3

5 4

Beech King Air 300

6832 5710 730

3 2

3 3

4 3

4 4

4 3

4 3

4 3

4 3

Bombardier Challenger 800

24 166 15 397 1120

13 8

14 8

16 9

17 10

16 9

16 10

17 10

18 11

Bombardier CRJ 900

38 442 21 617 1060

21 10

21 11

24 12

27 14

23 12

24 12

26 13

27 14

Bombardier Dash 8-300

19 578 11 828 670

8 4

9 5

11 6

13 7

10 5

11 6

11 6

12 7

125

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Bombardier Dash 8-400

29 265

14

16

18

20

16

17

18

19

17 130 670

7

8

9

11

8

9

10

10

British Aerospace Aérospatiale Concorde

185 933 101 937 1290

65 28

72 31

81 37

97 44

60 27

71 30

81 35

91 41

Canadair CL-600

19 590 10 000 1316

11 5

11 5

13 5

13 6

136

13 6

14 6

14 7

Cessna 525B Citation Jet 3

6396 5700 910

6

7

7

7

7

7

7

7

Cessna 550S2

6940 4146 830

5 3

6 3

6 4

6 4

5 3

6 3

6 3

6 3

Cessna 560 Citation V

7650 5712 1000

7 4

7 5

7 5

7 5

7 4

7 5

7 5

7 5

Cessna 560 XL Citation Excel

9180 5916 1090

9 6

9 6

9 6

9 6

9 6

9 6

9 6

9 6

Cessna 650 Citation III/VI

10 098 5712 1160

6 3

7 3

7 3

8 4

7 3

8 4

8 4

8 4

Cessna 650 Citation VII

10 608 6324 1160

7 3

7 3

8 4

8 4

8 4

8 4

8 4

8 5

Cessna 750 Citation X

16 320 9792 1310

10 5

11 6

12 6

12 7

12 6

12 7

13 7

13 7

Cessna Citation 3

9525 5670 1013

6 3

6 3

6 3

7 4

7 4

7 4

7 4

7 4

Dassault Falcon 10 8565 5710 930

5 3

5 3

6 4

6 4

6 4

6 4

6 4

6 4

Aircraft type

126

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Dassault Falcon 20

13048

8

9

9

10

10

10

10

10

7645 920

4

4

5

5

5

5

6

6

Dassault Falcon 50

17 600 9600 1400

10 5

10 5

11 5

12 6

11 6

12 6

12 6

13 6

Dassault Falcon 900

20 598 10 503 1300

11 5

12 5

14 6

15 7

14 6

14 7

15 7

15 7

Douglas DC-3

14 985 8155 310

7 4

7 4

10 5

12 7

8 4

8 5

9 5

9 5

Fairchild Metro 227

7545 5710 730

3 2

4 3

4 3

5 4

4 3

5 3

5 3

5 4

Embraer 120 Brasilia

11 600 7150 830

5 3

6 4

7 4

8 5

7 4

8 5

8 5

8 5

Embraer 170

37 525 21 210 1040

20 10

21 11

24 12

26 14

22 11

24 12

25 13

26 14

Embraer 190

49 048 26 104 1100

28 14

30 14

33 16

35 18

31 15

33 16

35 17

36 18

Embraer ERJ 145

24 167 12 542 900

14 6

15 6

16 7

17 8

16 7

16 8

17 8

18 8

F/A-18

23 542 10 523 1723

23 10

22 10

22 10

21 10

23 10

23 10

23 10

23 10

Fokker 100

46 090 24 779 940

25 12

27 13

31 14

33 16

28 13

30 14

31 15

33 16

Fokker 50

20 904 12 746 590

9 5

11 6

13 7

14 8

11 6

12 7

13 7

13 8

Aircraft type

127

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Fokker F27-500

20 904

9

11

13

14

11

12

13

13

12 236 570

5

5

6

8

6

6

7

7

Fokker F28-1000

33 140 17 845 530

14 6

17 8

20 23 9 11

16 8

18 9

20 9

21 10

Gulfstream G II

28 100 16 000 930

15 8

17 8

18 9

19 11

18 9

18 10

19 10

20 10

Gulfstream G III

31 824 17 340 1210

19 9

20 9

22 10

23 12

22 11

23 11

23 12

24 12

Gulfstream G IV

34 068 19 278 1210

20 10

22 11

24 12

25 13

24 12

25 13

25 13

26 14

Gulfstream G V

41 310 21 930 1370

26 12

28 13

30 31 14 15

31 14

32 15

32 16

33 16

HS-748

20 183 11 786 550

8 4

10 5

11 6

13 7

10 5

11 6

11 6

12 6

HS/BAe 125

11 420 6220 830

6 3

6 3

7 3

8 4

7 3

7 4

8 4

8 4

Ilyushin Il-62

16 800 66 360 1650

52 16

58 17

68 19

83 24

51 18

59 18

68 20

77 22

Ilyushin Il-76T

171 000 83 819 640

24 9

27 10

34 12

45 16

29 11

33 13

30 14

34 14

Ilyushin Il-86

209 400 111 000 880

34 15

36 16

43 18

61 23

26 13

31 14

38 16

46 19

Jetstream 31,32

7036 5710 390

3 3

4 3

5 4

6 5

4 4

5 4

5 4

5 4

128

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)

Aircraft type

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)

A 15

B 10

C 6

D 3

A B C D k = 150 k = 80 k = 40 k = 20

Jetstream 41

10 910

5

5

6

7

6

6

7

7

6424 830

3

3

3

4

3

3

4

4

Learjet 24F

6322 5710 790

3 3

3 3

4 3

4 4

4 3

4 4

4 4

4 4

Lear 35A

7824 4132 1080

4 2

4 2

5 2

5 2

5 2

5 2

5 3

5 3

Learjet 40, 45

9996 6222 790 9891 5914 1240 10 812 6426 1480 70 300 35 000 550 70 300 35 000 725 158 359 61 182 1310 379 634 169 780 770 64 037 35 690 1140 71 277 39 972 1140

5 3

6 3

7 4

7 4

6 4

7 4

7 4

7 4

6 3

6 3

7 3

7 4

7 4

7 4

7 4

7 4

6 3

7 4

7 4

8 4

8 4

8 4

8 5

8 5

23 10

28 13

32 15

37 16

26 13

29 14

32 15

35 16

27 12

30 14

33 15

38 17

30 14

33 15

35 16

38 17

52 15

60 16

73 18

88 24

51 14

61 16

70 19

78 22

31 11

33 12

40 51 14 17

28 12

31 13

37 13

45 15

36 18

38 19

43 21

46 24

41 20

43 21

45 23

46 24

41 20

43 21

48 24

52 27

46 23

48 24

50 26

52 27

Learjet 55B, C

Learjet 60

Lockheed C-130H Hercules Lockheed C-130J Hercules Lockheed C-141B Starlifter Lockheed C-5 Galaxy McDonnellDouglas MD-81 McDonnellDouglas MD-9030

129

Appendix B: Example ACN values for a variety of aircraft

TABLE B.1  (Continued) Example ACN values.

Aircraft type McDonnellDouglas MD-11 Orion P3A

SAAB 340 A,B

Shorts 330

Shorts 360

Tupolev Tu-154

Tupolev Tu-204

Maximum mass (kg) Empty mass (kg) Tire pressure (kPa) 286 000 122 324 1380 61 235 27 000 1310 13 358 8259 820 10 400 6730 550 12 338 7851 540 97 960 53,520 930 111 720 57 085 1380

Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3) A 15 67 24

B 10 74 25

C 6 90 27

D 3 119 34

A k = 150 58 22

B k = 80 69 23

C k = 40 83 26

D k = 20 96 30

35 13

38 14

42 15

44 17

41 15

43 16

44 17

46 18

6 4

6 4

8 4

9 5

7 4

8 4

8 5

9 5

6 4

8 5

9 6

9 6

7 5

8 5

8 5

8 5

7 5

9 6

10 7

11 7

9 6

9 6

9 6

9 6

19 9

22 9

28 11

37 16

18 7

24 9

30 12

36 15

31 14

33 14

40 53 16 20

29 13

34 14

40 16

46 19

Appendix C: Runway Roughness Profiles

©2022 SAE International

131

Dist­ance (ft) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350

0 10.30 10.44 10.52 10.56 10.55 10.53 10.66 10.71 10.84 10.88 10.96 11.04 11.17 11.14 11.04 11.02 11.06 11.06 11.05 11.09 11.11 11.20 11.31 11.38 11.46 11.46 11.51 11.54

2 10.31 10.44 10.52 10.56 10.54 10.53 10.67 10.71 10.85 10.89 10.95 11.05 11.17 11.14 11.03 11.02 11.07 11.05 11.05 11.09 11.11 11.22 11.32 11.38 11.47 11.45 11.52 11.53

4 10.30 10.44 10.53 10.56 10.53 10.52 10.66 10.72 10.86 10.90 10.95 11.05 11.17 11.14 11.02 11.02 11.06 11.05 11.06 11.09 11.10 11.22 11.32 11.38 11.48 11.45 11.52 11.54

6 10.30 10.45 10.53 10.56 10.52 10.53 10.67 10.72 10.86 10.92 10.95 11.04 11.17 11.12 11.01 11.02 11.07 11.04 11.06 11.10 11.11 11.23 11.31 11.38 11.48 11.45 11.52 11.53

8 10.31 10.46 10.54 10.56 10.52 10.54 10.67 10.71 10.86 10.93 10.96 11.06 11.19 11.11 11.00 11.01 11.08 11.05 11.06 11.09 11.11 11.23 11.31 11.37 11.48 11.46 11.52 11.54

10 10.32 10.47 10.54 10.56 10.52 10.54 10.67 10.72 10.86 10.94 10.97 11.07 11.17 11.09 10.99 11.01 11.08 11.04 11.07 11.09 11.12 11.23 11.31 11.37 11.49 11.46 11.52 11.53

12 10.33 10.47 10.55 10.56 10.52 10.54 10.67 10.72 10.85 10.95 10.97 11.07 11.18 11.09 10.99 11.00 11.08 11.04 11.07 11.09 11.12 11.24 11.32 11.37 11.50 11.46 11.52 11.54

14 10.34 10.48 10.55 10.55 10.52 10.54 10.67 10.72 10.86 10.95 10.98 11.08 11.18 11.09 10.98 11.00 11.09 11.04 11.07 11.09 11.12 11.25 11.31 11.37 11.50 11.45 11.52 11.55

16 10.35 10.49 10.55 10.55 10.52 10.54 10.66 10.71 10.86 10.95 10.97 11.08 11.18 11.09 10.99 11.00 11.09 11.04 11.07 11.08 11.11 11.25 11.32 11.38 11.50 11.45 11.53 11.54

18 10.36 10.49 10.55 10.55 10.53 10.54 10.66 10.72 10.87 10.95 10.97 11.09 11.19 11.09 10.98 11.00 11.08 11.04 11.07 11.08 11.11 11.26 11.33 11.38 11.50 11.45 11.52 11.54

20 10.36 10.50 10.54 10.56 10.52 10.55 10.65 10.72 10.87 10.95 10.98 11.10 11.19 11.09 10.98 11.00 11.08 11.04 11.08 11.07 11.12 11.24 11.34 11.39 11.50 11.45 11.52 11.54

22 10.37 10.50 10.55 10.57 10.52 10.55 10.65 10.73 10.87 10.95 10.99 11.12 11.19 11.09 10.98 11.00 11.08 11.04 11.08 11.07 11.11 11.27 11.35 11.38 11.50 11.45 11.52 11.54

24 10.37 10.50 10.55 10.57 10.51 10.54 10.65 10.73 10.87 10.96 11.00 11.13 11.20 11.09 10.98 10.99 11.08 11.03 11.07 11.06 11.11 11.28 11.35 11.38 11.49 11.46 11.53 11.53

26 10.37 10.50 10.56 10.57 10.52 10.55 10.65 10.74 10.87 10.97 11.01 11.14 11.21 11.09 10.98 10.99 11.08 11.03 11.07 11.07 11.11 11.28 11.36 11.39 11.49 11.46 11.53 11.52

TABLE C.1  San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 28 10.38 10.50 10.57 10.57 10.52 10.55 10.66 10.75 10.86 10.98 11.03 11.14 11.21 11.09 10.98 10.98 11.08 11.03 11.07 11.09 11.10 11.30 11.36 11.40 11.49 11.46 11.53 11.51

30 10.39 10.50 10.57 10.56 10.51 10.56 10.67 10.75 10.85 10.98 11.03 11.15 11.21 11.09 10.99 10.99 11.07 11.03 11.06 11.10 11.10 11.31 11.36 11.41 11.48 11.48 11.53 11.50

32 10.40 10.49 10.57 10.55 10.52 10.57 10.67 10.78 10.84 10.99 11.03 11.16 11.20 11.09 10.99 10.99 11.08 11.02 11.06 11.10 11.12 11.32 11.37 11.41 11.47 11.47 11.53 11.49

34 10.40 10.49 10.57 10.55 10.52 10.58 10.67 10.77 10.84 10.99 11.03 11.17 11.20 11.09 11.00 11.00 11.08 11.02 11.06 11.11 11.13 11.33 11.37 11.42 11.46 11.47 11.53 11.49

36 10.41 10.49 10.57 10.55 10.53 10.59 10.68 10.78 10.83 10.99 11.03 11.17 11.20 11.08 11.00 11.01 11.08 11.02 11.06 11.11 11.15 11.34 11.37 11.43 11.46 11.48 11.54 11.49

38 10.41 10.49 10.58 10.55 10.53 10.60 10.68 10.79 10.83 11.00 11.03 11.17 11.19 11.08 11.00 11.01 11.08 11.02 11.06 11.12 11.16 11.34 11.37 11.44 11.48 11.48 11.53 11.49

40 10.42 10.50 10.57 10.55 10.53 10.61 10.68 10.80 10.84 11.01 11.03 11.17 11.18 11.08 11.00 11.01 11.09 11.02 11.07 11.12 11.17 11.34 11.38 11.44 11.46 11.48 11.52 11.49

42 10.43 10.50 10.57 10.56 10.53 10.62 10.69 10.81 10.85 11.01 11.03 11.17 11.18 11.08 11.00 11.03 11.08 11.02 11.07 11.12 11.18 11.34 11.38 11.45 11.47 11.48 11.52 11.48

44 10.43 10.51 10.58 10.56 10.53 10.63 10.69 10.81 10.86 11.01 11.02 11.18 11.17 11.07 11.01 11.04 11.08 11.03 11.08 11.11 11.18 11.33 11.38 11.46 11.47 11.49 11.51 11.47

46 10.44 10.51 10.57 10.56 10.53 10.65 10.69 10.82 10.87 11.01 11.02 11.18 11.16 11.06 11.02 11.03 11.07 11.03 11.08 11.11 11.19 11.32 11.38 11.46 11.47 11.49 11.53 11.47

48 10.44 10.52 10.56 10.56 10.53 10.66 10.70 10.83 10.87 10.98 11.03 11.18 11.15 11.05 11.02 11.05 11.07 11.04 11.09 11.11 11.19 11.32 11.38 11.46 11.47 11.50 11.52 11.47

132 Appendix C: Runway Roughness Profiles

Dist­ance (ft) 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750

0 11.46 11.35 11.25 10.91 10.92 10.84 10.87 10.82 10.87 10.90 10.91 10.87 10.88 10.88 10.87 10.93 10.85 10.99 11.07 11.15 11.14 11.26 11.29 11.34 11.35 11.40 11.50 11.52

2 11.47 11.35 11.25 10.92 10.92 10.83 10.88 10.82 10.87 10.91 10.90 10.87 10.87 10.88 10.88 10.93 10.85 10.99 11.09 11.15 11.14 11.27 11.30 11.34 11.35 11.41 11.51 11.53

4 11.47 11.35 11.24 10.92 10.92 10.83 10.87 10.82 10.86 10.91 10.91 10.87 10.88 10.88 10.88 10.93 10.85 11.00 11.10 11.15 11.14 11.28 11.30 11.34 11.35 11.42 11.52 11.53

6 11.48 11.35 11.23 10.91 10.91 10.82 10.88 10.82 10.85 10.89 10.91 10.86 10.88 10.88 10.88 10.93 10.85 11.00 11.10 11.16 11.13 11.28 11.31 11.35 11.35 11.42 11.52 11.53

8 11.47 11.34 11.22 10.93 10.91 10.82 10.87 10.81 10.85 10.90 10.91 10.88 10.88 10.89 10.89 10.92 10.86 11.00 11.11 11.16 11.12 11.29 11.31 11.35 11.35 11.43 11.52 11.52

10 11.46 11.34 11.21 10.93 10.91 10.81 10.87 10.81 10.89 10.91 10.91 10.87 10.88 10.89 10.89 10.92 10.86 11.01 11.12 11.15 11.12 11.30 11.32 11.35 11.35 11.43 11.52 11.52

12 11.46 11.33 11.19 10.93 10.91 10.81 10.87 10.81 10.91 10.91 10.91 10.86 10.88 10.89 10.90 10.91 10.86 11.01 11.14 11.15 11.12 11.30 11.32 11.34 11.36 11.42 11.52 11.52

14 11.46 11.32 11.18 10.93 10.90 10.80 10.87 10.81 10.91 10.91 10.91 10.87 10.89 10.89 10.91 10.90 10.87 11.02 11.14 11.16 11.12 11.30 11.33 11.33 11.36 11.42 11.52 11.52

16 11.46 11.32 11.17 10.93 10.89 10.79 10.86 10.82 10.92 10.92 10.91 10.87 10.90 10.89 10.92 10.92 10.88 11.02 11.15 11.16 11.12 11.31 11.33 11.33 11.36 11.43 11.52 11.52

18 11.46 11.32 11.17 10.93 10.88 10.79 10.85 10.82 10.92 10.93 10.90 10.86 10.89 10.89 10.92 10.91 10.88 11.02 11.16 11.16 11.12 11.30 11.34 11.33 11.35 11.43 11.52 11.52

20 11.47 11.31 11.15 10.93 10.87 10.79 10.84 10.82 10.93 10.94 10.90 10.85 10.89 10.89 10.93 10.91 10.89 11.04 11.16 11.16 11.13 11.31 11.35 11.33 11.35 11.43 11.52 11.53

22 11.47 11.31 11.13 10.93 10.89 10.79 10.84 10.83 10.93 10.94 10.89 10.85 10.89 10.88 10.92 10.90 10.90 11.05 11.16 11.16 11.13 11.31 11.35 11.33 11.35 11.43 11.52 11.53

24 11.47 11.30 11.12 10.93 10.88 10.79 10.84 10.83 10.93 10.94 10.90 10.85 10.89 10.88 10.92 10.90 10.91 11.05 11.15 11.16 11.14 11.31 11.35 11.33 11.35 11.43 11.51 11.53

26 11.46 11.29 11.10 10.93 10.88 10.79 10.84 10.83 10.94 10.94 10.90 10.86 10.90 10.89 10.92 10.90 10.91 11.06 11.15 11.16 11.15 11.31 11.35 11.33 11.35 11.43 11.51 11.54

28 11.46 11.29 11.10 10.93 10.88 10.80 10.84 10.84 10.94 10.94 10.90 10.85 10.89 10.88 10.92 10.88 10.92 11.06 11.16 11.16 11.16 11.30 11.35 11.32 11.35 11.44 11.51 11.53

30 11.44 11.28 11.18 10.94 10.87 10.80 10.83 10.84 10.95 10.95 10.91 10.86 10.89 10.89 10.92 10.88 10.92 11.05 11.15 11.17 11.17 11.30 11.35 11.33 11.36 11.44 11.50 11.53

32 11.43 11.28 11.17 10.94 10.86 10.81 10.82 10.85 10.94 10.93 10.90 10.86 10.88 10.88 10.92 10.86 10.93 11.04 11.14 11.17 11.18 11.30 11.36 11.33 11.36 11.45 11.50 11.54

TABLE C.1  (Continued) San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 34 11.41 11.28 11.14 10.94 10.85 10.82 10.82 10.86 10.93 10.93 10.91 10.86 10.87 10.88 10.92 10.85 10.94 11.03 11.14 11.17 11.19 11.29 11.36 11.33 11.36 11.46 11.50 11.54

36 11.40 11.28 11.14 10.94 10.86 10.82 10.82 10.86 10.93 10.93 10.89 10.87 10.88 10.88 10.93 10.85 10.94 11.03 11.14 11.17 11.20 11.29 11.35 11.33 11.36 11.46 11.50 11.54

38 11.39 11.28 11.12 10.95 10.86 10.83 10.82 10.86 10.92 10.93 10.89 10.87 10.87 10.88 10.93 10.84 10.95 11.02 11.14 11.17 11.20 11.29 11.35 11.33 11.36 11.47 11.51 11.54

40 11.38 11.27 11.00 10.94 10.85 10.84 10.82 10.88 10.93 10.92 10.89 10.87 10.87 10.88 10.93 10.84 10.96 11.03 11.14 11.17 11.22 11.29 11.35 11.34 11.37 11.48 11.51 11.53

42 11.37 11.27 10.97 10.93 10.85 10.85 10.82 10.87 10.91 10.93 10.89 10.87 10.87 10.87 10.93 10.84 10.96 11.03 11.14 11.17 11.23 11.29 11.35 11.34 11.38 11.48 11.51 11.53

44 11.36 11.27 10.95 10.94 10.85 10.85 10.83 10.86 10.91 10.93 10.89 10.87 10.87 10.87 10.93 10.84 10.97 11.04 11.15 11.16 11.24 11.29 11.35 11.34 11.38 11.49 11.52 11.53

46 11.36 11.26 10.94 10.94 10.84 10.85 10.82 10.86 10.90 10.93 10.88 10.88 10.88 10.87 10.94 10.85 10.99 11.05 11.15 11.15 11.24 11.29 11.35 11.35 11.39 11.49 11.52 11.53

48 11.35 11.26 10.92 10.93 10.84 10.87 10.83 10.86 10.90 10.93 10.88 10.87 10.88 10.87 10.93 10.85 10.99 11.06 11.15 11.15 11.25 11.29 11.34 11.35 11.39 11.50 11.52 11.54

Appendix C: Runway Roughness Profiles 133

Dist­ance (ft) 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850

0 11.54 11.57 11.61 11.82 11.91 11.90 11.95 11.90 11.89 11.83 11.84 11.84 11.87 11.98 12.09 12.10 12.01 11.85 11.94 12.03 12.16 12.01

2 11.54 11.58 11.61 11.83 11.91 11.90 11.94 11.90 11.92 11.83 11.84 11.83 11.87 11.99 12.08 12.07 11.99 11.85 11.94 12.04 12.16 12.01

4 11.55 11.58 11.61 11.84 11.91 11.90 11.93 11.90 11.95 11.83 11.84 11.83 11.88 12.01 12.08 12.06 11.98 11.86 11.95 12.05 12.17 12.01

6 11.55 11.58 11.62 11.83 11.91 11.90 11.92 11.90 11.95 11.84 11.84 11.83 11.89 12.03 12.08 12.07 11.94 11.86 11.95 12.06 12.17 12.02

8 11.55 11.58 11.63 11.83 11.90 11.90 11.92 11.90 11.95 11.84 11.84 11.83 11.89 12.04 12.08 12.08 11.94 11.87 11.95 12.06 12.17 12.02

10 11.56 11.58 11.64 11.83 11.91 11.90 11.92 11.90 11.94 11.84 11.84 11.83 11.89 12.05 12.08 12.09 11.93 11.86 11.95 12.06 12.15 12.01

12 11.55 11.58 11.65 11.83 11.91 11.91 11.92 11.89 11.94 11.84 11.84 11.84 11.91 12.05 12.09 12.10 11.93 11.86 11.95 12.06 12.14 12.00

14 11.55 11.59 11.66 11.83 11.92 11.92 11.92 11.88 11.93 11.82 11.84 11.84 11.91 12.05 12.10 12.11 11.92 11.85 11.96 12.06 12.13 12.00

16 11.55 11.59 11.67 11.83 11.92 11.92 11.92 11.88 11.92 11.83 11.84 11.84 11.92 12.05 12.10 12.11 11.91 11.84 11.95 12.06 12.12 11.98

18 11.55 11.59 11.67 11.84 11.92 11.92 11.92 11.87 11.92 11.82 11.84 11.85 11.93 12.05 12.10 12.12 11.90 11.85 11.95 12.06 12.11 11.97

20 11.54 11.59 11.67 11.85 11.92 11.93 11.92 11.87 11.91 11.83 11.84 11.85 11.95 12.05 12.10 12.06 11.90 11.85 11.96 12.06 12.10 11.97

22 11.53 11.58 11.68 11.86 11.92 11.93 11.92 11.86 11.90 11.83 11.83 11.85 11.95 12.04 12.10 12.01 11.90 11.87 11.97 12.07 12.09 11.96

24 11.53 11.57 11.70 11.87 11.92 11.93 11.92 11.86 11.90 11.84 11.83 11.85 11.96 12.06 12.11 12.03 11.90 11.89 11.98 12.08 12.09 11.96

26 11.53 11.57 11.72 11.88 11.92 11.93 11.92 11.85 11.89 11.84 11.83 11.84 11.96 12.06 12.11 12.04 11.90 11.88 11.98 12.09 12.09 11.96

28 11.51 11.58 11.73 11.88 11.91 11.94 11.91 11.85 11.88 11.84 11.82 11.84 11.96 12.07 12.12 12.05 11.91 11.88 11.99 12.10 12.08 11.96

30 11.52 11.57 11.74 11.89 11.91 11.94 11.90 11.84 11.87 11.85 11.83 11.85 11.96 12.07 12.13 12.05 11.90 11.88 12.00 12.09 12.07 11.95

32 11.52 11.57 11.76 11.90 11.92 11.95 11.90 11.84 11.86 11.84 11.83 11.85 11.95 12.07 12.13 12.06 11.88 11.89 12.00 12.12 12.07

TABLE C.1  (Continued) San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 34 11.53 11.57 11.77 11.90 11.91 11.95 11.90 11.84 11.85 11.84 11.83 11.86 11.96 12.07 12.13 12.06 11.87 11.90 11.99 12.13 12.06

36 11.53 11.58 11.78 11.90 11.91 11.95 11.90 11.84 11.84 11.84 11.82 11.86 11.96 12.06 12.13 12.05 11.87 11.91 11.99 12.14 12.05

38 11.54 11.58 11.80 11.90 11.91 11.96 11.90 11.84 11.84 11.85 11.82 11.87 11.96 12.07 12.14 12.04 11.86 11.91 11.99 12.13 12.03

40 11.55 11.59 11.82 11.90 11.91 11.96 11.90 11.85 11.84 11.85 11.83 11.87 11.96 12.07 12.14 12.03 11.86 11.91 12.00 12.14 12.03

42 11.56 11.60 11.82 11.90 11.90 11.96 11.90 11.87 11.83 11.85 11.82 11.87 11.95 12.08 12.13 12.02 11.85 11.91 12.00 12.14 12.02

44 11.56 11.62 11.82 11.91 11.90 11.96 11.90 11.89 11.82 11.86 11.83 11.87 11.95 12.08 12.13 12.02 11.86 11.92 12.01 12.14 12.01

46 11.57 11.61 11.83 11.91 11.90 11.96 11.90 11.89 11.82 11.86 11.83 11.87 11.94 12.08 12.13 12.02 11.86 11.92 12.02 12.15 12.02

48 11.57 11.61 11.82 11.90 11.90 11.96 11.90 11.90 11.81 11.84 11.84 11.86 11.96 12.09 12.11 12.02 11.85 11.93 12.02 12.15 12.01

134 Appendix C: Runway Roughness Profiles

Appendix C: Runway Roughness Profiles

135

The elevation value for a distance of 1620 ft has been corrected in these data from the original NASA source (document CR-119 [66]) to 10.87 in. This correction is in accordance with the values published by the FAA in their advisory circular AC25.491-1. A further modification to the values for the distance values between 1530 and 1538 ft is permitted by the FAA. The modified values are shown in Table C.2. TABLE C.2  Permissible elevation corrections to Table C.1. Distance (ft)

Original elevation (ft)

Modified elevation (ft)

1530

11.18

11.10

1532

11.17

11.11

1534

11.14

11.11

1536

11.14

11.07

1538

11.12

11.04

These modifications to the severe bump bring the profile into agreement with the maximum slope change permitted by ICAO Annex 14 for temporary ramping.

25

2

35

−12

9

−17

−13

−38 36

6

9

30

−58 47

−16

−9

−23 33

3

−19

−30 34

−7

−17

10

7

10

−12

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

2

13

23

9

26

12

13

2

17

27

19

14

8

5

15

3

7

40

1

Distance (m) 0

2

0

38

26

3

1

6

18

11

11

1

13

−1

2

14

6

1

3

14

6

−23 24

−13

−33 34

−13

2

−25 21

−20 29

−26 28

−46 40

18

16

12

−28 29

6

−20 17

−2

−4

36

−19

2

5

−1

−6

3

12

48

−11

39

18 −21

39

7

−20 −21

−3

6

−17

39

40

−2

7

−26 −20 −17

−8

31

18

−5

3

−7

24

41

−12

6

−10

−5

−6

−1 −3

−10

−20 −22 −18

−17

−18

−13

−8

−7

34

−3

−15

−10

33

−21

−13

−11

32 −7

−7

41

−35 −37

−26 −30 −32 −32

−12

−37 −34 −33 −31

−10

−5

−16

−38 −39 −32 −29

−28 −25 −25 −23

−31

0

26

15

−26 −16

−1

−11

5

10

52

−20 −13

4

43

5

−14

−7

5

−19

46

13

−3

9

44

−1

−7

−7

10

−27

53

13

−1

10

−10

−14 −18

−16

1

−13 0

−11

−18

−10

−16

−4

−12

44 −7

−15

35

−32 −19

−11

−9

27

−17

−33 −32 −33

−11

−35 −29 −25

0

−9

−23 −21

−24 −25 −26

−14

−15

−30 −40 −51

47

6

−15

−4

3

−21

45

27

−6

8

34

−2

21

12

48

−8

−4

−18

1

3

−3

−8

17 6

−4

21

−18 −9

−36 −32

−14 −12

−39 −35

1

−15 −16

−19 −13

−27 −23

−23 −15

−10 −10

−58 −71

47

−6

−5

−11

−2

−31 −23

42

7

14

11

18

17

15

14

0 2 55

−7

7

−15

16

17

25

16

4

−14

18

22

22

17

4

−8

16

19

6

18

0

−10

20

25

34

19

−7

−5

12

37

15

20

−12

0

18

7

9

21

−14

−5

22

5

23

22

−12

−6

26

0

40

23

−17

−10

18

−7

35

24

50

−16

3 49

−15

10 48

−16

11 52

−4

16 53

4

18 50

6

16

47

3

16

39

6

17

42

2

10

35

4

10

−22 −22 −29 −29 −29 −30 −26 −28 −35 −38

3

−14

23

9

18

15

9

4

−16

−12

−5

4

14

18

−16

5

4

16

−15

−38 −37

−10

−26 −22

4

−18

−13

−33 38

−29 −31

−6

8

−2

−6

−12 6

−17 2

5

−22 −19 5

−1

−19

1

−19

−14

−16

−15

0

−4

−4

3

−3

−1

−7

4

−2

−1

14

1

5

1

−4

15

−1

−5

0

3

−2

−1

−2

−4

−24 −26 −26 −27 −19 4

−14

9

14

−18

9

−15

5

−1

−4

−3

−13

2

5

−4

−5

5

−6

−6

11

12

−1

−3

−6

3

−11

−2

17

11

1

2

−4

5

−15

12

4

12

−10

3

−9

−22 −23 −26 −29 −27 −25 −21

−11

−40 −35 −27 −17

−1

−17

3

−19

−9

−35 −37 −39 −30 −24 −22 −20 −17

−27 −26 −25 −9

17

−3

−13

5

11

12

−18

−4

−25

−20

5

−12

−2

−20

−78 −88 −94 −97 −97 −94 −92 −87 −79 −74 −74 −71

52

−5

−2

−23 −24

5

−27 −14

26

15

18

13

TABLE C.3  DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).

136 Appendix C: Runway Roughness Profiles

3

3

−12

−25 17

47

−17

−28 28

9

4

−37 −27

57

−29 −28

1

−9

21

20

−21

52

9

2

20

21

20

6

575

600

625

650

675

700

725

750

775

800

825

850

875

900

925

950

975

1000

1025

1050

1075

1100

1125

7

12

19

17

−3

9

48

−15

14

27

−13

8

60

9

8

14

48

12

1

Distance (m) 0

13

47

15

8

7

3

16

12

−11

42

−9

−10

−7

5

−14

42

−1

−2

−13

6

16

9

17

13

10

9

−24 −23 −18

−7

43

−9

−5

−8

4

57

59

62

60

9

10

16

20

−6

7

51

−14

14

39

−12

8

9

8

17

23

−1

6

55

−7

8

41

−11

5

11

10

18

24

0

0

42

−6

6

51

−6

8

13

8

12

32

3

−3

32

−3

4

62

1

10

19

11

9

31

5

−3

24

1

3

61

−1

11

−29 −27 −27 −25 −21

57

−29 −32 −27 −20 −11

15

8

−27 29

−13

51

−15

−11

1

2

26

5

14

34

3

−1

20

3

1

66

−5

14

−21

60

−3

2

10

−16

−17

39

0

7

−14

7

10

35

8

10 29

12

6

−20 −15

9

50

11

2

8

−12

32

9

16

38

1

−1

10

36

5

18

41

5

−1

18

12

−15

−8 6

72

−17

12

72

−9

15

−23 −19

55

2

5

7

−13

31

13

18

42

5

2

15

9

−21

67

−28

7

−18

45

18

0

1

−10

−24 −28 −31

38

3

14

−4

8

12

24

21

−10

37

27

−6

−1

−4

5 57

29

15

26

40

6

4

10

12

18

22

32

40

15

3

5

16

−28 −32

64

−24 −22

6

−16 −17

36

20

−8

−4

−6

−34 −34

26

19

1

−23 −30

11

14

15

16

17

2

−16

25

29

−9

−2

2

−28

16

26

1

50

27

21

36

41

19

7

3

14

32

19

36

36

20

8

−4

26

−30 −32

58

−29 −29

7

−21

30

28

−14

−4

−4

−31

22

27

−3 6

34

1

−4

−8

8

30

−18

−5

9

−7

−7

5

35

−19

−4

11

−17

5

38

1 −1

41

−8

−13

19

−6

41

−14

−10

20

−7

39

−16

−15

21

0

13

−5

−2

1

40

−2

−3

−5

43

−28 −31

0

12

5

13

−4

0

−7

46

−4

1

−15

53

−34 −41

4

12

36

34

32

19

40

37

24

5

−6

30

17

15

42

35

21

4

−3

36

3

10

43

33

22

4

4

39

−20

24

−9

46

−13

42

−29 −26

−16

23

33

31

30

29

5

4

42

37

16

6

6

41

−6

10

39

39

13

6

9

45

5

37

36

15

7

19

57

0

8

55

24

−9

−5

4

4

36

31

14

8

15

70

20

13

−8

3

−23

57

5

30

32

15

7

15

61

4

24

32

18

2

14

55

−23 −31

22

5

−7

4

−20 −18

52

−24 −36 −40 −28 −22

3

35

36

13

9

14

48

6

8

−46 −39 −35

8

12

−34 −37 −35 −36 −34 −30 −26 −17

39

−9

44

−21

−19

22

−26 −28 −28 −30 −30 −35 −34

0

40

−11

−15

18

−26 −33 −36 −30 −32 −35 −18

−4

−10

15

28

−13

−5

6

−27 −15

11

30

6

−42 −45 −26 −20 −14

13

TABLE C.3  (Continued) DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 137

−15

−16

19

15

7

−40 −42

−18

20

34

−38 −45

−30 −29

−54 −56

63

−4

−77 −74

1150

1175

1200

1225

1250

1275

1300

1325

1350

1375

1400

1425

1450

1475

−8

63

28

20

−17

9

11

23

1

Distance (m) 0

14

47

32

−6

4

30

19

−14

30

21

−7

−40 −31

9

42

43

−8

3

14

48

39

−18

6

15

54

53

−26

7

40

21

−6

34

27

−17 24

22

−18

−26 −25 −25

13

45

36

−11

5

−27 −19

19

44

27

47

−73 −90 −91

3

57

42

45

6

−18

44

44

6

−15

−90 −88 −76

38

49

−47 −38 −30 −15

−25 −19

−45 −42 −39 −38 −43 −48

25

19

−17

−41

10

32

44

−2

2

15

67

60

−13

9

11

66

55

−12

10

9

27

−12 −3

41

−4

45

39

−21

−12

30

37

−15

−19

−73 −75 −73

45

33

−5

−10

−46 −45 −39

15

21

−17

−27 −29 −25

17

63

62

−16

8

12

7

62

63

56

−4

9

25

7

−71 −66

17

31

−5

−28 −33

−37 −35

−13 −14

50

−4

−28 −27

8

67

59

−18 −22

11

−10

56

0

−16

1

53

51

−19

14

−9

5

1

−2

35

52

−18

16

−6

33

60

−10

17

−11

30

57

−3

18

−17

49

18

−21

0

28

13 30

17

−28 −31

−21

19

49

−1

20

10

29

19

22

8

18

15

23

7

12

16

24

28

21

36

29

44

30

42

32

−35 −30 −25 −19

−23 −28 −34 −41

13

35

11

21

5

29

−3

27

−7

4

30

−11

9

33

−14

11

38

−21

11

55

−19

11

56

1

57

−29 −52

−48 −52 −49 −54 −50 −42 −33

−16

−3

2

−28 −30 −33 −40 −44 −49 −62 −62 −63

7

29

−26 −22 −17 11

46

17

−17

25

51

1

19

−22 −27 −28 −27 −30 −30 −34 −34

56

21

−39 −35 −41

−11

51

10

−24 −26 −28 −19

−1

42

54

−18

15

−68 −64 −59 −67 −67 −58 −46 −28 −19

−1

22

3

−33 −32

−36 −37

−11

57

0

−14

4

59

61

−17

13

TABLE C.3  (Continued) DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).

138 Appendix C: Runway Roughness Profiles

8176

2

2.5

3

3.5

4

8162

4.5

5 8161

5.5

6 8181

6.5

7 8181 8146

13.5

8104 8100

8130 8132

8180

14

14.5 8137 8098 8096

8133

8180 8179

8020 8021

8021

8015 8014 8015 8017

7928 7922

7741

7776 7769 7768 7762 7759 7759 7759 7758 7756 7753 7750 7750 7750 7749 7749 7745 7747 7746 7742 7743 7742 7743 7744 7744 7744 7742 7741

7740

7615 7611

7607 7607 7608 7604 7601 7597 7598 7592 7590 7595 7598 7600 7603 7602 7611

7612

7613

7614 7613 7513 7513 7440 7437 7436 7433 7435 7433 7429 7422 7419 7413

7293 7291 7291

7259 7259 7260 7257 7255 7254 7255 7252 7253 7250 7251

390

7608 7517 7413 7384 7385

7415

7462 7464

7519

7557 7556

7253 7252 7251 7250 7245 7243 7236 7240 7238 7236 7235 7238 7239 7239 7234 7233 7234

7236 7239

7259 7259

7294 7296

7344 7344 7342 7334 7306 7307 7309 7306 7302 7300 7298 7298 7293

7289 7285 7284 7284 7282 7283 7283 7280 7277 7274 7270 7270 7273 7273 7275 7267 7266 7262 7260 7260 7260 7260 7259 7259 7258

7310

7349 7352 7353 7353 7353 7350 7347 7344 7341 7309 7310

375

7312

7385 7387 7390 7390 7388 7382 7379 7379 7376 7378 7374 7370 7370 7369 7360 7353 7351

7335 7333 7337 7342 7340 7339 7334 7337 7332 7325 7324 7323 7320 7320 7316

345

360

7407 7406 7405 7403 7407 7409 7405 7400 7398 7395 7395 7397 7394 7395 7392 7385 7384 7384 7383 7384 7386 7385 7383

7462 7458 7453 7450 7449 7450 7452 7451 7449 7446 7443 7445 7443 7441 7443 7443 7443 7441

7405 7413 7409 7403 7401

315

330

7517

7480 7483 7482 7479 7473 7472 7467 7463 7463

7530 7533 7535 7538 7534 7528 7523 7519 7517

7558 7558 7558 7556 7548 7547 7543 7545 7549 7548 7549 7549 7544 7542 7538 7531

7588 7583 7576 7573 7569 7566 7563 7563 7566 7570 7567 7563 7560 7563 7563 7563 7563 7564 7566 7560 7559

7515 7513 7504 7504 7500 7499 7495 7491 7485 7485 7483 7490 7493 7490 7490 7486 7485 7484 7481

7619

285

7619

300

7617

7610

7614

7622 7619 7619

7605 7600 7597 7598 7600 7600 7601

255

7663 7658

7705 7703

7740

7810

270

7710 7707

7811

7633 7626

7712

7698 7698 7697 7697 7695 7693 7693 7691 7690 7690 7689 7686 7685 7687 7684 7683 7683 7678 7678 7677 7677 7673 7670 7668

7719 7716 7714 7712

7818 7814

7701 7703 7702 7701

7718

7816 7819 7822 7820 7816

7658 7658 7658 7658 7658 7660 7658 7657 7655 7655 7653 7652 7650 7648 7648 7646 7645 7643 7638 7635 7637 7634 7627 7627 7629 7630 7634 7633

7718

7816

225

7716

7823 7821

240

7717

7825 7819

7834 7831

7740 7737 7737 7736 7735 7735 7735 7733 7729 7725 7724 7725 7723 7723 7725 7724 7717

7828 7830 7825 7831 7829 7831 7825 7824 7823 7818

7852 7843 7845 7835 7843 7841 7838 7833 7836 7834

195

7831

7860 7859 7859 7859 7863 7863 7864 7862 7861 7856 7853 7854 7851

7860 7862

7900 7899

210

7909 7906 7905 7899 7897 7899

7924 7924 7924 7924 7928 7929 7928 7911

7974 7952 7952

7780 7778

7909 7908 7908 7909 7911

7925 7925 7926 7925 7921

7953 7952 7953 7957 7956 7956 7955 7953

7971

8018 8018 8020 8019 8018

7989 7987 7989 7986 7981 7980 7978 7976 7973 7971

7959 7957 7951

7991

7810 7809 7803 7798 7799 7806 7802 7798 7799 7800 7799 7801 7800 7802 7802 7805 7804 7799 7798 7802 7802 7798 7796 7791 7789 7788 7783 7779

7911

8127

13 8181

7828 7829 7829 7829 7831

7912 7912

8137 8132 8129 8126

12.5 8177

180

7912 7914

12

165

7917 7916

7961 7962 7962 7961

11.5

8108 8106 8108 8107 8106 8107

8139

11

7894 7890 7886 7884 7884 7879 7880 7882 7883 7884 7883 7883 7883 7882 7882 7877 7874 7869 7865 7863 7859 7858

7921 7921

7973 7970 7969 7966 7964 7961

8111

10.5 8176 8176 8177 8177

8068 8065 8062 8059 8058 8057 8057 8057 8058 8056 8055 8052 8051

8112

8140 8140 8139 8114

10 8176

7897 7894 7894 7892 7891

7919

7971

8010 8002 7996 7993 7992 7998 7998 7998 7997 7992 7991

9.5 8181

7866 7861 7859 7857 7861

7891

8071

9 8182

135

7918

7918

8142 8118

8.5 8186

150

7919

8011

7951 7951 7952 7949 7944 7944 7942 7942 7942 7942 7939 7931 7928 7922 7920 7921

8013

7919 7919 7919

8012

105

8012

8 8182

8031 8032 8029 8025 8024 8023 8021

120

8123

7978 7974 7974 7968 7969 7971

8121

7.5 8181

90

8117

8156 8152

8181

8015 8011

8124 8119

8158 8161

8181

75

8132 8127

8161

8190 8181

8073 8076 8080 8079 8077 8073 8068 8069 8071

8133 8135

8171

8194 8199

8095 8092 8089 8087 8081 8074 8071

8134

8172

8196

8051 8053 8051 8048 8048 8040 8038 8037 8035 8033 8031

8130

8176

8191

45

8124

8176

8192

60

8124

8178 8178 8177

8132 8130 8127

15

1.5

30

1

8192

0.5

8193 8196 8194

0

Distance (m) 0

TABLE C.4  Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 139

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7103 7102

7104 7105

7028 7025 7028 7027 7026 7026 7026 7026 7023 7018 7018

7108 7107

495

7108

7132

7178 7174 7131

7175

8

7124

7172

7216

8.5

7123

7175

7216

9

7122

7176

7212

9.5

10

10.5

11

11.5

12

12.5

7122

7175 7123

7169 7122 7120 7119

7120

7167 7163 7162 7162 7119

7162

7208 7209 7207 7205 7205 7204 7201

13

13.5 7151

7122 7123

7161

7199 7199

7072 7067 7064 7061

6920 6920 6920 6920 6920 6920 6919

540

7146 7123

14.5

7119

7146

7195

7017

7013

7011

7028

7009 7005 7003 7000 6996 6996 6999 6999 6996

7021

7059 7058 7052 7058 7058 7057 7059 7059 7054 7054

6939 6941

6939 6941 6941 6938 6937 6938 6937 6936 6930 6929

6553 6551 6550 6549 6547 6543 6542 6542 6539 6537 6542 6543 6542 6542 6543 6542 6543 6542 6541

6382 6381 6376 6375 6374 6371

6338 6338 6340 6339 6340 6338 6338 6335 6333 6332 6331

6304 6300 6304 6304 6303 6305 6304 6304 6302 6300 6297 6294 6289 6279 6279 6271

765

780

795

6371 6332 6331

6321 6316

6372 6372 6369 6366 6365 6360 6353 6351

6313

6351

6312

6313

6314

6312 6312 6312 6315

6317

6313 6312

6307 6308

6341

6341 6313

6353 6349 6348 6346 6343 6344 6339 6339 6339 6341 6338

6402 6379 6382

6379 6379 6380 6380 6381 6377 6375 6373 6372 6372 6372

6274 6279 6277 6278 6276 6272 6270 6270 6272 6272 6269 6268 6264 6262

6313

6351

6390 6390 6389 6390 6388 6383 6384 6388 6382 6382 6381

6460 6461 6460 6453 6449

6508 6510 6508 6508 6504 6502 6502 6502 6502 6499 6497 6499 6493 6492 6490

6401 6398 6394 6394 6393 6391

6512

750

6509 6509 6511

6442 6442 6440 6438 6434 6433 6432 6429 6426 6424 6425 6426 6429 6430 6428 6427 6425 6425 6424 6425 6424 6417 6418 6415 6410 6407 6405 6403 6411

6512 6512

735

6515 6513

6522 6524 6523 6514

6488 6489 6489 6490 6489 6493 6493 6493 6490 6482 6475 6470 6472 6472 6472 6473 6472 6472 6472 6466 6462 6460 6461 6460 6461

6517

6553 6552 6528 6525

705

6520 6519

6558 6555 6553 6542 6542 6540 6539 6537 6535 6532 6532 6532

6574 6572 6570 6568 6562 6561

720

6582 6581

6604 6603 6605 6605 6604 6602 6598 6595 6592 6592

690

6588 6586 6584 6585 6584 6582 6577 6575 6577 6575 6582 6581

6612

6598 6601 6601 6594 6591

675

6625 6626 6622 6617

6677 6672 6672 6672 6669 6668 6664 6659 6657 6654 6657 6658 6658 6655 6653 6652 6650 6650 6649 6645 6649 6651 6651 6647 6647 6647 6646 6648 6643 6642

6634 6634 6632 6633 6633 6635 6638 6638 6635 6627 6625 6623 6622 6622 6621

6679

6718

6759 6757 6719

6679 6679 6680 6682 6683 6685 6684 6683 6678 6680 6682 6681

6728 6723 6721

645

6708 6702 6700 6700 6698 6686 6682 6681

6740 6738 6735 6731

6811 6788 6785

6816

6856 6857

660

6720 6722 6719 6715

6717 6718 6720 6720 6719

6740 6741

6769 6767 6766 6766 6765 6767 6767 6764 6762 6762

630

6780 6779 6777 6775 6774 6773 6771

6786 6789 6786 6782 6780 6778 6778 6779 6780 6782 6781

6757 6757 6759 6756 6752 6743 6742 6742 6742 6745 6743 6746 6744 6742 6740 6742 6742 6742 6741

600

615

6807 6805 6804 6804 6802 6802 6802 6802 6803 6803 6802 6801 6800 6800 6799 6800 6797 6802 6801 6801 6799 6798 6797 6794 6792

6825 6821

6855 6854 6857

6830 6827 6831 6832 6833 6831

6879 6875 6874 6874 6878 6877 6874 6866 6861

6810 6809 6812

6881

585

6882 6881

6889 6887 6887 6887 6886 6887 6890 6889 6884 6878 6876 6875 6881

6860 6854 6853 6849 6848 6847 6848 6851 6848 6851 6849 6847 6842 6839 6838 6834 6836 6834 6834 6831

555

6918 6914 6908 6907 6909 6907 6909 6908 6908 6905 6902 6901 6900 6898 6899 6897 6894

570

6914 6909 6909 6905 6912 6916

6941

6989 6989 6985 6984 6983 6979 6977 6972 6973 6973 6975 6973 6974 6974 6975 6972 6969 6972 6972 6972 6965 6963 6962

7021 7023 7022 7025 7024 7022 7018

6963 6954 6953 6949 6946 6948 6949 6947 6947 6940 6938 6940 6943 6941

6995 6990 6989 6988 6988 6987 6991

6963 6963 6961

510

525

14 7199

7099 7096 7093 7092 7095 7095 7098 7102 7100 7093 7092 7094 7093 7095 7094

7126

7069 7069 7071

7105 7102

7128

7175 7174 7131

7.5 7219

7050 7049 7048 7044 7046 7043 7038 7045 7043 7039 7033 7030 7030 7029 7029 7029 7029 7030 7027 7025 7028 7028 7026 7022 7019

7108

7180

7052 7050 7051

7112

7171 7133 7133

480

7111

7184 7182

7115

7113

7184

7140 7137 7132

7089 7091 7090 7089 7085 7086 7086 7084 7082 7078 7072 7071 7071

7142

7190 7189

7141

450

7114

7193

7138

465

7197 7196 7194

7143 7142 7143

420

435

7234 7231 7228 7226 7224 7224 7227 7228 7228 7230 7229 7225 7223 7220 7219

405

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

140 Appendix C: Runway Roughness Profiles

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

6218

6111

6110

6108 6107 6105 6104 6102

6154 6153 6103

6149

6199

13

13.5

6197 6146

6194 6146

6192 6146

6189 6143

6140 6139 6139

6189 6189 6189 6189 6141

5936 5934 5933 5932 5931

5931

14

14.5 6172 6124

5847 5845 5837

5882 5881 5882

5992 5989

5834 5832

5880 5881

5924 5923

5956 5957

5731 5732 5731 5732 5730 5726 5722

5772 5772 5769 5767 5765 5765 5763

5720 5718

5763 5761

5803 5801 5799 5798 5801 5803 5803 5801

5852 5857 5854 5851 5851 5809 5811

5770 5771

5811

5960 5957 5957

5515 5512

5507 5506 5507 5512

5511

5514

5648 5647

5503 5505 5506 5507

5529 5529

5578 5572

5628 5627

5265 5259 5259 5249 5248 5244 5249 5249 5255 5258 5259 5257 5253 5252 5252 5252 5255 5253 5253 5249 5247 5248 5243 5241 5239 5232 5231 5228

1185

5280 5280 5280 5280 5278 5273 5272 5276 5275 5271

5339 5337 5334 5337 5339 5337 5332 5330 5329 5325 5320 5319

5309 5306 5298 5299 5299 5293 5293 5289 5289 5289 5288 5289 5288 5282 5281

5349 5352 5347 5348 5352 5350 5351

5347 5346 5340 5336 5337 5339 5339 5339 5341

5390 5389 5358 5358

5316 5314 5312

5366 5367 5364 5361 5360 5359 5361

1155

5378 5373 5371 5369 5367 5370 5372 5371

1170

5380 5381

5412 5409 5409 5407 5407 5405 5408 5406 5400 5400 5399 5400 5395 5395 5389 5388 5391

5319 5227 5224

5269 5269

5319

5354 5354

5387 5387

5385 5385 5386 5389 5386 5384 5380 5381 5381

1140

5420 5419

5462 5460 5460 5459 5458 5458 5457 5453 5449 5449 5449 5446 5444 5448 5448 5448 5444 5442 5439 5436 5432 5431 5432 5436 5434 5432 5432 5429 5427 5427

5428 5426 5425 5422 5420 5420 5421

1110

1125

5472 5469 5468 5465 5466

5507 5505 5504 5502 5501

5549 5546 5546 5540 5537 5538 5533 5529 5533 5533 5536 5529 5529

5498 5499 5498 5488 5483 5483 5482 5484 5484 5483 5485 5484 5485 5482 5479 5479 5475 5476 5478 5477 5474 5471

5523 5521

5526 5530 5529 5526 5529 5529 5526 5525 5523 5523 5521

5659 5660 5658 5659 5658 5656 5654 5652 5647

5625 5626 5626 5626 5628 5630 5632 5637 5636 5631 5627

5608 5604 5603 5604 5597 5596 5596 5596 5595 5589 5589 5587 5586 5579 5579 5579

5506 5505 5501

5611

1080

5624 5625 5623 5617

1095

5621

5630 5630 5630 5631

5626 5625 5624 5622 5621

5621

6129

6175

6222 6221

5715 5709 5707 5707 5707 5707 5707 5706 5706 5700 5702 5702 5699 5699 5696 5694 5690 5692 5689

5566 5566 5566 5564 5564 5562 5560 5561 5557 5556 5557 5552 5553 5553 5551

5716 5716

1050

5716 5716

1065

5716

5648 5648 5647 5646 5646 5645 5642 5640 5638 5634 5634 5632 5631

5715

1035

5716

5719 5719 5717

5689 5687 5687 5688 5685 5685 5683 5681 5677 5676 5676 5676 5673 5671 5665 5664 5664 5662 5661

1005

1020

5716

5771

5811

5745 5744 5743 5742 5734 5731

5811

5760 5758 5757 5756 5755 5756 5754 5754 5754 5751 5749 5749 5749 5743 5747

5812

5801 5801 5799 5800 5799 5796 5792 5790 5787 5783 5782 5782 5782 5778 5776 5774 5772 5771

5813

990

5817 5815

5868 5868 5868 5868 5862 5855 5847 5844 5847 5848 5849 5852 5851

975

5871

5878 5881 5877 5876 5874 5871

5829 5826 5824 5822 5821

945

5822 5822 5821 5822 5822 5823 5822 5821

6179

5929 5925 5924 5923 5922 5923 5925

5910 5907 5906 5908 5907 5909 5908 5909 5909 5909 5907 5904 5901 5897 5893 5889 5888 5887 5886 5887 5886 5881

5944 5944 5944 5941

6181

6135 6130

6007 6005 6003 6001 6001 6000 5997 5992

5981 5976 5980 5977 5972 5968 5970 5969 5968 5968 5968 5967 5965 5964 5965 5964 5962 5961

5947 5946 5946 5946 5944 5942 5941 5941

6187 6136

6229 6227

6100 6100 6100 6099 6098 6092 6092 6088 6089 6089 6085 6079 6079 6076

6148

6020 6023 6023 6022 6025 6028 6023 6020 6015 6014 6013 6014 6012 6012 6011

6116

6158 6155

960

5956 5953 5951

5916 5913 5912

915

930

6017

6015 6013 6018 6017

6119

5981 5981 5986 5988 5987 5986 5981

6116

6158 6157

6209 6208 6207 6207 6206 6206 6205 6205 6203 6198

6160 6160 6157 6157

885

6120

6159

900

6119

6219

6240 6239 6238 6238 6236 6238 6235 6233 6232 6232 6231

6119

6

6120 6119

5.5

6072 6070 6067 6068 6067 6066 6061 6059 6060 6059 6058 6056 6056 6054 6054 6055 6051 6046 6042 6038 6039 6035 6033 6029 6026 6023 6022 6022 6018 6017

5

855

4.5 6241 6243 6240 6243 6241 6241

870

4

6216

3.5

6162

3

6219 6219 6219

2.5

6169 6176 6165

2

825

1.5

840

1

6249 6248 6244 6241

0.5

6260 6258 6258 6254 6251

810

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 141

5051

5113

5111

5111

5110

5107

5176 5105

5142

8

5107

5141

5174

5212

8.5

9 5173

5211

9.5

5107

5102

10

10.5

11

11.5

5173

5176

12.5 5170

5212

13

13.5

5174 5171 5132 5130

4921 4918

4954 4951

4951

4908 4907 4909 4911

4911

5011

5011

4861

4860

4909 4906

4929

4975 4976

4577 4574 4578 4582 4577 4574 4572 4563 4557 4552

4616

4615

4206 4206 4209 4212

4184 4184 4184

1605

4187

4191

4188

4184

4179 4175

4175 4174

4175 4176

4175 4173

4207 4205 4203 4203 4202 4200 4200 4202 4203 4203 4198

4166 4160 4155

4153

4156

4200 4196 4196 4194 4193

4156

4193

4188 4186 4184 4160 4157 4158 4156

4191

4213 4209 4209 4206 4206 4203 4203 4204 4203 4203 4206 4210 4213 4214

4156

4185 4186

4155

4182

4213 4209 4211 4160 4161

4183

4212

4158

4177

4205

4228 4230

4324 4322 4230 4231 4232 4230 4233 4229 4229 4224

1590

4418

4268 4268

4229 4226 4226 4229 4227 4225 4225 4223 4222 4221 4216

4418

4372 4368

4310 4308 4305 4303 4302 4302 4299 4298 4292 4292 4287 4281 4278 4273 4273 4272 4271

4265 4263 4262 4257 4256 4257 4259 4256 4253 4249 4245 4242 4243 4245 4243 4243 4239 4236 4233 4231

4310 4309 4307 4310 4311

1575

4315

1560

4320 4318

4363 4360 4358 4356 4355 4354 4352 4349 4348 4349 4350 4348 4345 4345 4343 4340 4337 4335 4335 4333 4326 4325 4324 4324 4327 4328 4329 4327

4318 4316 4318

1530

1545

4458 4458 4462 4464 4461 4456 4453 4452 4452 4448 4444 4443 4442 4443 4440 4443 4440 4437 4434 4434 4434 4433 4434 4434 4432 4426 4421 4418

4505 4503 4501 4497 4494 4494 4494 4494 4492

4420 4418 4416 4407 4405 4401 4400 4395 4393 4392 4388 4387 4384 4383 4383 4383 4384 4385 4386 4384 4378 4375 4372 4375 4376 4377 4376 4375

4509 4505 4505 4505 4509 4511

1500

4514 4511

1515

4514 4514

4526 4525 4525 4525 4521

4494 4494 4495 4495 4496 4494 4492 4485 4484 4483 4481 4483 4480 4474 4468 4462 4462 4463 4462 4459 4452 4452 4452 4450 4445 4449 4452 4460 4458 4457

1470

4515 4514

4547 4549 4529 4529

1485

4546 4547 4546 4548 4544 4544 4539 4539 4534 4534 4535 4539 4539 4538 4534 4534 4534 4535 4537 4537 4534 4533

4591 4588 4585 4583 4584 4585 4584 4589 4593 4594 4594 4590 4584 4583 4584 4584 4583 4581

4553 4554 4555 4553 4548 4551

4523 4520 4519 4518

4717

4772 4770 4717

4605 4604 4601 4599 4598 4598 4597 4594 4592 4590 4590 4594 4596 4601 4601 4594 4594 4592 4593 4594 4594

1440

4614 4615 4611

4650 4641 4638 4639 4635 4635 4639 4642 4640 4638 4635 4632 4629 4624 4629 4633 4629 4628 4624 4623 4620 4616 4616

4614 4613

1455

4610 4612

4652 4652 4648 4644 4651

4612 4611

1410

5167 5124

4676 4680 4684 4685 4685 4683 4676 4671 4671 4665 4662 4660 4660 4658 4654

4714 4714 4714

1395

4704 4700 4699 4696 4694 4696 4697 4691 4688 4684 4681

4764 4770 4764 4758 4755 4753 4754 4755 4756 4754 4750 4749 4743 4740 4738 4737 4739 4734 4734 4734 4732 4732 4729 4730 4730 4728 4724 4724

4814 4814 4812 4804 4802 4804 4801 4801 4796 4792 4785 4784 4787 4782 4784 4784 4782 4777 4775 4774 4772 4770 4771

4821 4817 4814 4813

1425

14.5

4850 4846 4842 4840 4842 4845 4841 4837 4836 4837 4835 4835 4837 4834 4836 4832 4830 4830 4828 4824 4826 4826 4822

4861 4861

4910 4911

4889 4888 4887 4884 4882 4882 4879 4878 4866 4872 4868 4869 4867 4865 4861

4912

1380

4710

5170 5126

4950 4950 4950 4949 4947 4944 4944 4940 4939 4934 4931

4921 4920 4928 4927 4926 4924 4922 4919 4918

1365

4813

4851

4907 4905 4900 4902 4896 4891 4891

4909 4908 4910 4911

4859 4857 4854 4852 4857 4861

1335

1350

4919 4921

4967 4967 4960 4967 4966 4964 4966 4966 4967 4962 4961

5015 5013

4974 4973 4972 4971

5017

4930 4926 4925 4926 4923 4921

4921

14

5210 5206 5203 5202

5099 5098 5093 5092 5086

5134 5140 5139 5140 5136

5172 5177 5181

12 5212

5106 5106 5104 5102 5106 5102

5132

5173

5207 5209 5212 5209 5211

5140 5140 5138

5174

5211

5068 5070 5066 5065 5061 5061 5061 5061 5060 5058 5059 5058 5061 5059 5056 5060 5053 5052 5051

5113

5178 5178 5149 5148

7.5 5212

5051 5050 5050 5046 5036 5037 5039 5036 5029 5026 5022 5019 5017 5018 5014 5018

5069 5071

7

1305

5051 5051

5113

5172 5176 5152 5151

6.5 5212 5212

1320

5049 5051

5113

6

5051 5051 5051

5117

5174 5171 5153 5152

5.5 5218 5214

5008 5005 5002 5004 5000 4997 5000 4999 4999 5001 5000 4999 5004 5001 4991 4991 4987 4988 4986 4983 4985 4983 4982 4981 4979 4982 4980 4978

5117

5

1275

5116

4.5 5219 5221

1290

5051

5069 5070 5073 5073 5071

5116

5123 5118

5157 5154

5178 5174

5121

5157

5186

5081 5073 5067 5071

5158

5191

1245

5161

5191

1260

4

5194

3.5

5218 5217

5162

3

5216

5204 5201 5198

2.5

5216

5170 5167 5165

2

5216

1215

1.5

1230

1

5218

0.5

5225 5225 5218

1200

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

142 Appendix C: Runway Roughness Profiles

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

4149 4149 4149 4146 4145 4140 4139 4133

6.5

7

4136 4136

7.5 4132

8

8.5

4130 4126

9 4121

9.5 4119

10 4117

10.5 4115

11 4113

11.5 4112

12

12.5

4109 4107

13

13.5

4103 4100

14

14.5 4099 4096

3711

3712

3709 3702 3697 3700 3703 3702 3701

3815 3815 3815 3814

3381 3379 3379 3377 3371

1905

3422 3421 3421

3729 3724 3722 3721

3724 3721 3721

3197

3194

3200 3200 3199

1980

3412

3311

3311

3191

3188 3186

3184 3182

3182 3179

3177 3173

3230 3227 3227 3227 3227 3227 3227 3223 3222 3221

3191

3524 3521 3518 3516 3512

3511

3251 3171

3219

3168

3165

3217

3165

3216

3162

3213

3250 3244 3245 3241

3162

3213

3241

3275 3272 3271

3212 3158

3160 3160 3160 3158

3241

3541

3584 3581 3541

3378 3380

3235 3230

3257 3257

3286 3286

3332 3330

3153 3154

3152

3153

3206 3203 3202 3201

3238 3235

3260 3258 3252 3212 3202 3201 3212

3241 3241 3244 3241

3270 3262 3261 3261

3299 3299 3296 3294 3292 3291 3289

3352 3349 3347 3344 3343 3342 3341 3346 3345 3340 3335 3333

3217

3669 3658 3630 3629

3507 3505 3502 3501

3551 3548 3546 3546 3545 3542 3541

3409 3410 3407 3404 3400 3398 3403 3403 3401 3392 3386 3379 3381

3269 3270 3271

3721

3759 3756 3719

3460 3456 3457 3459 3456 3455 3453 3453 3449 3444 3441

3521

3551

3307 3307 3303 3303 3304 3306 3303 3301

3270 3270 3270 3272 3269 3271

3324 3312

3411

3359 3356 3351 3349 3351

3414

3461

3527 3524 3524 3521

3551

3580 3579

3641 3641 3641 3635 3629 3622 3622

3606 3603 3604 3604 3604 3601 3598 3593 3594 3593 3590 3589 3581

3650 3647 3643 3640 3638 3641

3471 3469 3470 3468 3465 3462 3461 3411

3849 3847

3699 3699 3699 3699 3700 3703 3707 3707 3707 3706 3702 3700

3551 3555 3556 3557 3554 3551

3253 3257 3258 3255 3254 3254 3253 3256 3254 3254 3251

3255 3251 3250 3251

3231 3231 3232 3232 3231

1950

1965

3279 3278 3274 3271

3332 3331 3324 3324 3322 3324 3320 3319 3316

3287 3284 3283 3281

1920

3281

3421 3415

3365 3364 3364 3362 3361 3361

3421

1935

3421

3612 3610 3554 3551

3537 3537 3537 3533 3532 3531

3549 3551

3488 3489 3486 3484 3481 3475 3471 3471

3500 3493 3491

3431 3427 3430 3421

1875

1890

3540 3539 3536 3531

3567 3561

3540 3541

3571

3543 3541 3541

3571

1860

3571

3629 3628 3627 3624 3626 3622 3623 3624 3623 3621 3617

3581 3577 3573 3571

1830

1845

3650 3651

3938 3939

3809 3807 3804 3803 3799

3768 3769 3766 3766 3763 3759 3758 3757

3817

3700 3699 3696 3689 3687 3688 3689 3688 3686 3686 3686 3686 3686 3688 3684 3679 3679 3680 3679 3675 3674 3675 3679 3680 3679 3680 3678 3676

3713 3716

3817

3650 3652 3657 3660 3659 3659 3655 3649 3649 3649 3650 3651 3651

3714

3815

3779 3772 3772 3771

3815

1800

3715

3780 3780 3781

3820 3819

3978 3977

3913 3907 3904 3904 3906 3906 3907 3903 3899

1815

3710

3916

3950 3949 3949 3947 3948 3947 3945 3948 3947 3944 3938 3938

3740 3738 3733 3728 3732 3729 3733 3733 3731

3719 3719 3717

3740 3740 3740 3741

1785

3748 3742 3743 3741

3799 3799 3798 3793 3786 3783 3782 3782 3783 3784 3783 3782 3781

3755 3749 3749 3747

1755

1770

3714

3982 3980 3980 3980 3978 3979 3979 3979

3894 3892 3889 3889 3887 3884 3884 3884 3883 3884 3880 3876 3873 3873 3874 3873 3869 3863 3860 3856 3855 3853 3852

3899 3899 3896 3896 3891

3840 3838 3837 3836 3839 3839 3839 3839 3840 3839 3836 3831 3830 3826 3821

1725

1740

3951

3962 3964 3958 3953 3953 3950 3949 3952 3954 3956 3955 3955 3952 3952 3951

3981

3939 3939 3940 3937 3933 3924 3928 3924 3928 3929 3930 3929 3930 3930 3926 3929 3929 3928 3922 3919

3981

3973 3969 3970 3970 3967 3966 3966 3968 3969 3970 3969 3967

1695

3981 3971

1710

3971

3987 3986 3983 3985 3986 3984 3982 3981

3996 3997 3997 3993 3994 3992 3992 3989 3991

3978 3975 3978 3977 3976 3977 3978 3977 3974 3972 3966 3971 3970 3972 3970 3971

1665

1680

4092 4092 4089 4087 4086 4082 4079 4081 4080 4078 4076 4076 4075 4076 4075 4076 4077 4078 4076 4073 4070 4069 4068 4064 4059 4055 4052 4053 4052 4050

4154

4048 4046 4044 4040 4038 4037 4037 4039 4039 4037 4039 4039 4038 4037 4035 4034 4031 4030 4029 4027 4025 4024 4017 4015 4010 4010 4007 4004 4000 3997

4155

1635

4157 4154 4155

1650

1620

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 143

1.5

2 3102 3103

5.5

6

3103 3101

3135 3132

6.5

7

7.5 3123

8 3122

8.5 3122

9 3123

9.5 3081

3128

10

10.5

11

11.5

12

3132 3129 3123 3124

3012 3012

3012 3012

3011

3012

3012 3012

3012

3012

3011

3020 3020 3017

3014 3016 2954 2950

2817

2816 2813

2812

2844 2842 2813

2755 2756 2706 2702

2702 2702 2702 2703 2702 2702 2700 2697 2701

2175

2506 2505 2505 2501

2211

2212

2217

2210 2210

2250 2250 2254 2257 2256 2248 2247 2241 2241

2221 2221 2219

2340

2355

2211

2294 2293 2294 2290 2286 2278 2278 2277 2280 2277 2270 2270 2265 2266 2264 2260 2263 2264 2265 2266 2263 2261 2260 2261 2267 2270 2270 2266

2325

2310

2540 2541

2455 2450

2498 2492

2520 2514

2308 2304 2300 2298 2296 2296 2293 2294 2290 2288 2286

2289 2293 2260 2256

2207 2206 2203 2204 2203 2200 2198

2193

2186

2186

2190 2190 2190 2190 2186 2183

2180

2185 2190

2190 2190

2241 2242 2243 2244 2242 2239 2238 2234 2235 2240 2236 2234 2233 2230 2229 2232 2237 2231 2230 2230 2225

2310

2617

2348 2350 2349 2344

2340 2338 2334 2334 2328 2327 2327 2327 2330 2328 2324 2317 2309 2310 2310

2310

2621

2557 2558

2413 2410 2410 2409 2406 2405 2402 2402 2399

2380 2380 2379 2375 2379 2377 2373 2373 2370 2370 2367 2365 2363 2362 2360 2356 2351

2439 2439 2434 2436 2437 2438 2430 2425 2425 2424 2424 2420 2420 2416

2467 2462 2458

2496 2497 2493 2495 2500 2501 2499 2499 2499 2498 2495

2450 2450 2448 2445 2444 2441

2441

2514 2515

2481 2476 2474 2475 2477 2493 2477 2473 2475 2474 2470 2470 2466 2463 2464 2461

2503 2505 2507 2508 2511

2397 2391 2388 2390 2387 2383 2382 2381 2381

2511

2280

2512

2520 2517 2518

2539 2537 2538 2538 2541 2542 2542 2542 2541

2295

2514

2515 2514 2512

2494 2492 2488 2483 2488 2488 2488 2484 2481

2250

2265

2558 2555 2558 2555 2552 2551 2552 2552 2550 2551 2552 2550 2544 2542 2541

2559 2560 2561

2542 2541 2539 2540 2542 2542 2542 2542 2542 2542 2542 2541 2536 2532 2533 2532 2535 2532 2533 2532 2528 2527 2523 2521 2521

2220

2561

2619 2623 2625 2627 2626 2624 2624

2569 2568 2569 2571 2570 2572 2569 2563 2562 2561

2235

2574 2573 2571

2663 2663 2660 2656 2655 2654 2652 2647 2644 2642 2639 2634 2632 2630 2628 2629 2628 2627 2627 2623 2621

2617 2614 2608 2605 2602 2600 2592 2592 2589 2588 2587 2590 2589 2586 2581

2190

2693 2693 2694 2696 2697 2693 2690 2686 2682 2679 2672 2669 2667 2667

2205

2699 2697 2693 2692 2693 2692 2691

2734 2734 2734 2734 2735 2733 2731 2725 2723 2719

2713 2710

2734 2732 2733 2733 2735 2735 2739 2737 2731

2777 2774 2773 2773 2774 2775 2775 2777 2780 2775 2773 2770 2767 2767 2767 2764 2764 2764 2764 2763 2763 2762 2762 2760 2757 2753 2752 2754

2759 2756 2753 2750 2752 2744 2741

2145

2779 2777

2817 2815 2815 2817

2777 2777 2777 2779 2777 2779 2779 2779

2824 2822 2818

2160

2828 2825 2824 2823 2821

2879 2877 2876 2875 2876 2876 2872 2867 2867 2865 2864 2862 2859 2857 2854 2854 2851

2810 2810 2809 2806 2804 2805 2803 2801 2798 2798 2799 2794 2794 2791 2786 2787 2784 2783 2784 2791

2881 2881

2130

2890 2889 2884 2881

2901 2899 2897 2891

2840 2842 2840 2840 2836 2829 2832 2832 2834 2834 2833 2833 2831

2891

3079 3079

2907 2906 2903 2902 2900 2899 2898 2899 2902 2902 2902 2904 2902

2100

2912

2115

2949 2944 2942 2939 2932 2930 2925 2923 2922 2920 2918

14.5 3116

3010 3003 3003 3003 3002 3002 3003 3005 3006 3004 3003 3004

3005 3003 3000 2998 2995 2997 2995 2990 2988 2985 2984 2980 2979 2975 2973 2970 2970 2969 2969 2965 2964 2969 2956 2957 2957 2957 2956 2955

3012

3074 3075

14 3115

3053 3053 3051 3052 3052 3050 3048 3048 3048

2952 2952 2949 2950 2951

3011

13.5 3118

2070

3012

13 3119

2085

3013

12.5 3122

3078 3070 3069 3068 3068 3071

3132

3060 3062 3061

3097 3091 3084 3083 3085 3081

3125 3123

3046 3044 3042 3042 3042 3038 3039 3038 3039 3039 3039 3037 3033 3032 3028 3027 3023 3023 3023 3022 3020 3019 3020 3022 3021

3105 3103

5

3016 3014 3017

3107

4.5 3132 3136

2040

3108

4

2055

3108

3.5

3132 3132

3115

3112

3

3132

3081 3082 3082 3080 3077 3074 3074 3072 3072 3072 3070 3070 3072 3072 3068 3062 3062 3061

3112

2.5

3132

2010

3107

1

3133

0.5

3152 3149 3140 3136

2025

1995

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

144 Appendix C: Runway Roughness Profiles

3

2135

2179

3.5

4

2134 2131

2180 2185

4.5

5

2133 2130

2184 2180

5.5

6

2133 2133

2180 2179

6.5

7

2131

2130

2175 2175

7.5 2128

2177

8 2127

2175

8.5 2127

2169

9 2122

2166

9.5 2119

2163

1735

1710

1770 1772 1770

1745 1745 1742

2535

2550

1837

1532

1614

1381

1339

1380 1380 1384

1332 1331

2685

2700

1386

1411

1440 1441

1445 1442 1441

1405 1408 1408 1410

1340 1336

1995

1989 1987

1992 1992 1986 1981

1715

1725

1765

1790

1833

1892

1826

1710

1709

1726 1726

1764 1765

1787 1782

1831 1780

1709 1705

1735 1736

1765 1755

1781

1825 1823

1888 1890 1886 1885

1949 1945 1940 1940 1935

1989

1996 1996 1997

2016 2014 2015 2017

1521

1574

1611

1441

1438

1384

1413

1514

1468

1417

1385 1380

1416

1434 1435

1471

1512

1570 1568

1340 1340 1340 1334

1381

1411

1474

1510

1572

1605 1604 1601 1520 1471 1421

1333 1331

1380 1386

1412

1432 1431

1471

1515

1567 1568

1600 1597

1664 1660 1658 1660 1659 1655

1713

1725

1765

1794

1836

1892

1951

1983

1480 1481

1526

1573

2655

1481

1622

2670

1481

1539 1536 1535

1481

2625

2640

1481

1574

1628 1625 1624

1570 1569 1571

2595

2610

1711

1732

1761

1795

1836

1894

1666 1665

1706 1706 1713

1675 1673 1665

2565

2580

1764

1793

1845 1845 1841

1786 1785 1785

2505

2520

1895

1952

1953

1960 1958 1957

1900 1897 1899

1981

2475

2005 2005 2002 2000 1997

1976 1979 1980 1981

2445

2460

2020 2020 2019 2017

2017 2012

2121

10.5

11

11.5

12

2122 2120 2116

2113

2158 2152 2150 2146

12.5

13

13.5

2111

2109 2109

2140 2135 2137

14 2108

2142

14.5 2106

2148

1594 1511

1818

1815

1511

1510

1562 1562

1594 1593

1653 1647

1695 1693

1735 1735

1753 1753

1790 1786

1407

1330 1330

1380 1380

1421

1436 1431

1431

1991 1977

1370 1370 1330 1330

1991 1977

1434

1461

1510

1562

1594

1645

1691

1736

1754

1784

1815

1875

1593

1370 1321

1916 1865

1916 1862

1688

1741

1749

1775

1588 1556

1551

1587

1651

1693

1736

1748

1776

1370 1319

1424

1455

1319

1370

1319

1366

1404 1401

1423

1460 1457 1427

1917

1915

1915

1974 1975 1971

1912

1968

1860 1858 1857 1856 1855

1918

1975

1551

1585

1645

1689

1733

1746

1776

1549

1585

1643

1684

1729

1745

1778

1320

1361

1397

1422

1455

1320

1359

1397

1423

1458

1754 1753 1678

1491

1487 1417

1320 1314

1415 1350

1397 1320 1319

1355 1355 1351

1393 1392 1401

1423 1421

1457 1453 1453 1452

1492 1491

1547 1543 1542 1542

1585 1585 1585 1584

1640 1637 1636 1635

1682 1680 1681

1726 1725 1725 1722

1745 1751

1780 1778 1775 1768

1316

1350

1393

1412

1451

1489

1541

1581

1637

1676

1720

1749

1762

1792

1855

1911

1970

1990 1990 1990 1988 1990 1990 1987 1975

1509 1509 1508 1508 1501

1561

1992 1978

1808 1806 1806 1805 1800 1795 1788 1790

1868

1644 1653

1687

1739

1755

1783

1811

1874

1920 1920 1916

1978

1409 1405 1402 1401

1431

1463 1466 1465 1462

1519

1566 1566

1591

1654 1654

1700 1699

1735 1735

1753 1752

1780 1786

1875

1922 1923

1970 1975

1880 1881

1824 1817

1881

1928 1925

1980 1973

2033 2035 2028 2024 2022 2021

2021 2022

2024 2021

1914

1978

1674 1677

1490

1541

1314

1311

1350 1349

1390 1387

1409 1410

1448 1451

1491

1541

1580 1579

1638 1639

1978

1572

1634

1679

1709

1744

1766

1787

1849

1908

1959

1311

1347

1379

1407

1451

1489

1310

1340

1380

1405

1447

1481

1540 1540

1574

1637

1677

1710

1745 1714

1745

1751 1716

1765

1793

1854

1912

1961

1760 1762

1794 1789

1857 1856

1910

1964 1963

1985 1981

2009 2010 2010 2007 2005 2006 2007 2008 2006 2006 2004 2002 2002 2006 2006

1990 1990 1990 1990 1991

2017 2018

2050 2053 2052 2050 2048 2047 2045 2040 2037 2038 2037 2036 2037 2035 2034 2030 2028 2030 2030 2031

2020 2017 2018

2415

2430

2490

10 2161

2099 2095 2096 2086 2086 2085 2086 2081 2079 2070 2070 2065 2065 2065 2062 2063 2063 2065 2063 2061 2062 2060 2060 2058 2055 2050

2141

2102

2146 2143 2140 2140 2135

2.5

2106 2103 2103

2

2385

1.5

2180

2400

1

2179

2180

0.5

2190 2181

2180

2370

Distance (m) 0

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 145

0.5

1

1159

1112

1190

1157

2760

1182

961

940

962

800

501

460

430

3030

3045

3060

580

550

3000

3015

653

626

2970

2985

720

689

2940

2955

801

764

2910

2925

850

853

2895

423

461

505

551

580

630

654

689

717

761

908

941

903

2865

2880

420

460

504

550

580

621

651

681

718

760

800

850

909

938

955

993

2850

992

1030 1023 1027

992

2820

1072

1113

1154

2835

1115

1072 1071

2790

2805

1184

1213

2775

1211

1245 1247 1245

1211

2730

2745

1309 1307 1302

2715

Distance (m) 0

2

2.5

1298

3

1296

lili

1140

1181

1211

1110

1143

1181

1210

lili

1140

1180

1210

1240 1240 1239

1295

422

460

504

550

578

625

649

680

717

760

798

847

912

937

957

992

1025

426

460

505

550

575

620

649

680

720

760

792

850

910

936

954

992

1025

430

459

510

547

580

619

652

680

713

758

795

841

902

934

951

988

1023

430

456

508

540

579

617

650

678

713

753

792

840

908

932

951

989

1023

1069 1068 1068 1071

1112

1150

1185

1214

1252

1299

1.5

4

4.5

1183

lili

1144

1241

1112

1144

1180 1112

1140

1180

1204 1205

5.5

6

6.5

7

1231

1230

1273 1272

1115

1140

1174 1117

1140

1170 1112

1145

1167 1112

1150

1163

1205 1204 1200 1195

1240 1235

1280 1277

420

458

508

539

577

618

642

679

711

750

795

840

904

932

951

983

420

457

506

534

572

615

630

675

711

749

790

840

905

934

950

982

416

460

500

533

570

613

641

677

710

750

792

838

901

939

948

984

1022 1020 1016

419

461

505

535

577

613

640

675

711

746

791

839

905

937

948

982

1017

417

461

504

530

574

612

641

671

711

748

792

839

890

932

952

982

1017

414

460

505

529

576

614

640

670

713

747

793

836

890

932

952

982

1013

416

459

500

524

575

616

640

671

710

745

789

840

890

930

962

981

1014

417

455

495

538

570

617

640

674

711

740

790

840

890

923

969

977

1012

1070 1064 1064 1062 1062 1062 1055 1055

1108

1148

1180

1209 1205

5

1282 1280

1240 1240 1241

1292 1288

3.5

411

451

490

550

565

614

640

675

710

740

788

830

890

928

969

977

1011

1055

1102

1149

1162

1197

1230

1270

7.5

410

451

490

550

560

611

640

672

711

739

790

823

889

916

962

976

1010

1052

1102

1140

1162

1193

1230

1270

8

9

1051

1097

1136

1160

1191

1230

1270

9.5

411

451

486

550

560

610

640

670

709

739

786

820

889

918

955

975

417

453

484

526

560

608

635

661

709

739

781

820

882

920

952

982

10

1133

1160

1194

1227

1270

10.5

11 1271

11.5

12

1270 1263

1131

1160

1198 1131

1159

1191 1128

1156

1195 1129

1155

1190

1227 1225 1232 1230

1271

420

449

481

516

565

610

633

652

707

739

790

820

883

914

942

972

421

441

480

517

569

608

634

653

707

735

774

820

882

918

937

972

420

435

479

522

570

601

630

658

700

734

771

820

880

914

941

972

1007 1012

12.5

1039

1081

1122

1150

1185

1219

1265

13

13.5 1213

1116

1151

1190

1036 1032

1077 1073

1122

1156

1190

1217

1262 1260

420

433

475

520

570

600

629

659

700

735

773

820

880

912

930

972

410

431

469

520

569

600

627

659

699

731

774

813

880

912

949

972

410

440

468

519

566

601

624

660

694

729

777

811

868

912

947

970

408

447

467

515

565

601

621

656

695

728

775

810

861

912

948

972

770

410

446

467

513

560

604

630

657

690

723

409

450

463

508

560

600

628

651

690

726

770

806

861 810

909 861

951

963 912

943

967

1008 1004 1002 1002 1007 1005

1046 1043 1042 1042 1042 1041

1094 1092 1092 1090 1089 1082

1132

1160

1196

1230

1270

1009 1009 1011

1052

1102

1135

1160

1194

1229

1270

8.5

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm). 14

14.5

1031

1072

1115

1160

1191

1213

1247

410

442

464

501

560

598

633

651

690

720

770

803

860

907

942

962

408

433

461

507

554

589

629

653

687

720

765

801

860

906

942

962

1003 992

1032

1072

1113

1160

1195

1215

1249

146 Appendix C: Runway Roughness Profiles

365

91

71

150

92

67

30

3180

3195

3210

3225

217

30

149

181

210

180

3150

246

278

327

3165

278

257

3120

3135

370

328

3090

405

3075

3105

0.5

400

Distance (m) 0

28

68

91

148

181

211

240

275

330

360

401

1

26

64

90

147

180

204

240

279

330

358

398

1.5

25

62

93

145

179

200

241

275

328

358

401

2

31

60

90

143

171

191

241

277

320

354

410

2.5

20

58

90

140

170

191

247

277

320

350

410

3

20

54

91

140

170

197

250

272

320

353

407

3.5

20

55

91

137

173

200

249

270

320

350

400

4

20

51

90

138

175

196

241

270

310

351

391

4.5

17

50

88

138

177

200

242

270

308

351

394

5

20

49

90

137

173

200

240

270

302

350

391

5.5

16

47

90

135

170

195

240

270

300

349

391

6

16

44

90

135

163

199

240

270

302

341

389

6.5

11

40

90

130

160

200

240

270

300

342

390

7

11

41

87

130

157

193

240

268

300

349

390

7.5

10

40

84

130

159

199

230

260

301

340

390

8

10

40

80

128

159

200

221

260

301

340

390

8.5

10

40

78

128

155

194

220

256

300

340

388

9

6

40

72

126

160

190

217

254

300

338

381

9.5

38

71

125

158

190

219

257

300

338

381

10

38

71

120

157

190

220

260

292

336

380

10.5

30

74

115

153

190

225

261

293

331

380

11

30

75

110

151

190

230

260

290

330

380

11.5

27

70

110

156

181

228

259

290

330

377

12

28

70

100

156

188

218

260

289

330

372

12.5

TABLE C.4  (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm). 13

29

69

100

160

180

210

260

290

330

371

13.5

30

67

100

157

180

210

260

288

327

372

14

30

69

97

152

175

207

260

280

326

373

14.5

30

70

93

150

175

206

260

279

325

370

Appendix C: Runway Roughness Profiles 147

1189

1188

1201

1209 1209 1214

1221

1208 1207 1207 1207 1207 1206 1202 1200 1197

1183

1157

1127

1102

1086 1084 1077 1077 1076 1075 1074 1075 1073 1073 1073 1073 1075 1077 1079 1080 1080 1081

1072 1072 1067 1066 1069 1066 1063 1062 1061

1030 1029 1028 1029 1029 1030 1026 1026 1027 1023 1031

997

972

932

924

135

150

165

180

195

210

225

240

255

270

285

300

315

330

345

360

375

1188

1187

1187

1188

1192

1188

1190

1197

1188

1188

1194

1198

1187

1188

1125

1154

1177

1223

1215

1124

1153

1173

1122

1152

1172

1220 1221

1215

1123

1148

1169

1222

1214

1120

1147

1167

1218

1216

1205 1205 1207 1208 1211

1188

1186

1187

1188

1152

1147

1140

1131

1112

1122

1146

1164

1218

1215

1212

1195

1197

1187

1188

1152

1151

1139

1132

1112

925

932

971

998

924

932

967

998

922

932

965

997

922

932

963

994

921

932

963

993

921

928

962

993

922

924

961

993

1099 1098 1097 1097 1095 1093 1091

1127

1157

1177

1222

1201

1188

1186

1186

1188

1147

1146

1140

1129

1114

1193

1190

1188

1185

1154

1152

1139

1126

1115

1193

1189

1188

1180

1153

1153

1139

1126

1114

1191

1188

1187

1180

1152

1153

1140

1124

1116

1191

1187

1188

1179

1153

1152

1139

1123

1115

1191

1187

1188

1180

1152

1152

1140

1123

1115

1189

1188

1188

1179

1153

1150

1141

1122

1115

1102

1188

1188

1188

1180

1153

1151

1142

1125

1115

1102

1188

1188

1188

1179

1160

1152

1142

1123

1116

1102

1120

1144

1168

1197

1218

1210

1118

1147

1166

1197

1218

1210

1117

1149

1171

1197

1218

1116

1148

1171

1194

1218

1209 1211

1115

1148

1173

1195

1218

1213

1112

1147

1172

1193

1218

1212

9.5

10

10.5

11

11.5

1201

1188

1189

1187

1179

1167

1152

1140

1125

1118

1103

1199

1188

1188

1186

1180

1172

1152

1137

1126

1118

1103

1188

1188

1187

1179

1178

1150

1139

1128

1122

1106

1200 1199

1188

1188

1184

1181

1177

1152

1135

1129

1122

1102

1201

1188

1188

1187

1179

1179

1147

1141

1131

1126

1110

1107

1147

1170

1197

1217

1110

1143

1168

1197

1217

12

1112

1142

1167

1199

1217

12.5

13

1216

1216

1214

1212

13.5

14

14.5

1217

1218

1107

1138

1166

1107

1137

1166

1107

1137

1167

1107

1137

1166

1107

1134

1167

1218

1107

1132

1166

1107

1132

1166

1105

1129

1166

1106

1128

1164

1103

1127

1162

1196

1105

1127

1161

1192

1210

1220

1103

1127

1159

1186

1209

1221

1198

1188

1192

1180

1185

1148

1142

1131

1126

1113

1208

1188

1193

1179

1185

1145

1142

1130

1123

1115

1204 1207 1208

1196

1188

1189

1178

1185

1144

1142

1125

1122

1114

1198

1192

1188

1188

1177

1183

1145

1141

1126

1121

1116

1207 1207 1209 1209 1210

1214

1201

1191

1188

1188

1177

1181

1143

1141

1127

1122

1114

1202 1204 1206 1207 1207 1206 1203 1200 1197

1216

1189

1188

1188

1174

1180

1145

1140

1130

1123

1112

1200 1201

1188

1188

1188

1177

1181

1145

1142

1131

1125

1111

1208 1207 1208 1207 1204 1207 1208 1208 1215

1208 1208 1208 1207 1207 1203 1204 1203 1201

1196

1195

1188

1187

1153

1152

1141

1131

1115

9

922

918

959

993

922

930

957

993

923

929

952

992

923

925

952

992

1031

922

928

955

992

1031

1059 1057 1052 1051

922

931

957

991

1031

1051

922

931

953

989

922

931

953

988

922

932

952

988

917

932

951

988

914

930

946

988

911

932

953

987

1023 1022 1022 1022 1022 1019

908

931

942

984

1012

903

931

943

983

1012

903

929

942

985

1011

1031

1073 1032 1030 1029 1029

909

922

923 910

939

983 941

986

912

923

937

982

909

924

936

982

902

923

934

978

901

924

933

975

898

925

932

972

1008 1007 1004 1003 1002 1002 998

1048 1047 1044 1042 1037 1037 1033 1036 1035 1033 1031

1076 1076 1077 1077 1077 1077 1077 1076 1073 1072 1071

1090 1088 1090 1092 1093 1096 1097 1097 1097 1097 1098 1097 1097 1097 1097 1097 1097 1097 1096 1092 1092 1086

1122

1139

1167

1218

1210

1210

1197

1196

1188

1188

1152

1152

1140

1132

1112

8.5

1098 1093 1092 1089 1088 1087 1086 1085 1089 1088 1086 1089 1092

1187

1188

1143

1146

1141

1129

1117

8 1101

120

1188

1143

1144

1139

1128

1118

1090 1090 1088 1088 1089 1092 1092 1093 1095 1095 1096 1101

7.5 1102

1187

1145

7 1102

105

1144

6.5 1102

1149

1143

6 1104

90

1142

5.5 1108

1142

1137

5 1111

75

1137

4.5 1112

1133

1127

4

1115

60

1126

3.5

1115

1126

1119

1091

3

1116

45

1118

2.5

1118

1117

2

1118

1090 1091

1.5

1116

30

1

1117

15

0.5

0

1117

0

1116

Distance (m)

TABLE C.5  Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).

148 Appendix C: Runway Roughness Profiles

0

895

888

860

805

751

743

675

627

568

507

448

459

388

307

228

161

121

81

68

87

74

74

47

41

35

54

Distance (m)

390

405

420

435

450

465

480

495

510

525

540

555

570

585

600

615

630

645

660

675

690

705

720

735

750

765

54

37

42

49

74

72

86

69

78

121

161

221

302

387

458

445

508

568

626

672

739

752

805

860

883

893

0.5

54

43

42

53

74

72

85

70

85

121

161

217

308

383

458

441

508

566

625

671

734

751

800

860

880

897

1

54

44

41

53

64

73

83

71

90

121

161

212

294

378

458

438

508

565

620

666

736

757

805

860

879

897

1.5

54

44

41

52

64

74

87

71

91

116

161

212

294

376

457

434

508

560

617

660

739

760

807

860

876

898

2

53

45

41

52

63

74

82

72

90

112

157

206

289

369

455

431

503

548

620

659

740

760

809

859

874

900

2.5

52

44

42

52

62

76

82

74

89

111

153

200

288

366

455

428

498

555

620

659

735

760

805

859

870

899

3

52

44

44

49

57

76

81

72

86

106

151

196

288

358

455

423

498

556

620

650

735

763

806

857

871

897

3.5

51

45

44

49

57

75

79

80

86

102

149

192

288

356

450

418

497

549

620

653

721

762

806

855

871

892

4

51

45

44

50

58

72

72

79

87

101

146

191

285

355

448

418

497

548

617

660

709

761

805

852

870

888

4.5

53

48

44

48

59

71

74

81

86

101

146

191

282

349

443

417

496

548

619

660

703

762

800

850

870

887

5

53

45

44

46

62

72

71

81

86

100

141

189

280

348

439

417

497

547

613

659

696

760

800

849

867

887

5.5

52

46

43

45

58

72

71

81

82

99

141

183

278

343

438

417

488

543

608

658

693

757

796

840

865

890

6

53

44

44

49

57

77

71

86

80

98

137

181

281

343

435

418

481

534

608

650

689

755

794

837

862

892

6.5

51

43

42

51

56

78

71

87

76

93

139

181

282

339

428

428

478

536

608

652

682

750

793

835

862

901

7

53

45

38

50

54

80

71

89

73

91

141

175

285

338

429

428

474

535

607

655

678

747

791

831

860

897

7.5

53

46

35

53

53

79

71

91

72

91

141

170

287

336

429

433

471

528

603

656

670

744

791

824

861

901

8

52

45

34

54

52

73

71

92

71

87

141

168

283

332

428

436

468

523

602

659

671

740

791

821

861

901

8.5

52

46

32

54

49

75

71

96

71

86

141

161

278

331

423

438

467

519

600

651

675

739

790

820

861

902

9

50

49

27

54

45

76

72

95

69

86

141

161

278

328

418

438

468

520

599

651

673

736

785

815

860

902

9.5

46

52

25

54

45

80

74

95

67

88

141

159

282

328

415

439

468

518

598

651

672

735

782

815

860

902

10

46

54

24

54

44

79

76

94

65

87

140

153

282

328

412

448

464

516

597

650

675

732

780

812

860

901

10.5

44

54

24

53

43

80

77

91

64

85

137

152

277

328

408

453

461

517

588

647

673

733

778

811

860

900

11

12

44

54

54 44

24

54

43

78

74

91

64

81

133

159

257

322

406

452

453

513

585

650

677

741

765

802

860

898

24

52

39

77

76

91

64

82

135

156

268

323

407

455

458

516

588

650

679

737

772

810

859

899

11.5

TABLE C.5  (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5

44

54

24

51

43

75

71

87

66

81

131

161

255

321

399

455

454

508

581

650

679

755

760

806

861

891

13

13.5

44

54

25

49

43

74

71

89

66

81

129

162

248

44

53

28

45

42

77

75

89

69

81

126

167

243

317

396

398 318

466

452

508

573

630

676

750

751

806

861

890

458

450

508

578

643

675

758

757

807

862

890

14

44

54

32

44

43

74

75

88

69

81

125

168

237

310

394

465

449

508

573

629

677

750

750

805

861

890

44

54

34

44

44

75

72

88

70

81

125

164

228

308

391

463

448

508

571

628

674

747

752

804

860

889

14.5

Appendix C: Runway Roughness Profiles 149

0

44

79

68

45

100

139

173

244

288

290

297

294

301

290

289

284

283

301

289

282

296

305

303

298

Distance (m)

780

795

810

825

840

855

870

885

900

915

930

945

960

975

990

1005

1020

1035

1050

1065

1080

1095

1110

1125

297

301

309

298

282

289

301

282

283

289

289

291

294

295

292

290

248

169

135

103

47

67

76

46

0.5

296

297

312

301

281

281

302

283

284

290

286

291

291

292

289

289

249

180

136

106

49

69

74

47

1

303

295

312

301

277

279

302

283

287

290

281

299

292

292

293

290

250

185

139

110

50

69

74

50

1.5

288

298

311

299

280

277

302

286

287

290

283

291

291

289

293

292

250

190

140

113

53

69

74

47

2

288

299

311

301

282

277

303

284

283

289

283

290

289

289

298

292

253

191

133

114

57

69

74

44

2.5

288

302

312

293

282

278

302

282

282

290

281

289

287

289

302

293

257

197

147

113

57

68

74

59

3

288

303

312

293

282

280

302

281

282

288

284

289

290

291

302

292

260

200

150

116

58

68

74

64

3.5

288

304

312

294

283

283

302

277

281

290

281

289

287

288

301

294

260

201

153

119

60

70

74

72

4

287

303

312

296

285

281

302

282

282

289

284

290

287

290

302

296

260

206

156

120

60

70

75

74

4.5

286

303

315

297

289

277

302

287

281

288

290

289

287

293

304

297

261

206

159

120

64

70

75

74

5

284

307

319

296

287

277

302

288

281

290

290

287

286

293

308

293

265

207

160

120

66

70

74

74

5.5

283

308

327

299

291

278

302

288

279

290

292

287

286

288

309

292

269

205

164

120

70

66

71

74

6

280

309

318

303

292

278

300

289

277

290

295

286

285

289

305

292

267

202

167

122

67

60

71

74

6.5

282

308

319

308

292

273

298

291

275

290

298

284

285

287

305

292

263

202

170

121

65

60

70

75

7

284

308

318

311

292

275

295

290

275

290

300

285

286

290

303

292

262

207

171

125

67

60

69

74

7.5

284

307

310

306

292

275

295

289

273

284

299

285

289

291

302

292

261

211

172

129

70

60

67

74

8

281

308

312

302

292

277

293

291

273

280

300

287

290

292

302

292

260

213

171

130

70

60

65

74

8.5

285

308

313

302

292

278

292

292

275

280

297

287

290

295

302

292

260

220

170

131

71

56

60

74

9

288

307

313

302

292

281

292

292

274

280

296

290

290

296

305

292

260

221

170

133

75

57

60

74

9.5

287

307

313

296

291

281

284

292

275

282

294

290

290

296

303

293

261

227

172

133

78

51

60

74

10

287

307

311

293

292

282

283

293

278

284

291

291

292

297

304

296

261

230

179

133

80

49

60

74

10.5

287

304

310

293

292

282

282

295

279

286

288

293

294

297

305

294

263

230

173

135

83

44

60

74

11

286

303

311

294

292

282

283

296

280

285

283

293

291

297

304

293

267

232

177

135

87

40

60

74

11.5

279

306

309

301

293

284

282

297

282

284

281

293

292

296

302

293

270

233

176

133

89

40

61

74

12

TABLE C.5  (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).

12.5

277

305

308

301

292

283

287

295

282

288

281

294

297

297

302

292

270

237

177

140

90

40

63

74

13

13.5

271

304

309

301

293

282

289

298

282

290

282

267

302

308

302

293

282

290

301

282

290

283

292

294

291 292

296

299

292

277

233

169

140

97

40

68

75

297

302

292

272

233

174

140

90

40

65

74

14

267

298

307

302

293

283

292

302

282

289

286

290

299

296

296

292

280

239

170

140

96

43

68

76

267

298

305

306

295

283

291

301

282

287

288

289

300

296

299

290

284

242

170

139

100

43

68

77

14.5

150 Appendix C: Runway Roughness Profiles

0

266

271

259

258

228

203

205

194

194

169

174

160

125

124

99

119

96

89

69

64

45

Distance (m)

1140

1155

1170

1185

1200

1215

1230

1245

1260

1275

1290

1305

1320

1335

1350

1365

1380

1395

1410

1425

1440

45

63

69

89

95

117

99

121

124

160

175

169

191

194

209

202

224

258

251

271

265

0.5

44

65

69

89

95

112

99

122

127

160

173

171

190

197

214

204

224

257

248

269

261

1

41

62

67

89

91

110

101

114

126

159

170

173

187

198

215

204

224

257

248

268

258

1.5

40

60

61

90

89

116

99

119

128

154

173

173

184

199

216

204

225

257

246

267

258

2

40

60

65

89

89

118

98

119

127

152

173

169

183

201

216

205

224

256

246

265

257

2.5

39

59

70

89

88

119

96

118

124

149

169

174

183

201

224

205

227

252

246

265

253

3

39

56

68

89

88

117

85

119

121

149

172

174

181

203

221

205

225

249

243

265

250

3.5

36

56

65

89

87

119

84

116

124

146

172

174

179

204

220

205

225

250

243

262

248

4

37

53

62

85

89

119

95

119

124

142

174

174

179

204

220

205

223

249

240

267

248

4.5

34

53

58

79

89

117

93

118

124

140

172

174

179

203

219

214

221

251

241

268

248

5

35

55

64

78

86

118

91

110

120

140

170

174

178

195

220

214

215

250

240

269

248

5.5

38

53

69

73

80

112

89

110

119

140

170

174

175

203

219

213

214

250

241

269

248

6

39

53

70

80

79

110

89

109

119

138

171

174

174

204

219

213

212

248

240

275

249

6.5

37

56

70

77

89

109

97

109

117

135

171

171

174

204

219

212

211

245

244

276

248

7

38

53

69

79

88

109

99

109

109

130

173

170

169

204

217

212

210

246

245

278

245

7.5

40

51

69

80

84

109

99

109

116

132

173

169

165

202

213

211

213

245

245

278

244

8

40

51

68

78

74

109

97

109

111

130

173

170

169

202

211

210

212

241

246

278

248

8.5

40

50

67

73

75

109

93

109

109

129

172

168

170

201

211

211

212

238

247

278

248

9

41

50

65

78

77

112

90

109

114

129

165

167

172

204

207

211

210

238

248

274

254

9.5

45

50

68

76

73

110

89

107

117

128

168

166

172

204

205

208

214

238

248

271

248

10

46

50

67

75

75

109

89

107

119

128

168

165

173

203

204

205

203

238

244

269

258

10.5

36

50

69

77

75

115

92

103

119

126

167

165

173

197

204

204

202

237

239

268

259

11

49

50

69

75

77

109

98

99

119

124

165

165

170

195

199

204

209

236

239

267

266

11.5

50

50

67

72

77

109

99

99

119

128

170

167

169

194

200

204

206

237

248

268

268

12

TABLE C.5  (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).

12.5

50

49

70

72

79

108

99

99

119

129

159

171

170

195

199

204

205

233

250

266

267

13

13.5

50

48

70

70

82

100

101

90

50

47

70

70

85

99

105

94

120

128

128 119

160

174

170

194

194

204

204

231

254

266

272

163

173

170

195

196

204

204

233

251

268

265

14

51

45

69

70

83

100

110

99

120

127

160

174

172

192

194

204

204

231

258

264

277

51

45

67

70

89

99

116

99

120

125

160

174

171

192

194

204

204

229

258

262

271

14.5

Appendix C: Runway Roughness Profiles 151

0

50

11

30

54

35

46

65

75

46

52

75

87

95

105

135

165

230

244

272

291

331

341

386

432

450

432

Distance (m)

1455

1470

1485

1500

1515

1530

1545

1560

1575

1590

1605

1620

1635

1650

1665

1680

1695

1710

1725

1740

1755

1770

1785

1800

1815

1830

433

450

432

386

341

332

291

273

250

233

165

134

107

95

87

76

52

47

76

65

47

35

52

31

1

50

0.5

434

450

433

387

340

331

293

280

252

235

165

135

113

95

86

65

55

49

76

61

46

35

50

31

5

50

1

434

453

432

391

340

332

297

284

251

236

165

135

113

95

87

76

52

52

76

60

54

35

51

32

0

53

1.5

430

454

434

391

337

335

295

286

251

240

165

137

114

98

89

76

54

50

75

62

59

36

53

33

0

52

2

429

452

430

395

332

332

294

286

253

244

165

139

115

97

94

77

55

48

75

63

55

40

48

32

1

55

2.5

432

457

430

400

331

331

297

287

251

244

165

142

115

99

94

84

48

50

75

65

55

41

46

35

8

56

3

431

459

429

401

329

332

297

287

253

244

165

144

115

103

95

84

55

46

75

65

54

41

45

35

10

57

3.5

432

458

430

402

331

333

296

287

254

244

166

145

115

100

95

81

55

45

75

65

55

40

48

31

10

59

4

435

458

430

406

332

333

293

287

252

240

167

145

115

101

95

80

55

45

75

65

55

42

48

35

10

56

4.5

431

459

432

408

337

334

292

287

251

241

172

145

121

101

95

76

51

45

75

66

54

44

52

38

8

59

5

432

459

432

411

340

334

292

284

254

241

175

144

120

100

94

78

52

45

72

66

55

45

46

39

7

59

5.5

430

461

434

411

346

338

294

282

255

241

175

145

115

95

95

80

54

45

67

65

56

44

45

40

7

60

6

427

462

434

411

347

340

293

285

254

240

175

152

114

95

92

76

56

45

67

65

55

45

45

40

10

60

6.5

427

460

434

411

351

339

300

281

253

241

182

155

106

95

94

75

56

45

65

65

58

45

44

40

7

60

7

429

463

435

411

352

339

303

281

252

241

185

155

106

95

92

70

56

45

65

65

59

46

38

34

10

60

7.5

429

459

438

411

352

340

307

285

251

241

184

155

108

101

86

74

56

48

65

67

66

45

42

45

10

60

8

431

459

439

414

356

341

306

285

253

241

185

155

109

99

90

70

56

54

63

66

58

46

41

47

11

60

8.5

431

456

439

417

352

340

306

281

256

248

185

157

114

95

89

70

59

53

58

66

56

45

36

45

15

59

9

431

458

439

418

354

338

308

280

257

246

187

160

115

88

88

69

59

55

56

70

55

46

34

46

20

59

9.5

431

458

442

419

360

340

307

286

260

245

192

162

115

87

88

75

60

54

55

69

56

46

30

46

20

59

10

429

450

444

421

360

341

309

287

259

245

195

159

115

88

85

70

65

55

53

70

58

48

20

47

20

58

10.5

426

449

447

421

361

341

310

289

261

245

195

156

117

91

85

75

64

53

50

69

57

46

23

49

20

58

11

12

423

446

447 424

449

421

368

341

312

287

261

243

195

162

124

91

85

75

66

49

47

71

57

45

29

50

21

50

449

422

364

339

312

284

260

243

195

157

119

91

85

75

65

47

45

70

55

45

25

50

21

58

11.5

TABLE C.5  (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5

423

445

442

423

370

341

315

288

265

248

205

163

125

95

85

78

70

46

46

75

64

45

27

50

29

41

13

13.5

422

439

439

424

372

341

317

290

267

248

205

160

125

419

435

445

424

374

340

321

289

270

244

206

160

125

95

86

85 95

85

73

46

46

70

65

49

26

50

29

26

81

72

48

46

74

65

45

26

50

29

30

14

419

435

449

430

380

335

322

290

271

242

220

164

130

101

87

85

74

51

51

74

65

46

32

52

30

20

419

433

449

431

381

340

328

291

271

242

224

163

134

97

91

85

75

54

51

75

65

45

35

53

30

18

14.5

152 Appendix C: Runway Roughness Profiles

0

418

414

399

428

428

404

400

406

402

408

429

412

403

354

325

346

348

363

356

354

361

393

423

Distance (m)

1845

1860

1875

1890

1905

1920

1935

1950

1965

1980

1995

2010

2025

2040

2055

2070

2085

2100

2115

2130

2145

2160

2175

423

394

360

352

355

363

348

343

323

352

403

410

428

408

404

408

402

404

422

429

399

414

423

0.5

423

395

357

349

356

361

355

344

324

349

401

413

425

409

407

409

402

406

418

431

402

415

419

1

426

394

360

343

357

361

354

346

326

345

399

412

427

409

408

409

402

407

414

429

402

414

418

1.5

429

399

360

343

355

361

359

346

326

345

397

416

425

409

412

409

402

407

412

430

403

413

417

2

431

402

361

344

355

360

356

346

326

344

396

411

419

412

412

407

401

408

409

431

406

414

416

2.5

433

402

362

345

355

359

359

346

326

341

396

406

418

405

414

404

401

406

409

437

407

413

414

3

433

403

363

346

355

358

365

346

326

337

396

405

418

418

414

409

401

408

407

440

407

414

413

3.5

437

403

364

346

354

354

366

344

328

335

393

402

418

421

416

408

403

409

405

442

408

415

411

4

438

403

366

346

363

353

366

346

324

332

392

401

417

422

417

406

405

409

405

439

409

412

413

4.5

442

406

372

348

364

353

366

347

323

329

389

400

415

429

412

407

404

408

406

439

409

409

412

5

443

405

373

353

363

353

366

346

325

329

386

400

416

430

410

411

403

408

408

439

409

408

413

5.5

443

408

374

355

366

353

366

346

326

327

383

399

415

429

409

412

404

412

408

439

414

409

416

6

443

408

375

361

363

353

359

346

327

327

382

399

417

428

409

411

405

411

407

439

418

409

417

6.5

447

406

374

363

358

355

356

343

324

327

379

398

416

431

409

410

402

411

408

440

418

409

419

7

453

405

374

363

354

358

356

350

329

328

377

398

416

431

409

403

408

410

408

439

419

409

419

7.5

460

403

375

363

353

360

361

351

329

326

376

401

419

429

408

402

405

409

410

439

419

409

421

8

463

406

380

363

353

360

360

354

329

326

376

404

420

437

409

399

404

409

410

439

421

409

415

8.5

463

409

379

366

351

359

361

348

332

325

374

406

418

437

408

399

406

409

409

441

421

409

419

9

463

411

378

364

350

360

361

346

333

323

374

406

419

439

403

399

405

411

410

441

424

409

418

9.5

465

413

378

363

346

361

356

353

333

323

371

402

420

438

405

399

403

409

409

443

425

414

419

10

464

406

380

369

345

361

366

347

333

320

369

396

420

436

404

398

407

408

409

441

425

414

419

10.5

463

409

382

370

347

359

366

343

335

321

366

401

420

433

405

396

407

407

408

440

426

410

419

11

464

423

383

372

349

360

365

342

335

323

364

401

419

436

400

398

409

405

409

440

419

409

418

11.5

463

421

384

372

351

362

365

342

337

324

361

403

415

433

405

399

407

399

409

439

421

405

419

12

TABLE C.5  (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5

463

422

386

370

352

362

367

343

339

324

361

403

416

430

406

400

405

399

409

439

426

404

420

13

13.5

465

423

387

369

354

361

366

342

344

325

469

422

389

367

353

358

366

345

345

323

356

405

404 358

411

430

408

398

401

400

410

441

425

404

418

411

429

408

396

403

400

409

440

424

404

419

14

473

420

393

363

353

358

366

347

346

320

356

405

411

429

407

401

402

400

405

439

426

402

418

477

418

393

362

355

356

364

346

346

321

353

404

410

429

406

401

406

400

402

435

427

399

415

14.5

Appendix C: Runway Roughness Profiles 153

113

123

103

112

105

120

69

565

390

510

405

461

315

330

544

406

462

391

407

285

300

375

388

414

315

334

255

270

510

314

334

323

307

225

240

494

324

314

234

293

195

210

345

236

294

213

180

360

213

183

165

554

545

503

181

143

122

151

135

150

106

90

70

30

55

45

60

93

30

63

27

31

15

30

75

30

30

11

0

90

0.5

30

Distance (m) 0

563

545

511

505

454

405

414

394

334

314

314

317

293

238

210

182

143

124

112

110

97

64

62

30

30

23

30

1

563

548

514

504

454

413

414

396

337

317

304

315

294

243

213

173

149

123

113

110

93

67

66

33

30

21

30

1.5

564

544

519

502

453

414

419

392

338

308

308

313

294

242

220

173

146

122

113

113

91

67

68

40

33

20

30

2

567

541

514

500

450

416

418

384

344

315

305

314

294

243

213

170

148

120

109

114

91

68

63

39

37

20

20

2.5

564

542

509

501

453

422

421

384

345

324

304

322

294

253

210

173

152

119

114

122

90

71

63

38

41

20

20

3

572

553

512

503

453

424

422

388

354

324

314

322

303

255

206

183

154

114

125

123

91

75

67

30

40

30

24

3.5

569

559

509

503

454

424

424

394

357

327

322

319

305

262

207

183

158

115

131

129

93

81

66

30

40

17

20

4

562

564

514

508

455

425

424

404

356

329

328

319

311

263

207

168

162

123

123

125

96

85

60

33

41

13

20

4.5

556

563

523

523

445

425

416

405

347

324

329

315

310

254

204

173

163

123

123

119

94

85

59

37

40

12

21

5

560

562

527

524

443

425

408

405

344

330

329

312

308

254

207

181

161

124

123

112

90

88

59

31

48

11

20

5.5

563

556

526

524

441

424

409

403

334

337

324

307

309

254

214

190

163

128

124

109

100

87

60

31

40

14

15

6

564

554

524

524

441

426

405

394

333

344

324

308

306

254

215

184

165

128

123

105

106

85

65

31

37

20

1

6.5

572

560

522

523

444

429

405

395

335

335

324

314

304

254

213

183

158

123

116

111

102

84

61

30

30

20

0

7

567

554

526

514

454

436

406

403

339

335

319

314

309

254

217

190

171

123

118

112

103

89

63

30

31

20

0

7.5

565

547

534

503

462

444

412

409

344

336

314

314

306

254

219

193

174

132

114

112

107

90

62

30

28

20

0

8

566

546

542

494

474

444

414

414

353

342

317

314

305

254

221

197

177

132

123

116

104

77

62

30

30

30

3

8.5

567

544

541

504

482

444

417

416

354

344

323

317

304

257

223

198

176

133

123

123

102

80

59

40

38

30

10

9

572

539

534

504

474

444

419

416

363

344

323

314

304

257

231

206

175

120

123

122

102

84

57

40

39

30

16

9.5

573

538

534

509

491

444

421

414

364

341

324

313

304

257

227

211

175

118

123

113

102

90

59

40

39

30

18

10

TABLE C.6  Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm). 10.5

578

544

534

511

494

444

414

412

374

344

314

314

303

264

223

213

173

124

124

108

99

89

52

40

30

30

11

11

571

542

534

510

498

446

420

404

374

339

314

321

304

274

223

211

171

128

126

109

93

87

60

39

28

30

16

11.5

12

579

573

548

530 544

512 540

504

447

414

417

372

344

314

315

304

274

222

213

167

140

120

113

84

90

72

36

36

20

11

505

504

444

414

417

361

349

314

322

310

277

223

212

164

132

122

112

92

90

70

35

39

20

17

12.5

573

552

529

507

504

459

419

414

382

344

314

314

307

275

222

218

176

144

114

112

92

90

73

40

30

20

10

13

13.5

223 268

579

554

544

505

504

458

418

424

392

344

315

313

314

582

561

554

504

504

454

415

421

397

343

315

313

316

284

223

223 223

176

145

117

112

101

87

70

40

31

30

15

178

144

119

110

94

90

72

39

31

19

15

14

573

564

553

503

504

454

414

414

394

339

308

310

319

286

223

223

182

148

122

113

103

89

73

47

30

30

20

14.5

569

564

544

500

505

459

411

407

394

334

304

312

318

288

232

213

183

150

130

112

103

90

70

50

30

31

23

154 Appendix C: Runway Roughness Profiles

604

767

599

1.5

608

1025 1026 1026 1020 1019

1000 1009 1015

720

735

997

607

989

957

919

896

894

847

827

810

753

748

760

758

695

666

606

588

609

613

988

949

929

897

892

847

827

807

743

756

756

747

689

669

995

1149

1145

1154

1159

1121

1155

1121

1150

1122

1151

1129

1148

1119

795

1109

1099 1105

780

1023

1017

1009

1058 1057 1059 1050 1048 1043 1040 1046

1027

1017

1017

999

1059 1058

989

949

928

897

894

847

825

807

747

755

756

759

694

667

611

589

1059 1059 1058 1059 1064 1069 1069 1069

1022

1019

604

589

3.5

589

750

1019

994

1017

3

588

765

1019

1008 1010

1018

1009 1010

2.5

580

1049 1057

993

959

921

890

888

847

825

810

757

744

762

751

689

659

608

580

1014

1009 1007 999

2

573

690

1041

999

955

929

889

889

846

813

808

765

746

767

754

699

657

608

580

599

578

705

1009 1001 999

1028 1029 1037

949

928

882

886

847

807

807

762

744

764

752

697

658

608

589

660

949

927

886

885

847

808

812

757

737

690

1

576

675

927

950

630

645

884

879

848

585

600

811

570

615

747

811

540

555

760

737

510

525

749

694

740

480

495

604

658

606

659

450

594

465

595

597

420

573

405

435

0.5

579

Distance (m) 0 4.5

979

952

929

897

895

847

818

802

740

766

757

738

695

679

614

587

589

584

989 1012

1148

1130 1148

1134

1074 1070

1044 1044

1023 1024

1014

1009 1010

990

1059 1059

981

949

932

894

894

847

824

807

741

766

753

741

690

669

618

588

598

583

4

1144

1139

1069

1048

1029

1012

1010

989

1059

979

949

931

896

899

848

822

801

741

767

761

739

694

680

617

592

599

586

5

1148

1137

1076

1053

1029

1009

1017

991

1059

979

949

929

894

900

847

827

805

744

767

761

739

699

682

615

595

598

588

5.5

1157

1130

1076

1059

1029

1005

1023

990

1052

979

949

929

897

898

847

827

807

751

757

766

748

707

689

617

590

593

589

6

7

989

959

929

890

889

860

829

815

757

757

757

757

710

699

629

598

594

589

999 1000

1158

1129

1158

1131

1073 1074

1048 1049

1039 1039

999

1024 1029

999

1044 1036

980

959

931

899

895

849

827

807

755

755

759

749

709

693

622

594

592

589

6.5

8

8.5

992

919

883

899

864

827

812

767

764

752

746

714

709

652

618

589

590

9

997

918

889

894

862

826

816

770

767

747

747

716

709

654

618

587

590 589

592

929

895

889

874

818

818

764

767

737

744

719

707

651

626

1004 1016

919

889

894

867

826

817

768

767

744

747

718

707

657

621

10 592

10.5

11

937

904

897

887

817

810

771

766

744

737

727

711

649

624

590

589

1024 1014

936

897

889

877

819

817

767

765

732

739

719

709

649

624

591

589

999

992

989

1015 989

1019

11.5

12

938

905

902

892

837

817

777

758

744

752

728

718

645

619

589

602

1010 1012

939

902

899

889

824

817

771

764

743

739

726

719

649

622

590

598

12.5

13

1018

1012

1019

1041

989

650

887 936

913

14

1019

1018

949

928

887

887

851

807

806

747

746

765

729

705

654

601

598

592

14.5

1020

1023

1012

949

928

886

887

850

807

807

747

740

757

729

699

658

608

595

589

1000 1058 1052 1049

1008 1004 1003 1008 1004 999

1039 1039 1031

1010 1006 1009 1008 1009 1009

1020 1022 1030 1024 1019

1019

1019

939

927

890

888

847

797

747

746

762

728

709

847 887

1046 1045 1048 1049 1052

999

598 601

809

1020 1025 1029 1029 1032 1031

1019

1019

13.5 596

810

791

751

745

757

729

719

649

612

595

609

1009 1014

938

909

892

892

844

807

783

757

741

756

729

726

643

618

589

609

1158

1134

1158

1132

1159

1130

1074 1072 1072

1154

1121

1149

1119

1150

1119

1069 1074 1077

1153

1129

1155

1135

1158

1139

1166

1137

1168

1137

1168

1139

1168

1141

1161

1149

1162

1143

1079 1080 1087 1092 1097 1099 1098 1096 1099

1049 1048 1049 1053 1056 1056 1053 1052 1055 1059 1062 1064 1068 1066 1062

1033 1039 1039

995

1019

1017

1029 1029 1029 1019 1002 1009 1016

1029 1028

1042 1039 1039

999

9.5 596

1002 1004 1009 1008 1003 1009 1004 1001 1007 1010 1017

981

922

880

894

867

826

815

767

765

752

749

712

709

648

615

590

590

1022 1025 1020 1019

999

1031

993

974

922

881

890

867

831

817

767

762

754

756

716

709

639

602

593

589

7.5

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 155

1235

1298

1173

1188

1198

1177

1188

1194

1238 1229 1230

1278 1285 1291

1308 1318

825

855

870

885

900

1170

1177

1188

1483

1623

1623

1670

1699

1606 1608 1611

1623 1623 1623

1624 1623 1623

1670 1673 1671

1690 1700 1702

1698 1702 1703

1095

1110

1125

1140

1155

1170

1539

1706

1615

1577

1530 1536 1538

1560 1567 1568

1065

1080

1554

1531

1050

1298

1394

1387

1345

1348

1332

2.5

1470

1467

1423

1397

1384

1347

1338

1332

1298

1243

1215

1198

1186

1153

1711

1693

1673

1623

1623

1617

1582

1537

1567

3

1553

1497

1487

1470

1467

1424

1397

1383

1347

1335

1331

1293

1246

1218

1207

1188

1156

1713

1683

1678

1622

1623

1617

1584

1713

1674

1678

1623

1626

1616

1578

1540 1543

1566

1497

1484 1487

1468

1496 1495

1537 1547

1477 1479 1482

1500 1503 1497

1214

1239

1467

1467

1466 1467 1466 1467

1020

1178

1195

1422

1467 1468 1467

1035

2

1154

1423

990

1428 1425 1426

975

1394

1005

1377 1380 1384

1392 1394 1396

945

960

1387

1358

1344

1362 1368 1369

1340 1341

915

930

1343

1328

1327

1204 1208

1185

1.5

1153

840

1

1162

810

1158

0.5

1161

Distance (m) 0

1711

1670

1673

1623

1629

1613

1581

1543

1543

1497

1487

1474

1466

1426

1405

1387

1345

1328

1334

1288

1250

1221

1215

1190

1150

3.5

4.5

1223

1218

1185

1150

1617

1711

1671

1671 1705

1666

1667

1625 1631

1629 1629

1617

1582 1587

1543 1544

1537 1531

1497 1499

1482 1477

1475 1472

1467 1467

1427 1429

1405 1402

1384 1387

1340 1340

1327 1326

1336 1334

1288 1283

1254 1255

1217

1217

1188

1151

4

1703

1668

1664

1632

1629

1620

1577

1545

1526

1497

1478

1481

1467

1437

1405

1394

1344

1327

1334

1282

1258

1218

1221

1179

1151

5

1700

1664

1663

1629

1632

1619

1577

1547

1517

1497

1477

1482

1466

1438

1403

1397

1346

1327

1333

1278

1268

1218

1228

1178

1154

5.5

1696

1663

1662

1633

1635

1615

1574

1550

1517

1505

1476

1480

1463

1443

1406

1400

1347

1327

1333

1279

1278

1223

1229

1188

1158

6

7 1181

1158

1516

1614

1695 1697

1667 1665

1663 1663

1635 1645

1636 1635

1614

1575 1576

1556 1557

1517

1499 1498

1476 1477

1484 1487

1465 1464

1443 1443

1407 1411

1400 1401

1347 1350

1326 1326

1332 1335

1280 1285

1276 1275

1226 1231

1229 1228

1190

1158

6.5

8

1218

1183

1167

8.5

1227

1191

1161

9

9.5 1158 1214

10

1208

1208

1158

1329 1330 1333 1356 1357 1357

1487 1487 1495 1517

1552 1556

1514

1703 1703 1706

1668 1673 1674

1658 1660 1657

1653 1652 1653

1634 1632 1624

1622 1633 1643

1577 1580 1584

1551

1511

1504 1503 1505

1208 1201

12

12.5

13

1218

1188

1172

1228 1235

1217

1188

1175

1289 1292

13.5

14

14.5 1191

1178

1208 1198

1189

1172

1376 1376 1377

1337 1337 1339

1352 1355 1357

1295 1302 1302

1268 1268 1278

1238 1243 1245

1217

1190

1169

1417

1417

1417

1422 1426 1428

1463 1467 1467 1472 1477

1460 1458 1462 1462 1459 1460 1461 1482 1477 1477 1477 1475 1468

1433 1428 1460 1462 1465

1431

1398 1397 1397 1397 1397 1400 1397 1397 1392

1358 1362 1362 1367 1368 1371

1337 1337 1334 1336 1337 1339

1342 1342 1338 1347

1280 1288 1289 1291

1270 1274 1269 1268 1263 1268

1235 1228 1225 1218

1219

1194

1168

1517

1520

1515

1517

1514

1517

1517

1521 1522 1523

1673 1674 1674 1673

1623 1623 1623 1620 1623 1667 1671

1616

1676 1663 1653 1643 1638 1633

1587 1590 1593 1594 1597 1599

1550 1554 1557 1557 1555 1555

1523 1523 1522 1518

1706 1709 1710

1675 1676 1673

1525 1524 1527

1736 1733 1733 1716

1693 1693 1694 1714

1723 1729 1733 1733

1675 1680 1684

1672 1670 1670

1623 1623 1623

1633 1623 1623

1605 1607 1606

1557 1557 1557

1525 1524 1527

1674 1674 1673 1679 1683 1688

1656 1656 1660 1657 1654 1659 1663 1663 1668

1660 1663 1663

1624 1623 1616

1646 1654 1663

1582 1585 1584

1547 1547 1547

1517

1507 1508 1514

1497 1504 1499 1497 1497 1493 1497 1497 1499 1504 1504 1503

1487 1494 1487

1466 1469 1469 1467 1468 1463 1485 1487 1487

11.5 1168

1203 1208 1213

1218

11 1164

1449 1453 1459 1458 1463 1462 1457

1427 1423 1413

1405 1405 1402 1403 1397 1425 1425

10.5 1159

1338 1337 1340 1338 1341

1278 1278 1276

1269 1268 1268

1230 1228 1234

1219

1204 1201

1158

1446 1447 1448 1450 1451

1418

1401

1350 1354 1357

1327 1328 1328

1337 1337 1338

1279 1278 1282

1277 1277 1270

1228 1226 1238

1219

1178

1159

7.5

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

156 Appendix C: Runway Roughness Profiles

0.5

1

1.5

1754

1927

1773 1774

1949

1990 1989

1951

1927 1928

1898 1897

1897 1902

1876 1877

1867 1865

1863 1855

1829 1827

1788 1789

1794 1793

1751

1754

2117

2118

2118

2118

2117

2121

2127

2127

2119

1515

2123 2117

2148 2148 2140 2135

2121

1485

2110

2110

1500

2110

1989

1956

1923

1894

1897

1879

1865

1860

1826

1792

1784

1775

1738

1755

1990

1955

1924

1888

1897

1886

1860

1854

1824

1788

1782

1776

1741

2121

2127

2120

2110

2121

2128

2113

2113

2124

2127

2108

2112

2116

2122 2123

2129 2127

2103 2100

2112

2127

2127

2100

2120

2127

2134

2100

2120

2100

2128

2130

2100

2121

2099

2070 2067 2061

2100 2097 2097 2098 2100

1470

2104 2101

2064 2069 2067 2069 2070 2075 2075 2078 2074 2071

2096 2100 2100 2102

1440

1455

2113

1986

1957

1926

1894

1898

1884

1862

1862

1827

1790

1787

1774

1746

6 1734

2080 2080 2080 2084 2087 2089 2090 2090 2091 2090 2090 2086 2087

1987

1745

5.5 1735

2067 2070 2069 2070 2072 2080 2080 2080 2079

1987

1949

1927

1898

1897

1876

1867

1864

1830

1793

1747

1742 1744

5 1734

1425

2061

1982

1955

1927

1897

1892

1867

1857

1864

1826

1795

1769

1794

4.5

1967 1972 1977

1981

1769

1794

1745

1748

4

1733 1733

2030 2044 2061

1957

1747

1760

3.5

1733

1395

1982

1929

1957

3

1732

1410

1928 1930 1930 1928

1946 1939 1944 1947

1365

1380

1887

1897

1887

1907 1902 1904 1900 1899

1888

1867

1855

1864

1825

1794

1350

1887 1888

1865

1764

1788

1867 1867 1864

1855

1862

1824

1794

1784

1748

1754

1891

1866

1745

1754

2.5

1721

1320

1853

1854

2

1732

1335

1847 1848 1849

1305

1824

1824 1824 1824

1847 1853 1854

1275

1290

1794

1797 1795 1795

1260

1759

1779

1752 1752 1754

1774 1775 1776

1230

1754

1744

1732

1245

1744 1744 1744

1755 1755 1754

1200

1215

1733 1733 1733

1185

Distance (m) 0 7

1823

1894

7.5

8

8.5

1767 1765 1784 1783

9

9.5

10

1775 1774

1887 1887 1887

1867 1867 1867

1855 1857 1857

1834 1832 1834

1794 1793 1794

1787 1785 1790

1781

1733 1734 1734

1765 1764 1764

1743 1743 1743

10.5

11

11.5

12

12.5

1773 1771

1950 1953

1931

1927 1929

1954 1956 1956

1768

1774 1773 1774 1774 1775 1774 1817

14

14.5

1765 1764 1760

1800 1799 1824 1824 1824

1801

1774 1774 1774

1754 1756 1754

1867 1871

1875 1877 1877

1847 1853 1847 1876 1876 1872

1917

1918

1917

1917

1956 1957 1957 1957 1958 1960 1967 1964 1963

1952 1949 1947

1908 1925 1930 1929

1913

1916 1918 1932 1934 1937 1939 1937 1938

1917

1916

1887 1887 1887 1887 1887 1890 1888 1895 1895

1871

1857 1856 1854 1852 1849 1849

1834 1837 1834 1844 1844 1844 1844 1842 1844

1794 1794 1799 1804 1813

1794 1793 1794 1794 1800 1799

13.5

1742 1742 1743

2120 2123 2126

2135 2137

2127 2127

2134 2130 2137

2127 2126 2127

2116

2119

2118 2137 2137 2143

2127 2118

2107 2107

2127 2128 2130

2111

2110

2110

2110

2110

2111

2110

2110 2110

2110

2117

2119 2117

2116 2117 2147 2147 2147 2147 2146 2147

2127 2127 2127 2119

2110

2118

2110 2119

2142

2147 2144 2140

2124 2123 2122

2114

2135 2138 2140 2140 2140 2140 2140 2141

2115

2060 2060 2069 2075 2081 2079 2080 2088 2085 2080 2080 2080 2083 2083 2085 2103 2105 2108

2100 2097 2095 2099 2100 2101

2120 2120

2100 2101

2062 2061

2090 2089 2089 2081 2085 2080 2080 2080 2080 2080 2080 2078 2071 2070 2070 2070 2069

2079 2076 2077 2080 2080 2080 2076 2075 2079

1994 1994 2000 2001 2003 2000 1999 1996 1999 1992 1999 2000 2006 2010 2019

1951

1927 1927 1928

1897 1897 1900 1907 1907 1911

13 1740

1742 1749 1752 1753 1752 1754

1769 1773 1771

1744 1743 1739 1736 1741

1896 1896 1900 1906 1904 1903 1906 1905 1907 1908 1915

1894 1890 1887

1865 1867 1867

1854 1854 1854

1824 1827 1833

1784 1786 1793

1783 1784 1784

1781

1735 1734 1734

1771

1743 1743 1743

2079 2079 2079 2080 2080 2081 2085 2081

1990 1990

1956 1954

1926 1927

1891

1892 1896

1887 1888

1862 1864

1853 1854

1819

1788 1785

1784 1784

1778 1781

1740 1735

1762 1764

1734 1737

6.5

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 157

2152

2

2.5

3

3.5

4

4.5

5

2254 2257

2292 2298 2297

2264 2267 2268 2273 2268 2268 2270 2276

2274 2270 2267 2267 2267 2266 2267 2263

2287 2287 2294 2292 2292 2288 2288 2287

2298 2297 2297 2297 2295 2292 2291

1635

1650

2237

2167

2262

2237

2173

2255

2338

2552 2552

2549 2550 2552 2552 2552 2552 2552 2552

2559 2556 2555 2554 2558 2553 2554 2559

1845

1860

2553 2555

2527 2523

2542 2539

2531 2528 2530 2527 2527 2529 2528 2527

2552 2553 2560 2553 2552 2549 2549 2547

1815

1830

2466 2467

2476 2475

2521

2523 2527

2516

2522 2522

2512

2475 2471 2468 2467 2467 2466 2468 2467 2522

2559

2551

2538

2522

2534

2561

2562

2550 2552

2540 2535

2522

2532

2466 2466 2471 2531

2425 2426

2561 2561

2552 2552

2535 2538

2522 2525

2540 2532

2437 2436

2512 2512 2512

2436

1785

2431

2426 2426

2398 2397

2410 2413

2367 2370

1800

2425 2431

7.5

8

8.5

2184

9

9.5

10

2187 2187 2192

2173 2175 2177

2152 2154 2153

10.5

11

11.5

12

12.5

13

13.5

14

14.5

2177 2177 2175

2153 2157 2156

2194 2198 2204 2207 2207 2209 2217 2221 2225

2177 2183 2180 2178 2177 2177

2156 2156 2153 2148 2149 2149

2307 2304 2303 2305 2300 2300

2312 2319 2329 2337 2338 2341 2344 2342

2302 2304 2305 2307 2307 2311

2299 2297 2302 2305 2304 2307 2311

2300 2301 2301

2256 2257 2259 2267 2275 2277 2284 2287 2295 2287 2283 2277 2282 2286 2287

2264 2259 2258 2259 2263 2257 2256 2258 2259 2258 2267 2267 2267 2269 2273

2267 2266 2267 2275 2275 2275 2272 2271 2268 2267 2270 2268 2265 2264 2258

2239 2241 2237 2237 2237 2237 2237 2239 2240 2247 2246 2246 2246 2247 2247

2177 2181

2167 2170 2171

2147 2150 2148

2407 2406 2406 2406 2405 2405 2406 2405 2403 2397 2396 2396

2459 2456 2456

2480 2482 2482 2485 2485 2491 2490 2506 2506 2506 2506 2508 2541 2541 2539 2532 2536 2536 2537 2542 2545

2560 2562 2565 2567 2571 2572 2572 2573 2572 2572 2569 2570 2570 2572 2572

2552 2553 2553 2552 2552 2552 2552 2553 2555 2562 2562 2563 2562 2562 2561

2536 2538 2540 2535 2535 2537 2538 2541 2541 2539 2539 2542 2543 2547 2548

2532 2534 2542 2542 2539 2541

2532 2534 2540 2541 2535 2533 2528 2526 2524 2523 2526 2528 2531 2527 2531

2476 2482 2481

2465 2465 2466 2462 2459 2460 2463 2463 2464 2466 2467 2476 2476 2476 2476

2436 2436 2439 2444 2443 2445 2446 2447 2454 2457 2458 2461

2429 2435 2436 2426 2435 2434 2434 2431 2435 2436 2436 2436 2436 2436 2436

2398 2396 2396 2397 2401 2399 2399 2402 2405 2405 2406 2407 2408 2407 2407

2414 2412 2410

2367 2366 2367 2369 2371 2372 2375 2376 2376 2380 2381 2385 2388 2393 2395

2348 2349 2348 2347 2346 2346 2347 2347 2347 2350 2353 2349 2349 2351 2350

2343 2344 2344 2343 2345 2345 2344 2344 2347 2353 2350 2350 2347 2346 2338 2337 2337 2345 2348

2455 2462

2418 2421

2297 2298 2302 2298

2456 2456 2456 2447 2447 2446 2446 2446 2444 2444 2443 2446 2446

2419

2272 2267 2257 2256

1770

2417

2237 2238 2267 2267

2412 2415 2414

2416

2167 2167 2176 2177

2439 2439 2439 2439 2443 2444 2438 2436 2436 2433

2411

7

1740

2414

6.5 2148 2147

1755

2409 2408

2395 2396 2397 2405 2406 2405 2405 2406 2406 2409 2410

2398 2402 2405 2407 2407 2406 2406 2405 2406 2406 2405 2404 2401

2366 2366 2366 2366 2365

2334 2337

2344 2345

2297

2296 2297

2258

2269 2275

2258

2294 2297

2340 2340 2343

2330 2331

2164 2167

6 2151

1710

2352 2350 2355 2355 2362 2367 2367 2367

1695

2274 2258

5.5 2153

1725

2340 2337 2337 2337 2337 2336 2338 2338

2338 2337 2335 2330 2333 2337 2337 2331

1665

1680

2290 2290 2293

2277 2276

2265

2236

2165

2157

2157

1605

2263 2265

2234 2229

2167 2165

2152 2152

2155 2154

1620

2244 2242 2246 2242

2167

2152

2147

2227 2231 2237 2241

2167

2148

2138

2247 2250 2255 2257 2258 2257 2258 2261

2167

2152

2137

1575

2167

2151

2136

1590

2169

2157 2157 2157

2173 2170 2173

1545

1.5

1560

1

2131

0.5

2136 2129 2128

1530

Distance (m) 0

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

158 Appendix C: Runway Roughness Profiles

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2780 2773 2771

2693 2691

2833 2833 2834 2834 2836 2840 2840 2841

2853 2854 2855 2856 2862 2863 2864 2866 2870 2873

2070

2085

2774

2776

2809 2809 2807

2773

2876

2875

2878

2840 2843 2843 2843 2845

2813 2813

2773 2774

2927 2929 2929 2929 2929 2929 2935 2937

2875

2870

3063 3068 3078 3084 3089

3023 3023 3028 3028 3019

3044 3043 3048 3047 3047 3047 3047 3046 3047 3048 3048 3048 3050

3023 3024 3021

2235

3018

3038 3041 3043 3048 3056 3058 3058 3061

3024 3026 3023 3018

2980

2205

2979

2220

2979

2953 2953 2955 2958 2959 2954 2956 2959 2972 2977

2989 2987 2989 2992 2999 3009 3019 3026 3028 3029 3027 3025 3024

2175

2944

2909 2909 2911

2939 2939 2939 2941

2915 2915

2896 2890 2889 2895 2902

2878

2190

2910 2909 2909 2910 2915

2160

2912

2886 2895 2899 2899 2905 2901 2894 2893

2910 2911

2130

2145

2878 2870 2869 2879

2859 2858 2858 2859 2858 2858 2859 2859 2859 2859 2859 2859 2860

2813

2793

2763

2767

2730

2879 2879 2879 2879 2879 2881

2813

2793

2763

2770

2725

2100

2813

2761

2773

2721

2709 2700

2115

2813

2820 2815 2814

2813

2779 2778 2783 2783 2782 2779 2779 2773

2055

2670 2661

2690 2683 2685 2710

2809 2803 2802 2800 2797

2040

2813

2828 2824 2823 2823 2818

2778 2775

2025

2775

2741

2720 2721

2753 2755 2758 2759 2763 2763 2763 2760 2754 2759

2718

1995

2716

2010

2719

2716

2720 2716 2720 2715

1980

2691

2661

2670 2670 2670 2673

2703 2700 2710 2710

2682 2688 2690 2691

2680 2684 2681

2700 2700 2700 2705 2709 2710

1950

1965

2757 2767 2771

2671

2663 2663 2663 2661 2664 2667

2677 2677 2678 2677 2676 2672 2671

2679 2680 2683 2680 2661

1920

1935

2635 2639 2640 2642 2647

2591 2592 2592 2594 2597 2601 2602 2603 2607 2603 2602 2602 2601

2589

2628 2625 2625 2630 2630 2630 2634 2632

2591

1890

2588 2589 2592

1905

2575 2577 2579 2582 2585 2588 2587 2592

1875

Distance (m) 0 7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

2600 2602 2622 2632 2640 2630 2627 2629 2625 2620 2620 2625 2624 2626 2627

2592 2592 2594 2597 2595 2592 2586 2589 2587 2588 2592 2592 2592 2593 2591

2671 2670 2671

2677 2680 2679 2680 2680 2680 2680 2680 2680 2680 2680 2680

2730 2731 2730 2727 2725 2726 2729 2730 2730 2730 2731 2734 2827 2824 2828

2788 2788 2784 2783 2781 2778 2781 2778 2780 2776 2774 2776 2778 2779 2777

2763 2770 2773 2773 2773 2780 2783 2791 2793 2801 2808 2818

2753 2751 2745 2738 2742 2743 2745 2744 2743 2743 2740 2738 2745 2745 2748

2730 2730 2731

2683 2695 2702 2706 2700 2700 2705 2713 2721

2685 2686 2685 2686 2662 2676 2690 2691 2694 2695 2694 2694 2693 2698 2700 2693 2692 2690 2690 2690 2681

2813 2815 2817

2867 2868 2869 2869 2868 2879 2884 2874 2877 2878 2874 2873 2879 2879 2879

2875 2874 2877 2876 2876 2878 2874 2880 2873 2873 2873 2873 2870 2869 2865

2852 2853 2853

2818 2823 2823 2823 2823 2826 2833 2833 2832 2833 2833 2832

2856 2854 2854 2860 2860 2854 2853 2853 2853 2850 2850 2851

2915 2918

2919 2919 2919

2913 2906 2902 2917 2914 2909 2909 2909 2909 2917 2918 2918 2915 2917 2919

2977 2977 2979 2979 2977 2976 2975 2972 2974 2974 2979 2978 2979 2981 2982

3054 3057

3031 3031

3096 3103

3064 3058 3054 3048 3048 3044 3048 3049 3055 3048 3048 3048 3048 3048 3048

3030 3031 3033 3030 3027 3026 3028 3027 3031 3037 3038 3038 3039 3039 3039

3098 3098 3089 3067 3049 3044 3039 3036 3032 3033 3033 3029 3029 3028 3028

3028 3029 3029 3029 3028 3028 3028 3033 3032 3035 3035 3033 3038 3038 3038 3038 3038

2979 2975

2947 2950 2950 2951 2954 2954 2959 2959 2949 2949 2945 2949 2949 2953 2958 2953 2956

2909 2909 2909 2910 2909 2916 2918 2918

2909 2900 2893 2889 2899 2911

2869 2869 2871 2869 2865 2867 2864 2869 2869 2869 2869 2874 2874 2877 2878 2879 2879

2864 2867

2878 2876

2850 2855

2808 2812

2775 2780 2783 2784 2788 2793 2793 2797 2805 2815 2823 2843 2853 2835 2824 2815 2823

2793 2793

2763 2762

2763 2757

2730 2730

2697 2697

2682 2683

2664 2664 2667 2666 2666 2669 2669 2670 2670 2674 2665 2675 2673 2672 2680 2680 2682

2670 2671

2650 2654 2660 2663 2669 2676 2680 2688 2689 2687 2686 2686 2680 2680 2680 2678 2678

2601 2601

2589 2592

6.5

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

Appendix C: Runway Roughness Profiles 159

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

3148

3183

3195

3192 3197 3194

3219 3224 3218

2355

2370

3150

3157

3199

3186

3158

3158

3158 3158

3188 3195

3164

3158

3158

3403 3401

3411

3401 3401 3410 3399 3399 3400 3399 3397

2535

2550

3401 3401

3376 3376 3401

3374

3437 3438 3442 3441

3436 3441 3437 3440 3442 3444 3443 3438 3443 3446 3449 3449 3448

3446 3445 3445 3445 3442 3438 3438 3437

3457 3464 3465 3466

2640

2655

3442 3438 3437

3437

3436

3445 3446 3446 3446 3446 3446 3446 3442 3444

3434 3436 3436

3428 3430

3402 3409 3411 3421

2625

3430 3431

3420 3421

2610

3410

3422

3435 3435 3432 3430 3431

3420 3421

3441 3443 3441

3417

2595

3418

3410 3412 3411

3412

3396 3395

3421 3416 3412

3393

3416

3401

3416

3376

2565

3411

3413

3401

3376

3396 3395

3407 3407 3408 3402 3402 3404 3410

3411

3326

2580

3411

3404 3401 3401 3401 3396 3391 3392

3391 3390 3391

3411

3411

3394 3394 3396 3401 3401 3398 3400 3401

3414 3410 3411

2505

2520

3411

3395 3396 3396 3396 3395 3396 3396 3400 3401 3405 3406 3416

3322

2490

3321

3376 3377 3362 3365 3366 3366 3368 3373

3317 3321

3343 3346 3346 3346 3340

2475

3323 3322

3327 3331 3333 3327 3327 3310

3307 3306 3305 3306 3305 3306

3336 3335 3334 3336 3335 3336 3336 3336

3320 3316

2445

3317

2460

3317

3313 3314 3316

2430

3291

3276 3276 3276 3276 3266 3287 3287 3286 3285 3286 3286 3287

2415

3248

3208

3216

3195

3238 3238 3239 3239 3248 3255 3258 3264 3256 3249 3251

3251

3158 3158

3266 3266 3265 3266 3266 3266 3266 3266 3265 3264 3264 3266 3266

3211

3215

3194

3215

3219

3194

3149 3160

2385

3238 3229

3205 3206 3218

3186

3228 3228

3201

3184

3148 3158

2400

3222 3228 3231

3198

3185

3148 3148

3158 3158

3123

3158 3156 3149

3148

3158

3119

3178 3180 3178

3148

3148

3127

2325

3148

3140 3148

3148

3118

2340

3138

3118

3147

3116

3138 3138 3138

3113

3147 3146 3148

3110

2295

3108

2310

3108

3078 3078 3080 3084 3087 3087 3088 3088 3088 3088 3088 3099 3095

3107 3108 3108

3050 3058 3053 3063 3068 3059 3066

2265

3054 3058 3058 3048 3049 3051

2280

2250

Distance (m) 0 7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

3164

3257 3258

3166 3168 3168 3188 3186 3187

3392 3391

3140 3141

3138 3142 3147

3173 3168 3167 3168 3168 3168 3185 3188 3188 3189 3188 3187

3147 3147 3143

3215 3215 3218

3188 3188 3190

3174 3178 3178

3155 3155 3156

3311

3323 3316 3316 3316 3317 3322 3326 3326 3326

3416 3416 3411

3411

3411 3411

3411 3411 3393 3398 3401

3409 3407 3407 3410 3410 3411 3391 3391 3392 3397 3400 3397 3394 3392 3391

3411

3451 3450 3451

3447 3446 3446 3440 3436 3436 3436 3436 3436 3437 3441 3444

3446 3446 3446 3446 3446 3446 3446 3446 3446 3447 3433 3426 3429 3436 3432

3436 3436 3436 3436 3437 3439 3446 3446 3446 3446 3456 3456 3456 3456 3456 3456 3461

3446 3447

3440 3441

3436 3436 3437 3436 3436 3436 3436 3445 3446 3446 3446 3456 3456 3437 3441 3436 3435

3438 3436 3431

3414 3413 3416 3432 3431 3425 3426

3431 3430 3430 3433 3432 3431 3423 3423 3431 3433 3431 3435 3434 3431

3411

3400 3394 3397 3397 3399 3400 3394 3394 3393 3398 3401 3401 3412 3410 3402

3392 3391 3391

3394 3396 3396 3402 3401 3402 3400 3401 3397 3395 3394 3395

3401 3396 3400 3392 3397 3396 3399 3400 3401 3402 3408 3411

3426 3426 3416

3377 3384 3384 3385 3384 3385 3386 3387 3392 3396 3395 3391

3354 3352 3356 3356 3359 3361 3362 3364 3365 3371 3371 3372

3323 3321 3324 3326 3334 3333 3336 3336 3336 3337 3336 3339 3338 3337 3336

3287 3306 3306 3316 3317 3321

3294 3296 3296 3303 3306 3306 3306 3305 3302 3303 3306 3306 3306 3311

3265 3266 3266 3276 3268 3270 3272 3268 3268 3271 3269 3270

3257 3251 3254 3248 3254 3258 3258 3258 3258 3258 3258 3258 3260 3267 3267 3263 3261 3261

3410 3402 3401 3401 3406 3410 3409 3410 3411

3392 3391

3141

3152 3154 3158 3155 3157 3153

3105 3103 3100 3138 3138 3138

3218 3221 3220 3228 3225 3226 3228 3228 3236 3235 3234 3238

3406 3407 3406 3401 3401 3401 3401 3411

3401 3401

3416 3416

3376 3376

3158

3168 3173 3175

3163 3161

3133 3137 3138 3138 3138 3138

3232 3239 3248 3255 3258 3256 3255 3248 3238 3229 3220 3216

3188 3188 3188

3344 3344 3355 3350 3351

3323 3324

3306 3311

3296 3298

3266 3262

3132 3129 3130

3140 3146 3146 3146

3167 3166 3165

3146 3141

3128 3129 3131

3207 3208 3208 3216 3218

3222 3228

3188 3188

3161

3158 3165

3148 3148

3124 3128

3098 3098 3094 3097 3097 3098 3098 3099 3099 3106 3107 3106 3103 3107

3063 3059 3062 3064 3067 3068 3067 3068 3069 3074 3076 3074 3075 3073 3069 3076 3078

6.5

TABLE C.6  (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).

160 Appendix C: Runway Roughness Profiles

References



1. Foster, B. “Undercarriages,” Flight, February 8, 1940, 131.



2. Schmidt, R.K., The Design of Aircraft Landing Gear (Warrendale, PA: SAE International, 2020)



3. Aerospace Information Report, “Aerospace Landing Gear Systems Terminology,” AIR1489, Revision C, SAE International, May 2017.



4. Aerospace Information Report, “Aircraft Flotation Analysis,” AIR1780, Revision A, SAE International, April 2016.



5. Aerospace Recommended Practice, “Aircraft Ground Flotation Analysis Methods,” ARP1821, Revision B, SAE International, December 2016.



6. ASTM D1883, “Standard Test Method for California Bearing Ratio (CBR) of LaboratoryCompacted Soils.”



7. ASTM D4429 REV A, “Standard Test Method for CBR (California Bearing Ratio) of Soils in Place.”



8. “Unpaved Runway Surfaces,” Advisory Circular 300-004, Transport Canada, 2016-02-05.



9. ASTM D6951/D6951M, “Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications.”

10. Webster, S.L. et al., “Description and Application of Dual Mass Dynamic Cone Penetrometer,” Instruction Report GL-92-3, U.S Army Engineer Waterways Experiment Station, Vicksburg, MS. 11. ASTM D1196/D1196M, “Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements.” 12. “Airport Pavement Design and Evaluation,” Advisory Circular 150/5320-6F, Federal Aviation Administration, October 11, 2016. ©2022 SAE International

161

162

References

13. “Standard Naming Convention for Aircraft Landing Gear Configurations,” Order 5300.7, Federal Aviation Administration, October 6, 2005. 14. “Unpaved Runway Surfaces,” Advisory Circular AC 300-004 Issue 03, Transport Canada, 2016. 15. Gray, D.H. and Williams, D.E., “Evaluation of Aircraft Landing Gear Ground Flotation Characteristics for Operation from Unsurfaced Soil Airfields,” Technical Report ASD-TR-68-34, Wright-Patterson Air Force Base, OH. 16. Digges, K.H. and Petersons, A.V., “Results of Studies to Improve Ground Flotation of Aircraft,” SAE Technical Paper 670560, 1967, https://doi.org/10.4271/670560. 17. Gibbesch, A., “High-Speed Tyre-Soil Interaction of Aircraft on Soft Runways,” NATO RTOMP-AVT-110, in RTO AVT Symposium on “Habitability of Combat and Transport Vehicles: Noise, Vibration and Motion”, Prague, Czech Republic, October 4–7, 2004. 18. “Airplane Requirements for Operations on Gravel Runways,” D6-45222-1, Boeing Commercial Airplane Company, 1980. 19. Performance Specification, “Sealing and Coating Compound, Corrosion Inhibitive,” MIL-PRF-81733D, Department of Defense, May 1998. 20. McLeod, N.W., “Some Applications of the Elastic Theory Approach to the Structural Design of Flexible Pavements,” Canadian Technical Asphalt Association, 1962. 21. Burmister, D.M., “The Theory of Stresses and Displacements in Layered Systems and Application to the Design of Airport Runways,” Proceedings, Highway Research Board 23 (1943): 126-149. 22. Burmister, D.M., “The General Theory of Stresses and Displacements in Layered Soil Systems,” Journal of Applied Physics 16, no. 2 (1945): 89-96, 16, no. 3: 126-127, and 16, no. 5: 296-302. 23. Tuleubekov, K. and Brill, D.R., “Correlation between Subgrade Reaction Modulus and CBR for Airport Pavement Subgrades,” in ASCE, Second Transportation & Development Congress 2014, Orlando, FL, June 8-11, 2014. 24. Shen, S. and Carpenter, S.H., “Development of an Asphalt Fatigue Model Based on Energy Principles,” Journal of the Association of Asphalt Paving Technologists 76 (2007): 525-573. 25. Gonzalez, C.R., Barker, W.R., and Bianchini, A., “Reformulation of the CBR Procedure,” EDC/ GSL TR-12-16, U.S. Army Engineer Research and Development Center, Vicksburg, MS. 26. Pereira, A.T., “Procedures for Development of CBR Design Curves,” Instruction Report S-77-1, U.S Army Engineer Waterways Experiment Station, Vicksburg, MS. 27. Brown, D.N. and Thompson, O.O., “Lateral Distribution of Aircraft Traffic,” Miscellaneous Paper S-73-56, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. 28. Pickett, G., Raville, M.E., Janes, W.C., and McCormick, F.J., “Deflections, Moments, and Reactive Pressures for Concrete Pavements,” Kansas State College Bulletin No. 65, October 1951. 29. DEF STAN 00-970 Part 1, Section 4, Leaflet 40, “Design of Undercarriage – General Requirements, Estimation of Equivalent Single Wheel Load for Multi-Wheel Undercarriage Units on Airfields with Rigid Pavements and Derivation of Load Classification Number and Load Classification Group,” Issue 14, 13 July 2015. 30. Packard, Robert G., Computer Program for Airport Pavement Design (SR029.02P), Portland Cement Association, 1967.

References

163

31. “Recommended Standard Data Format of Transport Airplane Characteristics for Airport Planning,” NAS3601, Aerospace Industries Association of America, Inc., Revision 6, July 15, 1994. 32. “Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns,” Advisory Circular 150/5220-22B, Federal Aviation Administration, September 27, 2012. 33. Abele, G., Ramseier, R.O., and Wuori, A.F., “Design Criteria for Snow Runways,” Technical Report 212, Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, NH, 1968. 34. “Air Force Design, Construction, Maintenance, and Evaluation of Snow and Ice Airfields in Antarctica,” FC 3-260-06F, United States Department of Defense, 2015. 35. White, G. and McCallum, A., “Review of Ice and Snow Runway Pavements,” Int. J. Pavement Res. Technol. 11, no. 3 (2017): 311–320, https://doi.org/10.1016/j.ijprt.2017.11.002. 36. “Ice Engineering,” EM 1110-2-1612, Department of the Army, US Army Corps of Engineers, Washington, DC, 2002. 37. “Ice Aerodrome Development – Guidelines and Recommended Practices,” Advisory Circular AC 301-002, Transport Canada, 2011. 38. McFadden, T.T. and Bennett, F.L., Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers (New York, Wiley, 1991). 39. Pogorelova, A.V., Kozin, V.M., and Matyushina, A.A., “Stress-Strain State of Ice Cover during Aircraft Takeoff and Landing,” Journal of Applied Mechanics and Technical Physics 56, no. 5 (2015): 920–926. 40. “Standards for Offshore Helicopter Landing Areas,” CAP 437, Safety Regulation Group, UK Civil Aviation Authority. 41. Heliport Manual, 3rd edn., Document 9261-AN/903, International Civil Aviation Organization, 1995. 42. “Helideck Structural Requirements,” Offshore Technology Report 2001/072, Health & Safety Executive, UK. 43. Schwartz, C.W., Witczak, M.W., and Leahy, R.B., “Structural Design Guidelines for Heliports,” DOT/FAA/PM-84/23, Federal Aviation Administration, 1984. 44. Military Specification, “Airplane Strength and Rigidity Ground Loads for Navy Acquired Airplanes,” MIL-A-8863C(AS), July 19, 1993. 45. Yager, T.J., “Runway Drainage Characteristics Related to Tire Friction Performance,” SAE Technical Paper 912156, 1991, https://doi.org/10.4271/912156. 46. Annex 14 to the Convention on International Civil Aviation, Aerodromes, Volume I, Aerodrome Design and Operations, 5th edn., International Civil Aviation Organization, July 2009. 47. Morris, G.J. and Hall, A.W., “Recent Studies of Runway Roughness,” NASA SP-83, in Conference on Aircraft Operating Problems, May 1965. 48. Walls, J.H., Houbolt, J.C., and Press, H., “Some Measurements and Power Spectra of Runway Roughness,” Technical Note 3305, National Advisory Committee for Aeronautics, November 1954. 49. The Boeing Company, “Runway Roughness Measurement, Quantification, and Application – The Boeing Method,” Document D6-81746.

164

References

50. “Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements,” E1926-08, ASTM International, 2015. 51. “Guidelines and Procedures for Measuring Airfield Pavement Roughness,” Advisory Circular 150/5380-9, Federal Aviation Administration, September 30, 2009. 52. “Taxi, Takeoff, and Landing Roll Design Loads,” Advisory Circular AC25.491-1, Federal Aviation Administration, October 2000. 53. Sapozhnikov, N. and Rollings, R., “Soviet Precast Prestressed Construction for Airfields,” in 2007 FAA Worldwide Airport Technology Transfer Conference, Atlantic City, NJ, April 2007. 54. DEF STAN 00-970 Part 1, Section 4, Leaflet 49, “Design of Undercarriages - Operation from Surfaces other than Smooth Hard Runways, Specification of Continuous Ground Unevenness,” Issue 14, UK Ministry of Defence, July 2015. 55. JSSG-2006, “Department of Defense Joint Service Specification Guide, Aircraft Structures,” October 30, 1998. 56. “Rapid Runway Repair Operations,” Air Force Pamphlet 10-219, Volume 4, 1 April 1997. 57. DEF STAN 00-970 Part 1 Section 4, Leaflet 52, Design of Undercarriages – Operation from Surfaces other than Smooth Hard Runways, The Damaged and Repaired Runway. 58. DEF STAN 00-970 Part 1 issue 14, Section 4, Leaflet 60, Ground Clearance, “Trampling of Aerodrome Arresting Gear Hook Cables.” 59. ASTM D2487‒06. 2006, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” ASTM International, West Conshohocken, PA, ASTM – American Society for Testing and Materials. 60. Boeing Document No. D6-24555, 1984-04-05—High Load Penetrometer Soil Strength Tester. 61. ASTM D6758-18, “Standard Test Method for Measuring Stiffness and Apparent Modulus of Soil and Soil-Aggregate In-Place by Electro-Mechanical Method,’ ASTM International, West Conshohocken, PA, 2018, www.astm.org. 62. Aerodrome Design Manual - Pavements, 2nd edn., Document 9157-AN/901, International Civil Aviation Organization, 1983. 63. “Standardized Method of Reporting Airport Pavement Strength - PCN,” Advisory Circular 150/5335-5C, Federal Aviation Administration, August 14, 2014. 64. Federal Aviation Administration, “Taxi, Takeoff, and Landing Roll Design Loads,” Advisory Circular AC25.491-1, Federal Aviation Administration, October 2000. 65. Design of Undercarriages - Operation from Surfaces other than Smooth Hard Runways Specification of Continuous Ground Unevenness, DEF STAN 00-970 PART 1/14, SECTION 4, Issue 14, Leaflet 49, UK Ministry of Defence, July 2015. 66. Tung, C.C., Penzien, J., and Horonjeff, R., The Effect of Runway Uneveness on the Dynamic Response of Supersonic Transports, NASA CR-199, National Aeronautics and Space Administration, 1964.

Index

expedient repair, 103 fiberglass mat repair cross section, 104 folded fiberglass repair mat, installation of, 105 generic repair, 106 initial mathematical evaluation, 106 military aircraft, 103 repair classes and dimensions, 106 repair compaction, with increasing traffic, 105 repair profile, 106 representative crater profile, 104

A

Advisory Group for Aerospace Research and Development (AGARD), 106 Aggregate airfield Boeing method for, 34 Airbus A319, blue ice runway in Antarctica, 73 Aircraft. See also Landing gear, aircraft carriers, 79 example ACN values for variety of, 121–129 Aircraft classification number (ACN), 5, 54–60 Aircraft classification rating (ACR), 5, 60–62 Aircraft landing gear. See Landing gear, aircraft Airfield Index, of soil strength, 9 Airports runway size and strength of 100 busiest, 111–119 ALR method, 51 Aluminum extrusion based mats, 64 AM-2 matting, installation of, 64 Amphibious warfare ships, 79–80 Antonov AN-74P, Arctic Ice Floe near the North Pole, 69 Arrestor cables, 107–108 Asphalt concrete taxiway, 91 ASTM D1196 test, for modulus of subgrade reaction, k, 11 B

Boeing bump method, 95–96 Boeing “High Load Penetrometer” test method, 6 Bomb damage repair, 103–107 AM-2 matting crater class E repair, 104 contractual “repair class,” 103

C

California Bearing Ratio (CBR), 4 Cessna business jets, 34 Cumulative damage factor (CDF), 38, 39 D

DC-3 Turbo conversion, blue ice runway in Antarctica, 73 DEF STAN 00-970 bumps and hollows, 100 leaflet 49 [65] (distances in m, elevations in mm), 100, 136–138 runway classes, 100 De Havilland Twin Otter, Sandy beach, 20 E

Engineered materials arresting systems (EMAS) main landing gear in, 68 PCASE evaluation module, results of, 68 Equivalent single wheel load (ESWL), 23, 43, 44, 54, 55 Erosion protection, painted, stippled sealant for, 35 F

FAA naming convention, 15 Federal Aviation Administration (FAA), 5 165

166

Index

Flexible pavements airfields, 4 F-86 Sabre, pierced steel planking, 63 G

“GeoGauge” tool, 9 Gravel deflector on 737-200, 35 Ground vehicle compatibility aircraft weight, 1 analysis methods, 3 California bearing ratio (CBR) airfield cone penetrometer, 9 Boeing “High Load Penetrometer” test method, 6 conversion between airfield index and, 10 D4429 method, 6 dynamic cone penetrometer, 9 electromechanical method, 9 freeze/thaw cycles, 6 laboratory CBR test, 5, 6 sliding weight shock penetrometer, 6, 9 unified soil classification system, 7–8 cohesionless soils, 4 cohesive soils, 3 “cone index,” 4 flotation analysis engineered materials arresting systems (EMAS), 67–69 helidecks and heliports, 75–77 membrane and mat surfaces, 62–65 naval vessels/aircraft carriers, 77–80 paved surfaces, 35–62 PCASE software for, 65–67 snow and ice runways, 69–75 unpaved surfaces, 17–35 ground contact pressure, 13–15 vs. tire inflation pressure, 15 incompatible surface, breach of, 2 landing gear arrangement nomenclature, 15–17 modulus of subgrade reaction, k, 10–11 nomenclature, 11–13 paved airfields, 4 H

Helicopter landing, on offshore platform, 76 Helideck spring-mass-damper system, 77 I

Ice runways, 71–75 Industry standard roughness profiles 1-cos roughness profile, 102

DEF STAN 00-970 bump profile, 100 bumps and hollows, 100 runway classes, 100 dimensions of obstacles high speed, 103 low speed, 102 freeze–thaw cycles, 99 precast pavement surface, at Nadym airport, 99 runway profiles, comparison of, 101 Russian runway profiles, 99 San Francisco 28R, 97 UK Ministry of Defence, 100 US Military runway roughness requirement, 101, 102 International Civil Aviation Organization, 81 International Roughness Index (IRI), 96 L

Landing gear, aircraft air cushion landing systems, xx on XC-8A, xxi airfield compatibility, xviii B-50, track main landing gear of, xxi caterpillar track designs, xx Convair XB-36 main wheel, xix operational environments, xviii pneumatic tires, xx retractable landing gear, xvii runway and taxiways, xix single tire per landing gear, xviii and system functions, xvii–xviii tracked systems, xix XB-36 main landing gear of, xx with tracked landing gears, xix Land military aircraft, 88 Layered elastic and finite element analysis Burmister approach, 37 multi-layered linear elastic representation, 37 Load Classification Number (LCN), 51 M

Maneuvers ICAO Airport Standards aerial view, of airport, 82 aerodrome reference code, 82 balanced field length, 81

Index

clearances, wheel to turn pad/taxiway edge, 85 codes, representative aircraft for, 83–84 minimum runway widths, 81, 84 minimum taxiway widths, 81 rapid exit taxiway, 86 taxiway widths, 84 taxiway widths and wheel, pavement edge diagram, 84, 85 turn pad layout, 86 wheelbase, track and wheel span, 82 required data aircraft turn radius, 87 land-based military aircraft, 88 rapid exit taxiway, 86 shipboard military aircraft, 88 typical turn maneuvers, composite of, 87 steering authority, 81 “Mechanistic-empirical” approach, 36 Messier Laboratoire test aircraft, xvii Micro/macrotexture asphalt concrete taxiway, 91 closed macrotexture, 90 coarse macrotexture, 90 dry runways, skid resistance, 90 high speed friction characteristics, 90 macrotexture classification, 92 open macrotexture, 90 optimum macrotexture, 91 porous friction course, 91 rainfall rate, to flood runway surface, 91, 92 rigid runways, 91 typical runway groove dimensions, 91 wet runways, low speed on, 90 Military aircraft turn maneuvers, 88 Minimum operating strip (MOS), 106–107 N

Nadym airport, precast pavement surface, 99 National Airport Pavement Test Facility (NAPTF), 41 P

Paved surfaces, ground compatibility (flotation) analysis ALIZE tool, 39 CDF, 38, 39

167

development of, 36 FAARFIELD tool, 39–42 finite element analyses, of rigid pavements, 38 flexible pavements, 35–36 flexible pavements-historic approach, 42–47 historical methods, 36 modern methods, 36 pavement design analysis flexible pavements-historic approach, 42–47 layered elastic and finite element analysis, 36–42 pavement strength reporting methods ACN/PCN, 54–60 ACR/PCR, 60–62 load classification number/load classification group method, 51–54 Ratio of Dissipated Energy Change (RDEC), 40 rigid pavements, 35 historic approach, 47–51 stress history, 38 Pavement classification number (PCN), 5, 54–60 Pavement classification rating (PCR), 5, 60–62 Pavement Computer Aided Structural Engineering (PCASE), 33, 65–67 ACN Curves for 747, 66 layer options, 67 traffic module, 67 vehicle edit module, 66 Polyurethane protective boots, 34 Power spectral density (PSD) approach, 93–95 soil and matted runways, roughness specification for, 109 unprepared runways, roughness specification for, 110 Precast pavement surface, at Nadym airport, 99 ProFAA roughness evaluation tool, 96 adjustments, 98 aircraft simulation, 98 San Francisco 28R values, 97 Q

Quarter-car model, 96

168

Index

roughness measurement techniques, 93 shock absorption characteristics, 92 short wavelength roughness, 96 unsurfaced runways, 108

R

Rammsonde penetrometer, 70, 72 Ratio of Dissipated Energy Change (RDEC), 40 Rigid pavements airfields, 4 Runway roughness profiles Bukhara airport (distances in m, elevations in mm), Russian profile “C” based on a survey of, 99, 154–160 DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm), 100, 136–138 Domodedovo airport (distances in m, elevations in mm), Russian profile “A” based on a survey of, 99, 139–147 Novosibirsk airport (distances in m, elevations in mm), Russian profile “B” survey of, 99, 148–153 San Francisco Runway 28R (10L) [64]—distances and elevations (in ft), 132–134 permissible elevation corrections, 135 S

Snow runways, 69–71 Soil and matted runways, 109 Surface texture and profile deck/helideck, 108 friction coefficient, 89 paved runways directional control and braking, friction for, 89 drainage behavior of, 89 large scale elevation changes, 89, 90 micro/macrotexture, 89–92 runway roughness/profile and obstacles airframe structural capability, 92 arrestor cables, 107–108 Boeing bump method, 95–96 bomb damage repair, 103–107 correction techniques, 93 ICAO Annex 14 acceptable runway variation, 93 industry standard roughness profiles, 97, 99–103 International Roughness Index (IRI), 96 power spectral density (PSD) approach, 93–95 ProFAA roughness evaluation tool, 96–97

T

“Tundra tires,” 18 U

Unpaved surfaces, ground compatibility (flotation) analysis alternative unpaved analysis methods, 33 CBR value, 18 gravel/aggregate airfields, 33–35 ground contact pressure, 18 light aircraft landing, on dirt runway, 18 light aircraft with large, low pressure (tundra) tires, 19 soil and grass, 18–19 typical allowable tire pressures for, 18 typical general aviation tire pressures, 19 unpaved analysis method ASD-TR-68-34 aggregate runway, nose gear criticality, 32 aircraft passes calculation, landing gear layout for, 29 allowable aircraft passes, example calculation of, 30–32 ASD-TR-68-34 calculation methodology, 26 Bogie configuration, 25 correction chart, for aircraft passes, 29 equivalent single wheel loadadjustment curve, 21, 22 ESWL and contact pressure, CBR for one pass as function of, 23 four wheel coaxial configuration, 26 main gear–single wheel load formula, 20 multi-wheel landing gears, 21, 22 nose landing gears, 20 polynomial expression, 22 single wheel load calculation, 20 twin wheel configuration, 24 wheel track and tire width, 28 Unprepared runways, 110 US Army software application PCASE, 33 W

Westergaard’s theory, for rigid pavement design, 36, 47

Key Principles for Landing Gear Design R. Kyle Schmidt

The author’s two volume treatise, The Design of Aircraft Landing, was the inspiration for this book. The Design of Aircraft Landing is a landmark work for the industry and utilizes over 1,000 pages to present a complete, in-depth study of each component that must be considered when designing an aircraft’s landing gear. While recognizing that not everyone may need the entire treatise, Airfield Compatibility: Key Principles for Landing Gear Design is one of three quick reference guides focusing on one key element of aircraft design and landing gear design. This volume centers on how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. R. Kyle Schmidt has over 25 years’ experience across three countries and has held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service.

RELATED RESOURCES BY R. KYLE SCHMIDT: The Design of Aircraft Landing Gear 978-0-7680-9942-3 Aircraft Tires: Key Principles for Landing Gear Design 978-1-4686-0463-4

Aircraft Wheels, Brakes, and Brake Controls: Key Principles for Landing Gear Design 978-1-4686-0469-6

Cover image used under license from Shutterstock.com

Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. Designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.), this book presents a specific element of landing gear design in an accessible way.

Airfield Compatibility: Key Principles for Landing Gear Design  | Schmidt

Airfield Compatibility

more related resources inside...

SAE INTERNATIONAL

ISBN: 978-1-4686-0466-5

Airfield Compatibility Key Principles for Landing Gear Design

R. Kyle Schmidt