Основы эконометрического моделирования c использованием EViews

Учебное пособие. — 2-е изд., перераб. и доп. — М.: РУДН, 2011. — 206 с.В учебном пособии изложены основные принципы пост

383 31 2MB

Russian Pages [208]

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Основы эконометрического моделирования c использованием EViews

  • Commentary
  • 1510324
  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

ю , .А. . . ю

. .

А

C

И

А

,

Ч EVIEWS

л

,

2011

65 33

И ы

: ,

ЦЭ

Е.Ю.

,

,

, , ю

, .

. .

.

33 Eviews: / , . . . – 2.: , 2011. – 206 .

. . .–

.

,

. .,

.

-

. ,

, ,

-

, ,

, . Eviews. , .

ISBN 978-5-209-04090-3

© ©

. .,

. .,

. ., 2011 ,

, 2011

. .,

ы

И. .

.А.,

Eviews

, Э



, ,

.

« 1910

»



., . , ,

А

«…

,

,

»

(

). «

»

, .

: , , ,

. .

«Э



:

, ,

. ,

. Э .

,

– 3

,

– ,

. Э



. »1. :

,

, , ,

,

,

,

,

,

. «

– »( .

). , .

: (cross-sectional data) – ,

• ; •

(time-sectional data) – ,

, . ,

,

: ⎯

(y)



; ⎯

(x) –

. :

1

Frisch R. Editorial // Econometrica. – 1933. N1. P.2.

4

. .,

ы

.А.,

И. . Eviews



ы ) –

( (x);



ы )–

( (y);





, .

: yt – yt-1 – yt-2 – •

; ; . (

ы ) –

(xt, xt-1),

(yt-1). . :

1.

.

: Y = f(L, K) – D = f(P, Pk, I) 2.

. – ,

, ,

,

. –

-

:

– ;

-

– ;

ы

-

– .

5



3.

– , . , . . . -,

(

,

,

-

)

: -

; . :

1)

(

,

.), ; (

2)

)

; ; 3) 4) 5)

(

); ;

, -

, ;

6)

-

,

. .

; 7) Э

. . , . .

6

. .,

ы

И. .

.А.,

Eviews

. , . (

)

(

,

). — . ,

, . , —

,

. .

. , ы

, . orrelatio -

(

,

). — (

(

)

) (

)

. . . , xi (

y—

, y i,

. 0.1).

7

, x— x (i ) .

. 0.1. x y



: ; — ; —

,

, 1, . ryx 0,1 - 0,3 0,3 - 0,5 0,5 - 0,7 0,7 - 0,9 0,9 - 1,0 ,

.

ы (

, ,

) .

,

8

. .,

ы 2

И. .

.А.,

Eviews

. –

:

)

;

;

• • •

( ,

. .

. , ,

, ,

( . .

), (

,

,

), —

. . -,

-

. . (0.1). y i = α + βxi + ε i xi — (

( , , εi –

(0.1) , yi — , α, — . >0,

) ) .

,

0,

i

.

. .

rx , y =

Cov( x, y )

σ xσ y

.

(−1 ≤ rx, y ≤ 1). R2,

(rx2, y ) . «

» α

( ,

a

) , RSS (

) 13

b ,

1.

yi yˆ i , yˆ i = a + bxi . ei = y i − yˆ i ,

yi — yˆ i —

y; y;

RSS (a, b) =  ( y i − yˆ i ) 2 =  ( y i − a − bxi ) 2 =  ei2i  min n

n

n

i

i

i

(∑ei2 ), . RSS(a,b), a, b :

∂RSS = −2 y i + 2na + 2b xi = 0 ∂a ∂RSS = −2 y i xi + 2a  xi + 2b xi2 = 0 ∂b

:

na + b xi =  yi

a xi + b xi2 =  yi xi , (

) b b=

Cov( x, y ) . Var ( x) a: 14

. .,

ы

И. .

.А.,

Eviews

a = y − bx . . «

»,

, Best Linear Unbiased Estimations). ,

(BLUE –

. , .

Э

, .

, – : Var ( y ) = Var ( yˆ ) + Var (e) , Var ( yˆ ) Var(e)

; -

, .

R2 =

Var ( yˆ ) Var ( y ) − Var (e) Var (e) . = = 1− Var ( y ) Var ( y ) Var ( y ) , , y,

15

1.

1- R2

. (

),

. R2 1.

, ,

,

a

b?

?

1.2. «

,

,

,

…» (



.

-

,

1795-1821).

ei. . , (0.1) ( ): 1) E(εi) = 0 (i=1, 2, …, n) – 0 2) Var (ε ) = const ( )

;

( –

. . homoscedasticity

). (heteroscedasticity – ,

),

, -

; 16

. .,

ы

И. .

.А.,

Eviews

3) ,

. . Э

Cov (ε i , ε j ) = 0 (i ≠ j ) .

. ,

,

,

; 4)

, . . Cov (ε i , x j ) = 0 (i ≠ j ) . Э , ;

5) ,

. . εi . Э «

, »

(

, ). , . 1. ei , ei = y i − yˆ i ,

y; yˆ i —

yi —

2.

S=

e n−2 1

n

2 i

i =1

17

.

y.

1.

e (

)

, .

3.

 (e Var (e) =

e =

−e)

2

i

n−2

2 i

n−2

=S.

,

(

)

Var (e) = 1 − R 2 ⋅ Var ( y ) . R 2 = 1,

Var (e) = 0 ;

R2 = 0 ,

Var (e) = Var ( y ) .

, 0 ≤Var(e) ≤ Var(y). 4.

σ e = Var (e) , Var(e)— 5.

.

ϑ=

σu y

⋅ 100% ,

σu —

; y — . ϑ

-

(5-7%)

, . 18

. .,

ы

И. .

.А.,

Eviews

6.

b

Sb =

Sa = σ u

 (x − x)2 σu

x

a

 (x − x)

t-

.

2

.

2

.

t-

. . (b−, b+),

. . : b − = b − t ⋅ Sb , b + = b + t ⋅ Sb .

a. (

), . :

) )

n; ; 19

1.

)

.

1.3.

,

. ( «

» (

«

0)

.

1)

, . . .

» t-

. t-

,

,

, ,

(1 -

) |=|

|t

b |> t Sb

, , . . (

.

)

t-

. t( )

– k),

(n

n –

,

k ,

.

P-

( (p-value, Prob.) 20

Eviews)

. .,

ы

И. .

.А.,

Eviews

,

, n - k

,

,

, t-

. . P,

,

t-

H0 , . . .

H0

. P,

,

t-

. H0

,

. (

)

P,

. H0: ρx,y=0,

|r

| t ρ =0 |=

x, y

n−2

1 − rx , y

2

ρx,y –

|≥ t

(1.1)

, , . . (t )

rx,y

. .

21

1.

 ( y − y ) /(k − 1) ≥ F =  e /(n − k ) 

2

i

F

2

.

i

F k-1 n-k

.

F-

,

F

= 0. >= F

,

,

.

. P. № 1. :

. .

86 ,

(

.) y ,

( .) x (

2006 ., «Э

economist.rudn.ru).

22

»

. .,

ы

И. .

.А.,

Eviews

1.

. (

2. 3.

)

5%-

.

.

4.

. . (

) .

5.

. 6.

(yhat)

y^

,

.

7.

: ; ; . №1 Eviews 1.

, Eviews

Excel.

Eviews,

. ,

o File/New/Workfile….

23

10% 10% 10%

1.

, Workfile structure type Observations

( 1.1): ,

).

ы -

: resid,

ы

Unstructed/undated , . UNTITLED, Save File). ( . . , , . ( ,

( ),

( ,

, o

ы,

,

ы . . Excel Proc/Load Workfile Page…

24

),

. .,

ы

.А.,

И. . Eviews

. 1.1.

Eviews

. Sheet Excel (

), Custom range,

, , (

.

.1.2).

25

1.

. 1.2.

, Excel (

), , (

.

.1.3, , c ). ,

– x, y –

, resid –

– Name (

.1.3).

26

.

. .,

ы

.А.,

И. . Eviews

. 1.3.

( )

View  Graph  Scatter  Simple

Scatter. .1.4.

, x

,

. 27

1.

. ,

. , , .

,

, , .

. 1.4.

(

)

, Quick  Sample 3 86 (

28

,

. .,

ы

И. .

.А.,

Eviews

,

,

)3.

. 2. View Descriptive Stats  Common Sample. Freeze, . Name .

( -

)

, .

5%-

, ( -

)

0,05. (

.

, .

(

.1.5). .

2).

3

Range - Sample:3 86 – 84 obs.

29

,

1.

.

.

.

-

. -

. .

. 1.5.

, Correlations 

3. View Common Sample. ryx=0,812

. ,

1(

.

1.1).

4. y= α + β x + ε Equation, ycx(

(mod1)

Quick  Estimate

, ).

Method

30

. .,

ы

И. .

.А.,

Eviews

)

(LS- Least Squares Sample –

Name ( ).

3 86. ,

EQ01

).

(

.1.6. ,

(c

)

: y^= 3712+ 1,34 x

. 1.6.

mod1

.

:

(Dependent Variable), (Sample) (Included Observations).

,

, :

31

1.

t-

p-

C

3711.881

1028.453

3.609190

0.0005

x

1.343802

0.106495

12.61841

0.0000

. , ,

,

p-

0,05. .

2. :

0.660067

15335.60

R2 R2

0.655922

.

7145.774

*

4191.580

19.54306

S .

RSS

*

1.44E+09 -818.8087

F

1.870805

p-

19.60094 159.2243

**

(F-

_

0.000000

)

, (F

=159,2243, p2 R = 0,66

,

0,00). 66%

( . .

*

(

. [6,

,

.

11.4 ])

**

(

3.12])

32

) (

. 9,[

. .,

ы

И. .

.А.,

Eviews

) (

)

. , Freeze Name ( ).

. b=1,34 : 1

. ,

,

1 . 34 .

. , . . . View  Actual, Fitted, Residual  Actual, Fitted, Residual Graf, , , ( . 1.7). View  Actual, Fitted, Residual  Actual, Fitted, Residual Table, .

33

1.

. 1.7.

,

y^

, (Fitted)

.1.7,

.

x (Actual)

. (Residual), .

Eviews,

.

Normality Test. .1.8,

View  Residual Tests  Histogram – , , , 34

. .,

ы

И. .

.А.,

Eviews -13

(Mean=7.8*10 ).

,

.

.

. 1.8.

, . 5. Forecast.

: Forecast name

yhat

; S.E.

se

; 35

1.

Forecast sample (3 86);

(

. 1.9.

.1.9)

Forecast

yhat,

, (

.1.10). ( (

yhat yhat) , se). Freeze

Name.

(

).

36

ы

. .,

.А.,

И. . Eviews

. 1.10.

Eviews : o Root Mean Squared Error (RMSE) .

(y n

RMSE =

i

− yˆ i ) 2 / n ,

i =1

n– o Mean Absolute Error (MAE) – MAE =  | y i − yˆ i | / n n

i =1

37

1.

o Mean Absolute Percentage Error . MAPE =

(MAPE)



1 n  | y i − yˆ i | / y i * 100% n i =1

o Theil Inequality Coefficient

-

, Eviews [12]. 0 1,

0,

. .

,

. : y^ 4 y (Bias Proportion ),

o o

y^ y (Variance Proportion) (Covariance

o

Proportion) Э

1. 0( , .

1), .1.10, 28%,

. 10%.

6.

, . o Range 4

Bias Proportion=0

38

. .,

ы

И. .

.А.,

Eviews

(Data range 

Observations: 89). x

o

( ENTER): x(87)=@mean(x)*1.1, x(88)=@min(x)*1.1, x(89)=@max(x)*1.1, @mean(x) – (

x ), @min(x) – @max(x) –

x,

3

86

x . x. x

, 87 88 89

9514.86 3216.4 32783.3

( ENTER): smpl 87 89 eq01.forecast yf se_yf yf –

, se_yf – . :

yf yf 1

se_yf.

,

86 y,

.

se_yf

39

87 –

1.

. Э : ,

. yf yf

se_yf

. CTRL Open as Group. ,

.1.11. .

. 1.11.

95% ( ENTER): series yf_l = yf-se_yf*@qtdist(0.975,82) series yf_r = yf+se_yf*@qtdist(0.975,82) yf_l – ,

95% yf_r –

(84 2,5%

.

2 . .

,

. @qtdist(0.975,82) – 82 ) Eviews 95%

40

. .,

ы

@qtdist

И. .

.А.,

Eviews

, . . 0.9755.

2,5%

( forecast –

). group forecast x yf yf_l yf_r

. ,

View  Graph  Scatter  Simple Scatter.

. 1.12.

. 1.12, , 5

. . Eviews

.

41

1.

. , ,

. .

1

1.

Y

X,

. 2. 3. . . 4. 1%, 5%

10%

.

? 5. . 6. . 7. 107%

Y

X ,

.

8.

[7].

42

. .,

ы

И. .

.А.,

Eviews

1.

199

№– Y-

, , № 1 2 3 4 5 6

X 7 8 14 16 19 21

. .

. № 7 8 9 10 11 12

Y 7 2 8 17 9 10

X 20 32 42 22 40 36

Y 12 26 35 15 22 17

2.

№Y ,

.

X-

, №

.

X 1 2 3 4 5 6

. №

Y

7,3 15,2 4,32 4,07 22,12 15,3

X 7 8 9 10 11 12

200 500 50 125 1000 300

199

3.

№Y-

, ,



X 1 2 3

7,3 5,23 2,36 3,66 2,56 3,24

Y 200 300 20 200 20 165

.

. №

Y 77 85 79

. . X 7 8 9

23 52 40

43

Y 79 97 73

33 63 34

1.



X 4 5 6



Y 93 89 81

X 10 11 12

42 57 81

Y

95 84 108

55 32 65

4.

№XY-

,

.

. ,



X 1 2 3 4 5 6



Y

7,3 15,2 4,32 4,07 22,12 15,3

X 7 8 9 10 11 12

60 82 12 25 65 58

Y

7,8 5,23 2,36 3,66 2,56 3,24

63 29 10 23 25 26

5.

№XY-

,

.

. ,

№ 1 2 3 4 5 6

№. . Y-

X 79 91 77 87 84 76

№ 7 8 9 10 11 12

Y 34 54 28 38 33 44

X 84 94 79 98 81 115

Y 60 49 25 63 20 62

199

6.

, , 44

.

.

. .,

ы

И. .

.А.,

Eviews



X 1 2 3 4 5 6



Y

35,8 22,5 28,3 26 20 31,8

X 7 8 9 10 11 12

3,5 2,6 3,2 2,6 2,6 3,5

30,5 29,5 41,5 41,3 34,5 34,9

7.

№-

Y 3,1 2,9 3,4 4,8 3 3,1

199

,

.

. Y-

,



X 1 2 3 4 5 6



Y 2,4 3 2,2 2,1 4 2,5

X 7 8 9 10 11 12

4,8 5,7 5,1 5,5 6,2 4,9

. Y

5 2,3 3 3,4 3,9 3,1

8.

№. . Y-

.

7 4,7 4,9 5,5 5,6 4,4

200

, ,



X 1 2 3 4 5 6



Y 4,9 8,5 9,1 5,5 6,1 5,1

45

.

X 7 8 9 10 11 12

3,9 5,5 4,8 4 3,9 3,8

.

Y 4,2 3,8 11 6,9 7,5 5,5

4,1 3 6,3 4,8 5,2 3,7

1.

199

9.

№Y-

. ,



X 1 2 3 4 5 6



Y 2,4 3 2,2 2,1 4 2,5

.

Y 5 2,3 3 3,4 3,9 3,1

15 13 16 20 24 15

199

X 1 2 3 4 5 6

.

.

7 8 9 10 11 12

15 17 12 15 25 14

, ,



. X

10.

№Y-

,



Y

24,6 41,1 29,5 27,6 31,9 38,8

X 7 8 9 10 11 12

5 9 4,8 5,4 7,4 6,6

. . 39,2 40,2 41,6 41,3 47 54,7

. . Y 7,8 9,3 9,6 8 10,8 9,9

1. ? 2. 3.

? ?

4.

. 46

. .,

ы

И. .

.А.,

Eviews

5. ? 6. 7.

? ?

8. 9. 10.

? . ?

11. ?

47

2.

А

А 2.

2.1.

y = α + β 1 x1 + β 2 x 2 + ε ,

α,

1,

2



(2.1)

; x 1 , x2 — . , y,

y— 1

,

;

x1 .

x2

y = α + β 1 x1 + β 2 x 2 + ... + β k x k + ε , ,

α,

1,

…, k — ;y—

; x1,…, xk — .

: Y = α + Xβ + ε Y X α, β –

-

( ε-

; ; ), nxk;

-

-

. 48

. .,

ы

.А.,

И. . Eviews

, : 1. ( ). 2.

, , ,

.

3. ( ) . , .

ы

. .

bj

.

(Эj) ( β j ). ~

(Эj)

Эj =

m– Xj -

∂Y X j (j=1,…,m) * ∂X Y

; x j; 49

(2.2)

2.

Yj -

y. , y xj

1%

, .

Эj

: Эj = bj *

Xj

,

Y

(2.3)

bj –

j-

~

β j = bj ⋅

σx

.

j

(2.4)

σy

,

σy

y xj

σx

j

. (

), .

Ш

А

, Э

(

) , . 50

.

. .,

ы

И. .

.А.,

Eviews

№ 2.

: . . (

84

ы )y

.

x2 (

. 2006 ., «Э economist.rudn.ru).

( )

,

ы ы

, .) x1,

ы

ы x3 (

»

1.

. .

2. , . 84

. .

. . 3. . 4.

ы6. :

a.

, 6

Э

,

,

51

2.

b. . . 5.

(

) . (

). 6.

ы .

. ы

. 7. , (b1

b2)

. №2 Eviews.

,

1.

1, (

). .

REGION84_MLT.

, smpl 3 86. View  Correlations  Common Sample. ,

. 2.1. .2.1, ryx1 =0,81

52

. .,

ы

.А.,

И. . Eviews

ы

x1 (

ы

). ы

x3

-

(ryx3=-0,34). x2 (

(ryx2=0,21).

)

, , , .

. 2.1.

2. y= β0 + β1 x1 + β2 x2 + ε

(mod2) . ,

: ls y c x1 x2

53

2.

(

, ). .2.2. EQ01.

. 2.2.

(F

. 2.2, F

=89,75, p-

(

mod2

= 0,00).

t-

12,95 P-

2,74

). R2=0.69 ( . mod1)

, 54

.

. .,

ы

И. .

.А.,

Eviews

№1).

1.6

,

,

,

. .

. , R2.

0,68. Э ,

,

,

,

. .

(

).

3.

: (

(Akaike), (Wald),

)

(Schwarz), (RSS)

. . ,

Ewies,

(

.

,

2).

(

Э ,

, ). . -

, . 55

2.

. ,

. View  Coefficient tests Wald – Coefficient Restrictions . (3)=0, x3 , . . Eviews y= (1) + (2)*x1+ (3)*x2 . .3.3. . 2.3, F7.55, P, , . , (

) .

. 2.3.

56

. .,

ы

И. .

.А.,

Eviews

x2 , . . ,

( (mod2)=19.48 < (mod1)=19.54, (mod2)=19.561)

. .,

ы

И. .

.А.,

Eviews

3.2.

,

, , . , . ,

b

– . . : β

yi = α ⋅ xi ⋅ ε i α,

,



.

x

x1

x2

...

xn

y

y1

y2

...

yn

ln y = ln α + β ⋅ ln x + ln ε . ln y

y', ln α

75

α', ln x

x', ln =ν.

3.

y' = α '+ βx'+ν . , , . :

a

ln x

ln x1

ln x2

...

ln xn

ln y

ln y1

ln y2

...

ln yn

b,

. b

α

a'.

a = e a′ .

b ,

1%.

y = ax1α ⋅ x 2β , a, α, β — y—

; x1 , x2 — . . 76

;

. .,

ы

.А.,

И. . Eviews

ln y = ln a + α ln x1 + β ln x2 . ,

a,

, . . . 3.1 . 3.1

(lin-lin

Yˆ = a + bX

)

1(

. )Y b

( Y) (loglog

log(Yˆ ) = a + b log( X )

1% Y

)– b%

(log-lin

)–

log(Yˆ ) = a + bX

1(

. )Y

b*100% (lin-log

)

Yˆ = a + b log( X )

1% Y b/100 ( .

77

Y)

3.

№3.

.

: ; . 493 ( .

.

.

) price . . .

kitsp totsp dist metrdist

. ,

,

. [6], http://econometrics.nes.ru/mkp/ , flat98s.xls, «Э » economist.rudn.ru flat98.wf1. 1. ,

. .

2.

(

) . 78

. .,

ы

.А.,

И. . Eviews

. . 3.

, -

. .

4. ,

: 13,5 . . 124 . . 5 11

5.

(

) .

.

. №3 Eviews.

1. , : price = β 0 + β1 totsp + β 2 kitsp + β 3 dist + β 4 metrdist + ε (mod 3.1)

: 1

-

1 , ,

2

-

.

., 1

. .,

3–

79

3.

1

,

4

– 1

. :

1

> 0,

2

> 0,

3