359 122 8MB
English Pages 1928 Year 2001
Shackelford, James F. et al “Frontmatter” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
CRC
MATERIALS SCIENCE AND
ENGINEERING HANDBOOK THIRD EDITION
©2001 CRC Press LLC
CRC
MATERIALS SCIENCE AND
ENGINEERING HANDBOOK THIRD EDITION James F. Shackelford Professor of Materials Science and Engineering Division of Materials Science and Engineering and Associate Dean of the College of Engineering University of California, Davis
William Alexander Research Engineer Division of Materials Science and Engineering University of California, Davis
CRC Press Boca Raton London New York Washington, D.C.
©2001 CRC Press LLC
Library of Congress Cataloging-in-Publication Data CRC materials science and engineering handbook / [edited by] James F. Shackelford, William Alexander.—3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-2696-6 (alk. paper) 1. Materials—Handooks, manuals, etc. I. Shackelford, James F. II. Alexander, William, 1950 Feb. 13TA403.4 .C74 2000 620.1′1—dc21
00-048567
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
© 2001 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-2696-6 Library of Congress Card Number 00-048567 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
©2001 CRC Press LLC
T A B LE O F C O N T E N T S
CHAPTER 1
S tr u c tu r e o f M a te r ia ls Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Structure of Ceramics Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N 4 Composites
CHAPTER 2
C o m p o s itio n o f M a te r ia ls Composition Limits of Tool Steels Composition Limits of Gray Cast Irons Composition Limits of Ductile Irons Composition Ranges for Malleable Irons Composition Ranges for Carbon Steels Composition Ranges for Resulfurized Carbon Steels Composition Ranges for Alloy Steels
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Composition of Stainless Steels Composition of Wrought Coppers and Copper Alloys Classification of Copper and Copper Alloys Composition Ranges for Cast Aluminum Alloys Composition Ranges for Wrought Aluminum Alloys Composition of Tin and Tin Alloys Compositions of ACI Heat-Resistant Casting Alloys Composition of Zinc Die Casting Alloys Compositions of Wrought Superalloys Typical Composition of Glass-Ceramics
CHAPTER 3
P h a s e D ia g r a m S o u r c e s Phase Diagram Sources
CHAPTER 4
T h e r m o d y n a m ic a n d K in e tic D a ta Bond Strengths in Diatomic Molecules Bond Strengths of Polyatomic Molecules Solubility of Copper and Copper Alloys Heat of Formation of Inorganic Oxides Phase Change Thermodynamic Properties for The Elements Phase Change Thermodynamic Properties of Oxides Melting Points of the Elements Melting Points of Elements and Inorganic Compounds Melting Points Of Ceramics Heat of Fusion For Elements and Inorganic Compounds Heats of Sublimation of Metals and Their Oxides Key to Tables of Thermodynamic Coefficients Thermodynamic Coefficients for Selected Elements Thermodynamic Coefficients for Oxides Entropy of the Elements Vapor Pressure of the Elements at Very Low Pressures Vapor Pressure of the Elements at Moderate Pressures Vapor Pressure of the Elements at High Pressures Vapor Pressure of Elements and Inorganic Compounds
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Values of The Error Function Diffusion in Metallic Systems Diffusion of Metals into Metals Diffusion in Semiconductors
CHAPTER 5
T h e r m a l P r o p e r tie s o f M a te r ia ls Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals Thermal Conductivity of Ceramics Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics
CHAPTER 6
M e c h a n ic a l P r o p e r tie s o f M a te r ia ls Tensile Strength of Tool Steels Tensile Strength of Gray Cast Irons Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N 4 and Al2O 3 Composites Coefficient of Static Friction for Polymers Abrasion Resistance of Polymers Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness of Si3N 4 and Al2O 3 Composites Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus of Ceramics Young’s Modulus of Glass Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus of Glass Shear Modulus of Glass Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N 4 and Al2O 3Composites Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity of Glasses Internal Friction of SiO 2 Glass Surface Tension of Elements at Melting Surface Tension of Liquid Elements
CHAPTER 7
E le c tr ic a l P r o p e r tie s o f M a te r ia ls Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Critical Temperature of Superconductive Elements Dissipation Factor for Polymers Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss in Glass Electrical Permittivity of Glass Arc Resistance of Polymers
CHAPTER 8
O p tic a l P r o p e r tie s o f M a te r ia ls Transmission Range of Optical Materials Transparency of Polymers Refractive Index of Polymers Dispersion of Optical Materials
CHAPTER 9
C h e m ic a l P r o p e r tie s o f M a te r ia ls Water Absorption of Polymers Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability of Polymers Flammability of Fiberglass Reinforced Plastics
CHAPTER 1 0
S e le c tin g S tr u c tu r a l P r o p e r tie s Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Selecting Density of the Elements
CHAPTER 1 1
S e le c tin g T h e r m o d y n a m ic a n d K in e tic P r o p e r tie s Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Selecting Heat of Formation of Inorganic Oxides Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Selecting Heat of Fusion For Elements and Inorganic Compounds Selecting Entropy of the Elements
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Selecting Diffusion Activation Energy in Metallic Systems
CHAPTER 1 2
S e le c tin g T h e r m a l P r o p e r tie s Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature
CHAPTER 1 3
S e le c tin g M e c h a n ic a l P r o p e r tie s Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Selecting Yield Strengths of Tool Steels
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers Selecting Flexural Strengths of Polymers Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Selecting Coefficients of Static Friction for Polymers Selecting Abrasion Resistance of Polymers Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Selecting Area Reduction of Tool Steels
CHAPTER 1 4
S e le c tin g E le c tr ic a l P r o p e r tie s Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Selecting Critical Temperature of Superconductive Elements Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency
©2001 CRC Press LLC
Ta b le o f C o n t e n t s Selecting Arc Resistance of Polymers
CHAPTER 1 5
S e le c tin g O p tic a l P r o p e r tie s Selecting Transmission Range of Optical Materials Selecting Transparency of Polymers Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers
CHAPTER 1 6
S e le c tin g C h e m ic a l P r o p e r tie s Selecting Water Absorption of Polymers Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Selecting Flammability of Polymers
©2001 CRC Press LLC
D e d ic a t io n
To Penelope and Scott Li-Li and Cassie
©2001 CRC Press LLC
Shackelford, James F. et al “Structure of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
CHAPTER 1
S t ru c t u re o f M a t e ria ls
L is t o f T a b le s
S u b a to m ic S tr u c tu r e Electronic Structure of Selected Elements Available Stable Isotopes of the Elements
A to m ic S tr u c tu r e Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals
B o n d S tr u c tu r e Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements
C r y s ta l S tr u c tu r e Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems
©2001 CRC Press LLC
1
L is t o f T a b le s (C o n tin u e d )
The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements Structure of Ceramics
D e n s ity Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N 4 Composites
©2001 CRC Press LLC
2
Table 1. ELECTRONIC
At. Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
STRUCTURE OF SELECTED ELEMENTS
Sym H He Li Be B C N O F N Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Electronic Configuration 1s 2s 2p 3s 3p 1 2 . 1 . 2 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . . . 1 . . . 2 . . . 2 1 . . . 2 2 . . . 2 3 . . . 2 4 . . . 2 5 . . . 2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3d 4s
1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . . .
1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . . .
4p 4d
1 2 3 4 5 6 . . . . . . . . . . . . . . . . . .
1 2 4 5 6 7 8 10 10 10 10 10 10 10 10 10
4f
5s
5p 5d
5f
6s
6p 6d 7s
1 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 5 5 6
©2001 CRC Press LLC
3
At. Element No.
Sym
Electronic Configuration 1s
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Cesium Barium Lantium Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Asatine Radon Francium Radium Actinium Thorium Protoactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium
©2001 CRC Press LLC
4
Ce Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw
2s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2p 3s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3p 3d 4s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4p 4d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4f
5s
2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5p 5d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5f
6p 6d 7s
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1
1
1 2 3 4 5 6 9 9 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . .
6s
2 3 4 6 7 7 9 10 11 12 13 14 14
1 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . .
1 2 3 4 5 6 . . . . . . . . . . . . . . . . .
1 2 1 1 1 1
1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 1 OF 11) Natural
Element
Mass No.
Abundance (%)
Hydrogen
1
99.985
2
0.015
Helium
3 4
0.00013 ≈100.0
Lithium
6 7
7.42 92.58
Beryllium
9
100.0
Boron
10 11
19.78 80.22
Carbon
12 13
98.89 1.11
Nitrogen
14 15
99.63 0.37
Oxygen
16 17 18
99.76 0.04 0.20
Fluorine
19
100.0
Neon
20 21 22
90.92 0.26 8.82
Sodium
23
100.0
Magnesium
24 25 26
78.70 10.13 11.17
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
5
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 2 OF 11) Natural
Element
Mass No.
Abundance (%)
Aluminum
27
100.0
Silicon
28 29 30
92.21 4.70 3.09
Phosphorus
31
100.0
Sulfur
32 33 34 36
95.0 0.76 4.22 0.014
Chlorine
35 37
75.53 24.47
Argon
36 38 40
0.34 0.06 99.60
Potassium
39 40a 41
0.01
Calcium
40 42 43 44 46 48
96.97 0.64 0.14 2.06 0.003 0.18
Scandium
45
100.0
93.1 6.9
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
6
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 3 OF 11) Natural Mass No.
Abundance (%)
Titanium
46 47 48 49 50
7.93 7.28 73.94 5.51 5.34
Vanadium
50 51
0.24 99.76
Chromium
50 52 53 54
4.31 83.76 9.55 2.38
Manganese
55
100.0
Iron
54 56 57 58
5.82 91.66 2.19 0.33
Cobalt
59
100.0
Nickel
58 60 61 62 64
67.84 26.23 1.19 3.66 1.08
Copper
63 65
69.09 30.91
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
7
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 4 OF 11) Natural Mass No.
Abundance (%)
Zinc
64 66 67 68 70
48.89 27.81 4.11 18.57 0.62
Gallium
69 71
60.4 39.6
Germanium
70 72 73 74 76
20.52 27.43 7.76 36.54 7.76
Arsenic
75
100.0
Selenium
74 76 77 78 80 82
0.87 9.02 7.58 23.52 49.82 9.19
Bromine
79 81
50.54 49.46
Krypton
78 80 82 83 84 86
0.35 2.27 11.56 11.55 56.90 17.37
Rubidium
85 87
72.15 27.85
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
8
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 5 OF 11) Natural Mass No.
Abundance (%)
Strontium
84 86 87 88
0.56 9.86 7.02 82.56
Yttrium
89
100.0
Zirconium
90 91 92 94 96
51.46 11.23 17.11 17.40 2.80
Niobium
93
100.0
Molybdenum
92 94 95 96 97 98 100
15.84 9.04 15.72 16.53 9.46 23.78 9.63
Ruthenium
96 98 99 100 101 102 104
5.51 1.87 12.72 12.62 17.07 31.61 18.60
Rhodium
103
100.0
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
9
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 6 OF 11) Natural Mass No.
Abundance (%)
Palladium
102 104 105 106 108 110
0.96 10.97 22.23 27.33 26.71 11.81
Silver
107 109
51.82 48.18
Cadmium
106 108 110 111 112 113 114 116
1.22 0.88 12.39 12.75 24.07 12.26 28.86 7.58
Indium
113 115
4.28 95.72
Tin
112 114 115 116 117 118 119 120 122 124
0.96 0.66 0.35 14.30 7.61 24.03 8.58 32.85 4.72 5.94
Antimony
121 123
57.25 42.75
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
10
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 7 OF 11) Natural Mass No.
Abundance (%)
Tellurium
120 122 123 124 125 126 128 130
0.09 2.46 0.87 4.61 6.99 18.71 31.79 34.48
Iodine
127
100.0
Xenon
124 126 128 129 130 131 132 134 136
0.096 0.090 1.92 26.44 4.08 21.18 26.89 10.44 8.87
Cesium
133
100.0
Barium
130 132 134 135 136 137 138
0.101 0.097 2.42 6.59 7.81 11.30 71.66
Lanthanum
138 139
0.09 99.91
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
11
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 8 OF 11) Natural Mass No.
Abundance (%)
136 138 140 142d
0.193 0.250 88.48
11.07
141
100.0
Neodymium
142 143 144 146 148 150
27.11 12.17 23.85 17.22 5.73 5.62
Samarium
144 147e 148f 149g 150 152 154
Element
Cerium
Praseodymium
3.09
14.97 11.24 13.83 7.44 26.72 22.71
Europium
151 153
47.82 52.18
Gadolinium
152h 154 155 156 157 158 160
0.20 2.15 14.73 20.47 15.68 24.87 21.90
159
100.0
Terbium
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
12
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 9 OF 11) Natural Mass No.
Abundance (%)
156i 158 160 161 162 163 164
0.052
Holmium
165 186
100.0 28.41
Erbium
162 164 166 167 168 170 186
0.136 1.56 33.41 22.94 27.07 14.88 1.59
Thulium
169 189
100.0 16.1
Ytterbium
168 170 171 172 173 174 176
0.135 3.03 14.31 21.82 16.13 31.84 12.73
Lutetium
175 176j
97.40
Element
Dysprosium
0.090 2.29 18.88 25.53 24.97 28.18
2.60
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
13
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 10 OF 11) Natural Mass No.
Abundance (%)
174k 176 177 178 179 180
0.18 5.20 18.50 27.14 13.75 35.24
Tantalum
180 181
0.012 99.988
Tungsten
180 182 183 184
0.14 26.41 14.40 30.64
Rhenium
185 187
37.07 62.93
Osmium
184 187 188 190 192
0.018 1.64 13.3 26.4 41.0
Iridium
191 193
37.3 62.7
Platinum
190m 192 194 195 196 198
0.013
197
100.0
Element
Haffiium
Gold
0.78 32.9 33.8 25.3 7.2
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
14
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 11 OF 11) Natural Mass No.
Abundance (%)
Mercury
196 198 199 200 201 202 204
0.146 10.02 16.84 23.13 13.22 29.80 6.85
Thallium
203 205
29.50 70.50
Lead
204 206 207 208
1.48 23.6 22.6 52.3
Bismuth
209
100.0
Thorium
232n†
100.0
Uranium
234o† 235p† 238q†
0.0006 0.72 99.27
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
a b c d e f g h
i
half-life = half-life > half-life = half-life = half-life = half-life = half-life = half-life = half-life =
1.3 x 109 y. 1015 y 5 x 1014 y 5 x 1014 y 1.06 x 1011 y 1.2 x 1013 y 1.2 x 1014 y 1.1 x 1014 y 2 x 1014 y
j
half-life = 2.2 x 1010 y k half-life = 4.3 x 1015 y l half-life = 4 x 1010 y m half-life = 6 x 1011 y n half-life = 1.4 x 1010 y o half-life = 2.5 x 105 y p half-life = 7.1 x 108 y q half-life = 4.5 x 109 y † naturally occurring.
©2001 CRC Press LLC
15
1 IA
3
4
5
TABLE OF THE ELEMENTS
6
9
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
3 Li
4 Be
5 B
6 C
7 N
8 O
9 F
10 Ne
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
17 Cl
18 Ar
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge
33 As
34 Se
35 Br
36 Kr
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
52 Te
53 I
54 Xe
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
84 Po
85 At
86 Rn
87 Fr
88 Ra
1 H
2
Table 3. PERIODIC 7
8
10
11
12
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
18 VIIA 2 He
Table 4. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN METALLIC MATERIALS 7
8
9
10
11
12
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
3 Li
4 Be
5 B
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
87 Fr
88 Ra
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
18 VIIA
Table 5. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN CERAMIC MATERIALS
7
8
9
10
11
12
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
3 Li
4 Be
5 B
6 C
7 N
8 O
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
87 Fr
88 Ra
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
18 VIIA
1 IA 1 H
2
3
Table 6. PERIODIC
TABLE OF ELEMENTS IN POLYMERIC MATERIALS
4
7
5
6
8
9
10
11
12
IIA
IIIB
©2001 CRC Press LLC
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
6 C
7 N
8 O
9 F
14 Si
18 VIIA
Table 7. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN SEMICONDUCTING MATERIALS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
8 O
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
30 Zn
31 Ga
32 Ge
33 As
34 Se
48 Cd
49 In
50 Sn
51 Sb
52 Te
80 Hg
©2001 CRC Press LLC
18 VIIA
Table 8. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN SUPERCONDUCTING METALS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
50 Sn
51 Sb
4 Be
IIIB
IVB
VB
22 Ti
23 V
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
73 Ta
74 W
75 Re
76 Os
57 La 90 Th
©2001 CRC Press LLC
91 Pa
VIB
VIIB
-----
VIII
77 Ir
-----
IB
IIB
13 Al
30 Zn
31 Ga
48 Cd
49 In
80 Hg
82 Pb
18 VIIA
Table 9. ATOMIC AND IONIC
RADII OF THE ELEMENTS
(SHEET 1 OF 5) Atomic Number
Symbol
Atomic Radius (nm)
Ion
Ionic Radius (nm)
1 2 3 4
H He Li Be
0.046 – 0.152 0.114
H– – Li+ Be2+
0.154 – 0.078 0.054
5 6 7 8
B C N O
0.097 0.077 0.071 0.060
B3+ C4+ N 5+ 02–
0.02 1770
UBr 4
789
1813
Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
237
Table 72. M ELTING
POINTS OF CERAMICS
(SHEET 10 OF 11) Compound
(K)
UC UCl4
2863 843
UF4 UI4
1233
UN UO 2
3123 3151
USi2 US2
>1375
VB2 VC VCl4
2373 3600 245
VF3
>1075
FI2 VN V2O 5
1048 2593 947
VSi2
2023
V2S3 WB WC WCl6
>875 3133 2900 548
WO 3
1744
WSi2 WS2
2320
ZnBr 2
667
ZnCl2 ZnF2
1145
ZnI2 ZnO
719 2248
779
1970
1523
548
Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
238
Table 72. M ELTING
POINTS OF CERAMICS
(SHEET 11 OF 11) Compound
(K)
ZnSO 4
873
ZrB2 ZrBr 2
3313
ZrC ZrCl2 ZrF4 ZrI4
>625 3533 623 873
ZrN
772 3250
ZrO 2
3123
Zr(SO 4) 2
683
ZrS2
1823
Source: data from : Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
239
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Actinium 227 Aluminum Aluminum bromide
Ac
1050±50
(11.0)
Al
658.5
94.5
2550
Al2Br 6
Aluminum chloride
Al2Cl6
87.4 192.4
10.1 63.6
5420 19600
Aluminum iodide
Al2I6
Aluminum oxide Antimony Antimony pentachloride
Al2O 3
190.9 2045.0
9.8 (256.0)
7960 (26000)
Sb SbCl5
630
39.1
4770
4.0
8.0
2400
Antimony tribromide Antimony trichloride
SbBr 3
96.8 73.3 655.0 546.0
9.7 13.3 (46.3) 33.0
3510 3030 (26990) 11200
190.2 816.8
7.25 (22.0)
290 (6620)
80.8 30.0
16.5 8.9
2800 2810
–16.0 –6.0 312.8
13.3 18.9 22.2
2420 2486 8000
725
13.3
1830
SbCl3
Antimony trioxide
Sb 4O 6
Antimony trisulfide
Sb 4S6
Argon Arsenic Arsenic pentafluoride Arsenic tribromide
Ar As AsF5 AsBr 3
Arsenic trifluoride
AsCl3 AsF3
Arsenic trioxide Barium
As4O 6 Ba
Arsenic trichloride
cal/g
cal/g mole
(3400)
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
240
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 16)
cal/g
cal/g mole
846.8 959.8 1286.8 710.8
21.9 25.9 17.1 (17.3)
6000 5370 3000 (6800)
Ba(NO 3) 2
594.8
(22.6)
(5900)
BaO
1922.8
93.2
13800
Ba3(PO 4) 2 BaSO 4
1727 1350
30.9 41.6
18600 9700
Be BeBr 2
1278
260.0
–
487.8
(26.6)
(4500)
BeCl2 BeO
404.8 2550.0
(30) 679.7
(3000) 17000
Compound
Formula
Barium bromide
BaBr 2
Barium chloride
BaCl2 BaF2
Barium fluoride Barium iodide Barium nitrate Barium oxide Barium phosphate Barium sulfate Beryllium Beryllium bromide Beryllium chloride Beryllium oxide Bismuth Bismuth trichloride
Heat of fusion
Melting point ˚C
BaI2
Bismuth trifluoride
Bi BiCl3 BiF3
Bismuth trioxide
Bi2O 3
Boron Boron tribromide Boron trichloride
B BBr 3
Boron trifluoride
BF3
BCl3
271
12.0
2505
223.8 726.0 815.8
8.2 (23.3) 14.6
2600 (6200) 6800
2300
(490)
(5300)
–48.8 –107.8 –128.0
(2.9) (4.3) 7.0
(700) (500) 480
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
241
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 16)
cal/g
cal/g mole
BrF5
448.8 –7.2 –61.4
78.9 16.1 7.07
5500 2580 1355
Cd
320.8
12.9
1460
CdBr 2 CdCl2
(18.4) 28.8 (35.9) 10.0
(5000) 5300 (5400) 3660
Compound
Formula
Boron trioxide
B2O 3 Br 2
Bromine Bromine pentafluoride Cadmium
Heat of fusion
Melting point ˚C
Cadmium iodide
CdI2
567.8 567.8 1110 386.8
Cadmium sulfate Calcium Calcium bromide
CdSO 4
1000
22.9
4790
Ca CaBr 2
851
55.7
2230
Calcium carbonate
CaCO 3
729.8 1282
20.9 (126)
4180 (12700)
Calcium chloride Calcium fluoride
CaCl2
Calcium metasilicate
CaSiO 3
Calcium nitrate
Ca(NO 3) 2
782 1382 1512 560.8
55 52.5 115.4 31.2
6100 4100 13400 5120
Calcium oxide Calcium sulfate
CaO CaSO 4 CO 2
2707
(218.1)
(12240)
1297 –57.6
49.2 43.2
6700 1900
CO
–205
7.13
199.7
Cadmium bromide Cadmium chloride Cadmium fluoride
Carbon dioxide Carbon monoxide
CdF2
CaF2
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
242
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 16)
Compound
Formula
Cyanogen Cyanogen chloride Cerium Cesium
C2N 2 CNCl Ce Cs
Cesium chloride Cesium nitrate Chlorine Chromium
CsCl CsNO 3
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
–27.2
39.6
2060
–5.2 775 28.3
36.4 27.2 3.7
2240 2120 500
38.5
21.4
3600
Cl2
406.8 –103±5
16.6 22.8
3250 1531
Cr
1890
62.1
3660
Chromium (II) chloride
CrCl2
Chromium (III) sequioxide
Cr 2O 3
Chromium trioxide Cobalt
CrO 3 Co
814 2279 197
65.9 27.6 37.7
7700 4200 3770
1490
62.1
3640
Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride
CoCl2
727
56.9
7390
Cu CuCl2
1083
49.0
3110
430
24.7
4890
CuCl
429
26.4
2620
Cu 2(CN) 2
473
(30.1)
(5400)
CuI CuO Cu 2O
587 1446
(13.6) 35.4
(2600) 2820
1230
(93.6)
(l3400)
Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
243
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 16) Heat of fusion
Melting point ˚C
cal/g
cal/g mole
Compound
Formula
Copper (I) sulfide Dysprosium Erbium Europium
Cu 2S Dy Er Eu
1129
62.3
5500
1407 1496 826
25.2 24.5 16.4
4100 4100 2500
Europium trichloride Fluorine Gadolinium Gallium
EuCl3 F2
622 –219.6
(20.9) 6.4
(8000) 244.0
Gd Ga
1312 29
23.8 19.1
3700 1336
Germanium Gold Hafnium Holmium
Ge Au Hf Ho
959 1063 2214 1461
(114.3) (15.3) (34.1) 24.8
(8300) 3030 (6000) 4100
Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride
H2 HBr HCl HF
–259.25
13.8
28
–86.96 –114.3 83.11
7.1 13.0 54.7
575.1 476.0 1094
Hydrogen iodide Hydrogen nitrate
HI HNO 3
–50.91
5.4
686.3
Hydrogen oxide (water)
H 2O
Deuterium oxide
D2O
–47.2 0 3.78
9.5 79.72 75.8
601 1436 1516
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
244
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 16)
Compound
Formula
Hydrogen peroxide
H 2O 2
Hydrogen selenate
H 2SeO 4
Hydrogen sulfate
H 2SO 4
Hydrogen sulfide
H 2S
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
–0.7 57.8 10.4 –85.6
8.58 23.8 24.0 16.8
2920 3450 2360 5683
27.3 12.9
1805 1670
Hydrogen sulfide, di–
H 2S2
Hydrogen telluride Indium lodine
H 2Te
–89.7 –49.0
In I2
156.3
6.8
781
112.9
14.3
3650
lodine chloride ( α) lodine chloride ( β) Iron Iron carbide
ICl ICl
17.1 13.8
16.4 13.3
2660 2270
Fe Fe3C
1530.0
63.7
3560
1226.8
68.6
12330
Fe2Cl6 FeCl2
303.8 677
63.2 61.5
20500 7800
FeO Fe3O 4
1380
(107.2)
(7700)
1596
142.5
33000
Fe(CO) 5
–21.2
16.5
3250
FeS La Pb
1195 920 327.3
56.9 17.4 5.9
5000 2400 1224
Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
245
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 16)
Compound
Formula
Leadbromide
PbBr 2
Lead chloride
PbCl2 PbF2
Lead fluoride Lead iodide
PbI2
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
487.8 497 8 823 412
11 7 20.3 7.6 17.9
4290 5650 1860 5970 (25800)
Lead molybdate Lead oxide Lead sulfate Lead sulfide
PbMoO 4 PbO PbSO 4
1065
70.8
890
12.6
2820
1087
31.6
9600
PbS
1114
17.3
4150
Lithium Lithium bromide Lithium chloride Lithium fluoride
Li LiBr LiCl LiF
178.8 552 614 896
158.5 33 4 75.5 (91.1)
1100 2900 3200 (2360)
Lithium hydroxide Lithium iodide Lithium metasilicate
LiOH LiI Li2SiO 3
462 440
103.3 (10.6)
2480 (1420)
Lithium molybdate
Li2MoO 4
1177 705
80.2 24.1
7210 4200
Lithium nitrate
LiNO 3
Lithium orthosilicate
Li4SiO 4
Lithium sulfate
Li2SO 4
Lithium tungstate
Li2WO 4
250 1249 857 742
87.8 60.5 27.6 (25.6)
6060 7430 3040 (6700)
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
246
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 16) Heat of fusion
Melting point ˚C
cal/g
cal/g mole
1651 650
26.3 88.9
4600 2160
45.0 82.9
8300 8100
Compound
Formula
Lutetium Magnesium Magnesium bromide
Lu Mg MgBr 2
Magnesium chloride
MgCl2
711 712
Magnesium fluoride Magnesium oxide Magnesium silicate
MgF2
1221
94.7
5900
MgO MgSiO 3
2642
459.0
18500
Magnesium sulfate
MgSO 4
1524 1327
146.4 28.9
14700 3500
Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide
Mn MnCl2
1220
62.7
3450
MnSiO 3
650 1274
58.4 (62.6)
7340 (8200)
MnO
1784
183.3
13000
Manganese oxide Mercury Mercury bromide
Mn 3O 4
1590
(170.4)
(39000)
Hg HgBr 2
–39
2.7
557.2
Mercury chloride
HgCl2
241 276.8
10.9 15.3
3960 4150
Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride
HgI2 HgSO 4
250 850
9.9 (4.8)
4500 (1440)
Mo MoCl2
2622
(68.4)
(6600)
726.8
3.58
6000
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
247
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 16)
Compound
Formula
Molybdenum hexafluoride
MoF6
Molybdenum trioxide Neodymium Neon
MoO 3 Nd Ne
Nickel Nickel chloride
Ni NiCl2
Nickel subsulfide Niobium
Ni3S2 Nb
Niobium pentachloride
NbCl5
Niobium pentoxide Nitric oxide Nitrogen
Nb 2O 5 NO N2
Nitrogen tetroxide
N 2O 4
Nitrous oxide Osmium Osmium tetroxide (white)
N 2O
Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
17 795
11.9 (17.3)
2500 (2500)
1020 – 248.6
11.8 3.83
1700 77.4
1452
71.5
4200
1030 790
142 5 25.8 1
18470 5800
2496
(68.9)
(6500)
21.1 1511
30 8 91.0
8400 24200
–163.7
18.3
549.5
–210
6.15
172.3
–13.2 –90.9
60.2 35.5
5540 1563
Os OsO 4
2700
(36.7)
(7000)
41.8
9.2
2340
OsO 4
55.8 –218.8
15.5 3.3
4060 106.3
1555
38.6
4120
42.3
25.8
2520
O2 Pd H 3PO 4
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
248
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 16)
Compound
Formula
Phosphoric acid. hypo–
H 4P2O 6
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
54.8 17.3 73.8 1.0
51.2 35.0 37.4 20.3
8300 2310 3070 3110
Phosphorus acid, hypo–
H 3PO 2
Phosphorus acid, ortho–
H 3PO 3
Phosphorus oxychloride
POCl3
Phosphorus pentoxide
P4O 10
Phosphorus trioxide
P4O 6 P4
569.0 23.7 44.1
60.1 15.3 4.8
17080 3360 600
Pt
1770
24.1
4700
K KBO 2
63.4
14.6
574
947
(69.1)
(5660)
Phosphorus, yellow Platinum Potassium Potassium borate, meta– Potassium bromide Potassium carbonate
KBr K2CO 3
Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate
KCl K2CrO 4 KCN K2Cr 2O 7
Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate
KF KOH Kl KNO 3
742
42.0
5000
897
56.4
7800
770
85.9
6410
984
35.6
6920
623
(53.7)
(3500)
398
29.8
8770
875 360 682
111.9 (35.3) 24.7
6500 (1980) 4100
338
78.1
2840
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
249
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 16)
Compound
cal/g
cal/g mole
490 1340 1092 1074
55.3 41.9 42.4 46.4
6100 8900 14000 8100
179 931 3167±60
23.1 19.0 (42.4)
2250 2700 (7900)
296
30.1
15340
Formula
Potassium peroxide
K2O 2
Potassium phosphate
K3PO4
Potassium pyro– phosphate
K4P2O 7
Potassium sulfate
K2SO 4
Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide
KSCN Pr Re Re2O 7
Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride
ReF6 Rb RbBr RbCl
Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium
RbF Rbl RbNO 3 Sm
Scandium Selenium Seleniumoxychloride
Sc Se SeOCl3
Silane, hexaHuoro–
Si2F6
Heat of fusion
Melting point ˚C
19.0
16.6
5000
38 .9 677 717
6. 1 22.4 36.4
525 3700 4400
833 638
39.5 14.0
4130 2990
305
9.1
1340
1072
17.3
2600
1538 217
84.4 15.4
3800 1220
9.8 –28.6
6.1 22.9
1010 3900
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
250
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 16)
Compound
Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride Silver
Heat of fusion
Formula
Melting point ˚C
cal/g
cal/g mole
Si
1427
337.0
9470
SiO 2
1723
35.0
2100
SiCl4
–67.7
10.8
1845
Ag
961
25.0
2700
Silver bromide Silver chloride Silver cyanide Silver iodide
AgBr AgCl AgCN AgI
430 455 350 557
11.6 22.0 20.5 9.5
2180 3155 2750 2250
Silver nitrate
AgNO 3
16.2 (13.7) 13.5
2755 (4280) 3360
Silver sulfate
Ag2SO 4
Silver sulfide Sodium
Ag2S
209 657 841
Na
97.8
27.4
630
Sodium borate, meta– Sodium bromide Sodium carbonate
NaBO 2
966
134.6
8660
NaBr Na2CO 3
747
59.7
6140
Sodium chlorate
NaClO 3
854 255
66.0 49.7
7000 5290
Sodium chloride Sodium cyanide Sodium fluoride Sodium hydroxide
NaCl NaCN NaF NaOH
800 562 992 322
123.5 (88.9) 166.7 50.0
7220 (4360) 7000 2000
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
251
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 13 OF 16)
Compound
Formula
Sodium iodide Sodium molybdate Sodium nitrate
NaI Na2MoO 4 NaNO 3
Sodium peroxide
Na2O 2
Sodium phosphate, meta–
NaPO 3
Sodium pyrophosphate
Na4P2O 7
Sodiumsilicate,aluminum–
NaAlSi3O 8
Sodium silicate, di–
Na2Si2O 5
Sodium silicate, meta–
Na2SiO 3
Sodium sulfate
Na2SO 4
Sodium sulfide Sodium thiocyanate
Melting point ˚C
Heat of fusion cal/g
cal/g mole
662
35.1
5340
687 310 460
17.5 44.2 75.1
3600 3760 5860
988 970 1107 884
(48.6) (51.5) 50.1 46.4
(4960) (13700) 13150 8460
Na2S
1087 884 920
84.4 41.0 15.4
10300 5830 (1200)
NaSCN
323
54.8
4450
Sodium tungstate Strontium Strontium bromide Strontium chloride
Na2WO 4 Sr SrBr 2
702
19.6
5800
757
25.0
2190
643 872
19.3 26.5
4780 4100
Strontium fluoride Strontium oxide Sulfur (monatomic) Sulfur dioxide
SrF2 SrO S SO 2
SrCl2
1400
34.0
4260
2430 119
161.2 9.2
16700 295
–73.2
32.2
2060
For heat of fusion in J/kg , multiply values in cal/g by 4184 . For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184 . For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability.
Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
252
Table 73. H EAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 14 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Sulfur trioxide ( α)
SO 3 SO 3 SO 3
16.8 32.3 62.1
25.8 36.1 79.0
2060 2890 6310
Ta
2996 ± 50
34.6–41.5
(7500)
Tantalum pentachloride
TaCl5
Tantalum pentoxide Tellurium Terbium
Ta2O 5
206.8 1877
25.1 108.6
9000 48000
Te Tb
453 1356
25.3 24.6
3230 3900
Thallium Thallium bromide, mono– Thallium carbonate Thallium chloride, mono–
Tl TlBr Tl2CO 3 TICl
302.4 460
5.0 21.0
1030 5990
273
9.5
4400
427
17.7
4260
Thallium iodide, mono– Thallium nitrate
TlI TINO 3
Thallium sulfate
Tl2SO 4
Thallium sulfide
Tl2S
Thorium Thorium chloride
Th ThCl4 ThO 2 Tm
Sulfur trioxide ( β) Sulfur trioxide ( γ) Tantalum
Thorium dioxide Thulium
cal/g
cal/g mole
440
9.4
3125
207 632 449
8.6 10.9 6.8
2290 5500 3000
1845
(1030
+4
1.5x10
3.25
940–1030
3.0x10–4
1.52
A95 (Shore) M87 M71—95 75 (Barcol)
E94—97, M116—120 M116—120
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
734
CRC Handbook of Materials Science & Engineering
Table 206. H ARDNESS OF SI3 N 4 AND
AL2O 3 COMPOSITES
Matrix
Dispersed Phase
Knoop Hardness (GPa)
Si3N 4+ 6 wt % Y2O 3
None
13.4 ± 0.3
Si3N 4+ 6 wt % Y2O 3
TiC (Ti, W) C WC
15.21 ± 0.3 14.06 ± 0.3 14.4 ± 0.4
TaC HfC SiC
12.6 ± 0.2 14.1 ± 0.4 13.6 ± 0.2
TiC
17.2 ± 0.2
Al2O 3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC Shackelford & Alexander
735
Table 207. COEFFICIENT OF STATIC
FRICTION FOR POLYMERS
Class
Polymer
Coefficient of Static Friction (Against Self) (Dimensionless)
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
0.2
Polycarbonates
Polycarbonate
0.52
Nylons; Molded, Extruded
Type 6
Polyacetals
Cast
0.32 (dynamic )
6/6 Nylon General purpose molding
0.04—0.13
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow
Polyester; Thermoplastic
0.15 (against steel) 0.15 (against steel) 0.15 (against steel) (ASTM D1894)
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing Polyester; Thermoplastic
0.1—0.3 (against steel) 0.1—0.3 (against steel) 0.05—0.15 (against steel)
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
0.17 0.16 0.16
0.13 (against steel) 0.14 (against steel) 0.14 (against steel)
Phenylene oxides (Noryl)
Standard
0.67
Polyarylsulfone
Polyarylsulfone
0.1—0.3
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3 , CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
73 6
CRC Handbook of Materials Science & Engineering
Table 208. ABRASION
RESISTANCE OF POLYMERS
(SHEET 1 OF 2) Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)
Class
Polymer
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
0.008 (g/cycle)
Polyvinylidene— fluoride (PVDF)
0.0006—0.0012 (g/cycle)
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced) Nylons; Molded, Extruded Type 6 General purpose Cast
Nylons; Molded, Extruded
10 40
5 2.7
6/6 Nylon General purpose molding General purpose extrusion
3—8 3—5
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
0.073 (CS—10 wheel) 0.0058 (CS—10 wheel)
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
0.08 0.004 20
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow
14—20 33 9 14 40 14
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
737
Table 208. ABRASION
RESISTANCE OF POLYMERS
(SHEET 2 OF 2) Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)
Class
Polymer
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
6.5 9—50 11
SE—100 SE—1 Glass fiber reinforced
100 20 35
Phenylene oxides (Noryl)
Standard
20
Polyarylsulfone
Polyarylsulfone
40
Polystyrenes; Molded
Glass fiber -30% reinforced
164
Phenylene Oxides
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
73 8
CRC Handbook of Materials Science & Engineering
Table 209. FATIGUE STRENGTH OF
W ROUGHT ALUMINUM ALLOYS
(SHEET 1 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
1060
0 H12 H14 H16 H18
21 28 34 45 45
1100
0 H12 H14 H16 H18
34 41 48 62 62
1350 2011
H19 T3 T8
48 125 125
2014
0 T4 T6
90 140 125
2024
0 T3 T4, T351 T361
90 140 140 125
2036 2048
T4
125 220
2219
T62 T81, T851 T87
105 105 105
2618 3003 Alclad
All 0 H12
125 48 55
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
73 9
Table 209. FATIGUE STRENGTH OF
W ROUGHT ALUMINUM ALLOYS
(SHEET 2 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
3003
H14 H16 H18
62 69 69
3004 Alclad
0 H32
97 105
3004
H34 H36 H38 T6
105 110 110 110
5050
0 H32 H34 H36 H38
83 90 90 97 97
5052
0 H32 H34 H36 H38
110 115 125 130 140
5056
0 H18 H38 H321
140 150 150 160
5154
0 H32 H34 H36 H38 H112
115 125 130 140 145 115
5182 5254
0 0
140 115
4032
5083
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
74 0
CRC Handbook of Materials Science & Engineering
Table 209. FATIGUE STRENGTH OF
W ROUGHT ALUMINUM ALLOYS
(SHEET 3 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
5254
H32 H34 H36 H38 H112
125 130 140 145 115
5652
0 H32 H34 H36 H38
110 115 125 130 140
6005
T1 T5
97 97
6009 6010
T4 T4
115 115
6061
0 T4, T451 T6, T651
62 97 97
6063
0 T1 T5 T6
55 62 69 69
6066 6070
T6, T651 0 T4 T6
110 62 90 97
6205 6262 6351
T5 T9 T6
105 90 90
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
74 1
Table 209. FATIGUE STRENGTH OF
W ROUGHT ALUMINUM ALLOYS
(SHEET 4 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
6463
T1 T5 T6
69 69 69
7005
T53 T6,T63,T6351
140 125
7049 7050 7075
T73 T736 T6,T651
295 240 160
7175
T66 T736 T7351
160 160 220
7475
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
74 2
CRC Handbook of Materials Science & Engineering
Table 210. REVERSED
BENDING FATIGUE LIMIT OF GRAY CAST IRON BARS
ASTM Class
Reversed Bending Fatigue Limit (MPa)
20 25 30
69 79 97
35 40 50 60
110 128 148 169
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC Shackelford & Alexander
74 3
Table 211. IMPACT
ENERGY OF TOOL STEELS
(SHEET 1 OF 2) Type
Condition
Impact Energy (J)
L2
Oil quenched from 855 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
28(a) 19(a) 26(a) 39(a) 125(a)
Annealed
93 HRB
Oil quenched from 845 ˚C and single tempered at: 315 ˚C 425 ˚C 540 ˚C 650 ˚C
12(a) 18(a) 23(a) 81(a)
L6
S1
S5
Oil quenched from 930 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
249(b) 233(b) 203(b) 230(b)
Oil quenched from 870 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
206(b) 232(b) 243(b) 188(b)
(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
74 4
CRC Handbook of Materials Science & Engineering
Table 211. IMPACT
ENERGY OF TOOL STEELS
(SHEET 2 OF 2) Type
Condition
Impact Energy (J)
S7
Fan cooled from 940 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
244(b) 309(b) 243(b) 324(b) 358(b)
(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
74 5
Table 212. IMPACT
STRENGTH OF W ROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE
Class
Alloy
Condition
Charpy Impact Strength (J)
Commercially Pure
99.2Ti 99.1Ti 99.0 Ti 99.2Ti-0.2Pd
Annealed Annealed Annealed Annealed
43 38 20 43
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O 2)
Annealed Annealed
26 27
Near alpha alloys
Ti-8Al-1Mo-1V Ti-6Al-2Nb-1Ta-1Mo
Duplex Annealed As rolled 2.5 cm (1 in.) plate
32 31
Alpha-Beta Alloys
Ti-6Al-4V Ti-6Al-4V(low O 2) Ti-6Al-6V-2Sn Ti-7Al-4Mo
Annealed Annealed Annealed Solution + age
19 24 18 18
Beta Alloys
Ti-13V-1Cr-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age
11 10
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 1 OF 7)
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
ABS Resins; Molded, Extruded
Medium impact
2.0—4.0
High impact Very high impact Low temperature impact Heat resistant
3.0—5.0 5.0—7.5 6—10 2.0—4.0
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.4 0.4
Moldings: Grades 5, 6, 8 High impact grade
0.2—0.4 0.8—2.3
Thermoset Carbonate
Allyl diglycol carbonate
0.2—0.4
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.25—0.35 2.2
Cellulose Acetate Butyrate; Molded, Extruded
0.30—0.35 8—12
ASTM Grade: H4 MH S2
3 4.4—6.9 7.5—10.0
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
74 7
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 2 OF 7)
Class
Polymer
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade:
Chlorinated Polymers
Polycarbonate Diallyl Phthalates; Molded
Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
1 3 6
1.7—2.7 3.5—5.6 9.4
Chlorinated polyether Chlorinated polyvinyl chloride
0.4 (D758)
Polycarbonate
12—16
Orlon filled
0.5—1.2
Dacron filled Asbestos filled Glass fiber filled
1.7—5.0 0.30—0.50 0.5—15.0
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
6.3
3.50—3.62 2.0—4.0 No break 3.0—10.3
0.2—0.5 0.3—0.2
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
74 8
CRC Handbook of Materials Science & Engineering
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 3 OF 7)
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Epoxies; Cast, Molded, Reinforced (Con’t)
Molded
0.4—0.5
General purpose glass cloth laminate High strength laminate Epoxies—Molded, Extruded
12—15 60—61
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded
0.5 0.3—0.5
Epoxy novolacs
Cast, rigid
13—17
Melamines; Molded
Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral
0.27—0.36 0.5—12.0 0.30—0.35, 0.2(mineral)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
0.6—1.2 2.2—3.4 1.2 1.5—19
Type 8 Type 11 Type 12
>16 3.3—3.6 1.2—4.2
6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion
(ASTM D638) 0.55—1.0,2.0 2.5—3.4 1.3
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
74 9
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 4 OF 7)
Class
Polymer
Nylons; Molded, Extruded (Con’t)
6/10 Nylon
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
General purpose Glass fiber (30%) reinforced Phenolics; Molded
ABS–Polycarbonate Alloy PVC–Acrylic Alloy
Polymides
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
0.6–1.6 3.4
0.24—0.50 0.4—1.0 0.6—8.0 10—33
Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
0.30—0.45
ABS–Polycarbonate Alloy
10 (ASTM D638)
PVC–acrylic sheet PVC–acrylic injection molded
15
Unreinforced Unreinforced 2nd value Glass reinforced
Polyacetals
0.34—1.0 2.0—2.3 0.3—0.4
15 0.5 0.5 17 (ASTM D638)
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
1.4 0.8 0.7
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
750
CRC Handbook of Materials Science & Engineering
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 5 OF 7)
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyacetals (Con’t)
Copolymer: Standard 25% glass reinforced High flow
1.3 1.8 1
Polyester; Thermoplastic
Polyesters: Thermosets
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
1.8
General purpose grade Glass reinforced grade Asbestos—filled grade
1 1 0.5
Cast polyyester Rigid Flexible
0.18—0.40 4
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose Phenylene Oxides
Phenylene oxides (Noryl)
1.0—1.2 1.3—2.2
1—10 0.45—1.0 5—15
SE—100 SE—1 Glass fiber reinforced
(ASTM D638) 5 5 2.3
Standard
1.2—1.3
Glass fiber reinforced
1.8—2.0
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
751
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 6 OF 7)
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyarylsulfone
Polyarylsulfone
1.6—5.0
Polypropylene
General purpose High impact
0.4—2.2 1.5—12
Asbestos filled Glass reinforced Flame retardant
0.5—1.5 0.5—2 2.2
Polyphenylene sulfide
Standard 40% glass reinforced
0.3 1.09
Polyethylenes; Molded, Extruded
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
4.0—14 0.4—6.0 1.2—2.5 >20
Ethylene butene
0.4
Propylene—ethylene Ionomer Polyallomer
1.1 9—14 1.5
Polystyrenes General purpose Medium impact High impact
(ASTM D638) 0.2—0.4 0.5—1.2 0.8—1.8
Glass fiber —30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
2.5 0.29—0.54
Olefin Copolymers; Molded
Polystyrenes; Molded
1.35—3.0
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
752
CRC Handbook of Materials Science & Engineering
Table 213. IMPACT
STRENGTH OF POLYMERS
(SHEET 7 OF 7)
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyvinyl Chloride And Copolymers; Molded, Extruded
Nonrigid—general
Variable
Nonrigid—electrical Rigid—normal impact Vinylidene chloride
Variable 0.5—10 2—8
Silicones; Molded, Laminated
Ureas; Molded
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
10 0.34 10—25
0.20—0.35 0.20—0.275 0.25—0.35
To convert ft—lb / in . to N•m/m , multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
753
Table 214. IMPACT
STRENGTH OF FIBERGLASS REINFORCED PLASTICS
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
8 to 22
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
2 to 10 10 to 20 9 to 12
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
4 to 12 40 to 60 45 to 60 1 to 8
Glass–fiber–reinforced thermoplastics
Izod Impact strength (ft • Ib/in. of notch)
Acetal
20 to 40
0.8 to 2.8
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
0.8 to 4.5 1.5 to 3.5 1.2 to 4.0
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
1 to 4 0.4 to 4.5 1.3 to 2.5 1 to 2.4
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
0.8 to 1.6 1.6 to 2.2 0.4 to 2.4 1.0 to 2.7
To convert (ft • Ib/in. of notch) to (J/cm of notch), multiply by 0.534 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
754
CRC Handbook of Materials Science & Engineering
Table 215. IMPACT
STRENGTH OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2)
Class
Resin Type
Composition
Impact Strength, Notched/Unnotched (J/cm)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
0.75/3.5 0.59/2.4
Nylon
30% glass fiber 30% carbon fiber
0.64/3.7 0.64/4.3
Polycarbonate
30% glass fiber 30% carbon fiber
2.0/9.34 0.96/5.34
Polyetherimide
30% glass fiber 30% carbon fiber
0.75/5.60 0.75/6.67
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
1.2/5.1 0.53/3.0
Polysulfone
30% glass fiber 30% carbon fiber
0.96/7.5 0.64/3.5
Styrene-maleic-anhydride (SMA)
30% glass fiber
0.59/2.4
Thermoplastic polyurethane
30% glass fiber
5.1/15
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
755
Table 215. IMPACT
STRENGTH OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2)
Class
Resin Type
Composition
Impact Strength, Notched/Unnotched (J/cm)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
0.96/4.8 0.53/1.6
Nylon 66
30% glass fiber 30% carbon fiber
1.5/11 0.80/6.4
Polybutylene telphthalate (PBT)
30% glass fiber 30% carbon fiber
1.4/9.1 0.64/3.5
Polythylene terephthalate (PET)
30% glass fiber
1.0/—
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
0.75/4.5 0.59/2.9
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
756
CRC Handbook of Materials Science & Engineering
Table 216. FRACTURE
TOUGHNESS OF SI3N 4 AND AL2O 3 COMPOSITES
Matrix
Dispersed Phase
Fracture Toughness (KIc), (MPa √m)
Si3N 4+ 6 wt % Y2O 3
None
4.8 ± 0.3
Si3N 4+ 6 wt % Y2O 3
TiC (Ti, W) C WC
4.4 ± 0.5 3.5 ± 0.3 5.2 ± 0.4
TaC HfC SiC
4.6 ± 0.4 3.6 ± 0.2 3.65 ± 0.5
TiC
3.2 ± 0.4
Al2O 3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
757
Table 217. TENSILE
MODULUS OF GRAY CAST IRONS
ASTM Class
Tensile Modulus (GPa)
20 25 30 35
66 to 97 79 to 102 90 to 113 100 to 119
40 50 60
110 to 138 130 to 157 141 to 162
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 218. TENSION
MODULUS OF TREATED D UCTILE IRONS
Treatment
Tension Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
169 168 168 164
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
758
CRC Handbook of Materials Science & Engineering
Table 219. TENSILE
MODULUS OF FIBERGLASS REINFORCED PLASTICS Glass fiber content (wt%)
Tensile modulus (105 psi)
Class
Material
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
16 to 25
Bulk molding compound(BMC) Preform/mat(compression molded)
15 to 35 25 to 50
16 to 25 9 to 20
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
8 to l8 40 to 90 40 to 60 26 to 29
Glass–fiber–reinforced thermoplastics
Acetal
20 to 40
8 to 15
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
2 to 20 7.5 to 17 4 to 9
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
4.5 to 9 8.4 to 12.1 15 6 to 10
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
10 to 18 9.5 to 15 9 to 18.5 13 to 15.5
To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC Shackelford & Alexander
759
Table 220. TENSILE
MODULUS OF GRAPHITE/ALUMINUM COMPOSITES Composite
Fiber loading (vol %)
Wire diameter (mm)
Tensile Modulus (GPa)
VS0054/201 Al GY70SE/201 Al
48 to 52 37 to 38
0.64 (2-strand) 0.71(8-strand)
345 207
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 221. TENSILE
MODULUS OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation
Fiber vol (%)
Tensile Modulus (GPa)
Range of Measurement (%)
0°3/90°6/0°3 90°3/0°6/90°3 0°
33 33 34
122.0 124.8 172.4
107 110 100
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
760
CRC Handbook of Materials Science & Engineering
Table 222. TENSILE
MODULUS OF SILICON CARBIDE SCS–2–AL
Fiber orientation
No. of plies
Tensile Modulus (GPa)
0° 90°
6, 8, 12 6, 12,40
204.1 118.0
[0°/90°/0°/90°] s [02 °99°20°] s [902/0°/90°] s
8 8 8
136.5 180.0 96.5
± 45° [0°±45°/0°] s+2s [0°±45°/90°] s
8, 12, 40 8, 16 8
94.5 146.2 127.0
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
761
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 1 OF 7) Class
Ceramic
Young’s Modulus (psi)
Borides
Chromium Diboride (CrB2)
30.6x106
Tantalum Diboride (TaB2)
37 x106
Titanium Diboride (TiB2)
53.2x106
(6.0 µm grain size, ρ=4.46g/cm )
81.6x106
(3.5 µm grain size, ρ=4.37g/cm 3,
75.0x106
3
0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm 3,
0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm 3,
9.6wt% Ni)
Carbides
Temperature
77.9x106 6.29x106
Zirconium Diboride (ZrB2)
49.8-63.8x106
(22.4% density,foam)
3.305x106
Boron Carbide (B4C)
42-65.2x106
room temp.
( ρ = 11.94 g/cm 3)
61.55x106
room temp.
Silicon Carbide (SiC) (pressureless sintered)
43.9x106
room room room room
Hafnium Monocarbide (HfC)
6
(hot pressed)
63.8x10
(self bonded)
59.5x106
(cubic, CVD)
60.2-63.9x106
temp. temp. temp. temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
762
CRC Handbook of Materials Science & Engineering
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 2 OF 7) Class
Ceramic
Young’s Modulus (psi)
Temperature
Carbides (Con’t)
( ρ = 3.128 g/cm 3)
58.2x106
room temp.
( ρ = 3.120 g/cm 3) (hot pressed)
59.52x106 62.4-65.3x10
(sintered)
54.38-60.9x106
(reaction sintered)
50.75-54.38x106
6
6
55x10
53x106 51x106 55.1x106
room temp. 20˚C 20˚C 20˚C 400˚C 800˚C 1200˚C
(sintered)
43.5-58.0x10
(reaction sintered)
29-46.4x106
1400˚C 1400˚C 1400˚C
Tantalum Monocarbide (TaC)
41.3-91.3x106
room temp.
Titanium Monocarbide (TiC)
63.715x106
room temp. 1000˚C
(hot pressed)
6
6
45-55x10 Trichromium Dicarbide (Cr 3C2) Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC)
54.1x106 96.91-103.5x106 6
28.3-69.6x10
room temp. room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
763
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 3 OF 7) Class
Ceramic
Young’s Modulus (psi)
Nitrides
Aluminum Nitride (AlN)
50x106
Boron Nitride (BN) parallel to c axis
25˚C
6
46x10
1000˚C
40x106
1400˚C
4.91x106
23˚C
6
300˚C
6
700˚C
3.47x10 0.51x10 parallel to a axis
12.46x106
23˚C
6
300˚C
6
700˚C 1000˚C
8.79x10 1.54x10
1.65x106 Titanium Mononitride (TiN)
Temperature
11.47-36.3x106
Trisilicon tetranitride (Si3N 4) (hot pressed)
Oxides
36.25-47.13x106 6
(sintered)
28.28-45.68x10
(reaction sintered)
14.5-31.9x106
20˚C 20˚C
(hot pressed)
25.38-36.25x10
(reaction sintered)
17.4-29.0x106
20˚C 1400˚C 1400˚C
Aluminum Oxide (Al2O 3)
50-59.3x106
room temp.
6
6
50-57.275 x10 6
51.2 x10
45.5-50 x106
500˚C 800˚C 1000˚C
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
764
CRC Handbook of Materials Science & Engineering
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 4 OF 7) Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Aluminum Oxide (Al2O 3) (Con’t)
39.8-53.65 x106
1200˚C
32 x106
1250˚C 1400˚C 1500˚C
6
32.7 x10
25.6 x106 Beryllium Oxide (BeO)
42.8-45.5x106 6
40 x10
33 x106 20 x106 Cerium Dioxide (CeO 2)
24.9x106
Dichromium Trioxide (Cr 2O 3)
>14.9x106
Hafnium Dioxide (HfO 2)
8.2x106
Magnesium Oxide (MgO)
30.5-36.3x106
4 x106
room temp. 600˚C 1000˚C 1200˚C 1300˚C
42.74x106
room temp.
6
29.5 x10
21 x106 10 x106
( ρ = 3.506 g/cm 3)
room temp. 800˚C 1000˚C 1145˚C
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
765
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 5 OF 7) Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Thorium Dioxide (ThO 2)
17.9-34.87x106
room temp.
18-18.5x106
800˚C 1000˚C 1200˚C
6
17.1x10
12.8x106 Titanium Oxide (TiO 2)
41x106
Uranium Dioxide (UO 2)
21x106
0-1000˚C 20˚C room temp.
6
25x10 ( ρ=10.37 g/cm 3)
27.98x106
Zirconium Oxide (ZrO 2) (partially stabilized)
29.7x106 6
(fully stabilized)
14.1-30.0x10
(plasma sprayed)
6.96x106 6
24.8-27x10 36x106 2x106 18.9x106
6
18.5-25x10 3.05x106
17.1-18.0x106 6
14.2x10
12.8x106
room temp. room temp. room temp. room temp. 20˚C 500˚C 800˚C 1000˚C 1100˚C 1200˚C 1400˚C 1500˚C
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
766
CRC Handbook of Materials Science & Engineering
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 6 OF 7) Young’s Modulus (psi)
Temperature
(stabilized, ρ=5.634 g/cm 3)
19.96x106
room temp.
Cordierite (2MgO 2Al2O 3 5SiO 2)
20.16x106
(glass)
13.92x106
Class
Ceramic
Oxides (Con’t)
Uranium Dioxide (UO 2) (Con’t)
Mullite (3Al2O 3 2SiO 2) ( ρ=2.779 g/cm 3)
20.75x106
( ρ=2.77 g/cm )
18.42x10
room temp. 25˚C
( ρ=2.77 g/cm )
18.89x106
400˚C
( ρ=2.77 g/cm 3)
14.79x106
800˚C 1200˚C room temp.
3
3
6
( ρ=2.77 g/cm ) (full density)
33.35x106
Spinel (Al2O 3 MgO)
34.5x106
3
6
4.00x10
6
34.4x10
34.5x106 34x106 6
32.9x10
30.4x106 25.0x106 6
20.1x10 ( ρ=3.510 g/cm ) 3
38.23x106
room temp. 200˚C 400˚C 600˚C 800˚C 1000˚C 1200˚C 1300˚C room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
767
Table 223. YOUNG’S
MODULUS OF CERAMICS
(SHEET 7 OF 7) Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Zircon (SiO 2 ZrO 2)
24x106
room temp.
Silicide
Molybdenum Disilicide (MoSi2)
39.3-56.36x106
room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No . 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
768
CRC Handbook of Materials Science & Engineering
Table 224. YOUNG’S
MODULUS OF GLASS
(SHEET 1 OF 2) Class
Young’s Modulus (GPa)
Temperature
72.76–74.15 79.87 80.80
20˚C 998˚C (annealing point) 1096˚C (straining point)
64.4 62.0
room temp. room temp.
(25% mol Na2O)
56.9 61.4 53.9
–196˚C room temp. 200–250˚C
(30% mol Na2O)
60.5
room temp.
(33% mol Na2O) (33% mol Na2O)
54.9 60.3 51.0
–196˚C room temp. 200–250˚C
(35% mol Na2O)
60.2
room temp.
(40% mol Na2O)
51.9 46.1
–196˚C 200–250˚C
Glass
SiO 2 glass
SiO 2–Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (25% mol Na2O)
(33% mol Na2O)
(40% mol Na2O) SiO 2–PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
47.1 50.1 46.3
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
52.8 51.7 44.1
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
49.3 43.6 41.2
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
769
Table 224. YOUNG’S
MODULUS OF GLASS
(SHEET 2 OF 2) Class
Glass
SiO 2–B2O 3 glass
(60% mol B2O 3) (65% mol B2O 3) (70% mol B2O 3) (75% mol B2O 3) (80% mol B2O 3) (85% mol B2O 3)
Temperature
23.3 22.5 23.5 24.1 22.8
(95% mol B2O 3)
21.2 20.9 21.2
B2O 3 glass
17.2–17.7
room temp.
31.4 43.2
15˚C 15˚C
53.7 59.4 57.1
15˚C 15˚C 15˚C
(90% mol B2O 3)
B2O 3 glass
Young’s Modulus (GPa)
B2O 3–Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
770
CRC Handbook of Materials Science & Engineering
Table 225. ELASTIC
MODULUS OF W ROUGHT STAINLESS STEELS* (SHEET 1 OF 2)
Type
UNS Designation
Elastic Modulus (GPa)
201 205 301 302
S20100 S20500 S30100 S30200
197 197 193 193
302B 303 304 S30430
S30215 S30300 S30400 S30430
193 193 193 193
304N 305 308 309
S30451 S30500 S30800 S30900
196 193 193 200
310 314 316 316N
S31000 S31400 S31600 S31651
200 200 193 196
317 317L 321 330
S31700 S31703 S32100 N08330
193 200 193 196
347 384 405 410
S34700 S38400 S40500 S41000
193 193 200 200
414 416 420 429
S41400 S41600 S42000 S42900
200 200 200 200
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993).
©2001 CRC Press LLC Shackelford & Alexander
771
Table 225. ELASTIC
MODULUS OF W ROUGHT STAINLESS STEELS* (SHEET 2 OF 2)
Type
UNS Designation
Elastic Modulus (GPa)
430 430F 431 434 436 440A
S43000 S43020 S43100 S43400 S43600 S44002
200 200 200 200 200 200
440C 444 446 PH 13–8 Mo
S44004 S44400 S44600 S13800
200 200 200 203
15–5 PH 17–4 PH 17–7 PH
S15500 S17400 S17700
196 196 204
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). *
Annealed Condition .
©2001 CRC Press LLC
772
CRC Handbook of Materials Science & Engineering
Table 226. M ODULUS OF
ELASTICITY OF W ROUGHT TITANIUM ALLOYS
Class
Metal or Alloy
Modulus of Elasticity (GPa)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
102.7 102.7 103.4
99.0Ti 99.2 Ti–0.2Pd
104.1 102.7
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O 2)
110.3 110.3
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo
124.1 113.8 113.8
Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo
113.8 113.8
Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O 2)
113.1 106.9 113.8 113.8
Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo
110.3 113.8 113.8
Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al
122.0 111.7
Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Ti-11.5Mo-6Zr-4.5Sn
101.4 106.9 105.5 103.4
Alpha-Beta Alloys
Beta Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC Shackelford & Alexander
773
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact Low temperature impact Heat resistant
3.3—4.0 2.6—3.2 2.0—3.1 2.0—3.1 3.5—4.2
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
3.5—5.0 2.3—3.3
Chlorinated polyether Chlorinated polyvinyl chloride
1.5 3.7
Chlorinated Polymers
3.5—4.5 4.0—5.0
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
3.45 17
Diallyl Phthalates; Molded
Orlon filled Asbestos filled
6 12
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.9—3.0 0.38—0.65 1.5—2.0 0.5—0.7 1.7—2
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
4.5 0.5—2.5
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
Epoxies; Cast, Molded, Reinforced (Con’t)
Molded: General purpose glass cloth laminate High strength laminate Filament wound composite
33—36 57—58 72—64
Melamines; Molded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
4.8—5.0 27.5
Unfilled Cellulose electrical
10—11
4—5 32—33
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 4 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
8—13 8—12 9—14 30—33
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
10—30 4—6 3.5—6 5—9
Cast polyyester Rigid Flexible
1.5—6.5 0.001—0.10
Polyesters: Thermosets
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 5 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
Polyesters: Thermosets (Con’t)
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
16—20 12—15 15—20
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26
0.21—0.27 0.20—0.24
Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced
D638 4.6—5.0 2.6—4.7 1.50—3.80 12.1
Polyethylenes; Molded, Extruded
Polystyrenes; Molded
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 227. M ODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 6 OF 6) Modulus of Elasticity in Tension, (ASTM D638)
Class
Polymer
(l0 5 psi)
SAN
Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
4.0—5.2 17.5
Polyvinyl Chloride And Copolymers;
ASTM D412 Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
0.004—0.03 0.01—0.03 3 5—4.0 0.7—2.0
Woven glass fabric/ silicone laminate
ASTM D651 28
Alpha—cellulose filled (ASTM Type l) Woodflour filled
13—16 11—14
Silicones; Molded, Laminated
Ureas; Molded
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 228. M ODULUS OF
ELASTICITY OF 55MSI GRAPHITE/6061 ALUMINUM COMPOSITES Material
Reinforcement content (vol % )
Fiber orientation
Modulus of Elasticity (GPa)
55MSI graphite/6061 aluminum composites 55MSI graphite/6061 aluminum composites
34 34
0° 90°
182.2±6.6 33
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
Table 229. M ODULUS OF
ELASTICITY OF GRAPHITE/MAGNESIUM CASTINGS* Modulus of Elasticity,90° (GPa)
179
86
228
30
Fiber content
P75
40% plus 9% 40%
±16° 90° ± 16°
Hollow cylinder Hollow cylinder
Filament wound Filament wound Filament wound
40% 30% 10% 20% 20%
0° 0° plus 90° 0° plus 90°
Plate Plate
Prepreg Prepreg
159 83
21 34
Plate
Prepreg
90
90
P55
Casting
Modulus of Elasticity, 0° (GPa)
Fiber Type
P100
Fiber orientation
Fiber Preform Method
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). *
Pitch-base fibers
©2001 CRC Press LLC
Table 230. M ODULUS OF
ELASTICITY OF GRAPHITE/ALUMINUM COMPOSITES
Thornel Fiber
Longitudinal Modulus of Elasticity (GPa)
Transverse Modulus of Elasticity (GPa)
P55 P75 P100
207 to 221 276 to 296 379 to 414
28 to 41 28 to 41 28 to 41
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 231. M ODULUS OF
ELASTICITY OF GRAPHITE FIBER REINFORCED METALS
Composite
Fiber content (vol%)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
Modulus of Elasticity (106psi)
29.0 17.4 16.9 26.6
(a) Thornel 75 fiber (b) Courtaulds HM fiber To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
782
CRC Handbook of Materials Science & Engineering
Table 232. M ODULUS OF
ELASTICITY OF SIC-WHISKER–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)
(GPa)
Standard Deviation
Range of Measurement
0 12 16 20
71.9 95.3 90.0 111.0
4.5 1.6 3.7 5.0
13 6 9 13
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
783
Table 233. M ODULUS OF
ELASTICITY OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)
(GPa)
Standard Deviation
Range of Measurement
0 5 12 20
71.9 78.4 83.0 95.2
4.5 2.3 7.8 2.7
13 6 21 7
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
Table 234. M ODULUS OF
ELASTICITY OF BORON /ALUMINUM COMPOSITES *
Matrix
Fiber Orientation
Modulus of Elasticity (GPa)
Al-6061
0° 90°
207 138
Al-2024
0° 90°
207 145
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). *
These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply.
©2001 CRC Press LLC
784
CRC Handbook of Materials Science & Engineering
Table 235. COMPRESSION
MODULUS OF TREATED D UCTILE IRONS
Treatment
Compression Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
164 163 165 164
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 236. M ODULUS OF
ELASTICITY IN COMPRESSION FOR POLYMERS Modulus of Elasticity in Compression, (ASTM D638)
Polymer
(l0 5 psi)
Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.8 0 70—0.90 1.5—2.0 0.6—0.8 1.7—2
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
785
Table 237. BULK MODULUS OF
Glass
Bulk Modulus (GPa)
GLASS
Temperature
SiO 2 glass SiO 2-Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O)
31.01-37.62 33.8 34.8 36.5
room temp. room temp. room temp.
(30% mol Na2O)
38.2 40.1 39.8
room temp. room temp. room temp.
(33% mol Na2O) (35% mol Na2O) SiO 2-PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
33.9 25.6 31.1
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
25.1 30.6 30.5
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
29.5 33.1 31.6
B2O 3-Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
23.2 33.6
15˚C 15˚C
39.2 44.4 42.1
15˚C 15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
786
CRC Handbook of Materials Science & Engineering
Table 238. SHEAR
MODULUS OF GLASS
(SHEET 1 OF 2) Shear Modulus (GPa)
Temperature
SiO 2 glass
31.38 33.57 34.15
20˚C 998˚C (annealing point) 1096˚C (straining point)
(5% mol Na2O)
27.2 27.4 27.6 27.2
–100˚C 0˚C 80˚C 160˚C
26.9 27.2
–100—160˚C room temp.
25.8 25.0 24.8 24.2
–100˚C 0˚C 80˚C 160˚C
25.8 25.2
room temp. room temp.
24.5 24.2 24.1
room temp. room temp. room temp.
Class
Glass
SiO 2 glass
SiO 2–Na2O glass
(5% mol Na2O) (5% mol Na2O) (5% mol Na2O) (7.5% mol Na2O) (15% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O) (35% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
787
Table 238. SHEAR
MODULUS OF GLASS
(SHEET 2 OF 2) Class
Glass
Shear Modulus (GPa)
SiO 2–PbO glass
(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
20.4 21.4 18.5
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
23.0 21.2 17.5
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
20.2 17.0 16.1
B2O 3 glass
B2O 3–Na2O glass
(10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
Temperature
6.55 6.29 6.07 5.78
room temp. 250˚C 260˚C 270˚C
5.49 5.15 4.75
280˚C 290˚C 300˚C
12.3 16.8
15˚C 15˚C
21.1 23.2 22.4
15˚C 15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
788
CRC Handbook of Materials Science & Engineering
Table 239. TORSIONAL
MODULUS OF GRAY CAST IRONS
ASTM Class
Torsional Modulus (GPa)
20 25 30
27 to 39 32 to 41 36 to 45
35 40 50 60
40 to 48 44 to 54 50 to 55 54 to 59
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 240. TORSION
MODULUS OF TREATED D UCTILE IRONS
Treatment
Torsion Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
63 64 62 63.4
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
789
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 1 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
3.5—4.0 2.5—3.2 2.0—3.2
Low temperature impact Heat resistant
2.0—3.2 3.5—4.2
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
3.5—4.5 4.0—5.0
Moldings: Grades 5, 6, 8 High impact grade
3.5—5.0 2.7—3.6
Acrylics; Cast, Molded, Extruded
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 2 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Thermoset Carbonate
Allyl diglycol carbonate
2.5—3.3
Alkyds; Molded
Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
22—27 22—27 22—28
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1
(ASTM D747) 2.0—2.55 1.50—2.35
MH—1, MH—2 MS—1, MS—2 S2—1
1.50—2.15 1.25—1.90 1.05—1.65
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 3 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
Cellulose Acetate Butyrate; Molded, Extruded
(105 psi)
(ASTM D747) ASTM Grade: H4 MH S2
1.8 1.20—1.40 0.70—0.90
ASTM Grade: 1 3 6
1.7—1.8 1.45—1.55 1.1
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
1.3 (0.1% offset) 3.85
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
3.4 12
Cellusose Acetate Propionate; Molded, Extruded
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 4 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE)
2.0—2.5 0.6—1.1 4.64
Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
0.8 1.75—2.0
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
4.5—5.4 0.36—3.9 15—25
General purpose glass cloth laminate High strength laminate Filament wound composite
36—39 53—55 69—75
Epoxies; Cast, Molded, Reinforced
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 5 OF 13) Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polymer Class
Polymer
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
4.4—4.8 32—35
Filler & type Unfilled Cellulose electrical Glass fiber
10—13 10—13 24
Melamines; Molded
4—5 28—31
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 6 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
1.4—3.9 1.0—1.4 5.05 0.92—3.2
Type 8 Type 11
0.4 1.51
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
1.75–4.5 10—18 11—13 1.75—4.1
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 7 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Nylons; Molded, Extruded (Con’t)
6/10 Nylon General purpose Glass fiber (30%) reinforced
1.6–2.8 8.5
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
8—12 8—12 9—13 30—33
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
10—30 4—6 3.5 5
ABS–Polycarbonate Alloy
4
Phenolics; Molded
ABS–Polycarbonate Alloy
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 8 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
4 3
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
7 5 38.4
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
4.1 8.8 4
Copolymer: Standard 25% glass reinforced High flow
3.75 11 3.75
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 9 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
3.4 12—15 12
General purpose grade Glass reinforced grade Asbestos—filled grade
33 87 90
Cast polyyester Rigid Flexible
1—9 0.001—0.39
Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose
15—25 15—18
Polyesters: Thermosets
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 10 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
3.6 3.6 7.4—10.4
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
3.9 12, 15.5
Polyarylsulfone
4
General purpose High impact
1.7—2.5 1.0—2.0
Asbestos filled Glass reinforced Flame retardant
3.4—6.5 4—8.2 1.9—6.1
Polypropylene:
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 11 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Polyphenylene sulfide:
Standard 40% glass reinforced
5.5—6.0 17—22
Polyethylenes; Molded, Extruded
(ASTM D747) Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
0.13—0.27 0.12—0.3 0.1
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
0.35—0.5 0.35—0.5
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 12 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Polyethylenes; Molded, Extruded (Con’t)
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
1.3—1.5 0.9—0.25 1.5 0.75
Olefin Copolymers; Molded
Ethylene butene Propylene—ethylene Polyallomer
165 (psi) 140 (psi) 0.7—1.3
Polystyrenes; Molded
Polystyrenes: General purpose Medium impact High impact Glass fiber -30% reinforced
4—5 3.5—5.0 2.3—4.0 12
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 241. M ODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 13 OF 13) Modulus of Elasticity in Flexure (ASTM D790)
Polymer Class
Polymer
(105 psi)
Styrene acrylonitrile (SAN):
Glass fiber (30%) reinforced SAN
14.5
Polyvinyl Chloride And Copolymers; Molded, Extruded
Rigid—normal impact
3.8—5.4
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
25 14—17 26—32
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 242. FLEXURAL
MODULUS OF FIBERGLASS REINFORCED PLASTICS Glass fiber content (wt%)
Flexural modulus (105 psi)
Class
Material
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
14 to 20
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
14 to 20 13 to 18 13 to 19
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
10 to 12 50 to 70 40 to 60 30
Acetal
20 to 40
8 to 13
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
2 to 28 7.5 to 15 2.1 to 6
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
3.5 to 8.2 8 to 12 8 to 15 9.2 to 15
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
9 to 16 8 to 15 8.0 to 18 8.7 to 15
Glass–fiber–reinforced thermoplastics
To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
803
Table 243. FLEXURAL
MODULUS OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class
Resin Type
Composition
Flexural Modulus (GPa)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
7.6 12.4
Nylon
30% glass fiber 30% carbon fiber
7.9 15.2
Polycarbonate
30% glass fiber 30% carbon fiber
8.3 13.1
Polyetherimide
30% glass fiber 30% carbon fiber
8.6 17.2
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
9.0 11.7
Polysulfone
30% glass fiber 30% carbon fiber
8.3 14.5
Styrene-maleic-anhydride (SMA)
30% glass fiber
9.0
Thermoplastic polyurethane
30% glass fiber
1.3
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
804
CRC Handbook of Materials Science & Engineering
Table 243. FLEXURAL
MODULUS OF CARBON - AND GLASSREINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class
Resin Type
Composition
Flexural Modulus (GPa)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
9.7 9.3
Nylon 66
30% glass fiber 30% carbon fiber
9.0 20.0
Polybutylene telphthalate (PBT)
30% glass fiber 30% carbon fiber
9.7 15.9
Polythylene terephthalate (PET)
30% glass fiber
9.0
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
11.0 16.9
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
805
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 1 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Borides
Titanium Diboride (TiB2)
19x103
(98% dense)
5.37x103
(6.0 µm grain size, ρ=4.46g/cm 3)
6.2x103
(3.5 µm grain size, ρ=4.37g/cm 3, 0.8wt% Ni)
5.7x103
(6.0 µm grain size, ρ=4.56g/cm 3, 0.16wt% Ni)
11.0x103 6.29x103
(12.0 µm grain size, ρ=4.66g/cm , 9.6wt% Ni) 3
Carbides
Temperature
Hafnium Monocarbide (HfC) ( ρ = 11.9 g/cm 3)
34.67x103
( ρ = 11.9 g/cm )
3
3
( ρ = 11.9 g/cm 3)
12.64x10 4.78x103
room temp. 2000 oC 2200 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 2 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Temperature
Carbides (Con’t)
Silicon Carbide (SiC)
27x103
room temp.
3
11x103
1300 oC 1400 oC
15x103
1800 oC
25x10
(with 1 wt% Be addictive)
58x103
(with 1wt% B addictive)
42x103
(with 1wt% Al addictive)
136x103
Titanium Monocarbide (TiC) ( ρ = 4.85 g/cm 3) ( ρ = 4.85 g/cm ) 3
32.67x103 13.6x103
room temp. 2000oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 3 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Temperature
Carbides (Con’t)
Tungsten Monocarbide (WC)
55.65-84x103
room temp.
Carbides (Con’t)
Zirconium Monocarbide (ZrC)
16.6-22.5x103
room temp.
Nitrides
Aluminum Nitride (AlN) (hot pressed)
3
8.3x10
1250 oC
5.14x103 2.5x103
1750 oC 2000 oC
38.5x103
25oC
27x103
1000oC 1400oC
3
18.1x10
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 4 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Temperature
Nitrides (Con’t)
Boron Nitride (BN) parallel to c axis
7.28-13.2x103
25 oC
7.03x10
300 oC
1.90x103 1.08x103
700 oC 1000 oC
1.25x103
1500 oC
1.50x103
1800 oC 2000 oC
3
3
2.45x10
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 5 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Temperature
Nitrides (Con’t)
parallel to a axis
15.88x103
25 oC
15.14x103
300 oC
3.84x103
700 oC 1000 oC
3
2.18x10 Titanium Mononitride (TiN)
34x103
(10wt% AlO and 10wt% AlN)
13.34x103
(30wt% AlO and 10wt% AlN)
23.93x103
(30wt% AlO and 30wt% AlN)
33.25x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 6 OF 10) Class
Ceramic
Nitrides (Con’t)
Trisilicon Tetranitride (Si3N 4)
Modulus of Rupture (psi)
Temperature
(hot pressed)
65.3-159.5x103
(sintered)
39.9-121.8x103
20oC 20oC
(reaction sintered)
7.25-43.5x103
20oC
Aluminum Oxide (Al2O 3)
Oxides
(single crystal)
131 x103 60 x103
room temp.
(80% dense, 3µm grain size)
56x103
20 oC
(80% dense, 3µm grain size) (80% dense, 3µm grain size)
62x103 58x103
600 oC 900 oC
(80% dense, 3µm grain size)
42x103
1100 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 7 OF 10) Modulus of Rupture (psi)
Temperature
(80% dense, 20µm grain size)
30x103
20 oC
(80% dense, 20µm grain size)
3
Class
Ceramic
Oxides (Con’t)
Aluminum Oxide (Al2O 3) (Con’t)
(80% dense, 20µm grain size)
28x10 31x103
600 oC 900 oC
(80% dense, 20µm grain size)
30x103
1100 oC
(zirconia toughened alumina, 15 vol% ZrO 2) (zirconia toughened alumina, 25 vol% ZrO 2)
137x103 139x103
(zirconia toughened alumina, 50 vol% ZrO 2)
145x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 8 OF 10) Class
Ceramic
Modulus of Rupture (psi)
Temperature
Oxides (Con’t)
Beryllium Oxide (BeO)
24-29 x103
room temp.
Dichromium Trioxide (Cr 2O 3)
3
Hafnium Dioxide (HfO 2)
>38x10 10x103
Titanium Oxide (TiO 2)
10-14.9x103
room temp.
20-35x103
room temp. room temp.
Zirconium Oxide (ZrO 2) (5-10 CaO stabilized)
3
(MgO stabilized)
30x10
(hot pressed yittria doped zirconia)
222x103
(sintered yittria doped zirconia)
148x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 9 OF 10) Modulus of Rupture (psi)
Temperature
( ρ=2.3g/cm )
16x103 15x103
25oC 400oC
( ρ=2.1g/cm 3)
8x103
800oC
( ρ=1.8g/cm 3)
3.4x103
1200oC
Mullite (3Al2O 3 2SiO 2)
6-27x103
25oC
( ρ=2.77g/cm 3)
8.5x103
25oC
( ρ=2.77g/cm 3) ( ρ=2.77g/cm )
13.5x103 16.7x103
400oC 800oC
( ρ=2.77g/cm 3)
11.5x103
1200oC
Class
Ceramic
Oxides (Con’t)
Cordierite (2MgO 2Al2O 3 5SiO 2) ( ρ=2.51g/cm 3) 3
3
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 244. M ODULUS OF
RUPTURE FOR CERAMICS
(SHEET 10 OF 10) Modulus of Rupture (psi)
Temperature
( ρ = 5.57 g/cm 3)
18.57x103
room temp.
(sintered)
50.7x103
room temp.
(sintered)
3
67.25x10
980oC
(sintered)
86.00x103
1090oC
(hot pressed)
36-57x103
room temp.
(hot pressed)
3
Class
Ceramic
Silicide
Molybdenum Disilicide (MoSi2)
(hot pressed)
72.00x10
3
55.00x10
1090oC 1200oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index , Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book , Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Table 245. RUPTURE STRENGTH OF
REFRACTORY METAL ALLOYS
(SHEET 1 OF 2) Class
Alloy
Alloying Additions (%)
Form
Condition
Temperature (°F)
10-h rupture (ksi)
Niobium and Niobium Alloys
Pure Niobium
—
All
Recrystallized
2000
5.4
Nb–1Zr SCb291
1 Zr 10 Ta, 10 W
All Bar, Sheet
Recrystallized Recrystallized
2000 2000
14 9
C129 FS85 SU31
10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si
Sheet Sheet Bar, Sheet
Recrystallized Recrystallized Special Thermal Processing
2400 2400 2400
15 12 22
Pure Molybdenum
—
All
Stress-relieved Annealed
1800
25
Low C Mo TZM
None 0.5 Ti, 0.08 Zr, 0.015 C
All All
Stress-relieved Annealed Stress-relieved Annealed
1800 2400
24 23
TZC Mo–5Re Mo–30W
1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W
All All All
Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed
2400 3000 2000
28 1 20
Molybdenum and Molybdenum Alloys
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Table 245. RUPTURE STRENGTH OF
REFRACTORY METAL ALLOYS
(SHEET 2 OF 2) Class
Alloy
Alloying Additions (%)
Form
Condition
Temperature (°F)
10-h rupture (ksi)
Tantalum Alloys
Unalloyed TA–10W
None 10 W
All All
Recrystallized Recrystallized
2400 2400
2.5 20
Tungsten Alloys
Unalloyed
None
Stress-relieved Annealed
3000
6.8
W–2 ThO 2
2 ThO 2
Stress-relieved Annealed
3000
18
W–3 ThO 2 W–4 ThO 2
3 ThO 2 4 ThO 2
Stress-relieved Annealed Stress-relieved Annealed
3000 3000
18 18
W–15 Mo W–50 Mo
15 Mo 50 Mo
Stress-relieved Annealed Stress-relieved Annealed
3000 3000
12 12
W–25 Re
25 Re
Stress-relieved Annealed
3000
10
Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar Bar, Wire Bar, Wire Bar, Sheet, Wire
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 1 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Incoloy 800
650 760 870
220 115 45
145 69 33
Incoloy 801
650 730 815
250 145 62
— — —
Incoloy 802
650 760 870
240 145 97
170 105 62
Inconel 600
815 870
55 37
39 24
Inconel 601(a)
540 870 980
— 48 23
400 30 14
Inconel 617(b)
815 925 980
140 62 41
97 — —
Inconel 625(a)
650 815 870
440 130 72
370 93 48
Inconel 718(c)
540 595 650
— 860 690
951 760 585
Inconel 751(d)
815 870
200 120
125 69
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).
©2001 CRC Press LLC
818
CRC Handbook of Materials Science & Engineering
Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 2 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Inconel X–750(e)
540 870 925
— 83 58
827 45 21
N–155, bar(f)
650 730 870
360 195 97
295 150 66
N–155(g)
650
380
290
N–155, sheet(f)
980
39
20
Nimonic 75(h)
815 870 925 980
38 23 14 —
24 15 10 7.6
Nimonic 80A(j)
540 815 870
— 185 105
825 115 —
Nimonic 90(j)
815 870 925
240 150 69
155 69 —
Nimonic 105(k)
815 870
325 210
225 135
Nimonic 115(m)
815 870 925
425 315 205
315 205 130
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).
©2001 CRC Press LLC Shackelford & Alexander
819
Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 3 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Nimonic 263(n)
815 870 925
170 93 45
105 46 —
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). *
(a) Solution treat 1150 °C. (b) Solution treat 1175 °C. (c) Heat treat to 980 °C plus 720 °C hold for 8 h, furnace cool to 620 °C hold for 8 h. (d) 730 °C hold for 2h. (e) Heat treat to 1150 °C plus 840 °C hold for 24h, plus 705 °C hold for 20h. (f) Solution treated and aged. (g) Stress-relieved forging. (h) Heat treat to 1050 °C hold for 1 h. (j) Heat treat to 1080 °C hold for 8 h, plus 700 °C hold for 16 h. (k) Heat treat to 1150 °C hold for 4 h, plus 1050 °C hold for 16 h, plus 850 °C hold for 16 h. (m) Heat treat to 1190 °C hold for 1.5 h, plus 1100 °C hold for 6 h. (n) Heat treat to 1150 °C hold for 2 h, water quench, plus 800 °C hold for 8 h.
©2001 CRC Press LLC
820
CRC Handbook of Materials Science & Engineering
Table 247. M ODULUS OF
RUPTURE FOR SI3N 4 AND AL2O 3COMPOSITES Modulus of Rupture (MPa)
Matrix
Dispersed Phase
RT
1000 °C
1200 °C
Si3N 4+ 6 wt % Y2O 3
None
110.9 ± 1.6
88.3 ± 3.5
49.2 ± 5.0
Si3N 4+ 6 wt % Y2O 3
TiC (Ti, W) C WC
80.6 ± 5.9 75.5 ± 3.2 89.1 ± 31.8
120.4 ± 12.2 86 ± 0 136.4 ± 1.6
64.4 ± 2.9 52.9 ± 0.5 55.7 ± 0.5
TaC HfC SiC
86.2 ± 7.3 86 ± 0.8 97.6 ± 8.5
124.5 ± 16.0 — 94.0 ± 4.9
43.2 ± 2.0 68.6 ± 0.5 52.3 ± 3.2
TiC
72.2 ± 13.0
69.4 ± 4.3
57.0 ± 4.1
Al2O 3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC Shackelford & Alexander
821
Table 248. POISSON 'S
RATIO OF W ROUGHT TITANIUM ALLOYS Class
Metal or Alloy
Poisson's Ratio
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
0.34 0.34 0.34
99.0Ti 99.2 Ti–0.2Pd
0.34 0.34
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-5Al-5Sn-2Zr-2Mo-0.25Si
0.32 0.326
Alpha-Beta Alloys
Ti-6Al-4V Ti-6Al-4V (low O 2) Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si
0.342 0.342 0.327
Beta Alloys
Ti-13V-11Cr-3Al
0.304
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC
822
CRC Handbook of Materials Science & Engineering
Table 249. POISSON ’S
RATIO FOR CERAMICS
(SHEET 1 OF 2) Class
Ceramic
Poisson’s Ratio
Borides
Titanium Diboride (TiB2)
0.09-0.28
(6.0 µm grain size, ρ=4.46g/cm ) 3
(3.5 µm grain size, ρ=4.37g/cm , 0.8wt% Ni)
0.10 0.12
(6.0 µm grain size, ρ=4.56g/cm 3, 0.16wt% Ni)
0.11
(12.0 µm grain size, ρ=4.66g/cm , 9.6wt% Ni)
0.15
Zirconium Diboride (ZrB2)
0.144
Boron Carbide (B4C) Hafnium Monocarbide (HfC)
0.207 0.166
3
3
Carbides
Silicon Carbide (SiC) ( ρ = 3.128 g/cm 3)
0.183-0.192 at room temp.
Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Tungsten Monocarbide (WC)
0.1719 -0.24 0.187-189 0.24
Zirconium Monocarbide (ZrC) ( ρ = 6.118 g/cm 3)
0.257
Nitrides
Trisilicon tetranitride (Si3N 4) (presureless sintered)
0.24 0.22-0.27
Oxides
Aluminum Oxide (Al2O 3) Beryllium Oxide (BeO) Cerium Dioxide (CeO 2)
0.21-0.27 0.26-0.34
0.27-0.31
Magnesium Oxide (MgO) ( ρ = 3.506 g/cm 3)
0.163 at room temp.
Thorium Dioxide (ThO 2) ( ρ=9.722 g/cm 3)
0.275
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
823
Table 249. POISSON ’S
RATIO FOR CERAMICS
(SHEET 2 OF 2) Class
Ceramic
Poisson’s Ratio
Oxides (Con’t)
Titanium Oxide (TiO 2)
0.28
Uranium Dioxide (UO 2) ( ρ=10.37 g/cm 3)
0.302
Zirconium Oxide (ZrO 2) (partially stabilized) (fully stabilized) (plasma sprayed)
0.324-0.337 at room temp. 0.23 0.23-0.32 0.25
Cordierite (2MgO 2Al2O 3 5SiO 2) ( ρ=2.3g/cm 3) ( ρ=2.1g/cm ) (glass) 3
0.21 0.17 0.26
Mullite (3Al2O 3 2SiO 2) ( ρ=2.779 g/cm 3)
0.238
Spinel (Al2O 3 MgO)
Silicide
( ρ=3.510 g/cm 3)
0.294
Molybdenum Disilicide (MoSi2)
0.158-0.172
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
824
CRC Handbook of Materials Science & Engineering
Table 250. POISSON ’S
RATIO OF GLASS
(SHEET 1 OF 2) Class
Composition
Poisson’s Ratio
Temperature
0.166–0.177
room temp.
0.183 0.203 0.219
room temp. room temp. room temp.
(35% mol Na2O)
0.236 0.249 0.248
room temp. room temp. room temp.
(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
0.249 0.174 0.252
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
0.150 0.219 0.259
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
0.222 0.281 0.283
SiO 2 glass SiO 2–Na2O glass
(15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O)
SiO 2–PbO glass
B2O 3 glass
0.288–0.309
room temp.
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
825
Table 250. POISSON ’S
RATIO OF GLASS
(SHEET 2 OF 2) Class
Composition
Poisson’s Ratio
Temperature
B2O 3–Na2O glass
(5.5% mol Na2O)
0.279 0.2740 0.271
15˚C
(10% mol Na2O) (15.4% mol Na2O) (20% mol Na2O)
0.2860 0.272 0.2713 0.274
(22.8% mol Na2O) (25% mol Na2O) (29.8% mol Na2O) (33.3% mol Na2O)
15˚C 15˚C
0.2771 0.2739 0.292
(37% mol Na2O) (37.25% mol Na2O)
15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
Table 251. POISSON 'S
RATIO OF SILICON CARBIDE SCS–2–AL Fiber orientation
No. of plies
Poisson's Ratio
0° 90° ± 45°
6, 8, 12 6, 12,40 8, 12, 40
0.268 0.124 0.395
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
826
CRC Handbook of Materials Science & Engineering
Table 252. COMPRESSION
POISSON ’S RATIO OF TREATED D UCTILE IRONS
Treatment
Compression Poisson’s Ratio
60-40-18 65-45-12 80-55-06 120 90-02
0.26 0.31 0.31 0.27
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 253. TORSION
POISSON ’S RATIO OF TREATED D UCTILE IRONS
Treatment
Torsion Poisson’s Ratio
60-40-18 65-45-12 80-55-06 120 90-02
0.29 0.29 0.31 0.28
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC Shackelford & Alexander
827
Table 254. ELONGATION OF
TOOL STEELS Elongation (%)
Type
Condition
L2
Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C
25
Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
24
Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
L6
S1
S5
S7
5 10 12 15 25
4 8 12 20
4 5 9 12
5 7 9 10 15
7 9 10 10 14
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
828
CRC Handbook of Materials Science & Engineering
Table 255. ELONGATION OF
D UCTILE IRONS
Specification Number
Grade or Class
Elongation (%)
ASTM A395-76 ASME SA395
60-40-18
18
ASTM A476-70(d); SAE AMS5316
80-60-03
3
60-40-18 65-45-12
18 12
80-55-06 100-70-03 120-90-02
6 3 2
SAE J434c
D4018 D4512 D5506 D7003
18 12 6 3
MlL-I-24137(Ships)
Class A Class B Class C
15 7 20
ASTM A536-72, MIL-1-11466B(MR)
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
829
Table 256. ELONGATION OF
Specification Number
Ferritic ASTM A47, A338; ANSI G48.1; FED QQ-I-666c
MALLEABLE IRON CASTINGS
Grade or Class
32510 35018
10 18 5
40010 45008 45006 50005
10 8 6 5
60004 70003 80002 90001
4 3 2 1
M3210 M4504(a) M5003(a)
10 4 3
M5503(b) M7002(b) M8501(b)
3 2 1
ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL-I-11444B
Automotive ASTM A602; SAE J158
Elongation (%)
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
830
CRC Handbook of Materials Science & Engineering
Table 257. ELONGATION OF
FERRITIC STAINLESS STEELS
(SHEET 1 OF 2) Type
ASTM Specification
Form
Condition
Elongation (%)
Type 405 (UNS S40500)
A580 A580
Wire
Annealed Annealed, Cold Finished
20 16
Type 409 (UNS S40900) Type 429 (UNS S42900)
— —
Bar Bar
Annealed Annealed
25(a) 30(a)
Type 430 (UNS S43000)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
20 16
Type 430Ti(UNS S43036)
—
Bar
Annealed
30(a)
Type 434 (UNS S43400) Type 436 (UNS S43600)
— —
Wire Sheet, Strip
Annealed Annealed
33(a) 23(a)
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
Table 257. ELONGATION OF
FERRITIC STAINLESS STEELS
(SHEET 2 OF 2) Type
ASTM Specification
Form
Condition
Elongation (%)
Type 442 (UNS S44200) Type 444 (UNS S44400)
— A176
Bar Plate, Sheet, Strip
Annealed Annealed
20(a) 20
Type 446 (UNS S44600)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
20 16
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
Table 258. ELONGATION OF
MARTENSITIC STAINLESS STEELS
(SHEET 1 OF 3) Type
ASTM Specification
Form
Condition
Elongation (%)
Type 403 (UNS S40300)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
20 16 15 12 12 12
Type 410 (UNS S41000)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
20 16 15 12 12 12
Type 410S (UNS S41008)
A176
Plate, Sheet, Strip
Annealed
22
Type 410Cb (UNS S41040)
A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished
13 12 13 12
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
Table 258. ELONGATION OF
MARTENSITIC STAINLESS STEELS
(SHEET 2 OF 3) Type
ASTM Specification
Form
Condition
Elongation (%)
Type 414 (UNS S41400)
A276 A276
Bar
Intermediate temper, hot finished Intermediate temper, cold finished
15 15
Type 414L Type 420 (UNS S42000)
— —
Bar Bar
Annealed Tempered 205 °C
20 8
Type 422 (UNS S42200)
A565
Bar
for high-temperature service
13
Type 431 (UNS S43100)
— —
Bar
Tempered 260 °C Tempered 595 °C
16 19
Type 440A (UNS S44002)
— —
Bar
Annealed Tempered 315 °C
20 5
Type 440B (UNS S44003)
— —
Bar
Annealed Tempered 315 °C
18 3
Type 440C (UNS S44004)
— —
Bar
Annealed Tempered 315 °C
14 2
Intermediate and hard tempers
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
Table 258. ELONGATION OF
MARTENSITIC STAINLESS STEELS
(SHEET 3 OF 3) Type
ASTM Specification
Form
Condition
Elongation (%)
Type 501 (UNS S50100)
— —
Bar, Plate
Annealed Tempered 540 °C
28 15
Type 502 (UNS S50200)
—
Bar, Plate
Annealed
30
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
Table 259. ELONGATION OF
PRECIPITATION -H ARDENING AUSTENITIC STAINLESS STEELS Type
Form
Condition
Elongation (%)
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
6-10 6-10
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
10(a) 10(a) 12(a) 13(a)
H1100 H1150 H1150M
14(a) 16(a) 18(a)
RH950 TH1050
6 6
17–7 PH (UNS S17700)
Bar
(a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
Table 260. ELONGATION OF
H IGH –N ITROGEN AUSTENITIC STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 201 (UNS S20100)
A276
Bar
Annealed
40
Type 202 (UNS S20200)
A276
Bar
Annealed
40
Type 205 (UNS S20500)
—
Plate
Annealed *
58
Type 304N (UNS S30451)
A276
Bar
Annealed
30
Type 304HN (UNS S30452)
—
Bar
Annealed
30
Type 316N (UNS S31651)
A276
Bar
Annealed
30
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *
Typical values
©2001 CRC Press LLC
Table 261. TOTAL ELONGATION OF
CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No.
Temper
Elongation (in 2 in.) (%)
201.0
T4 T6 T7
20 7 4.5
206.0, A206.0 208.0
T7 F
11.7 2.5
242.0
T21 T571 T77
1.0 0.5 2.0
T571 T61
1.0 0.5
295.0
T4 T6 T62
8.5 5.0 2.0
296.0
T4 T6 T7 F
9.0 5.0 4.5 2.0
319.0
F T6 F T6
2.0 2.0 2.5 3.0
336.0
T551 T65 T61
0.5 0.5 6.0
T51 T6 T61 T7
1.5 3.0 1.0 0.5
308.0
354.0 355.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
838
CRC Handbook of Materials Science & Engineering
Table 261. TOTAL ELONGATION OF
CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No.
Temper
Elongation (in 2 in.) (%)
355.0 (Con’t)
T71 T51 T6
1.5 2.0 4.0
T62 T7 T71
1.5 2.0 3.0
T51 T6 T7
2.0 3.5 2.0
T71 T6 T7
3.5 5.0 6.0
357.0, A357.0 359.0
T62 T61 T62
8.0 6.0 5.5
360.0 A360.0 380.0
F F F
3.0 5.0 3.0
383.0 384.0, A384.0 390.0
F F F T5
3.5 2.5 1.0 1.0
A390.0
F,T5 T6 T7
1015
General purpose, type II
>1015
Moldings: Grades 5, 6, 8
>1014
High impact grade
2.0 x 1016 4 x 1014
Thermoset Carbonate
Allyl diglycol carbonate
Alkyds; Molded
Putty (encapsulating)
1014
Rope (general purpose)
1014
Granular (high speed molding) Glass reinforced (heavy duty parts) Cellulose Acetate; Molded, Extruded
1014 — 1015 1014
ASTM Grade: H6—1
1010—1013
H4—1
1010—1013
H2—1
1010—1013
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
975
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 2 OF 8)
Polymer
Cellulose Acetate; Molded, Extruded (Con’t)
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Chlorinated Polymers
Polycarbonates
Diallyl Phthalates; Molded
Volume Resistivity, (ASTM D257) ( Ω • cm)
Type
MH—1, MH—2
1010—1013
MS—1, MS—2
1010—1013
S2—1
1010—1013
ASTM Grade: H4
1011—1014
MH
1011—1014
S2
1011—1014
ASTM Grade: 1
1011—1014
3
1011—1014
6
1011—1014 1.5 x 1016
Chlorinated polyether Chlorinated polyvinyl chloride
1 x 1015—2 x 1016
Polycarbonate Polycarbonate (40% glass fiber reinforced)
2.1 x 1016 1.4 x 1015
Orlon filled
6 x 104—6 x 106
Dacron filled
102—2.5 x 104
Asbestos filled
102—5 x 103
Glass fiber filled
104—5 x 104
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
976
CRC Handbook of Materials Science & Engineering
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 3 OF 8)
Polymer
Fluorocarbons; Molded,Extruded
Type
Polytetrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded High strength laminate
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded
Volume Resistivity, (ASTM D257) ( Ω • cm)
1018 >1018 1015 >2 x 1018 5 x 1014
6.1 x 1015 9.1 x 105—6.7 x 109 1—5 x 1015 6.6 x 107—109
2.10 x 1014 1.4—5.5 x 1014 >1016
Epoxy novolacs
Cast, rigid
Melamines; Molded
Filler & type Cellulose electrical
1012—1013
Glass fiber
1—7 x 1011
Alpha cellulose and mineral
1012
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
977
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 4 OF 8)
Polymer
Nylons; Molded, Extruded
Volume Resistivity, (ASTM D257) ( Ω • cm)
Type
Type 6
4.5 x 1013
General purpose Glass fiber (30%) reinforced
2.8 x 1014—1.5 x 1015
Cast
2.6 x 1014
Type 8
1.5 x 1011
Type 11
2 x 1013
Type 12
1014 —1015
6/6 Nylon
1014—1015
General purpose molding
2.6—5.5 x 1015
Glass fiber reinforced
1015
General purpose extrusion 6/10 Nylon
1015
General purpose Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp
109—1013 1—50 x 1011 >1010
High shock: chopped fabric or cord
10
— 1011
Very high shock: glass fiber
10
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric
1010 — 1012
Rubber phenolic—asbestos
108—1011 1011 1011
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
978
CRC Handbook of Materials Science & Engineering
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 5 OF 8)
Polymer
Phenolics; Molded (Con’t)
Polymides
Polyacetals
Polyester; Thermoplastic
Type
ABS—Polycarbonate Alloy
2.2 x 1016
PVC—Acrylic Alloy PVC—acrylic Sheet
l—5 x 1013
PVC—acrylic injection molded
5 x l015
Unreinforced
4 x 1015
Glass reinforced
9.2 x 1015
Homopolymer: Standard
1 x 1015
20% glass reinforced
5 x 1014
Copolymer: Standard
1 x 1014
25% glass reinforced
1.2 x 1014
High flow
1.0 x 1014
Injection Moldings: General purpose grade
1—4 x 1016
Glass reinforced grades
3.2—3.3 x 1016
Glass reinforced self extinguishing
Polyesters: Thermosets
Volume Resistivity, (ASTM D257) ( Ω • cm)
3.4 x 1016
General purpose grade
2 x 1015
Asbestos—filled grade
3 x 1014
Cast polyyester Rigid
1013
Flexible
1012
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
979
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 6 OF 8)
Polymer
Polyesters: Thermosets (Con’t)
Volume Resistivity, (ASTM D257) ( Ω • cm)
Type
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
Phenylene oxides (Noryl)
6.4 x 1015 —2.2 x 1016
1017
SE—1
1017
Glass fiber reinforced
1017
Standard
5 x 1016 1017
Polyarylsulfone
3.2—7.71 x l016
General purpose
>1017
High impact
Polyphenylene sulfide
1 x 1012 —1 x 1013
Phenylene Oxides SE—100
Glass fiber reinforced
Polypropylene
1 x 1012 —1 x 1013
1017
Asbestos filled
1.5 x 1015
Glass reinforced
1.7 x 1016
Flame retardant
4 x 1016—1017
40% glass reinforced
4.5 x 1014
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
980
CRC Handbook of Materials Science & Engineering
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 7 OF 8)
Polymer
Polyethylenes; Molded, Extruded
Olefin Copolymers; Molded
Type
Type I—lower density (0.910—0.925) Melt index 0.3—3.6
1017—1019
Melt index 6—26
1017—1019
Melt index 200
1017—1019
Type II—medium density (0.926—0.940) Melt index 20
>1015
Melt index l.0—1.9
>1015
Type III—higher density (0.941—0.965) Melt index 0.2—0.9
>1015
Melt Melt index 0.l—12.0
>1015
Melt index 1.5—15
>1015
High molecular weight
>1015
EEA (ethylene ethyl acrylate)
2.4 x 1015
EVA (ethylene vinyl acetate)
0.15 x 1015
Ionomer
Polystyrenes; Molded
Volume Resistivity, (ASTM D257) ( Ω • cm)
10 x 1015
Polyallomer
>1016
Polystyrenes General purpose
>1016
Medium impact
>1016
High impact
>1016
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
981
Table 293. VOLUME RESISTIVITY OF
POLYMERS
(SHEET 8 OF 8)
Polymer
Polystyrenes; Molded (Con’t)
Volume Resistivity, (ASTM D257) ( Ω • cm)
Type
Glass fiber -30% reinforced
3.6 x 1016
Styrene acrylonitrile (SAN)
>1016
Glass fiber (30%) reinforced SAN Polyvinyl Chloride And Copolymers; Molded, Extruded
Nonrigid—general
1—700 x 1012
Nonrigid—electrical
4—300 x 1011
Rigid—normal impact
1014—1016
Vinylidene chloride
1014—1016
Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Ureas; Molded
4.4 x 1016
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2)
(dry) 9 x 1014 5 x 1014 2—5 x 1014 0.5—5 x 1011 5—8 x 1010
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
982
CRC Handbook of Materials Science & Engineering
Table 294. CRITICAL
TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2)
a
Element
Tc(K)
Al Be Cd
1.175 0.026 0.518-0.52
Ga Ga ( β) Ga ( γ) Ga ( δ)
5.90-6.2 7.62 7.85
Hg ( α) Hg ( β)
4.154 3.949
In Ir
3.405 0.11-0.14
La ( α) La ( β) Mo Nb
4.88 6.00 0.916 9.25
Os Pa Pb Re
0.655 1.4 7.23 1.697
Ru Sb Sn Ta
2.6-2.7a 3.721 4.47
Tc Th
7.73-7.78 1.39
1.0833
0.493
Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
Shackelford & Alexander
983
Table 294. CRITICAL
TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2)
a
Element
Tc(K)
Ti Ti
0.39 2.332-2.39
V W Zn Zr Zr ( ω)
5.43-5.31 0.0154 0.875 0.53
0.65
Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
984
CRC Handbook of Materials Science & Engineering
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 1 OF 8) Dissipation Factor (ASTM D150)
Class
ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
60 Hz
10 6 Hz
Medium impact
0.003—0.006
0.008—0.009
High impact Very high impact Low temperature impact Heat resistant
0.005—0.007 0.005—0.010 0.005—0.01 0.030—0.040
0.007—0.015 0.008—0.016 0.008—0.016 0.005—0.015
Polymer
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
0.05—0.06 0.05—0.06
0.02—0.03 0.02—0.03
0.04—0.06 0.03—0.04
0.02—0.03 0.01—0.02
Thermoset Carbonate
Allyl diglycol carbonate
0.03—0.04
0.1—0.2
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.030—0.045 0.019
0.016—0.020 0.023
0.030—0.040
0.017—0.020
0.02—0.03
0.015—0.022
0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06
0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
985
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 2 OF 8) Dissipation Factor (ASTM D150)
Class
Cellulose Acetate Butyrate; Molded, Extruded
Polymer
Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride
Diallyl Phthalates; Molded
0.01—0.04 0.01—0.04 0.01—0.04
0.02—0.05 0.02—0.05 0.02—0.05
0.01—0.04 0.01—0.04 0.01—0.04
0.02—0.05 0.02—0.05 0.02—0.05
0.011 0.0189— 0.0208
0.011
0.0009
0.01
0.006
0.007
0.023—0.015 (Dry) 0.004—0.016 (Dry) 0.05—0.03 (Dry) 0.004—0.015 (Dry)
0.045—0.040 (Wet) 0.009—0.017 (Wet) 0.154—0.050 (Wet) 0.012—0.020 (Wet)
ASTM Grade: 1 3 6
Polycarbonates
10 6 Hz
ASTM Grade: H4 MH S2
Cellulose Acetate Propionate; Molded, Extruded
60 Hz
Polycarbonate Polycarbonate (40% glass fiber reinforced) Orlon filled Dacron filled Asbestos filled Glass fiber filled
0.02
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
986
CRC Handbook of Materials Science & Engineering
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 3 OF 8) Dissipation Factor (ASTM D150)
Class
Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
Epoxies—Molded, Extruded
Polymer
60 Hz
10 6 Hz
0.02
0.007—0.010
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
0.0002
0.0002
0.0005–0.0015
0.0005–0.0015
0.0003
0.0003
0.05
0.184
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate High strength laminate
0.0074 0.0048-0.0380 0.011-0.018
0.032 0.0369-0.0622 0.013—0.020
0.004-0.006
0.024—0.026
—
0.010-0.017
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid
0.0055— 0.0074 0.0071—0.025 — 0.001—0.007
0.029—0.028 — 0.0158 —
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
987
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 4 OF 8) Dissipation Factor (ASTM D150)
Class
Melamines; Molded
Nylons; Molded, Extruded
Polymer
Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose Mineral
60 Hz
10 6 Hz
0.048—0.162 0.026—0.192 0.14—0.23 — —
0.031—0.040 0.032—0.12 0.020—0.03 0.028 0.030
0.06—0.014
0.03—0.04
0.022—0.008
0.019—0.015
0.015 0.007—0.010
0.05 0.010—0.015
0.19 0.03
0.08 0.02
Type 6
General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Type 8 Type 11 Type 12
0.04 (103 Hz)
6/6 Nylon
General purpose molding Glass fiber reinforced 6/10 Nylon General purpose Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
0.014—0.04 0.009—0.018
0.04 0.017—0.018
0.04
0.05—0.30
0.03—0.07
0.08—0.35
0.03—0.07
0.08—0.45
0.03—0.09
0.02—0.03
0.02
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
988
CRC Handbook of Materials Science & Engineering
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 5 OF 8) Dissipation Factor (ASTM D150)
60 Hz
10 6 Hz
0.13—0.16
0.1
0.15—0.60
0.1—0.2
0.5
0.09
0.15
0.13
ABS–Polycarbonate Alloy
0.0026
0.0059
PVC–acrylic sheet PVC–acrylic injection molded
0.076
0.094
0.037
0.031
Polyimides
Unreinforced Glass reinforced
0.003 0.0034
0.011 0.0055
Polyacetals
Homopolymer: Standard 20% glass reinforced Copolymer: Standard 25% glass reinforced High flow
0.0048 0.0047
0.0048 0.0036
0.001 (100 Hz) 0.003 (100 Hz) 0.001 (100 Hz)
0.006 0.006 0.006
Class
Phenolics: Molded
PVC–Acrylic Alloy
Polyester; Thermoplastic
Polymer
Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic— chopped fabric Rubber phenolic— asbestos
Injection Moldings: General purpose grade Glass reinforced grades
0.002 (103 Hz) 0.002—0.003 (103 Hz)
Glass reinforced self extinguishing General purpose grade
0.002 (103 Hz)
Asbestos—filled grade
0.015 (103 Hz)
0.023 (103 Hz)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
989
Table 295. D ISSIPATION
FACTOR FOR POLYMERS
(SHEET 6 OF 8) Dissipation Factor (ASTM D150)
60 Hz
10 6 Hz
0.003—0.04 0.01—0.18
0.006—0.04 0.02—0.06
0.0087—0.04
0.0086—0.022
0.0007 0.0007 0.0009
0.0024 0.0024 0.0015
0.0008 0.0019
0.0034 0.0049
Polyarylsulfone
0.0017—0.003
0.0056—0.012
General purpose
0.0005–0.0007
0.0002–0.0003 0.0002— 0.0003 0.002 0.003 0.0006–0.003
Class
Polyesters: Thermosets
Reinforced polyester moldings Phenylene Oxides
Polypropylene
Polymer
Cast polyyester Rigid Flexible Sheet molding compounds, general purpose SE—100 SE—1 Glass fiber reinforced Phenylene oxides (Noryl) Standard Glass fiber reinforced
High impact Asbestos filled Glass reinforced Flame retardant Polyphenylene sulfide
Polyethylenes; Molded, Extruded
92 90
Thermoset Carbonate
Allyl diglycol carbonate
89—92
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
Opaque Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 2 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
75—90 75—90 80—90
MH—1, MH—2 MS—1, MS—2 S2—1
80—90 80—90 80—95
ASTM Grade: H4 MH S2
75—92 80—92 85—95
ASTM Grade: 1 3 6
80—92 80—92 80—92
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 3 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
Opaque Opaque
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
75—85 Translucent
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
80—92
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
90 85
General purpose glass cloth laminate High strength laminate Filament wound composite
Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 4 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate
Opaque Opaque
Epoxy novolacs
Glass cloth laminate
Opaque
Melamines; Molded
Filler & type Unfilled Cellulose electrical
Good Opaque
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
Translucent Opaque Opaque Opaque
Nylons; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 5 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Nylons; Molded, Extruded (Con’t)
6/10 Nylon General purpose Glass fiber (30%) reinforced
Opaque Opaque
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
Opaque
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
Opaque Opaque
Poliymides
Unreinforced Unreinforced 2nd value Glass reinforced
Opaque Opaque Opaque
Polyesters: Thermosets
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 6 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
Opaque Opaque Opaque
Phenylene oxides (Noryl)
Glass fiber reinforced
Opaque
Polypropylene
General purpose High impact
Translucent—opaque Translucent—opaque
Asbestos filled Glass reinforced Flame retardant
Opaque Opaque Opaque
Standard 40% glass reinforced
Opaque Opaque
Polyphenylene sulfide
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 305. TRANSPARENCY OF
POLYMERS
(SHEET 7 OF 7)
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Polystyrenes; Molded
General purpose Medium impact High impact Glass fiber -30% reinforced
Transparent Opaque Opaque Opaque
Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
Transparent Opaque
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
Opaque Opaque Opaque
Ureas; Molded
Alpha—cellulose filled (ASTM Type 1) Cellulose filled (ASTM Type 2) Woodflour filled
21.8 Opaque Opaque
Styrene acrylonitrile (SAN)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 306. REFRACTIVE INDEX OF
POLYMERS
(SHEET 1 OF 5)
Polymer
Type
Refractive index, (ASTM D542) (n D )
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
1.485—1.500 1.485—1.495
Moldings: Grades 5, 6, 8 High impact grade
1.489—1.493 1.49
Thermoset Carbonate
Allyl diglycol carbonate
1.5
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
1.46—1.50 1.46—1.50 1.46—1.50
MH—1, MH—2 MS—1, MS—2 S2—1
1.46—1.50 1.46—1.50 1.46—1.50
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 306. REFRACTIVE INDEX OF
POLYMERS
(SHEET 2 OF 5)
Polymer
Type
Refractive index, (ASTM D542) (n D )
Cellulose Acetate Butyrate; Molded, Extruded
ASTM Grade: H4 MH S2
(D543) 1.46—1.49 1.46—1.49 1.46—1.49
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
1.46—1.49 1.46—1.49 1.46—1.49
Polycarbonate
1.586
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.43 1.35 1.34 1.42
Fluorocarbons; Molded,Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 306. REFRACTIVE INDEX OF
POLYMERS
(SHEET 3 OF 5)
Polymer
Type
Refractive index, (ASTM D542) (n D )
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
1.61 1.61
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
Opaque Opaque Opaque
Copolymer: Standard 25% glass reinforced High flow
Opaque Opaque Opaque
Cast polyyester Rigid Flexible
1.53—1.58 1.50—1.57
Polyacetals
Polyesters: Thermosets
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 306. REFRACTIVE INDEX OF
POLYMERS
(SHEET 4 OF 5)
Polymer
Type
Refractive index, (ASTM D542) (n D )
Phenylene oxides (Noryl)
Standard
1.63
Polyarylsulfone
Polyarylsulfone
1.651
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
1.51 1.51 1.51
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
1.51 1.51
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15
1.54 1.54 1.54
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 306. REFRACTIVE INDEX OF
POLYMERS
(SHEET 5 OF 5)
Polymer
Type
Refractive index, (ASTM D542) (n D )
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact
1.6 Opaque Opaque
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
Opaque 1.565—1.569 Opaque
Vinylidene chloride
1.60—1.63
Polyvinyl Chloride And Copolymers; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 1 OF 13) Material
Dispersion Equation at 298 K
3
Alumina (Sapphire, Single Crystal)
2
n -1=
Σ i=1
Aiλ 2 λ2
-
where i
1 2 3 ( λ in mm)
( λ in µm)
λ2 i λi2 0.00377588 0.0122544 321.3616
Ai 1.023798 1.058264 5.280792
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 2 OF 13) Material
Dispersion Equation at 298 K
5
ArsenicTrisulfide (Glass)
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 ( λ in µm)
( λ in µm)
λi2 0.0225 0.0625 0.1225 0.2025 0.705
Ki 1.8983678 1.9222979 0.8765134 0.1188704 0.9569903
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 3 OF 13) Material
Dispersion Equation at 298 K
3
Barium Fluoride (Single Crystal)
2
n -1=
Σ
Aiλ 2
( λ in µm)
λ2 - λ2 i i=1
where i
1 2 3 ( λ in µm)
λi 0.057789 0.10968 46.3864
Ai 0.643356 0.50676 3.8261
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 4 OF 13) Material
Cadmium Sulfide (Bulk and Hexagonal Single Crystal)
Dispersion Equation at 298 K
n 2o=5.235+
1.891x107 λ 2-1.651x107
for ordinary ray, and
2.076x10 7 2 ne =5.239+ λ 2-1.651x10 7 for extraordinary ray. ( λ in µm)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 5 OF 13) Material
Dispersion Equation at 298 K
3
Calcium Fluoride (Single Crystal)
2
n -1=
Aiλ 2
Σ i=1
λ2
-
( λ in µm)
λ2 i Ai 0.5675888 0.4710914 3.8484723
i 1 2 3
Cesium Bromide (Single Crystal)
2 -6 n = 5.640752–3.338x10 λ2 +
0.0018612 λ
2
λι 0.050263605 0.1003909 34.64904
41110.49 0.0290764 + 2 + 2 λ -14390.4 λ -0.024964
( λ in µm)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 6 OF 13) Material
Dispersion Equation at 298 K
5
Cesium Iodide (Single Crystal)
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 ( λ in mm)
( λ in µm)
λi2 0.00052701 0.02149156 0.28551800 0.39743178 3.3605359
Ki 0.3461725 1.0080886 0.02149156 0.044944 25921
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 7 OF 13) Material
Dispersion Equation at 298 K
Germanium (Intrinsic Single Crystal)
n = A + Bλ + Cλ2 + D λ2 + Eλ4
where A=3.99931 B=0.391707 C=0.163492 D=–0.0000060 E=0.000000053 for 2.0µm ≤ λ ≤ 13.5 µm
Lithium Fluoride (Single Crystal)
n = A + BL + CL2 + D λ2 + Eλ4
where A=1.38761 B=0.001796 C=–0.000041 D=–0.0023045 E=–0.00000557 for 0.5µm ≤ λ ≤ 6.0 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 8 OF 13) Material
Dispersion Equation at 298 K
Magnesium Fluoride (Single Crystal)
no =1.36957 +
0.0035821 λ -0.14925
for ordinary wavelengths, and
ne =1.38100 +
0.0037415 λ -0.14947
for wavelengths within 0.4µm ≤ λ ≤ 0.7 µm
2 -5 n =2.956362-0.1062387 λ 2 –2.04968 x10 λ4
Magnesium Oxide (Single Crystal)
–
0.0219577 λ2
-0.01428322
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 9 OF 13) Material
Potassium Bromide (Single Crystal)
Potassium Chloride (Single Crystal)
Dispersion Equation at 298 K
2
n = 2.3618102–0.00058072 λ 2 +
0.02305269
λ2– 0.02425381 for 0.4µm ≤ λ ≤ 0.7 µm
n2= 2.174967+
0.08344206 λ 2-0.0119082
+
0.00698382 λ2 -0.025555
– 0.000513495 λ2 – 0.06167587 λ 4 for ultraviolet wavelengths
n2=3.866619+
0.08344206 λ 2 – 0.0119082
–
0.00698382 λ 2–
0.025555
–
5569.715 λ 2–
3292.472
for the visible light
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 10 OF 13) Material
Silica (High Purity Fused)
Silicon (Single Crystal)
Dispersion Equation at 298 K
n2=2.978645 +
0.008777808 λ 2–
0.010609
+
84.06224 λ 2–
96.0000
n = 3.41696 + 0.138497L + 0.013924L2 – 0.0000209λ2 + 0.000000148λ4
where L = ( λ2 – 0.028) –1
Silver Bromide (Single Crystal)
n2 – 1 0.10279 λ2 =0.48484+ λ2– 0.0900 n2 + 2
– 0.004796 λ 2
for 0.54µm ≤ λ ≤ 0.65 µm
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 11 OF 13) Material
Dispersion Equation at 298 K
Silver Chloride (Single Crystal)
n = 4.00804 – 0.00085111λ2 – 0.00000019762λ4 + 0.079086/( λ2 – 0.04584)
Strontium Titanate (Single Crystal)
n = A + BL + CL2 + D λ2 + Eλ4
where A=2.28355 B=0.035906 C=0.001666 D=–0.0061355 E=–0.00001502 for 1.0 µm ≤ λ ≤ 5.3 µm
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 12 OF 13) Material
Dispersion Equation at 298 K
5
Thallium Bromoiodide (KRS-5, Mixed Crystal)
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 ( λ in µm)
λi2 0.0225 0.0625 0.1225 0.2025 27089.737
Ki 1.8293958 1.6675593 1.1210424 0.4513366 12.380234
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 307. D ISPERSION OF
OPTICAL MATERIALS
(SHEET 13 OF 13) Material
Titanium Dioxide (Rutile, Single Crystal)
Dispersion Equation at 298 K
n 2o=5.913+
2.441x107 λ 2– 0.803x107
for ordinary wavelengths, and
2 n =7.197 e
+
3.322x10
7
λ 2– 0.843x107
for extraordinary wavelengths. ( λ in Å)
Zinc Sulfide (Single Crystal, Cubic)
7 n = 5.164+ 1.208x107 l2 – 0.732 x10 ( λ in Å)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford, James F. & Alexander, W. “Chemical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
CHAPTER 9
L is t o f T a b le s
C h e m ic a l P ro p e r t ie s o f M a t e ria ls
A b s o rp tio n Water Absorption of Polymers
E M F P o te n tia ls a n d G a lv a n ic S e rie s Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water
C o rro s io n Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F
©2001 CRC Press LLC
1071
L is t o f T a b le s (C o n tin u e d )
C o rro s io n (c o n ’t) Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas
F la m m a b ility Flammability of Polymers Flammability of Fiberglass Reinforced Plastics
©2001 CRC Press LLC
1072
CRC Handbook of Materials Science & Engineering
Table 308. W ATER
ABSORPTION OF POLYMERS (SHEET 1 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
ABS Resins; Molded, Extruded
Medium impact High impact
0.2—0.4 0.2—0.45
Very high impact Low temperature impact Heat resistant
0.2—0.45 0.2—0.45 0.2—0.4
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.3—0.4 0.2—0.4
Moldings: Grades 5, 6, 8 High impact grade
0.3—0.4 0.2—0.4
Allyl diglycol carbonate
0.2
Acrylics; Cast, Molded, Extruded
Thermoset Carbonate
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 308. W ATER
ABSORPTION OF POLYMERS (SHEET 2 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.10—0.15 0.05—0.08 0.08—0.12 0.007—0.10
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1
1.7—2.7 1.7—2.7
MH—1, MH—2 MS—1, MS—2 S2—1
1.8—4.0 2.1—4.0 2.3—4.0
ASTM Grade: H4 MH S2
2 1.3—1.6 0.9—1.3
Cellulose Acetate Butyrate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 308. W ATER
ABSORPTION OF POLYMERS (SHEET 3 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
1.6—2.0 1.3—1.8 1.6
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
0.01 0.11
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
0.15 0.08
Orlon filled Dacron filled Asbestos filled Glass fiber filled
(122 •F, 48 hr), % 0.2—0.5 0.2—0.5 0.4—0.7 0.2—0.4
Diallyl Phthalates; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Table 308. W ATER
ABSORPTION OF POLYMERS (SHEET 4 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
0 0.01
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
>0.2