172 93 14MB
English Pages X; 268 [279] Year 1955
Contents CHAPTER
I
INTRODUCTION PAGE
SEOTION
1. 2. 3. 4. 5. 6. 7. 8. 9.
Introduotion • Convolutions Operational calculus . Green's functions . Operational oalculus continued . The generation of kernels Variation diminishing oonvolutions Outline of program Summary . CHAPTER
· · ·
3 3 5 7 8 11 12 14 16
II
THE FINITE KERNELS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
17
Introduction Distribution funotions Frequency functions . Characteristic functions . Convolutions The finite kernels . Inversion Exponential polynomials . Green's functions . Examples . Summary . CHAPTER
17 19
· ·
20 22
· ·
24 28
·
30
· 32 · ·
35 36
•
37
·
38
•
42
III
THE NON· FINITE KERNELS 1. 2. 3. 4. 5.
Introduction Limits of distribution functions P61ya's olass of entire functions The closure of a class of distribution functions The non-finite kernels
· 48 · 49
OON TEN TS PAGE
emOTION'
6. 7. 8. 9. 10. 11.
Properties of the non-finite kernels . Inversion . Green's functions . Examples . Associated kernels Summary .
·
55
· 56 · 59
•
• · •
65 79 82
CHAPTER IV VARIATION DIMINISHING TRANSFORMS Introduction Generation of variation diminishing frequency functions Logarithmic convexity Characterization of variation diminishing functions . The changes of sign of G(ft)(t) Intersection properties Generation of totally positive functions. Matrix transformations . Totally positive frequency functions
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Summary
.
. 83 . 84 . 85 . 88 . 91 . 93 . 95 . 97 . 103 • 107
CHAPTER V ASYMPTOTIC BEHAVIOUR OF KERNELS 1. Introduction 2. Asymptotic estimates. 3. Asymptotic estimates continued 4. Summary • CluPTEB
· · · ·
108 108 III 119
· · · · · · · · ·
120 120 123 125 127 132 138 142 145
VI
REAL INVERSION THEORY 1. 2. 3. 4. 5. 6. 7. 8. 9.
Introduction Some preliminary results . Convergence The sequence of kernels . The inversion theorem Stieltjes integrals . Relaxation of continuity conditions Factorization . Summary .
OONTENTS ClIAPTER
VII
REPRESENTATION THEORY PAGE
SEO~ION
1. 2. 3. 4. 5. 6. 7. 8.
Introduction Behaviour at infinity . An elementary representation theorem. Determining funotion in L'P Determining funotions of bounded total variation Determining function non-decreasing Representation of products . Summary CHAPTER
1. 2. 3.
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
• •
· · · · · · · ·
146 147 150 152 156 158 163 169
VIII
THE WEIERSTRASS TRANSFORM: Introduction . 170 The Weierstrass transform . 173 The inversion operator . 179 Inversion . 182 Tychonoff's uniqueness theorem . 183 The Weierstrass theorem of bounded functions . 185 Inversion, general case . 188 Functions of L'P • 193 Weierstrass transforms of funotions in Lf) . • . 195 Weierstrass-Stieltjes transforms • . 197 Positive temperature functions • . 199 Weierstrass-Stieltjes transforms of increasing funotions . 202 Transforms of functions vlith presoribed order conditions . 206 Summary • . 209 CHAPTER
IX
COMPLEX INVERSION THEORY
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Introduotion • Transforms in the complex domain Behaviour at infinity . Auxiliary kernels The inversion funotion Application of the inversion operator The inversion theorems . A general representation theorem Determining function non-decreasing Determining function in L'IJ
· 210 •
•
•
•
•
· 212
· · · · · · · ·
217 218 223 226 230 235 236 238
OON TEN TS
CHAPTER
X
:MISCELLANEOUS TOPICS PA.GE
SEOTION
1. 2. 3. 4. 5.
Introduction . • . . • • • . • Bernstein polynomia.ls. . . • . Behaviour at infinity. . . . . . . The analytic character of kernels of olasses I Quasi-analyticity . •.
BIBLIOGRAPHY.
.
.
.
SYMBOLS AND NOTATIONS . INDEX
. . . . . .
• • . .• . . . and II.. ..
• . •
. . . . . . . . . . . .. . . . . . . . .
. . .. • . . . ..
240
240 246 256 259
•
. 261
•
• 265
•
. 266