244 34 918KB
Russian Pages 58 Year 2000
1
: Ы ( -
.
. ,
.
.-
. .
. (
,
.
(
. .
. .
);
-
)
. . 98
: : ISBN 5-87851-123-1
2. .-
:
, 2000. - 128 .:
.
. .
,
2
Ы
Ы
; .
.
Ы
Ы
, -
550200 210100 -
.
. 681.5 32.96
ISBN 5-87851-123-1
, 2000 . ., 2000
20-
2000
681.5 32.96 98
2
. ,
.
. -
, ,
, , .
. ,
;
. ,
,
,
, -
,
-
.
-
,
.
. ,
,
,
,
, .
, ,
. ,
-
-
,
210100 . -
, ,
, .
, ,
. -
. ( )
.
, (8÷16) Ы
1.
Ы
Ч
-
. .
,
-
, 1.1.
. . . -
,
,
,
-
, .
,
, ,
. ,
-
1.2.
.
,
-
.
( (
)
.
, ,
, -
(
,
) .
,
)
-
. -
, .
)
( [18].
-
3
, (
,
)
( (
-
),
,
. 1.1).
: 1)
-
2)
-
-
3) ) . 1.1. -
-
ϕ = f(x)
: ;
-
:
(
const); )
.
1.2).
( T = const, = const); ( A = const, T = const); , : ( , . . T, A = const, T = const,
: A = f(x) : = f(x) -
( : ω0 = f(x)
-
A = const,
-
=
=
const). ,
. ,
-
I. , -
II.
;
.
. 1.2.
k,
x x
*
=γ (
(
ω0 = 2π/ ), -
γ, 0 ≤ γ ≤ 1)
w(t). , -
.
. 1.2) 1) 2) 3)
(
.
:
: ; ; (
. .
) (
,
) ,
. , ω0 = 2π/ . -
1) 2) 3)
-
, ,
. ,
-
, . . ,
. .
4
T
,
,
.
-
x[nT] = x[n] = x(t)
. ,
=
k
A x
xA-
= const ,
-
t = nT,
,
,
.
-
. -
. , .
-
,
, . [5]: 0 1,
(1.96)
zi < 1
.
. z
.
,
, (
lim y [n, σ ] = const
. 1.13).
(1.92)
n→∞
,
-
. σ
lim y [n, σ ]
n→∞
σ = 0.
σ=0 (1.91), (1.92) .
,
(1.90),
σ≠0-
. 1.13. ,
,
a0y[n,σ] + a1y[n−1,σ] + ... + amy[n−m,σ] = 0,
.
-
. -
, (1.93)
.
А
-
.
,
. n y [n, σ ] = ∑ C z , m
i =1
zi -
Z
, .
m-
-
i i
(
. 1.2).
: (1.94)
1. 2
20
, pπ (
a0+a1>0, a0−a1>0 a0+a1+a2>0, a0−a1+a2>0, a0−a2>0 a0+a1+a2+a3>0, a0−a1+a2−a3>0, a0(a0−a2)−a3(a3−a1)>0, 3(a0+a3)−a1−a3>0
m=1 m=2 m=3
. .
(−1, j0)
), pz = e jωT.
,
-
m m ≤ 3.
А
. . 1.15.
. mπ,
ω
mD(e jωT)
, 0
π/T
. 1.15 -
z
-
∆ arg D (e jωT) = mπ , 0 ≤ ω ≤ π/T.
D (e jωT)
.
(1.97)
z
w(
e jωT w=
D(z) = a0zm + a1zm-1 + ... + am-1z + am , z = e jωT. . 1.14
. 1.16)
[5] z− 1 z+ 1
,
z=
1+ w 1− w
.
(1.98)
m = 3.
. 1.16. . 1.14. А
z .
, , (−1, j0 ).
W(e ) jωT
(1.98)
1+ w a0 1 − w
(1.95)
m
1+ w + a1 1 − w
m− 1
+.. .+ a
m
= 0,
(1.99)
21
~a w m + ~a w m − 1 +...+ ~a 0 1
zi
m
Y(z,σ)
z−1
= 0.
Y(z,σ) = Y0 + Y1 z−1 + Y2 z−2 + Y3 z−3 + ... .
(1.100)
(1.95), w ( . 1.16).
,
wi (i = 1, 2, ..., -
(1.100) , m)
.
t = (n+σ)T. , -
Y(z,σ) Y0, Y1, Y2, ... .
.
. ,
.
.
, :
1.8.
(z) = z-
,
,
, -
,
. Z, Y(z) =
[9, 15, 17, 18]. Zσ−1{Y(z,σ)}.
(1.102)
=
zy[n,σ] = (1.41), ,
y[n, σ ] = ∑ R esY (z, σ ) z n − 1 k
i =1
z=z
,
=
(1.101)
5.74 z − 7.69 z + 4.12 z−1 3
G(z)=z/(z−1).
(z)G(z) =
3.71 z − 1.52 z − z 3
2
5.74 z − 13.43 z + 11.81 z − 5.12 z+ 1 4
3
3.71 z
5.74 − 13.43 z
−1
−1
2
− 1.52 z
+ 11.81 z
−2
−2
−z
−3
− 5.12 z
ResY (z, σ ) z n − 1 = lim (z− z )Y (z, σ ) z n − 1 ,
r
ResY (z, σ ) z n − 1 =
i
i
−3
+z
z
−4 −4
−4
=
=
1. 3
i
1 d r−1 lim [(z− z ) r Y (z, σ ) z n − 1 ]. i (r − 1) ! z → z dz r − 1
×
z
. 1.3, .
. 1.17 z→z
.
2
= 0.64z-1+1.25z-2+1.42z-3+1.34z-4+1.2z-5+1.11z-6+1.08z-7+... .
i
Y(z,σ); i = 1, 2, ..., k.
zi -
3.71z 2 −1.52 z−1
t=nT 0 1T
y[nT] 0 0.64
22
2T 3T 4T 5T 6T 7T . .
Т
1.25 1.42 1.34 1.20 1.11 1.08 ...
,
.
,
,
-
,
,
, [13]. .
,
-
. ( g (1.73)
. 1.10) f
x,
-
,
(1.76),
zX(z,σ) = Xg(z,σ) + Xf(z,σ) =
= G(z, σ ) −
. 1.17. g[nT]
y[nT]
.
(z) m≥l
y[n] ≡ 0, f[n] ≡ 0
y[n]=
(1.103)
n < 0.
(1.105)
y[n] ≡ 0
g[n] ≡ 0
σ) Z {F (s) W (s)}. {W (s) F (s)} − 1W(z, + W(z)
xg(∞,σ) xf(∞,σ) -
n→∞
.
2
z-
: . -
z→1
z− 1 z
X(z, σ ) = x (∞, σ ) + x (∞, σ ), (1.106) g
f
; . ,
-
,
.
(1.104)
n < 0.
2
(1.37):
(1.106)
{
σ=0
} =
z− 1 G(z) z− 1 Z W2 (s) F (s) x( ∞) = lim × + × lim 1 + W(z) z 1 + W(z) z → 1 z z → 1 = x (∞) + x (∞). g
1.9.
Xf(z,σ) -
σ
t = nT.
0
(1.104)
1 + W(z)
:
m 1 l ∑ b i g[n − i] − ∑ a i y[n − i] ; n=0, 1, 2, ... a i = 0 i =1
G (z) + Z
x( ∞, σ ) = lim x[n, σ ]= lim
(1.42)
a0y[n]+a1y[n−1]+...+amy[n−m]=b0g[n]+b1g[n−1]+...+blg[n−l],
Xg(z,σ) -
W(z, σ )
(1.105)
f
(1.107)
23
g(t)
.
g(t) = g0 ×1(t)
f = 0. x ( ∞) = lim
z → 11 +
g
g
x[n] = c g[n] + c g ′[n] + 0
0
W(z)
c = i!
g T
z → 1 (z − 1) W(z)
g
1
i
.
2
(1.108) ,
-
di xg
dz i
(z)
z =1
i = 0, 1, 2, ..., k.
,
(1.109)
.
g t2 2!
c (k) g ′′[n]+... + k g [n], k! 2! ,
c
. x ( ∞ ) = lim
2
1
c0, c1, c2, ... . .
g(t) = g1×t
g(t) =
-
,
,
: c0 = c1 = ... = cr-1 = 0,
x g (∞) = lim
g 2T
z → 1 (z − 1)
2
.
sin[ωnT].
W(z)
r-
.
g(t) = gmsin(ωt)
2
ω g[nT] = gm
.
-
, ,
. W(z)
W (z) W(z) =
W1(z)
1
(z − 1)
z = 1,
z = 1.
xm =
jωT )×gm , xg(e
x[nT] = xm sin[ωnT+ψ],
ψ(ω,σ) = arg 1.6,
jωT ). xg(e
,
r
, r=0
, r=1W(1)→ ∞.
-
.
. . . ,
,
xg(∞) = 0,
x g (∞) =
gkT
-
r
.
,
k
-
kr.
y2 =
1π ∫
π
0
(e j ω T ) S* (ω ) d ω 2
g
(1.111)
24
x2 = (ejωT)
jωT ) xg(e
1π ∫
π
(e j ω T ) S* (ω ) d ω , 2
xg
(1.112)
g
RCRC-
0
-
:
, .
-
;
S* (ω ) -
[3, 4].
x
-
g
, u
.
К
-
.
,
. -
,
,
.
[13]. .
-
, . ,
.
[15].
,
,
, ,
, ,
, . [9]: ,
. .
, , -
,
,
-
. ,
,
, . . w [n] = wa(t)|t=nT.
, .
-
. ,
, . . W (s) = L[w (t)].
[5, 15]. , u [13].
-
x
(1.64)
-
-
W (z) = u[n] = ∑ w [n − i]x[i], k
i=0
k
W (s) -
. ,
. Wk(z) = Z{wk[n]}.
, , . .
(1.114) .
(1.114) [5].
(1.115)
(1.113)
k
wk[n] -
z− 1 1 W (s) }, Z{ × z s W (s)
.
δ-
25
, ,
W (z) =
-
,
K
=
U (z) X(z)
b +b z 0
1
1+ a z
−1
U(z)
-k
k
−1
+... + a z
1
W (s) = sL[h (t)],
+... + b z
-k
=
B(z) , 1 + A(z)
(1.117)
k
X(z) - z-
. .
h (t) -
.
A(z) = 0,
.
,
(1.117)
W(z) =
b z 1
m− 1
+b z
m− 2
2
z
+... + b
m
m
u[n] + ∑ a u[n − i] = ∑ b x[n − i], k
(1.116)
,
k
i=1
, mT;
-
i=0
i
-
h[n]
:
h[m].
u[n]= ∑ b x[n − i] − ∑ a u[n − i]. k
,
k
i=0
z ,
-
i=1
i
(1.119) [3]. 2k
,
-
. 1.18. .
W (s).
,
,
, -
.
.
( :
u[n]= ∑ b f[n − i];
-
k
[9]:
1)
,
i=0
-
i
f[n]= x[n] − ∑ a f[n − i],
.
k
; 2)
-
,
(1.115)
.
(1.119)
i
T.
.
(1.118)
i
,
, ,
-
. . -
i=1
f[n] -
.
i
. 1.19)
(1.119)
26 x[n]
b0 b1
1 Z-1
x[n]
k Z-1
bk
b1
b0
bk-1 u[n]
bk
Z-1
Z-1
1
k
ak
a1 ak-1 ak
bk-1
Z-1
Z-1
k
1
ak-1
u[n]
a1
. 1.20. :
-
[9].
. 1.18.
.
u[n]
b0
b1
bk-1
W (z) = k K
bk
1+ z z o1
1+ z z
−1
1
x[n]
f[n]
Z-1
Z-1
1
k
1+α z +α z 1
2
0
−1
1
−2
1
1+ z z
−1
.
(1.120)
k
0
-
. 1.21, ), -
, (
. 1.21, ).
(1.120) -
,
k
i =1
.
. 1.20)
[3]. .
.
W (z) = ∑ W (z) K ki
. 1.19.
(
×.. .×
, ak
ak-1
×
β + β z −1 + β z −2
, (
a1
−1
(1.117)
(1.121) .
27
y[n + m] + ∑ a y[n + m − i] = ∑ b u[n + m − i], m
xi[n]
Z-1
ui[n]
Z0i
Zi
i=1
i
i=0
(1.123)
i
,
β2
)
m
-
. 1.22.
β1
xj[n]
Z-1
β0
Z-1
α1
uj[n]
α0 )
. 1.21. -
: ;
-
,
[3, 13]. . 1.22.
1.10.
,
,
-
u[n]
-
[9]. my[n], m− 1
+... + b Y(z) b 0 z + b1 z m . (z) = = U(z) 1 z m + a z m − 1 +... + a m
1
, . . l < m,
b0 = , ..., = bm-l-1 = 0. (1.122)
(1.122)
m
xi[n] -
-
(i= 1, 2, ..., m), :
x 1 [n+ 1] = x 2 [n] + h 1 u[n]; x 2 [n+ 1] = x 3 [n] + h 2 u[n]; L (1.124) x m − 1 [n+ 1] = x m [n] + h m − 1 u[n]; x m (n+ 1) = − a m x 1 [n] − a m − 1 x 2 [n] − ... − a 1 x m [n] + h m u[n]; y[n] = x 1 [n] + h 0 u[n].
hi (i=0, 1, 2, ..., m) (1.124) -
(1.123)
:
h0 = b0; h1 = b1 − a1h0; h2 = b2 − a1h1 − a2h0;
28
.................. h i = b i − ∑ a j h i− j , i
i = 0, 1, 2, ..., m.
j=1
(1.124)
(1.125)
-
:
X(n+ 1) = AX(n) + BU(n); Y(n) = CX(n) + DU(n),
x 1 (n) x (n) X(n) = 2 M x (n) m m ×1 0 0 A= 0 ... − a m
: ; A,B,C,D -
-
m-1
.
xi[n]
0
...
0 0
1 0
... ...
...
...
...
−a
m− 1
m− 2
h 1 (n) h 2 (n) B= M h (n) m ×1 m
. ,
0 0 0
-
, -
...
. A
;
,
B ,
... − a
1 m × m
C ,
,
.
-
; . k (1.126),
A
.
r m×k,
, r×m.
;
, .
,
(1.126)
-
[9]
. ,
-
. ,
. 1.23.
. ,
. .
,
C = [1 0 0 ... 0 0 ]1 x m D = [h0]1 x 1 -
. 1.23. Z-1 -
;
1
−a
(1.126)
-
[zE − A]
(n) = Z−1{[zE − A]−1 z}.
(1.127) , .
,
29
X(n + 1) = ∑ n
i=0
(n − i) BU (i) +
(n + 1) X(0).
.
(1.128) ,
W(z) =
z− 1
z − 1.75 z+ 1.125
.
2
. (z) =
W(z) 1+ W(z)
=
-
z− 1
z − 0.75 z+ 0.125
)
,
2
y[n+2] − 0.75 y[n+1] + 0.125y[n] = u[n+1] − u[n]. (1.125)
(1.126)
1 1 0 A= ; B= ; −0.25 −0.125 0.75
= [1 0]; D = [0]. ) . 1.24. -
x [n+ 1]= x [n]+ u[n]; 1 2 x 2 [n+ 1]= −0.125 x1 [n]+ 0.75 x 2 [n] − 0.25 u[n]; y[n]= x [n]. 1
-
(z1 = 0.5; z2 = 0.25) (z) =
z − 0.75 z+ 0.125 2
=
A
z− 0.25
+
B
z− 0.5
=
3
z− 0.25
−
. 1.24, .
: q [n+ 1] = 0.25q [n]+ 3 u[n]; 1 1 q 2 [n+ 1] = 0.5q 2 [n] − 2 u[n]; y[n] = q [n]+ q [n], 1 2
. z− 1
-
,
. 1.24, -
,
: ;
2
z− 0.5
.
0.25 0 A = ; n 0 0.5
3 B = ; n −2
n=
[1 1];
Dn = [0].
. .
30
Ы
А
1
1.
. ?
2. . -
3.
.
-
. 4. . ? -
5. ? 6. ? .
7. 8. 9.
? ? .
-
. .
10. .
31
. . Ы
2.
Ы
,
Ч
. (
, ),
-
. .
2.1.
. ,
, ,
,
-
, ,
. ,
,
-
. 2.2.
-
, . ,
,
.
-
. , ,
. 2.2. -
, .
.
, .
,
. ,
, ,
,
.
. 2.1. -
),
. 2.1.
: ;
-
. 2.2, .
, (
(
)
)
. 2.2, ) ,
( 2.2,
. 2.2, ) ) − .
. ,
(
. 2.2, ) − .
-
( (
, ,
: ;
. 2.3.
(
. -
32
. 2.3. -
;
-
: ;
-
; -
2.3, ) − , .
(
. 2.3, )
, ,
( .
(
, . . 2.4.
.
. 2.3, ) -
. 2.3, )
−
(
-
. 2.4. -
; (
,
( , . ,
: ; -
. 2.4, ) . 2.3, ) − ( . 2.3, ) −
-
. 2.4
.
, . -
. . , .
,
,
33
. ,
-
-
,
, ,
.
.
. .
, ,
-
.
-
, [10].
.
1. ;
-
.
2.2.
2. ,
. “
“
”,
”, “
. .
.
”.
, “
”,
)
( .
“
( ”,
“
”,
)
)
, ,
,
. ( -
xi (i = 1, 2, ... , n)
.
g = g0 n-
f = f0
3. (
-
),
. .
-
:
. 1)
i = 1, 2, ... , n,
Fi -
(2.1)
, F1 = F2 = ... = Fn = 0
; 2) 3)
,
:
d xi = Fi (x1, x2,..., xn ) dt
. 4.
.
-
x1 = x2 = ... = xn = 0,
(2.2)
; .
. ,
.
.
. -
V
,
.
, ,
,
,
. . ,
, . .
-
, ,
.
.
V
.
-
V
,
,
, . V
,
.
34
1.
.
(2.1)
V
, V = V(x1, x2, ..., xn ),
(2.3)
, . .
x1 = x2 = ... = xn = 0, x1, x2, ..., xn .
, (2.1)
,
. 2.
(2.3)
, W
V
d V = n ∂ V × dxi . ∑ dt ∂ xi dt i=1
, , (2.1),
(
. 2.1)
-
(2.5) y = F(σ) , (
V,
(
V,
-
,
[2]:
-
nV(x1, x2, ..., xn ), W(x1, x2, ..., xn ), ,
(g = 0)
-
dx n i = ∑ a x + b y ij j i dt j=1 y = F (σ ),
( V,
-
W . [2]:
(2.1) W(x1, x2, ..., xn)
n,
V(x1, x2, ..., xn) -
V ,
,
,
i = 1,2,..., n;
σ = ∑ c x ; n
k =1
k
k
aij, bi, ck -
.
, .
. 2.5.
.
;
)(
(2.6)
W, x1 = x2 = ... = xn = 0.
(2.1)
)
2.5).
d V = W (x , x ,..., x ), 1 2 n dt
W,
-
.
,
),
-
.
(2.4)
dxi (i = 1, 2, ... , n) dt d V = n ∂ V F (x , x ,..., x ). ∑ n dt ∂ xi i 1 2 i=1
(2.2)
, ,
. (2.7)
. V
(2.7)
35
∂V n W= ∑ [ ∑ a ij x j + b i F(σ )] . i = 1∂ x i
. . 2.6)
n
(
(2.8)
j=1
ax12 + bx22 = 1.
. . L(x)
F(σ) σ
V = L(x) + ∫ F (σ ) d σ ,
-
(2.9)
0
L(x) = ∑ α i x 2i . i=1 n
, ,
. 2.6.
2.3. Ч
:
0≤ k-
F (σ )
σ
.
≤ k; F (0) = 0,
. .
. .
(2.10)
, (
.
,
dx1 dt dx 2 α, β, , b -
dt
= −(x 2 + α
y = F(x), ,
dV dt
= 2α x
dx 1
dt
1
y = F(x) arctg k ( . 2.7), . .
W0
(2.12)
y
+ 2β x
dx 2
2
x
=
dt
= −2(1 − ax12 − bx22)( αx12 + βx22) . bx22 )
, x
0 ≤ F(x) ≤ kx.
= −2αx1 (x1 − βx2 )(1 − ax12 − bx22) −2βx2 (x2 + αx1 )(1 − ax12 − bx22) =
2
(2.11) -
W (s). bx 22 ) ,
.
W=
-
,
2 V = αx1 + βx22 .
.
.
:
= −(x1 − β x 2 )(1 − ax12 − bx 22 ) ; x1 )(1 − ax12 −
k . 2.5)
2
ax1 +
bx22
НЭ
y = F( x )
x
)
) . 2.7.
) < 1.
arctg k
y
: ; )
36
. .
[2]:
U*(ω) −
ω≥0
q,
V*(ω) +
T
1
> 0,
1
=0
(2.16)
k
0
Re[(1+ jωq)W (jω)] +
W*(jω).
(2.13)
, [−1/k, j0]
,
k
kW (jω) .
q
1/q.
;
. .
-
[2]:
W*(jω), (−
.
1
W*(jω)
, j0),
.
k
, Im W (jω) → −∞ Re W (jω) → −∞
ω → 0,
.
ω → 0,
Im W (jω) < 0
. 2.8.
ω.
,
-
, W*(jω),
)
:
)
. 2.8. U * (jω ) = Re W * (jω ) = Re W (jω ), * * V (jω ) = Im W (j ω ) = ω T0 Im W (j ω ),
T0 = 1 -
;
k
ω ≥ 0. ,
(2.13)
T
0
V*(ω) +
. 2.8, .
(2.14), q
, . .
, (2.12),
= Re W (jω) − ωq Im W (jω)] +
U*(ω) −
-
. 2.8,
(2.13)
1
:
-
(2.14)
.
Re[(1+ jωq)W (jω)] +
. .
-
1
>0
,
1
. . W*(jω),
k
. .
0≤
(2.15)
F (x) x
-
k
≤k
(−
1
)
-
k
W*(jω)
,
k
.
, .
, q,
, (2.15)
,
-
37
.
.
arctg k (
,
,
. 2.7, )
.
k > 0. -
, :
. k → ∞.
(2.13)
2.4.
. .
.
k ,
W (s) =
10
s(s + 1)
-
. .
, .
.
, , . .
. W
(j ω ) =
10
j ω (j ω + 1)
W (j ω ) = − *
=−
10
ω2 +1
ω +1 , 2
10
−j
ω
−j
ω (ω 2
+ 1)
+1
-
.
,
(
. 2.1)
, ω.
10 2
.
К 10
( ω
∞(
0
.
y = F(x),
2.9). ω
,
. 2.9.
a 1,
-
,
W*(jω)
.
(2.18)
(2.19)
.
k
ψ = ωt,
;
-
[0, −j0].
(2.17)
y 1 = a 1 sin(ψ + ψ 1),
ψ 1-
. 2.10),
a, . .
x = a sin ψ,
W*(jω) [−10, −j10] ,
,
38
-
x 2 /
,
a
y
q
q′ -
.
,
t x
y
. a1
ψ
ω
,
y
a
t
q
,
1
y
q′ .
(2.21), -
,
-
.
1
. 2.10. ω
a
-
[7, 17]. q(a, ω) q′(a, ω) . q(a)
,
q′(a)
a (2.17)
-
, q′(a) = 0.
. (2.21)
-
F(x)
,
s
jω (s = jω),
-
(2.18)
y 1 = b1F sinψ + a1F cosψ, ,
b1F, a1F , b 1F =
W (jω, a) = q + jq′ = A (ω, a) e jψ (ω, a),
(2.20) -
-
:
π
1
2π
∫0 F ( a sin ψ
) sin ψ d ψ ,
a 1F =
π
1
2π
∫0 F ( a sin ψ
(2.22)
A (ω, a) = mod W (jω, a) =
[q( a, ω )]2 + [q ′( a, ω )]2 ;
ψ (ω, a) = arg W (jω, A) = arctg[q′(a, ω)/q(a, ω)].
) cos ψ d ψ .
px = aω cos ψ,
(2.19) (2.18)
p = d/dt,
, . .
a 1 = a×A (ω, a); ψ 1 = ψ (ω, a).
y 1 = [q + q ′
p
ω
] x,
(2.21)
И
-
.
q = b1F/a, q′ = a1F/a.
. ,
ω0
-
a0.
39
(
W
(s) =
B(s) A(s)
=
. 2.5), b 0 s + b 1s m
a 0 s + a 1s n
m− 1 n− 1
+ ... + b m
+ ... + a n
Re D(jω, a) = X(ω, a); Im D(jω, a) = Y(ω, a),
(2.23)
X(ω, a) + jY(ω, a) = 0.
W (jω, a) = q(ω, a) + jq′(ω, a) = A (ω, a) e jψ (ω, a).
p
ω
]}x = 0.
X(ω 0 , a0 ) = 0; Y(ω , a ) = 0. 0 0
: (2.29)
(2.29)
(2.25)
,
x = a0 sin ω0t
X(ω 0 , a0 , k) = 0; Y(ω , a , k) = 0. 0 0
. ω = ω0
,
a = a0
A(p) + B(p)×[q(ω, a) + q ′(ω , a) λi+1 = −jω0.
k, .
p
ω
]=0
.
(2.26)
, -
-
[−1, j0].
.
-
, . . W (jω, a) = −1.
jω
D(jω, a) = A(jω) + B(jω)×[q(ω, a) + jq′(ω, a)].
(2.31) -
(2.27)
, W (jω, a) = W (jω)×W (jω, a).
D(jω, a) = 0, .
(2.30)
a0 = f(k), ω0 = f(k)
. -
.
p
, . .
:
,
А
(2.29)
k
,
λi = jω0 .
k -
,
.
,
-
,
-
{A(p) + B(p)×[q(ω, a) + q ′(ω , a)
(2.28)
,
(2.24)
(2.21),
ω0
a0
-
(2.28)
(2.32) -
(2.31)
W (jω) = −
1
.
mod W (jω)W (jω, a) = 1; arg W (jω)W (jω, a) = − (2k+1)π,
(2.33)
W ( a)
(2.33)
2.11).
L (ω) + L (ω, a) = 0; ψ (ω) + ψ (ω, a) = − (2k+1)π,
W (jω) ( ,
. (2.34)
ω4
(ω 0,α 0) α4
1 − W (a )
α5
Im
α1
ω0
ω=0 Re ω1
a0 + ∆a
.
a = a0 + ∆a
a = a0 − ∆a,
a0 − ∆a
.
∆a > 0 -
ω = ω0 -
.
,
ω0 ,
ψ (a),
,
-
− W −1 ( a) ,
,
L (ω) = − L (a); ψ (ω) = − (2k+1)π,
, a0−∆a. . 2.11 ,
-
,
a3 < a0
0 ( ) ( ψ (ω) , L (ω)≥−L (ω0,a0+∆a), L (ω)≥−L (ω0,a0−∆a).
a = a0
,
,
-
a01, a02
−L (ω02, a)
−L (ω01, a),
−1800.
a03
(2.37)
−L (ω03, a).
ψ (ω) ψ (ω)
ψ (ω)
−1800,
ω03
−
ω01
ω = ω03 ,
,
L (ω)≥−L (ω03,a03−∆a),
,
. 2.12 . ω01, ω02 ω03, ψ (ω)
−π
)
L (ω)≥−L (ω02,a02+∆a), −1800. a = a03 L (ω)≥−L (ω03,a03+∆a),
41
−1800.
a03, -
a01. .
, W (s) =
L, L ( )
− L (a )
-
k , s(T1s + 1)(T2 s+ 1)
k=200 c-1; T1=1.5 c; T2=0.015 c, (
Ψ,
,
0 03
01
0
02
02
. 2.4, ) .
=10 , b=2 . [7]
-1
q(a) =
01
,
03
µ = a/b.
-1
-180
( )
. 2.12.
1,
ω = ω01 a = a01 L (ω)≥−L (ω01,a01+∆a), −1800, 2, ψ (ω) a = a02
= ω02
. 2.12, ,
ψ (ω) L (ω)≥−L (ω01,a01−∆a), −1800. ,
4 cb 2 π b a2
q(µ ) =
2
,
a ≥ b, q′(a) = 0.
4c b 1− 2 πa a
q(a) = 1
:
2
k =
.
µ= ω ,
k
µ
4c = 6. 4 πb
2
-
a2 −1. b2
µ2 −1, ;
a b
. k
-
q( µ ) =
µ
1 2
µ 2 − 1 , q′(µ) = 0 -
µ
− L (µ ) = 20 lg
µ → 1,
.
,
(
+20 / . 2.13).
,
L,
L
, L = 0, µ = 1
− L (µ)
( ) -20
60 -40
+20
40
Ψ,
20
180
0
90
-20
0
0,1
0,1
µ1
1 µ2
10
ω0 1
-90
100
,
−1
-60
10
Ψ (
-180
100
,
−1
)
. 2.13.
W (s) =
ψ (ω).
. 2.13
−L (µ).
2
µ2 −1 µ >> 1 −L (µ) = 20 lg µ.
−L (µ) → ∞;
µ1 = 29
ω0 = 4.3 c-1 ψ (ω) −1800. µ2 = 1.08
k k s(T1s + 1)(T2 s+ 1)
L (ω), −L (µ)
ω0 = 4.3 c-1
µ1
42
L (ω) ,
µ2 .
a0 = b×µ1 = = 58 .
-
43
,
-
, k k W (s) = s(T1s + 1)(T2 s+ 1)
ψ (ω).
−L (µ).
ω0 = 4.3 c-1 ψ (ω) −1800. µ2 = 1.08 µ1
ω0 = 4.3 c
,
.
L (ω), −L (µ)
. 2.13
µ1 = 29
.
М
.
L (ω) ,
µ2
, .
,
“
”
-
-
, -
, dy d t = f (x, y); dx = y, dt
2.5.
. [1]. ,
x, y f(x, y) -
, .
. (2.39)
,
, (n-1)
,
,
(2.39)
;
n-
.
, . .
a0 = b×µ1 = = 58 .
,
-
,
.
-1
n-
-
-
-
,
-
t: dy f (x, y) . = dx y
(2.40)
y = F(x)
(2.41)
. ,
. .
,
. ;
(x, y). -
y0)
.
(x0, -
. -
.
.
(2.40): 1)
f(x, y)
-
44
, ,
. 2.14.
-
,
.
,
,
-
; 2)
y>0
dx/dt>0
x
,
dx d2x + a1 + a 2x = 0 . dt dt 2
t . . y=0, f(x, y)≠0 (
; 3)
-
,
y=
),
dx/dt,
. (2.40)
,
dx = y; dt dy = − a1y− a 2 x , dt
, [2, 5, 10]. , i,
dy/dx=ci .
,
(2.40) f (x, y) = ci , y
dy x = − a1− a 2 . dx y
y = ϕ(x, ci ).
y = F(x)
i
,
t,
, (
, . 2.14). arctg
i
.
-
p2 + a1p + a2
(x, y). , = 0,
.
. 2.14 ,
.
y
-
c0 y0
1 1. a1=0, a2>0
c1
A
c2
2
x
Im Re
c3
3
y t
x -
x0
x
45
2. a12>4a2, a1>0, a2>0
.
y
x
Im
x
Re
.
t
, ,
-
,
-
. . 2.15, .
,
. , 1
2
.
3
3. a24a2, a10
x
Im
. 2.15.
y x
;
-
;
-
Re
t
:
-
-
, (
(
. 2.15, ),
. 2.15, ).
-
, .
. (
.
. 2.15, ).
, ,
46
.
. 1.
. ,
(
. 2.4, )
F(x) = csign(x).
,
(2.44) -
.
dy
.
dx
=−
1 T
. :
(x, y) )
(
. -
,
W
kT-
(s) =
s(T s + 1)
c0 -
.
x
y = dx/dt.
x
dt
+
dx(t) dt
+ kF (x) = 0 ,
(2.43)
dx
=−
T
−
=−
1 T
−
kc Ty
(2.46)
.
(2.47) .
k T
×
(2.42)
y
[2]
=−
1 T
+
kc Ty
,
x = −kcT lny − kc − Ty + c0,
(2.48)
(2.49) y
(2.43)
-
F (x)
y=
x < 0
dx
, 1
-
(2.45) dy
1 k dy d t = − y − F (x); T T dx = y. dt
dy
,
.
,
2
x = 0. . 2.16, )
,
−kc.
y = F(x).
-
d x(t)
(2.45)
.
c0
,
T
y
x = kcT lny + kc − Ty + c0,
,
;
2
c sign(x)
[2]
-
k
T
×
x>0
dx
. 2.1),
k
.
dy
.
−
(
.
(
-
,
(2.44) .
= kc
. . 2.16, (x0, 0).
47 y
0 F(x) = + c −c
А
y
у
kc x0
x
x
-b С
b
x = −b (
0
-kc
(
− b ≤ x ≤ + b, x > + b,
x < − b.
AB ,
CD).
. 2.17, ) CD
AB (
D
x = +b -
. 2.17, ). CD
AB −
(2.46), )
(2.48).
)
. 2.16. ;
( + c F(x) = − c
+ c − c
F(x) =
. 2.16, );
x > + b,
. 2.4, )
x < + b,
x < − b,
dx < 0. dt
x > − b,
x = −b (
y < 0, ABCD
(
dx
, . 2.16,
1 T
1
,
(2.50)
x+ c 0 ,
(2.51)
T
y
y
C
A
C
A
-
-
, . . .
-
-1/T.
x = +b, y>0 CD). ( . 2.16, ) -
−b
.
. yM
=−
y= −
,
-
(2.44) dy
− (2.48). . 2.16, )
ABCD (2.46),
,
-
dx > 0; dt
. 2.17, )
−b ≤ x ≤ +b,
.
-
2.
AB , .
(
:
-
(
,
−b
x
b
x0
x
b
x0
a; -
. 3.
(
. 2.4, )
B
-
D
B
D
Л )
. 2.17.
)
:
48
-
;
–
Y
. 2.17, (x0, 0). ,
. ( . 2.3, ) k x − b ≤ x ≤ + b, F(x) = + c x > + b, −c x < − b.
4.
0
AB
CD (
-
−b ≤ x ≤ +b,
.
,
dx
М
(x0, 0) x1, x2
=−
1 T
−
kk T
×
-
. x0i
x
.
-
0X, xi
(2.52)
.
y
. 2.17, (x0, 0)
-
. .
dy
X
x0
0X. 0X
(2.44)
x1
. 2.18.
. 2.17, ).
,
x2
xi = f(x0i)
. (
-
)
(2.53)
-
[10].
.
,
,
xi
, (
,
0X
y
-
. 2.18). x
1 2
А
x0i 1
x01
x02 2
x03
49
. 2.19.
(
450
. 2.19) ,
xi = x0i, , . .
0X
xi =
. f(x0i)
xi = x0i (
A
B)
.
, ,
,
.
,
, x0
, ,
. 2.19. . 2.19 A)
( ,
, , (x0, y0), ,
(
B)
.
,
.
-
50
.
xi = f(x0i)
xi = x0i (
A
B)
-
. ,
,
,
. ,
, x0
-
, ,
. 2.19. . 2.19 A)
(
, , (x0, y0), ,
,
(
B)
.
,
. . 2.20.
:
-c
2.6.
;
.
[10]:
,
; . , .
К
(
щ
W
-
kT-
. 2.20, , (s) =
k
s(Ts + 1)
,
; F(σ);
, -
.
. 2.20, ) ( . 2.20, ).
-c
-
, W (s) = (T s + 1), T -
.
.
, ,
W
. 2.20, , W (s) = W (s) ×W (s) . 2.20, , W (s) = W (s) + W
(s) =
k(T s + 1) s(Ts + 1)
( . 2.20, ) (g = 0) σ
(s).
.
(Tp2 + p)σ + k(T p + 1)F(σ) = 0, ,
σ = −(T p + 1)x,
(2.54) (2.54)
p=d/dt.
-
(2.55)
(2.56)
51
x T
d 2 x(t) dt
2
+
dx(t) dt
− kF (σ ) = 0 .
(2.57) -
x (2.57)
Toc y + x = b T y + x = − b oc
y = dx/dt
1 k dy dt = − y + F(σ ); T T dx = y, dt
x= ±b
y=−
(x − b);
1 T
y=−
oc
1 T
(2.63)
(x + b).
oc
, ,
α = arctg 1 . Toc
(2.58)
(2.64)
. 2.21, (x0, 0).
dy dx
=−
1 T
+
k T
×
F (σ ) y
, ,
(2.61)
(2.59)
.
(2.62),
,
. (2.60),
-
,
σ≤ b
2.3, ),
(
T .
.
, ,
F(σ) = k σ = − k (T p + 1)x ,
, dy dx
=−
1 + kk T T
−
F(σ) = ±c, (2.46)
(2.48)
kk T
×
x
, (T = 0)
α = 900. .
(2.60)
, . T ;
y
y
y
C
A
A′
(2.59)
C
A
C′
: dy dx dy dx
=− =−
1 T 1 T
− +
kc Ty kc Ty
σ < −b
(T p + 1)x > +b;
σ > +b
(T p + 1)x < −b.
(2.61)
b
−b
x0
b
−b
x
x0
′
x
D′
(2.62)
B
B′
D B
D
Л
σ≤ b
a)
(2.56), :
)
. 2.21. -
: ;
,
-
52
, ,
-
.
.
T s
-
α
(2.63); 2.21,
(2.64). (
. . 2.4, )
(x0, 0).
. 2.22.
. , α′.
F(σ)
T
. 2.4, ,
,
,
, F-1(σ)
W
W (s) = 1 + k ,
(2.65)
σ = −(1 + k )x.
(2.66)
-
(s) (
. 2.23).
: k oc x + x = b k x + x = − b oc
x=
b
1+ k
x=−
. 2.23.
;
(2.67)
oc
b
1+ k
,
. oc
,
-
,
,
, -
К
. .
,
T = 2π/ω (
g(t) u(t) ( . 2.24). ( . 2.24, , ) g(t) u(t), ω g(t) . 2.24, ), . . x(t) = g(t) + u(t),
. F(σ) 1
(σ).
-
,
.
.
. 2.22
F-
ω
F1(g)
y = F(x) = F[g(t) + u(t)] = F1(g) + F2(u).
F(x) (2.68) , F2(u),
(2.69)
53
,
A, -
.
F1 [g(t)] ≈
ω 2π
t+ π /ω
.
∫ F [g(t) + u(t)]dt .
F1(g)
(2.70)
t −π /ω
-
,
k A. y (2.69)
ω
. g = const
(2.70)
u(t)
-
,
,
,
F2(u)
-
-
,
(
F2(u) . 2.24, )
-
.
. W(s) = k W (s).
ω
,
(2.72)
g(t) < A (
. 2.24, )
-
u(t), ,
. u(t)
.
2.7.
, . 2.24.
-
:
-
;
-
ω
; (2.70)
, T.
. , g(t)
-
. 2.24,
ω
F1(g) u(t)
±A.
. .
A. g(t),
-
-
, ,
-
,
[10]. , x0 ≠ 0
. 2.20, , k
=
C
A
.
(2.71) AB
C.
y0 = 0. (x0, 0) (
. 2.25), 1 -
54
, 2
D.
,
D
. -
, 1.
(kp→∞).
-
,
, 2
, . . -
, ,
-
,
,
. 2.20, ,
. ,
,
D,
1
2
-
(s) =
,
k
0. . 2.25, 2
AB ( (x02, 0) D
1
→ ∞ 1 + k p W (s) Woc (s)
p
,
,
x01 (
M0
C M0 x01 x0
x03
x02
. 2.25)
-
2
,
. , . Toc
M0 M1 0 M ′ M ′ ,
1
1
-
;
0
, D
. -
M′0 0
, x
,
.
-
.
M1′
.
, .
: ,
B
-
,
. 2.25.
. ,
,
,
, 2.26.
. .
-
,
M1
(2.73)
M1
y
2
1 . Toc s + 1
-
. A
Woc (s)
=
,
-
AB .
1
.
. (x03, 0)
=
,
,
D).
k p W (s)
lim
-
.
55
,
y
.
A
, .
-
,
x
. [2, 9, 10],
-
B
. :
. 2.26.
:
;
AB -
,
.
-
, .
. 2.27 .
y = F(x)
(2.74)
y = k×x,
(2.75) .
(2.75) y = k0 mx + k11 xo, xo -
. k0
. 2.27. -
, ,
.
(2.76)
k11
,
my = k0 mx = my ; σ 2 = k 2 σ 2 y
mx, my , my, σ 2 , σ 2 , σ 2 x
y
11
x
=σ
2
y
,
(2.77)
-
y
. (2.77)
,
,
-
2.8.
, ,
-
, ,
,
-
,
,
-
,
-
k
0
=
m
y
m
x
;
(2.78)
56
k
k11 F(x). k0
=±
11
σ
σ
;
y
(2.79)
,
k11
k
-
. m y = ∫ F (x)ω (x) dx ;
ω(x) -
y
1
=
k +k 11
12
2
(2.87)
.
:
∞
σ
.
:
x
-
2
-
k12
−∞ ∞
.
= ∫ F (x)ω (x) dx , −∞
-
,
(2.80)
2
, .
(2.81)
-
, .
k0
k1
. ,
-
, ,
.
-
. ,
,
(2.74)
(y − y ) 2 = k 2 m 2 + k 2 σ 2 − 2 k m m 0
x
12
x
.
(2.76)
0
x
y
−2k
12
(xo y ) + y2
[17].
(2.82)
Ы
. k0
k12 ,
А
2
1.
2 k 0 m 2x − 2 m x m y = 0;
(2.83)
2 k 12 σ x2 − 2(x o y ) = 0.
(2.84)
,
.
.
2.
, ?
3. 4.
. -
-
. .
.
5. k
k 12 =
(x o y )
σ x2
=
0
R xy (0) R x (0)
=
m
y
m
(2.85)
;
x
1 ∞ = ∫ (x − m x ) F(x)ω (x) dx .
σ x2
−∞
(2.86)
?
6. 7. 8. 9.
. ? ? ? ?
10.
,
k0 ,
?
?
57
13. Ч
. . .. . .-
14. ,
-
.:
, 1989. - 304 .
.:
, 1979. - 256 . /
15.
.
. .
.-
.:
-
, 1973. - 336 .
.
.
,
, , .
16.
: . . .
17.
. 2-
.-
. . . - .: . .
18.
.:
.
2-
/
, 1986. , 1989. - 752 . .-
.:
, 1963.
- 968 . 19. 20.
1.
. .,
. . MATLAB. -
. . . . 1980. - 412 .
.-
.: . - .:
, 1999. - 467
.:
. 2. .-
.:
3.
. ., . . , 1975. - 768 . . .
.-
.:
, 1976. -
576 . 4. 5.
. ., . - .: . .
6.
. .,
. . , 1987. - 320 .
. .
.. ., . - .:
. . 1978. - 609 . 8. . ., . .
.:
, 1981. - 304 . . .
.-
-
. . . . , 1973. - 507 . 11. . .,
-
, 1989. - 284 . . - .:
7.
9. 10.
.,
. ., .
,
-
,
, .-
. .,
.:
,
. ., .
.
, 1998. - 172 . , 1990. - 335 . . - .: . . . -
. ., -
,
.:
. .
2000. - 549 . 12.
. . , 1986. - 616 .
.
-
. -
.:
, 1974. - 576 . ,
58
2. . ........................................... 3 . . 1.
........ 4
1.1. 1.2. 1.3.
..................................... 4 .......... 5 ............................................. 9
1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5. 1.6. 1.7. 1.8. 1.9. 1.10.
................................. .......... ..................... .......... .............. ...
2.
30 34 41 46 49 60
. . . . . . . 68
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.
. .
. . . . . . . 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 . . . . . . . . . . . . . . . . . . . . . . . . 78 . . . . . . 83 . . . . . . . . . . . . . . . . . . . . . . . 95 . . . . . . . . . . . . . . . . . . . . . . . 109 . . . . . . . . . . . . . 118 . 122
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
№ 020717 60 × 84 1/16
2.02.1998 12.10.2000 .
. . . 8,0 35 . ________________________________________________ . , . , 15