Table of contents : Front Matter....Pages N2-V Front Matter....Pages 1-1 Some algebra....Pages 2-7 Irreducible algebraic sets....Pages 7-15 Definition of a morphism: I....Pages 15-24 Sheaves and affine varieties....Pages 24-35 Definition of prevarieties and morphism....Pages 35-45 Products and the Hausdorff Axiom....Pages 46-55 Dimension....Pages 56-67 The fibres of a morphism....Pages 67-75 Complete varieties....Pages 75-80 Complex varieties....Pages 80-89 Front Matter....Pages 91-92 Spec (R)....Pages 93-108 The category of preschemes....Pages 108-121 Varieties are preschemes....Pages 121-131 Fields of definition....Pages 131-142 Closed subpreschemes....Pages 143-155 The functor of points of a prescheme....Pages 155-167 Proper morphisms and finite morphisms....Pages 168-176 Specialization....Pages 177-189 Front Matter....Pages 191-191 Quasi-coherent modules....Pages 193-205 Coherent modules....Pages 205-215 Front Matter....Pages 191-191 Tangent cones....Pages 215-228 Non-singularity and differentials....Pages 228-242 Étale morphisms....Pages 242-254 Uniformizing parameters....Pages 254-259 Non-singularity and the UFD property....Pages 259-271 Normal varieties and normalization....Pages 272-286 Zariski’s Main Theorem....Pages 286-295 Flat and smooth morphisms....Pages 295-308 Back Matter....Pages 309-315