The Convolution Transform [1 ed.] 0691653089, 9780691653082

From the Preface: The operation of convolution applied to sequences or functions is basic in analysis. It arises when tw

171 93 14MB

English Pages X; 268 [279] Year 1955

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Title Page
Preface
Table of Contents
CHAPTER I - INTRODUCTION
CHAPTER II - THE FINITE KERNELS
CHAPTER III - THE NON-FINITE KERNELS
CHAPTER IV - VARIATION DIMINISHING TRANSFORMS
CHAPTER V - ASYMPTOTIC BEHAVIOUR OF KERNELS
CHAPTER VI - REAL INVERSION THEORY
CHAPTER VII - REPRESENTATION THEORY
CHAPTER VIII - THE WEIERSTRASS TRANSFORM
CHAPTER IX - COMPLEX INVERSION THEORY
CHAPTER X - MISCELLANEOUS TOPICS
BIBLIOGRAPHY
SYMBOLS AND NOTATIONS
INDEX
Recommend Papers

The Convolution Transform [1 ed.]
 0691653089, 9780691653082

  • Commentary
  • indexed, pagination corrected
  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Contents CHAPTER

I

INTRODUCTION PAGE

SEOTION

1. 2. 3. 4. 5. 6. 7. 8. 9.

Introduotion • Convolutions Operational calculus . Green's functions . Operational oalculus continued . The generation of kernels Variation diminishing oonvolutions Outline of program Summary . CHAPTER

· · ·

3 3 5 7 8 11 12 14 16

II

THE FINITE KERNELS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

17

Introduction Distribution funotions Frequency functions . Characteristic functions . Convolutions The finite kernels . Inversion Exponential polynomials . Green's functions . Examples . Summary . CHAPTER

17 19

· ·

20 22

· ·

24 28

·

30

· 32 · ·

35 36



37

·

38



42

III

THE NON· FINITE KERNELS 1. 2. 3. 4. 5.

Introduction Limits of distribution functions P61ya's olass of entire functions The closure of a class of distribution functions The non-finite kernels

· 48 · 49

OON TEN TS PAGE

emOTION'

6. 7. 8. 9. 10. 11.

Properties of the non-finite kernels . Inversion . Green's functions . Examples . Associated kernels Summary .

·

55

· 56 · 59



• · •

65 79 82

CHAPTER IV VARIATION DIMINISHING TRANSFORMS Introduction Generation of variation diminishing frequency functions Logarithmic convexity Characterization of variation diminishing functions . The changes of sign of G(ft)(t) Intersection properties Generation of totally positive functions. Matrix transformations . Totally positive frequency functions

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Summary

.

. 83 . 84 . 85 . 88 . 91 . 93 . 95 . 97 . 103 • 107

CHAPTER V ASYMPTOTIC BEHAVIOUR OF KERNELS 1. Introduction 2. Asymptotic estimates. 3. Asymptotic estimates continued 4. Summary • CluPTEB

· · · ·

108 108 III 119

· · · · · · · · ·

120 120 123 125 127 132 138 142 145

VI

REAL INVERSION THEORY 1. 2. 3. 4. 5. 6. 7. 8. 9.

Introduction Some preliminary results . Convergence The sequence of kernels . The inversion theorem Stieltjes integrals . Relaxation of continuity conditions Factorization . Summary .

OONTENTS ClIAPTER

VII

REPRESENTATION THEORY PAGE

SEO~ION

1. 2. 3. 4. 5. 6. 7. 8.

Introduction Behaviour at infinity . An elementary representation theorem. Determining funotion in L'P Determining funotions of bounded total variation Determining function non-decreasing Representation of products . Summary CHAPTER

1. 2. 3.

4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

• •

· · · · · · · ·

146 147 150 152 156 158 163 169

VIII

THE WEIERSTRASS TRANSFORM: Introduction . 170 The Weierstrass transform . 173 The inversion operator . 179 Inversion . 182 Tychonoff's uniqueness theorem . 183 The Weierstrass theorem of bounded functions . 185 Inversion, general case . 188 Functions of L'P • 193 Weierstrass transforms of funotions in Lf) . • . 195 Weierstrass-Stieltjes transforms • . 197 Positive temperature functions • . 199 Weierstrass-Stieltjes transforms of increasing funotions . 202 Transforms of functions vlith presoribed order conditions . 206 Summary • . 209 CHAPTER

IX

COMPLEX INVERSION THEORY

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Introduotion • Transforms in the complex domain Behaviour at infinity . Auxiliary kernels The inversion funotion Application of the inversion operator The inversion theorems . A general representation theorem Determining function non-decreasing Determining function in L'IJ

· 210 •









· 212

· · · · · · · ·

217 218 223 226 230 235 236 238

OON TEN TS

CHAPTER

X

:MISCELLANEOUS TOPICS PA.GE

SEOTION

1. 2. 3. 4. 5.

Introduction . • . . • • • . • Bernstein polynomia.ls. . . • . Behaviour at infinity. . . . . . . The analytic character of kernels of olasses I Quasi-analyticity . •.

BIBLIOGRAPHY.

.

.

.

SYMBOLS AND NOTATIONS . INDEX

. . . . . .

• • . .• . . . and II.. ..

• . •

. . . . . . . . . . . .. . . . . . . . .

. . .. • . . . ..

240

240 246 256 259



. 261



• 265



. 266