284 99 22MB
English Pages 193 [194] Year 2022
Key Principles for Landing Gear Design R. Kyle Schmidt
The author’s two volume treatise, The Design of Aircraft Landing, was the inspiration for this book. The Design of Aircraft Landing is a landmark work for the industry and utilizes over 1,000 pages to present a complete, in-depth study of each component that must be considered when designing an aircraft’s landing gear. While recognizing that not everyone may need the entire treatise, Airfield Compatibility: Key Principles for Landing Gear Design is one of three quick reference guides focusing on one key element of aircraft design and landing gear design. This volume centers on how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. R. Kyle Schmidt has over 25 years’ experience across three countries and has held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service.
RELATED RESOURCES BY R. KYLE SCHMIDT: The Design of Aircraft Landing Gear 978-0-7680-9942-3 Aircraft Tires: Key Principles for Landing Gear Design 978-1-4686-0463-4
Aircraft Wheels, Brakes, and Brake Controls: Key Principles for Landing Gear Design 978-1-4686-0469-6
Cover image used under license from Shutterstock.com
Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. Designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.), this book presents a specific element of landing gear design in an accessible way.
Airfield Compatibility: Key Principles for Landing Gear Design | Schmidt
Airfield Compatibility
more related resources inside...
SAE INTERNATIONAL
ISBN: 978-1-4686-0466-5
Airfield Compatibility Key Principles for Landing Gear Design
R. Kyle Schmidt
Airfield Compatibility Key Principles for Landing Gear Design
Airfield Compatibility Key Principles for Landing Gear Design R. KYLE SCHMIDT
Warrendale, Pennsylvania, USA
400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) FAX: 724-776-0790
Copyright © 2022 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International. For permission and licensing requests, contact SAE Permissions, 400 Commonwealth Drive, Warrendale, PA 15096-0001 USA; e-mail: [email protected]; phone: 724-772-4028. Library of Congress Catalog Number 2022936962 http://dx.doi.org/10.4271/9781468604672 Information contained in this work has been obtained by SAE International from sources believed to be reliable. However, neither SAE International nor its authors guarantee the accuracy or completeness of any information published herein and neither SAE International nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that SAE International and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. ISBN-Print 978-1-4686-0466-5 ISBN-PDF 978-1-4686-0467-2 ISBN-ePub 978-1-4686-0468-9 To purchase bulk quantities, please contact: SAE Customer Service E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-0790 Visit the SAE International Bookstore at books.sae.org
Chief Growth Officer Frank Menchaca Publisher Sherry Dickinson Nigam Product Manager Amanda Zeidan Director of Content Management Kelli Zilko Production and Manufacturing Associate Erin Mendicino
Dedication For my wife, Natalie, and my children, Jacob, Dylan, and Hunter.
©2022 SAE International
v
Contents Acknowledgements
xi
Preface
xiii
A Note on Units
xv
Introduction
xvii
About this Book
xxiii
CHAPTER 1
Flotation/Ground Vehicle Compatibility
1
Common Concepts in Ground Compatibility
3
General Overview California Bearing Ratio Modulus of Subgrade Reaction, k
3 5 10
Ground Compatibility Nomenclature
11
Ground Contact Pressure
13
Landing Gear Arrangement Nomenclature
15
Ground Compatibility (Flotation) Analysis
17
Unpaved Surfaces
17
Soil and Grass
18
Unpaved Analysis Method ASD-TR-68-34
19
Alternative Unpaved Analysis Methods
33
Gravel/Aggregate Airfields
33
Paved Surfaces Pavement Design Analysis Layered Elastic and Finite Element Analysis Flexible Pavements-Historic Approach Rigid Pavements-Historic Approach
Pavement Strength Reporting Methods Load Classification Number/Load Classification Group Method Modern Methods for Paved Runways—ACN/PCN and ACR/PCR ACN/PCN ACR/PCR
35 36 36 42 47
51 51 54 54 60
Membrane and Mat Surfaces
62
PCASE Software for Flotation Analysis
65
©2022 SAE International
vii
viii
Contents
Engineered Materials Arresting Systems (EMAS)
67
Snow and Ice Runways
69
Prepared Snow Runways Ice Runways
69 71
Helidecks and Heliports
75
Naval Vessels/Aircraft Carriers
77
Aircraft Carriers
79
Amphibious Warfare Ships
79
CHAPTER 2
Maneuvering
81
ICAO Airport Standards
81
Required Maneuvers—NAS3601
86
Required Maneuvers—Land-Based Military Aircraft
88
Required Maneuvers—Shipboard Military Aircraft
88
CHAPTER 3
Surface Texture and Profile Paved Runways Micro/Macrotexture
Runway Roughness/Profile and Obstacles
89 89 89
92
Roughness Measurement Techniques
93
Power Spectral Density Approach
93
Boeing Bump Method
95
International Roughness Index
96
Short Wavelength Roughness
96
ProFAA Roughness Evaluation Tool
96
Industry Standard Roughness Profiles Bomb Damage Repair
97 103
Arrestor Cables
107
Unsurfaced Runways
108
Deck/Helideck
108
Contents
ix
Appendix A: 100 Busiest airports showing runway size and strength
111
Appendix B: Example ACN values for a variety of aircraft
121
Appendix C: Runway Roughness Profiles
131
References
161
Index
165
Acknowledgements
T
he book you are reading, while itself a stand-alone book, originally constituted a single chapter of The Design of Aircraft Landing Gear. Below are the acknow ledgements for that book—they remain true and valid for this excerpt. The idea for this stand-alone book was Sherry Nigam’s and I thank her, Erin Mendicino, Amanda Zeidan, and the other staff at SAE International Books for their assistance with this project. I would like to thank my family: Natalie, Jacob, Dylan and Hunter, for their patience, support, and encouragement, without which I would not have been able to dedicate the time to writing this book. I would also like to thank my father, Bob Schmidt, who was the first to read and comment on each chapter as it was produced. I thank my colleagues in Canada, France, the USA, and the UK who have read sections and chapters of this work and provided me with suggestions, corrections, and encouragement. In particular, I would like to thank those who gave up their time to review and comment: Bruno Aldebert, Steve Amberg, Rod Van Dyk, Andrew Ellis, Jack Hagelin, Dan Hetherington, Marianna Lakerdas, Grant Minnes, Andy Paddock, Michael Saccoccia, Jon Smith, and Peter Taylor. Monica Nogueira at SAE International has supported me from the outset of this project, gently prodding to ensure that it was completed! I would also like to thank the industry expert reviewers who reviewed portions of the book on behalf of SAE International: CB Alsobrook, Gregg Butterfield, David Brill, Bob Knieval, and Henry Steele. Finally, I would like to thank Ian Bennett and Mark Shea who reviewed the entire manuscript in detail and provided a number of excellent comments and suggestions.
©2022 SAE International
xi
Preface
T
he author has been fortunate enough to work in the field of aircraft landing gear for over twenty-five years and in three countries: Canada, France, and the UK, and to have held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service. Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. This book is an excerpt of The Design of Aircraft Landing Gear intended to present a specific element of landing gear design in an accessible way. The content here and in the original book was born of the author’s desire to learn ever more about landing gear — their history and the ways in which others have addressed their problems and challenges; in continuously striving to learn more about the field, it was considered advantageous to put these learnings into print in the hope that they can assist others. The book is intended, broadly, for two audiences: experienced aircraft and landing gear design engineers, for whom it is hoped that the book will act as a reference as well as an ‘idea book’, and for those new to the field who are, perhaps, working on their first landing gear design (maybe as part of their education). For the latter, it is hoped that the book provides the information needed to aid in their design and studies, and that they are as intrigued and compelled by the beautiful complexity of landing gear to consider this challenging field for their future employment. No single book can provide all the answers; throughout the chapters there are a number of references to additional documents which can aid in the design, development, and support of landing gears and their associated systems. In particular, documents produced by the SAE International A-5 committees on aircraft landing gear are widely referenced and participation in these committees is highly recommended to readers of the book and practitioners of landing system engineering. The opinions and approaches outlined in this book are those of the author and do not necessarily represent those of his employer (Safran Landing Systems). Although a great deal of care has been taken in the preparation and review of this work to ensure that the approaches, methods, and data provided are accurate, the author and publisher are not liable for any damages incurred as a result of usage of this book, for typographical errors, or for any misinterpretations.
©2022 SAE International
xiii
A Note on Units
W
herever possible, units in this book follow the International System of Units (SI, also known as the metric system) approach. However, aircraft and landing gear are international in nature and many components and analysis approaches are conducted in US Customary units. In particular, some empirical formulas are based on US Customary measures and do not lend themselves to conversion to another system of measure. In general, most calculations can be performed using either SI or US Customary units, provided two different measurement systems are not mixed in the same calculation and that the units utilized are self-consistent. An area where attention needs to be paid is the use of the US customary unit of weight and force, the pound, which is often colloquially used as a unit of mass (with an implicit assumption of earthly gravity); calculations conducted in US customary units which require units of mass can employ the ‘slug’ – which is defined as the mass that is accelerated by 1 foot per second per second when a force of one pound is exerted on it. A familiarity with both systems of measure is recommended due to the international nature of the aircraft business.
©2022 SAE International
xv
Introduction
T
he aircraft landing gear and its associated systems represent a compelling design challenge: the retractable landing gear is simultaneously system, structure, and machine; it supports the aircraft on the ground, absorbs landing and braking energy, permits maneuvering, and retracts to minimize aircraft drag. As the system is not required during flight it represents dead weight and significant effort must be made to minimize its total mass. The landing gear is one of the most complex and diverse systems on an aircraft. An article in Flight magazine [1] in 1940 expressed this, “for on no other part of the aeroplane is there such scope for engineering ingenuity and no other part can boast of so many ways of achieving the desired result”. This remains true today, many decades later. An expert in landing gear must be conversant with a wide range of engineering disciplines including materials, mechanisms, structures, heat transfer, aerodynamics, tribology, and many more. Depending on the given aircraft’s needs a landing system may be little more than wheels and tires attached to suitable aircraft structure or it may be a complicated system enabling performance on unpaved runways, steering, kneeling, retracting, and permitting further aircraft operations. Very few aircraft are designed for no other purpose than to carry the landing gear (perhaps only the Messier Laboratoire test aircraft qualifies); rather, the aircraft is designed to perform a function and the landing system must enable this function with high reliability and low mass. The aircraft landing gear and system provides a number of functions:
•• The landing gear, wheels, and tires support the aircraft on the ground •• The tires and shock absorber absorb vertical energy during landing and minimize shocks during ground maneuvering
©2022 SAE International
xvii
xviii
Introduction
•• The brakes absorb forward energy and hold the aircraft when stopped and parked
•• Differential braking and steering permit turning and maneuvering on the ground
•• Specific structure and attachments permit towing, jacking, and tie down of the aircraft
•• The landing gear can retract to minimize airframe drag •• The landing gear can articulate to change the aircraft geometry – assisting takeoff or kneeling for loading
•• The landing gear can include driven wheels to maneuver the aircraft without relying on main engine thrust
•• The landing gear can comprise attachments to permit catapult launch from ships as well as airframe mounted arresting gear
•• The landing gear can include a tail bumper for protection of tail cone structure To operate successfully an aircraft must be able to take-off, land, and maneuver appropriately and safely on the types of surfaces that are relevant for its intended use. These airport and aerodrome surfaces (Figure 1) can range from large international airports to small regional airfields as well as general aviation airfields with grass surfaces. Many aircraft service remote areas where for economic, environmental, or operational reasons flights are required from unimproved or slightly improved surfaces such as dirt, sand, or gravel. Still other aircraft fly to polar regions and need to land and take-off on snow and ice. Aircraft operating to ships and oil or wind generation rigs at sea are required to land and takeoff from metal platforms. It is imperative that the aircraft and landing gear be designed from the outset to accommodate the expected range of operational environments. Consideration of the ability of the surface to support the aircraft is required as well as maneuvering requirements such as the space available to execute a turn and the friction available from the surface in order to support turning and braking operations. The variability of the surface over its length (its roughness) can influence the design of the shock absorber as well as the ride comfort of the aircraft and the landing gear and aircraft fatigue life. A successful landing gear design starts with the consideration of these airfield compatibility concerns. Early aircraft typically used a single tire per landing gear which worked reasonably while aircraft masses were relatively small (single tires per landing gear remains an appropriate configuration for lighter weight aircraft). As overall aircraft size and mass grew, the limits of reasonable single tire capacity were met. The peak of large aircraft on single wheel landing gears was reached with the XB-36, which first flew in 1946. With a maximum weight of around 280,000 pounds (127 000 kg), this aircraft used a single 110 inch (2.8 m) diameter main tire (Figure 2, left) and was only suitable for operation from highly reinforced concrete surfaces (the high point load exerted by the single main tires would overload most lower strength ground surfaces).
Introduction
xix
Tim Roberts Photography/Shutterstock.com.
FIGURE 1 Airport showing runway and taxiways.
Later versions of the aircraft were designed using one of the first multiple wheel units to enter service. Tracked systems (Figure 2, right) were also tested on this aircraft. Arrangements of multiple smaller wheels improved the ability of ground surfaces to support higher loads and in many cases, stowage of a grouping of smaller wheels was more readily facilitated. The production B-36, Sud Aviation Caravelle, and de Havilland Comet all used four wheel main landing gears where each pair of wheels was fitted to a lever arm, with a mechanism joining the levers to a common shock absorber. Following this brief flirtation with paired wheels on levers, most multiple wheel (more than two) landing gears have mounted the wheels to a rigid bogie beam, pivoted at the bottom of a cantilevered shock strut. Early large high speed aircraft such as the Convair B-58, Tupolev Tu-144, and Avro Vulcan utilized eight small FIGURE 2 Convair XB-36 main wheel (left); XB-36 with tracked landing
© SAE International.
gears (right).
xx
Introduction
diameter tires fitted in pairs to four wheels, mounted on a bogie beam. Advances in tire technology (as well as changing constraints on the required retracted position volume) have permitted a reduction in the total number of required tire positions; large aircraft today utilize multiple wheels on bogie beams almost exclusively (the rare exceptions being certain military transport aircraft). An early task for the aircraft and landing gear designer is to find the best configuration of tires (size, pressure, and position) to meet the required aircraft performance goals, ensure appropriate compatibility with the intended airfields, all while minimizing weight, cost, and complexity. As was shown for the B-36 above, attempts have been made to use alternative ground interfaces to pneumatic tires: skids, tracks, and air cushions have been explored with limited success. Caterpillar track designs were trialed on a number of aircraft, including the P-40, A-20, C-82, B-36 (Figure 3), and B-50 (Figure 4) with the prime intention to lower the ground contact pressure through a significant increase in the ground contact area. While the feasibility of tracks as alternatives to tires was demonstrated, development was halted – the weight and mechanical complexity of the track suspension and guidance mechanisms as well as increased maintenance and exposure to snow, ice, and debris rendered the tracks sub-optimal when compared to pneumatic tires. Air cushion landing systems (effectively the marriage of the aircraft and the hovercraft) have been developed and demonstrated, as shown in Figure 5. While an air cushion landing system permits aircraft alighting on virtually any surface (including those with low/no surface strength), power is required to operate the system and the low friction created by the film of blown air results in challenges for directional control and braking, especially with the aircraft at low speed or when stationary.
© SAE International.
FIGURE 3 Track main landing gear of XB-36.
Introduction
xxi
© SAE International.
FIGURE 4 Track main landing gear of B-50.
© SAE International.
FIGURE 5 Air cushion landing system on XC-8A.
Regardless of the choice of ground interface, aircraft and landing gear design must begin with an understanding of the properties of the ground surface itself. Knowledge of the behavior, methods, and vocabulary of ground compatibility are important to permit the designer to select the most appropriate ground interface as well as to communicate the limits of that interface to the vehicle operators so that they may use the aircraft at appropriate airfields.
About this Book
T
his book is designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.). Additionally, references to further information are provided when it is available. This book is excerpted from the author’s two volume treatise, The Design of Aircraft Landing Gear [2], which provides details on the entirety of landing system design. Much of the beauty of interesting design problems such as aircraft landing gear is that any one subject could fill an entire book, whether it be the tribology of wearing surfaces, the interaction of gas and oil in shock absorbers, or the kinematic arrangement and analysis of mechanisms. It is therefore impossible to provide every last detail on every problem which the landing system engineer may face, but an effort has been made to tackle many of the subjects one is likely to face when designing new products or supporting the operation of systems in service. This particular volume outlines a key element of aircraft design and landing gear design: how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. In the author’s experience many problems that must be confronted have already been addressed by others in the past, but the information is not widely known or shared, leading to the observation that there are few new problems, but many new people. This book is intended to share much of the information available and provide avenues for further exploration. A career in landing system design, development, and support can be spent while continually facing fresh and interesting challenges. No two aircraft are exactly alike; regulators and customers are always increasing their expectations, elevating the design challenge and making landing system engineering an exciting and rewarding discipline. Chapter 1 of the book begins with an overview of some common concepts in ground compatibility, including nomenclature and soil mechanics. Relevant ©2022 SAE International
xxiii
xxiv
About this Book
methodologies (including some historical methods) for the analysis of ground strength are provided for unprepared, semi-prepared, and paved surfaces. The design and analysis of paved aircraft surfaces (such as runways) is often independent of the means by which the pavement strength is reported; internationally standardized reporting methods are explained in Chapter 1. Means of temporary surface reinforcement (mats and membranes) are outlined, followed by a discussion of the available analytical tools for prepared surface analysis. The chapter concludes with a review of snow and ice runways as well as heliport and ship deck surfaces. With any prepared surface comes geometrical limits to its size. An aircraft must then be designed to operate within the given dimensions of the surface. Chapter 2 is dedicated to this aspect, termed maneuverability. ICAO standards for civil airports and aircraft are reviewed, along with typical requirements for land and shipboard military aircraft. No prepared surface is perfectly smooth; aircraft and landing gears must be designed to cope with the roughest surface they are likely to experience in their lifetime. Chapter 3 discusses deviation from smooth surfaces in order of increasing scale. Initially, surface micro and macrotexture (key determinants of a paved surface’s ability to disperse water and to generate friction in cooperation with a pneumatic tire) are outlined, followed by general roughness and specific bumps (including those arising from expedient repairs). The chapter includes discussion on the analytical means to address bumps and roughness. Relevant international surface roughness values are included in an appendix to aid in analysis. The specific names used for various components of the landing gear vary depending on geographic location as well as company history. A consistent set of terms is used throughout this book but as an aid to comprehension, the various components are identified and their commonly used names indicated as an aid to the reader. Further terminology is explained in document AIR1489 [3]. The common names for a variety of landing gear components that occur in this book are shown in Figure 1.
© SAE International.
FIGURE 1 C-160 Transall main landing gear (cutaway).
1 Flotation/Ground Vehicle Compatibility
A
key consideration in establishing the conceptual design of an aircraft, and of its landing gear, is that of ensuring an appropriate and acceptable interaction with the ground. The study of this interaction is historically called Flotation, likely stemming from analysis approaches which considered the underlying soil behavior to be approximated as a dense liquid. The modern study is more appropriately titled Ground Compatibility as there is the clear need to ensure that the aircraft can operate on the required surface repeatedly, with a manageable level of cumulative damage to the surface. An aircraft which is operating on a compatible surface will leave little to no trace of its passage; by way of contrast, aircraft operating on non-compatible surfaces can lead to premature degradation of prepared surfaces or even direct breach of the surface (Figure 1.1). Ground compatibility is a function of the aircraft weight and the way in which that weight is supported on the ground. Equally important is the type of contact surface on the ground [concrete (rigid) paving, asphalt (flexible) paving, aggregate, soil, grass, etc.] and the underlying soil strength (subgrade strength). Each type of surface has its own particular analysis methodology, and there is a rich history of evolution of these calculation methodologies. The evolutionary nature of ground compatibility analysis can drive a level of confusion as to the correct approach to take for a particular aircraft or use case. To aid in the selection of the appropriate method, the agreed modern methodologies are listed in Table 1.1.
©2022 SAE International
1
2
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from Stuck in the Mud, Staff Sgt. Matthew Lohr, USAF.
FIGURE 1.1 Breach of incompatible surface.
The following sections outline the modern approaches as well as the historical approaches which remain relevant. Additional information about analysis techniques can be found in industry documents AIR1780 [4] and ARP1821 [5]. Most flotation/ground compatibility analysis is concerned with ensuring that an aircraft can operate an acceptable number of times on the type of surface in question. In other words, the studies are concerned with the fatigue or endurance of the surface under the rolling action of the aircraft. Breakdown of the surface over time can lead to cracking and crumbling of the paving (if present), rutting, or other modes of deterioration which mean that aircraft can no longer utilize the surface. In general, the analysis methods are not concerned with the static strength capability of the surface, which in many cases is significantly greater than the acceptable repeated load on the surface. However, for some surfaces (ice, platforms, and some mats, for instance) the flexural strength and any load amplification resulting from the dynamics of the surface and aircraft interaction may be more critical than repeated loading. The need to publicly share the load bearing capability of runway surfaces has led to standardized reporting techniques, which may or may not be the same as the calculation technique used to determine corresponding aircraft capability. Given the complexity of the ground compatibility topic, the following sections decompose the topics in an effort to provide a more complete understanding. Some topics which are common to a variety of analysis and reporting methods are outlined, followed by methods which are appropriate for unpaved fields, aggregate surfaced fields, paved (rigid and flexible), mat and membrane surfaces, snow, ice, and structural decks.
Airfield Compatibility: Key Principles for Landing Gear Design
3
TABLE 1.1 Ground compatibility analysis methods. Surface Application Authority type Civil
ICAO
FAA
Transport Canada
Military
US Military
Analysis method
Reporting
Comments
Rigid
Layered Elastic/ FEA
ACR/PCR
Expected to be effective in year 2024
Flexible
Layered Elastic
Rigid
PDILB
ACN
Flexible
S-77-1
Standard reporting method until adoption of ACR/PCR
Rigid
Layered Elastic/ FEA
PCN
Flexible
Layered Elastic
FAA Advisory Circular 150/5320-6F details pavement design rules; FAARFIELD and COMFAA for PCN analysis
Unpaved
Transport Canada Advisory Circulars AC 300-004 and AC 700011; Boeing D6-45222-1 for aggregate runways
---
---
Aggregate Boeing Method
---
Ice
AC 301-003
---
Transport Canada Advisory Circular AC 301-003
Rigid
UFC 3-260-02
ACN/PCN
UFC 3-260-02 provides multiple methods for pavement design; PCASE analysis tool
ASD-TR-68-34
---
Flexible Unpaved
UK Military
Aggregate S-70-5
---
Mat
FM 5-430-00-2 Membrane AFJPAM 32-8013
---
Rigid
LCN/LCG
Flexible
DEF STAN 00970
CBR-Beta system is proposed as replacement for S-70-5
--ACN/PCN system is used for existing aircraft procured to a military specification
Common Concepts in Ground Compatibility General Overview For all surfaces which are supported by the ground (ignoring ship decks and helipads), some understanding of soil mechanics is required to appreciate the role of the ground in the aircraft/ground compatibility relationship. Naturally occurring soils vary considerably in their composition and in their ability to support a load applied to them. Cohesive soils such as clay and loam are characterized by fine particles that bind to one another on the molecular level in the absence of confining pressure.
4
Airfield Compatibility: Key Principles for Landing Gear Design
Cohesionless soils, such as sands and gravels, require confinement to develop bearing strength. Both cohesive and cohesionless soils can support significant loads under appropriate conditions. In ground compatibility and airport design nomenclature, the soil under a prepared surface (or simply the soil for an unprepared field) is referred to as the subgrade. The strength of the subgrade is typically evaluated by forcing a rod or a cone into the soil and measuring the force required to deflect or indent the soil a predetermined amount (similar to hardness measurements for metallic materials). While rapid, field deployable, methods are available such as the “cone index,” in which a cone is pressed into the soil, the more standard measure of subgrade strength is the California Bearing Ratio (CBR). While a somewhat arbitrary, empirical measurement, the CBR has formed the basis for a significant number of airfield engineering approaches, and is therefore indispensable in the understanding of aircraft/ground compatibility. The subgrade strength is of great importance. As no infinitely stiff material exists from which to create a runway, any material placed on the subgrade will deflect under applied loads, and this deflection must ultimately be supported by the subgrade. For the same applied loads, a stronger subgrade (characterized by higher CBR and higher modulus) requires less pavement thickness to protect it. Although bare soil and grass fields are in use for aircraft operations throughout the world, a paved surface is often desired—to improve the load bearing capacity as well as to improve the braking and handling behavior of the aircraft using the surface. Paved airfields are divided into two fundamental types: flexible and rigid. In rigid pavements, loads are resisted by concrete slabs, while flexible pavements are built up from a series of progressively stronger materials, bound or unbound, each of which protects the layer below it. Technically, aggregate (gravel) surfaced pavements found at some airfields are a type of flexible pavement, but most flexible pavements at major airfields have hard asphaltic surfaces. A typical airfield flexible pavement consists of a surface course of hot-mix asphalt laid on a base course of compacted granular stone, which is in turn laid on sub-base courses of suitable aggregate. The thickness of the pavement is considered to be the thickness from the surface to the subgrade; typical thicknesses range from 0.2 to 1.5 m. Rigid pavement airfields are those surfaced with Portland cement concrete (PCC). A variety of concrete construction techniques are employed (reinforced, non- reinforced, jointed, pre-stressed, etc.) While courses of suitable aggregate may be employed between the subgrade and the concrete surface, the thickness of pavement in this construction is considered to be the thickness of the concrete layer only; typical thicknesses range from 0.2 to 0.36 m. Other pavement types exist, but are less common. Airport pavements have been constructed using interlocking pavers, compacted snow and ice, sea coral, and other innovative designs. For many years, the Port Authority of New York and New Jersey used a unique construction type at its Newark and JFK airports based on a mixture of lime, cement, and flyash (LCF) mixed with sand. The Port Authority devised a comprehensive pavement design analysis to accompany its LCF construction method. Airfields may vary the thickness of pavements, placing more material where needed for the anticipated loading. US military airport design standards provide for additional thickness in areas where aircraft loads are static. Runway ends, taxiways,
Airfield Compatibility: Key Principles for Landing Gear Design
5
and ramps are seen as critical and receive the thickest pavement. Dynamically loaded areas such as central areas of runways may have a thickness which is 10–20% less than the adjoining critical areas. Most civil airports maintain a constant cross-section throughout the runway, perhaps reducing the strength in over-run areas or in displaced threshold areas. While the Federal Aviation Administration (FAA) allows a reduction in thickness for less-trafficked areas outside the keel, from a construction point of view it is generally more economical to maintain a uniform section across the width of the runway. Airfields evolve over time, so different runways and taxiways at the same airport may have different load bearing capabilities. For airfield pavements serving aircraft with gross weights higher than 12,500 pounds, pavement strength is often reported using the aircraft classification number (ACN)/pavement classification number (PCN) or aircraft classification rating (ACR)/pavement classification rating (PCR) reporting systems. These reporting systems are discussed in detail in a subsequent section. A low value of PCN or PCR may reveal insufficient strength for the anticipated traffic. It is possible to overlay pavements to provide additional strength or to improve surface characteristics. Most overlays are flexible asphalt, but rigid concrete overlays have been used on both rigid and flexible pavements.
California Bearing Ratio California Bearing Ratio, routinely referred to by its abbreviation CBR, is a test to determine the strength of unpaved surfaces (including naturally occurring soil, prepared subgrades, and prepared base courses under roadways, runways, and taxiways). The technique was developed by the California Department of Transportation in the 1930s. The CBR value is expressed as the percentage of the force (or pressure) required to press a 2 inch diameter (nominally a 3 square inch area) rod into the soil compared to the value achieved on a reference sample of compressed crushed California limestone (this reference sample is considered to have a CBR of 100). The calculation is performed at 0.1 or 0.2 inches of penetration. The standard curve (CBR = 100) results in 0.1 inch of penetration with an applied pressure of 1000 psi and 0.2 inches of penetration at 1500 psi; a CBR of 50 would result from an applied pressure of 500 psi achieving a penetration of 0.1 inch. The test procedure is standardized in ASTM D1883-05 [6] (for laboratory samples) and D4429 [7] (for field testing). A diagram of the laboratory CBR test is shown in Figure 1.2 along with the typical behavior of a number of materials. The higher the CBR value, the higher the bearing capacity of the surface. A range of typical values, according to the Unified Soil Classification System [59] are shown in Table 1.2; plowed farmland has a CBR of 3 and moist sand may achieve a CBR of 10. Values above 100 are possible. CBR values determined through testing to ASTM D4429 are the benchmark values. However, this test is often difficult to perform in remote areas or for unimproved runways (it requires considerable time and equipment). A number of alternative testing methods have been developed which can provide estimates of CBR values. It is important when dealing with values generated by these methods to be aware of the test type as different tests have different empirical correlations to the ASTM CBR value. A number of different field tests to estimate CBR exist, provided by a variety
6
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 1.2 Laboratory CBR test.
of vendors, and endorsed by various aircraft manufacturers. Some of the more common test approaches are listed below. Unlike the D4429 method, no consideration of soil moisture content is made in these simplified procedures—care is then required to ensure that the measurements are made at a time when the moisture content is high or is representative of the expected service condition—in areas with freeze/thaw cycles, a measurement after the spring thaw is likely to be a reasonable estimate of the effective minimum (CBR will increase as moisture drains/evaporates through the summer).
•• The Boeing “High Load Penetrometer” test method (Boeing Reference
D6-24555 [60]) uses a hydraulic cylinder with a cone shaped, 50.8 mm (2 inch) diameter probe mounted to the rod end. Typically, the hydraulic cylinder is positioned against the frame of a heavy vehicle to provide a solid surface from which to work. According to the test procedure, a hydraulic hand pump is used to drive the probe at a steady rate to a 100 mm depth into the surface. A hydraulic pressure reading is taken within 30 seconds after movement of the penetrometer has stopped at 100 mm. The soil failure pressure is calculated as the penetrometer force (hydraulic pressure multiplied by the working area of the hydraulic cylinder) divided by the projected area of the 50.8 mm diameter cone tip. An empirically derived formula relates the measured pressure to the CBR value. In order to achieve valid readings, the soil must be homogeneous through and beyond the 100 mm measurement depth—the presence of large stones will introduce errors which need to be detected by the operator of the test equipment (a rapid increase in measured pressure occurs). Generally, performing the test in several widely separated positions is recommended.
•• A Sliding Weight Shock Penetrometer is used by some aircraft manufacturers
and in some regions. This device uses a long rod with a cone shaped point and a sliding weight (typically 3 kg). The rod and cone are driven into the soil by raising and dropping the sliding rod a number of times. An estimate of CBR
Coarsegrained soils
Soil types
Sands and sandy gravels
Gravels and gravelly sands
Symbol
Good Fair to good
Gravel-silt (liquid GMu limit > 28)
Gravel-clay
Sands >12% fines
SMd SMu SC
Sand-silt (liquid limit < 28)
Sand-silt (liquid limit > 28)
Sand-clay
Fair to good
Fair to good
Good
Fair to good
Sand, poorly graded
SP
Good
GC
Good to excellent
Good to excellent
Excellent
Gravel-silt (liquid GMd limit < 28)
GP
GW
Compressibility and expansion
None to Almost none very slight
Potential frost action
Slight
Slight
Very slight
None to Almost none very slight
Slight to medium
Slight to medium
Slight to medium
Not suitable
Not suitable
Poor
Slight to high
Slight to high
Slight to high
Fair to poor
Excellent
Excellent
Poor to impervious
Poor to impervious
Fair to poor
Excellent
Excellent
Drainage characteristics
Slight to medium Poor to impervious
Slight to medium Poor to impervious
Very slight
Poor to not None to Almost none suitable very slight
Poor
Poor
Poor
Fair to good
Poor to fair None to Almost none very slight
Good
Value as Value as subbase or base subgrade course
Sands Sand, well graded sw 12% fines
Gravel, poorly graded
Gravels Gravel, well 50)
CL
Clay-low compressibility
Symbol ML
Description
Silt-low compressibility
Silts and clays (liquid limit 1, all of the fatigue life will have been used up and the pavement will have failed. The definition of failure which is employed is a particular structural failure mode according to the assumptions and definitions on which the design procedures are based. A value of CDF greater than one does not necessarily mean that the pavement will no longer support traffic, but that it will have failed according to the definition of failure used in the design procedure (and within the constraints of uncertainties in material property assumptions, etc.) Notwithstanding the potential variation in the type of failure mode, the pavement thickness design is based on the assumption that failure occurs when CDF is equal to unity. The damage done to the pavement from different aircraft types is accounted for by using Miner’s linear damage accumulation rule, where:
CDF CDF1 CDF2 CDFn 1 CDFn Many analysis tools compute a separate CDF for each failure mode included in the design procedure. For example, in flexible pavement design, a CDF is likely to be calculated for the asphalt as well as the subgrade; failure of the pavement is driven by the highest CDF in the structure. The effect of aircraft wander is addressed explicitly in linear elastic and finite element approaches. In the FAA pavement design software FAARFIELD, CDF is calculated for each 254 mm (10 inch) wide strip along the pavement over a total width of 20.8 m (820 inches). Pass-to-coverage ratio is computed for each strip based on a normally distributed airplane wander pattern with standard deviation of 775 mm (30.5 inches), equivalent to airplane operation on a taxiway. A CDF is calculated for all resulting 82 strips, with the maximum resulting CDF being the value considered for design. Even with the same gear geometry, aircraft with different main gear track widths will have different pass to coverage ratios in each of the 254 mm strips and may show little cumulative effect on the maximum CDF. The damage model used depends on the design code and the country where the pavement is designed. For pavements in the USA, Advisory Circular 150/5320-6F [12] specifies the use of the FAARFIELD tool. Other countries have similar but subtly different methods and tools. France requires the use of the ALIZE tool while Australia specifies the use of the ASPDS code. A description of the failure models used in FAARFIELD are provided as they are indicative of the methodology used in most codes. For flexible pavement design in FAARFIELD, subgrade vertical strain and horizontal strain at the bottom of all asphalt layers are the design criteria. The subgrade failure model used to find the number of coverages to failure for a given vertical strain at the top of the subgrade is:
log C
0.60586
1 0.1638 185.19
, for C 1000 coverages, and v
40
Airfield Compatibility: Key Principles for Landing Gear Design
0.004141
8.1
, for C 1000 coverages C v where C is the number of coverages to failure εv is the vertical strain at the top of the subgrade For asphalt fatigue, the failure model is based on the concept that the number of coverages to failure is determined by a quantity called Ratio of Dissipated Energy Change (RDEC) [24]. In a large number of asphalt beam fatigue tests it has been found that the Plateau Value (PV) of RDEC is a reliable predictor of the number of cycles to fatigue failure (Nf ). For a broad range of asphalt mixes, this relationship is given by:
0.9007
N f 0.4801 PV For a given horizontal strain at the bottom of the asphalt layer, the value of RDEC can be estimated by: 0.4063
PV 44.422 h5.14 S 2.993 GP where PV is the estimated value of the RDEC plateau value (dimensionless) S is the hot mix asphalt initial flexural stiffness, in psi; this is not the same as the modulus, E, used to compute strain in the layered elastic analysis εh is the horizontal strain at the bottom of the asphalt layer Va VP is the volumetric parameter: VP Va Vb Va is the volume of air voids V b is the asphalt content by volume PNMS PPCS GP is the gradation parameter: GP P200 PNMS is the percentage of aggregate passing the nominal maximum size sieve PPCS is the percentage of aggregate passing the primary control sieve P200 is the percentage of aggregate passing the #200 (0.075 mm) sieve Default values of these parameters are assigned in FAARFIELD to represent typical hot mix asphalt (P-401) mixtures. The values are: S = 600,000 psi; Va = 3.5%; V b = 12.0%; PNMS = 95%; PPCS = 58%; P200 = 4.5%. For rigid pavement design in FAARFIELD, the CDF is calculated using the larger of the horizontal edge stress at the bottom of the concrete layer, or the horizontal interior slab stress. To account for load transfer to adjacent slabs, the free edge stress is computed for the gear load and reduced by 25%. For gear loading along the slab edge, it is necessary to consider the orientation of the landing gear. The general procedure is take the higher of the edge stress with the gear oriented parallel to the slab edge and the edge stress with the gear oriented perpendicular to the slab edge. Edge stresses for rigid pavements are computed using the three-dimensional finite element model. Interior stresses are computed using the layered elastic model. The interior stress is assumed to be 95% of the maximum horizontal stress computed by
Airfield Compatibility: Key Principles for Landing Gear Design
41
the layered elastic calculation. The rigid pavement failure model used in FAARFIELD has the general form:
1
Fs bd
DF FCAL
1
SCI 100
d b
log C Fs b
SCI ad bc 100 SCI 1 d b 100
Fs bc
Fs b
where SCI is the Structural Condition Index, an indicator of the condition of the pavement where 100 is fully structurally sound. An SCI of 80 is the FAA definition of structural failure of a rigid pavement and is consistent with 50% of slabs in the traffic area exhibiting a structural crack. DF is the design factor; it is defined as R/σ, where R is the concrete flexural strength and σ is the computed concrete tensile stress FCAL is the stress calibration factor; FCAL = 1.0 for FAARFIELD Fs is the stabilized base compensation factor; the failure model above assumes that the SCI deteriorates under traffic as a linear function of the logarithm of coverages (after first reaching the first structural crack). The factor Fs is used to adjust the slope of the line when the structure includes a higher quality (stabilized) base. When the concrete slab is placed on an 8 in. thick crushed aggregate (P-209) layer, or on a 4 in. thick stabilized layer (500,000 psi), the value of Fs is one and the basic (uncompensated) failure model is recovered. But if the thickness or quality of the base/sub-base structure is greater than either of these two conditions, Fs decreases, and the number of coverages to failure increases. Adjusting the slope of the line in this way recognizes that a concrete slab placed on a stabilized base will not deteriorate as rapidly following the appearance of a first crack compared to a similar slab on a conventional (aggregate) base. a, b, c, and d are parameters whose value depends on the subgrade modulus. Parameters used in FAARFIELD were obtained by analyzing failures of full-scale rigid pavement test pavements at the National Airport Pavement Test Facility (NAPTF), as well as previous full-scale tests. In such failure data there is inherently a considerable amount of scatter. Lines were drawn encompassing 50% and 85% of the failure points, from which the following parameters were obtained: Parameter
50% failure envelope
85% failure envelope
a
0.760
1.027
b
0.160
0.160
c
0.857
1.100
d
0.160
0.160
42
Airfield Compatibility: Key Principles for Landing Gear Design
The values of a and c transition linearly from the 50% values for low strength subgrades represented by E = 4500 psi (approximately CBR 3), to the 85% values for higher strength subgrades represented by E = 15,000 psi (approximately CBR 10). This transition reflects the fact that thinner concrete pavements on strong foundations are more likely to experience top-down cracking (e.g., corner breaks) than pavements on weaker foundations. Since the top-down cracking failure mode is not considered in FAARFIELD design, the use of the more conservative 85% failure curve is justified for higher subgrade strengths. Failure for a rigid pavement in FAARFIELD is defined as SCI = 80. For a new rigid pavement, the program iterates on the thickness of the concrete layer (the design layer) until the failure model predicts a value of SCI = 80 at the end of the design life (20 years for standard designs). The number of coverages to failure (C) is therefore the number of coverages for SCI = 80 at any given value of R/σ. Flexible Pavements-Historic Approach. Determination of how to design air-
field flexible pavements came originally from extrapolating a California highway design method. The method is empirically based, deriving from traffic tests performed at various wheel loadings, pavement thickness, and subgrade strengths. Flexible pavement design methods have evolved over a number of years (US Army Corps of Engineers report TR-12-16 [25] provides an excellent history of the development of flexible pavement design methods). Modern flexible pavement design methods such as the FAA’s FAARFIELD computer code use layered elastic theory, while historical methods employ empirical relationships based on the subgrade CBR. An update to the historical approach, the CBR-beta method [25] has been proposed by the US Army Corps of Engineers. The most relevant formulation to the landing gear designer is published by the US Army Corps of Engineers in their document S-77-1 [26], and is based on the CBR of the subgrade. This method is relevant as the ICAO standardized this method as the means of computing an Aircraft Classification Number. Unlike the layered elastic approach, the CBR method is purely empirical and no direct stress calculation is performed. Document S-77-1 gives the CBR equation which determines the required pavement thickness, T, when designing for 10,000 coverages: T
Ac
0.0481 1.562 log
CBR P
0.6414 log
CBR P
2
0.473 log
CBR P
3
where T is the pavement thickness in inches Ac is the tire contact area in square inches P is the tire load in pounds for a single wheel gear, or the ESWL for multiple wheel gears CBR is the California Bearing Ratio strength of the subgrade
Airfield Compatibility: Key Principles for Landing Gear Design
43
This formulation can be used directly when designing for single wheel landing gears. But for multiple wheel landing gears, a means of calculating the influence of the additional wheels is required. Additional wheels influence the pavement behavior in two ways: the interaction of the loads applied by the group of wheels and the relationship between passes and coverage. The means of addressing the interaction of the applied wheel loads is the calculation of an equivalent single wheel load (ESWL), a fictional load applied by a single wheel (having the same contact area as one wheel of the assembly) which induces the same deflections (at a given depth) in the pavement as the multi-wheel group. The model for determining pavement deflection is Boussinesq’s one-layer theory. The pavement and the subgrade combined are considered as a semi-infinite, homogeneous, isotropic, and elastic medium. The deflection in the subgrade soil is given by the following formula:
z
pr F E
where Δz is the vertical deflection of the subgrade at a depth, z, in inches p is the ground contact pressure in pounds per square inch; it is assumed to be equal to the tire pressure r is the radius of the tire contact area in inches; the tire contact patch is assumed to be circular E is the modulus of elasticity of the subgrade material in pounds per square inch F is the deflection factor (a function of the depth and the radial distance to the load center line), determined through values tabulated or plotted in S-77-1 Determining the ESWL employs the principle of superposition (Figure 1.29), which posits that the effect of a multi-wheel assembly at any given point in the
Reprinted from U.S. Army Core of Engineers, Engineer Research and Development Center ERDC/GSL TR-12-16.
FIGURE 1.29 Superposition of individual wheel loads.
44
Airfield Compatibility: Key Principles for Landing Gear Design
subgrade is equal to the summation of the effects of each tire at that point. Once the total deflection at a point in the subgrade is known, the load required by a single tire of the same contact area as one wheel of the multi-wheel assembly to achieve the same deflection can be calculated. This load is the ESWL. The ESWL is not a constant value, but varies with depth:
ESWL
P
FM FE
where P is the load on one tire of the multi-wheel assembly FM is the maximum deflection factor achieved for the multi-wheel assembly at any depth FE is the maximum deflection factor due to the ESWL Determination of FM requires computation of the maximum deflection factors beneath one wheel at several depths and add the deflection factors for the other wheels (considering their offset from the wheel being considered) at the same depths. From this, a plot of deflection factors versus depth can be made for the wheel being considered. The worst case deflection may not be under one of the wheel positions: for a dual wheel assembly, the critical point is midway between the two wheels, for a twintandem, the maximum deflection varies with depth—from a point under one wheel at the surface to the centroid of the assembly at depth. As a result, the calculation of maximum deflection factors versus depth must be made for the critical locations in addition to the wheel positions. The typical procedure is to plot the deflection factors versus depth for one wheel position and for the critical location, then join the two together, forming a smooth curve. Using this curve, an additional curve of ESWL in percent of the assembly load is generated as a function of depth. This curve, along with the CBR equation, can be used to find the required CBR for a given thickness, or can be used to iteratively solve for pavement thickness. The pavement thickness calculated by the CBR equation must be further modified to address the effect of load repetitions, coming from the required number of coverages as well as the effect of multi-wheel gears. A factor, α, is introduced:
t
T
where t is the adjusted pavement thickness α is the adjustment factor, empirically determined based on traffic testing T is the pavement thickness from the CBR equation The alpha factors depend on the desired number of coverages as well as the number of wheels in the landing gear assembly. Wheels in sequence drive an independent load impulse into the pavement but the effect is found to generate a less damaging result than the same number of passes of independent wheel groups. The accepted alpha values have evolved over time, supported by extended testing, with the values in document S-77-1 now replaced by the values shown in Figure 1.30, taken from the COMFAA software. It can be seen (Table 1.7) that at 10,000 coverages (the ACN computation is
45
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from COMFAA freeware program from FAA.
FIGURE 1.30 Alpha values.
TABLE 1.7 Alpha values at 10,000 coverages. Number of wheels
1
2
4
6
8
12
18
24
Alpha
0.995
0.900
0.800
0.720
0.690
0.660
0.640
0.630
based on 10,000 coverages) for a single wheel the correction is very close to unity. Due to the refinement in alpha factors which has occurred, take care when comparing old and new calculations of ACN (or recompute using the new values to be sure). The number of wheels to be considered is the number of wheels in a main landing gear group. For instance, a Boeing 777 has a triple tandem gear arrangement, for six wheels on each main landing gear. The Antonov 124 has five pairs of wheels for 10 wheels in each main landing gear group. The final element in the analysis is to understand the relationship between aircraft passes and pavement coverages. This analysis considers that there is variation, wander, in the lateral position of aircraft wheels from one operation to the next, and that this wander is normally distributed about the center line. Based on analysis of US Air Force aircraft operations [27] it is considered that the wander is the width over which the center line of the aircraft traffic is distributed 75% of the time and that a wander width of 1.8 m (70 inches) is appropriate for taxiways and the first 305 m (1000 feet) of each runway end. The associated standard deviation for this 1.8 m wander width is 0.773 m (30.43 inches). A wander width double that value is used for the runway interior. To understand the relationship between aircraft passes and pavement coverages, the individual wheel distributions need to be summed; trailing wheels multiply the summed distribution. Figure 1.31 shows the principle of summing the overlapping distributions of wheel position.
46
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from US Army IR S-77-1.
FIGURE 1.31 Summation of traffic distribution.
Considering a normal distribution of aircraft position, the pass to coverage ratio can be computed: Pass 1 Coverage f xoc Wt where Wt is the width of the tire f(xoc) is the maximum ordinate of the combined frequency distribution for wheel positions For a wander width of 1.8 m the frequency distributions of the left and right hand wheel assemblies do not overlap when the distance between the center lines of the inboard wheels is equal to 2.54 m (100 inches) or more. The frequency distribution is given by:
f x
1
f z
x
where σx is the standard deviation (30.43 inches for a wander width of 70 finches) f(z) is the frequency distribution function for the normalized standard deviation; historically the values of this function were tabulated, but the values can be easily generated with the Excel function NORM.S.DIST(z, False)
Airfield Compatibility: Key Principles for Landing Gear Design
47
In practice, conversion of the lateral wheel spacing coordinate to the “z” coordinate is achieved by centering a local coordinate system around each wheel centerline, such that each wheel is located at 0. The local coordinates are then divided by the standard deviation such that local distances are expressed in multiples of the standard deviation. With reference to Figure 1.31, the approach for an aircraft with a track of 265 inches, wheel spacing, S, of 34 inches, for a wander width of 70 inches (standard deviation of 30.43 inches). In this case, the value of f(xoc) is 0.0224. If this layout were for a twin-tandem (four-wheel) bogie landing gear, the value would need to be doubled to include the trailing axle. For the two-wheel case above, if the tire width was 13.5 inches, then the pass to coverage ratio would be: Pass Coverage
1 f xoc Wt
1 0.0224 13.5
3.3
While it is important to understand the derivation of this form of flotation calculation, modern calculations tend to be performed automatically by software applications such as COMFAA, ICAO-ACN, or PCASE, significantly simplifying the task for the landing gear designer. Rigid Pavements-Historic Approach. The analysis to determine the required
thickness of slab was originally developed by Westergaard and is based on the theory of thin plates. The rigid pavement slab is considered to be supported by a dense, inviscid liquid, as shown in Figure 1.32. Furthermore, the slab is assumed to be a
Reprinted from US Army CR-S-75-8.
FIGURE 1.32 Westergaard idealization of rigid pavement.
48
Airfield Compatibility: Key Principles for Landing Gear Design
homogenous, isotropic, elastic material of uniform thickness; loads on the top and bottom of the slab are considered to occur normal to the surface. The slab deflection then must follow the differential equation: D 2 q p where 2 σ2 is a Laplace differential operator in polar coordinates: 2 r Eh 3 D is the flexural rigidity: D 12 1 2
1 r r
1 r2
2 2
2
z2
E is the Young’s modulus for the slab; can be assumed to be 27 580 MPa (4,000,000 psi) v is the Poisson’s ratio for the slab; can be assumed to be 0.15 h is the thickness of the slab ω is the slab deflection q is the intensity of slab loading p is the intensity of reactive pressure between the slab and subgrade As the subgrade is assumed to have the properties of a dense liquid, then: p k where k is the modulus of subgrade reaction. Solutions to this were developed in 1951 [28] for a concentrated load and a uniformly loaded sector. The uniformly loaded sector has the dimensions shown in Figure 1.33. The moment, M, in the slab is given through the use of Hankel functions: M
ql 2 Re 8 1
1 sin 2
2
2
1
sin 2
a i I a i H1 l l 1
a i I a i H1 2l l
H sI
a i l
0.5
© SAE International.
FIGURE 1.33 Uniformly loaded sector.
Airfield Compatibility: Key Principles for Landing Gear Design
49
The tensile stress at the bottom of the slab associated to this moment is:
fc
6M h2
where l is the “radius of relative stiffness”= 4
D k
4
Eh 3 12 1 2 k
Re is the “real part of” the expression i is the “imaginary” number 1 H sI , H1I are Hankel functions of order zero and one q is the uniform load acting on the area
The physical meaning of the radius of relative stiffness, l, is shown in Figure 1.34. Tire contact patches are represented as ellipses and the combined moments of all tire contacts are computed, typically with one tire of the group placed at the origin. Determining the maximum moment may require rotating the tire imprints around the origin. The maximum moment of a multi-wheel gear typically occurs close to the center of the tire contact closest to the centroid of the group; typically it is taken as occurring at the tire contact center of this tire. Historically, a graphical solution to this problem was conducted using influence charts such as that shown in Figure 1.35. To use the influence chart, the pattern of the landing gear is traced onto the chart (or onto transparent paper over the chart). The tires are represented as rectangles with rounded ends, with an aspect ratio of 0.6:
L
Area ; Width 0.6L 0.5227
© SAE International.
FIGURE 1.34 Physical meaning of Westergaard’s radius of relative stiffness.
50
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 1.35 Influence chart for moment in rigid pavement.
The dimensions used on the influence chart are scaled according to the radius of relative stiffness, l, a scale for which is indicated on the chart:
Tracing dimensions Actual dimensions
Scale l on chart Calculated l of pavement
All of the enclosed whole blocks, then the partial blocks are counted (value N) to determine the total area encompassed by the tire imprints. The moment is then calculated using the formula on the chart:
MN
ql 2 N 10, 000
Airfield Compatibility: Key Principles for Landing Gear Design
51
Stress in the slab can then be calculated:
fc
6M N h2
For a given allowable stress in the pavement (including safety factors), a design thickness can be computed. The influence chart approach has been replaced by computer-based solutions and modern calculations can be performed rapidly from the landing gear design input using either COMFAA or PCASE software applications. Pavement Strength Reporting Methods The history of flotation analysis is one of continuous evolution. A variety of historical methods exist which may still be required from time to time. These include the Load Classification Number (LCN) and ALR methods. Details on these approaches can be found in SAE AIR1780 [4]. Most of these methods used variations of the flexible and rigid pavement analysis outlined previously, but provided different tools for reporting and comparison. Load Classification Number/Load Classification Group Method. At one point this method was widely used around the world but it has now been generally replaced by the ACN/PCN method. However, some jurisdictions still refer to this method, including the UK Ministry of Defence, which codifies it within DEF STAN 00-970 [29]. The LCN/LCG method is similar to but distinct from the LCN method, which was an earlier approach. The LCN/LCG method does not distinguish between rigid and flexible pavements and is based on an assumed rigid pavement with a radius of relative stiffness of 40 inches and a modulus of subgrade reaction of 400 pounds per cubic inch. The classification number is a representation of the strength of the pavement (both required by the aircraft and provided by the pavement). The classification group is a Roman numeral indicator which groups a range of classification numbers as shown in Table 1.8. Calculation of a specific equivalent single wheel load is required:
ESWL
Total load on one landing gear Reduction factor
The reduction factor is determined from Figure 1.36 for twin wheel landing gears and Figure 1.37 for twin-tandem landing gears. The wheel arrangements are assumed TABLE 1.8 Load classification number/load classification group. LCG
Type of runway
LCN
I
High quality pavement
101-120
II
Good quality pavement
76-100
III
Moderate quality pavement
51-75
IV
Low grade asphalt
31-50
V
Reinforced soil
16-30
VI
Good condition soil
11-15
VII
Boggy soil/loose sand
10
52
Airfield Compatibility: Key Principles for Landing Gear Design
© Crown Copyright. Licensed under the Open Government Licence v3.0.
FIGURE 1.36 Reduction factor for twin or tandem wheel configuration.
Airfield Compatibility: Key Principles for Landing Gear Design
© Crown Copyright. Licensed under the Open Government Licence v3.0.
FIGURE 1.37 Reduction factors for twin-tandem wheel configurations.
53
54
Airfield Compatibility: Key Principles for Landing Gear Design
to be symmetrical, with each wheel in the group equally loaded; it is also assumed that all wheels of the group are at least 1.5 m from the nearest wheel on any other landing gear group. The reduction factor chart of Figure 1.36 is valid for twin wheel (wheels side by side) and tandem (two wheels in a line) configurations. The wheel spacing for the twin wheel configuration is the distance between the tire centers. The wheel spacing for a tandem configuration is the axle to axle distance. With the ESWL defined, the LCN (and LCG) can be determined from Figure 1.38 or from the approximate expression: 0.91
LCN 5.7 10 4 ESWL p0.34 where ESWL is the equivalent single wheel load in pounds p is the tire pressure in pounds per square inch Modern Methods for Paved Runways—ACN/PCN and ACR/PCR. Almost all jurisdictions have converted to using the ACN/PCN reporting system as advocated by the International Civil Aviation Organization (ICAO). Starting in the year 2020 and to be fully in force by the year 2024, the ACR/PCR system will replace the ACN/ PCN methodology, by agreement of the ICAO. ACN/PCN. The modern approach for paved runways is the ACN/PCN method. This method has been standardized by ICAO in their Aerodrome Design Manual, part 3, Pavements since 1983 [62]. The method has been adopted by most countries and provides a uniform approach to classifying aircraft and pavements. The method follows a standardized approach to determining the aircraft classification number; the pavement classification number is the load rating of the most critical aircraft which the pavement will support without restriction. Determination of the pavement classification number can be through a technical evaluation or by experience of aircraft operating on the pavement. Technical approaches to determining the PCN continue to evolve and include software codes such as COMFAA and PCASE, among others. The ACN/PCN method is applicable for aircraft with a mass of 5700 kg (12,500 pounds) and above. Aircraft below this value exert loads on the pavement less than common highway road traffic and generally any reporting or restrictions for these classes of aircraft are based on overall weight and tire pressure. Caution is required as some helicopters and military training aircraft have masses less than 5700 kg but can have very high tire pressures; this can lead to problems on limited quality flexible pavements. The ACN/PCN method divides the subgrades into eight standard ranges (four rigid pavement subgrade values and four flexible pavement subgrade values). Table 1.9 shows the adopted values and their associated codes. For flexible pavements, the subgrade strength is measured in terms of CBR. For rigid pavements, the subgrade strength is considered in terms of Westergaard’s modulus of subgrade reaction, k, measured in MN/m3. It is considered that tire pressure effects are secondary compared to the effects of applied load and wheel spacing. On flexible pavements with thin asphalt concrete
Airfield Compatibility: Key Principles for Landing Gear Design
55
© Crown Copyright. Licensed under the Open Government Licence v3.1.
FIGURE 1.38 LCN and LCG in terms of ESWL, tire pressure, and tire contact area.
56
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 1.9 ACN/PCN subgrade values. Subgrade strength Subgrade code level
Flexible pavement
Rigid pavement
A
High strength
Nominal CBR of 15; Represents all CBR values above 13
Nominal k = 150 MN/m3; Represents k > 120 MN/m3
B
Medium strength
Nominal CBR of 10; Nominal k = 80 MN/m3; Represents all CBR Represents 60 < k < 120 values between 8 and 13 MN/m3
C
Low strength
Nominal CBR of 6; Represents all CBR values between 4 and 8
Nominal k = 40 MN/m3; Represents 25 < k < 60 MN/m3
D
Ultra-low strength
Nominal CBR of 3; Represents all CBR values below 4
Nominal k = 20 MN/m3; Represents k < 25 MN/m3
k values determined using a 75 cm diameter plate.
surfaces or weak upper layers, tire pressure can have an increased effect. The ACN/ PCN method categorizes tire pressures into four groups as outlined in Table 1.10. The ACN/PCN method employs the concept of a “mathematically derived” single wheel load—the combination of loads from one or many wheels on a single landing gear are numerically combined and represented as a single load. The computation determines the required pavement thickness for the landing gear arrangement, then determines the load required to achieve the equivalent thickness when applied by a single wheel with a standard tire pressure of 1.25 MPa. The ACN of an aircraft is defined as two times the mathematically derived single wheel load, expressed in thousands of kilograms. The derived single wheel load is a function of the subgrade strength (as provided in Table 1.9); the net result is that for any given aircraft eight different ACN values need to be calculated (four for flexible pavements and four for rigid pavements). The factor of two is used to ensure a suitable ACN versus aircraft mass scale such that whole number ACNs may be used with suitable accuracy. The rigid calculation is based on the computer program PDILB which was developed by the Portland Cement Association [30] and uses a standard pavement stress of 2.75 MPa for reporting purposes. The flexible calculation is based on a computer program developed to solve the United States Army Corps of Engineers CBR method of design of flexible pavements [26], in line with document S-77-1, outlined previously. As nose landing gears typically only support a small fraction of the aircraft’s weight, they are usually not as critical as the main landing gears; as a result, the ACN/PCN method only considers the main landing gear behavior. TABLE 1.10 ACN/PCN tire pressure ranges. Maximum tire pressure
Code letter
Description
No pressure limit
W
Unlimited
1.75 MPa (254 psi)
X
High
1.25 MPa (181 psi)
Y
Medium
0.5 MPa (72 psi)
Z
Low
Airfield Compatibility: Key Principles for Landing Gear Design
57
Conveniently, the United States Federal Aviation Administration has taken the original FORTRAN codes provided by ICAO and converted them into a single interactive application (written in Visual Basic) which runs under the Windows operating system. This application, COMFAA, performs the required calculations rapidly and generates all eight ACN values for a given landing gear configuration. In addition to performing the ACN calculations, COMFAA computes PCN values according to the FAA’s standard and performs various additional pavement design calculations. The aircraft and landing gear designer will be principally interested in the ACN calculation mode. The program (and source code, if desired) can be downloaded from the FAA website1; FAA advisory circular AC150/5335-5C [63] provides comprehensive details regarding the background and use of the tool. The FAA also makes available a modified version of COMFAA, called ICAO-ACN, expressly for the generation of ACN values (it has the same interface as COMFAA but omits the PCN calculation components). Both COMFAA and ICAO-ACN include an extensive library of existing aircraft which can be modified, or used as the basis for a user-defined landing gear layout. The user interface to the program is shown in Figure 1.39 with one of the library aircraft selected (in this case, the Airbus A350).
Reprinted from COMFAA freeware program from FAA.
FIGURE 1.39 COMFAA user interface.
At the time of writing, COMFAA is available at: https://www.faa.gov/airports/engineering/design_ software/.
1
58
Airfield Compatibility: Key Principles for Landing Gear Design
The ACN calculation mode is selected by clicking on the “MORE>>>” button. This provides the ability to calculate (shown in Figure 1.40) the flexible and rigid ACN values. The “ACN” radio button is selected, then the “Flexible” and “Rigid” buttons are pressed and the program will fill the results table. The aircraft gross weight, percentage of the gross weight on the main landing gears, and the number of main gears on the aircraft can be adjusted directly from the screen shown in Figure 1.40. However, it is desirable to change the tire pressure to the appropriate value to correspond to the gross weight selected. To make this change, the definition of the aircraft needs to be changed—this is performed by ensuring that the aircraft is in the “external library”—for the A350-900 example, this can be done clicking the “Add Aircraft” button. The program will prompt for a new name to be given and the aircraft will be copied to the external library. Aircraft in the external library can be fully edited. Figure 1.41 shows the example A350 adapted to indicate the ACN values for a production weight variant with a maximum ramp weight of 275 900 kg. Compared to the default aircraft, the gross weight, percentage weight on the main landing gear group, and tire pressure have been adapted. The ACN and PCN are reporting tools: the PCN values are reported by airports and ACN values are reported by aircraft manufacturers. Pavement classification values are generally provided by airports (or airport regulatory authorities) through an airport data publication. As an example, runway information is typically provided as follows: RWY 08L-26R: PCN 62 R/A/W/T which indicates that for the runway 08 left (which is also 26 right), the PCN is 62 on a rigid (R) pavement with a high strength
Reprinted from COMFAA freeware program from FAA.
FIGURE 1.40 COMFAA ACN result for A350-900.
Airfield Compatibility: Key Principles for Landing Gear Design
59
Reprinted from COMFAA freeware program from FAA.
FIGURE 1.41 COMFAA ACN result for Airbus A350 at 275 900 kg.
subgrade (A). There is no tire pressure limitation (W) and the classification was determined on the basis of a technical (T) analysis. The alternative to a technical evaluation is a code U which indicates that the PCN was determined based on usage. ACN values are reported by aircraft manufacturers in an airport compatibility document. This document (governed by standard NAS3601 [31]) provides a variety of information regarding the servicing and catering of the aircraft, but also includes the landing gear footprint and flotation information. The ACN values are provided in the form of a graph, such as that shown in Figure 1.42 for the A330. Comparing the A350-900 example in Figure 1.41 to the example runway provided earlier, the aircraft has an ACN of 65.4 on a “rigid A” runway and the runway’s PCN is 62, so this aircraft could not generally operate on that runway. However, periodic use of runways by aircraft with an ACN greater than the PCN is generally accepted, provided that this usage is less than 5% of the total annual usage. In this case, operation of an aircraft with an ACN 10% greater than the PCN can be accepted on a flexible pavement and operation of an aircraft with an ACN 5% greater than the PCN can be accepted on rigid or composite pavements.2 Recent research work by the FAA has shown that overloads of rigid pavements can be tolerated up to an ACN 10% greater than the PCN. It is anticipated this will be formalized by the ICAO. In the A350 example, the aircraft is unlikely to operate on the runway at its maximum ramp weight (which generates the ACN of 65.4). Using COMFAA (or interpolating from ICAO Annex 14, attachment 28.
2
60
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from PCASE freeware program from US Military.
FIGURE 1.42 Flexible pavement ACN values for A330-200.
a plot) indicates a PCN (rigid A) of 65.1 for the A350-900 at its maximum take-off weight of 275 000 kg, which is exactly equal to 1.05 times the reported PCN of 62, so periodic operations of the A350-900 would be permissible on that runway. Exceedances beyond that permitted by these factors could be negotiated with the airport authority as the overloads would lead to cumulative damage and a reduced life of the pavement. The US Military permits full operations provided that the ACN/PCN ratio is less than or equal to 1.1. For a ratio between 1.1 and 1.4, limited operations up to 10 aircraft passes are acceptable, provided the pavement is inspected after each pass. For a ratio greater than 1.4, no operations are permitted except for emergencies. Appendix A provides a listing of the 100 busiest airports in the world with their runway lengths and strengths provided. Appendix B provides a list of aircraft with representative ACN values tabulated (note that ACN values can evolve as aircraft are modified to increase their maximum take-off and ramp weights). In addition to the tabulated values, a web application available at: https://transportation.erdc.dren.mil/ acnpcn/ will generate ACN values and plots for a wide variety of existing aircraft. ACR/PCR. An update to the ACN/PCN method is anticipated to be standardized
by the ICAO in 2020 with full international adoption in the year 2024. This change is to take advantage of current methods of mechanistic pavement analysis and to eliminate the need for various empirical factors (such as alpha factors) that are a fundamental part of the ACN/PCN method. The replacement methodology is termed the ACR/PCR (Aircraft Classification Rating/Pavement Classification Rating) system. The system adopts the same concepts as the ACN/PCN method (namely, that an aircraft with an ACR less than the declared PCR may operate without restriction on that surface) and a similar reporting format. For both flexible and rigid pavements, the PCR is calculated using layered elastic analysis in which the subgrade strength is characterized by modulus of elasticity, E (rather than CBR or k). Thus, the ACR/PCR method defines a single, unified set of four standard sub-
Airfield Compatibility: Key Principles for Landing Gear Design
61
TABLE 1.11 ACR/PCR subgrade values. Subgrade code Subgrade strength level
Subgrade modulus of elasticity, E
A
High strength
200 MPa (29,008 psi); Represents all values of E 150 MPa
B
Medium strength
120 MPa (17,405 psi); Represents all values of E in the range 100 E < 150 MPa
C
Low strength
80 MPa (11,603 psi); Represents all values of E in the range 60 E < 100 MPa
D
Ultra-low strength
50 MPa (7252 psi); Represents all values of E < 60 MPa
grade categories based on E, which applies to both types of pavements (Table 1.11). In a further departure from the ACN system, the standard number of coverages for computing flexible ACR has been raised from 10,000 to 36,500. The pavement response to the main landing gear is still related to a mathematically derived single wheel load (DSWL), but the standard tire pressure has been increased to 1.5 MPa (218 psi). While ACN in all cases determined the DSWL from a single main landing gear group (e.g., a four wheel group in the case of a dual-tandem gear), the ACR method for flexible pavements considers the contribution of all tires in the main landing gear (Rigid ACR continues to be based on a single main gear group). Table 1.12 lists the elastic properties of the standard pavement layers used to compute rigid and flexible ACR. In addition to the listed properties, a large number of other parameters of the computation must be defined, including the method of assigning variable elastic properties to aggregate base layers, the functional relationship between computed strain and allowable coverages (the failure model), and the exact locations of layered elastic strain evaluation points. Due to the complexity of the computation, it must be performed by a standard computer program. The standard program adopted by ICAO for this purpose is ICAO-ACR, which is supported by the FAA and is available as a standalone program or as a dynamic-link library (DLL) for linking to other programs (e.g., for PCR computation). The FAA’s pavement design software FAARFIELD (beginning with FAARFIELD version 2.0) incorporates ICAOACR as part of its PCR computation function. Sample outputs from ICAO-ACR for
TABLE 1.12 Standard pavement structures for ACR computation. Rigid
Flexible
MLG type
All MLG configurations
Aircraft with 1 or 2 wheel MLG
Aircraft with more than 2 wheels in MLG
Surface layer
E1 = 27,579 MPa, ν1 = 0.15, t1 is the design variable
Hot-Mix Asphalt E1 = 1379 MPa, ν1 = 0.35, t1 = 76 mm
Hot-Mix Asphalt E1 = 1379 MPa, ν1 = 0.35, t1 = 127 mm
Base layer
E2 = 500 MPa, ν1 = 0.2, t2 = 200 mm
Crushed aggregate E2 = f(t), ν2 = 0.35, t2 is the design variable
Crushed aggregate E2 = f(t), ν2 = 0.35, t2 is the design variable
Subgrade layer
Subgrade A,B,C, and D – infinite depth
Subgrade A,B,C, and D – infinite depth
Subgrade A,B,C, and D – infinite depth
62
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted with permission from David Brill at the FAA.
FIGURE 1.43 Flexible ICAO-ACR result for Airbus A350 at 275 900 kg.
a flexible ACR calculation and a rigid ACR calculation are shown in Figures 1.43 and 1.44, respectively. The numerical value of ACR is defined as two times the DSWL, expressed in hundreds of kilograms. Those who are already familiar with the ACN/PCN system will note that the resulting ACR values are on the order of 10 times greater than the corresponding ACN value. This change was intended to allow easy comparison between the two methods, but at the same time, avoid confusion during transition to the new system. Periodic use of runways by an aircraft with an ACR greater than the PCR is generally accepted up to an ACR 10% greater than the PCR for both rigid and flexible pavements.
Membrane and Mat Surfaces During World War II a temporary mat surface was developed for use directly on soil in order to increase the load bearing capability. This interlocking steel mat (Figure 1.45) was named pierced steel planking (but often called Marston mat after the location where it was first trialed) and provided an effective surface in the 1940s and 1950s. However, it was found that vegetation grew through the holes in the planking and high jet exhaust velocities would disturb the surface and raise debris.
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted with permission from David Brill at the FAA.
FIGURE 1.44 Rigid ICAO-ACR result for Airbus A350 at 275 900 kg.
Reprinted from http://www.nationalmuseum.af.mil/Upcoming/Photos/ igphoto/2000355636/.
FIGURE 1.45 F-86 Sabre parked on pierced steel planking.
63
64
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 1.13 Runway mat types and capabilities.* Mat type
M8A1
XM18
M19
AM-2
Truss Web
User
US Army
US Army
US Army
US Airforce, Navy & Marines
US Army
Category
Light
Medium
Medium
Medium
Heavy
Load Capacity 1000 coverages of a 30,000 poundsingle wheel load at 100 psi tire pressure on a subgrade with CBR 4
1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4
1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4
1000 coverages of a 25,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4
1000 coverages of a 50,000 pound single wheel load at 250 psi tire pressure on a subgrade with CBR 4
Mat weight per square foot
4.7 pounds
4.25 pounds
5.8 pounds
6.3 pounds
7.5 pounds
* Appendix N of FM 5-430-00-2/AFJPAM 32-8013, Vol ll.
Aluminum extrusion based mats were developed to counter these issues, providing a solid surface while retaining the interlocking capability and light weight of the pierced steel planking. A number of mats are available for expeditionary airfields as shown in Table 1.13. The AM-2 mat in particular (Figure 1.46) has proven popular with a number of militaries. In many cases the AM-2 mat is used to produce a semipermanent airfield; it can also be used to provide temporary repairs to bomb-damaged conventional runways.
Reprinted from https://media.defense.gov/2014/Sep/08/2000935943/-1/-1/0/ 140904-M-ZZ999-002.JPG.
FIGURE 1.46 Installation of AM-2 matting.
Airfield Compatibility: Key Principles for Landing Gear Design
65
Flexible membranes also exist which can be used in lieu of matting or can be used beneath matting to control vegetation and to protect the surface of the subgrade. Flexible membranes do not improve the load bearing capability of the subgrade but provide dust control and waterproofing. Flexible membranes such as the WX-18 and T-17 membrane are provided with nonskid compounds to provide effective braking performance in inclement weather. The WX-18 heavy-duty membrane can resist the braking action of a C-130 Hercules aircraft. In comparison to membranes, mats provide a significant improvement to the load bearing capability. The PCASE application can be used to analyze a given aircraft for operability on the three categories of mat outlined in Table 1.13.
PCASE Software for Flotation Analysis The PCASE (Pavement Computer Aided Structural Engineering) software3 is a public domain application written and maintained by the Transportation Systems Center and Engineering Research and Development Center of the US Army Corps of Engineers. The application can be used for pavement design and technical evaluation but also for landing gear evaluation on flexible, rigid, aggregate, unpaved, and membrane/mat surfaces. Given the landing gear geometry and load, PCASE can compute ACN values and plots as well as indicating the acceptable number of passes for all surface types. PCASE provides a large library of existing aircraft and permits new designs to be developed. This functionality is through the “Vehicle Edit” Module (Figure 1.47). With the geometry, loading, and tire pressures configured, the “ACN Curves” tab of the module will provide the ACN calculations (Figure 1.48). The “Evaluation” module can be used to determine the acceptable number of passes for a given aircraft configuration on a wide variety of surfaces. The anticipated traffic needs to be established in the “Traffic” module prior to running an evaluation. New traffic patterns can be created or an existing pattern can be selected or modified. Figure 1.49 shows the traffic module with a special operations pattern selected for unpaved surfaces. With a pattern selected, the Evaluation module can be loaded and the specific type of soil or pavement is selected. Figure 1.50 shows the variety of surface layers available to the analyst. For each surface layer a number of options exist. A number of layers can be added to appropriately model a pavement and the subgrade. An analysis for a Dornier DO-328 (C-146A) turboprop is shown in Figure 1.51 for an unsurfaced natural subgrade with a CBR of 5. The analysis indicates that the aircraft could make 64 passes at the design load or 100 passes if the aircraft weight was reduced to 26,700 pounds. The PCASE software represents the most adaptable tool for the aircraft and landing gear designer as it can model most soils, aggregates, and pavements.
Available at: https://transportation.erdc.dren.mil/pcase/.
3
66
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from PCASE freeware program from US Military.
FIGURE 1.47 PCASE Vehicle Edit Module.
Reprinted from PCASE freeware program from US Military.
FIGURE 1.48 PCASE ACN Curves for 747.
Airfield Compatibility: Key Principles for Landing Gear Design
67
Reprinted from PCASE freeware program from US Military.
FIGURE 1.49 PCASE traffic module.
Reprinted from PCASE freeware program from US Military.
FIGURE 1.50 PCASE layer options.
Engineered Materials Arresting Systems (EMAS) While not relevant for the study of flotation, the landing gear designer should be aware of the existence of engineered materials arresting systems (EMAS) which are becoming more common at airports around the world. An EMAS is a system of crushable concrete or other material placed at the end of a runway—typically at airports where the airport boundary or other obstructions are close to the runway end. An aircraft leaving the runway surface enters the EMAS which collapses progressively, absorbing the kinetic energy of the aircraft and bringing it to a stop. Figure 1.52 shows the main landing gear of an aircraft decelerated by an EMAS. The FAA guidelines [32] for EMAS installations stipulated that the system be designed for aircraft leaving the
68
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from PCASE freeware program from US Military.
FIGURE 1.51 PCASE evaluation module – results.
Reprinted from NTSB http://lessonslearned.faa.gov/ll_main.cfm?TabID= 4&LLID=56&LLTypeID=2.
FIGURE 1.52 Main landing gear in EMAS.
Airfield Compatibility: Key Principles for Landing Gear Design
69
runway (entering the EMAS) at 130 km/h (70 knots) and that the system be designed to work by exerting predictable deceleration forces on the landing gear, minimizing the potential for structural damage to the aircraft. EMAS systems will react differently to different sized aircraft and it may be difficult to predict the performance of the EMAS for aircraft weighing less than 11 300 kg (25,000 pounds).
Snow and Ice Runways In certain areas of the world operation on ice is the only effective way to provide a landing and maneuvering surface for aircraft. Typically these runway surfaces are used in Arctic or Antarctic operation. Traditionally only military or suitably adapted rugged aircraft (such as the de Havilland Twin Otter) operated into these environments, but an Airbus A319 aircraft operates to the glacial blue ice runways at McMurdo and Wilkins in Antarctica. Figure 1.53 shows an Antonov AN-74 on a sea ice floe. Prepared Snow Runways The strength of snow is highly variable and depends on the amount of compaction (density), age hardening (sintering), and temperature. A prepared, compacted snow runway can be considered analogous to an aggregate surface runway. Rather than CBR as a measure of the strength of the snow (CBR measurements are difficult to conduct in Polar environments and not appropriate for soft snow), varying cone penetrometers are employed. An empirical relationship [33] has been developed to
Akimov Igor/Shutterstock.com.
FIGURE 1.53 Antonov AN-74P on Arctic Ice Floe near the North Pole.
70
Airfield Compatibility: Key Principles for Landing Gear Design
relate the required ram hardness (units resulting from the use of the Rammsonde cone penetrometer) to the wheel load, contact pressure, and coverages:
R
e
4.94 apW 0.146
0.5
e 0.7 logn
where R is the required mean ram hardness (for the snow pavement thickness from the surface to a depth of r) r is the radius of a circle with equivalent contact area as the tire p is the average contact pressure W is the wheel load a is equal to 0.044 when p is in units of kg/cm2 and W is in kg; equal to 0.00281 when p is expressed in pounds per square inch and W in pounds n is the number of repetitive wheel coverages (within a short period of time) Tire contact area can be computed as outlined previously for unpaved surfaces:
A 2.36d
d
DO b DO
d w d DF
200
where A is the tire contact area in square inches d is the tire radial deflection in inches DO is the tire outside diameter in inches w is the tire section width in inches b is the tire deflection in percent DF is the wheel flange diameter in inches This expression for R gives the ram hardness required in the top layer of snow (from the surface to a depth of r) which is typically between 0.2 and 0.3 m. For convenience, the relationship between ram hardness and other hardness measurements is provided in Figure 1.54. The wheel coverages value, n, is for wheels in a row: a single or two wheel main landing gear would have an n value of 1, a four wheel bogie an n value of 2, and a C-5 Galaxy an n value of 4. It is important to note that naturally occurring snow is unlikely to have sufficient strength to support wheeled aircraft; a C-130 requires a ram hardness of about 500, a DC-3 a ram hardness of about 250. Experimental work in Antarctica using specialized snow milling machinery, grading, and levelling have achieved ram hardness values over 300 and multiple additional compacting runs have achieved ram hardness levels of more than 600.
Airfield Compatibility: Key Principles for Landing Gear Design
71
© SAE International.
FIGURE 1.54 Relationship between various snow strength measurements and CBR.
Ice Runways The key consideration for wheeled aircraft operation (Figure 1.56) on ice is to ensure that the ice is thick and strong enough to support both the static loads imparted by the aircraft and the dynamic loads created in a floating ice sheet by the take-off, landing, and movement of the aircraft. In addition, the surface of the ice needs to be prepared to ensure sufficient friction is created to permit directional control and braking of the aircraft. This is typically done by ensuring a frozen, compacted snow surface is above the ice. Once an aircraft is parked they can slowly sink into the snow and ice due to creep deformation of the ice; aircraft have to be tended and moved periodically to avoid excessive sinking when parked. The rate of creep depends on the ice temperature. For aircraft such as the C-17 and C-130 a deformation of the ice of 25 mm can occur in 1 hour at an ice temperature of −2.5°C and 3 hours at −10°C [34]. The behavior of ice is similar to that of concrete—it is strong in compression but relatively weak in tension. In addition, it has very low fracture toughness. The properties of ice vary depending on the type of ice, the density, and temperature. In general, ice tensile strength [35] varies between 0.7 and 3.1 MPa while the compressive strength is between 5 and 25 MPa for temperatures between −10°C and −20°C. It is possible to analyze ice sheet runways as if they were rigid pavement runways, but with the appropriate properties for the relevant ice. The flexural strength used for the now defunct Pegasus glacial ice runway in Antarctica was 39.2 kPa. Operating a C-17 at 263 000 kg mass requires an ice thickness of 2.25 m (safety factor 1). Considering a safety factor of three, a thickness of 6.8 m is recommended. The thickness of the Pegasus ice sheet was around 30 m while the Wilkins runway in Antarctica is estimated to have a thickness of around 700 m. The use of proof rollers (rolling the surface with a load and tire pressure similar to the aircraft) prior to utilization of the runway is recommended to ensure that the ice surface will withstand the aircraft loads. Glacial runway surfaces are often topped with “white ice” pavement—a pavement made from compacted and frozen snow. This white ice helps protect the ice surface from solar radiation and melting and provides better friction characteristics for braking and maneuvering. The white ice layer, being compacted snow, is similar to a prepared
72
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 1.14 Minimum white ice pavement strength. Aircraft
Tire pressure (psi)
Minimum RSP Maximum Index DCP Index
Minimum CBR Minimum Ram Index Hardness
C-130
95
55
29
6.8
69
C-5A
111
56
28
6.9
70
C-17
155
61
26
7.7
75
757-200
180
65
24
8.4
80
P-3
200
69
22
9.1
86
767-300ER
205
70
22
9.3
87
A319
210
72
21
9.5
89
snow runway and must be tested to ensure that there is sufficient strength to resist the contact pressure from the tires. Typically, a penetrometer such as the Russian snow penetrometer or a dynamic cone penetrometer is used. These penetrometers are similar but enhanced versions of the Rammsonde penetrometer. Tire pressure dominates the local behavior of the white ice pavement—hardness values for various aircraft are shown in Table 1.14 and required snow hardness versus tire pressure is shown in Figure 1.55. These values are from the US Air Force document FC 3-260-06F [35]. An analysis for wheeled aircraft operation on sea or fresh water ice is best performed with expert information on the strength of ice. Sea and fresh water ice have a significantly larger flexural strength than glacial ice; as a result, a much thinner layer of ice can support an aircraft compared to glacial ice. However, the strength of ice remains highly variable and depends on a variety of factors, including the ice temperature and the temperature history (ice can become brittle following a significant drop in temperature). Three aspects need to be considered for operating an aircraft on a floating ice sheet: the strength of the ice, the creep deformation of the ice for stationary loads, and the dynamic behavior of the ice and supporting water
Reprinted from NTSB http://lessonslearned.faa.gov/ll_main. cfm?TabID=4&LLID=56&LLTypeID=2.
FIGURE 1.55 Strength criteria for white ice pavement.
Airfield Compatibility: Key Principles for Landing Gear Design
73
FIGURE 1.56 Airbus A319 and DC-3 Turbo conversion on blue ice runway
Stu Shaw/Shutterstock.com.
in Antarctica.
during aircraft movement. For the largest aircraft operating into floating ice runways, such as the C-17 operating to McMurdo in Antarctica, finite element solutions have been performed to produce thickness requirements which are based on temperature and season [34]. These guidelines also provide parking time limits to avoid creep failure of the ice. Typically, the amount of creep deformation accepted is equal to the freeboard of the ice sheet (more deformation than this and water will begin to seep through ice cracks and pool). For the C-17 at McMurdo, the minimum allowable ice thickness at maximum aircraft weight is about 1.8 m and the parking times are on the order of 1–3 hours. An approach [36] to determining safe working loads for ice sheets which has been used historically is of the form:
P
Ah 2
where P is the working load A is an empirically determined value h is the thickness of the ice sheet Transport Canada [37] has used that relationship to develop safe ice thickness curves for aircraft. Reducing those curves to an expression for the required ice thickness gives:
h 2110a
0.565
P
where h is the minimum safe ice thickness in millimeters; must always be greater than 250 mm for aircraft operations a is the allowable ice flexural stress in kPa P is the gross weight of the aircraft in kN The minimum safe ice thickness is considered to be acceptable for limited aircraft movements (up to three operations per day). Use beyond that requires expert
74
Airfield Compatibility: Key Principles for Landing Gear Design
Adapted from Ice Aerodrome Development – Guidelines and Recommended Practices, Advisory Circular AC 301-002, Transport Canada, 2011.
FIGURE 1.57 Allowable ice flexural stress.
examination of the ice strength. The allowable ice flexural stress is given by Figure 1.57. Ice temperature is measured at a depth of 800 mm or estimated as the average air temperature for the preceding 9 days. The Transport Canada recommendation for parking of aircraft is to ensure that aircraft are separated by at least one “load influence radius” from other loads, open cracks, and free ice edges. The load influence radius is given by:
R 0.41h 0.75
where R is the load influence radius in meters h is the ice thickness in millimeters When loads move on a floating ice sheet, the ice deflects in response to the load and displaces the water beneath it. The displacement of the water produces waves under the ice sheet. At a vehicle speed termed the “critical speed” a resonant amplification of the stresses in the ice sheet will occur; this can lead to ice sheet failure. The critical speed is dependent on the thickness of the ice sheet and the depth of the water beneath the sheet. Brief periods of time where the speed of the aircraft match the critical speed are acceptable [38]—it is sustained travel at the critical speed which will lead to resonant amplification. The critical taxiing speeds are given Figure 1.58. An analysis conducted for the Il-76 [39] aircraft, considering an allowable flexural strength of sea ice of 2.35 MPa, produced a minimum acceptable sheet thickness of 1 m. This analysis matches the Transport Canada approach very well (which predicts a minimum ice thickness of 1010 mm at that ice strength). The Il-76 analysis indicated that the take-off phase generated higher loads than the landing loads. The dynamic amplification of the stress induced in the ice compared to when the aircraft was static was approximately 1.25 for ice thicknesses of 1, 2, and 3 meters.
Airfield Compatibility: Key Principles for Landing Gear Design
75
Reprinted from https://tc.canada.ca/en/aviation/reference-centre/advisory-circulars/ advisory-circular-ac-no-301-003.
FIGURE 1.58 Critical taxiing speeds.
Helidecks and Heliports Rotorcraft operating to elevated platforms, ships, and off-shore installations alight on fabricated decks which have dynamic properties which runways and helipads supported by soil do not. Typically these decks are designed for a specific rotorcraft but situations may arise where new aircraft are being designed to utilize existing installations. In terms of off-shore oil installations, many regulatory agencies have standards dictating the required strength, but the UK Civil Aviation Authority’s document CAP 437 [40] and the ICAO Heliport Manual [41] provide the most mature guidance. The ICAO standard requires that the deck be designed to accommodate a heavy normal landing—a descent rate of 1.8 m/s, resulting in an impact force 1.5 times the maximum take-off mass of the helicopter and an emergency landing—a descent rate of 3.6 m/s, resulting in an impact force 2.5 times the maximum take-off mass of the helicopter. The standard requires that the landing be considered as a “two point” landing—landing on both main gear groups (or skids). In addition, the standard requires that the effect of sympathetic response of the platform be included in the loads. In the absence of an analysis considering the dynamic response of the helicopter, landing gears, and platform, the CAA recommends a structural response factor of
76
Airfield Compatibility: Key Principles for Landing Gear Design
corlaffra/Shutterstock.com.
FIGURE 1.59 Helicopter landing on offshore platform.
1.3 be added to the dynamic loads calculated for the heavy normal and emergency landings.
Heavy normal landing load N
Emergency landing load N
MTOM kg
MTOM kg
m s2
1.5 9.81
2.5 9.81
m s2
1.3
1.3
Many rooftop platforms are manufactured with reinforced concrete, but platforms at sea tend to be made from steel or aluminum. It can be seen from the image in Figure 1.59 that the platform surface is analogous to the surface of a drum and that an aircraft landing upon it will excite it into oscillation. When the natural frequency of the deck is 20 Hz or lower, dynamic amplification of the applied landing load will occur [42]. Considering a platform designed to meet the CAA criteria and originally conceived to support the Sikorsky S61N as its largest helicopter (the S61N has a maximum take-off mass of 9298 kg) then the relevant dynamic loads according to the standard are: Heavy normal landing load N
9298 kg 296, 323 N
m s2 178 kN
1.5 9.81
177, 794 N
Emergency landing load N
9298 kg
m s2 296 kN
2.5 9.81
1.3
1.3
Airfield Compatibility: Key Principles for Landing Gear Design
77
© SAE International.
FIGURE 1.60 Helideck spring-mass-damper system.
Every helideck’s dynamic response will vary according to its method of construction. A refined calculation for the actual dynamic loads could be conducted considering the dynamics of the helicopter, the landing gears, and the helipad. In general, the helideck can be modeled as a spring-mass-damper system as shown (for an arbitrary helideck) in Figure 1.60; the damping arises from friction in the joints of the structure so it can be modeled as Coulomb damping. Specific values of mass (M), stiffness (K), and damping coefficient (C) will need to be sought from the designer or operator of the helideck. An analysis [43] performed for a Bell 214 Helicopter (maximum take-off mass of 6260 kg) indicates a deck size of 6.1 m by 7.6 m in reinforced concrete with a thickness of 0.18 m, which would have an approximate mass of 20 000 kg and an estimated natural frequency of 5–7 Hz. An example response for a hypothetical large helicopter landing on a helideck with a 13 Hz natural frequency is shown in Figure 1.61. The ICAO has standardized helideck point loads in the ranges provided in Table 1.15; note that these are static loads for when the rotorcraft is parked. The helideck manufacturer may need to know the actual wheel spacing and tire footprint areas in order to perform a refined deck strength analysis.
Naval Vessels/Aircraft Carriers The US Navy provides maximum wheel reactions for carrier and amphibious warfare vessels in their specification MIL-A-8863C [44]. The maximum allowable deck reaction is a function of the type of vessel, location on the vessel, tire capacity and pressure, and tire spacing. The maximum deck reaction, F, is given in thousands of pounds by an equation (or in the specification, a nomogram) specific to each deck type and location.
78
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 1.61 Helideck response for hypothetical landing.
TABLE 1.15 ICAO helideck static load ranges. Helicopter category
Maximum take-off mass
Point load for each wheel
Landing gear wheel centers
kg
kN
kN
m
1
Up to 2300
up to 22.6
12.0
1.75
2
2301–5000
22.6–49.2
25.0
2.0
3
5001–9000
49.2–88.5
45.0
2.5
4
9001–13 500
88.5–133.0
67.0
3.0
5
13 501–19 500
133.0–192.0
96.0
3.5
6
19 501–27 000
192.0–266.0
133.0
4.5
To determine the value, an intermediate value, C, must be computed from the following expressions:
C
K
K
0.7
P p
p 0.3 r
where P is the rated load of the tire, in pounds p is the operational pressure of the tire, in pounds per square inch r is the rated pressure of the tire, in pounds per square inch
Airfield Compatibility: Key Principles for Landing Gear Design
79
In the case of dual wheel landing gears, the value F must be adjusted by a factor based on the wheel spacing to determine the maximum deck reaction F′. Aircraft Carriers In the catapult area, the maximum deck reaction force per landing gear is given by:
F
14C 3 175C 2 1343C 169.5 100, 000, 000 1, 000, 000 10, 000
In the landing area, the maximum deck reaction force per landing gear is given by:
F
12C 3 171C 2 1379C 169.5 100, 000, 000 1, 000, 000 10, 000
Note that these expressions have been determined by digitizing the nomogram in MIL-A-8863C(AS) and are valid only for values of C in the range of 15–600. While they generate values of F which are within the reading error of the nomogram, in case of any dispute, the nomogram should be used. In the case of dual wheel landing gear, the deck reaction F′ is given by:
F
F Ke
where
Ke
6b 1.01 1000
b′ is the center to center wheel spacing in inches. Amphibious Warfare Ships The maximum deck reaction force (in thousands of pounds) per landing gear for an amphibious assault ship is given by:
F
4C 3 475C 2 58C 49.3 100, 000, 000 10, 000, 000 1000
Note that this expression has been determined by digitizing the nomogram in MIL-A-8863C(AS) and is valid only for values of C in the range of 15–600. While it generates values of F which are within the reading error of the nomogram, in case of any dispute, the nomogram should be used. In the case of dual wheel landing gear, the deck reaction F′ is given by:
F
F Ke
80
Airfield Compatibility: Key Principles for Landing Gear Design
where
Ke
3
32 b
1163 b
2
112b 1 1, 000, 000 1, 000, 000 10, 000
b′ is the center to center wheel spacing in inches. The equation is valid only for values of b′ between 0 and 25 inches
Example For an aircraft having a single wheel landing gear with a 30 × 7.7 tire with the properties: P = 21,300 pounds p = 400 pounds per square inch r = 360 pounds per square inch The value K is computed:
K
0.7
400 0.3 1.04 360
The value C is computed:
C 1.04
21300 55 400
For a carrier landing deck, the value F would be:
F
12 55
3
171 55
2
1379 55
100,000,000 1,000,000
10,000
169.5 177
The maximum deck reaction for a single wheel landing gear having a 30 × 7.7 tire would be 177,000 pounds. For a dual wheel landing gear with the same tires spaced at 14 inches from center to center, then the value of Ke is:
Ke
6 14 1000
1.01 0.93
The resulting maximum deck reaction is:
F
177 190 0.93
The maximum deck reaction for a dual wheel landing gear having a 30 × 7.7 tire would be 190,000 pounds.
2 Maneuvering
A
side from taking off and landing, an aircraft must also be able to maneuver around an airport: enter and exit runways, follow taxiways, etc. The International Civil Aviation Organization has standardized runway and taxiway sizes for different dimensions of aircraft. In addition, an aircraft must be able to perform certain maneuvers, such as turning 180° on a runway. An aircraft and its landing gear must be designed to operate at the anticipated airports, which as Figure 2.1 shows, can be a complicated network of runways, taxiways, and aprons. The aircraft must be sufficiently maneuverable to remain on the paved surface, which requires that the wheel span of the aircraft fit within the width of the runways and taxiways and that sufficient steering authority is provided to perform required maneuvers (turning onto and off of runways, etc.). The concept of wheelbase, track, and wheel span are shown in Figure 2.2.
ICAO Airport Standards Table 2.1 provides the ICAO codes for different sized aircraft: the main gear wheel span is the distance between the outside edges of the main gear wheels. The aircraft reference field length is the “balanced field length”—essentially the distance required to accelerate for take-off, reject the take-off at decision speed, and stop the aircraft at the maximum take-off mass, considering standard sea level atmospheric conditions. Example aircraft for each class are shown in Table 2.2. The defined minimum runway widths for each class of runway are provided in Table 2.3 and the minimum taxiway widths are provided in Table 2.4. Given the defined runway and taxiway widths, aircraft must observe specific clearances (Table 2.5) to ©2022 SAE International
81
82
Airfield Compatibility: Key Principles for Landing Gear Design
Josef Hanus/Shutterstock.com.
FIGURE 2.1 Aerial view of airport.
© SAE International.
FIGURE 2.2 Wheelbase, track, and wheel span.
TABLE 2.1 ICAO aerodrome reference code. Code number
Aircraft reference field length
Code letter
Wingspan
Outer main gear wheel span
1
Less than 800 m
A
Up to but not including 15 m
Up to but not including 4.5 m
2
800 m up to but not including 1200 m
B
15 m up to but not including 24 m
4.5 m up to but not including 6 m
3
1200 m up to but not including 1800 m
C
24 m up to but not 6 m up to but not including 36 m including 9 m
4
1800 m and over
D
36 m up to but not 9 m up to but not including 52 m including 14 m
E
52 m up to but not 9 m up to but not including 65 m including 14 m
F
65 m up to but not 14 m up to but not including 80 m including 16 m
Source: ICAO Annex 14, page 1–12.
Airfield Compatibility: Key Principles for Landing Gear Design
83
TABLE 2.2 Representative aircraft for various ICAO codes. Code 1A
Code 1B
Code 1C
Code 1D
Beech 23-100 Britten BN2 Cessna 152421 Fuji FA200180 Grumman G164 Mitsubishi MU2 Piper PA18PA60 Pitts 2A
Beech 80 Beech 90 Beech 200 Cessna 402 Cessna 414 Cessna 441 Dornier D0228 DHC-6 Twin Otter
DHC-4 Caribou DHC-7
DHC-5E
Code 2A
Code 2B
Code 2C
Lear Jet 24F Lear Jet 28/29
Beech 1900 Casa C212 Embraer EMB110 Shorts SD3-30 Metro III
DHC-8 ATR42 Cessna 550
Code 3A
Code 3B
BAe125-400 Dassault DA-10 Lear Jet 25D Lear Jet 36A
BAe125-800 Canadair CL600 Canadair CRJ200 Cessna 650 Dassault DA-20 Dassault DA-50 Dassault Falcon 900 EMB145 F28 - 2000 Shorts SD3-60
Lear Jet 55 IAI 1124 Westwind
Code 1E
Code 1F
Code 2D
Code 2E
Code 2F
Code 3C
Code 3D
Code 3E
Code 3F
BAe146 BAe748 BAe Jetstream 31 BAe Jetstream 41 DC-3 DC-9-20 EMB120 EMB170 F27-500 F28-3000/ 4000 F50 F100 Saab SF340
Airbus A300 B2 Q400
84
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 2.2 (Continued) Representative aircraft for various ICAO codes. Code 4A
Code 4B
Code 4C
Code 4D
Code 4E
Code 4F
Airbus A320 Airbus A321 B717 B727 B737 Concorde DC-9/MD80 EMB190
Airbus A300 Airbus A310 B707 B757 B767 DC-8 DC-10/MD11 Lockheed L100 (C130) Lockheed L188 Lockheed L1011
Airbus A330 Airbus A340 B747 B747 SP B777
Airbus A380
TABLE 2.3 ICAO minimum runway widths. Code number
Code letter A
B
C
D
E
F
1a
18 m
18 m
23 m
–
–
–
2a
23 m
23 m
30 m
–
–
–
3
30 m
30 m
30 m
45 m
–
–
4
–
–
45 m
45 m
45 m
60 m
Source: ICAO Annex 14, page 3-3. a The width of a precision approach runway should be not less than 30 m where the code is 1 or 2. TABLE 2.4 ICAO taxiway widths. Code letter
Taxiway width (dimension “x” in Figure 2.3)
A
7.5 m
B
10.5 m
C
15 m if intended to be used by aircraft with a wheel base less than 18 m; 18 m if intended to be used by aircraft with a wheel base equal to or greater than 18 m.
D
18 m if intended to be used by aircraft with outer main gear wheel spans less than 9 m; 23 m if intended to be used by aircraft with outer main gear wheel spans equal to or greater than 9 m.
E
23 m
F
25 m
Airfield Compatibility: Key Principles for Landing Gear Design
85
TABLE 2.5 ICAO required clearances – wheel to turn pad or taxiway edge
Code letter
Outer main wheel to edge clearance (dimension “y” in Figure 2.3 and Figure 2.4) (Cockpit centered over taxiway/turn pad markings)
A
1.5 m
B
2.25 m
C
3 m if intended to be used by aircraft with a wheel base less than 18 m; 4.5 m if intended to be used by aircraft with a wheel base equal to or greater than 18 m.
D
4.5 m
E
4.5 m
F
4.5 m
Wheel base means the distance from the nose gear to the geometric center of the main gear
Reprinted with permission from © ICAO.
FIGURE 2.3 Taxiway width and wheel to pavement edge diagram.
the taxiway edges as shown in Figure 2.3. Ongoing work at ICAO will result in some amendments to these dimensions, expected to be ratified in 2020 and 2022; slight reductions in required runway and taxiway widths (aimed at reducing infrastructure costs) should be anticipated. For a code D, E, or F runway which is not provided with taxiway access, a turn pad is provided to permit aircraft to taxi down the runway and turn through 180° at the runway end. Figure 2.4 shows the typical turn pad arrangement. The dimensions of each turn pad depend on the size (code letter) of the runway. In addition to typical 90° runway to taxiway turns, runways may be fitted with rapid exits in order to permit a higher flow of traffic, as shown in Figure 2.5. The turn-off radius is typically at least 550 m for code numbers 3 and 4 and at least 275 m for code numbers 1 and 2. These radii are designed to permit exit speeds of 93 km/h for codes 3 and 4 and 65 km/h for codes 1 and 2, in wet conditions. The intersection angle is typically 30° but may be between 25° and 45°.
86
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted with permission from © ICAO.
FIGURE 2.4 Turn pad layout.
Reprinted with permission from © ICAO.
FIGURE 2.5 Rapid exit taxiway.
Required Maneuvers—NAS3601 For manufacturers of large civil aircraft, it is typical to require the presentation of data regarding the maneuverability of the aircraft on the ground in accordance with NAS3601 [31]. The required data include the aircraft turn radii for a variety of nose wheel steering angles, the clearance radii: swept positions of the extremities of the aircraft (wing tips, tail cone, etc.), runway and taxiway turn paths (90°, 135°, and 180° turns), and runway holding bay clearance data. A limited set of examples are shown in Figures 2.6 and 2.7.
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 2.6 Aircraft turn radius.
© SAE International.
FIGURE 2.7 Composite of typical turn maneuvers.
87
88
Airfield Compatibility: Key Principles for Landing Gear Design
Required Maneuvers—Land-Based Military Aircraft Large military aircraft will be required to perform the same maneuvers as civil aircraft—and may be required, by operational necessity, to perform tighter turns than civil aircraft. These requirements will typically arise from the definition of the specific aircraft mission. The UK Ministry of Defence requires1 that military aircraft execute the turns at the speeds indicated in Table 2.6. These turns are to be considered to be constant radius turns at the indicated speeds with zero aircraft bank or considering bank and rate of roll effects if they are worse.
Required Maneuvers—Shipboard Military Aircraft A ship presenting a very confined space for aircraft operations and stowage, aircraft designed for operations to and from ships must be designed for maximum maneuverability, and typically require nose wheels which permit 360° rotation. Taxiing maneuvers for parking are generally conducted with a tug or other vehicle. A variety of constraints on aircraft and landing gear sizing exist—many of which are specific to certain classes of vessels—so it is important to carefully check the requirements. For instance, the wheel span on carrier based aircraft may be limited to a maximum of around 7.6 m to ensure clearance to obstructions when using the catapult system. TABLE 2.6 Military aircraft turn maneuvers. Radius (m)
2
3
4
5
10
15
20
30
50
Speed (knots)
5
6
7
8
11
14
16
20
25
DEF STAN 00-970 leaflet 42, paragraph 4.5.
1
3 Surface Texture and Profile
T
he aircraft and landing gear are required to operate in contact with the ground, which does not provide a uniform surface texture or profile. The contact surface type and texture are key elements in determining the available friction coefficient; this can be altered with various contaminants such as snow or water, and is further elaborated in Chapter 3 of The Design of Aircraft Landing Gear, (see also Aircraft Tires: Key Principles for Landing Gear Design).
Paved Runways A paved runway, while nominally designed as a flat, smooth surface, presents irregularities at a number of scales. At the largest scale, the runway may not be perfectly horizontal—it may follow the path of the land and have significant elevation changes (Figure 3.1). These large scale elevation changes typically do not present an issue for the landing gear and only impact the aircraft performance for take-off and landing distances. At a closer scale, the runway will exhibit roughness—local elevation changes (bumps and hollows) which can have a significant effect on the aircraft and on the landing gear. At the closest scale, the texture of the top course of pavement partly determines the drainage behavior of the runway and interacts with the tires to generate friction for directional control and braking.
Micro/Macrotexture Microtexture is the texture of the individual stones which form the aggregate used in the pavement (Figure 3.2). This microtexture is a key element in ensuring skid ©2022 SAE International
89
90
Airfield Compatibility: Key Principles for Landing Gear Design
FotoLot/Shutterstock.com.
FIGURE 3.1 Aircraft landing on runway with elevation change.
Reprinted from TSB report A10H0004.
FIGURE 3.2 Microtexture and macrotexture.
resistance on dry runways and at low speed on wet runways as the local asperities on the material interact with the rubber tire to generate friction and the irregularity provides a path for the water film to escape. The pavement designer should select a crushed material aggregate that will withstand polishing to ensure the desired microtexture is retained over time. Covering or masking of the local asperities (by water film or by buildup of debris, such as tire rubber) will significantly change the local friction performance of the surface course. Macrotexture, by contrast, is the texture among the aggregate, and can be judged by eye. The runway surface of Figure 3.3 shows a coarse macrotexture. The macrotexture results typically from the size of the aggregate selected or from the surface treatment applied to the surface course. The macrotexture is of particular importance in determining the high speed friction characteristics of the runway. An open macrotexture is desired which provides significant pathways for water evacuation under the action of the tire. A closed macrotexture, as might be found on roadway and highway surfaces, can contribute to low friction being generated on airport runways as the aircraft speeds and tire pressures are higher, contact patches are smaller, and aircraft tires do not
Airfield Compatibility: Key Principles for Landing Gear Design
91
Akimov Igor/Shutterstock.com.
FIGURE 3.3 Surface texture of an asphalt concrete taxiway.
support the type of tread designs which road vehicles employ. The optimum macrotexture for an asphalt concrete runway can be achieved with a porous friction course. For rigid (Portland cement) runways, the provision of lateral grooving (typical groove dimensions shown in Figure 3.4) is considered the most effective means of ensuring an appropriate macrotexture. Both approaches provide good standing water drainage paths as well as good tire-ground interface drainage. An accepted macrotexture classification based on the depth of the macrotexture is shown in Table 3.1. An indication of the importance of macrotexture to the effective drainage of water from the surface is shown [45] in Figure 3.5, which shows the relationship between macrotexture, runway cross slope (crown), and the rainfall rate to flood the runway. It can be seen that for low values of macrotexture, the amount of rainfall required to flood the runway is quite low, even with large values of cross slope.
© SAE International.
FIGURE 3.4 Typical runway groove dimensions.
92
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 3.1 Macrotexture classification. ESDU 71026 classificationa
Macrotexture depth (mm)
A
0.10–0.14
B
0.15–0.24
C
0.25–0.50
D
0.51–1.00
E
1.01–2.54
Frictional and Retarding Forces on Aircraft Tyres Part II: Estimation of Braking Force, ESDU Data Item No. 71026, June 1995, now superseded by: Definitions for Runway Contaminants and the Classification and Distribution of Hard Runway Surfaces, ESDU Data Item No. 15002, July 2015.
a
© SAE International.
FIGURE 3.5 Rainfall rate to flood runway surface.
Runway Roughness/Profile and Obstacles The local hollows and bumps of a runway surface can cause concerns for the aircraft and the crew. In general, the landing gear must be designed to accommodate the roughest runways anticipated during operation of the aircraft. Typically, the landing gear is designed against known rough profiles—those for which historical pilot reports indicated that the runway was rough—and dynamic analyses are conducted to ensure that the shock absorption characteristics of the landing gear are suitable and that the airframe structural capability is sufficient for these surfaces. ICAO Annex 14 suggests that newly surfaced runways have no greater than a 3 mm variation over a 3 meter
Airfield Compatibility: Key Principles for Landing Gear Design
93
TABLE 3.2 ICAO Annex 14 acceptable runway variation. Minimum acceptable length of irregularity (m) Surface irregularity
3
6
9
12
15
20
30
45
60
Maximum surface irregularity (height or depth) – mm
30
35
40
50
55
60
65
80
100
Temporarily acceptable surface irregularity (height or depth) - mm
35
55
65
75
80
90
110
130
150
length (when measured with a straightedge). As the runway is used, wear and differential settlement of the runway foundations can lead to increased irregularity. These variations can be accommodated [46] if over greater lengths, as outline in Table 3.2. When the temporarily acceptable limits of Table 3.2 are exceeded, it is recommended by the ICAO that the surface be corrected. Typical correction techniques include cold planing of high spots and over-coating/filling of low spots.
Roughness Measurement Techniques The optimum method to determine response to runway surface variation is to perform a dynamic simulation including the aircraft stiffness as well as the dynamic behavior of the landing gear and tire. Through this modeling approach, the design of the landing gear shock absorber can be tuned to accommodate the desired runway profile. In general, a resulting maximum incremental acceleration of ±0.4 g at the cockpit has been judged as the acceptable limit [47] before pilot complaints. The landing gear and aircraft structure can typically tolerate significantly more. A variety of techniques have been developed to quantify runway roughness.
Power Spectral Density Approach One approach for the comparison of runway roughness is to analyze the surface elevation profile in terms of its power spectral density (PSD). This approach is beneficial in the calculation of aircraft loads. PSD1 is typically applied to time varying signals, but as a runway profile is a distribution in space rather than time, the frequency argument, Ω, is defined in terms of radians per unit length. Typically, for time varying signals, the frequency argument is defined as ω, in radians per second. For a runway profile y(x), the power spectral density function is defined as:
lim
x
1 2 x
2
x
y x e
x
dx
x
where the bars indicate the modulus of the complex quantity. The standard deviation, σ (root mean square value) of the profile is given by:
d
2 0
Derivation of power spectral density from [48].
1
94
Airfield Compatibility: Key Principles for Landing Gear Design
The PSD approach is useful to provide an indication of the average roughness of a runway, but it does not distinguish between many small amplitude bumps and a few large amplitude bumps (for bumps of the same wavelength). An example (drawn from the US Military) of an aircraft level requirement for paved runway roughness, expressed in terms of power spectral density, is shown in Figure 3.6. The PSD method is not particularly relevant for the determination of a rough runway versus a smooth runway (it has no use for those engaged with runway maintenance, for instance) but it can be used for the analysis of landing gear fatigue. Due to the non-linear response
Reprinted from JSSG-2006.
FIGURE 3.6 Power spectral density roughness specification for prepared runways.
Airfield Compatibility: Key Principles for Landing Gear Design
95
of landing gears it is advised to not generate static design loads directly from a PSD analysis but rather to use an analysis based on specific runway profiles.
Boeing Bump Method The Boeing Bump Method is an approach to quantify the roughness of a runway in terms of single bumps and is primarily a tool for addressing runway issues but can be used for aircraft and landing gear design. The approach [49] has been developed to facilitate the evaluation of runways and is based on both aircraft response—aiming to keep the incremental acceleration below ±0.4 g—as well as a fatigue damage assessment conducted on a Boeing 737 aircraft (although for design purposes, the tool is not particularly useful for fatigue analysis as it is based on a single bump). The Boeing method stems from recognition that some other approaches, such as the PSD approach, do not identify the location where a runway is out of tolerance. As a result, they do not aid in the identification and repair of problematic locations. An example of the Boeing method is shown in Figure 3.7. The acceptability ranges shown here are those captured in ICAO Annex 14 and they align to the Boeing criteria from 1975 to 1994. From 1995, Boeing revised their acceptability criteria to eliminate the “temporarily acceptable” region, growing the acceptable region to include everything under the “excessive” line, based on their in-service experience.
Reprinted with permission from © ICAO.
FIGURE 3.7 Boeing bump method with ICAO acceptability values.
96
Airfield Compatibility: Key Principles for Landing Gear Design
This approach is useful to evaluate specific runway profiles to identify areas of concern and to evaluate the acceptability of certain repairs and repair approaches. The acceptable slope of temporary ramping utilized during off-peak resurfacing activities can be evaluated using this method. For example, a 50 mm overlay would require a 5 m ramp length (1 in 100 slope) to meet the acceptability limit. Overlays greater than 50 mm would require a 1 in 200 slope. In some analyses, the Boeing Bump Index may be presented. This is the bump height divided by the acceptable bump height for that bump length.
International Roughness Index The International Roughness Index (IRI) is a roughness index typically used for roads and defined by ASTM E1926-08 [50]. As it is used worldwide it can sometimes be applied to runway surfaces. The index is calculated by using a quarter-car model with set properties: a tire spring, an axle mass, a body mass suspended over the axle with a suspension spring and damper. The index is based on the response of the body mass to the input profile. The IRI scale is linearly proportional to roughness—if all of the profile elevation values are increased by some amount, the IRI increases by the same proportion. An IRI of zero indicates that the surface profile is perfectly flat. Most airport runways fall into the IRI range of 0.25–2 m/km. An older road may have values in the range of 2–6 m/km. Roughness values greater than 8 m/km are only passable in road vehicles at reduced speeds. Information on the IRI is included here for completeness—it is generally not applied to landing gear and aircraft analysis.
Short Wavelength Roughness Most runway roughness evaluations for aircraft and landing gear focus on single bump events (typically determining the static strength of the landing gear) or on long wavelength variations which impact the landing gear fatigue loads. However, short wavelength variations can have a significant impact on multi-wheel landing gears which use a bogie beam. The short wavelength variations can establish resonant oscillations of the bogie beam which drive the bogie pivot joint to operate in a high pressure-velocity regime and can lead to significant (and damaging) heat buildup in the joint. Bogie pitch oscillation mode tends to be in the range of 10–20 Hz, responding to short wavelength roughness at 2–7 m wavelength. This phenomenon has been noted predominantly in Russia and in countries which were formerly part of the USSR; however, some other international airports have induced problems with bogie pivots as a result of short wavelength roughness. No current standard exists to quantify this roughness although Boeing has proposed to utilize the PSD analysis approach, focusing on the 2–7 m wavelengths. Detail design considerations for bogie pivot joints resulting from this issue are provided in Chapter 12 of The Design of Aircraft Landing Gear.
ProFAA Roughness Evaluation Tool The Federal Aviation Administration makes available a software tool, ProFAA,2 for the analysis and manipulation of runway profiles. The tool permits the calculation Available at: http://www.airporttech.tc.faa.gov/Download/Airport-Pavement-Software-Programs.
2
Airfield Compatibility: Key Principles for Landing Gear Design
97
Reprinted from PROFAA freeware program from FAA.
FIGURE 3.8 ProFAA application showing San Francisco 28R values.
of the Boeing Bump Index, variable length straightedge deviations, IRI and other values. Figure 3.8 shows the ProFAA application with the evaluations run for an example runway. Detailed instructions on the use of the software are included in FAA advisory circular 150/5380-9 [51]. The application includes the ability to simulate a number of aircraft and examine their response to the runway profile being analyzed. Using the “In/Out” button, the airframe properties of the aircraft can be adjusted (Figure 3.9). With appropriate values for the aircraft selected, a dynamic analysis can be conducted, providing the incremental acceleration at the center of gravity and at the cockpit as well as main and nose gear vertical force (Figure 3.10).
Industry Standard Roughness Profiles Accepted industry standard runway profiles are provided in Appendix C. The profile for San Francisco 28R (which is also runway 10L) is generally considered to be the benchmark for large civil aircraft for western operation and is extracted from advisory circular AC25.491-1 [52]. The profile for San Francisco 28R was originally published by NASA in 1964 and the values provided include a typographical correction from the original source along with a severe bump mitigation to bring the profile into agreement with ICAO standards. The runway has been resurfaced (likely several times) since the original survey, but the adjusted survey data remains the reference “rough runway” for the certification of large civil aircraft. In addition to the consideration of runway roughness, the static load impact of traversing one bump or two bumps must be addressed (additional details are found in AC25.491-1).
98
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from PROFAA freeware program from FAA.
FIGURE 3.9 ProFAA adjustments.
Reprinted from PROFAA freeware program from FAA.
FIGURE 3.10 ProFAA aircraft simulation.
Airfield Compatibility: Key Principles for Landing Gear Design
99
Certification of aircraft intended to operate in Russia and countries which were formerly part of the USSR require the consideration of different profiles (Appendix C), typically considered types A, B, and C. The type A runway is based on a historical survey of the Moscow international airport Domodedovo while the B type runway is based on a historical survey of Novosibirsk airport and the C type runway profile is a historical survey of Bukhara airport (the current runway profiles at these airports may no longer match the published A, B, and C data). A type D profile exists, based on a purely military runway, but this profile is not generally required for the certification of civil aircraft, and operation on this runway generally reaches or exceeds the limit loads required by Western certification authorities. The Russian runway profiles exhibit a greater degree of roughness and short wavelength elevation change than many other runways. This is due in part to some of the runways (and taxiways) being constructed from pre-cast, pre-stressed concrete paving slabs which can exhibit discontinuities and significant local elevation variation (Figure 3.11). The slabs are available in three thicknesses: 140, 180, and 200 mm and have dimensions of 6 m by 2 m. The Russian standard3 for the installation of the pre-cast slabs permits not more than 2% of roughness readings (vertical deviation under a 3 m straightedge) to be up to 10 mm, the rest must be less than 5 mm. At the seams between slabs, no more than 10% of the slabs may have a step up to 6 or 10 mm (depending on the direction of travel), the rest must be less than 3 or 5 mm. However, these are the installation standards and differential settlement and freeze–thaw cycles lead to greater height and slab angle variation over time. Longer and shorter slabs, as well as hexagonal paving slabs have also been used historically in Russia and the Commonwealth of Independent States [53].
Grigorii Pisotsckii/Shutterstock.com.
FIGURE 3.11 Precast pavement surface at Nadym airport.
СВОДПРАВИЛ, АЭРОДРОМЫ, АКТУАЛИЗИРОВАННАЯ РЕДАКЦИЯ, СНиП 32-03-96, Aerodromes, 30 June 2012. СП 121.13330.2012.
3
100
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 3.3 DEF STAN 00-970 runway classes. Class
Runway description
Factor
A
Paved runways laid on a stable base and regularly maintained
1.0
B
Poor quality paved runways and unpaved runways which have been fully graded
1.5
C
Unpaved runways which have been partially graded
2.5
D
Unpaved runways on virgin ground
4.0
TABLE 3.4 DEF STAN 00-970 bumps and hollows. Class
Height of step (mm)
Height of bump (mm); Depth of hollow (mm)
A
25
30
B
40
45
C
60
75
D
100
120
Military specifications typically require operation on rougher runways than civil aircraft. The UK Ministry of Defence [54] specifies a profile, included in Appendix C, for a variety of surface types. They define four classes of runway surface, A through D, with appropriate height multiplication factors for the baseline profile as outlined in Table 3.3. The profile is derived from an actual survey; however, it has been enhanced for wavelengths between 20 and 40 m and elevation changes with a wavelength greater than 120 m have been attenuated. Should a profile longer than the provided 1499 m be required, the standard shape should be extended by reflection of both the height (h) and distance (x) coordinates. The following equation shows the approach for a desired profile length of 2800 m:
h x
h 2800 x ;1499 x 2800
In addition, aircraft designed to meet the DEF STAN 00-970 requirements must be able to traverse steps, bumps, and hollows with heights as shown in Table 3.4.
Reprinted from DEF STAN 00-97. © Crown Copyright. Licensed under the Open Government Licence v3.0.
FIGURE 3.12 DEF STAN 00-970 bump profile.
Airfield Compatibility: Key Principles for Landing Gear Design
101
Steps are 90° rectangular steps. Bumps and hollows (Figure 3.12—a hollow has the same profile but the value of hx is negative) are defined by the expression:
H s 1 cos
hx
2
2 x L
; L is assumed to be between 0.25 and 1.25 m
A comparison of the various runway profiles available in Appendix C is shown in Figure 3.13. Consistent slopes have been removed to more easily visualize the profiles. The US military specifies runway roughness [44] as a series of 1-cosine bumps (the same bump profile as the UK military, Figure 3.14). This specification was originally only for US Navy aircraft, but the US Air Force equivalent specification has been canceled and superseded by the Navy specification. The height of the bumps depends on the type of runway and the bump wavelength; the values are shown in Table 3.5. The profile generated should have all relevant combinations of height and length using the relevant expression for the runway type. The aircraft must be able to traverse this infinite series of bumps at all angles up to and including 45° to the lateral axis of the contour. Joint services guidance [55] for discrete bumps differentiates between the operational speed range (taxiing versus landing/take-off). For low speed (below 50 knots), the bump/hollow height as a function of wavelength is shown in Figure 3.15 and for speeds above 50 knots, the relationship is shown in Figure 3.16.
© SAE International.
FIGURE 3.13 Comparison of runway profiles.
102
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 3.14 1-cos roughness profile.
TABLE 3.5 US Military runway roughness requirement. Expression for bump height, H (in.) in terms of L (ft)
Runway type
Applicable aircraft
Paved runway
Carrier based, land based, land H4 = 0.01L (0 based trainer, and STOL
Semi-prepared fields
Carrier based, STOL, and skiequipped
H3 = 0.048L + 2 (0
Unprepared field
STOL
H1 = 0.01765L + 32.35 (150 L 1000) H2 = 0.2067L + 4 (0 L 150)
L
1000) L
1000)
Reprinted from MIL-A-88721.
FIGURE 3.15 Dimensions of obstacles – low speed.
Airfield Compatibility: Key Principles for Landing Gear Design
103
Reprinted from MIL-A-88722.
FIGURE 3.16 Dimensions of obstacles – high speed.
Bomb Damage Repair In addition to the roughness profiles provided by military authorities, it is often desired that military aircraft operate from rapidly repaired runways. Given enough time, a bomb damaged runway can be repaired such that the repair is level with the remaining surface; however, it may be more advantageous to perform a rapid repair and have aircraft which are capable of operating from the resulting profile. The directives for runway repair acknowledge the need to have the runway in “near perfect’ condition [56]. Nevertheless, some disturbance will remain. Some munitions may only spall the surface of the runway (removing a small quantity of material) while others will generate a crater. The typical crater (Figure 3.17) has significant material removed from the runway and sub-base as well as upheaval of material around the edges. Some of the runway surface in the upheaval area remains useable, so an expedient repair is to backfill the crater with the debris and compact it in place, and then to cover it with a temporary surface such as AM-2 matting (Figure 3.18) or a glass fiber reinforced repair mat (Figures 3.19 and 3.20). The expedient repair will typically sag with time, under the action of multiple aircraft passes, resulting in increased compaction of the crater in-fill, as shown in Figure 3.21. This behavior makes identifying standard repair profiles a difficult task. A number of classes of expedient bomb damage repair have been proposed for analysis purposes. A set of profiles are outlined in Table 3.6 corresponding to the diagram shown in Figure 3.22. It is advisable that any landing gear designer attempting to design to a contractual “repair class” confirm the specific dimensions of the repair as a number of repair classes have been proposed historically. As important as the height and ramp to the repair are the number of repairs in sequence and the spacing
104
Airfield Compatibility: Key Principles for Landing Gear Design
© SAE International.
FIGURE 3.17 Representative crater profile.
© SAE International.
FIGURE 3.18 AM-2 matting crater class E repair.
Reprinted from AGARD-R-731.
FIGURE 3.19 Fiberglass mat repair cross section.
Airfield Compatibility: Key Principles for Landing Gear Design
Reprinted from Feel the Thunder of the Mustangs! Staff Seargent Scottie T. McCord, USAF.
FIGURE 3.20 Installation of a folded fiberglass repair mat.
Reprinted from AGARD-R-731.
FIGURE 3.21 Repair compaction with increasing traffic.
105
106
Airfield Compatibility: Key Principles for Landing Gear Design
TABLE 3.6 Repair classes and dimensions.
Repair class
Repair height, h [mm, (in.)]
Maximum nominal sag, Zn [mm, (in.)]
Peak sag, Zp [mm, (inches)]
Ramp length, R [m, (ft)]
A
38 (1.5)
13 (0.5)
25 (1.0)
1.25 (4)
B
64 (2.5)
13 (0.5)
25 (1.0)
1.25 (4)
C
64 (2.5)
50 (2.0)
64 (2.5)
1.25 (4)
D
76 (3.0)
50 (2.0)
64 (2.5)
1.5 (5)
E
114 (4.5)
50 (2.0)
64 (2.5)
2.5 (8)
Notes: Ramp lengths are typical—up to a 5% slope may be required. Repair lengths may vary—6.5, 12.5, and 22.5 m are specified by DEF STAN 00-970. Nominal sag represents the average position of the depression; local sag may occur to the value of Zp.
© SAE International.
FIGURE 3.22 Repair profile.
between them. What is found acceptable for one aircraft may not be acceptable for another due to the landing gear spacing, shock absorber dynamics, and fuselage frequency response. The UK specification [57] suggests that standardized repair heights as originally suggested by NATO (through the Advisory Group for Aerospace Research and Development—AGARD) be used for initial mathematical evaluation. The associated profile is shown in Figure 3.23. Values of repair length, L, are to be taken as 6.5, 12.5, and 22.5 m. The minimum standard heights, h, to be considered are 38 and 52 mm. The normal standard heights to be considered are 52 and 78 mm. The spacing, S, between subsequent repairs is to be calculated as a function of the dynamics of the landing gears and aircraft to aid in the definition of the minimum operating strip
FIGURE 3.23 Generic repair.
Reprinted from DEF STAN 00-97. © Crown Copyright. Licensed under the Open Government Licence v3.0.
.
Airfield Compatibility: Key Principles for Landing Gear Design
107
(MOS) for the aircraft. The MOS represents the minimum combination of length and repairs in order to operate the aircraft from a damaged area.
Arrestor Cables Military airfields often have arrestor cables, typically a wire rope connected to an arresting device (historically this was chains laid alongside the runway, but may now be a hydraulic braking device, or other method of retardation) which slows the aircraft once it captures the cable. All tires and landing gears must be able to accommodate passing over an arrestor cable. The cable is typically supported above the runway surface by spacers (rubber disks) or ramps (which ensure that an arrestor hook can capture the cable). As a tire traverses the cable, it excites the cable as the cable is pushed downwards and at times forwards. This generates a wave in the cable which travels outwards from the contact point along the cable. This wave can be augmented by the passing of another wheel, such as the main wheels passing after the nose wheel, or by another aircraft in formation. These cable waves can lead to the cable rising above the ground and contacting the aircraft; some cables are fitted with tie-downs to restrict this motion. The UK Ministry of Defence recommends [58] the clearances shown in Table 3.7 between the ground and any item likely to be damaged by cable contact. Typical values for the diameter of the arrestor cable, d, are 32 mm and for the spacer, D, 180 mm. An example is shown in Figure 3.24. Traversing the cable or the TABLE 3.7 Recommended arrestor cable clearances. Without tie-down
With tie-down
Aircraft zone
Hook cable
Support
Hook cable
Support
Forward of nose wheel
0.5(D + d)
D
0.5(D + d)
D
Aft of nose wheel 1.25(D + d)
2D
D+d
1.5D
Aft of main wheels
2.625D
D+d
1.5D
1.8(D + d)
Where D is the diameter of the support disk and d is the diameter of the arrestor cable.
© SAE International.
FIGURE 3.24 Arrestor cable and support disk.
108
Airfield Compatibility: Key Principles for Landing Gear Design
cable support can induce significant loads into the landing gear and airframe structure. If operation on runways with these systems is anticipated, a dynamic analysis should be conducted considering the cable diameter, the support (donut) shape, and a deflected support shape. As the induced load into the landing gear is exacerbated by increased traversing speed, commercial aircraft operating to airfields with arrestor gears are typically provided with speed limits in an effort to ensure that the induced dynamic loads stay below the certification bump loads.
Unsurfaced Runways A variety of assumed elevation profiles for unsurfaced runways are provided in the previous section—typically as factors to be considered on a baseline profile, such as that offered by DEF STAN 00-970 which increased the vertical dimension of the profile by a factor of 4 compared to a paved runway (Table 3.3) and by a factor of 2.5 for a semi-prepared runway. The US military proposes the power spectral density values shown in Figures 3.25 and 3.26 for semi-prepared (graded soil and matted runways) and unprepared runways, respectively.
Deck/Helideck Helidecks in general present a flat uniform surface, and as the helicopter is not rolling for any significant distance, waviness or unevenness does not generally present a problem. The deck is generally treated with a non-slip coating and helidecks in the North Sea, which fall under UK CAA authority, need to present a minimum surface friction value of 0.6 on a fixed helideck and 0.65 on a moving helideck (shipborne). These values need to be tested regularly using a device that employs a braked wheel having a tire made of the same material as helicopter tires. Aircraft carrier decks, while generally flat, do present various obstacles that present themselves as single bumps. Carrier decks are provided with a non-slip coating and the expected range of friction coefficient is from 0.3 to 0.6, although significantly higher friction coefficients can be achieved, with values greater than 1 possible. The landing gear must be able to negotiate taxiing and landing over the arrestor cable, with a 41.3 mm diameter, and also a guide light cover plate with a height of 32 mm.
Airfield Compatibility: Key Principles for Landing Gear Design
FIGURE 3.25 Power spectral density roughness specification for soil and
Reprinted from JSSG-2006.
matted runways.
109
110
Airfield Compatibility: Key Principles for Landing Gear Design
FIGURE 3.26 Power spectral density roughness specification for
Reprinted from JSSG-2006.
unprepared runways.
Appendix A: 100 Busiest airports showing runway size and strength
TABLE A.1 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
AMSTERDAM, NL (AMS)
AMS
04/22
2014
45
Asphalt
39/F/D/W/T
AMSTERDAM, NL (AMS)
AMS
06/24
3500
45
Asphalt
82/R/C/X/T
AMSTERDAM, NL (AMS)
AMS
09/27
3453
45
Asphalt
95/F/C/W/T
AMSTERDAM, NL (AMS)
AMS
18C/36C
3300
45
Asphalt
82/R/C/X/T
AMSTERDAM, NL (AMS)
AMS
18R/36L
3800
60
Asphalt
95/F/C/W/T
AMSTERDAM, NL (AMS)
AMS
18L/36R
3400
45
Asphalt
82/R/C/X/T
ANTALYA, TR (AYT)
AYT
18L/36R
3400
45
Concrete
110/R/A/W/T
ANTALYA, TR (AYT)
AYT
18C/36C
3400
45
Concrete
80/R/A/X/T
ANTALYA, TR (AYT)
AYT
18R/36L
2990
45
Asphalt
45 LCN
ATHENS, GR (ATH)
ATH
03R/21L
4000
45
Asphalt
64/F/B/W/T 64/F/B/W/T
ATHENS, GR (ATH)
ATH
03L/21R
3800
45
Asphalt
ATLANTA GA, US (ATL)
ATL
08R/26L 3048
46
Concrete, grooved 74/R/A/W/T
ATLANTA GA, US (ATL)
ATL
08L/26R 2743
46
Concrete, grooved 62/R/A/W/T
ATLANTA GA, US (ATL)
ATL
09R/27L 2744
48
Concrete, grooved 68/R/A/W/T
ATLANTA GA, US (ATL)
ATL
09L/27R 3624
46
Concrete, grooved 62/R/A/W/T
ATLANTA GA, US (ATL)
ATL
10/28
46
Concrete, grooved 74/R/A/W/T
AUCKLAND, NZ (AKL)
AKL
BALTIMORE MD, US (BWI) BWI
2743
05R/23L 3635
45
Concrete
120/R/D/W/T
10/28
46
Asphalt, grooved
105/F/A/W/T
3201
BALTIMORE MD, US (BWI) BWI
15L/33R
1524
30
Asphalt, grooved
15/F/A/W/T
BALTIMORE MD, US (BWI) BWI
15R/33L
2896
46
Asphalt, grooved
70/F/A/W/T
©2022 SAE International
111
112
Appendix A: 100 Busiest airports showing runway size and strength
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
BANGKOK, TH (BKK)
BKK
4000
137/F/D/X/T
01R/19L
60
Asphalt
BANGKOK, TH (BKK)
BKK
01L/19R
3700
60
Asphalt
137/F/D/X/T
BARCELONA, ES (BCN)
BCN
02/20
2540
45
Asphalt
86/F/A/W/T
BARCELONA, ES (BCN)
BCN
07R/25L 2660
60
Asphalt
76/F/C/W/T
BARCELONA, ES (BCN)
BCN
07L/25R 3552
45
Asphalt
86/F/A/W/T
BEIJING, CN (PEK)
PEK
01/19
60
Concrete
117/R/B/W/T
3802
BEIJING, CN (PEK)
PEK
18L/36R
3802
60
Asphalt
108/F/B/W/T
BEIJING, CN (PEK)
PEK
18R/36L
3202
50
Asphalt
95/F/B/W/T
BERLIN, DE (TXL)
TXL
08R/26L 2428
46
Asphalt
120/F/A/W/T
BERLIN, DE (TXL)
TXL
08L/26R 3023
46
Asphalt
120/F/A/X/T
BOGOTA, CO (BOG)
BOG 13R/31L
3800
45
Asphalt
80/F/C/W/T
BOGOTA, CO (BOG)
BOG 13L/31R
3800
45
Asphalt
104/F/D/W/T
BOSTON MA, US (BOS)
BOS
04R/22L 3050
46
Asphalt, grooved
90/F/C/W/T
BOSTON MA, US (BOS)
BOS
04L/22R 2396
46
Asphalt, grooved
90/F/C/W/T
BOSTON MA, US (BOS)
BOS
09/27
2134
46
Asphalt, grooved
90/F/C/W/T
BOSTON MA, US (BOS)
BOS
15R/33L
3073
46
Asphalt, grooved
90/F/C/W/T
BOSTON MA, US (BOS)
BOS
15L/33R
779
30
Asphalt
90/F/C/W/T
BOSTON MA, US (BOS)
BOS
14/32
1524
30
Asphalt, grooved
85/F/C/W/T
BRASILIA, BR (BSB)
BSB
11R/29L
3300
45
Asphalt
68/F/B/W/T
BRASILIA, BR (BSB)
BSB
11L/29R
3200
45
Asphalt
76/F/B/X/T
BRISBANE, AU (BNE)
BNE
01/19
3560
45
Asphalt
108/F/D/W/T
BRISBANE, AU (BNE)
BNE
14/32
1700
30
Asphalt
15/F/A/Y/T
2987
BRUSSELS, BE (BRU)
BRU
02/20
BRUSSELS, BE (BRU)
BRU
07R/25L 3211
BRUSSELS, BE (BRU)
BRU
CHARLOTTE NC, US (CLT) CLT
50
Asphalt
59/F/A/W/T
45
Asphalt
62/F/A/W/T
07L/25R 3638
45
Asphalt
80/F/A/W/T
05/23
46
Asphalt, concrete, grooved
73/R/B/W/T
2287
CHARLOTTE NC, US (CLT) CLT
18R/36L
2743
46
Concrete, grooved 75/R/B/W/T
CHARLOTTE NC, US (CLT) CLT
18C/36C
3048
46
Concrete, grooved 75/R/B/W/T
CHARLOTTE NC, US (CLT) CLT
18L/36R
2645
46
Concrete, grooved 68/R/B/W/T
CHENGDU, CN (CTU)
CTU
02/20
3600
60
Concrete
80/R/B/W/T
CHICAGO IL, US (MDW)
MDW 13L/31R
1567
46
Asphalt, concrete, grooved
59/R/B/W/T
CHICAGO IL, US (MDW)
MDW 13C/31C
1988
46
Asphalt, concrete, grooved
61/F/D/X/T
CHICAGO IL, US (MDW)
MDW 13R/31L
1176
18
Asphalt
42/R/B/X/T
CHICAGO IL, US (MDW)
MDW 4L/22R
1679
46
Asphalt, grooved
69/F/D/X/T
Appendix A: 100 Busiest airports showing runway size and strength
113
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
CHICAGO IL, US (MDW)
MDW 4R/22L
1964
46
Asphalt, concrete, grooved
62/F/D/X/T
CHICAGO IL, US (ORD)
ORD 10L/28R
3962
46
Asphalt, concrete, grooved
120/R/B/W/T
CHICAGO IL, US (ORD)
ORD 10C/28C 3292
61
Concrete, grooved 96/R/C/W/T
CHICAGO IL, US (ORD)
ORD 15/33
2952
61
Asphalt, concrete, grooved
108/R/C/ W/U
CHICAGO IL, US (ORD)
ORD 4R/22L
2461
46
Asphalt, grooved
108/R/C/ W/U
CHICAGO IL, US (ORD)
ORD 9R/27L
2428
46
Asphalt, concrete, grooved
108/R/C/ W/U
CHICAGO IL, US (ORD)
ORD 4L/22R
2286
46
Asphalt, grooved
108/R/C/ W/U
CHICAGO IL, US (ORD)
ORD 9L/27R
2286
46
Concrete, grooved 91/R/B/W/T
CHICAGO IL, US (ORD)
ORD 10R/28L
2286
46
Concrete, grooved 104/R/B/ W/U
COPENHAGEN, DK (CPH)
CPH
04L/22R 3600
45
Asphalt
80/F/C/X/U
COPENHAGEN, DK (CPH)
CPH
04R/22L 3300
45
Asphalt
80/F/C/X/U
12/30
80/F/C/X/U
COPENHAGEN, DK (CPH)
CPH
3070
45
Asphalt, concrete
DALLAS/FORT WORTH TX, US (DFW)
DFW 13R/31L
2835
46
Concrete, grooved 83/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 13L/31R
2743
61
Concrete, grooved 97/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 17C/35C
4085
46
Concrete, grooved 82/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 17R/35L
4085
61
Concrete, grooved 78/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 17L/35R
2591
46
Concrete, grooved 97/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 18R/36L
4084
46
Concrete, grooved 82/R/B/W/T
DALLAS/FORT WORTH TX, US (DFW)
DFW 18L/36R
4084
61
Concrete, grooved 83/R/B/W/T
DENVER CO, US (DEN)
DEN
07/25
3658
46
Concrete, grooved 92/R/B/W/T
DENVER CO, US (DEN)
DEN
08/26
3658
46
Concrete, grooved 92/R/B/W/T
DENVER CO, US (DEN)
DEN
16R/34L
4877
61
Concrete, grooved 92/R/B/W/T
DENVER CO, US (DEN)
DEN
16L/34R
3658
46
Concrete, grooved 92/R/B/W/T
DENVER CO, US (DEN)
DEN
17R/35L
3658
46
Concrete, grooved 92/R/B/W/T
DENVER CO, US (DEN)
DEN
17L/35R
3658
46
Concrete, grooved 92/R/B/W/T
DETROIT MI, US (DTW)
DTW 03R/21L
3048
46
Concrete, grooved 91/R/B/W/T
DETROIT MI, US (DTW)
DTW 03L/21R
2591
61
Asphalt, concrete, grooved
77/R/A/W/T
DETROIT MI, US (DTW)
DTW 04R/22L 3659
61
Concrete, grooved 126/R/B/W/T
DETROIT MI, US (DTW)
DTW 04L/22R 3048
46
Concrete, grooved 126/R/B/W/T
DETROIT MI, US (DTW)
DTW 09R/27L 2591
46
Concrete, grooved 78/R/A/W/T
114
Appendix A: 100 Busiest airports showing runway size and strength
TABLE A.1 (Continued) 100 busiest airports. Length Width (m) (m) Surface
Airport
Code Runway
DETROIT MI, US (DTW)
DTW 09L/27R 2654
61
PCN
Concrete, grooved 73/R/A/W/T
DOHA, QA (DOH)
DOH 16/34
4572
46
Asphalt
60/F/A/X/T
DUBAI, AE (DXB)
DXB
12R/30L
4000
46
Asphalt
65/F/B/X/U
DUBAI, AE (DXB)
DXB
12L/30R
4000
60
Asphalt
122/F/B/X/T
DUBLIN, IE (DUB)
DUB
10/28
2637
45
Asphalt
70/R/B/W/T
DUBLIN, IE (DUB)
DUB
16/34
2072
61
Asphalt
75/R/D/W/T
DÜSSELDORF, DE (DUS)
DUS
05R/23L 3000
45
Concrete
100/R/B/ W/T
DÜSSELDORF, DE (DUS)
DUS
05L/23R 2700
45
Concrete
100/R/B/ W/T
FORT LAUDERDALE, FL, US (FLL)
FLL
10L/28R
2743
46
Asphalt, grooved
69/F/B/W/T
FORT LAUDERDALE, FL, US (FLL)
FLL
10R/28L
2438
46
Concrete, grooved 74/R/B/W/T
FRANKFURT, DE (FRA)
FRA
07R/25L 4000
45
Concrete
74/R/A/W/T
FRANKFURT, DE (FRA)
FRA
07L/25R 4000
60
Asphalt
74/F/A/W/T
FRANKFURT, DE (FRA)
FRA
18/36
4000
45
Concrete
90/R/A/W/T
FUKUOKA, JP (FUK)
FUK
16/34
2800
60
Asphalt
97/F/D/X/T
GUANGZHOU, CN (CAN)
CAN
02R/20L 3800
60
Concrete
109/R/B/W/T
GUANGZHOU, CN (CAN)
CAN
02L/20R 3600
45
Concrete
109/R/B/W/T
HANGZHOU, CN (HGH)
HGH
07/25
3600
45
Concrete
95/R/B/W/T
HELSINKI, FI (HEL)
HEL
04R/22L 3440
60
Asphalt
102/F/B/W/T
HELSINKI, FI (HEL)
HEL
04L/22R 3060
60
Asphalt
100/F/A/W/T
HELSINKI, FI (HEL)
HEL
15/33
60
Asphalt
108/F/B/W/T
2901
HONG KONG, HK (HKG)
HKG
07R/25L 3800
60
Asphalt
72/F/B/W/T
HONG KONG, HK (HKG)
HKG
07L/25R 3800
60
Asphalt
72/F/B/W/T
HOUSTON TX, US (IAH)
IAH
08R/26L 2866
46
Concrete, grooved 72/R/A/W/T
HOUSTON TX, US (IAH)
IAH
08L/26R 2743
46
Concrete, grooved 72/R/A/W/T
HOUSTON TX, US (IAH)
IAH
09/27
3048
46
Concrete, grooved 67/R/A/W/T
HOUSTON TX, US (IAH)
IAH
15R/33L
3048
46
Concrete, grooved 94/R/B/W/T
HOUSTON TX, US (IAH)
IAH
15L/33R
3658
46
Concrete, grooved 72/R/A/W/T
INCHEON, KR (ICN)
ICN
15R/33L
3750
60
Asphalt, concrete
86/R/B/X/T
INCHEON, KR (ICN)
ICN
15L/33R
3750
60
Asphalt, concrete
86/R/B/X/T
ISTANBUL, TR (IST)
IST
06/24
2300
60
Concrete
100/R/A/X/T
ISTANBUL, TR (IST)
IST
18R/36L
3000
45
Concrete
100/R/A/W/T
ISTANBUL, TR (IST)
IST
18L/36R
3000
45
Concrete
100/R/A/W/T
JAKARTA, ID (CGK)
CGK
07R/25L 3660
60
Concrete
120/R/D/W/T
JAKARTA, ID (CGK)
CGK
07L/25R 3600
60
Concrete
120/R/D/W/T
JEDDAH, SA (JED)
JED
16L/34R
4000
45
Asphalt
80/F/A/W/T
JEDDAH, SA (JED)
JED
16C/34C 4000
60
Asphalt
80/F/A/W/T
Appendix A: 100 Busiest airports showing runway size and strength
115
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
JEDDAH, SA (JED)
JED
3800
80/F/A/W/T
16R/34L
60
Asphalt
JEJU, KR (CJU)
CJU
06/24
3000
45
Asphalt
70/F/B/W/T
JEJU, KR (CJU)
CJU
13/31
1910
45
Asphalt
64/F/A/W/T
JOHANNESBURG, ZA (JNB)
JNB
03R/21L
3400
60
Asphalt
50/F/A/W/U
JOHANNESBURG, ZA (JNB)
JNB
03L/21R
4418
61
Asphalt
56/F/A/W/U
KUALA LUMPUR, MY (KUL)
KUL
14R/32L
4050
60
Asphalt
90/R/C/W/T
KUALA LUMPUR, MY (KUL)
KUL
14L/32R
4124
60
Asphalt
90/R/C/W/T 55/R/B/W/T
KUNMING, CN (KMG)
KMG 03/21
3400
45
Concrete
LAS VEGAS NV, US (LAS)
LAS
01R/19L
2979
46
Concrete, grooved 100/R/B/ W/T
LAS VEGAS NV, US (LAS)
LAS
01L/19R
2739
46
Concrete, grooved 100/R/B/ W/T
LAS VEGAS NV, US (LAS)
LAS
07R/25L 3208
46
Concrete, grooved 100/R/B/ W/T
LAS VEGAS NV, US (LAS)
LAS
07L/25R 4423
46
Asphalt, grooved
70/F/B/W/T
LISBON, PT (LIS)
LIS
03/21
3805
45
Asphalt
80/F/B/W/T
17/35
2304
LISBON, PT (LIS)
LIS
45
Asphalt
52/F/B/W/T
LONDON, GB (LGW)
LGW 08R/26L 3159
45
Asphalt
78/R/B/W/T
LONDON, GB (LGW)
LGW 08L/26R 2565
45
Asphalt
76/R/B/W/T
LONDON, GB (LHR)
LHR
09R/27L 3658
45
Asphalt
083/F/A/W/T
LONDON, GB (LHR)
LHR
09L/27R 3901
50
Asphalt
083/F/A/W/T 86/R/C/W/T
LONDON, GB (STN)
STN
05/23
46
Asphalt
LOS ANGELES CA, US (LAX)
LAX
06R/24L 3135
3048
46
Concrete, grooved 70/R/A/W/T
LOS ANGELES CA, US (LAX)
LAX
06L/24R 2720
46
Concrete, grooved 70/R/A/W/T
LOS ANGELES CA, US (LAX)
LAX
07R/25L 3382
61
Concrete, grooved 70/R/A/W/T
LOS ANGELES CA, US (LAX)
LAX
07L/25R 3685
46
Asphalt, concrete, grooved
75/R/A/W/T
MADRID, ES (MAD)
MAD 15R/33L
4100
60
Asphalt
91/F/B/W/T
MADRID, ES (MAD)
MAD 15L/33R
3500
60
Asphalt
91/F/B/W/T
MADRID, ES (MAD)
MAD 18R/36L
4350
60
Asphalt
87/F/C/W/U
MADRID, ES (MAD)
MAD 18L/36R
3500
60
Asphalt
80/F/B/W/U
MANCHESTER, GB (MAN) MAN 06R/24L 3047
46
Concrete
79/R/C/W/T
MANCHESTER, GB (MAN) MAN 06L/24R 3048
46
Asphalt
94/F/C/W/T
MANILA, PH (MNL)
60
Asphalt
114/F/D/W/U
MNL
06/24
3737
MANILA, PH (MNL)
MNL
13/31
2258
45
Asphalt
91/F/D/W/U
MELBOURNE, AU (MEL)
MEL
09/27
2286
45
Asphalt
79/F/C/W/U
116
Appendix A: 100 Busiest airports showing runway size and strength
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
MELBOURNE, AU (MEL)
MEL
3657
79/F/C/W/U
16/34
45
Asphalt
MEXICO CITY, MX (MEX)
MEX
05R/23L 3900
45
Asphalt
100/F/D/X/T
MEXICO CITY, MX (MEX)
MEX
05L/23R 3952
45
Asphalt
100/F/D/X/T
MIAMI FL, US (MIA)
MIA
08R/26L 3202
61
Asphalt, grooved
70/F/A/X/T
MIAMI FL, US (MIA)
MIA
08L/26R 2621
46
Asphalt, grooved
70/F/A/X/T
MIAMI FL, US (MIA)
MIA
09/27
46
Asphalt, grooved
70/F/A/X/T
3962
MIAMI FL, US (MIA)
MIA
12/30
2851
46
Asphalt, grooved
70/F/A/X/T
MILAN, IT (MXP)
MXP
17R/35L
3920
60
Asphalt
91/F/A/W/T 100/F/A/W/T
MILAN, IT (MXP)
MXP
17L/35R
3920
60
Asphalt
MINNEAPOLIS MN, US (MSP)
MSP
04/22
3355
46
Concrete, grooved 80/R/B/W/T
MINNEAPOLIS MN, US (MSP)
MSP
12R/30L
3048
61
Concrete, grooved 80/R/B/W/T
MINNEAPOLIS MN, US (MSP)
MSP
12L/30R
2499
46
Concrete, grooved 80/R/B/W/T
MINNEAPOLIS MN, US (MSP)
MSP
17/35
2438
46
Concrete, grooved 80/R/B/W/T
MOSCOW, RU (DME)
DME
14L/32R
3794
53
Concrete
78/R/C/W/T
MOSCOW, RU (DME)
DME
14C/32C
2600
45
Concrete
57/R/A/W/T
MOSCOW, RU (DME)
DME
14R/32L
3500
70
Concrete
53/R/C/X/U
MOSCOW, RU (SVO)
SVO
07L/25R 3550
60
Concrete
70/R/B/W/T
MOSCOW, RU (SVO)
SVO
07R/25L 3700
60
Concrete
76/R/C/W/T
MUMBAI, IN (BOM)
BOM 09/27
3445
45
Asphalt
101/F/B/W/T
MUMBAI, IN (BOM)
BOM 14/32
2925
46
Asphalt
64/F/B/W/T
MUNICH, DE (MUC)
MUC 08R/26L 4000
60
Concrete
90/R/A/W/T
MUNICH, DE (MUC)
MUC 08L/26R 4000
60
Concrete
90/R/A/W/T
NEW DELHI, IN (DEL)
DEL
09/27
2813
46
Asphalt
45/F/B/W/T
NEW DELHI, IN (DEL)
DEL
10/28
3810
46
Asphalt
55/F/B/W/T 90/F/B/W/T
NEW YORK NY, US (JFK)
JFK
04R/22L 2560
61
Asphalt, grooved
NEW YORK NY, US (JFK)
JFK
04L/22R 3460
46
Concrete, grooved 90/R/B/W/T
NEW YORK NY, US (JFK)
JFK
13R/31L
4442
46
Concrete, grooved 98/R/B/W/T
NEW YORK NY, US (JFK)
JFK
13L/31R
3048
46
Asphalt, grooved
90/F/B/W/T
NEW YORK NY, US (LGA)
LGA
04/22
2134
46
Asphalt, concrete, grooved
63/F/B/W/T
NEW YORK NY, US (LGA)
LGA
13/31
2134
46
Asphalt, concrete, grooved
63/F/B/W/T
NEWARK NJ, US (EWR)
EWR 04R/22L 3048
46
Asphalt, grooved
96/R/B/X/T
NEWARK NJ, US (EWR)
EWR 04L/22R 3353
46
Asphalt, concrete, grooved
96/R/B/X/T 96/R/B/X/T
NEWARK NJ, US (EWR)
EWR 11/29
2073
46
Asphalt, grooved
ORLANDO FL, US (MCO)
MCO 17R/35L
3048
46
Concrete, grooved 106/R/B/W/T
Appendix A: 100 Busiest airports showing runway size and strength
117
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
ORLANDO FL, US (MCO)
MCO 17L/35R
2743
46
Concrete, grooved 116/R/B/W/T
ORLANDO FL, US (MCO)
MCO 18R/36L
3659
61
Asphalt, concrete, grooved
104/R/B/W/T
ORLANDO FL, US (MCO)
MCO 18L/36R
3659
61
Asphalt, concrete, grooved
97/R/B/W/T
PCN
OSLO, NO (OSL)
OSL
01L/19R
3600
45
Asphalt
75/F/A/W/T
OSLO, NO (OSL)
OSL
01R/19L
2950
45
Asphalt
75/F/A/W/T
PALMA DE MALLORCA, ES (PMI)
PMI
06L/24R 3270
45
Asphalt
64/F/A/W/T
PALMA DE MALLORCA, ES (PMI)
PMI
06R/24L 3000
45
Asphalt
59/F/B/W/T
PARIS, FR (CDG)
CDG
08R/26L 2700
60
Concrete
68/R/C/W/T
PARIS, FR (CDG)
CDG
08L/26R 4215
45
Asphalt
100/R/B/ W/T
PARIS, FR (CDG)
CDG
09R/27L 4200
45
Asphalt
100/R/B/ W/T
PARIS, FR (CDG)
CDG
09L/27R 2700
60
Asphalt
77/F/C/W/T
PARIS, FR (ORY)
ORY
02/20
60
Concrete
70/R/C/W/U
2400
PARIS, FR (ORY)
ORY
06/24
3650
45
Asphalt, concrete
140/R/C/W/T
PARIS, FR (ORY)
ORY
08/26
3320
45
Concrete
85/R/B/W/U
PHILADELPHIA PA, US (PHL)
PHL
08/26
1524
46
Asphalt, grooved
27/F/A/X/T
PHILADELPHIA PA, US (PHL)
PHL
09R/27L 3202
61
Asphalt, grooved
60/F/A/X/T
PHILADELPHIA PA, US (PHL)
PHL
09L/27R 2896
46
Asphalt, grooved
60/F/A/X/T
PHILADELPHIA PA, US (PHL)
PHL
17/35
1664
46
Asphalt, grooved
27/F/A/X/T
PHOENIX AZ, US (PHX)
PHX
07R/25L 2377
46
Concrete, grooved 79/R/B/W/T
PHOENIX AZ, US (PHX)
PHX
07L/25R 3139
46
Concrete, grooved 70/R/B/W/T
PHOENIX AZ, US (PHX)
PHX
08/26
3502
46
Concrete, grooved 74/R/B/W/T
RIO DE JANEIRO, BR (GIG)
GIG
10/28
4000
45
Concrete
78/R/A/W/T
RIO DE JANEIRO, BR (GIG)
GIG
15/33
3180
47
Asphalt
73/F/B/X/T
RIYADH, SA (RUH)
RUH
15R/33L
4205
60
Asphalt
80/F/A/W/T
RIYADH, SA (RUH)
RUH
15L/33R
4205
60
Asphalt
80/F/A/W/T
ROME, IT (FCO)
FCO
07/25
3307
45
Asphalt
73/F/B/X/T
ROME, IT (FCO)
FCO
16R/34L
3902
60
Asphalt
94/F/A/W/T
ROME, IT (FCO)
FCO
16C/34C 3602
45
Asphalt
72/F/B/X/T
118
Appendix A: 100 Busiest airports showing runway size and strength
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
Length Width (m) (m) Surface
PCN
ROME, IT (FCO)
FCO
16L/34R
3902
60
Asphalt
146/F/A/W/T
SALT LAKE CITY UT, US (SLC)
SLC
16L/34R
3658
46
Asphalt, grooved
67/F/C/W/T
SALT LAKE CITY UT, US (SLC)
SLC
16R/34L
3658
46
Concrete, grooved –
SALT LAKE CITY UT, US (SLC)
SLC
17/35
2925
46
Asphalt, grooved
51/F/C/W/T
SALT LAKE CITY UT, US (SLC)
SLC
14/32
1491
46
Asphalt, grooved
24/F/C/W/T
SAN DIEGO CA, US (SAN) SAN
09/27
2865
61
Asphalt, concrete, grooved
75/F/A/W/T
SAN FRANCISCO CA, US (SFO)
SFO
01R/19L
2636
61
Asphalt, grooved
100/F/B/X/T
SAN FRANCISCO CA, US (SFO)
SFO
01L/19R
2286
61
Asphalt, grooved
90/F/B/X/T
SAN FRANCISCO CA, US (SFO)
SFO
10R/28L
3231
61
Asphalt, grooved
80/F/B/X/T
SAN FRANCISCO CA, US (SFO)
SFO
10L/28R
3618
61
Asphalt, grooved
80/F/B/X/T
SÃO PAULO, BR (CGH)
CGH
17R/35L
1940
45
Asphalt
50/F/B/X/T
1435
SÃO PAULO, BR (CGH)
CGH
17L/35R
SÃO PAULO, BR (GRU)
GRU
09R/27L 3000
45
Asphalt
38/F/B/X/U
45
Asphalt
85/F/B/W/T
SÃO PAULO, BR (GRU)
GRU
09L/27R 3700
45
Asphalt
85/F/B/W/T
SAPPORO, JP (CTS)
CTS
01R/19L
61
Asphalt
83/F/C/X/T 83/F/C/X/T
2999
SAPPORO, JP (CTS)
CTS
01L/19R
2999
61
Asphalt
SEATTLE WA, US (SEA)
SEA
16L/34R
3627
46
Concrete, grooved 110/R/B/W/T
SEATTLE WA, US (SEA)
SEA
16C/34C 2873
46
Concrete, grooved 96/R/B/W/T
SEATTLE WA, US (SEA)
SEA
16R/34L
46
Concrete, grooved 89/R/B/W/T
2591
SEOUL, KR (GMP)
GMP
14R/32L
3200
60
Asphalt
79/F/C/W/T
SEOUL, KR (GMP)
GMP
14L/32R
3600
45
Asphalt
70/F/B/W/T
SHANGHAI, CN (PVG)
PVG
16/34
3800
60
Concrete
109/R/B/W/T
SHANGHAI, CN (PVG)
PVG
17/35
4000
60
Concrete
121/R/B/W/T
SHANGHAI, CN (SHA)
SHA
18/36
3400
58
Asphalt
74/R/B/W/T
SHENZHEN, CN (SZX)
SZX
15/33
3400
45
Concrete
72/R/B/W/T
SINGAPORE, SG (SIN)
SIN
02C/20C 4000
60
Asphalt
72/F/B/W/U
SINGAPORE, SG (SIN)
SIN
02R/20L 2748
59
Asphalt
72/F/B/W/T
SINGAPORE, SG (SIN)
SIN
02L/20R 4000
60
Asphalt
72/F/B/W/U
STOCKHOLM, SE (ARN)
ARN
01R/19L
45
Asphalt
90/F/B/X/T
2500
STOCKHOLM, SE (ARN)
ARN
01L/19R
3301
45
Concrete
97/R/B/X/T
STOCKHOLM, SE (ARN)
ARN
08/26
2500
45
Concrete
78/R/B/X/T
SYDNEY, AU (SYD)
SYD
07/25
2530
45
Asphalt
67/F/A/W/U
SYDNEY, AU (SYD)
SYD
16R/34L
3962
45
Asphalt
67/F/A/W/U
SYDNEY, AU (SYD)
SYD
16L/34R
2438
45
Asphalt
67/F/A/W/U
Appendix A: 100 Busiest airports showing runway size and strength
119
TABLE A.1 (Continued) 100 busiest airports. Airport
Code Runway
TAIPEI, TW (TPE)
TPE
Length Width (m) (m) Surface
05L/23R 3660
60
PCN
Asphalt
75/F/B/X/T 94/F/C/X/T
TAIPEI, TW (TPE)
TPE
05R/23L 3800
60
Asphalt, concrete
TAMPA FL, US (TPA)
TPA
01L/19R
3356
46
Concrete, grooved 85/R/B/W/T
TAMPA FL, US (TPA)
TPA
01R/19L
2530
46
Asphalt, concrete, grooved
76/R/B/W/T
TAMPA FL, US (TPA)
TPA
10/28
2133
46
Asphalt, concrete, grooved
61/F/A/W/T
TOKYO, JP (HND)
HND 04/22
2499
61
Asphalt
63/F/B/X/T
TOKYO, JP (HND)
HND 16R/34L
2999
61
Asphalt
63/F/B/X/T
TOKYO, JP (HND)
HND 16L/34R
2999
61
Asphalt
140/F/B/X/T
TOKYO, JP (NRT)
NRT
4000
60
Asphalt
140/F/C/X/T
16R/34L
TOKYO, JP (NRT)
NRT
16L/34R
2180
60
Asphalt
129/F/C/X/T
TORONTO ON, CA (YYZ)
YYZ
05/23
3389
61
Asphalt, concrete
79/R/B/W/T
TORONTO ON, CA (YYZ)
YYZ
06R/24L 2743
61
Asphalt
79/R/B/W/T
TORONTO ON, CA (YYZ)
YYZ
06L/24R 2956
61
Asphalt
79/R/B/W/T
TORONTO ON, CA (YYZ)
YYZ
15R/33L
2770
61
Asphalt
79/R/B/W/T
TORONTO ON, CA (YYZ)
YYZ
15L/33R
3368
61
Asphalt
79/R/B/W/T
VANCOUVER BC, CA (YVR)
YVR
08R/26L 3505
61
Asphalt
93/R/C/W/T
VANCOUVER BC, CA (YVR)
YVR
08L/26R 3030
61
Concrete
79/R/B/W/T
VANCOUVER BC, CA (YVR)
YVR
12/30
61
Concrete
93/R/C/W/T
2225
VIENNA, AT (VIE)
VIE
11/29
3500
45
Asphalt
55/F/B/W/T
VIENNA, AT (VIE)
VIE
16/34
3600
45
Asphalt
70/F/A/W/T
WASHINGTON DC, US (DCA)
DCA
01/19
2185
46
Asphalt, grooved
57/F/B/X/T
WASHINGTON DC, US (DCA)
DCA
15/33
1586
46
Asphalt, grooved
57/F/B/X/T
WASHINGTON DC, US (DCA)
DCA
04/22
1524
46
Asphalt, grooved
57/F/B/X/T
WASHINGTON, DC, US (IAD)
IAD
1L/19R
2865
46
Concrete, grooved 81/R/C/W/T
WASHINGTON, DC, US (IAD)
IAD
1C/19C
3505
46
Concrete, grooved 81/R/C/W/T
WASHINGTON, DC, US (IAD)
IAD
1R/19L
3505
46
Concrete, grooved 81/R/C/W/T
WASHINGTON, DC, US (IAD)
IAD
12/30
3201
46
Concrete, grooved 81/R/C/W/T
XIAMEN, CN (XMN)
XMN 05/23
3400
45
Asphalt
83/F/B/W/T
ZURICH, CH (ZRH)
ZRH
2500
60
Concrete
60/R/B/W/T
10/28
ZURICH, CH (ZRH)
ZRH
14/32
3300
60
Concrete
60/R/B/W/T
ZURICH, CH (ZRH)
ZRH
16/34
3700
60
Concrete
60/R/B/W/T
Appendix B: Example ACN values for a variety of aircraft
These values are provided for reference only; not to be used for aircraft operations. TABLE B.1 Example ACN values.
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3) A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Airbus A319-100
75 865 38 952 1380
39 18
40 18
44 50 20 22
44 20
46 21
48 22
50 23
Airbus A320-200
77 395 44 968 1440
41 22
42 22
47 24
53 28
46 24
49 26
51 27
53 28
Airbus A320-200 (Bogie)
73 900 42 000 1220
18 9
19 9
22 10
31 13
18 9
21 10
25 12
28 13
Airbus A321-100
78 414 47 000 1280
42 23
44 24
49 55 25 30
47 25
50 27
52 29
54 30
©2022 SAE International
121
122
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Airbus A330-300
233 900
58
67
73
98
54
62
74
86
120 000 1420
26
27
30 36
28
27
30
35
Airbus A340-300
271 000 129 300 1380
59 24
64 25
74 28
100 50 34 25
58 24
69 26
80 30
Airbus A340500,600
366 072 178 448 1420
70 29
76 31
90 121 34 42
60 29
70 28
83 32
97 37
Airbus A350-900
275 000 140 000 1680
68 30
72 31
82 33
113 40
65 32
73 33
85 36
98 40
Airbus A350-1000 308 000 160 000 1520
55 23
61 25
75 28
104 57 38 27
72 27
92 33
111 42
Airbus A380-800
562 000 300 000 1500
59 27
64 29
75 31
106 56 40 29
68 29
88 34
110 42
Antonov An124-100
391 972 203 940 1030
51 20
60 23
77 27
107 35 40 17
48 18
73 23
100 32
Antonov An-225
600 000 458 865 1130
63 41
75 48
95 62
132 88
45 30
61 39
89 55
125 75
ATR 42
18 559 11 217 720
9 5
10 5
11 6
13 7
10 6
11 6
12 7
12 7
ATR 72
21 516 12 746 790
11 6
12 6
14 7
15 8
13 7
14 7
14 8
15 8
Boeing B707320C
152 407 67 495 1240
44 16
50 17
60 76 19 25
41 15
49 16
58 19
66 22
Boeing B717
54 885 32 110 1048
31 16
33 17
37 19
35 18
37 19
38 20
40 21
40 22
Appendix B: Example ACN values for a variety of aircraft
123
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
Boeing B727-200
78 517
42
44
50 55
47
50
52
54
45 887 1150
23
23
25
30
24
26
28
29
Boeing B737-300
63 527 33 140 1400
35 16
37 17
41 18
45 21
40 19
42 20
44 21
46 22
Boeing B737-400
68 320 35 689 1280
38 18
40 18
45 49 20 23
43 20
45 21
47 22
49 23
Boeing B737-500
60 774 32 630 1340
33 16
35 16
39 18
43 21
38 18
40 19
42 20
43 21
Boeing B737-600
65 770 36 400 1300
35 18
36 18
40 45 19 22
39 19
41 21
44 22
45 23
Boeing B737-700
70 359 37 728 1390
38 18
40 19
44 49 20 23
43 21
46 22
48 23
50 24
Boeing B737-800
79 230 41 400 1470
44 21
46 21
51 23
56 26
51 23
53 25
55 26
57 27
Boeing B737-900
79 230 42 827 1470
44 21
46 22
51 24
56 28
51 24
53 25
55 27
57 28
Boeing B747-400
398 192 183 546 1380
59 23
66 24
82 27
105 54 35 20
65 23
77 27
88 31
Boeing B757-200
115 634 58 123 1240
34 14
38 15
47 17
60 23
32 13
38 15
45 18
52 20
Boeing B767-200
141 520 80 890 1172
37 19
40 19
48 22
66 28
32 16
38 18
45 21
53 25
Boeing B767-200 ER
157 400 80 890 1260
42 19
46 20
55 22
75 28
37 17
44 19
53 22
61 25
D 3
A B C D k = 150 k = 80 k = 40 k = 20
124
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Boeing B767-300
159 685
44
49
59
79
40
48
57
65
87 694 1380
21
22
25
33
19
22
25
29
Boeing B777200LR
348 358 145 150 1500
62 20
29 21
87 24
117 31
64 23
82 23
105 27
127 34
Boeing B777300ER
352 441 167 829 1520
64 24
71 25
89 29
120 66 40 27
85 28
109 34
131 43
Boeing B787-8
228 384 107 683 1570
60 24
66 25
81 28
106 61 36 24
71 26
84 30
96 35
Boeing B787-9
253 558 110 676 1540
66 24
73 25
87 27
117 34
65 25
76 26
90 30
104 34
BAe 125-800
12 483 6858 1007
7 3
7 3
8 3
9 4
8 4
8 4
9 4
9 5
BAe 146-200
42 419 23 962 970
22 11
23 12
26 13
29 15
24 12
26 13
27 14
29 15
Beech 1900
7750 5710 670
3 2
4 3
4 3
5 4
4 3
4 3
5 3
5 4
Beech King Air 300
6832 5710 730
3 2
3 3
4 3
4 4
4 3
4 3
4 3
4 3
Bombardier Challenger 800
24 166 15 397 1120
13 8
14 8
16 9
17 10
16 9
16 10
17 10
18 11
Bombardier CRJ 900
38 442 21 617 1060
21 10
21 11
24 12
27 14
23 12
24 12
26 13
27 14
Bombardier Dash 8-300
19 578 11 828 670
8 4
9 5
11 6
13 7
10 5
11 6
11 6
12 7
125
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Bombardier Dash 8-400
29 265
14
16
18
20
16
17
18
19
17 130 670
7
8
9
11
8
9
10
10
British Aerospace Aérospatiale Concorde
185 933 101 937 1290
65 28
72 31
81 37
97 44
60 27
71 30
81 35
91 41
Canadair CL-600
19 590 10 000 1316
11 5
11 5
13 5
13 6
136
13 6
14 6
14 7
Cessna 525B Citation Jet 3
6396 5700 910
6
7
7
7
7
7
7
7
Cessna 550S2
6940 4146 830
5 3
6 3
6 4
6 4
5 3
6 3
6 3
6 3
Cessna 560 Citation V
7650 5712 1000
7 4
7 5
7 5
7 5
7 4
7 5
7 5
7 5
Cessna 560 XL Citation Excel
9180 5916 1090
9 6
9 6
9 6
9 6
9 6
9 6
9 6
9 6
Cessna 650 Citation III/VI
10 098 5712 1160
6 3
7 3
7 3
8 4
7 3
8 4
8 4
8 4
Cessna 650 Citation VII
10 608 6324 1160
7 3
7 3
8 4
8 4
8 4
8 4
8 4
8 5
Cessna 750 Citation X
16 320 9792 1310
10 5
11 6
12 6
12 7
12 6
12 7
13 7
13 7
Cessna Citation 3
9525 5670 1013
6 3
6 3
6 3
7 4
7 4
7 4
7 4
7 4
Dassault Falcon 10 8565 5710 930
5 3
5 3
6 4
6 4
6 4
6 4
6 4
6 4
Aircraft type
126
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Dassault Falcon 20
13048
8
9
9
10
10
10
10
10
7645 920
4
4
5
5
5
5
6
6
Dassault Falcon 50
17 600 9600 1400
10 5
10 5
11 5
12 6
11 6
12 6
12 6
13 6
Dassault Falcon 900
20 598 10 503 1300
11 5
12 5
14 6
15 7
14 6
14 7
15 7
15 7
Douglas DC-3
14 985 8155 310
7 4
7 4
10 5
12 7
8 4
8 5
9 5
9 5
Fairchild Metro 227
7545 5710 730
3 2
4 3
4 3
5 4
4 3
5 3
5 3
5 4
Embraer 120 Brasilia
11 600 7150 830
5 3
6 4
7 4
8 5
7 4
8 5
8 5
8 5
Embraer 170
37 525 21 210 1040
20 10
21 11
24 12
26 14
22 11
24 12
25 13
26 14
Embraer 190
49 048 26 104 1100
28 14
30 14
33 16
35 18
31 15
33 16
35 17
36 18
Embraer ERJ 145
24 167 12 542 900
14 6
15 6
16 7
17 8
16 7
16 8
17 8
18 8
F/A-18
23 542 10 523 1723
23 10
22 10
22 10
21 10
23 10
23 10
23 10
23 10
Fokker 100
46 090 24 779 940
25 12
27 13
31 14
33 16
28 13
30 14
31 15
33 16
Fokker 50
20 904 12 746 590
9 5
11 6
13 7
14 8
11 6
12 7
13 7
13 8
Aircraft type
127
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Fokker F27-500
20 904
9
11
13
14
11
12
13
13
12 236 570
5
5
6
8
6
6
7
7
Fokker F28-1000
33 140 17 845 530
14 6
17 8
20 23 9 11
16 8
18 9
20 9
21 10
Gulfstream G II
28 100 16 000 930
15 8
17 8
18 9
19 11
18 9
18 10
19 10
20 10
Gulfstream G III
31 824 17 340 1210
19 9
20 9
22 10
23 12
22 11
23 11
23 12
24 12
Gulfstream G IV
34 068 19 278 1210
20 10
22 11
24 12
25 13
24 12
25 13
25 13
26 14
Gulfstream G V
41 310 21 930 1370
26 12
28 13
30 31 14 15
31 14
32 15
32 16
33 16
HS-748
20 183 11 786 550
8 4
10 5
11 6
13 7
10 5
11 6
11 6
12 6
HS/BAe 125
11 420 6220 830
6 3
6 3
7 3
8 4
7 3
7 4
8 4
8 4
Ilyushin Il-62
16 800 66 360 1650
52 16
58 17
68 19
83 24
51 18
59 18
68 20
77 22
Ilyushin Il-76T
171 000 83 819 640
24 9
27 10
34 12
45 16
29 11
33 13
30 14
34 14
Ilyushin Il-86
209 400 111 000 880
34 15
36 16
43 18
61 23
26 13
31 14
38 16
46 19
Jetstream 31,32
7036 5710 390
3 3
4 3
5 4
6 5
4 4
5 4
5 4
5 4
128
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values. Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3)
Aircraft type
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa)
A 15
B 10
C 6
D 3
A B C D k = 150 k = 80 k = 40 k = 20
Jetstream 41
10 910
5
5
6
7
6
6
7
7
6424 830
3
3
3
4
3
3
4
4
Learjet 24F
6322 5710 790
3 3
3 3
4 3
4 4
4 3
4 4
4 4
4 4
Lear 35A
7824 4132 1080
4 2
4 2
5 2
5 2
5 2
5 2
5 3
5 3
Learjet 40, 45
9996 6222 790 9891 5914 1240 10 812 6426 1480 70 300 35 000 550 70 300 35 000 725 158 359 61 182 1310 379 634 169 780 770 64 037 35 690 1140 71 277 39 972 1140
5 3
6 3
7 4
7 4
6 4
7 4
7 4
7 4
6 3
6 3
7 3
7 4
7 4
7 4
7 4
7 4
6 3
7 4
7 4
8 4
8 4
8 4
8 5
8 5
23 10
28 13
32 15
37 16
26 13
29 14
32 15
35 16
27 12
30 14
33 15
38 17
30 14
33 15
35 16
38 17
52 15
60 16
73 18
88 24
51 14
61 16
70 19
78 22
31 11
33 12
40 51 14 17
28 12
31 13
37 13
45 15
36 18
38 19
43 21
46 24
41 20
43 21
45 23
46 24
41 20
43 21
48 24
52 27
46 23
48 24
50 26
52 27
Learjet 55B, C
Learjet 60
Lockheed C-130H Hercules Lockheed C-130J Hercules Lockheed C-141B Starlifter Lockheed C-5 Galaxy McDonnellDouglas MD-81 McDonnellDouglas MD-9030
129
Appendix B: Example ACN values for a variety of aircraft
TABLE B.1 (Continued) Example ACN values.
Aircraft type McDonnellDouglas MD-11 Orion P3A
SAAB 340 A,B
Shorts 330
Shorts 360
Tupolev Tu-154
Tupolev Tu-204
Maximum mass (kg) Empty mass (kg) Tire pressure (kPa) 286 000 122 324 1380 61 235 27 000 1310 13 358 8259 820 10 400 6730 550 12 338 7851 540 97 960 53,520 930 111 720 57 085 1380
Flexible pavement subgrade Rigid pavement subgrade k CBR% (MN/m3) A 15 67 24
B 10 74 25
C 6 90 27
D 3 119 34
A k = 150 58 22
B k = 80 69 23
C k = 40 83 26
D k = 20 96 30
35 13
38 14
42 15
44 17
41 15
43 16
44 17
46 18
6 4
6 4
8 4
9 5
7 4
8 4
8 5
9 5
6 4
8 5
9 6
9 6
7 5
8 5
8 5
8 5
7 5
9 6
10 7
11 7
9 6
9 6
9 6
9 6
19 9
22 9
28 11
37 16
18 7
24 9
30 12
36 15
31 14
33 14
40 53 16 20
29 13
34 14
40 16
46 19
Appendix C: Runway Roughness Profiles
©2022 SAE International
131
Distance (ft) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350
0 10.30 10.44 10.52 10.56 10.55 10.53 10.66 10.71 10.84 10.88 10.96 11.04 11.17 11.14 11.04 11.02 11.06 11.06 11.05 11.09 11.11 11.20 11.31 11.38 11.46 11.46 11.51 11.54
2 10.31 10.44 10.52 10.56 10.54 10.53 10.67 10.71 10.85 10.89 10.95 11.05 11.17 11.14 11.03 11.02 11.07 11.05 11.05 11.09 11.11 11.22 11.32 11.38 11.47 11.45 11.52 11.53
4 10.30 10.44 10.53 10.56 10.53 10.52 10.66 10.72 10.86 10.90 10.95 11.05 11.17 11.14 11.02 11.02 11.06 11.05 11.06 11.09 11.10 11.22 11.32 11.38 11.48 11.45 11.52 11.54
6 10.30 10.45 10.53 10.56 10.52 10.53 10.67 10.72 10.86 10.92 10.95 11.04 11.17 11.12 11.01 11.02 11.07 11.04 11.06 11.10 11.11 11.23 11.31 11.38 11.48 11.45 11.52 11.53
8 10.31 10.46 10.54 10.56 10.52 10.54 10.67 10.71 10.86 10.93 10.96 11.06 11.19 11.11 11.00 11.01 11.08 11.05 11.06 11.09 11.11 11.23 11.31 11.37 11.48 11.46 11.52 11.54
10 10.32 10.47 10.54 10.56 10.52 10.54 10.67 10.72 10.86 10.94 10.97 11.07 11.17 11.09 10.99 11.01 11.08 11.04 11.07 11.09 11.12 11.23 11.31 11.37 11.49 11.46 11.52 11.53
12 10.33 10.47 10.55 10.56 10.52 10.54 10.67 10.72 10.85 10.95 10.97 11.07 11.18 11.09 10.99 11.00 11.08 11.04 11.07 11.09 11.12 11.24 11.32 11.37 11.50 11.46 11.52 11.54
14 10.34 10.48 10.55 10.55 10.52 10.54 10.67 10.72 10.86 10.95 10.98 11.08 11.18 11.09 10.98 11.00 11.09 11.04 11.07 11.09 11.12 11.25 11.31 11.37 11.50 11.45 11.52 11.55
16 10.35 10.49 10.55 10.55 10.52 10.54 10.66 10.71 10.86 10.95 10.97 11.08 11.18 11.09 10.99 11.00 11.09 11.04 11.07 11.08 11.11 11.25 11.32 11.38 11.50 11.45 11.53 11.54
18 10.36 10.49 10.55 10.55 10.53 10.54 10.66 10.72 10.87 10.95 10.97 11.09 11.19 11.09 10.98 11.00 11.08 11.04 11.07 11.08 11.11 11.26 11.33 11.38 11.50 11.45 11.52 11.54
20 10.36 10.50 10.54 10.56 10.52 10.55 10.65 10.72 10.87 10.95 10.98 11.10 11.19 11.09 10.98 11.00 11.08 11.04 11.08 11.07 11.12 11.24 11.34 11.39 11.50 11.45 11.52 11.54
22 10.37 10.50 10.55 10.57 10.52 10.55 10.65 10.73 10.87 10.95 10.99 11.12 11.19 11.09 10.98 11.00 11.08 11.04 11.08 11.07 11.11 11.27 11.35 11.38 11.50 11.45 11.52 11.54
24 10.37 10.50 10.55 10.57 10.51 10.54 10.65 10.73 10.87 10.96 11.00 11.13 11.20 11.09 10.98 10.99 11.08 11.03 11.07 11.06 11.11 11.28 11.35 11.38 11.49 11.46 11.53 11.53
26 10.37 10.50 10.56 10.57 10.52 10.55 10.65 10.74 10.87 10.97 11.01 11.14 11.21 11.09 10.98 10.99 11.08 11.03 11.07 11.07 11.11 11.28 11.36 11.39 11.49 11.46 11.53 11.52
TABLE C.1 San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 28 10.38 10.50 10.57 10.57 10.52 10.55 10.66 10.75 10.86 10.98 11.03 11.14 11.21 11.09 10.98 10.98 11.08 11.03 11.07 11.09 11.10 11.30 11.36 11.40 11.49 11.46 11.53 11.51
30 10.39 10.50 10.57 10.56 10.51 10.56 10.67 10.75 10.85 10.98 11.03 11.15 11.21 11.09 10.99 10.99 11.07 11.03 11.06 11.10 11.10 11.31 11.36 11.41 11.48 11.48 11.53 11.50
32 10.40 10.49 10.57 10.55 10.52 10.57 10.67 10.78 10.84 10.99 11.03 11.16 11.20 11.09 10.99 10.99 11.08 11.02 11.06 11.10 11.12 11.32 11.37 11.41 11.47 11.47 11.53 11.49
34 10.40 10.49 10.57 10.55 10.52 10.58 10.67 10.77 10.84 10.99 11.03 11.17 11.20 11.09 11.00 11.00 11.08 11.02 11.06 11.11 11.13 11.33 11.37 11.42 11.46 11.47 11.53 11.49
36 10.41 10.49 10.57 10.55 10.53 10.59 10.68 10.78 10.83 10.99 11.03 11.17 11.20 11.08 11.00 11.01 11.08 11.02 11.06 11.11 11.15 11.34 11.37 11.43 11.46 11.48 11.54 11.49
38 10.41 10.49 10.58 10.55 10.53 10.60 10.68 10.79 10.83 11.00 11.03 11.17 11.19 11.08 11.00 11.01 11.08 11.02 11.06 11.12 11.16 11.34 11.37 11.44 11.48 11.48 11.53 11.49
40 10.42 10.50 10.57 10.55 10.53 10.61 10.68 10.80 10.84 11.01 11.03 11.17 11.18 11.08 11.00 11.01 11.09 11.02 11.07 11.12 11.17 11.34 11.38 11.44 11.46 11.48 11.52 11.49
42 10.43 10.50 10.57 10.56 10.53 10.62 10.69 10.81 10.85 11.01 11.03 11.17 11.18 11.08 11.00 11.03 11.08 11.02 11.07 11.12 11.18 11.34 11.38 11.45 11.47 11.48 11.52 11.48
44 10.43 10.51 10.58 10.56 10.53 10.63 10.69 10.81 10.86 11.01 11.02 11.18 11.17 11.07 11.01 11.04 11.08 11.03 11.08 11.11 11.18 11.33 11.38 11.46 11.47 11.49 11.51 11.47
46 10.44 10.51 10.57 10.56 10.53 10.65 10.69 10.82 10.87 11.01 11.02 11.18 11.16 11.06 11.02 11.03 11.07 11.03 11.08 11.11 11.19 11.32 11.38 11.46 11.47 11.49 11.53 11.47
48 10.44 10.52 10.56 10.56 10.53 10.66 10.70 10.83 10.87 10.98 11.03 11.18 11.15 11.05 11.02 11.05 11.07 11.04 11.09 11.11 11.19 11.32 11.38 11.46 11.47 11.50 11.52 11.47
132 Appendix C: Runway Roughness Profiles
Distance (ft) 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750
0 11.46 11.35 11.25 10.91 10.92 10.84 10.87 10.82 10.87 10.90 10.91 10.87 10.88 10.88 10.87 10.93 10.85 10.99 11.07 11.15 11.14 11.26 11.29 11.34 11.35 11.40 11.50 11.52
2 11.47 11.35 11.25 10.92 10.92 10.83 10.88 10.82 10.87 10.91 10.90 10.87 10.87 10.88 10.88 10.93 10.85 10.99 11.09 11.15 11.14 11.27 11.30 11.34 11.35 11.41 11.51 11.53
4 11.47 11.35 11.24 10.92 10.92 10.83 10.87 10.82 10.86 10.91 10.91 10.87 10.88 10.88 10.88 10.93 10.85 11.00 11.10 11.15 11.14 11.28 11.30 11.34 11.35 11.42 11.52 11.53
6 11.48 11.35 11.23 10.91 10.91 10.82 10.88 10.82 10.85 10.89 10.91 10.86 10.88 10.88 10.88 10.93 10.85 11.00 11.10 11.16 11.13 11.28 11.31 11.35 11.35 11.42 11.52 11.53
8 11.47 11.34 11.22 10.93 10.91 10.82 10.87 10.81 10.85 10.90 10.91 10.88 10.88 10.89 10.89 10.92 10.86 11.00 11.11 11.16 11.12 11.29 11.31 11.35 11.35 11.43 11.52 11.52
10 11.46 11.34 11.21 10.93 10.91 10.81 10.87 10.81 10.89 10.91 10.91 10.87 10.88 10.89 10.89 10.92 10.86 11.01 11.12 11.15 11.12 11.30 11.32 11.35 11.35 11.43 11.52 11.52
12 11.46 11.33 11.19 10.93 10.91 10.81 10.87 10.81 10.91 10.91 10.91 10.86 10.88 10.89 10.90 10.91 10.86 11.01 11.14 11.15 11.12 11.30 11.32 11.34 11.36 11.42 11.52 11.52
14 11.46 11.32 11.18 10.93 10.90 10.80 10.87 10.81 10.91 10.91 10.91 10.87 10.89 10.89 10.91 10.90 10.87 11.02 11.14 11.16 11.12 11.30 11.33 11.33 11.36 11.42 11.52 11.52
16 11.46 11.32 11.17 10.93 10.89 10.79 10.86 10.82 10.92 10.92 10.91 10.87 10.90 10.89 10.92 10.92 10.88 11.02 11.15 11.16 11.12 11.31 11.33 11.33 11.36 11.43 11.52 11.52
18 11.46 11.32 11.17 10.93 10.88 10.79 10.85 10.82 10.92 10.93 10.90 10.86 10.89 10.89 10.92 10.91 10.88 11.02 11.16 11.16 11.12 11.30 11.34 11.33 11.35 11.43 11.52 11.52
20 11.47 11.31 11.15 10.93 10.87 10.79 10.84 10.82 10.93 10.94 10.90 10.85 10.89 10.89 10.93 10.91 10.89 11.04 11.16 11.16 11.13 11.31 11.35 11.33 11.35 11.43 11.52 11.53
22 11.47 11.31 11.13 10.93 10.89 10.79 10.84 10.83 10.93 10.94 10.89 10.85 10.89 10.88 10.92 10.90 10.90 11.05 11.16 11.16 11.13 11.31 11.35 11.33 11.35 11.43 11.52 11.53
24 11.47 11.30 11.12 10.93 10.88 10.79 10.84 10.83 10.93 10.94 10.90 10.85 10.89 10.88 10.92 10.90 10.91 11.05 11.15 11.16 11.14 11.31 11.35 11.33 11.35 11.43 11.51 11.53
26 11.46 11.29 11.10 10.93 10.88 10.79 10.84 10.83 10.94 10.94 10.90 10.86 10.90 10.89 10.92 10.90 10.91 11.06 11.15 11.16 11.15 11.31 11.35 11.33 11.35 11.43 11.51 11.54
28 11.46 11.29 11.10 10.93 10.88 10.80 10.84 10.84 10.94 10.94 10.90 10.85 10.89 10.88 10.92 10.88 10.92 11.06 11.16 11.16 11.16 11.30 11.35 11.32 11.35 11.44 11.51 11.53
30 11.44 11.28 11.18 10.94 10.87 10.80 10.83 10.84 10.95 10.95 10.91 10.86 10.89 10.89 10.92 10.88 10.92 11.05 11.15 11.17 11.17 11.30 11.35 11.33 11.36 11.44 11.50 11.53
32 11.43 11.28 11.17 10.94 10.86 10.81 10.82 10.85 10.94 10.93 10.90 10.86 10.88 10.88 10.92 10.86 10.93 11.04 11.14 11.17 11.18 11.30 11.36 11.33 11.36 11.45 11.50 11.54
TABLE C.1 (Continued) San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 34 11.41 11.28 11.14 10.94 10.85 10.82 10.82 10.86 10.93 10.93 10.91 10.86 10.87 10.88 10.92 10.85 10.94 11.03 11.14 11.17 11.19 11.29 11.36 11.33 11.36 11.46 11.50 11.54
36 11.40 11.28 11.14 10.94 10.86 10.82 10.82 10.86 10.93 10.93 10.89 10.87 10.88 10.88 10.93 10.85 10.94 11.03 11.14 11.17 11.20 11.29 11.35 11.33 11.36 11.46 11.50 11.54
38 11.39 11.28 11.12 10.95 10.86 10.83 10.82 10.86 10.92 10.93 10.89 10.87 10.87 10.88 10.93 10.84 10.95 11.02 11.14 11.17 11.20 11.29 11.35 11.33 11.36 11.47 11.51 11.54
40 11.38 11.27 11.00 10.94 10.85 10.84 10.82 10.88 10.93 10.92 10.89 10.87 10.87 10.88 10.93 10.84 10.96 11.03 11.14 11.17 11.22 11.29 11.35 11.34 11.37 11.48 11.51 11.53
42 11.37 11.27 10.97 10.93 10.85 10.85 10.82 10.87 10.91 10.93 10.89 10.87 10.87 10.87 10.93 10.84 10.96 11.03 11.14 11.17 11.23 11.29 11.35 11.34 11.38 11.48 11.51 11.53
44 11.36 11.27 10.95 10.94 10.85 10.85 10.83 10.86 10.91 10.93 10.89 10.87 10.87 10.87 10.93 10.84 10.97 11.04 11.15 11.16 11.24 11.29 11.35 11.34 11.38 11.49 11.52 11.53
46 11.36 11.26 10.94 10.94 10.84 10.85 10.82 10.86 10.90 10.93 10.88 10.88 10.88 10.87 10.94 10.85 10.99 11.05 11.15 11.15 11.24 11.29 11.35 11.35 11.39 11.49 11.52 11.53
48 11.35 11.26 10.92 10.93 10.84 10.87 10.83 10.86 10.90 10.93 10.88 10.87 10.88 10.87 10.93 10.85 10.99 11.06 11.15 11.15 11.25 11.29 11.34 11.35 11.39 11.50 11.52 11.54
Appendix C: Runway Roughness Profiles 133
Distance (ft) 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850
0 11.54 11.57 11.61 11.82 11.91 11.90 11.95 11.90 11.89 11.83 11.84 11.84 11.87 11.98 12.09 12.10 12.01 11.85 11.94 12.03 12.16 12.01
2 11.54 11.58 11.61 11.83 11.91 11.90 11.94 11.90 11.92 11.83 11.84 11.83 11.87 11.99 12.08 12.07 11.99 11.85 11.94 12.04 12.16 12.01
4 11.55 11.58 11.61 11.84 11.91 11.90 11.93 11.90 11.95 11.83 11.84 11.83 11.88 12.01 12.08 12.06 11.98 11.86 11.95 12.05 12.17 12.01
6 11.55 11.58 11.62 11.83 11.91 11.90 11.92 11.90 11.95 11.84 11.84 11.83 11.89 12.03 12.08 12.07 11.94 11.86 11.95 12.06 12.17 12.02
8 11.55 11.58 11.63 11.83 11.90 11.90 11.92 11.90 11.95 11.84 11.84 11.83 11.89 12.04 12.08 12.08 11.94 11.87 11.95 12.06 12.17 12.02
10 11.56 11.58 11.64 11.83 11.91 11.90 11.92 11.90 11.94 11.84 11.84 11.83 11.89 12.05 12.08 12.09 11.93 11.86 11.95 12.06 12.15 12.01
12 11.55 11.58 11.65 11.83 11.91 11.91 11.92 11.89 11.94 11.84 11.84 11.84 11.91 12.05 12.09 12.10 11.93 11.86 11.95 12.06 12.14 12.00
14 11.55 11.59 11.66 11.83 11.92 11.92 11.92 11.88 11.93 11.82 11.84 11.84 11.91 12.05 12.10 12.11 11.92 11.85 11.96 12.06 12.13 12.00
16 11.55 11.59 11.67 11.83 11.92 11.92 11.92 11.88 11.92 11.83 11.84 11.84 11.92 12.05 12.10 12.11 11.91 11.84 11.95 12.06 12.12 11.98
18 11.55 11.59 11.67 11.84 11.92 11.92 11.92 11.87 11.92 11.82 11.84 11.85 11.93 12.05 12.10 12.12 11.90 11.85 11.95 12.06 12.11 11.97
20 11.54 11.59 11.67 11.85 11.92 11.93 11.92 11.87 11.91 11.83 11.84 11.85 11.95 12.05 12.10 12.06 11.90 11.85 11.96 12.06 12.10 11.97
22 11.53 11.58 11.68 11.86 11.92 11.93 11.92 11.86 11.90 11.83 11.83 11.85 11.95 12.04 12.10 12.01 11.90 11.87 11.97 12.07 12.09 11.96
24 11.53 11.57 11.70 11.87 11.92 11.93 11.92 11.86 11.90 11.84 11.83 11.85 11.96 12.06 12.11 12.03 11.90 11.89 11.98 12.08 12.09 11.96
26 11.53 11.57 11.72 11.88 11.92 11.93 11.92 11.85 11.89 11.84 11.83 11.84 11.96 12.06 12.11 12.04 11.90 11.88 11.98 12.09 12.09 11.96
28 11.51 11.58 11.73 11.88 11.91 11.94 11.91 11.85 11.88 11.84 11.82 11.84 11.96 12.07 12.12 12.05 11.91 11.88 11.99 12.10 12.08 11.96
30 11.52 11.57 11.74 11.89 11.91 11.94 11.90 11.84 11.87 11.85 11.83 11.85 11.96 12.07 12.13 12.05 11.90 11.88 12.00 12.09 12.07 11.95
32 11.52 11.57 11.76 11.90 11.92 11.95 11.90 11.84 11.86 11.84 11.83 11.85 11.95 12.07 12.13 12.06 11.88 11.89 12.00 12.12 12.07
TABLE C.1 (Continued) San Francisco Runway 28R (10L) [64]—distances and elevations (in ft). 34 11.53 11.57 11.77 11.90 11.91 11.95 11.90 11.84 11.85 11.84 11.83 11.86 11.96 12.07 12.13 12.06 11.87 11.90 11.99 12.13 12.06
36 11.53 11.58 11.78 11.90 11.91 11.95 11.90 11.84 11.84 11.84 11.82 11.86 11.96 12.06 12.13 12.05 11.87 11.91 11.99 12.14 12.05
38 11.54 11.58 11.80 11.90 11.91 11.96 11.90 11.84 11.84 11.85 11.82 11.87 11.96 12.07 12.14 12.04 11.86 11.91 11.99 12.13 12.03
40 11.55 11.59 11.82 11.90 11.91 11.96 11.90 11.85 11.84 11.85 11.83 11.87 11.96 12.07 12.14 12.03 11.86 11.91 12.00 12.14 12.03
42 11.56 11.60 11.82 11.90 11.90 11.96 11.90 11.87 11.83 11.85 11.82 11.87 11.95 12.08 12.13 12.02 11.85 11.91 12.00 12.14 12.02
44 11.56 11.62 11.82 11.91 11.90 11.96 11.90 11.89 11.82 11.86 11.83 11.87 11.95 12.08 12.13 12.02 11.86 11.92 12.01 12.14 12.01
46 11.57 11.61 11.83 11.91 11.90 11.96 11.90 11.89 11.82 11.86 11.83 11.87 11.94 12.08 12.13 12.02 11.86 11.92 12.02 12.15 12.02
48 11.57 11.61 11.82 11.90 11.90 11.96 11.90 11.90 11.81 11.84 11.84 11.86 11.96 12.09 12.11 12.02 11.85 11.93 12.02 12.15 12.01
134 Appendix C: Runway Roughness Profiles
Appendix C: Runway Roughness Profiles
135
The elevation value for a distance of 1620 ft has been corrected in these data from the original NASA source (document CR-119 [66]) to 10.87 in. This correction is in accordance with the values published by the FAA in their advisory circular AC25.491-1. A further modification to the values for the distance values between 1530 and 1538 ft is permitted by the FAA. The modified values are shown in Table C.2. TABLE C.2 Permissible elevation corrections to Table C.1. Distance (ft)
Original elevation (ft)
Modified elevation (ft)
1530
11.18
11.10
1532
11.17
11.11
1534
11.14
11.11
1536
11.14
11.07
1538
11.12
11.04
These modifications to the severe bump bring the profile into agreement with the maximum slope change permitted by ICAO Annex 14 for temporary ramping.
25
2
35
−12
9
−17
−13
−38 36
6
9
30
−58 47
−16
−9
−23 33
3
−19
−30 34
−7
−17
10
7
10
−12
0
25
50
75
100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
2
13
23
9
26
12
13
2
17
27
19
14
8
5
15
3
7
40
1
Distance (m) 0
2
0
38
26
3
1
6
18
11
11
1
13
−1
2
14
6
1
3
14
6
−23 24
−13
−33 34
−13
2
−25 21
−20 29
−26 28
−46 40
18
16
12
−28 29
6
−20 17
−2
−4
36
−19
2
5
−1
−6
3
12
48
−11
39
18 −21
39
7
−20 −21
−3
6
−17
39
40
−2
7
−26 −20 −17
−8
31
18
−5
3
−7
24
41
−12
6
−10
−5
−6
−1 −3
−10
−20 −22 −18
−17
−18
−13
−8
−7
34
−3
−15
−10
33
−21
−13
−11
32 −7
−7
41
−35 −37
−26 −30 −32 −32
−12
−37 −34 −33 −31
−10
−5
−16
−38 −39 −32 −29
−28 −25 −25 −23
−31
0
26
15
−26 −16
−1
−11
5
10
52
−20 −13
4
43
5
−14
−7
5
−19
46
13
−3
9
44
−1
−7
−7
10
−27
53
13
−1
10
−10
−14 −18
−16
1
−13 0
−11
−18
−10
−16
−4
−12
44 −7
−15
35
−32 −19
−11
−9
27
−17
−33 −32 −33
−11
−35 −29 −25
0
−9
−23 −21
−24 −25 −26
−14
−15
−30 −40 −51
47
6
−15
−4
3
−21
45
27
−6
8
34
−2
21
12
48
−8
−4
−18
1
3
−3
−8
17 6
−4
21
−18 −9
−36 −32
−14 −12
−39 −35
1
−15 −16
−19 −13
−27 −23
−23 −15
−10 −10
−58 −71
47
−6
−5
−11
−2
−31 −23
42
7
14
11
18
17
15
14
0 2 55
−7
7
−15
16
17
25
16
4
−14
18
22
22
17
4
−8
16
19
6
18
0
−10
20
25
34
19
−7
−5
12
37
15
20
−12
0
18
7
9
21
−14
−5
22
5
23
22
−12
−6
26
0
40
23
−17
−10
18
−7
35
24
50
−16
3 49
−15
10 48
−16
11 52
−4
16 53
4
18 50
6
16
47
3
16
39
6
17
42
2
10
35
4
10
−22 −22 −29 −29 −29 −30 −26 −28 −35 −38
3
−14
23
9
18
15
9
4
−16
−12
−5
4
14
18
−16
5
4
16
−15
−38 −37
−10
−26 −22
4
−18
−13
−33 38
−29 −31
−6
8
−2
−6
−12 6
−17 2
5
−22 −19 5
−1
−19
1
−19
−14
−16
−15
0
−4
−4
3
−3
−1
−7
4
−2
−1
14
1
5
1
−4
15
−1
−5
0
3
−2
−1
−2
−4
−24 −26 −26 −27 −19 4
−14
9
14
−18
9
−15
5
−1
−4
−3
−13
2
5
−4
−5
5
−6
−6
11
12
−1
−3
−6
3
−11
−2
17
11
1
2
−4
5
−15
12
4
12
−10
3
−9
−22 −23 −26 −29 −27 −25 −21
−11
−40 −35 −27 −17
−1
−17
3
−19
−9
−35 −37 −39 −30 −24 −22 −20 −17
−27 −26 −25 −9
17
−3
−13
5
11
12
−18
−4
−25
−20
5
−12
−2
−20
−78 −88 −94 −97 −97 −94 −92 −87 −79 −74 −74 −71
52
−5
−2
−23 −24
5
−27 −14
26
15
18
13
TABLE C.3 DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).
136 Appendix C: Runway Roughness Profiles
3
3
−12
−25 17
47
−17
−28 28
9
4
−37 −27
57
−29 −28
1
−9
21
20
−21
52
9
2
20
21
20
6
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975
1000
1025
1050
1075
1100
1125
7
12
19
17
−3
9
48
−15
14
27
−13
8
60
9
8
14
48
12
1
Distance (m) 0
13
47
15
8
7
3
16
12
−11
42
−9
−10
−7
5
−14
42
−1
−2
−13
6
16
9
17
13
10
9
−24 −23 −18
−7
43
−9
−5
−8
4
57
59
62
60
9
10
16
20
−6
7
51
−14
14
39
−12
8
9
8
17
23
−1
6
55
−7
8
41
−11
5
11
10
18
24
0
0
42
−6
6
51
−6
8
13
8
12
32
3
−3
32
−3
4
62
1
10
19
11
9
31
5
−3
24
1
3
61
−1
11
−29 −27 −27 −25 −21
57
−29 −32 −27 −20 −11
15
8
−27 29
−13
51
−15
−11
1
2
26
5
14
34
3
−1
20
3
1
66
−5
14
−21
60
−3
2
10
−16
−17
39
0
7
−14
7
10
35
8
10 29
12
6
−20 −15
9
50
11
2
8
−12
32
9
16
38
1
−1
10
36
5
18
41
5
−1
18
12
−15
−8 6
72
−17
12
72
−9
15
−23 −19
55
2
5
7
−13
31
13
18
42
5
2
15
9
−21
67
−28
7
−18
45
18
0
1
−10
−24 −28 −31
38
3
14
−4
8
12
24
21
−10
37
27
−6
−1
−4
5 57
29
15
26
40
6
4
10
12
18
22
32
40
15
3
5
16
−28 −32
64
−24 −22
6
−16 −17
36
20
−8
−4
−6
−34 −34
26
19
1
−23 −30
11
14
15
16
17
2
−16
25
29
−9
−2
2
−28
16
26
1
50
27
21
36
41
19
7
3
14
32
19
36
36
20
8
−4
26
−30 −32
58
−29 −29
7
−21
30
28
−14
−4
−4
−31
22
27
−3 6
34
1
−4
−8
8
30
−18
−5
9
−7
−7
5
35
−19
−4
11
−17
5
38
1 −1
41
−8
−13
19
−6
41
−14
−10
20
−7
39
−16
−15
21
0
13
−5
−2
1
40
−2
−3
−5
43
−28 −31
0
12
5
13
−4
0
−7
46
−4
1
−15
53
−34 −41
4
12
36
34
32
19
40
37
24
5
−6
30
17
15
42
35
21
4
−3
36
3
10
43
33
22
4
4
39
−20
24
−9
46
−13
42
−29 −26
−16
23
33
31
30
29
5
4
42
37
16
6
6
41
−6
10
39
39
13
6
9
45
5
37
36
15
7
19
57
0
8
55
24
−9
−5
4
4
36
31
14
8
15
70
20
13
−8
3
−23
57
5
30
32
15
7
15
61
4
24
32
18
2
14
55
−23 −31
22
5
−7
4
−20 −18
52
−24 −36 −40 −28 −22
3
35
36
13
9
14
48
6
8
−46 −39 −35
8
12
−34 −37 −35 −36 −34 −30 −26 −17
39
−9
44
−21
−19
22
−26 −28 −28 −30 −30 −35 −34
0
40
−11
−15
18
−26 −33 −36 −30 −32 −35 −18
−4
−10
15
28
−13
−5
6
−27 −15
11
30
6
−42 −45 −26 −20 −14
13
TABLE C.3 (Continued) DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 137
−15
−16
19
15
7
−40 −42
−18
20
34
−38 −45
−30 −29
−54 −56
63
−4
−77 −74
1150
1175
1200
1225
1250
1275
1300
1325
1350
1375
1400
1425
1450
1475
−8
63
28
20
−17
9
11
23
1
Distance (m) 0
14
47
32
−6
4
30
19
−14
30
21
−7
−40 −31
9
42
43
−8
3
14
48
39
−18
6
15
54
53
−26
7
40
21
−6
34
27
−17 24
22
−18
−26 −25 −25
13
45
36
−11
5
−27 −19
19
44
27
47
−73 −90 −91
3
57
42
45
6
−18
44
44
6
−15
−90 −88 −76
38
49
−47 −38 −30 −15
−25 −19
−45 −42 −39 −38 −43 −48
25
19
−17
−41
10
32
44
−2
2
15
67
60
−13
9
11
66
55
−12
10
9
27
−12 −3
41
−4
45
39
−21
−12
30
37
−15
−19
−73 −75 −73
45
33
−5
−10
−46 −45 −39
15
21
−17
−27 −29 −25
17
63
62
−16
8
12
7
62
63
56
−4
9
25
7
−71 −66
17
31
−5
−28 −33
−37 −35
−13 −14
50
−4
−28 −27
8
67
59
−18 −22
11
−10
56
0
−16
1
53
51
−19
14
−9
5
1
−2
35
52
−18
16
−6
33
60
−10
17
−11
30
57
−3
18
−17
49
18
−21
0
28
13 30
17
−28 −31
−21
19
49
−1
20
10
29
19
22
8
18
15
23
7
12
16
24
28
21
36
29
44
30
42
32
−35 −30 −25 −19
−23 −28 −34 −41
13
35
11
21
5
29
−3
27
−7
4
30
−11
9
33
−14
11
38
−21
11
55
−19
11
56
1
57
−29 −52
−48 −52 −49 −54 −50 −42 −33
−16
−3
2
−28 −30 −33 −40 −44 −49 −62 −62 −63
7
29
−26 −22 −17 11
46
17
−17
25
51
1
19
−22 −27 −28 −27 −30 −30 −34 −34
56
21
−39 −35 −41
−11
51
10
−24 −26 −28 −19
−1
42
54
−18
15
−68 −64 −59 −67 −67 −58 −46 −28 −19
−1
22
3
−33 −32
−36 −37
−11
57
0
−14
4
59
61
−17
13
TABLE C.3 (Continued) DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm).
138 Appendix C: Runway Roughness Profiles
8176
2
2.5
3
3.5
4
8162
4.5
5 8161
5.5
6 8181
6.5
7 8181 8146
13.5
8104 8100
8130 8132
8180
14
14.5 8137 8098 8096
8133
8180 8179
8020 8021
8021
8015 8014 8015 8017
7928 7922
7741
7776 7769 7768 7762 7759 7759 7759 7758 7756 7753 7750 7750 7750 7749 7749 7745 7747 7746 7742 7743 7742 7743 7744 7744 7744 7742 7741
7740
7615 7611
7607 7607 7608 7604 7601 7597 7598 7592 7590 7595 7598 7600 7603 7602 7611
7612
7613
7614 7613 7513 7513 7440 7437 7436 7433 7435 7433 7429 7422 7419 7413
7293 7291 7291
7259 7259 7260 7257 7255 7254 7255 7252 7253 7250 7251
390
7608 7517 7413 7384 7385
7415
7462 7464
7519
7557 7556
7253 7252 7251 7250 7245 7243 7236 7240 7238 7236 7235 7238 7239 7239 7234 7233 7234
7236 7239
7259 7259
7294 7296
7344 7344 7342 7334 7306 7307 7309 7306 7302 7300 7298 7298 7293
7289 7285 7284 7284 7282 7283 7283 7280 7277 7274 7270 7270 7273 7273 7275 7267 7266 7262 7260 7260 7260 7260 7259 7259 7258
7310
7349 7352 7353 7353 7353 7350 7347 7344 7341 7309 7310
375
7312
7385 7387 7390 7390 7388 7382 7379 7379 7376 7378 7374 7370 7370 7369 7360 7353 7351
7335 7333 7337 7342 7340 7339 7334 7337 7332 7325 7324 7323 7320 7320 7316
345
360
7407 7406 7405 7403 7407 7409 7405 7400 7398 7395 7395 7397 7394 7395 7392 7385 7384 7384 7383 7384 7386 7385 7383
7462 7458 7453 7450 7449 7450 7452 7451 7449 7446 7443 7445 7443 7441 7443 7443 7443 7441
7405 7413 7409 7403 7401
315
330
7517
7480 7483 7482 7479 7473 7472 7467 7463 7463
7530 7533 7535 7538 7534 7528 7523 7519 7517
7558 7558 7558 7556 7548 7547 7543 7545 7549 7548 7549 7549 7544 7542 7538 7531
7588 7583 7576 7573 7569 7566 7563 7563 7566 7570 7567 7563 7560 7563 7563 7563 7563 7564 7566 7560 7559
7515 7513 7504 7504 7500 7499 7495 7491 7485 7485 7483 7490 7493 7490 7490 7486 7485 7484 7481
7619
285
7619
300
7617
7610
7614
7622 7619 7619
7605 7600 7597 7598 7600 7600 7601
255
7663 7658
7705 7703
7740
7810
270
7710 7707
7811
7633 7626
7712
7698 7698 7697 7697 7695 7693 7693 7691 7690 7690 7689 7686 7685 7687 7684 7683 7683 7678 7678 7677 7677 7673 7670 7668
7719 7716 7714 7712
7818 7814
7701 7703 7702 7701
7718
7816 7819 7822 7820 7816
7658 7658 7658 7658 7658 7660 7658 7657 7655 7655 7653 7652 7650 7648 7648 7646 7645 7643 7638 7635 7637 7634 7627 7627 7629 7630 7634 7633
7718
7816
225
7716
7823 7821
240
7717
7825 7819
7834 7831
7740 7737 7737 7736 7735 7735 7735 7733 7729 7725 7724 7725 7723 7723 7725 7724 7717
7828 7830 7825 7831 7829 7831 7825 7824 7823 7818
7852 7843 7845 7835 7843 7841 7838 7833 7836 7834
195
7831
7860 7859 7859 7859 7863 7863 7864 7862 7861 7856 7853 7854 7851
7860 7862
7900 7899
210
7909 7906 7905 7899 7897 7899
7924 7924 7924 7924 7928 7929 7928 7911
7974 7952 7952
7780 7778
7909 7908 7908 7909 7911
7925 7925 7926 7925 7921
7953 7952 7953 7957 7956 7956 7955 7953
7971
8018 8018 8020 8019 8018
7989 7987 7989 7986 7981 7980 7978 7976 7973 7971
7959 7957 7951
7991
7810 7809 7803 7798 7799 7806 7802 7798 7799 7800 7799 7801 7800 7802 7802 7805 7804 7799 7798 7802 7802 7798 7796 7791 7789 7788 7783 7779
7911
8127
13 8181
7828 7829 7829 7829 7831
7912 7912
8137 8132 8129 8126
12.5 8177
180
7912 7914
12
165
7917 7916
7961 7962 7962 7961
11.5
8108 8106 8108 8107 8106 8107
8139
11
7894 7890 7886 7884 7884 7879 7880 7882 7883 7884 7883 7883 7883 7882 7882 7877 7874 7869 7865 7863 7859 7858
7921 7921
7973 7970 7969 7966 7964 7961
8111
10.5 8176 8176 8177 8177
8068 8065 8062 8059 8058 8057 8057 8057 8058 8056 8055 8052 8051
8112
8140 8140 8139 8114
10 8176
7897 7894 7894 7892 7891
7919
7971
8010 8002 7996 7993 7992 7998 7998 7998 7997 7992 7991
9.5 8181
7866 7861 7859 7857 7861
7891
8071
9 8182
135
7918
7918
8142 8118
8.5 8186
150
7919
8011
7951 7951 7952 7949 7944 7944 7942 7942 7942 7942 7939 7931 7928 7922 7920 7921
8013
7919 7919 7919
8012
105
8012
8 8182
8031 8032 8029 8025 8024 8023 8021
120
8123
7978 7974 7974 7968 7969 7971
8121
7.5 8181
90
8117
8156 8152
8181
8015 8011
8124 8119
8158 8161
8181
75
8132 8127
8161
8190 8181
8073 8076 8080 8079 8077 8073 8068 8069 8071
8133 8135
8171
8194 8199
8095 8092 8089 8087 8081 8074 8071
8134
8172
8196
8051 8053 8051 8048 8048 8040 8038 8037 8035 8033 8031
8130
8176
8191
45
8124
8176
8192
60
8124
8178 8178 8177
8132 8130 8127
15
1.5
30
1
8192
0.5
8193 8196 8194
0
Distance (m) 0
TABLE C.4 Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 139
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
7103 7102
7104 7105
7028 7025 7028 7027 7026 7026 7026 7026 7023 7018 7018
7108 7107
495
7108
7132
7178 7174 7131
7175
8
7124
7172
7216
8.5
7123
7175
7216
9
7122
7176
7212
9.5
10
10.5
11
11.5
12
12.5
7122
7175 7123
7169 7122 7120 7119
7120
7167 7163 7162 7162 7119
7162
7208 7209 7207 7205 7205 7204 7201
13
13.5 7151
7122 7123
7161
7199 7199
7072 7067 7064 7061
6920 6920 6920 6920 6920 6920 6919
540
7146 7123
14.5
7119
7146
7195
7017
7013
7011
7028
7009 7005 7003 7000 6996 6996 6999 6999 6996
7021
7059 7058 7052 7058 7058 7057 7059 7059 7054 7054
6939 6941
6939 6941 6941 6938 6937 6938 6937 6936 6930 6929
6553 6551 6550 6549 6547 6543 6542 6542 6539 6537 6542 6543 6542 6542 6543 6542 6543 6542 6541
6382 6381 6376 6375 6374 6371
6338 6338 6340 6339 6340 6338 6338 6335 6333 6332 6331
6304 6300 6304 6304 6303 6305 6304 6304 6302 6300 6297 6294 6289 6279 6279 6271
765
780
795
6371 6332 6331
6321 6316
6372 6372 6369 6366 6365 6360 6353 6351
6313
6351
6312
6313
6314
6312 6312 6312 6315
6317
6313 6312
6307 6308
6341
6341 6313
6353 6349 6348 6346 6343 6344 6339 6339 6339 6341 6338
6402 6379 6382
6379 6379 6380 6380 6381 6377 6375 6373 6372 6372 6372
6274 6279 6277 6278 6276 6272 6270 6270 6272 6272 6269 6268 6264 6262
6313
6351
6390 6390 6389 6390 6388 6383 6384 6388 6382 6382 6381
6460 6461 6460 6453 6449
6508 6510 6508 6508 6504 6502 6502 6502 6502 6499 6497 6499 6493 6492 6490
6401 6398 6394 6394 6393 6391
6512
750
6509 6509 6511
6442 6442 6440 6438 6434 6433 6432 6429 6426 6424 6425 6426 6429 6430 6428 6427 6425 6425 6424 6425 6424 6417 6418 6415 6410 6407 6405 6403 6411
6512 6512
735
6515 6513
6522 6524 6523 6514
6488 6489 6489 6490 6489 6493 6493 6493 6490 6482 6475 6470 6472 6472 6472 6473 6472 6472 6472 6466 6462 6460 6461 6460 6461
6517
6553 6552 6528 6525
705
6520 6519
6558 6555 6553 6542 6542 6540 6539 6537 6535 6532 6532 6532
6574 6572 6570 6568 6562 6561
720
6582 6581
6604 6603 6605 6605 6604 6602 6598 6595 6592 6592
690
6588 6586 6584 6585 6584 6582 6577 6575 6577 6575 6582 6581
6612
6598 6601 6601 6594 6591
675
6625 6626 6622 6617
6677 6672 6672 6672 6669 6668 6664 6659 6657 6654 6657 6658 6658 6655 6653 6652 6650 6650 6649 6645 6649 6651 6651 6647 6647 6647 6646 6648 6643 6642
6634 6634 6632 6633 6633 6635 6638 6638 6635 6627 6625 6623 6622 6622 6621
6679
6718
6759 6757 6719
6679 6679 6680 6682 6683 6685 6684 6683 6678 6680 6682 6681
6728 6723 6721
645
6708 6702 6700 6700 6698 6686 6682 6681
6740 6738 6735 6731
6811 6788 6785
6816
6856 6857
660
6720 6722 6719 6715
6717 6718 6720 6720 6719
6740 6741
6769 6767 6766 6766 6765 6767 6767 6764 6762 6762
630
6780 6779 6777 6775 6774 6773 6771
6786 6789 6786 6782 6780 6778 6778 6779 6780 6782 6781
6757 6757 6759 6756 6752 6743 6742 6742 6742 6745 6743 6746 6744 6742 6740 6742 6742 6742 6741
600
615
6807 6805 6804 6804 6802 6802 6802 6802 6803 6803 6802 6801 6800 6800 6799 6800 6797 6802 6801 6801 6799 6798 6797 6794 6792
6825 6821
6855 6854 6857
6830 6827 6831 6832 6833 6831
6879 6875 6874 6874 6878 6877 6874 6866 6861
6810 6809 6812
6881
585
6882 6881
6889 6887 6887 6887 6886 6887 6890 6889 6884 6878 6876 6875 6881
6860 6854 6853 6849 6848 6847 6848 6851 6848 6851 6849 6847 6842 6839 6838 6834 6836 6834 6834 6831
555
6918 6914 6908 6907 6909 6907 6909 6908 6908 6905 6902 6901 6900 6898 6899 6897 6894
570
6914 6909 6909 6905 6912 6916
6941
6989 6989 6985 6984 6983 6979 6977 6972 6973 6973 6975 6973 6974 6974 6975 6972 6969 6972 6972 6972 6965 6963 6962
7021 7023 7022 7025 7024 7022 7018
6963 6954 6953 6949 6946 6948 6949 6947 6947 6940 6938 6940 6943 6941
6995 6990 6989 6988 6988 6987 6991
6963 6963 6961
510
525
14 7199
7099 7096 7093 7092 7095 7095 7098 7102 7100 7093 7092 7094 7093 7095 7094
7126
7069 7069 7071
7105 7102
7128
7175 7174 7131
7.5 7219
7050 7049 7048 7044 7046 7043 7038 7045 7043 7039 7033 7030 7030 7029 7029 7029 7029 7030 7027 7025 7028 7028 7026 7022 7019
7108
7180
7052 7050 7051
7112
7171 7133 7133
480
7111
7184 7182
7115
7113
7184
7140 7137 7132
7089 7091 7090 7089 7085 7086 7086 7084 7082 7078 7072 7071 7071
7142
7190 7189
7141
450
7114
7193
7138
465
7197 7196 7194
7143 7142 7143
420
435
7234 7231 7228 7226 7224 7224 7227 7228 7228 7230 7229 7225 7223 7220 7219
405
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
140 Appendix C: Runway Roughness Profiles
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
6218
6111
6110
6108 6107 6105 6104 6102
6154 6153 6103
6149
6199
13
13.5
6197 6146
6194 6146
6192 6146
6189 6143
6140 6139 6139
6189 6189 6189 6189 6141
5936 5934 5933 5932 5931
5931
14
14.5 6172 6124
5847 5845 5837
5882 5881 5882
5992 5989
5834 5832
5880 5881
5924 5923
5956 5957
5731 5732 5731 5732 5730 5726 5722
5772 5772 5769 5767 5765 5765 5763
5720 5718
5763 5761
5803 5801 5799 5798 5801 5803 5803 5801
5852 5857 5854 5851 5851 5809 5811
5770 5771
5811
5960 5957 5957
5515 5512
5507 5506 5507 5512
5511
5514
5648 5647
5503 5505 5506 5507
5529 5529
5578 5572
5628 5627
5265 5259 5259 5249 5248 5244 5249 5249 5255 5258 5259 5257 5253 5252 5252 5252 5255 5253 5253 5249 5247 5248 5243 5241 5239 5232 5231 5228
1185
5280 5280 5280 5280 5278 5273 5272 5276 5275 5271
5339 5337 5334 5337 5339 5337 5332 5330 5329 5325 5320 5319
5309 5306 5298 5299 5299 5293 5293 5289 5289 5289 5288 5289 5288 5282 5281
5349 5352 5347 5348 5352 5350 5351
5347 5346 5340 5336 5337 5339 5339 5339 5341
5390 5389 5358 5358
5316 5314 5312
5366 5367 5364 5361 5360 5359 5361
1155
5378 5373 5371 5369 5367 5370 5372 5371
1170
5380 5381
5412 5409 5409 5407 5407 5405 5408 5406 5400 5400 5399 5400 5395 5395 5389 5388 5391
5319 5227 5224
5269 5269
5319
5354 5354
5387 5387
5385 5385 5386 5389 5386 5384 5380 5381 5381
1140
5420 5419
5462 5460 5460 5459 5458 5458 5457 5453 5449 5449 5449 5446 5444 5448 5448 5448 5444 5442 5439 5436 5432 5431 5432 5436 5434 5432 5432 5429 5427 5427
5428 5426 5425 5422 5420 5420 5421
1110
1125
5472 5469 5468 5465 5466
5507 5505 5504 5502 5501
5549 5546 5546 5540 5537 5538 5533 5529 5533 5533 5536 5529 5529
5498 5499 5498 5488 5483 5483 5482 5484 5484 5483 5485 5484 5485 5482 5479 5479 5475 5476 5478 5477 5474 5471
5523 5521
5526 5530 5529 5526 5529 5529 5526 5525 5523 5523 5521
5659 5660 5658 5659 5658 5656 5654 5652 5647
5625 5626 5626 5626 5628 5630 5632 5637 5636 5631 5627
5608 5604 5603 5604 5597 5596 5596 5596 5595 5589 5589 5587 5586 5579 5579 5579
5506 5505 5501
5611
1080
5624 5625 5623 5617
1095
5621
5630 5630 5630 5631
5626 5625 5624 5622 5621
5621
6129
6175
6222 6221
5715 5709 5707 5707 5707 5707 5707 5706 5706 5700 5702 5702 5699 5699 5696 5694 5690 5692 5689
5566 5566 5566 5564 5564 5562 5560 5561 5557 5556 5557 5552 5553 5553 5551
5716 5716
1050
5716 5716
1065
5716
5648 5648 5647 5646 5646 5645 5642 5640 5638 5634 5634 5632 5631
5715
1035
5716
5719 5719 5717
5689 5687 5687 5688 5685 5685 5683 5681 5677 5676 5676 5676 5673 5671 5665 5664 5664 5662 5661
1005
1020
5716
5771
5811
5745 5744 5743 5742 5734 5731
5811
5760 5758 5757 5756 5755 5756 5754 5754 5754 5751 5749 5749 5749 5743 5747
5812
5801 5801 5799 5800 5799 5796 5792 5790 5787 5783 5782 5782 5782 5778 5776 5774 5772 5771
5813
990
5817 5815
5868 5868 5868 5868 5862 5855 5847 5844 5847 5848 5849 5852 5851
975
5871
5878 5881 5877 5876 5874 5871
5829 5826 5824 5822 5821
945
5822 5822 5821 5822 5822 5823 5822 5821
6179
5929 5925 5924 5923 5922 5923 5925
5910 5907 5906 5908 5907 5909 5908 5909 5909 5909 5907 5904 5901 5897 5893 5889 5888 5887 5886 5887 5886 5881
5944 5944 5944 5941
6181
6135 6130
6007 6005 6003 6001 6001 6000 5997 5992
5981 5976 5980 5977 5972 5968 5970 5969 5968 5968 5968 5967 5965 5964 5965 5964 5962 5961
5947 5946 5946 5946 5944 5942 5941 5941
6187 6136
6229 6227
6100 6100 6100 6099 6098 6092 6092 6088 6089 6089 6085 6079 6079 6076
6148
6020 6023 6023 6022 6025 6028 6023 6020 6015 6014 6013 6014 6012 6012 6011
6116
6158 6155
960
5956 5953 5951
5916 5913 5912
915
930
6017
6015 6013 6018 6017
6119
5981 5981 5986 5988 5987 5986 5981
6116
6158 6157
6209 6208 6207 6207 6206 6206 6205 6205 6203 6198
6160 6160 6157 6157
885
6120
6159
900
6119
6219
6240 6239 6238 6238 6236 6238 6235 6233 6232 6232 6231
6119
6
6120 6119
5.5
6072 6070 6067 6068 6067 6066 6061 6059 6060 6059 6058 6056 6056 6054 6054 6055 6051 6046 6042 6038 6039 6035 6033 6029 6026 6023 6022 6022 6018 6017
5
855
4.5 6241 6243 6240 6243 6241 6241
870
4
6216
3.5
6162
3
6219 6219 6219
2.5
6169 6176 6165
2
825
1.5
840
1
6249 6248 6244 6241
0.5
6260 6258 6258 6254 6251
810
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 141
5051
5113
5111
5111
5110
5107
5176 5105
5142
8
5107
5141
5174
5212
8.5
9 5173
5211
9.5
5107
5102
10
10.5
11
11.5
5173
5176
12.5 5170
5212
13
13.5
5174 5171 5132 5130
4921 4918
4954 4951
4951
4908 4907 4909 4911
4911
5011
5011
4861
4860
4909 4906
4929
4975 4976
4577 4574 4578 4582 4577 4574 4572 4563 4557 4552
4616
4615
4206 4206 4209 4212
4184 4184 4184
1605
4187
4191
4188
4184
4179 4175
4175 4174
4175 4176
4175 4173
4207 4205 4203 4203 4202 4200 4200 4202 4203 4203 4198
4166 4160 4155
4153
4156
4200 4196 4196 4194 4193
4156
4193
4188 4186 4184 4160 4157 4158 4156
4191
4213 4209 4209 4206 4206 4203 4203 4204 4203 4203 4206 4210 4213 4214
4156
4185 4186
4155
4182
4213 4209 4211 4160 4161
4183
4212
4158
4177
4205
4228 4230
4324 4322 4230 4231 4232 4230 4233 4229 4229 4224
1590
4418
4268 4268
4229 4226 4226 4229 4227 4225 4225 4223 4222 4221 4216
4418
4372 4368
4310 4308 4305 4303 4302 4302 4299 4298 4292 4292 4287 4281 4278 4273 4273 4272 4271
4265 4263 4262 4257 4256 4257 4259 4256 4253 4249 4245 4242 4243 4245 4243 4243 4239 4236 4233 4231
4310 4309 4307 4310 4311
1575
4315
1560
4320 4318
4363 4360 4358 4356 4355 4354 4352 4349 4348 4349 4350 4348 4345 4345 4343 4340 4337 4335 4335 4333 4326 4325 4324 4324 4327 4328 4329 4327
4318 4316 4318
1530
1545
4458 4458 4462 4464 4461 4456 4453 4452 4452 4448 4444 4443 4442 4443 4440 4443 4440 4437 4434 4434 4434 4433 4434 4434 4432 4426 4421 4418
4505 4503 4501 4497 4494 4494 4494 4494 4492
4420 4418 4416 4407 4405 4401 4400 4395 4393 4392 4388 4387 4384 4383 4383 4383 4384 4385 4386 4384 4378 4375 4372 4375 4376 4377 4376 4375
4509 4505 4505 4505 4509 4511
1500
4514 4511
1515
4514 4514
4526 4525 4525 4525 4521
4494 4494 4495 4495 4496 4494 4492 4485 4484 4483 4481 4483 4480 4474 4468 4462 4462 4463 4462 4459 4452 4452 4452 4450 4445 4449 4452 4460 4458 4457
1470
4515 4514
4547 4549 4529 4529
1485
4546 4547 4546 4548 4544 4544 4539 4539 4534 4534 4535 4539 4539 4538 4534 4534 4534 4535 4537 4537 4534 4533
4591 4588 4585 4583 4584 4585 4584 4589 4593 4594 4594 4590 4584 4583 4584 4584 4583 4581
4553 4554 4555 4553 4548 4551
4523 4520 4519 4518
4717
4772 4770 4717
4605 4604 4601 4599 4598 4598 4597 4594 4592 4590 4590 4594 4596 4601 4601 4594 4594 4592 4593 4594 4594
1440
4614 4615 4611
4650 4641 4638 4639 4635 4635 4639 4642 4640 4638 4635 4632 4629 4624 4629 4633 4629 4628 4624 4623 4620 4616 4616
4614 4613
1455
4610 4612
4652 4652 4648 4644 4651
4612 4611
1410
5167 5124
4676 4680 4684 4685 4685 4683 4676 4671 4671 4665 4662 4660 4660 4658 4654
4714 4714 4714
1395
4704 4700 4699 4696 4694 4696 4697 4691 4688 4684 4681
4764 4770 4764 4758 4755 4753 4754 4755 4756 4754 4750 4749 4743 4740 4738 4737 4739 4734 4734 4734 4732 4732 4729 4730 4730 4728 4724 4724
4814 4814 4812 4804 4802 4804 4801 4801 4796 4792 4785 4784 4787 4782 4784 4784 4782 4777 4775 4774 4772 4770 4771
4821 4817 4814 4813
1425
14.5
4850 4846 4842 4840 4842 4845 4841 4837 4836 4837 4835 4835 4837 4834 4836 4832 4830 4830 4828 4824 4826 4826 4822
4861 4861
4910 4911
4889 4888 4887 4884 4882 4882 4879 4878 4866 4872 4868 4869 4867 4865 4861
4912
1380
4710
5170 5126
4950 4950 4950 4949 4947 4944 4944 4940 4939 4934 4931
4921 4920 4928 4927 4926 4924 4922 4919 4918
1365
4813
4851
4907 4905 4900 4902 4896 4891 4891
4909 4908 4910 4911
4859 4857 4854 4852 4857 4861
1335
1350
4919 4921
4967 4967 4960 4967 4966 4964 4966 4966 4967 4962 4961
5015 5013
4974 4973 4972 4971
5017
4930 4926 4925 4926 4923 4921
4921
14
5210 5206 5203 5202
5099 5098 5093 5092 5086
5134 5140 5139 5140 5136
5172 5177 5181
12 5212
5106 5106 5104 5102 5106 5102
5132
5173
5207 5209 5212 5209 5211
5140 5140 5138
5174
5211
5068 5070 5066 5065 5061 5061 5061 5061 5060 5058 5059 5058 5061 5059 5056 5060 5053 5052 5051
5113
5178 5178 5149 5148
7.5 5212
5051 5050 5050 5046 5036 5037 5039 5036 5029 5026 5022 5019 5017 5018 5014 5018
5069 5071
7
1305
5051 5051
5113
5172 5176 5152 5151
6.5 5212 5212
1320
5049 5051
5113
6
5051 5051 5051
5117
5174 5171 5153 5152
5.5 5218 5214
5008 5005 5002 5004 5000 4997 5000 4999 4999 5001 5000 4999 5004 5001 4991 4991 4987 4988 4986 4983 4985 4983 4982 4981 4979 4982 4980 4978
5117
5
1275
5116
4.5 5219 5221
1290
5051
5069 5070 5073 5073 5071
5116
5123 5118
5157 5154
5178 5174
5121
5157
5186
5081 5073 5067 5071
5158
5191
1245
5161
5191
1260
4
5194
3.5
5218 5217
5162
3
5216
5204 5201 5198
2.5
5216
5170 5167 5165
2
5216
1215
1.5
1230
1
5218
0.5
5225 5225 5218
1200
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
142 Appendix C: Runway Roughness Profiles
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
4149 4149 4149 4146 4145 4140 4139 4133
6.5
7
4136 4136
7.5 4132
8
8.5
4130 4126
9 4121
9.5 4119
10 4117
10.5 4115
11 4113
11.5 4112
12
12.5
4109 4107
13
13.5
4103 4100
14
14.5 4099 4096
3711
3712
3709 3702 3697 3700 3703 3702 3701
3815 3815 3815 3814
3381 3379 3379 3377 3371
1905
3422 3421 3421
3729 3724 3722 3721
3724 3721 3721
3197
3194
3200 3200 3199
1980
3412
3311
3311
3191
3188 3186
3184 3182
3182 3179
3177 3173
3230 3227 3227 3227 3227 3227 3227 3223 3222 3221
3191
3524 3521 3518 3516 3512
3511
3251 3171
3219
3168
3165
3217
3165
3216
3162
3213
3250 3244 3245 3241
3162
3213
3241
3275 3272 3271
3212 3158
3160 3160 3160 3158
3241
3541
3584 3581 3541
3378 3380
3235 3230
3257 3257
3286 3286
3332 3330
3153 3154
3152
3153
3206 3203 3202 3201
3238 3235
3260 3258 3252 3212 3202 3201 3212
3241 3241 3244 3241
3270 3262 3261 3261
3299 3299 3296 3294 3292 3291 3289
3352 3349 3347 3344 3343 3342 3341 3346 3345 3340 3335 3333
3217
3669 3658 3630 3629
3507 3505 3502 3501
3551 3548 3546 3546 3545 3542 3541
3409 3410 3407 3404 3400 3398 3403 3403 3401 3392 3386 3379 3381
3269 3270 3271
3721
3759 3756 3719
3460 3456 3457 3459 3456 3455 3453 3453 3449 3444 3441
3521
3551
3307 3307 3303 3303 3304 3306 3303 3301
3270 3270 3270 3272 3269 3271
3324 3312
3411
3359 3356 3351 3349 3351
3414
3461
3527 3524 3524 3521
3551
3580 3579
3641 3641 3641 3635 3629 3622 3622
3606 3603 3604 3604 3604 3601 3598 3593 3594 3593 3590 3589 3581
3650 3647 3643 3640 3638 3641
3471 3469 3470 3468 3465 3462 3461 3411
3849 3847
3699 3699 3699 3699 3700 3703 3707 3707 3707 3706 3702 3700
3551 3555 3556 3557 3554 3551
3253 3257 3258 3255 3254 3254 3253 3256 3254 3254 3251
3255 3251 3250 3251
3231 3231 3232 3232 3231
1950
1965
3279 3278 3274 3271
3332 3331 3324 3324 3322 3324 3320 3319 3316
3287 3284 3283 3281
1920
3281
3421 3415
3365 3364 3364 3362 3361 3361
3421
1935
3421
3612 3610 3554 3551
3537 3537 3537 3533 3532 3531
3549 3551
3488 3489 3486 3484 3481 3475 3471 3471
3500 3493 3491
3431 3427 3430 3421
1875
1890
3540 3539 3536 3531
3567 3561
3540 3541
3571
3543 3541 3541
3571
1860
3571
3629 3628 3627 3624 3626 3622 3623 3624 3623 3621 3617
3581 3577 3573 3571
1830
1845
3650 3651
3938 3939
3809 3807 3804 3803 3799
3768 3769 3766 3766 3763 3759 3758 3757
3817
3700 3699 3696 3689 3687 3688 3689 3688 3686 3686 3686 3686 3686 3688 3684 3679 3679 3680 3679 3675 3674 3675 3679 3680 3679 3680 3678 3676
3713 3716
3817
3650 3652 3657 3660 3659 3659 3655 3649 3649 3649 3650 3651 3651
3714
3815
3779 3772 3772 3771
3815
1800
3715
3780 3780 3781
3820 3819
3978 3977
3913 3907 3904 3904 3906 3906 3907 3903 3899
1815
3710
3916
3950 3949 3949 3947 3948 3947 3945 3948 3947 3944 3938 3938
3740 3738 3733 3728 3732 3729 3733 3733 3731
3719 3719 3717
3740 3740 3740 3741
1785
3748 3742 3743 3741
3799 3799 3798 3793 3786 3783 3782 3782 3783 3784 3783 3782 3781
3755 3749 3749 3747
1755
1770
3714
3982 3980 3980 3980 3978 3979 3979 3979
3894 3892 3889 3889 3887 3884 3884 3884 3883 3884 3880 3876 3873 3873 3874 3873 3869 3863 3860 3856 3855 3853 3852
3899 3899 3896 3896 3891
3840 3838 3837 3836 3839 3839 3839 3839 3840 3839 3836 3831 3830 3826 3821
1725
1740
3951
3962 3964 3958 3953 3953 3950 3949 3952 3954 3956 3955 3955 3952 3952 3951
3981
3939 3939 3940 3937 3933 3924 3928 3924 3928 3929 3930 3929 3930 3930 3926 3929 3929 3928 3922 3919
3981
3973 3969 3970 3970 3967 3966 3966 3968 3969 3970 3969 3967
1695
3981 3971
1710
3971
3987 3986 3983 3985 3986 3984 3982 3981
3996 3997 3997 3993 3994 3992 3992 3989 3991
3978 3975 3978 3977 3976 3977 3978 3977 3974 3972 3966 3971 3970 3972 3970 3971
1665
1680
4092 4092 4089 4087 4086 4082 4079 4081 4080 4078 4076 4076 4075 4076 4075 4076 4077 4078 4076 4073 4070 4069 4068 4064 4059 4055 4052 4053 4052 4050
4154
4048 4046 4044 4040 4038 4037 4037 4039 4039 4037 4039 4039 4038 4037 4035 4034 4031 4030 4029 4027 4025 4024 4017 4015 4010 4010 4007 4004 4000 3997
4155
1635
4157 4154 4155
1650
1620
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 143
1.5
2 3102 3103
5.5
6
3103 3101
3135 3132
6.5
7
7.5 3123
8 3122
8.5 3122
9 3123
9.5 3081
3128
10
10.5
11
11.5
12
3132 3129 3123 3124
3012 3012
3012 3012
3011
3012
3012 3012
3012
3012
3011
3020 3020 3017
3014 3016 2954 2950
2817
2816 2813
2812
2844 2842 2813
2755 2756 2706 2702
2702 2702 2702 2703 2702 2702 2700 2697 2701
2175
2506 2505 2505 2501
2211
2212
2217
2210 2210
2250 2250 2254 2257 2256 2248 2247 2241 2241
2221 2221 2219
2340
2355
2211
2294 2293 2294 2290 2286 2278 2278 2277 2280 2277 2270 2270 2265 2266 2264 2260 2263 2264 2265 2266 2263 2261 2260 2261 2267 2270 2270 2266
2325
2310
2540 2541
2455 2450
2498 2492
2520 2514
2308 2304 2300 2298 2296 2296 2293 2294 2290 2288 2286
2289 2293 2260 2256
2207 2206 2203 2204 2203 2200 2198
2193
2186
2186
2190 2190 2190 2190 2186 2183
2180
2185 2190
2190 2190
2241 2242 2243 2244 2242 2239 2238 2234 2235 2240 2236 2234 2233 2230 2229 2232 2237 2231 2230 2230 2225
2310
2617
2348 2350 2349 2344
2340 2338 2334 2334 2328 2327 2327 2327 2330 2328 2324 2317 2309 2310 2310
2310
2621
2557 2558
2413 2410 2410 2409 2406 2405 2402 2402 2399
2380 2380 2379 2375 2379 2377 2373 2373 2370 2370 2367 2365 2363 2362 2360 2356 2351
2439 2439 2434 2436 2437 2438 2430 2425 2425 2424 2424 2420 2420 2416
2467 2462 2458
2496 2497 2493 2495 2500 2501 2499 2499 2499 2498 2495
2450 2450 2448 2445 2444 2441
2441
2514 2515
2481 2476 2474 2475 2477 2493 2477 2473 2475 2474 2470 2470 2466 2463 2464 2461
2503 2505 2507 2508 2511
2397 2391 2388 2390 2387 2383 2382 2381 2381
2511
2280
2512
2520 2517 2518
2539 2537 2538 2538 2541 2542 2542 2542 2541
2295
2514
2515 2514 2512
2494 2492 2488 2483 2488 2488 2488 2484 2481
2250
2265
2558 2555 2558 2555 2552 2551 2552 2552 2550 2551 2552 2550 2544 2542 2541
2559 2560 2561
2542 2541 2539 2540 2542 2542 2542 2542 2542 2542 2542 2541 2536 2532 2533 2532 2535 2532 2533 2532 2528 2527 2523 2521 2521
2220
2561
2619 2623 2625 2627 2626 2624 2624
2569 2568 2569 2571 2570 2572 2569 2563 2562 2561
2235
2574 2573 2571
2663 2663 2660 2656 2655 2654 2652 2647 2644 2642 2639 2634 2632 2630 2628 2629 2628 2627 2627 2623 2621
2617 2614 2608 2605 2602 2600 2592 2592 2589 2588 2587 2590 2589 2586 2581
2190
2693 2693 2694 2696 2697 2693 2690 2686 2682 2679 2672 2669 2667 2667
2205
2699 2697 2693 2692 2693 2692 2691
2734 2734 2734 2734 2735 2733 2731 2725 2723 2719
2713 2710
2734 2732 2733 2733 2735 2735 2739 2737 2731
2777 2774 2773 2773 2774 2775 2775 2777 2780 2775 2773 2770 2767 2767 2767 2764 2764 2764 2764 2763 2763 2762 2762 2760 2757 2753 2752 2754
2759 2756 2753 2750 2752 2744 2741
2145
2779 2777
2817 2815 2815 2817
2777 2777 2777 2779 2777 2779 2779 2779
2824 2822 2818
2160
2828 2825 2824 2823 2821
2879 2877 2876 2875 2876 2876 2872 2867 2867 2865 2864 2862 2859 2857 2854 2854 2851
2810 2810 2809 2806 2804 2805 2803 2801 2798 2798 2799 2794 2794 2791 2786 2787 2784 2783 2784 2791
2881 2881
2130
2890 2889 2884 2881
2901 2899 2897 2891
2840 2842 2840 2840 2836 2829 2832 2832 2834 2834 2833 2833 2831
2891
3079 3079
2907 2906 2903 2902 2900 2899 2898 2899 2902 2902 2902 2904 2902
2100
2912
2115
2949 2944 2942 2939 2932 2930 2925 2923 2922 2920 2918
14.5 3116
3010 3003 3003 3003 3002 3002 3003 3005 3006 3004 3003 3004
3005 3003 3000 2998 2995 2997 2995 2990 2988 2985 2984 2980 2979 2975 2973 2970 2970 2969 2969 2965 2964 2969 2956 2957 2957 2957 2956 2955
3012
3074 3075
14 3115
3053 3053 3051 3052 3052 3050 3048 3048 3048
2952 2952 2949 2950 2951
3011
13.5 3118
2070
3012
13 3119
2085
3013
12.5 3122
3078 3070 3069 3068 3068 3071
3132
3060 3062 3061
3097 3091 3084 3083 3085 3081
3125 3123
3046 3044 3042 3042 3042 3038 3039 3038 3039 3039 3039 3037 3033 3032 3028 3027 3023 3023 3023 3022 3020 3019 3020 3022 3021
3105 3103
5
3016 3014 3017
3107
4.5 3132 3136
2040
3108
4
2055
3108
3.5
3132 3132
3115
3112
3
3132
3081 3082 3082 3080 3077 3074 3074 3072 3072 3072 3070 3070 3072 3072 3068 3062 3062 3061
3112
2.5
3132
2010
3107
1
3133
0.5
3152 3149 3140 3136
2025
1995
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
144 Appendix C: Runway Roughness Profiles
3
2135
2179
3.5
4
2134 2131
2180 2185
4.5
5
2133 2130
2184 2180
5.5
6
2133 2133
2180 2179
6.5
7
2131
2130
2175 2175
7.5 2128
2177
8 2127
2175
8.5 2127
2169
9 2122
2166
9.5 2119
2163
1735
1710
1770 1772 1770
1745 1745 1742
2535
2550
1837
1532
1614
1381
1339
1380 1380 1384
1332 1331
2685
2700
1386
1411
1440 1441
1445 1442 1441
1405 1408 1408 1410
1340 1336
1995
1989 1987
1992 1992 1986 1981
1715
1725
1765
1790
1833
1892
1826
1710
1709
1726 1726
1764 1765
1787 1782
1831 1780
1709 1705
1735 1736
1765 1755
1781
1825 1823
1888 1890 1886 1885
1949 1945 1940 1940 1935
1989
1996 1996 1997
2016 2014 2015 2017
1521
1574
1611
1441
1438
1384
1413
1514
1468
1417
1385 1380
1416
1434 1435
1471
1512
1570 1568
1340 1340 1340 1334
1381
1411
1474
1510
1572
1605 1604 1601 1520 1471 1421
1333 1331
1380 1386
1412
1432 1431
1471
1515
1567 1568
1600 1597
1664 1660 1658 1660 1659 1655
1713
1725
1765
1794
1836
1892
1951
1983
1480 1481
1526
1573
2655
1481
1622
2670
1481
1539 1536 1535
1481
2625
2640
1481
1574
1628 1625 1624
1570 1569 1571
2595
2610
1711
1732
1761
1795
1836
1894
1666 1665
1706 1706 1713
1675 1673 1665
2565
2580
1764
1793
1845 1845 1841
1786 1785 1785
2505
2520
1895
1952
1953
1960 1958 1957
1900 1897 1899
1981
2475
2005 2005 2002 2000 1997
1976 1979 1980 1981
2445
2460
2020 2020 2019 2017
2017 2012
2121
10.5
11
11.5
12
2122 2120 2116
2113
2158 2152 2150 2146
12.5
13
13.5
2111
2109 2109
2140 2135 2137
14 2108
2142
14.5 2106
2148
1594 1511
1818
1815
1511
1510
1562 1562
1594 1593
1653 1647
1695 1693
1735 1735
1753 1753
1790 1786
1407
1330 1330
1380 1380
1421
1436 1431
1431
1991 1977
1370 1370 1330 1330
1991 1977
1434
1461
1510
1562
1594
1645
1691
1736
1754
1784
1815
1875
1593
1370 1321
1916 1865
1916 1862
1688
1741
1749
1775
1588 1556
1551
1587
1651
1693
1736
1748
1776
1370 1319
1424
1455
1319
1370
1319
1366
1404 1401
1423
1460 1457 1427
1917
1915
1915
1974 1975 1971
1912
1968
1860 1858 1857 1856 1855
1918
1975
1551
1585
1645
1689
1733
1746
1776
1549
1585
1643
1684
1729
1745
1778
1320
1361
1397
1422
1455
1320
1359
1397
1423
1458
1754 1753 1678
1491
1487 1417
1320 1314
1415 1350
1397 1320 1319
1355 1355 1351
1393 1392 1401
1423 1421
1457 1453 1453 1452
1492 1491
1547 1543 1542 1542
1585 1585 1585 1584
1640 1637 1636 1635
1682 1680 1681
1726 1725 1725 1722
1745 1751
1780 1778 1775 1768
1316
1350
1393
1412
1451
1489
1541
1581
1637
1676
1720
1749
1762
1792
1855
1911
1970
1990 1990 1990 1988 1990 1990 1987 1975
1509 1509 1508 1508 1501
1561
1992 1978
1808 1806 1806 1805 1800 1795 1788 1790
1868
1644 1653
1687
1739
1755
1783
1811
1874
1920 1920 1916
1978
1409 1405 1402 1401
1431
1463 1466 1465 1462
1519
1566 1566
1591
1654 1654
1700 1699
1735 1735
1753 1752
1780 1786
1875
1922 1923
1970 1975
1880 1881
1824 1817
1881
1928 1925
1980 1973
2033 2035 2028 2024 2022 2021
2021 2022
2024 2021
1914
1978
1674 1677
1490
1541
1314
1311
1350 1349
1390 1387
1409 1410
1448 1451
1491
1541
1580 1579
1638 1639
1978
1572
1634
1679
1709
1744
1766
1787
1849
1908
1959
1311
1347
1379
1407
1451
1489
1310
1340
1380
1405
1447
1481
1540 1540
1574
1637
1677
1710
1745 1714
1745
1751 1716
1765
1793
1854
1912
1961
1760 1762
1794 1789
1857 1856
1910
1964 1963
1985 1981
2009 2010 2010 2007 2005 2006 2007 2008 2006 2006 2004 2002 2002 2006 2006
1990 1990 1990 1990 1991
2017 2018
2050 2053 2052 2050 2048 2047 2045 2040 2037 2038 2037 2036 2037 2035 2034 2030 2028 2030 2030 2031
2020 2017 2018
2415
2430
2490
10 2161
2099 2095 2096 2086 2086 2085 2086 2081 2079 2070 2070 2065 2065 2065 2062 2063 2063 2065 2063 2061 2062 2060 2060 2058 2055 2050
2141
2102
2146 2143 2140 2140 2135
2.5
2106 2103 2103
2
2385
1.5
2180
2400
1
2179
2180
0.5
2190 2181
2180
2370
Distance (m) 0
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 145
0.5
1
1159
1112
1190
1157
2760
1182
961
940
962
800
501
460
430
3030
3045
3060
580
550
3000
3015
653
626
2970
2985
720
689
2940
2955
801
764
2910
2925
850
853
2895
423
461
505
551
580
630
654
689
717
761
908
941
903
2865
2880
420
460
504
550
580
621
651
681
718
760
800
850
909
938
955
993
2850
992
1030 1023 1027
992
2820
1072
1113
1154
2835
1115
1072 1071
2790
2805
1184
1213
2775
1211
1245 1247 1245
1211
2730
2745
1309 1307 1302
2715
Distance (m) 0
2
2.5
1298
3
1296
lili
1140
1181
1211
1110
1143
1181
1210
lili
1140
1180
1210
1240 1240 1239
1295
422
460
504
550
578
625
649
680
717
760
798
847
912
937
957
992
1025
426
460
505
550
575
620
649
680
720
760
792
850
910
936
954
992
1025
430
459
510
547
580
619
652
680
713
758
795
841
902
934
951
988
1023
430
456
508
540
579
617
650
678
713
753
792
840
908
932
951
989
1023
1069 1068 1068 1071
1112
1150
1185
1214
1252
1299
1.5
4
4.5
1183
lili
1144
1241
1112
1144
1180 1112
1140
1180
1204 1205
5.5
6
6.5
7
1231
1230
1273 1272
1115
1140
1174 1117
1140
1170 1112
1145
1167 1112
1150
1163
1205 1204 1200 1195
1240 1235
1280 1277
420
458
508
539
577
618
642
679
711
750
795
840
904
932
951
983
420
457
506
534
572
615
630
675
711
749
790
840
905
934
950
982
416
460
500
533
570
613
641
677
710
750
792
838
901
939
948
984
1022 1020 1016
419
461
505
535
577
613
640
675
711
746
791
839
905
937
948
982
1017
417
461
504
530
574
612
641
671
711
748
792
839
890
932
952
982
1017
414
460
505
529
576
614
640
670
713
747
793
836
890
932
952
982
1013
416
459
500
524
575
616
640
671
710
745
789
840
890
930
962
981
1014
417
455
495
538
570
617
640
674
711
740
790
840
890
923
969
977
1012
1070 1064 1064 1062 1062 1062 1055 1055
1108
1148
1180
1209 1205
5
1282 1280
1240 1240 1241
1292 1288
3.5
411
451
490
550
565
614
640
675
710
740
788
830
890
928
969
977
1011
1055
1102
1149
1162
1197
1230
1270
7.5
410
451
490
550
560
611
640
672
711
739
790
823
889
916
962
976
1010
1052
1102
1140
1162
1193
1230
1270
8
9
1051
1097
1136
1160
1191
1230
1270
9.5
411
451
486
550
560
610
640
670
709
739
786
820
889
918
955
975
417
453
484
526
560
608
635
661
709
739
781
820
882
920
952
982
10
1133
1160
1194
1227
1270
10.5
11 1271
11.5
12
1270 1263
1131
1160
1198 1131
1159
1191 1128
1156
1195 1129
1155
1190
1227 1225 1232 1230
1271
420
449
481
516
565
610
633
652
707
739
790
820
883
914
942
972
421
441
480
517
569
608
634
653
707
735
774
820
882
918
937
972
420
435
479
522
570
601
630
658
700
734
771
820
880
914
941
972
1007 1012
12.5
1039
1081
1122
1150
1185
1219
1265
13
13.5 1213
1116
1151
1190
1036 1032
1077 1073
1122
1156
1190
1217
1262 1260
420
433
475
520
570
600
629
659
700
735
773
820
880
912
930
972
410
431
469
520
569
600
627
659
699
731
774
813
880
912
949
972
410
440
468
519
566
601
624
660
694
729
777
811
868
912
947
970
408
447
467
515
565
601
621
656
695
728
775
810
861
912
948
972
770
410
446
467
513
560
604
630
657
690
723
409
450
463
508
560
600
628
651
690
726
770
806
861 810
909 861
951
963 912
943
967
1008 1004 1002 1002 1007 1005
1046 1043 1042 1042 1042 1041
1094 1092 1092 1090 1089 1082
1132
1160
1196
1230
1270
1009 1009 1011
1052
1102
1135
1160
1194
1229
1270
8.5
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm). 14
14.5
1031
1072
1115
1160
1191
1213
1247
410
442
464
501
560
598
633
651
690
720
770
803
860
907
942
962
408
433
461
507
554
589
629
653
687
720
765
801
860
906
942
962
1003 992
1032
1072
1113
1160
1195
1215
1249
146 Appendix C: Runway Roughness Profiles
365
91
71
150
92
67
30
3180
3195
3210
3225
217
30
149
181
210
180
3150
246
278
327
3165
278
257
3120
3135
370
328
3090
405
3075
3105
0.5
400
Distance (m) 0
28
68
91
148
181
211
240
275
330
360
401
1
26
64
90
147
180
204
240
279
330
358
398
1.5
25
62
93
145
179
200
241
275
328
358
401
2
31
60
90
143
171
191
241
277
320
354
410
2.5
20
58
90
140
170
191
247
277
320
350
410
3
20
54
91
140
170
197
250
272
320
353
407
3.5
20
55
91
137
173
200
249
270
320
350
400
4
20
51
90
138
175
196
241
270
310
351
391
4.5
17
50
88
138
177
200
242
270
308
351
394
5
20
49
90
137
173
200
240
270
302
350
391
5.5
16
47
90
135
170
195
240
270
300
349
391
6
16
44
90
135
163
199
240
270
302
341
389
6.5
11
40
90
130
160
200
240
270
300
342
390
7
11
41
87
130
157
193
240
268
300
349
390
7.5
10
40
84
130
159
199
230
260
301
340
390
8
10
40
80
128
159
200
221
260
301
340
390
8.5
10
40
78
128
155
194
220
256
300
340
388
9
6
40
72
126
160
190
217
254
300
338
381
9.5
38
71
125
158
190
219
257
300
338
381
10
38
71
120
157
190
220
260
292
336
380
10.5
30
74
115
153
190
225
261
293
331
380
11
30
75
110
151
190
230
260
290
330
380
11.5
27
70
110
156
181
228
259
290
330
377
12
28
70
100
156
188
218
260
289
330
372
12.5
TABLE C.4 (Continued) Russian profile “A,” based on a survey of Domodedovo airport (distances in m, elevations in mm). 13
29
69
100
160
180
210
260
290
330
371
13.5
30
67
100
157
180
210
260
288
327
372
14
30
69
97
152
175
207
260
280
326
373
14.5
30
70
93
150
175
206
260
279
325
370
Appendix C: Runway Roughness Profiles 147
1189
1188
1201
1209 1209 1214
1221
1208 1207 1207 1207 1207 1206 1202 1200 1197
1183
1157
1127
1102
1086 1084 1077 1077 1076 1075 1074 1075 1073 1073 1073 1073 1075 1077 1079 1080 1080 1081
1072 1072 1067 1066 1069 1066 1063 1062 1061
1030 1029 1028 1029 1029 1030 1026 1026 1027 1023 1031
997
972
932
924
135
150
165
180
195
210
225
240
255
270
285
300
315
330
345
360
375
1188
1187
1187
1188
1192
1188
1190
1197
1188
1188
1194
1198
1187
1188
1125
1154
1177
1223
1215
1124
1153
1173
1122
1152
1172
1220 1221
1215
1123
1148
1169
1222
1214
1120
1147
1167
1218
1216
1205 1205 1207 1208 1211
1188
1186
1187
1188
1152
1147
1140
1131
1112
1122
1146
1164
1218
1215
1212
1195
1197
1187
1188
1152
1151
1139
1132
1112
925
932
971
998
924
932
967
998
922
932
965
997
922
932
963
994
921
932
963
993
921
928
962
993
922
924
961
993
1099 1098 1097 1097 1095 1093 1091
1127
1157
1177
1222
1201
1188
1186
1186
1188
1147
1146
1140
1129
1114
1193
1190
1188
1185
1154
1152
1139
1126
1115
1193
1189
1188
1180
1153
1153
1139
1126
1114
1191
1188
1187
1180
1152
1153
1140
1124
1116
1191
1187
1188
1179
1153
1152
1139
1123
1115
1191
1187
1188
1180
1152
1152
1140
1123
1115
1189
1188
1188
1179
1153
1150
1141
1122
1115
1102
1188
1188
1188
1180
1153
1151
1142
1125
1115
1102
1188
1188
1188
1179
1160
1152
1142
1123
1116
1102
1120
1144
1168
1197
1218
1210
1118
1147
1166
1197
1218
1210
1117
1149
1171
1197
1218
1116
1148
1171
1194
1218
1209 1211
1115
1148
1173
1195
1218
1213
1112
1147
1172
1193
1218
1212
9.5
10
10.5
11
11.5
1201
1188
1189
1187
1179
1167
1152
1140
1125
1118
1103
1199
1188
1188
1186
1180
1172
1152
1137
1126
1118
1103
1188
1188
1187
1179
1178
1150
1139
1128
1122
1106
1200 1199
1188
1188
1184
1181
1177
1152
1135
1129
1122
1102
1201
1188
1188
1187
1179
1179
1147
1141
1131
1126
1110
1107
1147
1170
1197
1217
1110
1143
1168
1197
1217
12
1112
1142
1167
1199
1217
12.5
13
1216
1216
1214
1212
13.5
14
14.5
1217
1218
1107
1138
1166
1107
1137
1166
1107
1137
1167
1107
1137
1166
1107
1134
1167
1218
1107
1132
1166
1107
1132
1166
1105
1129
1166
1106
1128
1164
1103
1127
1162
1196
1105
1127
1161
1192
1210
1220
1103
1127
1159
1186
1209
1221
1198
1188
1192
1180
1185
1148
1142
1131
1126
1113
1208
1188
1193
1179
1185
1145
1142
1130
1123
1115
1204 1207 1208
1196
1188
1189
1178
1185
1144
1142
1125
1122
1114
1198
1192
1188
1188
1177
1183
1145
1141
1126
1121
1116
1207 1207 1209 1209 1210
1214
1201
1191
1188
1188
1177
1181
1143
1141
1127
1122
1114
1202 1204 1206 1207 1207 1206 1203 1200 1197
1216
1189
1188
1188
1174
1180
1145
1140
1130
1123
1112
1200 1201
1188
1188
1188
1177
1181
1145
1142
1131
1125
1111
1208 1207 1208 1207 1204 1207 1208 1208 1215
1208 1208 1208 1207 1207 1203 1204 1203 1201
1196
1195
1188
1187
1153
1152
1141
1131
1115
9
922
918
959
993
922
930
957
993
923
929
952
992
923
925
952
992
1031
922
928
955
992
1031
1059 1057 1052 1051
922
931
957
991
1031
1051
922
931
953
989
922
931
953
988
922
932
952
988
917
932
951
988
914
930
946
988
911
932
953
987
1023 1022 1022 1022 1022 1019
908
931
942
984
1012
903
931
943
983
1012
903
929
942
985
1011
1031
1073 1032 1030 1029 1029
909
922
923 910
939
983 941
986
912
923
937
982
909
924
936
982
902
923
934
978
901
924
933
975
898
925
932
972
1008 1007 1004 1003 1002 1002 998
1048 1047 1044 1042 1037 1037 1033 1036 1035 1033 1031
1076 1076 1077 1077 1077 1077 1077 1076 1073 1072 1071
1090 1088 1090 1092 1093 1096 1097 1097 1097 1097 1098 1097 1097 1097 1097 1097 1097 1097 1096 1092 1092 1086
1122
1139
1167
1218
1210
1210
1197
1196
1188
1188
1152
1152
1140
1132
1112
8.5
1098 1093 1092 1089 1088 1087 1086 1085 1089 1088 1086 1089 1092
1187
1188
1143
1146
1141
1129
1117
8 1101
120
1188
1143
1144
1139
1128
1118
1090 1090 1088 1088 1089 1092 1092 1093 1095 1095 1096 1101
7.5 1102
1187
1145
7 1102
105
1144
6.5 1102
1149
1143
6 1104
90
1142
5.5 1108
1142
1137
5 1111
75
1137
4.5 1112
1133
1127
4
1115
60
1126
3.5
1115
1126
1119
1091
3
1116
45
1118
2.5
1118
1117
2
1118
1090 1091
1.5
1116
30
1
1117
15
0.5
0
1117
0
1116
Distance (m)
TABLE C.5 Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).
148 Appendix C: Runway Roughness Profiles
0
895
888
860
805
751
743
675
627
568
507
448
459
388
307
228
161
121
81
68
87
74
74
47
41
35
54
Distance (m)
390
405
420
435
450
465
480
495
510
525
540
555
570
585
600
615
630
645
660
675
690
705
720
735
750
765
54
37
42
49
74
72
86
69
78
121
161
221
302
387
458
445
508
568
626
672
739
752
805
860
883
893
0.5
54
43
42
53
74
72
85
70
85
121
161
217
308
383
458
441
508
566
625
671
734
751
800
860
880
897
1
54
44
41
53
64
73
83
71
90
121
161
212
294
378
458
438
508
565
620
666
736
757
805
860
879
897
1.5
54
44
41
52
64
74
87
71
91
116
161
212
294
376
457
434
508
560
617
660
739
760
807
860
876
898
2
53
45
41
52
63
74
82
72
90
112
157
206
289
369
455
431
503
548
620
659
740
760
809
859
874
900
2.5
52
44
42
52
62
76
82
74
89
111
153
200
288
366
455
428
498
555
620
659
735
760
805
859
870
899
3
52
44
44
49
57
76
81
72
86
106
151
196
288
358
455
423
498
556
620
650
735
763
806
857
871
897
3.5
51
45
44
49
57
75
79
80
86
102
149
192
288
356
450
418
497
549
620
653
721
762
806
855
871
892
4
51
45
44
50
58
72
72
79
87
101
146
191
285
355
448
418
497
548
617
660
709
761
805
852
870
888
4.5
53
48
44
48
59
71
74
81
86
101
146
191
282
349
443
417
496
548
619
660
703
762
800
850
870
887
5
53
45
44
46
62
72
71
81
86
100
141
189
280
348
439
417
497
547
613
659
696
760
800
849
867
887
5.5
52
46
43
45
58
72
71
81
82
99
141
183
278
343
438
417
488
543
608
658
693
757
796
840
865
890
6
53
44
44
49
57
77
71
86
80
98
137
181
281
343
435
418
481
534
608
650
689
755
794
837
862
892
6.5
51
43
42
51
56
78
71
87
76
93
139
181
282
339
428
428
478
536
608
652
682
750
793
835
862
901
7
53
45
38
50
54
80
71
89
73
91
141
175
285
338
429
428
474
535
607
655
678
747
791
831
860
897
7.5
53
46
35
53
53
79
71
91
72
91
141
170
287
336
429
433
471
528
603
656
670
744
791
824
861
901
8
52
45
34
54
52
73
71
92
71
87
141
168
283
332
428
436
468
523
602
659
671
740
791
821
861
901
8.5
52
46
32
54
49
75
71
96
71
86
141
161
278
331
423
438
467
519
600
651
675
739
790
820
861
902
9
50
49
27
54
45
76
72
95
69
86
141
161
278
328
418
438
468
520
599
651
673
736
785
815
860
902
9.5
46
52
25
54
45
80
74
95
67
88
141
159
282
328
415
439
468
518
598
651
672
735
782
815
860
902
10
46
54
24
54
44
79
76
94
65
87
140
153
282
328
412
448
464
516
597
650
675
732
780
812
860
901
10.5
44
54
24
53
43
80
77
91
64
85
137
152
277
328
408
453
461
517
588
647
673
733
778
811
860
900
11
12
44
54
54 44
24
54
43
78
74
91
64
81
133
159
257
322
406
452
453
513
585
650
677
741
765
802
860
898
24
52
39
77
76
91
64
82
135
156
268
323
407
455
458
516
588
650
679
737
772
810
859
899
11.5
TABLE C.5 (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5
44
54
24
51
43
75
71
87
66
81
131
161
255
321
399
455
454
508
581
650
679
755
760
806
861
891
13
13.5
44
54
25
49
43
74
71
89
66
81
129
162
248
44
53
28
45
42
77
75
89
69
81
126
167
243
317
396
398 318
466
452
508
573
630
676
750
751
806
861
890
458
450
508
578
643
675
758
757
807
862
890
14
44
54
32
44
43
74
75
88
69
81
125
168
237
310
394
465
449
508
573
629
677
750
750
805
861
890
44
54
34
44
44
75
72
88
70
81
125
164
228
308
391
463
448
508
571
628
674
747
752
804
860
889
14.5
Appendix C: Runway Roughness Profiles 149
0
44
79
68
45
100
139
173
244
288
290
297
294
301
290
289
284
283
301
289
282
296
305
303
298
Distance (m)
780
795
810
825
840
855
870
885
900
915
930
945
960
975
990
1005
1020
1035
1050
1065
1080
1095
1110
1125
297
301
309
298
282
289
301
282
283
289
289
291
294
295
292
290
248
169
135
103
47
67
76
46
0.5
296
297
312
301
281
281
302
283
284
290
286
291
291
292
289
289
249
180
136
106
49
69
74
47
1
303
295
312
301
277
279
302
283
287
290
281
299
292
292
293
290
250
185
139
110
50
69
74
50
1.5
288
298
311
299
280
277
302
286
287
290
283
291
291
289
293
292
250
190
140
113
53
69
74
47
2
288
299
311
301
282
277
303
284
283
289
283
290
289
289
298
292
253
191
133
114
57
69
74
44
2.5
288
302
312
293
282
278
302
282
282
290
281
289
287
289
302
293
257
197
147
113
57
68
74
59
3
288
303
312
293
282
280
302
281
282
288
284
289
290
291
302
292
260
200
150
116
58
68
74
64
3.5
288
304
312
294
283
283
302
277
281
290
281
289
287
288
301
294
260
201
153
119
60
70
74
72
4
287
303
312
296
285
281
302
282
282
289
284
290
287
290
302
296
260
206
156
120
60
70
75
74
4.5
286
303
315
297
289
277
302
287
281
288
290
289
287
293
304
297
261
206
159
120
64
70
75
74
5
284
307
319
296
287
277
302
288
281
290
290
287
286
293
308
293
265
207
160
120
66
70
74
74
5.5
283
308
327
299
291
278
302
288
279
290
292
287
286
288
309
292
269
205
164
120
70
66
71
74
6
280
309
318
303
292
278
300
289
277
290
295
286
285
289
305
292
267
202
167
122
67
60
71
74
6.5
282
308
319
308
292
273
298
291
275
290
298
284
285
287
305
292
263
202
170
121
65
60
70
75
7
284
308
318
311
292
275
295
290
275
290
300
285
286
290
303
292
262
207
171
125
67
60
69
74
7.5
284
307
310
306
292
275
295
289
273
284
299
285
289
291
302
292
261
211
172
129
70
60
67
74
8
281
308
312
302
292
277
293
291
273
280
300
287
290
292
302
292
260
213
171
130
70
60
65
74
8.5
285
308
313
302
292
278
292
292
275
280
297
287
290
295
302
292
260
220
170
131
71
56
60
74
9
288
307
313
302
292
281
292
292
274
280
296
290
290
296
305
292
260
221
170
133
75
57
60
74
9.5
287
307
313
296
291
281
284
292
275
282
294
290
290
296
303
293
261
227
172
133
78
51
60
74
10
287
307
311
293
292
282
283
293
278
284
291
291
292
297
304
296
261
230
179
133
80
49
60
74
10.5
287
304
310
293
292
282
282
295
279
286
288
293
294
297
305
294
263
230
173
135
83
44
60
74
11
286
303
311
294
292
282
283
296
280
285
283
293
291
297
304
293
267
232
177
135
87
40
60
74
11.5
279
306
309
301
293
284
282
297
282
284
281
293
292
296
302
293
270
233
176
133
89
40
61
74
12
TABLE C.5 (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).
12.5
277
305
308
301
292
283
287
295
282
288
281
294
297
297
302
292
270
237
177
140
90
40
63
74
13
13.5
271
304
309
301
293
282
289
298
282
290
282
267
302
308
302
293
282
290
301
282
290
283
292
294
291 292
296
299
292
277
233
169
140
97
40
68
75
297
302
292
272
233
174
140
90
40
65
74
14
267
298
307
302
293
283
292
302
282
289
286
290
299
296
296
292
280
239
170
140
96
43
68
76
267
298
305
306
295
283
291
301
282
287
288
289
300
296
299
290
284
242
170
139
100
43
68
77
14.5
150 Appendix C: Runway Roughness Profiles
0
266
271
259
258
228
203
205
194
194
169
174
160
125
124
99
119
96
89
69
64
45
Distance (m)
1140
1155
1170
1185
1200
1215
1230
1245
1260
1275
1290
1305
1320
1335
1350
1365
1380
1395
1410
1425
1440
45
63
69
89
95
117
99
121
124
160
175
169
191
194
209
202
224
258
251
271
265
0.5
44
65
69
89
95
112
99
122
127
160
173
171
190
197
214
204
224
257
248
269
261
1
41
62
67
89
91
110
101
114
126
159
170
173
187
198
215
204
224
257
248
268
258
1.5
40
60
61
90
89
116
99
119
128
154
173
173
184
199
216
204
225
257
246
267
258
2
40
60
65
89
89
118
98
119
127
152
173
169
183
201
216
205
224
256
246
265
257
2.5
39
59
70
89
88
119
96
118
124
149
169
174
183
201
224
205
227
252
246
265
253
3
39
56
68
89
88
117
85
119
121
149
172
174
181
203
221
205
225
249
243
265
250
3.5
36
56
65
89
87
119
84
116
124
146
172
174
179
204
220
205
225
250
243
262
248
4
37
53
62
85
89
119
95
119
124
142
174
174
179
204
220
205
223
249
240
267
248
4.5
34
53
58
79
89
117
93
118
124
140
172
174
179
203
219
214
221
251
241
268
248
5
35
55
64
78
86
118
91
110
120
140
170
174
178
195
220
214
215
250
240
269
248
5.5
38
53
69
73
80
112
89
110
119
140
170
174
175
203
219
213
214
250
241
269
248
6
39
53
70
80
79
110
89
109
119
138
171
174
174
204
219
213
212
248
240
275
249
6.5
37
56
70
77
89
109
97
109
117
135
171
171
174
204
219
212
211
245
244
276
248
7
38
53
69
79
88
109
99
109
109
130
173
170
169
204
217
212
210
246
245
278
245
7.5
40
51
69
80
84
109
99
109
116
132
173
169
165
202
213
211
213
245
245
278
244
8
40
51
68
78
74
109
97
109
111
130
173
170
169
202
211
210
212
241
246
278
248
8.5
40
50
67
73
75
109
93
109
109
129
172
168
170
201
211
211
212
238
247
278
248
9
41
50
65
78
77
112
90
109
114
129
165
167
172
204
207
211
210
238
248
274
254
9.5
45
50
68
76
73
110
89
107
117
128
168
166
172
204
205
208
214
238
248
271
248
10
46
50
67
75
75
109
89
107
119
128
168
165
173
203
204
205
203
238
244
269
258
10.5
36
50
69
77
75
115
92
103
119
126
167
165
173
197
204
204
202
237
239
268
259
11
49
50
69
75
77
109
98
99
119
124
165
165
170
195
199
204
209
236
239
267
266
11.5
50
50
67
72
77
109
99
99
119
128
170
167
169
194
200
204
206
237
248
268
268
12
TABLE C.5 (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm).
12.5
50
49
70
72
79
108
99
99
119
129
159
171
170
195
199
204
205
233
250
266
267
13
13.5
50
48
70
70
82
100
101
90
50
47
70
70
85
99
105
94
120
128
128 119
160
174
170
194
194
204
204
231
254
266
272
163
173
170
195
196
204
204
233
251
268
265
14
51
45
69
70
83
100
110
99
120
127
160
174
172
192
194
204
204
231
258
264
277
51
45
67
70
89
99
116
99
120
125
160
174
171
192
194
204
204
229
258
262
271
14.5
Appendix C: Runway Roughness Profiles 151
0
50
11
30
54
35
46
65
75
46
52
75
87
95
105
135
165
230
244
272
291
331
341
386
432
450
432
Distance (m)
1455
1470
1485
1500
1515
1530
1545
1560
1575
1590
1605
1620
1635
1650
1665
1680
1695
1710
1725
1740
1755
1770
1785
1800
1815
1830
433
450
432
386
341
332
291
273
250
233
165
134
107
95
87
76
52
47
76
65
47
35
52
31
1
50
0.5
434
450
433
387
340
331
293
280
252
235
165
135
113
95
86
65
55
49
76
61
46
35
50
31
5
50
1
434
453
432
391
340
332
297
284
251
236
165
135
113
95
87
76
52
52
76
60
54
35
51
32
0
53
1.5
430
454
434
391
337
335
295
286
251
240
165
137
114
98
89
76
54
50
75
62
59
36
53
33
0
52
2
429
452
430
395
332
332
294
286
253
244
165
139
115
97
94
77
55
48
75
63
55
40
48
32
1
55
2.5
432
457
430
400
331
331
297
287
251
244
165
142
115
99
94
84
48
50
75
65
55
41
46
35
8
56
3
431
459
429
401
329
332
297
287
253
244
165
144
115
103
95
84
55
46
75
65
54
41
45
35
10
57
3.5
432
458
430
402
331
333
296
287
254
244
166
145
115
100
95
81
55
45
75
65
55
40
48
31
10
59
4
435
458
430
406
332
333
293
287
252
240
167
145
115
101
95
80
55
45
75
65
55
42
48
35
10
56
4.5
431
459
432
408
337
334
292
287
251
241
172
145
121
101
95
76
51
45
75
66
54
44
52
38
8
59
5
432
459
432
411
340
334
292
284
254
241
175
144
120
100
94
78
52
45
72
66
55
45
46
39
7
59
5.5
430
461
434
411
346
338
294
282
255
241
175
145
115
95
95
80
54
45
67
65
56
44
45
40
7
60
6
427
462
434
411
347
340
293
285
254
240
175
152
114
95
92
76
56
45
67
65
55
45
45
40
10
60
6.5
427
460
434
411
351
339
300
281
253
241
182
155
106
95
94
75
56
45
65
65
58
45
44
40
7
60
7
429
463
435
411
352
339
303
281
252
241
185
155
106
95
92
70
56
45
65
65
59
46
38
34
10
60
7.5
429
459
438
411
352
340
307
285
251
241
184
155
108
101
86
74
56
48
65
67
66
45
42
45
10
60
8
431
459
439
414
356
341
306
285
253
241
185
155
109
99
90
70
56
54
63
66
58
46
41
47
11
60
8.5
431
456
439
417
352
340
306
281
256
248
185
157
114
95
89
70
59
53
58
66
56
45
36
45
15
59
9
431
458
439
418
354
338
308
280
257
246
187
160
115
88
88
69
59
55
56
70
55
46
34
46
20
59
9.5
431
458
442
419
360
340
307
286
260
245
192
162
115
87
88
75
60
54
55
69
56
46
30
46
20
59
10
429
450
444
421
360
341
309
287
259
245
195
159
115
88
85
70
65
55
53
70
58
48
20
47
20
58
10.5
426
449
447
421
361
341
310
289
261
245
195
156
117
91
85
75
64
53
50
69
57
46
23
49
20
58
11
12
423
446
447 424
449
421
368
341
312
287
261
243
195
162
124
91
85
75
66
49
47
71
57
45
29
50
21
50
449
422
364
339
312
284
260
243
195
157
119
91
85
75
65
47
45
70
55
45
25
50
21
58
11.5
TABLE C.5 (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5
423
445
442
423
370
341
315
288
265
248
205
163
125
95
85
78
70
46
46
75
64
45
27
50
29
41
13
13.5
422
439
439
424
372
341
317
290
267
248
205
160
125
419
435
445
424
374
340
321
289
270
244
206
160
125
95
86
85 95
85
73
46
46
70
65
49
26
50
29
26
81
72
48
46
74
65
45
26
50
29
30
14
419
435
449
430
380
335
322
290
271
242
220
164
130
101
87
85
74
51
51
74
65
46
32
52
30
20
419
433
449
431
381
340
328
291
271
242
224
163
134
97
91
85
75
54
51
75
65
45
35
53
30
18
14.5
152 Appendix C: Runway Roughness Profiles
0
418
414
399
428
428
404
400
406
402
408
429
412
403
354
325
346
348
363
356
354
361
393
423
Distance (m)
1845
1860
1875
1890
1905
1920
1935
1950
1965
1980
1995
2010
2025
2040
2055
2070
2085
2100
2115
2130
2145
2160
2175
423
394
360
352
355
363
348
343
323
352
403
410
428
408
404
408
402
404
422
429
399
414
423
0.5
423
395
357
349
356
361
355
344
324
349
401
413
425
409
407
409
402
406
418
431
402
415
419
1
426
394
360
343
357
361
354
346
326
345
399
412
427
409
408
409
402
407
414
429
402
414
418
1.5
429
399
360
343
355
361
359
346
326
345
397
416
425
409
412
409
402
407
412
430
403
413
417
2
431
402
361
344
355
360
356
346
326
344
396
411
419
412
412
407
401
408
409
431
406
414
416
2.5
433
402
362
345
355
359
359
346
326
341
396
406
418
405
414
404
401
406
409
437
407
413
414
3
433
403
363
346
355
358
365
346
326
337
396
405
418
418
414
409
401
408
407
440
407
414
413
3.5
437
403
364
346
354
354
366
344
328
335
393
402
418
421
416
408
403
409
405
442
408
415
411
4
438
403
366
346
363
353
366
346
324
332
392
401
417
422
417
406
405
409
405
439
409
412
413
4.5
442
406
372
348
364
353
366
347
323
329
389
400
415
429
412
407
404
408
406
439
409
409
412
5
443
405
373
353
363
353
366
346
325
329
386
400
416
430
410
411
403
408
408
439
409
408
413
5.5
443
408
374
355
366
353
366
346
326
327
383
399
415
429
409
412
404
412
408
439
414
409
416
6
443
408
375
361
363
353
359
346
327
327
382
399
417
428
409
411
405
411
407
439
418
409
417
6.5
447
406
374
363
358
355
356
343
324
327
379
398
416
431
409
410
402
411
408
440
418
409
419
7
453
405
374
363
354
358
356
350
329
328
377
398
416
431
409
403
408
410
408
439
419
409
419
7.5
460
403
375
363
353
360
361
351
329
326
376
401
419
429
408
402
405
409
410
439
419
409
421
8
463
406
380
363
353
360
360
354
329
326
376
404
420
437
409
399
404
409
410
439
421
409
415
8.5
463
409
379
366
351
359
361
348
332
325
374
406
418
437
408
399
406
409
409
441
421
409
419
9
463
411
378
364
350
360
361
346
333
323
374
406
419
439
403
399
405
411
410
441
424
409
418
9.5
465
413
378
363
346
361
356
353
333
323
371
402
420
438
405
399
403
409
409
443
425
414
419
10
464
406
380
369
345
361
366
347
333
320
369
396
420
436
404
398
407
408
409
441
425
414
419
10.5
463
409
382
370
347
359
366
343
335
321
366
401
420
433
405
396
407
407
408
440
426
410
419
11
464
423
383
372
349
360
365
342
335
323
364
401
419
436
400
398
409
405
409
440
419
409
418
11.5
463
421
384
372
351
362
365
342
337
324
361
403
415
433
405
399
407
399
409
439
421
405
419
12
TABLE C.5 (Continued) Russian profile “B,” based on a survey of Novosibirsk airport (distances in m, elevations in mm). 12.5
463
422
386
370
352
362
367
343
339
324
361
403
416
430
406
400
405
399
409
439
426
404
420
13
13.5
465
423
387
369
354
361
366
342
344
325
469
422
389
367
353
358
366
345
345
323
356
405
404 358
411
430
408
398
401
400
410
441
425
404
418
411
429
408
396
403
400
409
440
424
404
419
14
473
420
393
363
353
358
366
347
346
320
356
405
411
429
407
401
402
400
405
439
426
402
418
477
418
393
362
355
356
364
346
346
321
353
404
410
429
406
401
406
400
402
435
427
399
415
14.5
Appendix C: Runway Roughness Profiles 153
113
123
103
112
105
120
69
565
390
510
405
461
315
330
544
406
462
391
407
285
300
375
388
414
315
334
255
270
510
314
334
323
307
225
240
494
324
314
234
293
195
210
345
236
294
213
180
360
213
183
165
554
545
503
181
143
122
151
135
150
106
90
70
30
55
45
60
93
30
63
27
31
15
30
75
30
30
11
0
90
0.5
30
Distance (m) 0
563
545
511
505
454
405
414
394
334
314
314
317
293
238
210
182
143
124
112
110
97
64
62
30
30
23
30
1
563
548
514
504
454
413
414
396
337
317
304
315
294
243
213
173
149
123
113
110
93
67
66
33
30
21
30
1.5
564
544
519
502
453
414
419
392
338
308
308
313
294
242
220
173
146
122
113
113
91
67
68
40
33
20
30
2
567
541
514
500
450
416
418
384
344
315
305
314
294
243
213
170
148
120
109
114
91
68
63
39
37
20
20
2.5
564
542
509
501
453
422
421
384
345
324
304
322
294
253
210
173
152
119
114
122
90
71
63
38
41
20
20
3
572
553
512
503
453
424
422
388
354
324
314
322
303
255
206
183
154
114
125
123
91
75
67
30
40
30
24
3.5
569
559
509
503
454
424
424
394
357
327
322
319
305
262
207
183
158
115
131
129
93
81
66
30
40
17
20
4
562
564
514
508
455
425
424
404
356
329
328
319
311
263
207
168
162
123
123
125
96
85
60
33
41
13
20
4.5
556
563
523
523
445
425
416
405
347
324
329
315
310
254
204
173
163
123
123
119
94
85
59
37
40
12
21
5
560
562
527
524
443
425
408
405
344
330
329
312
308
254
207
181
161
124
123
112
90
88
59
31
48
11
20
5.5
563
556
526
524
441
424
409
403
334
337
324
307
309
254
214
190
163
128
124
109
100
87
60
31
40
14
15
6
564
554
524
524
441
426
405
394
333
344
324
308
306
254
215
184
165
128
123
105
106
85
65
31
37
20
1
6.5
572
560
522
523
444
429
405
395
335
335
324
314
304
254
213
183
158
123
116
111
102
84
61
30
30
20
0
7
567
554
526
514
454
436
406
403
339
335
319
314
309
254
217
190
171
123
118
112
103
89
63
30
31
20
0
7.5
565
547
534
503
462
444
412
409
344
336
314
314
306
254
219
193
174
132
114
112
107
90
62
30
28
20
0
8
566
546
542
494
474
444
414
414
353
342
317
314
305
254
221
197
177
132
123
116
104
77
62
30
30
30
3
8.5
567
544
541
504
482
444
417
416
354
344
323
317
304
257
223
198
176
133
123
123
102
80
59
40
38
30
10
9
572
539
534
504
474
444
419
416
363
344
323
314
304
257
231
206
175
120
123
122
102
84
57
40
39
30
16
9.5
573
538
534
509
491
444
421
414
364
341
324
313
304
257
227
211
175
118
123
113
102
90
59
40
39
30
18
10
TABLE C.6 Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm). 10.5
578
544
534
511
494
444
414
412
374
344
314
314
303
264
223
213
173
124
124
108
99
89
52
40
30
30
11
11
571
542
534
510
498
446
420
404
374
339
314
321
304
274
223
211
171
128
126
109
93
87
60
39
28
30
16
11.5
12
579
573
548
530 544
512 540
504
447
414
417
372
344
314
315
304
274
222
213
167
140
120
113
84
90
72
36
36
20
11
505
504
444
414
417
361
349
314
322
310
277
223
212
164
132
122
112
92
90
70
35
39
20
17
12.5
573
552
529
507
504
459
419
414
382
344
314
314
307
275
222
218
176
144
114
112
92
90
73
40
30
20
10
13
13.5
223 268
579
554
544
505
504
458
418
424
392
344
315
313
314
582
561
554
504
504
454
415
421
397
343
315
313
316
284
223
223 223
176
145
117
112
101
87
70
40
31
30
15
178
144
119
110
94
90
72
39
31
19
15
14
573
564
553
503
504
454
414
414
394
339
308
310
319
286
223
223
182
148
122
113
103
89
73
47
30
30
20
14.5
569
564
544
500
505
459
411
407
394
334
304
312
318
288
232
213
183
150
130
112
103
90
70
50
30
31
23
154 Appendix C: Runway Roughness Profiles
604
767
599
1.5
608
1025 1026 1026 1020 1019
1000 1009 1015
720
735
997
607
989
957
919
896
894
847
827
810
753
748
760
758
695
666
606
588
609
613
988
949
929
897
892
847
827
807
743
756
756
747
689
669
995
1149
1145
1154
1159
1121
1155
1121
1150
1122
1151
1129
1148
1119
795
1109
1099 1105
780
1023
1017
1009
1058 1057 1059 1050 1048 1043 1040 1046
1027
1017
1017
999
1059 1058
989
949
928
897
894
847
825
807
747
755
756
759
694
667
611
589
1059 1059 1058 1059 1064 1069 1069 1069
1022
1019
604
589
3.5
589
750
1019
994
1017
3
588
765
1019
1008 1010
1018
1009 1010
2.5
580
1049 1057
993
959
921
890
888
847
825
810
757
744
762
751
689
659
608
580
1014
1009 1007 999
2
573
690
1041
999
955
929
889
889
846
813
808
765
746
767
754
699
657
608
580
599
578
705
1009 1001 999
1028 1029 1037
949
928
882
886
847
807
807
762
744
764
752
697
658
608
589
660
949
927
886
885
847
808
812
757
737
690
1
576
675
927
950
630
645
884
879
848
585
600
811
570
615
747
811
540
555
760
737
510
525
749
694
740
480
495
604
658
606
659
450
594
465
595
597
420
573
405
435
0.5
579
Distance (m) 0 4.5
979
952
929
897
895
847
818
802
740
766
757
738
695
679
614
587
589
584
989 1012
1148
1130 1148
1134
1074 1070
1044 1044
1023 1024
1014
1009 1010
990
1059 1059
981
949
932
894
894
847
824
807
741
766
753
741
690
669
618
588
598
583
4
1144
1139
1069
1048
1029
1012
1010
989
1059
979
949
931
896
899
848
822
801
741
767
761
739
694
680
617
592
599
586
5
1148
1137
1076
1053
1029
1009
1017
991
1059
979
949
929
894
900
847
827
805
744
767
761
739
699
682
615
595
598
588
5.5
1157
1130
1076
1059
1029
1005
1023
990
1052
979
949
929
897
898
847
827
807
751
757
766
748
707
689
617
590
593
589
6
7
989
959
929
890
889
860
829
815
757
757
757
757
710
699
629
598
594
589
999 1000
1158
1129
1158
1131
1073 1074
1048 1049
1039 1039
999
1024 1029
999
1044 1036
980
959
931
899
895
849
827
807
755
755
759
749
709
693
622
594
592
589
6.5
8
8.5
992
919
883
899
864
827
812
767
764
752
746
714
709
652
618
589
590
9
997
918
889
894
862
826
816
770
767
747
747
716
709
654
618
587
590 589
592
929
895
889
874
818
818
764
767
737
744
719
707
651
626
1004 1016
919
889
894
867
826
817
768
767
744
747
718
707
657
621
10 592
10.5
11
937
904
897
887
817
810
771
766
744
737
727
711
649
624
590
589
1024 1014
936
897
889
877
819
817
767
765
732
739
719
709
649
624
591
589
999
992
989
1015 989
1019
11.5
12
938
905
902
892
837
817
777
758
744
752
728
718
645
619
589
602
1010 1012
939
902
899
889
824
817
771
764
743
739
726
719
649
622
590
598
12.5
13
1018
1012
1019
1041
989
650
887 936
913
14
1019
1018
949
928
887
887
851
807
806
747
746
765
729
705
654
601
598
592
14.5
1020
1023
1012
949
928
886
887
850
807
807
747
740
757
729
699
658
608
595
589
1000 1058 1052 1049
1008 1004 1003 1008 1004 999
1039 1039 1031
1010 1006 1009 1008 1009 1009
1020 1022 1030 1024 1019
1019
1019
939
927
890
888
847
797
747
746
762
728
709
847 887
1046 1045 1048 1049 1052
999
598 601
809
1020 1025 1029 1029 1032 1031
1019
1019
13.5 596
810
791
751
745
757
729
719
649
612
595
609
1009 1014
938
909
892
892
844
807
783
757
741
756
729
726
643
618
589
609
1158
1134
1158
1132
1159
1130
1074 1072 1072
1154
1121
1149
1119
1150
1119
1069 1074 1077
1153
1129
1155
1135
1158
1139
1166
1137
1168
1137
1168
1139
1168
1141
1161
1149
1162
1143
1079 1080 1087 1092 1097 1099 1098 1096 1099
1049 1048 1049 1053 1056 1056 1053 1052 1055 1059 1062 1064 1068 1066 1062
1033 1039 1039
995
1019
1017
1029 1029 1029 1019 1002 1009 1016
1029 1028
1042 1039 1039
999
9.5 596
1002 1004 1009 1008 1003 1009 1004 1001 1007 1010 1017
981
922
880
894
867
826
815
767
765
752
749
712
709
648
615
590
590
1022 1025 1020 1019
999
1031
993
974
922
881
890
867
831
817
767
762
754
756
716
709
639
602
593
589
7.5
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 155
1235
1298
1173
1188
1198
1177
1188
1194
1238 1229 1230
1278 1285 1291
1308 1318
825
855
870
885
900
1170
1177
1188
1483
1623
1623
1670
1699
1606 1608 1611
1623 1623 1623
1624 1623 1623
1670 1673 1671
1690 1700 1702
1698 1702 1703
1095
1110
1125
1140
1155
1170
1539
1706
1615
1577
1530 1536 1538
1560 1567 1568
1065
1080
1554
1531
1050
1298
1394
1387
1345
1348
1332
2.5
1470
1467
1423
1397
1384
1347
1338
1332
1298
1243
1215
1198
1186
1153
1711
1693
1673
1623
1623
1617
1582
1537
1567
3
1553
1497
1487
1470
1467
1424
1397
1383
1347
1335
1331
1293
1246
1218
1207
1188
1156
1713
1683
1678
1622
1623
1617
1584
1713
1674
1678
1623
1626
1616
1578
1540 1543
1566
1497
1484 1487
1468
1496 1495
1537 1547
1477 1479 1482
1500 1503 1497
1214
1239
1467
1467
1466 1467 1466 1467
1020
1178
1195
1422
1467 1468 1467
1035
2
1154
1423
990
1428 1425 1426
975
1394
1005
1377 1380 1384
1392 1394 1396
945
960
1387
1358
1344
1362 1368 1369
1340 1341
915
930
1343
1328
1327
1204 1208
1185
1.5
1153
840
1
1162
810
1158
0.5
1161
Distance (m) 0
1711
1670
1673
1623
1629
1613
1581
1543
1543
1497
1487
1474
1466
1426
1405
1387
1345
1328
1334
1288
1250
1221
1215
1190
1150
3.5
4.5
1223
1218
1185
1150
1617
1711
1671
1671 1705
1666
1667
1625 1631
1629 1629
1617
1582 1587
1543 1544
1537 1531
1497 1499
1482 1477
1475 1472
1467 1467
1427 1429
1405 1402
1384 1387
1340 1340
1327 1326
1336 1334
1288 1283
1254 1255
1217
1217
1188
1151
4
1703
1668
1664
1632
1629
1620
1577
1545
1526
1497
1478
1481
1467
1437
1405
1394
1344
1327
1334
1282
1258
1218
1221
1179
1151
5
1700
1664
1663
1629
1632
1619
1577
1547
1517
1497
1477
1482
1466
1438
1403
1397
1346
1327
1333
1278
1268
1218
1228
1178
1154
5.5
1696
1663
1662
1633
1635
1615
1574
1550
1517
1505
1476
1480
1463
1443
1406
1400
1347
1327
1333
1279
1278
1223
1229
1188
1158
6
7 1181
1158
1516
1614
1695 1697
1667 1665
1663 1663
1635 1645
1636 1635
1614
1575 1576
1556 1557
1517
1499 1498
1476 1477
1484 1487
1465 1464
1443 1443
1407 1411
1400 1401
1347 1350
1326 1326
1332 1335
1280 1285
1276 1275
1226 1231
1229 1228
1190
1158
6.5
8
1218
1183
1167
8.5
1227
1191
1161
9
9.5 1158 1214
10
1208
1208
1158
1329 1330 1333 1356 1357 1357
1487 1487 1495 1517
1552 1556
1514
1703 1703 1706
1668 1673 1674
1658 1660 1657
1653 1652 1653
1634 1632 1624
1622 1633 1643
1577 1580 1584
1551
1511
1504 1503 1505
1208 1201
12
12.5
13
1218
1188
1172
1228 1235
1217
1188
1175
1289 1292
13.5
14
14.5 1191
1178
1208 1198
1189
1172
1376 1376 1377
1337 1337 1339
1352 1355 1357
1295 1302 1302
1268 1268 1278
1238 1243 1245
1217
1190
1169
1417
1417
1417
1422 1426 1428
1463 1467 1467 1472 1477
1460 1458 1462 1462 1459 1460 1461 1482 1477 1477 1477 1475 1468
1433 1428 1460 1462 1465
1431
1398 1397 1397 1397 1397 1400 1397 1397 1392
1358 1362 1362 1367 1368 1371
1337 1337 1334 1336 1337 1339
1342 1342 1338 1347
1280 1288 1289 1291
1270 1274 1269 1268 1263 1268
1235 1228 1225 1218
1219
1194
1168
1517
1520
1515
1517
1514
1517
1517
1521 1522 1523
1673 1674 1674 1673
1623 1623 1623 1620 1623 1667 1671
1616
1676 1663 1653 1643 1638 1633
1587 1590 1593 1594 1597 1599
1550 1554 1557 1557 1555 1555
1523 1523 1522 1518
1706 1709 1710
1675 1676 1673
1525 1524 1527
1736 1733 1733 1716
1693 1693 1694 1714
1723 1729 1733 1733
1675 1680 1684
1672 1670 1670
1623 1623 1623
1633 1623 1623
1605 1607 1606
1557 1557 1557
1525 1524 1527
1674 1674 1673 1679 1683 1688
1656 1656 1660 1657 1654 1659 1663 1663 1668
1660 1663 1663
1624 1623 1616
1646 1654 1663
1582 1585 1584
1547 1547 1547
1517
1507 1508 1514
1497 1504 1499 1497 1497 1493 1497 1497 1499 1504 1504 1503
1487 1494 1487
1466 1469 1469 1467 1468 1463 1485 1487 1487
11.5 1168
1203 1208 1213
1218
11 1164
1449 1453 1459 1458 1463 1462 1457
1427 1423 1413
1405 1405 1402 1403 1397 1425 1425
10.5 1159
1338 1337 1340 1338 1341
1278 1278 1276
1269 1268 1268
1230 1228 1234
1219
1204 1201
1158
1446 1447 1448 1450 1451
1418
1401
1350 1354 1357
1327 1328 1328
1337 1337 1338
1279 1278 1282
1277 1277 1270
1228 1226 1238
1219
1178
1159
7.5
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
156 Appendix C: Runway Roughness Profiles
0.5
1
1.5
1754
1927
1773 1774
1949
1990 1989
1951
1927 1928
1898 1897
1897 1902
1876 1877
1867 1865
1863 1855
1829 1827
1788 1789
1794 1793
1751
1754
2117
2118
2118
2118
2117
2121
2127
2127
2119
1515
2123 2117
2148 2148 2140 2135
2121
1485
2110
2110
1500
2110
1989
1956
1923
1894
1897
1879
1865
1860
1826
1792
1784
1775
1738
1755
1990
1955
1924
1888
1897
1886
1860
1854
1824
1788
1782
1776
1741
2121
2127
2120
2110
2121
2128
2113
2113
2124
2127
2108
2112
2116
2122 2123
2129 2127
2103 2100
2112
2127
2127
2100
2120
2127
2134
2100
2120
2100
2128
2130
2100
2121
2099
2070 2067 2061
2100 2097 2097 2098 2100
1470
2104 2101
2064 2069 2067 2069 2070 2075 2075 2078 2074 2071
2096 2100 2100 2102
1440
1455
2113
1986
1957
1926
1894
1898
1884
1862
1862
1827
1790
1787
1774
1746
6 1734
2080 2080 2080 2084 2087 2089 2090 2090 2091 2090 2090 2086 2087
1987
1745
5.5 1735
2067 2070 2069 2070 2072 2080 2080 2080 2079
1987
1949
1927
1898
1897
1876
1867
1864
1830
1793
1747
1742 1744
5 1734
1425
2061
1982
1955
1927
1897
1892
1867
1857
1864
1826
1795
1769
1794
4.5
1967 1972 1977
1981
1769
1794
1745
1748
4
1733 1733
2030 2044 2061
1957
1747
1760
3.5
1733
1395
1982
1929
1957
3
1732
1410
1928 1930 1930 1928
1946 1939 1944 1947
1365
1380
1887
1897
1887
1907 1902 1904 1900 1899
1888
1867
1855
1864
1825
1794
1350
1887 1888
1865
1764
1788
1867 1867 1864
1855
1862
1824
1794
1784
1748
1754
1891
1866
1745
1754
2.5
1721
1320
1853
1854
2
1732
1335
1847 1848 1849
1305
1824
1824 1824 1824
1847 1853 1854
1275
1290
1794
1797 1795 1795
1260
1759
1779
1752 1752 1754
1774 1775 1776
1230
1754
1744
1732
1245
1744 1744 1744
1755 1755 1754
1200
1215
1733 1733 1733
1185
Distance (m) 0 7
1823
1894
7.5
8
8.5
1767 1765 1784 1783
9
9.5
10
1775 1774
1887 1887 1887
1867 1867 1867
1855 1857 1857
1834 1832 1834
1794 1793 1794
1787 1785 1790
1781
1733 1734 1734
1765 1764 1764
1743 1743 1743
10.5
11
11.5
12
12.5
1773 1771
1950 1953
1931
1927 1929
1954 1956 1956
1768
1774 1773 1774 1774 1775 1774 1817
14
14.5
1765 1764 1760
1800 1799 1824 1824 1824
1801
1774 1774 1774
1754 1756 1754
1867 1871
1875 1877 1877
1847 1853 1847 1876 1876 1872
1917
1918
1917
1917
1956 1957 1957 1957 1958 1960 1967 1964 1963
1952 1949 1947
1908 1925 1930 1929
1913
1916 1918 1932 1934 1937 1939 1937 1938
1917
1916
1887 1887 1887 1887 1887 1890 1888 1895 1895
1871
1857 1856 1854 1852 1849 1849
1834 1837 1834 1844 1844 1844 1844 1842 1844
1794 1794 1799 1804 1813
1794 1793 1794 1794 1800 1799
13.5
1742 1742 1743
2120 2123 2126
2135 2137
2127 2127
2134 2130 2137
2127 2126 2127
2116
2119
2118 2137 2137 2143
2127 2118
2107 2107
2127 2128 2130
2111
2110
2110
2110
2110
2111
2110
2110 2110
2110
2117
2119 2117
2116 2117 2147 2147 2147 2147 2146 2147
2127 2127 2127 2119
2110
2118
2110 2119
2142
2147 2144 2140
2124 2123 2122
2114
2135 2138 2140 2140 2140 2140 2140 2141
2115
2060 2060 2069 2075 2081 2079 2080 2088 2085 2080 2080 2080 2083 2083 2085 2103 2105 2108
2100 2097 2095 2099 2100 2101
2120 2120
2100 2101
2062 2061
2090 2089 2089 2081 2085 2080 2080 2080 2080 2080 2080 2078 2071 2070 2070 2070 2069
2079 2076 2077 2080 2080 2080 2076 2075 2079
1994 1994 2000 2001 2003 2000 1999 1996 1999 1992 1999 2000 2006 2010 2019
1951
1927 1927 1928
1897 1897 1900 1907 1907 1911
13 1740
1742 1749 1752 1753 1752 1754
1769 1773 1771
1744 1743 1739 1736 1741
1896 1896 1900 1906 1904 1903 1906 1905 1907 1908 1915
1894 1890 1887
1865 1867 1867
1854 1854 1854
1824 1827 1833
1784 1786 1793
1783 1784 1784
1781
1735 1734 1734
1771
1743 1743 1743
2079 2079 2079 2080 2080 2081 2085 2081
1990 1990
1956 1954
1926 1927
1891
1892 1896
1887 1888
1862 1864
1853 1854
1819
1788 1785
1784 1784
1778 1781
1740 1735
1762 1764
1734 1737
6.5
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 157
2152
2
2.5
3
3.5
4
4.5
5
2254 2257
2292 2298 2297
2264 2267 2268 2273 2268 2268 2270 2276
2274 2270 2267 2267 2267 2266 2267 2263
2287 2287 2294 2292 2292 2288 2288 2287
2298 2297 2297 2297 2295 2292 2291
1635
1650
2237
2167
2262
2237
2173
2255
2338
2552 2552
2549 2550 2552 2552 2552 2552 2552 2552
2559 2556 2555 2554 2558 2553 2554 2559
1845
1860
2553 2555
2527 2523
2542 2539
2531 2528 2530 2527 2527 2529 2528 2527
2552 2553 2560 2553 2552 2549 2549 2547
1815
1830
2466 2467
2476 2475
2521
2523 2527
2516
2522 2522
2512
2475 2471 2468 2467 2467 2466 2468 2467 2522
2559
2551
2538
2522
2534
2561
2562
2550 2552
2540 2535
2522
2532
2466 2466 2471 2531
2425 2426
2561 2561
2552 2552
2535 2538
2522 2525
2540 2532
2437 2436
2512 2512 2512
2436
1785
2431
2426 2426
2398 2397
2410 2413
2367 2370
1800
2425 2431
7.5
8
8.5
2184
9
9.5
10
2187 2187 2192
2173 2175 2177
2152 2154 2153
10.5
11
11.5
12
12.5
13
13.5
14
14.5
2177 2177 2175
2153 2157 2156
2194 2198 2204 2207 2207 2209 2217 2221 2225
2177 2183 2180 2178 2177 2177
2156 2156 2153 2148 2149 2149
2307 2304 2303 2305 2300 2300
2312 2319 2329 2337 2338 2341 2344 2342
2302 2304 2305 2307 2307 2311
2299 2297 2302 2305 2304 2307 2311
2300 2301 2301
2256 2257 2259 2267 2275 2277 2284 2287 2295 2287 2283 2277 2282 2286 2287
2264 2259 2258 2259 2263 2257 2256 2258 2259 2258 2267 2267 2267 2269 2273
2267 2266 2267 2275 2275 2275 2272 2271 2268 2267 2270 2268 2265 2264 2258
2239 2241 2237 2237 2237 2237 2237 2239 2240 2247 2246 2246 2246 2247 2247
2177 2181
2167 2170 2171
2147 2150 2148
2407 2406 2406 2406 2405 2405 2406 2405 2403 2397 2396 2396
2459 2456 2456
2480 2482 2482 2485 2485 2491 2490 2506 2506 2506 2506 2508 2541 2541 2539 2532 2536 2536 2537 2542 2545
2560 2562 2565 2567 2571 2572 2572 2573 2572 2572 2569 2570 2570 2572 2572
2552 2553 2553 2552 2552 2552 2552 2553 2555 2562 2562 2563 2562 2562 2561
2536 2538 2540 2535 2535 2537 2538 2541 2541 2539 2539 2542 2543 2547 2548
2532 2534 2542 2542 2539 2541
2532 2534 2540 2541 2535 2533 2528 2526 2524 2523 2526 2528 2531 2527 2531
2476 2482 2481
2465 2465 2466 2462 2459 2460 2463 2463 2464 2466 2467 2476 2476 2476 2476
2436 2436 2439 2444 2443 2445 2446 2447 2454 2457 2458 2461
2429 2435 2436 2426 2435 2434 2434 2431 2435 2436 2436 2436 2436 2436 2436
2398 2396 2396 2397 2401 2399 2399 2402 2405 2405 2406 2407 2408 2407 2407
2414 2412 2410
2367 2366 2367 2369 2371 2372 2375 2376 2376 2380 2381 2385 2388 2393 2395
2348 2349 2348 2347 2346 2346 2347 2347 2347 2350 2353 2349 2349 2351 2350
2343 2344 2344 2343 2345 2345 2344 2344 2347 2353 2350 2350 2347 2346 2338 2337 2337 2345 2348
2455 2462
2418 2421
2297 2298 2302 2298
2456 2456 2456 2447 2447 2446 2446 2446 2444 2444 2443 2446 2446
2419
2272 2267 2257 2256
1770
2417
2237 2238 2267 2267
2412 2415 2414
2416
2167 2167 2176 2177
2439 2439 2439 2439 2443 2444 2438 2436 2436 2433
2411
7
1740
2414
6.5 2148 2147
1755
2409 2408
2395 2396 2397 2405 2406 2405 2405 2406 2406 2409 2410
2398 2402 2405 2407 2407 2406 2406 2405 2406 2406 2405 2404 2401
2366 2366 2366 2366 2365
2334 2337
2344 2345
2297
2296 2297
2258
2269 2275
2258
2294 2297
2340 2340 2343
2330 2331
2164 2167
6 2151
1710
2352 2350 2355 2355 2362 2367 2367 2367
1695
2274 2258
5.5 2153
1725
2340 2337 2337 2337 2337 2336 2338 2338
2338 2337 2335 2330 2333 2337 2337 2331
1665
1680
2290 2290 2293
2277 2276
2265
2236
2165
2157
2157
1605
2263 2265
2234 2229
2167 2165
2152 2152
2155 2154
1620
2244 2242 2246 2242
2167
2152
2147
2227 2231 2237 2241
2167
2148
2138
2247 2250 2255 2257 2258 2257 2258 2261
2167
2152
2137
1575
2167
2151
2136
1590
2169
2157 2157 2157
2173 2170 2173
1545
1.5
1560
1
2131
0.5
2136 2129 2128
1530
Distance (m) 0
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
158 Appendix C: Runway Roughness Profiles
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
2780 2773 2771
2693 2691
2833 2833 2834 2834 2836 2840 2840 2841
2853 2854 2855 2856 2862 2863 2864 2866 2870 2873
2070
2085
2774
2776
2809 2809 2807
2773
2876
2875
2878
2840 2843 2843 2843 2845
2813 2813
2773 2774
2927 2929 2929 2929 2929 2929 2935 2937
2875
2870
3063 3068 3078 3084 3089
3023 3023 3028 3028 3019
3044 3043 3048 3047 3047 3047 3047 3046 3047 3048 3048 3048 3050
3023 3024 3021
2235
3018
3038 3041 3043 3048 3056 3058 3058 3061
3024 3026 3023 3018
2980
2205
2979
2220
2979
2953 2953 2955 2958 2959 2954 2956 2959 2972 2977
2989 2987 2989 2992 2999 3009 3019 3026 3028 3029 3027 3025 3024
2175
2944
2909 2909 2911
2939 2939 2939 2941
2915 2915
2896 2890 2889 2895 2902
2878
2190
2910 2909 2909 2910 2915
2160
2912
2886 2895 2899 2899 2905 2901 2894 2893
2910 2911
2130
2145
2878 2870 2869 2879
2859 2858 2858 2859 2858 2858 2859 2859 2859 2859 2859 2859 2860
2813
2793
2763
2767
2730
2879 2879 2879 2879 2879 2881
2813
2793
2763
2770
2725
2100
2813
2761
2773
2721
2709 2700
2115
2813
2820 2815 2814
2813
2779 2778 2783 2783 2782 2779 2779 2773
2055
2670 2661
2690 2683 2685 2710
2809 2803 2802 2800 2797
2040
2813
2828 2824 2823 2823 2818
2778 2775
2025
2775
2741
2720 2721
2753 2755 2758 2759 2763 2763 2763 2760 2754 2759
2718
1995
2716
2010
2719
2716
2720 2716 2720 2715
1980
2691
2661
2670 2670 2670 2673
2703 2700 2710 2710
2682 2688 2690 2691
2680 2684 2681
2700 2700 2700 2705 2709 2710
1950
1965
2757 2767 2771
2671
2663 2663 2663 2661 2664 2667
2677 2677 2678 2677 2676 2672 2671
2679 2680 2683 2680 2661
1920
1935
2635 2639 2640 2642 2647
2591 2592 2592 2594 2597 2601 2602 2603 2607 2603 2602 2602 2601
2589
2628 2625 2625 2630 2630 2630 2634 2632
2591
1890
2588 2589 2592
1905
2575 2577 2579 2582 2585 2588 2587 2592
1875
Distance (m) 0 7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
13
13.5
14
14.5
2600 2602 2622 2632 2640 2630 2627 2629 2625 2620 2620 2625 2624 2626 2627
2592 2592 2594 2597 2595 2592 2586 2589 2587 2588 2592 2592 2592 2593 2591
2671 2670 2671
2677 2680 2679 2680 2680 2680 2680 2680 2680 2680 2680 2680
2730 2731 2730 2727 2725 2726 2729 2730 2730 2730 2731 2734 2827 2824 2828
2788 2788 2784 2783 2781 2778 2781 2778 2780 2776 2774 2776 2778 2779 2777
2763 2770 2773 2773 2773 2780 2783 2791 2793 2801 2808 2818
2753 2751 2745 2738 2742 2743 2745 2744 2743 2743 2740 2738 2745 2745 2748
2730 2730 2731
2683 2695 2702 2706 2700 2700 2705 2713 2721
2685 2686 2685 2686 2662 2676 2690 2691 2694 2695 2694 2694 2693 2698 2700 2693 2692 2690 2690 2690 2681
2813 2815 2817
2867 2868 2869 2869 2868 2879 2884 2874 2877 2878 2874 2873 2879 2879 2879
2875 2874 2877 2876 2876 2878 2874 2880 2873 2873 2873 2873 2870 2869 2865
2852 2853 2853
2818 2823 2823 2823 2823 2826 2833 2833 2832 2833 2833 2832
2856 2854 2854 2860 2860 2854 2853 2853 2853 2850 2850 2851
2915 2918
2919 2919 2919
2913 2906 2902 2917 2914 2909 2909 2909 2909 2917 2918 2918 2915 2917 2919
2977 2977 2979 2979 2977 2976 2975 2972 2974 2974 2979 2978 2979 2981 2982
3054 3057
3031 3031
3096 3103
3064 3058 3054 3048 3048 3044 3048 3049 3055 3048 3048 3048 3048 3048 3048
3030 3031 3033 3030 3027 3026 3028 3027 3031 3037 3038 3038 3039 3039 3039
3098 3098 3089 3067 3049 3044 3039 3036 3032 3033 3033 3029 3029 3028 3028
3028 3029 3029 3029 3028 3028 3028 3033 3032 3035 3035 3033 3038 3038 3038 3038 3038
2979 2975
2947 2950 2950 2951 2954 2954 2959 2959 2949 2949 2945 2949 2949 2953 2958 2953 2956
2909 2909 2909 2910 2909 2916 2918 2918
2909 2900 2893 2889 2899 2911
2869 2869 2871 2869 2865 2867 2864 2869 2869 2869 2869 2874 2874 2877 2878 2879 2879
2864 2867
2878 2876
2850 2855
2808 2812
2775 2780 2783 2784 2788 2793 2793 2797 2805 2815 2823 2843 2853 2835 2824 2815 2823
2793 2793
2763 2762
2763 2757
2730 2730
2697 2697
2682 2683
2664 2664 2667 2666 2666 2669 2669 2670 2670 2674 2665 2675 2673 2672 2680 2680 2682
2670 2671
2650 2654 2660 2663 2669 2676 2680 2688 2689 2687 2686 2686 2680 2680 2680 2678 2678
2601 2601
2589 2592
6.5
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
Appendix C: Runway Roughness Profiles 159
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
3148
3183
3195
3192 3197 3194
3219 3224 3218
2355
2370
3150
3157
3199
3186
3158
3158
3158 3158
3188 3195
3164
3158
3158
3403 3401
3411
3401 3401 3410 3399 3399 3400 3399 3397
2535
2550
3401 3401
3376 3376 3401
3374
3437 3438 3442 3441
3436 3441 3437 3440 3442 3444 3443 3438 3443 3446 3449 3449 3448
3446 3445 3445 3445 3442 3438 3438 3437
3457 3464 3465 3466
2640
2655
3442 3438 3437
3437
3436
3445 3446 3446 3446 3446 3446 3446 3442 3444
3434 3436 3436
3428 3430
3402 3409 3411 3421
2625
3430 3431
3420 3421
2610
3410
3422
3435 3435 3432 3430 3431
3420 3421
3441 3443 3441
3417
2595
3418
3410 3412 3411
3412
3396 3395
3421 3416 3412
3393
3416
3401
3416
3376
2565
3411
3413
3401
3376
3396 3395
3407 3407 3408 3402 3402 3404 3410
3411
3326
2580
3411
3404 3401 3401 3401 3396 3391 3392
3391 3390 3391
3411
3411
3394 3394 3396 3401 3401 3398 3400 3401
3414 3410 3411
2505
2520
3411
3395 3396 3396 3396 3395 3396 3396 3400 3401 3405 3406 3416
3322
2490
3321
3376 3377 3362 3365 3366 3366 3368 3373
3317 3321
3343 3346 3346 3346 3340
2475
3323 3322
3327 3331 3333 3327 3327 3310
3307 3306 3305 3306 3305 3306
3336 3335 3334 3336 3335 3336 3336 3336
3320 3316
2445
3317
2460
3317
3313 3314 3316
2430
3291
3276 3276 3276 3276 3266 3287 3287 3286 3285 3286 3286 3287
2415
3248
3208
3216
3195
3238 3238 3239 3239 3248 3255 3258 3264 3256 3249 3251
3251
3158 3158
3266 3266 3265 3266 3266 3266 3266 3266 3265 3264 3264 3266 3266
3211
3215
3194
3215
3219
3194
3149 3160
2385
3238 3229
3205 3206 3218
3186
3228 3228
3201
3184
3148 3158
2400
3222 3228 3231
3198
3185
3148 3148
3158 3158
3123
3158 3156 3149
3148
3158
3119
3178 3180 3178
3148
3148
3127
2325
3148
3140 3148
3148
3118
2340
3138
3118
3147
3116
3138 3138 3138
3113
3147 3146 3148
3110
2295
3108
2310
3108
3078 3078 3080 3084 3087 3087 3088 3088 3088 3088 3088 3099 3095
3107 3108 3108
3050 3058 3053 3063 3068 3059 3066
2265
3054 3058 3058 3048 3049 3051
2280
2250
Distance (m) 0 7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
13
13.5
14
14.5
3164
3257 3258
3166 3168 3168 3188 3186 3187
3392 3391
3140 3141
3138 3142 3147
3173 3168 3167 3168 3168 3168 3185 3188 3188 3189 3188 3187
3147 3147 3143
3215 3215 3218
3188 3188 3190
3174 3178 3178
3155 3155 3156
3311
3323 3316 3316 3316 3317 3322 3326 3326 3326
3416 3416 3411
3411
3411 3411
3411 3411 3393 3398 3401
3409 3407 3407 3410 3410 3411 3391 3391 3392 3397 3400 3397 3394 3392 3391
3411
3451 3450 3451
3447 3446 3446 3440 3436 3436 3436 3436 3436 3437 3441 3444
3446 3446 3446 3446 3446 3446 3446 3446 3446 3447 3433 3426 3429 3436 3432
3436 3436 3436 3436 3437 3439 3446 3446 3446 3446 3456 3456 3456 3456 3456 3456 3461
3446 3447
3440 3441
3436 3436 3437 3436 3436 3436 3436 3445 3446 3446 3446 3456 3456 3437 3441 3436 3435
3438 3436 3431
3414 3413 3416 3432 3431 3425 3426
3431 3430 3430 3433 3432 3431 3423 3423 3431 3433 3431 3435 3434 3431
3411
3400 3394 3397 3397 3399 3400 3394 3394 3393 3398 3401 3401 3412 3410 3402
3392 3391 3391
3394 3396 3396 3402 3401 3402 3400 3401 3397 3395 3394 3395
3401 3396 3400 3392 3397 3396 3399 3400 3401 3402 3408 3411
3426 3426 3416
3377 3384 3384 3385 3384 3385 3386 3387 3392 3396 3395 3391
3354 3352 3356 3356 3359 3361 3362 3364 3365 3371 3371 3372
3323 3321 3324 3326 3334 3333 3336 3336 3336 3337 3336 3339 3338 3337 3336
3287 3306 3306 3316 3317 3321
3294 3296 3296 3303 3306 3306 3306 3305 3302 3303 3306 3306 3306 3311
3265 3266 3266 3276 3268 3270 3272 3268 3268 3271 3269 3270
3257 3251 3254 3248 3254 3258 3258 3258 3258 3258 3258 3258 3260 3267 3267 3263 3261 3261
3410 3402 3401 3401 3406 3410 3409 3410 3411
3392 3391
3141
3152 3154 3158 3155 3157 3153
3105 3103 3100 3138 3138 3138
3218 3221 3220 3228 3225 3226 3228 3228 3236 3235 3234 3238
3406 3407 3406 3401 3401 3401 3401 3411
3401 3401
3416 3416
3376 3376
3158
3168 3173 3175
3163 3161
3133 3137 3138 3138 3138 3138
3232 3239 3248 3255 3258 3256 3255 3248 3238 3229 3220 3216
3188 3188 3188
3344 3344 3355 3350 3351
3323 3324
3306 3311
3296 3298
3266 3262
3132 3129 3130
3140 3146 3146 3146
3167 3166 3165
3146 3141
3128 3129 3131
3207 3208 3208 3216 3218
3222 3228
3188 3188
3161
3158 3165
3148 3148
3124 3128
3098 3098 3094 3097 3097 3098 3098 3099 3099 3106 3107 3106 3103 3107
3063 3059 3062 3064 3067 3068 3067 3068 3069 3074 3076 3074 3075 3073 3069 3076 3078
6.5
TABLE C.6 (Continued) Russian profile “C,” based on a survey of Bukhara airport (distances in m, elevations in mm).
160 Appendix C: Runway Roughness Profiles
References
1. Foster, B. “Undercarriages,” Flight, February 8, 1940, 131.
2. Schmidt, R.K., The Design of Aircraft Landing Gear (Warrendale, PA: SAE International, 2020)
3. Aerospace Information Report, “Aerospace Landing Gear Systems Terminology,” AIR1489, Revision C, SAE International, May 2017.
4. Aerospace Information Report, “Aircraft Flotation Analysis,” AIR1780, Revision A, SAE International, April 2016.
5. Aerospace Recommended Practice, “Aircraft Ground Flotation Analysis Methods,” ARP1821, Revision B, SAE International, December 2016.
6. ASTM D1883, “Standard Test Method for California Bearing Ratio (CBR) of LaboratoryCompacted Soils.”
7. ASTM D4429 REV A, “Standard Test Method for CBR (California Bearing Ratio) of Soils in Place.”
8. “Unpaved Runway Surfaces,” Advisory Circular 300-004, Transport Canada, 2016-02-05.
9. ASTM D6951/D6951M, “Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications.”
10. Webster, S.L. et al., “Description and Application of Dual Mass Dynamic Cone Penetrometer,” Instruction Report GL-92-3, U.S Army Engineer Waterways Experiment Station, Vicksburg, MS. 11. ASTM D1196/D1196M, “Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements.” 12. “Airport Pavement Design and Evaluation,” Advisory Circular 150/5320-6F, Federal Aviation Administration, October 11, 2016. ©2022 SAE International
161
162
References
13. “Standard Naming Convention for Aircraft Landing Gear Configurations,” Order 5300.7, Federal Aviation Administration, October 6, 2005. 14. “Unpaved Runway Surfaces,” Advisory Circular AC 300-004 Issue 03, Transport Canada, 2016. 15. Gray, D.H. and Williams, D.E., “Evaluation of Aircraft Landing Gear Ground Flotation Characteristics for Operation from Unsurfaced Soil Airfields,” Technical Report ASD-TR-68-34, Wright-Patterson Air Force Base, OH. 16. Digges, K.H. and Petersons, A.V., “Results of Studies to Improve Ground Flotation of Aircraft,” SAE Technical Paper 670560, 1967, https://doi.org/10.4271/670560. 17. Gibbesch, A., “High-Speed Tyre-Soil Interaction of Aircraft on Soft Runways,” NATO RTOMP-AVT-110, in RTO AVT Symposium on “Habitability of Combat and Transport Vehicles: Noise, Vibration and Motion”, Prague, Czech Republic, October 4–7, 2004. 18. “Airplane Requirements for Operations on Gravel Runways,” D6-45222-1, Boeing Commercial Airplane Company, 1980. 19. Performance Specification, “Sealing and Coating Compound, Corrosion Inhibitive,” MIL-PRF-81733D, Department of Defense, May 1998. 20. McLeod, N.W., “Some Applications of the Elastic Theory Approach to the Structural Design of Flexible Pavements,” Canadian Technical Asphalt Association, 1962. 21. Burmister, D.M., “The Theory of Stresses and Displacements in Layered Systems and Application to the Design of Airport Runways,” Proceedings, Highway Research Board 23 (1943): 126-149. 22. Burmister, D.M., “The General Theory of Stresses and Displacements in Layered Soil Systems,” Journal of Applied Physics 16, no. 2 (1945): 89-96, 16, no. 3: 126-127, and 16, no. 5: 296-302. 23. Tuleubekov, K. and Brill, D.R., “Correlation between Subgrade Reaction Modulus and CBR for Airport Pavement Subgrades,” in ASCE, Second Transportation & Development Congress 2014, Orlando, FL, June 8-11, 2014. 24. Shen, S. and Carpenter, S.H., “Development of an Asphalt Fatigue Model Based on Energy Principles,” Journal of the Association of Asphalt Paving Technologists 76 (2007): 525-573. 25. Gonzalez, C.R., Barker, W.R., and Bianchini, A., “Reformulation of the CBR Procedure,” EDC/ GSL TR-12-16, U.S. Army Engineer Research and Development Center, Vicksburg, MS. 26. Pereira, A.T., “Procedures for Development of CBR Design Curves,” Instruction Report S-77-1, U.S Army Engineer Waterways Experiment Station, Vicksburg, MS. 27. Brown, D.N. and Thompson, O.O., “Lateral Distribution of Aircraft Traffic,” Miscellaneous Paper S-73-56, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. 28. Pickett, G., Raville, M.E., Janes, W.C., and McCormick, F.J., “Deflections, Moments, and Reactive Pressures for Concrete Pavements,” Kansas State College Bulletin No. 65, October 1951. 29. DEF STAN 00-970 Part 1, Section 4, Leaflet 40, “Design of Undercarriage – General Requirements, Estimation of Equivalent Single Wheel Load for Multi-Wheel Undercarriage Units on Airfields with Rigid Pavements and Derivation of Load Classification Number and Load Classification Group,” Issue 14, 13 July 2015. 30. Packard, Robert G., Computer Program for Airport Pavement Design (SR029.02P), Portland Cement Association, 1967.
References
163
31. “Recommended Standard Data Format of Transport Airplane Characteristics for Airport Planning,” NAS3601, Aerospace Industries Association of America, Inc., Revision 6, July 15, 1994. 32. “Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns,” Advisory Circular 150/5220-22B, Federal Aviation Administration, September 27, 2012. 33. Abele, G., Ramseier, R.O., and Wuori, A.F., “Design Criteria for Snow Runways,” Technical Report 212, Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, NH, 1968. 34. “Air Force Design, Construction, Maintenance, and Evaluation of Snow and Ice Airfields in Antarctica,” FC 3-260-06F, United States Department of Defense, 2015. 35. White, G. and McCallum, A., “Review of Ice and Snow Runway Pavements,” Int. J. Pavement Res. Technol. 11, no. 3 (2017): 311–320, https://doi.org/10.1016/j.ijprt.2017.11.002. 36. “Ice Engineering,” EM 1110-2-1612, Department of the Army, US Army Corps of Engineers, Washington, DC, 2002. 37. “Ice Aerodrome Development – Guidelines and Recommended Practices,” Advisory Circular AC 301-002, Transport Canada, 2011. 38. McFadden, T.T. and Bennett, F.L., Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers (New York, Wiley, 1991). 39. Pogorelova, A.V., Kozin, V.M., and Matyushina, A.A., “Stress-Strain State of Ice Cover during Aircraft Takeoff and Landing,” Journal of Applied Mechanics and Technical Physics 56, no. 5 (2015): 920–926. 40. “Standards for Offshore Helicopter Landing Areas,” CAP 437, Safety Regulation Group, UK Civil Aviation Authority. 41. Heliport Manual, 3rd edn., Document 9261-AN/903, International Civil Aviation Organization, 1995. 42. “Helideck Structural Requirements,” Offshore Technology Report 2001/072, Health & Safety Executive, UK. 43. Schwartz, C.W., Witczak, M.W., and Leahy, R.B., “Structural Design Guidelines for Heliports,” DOT/FAA/PM-84/23, Federal Aviation Administration, 1984. 44. Military Specification, “Airplane Strength and Rigidity Ground Loads for Navy Acquired Airplanes,” MIL-A-8863C(AS), July 19, 1993. 45. Yager, T.J., “Runway Drainage Characteristics Related to Tire Friction Performance,” SAE Technical Paper 912156, 1991, https://doi.org/10.4271/912156. 46. Annex 14 to the Convention on International Civil Aviation, Aerodromes, Volume I, Aerodrome Design and Operations, 5th edn., International Civil Aviation Organization, July 2009. 47. Morris, G.J. and Hall, A.W., “Recent Studies of Runway Roughness,” NASA SP-83, in Conference on Aircraft Operating Problems, May 1965. 48. Walls, J.H., Houbolt, J.C., and Press, H., “Some Measurements and Power Spectra of Runway Roughness,” Technical Note 3305, National Advisory Committee for Aeronautics, November 1954. 49. The Boeing Company, “Runway Roughness Measurement, Quantification, and Application – The Boeing Method,” Document D6-81746.
164
References
50. “Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements,” E1926-08, ASTM International, 2015. 51. “Guidelines and Procedures for Measuring Airfield Pavement Roughness,” Advisory Circular 150/5380-9, Federal Aviation Administration, September 30, 2009. 52. “Taxi, Takeoff, and Landing Roll Design Loads,” Advisory Circular AC25.491-1, Federal Aviation Administration, October 2000. 53. Sapozhnikov, N. and Rollings, R., “Soviet Precast Prestressed Construction for Airfields,” in 2007 FAA Worldwide Airport Technology Transfer Conference, Atlantic City, NJ, April 2007. 54. DEF STAN 00-970 Part 1, Section 4, Leaflet 49, “Design of Undercarriages - Operation from Surfaces other than Smooth Hard Runways, Specification of Continuous Ground Unevenness,” Issue 14, UK Ministry of Defence, July 2015. 55. JSSG-2006, “Department of Defense Joint Service Specification Guide, Aircraft Structures,” October 30, 1998. 56. “Rapid Runway Repair Operations,” Air Force Pamphlet 10-219, Volume 4, 1 April 1997. 57. DEF STAN 00-970 Part 1 Section 4, Leaflet 52, Design of Undercarriages – Operation from Surfaces other than Smooth Hard Runways, The Damaged and Repaired Runway. 58. DEF STAN 00-970 Part 1 issue 14, Section 4, Leaflet 60, Ground Clearance, “Trampling of Aerodrome Arresting Gear Hook Cables.” 59. ASTM D2487‒06. 2006, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” ASTM International, West Conshohocken, PA, ASTM – American Society for Testing and Materials. 60. Boeing Document No. D6-24555, 1984-04-05—High Load Penetrometer Soil Strength Tester. 61. ASTM D6758-18, “Standard Test Method for Measuring Stiffness and Apparent Modulus of Soil and Soil-Aggregate In-Place by Electro-Mechanical Method,’ ASTM International, West Conshohocken, PA, 2018, www.astm.org. 62. Aerodrome Design Manual - Pavements, 2nd edn., Document 9157-AN/901, International Civil Aviation Organization, 1983. 63. “Standardized Method of Reporting Airport Pavement Strength - PCN,” Advisory Circular 150/5335-5C, Federal Aviation Administration, August 14, 2014. 64. Federal Aviation Administration, “Taxi, Takeoff, and Landing Roll Design Loads,” Advisory Circular AC25.491-1, Federal Aviation Administration, October 2000. 65. Design of Undercarriages - Operation from Surfaces other than Smooth Hard Runways Specification of Continuous Ground Unevenness, DEF STAN 00-970 PART 1/14, SECTION 4, Issue 14, Leaflet 49, UK Ministry of Defence, July 2015. 66. Tung, C.C., Penzien, J., and Horonjeff, R., The Effect of Runway Uneveness on the Dynamic Response of Supersonic Transports, NASA CR-199, National Aeronautics and Space Administration, 1964.
Index
expedient repair, 103 fiberglass mat repair cross section, 104 folded fiberglass repair mat, installation of, 105 generic repair, 106 initial mathematical evaluation, 106 military aircraft, 103 repair classes and dimensions, 106 repair compaction, with increasing traffic, 105 repair profile, 106 representative crater profile, 104
A
Advisory Group for Aerospace Research and Development (AGARD), 106 Aggregate airfield Boeing method for, 34 Airbus A319, blue ice runway in Antarctica, 73 Aircraft. See also Landing gear, aircraft carriers, 79 example ACN values for variety of, 121–129 Aircraft classification number (ACN), 5, 54–60 Aircraft classification rating (ACR), 5, 60–62 Aircraft landing gear. See Landing gear, aircraft Airfield Index, of soil strength, 9 Airports runway size and strength of 100 busiest, 111–119 ALR method, 51 Aluminum extrusion based mats, 64 AM-2 matting, installation of, 64 Amphibious warfare ships, 79–80 Antonov AN-74P, Arctic Ice Floe near the North Pole, 69 Arrestor cables, 107–108 Asphalt concrete taxiway, 91 ASTM D1196 test, for modulus of subgrade reaction, k, 11 B
Boeing bump method, 95–96 Boeing “High Load Penetrometer” test method, 6 Bomb damage repair, 103–107 AM-2 matting crater class E repair, 104 contractual “repair class,” 103
C
California Bearing Ratio (CBR), 4 Cessna business jets, 34 Cumulative damage factor (CDF), 38, 39 D
DC-3 Turbo conversion, blue ice runway in Antarctica, 73 DEF STAN 00-970 bumps and hollows, 100 leaflet 49 [65] (distances in m, elevations in mm), 100, 136–138 runway classes, 100 De Havilland Twin Otter, Sandy beach, 20 E
Engineered materials arresting systems (EMAS) main landing gear in, 68 PCASE evaluation module, results of, 68 Equivalent single wheel load (ESWL), 23, 43, 44, 54, 55 Erosion protection, painted, stippled sealant for, 35 F
FAA naming convention, 15 Federal Aviation Administration (FAA), 5 165
166
Index
Flexible pavements airfields, 4 F-86 Sabre, pierced steel planking, 63 G
“GeoGauge” tool, 9 Gravel deflector on 737-200, 35 Ground vehicle compatibility aircraft weight, 1 analysis methods, 3 California bearing ratio (CBR) airfield cone penetrometer, 9 Boeing “High Load Penetrometer” test method, 6 conversion between airfield index and, 10 D4429 method, 6 dynamic cone penetrometer, 9 electromechanical method, 9 freeze/thaw cycles, 6 laboratory CBR test, 5, 6 sliding weight shock penetrometer, 6, 9 unified soil classification system, 7–8 cohesionless soils, 4 cohesive soils, 3 “cone index,” 4 flotation analysis engineered materials arresting systems (EMAS), 67–69 helidecks and heliports, 75–77 membrane and mat surfaces, 62–65 naval vessels/aircraft carriers, 77–80 paved surfaces, 35–62 PCASE software for, 65–67 snow and ice runways, 69–75 unpaved surfaces, 17–35 ground contact pressure, 13–15 vs. tire inflation pressure, 15 incompatible surface, breach of, 2 landing gear arrangement nomenclature, 15–17 modulus of subgrade reaction, k, 10–11 nomenclature, 11–13 paved airfields, 4 H
Helicopter landing, on offshore platform, 76 Helideck spring-mass-damper system, 77 I
Ice runways, 71–75 Industry standard roughness profiles 1-cos roughness profile, 102
DEF STAN 00-970 bump profile, 100 bumps and hollows, 100 runway classes, 100 dimensions of obstacles high speed, 103 low speed, 102 freeze–thaw cycles, 99 precast pavement surface, at Nadym airport, 99 runway profiles, comparison of, 101 Russian runway profiles, 99 San Francisco 28R, 97 UK Ministry of Defence, 100 US Military runway roughness requirement, 101, 102 International Civil Aviation Organization, 81 International Roughness Index (IRI), 96 L
Landing gear, aircraft air cushion landing systems, xx on XC-8A, xxi airfield compatibility, xviii B-50, track main landing gear of, xxi caterpillar track designs, xx Convair XB-36 main wheel, xix operational environments, xviii pneumatic tires, xx retractable landing gear, xvii runway and taxiways, xix single tire per landing gear, xviii and system functions, xvii–xviii tracked systems, xix XB-36 main landing gear of, xx with tracked landing gears, xix Land military aircraft, 88 Layered elastic and finite element analysis Burmister approach, 37 multi-layered linear elastic representation, 37 Load Classification Number (LCN), 51 M
Maneuvers ICAO Airport Standards aerial view, of airport, 82 aerodrome reference code, 82 balanced field length, 81
Index
clearances, wheel to turn pad/taxiway edge, 85 codes, representative aircraft for, 83–84 minimum runway widths, 81, 84 minimum taxiway widths, 81 rapid exit taxiway, 86 taxiway widths, 84 taxiway widths and wheel, pavement edge diagram, 84, 85 turn pad layout, 86 wheelbase, track and wheel span, 82 required data aircraft turn radius, 87 land-based military aircraft, 88 rapid exit taxiway, 86 shipboard military aircraft, 88 typical turn maneuvers, composite of, 87 steering authority, 81 “Mechanistic-empirical” approach, 36 Messier Laboratoire test aircraft, xvii Micro/macrotexture asphalt concrete taxiway, 91 closed macrotexture, 90 coarse macrotexture, 90 dry runways, skid resistance, 90 high speed friction characteristics, 90 macrotexture classification, 92 open macrotexture, 90 optimum macrotexture, 91 porous friction course, 91 rainfall rate, to flood runway surface, 91, 92 rigid runways, 91 typical runway groove dimensions, 91 wet runways, low speed on, 90 Military aircraft turn maneuvers, 88 Minimum operating strip (MOS), 106–107 N
Nadym airport, precast pavement surface, 99 National Airport Pavement Test Facility (NAPTF), 41 P
Paved surfaces, ground compatibility (flotation) analysis ALIZE tool, 39 CDF, 38, 39
167
development of, 36 FAARFIELD tool, 39–42 finite element analyses, of rigid pavements, 38 flexible pavements, 35–36 flexible pavements-historic approach, 42–47 historical methods, 36 modern methods, 36 pavement design analysis flexible pavements-historic approach, 42–47 layered elastic and finite element analysis, 36–42 pavement strength reporting methods ACN/PCN, 54–60 ACR/PCR, 60–62 load classification number/load classification group method, 51–54 Ratio of Dissipated Energy Change (RDEC), 40 rigid pavements, 35 historic approach, 47–51 stress history, 38 Pavement classification number (PCN), 5, 54–60 Pavement classification rating (PCR), 5, 60–62 Pavement Computer Aided Structural Engineering (PCASE), 33, 65–67 ACN Curves for 747, 66 layer options, 67 traffic module, 67 vehicle edit module, 66 Polyurethane protective boots, 34 Power spectral density (PSD) approach, 93–95 soil and matted runways, roughness specification for, 109 unprepared runways, roughness specification for, 110 Precast pavement surface, at Nadym airport, 99 ProFAA roughness evaluation tool, 96 adjustments, 98 aircraft simulation, 98 San Francisco 28R values, 97 Q
Quarter-car model, 96
168
Index
roughness measurement techniques, 93 shock absorption characteristics, 92 short wavelength roughness, 96 unsurfaced runways, 108
R
Rammsonde penetrometer, 70, 72 Ratio of Dissipated Energy Change (RDEC), 40 Rigid pavements airfields, 4 Runway roughness profiles Bukhara airport (distances in m, elevations in mm), Russian profile “C” based on a survey of, 99, 154–160 DEF STAN 00-970 Leaflet 49 [65] (distances in m, elevations in mm), 100, 136–138 Domodedovo airport (distances in m, elevations in mm), Russian profile “A” based on a survey of, 99, 139–147 Novosibirsk airport (distances in m, elevations in mm), Russian profile “B” survey of, 99, 148–153 San Francisco Runway 28R (10L) [64]—distances and elevations (in ft), 132–134 permissible elevation corrections, 135 S
Snow runways, 69–71 Soil and matted runways, 109 Surface texture and profile deck/helideck, 108 friction coefficient, 89 paved runways directional control and braking, friction for, 89 drainage behavior of, 89 large scale elevation changes, 89, 90 micro/macrotexture, 89–92 runway roughness/profile and obstacles airframe structural capability, 92 arrestor cables, 107–108 Boeing bump method, 95–96 bomb damage repair, 103–107 correction techniques, 93 ICAO Annex 14 acceptable runway variation, 93 industry standard roughness profiles, 97, 99–103 International Roughness Index (IRI), 96 power spectral density (PSD) approach, 93–95 ProFAA roughness evaluation tool, 96–97
T
“Tundra tires,” 18 U
Unpaved surfaces, ground compatibility (flotation) analysis alternative unpaved analysis methods, 33 CBR value, 18 gravel/aggregate airfields, 33–35 ground contact pressure, 18 light aircraft landing, on dirt runway, 18 light aircraft with large, low pressure (tundra) tires, 19 soil and grass, 18–19 typical allowable tire pressures for, 18 typical general aviation tire pressures, 19 unpaved analysis method ASD-TR-68-34 aggregate runway, nose gear criticality, 32 aircraft passes calculation, landing gear layout for, 29 allowable aircraft passes, example calculation of, 30–32 ASD-TR-68-34 calculation methodology, 26 Bogie configuration, 25 correction chart, for aircraft passes, 29 equivalent single wheel loadadjustment curve, 21, 22 ESWL and contact pressure, CBR for one pass as function of, 23 four wheel coaxial configuration, 26 main gear–single wheel load formula, 20 multi-wheel landing gears, 21, 22 nose landing gears, 20 polynomial expression, 22 single wheel load calculation, 20 twin wheel configuration, 24 wheel track and tire width, 28 Unprepared runways, 110 US Army software application PCASE, 33 W
Westergaard’s theory, for rigid pavement design, 36, 47
Key Principles for Landing Gear Design R. Kyle Schmidt
The author’s two volume treatise, The Design of Aircraft Landing, was the inspiration for this book. The Design of Aircraft Landing is a landmark work for the industry and utilizes over 1,000 pages to present a complete, in-depth study of each component that must be considered when designing an aircraft’s landing gear. While recognizing that not everyone may need the entire treatise, Airfield Compatibility: Key Principles for Landing Gear Design is one of three quick reference guides focusing on one key element of aircraft design and landing gear design. This volume centers on how to ensure that the aircraft is compatible with the ground surfaces that it will encounter in use. R. Kyle Schmidt has over 25 years’ experience across three countries and has held a variety of engineering roles relating to the development of new landing gears and the sustainment of existing landing gears in service.
RELATED RESOURCES BY R. KYLE SCHMIDT: The Design of Aircraft Landing Gear 978-0-7680-9942-3 Aircraft Tires: Key Principles for Landing Gear Design 978-1-4686-0463-4
Aircraft Wheels, Brakes, and Brake Controls: Key Principles for Landing Gear Design 978-1-4686-0469-6
Cover image used under license from Shutterstock.com
Landing gear provides an intriguing and compelling challenge, combining many fields of science and engineering. Designed to guide the interested reader through the key principles of aircraft compatibility with the ground and ground infrastructure (airfields, heliports, etc.), this book presents a specific element of landing gear design in an accessible way.
Airfield Compatibility: Key Principles for Landing Gear Design | Schmidt
Airfield Compatibility
more related resources inside...
SAE INTERNATIONAL
ISBN: 978-1-4686-0466-5
Airfield Compatibility Key Principles for Landing Gear Design
R. Kyle Schmidt