Металлорежущие станки: Сборник лабораторных работ для студентов специальности 1201 всех форм обучения: - В 2 ч. Ч.2

Методические указания по выполнению лабораторных работ составлены в соответствии с Государственным образовательным станд

271 50 3MB

Russian Pages 50 Year 2003

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Металлорежущие станки: Сборник лабораторных работ для студентов специальности 1201 всех форм обучения: - В 2 ч. Ч.2

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

А

С

и

ЩИ Ча

У

я

ь2

х

А

И

Щ

. . . .

2003 .

: ,

621. 9. 06 (076)

34.63 – 5 7 54 :

1201 . .

:-

.–

, 2003. –

2 .

.2 /

.

. .

,

. 657800 – «

«

»

120200 « «

120100 »

»,

12.11.2001 .

-

, .

.

.

,

«

»

. . –

©

, 2003

3

1. №1

2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7.

3. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 4. 4.1. 4.2. 5. 5.1. 5.2.

6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7.

…………………………..4

…………………4 …………………………………………………………………………………..4 ………………….5 ………………………………………………………….6 ………………………………………… 7 ……………………………………………….7 ( . . 2.4 . 2.1)……………12 ……………………………………………13 ………………………………………………………………………14 ………………………………………………………………….14 №2 . F - 6…………………………………………………………………………...15 …………………………………………………………………………………15 ………………………………………………………...15 ………………………………………….15 ………………………………………………16 ……………………………………………………………..16 ……………………………20 ………………………………………..31 ………………………………………………………………………………31 ………..33. ……………………………………………….33 ……………………………………………..35 ……………………………………………………………….36 ………………………………………………………………………36. …………………………………………………………………...36 №3 . 12 - 25 …………………………….37. …………………………………………………………………………………37 ………………………………………………………………37 …………………………………………………………37 ……………………………………………………38 ……………………………………………..39 …………………………………………………………….44. ………………………………………………………46 ………………………………………………………………………47 …………….…………………………………………………….47 ……………………………………………………………49

4

1.

,

,

-

. : «

»;

; . : -

,

,

; ; ,

,

; -

;

-

; . :

-

; ; ; ; ; . №1

2. Щ 2.1.

.

5

2.2.

I(

-

. 2.1)

r. 2 ,

3, I.

(

.

I

. 2.1)

: )

; )

. -

; ) I

(

)

( . .

X

Y),

. 3 φi ( . 2.2). 2( . . 2.1 .

-

, , 2.2) , I,

2

(

-

1

2)

. ,

3.

. . 2.2.1.

, :

2.2)); -

. .

(

( (

А .

( I

,

.

*→

Z

.

Z

.

)

.

_________________________

. 2.1, )

.

. *)

.

.

;

6

. 2.1.

. 2.2.

2.2.2. -

45°; m = 0,5 – 30

-

8 – 800 . ,

, , . . .

-

2.3. 39 (2 -

. ), 40, 49, 51 (2 ,

; m = I; z = 20, 22, 26, 30, 34 (2 . ), 60; m=2 ; z = 30, 40, 50, 60; .

.),

7

2.4. 1.

(

)

. 2.

.

3.

.

4. 5.

. ,

.

2.5. 2.5.1. . 2.1 2.5.2.

. 2.1 (

. 2.3)

2.5.3. , 525

-

. . (

.

. 2.1)

,

. ,

-

. ,

.

(

)

Zi , (

-

). . φi .

, . -

,

. .

8

2.1. (

90°,

:

Z = 36, = 20˚ (

m = 2;

I.

Z

2.

L=

mH ⋅ Z . 2 ⋅ cos β

3. 4.

(

= Z 2 + Z 2 *)

. 2.3)

b = 0,36 L Le = L + 0,5 b 2 Le mS = Z

5.

n = 2 mS· cos c = 0,2 mS h =n +

6. 7. 8. 9. h

K

=h –h

10. 11. 12. 13. 14.

=h –h ;h K=h –h = arctg h / L ; = arctg h / L φ = arctg Z / Z ; φ = 90˚– φ φ =φ + ;φ =φ + φi = φ – ; φi = φ –

d = Z · mS

d = Z · mS ;

d = d + 2h d = d + 2h · cos φ

16. 17.

(

h = mS (1 + ξn· cos ), ZK : Z = 2…6, ξ = 0,1…0,3) h

15.

А = L · cos φ – h · sin φ А = L · cos φ – h · sin φ

__________________________

*)

.

.

5-

· cos φ ;

.

20°) Z = 80 . 2.1)

9

. 2.3.

2.5.4. -

........ N = 0,18 ; n = 1440 / , ........................................................................ 0,5–2 , Z ........................................................................... 10– 80 , …………………..…. 100 , ......................................……. 50 .......................................................................… 45 , ....................................................… 50 ) , .................................................... ..130 , ..................................................…. 10 ............................................................................… 30 , c ................................................................…1 11,3

, ( , /

2.5.5. (

. 2.4)

III.

n

= 1460 · 0,98 ·

1 90 · 30 90

= 48

/

.

(2.1)

. 2.4.

10

11

(

50 = 96 25

= 48 ·

n

)

50 . 25

/

(2.2) 25 25

III IV, Z =33,

( ).

(

.

,

. 2.4),

,

Z = 33 Z = 192

. Z = 144

(

),

-



. ,

Z = 24, (

IV)

V (

(I)

(2))

.

192 30 , , 30 33

(

2 30

i

I). .

-

VI, .

-

1 60

, .

n = 48 ⋅

20 20 36 ⋅ ⋅ =5,3 60 36 60

/

(2.3)

VI

τ=

.

60 = 11,3 . n6

(2.4)

VI , VII,

i

.

-

, , .

-

12

2.6.

, (

.

. 2.4

. 2.1)

, ,

,

-

, . 2.6.1. ,

. Zi

.

,

,

. Zi

.

Zi , )–

(

. , ,

,

,

. .

,

-

, ,

θ = arccos (

cos ϕ 600 )+ cos ϕ i Z .

.

.

(2.5)

2.6.2.

, VII ( 1

VI (

.

. 2.4 )

.

): . . . ..........………………... i

......…………………. = Z i Z

(2.6)

13

: i Z– Zi –

=

a c Z ⋅ = .......... i , b d Z

(2.7)

; , Zi =

,

θ ⋅Z , 160

(2.8)

,

-

Z. -

. 0,02 %. 2.6.3.

I

.

.

· 24 ⋅ I i 4

......…………. i zi =……… z

……………….. i i =

i

′ ′ Z ⋅ = ... b′ d Z

=

z

.

z

(2.9) (2.10)

i

,

[3, 4]

.

2.7. 2.7.1.

i

i

φi

2.7.2. φi

.

-

. 2.7.3. O (

.

. 2.2).

(

)

14

,

,

. . 2.7.4. 60, ,

. .

60

60, ,



.

-

( ( , i

i



a c ⋅ = ... b d

.

2.1);

. 2.3); -

a′ c′ ⋅ = ... b′ d ′

-

.

1. ? 2. ? 3. 4.

? (

)?

5.

Zi ?

6. ? 7. ?

15

№2

3.

.F -6 3.1. , ,

-

. 3.2. -

. F - 6; ; , (

,

;

.3.1). 3.1

30 40 50 60 70 80 90 100 110 120

31 41 51 61 71

23 32 42 52 62 72 82 92

24 33 43 53 63 73 83

:m=2 25 26 35 36 45 46 55 56 65 66 75 76 85 86 96

24 34 44 54 64 74 84 94

( 27 37 47 57 67 77 87 97

76 28 38 48 58 58 78 88 98

.) 29 39 49 59 69 79 89

3.3. 1.

.

2.

,

, .

3. 4. . 5.

.

.

16

3.4. -

, ,

-

;

-

,

-

; -

;

-

; ,

-

; -

; . 3.5. F

- 6 , -

. ,

-

. , .

. –

, –

-

,

, –

:

-

. -

,

.

. 3.1. 3.5.1. 1– 2– 3–

; ; ;

17

4– 5– ; 6– 7– 8– 9– 10 – 11 – 12 – 13 – 14 – 15 – 16 – 17 – 18 – 20,21 – 22 – 23 – 24 – 25 – 26 –

; ; ; ; ; ; ; ; ; ; ; ; ; . ; ; ; ; ; ;

27 – 28,29 –

; ;

30 – 31 –

(

; . 3.2).

.

.

4

2

. I

-

, , . 5 .

. ,

, 3

13,

, , .

. 3.1.

FO - 6

18

19

22

.

14,

, -

, , . , , ,

, .

,

,

.

3.5.2. ,

,

………………………………………..… 6

…...…………………………………….… 600 ,

,

….. …. 350

………………………………………….…………………… 420 , ,

…………………… 120

...........…………………………………......… … 130 ....………….……………………….…...….. 12 ,

,

/

/

.......……………………….. 15 – 90

: .....…………………...………........0,33 – 5,2 .............................…….…………....0,1 – 1,5 ,

(1400/2800 , , ,

,

(1400

/

)……………… 3/4

(1400 ( 2800 /

/ /

)…....0,75 )……. 0,185

).………………0,1

.....……………………………………..................................….....4100

20

. 3.2. (1400 / 3–

:I– ); 2 – ;4–

(2800

/

);

;5– ;6–

,

,

;7–

;8– ;9–

3.6. 3.6.1. , (

0,01 – 0,02

).

. 0,015 . (

. 3.3, ).

0,06

. -

21

:

;

(

-

)

;

. . -

,

I

(

...... = n ,

. 3.4)

n ... 0 ,95 ... i i n – 0,95 –

(3.1)*

; , ,

=

n V– d –

, / , .

/

; ;

1000 ⋅ V , π ⋅d

(3.2)

; .

V = 20 – 30

( . . 3.4) n = 1400 /

/

V

; 20 – 25 %. 12

6

n = 2800

/

:6 . 3.2).

(

3.2 n n ,

/

n' ,

/

1400

15

19

24

60

75

95

2800

30

38

48

120

150

190

20 n n' . ,

.

. 3.1).

. 3.2 ,

(3.1) ( i ),

. ________________________________ *) ,

21 (

. .

n ; n'

.

22

. 3.3.

: ) ) ) )

; ; ;

. 3.4. FO - 6

23

24

n'

, 1/96)

,(

n′ ≤ ZK – –

750

/

, . .

10 ⋅ Z K , K

(3.3)

; . ).

( 46/46,

IV ,

-b-c-d (i

I

.

.

.......... ... i

.

⋅ i . .......... . =

),

1/96.

K ZK

.

(3.4)

.

, i

= I. (3.4) .

i i

.

=

,

a c K ⋅ = 12 ⋅ . b d ZK

(3.5) XI

38 – 30, t=8

,

:

1/24,

2/24,

. ,

(

-

) S. ,

(

) I

i

.

.

96 38 ⋅ ⋅⋅⋅⋅⋅⋅ i I 30

⋅⋅⋅⋅⋅⋅

2 I ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ t 24 24



. .

=S

/

.

(3.6) ,

. (

.

. 3.4) (

) S,

/

( ). : 0,33; 0,47; 0,66; 0,92; 1,32; 1,82; 2,62; 3,75; 5,24.

-

25

3.3.

. .

.

_____________________________________ *)

(

)

" "

26

,

XIII. ,

.

,

– m < 1,5 0,5 1,0

,

. m = 1,5 + 3,5 / , . .

-

. (

)

2.

,

. 3.3.

3.6.2 , ,

,

. (

. 3.5),

. , -

- , А . –

;

-



;



. S

I

2,

I ,



2'.

2 . .

,

∆ . S

3', , . . Σ S = T,

S,

Σ ∆Χ = π · ,

А ..

,

,

±I

.

. , , :

-

27

24 T ...... i ....... 2 t

π⋅

T=

i i

tgβ

....... i

А .

– . – i . = 12 /ZK ; mT = mH/ s – (3.7) i .

=

.

=

I =I 96

.

.,

(3.7)

; (

i

; mH –

1 1



1

d1

.

.

(3.8)

,

(

-

) ,

,

= 2);

.

5,96831 ⋅ sin β mH ⋅ K

=

(3.8) ZK.

.

π ⋅ mT ⋅ Z K π ⋅ m H ⋅ Z K = ; sin β tgβ

.

i

⋅i

.

,

,

, ,

, ,

-

, . (

)

= (ω ± ) (

.

. 3.3, ); = (ω + ) ;

-

= (ω - ) -

. (3.5). . 3.4. 3.6.3. ( (

) . 3.3, ,

-

. 3.3). ,

(

) (

).

,

28

. 3.5.

. 3.6.

29

(

.

. 3.3. ,

. 3.3).

. «А»

,

. (i )

-

(3.5),

. , Sr

→ Sr

(1

.

.

). , (

)

:

I

.

.

I I 96 38 ⋅ ....... i K ⋅ ....... ⋅ t I 30 24 23

-

= Sr

/

(3.9)

1/3 (Sr = 0,11; 0,16; 0,22; 0,31; 0,43;

, 0,66; 0,87; 1,25; 1,75 Sr 1,0 / .

/

). m = 3 : 12 (

.

. 3.3, ) , ё ,

S0 ), (

0,55 : (

)

-

,

. .

(

.

«А» . 3.3, ).

-

,

, . (

. 3.6). (i ) (3.5). , .

(i

.

)

,

, ,

.

,

30

3.4.

-

*)

-

. .

-

.

(

)

« »

31

,

t=4 .

I/Z

(

.

. 3.4)

tS /4

,

tS , -

. t S 35 30 40 25 ⋅ ...... ⋅ ⋅ ⋅ i t I I 30 20 t S = π ⋅ m H / cos β ;

.

i (3.10)

.

⋅i

= 2;

.

⋅i

.



1 I = 96 Z K

i

.

= 12 i

.

.,

(3.10)

/ ZK. . ,

,

i

.

-

,

=

a1



1

1

d1

=

.

2,78521 m OC ⋅ K

(3.11)

4. 4.1. . 4.1 I (23)

: (I ), 5;

3.4.

3 (24)

2 -

4

6,

7,

8

5,

,

,

-

7 ( ). , 7

1

,

(

.

. . 4.1, ), .

I i

.

=1.

8

(

)

-

. , .

7 M2 (

.

-

. 4.1, ). .

i

.

7, 7

= 2, .

-

32

. 4.1 ) )

;

33

1

6

7

,

, -

7, . 4.2. ( (

)

-

) . 1

(

. 4.2)

3, 4

1, 2 -

5.

2(

)

1. (

. 4.3),

1 3 -

2. 4, 1

2( 5(

).

6(

. 3.2), . .

. 3.2)

.

.

5

-

, . . . , ,

, 2

. . 4.3), , 28 -

5( M2 29 (

.

. 3.4) 6( . . 4.3

3,

. 3.1). 7,

5.

,

M1

M2 (

.

. 3.4).

5. . , .

-

34

. 4.2

. 4.3

(

)

35

, ,

-

,

-

, , . , i

.

=

(

)

8 4 2 40 60 = ⋅ = ⋅ . 15 5 3 50 90 -

,

. ∆і

. i 1 σ

-

i

δ =±

, . .

. -

iX1 − iX ⋅ 100%. iX

(5.1)

-

0,01 % .

/5/

.

5.1. . «

6

»

150. : (3.5); (3.8) 4-

, (3.11)

-

. : (0)

-

; (I) –

(

).

, (

.

± 0,01 %.

-

.

-

. 3.1)

,

36

,

(

)

-

,

. 10

,

-

. 5.2. I– S– Z1, Z2 – Z1, Z2, Z3, Z4 – – D– J– G– L– N– V– ,F–

,

; I,

± 0,01 %

I; ; ;

Z1; Z4; ; J

I

%; ; ;

Z1; min max

Z2

.

-

i

.

i

.

;

-

; ; (

,

).

1. 2. 3.

. . .

4. 5. 6. 7. 8. 9.

? . . ? . ?

37

10. 11.

. :

) ) ) 12.

– – –

; –

, ,

; .



? 13. ? 14. 15. ?

? -

№3

6.

.

12 - 25

6.1. ,

, .

,

6.2. ; -

;

-

; ; . 6.3.

-

. «

2 »;

12 - 25

;

38

6.4. 12 - 25 ( ,

,

,

,

, . .)

-

. ISO - 7 bit. . 8 – 82.

– 6.4.1.

: ,

.....……………………….…........ 250 ……………………... 24

,

.

…….…………………....……± 5

: – "X", – " ",

....……………...………………........……….……….. 250 ......……………..……………….……...……........... 280 – "Z",

(

………………………..............…....... 200

72

) 7 : 24 ...................…………….....………………. ,

15945–82

....…………………... 1340

.........…………………….………........... 20 ,

,

…........... 57

.....………………................………………..... 12 ,

/

.. …………….45, 63, 90, 125, 180, 250, 355, 500,710,1000,1400,2000 ,

.……………….......…………...... 2,2 , /

39

(X) ....………………….……………………..... 2,4 ( ) ………………………………….….......... 2,4 ( Z ) ……….……....……………… 2,4 , /

,

,

……………... 10, 16, 25, 40, 63, 100, 160, 250, 400, 630, 1000 ,

……………………...……............................... 0,55 , Y, Z,

(

………………....... 0,03

)

( = 45

/

),

....…………….................…………………………............ 50 ,

...……………..……………....... 12 ,

.………………………... 60 ,

,

.........………5

............………….................……………………………......... 2000 ,

......……………....………… 25

6.5. ( 2,

3, 6,

7, 10,

. 6.1): 4,

I, 5, 9,

8, II. , 12

2000 / I (N = 2,2 (Z =53),

; n = 1420

/

)

,

(Z = 25, Z = 37, Z =23) . 6.2.

. -

( M5 (N =50 )

45

.

(Z = 35, Z = 42),

/ = 56

-

1:56

, I

). ; n = 3000...3600 Z

40

. 6.1.

.

12 - 25

41

. ,

42 : 45 »

«

45 : 53 (n = 60–120

/

). . ,

(

Z

. 6.2). .

=6000

/

)

- 550 (N= 550 ; n Z=19, Z=31, Z=25, Z=31 , -

, Z=4,

Z=25, . (

. 6.2

)

250

,

-

, . , . I(

. 6.3)

2 ;

4 –

: Y, Z;

6–«

12

-

15 16 5

; ;

3,

»

,Y–

,Z–

; 13 – X,

;

14 X, Y, Z; " ");

, (

9, 10, 11 7

, . .

;

.

«

8 »

7. :

,

« , i = 10,

. 2 ».

( 0,01

. 6.4.

)

. , ,

.

42

. 6.2.

43

. 6.3.

. 6.4.

44

, -

, (

. 6.4).

U,

, , . . . , ,

-

. .

α

-

, . . φ = – α. 90°, U

Ы

=U

А

-

sin φ. , . .

.

6.6. ( ,

6.5) :

,

.

,

.

: ;

– – ;



;

-



. :

90˚

, ;

, ;

180˚, ;

, -

; 90°

.

, M6 ( N = 55 ; n =3600 – 4200 15:42 41:85.

-

, /

. ),

. 6.5,

1:60

-

45

. 6.5.

46

Z=85 i =I

Z=30, Z=18, Z=51

-

,

5

. , .

3600

/

), Z=22.

,

; n=3000– -

Z=22. 7 (N=55 I5:42, 26:4I

I:60,

,

-

, .

KI 8

I:60

(N=77 ; n=3000–3600 20:40 20:40. I

/

K2

), ). I , Z= 90° 180°. .

( 90°

180° ,

24.

Z=273

KI 2

6.7. : -

; ; ;

.

, ,Z, . .

.

. 6.7. ,

.

(

«

»).

(

)

-

. «

-

0».

, , , . .

. ,

-

47

,

. 6.7

( ). -

=60 90

,

90

Z . (

) .

,

, – ),

(

, – (

).

4 ( ), ,

,

,

-

.

: -

(

6.7), ,Z

(

.

)

. ,

; -

-

, . . (

);

-

.

1. 2.

. ?

3.

(

)

-

? 4.

?

5. 6. 7.

. ? 12-25 ?

8.

, .

48

. 6.6.

,

. 6.7.

1

2

1

90

90

10

10

5

70

2

90

100

12

15

7

80

3

110

110

15

20

10

90

4

120

100

17

25

12

100

5

100

130

20

30

15

110

6

130

130

15

20

15

100

7

100

100

12

25

10

120

8

90

120

10

15

5

110

9

100

140

15

25

15

130

10

120

120

20

20

10

100

49

1. ,–

. .:

.,

. . , 1967. – 583 .

2. «

: », « , . .

. . , . . – 328 c. 3. . . 1972 – 272 . 4. . ., . . 1964. – 257 c.

.–

» / , 1989.

.: . –

.

.:

, –

: