African Fractals: Modern Computing and Indigenous Design 0813526140, 9780813526140

Fractals are characterized by the repetition of similar patterns at ever-diminishing scales. Fractal geometry has emerge

284 170 10MB

English Pages 258 [265] Year 1999

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

African Fractals: Modern Computing and Indigenous Design
 0813526140, 9780813526140

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

— African---— Fractals---M O D E R N C O M P U T IN G A N D IN D IG E N O U S D E S IG N RO N

EG LA SH

C o n ten ts

A cknow ledgm ents

ix

PART I

I n tr o d u c tio n

CHAPTER J

I n t r o d u c t i o n t o f r a c ta l g e o m e t r y

CHAPTER 2

F r a c t a ls in A f r i c a n s e t t l e m e n t a r c h i t e c t u r e

CHAPTER 3

F ra c t a ls in c r o s s - c u l tu r a l c o m p a r i s o n

CHAPTER 4

I n t e n t i o n a n d i n v e n t i o n in d e s i g n

P A R T II

A fr ic a n fr a c ta l 7 n a t h e m a t i c s

CHAPTER 5

G e o m e tric a lg o rith m s

CHAPTER 6

S calin g

CHAPTER 7

N u m e r i c s y s te m s

CHAPTER 8

R ecursion

CHAPTER 9

I n f in it y

CHAPTER IO

C o m p lex ity

3 20

39 49

61

71 86 /

109 147 151

C ontents

v iii

PART III

Im plication s

a p t e r

11

c h a p t e r

12

c h a p t e r

13

F ra c t a ls in t h e E u r o p e a n h i s t o r y o f m a t h e m a t i c s

c h a p t e r

14

F u tu r e s fo r A f r i c a n f r a c t a l s

Ch

a p p e n d ix

T h e o r e t i c a l fr a m e w o r k s i n c u l t u r a l s t u d i e s o f k n o w l e d g e 1 79 T h e p o li ti c s o f A f r i c a n f r a c t a l s

192 203

216

M easu rin g th e fractal d im e n s io n o f A fric a n s e ttle m e n t a r c h ite c tu r e

N o te s

235

R eferences Index

253

243

231

•Acknowledgments

T h a n k s to g o first t o m y wife, N a n c y C a m p b e l l , w h o h a s t o l e r a t e d m y o b se ssio n s w i t h g ra c e , a n d to E v e ly n , A l b e r t , a n d J o a n n e E glash, w h o in s p ire d m a n y o f t h e m . I a m g ra te fu l for t h e a ss ista n c e o f m y p rofesso rs a t U C S C : R a l p h A b r a h a m , S t e v e C a t o n , J a m e s C lifford, D o n n a H a ra w a y , G o t t f r i e d M ayer-Kress, K e n N o rris, H ein zO u o P e ii g e n , C a r o ly n M a r t i n S h a w , a n d P a tr ic i a Z av ella. E q u ally i m p o r t a n t were m y fello w U C S C g r a d u a t e s t u d e n t s , in p a r t i c u l a r D a v i d B a in , J u l i a n B le e c k e r, P e t e r B r o a d w e l l , K irb y B u n a s , C l a u d i a C a s t e n a d a , G i o v a n n a D i C h i r o , J o e D u m it , V i n c e n t e Diaz, P a u l E d w ard s, L i n d a G a r c i a , J e n n i fe r G o n z a le s , C h r i s G ray, J o h n H a r ti g a n , S h a r o n H elsel, L aura K an g, L o rrain e Kenny, M a t t h e w K obbe, A n g ie Rosga, W a r r e n S ack, M e g S a tt e r t h w a i te , S a n d y S to n e , M a r ita S tu r k e n , B e m t W a h l, a n d S a r a h W il li a m s . T h a n k s a ls o t o B illie H a r r i s , M i r a n d a H a y s, R e b e c c a Lyle, K e n M a r t i n , S h e i l a P e u s e , A d o l p h S m i t h , J o s h u a W e i n s t e i n , a n d P a u l Yi. R e s e a r c h f u n d i n g fr o m t h e I n s t i t u t e for I n t e r c u l t u r a l S t u d i e s a n d t h e Fulb r i g h t p r o g r a m m a d e p o s s ib le m y f i e ld w o rk in w e st a n d c e n t r a l A f r i c a . A s c h a p ­ t e r 10 m a k e s clear, 1 o w e m u c h to m y S e n e g a le s e colleag ues, C h r i s t i n e S t n a D ia tt a a n d N f a l l y B a d ia n e . A l s o o f g r e a t h e l p in S e n e g a ! w e r e A b d o u l i Ba, R e a l B asso, C h a r l e s B e c k e r, K o l a d o C is s e , I b n o u D 'tag n e, P a t h e D i a g n e , S o u l e y m a n e B a c h i r D i a g n e , M o u s s e D io p , W a ly C o l y F ay e, M a x , M a r i e - L o u i s e M o r e a u , M a r g o t N d ia y e , V ic to r Sagna, O u s in a n S e n , F a to u Sow, Yoro Sylla, S a k ir T h a i m , a n d R ie n e

Acknowledgments

T o je . From th e W e s t A fric a n R e se a rc h C e n te r I received th e e x p e rt a d v ic e of A m e r i c a n p r o f e s s o rs E i l e e n J u l i e n a n d J a n i s M a y s . T h a n k s a l s o t o S h a m i r a J o h n s o n , P a u l a n d B e ts e y H a r n e y , J a n e H a l e , 'L i s a M c N e e , a n d Liz M e r m i n . I a m a ls o g r a t e f u l t o Is siak a Is a a c D r a b o a n d t h e b r i l l i a n t C a n a d i a n p h o ­ t o g r a p h y t e a m , M i c h e l e t D i d i , in B u r k i n a F a s o . T h a n k s a l s o t o A m a d o u C o u li b a ly , K alifa K o n £ a n d A b d o u l a y e S y lla in M a li. In C a m e r o o n I r e c e i v e d t h e g e n e r o s i t y o f I r e k e B e ssik e , N g w a E m m a n u e l , N o i f e M e b o u b o , t h e la t e E n g e l ­ b e r t M v e n g , a n d E d w a r d N j o c k . M y w o rk in B e n i n w o u ld n o t h a v e b e e n p ossib le w i t h o u t t h e a s s is t a n c e o f T o n y H u t c h i n s o n ; t h a n k s a ls o t o K n k e A l f r e d , N a t h e l i R o b e r t s , a n d M a r t i n e d e S o u s a for t h e i r e x p e r t i s e in v o d u n . I n G h a n a M i c h a e l O r la n s k y graciously in t r o d u c e d m e t o t h e m a n y c u l t u r a l res o u rces av aila b le . M a n y o f t h e lo c a l folks 1 s p o k e t o in w e st a n d c e n t r a l A fric a , w h i l e e x t e n d i n g g r e a t g e n ­ e ro s ity a n d e n t h u s i a s m , a s k e d t h a t t h e i r n a m e s r e m a i n u n r e c o r d e d , a n d I t h a n k t h e m as w ell. O n my r e tu r n to th e U n ite d S ta te s 1 receiv ed a fello w sh ip fro m th e C e n ­ te r fo r t h e H u m a n i t i e s a t O r e g o n S t a t e U n i v e r s ity , w h i c h a ls o o ff e re d t h e o p p o r ­ t u n i t y t o w o rk w i t h a n t h r o p o l o g i s t s J o a n G r o s s , D a v i d G r o s s , a n d C o r t S m i t h , as well as K a m a u S a d ik i from t h e P o r t l a n d B lack E d u c a t i o n a l C e n t e r . T h a n k s also to M i c h a e l R o b e r s o n fo r b is g e o m e t r y a d v ic e , a n d D a v i d a n d B a r b a r a T h o m a s ( n o w m a t h t e a c h e r s a t H e n d e r s o n v i l l e H i g h , N o r t h C a r o l i n a ) for i n v e s t i g a t i n g o w a ri p a tc e r n s . A t w o m o n t h f e l l o w s h i p a t t h e U n i v e r s i t y o f O r e g o n g o t m e th ro u g h th e su m m er, and in to my c u rr e n t p o sitio n at T h e O h io S ta te U n iv e r ­ sity. H e r e I h a v e b e e n t h a n k f u l fo r h e l p fro m P a t t i B r o s n a n , W a y n e C a r l s o n , Ja c q u e lin e C h a n d a , C y n th i a D illa rd , D avid H o r n , L in d sa y Jo n e s , O k e c h u k w u O d i t a , E g o n d u R o s e m a r y O n y e j e k w e , R o b e r t R a n s o m , D a n R eff, R o s e K a p i a n , C a r o l y n S i m p s o n , D a a ’i y a h I S a l e e m , J e n n i f e r T e r r y , C y n t h i a T y s o n , a n d M a n ju la W ald ro n . T h e r e are also m a n y co lleg u es, g e o g ra p h ic a lly s c a t te r e d , w h o s e fe e d b a c k h as b e e n i n v a l u a b l e . In p a r t i c u l a r 1 w o u ld li k e t o t h a n k M a d e l e i n e A k r i c h , Ja c k A l e x a n d e r , M a r y J o A r n o l d i , G e o r g e A r t h u r , M a r c i a A s c h e r , J i m B a rta , S il v io B e d i n i , T Q B e rg , J e a n - P a u l B o u r d i e r , G e o f B o w k e r , M i c h a e l T . B r o w n , P a t C a p l i n , B ria n C a se y , J e n n i f e r C r o i s s a n t , D o n C r o w e , J i m C r u t c h f i e l d , U b i r a t a n D 'A m b r o s i o , R o n a l d Bell, O s e i D a r k w a , M a r i a n n e d e L a e t, G a r y L e e D o w n e y , M u n r o e E agles, A r t u r o E sc o b a r, F l o r e n c e F a s a n e l li , J a m e s F e r n a n d e z , M a r i l y n F ra n k e n s te in , R a y v o n F o u c h e , P au lu s G e rd e s, C h o n a t G e tz , G lo ria G ilm e r, D a v id H a k k e n , T u r tl e H e a r t , D e b o r a h H e a t h , D a v id H ess, S t e f a n H e l m r e i c h , D arian H e n d ric k s , D a v id H u g h e s , S a n d y Jones, E sm aeli K n te h , R o g e r P. K o v a c h , G e ls a K n ijn i k , B r u n o L ato u r, M u r r a y Leaf, Bea L u m p k i n , R o b i n M a c k a y , C a r o ! M alloy, B en o it M a n d e lb ro t, M ik e M a rin a c c i, J o a n n a M asin g iia, Lynn M c G e e , Jam es

Ac/cnowledgnien is

M o rro w , D a v id M o s im e g e , B ria n M M u r p h y , D i a n a B aird N ’D iay e, N a n c y N o o te r , K a r e n N o r w o o d , S p u r g e o n E k u n d a y o P a r k e r , C li ffo rd P ic k o v e r , P a t r i c i a P o o le , A r t h u r P o w e ll, D e a n P r e b l e , D a n R e g a n , J i'm R a uff, S a l R e s tiv o , P ierre R o n d e a u , J o h n R osew all, R u d y R u c k e r, N o r a S a b e lli, J n ro n S a m p s o n , D o u g S c h u le r , P a tr ic k ( R i c k ) S c o t t , R o b S h a w , E n i d S c h i l d k r o u t , D a v i d W i l l i a m s o n S h a ffe r, L a rry S h ir le y , D e n n i s S m i t h , G e o r g e S p ie s , S u s a n L e ig h S ta r , P a u l S to l le r , P e t e r T a y ­ lor, A g n e s T u s k a , G a r y V a n W y k , D o n n e l l W a l t o n , D M W a r r e n , D o r o t h y W a s h ­ b u r n , H e l e n W a t s o n - V e r r a n , M a r k W. W essels, P a tr ic i a S. W i l s o n , a n d C l a u d i a Z aslavsky. L a s t a n d n o t least, t h a n k s to m y e d it o r s a t R u tg e r s , D o r e e n V a l e n t i n e a n d M a r t h a H e lle r .

PART

-Introductio n -----------------—

CHAPTER

In troduction------------------------------------------to--------------------------- :------------------- — fractal-----------------------------------------------—geometry-----------------:----------------------------

F r a c t a l g e o m e t r y h a s e m e r g e d as o n e o f t h e m o s t e x c i t i n g f r o n t i e r s in t h e f u s io n b e t w e e n m a t h e m a t i c s a n d i n f o r m a t i o n t e c h n o l o g y . F r a c t a ls c a n b e s e e n in m a n y o f t h e s w ir lin g p a t t e r n s p r o d u c e d by c o m p u t e r g r a p h i c s , a n d t h e y h a v e b e c o m e a n i m p o r t a n t n e w t o o l fo r m o d e l i n g i n bio lo g y , geology, a n d o t h e r n a t ­ u ral s c i e n c e s . W h i l e f r a c t a l g e o m e t r y c a n i n d e e d t a k e u r i n t o t h e far r e a c h e s . . o f h i g h - r e c h s c i e n c e , its p a t t e r n s a re su r p ris in g ly c o m m o n in t r a d i t i o n a l A f r i c a n d e s i g n s , a n d s o m e o f its b a s i c c o n c e p t s a r e f u n d a m e n t a l t o A f r i c a n k n o w l e d g e s y s te m s . T h i s b o o k w ill p r o v i d e a n easy i n t r o d u c t i o n t o f r a c t a l g e o m e t r y for p e o p l e w i t h o u t a n y m a t h e m a t i c s b a c k g r o u n d , a n d it w ill s h o w h o w t h e s e s a m e c a t e g o r i e s o f g e o m e t r i c p a t t e r n , c a l c u l a t i o n , a n d t h e o r y a r e e x p r e s s e d in A f r ic a n cu ltu res.

M a t h e m a t i c s a n d culture For m a n y y ears a n t h r o p o l o g i s t s h a v e o b s e r v e d t h a t t h e p a t t e r n s p r o d u c e d in d i f ­ fe re n t c u ltu re s c a n b e ch a ra c te riz e d by specific design therr.es. In E u ro p e a n d A m e r ­ ic a, fo r e x a m p l e , we o f t e n see c it ie s la id o u t in a grid p a t t e r n o f s t r a i g h t s t r e e t s a n d r i g h t - a n g l e c o r n e r s . A n o t h e r g rid , t h e C a r t e s i a n c o o r d i n a t e s y s te m , h a s lo ng b e e n a f o u n d a t i o n for t h e m a t h e m a t i c s used in th e s e societies. In m a n y w orks

Introductton

o f C h i n e s e a r t w e find h e x a g o n s u s e d w i t h e x t r a o r d i n a r y g e o m e t r i c p r e c i s i o n — a c h o i c e t h a t m i g h t s e e m a r b i t r a r y w e r e it n o t fo r t h e i m p o r t a n c e o f t h e n u m ­ b e r six in t h e h e x a g r a m s o f th e i r f o r tu n e te llin g system ( t h e I Ching), in th e a n a to m y c h a r t s for a c u p u n c t u r e (liu-qi o r “six s p irits ” ), a n d e v e n in C h i n e s e a r c h i t e c t u r e . 1 S h a p e a n d n u m b e r a r e n o t o n l y t h e u n i v e r s a l ru le s o f m e a s u r e m e n t a n d logic; t h e y a r e a ls o c u l t u r a l to o l s t h a t c a n b e u se d for e x p r e s s i n g p a r t i c u l a r so c ia l id eas a n d l i n k i n g d i f f e r e n t a r e a s o f life. T h e y a re , as C l a u d e L e v i - S t r a u s s w o u ld p u t it, “g o o d to t h i n k w i t h . ” D e s i g n t h e m e s a r e lik e t h r e a d s r u n n i n g t h r o u g h t h e s o c ia l fa b r ic ; t h e y are less a c o m m a n d i n g f o r c e t h a n s o m e t h i n g w e c o m m a n d , w e a v i n g th e s e s t r a n d s i n t o m a n y d i f f e r e n t p a t t e r n s o f m e a n i n g . T h e a n c i e n t C h i n e s e e m p i r e s , for e x a m p l e , u s e d a b a s e - i o c o u n t i n g s y s te m , a n d t h e y e v e n b e g a n t h e first u n i v e r ­ sal m e t r i c s y s te m .^ S o t h e f r e q u e n t u se o f t h e n u m b e r 6 0 i n C h i n e s e k n o w l e d g e s y s te m s c a n b e l i n k e d t o t h e c o m b i n a t i o n o f t h i s o fficia l b a se 10 n o t a t i o n w i t h t h e i r sacred n u m b e r six. I n s o m e A m e r i c a n cities we find t h a t t h e s tre e ts a re n u m ­ b e r e d lik e C a r t e s i a n c o o r d i n a t e s , b u t in o t h e r s t h e y a r e n a m e d a f t e r h is to r i c a l figures, a n d still o t h e r s c o m b i n e t h e tw o . T h e s e c i t y d i f f e r e n c e s ty p i c a ll y c o r r e ­ s p o n d t o d i f f e r e n t s o c i a t m e a n i n g s — a n e m p h a s i s o n h is t o r y v e rs u s efficiency, for exam ple. S u p p o s e t h a t v i s i t o r s fr o m a n o t h e r w o r ld w e r e to v ie w t h e g rid o f a n A m e r i c a n city. For a c ity w i t h n u m b e r e d stre ets , t h e v is ito rs (a s s u m in g th e y c o u l d r e a d o u r n u m b e r s ) c o u l d safely c o n c l u d e t h a t A m e r i c a n s m a d e u s e o f a c o o r d i ■n a t e s t r u c t u r e . B u t d o t h e s e A m e r i c a n s a c t u a l l y u n d e r s t a n d c o o r d i n a t e m a t h e ­ m a tic s ? C a n th e y use a c o o r d i n a t e grid t o g r a p h e q u a ti o n s ? j u s t h o w s o p h i s ti c a te d is t h e i r m a t h e m a t i c a l u n d e r s t a n d i n g ? I n t h e f o l l o w i n g c h a p t e r , w e w ill find o u r ­ selves in a sim ilar p o sitio n , for A fric a n s e t t l e m e n t a r c h i te c t u r e is filled w ith r e m a r k ­ a b l e e x a m p l e s o f f r a c t a l s t r u c t u r e . D id p r e c o l o n i a l A f r i c a n s a c t u a l l y u n d e r s t a n d a n d a p p l y f r a c ta l g e o m e t r y ? A s I w ill e x p l a i n in t h i s c h a p t e r , f r a c t a l s a r e c h a r a c t e r i z e d b y t h e r e p e t i ­ t i o n o f s i m i l a r p a t t e r n s a t e v e r - d i m i n i s h i n g sc a le s. T r a d i t i o n a l A f r i c a n s e t t l e ­ m e n t s t y p i c a l l y s h o w t h i s “s e l f - s i m i l a r ” c h a r a c t e r i s t i c : c i r c l e s o f c i r c l e s o f c i r c u l a r d w e l l i n g s , r e c t a n g u l a r w a lls e n c l o s i n g e v e r - s m a l l e r r e c t a n g l e s , a n d s t r e e t s in w h i c h b r o a d a v e n u e s b r a n c h d o w n t o t i n y f o o t p a t h s w i t h s t r i k i n g g e o ­ m e t r i c r e p e t i t i o n . T h e f r a c ta l s t r u c t u r e w ill b e e a s ily i d e n t i f i e d w h e n w e c o m ­ p a r e a e r i a l v ie w s o f t h e s e A f r i c a n v illa g e s a n d c i t i e s w i t h c o r r e s p o n d i n g f r a c ta l graphics sim u latio n s.

.

.

W h a t a r e w e t o m a k e o f t h i s c o m p a r i s o n ? L e t ’s p u t o u r s e l v e s b a c k in th e s h o e s o f t h e v is ito rs fro m a n o t h e r p l a n e t . H a v i n g b e a m e d d o w n t o a n A m e r i c a n s e t t l e m e n t n a m e d “C o rv a llis , O r e g o n , " th e y d is c o v e r t h a t t h e s t re e ts a r e n o t n u m -

F ractal geom etry

b e r e d , b u t r a t h e r t i t l e d w i t h w h a t a p p e a r t o b e a r b i t r a r y n a m e s : W a s h i n g t o n , Jef­ ferson, A d a m s , a n d so o n . A t first th e y m i g h t c o n c l u d e t h a t th e r e is n o t h i n g m a t h e ­ m a t i c a l a b o u t it. By u n d e r s t a n d i n g a b i t m o r e a b o u t t h e c u l t u r a l m e a n i n g , h o w e v e r* a m a t h e m a t i c a l p a t t e r n d o e s e m e r g e : t h e s e are n a m e s in h is to r i c a l s u c ­ c e s s io n . I t m i g h t b e o n l y o r d e r i n g in t e r m s o f p o s i t i o n in a series ( a n “o r d i n a l ” n u m b e r ) , b u t t h e r e is s o m e k i n d o f c o o r d i n a t e s y s te m a t w o r k a f t e r all. A f r i c a n d esigns h a v e to b e a p p ro a c h e d in th e s a m e way. W e c a n n o t ju st assume t h a t A fric a n f r a c ta ls s h o w a n u n d e r s t a n d i n g o f f r a c ta l g e o m e t r y , n o r c a n w e d ism iss t h a t p o s ­ sibility. W e n e e d to lis te n t o w h a t t h e d e s i g n e r s a n d users o f th e s e s tru c tu r e s h a v e to say a b o u t it. W h a t a p p e a r s to b e a n u n c o n s c i o u s o r a c c i d e n t a l p a t t e r n m i g h t actu a lly h a v e a n in te n tio n a l m a t h e m a tic a l c o m p o n e n t. O v e r a l l , t h e p r e s e n c e o f m a t h e m a t i c s in c u l t u r e c a n b e t h o u g h t o f in t e r m s o f a s p e c t r u m fr o m u n i n t e n t i o n a l t o s e l f - c o n s c io u s . A t o n e e x t r e m e is th e e m e r g e n c e o f c o m p l e t e l y u n c o n s c i o u s s t r u c t u r e s . T e r m i t e m o u n d s , for e x a m p l e , are e x c e l l e n t fra c ta ls ( t h e y h a v e c h a m b e r s w i t h i n c h a m b e r s w i t h i n c h a m b e r s ) b u t n o o n e w o u ld c l a i m t h a t te r m i t e s u n d e r s t a n d m a t h e m a t i c s . I n t h e s a m e way, p a t t e r n s a p p e a r in t h e g ro u p d y n a m i c s o f large h u m a n p o p u l a t i o n s , b u t th e s e are g e n e r a l ly n o t p a t t e r n s o f w h i c h a n y i n d i v i d u a l is a w a r e . U n c o n s c i o u s s t r u c t u r e s d o n o t c o u n t as m a t h e m a t i c a l k n o w l e d g e , e v e n t h o u g h w e c a n u se m a t h e m a t i c s t o d e s c r ib e t h e m . M o v i n g a l o n g th i s s p e c t r u m t o w a r d t h e m o r e i n t e n t i o n a l , w e n e x t find e x a m p le s o f d e c o ra tiv e designs w h ic h , a lt h o u g h consciously created, h a v e n o e x p l i c i t k n o w l e d g e a t t a c h e d t o t h e m . I t is p o s s ib le , for e x a m p l e , t h a t a n a r t i s t w h o d o e s n o t k n o w w h a t t h e w o r d “h e x a g o n ” m e a n s c o u l d s till d ra w o n e w i t h g r e a t p r e c i s i o n . T h i s w o u ld b e a c o n s c i o u s d e s i g n , b u t t h e k n o w l e d g e is s t ric tly im p li c it .'1 I n t h e n e x t s t e p a l o n g o u r s p e c t r u m , p e o p l e m a k e rh e s e c o m p o n e n t s e x p l i c i t — t h e y h a v e n a m e s for t h e p a t t e r n s t h e y o b s e r v e in s h a p e s a n d n u m b e r s . T a k i n g t h e i n t e n t i o n s p e c t r u m o n e m o r e s t e p , w e h a v e ru les fo r h o w th e s e p a t ­ t e r n s c a n b e c o m b i n e d . H e r e we c a n f i n d “a p p l i e d m a t h e m a t i c s . ” O f c o u rs e t h e r e is a w o rld o f d i f f e r e n c e b e t w e e n t h e a p p li e d m a t h o f a m o d e r n e n g i n e e r a n d t h e a p p li e d m a t h o f a s h o p k e e p e r — w h e t h e r o r n o t s o m e t h i n g is i n t e n t i o n a l tells u s n o t h i n g a b o u t its c o m p l e x it y . F in ally we m o v e to “ p u re m a th e m a tic s ," as fo u n d in th e a b s tra c t th e o rie s o f m o d e r n a c a d e m i c m a t h e m a t i c i a n s . P u r e m a t h c a n a l s o b e v e ry s i m p l e — for e x a m p l e , t h e d i s t i n c t i o n b e t w e e n o r d i n a l n u m b e r s (first, s e c o n d , t h i r d ) a n d c a r ­ d i n a l n u m b e r s ( o n e , tw o , t h r e e ) is a n e x a m p l e o f p u r e m a t h . B u t it w o u l d n o t b e e n o u g h f o r p e o p l e in a s o c i e t y s i m p l y t o u se e x a m p l e s o f b o t h ty p es; th e y w o u l d h a v e t o h a v e w o rd s for t h e s e tw o c a t e g o r i e s a n d e x p l i c i t l y r e f l e c t o n a c o m p a r i s o n o f t h e i r p r o p e r t i e s b e f o r e w e w o u l d say t h a t t h e y h a v e a t h e o r y o f

In tro d u c tio n

6

th e d is tin c tio n b e tw e e n o rd in a l a nd c a rd in a l n u m b e rs. W h il e app lied m a t h e ­ m a t i c s m a k e s u s e o f ru le s, p u r e m a t h t e l ls us w h y t h e y w o r k — a n d h o w t o f i n d .new o n es.

'

'

'

T h i s b o o k b e g i n s by m o v i n g a l o n g t h e s p e c t r u m ju s t d e s c r i b e d . W e w ill s t a r t b y s h o w i n g t h a t A f r i c a n fra c ta ls a re n o t s i m p l y d u e t o u n c o n s c i o u s a c tiv ity . W e will t h e n lo o k a t e x a m p l e s w h e r e t h e y a re c o n s c i o u s b u t i m p l i c i t d e s i g n s , f o llo w e d b y e x a m p l e s in w h i c h A f r i c a n s h a v e d e v i s e d e x p l i c i t ru les fo r g e n e r a t i n g t h e s e p a t t e r n s , a n d fin ally t o e x a m p l e s o f a b s t r a c t t h e o r y in t h e s e i n d i g e n o u s k n o w l ­ ed g e systems. T h e re a s o n for ta k in g s u c h a c a u ti o u s r o u t e c a n b e e xp ressed in te r m s o f w h a t p h i l o s o p h e r K arl P o p p e r c a l l e d “falsifiability." P o p p e r p o i n t e d o u t t h a t e v e r y o n e h a s t h e u r g e t o c o n f i r m t h e i r f a v o r i t e t h e o r i e s ; a n d so w e h a v e t o t a k e p r e c a u t i o n s n o t to li m i t o u r a t t e n t i o n t o s u c c e s s — a t h e o r y is o n l y g o o d if you tr y t o t e s t it fo r failu re . If w e o n ly u s e e x a m p l e s w h e r e A f r i c a n k n o w l e d g e sy s­ t e m s su c c e s sfu lly m a t c h e d f r a c ta l g e o m e t r y , w e w o u ld n o t k n o w its l i m i t a t i o n s . T h e r e are i n d e e d gaps w h e r e t h e fam ily o f t h e o r i e s a n d p r a c t i c e s c e n t e r e d a r o u n d fractal g eo m etry in h i g h - t e c h m a t h e m a t i c s h a s n o c o u n t e r p a r t in tr a d it io n a l Africa. A l t h o u g h s u c h g a p s a re s i g n if i c a n t, t h e y d o n o t i n v a l i d a t e t h e c o m p a r i s o n , b u t r a t h e r p r o v i d e t h e n e c e s s a ry q u a l i f i c a t i o n s t o a c c u r a t e l y c h a r a c t e r i z e t h e i n d i g e ­ n o u s f r a c ta l g e o m e t r y o f A fric a .

O ve rv ie w o f th e text F o l l o w i n g t h e i n t r o d u c t i o n t o f r a c ta l g e o m e t r y i n t h e n e x t s e c t i o n , i n c h a p t e r 2 w e w ill e x p l o r e f r a c ta ls in A f r i c a n s e t t l e m e n t s . I t w ill b e c o m e c l e a r t h a t t h e e x p l a n a t i o n o f u n c o n s c i o u s g r o u p a c t i v i t y d o e s n o t fit t h i s c a se . W h e n w e t a l k to th e in d ig e n o u s a rc h ite c ts , th e y are q u ite e x p lic it a b o u t th o s e sa m e fractal f e a t u r e s we o b s e r v e , a n c l u s e s e v e r a l o f t h e b a s i c c o n c e p t s o f f r a c ta l g e o m e t r y in d is c u ssin g th e i r m a te ria l d esigns a n d a ss o c ia te d k n o w le d g e system s. T e rm ite s m ay m a k e fractal a rc h ite c tu re s , b u t th e y d o n o t p a in t a b s tr a c t m o d e ls o f th e s t r u c t u r e o n its- w a lls o r c r e a t e s y m b o ls fo r its g e o m e t r i c p r o p e r t i e s . W h i l e t h e s e i n t r o d u c t o r y e x a m p l e s w o n ’t s e t t l e a ll t h e q u e s t i o n s , w e w ill a t le a s t h a v e e s t a b ­ l i s h e d t h a t t h e s e a r c h i t e c t u r a l d e s i g n s s h o u l d b e e x p l a i n e d by s o m e t h i n g m o r e t h a n u n i n t e n t i o n a l so c ia l d y n a m i c s . I n c h a p t e r 3 w e will e x a m i n e a n o t h e r e x p l a n a tio n : p e r h a p s fractal s e t t l e m e n t ' p a t t e r n s a re n o t u n i q u e to A fric a , a n d w e h a v e sim p ly o b s e r v e d a c o m m o n c h a r a c ­ t e r i s t i c o f all n o n - W e s t e r n a r c h i t e c t u r e s . H e r e t h e c o n c e p t o f d e s i g n t h e m e s b e c o m e im p o rta n t. A n th ro p o lo g is ts h a v e fo u n d th a t th e design th e m e s fo u n d in e a c h c u l t u r e a r e fairly d i s t i n c t — t h a t is, d e s p i t e t h e a r t i s t i c d i v e r s i t y w i t h i n

F ractal geometr}

e a c h s o c ie ty , m o s t o f t h e c u l t u r e ’s p a t t e r n s c a n b e c h a r a c t e r i z e d b y s p e c ific g e o ­ m e t r i c p r a c t i c e s . W e w ill see t h a t a l t h o u g h f r a c t a l d e s i g n s d o o c c u r o u t s i d e o f A f r i c a ( C e l t i c k n o t s , U k r a i n i a n eggs, a n d M a o r i^ r a f te r s h a v e s o m e e x c e l l e n t e x a m p l e s ) , t h e y a r e n o t e v e r y w h e r e . T h e i- r s t r o n g p r e v a l e n c e in A f r i c a ( a n d in A f r i c a n - i n f l u e n c e d s o u t h e r n I n d i a ) is q u i t e s p e c i fic . C h a p t e r 4 r e t u r n s to th i s e x p l o r a t i o n w i t h f r a c ta l s in A f r i c a n e s t h e t i c d e s i g n . T h e s e e x a m p l e s are i m p o r t a n t for t w o r e a s o n s . F irst, t h e y r e m i n d us t h a t we c a n n o t a s s u m e e x p l i c i t , f o r m a l k n o w l e d g e s i m p l y o n t h e basis o f a p a t t e r n . I n c o n t r a s t to t h e fra c ta l p a t t e r n s o f A f r i c a n s e t t l e m e n t a r c h i t e c t u r e , t h e s e a e s ­ t h e t i c f r a c ta ls, a c c o r d i n g to t h e a r t i s a n s , w e r e m a d e “j u s t b e c a u s e it lo o k s p r e t t y t h a t w ay.” T h e y a re n e i t h e r fo r m a l s y s te m s ( n o ru les to t h e g a m e ) n o r d o t h e a r t i ­ s a n s ’ r e p o r t e x p l i c i t t h i n k i n g (“ I d o n ’t k n o w h o w o r why, it j u s t c a m e to m e ” ). S e c o n d , th e y p ro v i d e o n e p ossib le r o u t e by w h i c h a p a r t i c u l a r s e t o f m a t h e m a t i c a l c o n c e p t s c a m e to b e s p r e a d o v e r a n e n o r m o u s c o n t i n e n t . T r a d e n e t w o r k s c o u l d h a v e d iffu se d t h e fra c ta l a e s t h e t i c a c ro s s A f r i c a , r e i n f o r c i n g a d e s i g n t h e m e t h a t m a y h a v e b e e n s c a t te r e d a b o u t in o t h e r a r e a s o f life. O f co u rs e, s u c h o r i g in sto ries a r e n e v e r c e r t a i n , a n d all t o o easy t o i n v e n t . P a r t 11 o f th is b oo k , s ta rtin g w i t h c h a p t e r 5, p re s e n ts th e e x p lic it d esign m e t h ­ o d s a n d s y m b o li c sy stem s t h a t d e m o n s t r a t e f r a c ta l g e o m e t r y as a n A f r i c a n k n o w l ­ e d g e s y s te m . A s in t h e i n t r o d u c t i o n t o f r a c t a l s in t h e first c h a p t e r , I. w ill a s s u m e th e re a d e r has n o m a th e m a tic s b ac k g ro u n d a n d p rovide a n in tro d u c tio n to any n e w c o n c e p t s a lo n g w i t h t h e A f r i c a n v e rs io n s . W e will see t h a t n o t o n ly in a r c h i ­ t e c t u r e , b u t i n t r a d i t i o n a l h a t r s t y l i n g , t e x t i l e s , a n d s c u l p t u r e , in p a i n t i n g , c a r v ­ in g , a n d i n e r a l w o r k , in r e l i g i o n , g a m e s , a n d p r a c t i c a l c ra f t, i n q u a n t i t a t i v e t e c h n i q u e s a n d s y m b o li c sy s te m s , A f r i c a n s h a v e used t h e p a t t e r n s a n d a b s t r a c t c o n c e p t s o f f r a c ta l geo m e rry . C h a p t e r 10, t h e la st in p a r t n , is t h e r e s u l t o f m y c o l l a b o r a t i o n w i t h a n A f r i c a n p h y s i c is t , P ro f e sso r C h r i s t i a n S i n a D i a t t a . A s p o n s o r for t h e F u l b r i g h t f e l l o w s h i p t h a t e n a b l e d m y f i e ld w o rk in w e s t a n d c e n t r a l A fric a , D r. D i a t t a t o o k t h e i d e a o f i n d i g e n o u s f r a c ta l s a n d r a n w i t h it, m o v i n g us in d i r e c t i o n s t h a t 1 w o u l d n e v e r h a v e c o n s i d e r e d o n m y o w n , a n d s till h a v e y e t t o e x p l o r e fully. In t h e t h i r d a n d final p a r t o f t h i s b o o k w e w ill e x a m i n e t h e c o n s e q u e n c e s o f A f r i c a n f r a c ta l g e o m e t r y : g i v e n t h a t i t d o e s e x is t, w h a t a re its s o c ia l i m p l i c a ­ tio n s ? C h a p t e r 1 1 w ill briefly r e v i e w p r e v i o u s s t u d i e s o f A f r i c a n k n o w l e d g e sy s­ te m s . W e w ill see t h a t a l t h o u g h s e v e r a l r e s e a r c h e r s h a v e p r o p o s e d ideas r e l a t e d t o t h e f r a c ta l c o n c e p t — H e n r y L o u is G a t e s ’s “ r e p e t i t i o n w i t h r e v i s i o n , ” L e o p o l d S e n g h o r ' s ‘“ d y n a m i c s y m m e try ," a n d W i l l i a m Fag g’s " e x p o n e n t i a l m o r p h o l o g y ” are all g oo d ex am ples— th e r e h a v e b e e n specific o bstacles t h a t p rev en te d anthrop olo gists a n d o t h e r s fr o m t a k i n g u p th e s e c o n c e p t s in t e r m s o f A f r i c a n m a t h e m a t i c s .

Introduction

8

C h a p t e r i 2 c o v e r s t h e p o l i t i c a l c o n s e q u e n c e s o f A f r i c a n f r a c ta l s . O n t h e o n e h a n d , we w ill find t h e r e is n o e v i d e n c e t h a t g e o m e t r i c f o r m h a s a n y in h e r­ e n t s o c ia l m e a n i n g . I n s e t t l e m e n t d e s i g n , for e x a m p l e , p e o p l e r e p o r t b o t h o p p r e s ­ siv e a n d H b e ra to r y s o c ia l e x p e r i e n c e s w i t h f r a c t a l a r c h i t e c t u r e s . F r a c t a b v e r s u s n o n f r a c t a l ( “E u c l i d e a n " ) g e o m e t r y d o e s n o t im p ly g o o d v e r s u s b a d . O n t h e o t h e r h a n d , p e o p l e d o i n v e s t a b s t r a c t fo r m s w i t h p a r t i c u l a r lo c a l m e a n i n g s . T o tak e a c o n tro v e rsia l ex a m p le , re c e n t U .S . su p rem e c o u rt d e c is io n s d e c la re d th a t v o t i n g d is tr i c ts c a n n o t h a v e “b iz a r r e ” o r “h i g h l y i r r e g u la r ” s h a p e s , a n d s e v e r a l o f th e s e fractal c o n to u r s h a v e b e e n re p la c e d by th e s tr a ig h t lines o f E u c lid e a n fo r m . If f r a c ta l s e t t l e m e n t p a t t e r n s a r e t r a d i t i o n a l for p e o p l e o f A f r i c a n d e s c e n t , a n d E u c l i d e a n s e t t l e m e n t p a t t e r n s fo r E u r o p e a n s , is i t e t h n o c e n t r i c t o in s ist o n o n l y E u c l i d e a n v o t i n g d i s t r i c t lines? C h a p t e r 13 w ill e x a m i n e t h e c u l t u r a l h i s t o r y o f f r a c t a l g e o m e t r y a n d its m a t h e m a t i c a l p re c u r s o rs in E u r o p e . W e w ill s e e t h a t t h e g a p s a r e n o t o n e - s i d e d : j u s t as A f r i c a n s w e r e m i s s i n g c e r t a i n m a t h e m a t i c a l i d e a s i n t h e i r v e r s i o n o f f r a c t a l g e o m e t r y , E u r o p e a n s w e r e e q u a l l y a f f e c t e d by t h e i r o w n c u l t u r a l v ie w s a n d h a v e b e e n s lo w to a d o p t s o m e o f t h e m a t h e m a t i c a l c o n c e p t s t h a t w e r e l o n g c h a m p i o n e d b y A f r i c a n s . I n d e e d , t h e r e is s t r i k i n g e v i d e n c e t h a t s o m e o f t h e s o u r c e s o f m a t h e m a t i c a l i n s p i r a t i o n for E u r o p e a n f r a c t a l s w e r e o f A f r i c a n o r i g i n . T h e f i n a l c h a p t e r w ill m o v e f o r w a r d in t i m e , h i g h l i g h t i n g t h e c o n ­ te m p o ra r y v e rs io n s o f fr a c ta l d e s ig n t h a t h a v e b e e n p ro p o s e d by A f r i c a n a r c h i t e c t s in S e n e g a l , M a l i , a n d Z a m b i a , a n d o t h e r i l l u s t r a t i o n s o f p o s s ib le f r a c ­ ta l futures. B u t to u n d e r s t a n d a ll th i s , w e m u s t first v is it t h e f r a c t a l p ast.

A h i s t o r i c a l i n tr o d u c t io n to f r a c t a l g e o m e tr y T h e w o r k o f G e o r g C a n t o r ( 1 8 4 5 - 1 9 1 8 ) , w h i c h p r o d u c e d t h e first f r a c ta l , t h e C a n t o r set (fig. 1.1), p r o v e d to b e t h e b e g i n n i n g o f a n e w o u t l o o k o n infinity. In f in ­ ity h a d l o n g b e e n c o n s i d e r e d s u s p e c t by m a t h e m a t i c i a n s . H o w c a n w e c l a i m to b e u s i n g o n l y e x a c t , e x p l i c i t ru le s if w e h a v e a s y m b o l t h a t v a g u e l y m e a n s “ t h e n u m b e r yo u w o u ld g e t if y o u c o u n t e d f o r e v e r" ? S o m a n y m a t h e m a t i c i a n s , s t a r t ­ in g w i t h A r i s t o t l e , h a d j u s t b a n n e d it o u t r i g h t . C a n t o r s h o w e d t h a t i t w as p o s ­ s i b le t o k e e p t r a c k o f f h e n u m b e r o f e l e m e n t s in a n i n f i n i t e s e t , a n d d i d s o in a d e c e p t i v e l y s i m p l e fa s h io n . S t a r t i n g w i t h a s in g le s t r a i g h t li n e , C a n t o r e r a s e d t h e m i d d l e t h i r d , le a v i n g t w o lin es. H e t h e n c a r r i e d o u t t h e s a m e o p e r a t i o n o n t h o s e t w o lin e s , e r a s i n g t h e i r m i d d l e s a n d l e a v i n g fo u r l i n e s . I n o t h e r w o r d s , h e u s e d a s o r t o f f e e d b a c k lo o p , w i t h t h e e n d re s u lt o f i o n e s t a g e b r o u g h t b a c k as t h e s t a r t i n g p o i n t for t h e n e x t . T h i s t e c h n i q u e is c a l l e d “ r e c u r s i o n . " C a n t o r s h o w e d

Fractal geom etry

t h a t if t h i s re c u r s iv e c o n s t r u c t i o n w a s c o n t i n u e d fo r e v e r, it w o u l d c r e a t e a n i n f i n i t e n u m b e r o f lin e s , a n d y e t w o u l d h a v e ze ro l e n g t h . N o t o n ly d i d C a n t o r r e i n t r o d u c e i n f i n i t y - a s a p r o p e r o b j e c t o f m a t h e ­ m a t i c a l stu d y , b u t h is r e c u r s i v e c o n s t r u c t i o n c o u l d b e u s e d as a m o d e l for o t h e r " p a t h o l o g i c a l c u rv e s ," s u c h as t h a t c r e a t e d b y H e l g e v o n K o c h in 1 9 0 4 (figs. 1.2, 7 .3). T h e m a t h e m a t i c a l p r o p e r t i e s o f t h e s e fig u re s w e r e e q u a l l y p e r p l e x i n g . S m a l l p o rtio n s lo o k e d ju s t like t h e w h o le , a n d th e s e reflections w ere re p e a te d d o w n t o in f i n i t e s i m a l sc a le s. H o w c o u l d w e m e a s u r e t h e l e n g t h o f t h e K o c h c u r v e ? If

FIGURE

1.1

T h e C a n t o r se t In 1877 Georg Cantor came up with the idea of repeatedly subdividing a line to illustrate the concept of an infinite set. This looping technique is called recursion. By specifying that the recursion continues forever, C antor was able to define an infinite set.

9

F I G U R E 1. 2

T h e K o c h c u rv e Helge v o n Koch used the same k ind of recursive loop as C antor, b u t he added lines instead of erasing them . He began w ith a triangular shape made of four line^, th e “seed." He t h e n replaced each o f the lines w ith a reduced version o f the original seed shape.

b

a

F I G U R E 1 .3

K o c h curve v a r ia tio n s

B^ iflt

There is nothing special about the particular shape Koch first used. For example, we can make similar shapes that are more flat or more spiked losing variations on the seed shape (a). Nor is there anything special about tridngles— any shape can'undergo this recursive replacement process. Mathematician Giuseppe Peano, for example, experimented with rectangular seed shapes such as those in (b).

Introduction

w e h o l d u p a s i x - i n c h r u l e r t o t h e c u r v e (fig. 1.4) w e g e t six i n c h e s , b u t o f c o u r s e t h a t m isse s all t h e n o o k s a n d c r a n n i e s . If w e u s e a s m a l l e r ru ler, w e g e t g r e a t e r l e n g t h , a n d w i t h a s m a l l e r o n e e v e n g r e a t e r l e n g t h , a n d so oix,to i n f i n ­ ity. O b v i o u s l y t h i s is n o t a v e ry usefu l w ay t o c h a r a c t e r i z e o n e o f t h e s e c u r v e s . A n e w w ay o f t h i n k i n g a b o u t m e a s u r e m e n t w as n e e d e d . T h e a n s w e r w as to p l o t th e s e d if fe re n t m ea s u res o f ru le r size versus l e n g t h , a n d see h o w fast w e g a in l e n g t h as w e s h r i n k t h e r u l e r (fig. 1 .5 ). T h i s r a t e ( t h e s l o p e ) t e l ls us j u s t h o w c r i n k l e d Ik * o r t o r t u o u s t h e c u r v e is. F o r e x t r e m e l y c r i n k l e d c u r v e s , t h e p l o t w ill s h o w t h a t w e r a p i d ly g a i n l e n g t h as w e s h r i n k t h e ru ler, s o it w ill h a v e a s t e e p s l o p e . For r e l a ti v e ly s m o o t h c u r v e s , yo u d o n ’t g a in m u c h l e n g t h as y o u s h r i n k t h e ru l e r size, so t h e p l o t h a s a s h a l l o w slop e. T o m a t h e m a t i c i a n s t h i s s l o p e w a s m o r e t h a n j u s t a p r a c t i c a l w ay t o c h a r ­ acte riz e crin k le s. R e c a l l t h a t w h e n we first tr ie d to m e a s u r e t h e l e n g t h o f t h e K o c h c u r v e , w e f o u n d t h a t its l e n g t h w as p o t e n t i a l l y in f in i te . Y et t h i s i n f in i te l e n g t h fits i n t o a b o u n d e d sp ace . M a t h e m a t i c i a n F elix H a u s d o r f f ( 1 8 6 8 - 1 9 4 2 ) fo u n d t h a t t h i s p a r a d o x c o u l d b e r e s o l v e d if w e t h o u g h t o f t h e p a t h o l o g i c a l c u r v e s as s o m e ­ h o w t a k i n g u p m o r e t h a n o n e d i m e n s i o n , as all n o r m a l lin e s d o , b u t less t h a n tw o d im e n s i o n s , as flat sh a p e s iike squares a n d c ircle s do. I n H a u s d o r f f ’s view, t h e K o c h c u r v e h a s a f r a c t i o n a l d i m e n s i o n , a p p r o x i m a t e l y 1.3, w h i c h is t h e s l o p e o f o u r r u l e r - v e r s u s - l e n g t h p l p t . B e in g p u r e m a t h e m a t i c i a n s , t h e y w e r e f a s c i n a t e d w i t h t h i s id e a o f a f r a c t i o n a l d i m e n s i o n a n d n e v e r t h o u g h t a b o u t p u t t i n g 'it--to p r a c ­ t i c a l use. T h e c o n c e p t u a l l e a p to p ra c t ic a l a p p l i c a t i o n w as c r e a t e d by B e n o i t M a n d e l ­ b r o t (b. 1924), w h o h a p p e n e d u p o n a stu dy o f lo n g - te rm river flu c tu a tio n s by British c iv il s e r v a n t H . E. H u r s t . H u r s t . h a d f o u n d t h a t t h e y e a rly flo o d s o f riv e rs d id n o t h a v e a n y o n e a v e r a g e , b u t r a t h e r v a r i e d o v e r m a n y d i f f e r e n t s c a l e s — t h e r e w e re flood y ears, flood d e c a d e s , e v e n flood c e n t u r i e s . H e c o n c l u d e d t h a t t h e o n l y way t o c h a r a c t e r i z e t h i s t e m p o r a l w ig g lin e ss w as t o p l o t t h e a m o u n t o f f l u c t u a t i o n a t e a c h s c a l e a n d use t h e s l o p e o f t h i s li n e . M a n d e l b r o t re a l iz e d t h a t t h i s w as e q u i v a l e n t t o t h ^ k i n d o f s c a l in g m e a s u r e t h a t h a d b e e n , u se d for C a n t o r ’s p a t h o ­ lo g ic a l c u r v e s . A s h e b e g a n to a p p l y c o m p u t e r g r a p h i c s (figs. 1.6, 1 .7 ), h e f o u n d t h a t t h e s e s h a p e s w e r e n o t p a t h o l o g i c a l a t all, b u t r a t h e r v e ry c o m m o n t h r o u g h ­ o u t t h e n a tu r a l w o rld . M o u ntain* ran g es h a d p e a k s w ith in peak s, trees h a d b r a n c h e s m a d e o f b r a n c h e s , c lo u d s we,re puffs w i t h i n p u f f s ^ - e V e n h is o w n b o d y w a s full o f re c u r s iv e s c a l i n g s t r u c t u r e s . T h e f r a c t a l s i m u l a t i o n s fo r n a t u r a l o b j e c t s i n fig u r e 1.7 w e r e c r e a t e d j u s t lik e t h e C a n t o r set, K o c h c u r v e , a n d o t h e r e x a m p l e s w e h a v e a lr e a d y se e n , w i t h a s e e d s h a p e t h a t u n d e r g o e s re c u r s iv e r e p l a c e m e n t . T h e o n l y d i f f e r e n c e is t h a t som e o f th ese s im u la tio n s require th a t c e rta in lines in th e seed sh a p e do n o t get

6 inches

6 inches

FIGURE I . 4 M e a s u r in g th e le n g th o f fr a c ta l c u r v e s

m

for

T he new curves of Rancor, Koch, an d others represented a problem in m easurem ent theory. T he length of the curve d epen ds o n th e size of the ruler. As we shrink the ruler dow n, the length approaches infinity.

t

OJ > U O •£

So c

“O

4u>

D « e

sm aller ruler s i z e

>•

FIGURE 1 . 5

A b e t t e r w a y to m e a s u r e f r a c t a l c u r v e s

Our experiment in shrinking rulers wasn’t a total waste. In fact, it turns out that if you keep track of how the measured length changes with ruler size, you get a very good way of characterizing the curve. A relatively smooth fractal won’t increase length very quickly with shrinking ruler size, but very crinkled fractals will, (a) This smooth Koch curve doesn’t add much length with shrinking ruler size, so the plot shows only a small rise, (b) Since a small ruler can get into all the nooks and crannies, this more crinkled Koch curve shows a steeper rise in measured length with a shrinking ruler, (c) An extremely tortuous Koch curve has a very sreep slope for its plot. N o te f o r m ath sticklers: T h e s e figures are p lo tted o n 0 logarithm ic graph.

F ractal geom etry

15

r e p l a c e d . T h i s is i l l u s t r a t e d fo r t h e l u n g m o d e l a t t h e b o t t o m o f fig u re 1.7. T h e l i n e s t h a t g e t r e p l a c e d in e a c h i t e r a t i o n a r e c a l l e d “a c t i v e l i n e s . ” T h o s e t h a t d o n o t get replaced are called “passive lines.” W e w ill bemusing t h e d is ti n c ti o n b e tw e e n a c t i v e a n d p a s s iv e l i n e s in s i m u l a t i o n s fo p - A f r ic a n d e s i g n s as well. M a n d e l b r o t c o i n e d t h e t e r m " f r a c t a l ” fo r t h i s n e w g e o m e t r y , a n d it is n o w u se d in e v e ry s c i e n ti fic d i s c i p l i n e fr o m a s t r o p h y s i c s t o zoology. I t is o n e o f th e m o s t p o w erfu l to o ls for t h e c r e a t i o n o f n e w t e c h n o l o g i e s as well as a re v o l u ti o n a ry a p p r o a c h t o t h e a n a ly s is o f t h e n a t u r a l w o r l d . I n m e d i c i n e , fo r e x a m p l e , fra c ta l

South Africa Fractal dimension *» 1 .0 0

Smooth Koch curve Fractal dimension = 1.1

Great Britain Fractal dimension =

1 .2 5

Rough Koch curve Fractal dimension = 1.3

Norway Fractal dimension =

1.5 2

T o r t u o u s Koch curve Fractal dimension « 1.5

FIGURE

1.6

M e a s u r i n g n a t u r e u d t h f r a c t a l g e o m e tr y

Although the curves of Cantor and others were introduced as abstractions without physical meaning, Benoit Mandelbrot realized chat their scaling measure, which he called “fractal dimension,” could be put to practical use in characterizing irregular shapes in nature. The classic example is the measurement, of coastlines. Even though it is a very crude model, we can see how the variations of the roughness in the Koch curve are similar to the variations in these coasts. Note that tire fractal dimension is our plot slope from figure a.5; the coastlines were measured in the same way.

acacia tree

clouds

shell

fern

This vertical line is passive.

These two horizontal lines (gray) are the active lines that will be replaced by a reduced version of this seed shape-

we see that only the active lines were replaced; the passive line remains the same. Now there are three passive lines (center) and four active lines (the ends).

By the eighth iteration we can sec the similarity to the scaling structure of the human lungs. .

F I G U R E 1-7

S i m u l a t i n g n a t u r e w i t h f r a c t a l g e o m e tr y

In his experiments with computer graphics, Mandelbrot found that fractal shapes abound in nature, where continual processes such as biological growth, geological change, and atmospheric turbulence result in a wide variety of recursive scaling structures (a). T he recursive construction of these natural shapes is basically the same as that of the other fractal shapes we have seen so far. In some examples, like the lung model (b), certain lines of the original seed shape do not participate in the replacement step; they are called "passive lines.” T he ones which do go through replacement are called "active lines." Each step is referred to as an “iteration."

Fractal geom etry

d i m e n s i o n c a n be used as a d iag n o stic tool. A h e a l t h y lu n g h a s a h ig h fractal d i m e n ­ s i o n , b u t w h e n b l a c k l u n g d is e a s e b e g i n s it lo ses s o m e o f t h e fine b r a n c h i n g — a c o n d i t i o n t h a t c a n be d e t e c t e d by m e a s u r i n g t h e f r a c ta l d i m e n s i o n o f t h e X ray. F o r t h i s r e a s o n , B e n o i t M a n d e l b r o t w as r e c e n t l y n a m e d a n h o n o r a r y m e m b e r o f th e F re n c h C o al M in ers U n io n . O f c o u rs e , n o r e v o l u t i o n is w i t h o u t its c o u n t e r r e v o l u t i o n a r i e s . I t w as n o t l o n g b e f o r e s o m e s c i e n t i s t s s t a r t e d o b j e c t i n g t h a t M a n d e l b r o t w as ig n o r i n g th e p r e s e n c e o f t h e n a t u r a l o b j e c t s t h a t c o u l d b e d e s c r i b e d by E u c l i d e a n g e o m e try , s u c h as c ry s ta ls o r eggs. I t ’s tr u e t h a t n o t a ll o f n a t u r e is f r a c ta l— a n d th i s w ill b e a n i m p o r t a n t p o i n t f o r us t o k e e p in m i n d . S o m e w r i t e r s h a v e m i s t a k e n l y a t t e m p t e d t o p o r t r a y A f r i c a n s as “m o r e n a t u r a l ”— a d a n g e r o u s a n d m i s l e a d i n g c l a i m , e v e n w h e n m a d e by w e l l - m e a n i n g r o m a n t i c s . S i n c e fra c ta ls are a s s o c ia te d w i t h n a t u r e , a b o o k a b o u t “ A f r i c a n f r a c t a l s ” c o u l d b e m i s i n t e r p r e t e d as s u p p o r t fo r s u c h r o m a n t i c o rg a n i c is t s . P o i n t i n g o u t t h a t s o m e E u c l i d e a n s h a p e s e x i s t in t h e r e a l m o f n a t u r e m a k e s i t e a s i e r t o u n d e r s t a n d t h a t A f r i c a n f r a c ta ls a re fr o m t h e artific ia l r e a l m o f c u l t u r e . B e f o r e m o v i n g o n t o t h e s e A f r i c a n d e s ig n s , l e t ’s re v i e w t h e b a sic c h a r a c t e r i s t i c s o f f r a c ta l g e o m e t r y .

F i v e e s s e n t ia l c o m p o n e n t s o f f r a c ta l g e o m e t r y RECURSION

W e h a v e s e e n t h a t fra c ta ls are g e n e r a t e d b y a c i r c u l a r p ro c e s s , a lo o p in w h i c h t h e o u t p u t a t o n e sta g e b e c o m e s t h e i n p u t fo r t h e n e x t . R e s u lt s a re r e p e a t e d l y r e t u r n e d , so t h a t t h e sam e o p e r a t i o n c a n b e c arrie d o u t again . T h i s is o ft e n referred t o as “ re c u r s io n ,” a very p o w e rfu l c o n c e p t . L a t e r w e will d is tin g u is h b e t w e e n th r e e •

u i f f c . e n i ty p e s o f r e c u r s io n , b u t f o r n o w j u s t t h i n k o f i t in te r m s o f t h i s ic e r a tiv e

f e e d b a c k lo o p . W e ’ve a lr e a d y s e e n h o w i t e r a t i o n w o r k s t o c r e a t e t h e C a n t o r s et a n d t h e K o c h cu rv e . A l t h o u g h w e c a n c r e a t e a m a t h e m a t i c a l a b s t r a c t io n in w h i c h t h e r e c u r s io n c o n t i n u e s forever, t h e r e a re also cases w h e r e t h e r e c u r s io n w ill “b o t ­ t o m o u t . ” In o u r g e n e r a t i o n o f t h e K o c h c u r v e , for e x a m p l e , we q u i t o n c e th e lines g e t t o o s m a ll to p r i n t . I n fa c t, a n y p h y s i c a l l y e x i s t i n g o b j e c t w ill o n l y b e fractalw i t h i n a p a r t i c u l a r r a n g e o f scales.

SCALING

If yo u lo o k a t t h e c o a s t l i n e o f a c o n t i n e n t — ta k e th e P acific side o f N o r t h A m e r ­ ica fo r i n s t a n c e — y ou will see a ja g g e d s h a p e , a n d if y o u lo o k a t a s m a ll p i e c e o f t h a t c o a s t l i n e — say, C a l i f o r n i a — w e c o n t i n u e t o see s i m i l a r ja g g e d n e s s . I n fa ct, a s i m i l a r ja g g e d c u r v e c a n b e s e e n s t a n d i n g o n a cliff o v e r l o o k i n g a ro ck y C a l i ­ fo r n ia sh o r e , o r e v e n s t a n d i n g o n t h a t s h o r e lo o k i n g a t o n e rock. O f co urse, t h a t ’s

Intro d u ctio n

i8

o n ly ro u g h ly sim ilar, a n d i t ’s o n l y g o o d for a c e r t a i n r a n g e o f scales, b u t it is a s t o n ­ is h in g t o rea lize h o w w e ll t h i s w o r k s for m a n y n a t u r a l f e a t u r e s . It is t h i s " s c a l ­ in g ” p ro p e r ty o f n a tu r e t h a t a llo w s fra c ta l g e o m e try to b e so e ffe c tiv e for m o d e l in g . T o h a v e a " s c a li n g s h a p e ” m e a n s t h a t t h e r e a r e s i m i l a r p a t t e r n s a t d if ­ f e r e n t s c a le s w i t h i n t h e r a n g e u n d e r c o n s i d e r a t i o n . E n l a r g i n g a t i n y s e c t i o n w ill p r o d u c e a p a t t e r n t h a t lo o k s s i m i l a r t o t h e w h o l e p i c t u r e , a n d s h r i n k i n g d o w n t h e w h o l e w ill g iv e us s o m e t h i n g t h a t lo o k s li k e a t i n y p a r t .

SELF-SIMILARITY

J u s t h o w s i m i l a r d o t h e s e p a t t e r n s h a v e t o b e t o q u a li fy as a fr a c ta l ? M a t h e ­ m a t ic i a n s d is tin g u is h b e t w e e n s t a tis tic a l self-sim ilarity, as in t h e c a s e o f t h e c o a s t ­ l i n e , a n d e x a c t s e l f - s i m i l a r i t y , as i n t h e c a s e o f t h e K o c h c u r v e . I n e x a c t s e l f - s im i la r it y w e n e e d t o b e a b l e t o s h o w a p r e c i s e r e p l i c a o f t h e w h o l e in a t l e a s t s o m e o f its p a r t s . I n t h e K o c h c u r v e a p r e c i s e r e p l i c a o f t h e w h o l e c o u l d b e f o u n d w i t h i n a n y s e c t i o n o f t h e f r a c t a l ( " s t r i c t l y s e l f - s i m i l a r ” ), b u t t h i s i s n ’t t r u e fo r all f r a c ta l s . T h e b r a n c h i n g f r a c t a l s u s e d t o m o d e l t h e lu n g s a n d a c a c i a tr e e (fig. 1 .7), fo r e x a m p l e , h a v e p a r t s (e .g ., t h e s t e m ) t h a t d o n o t c o n t a i n a tin y im a g e o f t h e w h o l e . U n l i k e t h e K o c h c u r v e , t h e y w e r e n o t g e n e r a t e d by r e p l a c ­ in g e v e r y l i n e in t h e s e e d s h a p e w i t h a m i n i a t u r e v e r s i o n o f t h e s e e d ; i n s t e a d , w e u s e d s o m e p a s s iv e li n e s t h a t w e r e j u s t c a r r i e d t h o u g h t h e i t e r a t i o n s w i t h o u t c h a n g e , in a d d i t i o n t o a c t i v e l i n e s t h a t c r e a t e d a g r o w i n g t i p b y t h e u s u a l recu rsiv e re p la c e m e n t.

INFINITY

S i n c e f r a c ta ls c a n b e l i m i t e d t o a fi n it e r a n g e o f sca les, i t m a y s e e m li k e in f in ity is ju st a h is to rical artifact, a t best a H o ly G r a i l w h o se q u e s t allo w e d m a t h e m a t i c i a n s s e r e n d ip it o u s l y t o s t u m b l e acro ss fractals. It is t h i s k i n d o f o m i s s i o n t h a t h a s m a d e m a n y p u r e m a t h e m a t i c i a n s r a t h e r n o n p l u s s e d a b o u t t h e w h o l e f r a c ta l affair, a n d in s o m e c ases d o w n r i g h t h o s t i l e (cf. K r a n t z 1 9 8 9 ) . T h e r e is n o w ay to c o n ­ n e c t fractals t o t h e idea o f d i m e n s i o n w i t h o u t u s i n g in fin ity , a n d for m a n y m a t h ­ e m a t i c i a n s t h a t is t h e i r c r u c i a l ro le.

FRACTIONAL

DIMENSION

H o w c a n it be t h a t t h e K o c h c u r v e , o r a n y m e m b e r o f its f r a c t a l fam ily, h a s in f i­ n i t e l e n g t h i n a fi n it e b o u n d a r y ? W e a r e u s e d to t h i n k i n g o f d i m e n s i o n as o n l y w h o l e n u m b e r s — t h e o n e - d i m e n s i o n a l li n e , t h e t w o - d i m e n s i o n a l p l a n e — b u t t h e t h e o r y o f m e a s u r e m e n t t h a t g o v e r n s fracta ls allow s d i m e n s i o n s t o be frac tion s. C o n s id e r , for e x a m p l e , t h e i n c r e a s i n g d i m e n s i o n o f t h e K o c h c u rv e s in figure 1.6. A b o v e t h e t o p , we c o u ld g o as c lo s e as we like t o a o n e - d i m e n s i o n a l lin e. B elo w

F ractal geometry

t h e b o t t o m , we c o u ld m a k e t h e c u r v e s o j a g g e d t h a t it s t a r t s to fill i n tw o d im e n sio n a l areas of th e p la n e . In b e tw e e n , w e n e e d a n in -b e tw e e n d im e n sio n .

L o o k in g fo r f r a c ta ls in A f r ic a n c u l t u re A s w e e x a m i n e A f r i c a n d e s i g n s a n d k n o w l e d g e sy s tem s , t h e s e five e s s e n t i a l

c o m p o n e n t s will b e a u se fu l w ay t o k e e p t r a c k o f w h a t d o e s o r d o e s n o t m a t c h f r a c ta l g e o m e try . S i n c e s c a l i n g a n d s e lf- s im i la r it y a r e d e s c r i p t i v e c h a r a c t e r i s t i c s , o u r first s te p will b e to lo ok for th e s e p r o p e r tie s in A f r i c a n designs. O n c e we e s t a b ­ lish t h a t t h e m e , we c a n ask w h e t h e r o r n o t th e s e c o n c e p t s h a v e b e e n in t e n ti o n a ll y a p p li e d , a n d s t a r t to lo o k for t h e o t h e r t h r e e e s s e n t i a l c o m p o n e n t s . W e w ill n o w t u r n t o A f r i c a n a r c h i t e c t u r e , w h e r e w e find s o m e o f t h e c l e a r e s t i l l u s t r a t i o n s o f i n d i g e n o u s se l f - s im i la r d esig n s.

19

CHAPTER

-* * » ■ , : 2 _ in--------------------------------------------------—A frican-----------------------------------------------settlem ent--------------------------------------------architecture— ^------------------------- --------------

A rc h ite c tu r e o fte n p ro v id es e x c e lle n t e x a m p le s o f c u ltu ra l d e sig n th em es, b e c a u s e a n y t h i n g t h a t is g o i n g t o b e so m u c h a p a r t o f o u r l i v e s — a s t r u c t u r e t h a t m a k e s u p o u r b u i l t e n v i r o n m e n t , o n e in w h i c h w e w ill liv e , w o r k o r p la y — is likely t o h a v e its d e s i g n i n f o r m e d by o u r s o c i a l c o n c e p t s . T a k e re l ig i o u s a r c h i ­ t e c t u r e for e x a m p l e . S e v e i a l c h u r c h e s h a v e b e e n u u i l t u s i n g a t r i a n g u l a r f l o o r p la n to sym bolize th e C h r i s t i a n tr in ity ; o th e r s h a v e used a cross s h a p e . T h e R o m a n P a n t h e o n was d iv id e d in to th r e e v e rtic a l lev els: th e b o t t o m w ith s e v e n n i c h e s r e p r e s e n t i n g t h e h e a v e n l y b o d i e s , t h e m i d d l e w i t h t h e i 2 z o d ia c signs, a n d o n to p a h e m i s p h e r e s y m b o liz in g th e o r d e r o f t h e c o s m o s as a w h o l e . 1 B u t w e d o n ’t n e e d to lo o k t o g r a n d i o s e m o n u m e n t s ; e v e n t h e m o s t m u n ­ d a n e s h a c k w ill i n v o l v e g e o m e t r i c d e c i s i o n s — s h o u l d it b e s q u a r e o r o b l o n g ? p i t c h e d r o o f o r f la t? f a c e n o r t h o r w e s t ? — a n d so c u l t u r e w ill p l a y a r o l e h e r e a s w ell. A t first g l a n c e A f r i c a n a r c h i t e c t u r e m i g h t s e e m so v a r i e d t h a t o n e w o u ld c o n c l u d e its s t r u c t u r e s h a v e n o t h i n g in c o m m o n . A l t h o u g h t h e r e is g r e a t d i v e r ­ sity a m o n g t h e m a n y c u l t u r e s o f A f r i c a , e x a m p l e s o f f r a c ta l a r c h i t e c t u r e c a n be f o u n d in e v e r y c o r n e r o f t h e A f r i c a n c o n t i n e n t . N o t all a r c h i t e c t u r e in A f r i c a is f r a c ta l— f r a c ta l g e o m e t r y is n o t t h e o n l y m a t h e m a t i c s u s e d in A f r i c a —-hu t its r e p e a t e d p r e s e n c e a m o n g s u c h a w id e v a r i e t y o f s h a p e s is q u i t e s t r ik i n g .

Fractals in A fr ic a n se ttle m en t architecture

In e a c h c a s e p r e s e n t e d h e r e w e w ill c o m p a r e t h e a e r i a l p h o t o o r a r c h i t e c ­ t u r a l d i a g r a m o f a s e t t l e m e n t t o a c o m p u t e r - g e n e r a t e d f r a c ta l m o d e l . T h e f r a c ­ ta l s i m u l a t i o n w ill m a k e t h e s e l f - s im i la r a s p e c t s o f t h e p h y s i c a l s t r u c t u r e m o r e e v i d e n t , a n d in s o m e cases it will e v e n h e l p us u n d e r s t a n d t h e lo cal c u ltu ra l m e a n ­ in g o f t h e a r c h i t e c t u r e . S i n c e t h e A f r i c a n d e s i g n e r s u s e d t e c h n i q u e s lik e i t e r a ­ t i o n in b u i l d in g th e s e s t ru c tu r e s , o u r v ir tu a l c o n s t r u c t i o n t h r o u g h frac tal g rap h ics w ill g iv e us a c h a n c e to s e e h o w t h e p a t t e r n s e m e r g e t h r o u g h t h i s p ro cess.

R e c t a n g u l a r f r a c t a l s in s e t t l e m e n t a r c h i t e c t u r e I f y ou fly o v e r t h e n o r t h e r n p a r t o f C a m e r o o n , h e a d i n g t o w a r d L a k e C h a d a lo n g t h e L o g o n e R iv e r , y ou will s e e s o m e t h i n g lik e figure 2 .1 a. T h i s a erial p h o t o s h o w s t h e c ity o f L o g o n e - B ir n i in C a m e r o o n . T h e K o t o k o p e o p le , w h o f o u n d e d th is city c e n t u r i e s a g o , u se t h e lo c a l c la y t o c r e a t e h u g e r e c t a n g u l a r b u i l d i n g c o m p l e x e s . T h e la r g e st o f t h e s e b u il d in g s , in t h e u p p e r c e n t e r o f t h e p h o t o , is t h e p a l a c e o f t h e ch ief, o r “M i a r r e ” (fig. 2 .1 b ). E a c h c o m p l e x is c r e a t e d by a pro cess o f t e n c alle d “a r c h i te c t u r e by a c c r e t io n , ” in th is case a d d in g r e c t a n g u la r en closu res t o p reex istin g r e c t a n g l e s . S i n c e n e w e n c l o s u r e s o f t e n i n c o r p o r a t e t h e w a lls o f t w o Qt m o r e . o f t h e o ld o n e s , e n c l o s u r e s t e n d to g e t l a r g e r a n d la r g e r as yo u g o o u t w a r d f r o m t h e c e n te r . T h e e n d re s u lt is t h e c o m p l e x o f r e c t a n g l e s w i t h i n r e c t a n g l e s w i t h i n r e c ­ t a n g l e s t h a t we see in t h e p h o t o . S i n c e t h i s a r c h i t e c t u r e c a n be d e s c r ib e d in te r m s o f s elf-s im ilar s c a l in g — it m a k e s use o f t h e sa m e p a t t e r n a t sev eral differe nt scales— it is easy to sim u la te using a c o m p u te r- g e n e ra te d fractal, as we see in figures 2 . i c - e . T h e seed shape o f th e m o d el is a r e c t a n g le , b u t e a c h sid e is m a d e u p o f b o t h a c t i v e lin e s (gray) a n d passive lines (b la c k ). A f t e r . t h e first it e r a t io n we see h o w a sm all v e rs io n o f th e original re c ta n g le is re p r o d u c e d by e a c h o f t h e a c ti v e lines. O n e m o r e it e r a t io n gives a ra n g e o f scales t h a t is a b o u t t h e sa m e as t h a t o f t h e p a la c e ; t h i s is e n la r g e d in figure 2 . i e . D u r i n g m y v isit t o L o g o n e - B i r n i in t h e s u m m e r o f 1 9 93 , t h e M i a r r e k in d l y a llo w e d m e t o c l i m b o n t o t h e p a la c e r o o f a n d ta k e th e p h o t o s h o w n in figure 2 . if. 1 asked sev eral o f th e K o to k o m e n a b o u t th e v a r i a ti o n in scale o f t h e i r a rc h ite c tu re .

T h e y e x p l a i n e d it in t e r m s o f a c o m b i n a t i o n o f p a t r i l o c a l h o u s e h o l d e x p a n s i o n , a n d t h e h i s t o r i c n e e d for d e f e n s e . " A m a n w o u l d lik e h i s s o n s t o live n e x t to h i m , " t h e y s a id , “a n d so w e b u i l d by a d d i n g w alls t o t h e f a t h e r ’s h o u s e . ” I n t h e p ast, i n v a s i o n s b y n o r t h e r n m a r a u d e r s w e re c o m m o n , a n d so a la rg e r d e f e n s iv e w a ll w a s a ls o n e e d e d . S o m e t i m e s t h e a s s e m b ly o f f a m i l i e s w o u ld o u t g r o w th i s d e f e n s iv e e n c l o s u r e , a n d so th e y w o u ld t u r n t h a t w all i n t o h o u s i n g , a n d b u ild a n e v e n la rg e r e n c l o s u r e a r o u n d it. T h e s e s c a l i n g a d d i t i o n s c r e a t e d t h e t r a d i t i o n o f s e l f - s im i la r s h a p e s we s till see to d a y , a l t h o u g h t h e p o p u l a t i o n is far b e lo w t h e

a. A n aerial view of the city of Logone-Birni in Cameroon. The largest building complex, in the center, is the palace of the chief.

b. A closer view of the palace. T he smallest rectangles, in the center, are the royal chambers.

Pho to co urtesy M usee de I ' H o m m e , Paris.

c. Seed shape for the fractal simulation'of the palace. T he active lines, in gray, will be replaced by a scaleddown replica of the entire seed.

e. Enlargment of the third iteration.

d. First three iterations of the fractal simulation.

FIGURE

2.1

L o g o n e -B irn i

(figure c o n t i n u e s )

f. Photo by the author taken from the roof of the palace.

g. The guti, the royal insignia, painted on the palace walls. 13y permission

Le chemin de la lumiere h. T he spiral path taken by visitors to the throne. B y permission o f L e b e u f 1 969.

of Lebeuf 1969.

F I G U R E 2 . 1 (continued.)

In s id e L o g o n e-B irn i

In tro d u c tio n

o r i g i n a l 1 8 0 ,0 0 0 e s t i m a t e d Tor L o g o n e - B i r n i ’s p e a k in t h e n i n e t e e n t h c e n tu r y . A t t h a t t i m e t h e r e w a s a g i g a n t i c w a ll, a b o u t 10 f e e t t h i c k , t h a t e n c l o s e d t h e p erim eter o f th e e n tire settlem en t. T h e w o m e n I s p o k e w i t h w e r e m u c h less i n t e r e s t e d i n e i t h e r p a t r i l i n e a g e o r m ilita r y h is to ry ; t h e i r re s p o n s e s c o n c e r n i n g a r c h i t e c t u r a l s c a l in g w e r e prim arily a b o u t t h e c o n t r a s t b e t w e e n t h e ra w e x t e r i o r w alls a n d t h e s t u n n i n g w a t e r p r o o f fi n is h t h e y c r e a t e d f o r c o u r t y a r d s a n d i n t e r i o r r o o m s . T h i s b e g a n b y s m o o t h i n g w e t w a lls f l a t . w i t h s p e c i a l s t o n e s , a p p l y i n g a r e s in c r e a t e d f r o m a p l a n t e x t r a c t , a n d t h e n a d d i n g . b e a u t i f u l l y a u s t e r e d e c o r a t i v e lin e s . T h e m o s t i m p o r t a n t o f t h e s e d e c o r a t i v e d r a w in g s is t h e guri, a royal insig nia (fig. 2.1 g). T h e c e n t r a l m o t i f o f t h e g u ti s h o w s a re c t a n g le in s id e a r e c t a n g l e inside a r e c t a n g l e ; it is a k i n d o f a b s t r a c t m o d e l t h a t t h e K o t o k o t h e m s e l v e s h a v e c r e ­ a t e d . T h e r e a s o n f o r c h o o s i n g s c a l i n g r e c t a n g l e s as a s y m b o l o f r o y a l t y b e c o m e s c le a r w h e n w e lo o k a t t h e passage t h a t o n e m u s t t a k e to v is it t h e M i a r r e (fig. 2 . i h ) . T h e p assag e as a w h o l e is a r e c t a n g u l a r spiral. E a c h t i m e y o u e n t e r a s m a ll e r scale, y o u a re r e q u i r e d t o b e h a v e m o r e p o lite ly . By t h e t i m e y o u a r r i v e a t t h e t h r o n e y o u a r e s h o e l e s s a n d s p e a k w i t h a v e r y c u l t u r e d f o r m a l i t y . 2 T h u s t h e f r a c ta l s c a l i n g o f t h e a r c h i t e c t u r e is n o t s i m p l y t h e re s u lt o f u n c o n s c i o u s s o c i a l d y n a m ­ ics; it is a su b je c t o f a b s t r a c t r e p r e s e n t a t i o n , anti e v e n a p r a c t ic a l t e c h n i q u e a p p lied to social ran k in g . T o th e w est n ear th e N ig e ria n b order th e landscape o f C a m e ro o n becom es m u c h g r e e n e r ; t h i s is t h e f e r tile h i g h g ra s sla n d s r e g i o n o f t h e B a m i le k e . T h e y to o h a v e a f r a c t a l s e t t l e m e n t a r c h i t e c t u r e b a s e d o n r e c t a n g l e s (fig. 2 . 2 a ) , b u t i t h a s n o c u l t u r a l r e l a t i o n to t h a t o f t h e K o t o k o . R a t h e r t h a n t h e t h i c k c la y o f L o g o n e B ir n i , t h e s e h o u s e s a n d t h e a t t a c h e d e n c l o s u r e s a r e b u i l t f r o m b a m b o o , w h i c h , is v e r y s t r o n g a n d w id e ly a v a i l a b l e . A n d t h e r e w a s n o m e n t i o n o f k i n s h i p , d e f e n s e , o r p o l i t i c s w h e n I a s k e d a b o u t t h e a r c h i t e c t u r e ; h e r e 1 w a s t o l d it is p a t ­ t e r n s o f a g r i c u l t u r a l p r o d u c t i o n t h a t u n d e r l i e t h e s c a l in g . T h e g r a s s l a n d so il a n d c l i m a t e a re e x c e l l e n t for f a r m i n g , a n d t h e g a r d e n s n e a r t h e B a m i l e k e h o u s e s t y p ­ ic ally g ro w a d o z e n d if fe re n t p l a n t s all in a s in g le s p a c e , w i t h e a c h - t a k i n g its c h a r ­ a c t e r i s t i c v e r t i c a l p l a c e . B u t t h i s is l a b o r i n t e n s i v e , a n d s o m o r e d i s p e r s e d p l a n t i n g s — ro w s o f c o r n a n d g r o u n d - n u t — a r e u s e d in t h e w i d e r s p a c e s f a r t h e r fr o m t h e h o u s e . S i n c e t h e s a m e b a m b o o m e s h c o n s t r u c t i o n is u s e d fo r h o u s e s , h o u s e e n c l o s u r e s , a n d e n c l o s u r e s o f e n c l o s u r e s , t h e r e s u l t is a s e l f - s im i la r a r c h i ­ tectu re. U n lik e th e d efen siv e la b y rin th o f K o to k o a rc h ite c tu re , w h e re th ere w e re o n l y a few w e l l - p r o t e c t e d e n tr y w a y s , t h e f a r m i n g a c t i v i t i e s r e q u i r e a lo t o f m o v e m e n t b e t w e e n e n c l o s u r e s , so a t all s c a l e s we s e e g o o d - s iz e d o p e n i n g s . T h e f r a c t a l s i m u l a t i o n in figures 2 . 2 b , c s h o w s h o w t h i s s c a l i n g s t r u c t u r e c a n b e m o d ­ e l e d u s i n g a n o p e n s q u a r e as t h e s e e d s h a p e .

FIGURE 2.2

B a m ile k e se ttlem en t

(a) Plan of Bamileke settlement from about i960, (b) Fractal simulation of Bamileke architecture. In the first iteration (“seed shape”), the two active lines are shown in gray, (c) Enlarged view of fourth iteration. ( a , Begum 1952; reprinted with permission f r o m o r s t o m ) .

26

introduction

C irc u la r fra cta ls in s e ttle m e n t a rc h ite c tu r e M u c h o f s o u t h e r n A f r i c a is m a d e u p o f a r i d p l a i n s w h e r e h e r d s o f c a t t l e - a n d o t h e r l i v e s t o c k a re ra is e d . R i n g - s h a p e d l i v e s t o c k p e n s , o n e fo r e a c h e x t e n d e d fam ily,^ c a n b e s e e n in t h e a erial p h o t o in figure 2.3a, a B a-ila s e t t l e m e n t in s o u t h e r n Z a m ­ bia. A d ia g r a m o f a n o t h e r B a -ila s e t t l e m e n t (fig. 2 .3 d ) m a k e s th e s e liv e sto c k e n c l o ­ sures ( “k ra a ls ” ) m o r e clear. T o w a r d t h e b a c k o f e a c h p e n w e find t h e fam ily liv in g q u a r t e r s , a n d t o w a r d t h e f r o n t is t h e g a t e d e n t r a n c e fo r l e t t i n g l i v e s t o c k in a n d o u t. For th is r e a s o n t h e f r o n t e n t r a n c e is a s s o c ia te d w i t h lo w s t a tu s ( u n c l e a n , a n i ­ m a l s ) , a n d t h e b a c k e n d w i t h h i g h s t a t u s ( c l e a n , p eop le).'* T h i s g r a d i e n t o f s t a ­ t u s is re f le c te d by t h e size g r a d i e n t in t h e a r c h i t e c t u r e : t h e f r o n t is o n l y f e n c i n g , as w e g o t o w a r d t h e b a c k s m a l l e r b u i l d i n g s (f o r s t o r a g e ) a p p e a r , a n d t o w a r d t h e v e ry b a c k e n d a r e t h e la r g e r h o u s e s . T h e t w o g e o m e t r i c e l e m e n t s o f t h i s s t r u c ­ t u r e — a r i n g s h a p e o v e r a l l , a n d a s t a t u s g r a d i e n t i n c r e a s i n g w i t h size fr o m f r o n t t o b a c k — e c h o e s t h r o u g h o u t e v e r y s c a l e o f t h e B a -il a s e t t l e m e n t . T h e s e t t l e m e n t as a w h o l e h a s t h e s a m e s h a p e : it is a r i n g o f rin gs. T h e s e t ­ t l e m e n t , like t h e li v e s t o c k p e n , h a s a f r o n t / b a c k s o c i a l d i s t i n c t i o n : t h e e n t r a n c e is lo w s t a t u s , a n d t h e b a c k e n d is h i g h s t a tu s . A t t h e s e t t l e m e n t e n t r a n c e t h e r e a re n o fam ily e n c l o s u r e s a t a ll fo r t h e first 2 0 y a r d s o r s o , b u t t h e f a r t h e r b ack, w e go, t h e la r g e r t h e fa m ily e n c l o s u r e s b e c o m e . A t t h e b a c k e n d o f t h e i n t e r i o r o f t h e s e t t l e m e n t , w e see a s m a ll e r d e t a c h e d r i n g o f h o u s e s , l i k e a s e t t l e m e n t w i t h i n t h e s e t t l e m e n t . T h i s is t h e c h i e f ’s e x t e n d e d family. A t t h e b a c k o f t h e i n t e r i o r o f tine c h i e f ’s e x t e n d e d fa m il y rin g , t h e c h i e f h a s h i s o w n h o u s e . A n d if w e w e r e t o v ie w a s i n g l e h o u s e f r o m a b o v e , w e w o u ld see t h a t it is a r i n g w i t h a s p e c i a l p l a c e a t t h e b a r k o f t h e i n t e r i o r : t h e h o u s e h o l d altar. S i n c e w e h a v e a s i m i l a r s t r u c t u r e a t all sc a le s, t h i s a r c h i t e c t u r e is e a sy to m o d e l w i t h fractals. F ig u re 2 . 3 b s h o w s t h e first t h r e e i t e r a t i o n s . W e b e g i n w i t h a s e e d s h a p e t h a t c o u l d be t h e o v e r h e a d v i e w o f a s i n g l e h o u s e . T h i s is c r e a t e d by a c t i v e li n e s t h a t m a k e u p t h e r i n g - s h a p e d w a lls, as w e ll as a n a c t i v e l i n e a t t h e p o s i t i o n o f t h e a l t a r a t t h e b a c k o f t h e i n t e r i o r . T h e o n l y p a s s iv e li n e s a r e those a d ja c e n t to th e e n tr a n c e . In th e n e x t ite ra tio n , we h a v e a sh a p e th a t c o u ld be t h e o v e r h e a d v ie w o f a fa m ily e n c l o s u r e . A t t h e e n t r a n c e t o t h e f a m ily e n c l o ­ su re w e h a v e o n l y f e n c i n g , b u t as w e go t o w a r d t h e b a c k w e h a v e b u i l d i n g s o f i n c r e a s i n g size. S i n c e t h e s e e d s h a p e u se d o n l y p a s s iv e l i n e s n e a r t h e e n t r a n c e a n d in c r e a s i n g ly la rg e r lin e s t o w a r d t h e b a c k , t h i s i t e r a t i o n o f o u r s i m u l a t i o n h a s t h e s a m e size g r a d i e n t t h a t t h e real fam ily e n c l o s u r e sh o w s. Fin ally , t h e t h i r d i t e r ­ a tio n p ro v id es a stru ctu re t h a t c o u ld b e th e o v e rh e a d v iew o f th e w h o le s e ttle ­ m e n t . A t th e e n t r a n c e to th e s e t t l e m e n t w e h a v e o n ly fe n c in g , b u t as we go to w a rd

FIGURE 2 .3

B a -ila ( a) A e r i a l p h o t o o f B a - i l a s e t t l e m e n t b e f o r e 1 9 4 4 - ( b ) F r a c t a l g e n e r a t i o n o f B a - i l a s i m u l a t i o n . N o t e t h a t t h e s e e d s h a p e h a s o n l y a c t i v e l i n e s ( g r a y ) e x c e p t fo r t h o s e n e a r t h e o p e n i n g ( b l a c k ) , (a, A m e r i c a n Geograph ic Institute.)

In tro d u c tio n

t h e b a c k w e h a v e e n c l o s u r e s o f i n c r e a s i n g size. A g a i n , b y h a v i n g t h e s e e d s h a p e use o n l y p a s s iv e li n e s n e a r t h e e n t r a n c e a n d i n c r e a s i n g l y l a r g e r li n e s t o w a r d th e b a c k , th is i t e r a t i o n o f o u r s i m u l a t i o n h a s t h e sam e size g r a d i e n t t h a t the'T eal s ettle m e n t sh ow s. I n e v e r v i s i t e d t h e B a - il a m y self; m o s t o f m y i n f o r m a t i o n c o m e s fr o m t h e c la s s ic e t h n o g r a p h y b y E d w i n S m i t h a n d A n d r e w D a l e , p u b l i s h e d in 1 92 0. W h i l e t h e i r c o l o n i a l a n d m i s s i o n a r y m o t i v a t i o n s d o n o t i n s p i r e m u c h tr u s t, t h e y o f t e n s h o w e d a s t r o n g c o m m i t m e n t t o w a r d u n d e r s t a n d i n g t h e B a - il a p o i n t o f v ie w for s o c i a l s t r u c t u r e . T h e i r a n a l y s i s o f B a - il a s e t t l e m e n t a r c h i t e c t u r e p o i n t s o u t f r a c t a l a t t r i b u t e s . T h e y t o o n o t e d t h e s c a l i n g o f h o u s e size, fr o m t h o s e less t h a n 12 f e e t w i d e n e a r t h e e n t r a n c e , t o h o u s e s m o r e t h a n 4 0 f e e t w id e a t t h e b a c k , a n d e x p l a i n e d it as a s o c ia l s t a t u s g r a d i e n t ; “ t h e r e b e i n g a w o r l d o f d if fe re n c e b e t w e e n t h e s m a ll h o v e l o f a careless n o b o d y a n d t h e s p a c i o u s d w e lli n g o f a c h i e f ’ ( S m i t h a n d D a l e 1 9 6 8 , 1 1 4 ). It is in S m i t h ’s d i s c u s s i o n o f re lig io u s b eliefs, h o w e v e r , t h a t t h e m o s t s t r i k ­ in g f e a t u r e o f t h e B a - i l a ’s f r a c ta l a r c h i t e c t u r e is i l l u m i n a t e d . U n l i k e m o s t m i s ­ s i o n a r ie s o f h i s ti m e , S m i t h w as a s t r o n g p r o p o n e n t o f r e s p e c t fo r lo c a l re lig io n s. H e w as n o r e l a t i v i s t — u n d e r s t a n d i n g a n d r e s p e c t w ere' s t r a t e g i e s f o r c o n v e r ­ s i o n — b u t h i s d e l i g h t in t h e in d i g e n o u s s p i rit u a l s t r e n g t h c o m e s ac ro s s c le a r ly in h i s w r it in g s a n d p r o v i d e d h i m w i t h i n s i g h t i n t o t h e s u b t l e r e l a t i o n o f t h e so c ia l, s a c r e d , a n d p h y s i c a l s t r u c t u r e o f t h e B a - il a a r c h i t e c t u r a l p l a n . In this village th e r e are a b o u t 25 0 h u ts , b uilt m ostly o n th e edge o f a circle four h u n d r e d yards in d ia m e te r. Inside th is circle th e r e is a sub sid iary o n e o c c u p ie d by th e c h ie f, his family, a n d c a tt le . It is a village in itself, a n d th e form o f it in th e p la n is th e form o f th e g reater n u m b e r o f Ba-ila villages, w h ic h d o n o t a tta in to th e d im e n sio n s o f S h a l o b a ’s cap ital. T h e o p e n space in t h e c e n te r of t h e v il­ lage is also broken by a second subsidiary village, in w h ic h reside im p o rta n t m e m ­ bers o f th e c h i e f ’s family, a n d also by th r e e o r four m i n i a t u r e h u t s su r ro u n d e d by a fence: th e s e are th e mantlu a mizhivno ( “th e m a n e s ’ h u t s ”) w h e re offerings are m a d e to th e ancestral spirits. T h u s early d o we see traces o f th e nll-pervnding religious c o n sc io u sn e ss o f th e Ba-ila.

( S m i t h a n d D ale 1968, 1 13)

I n t h e first i t e r a t i o n o f t h e c o m p u t e r - g e n e r a t e d m o d e l t h e r e is a d e t a c h e d a c t i v e li n e in s id e t h e r i n g , a t t h e e n d o p p o s i t e t h e e n t r a n c e . T h i s w a s m o t i v a t e d by t h e r i n g c o m p r i s i n g t h e c h i e f ’s fam ily, b u t it also d e s c r i b e s t h e l o c a t i o n o f t h e s a c r e d a l t a r w i t h i n e a c h h o u s e . A s a l o g i c ia n w o u ld p u t it, t h e c h i e f ’s f a m ily rin g is t o t h e w h o l e s e t t l e m e n t as t h e a l t a r is t o t h e h o u s e . It is n o t a s t a t u s g r a d i e n t , as we saw w i t h t h e f r o n t - b a c k axis, b u t r a t h e r a r e c u r r i n g f u n c t i o n a l ro le b e t w e e n d i f f e r e n t sca les: “T h e w o r d a p p l i e d t o t h e c h i e f 's r e l a t i o n t o h is p e o p l e is latlela: in t h e e x t r a c t s g iv e n a b o v e w e t r a n s l a t e it ‘to r u l e , 1 b u t it h a s t h i s o n l y as a sec-

Fractals in A fr ic a n se ttle m en t architecture

o n d a r y m e a n i n g . K u le la is p r i m a r i ly t o n u r s e , t o c h e r i s h ; it is t h e w o r d a p p li e d t o a w o m a n c a r i n g for h e r c h i l d . T h e c h i e f is t h e f a t h e r o f t h e c o m m u n i t y ; t h e y a re h is c h i l d r e n , a n d w h a t h e d o e s is lela t h e m ” ( S m i t h a n d D a le 1 9 6 8 , 3 0 7 ) . T h i s r e l a t i o n s h i p is e c h o e d t h r o u g h o u t ' f a m i l y a n d s p i r i t u a l tie s a t all scales', a n d is s t r u c t u r a l l y m a p p e d t h r o u g h t h e se l f - s im i la r a r c h i t e c t u r e . T h e n e s t i n g o f c i r c u l a r s h a p e s — a n c e s t r a l m i n i a t u r e s t o c h i e f ’s h o u s e r i n g t o c h i e f ’s e x t e n d e d fam ily r i n g to che g re a t o u t e r ring— was n o t a s t a tu s g r a d i e n t , as we saw f o r t h e e n c l o s u r e v a r i a t i o n fr o m f r o n t t o b a c k , b u t s u c c e s s iv e i t e r a t i o n s o f lela. A very d if fe re n t c ir c u la r fracta l a r c h i t e c t u r e c a n b e s e e n in t h e fam ou s s t o n e b u i l d i n g s in t h e M a n d a r a M o u n t a i n s o f C a m e r o o n . T h e v a r i o u s e t h n i c g ro u p s o f t h i s a r e a h a v e t h e i r o w n s e p a r a t e n a m e s , b u t c o l l e c t i v e l y a re o f t e n re f e rre d t o as K ird i, t h e F u l a n i w o rd for “ p a g a n , ” b e c a u s e o f t h e i r s t r o n g r e s i s t a n c e a g a i n s t c o n v e r s i o n t o Is la m . T h e i r b u i l d i n g s a r e c r e a t e d fr o m t h e s t o n e r u b b l e t h a t c o m m o n ly covers th e M a n d a r a m o u n t a in terrain. M u c h o f th e s to n e h as n a tu ra l f r a c t u r e l i n e s t h a t t e n d t o s p l i t i n t o t h i c k f l a t s h e e t s , so t h e s e r e a d y - m a d e b ric k s— a l o n g w i t h d e f e n s i v e n e e d s — h e l p e d t o in s p ire t h e c o n s t r u c t i o n o f t h e i r h u g e castlelike c o m p lex es. But r a th e r th a n b e in g th e E u c lid e a n sh apes o f E u ro ­ p e a n c a s t le s , t h i s A f r i c a n a r c h i t e c t u r e is fr a c ta l. ’ F ig u re 2 .4 a s h o w s t h e b u i l d i n g c o m p l e x o f t h e c h i e f o f M o k o u l e k , o n e o f t h e M o f o u s e t t l e m e n t s . A n a r c h i t e c t u r a l d i a g r a m o f M o k o u l e k , d r a w n by F re n c h , researchers from th e o r s t o m scie n c e in s titu te , show s its o v erall stru c tu re (fig. 2.4b). It is prim arily c o m p o s e d o f th r e e s t o n e e n c lo s u re s ( t h e large circles), e a c h o f w h i c h s u r r o u n d s ti g h t l y s p i r a le d g ra n a r ie s ( s m a ll c i r c le s ) . T h e s e e d s h a p e for t h e s i m ­ u l a t i o n r e q u i r e s a c ir c le , m a d e o f p a s s iv e li n e s , a n d t w o d i f f e r e n t sets o f a c t i v e lin e s (fig. 2.4 c ) . I n s id e t h e c ir c le is a s c a l i n g s e q u e n c e o f s m a ll a c t i v e lines; th e s e w ill b e c o m e t h e g r a n a r ie s . O u t s i d e t h e c ir c le t h e r e is a la r g e a c t i v e lin e ; t h i s w ill r e p l i c a t e t h e e n c l o s u r e filled w i t h g ra n a r ie s . By t h e f o u r t h i t e r a t i o n w e h a v e c r e ­ a t e d t h r e e e n c lo s u r e s filled w i t h sp iral c lu s te rs o f g ra n a r ie s , plus o n e unfilled. T h e re a l d i a g r a m o f M o k o u l e k s h o w s s e v e r a l u n f i l l e d c i r c l e s — e v i d e n c e t h a t n o t e v e r y t h i n g in t h e a r c h i t e c t u r a l s t r u c t u r e c a n b e a c c o u n t e d fo r by frac tals. N e v ­ e r t h e le s s , a n i m p o r t a n t f e a t u r e is s u g g e s te d by t h e s i m u l a t i o n . I n t h e first i t e r a t i o n we see t h a t t h e large e x t e r n a l a c t i v e li n e is t o t h e left o f t h e c ir c le . B u t s i n c e it is a t a n a n g l e , t h e n e x t i t e r a t i o n finds t h i s a c t i v e lin e a b o v e a n d t o t h e r i g h t. If we fo llo w t h e i t e r a t i o n s , we c a n see t h a t t h e dynam ic constrwction o f t h e c o m p l e x lias a s p ira l p a t t e r n ; t h e r e p l i c a t i o n s w h o r l a b o u t a c e n t r a l l o c a t io n . T h i s sp iral d y n a m i c c a n be m issed w i t h j u s t a s t a t i c view — I c e r ­ t a i n ly d i d n ’t see it b e fo r e I tr ie d t h e s i m u l a t i o n — b u t o u r p a r t i c i p a t i o n . i n t h e v i r ­ tu a l c o n s t r u c t i o n m a k e s t h e spiral q u i t e e v i d e n t . 3 T h e sim ilarity b e t w e e n t h e sm all s p irals o f g ra n a r ie s in s id e t h e e n c l o s u r e s a n d t h i s l a r g e - s c a l e s p ira l s h a p e o f t h e

c

FIGURE 2 . 4 M o k o u le k ( a ) M o k o u l e k , C a m e r o o n . T h e s m a l l b u i l d i n g s in s i d e t h e s t o n e w a l l a r e g r a n a r i e s . T h e r e c t a n g u l a r b u i l d i n g ( t o p r i g h t ) h o l d s t h e s a c r e d a l t a r , ( b ) A r c h i t e c t u r a l d i a g r a m o f M o k o u l e k . ( c ) F ir s t t h r e e i t e r a t i o n s o f t h e M o k o u l e k s i m u l a t i o n . T h e s e e d s h a p e is c o m p o s e d o f a c i r c l e d r a w n w i t h p a s s i v e lin es ( b la c k ) a n d w it h gray a c t i v e lin es b o t h inside a n d o u tsid e th e c irc le , (d ) F o u rth ite ra tio n o f the M o k o u le k sim u lation , f a a n d b, b y permission f r o m S e i g n o b o s 1 9 8 2 .)

Fractals in A fr ic a n settlement architecture

c o m p l e x as a w h o l e i n d i c a t e s t h a t t h e f r a c t a l a p p e a r a n c e o f t h e a r c h i t e c t u r e is n o t m e r e ly d u e t o a r a n d o m a c c u m u l a t i o n o f v a rio u s - s iz e d c i r c u l a r fo rm s. T h e i d e a o f c i r c l e s o f i n c r e a s i n g size, s p i r a l i n g f r o m a c e n t r a l p o i n t , h a s b e e n a p p li e d a t tw o d i f f e r e n t sc ales, a n d t h i s s t r u c t u r a l c o h e f e n c e is c o n f i r m e d b y t h e a r c h i ­ tects’ o w n concepts. I n o u r s im u la tio n th e activ e lin e b e c a m e lo c a te d to w a rd th e c e n te r o f th e s p i ra l. T h e M o f o u a ls o t h i n k o f t h e i r a r c h i t e c t u r e as s p i r a l i n g f r o m t h i s c e n t r a l l o c a t i o n , w h i c h h o l d s t h e i r s a c r e d altar. T h e a l t a r is a k i n d o f c o n c e p t u a l “a c t i v e l i n e ” in t h e i r s c h e m a ; it is r e s p o n s ib l e f o r t h e i t e r a t i o n s o f life. S e i g n o b o s ( 1 9 8 2 ) n o te s t h a t th is a re a o f t h e c o m p l e x is t h e site o f b o t h religio us a n d p o litic a l a u t h o r ­ ity; it is t h e l o c a t i o n for r i t u a l s t h a t g e n e r a t e c y c le s o f a g r i c u l t u r a l f e r til it y a n d a n c e s t r a l s u c c e s s io n . T h i s g e o m e t r i c m a p p i n g b e t w e e n t h e s c a l in g c ir c le s o f t h e . a r c h i t e c t u r e a n d t h e s p i r i t u a l c y cle s o f life is r e p r e s e n t e d in t h e i r d i v i n a t i o n ( “f o r t u n e t e l l i n g ” ) r i tu a l , in w h i c h t h e p r i e s t c r e a t e s c o n c e n t r i c c ir c le s o f sto n e s ' a n d p la c e s h i m s e l f a t t h e c e n te r. A s in t h e guti p a i n t i n g in L o g o n e - B ir n i , in w h i c h t h e K o t o k o h a d m o d e l e d t h e i r s c a l i n g r e c t a n g l e s , t h e M o f o u h a v e a ls o c r e a t e d th e ir o w n scalin g sim u latio n . By t h e t i m e 1 a r r iv e d a t M o k o u l e k in 1 9 9 4 t h e c h i e f h a d d ie d , a n d t h e o w n ­ e r s h i p o f t h i s c o m p l e x h a d b e e n p ass ed o n to h i s w id o w s. T h e n e w c h i e f to l d me thac t h e d esig n o f th is a r c h i t e c t u r e , in c l u d i n g t h a t o f h is n e w c o m p l e x , b e g a n w ith a p re c i s e k n o w l e d g e o f t h e a g ri c u lt u ra l y ield . T h i s v o l u m e m e a s u r e w as t h e n c o n ­ v e r t e d t o a n u m b e r o f g r a n a r ie s , a n d t h e s e w e r e a r r a n g e d in spirals. T h e d e sig n is t h u s n o t s i m p l y a m a t t e r o f a d d i n g o n g r a n a r i e s as t h e y a r e n e e d e d ; in fact, it h a s a m u c h m o r e q u a n t i t a t i v e basis t h a n m y c o m p u t e r m o d e l , w h i c h I sim p ly did by e y e b a ll. N o t a ll c i r c u l a r a r c h i t e c t u r e s , in A f r i c a h a v e t h e k i n d o f c e n t r a l i z e d l o c a t i o n t h a t w e sa w in M o k o u l e k . T h e S o n g h a i v i l l a g e o f L a b b e z a n g a in M a l i (fig. 2 . 5 a ) , for e x a m p l e , s h o w s c i r c u l a r sw irls o f c i r c u l a r h o u s e s w i t h o u t a n y s in g le fo c u s . B u t c o m p a r i n g t h i s t o t h e f r a c t a l im a g e o f figure 2 .5 b , w e see t h a t a l a c k o f c e n t r a l fo cu s d o e s n o t m e a n a l a c k o f s e lf-s im ila r ity . It is i m p o r t a n t to r e m e m b e r c h a t w h ile “s y m m e t r y ” in E u c l i d e a n g e o m e t r y m e a n s s i m ila rity w i t h i n o n e s c a l e (e.g ., s i m i l a r i t y b e t w e e n o p p o s i t e s id e s in b i l a t e r a l s y m m e t r y ) , f r a c ta l g e o m e t r y is b a s e d o n s y m m e t r y b e t w e e n d i f f e r e n t sc a le s. E v e n t h e s e d e c e n t r a l ­ ized sw ir ls o f c i r c u l a r b u i l d i n g s s h o w a s c a l i n g s y m m e t r y . . P a u l S to l le r , a n a c c o m p l i s h e d e t h n o g r a p h e r o f t h e S o n g h a i , te lls m e t h a t t h e r e c t a n g u l a r b u i l d i n g s t h a t c a n b e s e e n in figure 2 . 5 a a r e d u e to Is la m ic in flu ­ e n c e , a n d t h a t t h e o r i g i n a l s t r u c t u r e w o u l d h a v e b e e n c o m p l e t e l y c ir c u la r . T h a n k s t o P e t e r B ro a d w e ll, a c o m p u t e r p r o g r a m m e r f r o m S i l i c o n G r a p h i c s In c., ' w e w e r e a b le t o r u n a q u a n t i t a t i v e te s t o f t h e p h o t o t h a t c o n f i r m e d w h a t o u r eyes

In tro d u c tio n

32

FIGURE 2 .5

Labbezanga (a) Aerial view of the village of Lahhetanga in Mali, (b) Fractal graphic. ( a , photo by G e o rg G c r s te r ; b , by p erm issio n o f B enoit M a n d e lb ro t.}

w e r e t e l l i n g us: t h e S o n g h a i a r c h i t e c t u r e c a n b e c h a r a c t e r i z e d by a f r a c ta l d i m e n ­ s i o n s i m i l a r to t h a t o f t h e c o m p u t e r - g e n e r a t e d f r a c ta l o f figure 2.5b.** T h i s k i n d o f d e n s e c i r c u l a r a r r a n g e m e n t o f c ir c le s , w h i l e o c c u r r i n g in all so r ts o f v a r i a t i o n s , is c o m m o n t h r o u g h o u t i n l a n d w e s t A f r i c a . B o u r d i e r a n d T r i n h ( 1 9 8 5 ) , for e x a m p l e , d e s c r ib e a sim ila r c ircu lar a r c h i t e c t u r e in B u r k i n a Faso. T h e s c a l i n g o f i n d i v i d u a l b u i l d i n g s is b e a u t i f u l l y d i a g r a m m e d in t h e i r c o v e r i l l u s t r a t i o n (fig. 2 . 6 a ) , a p o r t i o n o f o n e o f t h e large b u i l d i n g c o m p l e x e s c r e a t e d by t h e N a n k a n i society. A s for t h e S o n g h a i , fo r e ig n c u l t u r a l i n f lu e n c e s h a v e n o w i n t r o d u c e d r e c t a n g u l a r b u il d in g s as w ell. I n t h e N a n k a n i c o m p l e x t h e o u t e r m o s t e n c l o s u r e ( t h e p e r i m e t e r o f t h e c o m p l e x ) is s o c ia lly c o d e d a s m a l e . A s w e m o v e in , t h e s u c c e s s iv e e n c l o s u r e s b e c o m e m o r e f e m a l e a s s o c i a t e d , d o w n t o t h e c i r ­ c u l a r w o m a n ’s dego (fig. 2 . 6 b ) , t h e c i r c u l a r f i r e p l a c e , a n d f i n a l l y t h e s c a l i n g s t a c k s o f p o t s (fig. 2 .6 c ). U s i n g a t e c h n i q u e q u i t e c lo s e t o t h a t o f t h e K o t o k o w o m e n , t h e w o m e n o f N a n k a n i a ls o w a t e r p r o o f a n d d e c o r a t e t h e s e w alls. T h e r e c u r r e n t i m a g e o f a

Fractals m A fr ic a n se ttle m e n t architecture

t r i a n g l e in th e s e d e c o r a t i o n s (s e e w alls o f d e g o ) r e p r e s e n t s t h e zalanga, a n e s t e d s t a c k o f c a l a b a s h e s ( c i r c u l a r b o w ls c a r v e d f r o m g o u r d s ) t h a t e a c h w o m a n k e e p s in h e r k i t c h e n (fig. 2 .6 d ). S i n c e th e s e c a l a b a s h e s a r e s t a c k e d fr o m large to sm all, th ey (a n d th e rope th a t h o ld s th e m ) form a tr ia n g le — th u s th e trian g u lar •v d e c o r a t i o n s also r e p r e s e n t s c a l in g c irc le s , j u s t in a m o r e a b s t r a c t way. T h e s m a l l ­ e s t c o n t a i n e r in a w o m a n ’s z a la n g a is t h e /cumpio, w h i c h is a s h r i n e for h e r soul. W h e n s h e dies, th e zalanga, alo n g w i t h h e r p o ts , is sm a sh e d , a n d h e r soul is released t o e t e r n i t y . T h e e t e r n i t y c o n c e p t , ' a s s o c i a t e d w i t h w e l l - b e i n g , is s y m b o li c a ll y

FIGURE 2 . 6 N a n k a n i home (a) D r a w i n g o f a N a n k a n i h o m e , ( b ) T h e w o m a n ’s m a i n r o o m (dego) in s i d e t h e N a n k a n i h o m e , ( c ) A s c a l i n g s t a c k o f p o t s in d i e f i r e p l a c e , (d) T h e ?a!an ga . (a, Bonrd ier a n d T rinh 1 5 8 5 ; co urte sy o f the authors; b - d , p/totos fro m

B ourdier a n d T rin h 19 8 5 , by permission o f the a u th o rs .)

33

Introduction

34

r e p r e s e n t e d by t h e c o il s o f a s e r p e n t o f i n f i n i t e l e n g t h , s c u l p t e d i n t o t h e w alls o f th e s e hom es. F r o m t h e 2 0 - m e t e r d i a m e t e r o f t h e b u i l d i n g c o m p l e x t o t h e 0 . 2 - r f te t e r k u m p i o — a n d n o t s im p ly a t o n e o r t w o le v e ls in b e t w e e n , b u t w i t h d o z e n s o f selfs i m i l a r s c a l in g s — t h e N a n k a n i f r a c t a l s p a n s t h r e e o r d e r s o f m a g n i t u d e , w h i c h is c o m p a ra b le to th e re s o lu tio n o f m o s t c o m p u te r screens. M o re o v e r, th ese scalin g circles a re far from u n c o n s c i o u s a c c i d e n t : as in sev eral o t h e r a r c h i t e c t u r e s w e h a v e e x a m i n e d , t h e y h a v e m a d e c o n s c i o u s u s e o f t h e s c a l in g in t h e i r s o c i a l s y m b o l ­ ism. In th is case, t h e m o s t p r o m i n e n t s y m b o li s m is t h a t o f b i r t h i n g . W h e n a c h il d is b o r n , fo r e x a m p l e , i t m u s t r e m a i n i n t h e i n n e r m o s t e n c l o s u r e o f t h e w o m e n ’s r d e g o u n t i l it c a n c ra w l o u t by itself. E a c h s u c c e s siv e e n t r a n c e is— s p a t ia l ly as w e ll as so c ia lly — a r i t e o f p assag e, s t a r t i n g w i t h t h e b io l o g i c a l e n t r a n c e o f t h e c h i l d f r o m t h e w o m b . I t le a v e s e a c h o f t h e s e n e s t e d c h a m b e r s as t h e n e x t i t e r a t i o n in life ’s sta g e s is b o r n . T h e z a la n g a m o d e l s t h e e n t i r e s t r u c t u r e i n m i n i a t u r e , a n d its d e s t r u c t i o n in t h e e v e n t o f d e a t h m a p s t h e j o u r n e y i n re v e r s e : f r o m t h e c ir c le s o f t h e la r g e s t c a l a b a s h to t h e t i n y k u m p i o h o l d i n g t h e s o u l — f r o m m a t u r e a d u l t t o t h e e t e r n a l r e a l m o f a n c e s t o r s w h o d w e ll i n " t h e e a r t h ’s w o m b . ” T h e r e is a c o n s c i o u s s c h e m e to t h e s c a l i n g c i r c l e s o f t h e N a n k a n i : it is a r e c u r s i o n w h i c h b o t t o m s - o u t a t in f in ity .

B r a n c h in g fr a c ta ls W h i l e A f r i c a n c i r c u l a r b u i l d i n g s a r e ty p i c a ll y a r r a n g e d in c i r c u l a r c l u s t e r s , t h e p a t h s t h a t le a d t h r o u g h t h e s e s e t t l e m e n t s a r e ty p i c a ll y n o t c i r c u la r . L i k e t h e b r o n c h i a l passag es t h a t o x y g e n a t e t h e f o u n d a l v e o l i of t h e lu n g s , t h e r o u t e s t h a t n o u r i s h c i r c u l a r s e t t l e m e n t s o f t e n t a k e a b r a n c h i n g f o r m (e .g ., figure 2 . 7 ) . B u t d esp ite m y u n a v o id a b ly o rg a n ic ist m e ta p h o r, th e s e c a n n o t be sim p ly re d u c e d to u n c o n s c i o u s tr a c e s o f m i n i m u m e ff o rt. F o r o n e t h i n g , c o n s c i o u s d e s i g n c r i t e r i a a r e e v i d e n t in c o m m u n i t i e s in w h i c h t h e r e is a n a r c h i t e c t u r a l t r a n s i t i o n f r o m c i r ­ c u l a r t o r e c t a n g u l a r b u i l d in g s , s i n c e t h e y c a n c h o o s e t o e i t h e r m a i n t a i n o r e ra s e t h e b r a n c h i n g fo rm s. D iscussion c o n c e r n i n g s u c h d ecisio ns are a p p a r e n t in t h e s e t t l e m e n t o f B anyo, C a m e ro o n , w h e re th e tra n s itio n h a s a lo n g h isto ry (H u ra u lt 1975)- 1 fo u n d th a t few c i r c u l a r b u i l d i n g s w e r e le f t, b u t t h o s e t h a t w e r e s t il l i n t a c t s e r v e d as a n e m b o d i m e n t o f c u l t u r a l m e m o r y . T h i s ro le w a s h o n o r e d i n t h e c a s e o f t h e c h i e f ’s c o m p l e x a n d e x p l o i t e d in t h e c a s e o f a b l a c k s m i t h ’s s h o p , w h i c h w a s t h e s i t e o f o c c a s i o n a l t o u r i s t v is its. A f t e r p a s s i n g a p p r o v a l by t h e g o v e r n m e n t o f f ic ia ls a n d t h e s u l t a n , 1 w as g r e e t e d b y t h e o f f i c i a l c i t y s u r v e y o r , w h o — c o n s i d e r i n g t h e fa c t t h a t h is r a is o n d ’e t r e w as E u c l i d e a n i z i n g t h e s t r e e t s — s h o w e d s u r p r is in g

Fractals in A fr ic a n se ttle m e n t architecture

35

F I G U R E 2.7

B r a n c h in g p a th s in a S e n e g a le s e s e t t l e m e n t {a) Aerial p h o to o f a traditional s e ttle m e n t in n o rth e a st Senegal. T h e space betw een enclosure walls, serving as roads an d footpaths, creates a b ra n c h in g pattern , (b) A branch in g fractal c a n be created by the background of a scaling set of circular shapes. (a, courtesy Institut Geographique du Senegal.)

a p p r e c i a t i o n fo r m y p r o j e c t a n d h e l p e d m e l o c a t e t h e m o s t f r a c ta l a r e a o f t h e c it y (fig. 2 .8 a ) . A t t h e u p p e r left o f t h e p h o t o w e se e a p o r t i o n o f t h e E u c l i d e a n grid t h a t c o v e r s t h e re s t o f t h e city, b u t m o s t o f t h i s a re a is s till fr a c ta l. T h e l o c a ­ t i o n o f t h i s c a r e f u ll y m a i n t a i n e d b r a n c h i n g — f a n n i n g o u t fr o m a la r g e p laza t h a t is b o r d e r e d by t h e p a l a c e o f t h e s u l t a n a n d t h e g r a n d m o s q u e — is n o c o i n c i d e n c e . By m a r k i n g m y p o s i t i o n o n t h e a e r i a l p h o t o as 1 t r a v e l e d t h r o u g h (fig. 2 . 8 b ) , I w as l a t e r a b le t o c r e a t e a m a p by d ig i ta l ly a l t e r i n g t h e p h o t o im ag e (fig. 2 .8 c ) . T h i s p r o v i d e s a s t a r k o u t l i n e — l o o k i n g m u c h lik e t h e v e i n s i n a le a f— o f t h e f r a c ta l s t r u c t u r e o f th i s t r a n s p o r t a t i o n n e t w o r k . I m ay h a v e p lu n g e d t h r o u g h a w all o r t w o in c r e a t i n g th i s m a p , b u t it c e r t a i n l y u n d e r e s t i m a t e s t h e fine b r a n c h i n g o f t h e f o o t p a t h s , as 1 d i d n o t a t t e m p t t o i n c l u d e t h e i r e x t e n s i o n s i n t o p r i v a t e h o u s i n g e n c lo s u r e s . H o w d o e s t h e c r e a t i o n o f th e s e s c a l in g b r a n c h e s i n t e r a c t w i t h t h e k i n d s o f i t e r a t i v e c o n s t r u c t i o n a n d s o c ia l m e a n i n g we h a v e s e e n a s s o c ia te d w ich o t h e r e x a m p l e s o f f r a c t a l a r c h i t e c t u r e ? A g o o d i l l u s t r a t i o n c a n b e f o u n d in t h e

Position 1— outside palace

FIGURE

Position 2 — road below mosque

2.8

B r a n c h i n g p a t h s in B a n y o

(a) Aerial phoco of the city of Banyo, Cameroon, (b) Successive views of the branching paths, as marked on the photo above. The clay walls require their own roof, which comes in both thatched and metal versions along the walkway in the last photo, (c) Aerial photo of Banyo with only public paths showing, (a, c o u r t e s y N a t i o n a l I n s t i t u t e o f C a r t o g r a p h y , Cameroon.)

Position 3 —narrow walkway

FIGURE 2 . 9

S t r e e t s o f Cairo (a) M a p o f s t r e e t s o f C a i r o , 1 8 9 8 . ( b ) F r a c t a l s i m u l a t i o n fo r C a i r o s t r e e t s , ( c ) E n l a r g e d v i e w o f fourth iteration.

Introduction

38

b r a n c h i n g stre e ts o f N o r t h A f r i c a n c ities. F ig ure 2 .9 a s h o w s a m a p o f C a i r o , E gypt, i n 1 8 9 8 . T h e m a p w as c r e a t e d b y a n i n s u r a n c e c o m p a n y , a n d I h a v e c o l o r e d t h e s t r e e t s b l a c k t o m a k e t h e s c a l i n g b r a n c h e s m o r e a p p a r e n t . F ig u r e 2 . 9 b s h o w s its c o m p u te r sim u la tio n . D ela v a l ( 1 9 7 4 ) h as d escrib ed th e m o r p h o g e n e s is o f S a h a ­ r a n c i t i e s in t e r m s o f s u c c e s s iv e a d d i t i o n s s i m i l a r t o t h e l i n e r e p l a c e m e n t in t h e f r a c ta l a l g o r i t h m s w e h a v e u se d h e r e . T h e first “s e e d s h a p e " c o n s i s t s o f a m o s q u e c o n n e c t e d by a w id e a v e n u e t o t h e m a r k e t p l a c e , a n d su c c e s s iv e i t e r a t i o n s o f c o n ­ s t r u c t i o n a d d su c c e s s iv e c o n t r a c t i o n s o f t h i s form . S i n c e t h e s e f r a c ta l S a h a r a n s e t t l e m e n t a r c h i t e c t u r e s p r e d a t e Is la m (s e e D e v is s e 1 9 8 3 ) , it w o u ld b e m i s l e a d i n g to s e e t h e m as a n e n t i r e l y M u s l i m i n v e n ­ t i o n ; b u t g i v e n t h e p r e v i o u s o b s e r v a t i o n s a b o u t t h e i n t r o d u c t i o n o f Is la m i c a r c h i te c t u r e as a n i n t e rru p t io n o f c ir c u la r fractals in s u b - S a h a r a n A fric a , it is im p o r­ t a n t t o n o t e t h a t Is la m i c c u l t u r a l in f l u e n c e s h a v e m a d e s t r o n g c o n t r i b u t i o n s to A f r i c a n f r a c ta ls as w ell. H e a v e r ( 1 9 8 7 ) d e s c r ib e s t h e " a r a b e s q u e " a r t i s t i c fo r m in N o r t h A f r i c a n a r c h i t e c t u r e a n d d e s i g n in t e r m s t h a t r e c a l l s e v e r a l f r a c ta l c o n ­ c e p t s ( e .g ., “c y c l i c a l r h y t h m s ” p r o d u c i n g a n “ i n d e f i n i t e l y e x p a n d a b l e ” s t r u c ­ t u r e ) . H e d is c u s s e d t h e s e p a t t e r n s as v is u a l a n a l o g u e s t o c e r t a i n I s l a m i c s o c ia l c o n c e p t s , a n d w e will e x a m i n e his idea s in g re a te r d e ta il in c h a p t e r 12 o f th is b oo k.

C o n c lu s io n T h r o u g h o u t t h i s c h a p t e r , w e h a v e s e e n t h a t a w id e v a r i e t y o f A f r i c a n s e t t l e m e n t a r c h i t e c t u r e s c a n be c h a r a c t e r i z e d as fra ctals. T h e i r p h y s i c a l c o n s t r u c t i o n m a k e s u se o f s c a l in g a n d i t e r a t i o n , a n d t h e i r s e lf- s im i la r it y is c le a r ly e v i d e n t fr o m c o m ­ p a r i s o n to fractal-grap hic s im u la tio n s. C h a p t e r 3 wilt s h o w t h a t fracta l a r c h i t e c t u r e is n o t sim p ly a ty pic al c h a r a c t e r i s t i c o f n o n - W e s t e r n s e t t l e m e n t s . T h i s a l o n e d o e s n o t a ll o w us t o c o n c l u d e a n i n d i g e n o u s A f r i c a n k n o w l e d g e o f f r a c t a l g e o m e t r y ; in f a c t , I w ill a rg u e in c h a p t e r 4 t h a t c e r t a i n f r a c ta l p a t t e r n s in A f r i c a n d e c o r a ­ ti v e a r t s are m e re ly t h e res u lt o f a n i n t u i t i v e e s t h e ti c . B u t as w e h a v e a lr e a d y s e e n , t h e fractals in A fr i c a n a rc h i te c t u r e a re m u c h m o r e t h a n t h a t . T h e i r d e sig n is lin k ed t o c o n s c i o u s k n o w l e d g e s y s te m s t h a t s u g g e s t s o m e o f t h e b a s i c c o n c e p t s o f f r a c ­ ta l g e o m e t r y , a n d in la t e r c h a p t e r s w e w ill fin d m o r e e x p l i c i t e x p r e s s i o n s o f t h i s i n d i g e n o u s m a t h e m a t i c s in a s t o n i s h i n g v a r i e t y a n d fo r m .

CHAPTER

3

-Fractals-------------------------------------------ire

-crosS'Cultural—c o m p a r is o n -

T h e f r a c t a l s e t t l e m e n t p a t t e r n s o f ' A f r i c a s t a n d in s h a r p c o n t r a s t t o t h e C a r te - , s i a n g rid s o f E u r o - A m e r i c a n s e t t l e m e n t s . W h y t h e d if f e r e n c e ? O n e e x p l a n a t i o n c o u ld b e t h e d if f e r e n c e in so c ia l s t r u c t u r e . E u r o - A m e r i c a n c u lt u r e s are o rg a n iz e d by w h a t a n t h r o p o l o g i s t s w o u ld c a ll a “s t a t e s o c i e t y . ” T h i s i n c l u d e s n o t j u s t t h e m o d e r n n a t i o n - s t a t e , b u t re f e rs m o r e g e n e r a l l y t o a n y s o c i e t y w i t h a la r g e p o l i t i c a l h i e r a r c h y , l a b o r s p e c i a l i z a t i o n , a n d c o h e s i v e , f o r m a l c o n t r o l s — w h a t is s o m e t i m e s c a ll e d “ t o p - d o w n ” o r g a n i z a t i o n . P r e c o l o n i a l A f r i c a n c u lt u r e s in c l u d e d m a n y s t a t e s o c i e t i e s , as w e ll as a n e n o r m o u s n u m b e r o f s m a ll e r , d e c e n t r a l i z e d so c ia l g ro u p s , w i t h l i t t l e p o l i t i c a l h i e r a r c h y — t h a t is, s o c i e ti e s t h a t a re o rg a n iz e d “b o t t o m - u p ” r a t h e r t h a n “ t o p - d o w n .” 1 B u t if f r a c t a l a r c h i t e c t u r e is s i m p l y t h e a u t o m a t i c re su lt o f a n o n s t a t e social o r g a n iz a tio n , t h e n we sh o u ld see fractal s e t t l e ­ m e n t p a t t e r n s in t h e i n d i g e n o u s s o c ie tie s o f m a n y p a rts o f t h e w orld. I n this c h a p ­ t e r w e w ill e x a m i n e t h e s e t t l e m e n t p a t t e r n s f o u n d in t h e i n d i g e n o u s s o c i e t i e s o f t h e A m e r i c a s a n d t h e S o u t h P a c if ic , b u t o u r s e a r c h w ill t u r n u p v e ry few f r a c ­ tals. R a t h e r t h a n d i v i d i n g t h e w o r l d b e t w e e n a E u c l i d e a n W e s t a n d f r a c t a l n o n - W e s t , w e w ill f i n d t h a t e a c h s o c i e t y m a k e s use o f its p a r t i c u l a r d e s i g n t h e m e s in o rg a n i z in g its b u il t e n v i r o n m e n t . A f r i c a n a r c h i t e c t u r e t e n d s t o b e frac­ tal b e c a u s e t h a t is a p r o m i n e n t d e s i g n t h e m e in A f r i c a n c u l t u r e . I n fact, th is c u l ­ tu r a l s p e c i f i c i t y o f d e s i g n t h e m e s is t r u e n o t o n l y fo r a r c h i t e c t u r e , b u t fo r m a n y

introduction

40

o t h e r ty p e s o f m a t e r i a l d e s i g n a n d c u l t u r a l p r a c t i c e s as w e ll. W e w ill b e g i n o u r su rv e y w i t h a b r i e f lo o k a t t h e d e s i g n t h e m e s in N a t i v e A m e r i c a n so c ie tie s, w h i c h i n c l u d e d b o t h h i e r a r c h i c a l s t a t e e m p i r e s as w e l l as s m a l l e r , d e c e n t r a l i z e d tr ib a l cu ltu res.

'N ative A m e r i c a n d e sig n T h e A n c e s t r a l P u e b l o s o c i e t y d w e l l e d in w h a t is n o w t h e s o u t h w e s t e r n U n i t e d S tates aro u n d 1 1 0 0

c .e

.

A e r i a l p h o t o s o f t h e s e sites (fig. 3 .1 ) a re s o m e o f t h e m o s t

f a m o u s e x a m p l e s o f N a t i v e A m e r i c a n s e t t l e m e n t s . B u t as we c a n se e fr o m th i s v a n t a g e p o i n t , t h e a r c h i t e c t u r e is p r i m a r i ly c h a r a c t e r i z e d by a n e n o r m o u s circu la r fo r m c r e a t e d fr o m s m a lle r re c ta n g u la r c o m p o n e n t s — c e r t a i n l y n o t t h e s a m e shapea t t w o d i f f e r e n t scales. T h i s j u x t a p o s i t i o n o f t h e c ir c le a n d t h e q u a d r i l a t e r a l ( r e c ­ tan gle or cross-shaped) form is n o t a c o in c i d e n c e ; th e tw o forms are t h e m o s t im p o r­ t a n t d e s i g n t h e m e s in t h e m a t e r i a l c u l t u r e o f m a n y N a t i v e A m e r i c a n s o c i e ti e s , in c lu d in g b o th N o r th a n d S o u th c o n tin e n ts A s far as a r c h i t e c t u r e is c o n c e r n e d , t h e r e are n o e x a m p l e s o f t h e n o n ! in e a r s c a l i n g w e saw in A f r i c a . T h e o n l y N a t i v e A m e r i c a n a r c h i t e c t u r e s t h a t c o m e c lo s e a r e a few i n s t a n c e s o f l i n e a r c o n c e n t r i c fig ures (fig. 3 . 2 a ) . S h a p e s a p p r o x ­ i m a t i n g c o n c e n t r i c c i r c l e s c a n b e s e e n i n t;he P o v e r t y P o i n t c o m p l e x i n n o r t h -

h

a

FIGURE 3 .I

E u c l i d e a n g e o m e t r y in N a t i v e A m e r i c a n a r c h i t e c t u r e (a) Aerial photo of Bandelter, one of the Ancestral Pueblo settlements (starting around 1100 c .e .) in norluwestern New Mexico, (b) Aerial photo of Pueblo Bonito, another Ancestral Pueblo . settlement (starting around 950 C. E. ) . N o te t h a t they are mostly rectangular at the smallest scale and circular at the largest scale. ( a , p h o io by T o m B aiter; b , photo by G e o rg G e r s te r .)

F ra c ta l m cross-cultural comparison

41

e r n L o u i s i a n a , f o r e x a m p l e , a n d t h e r e w e r e c o n c e n t r i c c i r c l e s o f t e p e e s in t h e C h e y e n n e c a m p s . T h e s t e p - p y r a m i d s o f M e s o a m e r i c a l o o k li k e c o n c e n t r i c s q u a r e s w h e n v i e w e d fr o m a b o v e . B u t l i n e a r c o n c e n t r i c fig ures a r e n o t f r a c ta ls. F irst, t h e s e a re l i n e a r layers: t h e d i s t a n c e b e t w e e n li n e s is alw a y s t h e s a m e , a n d t h u s t h e n u m b e r o f c o n c e n t r i c c ircles w i t h i n t h e largest circle is fin ite. T h e n o n ­ l i n e a r s c a l i n g o f f r a c t a l s r e q u i r e s a n e v e r - c h a n g i n g d i s t a n c e b e t w e e n lin e s ,

figure

3.2

L i n e a r c o n c e n tr ic f o r m s in N a tiv e A m e r i c a n a r c h i t e c t u r e (a) N a t i v e A m e r i c a n a r c h i t e c t u r e is t y p i c a l l y b a s e d o n q u a d r i l a t e r a l grid s o r a c o m b i n a t i o n o f circ ula r a n d g ri d fo r m s . T h e o n l y e x a m p l e s o f s c a l i n g s h a p e s a re t h e s e li n e a r c o n c e n t r i c fo rm s. In the P o v e r t y P o i n t c o m p l e x , fo r e x a m p l e , c o n c e n t r i c c i r c l e s w e r e u se d, a n d c o n c e n t r i c sq u a r e s c a n be seen if w e l o o k a t t h e M e x i c a n s t e p p y r a m i d s f r o m a b o v e . T h e s e fo r m s a re b e t t e r c h a r a c t e r i z e d as E u c li d e a n t h a n f r a c t a l fo r t w o re a so n s: ( b ) First , t h e y a re lin e a r . H e r e is a n e x a m p l e o f a n o n l i n e a r c o n c e n t r i c c i r c l e . W h i l e t h e l i n e a r v e r s i o n m u s t h a v e a f in it e n u m b e r o f c i r c l e s , t h is figure c o u l d h a v e a n i n f i n i t e n u m b e r a n d st il l fit in t h e s a m e b o u n d a r y , ( c ) S e c o n d , t h e y o n l y s c a l e w i t h r e s p e c t to o n e p o i n t ( t h e c e n t e r ) . H e r e is a n e x a m p l e o f c i r c l e s w i t h m o r e g l o b a l s c a l i n g s y m m e t r y .

/rUroduction

w h i c h m e a n s t h e r e c a n b e a n i n f i n i t e n u m b e r in a f i n i t e s p a c e (fig. 3 . 2 b ) . S e c ­ o n d , e v e n n o n lin e a r c o n c e n t r ic c ircles are o n ly self-sim ilar w ith re sp e c t to a sin g le locus ( t h e c e n t e r p o i n t ) , r a t h e r t h a n h a v in g t h e g lo b a l se lf-sitn ilarity o f f r a c t a l s (fig. 3 . 2 c ) . T h e i m p o r t a n c e o f t h e c i r c l e is d e t a i l e d i n a f a m o u s p a s s a g e b y B l a c k E l k ( 1 9 6 1 ) , in w h i c h h e e x p l a i n s t h a t “e v e r y t h i n g a n I n d i a n d o e s is in a c i r c l e , a n d t h a t is b e c a u s e t h e P o w e r o f t h e W o r l d alw a y s w o rk s in c ir c le s , a n d e v e r y t h i n g trie s t o be r o u n d . ” B u t h e g o e s o n to n o t e t h a t h is p e o p l e t h o u g h t o f t h e i r w o r ld as “ t h e circle o f t h e four q u a r t e r s ." A s im i la r c o m b i n a t i o n o f t h e c ir c le a n d q u a d r i ­ la t e r a l fo r m c a n b e s e e n m a n y N a t i v e A m e r i c a n m y t h s a n d a rtifa c ts; it is n o t t h e i r o n l y d e s i g n t h e m e , b u t i t c a n b e f o u n d i n a s u r p r is in g n u m b e r o f d i f f e r e n t s o c i ­ eties. B u rla n d (1 9 6 5 ) , for e x a m p le , s h ow s a c e re m o n ia l r a ttle c o n s is tin g o f a w o o d e n h o o p w i t h a cross i n s i d e fr o m s o u t h e r n A l a s k a , a N a v a j o s a n d p a i n t i n g s h o w i n g f o u r e q u i d i s t a n t sta lk s o f c o r n g r o w in g fro m a c i r c u la r lak e, a n d a P a w n e e bu ffaloh i d e d r u m w i t h f o u r a r r o w s e m a n a t i n g f r o m its c i r c u l a r c e n t e r . N a b o k o v a n d E a s t o n ( 1 9 8 9 ) d e s c r i b e t h e c u l t u r a l s y m b o l i s m o f t h e t e p e e in t e r m s o f its c o m ­ b i n a t i o n o f c i r c u l a r h i d e e x t e r i o r a n d t h e fo u r m a i n s t r u t s o f t h e i n t e r i o r w o o d s u p p o r t s . W a t e r s ( 1 9 6 3 ) p r o v i d e s a n e x t e n s i v e i l l u s t r a t i o n o f t h e c u l t u r a l s ig ­ n if ic a n c e o f c o m b i n i n g t h e c i r c u la r a n d cross fo rm in his c o m m e n t a r y o n t h e H o p i c r e a tio n m yth. T h e fo u rfo ld s y m m e t r y o f t h e q u a d r i l a t e r a l fo rm h a s le a d t o s o m e s o p h i s ­ t i c a t e d c o n c e p t u a l s t r u c t u r e s i n N a t i v e A m e r i c a n k n o w l e d g e s y s te m s . I n N a v a j o s a n d p a i n t i n g , for e x a m p l e , t h e c r u c i f o r m s h a p e r e p r e s e n t s t h e “ fo u r d i r e c t i o n s ” c o n c e p t , s i m i l a r to t h e C a r t e s i a n c o o r d i n a t e s y s te m . W h i l e o r d e r l y a n d c o n s i s ­ t e n t , it is by n o m e a n s s i m p l e (s e e W i t h e r s p o o n a n d P e t e r s o n 1 9 9 5 ) . T h e fo u r N a V a j o d i r e c t i o n s a r e a ls o a s s o c i a t e d w i t h c o r r e s p o n d i n g s u n p o s i t i o n s ( d a w n , day , e v e n i n g , n i g h t ) , y e a r l y s e a s o n s ( s p r i n g , s u m m e r , fa ll, w i n t e r ) , p r i n c i p a l c o lo r s ( w h i t e , b l u e , y e llo w , b l a c k ) , a n d o t h e r q u a d r i l a t e r a l d i v i s i o n s ( b o t a n i c a l c a t e g o r i e s , p a r t i t i o n s o f t h e life c y c le , e t c . ) . T h e s e a r e f u r t h e r b r o k e n i n t o i n t e r ­ s e c t in g b ip o la rities (e.g., t h e e a s t /w e s t s u n p a t h is b r o k e n by t h e n o r t h / s o u t h d i r e c ­ t i o n s ) . C o m b i n e d w i t h c i r c u l a r c u r v e s ( u s u a lly r e p r e s e n t i n g o r g a n i c s h a p e s a n d p ro c e s s e s ), t h e r e s u lti n g s c h e m a a r e Tich c u l t u r a l re s o u rc e s f o r i n d i g e n o u s m a t h e ­ m a t ic s (see M o o r e 1994)- B ut, e x c e p t for m i n o r re p e t it io n s ( l ik e t h e s m a ll c ir c u la r k i v a s in t h e C h a c o c a n y o n s i t e o f fig. 3 . 1 ) t h e r e is n o t h i n g p a r t i c u l a r l y f r a c ta l a b o u t th e s e q u a d rila te ra l designs. M a n y M e s o a m e r i c a n . c i t i e s , s u c h a s t h e M a y a n s ’ T e o t i h u a c a n , t h e A z te c 's T e n o c h t i t l a n , a n d t h e T o l t e c ’s T u l a , e m b e d d e d a w e a l t h o f a s t r o n o m i c a l k n o w l ­ e d g e in t h e i r r e c t a n g u l a r l a y o u t s , a l i g n i n g t h e i r s t r e e t s a n d b u i l d i n g s w i t h h e a v ­ e n l y o b j e c t s a n d e v e n t s ( A v e n i 1 9 8 0 ) . J. T h o m p s o n ( 1 9 7 0 ) a n d K l e i n ( 1 9 8 2 )

Fractals in cross-cultural com parison

d e s c r ib e t h e q u a d r i l a t e r a l figure as a n u n d e r l y i n g t h e m e in M e s o a m e r i c a n g e o ­ m e t r i c t h i n k i n g , fr o m s m a l l - s c a l e m a t e r i a ! c o n s t r u c t i o n t e c h n i q u e s s u c h as w e a v i n g , t o t h e h e a v e n l y c o s m o l o g y o f t h e f o u r . s e r p e n t s . R o g e l i o D iaz, o f th e .M a th e m a tic s M u seu m a t,th e U n iv e rs ity -o f Q u e re ta r o , p o in ts o u t th a t th e skin p a t t e r n s o f t h e d i a m o n d b a c k r a t t l e s n a k e w e r e u se d by t h e M a y a n s t o s y m b o liz e th i s c o n c e p t (fig. 3 . 3 a ) . C o m p a r i n g t h e M a y a n s n a k e p a t t e r n w i t h a n A f r i c a n w e a v in g b a s e d o n th e c o b r a s k i n p a t t e r n (fig. 3 . 3 b ) , w e c a n see h o w g e o m e t r i c m o d e l i n g o f s i m i l a r n a t ­ u ra l p h e n o m e n a i n t h e s e tw o c u l t u r e s re s u lts in v e ry d i f f e r e n t r e p r e s e n t a t i o n s . T h e N a t i v e A m e r i c a n e x a m p l e e m p h a s i z e s t h e E u c l i d e a n s y m m e t r y w ithin one size fr a m e ( “size f r a m e ” b e c a u s e t h e t e r m “s c a l e ” is c o n f u s i n g in t h e c o n t e x t o f s n a k e s k i n ) . T h i s M a y a n p a t t e r n is c o m p o s e d o f four s h a p e s o f t h e s a m e size, a fo u r fo ld sy m m e try . B u t t h e A f r i c a n e x a m p l e e m p h a s iz e s f r a c ta l s y m m e t ry , w h i c h is n o t a b o u t s i m i l a r i t y b e t w e e n r i g h t / l e f t o r u p / d o w n , b u t r a t h e r s i m i l a r i t y betw een d iffe r e n t size fr a m e s . T h e A f r i c a n s n a k e p a t t e r n s h o w s d i a m o n d s w i t h i n d i a m o n d s w i t h i n d i a m o n d s . N e i t h e r d e s i g n is n e c e s s a r il y m o r e a c c u r a t e : c o b r a s k i n d o e s i n d e e d e x h i b i t a f r a c ta l p a t t e r n — t h e s n a k e ’s " h o o d , ” its t w i n w h i t e p a t c h e s , a n d t h e i n d i v i d u a l sc a le s t h e m s e l v e s a re all d i a m o n d s h a p e d — a n d yet s n a k e s k i n p a t t e r n s ( t h a n k s t o t h e a r r a n g e m e n t o f t h e s c a le s ) a re also c h a r a c ­ te r i s t i c a l l y in d i a g o n a l ro w s, so t h e y a re a c c u r a t e l y m o d e l e d as E u c l i d e a n s t r u c ­ t u r e s as w e ll. E a c h c u l t u r e c h o o s e s t o e m p h a s i z e t h e c h a r a c t e r i s t i c s t h a t b e s t fit its d e s i g n t h e m e . T h e r e a re a few c a s e s in w h i c h N a t i v e A m e r i c a n s h a v e u s e d s c a l i n g g e o ­ m e t r i e s in a r t i s t i c d e s ig n s . S e v e r a l o f t h e s e w e r e n o t , h o w e v e r , p a r t o f t h e t r a ­ d i t i o n a l r e p e r t o i r e . ^ N a v a j o b l a n k e t s , f o r e x a m p l e , w e r e o r i g i n a l l y q u i t e lin e a r; -it w a s -o n l y c n - e x a m i n i n g P e r s i a n - r u g a ::t-hat N a v a j o w e a v e r s b e g a n t o u se m o r e s c a l i n g s t y le s o f d e s i g n ( a n d e v e n t h e n t h e d e s i g n s w e r e m u c h m o r e E u c l i d e a n t h a n t h e P e r s i a n o r i g in a l s ; see K e n t 1 9 8 5 ) . T h e P u e b l o " s t o r y t e l l e r ” figures h a v e s o m e s c a l i n g p r o p e r t i e s , b u t th e y a r e o f r e c e n t ( 1 9 6 0 s ) o r i g i n . P o t t e r y a n d c a l a ­ b a s h ( c a r v e d g o u r d ) a r t i s a n s in A f r i c a o f t e n c r e a t e s c a l i n g by a l l o w i n g t h e d e s i g n a d a p t i v e l y t o c h a n g e p r o p o r t i o n a c c o r d i n g to t h e t h r e e - d i m e n s i o n a l fo rm o n w h i c h it is i n s c r i b e d (s e e “a d a p t i v e s c a l i n g ” in c h a p t e r 6 ) , b u t th i s w a s q u i t e ra r e i n N a t i v e A m e r i c a n p o t t e r y u n t i l t h e 19 60s. F in a lly , t h e r e a r e t h r e e N a t i v e A m e r i c a n d e s i g n s t h a t a re b o t h i n d i g e n o u s • a n d f r a c ta l . T h e b e s t c a s e is t h e a b s t r a c t fig u ra tiv e a r t o f t h e H a i d a , K w a k i u t l , T l i n g u t , a n d o t h e r s in t h e P acific N o r t h w e s t ( H o l m 1 9 6 5 ). T h e figures, p rim a rily c a r v i n g s , h a v e t h e k i n d o f g lo b a l , n o n l i n e a r s e lf- s im i la r it y n e c e s s a r y t o q ualify as f r a c ta ls a n d c le a r ly e x h i b i t r e c u r s i v e s c a l i n g o f u p t o t h r e e o r fo u r it e r a t i o n s . T h e y a ls o m a k e u se o f a d a p t i v e s c a l i n g , as il l u s t r a t e d by t h e s h r i n k i n g se rie s o f

FIGURE

3.3

S n a k e s h i n m o d e ls in N a t i v e A m e r i c a n a n d A f r i c a n c u l t u r e s U ) R o g e lio D iaz o f t h e M a t h e m a t ic s M u se u m a t th e U n iv e r s ity o f Q u e r e t a r o sh o w s h o w the sk in p a tterns o f the d ia m o n d b a c k ra ttlesn ak e w ere used by the M a y a n s to sy m bo lize a c o s m o lo g y based on quad rilateral structure, (b) T h e M a n d ia c k w e avers o f G u in e a - B is s a u h a v e also cre a ted an a b stra c t d esign based on a s n a k e s k in p a tte r n , h u t c h o s e to e m p h a siz e t h e fractal c h a ra c te ristic s .

Fractals m cross-cwltural comparison

figures o n t h e d i m i n i s h i n g h a n d l e s o f s o u p ladles. R e s e a r c h e r s s i n c e A d a m s (1 9 3 6 ) h a v e p o i n t e d to t h e s im ila rity w ith e arly C h i n e s e art, w h i c h also h a s s o m e b e a u ti f u l e x a m p l e s o f s c a l i n g fo r m , a n d its s t y le o f c u r v a t u r e a n d b i l a t e r a l s y m ­ m e try c o u ld i n d e e d b e c u l t u r a l l y rie d '’to t h e s e N e w W o r l d d e s i g n s t h r o u g h a n a n c i e n t c o m m o n o r i g in . H o w e v e r , 1 d o u b t t h a t is t h e c a s e for t h e s c a l in g c h a r - . a c t e r is tic s . T h e P a c i f i c N o r t h w e s t a r t a p p e a r s t o h a v e d e v e l o p e d its s c a l in g s t r u c tu r e as t h e r e s u lt o f c o m p e t i t i o n b e t w e e n a r t is a n s fo r in c r e a s i n g ly e l a b o r a t e c a rv in g s (F a ris 1 9 8 3 ) . A l t h o u g h s o m e r e s e a r c h e r s h a v e a t t r i b u t e d t h e c o m p e t i ­ tio n pressure to E u ro p e a n trad in g influences, th e d e v e l o p m e n t o f t h e scaling designs was c le a rly a n i n t e r n a l i n v e n t i o n . T h e o t h e r t w o t r a d i t i o n a l N a t i v e A m e r i c a n d e s i g n s d o n o t q ua lify as fr a c ­ tals q u i t e as w e ll. O n e i n v o l v e s t h e s a w - t o o t h p a t t e r n f o u n d in s e v e r a l b a s k e t a n d w e a v i n g d e s ig n s . W h e n t w o s a w - t o o t h row s i n t e r s e c t a t a n a n g le , t h e y c r e ­ a te a t r ia n g l e m a d e fr o m t r i a n g u l a r edges. B u t th e s e ty p ic a lly h a v e o n ly tw o i t e r ­ a t i o n s o f s c a l e , a n d t h e r e is n o i n d i c a t i o n in t h e e t h n o g r a p h i c l i t e r a t u r e t h a t th e y are s e m a n t i c a l l y tie d to ideas o f r e c u r s io n o r s c a l in g (see T h o m a s a n d S lo c k ish 1 9 8 2 , 1 8 ). T h e o t h e r is a n a r r a n g e m e n t o f s p i r a l a r m s o f t e n f o u n d o n c o il e d b a s k e t s . A g a i n , t h i s is s e l f - s i m i l a r o n l y w i t h r e s p e c t to t h e c e n t e r p o i n t , b u t t h e r e a r e s o m e n o n l i n e a r s c a l i n g v e r s i o n s ( t h a t is, d e s i g n s t h a t r a p i d l y g e t s m a ll e r as y o u m o v e f r o m b a s k e t e d g e t o c e n t e r ) . H o w e v e r , t h e s e d e s i g n s g e n e r a l ly a p p e a r t o b e a f u s io n b e t w e e n t h e c i r c u l a r fo r m o f t h e b a s k e t a n d t h e cru cifo rm s h a p e o f th e arm s: a g a in m o r e a c o m b i n a ti o n o f tw o E u c lid e a n shapes th a n a fractal. O n e o f t h e m o s t c o m m o n e x a m p l e s o f t h i s f u s i o n b e t w e e n t h e c ir c le a n d t h e cro ss is t h e “ b if o ld r o t a t i o n ” p a t t e r n in w h i c h t h e a r m s c u r v e in o p p o s i t e d i r e c t i o n s , as s h o w n in fig u re 3 .4 a . F ig u r e 3 . 4 b s h o w s t h e fig u re o f 2 b a t fromM i m b r e s p o t t e r y w i t h a m o r e c o m p l e x v e r s i o n o f t h e b if o ld r o t a t i o n . E u c l i d e a n s y m m e t r y h a s b e e n e m p h a s i z e d in t h i s figure; for e x a m p l e , t h e e a rs a n d m o u t h o f th e b a t h a v e b e e n m a d e to lo o k s i m i la r to in c r e a s e t h e b i l a te r a l sy m m e try , a n d th e belly is d r a w n as a r e c t a n g l e . F ig u re 3 . 4 c s h o w s t h e figure o f a b a t fr o m a n A fric a n d esign ; it is a zigzag s h a p e t h a t e x p a n d s in w i d t h fro m t o p to b o t t o m , r e p ­ r e s e n tin g t h e w i n g o f t h e b a t. H e r e w e see n e g l e c t o f t h e b i l a t e r a l s y m m e t r y o f t h e bat, a n d a n e m p h a s i s o n t h e s c a l in g fo lds o f a s i n g le w in g. A g a i n , t h e N a t i v e A m e r i c a n r e p r e s e n t a t i o n m a k e s use o f its q u a d r i l a t e r a l / c i r c u l a r d esig n t h e m e , ju st as th e A f r i c a n r e p r e s e n t a t i o n o f t h e b a t e m p h a s iz e s s c a l i n g d e s i g n . T h e r e is p l e n t y o f c o m p l e x i t y a n d s o p h i s t i c a t i o n in t h e in d i g e n o u s g e o m ­ etry a n d n u m e r ic - s y s te m s o f t h e A m e r i c a s (s e e A s c h e r 1 9 91 , 8 7 - 9 4 ; C lo s s 1986; Eglash i 9 9 8 b ) , b u t w i t h t h e im p re s s iv e e x c e p t i o n o f t h e Pacific N o r t h w e s t c a r v ­ ings, fra c ta ls a r e a l m o s t e n t i r e l y a b s e n t in N a t i v e A m e r i c a n d e sig n s.

A rk a n s a s p o ttery

(a)

Pim a b a sk e t

S o u th w e ste rn pottery m otif

T h e c i r c u l a r a n d q u a d r i l a t e r a l f o r m s w e r e o f t e n c o m b i n e d i n N a t i v e A m e r i c a n d e s i g n s as a

fo u rfo ld o r b ifold rota tio n .

(b)

T h i s i m a g e o f a b a t , fr o m a M i t n b r e s p o t t e r y i n S o u t h w e s t e r n

N a t i v e A m e r ic a n tra dition , sh o w s an em p ha sis o n c ircu la r and q u a d rila te r a l fo r m . T h e ear a n d t h e m o u t h , fo r e x a m p le , are m ad e t o l o o k s i m i l a r t o e m p h a s i z e b i l a t e r a l s y m m e t r y , a n d t h e b e l l y is d r a w n as a r e c t a n g l e . It a l s o s h o w s t h e w i n g b o n e s a s a b i f o l d ro ta tio n pattern.

(c)

T h i s A f r ic a n scu lp tu re o f a bat, from th e L eg a so c ie ty o f Zaire, pays

l i t t l e a t t e n t i o n t o t h e b i l a t e r a l s y m m e t r y o f t h e b a t ’s b o d y b u t g i v e s a n em p h a sis o n th e s c a lin g sym m etry o f the w in g folds, s h o w n as an e x p a n d i n g z ig z a g p a t t e r n .

FIGURE 3 . 4 T h e bifold r o ta ti o n in N a t i v e A m e r i c a n d e s ig n ( a : L e f t , fr o m Miles 19 6 3 . C e n t e r , fr om S o u t h w e s t I n d i a n C r a f t A r t s by C l m a Lee T a n n e r . C o p y r ig h t 1 9 6 8 b y the A r i z o n a B o a rd o f Regents. R e p r i n t e d b y permission 0/ the U n i v e r s i t y o f A r i z o n a Press. Right, c o u r t e s y D o n C - r o w e - b , f r o m Z a s l o w 1 9 7 7 , c o u r t e s y o f the a u t h o r , c , cou rt esy o f D a n i e l D i e b u y c k . )

Fractals in cross-culcuTal comparison

D e s i g n s o f A s i a a n d t h e S o u t h P a c ific S e v e r a l o f t h e S o u t h P a cific c u l t u r e s s h a r e a t r a d i t i o n o f d e c o r a t i v e c u r v e d a n d s p ira l fo rm s, w h i c h in c e r t a i n M a o r i v e r s i o n s —- p a r tic u la r l y t h e i r r a f t e r a n d t a t • to o p a t t e r n s — w o u ld c e r t a i n l y c o u n t a s ’f r a c ta l (s e e H a m i l t o n 1 9 7 7 ). T h e s e are s t r o n g l y su g g e s tiv e o f t h e c u r v a t u r e o f w a v e s a n d sw irling, w ater. C l a s s i c J a p a n ­ ese p a i n t i n g s o f w a t e r w a v e s w e r e a ls o p r e s e n t e d as fra c ta l p a t t e r n s in M a n d e l ­ b r o t 's ( 1 9 8 2 ) s e m i n a l t e x t ( p l a t e C 1 6 ) . T h e s e m a y h a v e s o m e h i s t o r i c r e l a t i o n to sc a lin g p a t t e r n s in C h i n e s e a r t (see W a s h b u r n a n d C r o w e 1988, fig. 6 .9 ) , w h i c h are b a s e d o n s w ir lin g fo r m s o f w a t e r a n d c lo u d s , a b s t r a c t e d as s p i r a l s c a l i n g ' s t r u c t u r e s . W h i l e b o t h t h e J a p a n e s e a n d C h i n e s e p a t t e r n s a re e x p l i c i t l y a s s o c i­ a te d w i t h a n effort t o i m i t a t e n a t u r e , t h e s e M a o r i d e sig n s are r e p o r t e d t o b e m o r e a b o u t c u l t u r e — in p a r t ic u l a r , th e y e m p h a s iz e m i rro r -im a g e s y m m e t rie s , w h i c h a re a s s o c i a t e d w i t h t h e i r c u l t u r a l t h e m e s o f c o m p l i m e n t a r i t y in s o c i a l r e l a t i o n s ( H a n s o n 1 9 8 3 ). In a l m o s t all o t h e r in d i g e n o u s e x a m p l e s , h o w e v e r , t h e P a c if ic I s la n d e r p a t ­ t e r n s a r e q u i t e E u c l i d e a n . S e t t l e m e n t l a y o u t , f o r i n s t a n c e , is t y p i c a l l y in o n e o r tw o ro w s o f r e c t a n g u l a r b u i l d i n g s n e a r t h e c o a s ts , w i t h c i r c u l a r a r r a n g e m e n t s o f r e c t a n g l e s a ls o o c c u r r i n g i n l a n d (s e e F r a s e r 1 9 6 8 ) . T h e b u i l d i n g c o n s t r u c ­ t i o n is g e n e r a l l y b a s e d o n a c o m b i n a t i o n o f r e c t a n g u l a r g rid s w i t h t r i a n g u l a r o r c u r v e d a r c h roofs. O c c a s i o n a l l y t h e s e t r i a n g u l a r fa c e s a re d e c o r a t e d w i t h t r i ­ angles, b u t o th e rw is e n o n s c a lin g d esig n s d o m i n a te b o th s tru c tu r a l a n d d e c o ­ r a t i v e patterns.-^ A g a i n , it is i m p o r t a n t to n o t e t h a t t h i s la c k o f fra c ta ls d o e s n o t im ply a lack o f s o p h i s t i c a t i o n in t h e i r m a t h e m a t i c a l t h i n k i n g . F o r e x a m p l e , A s c h e r ( 1 9 9 1 ) h a s a n aly z ed s o m e o f t h e a l g o r i t h m i c p r o p e r tie s o f W a rlp ir i (P acific Is la n d e r) sa n d d r a w in g s . S i m i l a r s t r u c t u r e s a re a ls o f o u n d ' i n " A f r i c a ; w h e r e th e y a re called" lu so n a . Buc w h i l e t h e lu s o n a t e n d t o use s i m i l a r p a t t e r n s a t d i f f e r e n t sc a le s (as

w e w ill se e in c h a p t e r 5 ) , t h e W a r l p i r i d r a w i n g s t e n d t o use d i f f e r e n t p a t t e r n s at d i f f e r e n t sc ales. A s c h e r c o n c l u d e s t h a t t h e W a r l p i r i m e t h o d o f c o m b i n i n g d if ­ f e r e n t g r a p h m o v e m e n t s is a n a l o g o u s to a lg e b r a ic c o m b i n a t i o n s , b u t t h e A f r i c a n lu s o n a a re b e s t d e s c r i b e d as fractals. C o m p l i c a t i n g m y c h a r a c t e r i z a t i o n o f t h e S o u t h P acific as d o m i n a t e d by E u c l i d e a n p a t t e r n s is t h e e x t e n s i v e i n f l u e n c e o f I n d i a . I t is p e r h a p s n o c o i n c i ­ d e n c e c h a t th e t r ia n g l e of tr ia n g le s m e n t i o n e d a b o v e is m o s t c o m m o n in I n d o n e ­ sia. In a r c h i t e c t u r e , a f a m o u s e x c e p t i o n t o t h e g e n e r a l l y E u c l i d e a n fo r m is t h a t o f B o rob ud ur, a te m p le o f I n d i a n re lig io u s o rig in in J a v a . A l t h o u g h n o r t h e r n I n d i a t e n d s t o w a r d E u c l i d e a n a r c h i t e c t u r e , e x p l i c i t re c u r s iv e d e s ig n is s e e n in s e v e r a l t e m p l e s in s o u t h e r n I n d i a — t h e K a n d a r y a M a h a d e o in K h a j u r a h o is o n e o f t h e

Introduction

48

c l e a r e s t e x a m p l e s — a n d is r e l a t e d to re c u r s iv e c o n c e p t s in re l ig i o u s c o sm o lo g y . T h e s e s a m e a re a s in s o u t h e r n I n d i a a ls o h a v e a v e r s i o n o f t h e lu s o n a d r a w in g s , a n d m a n y o t h e r ex am p les o f fractal design. Interestingly, th e s e e x a m p le s from s o u t h ­ e r n I n d i a a r e t h e p r o d u c t s o f D r a v i d i a n c u l t u r e , w h i c h is s u s p e c t e d t o h a v e sig­ n i f i c a n t h i s t o r i c a l r o o t s in A f r i c a .

E u r o p e a n desig n s M o s t t r a d i t i o n a l E u r o p e a n f r a c ta l d e sig n s, lik e t h o s e o f J a p a n a n d C h i n a , a r e d u e t o i m i t a t i o n o f n a t u r e — a t o p i c we w ill t a k e u p i n t h e f o l lo w in g c h a p t e r . T h e r e a r e a t le a s t tw o s t e l l a r e x c e p t i o n s , h o w e v e r , t h a t a r e w o r t h n o t i n g . O n e is t h e s c a l in g i t e r a t i o n s o f t r ia n g l e s in t h e floor tile s o f t h e C h u r c h o f S a n t a M a r i a in C o s t n e d i n R o m e (see p l a t e 5 .7 in W a s h b u r n a n d C r o w e 1 9 8 8 ) . I h a v e n o t b e e n a b le to d e t e r m i n e a n y t h i n g a b o u t t h e i r c u l t u r a l o r i g in s , b u t t h e y a r e c le a rly a r t is t ic i n v e n t i o n r a t h e r t h a n i m i t a t i o n o f s o m e n a t u r a l f o r m . T h e o t h e r c a n b e f o u n d in c e r t a i n v a r i e ti e s o f C e l t i c i n t e r l a c e d esig n s. N o r d e n f a l k ( 1 9 7 7 ) su gg ests t h a t th e s e a re h is to ric a lly r e l a te d to t h e sp iral d e sig n s o f p r e - C h r i s t i a n C e l t i c re li­ g i o n , w h e r e t h e y t r a c e t h e f lo w o f a v it a l life fo r c e . T h e y a r e g e o m e t r i c a l l y classified as a n E u le r i a n p a t h , w h i c h is clo sely a s s o c ia te d w i t h m a t h e m a t i c a l k n o t t h e o r y (cf. J o n e s 1 9 9 0 , 9 9 ) .

C o n c l u s io n F ra c t a l s t r u c t u r e is by n o m e a n s u n i v e r s a l in t h e m a t e r i a l p a t t e r n s o f i n d i g e n o u s so c ie tie s . I n N a t i v e A m e r i c a n d e sig n s, o n l y t h e P acific N o r t h w e s t p a t t e r n s s h o w a s t r o n g f r a c ta l c h a r a c t e r i s t i c ; E u c l i d e a n s h a p e s o t h e r w i s e d o m i n a t e t h e a r t a n d a r c h i t e c t u r e . E x c e p t fo r t h e M a o r i s p i r a l d e s i g n s , f r a c t a l g e o m e t r y d o e s n o t a p p e a r to be a n i m p o r t a n t a s p e c t o f in d i g e n o u s S o u t h Pacific p a t t e r n s e ith er. T h a t is n o t t o say t h a t f r a c ta l d e s i g n s a p p e a r n o w h e r e b u t A f r i c a — s o u t h e r n I n d i a is full o f f r a c ta l s , a n d C h i n e s e flu id sw irl d e s i g n s a n d C e l t i c k n o t p a t t e r n s a re a lm o s t c e r t a in l y o f i n d e p e n d e n t o rig in .”* T h e i m p o r t a n t p o i n t h e r e is t h a t t h e frac­ tal d e s i g n s o f A f r i c a s h o u l d n o t b e m i s t a k e n for a u n i v e r s a l o r p a n c u l t u r a l p h e ­ n o m e n o n ; th e y are c u ltu ra lly specific. T h e n e x t c h a p t e r w ill e x a m i n e th e q u e s t i o n o f t h e i r m a t h e m a t i c a l sp ecificity.

CHAPTER

---------------— -------------------In te n tio n an d-------------------------------------------------in v e n tio n --------------------------------------------in--------------------------------------------------—design------------------------------ 1----—

B efo re w e c a n d is c u ss t h e f r a c t a l s h a p e s in A f r i c a n s e t t l e m e n t a r c h i t e c t u r e s as g e o m e tric k n o w le d g e , we n e e d t o t h i n k carefully a b o u t th e re la tio n b e tw e e n m a te rial d e sig n s a n d m a t h e m a t i c a l u n d e rs ta n d i n g. D e s ig n s a re b e s t s e e n as p o s i ti o n e d o n a r a n g e o r s p e c t r u m o f ^ i n t e n t i o n . A t t h e b o t t o m o f t h e ra n g e a re u n i n t e n ­ t i o n a l p a t t e r n s, c r e a t e d a c c i d e n t a l l y as t h e b y - p r o d u c t o f s o m e o t h e r a c ti v it y . In t h e m i d d l e o f rh e r a n g e a re d e s i g n s t h a t a r e i n t e n t ' o n n !

in tu itiv e ,

w ith n o rules o r g u id e l in e s t o e x p l a i n its c r e a t i o n . A t t h e u p p e r e n d o f t h e r a n g e , we h a v e t h e i n t e n t i o n a l a p p l i c a t i o n o f e x p l i c i t r u l e s t h a t w e a re a c c u s t o m e d to a s s o c i a t i n g w i t h m a t h e m a t i c s . T h e f o l l o w i n g s e c t i o n s w ill e x a m i n e t h e f r a c ta l d e s i g n s t h a t o c c u r in v a r i o u s p o s i t i o n s a l o n g t h i s i n t e n t i o n a l i t y s p e c t r u m .

F ra c ta ls fr o m u n c o n s c io its a c tiv ity A n e x c e l le n t e x a m p le o f u n i n t e n t i o n a l fractals c a n b e fo u n d in t h e w ork o f M ic h a e l Batty a n d Paul L ongley (1 9 8 9 ) , w h o e x a m i n e d t h e sh a p e o f large-scale u r b a n sprawl s u r r o u n d i n g E u r o p e a n a n d A m e r i c a n c i t i e s (fig. 4 . 1 ) . W h i l e t h e b l o c k s o f t h e s e citie s a re ty p ic a lly laid o u t in r e c t a n g u l a r g rids, a t v e ry large s cales— a r o u n d 100 sq u a re m i le s — w e c a n see t h a t t h e p r o c e s s o f p o p u l a t i o n g r o w t h h a s c r e a t e d a n irre g u la r p a t t e r n . T h i s ty p e o f f r a c t a l , a “d if f u s i o n l i m i t e d a g g r e g a t i o n , ” also

50

In tro d u c tio n

F I G U R E 4.1

U r b a n s p r a w l in L o n d o n L arg e-sca le urban spraw l g e n e ra lly h as a fra ctal stru ctu re. T h e u rb a n spraw l fra ctals o n ly ex ist at v e ry l a r g e s c a l e s — a b o u t 1 0 0 sq. m ile s — a n d re s u lt fro m th e u n co n sciou s accu m u lation o f u rb an p o p u la tio n d yn am ics. A t le v e ls o f co n s c io u s in te n t ( e .g ., th e grid o f c i t y b l o c k s ) , E u r o p e a n citie s are ty p ic a lly E u c l i d e a n . A r e a is 1 0 x 1 0 k ilom eters. ( .R e p r in t e d w i t h p e r m i s s i o n f r o m B a tty et al. 1 9 8 9 )

o c c u r s in c h e m i c a l s y s te m s w h e n p a r t i c l e s in a s o l u t i o n a r e a t t r a c t e d t o a n e l e c ­ t r o d e . F ra c t a l u r b a n s p r a w l is c le a r ly t h e r e s u l t o f u n c o n s c i o u s s o c ia l d y n a m i c s , n o t c o n s c i o u s d esig n . A t t h e s m a ll e r sc ale s in w h i c h t h e r e is c o n s c i o u s p l a n n i n g , E u r o p e a n a n d A m e r i c a n s e t t l e m e n t a r c h i t e c t u r e s a r e ty p i c a ll y E u c l i d e a n .

F r a c t a l s fro m n a tu r e :.m im e s is v e rs u s m o d e lin g I t m i g h t b e t e m p t i n g t o t h i n k t h a t t h e c o r ^ a s t j ^ t w e e n . t h e E u c li .d e jn - d e s ig n s o f E u ro p e a n d t h e fra c ta l d e sig n s o f A f r i c a c a n be e x p l a i n e d by t h e i m p o r t a n t ro le o f t h e n a t u r a l e n v i r o n m e n t in A f r i c a n s o c i e ti e s . B u t t h i s a s s u m p t i o n t u r n s o u t to be w rong; if a n y th in g , th e r e is a t e n d e n c y for in d ig en o u s societies to .fay o r E u clid ­ e a n s h a p e s . P h y s i c is t K h . S . , M a m e d o v o b s e r v e d s u c h a c o n t r a s t in h i s r e f le c t io n s o n h i s y o u t h in a n o m a d i c c u l t u r e : My p aren ts an d c o u n try m en . . .

u p to t h e s e c o n d w o r ld w a r h a d b e e n

n o m a d s . • •. O u ts i d e ou r n o m a d t e n t s we w ere liv in g in a w o n d e rfu l k in g d o m o f variou s c u rv e d lines a n d forms. S o w h y w e re th e a e s t h e t i c signs n o t form ed from t h e m , h a v i n g in s te a d p re s e rv e d g e o m e t r i c p a t t e r n s . . . ? [Jjn t h e cities where th e straight-line geometry’ was p re d o m in a n t th e a esth etic signs were formed . . . w ith n a tu re playing th e d o m i n a ti n g role. . . . [TJhe n o m a d did n o t n eed the “p o rtra it” o f a n o ak to be carried w ith him elsewhere because h e co uld view all sorts o f oaks every day and every h o u r . . . while for th e tow nsfolk th e ir in c lin a ­ tion to n a tu re was m ore a result of nostalgia.

( M a m e d o v 1986, 5 1 2 - 5 1 3 )

I n t e n t i o n a n d i n v e n t i o n in d e s ig n

. C o n t r a r y t o r o m a n t i c p o r t r a i t s o f t h e “n o b l e s a v a g e ” li v i n g as o n e w i t h n a tu r e , m o s t in d i g e n o u s s o c i e t i e s s e e m q u i t e i n t e r e s t e d i n d i f f e r e n t i a t i n g t h e m ­ selves fro m t h e i r s u r r o u q d ii ig s . I t is t h e i n h a b i t a n t s o f larg e s t a t e s o c i e ti e s , s u c h as t h o s e o f m o d e r n J i u r o p e } w h o y e a r n ,fo m i m i c t h e n a t u r a l . W h e n E u r o p e a n de signs a r e fr a c ta l , it is u s u a l ly d u e _t_P.an .effo rt.to m i m i c n a t u r e . A f r i c a n fra c ta ls based o n m i m i c r y o f n a t u r a l fo r m a re r e l a t i v e l y ra r e ; t h e ir i n s p i r a t i o n t e n d s to co m e fr o m t h e r e a l m o f c u l t u r e . H o w s h o u l d w e p l a c e s u c h n a t u r e - b a s e d d e s i g n s in o u r i n t e n t i o n a l i t y s p e c ­ tr um ? T h a t d e p e n d s o n t h e d i f f e r e n c e b e t w e e n m i m e s is.an d.m O -d elin g^> 4 im esjs^ is a r ^ a t t e m p t to m i r r o r t h e im a g e o f a p a r t i c u l a r o b j e c t , a g o al e x p l i c i t l y s t a t e d by P l a t o a n d A r i s t o t l e as t h e e s s e n c e o f a r t , o n e t h a t w a s s u b s e q u e n t l y fo l lo w e d in E urope for m a n y c e n tu r ie s (see A u e r b a c h 1953). A p h o to g r a p h is a goo d e x a m p le o f m im esis. A p h o t o m i g h t c a p t u r e t h e f r a c ta l im a g e o f a t r e e , b u t it w o u ld b e foolish to c o n c l u d e t h a t t h e p h o t o g r a p h e r k n o w s f r a c ta l g e o m e try . If a r t i s a n s a re simply try in g t o c o p y a p a rt ic u l a r n a t u r a l o b je c t, t h e n t h e sc alin g is a n .u .n in te n d e d b y -p r o d u c t. T h e m o s t i m p o r t a n t a t t n b u t e s j : h a t s e p a r a t e m i m e s is f r o m Q n o d e l i n g e r e a b s t r a c t i o n a n d g e n e r a l i z a t i o n .( A b s t r a c ti o n ^ is a n a t t e m p t t o l e a v e o u t m a n y o f th e c o n c r e t e d e t a i l s o f t h e s u b j e c t by c r e a t i n g a s i m p l e r figure w h o s e s t r u c t u r e is s till'ro u g h ly a n a lo g o u s t o t h e o r i g i n a l — o f t e n c a ll e d a “stylized" r e p r e s e n t a t i o n , in t h e a rts C jG en etaliz atio n ^ ir i e a n s s e l e c t i n g a n a n a l o g o u s s t r u c t u r e t h a t is^comm o n to all e x a m p l e s o f t h e s u b j e c t ; w h a t is o f t e n re f e r r e d t o as a n “u n d e r l y i n g ” form o r law .1 F or e x a m p l e , M a n d e l b r o t ( 1 9 8 1 ) p o i n t s t o t h e E u r o p e a n B e a u x A r t s : style as a n a t r e m p t n o t m e r e ly ro i m i t a t e n a t u r e , b u t t o “guess its law s.” H e n o t e s th a t th e in te rio r o f t h e Paris o p e ra h o u s e m a k e s use o f scalin g a rc h e s -w ith in -a rc h e s ;, . a p a t t e r n t h a t g e n e ra liz e s s o m e o f t h e s c a l in g c h a r a c t e r i s t i c s o f n a t u r e , but- is nota co py o f a n y o n e p a r t i c u l a r n a t u r a l o b j e c t . S i n c e t h e u l t i m a t e g e n e r a l i z a t i o n is a m a t h e m a t i c a l m o d e l ,, w h y d i d n ’t d e s i g n p r a c t i c e s s u c h as t h e B e a u x A r t s s t y l e r e s u l t i n a n e a r l y d e v e l o p m e n t o f fra c ta l g e o m e t r y ? For E u r o p e a n s , s u c h l u s h o r n a m e n t a t i o n w as p r e s e n t e d —-an d g e n e r a l ly a c c e p t e d — as e m b o d y i n g t h e opposite o f m a t h e m a t i c s ; i t w as ani e ff o rt to c r e a t e d e sig n s t h a t c o u ld o n ly b e u n d e r s t o o d in i r r a ti o n a l, e m o t i o n a l , o r i n t u ­ itiv e te r m s . E v e n s o m e m o v e m e n t s a g a i n s t t h i s a t t e m p t , s u c h as t h e u s e o f d i s ­ t i n c t l y E u c l i d e a n fo r m s in t h e h i g h m o d e r n a r t s s t y le , s i m p l y r e i n f o r c e d t h e a s s o c i a t i o n b e c a u s e it o n l y o f f e r e d a r e v e r s a l , s u g g e s t i n g t h a t “ m a t h e m a t i c a l ” shapes (cubes, sp h eres, e tc .) c o u ld be e s th e tic a lly a p p re c ia te d . W i t h rare e x c e p t i o n s ( e .g ., T h o m p s o n 1 9 1 7 ) , m i m e s i s o f n a t u r e in p r e - W W 11 E u r o p e a n a rt t r a d i t i o n s m e r e ly f u r t h e r e d t h e a s s u m p t i o n t h a t E u c l i d e a n g e o m e t r y w as t h e o n ly tr u e g e o m e t r y . 2

5*

In tro d u c tio n

T h e d if f e r e n c e b e tw e e n ^ m im e s js a n d m o d e l i n g p ro v i d e s tw o d i f f e r e n t posit i o n s a l o n g t h e j n t e n t i o n 3 l j C y _ s g e c t r u m . T h e le a s t i n t e n t i o n a l w o u ld b e m e r e ly h o l d i n g a m i r r o r t o n a t u r e —-for e x a m p l e , if s o m e o n e w a s j u s t s h o o t i n g , a c a m ­ e ra o r p a i n t i n g a realistic p ic t u r e o u td o o r s a n d h a p p e n e d t o i n c l u d e a fra c ta l o b j e c t ( c l o u d , tr e e , e t c . ) . T h i s m i m e s is d o e s n o t c o u n t as m a t h e m a t i c a l t h i n k i n g . M o r e | i n t e n t i o n a l is a stylized r e p r e s e n t a t i o n o f n a t u r e . If t h e a r t i s t h a s r e d u c e d t h e n a t - i ural im ag e t o a s t ru c tu r a ll y a n a l o g o u s c o l l e c t i o n o f m o r e s i m p l e e l e m e n t s , s h e h a s \ c re a te d a n ab stract m odel. W h e t h e r o r n o t s u c h a b stra c tio n s m o v e to w a rd m o re J m a t h e m a t i c a l m o d e l s is a m a t t e r o f lo c al p r e f e r e n c e . T h e t w o e x a m p l e s o f A f r i c a n r e p r e s e n t a t i o n s o f n a t u r e w e o b s e r v e d in th e previous c h a p te r c e rta in ly sh o w th a t th e a rtisa n s h a v e g o n e b e y o n d m e r e m im e s is. T h e M a n d i a c k c o b r a p a t t e r n w e saw in fig u re 3 .2 . s h o w s a s t r ic t ly sy ste m a tic scalin g p a tte rn . T h is te x tile d esig n c o n v e y s th e sc a lin g p ro p e rty o f 't h e n a tu r a l c o b ra s k in p a t t e r n — d ia m o n d s a t m a n y sc a le s— in a sty lized or a b s t r a c t way. W e c a n t a k e th is- i d e a a s t e p f u r t h e r b y e x a m i n i n g a n o t h e r B w a m i b a t s c u l p t u r e (fig . 4 . 2 ) . T h i s s p i r a l p a t t e r n is a l s o a s t y l i z e d r e p r e ­ s e n t a t i o n o f t h e n a t u r a l s c a l i n g o f t h e b a t ’s w in g , b u t it.is a d i f f e r e n t g e o m e t r i c d e s i g n t h a n t h e e x p a n d i n g zigzag p a t t e r n w e s a w in fi g u r e 3 .4 c . It is m o r e s ty 1-

FIGURE

4-2

Stylized, s c u l p t u r e o f a b a t

A nother Legn bat sculpture, but unlike the zigzag design we saw in figure 3.4c, here the scaling of the wing folds is represented by a spiral. (B y p erm ission o f th e M u se u m o f A f r i c a n A r t, N .Y .)

/m ention an d invention in design

iz e d i n t h e s e n s e o f b e i n g f u r t h e r a b s t r a c t e d f r o m t h e o r i g i n a l n a t u r a l b a t ’s w i n g . T h i s p r o v i d e s f u r t h e r e v i d e n c e t h a t t h e sc u l p t o r s w e r e f o c u s e d o n t h e s c a l i n g p r o p e r t i es— t h e g e n e r a l i z e d u n d e r l y i n g f e a t u r e — a n d n o t p a r t i c u l a r c o n ­ c r e te d etails.

f

T h e g r e a t e s t d a n g e r o f t h i s b o o k is t h a t r e a d e r s m i g h t m i s i n t e r p r e t its ^

\ m e a n i n g in te rm s o f p rim itiv ism . T h e fa c t t h a t A f r i c a n j r acta ls are_rarely t h e r e s u l t 1 o f i m i t a t i n g n a t u r a l fo r m s Jh e lp s r e m i n d us t h a t t h e y a re n o t d u e t o “p r i m i t i v e s l i v in g c lo s e t o n a t u r e . ” B u t e v e n fo r t h o s e r a r e cases i n w h i c h A f r i c a n f r a c ta ls are re p r e s e n ta tio n s o f n a tu r e , it is c lea rly a s £ ^f'C ^scio \js,abstractiQ n , n o t a m im e tic re f le c tio n . T h e g e o m e t r i c c h i n k i n g t h a t g o e s i n t o chesg^exam ples m a y ja g s i m p le, b u t it is q u i t e i n t e n t i o n a l .

T h e fr a c ta l e s t h e t i c J u s t as w e saw h o w d e s i g n s b a s e d o n n a t u r e r a n g e fr o m u n c o n s c i o u s t o i n t e n ­ t i o n a l , a r t i f i c i a l d e s i g n s a ls o v a r y a l o n g a r a n g e o f i n t e n t i o n , w i t h s o m e s i m p l y th e result o f an in tu itiv e in s p ira tio n , a n d o th e r s a m o re self-conscious a p p lic a ­ t i o n o f ru le s o r p r i n c ip l e s . T h e e x a m p l e s o f A f r i c a n f r a c ta l s in fig u re 4 .3 d i d n o t a p p e a r to be r e l a t e d t o a n y t h i n g o t h e r t h a n t h e a r t i s a n ’s e s t h e t i c i n t u i t i o n or s e n s e o f b e auty. A s far as 1 c o u l d d e t e r m i n e fr o m d e s c r i p t i o n s in t h e l i t e r a t u r e a n d m y o w n fie ld w o rk , t h e r e w e r e n o e x p l i c i t ru le s a b o u t h o w t o c o n s t r u c t th e s e d e s i g n s , a n d n o m e a n i n g w as a t t a c h e d to t h e p a r t i c u l a r g e o m e t r i c s t r u c t u r e o f t h e fig u re s o t h e r t h a n l o o k i n g g o o d . I n p a r t i c u l a r , I s p e n t s e v e r a l w e e k s in D a k a r w a n d e r i n g t h e s t r e e ts a s k i n g a b o u t c e r t a i n f r a c ta l fa b ric p a t t e r n s a n d j e w ­ e l r y d e s i g n s , a n d cite i n s i s t e n c e c h a t t h e s e p a t t e r n s w e r e “j u s t fo r l o o k s ” w as so a d a m a n t t h a t , if s o m e o n e f i n a l l y h a d o f f e r e d a n e x p l a n a t i o n , I w o u l d h a v e v i e w e d it w i t h s u s p ic io n . S i n c e s o m e p r o f e s s i o n a l m a t h e m a t i c i a n s r e p o r t t h a t t h e i r id e a s w e r e p u re i n t u i t i o n — a s u d d e n flash o f i n s i g h t , o r “A h a ! ” as M a r t i n G a r d n e r p u t s it— we s h o u l d n ’t d i s c o u n t t h e g e o m e t r i c t h i n k i n g o f a n a r t i s a n w h o r e p o r t s “1 c a n ’t tell y o u h o w I c r e a t e d r h a t , it j u s t c a m e t o m e . " E s t h e t i c p a t t e r n s c l e a r ly q u a li fy as i n t e n t i o n a l d e s ig n s . O n t h e j i t h e r hand,, t h e r e is n ’t m u c h we c a n s a y a b o u t t h e m a t h e m a ti c a l ideas b e h i n d th e s e p a tte rn s ; th e y will h a v e t o r e m a in a m ystery unless s o m e t h i n g m o r e is rev eale d a b o u t t h e i r m e a n i n g o r d i e a r t is a n ’s; c o n s t r u c t i o n te c h niqu£S.sl t is w o r t h n o t i n g , h o w e v e r , t h a t t h e y d o c o n t r i b u t e to t h e f r a c ta l d e sig n t h e m e in A f r i c a . E s t h e t i c p a t t e r n s h e l p i n s p ir e p r a c t i c a l d esig n s, a n d v ic e .y e rsa . S i n c e a n c i e n t tr a d e n e t w o r k s w e r e w e ll e s t a b l i s h e d , t h e d if fu sio n o f e s t h e t i c p a t ­ t e r n s is p r o b a b l y o n e p a r t o f t h e e x p l a n a t i o n for h o w fra c ta ls c a m e t o be so w i d e ­ s p r e a d ac ro s s t h e A f r i c a n c o n t i n e n t .

FIGURE 4 .3

E s t h e t i c fr a c ta l s ( a ) M e u r a n t ( q u o t e d in R e i f 1 9 9 6 ) r e p o r t s t h a t t h e M b u t i w o m e n w h o c r e a t e d t h is f r a c t a l d e s i g n , a b a r k - c l o t h p a i n t i n g , t o ld h i m t h e d e s i g n w a s n o t “ t e l l i n g s t o r ie s , " n o r w a s it “ r e p r e s e n t i n g a n y vp a r t i c u i a r o b j e c t . ” ( b ) S c a l i n g p a t t e r n s c a n be fo u n d in m a n y A f r i c a n d e c o r a t iv e designs t h a t a r e r e p o r t e d t o b e “ ju st fo r b e a u t y . ” U p p e r l e f t , S h o o w a R a f f i a c l o t h ; l o w e r l e ft, S e n e g a l e s e t i e d y e ; rig ht, S e n e g a l e s e pendant. ( a , co u rt e sy G e o r g e s M e n i a n l . b : U ppe r le ft , B r it is h M u s e u m ; l o w e r l e f t , f r o m M u s e c R oy al d e l A / r i q u c C e n t r a l , Belgiu m ; right, photo co urte sy I F A N , D a k a r .)

Im e n iio n a n d in v e n tio n in design

55

FIGURE 4 . 4

T h e q u in c u n x fra cta l A c u s t o m e r in T o u b a , S e n e g a l , s e l e c t s a f r a c t a l q u i n c u n x p a t t e r n f o r h is l e a t h e r n e c k b a g . T h e q u i n c u n x is h i s t o r i c a l l y i m p o r t a n t b e c a u s e o f its u se b y e a r l y A f r i c a n A m e r i c a n “ m a n o f s c i e n c e " B enjam in Banneker.

O f c o u r s e , t h e r e a r e p l e n t y o f A f r i c a n d e s i g n s t h a t a re s t r i c t l y E u c l i d e a n , b u t e v e n t h e s e c a n o c c u r i n “ f r a c t a l i z e d ” v e r s io n s . O n e p a r t i c u l a r l y i n t e r e s t i n g ex a m p l e is t h e quincunx (fig. 4 . 4 ) . T h e b a sic q u i n c u n x is a p a t t e r n o f five sq uares, w i t h o n e a t t h e c e n t e r a n d o n e a t e a c h c o r n e r . T h e d e s i g n is c o m m o n i n S e n e ­ gal, w h e r e it is sa id t o r e p r e s e n t t h e “ li g h t o f A l l a h . ” T h e q u i n c u n x is h i s t o r i ­ cally i m p o r c a n t b e c a u s e t h e im a g e w as r e c o r d e d a s j a e i n g o f re lig io u s s i g n if i c a o c e to t h e early A f r i c a n A m e r i c a n “ m a n o f s c i e n q e ” B e n j a m i n B a n n e k e r . S i n c e e v i ­ d e n c e s h o w s t h a t B a n n e k e r ’s g r a n d f a t h e r ( B a n n a k a ) c a m e f r o m S e n e g a l , t h e q u i n c u n x is a f a s c i n a t i n g p o s s i b i l i t y fo r g e o m e t r y in t h e A f r i c a n d i a s p o r a (s e e E glnsh 19 9 7 c fo r d e t a i l s ) . B e c a u s e o f t h e f r a c t a l e s t h e t i c , t h i s re l ig i o u s s y m b o l h is o f t e n . a r r a n g e d in a r e c u r s i v e p a t t e r n — fiv e s q u a r e s q f five s q u a r e s — a s s h o w n / . in figure 4 .4 in t h e d e s i g n fo r a l e a t h e r n e c k bag.

J ‘

F in a lly , t h e r e a r e a ls o e x a m p l e s o f t h e f r a c t a l e s t h e t i c i n c o m m o n h o u s e ­ h o l d f u r n i s h i n g s . E u r o - A m e r i c a n f u r n i t u r e is d i f f e r e n t i a t e d by f o r m a n d f u n c ­ ti o n — sto o ls are s tr u c tu r e d d if fe re n tly fro m c h a irs, w h ic h are s tr u c tu r e d d i f f e r e n t l y f r o m c o u c h e s . B u t in A f r i c a n h o m e s o n e o f t e n se e s d i f f e r e n t sizes o f t h e s a m e s h a p e (fig. 4 .5 ). A s i m i l a r d i f f e r e n c e h a s b e e n n o t e d in c r o s s - c u l tu r a l co m p a riso n s o f h o u sin g . W h e r e a s E u r o - A m e r ic a n s w o u ld n e v e r t h i n k to h a v e a g o v e r n e r ’s m a n s i o n s h a p e d l i k e a p e a s a n t ’s s h a c k ( o r v ic e v e r s a ) , p r e c o l o n i a l A f r i c a n a r c h i t e c t u r e ty p i c a l l y u s e d t h e s a m e fo r m a t d i f f e r e n t sizes (as w e saw for t h e sta tu s d i s t i n c t i o n s in t h e B a -ila s e t t l e m e n t in c h a p t e r 2 ). I t is u n f o r t u n a t e \

f chat t h i s A f r i c a n s t r u c t u r a l c h a r a c t e r i s t i c is ty p i c a l l y d e s c r i b e d in t e r m s o f a ] !

lack— as d i e a b s e n c e o f s h a p e d i s t i n c t i o n s r a t h e r t h a n a s t h e p r e s e n c e o f a se a l- /

\ ing d e s i g n t h e m e .

Introduction

56

FI GURE 4 .5

T h e fr a c t a l e s t h e t i c i n h o u s e h o l d o b j e c t s A fr ic 3 n s to o ls , chairs, an d ben ch es are often created in a scaling series. (P h o to co u rtesy o f A f r i c a P l a c e , I n c .)

C o n c lu s i o n W e n o w h a v e s o m e g u id e lin e s to h e l p d e t e r m i n e w h ic h fracta l designs s h o u ld c o u n t as m a t h e m a t i c s , w h i c h s h o u l d n o t , a n d w h i c h a re i n b e t w e e n . F ig u r e 4.-6 s u m ­ m arizes t h i s s p e c t r u m . F r a c t a ls p r o d u c e d b y ^ u n c o n s c i o u s a c t i v i t y , o r as t h e u n i n ­ t e n t i o n a l b y - p r o d u c t fr o m so m e o t h e r p u rp o s e , c a n n o t b e a t t r i b u t e d t o i n d i g e n o u s c o n c e p t s . B u t s o m e a r t i s t i c a c t i v i t i e s , s u c h as t h e c r e a t i o n o f sty liz e d r e p r e s e n -

Llumtentioiial

Unconscious activity •urban sprawl Accidental/ractals • “mirror” portrait of nature (moneys; e.g., photography)

I n te n tio n a l

I n te n tio n a l

but implicit

and explicit

I

1 Construction techniques

C o n s c i o u s m e o f n a t u r a l s c a lin g

•stylistic abstraction of natural scaling Esthetic design •intuitive fractal design theme

f ig u r e

4 .6

F r o m u n c o n s c i o u s a c c i d e n t to e x p lic it d e s i g n

Knowledge systems

/ n t e n t i o n a n d i n v e n t i o n in d e s ig n

c a tio n s o f n a t u r e o r p u r e l y e s t h e t i c d e s i g n s , d o s h o w i n t e n t i o n a l a c t i v i t y fo cu s ed o n f r a c ta ls. S u c h e x a m p l e s m a y be r e s t r i c t e d in t e r m s o f g e o m e t r i c t h i n k i n g — tja.e-mt-isans m a y o n l y r e p o r t t h a t t h e d e s i g n s u d d e n l y c a m e t o t h e m in a flash o f in t u it io n - V -b u t th e s e a r e c le a r ly d i s t i n g u i s h e d fr o m th o s e w h i c h a re u n c o n s c i o u s o T "a c c id e n ta l. T h e f o l l o w i n g c h a p t e r s will c o n s i d e r e x a m p l e s t h a t a re n o t o n ly i n t e n t i o n a l , b u t also in c l u d e e n o u g h e x p li c it in f o r m a t i o n a b o u t design te c h n i q u e s a n d k n o w le d g e sy stem s to be easily id en tifiab le as m a t h e m a t i c a l p ra ctice a n d ideas.

PA RT

-A frican------------------ — “fractal-m athem atics-

CHAPTER

5

G eom etric algorithms-

T h e w ord (J^g o rith m J) d e riv e s fro m th e n a m e o f a n A r a b m a t h e m a tic ia n , A l-K h w arizm i (c. 7 8 0 - 8 5 0

c

.e .),

w h o s e b o o k H is a b a l'ja b r w ’ al-m u q a b a lci ( C a l ­

c u l a t i o n by R e s t o r a t i o n a n d R e d u c t i o n ) a l s o g a v e us t h e w o r d “ a l g e b r a . ” A l t h o u g h A l - K h w a r i z m i f o c u s e d o n n u m e r i c p r o c e d u r e s fo r s o l v i n g e q u a t i o n s , t h e m o d e r n t e r m ^ a l g o r i t h m / a p p li e s to a n y for m a lly s p e c ifie d p r o c e d u r e . A p e o m e t r i c a l g o r i t h m g iv es e x p l i c i t i n s t r u c t i o n s for g e n e r a t i n g a part.ifi.u la r s e t o f s p atia l p a t t e r n s . W e h a v e a l r e a d y s e e n h o w i t e r a t i o n s o f s u c h p a t t e r n - g e n e r a t i n g p r o c e d u r e s c a n p r o d u c e f r a c t a l s o n a c o m p u t e r s c r e e n ; i n t h i s c h a p t e r we will e x a m i n e t w o i n d i g e n o u s a l g o r i t h m s t h a t a ls o use i t e r a t i o n t o p r o d u c e s c a l i n g designs: t h e 4 5 -degreg_-angle p o q s tr u e tjo n s o f t h e M a n g b e t u , a n d t h e lu s o n a d r a w ­ ings o f t h e C h o k w e .

g e o m e t r y in M c in g b e tu d e s i g n T h e M a n g b e t u o c c u p y t h e D e l e R i v e r a r e a in t h e n o r t h e a s t e r n p a r t o f t h e D e m o c r a t i c R e p u b l i c o f C o n g o (f o rm a lly Z a ir e ) . A r c h a e o l o g i c a l e v i d e n c e s h o w s ir o n s m e l t i n g in t h e are a s i n c e 2 3 0 0

b .c

. e .,

b u t th e M a n g b e tu , c o m in g from drier

lands a ro u n d p re s e n t-d a y U g a n d a , d id n o t arriv e u n til a b o u t 1000

c

.e.

T hrough

b o th c o n flic t a n d c o o p e ra tio n , th e y e x c h a n g e d c u ltu ra l tra d itio n s w ith o th e r 61

62

A fr ic a n fra c ta l m athem atics

s o c i e ti e s o f t h e a re a : B a n t u - s p e a k i n g p e o p le s s u c h a s t h e B u d a , B u a a n d L ese, a n d U b a n g i a n - s p e a k i n g p e o p l e s s u c h as t h e A z a n d e , B a n g b a , a n d B ara-m bo. A r o u n d 180 0 a n um b,er o f s m a ll c h ie f d o m s w e re c o n s o l id a t e d i n t o tjfie first M a n g b e t u k i n g ­ d o m . A l t h o u g h it la s te d o n l y t w o g e n e r a t i o n s , a t r a d i t i o n o f c o u r t ly p re s tig e c o n t i n u e d e v e n in sm all villages a n d spread t o m a n y o f th e M a n g b e t u ’s tr a d in g p artn ers. T h i s c o m b i n a t i o n o f c u l t u r a l d iv e r s it y , e x c h a n g e , a n d p r e s t i g e r e s u l t e d in a th r iv in g artistic tra d itio n . /

A d e t a i l e d a c c o u n t o f M a n g b e t u h is t o r y a n d t r a d i t i o n s c a n b e f o u n d in

African Reflections: A n from Northeastern Zaire. S c h i l d k r o u t a n d K e im ( iggo) beg in - t h e i r a n a ly s is b y s h o w i n g t h a t t h e m o s t f a m o u s a s p e c t o f Man_gbe.Lti-.3rt, t h e ‘‘rjat.u ra lis tic.Jb o k ,’’ w a s a c t u a l l y q u i t e rare in t h e t r a d i t i o n a l M a n g b e t u s o c i e t y o f t h e n i n e t e e n t h c e n t u r y . D u r i n g a r e s e a r c h e x p e d i t i o n t o t h e C o n g o in *914 ( th e o rig in o f th e p h o to s used h e re ) , m a m m alo g ist H e r b e r t L a n g b e c a m e f a s c i n a t e d w i t h life lik e c a r v i n g s o f h u m a n figures, a n d as w o r d s p r e a d t h a t h e w a s p a y ­ in g h i g h p r i c e s fo r t h e m , m o r e o f t h e s e c a r v i n g s w e r e p ro d u c e d . O t h e r co lle c to r s c a m e to b uy th ese piec e s,.an d e v e n t u a l l y t h e e c o n o m i c r e w a r d s for p r o d u c i n g n a t u ­ ra l is t ic M a n g b e t u a r t b e c a m e so s t r o n g t h a t it r e p l a c e d o t h e r s t y le s . S c h ild k ro u t a n d K eim sh o w t h a t o rig in ally th e m o s t i m p o r t a n t e s t h e t i c w as n o t n a tu r a lis m , b u t a b stra c t g e o m e t r i c d esig n . T h e in d i g e n o u s f a s c t n a t i o n w i t h a r t i ­ fic e a n d a b s t r a c t i o n w a s j g n o r e d - by c o l o n i z e r s , a n d t h e i r p r e c o n c e p t i o n s o f A f r i c a n s as nature_-Ioving “ c h i l d r e n o f t f i e f o r e s t” b e c a m e a self-fu lfillin g e x p e c ­ t a t i o n . B u t t h e a r t if a c ts a n d p h o t o g r a p h i c r e c o r d s f ro m t h e 191 4 e x p e d i t i o n p r o v i d e us w i t h e x c e l l e n t e x a m p l e s o f t r a d i t i o n a l M a n g b e t u p a t t e r n s , as w e ll as a n o p p o r ­ t u n i t y to in fe r s o m e o f t h e i r t e c h n i q u e s . F ig u re 5.1 s h o w s t h e d e c o r a t i v e e n d o f a n iv o ry h a t p i n . L ik e t h e a r c h i t e c t u r e a n d e s t h e t i c p a t t e r n s we h a v e s e e n , t h i s is c le a r ly a s c a l i n g d e s i g n , b u t t h e p r e ­ c i s i o n o f t h e p a t t e r n s u g g e s ts t h a t t h e r e m a y b e a m o r e

FIGURE 5 . I M a n g e b e t u iv o ry s c u l p t u r e ( T ra n sp a re n cy no . 3 9 3 5 , photograph b y L i n t o n G a rd in e r , co urte sy A m e r i c a n M u s e u m o f R l a t v r a l H is t o ry.)

G eom etric algorithms

fo rm a l g e o m e t r i c pro cess a t w ork. S im il a r d e s ig n c a n be s e e n a t w ork in th e M a n g b e t u ’s g e o m e t r i c style o f p e rs o n a ! a d o r n m e n t . F ig ure 5 .2 a s h o w s a M a n g b e t u h a i r ­ sty le, p o p u l a r d u r i n g t h e t i m e t h a t th i s c a r v i n g w a s ,p r e a t e d ( a b o u t 1 9 1 4 ) , w h i c h f e a t u r e d a d is k a n g l e d t o t-he v e r t i c a l a t 4 5 d e g r e e s . M e n o f t e n w o re a h a t w i t h t h e t o p f l a t t e n e d , f o r m i n g t h e s a m e a n g l e , as s e e n in figure 5 .2 b . j u s t as a p l a n e c u t s d i a g o n a l l y t h r o u g h t h e t o p o f t h e h e a d s in t h e iv o r y s c u l p t u r e o f figure 5.1, real M a n g b e t u h e a d d r e s s e s also t e r m i n a t e d in a 4 5 ' d e g r e e a n g le . T h i s w a s o n ly o n e p a r t o f a n e l a b o r a t e g e o m e t r i c e s t h e t i c b a s e d o n m u l ­ t ip le s o f t h e 4 5 - d e g r e e a n g le . F igu re 5 .2 b s h o w s a n iv o ry h a t p i n , e n d i n g in a disk p e r p e n d i c u l a r to it, in s e r t e d p e r p e n d i c u l a r t o t h e h a t . T o its r i g h t, a s m a ll ivory a r r o w p i n n e d t o t h e h a t p o i n t s h o riz o n ta lly , t h u s f o r m i n g a n a n g l e o f 135 d e g re e s w ith th e h a tp i n . E a c h p a rt o f th e e n s e m b le w as a lig n e d by a m u ltip le o f th e 4 5 - d e g r e e a n g le . T h i s a d o r n m e n t sty le i n c l u d e d a rtificia l e l o n g a t i o n o f t h e h e a d , w h i c h is c le a r ly v is ib le in t h e p h o t o g r a p h in figure 5 .2 b . E l o n g a t i o n w as a c c o m ­ p l i s h e d b y w r a p p i n g a c l o t h b a n d a r o u n d t h e h e a d o f i n f a n t s ; t h e w o m a n in fig u re 5 . 2 a is w e a v i n g o n e o f t h e s e b a n d s . H e a d e l o n g a t i o n r e s u l t e d in a n a n g l e o f 135 d e g r e e s b e t w e e n t h e b a c k o f t h e h e a d a n d t h e n e c k .

FIGURE 5.2

Q e o m e tr i c d e sig n in M a n g b e tu p e r s o n a l a d o r n m e n t (a) M a n g b e t u w o m a n w e a v i n g h e a d b a n d , (b ) M a n g b e t u c h i e f . fa, negative n o . 1 1 1 9 1 9 , photograph by H . L a n g , co urtesy A m e r ic a n M u s e u m o f N a tu r a l H isto ry; b , n e g a t i v e n o . 2 2 4 1 0 5 , p h o t o g r a p h by H . L a n g , c o u r t e s y A m e r i c a n M u s e u m o f N a t u r a l H i s t o r y . )

63

A fr ic a n fractal m athem atics

64

W h i l e t h e M a n g b e t u g e o m e t r i c c o n c e p t i o n o f t h e b o d y m a y h a v e i n s p ir e d t h e 4 5 'd e g re e -a n g le d esign t h e m e , th o s e desig ns were c erta in ly n o t lim ited to sim ple m i m i c r y o f a n a t o m y . W e c a rt c l e a r l y s e e t h i s in t h e i r m u s ic a l i n s t r u m e n t s . T h e d r u m in figure 5 .3 a, for e x a m p l e , h a s its u p p e r s u r f a c e c u t a t a 4 5 ' d e g r e e a n g l e t o t h e v ertical. T h e s t r i n g e d i n s t r u m e n t s h o w n in figure 5 .3 b h a s a r e s o n a t o r t h a t m e e t s th e v e r t ic a l t u n i n g s t e m a t a 13 5 ' d e g r e e a n g le . E v e n in t h e c a s e o f a n t h r o ­ p o m o r p h i c d esig ns, t h e a r t is a n s e l a b o r a t e d o n t h e h u m a n fo r m in w ays t h a t s h o w

b F I G U R E 5 .3

Q e o m e tric d esig n in M a n g b e tit m u s ic a l in s tr u m e n ts

(a) Drum, (b) Harp. (a , negative no. t 1 1 8 9 6 , J)/Kitogm|?h b y H - L ang, c o u rtesy A m e ric a n M u s e u m o f N a tu r a l H isto ry ; b , c o u rtesy R i c t b c r g M u se u m Z u ric h , p h o tofpaph by W euscctn a n d K a u f.)

G e o m e tric algorithms

c re a tiv e — a n d n o t m erely im ita tiv e — a p p lic a tio n s of g e o m e tric a l th in k in g .. F or e x a m p l e , t h e r e is a n a n t h r o p o m o r p h i c d e c o r a t i v e m o t i f a t t h e e n d o f t h e t u n i n g s t e m s h o w n in fig u re 5 . 3 b , b u t t h e s e h u m a n h e a d s a r e n o r s i m p l y m i m ­ i c k i n g h u m a n fo r m . I n fig u re 5 . 2 b w e sa'W t h a t t h e M a n g b e t u h a d a 13 5 - d e g r e e a n g l e b e t w e e n t h e b a c k o f t h e h e a d a n d t h e n e c k . T h e c a r v e d h e a d s in fig u re 5 .3b h a v e a 9 0 -d e g re e a n g le b e tw e e n t h e b ac k o f th e h e a d a n d th e n e c k . S u c h d i s t o r t i o n s i n d i c a t e a c t i v e g e o m e t r i c t h i n k i n g r a t h e r t h a n p a s s iv e r e f l e c t i o n o f n a t u r a l a n a t o m i c a l a n g le s ( w h i c h , r e c a l l i n g t h e a r t ifi c ia l h e a d e l o n g a t i o n , w e re n o t so n a t u r a l to b e g i n w i t h ) . T h e r e are also purely a b stra c t d esig ns t h a t m a k e use o f m u ltip les o f 45 degrees, ,a s w e see in figure 5 .4 . M o d e r n M a n g b e t u r e p o r t t h a t t h e c r e a t i o n o f a d e s i g n re f le c te d t h e a r t i s a n ’s d e s ire t o “m a k e it b e a u t i f u l a n d s h o w t h e i n t e l l i g e n c e o f th e c re a to r” (S c h ild k ro u t a n d K eim 1990, 1 0 0 ). T h i s sug gests a n o t h e r r e a s o n f o r a r t i ­ sa n s to a d h e r e to a n g le s t h a t a r e m t i l r i p l e s o f 45 d e g r e e s: if t h e r e w e r e n o ru le s t o fo llow , t h e n it w o u ld h a v e b e e n d if fic u lt t o c o m p a r e d e sig n s a n d d e m o n s t r a t e o n e ’s i n g e n u i ty . By r e s t r i c t i n g t h e p e r m is s ib l e a n g l e s t o a s m a ll se t, th e y w e r e b e t t e r a b l e t o d i s p l a y t h e i r g e o m e t r i c a c c o m p lis h m e n t s . C o m b in in g th is 45-d eg v ee-an g le c o n ­ stru c tio n te c h n iq u e w ith th e scalin g p r o p ­ e r t ie s o f t h e iv o r y c a r v i n g in fi g u r e 5.1 c a n re v e a l irs u n d e r l y i n g s t r u c t u r e . T h e c a r v i n g lias t h r e e i n t e r e s t i n g g eo uie lii> - f e a U u e s : 1 First, e a c h h e a d is la rg e r t h a n t h e o n e above! ) ir a n d f a c e s i n t h e o p p o s i t e d i r e c t i o n . S e c 1 o n d , e a c h h e a d is f r a m e d b y t w o l i n e s , o n e f o r m e d by t h e j a w a n d o n e f o r m e d b y t h e h a ir ; t h e s e li n e s i n t e r s e c t a t a p p r o x i m a t e l y 9 0 d e g re e s . T h i r d , t h e r e is a n a s y m m e t r y ; t h e le ft s i d e s h o w s a d i s t i n c t a n g l e a b o u t |j2o d e g r e e s fr o m t h e v e r t i c a l .

FIGURE 5 .4 M a n g e b e t u iv o ry sc u lp tu r e (Transparency n o . 3 9 2 9 , p h o to g ra p h b y L y r u o n G a rd in e r , courtesy A m e r i c a n M u s e u m o f N a t u r a l H i s t o r y . )

65

FIGURE

5.5

Q e o m e t r i c a n a l y s i s o f a n ivory s c u l p t u r e

FIGURE 5 .6

(g e o m e tric r e l a t i o n s i n t h e M a n g b e t u ite r a tiv e s q u a r e s s t r u c t u r e S i n c e 9[ a n d 02 a r e t h e a l t e r n a t e i n t e r i o r a n g l e s o f a t r a n s v e r s a l i n t e r s e c t i n g t w o p a r a l l e l lin e s ,

0 ,-6 ,.

A fr ic a n fractal m athem atics

68

A l l o f t h e s e f e a t u r e s c a n b e a c c o u n t e d fo r b y t h e s t r u c t u r e s h o w n in f i g ' u r e 5 .5 . T h i s s e q u e n c e o f s h r i n k i n g s q u a r e s c a n b e c o n s t r u c t e d by a n i t e r a t i v e p rocess, b is e c tin g o n e s q u a re to c re a te t h e - l e n g t h o f th e sid e for t h e n e x t s q u a r e , as i n d i c a t e d i n t h e d i a g r a m . W e w ill n e v e r k n o w fo r c e r t a i n if t h i s ite ra t i v e - s q u a r e s c o n s t r u c t i o n w as t h e c o n c e p t u n d e r l y i n g t h e s c u l p t u r e ’s d e s ig n , bu t. it d o e s m a t c h t h e f e a t u r e s i d e n t i f i e d a b o v e . I n t h e iv o r y s c u l p t u r e , t h e le f t s id e is a b o u t 2 0 d e g r e e s fr o m t h e v e r t i c a l . I n t h e i t e r a t i v e - s q u a r e s s t r u c t u r e , t h e le ft s i d e is a b o u t 18 d e g r e e s f r o m t h e v e r t i c a l , as s h o w n i n fig u re 5 .6 . H e r e w e s e e s / t h a t t h e c o n s t r u c t i o n a l g o r i t h m c a n b e c o n t i n u e d i n d e f i n i t e l y , a n d t h e r e s u ltI in g s t r u c t u r e c a n b e a p p li e d to a w id e v a r i e ty o f m a t h t e a c h i n g a p p l i c a t i o n s , fro m / \s im p le p ro c e d u ra l c o n s tr u c tio n to tr ig o n o m e try (E g iash 1998a).

Lusona T h e C h o k w e p e o p le o f A n g o ja /r a d a tm d itiq n .q f c r e n tin g p a tte r m ^ li n e s c a l l e d j ' l u s o n a ” in t h e _ s a n d . G e r d e s ( 1 9 9 1 ) n o t e s t h a t t h e l u s o n a s a n d d raw ings sh o w th e c o n s tr a in ts necessary to d efine w h a t m a th e m a tic ia n s c a ll an “E u l e r i a n p a t h ” : t h e s ty lu s n e v e r le a v e s t h e s u r f a c e a n d n o l i n e is r e t r a c e d . T h e lu s o n a also t e n d to use t h e s a m e p a t t e r n a t d i f f e r e n t scales, t h a t is, s u c c e s siv e i t e r ­ a t i o n s o f a s in g le g e o m e t r i c a l g o r i t h m . F ig u r e 5.7 s h o w s t h e first t h r e e i t e r a t i o n s o f o n e o f t h e d o z e n s o f l u s o n a t h a t w e re r e c o r d e d by m i s s i o n a r i e s d u r i n g t h e n i n e ­ t e e n t h c e n t u r y , w h e n t h e lu s o n a t r a d i t i o n w a s s tiii i n t a c t . A s in t h e c a s e o f t h e M a n g b e c u 4 5 - d e g r e e c o n s t r u c t i o n s , t h e r e s t r i c t io n t o a n E u le ria n p a th pro v id es t h e C h o k w e w ith a m e a n s to c o m p a re designs w ith in a single fram ew ork, a n d to sh o w h o w in c re a sin g c o m p l e x it y c a n b e a c h ie v e d w i t h i n t h e s e c o n s t r a i n t s o f s p a c e a n d lo g ic. B u t u n l i k e t ’h e ' c o m p e t i r i v e ba sis fo i co m -p a r i s o n t h a t t h e M a n g b e t u d e s c r ib e , th e C h o k w e m a d e use o f th e s e figures t o c r e ­ a t e g ro u p id e n tity . T h e re p o r ts i n d i c a t e t h a t t h e l u s o n a w e re u se d in a n a g e -g r a d e i n i t i a t i o n s y s te m ; r i tu a l s t h a t a l l o w e d e a c h m e m b e r t o a c h i e v e t h e s t a t u s o f r e a c h i n g t h e n e x t , m o r e s e n i o r le v e l o f i d e n t it y . By u s i n g m o r e c o m p l e x l u s o n a , t h e i t e r a t i o n s o f s o c ia l k n o w l e d g e p a s s e d o n in t h e i n i t i a t i o n b e c o m e v is u a liz e d by t h e g e o m e t r i c i t e r a t i o n s . In c h a p t e r 8 w e w ill s e e o t h e r e x a m p l e s o f i t e r a t i v e scalin g p a tt e r n s in in i ti a ti o n rituals. T h i s tr a d it io n o f g ro u p id e n tity t h r o u g h k n o w l­ e d g e o f t h e lu s o n a w a s a ls o d e p l o y e d b y t h e C h o k w e as a w a y t o d e f l a te t h e e g o o f o v e r c o n f i d e n t E u r o p e a n visito rs, w h o f o u n d t h e m s e l v e s u n a b l e t o r e p l ic a t e t h e lu s o n a o f m a n y c h i l d r e n . C o n c lu sio n T h e s e t w o e x a m p l e s , t h e M a n g b e t u iv o ry c a r v i n g a n d t h e lu s o n a d r a w in g s , h e l p us see t h a t A f r i c a n fractals are n o t ju s t t h e resu lt o f s p o n t a n e o u s i n t u i t i o n ; in so m e

G eom etric algorithms

cases th e y are c re a te d u n d e r r u le -b o u n d t e c h n i q u e s e q u iv a le n t to W e s te rn m a t h e m a t i c s . A n d t h e i r c u l t u r a l s i g n i f i c a n c e m a k e s it c l e a r t h a t a ll m a t h e ­ m a t i c a l a c t i v i t y — n o m a t t e r in w h i c h s o c i e t y it i s j b u n d — is p r o d u c e d t h r o u g h a n i n t e r a c t i o n b e t w e e n t h e f r e e d o m o f lo c a l h u m a n i n v e n t i o n a n d t h e u n i v e r ­ sal c o n s t r a i n t s w e d i s c o v e r in s p a c e a n d lo gic.

‘Myombo"— trees of the ancestors.

F I G U R E 5 .7

L usona

(a) These figures, “lusona," were traditionally drawn in sand by the Chokwe people of Angola. Successive iterations of the same algorithm were sometimes used to produce similar patterns of increasing size, (b) The first and third iterations of another lusona algorithm carved into a wooden box lid. (a, based on drawings in Gerdes 1995.)

69

A fr ic a n fra c ta l m a th em a tics

R e c a ll t h a t in b o t h e x a m p l e s t h e role o f “c o n s t r a i n t ” w as c ru c ia l t o t h e d e v e l ­ o p m e n t o f t h e i r sc a lin g g eo m etry . F o r t h e M a n g b e t u ’s d e s i g n it w as t h e c o n s t r a i n t s o f s t r a i g h t - e d g e c o n s t r u c t i o n w i t h a n g l e s a t m u l t i p l e s o f 4 5 degrees'.--For t h e C h o k w e ’s lu s o n a it w as t h e c o n s t r a i n t s o f a n E u l e r i a n p a t h . B u t in e a c h c a s e t h e c h o i c e o f p a r t i c u l a r o b j e c t i v e c o n s t r a i n t s — d e c i d i n g w h i c h o f t h e i n f i n i t e laws o f s p a c e a n d log ic w e a r e c o n c e r n e d w i t h — w a s e s t a b l i s h e d b y a n d fo r t h e s o c ia l re la tio n s o f th e co m m u n ity . In th e case o f th e M a n g b e tu it w as a rtis tic c o m p e ­ t i t i o n , a n d in t h e c a s e o f t h e C h o k w e it w as a g e - g r a d e i d e n t i t y . I n o t h e r w o rd s, t h e i n v e n t i o n a n d d is c o v e ry c o m p o n e n t s o f m a t h e m a t i c s a r e i n e x t r i c a b l y l i n k e d t h r o u g h s o c i a l e x p r e s s io n . P h i l o s o p h i c p e r s p e c t i v e s o n t h e r e l a t i o n o f c u l t u r e a n d m a t h e m a t i c s will b e f u r t h e r d is c u s s e d in p a r t 11, b u t t o d o so w e n e e d a f u l le r p o r t r a i t o f A f r i c a n f r a c ta l ge om e try . T h e n e x t c h a p t e r w ill e x a m i n e A f r i c a n c o n c e p t i o n s o f t h e m o s t f u n d a m e n t a l c h a r a c t e r i s t i c o f fr a c ta ls : n o n l i n e a r s c a l in g .

CHAPTER

Scaling-

6

W e h a v e a lr e a d y s e e n m a n y e x a m p l e s o f s c a l i n g in A f r i c a n d esig ns. I n t h e s e t t l e ­ m e n t a r c h i te c t u r e o f c h a p t e r 2, for e x a m p l e , t h e c o m p u t e r sim u la tio n s c learly sh ow t h a t w e c a n t h i n k a b o u t t h e s e p a t t e r n s in t e r m s o f f r a c ta l g e o m e try . H o w d o t h e A f r i c a n a r t i s a n s t h i n k a b o u t s c a l in g ? Is it j u s t i n t u i t i o n , o r d o t h e y u se e x p l i c i t m a t h e m a t i c a l p r a c t i c e s in t h i n k i n g a b o u t s i m i l a r i t y a t d i f f e r e n t sizes? By e x a m ­ in in g v a r i e t i e s o f d e s i g n s w i t h d i f f e r e n t s c a l i n g p r o p e r t i e s , a n d c o m p a r i n g th e s e w ith t h e a r t i s a n s ’ d is c u s s io n s o f t h e p a t t e r n s , w e c a n g a i n s o m e i n s i g h t i n t o s c a l ­ ing as a m a t h e m a t i c a l c o n c e p t in A f r i c a n c u l t u r e s .

P ow er lo u ' s c a lin g in iv in d s c r e e n s fro m th e S a h e l T h ^ S a h e l ^ s a b r o a d b a n d o f a r i d l a n d b e t w e e n t h e S a h a r a D e s e r t a n d t h e rest o f s u b - S a h a r a n A f r i c a . S i n c e t h e r e a r e few t r e e s a n d a g r e a t d e a l o f m i l l e t c u l ­ ti v a ti o n , it is n o t s u r p r i s i n g t h a t a r t i s a n s u se m i l l e t s t a lk s to w e a v e f e n c e s , walls, an d o t h e r c o n s t r u c t i o n s . B u t t h e c o n s i s t e n t use o f a n o n l i n e a r s c a l in g p a t t e r n in these stra w s c r e e n s (fig. 6 . 1 a ) isja b j t o d d . R a t h e r t h a n u n if o r m l e n g t h s , t h e row s o f m ille t s t r a w g e t s h o r t e r a n d s h o r t e r as t h e y go up. I n t h e U n i t e d S t a t e s w e are used to t h e im a g e o f “ t h e w h i t e p i c k e t f e n c e ” as a s y m b o l o f u n c h a n g i n g , l i n e a r r e p e t it io n , y e t h e r e t h e f e n c e s a re d i s t i n c t l y n o n l i n e a r . W h i l e 1 w as in M a l i o n

The straw windscreen in Niger.

FI GURE 6. 1

A n A f r i c a n w in d screen

(a) The diagonallengths of these rows from bottom to top-. L = 16 12 8 6 5 , 5 3 3 2 2 This pattern is quantitatively determined by the African artisans. Here we see how the bundles of straw are first laid in long diagonal rows, then a row at the opposite angle is interlaced in back of it. T he length of each diagonal tow— how high up you go before doing the interlace step—is determined by counting a certain number o f diagonals to be crossed. In the first layer (c) we go over eight, then six, then four, then three. Each bundle is about 2 inches across the diagonal, which is why the lengths go as dovible the number of crossings. The odd numbered lengths are created by splitting the bundles in two. Why do the lengths repeat in pairs as we go toward the top? There is a discrete approximation to the continuous nonlinear scale that the African artisans follow. ( a , p h o t o by p e r m i s s i o n o f G a r d i 1 9 7 3 . )

(f ig u re c o n t i n u e s )

Scaling

73

t h e o u t s k i r t s o f t h e c a p i t a l c it y o f B a m a k o , I h a d t h e o p p o r t u n i t y to i n t e r v i e w s o m e o f t h e a r t i s a n s w h o c r e a t e t h e s e s c r e e n s a n d w as p r o v i d e d w i t h a s t r i k i n g e x a m p le o f in d ig en o u s a p p lic a tio n o f th e scalin g c o n c e p t. T h e a r t i s a n s b e g a n by e x p l a i t n n g th a .t.in .'T e rd le . a r e a s ” s u c h as t h e forests o f t h e s o u t h , t h e s c r e e n s a re n o t m a d e w i t h s c a l i n g ro w s b u t r a t h e r w i t h ro w s o f lo n g , u n i f o r m l e n g t h . T h i s is b e c a u s e t h e l o n g ro w s use less s t r a w a n d ta k e less t i m e to m a k e . B u t h e r e in t h e S a h e l , t h e y s a id , w e h a v e s t r o n g w in d s a n d d u st. T h e s h o r t e s t ro w s a re t h e o n e s t h a t k e e p o u t d u s t t h e b e s t, b e c a u s e th e y a re th e t i g h t e s t w e a v e . B u t t h e y a ls o t a k e m o r e m a t e r i a l s a n d effort. “W e k n o w t h a t . t h e w i n d b lo w s s t r o n g e r as y o u g o u p fr o m t h e g r o u n d , so we m a k e t h e w i n d s c r e e n t o m a t c h — t h a t w ay w e o n l y u se t h e s t r a w n e e d e d a t e a c h l e v e l . ” T h e r e a s o n in g t h e a r r i s a n s r e p o r t e d is e q u i v a l e n t t o w h a t a n e n g i n e e r w o u ld c a ll a “c o s t - b e n e f i t ” a n a l ysis; d e v e l o p i n g t h e m a x i m u m in f u n c t i o n ( k e e p ­ in g o u t d u s t ) fo r a m i n i m u m o f c o s t ( e ff o rt a n d m a t e r i a l s ) . M y p r i m a r y i n t e r e s t h e r e is in s h o w i n g t h a t t h e sc a l i n g c o n c e p t in A f r i c a c a n b e m u c h m o r e s o p h ist i c a t e d t h a n j u s t a n o b s e r v a t i o n , “th e s a m e t h i n g in d i f f e r e n t sizes." T h e c r e a t i o n

A ssum ing d e c re a se in wind penetration is reciprocal of length: a = I (wind engineers:

a = 1/3 ) •

- 0 .4

.

-0 .6

.

< -0 .8

-

- 1 .0

.

^



?-

»



♦ ♦ ♦ L o g(H )

FIGURE 6 .1

(continued)

(d) T h e r e l a t i o n b e t w e e n w i n d s p e e d a n d v e r t i c a l h e i g h t as s h o w n in t h e W in d E n g in e e rin g H a n d b o o k , ( e ) T h e A f r i c a n w i n d s c r e e n m a k e r s say t h a t t h e y h a v e s c a l e d t h e r o w s o f s tr a w to m a t c h t h e c h a n g e o f w i n d s p e e d w i t h h e i g h t . I f w e a s s u m e , j u s t f o r s i m p l i c i t y , t h a t t h e d e c r e a s e in w i n d p e n e t r a t i o n is t h e r e c i p r o c a l o f t h e l e n g t h , t h e n w e c a n g e t t h e A f r i c a n e s t i m a t e f o r a. b y m easu rin g th e s lo p e o f ro w le n g t h v ersu s h e ig h t o n a lo g - lo g gra p h . T h is g iv e s a = e n g i n e e r s u s e Ct =

16 —

1,

w h e r e a s the

n o t b a d for a b a llp a r k e s t im a t e .

N o t e t h a t t h e g r a p h is i n a v e r y s t r a i g h t l i n e , e x c e p t w h e r e t h e d i s c r e t e n a t u r e o f t h e s c r e e n (the s c r e e n m a k e r s m u s t c o u n t in w h o l e n u m b e r u n it s d u e t o t h e s tr a w b u n d le s ) fo rce s a n a p p r o x i ­ m ation by re p e a tin g th e s a m e le n g th tw ic e .

A fr ic a n fra c ta l m athem atics

74

o f t h e w i n d s c r e e n as a n o p t i m a l d e s i g n r e q u i r e d m a t c h i n g t h e s c a l i n g v a r i a t i o n o f w i n d s p e e d v e r s u s h e i g h t t o a s c a l i n g v a r i a t i o n in l e n g t h s o f straw . By t r a n s ­ ferring th is c o n c e p t b e tw e e n tw o c o m p le te ly d iffe re n t d o m a in s , th e - a r tis a n s h a v e d e m o n s t r a t e d t h a t th e y u n d e r s t a n d sc a lin g in t h e a b s t r a c t ; i n d e e d , t h e d e sig n e s s e n t i a l l y p l o t s t h e r e l a t i o n o f w i n d s p e e d to h e i g h t o n a s t r a w g r a p h . A l t h o u g h 1 w as c o n c e r n e d o n l y w i t h t h e o v e r a l l r e l a t i o n o f s c a l i n g a n d r e a s o n i n g , I m e a s u r e d t h e ro w s j u s t t o s e e h o w c l o s e t h e y c a m e t o w h a t a W e s t ­ e r n e n g i n e e r w o u ld d e v e l o p f o r a n o p t i m a l m a t c h w i t h w i n d s p e e d . If t h e s t r a w s c r e e n h a d l i n e a r s c a l in g , t h e n e a c h ro w w o u ld d e c r e a s e in l e n g t h by t h e s a m e a m o u n t (e.g., 12 in c h e s , 10 i n c h e s , 8 in c h e s , e t c . ) . B u t t h e ro w s d e c r e a s e less a n d less w i t h h e i g h t ; it t u r n s o u t t h a t t h e s c r e e n d e s i g n s h o w s a c lo s e fit t o w h a t is c a l l e d a " p o w e r l a w " — t h a t is, it s c a l e s a c c o r d i n g t o a n e x p o n e n t (fig . 6 . 1 c ) . F ig u re 6 . 1 b , r e p r i n t e d fr o m t h e W in d E ng in eerin g H a n d b o o k , s h o w s t h e e q u a t i o n o f w i n d s p e e d w i t h h e i g h t m o s t c o m m o n l y u s e d by e n g i n e e r s — a ls o a p o w e r law. S o t h e S a h e l w i n d s c r e e n is n o t o n l y a p r a c t i c a l a p p l i c a t i o n o f t h e a b s t r a c t s c a l ­ in g c o n c e p t , it is also a fa irly a c c u r a t e o n e . O f c o u r s e , o n e m i g h t o b j e c t t h a t t h e in d ig e n o u s e n g in e e rs d id n o t a c tu a lly se t up th e alg eb ra a n d p e rfo rm th e o p ti­ m i z in g c a l c u l a t i o n . B u t I a s k e d t h r e e A m e r i c a n m a t h e m a t i c i a n s h o w t h e y w o u ld s e t u p th e s e e q u a ti o n s to d e t e r m i n e t h e o p t i m a l d esig n , a n d all t h r e e said t h e s a m e th i n g : “ 1 w o u l d n ’t so lv e it a n a l y t i c a l l y , I ’d j u s t g r a p h t h e e q u a t i o n s o n t h e c o m ­ p u t e r a n d see w h e r e t h e f u n c t i o n s p e a k e d . " W h e t h e r w e m a k e o u r g r a p h s o n a c o m p u t e r s c r e e n o r a stra w s c r e e n d o e s n ’t m a tte r, as lo n g as w e g e t t h e ri g h t answ er.

S tr e tc h in g s p a c e in k e n t e c lo th If s o m e o n e in A m e r i c a w e re a sk ed to t h i n k o f a n A fr i c a n t e x t ile, k en te c lo t h w o u ld b e t h e m o s t likely im ag e. Its c o m b i n a t i o n o f stro jig c o lo r s ,.h o ld d e s i g n s , a n d ja s so c i a t i o n s w i t h a n c i e r ^ kingdoms.of-.We.s.t-Africa h a s m a d e it a f a v o r i te fo r im p o rts. B u t m o s t o f t h e i m p o r t e d k e n t e c l o t h is c r e a t e d by a u t o m a t e d m a c h i n e , a n d w h i l e 1 w o u l d fi e rc e l y d e f e n d it a s “a u t h e n t i c , ” t h e n e e d for p a t t e r n r e p e t i t i o n in a u to m a tio n has e lim in a te d a w o n d erfu l scalin g tr a n sfo rm a tio n th a t c a n be seen in t h e o l d e r p a t t e r n s c r e a t e d o n h a n d lo o m s (fig. 6 .2 a ) . T h e s c a l i n g - c h a n g e is n o t ju s t s m a ll a n d large v e r s i o n s o f t h e s a m e t h i n g ; r a t h e r , it is as if t h e d e s i g n w as d ra w n o n a ru b b e r sh e e t, w h ic h was h a lf s tr e tc h e d a n d h a lf c o n tr a c te d . In G h a n a I tr a v e le d to th e villag e o f B o n w i r e , w h e r e h a n d - l o o m w e a v in g is still p r a c ­ ticed , a n d asked th e artisan s th e r e w h y th is scalin g tr a n s f o r m a tio n was c re a te d . ^

|

T h e w e a v e r s r e p l i e d t h a t t h e y t h i n k o f t h e c o m p r e s s e d v e r s i o n as t h e o rig in a l p a t t e r n , a n d said th e y call it “s p r e a d i n g " w h e n t h e y c r e a t e t h e s t r e t c h e d ver-

\ s i o n . T h e r e a s o n th e y g a v e for t h e s p r e a d i n g p a t t e r n c a n b e s t b e u n d e r s t o o d w i t h

I

I \

FIGURE 6. 2

K e n te c lo th (a) In this traditional kente cloth design, stretched and compressed versions of the same pattern appear. The weavers call this “spreading” the pattern, (b) Why are weavers spreading the pattern? They say that our eyes give "heavy looks” to the face, and only “light looks” to the rest of the body. This is what neurobiologists call “saccadic” eye movements. Unlike “tracking” eye movements, which are continuous, saccadic movements are discrete and tend to leap about. Since kente cloth was traditionally worn as a toga over the shoulder, the part near the face was given a compressed pattern, and the part along the body a stretched pattern, to match the scaling of the saccadic eye movements, (c) T h e compression of space is used in mathematics to model scaling patterns, like chat of the saccadic eye movements. Mathematicians call this a “contractive affine transformation."

76

A fric a n , fra c ta l ?natliernatics

t h e f o llo w in g e x p e r i m e n t . H o l d y o u r finger i n f r o n t o f y o u r face, a n d w i t h o u t m o v ­ in g y o u r h e a d , t r a c k t h e fin g er w i t h y o u r eyes as yo u m o v e it s lo w ly a c ro s s t h e v is u a l field. N o w try t h e s a m e t h i n g a g a in , s m o o t h l y t r a c k i n g t h e v is u a l field, b u t w i t h o u t t h e fin g er t o g u id e y o u r eyes. Y o u ’ll find t h a t it c a n ’t b e d o n e ! Y o u r eye m o v e s i n v o l u n t a r i l y in l i t t l e j u m p s , c a l l e d “sa c c a d ic ” m o v e m e n t s . W h e n a p e r ­ s o n c o m e s i n t o y o u r v is u a l field, t h o s e s a m e s a c c a d i c m o v e m e n t s d e n s e l y c o v e r t h e face, a n d t h e n m a k e a few g la n c e s a t t h e ' b o d y (fig. 6 . 2 b ) . T h e w e a v e rs in B o n w ire r e p o r t e d t h e s a m e idea: “W h e n y o u se e a p e r s o n y o u g iv e h e a v y lo o k s t o t h e face , a n d l i g h t lo o k s t o t h e b o d y . ” T h e y e x p l a i n e d t h a t t h e p u r p o s e o f t h e s c a l - \ in g c h a n g e is t o m a t c h t h i s v is u a l s c a l in g : t h e c o m p r e s s e d p a r t o f t h e p a t t e r n is \ t h e c l o t h w o r n o v e r t h e s h o u l d e r , a n d t h e s t r e t c h e d p a r t is w o r n d o w n t h e

I

l e n g t h o f t h e body. T h e m a t h e m a t i c a l t e r m for t h i s o p e r a t i o n is “c o n t r a c t i v e affin e t r a n s f o r ­ m a t i o n ” (fig. 6 .2 c ), w h i c h c a n be used for c r e a t i n g j r a c t a l s t h r o u g h a m e t h o d c a l led “ i t e r a t e d f u n c t i o n s y s te m s ” ( s e e W a h l 1 9 9 5 , 1 5 6 - 1 5 7 ) . I n k e n t e c l o t h t h e r e is n o i t e r a t i o n — t h e o p e r a t i o n is d o n e o n l y o n c e — b u t i t d o e s s h o w a c t i v e t h i n k ­ in g a b o u t a s c a l in g t r a n s f o r m a t i o n . A s in t h e case o f t h e w i n d s c r e e n , t h e w eav ers are t a k i n g a r a t h e r a b s t r a c t o b s e r v a t i o n a b o u t a t i m e - v a r y i n g q u a n t i t y a n d m a p ­ pin g this m o d el in to a m a te ria l design.

L o g a r i t h m i c s p ira ls I n c h a p t e r 3 (fig. 3 . 2 ) w e e x a m i n e d t h e c o n t r a s t b e t w e e n n o n l i n e a r c o n c e n t r i c c ir c le s a n d l i n e a r c o n c e n t r i c c irc le s . I n t h e s a m e way, n o n l i n e a r s p ir a ls a re easy to u n d e r s t a n d if w e * c o n tia * t t h e m w i t h lin e a i^ s p ira ls (fig. 6 . 3 a ) . T h e l i n e a r s p i ­ ral, a lso c a lle d a n A r c h e m e d e a n sp iral in h o n o r o f t h e G r e e k m a t h e m a t i c i a n w h o fa v o re d it, is i n j h e s h a p e o f a c o il e d r o p e o r w a t c h sp r in g . E a c h r e v o l u t i o n b rin g s y o u o u t by t h e s a m e d i s t a n c e ( j u s t as e a c h la y e r in t h e l i n e a r c o n c e n t r i c c i r c l e w a s t h e s a m e t h i c k n e s s ) . F o r t h a t re a s o n , a l i n e a r s p i r a l o f a fi n it e d i a m e t e r c a n h a v e o n ly a fin ite n u m b e r o f tu r n s . A n o n l i n e a r sp iral o f fi n it e d i a m e t e r c a n h a v e a n infinite n u m b e r o f turns, b eca u se e v e n th o u g h t h e r e is less a n d less sp ace r e m a i n ­ in g as o n e g o e s t o w a r d t h e c e n t e r , t h e d i s t a n c e b e t w e e n e a c h r e v o l u t i o n c a n g e t sm aller a n d s m a lle r,. A g o o d e x a m p l e o f t h i s n o n l i n e a r s c a l i n g c a n b e s e e n in t h e l o g a r i t h m i c sp ira l (fig. 6 . 3 b ) . L o g a r i t h m i c sp ira ls a r e ty p i c a l s t r u c t u r e s in t w o d i f f e r e n t c a t ­ e g o rie s o f natu ra l^ p h e n o m e n a . O n t h e o n e J m n d , t h e y a r e f o u n d in a s t o n i s h i n g » v a r i e t i e s o f o r gaja.Lc--gr.o_w.th. T h e o d o r e C o o k ’s T h e C u r v e o f L ife ( 1 9 1 4 ) , fo r

\

J

e x a m p le , s h o w s d oz ens o f lo g a r ith m ic spirals from ev e ry b r a n c h o f t h e e v o l u t io n a r y tree : s n a i l a n d n a u t i l u s sh e lls; t h e h o r n s o f ra m s a n d a n t e l o p e ; a lg a e , p i n e c o n e s ,

/

Scaling

77

FIGURE

6 .3

S pirals ( a ) I n t h e l i n e a r s p i r a l o f A r c h i m e d e s , t h e r e is a c o n s ta n t d ista n c e b e tw e e n e a c h rev o lu tio n .

O n ly a f i n i t e n u m b e r o f t u r n s c a n fit i n t h i s finite sp a c e , (b) In t h e lo g a r ith m ic spiral, th e re is a n i n c r e a s i n g d i s t a n c e b e t w e e n e a c h r e v o l u t i o n . A n i n f i n i t e n u m b e r o f t u r n s c a n fit i n t h i s f i n i t e sp a c e .

j a n d su n flo w e rs; a n d e v e n a n a t o m i c a l p a r t s o f t h e h u m a n e a r a n d h e a r t . M a n y I

r e s e a r c h e r s h a v e s p e c u l a t e d o n w h y t h i s is so; t h e i r a n s w e r is ty p ic a lly t h a t l i v ­ ing sy s tem s n e e d to k e e p t h e sa m e p r o p o r t i o n s as th e y grow, .and so a scaling.cu.rve a ll o w s t h e s a m e f o r m to be m a i n t a i n e d . I p r e f e r t o t h i n k o f it as r e c u r s i o n : if we \ l o o k a t t h e c h a m b e r e d n a u t i l u s , fo r e x a m p l e , w e c a n t h i n k o f each, n e w c h a m ­ b e r as t h e n e x t i t e r a t i o n t h r o u g h t h e s a m e s c a l i n g a l g o r i t h m . O n t h e o t h e r h a n d , l o g a r i t h m i c sp ira ls a re a ls o f o u n d in flu id t u r b u l e n c e . W e b e c o m e a w a re o f th is w h e n we w a t c h a h u r r i c a n e fr o m sp ac e, o r sim p ly a d m i re th e swirls o f w a t e r a l o n g a r i v e r b a n k . E x p l a n a t i o n s for th e s e fluid c u rv e s aye m u c h less s p e c u l a t i v e , s i n c e w e can _w rite e q u a t i o n s fo r t u r b u l e n c e a n d s h o w t h e m p r o ­ d u c i n g l o g a r i t h m i c s p irals in c o m p u t e r s i m u l a t i o n s (as w e w ill see in c h a p t e r 7). B u t t h e E u r o - A m e r i c a n t r a d i t i o n is n o t t h e o n ly o n e i n t e r e s t e d in sim u la c ra . T h e a r t is t s o f w h a t is n o w G h a n a — p a r t i c u l a r l y t h o s e o f t h e A k a n s o c i e ty — lo n g ag o

/

a b s t r a c t e d t h e l o g a r i t h m i c sp iral for p re c i s e l y t h e s e tw o c a te g o r ie s . T h e i r sym -\ b o ls for t h e life fo rce (fig. 6 .4 a ) a re c le a rly r e l a te d to t h e " c u r v e s o f life,” a n d icons

\

for T a n u , t h e r i v e r g o d (fig. 6 . 4 b ) , s h o w t h e l o g a r i t h m i c sw irls o f t u r b u l e n c e .

A fr ic a n fra c ta l m athem atics

78

a

b FIGURE

6 .4

L o g a r i t h m i c spirals (a)

S e v e r a l G h a n a i a n i c o n i c figure s, s u c h as t h i s g o l d w e i g h t , l i n k a s p i r i t u a l f o r c e w i t h t h e

s t r u c t u r e o f l i v i n g s y s t e m s t h r o u g h l o g a r i t h m i c s p i r a l s . T h i s e x a m p l e is p a r t i c u l a r l y s t r i k i n g s i n c e it s h o w s h o w s p i r a l s c a n be c o m b i n e d w i t h b i l a t e r a l s y m m e t r y t o c r e a t e o t h e r s e l f - s i m i l a r s h a p e s ( t h e l a r g e d i a m o n d s h a p e c r e a t e d b y t h e m e e t i n g o f t h e la r g e s p i r a l a r m s is r e p e a t e d o n e i t h e r sid e b y t h e s m a l l d i a m o n d a t t h e m e e t i n g o f t h e s m a l l s p i r a l a r m s ) , ( b ) T h i s figure, a g a i n b a s e d o n l o g a r ith m ic spirals, a p p e a r s o n t h e t e m p le s o f T o n u , t h e r iv e r g o d , a n d lin k s th is s p ir itu a l fo rc e to t h e g e o m e t r i c s t r u c t u r e o f flu id t u r b u l e n c e . ( a , pho to courtesy D o r a n Ross.)

^

A g a i n , we n e e d to a v o i d t h e a s s u m p t i o n t h a t t h e G h a n a i a n lo g s p i r a ls a r e ^

' s i m p l y m i m e t i c “r e f l e c t i o n s ” o f n a t u r e , a n d e x a m i n e h o w ..they, a r e used. .a n d


1

1

1

1



>

1

1

I

1

1

1 1

c

1 1

1

1

1 1

1

1

1 1

1

1 1

1

1

I I

1 1

1 1

1

1

(e ) A f te r th is , th e o rig in al four a re read sid ew ay s to c re a te four

1

1 1 1

d

1

>

1

----- >

1 1 1 1

m o re sy m b o ls, a n d th e e n tire

N..

1

-

-

1 1

p r o c e s s is r e p e a t e d , p r o d u c i n g

1

---

1

----- ^

1

a n o th e r g ro u p o f sev en . In th e fin a l s t e p , t h e first a n d la s t f r o m e a c h g ro u p d f s e v e n a re p a ire d off to g e n e r a t e t h e final tw o s y m b o ls.

FIGURE 7 . 7

(a)

F o u r sets o f ra n d o m d a sh e s

B a m a n a s a n d d iv in a tio n a r e d r a w n , (b) E a c h o f t h e d a s h e s

is p a i r e d , a n d t h e o d d / e v e n r e s u l t s

a r e r e c o r d e d , ( c ) T h e p r o c e s s is r e p e a t e d f o u r t i m e s , r e s u l t i n g i n f o u r s y m b o l s . E a c h r o w o f t h e firs t tw o s y m b o ls a n d t h e last t w o s y m b o ls a re p a ire d o ff to g e n e r a t e t w o n e w s y m b o ls , (d ) T h e tw o n e w ly g e n e r a t e d s y m b o ls, n o w p l a c e d b e lo w t h e o r ig i n a l four, a re a g a i n p a i r e d o ff t o g e n e r a t e a s e v e n th sy m b o l.

N u m e ric system s

a p ile o f s a n d n e x t t o m y b e d a t n i g h t , a n d in t h e m o r n i n g b r i n g a w h i t e c o c k , 1^ w h i c h w o u ld h a v e t o b e s a crificed t o c o m p e n s a t e fo r t h e h a r m f u l e n e rg y re l e a s e d I in t h e t e l l i n g o f t h e s e c r e t. I f o l lo w e d all t h e in s t r u c t i o n s , a n d t h e n e x t m o r n - i in g b o u g h t a large w h i t e c o c k a t t h e m a r k e t . T h e y h e l d t h e c h i c k e n o v e r t h e d iv - ' i n a t i o n s a n d , a n d I w as t o l d t o e a t t h e b i t t e r k o l a n u t as th e y m a r k e d d i v i n a t i o n s y m b o ls o n its f e e t w i t h a n i n k p e n . A l i t t l e s a n d w as r h r o w n in its m o u t h , a n d

i

t h e n 1 w as to ld t o h o l d it d o w n as p ra y e r s w e r e c h a n t e d . T h e r e w as n o a c t i o n o n j t h e p a r t o f t h e d i v i n e r ; t h e c h i c k e n s i m p l y d i e d in m y h a n d s . W h i l e still a b i t s h a k e n by t h e c h i c k e n ’s d e m i s e (as w ell as e x p e r i e n c i n g a re s p e c ta b le buzz fr o m t h e k o la n u t ) , I was to l d t h e r e m a in i n g mystery. E a c h sy m ­ b o l h a s a “ h o u s e ” in w h i c h it b e lo n g s — fo r e x a m p l e , t h e p o s i ti o n o f t h e s i x t e e n t h s y m b o l is “ t n e n e x t w o r l d " — b u t in a n y g i v e n d i v i n a t i o n m o s t s y m b o ls w ill n o t b e l o c a t e d in t h e i r o w n h o u s e . T h u s t h e s i x t e e n t h s y m b o l g e n e r a t e d m i g h t be “d e sire ,” so we w o u ld h a v e d e s ire in t h e h o u s e o f t h e n e x t w orld , a n d so o n . O b v i ­ o usly t h i s still l e a v e s r o o m f o r c r e a t i v e n a r r a t i o n o n t h e p a r t o f t h e d i v i n e r , b u t t h e b e a u t y o f t h e s y s te m is t h a t n o v e rs e s n e e d to b e m e m o r i z e d o r b o o k s c o n ­ s u l te d ; t h e sy s te m c r e a t e s its o w n c o m p l e x variety. T h e m o s t e l e g a n t p a r t o f t h e m e t h o d is t h a t it r e q u i r e s o n l y f o u r r a n d o m d r a w i n g s ; a f t e r t h a t t h e e n t i r e s y m b o l i c a r r a y is q u i c k l y s e l f - g e n e r a t ed- S e lf g e n e r a t e d v a r i ety is i m p o r t a n t i n j n o c l e r n c o m p u t i n g , w h e r e it is c a l l e d “p s e u d o ­ r a n d o m n u m b e r g e n e r a t i o n ” (fig. 7 . 8 ) . T h e s e a l g o r i t h m s t a k e l i t t l e m e m o r y , b u t c a n g e n e r a t e v e r y l o n g li s t s o f w h a t a p p e a r t o b e r a n d o m n u m b e r s , a l t h o u g h t h e list w ill e v e n t u a l l y s t a r t o v e r a g a i n ( t h i s l e n g t h is c a l l e d t h e “p e r i o d ” o f t h e a l g o r i t h m ) . A l t h o u g h t h e B a m a n a o n l y r e q u i r e a n a d d i t i o n a l 12 s y m b o l s to b e g e n e r a t e d in t h i s f a s h i o n , a m a x i m u m - l e n g t h p s e u d o r a n d o m n u m b e r g e n e r a t o r u s i n g t h e i r i n i t i a l fo u r s y m b o l s w ill p r o d u c e 6 5 . 5 3 5 s y m b o ls b e f o r e it b e g i n s t o r e p e a t . A s i m i l a r s y s te m f o r s e l f - g e n e r a t e d v a r i e t y w as d e v e l o p e d as a m o d e l for t h e “c h a o s ” o f n o n l i n e a r d y n a m i c s by M a r s t o n M o r s e ( 1 8 9 2 - 1 9 7 7 ) . B e fo re th e 1970s, m a t h e m a t i c i a n s h a d a s s u m e d t h a t , b e s i d e s a few e s o t e r i c e x c e p t i o n s (che a l g o r i t h m s for p r o d u c i n g i r r a t i o n a l n u m b e r s s u c h as V 2), t h e o u t p u c o f a n e q u a ­ t i o n w o u l d e v e n t u a l l y s t a r t r e p e a t i n g . T h a t a s s u m p t i o n w as p a r t ly b a s e d o n E u r o p e a n c u l t u r a l id e a s a b o u t fr e e w il U - c o m p l e x b e h a v i o r c o u l d n o t b e t h e result o f p r e d e t e r m i n e d sy ste m s (see P o r t e r 1 9 8 6 ). It was n o t u n t i l r h d ^ i Q h o s ^ o s j t h a t m a t h e m a t i c i a n s realized t h a t e v e n sim ple, c o m m o n eq u a tio n s d escrib in g 'th in g s lik e p o p u l a t i o n g r o w t h o r.flu id flow c o u l d r e s u l t in w h d t t h e y c a l l e d “d e t e r m i n ­ istic c h a o s ”— a n o u t p u t t h a t n e v e r re p e a ts, g iv i n g th e a p p e a r a n c e o f r a n d o m n u m ­ bers fr o m a n o n r a n d o m ( d e t e r m i n i s t i c ) e q u a t i o n . M o r s e d e v e l o p e d t h e m i n i m a l case for s u c h b e h a v io r .

^

A fr ic a n fra c ta l mathematics

98

I 1 1I 0111

001 1 0001 1000 0 100 0010 1001 0110 1 100 01 I 0 1011

0101 1010 1 101 1110

FIGURE

7 .8

P seu d o ra n d o m n u m b e r genera tio n f r o m s h ift r e g is t e r c ir c u its (a) If we think of the two-strokes as zero and single stroke as one, the Bamana divination, system is almost identical to the process of pseudorandom number generation used by digital circuits called “shift registers.” Here the circuit cakes mod 2 of die last two bits in the register and places the result in the first position. T h e other bits are shifted to the right, with the last discarded. This four-bit shift register will only produce 15 binary words before the cycle starts over, but the period of the cycle increases with more bits ( 2 n - 1). For .the entire 16 bits (four symbols of four bits each) that begin the Bamana divination, 65,535 binary words can be produced before repeating the cycle. (b ) Electrical circuit representation of a four-bit shift register combined with exclusive-or to perform the mod 2 operation. W hile school­ teachers are making increasing use of African culture, in the mathematics classroom, few have explored the potential applications to technology education.

T h e c o n s t r u c t i o n o f t h e M o r s e se q u e n c e b e g i n s b y c o u n t i n g f r o m z e r o j n b in ary n o ta tio n : 0 0 0 ,

oot

, 01 o , 0 1 1 . . . . I t t h e n t a k e s t h e s u m o f t h e d ig i ts in

e a c h n u m b e r - -o + o + o = o , n . + o + 1 = i , e t c . — a n d f i n a l l y m o d 2 o f e a c h s u m . T h e r e s u l t is a s e q u e n c e w i t h m a n y r e c u r s i v e p r o p e r t i e s , ^ b u t o f e n d l e s s v a r i e t y . M o r s e d id t h e s a m e “ m i s r e a d i n g ” o f t h e b i n a r y n u m b e r a s d i d t h e \ ' B a m a n a — a lth o u g h h e did n o t h a v e a n a n th r o p o lo g is t sc o w lin g a t h im for

•! i g n o r i n g p l a c e v a l u e — a n d h e d i d it for t h e s a m e r e a s o n : c o m b i n e d w i t h t h e j • m o d 2 o p e r a t i o n , i t m a x i m i z e s v a r i e ty . I n m y r e a d i n g o f d i v i n a t i o n l i t e r a t u r e 1 e v e n t u a l l y c a m e a c ro s s t h e d u p l i ­ c a t e o f t h e B a m a n a t e c h n i q u e 5 , 0 0 0 m i le s t o t h e e a s t in M a l a g a s y sik id y ( S u s s m a n a n d S u s s m a n 1 9 7 7 ) , w h i c h i n s p i r e d a s tu d y o f t h e h i s t o r y o f its d if fu s io n . T h e s tr o n g jj r n i la v i ty o f b o t h s y r n b o lic t e c h n i q u e a n d s e m a n t i c c a t e g o r i e s { a . w h a t E u r o p e a n s t e r m e d “g e o m a n c y ” w a s first n o t e d by F l a c o u r t { r 6 6 r ), b u t it w as n o t u n t i l T r a u t m a n n ( 1 9 3 9 ) t h a t a s e r io u s c l a i m w a s m a d e for a c o m m o n s o u r c e fo r th is A r a b ic , E u r o p e a n , W e s t A f r i c a n , a n d East A f r i c a n d i v i n a t i o n t e c h n i q u e . T h e c o m m o n a l i t y w as c o n f i r m e d in a d e t a i l e d f o r m a l a n a ly s is by J a u l i n ( 7 9 6 6 ) . B u t w h e t e d id it o r i g i n a t e ?

j

N u m e ric system s

( S k i n n e r ( i q 8 o ) provides a w e ll- d o c u m e n t e d his tory o f t h e diffusion e v id e n c e , i from cPie'first specific w r it te n r e c o r d — a n i n t h - c e n t u r y Jew ish c o m m e n ta r y by A r a n ' b e n J o s e p h — to its m o d e r n use in A l e i s t e r Crq.yvley’s L ib e r 7 7 7 . T h e o l d e s t A r a - [ bic d o c u m e n t s ( t h o s e o f a z - Z a n t i in t h e t h i r t e e n t h c e n t u r y ) c la i m t h e o r ig in o f g e o m a n c y (i!m aLrcim l, “t h e s c i e n c e o f s a n d ” ) t h r o u g h t h e E gy p tian go d Idris ( H e r - ; m e s T ris m e g i s tu s ) ; w h ile we n e e d n o t t a k e t h a t as a n y t h i n g m o r e t h a n a c l a i m ! to a n t i q u i t y , a N i l o t i c i n f l u e n c e is n o t u n r e a s o n a b l e . B u d g e ( 1 9 6 1 ) a t t e m p t s t o j c o n n e c t t h e use o f s a n d in a n c i e n t E g y p t i a n r i tu a l s to A f r i c a n g e o m a n c y , b u t it 1 is h a r d to see th is as u n i q u e . M a t h e m a t i c a l l y , h o w e v e r , g e o m a n c y is s trik in g ly out./ o f p l a c e in n o n - A f r i c a n sy s te m s . L ik e o t h e r li n g u is ti c c o d e s , n u m b e r b a s e s t e n d j o h a v e a n j x t r . e m e l y lo n g h is to r i c a l p e r s is t e n c e . E v e n u n d e r P l a t o n i c r a t i o n a l i s m , t h e a n c i e n t G r e e k s h e l d 10 t o b e t h e m o s t s a c r e d o f all n u m b e r s ; t h e K a b b a l a h ’s A y in S o f e m a n a t e s by 10 S e firo t, a n d t h e C h r i s t i a n W e s t c o u n t s o n its “H i n d u - A r a b i c ” d e c i m a l n o t a ­ t i o n . I n ^ ' f r i c gjl, o n t h e o t h e r h a n d , b a se -2 c a l c u l a t i o n w as u b i q u i t o u s, e v e n for m u l t i p l i c a t i o n a n d d iv is io n . A n d it is h e r e t h a t we find t h e c u lt u ra l c o n n o t a t i o n s o f d o u b l i n g t h a t g r o u n d t h e d i v i n a t i o n p r a c t i c e in its re lig io u s sig n i f i c a n c e. T h e im p lic atio n s o f this trajecto ry — fro m s u b - S a h a r a n A frica to N o r t h A frica to E u r o p e — a re q u i t e s i g n if i c a n t fo r t h e h i s t o r y o f m a t h e m a t i c s . F o l l o w i n g t h e i n t r o d u c t i o n o f g e o m a n c y to E u ro p e by H u g o o f S a n ta l la in tw e lf th - c e n tu r y S p a in , it w as t a k e n u p w i t h g r e a t i n t e r e s t b y t h e p r e - s c i e n c e m y s tic s o f t h o s e t i m e s — a lc h e m is ts , h e r m e t i c i s t s , a n d R o s i c r u c i a n s (fig. 7 .9 ). B u t th e s e E u r o p e a n g eom a n c e r s — R a y m o n d L u ll , R o b e r t F l u d d , d e P e r u c h i o , H e n r y d e P isis, a n d o th e r s — p e rs iste n tly re p la c e d t h e d e t e r m i n i s t i c asp e c ts o f t h e system w i t h c h a n c e . By m o u n t i n g t h e 16 figures o n a w h e e l a n d s p i n n i n g it, t h e y m a i n t a i n e d t h e i r s o c i e t y ’s e x c l u s i o n o f a n y c o n n e c t i o n s b e t w e e n d e t e r m i n i s m a n d u n p r e d i c t a b i l ­ ity. T h e A fric a n s , o n t h e o t h e r h a n d , se e m t o h a v e e m p h a s iz e d s u c h c o n n e c t i o n s . In c h a p t e r 10 we will e x p l o r e o n e s o u r c e of t h i s d if f e r e n c e : t h e A f r i c a n c o n c e p t o f a “t r i c k s t e r " g o d , o n e w h o is b o t h d e t e r m i n i s t i c a n d .u.nor_e d i c t a b l e • O n a v id eo reco rd in g 1 m a d e o f th e B a m a n a d iv in a tio n , I n o tic e d th a t th e p r a c t i t i o n e r s h a d u se d a s h o r t c u t m e t h o d in s o m e d e m o n s t r a t i o n s ( t h i s m a y h a v e b e e n a p a r t in g gift, as th e v id e o was s h o t o n my last day). A s th e y first ta u g h t m e, w h e n th e y c o u n t off t h e p airs o f r a n d o m d a s h e s , t h e y li n k t h e m by d r a w i n g sh o r t cu rves. T h e s h o r t c u t methodI t h e n links t h q s e c u rv e s witly.larger cu rv es , a n d ^th o s e b e lo w w i t h e v e n la r g e r c u r v e s . T h i s u p s i d e - d o w n C a n t o r s e t s h o w s t h a t th e y are n o t s i m p l y a p p l y i n g m o d 2 a g a i n a n d a g a i n in a m i n d l e s s f a s h i o n . T h e s e lf-s im ila r p h y s i c a l s t r u c t u r e o f t h e s h o r t c u t m e t h o d v iv i d ly il lu s t r a t e s a r e c u r ­ sive p r o c e s s ^ a n d as a n g m .tra d itio n a l i n v e n t i q n ( t h e r e is n o r e c o r d o f its use e l s e ­ w h e re ) it sh o w s a c t i v e m a t h e m a t i c a l p r a c t ic e . O t h e r A f r i c a n d i v i n a t i o n p ra c tic e s

A fr ic a n fra c ta l m athem atics

IOO

l i i d in f i

i*i

;)c

c o lc m

'{ iH h n n i YDi f i c f m

.p iitn r o ucT .m m po

oo

xjo

oo

.

/• '

J^ ? Y ) b i t R b m a - c o i t r a t . Of)

Hjb nimcrficiipetfifi? 0 .9n hMrQ'Jr Afrufantrtbftfc

° ° A nQ°

c£«wii gunXrnprc urtra

n 'J ^ r ^ ^ r n b c o v t t m -

(ttJtnbicurnimrptti® nr.

u Q

Ctrvwtca opm tdurbu oo QJ> orcnramficrr filn .

n

o

m fltiu n rrp tiitw lurt

0im 0 n An o ficwr r a r nHumbert* y w i n r v bu tf u 00 or V&Vw n tittu ffta ftiu .

00

oo

ro am uhcgMctfum

n u r r r c B iim M

00

? y to « b w w A tttfrte u

c o ty S ir tf- lu r te m a f tf v d imuftfl mnutesriBU f tu V r w u : '

S

FIGURE

q

utram fK tum

0 5? h i r m i f & ftraocrafi

00 00 o u r uroU m m nftnis 0 0 ftp.tT#jBj,ia?j{*ta,._ ^ Oa -O

00 0 0

w jj (V



w tcw iito iflttitin icr* * cutiufottm ttftnt O j*»

< V o ....................

7.9

Q eom ancy African divination was taken up under the name “geomancy” by European mystics. This chart drawn for King Richard u in 1391. ( F r o m S k in n e r 1 9 8 0 .)

c a n b e lin k e d to r e c u r s io n as w ell; for e x a m p l e D e v i s c h ( 1 9 9 1 ) d e s c r ib e s t h e Yaka d i v i n e r s ’ “s e l f - g e n e r a t i v e ” i n i t i a t i o n a n d u t e r i n e s y m b o l i s m . Before lea v in g d i v i n a t i o n , t h e r e is o n e m o r e i m p o r t a n t c o n n e c t i o n t o m a t h e ­ m a t i c a l h is to ry . W h i l e R a y m o n d L u ll, l i k e o t h e r E u r o p e a n a l c h e m i s t s , c r e a t e d w h e e l s w i t h s i x t e e n d i v i n a t i o n fig ures, h i s p r i m a r y i n t e r e s t w a s in t h e c o m b i ­ n a t o r i a l p o s s ib il it ie s o f f e r e d by b a s e - 2 d i v i s i o n s . L u l l ’s w o r k w as c l o s e ly e x a m ­ i n e d by G e r m a n m a t h e m a t i c i a n G o t t f r i e d L e i b n i z , w h o s e D iss erta tio d e arte c o m b in a to r ia , p u b l i s h e d in 1 6 6 6 w h e n h e w a s t w e n t y , a c k n o w l e d g e s L u l l ’s w o r k

as a p c e c u rs o r. F u r t h e r e x p l o r a t i o n le d L e ib n i z t o i n t r o d u c e a b a s e - 2 c o u n t i n g s y s te m , c r e a t i n g w h a t we n o w call, t h e b i n a r y c o d e . W h i l e t h e r e w e r e m a n y o t h e r

N u m e r ic sy ste m s

i n f l u e n c e s i n t h e li v e s o f L u ll a n d L e i b n i z , it is n o t f a r - f e t c h e d t o see a h i s t o r ­ ic a l p a t h fo r b a s e - 2 c a l c u l a t i o n t h a t b e g i n s w i t h A f r i c a n d i v i n a t i o n , r u n s th r o u g h t h e g e o m a n c y o f E u r o p e a n a lc h e m is ts , a n d is finally tr a n s la t e d i n t o binary c a l c u l a t i o n , w h e r e i t is -n o w a p p l i e d inl,e v e r y d i g i t a l c i r c u i t f r o m a l a r m c l o c k s to su p erco m p u te rs. I n a 1 9 9 5 i n t e r v i e w i n W ir e d m a g a z i n e , t e c h n o - p o p m u s i c i a n B r i a n E n o c la i m e d t h a t t h e p r o b l e m w i t h c o m p u t e r s is t h a t “th e y d o n ’t h a v e e n o u g h A f r i c a n in t h e m . ” E n o w as, n o d o u b t , t r y i n g t o b e c o m p l i m e n t a r y , s a y i n g t h a t t h e r e is s o m e i n t u i t i v e q u a l i t y t h a t is a v a l u a b l e a t t r i b u t e o f A f r i c a n c u lt u r e . B u t in d o i n g so h e o b s c u r e d t h e c u l t u r a l o r i g i n s o f d i g i t a l c o m p u t i n g a n d d id a n i n j u s t i c e to th e very c o n c e p t h e was try in g to c o n v e y .

D iscrete se lf-o rg a n iz a tio n in O w a r i F ig u r e 7 .1 0 a s h o w s a b o a r d g a m e t h a t is p l a y e d t h r o u g h o u t A f r i c a in m a n y d if ­ f e r e n t v e r s io n s v a r i o u s ly t e r m e d a y o , b a o , g iu th i, lela, m a n ca la , omi v eso , ow a ri, lei, a n d songo ( a m o n g m a n y o t h e r n a m e s ) . B o a r d s t h a t w e re c u t i n t o s t o n e s , s o m e o f e x t r e m e a n ti q u it y , h a v e b e e n f o u n d f r o m Z i m b a b w e t o E t h i o p i a (see Z aslavsky 1 97 3, fig. 1 1 -6 ) . T h e g a m e is p l a y e d b y s c o o p i n g p e b b l e o r s e e d c o u n t e r s fro m o n e cup, a n d placin g o n e o f th o s e c o u n te r s in to e a c h cup, s ta rtin g jv itJ x th e cup t o t h e r i g h t o f t h e s c o o p . T h e g o a l is t o H a v e t h e last c o u n t e r l a n d in a c u p t h a t h a s o n l y o n e o r t w o c o u n t e r s a l r e a d y in it, w h i c h a ll o w s t h e p l a y e r t o c a p t u r e t h e s e c o u n t e r s . I n t h e G h a n a i a n g a m e o f o w a r i , p la y e r s a r e k n o w n fo r u ti li z in g a se r ie s o f m o v e s t h e y c a ll a “ m a r c h i n g g r o u p . ” T h e y n o t e t h a t if t h e n u m b e r o f c o u n t e r s in a se r ie s o f c u p s e a c h d e c r e a s e s b y o n e (e .g ., 4 - 3 - 2 - ! ) , t h e e n t i r e p a t t e r n c a n - b e r e p l i c a t e d w k h a rig h c -s h ift by s c o o p i n g fr o m t h e largest c u p , a n d t h a t if th e p a t t e r n is left u n i n t e r r u p t e d it c a n p ro p a g a te in th is way as far as n e e d e d for a w i n n i n g m o v e (fig. 7 . 1 0 b ) . A s s i m p l e as it s e e m s , t h i s c o n c e p t o f a selfr e p l i c a t i n g p a t t e r n is a t t h e h e a r t o f s o m e s o p h i s t i c a t e d m a t h e m a t i c a l c o n c e p t s . J o h n v o n N e u m a n n , w h o p l a y e d a p i v o t a l r o l e in t h e d e v e l o p m e n t o f t h e m o d e r n d i g i t a l c o m p u t e r , w a s a ls o a f o u n d e r o f t h e m a t h e m a t i c a l t h e o r y o f s e l f - o r g a n i z i n g s y s te m s . I n i t i a l l y , v o n N e u m a n n ’s t h e o r y was t o b e b a s e d o n se lf-rep ro d u c in g ph y sical ro b o ts. W h y w ork on a th e o ry o f s e lf-re p ro d u c in g m a c h i n e s ? 1 b e l i e v e t h e a n s w e r c a n b e f o u n d in v o n N e u m a n n ’s s o c i a l o u t ­ look. H e i m s ’s ( 1 9 8 4 ) b i o g r a p h y e m p h a s iz e s h o w t h e d is o r d e r o f v o n N e u m a n n ’s p r e c a r io u s y o u t h as a H u n g a r i a n Je w w a s r e f l e c t e d in h is a d u l t e ffo rts t o i m p o s e a s t r i c t m a t h e m a t i c a l o r d e r o n v a r i o u s a s p e c t s o f t h e w o rld . I n v o n N e u m a n n ’s a p p l i c a t i o n o f g a m e t h e o r y to s o c i a l s c i e n c e , fo r e x a m p l e , H e i m s w r it e s t h a t his “H o b b e s i a n ” a s s u m p t i o n s w e r e “c o n d i t i o n e d b y t h e h a r s h p o l i t i c a l r e a l i t i e s o f

102

A fr ic a n fra c ta l mathematics

FIGURE 7 - 1 0

O w ari (;i) T h e owari board has i 2 cups, plus one cup on each side for captured counters. This board is hinged in the center, with a beautifully carved cover (see fig. 7.14). (b) Scoop from the first cup, and plant one counter in each succeeding cup. (c) The Marching Group is replicated with a right-shift. Repeated application will allow it to propagate around the board.

.his H u n g a r i a n e x i s t e n c e . ” H is e n t h u s i a s m for t h e use o f n u c l e a r w e a p o n s a g a in s t t h e S o v i e t U n i o n is a ls o a t t r i b u t e d t o th i s e x p e r i e n c e . D u r i n g t h e H i x o n S y m p o s i u m ( v o n N e u m a n n 195 1) h e w a s a s k e d if c o m ­ p u t i n g m a c h i n e s c o u l d b e b u i l t s u c h t h a t th e y c o u l d r e p a i r t h e m s e l v e s if “d a rn a g e d in a i r r a i d s ,” a n d h e r e p l i e d t h a t “ t h e r e is n o d o u b t t h a t o n e c a n d e s i g n m a c h i n e s w h i c h , u n d e r s u i t a b l e c i r c u m s t a n c e s , w ill r e p a i r t h e m s e l v e s . " H is w o r k o n n u c l e a r r a d i a t i o n t o l e r a n c e for t h e A t o m i c E n e r g y C o m m i s s i o n in 1 9 5 4 - 1 9 5 5 i n c l u d e d b i o l o g i c a l e ff e c ts as w e ll as m a c h i n e o p e r a t i o n . T u t t i n g t h e s e fa c ts to g e t h e r , 1 c a n n o t e s c a p e t h e c r e e p y c o n c l u s i o n t h a t v o n N e u m a n n ’s i n t e r e s t in s e l f - r e p r o d u c i n g a u t o m a t a o r i g i n a t e d i n f a n t a s i e s a b o u t h a v i n g a m o r e p e r f e c t m e c h a n i c a l p r o g e n y s u r v i v e t h e n u c l e a r p u r g i n g o f o r g a n i c life o n th is p lan et. M o d e l s for p h y s i c a l r o b o t s t u r n e d o u t to b e t o o c o m p l e x , a n d a t t h e s u g ­ g e s t i o n o f h is c o l l e a g u e S t a n i s l a w U l a m , v o n N e u m a n n s e t t l e d for a g r a p h i c a b ­ s t r a c ti o n : “c e llu la r a u t o m a t a .” as t h e y c a m e to b e c a lle d . In th is m o d e l (fig. 7.11 a), e a c h s q u a r e in a grid is s a i d t o b e e i t h e r a l i v e o r d e a d ( t h a t is, in o n e o f t w o p o s ­ sible s t a te s ) . T h e i t e r a t i v e rules for c h a n g i n g t h e s t a t e o f a n y o n e s q u a r e are based



In the cellular automaton called “the game of life,’’ each cell in the grid is in one of two states: live or dead. Here we see a live ceil in the center, surrounded by dead h cells in its eight nearest neighbors. The state of each cell in the next iteration is B [ determined by a set of rules. In "classic” life (the rules first proposed by John Horton Conway), a dead cell becomes a live celf'Tf it has three live nearest neighbors, and a cell dies unless it has two or three live neighbors.

BBBBBBBB B f l f lf l B B B f l ■■■■■■■■

■■■ ■ ■■ ■ ■■■ ■■■ ■■ BBBBB BBBBBBBB BBBBBBBB



>■

■■■■■■■■ ■■■■■■■■ BBBBBBBB. ■■■■■■■■ ■■■■■■■■ BBBBBBBB ■■■ um n ■■ ■ ■■■ BB ■ ■ ■ — > ■ ■ B B B B B — >■ ■ ■ ■■■ ■■■■ ■■ BBB ■■■■■■■■ B B B B B B B fl BBBBBBBB BBBBBBBB

B B f lB f l f l B f l. BBBBBBBB BBBBBBBB

■■■

B ■ ■ — =► ■■■ BBB BBBB BBS ■ B B B B B B B fl

_

B f lflflfll BBBBBI BBBBBI

■■■

i

■■ ■■ ■ ■ BB BBB I BBBBBI

This initial condition produces a fixed pattern after four iterations. The patterns occurring before it settles down to stability are called the “transient.”

BB■

BBBBBBBBB ■BB BBBBB ■■ ■ BBBB ■BBBBBBBB ■ B B B BB BBBBB B ■ ■ B B B BB ■■B BBBB

■■■■■■■■■

BBBBBBBB BBBBBBBB BBBB BBB BBBB BBB BBBB BBB BBBBBBBB BBBBBBBB

BBBBBBBBB BBB BBBBB BBB BBBBB B BBBBB fl BBBBBB

a

aa

This stable pattern flips back and forch between these two states. This is called a “period-2” pattern.



BBB BBB BBB BBB BBBBBBBBB

BBBBBBBBB BBBB BBB B B B BBBB. fl B B B B B B BB BBB ' B —>- B B B B B B B B B ' BB BB B BBB BBBBBBBBB

BBBBBBBBB BBB BBB BBB BBB B BB fl BBBBBB B ^ BBBBB BBB BBBBB BBB BBBBBBBBB

A period-4.pattern. Periods of any length can be produced, as we saw in the previous examples of pseudorandom number generation. Deterministic chaos, in which the pattern never repeats (i.e., a pcrioJ-infinity pattern, like the Morse sequence), is also possible.

Ite ratio n 49

Iteration 133 I t e r a t io n 182.

A constam-growth pattern, shown in high resolution, looks similar to the cross-section of an internal organ. The rules: a dead cell becomes a live cell if it has three live nearest neighbors, and a cell dies only if it has seven or eight live neighbors. FIGURE

7. 1 I

C ellu la r a u to m a ta

A fr ic a n fracial mathematics

104

o n t h e e i g h t n e a r e s t n e i g h b o r s (e.g ., if t h r e e o r m o r e n e a r e s t - n e i g h b o r s a r e full, t h e c e l l b e c o m e s full in t h e n e x t i t e r a t i o n ) . A t first, r e s e a r c h e r s e a r n e d o u t o n t h e s e c e l l u l a r a u t o m a t a e x p e r i m e n t s o n c h e c k e r e d t a b l e c l o t h s w i t h p o k e r c h ip s a n d d o z e n s o f h u m a n h e lp e r s (M ay er-K ress, pers. c o m m . ) , b u t by 1 9 7 0 it h a d b e e n d e v e l o p e d i n t o a sim p le c o m p u t e r p r o g r a m ( C o n w a y ’s “ g a m e o f life” ), w h i c h was d e s c r i b e d by; M a r t i n G a r d n e r i n h is f a m o u s “M a t i-------c a l G a m-e s ” c o l u m n in v- a t h e m--/

S cien tific A m erica n . T h e “g a m e o f life" story was a n in s t a n t h i t , a n d c o m p u t e r screens

a ll o v e r t h e w o r ld b e g a n to - p u l s a t e w i t h a b izarre a r r a y o f p a t t e r n s (fig. 7.1 i b ) . A s t h e s e a c ti v it ie s d re w in c r e a s i n g p ro f e ssio n a l a t t e n t i o n , a w id e r a n g e o f m a t h e ­ m a t i c a l l y o r i e n t e d s c i e n t i s t s b e g a n to re alize t h a t t h e s p o n t a n e o u s e m e r g e n c e o f s e l f - s u s t a i n i n g p a t t e r n s c r e a t e d in. c e r t a i n , c ejlul.ar a . m o m a t a - ^ e r e e x c e l l e n t m o d e l s for t h e k i n d s o f s e lf-o r g a n i zin g p a t t e r n s t h a t . l m d b e e n _sj?„elu.siyeJ.n s t u d ­ ies o f fluid flow a n d b io l o g i c a l g r o w t h . S i n c e s c a l i n g s t r u c t u r e s a re o n e o f t h e h a l l m a r k s o f b o t h flu id t u r b u l e n c e a n d b io l o g i c a l g r o w t h , t h e o c c u r r e n c e o f f r a c ta l p a t t e r n s i n c e l l u l a r a u t o m a t a a ttra c te d a g reat deal o f in terest. But a m o re sim p le sc a lin g stru c tu re , th e log­ a r i t h m i c s p ira l (fig. 7 -1 2 ), h a s g a r n e r e d m u c h o f t h e a t t e n t i o n . E v e n b a c k i n t h e i 9 ^ o s m a t h e m a t i c i a n A l a n T ux lng , w h o s e t h e o r y - o f c o m p u t a t i o n p r o v i d e d v o n N e u m a n n w i t h ' t h e i n s p i r a t i o n f o r t h e first d i g i t a l c o m p u t e r , b e g a n h i s r e s e a r c h o n “ b io l o g i .c a l x n o r p h o g e n e s i s ” w i t h a n a n a ly s is o f l o g a r i t h m i c s p ira ls in g r o w t h p a t t e r n s . ( M a r k y s ( 1 9 9 1 ) n o t e s t h a t t h e a p p l i c a O o n a j e a s fox,cN^ m o d e l s o f s p ira l w a v e s i n c l u d e n e r v e a x o n s , t h e r e t i n a , t h e s u r f a c e o f fe r tiliz e d eggs, t h e c e r e b r a l c o r t e x , h e a r t tissu e, a n d a g g r e g a t i n g s l i m e m o l d s . I n t h e t e x t for

c a l a b

,

t h e first c o m p r e h e n s i v e s o f t w a r e fo r e x p e r i m e n t i n g w i t h c e l l u l a r

a u t o m a t a , m a t h e m a t i c i a n R u d y R u c k e r ( 1 9 8 9 , 1 6 8 ) refers t o s y s te m s t h a t p r o ­ d u c e p a ir e d log spirals as “Z h a b o t i n s k y C A s , " a f t e r t h e c h e m i s t w h o first o b s e r v e d s u c h s e lf-o r g a n iz i n g p a t t e r n s in a r t ifi c ia l m e d i a : “W h e n y o u l o o k a t Z h a b o t i n ­ sky C A s , y o u a r e s e e i n g v e r y s t r i k i n g t h r e e d i m e n s i o n a l s t r u c t u r e s ; t h i n g s like p a i r e d v o r t e x s h e e t s in t h e su rfa c e o f a r i v e r b e l o w a d a m , t h e s c r o ll p a i r s t r e t c h ­ i n g all t h e w a y d o w n t o t h e r i v e r b o t t o m . . . . In t h r e e d i m e n s i o n s , a Z h a b o t i n ­ sky r e a c t i o n w o u ld b e like tw o p a ir e d n a u t i l u s s h ells, fa c in g e a c h o t h e r w i t h t h e i r lips b l e n d i n g . T h e s u cce s siv e layers o f s u c h a g r o w i n g p a t t e r n w o u ld b u il d u p v ery li k e a f e t u s ! ” /

F ig u r e 7 .1 3 s h o w s h o w t h e o w a r i m a r c h i n g - g r o u p s y s te m c a n b e u s e d as a

I o n e -d im e n s io n a l cellu lar a u to m a to n to d e m o n s tr a te m a n y o f th e d y n a m ic phe-

( n o m e n a p r o d u c e d o n t w o - d i m e n s i o n a l s y s te m s .- ’ E a r l i e r w e n o t e d t h a t t h e A k a n a n d o t h e r G h a n a i a n s o c i e t i e s h a d a r e m a r k a b l e p r e c o l o n i a l u s e o f lo g a ­ r i t h m i c sp ira ls in i c o n i c r e p r e s e n t a t i o n s fo r l i v i n g s y s te m s . T h e G h a n a i a n f o u r ­ fo ld s p i r a l (fig. 6 . 4 a ) a n d t h e f o u r - a r m e d c o m p u t e r g r a p h i c in fig u re 7 . 1 2 b a r e

(a) Paired spirals emerge from a three-state cellular automation. Black cells are live, white cells are dead, aiu! gray cells are in a refractory or f‘ghosc" state. The rules: Any dead nearest neighbors of a live cell become live in the next iteration, and any live cell goes into the ghost state in the next iteration. The refractory layer acts as a memory, providing the directed growth (i.e., the breaking of symmetry) needed to create a spiral pattern.

(b) This four-armed logarithmic spiral from Markus (1991) was produced by a six-state cellular automaton in which a sequence of ghost states corresponds to increasingly dark shades of gray. The system makes use of a very highresolution grid as well as some random noise to prevent the tendency for the patterns to follow the grid shape (as in the square contours of the spiral above). Compare with che Ghanaian fourfold spiral in figure 6.4a.

• Bivalve shell. (From H a e c k e l 1904.)

Mushroom cut in half.

North African sheep. (From Cook 1914.)

(c) Paired logarithmic spirals often occur in natural growth forms.

(J) Recursive line replacement, as we saw for other fractal generations, can also produce such paired spirals. FIGURE 7 . 1 2

S p ira ls in c e llu la r a u to m a ta

W e c a n v i e w t h e o w a r i b o a r d as a o n e - d i m e n s i o n a l c e l l u l a r a u t o m a t o n . O n e d i m e n s i o n is n o t n e c e s s a r i l y a d i s a d v a n t a g e ; in f a c t , m o s t o f t h e p r o f e s s i o n a l m a t h e m a t ic s o n c e llu la r a u t o m a t a (see W o lfr a m 19 8 4 , 1 9 8 6 ) h a v e b e e n d o n e on o n e - d i m e n s i o n a l v e r s i o n s , b e c a u s e it is e a s i e r t o k e e p t r a c k o f t h e r e s u l t s . T h f e y c a n sh ow a ll th e d y n a m ic s o f tw o dim en sion s. T h e p a ttern s n o t e d by tra d itio n a l o w a r i players offer a g re a t d ea l o f in s ig h t in to s e l f - o r g a n i z i n g b e h a v i o r . T h e i r o b s e r v a t i o n o f a c la s s o f s e l f - p r o p a g a t i n g p a t t e r n s , t h e ‘' m a r c h i n g g r o u p , " p r o v i d e s a n e x c e l l e n t s t a r t i n g p o i n t .

3 4 2 1 —> 5 3 2 —> 4 3 1 1 1 —> 4 2 2 2 —> 3 3 3 1 ~ » 4 4 2 —> 5 3 1 1 —> 4 2 2 1 1 —> 3 3 2 2 —> 4 3 3 —> 4 4 1 1 ~ » 4 5 5 2 —> 3 3 2 1 1 —>4321

T h e m a r c h i n g g r o u p is a n e x a m p l e o f a c o n s t a n t p a t t e r n . H e r e w e s e e c o u n t e r s in th e in itial se q u e n c e 3421 c o n v e rg e o n th e ir in a rc h in g f o rm a tio n sim ply by re p e a tin g t h e “s c o o p f r o m t h e left c u p " r u l e t h r o u g h 13 i t e r a t i o n s . J u s t as w e s a w in t w o - d i m e n s i o n a l c e l l u l a r a u t o m a t a , t r a n s i e n t s o f m a n y d i f f e r e n t l e n g t h s c a n b e p r o d u c e d . T r a n s i e n t s o f m a x i m u m l e n g t h a r e u s e d as a n e n d g a m e t a c t i c by i n d i g e n o u s G h a n a i a n p l a y e r s , w h o c a l l it " s l o w m o t i o n ”— a c c u m u l a t i n g p i e c e s o n y o u r side to p r e v e n t your o p p o n e n t from c a p tu r in g t h e m .In n o n l i n e a r d y n a m ic s , th e c o n s t a n t p a t t e r n is c a l l e d a “ p o i n t a t t r a c t o r , ” a n d th e . t r a n s i e n t s w o u l d b e s a i d t o fie in th e "b a sin of a t t r a c t i o n .” T h e m a r c h i n g g ro u p rule c a n also p r o d u c e p e r io d ic b e h a v i o r (a " l im it c y c le " o r “ p e r i o d i c a t t r a c t o r ” i n n o n l i n e a r d y n a m i c s t e r m s ) . H e r e is a p e r i o d - 3 s y s t e m u s i n g only four counters: 2 U - » 22-* 31-» 2 1 J W h i c h lead s to m a r c h i n g groups, a n d w h i c h o n e s iead to p e r i o d i c cycles? T o ta l n u m b e r of counters

T h e n u m b e r s w h i c h le a d t o m a r c h i n g g r o u p s — 1, 3, 6 , 10 , 1 5 • - • — s h o u l d l o o k f a m i l i a r t o re a de rs : it ’s t h e t r i a n g u l a r n u m b e r s w e s a w in t a r u m b e r a ! T h e p e r i o d o f c y c l e s in b e t w e e n e a c h m a r c h i n g g r o u p is g i v e n b y o n e p lu s t h e i t e r a t i o n l e v e l o f t h e prev iou s trian gular n u m b e r rea ch ed .

( N o t e : S o m e s e q u e n c e s w ill b e t r u n c a t e d fo r 1 3 , 1 4, a n d 1 5 s i n c e t h e r e a re m o r e c o u n t e r s th a n h oles.)

FIGURE

1 2 3 4 5. 6

B ehavior (afrer tran sien ts)

....................M a r c h i n g ................ P e r io d 2 .............. . . M a r c h i n g ................ P e r i o d 3 . P e r io d 3 ....................M a r c h i n g

7.........................P e r io d

4

8...... ................ P e r io d 4 9 ...................... P e r io d 4 10 ....................M a r c h i n g 11 P e r io d 5 12 ................. P e r i o d 5 13 ................ P e r i o d 5 J4 ................ P e r i o d 5 15 ....................M a r c h i n g

7 .1 3

O w ari as o n e-d im en sio n a l ce llu la r a u to m a to n

N um eric systems

107

q u i r e d i s t a n t in te r m s o f t h e t e c h n o l o g i e s t h a t p r o d u c e d t h e m , b u t t h e r e m a y w ell b e s o m e s u b t l e c o n n e c t i o n s b e t w e e n t h e tw o . S i n c e c e l l u l a r a u t o m a t a m o d e l t h e e m e r g e n c e o f s u c h p a t t e r n s in m o d e r n . s c i e n t i f i c s t u d i e s o f li v i n g sys­ tem s,, a n d c e r t a i n G h a n a i a n lo g s p i r a h ic o .n s w e r e a ls o i n t e n d e d as g e n e r a l i z e d m o d e l s fo r o r g a n i c g r o w t h , it is n o t u n r e a s o n a b l e t o c o n s i d e r t h e p o s s ib ility t h a t t h e s e l f - o r g a n iz i n g d y n a m i c s o b s e r v a b l e in o w a r i .w ere a ls o l i n k e d t o c o n c e p t s o f b i o l o g i c a l m o r p h o g e n e s i s in t r a d i t i o n a l G h a n a i a n k n o w l e d g e sy s tem s . R a t t r a y ’s c lassic v o l u m e o n t h e A s a n t e c u l t u r e o f G h a n a i n c l u d e s a c h a p ­ te r o n ow a ri, b u t u n f o r t u n a t e l y it o n ly c o v e r s t h e rules a n d stra te g ie s o f t h e gam e. R e c e n t l y Kofi A g u d o a w u ( 1 9 9 1 ) o f G h a n a h a s w r i t t e n a b o o k l e t o n o w a r i “d e d ­ ic a te d to A f r i c a n s w h o a r e e n g a g e d in t h e f o r m id a b l e task o f r e c l a im in g t h e i r h e r ­ it a g e ,” a n d h e d o e s n o t e its a s s o c i a t i o n w i t h r e p r o d u c t i o n : w ari in t h e G h a n a i a n

n

lan g u a g e Tw i m e a n s “h e / s h e m a r r ie s .” H e r s k o v i t s ( 1 9 3 0 ) , n o t i n g t h a t t h e " a w a r i ”

1

F I GURE 7 . I 4

L ogarith.7nie cttrv es a n d oxvari T he cover of die hinged owari board we saw in figure 7.10 shows concentric circles emanating from the Adinkra icon for the power of god, “Gye Nyame.” A similar icon; without the logarithmic curves, is attributed to a closed fist as a symbol of power. The Gye Nyame symbol thus appears to be a pair of logarithmic curves held in a fist: God Holding the power of life.

A fr ic a n fra c ta l matfiemntics

io 8

g a m e p la y e d by t h e d e s c e n d a n t s o f A f r i c a n slave s in t h e N e w W o r l d h a d r e t a i n e d som e o f th e p re co lo n ial cu ltu ral a sso ciatio n s from A frica, re p o rts t h a t aw ari h ad a d i s t i n c t “ s a c r e d c h a r a c t e r 1' t o it, p a r t i c u l a r l y i n v o l v i n g t h e c a r v i n g o f t h e b o a r d . O w a r i b o a r d s w i t h c a r v i n g s o f l o g a r i t h m i c s p ira ls (fig.^7.14) c a n b e c o m •of

m o n l y f o u n d in G h a n a to d a y , s u g g e s tin g t h a t W e s t e r n s c i e n t i s t s m a y n o t b e t h e o n ly o n e s w h o d e v e l o p e d a n a s s o c i a t i o n b e t w e e n d i s c r e t e s e lf-o r g a n iz in g p a t t e r n s a n d b io l o g ic a l r e p r o d u c t i o n . I t is a b i t v i n d i c t i v e , b u t I c a n ’t h e l p b u t e n j o y t h e th o u g h t o f v o n N e u m a n n , ap o stle o f a m e c h a n is tic N e w W o rld O r d e r th a t w o u ld w ip e o u t t h e i r r a t i o n a l c a c o p h o n y o f l i v in g s y s te m s , s p i n n i n g i n h i s g ra v e e v e ry t i m e we w a t c h a c e l l u l a r a u t o m a t o n — w h e t h e r in p i x e l s o r o w a r i c u p s — b r i n g f o r t h c h a o s in t h e g a m e s o f life.

C o n c lu sio n -B oth t a r u m b e t a a n d o w a ri's m a r c J ) i n j : g ro up _d yn a,m ics a r e g o v e r n e d by t h e t r i ­ a n g u l a r n u m bers. T h e r e is n o t h i n g s p e c i a l a b p u t t h e t r i a n g u l a r n u m b e r s e r ie s — s i m i l a r n o nHnjear^gtowth^prQ pe.r.t.ie^_can b e f o u n d i n t h e n u m b e r s t h a t fo r m su c c e s s iv e ly la r g e r r ^ a j y g l e s ^ p e j y t a g o n s ^ o r o t h e j shap.es. N o r is t h e r e a n y t h i n g s p e c i a l a b o u t t h e p o w e r s o f t w o w e f o u n d in d i v i n a t i o n — s i m i l a r a p e r i o d i c p r o p ­ e r t ie s c a n b e p r o d u c e d b y a p p l i c a t i o n s o f m o d 3 , m o d 4 , e t c . W h a t is s p e c i a l is t h e u n d e r l y i n g c o n c e p t o f r e c u r s i o n — t h e w av s i n w h i c h a k i n d o f m a t h e M a t i c a l . f e e d b a c k l o o p c a n g e n e r a t e n e w s t r u c t u r e s in s p a c e a n d ^ n e w d y n a m i c s i n tim e . In t h e n e x t c h a p te r , w e w ill see h o w t h i s u n d e r l y in g p ro c e s s is f o u n d in b o t h p r a c ­ tical a p p lic a tio n s a n d a b stra c t sym bolics o f A fric a n cu ltu res.

CHAPTER

•Recursion-

_

8

_

R e c u r s i o n j s t h e m o t o r o f f r a c t a l ge o m e try; k j s j h e r e t h a t j h e , 1b as.ic,..transfor' m a t i o n s — w h e t h e r n u m e r i c o r s p a t i a l — a re s p u n i n t o w h o l e c l o t h , a n d t h e p a tt e rn s t h a t e m e r g e o f t e n r e l l j h e s t o r y o f t h e i r w h i r l i n g b i r t h . W e w ill b e g i n by d e f i n in g t h r e e ty p es o f re c u r sio n * 1 W h i l e it is p o ssib le to c a te g o riz e t h e e x a m p l e s in t h i s c h a p t e r s o le ly o n t h e b asis o f t h e s e t h r e e ty p e s , it is m o r e i l l u m i n a t i n g to c o m b i n e t h e a n a ly s is w i t h c u lt u r a l , c a t e g o r i e s . It is in e x a m i n i n g t h e i n t e r ­ a c t i o n b e t w e e n t h e t w o t h a t t h e use o f f r a c ta l g e o m e t r y as a k n o w l e d g e s y s te m , a n d n o t ju s t u n c o n s c i o u s s o c i a l d y n a m i c s , b e c o m e s e v i d e n t . T h e c u l t u r a l c a t ­ e g o rie s b e g i n w i t h t h e c o n c r e t e i n s t a n c e s o f re c u r s iv e c o n s t r u c t i o n t e c h n i q u e s a n d g r a d u a l l y m o v e t o w a r d t h e a b s t r a c t i o n s o f r e c u r s i o n , . a s . s y m b o l i z e d in A f r i c a n ic o n o g r a p h y .

T hree types o f r e c u r s io n T h e le a s t p o w e rfu l o f t h e t h r e e , j s c a s c a d e r e c u r s i o n , in w h i c h t h e r e is a p r e - 1 d e t e r m i n e d s e q u e n c e o f s i m i l a r p ro c e s s e s . F o r e x a m p l e , t h e r e is a c h i l d r e n ’s story in w h i c h a m a n buys a C h r i s t m a s t r e e , , b u t d is c o v e r s it is t o o tall for his c e ilin g a n d c u ts o ff t h e t o p . H is do g s fin d t h e d i s c a r d e d t o p , a n d p u t it in t h e i r d o g h o u s e , b u t t h e y t o o d i s c o v e r it is t o o t a l l , a n d c u t o ff t h e to p . F i n a l l y t h e

A fr ic a n fractal m athem atics

n o

m i c e d r a g t h i s t i n y t o p i n t o t h e i r h o l e , w h e r e it fits j u s t f i n e — t h e r e c u r s i o n “ b o t t o m s o u t . ” N o t e t h a t t h e s e w e r e all i n d e p e n d e n t t r a n s f o r m a t i o n s ; it is o n ly by c o in c i d e n c e , so to s p e a k , t h a t th e y h a p p e n e d t o b e t h e s a m e . F ig u r e 8. i a s h ow s t h e n u m e r i c v e r s i o n o f c a s c a d e r e c u r s i o n , in w h i c h w e d i v t d e a n u m b e r by tw o in e a c h p a r t o f t h e s e q u e n c e . TTiis is n o t a v ery p o w e r f u l ty p e o f r e c u r s i o n , fo,r t w o T e n o n s . ' F i r s t , ' i t r e q u i r e s t h a t w e k n o w h o w m a n y t r a n s f o r m a t i o n s we w a n t a h e a d o f t i m e — a n d t h a t is n o t a lw a y s p o ss ib le . I f t h e m o u s e w a s in c h a r g e , h e w p.,uj,dhave sa id “j u s t k e e p d i v i d i n g u n t i l i t ’s s m a l l e n o u g h t o fit in m y . h o le . " . S e c o n d ; w e h a v e to k n o w w h a t t r a n s f o r m a t i o n t o m a k e a h e a d o f t i m e , a n d t h a t is n o t a l w a y s p o s s i b l e , e i t h e r . R e c a l l , fo r e x a m p l e , t h e g e n e r a t i o n o f t h e F i b o n a c c i series w e sa w in c h a p t e r 7 (fig. 8 .1 b ) . A l t h o u g h t h e g e n e r a t i o n is ju s t u s i n g a d d i t i o n , it c a n n o t b e c r e a t e d b y a r e c u r s i v e c a s c a d e , b e c a u s e t h e a m o u n t t o be a d d e d i n e a c h t r a n s f o r m a t i o n c h a n g e s i n r e l a t i o n t o p r e v i o u s re s u lts . G e n e r a t i n g t h e F i b o n a c c i s e r ie s r e q u i r e s a f e e d b a c k l o o p o r, as m a t h e ­ m a t i c i a n s c a ll it, i t e r a t i o n .

0

I n i t e r a t i o n , t h e r e is o n l y o n e t r a n s f o r m a t i o n . p r o c e s s , b u t e a c h t i m e t h e

p ro c e s s c r e a t e ^ a n o u t p u t ^ it u s e s t h i s r e s u l t as t h e i n p u t f o r t h e n e x t i t e r a t i o n , as w e ’v e s e e n in g e n e r a t i n g f r a c ta l s . A p a r t i c u l a r l y i m p o r t a n t v a r i e t y o f i t e r a ­ t i o n is “n e s t i n g , ” w h i c h m a k e s u se o f lo o p s w i t h i n lo o p s . H o f s t a d t e r ( 1 9 8 0 , 1 0 3 - 1 2 9 ) n i c e l y i l l u s t r a t e s n e s t i n g w i t h a s t o r y in w h i c h o n e o f t h e c h a r a c t e r s s ta rts to tell a story, a n d w i t h i n chat s t o r y a c h a r a c t e r s t a r ts t o re a d a passag e fro m a b o o k . B u t a t t h a t p o i n t t h e r e c u r s i o n “b o t t o m s o u t " : t h e b o o k p a s s a g e g e ts f i n i s h e d a n d w e s t a r t t o r a s c e n d b a c k u p t h e s t o r i e s . N e s t e d lo o p s a r e v e ry c o m m o n in c o m p u t e r p r o g r a m m i n g , a n d w e c a n i l l u s t r a t e t h i s w i t h a p r o g r a m fo r d r a w i n g t h e a r c h i t e c t u r e j ^ f . M f l k o u l e k . (fig. 8 . 1 c ) , w e ex.arni.ned. in . c h a p t e r . .2.... T h e B a -ila a r c h i t e c t u r e we saw in c h a p t e r 2 c a n a ls o b e s i m u l a t e d t h i s way, using o n e lo o p for th e r i n g s - w it h in - r in g s , a n d a n o t h e r for t h e f r o n t- b a c k s c a lin g g r a d i e n t t h a t m a k e s u p e a c h o f t h o s e rin g s. In c h a p t e r 6 t h e first c o r n - r o w h a i r ­ s t y le (ipciko e le d e ) s h o w e d b r a i d i n g as a n i t e r a t i v e lo o p ; t h e s e c o n d c o r n - r o w e x a m p l e a d d e d a n o t h e r i t e r a t i v e lo o p o f s u c c e s s iv e p e r i m e t e r s o f b r a i d s . 2 U is c o m m o n for c o m p u t e r p r o g r a m s to d o s u c h n e s t i n g s e v e r a l layers d e e p , a n d k e e p ­ i n g t r a c k o f all t h o s e lo o p s w i t h i n l o o p s c a n . b e q u i t e a .c h o re .:T h e t h i r d ty p e o f r e c u r s i o n is “s e l f - r e f e r e n c e . ” W e a r e all f a m i l i a r w i t h t h e w a y t h a t sy m b ols o r i c o n s c a n re fe r t o s o m e t h i n g : t h e s t a r s a n d s t r ip e s flag refers t o A m e r i c a , t h e s k u l l - a n d - c r o s s - b o n e s la b e l re fe rs t o p o i s o n , t h e g r o u p o f l e t ­ ters c - a - t refers to a n a n i m a l . B u t i t ’s a ls o p o s s ib le for a s y m b o l t o re f e r t o itself. K e l l o g g ’s c o r n f l a k e s , fo r e x a m p l e , o n c e c a m e in a b o x t h a t f e a t u r e d a p i c t u r e o f a fa m il y s i t t i n g d o w n to b r e a k f a s t . In t h i s p i c t u r e y o u c o u l d se e t h a t t h e fa m ily h a d a b o x o f K e llo g g ’s c o r n f l a k e s o n t h e i r h re a k f a s t ta b l e , a n d y ou c o u l d see t h a t

Recursion

ill

th is b o x s h o w e d che s a m e p i c t u r e o f t h e family, w i t h t h e s a m e b o x o n t h e i r t a b l e , a n d so o n t o i n f i n i t y ( o r a t le a s t to as s m a l l as t h e K e llo g g c o m p a n y ’s a r t i s a n s c o u ld draw ). S e l f - r e f e r e n c e is b e s t . k n o w n fo r its r q l e j n Jp g ic a ] p a r a d o x . If, fo r e x a m p l e , yo u w ere to a c c u s e s o m e o n e o f lying, it w o u ld b e a n o r d i n a r y statement".”£ u t s u p ­ pose you a c c u s e y ou rself o f lying? T h i s is t h e p a r a d o x o f E p im e n id e s o f C r e t e , w h o d e c l a r e d t h a t “ all C r e t a n s a re liars.” If h e ’s t e l l i n g t h e t r u t h , h e m u s t b e lying, b u t if h e ’s lying, t h e n h e ’s t e l l i n g t h e t r u t h . T h e r o l e o f s e l f - r e f e r e n c e in lo g ic a l

input

X

2

Nnr e previous

4

2

X

2

X

output

2

Nncxt

w h ile

e -co u n t < 4 do:

• d raw en closu re w h ile

g-cou n t < 1 2 do:

• draw granery • rocate to w a rd c e n te r • s h r in k g r a n e r y size • in crea se g -c o u n t by 1 end

o f g - c o u n c ’s l o o p

• reset g - c o u n t to 0 • rotate tow ard c e n t e r

"

• s h r in k e n c lo s u r e size

-

• in crease e -c o u n t b y 1 end

of e - c o u n t ’s loop.

FIGURE 8.1

R ecizrsiv e c a sc a d e v e r s u s ite r a tio n (a) A r e c u r s i v e c a s c a d e , i n w h i c h t h e s a m e t r a n s f o r m a t i o n ( d i v i s i o n b y t w o ) h a p p e n s t o b e u s e d m e a c h p a r t o f a s e q u e n c e . T h i s r e q u i r e s k n o w i n g h o w m a n y t i m e s ch e t r a n s f o r m a t i n s h o u l d h ap p e n a h e a d o f t i m e . It a l s o r e q u i r e s t h a t t h e t r a n s f o r m a t i o n is i n d e p e n d e n t o f p r e v i o u s r e s u l t s . {b) T h e F i b o n a c c i s e q u e n c e is p r o d u c e d by a d d i n g t h e p r e v i o u s n u m b e r t o t h e c u r r e n t n u m b e r t o gee t h e n e x t n u m b e r , s t a r t i n g w i t h 1 + 1 = 2 . I n t h e F i b o n a c c i s e q u e n c e w e a d d a d i f f e r e n t a m o u n t ia e a c h i t e r a t i o n — w e c o u l d n o t k n o w h o w m u c h e a c h t r a n s f o r m a t i o n s h o u l d a d d a h e a d o f t i m e , s a a r e c u r s i v e c a s c a d e w o u l d n o t d o t h e j o b . ( c ) I n s o m e c a s e s it is n e c e s s a r y t o p u t a n i t e r a t i v e loop in sid e a n o t h e r i t e r a t i v e l o o p ( " n e s t i n g " ) . H e r e is a n e x a m p l e o f n e s t i n g i n a c o m p u t e r program for d r a w i n g t h e a r c h i t e c t u r e o f M o k o u l e k w e e x a m i n e d i n c h a p t e r 2. It is w r i t t e n i n w h a t p ro g ram m ers c a ll “ p s e u d o c o d e , " a m i x t u r e o f a p r o g r a m m i n g l a n g u a g e a n d o r d i n a r y E n g l i s h . T h e first lo o p d r a w s t h r e e la r g e e n c l o s u r e s , a n d t h e i n n e r l o o p d r a w s 1 2 g r a n e r i e s i n s i d e e a c h e n c l o s u r e . Variable “e - c o u n t ” t r a c k s t h e n u m b e r o f e n c l o s u r e s , a n d g - c o u n t t r a c k s t h e n u m b e r o f g r a n e r i e s .

A fr ic a n fra c ta l m athem atics

112

p a r a d o x h a s b e e n i m p o r t a n t for m a t h e m a t i c a l th e o r y , b u t i t h a s a l s o b e e n p u t to prac tical use in c o m p u t e r p ro g ra m m in g . M o s t p r o g r a m m i n g h a s little ro u tin e s called “ p r o c e d u r e s , ” a n d o fte n , a p r o c e d u r e w ill n e e d t o c a ll o t h e r p r o c e d u r e s . I n selfr e f e r e n t i a l p r o g r a m m i n g t h e p r o c e d u r e .calls itself.

P r a c t i c a l f r a c t a l s : recu rsio n in c o n s t r u c t i o n t e c h n i q u e s f I n h is d is cu ssio n o f t h e m e t a l - w o r k i n g t e c h n i q u e s o f A f r i c a , D e n i s W i l l i a m s g iv e s \

| a p o e t i c d e s c r i p t i o n o f re c u r s iv e c a s c a d e in t h e e d a n b ra s s s c u l p t u r e s o f t h e I V Y oruba: “T h e im a g e p r o l i f e r a t e s li k e l i g h t s in a b u b b l e : o n e e d a n b e a r s in its lap a n o t h e r , s m a ll e r v e r s io n o f itself, w h i c h b e a rs in t u r n a s m a l l e r in its la p , a n d th is b e a rs a n o t h e r in its lap , e t c . — a s o r t o f s c u l p t u r a l re la y r a c e ” ( 1 9 7 4 , 2 4 5 ) . W h i l e t h e e d a n s c u l p t u r e s a r e u n i q u e t o t h e Y o ru b a , r e c u r s i v e c o n s t r u c t i o n t e c h n i q u e s a re q u i t e c o m m o n in A f r i c a . For e x a m p l e , W i l l i a m s g o e s o n t o n o t e t h a t m u c h A f r i c a n m e t a lw o rk , u n l i k e E u r o p e a n i n v e s t m e n t c a s t in g , uses a “spiral t e c h n i q u e ” t o b u i l d u p s t r u c t u r e s fr o m s in g le s t r a n d s ( w h e t h e r b e f o r e c a s t i n g , as in t h e lost w ax te c h n iq u e ,

o r a f t e r w a r d s as w ir e ) , r e s u l t in g in “h e l i c a l c o il s f o r m e d fro m

s m a l l e r h e l i c a l c o i l s .” A w ig m a d e f r o m m e t a l w ir e s (fig. 8 . 2 a ) s h o w s a s i m i l a r i t e r a t i v e c o n s t r u c t i o n u s i n g c o i l s m a d e o f c o ils . I n c h a p t e r 6 w e s a w s o m e e x a m p l e s o f A f r i c a n h a i r s t y l e s in w h i c h e i t h e r a d a p t a t i o n t o c o n t o u r s o r ab stra c t sp atial tr a n s fo rm a tio n resu lted in a scalin g p a tte r n . T h e fractal braids ; s h o w n in fig u re 8 . 2 b h a v e n o t h i n g to d o w i t h t h e s h a p e o f t h e h e a d ; t h e y a re r a th e r th e result o f su ccessiv e ite ra tio n s t h a t c o m b i n e s tr a n d s o f h a ir in to b ra id s , b r a i d s i n t o b r a i d s o f b r a i d s , a n d so o n . F i g u r e 8 . 2 c s h o w s a n o t h e r w ig, th i s o n e fo r a s c u l p t u r e , t h a t f e a t u r e s b r a i d s o f m a n y sc a le s. T h i s c o l l e c t i o n o f s c u l p t u r e , m e t a l w o r k , a n d h a i r s t y l i n g s o u n d s like., a m o t l e y a s s o r t m e n t , b u t o n c e w e . s t a r t .l o o k i n g f o r r e c u r s i o n w e see a c lo s e r e l a ­ t i o n : a ll e x a m p l e s u s e d a s in g le t r a n s f o r m a t i o n — s t a c k i n g , b r a i d i n g , c o i l i n g — t h a t w a s a p p l i e d s e v e r a l t i m e s . L o o k i n g a t t h e R e la tio n b e t w e e n t h e b a s i c t r a n s f o r m a t i o n a n d its final o u t c o m e c a n h e l p us d is ti n g u is h m n o n g j d i/ f e r e n t types cT r e c u r s i o n . T h e b r a i d i n g p a t t e r n o f fig u re 8 .2 b , fo r e x a m p l e , is b a s e d o n i t e r ­ a t i o n , b e c a u s e t h e w a y e a c h s t a g e is b r a i d e d d e p e n d s o n t h e b r a i d s p r o d u c e d in p r e v i o u s sta g e s; t h e y a r e b r a i d s o f b r a i d s . T h e b r a i d s in fi g u r e 8 . 2 c , o n t h e o t h e r h a n d , a r e o f d i f f e r e n t s c a l e s s i m p l y b e c a u s e e a c h s t a g e u ses d i f f e r e n t a m o u n ts o f sin g le-h air strands— a cascade o f p re d e te rm in e d tran sfo rm atio n s. S i m il a r l y , t h e c o i l s o f c o il s i n d i c a t e i t e r a t i o n , b e c a u s e t h e o u t p u t o f o n e s t a g e b e c o m e s t h e i n p u t for t h e n e x t . R e c u r s i v e c o n s t r u c t i o n .. t e c h n i q u e s a r e a l s o u s e d . f o r t h e d e c o x a t i v e d e s i g n s o f A f r i c a n a r t i s a n s . In o u r d i s c u s s i o n o f t h e f r a c t a l e s t h e t i c in cha p'-

Recursion

t e r 4, w e e x a m i n e d d e c o r a t i v e p a t t e r n s w h i c h d i d n o t p r o v i d e e v i d e n c e fo r a fo r m a l g e o m e t r i c m e t h o d . T h a t d o e s n ’t m e a n n o f o r m a l m e t h o d c o u l d p ossibly e x is t; i t ’s j u s t t h a t n o n e c o u l d b e r e a d i l y d i s c e r n e d f r o m t h e d e s i g n itse lf, a n d th e a r t is a n s d id n o t r e p o r t a n y t h i n g b e y o n d i n t u i t i o n o r e s t h e t i c ta s te . B u t th e r e a re s o m e d e s i g n s t h a t d o i n d i c a t e a n e x p l i c i t re c u r s iv e t e c h n i q u e fr o m t h e p a t ­ t e r n itself. F ig u r e 8 . 2 e s h o w s a M a u r i t a n i a n t e x t i l e w i t h t w o s u c h s c a l i n g p a t ­ t e r n s . I n t e n t i o n a l a p p l i c a t i o n o f i t e r a t i o n a s a c o n s t r u c t i o n t e c h n i q u e is i n d i c a t e d by t h e w a y t h e X f r a c t a l ’s s e e d s h a p e is s h o w n o n e i t h e r s i d e , a n d by h a v i n g i t e r a t i o n c a r r i e d o u t o n t w o c o m p l e t e l y d i f f e r e n t s e e d s h a p e s in t h e s a m e p i e c e . T h e t r i a n g l e f r a c t a l ( c l o s e t o w h a t m a t h e m a t i c i a n s c a l l t h e “S ie r p i n s k i g a s k e t ” ) is a ls o f o u n d in M a u ' r i t a n i a n - S t o n e w o r k (fig . 8 . 2 f ) . A t h r e e d i m e n s i o n a l v e r s i o n f r o m G h a n a (fig. 8 . 2 h ) m a y h a v e b e e n i n s p i r e d b y t h e s e d e s ig n s . B o t h o f t h e a b o v e a re e x a m p l e s o f a d d i t i v e c o n s t r u c t i o n , as w e s a w i n th e K o c h c u r v e o f c h a p t e r i , b u t s u b t r a c t i v e i t e r a t i o n s , as w e s a w fo r t h e C a n t o r s e t, a r e a ls o f o u n d i n _ A f r i c a n d e c o r a t i v e f r a c t a l s (fig. 8 . 2 i ) . C a r v i n g d e s i g n s in clu d e a p p lic a tio n s o f ite ra tiv e c o n s tru c tio n , p a rtic u la rly for c a la b a sh d e c o ­ r a t i o n s (fig. 8 . 2 I ) . A g e o m e t r i c a l g o r i t h m fo r p r o d u c i n g n o n l i n e a r s c a l i n g t h r o u g h f o l d i n g w as i n v e n t e d b y t h e Y o r u b a a r t i s a n s w h o p r o d u c e d t h e a d ir e c l o t h o f fig u re 8 . 2 n . It is n o t m e r e l y a m e t a p h o r t o re f e r t o a s p e c i f i e d se rie s o f fo ld s as a l g o r i t h m i c ; in f a c t , o n e o f t h e c la s s ic f r a c ta l s , t h e “ d r a g o n c u r v e , ” w as d i s c o v e r e d in i 9 6 0 w h e n p h y s i c i s t J o h n H e i g h w a y e x p e r i m e n t e d w i t h i t e r a t i v e p a p e r f o l d i n g ( G a r d n e r 1 9 6 7 ) . T h e a d i r e c l o t h a l sp .s h e w -s -th g .a p p lic a t i o n o f r e f l e c t i o n ^ yjTuj i e t r y a t e v e ry-scale f r o m s i n g l e - s t i t c h j p w s , w h i c h are r e f l e c t e d o n e i t h e r s i d e o f t h e fo ld e d g e s , t o t K F e n t i r e fa b r ic , w h i c h is c r e a t e d by t h e j o i n i n g o f t w o m i r r o r i m a g e c l o t h s . S o far w e h a v e o n ly discussed t h e t e c h n i c a l m e t h o d e m p l o y e d , b u t o f course c id tiira l m e a n i n g is_.ofl.en a t t a c h ed.tp-t-hegfi. t e c h n i q u e s a s w e ll. R e c u r s i v e h a i r ­ styles, for e x a m p l e , e m b e d layers o f s o c i a l l a b o r w i t h e a c h i t e r a t i o n , a w a y t o invest p h y s i c a l a d o r n m e n t w i t h socJal_.me a n i n g (s u c h as f r i e n d s h i p b e t w e e n sty l­ ist a n d s t y l e e ) . F ig u r e 8 . 3 a s h o w s a F u l a n i w e d d i n g b l a n k e t , i n w h i c h s p i r i t u a l e n e rg y is e m b e d d e d in t h e p a t t e r n t h r o u g h its i t e r a t i v e c o n s t r u c t i o n 1'. P r e s tig e ^ c a n a ls o b e a s s o c i a t e d w i t h i n c r e a s i n g i t e r a t i o n s , as w e f i n d f o r b ra s s c a s t i n g a n d b e a d w o r k in t h e g ra s s la n d a r e a s o f C a m e r o o n (fig. 8 - 3 b ,c ) . T h e s c a l in g iter' a ti o n s in o n e o f t h e b ra s s s c u l p t u r e s (fig . 8 . 3 d ) w as r e p o r t e d t o b e s y m b o l i c as well: it s h o w e d t h r e e g e n e r a t i o n s o f ro y a l ty . B u t k i n s h i p g r o u p s a r e n o t j u s t st a ti c e n t i t i e s ; t h e y c h a n g e a c ro s s t i m e , a n d in t h e f o l l o w i n g tw o s e c t i o n s we will see t h a t A f r i c a n r e p r e s e n t a t i o n s o f s u c h t e m p o r a l p r o c e s s e s o f t e n i n v o l v e 're c u rs io n .

I

.e, -

FIGURE 8 . 2

R e cu rsiv e co n stritctio n te c h m q u e s

(a) Coils of coils are used to create this metal wig from Senegal, (b) A scaling cascade of a mask from the Dan societies of Liberinand Cote d'Ivoire, (c) Iterative braiding in tiiis from Yaounde, Cameroon, la t r e s s e cle f l , can be simulated by fractal graphics- (d) Three if of the t r e s s e d e f l simulation. fb, f r o m Barbier-Muelfer 1988.) (/'.far

F IG U R E

8 .2

(c o n tin u e d )

I te r a t iv e c o n s tr u c tio n in M a u r i t a n i a n d e c o ra tio n (e) Recursive construction with triangles and X-shapes in'Tuareg leatherwojk. The X-slvape is related to the quincunx discussed in chapter 4. (f) Designs using several iterations of triangles can also be found in Mauritanian stonework. (g) T he use of triangles in this nomadic architecture from Mauritania may be one reason for the popularity of the design. Unlike rectangles, triangles can create a rigid frame using flexible joints— an important feature in a landscape where long poles are scarce and lashing is the most common joinery, (h) A single iteration of a three-dimensional version of the recursive triangle construction, created by Akan artists in Ghana. (e, f r o m Jefferson 1973 ;• f and g, photos courtesy /FAN, D a k a r ; h, f r o m P h i lli p s 1 9 9 5 , f i g 5. J03 ) (fig u re c o n tin u e s )

A fr ic a n fra c ta l m a th e m a tic s

FIGURE 8 -2 (continued)

S c a lin g p a t t e r n fro m s u b tr a c tiv e i t e r a tio n (i) A

F a n te w o m a n p o s in g in fr o n t o f a p a in t e d s t u d io b a c k d r o p , C a p e C o a s t , G h a n a , i 8 6 0 .

(j) T h e Fante pattern can be th o u g h t of as tw o iteratio ns o f scaling su btraction ( t h a t is, erasing). Strips are erased from an ail-black background. W h e r e th e th ick strips intersect, we get large squares, and where the r.hin strips intersect we get small squares.

(i, photo f r o m the Notional Museum of African Art, Smit/istmfan Institution.)

-

( fig u r e .c o n ijv .u

R e p r e s e n t i n g r e c u r s io n a s a p ro c e s s in tim e : p a r t I , l u c k a n d age A sim p le e x a m p l e o f A fr i c a n rep rese n t a t i o n for re c u rs io n as a tim e - v n ry ing.orDc.ess is s h o w n in fig u re 8 .4 , w h e r e w e_gee t h r e e d e s i g n s t h a t d e p i c t w is h e s f o r c a t c h e s o f e v e r l a r g e r fish. S i n c e t h e e x p e r i e n c e o f b a d l u c k o r g o o d l u c k in f i s h i n g c a n o c c u r o n a d a ily b asis, it is easy t o s e e h o w a b ig fish c o u l d b e c o m e a n i c o n fo r g o o d luck . B u t in th e s e d e s i g n s t h e a r t i s a n s t a k e t h e c o n c e p t a s t e p f u r th e r. G o o d f o r t u n e is n o t in t e r m s o f a s i n g u l a r c h a n c e e v e n t , as o n e se e s in che m y t h s o f t h e N a t i v e A m e r i c a n t r ic k s t e r .'' T h e w is h is f o r a n i t e r a t i v e p r o c e s s — t h a t e a c h fisiTfs to h e s u c c e s s iv e l y , .larger..t.han t h e j a s t o n e. W h i l e th e s e g o o d lu c k ic o n s a re o f t e n a m o r e in f o r m a l p a r t o f c u l t u r a l p r a c ­ tic e , o t h e r re c u r s iv e p ro c e s s e s a r e t a k e n m u c h m o r e serio u sly . A n t h r o p o l o g i s t s

Seed sh iipe, w i t h a c t i v e li ne s in gra y.

F ourth iteration en larged, w ith ad a p tiv e scalin g ( m a p p i n g fro m a sph e re to a p la n e ) a p p lie d to m a tc h the a d a p tiv e s ca lin g o f th e calab ash design.

F I G U R E 8 . 2 (continued)

Itera tio n in c a r v in g s j& O t) T h e B a k u b a o f Z a i r e c r e a t e d s e v e r a l c a r v i n g s t h a t f e a t u r e a s e l f - s i m i l a r d e s i g n . T i t is B a k u b a ,'fcooJen b o t t l e m a k e s u s e o f h e x a g o n s o f h e x a g o n s a s w e l l a s a d a p t i v e s c a l i n g a s it n a r r o w s i n t o c h e n c c L ( I) C h a p p e l ( 1 9 7 7 ) r e c o r d s a w i d e v a r i e t y o f c a l a b a s h d e s i g n s , m a n y w i t h s c a l i n g a t t r ib u t e s .

I'jK ! ((

V

1.

..

8 .8

R e c u r s io n in B a ta m m a lib a a \->v r c h ite c tu r e

(a) Diagram or the Batammaliba two-story house. In front of the house lies the “soul mound," representing the spirits of those currently living in the house. (b) Inside the house, single mounds representing ancestors are found in the scaling arrays, with the si2e of the ancestral mounds increasing from youngest to oldest. Here only one such array is shown, but typically there are several in the same household. ( a , fro m B lier 1 9 8 7 .)

ii r

I ■H ] S

J

u

r* s

B lier’s d i a g r a m i n d i c a te s t h a t t h e size o f t h e a n c e s t r a l m o u n d s in c re a se s from y o u n g e s t t o o l d e s t , a n d s h e n o t e s t h a t t h i s reflects t h e B a t a m m a l i b a ’s id e a o f a s p i r i t u a l p o w e r i n p r o p o r t i o n t o ag e. S o far it w o u l d a p p e a r t h a t t h e r e a r e o n ly tw o s c a l in g c a s c a d e s — o n e t o s h r i n k h o u s e s to s o u l m o u n d s , a n d a n o t h e r t o . d i v i d e s o u l m o u n d s i n t o c y l i n d e r ro w s— a n d n o i t e r a t i v e lo o p . B u t if t h e la r g e st m o u n d re p re s e n ts th e o ld e s t, t h e n re c e n t m o u n d s w o u ld b e in c re a sin g ly t h r e a t e n e d by v a n i s h i n g sc a le . H o w w o u ld t h e first d e s c e n d a n t h a v e k n o w n h o w la r g e t o m a k e t h e first m o u n d ? B li e r n o t e s t h a t m a n y o f t h e s y m b o l i c f e a t u r e s o f t h e a r c h i t e c t u r e a r e r e p l a s t e r e d w i t h a d d i t i o n a l la y e r s o f w e t c la y o n r i t u a l o c c a s i o n s , a n d w e c a n s u r m i s e t h a t t h i s a p p l i e s t o t h e a n c e s t r a l m o u n d s as well. T h u s a n i t e r a t i v e lo o p , in w h i c h e a c h n e w . a n c e s t o r a d d s p o w e r to t h e o ld e r o n e s by i n c r e a s i n g t h e i r m o u n d ’s size, w o u l d b e a t w o r k in t h e s c a l i n g s e q u e n c e w e se e a c c u m u l a t i n g a r o u n d t h e c e n t r a l tow er.

f t...

'

T h e M i t s o g h o so c ie ty o f G a b o n i n c l u d e s s e v e r a l relig io u s a s s o c ia ti o n s t h a t

are h o u s e d in che s a m e t e m p l e (e b a n d z a }. F ig u r e 8 . 9 a s h o w s che c e n t r a l p o s t o f a n e b a n d z a fe a tu rin g sc a lin g pairs o f h u m a n figures. A s in. t h e c h i w a ra figure, th e r e is o n ly o n e i t e r a t io n ; t h e s i g n i f i c a n c e j i e s j p t h i s f i g u r e a s t h e se ed t r a n s f o r m a t i o n ^ ^ a d ^ Lil!§Lv.?.PJ°cess. T h e use o f a cross s h a p e m a y b e d u e t o C i u j s n a n influen c e , b u t t h e b ilareral scalin g is q u i t e i n d i g e n o us, as w e see in che classic B a k w e le s c u l p ­ tu r e (fig. 8 . 9 b ) e l s e w h e r e in G a b o n . M o s t i m p o r t a n t , t h e e b a n d z a p o s t p r o v i d e s a v is u a li z a ti o n for t h e i t e r a t i v e c o n c e p t o f d e s c e n t t h a t is w id ely u s e d in t h i s c u l ­ tu r e area. T h i s is b e a u tifu lly d e s c r ib e d by F e r n a n d e z ( 1 9 8 2 ) in a d e t a i l e d e t h n o g ­ r a p h y o f t h e M i t s o g h o ’s n e i g h b o r s a n d c u l t u r a l r e l a ti v e s , t h e F an g. A l t h o u g h t h e F a n g a re p a t r i l i n e a l , t h e y b e l i e v e t h a t t h e a c t i v e p r i n c i p l e o f b i r t h — a ti n y h u m a n ( w h a t w as c a l l e d a “ h o m u n c u l u s ” in early E u r o p e a n m e d ­ ical th e o r y ) — is c o n t a i n e d in t h e fe m a le b lo o d . T h e idea o f t h e n e w existin g w i t h i n t h e o ld , a n d v ic e versa , is a s t r o n g c u l t u r a l t h e m e . F o r e x a m p l e , in o n e r i t u a l t h e m o t h e r p l a c e s a n e w b o r n c h i l d o n t h e b a c k o f h e r o l d e s t s i b li n g t o sy m b o liz e c o n tin u ity o f th e lineage. F e rn a n d e z (1 9 8 2 , 2 5 4 ) n o te s t h a t th e re b irth c o n ­ c e p t is so s t r o n g t h a t “F a n g f a t h e r s o f t e n c a l l e d t h e i r i n f a n t s o n s g t q ...the_ f a m i l i a r f o n n j a / . f a i b e r . ’’ I n m a n y o f t h e F a n g a n d M i t s o g o r e l i g i o u s p r a c t i c e s , t h e s p i r i t is e x p l i c i t l y d e s c r i b e d a s t r a v e l i n g a v e r t i c a l c y c l i c p a t h . A n c e s t o r s rise fr o m t h e e a r t h t o b e c o m e b o r n a g a i n , a n d by p r o p e r l i v i n g t h e y c a n rise h ig h e r w ith each rebirth. T h e s e c y c l i c i t e r a t i o n s a r e v i s u a l i z e d in t h e N g a n g a d a n c e o f t h e B w i ti r e l i g i o n (fig. 8 . 9 c ) . E v e n in C h r i s t i a n - a n i m i s t s y n c r e t i s m , b i b l i c a l c h a r a c t e rs a r e r e i n t e r p r e t e d as c y c li c _ r e b i r t h s : t h e A f r i c a n g o d s Z a m e a n d N y i n g w a n b e c o m e A d a m a n d E v e , w h o b e c o m e C a i n a n d A b e l ( u n d e r s t o o d as m a l e a n d fem ale), w h o b e c o m e C h r is t a n d th e V irg in .M ary . F e rn a n d e z n o te s t h a t th ese c y c le s a re n o t m e r e r e p e t i t i o n , b u t r a t h e r i t e r a t i v e t r a n s f o r m a t i o n s : " T h e s p i r i t u a l - f r a t e r n a l r e l a t i o n o f Z a m e a n d h i s s i s t e r is c o n v e r t e d i n t o t h e c a r n a l relatio n o f A d a m a n d Eve w h ic h d e g e n e ra te s in to th e m aterialistic a n d divisive r e l a t i o n o f C a i n a n d A b e l w h i c h t h e n is r e g e n e r a t e d a s t h e i m m a c u l a t e a n d filial r e l a t i o n s h i p o f M a r y a n d J e s u s ” (p. 3 3 9 ) . A c c o r d i n g t o F e r n a n d e z , t h e s e d e g e n e r a t i o n / r e g e n e r a t i o n d i f f e r e n c e s a r e v i s u a l i z e d as h o r i z o n t a l v e r s u s v e r t i c a l J w h i c h c o u l d e x p l a i n t h e a l t e r n a t i o n in t h e e b a n d z a p o s t s . I n a p p l y ­ in g t h i s c y c l i c c o n c e p t i o n t o t h e e b a n d z a s t r u c t u r e (fig. 8 . pel), w e c a n s e e t h e d e s c e n t m o d e l in its full f r a c t a l e x p a n s i o n . T h e Tabw a, w h o occupy th e ea ste rn s e c tio n of th e D e m o c ra tic R e p u b lic o f C o n g o ( Z a ir e ) , h a v e also d e v e l o p e d s e v e r a l g e o m e t r i c figures t o se r v e as m o d ­ els for t h e i r c o n c e p t i o n s o f k i n s h i p a n d d e s c e n t . M a u r e r a n d R o b e r t s ( 1 9 8 7 , 2 5 ) e x p l a i n t h a t in t h e T a b w a o r i g i n story, a n a a r d v a r k ’s w i n d i n g t u n n e l re s u lts in

a

b FIGURE 8.9

R e c u r.s w e k in s lu f) i n Q abon (a) T h e central post of t h e ebandza temple in western G a b o n suggests an iterative descent concept. T h is is actually a museum reproduction, (b) Bakwele masks from eastern G a b o n show similar bilateral scaling. f a , f r o m F erro is 19 8 6 ; In left, f r o m Pefrois j 9 8 6 ; rig/u, M etro p o lita n M u se u m o f A r t ; f r o m Z aslavsky

197 .}•)

(figure continue*)

Recursion

129

F I G U R E 8 . 9 (continued)

R e c u rs iv e d e s c e n t in Q a b o n (c) In many of the Fang-and Mitsogo religious practices, the spirit is explicitly described as traveling a vertical cyclic path. Ancestors rise from the earth to be born again, and by proper living they can rise higher with each rebirth. These cyclic iterations are visualized in the Nganga dance of the Bwiti religion, (d) We can apply the explicit mapping of cyclic generations given by the Nganga dance to the iterative posts of the ebandza temple and see the descent model in its full fractal expansion. T h e implication of infinite regress is discussed in chapter 9. (c./rom Fernandez: 1982.)

a “b o t t o m l e s s s p r i n g ” fr o m w h i c h e m e r g e s t h e first h u m a n , K y o m b a , w h o s e d e s c e n d a n t s s p r e a d in all d i r e c t i o n s f r o m t h i s c e n t r a l p o i n t . T h i s s p r e a d is v i s u ­ alized by t h e m p an d e, a d is k c u t fr o m t h e e n d o f a c o n e s n a i l, w h i c h is w o r n as a chest p e n d a n t (fig. 8 . 10a). T h e c e n tr a ! p o i n t is d rilled o u t, r e p r e s e n tin g t h e e m e r ­ ge n c e o f K y o m b a fr o m t h e d e e p s p r in g , a n d t h e l o g a r i t h m i c sp iral o f t h e shell .end s y m b o lizes t h e e x p a n s i o n o f k in g r o u p s fr o m t h i s origin.® O n e w ay ro r e p r e s e n t t h e s e e x p a n d i n g i t e r a t i o n s t h r o u g h ti m e is t o ta k e a series of p o r t r a i t s as t h e s t r u c t u r e c h a n g e s : p r o j e c t i o n s a t d i f f e r e n t p o i n t s a l o n g th e ti m e axis. F ig ure 8 . 1 0 b s h o w s t h e first s t e p t o w a r d t h i s d e s ig n : a m o r e li n e a r version o f t h e m p a n d e d isk, in w h i c h a n A r c h i m e d e a n spiral fits b e t w e e n a series

i • •'i

A fr ic a n fr a c ta l m athem atics

o f t r i a n g l e s ( w h i c h r e p r e s e n t t h e w i v e s o f t h e g u a r d i a n o f t h e a n c e s t o r s ) . In fi g u r e 8 . i o c w e s e e t h a t t h e l i n e a r s p i r a l h a s b e c o m e c o n c e n t r i c s q u a r e s , b u t t h e y a r e n o w p o r t r a y e d i n a s c a l i n g s e q u e n c e , s u g g e s tin g a se r ie s o f p o r t r a i t s o f t h e k i n s h i p s p ira l as it e x p a n d s t h r o u g h t i m e . S i m i l a r s c a l i n g s q u a r e s e q u e n c e s , c a r r i e d o u t t o a g r e a t n u m b e r o f i t e r a t i o n s , c a n b e s e e n i n t h e s ta ffs o f t h e i r n o r t h e r n n e i g h b o r s , t h e B a l u b a (fig. 8 . i o d ) .

b

c

d

FIGURE 8 . I O

T a b w a k i n s h i p r e p r e s e n ta tio n s (a) T h e m p and e shell worn by C h i e f M and a Kaseke Joseph, (b) A more linear version of the m pande disk, in w hich an A rc h im e d e a n spiral fits betw een a series of triangles (w hich represent the wives o f the guardian ancestors), (c) T h e linear spiral has become c o n c e n tric squares, hut they are now portrayed in a scaling sequence, suggesting a series of portraits o f th e kinsh ip spiral as it expands th ro ugh time, (d) Sim ilar scaling of square sequences can he seen in d ie sraffs of their n o rth e rn neighbors, the Baluba.

fa-c,

from

Roberts anti Mai iter 1985; d, Museum f i i r

V o lk e v k tm d e , F rcm hfnrt.)

Recursion

R ecu rsive cosmology I n a ll che d e s c e n t r e p r e s e n t a t i o n s we h a v e e x a m i n e d , k i n s h i p gro u p s tr a c e t h e m ­ selv es to a m y th o lo g ic a l a n c e s t o r a t t h e b e g i n n i n g o f- th e w o rld , a n d t h u s w e m o v e fr o m t h e - o r ig i n s o f h u m a n i t y to t h e o r i g i n s ' b f t h e c o s m o s . A f r i c a n c r e a t io n c o n ­ c e p t s a r e o f t e n b a s e d o n a re c u r s iv e n e s t i n g . T h e b e s t - k n o w n e x a m p l e is t h a t o f t h e D o g o n , as d e sc rib e d by F r e n c h e t h n o g r a p h e r M a r c e l G r i a u l e ( 1 9 6 5 ) . H is w o rk b e g a n d u r i n g t h e 1 9 3 0 D a k a r - D j i b o u t i e x p e d i t i o n , w h e r e h e first m a d e c o n t a c t w i t h t h e D o g o n o f S a n g a in w h a t is n o w M a l i . I n 1 9 4 7 h i s s tu d ie s t o o k a d r a ­ m a t i c t u r n o f e v e n t s w h e n o n e o f t h e D o g o n e ld e rs, O g o c e m m e li, a g re e d to i n t r o ­ d u c e G r i a u l e t o t h e i r e l a b o r a t e k n o w l e d g e s y s te m . C l i f f o r d ( 1 9 8 3 ) p r o v i d e s a d e t a i l e d r e v i e w o f t h e s t r o n g r e a c t i o n s t o G r i a u l e ’s r e s u l t i n g e t h n o g r a p h y . W h i l e m a n y o f che c r i t i q u e s w e re r e a l ly a b o u t t h e fa ilin g s o f m o d e r n i s t a n t h r o ­ p o l o g y in g e n e r a l — t h e t e n d e n c y t o p r e f e r a s t a t i c p a s t o v e r t h e p r e s e n t , o r a s i n g u l a r “t r a d i t i o n ” o v e r i n d i v i d u a l i n v e n t i o n — t h e r e w e r e a ls o t h o s e w h o s i m p l y d id n o t b e l i e v e t h a t s u c h e l a b o r a t e a b s t r a c t i o n s c o u l d b e i n d i g e n o u s . F o r t h e Dogotir t h e h u m a n s h a p e is n o t o n l y a b io l o g i c a l f o r m , b u t m a p s m e a n i n g a t a l P l e v e j s: “T h e fa c t t h a t t h e u n i v e r s e is p r o j e c t e d in t h e s a m e m a n n e r o n a se r ie s o f d i f f e r e n t s c a l e s — t h e c o s m o s , t h e v i l la g e , t h e h o u s e , t h e i n d i v i d u a l — p ro v i d e s a p r o f o u n d ly u n if y in g e l e m e n t in D o g o n life” (D u ly 1 9 7 9 ). . T h e ^ Q g o n h o u s e is p h y s i c a ll y s t r u c t u r e d o n a m o d e l o f t h e h u m a n fo r m , w i t h a la r g e r e c t a n g l e for t h e b o dy , s m a l l e r r e c t a n g l e s o n ^ e a c h , s j d e T o r a rm s , a door, for t h e m o u t h , a n d so o n . T h e D o g o n v i l l a g e , h o w e v e r , r e p r e s e n t s t h e h u m a n fo r m w i t h a s y m b o l i c s t r u c t u r e r a t h e r t h a n a g e o m e t r i c s t r u c t u r e : it is n o t p h y s ­ ically a r r a n g e d as a h u m a n s h a p e , b u t v a r i o u s b u i l d i n g s a r e a s s ig n e d m e a n i n g a c c o r d i n g to t h e i r so cial f u n c t i o n ( t h e s m i t h y s t a n d s for t h e h e a d , t h e m e n s t r u a l • ••

lo d g e s as h a n d s y a n d ' s T r o v p T ln r v i s e 'o f ' tw o ' d i f f e r e n t s y s t e m s o f repres..e-n t a t io n p r e v e n t s s e l f - s im i la r it y in t h e p h y s i c a l s t r u c t u r e o f t h e a r c h i te c t u re ^ _ b u t _ s o m e o f t h e D o g o n ’s re l ig i o u s ic o n s d o s h o w h u m a n fo r m s m a d e o u t o f h u m a n fo r m s Tfig. 8.1 i a ) . r

A t h r e e f o l d s c a l i n g a p p e a r s in s e v e r a l a s p e c t s o f t h e D o g o n r e l i g i o n , a n d

1 it is h e r e t h a t we f i n d a n i n d i c a t i o n t h a t t h e D o g o n a re u s i n g m o r e t h a n ju s t

V a c a s c a d e . G r i a u l e ( 1 9 6 5 , 1 3 8 ) s u m m a r i z e s O g o t e m m e l i ’s c r e a t i o n s t o r y : “G o d . . . h a d t h r e e t i m e s r e o r g a n i z e d t h e w o r l d by m e a n s o f t h r e e su c c e s s iv e W o r d s , e a c h m o r e e x p l i c i t a n d m o r e w i d e s p r e a d in its r a n g e t h a n t h e o n e b e f o r e it." B u t t h e s e r e o r g a n i z a t i o n s a r e n o t m e r e l y l a y e r i n g o n e o n t o p o f che o c h e r ; r a t h e r t h e o u t p u t o f e a c h r e o r g a n i z a t i o n b e c o m e s t h e i n p u t for t h e n e x t . T h e e a r t h g iv e s b i r t h t o t h e first s p i r it s ; t h e s e “N u m m o ” r e g e n e r a t e a n c e s t r a l b e in g s i n t o h u m a n l i k e re p tile s; t h e r e p t i l e - a n c e s t o r s a re a g a in r e b o r n as t h e first tr u e h u m a n s . W i t h i n r e b i r t h , t h e t h r e e f o l d i t e r a t i o n is a g a i n e n a c t e d . In t h e first

( a ) I n t h e D o g o n c o s m o l o g y , t h e s t r u c t u r e o f t h e h u m a n f o r m is c r e a t e d fro m h u m a n form .

( h ) T h e s y m b o l i s m o f tire s t a c k e d p o t s , representing th e b reath o flife, w ith in the feteus, w ith in th e w o m b . W e c a n use an iterativ e d raw in g p ro ced u re to b e tte r u n d e rsta n d ho w this k in d o f scaling can resu lt from a recu rsiv e lo o p . S u p p o s e we h a v e a ro u tin e th a t c a n draw th e circle o f th e p o t given a d iam eter, an d o n e th a t can d r a w a lid. W h i l e d i a m e t e r > m i n i m u m do: D r a w a c i r c l e o f size d i a m e r e r I f size = m i n i m u m , d r a w a lid S h r i n k d i a m e t e r h y 2/3 E n d of “ w h ile " loop. T h i s p r o c e d u r e first c h e c k s t o s e e if w e a r e p ast t h e sm a lle s t d i a m e t e r p o ssib le. If n o t, it d raw s a po t, sh rin k s th e d ia m e te r v alu e b y 2/ 3 S, a n d t h e n g o e s b a c k t o t h e s t a r t o f t h e w h ile lo o p . In o t h e r w o rd s, t h e o u t p u t o f o n e ite ra tio n — a given d ia m e te r— b e c o m e s t h e i n p u t for t h e n e x t ite r a t io n .

(c )

D o g o n recursive im age o f m o th e r a n d

child.

FIGURE 8 . 1 I

S c a lin g in D o g o n re lig io u s ic o n s (n,

from Lau de 197

J a y C . L e ff.)

3;

c o u r t e s y Leste r W io id e r m a n ;

c,

f r o m C a r n e g i e Institute

19 7 0 ;

co u rtesy

0/

Recursion

r e g e n e r a t i o n , fo r e x a m p l e , e a c h a n c e s t r a l b e i n g e n t e r s t h e e a r t h 's w o m b , w h i c h t u r n s e a c h o f t h e m i n t o a fetus, w h i c h a ll o w s t h e b r e a t h o f life (n u m m o ) t o e n te r. T h e c o s m o lo g ic a l n a r r a tiv e su g g ests t h a t in th e D o g o n v iew t h e b ir th i n g p ro c e s s e s a t a ll s c a l e s a r e , in s o m e s e n s e , i t e r a t i o n s t h r o u g h t h e s a m e t r a n s f o r ­ m a t i o n , a n d t h a t t h e s e i t e r a t i o n s a r e a c t u a l l y n e s t e d lo o ps. W h y s h o u ld th e D o g o n req u ire s u c h d e e p iterativ e n esting? 1 su sp ect th a t t h e r e a r e tw o m o t i v a t i o n s / F ^ r s t ^ t h e r e is a n i n s i g h t i n t o m o d e l i n g t h e w o rld : r e c u r s i o n is a n i m p o r t a n t f e a t u r e i n b i o l o g i c a l m o r p h o g e n e s i s , as w e l l as in e n v i r o n m e n t a l a n d s o c j a l _ c h a n g e . T h e ;s e c o n d .is t h e c u l t u r a l c o n t e x t o f t h i s T cn ow led ge: e l d e r s n e e d t o e n s u r e t h a t t h e y o u n g e r g e n e r a t i o n r e s p e c t s t h e i r au th o rity , w h ic h c a n o n ly b e d o n e by g iv jn g th e m g radual access to t h e source o f t h i s p o w e r , w h i c h is k n o w l e d g e . A c k n o w l e d g e s y s te m in w h i c h e n d l e s s e x e ­ gesis is p o s s i b l e m a k e s t h e i n i t i a t i o n p r o c e s s a l i f e t i m e a c t i v i t y . B u t h a v i n g so m u c h e x p la n a to ry elb o w ro o m also p re s e n ts a p ro b le m w ith tr a n s la tin g su c h n a r r a t i v e s i n t o m a t h e m a t i c s . ^ W e h a d t o b e c a r e f u l w i t h t r a n s l a t i o n s fo r m o r e fo rm a l p r a c t i c e s , s u c h as i n t e r p r e t i n g t h e B a m a n a d i v i n a t i o n s y s te m as a b in a r y c o d e , o r a d ire c l o t h as a g e o m e t r i c a l g o r i t h m . A n a r r a t i v e is n o t a q u a n t i t a t i v e o r g e o m e t r i c p a t t e r n , a n d its a m b i g u i t y r e q u i r e s ail t h e m o r e ; c a r e i n p r o d u c ­ in g a m a t h e m a t i c a l t r a n s l a d o n ^ t h a t . c l o e s n o t e m b e d i $ h J n d j g e j } O u s c o n c e p t s , firs t, we h a v e to d is tin g u is h b e tw e e n m o d e lin g th e n a r r a tiv e — s o m e th in g a s tru c tu r a l a n th r o p o lo g is t lik e C la u d e L e v i-S tra u ss w o u ld d o — a n d t h e n a r r a ­ t i v e as a n i n d i g e n o u s m o d e l , s u c h as t h e D o g o n ’s s y s te m for r e p r e s e n t i n g t h e i r o w n a b s t r a c t ideas. T h e b e s t way t o li m i t o u r t r a n s l a t i o n to ideas t h a t t h e D o g o n t h e m s e l v e s are t r y i n g t o c o n v e y is t o c o m p a r e t h e s e a b s t r a c t i o n s o f t h e n a r r a ­ ti v e w i t h o t h e r , m o r e f o r m a l D o g o n s y s te m s . T h i s m e a n s m i s s i n g s o m e id e a s t h a t d o n o t h a v e s u c h f o r m a l c o u n t e r p a r t s , b u t it is b e t t e p t o e r r on. t h e safe. s|de. - in t h i s c o n t e x t . . T h e m a t e r i a l d e s ig n s o f t h e D o g o n a re m o r e r e s tr i c te d t h a n ^ t h e . n a r r a ti v e in te r m s o f t h e i r i t e r a t i v e d e p t h . T h e b e s t c a s e is p r o b a b l y in t h e i c o n o g r a p h y of t h e g ra n a r y , w h e r e O g o t e m m e l i e x p l a i n s a s t a c k o f t h r e e p o ts : che la r g e s t rep. re s e n ts t h e w o m b ; t h e o n e o n t o p o f it, c r e a t i n g its lid, r e p r e s e n t s t h e fetus; a n d che lid o f t h a t p o t is t h e s m a l l e s t p o t , c o n t a i n i n g a p e r f u m e t h a t r e p r e s e n t s t h e b r e a t h o f life ( G r i a u l e 1 9 6 5 , 3 9 ) . T h e s m a l l e s t p o t is c a p p e d by a n o r m a l lid; at chis p o i n t t h e r e c u r s io n “b o t t o m s o u t . ” T h i s is n o t m erely a s t a c k o f d i f f e r e n t sizes; in th e D o g o n vie w t h e w o m b c r e a t e s t h e p r e c o n d i t i o n s t h a t give rise t o t h e fetus, w hich is th e p re c o n d i ti o n for t h e e n tr y o f th e b re a th o f life. T h e recu rsion is e m p h a ­ sized in t h e way t h a t e a c h n e w poc b e g in s before che p rev io u s p o t e n d s (fig. 8.1 i b ) , chat is, o n e p o t ’s lid is t h e n e x t p o t ’s b o d y ( G r i a u l e 1 9 65 , 19 9 ). In t h e s c u l p t u r e in figure 8.1 i c t h e m o t h e r ’s b re a s ts b e c o m e t h e c h i l d ’s h e a d — a g a in , a n e w o n e

133

134

A fr ic a n fractal m athem atics

b e g in s b e f o r e t h e p r e v i o u s o n e e n d s . A s wc saw in t h e c h i w a r a s c u l p t u r e o f t h e D o g o n ’s B a m a n a n e i g h b o r s , r e p r o d u c t i o n is m o d e l e d as r e c u r s i o n . T h e D o g o n v i e w o f a c o s m o s s t r u c t u r e d as n e s t e d h u m a n - f o r m is q u i t e s im ila r to c e r t a in a n c i e n t E g y p tia n re p r e s e n ta tio n s . F igufe 8 .1 2 sh o w s a re lie f f r o m a t o m b in w h i c h t h e c o s m o s e n c l o s e s t h e sky, w h i c h e n c l o s e s t h e e a r t h . I t is i n t e r e s t i n g t o n o t e t h a t t h e r e a r e a g a i n t h r e e i t e r a t i o n s o f s c a l e . A t h r e e i t e r a t i o n n u m e r i c l o o p is i n d i c a t e d f o r t h e E g y p t i a n g o d o f w i s d o m , T h o t h . H e is re f e r r e d t o as H e r m e s T r i s m e g e s t u s , w h i c h m e a n s “ t h r i c e g r e a t H e r m e s , ’' b u t h e is a ls o re f e r r e d t o a s “ e i g h t t i m e s g r e a t H e r m e s . " W h y b o t h t h r e e a n d e i g h t ? It m a k e s sen se if we t h i n k in te r m s o f t h o s e c o m m o n e l e m e n t s o f A f r i c a n n u m e r ic s y s te m s , r e c u r s i o n a n d b a s e - t w o a r i t h m e t i c . T h r i c e g r e a t b e c a u s e w h i l e a n o r d i n a r y h u m a n m a y rise as h i g h as t h e m a s t e r o f m a s t e r s , H e r m e s T r is m e g e s t u s is t h e m a s t e r o f m a s t e r s o f m a s t e r s ( t h r e e i t e r a t i o n s ) ; t h u s w e c a n s u r m i s e “e i g h t t i m e s g r e a t ” re f e rs t o 2^ = 8.

FIG U RE 8 . 1 2

R e c u r s io n in th e c osm olog y o f a n c i e n t Egyf)t Gelt, the Earth, enclosed hy Shu, space, enclosed hy Nut, the stellar canopy. (From Fourier 182 1.)

Recursion

M a n y o f t h e p r o c e s s i o n a l c ro s se s o f E t h o p i a also i n d i c a t e a t h r e e f o l d i t e r ­ a t i o n (fig. 8 .1 3 ) . A l t h o u g h t h e cro sse s a r e n o w u sed in C h r i s t i a n c h u r c h p r o ­ c e e d in g s , P e rc z e l ( 1 9 8 1 ) r e p o r t s t h a t r e l a t e d d e sig n s c a n b e f o u n d o n o r n a m e n t s e x c a v a t e d f r o m t h e c it y o f A x u m in n o r t h e r n E t h o p i a in t h e s e c o n d h a l f o f th e first m i l l e n n i u m b .c . e ., so w e s h o u l d n o t a s s u m e t h a t t h e t h r e e f o l d i t e r a t i o n was o riginally re la te d to th e C h r is ti a n trinity, a lth o u g h a c o n n e c t i o n m ay h a v e oc curred later (fig. 8 .1 3 b ). C o u l d th e r e be a c o m m o n history b e h in d all th e s e o c c u r­ r e n c e s o f tr i p l e i t e r a t i o n s in t h e re lig io u s i c o n s o f t h e S u d a n a n d N o r t h A fric a ? I t h i n k t h e c o m m o n u se o f r e c u r s i o n it s e l f is d u e to a m u t u a l in f lu e n c e , b u t t h e o c c u r r e n c e o f tr i p l e i t e r a t i o n m a y b e o n l y d u e to t h e s i m i l a r i t y o f c i r c u m s t a n c e s r a t h e r t h a n d if fu s i o n . F o r o n e t h i n g , g i v e n t h e m a t e r i a ls t h e a r t is a n s a r e w o r k ­ ing w i t h , m i n u t e s c a le s a re d if fic u lt, so t h a t t h e t e n d e n c y t o be l i m i t e d t o t h r e e ite ra tio n s m a y sim p ly b e a p ra c tic a l c o n s e q u e n c e o f t h e c ra f t m e t h o d s . It m a y also be t h a t if o n e w is h e s t o g e t t h e c o n c e p t o f i t e r a t i o n across, tw o is t o o f e w ^ w h ile m o re t h a n t h r e e is u n n e c e s s a r y ( w h i c h is w h y m o d e r n m a t h e m a t i c i a n s o f t e n r e p ­ r e s e n t a n in f in i te series by t h e first t h r e e e l e m e n t s , e.g., " 1 ,2 ,3 . . .”). O n t h e o t h e r h a n d , t h e r e a re ca ses w h e r e m a n y s u c h “ u n n e c e s s a r y ” i t e r a t i o n s are m a d e in t h e m o s t d iffic u lt o f c r a f t m a t e r i a ls . F ig u r e 8 .1 4 s h o w s a n a n c i e n t E g y p ti a n d e s ig n , c a rv e d in s t o n e , r e p r e s e n t i n g t h e o rig in m y t h in w h i c h t h e lo tu s flow er (its petalsw ith i n - p e t a ls illu s tra te d by a m u l t i t u d e o f sc a lin g lines) b eg ins che se lf-g e n e r a tin g c r e a t i o n o f t h e m a t e r i a l w o rld .

-reference S e l f - r e f e r e n c e is t h e m o s t p o w e r f u l ty p e o f r e c u r s i o n . T h e a b il it y o f a s y s t e m to re fle c t o n it s e l f is a t t h e h e a r t o f b o t h che li m i ts o f . m a t h e m a t i c a l c o m p u t a t i o n as w ell as o u r s u b j e c t i v e e x p e r i e n c e o f c o n s c i o u s n e s s . B u t t h e r e a re r e l a t i v e l y triv ial a p p l i c a t i o n s o f s e l f - r e f e r e n c e as w ell ( o n e c a n a lw a y s use a b l o w t o r c h to lig h t a c a n d l e ) . S e l f - r e f e r e n c e first c a m e to t h e a t t e n t i o n o f m a t h e m a t i c i a n s in s im p le e x a m p l e s o f lo g ic a l p a r a d o x ; for e x a m p l e , t h e “ li a r ’s p a r a d o x ” w e e x a m ­ in ed e a rlie r . T o s e e h o w s e l f - r e f e r e n c e c a n b e m o r e t h a n j u s t a l o g i c i a n ’s j o k e , le t’s e x a m i n e h o w it w o r k s in p r o g r a m m i n g . R e c all t h a t j i s i in p j e c a s c a d e c o u ld n o t b g . u s e d ■if we.,did- n ot.-k no w . h o w ..m a n y j_ t ^ n 5 fp r m a ti o n s _ w e re . n e e d e d .a h e a d of tim e. T h e s a m e p r o b l e m o c c u r r e d for t h e B a t a m m a l i b a a n c e s t r a l m o u n d s ; sin c e t h e first d e s c e n d a n t d i d n o t k n o w h o w m a n y w o u ld b e n e e d e d , t h e s y s te m h a s to allow for i t e r a t i v e resizing. W e a lso saw t h e possibility o f n e s t e d it e ra t iv e loops, illustrated by t h e t w o - l o o p d r a w i n g p r o g r a m fo r M o k o u l e k a r c h i t e c t u r e . B u t su p ­ pose we d i d n ’t k n o w h o w m a n y n e s t e d lo o p s we were g o in g t o n e e d ? I n t h e s a m e way t h a t t h e r e c u r s i v e c a s c a d e c o u l d n o t d e a l w i t h a n u n k n o w n n u m b e r o f iter-

135

S e e d sh a p e ( a ll tin e s are a c tiv e lin es)

S e c o n d iteration

FIGURE 8 . 1 3

F r a c t a l s in E t h i o p i a n p ro c e s s io n a l c ro sse s (a) Fractal simulations for Ethiopian processional crosses through three iterations(b) Ethiopia converted to Christianity in 333 c.ti., and in the thirteenth century King Lalibela directed the construction of churches to be cut from massive rocks in one of the mountain regions. T he church of St. George {at right) shows a triple iteration of nested crosses: (a, a l l Ethiopian processional crosses f r o m P o r t l a n d Museum in Oregon; pliotos c o u r t e s y o f Cs ilia P e r c z e l , b, photo hy Georg Gerstcr.)

Recursion

FIGURE

137

8.14

T h e l o t t t s i c o n in a n c i e n t E g y p t i a n cosm ology

In the origin story of ancient Egypt the lotus flower was often used as an image of the unfolding of the universe, its petals-within-petals signifying the expansion of scales. This is a very stylized representation used in the capitals of columns in temples. (From F ourier 1 8 2 1 .)

a t i o n s , n e s t e d i t e r a t i o n h a s t r o u b l e w i t h a n u n k n o w n n u m b e r o f l o o p s . 10 H e r e is w h e r e s e l f - r e f e r e n c e c a n h e l p o u t . A n e x a m p l e o f s e l f - r e f e r e n c e in p r o g r a m ­ m i n g is il l u s t r a t e d for t h e D o g o n p o t s t a c k in fig u re 8 .1 5 . W e k n o w t h a t t h e D o g o n p o t s t a c k c a n b e d r a w n w i t h a s i n g le i t e r a t i v e l o o p — it d o e s n o t re q u ire s e l f - r e f e r e n c e . B u t t h e ta s k c a n be a c c o m p l i s h e d by s e l f - r e f e r e n c e , a n d w e m i g h t s i m d a r l y ask if t h e r e a re 'c a s e s o f s c a l in g in A f r i c a n d e s i g n s in w h i c h s e l f - r e f e r e n c e p la y s a ro le , re g a r d le ss o f w h e t h e r it is re q u i r e d . In. E u r o p e a n h i s t o r y , s e l f - r e f e r e n c e b e g i n s w i t h t h e s t o r y o f E p i m e n i d e s o f C r e t e , t h e “ li a r ’s p a r a d o x . ” S i m i l a r u t i l i z a t i o n s o f n a r r a t i v e se lf-r e fe re n c e t o c r e ­ a t e u n c e r t a i n t y c a n be f o u n d in c e r t a i n A f r i c a n t r i c k s t e r s to rie s . F o r e x a m p l e , ' iii a n A s h a n t i s t o r y o f A n a n s e ( w h o b e c a m e “A u n t N a n c y ” in A f r i c a n A m e r i ­ c a n f o l k l o r e ) , a m a n n a m e d “ H a t e s - t o - b e - c o n t r a d i c t e d ” is t r i c k e d i n t o c o n ­ tr a d ic tin g h im self. P e ito n (1 9 8 0 , 5 1 ) n o te s t h a t th e a p p lic a tio n o f such s e l f - r e f e r e n t i a l p a r a d o x is a t h e m e in m a n y A n a n s e st o r ie s : “T h u s A n a n s e r e j e c ts t r u t h in f a v o r o f ly in g , b u t o n l y for t h e s a k e o f s p e e c h ; t e m p e r a n c e in fav o r o f g l u t t o n y for t h e s a k e o f e a t i n g ; c h a s t i t y in f a v o r o f la s c i v i o u s n e s s for t h e s a k e o f s e x ." T h e f o l l o w i n g t a l e is n o t n e a r l y a s sp a r s e b u t c a r r ie s t h e f l a ­ v or o f s e l f - r e f e r e n t i a l p a r a d o x q u i t e w ell:

O n e of the most com m on of all stories in Africa describes the e n c o u n te r of a man and a hum an skull in the bush. A m ong the N u pe of Nigeria, for instance, they tell of the h u n te r who trips over a skull while in pursuit of game and exclaim s in w o n d e rm e n t, “W h a t is this? How did it get here?" “Talking

A fric a n fractal mathematics

FIGURE 8 . 1 5

D r a w in g th e D o g o n p o t s ta c k by s e lf-re fe re n c e T h e symbolism of the stacked pots represents th e b reath of life, w ith in th e fetus, w ithin th e wotnB.' W e have aready seen h o w this can be drawn using an iterative loop; now let’s see h ow it ca n be drawn using self-reference. Suppose we h av e a ro u tin e th a t can draw the semicircle of th e p o t given a diameter. Procedure D R A W -P O T If size = m inim um , draw a lid. Else Draw a circle of size diam eter S h rin k diam eter by V3 D R A W -P O T End of "else" clause End o f procedure N otice th a t this procedure first checks to see if we are at the smallest dia m e ter possible. If not, it draws a pot, shrinks the diam eter value it by 2/ss, and th e n calls itself— an application of self-reference. N ow th e program has to execute n D R A W -P O T procedure again. T h e recursion will “bo tto m -o u t" w hen it finally draws a lid. T h e program th e n skips to the “End of procedure" line an d can finally pop hack up to th e place it left off after ex ecutin g the previous D R A W -P O T call. b r o u g h t m e h e r e , ” th e sk u ll re p lie s. N a t u r a l l y t h e h u n t e r is a m az ed a n d q u ic k ly ru n s b ac k to his village, e x c la im i n g a b o u t w h a t h e h a s fou nd . E v e n ­ tu ally t h e kin g h ea rs ab o u t th is w o n d e r an d d e m a n d s t h a t th e h u n t e r ta k e h im /

to see it. T h e y re t u r n to th e p la c e in t h e b u s h w h e r e t h e sk u ll is s ittin g , a n d t h e h u n t e r p o in t s ir o u t to h is k in g , w h o n a t u r a l l y w a n t s to h e a r t h e s k u ll’s message. T h e - h u n t e r r e p e a t s .t h e question.:..“H y w d i d you g e t h e re ? ” h u t th e skull says n o t h i n g . T h e k ing, angry now, accu se s t h e h u n t e r o f d e c e p t io n , an d o rders his h e a d c u t off o n th e sp ot. W h e n t h e royal p a rty d e p a rt s , t h e skull speaks o u t, asking th e h u n t e r “W h a t is this? H o w d id you get h e re ? ” T h e he ad replies, “T a lk i n g b ro u g h t m e h e r e ! ”

( A b r a h a m s 1983, 1)

S e lf -re f e re n c e is -also visually p o rtra y e d in s o m e A f r i c a n de sign s. Figure 8. i6n s h o w s a n o t h e r a b b i a c a r v i n g fr o m C a m e r o o n , s e e n a ls o in t h e n e s t e d fish e a rl ie r in th i s c h a p t e r . B u t th is a b b ia c a r v i n g is a n ic o n for itse lf— it is a n a b b ia o f a b b ia . A c c o r d i n g to t h e C a m e r o o n C u l t u r a l Review ( i n s i d e c o v e r , J u n e 1 9 7 9 ), its m e a n ­ i n g is “r e p r o d u c t i o n . " A n o t h e r e x a m p l e o f s e l f - r e f e r e n c e f r o m C a m e r o o n is s h o w n in figure 8 . 1 6 b , a life-size b r o n z e s t a t u e o f t h e k i n g o f F o u m b a n . H e r e we s e e t h e k i n g s m o k i n g h is p ip e , t h e b o w l o f w h i c h is a fig u re o f t h e k i n g s m o k ­ in g h is p ip e , t h e h o w l o f w h i c h is a figure o f t h e k i n g s m o k i n g h i s p ip e . L ik e t h e K e l l o g g ’s c o r n f l a k e s b o x d e s c r i b e d e a rl ie r , t h e v is u a l s e l f - r e f e r e n c e i n s t a n t l y leads to in f in ite regress. B u t it c o u ld be m o r e t h a n ju st h u m o r in t h e b ro n z e sculp-

Recursion

139

tu r e . S i n c e t h e p ip e is a w e l l - k n o w n s y m b o l o f ro y a l p re s tig e in F o u m b a n , it m ay be t h a t t h e a rtisa n s w ere m a k i n g p u rp o s e fu l u se o f t h e in fin ite regress: “T h e k i n g ’s p o w e r is n e v e r - e n d i n g . ” Figure 8 .1 6 c s h o w s a B a m a n a h e a d d r e s s , t h a t is, a s c u l p t u r e w o r n o n t h e h e a d d u r i n g c e r e m o n i e s . Fag g ( 1 9 6 7 ) s u g g e s ts t h a t t h i s e n a c t s s e l f - r e f e r e n c e : a h e a d d re s s of a p erson w e a rin g a h e a d d re s s of a p erson w earin g a h e ad d ress. O t h e r s (cf. A r n o l d i 1 9 7 7 ) h a v e d e s c r i b e d t h i s as a s y m b o l o f f e r til it y sp irits, b u t th e tw o in te r p r e ta tio n s m ay n o t be m u tu a lly ex c lu s iv e . R e tu r n in g to th e

FIGURE 8 . l 6

S e l f 't e f e r e n c e in A f r i c a n i c o n s 1) The abbia carvings from C am e ro o n show a wide variety o f images, but this abbia carving is icon lor itself— it is an abbia of abbia. (b) A life-size bronze statue of the king of Foumban. ere wc sec the king smoking his pipe, .die bowl of w hich is a figure of the king sm oking his pipe. Bamana headdress.

Jwu'ing Iwsed on a b b i a p i c t u r e d on iu University Museum o f A f r i c a n

th e c o v e r o f A r t.)

Cameroon Cultural Review, 1979; c, photo

courtesy

140

A fr ic a n fra c ta l ?nacliema£ic5

B a m a n a ’s c lo s e c u l t u r a l r e l a t i v e s t h e D o g o n , w e se e s e l f - r e f e r e n c e s u g g e s te d by O g o t e m m e l l i ’s d e s c r i p t i o n o f h o w t h e e i g h t h a n c e s to r, “w h o w as W o r d itself,” was a b le to use W o r d ( t h a t is, t h e b r e a t h o f life) t o s e l f - g e n e r a t e i n t o ..the n e x t i t e r ­ a t i o n o f h u m a n i t y . I n e x a m i n i n g t h e s e lf-s im ila r it e r a t io n s * o f t h e D o g o n m o t h e r a n d c h i l d in fi g u r e 8 . 1 1 c , w e n o t e d a s t r u c t u r a l c h a r a c t e r i s t i c t h a t c a n b e e x p re s s e d in t h e p h r a s e “ a n e w o n e b e g in s b e f o r e t h e o l d o n e e n d s . " T h i s w o u ld also d e scrib e t h e s t r u c t u r e o f t h e pip e in t h e s t a t u e o f t h e k i n g o f F o u m b a n , w h i c h w e k n o w t o b e e x p l i c i t l y s e l f - r e f e r e n t ia l . P e r h a p s t h e s e l f - r e f e r e n t i a l v e r s i o n o f t h e D o g o n p o t s t a c k w a s t h e c o r r e c t o n e a fte r all.

I c o n i c r e p r e s e n t a tio n s o f r e c u r s io n T h e a b b i a o f a b b i a , as a s y m b o l o f ( ^ e p r o d u c t i o n , ’.”>is m o r e t h a n j u s t a n a p p l i ­ c a t i o n o f s e l f - r e f e r e n c e ; it r e p r e s e n t s ~ t h e c o n c e p £ , i t s e l f . I f r e c u r s i o n is r e a l l y a c o n s c i o u s ( t h a t is, s e l f - c o n s c i o u s ! ) a s p e c t o f A f r i c a n k n o w l e d g e s y s t e m s , t h e n w e s h o u l d e x p e c t s u c h r e p r e s e n t a t i o n s , r a t h e r t h a n j u s t i n s t a n c e s in w h i c h t h e c o n c e p t is a p p l i e d . F i g u r e 8 . 1 7 a s h o w s t h e a p p l i c a t i o n o f r e c u r s i o n in t h e t r a -

fig u re

8 .1 7

R e /lu x

(a) This sketch from the notebook of a nineteenth-century ethnographer in southern Senegal shows an indigenous apparatus for the distillation of liquor from palm wine using a scaling cascade. (b) A ncient Egyptian alchemists drew this snake symbol to represent their reflux technique. A tube comes out of a heated pot and reenters after cooling. This cyclic refinement was used in the creation of dyes and perfumes, bur it also symbolized the alchemists’ goal of refinement of the human soul. (a, pfioto c o u r t e s y /FAN, D a k a r - , b, drawing b a s e d on T o y lor 1 930.)

Recursion

141

d i t i o n a l d i s t i l l a t i o n o f p a l m w i n e i n t o l i q u o r in t h e C a s a m a n c e r e g i o n o f S e n e g a ! . S u c h d i s t i l l a t i o n t e c h n i q u e s w e r e d e v e l o p e d t o s o p h i s t i c a t e d le v e ls in a n c i e n t E g y p t, w h e r e t h e p r o c e s s b e c a m e a n i t e r a t i v e l o o p w h i c h m o d e r n c h e m i s t s c a ll a “re f lu x ” a p p a r a t u s . F ig u r e 8 . 1 7 b shovirs-the i c o n i c r e p r e s e n t a t i o n o f t h e reflu x sy s te m in t h e o ld e s t k n o w n a l c h e m i c a l w r i t i n g s (first c e n t u r y

c .e

.),

w h i c h a r e a t t r i b u t e d t o M a r i a ( w h o w r o t e u n d e r t h e n a m e o f M i r i a m , s is te r o f M o s e s ) , C l e o p a t r a ( n o t t h e f a m o u s q u e e n ) , C o m a r i u s , a n d t h e m y t h i c figure o f H e rm e s T rism eg estu s ( T h o t h ) . T a y lo r (1 9 3 0 ) n o te s t h a t a lth o u g h th ese w e r e w r i t t e n in G r e e k , “t h e re l ig i o u s e l e m e n t . . . l i n k s t h e m t o E g y p t r a t h e r t h a n t o G r e e c e , ” a n d h e s u g g e s ts t h a t t h e m o s t li k e ly o r i g i n is f r o m t h e t r a d i ­ t i o n s o f t h e a n c i e n t E g y p ti a n p r i e s t h o o d . 11 I n t h e s e w r i t i n g s w e f i n d t h e re flu x i c o n a s s o c i a t e d w i t h t h e a p h o r i s m “ as a b o v e , so b e l o w , ” r e c a l l i n g t h e selfs i m i l a r s c a l in g c o s m o lo g y w e h a v e s e e n in s u b - S a h a r a n A fric a , as well as its lin k s t o t h e r e c u r s i o n o f s e l f - f e r t i l i z a t i o n . 1^ O f c o u r s e , o n e c a n go t o o far in a t t r i b u t i n g li n k s b e t w e e n a n c i e n t E gy pt a n d s u b - S a h a r a n A f r i c a (see O r i t z d e M o n t e l l a n o 1 9 9 3 ; M a r t e l 19 94; L efk o w itz 1 9 9 6 ). T h e r e is goocf_e_yidence for th e o r i g in s o f t h e E g y p ti a n b a s e - tw o a r i t h m e t i c sy s te m fro m s u b - S a h a r a n A fric a , a n d for t h e p e r s i s t e n t use o f r e c u r s io n in k n o w l ­ e d g e sy stem s acro ss t h e A f r i c a n c o n t i n e n t . B u t it w o u ld b e u n w is e to a ss u m e t h a t o n e c a n a t t r i b u t e m o r e sp ecific f e a t u r e s t o d if fu s i o n . I n p a r t i c u l a r , it is h ig h l y u n l i k e l y t h a t t h e s a m e fig u re o f a s e r p e n t b i t i n g .its ta i l, a p p e a r i n g as a n ic o n for t h e g od D a n in t h e v o d u n r e l i g i o n o f B e n i n (fig. 8 . 1 8 a ) c o u ld h a v e d e r i v e d f r o m tlie E g y p t i a n i m a g e , o r v i c e v e r s a . A s w e s h a l l s e e , t h e m e a n i n g o f t h e v o d u n ic o n h a s n o t h i n g to d o with, t h e E g y p t i a n reflux c o n c e p t . In A u g u s t 1994, t h a n k s to t h e a id o f M a r t i n e d e S o u s a ( o n e o f t h e A f r i c a n d e s c e n d a n t s o f t h e fa m e d F r a n c i s c o d e S o u z a ) , 1 was g r a n t e d a n i n t e r v i e w w ith t h e c h i e f o f t h e D a n t e m p l e in O u i d a h , B e n i n . B o t h t h e c h i e f a n d his wife w e re q u i t e r e s p o n s iv e to my i n t e r e s t in t h e g e o m e t r i c fe a tu re s o f D a n ’s r e p r e s e n t a t i o n s a n d identified th e sinusoidal ico n in ir o n (fig. 8. j 8 b ) as " D a n a t w ork in t h e w o rld ,” p o i n t i n g o u t t h a t h e c r e a t e s o r d e r in w i n d a n d w a te r. T h e c y c li c D a n w as m o r e a b s t r a c t , e x i s t i n g in a d o m a i n w h e r e h e w as in c o m m u n i c a t i o n w i t h o t h e r gods o f v o d u n . M a u p o i l ( 1 9 8 1 , 7 9 ) a is o f o u n d t h a t D a n ( D a n g b e ) w as t h e r e “to ass u re t h e r e g u l a r i z a t i o n o f t h e fo r c e s ,” a n d B li e r ( 1 9 9 5 ) s u m m a r i z e s his ro le as “p o w e r s o f m o v e m e n t t h r o u g h life, a n d n a t u r e ’s b le s s in g s .” R e g u l a r p h e n o m e n a in n a t u r e — t h e p e r i o d i c a s p e c t s o f w e a t h e r , w a t e r w a v e s , b i o l o g i c a l c y c le s, e t c . — a re a t t r i b u t e d t o t h e a c t i o n o f D a n . T h e r e l a t i o n b e t w e e n t h e u n d u l a t o r y D a n “a t w o r k in t h e w o r l d ” a n d _ th e c i r c u l a r fo rm o f D a n as a m o r e a b s t r a c t s p i r i t u a l f o r c e m a p s n e a t l y o n to t h e d i f ­ f e r e n c e b e t w e e n t h e s i n u s o i d a l w a v e s w e s e e in s p a c e a n d t i m e — w a v e s in

noise {external temperature changes)

input (desired temperature)

T h e t h e r m o s t a t t h a t re g u l a t e s t e m p e r a t u r e in a h o u s e is a n e g a t i v e f e e d b a c k l o op . T h e w o r d “ n e g a t i v e " is used b e c a u s e we s u b t r a c t t h e c u r r e n t r o o m t e m p e r a t u r e fro m t h e d e s i r e d t e m p e r a t u r e s e t by t h e t h e r m o s t a t c o n t r o l . O v e r t i m e t h i s wi ll t e n d t o p r o d u c e cy cles o f h e a t a n d co ld .

noise {road bumps)

D r i v i n g a c a r c a n als o be m o d e l e d by a n e g a t i v e fe e d b a c k lo o p . T h e d r i v e r a t t e m p t s t o stay in t h e c e n t e r o f t h e la n e , a n d will c o r r e c t t o a d j u s t for b u m p s . A g a i n , g i v e n e n o u g h b u m p s ,' w e will t e n d to see cy cles o f s w e rv i n g t o g e t b a c k to t h e c e n t e r . c FIGURE 8 . l 8

T h e v o d u n god D a n I n t h e v o d u n r e l i g i o n o f B e n i n , t h e s n a k e g o d D a n r e p r e s e n t s t h e c y c l i c o r d e r o f n a t u r e . D a n 's s h a p e r e fle c ts t h i s i d e a in t w o w ay s . A s a n a b s t r a c t f o r c e , h e is r e p r e s e n t e d as a f e e d b a c k l o o p ( a ) . A s a c o n c r e t e m a n i f e s t a t i o n , h i s b o d y is a l w a y s o s c i l l a t i n g in a p e r i o d i c w a v e ( b ) . T h i s s a m e id ea o f a p e r i o d i c t i m e s e r i e s f r o m c y c l i c f e e d b a c k is a l s o u s e d in W e s t e r n m o d e l s o f n a t u r e (c ). ( a , p/ioto courtesy J F A N , D akar.)

R ecursion

w a t e r a n ti c ir r u s c lo u d s , d a il y f l u c t u a t i o n s in h e a t a n d li g h t, t h e b i a n n u a l ra i n y seaso ns, e tc .— a n d th e a b s t r a c t id e a o f a n i t e r a t iv e l o o p t h a t g e n e ra te s th e s e w a v e ­ fo rm s. T h e a s s o c i a t i o n c a n b e d e r i v e d f r o m i:he k i n d o f e m p i r i c a l o b s e r v a t i o n o n e . g e ts in e v e r y d a y o c c u r r e n c e s . A d o p s i d e d w h e e l w ill p r o d u c e u n d u l a t o r y t r a c k s in s a n d ; f r i e n d s w h o p e r i o d i c a l l y g i v e gifts a r e in a “c y c le o f e x c h a n g e , ” a n d so f o r t h . W h a t d id t a k e g r e a t i n s i g h t a n d i n t e l l e c t u a l lab o r, h o w e v e r , was t h e re l ig i o u s p r a c t i t i o n e r s ’ g e n e r a l i z a t i o n o f s u c h o b s e r v a t i o n s i n t o s p e c ific , a b s t r a c t , u n iv e r s a ll y a p p l i c a b l e c a t e g o r i e s , r e p r e s e n t e d by i c o n s w i t h t h e a p p r o ­ priate g eo m etric stru ctu re. ^ T h e m a t h e m a t i c a l e q u i v a l e n t s i n n o n l i n e a r d y n a m i c s a r e li m i t c y c le s a n d p o i n t a t t r a c t o r s — t h e re s u lts o f w h a t e n g i n e e r s c a ll a “n e g a t i v e f e e d b a c k l o o p . ” W e h a v e a l r e a d y s e e n s u c h c h a r a c t e r i z a t i o n s in c e l l u l a r a u t o m a t a a n d o w a r i, w h e r e s p a t i a l p a t t e r n s r e m a i n b o u n d e d w i t h i n a c y c le o r fr o z e n in a s t a t i c p a t ­ te rn . Figure 8 .1 8 c sh ow s s o m e c o m m o n p l a c e e x a m p l e s o f n e g a ti v e fee d b a c k loops, a n d h o w th e y a c t to k e e p th e b e h a v io r o f system s b o u n d e d o r stabilized, e v e n in che p r e s e n c e o f n oise . B u t che v o d u n s y s te m w o u ld n o t b e c o m p l e t e if it c o u ld o n l y a c c o u n t fo r r e g u l a r i t y — w h a t c a u s e s d e v i a t i o n in t h e first p l a c e ? H e n c e t h e ro le o f L g g b a, g o d o f c h a o s . F igu re 8 . 1 9 a s h o w s a n o t h e r i r o n i c o n , t h e fo r k e d p a t h o f L e g b a , “g o d o f t h e c r o s s r o a d s . ” A s e x p l a i n e d to m e by K a k e S . A l f r e d ,

1

- ; I------ ------- -..w

a d i v i n a t i o n p r i e s t o f v o d u n i n C o t o n o u , B e n i n , L e g b a is r e p r e s e n t e d by t h e fork b e c a u s e " t h e a n s w e r c o u l d b e yes o r n o ; y o u d o n ’t k n o w w h i c h p a t h h e wilt t a k e . ” F or d i v i n a t i o n , in w h i c h a “p a t h ” ( q u e s t i o n ) is o f t e n p u r s u e d fo r f u r c h e r q u e s t i o n s , t h e im a g e b e c o m e s o n e o f e n d l e s s b i f u r c a t i o n s . A t t h e P a l a i s R o y a l in P o r t o N o v o , B e n i n , I w a s t o l d t h a t t h e s h r i n e t o L e g b a w as p l a c e d a t t h e t h r e s h o l d b e c a u s e h is f o r c e w a s so d i s r u p t i v e t h a t it w o u ld u n d o b o c h g o o d a n d e v il, c r e a t i n g a p u r i f i c a t i o n a t the-er.trav.-ce-; K-akc a ls o e x p l a i n e d t h a t w h i l e t h e m u sic o f D a n was slow a n d re g u la r, t h e m u s ic o f L e g b a w as b o t h fast a n d s lo w — sig n ify in g h i s u n p r e d i c t a b l e n a t u r e — a n o b s e r v a t i o n 1 was a b l e to c o n f i r m by r e c o r d i n g t h e d r u m m i n g t h a t w a s u se d t o c a l l e a c h g o d a t t h e t e m p l e o f D a n in O u i d a h . 1-5 A s t h e c o n v e r s e to D a n , t h e b i f u r c a t i n g u n c e r t a i n t i e s o f L e g b a are like a p o s i t i v e fe e d b a c k l o o p , a m p l i f y i n g d e v i a t i o n a n d n o is e (fig. 8 . 1 9 b ) . C o n t r a s t s b e t w e e n a n e g a t i v e fe e d b a c k lo o p , c r e a t i n g stability, a n d t h e p o s­ itive f e e d b a c k o f u n c o n t r o l l e d d i s o r d e r a r e a l s o f e a t u r e d in t h e .ico n ic c a r v i n g s o f t h e Battle. V o g el ( 1 9 7 7 , 5 3 ) n o t e s t h a t t h e B a u le c h i e f is c h o s e n by c o n s e n T iisT a h d t h a t in all i m p o r t a n t d e c i s i o n s h e s e r v e s as m e d i a t o r in p u b li c m e e t i n g s r a t h e r t h a n as a n a u t o c r a t . T h e B a u le c a r v i n g in figure 8 .2 0 a s h o w s t w o c a i m a n s (relativ es o f th e a llig a to r) b i t i n g e a c h o t h e r ’s tails. It is said to r e p r e s e n t t h e c h i e f a n d t h e p e o p l e in b a l a n c e — if o n e b i t e s , t h e o t h e r will b i t e b a c k , k n i c e l y recalls th e k in d s o f n e g a tiv e fe e d b a c k lo op m o d e l s th a t a re o fte n p ro p o s ed in W est-

143

FIGURE

8.19

L egba (a) T h e v o du n god Legba represents th e forces o f disorder. Vodun d iv in a tio n priests explain this icon as'the p a th to the future: w ith Legba there is no way to’h n o w w h ic h p a th will be caken. S in c e o n e crossroad leads to another, th e resulting image is o n e o f bifurcating u n know ns, th e u n certain ty multiplying with ea c h crossroad.

n oise (road bum ps)

output (n ew road position

In contrast to negative feedback, which wili help stabilize a system, positive feedback will destabilize it. A drunken driver, for example, can overshoot the center line and create increasingly large oscillations, eventually running off the road.

Here we see positive feedback in an arms race.

R ecursion

FIGURE 8 .2 0

F e e d b a c k loops in B a u l e ic o n o g r a p h y (a) This Baule carving shows two crocodiles biting e ac h other’s tails. It is a symbol showing the chief and the people in equal power, the idea of social forces in a cycle of balance, (b) Baule door. Holas (1952, 49-50) describes this as a c i r c u i t f e r i n e of f e c o n d i t e (closed tircuir of fecundity); Soppeiasa (1974) and Odica (ii;71) identify these animals as symbols of ‘‘increase.’’ (a,md b, [iliots) courtesy of 1FAN, Dakar.)

orn p o li ti c a l th e o r y , h u t t h i s f l o w c h a r t is a p u r e l y in d i g e n o u s i n v e n t i o n . S o , coo, is th e B au le p o s i t i v e f e e d b a c k l o o p o f figure 8 . 2 0 b , s h o w i n g t h a t “ p o w e r c r e a t e s the a p p e t i t e for m o r e p o w e r ”— l i t t l e fish a r e e a t e n by b ig g e r fish, w h o t h e n b e c o m e e v e n b ig g e r fish, T h e f i s h - w i t h i n - f i s h a b b i a f r o m C a m e r o o n we saw earlier m ay h a v e h a d s i m i l a r c o n n o t a t i o n s .

[C o n c lu sio n R ecu rsio n c_giibe--found. in a l m o s t e v e r y c o r n e r o f A f r i c a n m a t e r i a l c u l t u r e a n d design, fr o m c o n s t r u c t i o n t e c h n i q u e s t o e s t h e t i c d e s i g n , a n d in c u l t u r a l r e p r e ­ s e n t a t i o n s fr o m k i n s h i p t o c o s m o l o g y . M o s t o f t h e s e a r e s p e c i f i c e n o u g h to allow us to d i s t i n g u i s h b e t w e e n t h e first t w o ty p es o f r e c u r s i o n — c a s c a d e v ersu s

I 45

A fr ic a n fra c ta l mat/icniatics

i t e r a t i o n — a n d in s o m e c a s e s t h e t h i r d t y p e , s e l f - r e f e r e n c e , is a ls o m a d e e x p l i c i t by t h e i n d i g e n o u s k n o w l e d g e s y s te m . W e h a v e s e e n s e v e r a l c a s e s i n w h i c h t h e i t e r a t i v e lo o p s a r e n e s t e d , b u t t h e s e a r e ra r e ly m o r e t h a n t w o lo o p s d e e p , so it w o u l d n o t a p p e a r t h a t t h e a p p l i c a t i o n o f s e l f - r e f e r e n c e is t n o t i v a t e a by t h e c o m ­ p le x ity o f th e c o m p u t a t i o n . T h e o n l y p o t e n t i a l e x c e p t i o n is t h e c o s m o lo g i c a l n a r ­ r a t i v e o f t h e D o g o n , a n d t h i s n a r r a t i v e is t o o v a g u e t o s e r v e as a m a t h e m a t i c a l f o u n d a t i o n . T h e r e is, h o w e v e r , a n o t h e r r o u t e t o t h e l i m i t s o f c o m p u t a t i o n . A s w e will find in c h a p t e r 10, t h e c o m b i n a t i o n o f n e g a t i v e a n d p o s i t i v e f e e d b a c k in d ic a te d , by c e r t a i n r e c u r s i o n icons, p r o v i d e s / a n o t h e r p a t h t o t l ^ . h e l g h t s . o f c o m ­ p u t a t i o n a l c o m p l e x i t y , o n e we w ill e x p l o r e in d e t a i l . B u t first, w e n e e d t o t a k e a 's K o rt’d e t o u r t h r o u g h ~ m f i n ky.

CHAPTER

-Infinity-

•T h e first t i m e 1 s u b m it te d a j o u r n a l a rt ic l e o n A f r i c a n fractals, o n e re v ie w e r replied t h a t A f r i c a n s c o u l d n o t h a v e “ t r u e ” f r a c ta l g e o m e t r y b e c a u s e t h e y la c k e d t h e a d v a n c e d m a t h e m a t i c a l c o n c e p t o f in finity. O n t h e o n e h a n d , t h a t r e v i e w e r was w ro n g a b o u t fra c ta ls a t a p r a g m a t i c le v e l. If h e o r s h e saw a fra ctal o n a c o m p u t e r s c r e e n it w o u ld b e t a k e n as a “ t r u e ” e x a m p l e , a n d in f a c t n o p h y s ic a lly e x i s t i n g fractal is i n f i n i t e in its scales; a t b e s t i t will h a v e t o b o t t o m o u t i n t o s u b a t o m i c p articles. O n t h e o t h e r h a n d , it raises a n i n t e r e s t i n g q u e s t i o n . I n f in ity h a s b e e n an i m p o r t a n t p a r t o f f r a c ta l m a t h e m a t i c s in E u r o p e ; so h o w d o e s t h a t c o m p a r e to th e use o f in f in ity in A fri c a ? T o t h e a n c i e n t G r e e k s , in f in i ty w as a s s o c i a t e d w i t h w h a t t h e y t h o u g h t (j>f as t h e h o r r o r s o f j n f i n i t e r e g r e s s . A r i s r o t l e t a m e d t h i s p r o b l e m b y r e d e f i n i n g infinity: it w as a li m i t t h a t o n e c o u l d t e n d t o w a r d , b u t it w as n o t c o n s i d e r e d to he a l e g i t i m a t e o b j e c t o f m a t h e m a t i c a l i n q u i r y i n itself. M o s t E u r o p e a n m a t h e ­ m a t ic i a n s k e p t to t h i s d e f i n i t i o n u n t i l t h e C a n t o r s e t, E u r o p e ’s first fr a c ta l , c r e ­ ate d t h e p r o p e r d e f i n i t i o n o f a n i n f i n i t e s e t , t h u s a l l o w i n g in fin ity its e lf t o b e c o n s i d e re d . W e w ill d is c u ss t h i s in m o r e d e t a i l in c h a p t e r 13, b u t fo r n o w it is sufficient to n o t e t h a t t h i s d i s t i n c t i o n d o e s n o t s h a p e A f r i c a n c o n c e p t s o f i n f i n ­ ity. M a n y A f r i c a n k n o w l e d g e s y s t e m s using^ip i m i t y in t h e s e n s e o f a p ro g r e s s i o n w i t h o u t li m i t d o n o t h e s i t a t e to r e p r e s e n t it w i t h i c o n i c s y m b o ls s u g g e s tin g

147

148

A fr ic a n fra c ta l tnmhematics

“t h e in f in i te " in its C a n t o r u m s e n s e as a c o m p l e t e d w h o l e . T h i s is h y n o m e a n s a m ore so p h istic a te d o r ela b o ra te d d e fin itio n th a n th a t o f p r e - C a n to r ia n E u ro ­ p e a n m a t h e m a t i c s ; i t is r a r e ly l i n k e d to m u c h m o r e t h a n e i t h e r a . n a r r a t i v e o r a g e o m e t r i c v is u a li z a ti o n . B u t far f r o m b e i n g n o n e x i s t e n t , t h e s e c u l t u r a l l y sp ecific r e p r e s e n ta tio n s sh o w a s tro n g e n g a g e m e n t w ith th e sam e c o n c e p ts t h a t c o u p led in f in i ty a n d fr a c ta ls in c o n t e m p o r a r y W e s t e r n m a t h e m a t i c s . T h e m o s t c o m m o n A f r i c a n v i s u a li z a ti o n s for in f in i ty a r e s n a i l s h e l ls . T h e ( B n lu b a ) fo r e x a m p l e , u s e s p ira l la n d s n a i ls (fig. 9 . 1 ) , a n d t h e r e i n itse t h e spiral e n d o f a sea s n a i l, w h i c h fo r m s a d r i n k i n g c u p t h a t c a n o n l y b e u se d by th e ch ief. U n l i k e t h e a n c i e n t G r e e k a s s o c ia tio n s w i t h t r o u b l i n g p a r a d o x a n d p a th o l o g y , th e Africa_n in f i n ite is typi c a l l y a p o s i ti v e a s s o c ia tio n , in th is c a s e t o in v o k e p ro s p e rity w i t h o u t e n d . I f j h e s e in f in i ty i c o n s w e r e o n ly m e a n t t o c o m m u n i c a t e t h i s d e s ire t h e y w o u l d j i t ' A r i s t o t l e ’s d e f i n i t i o n : a p ro c e s s w i t h o u t e n d . B u t t h e s p i r it u a l e l e ­ m e n t qf_these i c o n s .a d d s a n o t h e r r e q u i r e m e n t : t h e ic o n s n e e d t o c o n v e y t h e se nse t h a t th ex ar.e.d raw .in g o n t h e p o w e r o f in f in ity jt_self{ S n a i l s h e l ls a re used b e c a u s e o f t h e sc a lin g p ro p e r tie s o f t h e i r l o g a r it h m i c spirals; o n e c a n c le a rly see th e p o t e n ­ tial for th e spiral to c o n t i n u e w i t h o u t e n d d espite its c o n t a i n m e n t in a finite space— i n d e e d , it is o n l y b e c a u s e o f its c o n t a i n m e n t in a fi n it e s p a c e t h a t t h e r e is a sen se o f h a v i n g g a i n e d a c c e s s to o r g r a s p e d a t t h e in f in ite ) W e h a v e a lr e a d y s e e n a n o t h e r e x a m p l e o f a n in f i n i t y i c o n in t h e N a n k a n i a r c h i t e c t u r e d is c u s s e d i n c h a p t e r 2. T h e r e t h e c o i l s o f a s e r p e n t o f i n f i n i t e

FIGURE 9 . J

B a l u b a u s e o f s n a il s h e lls to sy m b o lize in /im ty Davidson (197 1, 120) describes this as a fertilit figure, and notes that the snail shells represent endless growth. ( CoUecfifW Tm;m: T zara, Pnrii; }>lv>ii> hy Elio! Eliso/on.)

In fin ity

l e n g t h , s c u l p t e d i n t o t h e h o u s e w alls, m a d e u s e o f che s a m e a s s o c i a t i o n b e t w e e n p r o s p e r it y w i t h o u t e n d , a n d a g e o m e t r i c l e n g t h w i t h o u t e n d . ^ h e c o n s c i o u s c r e a t i o n o f t h i s in f in ity c o n c e p t is m o r e c le a r t h a n in t h e c ase o f t h e sn a il sh ells, b e c a u s e o n e c a n n o t a c t u a l l y se e t h e i n f i n i t e c o ils 'tr f-th e s n a k e . A n d u n l i k e t h e n a t u r a l l y o c c u r r i n g sh e lls , t h e p a c k i n g o f t h i s i n f in i te l e n g t h i n t o a fin ite s p a c e ( t h e N a n k a n i d e s c r i b e it as “c o i l i n g b a c k o n i t s e l f i n d e f i n i t e l y ” ) c a n n o t be m i s ­ t a k e n for m e r e m i m i c r y o f n a t u r e ; it is r a t h e r t h e artifice o f f r a c t a l s ^ T h i s s n a k e ic o n d o e s n o t e x is t in is o la t io n ; we saw t h a t - t h e N a n k a n i m a p o u t a s c a l in g p r o ­ g r e s s io n t h a t p a s s e s ' t h r o u g h t h e i r a r c h i t e c t u r e , t h e za h in g a a n d t h e k itm p io , w h i c h p r o v i d e s a re c u r s iv e p a t h w a y to t h i s c o n c e p t o f in finity. In c h a p te r 8 we d iscu ssed th e M i ts o g h o a n d F an g ite r a tiv e m o d e l o f d e s c e n t . F e r n a n d e z ( 1 9 8 2 , 3 3 8 ) n o t e s t h e c o n t r a s t to C h r i s t i a n th e o l o g y : “T h e q u e s t i o n as t o w h e t h e r G o d w a s o n e o r m a n y m a y h a v e b o t h e r e d t h e m i s s i o n ­ aries i n t h e i r c o n t a c t s w i t h F a n g m o r e t h a n t h e F a n g t h e m s e l v e s . H o l d i n g C h r i s ­ ti a n b eliefs in t h e ‘U n c r e a t e d C r e a t o r ’ a n d ‘U n m o v e d M o v e r , ’ m i s s i o n a r i e s w ere c h a l l e n g e d by t h e ‘i n f in i te re g r e ss’ o f t h e g e n e a l o g i c a l m o d e l e m p l o y e d by t h e F a n g — t h e i r b e l i e f t h a t che G o d o f t h i s w o r ld is o n e o f a l o n g li n e o f g o d s a n d like m a n h a s h is o w n g e n e a l o g y .” f

T h e F a n g th e o r y o f in f in ite regress is a c o m p l e t e , c o h e r e n t view ; it d o e s n o t

n e e d f u r t h e r a m e n d m e n t , for t h e C h r i s t i a n th e o r y o f u n c r e a t e d c r e a t o r is n o m o r e free o f c o n t r a d i c t i o n — a n d p e r h a p s less s o A O f c o u r s e , as F e r n a n d e z h i m s e l f warns, o n e c a n n o t simply p ro c laim t h a t a p a rtic u la r A fric a n n a rr a tiv e is just a n o t h e r w o rk o f t h e o l o g y o r p h i l o s o p h y — or, f o r t h a t m a t t e r , m a t h e m a t i c s . R e c e n t w orks s u c h as M u d i m b e ’s In v e n tio n o f A fr ic a ( 1 9 8 8 ) h a v e s h o w n t h a t s u c h t r a n s l a t i o n s to specific E u r o p e a n d is c ip lin e s are alw ays p a rt ia l , hig h ly in t e r p r e tiv e , a n d in d a n ­ ger o f m i s r e p r e s e n t i n g t h e in d i g e n o u s view. Yet M u d i m b e is also res p e ctfu l o f th e w ork t h a t h a s b e e n d o n e . O f p a r t i c u l a r r e l e v a n c e h e r e a re h is c i t a t i o n s o f A f r i c a n th eo lo g ian E n g elb ert M v en g . Y M v e p g i n c l u d e d s e v e r a l n o t e s o n i n f i n i t y in his s t u d i e s o f t h e r e l a t i o n b e t w e e n t h e A f r i c a n a n d C h r i s t i a n view s. H is b e a u ti f u l te x t, L 'A rt d 'A /r(que N oire ( 1 9 6 4 ) , c o n t a ins d i a g r a m s (p p . 1 0 0 - - 1 0 3 ) s h o w i n g w h a t h e t e r m e d “r a d i a t i o n a m p l i f i c a t i v e ,” s c a l i n g p a t t e r n s in_Afncan_art_a_hd mus_i_c_that he_ i n t e r p r e t e d as r e p r e s e n t a t i o n s o f a t r a n s c e n d e n t a l p a t h to in fin ity . “U n e fois d e plus, n o u s d e c o u v r o n s q u e le m o u v e m e n t r y t h m i q u e , d a n s n o t r e a r t , n ’esc a u t r e c h o s e q u ’u n e c o u rs e v e rs 1'i n f i n i ” ( O n c e a g a i n , w e d i s c o v e r t h a t t h e r h y t h m i c m o v e ­ m e n t in o u r a r t is n o n e o t h e r t h a n t h e p a t h t o w a r d i n f i n i t y ) (p. 1 0 2 ). F a t h e r M v e n g w as a w o n d e r f u l i n s p i r a t i o n d u r i n g m y r e s e a r c h in C a m e r o o n , b o t h fo r his d e e p c u l t u r a l k n o w l e d g e as w ell as fo r his c o u r a g e o u s w o r k as a c ro s s - c u l tu r a l m e d ia to r. D u r i n g o u r last m e e t i n g we d is c u s s e d M u d i m b e ’s b o o k , a n d 1 p ro m is e d

149

A fr ic a n fra c ta l mathematics

t o s e n d h i m a cop y- S h o r t l y a f t e r d o i n g s o a r e p l y c a m e f r o m t h e A m e r i c a n C u l t u r a l C e n t e r in Y a o u n d e M v e n g h a d b e e n m u r d e r e d “u n d e r s u s p i c i o u s c i r c u m s t a n c e s ”— a p p a r e n t l y t h e r e s u l t o f o p p o s i t i o n t o h i s c r o s s - c u l t u r a l a c t i v i s m . H e h a s f i n a l l y t a k e n t h e course vers V in f ini.

^

CHAPTER

Com plexity

IO

In o r d i n a ry s p e e c h C ^ c o m p I g ^ ” j u s t m e a n s t h a t t h e r e is a lo t g o i n g o n . B u t for m a t h e m a t i c i a n s t h e t e r m is p r e c i s e l y d e f i n e d , a n d it g iv es us a n e w w ay to a p p r o a c h m a t h e m a t i c s in A f r i c a n m a t e r i a l c u l t u r e . In c h a p t e r 7 we saw h o w c e r ­ ta i n A f r i c a n s y m b o l i c s y s t e m s , l i k e t h e B a m a n a d i v i n a t i o n c o d e , c o u l d be g e n e r a t e d b y a r e c u r s i v e l o o p . S u c h n u m e r i c s y s te m s c l e a r l y t r a n s l a t e i n t o th e W e s t e r n d e f i n i t i o n s o f w h a t it m e a n s t o “c o m p u t e . ” B u t t h e t r a n s l a t i o n w as less c le a r for s o m e of t h e p h y s i c a ll y re c u r s iv e s t r u c t u r e s in A f r i c a n m a t e r i a l c u l t u r e . C a n a s y s t e m o f p h y s ical d y n a m i c s b e s a i d t o “c o m p u t e ” ? M a t h e m a t i c a l c o m ­ p le x i ty t h e o r y , w h i c h is b a s e d o n f r a c t a l g e o m e t r y , p r o v i d e s a w ay to m e a s u r e th e c o m p u t a t i o n e m b e d d e d in p h y s i c a l s t r u c t u r e s , r a t h e r t h a n j u s t s y m b o l sy s­ tem s. By l o o k i n g a t A f r i c a n m a t e r i a l c u l t u r e in t h e f r a m e w o r k o f c o m p le x ity ^ th eory, we c a n b e t t e r im d e rs ta n .d j.h e . p r e s e n c e o f f r a c ta l g e o m e t r y as a n A f r i c a n ) j k n o w ledg e sy stem ..

A n alo g c o m p u tin g By th e mid.-,.i_p6ps it w as c l e a r t o m a n y r e s e a r c h e r s c h a t d ig ita l c o m p u t e r s w o u ld be th e w a v e o f t h e fu tu re . B u t be fo re t h e n , a n a l o g c o m p u t e r s h e l d t h e i r o w n , a n d th ey m a y y e t m a k e a c o m e b a c k . I n d i g i ta l sy s tem s , i n f o r m a t i o n is r e p r e s e n t e d by

A fr ic a n fra cta l m athematics

p h y s i c a ll y a r b i tr a r y s y m b o ls. A s B a t e s o h ( 1 9 7 2 ) said , “T h e r e is n o t h i n g s9.yeni.sh a b o u t t h e n u m e r a l.$ e v .e n .” T h e g e o m e t r i c s t r u c t u r e o f a d i g i t a l s y m b o l h a s li t t l e o r n o t h i n g t o do. w i t h it s m e a n i n g , w h i c h is s i m p l y a s s ig n e d t o it-.-hy s o c i a l c o n ­ v e n t i o n . I n a n a l o g sy s te m s , t h e p h y s i c a l s t r u c t u r e o f t h e 'S i g n a l c h a n g e s in p ro -\ p o r t i o n t o c h a n g e s in t h e i n f o r m a t i o n it r e p r e s e n t s . 1 R a t h e r t h a n b e i n g arb itra ry , t h e p h y s i c a l s m ic .tu re is a d i r e c t r e f le c t io n o f its i n f o r m a t i o n . L o u d n e s s in h u m a n s p e e c h is a g o o d e x a m p l e o f a n a l o g r e p r e s e n t a t i o n . A s I g e t m o r e e x c i t e d , I s p e a k l o u d e r : t h e p h y s i c a l p a r a m e t e r c h a n g e s in p r o p o r t i o n t o t h e s e m a n t i c p a r a m e ter. T h i s is n o t tr u e for t h e d ig ital p arts o f sp e e c h , s u c h as t h e av erag e p i t c h (“ fo m a t f r e q u e n c y ”) o f e a c h w o rd . I n E n g l i s h t h e w o r d “c a t ” h a s a h i g h e r p i t c h t h a n t h e w o r d “d o g ,” b u t t h a t d o e s n o t in fe r a r e l a t i o n in m e a n i n g — in fa c t, t h e d if f e r e n c e is r e v e r s e d in S p a n i s h , s i n c e “g a t o ” h a s a lo w e r a v e r a g e p i t c h t h a n “p e r r o ." T h j s s a m e a n a l o g / d i g i t a l d i s t i n c t i o n o c c u r s in n e u r a j , s i g n a l s . . I n t h e frog r e t i n a , fo r e x a m p l e , s o m e n e u r o n s h a v e a firing r a t e in p r o p o r t i o n to t h e sp e e d o f sm all m o v - ^ i n g im ag es ( G r u s s e r a n d G r u s s e r - C o r n e h l s 1 9 7 6 ) . T h a t is, t h e fa s te r a fly m o v e s C acro s s t h e ey e, t h e f a s te r t h e p u ls e s o f t h e n e u r o n : a n a n a lo g s y s te m . A d i g i t a l e x a m p l e c a n b e fo u n d in th e_rnq tor n e u r o n s t h a t fling o p e n t h e crayfish claw. H e r e p a sp ecific firing p a t t e r n ( o f f - o t v o n - o f f ) s w i t c h e s t h e c l a w t o t h i s d e f e n s e re fle x ( ( W i l s o n a n d D a v is 1 9 6 5 ) . S o far w e h a v e o n l y e x a m i n e d h o w a n a l o g s y s t e m s c a n r e p r e s e n t i n f o r ­ m a t i o n ; fig u re

to

.1

s h o w s a s i m p l e e x a m p l e o f h o w a n a l o g c o m p u t i n g w o rk s .

A l t h o u g h m o s t c o m p u t e r s c i e n t i s t s e v e n t u a l l y s e t t l e d o n d i g i t a l s y s te m s , a n a ­ lo g c o m p u t e r s w e r e q u i t e p o p u l a r u p u n t i l t h e 1 9 6 0 s. E v e n w h e n t h e y b e g a n t o d i e o u t as p r a c t i c a l m a c h i n e s , t h e r e w as a n i n c r e a s i n g j r w a r e n e s s t h a t m u c h o f o u r o w n b r a i n . p p e r a . t e s . b y a n a l o g c o m p u t i n g , a n d t h i s J e d some... s c i e n t i s t s t o w a r d t h e d e v e l o p m e n t o f w h a t .are. n o w c a l l e d .“ n e u r a l , n e t s ”— c o m p u t i n g d e v i c e s t h a t m i m i c t h e a n a l o g o p e r a t i o n s o f n a t u r a l n e u r o n s (fig. 1 0 .2 ) . By t h e m i d - 10 8 0s n e u r a l n e .ts .a n d r e l a t e d a n a l o g d e v i c e s h a d a c h i e v e d e n o u g h s u c c e s s ( a n d dig ital c o m p u te r s h a d ru n in t o e n o u g h b a rrie rs ) to b e g in to c o m p a r e th e t w o . T h e r e w a s a n o d d m o m e n t o f a n a l o g o p t i m i s m , w h e n a few b r a s h c l a i m s w ere m ad e a b o u t th e p o te n tia l su p erio rity o f a n a lo g c o m p u tin g (see D e w d n e y 1 9 8 5 ; V e rg is e t a l. 1 9 8 5 ) , b u t t h e s e a s s e r t i o n s w e r e e v e n t u a l l y p r o v e d i n c o r ­ re c t (B lu m , S h u b , a n d S m a le 1989; R u b e l 1 9 8 9 ). A s it tu r n s o u t, a n a lo g sys­ t e m s h a v e t h e s a m e t h e o r e t i c a l lim its to c o m p u t i n g as d ig i ta l s y s te m s .2 A l t h o u g h t h e s t u d i e s d i d n o t r e s u l t in r e l e a s i n g t h e k n o w n l i m i t a t i o n s , t h e y d id p r o d u c e a n e w f r a m e w o r k for t h i n k i n g a b o u t c o m p u t i n g in p h y s i c a l d y n a m ics: c o m p l e x i t y t h e o r y . Before th is tim e , m a t h e m a t ic i a n s h a d d e fin e d c o m p l e x i t y j n te rm s of ra n d o m n e ss, p rim arily based o n th e w o rk o f S o v ie t m a th e m a tic ia n A . N .

C o m p le x ity

*53

A n a l o g c o m p x ita tio n Dewdney (1985) shows a great variety of simple physical devices that demonstrate analog computing. This device, created by J. H. Luerh of the U.S. Metals Refining Company, solves the following optimization problem; a refinery must be located to minimize its costs. If transportation in dollars per mile of ore, coal, and limestone are values of O, C, and L, and disrances of these sources are o, c, and !, then the refinery should be located at the point where oO + cC + 1L is at ;t minimum. T he holes through which the strings pass are at the source locations, and the weights on the ends of the strings are proportionate to O, C, and L. T h e brass ring attached tc the strings ijitickly moves to the optimal location on the map. iC o u n e s y A . K. D e w d n e y )

K olm ogorov a n d A m e ric a n s G re g o ry C h a i t i n a n d R ay S o lo m o n o ff. In this d ef­ in i t i o n , t h e c o m R l e x jt jf.o f a s ig n a l ( e i t h e r a n a l o g o r d i g i t a l ) is m e a s u r e d by t h e le n g t h o f t h e s h o r t e s t a l g o r i t h m r e q u i r e d t o p r o d u c e it (fig. 1 0 .3 ) . T h i s m e a n s t h a t p e r i o d i c n u m b e r s ( s u c h as . 2 7 2 7 2 7 2 . . . ) will h a v e a lo w a l g o r i t h m i c c o m 1

plexity. E v e n if t h e n u m b e r is i n f i n i t e l y lo n g , t h e a l g o r i t h m c a n s i m p l y say, “W r i t e a d e c i m a l p o i n t fo l lo w e d by e n d l e ss r e p e t i t i o j i s o f ‘2 7 , ” ' o r e v e n j h o r t e r : “3 / 1 1 . " T r u l y r a n d o m n u m b e rs ( e .g ., a s t r i n g o f n u m b e r s p r o d u c e d by r o l l i n g d i c e ) w ill h a y e j _ h e J x i g h e s t a l g o r i t h m i c c o m p l e x i t y p o s s i b l e , s i n c e t h e i r o n l y a l g o r i t h m is_che n u m b . y . . i t s e l f — f o r . a n j n f i n i t e l e n g t h , y o u g e t i n f i n i t e c o m p l e x i t y . J n a n a l o g s y s t e m s a p e r i o d i c s i g n a l s u c h as t h e v i b r a t i o n fr o m a s i n g l e g u ita r s t r in g o r t h e r e p e t i t i v e s w in g s o f a p e n d u l u m w o u ld h a v e t h e lo w e st a l g o ­ r i t h m i c c o m p l e x i t y , a n d r a n d o m n o i s e s u c h as s t a t i c f r o m a r a d i o t h a t h a s lo s t

A fr ic a n fra c ta l m a th em a tics

154

its s t a t i o n ( w h a t is o f t e n c a l l e d “w h i t e n o i s e " ) w o u l d h a v e t h e h i g h e s t a l g o rith m ic co m p lex ity. O n e p r o b l e m w i t h d e fi n in g c o m p l e x it y in te r m s o f r a n d o m n e s s is t h a t it does n o t m a t c h o u r i n t u i t i o n . W h i l e i t ’s t r u e t h a t t h e p e r i o d i c s i g n a l o f a t i c k i n g m e t r o n o m e is so s i m p l e t h a t it b e c o m e s h y p n o t i c a l l y b o r i n g , t h e s a m e c o u l d be said for w h i t e n o i s e — in f a c t , 1 s o m e t i m e s t u n e m y r a d i o b e t w e e n s t a t i o n s if 1 w a n t t o fall a s l e e p . B u t if I w a n t t o s t a y a w a k e 1 l i s t e n t o m u s ic . M u s i c s o m eh o w sa tisfie s o u r j n t u i t i v e c o n c e p t o f c o m p l e x i t y : it is p r e d i c t a b l e e n o u g h t o fo l­ low a lo n g , b u t s u rp ris in g e n o u g h t o k e e p us p l e a s a n t l y a t t e n t i v e . M a t h e m a t i c i a n s e v e n t u a l l y c a u g h t u p w i t h t h e i r i n t u i t i o n a n d d e v e l o p e d a n e w m e a s u r e in w h i c h t h e m o s t c o m p l e x s i g n a ls a re n e i t h e r c o m p l e t e l y o r d e r e d n o r c o m p l e t e l y d i s o r d e r e d , b u t r a t h e r a r e h a l f w a y in b e t w e e n . T h e s e p a t t e r n s ( w h i c h i n c l u d e a l m o s t e v e r y ty p e o f i n s t r u m e n t a l m u s i c ) a ls o h a p p e n to b e f r a c t a l s — in fa c t, as w e ^ l T s e e , th e n ew c o m p le x ity m easu re e x a c tly c o in c j d e s j v it h th e m easure-of fractal d im e n sio n . T h e first ste p in this d i r e c ti o n was t h r o u g h stu dies o f c e llu la r a u to m a ta . R eca ll fr o m c h a p t e r 7 t h a t c o m p u t e r s c i e n t i s t s in t h e early( i g 8 g s-t\ad s t a r t e d t o t h i n k

N e u r a l n ets (n) Suppose we balance a ball on a teeter-totter. Unless the ball is at the precise center, the teeter-totter wtl! start to slope toward one side, which will cause the ball t o roll even farther toward that side. In other words, there are two stable states, and anything in between (except ft tiny neutral point) will get caught up in the positive-feedhack loop leading rapidly to a stable st (b) This is an electrical circuit that works much like the teeter-totter. Each triangle is an ampli with two outputs, one normal and the other (black circle) an inverted output. Since the inverte output is connected to the input of the other amplifier in each, they will balance out like the b; at the exact center of the teeter-totter, but rapidly flip to one of the two stable states in which t amplifier is at its maximum (“saturated”). T h a t means that this circuit can solve a simple task: which of two numhers is larger? By putting an initial charge proportionate to one of the two numbers at each inpur, the system rapidly (lips to the saturated stable state favored hy the larget number. Linking thousands of these simple amplifiers Together allows computer scientists to m;i sophisticated machines for pattern recognition and other artificial intelligence tasks.

C o m p le x ity

155

a b o u t c e llu la r a u t o m a t a as t h e s i m u l a t i o n o f c o m p l i c a t e d p h y s ic a l d y n a m ic s , s u c h as t h a t j e e n in l i v in g o rg a n i s m s . P h y s i c i s t S t e p h e n W o l f r a m b e g a n to w o n d e r : ju s t h o w c o m p l i c a t e d is it? C le a r l y , li v i n g s y s te m s a r e m o r e c o m p l e x t h a n r a n ­ d o m n o is e , so h e k n e w t h a t t h e o ld c o m p l e x i t y m e a s u r e o f K o l m o g o r o v w o u ld n o t do. B ut W o lfram h a d studied a good d e a l o f c o m p u te r science, a n d h e re a l­ ized t h a t ch e way in w h i c h d i f f e r e n t ty p es o f r e c u r s i o n s a re used t o m e a s u r e c o m p u t in g p o w e r c o u ld a ls o be a p p l i e d t o p h y s i c a l d y n a m i c s . R e c a l l fro m c h a p t e r 8 t h a t we d iv i d e d re c u r s io n in t o t h r e e types: c a sc a d e s , it e ra t io n s , a n d self-reference.

FIGURE

IO.3

K o n n o g o r o a t - C h u / t m c o m p le x ity m e a s u r e ( j) W h e t h e r it is in d i g i t a l o r a n a l o g s i g n a l s , c o m p l e x i t y c a n b e measured in t e r m s o f t h e i n f o r m a t i o n c o n t e n t . T h e first s u c h measure w as t h a t o f K o l m o g o r o v a n d C h a i t i n , w h o t h o u g h t o f

£

co m p lexity in t e r m s o f r a n d o m n e s s . T h e s i n e w a v e is a b o u t as n o n r a n d o m as w e c a n g e t . H e r e it is g i v e n a s a t i m e - v a r y i n g

|

signal, a l t h o u g h t h e s a m e w o u l d a p p l y t o a s p a t i a l p a t t e r n , s u c h

^

as waves in w a t e r o r s a n d ( i n w h i c h c a s e w e c o u l d m e a s u r e it as w aveleng th, w h i c h is s i m p l y t h e r e c i p r o c a l o f f r e q u e n c y ) ,

lb) T h e s a m e s i g n a l i n a s p e c t r a l d e n s i t y p l o t . T h i s t e l l s y o u how m u c h p o w e r is a t e a c h f r e q u e n c y . I n t h e c a s e o f t h e s i n e w a v e , all t h e s i g n a l p o w e r frequency, ( c ) W h i t e n o i s e is a c o m p l e t e l y r a n d o m s i g n a l , s u c h as t h a t p r o d u c e d

js a t o n e

by t h e s o u n d o f

bacon fry ing . By t h e K o l m o g o r o v - C h a i r i n d e f i n i t i o n , w h i t e n o i s e is t h e m o s t c o m p l e x s i g n a l . Again, t h is w o u l d a l s o a p p l y t o a s p a t i a l p a t t e r n , s u c h as d u s t s p r i n k l e d o n a t a b l e , ( d ) S p e c t r a l density p l o t for w h i t e n o i s e . B e c a u s e it is c o m p l e t e l y r a n d o m , t h e r e is a n e q u a l l i k e l i h o o d o f a n y wav elen gth o c c u r r i n g a t a n y t i m e , s o t h e s i g n a l ’s p o w e r is e q u a l l y d i s t r i b u t e d a c r o s s t h e s p e c t r u m , (c) In s u m m a r y , t h e K o l m o g o r o v - C h a i t i n c o m p l e x i t y m e a s u r e is s i m p l y a m e a s u r e o f r a n d o m n e s s . Ic.c'uiivtesy R. F. Voss.)

A fr ic a n (racial mathematics

i5 6

T h e s e co rresp o n d a p p ro x im a te ly to th e th re e form al ca te g o rie s o f recu rsio n use d in c o m p u t e r s c i e n c e , w h i c h w e w ill n o w e x a m i n e in d e t a i l .

T h r e e t y p e s o f re c u r s io n : t h e C h o m s k y h ie r a r c h y I n a re c u r s iv e s y s te m , p r e s e n t b e h a v i o r d e p e n d s o n p a s t b e h a v i o r . I t is t h e c a p a ­ b il i t y o f th i s a c c e s s t o m e m o r y t h a t d e fin e s t h e r e l a t i v e d i f f e r e n c e in re c u r s iv e ^ pQAyer. T h e s c a l i n g c a s c a d e , fo r e x a m p l e , c o u l d n o t p r o d u c e t h e F i b o n a c c i '

I s e q u e n c e , b e c a u s e it c o u l d n o t r e c a l l p re v i o u s m e m b e r s o f t h e s e q u e n c e . S i m i \ ^ l a r d i s t i n c t i o n s a r e u se d in c o m p u t e r s c i e n c e to r a n k c o m p u t a t i o n a l p o w e r i n t o t h r e e ty p es o f a b s t r a c t m a c h i n e s , re f e r r e d t o as “C h o m s k y ’s h i e r a r c h y . ” T h e s e a b s t r a c t m a c h i n e s a re c o m p a r e d b y t h e i r . a b i l i t y t o r e c o g n j z e c e r t a i n c a t e g o r i e s o f c h a r a c t e r s t r in g s . A m a c h i n e t h a t c a n r e c o g n i s e p e r i o d i c c h a r a c t e r s t r i n g s s u c h as “a b a b n . .

o c c u r s a t t h e lo w e s t le v e l o f t h e h i e r a r c h y , t h e F i n i t e S t a t e

A u t o m a t o n ( F S A ) . A n e x a m p l e o f t h e F S A is s h o w n i n figure 10.4. W h a t w o u ld it b e li k e t o be a n F S A ? S i n c e t h e F S A h a s n o m e m o r y s t o r ­ ag e, t h e e x p e r i e n c e w o u ld be s o m e w h a t a n a l o g o u s t o n e u r o s u r g e r y p a t i e n t s w h o h a v e h a d b i l a t e r a l h i p p o c m n ji a X I e s io n s { M i l n e r 1 9 6 6 ) . T h e s e p a t i e n t s a r e fu lly \ ■[ a w a r e a n d i n t e l l i g e n t b u t h a v e lost t h e c a p a c i t y t o t r a n s f e r k n o w l e d g e t o lo n g -

I t e r m m e m o ry . T h e ' t d . p p o c a m p a l surg~ery p a t i e n t w h o fin d s h e r s e l f a t t h e e n d o f a b o o k c a n d e d u c e t h a t s h e h a s r e a d its c o n te n ts ., a l t h o u g h s h e d o e s n o t k n o w y w h a t t h e p r e v i o u s c h a p t e r s w e r e a b o u t . A rtJ F S A -'h a s o n l y a n implicit m e m o r y , f 2 * b e c a u s e its p r e s e n t s t a t e c a n n o t r e v e a l a n y t h i n g a b o u t its p a s t , o t h e r t h a n t h e } / f a c t t h a t it m u s t h a v e p a s s e d t h r o u g h o n e o f t h e s e q u e n c e s o f s t a t e s t h a t t e r m i-. ^ ym lL e"ur i h t p re s e n t state.

input tape

b

a

a

-

a

b

a

b

b

read only

Transition table Current symbol on input tape

New state

s,

n

Si

Si

h

s2

a

S2 • S2

S2

b

Si

Current state

...

FIGURE

. , ....

.

IO .4

T h e fin ite s t a te au to m a to n T h e finite state a u to m a to n (F S A ) has a list of transition rules t h a t tell it how to change from o n e state to th e next, d ep e n d in g o n its curre n t state an d th e symbol it is reading on tire inp ut tape. It has n o mem­ ory, o th e r th a n th a t implied hy its c u re n t state. T h is FSA will en d up in the “a cc ep t” state S, it th e tape ends after an even n u m b er of h’s.

157

Complexity

T h e sec o f p a l i n d r o m i c s t rin g s (e .g ., a a b b a a ) is a g o o d e x a m p l e o f t h e l i m ­ i t a t i o n o f_ th e F S A : it l a c k s t h e a b i l i t y to m e m o r i z e t h e first h a l f o f t h e s t r in g a n d t h e r e f o r e c a n n o t c o m p a r e it w i t h t h e s e c o n d . T h e le a s t p o w e r f u l m a c h i n e c a p a b l e o f - t h i s m e m o r y s t o r a g e is t h e P u s h - D o w n A u t o m a t o n f(T O A )\ illus- T t ; ^ t r a t e d in figure 10.5. T h e s t a c k m e m o ry _ o f t h e P D A is u su a lly c o m p a r e d to t h e \ s p r in g -lo a d e d tray s t a c k o f t e n u sed in c a fe terias; o n c e a sy m b o l is read fro m m e m - / 'ory it is g o n e . A s a k n o w l e d g e a n a lo g y , w e m i g h t t h i n k o f a r e a d e r w h o a c c u ­ m u l a t e s s t a c k s o f b o o k s b u t g e ts rid o f e a c h b o o k a f t e r it is re a d . T h i s is a t e m p o r a r y e x p l i c i t m e m o r y , s i n c e t h e P D A ca n ,,m a k e . tw o d i f f e r e n t t r a n s i t i o n s g i y e n t h e s a m e s t a t e . a n d i n p u t , d e p e n d i n g o n its p a s t . It is i m p o r t a n t t o u n d e r ­ s t a n d t h a t g r e a t e r re c u r s iv e c a p a b i l i t y d o e s n o t n e c e s s a r i l y j i p p l y larger m e m ­ ory storage; it m e a n s a n im p ro v e d ability to interact w i t h m em ory. Size on ly m a tte r s in s o fa r as it r e s t r i c t s t h e i n t e r a c t i o n . A l t h o u g h t h e P D A c a n r e c o g n i z e all sets o f s t r in g s r e c o g n i z e d by a n F S A , as w e ll as m a n y o t h e r s , t h e r e a re still ( in f i n i t ely ) m a n y sets o f s t rin g s t h a t jt_ c a n n o t r e c o g n i z e / F o r exam ple;, i t j z a n n o t r e c o g n i z e t h e s e t o f all s t rin g s o f t h e form a ^ b ^ c N ( w h e r e we h a v e N r e p e t i t i o n s o f a, fo l lo w e d by t h e s a m e for b a n d c), b e c a u s e it h a s to w ip e o u t its m e m o r y in t h e p r o c e s s o f c o m p a r i n g t h e n u m b e r o f a ’s a n d b ’s, le a v i n g n o i n f o r m a t i o n fo r c h e c k i n g t h e n u m b e r o f c ’s. ___^ A t t h e t o p o f t h e h i e r a r c h y (fig. 1 0 . 6 ) , t h e T u r i n g M a c h i n b t( T p I ) c a n “ t VA re c o g n iz e a ll c o m p u t a b l e f u n c t i o n s . It is s i m p l y a P D A w i t h ' u n r e s t r i c t e d m e m ­ ory, b u t b e c a u s e o f t h i s c a p a b i l i t y i t , c a n a c h i e v e f u ll s e l f - r e f e r e n c e : t h e a b i l ­ ity tp ,g p.9iyze J.ts.,pw n p r p g r a m . A g a i n , it is n o t a d i f f e r e n c e in m e m o r y size, b u t in m e m o r y a c c e s s — u n l i k e t h e P D A s t a c k , t h e T M m e m o r y i n t e r a c t i o n s c a n o c c u r o v e r a n.y.past s e q u e n c e s o f a n y l e n g t h , a n d it d o e s n o t lose m e m o r y

input t a p e

a

b

a

a

b

a

b

b

F IG U R E

IO.5

T h e p u s h -d o w n a u to m a t o n

rea d only

read/write

“S ta c k " m em o ry . T h i s a llo w s n e w s y m b o ls to be p o s h e d d o w n o n to p o f th e s ta c k , h u t sym bols c a n b e re a d o n ly by p o p p in g t h e m o f f t h e t o p , a n d e a c h o n e p o p p e d is l o s t .

T he push-down automaton (PDA) has a list of transition rules, but these make use of an explicit memory storage as well as internal states.

158

A fr ic a n fra cta l m a them atics

input tape

a

b

a

a

b

a

b

FIGURE

b

1 0 .6

T h e T u rin g m a ch in e T he Turing machine has an unconstrained memory; it can implement any algorithm that can possibly exist.

a f te r it is re a d . T o c o n t i n u e t h e t e x t a n a lo g y , if t h e F S A is a p e r s o n w h o a c c o m ­ p l i s h e s t a s k s w i t h n o b o o k s , a n d t h e P D A is a p e r s o n w h o s e s i m p l e t a s k s a r e lim ite d to b o o k s t h a t are re m o v e d a fte r th e y are read , t h e n th e T M w o u ld be a b l e t o c o l l e c t a n d r e c a l l a ll b o o k s , i n a n y o r d e r . U n f o r t u n a t e l y t h i s d o e s n o t s o l v e a ll o f o u r p r o b l e m s , b e c a u s e t h e u n b o u n d e d n a t u r e o f t h e T M m e a n s t h a t it fooIishly_acceRt§...s.p.me..tasks. t h a t . r e q u i r e a n i n f i n i t e Jibrary. T h i s is c a lle d t h e “ h a l t i n g p r o b l e m , ” a n d T u n n S h i m s e l f p r o v e d t h a t jt is u n a v o i d a b l e . M a t h e m a t i c i a n R o zsa P e t e r s h o w e d t h a t o n e _ c a n d e f i n e a r e s t r i c t e d s e t o f p r o g ra m s _ th a t^ a r.e _ h a l.t.a b le ( w h i c h s h e c a l l e d t h e s e t_ o f _ “ p r i m i t i v e re c u r s i v e f u n c t i o n s " ) , b u t i n d o i n g s o w e w o u l d a l w a y s s a c r i f i c e s o m e o f t h e T M ’s c o m p u t i n g p o w e r. T h e s e t h r e e m a c h i n e s, F S A , P D A , a n d T M , i l l u s t r a t e t h e a s c e n t u p t h e C h o m s k v _ h i e ta r c h y . T h e y d if fe r in h a v i n g i m p l i c jj ^ m e m o r y , t e m p o r a r y e x p l i c i t m e m o ry, a n d p e rm a n e n t^ x p l .ic j ^ t m e m o r y . By l o o k i n g a t m e m o r y as t h e basis for t h e re c u r siv e lo o p in th e s e s y s te m s— t h a t is, as t h e e l e m e n t t h a t g o v e r n s t h e a b i l ­ ity o f th e system to p e rf o rm in t e r a c t i o n s b e t w e e n its p r e s e n t i n p u t a n d p a s t b e h a v ­ ior— w e c a n see t h a t t h e d i f f e r e n c e s in c o m p u t a t i o n a l p o w e r for th e s e m a c h i n e s d e p e n d s o n t h e d i f f e r e n c e s in re c u r s iv e po w er.

M e n s u r i n g a n a lo g c o m p l e x i t y w i t h d ig ita l c o m p u t a t i o n N o w l e t ’s r e t u r n to W o l f r a m a n d h is ce l l u la r a u t o m a t a . A f t e r r u n n i n g t h o u s a n d s o f tr ials, W o l f r a m f o u r u T t h a t all c e llu la r a u t o m a t a g e n e r a l ly d i v i d e d i n t o f o u r s p e ­ cific c lasses. C la s s e s 1 a n d 2 w e r e t h o s e t h a t e i t h e r d i e d o u t , o r w e n t i n t o a p e r i ­ o d i c c y c le . C la s s 3 w as j u s t t h e o p p o s i t e : it w a s u n c o n t r o l l e d g r o w t h t h a t led to a p p a r e n t l y r a n d o m b e h a v i o r , li k e w h i t e n o is e . B u t cla s s 4, w h i c h i n c l u d e d th e “g a m e o f life” c e llu la r a u t o m a t o n , h a d s o m e t h i n g t h a t W o lf ra m d e sc rib e d as “c o m ­ p l e x ” b e h a v io r : n o t as ra n d o m as w h i t e no ise, b u t n o t as b o r i n g as a p e rio d ic cycle. W o l f r a m f o u n d t h a t th is h i g h e s t c o m p l e x i t y a ls o d e m a n d e d t h e h i g h e s t c o m -

Complexity

p u t a b i li ty : w h ile p u r e o r d e r a n d p u r e d i s o r d e r c o u l d b e r e c o g n i z e d by a n F S A , che p acte rn s_ o f che c o m p l e x b e h a v i o r r e q u i r e d a T u r i n g m a c h i n e . M a c h e m a c ic a l p h y sic ist J a m e s C r u t c h ffe ld (1 9 8 9 ) fo u n d a n e v e n s i m p l e r e x a m p l e o f r e c u r s i v e c o m p l i c a t i o n in a p h y s i c a l s y s t e m . C r u t c h f i e l d u s e d che p o p u l a t i o n e q u a t i o n m a d e f a m o u s b y b i o l o g i s t R o b e r t M a y ( 1 9 7 6 ) : Pn + 1 = P»R (1 - Pn ) ( w h e r e P is a p o p u l a t i o n n u m b e r , sc a le d so t h a t it is b e t w e e n 0 a n d f, a n d R is t h e b i r t h r a t e ) . M a y f o u n d t h a t w h e n R is low , t h e p o p u ­

l a t i o n is s i m p l y a p e r i o d i c c y c l e , s w i t c h i n g b a c k a n d f o r t h b e t w e e n t h e s a m e s e q u e n c e o f le v e l s . A s y o u i n c r e a s e R , ch e l e n g t h o f c h e c y c l e ( t h a t is, th e n u m b e r o f d iffe re n t p o p u la tio n lev els you pass th ro u g h before re tu rn in g t o t h e fir s t o n e ) i n c r e a s e s e x t r e m e l y f a s t . A t R = 3 . 1 , t h e p o p u l a t i o n is in a tw o - l e v e l cy c le , a t R = 3 .4 in a f o u r - l e v e l c y c le , a n d a t R ~ 4 -0 t h e c y c le l e n g t h is a t i n f i n i t y : d e t e r m i n i s t i c c h a o s . C r u t c h f i e l d w a s a b l e t o m e a s u r e t h e c o m ­ p u ta b ility o f th e s e c h a o tic flu c tu a tio n s a n d fo u n d resu lts sim ila r to th o s e of W o lfram : b o th c o m p le te ly p e rio d ic w av es a n d c o m p le te ly d iso rd e re d w aves w e r e c o m p u t a t i o n a l l y q u i t e s i m p l e , b u t t h o s e in b e t w e e n , w i t h a m i x o f o rd e r a n d d iso rd e r, h a d a h ig h d e g r e e o f c o m p u t a ti o n a l c o m p le x ity . T h e sim p le e q u a ti o n e x a m in e d by C r u tc h f ie l d re q u ire d o n ly a P D A , b u t o c h e r research ers (B lu m , S h u b , a n d S m a le 198 9 ) d e m o n s tr a te d t h a t m o re c o m p le x a n a l o g f e e d b a c k s y s te m s w o u l d b e c a p a b l e o f s i g n a l c o m p l e x i t y e q u i v a l e n t t o T M c o m p u ta b ility . F ig ure 10.7 sh o w s h o w t h e s e c o m p l e x w a v e f o r m s , c a ll e d “ 1/ F n o is e ," c o m ­ p a re to p e r i o d i c a n d w h i t e n o i s e w a v e f o r m s . T h i s is e a s i e s t t o see in t h e s p e c - j tra l d e n s i t y p lo ts. A p e r i o d i c s i g n a l h a s all its p o w e r a t o n e w a v e l e n g t h , w h ile! a w h i t e - n o i s e s i g n a l h a s t h e s a m e p o w e r a t a ll w a v e l e n g t h s . 1 / F n o is e is a c o m - j •|iio'inise l)ciw ee iv t h e tw o — b ia s e d so t h a t it h a s t h e g r e a t e s t a m o u n t o f p o w er! a t t h e lo n g e s t w a v e l e n g t h , a n d t h e le ast a t t h e s h o r te s t . For th is reas o n , I / F noise* is fr a c ta l; it h a s f l u c t u a t i o n s w i t h i n f l u c t u a t i o n s w i t h i n f l u c t u a t i o n s . W h e n we t h i n k o f t h e l e n g t h o f t h e s e w a v e f o r m s in t e r m s o f m e m o r y , w e c a n b e g i n to see a c o n n e c t i o n t o c o m p u t a t i o n a l p o w e r. If a sy s te m h a d t h e s a m e b e h a v i o r ov er a n d o v e r a g a in , it w o u ld b e coo f i x e d o n m e m o r y . If it r a n d o m l y p i c k e d a new) b e h a v i o r e v e ry t i m e , t h e n it w o u l d b e t o o free fro m m e m o r y . B u t useful b e h a v - ] ior is g e n e r a l l y a m i x t u r e b e t w e e n t h e t w o . F o r e x a m p l e , t h i n k o f s o m e t h i n g / u n u s u a l you d id t o d a y — m o v i n g so c k s to a n e w side o f t h e d raw er, o r e a t i n g p r e t ; zels i n s t e a d o f c r a c k e r s . W h a t e v e r it w as, c h a n c e s a re it w a s p r e t t y tr iv i a l. If w.e to o k t h e s a m e w h im s ic a l a p p r o a c h t o m a j o r li f e - e v e n ts e a c h d a y — “ to d a y 1 t h i n k I ’ll m o v e to S p a i n , o r g e t p r e g n a n t , o r b e c o m e a p o d i a t r i s t ”— w e w o u l d b e intr o u b le . O u r life is ty p ic a lly a r r a n g e d as 1 / F n o is e : h i g h - p o w e r e v e n t s s h o u l d be' lo n g - te r m c h a n g e s , a n d lo w - p o w e r e v e n t s s h o u l d be s h o r t - t e r m c h a n g e s . 3 In fact,

159

FIGURE I O . 7

C r u t c h / i e l d - S m a l e c o m p le x ity m e a s u r e

( a -b ) P e r i o d i c noise: A simple signal, ( c -d ) White noise: From the viewpoint o f the Crutchficlcl-Smnle measure, this is also of low complexity. An FSA, for example, could define this noise by making all state transitions equally probable, ( e - f ) Fractal noise: The most complex signals in the-Crutchfield-Sinale measure are “scaling fractal noises" in which there are fluctuations within fluctu­ periodic random noise noise noise ations. These signals have the greatest amount of their power in the lowest frequencies (longest wavelength). Since power is rbe reciprocal of frequency, it is often referred to as 1/F noise, (g) In summary, the Ctutchfield-Smale complexity measure is a reflection of the fractal dimension. T he “most fractal” (e.g., dimension of 1.5) will be the most complex, and the function decreases with both higher and lower dimensions. (c a n d e, courtesy R. F. Voss.)

Complexity

m a n y o f t h e a n a l o g w a v e f o r m s p r o d u c e d by i n t e l l i g e n t h u m a n b e h a v i o r a p p e a r t o b e 1/ F s ig n a ls (V oss 1 9 8 8 ; E g la s h 1 9 9 3 ) . A s m o r e j i c i e m i s t s b e g a n t o t h i n k o f c o m p l e x i t y in te r m s o f c o m p u t a t i o n a n d 1 / F n o is e , t h e y b e g a n t o a c c u m u l a t e e x a m p l e s t h a t s u g g e s te d t h a t t h i s w as w h a t it m e a n t t o h a v e a " s e l f - o r g a n i z i n g ” s y s te m . In t h e e v o l u t i o n o f life, fo r i n s t a n c e , m o s t o f t h e g e n e t i c i n f o r m a t i o n s to re s l o n g - t e r m e v e n t s , s u c h as t h e p h y s i o lo g y t h a t u n d e r w e n t c h a n g e in l i f e ’s e v o l u t i o n fr o m w a t e r t o l a n d . M o r e s h o r t - t e r m a d a p t a t i o n s , s u c h as s k i n co lo r, t a k e up very li t t l e o f t h e g e n e t i c m a t e ­ rial. H e r e a g a in , w e h a v e s o m e t h i n g li k e 1/ F n o is e , w i t h l o n g - t e r m e v e n t s t a k ­ in g u p t h e b u l k o f t h e s y s te m , a n d s h o r t - t e r m e v e n t s t a k i n g u p p r o p o r t i o n a t e l y less. P h y s i c is t s P e r B a k a n d C h a o T a n g ( B a k a n d C h e n 1 9 9 1 ) f o u n d s e v e r a l e x a m p l e s o f s i m p l e p h y s i c a l s e l f - o r g a n iz i n g s y s te m s t h a t p r o d u c e d 1 / F n o i s e . , I n fo rest'fiT eS T 'forex'am p le, v e r y d ry w o o d s w o u ld s p r e a d fire in a n o r d e r l y c ir c le , w h i l e fires in w e t w o o d w o u ld b e t o o s p o r a d i c o r r a n d o m , a n d t h u s d ie o u t. B u t i n - b e t w e e n fires s p r e a d i n a f r a c t a l p a t t e r n , w i t h m o s t o f t h e fire in l o n g - l e n g t h p a t c h e s , less o f t h e fire in m e d i u m p a t c h e s , e v e n less in s m a l l e r p a t c h e s , a n d so o n . In w a t e r we h a v e o r d e r l y c r y s ta ls a n d d i s o r d e r l y li q u id s , b u t in b e t w e e n w e c a n get th e fractal p a tt e r n s o f snow flakes. S in c e we are fam iliar w ith o u r o w n recu rsiv e in te ra c tio n s w ith m em ory, we h a v e a _ g p o d J.n tu i t ive s e n s e f q r w h y 1 / F n o i s e s h o u l d a c c o m p a n y c o m p l e x b e h a v i o r , a n d c l e a r l y it c a n c h a r a c t e r i z e m a n y v a r i e t i e s o f s e l f - o r g a n iz i n g sy s­ tem s— ;p erh ap s all o f t h e m if w e use t h e p r o p e r d e f i n i t i o n . B u t h o w d o e s this h a p ­ p e n ? W h a t is t h e m e c h a n i s m t h a t m a k e s it w o rk ? C o m p l e x i t y t h e o r i s t s h a v e n o t h e s i t a t e d t o su g g e s t i m p l i c a t i o n s o f t h e i r w o r k for-/c u i t u r e ; ) h e r e I w o u l d lik e to su g g est t h e re v e r s e : t h a t c e r t a i n a s p e c t s o f A f r i c a n c u l t u r e c a n p r o v i d e i m p o r ­ t a n t im p l i c a t i o n s for c o m p l e x i t y th e o ry . M o r e so rhan-.any o f t h e p re v i o u s e t h r . c m a t h e m a t i c s m o d e l s w e h a v e s e e n , t h i s p a r t o f m y r e s e a r c h w as m u c h m o r e o f a c o lla b o ra tio n , m u c h clo ser to m y sen se o f th e “p a r tic ip a n t s im u la tio n ” m e t h o d — a l t h o u g h if t r u t h b e k n o w n 1 h a d t o b e d r a g g e d k i c k i n g a n d s c r e a m ­ ing m u c h o f t h e way.

C h ristia n S in a D i a t t a : a n A f r i c a n p h y s i c i s t looks at c u l t u r e “R h a b . ” “ P h a n t o m . ” “R h a b ! ” “ P h a n t o m !!" A s t r a n g e d ia l o g flew acro ss t h e c o m ­ p u t e r la b a t t h e I n s t i t u t d e T e c h n o l o g i e N u c l e a i r e A p p l i q u e e a t S e n e g a l ’s U n i ­ v ersity o f ..Dakar- I w as s e a t e d w i t h P r o f e s s o r C h r i s t i a n S i n a D i a t t a , d i r e c t o r o f t h e la b ,^ w atc h in g t h e p u l s a t i n g fo r m s o f c e l l u l a r a u t o m a t a flow a b o u t t h e s c r e e n . D r . D i a t t a l w as t h e lo c a l s p o n s o r f o r r e s e a r c h u n d e r t h e U n i t e d S t a t e s ’ F u l b r i g h t F e llo w s h ip p r o g r a m , a n d w as e a g e r to d iscuss h is o w n id ea s. Mis p h y s i c s la b was

A fr ic a n fra c ta l m athem atics

a n i n s p ir i n g p l a c e t o be. I h a d a lr e a d y b e e n a b le t o sit in o n a g r a d u a t e s t u d e n t ’s p r e s e n t a t i o n ; a fte r h a v i n g w i t n e s s e d t h e s a m e r i t u a l in t h e p h y s i c s d e p a r t m e n t a t t h e U n i v e r s i t y o f C a l i f o r n i a a t S a n t a C ru z , it m a d e fo r a fascinatin.g: b i t o f crossc u lt u r a l c o m p a r is o n . I tr ie d to m a k e m y s e lf useful by s e t t i n g u p a d e m o o f a n e l e c ­ t r ic a l c i r c u i t t h a t p r o d u c e d d e t e r m i n i s t i c c h a o s ( “C h u a ’s c i r c u i t ”) a n d i n s t a l l i n g variou s types o f so ftw are for s i m u l a ti o n s o f n o n l i n e a r d y n a m i c s . It w as o n e o f th e s e s o f tw a r e d e m o s , R u d y R u c k e r ’s

c a l a b

,

th a t caused our m ultiling ual exchange.

A s n o t e d in c h a p t e r 7, s o m e o f R u c k e r ’s m o s t i n t e r e s t i n g p r o g r a m s a re th o s e h e c a lls * |Z h a b o ti n s k y C A s , " w h i c h c a n p r o d u c e p a i r e d log s p i r a ls . I n a d d i t i o n t o t h e tw o s t a t e s o f li v e c e l l a n d d e a d c e l l , t h e s e c e l l u l a r a u t o m a t a r e q u i r e a t l e a s t o n e “gh ost..,state.” S i n c e s o m e o n e h a d p r e v i o u s l y m e n t i o n e d t h e i n d i g e ­ n o u s t e r m for. g h o s t , -rhab, it s e e m e d l i k e a n o p p o r t u n i t y fo r c r e a t i v e t r a n s l a ­ t i o n . 1 e x p l a i n e d (i n F r e n c h , t h e official la n g u a g e o f S e n e g a l ) t h a t a fte r I'eta t m ort ( t h e d e a d s t a t e ) t h e c e ll w e n t t o i ’ e ta t r h a b . T o m y s u r p r i s e , D i a t t a c o r r e c t e d rh a b b a c k to t h e F r e n c h : “p h a n t o m . ” W e w e n t b a c k a n d f o r t h a c o u p l e o f ti m e s

b e f o r e I re a l iz e d t h a t i t ' w a s n o t j u s t m y p o o r p r o n u n c i a t i o n . O n l y l a t e r d id I d is c o v e r m y b l u n d e r : D i a t t a was n o t fr o m t h e Is la m i c W o l o f m a j o r i t y ( i n w h o s e l a n g u a g e rha b o c c u r s ) b u t f r o m o n e o f t h e a n i m i s t m i n o r i t y g r o u p s , t h e Jo la. U s i n g W o l o f w as n o m o r e o f a c u l t u r a l t r a n s l a t i o n fo r h i m t h a n i t w o u l d h a v e b e e n t o u se E n g li s h . T h i s w as o n l y t h e s t a r t o f m y m i s t r a n s l a t i o n s . A l t h o u g h D r. D i a t t a w as g reatly e n th u s ia s tic a b o u t my w o rk o n fractals in A fr ic a n a r c h ite c tu r e , he s e e m e d d i s i n t e r e s t e d in t h e f r a c t a l g e n e r a t i o n s o f t w a r e . B u t h e p e r s i s t e n t l y b r o u g h t u p A f r i c a n a r c h i t e c t u r e d u r i n g t h e c e ll u la r a u t o m a t a d e m o s . I f o u n d th is e n t i r e l y t o o f r u s t r a t i n g : t h e w h o l e p o i n t o f rnv r e s e a r c h o n A f r i c a n f r a c t a l s was to e x p lo re th e i n t e n t i o n a l side o f th e s e designs. C e llu la r a u to m a ta c re a te p a t ­ t e r n s n o t b y p r e p l a n n e d j d e s i g n , b u t r a t h e r by t h e i n t e r a c t i o n s o f its a g g r e g a t e c e lls. F r o m m y p o i n t o f v iew , h a v i n g f r a c t a l a r c h i t e c t u r e a s t h e r e s u l t o f a g g r e ­ g a te s e l f - o r g a n i z a t i o n d e s t r o y e d t h e p o s s ib il it y o f i n t e n t i o n a l i t y . By fo c u s in g o n c e l l u l a r a u t o m a t a as a n a r c h i t e c t u r a l m o d e l , D i a t t a s e e m e d t o h e u n d o i n g all m y c a r e f u ll y p r e p a r e d r e s e a r c h . H i s e n t h u s i a s m w a s u n b e a t a b l e , h o w e v e r , a n d 1 b e g a n to s tu d y a e r i a l p h o t o s o f h i s p l a c e o f o r i g i n , t h e J o l a s e t t l e m e n t s s o u t h

o f th e C a s a m a n c e R iver. F ig ure 10.8 s h o w s t h e s e t t l e m e n t o f M l o m p , n o t far fro m D i a t t a ’s h o m e t o w n ; its p a i r e d lo g s p i r a l s t r u c t u r e c o u l d h a v e c o m e r i g h t o u t o f R u c k e r ’s Z h a b o t i n s k y C A s . A t r i p to t h e C a s a m a n c e w as c le a r ly c a l l e d for. 1 w as f o r t u n a t e in fi n d in g N fally B a d ia n e , a Jo la g ra d u a te s t u d e n t w h o h a d d o n e h is m a s t e r ’s th esis o n in d ig e ­ n o u s a r c h i t e c t u r e o f t h e s o u t h e r n C a s a m a n c e , as a g u id e . N f a l l y ’s b a c k g r o u n d is ideal for a n a n t h r o p o lo g i s t: raised a m o n g th e I s la m ic m a j o r i ty in D akar, h e is b o t h

FIGURE 1 0 . 0 T h e J ola s e t t l e m e n t o f M l o m p , S e n e g a l

Ump. (b, Mlomp model generated by com b.n»tior.of s t o ^ s t i c and recursive process, [nstitut Geogmlskique tie Senega!; b. courtesy o f Egondu Onyejelt.ve.)

A fr ic a n fra c ta l m athematics

s t r a n g e r t o a n d m e m b e r o f t h e Jo la so c ie ty . A s w e t r a v e l e d t h e d e l t a a r e a o f che C a s a m a n c e R i v e t , u s i n g c a t s , tr u c k s , c a n o e s , a n d a n y t h i n g else t h a t m o v e d , h is w a r n in g s a b o u t t h e se c re c y o f J o l a religious k n o w l e d g e w e r e re p e a t e d ly c o n firm e d . S e c u l a r i n fo r m a t i o n a b o u t t e c h n i c a l m e t h o d s o f h o u s e c o n s t r u c t i o n , p r e c o l o n i a l a n d p o s t c o l o n i a l s o c i a l c h a n g e s , k in s h ip , g to p p s ,.,.a .n d .jp a n y o t h e r , a s p e c t s „ p f J o l a s o c i e ty w e r e readilY f o r t h c o m m

(E g la s h e t al. 1 9 9 4 ) . ' W e w e r e to ld t h a t t h e

c ircu lar b u ild in g c o m p le x e s w ere n o t p re p la n n e d , n o r w e re th e b ro a d cu rv es of t h e s e c o m p l e x e s in e a c h n e i g h b o r h o o d , b u t t h a t t h e y c o u l d n o t te ll us a n y t h i n g a b o u t th e se q u e n c e o f c o n s tr u c tio n because, u n lik e t h e W o lo f, "w e d o n o t h av e a griot (oral h i s t o r i a n ] in J o l a so c ie ty ." T h e s p i r a l s t r u c t u r e v is ib l e in t h e p h o t o w as m a i n l y d u e t o t h e c a r e f u ll y m a i n t a i n e d s a c r e d f o r e s t ^ L n T o u n d i n g e ^ h J _ o c a l n e i g h b o r h o o d . B u t t h e m e c h a n i s m s for c r e a t i n g s u c h c o h e r e n t s t r u c t u r e s o v e r s u c h a n e n o r m o u s r a n g e o f sc a le s r e m a i n e d h i d d e n . A t a n t a l i z i n g g l i m p s e o f t h e J g] a

ry, h o w e v e r , led us t o s u s p e c t t h a t t h e r e w a s a ^ c o n sc io u s ele-

m e n t t o t h e C A - l i k e s e t t l e m e n t s t r u c t u re. F ir s t, t h e r e w a s t h e s y m b o l i s m o f t h e c h i e f ’s d r i n k i n g vessel: a s p ir a l s h e l l . S eco n d,(K ifalfy ^h ad s e e n t h e i n t e r i o r o f o n e o f t h e s e t t l e m e n t a lt a r s , a n d sa id t h a t it c o n s i s t e d o f a s p i r a l p assag e. T h e b e s t c l u e w e - f o u n d was f r o m D i a t t a h i m s e l f , w h o d e s c r i b e d a lo g s p i ­ ral p a t h in c e r t a i n r i t u a l s t h a t t o o k p l a c e in t h e s a c r e d f o r e s t . B u t h o w t o r e c ­ o n c ile th is self-co n scio u s m o d e lin g w ith w h a t a p p e a re d to be th e e m e rg e n c e o f th e s e t t l e m e n t s tru c tu r e th r o u g h ag g reg ate s e lf-o r g a n iz a tio n ? 1 finally c o n ­ f e s s e d m y d is t u r b a n c e to D i a t t a , a n d a sk e d h i m b o w I m i g h t u n d e r s t a n d t h e a p p a r ­ e n t c o n t r a d i c t i o n . H e s u g g e s t e d y e t a n o t h e r s i m u l a t i o n : t h e J o l a f u n e r a l ritu a l (fig. 1 0 .9 a ) . 'W e h a d b e e n a le r te d to th i s c e r e m o n y as a r e s u lt o f a su spicio us d e a t h d u r i n g c u r - v is i t, b u t w e r e n o t a l l o w e d t o a t t e n d . D i a t t a d e s c r i b e d t h e r i t u a l in d e ta il. T h e body o f th e d eceased was p la c e d o n a p la tfo rm , a n d posts at e a c h o f t h e f o u r c o r n e r s a r e h e l d a lo f t b y p a l l b e a r e r s . If c r i t i c a l k n o w l e d g e is t h o u g h t to h a v e b e e n h e l d b y t h e d e c e a s e d (e.g., a s in t h e c a s e o f a m u r d e r ) , a p r i e s t asks q u e s t i o n s . T i r e p a l l b e a r e r s , r e a c t i n g t o t h e f o r c e o f t h e d e c e a s e d , m o v e che p l a t ­ fo r m t o t h e r i g h t for yes, le ft for n o , a n d f o r w a r d fo r “ u n k n o w n . " T h e s i m u l a t i o n for t h i s ritual..(fig. J0..9.b) is b a s e d o n a n a n a l o g f e e d b a c k n e t w o r k . W e d o n ’t n e e d t o m a k e a n y a s s u m p t i o n s a b o u t w h e t h e r t h e p a l l b e a r ­ ers a r e e x e r t i n g f o r c e d u e t o c o n s c i o u s o p i n i o n s o r s u b c o n s c i o u s b eliefs; it is o n ly n e c e s s a r y t o a s s u m e t h a t t h e y e x e r t f o r c e in p r o p o r t i o n t o t h i s m o t i v a t i o n S i n c e th e y c a n b o t h e x e r t fo rce a n d sen se it f r o m o t h e r s , t h i s w o u ld th e o r e t i c a l l y a ll o w t h e s u m m a t i o n o f k n o w l e d g e a m o n g t h e p a r t i c i p a n t s t o b e e x p re s se d in t h e m o s t e ff e c ti v e w a y p o ss ib le . I n f a c t , t h e t e c h n i q u e is m o r e e f f e c t i v e t h a n a v o t e , s i n c e v o t i n g c a n le a d t o t h e p a r a d o x o f a m i n o r i t y o p i n i o n w in if t h e r e a re m o r e t h a n t w o o p t i o n s . ^ T h e i n f o r m a t i o n e m e r g e d fr o m t h e b o t t o m - u p i n t e r a c t i o n o f

Complexity

165

t h e p a rt s , y e t it w as a ls o i n t e n t i o n a l i n t h e s e n s e t h a t t h i s m e c h a n i s m fo r aggreg a te s e l f-o r g a n iz a t io n o f k n o w l e d g e h a d b e e n c o n s c i o u s ly d e s i g n e d . T h i s w a s n o t i n t e n t i o n a l i t y as I k n e w it; it s o u n d e d m o r e lik e t h e d e s c r i p t i o n o f a n e u r a l n e t ­ w o rk j n . c o m p u t e r s c i e n c e : If a p ro g r a m m e r has a n e u r a l n e t w o r k m o d e l o f v is io n , for e x a m p le , h e or she c a n s i m u l a t e che p a t t e r n o f lig h t a n d d a r k fallin g o n t h e r e t in a by a c t i v a t ­ in g c e r t a i n i n p u t n o d e s , a n d t h e n l e t t i n g th e a c t i v a t i o n sp re a d t h r o u g h th e

(a) In the Jola funeral ritual four pallbearers hold a platform aloft and move it in response to questions. Since the inform ation (w h e th er o n e believes it to be of spiritual or m u n d an e origin) is held by che pallbearers, w e c a n model che force o f each corner as h a v in g direction and magnitude (a vector) d eterm in ed by the pallbearer’s conviction. Decision making based on a co n tin u o u s range rather th a n on yes/no is called “fuzzy logic” in mathematics.

(b) We can th in k of the inform ation processing in the Jola funeral as the equivalent of a neural net (similar to th a t in lig. 10.2) in w hich the sum o f the force vectors of all four pallbearers are inputs to lluee amplifiers, w ith each inverted o u tp u t connected as negative feedback to the oilier two. This would require pallbearers to both exert force as well as sense it, b u t juch force-feedback is actually quite common in motor tasks.

unknown

FIGURE I O . 9

N e u r a l n e t m o d e l for t h e J o la f u n e r a l r itu a l

c o n n e c t i o n s i n t o th e re s t o f t h e n e tw o r k . T h e e ff e c t is a b i t lik e s e n d i n g s h i p lo a d s o f g o o d s i n t o a few p o r t c itie s a l o n g t h e s e a c o a s t, a n d t h e n l e t t i n g a zillion trucks c a r t t h e stu ff .along th e h ig h w ay s a m o n g t h e i n l a n d c ities. But if t h e c o n n e c t i o n s h a v e b e e n p r o p e r ly a rr a n g e d , t h e n e t w o r k w ill so o n s e t t l e i n t o a s e l f - c o n s is t e n t p a tc e r n o f a c t i v a t i o n t h a t c o r r e s p o n d s to a c la s sif ic a ­ t i o n o f th e sce n e . “T h a t ’s a c a t ! ”

( W a l d r o p 1 9 92 , 2 8 9 - 9 0 )

T h e t r i c k y p a r t is “ if t h e c o n n e c t i o n s h a v e b e e n p r o p e r l y a r r a n g e d . ” C l e a r l y i t c o u l d b e a r r a n g e d fo r f o u r p e o p l e , b u t c o u l d it f o r t h i s ' c i t y o f M l o m p , w i t h d o z e n s o f l o c a l n e i g h b o r h o o d s a n d h u n d r e d s o f p e o p l e in e a c h ? A n d M l o m p is n o t a n a n o m a l y . W h i l e w e sa w a m o r e e x p l i c i t f o r m a l s y s t e m in t h e c o n s t r u c t i o n o f se v e ra l f r a c ta l s e t t l e m e n t a r c h i t e c t u r e s in c h a p t e r 2, t h e r e a re also m a n y A f r i c a n s e t t l e m e n t s t h a t h a v e a larg e, diffuse f r a c ta l s t r u c t u r e (see D e n y e r 1978, 1 44). S elf-o rg a n izin g m e c h a n ism s t h a t arran g e su c h vast ag greg atio n s i n t o c o h e r e n t p a t t e r n s w o u l d h a v e t o b e m o r e g l o b a l a n d less e x p l i c i t . O n e k ey m e c h a n i s m i n c o m p l e x i t y t h e o r y is m e m o r y : t h e t h e o r y p r e d i c t s t h a t s e l f - o r g a n iz i n g s y s te m s will u tiliz e 1 / F d.is.tpi.bu.tiQns. in m e m o r y l e n g t h . T h e lu kasa, a visual “m e m o r y b o a r d ” d e v e l o p e d by t h e B a lu b a o f C o n g o (Z a ire ), sh ow s ju s t s u c h f r a c ta l s c a l i n g (fig. 1 0 .1 0 ) . T h e m e m o r y s y s t e m o f t h e l u k a s a is p a rtly b a s e d o n d i g i ta l ( t h a t is, p h y s i c a ll y a r b i t r a r y ) c o d i n g , s u c h as c o lo r , b u t R o b e r t s ( 1 9 9 6 ) n o t e s t h a t m u c h o f t h e lukasa is a “g e o m e try o f id e a s ,” m a p p i n g th e J a e a d e d s p a t i a l s t r u c t u r e t o a n a l o g o u s h i s t o r i c a l e v e n t s . A l t h o u g h t h e r e is c o n s i d e r a b l e i n t e r p r e t i v e a n d c o d i n g v a r i a t i o n , t h e r e is a t e n d e n c y t o h a v e s i n g l e b e a d s r e p ­ r e s e n t i n g i n d i v id u a l s , g r o u p s o f b e a d s r e p r e s e n t i n g r o y a l c o u r t s , a n d la r g e r be ad a r r a n g e m e n t s s h o w i n g t h e s a c r e d fo r e sts t h a t h a v e b e e n g r o w i n g o v e r m a n y g e n e r a t i o n s . T h i s v i s u a l i z a t i o n o f a 1/ F - l i k e d i s t r i b u t i o n o f m e m o r y s u g g e s ts at le a s t t h e p o s s ib ility o f i n d i g e n o u s a w a r e n e s s o f s c a l i n g p r o p e r t i e s in m a i n t a i n ­ in g s e l f - o r g a n iz e d c o m p l e x it y . T h e s t r o n g e s t c a n d i d a t e f o r a m e c h a n i s m u n d e r l y i n g s e l f - o r g a n i z a t i o n is th e c o m p le m e n ta ry p air o f in d ig e n o u s-fe e d b a c k c o n c e p ts, w e e x a m i n e d j n c h a p t e r 8. I n t h e v o d u n r e l i g i o n o f B e n i n , w e f o u n d D a n r e p r e s e n t i n g t h e s t a ­ b i l i z i n g fo r c e o f n e g a t i v e f e e d b a c k , a n d L e g b a r e p r e s e n t i n g t h e d i s r u p t i v e fo r c e o f p o s i t i v e f e e d b a c k . S i m i l a r f e e d b a c k p a ir s w e r e f o u n d in t h e B au le d o o r c a r v i n g s ; t h e c a i m a n s b i t i n g e a c h o t h e r ’s t a i l s a r e a s y m b o l o f n e g a t i v e f e e d b a c k , a n d t h e fish e a t i n g e v e r l a r g e r fish r e p r e s e n t p o s i t i v e f e e d b a c k . T h i s c o m b i n a t i o n o f o p p o s i n g f e e d b a c k l o o p s a ls o a p p e a r s t o h e a t t h e h e a r t o f th e c o n d i t i o n s t h a t s u s t a i n s e l f-o r g a n iz i n g s t r u c tu r e s . O f c o u r s e , in o s t-s e lf-o rg a n iz in g s y s t e m s w ill h a v e m o r e t h a n t w o lo o p s ; b u t in e v e r y c a s e 1 h a v e e x a m i n e d , at le a s t o n e o f e a c h is p r e s e n t , a n d it is t h r o u g h t h i s i n t e r a c t i o n t h a t s u s t a i n e d c o m p l e x i t y c a n a rise.

FIGURE 1 0 . 1 0

Lukasa ( F w m R o b e r ts a n d R o b e r ts

1996; photo

b y D i c k D e a u lie u x .)

African fra c ta l m a th em a tics

R e t u r n i n g t o t h e m o s t b a s i c e x a m p l e o f c o m p l e x b e h a v i o r , M a y ’s p o p u l a ­ t i o n e q u a t i o n , w e h a v e tw o c o m p o n e n t s . O n t h e o n e h a n d , t h e r e is p o p u l a t i o n g r o w t h : f*n+1 = Pn R. N e x t y e a r ’s p o p u l a t i o n w ill b e th i s y e a r ’s p o p u l a t i o n tirn es^ " t h e g r o w t h r a t e . A s l o n g as R is a p o s i t i v e n u m b e r , t h i s w ill b e a p o s i t i v e f e e d ­ b a c k lo o p . B u t t h e o t h e r p a r t o f t h e e q u a t i o n , m u l t i p l y i n g b y (1 - Pn ), w as a neg-,; Fa t i v e f e e d b a c k lo o p , a c t i n g lik e a n e p i d e m i c t h a t k ills m o r e p e o p l e w i t h la rg e r p o p u l a t i o n size.-* T o g e t h e r th e y c r e a t e d e t e r m i n i s t i c c h a o s : t h e p o s i ti v e f e e d b a c k \ k e e p s e x p a n d i n g t h e p o p u l a t i o n , a n d t h e n e g a t i v e f e e d b a c k k e e p s it w i t h i n

j

b o u n d s . T h i s w o r k s for o t h e r c h a o s e q u a t i o n s as w e ll. F ig u r e

•'

i o

.i

j

show s a

c h a o s e q u a t i o n c a l l e d t h e " R o s s le r a t t r a c t o r ’’ m o d e l i n g a c a r w i t h tw o d riv e rs . ^ ^ O n e is d r u n k a n d o v e r c o m p e n s a t e s by s t e e r i n g t o o far w i t h e a c h c o r r e c t i o n ; t h e C

)

o t h e r is s o b e r a n d p u lls it b a c k o n t h e r o a d w h e n t h e d r u n k e n o s c i l l a t i o n s g e t \ . { t o o larg e. B e c a u s e it a lw ay s s t e e r s b a c k t o a s l ig h t ly d i f f e r e n t p o s i t i o n , t h e o scil-

\

) l a t i o n s n e v e r r e p e a t — d e t e r m i n i s t i c c h a o s .^

W e c a n see th e sam e c o m b in a tio n o f n e g a tiv e a n d po sitiv e feed b ack cre ­ a t i n g s e l f - o r g a n i z a t i o n in a g g re g a t e s y ste m s. T h e “ g a m e o f life" c e l l u l a r a u t o m a ­ t o n offers a p a r t i c u l a r l y c l e a r i l l u s t r a t i o n o f th i s p h e n o m e n o n . If we g iv e a ru le s e t t h a t m a k e s b i r t h t o o easy (e.g ., t h e c e ll-g o es t o t h e “l i v e " s t a t e if t h e r e is o n e o r m o r e n e a r e s t n e i g h b o r s a l i v e ) , t h e n t h e r e is t o o m u c h p o s i t i v e f e e d b a c k a n d w e g e t a r a p i d ly s p r e a d i n g d is k . If w e m a k e d e a t h t o o e a sy (e.g., t h e c e l l g oes to t h e “d e a d ” s t a t e if t h e r e is o n e o r m o r e n e a r e s t n e i g h b o r s a l i v e ) , t h e s c r e e n g oes

FIGURE 10 .1 1

R o s s le r a t t r a c t o r as fe e d b a c k i n a u t o m o b i l e d r iv in g T he Rossler attractor is a set- of three simple equations whose output is derprminisric chaos, thar_i.s«. a signal with variable oscillations which remain bounded but never repeat the exact same pattern. How can such a simple system produce infinite variation? A n automobile driving model can help us see what these equations are doing. (a) Positive f e e d b a c k . First, there is a part of the system that provides a positive feedback loop; this acts like a drunken driver who swerves farther and farther off the road. N ote that the car is not properly aligned with the direction of travel; this skidding is the nonlinear relationship between road position X and steering angle Y. (b) N e g a t i v e f e e d b a c k . T he other part of the system is a negative feedback loop; given a swerving input, this cautious driver steers back toward the center of the road. “C aution” is represented by the third variable, 2. (c) Combination o f n e g a t i v e a n d positive f e e d b a c k . Here we see the complete Rossler system at work. T he "caution" variable Z controls the facial expression (diameter of eyes and mouth, angle of eyebrows). Note that after the oscillation gets large enough, the negative feedback kicks in, and we go hack toward the center of the road. Because the car never steers back to exactly the same position on the road, the behavior never repeats. If, for example, you looked at the number of increasing oscillations that occur before the negative feedback dampens it hack toward the center, it would appear to he completely random, with no predictable pattern. Yet the pattern is entirely deterministic (that is, determined only hy this set of equations); it could be predicted if you knew the initial conditions with infinite precision.

Driver (mis)observation

noise road poslllon

Driver observation: hos car been deviating?

L

YES

Move steering angle in

( Y)

new steering angle (V)

a Positive feedback

Driver ooservnllon

Increase Driver observation: - --- * cauttonl is cor position >setpolnt ? (2)

Decrease

_a steering

(V)

angle

new poslllon on road (X)

x

b Negative feedback

0.1 5 y

of negative and positive feedback

x

A fr ic a n fra cta l macliematics

b l a n k in a few g e n e r a t i o n s . T h e “classic” life rule set,.(found by J o h n H o r t o n C o n ­ w ay in 1 9 7 0 ) is o f t e n re f e r r e d t o as “ 3 - 4 ’’ life b e c a u s e it t a k e s 3 n e a r e s t n e i g h ­ b o rs to g iv e b ir th , b u t 4 results in d e a t h . C o n w a y d is c o v e re d t h a t th is c o m b i n a t i o n o f n e g a tiv e a n d po sitiv e feed b ack m axim ized th e c o m p le x ity of b e h av io r. S im ­ ilarly, w h e n P e r B a k f o u n d e m p i r i c a l d a t a for s e l f - o r g a n i z a t i o n i n p h y s i c a l sys­ t e m s — fo r e st fires, e a r t h q u a k e s , a v a l a n c h e s , e t c . — h e n o t e d t h a t it o c c u r r e d o n ly a t a “critic a l s t a t e ” in w h i c h t h e r e was a b a l a n c e b e t w e e n n o i s e - s u p p r e s s i n g m e c h ­ a n i s m s — w h i c h w o u ld c o r r e s p o n d t o n e g a t i v e f e e d b a c k — a n d t h e p o s i t i v e f e e d ­ b a c k o f n o i s e - a m p l i f y i n g lo op s.

"

It is u n f o r t u n a t e t h a t so m u c h o f th e classic re s e a rc h o n A f r i c a n social m e c h ­ a n i s m s c a m e fro m f u n c t i o n a l i s t a n t h r o p o l o g y , s i n c e t h e y m a d e a n a l m o s t e x c l u ­ siv e e m p h a s i s o n t h e r o l e o f n e g a t i v e f e e d b a c k in a c h i e v i n g e q u i l i b r i u m . W h e n it c o m e s t o c o n s c i o u s k n o w l e d g e s y s te m s , A f r i c a n s o c i e t i e s d o n o t e x c l u s iv e l y fo cu s o n b a la n c e , h a rm o n y , a n d stasis. T h e c o m p l i m e n t a r y roles o f D a n a n d Legba, o f o r d e r a n d d is o rd e r, are m u c h m o r e c o m m o n , as w e s e e in t h i s passage: “I n t h e m i n d o f t h e B a m b a r a s t h e air, w i n d a n d fire . . . a r e i n d i s p e n s a b l e e l e m e n t s o f t h e w o r l d ’s o n w a r d m o v e m e n t . B u t as t h e s e p r i n c i p l e s m a y b e a c t i v e in a n u n c o n t r o l l e d , t h a t is, u n r u l y a n d o f t e n e x c e s s i v e m a n n e r , N y a l e is c o n s i d e r e d t o b e a p ro f u s e a n d e x t r a v a g a n t b e i n g . . . . S o by h e r v e r y n a t u r e N y a l e is, to a c e r t a i n e x t e n t , a f a c t o r o f d is o r d e r . T h a t is w h y it is s a i d t h a t B e m b a . . . t o o k , a w a y h e r ‘d o u b l e ’ t o e n t r u s t i t t o F a r o . . . w h o s e e s s e n t i a l a t t r i b u t e is e q u i l i b ­ r i u m " ( Z a h a n 1 9 7 4 , 3 ). A s i m i la r p a ir in g o c c u rs in t h e D o g o n r e l ig i o n , w h e r e A r n m a , th e h i g h god, c r e a t e s t h e N u m m o t o e n a c t o rd e r , a n d a c c i d e n t a l l y c r e a t e s t h e d i s o r d e r l y O g o ; t o g e t h e r t h e t w o g e n e t viic life as w e k n o w it. I n t h e r e p e r t o i r e o f d y n a m - • ical c o n c e p t s o c c u r r in g in se v e r a l A f r i c a n k n o w le d g e system s, t h e r e is r e c o g n i t i o n o f th e .u s e fu l t e n s i o n b e t w e e n e q u il ib r iu m a n d d i s e q u i l i b r i u m , t h e d a n c e b e t w e e n o r d e r a n d c h a n c e t h a t r e s u l t s in s e l f - o r g a n iz e d c o m p l e x i t y . A n d ju s t as S t u a r t K a u f f m a n h a s s h o w n a bias t o w a r d o r d e r in e v o l u t i o n ’s “e d g e o f c h a o s , ” t h e h i g h \ / g o d e n s u r e s t h a t t h e tr ic k s t e r c a n a c t o n ly sp o r a d ic a lly , t h u s c r e a t i n g m o r e p o w e r j

y t o w a r d l o n g - t e r m o r d e r in t h e s e A f r i c a n c o s m o l o g i e s . A l t h o u g h f r a c ta l s r e s u l t i n g f r o m g e o m e t r i c a l g o r i t h m s :a r e u s u a lly s e e n as s t a t i c s t r u c t u r e s , t h e y t o o c a n b e v i e w e d as t h e c o m b i n a t i o n o f f e e d b a c k lo o p s . A s e e d s h a p e w i t h a h u g e n u m b e r o f t i n y l i n e s e g m e n t s (fig. 1 0 . 1 2 a ) w_ii_l t e n d t o b e s h a p e - p r e s e r v i n g u n d e r s e l f - r e p l a c e m e n t i t e r a t i o n s ; h e r e d e v i a t i o n s due_tp r e p l a c e m e n t a r e d a m p e d —-(the d i f f e r e n c e b e t w e e n a l i n e s e g m e n t a n d t h e s e e d s h a p e is u s u a l ly n o t i m p o r t a n t ' ( a n d t h e r e s u l t i n g g r a p h w ill h a v e a lo w f r a c ­ ta l d i m e n s i o n , i.e., t e n d i n g t o w a r d j . o ) . B u t fo r s e e d s h a p e s m a d e u p o f o n l y a few la r g e l i n e s (fig. 1 0 . 1 2 b ) , t h e d i f f e r e n c e b e t w e e n a l i n e s e g m e n t a n d its

FIGURE l o . 1 2

F r a c t a l g r a p h ic s a s fe e d b a c k

A fr ic a n fra c ta l m athem atics

172

r e p l a c e m e n t s h a p e w ill b e v e r y i m p o r t a n t . L a r g e d e v i a t i o n s t e n d t o b e a m p l i ­ fied in a q u i c k p o s i t i v e f e e d b a c k , s o m e t i m e s e x p l o s i v e l y g r o w i n g o u t o f b o u n d s in o n l y a few i t e r a t i o n s . F i g u r e 1 0 . 12 b h a s ' b e e n s c a l e d d o w n t o fit o n t h e p a g e , b u t t h e a c t u a l f r a c t a l g r a p h w ill q u i c k l y g r o w o u t o f b o u n d s a n d b l a c k e n t h e s c r e e n e n t i r e l y (i .e . , a f r a c t a l d i m e n s i o n c l o s e t o 2 . 0 ) . F i g u r e 1 0 . 1 2 c s h o w s a f r a c ta l d i m e n s i o n c lo s e tjo 1.5, t h e " m o s t f r a c t a l " m e a s u r e , w h i c h r e s u l t s fr o m a b a l a n c e b e t w e e n t h e n e g a t i v e f e e d b a c k o f s m a ll s e g m e n t s h a p e p r e s e r v a t i o n a n d t h e p o s i t i v e f e e d b a c k o f la r g e s e g m e n t r e p l a c e m e n t d e v i a t i o n . T h e r e is n o q u a n t i t a t i v e m e a s u r e o f f r a c t a l d i m e n s i o n in p r e c o l o n i a l A f r i c a n k n o w l e d g e sy s te m s . B u t t h e i d e a o f a s p e c t r u m p r o g r e s s i n g f r o m m o r e o r d e r ly t o less o r d e r l y is v i v i d ly portraye r! in c e r t a i n m a t e r i a ! d e s i g n s . T h e best e x a m p l e s a re in t h e Taffia p a l m t e x t il e s o f t h e B a k u b a (fig. 1 0 .1 3 a ). T h e se t e n d to s h o w p e r i o d i c t i h n g a l p n g o n e axis, a n d aperiodic.t.i.ling,— o f t e n m o v i n g fr o m o rd e r to d iso rd er— a lo n g th e o th e r. S im ila r g e o m e tric v is u alizatio n s o f th e sp e c tru m

f ig u r e

1 0 .1 3

F r o m o r d e r to d is o r d e r in a B a k u b a c l o t h ( a ) T h e B a k u b a o f t e n c r e a t e c l o t h d e s i g n s t h a t s t a y fa i rl y c o n s t a n t a l o n g t h e v e r t i c a l a x i s , b u t g r a d u a l l y c h a n g e a l o n g t h e h o r i z o n t a l a x is . I n m a n y c a s e s, t h e h o r i z o n t a l t r a n s f o r m a t i o n s u g g e s t s a n o rd er-d iso rd er range, (b ) C o m p u t e r sc ie n tist C liffo rd P ic k o v e r c r e a te d th is p a t t e r n to sh o w h o w a s p e c tru m from o r d e r to d is o rd e r c o u ld b e v isu a lize d by a llo w in g a r a n d o m v a r ia b le to h a v e i n c r e a s i n g i n f l u e n c e o n t h e g r a p h ’s e q u a t i o n . T h u s it, t o o , m a k e s u se o f p e r i o d i c r i l i n g a l o n g t h e v e r tic a l axis a n d a p e r i o d i c a l o n g t h e h o r iz o n ta l. (a, from

Me u r a n t 1986, b y perniis.u'on o f the author; b , f r o m Pick over 1990, b y permission o f the author.)

C o m p le xity

fro m o r d e r to d i s o r d e r h a v e b e e n u se d in c o m p u t e r s c i e n c e (fig. 1 0 .1 3 b ). A s far as I c a n tell, t h e B a k u b a w e a v in g s n e v e r r e a c h m o r e t h a n halfw ay across t h e s p e c ­ tr u m — th e y a r e ty p ically m o v i n g b e t w e e n j a n d 1.5, t h a t is, fr o m p e rio d ic t o fractal, r a t h e r t h a n s t r e t c h i n g all t h e w ay tg vp u r e diso rd er.^ 1 k n o w o f o n l y o n e A f r i c a n t e x t i l e t h a t cakes t h i s la st s t e p , a n d t h a t is t h e

b lo c k p r i n t s h o w n in figure 10.14. T h i s p a t t e r n is r e m in i s c e n t o f t h e title o f N i g e r ia n a u t h o r C h i n u a A c h e b e ’s f a m o u s n o v e l , T h in g s F a ll A p a r t. G i v e n t h e a n t i c o l o n i a l c o n t e x t o f A c h e b e ’s w r i t i n g , it m i g h t b e t e m p t i n g t o re a d it as a n i n d i c a t i o n t h a t w h i t e n o i s e o n l y c o m e s w i t h w h i t e p e o p l e , b u t a t le ast in te r m s

fig u re

1 o . 14

B lo c k p r in t t e x tile

This print from West Africa suggests the full spectrum from order to disorder. (From S i e b e r 1972.)

*73

A fr ic a n fra c ta l mathematics

174

o f t h e i n d i g e n o u s k n o w l e d g e s y s t e m s u c h a s s u m p t i o n s a r e u n f o u n d e d .® T h e r e is, fo r e x a m p l e , a f o r m o f m u s ic i n d i g e n o u s t o N i g e r i a t h a t h a s s o m e t h i n g lik e a w h i t e n o is e d i s t r i b u t i o n of-sounds. A k p a b o t (-1975) d e sc rib e s “ t h e r a n d o m m usic o f t h e B i r o m , ” a f l u te e n s e m b l e d e s i g n e d to a llo w e a c h m u s i c i a n t o e x p r e s s i n d i ­ v i d u a l fe elin g s t h r o u g h w h a t e v e r i d i o s y n c r a t i c n o i s e ( o r e v e n s ile n c e ) _ h e o r sh e c h o o s e s , r e s u l t i n g in " a n i n d e t e r m i n a t e p r o c e s s [in w h i c h ] t h e s o u n d s p r o d u c e d / . b y t h e p la y e rs a re n o t o b s t r u c t e d by a c o n s c i o u s a t t e m p t t o o rg a n i z e t h e r h y t h m s ^ a n d h a r m o n i e s ” ( p . 4 6 ) . P e l t o n ( 1 9 8 0 ) re fe rs t o t h e N i g e r i a n ( Y o r u b a ) t r i c k s t e r E s h u as t h e “lo r d o f r a n d o m , ” a n d n o t e s t h a t t h e r e is a c o u p l i n g b e t w e e n t h e o rd erly w o rk of O lir u n a n d th is u n p r e d ic ta b le sp irit, sim ila r to t h e n e g a tiv e fe e d b a c k /p o sitiv e feed b ack c o m b in a tio n s we n o te d earlier. T h e c h a ra c te riz a ­ ti o n o f e x tr e m e d is o rd e r m i g h t w ell b e a p p lie d to t h e e x p e r i e n c e o f c o lo n ia l rule, b u t w e s h o u ld n o t assu m e t h a t t h e c o n c e p t was u n k n o w n b e fo re th e n . A s u m m a r y o f s e l e c t e d A f r i c a n c o m p l e x i t y c o n c e p t s is s h o w n i n f ig u re 1 0 .1 5 ; n o t e t h a t t h e c e n t r a ! p e a k o f s p i r i t u a l p o w e r is a n a l o g o u s t o t h e c e n t r a l p e a k o f c o m ­ p u t a t i o n a l p o w e r in t h e C r u t c h f i e l d - S m a l e c o m p l e x i t y m e a s u r e .

C o n c lu s io n T h i s c h a p t e r is o n l y t h e b a r e o u t l i n e o f w h a t I h o p e w ill b e f u t u r e a r e a s o f r e s e a r c h , e x a m i n i n g t h e r e l a t i o n s b e t w e e n t e c h n i c a l , c u J t u raJ j . a,p d - P 9 ]it i? ? i s y s te m s t h r o u g h t h e n e w f r a m e w o r k s o f f e r e d b y c o m p l e x i t y , t h e o r y . F o r t h e m o m e n t , w e w ill h a v e t o l i m i t o u r s e lv e s t o t h e few f r a g m e n t s t h a t m y S e n e g a le s e c o l l e a g u e s p o i n t e d o u t so d i l i g e n t l y i ^ F i r s t ^ t h i s d o e s n o t . n e g a t e t h e p r e v i o u s e x a m p l e s o f e x p l i c i t a l g o r i t h m i c d e s i g n in A f r i c a n fractals,,?..buj..j_t..docs su g g e s t t h a t a t le a s t in t h e c a s e o f se ttle_ m en t a r c h i t e c t u r e t h e y c a n . a r i s e f r o m a n o t h e r s o u r c e as w ell. T h e c r e a t i o n o f f r a c ta l s e t t l e m e n t p a t t e r n s t h r o u g h a g g re g a t e self­ o rg a n iz a tio n , w h ile u n li k e t h e p l a n n e d s tru c tu r e s we saw in c h a p t e r 2, d o n o t seem t o b e t h e r e s u lt o f u n c o n s c i o u s s o c i a l d y n a m i c s (a s w e sa w j b r t h e u r b a n sp r a w l o f E u r o p e a n c itie s in c h a p t e r 4 ). T h i s m a y b e d u e t o a differ e r v c ^ b e t w e e n A.fr i ca n c o n c e p t s o f i n t e n t i o n , w h i c h c a n a p p ly t o a g r o u p p r p j e c t_ c r e a te c l.p v e r . s e v e r a l g e n e r a t i o n s , v e rs u s t h e W e s t e r n fo c u s o n a n i n d i v i d u a l p e r f o r m i n g i m m e d i a t e a c t i o n in d e f i n i n g i n t e n t i o n a l i t y . M o s t i m p o r t a n t , t h e r e a r e i n d i c a t i o n s t h a t th is p a t t e r n c r e a t i o n t h r o u g h g r o u p a c t i v i t y is s u p p o r t e d by c o n s c i o u s m e c h a n i s m s s p e c i f ic t o s e l f - o r g a n i z a t i o n as d e f i n e d in c o m p l e x i t y t h e o r y . B o t h t h e s c a l i n g ( ' d i s t r i b u t i o n o f i n t e r a c t i o n s w i t h m e m o r y a n d che s p e c t r u m fr o m o r d e r t o d i s ­

o r d e r h a v e a t le a s t s o m e g r a p h i c c o u n t e r p a r t s in A f r i c a n d e s i g n s . T h e b e s t c a n ­ d i d a t e for a c o n s c i o u s m e c h a n i s m is t h e c o m b i n a t i o n o f n e g a t i v e a n d p o s i t i v e fe e d b a c k . W e d id n o t e x a m i n e e v ery possible case o f d e te r m i n is t ic c h a o s an d

^

order

fractal

disorder

Akan (G hana): Ananse t h e trickster

' \ J \ S \ S \ , I c o n f o r '“c a l m w a t e r s ”

N y a m e ' s p o w e r o f lif e; tu r b u le n t waters o f Tanu

V od un (B e n i n , Nigeria,

African

L e g b a , Eshu che tricksters

diaspora): D an

M a w u (acts th rough lo w e r gods, e.g., th e b ifu rca tin g doublings o f Shango)

U'gon (Mali): Ogo th e trickster

N u m m o (d raw in g based on p h o t o o f r i t u a l s t a f f in I m p e r a t o

1 97 8)

A m i n a ( d e s c r i b e d as a n e x p a n d i n g spiral, lik e a w h irlw in d)

FIGURE 1 0 . 1 5

A f r i c a n c o m p l e x i t y c o n c e p ts i n r e l i g i o n

176

A fr ic a n fractal m a th em a tics

a g g r e g a t e s e l f - o r g a n i z a t i o n , b u t it w o u l d a p p e a r t h a t t h e c o m b i n a t i o n o f n e g ­ a t i v e a n d p o s i ti v e fe e d b a c k lo o p s , w h i c h fo r m t h e basis o f s e v e r a l A f r i c a n k n o w l ­ e d g e s y s te m s , a ls o f o r m ' a k e y m e c h a n i s m o f g e n e r a l s e l f - o r g a n i z i n g s y s te m s . A s n o t e d in t h e first c h a p t e r , it is j u s t as i m p o r t a n t t o f i n d w h a t is m i s s ­ i n g as it is to f i n d w h a t is p r e s e n t . W h i l e fo u r o f t h e fiv e b a s i c c o n c e p t s o f f r a c ­ t a l g e o m e t r y — s c a l i n g , s e l f - s i m i l a r i t y , r e c u r s i o n , a n d i n f i n i t y — a r e a ll p o t e n t aspiects o f A f r i c a n m a t h e m a t i c s , a q u a n tita tiv e m ea su re o f d im e n sio n (th e H a u sd o rfB e s ic o v itc h m e a s u r e ) is c o m p le te ly a b se n t. T h e r e is a w e a k s e n s e o f a c o m p l e x i t y

sp e c tru m o f order-disorder, w h ic h w o u ld co v ary w ith th e H a u sd o rf-B c s ic o v itc h m e a s u r e , b u t t h a t s p e c t r u m is n e i t h e r q u a n t i t a t i v e n o r ( t o m y k n o w l e d g e ) e v e r c o m p a r e d to a c o n c e p t o f d i m e n s i o n in any. i n d i g e n o u s A f r i c a n s y s te m . T h i s is a n e n o r m o u s g ap in t h e A f r i c a n k n o w l e d g e o f f r a c t a l g e o m e t r y , e s p e c i a l l y s i n c e t h e d i m e n s i o n a l m e a s u r e is o f t e n c o n s i d e r e d t h e m o s t v a l u a b l e c o m p o n e n t by c o n t e m p o r a r y r e s e a r c h e r s i n t h e field... O n t h e o t h e r h a n d , w e a ls o n e e d t o a p p r e c i a t e all k n o w l e d g e s y s te m s in th e i r o w n rig h t, a n d A f r ic a n fractals h a v e a s u rp ris in g ly s tr o n g u tiliz a tio n o f r e c u r s i o n . I n d e e d , in M a n d e l b r o t ’s s e m i n a l t e x t , T h e F ra c t a l G e o m e tr y o f N a tu r e ( 1 9 7 7 ) , t h e i n d e x lis ts “ r e c u r s i o n ” o n l y t w i c e , a n d t h e t e r m s i t e r a t i o n , self-, r e f e r e n c e , s e l f - o r g a n i z a t i o n , a n d f e e d b a c k a r e e n t i r e l y . a b s e n t - A s w e w ill s e e , t h i s a b s e n c e is n o a c c i d e n t ; it.re fle c ts a E u r o p e a n h i s t o r i c a l tr e n d - B u t w h y h a v e E u r o p e a n s t r a d i t i o n a l l y p la c e d s u c h li t t l e i m p o r t a n c e o n r e c u r s i o n , a n d w h y w as i t so s t r o n g l y e m p h a s i z e d in A f r i c a n fracta ls? In p a r t m o f t h i s b o o k w e will t a k e u p s u c h c r o s s - c u l t u r a l c o m p a r i s o n s in d e t a i l .

Implications

C H A P T E R

—T heoretical— —frameworks— ------------- j n -------------

cultural studies-o f knowledge-

~J P a r t s 1 a n d 11 o f t h i s b o o k e m p h a s i z e d t h e g e o m e t r i c , s y m b o li c , a n d q u a n t i t a - ^

[ tiv e a s p e c t s o f A f r i c a n fracta ls. S o m e c ase s w e r e m o r e s p e c u l a ti v e t h a n o t h e r s — j / a d i f f e r e n c e t h a t 1 h o p e w as c l e a r l y i n d i c a t e d — b u t e v e n in t h e u s e 'o f m y t h i c ] \ ' J n a r r a ti v e , 1 g e n e ra lly r e s tr a i n e d c o n c l u s i o n s to th o s e t h a t h a d g e o m e t r i c o r q u a n - i

| t i t a t i v e c o u n t e r p a r t s . In o t h e r w o r d s , t h e c l a i m s m a d e in p a r t s i a n d n s h o u l d

i

■, be fulsifiah le in t h e s e n s e o f K a r l P o p p e r ; t h e d a t a e i t h e r s u p p o r t s t h e h y p o t h e - j \ sis o r re fu te s it.* B u t th e c h a p t e r s in th i s last s e c t i o n w ill s w i t c h t o to p ic s in c u l- '

t u r a l p o l i t i c s a n d o t h e r h u m a n i t i e s . T h e s e is s u e s a r e t o o c o m p l e x a n d m u l t i d i m e n s i o n a l to b e r e d u c e d t o f o r m a l r e p r e s e n t a t i o n s ; t h e y c a n o n l y b e a p p r o a c h e d b y e x p l o r i n g t h e i r j u u e r p r e t a r i y e d e p _ th s (P o e tr y ' a n r e v e a l as m u c h t r u t h a b o u t t h e w o r l d as a n y s c i e n c e ; w e o n l y n e e d t o k e e p in m i n d t h a t it is a d i f f e r e n t w ay o f g o i n g a b o u t it. W h i l e t h e p h i l o s o p h y , p o l i t i c s , a n d p o e t i c s o f c u l t u r e a r e n o t s t r ic t ly fa jsjfia b le, t h e y c a n o f t e n a p p r o a c h t h e j i r e a s o f l i f e j h a t P o p p e r i a n p o s i t i v i s m c a n n o t - — a r e a s w e c a n n o t li v e w i t h o u t . G i v e n t h a t o n e c a n m a k e a g o o d c a se fo r a t lea st f o u f o f t h e five b a sic e le - ^ m encs o f f r a c t a l g e o m e t r y in A f r i c a n m a t h e m a t i c s , w h a t s h o u l d we m a k e o f it \ in te r m s o f c u l t u r e ? T o ask t h i s q u e s t i o n e f f e c t i v e l y w e n e e d t o a v o j d tw o p i t ­ falls. T h e first is t h e p o s s ib il it y o f “o v e r d e t e r m i n e d ” e x p l a n a t i o n s fo r A f r i c a n fractals, e x p l a n a t i o n s t h a t s e e m t o b e w a i t i n g f o r us b e f o r e w e ’v e e v e n b e g u n

i8 o

Im plications

t o e x a m i n e t h e e v i d e n c e . T h e s e c o n d is t h e d i f f i c u l t y o f s u s t a i n i n g s k e p t i c i s m in a r a c i a l l y c h a r g e d e n v i r o n m e n t . j t h e p o s s i b i l i t y t h a t w e m i g h t sh y a w a y fr o m c r i t i q u e o v e r fe ars t h a t e x p r e s s i n g a n e g a t i v e v i e w c o u l d b e t a k e n • c o l l a b o r a t e in t h e m a n u ­ f a c t u r e ot p r o d u c t s a n d se r vi c e * u . c y c o u l d n o t p r o d u c e i n d e p e n d e n t l y . T h e s e n e t w o r k s h a v e c r e a t e d s t r o n g r e v i t a l i z a t i o n i n c e r t a i n r ur al a r e a s o f E u r o p e ( Sabel a n d Piore 1990), a n d h a v e s h o w n p r o mi se in pil ot studies in t h e rural U n i t e d S t a r e s as wel t (e.g., A C E n e t in s o u t h e r n O h i o ) . T h e use o f c o m p u t e r s t o o r g a ­ nize p r o d u c t i o n a n d v e n d i n g a n d p r o v i d e d y n a m i c s e a r c h e s for t h e a p p r o p r i a t e m a r k e t n i c h e — o n e w h i c h w o u l d b e e n v i r o n m e n t a l l y a n d soci all y s u s t a i n a b l e as wel l as pr of i t a b l e— c o u l d s p r e a d t h e b e n e f i t s o f n e w i n f o r m a t i o n t e c h n o l o g i e s to r he mi crobusi ness level w i t h o u t h a v i n g t o p ut a lap t o p in every pushcart, anti microf i n a n c i n g p r o g r ams h a v e al r ea d y p r o v e d successful in m a n y T h i r d W o r l d c o u n t r i e s (Sera geld in 1997). A f r i c a n t r a d i t i o n s o f d e c e n t r a l i z e d d e c i s i o n m a k i n g c o u l d a l s o be c o m ­ b i n e d w i t h n e w i n f o r m a t i o n t e c h n o l o g i e s , c r e a t i n g n e w f or ms t h a t c o m b i n e d e m o c r a t i c r u l e w i t h c o l l e c t i v e i n f o r m a t i o n s h a r i n g . T h e i d e a o f “e l e c t r o n i c d e m o c r a c y " h a s s l owl y b e e n d e v e l o p i n g o v e r t h e I n t e r n e t ; b u t t h e ef f o r t s h a v e

229

230

I m p l ic a tio n s

b e e n h a m p e r e d by t h e t e n d e n c y t o a s s u m e t h a t v i r t u a l v o t i n g m u s t b e t h e s a m e as o r d i n a r y v o ti n g . P e r h a p s t h e n e u r a l n e t sty le o f A f r i c a n d e c i s i o n m a k i n g c o u ld b e u t i l i z e d i n t h e W e s t as w e ll, w i t h v o t e r s i n d i c a t i n g p r o p o r t i o n a b s t r e n g t h s fo r v a r i o u s o p t i o n s . C o n v e r s e l y , p e r h a p s t h e r e a r e w a y s to” a p p l y c o m p u t e r m e d i a t o e n h a n c e A f r i c a n d e c i s i o n m a k i n g . O n e a p p r o a c h w o u ld b e t h e d e v e l o p ­ m e n t o f c o m m u n i t y n e t w o r k s t h r o u g h p u b l i c - a c c e s s t e r m i n a l s ( S c h u l e r 1 9 9 5 ). A n d t h e e n o r m o u s d e v e l o p m e n t in e l e c t r o n i c s e c u r i t y m e a s u r e s , c r e a t i n g sy s­ te m s t h a t sty m ie e v e n t h e m o s t s o p h i s t i c a t e d h a c k e r s ( e n c r y p t i o n c o d e s , fin g er­ p r i n t s c a n n e r s , e t c . ) , m i g h t f i n d u s e s in p r e v e n t i n g v o t e r f r a u d t h a t is so c o m m o n in u n s t a b l e p o l i t i c a l r e g i m e s . N ig e ria n A m e r ic a n c o m p u te r e n g in e e r E g o n d u O n y e je k w e h a s started e ff o rts t o a p p ly i n f o r m a t i o n t e c h n o l o g y n e t w o r k i n g in A f r i c a n d e v e l o p m e n t a l p r o j e c t s u s i n g c o m p l e x i t y t h e o r y a s a g u i d i n g p r i n c i p l e . O n e a r e a s h e c it e s is th e p r o b l e m o f la n d o w n e r s h i p (fo r e x a m p l e , see C h a r n l e y 1 9 9 6 ) . S h e n o t e s t h a t t h e c o n t i n u a l d i v i s i o n o f l a n d p r o m o t e d by t h e c o l o n i a l le g a c y o f t e n r e s u l t s in u n p r o d u c t i v e e c o n o m i e s o f s c a le , b u t t h a t g o v e r n m e n t o w n e r s h i p t e n d s t o m a k e c o n d i t i o n s w o rse hy a d d i n g m o r e h ie r a r c h y . “R e s o l v i n g t h e l a n d p r o b l e m re q u ires a n o n - h i e r a r c h i c a l m e t h o d o f o r g a n i z a t i o n , a sy s te m in w h i c h c o o p e r a t i v e b e h a v ­ i o r is r e w a r d e d a t t h e s a m e t i m e t h a t i n d i v i d u a l i n n o v a t i o n c a n fl o u ris h ; a c o m ­ b i n a t i o n o f c o o p e r a t i o n a n d c o m p e t i t i o n like we see in c e ll u la r a u t o m a t a a n d o t h e r c o m p u t a t i o n a l m o d e l s o f s e l f - o r g a n iz i n g sy s tem s . W h a t b e t t e r w ay to e n c o u r a g e t h i s t h a n t h r o u g h c o m p u t i n g a n d i n f o r m a t i o n n e t w o r k s ? ” ** N e i t h e r t h e A f r i c a n f r a c ta l s f r a m e w o r k n o r d i s s e m i n a t i o n o f i n f o r m a t i o n te c h n o l o g ie s offers p a n a c e a s . M y p o i n t is, rath er, t h a t t h e sh ift in p e rs p e c tiv e often c a l l e d for in d e v e l o p m e n t n e e c t n o t b e e i t h e r c o n s e r v a t i v e r e t u r n t o -the p a s t, n p r t h e e p i s t e m o l o g i c a l e q u i v a l e n t o f a n a l i e n i n v a s i o n . A f r i c a n f r a c t a l s o ff e r a f r a m e w o r k t h a t is b o t h r o o t e d i n i n d i g e n o u s c u l t u r e s a n d c r o s s - p o l l i n a t e s w i t h n ew hybrids.

APPENDIX

-Measuring--------------------------------------------- th e fractal---------------------------------------------dimension---------------------------------------------o f African---------------------------------------------settlem ent--------------------------------------------architecture--------------------------------------------

T h e r e a re s e v e r a l d i f f e r e n t w ays co e s t i m a t e t h e f r a c t a l d i m e n s i o n o f a s p a t ia l p a t t e r n . In t h e c a s e o f M o k o u l e k (fig. 2 . 4 o f c h a p t e r 2 ) we h a v e a b l a c k - a n d w h i t e a r c h i t e c t u r a l d i a g r a m , w h i c h a l l o w s us to d o a t w o - d i m e n s i o n a l v e r s i o n o f che r u l e r size v e r s u s l e n g t h p l o t s w e sa w i n c h a p t e r 1. By p l a c i n g t h e a r c h i ­ t e c t u r a l d i a g r a m o f M o k o u l e k u n d e r g rid s o f i n c r e a s i n g r e s o l u t i o n , a n d c o u n t ­ in g tire n u m b e r o f g rid c e lls t h a t c o n r a i n s o m e p a r t o f t h e d i a g r a m , we c a n p l o t t h e in c r e a s e o f a r e a w i t h d e c r e a s i n g c e ll size ( j u s t as we o b t a i n e d a p l o t o f t h e i n c r e a s i n g l e n g t h w i t h d e c r e a s i n g r u l e r size). F ig u r e

a

.i

s h o w s t h e re s u lts , i n d i ­

c a t i n g a f r a c t a l d i m e n s i o n o f 1.67— n o t t o o far f r o m t h e i .53 f r a c t a l d i m e n s i o n t h a t is o b t a i n e d a n a l y t i c a l l y fr o m t h e c o m p u t e r s i m u l a t i o n . F o r t h e a e r i a l p h o t o o f L a b b a z a n g a (fig . 2 .5 o f c h a p t e r 2 ) w e h a v e a n im ag e in s h a d e s o f gray, a n d t h e s i m p l e g r i d - c o u n t i n g m e t h o d c a n n o t be app lie d . It is p o s s i b l e t o r e d u c e t h e g ra y s c a l e t o b l a c k a n d w h i t e , b u t a n a l t e r n a t i v e m e t h o d a ll o w s us to m a k e a m o r e d i r e c t m e a s u r e o f t h e s c a l in g p r o p e r t i e s . F i g ­ ure

a

. 2a

s h o w s _ t h e m e t h o d for f i n d i n g t h e s c a l i n g s l o p e o f 1 / F n o is e in a o n e ­

d i m e n s i o n a l t i m e s e r ie s hy a p p l y i n g a F o u r i e r t r a n s f o r m . In fig u re

a

.2b

w e see

h o w t h i s c a n b e a p p l i e d to a t w o - d i m e n s i o n a l s p a t i a l d i s t r i b u t i o n by s w e e p ­ in g t h e s a m e s p e c t r a l d e n s i t y m e a s u r e a r o u n d in p o l a r c o o r d i n a t e s . R a t h e r t h a n tire l i n e o f o n e - d i m e n s i o n a l 1 / F n o i s e , a t w o - d i m e n s i o n a l d i s t r i b u t i o n is

A p p en d ix

232

c h a r a c t e r i z e d b y a c o n e . It is d i f f i c u l t t o s h o w t h e e n t i r e c o n e , b u t w e c a n t a k e h o r i z o n t a l s l i c e s (fig.

a

.2b),

w hich show

b a z a n g a a n d its f r a c t a l s i m u l a t i o n (fig.

a

sim ilar

c h a r a c t e r i s t i c s f o r b o t h L ab -

.3)

log (cell size) FIGURE A.J

M e a s u r i n g t h e f r a c ta l d i m e n s i o n o f M o k o u l e k

frequency O n e - d i m e n s i o n a l t i m e s e r i e s f o r 1/ F n o i s e .

1/ F n o i s e s p e c t r a l d e n s i t y from i - D Fo u rier transform .

low fre q u e n c ie s a t h ig h p o w e r

j-D F o u rier tra n sfo rm , w ith fre q u e n c y in p olar coo rd in ates: w id e r c ir c le = h i g h e r fre q u e n c y . T h e l i n e o f 1/ F n o i s e is r o t a t e d t o b e c o m e a c o n e .

h ig h fre q u e n c ie s at low p o w e r

F I G U R E A . 2 ..

U s i n g a 2 ' D F o u r i e r t r a n s f o r m to d e t e c t f r a c ta l s p a tia l d is tr ib u tio n s

low fre q u e n c ie s a t h ig h p o w e r

h ig h fre q u e n c ie s a t low po w er

a

h ig h f re q u e n c ie s a t lo w p o w e r

lo w fre q u e n c ie s a t h ig h p o w e r

FIGURE A .3

R e s u l t s o f a 2 - V F o u r ie r t r a n s f o r m a p p l i e d to a e r ia l p h o t o o f L a b b a z a n g a

(a) Spectra for aerial photo of Labhazunga (fig. 2.50 from chapter 2). (b) Spectra for fractal image (Jig. 2.5b from chapter 2). Note that the axes of symmetry in the fractal can he seen in this spectral density distribution, while none exist for that of Labbazanga.

Notes'

c h a p te r

i

i n t r o d u c t i o n to fr a cta l g e o m e t r y

j. For a hexagon example, see Washburn and Crowe (1988, 237). Numerical examples can be found in Crump (1990, 39-40, 50-54, 105-106, 128-133). 2 . The number 10 was not only a basis for counting, but it also appeared in Chinese nat­ ural philosophy. In acupuncture, for example, the number 10 is created by the combi­ nation of the "five elements" (wu-yiin) and the binary yin/yang. 3. Michael Polanyi (1966) referred to this as "tacit knowledge.” c h a p te r

2

Fractals

in A f n c c . n

settlement architecture

1. O n triangular churches, see Norberg-Schulz (1965, 172); for che Pantheon, see ibid., 124. 2. Another passage, “path of the serpent,” is used only by royalty. It alternates left and right as it approaches the center of the palace, and thus creates a scaling zigzag pattern. The implication seems to be that even royalty must negotiate the fractal ranking, but they can traverse it in a more direct route. 3. American readers are probably most familiar with nuclear families, but in Africa the family structure typically extends to much larger networks. The English term "cousins,” for example, emphasizes the nuclear family by .lumping all these relatives together, while many African kinship systems have distinct terms for paternal parallel cousins, mater­ nal parallel cousins, paternal cross cousins, etc. 4. T he status difference between front and back is also expressed in the Ba-ila term for slave: “one who grows up at the doorway” (Smith and Dale 1968 [ 1920I vol. 1, 304). 5. This is another meaning for the term "participant simulation.” In the first meaning, briefly mentioned in the introduction, I defined it as an effort in cooperative modeling and analysts, a rechnologized version of recent attempts in collaborative ethnography by some anthropologists and their informants. In that sense it supports che humanist goals

236

N otes

of self-governing autonomy. But in the Mokoulek case I am also using it in the post­ modernist sense, a participant in a virtual world. The contrasting meanings and their consequences are discussed in detail in chapter 10, where the two are brought together. 6. T h e results were published in Eglash and Broadwetl (1989), and are reproduced in the appendix. "" ch ap ter 3

F ra c ta ls in c ro ss -c u ltu ra l co m p ariso n

1. in general, anthropologists divide nonstate societies between “band” organization, which is entirely decentralized and based mainly on consensus, and “tribal” organiza­ tion, in which there is an official leader but otherwise little political hierarchy. The term "tribe” is controversial, however, since colonialists often used it to deny the existence of indigenous state societies, so it is important ro separate the technical designation front its colloquial use2. This is a complex designation in cultural studies, since the label of “traditional’'— or worse yet, "authentic”— was used by colonial authorities to exercise control over indigenous populations, and still o c c u r s in the neocolonial context to valorize the ‘‘van­ ishing native” while appropriating their cultural resources. See Minh-ha (1986), Anzaldua (1987), Clifford (1988), and Bhaltba (1990) for discussion of some of these issues. 3. Crowe and Nagy (1992), for example, have done extensive analysis of Fiji decoration, and found 1 2 o f the 17 mathematically possible two-color strip symmetries, but none of the designs they show are fractal. 4. Of course, nothing is absolutely certain when it comes to ancient history. Several researchers have suggested that the Coptic designs from Egypt were an important influence 011 the Celtic interlace patterns, and some Italian floor tiles were created by North African artisans (Argiro 1968, 22). But one could just as easily argue the influ­ ence in reverse. Given the history of trade routes and travel, we should not attempt to reduce designs to a singular origin; the goal is to see how any one society has built up its particular repertoire of designs— from whatever sources— as part of a dynamic yet culturally cp. 9 7 3 ' Mudimbe, V. Y. The Invention of A f r i c a . Bloomington: Indiana University Press, 1988. Mveng, Engelbert. L'nrt d ' A f r i q u e Noire. Paris: Point Omega/Mame, 1964. Nabokov, Peter, and Easton, Robert. Native American A r c h i t e c t u r e . Oxford: Oxford University Press, 1989. National Assessment of Educational Progress. Princeton, N.J., 1983. Nazarea-Sandoval, Virginia. "Fields of memories as everyday resistance." Cultural Survival Quarterly, Spring 1996, 61-66. Neihardt, John. Black Elk Speaks. Lincoln: University of Nebraska Press, 1972. Nelson, D-; Joseph, G. G.; and Williams,). Multicultural Mathematics. Oxford; Oxford U ni­ versity Press, 1993. Nelson, Nici, ed. A f r i c a n W o m e n in t h e D e v e l o p m e n t P r o c e s s . London: Frank Cass, 1981. Nolan, Robert. Bassari Migrations. Boulder, Colo.: Westview Press, 1986. Nooter, N .I., and Robbins, W. M. “Bembe,” plate 1221, in African Art in American Collec­ tions. Washington D.C.: Smithsonian Institution Press, 1989. Norberg-Schulz, Christian. Intentions in Architecture. Cambridge, Mass.: MIT Press, 1965. Nordenfalk, Carl. Celtic and Anglo-Saxon Painting. New York: George Braziller, 1977. Odica, Okechukwu. Traditional African Art. History of Art 505. Columbus: Ohio State University, 1971. Oritz de Montellano, B. “Melanin, Afrocentricity, and pseudoscience." Yearbook of Physi­ cal Anthropology 36 (1993): 33-58. Ozkan, Suha. “Architecture to change the world I” In Ismail Serageldin, ed., T h e . A r c h i c e c tu r e o f E t n l m v e r m c n t . Lnnhmn, Md.: Academy Editions, 19157. Parrinder, Geoffrey. A f r i c a n Mythology. London: Paul Hamlyn, 1967. Pearson, W., and Bechtel, H. K., eds. Blacks, Science, and American Education. New Brunswick, N.J.: Rutgers University Press, 1989. Peirgen, H. O.; Saupe D.; Jiirgens, H.; Maletsky, E.; Perciante, T.; and Yunker, L., eds. Fractalsfor the Classroom: Strategic Activities. Vol. 1. New York; Springer-Verlag/NCTM, 1991. Peitgen, H. O., and Saupe D., eds. The Science o f F r a c t a l Images. New York: Springer-Verlag, 1988.

249

250

R eferences

Pelton, Robert D. The Trickster in West A f r i c a : A Study o f Mythic Irony and Sacred Delight. Berkeley: University of California Press, 1980. Pennant, T. “Housing the urban labor force in Malawi: An historical overview, 1930-1980.” A/rican Urban Studies, 16 (Spring 1983), 1-22. v~'Perczel, C. F. "Ethiopian crosses at the Portland Art Museum.” A f r i c a n Arts”i 4, no. 3 (May 1981): 51-55. Perrois, Louis. Ancestral Art o f G a b o n : F r o m t h e C o l l e c t i o n s o f t h e B a r b i e r - M u e l l e r M u s e u m . Geneva: Barbier-Mueller Museum, 1985. Petitto, A. L. "Practical arithmetic and transfer: A study among West African tribesmen.” Journal 0 / Cross Cultural Psychology 13 (1982): 15-28. Petruso, K. M. "Additive progression in prehistoric mathematics: A conjecture." Hixtoria Mathematica 12 (1985): 101-106. Phillips, Tom. A f r i c a : The Art o f a Continent. New York: Prestel, 1995. Pickover, Clifford. C o m p u t e r s , P a t t e r n , C h a o s a n d B e a u t y . New York: St. Martin's P r e s s , i< y g o . Ptcton, John, and Mack, John. A f r i c a n T e x t i le s : Looms, Weaving and Design. London: British Musem, *979. Polanyi, Michael. The Tacit Dimension. Garden City, N.Y.: Doubleday, 1966. Porter, T. M. The Rise 0/ Statistical Thinking, 1820-1900. Princeton, N.J.: Princeton University Press, 1986. Porush, D. "Fictions as dissipative structures: Prigogine’s theory and postmodernism’s road­ show."'In N. Katherine Hayles, ed., C h a o s a n d O r d e r . Chicago: University of Chicago Press, J 9 9 1 . Powell, L. “Factors associated with the underrepresentation of African Americans in mathe­ matics and science." Journal 0/ Negro Education 59, no. 3 (1990). Preziosi, D. A. “Harmonic design in Minoan architecture.” Fibonacci Quarterly, December 3968,371-383. Restivo, Sal. The Social Relations o f P h y s i c s , M y s t i c i s m , and Mathematics. Dordrecht: D. Reidel, 1985. Roberts, Allen F., and Maurer, Evan M. T a b w a : T h e R is in g o f a Neiu Moon. A nn Arbor: U n i­ versity of Michigan Museum of Art, 1985. Roberts, Allen F., and Roberts, Mary Nooter, eds. Memory: Luba Art and the Making 0 / His­ tory. New York: Museum for African Art, 1996. Roberts, Mary Nooter. “Luba memory theater.” In Allen F. Roberts and Mary Nooter Roberts, eds., Memory: Luba Art and the Making o f History. New York: Museum for African Art, 1996. Rose, T. Black Noise. Hanover, N.H.: Wesleyan University Press, 1994. Roth, K . J. “Second thoughts about interdisciplinary s t u d i e s . ' ' A m e r i c a n E d u c a t o r 44-48 (Spring I 9 9 4 )Rowe, Walter. "School daze: A critical review of the 'African-American Baseline Essays for Science and Mathematics.’ ” Skeptical Inquirer, September 1995. Rubel, L. A. “Digital simulation of analog computation and Church's thesis." J. Symbolic Logic 34, no. 3 (September 1989): toi 1-101 7. Rucker, Rudy. CALAB. San Jose: Autodesk, 1989. Sabel, Charles, and Piore, Michael. D i a l o g o n F le x i lr f e M a n u f a c t u r i n g N e t t v o r k s . Research Triangle Park, N.C.: Southern Technology Council, 1990. Sagay, Esi. A f r i c a n Hairstyles. Oxford: Heinemann International, 1983. Sandoval, Chela. “New sciences: Cyborg feminism and the methodology of the oppressed." In Chris Gray, ed., The Cyborg Handbook, 407-422. New York: Routledge, 1995Saupe, Dietmar. “Algorithms for random fractals.” In Heinz-Otto Peitgen and Dietmar Saupe, eds., The Science o f Fractal linages, 71-113. Berlin: Springer-Verlag, 1988. Schildkrout, Enid, and Keim, C u r t i s A . A f r i c a n R e f l e c t i o n s : A r t f r o m N o r t h e a s t e r n Z a i r e . Seattle: University of Washington Press, 1900. Schroeder, M. F r a c t a l s , C h a o s , and P o w e r Lniw. New York: W. H. Freeman, 1991.

R eferences

Schuler, Douglas. New Community Networks: W i r e d f o r C h a n g e . New York: AddisonWesley, 1996. Schwab, W. B. “Oshogbo: An urban community?” In H. Kuper, ed., Urbflni?;ation a n d M i g r a ­ t i o n in W e s t A f r i c a . Berkeley: University of California Press, 1965. Seignobos, C. Nord C a m e r o u n : Montages et hautes t e r f e s . Roquevaire: Editions Parentheses, .1982. Serageldin, Ismail. “'Micro-finance; Reaching the poorest.” in Ismail Serageldin, ed., T h e A r c h i ­ t e c t u r e o f E m p o w e r m e n t . Lanham, Md.: Academy Editions, 1997. Shaw, Carolyn Martin. "The achievement of virginity: Sexual morality among the Kikuyu of Kenya.” National Endowment for the Humanities Summer Seminar, 1989. Shaw, Carolyn Martin. Colonial Inscriptions. Minneapolis: University of Minnesota Press, 1995. Shiva, Vandana. B io p ir a c y : T h e P lu n d e r o f N a t u r e a n d K n o w le d g e . Boston: South End Press, 1997. Sieber, Roy. African Textiles and Decorative Arts. New York: Museum of Modern Art. Dis­ tributed by New York Graphic Society, Greenwich, Conn., 1972. Skinner, S. Terrestrial Astrology: Divination b y G e o m a n c y . London: Routledge and Kegan Paul, 1980. Smith, D. "The queen of rap." New York, December 3, 1990, 123-146. Smith, E. W., and Dale, A. M. The lla-Speaking P e o p le s o f N o r t h e r n R h o d e s ia . New York: Uni­ versity Books, 1968 [1920]. Sobchack, Vivian. "Theories of everything: A meditation on chaos.” A r t f o r u m , October 1989. Soppelsa, Robert T. Sculpted Wooden Doors o f I v o r y C o a s t : T h e B a u l e a n d S e n u f o . M. A. thesis S71 2, Ohio State University, 1974. Soyinka, Wole. “The last despot and the end of Nigerian history?” index on Censorship 23, no. 6 (November 3994): 67-75. Spivak, Gayatri Chakravorty. Jn Other Worlds: E s s a y s in Cultural Politics. New York: Methuen, 1987. Steenburg, D. “Chaos at the marriage of heaven and hell.” H a r v a r d T h e o l o g i c a l Review 84 (1991): 447-466. Stein, Dorothy. Ada: A L i f e a n d a Legacy. Cambridge, Mass.: MIT Press, 1985. Stephanides, Michel. "La naissance de la chimie.” Scientia 21 ( j 922): 189-196. Stiff, L. V.; Johnson, J. L.; and Johnson, M. R. “Cognitive issues in mathematics education." in P. S. Wilson, ed., Research I d e a s f o r th e C la s s r o o m : H ig h S c h o o l M a t h e m a t i c s . New York: Macmillan, 1993. Sroller, Paul. "The negotiation of Songhay space: Phenomenology in the heart of darkness.” American Ethnologist, 1980. Stone, Aliucqiiei e' Rosanne. The War o f D e s i r e and Technology at the Close o f th e M e c h a n i c a l Age. Cambridge, Mass.: MIT Press, 1995. Suvan, D. E. The Magic o f Bimdelier. Santa Fe, N.M.: Ancient City Press, 1989. Tank, David W., and Hopheld, John J. “Collective computation in neuronlike circuits." S c i ­ e n t i f i c A m e r i c a n , December 1987, 104-J14. Tanner, Clara L. Southwest Indian Craft Arts. Tucson: University of Arizona Press, 1968. Taylor, C. C. “Condoms and cosmology: The “fractal’ person and sexual risk in Rwanda.” Soc. Sci. Med. 31, no. 9 (1990): 1023-1028. Taylor, F. Sherwood. “A survey of Greek alchemy." Journal of Hellenic Studies, 50 (1930): 109-119.

Taylor, P. J. “Technocratic optimism, H. T. Odum, and che partial transformation of eco­ logical metaphor after World War 11." Journal o f the History o f B i o lo g y 21, no. 2 (Sum­ mer 1988): 2 13-244. Thomas, Elise, and Slockish, Marie. T h e H e r i t a g e o f K l i c k i t a t B a s k e tr y . Portland: Oregon His­ torical Society, 1982. Thompson, D’Arcy Wentworth. On Growth and Form. Cambridge, U.K.: Cambridge Uni­ versity Press, 1917. Thompson, J.E.S. Maya History and Religion. Norman: University of Oklahoma Press, 1970.

25 2

References

Thompson, Robert F. Flash o f th e S p i r it . New York: Vintage Books, 1983. Trowell, Margaret. A f r i c a n D e s i g n . New York: Frederick A. Praeger, i960. Tuana, Nancy. “The weaker seed." In Nancy Tuana, ed., Feminism and Science, 147-171. BtoOmington: Indiana University Press, 1989. Tnrkle, Sherry. L i f e on th e Screen: Identity in t h e A g e o f th e I n t e r n e t . New York: Simon and Schuster, 1995. Usiskin, Z. “ We need another revolution in school mathematics." In T h e S e c o n d a r y S c h o o l Curriculum 1983 Y e a r b o o k , ed. C. R. Hirsch and M. J. Zweng, 1-21. Reston, Va.: National Council of Teachers of Mathematics, 1985. Van Wyk, Gary. "Secrecy, knowledge, power and postinodernity.” In David Franke), ed., S e c r e c y : A f r i c a n Art dint C o n c e a l s a n d R e v e a l s . New York: Prestel-Verlag, 1993. Vergis, A.; Sceiglitz, K.; and Dickinson, B. "The complexity of analog computation.” Tech­ nical report no. 337, Department of Electrical Engineering and Computer Science, Prince­ ton University, February 1985. Vogel, Susan. Baule Art a s th e E x p r e s s i o n o f W o r l d V i e w . Ann Arbor, Mich.: University Micro­ films, 1977. von Fritz., Kurt. "The discovery of incommensurability by Hippasus of Metapontum.” Annals o f M a t h e m a t i c s 46, no- 2 (April 1945). Voss, R. F. “Fractals in nature." In H. O. Peicgen and D. Saupe, eds., T h e S c i e n c e o f F r a c t a l I m a g e s , 21-69. New York: Springer-Verlag, 1988. Wahl, B. Exploring Fractals on th e M a c i n t o s h . New York: Addison-Wesley, 1995. Washburn, D. K.( and Crowe, D. W. Symmetries o f C u l t u r e . Seattle: University of Washington Press, 1988. Wassing, Rene. A f r i c a n A r t : Its Background and Traditions. New York-. Harry N. Abrams, 1968. Waters, Frank. Book o f th e Hopi. New York: Viking Press, 1963. WatsorvVerran, H., and Turnbull, D. “Science and other indigenous knowledge systems.” In Sheila Jasnnoff, Trevor Pinch, Gerald Markle, and James Petersen, eds., H a n d b o o k o f S c i e n c e a n d T e c h n o lo g y S t u d i e s . Beverly Hills, Calif.: Sage Publications, 1994. Witherspoon, Gary, and Peterson, Glen. Dynamic Symmetry and Holistic Asymmetry in N a v a jo a n d Western Art and C o s m o lo g y . Bern and New York: Peter Lang Publishing, 1995Williams, Denis, /con and Image. New York: New York University Tress, 1974. Wilson, Eva. N o r t h American Indian Designs. Bath: Pitman Press, 1984. Wiredu, J. E. "How not to compare African thought with-Westem thought.” In R. Wright, ed-, A f r i c a n P h i lo s o p h y : An Introduction. Washington, D. C.: University Press of Amer­ ica, 1979. Wittig, M. The Lesbian Body. Boston: Beacon Press, 1973. Wolfram, S. “Universality and complexity in cellular automata.” Physica 10D (1984): 1—35. Wolfram, S., ed. T h e o r y a n d Application o f C e l l u l a r A u t o m a t a . Singapore: World Scientific, 1986. Zahan, Dominique. The Bambara. Leiden: E. J. Brill, 1974. Zaslavsky, Claudia. A f r i c a Counts. Boston: Prindle, Weber, and Schmidt, 1973. Zaslow, Bert, and Dittert, Alfred E. Pattern Mathematics and Archaeology. Phoenix: Arizona State University, 1977-

Index-

abbia,120,138-140,145-146 Abraham, Ralph, 193, 238118, 239116 abstraction, 17, 51, 53, 62, 78, 102, 109, 131, 133, 202, 21 2, 213, 214, 216 Achebe, Chinua, 173 addition modulo. Sett mod 2 additive scries, 186-189 aesthetics- See esthetics affine transformation, 75 Afiocenirism, 180-181, 218, 222 age-grade, 68, 87, 121, 124, 237116 agriculture, 24, 31, 125, 227-229 Agudoawu, Kofi, 107 Akan, 77-78, 81, 104 alchemy, yy, 100, 101, J40, 141,2381112 algorithm, 38, 47, 6 1, 68, 77, 97, 113, 118, ' 3 3 . «53 —) 5 4 . 17°. ' 7 4 .206 analog, 151-154, 158-161, 164, 192-194,200, 202, 214, 229, 23811m , 2, 240113, 24ini 2 Ananse, 137 Angola, 68, 186 animism, 194 anthropology: authority in, 183—184; function­ alist, 170; mathematical, 185-187, 191; modernist, 131,238; reflexive, 95; struc­ turalist, 18 x, 188. S ue a ls o ethnography apartheid, 184, 200 apei iodicity, 108, 172 .Arabic culture, 98-99, 205 archaeology, 61, 87, 89

architecture: African, 4-8, 19-40, 87-89, 110—111, 124, 126-128, 131, 135, 148-149, 162-164,'^6.174, '95-199, 205, 210, 216-222, 224, 226; American, 3 - 5 . 3 9 . 4 9 - 5 0 . 55. ' 9 7 - ' 9 9 ; Chinese, 4; European, 3, 20, 39, 48-51, 55, 89, 174, 195-196, 225; Indian, 47-48; Mative Am. t k ; n, 39-42; South Pacific, 47 Aristotle, d, 51, 147-148, 205-206, 242 arithmetic, 86-108 arithmetic series. Sec additive series art education, 225 artificial intelligence, 213 Ascher, Marcia, 45, 47, 186, 237114 Ashanti, 137 authenticity, 74, 184, 193-194, 217, 23602, 238119, 240m authority, 31, 133, 183, 186, 203, 227—228 Babbage, Charles, 21 1-212 Badinne, Nfally, 162, 164 Ba-ila, 26-29, 5 5 . ' >o. 23 5 n 4 Bak, Per, 161,170, 226 Baka, 183, 240114 Baker, Houston, 194 Bakuba, 172-173, 222 Baluha, 130, 166, 210 Bambara, Toni Cade, 194 Bamilekc, 24-25 Banneker, Benjamin, 55,90, 182, 183

253

In d e x

254 B an tu, 62

C h a i t i n , G re g o ry , 153

Banyo, 34-36

c h a o s , 9 3 , 9 5 , 103, 108, 143, 159, 162, 168, 1 7 4 , 1 8 2 , 1 9 0 , 1 9 3 , 1 9 7 , 1 9 9 , 2 1 4 , 2 37iM

b asket w eaving, 4 5 -4 6 , 222 B nssari, 1 2 1 - 1 2 2 , 2 3 7 0 5

chi w ara, 1 2 4 -1 2 5 , 127, 134, 209

B a ta m m a lib a , 121, 126, 135

C h in e se m ath em atics, 4, 4 7 -4 8 , 185, 225,

23502

B atty , M ic h a e l, 4 9 - 5 0 b ead w ork, j J3 , j 19, 166, 2 3 7 0 5

C h o k w e , 6 1 , 6 8 , 6 9 , 7 0 , 8 4 , 187

B e l l , E r i c T . , 2 0 7 —2 0 8

C h o m s k y , N o a m : c o g n itiv e th e o r y of, 2 11; h ie r a rc h y of, 1 5 6 - 1 5 8

B e m b e , j 23 B enin, 91, 1 2 4 ,1 4 1 -1 4 3 , 166, 182, 216,

C h ristia n ity , 20, 4 8 , 9 0 , 127, 1 3 5 -1 3 6 , 149 cities.

237 n 5

See

B etg, T Q , 224

c la s s , 81

a rch itectu re

B ern o u lli, Ja c o b o , 210

C lif f o rd , J a m e s , 131, 1 8 3 , 1 9 3 , 236112, 2 4 0 0 5

B e y , H a k i m , 2 4 1n 9

co astlin es, 1 5 .1 7

b i n a r y c o d e , 9 5 , 9 8 , 1 01

c o lo n ialism , 1 9 5 -1 9 7

b in o m ia l c o efficien ts, 2 3 7 n s

c o m p l e x i t y , 5, 4 5 , 6 8 , 1 4 6 , 1 5 1 - 1 7 6 , 1 8 4 , 1 8 9 ,

b io lo g ical d e te r m in is m , 187, 191, 2 2 4 - 2 2 5 biology, 3 , 3 4 , 8 4 , 1 0 2 - 1 0 5 , 1 0 7 - 1 0 8 , 1 24,

225, 2 2 8 ,2 3 0 c o m p u t e r : a n a l o g , 1 5 1 —1 5 5 , 1 5 8 - 1 6 1 , 1 6 4 - 1 6 6 ;

1 3 1 ,1 3 3 , 1 4 1 ,1 5 9 ,1 8 9 , 191, 2 2 7 -2 2 9 ,

c a l c u l a t i o n by, 7 4 , 8 9 , 9 7 , 1 5 1 ; i n d e v e l o p ­

24006

m en t, 2 2 9 -2 3 0 ; ed u catio n , 2 2 3 -2 2 5 ; h ard ­ w a r e , 9 5 , 9 8 , 1 0 1 ; p r o g r a m s , 1 1 0 —1 1 2 , 1 3 2 ,

b io tech n o lo g y , 2 2 8 -2 2 9 b irth , 34, 9 0 , 109, 127, 131, 133, 168, 170,

135, 1 3 7 -1 3 8 , 188, 2 11; s im u la tio n , 3 ,1 2 , 21, 28, 31, 3 2 , 34, 38, 6 i ,

208, 210, 212, 24205 B lix e n , K a r e n (lsak D in e s e n ), 197

71,

77, io r- ro 4 ,

147, 172; th eo ry , 146, 1 5 6 -1 5 8 , 2 1 2 - 2 1 4

B l y d e n , E. W ., 2 0 0

C o n g o . See D e m o c ra tic R e p u b lic o f C o n g o

body, 12, 6 3 - 6 5 , 7 5 -7 6 , 1 3 1 -1 3 3 , 164, 226,

C onw ay, Jo h n H o rto n , 103 -1 0 4 , (70 c o o r d in a te sy stem s: C a r te s i a n , 3 - 5 , 4 2 , 8 5 ,

24011m , 3

196; polar, 2 3 1 -2 3 4 ; sp h erical, 83

Boggs, Ja m e s, 2 4 0 m B ourdier, Jc n n -P a u f, 3 2 - 3 3

C o p t ic d e sig n , 2 3 6 0 4

b raid in g . See h airsty les

c o rn ro w s. See h airsty les

b rid ew ealth , 89

cosm ology, 4 3 - 4 4 , 4 8 , 1 3 1 - 1 3 5 , 2 0 4 , 210

B ro ad w ell, P eter, 3 1

c o u n t i n g : b a s e six , 122; b a s e t e n , 4 , 9 9 , 2 3 5 0 2 ; base tw o, 8 9 - 9 1 , 100

b ro n ze s c u lp tu re , 1 3 8 -1 3 9

C ro w e , D o n a ld , 4 7. 48

B row n, Jam es, 1 9 9 -2 0 0 b ro w n noise, 2 3 9 0 7

C row ley, A lcister, 99

B u r k i n a F a s o , 3 1 - 3 3 , 182

C ru tc h fie ld , Ja m e s, 1 5 9 -1 6 0 , 174 cy b ern etics, 2 3 6 n 2 , 2 3 8 0 2

B u tler, O c t a v i a , 194 B w am i, 52, 123



cyborgs, 2 1 6 , 2 4 2 m

B w iti, 129 D a n , 1 4 1 - 1 4 3 , 1 6 6 . 170, 175 C airo , 3 7 - 3 8 , 2 0 1 -2 0 2

D a n g b e . See D a n

C a m e r o o n , 2 1 —2 5 , 2 9 - 3 1 , 3 4 - 3 6 , 1 1 3 ,

D a u b e n , J. W ., 2 0 8

1 1 9 - 1 2 0 , 1 3 8 - 1 3 9 , 145, 14 9 - 1 5 0 , 182,

D a v i s , A n g e l a , 240112

1 9 0 , 2 1 6 , 2 3 9 0 7 , 240114

d e S o u s a , M a r t i n e , 141

C a n t o r , G e o r g , 8 - 1 0 , 1 9 7 , 2 0 6 —2 0 8

d e S o u z a , F r a n c i s c o , 141

C a n to r, M oritz, 208

d e a th , 3 4 , 164, 170, 2 0 4 ,2 1 4

C a n t o r set, 1 2 - 1 3 , 15, 17, 9 3 , 9 9 , 1 4 7 - 1 4 8 ,

d ecen tralizatio n , 31, 39, 189, 197, 222, 229,

206-208

236111

C a p la n , P at, 195, 2 4 1 0 6

D e la n y , S a m u e l R ., 194

C a rb y , H a z e l, 194

D e m o c r a t ic R e p u b l ic o f C o n g o , 6 1 , 1 2 7 , 166

C a r v e r, G e o r g e W a s h i n g t o n , 194

D e rrid a , Ja cq u es, 1 9 2 -1 9 3

c a r v i n g , 7, 4 3 - 4 4 . 4 5 , 6 2 - 6 3 , 6 8 , 1 0 8 , 1 13,

D escartes, R e n e , 1 9 5 -1 9 6

1 1 7 , 1 2 0 ,1 3 8 , 1 4 3 ,1 6 6 , 187, 189

d e s c e n t , 8 , 1 2 4 - 1 3 1 , 1 4 9 , 2 0 6 , 237118

C a s a m a n c e , 162, 164

d esig n th em e s, 3, 4 , 6, 27, 3 9 - 4 0

c a sc a d e , 1 0 9 - 1 1 0 , 1 n - i 14, 145

D e stn , G e h r e K ristos, 2 1 6

C ay ley tree, 222

d e te r m in is tic c h a o s. Sec c h a o s

Cayuga, 186

dev elo p m en t, 2 2 5 -2 3 0

ce llu la r a u to m a ta , 1 0 2 -1 0 8 , 143, 1 5 4 -1 5 5 ,

diaspo ra, 55, 180, 199

i 58, 162, 164, 168, 170

D in rta , C h r i s t i a n S i n a , 7, 1 6 1 - 1 6 2 , 164

C e l t i c d e s i g n , 7, 4 8

D iaz, R o g c lin , 4 3 - 4 4

C e s a i r e , A i m e , 1 8 8 , 240115

differen tial e q u a tio n s , 2 3 6 0 2

Index

diffusion limited aggregation, 49 digital, 101, 104, 151-152, 156-158, 166, 190, 192-194, 200, 211-213, 229, 23811m, 2, 2411112 dimension, 12, 15, 18-19, 32, 43, 81, 83-84, 93, 104, 113, 115, 154, 170-172, 176, 209, 23808, 239007, 1 ^ disease, 17, 227 disequilibrium, 170 divination, 31, 93-101, 108, 122, 124, 133, 143, 151, 183, 190, 209, 237n4 Dogon, 131-134, 138, 140, 146, 170,175 doubling. See counting: base two Du Bois, W.E.B., 200 dynamical systems theory, 23906 East Africa, 86, 99, 216 economics, 189, 196, 211, 217, 223, 227, 229, 240115 education. See art education: mathematics education Egypt. 37-38, 87-89, 9 9 . ‘ 3 4 - 1 3 5 . ‘ 3 7 . 140-141,188-189,‘91.204-208,23604 Ellison, Ralph, 194 engineering, 5, 73-74, 85, 143, 230 Eno, Brian, 101 environment, 20, 39, 50-51, 133, 219, 227-229,24on6 Epimenides of Crete, 111, 137 epistemology, 180, 189, 193, 225, 230 Eshu,174,175 cssentialism, 180-182 esthetics, 7, 38, 50, 52, 53-57, 62—63, 81, 113, 209 ethics, 192, 194-195, 2 10, 24004 ethnography, 28, 31, 45, 127, 131, 181 —184, 200, 203, 223, 235115. See a lso anthropol­ ogy ethnophilosopliy, 149, 189-190 Ethiopia, 101,1 35-136 Euclidean construction method, 65, 68-69, 113, 118 Eulerian path, 48. 68, 70, 186 evolution, 161, 187, 189-190, 240116 Fagg, Will vam, 7, 84, 139, 190 falsili.ibiiity, 6, 179, 240111 Fang, 127, 129, 149, 210, 23707 fetus. See birth Fibonacci series, 87-89, 11o - 1 11, 156, 205-206 finite state automaton, 156-158, 237m fluid flow, 47-48, 77-78, 97, 104, 209, 213 F o n ,190 Foucault, Michel, 189, 194-195, 209, 24109 Fourier transform, 231, 233-234 fractal dimension. See dimension fractal geometry: definition of, 8-19; European history of, 8-17, 203-215. See also com­ puter: simulation; dimension; infinity; recursion; scaling; self-similarity

fractions, 204, 205, 23905 free will, 97, 199,24109 Fulani, 29, 113, 119 Fuller, Thomas, 122, 23705 functionalism. See anthropology: functionalist funepal rituals, 164 Gabon, 127 Gambia, 121, 182, 23705 game of life. See cellular automata game theory, 101 Garcia, Linda, 93 Garvey, Marcus, 200 Gates, Flenry Louis, 90, 190, 219, 24204 Gauss, Carl Friedrich, 206 Geertz, Clifford, 181-182 gender, 190, 212-213, 227 genetics, 124, 161, 180, 188, 228, 24006 geometry. See affine transformation; computer: simulation; coordinate systems; dimension; Euclidean construction method; Eulerian path; fractal geometry; graphing; helix; hexagon; iterated function systems; nondifferenciable curve; pentagon; Poincan§ slice; quincunx; scaling; self-similarity; Sierpinski gasket; sinusoidal waves; spiral; tiling; trigonometry geomancy, 98-101 Gerdes, Paulus, 68, 122, 186, 222 Getz, Chonut, 222 Ghana, 74, 77-80, 101, 104-108, 113, 115, 124, 182, 226-227, 237n5 Gilmer, Gloria, 224 Gleick, James, 182 Gcidel, Kurt, 199, 214, 238mo graphing, 4, 12, 14, 47, 73-74, 79, 81,83-85 graphics. See computer: simulation Greek culture, 76, 89, 99, 141, 147—148, 203-206,210, 225 Griaule, Marcel, 131, 133 griot, 164 Guinea-Bissau, 44, 121 hairstyles, 7, 63, 81-84, 112-114 Hausdorff, Felix, 12 Hausdorff-Besicovirch measure. See dimension Heaver, Hannan, 38, 200, 202 Heighway, John, 113 helix, 112, 114 Hermes Trismegistus, 99, 134, 141,238ml HerskovitS, Melville, 107 hexagon, 4, 5, 121—122, 214, 222, 235m "■hierarchy, 39, 120, 122, 156-158, 189, 197, 2 1o, 230, 236m Hindu culture, 99, 185, 187, 225 Hofstadter, Douglas, 1io, 213, 2381110 homosexuality, 213-214 homunculus, 127, 242115 Hughes, David, 218-222 humanism, 194-195, 209 Hurst, H. £., 12, 208-209

255

In d e x

256 Hurston, 2 orn Neale, 188 hybrids, 187, 200, 230, 24in 11

Ibo, 197 lfa, 9 3 ~ 9 5 India, 7, 47-48 infinity, 8-9, 12, 13, 18, 34, 4J-42, 70, 76-77, 91,111,135,138-139,146-150, 153, 157—759, j 76, 790, 204-207, 2jo, 222, 239007,1,24inn9,3 information technology. S e e computer initiation, 68, 87, 100, 121—123, 133, 23706 intentionalt'ty, 5-6,19,49-57,81, 113, 123,. 162, 165, 174, 184-187, 219-220, 225 inunlion, 53, 56-57, 68, 71, 113, 154, 24102 iron work, 61, 89-90, 141, 143 irrational numbers, 97, 204, 24innt, 2 lshango bone, 89, 91 Islam, 29, 3j , 38, 93, 162, 202, 205 iteration, 15, 17, 18, 21, 22, 25, 26, 28, 29, 30, 31*3 4 . 37. 38. 4 5 . 48, 61, 67, 68, 69, 76, 79, 8i, 86-88, 91, 95, 103-104, 1jo- 130, 132-137, 146, 155, 170,172, 176, 210, 2J2, 222, 2370;, 238030, 24207 iterated function systems, 76, 222 ivory sculpture, 62, 63, 65-68 japan,47-48 jew e lry, 5 3 - 5 4

Jews, 99, 101, 200, 202, 207-208, 24m!o Jola, 162-165 juma, Calestous, 228-229 Kabbalah, 99 Kamil, abu, 205 Karnak, 88 Kauffman, Stuart, 170 kente cloth, 74-76, 226-227 Kenyecta, Jomo, j 88 Kepler, Johannes, 206 Kikuyu.209,23706 King, Martin Luther jr., 199 kinship, 24, 113, 124, 127, 130-131, 145, 164, 186,209, 23503 Kirdi, 29 knot theory, 48 Koch, Helge von, 9-15, 17-18 Kolmogorov, A. N., 152-1 53. t 55 knra, 2! 7-218 Kotoko, 21, 24, 32 Kronecker, Leopold, 208 Kuba. See Bakuba Knti, Feta, 200 Kwele, 722-123, 127-328 Labbezanga, 3 1-32, 231-232, 234 labor, 24, 39, 113, 187, 189, 196, 227 Leaky, Louis, 23706 Legba, 143-144, '66, 175, 216,23704, 238013 Leibnitz, Gottfried, 100-101

lightning, 9 ’ ~ 9 3 limit cycle, 106, 143, 228 lineage, 24, 124, 127 linearity, 40-42, 71, 74, 76-77, 86, 121, 129-130, 196, 197, 2i i , 222, 237 linguistics, 193 *’• logic, 4, 28, 70, 98, 111-112, 135, 204, 1 31, 213 Logone-Birni, 21-24 lotus, 335, 137 Lourde, Audre, 24003 Lovelace, Ada, 211-232 Luba. See Bnhiba Lucas, Edouard, 206 Lull, Raymond, 99—101 tangs, *5-17, 34 Malagasy, 98 Malawi, 196 Mali, 8. 31-32, 71-72, 131, 182 mancala, 101 Mandelbrot, Benoit, 12, 15, 17, 47, 51, 93, 176, 197,208-209, 2 ,4 Mandiack, 44, 52 Mangbetu, 61-68, 70 marriage, 119, 124 masks, 80-81, 84, 121-123 mathematics education, 222, 223-225, 236002, 3 Mauritania, 113, 115,218-219 May, Robert, 159, 168 Mayer-Kress, Gottfried, 23906 Mbuti, 54, 23909 measurement, 4, 9, 12-18,31, 72—74, 79, 89, 122,151,153-155,159-160, 172, 174-175, 239m medicine, 17, 127, 196, 24205 memory, 34, 97, 156-159, 161, 166, 174, 228, 229, 238113 metalwork, 7, 112, 216. S e e a ls o bronze sculp tore; iron work Mezzrow, Mezz, 2 4 7 0 1 0 migration, 121, 227 mimesis, 50-53. 56 Mitsogbo, 127-1 29, 149, 2 10 mod two, 95, 98-99 Mofon, 29-31 morphogenesis. See biology Morse, Mnrstnn, 97—98, 237114 Mozambique, 222 Mudimbe. V. Y., 149, 180, 189-190, 194, 24005 multiculturalistn, 206, 225 music, 64-65, 143, 149, 154, 174. 193. 194, 200, 204, 209, 23804, 241010, 242012 Mveng, Engelbert, 149-150. 190 Nanknni, 32—34, 148-149. 210 narrative, 93, 95, 96, 133, 137, 146, 148, 149, 179, 186, 202, 206, 23704, 238119 Native American culture, 40-46, 48, 116, 184, 186,229, 23704

In d e x

n a t u r e , 1 7 , 1 8 , 4 7 , 48, 5 0 - 5 3 , 5 6 - 5 7 , 6 2 , 1 4 1 , 149, 180, 1 8 1 , 1 9 0 , 1 93 , 228 , 2 3 6 0 2 , 2.3902 N a z a r e a - S a n d o v a l , V i r g i n i a , 22 9 “ n e g r i t u d e , " 188, 1 9 0 , 1 9 1 , 2 4 o n 5 n e u r a l n e ts , 1 5 2 , 1 5 4 , 1 65 n e u r o b i o lo g y , 1 5 2 , 1 5 6 , 1 8 7 , 1 9 9 , 2 3 8 , 2400 6, N e w A g e m y s ti c is m , 187 N i g e r i a , 24 , 94 , 1 3 7 , 1 7 3 - 1 7 5 , 1 8 7 , 200, 2 2 7 , 230

257

p o w e r law , 7 1 - 7 4 , 8 9 - 9 3 , 1 5 9 - 1 6 1 p r i m i t i v i s m , 53 , 89, 180 , 1 8 8 - 3 8 9 , ! 94> 1 9 6 -19 7 , 224-225 p r o b a b i l i t y , 94. See also c h a o s ; r a n d o m n e s s ; s ta tis ti cs; s t o c h a s t i c v a r i a t i o n p r o g r a m m i n g . See c o m p u t e r : p ro g ra m s pseudorandom n um ber gen eratio n , 9 7 - 9 8 p u s h - d o w n a u t o m a t o n , 1 5 7 —1 5 9 Pythagoras, 203-204

N i l e river, 99 , 2 0 8 - 2 0 9 nomads, 115 n o n d t f f e t e n t i a b l e c u r v e , 239117

Q u e e n L a ti fa , 240115 q u in c u n x ,5 5 ,18 2

n o n l i n e a r i t y , 4 0 - 4 3 , 70, 7 1 , 7 6 - 7 7 , 8 0 - 8 2 , 84, 8 6 - 8 6 , 9 7 , 108, 1 1 3 , 1 1 8 , 1 2 2 , 1 4 3 , 1 6 2 ,

r a ci s m , 180 , 1 8 7 , 188

1 8 2 , 1 9 0 , 200, 2 1 6 , 2 22 , 2 3 6 0 2 , 2 3 7 0 4 ,

ra n do m n e s s, 3 1 , 93—99 , 1 5 2 - 1 5 5 , 1 5 8 - 1 6 : , 1 74 ,

238 08 n u m b er s , 4, 5, 6, 8, 18, 3 1 , 4 1 , 4 2 , 7 6 , 8 6 - 1 0 8 , 1 22 , 1 5 3 , 1 5 7 , 1 5 9 , 1 8 6 , 190, 2 0 3 - 2 0 6 , 2 1 2 , 2 2 9 , 235112 n u m e r o l o g y , 4, 20, 9 5 , 1 2 1 —1 2 2 , 1 3 4 - 1 3 5 , 204,

235n2 N um m o , 131, 133, 175

1 8 6 , 1 96 , 1 9 7 , 1 9 8 , 2 3 7 0 4 , 2 38 11 13 , 2 3 9 0 7 ra tio s, 204 r e bi rt h . See bi r th re c u rs io n , 8 - 1 2 , 1 6 - 1 7 , 34 , 4 3, 4 5 , 4 7 - 4 8 , 5 5 , 7 7 , 8 6 , 8 9 , 9 3 , 9 5 , 9 8 , 9 9 , 108 , 1 0 9 - 1 4 7 , 1 4 9 , 1 5 1 , 1 5 5 - 1 5 9 , 1 6 1 , 1 7 6 , 1 8 7 , 190, 1 92 , 1 9 4 - 1 9 5 , 1 9 9 - 2 0 0 , 2 0 2, 20 5, 2 0 9 - 2 1 4 , 2 1 7 ,

N u p e, 137

2 3 7 0 1 , 238113, 2 3 9 m , 2 4 1 0 7 , 2 4 2 0 0 6 , 7.

N y a n g u l a , A l e x , 2 2 0 - 2 2 2 , 242112

Se e also ca s ca d e ; it e r a t io n ; s e l f - r e f e r e n c e r e f l e x i v e a n t h r o p o l o g y . See a n t h r o p o l o g y :

O du m , H ow ard, 214 O g o n i , 228 O g o t e m m e l i , 131

r e f l e x iv e r e l i g i o n , 7, 20, 28, 3 1 , 4 7 , 48, 5 3 , 7 8 , 9 0 , 92 , 9 3 , 9 9 , 1 24 , 1 2 7 , 1 2 9 , 1 3 1 - 1 3 2 , 1 3 5 ,

i/F n o is e , 1 5 9 , 1 6 1 , 1 66

1 4 1 - 1 4 3 , 1 64 , 1 6 6 , 1 7 0 , 180 , 1 8 9 , 1 94 ,

O n y e j e k w e , E g o n d u , 23 0

20 2, 204, 20 5, 2 0 7 , 20 8, 2 1 1 , 2 4 2 n 3

optim ization, 7 3 -7 4 o r i e n t a l i s m , 188

r e p r o d u c t i o n , 1 0 7 - 1 0 8 , 1 24 , 1 2 5 , 1 3 4 , 1 3 8 , 1 4 0 , 2 0 9 - 2 1 0 , 2 1 2 - 2 1 4 . See also b i r t h

O R S T O M , 25, 29 owari, 1 0 1 - 1 0 8

rite o f p ass age , 34

P a le s t in e , 89

r o m a n t i c o r g a n i c i s m , 1 94

p a r a d o x , 1 2 , 1 1 1 —1 1 2 , 1 64 , 2 0 3 - 2 0 5

R o s i c r u c i a n i s m , 9 5 , 208

p a r t i c i p a n t s i m u l a t i o n , 29, 182 — 1 8 4 , 2 3 5 n s p e n t a g o n , 204, 2 4 1 m

R o u s s e a u , Jea n J a c q u e s , 1 9 2 - 1 9 3

p e r i o d i c i t y , 103 , 106, 1 4 1 - 1 4 3 , 1 5 3 , 1 5 6 ,

Russell, Bertrand, 211

r it ua l, 3 1 , 68, 9 9 , 1 2 1 , 1 2 3 , 1 2 6 , 1 2 7 , 1 6 2 , 1 6 4 , 1 6 5 , 1 8 0 , 186

R u c k e r , R u d y, 104, 162

158-160 , 1 7 2 - 1 7 3 ,2 2 8 Pe ter, Rdz sa , 2 1 2 - 2 1 3

S a h a r a , 38 , 71

p h a s e s p a c e , 239116

Sah el, 7 1 - 7 4

p h i l o s o p h y , 1 49 , 1 7 9 , 1 8 9 - 1 9 0 , 2 0 3, 235112

S a m p s o n , Ja ro n , 224

p h y s ic s , 7 , 1 5, 50 , 1 1 3 , 1 5 1 - 1 5 5 , 1 5 8 - 1 7 6 , 1 9 4

Su r o -W iw a , K e n , 228

pi, 206

s c a l i n g , 1 2 , 1 7 - 1 9 , 2 1 , 26 , 28—29 , 3 1 - 35> 3^.

P l a to , 20 3 —205, 2 1 0 , 2 4 m m , 2, 2 4 2 0 3 p l o t t i n g . See g r a p h i n g

4 1 , 4 3 , 4 3 - 4 8 , 5 2 , 5 4 , 5 6 , 6 1 - 6 3 , 6 5 , 68, 7 0 ,7 1-8 5 ,8 6 , 8 9 , 1 0 4 ,1 i o , 112 -114 ,

P o i n c a r e sl ic e , 238118

1 1 6 - 1 1 8 , 12 0 - 1 2 4 , 1 2 6 - 1 2 8 , 1 3 0 - 1 3 5 ,

p o i n t a t tr a c t o r, 106

13 7 , 1 4 1 , 1 4 8 - 1 4 9 , 156, 166, 174 , 175,

p ol ar c o o r d i n a t e s , 2 3 1 - 2 3 3

1 90 , 1 96 , 200, 2 0 2, 208, 2 1 6 , 2 2 5 , 22 6 ,

p o l it ic s , 3 1 , 3 4 , 1 0 1 - 1 0 2 , 120, 1 2 4 , 1 4 5 , 1 7 4 ,

2 2 7 , 228 , 2 3 5 0 2 , 2 3 9 m

1 79 , 180, 1 8 9 - 1 9 0 , 1 9 2 - 2 0 2 , 2 2 7 - 2 3 0 , 24 0 0 5 , 24111118, 9 Po pp e r, K a r l, 6, 1 7 9 , 2 3 9 m p o p u l a t i o n , 5, 2 5 , 4 9 - 5 0 , 9 7 , 1 5 9 , 1 6 8 , 1 96 , 1 9 7 , 20 5, 22 9 , 236116

S e h i n n a k e r , E. F., 228 S c h y l e r , G e o r g e , 1 94 s c u l p t u r e , 7, 5 2 , 6 3 , 6 6 , 68, 79 , 80, 8 1 , 84, i t 2 , 113 ,12 7 ,13 3 ,1 3 4 ,1 3 8 -1 3 9 ,2 1 6 se cr et s , 9 3 , 9 7 , 1 2 1 - 1 2 2 , 200, 204

P o r tl a n d B a s e li n e Essays, 1 8 8 - 1 8 9

s e lf - g e n e r a t io n , 9 5 , 9 7 , 100, 1 3 5 , 140, 20 6 , 209

p o s i t i v i s m , 1 79

s e lf - o r g a n i z a t io n , 1 0 1 , 104, 1 0 7 - 1 0 8 , 1 6 1 ,

p o s t m o d e r n i s m , 1 9 3 - 1 9 4 , 1 99 , 2 1 6 , 2 3 6 n s , 241 n n y , 1 1 , 242116

1 6 4 - 1 6 6 , 168 , 1 70 , 1 7 6 , 1 9 5 - 1 9 7 , 2 22 o , 22 6 , 2 2 8 - 2 3 0 , 2 4 2 0 6

j 8,

Index

258 self-organized criticality, 1 6 1 , 1 7 0 , 2 2 6

Tnhwa, 127, 130,237118

s e l f - r e f e r e n c e , 1 1 0 - 1 1 2 , 1 3 5 , 1 3 7 - 1 4 0 , 1 46

ta ll ie s , 1 2 1 - 1 2 2

s e lf - s im il a r it y , 4 , 1 8 - 1 9 , 2 1 > 2 4 > 2 9 >3 1 - 34 > 3 ^. 4 2 , 4 3 , 9 3 , 1 0 0 , 1 2 4 , 1 2 5 , 1 40 , 1 7 6 , 1 9 5 ,

T a n g , C h a o , 161

209, 2 1 8 S e n e g a l , 8, 5 5 , 8 1 , 9 3, 1 4 0 , 1 6 1 - 1 6 2 , 1 7 4 , 18 2,

t a r u m h e t a , 8 6 - 8 7 , 106, 108 .,,

1 83 , 1 9 0 , 1 1 7 - 1 1 8 , 2 3 7 0 5

T a n z a n i a , 8 9 , 1 95 ta tto o patterns, 47 t e x t i l e s , 7, 1 7 2 —1 7 3

S e n g h o r , L e o p o l d , 7, 190

T h o m p s o n , D ' A r c y , 1 90

s e x u a l i t y , 2 0 9 - 2 14

T im e , A x e l, 23704

S h a m m a s , A n t o n , 200, 202

t i l i n g , 1 72

S h a n g o , 90 —9 3 , 1 7 5

T o g o , 124

Shaw, C a ro ly n M artin, 2 0 9 -2 10 , 23706

to u r is m , 3 4 , 2 1 7 - 2 1 8

S i e r p i n s k i g a s k e t (o r t r i a n g l e ) , 1 1 3 , 1 1 5 ,

triangular num bers, 8 6 - 8 7 , t r ib e , 4 0, 1 8 9 , 203

218- 219

tr ic k st er , 9 9 . i t 6, 1 3 7 , 1 7 4 , 1 7 5 , 182 , 2 1 6

S i m s , j o h n , 2 22 s in u s o i d a l w a v e s , 1 4 1 - 3 4 2

t r i g o n o m e t r y , 68

s la v e s , 108 , 1 2 2 , 200, 235 114 , 2 3 7 0 5 S o l o m o n o f f , R a y , 15 3

T r i n h , M i n - h a , 3 2~3 3 T s w a n a , 200

S o n g l i a i , 3 1 - 3 2 , 1 95

T u r i n g , A l a n , 2 1 3 - 2 14

S o t h o , 200

Turing m achine,

s o ul , 3 3 - 3 4 , 1 2 4 , 1 26

tw ins, 8 9 -9 0 , 1 8 1 - 1 8 2

S ou th A frica,

t 5,

, 0 '^

5 7 — 1 5 9 , 238112

t

184 , 200

S o u t h P a c i f i c , 3 9 , 4 7 - 4 8 , 186 S o w , F a t o u , 18 3 spectru m , 5 - 6 , 49, 5 1 - 5 2 . 56, 1 7 2 - 1 7 3 , 176, 231-234 S p i l l e r s , H o r c e n s e , 194 spiral, 2 3 - 2 4 , 29 , 3 1 , 4 5 , 4 7 - 4 8 , 7 6 - 7 9 , 8 1 , 8 6, 1 0 4 - 1 0 5 , 1 0 7 - 1 0 8 , i i 2 , 1 2 9 - 1 3 0 , 148, 1 62 , 364, 2 j o , 2 1 6 , 22 4 , 226, 23808, 242113 sp i ri t, 4, 28, 3 1 , 8 9 - 9 0 , 1 1 3 , 1 1 9 , 1 2 1 , 1 2 4 , 1 2 6 , 1 2 7 , 1 2 9 , 1 3 1 , 1 4 1 , 148 , 1 74 , 1 7 5 , 1 8 6 , 18 8 , 1 9 3 , 194, 200, 2 0 4, 2 3 7 0 7

U l a m , S t a n i s l a w , 102 V a n W y k , G a r y , 200 v i d e o , 99 , 2 2 6 - 2 2 7 , 2 2 9 , 2 4 2 0 3 v i r t u a l c o n s t 1 net i o n , 2 1 , 29 , 1 83— 1 8 4 , 2 1 3 , 230 , 235115 v o d u n , 9 0 - 9 3 , 9 4 - 9 5 , 1 4 1 - 1 4 3 , 1 44 , 1 6 6 , 170, ■74. ' 7 5 1

t 83,

190, 1 94 , 2 1 6 , 2 3 8 0 1 3 ,

24004 v o n N e u m a n n , J o h n , 1 0 1 - 1 0 2 , 108 v o o c l o o . See v o d u n voting, 1 6 4 - 1 6 5 , 229 -230

S p i v a k , G a y a t r i , 184

W a sh b u r n , D orothy, 48, 187

s q u a r e ro o t , 205

W e s t , C o r n e l , 194

s t a t e , 3 9 - 4 0 , 5 1 , 189 , 2 3 6 m

w h i t e n o i s e , 1 5 4 — 1 5 5 , 1 5 8 - 1 6 1 , 1 7 3 - 1 7 4 , 228,

s ta ti s t ic s , 18, 2 4 1 0 9 sta tus , 2 6 - 2 9 , 5 5 , 68, 2 3 5 6 5

2 39n 7 W i e n e r , N o r h p t t , 21 4

s t o c h a s t i c v a r i a t i o n , 9 3 , 24 111 9

W o l f r a m , S t e p h e n , 1 0 6 , 1 5 s . 1 58

S t o l l e r , Pa u l, 3 1 , 1 95 S t o n e w o r k , 29 , 1 0 3 , 1 1 3 , 1 3 5 - 1 3 7 . 1 8 5 , 1 96 ,

2 10 s t o o ls , 5 5 - 5 6 s tr u c t u r a l i s m , i 8 t , 188 S u d a n ,8 1,1 3 5 s y m b o l s , 6, 7, 8, 20, 24, 3 4 , 4 2, 4 3, 5 5 , 7 1 , 7 7 —7 8 , 9 3 - i o t , 1 0 8 - 1 0 9 , 120, 1 2 6 —1 2 8 ,

W o l o f , 162 w om b, 34, 133, 212 w o m e n , 24 , 3 2 - 3 4 . 9 0 , 1 2 4 , 1 9 5 , 2 0 0 , 204, 2 1 2 - 2 1 3 , 2 2 2 - 2 2 7> 24 ° n 5 , 2 4 2 0 4 Y o r u h a . 8 1 . 8 2 , 1 1 2 , 1 1 3 , 1 1 8 , 1 7 4 . 1 8 3 , 190.

1 96 , 240114, 241117

1 3 1 , 139, 1 4 5 , 1 4 7 , 1 5 1 - 1 5 2 , 1 5 6 - 1 5 8 ,

Z a i r e . See D e m o c r a t i c R e p u b l i c o f C o n g o

1 6 4 ,17 9 ,18 1-18 2 ,18 6 ,18 8 ,19 2 -19 4 ,

Z a m b i a , 8, 26 , 2 2 0 - 2 2 2

1 96 , 2 0 8 , 2 1 1 , 2 4 0 0 1 , 2 4 2 n3

Z e n o o f E l ea , 2 0 3 - 2 0 5

sym m etry, 7 , 3 1 , 4 2 - 4 3 , 4 5 - 4 7 , 79, ' ' 3 , ' '8 , 1 8 6 - 1 8 7 , ' 9 0 , 1 9 7 , 2 2 2 , 236113 S y r i a , 89

Z h a h o r i n s k y r e a c t i o n , 1 0 4 , 162 Zim babw e, Z u l u , 222

io o ,

196,200