178 89 10MB
English Pages 650 Year 2013
Tobias Neckel Florian Rupp
5DQGRP'LƨHUHQWLDO(TXDWLRQV HM2BHDMSHƥB"NLOTSHMF
1
9HUVLWD'LVFLSOLQH 0DWKHPDWLFV Managing Editor: KDJR@MCQ@-NV@BJ@ +DUDQSNM
Language Editor: -HBJ1NFDQR
/TAKHRGDCAX5DQRHS@5DQRHS@+SC8NQJ2SQDDS+NMCNM6'#/&QD@S!QHS@HM 3GHRVNQJHRKHBDMRDCTMCDQSGD"QD@SHUD"NLLNMR SSQHATSHNM -NM"NLLDQBH@K -N#DQHUR KHBDMRDVGHBGLD@MRSG@SSGDSDWSL@XADTRDCENQMNM BNLLDQBH@K OTQONRDROQNUHCDCBQDCHSHRFHUDMSNSGD@TSGNQ "NOXQHFGSg%KNQH@M1TOO@MC3NAH@R-DBJDK (2!-O@ODQA@BJ (2!-G@QCBNUDQ (2!-ENQDKDBSQNMHBBNOX ,@M@FHMF$CHSNQ KDJR@MCQ@-NV@BJ@ +DUDQSNM +@MFT@FD$CHSNQ-HBJ1NFDQR "NUDQHKKTRSQ@SHNMg%KNQH@M1TOO@MC3NAH@R-DBJDK
ZZZYHUVLWDFRP
3
7R RXU EHORYHG SDUHQWV 5RVHPDULH DQG +DQV*HRUJ (ULND DQG +HLQULFK
3NAH@R 1HFNHO %KNQH@M 5XSS
/QDE@BD ,W LV LQWHUHVWLQJ WKXV WR IROORZ WKH LQWHOOHFWXDO WUXWKV RI DQDO\VLV LQ WKH SKHQRPHQD RI QDWXUH 7KLV FRUUHVSRQGHQFH RI ZKLFK WKH V\VWHP RI WKH ZRUOG ZLOO RƱHU XV QXPHURXV H[DPSOHV PDNHV RQH RI WKH JUHDWHVW FKDUPV DWWDFKHG WR PDWKH PDWLFDO VSHFXODWLRQV /Ǡǜǩǩǜ 2ǠǤǦǥ +ǘǧǣǘǚǜ 0DWKHPDWLFDO GLVFRYHULHV VPDOO RU JUHDW DUH QHYHU ERUQ RI VSRQWDQHRXV JHQHUDWLRQ 7KH\ DO ZD\V SUHVXSSRVH D VRLO VHHGHG ZLWK SUHOLPLQDU\ NQRZOHGJH DQG ZHOO SUHSDUHG E\ ODERXU ERWK FRQVFLRXV DQG VXEFRQVFLRXV 'ǜǥǩǠ /ǦǠǥǚǘǩǜ
3GHR ANNJ NM SGD SGDNQX @MC RHLTK@SHNM NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR B@LD HMSN ADHMF @R SGD QDRTKS NE NTQ KDBSTQD ř#XM@LHB@K 2XRSDLR 2BHDMSHƥB "NLOTSHMF Ŕ (MSQNCTBSHNM SN SGD 3GDNQX 2HLTK@SHNM NE 1@MCNL #HƤDQDMSH@K $PT@SHNMRŚ CTQHMF SGD RTLLDQ SDQL 3GHR MNUDK HMSDQCHRBHOKHM@QX V@X SN BNUDQ CXM@LHB@K RXRSDLR @MC RBHDMSHƥB BNLOTSHMF AQNTFGS ,@RSDQ RSTCDMSR HMSN BNMS@BS VHSG BTSSHMF DCFD QDRD@QBG @MC V@R @V@QCDC SGD $QMRS .SSN %HR BGDQ OQHYD ENQ HMMNU@SHUD @MC SQDMC RDSSHMF SD@BGHMF O@Q@CHFLR AX SGD CDO@QS LDMS NE "NLOTSDQ 2BHDMBD NE SGD 3DBGMHRBGD 4MHUDQRHSS ,·MBGDM %HFTQD OQNUHCDR @ RGNQS NUDQUHDV NE SGD OHDBDR NE SGHR KDBSTQD @MC SGDHQ ƥS 6D VHKK CHRBTRR SGHR BNTQRD @MC HM O@QSHBTK@Q SGD VNQJRGNO NM Q@MCNL CHƤDQDMSH@K DPT@SHNMR @MC SGDHQ @OOKHB@SHNM SN FQNTMC LNSHNM DWBHSDC LTKSH RSNQDX ATHKCHMFR HM BG@OSDQR @MC 3GDRD G@MCR NM KDBSTQD MNSDR RDQUD @R SGD SGDNQDSHB@K ENTMC@SHNM ENQ NTQ KDBSTQD @MC SGD VNQJRGNO , 3+ ! BNL
LL
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF L@MCR AKDMC SGDNQX VHSG @OOKHB@SHNM @MC OQNUHCD @ RNKHC ENTMC@SHNM NE SGD OQHMBHOKDR NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @MC SGDHQ MTLDQHBR
mathematics seminary-part i t
lecture
exercises
informatics seminary-part
workshop
teamworkk of mathe ematics & in nformatics
all stu udents have e to deal wiith all topicss (and d not just the eir own sem minary talk)
dynamical systems for deterministic & randomly perturbed (ordinary) differential equations
algorithms of scientific computing
%HFTQD #DRHFM NE SGD KDBSTQD ř#XM@LHB@K 2XRSDLR 2BHDMSHƥB "NLOTSHMF Ŕ (MSQN CTBSHNM SN SGD 3GDNQX 2HLTK@SHNM NE 1@MCNL #HƤDQDMSH@K $PT@SHNMRŚ BNLAHMHMF SGD VNQJRGNO VHSG RDLHM@Q BNMSQHATSHNMR DWDQBHRDR @MC EDV KDBSTQDR SN HMBQD@RD RSTCDMS BDMSQDC KD@QMHMF DƤDBSR
"NMBDQMHMF Q@MCNL CHƤDQDMSH@K DPT@SHNMR SGDQD HR ITRS @ KHLHSDC @LNTMS NE KHSDQ@STQD CHRBTRRHMF SGDL NM @ FQ@CT@SD KDUDK @MC CDROHSD SGDHQ RHFMHƥB@MBD HM RBHDMSHƥB @MC DMFHMDDQHMF @OOKHB@SHNMR SGDQD HR NMKX NMD ANNJ HM &DQL@M AX 'DKF@ !TMJD :< EQNL @MC @MNSGDQ NMD HM /NKHRG AX #NAHDRK@V !N AQNVRJH :< EQNL SNS@KKX CDCHB@SDC SN SGD SGDNQX NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR 3 3 2NNMFŗR LNMNFQ@OG :< EQNL CDCHB@SDR @ANTS G@KE NE GHR VNQJ SN SGDRD DPT@SHNMR QMNKC *HRSMDQŗR /G# SGDRHR :< EQNL HM &DQL@M SNN BNUDQR DRRDMSH@K @RODBSR NE KHMD@Q Q@MCNL NQCHM@QX CHƤDQ DMSH@K DPT@SHNMR 3GDQD @QD @ BNTOKD NE QDBDMS O@ODQR @MC SGD NMD NQ NSGDQ ANNJ BG@OSDQ NM SGD MTLDQHBR NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR 'NVDUDQ @ GNKHRSHB @OOQN@BG HR LHRRHMF HM O@QSHBTK@Q S@JHMF HMSN @BBNTMS QDBDMS QDRTKSR NE +TCVHF QMNKC NM Q@MCNL CXM@LHB@K RXRSDLR BE :< 3GHR ANNJ HR @ GNKHRSHB @MC RDKE BNMS@HMDC SQD@SLDMS NE SGD @M@KXRHR @MC MTLDQHBR NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR EQNL @ OQNAKDL BDMSQDC ONHMS NE
-NSD SG@S SGD , 3+ ! DW@LOKDR OQDRDMSDC SGQNTFGNTS SGHR ANNJ @QD L@HMKX LD@MS SN HKKTRSQ@SD BDQS@HM HMCHUHCT@K @RODBSR HM @ BNLO@BS L@MMDQ GDMBD SGDRD DW@LOKDR CN MNS QDOQDRDMS @ řMHBDŚ HLOKDLDMS@SHNM EQNL @ RNESV@QD DMFHMDDQHMF ONHMS NE UHDV LNRSKX VD RJHOODC CNBTLDMSHMF BNLLDMSR ENQ SGD R@JD NE @ BNLO@BS QDOQDRDMS@SHNM D F
3UHIDFH
LLL
3NAH@R 1HFNHO %KNQH@M 5XSS UHDV 6D S@JD @M HMSDQCHRBHOKHM@QX @OOQN@BG AX BNMRHCDQHMF RS@SD NE SGD @QS BNMBDOSR NE ANSG CXM@LHB@K RXRSDLR @MC RBHDMSHƥB BNLOTSHMF .TQ HMSDMCDC @TCHDMBDR @QD SGNRD NE ADFHMMHMF FQ@CT@SD L@RSDQ KDUDK BNTQRDR NM SGDNQX @MC MTLDQHBR NE RSNBG@RSHB@KKX ODQSTQADC CHƤDQDMSH@K DPT@SHNMR 3GD @QD@R BNUDQDC GDQD @QD NE HLONQS@MBD ENQ HMSDQCHRBHOKHM@QX BNTQRDR HM HMENQL@SHBR DMFHMDDQHMF @MC L@SGDL@SHBR (MBQD@RHMF HMSDQDRS HM ř4MBDQS@HMSX 0T@MSHƥ B@SHNMŚ CTQHMF QDBDMS XD@QR V@QQ@MSR @ SDWSANNJ SG@S HR @HLDC @S @ MDV FDM DQ@SHNM NE QDRD@QBGDQR HM SGHR ƥDKC @MC VGHBG HR QNNSDC HM SGD OQHMBHOKDR NE CXM@LHB@K RXRSDLR @MC RBHDMSHƥB BNLOTSHMF 3GHR VHKK ENRSDQ @ RNKHC TMCDQ RS@MCHMF NE ANSG SGDNQX @MC RHLTK@SHNM %QNL @ LDSGNCNKNFHB@K ONHMS NE UHDV SGD QDC KHMD ODQU@CHMF SGHR ANNJ HR SGD SVN ENKC QDCTBSHNM NE @ Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM CHRSTQADC AX RNLD DWSDQM@K ENQBD @R OQDRDMS HM L@MX HLONQS@MS @OOKHB@SHNMR HM RBHDMBD @MC DMFHMDDQHMF %HQRS SGD Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM HR QDCTBDC SN @ RDS NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HM SGD ROHQHS NE SGD LDSGNC NE KHMDR 3GDRD @QD SGDM ETQSGDQ QDCTBDC SN @ E@LHKX NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR RDD %HF (M O@QSHBTK@Q SGHR K@SSDQ QDCTBSHNM RSDO @MC SGD ƥDKCR NE L@SGDL@SHBR @MC BNLOTSDQ RBHDMBD VGHBG RTOONQS HS ENQL SGD A@RHR NE SGHR DWONRHSHNM Ω
Ω
Ω
t
t t x
x
x
Space-Time-Realization-Cube
Space-Discretization (Finite Differences)
Path-Wise Solution Concept for R(O)DEs
Partial Differential Equation with Stochastic Effects (RPDE or SPDE)
Finite-Dimensional System of R(O)DE
Finite-Dimensional System of an Infinite Family of ODEs
Decrease Mesh-Size
Compatibility Conditions 1) all solutions of the ODE family are defined on a common time interval 2) all solutions are stochastic processes
%HFTQD 1DCTBSHNM EQNL @ FHUDM BNMSHMTTL LDBG@MHB@K Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM SN @ E@LHKX NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR
'DQDAX NTQ L@HM DW@LOKD HR SGD LNSHNM NE LTKSH RSNQDX ATHKCHMFR RTAIDBS SN RSNBG@RSHB FQNTMC LNSHNM DWBHS@SHNMR 3GD RHLOKHƥDC ATHKCHMFR @QD DHSGDQ LNCDKDC @R RNKHCR AX RS@MC@QC @RRTLOSHNMR NE BNMSHMTTL LDBG@MHBR @MC SGDHQ BNQQDRONMCHMF O@QSH@K CHƤDQDMSH@K DPT@SHNM CDRBQHOSHNM NQ VHQDEQ@LD RSQTBSTQDR A@RDC NM CDSDQLHMHRSHB NRBHKK@SNQR 3GD DWSDQM@K ENQBHMF HR CTD SN @ KHMD@Q ƥKSDQDC VGHSD MNHRD SG@S CDRBQHADR SGD D@QSGŗR RTQE@BD @R @ K@XDQ AD SVDDM SGD FQNTMC RTQE@BD @MC SGD MD@QDRS ADCQNBJ VGDQD SGD RNTQBD NE @M D@QSGPT@JD HR KNB@SDC @MC SQD@SR SGD V@UD OQNO@F@SHNM HM SGHR K@XDQ @R AD HMF NMD CHLDMRHNM@K @MC UDQSHB@K 3GD BNQQDRONMCHMF RSNBG@RSHB LNCDKR @QD JMNVM @R SGD *@M@H 3@IHLH ƥKSDQ NQ SGD "KNTFG /DMYHDM ƥKSDQ
LY
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF %QNL @ CHC@BSHB@K ONHMS NE UHDV VD OTS LTBG DƤNQS HMSN OQNUHCHMF SGD CD SDQLHMHRSHB ENTMC@SHNM NE SGD SGDNQX @MC RHLTK@SHNM NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @R VDKK @R SG@S NE Q@MCNL U@QH@AKDR @MC RSNBG@RSHB OQNBDRRDR HM NQ CDQ SN FHUD @ RDKE BNMS@HMDC OQDRDMS@SHNM $UDQX BG@OSDQ ADFHMR VHSG @ KHRS NE JDX BNMBDOSR @MC JDX PTDRSHNMR SGD QD@CDQ RGNTKC JDDO HM LHMC VGHKD RSTCX HMF SGD BNMSDMSR NE SGD QDRODBSHUD BG@OSDQ ,NQDNUDQ PTHSD TMHPTDKX ENQ @ L@SGDL@SHBR SDWS ANNJ DUDQX RTA BG@OSDQ DMCR VHSG @ RDS NE PTHYYDR HM SGD SXOD NE NQ@K DW@L PTDRSHNMR @KKNVHMF SGD JMNVKDCFD NAS@HMDC SN AD BNMRNKH C@SDC PTHBJKX @MC SN DM@AKD @ RTBBDRRETK RDKE RSTCX NE SGD L@SDQH@KR BNUDQDC
.TSKHMD NE SGD "G@OSDQR %HFTQD RJDSBGDR SGD QNTFG NTSKHMD NE SGHR ANNJ @MC ENBTRDR NM Q@MCNLKX ODQSTQADC OGDMNLDM@ HM RBHDMBD @MC DMFHMDDQHMF SGDHQ L@SGDL@SHB@K @M@K XRHR @MC DƤDBSHUD @R VDKK @R DƧBHDMS MTLDQHB@K RHLTK@SHNM (M BNMSQ@RS SN SGD řBK@RRHB@KŚ ANSSNL TO SDWSANNJ @OOQN@BG VD ENKKNV @M @OOKHB@SHNM NQHDMSDC SNO CNVM OQNBDCTQD @MC OQNBDDC EQNL CHRBTRRHNMR NE BNLOKDW @OOKHB@SHNMR SN RHLOKDQ JMNVM BNMBDOSR ENQ SGD ENKKNVHMF QD@RNM 3GHR @KKNVR TR SN RS@QS VHSG SGD BNLOKDSD OHBSTQD @MC HMSQNCTBD SGD QD@CDQ SN @OOKHB@SHNMR MTLDQHBR @MC FDMDQ@K SGDNQX PTHBJKX 3GTR HM O@QS ( VD OQNBDDC EQNL Q@MCNL O@Q SH@K CHƤDQDMSH@K DPT@SHNMR 1/#$R SN Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 1.#$R @MC SGDM ƥM@KKX SN NQCHM@QX CHƤDQDMSH@K DPT@SHNMR .#$R #TQHMF SGD KDBSTQD NM VGHBG SGD ANNJ HR A@RDC VD R@V SG@S SGD RSTCDMSR RSQTFFKDC VHSG SGD MDV BNMBDOS NE Q@MCNLHYDC .#$R @S ƥQRS @MC @BST@KKX QDPTHQDC JMNVKDCFD NM RSNBG@RSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 2.#$R @MC NSGDQ RNKTSHNM BNM BDOSR SN ETKKX OK@BD 1.#$R HMSN SGDHQ ANCX NE JMNVKDCFD @MC SN ETKKX @OOQD BH@SD SGD RSNBG@RSHB BNMBDOSR ESDQ SGD CHRBTRRHNM NE SGD řBNLOKDSD OHBSTQDŚ VD BNMSHMTD HM O@QSR (( @MC ((( VHSG @ QDB@O HM SGD BK@RRHB@K V@X ADB@TRD NE SGD HMSDQCHRBHOKHM@QX A@BJFQNTMC NE SGD HMSDMCDC QD@CDQRGHO VD ADKHDUD SG@S SGHR HR MDBDRR@QX HM NQCDQ SN FHUD @ RDKE BNMS@HMDC QDOQDRDMS@SHNM (M O@QSHBT K@Q SGD BG@OSDQR @QD RTBG SG@S SGDX L@X AD RJHOODC AX SGNRD QD@CDQR E@LHKH@Q VHSG SGD BNQQDRONMCHMF BNMBDOSR 3GD L@HM O@QS NE SGD DWONRHSHNM OQNBDDCR HM O@QS (5 VHSG @ CHRBTRRHNM NE SGNRD 1.#$R SG@S B@M AD SQD@SDC LNQD NQ KDRR D@RHKX SGD KHMD@Q NMDR 'DQD SGD DWHRSDMBD @MC TMHPTDMDRR QDRTKSR @QD A@RDC NM SGD FDMDQ@K SGDNQDLR OQNUHCDC HM O@QS ( %HM@KKX 1.#$R @MC RHLTK@SHNMR SNFDSGDQ VHSG SGDHQ DU@KT@SHNM @QD INHMDC HM SGD VNQJRGNO O@QS 5 (M O@QSHBTK@Q SGD RHMFKD BG@OSDQR NE SGHR ANNJ BNMS@HM SGD ENKKNVHMF RODBHƥB HMENQL@SHNM /@QS ( RDQUDR @R @M HMSQNCTBSHNM SN SGD LNCDKKHMF NE Q@MCNLKX ODQSTQADC OGDMNLDM@ HM RBHDMBD @MC DMFHMDDQHMF AX Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@ SHNMR @MC SGDHQ QDCTBSHNM SN Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 'DQD VD CHRBTRR SGD ENKKNVHMF @RODBSR
3UHIDFH
Y
3NAH@R 1HFNHO %KNQH@M 5XSS Problem Formulation/ Reduction & Motivation
§ 3 & § 4 RODEs
§ 5 Additional Examples
§ 2 RPDEs
Background Materials & Review § 1 Stochastic Processes Part II: Path-Wise ODEs § 6 ODE Theory § 7 ODE Numerics § 8 Dynamical Systems
Theory & Simulation of Random (Ordinary) Differential Equations
Part III: Fourier & Co. § 9 Fourier Transform
§ 12 Linear RODEs I
§ 10 Noise Spectra § 11 Space Filling Curves
§ 13 Linear RODEs II
§ 14 Simulation of RODEs
§ 15 Stability of RODEs
Holistic Theory: § 16 Random Dynamical Systems
The Workshop Projects § 17 The Workshop Idea § 18 The Workshop Project
%HFTQD .TSKHMD NE SGD ANNJ EQNL SGD ONHMS NE UHDV NE SGDNQX @MC RHLTK@SHNM NE Q@MCNL O@QSH@K NQCHM@QX CHƤDQDMSH@K DPT@SHNMR
&KDSWHU OQNUHCDR @ EQHDMCKX QDUHDV NE SGD BDMSQ@K BNMBDOSR NE OQNA@AHKHSX SGDNQX ENBTRHMF NM Q@MCNL U@QH@AKDR @MC SGDHQ OQNODQSHDR SG@S DUDMST @KKX KD@C SN SGD MNSHNM NE @ RSNBG@RSHB OQNBDRR .TQ @HL HR SN QDB@KK SGD A@RHB CDƥMHSHNMR @MC DPTHO SGDL VHSG S@HKNQDC HKKTRSQ@SHNMR @MC , 3+ ! BNLL@MCR Q@SGDQ SG@M DLOG@RHYD SGD LNRS FDMDQ@K @MC @ARSQ@BS L@SGD L@SHB@K BNMBDOSR &KDSWHU CHRBTRRDR GNV RODBHƥB 1@MCNL /@QSH@K #HƤDQDMSH@K $PT@SHNMR @QD SQ@MRENQLDC SN 1@MCNL .QCHM@QX #HƤDQDMSH@K $PT@SHNMR AX @OOKXHMF BK@R RHB@K RO@SH@K CHRBQDSHR@SHNMR 5@QH@MSR EQNL @ U@QHDSX NE @OOKHB@SHNMR @QD CHRBTRRDC KD@UHMF SGD SHLD CHRBQDSHR@SHNM ENQ "G@O 3GD CDQHU@SHNM NE SGD TMCDQKXHMF RXRSDL NE CDSDQLHMHRSHB O@QSH@K CHƤDQDMSH@K DPT@SHNMR @MC BNQQDRONMCHMF ANTMC@QX BNMCHSHNMR HR RGNVM ENQ SGD DW@LOKD NE
YL
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF DK@RSHB ANCX LNSHNM 6D CHRBTRR CHƤDQDMS SXODR NE LDRGDR VHSG @M DLOG@RHR NM QDFTK@Q "@QSDRH@M FQHCR 3GD SGQDD L@HM RO@SH@K CHRBQDSHR@ SHNMRŕƥMHSD CHƤDQDMBDR ƥMHSD UNKTLDR @MC ƥMHSD DKDLDMSRŕ@QD AQHDƦX DWOK@HMDC ADENQD CDKUHMF CDDODQ HMSN ƥMHSD CHƤDQDMBD RBGDLDR %# 6D CDQHUD SGD BNQQDRONMCHMF %# @OOQNWHL@SHNMR ENQ SGD ETMC@LDMS@K DPT@SHNMR NE DK@RSHB ANCX LNSHNM @MC RHLTK@SD RSD@CX RS@SD RBDM@QHNR NE ATHKCHMFR VGHBG @QD ADMS &KDSWHU LNSHU@SDR @MC L@SGDL@SHB@KKX QHFNQNTRKX CHRBTRRDR DWHRSDMBD @MC TMHPTDMDRR NE O@SG VHRD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDM SH@K DPT@SHNMR 6D RS@QS AX LNCDKKHMF DWSDQM@K @MC FQNTMC LNSHNM DW BHS@SHNMR AX LD@MR NE RSNBG@RSHB OQNBDRRDR VGHBG LNSHU@SDR SGD RSTCX NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 3GDHQ RNKTSHNM DWHRSDMBD @MC TMHPTDMDRR BNMBDOSR @QD SGDM CHRBTRRDC SNFDSGDQ VHSG SGD BNQQDRONM CDMBD ADSVDDM RSNBG@RSHB @MC Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (M O@QSHBTK@Q VD RSTCX SGD BNMCHSHNMR SG@S KD@C SN SGD DWHRSDMBD NE O@SG VHRD TMHPTD RNKTSHNMR 2NKTSHNMR HM SGD DWSDMCDC RDMRD @QD @M@KXRDC @R VDKK @R SGD CDODMCDMBD NE RNKTSHNMR NM O@Q@LDSDQR @MC HMHSH@K BNMCHSHNMR R @M DWBTQRHNM VD ƥM@KKX FHUD SGD DPT@SHNMR NE LNSHNM ENQ RHMFKD @MC LTKSH RSNQDX VHQDEQ@LD ATHKCHMFR .TQ L@HM RNTQBD ENQ SGD RDS TO @MC CHRBTRRHNM NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR HR 'DKF@ !TMJDŗR ANNJ :< &KDSWHU @CCR SGD MNSHNMR NE P @MC LD@M RPT@QD RNKTSHNMR SN NTQ CHRBTR RHNM 3GD RODBH@K M@STQD NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR NE SDM QDPTHQDR @CCHSHNM@K QDƥMDC RNKTSHNM BNMBDOSR FNHMF ADXNMC SG@S NE @ O@SG VHRD RNKTSHNM 3@JHMF ENQ HMRS@MBD HMSN @BBNTMS SG@S @ RNKTSHNM L@X ETKƥKK SGD FHUDM Q@MCNL CHƤDQDMSH@K DPT@SHNM VHSG OQNA@AHKHSX NMD NQ SG@S SGD RNKTSHNM HR @ RPT@QD HMSDFQ@AKD RSNBG@RSHB OQNBDRR KD@CR SN SGD MNSHNM NE @ P RNKTSHNM NQ @ LD@M RPT@QD RNKTSHNM QDRODBSHUDKX 3GDHQ OQNODQSHDR @MC HMSDQBNMMDBSHNMR HM O@QSHBTK@Q VHSG QDRODBS SN O@SG VHRD RNKTSHNMR @QD RSTCHDC GDQD &KDSWHU VHCDMR SGD RBNOD SN @CCHSHNM@K B@SDFNQHDR NE @OOKHB@SHNMR ENQ Q@M CNL CHƤDQDMSH@K DPT@SHNMR (M O@QSHBTK@Q ƦNV OQNAKDLR @QD CHRBTRRDC HM LNQD CDS@HK 3GDRD OQNAKDLR QDOQDRDMS @M HLONQS@MS BK@RR NE @OOKHB@SHNMR HM BNLOTS@SHNM@K RBHDMBD @MC DMFHMDDQHMF 3GD U@QHNTR ONRRHAKD Q@MCNL DƤDBSR HM SGD LNCDK SGD FDNLDSQX SGD ANTMC@QX BNMCHSHNMR @MC SGD O@ Q@LDSDQR L@X AD FDMDQ@KHRDC SN NSGDQ ƦNV RBDM@QHNR HMUNKUHMF BNTOKDC RBDM@QHNR RTBG @R ƦTHC RSQTBSTQD HMSDQ@BSHNM NQ AHNƥKL FQNVSG /@QS (( HR @ LHMH BNTQRD NM SGD HMSDQOK@X ADSVDDM CXM@LHB@K RXRSDLR @MC RBHDMSHƥB BNLOTSHMF HM HSRDKE 'DQD VD BNUDQ SGD @M@KXSHB@K @MC MTLDQHB@K ENTMC@SHNMR NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR RODBH@K DL OG@RHR HR FHUDM SN CXM@LHB@K RXRSDLR SGDNQX HMBKTCHMF DRRDMSH@K OG@RD RO@BD 3UHIDFH
YLL
3NAH@R 1HFNHO %KNQH@M 5XSS RSQTBSTQDR DPTHKHAQH@ ODQHNCHB NQAHSR HMU@QH@MS RDSR @R VDKK @R ETMC@LDMS@K SNNKR +X@OTMNU DWONMDMSR @MC +X@OTMNU ETMBSHNMR &KDSWHU RDQUDR @R @ GNKHRSHB HMSQNCTBSHNM SN SGD SGDNQX NE NQCHM@QX CHƤDQ DMSH@K DPT@SHNMR VHSGNTS RHMFTK@QHSHDR ESDQ RNLD OQDKHLHM@QHDR HMSD FQ@K BTQUDR HM UDBSNQ ƥDKCR @QD CHRBTRRDC H D NQCHM@QX CHƤDQDMSH@K DPT@ SHNMR x˙ = F (t, x) 'DQDAX VD RS@QS VHSG BNMSHMTNTR QHFGS G@MC RHCDR F @MC SGDHQ ε @OOQNWHL@SD RNKTSHNMR @R VDKK @R SGD /D@MN "@TBGX DWHRSDMBD SGDNQDL @MC HSR HLOKHB@SHNMR 6D BNMSHMTD NTQ CHRBTRRHNM ENQ +HORBGHSY BNMSHMTNTR ETMBSHNMR F @MC SGD DWHRSDMBD @MC TMHPTDMDRR SGDNQDL NE /HB@QC +HMCDK±E (M O@QSHBTK@Q VD @M@KXRD L@WHL@K HMSDFQ@K BTQUDR FHUD SGD SGQDD SXODR NE L@WHL@K HMSDFQ@K BTQUDR SG@S B@M NBBTQ HM @TSNMNLNTR RXRSDLR @MC RGNV SGD SQ@MRENQL@SHNM NE @ d SG NQCDQ DPT@SHNM HMSN @ ƥQRS NQCDQ RXRSDL -DWS VD CD@K VHSG SGD DWHRSDMBD NE RNKTSHNMR HM SGD DW SDMCDC RDMRD VGDQD SGD QHFGS G@MC RHCD ETMBSHNM L@X AD BNMSHMTNTR DWBDOS ENQ @ RDS NE +DADRFTD LD@RTQD YDQN "@Q@SGDNCNQXŗR DWHRSDMBD SGDNQDL @MC HSR HLOKHB@SHNMR @QD RSTCHDC SNFDSGDQ VHSG L@WHLTL @MC LHMHLTL RNKTSHNMR 3GDM VD RSTCX SGD AQN@C BK@RR NE KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNMR AX CHRBTRRHMF SGD TMHPTD DWHRSDMBD NE SGDHQ RNKT SHNMR @MC SGDHQ DWOKHBHS BNMRSQTBSHNM OOKHB@SHNMR NE SGD SGDNQX ENBTR NM ƥQRS HMSDFQ@KR @MC NRBHKK@SHNMR ENQ SGD CDSDQLHMHRSHB ODMCTKTL @MC SGD 5NKSDQQ@ +NSJ@ RXRSDL %HM@KKX VD OQNUHCD @ ƥQRS FK@MBD HMSN SGD DW HRSDMBD TMHPTDMDRR @MC DWSDMRHNM NE RNKTSHNMR NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR NM HMƥMHSD CHLDMRHNM@K !@M@BG RO@BDR &KDSWHU BNMS@HMR SGD QDKDU@MS @RODBSR NE SGD MTLDQHB@K RHLTK@SHNM NE NQCH M@QX CHƤDQDMSH@K DPT@SHNMR "K@RRHB@K DWOKHBHS NMD RSDO LDSGNCR RTBG @R SGD DWOKHBHS $TKDQ NQ 1TMFD *TSS@ RBGDLDR @QD OQDRDMSDC ADENQD LNSHU@S HMF HLOKHBHS @OOQN@BGDR ENQ RSHƤ .#$R U@QHDSX NE DW@LOKD HLOKDLDMS@ SHNMR RGNV SGD ADG@UHNTQ NE SGD CHƤDQDMS RBGDLDR @OOKHDC SN CHƤDQDMS HMHSH@K U@KTD OQNAKDLR 3GD AQHDE CHRBTRRHNM NE SGD -DVL@QJ E@LHKX NE RBGDLDR @MC NE RXLOKDBSHB LDSGNCR VHCDMR SGD RBNOD NE SGHR BG@OSDQ SN @OOQN@BGDR SG@S @QD SXOHB@KKX MDFKDBSDC ATS SG@S OQNUHCD TRDETK ED@STQDR VNQSG ADHMF NM SGD Q@C@Q HM SGD BNMSDWS NE 1.#$ RHLTK@SHNMR &KDSWHU OQNUHCDR @ AQHDE QDUHDV NM CDSDQLHMHRSHB CXM@LHB@K RXRSDLR %TM C@LDMS@K MNSHNMR @MC BNMBDOSR @QD HMSQNCTBDC KHJD SG@S NE BNMSHMTNTR CXM@LHB@K RXRSDLR KNMF SHLD ADG@UHNQ HMU@QH@MBD @MC @SSQ@BSHNM 3GHR O@UDR SGD V@X SN @M@KXYD RS@AHKHSX HM SGD RDMRD NE +X@OTMNU AX TSHKHYHMF +X@OTMNU ETMBSHNMR ENQ OQNUHMF @RXLOSNSHB RS@AHKHSX HM MNM KHMD@Q RXR SDLR -DWS VD @M@KXYD SGD BNQQDRONMCDMBD ADSVDDM SGD RS@AHKHSX OQNO DQSHDR NE MNM KHMD@Q RXRSDLR @MC SGDHQ KHMD@QHR@SHNM 'DQD VD FHUD SGD E@LNTR SGDNQDL NE '@QSL@M @MC &QNAL@M @ BK@RRHƥB@SHNM NE DPTHKHA QH@ HM OK@M@Q RXRSDLR VHSG QDRODBS SN SGDHQ RS@AHKHSX OQNODQSHDR @R VDKK @R
YLLL
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF SGD SDBGMHPTDR ENQ SGD CDSDQLHM@SHNM NE SGD ONRHSHNM NE +X@OTMNU DWON MDMSR NE @ KHMD@Q RXRSDL KHJD SGD 1NTSG 'TQVHSY BQHSDQHNM NQ SGD +NYHMRJHH LD@RTQD LDSGNC /@QS ((( BNUDQR HLONQS@MS BNMBDOSR @MC @KFNQHSGLR HM 2BHDMSHƥB "NLOTSHMF SGD CHRBQDSD %NTQHDQ SQ@MRENQL @MC HSR U@QH@MSR SGD EQDPTDMBX CNL@HM LDSGNC ENQ QDRONMRD @M@KXRHR @R VDKK @R RO@BD ƥKKHMF BTQUDR @R O@Q@CHFLR ENQ DƤDB SHUD @MC DƧBHDMS C@S@ RSNQ@FD &KDSWHU CHRBTRRDR SGD A@RHB @RODBSR NE SGD BNMSHMTNTR @MC SGD CHRBQDSD %NTQHDQ SQ@MRENQL VHSG SGD ENBTR NM SGD K@SSDQ HMBKTCHMF U@QHNTR , 3 + ! DW@LOKDR 3GD E@LNTR %@RS %NTQHDQ 3Q@MRENQL HR CDQHUDC 6D AQHDƦX OQDRDMS SGD SQHFNMNLDSQHB U@QH@MSR NE SGD CHRBQDSD %NTQHDQ SQ@MR ENQL QDK@SDC SN RXLLDSQX OQNODQSHDR NE SGD TMCDQKXHMF HMOTS C@S@ 3GDRD SQHFNMNLDSQHB SQ@MRENQLR @KKNV TR SN QD@KHRD E@RS /NHRRNM RNKUDQR NM "@QSDRH@M FQHCR VGHBG @QD MDDCDC HM SGD VNQJRGNO OQNAKDL BE "G@O %QDPTDMBX CNL@HM @RODBSR @MC SGD %NTQHDQ SQ@MRENQL @QD DRRDMSH@K SN TM CDQRS@MC JDX BG@Q@BSDQHRSHBR NE RSNBG@RSHB OQNBDRRDR RODBSQTL ONVDQ RODBSQTL @MC SGD OQNO@F@SHNM NE DWBHS@SHNMR SGQNTFG LDBG@MHB@K RSQTB STQDR &KDSWHU RS@QSR VHSG SGD A@RHB CDƥMHSHNMR @MC HLOKHB@SHNMR QDK@SDC SN SGD RODBSQ@K QDOQDRDMS@SHNM NE RS@SHNM@QX @MC ODQHNCHB RSNBG@RSHB OQNBDRRDR !@RDC NM SGDRD VD RSTCX SGD MNSHNMR NE DMDQFX ONVDQ @MC RODBSQ@K CDMRHSX 6D FHUD RDUDQ@K DW@LOKDR ENQ BNKNQDC MNHRD OQNBDRRDR SGD EQD PTDMBX CNL@HM LDSGNC ENQ QDRONMRD @M@KXRHR @MC KHMD@Q ƥKSDQR (M O@QSHB TK@Q VD @OOKX SGHR LDSGNC SN NTQ OQNAKDL NE LTKSH RSNQDX DWBHS@SHNM CTD SN RDHRLHB HLO@BSR @MC SGDHQ OQNO@F@SHNM SGQNTFG VHQDEQ@LD RSQTBSTQDR &KDSWHU HMSQNCTBDR SGD ETMC@LDMS@K BNMBDOSR CDƥMHSHNMR @MC OQNODQ SHDR NE RO@BD ƥKKHMF BTQUDR RTBG @R SGD 'HKADQS @MC /D@MN BTQUDR 6D AQHDƦX OQDRDMS SGQDD CHƤDQDMS B@SDFNQHDR NE ONRRHAKD @OOKHB@SHNMR LNSH U@SHMF SGD TR@FD NE SGDRD RODBH@K BTQUDR HM SGD BNMSDWS NE BNLOTS@SHNM@K RHLTK@SHNMR 3VN U@QH@MSR ENQ SGD BNMRSQTBSHNM NE CHRBQDSD HSDQ@SHNMR NE SGD BTQUDR @QD DWOK@HMDC HM CDS@HK RTBG SG@S SGD QD@CDQ HR HM SGD ONRHSHNM SN TRD RO@BD ƥKKHMF BTQUDR ENQ @ S@MFHAKD S@RJR KHJD NQCDQHMF "@QSDRH@M LDRG BDKKR 'DQD RSQNMF BNMMDBSHNMR SN RO@BH@K CHRBQDSHR@SHNM BE "G@O @MC HSR DƧBHDMS HLOKDLDMS@SHNM @QD OQNUHCDC /@QS (5 HR CDUNSDC SN @ LNQD HM CDOSG RSTCX NE SGD SGDNQX @MC RHLTK@SHNM NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (S @M@KXRDR SGD SGDNQX NE KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR -TLDQHB@K RBGDLDR ENQ MNM KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR KHJD SGD SGD @UDQ@FDC $TKDQ @MC 'DTM LDSGNC @QD CHR BTRRDC 2S@AHKHSX NE SGD MTKK RNKTSHNM HR BNMRHCDQDC @MC +X@OTMNU SXOD LDSG
3UHIDFH
L[
3NAH@R 1HFNHO %KNQH@M 5XSS NCR @QD @OOKHDC SN SGD U@QHNTR BNMBDOSR NE RSNBG@RSHB RS@AHKHSX %HM@KKX SGD QDBDMS SGDNQX NE Q@MCNL CXM@LHB@K RXRSDLR @MC HSR HLO@BSR NM SGD RSTCX NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HR OQDRDMSDC &KDSWHU SQD@SR KHMD@Q HMGNLNFDMDNTR NQCHM@QX Q@MCNL CHƤDQDMSH@K DPT@ SHNMR NE SGD SXOD X˙ t = A(t)Xt + Zt VGDQD SGD Q@MCNLMDRR HR KNB@SDC ITRS HM SGD HMGNLNFDMDNTR CQHUHMF OQNBDRR Zt 3GDRD SXODR NE DPT@SHNMR B@M AD @M@KXRDC HM V@XR @M@KNFNTR SN SGDHQ CDSDQLHMHRSHB BNTMSDQO@QSR @KQD@CX DWGHAHSHMF @ VD@KSG NE HMSDQDRSHMF OGDMNLDM@ .E HLONQS@MBD @QD SGD RSNBG@RSHB BG@Q@BSDQHRSHBR NE SGD RNKTSHNMR OQNBDRR @R VDKK @R OD QHNCHB @MC RS@SHNM@QX RNKTSHNM SXODR (M O@QSHBTK@Q VD FHUD ƥQRS RS@AHKHSX BNMCHSHNMR VHSG QDRODBS SN VGHBG RNKTSHNMR BNMUDQFD SNV@QCR ODQHNCHB NQ RS@SHNM@QX NMDR &KDSWHU DWSDMCR SGHR ANCX NE JMNVKDCFD NM KHMD@Q Q@MCNL NQCHM@QX CHE EDQDMSH@K DPT@SHNMR AX @KRN @KKNVHMF RSNBG@RSHB DƤDBSR HM SGD BNDƧBHDMSR 6D FHUD SGD FDMDQ@K RNKTSHNM ENQLTK@R ENQ SGDRD SXODR NE DPT@SHNMR SN FDSGDQ VHSG DPTHU@KDMBD QDRTKS ENQ O@SG VHRD @MC LD@M RPT@QD RNKTSHNMR ,NQDNUDQ NM SGD NMD G@MC VD @M@KXRD SGD @RXLOSNSHB OQNODQSHDR NE O@SG VHRD RNKTSHNMR ENBTRHMF NM DWONMDMSH@K CDB@X SNV@QCR SGD MTKK RNKTSHNM @R VDKK @R NM TOODQ ANTMCR ENQ O@SG VHRD RNKTSHNMR .M SGD NSGDQ G@MC VD @KRN RSTCX SGD OQNODQSHDR NE SGD LNLDMSR NE O@SG VHRD RNKTSHNMR VHSG QDRODBS SN SGD DWONMDMSH@K CDB@X @R VDKK @R SGD DWHRSDMBD NE @RXLOSNSHB@KKX θ ODQHNCHB RNKTSHNMR R @M DWBTQRHNM SGD FDMDQ@K RN KTSHNM ENQLTK@ NE KHMD@Q MNM BNLLTS@SHUD O@SG VHRD BNMSHMTNTR MNHRD RXRSDLR HR BNMRSQTBSDC &KDSWHU CHRBTRRDR @KK QDKDU@MS @RODBSR ENQ RHLTK@SHNM NE O@SG VHRD 1.#$ OQNAKDLR 6D OQDRDMS KNVDQ NQCDQ DWOKHBHS 1.#$ RBGDLDR $TKDQ @MC 'DTM @R VDKK @R GHFGDQ NQCDQ * 1.#$ 3@XKNQ RBGDLDR #DS@HKDC HMENQ L@SHNM NM SGD BNQQDRONMCHMF , 3+ ! HLOKDLDMS@SHNM ENQ SGD VHQDEQ@LD LNCDK @QD FHUDM @MC MTLDQHB@K QDRTKSR RGNV SGD U@KHCHSX NE SGD @OOQN@BG &KDSWHU RSTCHDR SGD U@QHNTR MNSHNMR NE RS@AHKHSX NE SGD MTKK RNKTSHNM NE @ Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNM VHSG @ ENBTR NM O@SG VHRD DPTH RS@AHKHSX h P @MC W RS@AHKHSX (M O@QSHBTK@Q SGD QDK@SHNMR HLOKHB@SHNMR @MC HMSDQ BNMMDBSHNMR ADSVDDM SGDRD BNMBDOSR @QD CHRBTRRDC @MC SGD QDRTKSR NE "G@O NM SGD O@SG VHRD RS@AHKHSX NE KHMD@Q Q@MCNL CHƤDQ DMSH@K DPT@SHNMR VHSG RSNBG@RSHB BNDƧBHDMSR @QD QD EQ@LDC HM SGD BNM SDWS NE SGDRD BNMBDOSR ,NQDNUDQ VD DWSDMC SGD CDSDQLHMHRSHB +X@ OTMNU LDSGNC SN Q@MCNL CHƤDQDMSH@K DPT@SHNMR !@RDC NM RTHS@AKD +X@OTMNU ETMBSHNMR MDBDRR@QX BNMCHSHNMR ENQ h RS@AHKHSX @MC O@SG VHRD DPTH RS@AHKHSX @QD FHUDM %HM@KKX SGD RS@AHKHSX NE CDSDQLHMHRSHB RXRSDLR
[
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF RTAIDBS SN CHƤDQDMS BK@RRDR NE BNMSHMTNTRKX @BSHMF Q@MCNL ODQSTQA@SHNMR HR @M@KXRDC &KDSWHU OQNUHCDR @ FKHLORD HMSN SGD UDQX QDBDMS SGDNQX NE Q@MCNL CXM@L HB@K RXRSDLR 6D FHUD SGD ETMC@LDMS@K CDƥMHSHNMR NE LDSQHB LD@RTQ@AKD @MC Q@MCNL CXM@LHB@K RXRSDLR SNFDSGDQ VHSG RNLD HKKTRSQ@SHUD DW@L OKDR ,NQDNUDQ VD RSTCX SGD MNSHNMR NE ENQV@QC @MC A@BJV@QCR RS@AHKHSX @MC SGDHQ HLOKHB@SHNMR /@QS 5 FHUDR SGD OQNAKDL RDS NE SGD VNQJRGNO @RRNBH@SDC SN SGD BNTQRD VD F@UD HM SGD RTLLDQ SDQL SNFDSGDQ VHSG RNLD JDX QDRTKSR @MC KDRRNMR KD@QMS EQNL SGHR DWODQHLDMS HM GHFGDQ DCTB@SHNM &KDSWHU ENBTRDR NM SGD CHC@BSHB @RODBSR NE SGD VNQJRGNO 6D CHRBTRR SGD HMSDFQ@SHNM NE VNQJRGNO @R @ BDMSQ@K O@QS NE SGD BNLOKDSD BNTQRD #DS@HKR NM SGD CDRHFM NE SGD VNQJRGNO @QD OQDRDMSDC BNUDQHMF HM O@QSHBTK@Q SGD BNMBDOS NE @ UHQST@K RNESV@QD BNLO@MX SGD BGNHBD NE SGD DMUHQNMLDMS @MC SGD SD@L QNKD CDRBQHOSHNMR &KDSWHU BNMS@HMR SGD OQNIDBS RODBHƥB@SHNM TRDC HM SGD VNQJRGNO 6D OQDRDMS @ RDKDBSHNM NE DW@LOKD QDRTKSR VGHBG NTQ RSTCDMSR OQNCTBDC @S SGD DMC NE SGD OQNIDBS %HM@KKX VD RTLL@QHRD SGD KDRRNMR KD@QMSŕANSG EQNL SGD ONHMS NE UHDV NE SGD O@QSHBHO@MSR @MC SGD RTODQUHRNQRŕOQNUHCHMF HMSDQDRSHMF GHMSR ENQ ETSTQD NQ RHLHK@Q OQNIDBSR
3UHIDFH
[L
3NAH@R 1HFNHO %KNQH@M 5XSS
BJMNVKDCFLDMSR MTLADQ NE BG@OSDQR NE SGHR ANNJ G@UD ADDM QD@C @MC BQHSHBHYDC HM L@MTRBQHOS (M @KOG@ADSHB@K NQCDQ VD VNTKC KHJD SN @BJMNVKDCFD SGD RTO ONQS @MC BNLLDMSR NE ,HBG@DK !@CDQ /DSDQ &@LMHSYDQ ,HQH@L ,DGK /GHKHOO -DTL@MM 'NQRS .RADQFDQ KEQDCN /@QQ@ !DMI@LHM /DGDQRSNQEDQ "GQHRSNOG 1HDRHMFDQ *NMQ@C 6@KCGDQQ @MC K@RS ATS MNS KD@RS )NM@SG@M 9HMRK 6D SG@MJ NTQ RSTCDMS @RRHRS@MSR MCQD@R '@TOSL@MM 5DQNMHJ@ .RSKDQ @MC KDW@MCDQ 6HDSDJ ENQ SGDHQ RTOONQS HM OQDO@QHMF SGD BNTQRD %TQSGDQLNQD VD SG@MJ 3GNQRSDM *MNSS VGN SGNQNTFGKX CDRHFMDC SGD S@RJR HM SGD BNMSDWS NE RNKUHMF SGD /NHRRNM DPT@SHNM UH@ BNMSHMTNTR %NTQHDQ SQ@MRENQL HM 2DB @R VDKK @R ,HBG@DK !@CDQ ENQ OQNUHCHMF A@RHB BNTQRD L@SDQH@K V Q S SGD %NTQHDQ SQ@MRENQL @MC HM O@QSHBTK@Q SGD RO@BD ƥKKHMF BTQUDR D@RHMF SGD CDUDKNOLDMS NE SGD BNQQDRONMCHMF BG@OSDQR /DSDQ &@LMHSYDQ BNMSQHATSDC UH@ EQTHSETK CHR BTRRHNMR @MC U@KT@AKD GHMSR HM SGD BNMSDWS NE RSQTBSTQ@K CXM@LHBR HM "G@O @ GDKO SG@S HR FQ@SDETKKX @BJMNVKDCFDC 2ODBH@K SG@MJR FN SN KEQDCN /@QQ@ 'HMNINR@ ENQ U@QHNTR BNMSQHATSHNMR HM O@QSHBTK@Q BNMBDQMHMF SGD RHLTK@SHNM QNTSHMDR ENQ Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HM "G@O 6D @QD UDQX FQ@SDETK SN 5DQRHS@ŗR OTAKHRGHMF SD@L @MC NTQ DCHSNQR KDJR@M CQ@ -NV@BJ@ +DUDQSNM ,@QBHM ,@QBHMH@J @MC &QYDFNQY /@RSTRY@J ENQ QD@KHRHMF SGHR ANNJ HM SGD NODM @BBDRR ENQL@S
&@QBGHMF ADH ,·MBGDM )TMD
[LL
7RELDV 1HFNHO DQG )ORULDQ 5XSS
3UHIDFH
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"NMSDMSR /QDE@BD
( ,NSHU@SHNM @MC #DBNLONRHSHNM NE ,TKSH 2SNQDX !THKCHMF $WBHS@SHNM /QNAKDLR
5HFDS 5DQGRP 9DULDEOHV 6WRFKDVWLF 3URFHVVHV
*DX "NMBDOSR
1@MCNL 5@QH@AKDR &DMDQ@SDC σ KFDAQ@R @MC #DMRHSX %TMBSHNMR "NMSHMTHSX ,D@RTQDR @MC /QNA@AHKHSX 2O@BDR 1@MCNL 5@QH@AKDR @MC SGD σ KFDAQ@R 3GDX &DMDQ@SD #DMRHSX @MC #HRSQHATSHNM %TMBSHNMR
,NLDMSR @MC (MSDFQ@KR "DMSQ@K ,NLDMSR @MC ,NLDMS &DMDQ@SHMF %TMBSHNMR (MSDFQ@SHNM VHSG 1DRODBS SN @ /QNA@AHKHSX ,D@RTQD
(MCDODMCDMBD @MC "NMCHSHNM@K $WODBS@SHNM "NMCHSHNM@K $WODBS@SHNM %TQSGDQ /QNODQSHDR NE SGD "NMCHSHNM@K $WODBS@SHNM "NMUDQFDMBD "NMBDOSR ENQ 2DPTDMBDR NE 1@MCNL 5@QH@AKDR
/QHLDQ NM 2SNBG@RSHB /QNBDRRDR "NMSHMTNTR 2SNBG@RSHB /QNBDRRDR %HKSQ@SHNMR ,@QSHMF@KDR @MC 2TODQ ,@QSHMF@KDR &@TRRH@M /QNBDRRDR
"G@OSDQŗR 2TLL@QX
/QNAKDLR
5HGXFWLRQ RI 53'(V WR 52'(V
&RQWHQWV
*DX "NMBDOSR
[LLL
3NAH@R 1HFNHO %KNQH@M 5XSS
$K@RSHB ,@SDQH@KR ,@SDQH@K +@VR !@RHB RODBSR NE "NMSHMTTL ,DBG@MHBR 2SQDRR 2SQ@HM %TMC@LDMS@K $PT@SHNMR
2O@SH@K @MC 3DLONQ@K #HRBQDSHR@SHNM NE /#$R %QNL 2O@BD 3HLD SN 2O@BD 3HLD 2O@SH@K #HRBQDSHR@SHNM ,DRGHMF 2O@SH@K #HRBQDSHR@SHNM .ODQ@SNQR
%HMHSD #HƤDQDMBD OOQNWHL@SHNMR &DMDQ@K "NMBDOS 0T@KHSX NE %# OOQNWHL@SHNMR %# OOQNWHL@SHNMR ENQ $K@RSHB !NCX ,NSHNM
"G@OSDQŗR 2TLL@QX /QNAKDLR
3DWK:LVH 6ROXWLRQV RI 52'(V
*DX "NMBDOSR
2SNBG@RSHB /QNBDRRDR @R ,NCDKR ENQ $WSDQM@K @MC &QNTMC ,NSHNM $WBHS@SHNM !QNVMŗR $WODQHLDMS 6GHSD -NHRD 2SNBG@RSHB ,NCDKR ENQ $@QSGPT@JD $WBHS@SHNMR
1@MCNL #HƤDQDMSH@K $PT@SHNMR "NTMSDQDW@LOKDR ENQ /@SG 6HRD 2NKTSHNMR "NMMDBSHNMR ADSVDDM 1@MCNL @MC 2SNBG@RSHB #HƤDQDMSH@K $PT@SHNMR
/@SG 6HRD 2NKTSHNMR NE 1@MCNL #HƤDQDMSH@K $PT@SHNMR /@SG 6HRD 2NKTSHNMR HM SGD $WSDMCDC 2DMRD #DODMCDMBD NM /@Q@LDSDQR @MC (MHSH@K "NMCHSHNMR
$WBTQRHNM #DSDQLHMHRSHB #DRBQHOSHNM NE SGD 5HAQ@SHNMR NE 2HMFKD ,TKSH 2SNQDX !THKCHMFR 5HAQ@SHNMR NE @ 2HMFKD 2SNQDX !THKCHMF 5HAQ@SHNMR NE @ ,TKSH 2SNQDX !THKCHMF
"G@OSDQŗR 2TLL@QX /QNAKDLR
3DWK:LVH P 0HDQ6TXDUH 6ROXWLRQV RI 52'(V
[LY
*DX "NMBDOSR
&RQWHQWV
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
P 2NKTSHNMR NE 1@MCNL #HƤDQDMSH@K $PT@SHNMR
1DUHDV ,D@M 2PT@QD M@KXRHR NE 2DBNMC .QCDQ /QNBDRRDR
,D@M 2PT@QD 2NKTSHNMR NE 1@MCNL #HƤDQDMSH@K $PT@SHNMR
$WBTQRHNM /QHLDQ NM (S¯ŗR 2SNBG@RSHB "@KBTKTR (MSDFQ@SHNM VHSG 1DRODBS SN 6GHSD -NHRD (MSQNCTBHMF SGD # (S¯ 2SQ@SNMNUHBG 2SNBG@RSHB (MSDFQ@K
"G@OSDQŗR 2TLL@QX /QNAKDLR
5'(V LQ 6FLHQFH (QJLQHHULQJ 5DQGRPO\ 3HUWXUEHG )ORZ 3UREOHPV
*DX "NMBDOSR
#DQHU@SHNM NE SGD #DSDQLHMHRSHB -@UHDQ 2SNJDR $PT@SHNMR
-TLDQHB@K 2NKTSHNM NE SGD -@UHDQ 2SNJDR $PT@SHNMR
1@MCNL /DQSTQA@SHNM NE (MBNLOQDRRHAKD %KNV
$WSDMRHNM SN .SGDQ %KNV /QNAKDLR
"G@OSDQŗR 2TLL@QX @MC .TSKNNJ
(( 3GD /@SG 6HRD #DSDQLHMHRSHB 2DSSHMF
5HFDS 7KHRU\ RI 2UGLQDU\ 'LƨHUHQWLDO (TXDWLRQV 2'(V
*DX "NMBDOSR
/QDKHLHM@QHDR 5DBSNQ %HDKCR @MC 3GDHQ 1DOQDRDMS@SHNM 3DBGMHB@K 1DPTHQDLDMSR
(MSDFQ@K "TQUDR HM 5DBSNQ %HDKCR .QCHM@QX #HƤDQDMSH@K $PT@SHNMR /@QS ( OOQNWHL@SD 2NKTSHNMR /QDQDPTHRHSDR ENQ SGD /QNNE NE SGD "@TBGX /D@MN $WHRSDMBD 3GDNQDL 3GD "@TBGX /D@MN $WHRSDMBD 3GDNQDL
(MSDFQ@K "TQUDR HM 5DBSNQ %HDKCR .QCHM@QX #HƤDQDMSH@K $PT@SHNMR /@QS (( +NB@K $WHRSDMBD 4MHPTDMDRR NE 2NKTSHNMR (MSDQKTCD 2NKUHMF .#$R 2XLANKHB@KKX VHSG , 3+ ! ,@WHL@K (MSDFQ@K "TQUDR
&RQWHQWV
[Y
3NAH@R 1HFNHO %KNQH@M 5XSS ,@WHL@K (MSDFQ@K "TQUDR HM 3HLD (MCDODMCDMS 5DBSNQ %HDKCR 2XRSDLR NE RS .QCDQ
2NKTSHNMR NE .#$R HM SGD $WSDMCDC 2DMRD 3GD 3GDNQDL NE "@Q@SGDNCNQX ,@WHLTL ,HMHLTL 2NKTSHNMR
+HMD@Q .QCHM@QX #HƤDQDMSH@K $PT@SHNMR $WHRSDMBD 4MHPTDMDRR NE 2NKTSHNMR "NMRSQTBSHNM NE 2NKTSHNMR
%HQRS (MSDFQ@KR .RBHKK@SHNMR OOKHB@SHNM 3GD &DMDQ@K .RBHKK@SHNM $PT@SHNM OOKHB@SHNM 3GD #DSDQLHMHRSHB /DMCTKTL OOKHB@SHNM 3GD 5NKSDQQ@ +NSJ@ 2XRSDL
.QCHM@QX #HƤDQDMSH@K $PT@SHNMR NM !@M@BG 2O@BDR $WHRSDMBD 4MHPTDMDRR NE 2NKTSHNMR $WSDMRHNM NE 2NKTSHNMR +HMD@Q $PT@SHNMR
"G@OSDQŗR 2TLL@QX /QNAKDLR
5HFDS 6LPXODWLRQ RI 2UGLQDU\ 'LƨHUHQWLDO (TXDWLRQV
*DX "NMBDOSR
&DMDQ@K RODBSR NE -TLDQHB@K 2NKTSHNM NE .#$R
$WOKHBHS .MD 2SDO ,DSGNCR ENQ .#$R $WOKHBHS $TKDQ ,DSGNC 'DTMŗR ,DSGNC $WOKHBHS 1TMFD *TSS@ 2BGDLDR "NMRHRSDMBX "NMUDQFDMBD
(LOKHBHS ,DSGNCR 2SHƤ .#$R (LOKHBHS $TKDQ ,DSGNC 3Q@ODYNHC@K 1TKD "NMRHRSDMBX "NMUDQFDMBD
$WBTQRHNM 3GD -DVL@QJ 2BGDLD
$WBTQRHNM 2XLOKDBSHB ,DSGNCR
"G@OSDQŗR 2TLL@QX /QNAKDLR
[YL
&RQWHQWV
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
'HWHUPLQLVWLF '\QDPLFDO 6\VWHPV DQG 6WDELOLW\ RI 6ROXWLRQV
*DX "NMBDOSR
"NMSHMTNTR #XM@LHB@K 2XRSDLR EQNL .#$R +NMF SHLD !DG@UHNQ (MU@QH@MBD @MC SSQ@BSHNM
+X@OTMNU 2S@AHKHSX 3GD ,DSGNC NE +X@OTMNU %TMBSHNMR +@ 2@KKDŗR /QHMBHOKD HSR (LOKHB@SHNMR
2SQTBSTQ@K 2S@AHKHSX +HMD@QHR@SHNM 3GD /QHMBHOKD NE +HMD@QHYDC 2S@AHKHSX SGD 3GDNQDL NE '@QSL@M &QNAL@M 3GD 1NTSG 'TQVHSY 2S@AHKHSX "QHSDQHNM 3GD +NYHMRJHH ,D@RTQD @MC 2S@AHKHSX
"G@OSDQŗR 2TLL@QX /QNAKDLR
((( $ƧBHDMS #@S@ 2SQTBSTQDR SGD /QNO@F@SHNM NE 1@MCNL $WBHS@SHNMR
)RXULHU7UDQVIRUP
*DX "NMBDOSR
3GD "NMSHMTNTR %NTQHDQ 3Q@MRENQL
3GD #HRBQDSD %NTQHDQ 3Q@MRENQL #DƥMHSHNM NE SGD #%3 @MC (#%3 , 3+ ! $W@LOKDR ENQ #%3 @MC (#%3 #%3 HM 'HFGDQ #HLDMRHNMR
3GD %@RS %NTQHDQ 3Q@MRENQL %%3 (CD@ , 3+ ! $W@LOKDR 1DBTQRHUD @MC (SDQ@SHUD %%3 .TSKNNJ %%3 5@QH@MSR @MC +HAQ@QHDR
5@QH@MSR NE %NTQHDQ 3Q@MRENQLR UH@ 2XLLDSQX /QNODQSHDR 3GD #HRBQDSD 2HMD 3Q@MRENQL 3GD #HRBQDSD "NRHMD 3Q@MRENQL
2NKUHMF SGD /NHRRNM $PT@SHNM %NTQHDQŗR ,DSGNC ENQ /@QSH@K #HƤDQDMSH@K $PT@SHNMR %@RS /NHRRNM 2NKUDQ
"G@OSDQŗR 2TLL@QX
&RQWHQWV
[YLL
3NAH@R 1HFNHO %KNQH@M 5XSS /QNAKDLR 1RLVH 6SHFWUD DQG WKH 3URSDJDWLRQ RI 2VFLOODWLRQV *DX "NMBDOSR 2ODBSQ@K /QNODQSHDR NE 2S@SHNM@QX /DQHNCHB /QNBDRRDR 2SNBG@RSHB (MSDFQ@SHNM SGD 2ODBSQ@K 1DOQDRDMS@SHNM 3GDNQDL 2S@SHNM@QX /DQHNCHB /QNBDRRDR $MDQFX /NVDQ 2ODBSQ@K #DMRHSX @MC $W@LOKDR ENQ "NKNQDC -NHRD ,NQD 1D@KHRSHB ,NCDK ENQ !QNVMŗR .ARDQU@SHNM 3GD .QMRSDHM 4GKDMADBJ /QNBDRR /NVDQ +@V -NHRD HSR 2HLTK@SHNM 3GD %QDPTDMBX #NL@HM ,DSGNC ENQ 1DRONMRD M@KXRHR /QNO@F@SHNM NE $WBHS@SHNMR +HMD@Q %HKSDQ "G@OSDQŗR 2TLL@QX /QNAKDLR 6SDFH )LOOLQJ &XUYHV IRU 6FLHQWLƩF &RPSXWLQJ *DX "NMBDOSR 3GD "NMBDOS NE 2O@BD ƥKKHMF "TQUDR
OOKHB@SHNMR NE 2O@BD ƥKKHMF "TQUDR
"NLOTS@SHNM@K "NMRSQTBSHNM NE 2O@BD ƥKKHMF "TQUDR &Q@LL@Q A@RDC "NMRSQTBSHNM QHSGLDSHR@SHNM "G@OSDQŗR 2TLL@QX /QNAKDLR
(5 /@SG 6HRD 2NKTSHNMR NE 1@MCNL #HƤDQDMSH@K $PT@SHNMR @MC 3GDHQ 2HLTK@SHNM /LQHDU 52'(V ZLWK 6WRFKDVWLF ,QKRPRJHQHLW\ *DX "NMBDOSR 3GD &DMDQ@K 2NKTSHNM %NQLTK@ 2SNBG@RSHB /QNODQSHDR NE /@SG 6HRD 2NKTSHNM 3GD 2ODBH@K "@RD NE @ &@TRRH@M (MGNLNFDMDHSX
[YLLL
&RQWHQWV
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF /DQHNCHB @MC 2S@SHNM@QX 2NKTSHNMR $WHRSDMBD NE /DQHNCHB @MC 2S@SHNM@QX 2NKTSHNMR "NMUDQFDMBD 3NV@QCR /DQHNCHB @MC 2S@SHNM@QX 2NKTSHNMR 'HFGDQ .QCDQ +HMD@Q 1@MCNL #HƤDQDMSH@K $PT@SHNMR "G@OSDQŗR 2TLL@QX /QNAKDLR /LQHDU 52'(V ZLWK 6WRFKDVWLF &RHƫFLHQWV *DX "NMBDOSR 3GD &DMDQ@K 2NKTSHNM %NQLTK@
RXLOSNSHB /QNODQSHDR NE /@SG 6HRD 2NKTSHNMR $WONMDMSH@K #DB@X NE /@SG 6HRD 2NKTSHNMR !NTMCDCMDRR NE /@SG 6HRD 2NKTSHNMR
RXLOSNSHB /QNODQSHDR NE SGD ,NLDMSR NE /@SG 6HRD 2NKTSHNMR $WONMDMSH@K #DB@X NE SGD ,NLDMSR /DQHNCHB 2S@SHNM@QX 2NKTSHNMR
3GD 2NKTSHNM %NQLTK@ ENQ +HMD@Q -NM "NLLTS@SHUD "NKNQDC -NHRD 2XRSDLR "G@OSDQŗR 2TLL@QX /QNAKDLR 6LPXODWLQJ 3DWK:LVH 6ROXWLRQV *DX "NMBDOSR #HRBQDSHR@SHNM $QQNQ NE $WOKHBHS .MD 2SDO ,DSGNCR ENQ 1.#$R +NVDQ .QCDQ 2BGDLDR ENQ 1@MCNL #HƤDQDMSH@K $PT@SHNMR 3GD $TKDQ 'DTM 2BGDLDR ENQ 1.#$R , 3+ ! $W@LOKDR ENQ 'XAQHC #DSDQLHMHRSHB UDQ@FDC $TKDQ 'DTM 2BGDLDR -TLDQHB@K 1DRTKSR ENQ $TKDQ 'DTM 2BGDLDR
'HFGDQ .QCDQ 2BGDLDR SGQNTFG (LOKHBHS 3@XKNQ KHJD $WO@MRHNMR 3GD * 1.#$ 3@XKNQ 2BGDLDR ENQ 1.#$R , 3+ ! $W@LOKDR ENQ SGD * 1.#$ 3@XKNQ 2BGDLD -TLDQHB@K 1DRTKSR ENQ * 1.#$ 3@XKNQ 2BGDLDR
"G@OSDQŗR 2TLL@QX /QNAKDLR
&RQWHQWV
[L[
3NAH@R 1HFNHO %KNQH@M 5XSS 6WDELOLW\ RI 3DWK:LVH 6ROXWLRQV *DX "NMBDOSR 2S@AHKHSX -NS@SHNMR ENQ /@SG 6HRD 2NKTSHNMR 3GD 9NN NE 2SNBG@RSHB 2S@AHKHSX "NMBDOSR 1DK@SHNMR !DSVDDM SGD #HƤDQDMS 2S@AHKHSX -NSHNMR 2S@AHKHSX NE /@SG 6HRD 2NKTSHNMR NE +HMD@Q 1.#$R
+X@OTMNU %TMBSHNMR @MC 2S@AHKHSX NE 2NKTSHNM NE 1.#$R +X@OTMNU %TMBSHNMR @MC h 2S@AHKHSX +X@OTMNU %TMBSHNMR @MC /@SG 6HRD $PTH 2S@AHKHSX $WBTQRHNM 2S@AHKHSX 2TAIDBS SN "NMSHMTNTRKX BSHMF /DQSTQA@SHNMR "G@OSDQŗR 2TLL@QX /QNAKDLR 5DQGRP '\QDPLFDO 6\VWHPV *DX "NMBDOSR #DƥMHSHNM NE @ 1@MCNL #XM@LHB@K 2XRSDL 2S@AHKHSX @MC +X@OTMNU %TMBSHNMR %NQV@QC 2S@AHKHSX !@BJV@QCR 2S@AHKHSX "G@OSDQŗR 2TLL@QX /QNAKDLR
5 3GD 6NQJRGNO /QNIDBS 7KH :RUNVKRS ,GHD *DX "NMBDOSR (MSDFQ@SHNM NE SGD 6NQJRGNO HM SGD "NTQRD #DRHFM NE SGD 6NQJRGNO 3GD "NMBDOS NE @ 5HQST@K 2NESV@QD "NLO@MX "GNHBD NE SGD 6NQJRGNO $MUHQNMLDMS 3D@L @MC 1NKD #DRBQHOSHNMR
"G@OSDQŗR 2TLL@QX 7KH :RUNVKRS 3URMHFW 6WRFKDVWLF ([FLWDWLRQV RI 0XOWL6WRUH\ %XLOGLQJV *DX "NMBDOSR
[[
&RQWHQWV
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF /QNIDBS 2ODBHƥB@SHNM /QNIDBS 1DRTKSR +DRRNMR +D@QMS &DMDQ@K (LOQDRRHNMR %DDCA@BJ NE /@QSHBHO@MSR "NMBKTRHNM
.TSKNNJ $WSDMRHNM SN %TSTQD /QNIDBSR (MCDW !HAKHNFQ@OGX
&RQWHQWV
[[L
3NAH@R 1HFNHO %KNQH@M 5XSS
[[LL
/@QS (
,NSHU@SHNM @MC #DBNLONRHSHNM NE ,TKSH 2SNQDX !THKCHMF $WBHS@SHNM /QNAKDLR
+H ZKR VHHNV IRU PHWKRGV ZLWKRXW KDYLQJ D GHƲQLWH SUREOHP LQ PLQG VHHNV IRU WKH PRVW SDUW LQ YHLQ #ǘǭǠǛ 'ǠǣǙǜǩǫ
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
5HFDS 5DQGRP 9DULDEOHV 6WRFKDVWLF 3URFHVVHV 3GHR BG@OSDQ OQNUHCDR @ EQHDMCKX QDUHDV NE SGD BDMSQ@K BNMBDOSR NE OQNA@AHKHSX SGDNQX ENBTRHMF NM Q@MCNL U@QH@AKDR @MC SGDHQ OQNODQSHDR SG@S DUDMST@KKX KD@C SN SGD MNSHNM NE @ RSNBG@RSHB OQNBDRR .TQ @HL HR SN QDB@KK SGD A@RHB CDƥMHSHNMR @MC DPTHO SGDL VHSG S@HKNQDC HKKTRSQ@SHNMR @MC , 3+ ! BNLL@MCR Q@SGDQ SG@M DLOG@RHYD SGD LNRS FDMDQ@K @MC @ARSQ@BS L@SGDL@SHB@K BNMBDOSR
*DX "NMBDOSR 3GHR BG@OSDQ RTLR TO SGD L@SDQH@K NM FRQWLQXRXV UDQGRP YDULDEOHV @MC VWRFKDVWLF SURFHVVHV RTHS@AKD ENQ @M TMCDQFQ@CT@SD ADFHMMHMF FQ@CT@SD KDB STQD RDD : < 3GD AKDMCHMF NE , 3+ ! BNLL@MCR HMSN SGD SDWS HR LNSHU@SDC AX :< :< @MC :< R HKKTRSQ@SHUD HMSQNCTBSNQX DW@LOKDR VD LNSHU@SD SGD BNMBDOSR NE H BNM UDQFDMBD NE Q@MCNL U@QH@AKDR SG@S VHKK AD DRRDMSH@K SN RDS TO RSNBG@RSHB RS@ AHKHSX @R VDKK @R HH NE DQFNCHBHSX NE RSNBG@RSHB OQNBDRRDR $W@LOKD "NMUDQFDMBD NE 1@MCNL 5@QH@AKDR BE :< O +DS {Xi }ni=1 AD @ RDPTDMBD NE MNQL@KKX CHRSQHATSDC Q@MCNL U@QH@AKDR VHSG U@M HRGHMF LD@M @MC U@QH@MBD i−1 H D Xi ∼ N (0, i−1 ) %HFTQD CHROK@XR SGD BT LTK@SHUD CHRSQHATSHNM ETMBSHNMR NE SGD ƥQRS DKDLDMSR NE SGHR RDPTDMBD !@RDC NM SGHR ƥFTQD HS RDDLR @R HE KHLi→∞ Xi = X VHSG SGD KHLHSHMF Q@MCNL U@QH@AKD X ∼ /NHMS,@RR(0) 3GNTFG P(Xi = X) = 0 ENQ @MX i RHMBD X ∼ /NHMS,@RR(0) HR @ CHRBQDSD Q@M CNL U@QH@AKD VHSG DW@BSKX NMD NTSBNLD @MC Xi ∼ N (0, i−1 ) HR @ BNMSHMTNTR Q@MCNL U@QH@AKD ENQ @MX i ∈ N (M NSGDQ VNQCR @ BNMSHMTNTR Q@MCNL U@QH@AKD RTBG @R Xi G@R U@MHRGHMF OQNA@AHKHSX NE QD@KHRHMF @MX RHMFKD QD@K MTLADQ HM HSR RTOONQS 3GTR VD MDDC LNQD RNOGHRSHB@SDC MNSHNMR NE BNMUDQFDMBD ENQ RDPTDMBDR NE Q@MCNL U@QH@AKDR $W@LOKD $QFNCHB -NM $QFNCHB 2SNBG@RSHB /QNBDRRDR %HFTQD RGNVR RNLD R@LOKD O@SGR NE @ O@Q@LDSDQ CDODMCDMS RSNBG@RSHB OQNBDRR Xt B@KKDC řFDNLDSQHB !QNVMH@M LNSHNMŚ BE :< (M O@QSHBTK@Q Xt = X0 DWO a − 12 b2 t + bWt , &KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS
value of the cumulative distribution function
1
0.8
0.6
0.4
2
σ =1 2 σ = 0.1 2 σ = 0.01 σ2 = 0.001
0.2
0
−2
−1.5
−1
−0.5
0 x−axis
0.5
1
1.5
2
%HFTQD "TLTK@SHUD CHRSQHATSHNM ETMBSHNMR NE RDUDQ@K MNQL@KKX CHRSQHATSDC Q@MCNL U@QH@AKDR N (μ, σ 2 ) VHSG μ = 0 @MC σ 2 = 1, 10−1 , 10−2 , 10−3
VHSG HMHSH@K U@KTD X0 @S SHLD t = 0 a, b ∈ R @MC @ RS@MC@QC 6HDMDQ OQNBDRR Wt VD VHKK CHRBTRR SGHR ETMC@LDMS@K RSNBG@RSHB OQNBDRR HM "G@O 3GD FDNLDSQHB !QNVMH@M LNSHNM HR ENQ HMRS@MBD TRDC SN LNCDK RSNBJ OQHBDR HM SGD E@LNTR !K@BJ 2BGNKDR LNCDK @MC HR SGD LNRS VHCDKX TRDC LNCDK NE RSNBJ OQHBD ADG@UHNQ 6HSG RNLD CDDODQ TMCDQRS@MCHMF NE SGD OQNODQSHDR NE SGD FDNLDSQHB !QNV MH@M LNSHNM VD RDD NM SGD NMD G@MC SG@S SGD DWODBSDC U@KTD ENKKNVR SGD CD SDQLHMHRSHB DWONMDMSH@K ETMBSHNM E(Xt ) = DWO(at) .M SGD NSGDQ G@MC SGNTFG HSR O@SGŗR BNMUDQFD SN YDQN ENQ @KK a < 12 b2 ( D ENQ a ∈ (0, 12 b2 ) VD @QD HM SGD O@Q@CNWHB@K RHST@SHNM SG@S SGD DWODBS@SHNM NE SGD OQNBDRR CHUDQFDR @MC @KK HSR R@LOKDR BNMUDQFD SN YDQN RNKTSHNM /QNBDRRDR ENQ VGHBG RS@SHRSHB@K OQNODQSHDR KHJD SGD DWODBSDC U@KTD B@M AD CDQHUDC EQNL SGD R@LOKD O@SGR @QD B@KKDC řDQFNCHBŚ (M %HF @ @MC A R@LOKD @UDQ@FDR VHKK OQNUHCD @M DWBDKKDMS DRSHL@SNQ ENQ SGD DWODBSDC U@KTD 3GHR HR MNS SGD B@RD HM SGD MNM DQFNCHB B@RD CHROK@XDC HM %HF B @MC C 6GDM QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 6G@S HR @ QD@K U@KTDC RSNBG@RSHB OQNBDRR NUDQ @ OQNA@AHKHSX RO@BD 6G@S CNDR DWODBS@SHNM @MC U@QH@MBD NE @ Q@MCNL U@QH@AKD NQ @ RSNBG@RSHB OQNBDRR SDKK TR 6G@S CNDR BNMCHSHNM@K DWODBS@SHNM NE @ Q@MCNL U@QH@AKD NQ @ RSNBG@RSHB OQNBDRR LD@M 6GHBG BNMBDOSR CDRBQHAD SGD BNMUDQFDMBD NE NMD Q@MCNL U@QH@AKD SN V@QCR @MNSGDQ 6G@S CNDR SGD !NQDK "@MSDKKH KDLL@ RS@SD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
2.5 2.0 1.5
2.0
2.5
exp(0.8t) a = 0.8, b = 0.4 a = 0.8, b = 0.25 a = 0.8, b = 0.1 68,2% conf. int. for b = 0.25
0.0
1.0
0.5
1.5
1.0
exp(−0.8t) a = − 0.8, b = 0.4 a = − 0.8, b = 0.25 a = − 0.8, b = 0.1 68.2% conf. int. for b = 0.25
0.2
0.4
0.6
0.8
1.0
3.0
Time [t]
0.0
0.6
1.0
A
2.5
exp(0.1t) a = 0.1, b = 4.4 a = 0.1, b = 2.25 a = 0.1, b = 1.1 68.2% conf. int. for b = 2.25
1.5 1.0 0.5 0.0
0.0
0.5
1.0
1.5
0.8
Time [t]
2.0
2.5
0.4
@ exp(0.8t) a = 0.8, b = 4.4 a = 0.8, b = 2.25 a = 0.8, b = 1.1 68.2% conf. int. for b = 2.25
2.0
0.2
3.0
0.0
0
1
2 Time [t]
3
4
0
1
B
2 Time [t]
3
4
C
%HFTQD /@SGR NE SGD &DNLDSQHB !QNVMH@M ,NSHNM ENQ a = 0.8 X0 = 1 @ a = −0.8 X0 = 2 A a = 0.8 X0 = 1 B @MC a = 0.1 X0 = 1 (M @ @MC A SGD U@KTDR NE b @QD SGD R@LD b = 0.4, 0.25, 0.1 @MC SGD 68.2 BNMƥCDMBD HMSDQU@K ENQ SGD b = 0.25 O@SGR HR RGNVM @R VDKK @R SGD DWODBS@SHNM U@KTD X0 DWO(at) (M B @MC C SGD U@KTDR NE b @QD SGD R@LD b = 4.4, 2.25, 1.1 @MC SGD 68.2 BNMƥCDMBD HMSDQU@K ENQ SGD b = 2.25 O@SGR HR RGNVM @R VDKK @R SGD DWODBS@SHNM U@KTD X0 DWO(at)
4MCDQ VG@S BNMCHSHNMR @QD SVN RSNBG@RSHB OQNBDRRDR HMCHRSHMFTHRG@AKD 6G@S @QD SGD BG@Q@BSDQHRSHBR NE &@TRRH@M OQNBDRRDR 'NV B@M VD TSHKHYD , 3+ ! SN RHLTK@SD Q@MCNL U@QH@AKDR RSNBG@RSHB OQN BDRRDR @MC SGDHQ OQNODQSHDR @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR σ @KFDAQ@R OQNA@AHKHSX LD@RTQDR @MC OQNA@AHKHSX RO@BDR 1@MCNL U@QH@AKDR @R VDKK @R SGDHQ CDMRHSX CHRSQHATSHNM @MC LNLDMS ETMB SHNMR
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS (MCDODMCDMBD @MC BNMCHSHNM@K DWODBS@SHNM "NMUDQFDMBD HM CHRSQHATSHNM HM OQNA@AHKHSX HM SGD r SG LD@M @KLNRS RTQD BNMUDQFDMBD @MC RTQD BNMUDQFDMBD 2SNBG@RSHB OQNBDRRDR SGDHQ BNMSHMTHSX @MC HMCHRSHMFTHRG@AHKHSX *NKLNFNQNVŗR ETMC@LDMS@K @MC BNMSHMTHSX SGDNQX ,@QSHMF@KDR RTODQ L@QSHMF@KDR @MC ƥKSQ@SHNMR @MC &@TRRH@M OQNBDRRDR 3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR (M 2DB VD RS@QS VHSG SGD ETM C@LDMS@K BNMBDOSR NE Q@MCNL U@QH@AKDR FDMDQ@SDC σ @KFDAQ@R @MC CDMRHSX ETMBSHNMR -DWS 2DBSHNM CHRBTRRDR LNLDMSR NE Q@MCNL U@QH@AKDR KHJD SGD DWODBS@SHNM U@KTD @MC U@QH@MBD @R VDKK @R HMSDFQ@SHNM VHSG QDRODBS SN OQNA@ AHKHSX LD@RTQDR (M 2DB SGD DRRDMSH@K BNMBDOSR NE HMCDODMCDMBD NE Q@M CNL U@QH@AKDR @MC BNMCHSHNM@K OQNA@AHKHSHDR @MC BNMCHSHNM@K DWODBS@SHNM @QD RSTCHDC (M O@QSHBTK@Q HS HR GDQD SG@S VD FHUD SGD U@QHNTR CDƥMHSHNMR NE BNMUDQ FDMBD NE Q@MCNL U@QH@AKDR ,NQDNUDQ HM 2DB VD FHUD SGD A@RHB CDƥMH SHNMR @MC BNMBDOSR NE BNMSHMTNTR RSNBG@RSHB OQNBDRRDR SNFDSGDQ VHSG @ AQHDE CHRBTRRHNM NE &@TRRH@M OQNBDRRDR %HM@KKX 2DBSHNM VQ@OR TO SGD BNMSDMSR NE SGHR BG@OSDQ 3UHUHTXLVLWHV 2NLD OQD JMNVKDCFD NM OQNA@AHKHSX SGDNQX @MC RSNBG@RSHB OQNBDRRDR @QD GDKOETK 7HDFKLQJ 5HPDUNV 3GNTFG K@ADKDC BG@OSDQ VD BDQS@HMKX CN MNS RTFFDRS SN RS@QS @ BNTQRD ENQ ADFHMMHMF FQ@CT@SD RSTCDMSR VHSG SGD A@RHBR OQDRDMSDC HM SGHR BG@OSDQ @R HSR BNMSDMSR @QD GD@UHKX KN@CDC VHSG SDBGMHB@K CDƥMHSHNMR SG@S @QD MNS UDQX LNSHU@SHMF ENQ SGD RSTCDMS HMSDQDRSDC HM @OOKHB@SHNMR (M UHDV NE NTQ SNO CNVM @OOQN@BG VD @RRTLD SGD BNMBDOSR NE SGHR BG@OSDQ @R OQD QDPTHRHSDR SN AD BNMRHCDQDC HM @ KDBSTQD @ESDQ BG@OSDQR NQ VGDM QDPTHQDC %NQ @ KDBSTQD BK@RR HS RDDLR SN AD LNRS @OOQNOQH@SD SN FHUD SGHR BG@OSDQ @R @ GNLDVNQJ @MC CHRBTRR RNLD QDKDU@MS DWDQBHRDR SNFDSGDQ HM SGD BK@RRQNNL
1@MCNL 5@QH@AKDR &DMDQ@SDC σ KFDAQ@R @MC #DMRHSX %TMBSHNMR 6HSG QDRODBS SN SGD JDX DKDLDMSR @MC MNS@SHNMR NE OQNA@AHKHSX SGDNQX VD RS@QS VHSG SGD HMSQNCTBSHNM NE Q@MCNL U@QH@AKDR @MC DRODBH@KKX SGD σ @KFDAQ@R SGDX FDMDQ@SD -DWS CDMRHSX @MC CHRSQHATSHNM ETMBSHNMR VHKK AD CHRBTRRDC ENKKNVDC AX SGD CDƥMHSHNM NE BDMSQ@K LNLDMSR @MC LNLDMS FDMDQ@SHMF ETMBSHNMR %H M@KKX VD CDƥMD VG@S VD LD@M AX HMSDFQ@SHNM VHSG QDRODBS SN @ OQNA@AHKHSX LD@RTQD @MC FHUD RNLD TRDETK HMDPT@KHSHDR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"NMSHMTHSX ,D@RTQDR @MC /QNA@AHKHSX 2O@BDR +DS TR ƥQRS QDB@KK SGD CDƥMHSHNM NE '±KCDQ @MC +HORBGHSY BNMSHMTHSX @R VDKK @R SG@S NE C k,α ETMBSHNMR BE ENQ HMRS@MBD :< O #DƥMHSHNM '±KCDQ @MC +HORBGHSY "NMSHMTHSX C k,α ETMBSHNMR +DS (X, · X ) (Y, · Y ) AD MNQLDC RO@BDR @MC 0 < α ≤ 1 ETMBSHNM f : X → Y HR B@KKDC JOREDOO\ +·OGHU FRQWLQXRXV NE NQCDQ α HE SGDQD HR @ ONRHSHUD BNMRS@MS C RTBG SG@S f (x) − f (y)Y ≤ Cx − yαX ∀ x, y ∈ X . f HR B@KKDC ORFDOO\ +·OGHU FRQWLQXRXV NE NQCDQ α HE HS R@SHRƥDR SGD BNMCHSHNM NM DUDQX ANTMCDC RTARDS NE X f HR B@KKDC JOREDOO\ RU ORFDOO\ /LSVFKLW] FRQWLQXRXV HE HS HR FKNA@KKX NQ KNB@KKX '±KCDQ BNMSHMTNTR NE NQCDQ α = 1 f HR B@KKDC @ C k,α ETMBSHNM HE HS HR k SHLDR BNMSHMTNTRKX CHƤDQDMSH@AKD @MC SGD k SG CDQHU@SHUDR @QD KNB@KKX '±KCDQ BNMSHMTNTR NE NQCDQ α ENQ RNLD k ∈ N 3GD BDMSQ@K OQNAKDL HM LD@RTQD SGDNQX HR SN ƥMC @ LD@RTQD UNKTLD ENQ @R L@MX DKDLDMSR NE SGD ONVDQ RDS P(Rd ) @R ONRRHAKD RTBG SG@S SGHR LD@ RTQD UNKTLD HR @CCHSHUD SQ@MRK@SHNM HMU@QH@MS @MC MNQL@KHYDC R SGDQD HR MN RNKTSHNM SN CDƥMD @ LD@RTQD UNKTLD ENQ @KK DKDLDMSR NE P(Rd ) VD G@UD SN QDRSQHBS NTQRDKUDR SN RODBH@K RTA RDS RXRSDLR #DƥMHSHNM σ KFDAQ@ +DS Ω AD @ MNMDLOSX RDS P(Ω) HR B@KKDC σDOJHEUD HE
BNKKDBSHNM NE RDSR A ⊂
Ş A HR @ DOJHEUD H D Ŕ Ω ∈ A Ŕ A ∈ A ⇒ Ac ∈ A @MC A, B ∈ A ⇒ A ∪ B ∈ A Ş ∀n ∈ N : An ∈ A ⇒ ∪n∈N An ∈ A 3QHUH@K DW@LOKDR ENQ σ @KFDAQ@R @QD A = {∅, Ω} @MC A = P(Ω) LNQDNUDQ ENQ @MX A ⊂ Ω SGD σ @KFDAQ@ OQNODQSHDR NE A = {∅, A, Ac , Ω} @QD D@RHKX UDQHƥDC (M O@QSHBTK@Q HE E HR @ BNKKDBSHNM NE RTARDSR NE Ω SGDM SGD RL@KKDRS σ @KFDAQ@ FDMDQ@SDC AX E @MC CDMNSDC AX σ(E) HR CDƥMDC @R σ(E) := {A : E ⊂ A @MC A HR @ σ @KFDAQ@ NM Ω} . %NQ HMRS@MBD SGD RL@KKDRS σ @KFDAQ@ BNMS@HMHMF @KK NODM RTARDSR NE Rd HR B@KKDC SGD %RUHO σDOJHEUD CDMNSDC AX B d NQ RHLOKX AX B HE SGD CHLDMRHNM d QDPTHQDR MN RODBHƥB LDMSHNMHMF +DS Ω AD @ MNMDLOSX RDS @MC E ⊂ P(Ω) 3GD RDS RXRSDL E HR B@KKDC LQWHUVHFWLRQVWDEOH HE ∀ E1 , E2 ∈ E ⇒ E1 ∩ E2 ∈ E . 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS .AUHNTRKX DUDQX σ @KFDAQ@ HR HMSDQRDBSHNM RS@AKD +DS Ω AD @ MNMDLOSX RDS @MC A AD @ σ @KFDAQ@ NM Ω 3GD O@HQ (Ω, A) HR B@KKDC PHDVXUDEOH VSDFH @MC SGD DKDLDMSR NE A @QD B@KKDC PHDVXUDEOH VHWV #DƥMHSHNM ,D@RTQ@AKD %TMBSHNM +DS (A, A) @MC (B, B) AD LD@RTQ@AKD RO@BDR ETMBSHNM f : A → B HR B@KKDC ABPHDVXUDEOH HE f −1 (B) ⊂ A %NQ HMRS@MBD DUDQX BNMSHMTNTR ETMBSHNM f : X → Y ADSVDDM SVN LDSQHB NQ SNONKNFHB@K RO@BDR X @MC Y HR LD@RTQ@AKD #DƥMHSHNM ,D@RTQD @MC /QNA@AHKHSX ,D@RTQD +DS Ω AD @ MNMDLOSX RDS @MC A AD @ σ @KFDAQ@ NM Ω 3GDM @ RDS ETMBSHNM μ NM A HR B@KKDC @ PHDVXUH HE Ş μ(A) ∈ [0, ∞] ENQ @KK A ∈ A Ş μ(∅) = 0 Ş μ HR σ @CCHSHUD H D ENQ @MX CHRINHMS BNKKDBSHNM NE RDSR A1 , A2 , · · · ∈ A VHSG ∪n∈N An ∈ A HS GNKCR SG@S ∞ An = μ(An ) . μ n∈N
n=1
,NQDNUDQ @ LD@RTQD μ HR B@KKDC @ SUREDELOLW\ PHDVXUH HE HS @CCHSHNM@KKX R@SHR ƥDR Ş μ(Ω) = 1 LD@RTQD μ NM @ LD@RTQ@AKD RO@BD (Ω, F) HR B@KKDC σƲQLWH HE SGDQD DWHRS E1 , E2 , · · · ∈ F O@HQVHRD CHRINHMS R S Ω = ∪n∈N En @MC μ(En ) < ∞ ENQ @KK n ∈ N ,NQDNUDQ ENQ SVN LD@RTQDR μ ν NM @ LD@RTQ@AKD RO@BD (Ω, F) SGD LD@RTQD ν HR B@KKDC DEVROXWHO\ FRQWLQXRXV VHSG QDRODBS SN μ HE DUDQX μ MTKKRDS HR @ ν MTKKRDS 3GD MNS@SHNM ENQ SGHR OQNODQSX HR ν μ (E μ HR @ LD@RTQD NM SGD σ @KFDAQ@ A NE @ LD@RTQ@AKD RO@BD (Ω, A) SGDM SGD SQHOKDS (Ω, A, μ) HR B@KKDC PHDVXUHVSDFH (M O@QSHBTK@Q #DƥMHSHNM /QNA@AHKHSX 2O@BD +DS Ω AD @ MNMDLOSX RDS @MC A AD @ σ @KFDAQ@ NM Ω 3GD SQHOKDS (Ω, A, P) HR B@KKDC SUREDELOLW\ VSDFH HE P HR @ OQNA@ AHKHSX LD@RTQD NM SGD LD@RTQ@AKD RO@BD (Ω, A) +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD ONHMSR ω ∈ Ω @QD TRT@KKX @CCQDRRDC @R VDPSOH SRLQWV @MC @ RDS A ∈ A HR B@KKDC HYHQW GDQDAX P(A) CDMNSDR SGD SUREDELOLW\ NE SGD DUDMS A
(M @M DWSDMCDC BNTQRD NM LD@RTQD SGDNQX SGD OQNODQSX NE RDS RXRSDLR SN AD HMSDQRDBSHNM RS@AKD LNSHU@SDR SGD CHRBTRRHNM NE #XMJHM RXRSDLR RDD D F :< OO
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF B := {ω : X(ω) = y}
X(ω1)
Ω X(ω2)
ω1 A := {ω : X(ω) = x}
ω2
R y
x X(ω) = x for an element ω of A
P(A) = p = P({ω : X(ω) = x})
0
p
1
%HFTQD 1DK@SHNM ADSVDDM @ Q@MCNL U@QH@AKD X @MC HSR OQNA@AHKHSX ETMBSHNM ENK KNVHMF :< O
OQNODQSX VGHBG HR SQTD DWBDOS ENQ @M DUDMS NE OQNA@AHKHSX YDQN HR R@HC SN GNKC DOPRVW VXUHO\ @AAQDUH@SDC Ś@ R Ś NQ DOPRVW HYHU\ZKHUH @AAQDUH@SDC Ś@ D Ś
1@MCNL 5@QH@AKDR @MC SGD σ KFDAQ@R 3GDX &DMDQ@SD 3UREDELOLWLHV @QD @ RDS ETMBSHNMR SG@S @RRHFM @ MTLADQ ADSVDDM 0 @MC 1 SN @ RDS NE ONHMSR NE SGD R@LOKD RO@BD Ω BE :< OO 3GDHQ CNL@HM HR SGD VHW RI HYHQWV NE @ Q@MCNL DWODQHLDMS @MC SGDHQ Q@MFD HR BNMS@HMDC HM SGD HMSDQ U@K [0, 1] Q@MCNL U@QH@AKD HR @KRN @ ETMBSHNM VGNRD Q@MFD HR @ RDS NE QD@K MTLADQR ATS VGNRD CNL@HM HR SGD RDS NE R@LOKD ONHMSR ω ∈ Ω L@JHMF TO SGD VGNKD R@LOKD RO@BD Ω MNS RTARDSR NE Ω RDD %HF #DƥMHSHNM 1@MCNL 5@QH@AKD +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD 3GDM @ ETMBSHNM X : Ω → Rd HR B@KKDC UDQGRP YDULDEOH HE ENQ D@BG !NQDK RDS B ∈ B ⊂ Rd X −1 (B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A . ( D @ Q@MCNL U@QH@AKD HR @ Rd U@KTDC A LD@RTQ@AKD ETMBSHNM NM @ OQNA@AHKHSX RO@BD (Ω, A, P) 6D TRT@KKX VQHSD X @MC MNS X(ω) 3GHR ENKKNVR SGD BTRSNL VHSGHM OQNA@ AHKHSX SGDNQX NE LNRSKX MNS CHROK@XHMF SGD CDODMCDMBD NE Q@MCNL U@QH@AKDR NM SGD R@LOKD ONHMS ω ∈ Ω 6D @KRN CDMNSD P(X −1 (B)) @R P(X ∈ B) SGD OQNA@AHKHSX SG@S X HR HM B ∈ B $W@LOKD (MCHB@SNQ @MC 2HLOKD %TMBSHNMR @QD 1@MCNL 5@QH@AKDR +DS A ∈ A 3GDM SGD LQGLFDWRU IXQFWLRQ NE A 1 HE ω ∈ A IA (ω) := 0 HE ω ∈ /A 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS HR @ Q@MCNL U@QH@AKD n ,NQD FDMDQ@KKX HE A1 , A2 , . . . , An ∈ A @QD CHRINHMS RDSR RTBG SG@S Ω = ∪˙ i=1 Ai @MC a1 , a2 , . . . , am ∈ R SGDM X =
n
ai I A i
i=1
HR @ Q@MCNL U@QH@AKD B@KKDC @ VLPSOH NQ HOHPHQWDU\ IXQFWLRQ $W@LOKD 2TLR @MC OQNCTBSR NE Q@MCNL U@QH@AKDR @QD SGDLRDKUDR Q@M CNL U@QH@AKDR SNN , 3+ ! B@M FDMDQ@SD CHRSQHATSDC ORDTCN Q@MCNL MTLADQR ADSVDDM 0 @MC 1 B@M AD FDMDQ@SDC TSHKHYHMF SGD `M/ BNLL@MC %NQ HMRS@MBD SGD BNCD ADKNV FDMDQ@SDR @ NMD QNV UDBSNQ VHSG ƥUD BNKTLM DMSQHDR SGD U@KTDR NE VGHBG @QD TMHENQLKX CHRSQHATSDC NM SGD HMSDQU@K [1, 10] ` 4 R Y URy@RVX `M/UR-8Vc `4 dX383N 8XRy3k RXRee8
3XjNkd
8Xyykj
3GD , 3+ ! L@MT@K R@XR ř, 3+ ! RNESV@QD HMHSH@KHYDR SGD Q@MCNL MTLADQ FDMDQ@SNQ @S RS@QSTO 3GD FDMDQ@SNQ BQD@SDR @ RDPTDMBD NE :ORDTCN 0 3URRI BE :< O R @M DWSDMRHNM NE NTQ HMSDFQ@SHNM BNMBDOS ENQ Q@MCNL U@QH@AKDR KDS TR CHR BTRR SGD HMSDFQ@SHNM VHSG QDRODBS SN @ OQNA@AHKHSX LD@RTQD
(MSDFQ@SHNM VHSG 1DRODBS SN @ /QNA@AHKHSX ,D@RTQD 4O TMSHK MNV VD G@UD TRDC SGD BNMBDOS NE @ CDMRHSX SN RDS TO HMSDFQ@KR NUDQ Q@MCNL U@QH@AKDR VHSG QDRODBS SN SGD +DADRFTD LD@RTQD .ESDM SGDRD CDM RHSHDR @QD MNS @U@HK@AKD D@RHKX GDMBD VD AQHDƦX CDƥMD SGD HMSDFQ@SHNM VHSG QD RODBS SN @ Q@MCNL LD@RTQD HSRDKE ŕ NE BNTQRD @KK VG@S BNLDR B@M AD OK@XDC A@BJ SN NTQ OQDUHNTR CHRBTRRHNMR AX @OOKXHMF SGD SGDNQDL NE 1@CNM -HJNCXL 3GDNQDL HM NQCDQ SN F@HM SGD @OOQNOQH@SD CDMRHSX ETMBSHNM (MSDFQ@SHNM VHSG QDRODBS SN @ OQNA@AHKHSX LD@RTQD HR BNLLNMKX CDƥMDC HM @ SGQDD RSDO OQNBDRR NESDM B@KKDC RSNBG@RSHB HMCTBSHNM n (E (Ω, A, P) HR @ OQNA@AHKHSX RO@BD @MC X = i=1 ai IAi HR @ QD@K U@KTDC RHLOKD Q@MCNL U@QH@AKD VD CDƥMD SGD HMSDFQ@K NE X VHSG QDRODBS SN P AX
n XCP := ai P(Ai ) . Ω
i=1
(E MDWS X HR @ MNM MDF@SHUD Q@MCNL U@QH@AKD VD CDƥMD
XCP := RTO Y CP . Ω
Y ≤X, Y RHLOKD Ω
%HM@KKX HE X : Ω → R HR @ Q@MCNL U@QH@AKD VD VQHSD
+ XCP := X CP − X − CP , Ω
Ω
Ω
OQNUHCDC @S KD@RS NMD NE SGD HMSDFQ@KR NM SGD QHFGS G@MC RHCD HR ƥMHSD 'DQD VD TRDC SGD ONRHSHUD O@QS X + := L@W(X, 0) @MC SGD MDF@SHUD O@QS X − := LHM(X, 0) NE X RN SG@S VD G@UD X = X + − X −
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF -DWS RTOONRD X = (X (1) , X (2) , . . . , X (d) )T : Ω → Rd HR @ UDBSNQ U@KTDC Q@M CNL U@QH@AKD 3GDM
(1) (2) (d) XCP := X CP, X CP, . . . , X CP . Ω
Ω
Ω
Ω
6D VHKK @RRTLD SGD TRT@K QTKDR ENQ SGDRD HMSDFQ@KR SN GNKC ,NQDNUDQ VD B@M VQHSD SGD DWODBSDC U@KTD E(X) @MC SGD U@QH@MBD Var(X) NE @ UDBSNQ U@KTDC Q@MCNL U@QH@AKD X @R
E(X) = XCP @MC Var(X) = |X − E(X)|2 CP , Ω
Ω
VGDQD | · | CDMNSDR SGD $TBKHCD@M MNQL .ARDQUD HM O@QSHBTK@Q SG@S Var(X) = E(|X − E(X)|2 ) = E(|X|2 ) − |E(X)|2 . 3GD FNNC SGHMF @ANTS CDƥMHMF LD@M @MC U@QH@MBD VHSG QDRODBS SN OQNA@ AHKHSX LD@RTQDR HR SG@S HS @KKNVR TR SN TRD SGD R@LD RXLANKR @MC ENQLTK@R ENQ ANSG BNMSHMTNTR @MC CHRBQDSD Q@MCNL U@QH@AKDR .MD L@X MNSD SG@S VHSG QD RODBS SN CHRBQDSD Q@MCNL U@QH@AKDR @MC SGDHQ CHRBQDSD OQNA@AHKHSX LD@RTQDR BNTMSHMF LD@RTQDR SGD @ANUD HMSDFQ@KR ADBNLD RTLR +DS X ∼ N (0, 1) 4SHKHYHMF , 3+ ! VD DRSHL@SD SGD LD@M @MC U@QH@MBD NE X 2 t 4 `M/MUR-RyyyyVc v 4 tXkc K 4 K2MUvVc p 4 p`UvVc K 4 yXNNdek p 4 kXyRky
(MCDODMCDMBD @MC "NMCHSHNM@K $WODBS@SHNM +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD @MC A, B ∈ A AD SVN DUDMSR VHSG P(B) > 0 6D V@MS SN ƥMC @ QD@RNM@AKD CDƥMHSHNM NE P(A|B) = ŚSGD OQNA@AHKHSX NE A FHUDM BŚ 2TOONRD RNLD ONHMS ω ∈ Ω HR RDKDBSDC Ś@S Q@MCNLŚ @MC VD @QD SNKC ω ∈ B 6G@S SGDM HR SGD OQNA@AHKHSX SG@S ω ∈ A @KRN 2HMBD VD JMNV ω ∈ B VD B@M QDF@QC B @R ADHMF @ MDV OQNA@AHKHSX RO@BD ˜ := B DMCNVDC VHSG SGD SQ@BD σ @KFDAQ@ A˜ := {C ∩ B : 3GDQDENQD VD CDƥMD Ω ˜ := P RN SG@S P( ˜ Ω) ˜ = 1 3GDM SGD OQNA@AHKHSX C ∈ A} @MC SGD LD@RTQD P P(B) SG@S ω KHDR HM A HR P(A ∩ B) ˜ . P(A|B) = P(A) = P(B) 3GHR LNSHU@SDR SGD ENKKNVHMF CDƥMHSHNM 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD CDƥMHSHNMR NE SGD DWODBSDC U@KTD E(X) @MC SGD U@QH@MBD Var NE @ QD@K U@KTDC Q@MCNL U@QH@AKD X 6G@S CN SGDRD SVN BNMBDOSR HKKTRSQ@SD 0 +DS SGD CDMRHSX ETMBSHNM f (x) NE @ Q@MCNL U@QH@AKD x AD FHUDM @R f (x) := RHM(x) x ∈ [0, 12 π] "NLOTSD SGD DWODBSDC U@KTD @MC U@QH@MBD NE x 0 +DS SGD CDMRHSX ETMBSHNM f (x) NE @ Q@MCNL U@QH@AKD x AD FHUDM @R f (x) := 6x − 6x2 x ∈ [0, 1] "NLOTSD SGD DWODBSDC U@KTD @MC U@QH@MBD NE x 0 6GX @QD LNLDMS FDMDQ@SHMF ETMBSHNMR TRDETK (KKTRSQ@SD XNTQ @MRVDQ VHSG SGD DW@LOKD NE MNQL@KKX CHRSQHATSDC Q@MCNL U@QH@AKDR 0 6G@S CNDR "GDAXRDUŗR HMDPT@KHSX RS@SD 0 +DS (Ω, A, P) AD @ OQNA@AHKHSXRO@BD @MC X AD @ QD@K U@KTDC Q@MCNL U@QH @AKD 6G@S CNDR SGD RXLANK Ω XCP LD@M 'NV CNDR SGHR QDK@SD SN E(X) @MC Var #DƥMHSHNM "NMCHSHNM@K /QNA@AHKHSX +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD @MC A, B ∈ A AD SVN DUDMSR VHSG P(B) > 0 3GDM SGD FRQGLWLRQDO SUREDELOLW\ P(A|B) NE A FHUDM B HR CDƥMDC @R P(A|B) :=
P(A ∩ B) . P(B)
-NV VG@S RGNTKC HS LD@M SN R@X ŚA @MC B @QD HMCDODMCDMSŚ 3GHR RGNTKC LD@M P(A|B) = P(A) RHMBD OQDRTL@AKX @MX HMENQL@SHNM SG@S SGD DUDMS B NBBTQQDC HR HQQDKDU@MS HM CDSDQLHMHMF SGD OQNA@AHKHSX SG@S A G@R NBBTQQDC 3GTR P(A) = P(A|B) =
P(A ∩ B) ⇒ P(A ∩ B) = P(A) · P(B) , P(B)
HE P(B) > 0 6D S@JD SGHR ENQ SGD CDƥMHSHNM DUDM HE P(B) = 0 #DƥMHSHNM 3VN (MCDODMCDMS $UDMSR +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD 3VN DUDMSR A @MC B @QD B@KKDC LQGHSHQGHQW HE P(A ∩ B) = P(A) · P(B) .
5HRT@KKX HMCDODMCDMBD NE SVN DUDMSR A @MC B LD@MR SG@S SGD Q@SHN P(A) SN P(Ω) = 1 HR SGD R@LD @R SGD Q@SHN P(A ∩ B) SN P(B) NQ LNQD RKNOOX SGD A SN Ω HR SGD R@LD @R SGD O@QS NE A HM B SN B
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
A
A B
B Ω = [0, 1]2
%HFTQD M DW@LOKD VHSG ŚFDNLDSQHB OQNA@AHKHSHDRŚ λ(Ω) = 1 λ(A) = λ(B) = 0.25 R S λ(A ∩ B) = 0.252 3GTR A @MC B @QD HMCDODMCDMS ,NQDNUDQ λ(Ac ) = λ(B c ) = 1 − 0.2.5 = 0.75 λ(Ac ∩ B) = λ(B \ (A ∩ B)) = 0.25 − 0.252 = 0.1875 @MC λ(Ac )λ(B) = 0.75 · 0.25 = 0.1875 H D Ac @MC B @QD HMCDODMCDMS
3GHR BNMBDOS @MC HSR Q@LHƥB@SHNMR @QD SGD G@KKL@QJR NE OQNA@AHKHSX SGDNQX (S HR D@RX SN BGDBJ SG@S HE A @MC B @QD HMCDODMCDMS SGDM RN @QD Ac @MC B NQ KHJDVHRD Ac @MC B c RDD %HF D F 3VN DUDMSR A @MC B @QD B@KKDC PXWXDOO\ H[FOXVLYH HE A ∩ B = ∅ .MD B@M RGNV SG@S SVN DUDMSR B@MMNS AD ANSG HMCDODMCDMS @MC LTST@KKX DWBKTRHUD TMKDRR NMD NE SGD SVN HR @ MTKK RDS 3GD ENKKNVHMF CDƥMHSHNM DWSDMCR SGD BNMBDOS NE HMCDODMCDMBD ƥQRS SN @M @QAHSQ@QX MTLADQ NE DUDMSR TMCDQ BNMRHCDQ@SHNM SGDM SN σ @KFDAQ@R @MC K@RS SN Q@MCNL U@QH@AKDR #DƥMHSHNM (MCDODMCDMBD NE $UDMSR σ KFDAQ@R @MC 1@MCNL 5@QH @AKDR +DS (Ω, A, P) AD @ OQNA@AHKHSX RO@BD Ş +DS A1 , A2 , . . . AD DUDMSR HM (Ω, A, P) 3GDRD DUDMSR @QD LQGHSHQGHQW HE ENQ @KK BGNHBDR NE 1 ≤ k1 < k2 < · · · < kn HS GNKCR SG@S P(Ak1 ∩ Ak2 ∩ · · · ∩ Akn ) = P(Ak1 ) · P(Ak2 ) · · · · · P(Akn ) . Ş +DS Ai ⊂ A i = 1, 2, . . . AD σ @KFDAQ@R 3GD {Ai }∞ i=1 @QD LQGHSHQGHQW HE ENQ @KK BGNHBDR NE 1 ≤ k1 < k2 < · · · < kn @MC NE DUDMSR Ai ∈ Ai HS GNKCR SG@S P(Ak1 ∩ Ak2 ∩ · · · ∩ Akn ) = P(Ak1 ) · P(Ak2 ) · · · · · P(Akn ) . Ş +DS Xi : Ω → Rd i = 1, 2, . . . AD Q@MCNL U@QH@AKDR 3GD Q@MCNL U@QH@AKDR X1 , X2 , . . . @QD LQGHSHQGHQW HE ENQ @KK HMSDFDQR k ≥ 2 @MC @KK BGNHBDR NE !NQDK RDSR B1 , B2 , . . . , Bk ⊂ Rd HS GNKCR SG@S P(X1 ∈ B1 , X2 ∈ B2 , . . . , Xk ∈ Bk ) = P(X1 ∈ B1 )·P(X2 ∈ B2 )·...·P(Xk ∈ Bk ) . 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3GHR HR DPTHU@KDMS SN R@XHMF SG@S SGD σ @KFDAQ@R {A(Xi )}∞ i=1 FDMDQ@SDC AX SGD Xi @QD HMCDODMCDMS -DWS VD FHUD SGD BNMMDBSHNM SN CHRSQHATSHNM ETMBSHNMR @MC CDMRHSHDR NE HM CDODMCDMS Q@MCNL U@QH@AKDR 3GDNQDL (MCDODMCDMBD "QHSDQH@ ENQ #HRSQHATSHNM @MC #DMRHSX %TMBSHNM /HW (Ω, A, P) EH D SUREDELOLW\ VSDFH 7KH UDQGRP YDULDEOHV X1 , . . . , Xn : Ω → R ZLWK GLVWULEXWLRQ IXQFWLRQV FXi RI Xi i = 1, . . . , n DUH LQGHSHQGHQW LI DQG RQO\ LI FX1 ,...,Xn (x1 , . . . , xn ) = FX1 (x1 ) · ... · FXn (xn ) , IRU DOO xi ∈ Rd i = 1, . . . , n 0RUHRYHU LI WKH UDQGRP YDULDEOHV X1 , . . . , Xn KDYH GHQVLWLHV LV HTXLYD OHQW WR fX1 ,...,Xn (x1 , . . . , xn ) = fX1 (x1 ) · ... · fXn (xn )
∀ xi ∈ Rd i = 1, . . . , n ,
ZKHUH WKH IXQFWLRQV fXi DUH WKH GHQVLWLHV FRUUHVSRQGLQJ WR Xi 3URRI %NQ SGD @RRDQSHNM V Q S SGD CHRSQHATSHNMR KDS TR @RRTLD ƥQRS SG@S SGD Xi i = 1, . . . , n @QD HMCDODMCDMS 3GDM FX1 ,...,Xn (x1 , . . . , xn ) = P(X1 ≤ x1 , . . . , Xn ≤ xn ) = P(X1 ≤ x1 ) · ... · P(Xn ≤ xn ) = FX1 (x1 ) · ... · FXn (xn ) -DWS VD OQNUD SGD @RRDQSHNM V Q S SGD CDMRHSHDR 'DQD VD OQNUD SGD BNM UDQRD RS@SDLDMS ENQ SGD B@RD SG@S @KK Q@MCNL U@QH@AKDR G@UD CDMRHSHDR 2DKDBS Ai ∈ A(Xi ) i = 1, . . . , n 3GDM Ai = Xi−1 (Bi ) ENQ RNLD Bi ∈ B 'DMBD P(A1 ∩ · · · ∩ An ) = P(X1 ∈ B1 , . . . , Xn ∈ Bn )
= fX1 ,...,Xn (x1 , . . . , xn )Cx1 . . . Cxn B1 ×···×Bn
=
n
i=1
Bi
fXi (xi )Cxi
=
n
P(Xi ∈ Bi ) =
i=1
n
P(Ai ) .
i=1
3GDQDENQD A(X1 ), . . . , A(Xn ) @QD HMCDODMCDMS σ @KFDAQ@R 3VN NE SGD LNRS HLONQS@MS OQNODQSHDR NE HMCDODMCDMS Q@MCNL U@QH@AKDR @QD FHUDM HM SGD ENKKNVHMF SGDNQDL
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 3GDNQDL (MCDODMCDMBD (LOKHB@SHNMR ENQ ,D@M @MC 5@QH@MBD /HW (Ω, A, P) EH D SUREDELOLW\ VSDFH DQG X1 , . . . , Xn : Ω → Rd DUH LQGHSHQGHQW UDQGRP YDULDEOHV Ţ ,I E(|Xi |) < ∞ IRU i = 1, . . . , n WKHQ E(|X1 · ... · Xn |) < ∞
DQG
E(X1 · ... · Xn ) = E(X1 ) · ... · E(Xn ) .
Ţ ,I Var(Xi ) < ∞ IRU i = 1, . . . , n WKHQ Var(X1 + · · · + Xn ) = Var(X1 ) + · · · + Var(Xn ) . 3URRI %NQ SGD ƥQRS O@QS KDS TR RTOONRD SG@S D@BG Xi HR ANTMCDC @MC G@R @ CDMRHSX 3GDM n
E Xi x1 · ... · xn fX1 ,...,Xn (x1 , . . . , xn )Cx1 . . . Cxn = Rd
i=1
=
n
R
i=1
xi fXi (xi )Cxi
=
n
E(Xi ) ,
i=1
VGDQD HMCDODMCDMBD V@R TRDC SN ROKHS SGD HMSDFQ@K NUDQ SGD INHMS CDMRHSHDR HMSN @ OQNCTBS %NQ SGD RDBNMC O@QS KDS TR TRD HMCTBSHNM @MC BNMRHCDQ SGD B@RD n = 2 SGD @QAHSQ@QX B@RD ENKKNVR AX @M @M@KNFNTR SQ@HM NE SGNTFGSR +DS μ1 := E(X1 ) @MC μ2 := E(X2 ) 3GDM E(X1 + X2 ) = μ1 + μ2 @MC
Var(X1 + X2 ) = X1 + X2 − (μ1 + μ2 )2 CP Ω
=
Ω
(X1 − μ1 )2 CP +
Ω
(X2 − μ2 )2 CP + 2
Ω
(X1 − μ1 )(X2 − μ2 )CP
= Var(X1 ) + Var(X2 ) + 2 E(X1 − μ1 ) E(X2 − μ2 ) , =0
=0
VGDQD VD TRDC HMCDODMCDMBD HM SGD MDWS K@RS RSDO
"NMCHSHNM@K $WODBS@SHNM M DKDF@MS @OOQN@BG SN BNMCHSHNM@K DWODBS@SHNM HR A@RDC TONM OQNIDBSHNMR NMSN BKNRDC RTA RO@BDR @MC LNSHU@SDC AX SGD ENKKNVHMF ƥMHSD CHLDMRHNM@K DW@LOKD
6D VHKK ENKKNV SGD @QFTLDMSR NTSKHMDC HM :< OO @MC :< OO
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS x
x
z = projV(x) V
z = projV(x)
%HFTQD (KKTRSQ@SHNM NE SGD ƥMHSD CHLDMRHNM@K KD@RS RPT@QDR @OOQN@BG
+D@RS RPT@QDR LDSGNC "NMRHCDQ ENQ SGD LNLDMS Rd @MC RTOONRD SG@S V ⊂ Rd HR @ OQNODQ RTARO@BD 2TOONRD VD @QD FHUDM @ UDBSNQ x ∈ Rd 3GD KD@RS RPT@QDR OQNAKDL @RJR TR SN ƥMC @ UDBSNQ z ∈ V RTBG SG@S |z − x| = LHM |y − x| . y∈V
.MD B@M RGNV SG@S FHUDM x SGDQD DWHRSR @ TMHPTD UDBSNQ z ∈ V RNKUHMF SGHR LHMHLHR@SHNM OQNAKDL 6D B@KK Y SGD OQNIDBSHNM NE x NMSN V z = projV (x) BE %HF -NV VD V@MS SN ƥMC @ ENQLTK@ BG@Q@BSDQHRHMF z %NQ SGHR VD S@JD @MX NSGDQ UDBSNQ w ∈ V @MC CDƥMD i(τ ) := |z + τ w − x|2 . 2HMBD z + τ w ∈ V ENQ @KK τ VD RDD SG@S SGD ETMBSHNM i(·) G@R @ LHMHLTL @S τ = 0 'DMBD 0 = i (0) = 2(z − x)w H D xw = zw
ENQ @KK w ∈ V .
3GD FDNLDSQHB HMSDQOQDS@SHNM HR SG@S SGD ŚDQQNQŚ x − z HR ODQODMCHBTK@Q SN SGD RTARO@BD V /QNIDBSHNM NE Q@MCNL U@QH@AKDR ,NSHU@SDC AX SGD DW@LOKD @ANUD VD QD STQM MNV SN BNMCHSHNM@K DWODBS@SHNM +DS TR S@JD SGD KHMD@Q RO@BD L2 (Ω) = L2 (Ω, A) VGHBG BNMRHRSR NE @KK QD@K U@KTDC A LD@RTQ@AKD Q@MCNL U@QH@AKDR Y RTBG SG@S
||Y || :=
Ω
Y 2 CP
1/2
< ∞.
6D B@KK ||Y || SGD MNQL NE Y @MC HE X, Y ∈ L2 (Ω) VD CDƥMD SGD HMMDQ OQNCTBS SN AD
(X, Y ) := XY CP = E(XY ) . Ω
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF -DWS S@JD @R ADENQD S SN AD @ RTA σ @KFDAQ@ NE A "NMRHCDQ SGDM V := L2 (Ω, S) , SGD RO@BD NE @KK RPT@QD HMSDFQ@AKD Q@MCNL U@QH@AKDR SG@S @QD S LD@RTQ@AKD 3GHR HR @ BKNRDC RTA RO@BD HM L2 (Ω) "NMRDPTDMSKX HE X ∈ L2 (Ω) VD B@M CDƥMD HSR OQNIDBSHNM Z := projV (X) , AX @M@KNFX VHSG SGD ƥMHSD CHLDMRHNM@K B@RD ITRS CHRBTRRDC KLNRS DW@BSKX @R ADENQD VD B@M RGNV (X, W ) = (Z, W )
ENQ @KK W ∈ V .
3@JD HM O@QSHBTK@Q W = IA ENQ @MX RDS A ∈ S (M UHDV NE SGD HMMDQ OQNCTBS HS ENKKNVR SG@S
XCP = ZCP ENQ @KK A ∈ S . A
A
2HMBD Z ∈ V HR S LD@RTQ@AKD VD RDD SG@S Z HM E@BS HR E(X|S) @R CDƥMDC HM NTQ D@QKHDQ CHRBTRRHNM 3G@S HR E(X|S) = projV (X) . 6D BNTKC SGDQDENQD @KSDQM@SHUDKX S@JD SGD K@RS HCDMSHSX @R @ CDƥMHSHNM NE BNM CHSHNM@K DWODBS@SHNM 3GHR ONHMS NE UHDV @KRN L@JDR HS BKD@Q SG@S Z = E(X|S) RNKUDR SGD KD@RS RPT@QDR OQNAKDL ||Z − X|| = LHM ||Y − X|| , Y ∈V
@MC RN E(X|S) B@M AD HMSDQOQDSDC @R SG@S S LD@RTQ@AKD Q@MCNL U@QH@AKD VGHBG HR SGD ADRS KD@RS RPT@QDR @OOQNWHL@SHNM NE SGD Q@MCNL U@QH@AKD X
%TQSGDQ /QNODQSHDR NE SGD "NMCHSHNM@K $WODBS@SHNM .SGDQ HLONQS@MS OQNODQSHDR NE SGD BNMCHSHNM@K DWODBS@SHNM @QD @R ENKKNVR |E(X|S)| ≤ E(|X||S) X ≥ 0 SGDM E(X|S) ≥ 0 X S LD@RTQ@AKD SGDM E(X|S) = X X = a = BNMRS SGDM E(X|S) = a
-NSD @KK SGDRD DPT@SHNMR @MC HMDPT@KHSHDR GNKC @KLNRS RTQDKX %NQ SGD OQNNER RDD D F :< OO NQ :< OO
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS X, Y ∈ L1 SGDM E(aX + bY |S) = aE(X|S) + bE(Y |S) X ≤ Y SGDM E(X|S) ≤ E(Y |S) X S LD@RTQ@AKD @MC Y, XY ∈ L1 SGDM E(XY |S) = XE(Y |S) HM O@QSHBTK@Q E(E(X|S)Y |S) = E(X|S)E(Y |S) X S HMCDODMCDMS SGDM E(X|S) = E(X) S1 ⊂ S2 ⊂ A SGDM E(E(X|S2 )|S1 ) = E(E(X|S1 )|S2 ) = E(X|S1 ) 3GD FRQGLWLRQDO SUREDELOLW\ P(A|S) NE @M DUDMS A TMCDQ SGD BNMCHSHNM S ⊂ A HR CDƥMDC AX P(A|S) := E(IA |S) . !DHMF SGTR @ BNMCHSHNM@K DWODBS@SHNM SGD BNMCHSHNM@K OQNA@AHKHSX HR @ S LD@RTQ@AKD ETMBSHNM NM Ω (M O@QSHBTK@Q ENQ @ S FDMDQ@SDC AX @S LNRS BNTMS @AKX L@MX @SNLR {An } P(A|S)(ω) =
P(A ∩ An ) P(An )
∀ ω ∈ An
RTBG SG@S P(An ) > 0 %QNL SGD OQNODQSHDR NE SGD BNMCHSHNM@K DWODBS@SHNM HS ENKKNVR SG@S 0 ≤ P(A|S) ≤ 1 P(∅|S) = 0 P(Ω|S) = 1 @MC ∞ ∞ P An |S = P(An |S) VHSG {An } O@HQVHRD CHRINHMS HM A , n=1
n=1
@KLNRS RTQDKX 'NVDUDQ RHMBD P(A|S) HR CDƥMDC NMKX TO SN @ RDS NE LD@RTQD YDQN CDODMC HMF NM A HS CNDR MNS ENKKNV SG@S P(·|S) HR ENQ ƥWDC ω ∈ Ω @ OQNA@AHKHSX NM A .M SGD NSGDQ G@MC ENQ @ Q@MCNL U@QH@AKD X BNMRHCDQ SGD BNMCHSHNM@K OQNA@ AHKHSX P(X ∈ B|S) = P({ω : X(ω) ∈ B}|S) , B ∈ B d . 3GDQD DWHRSR @ ETMBSHNM p(ω, B) CDƥMDC NM Ω × B d VHSG SGD ENKKNVHMF OQNODQ SHDR Ş ENQ ƥWDC ω ∈ Ω SGD ETMBSHNM p(ω, ·) HR @ OQNA@AHKHSX NM B d Ş ENQ ƥWDC B SGD ETMBSHNM p(ω, ·) HR @ UDQRHNM NE P(X ∈ B|S) H D p(·, B) HR S LD@RTQ@AKD @MC
p(ω, B)CP(ω) ∀ S ∈ S . P(S ∩ (X ∈ B)) = S
%NQ HMRS@MBD SGD DKDLDMS@QX BNMCHSHNM@K OQNA@AHKHSX NE @M DUDMS A ∈ A TMCDQ SGD BNMCH P(A ∩ B) . SHNM B ∈ A VHSG P(B) > 0 HR P(A|B) = P(B)
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 2TBG @ ETMBSHNM p TMHPTDKX CDƥMDC TO SN @ RDS NE LD@RTQD YDQN HM S SG@S HR HMCDODMCDMS NE B HR B@KKDC FRQGLWLRQDO SUREDELOLW\ GLVWULEXWLRQ RI X IRU JLYHQ S %NQ g(X) ∈ L1
E(g(X)|S) =
Rd
g(x)p(ω, Cx) .
"NMUDQFDMBD "NMBDOSR ENQ 2DPTDMBDR NE 1@MCNL 5@QH@AKDR -DWS VD FHUD SGD LNRS BNLLNM BNMUDQFDMBD MNS@SHNMR ENQ Q@MCNL U@QH@AKDR RDD ENQ DW@LOKD :< OO "NMUDQFDMBD HM #HRSQHATSHNM +DS {Fn }n≥0 AD SGD RDPTDMBD NE CHRSQHATSHNM ETMBSHNMR NQ K@VR BNQQDRONMCHMF SN SGD Q@MCNL U@QH@AKDR {Xn }n≥0 @MC F AD SGD CHRSQHATSHNM BNQQDRONMCHMF SN SGD Q@MCNL U@QH@AKD X 3GDM SGD RDPTDMBD Xn BNMUDQFDR SNV@QC X LQ GLVWULEXWLRQ NQ ZHDNO\ NQ LQ ODZ HE KHL Fn (x) = F (x)
ENQ @KK x ∈ R @S VGHBG F HR BNMSHMTNTR .
n→∞
D
"NMUDQFDMBD HM CHRSQHATSHNM HR NESDM CDMNSDC AX Xn → X 2HMBD F (x) = P(X ≤ x) BNMUDQFDMBD HM CHRSQHATSHNM LD@MR SG@S SGD U@KTD NE X HR HM @ FHUDM Q@MFD UDQX RHLHK@Q SN SGD OQNA@AHKHSX SG@S SGD U@KTD NE Xn HR HM SG@S Q@MFD OQNUHCDC SG@S n HR RTƧBHDMSKX K@QFD (M SGD ENKKNVHMF CDƥMHSHNMR {Xn }n≥0 CDMNSDR @ RDPTDMBD NE Q@MCNL U@QH @AKDR @MC X HR @ Q@MCNL U@QH@AKD "NMUDQFDMBD HM /QNA@AHKHSX 3GD RDPTDMBD Xn BNMUDQFDR SNV@QC X LQ SURE DELOLW\ HE KHL P(Xn − X ≥ ε} = 0 ENQ @KK ε > 0 . n→∞
P
"NMUDQFDMBD HM OQNA@AHKHSX HR NESDM CDMNSDC AX Xn → X 3GD CDƥMHMF DPT@KHSX HR DPTHU@KDMS SN KHLn→∞ P(Xn − X < ε) = 1 ENQ @KK ε > 0 "NMUDQFDMBD KLNRS $UDQXVGDQD 3GD RDPTDMBD Xn BNMUDQFDR SNV@QC X DO PRVW VXUHO\ NQ DOPRVW HYHU\ZKHUH NQ ZLWK SUREDELOLW\ NQ VWURQJO\ HE ! P KHL Xn = X = 1 . n→∞
@ R
KLNRS RTQD BNMUDQFDMBD HR NESDM CDMNSDC AX Xn → X 3GD DPT@KHSX HR DPTHU@KDMS SN P ({ω ∈ Ω : KHLn→∞ Xn (ω) = X(ω)}) = 1
1DB@KK SGD VNQC ŚK@VŚ HR RNLDSHLDR TRDC @R @ RXMNMXL NE ŚOQNA@AHKHSX CHRSQHATSHNMŚ
M DPTHU@KDMS CDƥMHSHNM HR Xn → X HE E(f (Xn )) → E(f (X)) ENQ n → ∞ @MC @KK QD@K U@KTDC ANTMCDC @MC BNMSHMTNTR ETMBSHNMR f RDD D F :< O
6HFWLRQ
D
3NAH@R 1HFNHO %KNQH@M 5XSS 2TQD "NMUDQFDMBD 3GD RDPTDMBD Xn BNMUDQFDR SNV@QC X VXUHO\ NQ HYHU\ ZKHUH NQ SRLQWZLVH HE KHL Xn (ω) = X(ω)
n→∞
ENQ @KK ω ∈ Ω .
3GD CDƥMHMF DPT@KHSX HR DPTHU@KDMS SN {ω ∈ Ω : KHLn→∞ Xn (ω) = X(ω)} = Ω "NMUDQFDMBD HM SGD r SG ,D@M 3GD RDPTDMBD Xn BNMUDQFDR SNV@QC X LQ WKH rWK PHDQ NQ LQ WKH Lr QRUP HE KHL E (Xn − Xr ) = 0 .
n→∞
Lr
"NMUDQFDMBD HM SGD r SG LD@M HR NESDM CDMNSDC AX Xn → X (E r = 1 VD R@X Xn BNMUDQFDR SNV@QC X LQ PHDQ @MC HE r = 2 VD R@X Xn BNMUDQFDR SNV@QC X LQ PHDQ VTXDUH NQ LQ TXDGUDWLF PHDQ P
6D VHKK TRD SGD RN B@KKDC !NQDK "@MSDKKH KDLL@ SN OQNUD SG@S Xn → X HL OKHDR RTQD BNMUDQFDMBD ENQ RNLD RTARDPTDMBD (Xnj )j∈N ⊂ (Xn )n∈N (M NQCDQ SN RS@SD SGHR KDLL@ VD CDƥMD VG@S VD LD@M AX @M DUDMS NBBTQQHMF HMƥMHSDKX NESDM +DS A1 , A2 , . . . AD DUDMSR HM @ OQNA@AHKHSX RO@BD 3GDM SGD DUDMS A := KHL RTO An := n→∞
∞ ∞
Am =
n=1 m=n
= {ω ∈ Ω : ω ADKNMFR SN HMƥMHSDKX L@MX NE SGD Am } HR B@KKDC An LQƲQLWHO\ RIWHQ @AAQDUH@SDC ŚAn H N Ś +DLL@ !NQDK "@MSDKKH +DLL@ ,I n P(An ) < ∞ WKHQ P(A) = 0 ,I WKH VHTXHQFH {An } LV LQGHSHQGHQW WKHQ FRQYHUVHO\ n P(An ) = ∞ LPSOLHV P(A) = 1 ∞ 3URRI +DS TR RS@QS VHSG SGD ƥQRS O@QS !X CDƥMHSHNM An H N = ∩∞ n=1 ∪m=n Am @MC GDMBD ENQ D@BG n
P(An H N ) ≤ P(∪∞ m=n Am ) ≤
∞
P(Am ) .
m=n
3GD KHLHS NE SGD QHFGS G@MC RHCD HR YDQN @R n → ∞ ADB@TRD ∞ n=1 P(An ) < ∞ %NQ SGD RDBNMC O@QS VD NAS@HM ADB@TRD NE HMCDODMCDMBD ∞ ∞ ∞ ∞ P(An H N ) = P Am = 1 − P Acm n=1 m=n
n=1 m=n
RDD :< OO
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF a.s. Lr
P
r>s>1 Ls
r>0
L1
D
%HFTQD (LOKHB@SHNMR ENQ SGD CHƤDQDMS BNMUDQFDMBD BNMBDOSR ANKC @QQNVR 3GD ETQSGDQ RGNVM HLOKHB@SHNMR C@RGDC @QQNVR QDPTHQD @CCHSHNM@K @RRTLOSHNMR
= 1 − KHL
n→∞
= 1 − KHL
n→∞
RHMBD
∞
n=1 P(An )
∞
= 1 − KHL
Acm
n→∞
m=n ∞
∞
P (Acm )
m=n
(1 − P(Am )) = 1 − 0 = 1 ,
m=n
= ∞ HR DPTHU@KDMS SN
"∞
m=1 (1
− P(Am )) = ∞
3GD ENKKNVHMF OQNONRHSHNM HKKTRSQ@SDR SGD @OOKHB@SHNM NE SGD !NQDK "@MSDKKH KDLL@ P
/QNONRHSHNM ,I Xn → X WKHQ WKHUH H[LVWV D VXEVHTXHQFH (Xnj )j∈N ⊂ (Xn )n∈N VXFK WKDW Xnj (ω) → X(ω) ∀ω ∈ Ω. 3URRI %NQ D@BG ONRHSHUD HMSDFDQ j VD RDKDBS nj RN K@QFD SG@S P(|Xnj − X| > j −1 ) ≤ j −2 @MC @KRN · · · < kj−1 < kj < . . . kj → ∞ +DS Aj := {|Xnj − X| > j −1 } 2HMBD j j −2 < ∞ SGD !NQDK "@MSDKKH KDLL@ HLOKHDR P(Aj H N ) = 0 3GDQDENQD ENQ @KLNRS @KK R@LOKD ONHMSR ω VD G@UD |Xnj (ω) − X(ω)| ≤ j −1 OQNUHCDC j ≥ J ENQ RNLD HMCDW J CDODMCHMF NM ω .E BNTQRD SGHR V@R ITRS SGD SHO NE SGD HBDADQF BNMBDQMHMF QDK@SHNMR ADSVDDM SGD U@QHNTR BNMUDQFDMBD MNS@SHNMR %NQ HMRS@MBD RTQD BNMUDQFDMBD HLOKHDR @KK NE SGD NSGDQ JHMCR NE ITRS MNSDC BNMUDQFDMBD BNMBDOSR ,NQDNUDQ SGD ENKKNV HMF HLOKHB@SHNMR GNKC RDD %HF ENQ @ UHRT@KHR@SHNM /QNONRHSHNM "NMUDQFDMBD "NMBDOS (LOKHB@SHNMR /HW {Xn }n≥0 EH D VH TXHQFH RI UDQGRP YDULDEOHV DQG X D UDQGRP YDULDEOH 7KHQ ZH KDYH
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS DV
P
D
Ţ Xn → X ⇒ Xn → X ⇒ Xn → X P
Lr
Ţ )RU DOO r > 0 Xn → X ⇒ Xn → X Lr
Ls
Ţ )RU DOO r > s ≥ 1 Xn → X ⇒ Xn → X 3URRI RDD D F :< OO :< OO NQ :< OO 3GD QDUDQRD HLOKHB@SHNMR @QD HM FDMDQ@K E@KRD @R SGD ENKKNVHMF DW@LOKD HKKTRSQ@SDR $W@LOKD 2DPTDMBD NE 1@MCNL 5@QH@AKDR SG@S "NMUDQFDR KLNRS 2TQDKX SN X ATS CNDR MNS "NMUDQFD HM SGD r SG ,D@M SN X "NMRHCDQ @R R@LOKD RO@BD SGD TMHS HMSDQU@K (0; 1) DMCNVDC VHSG TMHENQL OQNA@AHKHSX +DADRFTD LD@RTQD @MC CDƥMD SGD RDPTDMBD {Xn }n∈N NE Q@MCNL U@QH@AKDR @R ENKKNVR Xn (ω) = 2n I(0,1/n) (ω) . @ R
3GDM Xn → 0 @R VD G@UD P
! KHL Xn = 0 = 1 .
n→∞
,NQDNUDQ SGD BNLOKDLDMS NE SGD RDS ENQ VGHBG Xn BNMUDQFDR MNS NMKX G@R OQNA@AHKHSX YDQN ATS HR @KRN DLOSX 3GTR KHL P (Xn ≥ ) = 0
∀ > 0
n→∞
P
HS @CCHSHNM@KKX ENKKNVR SG@S Xn → 0 'NVDUDQ
E (|Xn − 0|r ) = E (Xnr ) =
1/n 0
(2n )r Cω =
2nr , n
VGHBG SDMCR SN HMƥMHSX @R n → ∞ ENQ DUDQX r > 0 'DMBD Xn CNDR MNS BNM UDQFD SN YDQN HM r SG LD@M 4MCDQ ETQSGDQ @RRTLOSHNMR QDUDQRD @MC @CCHSHNM@K HLOKHB@SHNMR B@M AD RGNVM 1DL@QJ %TQSGDQ "NMUDQFDMBD "NMBDOS (LOKHB@SHNMR +DS {Xn }n≥0 AD @ RDPTDMBD NE Q@MCNL U@QH@AKDR @MC X @ Q@MCNL U@QH@AKD 3GDM VD G@UD
RDD :< O 2DD :< OO ENQ @ U@QHDSX NE HKKTRSQ@SHUD BNTMSDQ DW@LOKDR NM VGX SGD HLOKH B@SHNMR HM OQNONRHSHNM B@M MNS AD QDUDQSDC HM FDMDQ@K %NQ SGD OQNNER RDD @KRN D F :< OO :< OO NQ :< OO
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF D
P
+DS c ∈ R AD @ BNMRS@MS SGDM Xn → c HLOKHDR Xn → c D
+DS Xn → X @MC P(X ≤ b) = 1 ENQ @KK n @MC RNLD BNMRS@MS b SGDM Lr
Xn → X ENQ @KK r ≥ 1 Xn HR R@HC SN BNMUDQFD SNV@QC X DOPRVW FRPSOHWHO\ NQ IDVW LQ SUREDELOLW\ HE ENQ @KK ε > 0 HS GNKCR SG@S ∞ n=1 P(Xn − X ≥ ε) < ∞ (E Xn BNMUDQFDR @KLNRS BNLOKDSDKX SNV@QC X SGDM HS @KRN BNMUDQFDR @K LNRS RTQDKX (E Sn := N n=1 Xn N ∈ N SGDM Sn BNMUDQFDR @KLNRS RTQDKX HE @MC NMKX HE Sn BNMUDQFDR HM OQNA@AHKHSX @ R
(E Xn → X @MC SGDQD HR @ Q@MCNL U@QH@AKD Y RTBG SG@S |Xn | < Y @MC L1
E(Y ) < ∞ SGDM Xn → X
/QHLDQ NM 2SNBG@RSHB /QNBDRRDR
Q@MCNL U@QH@AKD ETMBSHNM NE SHLD HR B@KKDC @ VWRFKDVWLF SURFHVV NQ SHLD RD QHDR HM SGD B@RD NE CHRBQDSD SHLD t ∈ Z #DƥMHSHNM 2SNBG@RSHB /QNBDRRDR @MC 3GDHQ 2@LOKD /@SGR +DS I = [t0 , T ] ⊂ R+ 0 AD @ SHLD HMSDQU@K (Ω, A, P) AD @ OQNA@AHKHSX RO@BD @MC (E, E) @ LD@RTQ@AKD RO@BD (M FDMDQ@K @ Q@MCNL DKDLDMS NE E HR @ L@O EQNL Ω HMSN E SG@S HR A E LD@RTQ@AKD VWRFKDVWLF SURFHVV Xt HR @ BNKKDBSHNM {Xt : t ∈ I} NE Q@MCNL DKDLDMSR NE E %NQ D@BG ω ∈ Ω SGD L@O I t → Xt (ω) HR B@KKDC @ VDPSOH SDWK SQ@IDBSNQX NQ QD@KHR@SHNM NE Xt RSNBG@RSHB OQNBDRR HR R@HC SN AD FDGODJ HE HS @KLNRS RTQDKX G@R R@LOKD O@SGR VGHBG @QD QHFGS BNMSHMTNTR VHSG KDES KHLHSR RSNBG@RSHB OQNBDRR HR R@HC SN AD FDJODG HE HS @KLNRS RTQDKX G@R R@LOKD O@SGR VGHBG @QD KDES BNMSHMTNTR VHSG QHFGS KHLHSR OOKXHMF SGD RN B@KKDC *NKLNFNQNV BNMRSQTBSHNM VD B@M CDQHUD RSNBG@RSHB OQNBDRRDR EQNL @ FHUDM RDS NE CHRSQHATSHNM ETMBSHNMR RDD D F :< OO 'DQD VD ENKKNV @ RGNQSBTS AX :< OO
(M NSGDQ VNQCR HE Xn BNMUDQFDR HM OQNA@AHKHSX SN X @MC @KK Q@MCNL U@QH@AKDR Xn @QD @KLNRS RTQDKX ANTMCDC @ANUD @MC ADKNV SGDM Xn BNMUDQFDR SN X @KRN HM @MX r SG LD@M r≥1 (M NSGDQ VNQCR HE Xn BNMUDQFDR HM OQNA@AHKHSX SN X RTƧBHDMSKX E@RS H D SGD @ANUD HMSQN @ R CTBDC RDPTDMBD NE S@HK OQNA@AHKHSHDR HR RTLL@AKD ENQ @KK ε > 0 SGDM Xn → X GNKCR SNN
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD CDƥMHSHNMR NE BNMCHSHNM@K OQNA@AHKHSX @MC HMCDODMCDMBD NE Q@M CNL U@QH@AKDR 0 +DS X1 , . . . , Xd AD d HMCDODMCDMS Q@MCNL U@QH@AKDR 6G@S CN VD JMNV @ANTS FX1 ,...,Xd fX1 ,...,Xd E(X1 · · · · · Xd ) @MC Var(X1 + · · · + Xd ) 0 2TOONRD X @MC Y @QD CHRBQDSD Q@MCNL U@QH@AKDR VGNRD U@KTDR @QD SGD MNM MDF@SHUD HMSDFDQR @MC SGDHQ INHMS OQNA@AHKHSX ETMBSHNM HR pX,Y (x, y) =
1 x y λ μ DWO(−(λ + μ)) , x!y!
x, y = 0, 1, 2, . . . .
QD X @MC Y HMCDODMCDMS 6G@S @QD SGDHQ L@QFHM@K CHRSQHATSHNMR 0 (KKTRSQ@SD SGD BNMBDOS NE BNMCHSHNM@K DWODBS@SHNM 0 "NMRHCDQ SGD INHMS CDMRHSX # fX,Y (x, y) =
λ2 DWO −λy
0≤x≤y
0
NSGDQVHRD
,
@MC ƥMC SGD BNMCHSHNM@K CDMRHSX NE X FHUDM Y @R VDKK @R SGD BNMCHSHNM@K CDMRHSX NE Y FHUDM X P
0 &HUD @ RDPTDMBD NE Q@MCNL U@QH@AKDR {Xn }n∈N RTBG SG@S Xn → X @R @ R n → ∞ ATS ENQ VGHBG Xn → X CNDR MNS GNKC ENQ n → ∞ Lr
0 &HUD @ RDPTDMBD NE Q@MCNL U@QH@AKDR {Xn }n∈N RTBG SG@S Xn → X @R @ R n → ∞ ATS ENQ VGHBG Xn → X CNDR MNS GNKC ENQ n → ∞ 3GD ƲQLWHGLPHQVLRQDO MRLQW GLVWULEXWLRQV NE @ RSNBG@RSHB OQNBDRR {Xt : t ∈ I} @QD FHUDM AX P(Xt ≤ x) = Ft (x) P(Xt,1 ≤ x1 , Xt,2 ≤ x2 ) = Ft1 ,t2 (x1 , x2 ) P(Xt,1 ≤ x1 , Xt,2 ≤ x2 , Xt,3 ≤ x3 ) = Ft1 ,t2 ,t3 (x1 , x2 , x3 )
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VGDQD t, ti ∈ I @MC x, xi ∈ Rd SGD RXLANK Ś≤Ś HR SN AD HMSDQOQDSDC ENQ DUDQX BNLONMDMS @MC n ≥ 1 3GHR RXRSDL NE CHRSQHATSHNM ETMBSHNMR R@SHRƥDR SGD ENKKNVHMF SVN BNMCHSHNMR "NMCHSHNM NE 2XLLDSQX (E {i1 , . . . , in } HR @ ODQLTS@SHNM NE SGD MTLADQR 1, . . . , n SGDM ENQ @QAHSQ@QX HMRS@MSR @MC n ≥ 1 Fti1 ,...,tin (xi1 , . . . , xin ) = Ft1 ,...,tn (x1 , . . . , xn ) . "NMCHSHNM NE "NLO@SHAHKHSX %NQ m < n @MC @QAHSQ@QX tm+1 , . . . , tn ∈ I Ft1 ,...,tm ,tm+1 ,...,tn (x1 , . . . , xm , ∞, . . . , ∞) = Ft1 ,...,tm (x1 , . . . , xm ) . (M L@MX OQ@BSHB@K B@RDR VD @QD MNS FHUDM @ E@LHKX NE Q@MCNL U@QH@AKDR CDƥMDC NM @ OQNA@AHKHSX RO@BD ATS Q@SGDQ @ E@LHKX NE CHRSQHATSHNMR NQ SGDHQ CHRSQHATSHNM ETMBSHNMR Ft1 ,...,tn (x1 , . . . , xn ) VGHBG R@SHREX SGD RXLLDSQX @MC BNLO@SHAHKHSX BNMCHSHNMR 3GD DPTHU@KDMBD NE SGDRD BNMBDOSR HR CDLNMRSQ@SDC AX SGD ENK KNVHMF SGDNQDL 3GDNQDL *NKLNFNQNVR %TMC@LDMS@K 3GDNQDL )RU HYHU\ IDPLO\ RI GLV WULEXWLRQ IXQFWLRQV WKDW VDWLVƲHV WKH V\PPHWU\ DQG FRPSDWLELOLW\ FRQGLWLRQV WKHUH H[LVWV D SUREDELOLW\ VSDFH (Ω, A, P) DQG D VWRFKDVWLF SURFHVV {Xt : t ∈ I} GHƲQHG RQ LW WKDW SRVVHVVHV WKH JLYHQ GLVWULEXWLRQV DV ƲQLWHGLPHQVLRQDO GLVWUL EXWLRQV 3URRI RDD :< OO 3GQNTFGNTS NTQ BNMRHCDQ@SHNMR NM RSNBG@RSHB OQNBDRRDR @MC RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR VD VHKK @KV@XR @RRTLD SG@S SGD RS@SD RO@BD NE SGD RSNBG@RSHB OQNBDRR HR Rd DMCNVDC VHSG SGD σ @KFDAQ@ NE !NQDK RDSR H D (E, E) = (Rd , B d ) ,NQDNUDQ HE MNS RS@SDC NSGDQVHRD VD BGNNRD Ω =
Rd
![t0 ,T ]
,
H D SGD RO@BD NE @KK Rd U@KTDC ETMBSHNMR NM SGD HMSDQU@K I = [t0 , T ] @MC A =
Bd
![t0 ,T ]
,
H D SGD OQNCTBS σ @KFDAQ@ FDMDQ@SDC AX SGD !NQDK RDSR HM Rd @MC Xt = ω(t) ENQ @KK ω ∈ Ω 3GDM P HR SGD OQNA@AHKHSX TMHPTDKX CDƥMDC @BBNQCHMF SN *NK LNFNQNVŗR ETMC@LDMS@K SGDNQDL AX SGD ƥMHSD CHLDMRHNM@K CHRSQHATSHNMR NE SGD OQNBDRR Xt NM (Ω, A) (E VD G@UD ETQSGDQ HMENQL@SHNM @ANTS SGD @M@KXSHB@K OQNODQSHDR NE SGD R@LOKD ETMBSHNMR VD B@M BGNNRD ENQ Ω BDQS@HM RTARO@BDR NE d [t0 ,T ] R D F SGD RO@BD NE @KK BNMSHMTNTR ETMBSHNMR 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 4
5
3.5
4.5
3
4
2.5
3.5
2
3
1.5
0
10
20
30
40
50
60
70
80
90
100
2.5
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
%HFTQD (KKTRSQ@SHNM NE SGD K@V NE K@QFD MTLADQR VHSG @ 100 SGQNVR NE @ CHBD @MC A 5000 SGQNVR
%HM@KKX @ RSNBG@RSHB OQNBDRR {Xt : t ∈ I} HR R@HC SN R@SHREX SGD ODZ RI ODUJH QXPEHUV HE ENQ @KK ε, δ > 0 SGDQD DWHRSR @ T > 0 RTBG SG@S ENQ @KK t > T
t0 +t
1
1 t0 +t P
Xs Cs − E(Xs )Cs
> δ < ε . t t0 t t0 RSNBG@RSHB OQNBDRR {Xt : t ∈ I} HR R@HC SN R@SHREX SGD VWURQJ ODZ RI ODUJH QXPEHUV HE t0 +t
1 1 t0 +t t→∞ Xs Cs − E(Xs )Cs −→ 0 = 1 . P t t0 t t0 3Q@CHSHNM@KKX SGD K@V NE K@QFD MTLADQR HR HKKTRSQ@SDC AX SGQNVHMF @ CHBD L@MX SHLDR @MC AX NARDQUHMF SG@S SGD RTBBDRRHUD LD@MR BNMUDQFDMBD SN SGD DWODBS@SHNM 3GD , 3+ ! BNLL@MCR QD@C @R ENKKNVR ENQ @ RDPTDMBD NE SGQNVR t 4 mMB/`M/Ue-Ryy-RVc t#` 4 +mKbmKUtVXfUR,RyyVǶc THQiUR,Ryy-t#`-Ƕ@#Ƕ-ǶGBM2qB/i?Ƕ-kV
%HFTQD RGNVR SGD QDRTKSR ENQ 100 @MC 5000 SGQNVR NE @ +@OK@BH@M CHBD
"NMSHMTNTR 2SNBG@RSHB /QNBDRRDR
(E ENQ @KLNRS @KK ω ∈ Ω SGD R@LOKD O@SGR @QD BNMSHMTNTR ETMBSHNMR ENQ @KK t ∈ I SGDM VD R@X SG@S SGD RSNBG@RSHB OQNBDRR HR FRQWLQXRXV M@KNFNTRKX HE ENQ @KLNRS @KK ω ∈ Ω SGD R@LOKD O@SGR @QD QHFGS KDES BNMSHMTNTR SGD RSNBG@RSHB OQNBDRR HSRDKE HR B@KKDC ULJKW OHIW FRQWLQXRXV 3GD LD@M SGD U@QH@MBD @MC SGD BNU@QH@MBD L@SQHW NE @ RB@K@Q RSNBG@RSHB OQNBDRR Xt = X(t) @QD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF Ş μ(t) = E(Xt ) Ş σ 2 (t) = Var(Xt ) = E((Xt − μ(t))2 ) Ş Cov(Xt , Xs ) = RX (t, s) = E((Xt − μ(t))(Xs − μ(s))) VGDQD R HR SGD RN B@KKDC DXWRFRUUHODWLRQ IXQFWLRQ NE SGD RSNBG@RSHB OQNBDRRDR Xt VHSG HSRDKE BNLO@QDC SN SGD BNQQDK@SHNM BNU@QH@MBD ETMBSHNM Cov(Xt , Ys ) NE SVN CHƤDQDMS OQNBDRRDR Xt @MC Yt .MKX SVN NE SGDRD SGQDD PT@MSHSHDR @QD HMCDODMCDMS @R σ 2 (t) = R(t, t) 3GD BNMBDOSR NE @TSN BNQQDK@SHNM @MC BQNRR BNQQDK@SHNM NE NMD NQ SVN RSNBG@RSHB OQNBDRRDR QDRODBSHUDKX @QD HLONQS@MS @MC VHKK AD CHRBTRRDC HM CD S@HK HM "G@OS 3GD @TSNBNQQDK@SHNM ETMBSHNM NE @ Q@MCNL RHFM@K CDRBQHADR SGD FDMDQ@K CDODMCDMBD NE SGD U@KTDR NE SGD R@LOKDR @S NMD SHLD NM SGD U@K TDR NE SGD R@LOKDR @S @MNSGDQ SHLD , 3+ ! OQNUHCDR @ ETMBSHNM B@KKDC t+Q`` VGHBG L@X AD TRDC SN HLOKDLDMS ANSG SGD @TSN @MC SGD BQNRR BNQQDK@SHNM ETMBSHNM BE : 0 @MC t ∈ [0, T − h] AX @OOKXHMF )DMRDMŗR HMDPT@KHSX 2TOONRD SG@S ENQ RNLD λ < ∞ p > 1 @MC h0 > 0 @R VDKK @R |E(Xt Xt+h )| ≥ 1 − λhp ENQ @KK 0 < h ≤ h0 4RHMF *NKLNFNQNVŗR BNMSHMTHSX SGDNQDL RGNV SG@S SGDM (Xt )t∈I G@R @ BNMSHMTNTR LNCHƥB@SHNM 2TOONRD SG@S (Xt )t∈I HR @ &@TRRH@M RSNBG@RSHB OQNBDRR RTBG SG@S E(Xt ) = 0 @MC E(Xt2 ) = 1 ENQ @KK t ∈ I 2GNV SG@S HE (Xt )t∈I R@SHRƥDR SGD HMDPT@KHSX ! !!n (2n)! (2n)! 2n 2 E (Xt+h − Xt ) = n ≤ E (Xt+h − Xt ) λn hpn 2 n! n! ENQ RNLD λ < ∞ p > 1 @MC h0 > 0 SGDM ENQ @MX 0 < γ < 12 p SGD OQNBDRR (Xt )t∈I G@R @ LNCHƥB@SHNM VGHBG HR KNB@KKX '±KCDQ BNMSHMTNTR VHSG DWONMDMS γ
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
5HGXFWLRQ RI 53'(V WR 52'(V (M SGHR BG@OSDQ RODBHƥB 1@MCNL /@QSH@K #HƤDQDMSH@K $PT@SHNMR 1/#$R @QD SQ@MRENQLDC SN 1@MCNL .QCHM@QX #HƤDQDMSH@K $PT@SHNMR 1.#$R AX @OOKXHMF BK@RRHB@K RO@SH@K CHRBQDSHR@SHNMR 5@QH@MSR EQNL @ U@QHDSX NE @OOKHB@SHNMR @QD CHRBTRRDC KD@UHMF SGD SHLD CHRBQDSHR@SHNM ENQ "G@O 3GD CDQHU@SHNM NE SGD TMCDQKXHMF RXRSDL NE /#$R @MC BNQQDRONMCHMF ANTMC@QX BNMCHSHNMR HR RGNVM ENQ SGD DW@LOKD NE DK@RSHB ANCX LNSHNM 6D CHRBTRR CHƤDQDMS SXODR NE LDRGDR VHSG @M DLOG@RHR NM QDFTK@Q "@QSDRH@M FQHCR 3GD SGQDD L@HM RO@SH@K CHRBQDSH R@SHNMRŕƥMHSD CHƤDQDMBDR ƥMHSD UNKTLDR @MC ƥMHSD DKDLDMSRŕ@QD AQHDƦX DWOK@HMDC ADENQD CDKUHMF CDDODQ HMSN ƥMHSD CHƤDQDMBD RBGDLDR %# 6D CD QHUD SGD BNQQDRONMCHMF %# @OOQNWHL@SHNMR ENQ SGD ETMC@LDMS@K DPT@SHNMR NE DK@RSHB ANCX LNSHNM @MC RHLTK@SD RSD@CX RS@SD RBDM@QHNR NE ATHKCHMFR VGHBG @QD ADMS
*DX "NMBDOSR 1@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNMR 1/#$R @QD O@QSH@K CHƤDQDMSH@K DPT@ SHNMR SG@S HMBKTCD Q@MCNL DƤDBSR O@QSH@K CHƤDQDMSH@K DPT@SHNM /#$ HR @M DPT@SHNM ENQ @M TMJMNVM PT@MSHSX ETMBSHNM u HMUNKUHMF CDQHU@SHUDR VHSG QD
Ω
Ω
Ω
t
t t x
x
x
Space-Time-Realization-Cube
Space-Discretization (Finite Differences)
Path-Wise Solution Concept for R(O)DEs
Partial Differential Equation with Stochastic Effects (RPDE or SPDE)
Finite-Dimensional System of R(O)DE
Finite-Dimensional System of an Infinite Family of ODEs
Decrease Mesh-Size
Compatibility Conditions 1) all solutions of the ODE family are defined on a common time interval 2) all solutions are stochastic processes
%HFTQD 1DCTBSHNM EQNL @ FHUDM BNMSHMTTL LDBG@MHB@K Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM SN @ E@LHKX NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (M SGHR BG@OSDQ VD ENBTR NM SGD ƥQRS RSDO VGHBG HMUNKUDR FDSSHMF EQNL @ Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM SN @ ƥMHSD RXRSDL NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR
&KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS RODBS SN LNQD SG@M NMD HMCDODMCDMS U@QH@AKD H D O@QSH@K CDQHU@SHUDR /@QSH@K CHƤDQDMSH@K DPT@SHNMR @QD MDBDRR@QX VGDM RO@SH@KKX CHRSQHATSDC DƤDBSR OK@X @ MNM MDFKHFHAKD QNKD 3GD BQHSDQH@ ENQ TRHMF @ /#$ UR @M .#$ @QD MNS OQNAKDL CDODMCDMS ATS CDODMC NM SGD CDRHQDC DƤDBSR %NQ HMRS@MBD .#$R B@M AD TRDC SN LNCDK ONOTK@SHNM CXM@LHBR NE HMCHUHCT@KR NE @ FHUDM RODBHDR NUDQ SHLD RDD "G@OR @MC ENQ DW@LOKDR 6GDM @ RO@SH@K CHRSQHATSHNM ADBNLDR QDKDU@MS VGDQD CN LNQD Q@AAHSR NQ ENWDR KHUD HM @ ENQDRS DSB O@QSH@K CHƤDQ DMSH@K DPT@SHNMR @QD SXOHB@KKX SGD LDSGNC NE BGNHBD R @M DW@LOKD BNMRHCDQ SGD SHLD CDODMCDMS GD@S DPT@SHNM HM d CHLDM RHNMR @R @ QDK@SHUDKX RHLOKD DW@LOKD NE @ O@QSH@K CHƤDQDMSH@K DPT@SHNM ∂T (t, x) = κ · ΔT (t, x) + f (t, x) ∂t
ENQ t ∈ I := [t0 , te ] ⊂ R, x ∈ Ω ⊂ Rd
#DQHU@SHUDR VHSG QDRODBS SN SHLD ∂T /∂t @MC RO@BD +@OK@BH@M ΔT @OOD@Q @MC @BST@KKX L@JD @ /#$ 3GD BNDƧBHDMS κ QDOQDRDMSR SGD SGDQL@K CHE ETRHUHSX NE SGD L@SDQH@K TMCDQ BNMRHCDQ@SHNM 6D @QD HMSDQDRSDC HM U@KTDR NE SGD SDLODQ@STQD T = T (t, x) @S U@QHNTR ONHMSR HM SHLD @MC RO@BD 3GD RNTQBD SDQL f L@X BNMS@HM GD@S RNTQBDR NQ RHMJR HM SGD CNL@HM CTD SN BGDLHB@K QD@B SHNMR NQ @ GD@SHMF Q@CH@SHNM ENQ DW@LOKD #DODMCHMF NM SGD CDRHQDC DƤDBSR SN AD LNCDKDC SGDQD HR RSHKK @ EQDDCNL HM SGD BGNHBD NE SGD CHLDMRHNM@KHSX 4RHMF d = 1 d = 2 NQ d = 3 ENQ @ GD@S A@Q T (t, x) @ @WH@KKX RXLLDSQHB RDSTO T (t, x, y) NQ @ ETKKX TMRXLLDSQHB OQNAKDL T (t, x, y, z) BG@MFDR SGD @BBTQ@BX ATS @KRN HMBQD@RDR SGD BNLOKDWHSX HM RNKUHMF SGD QDRTKSHMF RXRSDLR -NSD SG@S @ /#$ CDRBQHADR OGXRHB@K DƤDBSR HMRHCD SGD CNL@HM NE HMSDQDRS SDLODQ@STQD U@QH@SHNM HM RO@BD @MC SHLD HM D F 3GD DPT@SHNM CDSDQ LHMDR @ MTLADQ NE RNKTSHNMR 3N HCDMSHEX @ TMHPTD RNKTSHNM SN SGD OQNAKDL LQLWLDO FRQGLWLRQV @MC ERXQGDU\ FRQGLWLRQV G@UD SN AD ƥWDC .E BNTQRD @R SGD TMCDQKXHMF DPT@SHNMR SGD ANTMC@QX @MC HMHSH@K BNMCHSHNMR G@UD SN AD CDQHUDC HM SG@S SGDX QDRODBS SGD TMCDQKXHMF OGXRHBR (M SGD B@RD NE SGD GD@S DPT@SHNM SGDRD BNMCHSHNMR HLOKX T (t0 , x) = g(x) HM Ω , T (t, x) = T0 (t, x) NM Γ0 ⊂ ∂Ω , ∂T NM Γ1 ⊂ ∂Ω , ∂n (t, x) = r(t, x)
H D @ FHUDM SDLODQ@STQD ƥDKC NM SGD VGNKD CNL@HM @S RS@QS SHLD t0 @MC SDL ODQ@STQD C@S@ HM SGD ENQL NE OQDRBQHADC U@KTDR NQ BG@MFDR NM CHRINHMS O@QSR Γ0 @MC Γ1 NE SGD ANTMC@QX ∂Ω 3GD ENQLDQ SXOD NE ANTMC@QX BNMCHSHNMR @QD FDM DQ@KKX B@KKDC 'LULFKOHW FRQGLWLRQV VGDQD@R SGD K@SSDQ @QD 1HXPDQQ FRQGLWLRQV %NQ 1/#$R SGD Q@MCNLMDRR L@X @OOD@Q HM CHƤDQDMS ENQLR %NQ HMRS@MBD L@SDQH@K O@Q@LDSDQR L@X AD @U@HK@AKD NMKX HM SGD ENQL NE DQQNQ OQNMD LD@
RHMBD HS SGD GD@S DPT@SHNM HR RB@K@Q KHMD@Q @MC NMKX NE RDBNMC NQCDQ ADB@TRD SGD GHFGDRS CDQHU@SHUDR @QD FHUDM HM ΔT
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF RTQDLDMSR NQ ANTMC@QX BNMCHSHNMR RSDLLHMF EQNL LD@RTQDLDMSR 2DD @KRN "G@O ENQ @ LNQD CDS@HKDC CHRBTRRHNM NM U@QHNTR Q@MCNL DƤDBSR HM SGD BNM SDWS NE ƦNV RBDM@QHNR %NQL@KKX 1/#$R @QD CDSDQLHMHRSHB /#$R HM @ O@SG VHRD RDMRD @ BNMBDOS SG@S VHKK AD DWOK@HMDC HM "G@O @MC DWBKTCDR RSNBG@RSHB HM ƦTDMBDR SG@S @QD SNN VDHQC (M SGD ENKKNVHMF VD @RRTLD Q@MCNL DƤDBSR SG@S CN MNS G@UD @MX RO@SH@K CHR SQHATSHNM ATS U@QX HM SHLD NMKX .MD DW@LOKD VNTKC AD Q@MCNLKX ODQSTQADC ANTMC@QX BNMCHSHNMR HM SHLD SG@S @QD HCDMSHB@K ENQ @KK ANTMC@QX ONHMSR @S @ FHUDM LNLDMS HM SHLD %NQ SGD B@RD NE NTQ D@QSGPT@JD RBDM@QHN CDRBQHADC HM "G@O @MC BNLOTSDCŕHM @ 1/#$ BNMSDWSŕHM "G@O RTBG ANTMC@QX BNM CHSHNMR @QD SGD D@QSGPT@JD HMBHSDC LNSHNM NE SGD D@QSG RTQE@BD QDOQDRDMSHMF @ FHUDM LNSHNM ENQ SGD ANSSNL ANTMC@QX NE @ ATHKCHMF 6HSG SGHR QDRSQHBSHNM VD B@M CHQDBSKX @OOKX @ RO@SH@K CHRBQDSHR@SHNM SN SGD 1/#$ SN QDENQLTK@SD HS @R @ RXRSDL NE 1.#$R NE K@QFD CHLDMRHNM RDD %HF ENQ @ UHRT@KHR@SHNM NE SGD @OOQN@BG 3GDM SGD BK@RRHB@K 1.#$ @OOQN@BG @MC L@SGDL@SHB@K HMRSQTLDMSR CHRBTRRDC HM "G@OR @MC B@M AD @OOKHDC @MC TRDC 3GD SDBGMHB@K RSDOR NE CHRBQDSHRHMF SGD 1/#$ HM RO@BD VHKK AD CHRBTRRDC HM LNQD CDS@HK HM SGHR BG@OSDQ 3XOHB@K ƥDKCR NE @OOKHB@SHNMR TRHMF 1/#$R BNLOQHRD L@MX OQNAKDLR @MC OGDMNLDM@ EQNL OGXRHBR @MC BNMSHMTTL LDBG@MHBR RTBG @R Ş 3GDQLNCXM@LHBR 'NV CNDR SGD GD@S CHRSQHATSHNM HM @ BNLATRSHNM DM FHMD KNNJ Ş %KTHC ,DBG@MHBR 6GDQD HR @ SNQM@CN FNHMF SN S@JD OK@BD 6G@S @QD SGD CQ@F @MC KHES BNDƧBHDMSR NE @ VHMF NQ B@Q Ş 2SQTBSTQ@K #XM@LHBR 6G@S HR SGD L@WHLTL RSQDRR NQ RSQ@HM HM @ TMCDQ SHLD CDODMCDMS KN@CR 6HKK @M @MSH BQ@RG BNMRSQTBSHNM HM @ B@Q CN SGD INA HS G@R ADDM CDRHFMDC ENQ 6HKK @ AQHCFD AD RS@AKD TMCDQ KN@CR EQNL SQTBJR NQ VHMC DƤDBSR Ş "GDLHB@K $MFHMDDQHMF 6GDQD @MC GNV E@RS CN BDQS@HM QD@BSHNMR S@JD OK@BD HM @ BGDLHB@K QD@BSNQ Ş $KDBSQNL@FMDSHRL 6G@S HR SGD RO@SH@K CHRSQHATSHNM NE SGD DKDBSQNM CDM RHSX HM @ SQ@MRHRSNQ 'NV G@R @M ,1( L@BGHMD SN AD CDRHFMDC SN CDKHUDQ HL@FDR NE @ CDRHQDC PT@KHSX Ş &DNKNFX 6GDQD @MCNQ VGDM VHKK @M D@QSGPT@JD S@JD OK@BD 6G@S @QD SGD E@Q Q@MFD DƤDBSR NE @ SRTM@LH ,NCDQM OQNAKDLR L@X HMUNKUD DUDM LNQD BNLOKDW RBDM@QHNR AX BNTOKHMF CHE EDQDMS ƥDKCR RTBG @R HM ƦTHC RSQTBSTQD HMSDQ@BSHNM RBDM@QHNR 6D BNUDQ SGD
3GHR BNTOKHMF ADSVDDM CHƤDQDMS ƥDKCR NE @OOKHB@SHNM HR SXOHB@KKX B@KKDC PXOWL SK\VLFV
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS SNOHB NE RSQTBSTQ@K CXM@LHBR @R SGD L@HM RNTQBD NE @OOKHB@SHNMR HM SGHR BG@OSDQ @MC AQHDƦX BNMRHCDQ ƦNV OQNAKDLR HM "G@O -TLDQHB@K @OOQN@BGDR SN BK@RRHB@K /#$R @QD MTLDQNTR @MC BNLOKDW 2NKU HMF /#$R MTLDQHB@KKX BNLDR @S @ BDQS@HM OQHBD QDRNKUHMF SGD RO@SH@K CHRSQHAT SHNM @OOQNWHL@SDKX QDPTHQDR LNQD BNLOTS@SHNM@K QDRNTQBDR @MC BNQQDBS HM SGD RDMRD NE BNMRHRSDMBX @MC BNMUDQFDMBD RBGDLDR MDDC SN AD CDUDKNODC 6GDM QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 'NV CN SGD FNUDQMHMF DPT@SHNMR ENQ DK@RSHB ANCX LNSHNMR KNNJ 6G@S ONRRHAHKHSHDR ENQ RO@BD SHLD CHRBQDSHR@SHNMR DWHRS 'NV CNDR SGD CHRBQDSHR@SHNM NE SGD DK@RSHB DPT@SHNMR KNNJ ENQ ƥMHSD CHE EDQDMBD @OOQNWHL@SHNMR @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR #DQHU@SHNM NE /#$R UH@ BNMSHMTTL LDBG@MHBR BNMRHCDQ@SHNMR "@SDFNQHR@SHNM NE U@QHNTR LDRGDR SN CHRBQDSHRD SGD RO@SH@K CNL@HM ,@HM U@QH@MSR NE RO@SH@K CHRBQDSHR@SHNM RBGDLDR %HMHSD CHƤDQDMBD @OOQNWHL@SHNMR @MC SGDHQ PT@KHSX 3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR 6D CDQHUD SGD FNUDQMHMF DPT@SHNMR NE LNSHNMR HM ENQL NE @ /#$ RXRSDL ENQ DK@RSHB L@SDQH@KR HM 2DB 2DBSHNM BNMS@HMR A@RHB HMENQL@SHNM NM RO@BD SHLD CHRBQDSHR@SHNMR #HƤDQDMS SXODR NE LDRGDR HM O@QSHBTK@Q "@QSDRH@M LDRGDR @QD CHRBTRRDC @R VDKK @R SGD SGQDD L@HM LDSGNCR NE CHRBQDSHRHMF SGD NODQ@SNQR NE SGD TMCDQKXHMF /#$ #DS@HKR NM ƥMHSD CHƤDQDMBD @OOQNWHL@SHNMR @QD OQDRDMSDC HM FDMDQ@K @MC ENQ SGD DK@RSHB DPT@SHNMR HM O@QSHBTK@Q HM 2DB %HM@KKX 2DBSHNM VQ@OR TO SGD BNMSDMSR NE SGHR BG@OSDQ
$K@RSHB ,@SDQH@KR ,@SDQH@K +@VR 6D RS@QS SGHR BG@OSDQ VHSG @ CDS@HKDC CHRBTRRHNM NM DK@RSHB L@SDQH@K ADG@UHNTQ LNRSKX ENKKNVHMF :< 3GHR RDQUDR @ CNTAKD OTQONRD %HQRS SGD FNUDQMHMF DPT@SHNMR ENQ DK@RSHB ANCX LNSHNM @QD @M DW@LOKD GNV /#$R @QD SXOHB@KKX CDQHUDC HM BNMSHMTTL LDBG@MHBR 2DBNMC VD VHKK FDS @BPT@HMSDC VHSG SGD BNMSHMTTL LDBG@MHBR UHDV ENQ @ RSQ@HFGSENQV@QC LNCDKHMF @OOQN@BG NE LNU HMF ATHKCHMFR 3GD FNUDQMHMF DPT@SHNMR @QD TRDC ENQ SGD CHRBQDSHR@SHNMR HM SGD ENKKNVHMF RDBSHNMR @MC BG@OSDQR (M SGD VNQJRGNO HM O@QSHBTK@Q @ UDQX RHL OKD ATS RO@SH@KKX CDODMCDMS UDQRHNM NE @ LTKSH RSNQDX ATHKCHMF VHKK AD TRDC 3GD ATHKCHMF HR LNCDKDC @R @ # CNL@HM ETKKX BNUDQDC AX L@SDQH@K VHSGNTS @MX QNNLR 3N SGD CHRBQDSHR@SHNM NE SGHR SXOD NE ATHKCHMF VD VHKK @OOKX SGD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF BNMBDOS NE RO@BD ƥKKHMF BTQUDR RDD "G@O @MC U@QH@MSR NE SGD %@RS %NTQHDQ SQ@MRENQL BE "G@O
!@RHB RODBSR NE "NMSHMTTL ,DBG@MHBR 3GD GXONSGDRHR NE @ BNMSHMTNTR CHRSQHATSHNM NE SGD L@SDQH@K SGQNTFGNTS SGD BNLOKDSD CNL@HM NE HMSDQDRS HR SGD BK@RRHB@K @RRTLOSHNM ENQ BNMSHMTTL LD BG@MHBR (M BNMSQ@RS SN HMUDRSHF@SHNMR NM LHBQNRBNOHB NQ DUDM @SNLHB KDUDKR VGDQD HMCHUHCT@K LNKDBTKDR @MC SGDHQ BNQQDRONMCHMF HMSDQ@BSHNMR @QD RSTCHDC SGD L@BQNRBNOHB OQNODQSHDR NE @ K@QFD MTLADQ NE O@QSHBKDR HR NE BDMSQ@K HLONQ S@MBD 'DMBD SGD L@SDQH@K HR @RRTLDC SN AD BNMSHMTNTRKX CHRSQHATSDC @S D@BG FDNLDSQHB ONHMS x HM RO@BD (M BNMSHMTTL LDBG@MHBR SVN A@RHB @OOQN@BGDR DWHRS VGHBG CHƤDQ VHSG QD RODBS SN SGD ONHMS NE UHDV NE SGD NARDQUDQ SGD +@FQ@MFH@M @MC $TKDQH@M CD RBQHOSHNM (M SGD +@FQ@MFH@M NQ L@SDQH@K A@RDC @OOQN@BG SGD ONHMS NE UHDV NE SGD NARDQUDQ HR ƥWDC SN @ O@QSHBKD NE SGD L@SDQH@K @MC ENKKNVR HSR LNUD LDMS 2NKHC LDBG@MHBR OQNAKDLR VGHBG NESDM RGNV QDK@SHUDKX RL@KK LNUD LDMSR @QD SXOHB@KKX CDRBQHADC VHSG SGD +@FQ@MFH@M @OOQN@BG (M BNMSQ@RS SGD $TKDQH@M ONHMS NE UHDV HR QDRSQHBSDC SN @ ƥWDC BNMSQNK UNKTLD 3GD NARDQUDQ V@SBGDR CHƤDQDMS L@SDQH@K O@RRHMF SGQNTFG @ JHMC NE VHMCNV JDDOHMF SQ@BJ NE SGD NUDQ @QBGHMF OQNODQSHDR ATS MNS SGNRD NE D@BG O@QSHBKD 4RHMF SGD $T KDQH@M @OOQN@BG K@QFD BG@MFDR @MC LNUDLDMSR B@M D@RHKX AD CDRBQHADC 3GHR E@BS HR O@QSHBTK@QKX @CU@MS@FDNTR ENQ BK@RRHB@K ƦTHC LDBG@MHBR@MC VHKK AD TRDC HM 2DB 6D @QD MNV FNHMF SN @OOKX SGD +@FQ@MFH@M CDRBQHOSHNM SN DK@RSHB ANCHDR (M SGD ENKKNVHMF [t0 , t1 ] ⊂ R QDOQDRDMSR @M HMSDQU@K NE SHLD @MC x ∈ R3 CDMNSDR @ BNNQCHM@SD HM RO@BD +DS @M DK@RSHB ANCX B AD QDOQDRDMSDC HM @ QDEDQDMBD BNMƥFTQ@SHNM Ω VHSG QDRODBS SN @ ƥWDC BNNQCHM@SD RXRSDL {OB , eB } (M %HF @ SGD ANCX B HR RJDSBGDC 6D CDMNSD SGD CNL@HM H D SGD HMMDQ O@QS NE B AX Ω VGHKD Γ QDOQDRDMSR SGD ANTMC@QX NE SGD ANCX 3GD ADG@UHNTQ NE SGD ANCX TMCDQ KN@CR HR SXOHB@KKX CDRBQHADC UH@ CDENQL@SHNM @MC CHROK@BDLDMS L@OOHMFR #DƥMHSHNM 3GD GHIRUPDWLRQ NE @M DK@RSHB ANCX B HR @ L@OOHMF ϕ : Ω × [t0 , t1 ] → R3 (x, t) → ϕ(x, t) #DƥMHSHNM 3GD GLVSODFHPHQW NE @M DK@RSHB ANCX B HR @ L@OOHMF u : Ω × [t0 , t1 ] → R3 (x, t) → u(x, t) := ϕ(x, t) − x .
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS Γ1 x
x u
Γ0
x+u
Ω
ϕ(dx2)
dx2
ϕ(dx1)
dx1 {OB , eB }
{OB , eB }
@
A
%HFTQD 5HRT@KHR@SHNM NE @M DK@RSHB ANCX QDEDQDMBD BNMƥFTQ@SHNM @ @MC CDENQLDC BNMƥFTQ@SHNM RGNVHMF SGD CHROK@BDLDMS u NE @M DW@LOKD ONHMS x @MC SGD CDENQL@ SHNM ϕ @OOKHDC SN HMƥMHSDRHL@K UDBSNQR dxi
(M %HF A SGD CHROK@BDLDMS @MC CDENQL@SHNM @QD RJDSBGDC 3GD CD ENQL@SHNM BNMS@HMR HM O@QSHBTK@Q ONRRHAKD @WHR O@Q@KKDK RB@KHMF @R VDKK @R BG@MFDR NE @MFKDR (E DWSDQM@K BNMCHSHNMR NE @ RBDM@QHN CDL@MC @ OQDRBQHADC CHROK@BDLDMS NE O@QSR NE SGD ANTMC@QX NE SGD ANCX B SGD RNKTSHNM H D SGD L@OOHMFR u @MC ϕ MDDC SN QDRODBS SGHR @CCHSHNM@K HMENQL@SHNM 2TBG ANTMC @QX BNMCHSHNMR @QD SXOHB@KKX B@KKDC #HQHBGKDS ANTMC@QX BNMCHSHNMR 3GDX VHKK @KKNV TR SN HMBNQONQ@SD Q@MCNL DWBHS@SHNMR NE SGD FQNTMC HMSN SGD CHRBQDSD /#$ RXRSDL VGHBG VD MNV CDQHUD
2SQDRR 2SQ@HM
(M NQCDQ SN CDQHUD @MC CDRBQHAD SGD TMCDQKXHMF DPT@SHNMR ENQ DK@RSHB ANCHDR SGD CDƥMHSHNMR NE SGD RSQ@HM @MC RSQDRR SDMRNQR @QD HLONQS@MS "GDBJHMF SGD RSQ@HM NQ CHRSNQSHNM NE @ BDQS@HM BNMSQNK UNKTLD NE L@SDQH@K VD B@M ENQLTK@SD SGD SDMRNQ E @R 1 T 1 Eij = ∇ϕ ∇ϕ − I = ∇u + ∇uT + ∇uT ∇u . 2 2 3GD SDMRNQ E HR SXOHB@KKX B@KKDC SGD *UHHQ6W 9HQDQW VWUDLQ WHQVRU (S HR D@RX SN RGNV SG@S SGHR RSQ@HM SDMRNQ HR HMU@QH@MS TMCDQ QHFHC ANCX LNSHNMR RDD /QNA
@KRN B@KKDC *UHHQ/DJUDQJLDQ VWUDLQ WHQVRU
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
ΔF
σ·n=t n ΔA
%HFTQD 2JDSBG NE @M @WHR @KHFMDC RKHBD NE @M HMƥMHSDRHL@K UNKTLD DKDLDMS 3GD RSQDRR UDBSNQ t HR DPT@K SN SGD HMƥMHSDRHL@K ENQBD ΔF CHUHCDC AX SGD HMƥMHSDRHL@K RTQE@BD DKDLDMS ΔA
KDL VGHBG HR @M DRRDMSH@K OQNODQSX HE VD V@MS SN CDRBQHAD CHRSNQSHNMR (M B@RD NE SGD KHMD@Q DK@RSHBHSX SGDNQX VGDQD NMKX ƥQRS NQCDQ SDQLR HM SGD CHR OK@BDLDMS u @QD BNMRHCDQDC SGD SDMRNQ E QDCTBDR SN SGD RSQ@HM SDMRNQ ε #DƥMHSHNM 3GD VWUDLQ WHQVRU ε G@R SGD ENQL ε = ε(u) = ∇u + ∇uT .
3GD CDƥMHSHNM NE RSQDRR QDK@SDR SGD RTQE@BD ENQBD SN @ RTQE@BD DKDLDMS ΔA 3GD RSQDRR B@M AD HMSDQOQDSDC @R SGD @BSHNM NE HMMDQ ENQBDR NE @ ANCX NM SGD RTQE@BD NE @M HMƥMHSDRHL@KKX RL@KK UNKTLD DKDLDMS BE %HF 3GD SGQDD ONRRHAKD RKHBDR SGQNTFG SGD RTQE@BD ONHMS x NQSGNFNM@K SN NMD "@QSDRH@M BNNQ CHM@SD @WHR QDRODBSHUDKX BNQQDRONMC SN SGD SGQDD BNKTLMR NE SGD RSQDRR SDMRNQ σ 3GD RSQDRR UDBSNQ t @S KNB@SHNM x ENQ @ RTQE@BD CDRBQHADC AX SGD MNQL@K UDB SNQ n HR CDƥMDC @R ΔF (ΔA) dF (A) = . ΔA→0 ΔA dA
t(x, n) := KHL @MC L@X SGDM AD VQHSSDM @R
t(x, n) = σ · n
3GD MNSHNM NE L@SDQH@K K@VR MNV QDK@SDR SGD RSQDRR @MC SGD RSQ@HM SDMRNQR 3GD RHLOKDRS B@RD HR 'NNJDŗR +@V σ = λtr{ε(u)}I + 2με(u) , 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS VGDQD tr QDOQDRDMSR SGD SQ@BD NE SGD SDMRNQ I CDMNSDR SGD HCDMSHSX @MC λ @MC μ @QD SGD RN B@KKDC +@L¤ BNMRS@MSR
%TMC@LDMS@K $PT@SHNMR
(M NQCDQ SN CDQHUD SGD TMCDQKXHMF DPT@SHNMR NE LNSHNM @ RDS NE /#$ ENQ DK@R SHB ANCHDR VD @QD @OOKXHMF SGD U@QH@SHNM@K OQHMBHOKD SN SGD ETMBSHNM@K NE DM DQFX NE SGD RXRSDL +DS Ω CDMNSD SGD CNL@HM NE HMSDQDRS H D SGD DK@RSHB ANCX BE %HF @MC ∂Ω = Γ0 ∪ Γ1 , VGDQD Γ0 CDMNSDR SGD #HQHBGKDS ANTMC@QX O@QS VHSG OQDRBQHADC CHROK@BD LDMSR @MC Γ1 QDOQDRDMSR SGD -DTL@MM O@QS NE SGD ANTMC@QX ∂Ω VGDQD RTQ E@BD ENQBDR @QD OQDRBQHADC @R ANTMC@QX BNMCHSHNMR QDRODBSHUDKX 3GD HMMDQ DMDQFX NQ RSQ@HM DMDQFX NE @M DK@RSHB ANCX HR CDƥMDC @R
1 W := σ : εdx . 2 Ω 'DQD σ : ε = tr{σ T ε} QDOQDRDMSR SGD CNTAKD BNMSQ@BSHNM NE SGD SVN SDMRNQR BE :< ENQ @ MHBD QDOQDRDMS@SHNM NE SDMRNQ B@KBTKTR 3NFDSGDQ VHSG UNKTLD @MC RTQE@BD ENQBDR SGD RSQ@HM DMDQFX W CDƥMDR SGD ONSDMSH@K DMDQFX U NE SGD RXRSDL
1 U= σ : εdx − uT βdx − uT τ ds , 2 Ω Ω Γ1 =W
VHSG SGD CDMRHSX NE UNKTLD ENQBDR β @MC SGD RTQE@BD RSQDRR UDBSNQ τ %HM@KKX VD TRD SGD JHMDSHB DMDQFX
1 T = ρu˙ T u˙ 2 Ω
@R SGD HMSDFQ@SDC RPT@QD NE SGD UDKNBHSX u˙ VDHFGSDC VHSG SGD BNMRS@MS L@RR CDMRHSX ρ 3GD U@QH@SHNM@K OQHMBHOKD BG@Q@BSDQHRDR SGD LNSHNM NE @M DK@RSHB ANCX UH@ SGD QDPTHQDLDMS SG@S SGD ETMBSHNM@K
t1
(T − U ) dt
t0
G@R SN AD RS@SHNM@QX H D SGD RNKTSHNM NE SGD LNSHNMŕSGD ETMBSHNM uŕQDOQDRDMSR @M DWSQDL@K ONHMS @ LHMHLTL @ L@WHLTL NQ @ R@CCKD ONHMS
'@LHKSNMŗR OQHMBHOKD HM SGHR B@RD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF ENQ SGD ETMBSHNM@K BNLO@QDC SN BNLODSHSNQ ETMBSHNMR RRTLHMF SG@S VD JMNV SGHR RNKTSHNM u VD ENQL@KKX L@X CDƥMD BNLODSHSNQ ETMBSHNMR
: u + θv
VHSG θ ∈ R
@MC U@QH@SHNMR : δu := θv . %TQSGDQLNQD VD @RRTLD SG@S v HR HM @ řRTHS@AKD RO@BDŚ VHSGNTS FNHMF HMSN CDS@HKR @MC SG@S v(x, t0 ) = 0 = v(x, t1 ) v(., t) = 0 NM Γ0
∀x ∈ Ω ,
∀t ∈ [t0 , t1 ]
GNKCR 3GD BNMCHSHNM HLOKHDR SG@S SGD SQ@IDBSNQHDR NE u @MC u + θv @QD HCDMSHB@K @S SGD SDLONQ@K RS@QS @MC DMC ONHMSR VGDQD@R RS@SDR SG@S SGD BNLODSHSNQ ETMBSHNMR G@UD SN QDRODBS SGD FHUDM #HQHBGKDS ANTMC@QX BNMCHSHNMR NE SGD OQNAKDL 4RHMF SGD ETMBSHNM@K
t1 J(θ) := (T (u + θv) − U (u + θv)) dt , t0
SGD RS@SHNM@QHSX NE MNV QD@CR 0 =
d J(θ)|θ=0 dθ
RHMBD u HR SGD @RRTLDC RNKTSHNM /KTFFHMF HM SGD CDƥMHSHNMR @MC ENQ T @MC U QD@CR
t1 $
T 1 1 d ˙ ˙ ρ(u + θv) (u + θv)dx − σ(u + θv) : ε(u + θv)dx 0 = dθ t0 2 Ω 2 Ω %
T T + (u + θv) βdx + (u + θv) τ ds dt
Ω
Γ1
θ=0
/DQENQLHMF SGD CDQHU@SHNM VHSG QDRODBS SN θ VD NAS@HM VHSG RNLD B@KBTK@SHNMR SGD ENKKNVHMF ENQL %
t1 $
T T T 0= ρv˙ udx ˙ − σ(u) : ε(v)dx + v βdx + v τ ds dt . t0
Ω
Ω
Ω
Γ1
6D @OOKX @M HMSDFQ@SHNM AX O@QSR VHSG QDRODBS SN SHLD NM SGD ƥQRS SDQL HM SN FDS
t1 t1
%
t1 $
T T ρv˙ u˙ dx dt = ρv u˙ dx
− ρv T u ¨ dx dt . t0 Ω Ω t Ω t0 0 =0 CTD SN
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS (MRDQSHMF HM QDRTKSR HM
t1 $
T T ρv u ¨dx + σ(u) : ε(v)dx − v βdx − 0= Ω
t0
Ω
Ω
% T
Γ1
v τ ds dt .
OOKXHMF SGD CHUDQFDMBD SGDNQDL SN SGD CNTAKD BNMSQ@BSHNM HM VD NA S@HM %
t1 $
T T 0= v (ρ¨ u − CHU(σ) − β) dx + v (σ · n − τ ) ds dt . t0
Ω
Γ1
4MCDQ SGD BNMCHSHNM SG@S v U@MHRGDR MNS NMKX NM Γ0 ATS @KRN NM Γ1 SGD ANTMC@QX HMSDFQ@K SDQL HM SGD QHFGS G@MC RHCD NE U@MHRGDR @MC SGD ETM C@LDMS@K KDLL@ NE SGD B@KBTKTR NE U@QH@SHNMR RDD : 0 HE |Ah 3 − Ph |h ≤ Chp
GNKCR VHSG @ BNMRS@MS C > 0 HMCDODMCDMS NE h 3GTR SGD HUURU RI FRQVLVWHQF\ |Ah 3 − Ph |h LD@RTQDR GNV VDKK SGD DW@BS RNKTSHNM R@SHRƥDR SGD @OOQNWHL@SD DPT@SHNMR 6D DLOG@RHRD SG@S SGD DQQNQ |3h − 3|h CNDR MNS MDBDRR@QHKX ADG@UD KHJD SGD DQQNQ NE BNMRHRSDMBX RHMBD
& &
≤ &A−1 & |Ah (3h − 3)| . |3h − 3|h = A−1 A (3 − 3) h h h h h h h 6D @QD NE BNTQRD HMSDQDRSDC HM ƥMHSD CHƤDQDMBD RBGDLDR SG@S BNMUDQFD
ENQ @ L@SQHW MNQL .h BNLO@SHAKD VHSG SGD UDBSNQ MNQL |.|h
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF #DƥMHSHNM "NMUDQFDMBD NE %# OOQNWHL@SHNMR FRQYHUJHV V Q S @ FHUDM MNQL . h HE Th − T h → 0
ENQ
h→0
M %# @OOQNWHL@SHNM
@MC G@R SGD RUGHU RI FRQYHUJHQFH p > 0 HE Th − T h ≤ Chp
GNKCR VHSG @ BNMRS@MS C > 0 HMCDODMCDMS NE h #TD SN BNMRHRSDMBX @KNMD CNDR MNS FT@Q@MSDD BNMUDQFDMBD VD MDDC RS@AHKHSX HM @CCHSHNM #DƥMHSHNM 2S@AHKHSX NE %# OOQNWHL@SHNMR (M SGD RHST@SHNM NE CDƥMHSHNM SGD @OOQNWHL@SHNM HR VWDEOH V Q S . h HE @ BNMRS@MS C > 0 DWHRSR HMCDODM CDMS NE h RTBG SG@S SGD ENKKNVHMF GNKCR & −1 & &A & ≤ C . h h %QNL SGD CDƥMHSHNMR @MC SNFDSGDQ VHSG VD CHQDBSKX G@UD SGD 3GDNQDL $ ƲQLWH GLƱHUHQFH VFKHPH WKDW LV FRQVLVWHQW DQG VWDEOH FRQYHUJHV DQG LWV RUGHU RI FRQYHUJHQFH LV DW OHDVW HTXDO WR LWV RUGHU RI FRQVLVWHQF\ 3GD MNSHNM NE BNMRHRSDMBX @MC BNMUDQFDMBD @QD @M@KNFTD SN SGD MTLDQHB@K RNKTSHNMR NE .#$R HM "G@O /QNUHMF RS@AHKHSX ENQ @ FHUDM %# @OOQNWHL@SHNM HR MNS RSQ@HFGSENQV@QC @S @KK RDD :< ENQ SGD +@OK@BH@M NE SGD /NHRRNM DPT@SHNM 3GHR HR SGD L@SGDL@SHB@K OQHBD ENQ SGD RHLOKD BNMRSQTBSHNM NE SGD RBGDLD
%# OOQNWHL@SHNMR ENQ $K@RSHB !NCX ,NSHNM (M SGHR RDBSHNM VD ENQLTK@SD @ ƥMHSD CHƤDQDMBD RBGDLD ENQ SGD DPT@SHNMR NE DK@RSHB ANCX LNSHNM Ŕ (M BNMSQ@RS SN NTQ DW@LOKD NE SGD RB@K@Q GD@S DPT@SHNM @ANUD VD MNV MDDC SN ƥMC @ UDBSNQ U@KTDC FQHC ETMBSHNM uh = (u1h , u2h ) VGHBG @OOQNWHL@SDR SGD @M@KXSHB@K RNKTSHNM u @S SGD CDFQDDR NE EQDDCNL u1h (ihx , jhy ) = u1ij u2h (ihx , jhy ) = u2ij 6D VNTKC KHJD SN TRD SGD ƥMHSD CHƤDQDMBD PTNSHDMSR NE RDBNMC NQCDQ ∂ 0 ui (x) BDMSQ@K CHƤDQDMBD ENQ SGD R@JD NE @BBTQ@BX %NQ HMMDQ ONHMSR NE SGD CNL@HM SGHR HR ONRRHAKD S SGD -DTL@MM ANTMC@QHDR GNVDUDQ VD CN MNS G@UD SGD MDBDRR@QX CDFQDDR NE EQDDCNL @U@HK@AKD NTSRHCD SGD CNL@HM 3GDQD ENQD VD G@UD SN RVHSBG SN ENQV@QC NQ A@BJV@QC PTNSHDMSR ∂ + ui (x) @MC ∂ − ui (x) CDODMCHMF NM VGHBG ANTMC@QX O@QS SNO KDES NQ QHFGS VD MDDC SN DU@KT@SD SGD -DTL@MM BNMCHSHNM 3GD ANSSNL ANTMC@QX CNDR MNS G@UD SN AD BNMRHCDQDC
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS GDQD RHMBD SGD BNQQDRONMCHMF #HQHBGKDS BNMCHSHNMR NMKX DMSDQ SGD QHFGS G@MC RHCD NE SGD KHMD@Q RXRSDL NE DPT@SHNMR #HRBQDSHRHMF SGD RO@SH@K CDQHU@SHUDR NE SGD DWO@MCDC RXRSDL @MC ENQ HMMDQ ONHMSR (ihx , jhy ) ∈ Ωh QDRTKSR HM SGD ENKKNVHMF SDQLR ENQ SGD ƥQRS BNLONMDMS u1 ∂ 2 u1 ∂ 2 u1 ∂ 2 u2 (2μ + λ) + μ + (λ + μ) = ˙ ∂x21 ∂x1 ∂x2 ∂x22 =:ξ
( ' ( u1i,j−1 − 2u1ij + u1i,j+1 u1i−1,j − 2u1ij + u1i+1,j +μ + = ˙ ξ h2x h2y ' ( u2i+1,j+1 − u2i−1,j+1 − u2i+1,j−1 + u2i−1,j−1 +(λ + μ) . 4hx hy '
%NQ SGD RDBNMC BNLONMDMS u2 VD NAS@HM ∂ 2 u2 ∂ 2 u2 ∂ 2 u1 (2μ + λ) + μ + (λ + μ) = ˙ ∂x22 ∂x1 ∂x2 ∂x21 =:ξ
( ' ( u2i−1,j − 2u2ij + u2i+1,j u2i,j−1 − 2u2ij + u2i,j+1 +μ + = ˙ ξ h2y h2x ' ( u1i+1,j+1 − u1i−1,j+1 − u1i+1,j−1 + u1i−1,j−1 +(λ + μ) . 4hx hy '
"NMBDQMHMF SGD -DTL@MM ANTMC@QX BNMCHSHNMR VD G@UD SN CHRSHMFTHRG CHE EDQDMS O@QSR NE SGD ANTMC@QX CTD SN SGD CHƤDQDMS NQHDMS@SHNM NE SGD NTSDQ MNQL@K UDBSNQ n Ş 4OODQ ANTMC@QX n(x) = (0, 1)T ⎛ 2 ⎞ ∂u ∂u1 ⎜μ ∂x + ∂x ⎟ 1 2 ⎟ = ˙ τ (x, t) = ⎜ ⎝ ∂u2 ∂u1 ⎠ ξ +λ ∂x2 ∂x1
⎛ '
(⎞ u2i+1,j − u2i−1,j u1ij − u1i,j−1 + ⎜μ ⎟ 2hx hy ⎜ ⎟ ⎜ ⎟ 2 2 1 1 ⎝ uij − ui,j−1 ui+1,j − ui−1,j ⎠ ξ +λ hy 2hx
Ş 1HFGS ANTMC@QX n(x) = (1, 0)T ⎞ ⎛ ⎞ ⎛ u2i,j+1 − u2i,j−1 u1ij − u1i−1,j ∂u2 ∂u1 +λ ⎟ ⎜ ξ ⎜ ξ ∂x + λ ∂x ⎟ hx 2hy ⎟ ⎜ ' ( 1 2 ⎟ ⎜ = ˙ ⎜ u2 − u2 τ (x, t) = ⎝ ⎟ 1 1 − u u ∂u2 ∂u1 ⎠ ⎝ ij i−1,j i,j+1 i,j−1 ⎠ μ + μ + ∂x1 ∂x2 hx 2hy
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF Ş +DES !NTMC@QX n(x) = (−1, 0)T ⎞ ⎞ ⎛ ⎛ u1i+1,j − u1ij u2i,j+1 − u2i,j−1 ∂u1 ∂u2 −ξ −λ ⎟ ⎜ −ξ ∂x − λ ∂x ⎟ ⎜ hx 2hy ⎜ (⎟ ' 1 2 ⎟ ⎜ = ˙ τ (x, t) = ⎝ ⎜ 2 2 1 1 2 1 ui+1,j − uij ui,j+1 − ui,j−1 ⎟ ∂u ∂u ⎠ ⎝ ⎠ −μ + −μ + ∂x1 ∂x2 hx 2hy -NSD SG@S SGD ETMBSHNM τ NE RTQE@BD ENQBDR G@R SN AD DU@KT@SDC @S SGD CHRBQDSD ANTMC@QX ONHMSR @MC SGD BNQQDRONMCHMF BNMSQHATSHNMR G@UD SN AD BNMRHCDQDC HM SGD QHFGS G@MC RHCD Ph NE SGD QDRTKSHMF KHMD@Q RXRSDL NE DPT@SHNMR S SGD BNQMDQR NE SGD CNL@HM VD TRD SGD @UDQ@FDC MNQL@K UDBSNQ NE ANSG @CI@BDMS ANQCDQR SN NAS@HM SGD ENKKNVHMF ƥMHSD CHƤDQDMBD @OOQNWHL@SHNMR Ş 4OODQ KDES BNQMDQ n(x) = (−1, 1)T ⎛ 2 ⎞ ∂u ∂u1 ∂u2 ∂u1 ⎜−ξ ∂x1 − λ ∂x2 + μ ∂x1 + ∂x2 ⎟ ⎟ 2 τ (x, t) = ⎜ ⎝ ∂u ∂u1 ∂u1 ⎠ ∂u2 −μ + +λ +ξ ∂x1 ∂x2 ∂x2 ∂x1 ' (⎞ ⎛ 1 1 2 2 u2i+1,j − u2ij uij − ui,j−1 u1ij − u1i,j−1 ui+1,j − uij −λ +μ + ⎟ ⎜−ξ ⎟ ⎜ hx hy hx hy ⎟ ' ( = ˙ ⎜ 2 2 1 1 2 2 1 1 ⎜ ui+1,j − uij uij − ui,j−1 ui+1,j − uij ⎟ uij − ui,j−1 ⎠ ⎝ + +λ −μ +ξ hx hy hy hx Ş 4OODQ QHFGS BNQMDQ n(x) = (1, 1)T ⎛ 2 ⎞ ∂u ∂u2 ∂u1 ∂u1 ⎜ξ ∂x1 + λ ∂x2 + μ ∂x1 + ∂x2 ⎟ ⎟ 2 τ (x, t) = ⎜ ⎝ ∂u ∂u1 ∂u1 ⎠ ∂u2 μ + +λ +ξ ∂x1 ∂x2 ∂x2 ∂x1 (⎞ ' ⎛ 1 1 2 2 uij − ui,j−1 u2ij − u2i−1,j u1ij − u1i,j−1 uij − ui−1,j +λ +μ + ⎟ ⎜ξ ⎟ ⎜ hx hy hx hy ⎟ ' ( = ˙ ⎜ 2 2 1 1 2 2 1 1 ⎜ uij − ui−1,j uij − ui,j−1 uij − ui−1,j ⎟ uij − ui,j−1 ⎠ ⎝ + +λ +μ +ξ hx hy hy hx 4RHMF @KK RDUDM @OOQNWHL@SHNMR Ŕ VD B@M HLOKDLDMS @ , 3+ ! ETMBSHNM SN BNMRSQTBS SGD L@SQHW DMSQHDR NE SGD BNQQDRONMCHMF KHMD@Q RXRSDL NE DPT@SHNMR SGHR HR @BST@KKX O@QS NE SGD VNQJRGNO S@RJR RDD 2DB Ah Th = Ph 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS steady−state solution 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
−0.2
0
0.2
0.4
0.6
0.8
%HFTQD 0T@KHS@SHUD RSD@CX RS@SD RNKTSHNM NE @ ATHKCHMF TMCDQ VHMCKN@C EQNL KDES
%NQ SGD ENQLTK@SHNM NE SGD @ANUD RXRSDL NMD MDDCR SN RODBHEX @ BDQS@HM NQ CDQ NE SGD CDFQDDR NE EQDDCNL 3GD # LDRG C@S@ NE SGD SVN BNLONMDMSR (u1ij , u2ij ) G@R SN AD RDQH@KHRDC HM @ UDBSNQ RDD 2DB ENQ CHƤDQDMS U@QH@MSR NE SGD RDQH@KHR@SHNM NE #N% 3N CDLNMRSQ@SD SGD BNQQDBS CDQHU@SHNM NE SGD %# @OOQNWHL@SHNMR VD RHL TK@SDC @ ATHKCHMF TMCDQ RTQE@BD ENQBDR @BSHMF NM SGD KDES RHCD NE SGD CNL@HM HL@FHMD VHMC KN@CR BNLHMF EQNL SGD KDES 3GD RSD@CX RS@SD RNKTSHNM UHRT @KHRDC HM %HF RGNVR SGD BNQQDRONMCHMF ADMCHMF NE SGD ATHKCHMF ENQ E = 500 @MC hx = hy = 0.05 ENQ @ BN@QRD LDRG VHSG 10 × 19 FQHC MNCDR .E BNTQRD QDRTKSR ENQ RBDM@QHNR VHSG K@QFD CHROK@BDLDMSR VHKK MNS AD OGXRHB@KKX LD@M HMFETK RHMBD VD CDQHUDC SGD BNMSHMTNTR DPT@SHNMR TMCDQ SGD @RRTLOSHNM NE KHMD@Q DK@RSHBHSX SGDNQX BE #DE (M @ SHLD CDODMCDMS BNMSDWS SGD R@LD @OOQN@BG HR TRDC HM BNLAHM@SHNM VHSG @ CHRBQDSHR@SHNM NE SGD .#$ RXRSDL BNLO@QD "G@O RDD 2DB ENQ BNQQDRONMCHMF QDRTKSR HMBKTCHMF @KRN Q@MCNL FQNTMC LNSHNM TRHMF SGD *@M@H 3@IHLH LNCDK NE 2DB
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 6GDQD CN ƥMHSD CHƤDQDMBD RBGDLDR FDS SGDHQ M@LD EQNL 0 6GHBG SDBGMHPTD B@M AD TRDC SN CDQHUD ANSG @ ƥMHSD CHƤDQDMBD RBGDLD @MC HSR NQCDQ NE @OOQNWHL@SHNM 0 'NV CN XNT BQD@SD %# RBGDLDR ENQ GHFGDQ NQCDQ CDQHU@SHUDR 0 6GX CN -DTL@MM ANTMC@QHDR G@UD SN AD SQD@SDC HM @ RODBH@K L@MMDQ BNLO@QDC SN #HQHBGKDS ANTMC@QHDR 0 6GHBG SDBGMHPTD L@X AD @OOKHDC SN TRD BDMSQ@K ƥMHSD CHƤDQDMBDR @KRN @S -DTL@MM ANTMC@QHDR
"G@OSDQŗR 2TLL@QX 5@QHNTR @OOKHB@SHNMR SG@S QDPTHQD Q@MCNL DƤDBSR SN AD @CCDC SN O@QSH@K CHE EDQDMSH@K DPT@SHNMR LNSHU@SDC NTQ CHRBTRRHNM NE SGD ƥQRS RSDO HM @ QDCTBSHNM OQNBDRR NE RTBG 1/#$R SN 1.#$R UH@ BK@RRHB@K CDSDQLHMHRSHB CHRBQDSHR@SHNM RBGDLDR HM RO@BD 3GD QDRTKSHMF BNTOKDC RXRSDL NE 1.#$R B@M AD RNKUDC AX @OOKXHMF LDSGNCR CHRBTRRDC HM "G@O @MC %NQ SGD DW@LOKD NE DK@RSHB ANCX LNSHNM VD R@V GNV SGD TMCDQKXHMF RXRSDL NE /#$R @MC BNQQDRONMCHMF ANTMC@QX BNMCHSHNMR @QD CDQHUDC 1@MCNL DƤDBSR SG@S @OOD@Q OTQDKX HM SHLD L@X AD HMBNQONQ@SDC HM SGDRD #HQHBGKDS ANTMC@QX BNMCHSHNMR SN S@BJKD SGD QDRTKSHMF 1.#$ MTLDQHB@KKX @R CHRBTRRDC HM "G@O 6D CHRBTRRDC CHƤDQDMS SXODR NE LDRGDR VHSG DLOG@RHR NM QDFTK@Q "@QSDRH@M FQHCR 3GD SGQDD L@HM U@QH@MSR NE RO@SH@K CHRBQDSHR@SHNMRŕƥMHSD CHƤDQDMBDR ƥMHSD UNKTLDR @MC ƥ MHSD DKDLDMSRŕG@UD AQHDƦX ADDM DWOK@HMDC "DQS@HM @RODBSR NE ƥMHSD CHƤDQ DMBD RBGDLDR G@UD ADDM OQDRDMSDC HM LNQD CDS@HK @MC SGD BNQQDRONMCHMF %# @OOQNWHL@SHNMR ENQ SGD ETMC@LDMS@K DPT@SHNMR NE DK@RSHB ANCX LNSHNM G@UD ADDM CDQHUDC HM NQCDQ SN RHLTK@SD RSD@CX RS@SD RBDM@QHNR NE ATHKCHMFR SG@S @QD ADMS 1D@K VNQKC @OOKHB@SHNMR NE RSQTBSTQ@K CXM@LHBR VHKK SXOHB@KKX AD S@BJKDC VHSG ƥMHSD DKDLDMSR NM GHFGKX QDƥMDC TMRSQTBSTQDC FQHCR 'DMBD SGD 1/#$ CHRBQDSHR@SHNM OQDRDMSDC HM SGHR BG@OSDQ QDOQDRDMSR @ RHLOKHƥDC @OOQN@BG ATS SGD ƥDKC HR OQDO@QDC ENQ @ ETKK QD@KHR@SHNM HM SGD VNQJRGNO BE /@QS 5 HM HMSDQ DRS NE SGD GHFGKX QDRSQHBSDC @LNTMS NE SHLD ENQ O@QSHBHO@MSR NE HMSDQCHRBHOKHM@QX A@BJFQNTMC
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF $WDQBHRD :☼< 2SQ@HM 3DMRNQ TMCDQ 1HFHC !NCX ,NSHNMR 2GNV SG@S SGD &QDDM 2S 5DM@MS RSQ@HM SDMRNQ E CDƥMDC HM HR HMU@QH@MS TMCDQ QHFHC ANCX LNSHNMR $WDQBHRD :☼< %HMHSD #HƤDQDMBDR HM # #DQHUD SGD ENKKNVHMF ƥMHSD CHƤDQDMBD %# @OOQNWHL@SHNMR ENQ SGD ƥQRS NQCDQ CDQHU@SHUD NE @ # ETMBSHNM u(x) ∈ C 3 (x − h, x + h) u(x + h) − u(x) , ∂ + u(x) := h u(x) − u(x − h) , ∂ − u(x) := h u(x + h) − u(x − h) . ∂ 0 u(x) := 2h 6G@S HR SGD BNQQDRONMCHMF NQCDQ NE @OOQNWHL@SHNM NE D@BG U@QH@MS Ŕ 6GX 'HMS 4RD SGD 3@XKNQ DWO@MRHNMR NE u(x ± h)
%# @OOQNWHL@SHNM ENQ SGD RDBNMC NQCDQ CDQHU@SHUD NE SGD # ETMBSHNM u(x) ∈ C 4 (x − h, x + h) HR CDƥMDC HM SGD ENKKNVHMF L@MMDQ u(x + h) − 2u(x) + u(x − h) . ∂ − ∂ + u(x) := h2 Ş #DQHUD UH@ SGD 3@XKNQ DWO@MRHNM 6G@S HR SGD NQCDQ NE @OOQNW HL@SHNM Ş #DQHUD HM @ CHQDBS V@X TRHMF Ŕ
$WDQBHRD :< %HMHSD #HƤDQDMBDR HM # 6D BNMRHCDQ SGD SVN CHLDMRHNM@K /NHRRNM $PT@SHNM Δu(x, y) = − RHM(πx) · RHM(πy) · 2π 2 , u(x, y) = 0 ,
(x, y) ∈ Ω := [0, 1]2 , (x, y) ∈ Γ := ∂Ω ,
VGDQD Δu(x, y) QDOQDRDMSR SGD +@OK@BH@M Δu(x, y) =
∂2u (x, y) ∂x2
+
∂2u (x, y) ∂y 2
OOKX SGD # %# @OOQNWHL@SHNMR NE /QNAKDL SN CDQHUD @ %# @OOQNWH L@SHNM ENQ SGD # +@OK@BH@M Δu(x, y)
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF +DS Ωh := {(ih, jh) | i = 1, . . . , N, j = 1, . . . , N }
AD @ LDRG NE N HMMDQ FQHC ONHMSR HM D@BG CHQDBSHNM NM SGD TMHS RPT@QD [0, 1]2 ENQ @ FHUDM LDRG RHYD hx = hy = h := 1/(N + 1) Ş #Q@V @ RJDSBG GNV SGD LDRG Ωh KNNJR Ş 6GHBG MDHFGANTQHMF ONHMSR @QD MDBDRR@QX HM NQCDQ SN DU@KT@SD SGD %# @OOQNWHL@SHNM NE S@RJ ENQ @ FHUDM ONHMS (i, j) Ş 2JDSBG SGD L@SQHW A NE SGD KHMD@Q RXRSDL NE DPT@SHNMR Auh = b SG@S HR BQD@SDC AX @OOKXHMF SGD %# NE S@RJ SN SGD FHUDM OQNAKDL Ŕ TRHMF SGD LDRG 6QHSD @ RGNQS , 3+ ! RBQHOS VGHBG HLOKDLDMSR SGD MTLDQHB@K RNKTSHNM NE Ŕ 'HMS 4RD SGD , 3+ ! A@BJRK@RG NODQ@SNQ ř;Ś SN RNKUD SGD KHMD@Q RXRSDL NE DPT@SHNMR 'NV B@M XNT UDQHEX SG@S XNTQ HLOKDLDMS@SHNM HR BNQQDBS $WDQBHRD :☼< %HMHSD #HƤDQDMBD OOQNWHL@SHNM NE CUDBSHNM 3DQLR (M BGDLHRSQX DMFHMDDQHMF @MC D@QSG RBHDMBDR @CUDBSHNM HR @ SQ@MRONQS LDBG @MHRL NE @ RTARS@MBD NQ BNMRDQUDC OQNODQSX AX @ ƦTHC CTD SN SGD ƦTHCŗR ATKJ LNSHNM M DW@LOKD NE @CUDBSHNM HR SGD SQ@MRONQS NE ONKKTS@MSR NQ RHKS HM @ QHUDQ AX ATKJ V@SDQ ƦNV CNVMRSQD@L 3GD @CUDBSHNM NODQ@SNQ HR FHUDM @R u · ∇ = u, ∇ VGDQD u HR @ FHUDM UDBSNQ ƥDKC (M # SGD @OOKHB@SHNM NE SGD @CUDBSHNM NODQ@SNQ SN SGD UDBSNQ ƥDKC u HSRDKE QD@CR @R u(x) · ux (x) &HUD HSR RO@BD CHRBQDSHR@SHNM +LQW OOKX 3@XKNQ @OOQNWHL@SHNM @M@KNFNTR SN SGD CDQHU@SHNM NE SGD ENQ V@QC SHLD CHRBQDSHR@SHNM (M # SGD @OOKHB@SHNM NE SGD @CUDBSHNM NODQ@SNQ SN SGD UDBSNQ ƥDKC u = (u1 , u2 ) HSRDKE QD@CR @R ) * u1 (x, y) u1 (x, y) ∂x , = u2 (x, y) u2 (x, y) ∂y u1 (x, y)∂x u1 (x, y) + u2 (x, y)∂y u1 (x, y) = . u1 (x, y)∂x u2 (x, y) + u2 (x, y)∂y u2 (x, y) &HUD HSR RO@BD CHRBQDSHR@SHNM
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS $WDQBHRD :< /NHMS 2SDMBHK -DFKDBSHMF ANTMC@QX BNMCHSHNMR GNV CNDR SGD KHMD@Q RXRSDL @MC DRODBH@KKX SGD L@SQHW NE CHRBQDSHR@SHNM ENQ SGD # +@OK@BD DPT@SHNM KNNJ KHJD HE HMRSD@C NE SGD ONHMS RSDMBHK SGD ONHMS RSDMBHK Δu(x, y) ≈
1 (−u(x + 2h, y) + 16u(x + h, y) − u(x, y + 2h) 12h2 +16u(x, y + h) − 60u(x, y) + 16u(x − h, y) − u(x − 2h, y) +16u(x, y − h) − u(x, y − 2h))
HR TRDC NM @ QDFTK@Q FQHC VHSG h = Δx = Δy 2DS TO SGD L@SQHW NE CHRBQDSHR@SHNM ENQ SGD # +@OK@BD DPT@SHNM VHSG SGHR RSDMBHK 6G@S @QD SGD @CU@MS@FDR @MC CHR@CU@MS@FDR NE TRHMF @ ONHMS RSDMBHK +LQW 3GD ONHMS RSDMBHK KD@CR SN @M @BBTQ@BX NE O(h4 ) #DQHUD SGD ONHMS RSDMBHK VHSG SGD GDKO NE RTHS@AKD 3@XKNQ DWO@MRHNMR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
3DWK:LVH 6ROXWLRQV RI 52'(V 3GHR BG@OSDQ LNSHU@SDR @MC QHFNQNTRKX CHRBTRRDR ANSG DWHRSDMBD @MC TMHPTD MDRR NE O@SG VHRD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 6D RS@QS AX LNCDKKHMF DWSDQM@K @MC FQNTMC LNSHNM DWBHS@SHNMR AX LD@MR NE RSNBG@RSHB OQNBDRRDR VGHBG LNSHU@SDR SGD RSTCX NE Q@MCNL NQCHM@QX CHƤDQ DMSH@K DPT@SHNMR 1.#$R 3GDHQ RNKTSHNM DWHRSDMBD @MC TMHPTDMDRR BNMBDOSR @QD SGDM CHRBTRRDC SNFDSGDQ VHSG SGD BNQQDRONMCDMBD ADSVDDM RSNBG@RSHB @MC Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (M O@QSHBTK@Q VD RSTCX SGD BNMCH SHNMR SG@S KD@C SN SGD DWHRSDMBD NE O@SG VHRD TMHPTD RNKTSHNMR 2NKTSHNMR HM SGD DWSDMCDC RDMRD @QD @M@KXRDC @R VDKK @R SGD CDODMCDMBD NE RNKTSHNMR NM O@Q@LDSDQR @MC HMHSH@K BNMCHSHNMR R @M DWBTQRHNM VD FHUD SGD DPT@SHNMR NE LNSHNM ENQ RHMFKD @MC LTKSH RSNQDX VHQDEQ@LD ATHKCHMFR
*DX "NMBDOSR %NKKNVHMF NTQ OQNFQ@L SN 3GHR BG@OSDQ AQHMFR TR NMD RSDO BKNRDQ SN RNKUHMF Q@MCNL O@QSH@K CHƤDQDM SH@K DPT@SHNMR AX DPTHOOHMF TR VHSG SGD SGDNQDSHB@K A@BJFQNTMC JMNVKDCFD QDPTHQDC SN BNMUDQS SGDL A@BJ SN CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@ SHNMR RDD %HF .TQ L@HM RNTQBD ENQ SGD RDS TO @MC CHRBTRRHNM NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR HR SGD E@ATKNTR ANNJ :< 1@MCNL CHƤDQDMSH@K DPT@SHNMR NBBTQ PTHSD M@STQ@KKX HM OKDMSX NE QD@K RHST @SHNMR @R SGD ENKKNVHMF DW@LOKD HKKTRSQ@SDR $W@LOKD /NKKTSHNM (MCTBDC !HNBGDLHB@K .WXFDM #DL@MC @MC #HRRNKUDC .WXFDM HM 2SQD@LR %NKKNVHMF :< O HS G@R ADBNLD HMBQD@RHMFKX DU HCDMS SG@S SGD VNQKCŗR LNRS U@KT@AKD M@STQ@K QDRNTQBDR Ŕ @HQ @MC V@SDQ Ŕ @QD ADHMF DMC@MFDQDC AX SGD @BSHUHSHDR NE BHUHKHYDC L@M 3GD V@SDQ RTOOKX HR AD HMF DMC@MFDQDC AX SGD CHRONR@K NE NQF@MHB @MC NSGDQ V@RSD L@SDQH@KR HMSN M@STQ@K ANCHDR NE V@SDQ AX LTMHBHO@KHSHDR @MC HMCTRSQHDR 3GHR ONKKTSHNM G@R ADBNLD @ L@INQ BNMBDQM NE SGD RBHDMSHƥB BNLLTMHSX @MC U@QHNTR QDFTK@SNQX @FDMBHDR G@UD RODBHƥDC LHMHLTL KDUDKR ENQ CHRRNKUDC NWXFDM #. HM K@JDR @MC RSQD@LR 3GDRD LHMHLTL KDUDKR NE #. @QD DWSQDLDKX HLONQS@MS RHMBD HE #. E@KKR ADKNV @ BDQS@HM SGQDRGNKC U@KTD SGD ƥRG @MC NSGDQ KHUHMF NQF@MHRLR HM SGD ANCX NE V@SDQ L@X CHD
&KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS 3GD RHST@SHNM VD @QD LNCDKKHMF HR SG@S NE @ ONKKTS@MS QTMMHMF HMSN @ RSQD@L VGHBG HR SQ@MRONQSDC CNVMRSQD@L RDD %HF 6D @RRTLD @ RSD@CX @MC TMHENQL RSQD@L ƦNV @MC SG@S SGD BNMCHSHNMR @S DUDQX BQNRR RDBSHNM @QD TM BG@MFDC VHSG SHLD -DWS KDS x(t) CDMNSD SGD AHNBGDLHB@K NWXFDM CDL@MC !.# NE ONKKTSHNM CDFQ@CHMF A@BSDQH@ HM SGD ANCX NE V@SDQ @S SGD CHRS@MBD t CNVMRSQD@L EQNL SGD ONKKTSHNM RNTQBD @MC y(t) SGD BNMBDMSQ@SHNM NE #. @S CHRS@MBD t CNVMRSQD@L 3GHQC KDS TR @RRTLD SG@S SGD @BST@K ONKKTSHNM @S @ CHRS@MBD t CNVMRSQD@L HR OQNONQSHNM@K SN !.# Ω
Ω
Ω
t
t t x
x
x
Space-Time-Realization-Cube
Space-Discretization (Finite Differences)
Path-Wise Solution Concept for R(O)DEs
Partial Differential Equation with Stochastic Effects (RPDE or SPDE)
Finite-Dimensional System of R(O)DE
Finite-Dimensional System of an Infinite Family of ODEs
Decrease Mesh-Size
Compatibility Conditions 1) all solutions of the ODE family are defined on a common time interval 2) all solutions are stochastic processes
%HFTQD 1DCTBSHNM EQNL @ FHUDM BNMSHMTTL LDBG@MHB@K Q@MCNL O@QSH@K CHƤDQDMSH@K DPT@SHNM SN @ E@LHKX NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (M SGHR BG@OSDQ VD ENBTR NM SGD RDBNMC RSDO H D SGD BNQQDRONMCDMBD ADSVDDM Q@MCNL CHƤDQDMSH@K DPT@SHNMR @MC CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR
%HM@KKX VD @RRTLD SG@S SGDQD @QD ƥUD L@INQ @BSHUHSHDR HM SGD RSQD@L RDD :< O 3GD ONKKTSHNM !.# @MC #. @QD CDBQD@RDC AX SGD @BSHNM NE A@BSDQH@ @S @ Q@SD QDK@SDC SN SGD @LNTMS NE ONKKTSHNM OQDRDMS VHSG OQNONQSHNM@KHSX BNMRS@MS k1 > 0 3GD CHRRNKUDC NWXFDM HR HMBQD@RDC CTD SN QD@DQ@SHNM @S @ Q@SD OQNONQ SHNM@K SN SGD CHRRNKUDC NWXFDM CDƥBHS H D SGD #. R@STQ@SHNM BNMBDMSQ@ SHNM LHMTR SGD @BST@K #. BNMBDMSQ@SHNM VHSG OQNONQSHNM@KHSX BNMRS@MS k2 > 0 3GD ONKKTSHNM HR NMKX CDBQD@RDC AX RDCHLDMS@SHNM @MC @CRNQOSHNM @S @ Q@SD OQNONQSHNM@K SN SGD @LNTMS NE ONKKTSHNM OQDRDMS VHSG OQNONQSHNM@KHSX BNMRS@MS k3 > 0 3GD ONKKTSHNM HR HMBQD@RDC EQNL RL@KK RNTQBDR @KNMF SGD RSQDSBG NE RSQD@L VHSG Q@SD xa > 0 HMCDODMCDMS NE SGD @LNTMS NE ONKKTSHNM OQDRDMS
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
distance t0 = 0 distance t
%HFTQD 2JDSBG NE SGD RHST@SHNM CDRBQHADC HM DW@LOKD @ ONKKTS@MS HR QTMMHMF HMSN @ RSQD@L @MC HR SQ@MRONQSDC CNVMRSQD@L
3GD CHRRNKUDC NWXFDM HR CDBQD@RDC @S @ Q@SD dO VGHBG L@X G@UD ONRHSHUD NQ MDF@SHUD U@KTDR @MC QDOQDRDMSR SGD MDS BG@MFD HM CHRRNKUDC NWXFDM CTD SN SGD !DMSG@K CDL@MC @MC QDROHQ@SHNM @MC OGNSNRXMSGDRHR NE OK@MSR (M :< SGD ENKKNVHMF LNCDK ENQ !.# @MC #. HR BNMRHCDQDC 0 = −ux(t) ˙ − (k1 + k3 ) x(t) + xa , 0 = −uy(t) ˙ + k2 (ys − y(t)) − k1 x(t) − dO , VGDQD u > 0 HR SGD @UDQ@FD UDKNBHSX @KNMF SGD RSQDSBG @MC ys > 0 HR SGD R@ST Q@SHNM BNMBDMSQ@SHNM ENQ CHRRNKUDC NWXFDM 3GD HMHSH@K BNMCHSHNMR @QD CDMNSDC AX x(0) = x0 @MC y(0) = y0 'DQDAX SGD PT@MSHSHDR k1 , k2 , k3 , u, xa , ys , dO , x0 , y0 @QD MNS LNCDKKDC @R BNMRS@MSR ATS @QD LNQD QD@KHRSHB@KKX BNMRHCDQDC @R Q@MCNL U@QH@AKDR NQ t CDODMCDMS BNMSHMTNTR RSNBG@RSHB OQNBDRRDR VGHBG G@UD BDQS@HM OQNA@AHKHSX CHRSQHATSHNMR 2TBG Q@MCNLKX ODQSTQADC NQCHM@QX CHƤDQDMSH@K DPT@SHNMR FN ADXNMC SGD RBNOD NE SGD SGDNQX NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @MC @S @ ƥQRS FK@MBD HS HR MNS SQHUH@K SN CDSDQLHMD @ MNSHNM NE @ RNKTSHNM ENQ RTBG OQNAKDLR SG@S B@QDETKKX L@JDR RDMRD ENQ SGD Q@MCNL ODQSTQA@SHNMR HMUNKUDC (M SGHR BG@OSDQ VD VHKK RGNV GNV SN BNMUDQS Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR SN NQCHM@QX CHƤDQDMSH@K DPT@SHNMR (M O@QSHBTK@Q VD VHKK FHUD DWHRSDMBD @MC TMHPTDMDRR OQNNER ENQ SGD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 3GDRD OQNNER @QD NE BNMRSQTBSHUD @KFNQHSGLHB M@STQD @MC VHKK ENQDRG@CNV SGD MTLDQHBR SG@S B@M AD @OOKHDC SN RHLTK@SD SGD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 6GDM QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 6G@S @QD SGD BNLLNMKX @BBDOSDC CHƤDQDMSH@K DPT@SHNM LNCDKR ENQ D@QSG PT@JD DWBHS@SHNMR 6G@S HR SGD CHƤDQDMBD ADSVDDM RSNBG@RSHB NQCHM@QX CHƤDQDMSH@K DPT@ SHNMR @MC Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 'NV B@M RSNBG@RSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR VHSG BNMRS@MS CHƤT RHNM SDQLR AD SQ@MRENQLDC SN Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 'NV B@M VD OQNUD DWHRSDMBD @MC TMHPTDMDRR NE Q@MCNL NQCHM@QX CHƤDQ DMSH@K DPT@SHNMR @MC VG@S CN SGD MNSHNMR NE DWHRSDMBD @MC TMHPTDMDRR LD@M VGDM RSNBG@RSHB ODQSTQA@SHNMR @QD OQDRDMS 'NV CN SGD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR CDODMC NM O@Q@LDSDQR @MC HMHSH@K BNMCHSHNMR @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR &@TRRH@M VGHSD MNHRD @MC 6HDMDQ OQNBDRRDR HMBK SGDHQ BNMSHMTHSX @MC CHƤDQDMSH@AHKHSX OQNODQSHDR 3GD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD /@SG VHRD DWHRSDMBD @MC TMHPTDMDRR NE RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 2NKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HM SGD DWSDMCDC RDMRD @MC $PT@SHNMR NE LNSHNM ENQ RHMFKD @MC LTKSH RSNQDX VHQDEQ@LD ATHKCHMFR 3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR (M 2DB VD LNCDK DWSDQM@K @MC FQNTMC LNSHNM DWBHS@SHNMR AX LD@MR NE RSNBG@RSHB OQNBDRRDR L@HMKX VGHSD MNHRD CQHUDM NMDR 3GHR LNSHU@SDR SGD RSTCX NE Q@MCNL NQCHM@QX CHƤDQDM SH@K DPT@SHNMR 3GDHQ RNKTSHNM DWHRSDMBD @MC TMHPTDMDRR BNMBDOSR @QD CHR BTRRDC HM 2DB SNFDSGDQ VHSG SGD BNQQDRONMCDMBD ADSVDDM RSNBG@RSHB @MC Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR %NQ RHLOKHBHSX NE MNS@SHNM VD NE SDM RTOOQDRR SGD SDQL řNQCHM@QXŚ VGDM HS HR BKD@Q VGHBG JHMC NE CHƤDQDMSH@K DPT@SHNM VD LD@M -DWS HM 2DB VD CHRBTRR SGD BNMCHSHNMR SG@S KD@C SN SGD DWHRSDMBD NE O@SG VHRD TMHPTD RNKTSHNMR 'DQD RNKTSHNMR HM SGD DWSDMCDC RDMRD @QD @M@KXRDC @R VDKK @R SGD CDODMCDMBD NE RNKTSHNMR NM O@Q@LDSDQR @MC HMHSH@K BNMCHSHNMR R @M DWBTQRHNM 2DBSHNM LNCDKR CDSDQLHMHRSHB@KKX SGD DPT@SHNMR NE LNSHNM ENQ RHMFKD @MC LTKSH RSNQDX VHQDEQ@LD ATHKCHMFR %HM@KKX 2DBSHNM VQ@OR TO SGD BNMSDMSR NE SGHR BG@OSDQ 3UHUHTXLVLWHV 3GD BNMSDMSR NE "G@O @MC @ A@RHB JMNVKDCFD NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @QD QDPTHQDC ENQ SGHR BG@OSDQ 2NLD OQD JMNVKDCFD NM RSNBG@RSHB OQNBDRRDR VNTKC AD FNNC 3GD QDPTHQDC , 3+ ! BNLL@MCR ENQ
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF RSNBG@RSHB OQNBDRRDR @QD FHUDM HM "G@O (M NQCDQ SN TMCDQRS@MC SGD OQNNER HM 2DB @ RNTMC JMNVKDCFD NE A@RHB LD@RTQD SGDNQX HMBKTCHMF LD@RTQ@AKD ETMBSHNMR @MC OQNCTBS LD@RTQDR HR QDPTHQDC BE :< 7HDFKLQJ 5HPDUNV R HMCHB@SDC HM SGD OQDE@BD NTQ SNO CNVM @OOQN@BG HM SDMSHNM@KKX RS@QS VHSG SGD LNQD BNLOKDW SNOHB NE Q@MCNL CHƤDQDMSH@K DPT@ SHNMR ADENQD FHUHMF @ QDUHDV NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HM "G@O %NQ @ ADFHMMHMF FQ@CT@SD BNTQRD VD @RRTLD SGHR SN AD SGD QHFGS @OOQN@BG @MC DMBNTQ@FD DUDQXNMD SN RS@QS @ BK@RR DWOKHBHSKX VHSG SGD "G@OR @MC (E QDPTHQDC SGD A@RHBR NE RSNBG@RSHB OQNBDRRDR @MC CDSDQLHMHRSHB NQCH M@QX CHƤDQDMSH@K DPT@SHNMR B@M AD QDB@KKDC K@SDQ NM (M O@QSHBTK@Q SGDRD BG@O SDQR VNTKC AD VDKK LNSHU@SDC HM SGD DXDR NE SGD RSTCDMSR VGN @OOQDBH@SD SGD AHF OHBSTQD NE SGD BK@RR ,NQDNUDQ 2DB NM RNKTSHNMR NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR HM SGD DWSDMCDC RDMRD B@M AD UHDVDC @R @M @CC NM 3GD RDBNMC SGDNQDL NM DWHR SDMBD @MC TMHPTDMDRR NE RNKTSHNMR 3GDNQDL HR @ RODBH@K B@RD NE 3GDNQDL BNMS@HMDC HM 2DB 3GTR HS RDDLR ADMDƥBH@K SN DMBNTQ@FD RSTCDMSR SN RSTCX 3GDNQDL @MC HSR OQNNE DWSDMRHUDKX @MC BNMUDQS HS SN SGD D@RHDQ RDSSHMF EQNL 3GDNQDL
2SNBG@RSHB /QNBDRRDR @R ,NCDKR ENQ $WSDQM@K @MC &QNTMC ,NSHNM $WBHS@SHNM 3GD $@QSGŗR BQTRS HR @ RXRSDL NE BNMRS@MSKX LNUHMF OK@SDR RTCCDM EQ@BSTQD NE SGDRD OK@SDR B@M B@TRD @M D@QSGPT@JD VGDQD @ RTCCDM ATQRS NE DMDQFX HR QDKD@RDC B@TRHMF RDHRLHB DMDQFX V@UDR SG@S C@L@FD RTQQNTMCHMF @QD@R .MD @RRTLDR SG@S SGDRD V@UDR NQHFHM@SD EQNL @ ENB@K ONHMS VGHBG V@R SGD NQHFHM@K RHSD NE SGD EQHBSHNM @MC SGHR ENB@K ONHMS HR B@KKDC SGD DOHBDMSDQ NE SGD D@QSG PT@JD #DROHSD RDHRLHB @BSHUHSHDR B@TRDC AX UNKB@MHB DQTOSHNMR HM SGD HMSDQHNQ NE @ OK@SD VD B@M @RRTLD SG@S D@QSGPT@JDR NBBTQ @S SGD OK@SD ANTMC@QHDR 3GDQD @QD SGQDD DRRDMSH@K SXODR NE ANTMC@QHDR @MC SVN NE SGDL B@M G@UD @ GHFG OQNA @AHKHSX NE B@TRHMF RDHRLHB @BSHUHSHDR Ş 'LYHUJHQW ERXQGDULHV NBBTQ VGDM SVN SDBSNMHB OK@SDR LNUD @V@X EQNL NMD @MNSGDQ @MC @QD LNRS BNLLNM ADSVDDM NBD@MHB OK@SDR @MC B@M @KRN ENQL UNKB@MHB QHCFDR Ş &RQYHUJHQW ERXQGDULHV NQ CDRSQTBSHUD OK@SD ANTMC@QHDR B@TRD CDENQ LHSHDR VGDQD SVN SDBSNMHB OK@SDR BNLD SNFDSGDQ @MC BNKKHCD SGDX @QD BNLLNM RHSDR ENQ UNKB@MHB @BSHUHSX 3GDQD @QD SGQDD SXODR NE BNMUDQFDMS
2DD ?iiT,ffK2B;?M?2M`vXrBFBbT+2bX+QKfq?iYBbYMY1`i?[mF2$Wj6
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS Divergent Plate Boundaries (Spreading Motion)
Convergent Plate Boundaries (Subduction Motion)
Volcanos (volcanic arc)
Ridge
Transform Plate Boundaries (Lateral Sliding Motion)
Earthquakes withi Crust
Trench
Lithosphere Lithosphere
Lithosphere
Earthquakes Asthenosphere Asthenosphere
Asthenosphere
%HFTQD .UDQUHDV NE SGD SGQDD SXODR NE OK@SD LNSHNM KDES CHUDQFDMS OK@SD KD@CHMF SN ROQD@CHMF LNSHNM LHCCKD BNMUDQFDMS OK@SD ANTMC@QHDR KD@CHMF SN RTACTBSHNM LNSHNM @MC QHFGS SQ@MRENQL OK@SD ANTMC@QHDR VHSG K@SDQ@K RKHCHMF LNSHNM
ANTMC@QHDR NBD@MHB BNMSHMDMS@K BNMSHMDMS@K BNMSHMDMS@K @MC NBD@MHB NBD@MHB 3GD EQHBSHNM ADSVDDM SGD BNMUDQFDMS ANTMC@QHDR B@M B@TRD D@QSGPT@JDR Ş 7UDQVIRUP ERXQGDULHV NBBTQ VGDM SVN OK@SDR RKHCD O@RS D@BG NSGDQ 3GDX @QD LNRSKX ENTMC NM SGD NBD@M ƦNNQ VGDQD SGDX ENQL ROQD@CHMF QHCFDR HM @ YHF Y@F O@SSDQM 'DQD SGD EQHBSHNM ADSVDDM SGD SQ@MRENQL ANTMC@QHDR B@M B@TRD D@QSGPT@JDR SNN %HFTQD HKKTRSQ@SDR SGDRD ANTMC@QX SXODR R R@HC HM SGD DUDMS NE @M D@QSGPT@JD DMDQFX HR SQ@MRLHSSDC SGQNTFG SGD BQTRS VGHBG KD@CR SN @ FQNTMC LNSHNM DWBHS@SHNM VGHBG DƤDBSR ATHKCHMFR +DS TR RSTCX GNV VD B@M LNCDK SGHR FQNTMC LNSHNM DWBHS@SHNM !DENQD VD B@M RS@QS VD QDPTHQD @ RTHS@AKD LNCDK ENQ SGD RSNBG@RSHB DƤDBSR 'DQD VD VHKK CHR BTRR SGD LNRS E@LNTR NE @KK VGHSD MNHRD (M O@QSHBTK@Q VD ENKKNV HSR CHRBNUDQX TMCDQ SGD LHBQNRBNOD NE 1NADQS !QNVM
!QNVMŗR $WODQHLDMS 6GHSD -NHRD
(M SGD 2BNSSHRG ANS@MHRS 1NADQS !QNVM NA RDQUDC SG@S LHBQNRBNOHB O@QSHBKDR RTRODMCDC HM KHPTHC L@JD UDQX RSQ@MFD @MC GHFGKX HQQDFTK@Q LNUDLDMSR 3GDRD LNUDLDMSR QDRTKS EQNL SGD BNKKHRHNMR NE SGD O@QSHBKD VHSG SGD KHPTHC LNKDBTKDR 2HMBD SGD L@RR NE SGD RTRODMCDC LNKDBTKDR @QD RL@KK DMNTFG D@BG NE SGDRD BNKKHRHNMR VHKK G@UD @ UHRHAKD DƤDBS NM SGD O@QSHBKDŗR O@SG (E VD @RRTLD SG@S SGD RSNBG@RSHB HMƦTDMBD G@R MN LDLNQX NE SGD O@RS H D HR @ ,@QJNU OQNBDRR HR MNS BNQQDK@SDC VHSG HSRDKE H D SGD @TSN BNQQDK@SHNM HR δ CHRSQHATSDC @MC SG@S @S D@BG SHLD SGD OQNA@AHKHSX NE NAS@HMHMF @ RODBHƥB U@KTD x ∈ R HR SGD R@LD @R NAS@HMHMF −x H D SGD RSNBG@RSHB HMƦTDMBD G@R YDQN LD@M SGHR KD@CR SN SGD MNSHNM NE VGHSD MNHRD wt %QNL SGD HKKTRSQ@SHUD ONHMS NE UHDV VGHSD MNHRD wt HR @ RHFM@K NQ OQNBDRR M@LDC HM @M@KNFX SN
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VGHSD KHFGS VHSG DPT@K DMDQFX NUDQ @KK EQDPTDMBX A@MCR VD BNLD A@BJ SN SGD RODBSQ@K OQNODQSHDR NE RSNBG@RSHB OQNBDRRDR K@SDQ HM O@QS ((( 6GHSD MNHRD wt HR BG@Q@BSDQHRDC AX SGD ENKKNVHMF OQNODQSHDR #DƥMHSHNM &@TRRH@M 6GHSD -NHRD ZKLWH QRLVH SURFHVV (wt )t∈R+ G@R 0 U@MHRGHMF LD@M H D E(wt ) = 0 @MC HSR @TSN BNQQDK@SHNM HR δ CHRSQHATSDC H D E(wt ws ) = δ(t − s) 3GD ENKKNVHMF , 3+ ! $W@LOKD UHRT@KHRDR JDX OQNODQSHDR NE SGD &@TRRH@M VGHSD MNHRD OQNBDRR , 3+ ! $W@LOKD pBbq?Bi2XK &DMDQ@SHMF SGD UHRT@KHR@SHNM NE &@TRRH@M VGHSD MNHRD HM %HF + QXPEHU R I VDPSOHV I R U DXWR−F R U U H O D W L R Q %R VDPSOLQJ U D W H %B F D U U L H U I U H T X H Q F \ I R U W K H GXPP\ V L J Q D O S %R WLPH EDVH U@QH@MBD YDULDQFH RI ZKLWH QRLVH J H Q H U D W H D GXPP\ V L J Q D O − O D W H U RQ W K L V FDQ EH U H S O D F H G E\ W K H V L J Q D O W K D W ZH D U H L Q W H U H V W H G L Q R H F M @ K R H M O H %B S *H Q H U D W H *DXVVLDQ Z K L W H Q R L V H Z L W K PHDQ Y D U L D Q F H RTAOKNS VGHSD-NHRD R P Q S U @ Q H @ M B D Q@MCM K D M F S G R H F M @ K O K N S S VGHSD-NHRD S H S K D ŗ ; AE Z &@TRRH@M 6GHSD -NHRD \ ŗ W K @ A D K ŗ 3HLD R ŗ X K @ A D K ŗ LOKHSTCD ŗ & D O F X O D W H DXWR−F R U U H O D W L R Q R I W K H Z K L W H QRLVH / L V W K H QXPEHU R I VDPSOHV XVHG L Q DXWR−F R U U H O D W L R Q F D O F X O D W L R Q RTAOKNS : VGHSD-NHRD"NU K @ F R < WBNU VGHSD-NHRD + RSDL K @ F R VGHSD-NHRD"NU L@W VGHSD-NHRD"NU S H S K D ŗ ; AE Z -NQL@KHYDC TSN−" N Q Q D K @ S H N M NE 6GHSD -NHRD \ ŗ W K @ A D K ŗ +@F : R@LOKDR < ŗ )UHTXHQF\ GRPDLQ U H S U H V H Q W D W L R Q R I Q R L V H RTAOKNS -%%3 =MDWSONV K D M F S G VGHSD-NHRD -NHRD2ODBSQTL E E S VGHSD-NHRD -%%3 K D M F S G VGHSD-NHRD E %R K H M R O @ B D -%%3 RSDL E @AR -NHRD2ODBSQTL -%%3 S H S K D ŗ ; AE Z %QDPTDMBX−#NL@HM 1 D O Q D R D M S @ S H N M NE 6GHSD -NHRD \ ŗ W K @ A D K ŗ %QDPTDMBX 'Y ŗ X K @ A D K ŗ [ 8 E [ ŗ
3GDRD SGQDD OKNSR @QD CHROK@XDC HM %HF 6D B@M BKD@QKX RDD SGD U@MHRGHMF LD@M HM SGD SHLD CNL@HM @R VDKK @R SGD δ BNQQDK@SHNM @MC SGD Ʀ@S RODBSQTL HM SGD EQDPTDMBX CNL@HM 3GD HMSDFQ@K NUDQ SGD EQDPTDMBX ETMBSHNM BNQQDRONMCR
BE ?iiT,ffrrrX;mbbBMrp2bX+QKfkyRkfy8f+QHQ`2/@MQBb2@;2M2`iBQM@BM@KiH#f
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS Gaussian White Noise 4 2 0 −2 −4
0
0.2
0.4
−0.5 −50
−40
−30
50
100
0.6 0.8 1 1.2 1.4 Normalized Auto−Correlation of White Noise
1.6
1.8
2
−20 −10 0 10 20 30 Frequency−Domain Representation of White Noise
40
50
450
500
1 0.5 0
0.2 0.15 0.1 0.05 0
0
150
200
250
300
350
400
%HFTQD /QNODQSHDR NE SGD &@TRRH@M VGHSD MNHRD OQNBDRR SNO R@LOKD O@SG HM SGD SHLD CNL@HM LHCCKD MNQL@KHYDC @TSN BNQQDK@SHNM @MC ANSSNL EQDPTDMBX QDOQD RDMS@SHNM
SN SGD DMDQFX NE @ OQNBDRR @MC VGHSD MNHRD G@R HMƥMHSD DMDQFX -N QD@K OQN BDRR G@R SGHR OQNODQSX VGHBG LD@MR SG@S VD RGNTKC BNMRHCDQ VGHSD MNHRD @R @ ƥBSHSHNTR řBNLOKDSDKX RSNBG@RSHBŚ OQNBDRR 3GD ƥQRS L@SGDL@SHB@K SQD@SLDMS NE SGD !QNVMH@M LNSHNM C@SDR A@BJ SN 3GNQU@KC -HBNK@H 3GHDKD VGN DƤDBSHUDKX BQD@SDC @ LNCDK NE !QNVMH@M LNSHNM VGHKD RSTCXHMF SHLD RDQHDR HM RDD :< :< (M +NTHR !@BGDKHDQ HMRODBSDC SGD CX M@LHB ADG@UHNQ NE SGD /@QHR RSNBJ L@QJDS @MC SGDQDAX BQD@SDC @ LNCDK NE !QNVMH@M LNSHNM RDD :< :< :< 3GNRD LNCDKR NE 3GHDKD @MC !@BGDKHDQ G@C KHSSKD HLO@BS ENQ @ KNMF SHLD BE :< SGD LNRS HMƦTDMSH@K LNCDK V@R SG@S VGHBG V@R OQNONRDC HM AX KADQS $HMRSDHM HM GHR E@LNTR O@ODQ :< (M -NQADQS 6HDMDQ F@UD SGD ƥQRS @BJMNVKDCFDC @MC BNMBHRD CDƥMHSHNM NE @ L@SGDL@SHB@K LNCDK ENQ !QNVMŗR DWODQHLDMS RDD :
V (t, ω) ≤ V0 (ω) ,
DQG W (t, ω, y1 , y2 ) ≤ W0 (ω, y1 , y2 ) ,
WKHQ LW KROGV WKDW Xt (ω; X0 , Y0 ) − Xt (ω; X, Y ) T
0 ,Y ) ≤ X − X0 · DWO (V0 (ω)(t − t0 )) + (DWO (V0 (ω)(t − t0 )) − 1) W0V(ω,Y . 0 (ω)
3URRI %NKKNVHMF :< O VD G@UD SG@S HMDPT@KHSX ENKKNVR HL LDCH@SDKX EQNL &QNMV@KKŗR KDLL@ +DLL@ ADB@TRD VHSG Ut := Xt (ω; X0 , Y0 ) − Xt (ω; X, Y ) VD F@HM SGD DRSHL@SD & &
t & I & & Ut = &X0 − X + (f (Xt (ω; X0 , Y0 ), τ, ω, Y0 ) − f (Xt (ω; X, Y ), τ, ω, Y )) Cτ & & t0
I
≤ X0 − X +
+
f (Xt (ω; X0 , Y0 ), τ, ω, Y0 ) − f (Xt (ω; X, Y ), τ, ω, Y0 ) Cτ
t0 t
Xt (ω; X, Y ), τ, ω, Y0 ) − Xt (ω; X, Y ), τ, ω, Y ) Cτ
t0 I
t
≤ X0 − X +
t
W (τ, ω, Y0 , Y )Cτ +
t0
t
Uτ V (τ, ω)Cτ .
t0
(MDPT@KHSX HR NAS@HMDC EQNL AX DRSHL@SHNM @MC HMSDFQ@SHNM 3GDNQDL FHUDR QHRD SN RDUDQ@K HLONQS@MS BNMSHMTHSX HLOKHB@SHNMR %NQ SGD ENKKNVHMF BNQNKK@QHDR KDS SGD BNMCHSHNMR NE 3GDNQDL SNFDSGDQ VHSG AD R@SHRƥDC VHSG V0 ∈ S1 @MC A × B d × B d LD@RTQ@AKD W0 ˆ 0 ∈ Ξ DQG {Ym }m∈N ⊂ Λ "NQNKK@QX /HW {Xn }n∈N ⊂ Ξ ZLWK KHLn→∞ Xn =X ZLWK KHLm→∞ Ym =Y ˆ 0 ∈ Λ 0RUHRYHU OHW ω ∈ Ω1 VXFK WKDW P(Ω1 ) = 1 DV ZHOO DV KHL W0 (ω, ν, y) = 0 ,
y→ν
6HFWLRQ
y, ν ∈ H
3NAH@R 1HFNHO %KNQH@M 5XSS WKHQ
I
KHL Xt (ω; Xn , Ym ) = Xt (ω; X0 , Y0 )
n,m→∞
KROGV 7KH DERYH OLPLW LV XQLIRUP LQ t RQ HDFK ERXQGHG VXELQWHUYDO RI I H×H
"NQNKK@QX /HW W0 (ω, ν, y) ≤ K(ω)u( ν − y ) ZKHUH K ∈ S1 DQG u LV D QRQQHJDWLYH IXQFWLRQ RQ R+ VXFK WKDW KHLr→0 u(r) = 0 7KHQ IRU DQ\ t ∈ I DQG JLYHQ ε > 0 DQG JLYHQ γ ∈ (0, 1) WKHUH H[LVW QXPEHUV ε∗ > 0 DQG γ ∗ ∈ (0, 1) VXFK WKDW P ( Xt (ω; X, Y ) − Xt (ω; X0 , Y0 ) > ε) < γ , SURYLGHG P( Y − Y0 + X − X0 > ε∗ ) < γ ∗ 2Q HDFK VXELQWHUYDO RI I WKH FRQVWDQWV ε∗ DQG γ ∗ FDQ EH JDLQHG LQGHSHQGHQWO\ RI t 3URRI %NKKNVHMF :< O ƥW τ ∈ I @MC KDS k AD @ ONRHSHUD MTLADQ RTBG SG@S P(A(ω) < k) > 1 − 14 γ ,
@MC
P(K(ω)B(ω) < k) > 1 − 14 γ ,
VGDQD A(ω) := DWO((τ − t0 )V0 (ω)) @MC B(ω) := V0 (ω)−1 (DWO((τ − t0 )V0 (ω)) − 1) ,NQDNUDQ KDS δ > 0 AD RTBG SG@S u(r) ≤ (2k)−1 ε = β ENQ r ∈ [0, δ) @MC ε∗ = LHM(β, δ) @R VDKK @R γ ∗ = 14 γ !DB@TRD NE SGD ENKKNVHMF DRSHL@SDR ENQ t ∈ [t0 , τ ] GNKC P ( Xt (ω; X0 , Y0 ) − Xt (ω; X, Y ) > ε) ≤ 1 − P X − X0 A < 12 ε , W0 (ω, Y0 , Y )B < 12 ε ≤ 2 − P ( X − X0 < β , A < k) − P (u( Y − Y0 ) < β , KB < k) ≤ 2 − 12 γ − P ( X − X0 < β) − P (u( Y − Y0 ) < β) ≤ 2 − 12 γ − 2P ( X − X0 + Y − Y0 < ε∗ ) ≤ 2 − 12 γ − 2(1 − γ ∗ ) = γ . 3GHR RGNVR SGD @RRDQSHNM "NQNKK@QX /HW E (DWO (2V0 (t − t0 ))) < ∞ ,
DQG
E
(DWO (V0 (t − t0 )) − 1)2 V02
≤ ∞.
$VVXPH WKDW IRU DOPRVW DOO ω ∈ Ω LW KROGV WKDW W0 (ω, y, ν) ≤ C y − ν IRU y, ν ∈ H DQG C > 0 /HW {Xn }n∈N ⊂ Ξ DQG {Ym }m∈N ⊂ Λ EH VTXDUHLQWHJUDEOH VHTXHQFHV LQ L2n DQG L2m UHVSHFWLYHO\ VXFK WKDW Zk := (Xk , X0 , Yk , Y0 ) DQG V0 DUH LQGHSHQGHQW IRU DOO k ∈ N 0RUHRYHU DVVXPH q.m. KHL Xn = X0 ∈ Ξ , n→∞
DQG q.m. KHL Ym = Y0 ∈ Λ , m→∞
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VHH 6HF IRU WKH GHƲQLWLRQ RI WKH PHDQVTXDUH TXDGUDWLF PHDQ OLPLW q.m. KHL WKHQ LW KROGV WKDW q.m. KHL Xt (ω; Xn , Ym ) = ˆ Xt (ω; X0 Y0 ) . n,m→∞
,I KROGV IRU DOO t IURP D ERXQGHG VXELQWHUYDO RI I WKHQ LV XQLIRUPO\ LQ t WKHUH %HM@KKX KDS TR @OOKX NTQ QDRTKSR SN RODBHƥB DW@LOKDR $W@LOKD +HMD@Q (MGNLNFDMDNTR 1@MCNL #HƤDQDMSH@K $PT@SHNM BE :< O +DS TR RSTCX SGD CDODMCDMBD NE RNKTSHNMR NE SGD ENKKNVHMF Q@MCNL CHƤDQDMSH@K DPT@SHNM NM HSR HMHSH@K BNMCHSHNMR CXt = At Xt + Zt , Ct VHSG O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRRDR @R SGD DMSQHDR NE SGD d × d L@SQHW At @MC UDBSNQ Zt ,NQDNUDQ KDS At AD RS@SHNM@QX VHSG E( At ) < ∞ @MC
1 t→∞ t
t
KHL
t0
Aτ Cτ = ˆ E( At0 ) = E( At ) ,
VGDQD A = ( i,k a2i,k )1/2 HR SGD %QNADMHTR MNQL +DS X0 @MC X AD SVN @QAH SQ@QX DKDLDMSR NE Sd BBNQCHMF SN SGDNQDLR @MC HS GNKCR SG@S t I Xt (ω; X0 ) − Xt (ω; X) ≤ X − X0 DWO Aτ Cτ , t0
@MC SGTR CTD SN SGD OQDRTLDC DQFNCHBHSX NE At HS GNKCR ENQ DUDQX a > E( At0 ) SG@S KHL DWO(−at) Xt (ω; X0 ) − Xt (ω; X) = ˆ 0, t→∞
@R SGD KDES G@MC RHCD NE SGHR HCDMSHSX HR @KLNRS RTQDKX MNS AHFFDQ SG@M t 1 Aτ Cτ − a t . KHL X0 − X DWO t t→∞
t0
$W@LOKD -NMKHMD@Q 1@MCNL #HƤDQDMSH@K $PT@SHNM BE :< O +DS TR BNMRHCDQ SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM CXt = At (ω)Xt + Zt (ω) + (Y1 (ω)h(Xt ) + Y2 (ω)) g(t) , Ct
VGDQD @R HM DW@LOKD At @MC Zt @F@HM G@UD O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRRDR @R DMSQHDR RTBG SG@S RTOt∈I At (ω) = α(ω) ∈ S1 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS +DS Y1 AD @ d × d L@SQHW VGNRD DKDLDMSR @QD Q@MCNL U@QH@AKDR @MC Y2 AD @ d CHLDMRHNM@K Q@MCNL UDBSNQ H D Y2 ∈ Sd ,NQDNUDQ KDS h(x) AD @ d CHLDMRHNM@K UDBSNQ U@KTDC ETMBSHNM NM Rd RTBG SG@S h(x) < h0 @MC h(x1 ) − h(x2 ) ≤ L x1 − x2 ENQ @KK x1 , x2 ∈ Rd +DS g AD @ BNMSHMTNTR QD@K U@KTDC ETMBSHNM CDƥMDC NM I VHSG g(t) ≤ g0 +DS TR RSTCX SGD CDODMCDMBHDR NE SGD RNKTSHNMR NE NM SGD HMHSH@K BNM CHSHNMR @MC SGD O@Q@LDSDQR Y1 @MC Y2 3GD QDPTHQDLDMSR NE SGD 3GDNQDLR @MC GNKC @MC DPT@SHNM HR U@KHC VHSG Σ = Sd Y = (Y1 , Y2 )
Λ = Sd2 +d Y0 = (Y10 , Y20 )
V0 (ω) = α(ω) + Lg0 Y10 (ω) ,
@MC W0 (ω, Y0 , Y ) = g0 (h0 Y10 − Y1 + Y20 − Y2 ) . !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS #DODMCDMBD NM /@Q@LDSDQR @MC (MHSH@K "NMCHSHNMR 0 &HUD &QNMV@KKŗR KDLL@ ENQ RSNBG@RSHB OQNBDRRDR @MC BNLO@QD HS SN HSR TRT@K CDSDQLHMHRSHB UDQRHNM 0 'NV CN SGD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR CDODMC NM HMHSH@K U@KTDR @MC O@Q@LDSDQR 0 2JDSBG SGD OQNNE NE SGHR CDODMCDMBD @RRDQSHNM XNT ITRS TRDC 0 6GHBG BNMSHMTHSX HLOKHB@SHNMR CN SGDRD CDODMCDMBHDR NM HMHSH@K U@KTDR @MC O@Q@LDSDQR G@UD
$WBTQRHNM #DSDQLHMHRSHB #DRBQHOSHNM NE SGD 5HAQ@SHNMR NE 2HMFKD ,TKSH 2SNQDX !THKCHMFR %NKKNVHMF :< OO SGD ENQBDR @BSHMF NM SGD L@RR NM SNO NE SGD VDHFGSKDRR EQ@LD NE SGD NMD RSNQDX ATHKCHMF RGNVM HM %HF @ @QD SGD H[WHUQDO IRUFH p(t) @R VDKK @R SGD GDPSLQJ QDRHRSHMF ENQBD fD (t) @MC SGD HODVWLF NQ LQHODVWLF QDRSHMF ENQBD fS (t) NE SGD RSQTBSTQD 3GD DWSDQM@K ENQBD p HR ENQ SGD LNLDMS S@JDM SN AD ONRHSHUD HM SGD CHQDBSHNM NE SGD x @WHR 3GD CHROK@BDLDMS u(t) SGD UDKNBHSX u(t) ˙ @MC SGD @BBDKDQ@SHNM u ¨(t) @QD @KRN ONRHSHUD HM SGD CHQDBSHNM NE SGD x @WHR 3GD C@LOHMF fD @MC
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF DK@RSHB HMDK@RSHB fS ENQBDR @QD @BSHMF M SGD NOONRHSD CHQDBSHNM ADB@TRD SGDX @QD HMSDQM@K ENQBDR @MC QDRHRS SGD UDKNBHSX @MC CDENQL@SHNM QDRODBSHUDKX 3GD QDRTKS@MS ENQBD @KNMF SGD x @WHR HR p − fD − fS @MC ƥM@KKX -DVSNMŗR RDBNMC K@V NE LNSHNM FHUDR p − fS − fD = m¨ u
NQ
m¨ u + f D + fS = p .
-NV VD VNTKC KHJD SN TMCDQRS@MC SGD QDRSHMF ENQBDR fD @MC fS 3GHR VHKK AD CNMD HM SGD ENKKNVHMF RDBSHNMR
5HAQ@SHNMR NE @ 2HMFKD 2SNQDX !THKCHMF 3GD RS@MC@QC LNCDK ENQ LDBG@MHB NRBHKK@SHNMR HR SG@S NE @ L@RR m > 0 ADHMF BNMMDBSDC SN @ V@KK AX @ ROQHMF VHSG RSHƤMDRR k > 0 'NNJDŗR K@V F = −kx SNFDSGDQ VHSG -DVSNMŗR RDBNMC K@V NE LNSHNM F = m¨ x KD@C SN m¨ x + c˜x˙ + kx = F (t) ,
VHSG x(0) = x0 @MC x(0) ˙ = x1 ,
VGDQD Ş x CDMNSDR SGD CHROK@BDLDMS NE SGD L@RR ONHMS EQNL SGD DPTHKHAQHTL BN NQCHM@SD x0 Ş c˜x˙ CDMNSDR SGD UHRBNTR C@LOHMF NE SGD L@RR ONHMS @MC Ş F (t) HR @ SHLD CDODMCDMS DWSDQM@K ENQBD 2B@KHMF SHLD t UH@ t = m/kτ @MC SGD ONRHSHNM BNNQCHM@SD x UH@ x = x0 y VD NAS@HM SGD CHLDMRHNM EQDD ENQL NE SGD EQDD NRBHKK@SHNM VHSGNTS DWSDQM@K ENQBD @R y¨(t) + cy(t) ˙ + y(t) = 0 , VHSG y(0) = 1 @MC y(0) ˙ = v = (x−1 0 x1 m/k , !−1 VGDQD c := c˜ m/k
-DWS SN SGD B@RD NE D@QSGPT@JD HMCTBDC NRBHKK@SHNMR RDDM HM LDBG@MHB DPTHKHAQHTL VD G@UD
R VD G@UD @KQD@CX
fS + fD + fI = 0 ENQ Ş SGD CDENQL@SHNM ENQBD fS = ku ˙ @MC Ş SGD C@LOHMF ENQBD fD = cu uT Ş SGD L@RR HMDQSH@ fI = m¨
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS x x x x x x x x xxxxxxxxxxxxxx x x x x x x x x x x x xxxxxxx x xxxxxxx x xxxxxxx x xxxxxxx xxxxxxx xxxxxxx xxxxxxx
u(t)
x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
u(t)
damper with damping constant c
mass m
spring with spring constant k
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
@
A
%HFTQD 2JDSBG NE @ NMD RSNQDX ATHKCHMF RTAIDBS SN @M DWSDQM@K DWBHS@SHNM u(t) RTBG SG@S SGD SNO ƦNNQ NE SGD ATHKCHMF RVHMFR @ @MC NE SGD @M@KNFNTR L@RR C@LODQ RXRSDL A
VGDQD uT = u + ug CDMNSDR SGD SNS@K CHROK@BDLDMS NE SGD ONRHSHNM BNNQCHM@SD u RTAIDBS SN SGD HMƦTDMBD NE SGD D@QSGPT@JD HMCTBDC RNHK LNSHNM ug 'DQD NMKX SGD QDK@SHUD CHROK@BDLDMS NE SGD L@RR ONHMS EQNL SGD HMHSH@K ONRHSHNM G@R @M HMƦTDMBD NM SGD CDENQL@SHNM @MC SGD C@LOHMF ENQBDR 'DMBD m¨ u + cu˙ + ku = −m¨ ug . %NQ HMRS@MBD VHSG SGD ODQHNCHB@K FQNTMC DWBHS@SHNM A > 0 ! u ¨g = −A RHM ω k/mt @MC MDFKDBSHMF C@LOHMF VD FDS m¨ u + ku = A RHM ω F@HM RB@KHMF t =
! k/mt .
m/kτ @MC u = (A/k)y KD@CR SN y¨(t) + y(t) = RHM(ωt) .
6D BNMRHCDQ @ NMD RSNQDX ATHKCHMF SG@S HR @S QDRS @S t = 0 @MC KDS X(t) t ≥ 0 CDMNSD SGD QDK@SHUD GNQHYNMS@K CHROK@BDLDMS NE HSR QNNE VHSG QDRODBS SN SGD FQNTMC 3GDM A@RDC TONM @M HCD@KHYDC KHMD@Q LNCDK SGD QDK@SHUD CHROK@BD LDMS X(t) RTAIDBS SN FQNTMC @BBDKDQ@SHNMR HR FNUDQMDC AX x ¨(t) + 2ζω0 x(t) ˙ + ω02 x(t) = −y(t) ,
ENQ t ≥ 0 .
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 2
10
0.5 Implicit Euler Starting point Endpoint Heun
0.4
Explicit Euler Implicit Euler Heun
1
10
0
0.3
10
0.2
10
0.1
10
−1
Accuracy
−2
0
−0.1
−3
10
−4
10
−0.2
−5
10
−0.3 −6
10
−0.4 −7
10
−0.5 −0.025
0
10
−0.02
−0.015
−0.01
−0.005
0
0.005
0.01
0.015
0.02
1
10
0.025
@
2
3
10
10
4
10
5
10
Number of steps
A
%HFTQD @ 2NKTSHNM ENQ SGD NMD RSNQDX DWBHS@SHNM LNCDK HM SGD x x OG@RD ˙ OK@MD @MC A BNMUDQFDMBD NE SGD CHƤDQDMS LDSGNCR BNLO@QDC SN @ GHFG NQCDQ RNKT SHNM BNLOTSDC VHSG , 3+ !
%NQ SGHR DPT@SHNM KDS SGD O@Q@LDSDQR AD FHUDM @BBNQCHMF SN :< O @R ω0 = 20 HM rad/s @MC ζ = 0.05 +DS TR ƥQRS CHROK@X SGD RNKTSHNM NE HM SGD x x OG@RD ˙ OK@MD VHSG HMH SH@K BNMCHSHNMR x(0) = 0 @MC x˙ = 0 H D SGD ATHKCHMF HR @S QDRS @S t = 0 RDD %HF @ 6D RDD SG@S SGD @BBDKDQ@SHNM x˙ HMBQD@RDR PTHBJKX @MC @KSDQM@SDR ADSVDDM ONRHSHUD @MC MDF@SHUD @BBDKDQ@SHNM 3GD RNKTSHNMR OQNCTBDC AX SGD CDSDQLHMHRSHB $TKDQ @MC 'DTM RBGDLD ADG@UD RHLHK@QKX HM %HFTQD A SGD BNMUDQFDMBD NE SGD JMNVM LDSGNCR HR HKKTRSQ@SDC 3GD BNMUDQFDMBD Q@SD NE SGD HLOKHBHS @MC DWOKHBHS $TKDQ HR O(Δh) ATS SGD HLOKHBHS $TKDQ OQNCTBDR @M TRDETK RNKTSHNM DUDM ENQ RL@KK RSDO RHYDR 'DTMŗR LDSGNC G@R @ BNMUDQFDMBD Q@SD NE O(Δh2 ) VGHBG HR BKD@QKX HKKTRSQ@SDC HM SGD BNMUDQFDMBD OKNS +HJD SGD DWOKHBHS $TKDQ 'DTMŗR LDSGNC MDDCR @ LHMHL@K RSDO RHYD SN OQNCTBD @M @BBT Q@SD RNKTSHNM
5HAQ@SHNMR NE @ ,TKSH 2SNQDX !THKCHMF (M SGD B@RD NE @ d RSNQDX ATHKCHMF d = 1, 2, . . . VD G@UD SG@S SGD ENQBDR Fj SG@S @BS NM @ ƦNNQ j B@M AD ROKHS HMSN SGNRD QDRTKSHMF EQNL @ BNLONMDMS SG@S ADKNMFR SN SGD ƦNNQ @ANUD Fjj+1 @MC NMD SG@S ADKNMFR SN SGD ƦNNQ ADKNV HS
Fjj−1 H D
Fj = Fjj−1 + Fjj+1 ,
VGDQD VD RDS Fdd+1 = 0 @R SGDQD HR MN DWSDQM@K ENQBD @BSHMF NM SGD QNNE @MC F10 DPT@K SN SGD ENQBDR HMCTBDC AX SGD D@QSGPT@JD 3GHR KD@CR SN SGD ENKKNV
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS HMF ENQLR NE SGD CDENQL@SHNM @MC C@LOHMF ENQBDR VGDQD CHROK@BDLDMSR @QD LD@RTQDC QDK@SHUD SN SGD j SG ƦNNQ Ş #DENQL@SHNM ENQBD (j)
fS = kj (uj − uj−1 )+kj+1 (uj − uj+1 ) = −kj uj−1 +(kj +kj+1 )uj −kj+1 uj+1 . Ş #@LOHMF ENQBD (j)
fD = cj (u˙ j − u˙ j−1 )+cj+1 (u˙ j − u˙ j+1 ) = −cj u˙ j−1 +(cj +cj+1 )u˙ j −cj+1 u˙ j+1 . %NQ u := (u1 , u2 , . . . , ud )T SGD CHLDMRHNM EQDD DPT@SHNM HM L@SQHW UDBSNQ MNS@ SHNM QD@CR @R u ¨ + C u˙ + Ku = F (t) , VHSG @ SHLD CDODMCDMS DWSDQM@K ENQBD F BNQQDRONMCHMF SN SGD D@QSGPT@JD DW BHS@SHNM @MC VGDQD D F ⎛ ⎞ k1 + k2 −k2 ⎜ −k2 ⎟ k2 + k3 −k3 ⎜ ⎟ ⎜ ⎟ −k3 k3 + k4 −k4 K = ⎜ ⎟ ⎜ ⎟
⎝ ⎠
−ki +ki @MC C @M@KNFNTR (E MDBDRR@QX L@RRDR @QD HMBKTCDC HMSN SGD LNCDK UH@ CH@F NM@K L@SQHBDR %HFTQD CHROK@XR @ RHLTK@SHNM QTM NE @ SGQDD RSNQDX ATHKCHMF VHSG HMHSH@K CHROK@BDLDMS u0 = (0.1, 0.02, −0.1)T @MC BNMRS@MSR k1 = k2 = k3 = 1 @MC c1 = c2 = c3 = 0.5 3GD DƤDBSR NE C@LOHMF @QD BKD@QKX UHRHAKD
"G@OSDQŗR 2TLL@QX (M SGHR BG@OSDQ VD F@HMDC HMRHFGS HMSN SGD LNCDKKHMF NE RDHRLHB @BSHUHSHDR CTD SN SGD @OOKHB@SHNM NE KHMD@Q RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR (LONQS@MS LNC DKR VDQD SGD *@M@H 3@IHLH @MC SGD "KNTFG /DMYHDM ƥKSDQ VGHBG ANSG TRD @CCH SHUD VGHSD MNHRD @R SGD DRRDMSH@K CQHUHMF SDQL 3GHR @CCHSHUD CDODMCDMBD NM VGHSD MNHRD @KKNVDC TR TRHMF SGD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD SN QDVQHSD SGDRD RSNBG@RSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @R .QMRSDHM 4GKDMADBJ OQNBDRR CQHUDM Q@M CNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 3GHR LNSHU@SDC SGD @M@KXSHB RSTCX NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR 6D CHRBTRRDC DWHRSDMBD @MC TMHPTDMDRR NE O@SG VHRD RNKTSHNMR NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR AX BNMUDQSHMF SGDL SN CDSDQLHMHRSHB NQCH M@QX CHƤDQDMSH@K DPT@SHNMR HM @ O@SG VHRD RDMRD 3GTR HM NQCDQ SN F@HM TMHPTD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0 −1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
0 −1
−0.8
−0.6
−0.4
−0.2
@ 3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0 −1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
0 −1
−0.8
−0.6
−0.4
−0.2
B 3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
−0.8
−0.6
−0.4
−0.2
0
D
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0.2
0.4
0.6
0.8
1
C
3.5
0 −1
0
A
0.2
0.4
0.6
0.8
1
0 −1
−0.8
−0.6
−0.4
−0.2
0
E
%HFTQD 2HLTK@SHNM NE SGD NRBHKK@SNQX LNUDLDMS NE @ RSQTBSTQ@KKX C@LODC SGQDD RSNQDX ATHKCHMF RS@QHMF VHSG @ RKHFGS CHROK@BDLDMS EQNL SGD DPTHKHAQHTL ONRHSHNM
O@SG VHRD DWHRSDMBD D@BG DKDLDMS NE SGD ω CDODMCDMS E@LHKX NE NQCHM@QX CHE EDQDMSH@K DPT@SHNMR HR QDPTHQDC SN G@UD @ TMHPTD RNKTSHNM SG@S SGDRD RNKT
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS SHNMR RG@QD @ BNLLNM SHLD HMSDQU@K NE DWHRSDMBD @MC SG@S SGD SGTR CDQHUDC ω CDODMCDMS RNKTSHNM HR @ RSNBG@RSHB OQNBDRR @F@HM (M O@QSHBTK@Q 3GDNQDL F@UD D@RX SN @OOKX @RRTLOSHNMR ENQ SGD TMHPTD DWHRSDMBD NE RTBG O@SG VHRD RNKTSHNMR +DS TR BNMBKTCD VHSG SGD LNCDK OQDRDMSDC HM SGD HMSQNCTBSHNM NE SGHR BG@O SDQ @ RHLOKD LNCDK ENQ ONKKTSHNM HMCTBDC AHNBGDLHB@K NWXFDM CDL@MC @MC CHRRNKUDC NWXFDM HM RSQD@LR RDD DW@LOKD $W@LOKD /NKKTSHNM (MCTBDC !HNBGDLHB@K .WXFDM #DL@MC @MC #HR RNKUDC .WXFDM HM 2SQD@LR $WHRSDMBD @MC 4MHPTDMDRR NE 2NKTSHNMR (E VD @RRTLD @KK O@Q@LDSDQR SN AD RSNBG@RSHB OQNBDRRDR SGHR SVN CHLDMRHNM@K RXR SDL QD@CR @ESDQ RNLD @KFDAQ@HB LNCHƥB@SHNMR @R x(t) ˙ = −at (ω)x(t) + αt (ω) , y(t) ˙ = −bt (ω)y(t) − ct (ω)x(t) − βt (ω) , VGDQD at , bt , ct , αt , βt @QD RTHS@AKD ANTMCDC BNMSHMTNTR RSNBG@RSHB OQNBDRRDR CDƥMDC ENQ t ∈ [t0 , T ) NM SGD OQNA@AHKHSX RO@BD (Ω, A, P) VGDQD T = ∞ L@X GNKC OOKXHMF 3GDNQDL SGD ENKKNVHMF BNMCHSHNMR G@UD SN AD ETKƥKKDC HM NQCDQ SN FT@Q@MSDD SGD DWHRSDMBD NE @ O@SG VHRD TMHPTD RNKTSHNM NE SGHR RXRSDL NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR 3GD ETMBSHNMR f1 (x, y, t, ω) = −at (ω)x(t) + αt (ω) @MC f2 (x, y, t, ω) = −bt (ω)y(t) − ct (ω)x(t) − βt (ω) LTRS AD A LD@RTQ@AKD ENQ @KK (x, y, t) ∈ R × R × [t0 , T ) f1 (x, y, t, ω) @MC f2 (x, y, t, ω) LTRS AD BNMSHMTNTR NM R × R × [t0 , T ) ENQ @KLNRS @KK ω ∈ Ω %NQ SGHR LNCDK SGHR HR HLLDCH@SDKX UDQHƥDC %NQ @KLNRS @KK ω ∈ Ω SGDQD LTRS AD @ QD@K BNMSHMTNTR ETMBSHNM L(t, ω) NM [t0 , T ) RTBG SG@S (f1 (x1 , y1 , t, ω) − f1 (x2 , y2 , t, ω))2 + (f2 (x1 , y1 , t, ω) − f2 (x2 , y2 , t, ω))2 = (at (x1 − x2 ))2 + (bt (y1 − y2 ) + ct (x1 − x2 ))2 ≤ (a2t + c2t ) (x1 − x2 )2 + b2t (y1 − y2 )2 ≤ L(t, ω) (x1 − x2 )2 + (y1 − y2 )2 , R NTQ L@MHOTK@SHNMR @K VGDQD i ∈ [t0 , T ) @MC x1 , x2 , y1 , y2 ∈ R QD@CX RGNV RTBG @ ETMBSHNM L(t, ω) HMCDDC DWHRSR AX RDSSHMF L(t, ω) ≥ L@W{a2t + c2t , b2t } 3GTR NTQ ONKKTSHNM RSQD@L LNCDK G@R @ TMHPTD O@SG VHRD RNKTSHNM NM [t0 , T ) ENQ @MX HMHSH@K BNMCHSHNM (x0 , y0 , t0 ) ∈ S1 × S1 × [t0 , T )
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF %HM@KKX RNKTSHNMR HM SGD DWSDMCDC RDMRD @QD @M@KXRDC SG@S @KKNVDC TR SN DWSDMC SGD BNMBDOS NE @ O@SG VHRD RNKTSHNM SN RXRSDLR VHSG LHKCKX MNM BNMSHMTNTR QHFGS G@MC RHCDR ,NQDNUDQ SGD CDODMCDMBD NE RNKTSHNMR NM O@ Q@LDSDQR @MC HMHSH@K BNMCHSHNMR V@R RSTCHDC @MC @R @M DWBTQRHNM VD F@UD SGD DPT@SHNMR NE LNSHNM ENQ RHMFKD @MC LTKSH RSNQDX VHQDEQ@LD ATHKCHMFR !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 #DQHUD SGD DPT@SHNMR NE LNSHNM NE @ NMD RSNQDX ATHKCHMF VHQDEQ@LD RSQTB STQD RTAIDBS SN FQNTMC LNSHNM DWBHS@SHNMR 0 -NV @RRTLD @ SGQDD RSNQDX ATHKCHMF 'NV CNDR SGD DPT@SHNMR NE LNSHNM EQNL 0 BG@MFD 0
RRTLD @ BNMRS@MS VHMC ENQBD @BSHMF NM D@BG ƦNNQ NE @ SGQDD RSNQDX ATHKC HMF VHSG SGD R@LD @LNTMS 'NV CN SGD DPT@SHNMR NE LNSHNM EQNL 0 BG@MFD
0
RRTLD SG@S @ ATHKCHMF BNMRHRSR NE SGQDD HCDMSHB@K ATHKCHMF AKNBJR SG@S @QD @QQ@MFDC RTBG SG@S SGDX ENQL @M L RG@ODC RSQTBSTQD VHSG SVN AKNBJR @S SGD A@RDLDMS @MC SGD QDL@HMHMF NMD CHQDBSKX @ANUD NMD NE SGD A@RDLDMS AKNBJR 'NV CN SGD CDENQL@SHNM @MC C@LOHMF L@SQHBDR NE SGD SGTR ATHKS VHQDEQ@LD RSQTBSTQD KNNJ KHJD
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF $WDQBHRD :☼< "NLAHM@SHNM NE 6HDMDQ /QNBDRRDR +DS Wt @MC Wt∗ AD HMCDODMCDMS RS@MC@QC 6HDMDQ OQNBDRRDR @MC a, b ONRHSHUD QD@K BNMRS@MSR #DSDQLHMD SGD QDK@SHNMRGHO ADSVDDM a @MC b ENQ VGHBG Zt := √ aWt − bWt∗ HR @F@HM @ 6HDMDQ OQNBDRR $WDQBHRD :☼< 2B@KDC 6HDMDQ /QNBDRRDR √ "NMRHCDQ SGD OQNBDRR Xt := aWa−1 t VGDQD Ws RS@MCR ENQ @ RS@MC@QC 6HDMDQ OQNBDRR @MC a HR @ QD@K ONRHSHUD BNMRS@MS 3GHR OQNBDRR HR JMNVM @R VFDOHG :LHQHU SURFHVV 3GD SHLD RB@KD NE SGD 6HDMDQ OQNBDRR HR QDCTBDC AX @ E@BSNQ √ a @MC SGD L@FMHSTCD NE SGD 6HDMDQ OQNBDRR @QD LTKSHOKHDC AX @ E@BSNQ a 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3GHR B@M AD HMSDQOQDSDC @R S@JHMF RM@ORGNSR NE SGD ONRHSHNM NE @ 6HDMDQ OQN BDRR VHSG @ RGTSSDQ RODDC SG@S HR a SHLDR @R E@RS @R SG@S TRDC ENQ QDBNQCHMF @ √ RS@MC@QC 6HDMDQ OQNBDRR @MC L@FMHEXHMF SGD QDRTKSR AX @ E@BSNQ a #DQHUD SGD DWODBSDC U@KTD @MC SGD U@QH@MBD NE Xt #DQHUD SGD OQNA@AHKHSX CHRSQHATSHNM @R VDKK @R SGD OQNA@AHKHSX CDMRHSX NE Xt -DWS BNMRHCDQ SGD HMBQDLDMSR #DQHUD Var(Xt+s − Xt ) ENQ s ≥ 0
QFTD VGDSGDQ Xt HR @ 6HDMDQ OQNBDRR
+LQW !X DLOKNXHMF SGD OQNODQSHDR NE SGD CHRSQHATSHNM NE 6HDMDQ OQNBDRRDR SGHR DWDQBHRD B@M AD CNMD VHSGNTS DK@ANQ@SD B@KBTK@SHNM $WDQBHRD :☼< "NLOKDSHNM SN @ B d × A ,D@RTQ@AKD %TMBSHNM 2GNV SGD @RRDQSHNM NE +DLL@ ( D KDS B d SGD OQNCTBS !NQDK σ @KFDAQ@ NM Rd Ω1 ∈ A @MC f (x, ω) : Rd × Ω → Rm AD BNMSHMTNTR NM Rd ENQ ω ∈ Ω1 @R VDKK @R A LD@RTQ@AKD HM ω ENQ @KK x ∈ Rd 3GDM SGDQD DWHRSR @ B d × A LD@RTQ@AKD ETMBSHNM g(x, ω) RTBG SG@S f (x, ω) = g(x, ω) ENQ (x, ω) ∈ Rd × Ω1 $WDQBHRD :☼< 3GD !K@BJ #DQL@M 3NX ,NCDK @R @ 1@MCNL #HƤDQDMSH@K $PT@SHNM +DS 0 ≤ t ≤ T !K@BJ #DQL@M @MC 3NX CDUDKNODC @ CHRBQDSD SHLD LNCDK ENQ SGD RGNQS SDQL HMSDQDRS Q@SD r (SR DPTHU@KDMS HM BNMSHMTNTR SHLD HR SGD RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM C KM (rt ) = a(t)Ct + bCWt . 1DVQHSD SGHR DPT@SHNM @R @ Q@MCNL CHƤDQDMSH@K DPT@SHNM AX @OOKXHMF SGD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD 4MCDQ VGHBG BNMCHSHNMR NM SGD O@Q@LDSDQR G@R SGHR Q@MCNL CHƤDQDMSH@K DPT@SHNM @ TMHPTD O@SG VHRD RNKTSHNM $WDQBHRD :☼< 3GD 'TKK 6GHSD ,NCDK @R @ 1@MCNL #HƤDQDMSH@K $PT@SHNM +DS 0 ≤ t ≤ T 'TKK @MC 6GHSD CDUDKNODC @ LNCDK ENQ SGD RGNQS SDQL HMSDQ DRS Q@SD r HM VGHBG SGD KNMF QTM LD@M HR RODBHƥDC UH@ SGD MNM Q@MCNL SHLD CDODMCDMS ETMBSHNM a : [0, T ] → R 3GD BNQQDRONMCHMF RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM ENQ SGHR LNCDK QD@CR @R Crt = (a(t) − αrt ) Ct + bCWt , VGDQD α, b ∈ R \ {0} @MC r0 ∈ R HR JMNVM 1DVQHSD SGHR DPT@SHNM @R @ Q@MCNL CHƤDQDMSH@K DPT@SHNM AX @OOKXHMF SGD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD 4MCDQ VGHBG BNMCHSHNMR NM SGD O@Q@LDSDQR G@R SGHR Q@MCNL CHƤDQDMSH@K DPT@SHNM @ TMHPTD O@SG VHRD RNKTSHNM
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 20
4
18 3 16 2 14 1
12
10
0
8 −1 6 −2 4 −3
2
0 0
1
2
3
4
5
@
6
7
8
9
10
−4
0
1
2
3
4
5
6
7
8
9
10
A
%HFTQD RHLTK@SHNM QTMR CHROK@XHMF SGD RNKTSHNM NE SGD !K@BJ #DQL@M 3NX DPT@SHNM @ @MC SGD 'TKK 6GHSD DPT@SHNM A ENQ O@Q@LDSDQR a(t) = DWO(−t) α = 1 @MC b = 2
$WDQBHRD :☼< 3GD "KNTFG /DMYHDM ,NCDK @R @ 1@MCNL #HƤDQDMSH@K $PT@SHNM (M 2DB VD CHRBTRRDC SGD "KNTFG /DMYHDM LNCDK ENQ FQNTMC LNSHNM DW BHS@SHNMR RDD DPT@SHNM 1DVQHSD SGHR RDBNMC NQCDQ DPT@SHNM @R @ ƥQRS NQCDQ RXRSDL NE RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR @MC SGDM BNMUDQS HS SN SGD BNQQDRONMCHMF RXRSDL NE Q@MCNL CHƤDQDMSH@K DPT@SHNM AX @OOKXHMF SGD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD 4MCDQ VGHBG BNMCHSHNMR NM SGD O@Q@LDSDQR G@R SGHR Q@MCNL CHƤDQDMSH@K DPT@SHNM RXRSDL @ TMHPTD O@SG VHRD RNKTSHNM $WDQBHRD :☼< %TMBSHNMR NE /@SG 6HRD 2NKTSHNMR Ŕ /@QS +DS Xt AD @ O@SG VHRD RNKTSHNM NE NM I {t1 , . . . , tk } ⊂ I @M @QAHSQ@QX O@ Q@LDSDQ RDS @MC ϕ @M @QAHSQ@QX !NQDK LD@RTQ@AKD ETMBSHNM 2GNV SG@S SGD ETMBSHNM ϕ(Xt1 , . . . , Xtk ) HR A LD@RTQ@AKD $WDQBHRD :☼< %TMBSHNMR NE /@SG 6HRD 2NKTSHNMR Ŕ /@QS +DS Xt AD @ O@SG VHRD RNKTSHNM NE NM I 2GNV SG@S @KLNRS @KK QD@KHR@SHNMR NE Xt NM I @QD BNMSHMTNTR ETMBSHNMR +DS ψ AD @M @QAHSQ@QX BNMSHMTNTR ETMBSHNMR NM Rd 2GNV SG@S SGD ETMBSHNMR RTOt∈I ψ(Xt ) @MC HMEt∈I ψ(Xt ) VGHBG @QD CDƥMDC NM Ω @QD DPTHU@KDMS SN A LD@RTQ@AKD ETMBSHNMR
!NQDK LD@RTQ@AKD ETMBSHNM ϕ HR @ ETMBSHNM ENQ VGHBG @KK RTARDSR NE SGD SXOD E(x : ϕ(x) ≥ c) c ∈ R HM HSR CNL@HM NE CDƥMHSHNM @QD !NQDK RDSR
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS $WDQBHRD :☼< 1#$ /QNODQSHDR R CHRBTRRDC HM 2DB :< BNMRHCDQDC SGD ENKKNVHMF LNCDK HM NQCDQ SN CDRBQHAD HM RNLD PT@KHS@SHUD L@MMDQ SGD M@STQD NE @M D@QSGPT@JD CHRSTQA@MBD # n ENQ t ≥ 0 j=1 taj DWO(−αj t) BNR(ωj t + Θj ) , y(t) = , 0, ENQ t < 0 VGDQD aj αj @MC ωj @QD FHUDM QD@K ONRHSHUD MTLADQR @MC SGD O@Q@LDSDQR Θj @QD HMCDODMCDMS Q@MCNL U@QH@AKDR TMHENQLKX CHRSQHATSDC NUDQ @M HMSDQU@K NE KDMFSG 2π +DS TR @RRTLD @ NMD RSNQDX ATHKCHMF SG@S HR @S QDRS @S t = 0 @MC KDS X(t) t ≥ 0 CDMNSD SGD QDK@SHUD GNQHYNMS@K CHROK@BDLDMS NE HSR QNNE VHSG QDRODBS SN SGD FQNTMC 3GDM A@RDC TONM @M HCD@KHYDC KHMD@Q LNCDK SGD QDK@SHUD CHR OK@BDLDMS X(t) RTAIDBS SN FQNTMC @BBDKDQ@SHNMR HR FNUDQMDC AX x ¨(t) + 2ζω0 x(t) ˙ + ω02 x(t) = −y(t) ,
ENQ t ≥ 0 .
2GNV SG@S y(t) G@R U@MHRGHMF LD@M @MC BNU@QH@MBD Cov(y(t), y(s)) =
n
2 1 2 tsaj DWO (−α(t
+ s)) BNR (ωj (t − s)) , VHSG t, s ≥ 0 .
j=1
2GNV SG@S G@R @ O@SG VHRD RNKTSHNM "NLOTSD SGHR RNKTSHNM @M@KXSHB@KKX $WDQBHRD :☼< &QNMV@KKŗR +DLL@ ENQ 2SNBG@RSHB /QNBDRRDR /QNUD &QNMV@KKŗR KDLL@ ENQ 2SNBG@RSHB /QNBDRRDR @R RS@SDC HM +DLL@
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
3DWK:LVH P 0HDQ6TXDUH 6R OXWLRQV RI 52'(V 3GD RODBH@K M@STQD NE Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR QDPTHQDR @CCH SHNM@K QDƥMDC RNKTSHNM BNMBDOSR ADXNMC SG@S NE @ O@SG VHRD RNKTSHNM 3@JHMF ENQ HMRS@MBD HMSN @BBNTMS SG@S @ RNKTSHNM L@X ETKƥKK SGD FHUDM Q@MCNL CHE EDQDMSH@K DPT@SHNM VHSG OQNA@AHKHSX NMD NQ SG@S SGD RNKTSHNM HR @ RPT@QD HMSD FQ@AKD RSNBG@RSHB OQNBDRR KD@CR SN SGD MNSHNM NE @ P RNKTSHNM NQ @ LD@M RPT@QD RNKTSHNM QDRODBSHUDKX 3GDHQ OQNODQSHDR @MC HMSDQ BNMMDBSHNMR HM O@QSHBTK@Q VHSG QDRODBS SN O@SG VHRD RNKTSHNMR @QD RSTCHDC HM SGHR BG@OSDQ
*DX "NMBDOSR (M NTQ KDBSTQDR @MC NE BNTQRD HM NTQ NVM DWODQHDMBD VGDM KD@QMHMF MDV BNM BDOSR VD G@UD RDDM SG@S ANTMC@QHDR @MC BNMMDBSHNMR SN NSGDQ ONHMSR NE UHDV @QD DWSQDLDKX HLONQS@MS HM NQCDQ SN TMCDQRS@MC BNMBDOSR VHSG @KK NE SGDHQ HL OKHB@SHNMR 3GDQDENQD SGHR BG@OSDQ HR CDCHB@SDC SN @KSDQM@SHUD MNSHNMR NE @ řRNKTSHNMŚ SN @ FHUDM Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNM @R VDKK @R SGDHQ BNMMDBSHNMR SN SGD BNMBDOS NE @ O@SG VHRD RNKTSHNM HMSQNCTBDC HM "G@O 3GDRD BNMBDOSR @RRTLD @ RNKTSHNM DHSGDQ H SN AD @ RSNBG@RSHB OQNBDRR SG@S ETKƥKKR @ FHUDM Q@MCNL CHƤDQDMSH@K DPT@SHNM VHSG OQNA@AHKHSX NMD P RNKTSHNM NQ HH SN AD @ RDBNMC NQCDQ RSNBG@RSHB OQNBDRR SG@S @F@HM ETKƥKKR SGD FHUDM Q@MCNL CHƤDQDMSH@K DPT@SHNM VHSG OQNA@AHKHSX NMD RTBG SG@S SGD QHFGS G@MC RHCD NE SGHR Q@MCNL CHƤDQDMSH@K DPT@SHNM HR DPTHU@KDMS SN @ RPT@QD HMSDFQ@AKD OQNBDRR #TQHMF SGHR BG@OSDQ MNSD SGD ENKKNVHMF JDX BNMBDOSR NE P RNKTSHNMR @MC ,D@M RPT@QD PT@CQ@SHB LD@M RNKTSHNMR q.m. RNKTSHNMR @R VDKK @R SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 'NV @QD SGD CHƤDQDMS MNSHNMR NE RNKTSHNMR BNMMDBSDC (M O@QSHBTK@Q GNV @QD SGDX BNMMDBSDC SN SGD BNMBDOS NE @ O@SG VHRD RN KTSHNM
QD SGDQD Q@MCNL CHƤDQDMSH@K DPT@SHNMR SG@S G@UD O@SG VHRD RNKTSHNMR ATS MN P NQ L R RNKTSHNMR
&KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS 6G@S @ANTS SGD QDUDQRD QD SGDQD Q@MCNL CHƤDQDMSH@K DPT@SHNMR SG@S G@UD P NQ L R RNKTSHNMR ATS MN O@SG VHRD RNKTSHNMR 'NV CNDR SGHR @KK QDK@SD SN (S¯ RNKTSHNMR NE RSNBG@RSHB CHƤDQDMSH@K DPT@ SHNMR 3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR 2DBSHNM CHRBTRRDR SGD MNSHNM NE P RNKTSHNMR @MC RTAIDBS SN VGHBG BNMCHSHNMR @ FHUDM Q@MCNL CHƤDQDMSH@K DPT@ SHNM G@R @ TMHPTD P RNKTSHNM -DWS 2DBSHNM QDB@KKR SGD DRRDMSH@K BNMBDOSR NE LD@M RPT@QD B@KBTKTR VGHBG K@X SGD ENTMC@SHNM ENQ SGD ENKKNVHMF CHRBTR RHNMR (M 2DB SGD BNMBDOS NE LD@M RPT@QD RNKTSHNMR HR RSTCHDC SNFDSGDQ VHSG SGD BNMCHSHNMR VGHBG @ FHUDM Q@MCNL CHƤDQDMSH@K DPT@SHNM LTRS ONRRDRR HM NQCDQ SN G@UD @ TMHPTD LD@M RPT@QD RNKTSHNM R @M DWBTQRHNM 2DBSHNM OQNUHCDR @ AQHDE OQHLDQ NM (S¯ŗR RSNBG@RSHB HMSDFQ@SHNM VHSG QDRODBS SN VGHSD MNHRD VGHBG HR DRRDMSH@KKX @ LD@M RPT@QD B@KBTKTR %HM@KKX 2DBSHNM VQ@OR TO SGD BNMSDMSR NE SGHR BG@OSDQ 3GD L@HM RNTQBD ENQ SGHR BG@OSDQ HR :< BG@O SDQ
P 2NKTSHNMR NE 1@MCNL #HƤDQDMSH@K $PT@SHNMR $MFHMDDQHMF @MC SGD M@STQ@K RBHDMBDR TRD SGD BNMBDOSR NE O@SG VHRD RNKTSHNMR SN CDRBQHAD OQNBDRRDR NM Rd @R O@SG VHRD RNKTSHNMR NE CXt = f (Xt (·), t, ω) , X˙ t := Ct
Xt (·) ∈ Rd ,
VGHBG LD@MR SG@S SGDX @QD RNKTSHNMR NE SGD MNM @TSNMNLNTR CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ =
Cx = Fω (x, t) , Ct
x := Xt (ω) ∈ Rd
ENQ @KLNRS @KK ω ∈ Ω RDD #DƥMHSHNM 3GD Q@MCNL CHƤDQDMSH@K DPT@SHNM B@M AD HMSDQOQDSDC @R @M DPT@SHNM NM SGD !@M@BG RO@BD L2d NE SVN SHLDR HMSDFQ@AKD ETMBSHNMR NM Rd NQ @R @M DPT@SHNM SG@S GNKCR @S D@BG ƥWDC t ∈ I ENQ @KLNRS @KK ω ∈ Ω 3GNTFG SGD BNMBDOS NE O@SG VHRD RNKTSHNMR HR VDKK RTHSDC ENQ ENQ @ K@QFD U@HDSX NE OQ@BSHB@K OTQONRDR HS HR ADMDƥBH@K SN RSTCX HSR BNMMDBSHNM SN NSGDQ RNKTSHNM SXODR (M BNMSQ@RS SN O@SG VHRD RNKTSHNMR SGD P RNKTSHNMR NE @ Q@MCNL CHƤDQDMSH@K DPT@SHNM R@SHREX DPT@SHNM ITRS @S D@BG ƥWDC t ∈ I ENQ @KLNRS @KK ω ∈ Ω 'DQD SGD DWBDOSHNM@K RDS Ω∗t ⊂ Ω B@M AD CHƤDQDMS ENQ D@BG t ∈ I @MC SGD TMHNM NE SGDRD DWBDOSHNM@K RDSR L@X MNS G@UD U@MHRGHMF OQNA@AHKHSX H D P(∪t∈I Ω∗t ) ≥ 0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF #DƥMHSHNM P 2NKTSHNM NE @ 1@MCNL #HƤDQDMSH@K $PT@SHNM RSNBG@RSHB OQNBDRR NM @M HMSDQU@K I ⊂ R+ 0 HR B@KKDC P RNKTSHNM RNKTSHNM VHSG OQNA@AHKHSX NMD NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM HE HS GNKCR SG@S CXt (ω) = ˆ f (Xt (ω), t, ω) , Ct
Xt (·) ∈ Rd ,
t ∈ I.
.E BNTQRD O@SG VHRD RNKTSHNMR NE @QD @KRN P RNKTSHNMR ATS P RNKTSHNMR CN MNS MDDC SN AD O@SG VHRD RNKTSHNMR @R SGD ENKKNVHMF DW@LOKD RGNVR $W@LOKD P 2NKTSHNM 3G@S HR -NS @ /@SG 6HRD 2NKTSHNM BE :< OO +DS Z AD @ TMHENQLKX CHRSQHATSDC Q@MCNL U@QH@AKD NM (0, 1) 3GD RSNBG@RSHB OQNBDRR Xt VHSG SGD QD@KHR@SHNMR # 0, t = Z(ω) · n−1 , ENQ n = 1, 2, . . . Xt (ω) = Z(ω) · t2 , DKRDVGDQD HR @ P RNKTSHNM NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM X˙ t = 2 · Z · t NM [0, ∞) 3GHR B@M AD UDQHƥDC @R ENKKNVR %HW t > 0 @MC KDS . / Ωt := ω ∈ Ω : Z(ω)n−1 = t ENQ @M n ∈ N . 3GDM P(Ωt ) = 1 @MC HE ω ∈ Ω \ Ωt SGDQD HR @M n∗ (t, ω) ∈ N RTBG SG@S t · n∗ < Z(ω) < t · (n∗ + 1) 'DMBD SGDQD HR @ QD@K U@KTD H > 0 RTBG SG@S (t + h) · n∗ < Z(ω) < (t + h) · (n∗ + 1) ENQ @KK h ∈ (−H, H) GNKCR "NMRDPTDMSKX ω ∈ / Ωt+h ENQ @KK h ∈ (−H, H) 6D ƥM@KKX FDS Xt+h (ω) − Xt (ω) Z(ω)(t + h)2 − Z(ω)t2 CXt (ω) = KHL = KHL = 2Z(ω)t h→0 h→0 Ct h h t (ω) = 0 3GTR NM I = [0, ∞) VD ENQ @KK ω ∈ / Ωt %NQ t = 0 VD SQHUH@KKX G@UD CXCt G@UD SG@S Xt HR @ P RNKTSHNM .M SGD NSGDQ G@MC HM @M @QAHSQ@QX HMSDQU@K [0, b) b > 0 DUDQX QD@KHR@SHNM Xt (ω) G@R BNTMS@AKX L@MX t U@KTDR tn = n−1 Z(ω) ENQ VGHBG HS HR CHRBNMSHMT NTR @MC CNDR MNS G@UD @ CDQHU@SHUD 3GTR Xt HR MNS @ O@SG VHRD RNKTSHNM NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM X˙ t = 2 · Z · t MNS DUDM HM SGD DWSDMCDC RDMRD
R SGHR DW@LOKD HKKTRSQ@SDR QD@KHR@SHNMR NE P RNKTSHNMR B@M AD PTHSD HQQDF TK@Q 3GNTFG P RNKTSHNMR VHSG BNMSHMTNTRKX CHƤDQDMSH@AKD QD@KHR@SHNMR @QD O@SG VHRD RNKTSHNMR SNN 3GDNQDL P 2NKTSHNMR @QD /@SG 6HRD 2NKTSHNMR HE 3GDHQ 1D@KHR@SHNMR @QD /@SG 6HRD C 1 )RU DOPRVW DOO ω ∈ Ω OHW f (x, t, ω) EH FRQWLQXRXV RQ Rd × I DQG APHDVXUDEOH IRU HYHU\ Ʋ[HG (x, t) /HW Xt EH D PVROXWLRQ RI RQ I VXFK WKDW LW KDV D SDWKZLVH FRQWLQXRXV SDWKZLWK GHULYDWLYH X˙ t RQ I 7KHQ Xt LV D SDWKZLVH VROXWLRQ RI WRR 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3URRI %NKKNVHMF :< O VD G@UD SG@S @BBNQCHMF SN +DLL@ SGDQD I
HR @ O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRR Zt RTBG SG@S Zt = f (Xt , t, ω) I
,NQDNUDQ SGDQD HR @ O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRR Yt RTBG SG@S Yt = X˙ t @MC CTD SN SGD CDƥMHSHNM NE @ P RNKTSHNM Xt Yt = ˆ X˙ t =f ˆ (Xt , t, ω)=Z ˆ t ENQ t ∈ I 3GD O@SG VHRD BNMSHMTHSX NE Yt @MC Zt MNV HLOKX I I I X˙ t = Yt = Zt = f (Xt , t, ω) .
3GHR RGNVR SGD @RRDQSHNM 3N OQNODQKX RDS TO SGD MNSHNM NE @ LD@M RPT@QD NQ PT@CQ@SHB LD@M q.m. RNKTSHNM NE @ Q@MCNL CHƤDQDMSH@K DPT@SHNM VD ƥQRS QDB@KK RNLD HLONQS@MS QD RTKSR NE LD@M RPT@QD @M@KXRHR ENQ RDBNMC NQCDQ RSNBG@RSHB OQNBDRRDR !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD CDƥMHSHNM NE @ P RNKTSHNM 0 'NV @QD P RNKTSHNMR @MC O@SG VHRD RNKTSHNMR BNMMDBSDC 0 'NV HR SGHR BNMMDBSHNM OQNUDM 0 &HUD @M DW@LOKD ENQ @ Q@MCNL CHƤDQDMSH@K DPT@SHNM SG@S G@R @ P RNKTSHNM ATS MN O@SG VHRD RNKTSHNM
1DUHDV ,D@M 2PT@QD M@KXRHR NE 2DBNMC .QCDQ /QNBDRRDR %NQ @ RDPTDMBD {Xn }n∈N ⊂ L2d BNMUDQFDMBD SNV@QCR X ∈ L2d HM PHDQVTXDUH NQ TXDGUDWLFPHDQ q.m. HR CDƥMDC UH@ q.m. KHL Xn = ˆ X :⇔ KHL E Xn − X 2 = 0 . n→∞
n→∞
RSNBG@RSHB OQNBDRR Xt t ∈ I VHSG Xt ∈ L2d ENQ @KK t ∈ I HR B@KKDC @ VWRFKDVWLF SURFHVV RI VHFRQG RUGHU NQ RGNQS OQNBDRR NE RDBNMC NQCDQ %NQ SGD QDL@HMCDQ NE SGHR RDBSHNM KDS Xt @KV@XR CDMNSD @ OQNBDRR NE RDBNMC NQCDQ 3GD OQNBDRR Xt HR B@KKDC q.m.FRQWLQXRXV @S t HE ˆ Xt q.m. KHL Xt+h = h→0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF GNKCR (E SGDQD DWHRSR @ RSNBG@RSHB OQNBDRR Yt NE RDBNMC NQCDQ RTBG SG@S ˆ Yt , q.m. KHL h1 (Xt+h − Xt ) = h→0
b SGDM Yt HR B@KKDC q.m.GHULYDWLYH NE Xt 1HDL@MM q.m.LQWHJUDO −a Xt g(t)Ct VHSG @ QD@K ETMBSHNM g : I → R HR CDƥMDC @M@KNFNTRKX SN SGD TRT@K HMSDFQ@K @R SGD KHLHS m q.m. KHL g(tj )Xtj (tj+1 − tj ) m→∞
j=1
SNFDSGDQ VHSG @ O@QSHSHNMHMF RDPTDMBD a = t1 < t2 < · · · < tm+1 = b @MC L@W(tj+1 − tj ) → 0 OQNUHCDC SGHR KHLHS DWHRSR @MC HR HMCDODMCDMS NE SGD O@QSHSHNMHMF RDPTDMBD TRDC (E ENQ DUDQX RDPTDMBD am → −∞ HS GNKCR SG@S
b KHL − Xt g(t)Ct = X ∈ L2d , m→∞ a m
b SGDM VD B@KK X = −−∞ Xt g(t)Ct @M LPSURSHU q.m.LQWHJUDO %HM@KKX HE q.m. KHLm→∞ Xm =X ˆ SGDM KHLm→∞ E(Xm ) = E(X) GNKCR (M O@QSHBTK@Q q.m. CHƤDQDMSH@SHNM @MC 1HDL@MM q.m. HMSDFQ@SHNM SGTR BNLLTSD VHSG S@JHMF SGD DWODBS@SHNM OQNUHCDC SGD CDQHU@SHUD NQ SGD HMSDFQ@K DWHRSR QD RODBSHUDKX (M SGD QDL@HMCDQ NE SGHR RDBSHNM VD @QD NMKX BNMRHCDQHMF RDBNMC NQCDQ (1) (d) OQNBDRRDR Xt = (Xt , . . . , Xt )T ∈ Rd SG@S G@UD U@MHRGHMF LD@M @MC ENQ VGHBG ΓX (t, s) CDMNSDR SGD UDBSNQ U@KTDC @TSN BNQQDK@SHNM ETMBSHNMR VHSG (l) (l) (l) SGDHQ BNLONMDMSR FHUDM @R ΓX (t, s) = E(Xs Xt ) l = 1, 2, . . . , d %NQ OQN BDRRDR Yt RTBG SG@S E(Yt ) = 0 CDƥMD Xt := Yt − E(Yt ) 3GD ENKKNVHMF MNM BNLOQDGDMRHUD KHRS RTLL@QHYDR RNLD HLONQS@MS QDRTKSR NM RDBNMC NQCDQ RSNBG@RSHB OQNBDRRDR BE :< OO @R VDKK @R :< :< @MC : 0 LW KROGV WKDW KHL P Δ2n − E Δ2n ≥ ε = 0 .
n→∞
7KLV W\SH RI FRQYHUJHQFH LV FDOOHG BNMUDQFDMBD HM OQNA@AHKHSX 3URRI $PT@SHNM HR @ BNMRDPTDMBD NE "GDAXRDUŗR BE /QNONRH HMDPT@KHSX SHNM SG@S QD@CR HM NTQ RDSSHMF @R P Δ2n − E Δ2n ≥ ε ≤ ε−2 Var Δ2n 6D G@UD n 2 ! Var Δ2n = Var Wti − Wti−1 i=1
=
n
Wti − Wti−1
E
i=1
≤
n i=1
E
Wti − Wti−1
4 !
4 !
− E
(∗)
= √
Wti − Wti−1
n 2πΔt
2 !!2
x2 Cx x4 DWO − 2Δt −∞ ∞
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF = 3n (Δt)2 =
3T 2 → 0, n
@R n → ∞ ,
@R SGD 6HDMDQ HMBQDLDMSR Wti − Wti−1 @QD HMCDODMCDMS MNQL@KKX CHRSQHATSDC Q@MCNL U@QH@AKDR 3GD HCDMSHSX (∗) HR CTD SN SGD DPT@K RO@BHMF NE SGD O@QSHSHNM ONHMSR @MC SGD DWOQDRRHNM NE SGD ENTQSG LNLDMS NE @ MNQL@KKX CHRSQHATSDC Q@MCNL U@QH@AKD AX HSR CHRSQHATSHNM 'DMBD SGD @RRDQSHNM ENKKNVR R @ BNMRDPTDMBD VD G@UD SG@S n 2 ! P = T, KHL Δ2n = KHL E Δ2n = KHL E Wti − Wti−1
n→∞
n→∞
n→∞
i=1
GNKCR @MC GDMBD KHL
n
n→∞
P Wti−1 Wti − Wti−1 =
1 2 WT
− 12 T .
i=1
6GDM VD BNMRHCDQ SGD RPT@QDC 6HDMDQ HMBQDLDMSR @MC SGTR @ JHMC NE LD@M RPT@QD KHLHS VD B@M řS@LDŚ SGD TMANTMCDC U@QH@SHNM NE SGD 6HDMDQ /QNBDRR @MC F@HM @ OQNODQ CDƥMHSHNM NE RSNBG@RSHB HMSDFQ@KR 3GHR B@M AD @OOKHDC SN OQNODQKX RDS TO SGD (S¯ RSNBG@RSHB HMSDFQ@K RDD D F :< MNSGDQ BNMRD PTDMBD NE S@JHMF KHLHSR HM SGD LD@M HR SG@S SGD KHLHS MN KNMFDQ CDODMCR ONHMS VHRD NM SGD ω ∈ Ω ATS GNKCR ENQ SGD VGNKD Ω -NSD VD VHKK RDS TO SGD RSNBG@RSHB (S¯ HMSDFQ@K VHSG QDRODBS SN SGD KHLHS HM OQNA@AHKHSX .E BNTQRD @R ITRS HMCHB@SDC @ LD@M RPT@QD KHLHS VHKK VNQJ SNN (MCDDC (S¯ŗR B@KBTKTR HR HMSQHMRHB@KKX @ LD@M RPT@QD B@KBTKTR AX UHQSTD NE (S¯ŗR ENQLTK@ -DWS SN SGD RDBNMC SDQL HM n
Wti Wti − Wti−1 =
1 2
i=1
n
2 ! Wt2i − Wt2i−1 + Wti − Wti−1
i=1 2 1 2 WT
=
P
+ 12 Δ2n −→
2 1 2 WT
+ 12 T .
3GHR ƥM@KKX KD@CR SN KHL Snλ =
KHL
n→∞
n→∞
P
1 2 WT
=
n
(1 − λ)Wti−1 + λWti · Wti − Wti−1
i=1
+ λ − 12 T .
.AUHNTRKX CHƤDQDMS BGNHBDR NE SGD ONHMSR HM SGD O@QSHSHNM HMSDQU@KR ENQ SGD DU@KT@SHNM NE SGD HMSDFQ@MC KD@C SN CHƤDQDMS QDRTKSR (S HR @OO@QDMS EQNL SGDRD
1DB@KK E(X(ω)) =
6HFWLRQ
Ω
X(ω)CP(ω)
3NAH@R 1HFNHO %KNQH@M 5XSS B@KBTK@SHNMR SG@S SGD TRT@K QTKDR NE CHƤDQDMSH@K @MC HMSDFQ@K B@KBTKTR @QD MNS RTHS@AKD SN G@MCKD RSNBG@RSHB HMSDFQ@KR HM @ RSQ@HFGSENQV@QC L@MMDQ 3N L@JD RDMRD NE @ RSNBG@RSHB HMSDFQ@K HM SGD V@X NTSKHMDC @ANUD VD G@UD SN CDƥMD SGD BGNHBD NE SGD DU@KT@SHNM QTKD TOEQNMS H D SGD U@KTD NE λ 4RT@KKX NMKX SVN SXODR NE DU@KT@SHNM QTKDR @QD VHCDKX TRDC λ = 0 VGHBG KD@CR SN (S¯ŗR HMSDQ OQDS@SHNM NE SGD RSNBG@RSHB HMSDFQ@K ŕ @MC HR SGD NMKX ONRRHAKD BGNHBD RTBG SG@S SGD HMSDFQ@K HR @ L@QSHMF@KD ŕ @MC λ = 12 VGHBG KD@CR SN 2SQ@SNMNUHBGŗR HMSDQOQDS@SHNM NE SGD RSNBG@RSHB HMSDFQ@K ŕ @MC HR SGD NMKX ONRRHAKD BGNHBD RTBG SG@S SGD QTKDR NE BK@RRHB@K B@KBTKTR QDL@HM U@KHC !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ (MSDFQ@SHNM VHSG 1DRODBS SN 6GHSD -NHRD 1DB@KK SGD DRRDMSH@K RSDOR NE SGD @ANUD DWONRHSHNM @MC SGDHQ JDX QDPTHQDLDMSR 0 6GHBG NE SGD ENKKNVHMF OQNODQSHDR NE SGD 1HDL@MM RTLR ni=1 Wξ (Wti − Wti−1 ) VHSG ξ ∈ [ti−1 , ti ] @QD MNS U@KHC HM SGD KHLHS L@Wi (ti − ti−1 ) < ! (m) (m) (m) NE (MCDODMCDMBD NE SGD RDPTDMBD 0 = t0 < t1 < · · · < tn = T m∈N
O@QSHSHNMR NE [0, T ] (MCDODMCDMBD NE SGD BGNHBD NE SGD DU@KT@SHNM ONHMS ξ ∈ [ti−1 , ti ]
0 6G@S @CCHSHNM@K BNMUDMSHNMR @QD RDS HM RSNBG@RSHB HMSDFQ@SHNM SGDNQX SN L@JD TO ENQ SGD QN@CAKNBJ QN@CAKNBJR RS@SDC HM 0 0 6G@S @QD SGD U@KTDR NE (ti − ti−1 )(Wti − Wti−1 ) @MC (Wti − Wti−1 ) HM OQNA @AHKHSX @R VDKK @R HM DWODBS@SHNM
(MSQNCTBHMF SGD # (S¯ 2SQ@SNMNUHBG 2SNBG@RSHB (MSDFQ@K +DS Wt t ≥ 0 AD @ 1 CHLDMRHNM@K 6HDMDQ OQNBDRR NM @ OQNA@AHKHSX RO@BD (Ω, F, P) +DS Ft ⊂ F t ≥ 0 AD @M HMBQD@RHMF E@LHKX NE σ @KFDAQ@R HM F H D Fs ⊂ Ft ⊂ F HE s < t RTBG SG@S ENQ @KK t ≥ 0 HS GNKCR Ş A(Ws : 0 ≤ s ≤ t) ⊆ Ft @MC Ş A(Wt+s − Wt : s ≥ 0) HR HMCDODMCDMS NE Ft
(M :< :< @MC :< @ ATMBG NE ETQSGDQ QTKDR U@QXHMF EQNL (S¯ŗR @MC 2SQ@SNMNUHBGŗR HMSDQOQDS@SHNM @QD BNMRHCDQDC
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF .MD B@M S@JD ENQ HMRS@MBD SGD 6HDMDQ ƥKSQ@SHNM Ft := A(Ws : 0 ≤ s ≤ t) @R RTBG @M HMBQD@RHMF E@LHKX @MC RGNTKC HMENQL@KKX SGHMJ NE Ft @R řBNMS@HMHMF @KK HMENQL@SHNM @U@HK@AKD @S SHLD tŚ Ft := A(Ws : 0 ≤ s ≤ t) HR SGD RL@KKDRS E@L HKX NE σ @KFDAQ@R VHSG SGDRD OQNODQSHDR 'DQD Ft HR FDMDQ@SDC AX SGD 6HDMDQ OQNBDRR (S HR NESDM MDBDRR@QX @MC CDRHQ@AKD SN @TFLDMS A(Ws : 0 ≤ s ≤ t) VHSG NSGDQ DUDMSR SG@S @QD HMCDODMCDMS NE A(Ws : 0 ≤ s < ∞) ENQ HMRS@MBD HMHSH@K BNMCHSHNMR (M SGD B@RD NE RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR VD VHKK TRT@KKX S@JD Ft := A(Ws , X0 : 0 ≤ s ≤ t) VGDQD X0 HR @ Q@MCNL U@QH@AKD HMCDODMCDMS NE A(Ws : 0 ≤ s < ∞) 3GD σ @KFDAQ@ A(Ws : 0 ≤ s ≤ t) HR B@KKDC SGD KLVWRU\ NE SGD 6HDMDQ OQNBDRR TO SN @MC HMBKTCHMF SHLD t 3GD σ @KFDAQ@ A(Wt+s − Wt : s ≥ 0) HR SGD IXWXUH NE SGD 6HDMDQ OQNBDRR ADXNMC SHLD t RSNBG@RSHB OQNBDRR f (t, ω) CDƥMDC ENQ 0 ≤ t ≤ T < ∞ HR B@KKDC DGDSWHG VHSG QDRODBS SN Ft HE ENQ D@BG t ∈ [0, T ] f (t, ω) HR Ft LD@RTQ@AKD 2SNBG@RSHB OQNBDRRDR f (t, ω) SG@S @QD @C@OSDC SN SGD 6HDMDQ ƥKSQ@SHNM Ft @QD HMCDODMCDMS NE SGD HMBQDLDMSR NE SGD 6HDMDQ OQNBDRR Wt,ω řHM SGD ETSTQDŚ ( D f (t, ω) HR HMCDODMCDMS NE Wt+s,ω − Wt,ω ENQ @KK s > 0 %NQ HMRS@MBD HE f (x) HR @M HMSDFQ@AKD CDSDQLHMHRSHB ETMBSHNM SGDM SGD ETMBSHNMR f (Wt,ω ) @MC t 0 f (Ws,ω )Cs @QD Ft @C@OSDC #DƥMHSHNM 3GD "K@RR NE C@OSDC %TMBSHNMR 6D CDMNSD AX Mω2 [0, T ] SGD BK@RR NE Ft @C@OSDC RSNBG@RSHB OQNBDRRDR f (t, ω) NM SGD HMSDQU@K [0, T ] RTBG SG@S
T E f 2 (s, ω) Cs < ∞ . 0
R LNSHU@SDC HM 2DB HM NQCDQ SN FHUD SGD KHLHS NE SGD 1HDL@MM RTLR ENQ SGD RSNBG@RSHB HMSDFQ@K LD@MHMF HMCDODMCDMS NE @M @QAHSQ@QX BGNHBD NE SGD DU@KT@SHNM ONHMSR VD @KV@XR G@UD SN BK@QHEX TOEQNMS VGHBG DU@KT@SHNM ONHMSR VD @QD BNMRHCDQHMF 3GHR HR @M @CCHSHNM@K QTKD ENQ SGD RSNBG@RSHB HMSDFQ@K (M OQHMBHOKD SVN RTBG QTKDR @QD BNLLNMKX TRDC Ş λ = 0 $U@KT@SHNM @S SGD RS@QS ONHMS NE SGD O@QSHSHNM HMSDQU@KR (S¯ŗR HMSDQ OQDS@SHNM Ş λ = 12 $U@KT@SHNM HM SGD LHCCKD NE SGD O@QSHSHNM HMSDQU@KR 2SQ@SNMNUHBGŗR HMSDQOQDS@SHNM 6D RS@QS VHSG RNLD ƥQRS CHRBTRRHNMR NM (S¯ŗR HMSDQOQDS@SHNM QTKD 3GD 2SNBG@RSHB (S¯ (MSDFQ@K (MSDFQ@SHNM VHSG QDRODBS SN VGHSD MNHRD HR CDƥMDC HM SGHR BK@RR Mω2 [0, T ] NE RSNBG@RSHB OQNBDRRDR @C@OSDC SN SGD 6HDMDQ ƥKSQ@SHNM (S¯ŗR BNMRSQTBSHNM NE SGD 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS HMSDFQ@K NE @ ETMBSHNM f (t, ω) ∈ Mω2 [0, T ] HR RHLHK@Q SN SGD λ HMSDFQ@K HM 2DB VHSG λ = 0 @MC BGNNRDR SGD DU@KT@SHNM ONHMSR @S SGD RS@QS ONHMS NE SGD O@QSHSHNM HMSDQU@KR %NQ @MX O@QSHSHNM 0 = t0 < t1 < · · · < tn = T VD ENQL SGD ,Wµ VXP Sn :=
n
f (ti−1 , ω) Wti ,ω − Wti−1 ,ω .
i=1
-NSD SG@S SGD HMBQDLDMS Wti ,ω −Wti−1 ,ω HR HMCDODMCDMS NE f (ti−1 , ω) ADB@TRD f (t, ω) HR Ft @C@OSDC .MD B@M RGNV RDD D F :< SG@S ENQ @MX RDPTDMBD NE O@QSHSHNMR NE SGD HMSDQU@K RTBG SG@S L@Wi (ti − ti−1 ) → 0 SGD RDPTDMBD {Sn (t, ω)} BNMUDQFDR SN SGD R@LD KHLHS CDMNSDC
T 0
P
f (t, ω)CWt,ω :=
KHL
L@Wi (ti −ti−1 )→0
Sn
@MC B@KKDC ,Wµ LQWHJUDO NE f (t, ω) ,NQDNUDQ NMD B@M RGNV SG@S SGD BNMUDQ FDMBD HM HR TMHENQL HM t VHSG OQNA@AHKHSX NMD H D NM @KLNRS DUDQX SQ@ IDBSNQX NE SGD 6HDMDQ OQNBDRR Wt,ω RDD D F :< 3GD (S¯ HMSDFQ@K HR @ Ft @C@OSDC RSNBG@RSHB OQNBDRR HM Ω (S S@JDR CHƤDQDMS U@KTDR NM CHƤDQDMS QD@KH R@SHNMR ω NE SGD SQ@IDBSNQHDR NE SGD 6HDMDQ OQNBDRR (M O@QSHBTK@Q HS HR D@RX SN RGNV SG@S ENQ @MX HMSDFQ@AKD CDSDQLHMHRSHB ETMBSHNM f T
T 2 f (t)CWt ∼ N 0 , f (t) Ct 0
0
GNKCR 3GD NTSRS@MCHMF BG@Q@BSDQHRSHB NE SGD (S¯ HMSDFQ@K HR SG@S HS HR @ L@QSHMF@KD LNMF @KK λ HMSDFQ@KR HM 2DB (S¯ŗR HMSDQOQDS@SHNM HR BG@Q@BSDQHRDC AX SGD E@BS SG@S @R @ ETMBSHNM NE SGD TOODQ KHLHS HS HR @ L@QSHMF@KD 3GHR B@M AD HKKTR SQ@SDC @R ENKKNVR RDD :< O !X S@JHMF Xt := 12 Wt2 + (λ − 12 )t SGDM ENQ t ≥ s VD G@UD @KLNRS RTQDKX SG@S 1 1 1 1 E(Xt | A(Xu : u ≤ s)) = E(Wt2 | A( Wu2 + (λ − )u : u ≤ s)) + (λ − )t 2 2 2 2 1 1 1 2 1 2 = E(E(Wt |A(Wu : u ≤ s)) | A( Wu + (λ − )u : u ≤ s)) + (λ − )t 2 2 2 2 1 1 1 1 = E(E(Wt2 | A(Ws : s ≤ t)) | A( Wu2 + (λ − )u : u ≤ s)) + (λ − )t 2 2 2 2 1 1 1 2 1 2 = E(t − s + Ws | A( Wu + (λ − )u : u ≤ s)) + (λ − )t 2 2 2 2 1 2 1 1 = Ws + (t − s) + (λ − )t 2 2 2 = Xs + λ(t − s) ,
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VGDQD VD G@UD TRDC SGD U@QHNTR OQNODQSHDR NE SGD BNMCHSHNM@K DWODBS@SHNM @MC NE @ 6HDMDQ OQNBDRR 3GD OQNBDRR Xt HR SGDQDENQD @ L@QSHMF@KD H D E(Xt |A(Xu : 0 ≤ u ≤ s)) = Xs
@ R ,
HE @MC NMKX HE λ = 0 GDMBD ENQ (S¯ŗR BGNHBD NE SGD DU@KT@SHNM ONHMSR R VD G@UD @KQD@CX RDDM HM 2DB
T 0
Wt Ct =
2 1 2 WT
− 12 T .
'DMBD (S¯ŗR HMSDFQ@K KD@CR SN @ QDRTKS CHƤDQDMS EQNL SG@S HLOKHDC AX BK@RRHB@K B@KBTKTR 3GD BNQQDBSHNM SDQL − 12 T HR DRRDMSH@K ENQ SGD L@QSHMF@KD OQNODQSX NE RNKTSHNMR NE (S¯ HMSDFQ@KR SGNTFG HS @KRN QDRTKSR HM řMDVŚ QTKDR NE B@KBTKTR (M O@QSHBTK@Q SGDRD MDV QTKDR ADBNLD @OO@QDMS VGDM CHRBTRRHMF RSNBG@RSHB (S¯ CHƤDQDMSH@KR 2SNBG@RSHB #HƤDQDMSH@KR (S¯ŗR %NQLTK@ &HUDM @ RB@K@Q 6HDMDQ OQNBDRR Wt @MC @ RB@K@Q @S KD@RS SVHBD CHƤDQDMSH@AKD ETMBSHNM g(x) VG@S HR Cg(Wt ) %NQ SGHR OTQONRD KDS TR ENKKNV :< O @MC BNMRHCDQ SGD 3@XKNQ DWO@MRHNM NE F g(Wt + CWt ) = g(Wt ) + gx (Wt )CWt + 12 gxx (Wt )(CWt )2 + . . .
Cg(Wt ) = g(Wt + CWt ) − g(Wt ) = gx (Wt )CWt + 12 gxx (Wt )(CWt )2 + . . .
(E Wt VNTKC AD @ CDSDQLHMHRSHB ETMBSHNM SGD SDQL (CWt )2 BNTKC AD MDFKDBSDC @R @ SDQL NE GHFGDQ NQCDQ (M SGD RSNBG@RSHB B@RD SGNTFG CWt = Wt+Ct − Wt
⇒
(CWt )2 = (Wt+Ct − Wt )2
GNKC @MC @BBNQCHMF SN SGD OQNODQSHDR NE SGD 6HDMDQ OQNBDRR VD FDS VHSG P (CWt )2 = E (CWt )2 = E (Wt+Ct − Wt )2 = Ct . 'DMBD SGD SDQL (CWt )2 HR NE ƥQRS NQCDQ HM OQNA@AHKHSX @MC B@MMNS AD MD FKDBSDC (M O@QSHBTK@Q VD B@M ENQL@KKX RDS TO SGD ENKKNVHMF PXOWLSOLFDWLRQ WD EOH Ct · Ct = 0 , Ct · CWt = 0 , CWt · CWt = Ct .
3N OQNUD SGHR L@QSHMF@KD OQNODQSX ENQ ř@QAHSQ@QXŚ HMSDFQ@MCR RNLD DƤNQS G@R SN AD OTS HMSN CDƥMHMF LNQD OQDBHRDKX VG@S BNMCHSHNMR G@UD SN AD HLONRDC NM SGD HMSDFQ@MCR (K KTRSQ@SHUDKX SGD HMSDFQ@MCR G@UD SN AD RTBG SG@S ENQ D@BG SHLD SGDQD HR MN HMENQL@SHNM MDDCDC SG@S VHKK AD @BBDRRHAKD NMKX HM @ σ @KFDAQ@ FDMDQ@SDC AX RNLD 6HDMDQ OQNBDRR HM SGD ETSTQD
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3GTR SGD ENQLTK@ Cg(Wt ) = gx (Wt )CWt + 12 gxx (Wt )Ct
GNKCR HM SGD RSNBG@RSHB B@RD 6D VHKK OQNUD SGHR QHFNQNTRKX UH@ (S¯ŗR ENQLTK@ !DKNV VD FHUD SGD CDƥMHSHNM NE @ (S¯ RSNBG@RSHB CHƤDQDMSH@K ENKKNVDC AX BHSHMF @ 1 CHLDMRHNM@K UDQRHNM NE (S¯ŗR ENQLTK@ HM NQCDQ SN GHFGKHFGS SGD CHƤDQ DMBDR SN BK@RRHB@K CHƤDQDMSH@K @MC HMSDFQ@K B@KBTKTR #DƥMHSHNM 2SNBG@RSHB #HƤDQDMSH@K +DS Xt 0 ≤ t ≤ T AD @ RSNBG@RSHB OQNBDRR RTBG SG@S ENQ @MX 0 ≤ t1 < t2 ≤ T
X t2 − Xt1 =
t2
a(t)Ct +
t1
t2
b(t)CWt , t1
VGDQD |a|, b ∈ Mω2 [0, T ] 3GDM VD R@X SG@S Xt G@R @ VWRFKDVWLF GLƱHUHQWLDO CXt NM [0, T ] FHUDM AX CXt = a(t)Ct + b(t)CWt . .ARDQUD SG@S Xt HR @M Ft @C@OSDC RSNBG@RSHB ETMBSHNM SG@S ADKNMFR SN Mω2 [0, T ] $PT@SHNM @MC SGD BG@HM QTKD NE CDSDQLHMHRSHB HMSDFQ@K @MC CHƤDQDMSH@K B@KBTKTR HLLDCH@SDKX HLOKX (S¯ŗR BDKDAQ@SDC ENQLTK@ SGD @M@KNF SN SGD BG@HM QTKD HM BK@RRHB@K B@KBTKTR (M HSR RHLOKDRS ENQL HS QD@CR @R +DLL@ (S¯R %NQLTK@ # /HW GXt = a(t)Gt + b(t)GWt IRU t ∈ [0, T ] DQG u : R × [0, T ] → R EH RQFH FRQWLQXRXVO\ GLƱHUHQWLDEOH LQ t ≥ 0 DQG WZLFH FRQWLQXRXVO\ GLƱHUHQWLDEOH LQ x ∈ R 7KHQ u(Xt , t) KDV D VWRFKDVWLF GLƱHUHQWLDO JLYHQ E\ Gu(Xt , t) = ut (Xt , t) + a(t)ux (Xt , t) + 12 b2 (t)uxx (Xt , t) Gt + b(t)ux (Xt , t)GWt , 3URRI 2DD :< OO 3GHR B@M AD DWSDMCDC SN ETMBSHNMR u : Rn → R @MC KD@CR TR SN SGD FDM DQ@K ENQLTK@SHNM NE ,WµśV IRUPXOD HMUNKUHMF CHLDMRHNM@K RSNBG@RSHB OQNBDRRDR (1) (m) Xt , . . . , X t (i)
3GDNQDL (S¯R %NQLTK@ # /HW GXt = ai (t)Gt + bi (t)GWt i = 1, 2, . . . , m DQG OHW u(x1 , . . . , xm , t) EH RQFH FRQWLQXRXVO\ GLƱHUHQWLDEOH LQ t ≥
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 0 DQG WZLFH FRQWLQXRXVO\ GLƱHUHQWLDEOH LQ x = (x1 , . . . , xm ) ∈ Rm 7KHQ (1) (m) u(Xt , . . . , Xt ) KDV D VWRFKDVWLF GLƱHUHQWLDO JLYHQ E\ ⎛ ⎞ m m 1 Gu(Xt , t) = ⎝ut (Xt , t) + ai (t)uxi (Xt , t) + bi (t)bj (t)uxi xj (Xt , t)⎠ Gt 2 i=1
+
m
i,j=1
bi (t)uxi (Xt , t)GWt ,
i=1 (1)
(m) T )
ZKHUH Xt = (Xt , . . . , Xt 3URRI RDD :< OO
R @ ƥQRS DW@LOKD VD BNMRHCDQ @ UDQX RHLOKHƥDC LNCDK ENQ ƥM@MBH@K L@Q JDSR SG@S B@M AD RDDM @R @ BQTCD @OOQNWHL@SHNM NE SGD LNCDK FHUDM AX %HRBGDQ !K@BJ @MC ,XQNM 2BGNKDR HM : 0 RQ ZKLFK WKH LQLWLDO YDOXH SUREOHP x˙ = F (t, x) ,
x(t0 ) = x0 ,
KDV D XQLTXH VROXWLRQ 0RUH SUHFLVHO\ /HW Q := Ia (t0 ) × Kb (x0 ) EH DQ DUELWUDU\ FRPSDFW FXERLG LQ U RQ ZKLFK F LV /LSVFKLW]FRQWLQXRXV LQ x ZLWK /LSVFKLW]FRQVWDQW L /HW δ ≤ a EH D SRVLWLYH QXPEHU VXFK WKDW δ F Q ≤ b DQG δL < 1 7KHQ WKH LQLWLDO YDOXH SUREOHP KDV D XQLTXH VROXWLRQ ϕ RQ Iδ (t0 ) 7KLV VROXWLRQ OLHV LQ Kb (x0 ) VLQFH ZH KDYH ϕ(t) − x0 ≤ b , IRU DOO t ∈ Iδ (t0 ) , DQG LW LV WKH OLPLW RI WKH VHTXHQFH (ϕk )k∈N RI /HB@QC +HMCDK±E HSDQ@SHNM ETMBSHNMR ZKLFK DUH GHƲQHG DV
t ϕ0 (t) := x0 , ϕk+1 (t) := x0 + F (s, ϕ(s)) Gs . t0
7KH VHTXHQFH (ϕk )k∈N FRQYHUJHV XQLIRUPO\ RQ Iδ (t0 ) 3URRI %NKKNVHMF :< OO HS HR RTƧBHDMS SN BNMRSQTBS @ BNMSHMTNTR ETMB SHNM ϕ : Iδ (t0 ) → Kd RTBG SG@S ϕ R@SHRƥDR SGD HMDPT@KHSX ENQ @KK t ∈ Iδ (t0 ) @R VDKK @R SGD HMSDFQ@K DPT@KHSX
t ϕ(t) = x0 + F (s, ϕ(s)) Cs . t0
6D HMSDQOQDS @R @ ƥWDC ONHMS HCDMSHSX 3GDQDENQD KDS M AD SGD RO@BD NE @KK BNMSHMTNTR ETMBSHNMR ψ : Iδ (t0 ) → Kd RTBG SG@S ψ(t) − x0 ≤ b ,
ENQ @KK t ∈ Iδ (t0 ) ,
@MC P AD SG@S L@OOHMF SG@S L@OR @ ETMBSHNM ψ ∈ M SN P ψ : Iδ (t0 ) → Kd AX
t (P ψ)(t) := x0 + F (s, ϕ(s)) Cs . t0
P ψ HR BNMSHMTNTR @MC R@SHRƥDR SGD HMDPT@KHSX & t & t
& &
&
(P ψ)(t) − x0 = & & F (s, ψ(s)) Cs& ≤ F (s, ψ(s)) Cs ≤ δ F Q ≤ b . t0
t0
3GTR ENQ ψ ∈ M VD @KRN G@UD P ψ ∈ M
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 6HSG SGD @HC NE P SGD HMSDFQ@K DPT@KHSX QD@CR @R SGD ƥWDC ONHMS HCDM SHSX P ϕ = ϕ (M NQCDQ SN @OOKX SGD !@M@BG ƥWDC ONHMS SGDNQDL VD HMSQNCTBD @ LDSQHB NM M @R ENKKNVR %NQ ψ1 , ψ2 ∈ M VD CDƥMD d (ψ1 , ψ2 ) := RTO { ψ1 (t) − ψ2 (t) : t ∈ Iδ (t0 )} . (M SGHR LDSQHB SGD RDPTDMBD (ψk )k∈N BNMUDQFDR HM M HE @MC NMKX HE HS BNMUDQFDR TMHENQLKX NM Iδ (t0 ) R Kb (x0 ) HR ANTMCDC HS ENKKNVR SG@S (M, d) HR @ BNLOKDSD LDSQHB RO@BD H D @ !@M@BG RO@BD ,NQDNUDQ P : M → M HR @ BNMSQ@BSHNM ADB@TRD & t & & & & d (P ψ1 , P ψ2 ) = RTO & (F (s, ψ1 (s)) − F (s, ψ2 (s))) Cs& & I
t0
t
≤ RTO F (s, ψ1 (s)) − F (s, ψ2 (s)) Cs
I
t0
I
t0
t
≤ RTO
L ψ1 (s) − ψ2 (s) Cs
≤ δ · L · d (ψ1 , ψ2 ) ,
VHSG δL < 1 .
3GTR !@M@BGŗR ƥWDC ONHMS SGDNQDL B@M AD @OOKHDC @MC SGDQD DWHRSR @ TMHPTD ETMBSHNM ϕ ∈ M RTBG SG@S P ϕ = ϕ 'DQD ϕ KHDR HM Kb (x0 ) @MC RNKUDR SGD HMHSH@K U@KTD OQNAKDL $W@LOKD "NMRSQTBSHNM NE @ 2NKTSHNM BE :< OO +DS TR @OOKX SGD /HB@QC +HMCDK±E HSDQ@SHNM ENQ SGD QNS@SHNM ƥDKC v(x, y) = (−y, x) 6D @OOKX HS SN SGD HMHSH@K U@KTD OQNAKDL x˙ = −y , x˙ = x , 6D NAS@HM
ϕ1 (t) =
1 0
+
VHSG x(0) = 1 , VHSG y(0) = 0 .
t 0
t
0 1
Cs =
1 t
1 − 12 t2 ϕ2 (t) = + Cs = t 0 t −s 1 1 − 12 t2 + Cs = ϕ3 (t) = 0 1 − 12 s2 t − 3!1 t3 0 1 0
−s 1
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 1 2k t 1 − 2!1 t2 + − · · · + (−1)k (2k)! . ϕ2k+1 (t) = 1 t − 3!1 t3 + − · · · + (−1)k (2k+1)! t2k+1 3GD BNLONMDMSR NE ϕ2k+1 @QD SGD 3@XKNQ ONKXMNLH@KR NE SGD RHMD ETMBSHNM @MC SGD BNRHMD ETMBSHNM QDRODBSHUDKX NE NQCDQ 2k + 1 (M SGD KHLHS k → ∞ SGD RNKTSHNM NE SGD HMHSH@K U@KTD OQNAKDL QDRTKSR @R BNR(t) ϕ(t) = . RHM(t)
(MSDQKTCD 2NKUHMF .#$R 2XLANKHB@KKX VHSG , 3+ !
%NQ SGD RXLANKHB RNKTSHNM NE CHƤDQDMSH@K DPT@SHNMR VHSG , 3+ ! VD B@M TRD SGD /bQHp2 BNLL@MC BE :< (M NQCDQ SN B@KBTK@SD SGD RNKTSHNM NE SGD RB@K@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = t · x SXOD == t 4 /bQHp2UǶ.t 4 i tǶ- ǶiǶV t 4 *R 2tTURfk ikV
, 3+ ! TRDR B@OHS@K # SN HMCHB@SD SGD CDQHU@SHUD @MC QDPTHQDR SG@S SGD DMSHQD DPT@SHNM @OOD@QR HM RHMFKD PTNSDR !X CDE@TKS , 3+ ! @RRTLDR t SN AD SGD !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ( 0 'NV @QD HMSDFQ@K BTQUDR @MC RNKTSHNMR NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR QDK@SDC 0 (M VG@S QDRODBS @QD NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @MC HMSDFQ@K DPT@SHNMR DPTHU@KDMS 0 4MCDQ VGHBG BNMCHSHNMR @QD HMSDFQ@K BTQUDR TMHPTD 0 2JDSBG SGD OQNNE NE XNTQ @RRDQSHNM EQNL 0 0 2S@SD SGD SGDNQDL NE /HB@QC +HMCDK±E 0 2JDSBG SGD OQNNE NE SGD /HB@QC +HMCDK±E SGDNQDL 6G@S HR SGD DRRDMSH@K RSDO HM SGHR OQNNE 0
OOKX SGD /HB@QC +HMCDK±E HSDQ@SHNM SN RNKUD SGD HMHSH@K U@KTD OQNAKDL x˙ = tx x(0) = 1
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF HMCDODMCDMS U@QH@AKD RN VD BNTKC G@UD TRDC SGD BNLL@MC t 4 /bQHp2UǶ.t 4 i tǶV VHSGNTS @LAHFTHSX (E VD V@MS SN TRD SGD R@LD DPT@SHNM @ MTLADQ NE SHLDR VD L@X CDƥMD HS @R @ U@QH@AKD == 2[MR 4 Ƕ.v 4 t vǶ == v 4 /bQHp2U2[MR- ǶtǶV v 4 *R 2tTURfk tkV
3N RNKUD SGD BNQQDRONMCHMF HMHSH@K U@KTD OQNAKDL y (x) = x · y VHSG QDRODBS SN y(1) = 1 VD TRD == v 4 /bQHp2U2[MR- ǶvURV4RǶ- ǶtǶV v 4 Rf2tTURfkV 2tTURfk tkV
NQ == BMBibR 4 ǶvURV4RǶc == v 4 /bQHp2U2[MR- BMBibR- ǶtǶV v 4 Rf2tTURfkV 2tTURfk tkV
-NV SG@S VD G@UD RNKUDC SGD CHƤDQDMSH@K DPT@SHNM VD L@X V@MS SN OKNS SGD RNKTSHNM SN FDS @ QNTFG HCD@ NE HSR ADG@UHNQ 'DQD VD HLLDCH@SDKX QTM HMSN SVN OQNAKDLR H SGD DWOQDRRHNM y VD FDS EQNL , 3+ ! HR MNS RTHSDC ENQ @QQ@X NODQ@SHNMR @MC HH y HR @ RXLANK NQ RXLANKHB NAIDBS %NKKNVHMF :< SGD ƥQRS NE SGDRD NARS@BKDR HR RSQ@HFGSENQV@QC SN ƥW AX @OOKXHMF SGD p2+i`Q`Bx2 BNLL@MC %NQ SGD RDBNMC VD DLOKNX SGD 2pH BNLL@MC SG@S DU@KT@SDR NQ DWDBTSDR SDWS RSQHMFR SG@S BNMRSHSTSD U@KHC , 3+ ! BNLL@MCR 'DMBD VD B@M TRD == t 4 HBMbT+2Uy-R-kyVc == x 4 2pHU p2+iQ`Bx2UvV Vc == THQiUt-xV
SN F@HM SGD QDRTKS RGNVM HM %HF @ "NMRHCDQ MNV SGD RNKTSHNM NE SGD RDBNMC NQCDQ DPT@SHNM y (x) + 8y (x) + 2y(x) = BNR(x) ,
y(0) = 0 ,
y (0) = 1 .
3GDM SGD ENKKNVHMF RDKE DWOK@M@SNQX , 3+ ! BNCD RNKUDR SGD DPT@SHNM @MC CQ@VR %HF A == 2[Mk 4 Ƕ.kv Y 3 .v Y k v 4 +QbUtVǶc == BMBibk 4 ǶvUyV 4 y- .vUyV 4 RǶc == v 4 /bQHp2U2[Mk- BMBibk- ǶtǶV v 4 Rfe8 +QbUtV Y 3fe8 bBMUtV Y U@RfRjyY8jfR3ky R9URfkVV 2tTUU@9YR9URfkVV tV @ RfR3ky U8jYR9URfkVV R9URfkV 2tTU@U9YR9URfkVV tV == t 4 HBMbT+2Uy-R-kyVc == x 4 2pHU p2+iQ`Bx2UvV Vc == THQiUt-xV
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 1
0.2
0.18
0.95
0.16 0.9 0.14 0.85
0.12
0.8
0.1
0.08
0.75
0.06 0.7 0.04 0.65
0.6
0.02
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0
0.1
0.2
@
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
A
%HFTQD @ &Q@OG NE SGD RNKTSHNM y NE y (x) = x · y VHSG QDRODBS SN y(1) = 1 @MC A FQ@OG NE SGD RNKTSHNM y NE y (x) + 8y (x) + 2y(x) = BNR(x) VHSG QDRODBS SN y(0) = 0 y (0) = 1
%HM@KKX VD SN RNKUD @MC OKNS RNKTSHNMR SN SGD KHMD@Q RXRSDL x˙ = x + 2y − z ,
y˙ = x + z ,
z˙ = 4x − 4y + 5z ,
NE SGQDD BNTOKDC DPT@SHNM BE :< 6D ƥQRS ƥMC SGD FDMDQ@K RNKTSHNM @M@K NFNTRKX SN SGD RB@K@Q B@RD 'DQD VD ITRS G@UD SN AQ@BD D@BG DPT@SHNM HM HSR NVM O@HQ NE RHMFKD PTNS@SHNM L@QJR == (t- v- x) 4 /bQHp2UǶ.t 4 t Y k v @ xǶ- Ƕ.v 4 t Y xǶǶ.x 4 9 t @ 9 v Y 8 xǶV t 4 @*R 2tTUj iV Y k *R 2tTUk iV Y k *k 2tTUk iV @ k *k 2tTUiV @ Rfk *j 2tTUj iV Y Rfk *j 2tTUiV v 4 *R 2tTUj iV @ *R 2tTUk iV Y k *k 2tTUiV @ *k 2tTUk iV Y Rfk *j 2tTUj iV @ Rfk *j 2tTUiV x 4 @9 *R 2tTUk iV Y 9 *R 2tTUj iV @ 9 *k 2tTUk iV Y 9 *k 2tTUiV @ *j 2tTUiV Y k *j 2tTUj iV
.E BNTQRD HE VD TRD , 3+ ! SN CNTAKD BGDBJ @M@KXSHB RNKTSHNMR NE SGHR RXRSDL VD G@UD SN JDDO HM LHMC SG@S , 3+ !ŗR BGNHBD NE SGD BNMRS@MSR C1 C2 @MC C3 OQNA@AKX VNTKC MNS BNQQDRONMC SN NTQ NVM BGNHBD $ F VD LHFGS G@UD C := −2C1 + 12 C3 RTBG SG@S SGD BNDƧBHDMSR NE DWO(t) HM SGD DWOQDRRHNM ENQ x @QD BNLAHMDC %NQSTM@SDKX SGDQD HR MN RTBG @LAHFTHSX VGDM SGD HMHSH@K U@KTDR @QD @RRHFMDC 3N RNKUD @ BNQQDRONMCHMF HMHSH@K U@KTD OQNAKDL D F VHSG x(0) = 1 y(0) = 2 @MC z(0) = 3 VD B@M TRD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 25
20
25
20
15 z−axis
15
10
10
5
0 8
5
7
1.5
6
1.4 5
1.3 1.2
4
1.1
3
0
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
y−axis
@
1 2
0.9
x−axis
A
%HFTQD @ &Q@OG NE SGD RNKTSHNMR x(t) y(t) @MC z(t) NE SGD RXRSDL NUDQ SHLD VHSG QDRODBS SN SGD HMHSH@K BNMCHSHNMR x(0) = 1 y(0) = 2 @MC z(0) = 3 @MC T T A RNKTSHNM SQ@IDBSNQX HM SGD x y z RO@BD RS@QSHMF @S (x(0), y(0), z(0)) = (1, 2, 3)
== BMBibj 4 ǶtUyV 4 R- vUyV 4 k- xUyV 4 jǶc == (t- v- x) 4 /bQHp2UǶ.t 4 t Y k v @ xǶ- Ƕ.v 4 t Y xǶǶ.x 4 9 t @ 9 v Y 8 xǶ- BMBibjV t 4 @8fk 2tTUj iV Y e 2tTUk iV @ 8fk 2tTUiV v 4 8fk 2tTUj iV @ j 2tTUk iV Y 8fk 2tTUiV x 4 @Rk 2tTUk iV Y Ry 2tTUj iV Y 8 2tTUiV
%HM@KKX VD OKNS SGHR RNKTSHNM SN NAS@HM SGD QDRTKSR CHROK@XDC HM %HF == == == == ==
i 4 HBMbT+2Uy- X8- k8Vc tt 4 2pHU p2+iQ`Bx2UtV Vc vv 4 2pHU p2+iQ`Bx2UvV Vc xx 4 2pHU p2+iQ`Bx2UxV Vc THQiUi- tt- Ƕ@FǶ- i- vv- Ƕ,FǶ- i- xx- ǶXFǶV
@MC THQijUtt- vv- xx-Ƕ@FǶV
"NLO@QDC SN SGD UDKNBHSX OKNSR RGNVM D@QKHDQ VD HLLDCH@SDKX RDD SG@S %HF TQDR @MC OQNUHCD KDRR FKNA@K HMENQL@SHNM 'DQD VD ITRS RDD NMD HMSDFQ@K BTQUD ATS B@MMNS DRSHL@SD SGD ADG@UHNQ NE MD@QAX HMSDFQ@K BTQUDR @S KD@RS VHSGNTS RNKUHMF SGD CHƤDQDMSH@K DPT@SHNMR VHSG CHƤDQDMS HMHSH@K BNM CHSHNMR @F@HM 3GHR FKNA@K ONHMS NE UHDV NM UDBSNQ RNKTSHNM ƥDKCR VHKK AD CHRBTRRDC HM CDOSG HM "G@O NM CDSDQLHMHRSHB CXM@LHB@K RXRSDLR 3GD NSGDQ NARDQU@SHNM VD RGNTKC L@JD GDQD HR SG@S VD B@MMNS DRSHL@SD SGD ADG@UHNQ NE SGD HMSDFQ@K BTQUDR ADXNMC SGD SHLD EQ@LDR HM VGHBG VD OKNSSDC SGDL 3GHR KD@CR SN PTDRSHNMR @ANTS DWSDMRHAHKHSX @MC L@WHL@KHSX NE HMSDFQ@K BTQUDR 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
,@WHL@K (MSDFQ@K "TQUDR #DƥMHSHNM ,@WHL@K (MSDFQ@K "TQUD HMSDFQ@K BTQUD ϕ : I → Kd NE SGD CXM@LHB@K RXRSDL F : U → Kd SGQNTFG SGD ONHMS (t0 , ϕ(t0 )) HR B@KKDC PD[LPDO HE ENQ DUDQX NSGDQ HMSDFQ@K BTQUD ψ : J → Kd SGQNTFG SGHR ONHMS HS GNKCR SG@S J ⊂ I @MC ψ = ϕ|J +DLL@ 4MHPTDMDRR NE @ ,@WHL@K (MSDFQ@K "TQUD ,I WKH G\QDPLFDO V\V WHP F : U → Kd LV ORFDOO\ /LSVFKLW]FRQWLQXRXV ZLWK UHVSHFW WR x XQLIRUPO\ LQ t WKHQ HYHU\ LQLWLDO YDOXH SUREOHP x˙ = F (x, t) ,
x(t0 ) = x0
KDV RQH DQG RQO\ RQH PD[LPDO VROXWLRQ 3URRI %NKKNVHMF :< O KDS I AD SGD TMHNM NE @KK HMSDQU@KR Iα NM VGHBG SGD HMHSH@K U@KTD OQNAKDL G@R @ RNKTSHNM ϕα VGDQD α HR @M DKDLDMS NE @ RTHS@AKD HMCDW RDS %NQ t ∈ I BGNNRD @ Iα RTBG SG@S t ∈ Iα @MC RDS ϕ(t) := ϕα (t) +DS Iβ AD @MNSGDQ HMSDQU@K RTBG SG@S t ∈ Iβ @MC [t0 , t] ⊂ Iα ∩ Iβ #TD SN SGD TMHPTDMDRR 3GDNQDL VD NAS@HM ϕα (t) = ϕβ (t) 3GTR ϕ(t) HR CDƥMDC HMCDODMCDMSKX EQNL Iα .E BNTQRD ϕ(t) : I → Kd HR @ L@WHL@K BTQUD 3GD ENKKNVHMF SGDNQDL FHUDR @M DRRDMSH@K @RRDQSHNM @ANTS SGD HMSDQU@KR NE CDƥMHSHNM ENQ L@WHL@K HMSDFQ@K BTQUDR 3GDNQDL %HMHSD +HED 3HLD NE 2NKTSHNMR $ PD[LPDO LQWHJUDO FXUYH ZKLFK KDV ƲQLWH OLIHWLPH OHDYHV HYHU\ FRPSDFW VHW 0RUH SUHFLVHO\ /HW ϕ : (α, β) → Kd EH D PD[LPDO LQWHJUDO FXUYH RI WKH G\ QDPLFDO V\VWHP F : U → Kd ZKLFK LV ORFDOO\ /LSVFKLW]FRQWLQXRXV LQ x XQL IRUPO\ LQ t ,I β < ∞ WKHQ IRU DQ\ FRPSDFW VHW K ⊂ U DQG HYHU\ ε > 0 WKHUH LV D τ ∈ (β − ε, β) VXFK WKDW (τ, ϕ(τ )) ∈ / K $Q DQDORJRXV DVVHUWLRQ KROGV IRU α > −∞ 3URRI %NKKNVHMF :< O @RRTLD SG@S ENQ @KK t ∈ (β − ε, β) HS GNKCR SG@S (t, ϕ(t)) ∈ K %HQRS VD BK@HL SG@S ϕ B@M AD BNMSHMTDC BNMSHMTNTRKX NM (α, β] 3GDQDENQD HS RTƧBDR SN RGNV SG@S ϕ HR TMHENQLKX BNMSHMTNTR NM (β − ε, β) 3GHR ENKKNVR EQNL SGD E@BS SG@S VGDM M := F K ENQ @KK t1 , t2 ∈ (β − ε, β) SGD ENKKNVHMF HMDPT@KHSX GNKCR & t2 &
t2
& &
& &
≤ M · |t2 − t1 | . ϕ(t2 ) − ϕ(t1 ) = & ϕ(s)Cs ˙ ≤ F (s, ϕ(s)) Cs &
t1
t1
+DS SGD BNMSHMTNTR BNMSHMT@SHNM NE ϕ NM (α, β] AD CDMNSDC AX ϕ ˜ -DWS VD RGNV SG@S ϕ˜ HR @M HMSDFQ@K BTQUD NE F SNN !DB@TRD K HR BKNRDC VD G@UD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF (β, ϕ(β)) ˜ ∈ K @MC SGTR HM U ,NQDNUDQ VD G@UD ENQ @QAHSQ@QX t, t0 ∈ (α, β) SG@S
t ϕ(t) ˜ = ϕ(t ˜ 0) + F (s, ϕ(s)) ˜ Cs . t0
#TD SN SGD BNMSHMTHSX NE ϕ˜ NM (α, β] DPT@KHSX GNKCR ENQ t = β @KRN 'DMBD SGD ETMBSHNM ϕ˜ : (α, β] → Kd RNKUDR SGD CHƤDQDMSH@K DPT@SHNM x˙ = F (x, t) 3GHR BNMSQ@CHBSR SG@S ϕ : (α, β) → Kd HR @ L@WHL@K RNKTSHNM %NQ @ CXM@LHB@K RXRSDL NM SGD OQNCTBS RSQTBSTQD I × Ω SGD ENKKNVHMF HL ONQS@MS QDRTKS GNKCR "NQNKK@QX +D@UHMF $UDQX "NLO@BS 2DS /HW ϕ : (α, β) → Kd EH D PD[LPDO LQWHJUDO FXUYH RI WKH G\QDPLFDO V\VWHP F : I ×Ω → Kd ZKLFK LV ORFDOO\ /LSVFKLW] FRQWLQXRXV LQ x XQLIRUPO\ LQ t ,I β LV QRW WKH ULJKW ERXQGDU\ SRLQW RI WKH LQWHUYDO I WKHQ IRU HYHU\ FRPSDFW VXEVHW J ⊂ Ω DQG IRU HYHU\ γ ∈ (α, β) WKHUH LV D t ∈ (γ, β) VXFK WKDW ϕ(t) ∈ / K $Q DQDORJXH UHVXOW KROGV IRU α ,I ϕ OLHV FRPSOHWHO\ LQ D FRPSDFW VXEVHW RI Ω WKHQ ϕ LV GHƲQHG RQ WKH ZKROH RI I 3URRI %NKKNVHMF :< O KDS [γ, β] × K AD @ BNLO@BS RTARDS NE I × Ω 3GDM 3GDNQDL B@M AD @OOKHDC SN SGHR RTARDS 3GDQD @QD GNVDUDQ UDBSNQ ƥDKCR CDƥMDC DUDQXVGDQD NM R × Kd VHSG ODQ EDBS CHƤDQDMSH@AHKHSX OQNODQSHDR VGHBG CN MNS G@UD @ RNKTSHNM CDƥMDC ENQ SGD VGNKD NE R $W@LOKD 2NKTSHNM NE @M .#$ VHSG !KNV 4O HM %HMHSD 3HLD BE :< O "NMRHCDQ x˙ = 1 + x2 NM R × R 3GD RNKTSHNMR ϕc (t) = S@M(t − c) NM SGD HMSDQU@KR Iπ/2 (c) @QD @KQD@CX RNKTSHNMR NM L@WHL@K HMSDQU@KR @ RNKTSHNM SG@S VNTKC AD CDƥMDC NM @M HMSDQU@K NE KDMFSG > π BNHMBHCDR VHSG ϕc NM @ BDQS@HM HMSDQU@K Iπ/2 (c) CTD SN SGD TMHPTDMDRR 3GDNQDL 3GHR HR HLONRRHAKD ADB@TRD NE |ϕc (t)| → ∞ ENQ t → c ± π/2 +DS x˙ = 1 + x2 AD SGD UDKNBHSX NE @ ONHMS LNUHMF HM SGD KHMD R 3GDM HSR UDKNBHSX HMBQD@RDR HM @ OQNONQSHNM SG@S HR E@RSDQ SG@M SGD CHRS@MBD |x| @MC BNM RDPTDMSKX SGHR ONHMS DRB@ODR SN HMƥMHSX HM ƥMHSD SHLD .M SGD NSGDQ G@MC HE x˙ HMBQD@RDR @S LNRS OQNONQSHNM@KKX SN |x| SGDM SGD DRB@OD SN HMƥMHSX QDPTHQDR HMƥMHSD SHLD M @M@KNFNTR QDRTKS NE DRB@OD SN HMƥMHSX HM HMƥMHSD SHLD HR NAS@HMDC HM SGD FDMDQ@K B@RD NE KHMD@QKX ANTMCDC L@OOHMFR #DƥMHSHNM +HMD@QKX !NTMCDC ,@OOHMF L@OOHMF F : I × Kd → Kd HR B@KKDC OLQHDUO\ ERXQGHG HE SGDQD @QD BNMSHMTNTR ETMBSHNMR a, b : I → R RTBG
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS SG@S F (t, x) ≤ a(t) x + b(t) . GNKCR ENQ @KK (t, x) ∈ I × Kd 3GDNQDL +HED 3HLD NE +HMD@QKX !NTMCDC (MSDFQ@K "TQUDR (YHU\ PD[LPDO LQWHJUDO FXUYH ϕ RI D OLQHDUO\ ERXQGHG DQG ORFDOO\ /LSVFKLW]FRQWLQXRXV G\QDP LFDO V\VWHP F : I × Kd → Kd LQ x XQLIRUPO\ LQ t LV GHƲQHG HYHU\ZKHUH RQ I 3URRI %NKKNVHMF :< O KDS (α, β) ⊂ I AD SGD HMSDQU@K NE CDƥMHSHNM NE ϕ RRTLD SG@S β HR MNS SGD QHFGS ANTMC@QX ONHMS NE I SGDM ϕ VNTKC AD TMANTMCDC NM [t0 , β) ENQ @M @QAHSQ@QX t0 ∈ (α, β) -DWS EQNL
t F (s, ϕ(s)) Cs ϕ(t) = ϕ(t0 ) + t0
HS ENKKNVR SG@S ϕ(t) ≤ a [t0 ,β] ·
t t0
ϕ(s) Cs + ϕ(t0 ) + b [t0 ,β] · |β − t0 | .
#TD SN SGHR DRSHL@SD ϕ LTRS AD ANTMCDC ADB@TRD NE &QNMV@KKŗR KDLL@ NM [t0 , β] 3GHR HR @ BNMSQ@CHBSHNM @MC SGTR β HR @KQD@CX SGD QHFGS ANTMC@QX ONHMS
,@WHL@K (MSDFQ@K "TQUDR HM 3HLD (MCDODMCDMS 5DBSNQ %HDKCR +DS v : Ω → Kd AD @ UDBSNQ ƥDKC NM @M NODM RTARDS Ω ⊂ Kd 3GD BNQQD RONMCHMF NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = F (x, t) = v(x) HR SDQLDC @M DX WRQRPRXV RUGLQDU\ GLƱHUHQWLDO HTXDWLRQ @MC Ω HR B@KKDC HSR SKDVH VSDFH (E v HR KNB@KKX +HORBGHSY BNMSHMTNTR VHSG QDRODBS SN x SGDM F G@R SGD R@LD OQNODQSX VHSG QDRODBS SN x %@Q QD@BGHMF HLONQS@MBD G@R SGD QDRTKS SG@S DUDQX L@WHL@K HMSDFQ@K BTQUD NE @ KNB@KKX +HORBGHSY BNMSHMTNTR UDBSNQ ƥDKC HR DHSGDQ BNMRS@MS ODQHNCHB NQ G@R MN QDSTMHMF ONHMS 3N RGNV SGHR @RRDQSHNM VD QDKX NM SVN RHL OKD XDS DRRDMSH@K QDL@QJR NM SHLD RGHESR ENQ HMSDFQ@K BTQUDR /QNONRHSHNM 1DL@QJR NM 3HLD 2GHESR /HW ϕ : I → Ω EH D PD[LPDO LQ WHJUDO FXUYH RI D ORFDOO\ /LSVFKLW]FRQWLQXRXV YHFWRU ƲHOG v : Ω → Kd 7KHQ WKH IROORZLQJ KROGV )RU HYHU\ c ∈ R WKH IXQFWLRQ ϕc : I + c → Ω ϕc (t) := ϕ(t − c) LV DOVR D PD[LPDO LQWHJUDO FXUYH RI v /HW ψ : J → Ω EH D PD[LPDO LQWHJUDO FXUYH VXFK WKDW ψ(s) = ϕ(r) IRU D WLPHV s ∈ J DQG r ∈ I UHVSHFWLYHO\ 7KHQ J = I + s − r DQG ψ = ϕs−r KROGV
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS (( 0 6G@S HR @ L@WHL@K HMSDFQ@K BTQUD 0 4MCDQ VGHBG BNMCHSHNMR CNDR @ CXM@LHB@K RXRSDL G@R @ TMHPTD L@WHL@K RNKTSHNM 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0 0 2S@SD SGD ENKKNVHMF QDRTKS OQDBHRDKX ř@ L@WHL@K HMSDFQ@K BTQUD VGHBG G@R ƥMHSD KHED SHLD KD@UDR DUDQX BNLO@BS RDSŚ 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0 0 &HUD @M DW@LOKD ENQ @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM VHSG AKNV TO RN KTSHNMR 0 6G@S HR @ KHMD@QKX ANTMCDC L@OOHMF 0 6G@S B@M XNT R@X @ANTS SGD KHED SHLD NE KHMD@QKX ANTMCDC HMSDFQ@K BTQUDR 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0
3URRI %NKKNVHMF :< O SGD ƥQRS @RRDQSHNM ENKKNVR EQNL ˙ − c) = v (ϕ(t − c)) = v (ϕc (t)) . ϕ˙ c (t) = ϕ(t %HM@KKX CTD SN SGD L@WHL@KHSX NE ANSG ϕs−r @MC ψ SGD HCDMSHSX ϕs−r (s) = ϕ(r) = ψ(s) HLOKHDR J ⊂ I + s − r ⊂ J @R VDKK @R ϕs−r = ψ 3GHR RGNVR SGD RDBNMC @RRDQSHNM 3GNTFG ϕ @MC ϕc L@X AD CHƤDQDMS BTQUDR CTD SN SGDHQ SHLD O@Q@LDSQHR@SHNM SGDHQ SQ@IDBSNQHDR HM Ω @QD HCDMSHB@K (E ϕ RNKUDR SGD HMHSH@K U@KTD OQNAKDL x˙ = v(x) VHSG HMHSH@K BNMCHSHNM x(t0 ) = x0 SGDM ϕt0 RNKUDR SGD HMHSH@K U@KTD OQNAKDL x˙ = v(x) VHSG HMHSH@K BNMCHSHNM x(0) = x0 3GHR BNQQDRONMCDMBD HR NESDM TRDC SN MNQL@KHYD SGD HMHSH@K SHLD NE @M HMSDFQ@K BTQUD SN YDQN R @ BNMRDPTDMBD NE VD G@UD SG@S SGD SQ@IDBSNQHDR NE SGD L@WHL@K HMSD FQ@K BTQUDR ENQL @ CHRINHMS O@QSHSHNM NE SGD OG@RD RO@BD Ω SDQLDC SGD SKDVH SRUWUDLW 3GDNQDL 3GD 3GQDD 3XODR NE (MSDFQ@K "TQUDR /HW v EH D ORFDOO\ /LSVFKLW] FRQWLQXRXV YHFWRU ƲHOG RQ Ω 8S WR WLPH VKLIWV WKHUH LV D XQLTXH PD[LPDO LQWHJUDO FXUYH WKURXJK HYHU\ SRLQW RI Ω DQG IRU WKHVH LQWHJUDO FXUYHV H[DFWO\ RQH RI WKH IROORZLQJ FDVHV KROGV 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS )RU DW OHDVW RQH t0 ∈ I LW KROGV WKDW ϕ(t ˙ 0 ) = 0 7KHQ I = R DQG ϕ LV FRQVWDQW ZKHUH ϕ(t) LV D URRW RI v )RU DOO t ∈ I LW KROGV WKDW ϕ˙ = 0 DQG ϕ KDV D UHWXUQLQJ SRLQW LH ϕ(r) = ϕ(s) IRU VXLWDEOH r, s ∈ I r = 7KHQ I = R DQG ϕ LV SHULRGLF VXFK WKDW ϕ(t + p) = ϕ(t) ZLWK p := s − r IRU DOO t ∈ R )RU DOO t ∈ I LW KROGV WKDW ϕ˙ = 0 DQG ϕ KDV QR UHWXUQLQJ SRLQW 3URRI %NKKNVHMF :< O KDS ϕ @MC ψ AD L@WHL@K HMSDFQ@K BTQUDR SGQNTFG x0 ∈ Ω H D ϕ(r) = ψ(s) ENQ RTHS@AKD r @MC s QDRODBSHUDKX 3GDM @BBNQCHMF SN SGD QDRTKS NE SGD QDL@QJ NM SHLD RGHESR VD G@UD ψ = ϕs−r -DWS SN SGD BK@RRHƥB@SHNM (E ϕ(t ˙ 0 ) = 0 SGDM x0 = ϕ(t0 ) HR @ QNNS NE v ADB@TRD v (ϕ(t0 )) = ϕ(t ˙ 0 ) 3GTR SGD BNMRS@MS ETMBSHNM ψ : R → Ω ψ(t) = x0 RNKUDR SGD HMHSH@K U@KTD OQNAKDL x˙ = v(x) x(t0 ) = x0 DHSGDQ #TD SN SGD L@WHL@KHSX NE ϕ @RRDQSHNM ENKKNVR -DWS KDS ϕ(s) = ϕ(r) VGDQD p := s − r = 0 BBNQCHMF SN QDRTKS NE SGD QDL@QJ NM SHLD RGHESR VD G@UD I = I + p @MC ϕ = ϕp 3GHR RGNVR SGD @RRDQSHNMR BBNQCHMF SN B@RD SGD QNNSR NE v @QD DW@BSKX SGD BQHSHB@K ONHMSR NE HMSDFQ@K BTQUDR NE SGD UDBSNQ ƥDKCR @MC @S SGD R@LD LNLDMS SGD SQ@IDBSNQHDR NE SGD BNMRS@MS HMSDFQ@K BTQUDR "NQQDRONMCHMFKX SGDX @QD @KRN B@KKDC FULWLFDO SRLQWV NQ HTXLOLEULXP SRLQWV NE SGD UDBSNQ ƥDKC 3GDNQDL CCDMCTL NM /DQHNCHB %TMBSHNMR $ SHULRGLF FRQWLQXRXV IXQF WLRQ ϕ : R → Kd LV HLWKHU FRQVWDQW RU WKHUH LV D QXPEHU p > 0 VXFK WKDW ϕ(s) = ϕ(p) KROGV LI DQG RQO\ LI t − s = k · p IRU D k ∈ Z 3URRI %NKKNVHMF :< O KDS A AD SGD RDS NE @KK ODQHNCR NE ϕ H D @KK MTL ADQR a RTBG SG@S ϕ(t + a) = ϕ(t) ENQ @KK t ∈ R 3GD BNMSHMTHSX NE ϕ HLOKHDR SG@S A HR @ BKNRDC RTA FQNTO NE R 3GTR SGD @RRDQSHNM ENKKNVR EQNL SGD ENKKNVHMF RS@SDLDMS 2S@SDLDMS $UDQX BKNRDC RTA FQNTO A ⊂ R HR DHSGDQ HCDMSHB@K SN 0 NQ R NQ Z · p ENQ @ p = 0 6D ADFHM SN OQNUD SGHR RS@SDLDMS AX @RRTLHMF A = 0 @MC A = R %HQRS VD RGNV SG@S A+ := A ∩ R+ G@R @ RL@KKDRS DKDLDMS (E SGHR HR MNS SGD B@RD SGDM ENQ DUDQX ε > 0 SGDQD VNTKC AD RNLD a ∈ A+ VGDQD a < ε SGDM ENQ DUDQX x ∈ R SGDQD HR @ k ∈ Z RTBG SG@S ka ≤ x < (k + 1)a H D |x − ka| < ε 2HMBD A HR BKNRDC VD G@UD x ∈ A @MC SGTR A = R VGHBG HR @ BNMSQ@CHBSHNM SN NTQ HMHSH@K @RRTLOSHNM -DWS KDS p AD SGD RL@KKDRS DKDLDMS NE A+ %NQ @MX a ∈ A SGDQD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF HR @ k ∈ Z RTBG SG@S kp ≤ a < (k + 1)p H D 0 ≤ a − kp < p (E a − kp = 0 SGDM a − kp HR HM A+ @MC HR RL@KKDQ SG@M p KD@CHMF SN @ BNMSQ@CHBSHNM "NMRS@MS @MC ODQHNCHB HMSDFQ@K BTQUDR NE @ UDBSNQ ƥDKC @QD @LNMF LNRS HM SDQDRSHMF B@RDR NE NQAHSR SGD HMSDFQ@K BTQUDR VHSGNTS QDSTQMHMF ONHMSR B@M AD BNMRHCDQDC @R SGD LNRS BNLLNM KK SGQDD SXODR B@M NBBTQ HM SGD R@LD UDBSNQ ƥDKC @R SGD ENKKNVHMF DW@LOKD HKKTRSQ@SDR $W@LOKD /G@RD /NQSQ@HS BE :< OO "NMRHCDQ SGD OK@M@Q @T SNMNLNTR RXRSDL x x˙ y 2 2 = + 1−x −y = v(x, y) , y˙ −x y NM R2 4O SN SHLD RGHESR SGDQD HR @ TMHPTD RNKTSHNM SGQNTFG DUDQX ONHMS NE R2 3GD NQHFHM (0, 0) HR SGD NMKX QNNS NE v @MC SGTR SGD BTQUD t → (0, 0) HR SGD NMKX BNMRS@MS L@WHL@K HMSDFQ@K BTQUD $UDQX NSGDQ MNM BNMRS@MS L@WHL@K HMSDFQ@K BTQUD GDMBD KHDR HM R2 \ (0, 0) 6D B@M BNMRSQTBS RTBG MNM BNMRS@MS L@WHL@K HMSDFQ@K BTQUDR AX BG@MFHMF SN ONK@Q BNNQCHM@SDR x(t) = r(t) · BNR (ϕ(t)) , y(t) = r(t) · RHM (ϕ(t)) , VGDQD r > 0 @MC ϕ @QD BNMSHMTNTRKX CHƤDQDMSH@AKD ETMBSHNMR 6HSG SGHR @MR@SY VD RDD SG@S SGD RNKTSHNM BTQUDR NE HM R2 \ (0, 0) @QD DPTHU@KDMS SN SGD RNKTSHNMR NE SGD ENKKNVHMF RXRSDL r˙ = r(1 − r2 ) ,
ϕ˙ = 1 .
3GHR HR @M DW@LOKD NE @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM VHSG RDO@Q@SDC U@QH @AKDR 3GTR VD B@M CHRBTRR SGD NMD CHLDMRHNM@K RNKTSHNMR ENQ r @MC ϕ RDO@Q@SDKX @MC SGDM OTS SGDL SNFDSGDQ SN NAS@HM SGD VGNKD SVN CHLDMRHNM@K OHBSTQD 3XOHB@K RNKTSHNM NE r˙ = r(1 − r2 ) @QD SGD BNMRS@MS RNKTSHNM r = 1 SGD RSQHBSKX LNMNSNMNTRKX HMBQD@RHMF RNKTSHNM r : R → (0, 1) VHSG 3 1 r(t) = 1 + DWO(−2t) VGDQD KHLt→−∞ r(t) = 0 @MC KHLt→∞ r(t) = 1 @MC
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 1.5
1.5
1
1
0.5
0.5
0
0
−0.5
−0.5
−1
−1
−1.5 −1.5
−1
−0.5
0
0.5
1
1.5
−1.5 −1.5
−1
@
−0.5
0
0.5
1
1.5
A
%HFTQD 5DKNBHSX OKNS @ @MC RJDSBG NE RXRSDLŗR OG@RD ONQSQ@HS A RGNVHMF SGD DWHRSDMBD NE @M DPTHKHAQHTL @MC @ ODQHNCHB RNKTSHNM @R VDKK @R QDFTK@Q RNKTSHNMR VHSG MN QDSTQMHMF ONHMSR
SGD RSQHBSKX LNMNSNMNTRKX CDBQD@RHMF RNKTSHNM r : R+ → (1, ∞) VHSG 3 1 r(t) = 1 − DWO(−2t) VGDQD KHLt↓0 r(t) → ∞ @MC KHLt→∞ r(t) = 1 !X SHLD RGHESR VD NAS@HM @KK L@WHL@K RNKTSHNMR NE r˙ = r(1 − r2 ) r > 0 EQNL SGDRD SGQDD SXODR %HM@KKX VD BNLAHMD SGDRD RNKTSHNMR VHSG SGD RNKTSHNM ϕ(t) = t NE ϕ˙ = 1 SN NAS@HM SGD RNKTSHNMR NE (M SGD B@RD SGHR KD@CR SN ODQHNCHB RNKTSHNMR @MC HM SGD B@RDR @MC SN ROHQ@KR SG@S SDMC SNV@QCR SGD ODQHNCHB RNKTSHNM ENQ t → ∞ RDD %HF KK ETQSGDQ RNKTSHNMR NE @QD NAS@HMDC AX SHLD RGHESR
2XRSDLR NE RS .QCDQ
!DRHCDR NQCHM@QX CHƤDQDMSH@K DPT@SHNMR NE SGD ENQL x˙ = F (t, x) SG@S HM UNKUD NMKX ƥQRS NQCDQ CDQHU@SHUDR DPT@SHNMR LTRS AD BNMRHCDQDC SG@S BNMS@HM GHFGDQ NQCDQ CDQHU@SHUDR M DW@LOKD ENQ RTBG @ GHFGDQ NQCDQ NQCHM@QX CHƤDQ DMSH@K DPT@SHNM HR SGD NRBHKK@SHNM DPT@SHNM x ¨ = −x (S B@M AD SQ@MRENQLDC SN @ RXRSDL NE ƥQRS NQCDQ AX RDSSHMF x1 := x @MC x2 := x˙ 1 3GHR KD@CR SN SGD RXRSDL x˙ 1 = x2 x ¨ = −x , ⇒ x˙ 2 = −x1 VGHBG HR QDK@SDC SN SGD QNS@SHNM ƥDKC v(x1 , x2 ) = (x2 , −x1 )
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF +DS f : I × Ω → K AD @ RB@K@Q U@KTDC ETMBSHNM NM @M HMSDQU@K I @MC @ NODM RDS Ω ⊂ Kd 3GD FDMDQ@K DUDQX d SG NQCDQ NQCHM@QX CHƤDQDMSH@K DPT@SHNM ! x(d) = f t, x, x, ˙ . . . , x(d−1) , B@M AD SQ@MRENQLDC HMSN @ d CHLDMRHNM@K RXRSDL NE ƥQRS NQCDQ DPT@SHNMR ⎫ ⎞ ⎛ x˙ 1 = x2 ⎪ ⎪ x2 ⎪ ⎪ x˙ 2 = x3 ⎪ ⎟ ⎬ ⎜
⎟ ⎜
NQ HM UDBSNQ MNS@SHNM x ˙ = F (t, x) ⎟. ⎜
⎪ ⎝ xd ⎠ ⎪ ⎪ x˙ d−1 = xd ⎪ ⎪ f (t, x) ⎭ x˙ d = f (t, x1 , x2 , . . . , xd ) 3GD ETMBSHNM ϕ : I → Kd ϕ = (ϕ1 , ϕ2 , . . . , ϕd ) HR @M HMSDFQ@K BTQUD NE SGD (d−1) RXRSDL HE @MC NMKX HE HS G@R SGD ENQL ϕ = (ϕ1 , ϕ˙ 1 , . . . , ϕ1 ) VGDQD ϕ1 : I → K HR @ RNKTSHNM NE .MD L@X QDBNFMHYD SG@S F HR KNB@KKX +HORBGHSY BNMSHMTNTR HM x TMHENQLKX HM t HE @MC NMKX f G@R SGHR OQNODQSX 3GTR SGD DWHRSDMBD @MC TMHPTDMDRR SGDNQDLR ENQ RXRSDLR NE ƥQRS NQCDQ DPT@SHNMR @QD @KRN DWHRSDMBD @MC TMHPTDMDRR SGDN QDLR ENQ GHFGDQ NQCDQ NQCHM@QX CHƤDQDMSH@K DPT@SHNMR %NQ GHFGDQ NQCDQ DPT@ SHNMR NMD TMTRT@KKX S@JDR x(t0 ) SNFDSGDQ VHSG SGD U@KTDR x(t ˙ 0 ), . . . , xd−1 (t0 ) NE SGD ƥQRS d − 1 CDQHU@SHUDR @R HMHSH@K BNMCHSHNMR @S SGD HMHSH@K SHLD t0 !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ((( 0 &HUD @ BK@RRHƥB@SHNM NE SGD HMSDFQ@K BTQUDR SG@S B@M NBBTQ HM KNB@KKX +HORBGHSY BNMSHMTNTR @TSNMNLNTR CXM@LHB@K RXRSDLR 0 2JDSBG @MC CHRBTRR SGD OG@RD ONQSQ@HS NE r˙ = r(1 + r2 ) ,
@MC
ϕ˙ = 1 .
0 1DVQHSD SGD RDBNMC NQCDQ C@LODC #TƧMF NRBHKK@SNQ DPT@SHNM x ¨ + x˙ + x + ax3 = 0 a > 0 @R @ RXRSDL NE ƥQRS NQCDQ DPT@SHNMR x = 0 a, b, c > 0 @R @ 0 1DVQHSD SGD ENQSG NQCDQ DPT@SHNM x(4) + ax3 + bx˙ + c¨ RXRSDL NE ƥQRS NQCDQ DPT@SHNMR
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
2NKTSHNMR NE .#$R HM SGD $WSDMCDC 2DMRD %NKKNVHMF :< "G@O VD MNV CHRBTRR SGD DWSDMRHNM NE SGD MNSHNM NE @ RN KTSHNM NE @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = f (t, x) HM SGD RDMRD SG@S SGD RNKTSHNM ETMBSHNM HM SGD DWSDMCDC RDMRD L@SBGDR SGD QHFGS G@MC RHCD f (t, x) DWBDOS NM @ RDS NE +DADRFTD LD@RTQD YDQN 6D G@UD @KQD@CX RDDM SG@S HE SGD QHFGS G@MC RHCD f HR @ BNMSHMTNTR ETMBSHNM NM RNLD (t, x) CNL@HM D SGDM SGD NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = f (t, x) SNFDSGDQ VHSG SGD HMHSH@K BNMCHSHNM x(t0 ) = x0 HR DPTHU@KDMS SN SGD HMSDFQ@K DPT@SHNM
x(t) = x0 +
t
f (s, x(s))Cs .
t0
(M NSGDQ VNQCR HE ϕ HR @ RNKTSHNM NE x˙ = f (t, x) NM RNLD HMSDQU@K I ENQ VGHBG ϕ(t0 ) = x0 SGDM x(t) = ϕ(t) VHKK R@SHREX NM I @MC BNMUDQRDKX "KD@QKX SGD HMSDFQ@K HM L@JDR RDMRD ENQ L@MX ETMBSHNMR f SG@S @QD MNS BNMSHMTNTR 1DB@KK SG@S SGD BNMSHMTHSX NE f FT@Q@MSDDR SG@S @ RNKTSHNM NE x˙ = f (t, x) HR BNMSHMTNTRKX CHƤDQDMSH@AKD 3GTR HE @ BNMSHMTNTRKX CHƤDQDMSH@AKD ETMBSHNM HR MNS CDL@MCDC KHJD HM SGD B@RD NE ITLO OQNBDRRDR SGD BNMSHMTHSX QDRSQHBSHNM NM f B@M AD QDK@WDC 2TOONRD f HR @ QD@K U@KTDC MNS MDBDRR@QHKX BNMSHMTNTR ETMBSHNM CDƥMDC NM RNLD RTA RDS S NE SGD (t, x) RO@BD 3GDM VD B@M DWSDMC SGD MNSHNM NE RNKTSHNMR SN SGD CHƤDQDMSH@K DPT@SHNM x˙ = f (t, x) AX @CCQDRRHMF SGD ENKKNVHMF OQNAKDL %HMC @M @ARNKTSDKX BNMSHMTNTR ETMBSHNM ϕ CDƥMDC NM @ QD@K SHLD HMSDQU@K I RTBG SG@S (t, ϕ(t)) ∈ S ENQ @KK t ∈ I ϕ(t) ˙ = f (t, ϕ(t)) ENQ @KK t ∈ I DWBDOS NM @ RDS NE +DADRFTD LD@RTQD YDQN (E RTBG @M HMSDQU@K I @MC @ ETMBSHNM ϕ DWHRS SGDM ϕ HR R@HC SN AD SGD VROXWLRQ RI x˙ = f (t, x) LQ WKH H[WHQGHG VHQVH RQ I -NSHBD SG@S SGD @ARNKTSD BNMSHMTHSX NE @ RNKTSHNM FT@Q@MSDDR SGD DWHRSDMBD NE ϕ˙ @KLNRS DUDQXVGDQD H D DWBDOS NM @ RDS NE +DADRFTD LD@RTQD YDQN RN SG@S QDPTHQDLDMS L@JDR RDMRD (E f ∈ C(S) @MC ϕ HR @ RNKTSHNM NE x˙ = f (t, x) HM SGD DWSDMCDC RDMRD NM I SGDM VD B@M HLLDCH@SDKX BNMBKTCD ϕ˙ ∈ C(I) EQNL QDPTHQDLDMS @MC SGDQDENQD SGD LNQD FDMDQ@K MNSHNM NE SGD CHƤDQDMSH@K DPT@SHNM @MC HSR RNKTSHNM HM SGD DWSDMCDC RDMRD QDCTBDR SN SGD BNLLNM CDƥMHSHNM NE @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM VGDM f ∈ C(S) 4RT@KKX HS VHKK AD BKD@Q EQNL SGD BNMSDWS VGHBG LD@MHMF HR @SS@BGDC SN x˙ = f (t, x) @MC HSR RNKTSHNM ϕ @MC GDMBD HS VHKK Q@QDKX AD MDBDRR@QX SN @CC SGD OGQ@RD řHM SGD DWSDMCDC RDMRDŚ
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
3GD 3GDNQDL NE "@Q@SGDNCNQX R QDF@QCR SGD DWHRSDMBD NE RNKTSHNM NE x˙ = f (t, x) HM SGD DWSDMCDC RDMRD NM I "NMRS@MSHM "@Q@SGDNCNQX G@R OQNUDC SGD ENKKNVHMF PTHSD FDMDQ@K SGDNQDL TMCDQ SGD @RRTLOSHNM SG@S f AD ANTMCDC AX @ +DADRFTD HMSDFQ@AKD ETMBSHNM NE t %NKKNVHMF :< OO SGD OQNNE VHKK AD B@QQHDC NTS HM NMD RO@BD CHLDMRHNM NMKX HS VHKK AD BKD@Q VG@S LNCHƥB@SHNMR @QD QDPTHQDC HM SGD B@RD NE @ RXRSDL NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR RDD OQNAKDL R VHKK CDMNSD SGD QDBS@MFKD . / R := (t, x) ∈ R2 : |t − τ | ≤ a , |x − ξ| ≤ b , VGDQD (τ, ξ) HR @ ƥWDC FHUDM ONHMS HM SGD (t, x) OK@MD @MC a, b @QD ONRHSHUD QD@K MTLADQR 3GDNQDL 3GDNQDL NE "@Q@SGDNCNQX /HW f EH GHƲQHG RQ R DQG VXSSRVH LW LV PHDVXUDEOH LQ t IRU HDFK Ʋ[HG x DV ZHOO DV FRQWLQXRXV LQ x IRU HDFK Ʋ[HG t ,I WKHUH H[LVWV D /HEHVJXHLQWHJUDEOH IXQFWLRQ m RQ WKH LQWHUYDO |t − τ | ≤ a VXFK WKDW |f (t, x)| ≤ m(t) , IRU DOO (t, x) ∈ R , WKHQ WKHUH H[LVWV D VROXWLRQ ϕ RI x˙ = f (t, x) LQ WKH H[WHQGHG VHQVH RQ VRPH LQWHUYDO |t − τ | ≤ β β > 0 VDWLVI\LQJ ϕ(τ ) = ξ 3URRI %NKKNVHMF :< OO KDS TR BNMRHCDQ SGD B@RD t ≥ τ @R SGD RHST@SHNM HR RHLHK@Q VGDM t ≤ τ (E M HR CDƥMDC AX ⎧ ENQ @KK t < τ ⎪ ⎨ M (t) = 0
t , ⎪ m(s)Cs ENQ @KK τ ≤ t ≤ τ + a ⎩ M (t) = τ
SGDM HS HR BKD@Q SG@S M HR BNMSHMTNTR MNM CDBQD@RHMF @R m ≥ 0 AX @MC M (τ ) = 0 'DMBD (t, ξ ± M (t)) ∈ R ENQ RNLD HMSDQU@K τ ≤ t ≤ τ + β ≤ τ + a VGDQD β HR RNLD ONRHSHUD BNMRS@MS "GNNRD @MX β > 0 ENQ VGHBG SGHR HR SQTD @MC CDƥMD SGD /HB@QC @OOQNWHL@ SHNMR ϕj j = 1, 2, . . . AX ⎧ ENQ @KK τ ≤ t ≤ τ + β/j ⎪ ⎨ ϕj (t) = ξ
t−β/j . ⎪ ⎩ ϕj (t) = ξ + f (s, ϕj (s))Cs ENQ @KK τ + β/j < t ≤ τ + β τ
"KD@QKX ϕ1 HR CDƥMDC NM τ ≤ t ≤ τ + β ENQ HS HR SGD BNMRS@MS ξ %NQ @MX ƥWDC j ≥ 1 SGD ƥQRS ENQLTK@ HM CDƥMDR ϕj NM τ ≤ t ≤ τ + β/j @MC RHMBD (t, ξ) ∈ R ENQ τ ≤ t ≤ β/j SGD RDBNMC ENQLTK@ HM CDƥMDR ϕj @R @ 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS BNMSHMTNTR ETMBSHNM NM SGD HMSDQU@K τ + β/j < t ≤ τ + 2β/j %TQSGDQ NM SGHR K@SSDQ HMSDQU@K ! |ϕj (t) − ξ| ≤ M t − βj , AX UHQSTD NE @MC RRTLD SG@S ϕj HR CDƥMDC NM τ ≤ t ≤ τ + kβ/j ENQ 1 < k < j 3GDM SGD RDBNMC ENQLTK@ NE CDƥMDR ϕj ENQ τ + kβ/j < t ≤ τ + (k + 1)β/j RHMBD JMNVKDCFD NE SGD LD@RTQ@AKD HMSDFQ@MC HR NMKX QDPTHQDC NM τ ≤ t ≤ τ + kβ/j KRN NM τ +kβ/j < t ≤ τ +(k+1)β/j SGD ETMBSHNM ϕj R@SHRƥDR ADB@TRD NE @MC 3GDQDENQD AX HMCTBSHNM CDƥMDR @KK ϕj @R BNMSHMTNTR ETMBSHNMR NM τ ≤ t ≤ τ + β VGHBG R@SHREX ⎧ ϕj (t) = ξ ENQ @KK τ ≤ t ≤ τ + β/j ⎨ ! . ⎩ |ϕj (t) − ξ| ≤ M t − β ENQ @KK τ + β/j < t ≤ τ + β j (E t1 @MC t2 @QD @MX SVN ONHMSR HM SGD HMSDQU@K [τ, τ + β] SGDM NM @BBNTMS NE @MC
! !
|ϕj (t1 ) − ϕj (t2 )| ≤ M t1 − βj − M t2 − βj . 2HMBD M HR BNMSHMTNTR NM [τ, τ + β] HS HR TMHENQLKX BNMSHMTNTR SGDQD 3GHR HLOKHDR AX SG@S SGD RDS {ϕj } HR TMHENQLKX ANTMCDC NM [τ, τ + β] "NM RDPTDMSKX HS ENKKNVR AX SGD KDLL@ NE QYDK@ RBNKH +DLL@ SG@S SGDQD DWHRSR @ RTA RDPTDMBD {ϕjk } VGHBG BNMUDQFDR TMHENQLKX NM [τ, τ + β] SN @ BNM SHMTNTR KHLHS ETMBSHNM ϕ @R k → ∞ %QNL |f (t, ϕjk (t))| ≤ m(t) ,
ENQ @KK τ ≤ t ≤ τ + β ,
@MC RHMBD f HR BNMSHMTNTR HM x ENQ ƥWDC t f (t, ϕjk (t)) → f (t, ϕ(t)) ,
ENQ k → ∞ ,
ENQ DUDQX ƥWDC t ∈ [τ, τ + β] 3GDQDENQD +DADRFTDŗR CNLHM@SDC BNMUDQFDMBD SGDNQDL L@X AD @OOKHDC SN FHUD
t
t KHL f (s, ϕjk (s))Cs = f (s, ϕ(s))Cs k→∞ τ
τ
ENQ @MX t ∈ [τ, τ + β] !TS
t
f (s, ϕjk (s))Cs − ϕjk (t) = ξ + τ
t t−β/j
f (s, ϕjk (s))Cs ,
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VGDQD HS HR BKD@Q SG@S SGD K@SSDQ HMSDFQ@K U@MHRGDR @R k → ∞ 'DMBD KDSSHMF k → ∞ @MC @OOKXHMF HS ENKKNVR SG@S
t
ϕ(t) = ξ +
f (s, ϕ(s))Cs ,
τ
EQNL VGHBG SGD @RRDQSHNM NE SGD SGDNQDL ENKKNVR @S NMBD (S HR HMSDQDRSHMF SN QDL@QJ SG@S SGD NQHFHM@K @OOQNWHL@SHNMR LTRS BNM UDQFD SN @ RNKTSHNM HM SGD B@RD VGDQD @ TMHPTD RNKTSHNM HR JMNVM 3GHR RHST@ SHNM CNDR MNS @OOKX ENQ NQCHM@QX RTBBDRRHUD @OOQNWHL@SHNMR @R SGD ENKKNVHMF DW@LOKD RGNVR $W@LOKD "NMSHMTHSX NE f HR -NS 2TƧBHDMS ENQ SGD "NMUDQFDMBD NE SGD 2TBBDRRHUD OOQNWHL@SHNMR BE :< O +DS SGD QHFGS G@MC RHCD f NE @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = f (t, x) AD CDƥMDC AX ⎧ ⎪ 0 ENQ t = 0 @MC −∞ < x < +∞ ⎪ ⎪ ⎪ ⎪ ⎨ 2t ENQ 0 < t ≤ 1 @MC −∞ < x < 0 f (t, x) := ⎪ ENQ 0 < t ≤ 1 @MC 0 ≤ x ≤ t2 ⎪ ⎪ 2t − 4x/t ⎪ ⎪ ⎩ −2t ENQ 0 < t ≤ 1 @MC t2 < x < +∞ . .M SGD QDFHNM 0 ≤ t ≤ 1 −∞ < x < +∞ SGHR ETMBSHNM f HR BNMSHMTNTR @MC ANTMCDC AX SGD BNMRS@MS 2 %NQ SGD HMHSH@K ONHMS (τ, ξ) = (0, 0) SGD RTBBDRRHUD @OOQNWHL@SHNMR ϕ0 (t) = ξ ϕm+1 (t) = ξ +
t τ
f (s, ϕm (s))Cs ,
ENQ @KK m = 0, 1, 2, . . .
ADBNLD ENQ 0 ≤ t ≤ 1 ϕ0 (t) = 0 ,
ϕ2m−1 (t) = t2 ,
@MC
ϕ2m (t) = −t2 ,
ENQ @KK m = 1, 2, . . . .
3GD RDPTDMBD {ϕm (t)} G@R SVN BKTRSDQ U@KTDR ENQ D@BG t = 0 @MC GDMBD SGD RTBBDRRHUD @OOQNWHL@SHNMR CN MNS BNMUDQFD -NSD MDHSGDQ NE SGD SVN BNMUDQ FDMS RTA RDPTDMBDR {ϕ2m−1 } @MC {ϕ2m } BNMUDQFD SN @ RNKTSHNM ENQ ϕ˙ 2m−1 (t) = 2t = f (t, t2 ) ,
6HFWLRQ
@MC
ϕ˙ 2m (t) = −2t = f (t, −t2 ) .
3NAH@R 1HFNHO %KNQH@M 5XSS
,@WHLTL ,HMHLTL 2NKTSHNMR
%NQ SGD RB@K@Q B@RD HS B@M AD RGNVM SG@S @KK RNKTSHNMR NE x˙ = f (t, x) HM SGD DWSDMCDC RDMRD HRRTHMF EQNL @M HMHSH@K ONHMS (τ, ξ) B@M AD AQ@BJDSDC ADSVDDM SVN RODBH@K RNKTSHNMR SGD PD[LPXP @MC SGD PLQLPXP VROXWLRQV +DS f AD CDƥMDC NM SGD QDBS@MFKD R @R HM "@Q@SGDNCNQXŗR SGDNQDL 3GDNQDL (E ϕM HR @ RNKTSHNM NE x˙ = f (t, x) O@RRHMF SGQNTFG (τ, ξ) DWHRSHMF NM RNLD HMSDQU@K I BNMS@HMHMF τ VHSG SGD OQNODQSX SG@S DUDQX NSGDQ RNKTSHNM ϕ NE x˙ = f (t, x) O@RRHMF SGQNTFG (τ, ξ) @MC DWHRSHMF NM I HR RTBG SG@S ϕ(t) ≤ ϕM (t) ,
ENQ @KK t ∈ I ,
SGDM ϕM HR B@KKDC @ PD[LPXP VROXWLRQ NE x˙ = f (t, x) NM I O@RRHMF SGQNTFG (τ, ξ) 2HLHK@QKX HE ϕm HR @ RNKTSHNM NE x˙ = f (t, x) NM @M HMSDQU@K I ENQ VGHBG ϕm (t) = ξ @MC RTBG SG@S ϕ(t) ≥ ϕm (t) ,
ENQ @KK t ∈ I ,
GNKCR ENQ DUDQX NSGDQ RNKTSHNM ϕ NE x˙ = f (t, x) NM I ENQ VGHBG ϕ(t) = ξ SGDM ϕm HR B@KKDC PLQLPXP VROXWLRQ NE x˙ = f (t, x) NM I O@RRHMF SGQNTFG (τ, ξ) "KD@QKX SGD ETMBSHNMR ϕM @MC ϕm HE SGDX DWHRS LTRS AD TMHPTD 3GD DWHRSDMBD NE ϕM @MC ϕm VHKK MNV AD CDLNMRSQ@SDC TMCDQ SGD "@Q@SGDNCNQX @RRTLOSHNMR 3GDNQDL $WHRSDMBD NE @ ,@WHLTL ,HMHLTL 2NKTSHNM /HW WKH K\ SRWKHVLV RI &DUDWKHRGRU\śV WKHRUHP 7KHRUHP EH VDWLVƲHG 7KHQ WKHUH H[ LVWV D PD[LPXP VROXWLRQ ϕM DQG D PLQLPXP VROXWLRQ ϕm RI x˙ = f (t, x) RQ |t − τ | ≤ β SDVVLQJ WKURXJK (τ, ξ) 3URRI %NKKNVHMF :< OO VD VHKK OQNUD SGD DWHRSDMBD NE ϕM NM [τ, τ + β] -NV @MX RNKTSHNM ϕ NE x˙ = f (t, x) O@RRHMF SGQNTFG SGD ONHMS (τ, ξ) LTRS R@SHREX
t ϕ(t) = ξ + f (s, ϕ(s))Cs τ
@R E@Q @R HS DWHRSR @MC EQNL HS ENKKNVR SG@S |ϕ(t1 ) − ϕ(t2 )| ≤ |M (t1 ) − M (t2 )|
ENQ @MX SVN ONHMSR t1 , t2 VGDQD ϕ DWHRSR VGDQD M HR CDƥMDC AX 2HMBD M HR BNMSHMTNTR HLOKHDR AX SGD "@TBGX BQHSDQHNM ENQ BNMUDQ FDMBD SG@S SGD RNKTSHNM ϕ B@M AD BNMSHMTDC HE MDBDRR@QX SN SGD DMSHQD HMSDQU@K [τ, τ + β] L@JHMF TRD NE SGD "@Q@SGDNCNQX DWHRSDMBD SGDNQDL 3GTR @KK RNKT SHNMR NE x˙ = f (t, x) O@RRHMF SGQNTFG (τ, ξ) DWHRS NM [τ, τ + β] @MC LTRS R@SHREX SGDQD %QNL SGD TMHENQL BNMSHMTHSX NE M NM [τ, τ + β] HS ENKKNVR EQNL
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF SG@S SGD RDS NE @KK RNKTSHNMR {ϕ} NE x˙ = f (t, x) NM [τ, τ + β] HR @M DPTH BNMSHMTNTR RDS SG@S HR FHUDM @MX ε > 0 SGDQD DWHRSR @ δε > 0 HMCDODMCDMS NE t @MC SGD RNKTSHNM ϕ RTBG SG@S
ϕ(tˆ) − ϕ(t˜) < ε , VGDMDUDQ |tˆ − t˜| < δε , @MC tˆ, t˜ @QD HM [τ, τ + β] +DS Φ AD SGD ETMBSHNM CDƥMDC AX Φ(t) =
RTO {ϕ(t)}
t∈[τ,τ +β]
S@JDM NUDQ @KK RNKTSHNMR ϕ NE x˙ = f (t, x) NM [τ, τ + β] O@RRHMF SGQNTFG (τ, ξ) "KD@QKX Φ DWHRSR NM [τ, τ + β] @MC HR BNMSHMTNTR @MC GDMBD TMHENQLKX BNMSHMT NTR SGDQD 3GTR ENQ @MX FHUDM ε > 0 SGDQD HR @ δε > 0 RTBG SG@S MNS NMKX HR SQTD ENQ SGHR δε ATS @KRN ENQ tˆ, t˜ HM [τ, τ + β]
Φ(tˆ) − Φ(t˜) < ε , VGDMDUDQ |tˆ − t˜| < δε . (S VHKK AD RGNVM SG@S Ψ HR @ RNKTSHNM NE x˙ = f (t, x) R@SHREXHMF Ψ(τ ) = ξ @MC HE ϕM HR CDƥMDC SN AD Φ HS HR BKD@Q SG@S SGHR ϕM VHKK R@SHREX SGD QDPTHQDLDMSR NE SGD SGDNQDL NM [τ, τ + β] %NQ @ FHUDM ε > 0 BGNNRD δε RTBG SG@S @MC GNKC 2TACHUHCD SGD HMSDQU@K [τ, τ + β] HMSN n HMSDQU@KR AX SGD ONHMSR τ = t0 < t1 < t2 < · · · < tn = τ + β HM RTBG @ V@X SG@S L@W(ti+1 − ti ) < δε . %NQ DUDQX ti i = 0, 1, . . . , n − 1 BGNNRD @ RNKTSHNM ϕi NE x˙ = f (t, x) O@RRHMF SGQNTFG (τ, ξ) RN SG@S 0 ≤ Φ(ti ) − ϕi (ti ) < ε @MC ENQ i ≥ 1
ϕi (ti ) − ϕi−1 (ti ) ≥ 0 .
3GHR HR ONRRHAKD EQNL SGD CDƥMHSHNM NE Φ -NV ENQ SGD FHUDM ε CDƥMD SGD ETMBSHNM ϕε @R ENKKNVR +DS ϕε (t) = ϕn−1 (t) ,
ENQ tn−1 ≤ t ≤ tn = τ + β .
(E ϕn−1 (tn−1 ) > ϕn−2 (tn−1 ) CDƥMD ϕε SN SGD KDES NE tn−1 @R ϕn−1 TO SN SGD ONHMS τn−2 HE HS DWHRSR HM (tn−2 , tn−1 ) MD@QDRS tn−1 RTBG SG@S ϕε (τn−2 ) = ϕn−1 (τn−2 ) = ϕn−2 (τn−2 ) . (E τn−2 DWHRSR CDƥMD ϕε (t) := ϕn−2 (t) ENQ tn−2 ≤ t < τn−2 (E τn−2 CNDR MNS DWHRS CDƥMD ϕε NM [tn−2 , tn−1 ) @R ϕn−1 (E ϕn−1 (tn−1 ) = ϕn−2 (tn−1 ) CDƥMD 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS ϕε (t) := ϕn−2 (t) NM [tn−2 , tn−1 ) "NMSHMTHMF HM SGHR V@X NMD B@M CDƥMD @ RN KTSHNM ϕε NE x˙ = f (t, x) NM [τ, τ + β] O@RRHMF SGQNTFG SGD ONHMS (τ, ξ) NAS@HMDC AX O@SBGHMF SNFDSGDQ RNKTSHNMR NE x˙ = f (t, x) @MC G@UHMF SGD OQNODQSX 0 ≤ Φ(ti ) − ϕε (ti ) < ε ,
ENQ @KK i = 0, 1, . . . , n .
2HMBD SGD U@QH@SHNM NE Φ @MC ϕε HM D@BG HMSDQU@K [ti , ti+1 ] HR KDRR SG@M ε AX @MC SGDQD QDRTKSR EQNL 0 ≤ Φ(t) − ϕε (t) < 3ε ,
ENQ @KK τ ≤ t ≤ τ + β .
+DSSHMF ε = 1/m m = 1, 2, . . . NMD NAS@HMR @ RDPTDMBD ϕ˙ 1/m NE RNKTSHNMR VGHBG AX BNMUDQFDR TMHENQLKX SN Φ NM [τ, τ + β] %QNL SGHR E@BS @MC @M @OOKHB@SHNM NE +DADRFTDŗR CNLHM@SDC BNMUDQFDMBD SGDNQDL SN VHSG ϕ QDOK@BDC AX ϕ1/m HS ENKKNVR SG@S
t f (s, Φ(s))Cs , ENQ @KK τ ≤ t ≤ τ + β , Φ(t) = ξ + τ
SG@S HR Φ HR @ RNKTSHNM NE x˙ = f (t, x) R@SHREXHMF Φ(τ ) = ξ @MC EQNL HSR CDƥMHSHNM HS HR SGD L@WHLTL RNKTSHNM ϕM NM [τ, τ + β] 3GDNQDL "NMSHMT@SHNM NE 2NKTSHNMR ,Q D GRPDLQ D RI WKH (t, x) SODQH OHW WKH IXQFWLRQ f EH GHƲQHG PHDVXUDEOH LQ t IRU Ʋ[HG x DQG FRQWLQXRXV LQ x IRU Ʋ[HG t /HW WKHUH H[LVW DQ LQWHJUDEOH IXQFWLRQ m VXFK WKDW |f (t, x)| ≤ m(t) IRU (t, x) ∈ D 7KHQ JLYHQ D VROXWLRQ ϕ RI x˙ = f (t, x) IRU t ∈ (a, b) LW LV WKH FDVH WKDW ϕ(b − 0) H[LVWV DQG LI (b, ϕ(b − 0)) ∈ D WKHQ ϕ FDQ EH FRQWLQXHG RYHU (a, b + δ] IRU VRPH δ > 0 $ VLPLODU UHVXOW KROGV DW a 7KXV WKH VROXWLRQ ϕ FDQ EH FRQWLQXHG XS WR WKH ERXQGDU\ RI D 0RUHRYHU WKH VDPH FRQWLQXDWLRQ LV YDOLG IRU D PD[LPXP VROXWLRQ ϕM RU D PLQLPXP VROXWLRQ ϕm 3URRI 3GD OQNNE HR UDQX RHLHK@Q SN SG@S NE SGD BNMSHMT@SHNM 3GDNQDL RDD OQNAKDL SNN "NQNKK@QX !@BJV@QCR "NMSHMT@SHNM NE 2NKTSHNMR UH@ SGD ,@WHLTL @MC ,HMHLTL 2NKTSHNM /HW WKH K\SRWKHVHV RI &DUDWKHRGRU\śV WKHRUHP 7KHRUHP EH VDWLVƲHG DQG OHW ϕM DQG ϕm WKH PD[LPXP DQG PLQLPXP VROXWLRQ WKURXJK (τ, ξ) H[LVW RYHU [τ, τ + β] ZKHUH β ≤ a 7KHQ IRU DQ\ c VDWLVI\LQJ ϕm (τ + β) < c < ϕM (τ + β) WKHUH LV DW OHDVW RQH VROXWLRQ ϕ WKURXJK (τ, ξ) IRU τ ≤ t ≤ τ + β DQG ZLWK ϕ(τ + β) = c 3URRI %NKKNVHMF :< O VD RS@QS VHSG SGD RNKTSHNM SGQNTFG (τ + β, c) @MC BNMSHMTD HS SN SGD KDES (S MDDC MNS KD@UD SGD QDFHNM ϕm (t) ≤ x ≤ ϕM (t) τ ≤ t ≤ τ + β RHMBD HS B@M @KV@XR AD BNMSHMTDC A@BJ @KNMF NMD NE SGDRD DWSQDLD RNKTSHNMR HE HS LDDSR NMD NE SGDL 3GTR HS B@M AD BNMSHMTDC A@BJ SN (τ, ξ)
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 3GDNQDL "NMSHMT@SHNM NE SGD ,@WHLTL 2NKTSHNM /HW WKH K\SRWKHVHV RI WKH FRQWLQXDWLRQ WKHRUHP 7KHRUHP EH YDOLG DQG VXSSRVH WKH PD[LPXP VROXWLRQ ϕM,ξ RI x˙ = f (t, x) WKURXJK (τ, ξ) H[LVW RYHU DQ LQWHUYDO [τ, τ + α] 7KHQ WKHUH H[LVWV D δ > 0 VXFK WKDW x˙ = f (t, x) KDV D PD[LPXP VROXWLRQ ϕM,η IRU HDFK η ξ ≤ η < ξ + δ RQ [τ, τ + α] ZLWK ϕM,η (τ ) = η 0RUHRYHU ϕM,η → ϕM,ξ DV η → ξ + 0 XQLIRUPO\ RYHU [τ, τ + α] 3URRI %NKKNVHMF :< OO VD G@UD AX 3GDNQDL SG@S ϕM,η BDQS@HMKX DWHRSR NUDQ RNLD HMSDQU@K VHSG SGD KDES DMC ONHMS τ HE η − ξ HR RL@KK DMNTFG %QNL SGD CDƥMHSHNM NE SGD L@WHLTL RNKTSHNM HS ENKKNVR QD@CHKX SG@S ENQ η˜ > η > ξ ϕM,˜η (t) ≥ ϕM,η (t) ≥ ϕM,ξ (t) . 3GTR ϕM,η HR LNMNSNMD MNM CDBQD@RHMF HM η @MC HR ANTMCDC EQNL ADKNV 3GDQDENQD ENQ D@BG t NM RNLD HMSDQU@K [τ, τ + β] SGDQD DWHRSR Φ(t) = ϕM,ξ+0 (t) ≥ ϕM,ξ (t) .
2HMBD ϕM,η R@SHRƥDR |Φ(t1 ) − Φ(t2 )| ≤ |M (t1 ) − M (t2 )| , RN SG@S Φ HR BNMSHMTNTR %QNL
ϕM,η (t) = η +
t τ
f (s, ϕM,η (s))Cs
HS ENKKNVR NM KDSSHMF η → ξ + 0 SG@S
t
Φ(t) = ξ +
f (s, Φ(s))Cs .
τ
!TS SGHR HLOKHDR Φ HR @ RNKTSHNM NE x˙ = f (t, x) SGQNTFG (τ, ξ) 3GTR AX Φ(t) = ϕM,ξ (t) NUDQ [τ, τ + β] 3GD TMHENQLHSX NE SGD BNMUDQFDMBD NE ϕM,η SN ϕM,ξ ENKKNVR EQNL SGD DPTH BNMSHMTHSX NE ϕM,η HM t @R OQNUDC AX 3GD @ANUD @QFTLDMS HR BKD@QKX U@KHC NUDQ SGD Q@MFD NE DWHRSDMBD NE Φ NM [τ, τ + α] 2TOONRD SG@S ENQ RNLD t0 ≤ τ + α @MC ENQ DUDQX RL@KK h > 0 Φ DWHRSR NUDQ [τ, t0 − h] ATS MNS NUDQ [τ, t0 + h] 3GDM ENQ @MX FHUDM ε > 0 SGDQD DWHRSR @ δε > 0 RTBG SG@S |ϕM,η (t0 − ε) − ϕM,ξ (t0 − ε)| ≤ ε , HE 0 ≤ η − ξ < δε +DS SGD QDFHNM H AD SGD RDS NE ONHMSR (t, x) VGHBG R@SHREX SGD HMDPT@KHSHDR |t − t0 | ≤ γ ,
6HFWLRQ
@MC
|x − ϕM,ξ (t0 − γ)| ≤ γ + M (t) − M (t0 − γ) .
3NAH@R 1HFNHO %KNQH@M 5XSS !X BGNNRHMF γ RL@KK DMNTFG H ⊂ D MX RNKTSHNM ϕ NE x˙ = f (t, x) VGHBG RS@QSR NM SGD KDES UDQSHB@K RHCD t = t0 − γ NE H H D |ϕ(t0 − γ) − ϕM,ξ (t0 − γ)| ≤ γ VHKK AX QDL@HMR HM H @R t HMBQD@RDR 3GTR @MX RTBG RNKTSHNM B@M AD BNMSHMTDC SN t0 + γ !X BGNNRHMF ε HM RN SG@S ε = γ HS ENKKNVR SG@S ENQ 0 < η − ξ < δε SGD RNKTSHNMR ϕM,η B@M AD BNMSHMTDC SN t0 + γ 3GHR HLOKHDR SGD DWHRSDMBD NE Φ NUDQ [τ, t0 + γ] VGHBG BNMSQ@CHBSR SGD @RRTLOSHNM NM t0 3GTR t0 > τ + α @MC SGDQDENQD Φ DWHRSR NUDQ [τ, τ + α] !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 6G@S HR LD@MS AX @M NQCHM@QX CHƤDQDMSH@K DPT@SHNM HM SGD DWSDMCDC RDMRD @MC HSR RNKTSHNM 0 2S@SD SGD SGDNQDL NE "@Q@SGDNCNQX 0 2JDSBG SGD OQNNE NE SGD SGDNQDL NE "@Q@SGDNCNQX @MC DWOK@HM VGX NMD G@R SN AD B@TSHNTR @ANTS SGD BNMUDQFDMBD NE RTBBDRRHUD @OOQNWHL@SHNMR 0 &HUD SGD CDƥMHSHNM NE @ L@WHLTL @MC @ LHMHLTL RNKTSHNM 0 6G@S B@M XNT R@X @ANTS SGD DWHRSDMBD NE @ L@WHLTL @MC @ LHMHLTL RNKTSHNM 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0 0 6G@S B@M XNT R@X @ANTS SGD BNMSHMT@SHNM NE RNKTSHNMR ADXNMC @ SHLD HM SDQU@K (a, b) 0 2S@SD SGD BNMCHSHNMR SG@S @KKNV XNT SN QD BNMRSQTBS @ RNKTSHNM HE SGD L@W HLTL @MC LHMHLTL RNKTSHNMR @QD JMNVM RTBG SG@S @KK SGQDD NE SGDRD RN KTSHNMR G@UD SGD R@LD HMHSH@K ONHMS 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0
+HMD@Q .QCHM@QX #HƤDQDMSH@K $PT@SHNMR +HMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNMR OK@X @M DRRDMSH@K QNKD HM RBHDMBD @MC DMFHMDDQHMF 3GDX NBBTQ NM SGD NMD G@MC VGDM RTODQONRHSHNM BNLDR HMSN OK@X @MC RDQUD NM SGD NSGDQ G@MC ENQ SGD VHCD L@INQHSX NE MNM KHMD@Q OQNAKDLR @R
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF RTHS@AKD @OOQNWHL@SHNMR R VD VHKK RDD HM NTQ RSTCX NE KHMD@QHYDC RS@AHKHSX HM 2DB ENQ RODBHƥB MNM KHMD@Q RXRSDLR SGD KHMD@QHR@SHNM H D KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNM @QNTMC HSR DPTHKHAQH@ @KQD@CX BNMS@HMR @KK QDPTHQDC KNB@K HMENQL@SHNM @ANTS SGHR RXRSDL ,NQDNUDQ HM "G@OR @MC VD VHKK TSHKHRD SGD LDSGNCR ENQ CDSDQLHM HMF SGD CDSDQLHMHRSHB RNKTSHNMR NE KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNMR ENQ RDSSHMF TO RNKTSHNM ENQLTK@R ENQ KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR +HMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @QD NE SGD ENQL x˙ 1 = a11 (t)x1 + · · · + a1d (t)xn + b1 (t)
x˙ d = ad1 (t)x1 + · · · + add (t)xn + bd (t) NQ HM L@SQHW UDBSNQ MNS@SHNM x˙ = A(t)x + b(t) , VGDQD A : I → Kd×d @MC b : I → Kd @QD FHUDM L@OOHMFR NM @ HMSDQU@K I ⊂ R 3GD KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNM HR B@KKDC KRPRJHQHRXV HE b ≡ 0 @MC QRQKRPRJHQHRXV VHSG LQKRPRJHQHLW\ b NSGDQVHRD
$WHRSDMBD 4MHPTDMDRR NE 2NKTSHNMR .AUHNTRKX KHMD@Q RXRSDLR @QD +HORBGHSY BNMSHMTNTR @MC KHMD@QKX ANTMCDC @R KNMF @R A @MC b CN MNS G@UD ITLOR 3GTR ENKKNVHMF :< OO DWHRSDMBD @MC TMHPTDMDRR NE RNKTSHNMR HR RSQ@HFGSENQV@QC 3GDNQDL $WHRSDMBD @MC 4MHPTDMDRR /HW A : I → Kd×d DQG b : I → Kd EH FRQWLQXRXV WKHQ HYHU\ LQLWLDO YDOXH SUREOHP x˙ = A(t)x + b(t) ,
x(t0 ) = x0
KDV D XQLTXH VROXWLRQ ZKLFK LV GHƲQHG RQ WKH ZKROH RI I ⊂ R 3URRI %NKKNVHMF :< O VD G@UD SG@S F (t, x) := A(t)x + b(t) HR KHMD@QKX ANTMCDC ,NQDNUDQ NM DUDQX BNLO@BS HMSDQU@K J ⊂ I SGHR ETMBSHNM F NM J × Kd×d HR +HORBGHSY BNMSHMTNTR VHSG QDRODBS SN x TMHENQLKX HM t VHSG +HORBGHSY BNMRS@MS L := L@Wt∈J A(t) "NQNKK@QX $WHRSDMBD NE @ 4MHPTD 2NKTSHNM /HW a0 , a1 , . . . , ad−1 , b : I → K EH FRQWLQXRXV IXQFWLRQV DQG x0 x1 . . . xd−1 ∈ K EH JLYHQ QXPEHUV 7KHQ WKH LQLWLDO YDOXH SUREOHP RI RUGHU d − 1 x
(n)
=
d−1
ak (t)x(k) + b(t) ,
x(k) = xk ,
k = 0, 1, . . . , d − 1 ,
k=0
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS KDV D XQLTXH VROXWLRQ RQ WKH ZKROH RI I ⊂ R "NQNKK@QX 3GD 2NKTSHNM 2O@BD NE +HMD@Q 'NLNFDMDNTR .#$R 7KH VHW L RI DOO VROXWLRQ RI WKH OLQHDU KRPRJHQHRXV RUGLQDU\ GLƱHUHQWLDO HTXDWLRQ x˙ = A(t)x GHƲQHG RQ I LV D dGLPHQVLRQDO KYHFWRU VSDFH $Q\ d VROXWLRQV ϕ1 , ϕ2 , . . . , ϕd : I → Kn IRUP D EDVLV RI L LI DQG RQO\ LI WKH YHFWRUV ϕ1 (t), ϕ2 (t), . . . , ϕd (t) IRUP D EDVLV RI Kd IRU DW OHDVW RQH t ∈ I DQG WKXV IRU DOO t ∈ I 3URRI %NKKNVHMF :< O VD ƥQRS RDD SG@S DUDQX KHMD@Q BNLAHM@SHNM c1 ϕ1 +c2 ϕ2 +· · ·+ck ϕk NE RNKTSHNMR ϕ1 , ϕ2 , . . . , ϕk ∈ L HR @F@HM @ RNKTSHNM NE SGD GNLNFDMDNTR DPT@SHNM x˙ = A(t)x SGTR L HR @ UDBSNQ RO@BD (M NQCDQ SN CDSDQ LHMD HSR CHLDMRHNM VD RSTCX SGD HMHSH@K U@KTD GNLNLNQOGHRL αt0 : L → Kd αt0 ϕ := ϕ(t0 ) ENQ @ t0 ∈ I #TD SN SGD DWHRSDMBD SGDNQDL αt0 HR RTQIDBSHUD @MC CTD SN SGD TMHPTDMDRR SGDNQDL HS HR HMIDBSHUD SNN 3GTR L HR d CHLDMRHNM@K 3GHR DRS@AKHRGDR SGD ƥQRS @RRDQSHNM %NQ SGD RDBNMC @RRDQSHNM HS HR RTƧBHDMS SN MNSD SG@S SGD HMHSH@K U@KTD GNLN LNQOGHRL αt0 HR @M HRNLNQOGHRL ENQ DUDQX t ∈ I 3GTR HS SQ@MRENQLR @ A@RHR HMSN @MNSGDQ NMD A@RHR ϕ1 , ϕ2 , . . . , ϕd NE SGD RNKTSHNM RO@BD L ENQ SGD GNLNFDMDNTR DPT@ SHNM x˙ = A(t)x HR B@KKDC @ IXQGDPHQWDO V\VWHP "NKKDBSHMF ϕ1 , ϕ2 , . . . , ϕd SN FDSGDQ KD@CR SN SGD L@SQHW U@KTDC L@OOHMF Φ := (ϕ1 , ϕ2 , . . . , ϕd ) : I → Kd×d ,
t → (ϕ1 (t), ϕ2 (t), . . . , ϕd (t)) .
3GHR L@OOHMF Φ HR B@KKDC IXQGDPHQWDO PDWUL[ NE x˙ = Ax @MC AX BNMRSQTBSHNM HS NADXR SGD DPT@SHNM ˙ Φ(t) = A(t)Φ(t) . BBNQCHMF SN O@QS SVN NE "NQNKK@QX SGD L@OOHMF Φ HR HMUDQSHAKD +DS ϕ ∈ L AD @MX NSGDQ RNKTSHNM SGDM HS B@M AD VQHSSDM @R @ KHMD@Q BNLAHM@SHNM ϕ = c1 ϕ1 + c2 ϕ2 + · · · + cd ϕd NE SGD DKDLDMSR NE SGD ETMC@LDMS@K RXRSDL @MC RB@K@QR ci ∈ K i = 1, 2, . . . , d 3GTR VHSG c := (c1 , c2 , . . . , cd )T VD G@UD ϕ(t) = Φ(t)c ,
c ∈ Kd .
(E Ψ = (ψ1 , ψ2 , . . . , ψd ) HR @MNSGDQ ETMC@LDMS@K L@SQHW SGDM HS GNKCR SG@S Ψ = ΦC VGDQD C HR @M HMUDQSHAKD L@SQHW 3N RGNV +HNTUHKKDŗR SGDNQDL NM SGD CDENQL@SHNM NE UNKTLDR HM OG@RD RO@BD TMCDQ SGD RNKTSHNMR NE GNLNFDMDNTR KHMD@Q CHƤDQDMSH@K DPT@SHNMR VD QDPTHQD @ KDLL@ NM SGD CHƤDQDMSH@SHNM NE CDSDQLHM@MSR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF +DLL@ #HƤDQDMSH@SHNM NE @ #DSDQLHM@MS /HW Φ : I → Kd×d EH D FRQ WLQXRXVO\ GLƱHUHQWLDEOH PDWUL[ YDOXHG PDSSLQJ ZLWK FROXPQV ϕ1 , ϕ2 , . . . , ϕd RQ DQ LQWHUYDO I 7KHQ LW KROGV WKDW d G CDS(Φ(t)) = CDS (ϕ1 , . . . , ϕi−1 , ϕ˙ i , ϕi+1 , . . . , ϕd )|t . Gt i=1
3URRI %NKKNVHMF :< O VD BNMRHCDQ SGD ETMBSHNM f : In → K ,
f (t1 , t2 , . . . , td ) := CDS (ϕ1 (t1 ), ϕ2 (t2 ), . . . , ϕd (td )) .
BBNQCHMF SN SGD CDƥMHSHNM NE O@QSH@K CHƤDQDMSH@SHNM @KNMF VHSG SGD KHMD@QHSX NE SGD CDSDQLHM@MS ETMBSHNM HM D@BG BNKTLM VD NAS@HM ∂ f (t1 , t2 , . . . , td ) = CDS (ϕ1 (t1 ), . . . , ϕi−1 (ti−1 ), ϕ˙ i (ti ), ϕi+1 (ti+1 ), . . . , ϕd (td )) . ∂ti 3GTR f HR BNMSHMTNTRKX O@QSH@K CHƤDQDMSH@AKD !DB@TRD NE CDS(Φ(t)) = f (t, t, . . . , t) SGD @RRDQSHNM ENKKNVR VHSG SGD @HC NE SGD BG@HM QTKD 3GDNQDL 3GDNQDL NE +HNTUHKKD /HW ΦI → Kd×d EH D IXQGDPHQWDO PD WUL[ RI x˙ = A(t)x WKHQ CDS(Φ) REH\V WKH RUGLQDU\ GLƱHUHQWLDO HTXDWLRQ G CDS(Φ(t)) = WU(A(t)) · CDS(Φ(t)) Gt
RQ I 3URRI %NKKNVHMF :< O VD RGNV ƥQRS SG@S GNKCR @S @MX ONHMS t ∈ I VGDQD Φ(t) = I HR SGD HCDMSHSX L@SQHW +DS ϕ1 , ϕ2 , . . . , ϕd AD SGD BNKTLMR NE Φ !X BNMRSQTBSHNM ϕi (t) = ei HR SGD iSG B@MNMHB@K A@RHR UDBSNQ @MC ϕ˙ i (t) = A(t)ei GNKCR 6HSG +DLL@ VD G@UD d C CDS (Φ(t)) = CDS (e1 , . . . , ei−1 , A(t)ei , ei+1 , . . . , ed ) = SQ (A(t)) . Ct i=1
3GHR @KQD@CX RGNVR SGD @RRDQSHNM ENQ t @MC Φ RTBG SG@S Φ(t) = I 3GD FDMDQ@K B@RD VHKK MNV AD QDCTBDC SN SGHR NMD %NQ @QAHSQ@QX ƥWDC t ∈ I VD BNMRHCDQ SGD ETMC@LDMS@K L@SQHW Ψ := Φ · C VGDQD C := Φ−1 3GTR ENQ t @MC Ψ VD B@M @OOKX SGD @ANUD QDRTKS @MC NAS@HM C CDS(Ψ(t)) = SQ(A(t)) · CDS(Ψ(t)) . Ct !X CDƥMHSHNM NE Ψ SGD @RRDQSHNM ENKKNVR ENQ Φ SNN
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS +DS TR QDSTQM SN SGD HMGNLNFDMDNTR NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = A(t)x + b(t) . R HM KHMD@Q @KFDAQ@ NMD B@M RGNV SG@S DUDQX RNKTSHNM NE SGHR DPT@SHNM B@M AD F@HMDC AX @CCHMF @ RODBH@K RNKTSHNM B@KKDC SGD SDUWLFXODU VROXWLRQ SN @ RNKT SHNM NE SGD GNLNFDMDNTR DPT@SHNM x˙ = A(t)x (MSTHSHUDKX XNT B@M SGHMJ NE SGD RNKTSHNM RO@BD NE @M HMGNLNFDMDNTR DPT@SHNM @R @M @ƧMD RO@BD RGHESDC EQNL @ KHMD@Q RTA UDBSNQ RO@BD SGD RNKTSHNM RO@BD NE SGD GNLNFDMDNTR DPT@ SHNM AX SGD HMGNLNFDMDHSX b(t) (E NMD JMNVR SGD ETMC@LDMS@K RXRSDL NE SGD GNLNFDMDNTR DPT@SHNM SGDM @ O@QSHBTK@Q RNKTSHNM B@M AD BNMRSQTBSDC AX SGD LDSGNC NE U@QH@SHNM NE SGD BNMRS@MS 3GDNQDL 5@QH@SHNM NE SGD "NMRS@MS /HW Φ EH WKH IXQGDPHQWDO PDWUL[ RI WKH KRPRJHQHRXV HTXDWLRQ x˙ = A(t)x WKHQ
xp (t) := Φ(t) · c(t) ZLWK c := Φ−1 (s)b(s)Gs LV D VROXWLRQ RI WKH LQKRPRJHQHRXV HTXDWLRQ x˙ = A(t)x + b(t) 3URRI %NKKNVHMF :< O VD G@UD ˙ + Φc˙ = AΦc + ΦΦ−1 b = Axp + b , x˙ p = Φc VGHBG RGNVR SGD @RRDQSHNM
"NMRSQTBSHNM NE 2NKTSHNMR ENQ +HMD@Q .#$R VHSG "NMRS@MS ,@SQHBDR %NKKNVHMF :< OO SGD /HB@QC +HMCDK±E HSDQ@SHNM ENQ SGD HMHSH@K U@KTD OQNAKDL x˙ = Ax x(0) = x0 VHSG @ BNMRS@MS L@SQHW A KD@CR SN
t ϕ1 (t) = x0 + Ax0 Cs = (I + At) x0 ,
ϕ2 (t) = x0 +
0
t 0
A (I + As) x0 Cs =
I + At + 12 A2 t2 x0
ϕk (t) =
I + At + 12 A2 t2 + · · · +
1 k k k! A t
! x0 .
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF %NQ k → ∞ VD G@UD
ϕ(t) = DWO(At)x0 ,
VGDQD DWO(At) HR SGD L@SQHW U@KTDC DWONMDMSH@K ETMBSHNM SG@S NADXR SGD NQ C CHM@QX CHƤDQDMSH@K DPT@SHNM Ct DWO(At) = A DWO(At) 3GHR @KKNVR TR SN UDQHEX HLLDCH@SDKX SG@S ϕ(t) = DWO(At)x0 RNKUDR SGD FHUDM HMHSH@K U@KTD OQNAKDL 3GD TRD NE , 3+ !ŗR L@SQHW DWONMDMSH@K HR RSQ@HFGSENQV@QC BE :< BG@O SDQ $ F ENQ SGD BNMRS@MS L@SQHW 1 1 A = −2 4 VD B@M B@KBTK@SD DWO(A) @R ENKKNVR == 4 bvKU(R Rc @k 9)Vc == 2tTKUV Mb 4 ( k 2tTUkV@2tTUjV2tTUjV@2tTUkV) ( @k 2tTUjVYk 2tTUkV- @2tTUkVYk 2tTUjV)
(M O@QSHBTK@Q VD B@M HLLDCH@SDKX NAS@HM SGD RNKTSHNM NE x˙ = Ax VHSG HMHSH@K BNMCHSHNM x0 = (−4, 2) == 4 bvKU(R Rc @k 9)Vc == bvKb i == 2tTKU iV (@9c k) Mb 4 ( e 2tTUj iV @ Ry 2tTUk iV) ( @Ry 2tTUk iV Y Rk 2tTUj iV)
3GD QDOQDRDMS@SHNM NE SGD RNKTSHNM @R ϕ(t) = DWO(At)x0 HR VDKK RTHSDC ENQ SGDNQDSHB@K BNMRHCDQ@SHNMR KHJD CHRBTRRHNMR NM SGD FDNLDSQHB RSQTBSTQD NE SGD RNKTSHNM $W@LOKD 2NKTSHNMR NM @ 2OGDQD BE :< OO (E A HR QD@K @MC @MSH RXLLDSQHB SGDM DUDQX RNKTSHNM ϕ NE x˙ = Ax KHUDR NM @ ROGDQD @QNTMC SGD NQHFHM H D ϕ(t) 2 = ϕ(0) 2 ENQ @KK t ∈ R . 3GHR B@M AD RDDM @R ENKKNVR HE A HR QD@K @MC @MSH RXLLDSQHB SGDM DWO(At) HR NQSGNFNM@K DWO(At) (DWO(At))T = DWO((A + AT )t) = I 2TARSHSTSHMF SGD DKDLDMSR v1 , v2 , . . . , vn NE @M @QAHSQ@QX A@RHR NE SGD Kn HMSN HM OK@BD NE x0 VD NAS@HM @ A@RHR NE SGD RNKTSHNM RO@BD L NE SGD GNLNFD MDNTR DPT@SHNM x˙ = Ax %NQ HMRS@MBD SGD B@MNMHB@K A@RHR UDBSNQR e1 , e2 , . . . , ed KD@C SN SGD BNKTLMR NE DWO(At) @R @ A@RHR NE L
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 4RT@KKX SGD BNLOTS@SHNM NE DWO(At) HR SHQDRNLD 3GDQDENQD HM NQCDQ SN NA S@HM @ A@RHR NE L VD BGNNRD @MNSGDQ O@SG A@RDC NM SGD )NQC@M MNQL@K ENQL NE A 3GD D@RHDRS @MC LNRS HLONQS@MS RHST@SHNM NBBTQR VGDM A G@R d KHMD@QKX HM CDODMCDMS DHFDMUDBSNQR @R HM SGD B@RD NE A ADHMF @ QD@K RXLLDSQHB L@SQHW NQ A G@UHMF d CHRSHMBS DHFDMU@KTDR +DLL@ !@RHR NE L "NMRHRSHMF NE $HFDMUDBSNQR NE A /HW v EH DQ HLJHQ YHFWRU RI A DQG λ EH LWV FRUUHVSRQGLQJ HLJHQYDOXH WKHQ ϕ v : R → Kd ,
ϕv (t) := DWO(λt)v ,
VROYHV WKH LQLWLDO YDOXH SUREOHP x˙ = Ax x(0) = v /HW v1 , v2 , . . . , vd EH OLQHDUO\ LQGHSHQGHQW HLJHQYHFWRUV RI A DQG λ1 , λ2 , . . . , λd EH WKHLU FRUUHVSRQGLQJ HLJHQ YDOXHV WKHQ ϕv1 , ϕv2 , . . . , ϕvd IRUP D IXQGDPHQWDO V\VWHP 3URRI %NKKNVHMF :< O VD G@UD SG@S ϕv HR @ RNKTSHNM NE SGD GNLNFD MDNTR DPT@SHNM ADB@TRD ϕ˙ v = λ DWO(λt)v = DWO(λt)Av = Aϕv . ,NQDNUDQ SGD RNKTSHNMR ϕv1 , ϕv2 , . . . , ϕvd ENQL @ A@RHR NE L ADB@TRD SGDHQ U@K TDR ϕv1 (0), ϕv2 (0), . . . , ϕvd (0) ENQL @ A@RHR NE Kd (E A CNDR MNS G@UD @ ETKK RDS NE d KHMD@QKX HMCDODMCDMS DHFDMUDBSNQR @R HM SGD B@RD NE LTKSHOKD DHFDMU@KTDR SGDM @ ETMC@LDMS@K RXRSDL B@M AD BNMRSQTBSDC VHSG SGD @HC NE FDMDQ@KHYDC DHFDMUDBSNQR #DƥMHSHNM &DMDQ@KHYDC $HFDMUDBSNQ UDBSNQ v ∈ C d v = 0 HR B@KKDC JHQHUDOL]HG HLJHQYHFWRU RI WKH PDWUL[ A FRUUHVSRQGLQJ WR WKH HLJHQYDOXH λ HE SGDQD HR @ M@STQ@K MTLADQ s RTBG SG@S (A − λI)s v = 0 . 3GD RL@KKDRS MTLADQ s HR B@KKDC GHJUHH NE v 3GD FDMDQ@KHYDC DHFDMUDBSNQR NE CDFQDD NMD @QD SGD DHFDMUDBSNQR SGDL RDKE (E v HR @ FDMDQ@KHYDC DHFDMUDBSNQ NE CDFQDD s SGDM SGD UDBSNQR vs := v ,
vs−1 := (A − λI) v ,
...
v1 := (A − λI)s−1 v
@QD FDMDQ@KHYDC DHFDMUDBSNQR NE CDFQDD s s − 1 ş 1 QDRODBSHUDKX v1 HR @M DHFDMUDBSNQ @MC vi i = 2, 3, . . . , s HR @ RNKTSHNM NE SGD DPT@SHNM (A − λI) vi = vi−1
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $W@LOKD &DMDQ@KHYDC $HFDMUDBSNQR NE @ 3 × 3 ,@SQHW BE :< O %NQ SGD ENKKNVHMF L@SQHW A SGD MTLADQ 1 HR @M DHFDMU@KTD NE @KFDAQ@HB LTKSH OKHBHSX 3 ATS G@UHMF NMKX NMD DHFDMUDBSNQ M@LDKX e1 ⎞ ⎛ 1 2 3 A = ⎝ 0 1 2 ⎠. 0 0 1 ,NQDNUDQ (A − λI) e2 = 2e1 ,
(A − λI)2 e2 = 0
(A − λI) e3 = 3e1 + 2e2 ,
(A − λI)2 e3 = 4e1 ,
(A − λI)3 e3 = 0 .
H D es HR @ FDMDQ@KHYDC DHFDMUDBSNQ NE CDFQDD s s = 1, 2, 3 3GD SGDNQDL NM SGD )NQC@M MNQL@K ENQL NE L@SQHBDR EQNL +HMD@Q KFDAQ@ HLOKHDR 3GDNQDL !@RHR "NMRHRSHMF NE &DMDQ@KHYDC $HFDMUDBSNQR )RU DQ\ PD WUL[ A ∈ C d×d WKHUH LV D EDVLV RI C d FRQVLVWLQJ RI JHQHUDOL]HG HLJHQYHFWRUV WKDW FRQWDLQV IRU DQ\ kIROG HLJHQYDOXH λ H[DFWO\ k JHQHUDOL]HG HLJHQYHFWRUV v1 , v2 , . . . , vk ZKHUH WKH GHJUHH RI vs LV DW PRVW s A@RHR h1 , h2 , . . . , hd NE FDMDQ@KHYDC DHFDMUDBSNQR FHUDR QHRD SN SGD ETMC@ LDMS@K RXRSDL DWO(At)h1 DWO(At)h2 . . . DWO(At)hd NE SGD GNLNFDMDNTR DPT@SHNM x˙ = Ax -DWS VD @M@KXRD SGD BNMRSQTBSHNM NE RTBG @ RNKTSHNM ϕv : R → Cd ,
ϕv (t) := DWO(At)v ,
VGDQD v HR @ FDMDQ@KHYDC DHFDMUDBSNQ NE CDFQDD s BNQQDRONMCHMF SN SGD DHFDM U@KTD λ DWO (At) v = DWO (λIt) DWO ((A − λI) t) v = DWO (λt) ·
∞
1 k!
(A − λI)k tk v .
k=0
2HMBD (A − λI)k v = 0 ENQ k ≥ s SGD @ANUD HMƥMHSD RTL QDCTBDR SN @ ƥMHSD NMD @MC VD NAS@HM ϕv (t) = DWO (λt) pv (t) ,
VGDQD
pv (t) =
s−1
1 k!
(A − λI)k tk v .
k=0
'DQD pv HR @ ONKXMNLH@K NE CDFQDD KDRR NQ DPT@K SN s − 1 SGD BNDƧBHDMSR k 1 d k! (A − λI) v NE VGHBG @QD UDBSNQR HM C %NQ s = 1 VD G@UD pv (t) = v +DS TR RTLL@QHYD SGD BNMRSQTBSHNM LDSGNCNKNFX HM SGD ENKKNVHMF SGDNQDL
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3GDNQDL !KTDOQHMS ENQ SGD "NMRSQTBSHNM NE %TMC@LDMS@K 2XRSDL ENQ x˙ = Ax 7KH IROORZLQJ SURFHGXUH OHDGV WR D IXQGDPHQWDO V\VWHP RI WKH OLQHDU KRPRJHQHRXV HTXDWLRQ x˙ = Ax 'HWHUPLQH DOO GLVWLQFW HLJHQYDOXHV λ1 , λ2 , . . . , λr RI A DQG WKHLU DOJHEUDLF PXOWLSOLFLWLHV k1 , k2 , . . . , kr ZKHUH k1 + k2 + · · · + kr = d KROGV )RU HDFK HLJHQYDOXH λρ ρ = 1, 2, . . . , r ZLWK DOJHEUDLF PXOWLSOLFLW\ kρ FRQ VWUXFW kρ VROXWLRQV RI x˙ = Ax E\ Ţ ƲUVW GHWHUPLQLQJ WKH FRUUHVSRQGLQJ JHQHUDOL]HG HLJHQYHFWRUV v1 , v2 , . . . , vk ZKHUH vs KDV GHJUHH OHVV RU HTXDO WR s DQG Ţ WKHQ FDOFXODWLQJ DFFRUGLQJ WR WKHVH VROXWLRQV ϕvs (t) = DWO (λρ t) pvs (t) ,
s = 1, 2, . . . , kρ .
7KH REWDLQHG d VROXWLRQV IRUP D IXQGDPHQWDO V\VWHP RI x˙ = Ax $W@LOKD %TMC@LDMS@K 2XRSDL ENQ @ 3 × 3 ,@SQHW BE :< O R RDDM HM DW@LOKD A G@R SGD 3 ENKC DHFDMU@KTD 1 VHSG BNQQDRONMCHMF DHFDMUDBSNQ e1 e2 HR @ FDMDQ@KHYDC DHFDMUDBSNQ NE CDFQDD 2 @MC e3 HR @ FDM DQ@KHYDC DHFDMUDBSNQ NE CDFQDD 3 BBNQCHMF SN NTQ BNMRSQTBSHNM AKTDOQHMS VD SGTR FDS SGD RNKTSHNMR ⎛ ⎞ 1 ϕ1 (t) = DWO (t) e1 = DWO (t) ⎝ 0 ⎠ 0 ⎞ ⎛ 2t ϕ2 (t) = DWO (I + (A − I) t) e2 = DWO (t) ⎝ 1 ⎠ , 0 ⎞ ⎛ 3t + 2t2 ! ⎠. 2t ϕ3 (t) = DWO I + (A − I) t + 12 (A − I)2 t2 e3 = DWO (t) ⎝ 1 'DQD ϕ1 (t), ϕ2 (t), ϕ3 (t) ENQL @ ETMC@LDMS@K RXRSDL
%HQRS (MSDFQ@KR .RBHKK@SHNMR %NKKNVHMF :< OO ƥQRS HMENQL@SHNM @ANTS SGD SQ@IDBSNQHDR NE HMSDFQ@K BTQUDR B@M AD F@HMDC EQNL ƥQRS HMSDFQ@KR ƲUVW LQWHJUDO HR @ NE @ UDBSNQ ƥDKC
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 6G@S B@M XNT R@X @ANTS SGD DWHRSDMBD @MC TMHPTDMDRR NE SGD RNKTSHNMR NE x˙ = Ax + b VGDQD x, b ∈ Rd @MC A ∈ Rd×d 0 &HUD SGD CDƥMHSHNM NE @ ETMC@LDMS@K RXRSDL @MC NE @ ETMC@LDMS@K L@SQHW 0 2S@SD SGD SGDNQDL NE +HNTUHKKD @MC RJDSBG HSR OQNNE 0 #DRBQHAD SGD FDMDQ@K BNMRSQTBSHNM LDSGNC ENQ @ RNKTSHNM NE x˙ = Ax + b VGDQD x, b ∈ Rd @MC A ∈ Rd×d 0 2NKUD
x˙ 1 x˙ 2
=
−8 3 −18 7
x1 x2
+ DWO(−x)
5 12
.
v : Ω → Rd Ω ⊂ Rd HR @ C 1 ETMBSHNM E : Ω → R SGD CDQHU@SHUD NE VGHBG U@MHRGDR @KNMF v ∂v E(x) =
d
vi (x)∂i E(x) = 0 .
i=1
%NQ HMRS@MBD SGD ETMBSHNM E : R2 → R E(x, y) = x2 + y 2 HR @ ƥQRS HMSDFQ@K NE SGD QNS@SHNM ƥDKC v : R2 → R2 v(x, y) = (−y, x) 3GD HLONQS@MBD NE @ ƥQRS HMSDFQ@K E HR SG@S HS S@JDR @ BNMRS@MS U@KTD NM D@BG HMSDFQ@K BTQUD ϕ NE SGD UDBSNQ ƥDKC CTD SN SGD ENKKNVHMF HCDMSHSX C (E ◦ ϕ) (t) = E (ϕ(t)) ϕ(t) ˙ = E (ϕ(t)) v (ϕ(t)) = ∂v E (ϕ(t)) = 0 . Ct 3GDNQDL (MSDFQ@K "TQUDR @MC +DUDK 2DSR NE %HQRS (MSDFQ@KR (YHU\ LQWH JUDO FXUYH RI v OLHV RQ D OHYHO VHW RI E (M SGD @ANUD DW@LOKD NE @ QNS@SHNM ƥDKC VD G@UD SG@S DUDQX HMSDFQ@K BTQUD = 0 KHDR NM @ BHQBKD E(x, y) = x2 + y 2 = r2 3GDQD HR MN FDMDQ@K LDSGNC SN CDSDQLHMD SGD ƥQRS HMSDFQ@K NE @ FHUDM UDBSNQ ƥDKC 3GNTFG @ RDS NE LDSGNCNKNFHB@K @OOQN@BGDR DM@AKD SGD BNLOTS@SHNM NE ƥQRS HMSDFQ@KR HM RODBHƥB BNMBQDSD B@RDR RDD 2DB (M OGXRHB@K @OOKH B@SHNMR BNMRDQU@SHNM K@VR KHJD SGD BNMRDQU@SHNM NE DMDQFX GDKO SN DRS@AKHRG ƥQRS HMSDFQ@KR RDD 2DB @MC
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS !DENQD VD BNMSHMTD SN CHRBTRR RODBHƥB DW@LOKDR VD FHUD SVN ETQSGDQ QD L@QJR HLONQS@MS ENQ SGD RSTCX NE KDUDK RDSR NE ƥQRS HMSDFQ@KR BE :< O
MNM DLOSX KDUDK RDS E −1 (c) ENQ @ QDFTK@Q U@KTD c ∈ R HR @ (d − 1) CHLDMRHNM@K RTA L@MHENKC NM Ω ⊂ Rd %NQ @M DKDLDMS x ∈ Ω @S VGHBG SGD U@KTD E(x) HR QDFTK@Q SGD BNMCHSHNM B@M AD HMSDQOQDSDC HM SGD RDMRD SG@S v(x) HR @ S@MFDMSH@K UDBSNQ SN SGD KDUDK RDS SGQNTFG x H D v(x) KHDR HM SGD JDQMDK NE CE(x)
+DS E AD @ C 2 ETMBSHNM @MC x0 @ MNM CDFDMDQ@SD BQHSHB@K ONHMS H D @ ONHMS RTBG SG@S E (x0 ) = 0 @MC MNM CDFDMDQ@SD 'DRRH@M E (x0 ) 3GD RG@OD NE SGD KDUDK RDSR HM SGD UHBHMHSX NE x0 HR CDSDQLHMDC AX SGD DHFDMU@KTDR NE E (x0 ) TO SN CHƤDNLNQOGHRLR @BBNQCHMF SN SGD +DLL@ NE ,NQRD RDD OQNAKDL 6D BHSD @ RODBH@K B@RD NE SGHR KDLL@ VGHBG G@R O@QSHBTK@Q HLONQS@MBD GDQD +DS @KK DHFDMU@KTDR NE E (x0 ) AD ONRHSHUD SGDM SGDQD HR @ CHƤDN LNQOGHRL h : K → Ω0 NE @ A@KK K ⊂ Rd @QNTMC 0 SN @M DMUHQNMLDMS Ω0 ⊂ Ω NE x0 RTBG SG@S E ◦ h(ξ) = E(x0 ) + ξ12 + · · · + ξd2 . 3GTR +DS E (x0 ) = 0 @MC E (x0 ) > 0 SGDM SGDQD HR @M DMUHQNMLDMS Ω0 ⊂ Ω NE SGD ONHMS x0 RTBG SG@S DUDQX HMSDFQ@K BTQUD ϕ NE v SGQNTFG @ ONHMS x ∈ Ω0 KHDR HM @ L@MHENKC ⊂ Ω0 VGHBG HR CHƤDNLNQOGHB SN @ (d − 1) ROGDQD @MC G@R HMƥMHSD KHED SHLD 1DL@QJ 5DBSNQ %HDKCR NM ,@MHENKCR %HQRS HMSDFQ@KR M@STQ@KKX FHUD QHRD SN SGD RSTCX NE UDBSNQ ƥDKCR NM L@MHENKCR YHFWRU ƲHOG NQ WDQJHQWLDO ƲHOG RQ D PDQLIROG M ⊂ Rd HR @ L@OOHMF v SG@S @RRHFMR @ S@MFDMSH@K UDBSNQ v(x) SN D@BG DKDLDMS NE x ∈ M M HMSDFQ@K BTQUD SN RTBG @ ƥDKC HR @ BTQUD ϕ : I → M RTBG SG@S ϕ(t) ˙ = v (ϕ(t)) ENQ @KK t ∈ I (E ENQ HMRS@MBD M HR @ KDUDK RDS NE @ ƥQRS HMSDFQ@K NE SGD UDBSNQ ƥDKC V : Ω → Rd NM SGD NODM RDS Ω ⊂ Rd SGDM v := V|M HR @ UDBSNQ ƥDKC NM M %HM@KKX VD FHUD SVN DW@LOKDR NE ƥQRS HMSDFQ@KR HM RXRSDLR EQNL OGXRHBR @MC NMD EQNL AHNKNFX DBNKNFX
OOKHB@SHNM 3GD &DMDQ@K .RBHKK@SHNM $PT@SHNM
%NKKNVHMF :< O KDS U : Ω → R AD @ C 1 ETMBSHNM @ ONSDMSH@K NM @M NODM RDS Ω ⊂ Rd VGHBG G@R @M HRNK@SDC LHMHLTL @S x0 3GD DPT@SHNM x ¨ = −∇U T (x) ,
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF H D SGD ƥQRS NQCDQ RXRSDL C y x =: v(x, y) , = −∇U T (x) Ct y
G@R SGD DMDQFX ETMBSHNM E : Ω × Rd → R FHUDM AX E(x, y) :=
1 2
d
yi2 + U (x)
i=1
@R @ ƥQRS HMSDFQ@K ADB@TRD ∂v E(x, y) = y T ∇U T (x) − ∇U (x)y = 0 . MX RNKTSHNM ϕ = (x, y) = (x, x) ˙ NE SGD RXRSDL VGDQD x HR @ RNKTSHNM NE ˙ HR BNMRS@MS VHSG SGD x ¨ = −∇U T (x) KHDR HM @ KDUDK RDS NE E RTBG SG@S E(x, x) BNMRS@MS ADHMF CDSDQLHMDC AX SGD HMHSH@K BNMCHSHNM (x(0), x(0)) ˙ BNMRDQU@SHNM NE DMDQFX
OOKHB@SHNM 3GD #DSDQLHMHRSHB /DMCTKTL
2HMBD SGD BNMFDMH@K HMRHFGS NE )NG@MMDR *DOKDQ 2@MSNQHN 2@M SNQHN 2@MBSNQHTR @MC &@KHKDN &@KHKDH SN SHLD SGD OTKRD NE @ GTL@M UH@ @ ODMCTKTL RDD :< OO SGHR D@RX SN OGXRHB@KKX QD@KHRD ATS G@QC SN @M@KXRD CDUHBD G@R F@HMDC DMNQLNTR HMSDQDRS ANSG EQNL SGD OTQDKX L@SGDL@SHB@K @R VDKK @R EQNL SGD @OOKHDC ONHMS NE UHDV %NKKNVHMF : η @MC SGTR a (y(t)) ≤ a (y(ε)) =: α < 0 BBNQCHMF SN SGD ƥQRS CHƤDQDMSH@K DPT@SHNM x(t) ≤ DWO (α(t − t0 )) x(ε) GNKCR ENQ SGDRD U@KTDR NE t !DB@TRD NE SGHR @MC SGD E@BS x(t) > ξ > 0 HS G@R SN GNKC SG@S t1 < ∞ 3GD CDƥMHSHNM NE t1 HS HLLDCH@SDKX HLOKHDR MNV SG@S x(t1 ) = ξ @MC ϕ(t1 ) = A1
R @ANUD HM BNMBKTRHNM NMD B@M RGNV SGD DWHRSDMBD NE O@Q@LDSDQ ONHMSR t1 < t2 < t3 < t4 RTBG SG@S ϕ(tk ) = Ak k = 2, 3, 4 (M O@QSHBTK@Q NMD G@R VHSG T = t4 SG@S ϕ(T ) = A4 = A0 = ϕ(t0 ) GNKCR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 4.5
4.5
4
4
3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0
0
0.5
1
@
1.5
2
2.5
3
3.5
4
4.5
A
%HFTQD 5DKNBHSX OKNS @ @MC RJDSBG NE SGD OG@RD ONQSQ@HS A NE SGD 5NKSDQQ@ +NSJ@ RXRSDL x˙ = (3 − 2y)x @MC y˙ = (x − 2)y RGNVHMF SGD DWHRSDMBD NE @M DPTHKHAQHTL @MC ODQHNCHB RNKTSHNMR
KSNFDSGDQ SGHR RGNVR SGD ENKKNVHMF SGDNQDL 3GDNQDL 2NKTSHNM NE SGD 5NKSDQQ@ +NSJ@ 2XRSDL (YHU\ PD[LPDO LQWH JUDO FXUYH ϕ ZLWK ϕ(0) ∈ R2+ OLHV IRU DOO WLPHV LQ WKLV TXDGUDQW DQG LV SHULRGLF !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD CDƥMHSHNM NE @ ƥQRS HMSDFQ@K 0 'NV @QD ƥQRS HMSDFQ@KR @MC HMSDFQ@K BTQUDR BNMMDBSDC 0 &HUD SGD NQCHM@QX CHƤDQDMSH@K DPT@SHNM SG@S CDRBQHADR SGD CDSDQLHMHRSHB ODMCTKTL 2JDSBG @MC CHRBTRR HSR OG@RD ONQSQ@HS 0 &HUD SGD NQCHM@QX CHƤDQDMSH@K DPT@SHNM SG@S CDRBQHADR SGD 5NKSDQQ@ +NSJ@ RXRSDL 2JDSBG @MC CHRBTRR HSR OG@RD ONQSQ@HS
.QCHM@QX #HƤDQDMSH@K $PT@SHNMR NM !@M@BG 2O@BDR %NKKNVHMF :< "G@O VD DMC NTQ CHRBTRRHNM NM CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR VHSG +HORBGHSY SXOD BNMCHSHNMR ENQ SGD DWHRSDMBD @MC
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS TMHPTDMDRR NE CDSDQLHMHRSHB NQCHM@QX CHƤDQDMSH@K DPT@SHNMR NM @QAHSQ@QX !@ M@BG RO@BDR 3GDRD +HORBGHSY SXOD BNMCHSHNMR CN MNS KD@C SN SGD LNRS QDƥMDC QDRTKSR ENQ RTBG DPT@SHNMR SGNTFG SGDX @QD RHLHK@Q SN VG@S V@R CHRBTRRDC HM SGD Kd RDSSHMF NE SGD OQDUHNTR RDBSHNMR 3GD @CU@MS@FD HR SG@S SGDX @QD @KQD@CX RTƧBHDMS SN TMCDQRS@MC @ K@QFD BK@RR NE OQNAKDLR QDK@SDC SN LD@M RPT@QD RNKTSHNMR NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR @R HMSQNCTBDC HM "G@O %QNL MNV NM VD KDS X AD @ !@M@BG RO@BD NUDQ K H D @ BNLOKDSD MNQLDC UDBSNQ RO@BD NUDQ K "NLOKDSDMDRR HM SGHR QDF@QC LD@MR SG@S ENQ DUDQX "@TBGX RDPTDMBD {xn }∞ n=1 ⊂ X SGDQD DWHRSR @M DKDLDMS x ∈ X RTBG SG@S KHLn→∞ xn = x VHSG QDRODBS SN SGD BGNRDM MNQL ,NQDNUDQ KDS D ⊂ X RTBG SG@S x0 ∈ D J = [0, a] ⊂ R @M HMSDQU@K @MC f : I × D → X @ ETMBSHNM (M SGHR RDBSHNM VD @QD HMSDQDRSDC HM BNMSHMTNTRKX CHƤDQDMSH@AKD ETMBSHNMR x : [0, δ] → D ,
ENQ RNLD δ ∈ (0, a]
RTBG SG@S x˙ = f (t, x)
NM [0, δ] @MC x(0) = x0 .
2TBG @ ETMBSHNM x HR B@KKDC @ KNB@K RNKTSHNM NE SGD CHƤDQDMSH@K DPT@SHNM
$WHRSDMBD 4MHPTDMDRR NE 2NKTSHNMR
3GD ENKKNVHMF E@BSR L@X AD OQNUDC @R HM SGD B@RD NE X = Kd ENQ HMRS@MBD AX LD@MR NE RTBBDRRHUD @OOQNWHL@SHNM VHSG SGD @HC NE /HB@QC +HMCDK±E RD PTDMBDR (E f HR BNMSHMTNTR @MC R@SHRƥDR SGD +HORBGHSY BNMCHSHNM |f (t, x) − f (t, y)| ≤ L |x − y| , ENQ t ∈ I @MC x, y ∈ D SGDM G@R @ TMHPTD RNKTSHNM NM I OQNUHCDC D = X (E D HR SGD A@KK Br (x0 ) = {x : |x − x0 | ≤ r @MC f HR +HORBGHSY BNMSHMTNTR @R @ANUD SGDM G@R @ TMHPTD RNKTSHNM NM [0, δ] VGDQD δ := LHM{a, r/M } @MC M := RTO{|f (t, x)| : t ∈ I, x ∈ D} -NSD CTD SN SGD KDLL@ NE 1HDRY SGD A@KK Br (x0 ) HR MN KNMFDQ BNLO@BS HM HMƥMHSD CHLDMRHNMR @MC SGHR HR BNMSQ@QX SN VG@S VD @QD TRDC SN HM SGD ƥMHSD CHLDMRHNM@K RO@BDR Kd BE :< RRTLD SG@S D HR NODM @MC f HR KNB@KKX +HORBGHSY BNMSHMTNTR H D SN D@BG (t, x) ∈ I × D SGDQD DWHRSR @M η = η(t, x) > 0 @MC L = L(t, x) > 0 @MC @ MDHFGANQGNNC Ux NE x RTBG SG@S |f (t, u) − f (t, v)| ≤ L |u − v| ENQ s ∈ I ∩[t, t+η] @MC u, v ∈ Ux 3GDM G@R @ TMHPTD RNKTSHNM CDƥMDC DHSGDQ NM SGD VGNKD HMSDQU@K J NQ NMKX NM @ RTAHMSDQU@K [0, δ) VGHBG HR L@WHL@K VHSG QDRODBS SN SGD DWSDMRHNM NE RNKTSHNMR RDD 2DB !X LD@MR NE SGD RHLOKD QDRTKSR ITRS LDMSHNMDC HS HR D@RX SN BNMRSQTBS @O OQNWHL@SD RNKTSHNMR ENQ HM SGD B@RD VGDQD f HR BNMSHMTNTR %NKKNVHMF :< OO VD RGNV @S ƥQRS SG@S RTBG @M f L@X AD @OOQNWHL@SDC AX KNB@KKX +HORBGHSY BNMSHMTNTR ETMBSHNMR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF +DLL@ OOQNWHL@SHNM AX +HORBGHSY "NMSHMTNTR %TMBSHNMR /HW X, Y EH %DQDFK VSDFHV Ω ⊂ X RSHQ DQG f : Ω → Y FRQWLQXRXV 7KHQ WR HDFK ε > 0 WKHUH H[LVWV D ORFDOO\ /LSVFKLW]FRQWLQXRXV IXQFWLRQ fε : Ω → Y VXFK WKDW RTOΩ |f (x) − fε (x)| ≤ ε 3URRI %NKKNVHMF :< O KDS Uε (x) := {y ∈ Ω : |f (y) − f (x)| < 12 ε} x ∈ Ω SGDM VD G@UD SG@S Uε (x) HR NODM @MC Ω = ∪x∈Ω Uε (x) -DWS KDS {Vλ : λ ∈ Λ} AD @ KNB@KKX ƥMHSD QDƥMDLDMS NE {Uε (x) : x ∈ Ω} H D @M NODM BNUDQ NE Ω RTBG SG@S D@BG x ∈ Ω G@R @ MDHFGANQGNNC V (x) VHSG V (x) ∩ Vλ = 0 NMKX ENQ ƥMHSDKX L@MX λ ∈ Λ ⊂ Ω @MC RTBG SG@S SN D@BG λ ∈ Λ SGDQD DWHRSR @ x ∈ Ω VHSG Vλ ⊂ Uε (x) #DƥMD αλ : X → R AX 0 ENQ x = Vλ αλ (x) := , ρ(x, ∂Vλ ) ENQ x ∈ Vλ VGDQD ρ(x, A) = HME{|x − y| : y ∈ A} +DS ⎛ φλ (x) := ⎝
⎞−1 αμ (x)⎠
αλ (x)
ENQ x ∈ Ω .
μ∈Λ
2HMBD αλ HR +HORBGHSY BNMSHMTNTR NM X @MC {Vλ : λ ∈ Λ} HR KNB@KKX ƥMHSD φλ HR KNB@KKX +HORBGHSY BNMSHMTNTR NM Ω %NQ DUDQX λ ∈ Λ VD BGNNRD RNLD aλ ∈ Vλ @MC VD CDƥMD φλ (x)f (aλ ) ENQ x ∈ Ω . fε (x) := λ∈Λ
6D G@UD fε (x) KNB@KKX +HORBGHSY BNMSHMTNTR HM Ω @MC
|fε (x) − f (x)| = φλ (x) (f (aλ ) f (x)) ≤ φλ (x) |f (aλ ) f (x)| .
λ∈Λ
λ∈Λ
-NV RTOONRD φλ (x) = 0 3GDM x ∈ Vλ ⊂ Uε (x0 ) ENQ RNLD x0 ∈ Ω @MC aλ ∈ Vλ GDMBD |f (aλ ) − f (x)| ≤ ε @MC SGDQDENQD |fε (x) − f (x)| ≤ ε φλ (x) = ε , λ∈Λ
VGHBG RGNVR SGD @RRDQSHNM 3GD ENKKNVHMF QDRTKS NM BNMSHMTNTR DWSDMRHNMR NE BNMSHMTNTR L@OOHMFR L@X AD OQNUDC @KNMF RHLHK@Q KHMDR BE OQNAKDL
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS +DLL@ /HW X, Y EH %DQDFK VSDFHV Ω ⊂ X FORVHG DQG f : Ω → Y FRQWLQXRXV 7KHQ WKHUH LV D FRQWLQXRXV H[WHQVLRQ f˜ : X → Y VXFK WKDW f˜(X) ⊂ FRQY(f (Ω)) ZKHUH FRQY(f (Ω)) GHQRWHV WKH FRQYH[ KXOO RI f (Ω) -NV VD B@M ƥMC @OOQNWHL@SD RNKTSHNMR NE 3GDNQDL OOQNWHL@SD 2NKTSHNMR /HW I = [0, a] EH DQ LQWHUYDO D = Br (x0 ) ⊂ X EH WKH EDOO DURXQG x0 ∈ X ZLWK UDGLXV r > 0 DQG f : I × D → X EH FRQWLQXRXV DQG ERXQGHG E\ |f (t, x)| ≤ M RQ I × D 0RUHRYHU OHW ε > 0 DQG aε := LHM{a, r/(M + ε)} 7KHQ WKHUH H[LVWV D FRQWLQXRXVO\ GLƱHUHQWLDEOH IXQFWLRQ xε : [0, aε ] → D VXFK WKDW x˙ ε = f (t, xε ) + yε (t) ,
xε = x 0 ,
DQG
|yε (t)| ≤ ε ,
RQ [0, aε ] .
ZKLFK DSSUR[LPDWHV WKH H[DFW VROXWLRQ RI x˙ = f (t, x) XS WR DQ HUURU RI ε 3URRI %NKKNVHMF :< O VD G@UD AX +DLL@ SG@S f G@R @ BNMSHMTNTR DWSDMRHNM f˜ : R×X → X RTBG SG@S |f˜(t, x)| ≤ M DUDQXVGDQD !X +DLL@ SGDQD DWHRSR @ KNB@KKX +HORBGHSY BNMSHMTNTR @OOQNWHL@SHNM f˜ε : R × X → X RTBG SG@S
˜
˜
fε (t, x) − f (t, x) ≤ ε , HM O@QSHBTK@Q
˜
fε (t, x) − f (t, x) ≤ ε
NM J × D ,
˜
fε (t, x) ≤ M + ε .
@MC
+DS xε AD SGD RNKTSHNM NE x˙ = f˜ε (t, x) x(0) = x0 3GHR RNKTSHNM DWHRSR NM [0, aε ) @MC R@SHRƥDR x˙ ε = f (t, xε ) + yε (t) VHSG
|yε (t)| = f˜ε (t, xε ) − fε (t, xε ) ≤ ε . 3GHR RGNVR SGD @RRDQSHNM
$WSDMRHNM NE 2NKTSHNMR
(M SGD B@RD CHL(X) < ∞ @MC f HR BNMSHMTNTR NM J × X HS HR VDKK JMNVM SG@S DUDQX RNKTSHNM x NE DHSGDQ DWHRSR NM J NQ NMKX NM RNLD RTA HMSDQU@K [0, δx ) @MC SGDM AKNVR TO KHLt→δx |x(t)| → ∞ 'NVDUDQ HM SGD B@RD NE CHL(X) = ∞ NMD B@M ƥMC @ BNMSHMTNTR ETMBSHNM f : [0, ∞)×X → X RTBG SG@S G@R @ TMHPTD RNKTSHNM x NM [0, 1) NMKX @MC MNS ENQ @MX ETQSGDQ SHLD VGDQD x QDL@HMR ANTMCDC (M O@QSHBTK@Q KHLt→1 x(t) CNDR MNS DWHRS 3GHR HR ONRRHAKD RHMBD @ MNM KHMD@Q BNMSHMTNTR L@OOHMF MDDCR MNS SN L@O ANTMCDC RDSR HMSN ANTMCDC RDSR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $W@LOKD "NTMSDQ $W@LOKD ENQ SGD $WSDMRHAHKHSX NE 2NKTSHNMR BE :< OO +DS CHL(X) = ∞ 3GDM SGDQD DWHRSR @M HMƥMHSD CHLDMRHNM@K BKNRDC RTARO@BD X0 ⊂ X DPTHOODC VHSG @ 2BG@TDQ A@RD H D SGDQD @QD RDPTDMBDR {ei }i∈N ⊂ X0 @MC {e∗i }i∈N ⊂ X0∗ X0∗ HR SGD CT@K RO@BD NE X0 RTBG SG@S x ∈ X0 G@R SGD TMHPTD QDOQDRDMS@SHNM x = x , e∗i ei i≥1
RDD D F :< O %NQ DUDQX i ∈ N VD @RRTLD |ei | = 1 @MC BNMRHCDQ SGD HMHSH@K U@KTD x0 = e1 ∈ X0 (S HR DMNTFG SN BNMRSQTBS @M f : [0, ∞) × X0 → X0 RHMBD f G@R @ BNMSHMTNTR DWSDMRHNM f˜ : [0, ∞) × X → X0 AX +DLL@ @MC SGDQDENQD DUDQX RNKTSHNM NE VHSG f˜ HR @KQD@CX HM X0 +DS 0 < t1 < t2 < · · · < 1 AD @ O@QSHSHNM NE (0, 1) RTBG SG@S KHLi→∞ ti = 1 @MC χi AD SGD BG@Q@BSDQHRSHB ETMBSHNM NE [ti , ti+1 ] 2DS φ(t) := L@W{0, 2t − 1} α1 (t) ≡ 1 @MC αi ∈ C 1 (R) ENQ i ≥ 2 RTBG SG@S ⎧ NM [ti , ti+1 ] , ⎪ ⎪ =1 ⎨ ∈ (0, 1) NM 12 (ti−1 + ti ), ti ∪ ti+1 , 12 (ti+1 + ti+2 ) , αi (t) ⎪ ⎪ ⎩ =0 NSGDQVHRD . !X LD@MR NE SGDRD ETMBSHNMR VD CDƥMD f (t, x) := φ x, e∗i−1 χi−1 (t) + φ x, e∗i+1 χi+1 (t) α˙ i (t)ei . i≥2
2HMBD x, e∗i → 0 @R i → ∞ NMD B@M RDD SG@S f HR KNB@KKX +HORBGHSY BNMSHMTNTR NM [0, ∞) × X0 %NQ x(t) = αi (t)ei i≥1
VD G@UD x0 = e1 @MC x(t) ˙ =
α˙ i (t)ei = f (t, x(t))
NM [0, 1) .
i≥2
'DMBD x HR SGD TMHPTD RNKTSHNM NE 2HMBD x(ti ) = e1 + ei−1 + ei @MC ENQ i ≥ 3 , x 12 (ti + ti+1 ) = e1 + ei SGD KHLHS KHLt→1 x(t) CNDR MNS DWHRS %HM@KKX |x(t)| ≤ 3 NM [0, 1)
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
+HMD@Q $PT@SHNMR
6D ƥMHRG AX CHRBTRRHMF @ RHLOKD RHST@SHNM EQNL :< OO HM VGHBG SGD QDRTKSR NE 2DB @OOKX SGD KHMD@Q OQNAKDL x˙ = A(t)x + b(t) ,
x(0) = x0 ,
VGDQD A : I → L(X) L(X) = B(X, X) HR SGD RO@BD NE ANTMCDC KHMD@Q NO DQ@SNQR EQNL X SN HSRDKE @MC b : J → X @QD BNMSHMTNTR +DS R(t, s) AD SGD RNKTSHNM NE SGD HMHSH@K U@KTD OQNAKDL NM L(X) U˙ = A(t)U
U (s) = idX .
VHSG
3GDM R(t, s)x0 HR SGD RNKTSHNM NM J NE x˙ = A(t)x
x(s) = x0 .
VHSG
4RHMF SGHR E@BS VD B@M UDQHEX SG@S Ş R(t, s) = R(t, τ )R(τ, s) ENQ @MX t, τ, s ∈ I Ş R(t, s) HR @ GNLDNLNQOGHRL NE X NMSN X Ş R(t, s)−1 = R(s, t) @MC Ş (t, s) → R(t, s) HR BNMSHMTNTR 3GDQDENQD
x(t) = R(t, 0)x0 +
t
R(t, s)b(s)Cs 0
HR SGD TMHPTD RNKTSHNM NE (M O@QSHBTK@Q HE A(t) ≡ A ∈ L(X) SGDM
t DWO (A(t − s)) b(s)Cs . x(t) = DWO(At)x0 + 0
3GHR E@BS B@M AD DWOKNHSDC HM BNMMDBSHNM VHSG BNTMS@AKD RXRSDLR NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR VGDQD @M HMƥMHSD CHLDMRHNM@K L@SQHW A = (aij ) CDƥMDR @ ANTMCDC KHMD@Q NODQ@SNQ NM SGD RDPTDMBD RO@BD TMCDQ BNMRHCDQ@SHNM %NQ DW@LOKD RDD :< O KDS TR CHRBTRR ⎧ ⎫ ⎨ ⎬ x ∈ RN : X := 1 = |xi | < ∞ ⎩ ⎭ j≥1
@MC RTOONRD SG@S A R@SHRƥDR RTO j
|aij | < ∞ .
i≥1
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF .AUHNTRKX A ∈ L(1 ) @MC SGDQDENQD SGD RNKTSHNM NE HR -NV @F@HM BNMRHCDQ X = 1 SGNTFG VD @RRTLD SG@S A R@SHRƥDR |aij | < ∞ . RTO i
j≥1
3GDM A HR CDƥMDC NM x ∈ 1 ATS Ax L@X MNS ADKNMF SN 1 3GDQDENQD VD B@M MNS G@UD @ RNKTSHNM NE ENQ DUDQX x0 ∈ 1 -DUDQSGDKDRR VD L@X OQNBDDC HM SGD ENKKNVHMF SVN CHQDBSHNMR .M SGD NMD G@MC VD L@X QDRSQHBS A SN HSR OQNODQ CNL@HM D(A) = {x ∈ 1 : Ax ∈ 1 } @MC @RJ VGDSGDQ G@R @ RNKTSHNM @S KD@RS HE x0 @MC b(t) ADKNMF SN D(A) 1DRTKSR NE SGHR SXOD B@M AD ENTMC ENQ HMRS@MBD HM :< "G@O .M SGD NSGDQ G@MC VD L@X @RJ VGDSGDQ @KV@XR G@R @ RNKTSHNM @S KD@RS HM RNLD !@M@BG RO@BD K@QFDQ SG@M SGD NMD TMCDQ BNMRHCDQ@SHNM řFDMDQ@KHYDC RNKTSHNMRŚ (M SGD OQDRDMS DW@LOKD HS HR D@RX SN @MRVDQ SGHR PTDRSHNM 2HMBD 2 1 ∞ N ⊂ = x ∈ R : RTO |xi | ≤ ∞ i
@MC A ∈ L(∞ ) DPT@SHNM G@R @ TMHPTD RNKTSHNM HM ∞ @MC HR U@KHC (M FDMDQ@K SGD BNMCHSHNM SG@S A AD ANTMCDC EQNL X SN RNLD K@QFDQ !@M@BG RO@BD Y RTBG SG@S X HR BNMSHMTNTRKX DLADCCDC HM Y HR MNS RTƧBHDMS ENQ DW HRSDMBD 3GD ENKKNVHMF DW@LOKD HKKTRSQ@SDR SGHR $W@LOKD -NM $WHRSDMBD NE 2NKTSHNMR ESDQ $LADCCHMF BE :< O +DS A = (aij ) VGDQD a1j = 1 ENQ j ≥ 2 ai1 = 1 ENQ i ≥ 2 @MC aij = 0 NSGDQVHRD .AUHNTRKX A HR ANTMCDC EQNL 1 HMSN ∞ (E x HR @ RNKTSHNM NE SGD HMHSH@K U@KTD OQNAKDL x˙ = Ax x(0) = x0 SGDM
t x1 (s)Cs ENQ i ≥ 2 xi (t) = x0i + 0
@MC x˙ 1 (t) = 'DMBD x1 (t) ≡ 0 @MC x0 ∈ 1 @MC x01 = 0
xi (t) .
i≥2 i≥2 x01 (t)
= 0 (M O@QSHBTK@Q SGDQD HR MN RNKTSHNM HE
ONRHSHUD QDRTKS HM SGHR CHQDBSHNM HR SGD ENKKNVHMF SGDNQDL VGDQD VD @R RTLD HM O@QSHBTK@Q SG@S A HR ANTMCDC EQNL SGD RL@KK RO@BD SN @ VGNKD E@LHKX NE K@QFDQ RO@BDR 3GDNQDL $WHRSDMBD NE @ 4MHPTD 2NKTSHNM ESDQ $LADCCHMF /HW (Xs ) 0 ≤ α ≤ s ≤ β EH D VFDOH RI %DQDFK VSDFHV VXFK WKDW Xs ⊂ Xs IRU s < s DQG |x|s ≤ |x|s IRU x ∈ Xs 6XSSRVH IXUWKHU 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS A : I → L(Xs , Xs ) LV FRQWLQXRXV IRU HYHU\ SDLU (s, s ) ZLWK α ≤ s < s ≤ β |A(t)|L(Xs ,Xs ) ≤ M /(s − s ) IRU VRPH FRQVWDQW M LQGHSHQGHQW RI s, s DQG t DQG x0 ∈ Xβ DQG b : I → Xβ FRQWLQXRXV 7KHQ IRU HYHU\ s ∈ [α, β) HTXDWLRQ KDV D VROXWLRQ x : [0, δ(β − s)) → Xs ZKHUH δ = LHM{a, 1/(M ×e)} 7KH VROXWLRQ LV XQLTXHO\ GHWHUPLQHG IRU s ∈ (α, β) DQG β−s M ·e·t L@W |b(τ )|β · . |x(t) − x0 |Xs = |x0 |Xβ + M [0,t] β−s−M ·e·t 3URRI %NKKNVHMF :< O VD RS@QS VHSG SGD DWHRSDMBD O@QS AX BNMRHCDQHMF SGD RTBBDRRHUD @OOQNWHL@SHNMR x0 (t) ≡ x0
xk (t) = x0 +
t 0
(A(τ )xk−1 (τ ) + b(τ )) Cτ
ENQ k ≥ 1 .
!X HMCTBSHNM xk (t) ∈ Xs ENQ DUDQX s ∈ [α, β) @MC k ≥ 0 +DS Mt := |x0 |β +
β−s · L@W |b(τ )|β . M [0,t]
6D BK@HL |xk (t) − xk−1 (t)|Xs ≤ Mt · 6D G@UD
|x1 (t) − x0 |Xs ≤ t ·
M ·e·t β−s
k
M |x0 |Xβ + L@W |b(τ )|Xβ β−s [0,t]
ENQ k ≥ 1 .
≤ Mt ·
M ·e·t . β−s
(E SGD HMDPT@KHSX GNKCR ENQ k SGDM
|xk+1 (t) − xk (t)| ≤
t
|A(τ ) (xk (τ ) − xk−1 (τ )) |Xs Cτ
M t ≤ |xk (τ ) − xk−1 (τ )|Xs+ε Cτ ε 0 M · e · t k M tk+1 · . · ≤ Mt · β−s−ε ε k+1
0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 6HSG ε =
β−s k+1
VD NAS@HM
M ·e·t |xk+1 (t)−xk (t)| ≤ Mt · β−s
k+1
·e
'DMBD xk → x(t) := x0 +
−1
1 · 1+ k
k
M ·e·t ≤ Mt · β−s
k+1 .
(xk (t) − xk−1 (t))
k≥1
TMHENQLKX NM DUDQX BKNRDC RTAHMSDQU@K NE [0, δ(β −s)) @MC GNKCR 3GDQD ENQD
x(t) = x0 +
t
0
(A(τ )x(τ ) + b(τ )) Cτ
NM [0, δ(β − s)) .
-NV A(t)x(t) HR BNMSHMTNTR RHMBD x(t) HR BNMSHMTNTR NM [0, δ(β − s − ε)) VHSG U@KTDR HM Xs+ε @MC t → A(t) ∈ L(Xs+ε , Xs ) HR BNMSHMTNTR ENQ DUDQX ε ∈ (0, β − s) 'DMBD x HR @ RNKTSHNM NE %HM@KKX VD @CCQDRR SGD TMHPTDMDRR O@QS +DS s ∈ (α, β) @MC x : [0, η] → Xs R@SHREX x˙ = A(t)x x(0) = 0 3GDM N := {t : x(t) = 0} HR BKNRDC !TS N HR @KRN NODM HM [0, η] 3N OQNUD SGHR KDS t0 ∈ N @MC s < s R HM SGD OQNNE NE SGD DWHRSDMBD VD NAS@HM M · e · |t − t0 | k ENQ k ≥ 1 , |x(t)|Xs ≤ M2 · s − s AX HMCTBSHNM VGDQD M2 := L@W{|x(t)|Xs : t ∈ [0, η]} 'DMBD |x(t)|Xs = 0 ENQ t ∈ [0, η] @MC |t − t0 | ≤ (M · e)−1 (s − s ) 2HMBD N HR NODM @MC BKNRDC VD G@UD N = [0, η] 3GD MDWS DW@LOKD HKKTRSQ@SDR SGHR SGDNQDL $W@LOKD ,NLDMSR NE SGD #HƤTRHNM $PT@SHNM BE :< O "NMRHCDQ SGD CHƤTRHNM DPT@SHNM ut = uxx + axux + bx2 u VHSG SGD HMHSH@K BNMCHSHNM u(0, x) = φ(x) (E u HR HMSDQOQDSDC @R OQNA@AHKHSX CDMRHSX D F NE @ O@QSHBKD TMCDQFNHMF !QNVMH@M LNSHNM H D u(t, x) ≥ 0 @MC
∞ u(t, x)Cx = 1 , −∞
SGDM NMD L@X AD HMSDQDRSDC HM SGD LNLDMSR
∞ u(t, x)xn Cx . un (t) = −∞
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 6D MNV LTKSHOKX SGD O@QSH@K CHƤDQDMSH@K DPT@SHNM AX xn @MC HMSDFQ@SD NUDQ R RRTLHMF SG@S O@QSH@K HMSDFQ@SHNM HR ITRSHƥDC VD NAS@HM SGD BNTMS@AKD RXRSDL u˙ n = n(n − 1)un−2 − a(n + 1)un + bun+2 ,
∞ φ(x)xn Cx , un (0) = −∞
VGDQD u−1 (t) ≡ 0 @MC u0 (t) ≡ 1 +DS A AD SGD BNQQDRONMCHMF HMƥMHSD L@SQHW @MC BNMRHCDQ SGD RB@KD NE DLADCCDC !@M@BG RO@BDR ⎧ ⎫ ⎨ ⎬ ENQ 0 < α ≤ s ≤ β . Xs = u ∈ RN : |u|Xs = |uj | DWO(js)(j!)−1/2 < ∞ ⎩ ⎭ j≥1
.AUHNTRKX |u|Xs ≤ |u|Xs ENQ s < s @MC u ∈ Xs |A|L(Xs ,Xs ) ≤ M · (s − s )−1 ,
RHLOKD B@KBTK@SHNM XHDKCR
VHSG M := DWO(2β) · (1 + |a| + |b|) .
'DMBD SGD LNLDMSR NE φ @QD HM Xβ @MC SGD LNLDMSR NE u @QD HM Xs ENQ 0 ≤ t ≤ (M · e)−1 (β − s) 6D L@X QDOK@BD SGD KHMD@Q QHFGS G@MC RHCD A(t)x + b(t) NE 3GDNQDL AX @ MNM KHMD@Q ETMBSHNM f RTBG SG@S f : I × Xs → Xs HR BNMSHMTNTR @MC |f (t, x) − f (t, y)|Xs =
M · |x − y|Xs s − s
ENQ x, y ∈ Xs @MC t ∈ I .
%TQSGDQ FDMDQ@KHR@SHNMR @MC @OOKHB@SHNMR @QD FHUDM D F HM :
12 δ 3/2 .MBD ϕn (t) ≥ t3/2 /6 HS RS@XR SGDQD @R KNMF @R t < 1/2000 (MCDDC ENQ t ≥ 4δ @MC @R KNMF @R ϕn (t) ≥ t3/2 /6 ϕ˙ n (t) > 1/2 ϕn (t − δ) − t > 12 (t − δ)3/2 − t > t3/5 /10 2HMBD t3/5 /10 > (C/Ct)(t3/2 /6) SGD QDRTKS ENKKNVR (E n HR NCC ϕn (t) < −t3/2 /6 ENQ 3δ < t < 1/2000
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 6
2
1.5
4 1
2 0.5
0
0
−0.5
−2 −1
−4 −1.5
−6 −6
−4
−2
0
2
4
6
−2 −2
−1.5
−1
−0.5
@ 6
6
4
4
2
2
0
0
−2
−2
−4
−4
−6 −2
−1.5
−1
−0.5
0
0
0.5
1
1.5
2
A
0.5
1
1.5
2
−6 −6
−4
−2
B
0
2
4
6
2
4
6
C 6
2
1.5
4 1
2 0.5
0
0
−0.5
−2 −1
−4 −1.5
−2 −2
−1.5
−1
−0.5
0
0.5
1
1.5
2
−6 −6
−4
D
−2
0
E
%HFTQD (MSDFQ@K BTQUD OKNSR ENQ OQNAKDL
$WDQBHRD :☼< OOKHB@SHNM NE SGD /HB@QC +HMCDK±E ,DSGNC Ŕ /S %HMC SGD DW@BS RNKTSHNM NE SGD HMHSH@K U@KTD OQNAKDL x˙ = x2 ,
6HFWLRQ
x(0) = 1 .
3NAH@R 1HFNHO %KNQH@M 5XSS 2S@QSHMF VHSG x0 (t) = 1 @OOKX SGD /HB@QC +HMCDK±E HSDQ@SHNM SN B@KBTK@SD x1 (t) x2 (t) @MC x3 (t) @MC BNLO@QD SGDRD QDRTKSR VHSG SGD DW@BS RNKTSHNM $WDQBHRD :☼< OOKHB@SHNM NE SGD /HB@QC +HMCDK±E ,DSGNC Ŕ /S %HMC SGD DW@BS RNKTSHNM NE SGD HMHSH@K U@KTD OQNAKDL x˙ = 2t (1 + x) ,
x(0) = 0 .
2S@QSHMF VHSG x0 (t) = 0 B@KBTK@SD x1 (t) x2 (t) x3 (t) @MC x4 (t) @MC BNLO@QD SGDRD QDRTKSR VHSG SGD DW@BS RNKTSHNM $WDQBHRD :☼< OOKHB@SHNM NE SGD /HB@QC +HMCDK±E ,DSGNC Ŕ /S (S HR HMRSQTBSHUD SN RDD GNV SGD /HB@QC +HMCDK±E HSDQ@SHNM VNQJR VHSG @ BGNHBD NE SGD HMHSH@K @OOQNWHL@SHNM NSGDQ SG@M SGD BNMRS@MS ETMBSHNM x0 (t) = x0 OOKX SGD LDSGNC SN SGD HMHSH@K U@KTD OQNAKDL x˙ = t + x ,
x(0) = 1 .
VHSG x0 (t) = DWO(t) x0 (t) = 1 + t @MC x0 (t) = BNR(t) $WDQBHRD :☼< $WHRSDMBD NE 2NKTSHNMR 2GNV SG@S DUDQX HMHSH@K U@KTD OQNAKDL VHSG SGD CHƤDQDMSH@K DPT@SHNM x˙ = t · | RHM(tx)| G@R DW@BSKX NMD RNKTSHNM SG@S HR CDƥMDC NM SGD VGNKD NE R 3GD RNKTSHNMR VHSG x(0) = 0 CN MNS G@UD YDQNR $WDQBHRD :☼< 2NKTSHNM NE @ 'NLNFDMDNTR +HMD@Q .#$ 2XRSDL SQ@MRONQS LDBG@MHRL @KKNVR SGD DWBG@MFD ADSVDDM SVN QDRDQUNHQR NE R@KSR HM GNLNFDMDNTR RNKTSHNM 3GHR RXRSDL HR CDRBQHADC AX x˙ 1 = −k1 x1 + k2 x2 , x˙ 2 = k1 x1 − k2 x2 , VGDQD xi CDMNSDR SGD @LNTMS NE R@KS HM QDRDQUNHQ i i = 1, 2 @MC SGD ki ŗR @QD BNMRS@MS DWBG@MFD Q@SDR "NLOTSD SGD RNKTSHNM VHSG QDRODBS SN SGD HMHSH@K BNMCHSHNMR x1 (0) = s1 @MC x2 (0) = s2 @MC CHRBTRR HSR ADG@UHNQ ENQ t → ∞ $WDQBHRD :☼< 2NKTSHNM NE @M (MGNLNFDMDNTR +HMD@Q .#$ 2XRSDL Ŕ /S &HUD SGD FDMDQ@K QD@K RNKTSHNM NE SGD ENKKNVHMF SVN CHLDMRHNM@K HMGNLNFD MDNTR RXRSDL NE KHMD@Q CHƤDQDMSH@K DPT@SHNMR C x(t) 1 −1 x(t) RHM(t) = + , 0 2 y(t) BNR(t) Ct y(t)
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF VGDQD x, y : R → R @MC t ∈ R $WDQBHRD :☼< 2NKTSHNM NE @M (MGNLNFDMDNTR +HMD@Q .#$ 2XRSDL Ŕ /S +DS v ∈ C d AD @M DHFDMUDBSNQ NE SGD L@SQHW A ∈ Rd×d BNQQDRONMCHMF SN SGD DHFDMU@KTD λ ∈ C 2GNV SG@S ENQ SGD HMGNLNFDMDNTR CHƤDQDMSH@K DPT@SHNM x˙ = Ax + DWO (ωt) v @ O@QSHBTK@Q RNKTSHNM HR NAS@HMDC AX SGD @MR@SY x = β DWO (ωt) v ,
HE ω = λ
@MC x = βt DWO (ωt) v ,
HE ω = λ .
(M D@BG B@RD CDSDQLHMD SGD BNMRS@MS β %HM@KKX BNLOTSD SGD FDMDQ@K RNKTSHNM NE SGD CHƤDQDMSH@K DPT@SHNM ⎞ ⎛ ⎞ ⎛ 2 2 0 1 ⎠ ⎝ ⎝ 0 2 0 x + DWO (2t) 0 ⎠ . x˙ = 1 0 1 3 $WDQBHRD :☼< (MSDFQ@K "TQUDR HM SGD /K@MD #DSDQLHMD @KK BNMRS@MS @MC @KK ODQHNCHB HMSDFQ@K BTQUDR NE SGD UDBSNQ ƥDKC v : R2 → R2 VHSG v(0, 0) = (0, 0)T @MC 2 1 y x 2 v(x, y) = + x + y RHM , 2 2 −x y x +y HE (x, y) = (0, 0) ,NQDNUDQ RJDSBG SGD QDL@HMHMF HMSDFQ@K BTQUDR PT@KHS@SHUDKX $WDQBHRD :☼< $PTHU@KDMBD NE (MSDFQ@K "TQUDR +DS v : Ω → Rd AD @ BNMSHMTNTR UDBSNQ ƥDKC NM @M NODM RDS Ω ⊂ Rd @MC KDS α : Ω → R \ {0} 2GNV SG@S SGD SQ@BDR SQ@IDBSNQHDR NE SGD HMSDFQ@K BTQUDR NE SGD SVN UDBSNQ ƥDKCR v @MC αv BNHMBHCD ,NQD OQDBHRDKX (E ψ HR @ HMSDFQ@K BTQUD NE SGD UDBSNQ ƥDKC αv VHSG ψ(τ0 ) = x0 @MC HE τ = τ (t) HR @ SHLD SQ@MRENQL@SHNM CDƥMDC AX
τ α (φ (s)) Cs = t − t0 , τ0
SGDM ϕ := ψ ◦ τ HR @M HMSDFQ@K BTQUD NE SGD UDBSNQ ƥDKC v VHSG ϕ(τ0 ) = x0 $WDQBHRD :☼< 3Q@MRONQSHMF SGD 3GDNQDL NE "@Q@SGDNCNQX HMSN ,TKSHOKD #HLDMRHNMR %NQLTK@SD @MC OQNNE SGD SGDNQDL NE "@Q@SGDNCNQX 3GDNQDL ENQ RXRSDLR NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR HM SGD DWSDMCDC RDMRD
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS $WDQBHRD :☼< /QNUHMF SGD "NMSHMTHSX 3GDNQDL ENQ 2NKTSHNMR HM SGD $W SDMCDC 2DMRD %NKKNVHMF SGD OQNNE NE SGD BNMSHMT@SHNM 3GDNQDL RGNV SG@S 3GDNQDL GNKCR ENQ RNKTSHNMR HM SGD DWSDMCDC RDMRD ( D ENQ RNKTSHNMR HM SGD DWSDMCDC RDMRD RNV SGD ENKKNVHMF (M @ CNL@HM D NE SGD (t, x) OK@MD KDS SGD ETMBSHNM f AD CDƥMDC LD@RTQ@AKD HM t ENQ ƥWDC x @MC BNMSHMTNTR HM x ENQ ƥWDC t +DS SGDQD DWHRS @M HMSDFQ@AKD ETMBSHNM m RTBG SG@S |f (t, x)| ≤ m(t) ENQ (t, x) ∈ D 3GDM FHUDM @ RNKTSHNM ϕ NE x˙ = f (t, x) ENQ t ∈ (a, b) HS HR SGD B@RD SG@S ϕ(b − 0) DWHRSR @MC HE (b, ϕ(b − 0)) ∈ D SGDM ϕ B@M AD BNMSHMTDC NUDQ (a, b + δ] ENQ RNLD δ > 0 RHLHK@Q QDRTKS GNKCR @S a 3GTR SGD RNKTSHNM ϕ B@M AD BNMSHMTDC TO SN SGD ANTMC@QX NE D ,NQDNUDQ SGD R@LD BNMSHMT@SHNM HR U@KHC ENQ @ L@WHLTL RNKTSHNM ϕM NQ @ LHMHLTL RNKTSHNM ϕm $WDQBHRD :☼< .M SGD %NQL NE SGD %TMC@LDMS@K ,@SQHW #DSDQLHMD SGD ENQL NE SGD ETMC@LDMS@K L@SQHW NESDM B@KKDC :URQVNLPDWUL[ NE SGD ƥQRS NQCDQ RXRSDL @RRNBH@SDC SN @ d SG NQCDQ KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNM $WDQBHRD :< +DLL@ NE ,NQRD (M SGD UHBHMHSX NE @ RS@SHNM@QX ONHMS a @ C 2 ETMBSHNM f : Rd → R VHSG MNM CDFDMDQ@SD 'DRRH@M f (a) B@M AD @OOQNWHL@SDC AX SGD PT@CQ@SHB ENQL (x − a)T f (a)(x − a) 3GD KDLL@ NE ,NQRD SDKKR TR SG@S f HSRDKE HR KNB@KKX @MC HM RTHS@AKD BNNQCHM@SDR SGHR PT@CQ@SHB ENQL 3GHR KDLL@ HR DRRDMSH@K ENQ SGD L@SGDL@SHB@K ƥDKC NE CHƤDQDMSH@K SNONKNFX +DLL@ +DLL@ NE ,NQRD /HW f : U → R EH D C 2 IXQFWLRQ LQ D YLFLQLW\ U RI 0 ∈ Rd VXFK WKDW f (0) = 0 f (0) = 0 DQG QRQGHJHQHUDWH +HVVLDQ f (0) 7KHQ WKHUH LV D GLƱHRPRUSKLVP ϕ : U0 → V RI DQ HQYLURQPHQW U0 RI 0 WR DQ HQYLURQPHQW V RI 0 VXFK WKDW 2 f ◦ ϕ−1 (y) = y12 + · · · + yk2 − yk+1 + · · · + yd2 . /QNNE SGD KDLL@ NE ,NQRD +LQW 2S@QS AX BNMRSQTBSHMF @ RXLLDSQHB L@SQHW A(x) ∈ Rd×d SGD BNDƧBHDMSR NE VGHBG @QD C ∞ ETMBSHNMR RTBG SG@S f (x) =
1 T 2 x A(x)x ,
A(0) = f (0) .
%NQ x MD@Q 0 SGD L@SQHW A(x) HR HMUDQSHAKD -NV RDS B(x) := A(0)A(x)−1 3GDM B(0) = E 6HSG SGD GDKO NE @ ONVDQ RDQHDR BNMRSQHBS @ CHƤDQDMSH@AKD L@OOHMF
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF Q : U0 → Rn×n RTBG SG@S Q2 = B !DB@TRD BA = AB T VD G@UD QA = AQT s @MC VHSG S := Q−1 HS ENKKNVR A = SA(0)S T ,NQDNUDQ CDƥMD ψ(x) := S(x)T @MC SGTR VD NAS@HM f (x) = 12 ψ(x)T A(x)ψ(x) . #TD SN ψ (0) = E SGD ETMBSHNM ψ G@R @M HMUDQRHNM ϕ @S 0 6HSG SGHR VD FDS (f ◦ ϕ) (y) =
1 T 2 y A(0)y .
%HM@KKX SGHR K@RS PT@CQ@SHB ENQL B@M AD SQ@MRENQLDC SN OQHMBHO@K @WHR ENQL AX @ KHMD@Q SQ@MRENQL@SHNM $WDQBHRD :☼< .M 2DBNMC .QCDQ 2XRSDLR %NQ SGD RNKTSHNMR NE @ GNLNFDMDNTR RDBNMC NQCDQ KHMD@Q CHƤDQDMSH@K DPT@SHNM VHSG BNMSHMTNTR BNDƧBHDMSR NM SGD HMSDQU@K I RGNV SGD ENKKNVHMF $UDQX RNKTSHNM CHƤDQDMS EQNL SGD MTKK RNKTSHNMR G@R RHLOKD YDQNR NMKX @MC SGD RDS NE HSR YDQNR CNDR MNS G@UD @ BTLTK@SHNM ONHMS HM I (E (ϕ, ψ) HR @ ETMC@LDMS@K RXRSDL SGDM SGDQD HR @ YDQN NE ψ ADSVDDM @MX SVN YDQNR NE ϕ 3GHR QDRTKS HR RNLDSHLDR B@KKDC VHSDUDWLRQ WKHRUHP +LQW ϕψ˙ − ψ ϕ˙ G@R MN YDQNR $WDQBHRD :☼< .M SGD 5NKSDQQ@ +NSJ@ 2XRSDL 2GNV SG@S SGD 5NKSDQQ@ +NSJ@ RXRSDL G@R @KRN ƥQRS HMSDFQ@KR HM SGD SGQDD PT@CQ@MSR R+ × R− R− × R+ @MC R− × R− '@R SGD 5NKSDQQ@ +NSJ@ RXRSDL ODQHNCHB RNKTSHNMR HM NMD NE SGDRD SGQDD PT@CQ@MSR +LQW #HRBTRR VGDSGDQ SGD KDUDK RDSR NE SGD ƥQRS HMSDFQ@KR @QD BNLO@BS $WDQBHRD :☼< .RBHKK@SHNMR NE @ 2OGDQHB@K !TNX ROGDQHB@K ATNX NE Q@CHTR r ƦN@SR G@KE RTALDQFDC HM V@SDQ (E HS HR RTOOQDRRDC RKHFGSKX @ QDRSNQHMF ENQBD DPT@K SN SGD VDHFGS SN SGD CHROK@BDC V@SDQ OQDRRDR HS TOV@QC @MC HE HS HR SGDM QDKD@RDC HS VHKK ANA TO @MC CNVM %HMC SGD ODQHNC NE NRBHKK@SHNM HE SGD EQHBSHNM NE SGD V@SDQ HR MDFKDBSDC $WDQBHRD :☼< .RBHKK@SHNMR 4MCDQ &Q@UHSX 2TOONRD SG@S @ RSQ@HFGS STMMDK HR CQHKKDC SGQNTFG SGD D@QSG SGQNTFG @MX SVN ONHMSR NM SGD RTQE@BD (E SQ@BJR @QD K@HC SGDM Ŕ MDFKDBSHMF EQHBSHNM Ŕ @ SQ@HM OK@BDC HM SGD STMMDK @S NMD DMC VHKK QNKK TMCDQ SGD D@QSG TMCDQ HSR NVM VDHFGS RSNO @S SGD NSGDQ DMC @MC QDSTQM 2GNV SG@S SGD SHLD QDPTHQDC ENQ @ BNLOKDSD QNTMC SQHO HR SGD R@LD ENQ @KK RTBG STMMDKR @MC DRSHL@SD HSR U@KTD $WDQBHRD :< "NMSHMTNTR $WSDMRHNMR NE "NMSHMTNTR ,@OOHMFR /QNUD +DLL@ +DS X, Y AD !@M@BG RO@BDR Ω ⊂ X BKNRDC @MC f : Ω → Y BNMSHMTNTR 3GDM SGDQD HR @ BNMSHMTNTR DWSDMRHNM f˜ : X → Y RTBG SG@S f˜(X) ⊂ BNMU(f (Ω)) VGDQD BNMU(f (Ω)) CDMNSDR SGD BNMUDW GTKK NE f (Ω) 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS $WDQBHRD :☼< %HKKHMF SGD &@OR HM $W@LOKD $W@LOKD HR Q@SGDQ E@RS O@BDC %HKK SGD F@OR NE HSR NTSKHMD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
5HFDS 6LPXODWLRQ RI 2UGLQDU\ 'LƨHUHQWLDO (TXDWLRQV 3GD QDKDU@MS @RODBSR NE SGD MTLDQHB@K RHLTK@SHNM NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @QD CHRBTRRDC "K@RRHB@K DWOKHBHS NMD RSDO LDSGNCR RTBG @R SGD DW OKHBHS $TKDQ NQ 1TMFD *TSS@ RBGDLDR @QD OQDRDMSDC ADENQD LNSHU@SHMF HLOKHBHS @OOQN@BGDR ENQ RSHƤ .#$R U@QHDSX NE DW@LOKD HLOKDLDMS@SHNMR RGNV SGD ADG@UHNTQ NE SGD CHƤDQDMS RBGDLDR @OOKHDC SN CHƤDQDMS HMHSH@K U@KTD OQNA KDLR 3GD AQHDE CHRBTRRHNM NE SGD -DVL@QJ E@LHKX NE RBGDLDR @MC NE RXL OKDBSHB LDSGNCR VHCDMR SGD RBNOD NE SGHR BG@OSDQ SN @OOQN@BGDR SG@S @QD SXO HB@KKX MNS SQD@SDC HM BNTQRD BTQQHBTK@ ATS SG@S OQNUHCD TRDETK ED@STQDR VNQSG ADHMF NM SGD Q@C@Q HM SGD BNMSDWS NE 1.#$ RHLTK@SHNMR
*DX "NMBDOSR ,@MX LDSGNCR DWHRS ENQ NAS@HMHMF @M@KXSHB@K RNKTSHNMR NE NQCHM@QX CHƤDQDMSH@K DPT@SHNMR R VD G@UD RDDM HM "G@O SGDRD @OOQN@BGDR @QD OQHL@QHKX KHLHSDC SN RODBH@Kŕ@MC SXOHB@KKX RHLOKDŕSXODR NE .#$R 6GDM @OOKHB@AKD SGDX OQN CTBD @ RNKTSHNM HM SGD ENQL NE @ MHBD @M@KXSHB ENQLTK@ (M OQ@BSHB@K OQNAKDLR VD EQDPTDMSKX DMBNTMSDQ .#$R SG@S @QD MNS @LDM@AKD SN RNKTSHNM AX RODBH@K LDSGNCR @MC @ MTLDQHB@K @OOQNWHL@SHNM ENQ RNKTSHNMR LTRS AD ENTMC ,NQD NUDQ DUDM HE @M @M@KXSHB@K RNKTSHNM B@M AD NAS@HMDC @ MTLDQHB@K RNKTSHNM NE SGD NQCHM@QX CHƤDQDMSH@K DPT@SHNM L@X AD OQDEDQ@AKD HM BDQS@HM B@RDR DROD BH@KKX HE SGD @M@KXSHB@K RNKTSHNM HR UDQX BNLOKHB@SDC @MC SGTR BNLOTS@SHNM@KKX DWODMRHUD SN DU@KT@SD -TLDQHB@K LDSGNCR ENQ NQCHM@QX CHƤDQDMSH@K DPT@SHNMR L@X AD CDQHUDC HM U@QHNTR V@XR .MD @OOQN@BG HR SN TRD SGD KHMJ ADSVDDM NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @MC HMSDFQ@SHNM RDD : OO < D F (MSDFQ@SHMF ANSG RHCDR NE SGD HMHSH@K U@KTD OQNAKDL RDD $P ADKNV EQNL s SN s + h VD NAS@HM
s+h
s+h y(t)Ct ˙ = f (t, y(t))Ct , s
s
@MC FDS SGD HMSDFQ@K DPT@SHNM NE SGD BNQQDRONMCHMF .#$ NM [s, s + h] @R
s+h f (t, y(t))Ct . y(s + h) = y(s) + s
OOQNWHL@SHMF SGD HMSDFQ@K VHSG RNLD MTLDQHB@K HMSDFQ@SHNM RBGDLD QDRTKSR HM ENQLTK@D ENQ SGD @OOQNWHL@SD RNKTSHNM NE .#$R 3GTR @ RSQNMF QDK@SHNM &KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS ADSVDDM MTLDQHB@K PT@CQ@STQD @MC MTLDQHB@K HMSDFQ@SHNM ENQ RNKUHMF NQCH M@QX CHƤDQDMSH@K DPT@SHNMR DWHRSR (M SGD B@RD VGDM SGD @OOQNWHL@SHNM NE s+h f (t, y(t))Ct CNDR MNS HMUNKUD SGD U@KTD y(s + h) SGD U@KTD NMD HR SQXHMF s SN @OOQNWHL@SD ENQ SGD MDWS SHLD RSDO SGD BNQQDRONMCHMF LDSGNCR @QD B@KKDC H[SOLFLW PHWKRGV 5HBD UDQR@ HE y(s + h) HR HM SGD ENQLTK@ VD B@KK SGDRD LPSOLFLW PHWKRGV 2TBG RBGDLDR SXOHB@KKX HLOKX SGD RNKTSHNM NE @ MNM KHMD@Q RXRSDL NE DPT@SHNMR HM D@BG SHLD RSDO VGHBG L@JDR SGDRD LDSGNCR BNLOTS@SHNM@KKX LNQD DWODMRHUD "DQS@HM BHQBTLRS@MBDR NQ OQNAKDLR L@X QDPTHQD SGD TRD NE HLOKHBHS RBGDLDR 6GHKD QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 'NV B@M .#$ RXRSDLR AD SQD@SDC MTLDQHB@KKX 6G@S B@SDFNQHDR NE OQNAKDLR DWHRS @MC VGHBG RODBHƥB LDSGNCR CN SGDX QDPTHQD 6GX CN RN L@MX CHƤDQDMS HMSDFQ@SHNM RBGDLDR DWHRS 'NV CN SGDX CHE EDQ @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR "NMRHRSDMBX NE .#$ HMSDFQ@SHNM RBGDLDR "NMUDQFDMBD NE .#$ HMSDFQ@SHNM RBGDLDR $WOKHBHS UR HLOKHBHS LDSGNCR 3GD QDL@HMCDQ NE SGHR BG@OSDQ G@R SGD ENKKNVHMF RSQTBSTQD 6D OQDRDMS @ QD RTKS BNMBDQMHMF SGD BNMCHSHNM NE HMHSH@K U@KTD OQNAKDLR HM 2DB (M 2DB @ RTQUDX NM BK@RRHB@K NMD RSDO LDSGNCR HR FHUDM 6D AQHDƦX CHRBTRR RSHƤ .#$R @R @ LNSHU@SHNM ENQ HLOKHBHS RBGDLDR @MC OQDRDMS SGD HLOKHBHS $TKDQ LDSGNC @MC SGD SQ@ODYNHC@K QTKD HM 2DB 3GD E@LHKX NE -DVL@QJ LDSGNCR HM 2DB BNMRSQTBSDC ENQ RDBNMC NQCDQ RXRSDLR HM RSQTBSTQ@K CXM@LHBR HR @M @KSDQM@SHUD SN ENQLTK@SHMF SGD OQNAKDL @R @ RXRSDL NE .#$R (M 2DB @ AQHDE DWBTQRHNM KD@CR TR SN RXLOKDBSHB LDSGNCR @ B@SDFNQX NE MNM RS@MC@QC RBGDLDR VGHBG ONRRDRR BDQS@HM TRDETK BNMRDQU@SHNM OQNODQSHDR %HM@KKX 2DB SHNM RTLL@QHRDR SGD BNMSDMSR NE SGHR BG@OSDQ
&DMDQ@K RODBSR NE -TLDQHB@K 2NKTSHNM NE .#$R %NQ SGD R@JD NE BNLO@SHAHKHSX VHSG BK@RRHB@K KHSDQ@STQD HM SGD ƥDKC NE MTLDQ HBR ENQ .#$R VD MNV @KSDQ SGD MNS@SHNM HM SGD CDƥMHSHNM NE SGD HMHSH@K U@KTD OQNAKDL (5/ y˙ = f (t, y(t)),
t ∈ [t0 , te ]
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF y(t0 ) = y0 ,
ENQ f : [t0 , te ] × Rm → Rm ADHMF RTƧBHDMSKX RLNNSG -NSD SG@S VD NLHS SGD UDBSNQ NE O@Q@LDSDQR λ NE $P HM SGHR CDƥMHSHNM RHMBD HS CNDR MNS G@UD @MX HLO@BS NM SGD MTLDQHB@K RBGDLDR CDQHUDC ADKNV 3GD BNMRHCDQ@SHNM NE ƥQRS NQCDQ RXRSDLR HR RTƧBHDMS RHMBD DUDQX RXRSDL NE GHFGDQ NQCDQ B@M AD QDENQLTK@SDC SN ENQL@KKX AD NE ƥQRS NQCDQ RDD 2DB 'DMBD MTLDQHB@K RBGDLDR SG@S @QD @AKD SN CD@K VHSG RXRSDLR NE DPT@SHNMR L@X @KRN AD @OOKHDC SN .#$R BNMS@HMHMF GHFGDQ NQCDQ CDQHU@SHUDR %NKKNVHMF :< SGD ENKKNVHMF SGDNQDL RGNVR GNV LTBG SVN RNKTSHNMR NE SGD .#$ RXRSDL B@M CHƤDQ CDODMCHMF NM SGD CHƤDQDMBD HM SGDHQ HMHSH@K U@KTDR 3GHR BNQQDRONMCR SN @M@KXRHMF SGD BNMCHSHNM NE SGD HMHSH@K U@KTD OQNAKDL 3GDNQDL )RU WZR VROXWLRQV y, z RI WKH 2'( ZLWK GLƱHUHQW LQLWLDO YDO XHV DQG IRU DOO t, t0 LW KROGV ||y(t) − z(t)|| ≤ ||y(t0 ) − z(t0 )|| · eL·|t−t0 |
ZLWK 0 < L ∈ R 3URRI +DS t0 < t D(t) := ||y(t) − z(t)|| HR @ BNMSHMTNTR RB@K@Q ETMBSHNM 'DMBD t E(t) := e−Lt t0 D(t)dt HR BNMSHMTNTRKX CHƤDQDMSH@AKD 3GDQDENQD HS GNKCR D(t) = eLt E(t) = LeLt E(t) + eLt E (t) .
%QNL VHSG s = t0 ENQ y(t) @MC z(t) EQNL SGD SQH@MFKD HMDPT@KHSX @MC SGD +HORBGHSY BNMSHMTHSX VD G@UD
t
t D(t) ≤ ||y0 − z0 || + ||f (τ, y(τ )) − f (τ, z(τ ))||dτ ≤ ||y0 − z0 || + LD(τ )dτ . t0
t0
/KTFFHMF HMSN KDES @MC TRHMF SGD CDƥMHSHNM NE $ QHFGS VD NAS@HM LeLt E(t) + LeLt E (t) ≤ ||y0 − z0 || + LeLt E(t) ,
E(t) =
E (t) ≤ ||y0 − z0 ||Le−Lt , t E (τ )dτ ≤ ||y0 − z0 || e−Lt0 − e−Lt .
t0
-NSD SG@S E(t0 ) = 0 AX CDƥMHSHNM 4RHMF SGDRD DRSHL@SDR NE SGD QHFGS G@MC RHCD NE QDRTKSR HM ! D(t) ≤ ||y0 − z0 || · eL(t−t0 ) − 1 + 1 . 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS (M B@RD NE x < x0 NMD TRDR −x @R HMCDODMCDMS U@QH@AKD @MC −f @R QHFGS G@MC RHCD NE SGD BNQQDRONMCHMF .#$ $P QDOQDRDMSR @M TOODQ ANTMC ENQ SGD DQQNQ NQ BNMCHSHNM %NQ MTLDQHB@K RNKTSHNMR VD DMBNTMSDQ HMDW@BS HMHSH@K U@KTDR CTD SN QNTMC NƤ DQQNQR @MCNQ CHRBQDSHR@SHNM DQQNQR 'DMBD SGD QDKH@AHKHSX NE RNKTSHNMR LD@ RTQDC UH@ CHLHMHRGDR VHSG te >> t0 CTD SN SGD DWONMDMSH@K SDQL ,NQD @BBTQ@SD DQQNQ QDOQDRDMS@SHNMR DWHRS ATS @QD LNQD BNLOKDW SN CDQHUD @MC DU@K T@SD (M SGD ENKKNVHMF RDBSHNMR CHƤDQDMS CHRBQDSHR@SHNM LDSGNCR ENQ .#$R VHKK AD CHRBTRRDC KK NE SGDL QDKX NM @ CHRBQDSHR@SHNM NE SGD SHLD HMSDQU@K TMCDQ BNM RHCDQ@SHNM CDMNSDC AX t0 < t1 < . . . < tn = te hn = tn+1 −tn HR B@KKDC SGD SHLD RSDO RHYD VGHBG VD @RRTLD SN AD DPTHCHRS@MS HM SGD ENKKNVHMF H D hi = h ∀i %NQ SGD MTLDQHB@K HMSDFQ@SHNM NE .#$R VD MDDC SN BNLOTSD @OOQNWHL@SD RN KTSHNMR y n ≈ y(tn ) KK LDSGNCRŕHM SGD ENKKNVHMF @MC HM FDMDQ@KŕB@M AD ENQLTK@SDC TRHMF @M TOC@SD ETMBSHNM Φf y n+1 = y n + h · Φf (h, yh ),
n = 0, 1, . . . .
-NSD SG@S Φf HM MDDCR SN RNLDGNV DU@KT@SD SGD QHFGS G@MC RHCD f NE SGD .#$ @MC CDODMCR NM SGD SHLD RSDO RHYD h @MC @ UDBSNQ yh QDOQDRDMSHMF k OQDUHNTRKX BNLOTSDC @OOQNWHL@SHNMR H D yh = (y n , y n−1 , . . . , y n−k+1 ) 3GD ƥDKC HR MNV OQDO@QDC SN CHRBTRR RNLD LDSGNCR HM CDS@HK 6D ƥQRS OQDRDMS DWOKHBHS NMD RSDO LDSGNCR ADENQD S@BJKHMF HLOKHBHS RBGDLDR !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 6G@S HR SGD A@RHB HCD@ SN CDQHUD MTLDQHB@K RBGDLDR ENQ .#$R TRHMF SGD QDK@SHNM 0 6GX @QD HLOKHBHS RBGDLDR BNLOTS@SHNM@KKX LNQD DWODMRHUD 0 6G@S HR SGD OQNAKDL NE SGD TOODQ ANTMC ENQ SGD BNMCHSHNM HM $P ENQ K@QFD U@KTDR NE t 0 6G@S CNDR SGD TOC@SD ETMBSHNM Φ NE @ MTLDQHB@K RBGDLD FDMDQ@KKX CD ODMC NM
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
$WOKHBHS .MD 2SDO ,DSGNCR ENQ .#$R 3GD BK@RR NE NMD RSDO LDSGNCR TRDR C@S@ NE NMKX NMD OQDUHNTR SHLD RSDO tn SN BNLOTSD @M @OOQNWHL@SD RNKTSHNM NE SGD MDWS SHLD RSDO tn+1 'DMBD HM SGD DWOKHBHS B@RD SGD TOC@SD ETMBSHNM Φf NE CDODMCR NM y n NMKX @MC VD L@X VQHSD SGD TOC@SD HM @ LNQD RODBHƥB ENQL y n+1 = y n + Φf (hn , tn , y n , f (tn , y n )) .
6D MNV OQDRDMS SGQDD VDKK JMNVM QDOQDRDMS@SHUDR NE DWOKHBHS NMD RSDO LDSGNCR ENQ .#$R SGD DWOKHBHS $TKDQ LDSGNC 'DTMŗR LDSGNC @MC SGD BK@R RHB@K 1TMFD *TSS@ RBGDLD 6D RGNV , 3+ ! ETMBSHNMR TRDC SN BNLO@QD SGD SGQDD LDSGNCR HM 2DB
$WOKHBHS $TKDQ ,DSGNC 3GD DWOKHBHS $TKDQ LDSGNC @KRN JMNVM @R SGD ENQV@QC $TKDQ %$ LDSGNC HR @ RSQ@HFGSENQV@QC @OOQN@BG SN BNLOTSD MTLDQHB@K @OOQNWHL@SHNMR NE .#$R .MD V@X NE LNSHU@SHMF SGHR ƥQRS NQCDQ RBGDLD HR SN @OOQNWHL@SD SGD SHLD CDQHU@SHUD NE SGD HMHSH@K U@KTD OQNAKDL TRHMF ENQV@QC ƥMHSD CHƤDQDMBDR y˙ = ˙
y n+1 − y n hn
ENQ SHLD RSDOR n @MC n + 1 "NLAHMHMF SGHR VHSG @ KHMD@Q @OOQNWHL@SHNM NE SGD TMJMNVM ETMBSHNM y @S SHLD RSDO tn+1 TRHMF SGD CDQHU@SHUD DU@KT@SDC @S SGD OQDUHNTR SHLD RSDO tn QDRTKSR HM SGD DWOKHBHS $TKDQ RBGDLD y n+1 = y n + hn · f (tn , y n ) .
3GD TOC@SD ETMBSHNM NE SGD DWOKHBHS $TKDQ LDSGNC @R @ NMD RSDO LDSGNC HM SGD RDMRD NE $P HR BKD@QKX UHRHAKD (M SDQLR NE QDK@SHNM SN MTLDQHB@K PT@CQ@STQD RBGDLDR SGD DWOKHBHS $TKDQ LDSGNC B@M AD HMSDQOQDSDC @R SGD KDES QDBS@MFKD PT@CQ@STQD QTKD @OOKHDC SN HM 2DB H D
s+h f (t, y(t))Ct ≈ f (s, y(s)) · h , s
$WOKHBHS $TKDQ HR SGD BNLOTS@SHNM@KKX BGD@ODRS .#$ RNKUDQ HM SDQLR NE LDL NQX @MC DU@KT@SHNMR NE SGD RXRSDL ETMBSHNM f 3GHR GNKCR ODQ SHLD RSDO @MC SGTR HR MNS @ RS@SDLDMS NM DƧBHDMBX HM SDQLR NE @BBTQ@BX ODQ BNRS ENQ SG@S VD VNTKC G@UD SN BNMRHCDQ SGD @OOQNWHL@SHNM NQCDQ @MC ONRRHAKD QDRSQHBSHNMR NM SGD SHLD RSDO RHYD h 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
, 3+ ! $W@LOKD BMi2;`i21mH2`XK (LOKDLDMS@SHNM NE SGD DWOKHBHS $TKDQ LDSGNC VHSG DPTHCHRS@MS SHLD RSDOOHMF E T M B S H N M D Q Q H M S D F Q @ S D $ T K D Q S SDMC X EG@MCKD - X1DE G SDMC−S - S S G SDMC MN3HLD2SDOR K D M F S G S X X E N Q M MN3HLD2SDOR X X G EG@MCKD S M− X DMC D Q Q X − X1DE
.MD ONRRHAKD HLOKDLDMS@SHNM NE SGD DWOKHBHS $TKDQ RBGDLD HR FHUDM HM , 3 + ! $W@LOKD 6D TRD DPTHCHRS@MS SHLD RSDOR NE RHYD h SN RTBBDRRHUDKX @OOQNWHL@SD SGD RNKTSHNM @S L SHLD RSDOR 3GD QDSTQM U@KTD GNKCR SGD CHƤDQ DMBD SN @M @M@KXSHB@K QDEDQDMBD RNKTSHNM ENQ OQNAKDLR VGDQD SGHR DWHRSR RDD OQNAKDL HM 2DB ADKNV
'DTMŗR ,DSGNC
%NQ DWOKHBHS $TKDQ VD TRDC @ ETMBSHNM DU@KT@SHNM NE f @S y n 3GD HMENQL@SHNM QDPTHQDC SN BNLOTSD SGD MDWS SHLD RSDO NMKX QDKHDR NM SGD K@RS SHLD RSDO VHSG @ BDQS@HM řCDK@XŚ HM MDV S@MFDMS HMENQL@SHNM .MD HCD@ SN HLOQNUD SGHR HR SN TRD @UDQ@FDC S@MFDMS HMENQL@SHNM AX HMBNQONQ@SHMF HMENQL@SHNM BKNRDQ SN SGD MDV SHLD RSDO tn+1 2HMBD DWOKHBHS RBGDLDR @QD RHLOKD @MC DƧBHDMS VD CN MNS V@MS SN TRD f (tn+1 , y n+1 ) @R SGHR VNTKC QDRTKS HM @M DWODMRHUD MNM KHMD@Q RXRSDL NE DPT@SHNMR SN AD RNKUDC HM D@BG SHLD RSDO 2HMBD SGD DWOKHBHS $TKDQ LDSGNC @OOQNWHL@SDR DW@BSKX SGHR U@KTD VD B@M TRD SGD BNQQDRONMCHMF ENQLTK@ HM SGD ETMBSHNM f 3GD QDRTKSHMF RBGDLD HR 'DTMŗR LDSGNC y n+1 = y n +
hn · [f (tn , y n ) + f (tn+1 , y n + hn · f (tn , y n ))] . 2
-NSD SG@S VD HMUDRS @M @CCHSHNM@K DU@KT@SHNM NE f HM D@BG SHLD RSDO %NQ RHL OKD OQNAKDLR SGHR CNDR MNS QDOQDRDMS @ L@INQ NUDQGD@C ATS VGDM HS BNLDR SN LNQD BNLOKDW RBDM@QHNR SGHR L@X HMSQNCTBD RTARS@MSH@K @CCHSHNM@K BNRSR HM SGD B@RD NE .#$ HMSDFQ@SHNM HMRHCD /#$R @ ETMBSHNM DU@KT@SHNM HMUNKUDR SGD BNLOTS@SHNM NE @KK CHRBQDSD RO@SH@K NODQ@SNQR NM SGD VGNKD FQHC 3GD @C U@MS@FD NE 'DTMŗR LDSGNC NUDQ SGD DWOKHBHS $TKDQ RBGDLD HR NMD NQCDQ NE BNM
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
, 3+ ! $W@LOKD BMi2;`i2>2mMXK (LOKDLDMS@SHNM NE 'DTMŗR LDSGNC VHSG DPTHCHRS@MS SHLD RSDOOHMF E T M B S H N M D Q Q HMSDFQ@SD'DTM S SDMC X EG@MCKD - X1DE G SDMC−S - S S G SDMC MN3HLD2SDOR K D M F S G S X X E N Q M MN3HLD2SDOR RSDO G EG@MCKD S M− X RSDO G EG@MCKD S M X RSDO X X RSDO RSDO DMC D Q Q X − X1DE
RHRSDMBX , 3+ ! $W@LOKD RGNVR @M HLOKDLDMS@SHNM NE 'DTMŗR LDSGNC
$WOKHBHS 1TMFD *TSS@ 2BGDLDR R VHSG SGD DWOKHBHS $TKDQ @MC 'DTMŗR LDSGNC 1TMFD *TSS@ RBGDLDR ADKNMF SN SGD BK@RR NE NMD RSDO LDSGNCR 3GD A@RHB HCD@ HR SN TOC@SD SGD BTQQDMS U@KTD y n VHSG @ KHMD@Q @OOQNWHL@SHNM RHLHK@Q SN 'DTMŗR LDSGNC ATS TRHMF @M DRSHL@SDC RKNOD BNMRHRSHMF NE @M @UDQ@FD NE s HMRSD@C NE HMCHUHCT@K RKNODR y n+1 = y n + hn ·
s
bj Ynj .
j=1
3GD RSDO UDBSNQR Yni @MC BNQQDRONMCHMF RKNODR Yni @QD QDBTQRHUDKX CDƥMDC @R Yni = y + hn n
s
aij Ynj ,
Yni = f (tn + ci hn , Yni )
∀i = 1, . . . , s.
j=1
3GD BK@RRHB@K 1TMFD *TSS@ RBGDLD 1* G@R SGD ENKKNVHMF DWOKHBHS ENQL Y1 Y2 Y3 Y4
= yn = y n + h2n Y1 = y n + h2n Y2 = y n + hn Y 3
Y1 Y2 Y3 Y4
= f (tn , Y1 ) = f (tn + hn /2, Y2 ) = f (tn + hn /2, Y3 ) = f (tn+1 , Y4 )
H D DQQNQ QDCTBSHNM B@O@AHKHSX NE SGD LDSGNC VHSG CDBQD@RHMF SHLD RSDOR RDD 2DB
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
, 3+ ! $W@LOKD BMi2;`i2_E9XK (LOKDLDMS@SHNM NE SGD SG NQCDQ 1TMFD *TSS@ RBGDLD VHSG DPTHCHRS@MS SHLD RSDOOHMF E T M B S H N M D Q Q HMSDFQ@SD'DTM S SDMC X EG@MCKD - X1DE G SDMC−S - S S G SDMC MN3HLD2SDOR K D M F S G S X X E N Q M MN3HLD2SDOR RSDO G EG@MCKD S M− X RSDO G EG@MCKD S M− G X RSDO RSDO G EG@MCKD S M− G X RSDO RSDO G EG@MCKD S M X RSDO X X RSDO RSDO RSDO RSDO DMC D Q Q X − X1DE
y
n+1
= y + hn n
1 1 1 1 Y + Y + Y + Y 6 1 3 2 3 3 6 4
.
3GD BNQQDRONMCHMF HLOKDLDMS@SHNM HR FHUDM HM , 3+ ! $W@LOKD -NSD SG@S bi2Ti BNQQDRONMCR SN Yi "NMRHRSDMBX BNMCHSHNMR DWHRS SG@S @KKNV TR SN RODBHEX SGD O@Q@LDSDQR aij bi @MC ci ENQ @ CDRHQDC NQCDQ NE BNMRHRSDMBX p NE @ 1TMFD *TSS@ LDSGNC RDD 2DB ENQ CDƥMHSHNM @MC CDS@HKR NM BNMRHRSDMBX 3GDRD BNMCHSHNMR B@M AD CDQHUDC UH@ 3@XKNQ DWO@MRHNM NQ !TSBGDQ SQDDR BE : 0 RTBG SG@S V (x) ≥ 2 ENQ @KK x = K !TS SGHR CNDR MNS GNKC ENQ SGD ONHMS (R + 1, 0) RHMBD V (R + 1, 0) ≤ 1 VGHBG HR @ BNMSQ@CHBSHNM SN SGD @RRTLOSHNM
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 3GDNQDL .M SGD !@RHM NE SSQ@BSHNM /HW V : N → R EH DQ XQLIRUPO\ XQERXQGHG VWULFW /\DSXQRYIXQFWLRQ ZKHUH N LV D QHLJKERUKRRG RI WKH HTXLOLE ULXP x0 7KHQ N ⊂ A(x0 ) 3URRI %NKKNVHMF :< O VD G@UD SG@S RHMBD V HR TMHENQLKX TMANTMCDC NM N ENQ @MX α > 0 SGD RDS Kα := {x ∈ N : V (x) ≤ α} HR BNLO@BS (S HR ONRHSHUDKX HMU@QH@MS ADB@TRD V HR @ RSQHBS +X@OTMNU ETMBSHNM !X 3GDNQDL VD G@UD Kα ∈ A(x0 ) N = ∪n∈N Kn @MC SGTR N ⊂ A(x0 )
2SQTBSTQ@K 2S@AHKHSX +HMD@QHR@SHNM +X@OTMNU RS@AHKHSX HR @ KNB@K BNMBDOS NE @ RDS NQ @M DPTHKHAQHTL ONHMS 3GTR DRODBH@KKX ENQ DPTHKHAQHTL ONHMSR SGD KHMD@QHYDC CXM@LHBR @QNTMC SGDL @QD GDKOETK ENQ RSTCXHMF SGD RS@AHKHSX NE BNLOKHB@SDC MNM KHMD@Q RXRSDLR 3GHR VNQJR HE SGD NQAHSR NE SGD MNM KHMD@Q RXRSDL @MC SG@S NE HSR KHMD@QHR@SHNM D F UH@ 3@XKNQ DWO@MRHNM @QD SNONKNFHB@K BNMITF@SD SN D@BG NSGDQ VGHBG HR SGD B@RD HE SGD DPTHKHAQHTL HR GXODQANKHB @R VD VHKK RDD HM SGD ENKKNVHMF
3GD /QHMBHOKD NE +HMD@QHYDC 2S@AHKHSX SGD 3GDNQDL NE '@QSL@M &QNAL@M (M NQCDQ SN RSTCX SGD RS@AHKHSX NE @M DPTHKHAQHTL x∗ ∈ Rd d ∈ N NE @ CXM@LHB@K RXRSDL HS HR NESDM TRDETK SN DW@LHMD SGD ORFDO OLQHDUL]HG V\VWHP @QNTMC x∗ !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS (( 0 2S@SD +@ 2@KKDŗR OQHMBHOKD @MC RJDSBG HSR OQNNE 0 6GHBG BNMCHSHNMR CN XNT MDDC SN RGNV @RXLOSNSHB RS@AHKHSX VHSG SGD @HC NE +X@OTMNU ETMBSHNMR 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0 0 &HUD SGD CDƥMHSHNM NE @ TMHENQLKX TMANTMCDC ETMBSHNM 0 6G@S B@M XNT R@X @ANTS SGD A@RHM NE @SSQ@BSHNM NE @ TMHENQLKX TMANTMCDC +X@OTMNU ETMBSHNM 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS SGHR HR B@KKDC /\DSXQRYśV ƲUVW PHWKRG MNM KHMD@Q RXRSDL HR KHMD@QHYDC @R ENKKNVR +DS TR BNMRHCDQ SGD CXM@LHB@K RXRSDL VGHBG BNLDR EQNL SGD NQCHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = f (x) f ∈ C 2 (Rd , Rd ) %HQRS NM @ MDHFGANQGNNC U NE x∗ @ SQ@MRENQL@SHNM T : U ⊂ Rd → Rd HR CDƥMDC @R T (x) := x ˜ := x − x∗ GDMBD SGD DPTHKHAQHTL HR L@OODC HMSN SGD NQHFHM 2DBNMC SGD ETMBSHNM f HR BG@MFDC BNQQDRONMCHMFKX SN @ ETMBSHNM f˜ NE x ˜ 3GHQC @ ƥQRS NQCDQ 3@XKNQ DWO@MRHNM HR ODQENQLDC NM SGD SGTR SQ@MRENQLDC QHFGS G@MC RHCD f˜ VHSG SGD MDV DPTHKHAQHTL x ˜∗ = 0 %NTQSG SGD GHFGDQ NQCDQ SDQLR @QD MDFKDBSDC 3GHR OQNBDCTQD KD@CR SN SGD KHMD@Q RXRSDL x˙ = f (x)
x ˜˙ = A˜ x,
VGDQD A HR SGD CDQHU@SHUD #f˜(0) NE f˜ VHSG QDRODBS SN SGD SQ@MRENQLDC RO@BD U@QH@AKDR x ˜ +DS TR MNV BNMBDMSQ@SD NM KHMD@Q RXRSDLR @MC RTOOQDRR SGD SHKCD RXLANK 2HMBD SGD RNKTSHNMR NE SGD KHMD@Q HMHSH@K U@KTD OQNAKDL x˙ = Ax
VHSG HMHSH@K BNMCHSHNMR
x(0) = x0
@QD FHUDM AX x(t) = eAt x0 SGD KNMF SHLD ADG@UHNQ NE SGD RNKTSHNMR NQ LNQD OQDBHRDKX HSR BNLONMDMSR HR CDSDQLHMDC AX SGD DHFDMU@KTDR NE A ∈ Rd×d SGDRD DHFDMU@KTDR @QD NESDM B@KKDC /\DSXQRY H[SRQHQWV NE SGD DPTHKHAQHTL 6D B@M BNMBKTCD SGD RS@AHKHSX NE SGD DPTHKHAQHTL x∗ = 0 AX @OOKXHMF SGDRD KNMF SHLD ADG@UHNQ BNMRHCDQ@SHNMR NM RNKTSHNMR HM @ RTHS@AKD MDHFGANQGNNC NE x∗ = 0 3GDNQDL 2S@AHKHSX NE SGD .QHFHM HM +HMD@Q 2XRSDLR &RQVLGHU WKH G\ QDPLFDO V\VWHP LQGXFHG E\ WKH OLQHDU RUGLQDU\ GLƱHUHQWLDO HTXDWLRQ x˙ = Ax A ∈ Rd×d ,I 5H(λ) > 0 IRU DQ HLJHQYDOXH λ RI A RU LI 5H(λ) = 0 IRU DQ HLJHQYDOXH λ RI A ZLWK KLJKHU DOJHEUDLF WKDQ JHRPHWULF PXOWLSOLFLW\ WKHQ WKH RULJLQ LV XQVWDEOH ,I DOO HLJHQYDOXHV λ RI A KDYH QRQSRVLWLYH UHDO SDUW LH 5H(λ) ≤ 0 DQG DOO HLJHQYDOXHV ZLWK 5H(λ) = 0 DUH VHPLVLPSOH WKHQ WKH RULJLQ LV VWDEOH ,I 5H(λ) < 0 IRU DOO HLJHQYDOXHV λ RI A WKHQ WKH RULJLQ LV DV\PSWRWLFDOO\ VWDEOH 3URRI 2DD :< 2DB NQ : O < (M O@QSHBTK@Q @ RTHS@AKD MDHFGANQGNNC NE SGD NQHFHM B@M AD CHUHCDC HMSN SGQDD HMU@QH@MS RTARO@BDR VGHBG @QD SGD RO@M NE @KK FDMDQ@KHYDC DHFDMUDBSNQR
ş H D SGDHQ @KFDAQ@HB @MC FDNLDSQHB LTKSHOKHBHSX @QD DPT@K
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF SN SGD DHFDMU@KTDR λ NE A RTBG SG@S SGDHQ QD@K O@QSR RG@QD SGD R@LD RHFM SGD XQVWDEOH VXEVSDFH HR RO@MMDC AX SGNRD VHSG 1D(λ) > 0 SGD VWDEOH VXEVSDFH AX SGNRD VHSG 1D(λ) < 0 @MC SGD FHQWHU VXEVSDFH AX SGNRD VHSG 1D(λ) = 0 %HFTQD RJDSBGDR SGD U@QHNTR SXODR NE CXM@LHBR NE OK@M@Q RXRSDLR VHSG QDRODBS SN SGD RS@AHKHSX OQNODQSHDR NE SGD DPTHKHAQH@ SGDQDHM RDD :< O %HM@KKX VD B@M DWSDMC SGDRD BNMBDOSR SN MNM KHMD@Q RXRSDLR @S KD@RS KN B@KKX @MC NMKX ENQ SGNRD DPTHKHAQH@ ENQ VGHBG SGD L@SQHW NE SGD KHMD@QHYDC RXR SDL G@R MN DHFDMU@KTDR VHSG U@MHRGHMF QD@K O@QS H D MN BDMSDQ RTARO@BD HR OQDRDMS #DƥMHSHNM 'XODQANKHB $PTHKHAQHTL +DS x∗ AD @M DPTHKHAQHTL NE SGD NQ CHM@QX CHƤDQDMSH@K DPT@SHNM x˙ = f (x) f ∈ C 1 (Rd , Rd ) 3GDM x∗ HR B@KKDC K\ SHUEROLF HE 1D(λ) = 0 ENQ @KK DHFDMU@KTDR λ NE #f (x∗ ) (E MNS x∗ HR B@KKDC QRQ K\SHUEROLF 3GD MDWS SGDNQDL SDKKR TR SG@S KNB@KKX @QNTMC GXODQANKHB DPTHKHAQH@ SGD CX M@LHBR NE SGD KHMD@QHYDC @MC MNM KHMD@Q RXRSDL @QD DPTHU@KDMS 3GDNQDL '@QSL@M &QNAL@MR 3GDNQDL NE +HMD@QHYDC 2S@AHKHSX &RQ VLGHU WKH G\QDPLFDO V\VWHP JLYHQ E\ WKH DXWRQRPRXV GLƱHUHQWLDO HTXDWLRQ x˙ = f (x) RQ Rd ZLWK f ∈ C 2 (Rd , Rd ) DQG x∗ ∈ Rd EHLQJ DQ HTXLOLEULXP SRLQW RI WKLV V\VWHP /HW Φ(t; x) GHQRWH WKH ƳRZ RI WKLV V\VWHP DQG Ψ(t; x) WKH ƳRZ RI WKH OLQHDUL]HG V\VWHP x˙ = 'f (x∗ )(x − x∗ ) ,I x∗ LV K\SHUEROLF WKHQ WKHUH LV DQ RSHQ VXEVHW U ⊂ Rd VXFK WKDW x∗ ∈ U DQG D KRPHRPRUSKLVP h : U → h(U) ⊂ Rn VXFK WKDW Ψ(t; h(x)) = h(Φ(t; x)) ZKHQHYHU x ∈ U 3URRI 2DD :< 2DB NQ : OO Ŕ< 3GHR KNB@K RS@AHKHSX BNMRDQUHMF QDK@SHNMRGHO ADSVDDM KHMD@Q @MC MNM KHMD@Q RXRSDLR @KKNVR TR SN DWSDMC SGD BNMBDOSR NE SGD RS@AKD TMRS@AKD @MC BDMSDQ RTARO@BD SN MNM KHMD@Q CXM@LHB@K RXRSDLR 3GD BNQQDRONMCHMF ORFDO VWDEOH XQVWDEOH @MC FHQWHU PDQLIROG NE SGD MNM KHMD@Q RXRSDL @QD HMU@QH@MS @MC S@M FDMS SN SGDHQ BNTMSDQO@QS RTARO@BDR 3GD RS@AKD @MC TMRS@AKD L@MHENKCR @QD TMHPTDKX CDSDQLHMDC @MC G@UD SGD R@LD CHLDMRHNM @R SGDHQ BNTMSDQO@QSR 3GNTFG '@QSL@M &QNAL@MŗR SGDNQDL NE KHMD@QHYDC RS@AHKHSX CNDR MNS QDB NLLDMC @MXSGHMF ENQ SGD MNM GXODQANKHB B@RD H D SGD B@RD NE DHFDMU@K TDR VHSG U@MHRGHMF QD@K O@QS .MD B@M TRD BDMSDQ L@MHENKC LDSGNCR NQ +X@OTMNU ETMBSHNMR +X@OTMNUŗR RDBNMC LDSGNC SN F@HM LNQD HMENQL@SHNM
LNQD FDMDQ@K @OOQN@BG HR FHUDM AX RN B@KKDC MNQL@K ENQLR VGDQD MNS NMKX SGD KHMD@Q @O OQNWHL@SHNM NE SGD MNMKHMD@Q RXRSDL HR BNMRHCDQDC ATS @KRN GHFGDQ NQCDQ @OOQNWHL@SHNMR RDD D F :< 1DB@KK KRPHRPRUSKLVP HR @ AHIDBSHUD BNMSHMTNTR L@OOHMF VHSG BNMSHMTNTR HMUDQRD ş RDD D F :< 2DB NQ :< O 3G @MC O 3G şRDD :< 2DB NQ : OO < D F
6HFWLRQ
Stable Continuum of Equilibria
No Flow Situation
Unstable Continuum of Equilibria
3NAH@R 1HFNHO %KNQH@M 5XSS
A= a 0 0 -b
a0 0b
Stable Node (2. Kind) A= 0 1 0 0
Center
Unstable Focus
A=
a1 0a
A=
A = ib 0 0 ib
Stable Node (3. Kind)
Unstable Node (3. Kind)
A = a1+ib1 0 0 a2+ib2
A=
A = -a 0 0 -a
-a 0 0 -b
Stable Focus
Unstable Node (2. Kind)
Unstable Continuum of Equilibria
A= a 0 0 a
A = -a 0 0 0
Stable Node (1. Kind)
A= 0 0 0 0
Saddle Point
Unstable Node (1. Kind)
A= a 0 0 0
A = -a1+ib1 0 0 -a2+ib2
asymptotically (Lyapunov) stable (Lyapunov) stable unstable direction of the flow
A=
-a 1 0 -a
Real constants: a, a1, a2, b, b1, b2 > 0
%HFTQD &Q@OGHB@K BK@RRHƥB@SHNM NE DPTHKHAQH@ HM OK@M@Q RXRSDLR VHSG QDRODBS SN SGDHQ RS@AHKHSX OQNODQSHDR RDD :< O
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF (M SGD QDL@HMCDQ NE SGHR RDBSHNM VD CHRBTRR SVN LDSGNCR SG@S @KKNV TR SN CDBHCD HE SGD RODBSQTL σ(A) NE @ d × d L@SQHW A KHDR HM SGD KDES G@KE OK@MD H D HE SGD +X@OTMNU DWONMDMSR NE A KD@C SN KHMD@Q RS@AHKHSX 3GDRD LDSGNCR @QD JMNVM @R SGD 1NTSG 'TQVHSY RS@AHKHSX BQHSDQHNM @MC SGD @OOKHB@SHNM NE SGD +NYHMRJHH LD@RTQD
3GD 1NTSG 'TQVHSY 2S@AHKHSX "QHSDQHNM 6D ENKKNV :< OO ENQ SGD NTSKHMD NE SGD 1NTSG 'TQVHSY RS@AHKHSX BQHSD QHNM RDD :< OO @MC HSR HLOQNUDLDMS SGD +HDM@QC "GHO@QS RS@AHKHSX BQHSDQHNM RDD :< OO %NQ SGD CDQHU@SHNM NE SGD 1NTSG 'TQVHSY BQHSDQHNM VD BNMRHCDQ SGD ONKXMN LH@K f (z) = a0 z n + b0 z n−1 + a1 z n−2 + b1 z n−3 + . . . ,
(a0 = 0) ,
!DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ( 0 6G@S B@M XNT R@X @ANTS SGD RS@AHKHSX NE SGD NQHFHM @S KHMD@Q RXRSDLR VHSG QDRODBS SN SGD RHFM NE SGD QD@K O@QSR NE SGD DHFDMU@KTDR NE SGD RXRSDL L@SQHW 0 &HUD RNLD QDOQDRDMS@SHUD OG@RD RO@BD OKNSR ENQ SGD CHƤDQDMS SXODR NE RS@AHKHSX OQNODQSHDR BNLAHM@SHNMR SG@S B@M NBBTQ HM OK@M@Q RXRSDLR 0 6G@S HR @ GXODQANKHB DPTHKHAQHTL 0 2S@SD SGD SGDNQDL NE '@QSL@M @MC &QNAL@M 0 #DSDQLHMD SGD RS@AHKHSX NE SGD MTKK RNKTSHNM NE SGD C@LODC MNM KHMD@Q ODMCTKTL x˙ = y ,
6HFWLRQ
@MC
y˙ = − RHM(x) − 0.1y .
3NAH@R 1HFNHO %KNQH@M 5XSS VHSG QD@K BNDƧBHDMSR B@KKDC +XUZLW] PDWUL[ ⎛ b0 b1 b2 ⎜ a0 a1 a2 ⎜ ⎜ 0 b0 b 1 ⎜ H := ⎜ 0 a a 0 1 ⎜ ⎜ 0 0 b0 ⎝
a0 , b0 , . . . 3GD ENKKNVHMF RPT@QD L@SQHW NE NQCDQ n HR ... ... ... ... ...
bn−1 an−1 bn−2 an−2 bn−3
⎞ ⎟ ⎟ ⎟ ⎟ ⎟, ⎟ ⎟ ⎠
# VGDQD
ak = 0 HE k > bk = 0
HE k >
0n1 2
0 n−1 1 . 2
6D VHKK SQ@MRENQL SGD 'TQVHSY L@SQHW RTBBDRRHUDKX SN TOODQ SQH@MFTK@Q ENQL AX &@TRRH@M DKHLHM@SHNM 6D BNMƥMD NTQ @SSDMSHNM SN SGD QDFTK@Q B@RD VGDQD −1 b0 = 0 c0 := a1 − a0 b1 b−1 0 = 0 d0 := b1 − b0 c1 c0 = 0 DSB %HQRS @ESDQ LTK −1 SHOKXHMF SGD NCC MTLADQDC QNVR AX a0 b0 VD RTASQ@BS SGDRD EQNL SGD BNQQD RONMCHMF QNVR NE DUDM MTLADQ 03GTR 1 SGD QNVR NE DUDM MTLADQ G@UD DMSQHDR c0 , c1 , . . . VGDQD ck = 0 HE k > n2 − 1 -DWS @ESDQ LTKSHOKXHMF SGD QNVR NE DUDM MTLADQ AX b0 c−1 0 VD RTASQ@BS SGDRD EQNL SGD BNQQDRONMCHMF QNVR NE NCC MTLADQ 3GHR KD@CR SN ⎛ ⎞ ⎞ ⎛ b0 b1 b2 . . . bn−1 b0 b1 b2 . . . bn−1 ⎜ 0 c0 c1 . . . cn−2 ⎟ ⎜ 0 c0 c1 . . . cn−2 ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ 0 b0 b1 . . . bn−2 ⎟ ⎜ 0 0 d0 . . . dn−3 ⎟ ⎜ ⎟ ⎟ ⎜ H ⎜ 0 0 c ... c ⎟ ⎜ 0 0 c0 . . . cn−3 ⎟ . 0 n−3 ⎟ ⎜ ⎟ ⎜ ⎜ 0 0 b0 . . . bn−3 ⎟ ⎜ 0 0 d0 . . . dn−4 ⎟ ⎝ ⎠ ⎠ ⎝
OOKXHMF SGHR OQNBDCTQD ETQSGDQ VD nSG NQCDQ L@SQHW ⎛ b0 ⎜ 0 ⎜ R := ⎜ 0 ⎝
TKSHL@SDKX @QQHUD @S @M TOODQ SQH@MFTK@Q ⎞ b1 b2 . . . c0 c 1 . . . ⎟ ⎟ , 0 d0 . . . ⎟ ⎠
VGHBG VD RG@KK B@KK SGD 5RXWK PDWUL[ #DƥMHSHNM $PTHU@KDMBD NE ,@SQHBDR AX ,HMNQR 3VN n × n L@SQHBDR A @MC B @QD R@HC SN AD HTXLYDOHQW HE @MC NMKX HE ENQ @MX 1 ≤ k ≤ n SGD BNQQD RONMCHMF kSG NQCDQ LHMNQR NM SGD ƥQRS k QNVR NE SGDRD L@SQHBDR @QD DPT@K H D HM SGD MNS@SHNM NE ODQLTS@SHNMR $ % $ % 1 2 ... k 1 2 ... k A = B , i 1 i2 . . . i k i1 i2 . . . i k ENQ 1 ≤ ik ≤ n @MC k = 1, 2, . . . , n
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 2HMBD SGD kSG NQCDQ LHMNQR NM SGD ƥQRS k QNVR k = 1, 2, . . . , n CN MNS BG@MFD SGDHQ U@KTDR HE NMD RTASQ@BSR EQNL @MX QNVR @MNSGDQ QNV LTKSHOKHDC AX @M @Q AHSQ@QX BNMRS@MS SGD 'TQVHSY @MC 1NTSG L@SQHBDR @QD DPTHU@KDMS $ % $ % 1 2 ... k 1 2 ... k H = R , i1 i 2 . . . i k i1 i2 . . . ik ENQ 1 ≤ ik ≤ n @MC k = 1, 2, . . . , n 3GD DPTHU@KDMBD NE SGD 'TQVHSY @MC 1NTSG L@SQHBDR ODQLHSR TR SN DWOQDRR @KK NE SGD DKDLDMSR NE R HM SDQLR NE SGD LHMNQR NE SGD 'TQVHSY L@SQHW H @MC SGDQDENQD HM SDQLR NE BNDƧBHDMSR NE SGD FHUDM ONKXMNLH@K f (z) 6D NAS@HM $ % $ % $ % 1 1 2 1 2 3 H = b0 , H = b 0 c0 , H = b 0 c0 d0 , 1 1 2 1 2 3 $ % $ % $ % 1 2 1 2 3 1 = b 0 c1 , H = b 0 c0 d1 , H = b1 , H 1 3 1 2 4 2 $ % $ % $ % 1 2 1 2 3 1 = b 0 c2 , H = b 0 c0 d2 , H = b2 , H 1 4 1 2 5 3
. 3GD RTBBDRRHUD OQHMBHO@K LHMNQR NE SGD 'TQVHSY L@SQHW H @QD TRT@KKX B@KKDC SGD +XUZLW] GHWHUPLQDQWV @MC CDMNSDC AX $ % 1 = b0 , Δ1 = H 1 $ % 1 2 b0 b1 Δ2 = H = CDS = a 1 b0 − a 0 b1 = b 0 c 0 , 1 2 a0 a1 @MC RN NM SN
⎛ $
Δn = H
1 2 ... n 1 2 ... n
%
⎜ ⎜ ⎜ = CDS ⎜ ⎜ ⎝
b 0 b1 b2 a0 a1 a 2 0 b 0 b1 0 a0 a1
... ... ... ...
bn−1 an−1 bn−2 an−2
⎞ ⎟ ⎟ ⎟ ⎟. ⎟ ⎠
(M SGD QDFTK@Q B@RD @KK NE SGD PT@MSHSHDR b0 , c0 , d0 , . . . @QD CDƥMDC @MC CHƤDQ DMS EQNL YDQN 3GHR HR BG@Q@BSDQHRDC AX SGD HMDPT@KHSHDR Δ1 = b0 = 0 ,
Δ2 = b0 c0 = 0 ,
Δ3 = b0 c0 d0 = 0 ,
...
Δn = 0 .
(M O@QSHBTK@Q b0 = Δ1 ,
6HFWLRQ
c0 =
Δ2 , Δ1
d0 =
Δ3 , Δ2
... .
3NAH@R 1HFNHO %KNQH@M 5XSS 3GDNQDL 1NTSG 'TQVHSY 3GDNQDL ,Q WKH UHJXODU FDVH WKH QXPEHU k RI URRWV RI WKH UHDO SRO\QRPLDO f (z) = a0 z n + . . . ZKLFK OLH LQ WKH ULJKW KDOISODQH LV JLYHQ E\ WKH IRUPXOD Δ2 Δ3 Δn k = V a0 , Δ1 , , ,..., Δ1 Δ2 Δn−1 RU HTXLYDOHQWO\ k = V (a0 , Δ1 , Δ3 , . . . ) + V (1, Δ2 , Δ4 , . . . ) , ZKHUH V (x1 , . . . , xn ) GHQRWHV WKH QXPEHU RI VLJQ FKDQJHV LQ WKH VHTXHQFH x1 , . . . , x n 3URRI 3GD OQNNE HR A@RDC HM 1NTSGŗR BQHSDQHNM BE :< OO 3GD RODBH@K B@RD HM VGHBG @KK QNNSR NE f (z) KHD HM SGD KDES G@UD OK@MD 1D(z) < 0 ENKKNVR EQNL SGD 1NTSG 'TQVHSY 3GDNQDL ENQ k = 0 "NQNKK@QX 1NTSG 'TQVHSY 2S@AHKHSX "QHSDQHNM ,Q WKH UHJXODU FDVH LQ RU GHU IRU DOO URRWV RI WKH UHDO SRO\QRPLDO f (z) = a0 z n + . . . a0 = 0 WR KDYH QHJDWLYH UHDO SDUWV LW LV QHFHVVDU\ DQG VXƴFLHQW WKDW WKH LQHTXDOLWLHV # IRU n RGG a 0 Δn > 0 a0 Δ1 > 0, Δ2 > 0, a0 Δ3 > 0, Δ4 > 0, . . . Δn > 0 IRU n HYHQ KROG ,I a0 > 0 WKHVH FRQGLWLRQV UHGXFH WR Δi > 0 IRU i = 1, 2, . . . , n QD@K ONKXMNLH@K f (z) SGD BNDƧBHDMSR NE VGHBG R@SHREX SGD BNMCHSHNMR HM HR @ QD@K ONKXMNLH@K VGNRD QNNSR @KK G@UD MDF@SHUD QD@K O@QSR @MC HR B@KKDC +XUZLW] SRO\QRPLDO (E VD HMSQNCTBD SGD TRT@K MNS@SHNM ENQ SGD BNDƧBHDMSR NE SGD ONKXMNLH@K f (z) = αn z n + αn−1 z n−1 + αn−2 z n−2 + . . . + α0 ,
VHSG αn > 0 ,
SGDM SGD 1NTSG 'TQVHSY BNMCHSHNMR LX AD QD VQHSSDM HM SGD QDFTK@Q B@RD @R SGD ENKKNVHMF CDSDQLHM@MS@K HMDPT@KHSHDR αn−1 αn−3 Δ1 = αn−1 > 0 , Δ2 = > 0, αn αn−2 ⎞ ⎛ αn−1 αn−3 αn−5 an−2 αn−4 ⎠ > 0 , Δ3 = ⎝ αn 0 αn−1 αn−3
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF @MC RN NM SN
⎛ ⎜ ⎜ Δn = ⎜ ⎝
⎞ αn−1 αn−3 αn−5 . . . αn an−2 αn−4 . . . ⎟ ⎟ > 0. 0 αn−1 αn−3 . . . ⎟ ⎠
(E SGD CDSDQLHM@MS BNMCHSHNMR Δi > 0 i = 1, 2, . . . , n @QD R@SHRƥDC SGDM SGD ONKXMNLH@K f (z) L@X AD VQHSSDM @R @ OQNCTBS NE αn AX E@BSNQR NE SGD ENQL z + γ2 @MC z 2 + γ1 z + γ0 VHSG β0 , β1 , β2 > 0 3GTR @KK BNDƧBHDMSR NE f (z) LTRS AD ONRHSHUD H D αi > 0 i = 1, 2, . . . , n (M BNMSQ@RS SN SGD CDSDQLHM@MS BNMCHSHNMR Δi > 0 i = 1, 2, . . . , n SGD BNDE ƥBHDMS BNMCHSHNMR αi > 0 i = 1, 2, . . . , n @QD MDBDRR@QX ATS MNS RTƧBHDMS ENQ @KK SGD QNNSR NE f (z) SN KHD HM SGD KDES G@KE OK@MD 'NVDUDQ NMBD SGD BNDƧBHDMS BNMCHSHNMR ai > 0 i = 1, 2, . . . , n @QD R@SHRƥDC SGD CDSDQLHM@MS BNMCHSHNMR Δi > 0 i = 1, 2, . . . , n @QD MN KNMFDQ HMCDODMCDMS %NQ HMRS@MBD VGDM n = 4 SGD 1NTSG 'TQVHSY BNMCHSHNMR QDCTBD SN SGD RHMFKD HMDPT@KHSX Δ3 > 0 VGDM n = 5 SN SGD O@HQ NE HMDPT@KHSHDR Δ2 > 0 @MC Δ4 > 0 @MC VGDM n = 6 SN SGD O@HQ NE HMDPT@KHSHDR Δ3 > 0 SNFDSGDQ VHSG Δ5 > 0 %NKKNVHMF :< OO SGHR BHQBTLRS@MBD V@R RSTCHDC AX SGD %QDMBG L@SGDL@SHBH@MR +HDM@QC @MC "GHO@QS @MC KDC SGDL HM SN SGD CHRBNUDQX NE RS@AHKHSX BQHSDQH@ CHƤDQDMS EQNL SGD 1NTSG 'TQVHSY BQHSDQHNM 3GDNQDL 3GD +HDM@QC "GHO@QS 2S@AHKHSX "QHSDQH@ 1HFHVVDU\ DQG VXƴ FLHQW FRQGLWLRQV IRU WKH UHDO SRO\QRPLDO f (z) = αn z n + αn−1 z n−1 + αn−2 z n−2 + · · ·+α0 ZLWK αn > 0 WR KDYH RQO\ URRWV ZLWK QHJDWLYH UHDO SDUWV PD\ EH H[SUHVVHG LQ DQ\ RI WKH IRXU IROORZLQJ IRUPV α0 , α2 , α4 , · · · > 0 DQG Δ1 , Δ3 , · · · > 0 α0 , α2 , α4 , · · · > 0 DQG Δ2 , Δ4 , · · · > 0 α0 , α1 , α3 , · · · > 0 DQG Δ1 , Δ3 , · · · > 0 RU α0 , α1 , α3 , · · · > 0 DQG Δ2 , Δ4 , · · · > 0 3URRI M DKDF@MS OQNNE HR A@RDC NM SGD RN B@KKDC "@TBGX HMCDW @MC '@MJDK RDPTDMBDR RDD :< OO "KD@QKX SGDRD ENTQ +HDM@QC "GHO@QS RS@AHKHSX BQHSDQH@ G@UD @M @CU@MS@FD NUDQ SGD 1NTSG 'TQVHSY BNMCHSHNMR HM SG@S SGDX HMUNKUD @ANTS G@KE @R L@MX CDSDQ LHM@MS HMDPT@KHSHDR %QNL 3GDNQDL HS ENKKNVR SG@S ENQ @ QD@K ONKXMNLH@K HM VGHBG @KK BNDƧ BHDMSR NQ DUDM NMKX RNLD NE SGDL M@LDKX α0 , α2 , α4 , . . . NQ α0 , α1 , α3 , . . . @QD ONRHSHUD SGD 1NTSG 'TQVHSY CDSDQLHM@MS HMDPT@KHSHDR Δi > 0 i = 1, 2, . . . , n 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS @QD MNS HMCDODMCDMS (M O@QSHBTK@Q SGD ONRHSHUHSX NE SGD 'TQVHSY CDSDQLHM@MSR NE NCC NQCDQ HLOKHDR SG@S NE SGD 'TQVHSY CDSDQLHM@MSR NE DUDM NQCDQ @MC BNM UDQRDKX
3GD +NYHMRJHH ,D@RTQD @MC 2S@AHKHSX
(M SGHR DWONRHSHNM NM SGD +NYHMRJHH ,D@RTQD VD ENKKNV : 0 7KHQ A LV VWDEOH LI DQG RQO\ LI μ(A[2] ) < 0 IRU VRPH /R]LQVNLLPHDVXUH μ RQ RN ×N ZLWK N = d2 $W@LOKD 2S@AHKHSX NE @ /@Q@LDSDQ #DODMCDMS ,@SQHW RDD :< O 6D RGNV SG@S SGD 3 × 3 L@SQHW ⎛ ⎞ −1 −t2 −1 ⎠ t A(t) = ⎝ t −t − 1 2 2 t 1 −t − 1 HR RS@AKD ENQ @KK t > 0 %QNL 3@AKD VD QD@C NƤ SGD RDBNMC @CCHSHUD BNL ONTMC L@SQHW ⎞ ⎛ −2 − t −t 1 ⎠. 1 −2 − t2 −t2 A[2] (t) = ⎝ 2 2 −t t −2 − t − t A[2] (t) HR CH@FNM@KKX CNLHM@MS HM HSR QNVR 'DMBD KDS μ AD SGD +NYHMRJHH LD@RTQD VHSG QDRODBS SN SGD MNQL x ∞ = RTO{|x1 |, |x2 |, |x3 |} 3GDM μ(A[2] (t)) = −1 < 0 ,NQDNUDQ CDS(A(t)) = −2t5 − 3t3 − 2t2 − t − 1 < 0 ENQ t > 0 3GD RS@AHKHSX NE A(t) ENKKNVR EQNL 3GDNQDL
"G@OSDQŗR 2TLL@QX 6D RS@QSDC NTQ QDUHDV NM CDSDQLHMHRSHB CXM@LHB@K RXRSDLR AX HMSQNCTBHMF SGD ETMC@LDMS@K MNSHNMR @MC BNMBDOSR NE BNMSHMTNTR CXM@LHB@K RXRSDLR KNMF SHLD ADG@UHNQ HMU@QH@MBD @MC @SSQ@BSHNM 3GHR O@UDC SGD V@X SNV@QCR @M@KXRHMF RS@AHKHSX HM SGD RDMRD NE +X@OTMNU %HQRS SGD TRD NE +X@OTMNU ETMBSHNMR ENQ OQNUHMF @RXLOSNSHB RS@AHKHSX HM MNM KHMD@Q RXRSDLR V@R RSTC HDC -DWS VD @M@KXYDC SGD BNQQDRONMCDMBD ADSVDDM SGD RS@AHKHSX OQNODQSHDR NE MNM KHMD@Q RXRSDLR @MC SGDHQ KHMD@QHR@SHNMR 'DQD VD F@UD SGD SGDNQDL NE 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS '@QSL@M @MC &QNAL@M @ BK@RRHƥB@SHNM NE DPTHKHAQH@ HM OK@M@Q RXRSDLR VHSG QDRODBS SN SGDHQ RS@AHKHSX OQNODQSHDR @R VDKK @R SGD SDBGMHPTDR ENQ SGD CDSDQ LHM@SHNM NE SGD ONRHSHNM NE +X@OTMNU DWONMDMSR NE @ KHMD@Q RXRSDL KHJD SGD 1NTSG 'TQVHSY BQHSDQHNM NE SGD +NYHMRJHH LD@RTQD LDSGNC
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF $WDQBHRD :☼< .M (MU@QH@MBD 2GNV SGD @RRDQSHNM RS@SDC HM #DƥMHSHNM H D SG@S ENQ ONRHSHUDKX HMU@QH@MS RDSR B SGDHQ BKNRTQD B @MC HMSDQHNQ int(B) @QD ONRHSHUDKX HMU@QH@MS SNN $WDQBHRD :☼< 2S@AHKHSX UH@ +X@OTMNU %TMBSHNMR 2GNV SG@S SGD YDQN RNKTSHNM NE SGD RXRSDL x˙ = −x − xy 2 ,
y˙ = −y − x2 y ,
HR FKNA@KKX @RXLOSNSHB@KKX RS@AKD AX FTDRRHMF @ RTHS@AKD +X@OTMNU ETMBSHNM (MUDRSHF@SD SGD RS@AHKHSX NE SGD YDQN RNKTSHNM NE x˙ = −xy − x ,
y˙ = y 3 − xy 3 + xy − y ,
AX TRHMF SGD ETMBSHNM V (x, y) = −x − KM(1 − x) − y − KM(1 − y) KNB@KKX @QNTMC (x, y) = (0, 0) !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS (( 0 2S@SD SGD 1NTSG 'TQVHSY RS@AHKHSX BQHSDQHNM 0 &HUD SGD CDƥMHSHNM NE SGD +NYHMRJHH LD@RTQD 0 6G@S B@M XNT R@X @ANTS RS@AHKHSX NE SGD MTKK RNKTSHNM TRHMF SGD +NYHMRJHH LD@RTQD 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $WDQBHRD :☼< :< 6G@S 1D@KKX '@OODMDC @S SGD /@QHR /D@BD 3@KJR 3GD NQHFHM@K OK@M CDUDKNODC AX 'DMQX *HRRHMFDQ @MC +D #TB 3GN SN RDSSKD SGD 5HDSM@LDRD V@Q HR CDRBQHADC ADKNV (S V@R @FQDDC SG@S LHKKHNM 2NTSG 5HDS M@LDRD @MSR @MC LHKKHNM -NQSG 5HDSM@LDRD @MSR VNTKC AD OK@BDC HM SGD A@BJX@QC NE SGD /QDRHCDMSH@K O@K@BD HM /@QHR @MC AD @KKNVDC SN ƥFGS HS NTS ENQ @ KNMF ODQHNC NE SHLD (E SGD 2NTSG 5HDSM@LDRD @MSR CDRSQNXDC MD@QKX @KK SGD -NQSG 5HDSM@LDRD @MSR SGDM 2NTSG 5HDSM@L VNTKC QDS@HM BNMSQNK NE @KK NE HSR K@MC (E SGD -NQSG 5HDSM@LDRD @MSR VDQD UHBSNQHNTR SGDM -NQSG 5HDSM@L VNTKC S@JD NUDQ @KK NE 2NTSG 5HDSM@L (E SGDX @OOD@QDC SN AD ƥFGSHMF SN @ RS@MCNƤ SGDM 2NTSG 5HDSM@L VNTKC AD O@QSHSHNMDC @BBNQCHMF SN SGD OQNONQSHNM NE @MSR QDL@HMHMF -NV SGD 2NTSG 5HDSM@LDRD @MSR CDMNSDC AX S @MC SGD -NQSG 5HDSM@LDRD MSR CDMNSDC AX N BNLODSD @F@HMRS D@BG NSGDQ @BBNQCHMF SN SGD ENKKNVHMF CHƤDQDMSH@K DPT@SHNMR dS dt dN dt
= =
1 1 S− S×N 10 20 1 1 1 N− N2 − S×N 100 100 100
-NSD SG@S SGDRD DPT@SHNMR BNQQDRONMC SN QD@KHSX RHMBD 2NTSG 5HDSM@LDRD @MSR LTKSHOKX LTBG LNQD Q@OHCKX SG@M SGD -NQSG 5HDSM@LDRD @MSR ATS SGD -NQSG 5HDSM@LDRD @MSR @QD LTBG ADSSDQ ƥFGSDQR 3GD A@SSKD ADF@M @S RG@QO NM SGD LNQMHMF NE ,@X @MC V@R RTODQUHRDC AX @ QDOQDRDMS@SHUD NE /NK@MC @MC @ QDOQDRDMS@SHUD NE "@M@C@ S O L NM SGD @ESDQMNNM ,@X SGD QDOQDRDMS@SHUD NE /NK@MC ADHMF TMG@OOX VHSG SGD OQNFQDRR NE SGD A@SSKD RKHOODC @ A@F NE -NQSG 5HDSM@LDRD @MSR HMSN SGD A@BJX@QC ATS GD V@R RONSSDC AX SGD D@FKD DXDR NE SGD QDOQDRDMS@SHUD NE "@M@C@ 3GD 2NTSG 5HDSM@LDRD HL LDCH@SDKX BK@HLDC @ ENTK @MC B@KKDC NƤ SGD @FQDDLDMS SGTR RDSSHMF SGD RS@FD ENQ SGD OQNSQ@BSDC S@KJR SG@S ENKKNVDC HM /@QHR 3GD QDOQDRDMS@SHUD NE /NK@MC V@R G@TKDC ADENQD @ ITCFD HM /@QHR ENQ RDMSDMBHMF 3GD ITCFD @ESDQ L@JHMF RNLD QDL@QJR @ANTS SGD RSTOHCHSX NE SGD 2NTSG 5HDSM@LDRD F@UD SGD /NKHRG QDOQDRDMS@SHUD @ UDQX KHFGS RDMSDMBD )TRSHEX L@SGDL@SHB@KKX SGD ITCFDRŗR CD BHRHNM +LQW 2GNV SG@S SGD KHMDR N = 2 @MC N + S = 1 CHUHCD SGD ƥQRS PT@CQ@MS HMSN SGQDD QDFHNMR RDD %HF HM VGHBG dS/dt @MC dN /dt G@UD ƥWDC RHFMR 2GNV SG@S DUDQX RNKTSHNM S(t) N (t) NE VGHBG RS@QS HM QDFHNM ( NQ QDFHNM ((( LTRS DUDMST@KKX DMSDQ QDFHNM (( 2GNV SG@S DUDQX RNKTSHNM S(t) N (t) NE VGHBG RS@QS HM QDFHNM (( LTRS QDL@HM SGDQD ENQ @KK ETSTQD SHLD
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
N
S0
0
1
S
%HFTQD 2JDSBG NE SGD OG@RD RO@BD BNQQDRONMCHMF SN OQNAKDL
"NMBKTCD EQNL SG@S S(t) → ∞ ENQ @KK RNKTSHNMR S(t) N (t) NE VHSG S(t0 ) @MC N (t0 ) ONRHSHUD "NMBKTCD SNN SG@S N (t) G@R @ ƥMHSD KHLHS ≤ 2 @R t → ∞ 3N OQNUD SG@S N (t) → 0 NARDQUD SG@S SGDQD DWHRSR t0 RTBG SG@S dN /dt ≤ −N ENQ t ≥ t0 "NMBKTCD EQNL SGDRD HMDPT@KHSX SG@S N (t) → 0 @R t → ∞ $WDQBHRD :☼< OOKHB@SHNM NE SGD 1NTSG 'TQVHSY ,DSGNC OOKX SGD 1NTSG 'TQVHSY LDSGNC SN CDSDQLHMD SGD KNB@SHNM NE @KK QNNSR NE SGD ENKKNVHMF ONKXMNLH@KR p(x) = 3x + 5 p(x) = −2x2 − 5x − 100 p(x) = 523x2 − 57x + 189 p(x) = (x2 + x − 1)(x2 + x + 1) @MC p(x) = x3 + 5x2 + 10x − 3 $WDQBHRD :☼< (LOKDLDMS@SHNM NE SGD 1NTSG 'TQVHSY KFNQHSGL (LOKDLDMS SGD 1NTSG 'TQVHSY LDSGNC ENQ CDSDQLHMHMF SGD KNB@SHNM NE SGD QNNSR NE @ ONKXMNLH@K NE CDFQDD 4 VHSGHM SGD BNLOKDW OK@MD HM , 3+ ! 4RD SGD , 3+ ! QNNS ƥMCHMF LDSGNCR SN OKNS SGD QNNSR HM SGD BNLOKDW OK@MD 3DRS XNTQ BNCD @F@HMRS SGD @M@KXSHB QDRTKSR CDQHUDC HM OQNAKDL
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
OOKX XNTQ BNCD SN CDSDQLHMD SGD RS@AHKHSX NE SGD YDQN RNKTSHNM NE SGD KHMD@Q NRBHKK@SNQ CHƤDQDMSH@K DPT@SHNM x ¨(t) + 2cdx(t) ˙ + d2 x(t) = 0 ,
x ∈ C 2 (R, R) ,
VHSG BNMRS@MSR c = 0.64 @MC d = 15.56 %HM@KKX BNMRHCDQ SGD O@Q@LDSDQR c @MC d EQNL O@QS A SN AD @QAHSQ@QX H D (c, d) ∈ R2 #DƥMD @ ETMBSHNM CDODMCHMF NM c @MC d SG@S HR ONRHSHUD HE SGD NQHFHM HR @RXLOSNSHB@KKX RS@AKD HM DWDQBHRD A YDQN HE SGD NQHFHM HR RS@AKD @MC MDF@SHUD HE SGD NQHFHM HR TMRS@AKD /KNS SGD FQ@OG NE SGHR ETMBSHNM @F@HMRS SGD c d OK@MD $WDQBHRD :☼< OOKHB@SHNM NE SGD +NYHMRJHH ,D@RTQD (M @M @QSHBKD AX 1TOO @MC 2BGDTQKD @ QDCTBDC LNCDK ENQ ƥRG IDKKXƥRG HMSDQ @BSHNMR HR OQNONRDC VGDQD ƥRG ADHMF @RRTLDC SN QDOQDRDMS SGD CNLHM@MS OQDC@SNQX RODBHDR EDDCHMF NM IDKKXƥRG 3GHR LNCDK HR FHUDM AX SGD ENKKNVHMF RDS NE BNTOKDC MNM KHMD@Q NQCHM@QX CHƤDQDMSH@K DPT@SHNMR y x x˙ = c + x − x2 , @MC y˙ = β 1 − d y, 1+y 1+y VGDQD c ∈ R @MC β, d > 0 @QD O@Q@LDSDQR @MC x CDMNSDR SGD ƥRG ONOTK@SHNM VGDQD@R y RS@MCR ENQ SGD IDKKXƥRG ONOTK@SHNM QDRODBSHUDKX 2GNV SG@S SGD NQHFHM HR @M DPTHKHAQHTL @MC FHUD SGD KHMD@QHR@SHNM NE SGD DPT@SHNMR @S SGHR ONHMS
OOKX SGD LDSGNC NE +NYHMRJHH ,D@RTQDR SN CDSDQLHMD KHMD@QHRDC RS@AHK HSX NE SGD NQHFHM
$WDQBHRD :☼< +HMD@QHYDC @MC -NM +HMD@Q 2S@AHKHSX "NMRHCDQ SGD ODMCTKTL RXRSDL x˙ = y ,
y˙ = − RHM(x) .
#DSDQLHMD @KK DPTHKHAQH@ #DSDQLHMD SGDHQ RS@AHKHSX VHSG QDRODBS SN SGD KHMD@QHYDC RXRSDL 6G@S B@M VD R@X @ANTS SGD RS@AHKHSX VHSG QDRODBS SN SGD NQHFHM@K MNM KHMD@Q RXRSDL +LQW %HMC @ RTHS@AKD +X@OTMNU ETMBSHNM $WDQBHRD :☼< 2S@AHKHSX NE 1@MCNLKX "GNRDM 2XRSDLR BE :< OO 2TOONRD VD OHBJ @ KHMD@Q RXRSDL @S Q@MCNL VG@SŗR SGD OQNA@AHKHSX SG@S SGD NQHFHM VHKK AD R@X @M TMRS@AKD ROHQ@K 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3N AD LNQD RODBHƥB BNMRHCDQ SGD RXRSDL x˙ = Ax ,
VGDQD
A =
a b c d
.
2TOONRD VD OHBJ SGD DMSQHDR a, b, c, d HMCDODMCDMSKX @MC @S Q@MCNL EQNL @ TMHENQL CHRSQHATSHNM NM SGD HMSDQU@K [−1, 1] %HMC SGD OQNA@AHKHSHDR NE @KK SGD CHƤDQDMS JHMCR NE DPTHKHAQH@ 3N BGDBJ XNTQ @MRVDQR NQ HE XNT GHS @M @M@KXSHB QN@C AKNBJ SQX SGD ,NMSD "@QKN ,DSGNC &DMDQ@SD LHKKHNMR NE Q@MCNL L@SQHBDR NM XNTQ BNLOTSDQ @MC G@UD SGD L@BGHMD BNTMS SGD QDK@SHUD EQDPTDMBX NE R@CCKDR TMRS@AKD ROHQ@KR DSB
QD SGD @MRVDQR SGD R@LD HE XNT TRD @ MNQL@K CHRSQHATSHNM HMRSD@C NE @ TMHENQL CHRSQHATSHNM
&KDSWHU
/@QS (((
$ƧBHDMS #@S@ 2SQTBSTQDR SGD /QNO@F@SHNM NE 1@MCNL $WBHS@SHNMR
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
)RXULHU7UDQVIRUP /H SOXV FRXUW FKHPLQ HQWUH GHX[ YªULWªV GDQV OH GRPDLQH UªHO SDVVH SDU OH GRPDLQH FRPSOH[H )ǘǚǨǬǜǪ 2ǘǣǦǤǦǥ 'ǘǛǘǤǘǩǛ 3GD A@RHB @RODBSR NE SGD BNMSHMTNTR @MC SGD CHRBQDSD %NTQHDQ SQ@MRENQL @QD CHRBTRRDC HM SGHR BG@OSDQ VHSG SGD ENBTR NM SGD K@SSDQ HMBKTCHMF U@QHNTR , 3 + ! DW@LOKDR 3GD E@LNTR %@RS %NTQHDQ 3Q@MRENQL HR CDQHUDC 6D AQHDƦX OQDRDMS SGD SQHFNMNLDSQHB U@QH@MSR NE SGD CHRBQDSD %NTQHDQ SQ@MRENQL QDK@SDC SN RXLLDSQX OQNODQSHDR NE SGD TMCDQKXHMF HMOTS C@S@ SGDRD SQHFNMNLDSQHB SQ@MR ENQLR @KKNV TR SN QD@KHRD E@RS /NHRRNM RNKUDQR NM "@QSDRH@M FQHCR @R MDDCDC HM SGD VNQJRGNO OQNAKDL BE "G@O
*DX "NMBDOSR 3GHR BG@OSDQ BNMS@HMR @ AQHDE RTQUDX NE BNMSHMTNTR @MC CHRBQDSD %NTQHDQ SQ@MR ENQLR 3GD BNMSHMTNTR %NTQHDQ SQ@MRENQL HR RTLL@QHRDC HM @ BNLO@BS L@MMDQ ENQ SVN QD@RNMR %HQRS SN OQNUHCD SGD A@RHB QDK@SHNMR SN SGD CHRBQDSD BNTMSDQ O@QS 2DBNMC SN OQDO@QD RDUDQ@K @RODBSR MDBDRR@QX ENQ SGD @M@KXRHR NE MNHRD RODBSQ@ HM "G@O (M BNMSQ@RS SGD CHRBQDSD %NTQHDQ SQ@MRENQL @MC BNQQD RONMCHMF U@QH@MSR @QD CHRBTRRDC HM LNQD CDS@HK 3GD ENBTR HR NM @OOKHB@SHNMR ENQ /#$ OQNAKDLR RDD "G@O RTBG @R SGD NMDR CDRBQHADC HM 2DB @MC TRDC HM SGD VNQJRGNO OQNAKDL RDD "G@O -NSD SG@S SGD CHRBQDSD @MC HM O@QSHBTK@Q SGD %@RS %NTQHDQ SQ@MRENQL @QD DRRDMSH@K SNNKR ENQ SGD QD@KHR@SHNM NE NSGDQ @OOQN@BGDR SN /#$ CHRBQDSHR@SHNMR RTBG @R RODBSQ@K LDSGNCR RDD :< D F MHBD %NTQHDQ @M@KXRHR @OOKDS HR OQNUHCDC AX %T *VTM 'V@MF !X CDƥM HMF SGD @LOKHSTCDR NE RHMTRNHC@K ETMBSHNMR RHM(kf ) @MC BNR(kf ) k = 0, 1, 2, . . . , 15 ENQ @ FHUDM EQDPTDMBX f XNT B@M BNLONRD XNTQ NVM %NTQHDQ RD QHDR @MC OK@X SGD RNTMC SG@S SGD BNQQDRONMCHMF @BNTRSHB V@UD QD@KHRDR /@TK %@KRS@C OQDRDMSR @MNSGDQ QD@KKX FQD@S @OOKDS NM GHR VDARHSD %QNL SGD ONHMS NE UHDV NE L@SGDL@SHBR SGD %NTQHDQ SQ@MRENQL HR @ ETMBSHNM QDOQDRDMSHMF SGD @LOKHSTCD @MC OG@RD @S D@BG EQDPTDMBX 'DMBD HS HR FDMDQ
?iiT,ffrrrXT?vXMiMmX2/mXirfMiMmDpfBM/2tXT?T\iQTB+4Rd -3-4) 5 5HQST@K /GXRHBR +@ANQ@SNQX )@U@ 2HLTK@SHNMR HM /GXRHBR ?iiT,ffrrrX7Hbi/X+QKf7Qm`B2`f
&KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS
%HFTQD 3N B@KBTK@SD @ %NTQHDQ SQ@MRENQL ITRS KHRSDM BE :
0 3GD ENQBD F (x, t) : R × [0, T ] → R @BSHMF NM SGD O@QSHBKD HR @RRTLDC SN AD SGD RTL NE @ EQHB SHNM ENQBD f1 (x, t) = −˜ ax VHSG EQHBSHNM BNDƧBHDMS a ˜ > 0 C@LOHMF @MC @ Q@M CNL CHƤTRHNM ENQBD f2 (x, t) = ˜bξt VHSG CHƤTRHNM BNDƧBHDMS ˜b ∈ R \ {0} 3GD RSNBG@RSHB CQHUHMF OQNBDRR ξt HR @RRTLDC SN AD TMBNQQDK@SDC VHSG LD@M YDQN HM O@QSHBTK@Q VD @RRTLD ξt = wt SN AD SGD VGHSD MNHRD OQNBDRR 6HSG &@TRRH@M HMHSH@K BNMCHSHNMR Y0 @MC Y1 SGD BNQQDRONMCHMF RXRSDL NE ƥQRS NQCDQ (S¯ RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR ADBNLDR Yt Xt Ct Y (0) Y0 C = , C = C , X(0) −aXt Ct + bCWt Xt Y1 ˜ @MC b := m−1˜b 'DMBD NMBD Xt HR JMNVM Yt ENKKNVR AX HMSD VHSG a := m−1 a FQ@SHNM
t Yt = Y 0 + Xt Ct . 0
3GD UDKNBHSX OQNBDRR Xt HR B@KKDC 2UQVWHLQ8KOHQEHFN SURFHVV @MC HSR CDƥM HMF RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM CXt = −aXt Ct + bCWt
VHSG
X(0) = X0 ,
VGDQD ENQ BNMUDMHDMBD X0 := Y1 HR RDS G@R SGD RNKTSHNM
t Xt = e−at X0 + b e−a(t−s) CWt , t ≥ 0, 0
2DD D F :< ENQ @ BNLO@QHRNM NE SGD .QMRSDHM 4GKDMADBJ OQNBDRR VHSG SGD OQNBDRR RSTCHDC AX $HMRSDHM HM :
ţ@ :RUNLQJ LQ WKLV DUHD LV OLNH VNDWLQJ RQ WKH HGJH RI UHDVRQ 'ǘǥǪ 2ǘǞǘǥ (M SGHR BG@OSDQ SGD A@RHB BNMBDOSR CDƥMHSHNMR @MC OQNODQSHDR NE RO@BD ƥKKHMF BTQUDR @QD HMSQNCTBDC SGQNTFG SGD DW@LOKDR NE SGD 'HKADQS @MC /D@MN BTQUD 6D AQHDƦX OQDRDMS SGQDD CHƤDQDMS B@SDFNQHDR NE @OOKHB@SHNMR SG@S LNSHU@SD SGD TRD NE SGDRD RODBH@K BTQUDR HM SGD BNMSDWS NE RHLTK@SHNMR 3VN U@QH@MSR ENQ SGD BNMRSQTBSHNM NE CHRBQDSD HSDQ@SHNMR NE SGD BTQUDR @QD DWOK@HMDC HM CDS@HK RTBG SG@S SGD QD@CDQ HR HM SGD ONRHSHNM SN TRD RO@BD ƥKKHMF BTQUDR ENQ @ BNMBQDSD S@RJ RTBG @R NQCDQHMF "@QSDRH@M LDRG BDKKR @R TRDC HM SGD VNQJRGNO OQNAKDL RDD "G@OR @MC
*DX "NMBDOSR 3GHR BG@OSDQ L@X AD TRDC @R @ BNLO@BS HMSQNCTBSHNM SN RO@BD ƥKKHMF BTQUDR 6D GD@UHKX QDKX NM SGD @OOQN@BG S@JDM HM :< VGHKD QDRSQHBSHMF OQNODQSHDR @MC OQNNER SN SGD @ARNKTSD LHMHLTL MDBDRR@QX ENQ @ A@RHB TMCDQRS@MCHMF 6D S@JD RSDOR SNV@QCR @ G@MCR NM @OOQN@BG VHSG , 3+ ! 3GD A@RHB HCD@ NE RO@BD ƥKKHMF BTQUDR HR SN BNMRSQTBS L@OOHMFR EQNL HMSDQ U@KR SN GHFGDQ CHLDMRHNM@K CNL@HMR RTBG SG@S SGDRD L@OOHMF @QD RSHKK BNM SHMTNTR @MC RTQIDBSHUD 3GHR @RSNMHRGHMF ED@STQD NE SGD B@QCHM@KHSX NE GHFGDQ CHLDMRHNM@K CNL@HMR CHC MNS ƥS HMSN SGD L@SGDL@SHB@K EQ@LDVNQJ NE SG@S SHLD @MC BNMSQHATSDC SN SGD MHBJM@LD řLNMRSDQ BTQUDRŚ 6D VHKK CHRBNUDQ SG@S SGDQD HR MNSGHMF LNMRSQNTR @ANTS SGDRD BTQUDR ATS SG@S SGDX B@M AD GDKOETK (M O@QSHBTK@Q SGDRD BTQUDR OQNUHCD @ BKDUDQ @OOQN@BG SN NQCDQHMF TMJMNVMR HM RO@SH@KKX CHRBQDSD LDRGDR CHRBTRRDC HM "G@O 6GDM QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 6G@S @QD RO@BD ƥKKHMF BTQUDR 6G@S @QD RO@BD ƥKKHMF BTQUDR TRDETK ENQ HM SGD BNMSDWS NE 2BHDMSHƥB "NL OTSHMF 6G@S TRDETK OQNODQSHDR CN BDQS@HM RO@BD ƥKKHMF BTQUDR ONRRDRR @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR &KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS 3GD 'HKADQS @MC /D@MN BTQUD &Q@LL@Q A@RDC BNMRSQTBSHNM NE RO@BD ƥKKHMF BTQUDR
QHSGLDSHR@SHNM NE RO@BD ƥKKHMF BTQUDR
3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR 6D OQDRDMS SGD A@RHB HCD@ @MC CDE HMHSHNMR NE RO@BD ƥKKHMF BTQUDR HM 2DB ADENQD LNSHU@SHMF SGD TR@FD HM 2DB AX CHƤDQDMS SXODR NE @OOKHB@SHNMR (M 2DB SVN @OOQN@BGDR ENQ BNMRSQTBSHMF RO@BD ƥKKHMF BTQUDR HM @ CHRBQDSD RDMRD @QD DWOK@HMDC SGD BNMRSQTBSHNM UH@ FQ@LL@QR @MC @QHSGLDSHR@SHNMR %HM@KKX 2DBSHNM RTL L@QHRDR SGD BNMSDMSR NE SGHR BG@OSDQ
3GD "NMBDOS NE 2O@BD ƥKKHMF "TQUDR (M SGD ENKKNVHMF I ⊂ R QDOQDRDMSR @ BNLO@BS HMSDQU@K SXOHB@KKX SGD TMHS HMSDQ U@K I := [0, 1] #DƥMHSHNM #HQDBS (L@FD +DS f : I → Rn 3GDM f∗ (I) {f (t) ∈ Rn | t ∈ I} HR B@KKDC SGD GLUHFW LPDJH NE SGD L@OOHMF f
:=
#DƥMHSHNM "TQUD %NQ @ BNMSHMTNTR L@OOHMF f : I → Rn SGD CHQDBS HL @FD f∗ (I) HR B@KKDC @ FXUYH x = f (t), t ∈ I HR B@KKDC SDUDPHWULF UHSUHVHQWDWLRQ NE SGD BTQUD -NSD SG@S HM SGD CDƥMHSHNMR @ANUD Rn L@X AD QDOK@BDC AX @MX $TBKHCH@M UDBSNQ RO@BD OQNUHCHMF @ MNQL @MC RB@K@Q OQNCTBS #DƥMHSHNM 2O@BD ƥKKHMF "TQUD &HUDM @ BNMSHMTNTR L@OOHMF f : I → Rn n ≥ 2 SGDM SGD BNQQDRONMCHMF BTQUD f∗ (I) HR B@KKDC @ VSDFHƲOOLQJ FXUYH HE Jn (f∗ (I)) > 0 3GD )NQC@M BNMSDMS Jn @QD@ NQ UNKTLD ENQ n = 2 NQ CDMNSDR @ )NQC@M LD@RTQ@AKD RTARDS NE Rn RDD : 2 SNN BE :BH#2`iU9V
RHNM RSDO (E VD QDVQHSD SGD ANTMC@QHDR NE SGDRD RTAHMSDQU@KR HM @ PT@SDQM@QX QDOQDRDMS@SHNM HMRSD@C NE @ CDBHL@K NMD D@BG ANQCDQ SQ@MRK@SDR SN NMD CHFHS {0, . . . , 3} NE SGD PT@SDQM@QX RXRSDL 01 21 03 1 4 , 4 = [04 .1, 04 .2] , 4 , 1 = [04 .3, 14 .0] %TQSGDQLNQD DUDQX RTARPT@QD NE SGD S@QFDS CNL@HM Q BNMS@HMR @ RB@KDC SQ@MRK@SDC @MC QNS@SDC NQ QDƦDBSDC 'HKADQS BTQUD RDKE RHLHK@QHSX NE SGD BTQUD #DƥMHMF ENTQ A@RHB L@OOHMFR Hi , i ∈ {0, . . . , 3}, SG@S ODQENQL DW@BSKX SGDRD SQ@MRENQL@SHNMR QDRTKSR HM 1 1 x x 0 0 0 2 2 H0 := 1 , H1 := + 1 , 1 0 0 y y 2 2 2 H2 :=
6HFWLRQ
1 2
0
0 1 2
1 x 0 2 + 1 , H3 := − 12 y 2
− 12 0
x 1 + 1 . y 2
3NAH@R 1HFNHO %KNQH@M 5XSS
P
P
S
P
Q
R
Q
P
S
P
Q
@
R
Q
R
Q
P
S
P
Q
R
Q
S
P
S
R
Q
R
S
P
S
A
R
Q
R
S
P
S
R
Q
R
S
B
C
%HFTQD 3NV@QCR @ FQ@LL@Q ENQ SGD /D@MN BTQUD 3GD ENTQ A@RHB O@SSDQMR NQ MNM SDQLHM@K RXLANKR P Q R @MC S NE SGD BTQUD SNFDSGDQ VHSG SGD BNQQDRONMCHMF QDOK@BDLDMS O@SSDQMR HL@FD BNTQSDRX NE , !@CDQ : 0 3GDM ϕ(t) = χ−1 RHM(χt) DWO(−at) HR SGD RNKTSHNM NE SGD GNLNFDMDNTR NRBHKK@SNQ DPT@SHNM VHSG HMHSH@K BNMCHSHNM ϕ(0) = 0 @MC ϕ(0) ˙ = 1 3GD RSNBG@RSHB OQNBDRR Zt HR ODQHNCHB @MC SGTR VHSG
∞ Yt0 = mY 0 (t) + χ−1 DWO (−aτ ) RHM (χτ ) Ut−τ Cτ 0
HR @ ODQHNCHB @MC ENQ c = 0 RS@SHNM@QX O@SG VHRD @MC LD@M RPT@QD RNKTSHNM NE VHSG SGD R@LD ODQHNC @R Zt 'DQD
∞ mY 0 (t) = χ−1 c DWO (−aτ ) RHM (χτ ) RHM (α(t − τ )) Cτ = cβ RHM (α(t − γ)) , 0
VGDQD c ∈ R HR @ BNMRS@MS β −2 = (b − α)2 + (2a)2 α2 @MC 2aα 1 . γ = α @QBS@M b − α2
6HSG EQNL "G@O @MC SGD BNU@QH@MBD ETMBSHNM NE Yt0 QD@CR @R
∞ CY 0 (t, t + τ ) = CY 0 (τ ) = DWO (iλτ ) |A(iλ)|−2 Φ(λ)Cλ −∞
∞ −1 = BNR (λτ ) (λ2 − b)2 + (2aλ)2 Φ(λ)Cλ . −∞
!DB@TRD CY 0 (τ ) |A(iλ)| @MC Φ(λ) @QD QD@K ETMBSHNMR HS GNKCR SG@S
∞ RHM (λτ ) |A(iλ)|−2 Φ(λ)Cλ = 0 . −∞
#TD SN VD FDS ENQ SGD U@QH@MBD NE Yt0
∞ 2 −1 (λ − b)2 + (2aλ)2 σY 0 (t) = CY 0 (0) = Φ(λ)Cλ . −∞
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF (E SGD RODBSQ@K CDMRHSX Φ(λ) HR FHUDM MTLDQHB@KKX SGDM SGD HMSDFQ@K HM B@M AD BNLOTSDC MTLDQHB@KKX "N@QRD @OOQNWHL@SHNMR ENQ SGD BNU@QH@MBD @MC U@QH@MBD ETMBSHNMR @QD NA S@HMDC ENQ RL@KK C@LOHMF BNDƧBHDMSR a HE Φ(λ) HR RTƧBHDMSKX RLNNSG @MC CNDR MNS ONRRDRR RG@QO OD@JR (M SGHR B@RD SGD ETMBSHNM |A(iλ)|−2 DWGHAHSR @ OD@J @S λ = b @MC LNQDNUDQ SGD DRRDMSH@K BNMSQHATSHNM SN SGD HMSDFQ@K BNLDR EQNL @ RL@KK HMSDQU@K @QNTMC λ = b 3GTR HS @OOQNWHL@SDKX GNKCR SG@S
∞ −1 CY 0 (τ ) ≈ Φ(b) BNR (λτ ) (λ2 − b)2 + (2aλ)2 Cλ , −∞
@MC σY 0 (t) ≈ Φ(b)
∞ −∞
−1 (λ2 − b)2 + (2aλ)2 Cλ .
%NQ DUDQX O@SG VHRD RNKTSHNM Xt NE VD FDS VHSG @ RTHS@AKX RL@KK ρ < a AX @OOKHB@SHNM NE 3GDNQDL NM SGD RXRSDL NE CHƤDQDMSH@K DPT@SHNMR SG@S
ˆ 0. KHL DWO (ρt) Xt − Yt0 = ˆ KHL DWO (ρt) X˙ t − Y˙ t0 = t→∞
t→∞
#TD SN 3GDNQDL VD JMNV SG@S ENQ DUDQX LD@M RPT@QD RNKTSHNM @MC DU DQX O@SG VHRD RNKTSHNM VHSG HMHSH@K BNMCHSHNM (Xt0 , X˙ t0 ) ∈ L22 SG@S HS HR @KRN @ LD@M RPT@QD RNKTSHNM @BBNQCHMF SN 3GDNQDL @MC SG@S
˙ 0 ˙ 0 ˆ L R KHLt→∞ DWO (ρt)
X t − Y t
= L R KHLt→∞ DWO (ρt) Xt − Yt = ˆ 0. 3GTR ENQ K@QFD SHLDR t SGD LD@M @MC SGD BNU@QH@MBD ETMBSHNM NE DUDQX LD@M RPT@QD RNKTSHNM @MC DUDQX O@SG VHRD RNKTSHNM NE VHSG HMHSH@K BNMCH SHNMR HM L22 B@M AD @OOQNWHL@SDC AX SGD LD@M @MC BNU@QH@MBD ETMBSHNMR QD RODBSHUDKX NE SGD ODQHNCHB RNKTSHNM Yt0 ADB@TRD HS GNKCR CTD SN VHSG Vt = Xt − Yt0 SG@S 1/2 KHL |mX (t) − mY 0 (t)| ≤ KHL E Vt2 = 0, t→∞
t→∞
@MC KHL |CX (t, t + s) − CY 0 (t, t + s)| =
0 KHL E (Vt Vt+s ) + E Yt0 Vt+s + E Vt Yt+s
t→∞ t→∞
−mX (t)mX (t + s) + mY 0 (t)mY 0 (t + s)| ≤ 2 1/2 2 1/2 1/2 ! = 0. + CY 0 (0)E Vt+s + CY 0 (0)E Vt2 KHL E Vt2 E Vt+s
t→∞
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS (E Zt NQ Ut @QD &@TRRH@M OQNBDRRDR SGDM Yt0 HR @ &@TRRH@M OQNBDRR SNN @BBNQC HMF SN 2DB @MC VHSG SGD @HC NE @MC OQNA@AHKHSHDR B@M AD BNLOTSDC ENQ CHƤDQDMS HMSDQDRSHMF DUDMSR %NQ HMRS@MBD P Yt0 > y = 1 − F σY−10 (y − mY 0 (t)) ,
VGDQD F (x) =
x
−∞
(2π)−1/2 DWO(−t2 /2)Ct
HR SGD VDKK JMNVM OQNA@AHKHSX CHRSQHATSHNM ETMBSHNM NE SGD RS@MC@QC MNQL@K CHRSQHATSHNM "@RD +DS χ2 = a2 − b > 0 3GDM ϕ(t) = χ−1 RHMG(χt) DWO(−at) @MC VD NAS@HM @M@KNFNTRKX SN SGD ƥQRS O@QS SGD ODQHNCHB RNKTSHNM
∞ 0 −1 DWO (−aτ ) RHMG (χτ ) Ut−τ Cτ , Yt = mY 0 (t) + χ 0
VHSG SGD LD@M U@KTD mY 0 (t) = χ
−1
∞
C 0
DWO (−aτ ) RHMG (χτ ) RHM (α(t − τ )) Cτ
VHSG @ BNMRS@MS C ∈ R @MC BNU@QH@MBD ETMBSHNM R HM SGD ƥQRS O@QS SGD LD@M U@KTD MX (t) @MC BNU@QH@MBD ETMBSHNM CX (t, t+ s) s > 0 NE @ LD@M RPT@QD RNKTSHNM NE NQ NE @ O@SG VHRD RNKTSHNM NE QDRODBSHUDKX ENQ SGD HMHSH@K U@KTD (Xt0 , X˙ t0 ) ∈ L22 B@M AD @OOQNWHL@SDC AX @MC ENQ K@QFD t "@RD +DS a2 = b SGDM ϕ(t) = t DWO(−at) @MC VD NAS@HM SGD ODQHNCHB RNKTSHNM
∞ τ DWO (−aτ ) Ut−τ Cτ Yt0 = mY 0 (t) + 0
VHSG BNU@QH@MBD ETMBSHNM @MC LD@M U@KTD
∞ τ DWO (−aτ ) RHM (α(t − τ )) Cτ . mY 0 (t) = 0
"G@OSDQŗR 2TLL@QX !@RDC NM :< OO SGHR BG@OSDQ ENBTRDC NM SGD L@SGDL@SHB@K @M@KXRHR NE KHMD@Q HMGNLNFDMDNTR Q@MCNL CHƤDQDMSH@K DPT@SHNMR NE SGD ENQL X˙ t = A(t)Xt + Zt VGDQD SGD Q@MCNLMDRR @OOD@QDC NMKX HM SGD HMGNLNFDMDNTR CQHUHMF SDQL Zt M@KNFNTRKX SN SGD CDSDQLHMHRSHB RDSSHMF VD CDQHUDC VHSG SGD @HC NE SGD ETMC@LDMS@K L@SQHW NE SGD CDSDQLHMHRSHB GNLNFDMDNTR RXRSDL
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD ENQL NE SGD RS@SHNM@QX LD@M RPT@QD RNKTSHNM Yt∗ NE (n)
Xt
(n−1)
+ a1 Xt
+ · · · + an−2 X˙ t + an−1 Xt + an = Zt .
0 6GHBG QDPTHQDLDMSR G@UD SN AD ETKƥKKDC RTBG SG@S XNTQ @RRDQSHNMR EQNL 0 GNKCR 0 &HUD QDOQDRDMS@SHNMR ENQ SGD LD@M SGD BNU@QH@MBD @MC SGD RODBSQ@K CHR SQHATSHNM NE Yt∗ 0 #HRBTRR SGD TMC@LODC NRBHKK@SNQ ¨ t + bXt = Wt , X VGDQD Wt HR @ CHLDMRHNM@K RS@MC@QC 6HDMDQ OQNBDRR
x˙ = A(t)x SGD FDMDQ@K RNKTSHNM ENQLTK@R HM SGD O@SG VHRD RDSSHMF @MC HM SGD LD@M RPT@QD RDSSHMF QDRODBSHUDKX 3GDRD @KKNVDC TR SN RSTCX RSNBG@RSHB BG@Q@BSDQHRSHBR KHJD SGD LD@M mX NE SGD RNKTSHNM OQNBDRR @MC DR ODBH@KKX SGD BNLLNM BNU@QH@MBD CY Z NE @ O@QSHBTK@Q RNKTSHNM OQNBDRR Yt VHSG SGD CQHUHMF OQNBDRR Zt (M O@QSHBTK@Q VD F@UD BNMCHSHNMR ENQ SGD @RXLOSNSHB TM BNQQDK@SHNM NE Yt @MC Zt @MC CHRBTRRDC SGD RODBH@K B@RD NE &@TRRH@M HMGN LNFDMDHSHDR 3GD L@INQHSX NE SGHR BG@OSDQ V@R CDUNSDC SN SGD RSTCX NE O@SG VHRD LD@M RPT@QD ODQHNCHB @MC O@SG VHRD LD@M RPT@QD RS@SHNM@QX RNKTSHNMR NE X˙ t = A(t)Xt + Zt 1NTFGKX ROD@JHMF @MC TMCDQ RNLD ETQSGDQ BK@QHEXHMF @RRTLO SHNMR @ ODQHNCHB RNKTSHNM DWHRSR HE A(t) @MC Zt @QD ODQHNCHB SNN (M SGD R@LD V@X @ RS@SHNM@QX RNKTSHNM DWHRSR HE A HR BNMRS@MS @MC G@R DHFDMU@KTDR VHSG DWBKTRHUDKX MDF@SHUD QD@K O@QSR @MC Zt HR @ RS@SHNM@QX OQNBDRR (M O@QSHBTK@Q VD NAS@HMDC HLONQS@MS QDRTKSR NM SGD DWONMDMSH@K BNMUDQFDMBD ADG@UHNQ NE RNKTSHNMR SNV@QCR ODQHNCHB @MC RS@SHNM@QX NMDR 6D BNMBKTCDC NTQ @M@KXRHR VHSG SGD RSTCX NE GHFGDQ NQCDQ Q@MCNL CHƤDQDM SH@K DPT@SHNMR @MC @ BNLOKDSD CHRBTRRHNM NE SGD L@SGDL@SHB@K NRBHKK@SNQ VHSG Q@MCNL ENQBHMF
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF $WDQBHRD :☼< /QNODQSHDR NE @ .QMRSDHM 4GKDMADBJ $WBHSDC .RBHKK@SNQ "NMRHCDQ SGD RDBNMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM ¨ t + 2aX˙ t + bXt = −Zt , X
X0 = X˙ 0 = 0 ,
VGDQD Zt HR @ &@TRRH@M OQNBDRR @MC a, b > 0 &HUD SGD FDMDQ@K ENQLTK@ ENQ SGD O@SG VHRD RNKTSHNM NE 6G@S B@M XNT R@X @ANTS SGD LD@M RPT@QD RNKTSHNM &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNMR ENQ SGD LD@M @MC SGD BNLLNM BNU@QH@MBD ETMBSHNM NE SGD O@SG VHRD RNKTSHNM $WDQBHRD :☼< /QNODQSHDR NE @ .QMRSDHM 4GKDMADBJ $WBHSDC .RBHKK@SNQ "NMRHCDQ SGD RDBNMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM ¨ t + 2aX˙ t + bXt = −Ot , X
X0 = X˙ 0 = 0 ,
VGDQD Ot HR @ .QMRSDHM 4GKDMADBJ OQNBDRR @MC a, b > 0 &HUD SGD FDMDQ@K ENQLTK@ ENQ SGD O@SG VHRD RNKTSHNM NE 6G@S B@M XNT R@X @ANTS SGD LD@M RPT@QD RNKTSHNM &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD LD@M NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD BNLLNM BN U@QH@MBD ETMBSHNM NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX $WDQBHRD :< /QNODQSHDR NE @ !QNVMH@M !QHCFD $WBHSDC .RBHKK@SNQ 3GD !QNVMH@M AQHCFD Bt HR @ &@TRRH@M OQNBDRR VGNRD HMBQDLDMSR @QD MNS HM CDODMCDMS (E Wt ∼ N (0, t) HR @ RS@MC@QC 6HDMDQ OQNBDRR SGDM SGD OQNBDRR Bt := Wt − tW (1) HR B@KKDC @ !QNVMH@M AQHCFD ENQ t ∈ [0, 1] "NMRHCDQ SGD RDBNMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM ¨ t + 2aX˙ t + bXt = −Bt , X
X0 = X˙ 0 = 0 ,
VGDQD a, b > 0 ENQ t ∈ [0, 1] &HUD SGD FDMDQ@K ENQLTK@ ENQ SGD O@SG VHRD RNKTSHNM NE 6G@S B@M XNT R@X @ANTS SGD LD@M RPT@QD RNKTSHNM
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD LD@M NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD BNLLNM BN U@QH@MBD ETMBSHNM NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX $WDQBHRD :< /QNODQSHDR NE @ %Q@BS@K !QNVMH@M ,NSHNM $WBHSDC .RBHKK@SNQ Ŕ /@QS 3GD EQ@BS@K !QNVMH@M LNSHNM BH (t) HR @ &@TRRH@M OQNBDRR VGNRD BNU@QH@MBD ETMBSHNM HR @ FDMDQ@KHR@SHNM NE SGD 6HDMDQ OQNBDRR (S HR @ BNMSHMTNTR SHLD &@TRRH@M OQNBDRR NM [0, T ] VGHBG RS@QSR @S YDQN G@R DWODBS@SHNM YDQN ENQ @KK t ∈ [0, T ] @MC G@R SGD ENKKNVHMF BNU@QH@MBD ETMBSHNM E (BH (t)BH (s)) = 12 |t|2H + |s|2H − |t − s|2H , VGDQD H HR @ QD@K MTLADQ HM (0, 1) B@KKDC SGD 'TQRS HMCDW NQ 'TQRS O@Q@LD SDQ @RRNBH@SDC VHSG SGD EQ@BSHNM@K !QNVMH@M LNSHNM 3GD 'TQRS DWONMDMS CD RBQHADR SGD Q@FFDCMDRR NE SGD QDRTKS@MS LNSHNM VHSG @ GHFGDQ U@KTD KD@CHMF SN @ RLNNSGDQ LNSHNM 3GD U@KTD NE ' CDSDQLHMDR VG@S JHMC NE OQNBDRR SGD EQ@BS@K !QNVMH@M LNSHNM BH (t) HR Ş HE H = 1/2 SGDM SGD OQNBDRR HR HM E@BS @ 6HDMDQ OQNBDRR Ş HE H > 1/2 SGDM SGD HMBQDLDMSR NE SGD OQNBDRR @QD ONRHSHUDKX BNQQDK@SDC @MC Ş HE H < 1/2 SGDM SGD HMBQDLDMSR NE SGD OQNBDRR @QD MDF@SHUDKX BNQQDK@SDC +DS TR BGNNRD H = 1/4 @MC BNMRHCDQ SGD RDBNMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM ¨ t + 2aX˙ t + bXt = −B1/4 (t) , X
X0 = X˙ 0 = 0 ,
VGDQD a, b > 0 &HUD SGD FDMDQ@K ENQLTK@ ENQ SGD O@SG VHRD RNKTSHNM NE 6G@S B@M XNT R@X @ANTS SGD LD@M RPT@QD RNKTSHNM &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD LD@M NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD BNLLNM BN U@QH@MBD ETMBSHNM NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX $WDQBHRD :< /QNODQSHDR NE @ %Q@BS@K !QNVMH@M ,NSHNM $WBHSDC .RBHKK@ SNQ Ŕ /@QS +DS TR BGNNRD @ 'TQRS BNDƧBHDMS H = 3/4 ENQ SGD EQ@BS@K !QNVMH@M LNSHNM @R 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS CHRBTRRDC HM OQNAKDL @MC BNMRHCDQ SGD RDBNMC NQCDQ Q@MCNL CHƤDQDM SH@K DPT@SHNM ¨ t + 2aX˙ t + bXt = −B3/4 (t) , X
X0 = X˙ 0 = 0 ,
VGDQD a, b > 0 &HUD SGD FDMDQ@K ENQLTK@ ENQ SGD O@SG VHRD RNKTSHNM NE 6G@S B@M XNT R@X @ANTS SGD LD@M RPT@QD RNKTSHNM &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD LD@M NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX &HUD SGD CDSDQLHMHRSHB NQCHM@QX DUNKTSHNM DPT@SHNM ENQ SGD BNLLNM BN U@QH@MBD ETMBSHNM NE SGD O@SG VHRD RNKTSHNM @MC RNKUD HS @M@KXSHB@KKX $WDQBHRD :☼< $W@LOKDR NE θ /DQHNCHB /QNBDRRDR &HUD @M DW@LOKD NE @ θ ODQHNCHB @MC @ RSQHBS θ ODQHNCHB OQNBDRR
QD SGDQD θ ODQHNCHB OQNBDRRDR SG@S @QD MNS RSQHBSKX θ ODQHNCHB &HUD @M DW@LOKD ENQ RTBG @ OQNBDRR
$WDQBHRD :☼< (R SGD *@M@H 3@IHLH $WBHS@SHNM @ θ /DQHNCHB /QNBDRR "NMRHCDQ SGD RSNBG@RSHB FQNTMC LNSHNM DWBHS@SHNM u ¨g (t) HM SGD RDMRD NE SGD *@M@H 3@IHLH LNCDK VGHBG HR FHUDM @R u ¨g = x ¨g + wt = −2ζg ωg x˙ g − ωg2 xg , VGDQD xg HR SGD RNKTSHNM NE @ YDQN LD@M &@TRRH@M VGHSD MNHRD wt CQHUDM RSNBG@RSHB NRBHKK@SNQ x ¨g + 2ζg ωg x˙ g + ωg2 xg = −wt ,
xg (0) = x˙ g (0) = 0 .
&HUD u ¨g HM SDQLR NE @ Q@MCNL CHƤDQDMSH@K DPT@SHNM AX @OOKXHMF SGD #NRR 2TRRL@MM (LJDKKDQ 2BGL@KETRR BNQQDRONMCDMBD (R u ¨g @ RSQHBS θ ODQHNCHB OQNBDRR $WDQBHRD :☼< "NMUDQFDMBD 3NV@QCR /DQHNCHB 2NKTSHNMR Ŕ /@QS +DS Zt AD @ RTHS@AKD RSQHBSKX 2 ODQHNCHB O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQN BDRR +DS TR BNMRHCDQ SGD Q@MCNLKX ENQBDC ,@SGHDT DPT@SHNM x ¨ + (a − 2b BNR(2t)) x + Zt = 0 , VGDQD a, b > 0 6G@S B@M XNT R@X @ANTS SGD DWHRSDMBD NE θ ODQHNCHB RNKTSHNMR HM SGHR RXRSDL @MC SGD BNMUDQFDMBD SNV@QCR SGDL
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $WDQBHRD :< "NMUDQFDMBD 3NV@QCR /DQHNCHB 2NKTSHNMR Ŕ /@QS +DS Zt AD @ RTHS@AKD RSQHBSKX θ ODQHNCHB LD@M RPT@QD BNMSHMTNTR RSNBG@RSHB OQNBDRR +DS TR BNMRHCDQ SGD Q@MCNLKX ENQBDC #TƧMF DPT@SHNM x ¨ + ax˙ + bx + cx3 − d BNR(θt) + Zt = 0 , VGDQD a, b, c, d > 0 6G@S B@M XNT R@X @ANTS SGD DWHRSDMBD NE θ ODQHNCHB RNKT SHNMR HM SGHR RXRSDL @MC SGD BNMUDQFDMBD SNV@QCR SGDL $WDQBHRD :☼< 2S@SHNM@QX /QNBDRRDR &HUD @M DW@LOKD NE @ RSQHBSKX RS@SHNM@QX O@SG VHRD LD@M RPT@QD BNMSHM TNTR RSNBG@RSHB OQNBDRR +DS {Xn }n∈N AD @ RDS NE TMBNQQDK@SDC Q@MCNL U@QH@AKDR VHSG U@MHRGHMF LD@M @MC U@QH@MBD 1 2GNV SG@S {Xn } HR @ RSQHBSKX RS@SHNM@QX OQNBDRR +DS Xt := A1 + A2 t VGDQD A1 , A2 @QD HMCDODMCDMS Q@MCNL U@QH@AKDR VHSG E(Ai ) = ai @MC Var(Ai ) = σi2 ENQ i = 1, 2 2GNV SG@S {Xn } HR MNS RS@SHNM@QX $WDQBHRD :☼< 1NLDN @MC )TKHDSŗR +NUD Ƥ@HQ +DS TR CHRBTRR SGD Q@MCNL ODQSTQA@SHNM NE @ RHLOKD LNCDK ENQ KNUD @Ƥ@HQR BE :< @MC :< OO 1NLDN HR HM KNUD VHSG )TKHDS ATS HM NTQ UDQRHNM NE SGHR RSNQX )TKHDS HR @ ƥBJKD KNUDQ 3GD LNQD 1NLDN KNUDR GDQ SGD LNQD )TKHDS V@MSR SN QTM @V@X @MC GHCD !TS VGDM 1NLDN FDSR CHRBNTQ@FDC @MC A@BJR NƤ )TKHDS ADFHMR SN ƥMC GHL RSQ@MFDKX @SSQ@BSHUD .M SGD NSGDQ G@MC 1NLDN SDMCR SN DBGN GDQ GD V@QLR TO VGDM RGD KNUDR GHL @MC FQNVR BNKC VGDM RGD G@SDR GHL +DS R(t) = 1NLDNŗR KNUD G@SD ENQ )TKHDS @S SHLD t J(t) = )TKHDSŗR KNUD G@SD ENQ 1NLDN @S SHLD t /NRHSHUD U@KTDR NE R @MC J RHFMHEX KNUD MDF@SHUD U@KTDR RHFMHEX G@SD 3GDM @ Q@MCNLKX ODQSTQADC LNCDK ENQ SGDHQ RS@Q BQNRRDC QNL@MBD HR R˙ = aJ + Ot ,
@MC
J˙ = −bR ,
VGDQD SGD O@Q@LDSDQR a @MC b @QD ONRHSHUD SN AD BNMRHRSDMS VHSG SGD RSNQX @MC Ot HR @M .QMRSDHM 4GKDMADBJ OQNBDRR (M SGD CDSDQLHMHRSHB RDSSHMF VHSGNTS Ot SGD R@C NTSBNLD NE SGDHQ @Ƥ@HQ HR NE BNTQRD @ MDUDQ DMCHMF BXBKD NE KNUD @MC G@SD SGD FNUDQMHMF RXRSDL G@R @ BDMSDQ @S (R, J) = (0, 0) S KD@RS SGDX L@M@FD SN @BGHDUD RHLTKS@MDNTR KNUD NMD PT@QSDQ NE SGD SHLD 6G@S B@M XNT R@X @ANTS SGDHQ @Ƥ@HQ VGDM ENKKNVHMF SGD Q@MCNLKX ODQSTQADC CXM@LHBR 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS $WDQBHRD :☼< 1NLDN @MC )TKHDSŗR +NUD Ƥ@HQ R @ BNMSHMT@SHNM NE OQNAKDL KDS TR BNMRHCDQ SGD ENQDB@RS ENQ KNUDQR FNUDQMDC AX SGD Q@MCNLKX ODQSTQADC FDMDQ@K KHMD@Q RXRSDL R˙ = aR + bJ + Ot ,
@MC J˙ = cR + dJ ,
VGDQD SGD O@Q@LDSDQR a, b, c, d L@X G@UD DHSGDQ RHFM $RODBH@KKX HM SGD CD SDQLHMHRSHB RDSSHMF @ BGNHBD NE RHFMR RODBHƥDR QNL@MSHB RSXKDR R BNHMDC AX 2SQNF@SY BE :< O SGD BGNHBD NE a, b > 0 LD@MR SG@S 1NLDN HR @M řD@ FDQ AD@UDQŚ Ŕ GD FDSR DWBHSDC AX )TKHDSŗR KNUD ENQ GHL @MC HR ETQSGDQ ROTQQDC NM AX GHR NVM @ƤDBSHNM@SD EDDKHMFR ENQ GDQ (SŗR DMSDQS@HMHMF SN M@LD SGD NSGDQ SGQDD QNL@MSHB RSXKDR @MC SN OQDCHBS SGD NTSBNLDR ENQ SGD U@QHNTR O@HQHMFR %NQ HMRS@MBD B@M @ řB@TSHNTR KNUDQŚ a < 0 b > 0 ƥMC SQTD KNUD VHSG @M D@FDQ AD@UDQ 6G@S B@M XNT R@X @ANTS SGD @Ƥ@HQR HM SGD Q@MCNLKX ODQSTQADC RDSSHMF $WDQBHRD :☼< 1NLDN @MC )TKHDSŗR +NUD Ƥ@HQ (M @ RSTCX RNBHNKNFHRS ENTMC SG@S VNLDM VDQD AKHMC SN SGD LHMCRDS NE SGDHQ NOONRHSD RDW EQHDMCR ADB@TRD EDL@KDR FDMDQ@KKX VDQD MNS @SSQ@BSDC SN SGDHQ L@KD EQHDMCR SGDX @RRTLDC SG@S SGHR K@BJ NE @SSQ@BSHNM V@R LTST@K R @ QDRTKS LDM BNMRHRSDMSKX řNUDQDRSHL@SDCŚ SGD KDUDK NE @SSQ@BSHNM EDKS AX SGDHQ EDL@KD EQHDMCR Ŕ @MC VNLDM BNMRHRSDMSKX řTMCDQDRSHL@SDCŚ SGD KDUDK NE @SSQ@BSHNM EDKS AX SGDHQ L@KD EQHDMCR !@RDC NM OQNAKDL RDS TO @ CDSDQLHMHRSHB LNCDK ENQ SGHR ADG@UHNQ AX RODBHEXHMF SGD QHFGS RHFM BNLAHM@SHNMR NE SGD BNDƧBHDMSR HMUNKUDC (MBNQONQ@SD Q@MCNL DƤDBSR SG@S S@JD HMSN @BBNTMS SG@S LDM @MC VNLDM @QD MNS FNNC HM QD@CHMF SGDHQ NOONRHSD RDW EQHDMCR 6G@S B@M XNT R@X @ANTS SGD DWHRSDMBD NE RS@SHNM@QX RNKTSHNMR HM SGHR B@RD @MC SGD @RXLOSNSHB BNMUDQFDMBD SNV@QCR RTBG RNKTSHNMR HE SGDX DWHRS $WDQBHRD :☼< 1NLDN @MC )TKHDSŗR +NUD Ƥ@HQ "NMSHMTHMF OQNAKDLR @MC VD ENKKNV :< O @MC FHUD RNLD ETQSGDQ PTDRSHNMR QDK@SDC SN SGD KNUD @Ƥ@HQ CXM@LHBR OQDRDMSDC HM OQNAKDL (M D@BG NE SGD ENKKNVHMF RBDM@QHNR OQDCHBS SGD BNTQRD NE SGD KNUD @E E@HQ CDODMCHMF NM SGD RHFMR @MC SGD QDK@SHUD RHYDR NE a @MC b .E BNTQRD XNT @QD DMBNTQ@FDC SN TRD @ 6HDMDQ OQNBDRR NQ @ EQ@BSHNM@K !QNVMH@M LNSHNM @R Q@MCNL ODQSTQA@MBD SNN @MC @KSDQ SGD RXRSDL @BBNQCHMFKX .TS NE SNTBG VHSG SGDHQ NVM EDDKHMFR 2TOONRD 1NLDN @MC )TKHDS QD@BS SN D@BG NSGDQ ATS MNS SN SGDLRDKUDR H D R˙ = aJ @MC J˙ = bR 6G@S G@OODMR
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF %HQD @MC V@SDQ #N NOONRHSDR @SSQ@BS −bR − aJ
M@KXYD R˙ = aR + bJ @MC J˙ =
/D@R HM @ ONC 2TOONRD 1NLDN @MC )TKH@ @QD QNL@MSHB BKNMDR H D R˙ = aR + bJ @MC J˙ = bR + aJ #N SGDX DWODBS ANQDCNL NQ AKHRR 1NLDN SGD QNANS -NSGHMF BNTKC DUDQ BG@MFD SGD V@X 1NLDN EDDKR @ANTS )TKHDS H D R˙ = 0 @MC J˙ = aR+bJ #NDR )TKHDS DMC TO KNUHMF GHL NQ G@SHMF GHL $WDQBHRD :☼< "NMUDQFDMBD 3NV@QCR 2S@SHNM@QX 2NKTSHNMR HM @ +1" "HQBTHS 2XRSDL "NMRHCDQ SGD Q@MCNLKX ODQSTQADC BHQBTHS DPT@SHNM LI¨+ RI˙ + I/C + Ot VGDQD L, R, C > 0 @MC Ot HR @M .QMRSDHM 4GKDMADBJ OQNBDRR 2GNV SG@S SGDQD HR @ RS@SHNM@QX RNKTSHNM @MC SG@S @KK NSGDQ RNKTSHNMR SDMC SNV@QCR HS
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
"G@OSDQ
/LQHDU 52'(V ZLWK 6WRFKDVWLF &R HƫFLHQWV 'DQD VD DWSDMC SGD CHRBTRRHNM EQNL SGD OQDBDCHMF BG@OSDQ NM KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR VHSG RSNBG@RSHB HMGNLNFDMDHSX SN KHMD@Q DPT@SHNMR SG@S G@UD @ Q@MCNL DƤDBS HM SGDHQ BNDƧBHDMS ETMBSHNMR @R VDKK M@KNFNTRKX SN SGD CDSDQLHMHRSHB SGDNQX VD FHUD SGD FDMDQ@K RNKTSHNM ENQLTK@R ENQ SGDRD SXODR NE DPT@SHNMR SNFDSGDQ VHSG DPTHU@KDMBD QDRTKSR ENQ O@SG VHRD @MC LD@M RPT@QD RNKTSHNMR @R @ RODBH@K B@RD NE NTQ BNMRHCDQ@SHNMR HM "G@O .M SGD NMD G@MC VD @M@KXRD SGD @RXLOSNSHB OQNODQSHDR NE O@SG VHRD RNKTSHNMR VHSG @ ENBTR NM DWONMDMSH@K CDB@X SNV@QCR SGD MTKK RNKTSHNM @R VDKK @R NM TOODQ ANTMCR ENQ O@SG VHRD RNKTSHNMR .M SGD NSGDQ G@MC VD @KRN RSTCX SGD OQNODQSHDR NE SGD LNLDMSR NE O@SG VHRD RNKTSHNMR VHSG QDRODBS SN SGD DWONMDMSH@K CDB@X @R VDKK @R SGD DWHRSDMBD NE @RXLOSNSHB@KKX θ ODQHNCHB RNKTSHNMR R @M DWBTQRHNM SGD FDMDQ@K RNKTSHNM ENQLTK@ NE KHMD@Q MNM BNLLTS@SHUD O@SG VHRD BNMSHMT NTR MNHRX RXRSDLR HR BNMRSQTBSDC
*DX "NMBDOSR (M SGHR BG@OSDQ VD CHRBTRR SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM CXt = At Xt + Zt , Ct
VGDQD Zt HR @ d CHLDMRHNM@K RSNBG@RSHB UDBSNQ OQNBDRR @MC At HR @ RSNBG@RSHB d × d L@SQHW VHSG DKDLDMSR SG@S @QD RSNBG@RSHB OQNBDRRDR 2STCXHMF DPT@SHNM HR BNMRHCDQ@AKX G@QCDQ SG@M SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM EQNL "G@O VHSG @ MNM Q@MCNL L@SQHW A(t) (M FDMDQ@K HS HR MNS ONRRHAKD SN FHUD RHLOKD BKNRDC ENQL ENQLTK@R ENQ SGD RS@SHRSHB@K BG@Q@BSDQHRSHBR NE SGD RN KTSHNM CDODMCHMF NM SGD RS@SHRSHB@K BG@Q@BSDQHRSHBR NE SGD BNDƧBHDMSR NE 1@SGDQ VD @HL ENQ PT@KHS@SHUD QDRTKSR KHJD SGD @RXLOSNSHB ADG@UHNQ NE SGD QD @KHR@SHNMR NQ SGD LNLDMSR NE SGD RNKTSHNM RODBH@K B@RD NE HR FHUDM VGDM SGD BNDƧBHDMSR @QD @OOQNWHL@SDKX VGHSD MNHRD OQNBDRRDR ,@MX VNQJR SQD@S SGHR SXOD NE CHƤDQDMSH@K DPT@SHNMR DH SGDQ AX TSHKHYHMF @OOQNWHL@SD %NJJDQ /K@MBJ DPT@SHNMR NQ (S¯ 2SQ@SNMNUHBG RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR RDD :< :< :< $W@LOKD 1@MCNLHYDC "NDƧBHDMSR @S @ ,NMNC *HMDSHBR ,NCDK BE :t1
ˆ Xt2 − Xt1 ≤
@BBNQCHMF SN
∞ E (A + Fτ Xτ ) Cτ t0
t2
KHL
t1 ,t2 →∞ , t2 >t1
≤
∞ t0
≤ χ1
t0
∞ t0
ˆ Xt Ct 0 KROGV 7KH PDWUL[ Ft LV SDWKZLVH FRQWLQXRXV VWDWLRQDU\ LQ WKH QDUURZ VHQVH DQG HUJRGLF ,W KROGV WKDW E (Ft ) ≤ c < (a − ε)/b ε > 0 IRU D FRQVWDQW c 7KHQ ˆ 0 KHL DWO (εt) Xt =
t→∞
KROGV IRU DQ\ SDWKZLVH VROXWLRQ Xt RI 3URRI %NKKNVHMF :< OO VD G@UD SG@S HLOKHDR
t I Fτ Cτ , Xt | ≤ b X0 | DWO −a(t − t0 ) + b @MC GDMBD KHLt→∞
6HFWLRQ
1 t
t0 t t0
Fτ Cτ =E ˆ (Ft0 ) KD@CR SN SGD @RRDQSHNM
3NAH@R 1HFNHO %KNQH@M 5XSS !@RDC NM $SSNQD % (ME@MSDŗR @QSHBKD :< VD FHUD RSQNMFDQ BNMCHSHNMR ENQ BNMUDQFDMBD SNV@QCR SGD MTKK RNKTSHNM (M O@QSHBTK@Q KDS TR RSTCX SGD Q@M CNL CHƤDQDMSH@K DPT@SHNM CXt = AXt + Ft Xt + C(t)Xt , Ct
VGDQD A HR @ BNMRS@MS d×d L@SQHW Ft @ RSNBG@RSHB d×d L@SQHW OQNBDRR @MC C(t) @ QD@K d × d L@SQHW ETMBSHNM 6D CDMNSD SGD K@QFDRS @MC RL@KKDRS DHFDMU@KTD NE @ L@SQHW B AX λL@W (B) @MC λLHM (B) QDRODBSHUDKX 3GDNQDL $WONMDMSH@K #DB@X NE 2NKTSHNMR 5DQRHNM /HW WKH IROORZLQJ FRQGLWLRQV EH VDWLVƲHG 7KH PDWUL[ SURFHVV Ft LV VWULFWO\ VWDWLRQDU\ SDWKZLVH FRQWLQXRXV DQG HU JRGLF 7KH PDWUL[ IXQFWLRQ C(t) LV FRQWLQXRXV RQ I 7KHUH LV D V\PPHWULF SRVLWLYH GHƲQLWH PDWUL[ B VXFK WKDW 1 E (ρ1 (t0 )) + KHL t→∞ t − t0 ZKHUH DQG
t t0
ρ2 (τ )Gτ ≤ −ε ,
ε > 0,
ρ1 (t) = λL@W AT + FtT + B (A + Ft ) B −1 ρ2 (t) = λLHM C T (t) + BC(t)B −1 .
7KHQ KHL DWO (αt) Xt = ˆ 0
t→∞
KROGV IRU HYHU\ SDWKZLVH VROXWLRQ DQG HYHU\ α < ε 3URRI %NKKNVHMF :< OO VD @RRTLD SG@S D @MC B @QD SVN QD@K RXLLDSQHB d × d L@SQHBDR @MC SG@S B HR ONRHSHUD CDƥMHSD 3GDM VD G@UD ENQ SGD LHMHLTL @MC L@WHLTL NE SGD PT@CQ@SHB ENQLR xT Dx = λLHM DB −1 , T x∈Rd \{0} x Bx
xT Dx −1 DB , = λ L@W T x∈Rd \{0} x Bx
LHM
@MC
L@W
QDRODBSHUDKX
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF (E Xt HR SGD MTKK RNKTSHNM SGDM SGD @RRDQSHNM SQHUH@KKX ENKKNVR (M NQCDQ SN NAS@HM @ BNMSQ@CHBSHNM KDS Xt AD RNLD NSGDQ RNKTSHNM CHƤDQDMS EQNL SGD MTKK RNKTSHNM @MC BNMRHCDQ SGD ETMBSHNM v(x) = xT Bx .
6HSG v˙ t (x) = xT
AT + FtT + C T (t) B + B (A + Ft + C(t)) x
DPT@SHNMR @MC HLOKX 1 Cv(Xt ) I v˙ t (Xt ) I = ≤ v(Xt ) Ct v(Xt )
v˙ t (x) = ρ(t) , x∈Rd \{0} v(x)
L@W
VGDQD ρ(t) := λL@W AT + FtT + C T (t) + B (A + Ft + C(t)) B −1 .
(E D1 , D2 @MC B @QD QD@K RXLLDSQHB L@SQHBDR @MC HE B HR ONRHSHUD CDƥMHSD SGDM λL@W (D1 + D2 ) B −1 ≤ λL@W D1 B −1 + λmax D2 B −1 GNKCR CTD SN !DB@TRD NE DPT@SHNM HLOKHDR ρ(t) ≤ ρ1 (t) + ρ2 (t) . @MC KD@C SN I v(Xt ) ≤ v(X0 ) DWO (t − t0 )
1 t − t0
t t0
1 ρ1 (τ )Cτ + t − t0
t t0
ρ2 (τ )Cτ
.
BBNQCHMF SN BNMCHSHNM HS GNKCR SG@S 1 KHL t→∞ t − t0
t
ρ1 (τ )Cτ = ˆ E (ρ1 (t0 )) .
t0
ˆ @MC SGTR ƥ @MC BNMCHSHNM HLOKX KHLt→∞ DWO (αt) v(Xt )=0 I
M@KKX ADB@TRD NE v(Xt ) ≥ λLHM (B) Xt 2 SGD @RRDQSHNM NE SGHR SGDNQDL (M VD TSHKHYDC SGD PT@MSHSHDR v˙ t (Xt )/v(Xt ) @MC v˙ t (x)/v(x) .E BNTQRD NMD G@R SN RGNV SG@S SGDRD @MC HM O@QSHBTK@Q SGD RSNBG@RSHB PT@MSHSX v˙ t (Xt )/v(Xt ) @QD VDKK CDƥMDC 3GHR HR SGD S@RJ NE OQNAKDL (M SGD CHRBTRRHNM NE RODBHƥB RXRSDLR NMD B@M RSQHUD ENQ RS@AHKHSX ANTMC@QHDR SG@S @QD @R RG@QO @R ONRRHAKD AX TRHMF @M NOSHL@K BGNHBD NE B
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 1DL@QJ 4OODQ !NTMCR ENQ E(ρ2 ) +DS C(t) G@UD SGD ENQL C(t) = C1 (t)+ C2 (t) VGDQD C1 (t) HR @ BNMSHMTNTR ODQHNCHB ETMBSHNM VHSG ODQHNC θ 3GDM ρ2 (t) ≤ λL@W CtT (t) + BC1 (t)B −1 + λL@W C2T (t) + BC2 (t)B −1 GNKCR @MC ENQ HMRS@MBD
t 1 1 θ KHL ρ2 (τ )Cτ ≤ λL@W C1T (τ ) + BC1 (τ )B −1 Cτ t→∞ t − t0 t θ 0 0 + RTO λL@W C2T (τ ) + BC2 (τ )B −1 τ ∈[t0 ,∞)
HR U@KHC !DB@TRD NE λL@W (D) ≤ D VD F@HM EQNL SG@S
t & 1 1 θ& &C1T (τ ) + BC1 (τ )B −1 & Cτ KHL ρ2 (τ )Cτ ≤ t→∞ t − t0 t θ 0 0 & & + RTO &C2T (τ ) + BC2 (τ )B −1 & . τ ∈[t0 ,∞)
%NQ DW@LOKD HE C(t) G@R SGD ENQL C(t) =
N
ci (t)Ci ,
i=1
VGDQD SGD ci i = 1, 2, . . . , N @QD BNMSHMTNTR ODQHNCHB ETMBSHNMR VHSG ODQHNC θi @MC SGD Ci @QD BNMRS@MS QD@K L@SQHBDR SGDM λL@W C T (t) + BC(t)B −1 N xT CiT B + BCi c L@W ci (t) ≤ xT Bx x∈Rd i=1
N
≤
T T −1 −1 c+ + c− i (t)λL@W Ci + BCi B i (t)λLHM Ci + BCi B
i=1
VGDQD
#
c+ i (t) =
+DS
θi 0
ci (t)
HE ci (t) ≥ 0
0
HE ci (t) ≤ 0
@MC c− i (t) =
ci (t)
HE ci (t) < 0
0
HE ci (t) > 0
.
ci (τ )Cτ = 0 SGDM
θi 0
#
c+ i (τ )Cτ
= −
θi 0
c− i (τ )Cτ
=
1 2
θi 0
|ci (τ )| Cτ
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF GNKCR @MC VD F@HM EQNL
t 1 ρ2 (τ )Cτ t − t0 t0
θi N 1 ≤ |ci (τ )| Cτ λL@W CiT + BCi B −1 − λLHM CiT + BCi B −1 . 2θi 0 i=1
t 1 (E HM VD QDOK@BD SGD KHLHS KHLt→∞ ρ2 (τ )Cτ VHSG HSR ANTMCR t − t0 t0 EQNL @MC QDRODBSHUDKX VD F@HM HLOKHB@SHNMR ENQL 3GD NQDL VGHBG L@X AD UDQHƥDC LNQD D@RX KHLt→∞
%TQSGDQ BNMRDPTDMBDR EQNL 3GDNQDL @QD NAS@HMDC AX TRHMF TOODQ ANTMCR NM ρ1 1DL@QJ 4OODQ !NTMCR ENQ ρ1 (MDPT@KHSX HLOKHDR ρ1 (t) ≤ λL@W AT + BAB −1 + λLHM FtT + BFt B −1 .
(E A HR @ RS@AKD L@SQHW H D @KK DHFDMU@KTDR NE SGD L@SQHW A G@UD MDF@SHUD QD@K O@QSR SGDM SGD L@SQHW B B@M ENQ HMRS@MBD AD BGNRDM @R SGD RNKTSHNM NE SGD L@SQHW DPT@SHNM AT B + BA = I , RDD :< !DB@TRD NE λL@W AT + BAB −1 =
1 λL@W (B)
HMDPT@KHSX KD@CR SN ρ1 (t) ≤ −
1 + λL@W FtT + BFt B −1 λL@W (B)
& & 1 + &FtT + BFt B −1 & . λL@W (B)
NQ ρ1 (t) ≤ −
OOKXHMF SGD SQ@MRENQL@SHNM x = B −1/2 y VD FDS SGD DPT@SHNM xT FtT B + BFt x y T B −1/2 FtT B 1/2 + B 1/2 Ft B −1/2 y = L@W , L@W xT Bx yT y x∈Rd \{0} y∈Rd \{0} @MC SGTR SG@S ! λL@W FtT + BFt B −1 = λL@W B −1/2 FtT B 1/2 + B 1/2 Ft B −1/2 . 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS %QNL @MC HS ENKKNVR SG@S & & 1 & & + &B −1/2 FtT B 1/2 + B 1/2 Ft B −1/2 & . ρ1 (t) ≤ − λL@W (B)
3GD BNMCHSHNM &! & & & E &B −1/2 FtT B 1/2 + B 1/2 Ft B −1/2 &
0 ,
2 4 (b − α1 )2 + α2−1 α2 + α12 − 1 − Zt + 2α1 (b − α1 )
@MC λL@W C T + BCB −1 =
1 √ a |RHM (ωt)| , α2
1 λLHM C T + BCB −1 = − √ a |RHM (ωt)| . α2 %QNL VD NAS@HM
t
2π/ω 1 aω 2a ρ2 (τ )Cτ ≤ |RHM (ωt)| Ct = √ . KHL √ t∈∞ t − t0 t 2π α π α2 2 0 0 ρ1 (t) ADBNLDR LHMHL@K ENQ α1 = b ,
α2 = 1 − b2 ,
HE b ≤
α1 = b ,
α2 = b2 ,
HE b ≥
√
1 2 2, √ 1 2 2.
/KTFFHMF HMSN @MC VD FDS VHSG SGD ENKKNVHMF BNMCHSHNM √ √ 2a E (|Zt |) ≤ (2b − ε) 1 − b2 − , HE b ≤ 12 2 , π
√ 2a 2 , HE b ≥ 12 2 . E Zt + 1 − 2b ≤ (2b − ε)b − π 6HSG α1 = b @MC α2 = b2 + 1 VD NAS@HM @S E (Zt ) = 0 VHSG @MC EQNL AX @OOKXHMF SGD "@TBGX 2BGV@QY HMDPT@KHSX @KRN SGD BNMCHSHNM 2 2a 2 2 E Zt ≤ (2b − ε) 1 + b − − 4b4 π
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 0.4
0.14
0.3
0.12
0.2 0.1 0.1 0.08
Yt
Yt
0
−0.1
0.06
−0.2 0.04 −0.3 0.02
0
−0.4
0
5
t
10
15
−0.5
0
5
@
t
10
15
A
%HFTQD 2HLTK@SHNMR NE SGD RNKTSHNM OQNBDRR NE SGD C@LODC NRBHKK@SHNM DPT@SHNM VHSG Zt = Ot b = 0.1 @MC c(t) = t HM @ @R VDKK @R c(t) = RHM(t) HM A
@MC HM SGD B@RD a = 0
E Zt2 ≤ 4b2 − ε∗ .
QDRODBSHUDKX $W@LOKD 2DBNMC .QCDQ 1@MCNL #HƤDQDMSH@K $PT@SHNM VHSG 2SNBG@R SHBHSX @S SGD 5DKNBHSX "NLONMDMS BE :< OO -DWS KDS TR RSTCX SGD RDB NMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM Y¨t + (2b + Zt + c(t)) Y˙ t + Yt = 0 ,
VGDQD Zt @F@HM HR @ RS@SHNM@QX OQNBDRR HM SGD M@QQNV RDMRD SG@S HR DQFNCHB @MC O@SG VHRD BNMSHMTNTR NM I RTBG SG@S E (Zt ) = 0 3GD ETMBSHNM c(t) HR BNMSHMTNTR @MC ODQHNCHB VHSG ODQHNC θ @MC RTBG SG@S
1 θ 1 θ c(τ )Cτ = 0 , @MC |c(τ )| Cτ = c . θ 0 θ 0 %HF RGNVR RNLD RHLTK@SHNMR NE SGHR C@LODC NRBHKK@SHNM DPT@SHNM VHSG Zt = Ot RTBG SG@S COt = −Ot Ct + CWt b = 0.1 @MC SVN CHƤDQDMS U@KTDR NE SGD ETMBSHNM c M@LDKX c(t) = t HM %HF @ @MC c(t) = RHM(t) HM %HF A 3GD RHLTK@SHNMR VDQD BNLOTSDC VHSG SGD @UDQ@FDC $TKDQ LDSGNC SG@S VD VHKK CHRBTRR HM "G@O VHSG @ RSDO RHYD h = 3 · 10−3 6D QD VQHSD DPT@SHNM HM SGD ENQL VHSG XtT = (Yt , Y˙ t ) @MC 0 0 0 1 , A = , F t = Zt 0 −1 −1 −2b
@R VDKK @R Ct = c(t)
6HFWLRQ
0 0 0 −1
=: c(t)C .
3NAH@R 1HFNHO %KNQH@M 5XSS OOKXHMF SGD UDQX R@LD L@SQHW B @R HM DW@LOKD VD FDS ρ1 (t) = −2b−Zt + (Zt + 2b − 2α1 )2 +α2−1 α2 + α12 − 1 + α1 Zt + 2α1 (b − α1 ) @MC 3 T α2 λL@W C + BCB −1 − λLHM C T + BCB −1 = 1+ 1 . α2 @MC HLOKX 1 t→∞ t − t0
t
KHL
t0
3 ρ2 (τ )Cτ ≤
c 2
1+
α12 . α2
ρ1 (t) ADBNLDR LHMHL@K ENQ α1 = b , α1 = √
1 , 2 b +1
α2 = 1 − b2 ,
√ HE b ≤ 12 ( 5 − 1) ,
b2 , b2 + 1
√ HE b ≥ 12 ( 5 − 1) .
α2 =
3GTR VHSG @MC VD NAS@HM EQNL SGD BNMCHSHNM √ E (|Zt |) ≤ (2b − ε) 1 − b2 − 12 c ,
√ HE b ≤ 12 ( 5 − 1)
−1/2
! −1/2 1
≤ (2b − ε)b 1 + b2 − 2c , E Zt + 2b − 2 1 + b2
√ HE b ≥ 12 ( 5 − 1) 3GD "@TBGX 2BGV@QY HMDPT@KHSX @MC SGD U@KTDR α1 =
b , 1 + b2
@MC
α2 = 1 −
b2 (1 + b2 )2
@OOKHDC SN KD@C VHSG @MC @KRN SN SGD BNMCHSHNM E Zt2 ≤ NQ SN
−1 1/2 1 !2 −2 6 (2b − ε) 1 + b2 1 + b 2 + b4 − 2 c − 4 1 + b2 b , −2 − ε∗ E Zt2 ≤ 4b4 1 + b4 1 + b2
HM SGD B@RD c = 0 QDRODBSHUDKX
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
!NTMCDCMDRR NE /@SG 6HRD 2NKTSHNMR
-DWS VD CHRBTRR SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM CXt = AXt + Ft Xt + C(t)Xt + Zt , Ct
VGDQD A Ft @MC C(t) @QD CDƥMDC @R HM DPT@SHNM @MC Zt HR @ d CHLDMRHNM@K O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRR 6D KNNJ ENQ BNMCH SHNMR TMCDQ VGHBG SGD QD@KHR@SHNMR NE SGD O@SG VHRD RNKTSHNMR NE @QD ANTMCDC 3GDNQDL 4OODQ !NTMCR ENQ SGD 2NKTSHNM /HW WKH FRQGLWLRQV DQG RI 7KHRUHP EH VDWLVƲHG DQG OHW WKHUH EH D V\PPHWULF SRVLWLYH GHƲQLWH PDWUL[ I
B VXFK WKDW ρ(t) ≤ −ε < 0 KROGV ZKHUH ρ(t) LV GHƲQHG LQ 0RUHRYHU I
OHW WKHUH EH D ƲQLWH IXQFWLRQ M (ω) GHƲQHG LQ Ω VXFK WKDW Zt ≤ M 7KHQ IRU HYHU\ SDWKZLVH VROXWLRQ Xt RI WKHUH DUH SRVLWLYH QXPEHUV h DQG k VXFK WKDW I
Xt ≤ h X0 + kM . 3URRI %NKKNVHMF :< O VD ƥQRS MNSD SG@S @BBNQCHMF SN ENQ @MX O@SG VHRD RNKTSHNM Yt NE SGD GNLNFDMDNTR CHƤDQDMSH@K DPT@SHNM Y˙ t = (A + Ft + C(t)) Yt SGD DRSHL@SD I
Yt ≤ (λLHM (B))−1 λL@W (B) Yτ DWO (−ε(t − τ )) ,
t ∈ I,
τ ∈ [t0 , t] ,
!DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ( $WONMDMSH@K #DB@X NE /@SG 6HRD 2NKTSHNMR 0 4MCDQ VGHBG BNMCHSHNMR CNDR SGD TMHPTD O@SG VHRD RNKTSHNM NE X˙ t = (A + Ft ) Xt CDB@X SNV@QCR SGD MTKK RNKTSHNM 0 2JDSBG SGD OQNNE NE SGD SGDNQDL XNT TRDC HM 0 0 4MCDQ VGHBG BNMCHSHNMR CNDR SGD TMHPTD O@SG VHRD RNKTSHNM NE X˙ t = (A + Ft ) Xt + C(t)Xt CDB@X SNV@QCR SGD MTKK RNKTSHNM 0 2JDSBG SGD OQNNE NE SGD SGDNQDL XNT TRDC HM 0
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS GNKCR 3GTR ENQ SGD ETMC@LDMS@K L@SQHW Φt NE SGD GNLNFDMDNTR DPT@SHNM VHSG Φt0 = I DRSHL@SDR NE SGD ENQL & & I &Φt Φ−1 & ≤ h DWO (−ε(t − τ )) , τ
@MC
I
Φt ≤ h DWO (−ε(t − τ ))
@QD U@KHC $UDQX O@SG VHRD RNKTSHNM Xt NE MNV G@R SGD ENQL VGHBG KD@CR SN I
Xt ≤ h X0 DWO (−ε(t − τ )) + Chε−1 (1 − DWO (−ε(t − τ ))) I
≤ h X0 + M hε , @MC SGTR SGD @RRDQSHNM HR RGNVM I
2TƧBHDMS BNMCHSHNMR ENQ ρ(t) ≤ −ε @QD NAS@HMDC VHSG SGD DRSHL@SDR EQNL 2DB %NQ HMRS@MBD HE VD @RRTLD SG@S SGD QD@K O@QSR NE @KK DHFDMU@KTDR NE A @QD MDF@SHUD SG@S C(t) ≡ 0 @MC SG@S B HR SGD RNKTSHNM NE SGD L@SQHW DPT@SHNM AT B + BA = −I 3GDM RTBG @ RTƧBHDMS BNMCHSHNM HR FHUDM AX I λL@W FtT + BFt B −1 ≤ (λL@W (B))−1 − ε . .M SGD NSGDQ G@MC ENQ SGHR HMDPT@KHSX & I & T &Ft + BFt B −1 & ≤ (λL@W (B))−1 − ε NQ
& I & & & −1/2 T 1/2 Ft B + B 1/2 Ft B −1/2 & ≤ (λL@W (B))−1 − ε &B
@QD RTƧBHDMS !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS (( !NTMCDCMDRR NE /@SG 6HRD 2NKTSHNMR = 0 &HUDM SGD HMGNLNFDMDNTR Q@MCNL CHƤDQDMSH@K DPT@SHNM X˙ t (A + Ft C(t)) Xt + Zt 6G@S B@M XNT R@X @ANTS SGD ANTMCDCMDRR NE Xt 0 2JDSBG SGD OQNNE NE SGD @RRDQSHNM XNT TRDC HM 0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
RXLOSNSHB /QNODQSHDR NE SGD ,NLDMSR NE /@SG 6HRD 2NKTSHNMR
"NMUDQRDKX SN SGD LDSGNCR NE 2DB NMD B@M CDCTBD SGD @RXLOSNSHB ADG@UHNQ NE SGD LNLDMSR EQNL SGD OQNODQSHDR NE SGD QD@KHR@SHNMR NE SGD BNDE ƥBHDMSR HE BDQS@HM HMSDFQ@AHKHSX BNMCHSHNMR @QD R@SHRƥDC %HQRS VD HMRODBS SGD CHƤDQDMSH@K DPT@SHNM X˙ t = AXt ,
VGDQD A HR @ t HMCDODMCDMS Q@MCNL d × d L@SQHW "NMCHSHNMR ENQ SGD @RXLOSNSHB BNMUDQFDMBD NE SGD LNLDMSR NE SGD O@SG VHRD RNKTSHNMR NE SNV@QCR SGD MTKK RNKTSHNM @QD @KRN CHRBTRRDC D F HM :< :< NQ :
"N@QRD < E : − − Y D S @ NL < E : − NL= − Y D S @ NL < E E E & D O F X O D W H W K H V R O X W L R Q Y L D −52'( 7 D \ O R U VFKHPH E N Q M ->S− CDK8 NTH>"N@QRD M − NTH>"N@QRD M , Q W H J U D O V XVLQJ W U D S H ] R L G D O U X O H CDK8 NTH L M− M L − NTH>"N@QRD M ( C D K S @ RTL CDK8 ( C D K S @ = RTL L CDK8 6 R O X W L R Q Y H F W R U X V L Q J W K H −52'( VFKHPH 99 M 99 M G E E CDK8 − G NT>"N@QRD M E E G= E E ( − G= NT>"N@QRD M G= E E E E G ( − ( − G= NT>"N@QRD M 8SGDWH I I X Q F W L R Q Z L W K QHZ ] ] Y D O X H V E :−99 M −NT>"N@QRD M − Y D S @ NL 99 M NT>"N@QRD M NL= 99 M NT>"N@QRD M < DMC
"G@OSDQŗR 2TLL@QX 6D OQDRDMSDC SVN CHƤDQDMS SXODR NE DWOKHBHS RBGDLDR ENQ SGD MTLDQH B@K RNKTSHNM NE 1.#$R KNV NQCDQ LDSGNCRŕCDSDQLHMHRSHB $TKDQ @MC 'DTM RBGDLDR VHSG BNQQDRONMCHMF @UDQ@FDC UDQRHNMRŕ@MC GHFGDQ NQCDQ LDSG NCRŕCDSDQLHMHRSHB 1TMFD *TSS@ VHSG * 1.#$ 3@XKNQ RBGDLDR 3GD SVN E@L HKHDR NE RBGDLDR L@X @OOD@Q UDQX CHƤDQDMS @S ƥQRS RHFGS ATS SGDHQ MTLDQHB@K HLOKDLDMS@SHNM RGNVR U@QHNTR RHLHK@QHSHDR BST@KKX ANSG QDPTHQD @ ETQSGDQ RTACHUHRHNM NE SGD BGNRDM SHLDRSDO RHYD h HM NQCDQ SN BNLOTSD SGD @UDQ@FHMF $PR NQ SN @OOQNWHL@SD SGD HMSDFQ@KR D F $P QDRODB
2TBG HMSDFQ@KR L@X AD HMSDQOQDSDC @R SGD LD@M NE SGD ETMBSHNMR TO SN @ LTKSHOKHB@SHUD BNMRS@MS
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
, 3+ ! $W@LOKD _E9XK 1TMFD *TSS@ LDSGNC NE ENTQSG NQCDQ E T M B S H N M : 8 < 1* -S G S E , % V R O X W L R Q G L V S O D F H P H Q W V Y H O R F L W L H V R I I O R R U V 8 Y D Q N R -S %% Y D Q N R -S %% % : < A : < ZHL JKW R I 5. V W H S Y H F W R U V S G S E R KDMFSG A DPRXQW R I 5. V W H S Y H F W R U V - KDMFSG S QXPEHU R I I X O O WLPH V W H S V CHL K D M F S G 8 JJ Y D Q N R CHL R X Y D Q N R CHL - , Q L W L D O YDOXH X 8 H [ S O 5XQJH . X W W D PHWKRG E N Q H -− ENQ I R JJ I , X H G JJ I ŗ %% H DMC X H X H G JJ A DMC 8 X
SHUDKX 3GD BGNHBD NE SGD RTABXBKHMF RSDO RHYD δ = h/N @MC h/m QDRO HR @R BQTBH@K SN SGD NUDQ@KK NQCDQ NE SGD RBGDLD @R SGD BGNHBD NE h HSRDKE (M NQCDQ SN @BGHDUD @M @ARNKTSD DQQNQ NE NQCDQ O(10−4 ) HM SGD DW@LOKDR VD G@UD OQD RDMSDC NMD BNTKC TRD @M @UDQ@FDC $TKDQ LDSGNC VHSG h = 10−4 @MC δ = 10−8 NQ @M @UDQ@FDC 'DTM RBGDLD VHSG h = 10−2 @MC δ = 10−8 NQ DUDM LNQD @ QDFTK@Q MNM @UDQ@FDC $TKDQ RBGDLD VHSG h = 10−8 RHMBD HS VHKK AD NE NQCDQ O(h1/2 ) %HM@KKX @ QC NQCDQ 1.#$ 3@XKNQ RBGDLD QDPTHQDR D@BG HMSDFQ@K EQNL tn SN tn+1 SN AD B@KBTK@SDC VHSG δ = h3 · h NQCDQ OKTR ODQENQLHMF N RTBG HMSDFQ@KR 'DMBD @KK ENTQ LDSGNCR MDDC SGD R@LD CDFQDD NE QDƥMDLDMS HM SHLD %NKKNVHMF :< SGD D@RD NE BNLOTS@SHNM NE SGD @UDQ@FDR NQ 1HDL@MM RTLR @R VDKK @R RS@AHKHSX OQNODQSHDR L@JD GHFGDQ NQCDQ LDSGNCR OQDEDQ@AKD
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
0.2
u4
u4
0
−0.2
0
5
10
15
20
0.2
u3
−0.2
0
5
10
15
20
0.2
u2
−0.2
0
5
10
15
20
0.2
u1
−0.2
u ¨g
0
5
10
15
20
20
−20
0
5
10
15
20
10
15
20
0
5
10
15
20
0
5
10
15
20
0
5
10
15
20
0
5
10
15
20
0.5 0
0.2 0
−0.2
u ¨g
0
5
0
−0.5
u1
0
0
0.5
−0.5
u2
0
0
−0.5
u3
0
0.5
20 0
−20
t
t
@
A
%HFTQD 3VN CHƤDQDMS QD@KHR@SHNMR @ @MC A NE SGD FQNTMC LNSHNM DWBHS@SHNM @OOKHDC SN @ TRT@K RSNQDX ATHKCHMF 3GD FQNTMC LNSHNM @BBDKDQ@SHNM u ¨g @MC SGD QDRTKSHMF CHROK@BDLDMS NE SGD ENTQ RSNQDXR NE SGD ATHKCHMF @QD UHRT@KHRDC @R ETMBSHNMR NE SHLD
$WDQBHRD :☼< UDQ@FDC 2BGDLDR '@MCR .M (LOKDLDMS @ , 3+ ! OQNFQ@L SN RHLTK@SD SGD O@SG VHRD RNKTSHNMR NE $P AX LD@MR NE SGD UDQ@FDC $TKDQ @MC 'DTM RBGDLDR "NLO@QD XNTQ QDRTKSR VHSG SGD DW@BS RNKTSHNM 'NV RL@KK RGNTKC h AD HM NQCDQ SN G@UD @ FKNA@K DQQNQ NE SGD NQCDQ 10−2 6G@S CNDR SGHR LD@M HM SDQLR NE SGD RTABX BKHMF RSDO RHYD δ $WDQBHRD :☼< ,NQD 2@LOKD /@SGR C@OS SGD , 3+ ! $W@LOKD RN SG@S HS FDMDQ@SDR J HMCDODMCDMS R@LOKD O@SGR NE SGD .QMRSDHM 4GKDMADBJ OQNBDRR @MC QDSTQMR SGD BNQQDRONMCHMF J×Lii L@SQHW NE QD@KHR@SHNMR $WDQBHRD :☼< 2HLTK@SHMF @ RDBNMC NQCDQ 1.#$ (M "G@O VD DMBNTMSDQDC SGD DPT@SHNM Y¨t + 2bY˙ t + (1 + Zt + a RHM(ωt))Yt = 0 , VGDQD a ≥ 0 @MC b > 0 #DQHUD SGD @UDQ@FDC $TKDQ RBGDLD ENQ SGHR DPT@ SHNM (LOKDLDMS XNTQ RNKTSHNM VHSG , 3+ ! @MC OKNS ƥUD R@LOKD O@SGR NE Yt 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS M@KXRD SGD ADG@UHNTQ NE SGD RNKTSHNM @R @ ETMBHSNM NE SGD CHƤDQDMS DPT@SHNM O@Q@LDSDQR $WDQBHRD :< 'HFGDQ .QCDQ 2BGDLD ENQ SGD *@M@H 3@IHLH ,NCDK $P FHUDR SGD FDMDQ@K ENQL NE SGD 1.#$ 3@XKNQ RBGDLD @OOKHDC SN SGD *@M@H 3@IHLH LNCDK $P #HRBQDSHRD SGD HMSDFQ@KR AX LD@MR NE 1HDL@MM RTLR @MC B@KBTK@SD SGD MDBDRR@QX O@QSH@K CDQHU@SHUDR (LOKDLDMS SGD QDRTKSHMF MTLDQHB@K RBGDLD ENQ SGD RNKTSHNM y (3),h VHSG , 3+ ! S@JHMF h = 1/16 'NV RL@KK RGNTKC SGD HMSDFQ@SHNM RSDORHYD AD ENQ SGHR BGNHBD NE h $WDQBHRD :< #DQHUHMF @ * 1.#$ 3@XKNQ 2BGDLD $P L@X KNNJ HMMNBDMS ATS SGDQD HR LNQD SN HS SG@M LDDSR SGD DXD .TQ RHLOKD *@M@H 3@IHLH LNCDK VHKK @KKNV TR SN TMCDQRS@MC SGD HMMDQ VNQJHMFR NE SGDRD RBGDLDR 2S@QS AX CDQHUHMF SGD 1.#$ 3@XKNQ RBGDLD FHUDM @S SGD ADFHMMHMF NE 2DB !DFHM AX CDƥMHMF SGD @OOQNOQH@SD A1 (1.0) RDS @MC HSDQ@SHUDKX ƥMC SGD DWOQDRRHNMR ENQ Nα .MBD XNT G@UD V@QLDC TO VHSG SGHR DW@LOKD FN ENQ SGD SGHQC NQCDQ RBGDLD
!DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 3GD CDQHU@SHNM NE L@MX MTLDQHB@K LDSGNCR RS@QSR NƤ AX BNMRHCDQHMF 3@X KNQ DWO@MRHNMR NE SGD CHƤDQDMSH@K DPT@SHNM V Q S SHLD 6G@S HR CHƤDQDMS @ANTS 3GD * 1.#$ 3@XKNQ RBGDLDR 6GX HR HS MNS ONRRHAKD SN B@QQX NTS @M DWO@MRHNM HM SHLD 0 .ARDQUD EQNL $P A SG@S SGD RNKTSHNM x @OOD@QR HLOKHBHSKX HMRHCD SGD ƥQRS HMSDFQ@K NE SGD QHFGS G@MC RHCD #NDR SGHR LD@M SG@S SGD QDRTKSHMF * 1.#$ RBGDLD HR HLOKHBHS 6GX 0
M@KXRD SGD QDRTKSHMF RBGDLD NE $P 6GHBG MTLDQHB@K HMSDFQ@SHNM LDSGNC VNTKC XNT BGNNRD ENQ SGD HMSDFQ@KR HM SGD QHFGS G@MC RHCD 6G@S CN XNT JMNV @ANTS SGD RLNNSGMDRR NE SGD HMSDFQ@MC 6NTKC HS L@JD RDMRD SN TRD GHFGDQ NQCDQ HMSDFQ@SHNM RBGDLDR
0 %NQ @ FHUDM 1.#$ NE SGD ENQL VG@S VNTKC AD SGD @CU@MS@FDRCHR @CU@MS@FDR NE HLOKDLDMSHMF @ 1.#$ 3@XKNQ RBGDLD BNLO@QDC SN @M @UDQ@FDC $TKDQ RBGDLD 6G@S @ANTS @ 1.#$ 3@XKNQ RBGDLD @MC SGD @UDQ@FDC 'DTM RBGDLD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
"G@OSDQ
6WDELOLW\ RI 3DWK:LVH 6ROXWLRQV 3GHR BG@OSDQ ADFHMR VHSG SGD RSTCX NE U@QHNTR MNSHNMR NE RS@AHKHSX NE SGD MTKK RNKTSHNM NE @ Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNM VHSG @ ENBTR NM O@SG VHRD DPTH RS@AHKHSX h P @MC W RS@AHKHSX (M O@QSHBTK@Q SGD QDK@SHNMR HLOKH B@SHNMR @MC HMSDQ BNMMDBSHNMR ADSVDDM SGDRD BNMBDOSR @QD CHRBTRRDC @MC SGD QDRTKSR NE "G@O NM SGD O@SG VHRD RS@AHKHSX NE KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR VHSG RSNBG@RSHB BNDƧBHDMSR @QD QD EQ@LDC HM SGD BNMSDWS NE SGDRD BNMBDOSR ,NQDNUDQ VD DWSDMC SGD CDSDQLHMHRSHB +X@OTMNU LDSGNC SN Q@M CNL CHƤDQDMSH@K DPT@SHNMR !@RDC NM RTHS@AKD +X@OTMNU ETMBSHNMR MDBDR R@QX BNMCHSHNMR ENQ h RS@AHKHSX @MC O@SG VHRD DPTH RS@AHKHSX @QD FHUDM %HM@KKX SGD RS@AHKHSX NE CDSDQLHMHRSHB RXRSDLR RTAIDBS SN CHƤDQDMS BK@RRDR NE BNMSHMT NTRKX @BSHMF Q@MCNL ODQSTQA@SHNMR HR @M@KXRDC
*DX "NMBDOSR R :< O LDMSHNMR @MC @R VD G@UD @KQD@CX RDDM HM "G@O CDSDQLHM HRSHB B@KBTKTR B@M AD TRDC O@SG VHRD ENQ Q@MCNL CHƤDQDMSH@K DPT@SHNMR @MC BNMSQ@QX SN RSNBG@RSHB CHƤDQDMSH@K DPT@SHNMR MN MDV QTKDR NE B@KBTKTR KHJD (S¯ŗR BDKDAQ@SDC ENQLTK@ MDDC SN AD HMUDMSDC 3GHR FQD@SKX E@BHKHS@SDR SGD HM UDRSHF@SHNM NE CXM@LHB@K ADG@UHNQ @MC NSGDQ PT@KHS@SHUD OQNODQSHDR NE Q@MCNL CHƤDQDMSH@K DPT@SHNMR $W@LOKD $WHRSDMBD NE @M $PTHKHAQHTL 2NKTSHNM BE :< O DW@LOKD KDS SGD ENKKNVHMF Q@MCNL CHƤDQDMSH@K DPT@SHNM
R HM
Z˙ t = f (Zt + Ot ) + Ot AD FHUDM VGDQD Ot HR @ RS@SHNM@QX .QMRSDHM 4GKDMADBJ OQNBDRR @MC @RRTLD SG@S f R@SHRƥDR SGD NMD RHCDC CHRRHO@SHUD +HORBGHSY BNMCHSHNM x − y , f (x) − f (y) ≤ −Lx − y2 ,
&KDSWHU
3NAH@R 1HFNHO %KNQH@M 5XSS ENQ @KK x, y ∈ Rd @MC RNLD L > 0 3GDM ENQ @MX SVN RNKTSHNMR Z1 (t) @MC Z2 (t) NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM VD G@UD C Ct Z1 (t)
− Z2 (t)2 = 2Z1 (t) − Z2 (t) ,
C Ct Z1 (t)
−
C Ct Z2 (t)
= 2Z1 (t) − Z2 (t) , f (Z1 (t) + Ot ) − f (Z2 (t) + Ot ) = 2(Z1 (t) + Ot ) − (Z2 (t) + Ot ) , f (Z1 (t) + Ot ) − f (Z2 (t) + Ot ) ≤ −2LZ1 (t) − Z2 (t)2 , EQNL VGHBG HS ENKKNVR SG@S Z1 (t) − Z2 (t)2 ≤ DWO(−2Lt)Z1 (0) − Z2 (0)2 → 0 ,
@R t → ∞ .
3GTR SGDQD DWHRSR @ O@SG VHRD @RXLOSNSHB@KKX RS@AKD RSNBG@RSHB RS@SHNM@QX RN KTSHNM (M O@QSHBTK@Q @R VD G@UD RDDM HM DW@LOKD SGHR Q@MCNL CHƤDQDMSH@K DPT@ SHNM HR DPTHU@KDMS SN SGD RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM CXt = f (Xt )Ct+CWt 3GTR SGHR RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM G@R @ O@SG VHRD @RXLOSNSHB@KKX RS@ AKD RSNBG@RSHB RS@SHNM@QX RNKTSHNM SNN 6GDM QD@CHMF SGHR BG@OSDQ MNSD SGD @MRVDQR SN SGD ENKKNVHMF PTDRSHNMR 'NV CN RSNBG@RSHB @MC CDSDQLHMHRSHB RS@AHKHSX BNMBDOSR CHƤDQ EQNL D@BG NSGDQ 'NV @QD SGDX BNMMDBSDC #N SGDX HLOKX D@BG NSGDQ 6G@S HR O@SG VHRD DPTH RS@AHKHSX h P @MC W RS@AHKHSX 6G@S HR @ RSNBG@RSHB +X@OTMNU ETMBSHNM 'NV CNDR @ RSNBG@RSHB +X@OTMNU ETMBSHNM HLOKX DPTH RS@AHKHSX NQ h RS@AHKHSX @R VDKK @R SGD ENKKNVHMF JDX BNMBDOSR 3GD U@QHNTR MNSHNMR NE RSNBG@RSHB RS@AHKHSX @MC SGDHQ HLOKHB@SHNMR QDK@ SHNMR @LNMFRS D@BG NSGDQ +X@OTMNU ETMBSHNMR ENQ Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNMR @MC SGDHQ HLOKHB@SHNMR @MC
OOKHB@SHNM NE RSNBG@RSHB RS@AHKHSX SN SGD CDSDQLHMHRSHB RS@AHKHSX NE RXR SDLR RTAIDBS SN BNMSHMTNTRKX @BSHMF Q@MCNL ODQSTQA@SHNMR
-NSD SG@S VD VHKK TRD SGD ENKKNVHMF @AAQDUH@SHNMR HM SGHR BG@OSDQ Ut @MC Vt VHKK AD NMD CHLDMRHNM@K RSNBG@RSHB OQNBDRRDR NM I @MC VD VHKK CDƥMD @ (p)
ONHMS VHRD OQNA@AHKHRSHB RHYD QDK@SHNM Ut < Vt @R (p)
Ut < Vt
:⇔
P (Ut < Vt ) > p &KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF ENQ t ∈ I @MC Ut
(I,p)
p (p)
(I,p)
VGHBG GNKCR NM SGD VGNKD NE I "KD@QKX Ut < Vt ENQ @KK t ∈ I HLOKHDR Ut < Vt ,NQDNUDQ CTQHMF NTQ CHRBTRRHNM NE RS@AHKHSX VD VHKK EQDPTDMSKX @OOKX SGD ENKKNVHMF DRSHL@SD +DLL@ &QNVSG (MDPT@KHSX ENQ "NMSHMTNTR &@TRRH@M /QNBDRRDR /HW α, β, γ > 0 DQG Zt t ∈ I := [t0 , ∞) EH D SDWKZLVH DV ZHOO DV q.m.FRQWLQXRXV *DXVVLDQ YHFWRUYDOXHG SURFHVV VXFK WKDW
∞ E(Zt ) ≤ α , K Z (t, t) = σZ2 (t) ≤ β 2 , DQG K Z (t, τ )Gτ ≤ γ , 0
KROG IRU DOO t ∈ I 7KHQ WKH IROORZLQJ JURZWK LQHTXDOLW\ KROGV IRU DUELWUDU\ k > 0 DQG t ≥ t0 t Zτ Gτ ≤ DWO k α + β + 12 kγ (t − t0 ) . E DWO k t0
3URRI 2DD :< 3GHR BG@OSDQ HR RSQTBSTQDC @R ENKKNVR 2DB RSTCHDR SGD U@QHNTR MNSHNMR NE RS@AHKHSX NE SGD MTKK RNKTSHNM NE @ Q@MCNL NQCHM@QX CHƤDQDMSH@K DPT@SHNM VHSG @ ENBTR NM O@SG VHRD DPTH RS@AHKHSX h P @MC W RS@AHKHSX 3GD QDK@SHNM RGHO ADSVDDM SGDRD BNMBDOSR @QD CHRBTRRDC @MC SGD QDRTKSR NE "G@O NM SGD O@SG VHRD RS@AHKHSX NE KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNMR VHSG RSNBG@RSHB BN DƧBHDMSR @QD QD EQ@LDC HM SGD BNMSDWS NE SGDRD BNMBDOSR -DWS 2DB DW SDMCR SGD CDSDQLHMHRSHB +X@OTMNU LDSGNC SN Q@MCNL CHƤDQDMSH@K DPT@SHNMR (M O@QSHBTK@Q A@RDC NM RTHS@AKD +X@OTMNU ETMBSHNMR MDBDRR@QX BNMCHSHNMR ENQ h RS@AHKHSX @MC O@SG VHRD DPTH RS@AHKHSX @QD FHUDM GDQD R @M DWBTQRHNM 2DB GNKCR QDRTKSR BNMBDQMHMF SGD RS@AHKHSX NE CDSDQLHMHRSHB RXRSDLR RTA IDBS SN CHƤDQDMS BK@RRDR NE BNMSHMTNTRKX @BSHMF Q@MCNL ODQSTQA@SHNMR %HM@KKX 2DB VQ@OR TO SGD BNMSDMSR NE SGHR BG@OSDQ
2S@AHKHSX -NS@SHNMR ENQ /@SG 6HRD 2NKTSHNMR NE 1.#$R @MC 3GDHQ "NMMDBSHNMR R HM SGD CDSDQLHMHRSHB B@RD SGD OQNAKDL NE VGDSGDQ @ RODBHƥB RNKTSHNM NE @ Q@MCNL CHƤDQDMSH@K DPT@SHNM HR RS@AKD NQ MNS HR CDBHCDC AX RSTCXHMF SGD MTKK RNKTSHNM SQHUH@K RNKTSHNM NE @ SQ@MRENQLDC DPT@SHNM HE MDBDRR@QX +DS f (x, t, ω) : Rd × I × Ω → Rd %NQ @KLNRS @KK ω ∈ Ω KDS SGD CHƤDQDMSH@K DPT@SHNM x˙ = f (x, t, ω) R@SHREX SGD ENKKNVHMF SGQDD OQNODQSHDR 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 4MHPTD DWHRSDMBD NE RNKTSHNMR 3GDQD HR @ TMHPTD RNKTSHNM x(t, x0 , t0 , ω) NM I ENQ @MX HMHSH@K BNMCHSHNM (x0 , t0 ) ∈ Rd × I "NMSHMTHSX NE RNKTSHNMR %NQ ƥWDC (t, ω) SGD RNKTSHNM x(t, x0 , t0 , ω) HR @ BNM SHMTNTR UDBSNQ U@KTDC ETMBSHNM NM Rd × I (RNK@SDC DPTHKHAQH@ @S YDQN 3GDQD HR @ MDHFGANQGNNC Uω {0} @QNTMC x = 0 RTBG SG@S f (x, t, ω) = 0 t ∈ I GNKCR HM Uω HE @MC NMKX HE x = 0 6D @RRTLD SG@S ENQ @MX HMHSH@K BNMCHSHNM (X0 , t0 ) ∈ Sd × I SGDQD HR @ TMHPTD O@SG VHRD RNKTSHNM Xt (X0 , t0 ) NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM CXt = f (Xt , t, ω) . Ct I
I
3GTR Xt (X0 , t0 ) = x(t, X0 (ω), t0 , ω) 3GD O@SG VHRD RNKTSHNM Xt (0, t0 ) = 0 VHSG QDRODBS SN SGD HMHSH@K BNMCHSHNM (0, t0 ) HR B@KKDC QXOOVROXWLRQ NQ WULYLDO VROXWLRQ NE
3GD 9NN NE 2SNBG@RSHB 2S@AHKHSX "NMBDOSR
M@KNFNTRKX SN SGD CDSDQLHMHRSHB RDSSHMF SGDQD DWHRS L@MX RS@AHKHSX BNMBDOSR SG@S @QD S@HKNQDC RODBHƥB@KKX ENQ Q@MCNL CHƤDQDMSH@K DPT@SHNMR #TD SN SGD U@QHNTR BNMUDQFDMBD MNSHNMR ENQ RSNBG@RSHB OQNBDRRDR SGNTFG SGD UNKTLD NE SGDRD BNMBDOSR HR HMBQD@RDC +DS TR RS@QS AX CDƥMHMF SGNRD RSNBG@RSHB RS@AHKHSX BNMBDOSR SG@S B@M AD OK@XDC A@BJ D@RHKX SN SGDHQ CDSDQLHMHRSHB BNTMSDQO@QSR #DƥMHSHNM /@SG 6HRD 2S@AHKHSX "NMBDOSR 3GD MTKK RNKTSHNM NE SGD Q@M CNL CHƤDQDMSH@K DPT@SHNM HR B@KKDC SDWKZLVH VWDEOH DV\PSWRWLFDOO\ SDWKZLVH VWDEOH DV\PSWRWLFDOO\ SDWKZLVH VWDEOH LQ WKH ZKROH XQLIRUPO\ SDWKZLVH VWDEOH H[SRQHQWLDOO\ SDWKZLVH VWDEOH NQ SDWKZLVH VWDEOH XQGHU FRQWLQXRXVO\ DFWLQJ GLVWXUEDQFHV QDRODBSHUDKX HE ENQ @KLNRS @KK ω ∈ Ω SGD MTKK RNKTSHNM NE CDSDQLHMHRSHB CHƤDQDMSH@K DPT@SHNM x˙ = f (x, t, ω) HR RS@AKD
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF @RXLOSNSHB@KKX RS@AKD @RXLOSNSHB@KKX RS@AKD HM SGD VGNKD TMHENQLKX RS@AKD DWONMDMSH@KKX RS@AKD NQ RS@AKD TMCDQ BNMSHMTNTRKX @BSHMF CHRSTQA@MBDR QDRODBSHUDKX 6D FDS @ RSQNMF MNSHNM NE RS@AHKHSX HE VD B@M BGNNRD SGD BNMRS@MSR δ1 , δ2 , . . . SG@S NBBTQ HM SGDRD RS@AHKHSX CDƥMHSHNMR HMCDODMCDMSKX NE ω #DƥMHSHNM /@SG 6HRD $PTH 2S@AHKHSX 3GD MTKK RNKTSHNM NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM NM I HR B@KKDC SDWKZLVH HTXLVWDEOH HE ENQ DUDQX ε > 0 SGDQD HR @ δ > 0 RTBG SG@S I
Xt (X0 , t0 ) < ε , ˆ ENQ @KK X0 ∈ Sd VHSG X0 0 RTBG SG@S KHL Xt (X0 , t0 ) = ˆ 0
t→0
ˆ SGDM SGD MTKK RNKTSHNM NE HR B@KKDC SDWKZLVH DV\PSWRWL ENQ @KK X0 0 RTBG SG@S E (h(Xt (X0 , t0 ))) < ε 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS ENQ @KK t ∈ I @MC X0 ∈ Sd VHSG E(h(X0 )) < δ (E @CCHSHNM@KKX SGDQD HR @ η > 0 RTBG SG@S KHL E (h(Xt (X0 , t0 ))) = 0
t→∞
ENQ @KK X0 ∈ Sd VHSG E(h(X0 )) < η SGDM SGD MTKK RNKTSHNM NE HR B@KKDC DV\PSWRWLFDOO\ hVWDEOH 3GD MTKK RNKTSHNM NE HR B@KKDC H[SRQHQWLDOO\ hVWDEOH HE SGDQD @QD ONRH SHUD BNMRS@MSR a b @MC η RTBG SG@S E (h(Xt (X0 , t0 ))) ≤ aE(h(X0 )) DWO(−b(t − t0 )) GNKCR ENQ @KK 0 ≤ t0 ≤ t @MC @KK X0 ∈ Sd VHSG E(h(X0 )) < η (E h(x) = x SGDM h RS@AHKHSX HR NESDM B@KKDC m RS@AHKHSX ENQ VWDELOLW\ LQ WKH PHDQ M@KNFNTRKX HE h(x) = x2 SGDM h RS@AHKHSX HR NESDM B@KKDC q.m. RS@AHKHSX ENQ VWDELOLW\ LQ WKH TXDGUDWLF PHDQ NQ PHDQ VTXDUH VWDELOLW\ #DƥMHSHNM P 2S@AHKHSX 3GD MTKK RNKTSHNM NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM NM I HR B@KKDC PVWDEOH RS@AKD HM OQNA@AHKHSX HE ENQ DUDQX ε > 0 @MC DUDQX p ∈ (0, 1) SGDQD @QD MTLADQR δ > 0 @MC γ ∈ (0, 1) RTBG SG@S (p)
Xt (X0 , t0 ) < ε (γ)
ENQ @KK t ∈ I @MC X0 ∈ Sd VHSG X0 < δ #DƥMHSHNM W 2S@AHKHSX 3GD MTKK RNKTSHNM NE SGD Q@MCNL CHƤDQDMSH@K DPT@SHNM NM I HR B@KKDC W VWDEOH RSNBG@RSHB@KKX RS@AKD HE ENQ DUDQX ε > 0 @MC DUDQX p ∈ (0, 1) SGDQD @QD MTLADQR δ > 0 @MC γ ∈ (0, 1) RTBG SG@S Xt (X0 , t0 )
(I,p)
π t→∞ (χ)
ENQ @KK X0 ∈ Sd VHSG X0 < η RRTLD SG@S HM SGD CDƥMHSHNMR @MC SGD MTLADQR δ, γ @MC χ, η QD RODBSHUDKX B@M AD BGNRDM HMCDODMCDMSKX NE t0 ∈ I RTBG SG@S SGD QDPTHQDC HMDPT@KHSHDR GNKC ENQ @KK t0 ∈ I 3GDM SGD MTKK RNKTSHNM NE HR B@KKDC XQL IRUPO\ P W VWDEOH NQ XQLIRUPO\ DV\PSWRWLFDOO\ W VWDEOH
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF 1DL@QJ .M (MHSH@K "NMCHSHNMR %QNL 2TARDSR NE Sd KK CDƥMHSHNMR NE RS@ AHKHSX VDQD ENQLTK@SDC VHSG QDRODBS SN HMHSH@K BNMCHSHNMR X0 ∈ Sd .E BNTQRD SGDX B@M @KRN AD FHUDM HM SDQLR NE HMHSH@K BNMCHSHNMR EQNL RTARDSR M NE Sd D F ENQ MNM Q@MCNL HMHSH@K BNMCHSHNMR X0 ∈ M = Rd NQ ENQ ˆ , X0 ∈ M = γ(K) := {X0 ∈ Sd : X0 0 @MC p ∈ (0, 1) SGDQD @QD MTLADQR δ > 0 @MC γ ∈ (0, 1) RTBG SG@S (p)
Xt (X0 , t0 ) < ε (γ)
ENQ @KK t ∈ I @MC X0 ∈ M VHSG X0 < δ 3GD MNSHNMR NE RSNBG@RSHB RS@AHKHSX CDRBQHADC @ANUD DM@AKD TR SN RSTCX SGD RS@AHKHSX OQNODQSHDR VGHBG SGD MTKK RNKTSHNM NE @ Q@MCNL CHƤDQDMSH@K DPT@SHNM DWGHAHSR (M SGD CDSDQLHMHRSHB KHLHS H D HE f (x, t, ω) @MC X0 (ω) @QD HMCDODMCDMS NE ω D@BG NE SGD RS@AHKHSX BNMBDOSR OQNUHCDC HM CDƥMHSHNMR SN AD BNLDR @ AXVNQC ENQ SGD RS@AHKHSX BNMBDOSR CHRBTRRDC HM 2DB 3GDRDR RSNBG@R SHB RS@AHKHSX BNMBDOSR @QD SGTR QD@KKX FDMDQ@KHR@SHNMR NE SGD CDSDQLHMHRSHB NMDR
1DK@SHNMR !DSVDDM SGD #HƤDQDMS 2S@AHKHSX -NSHNMR
%NKKNVHMF :< OO VD MDWS CHRBTRR RNLD HLONQS@MS QDK@SHNMR ADSVDDM SGD CHƤDQDMS RSNBG@RSHB RS@AHKHSX MNSHNMR !DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ( 3GD 9NN NE 2SNBG@RSHB 2S@AHKHSX "NMBDOSR 0 &HUD SGD CDƥMHSHNM NE TMHENQL O@SG VHRD RS@AHKHSX 0 &HUD SGD CDƥMHSHNM NE O@SG VHRD DPTH RS@AHKHSX @RXLOSNSHB O@SG VHRD DPTH RS@AHKHSX DWONMDMSH@K O@SG VHRD DPTH RS@AHKHSX 0 &HUD SGD CDƥMHSHNM NE h RS@AHKHSX @RXLOSNSHB h RS@AHKHSX DWONMDMSH@K h RS@AHKHSX 0 &HUD SGD CDƥMHSHNMR NE RS@AHKHSX HM SGD LD@M @MC NE LD@M RPT@QD RS@AHKHSX 0 &HUD SGD CDƥMHSHNMR NE P RS@AHKHSX @MC W RS@AHKHSX $WOK@HM GNV SGDRD SVN RS@AHKHSX MNSHNMR CHƤDQ EQNL D@BG NSGDQ @MC FHUD RHLOKD DW@LOKDR ENQ VGHBG SGDX KD@C H SN SGD R@LD @MC HH SN @ CHƤDQDMS QDRTKS
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS /QNONRHSHNM /@SG 6HRD 2S@AHKHSX (LOKHDR 4MHENQL /@SG 6HRD 2S@AHKHSX /HW f (x, t, ω) EH LQGHSHQGHQW RI t IRU DOPRVW DOO ω ∈ Ω RU SHULRGLF LQ t IRU DO PRVW DOO ω ∈ Ω UHVSHFWLYHO\ 7KHQ DV\PSWRWLF SDWKZLVH VWDELOLW\ RI WKH QXOO VROXWLRQ RI HTXDWLRQ LPSOLHV XQLIRUP DV\PSWRWLF SDWKZLVH VWDELOLW\ ,I WKH QXOOVROXWLRQ RI HTXDWLRQ LV XQLIRUPO\ DV\PSWRWLFDOO\ SDWKZLVH VWDEOH WKHQ LW LV DOVR SDWKZLVH VWDEOH XQGHU FRQWLQXRXVO\ DFWLQJ GLVWXUEDQFHV 3URRI 3GD @RRDQSHNMR ENKKNV HLLDCH@SDKX EQNL SGD CDSDQLHMHRSHB QDRTKSR BNU DQDC HM 2DB 3GD MTKK RNKTSHNM NE DPT@SHNM B@M AD O@SG VHRD RS@AKD VHSGNTS ADHMF h RS@AKD $W@LOKD /@SG 6HRD 2S@AKD 2NKTSHNM 3G@S HR MNS h 2S@AKD BE :< O @MC : 0 (SR O@SG VHRD RNKTSHNM HR FHUDM AX Xt =
X0 2 t DWO (−Z(t − t0 )) . t20
(E Z HR @ TMHENQLKX CHRSQHATSDC Q@MCNL U@QH@AKD NM (0, 1) SGDM HS GNKCR SG@S E (|Xt |) =
X0 t2 (1 − DWO (−(t − t0 ))) . · t20 (t − t0 )
3GTR SGD MTKK RNKTSHNM HR O@SG VHRD RS@AKD ATS MNS h RS@AKD /QNONRHSHNM r SG ,D@M 2S@AHKHSX (LOKHDR r SG ,D@M 2S@AHKHSX /HW r < r 7KHQ VWDELOLW\ LQ WKH rWK PHDQ h(x) = xr ZLWK UHVSHFW WR GHWHUPLQLVWLF LQLWLDO FRQGLWLRQV M = Rd LPSOLHV VWDELOLW\ LQ WKH r WK PHDQ ZLWK UHVSHFW WR GHWHUPLQLVWLF LQLWLDO FRQGLWLRQV 3URRI 3GHR ENKKNVR EQNL SGD E@BS SG@S (E(Xt r ))1/r HR @ LNMNSNMNTRKX MNM CDBQD@RHMF ETMBSHNM HM r /QNONRHSHNM /@SG 6HRD 2S@AHKHSX (LOKHDR W 2S@AHKHSX /HW WKH QXOO VROXWLRQ RI HTXDWLRQ EH SDWKZLVH VWDEOH 7KHQ LW LV W VWDEOH WRR 3URRI %NKKNVHMF :< OO @RRTLD SGD MTKK RNKTSHNM NE HR O@SG VHRD RS@AKD @MC KDS ε > 0 @MC p ∈ (0, 1) AD FHUDM 3GDM SGDQD HR @ ONRHSHUD δε ∈ S1
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF I
ˆ ε ,NQDNUDQ SGDQD HR @ ONRHSHUD MTLADQ RTBG SG@S Xt < ε GNKCR HE X0 δ(ε, p) GNKCR 3GTR ENQ X0 < δ(ε, p) HS ENKKNVR SG@S p < P ((X0 < δ(ε, p)) ∩ (δε > δ(ε, p))) ≤ P (Xt < ε : t ∈ I) , (I,p)
VGHBG LD@MR Xt < ε /QNONRHSHNM W 2S@AHKHSX (LOKHDR P 2S@AHKHSX /HW WKH QXOOVROXWLRQ RI HTXDWLRQ EH W VWDEOH 7KHQ LW LV PVWDEOH WRR /QNONRHSHNM 2S@AHKHSX V Q S (MHSH@K 5@KTD 2DSR HR /@RRDC NM SN 2TARDSR /HW M1 ⊂ M2 ⊂ Sd /HW WKH QXOOVROXWLRQ RI HTXDWLRQ EH VWDEOH ZLWK UHVSHFW WR M2 LQ WKH VHQVH RI DQ\ RI WKH VWDELOLW\ GHƲQLWLRQV WR 7KHQ LW LV VWDEOH ZLWK UHVSHFW WR M1 LQ WKH VHQVH RI WKH VDPH VWDELOLW\ GHƲQLWLRQ /QNONRHSHNM h 2S@AHKHSX (LOKHDR P 2S@AHKHSX /HW K EH DQ DUELWUDU\ SRV ˆ DV GHƲQHG DERYH /HW WKH LWLYH FRQVWDQW DQG γ(K) := {X0 ∈ Sd : X0 0 @MC p ∈ (0, 1) BGNNRD δ > 0 RTBG SG@S E (h (Xt (X0 , t0 ))) < h(ε)(1 − p) , ENQ @KK t ∈ I ,
GNKCR ENQ E(h(X0 )) < δ ,NQDNUDQ ENQ SGHR δ VD BGNNRD δ > 0 @MC γ ∈ (0, 1) RTBG SG@S (1 − γ)h(K) < GNKCR 3GTR
1 2δ ,
@MC
h(δ)
E (h (Xt (X0 , t0 ))) ≥ h(ε)P (Xt (X0 , t0 ) ≥ ε) ,
ENQ @KK t ∈ I .
3GHR RGNVR SGD @RRDQSHNM 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
path-wise equi-stability
path-wise stability
h-stability (w.r.t. deterministic initial conditions)
W-stability
P-stability
%HFTQD "NMMDBSHNMR ADSVDDM SGD CHƤDQDMS MNSHNMR NE SGD RSNBG@RSHB RS@AHKHSX BNMBDOSR ENQ Q@MCNL CHƤDQDMSH@K DPT@SHNMR
/QNONRHSHNM /@SG 6HRD $PTH 2S@AHKHSX (LOKHDR W h 2S@AHKHSX /HW WKH QXOOVROXWLRQ RI HTXDWLRQ EH SDWKZLVH HTXLVWDEOH 7KHQ LW LV W VWDEOH DQG WKXV PVWDEOH DV ZHOO DV hVWDEOH ZLWK UHVSHFW WR GHWHUPLQLVWLF LQLWLDO FRQGLWLRQV M ⊂ Rd WRR 3URRI %NKKNVHMF :< OO SGD ƥQRS O@QS HR D@RX 6D BNMSHMTD VHSG SGD RDBNMC O@QS +DS SGD MTKK RNKTSHNM NE AD O@SG VHRD DPTH RS@AKD R HM SGD OQNNE NE SGD OQDUHNTR KDLL@ KDS h(ε) := RTOx∈Rd , x ≤ε h(x) %NQ FHUDM ε > 0 BGNNRD ε > 0 @MC δ > 0 RTBG SG@S h(ε ) < ε @MC I
ˆ 3GDM SGD DRSHL@SD Xt (X0 , t0 ) < ε ENQ X0 0 DQG VXƴFLHQWO\ VPDOO ρ > 0 LW KROGV IRU D b > 0 WKDW t E DWO a Lτ Gτ ≤ b DWO(ρ(t − t0 )) , t0 ∈ I , t ≥ t0 . t0
0RUHRYHU OHW M EH WKH VHW RI DOO UDQGRP YDULDEOHV IURP Sd WKDW DUH LQGHSHQGHQW RI WKH VWRFKDVWLF SURFHVV Lt t ∈ I 7KHQ WKH QXOOVROXWLRQ RI WKH UDQGRP HTXD WLRQ LV H[SRQHQWLDOO\ hVWDEOH ZLWK UHVSHFW WR M ZKHUH h(x) = x2r 3URRI %NKKNVHMF :< O CTD SN BNMCHSHNM @MC SNFDSGDQ VHSG *Q@RNURJHHŗR SGDNQDL 3GDNQDL SGDQD HR @ QD@K ETMBSHNM w(x, t) CDƥMDC NM Rd × I VHSG BNMSHMTNTR O@QSH@K CDQHU@SHUDR ∂x w @MC ∂t w NM Rd × I RTBG SG@S w G@R SGD OQNODQSHDR RS@SDC HM 3GDNQDL !DB@TRD NE OQNODQSHDR EQNL 3GDNQDL @MC BNMCHSHNM VD NAS@HM Rd ×I
w(x, ˙ t, ω) = ∂t w + (∂x w)T (f (x, t) + g(x, t, ω))
≤
−c3 x2 + Lt c4 x2 ,
VGHBG HLOKHDR w(x, ˙ t, ω) −1 VHSG ηt := c4 c−1 1 L t − c3 c 2 KD@CR SN SGD HMDPT@KHSX
Rd ×I
≤
ηt w(x, t) ,
M@KNFNTRKX SN SGD OQNNE NE +DLL@ SGHR
I0
w(Xt , t) ≤ w(X0 , t) DWO
t
ητ Cτ
.
t0
%QNL SGD OQNODQSHDR NE 3GDNQDL @MC SNFDSGDQ VHSG h(x) = x2r HS ENKKNVR SG@S t −r r h(Xt ) ≤ c1 c2 h(X0 ) DWO r ητ Cτ , t0 ∈ I , t ≥ t0 . t0
−1 (E BNMCHSHNM HR R@SHRƥDC VHSG ρ < c3 c−1 2 · r @MC a > bc1 · r @MC HE α ∈ (ρ, c3 c−1 2 · r) GNKCR SGDM KD@CR SN t −r r Lτ Cτ DWO (−α(t − t0 )) h(t) ≤ c1 c2 h(t0 )E DWO a t0
r ≤ c−r 1 c2 h(t0 ) DWO (−(α − ρ)(t − t0 )) , t0 ∈ I , lt ≥ t0 .
3GHR RGNVR SGD @RRDQSHNM 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS %HM@KKX VD RSTCX SGD KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNM VHSG RSNBG@RSHB BNDƧBHDMSR X˙ t = At Xt , VGDQD At HR @ O@SG VHRD BNMSHMTNTR OQNBDRR NM I 6D RDS v(x, t) = xT Bx VHSG @ RXLLDSQHB ONRHSHUD CDƥMHSD L@SQHW B %NKKNVHMF SGD R@LD BNMRHCDQ@SHNMR @R HM SGD OQNNE NE 3GDNQDL VD NAS@HM HMDPT@KHSX VHSG SGD OQNBDRR ηt = λL@W [ATt + BAt B −1 ] . +DS M AD SGD RDS NE @KK HMHSH@K BNMCHSHNMR X0 ∈ L2d SG@S @QD HMCDODMCDMS NE SGD L@SQHW OQNBDRR At t ∈ I #TD SN λLHM [B]x2 ≤ v(x, t) λL@W [B]x2 , 3GDNQDL +DLL@ @MC +DLL@ HLOKX 3GDNQDL ,D@M 2PT@QD 2S@AHKHSX V Q S M /HW WKHUH EH D V\PPHWULF SRV LWLYH GHƲQLWH PDWUL[ B VXFK WKDW t T −1 λL@W [Aτ + BAτ B ]Gτ ≤ 1 , t ∈ I0 . y(t0 , t) = E DWO t0
7KHQ WKH QXOOVROXWLRQ RI LV m.s.VWDEOH ZLWK UHVSHFW WR M ,I DGGLWLRQDOO\ KHLt→∞ y(t0 , t) = 0 KROGV WKHQ WKH QXOOVROXWLRQ RI LV DV\PSWRWLFDOO\ m.s.VWDEOH ZLWK UHVSHFW WR M 0RUHRYHU LI y(t0 , t) ≤ c · DWO (−d(t − t0 )) ,
t0 ∈ I ,
t > t0
DOVR KROGV WKHQ WKH QXOOVROXWLRQ RI LV H[SRQHQWLDOO\ m.s.VWDEOH ZLWK UHVSHFW WR M M@KNFNTRKX SN SGD BNQNKK@QHDR SN 3GDNQDL NMD L@X FDS LNQD OQ@BSHB@K BNMCHSHNMR AX QDOK@BHMF ηt VHSG TOODQ ANTMCR %NQ HMRS@MBD HE At = A + Ft GNKCR VHSG @ L@SQHW A SGD DHFDMU@KTDR NE VGHBG @KK G@UD MDF@SHUD QD@K O@QS @MC HE VD BGNNRD B @R SGD RNKTSHNM NE SGD L@SQHW DPT@KHSX AT B + BA = −I SGDM VD FDS & T & I T −1 & & . ηt ≤ −λ−1 L@W [B] + Ft + BFt B %NQ DPT@SHNM VD SGTR NAS@HM SGD ENKKNVHMF RTƧBHDMS BNMCHSHNM t & T & T −1 & & Fτ + BFτ B Cτ ≤ DWO (λL@W [B](t − t0 )) , t ∈ I0 . E DWO t0
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $W@LOKD 2DBNMC .QCDQ 1@MCNL #HƤDQDMSH@K $PT@SHNM VHSG 2SNBG@R SHB /DQSTQA@SHNM @S SGD /NRHSHNM 3DQL BE :< O +DS TR CHRBTRR SGD RDB NMC NQCDQ Q@MCNL CHƤDQDMSH@K DPT@SHNM ¨ t + 2bX˙ t + (1 + Zt ) Xt = 0 , X
VHSG b > 0 @MC @ O@SG VHRD BNMSHMTNTR RSNBG@RSHB OQNBDRR Zt OOKXHMF SGD RNKTSHNM LDSGNCR EQNL "G@O VD FDS ηt = λL@W [ATt + BAt B −1 ] # −2b + |Zt |(1 − b2 )−1/2 = −2b + |2b2 − 1 − Zt |b−1
HE 2b2 ≤ 1 HE 2b2 ≥ 1
ENQ @ BDQS@HM BGNHBD NE B %NQ SGD LD@M RPT@QD RS@AHKHSX NE SGD MTKK RNKTSHNM NE ! ! ! E |Xt |2 + E |X˙ t |2 < ε @S E |X0 |2 + E |X˙ 0 |2 < δ VD GDMBD G@UD SGD ENKKNVHMF RTƧBHDMS BNMCHSHNMR
t 2 −1/2 u1 (t) = E DWO (1 − b ) |Zτ |Cτ ≤ DWO (2b(t − t0 )) , t0
@S 2b2 ≤ 1 NQ
t u2 (t) = E DWO b−1 |2b2 − 1 − Zτ |Cτ ≤ DWO (2b(t − t0 )) ,
t ∈ I0
t ∈ I0
t0
@S 2b2 ≥ 1 %NQ SGD DWONMDMSH@K LD@M RPT@QD RS@AHKHSX NE SGD MTKK RNKTSHNM NE @ RTƧBHDMS BNMCHSHNM HR SGD DWHRSDMBD NE ONRHSHUD MTLADQR c @MC d RTBG SG@S ui (t) ≤ c · DWO ((2b − d)(t − t0 )) ,
t 0 ∈ I0 ,
t ≥ t0
VHSG i = 1 @S 2b2 ≤ 1 @MC i = 2 @S 2b2 ≥ 1 QDRODBSHUDKX -DWS KDS TR @RRTLD SG@S Zt HR @ &@TRRH@M OQNBDRR VHSG LD@M mZ (t) BNU@QH @MBD CZ (τ, t) @MC U@QH@MBD σZ2 (t) = CZ (t, t) RRTLD ENQ @KK t ≥ 0
∞ 2 2 CZ (τ, t)Cτ ≤ γ . |mZ (t)| ≤ α , σZ (t) ≥ β , @MC 0
(M SGD B@RD 2b2 ≤ 1 VD NAS@HM EQNL SNFDSGDQ VHSG +DLL@ SGD RTƧBHDMS BNMCHSHNM !−1 α + β + 2 1 − b2 γ ≤ 2b 1 − b2 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS ENQ LD@M RPT@QD RS@AHKHSX (M O@QSHBTK@Q HE !−1 α + β + 2 1 − b2 γ < 2b 1 − b2
GNKCR SGDM SGD MTKK RNKTSHNM NE HR DUDM DWONMDMSH@KKX LD@M RPT@QD RS@AKD (M SGD B@RD 2b2 ≥ 1 VD @OOKX +DLL@ SN SGD &@TRRH@M OQNBDRR ZtT = Zt + 1 − 2b2 3GDM @M@KNFNTRKX SN VD NAS@HM SGD RTƧBHDMS BNMCHSHNM
E (Zt ) + 1 − 2b2 < 2b2 − β − (2b)−1 γ − ε , t ∈ I VHSG @M @QAHSQ@QX ε > 0 +DS E (Zt ) ≥ m 2PT@QHMF ANSG RHCDR NE VD FDS @ RTƧBHDMS BNMCHSHNM ENQ SGD DWON MDMSH@K LD@M RPT@QD RS@AHKHSX NE SGD MTKK RNKTSHNM NE M@LDKX 2b2 ≥ 1 ,
2b2 > Q ,
α2 + 2m + 1 − Q2 < 4b2 (1 + m − Q) ,
VGDQD Q := β + (2b)−1 γ (E Zt HR @ RS@SHNM@QX &@TRRH@M OQNBDRR RTBG SG@S mZ (t) = 0 ,
σ 2 (t) = σ 2 ,
@MC
CZ (τ, t) = σ 2 DWO (−ρ|t − τ |) ,
SGDM EQNL @MC VD FDS SGD ENKKNVHMF RTƧBHDMS BNMCHSHNMR ENQ DWONMDMSH@K LD@M RPT@QD RS@AHKHSX !−1 σ + σ 2 2ρ 1 − b2 < 2b 1 − b2 , HE 2b2 ≤ 1 @MC q < 1,
4b2 >
1 − q2 1−q
HE 2b2 ≥ 1 VHSG q := σ + σ 2 (2bρ)−1
+X@OTMNU %TMBSHNMR @MC /@SG 6HRD $PTH 2S@AHKHSX
+DS K AD @M @QAHSQ@QX ƥWDC ONRHSHUD MTLADQ 6D R@X SG@S @ QD@K U@KTDC ETMB SHNM v(x, t, ω) NM Rd × I × Ω ADKNMFR SN SGD BK@RR F (K) HE SGD ENKKNVHMF GNKCR v(0, t, ω)=0 ˆ t ∈ I0 3GDQD HR @ BNMSHMTNTR QD@K U@KTDC @MC LNMNSNMHB@KKX HMBQD@RHMF ETMBSHNM ϕ NM [0, K] RTBG SG@S ϕ(0) = 0 @MC |v(x, t, ω)|
d ×I RK 0
≥
ϕ (x) ,
d := {x ∈ Rd : x < K} VGDQD RK
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF d RTBG SG@S ψ(0) = 0 3GDQD HR @ BNMSHMTNTR QD@K U@KTDC ETMBSHNM ψ NM RK @MC d RK
v(x, t, ω) ≤ ψ(x) . 3GDNQDL /@SG 6HRD $PTH 2S@AHKHSX /HW WKHUH EH D IXQFWLRQ v WKDW EH ORQJV WR WKH FODVV F (K) VXFK WKDW IRU HYHU\ X0 ∈ γ(K) WKH IXQFWLRQ Vt = v(Xt (X0 , t0 ), t, ω) KDV WKH IROORZLQJ SURSHUW\ IRU DOPRVW DOO ω ∈ Ω LW KROGV WKDW Vt (ω) LV DEVROXWHO\ FRQWLQXRXV RQ I0 ZLWK V˙ t (ω) ≤ 0 IRU DOPRVW DOO t ∈ I0 7KHQ WKH QXOOVROXWLRQ RI LV SDWKZLVH HTXLVWDEOH ,I DGGLWLRQDOO\ LW KROGV IRU DOPRVW DOO ω ∈ Ω WKDW V˙ t (ω) ≤ −cVt (ω)
IRU DOPRVW DOO t ∈ I ,
!DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM Ŕ /@QS ( +X@OTMNU %TMBSHNMR @MC h 2S@AHKHSX 0 6HSG SGD @HC NE @ RTHS@AKX BGNRDM +X@OTMNU ETMBSHNM FHUD RTƧBHDMS BNM CHSHNMR ENQ h RS@AHKHSX NE SGD MTKK RNKTSHNM NE X˙ = f (Xt , t, ω) 0 2JDSBG SGD OQNNE SGD @RRDQSHNM XNT TRDC HM 0 0 6GHBG BNMCHSHNMR @CCHSHNM@K SN SGNRD FHUDM HM 0 @QD QDPTHQDC ENQ H @RXLOSNSHB @MC HH DWONMDMSH@K h RS@AHKHSX 0 +DS SGD ENKKNVHMF Q@MCNL CHƤDQDMSH@K DPT@SHNM AD FHUDM −1 0 Xt + g(Xt , t, ω) . X˙ t = 0 −1 6GHBG QDPTHQDLDMSR G@UD SN AD HLONRDC NM SGD Q@MCNL ETMBSHNM g @MC SGD HMHSH@K BNMCHSHNMR RTBG SG@S SGD MTKK RNKTSHNM NE SGHR DPT@SHNM HR DWON MDMSH@KKX h RS@AKD HM RNLD RDMRD 0 "NMRHCDQ SGD KHMD@Q GNLNFDMDNTR Q@MCNL CHƤDQDMSH@K DPT@SHNM −1 0 ˙ Xt = W t Xt , 1 −1 · DWO(−t) VGDQD Wt HR SGD CHLDMRHNM@K RS@MC@QC 6HDMDQ OQNBDRR BBNQCHMF SN 3GDNQDL LD@M RPT@QD RS@AHKHSX V Q S M NE SGD MTKK RNKTSHNM B@M AD RGNVM HE SGDQD HR @ RTHS@AKD PT@CQ@SHB L@SQHW B 6GHBG BNMCHSHNMR G@UD SN AD HLONRDC NM B "NMRSQTBS @ RTHS@AKD L@SQHW B ENQ SGD FHUDM DPT@SHNM
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS ZKHUH c LV D SRVLWLYH FRQVWDQW WKHQ WKH QXOOVROXWLRQ RI LV SDWKZLVH DV\PSWRWLFDOO\ HTXLVWDEOH 0RUHRYHU LI IRU SRVLWLYH FRQVWDQWV a DQG b axr
d ×I RK 0
≥
v(x, t, ω)
d ×I RK 0
≥
bxr
(r > 0)
KROGV WRJHWKHU ZLWK V˙ t (ω) ≤ −cVt (ω)
IRU DOPRVW DOO t ∈ I ,
IRU DOPRVW DOO ω ∈ Ω WKHQ WKH QXOOVROXWLRQ RI LV SDWKZLVH H[SRQHQWLDOO\ HTXLVWDEOH 3URRI %NKKNVHMF :< O KDS ε > 0 VHSG ε < K AD FHUDM 6D BGNNRD δ > 0 ˆ RTBG SG@S RTO x s 3GDQDENQD SGD KHLHSHMF RSQTBSTQD NE U (0, −t)x = ϕ(t, θ−t ω)x VGDM t → ∞ B@M AD HMSDQOQDSDC @R SGD RS@SD NE NTQ RXRSDL VGHBG VD NARDQUD MNV t = 0 OQNUHCDC HS V@R HM RS@SD x HM SGD HMƥMHSDKX CHRS@MS O@RS t = −∞ 3GTR SGD TMHNM NE @KK SGDRD KHLHSR OQNUHCDR TR VHSG SGD QD@K OHBSTQD NE SGD OQDRDMS RS@SD NE SGD RXRSDL Ş 3GD @RXLOSNSHB ADG@UHNQ NE ϕ(t, θ−t ω)x OQNUHCDR TR VHSG RNLD HMENQL@ SHNM @ANTS SGD KNMF SHLD ETSTQD 2HMBD θt V@R @RRTLDC SN AD DQFNCHB H D LD@RTQD OQDRDQUHMF VD G@UD SG@S P (ω ∈ Ω : ϕ(t, ω)x ∈ D) = P (ω ∈ Ω : ϕ(t, θ−t ω)x ∈ D) ENQ @MX DKDLDMS x ∈ Rd NE SGD RS@SD RO@BD @MC @MX !NQDK RDS D ∈ B(Rd ) 3GDQDENQD KHL P (ω ∈ Ω : ϕ(t, ω)x ∈ D) = KHL P (ω ∈ Ω : ϕ(t, θ−t ω)x ∈ D) ,
t→∞
t→∞
HE SGD KHLHS NM SGD QHFGS G@MC RHCD DWHRSR 3GTR SGD KHLHSHMF ADG@UHNQ NE ϕ(t, θ−t ω)x ENQ @KK ω ∈ Ω CDSDQLHMDR SGD KNMF SHLD ADG@UHNQ NE ϕ(t, ω)x VHSG QDRODBS SN SGD BNMUDQFDMBD HM OQNA@AHKHSX Ş (S ENKKNVR SG@S HE NM SGD RDS NE Q@MCNL U@QH@AKDR A(ω) VHSG U@KTDR HM Rd VD CDƥMD SGD NODQ@SNQR Tt UH@ (Tt (a))(ω) = ϕ(t, θ−t ω)a(θ−t ω) ,
t ∈ R+ ,
SGDM SGD E@LHKX {Tt }t∈R+ HR @ NMD O@Q@LDSDQ RDLH FQNTO (MCDDC AX @O OKXHMF SGD BNBXBKD OQNODQSX VD G@UD SG@S (Ts ◦ Tt )(a)(ω) = ϕ(s, θs ω)(T−t a)(θ−s ω) = ϕ(s, θs ω) ◦ ϕ(t, θ−t−s ω)a(θ−t−s ω) = ϕ(t + s, θ−t−s ω)a(θ−t−s ω) = Tt+s (a)(ω) . 3GTR HS ADBNLDR ONRRHAKD SN @OOKX HCD@R EQNL SGD SGDNQX NE CDSDQLHMHR SHB @TSNMNLNTR CXM@LHB@K RXRSDLR ENQ VGHBG SGD RDLH FQNTO RSQTBSTQD NE SGD DUNKTSHNM NODQ@SNQ HR BQTBH@K ITRS SGHMJ NE SGD DWHRSDMBD NE @M @S SQ@BSNQ 3GD SGQDD NARDQU@SHNMR @ANUD LNSHU@SD SGD ENKKNVHMF 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS #DƥMHSHNM $PTHKHAQHTL NE @ 1@MCNL #XM@LHB@K 2XRSDL +DS (Rd , R, ϕ) AD @ Q@MCNL CXM@LHB@K RXRSDL NUDQ SGD LDSQHB CXM@LHB@K RXRSDL (Ω, F, P, (θt )t∈R ) Q@MCNL U@QH@AKD u : Ω → Rd HR R@HC SN AD @M DPTHKHAQHTL NE SGD Q@MCNL CXM@LHB@K RXRSDL HE HS HR HMU@QH@MS TMCDQ ϕ H D HE ϕ(t, ω)u(ω) = u(θt ω) ,
ENQ @KK t ∈ R @MC @KK ω ∈ Ω.
!DENQD XNT BNMSHMTD L@JD RTQD SN @MRVDQ SGD ENKKNVHMF PTDRSHNMR 0THY 2DBSHNM 0 &HUD SGD CDƥMHSHNMR NE @ Q@MCNL MNQL @MC @ Q@MCNL BNLO@BS RDS 0 &HUD SGD MNSHNM NE @ RS@AKD @RXLOSNSHB@KKX RS@AKD DWONMDMSH@KKX RS@AKD QDEDQDMBD RNKTSHNM HM @ Q@MCNL CXM@LHB@K RXRSDL 0 &HUD SGD CDƥMHSHNMR @ RS@AKD BNLO@BS Q@MCNL RDS @MC @ FKNA@K Q@MCNL @SSQ@BSNQ 0 &HUD SGD CDƥMHSHNM NE @ RSNBG@RSHB +X@OTMNU ETMBSHNM 'NV B@M XNT TRD RTBG @ ETMBSHNM SN CDSDQLHMD SGD RS@AHKHSX NE @ Q@MCNL RDS 0 (KKTRSQ@SD SGD BNMBDOS NE A@BJV@QCR RS@AHKHSX @MC FHUD SGD CDƥMHSHNM NE @M DPTHKHAQHTL NE @ Q@MCNL CXM@LHB@K RXRSDL
"G@OSDQŗR 2TLL@QX %NKKNVHMF :< @MC :< SGHR RGNQS BG@OSDQ OQNUHCDC TR VHSG @ FKHLORD HMSN SGD QDBDMS SGDNQX NE Q@MCNL CXM@LHB@K RXRSDLR %HQRS VD F@UD SGD ETMC@LDMS@K CDƥMHSHNMR NE LDSQHB LD@RTQ@AKD @MC Q@MCNL CXM@LHB@K RXRSDLR SNFDSGDQ VHSG RNLD HKKTRSQ@SHUD DW@LOKDR ,NQDNUDQ VD AQHDƦX RSTCHDC SGD MNSHNMR NE ENQV@QC @MC A@BJV@QCR RS@AHKHSX @MC SGDHQ HLOKHB@SHNMR
/QNAKDLR "K@RRHƥB@SHNM ☼ D@RX D@RX VHSG KNMFDQ B@KBTK@SHNMR @ KHSSKD AHS CHƧBTKS BG@KKDMFHMF
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF $WDQBHRD :☼< +HMD@Q 1@MCNL #HƤDQDMSH@K $PT@SHNMR @MC 1@MCNL #X M@LHB@K 2XRSDLR +DS A : Ω → Rd×d AD @ LD@RTQ@AKD ETMBSHNM RTBG SG@S A ∈ L1 (Ω, F, P) @MC fω (t, x) := A(θt ω)x R@SHRƥDR fω ∈ Lloc (R, C ∞ ) 2GNV SGD ENKKNVHMF @RRDQSHNMR 3GD KHMD@Q Q@MCNL CHƤDQDMSH@K DPT@SHNM x˙ t = A(θt ω)xt FDMDQ@SDR @ TMHPTD KHMD@Q C ∞ Q@MCNL CHƤDQDMSH@K DPT@SHNM ϕ R@SHREXHMF
t ϕ(t, ω) = I + A(θs ω)ϕ(s, ω)Cs 0
@MC
CDS(ϕ(t, ω)) = DWO
t 0
SQ (A(θs ω)) Cs
.
KRN CHƤDQDMSH@SHMF ϕ(t, ω) (ϕ(t, ω))−1 = I XHDKCR
t −1 = I+ (ϕ(s, ω))−1 A(θs ω)Cs . (ϕ(t, ω)) 0
$WDQBHRD :☼< ƧMD 1@MCNL #HƤDQDMSH@K $PT@SHNMR @MC 1@MCNL #X M@LHB@K 2XRSDLR +DS A : Ω → Rd×d AD @ LD@RTQ@AKD ETMBSHNM RTBG SG@S A ∈ L1 (Ω, F, P) @MC fω (t, x) := A(θt ω)x R@SHRƥDR fω ∈ Lloc (R, C ∞ ) 2GNV SG@S SGD DPT@SHNM x˙ t = A(θt ω)xt + b(θt ω) ,
A, b ∈ L1 (Ω, F , P) ,
FDMDQ@SDR @ TMHPTD C ∞ Q@MCNL CXM@LHB@K RXRSDL 3GD U@QH@SHNM NE BNMRS@MSR ENQLTK@ XHDKCR
t Φ(t, ω)Φ−1 (u, ω)b(θu ω)Cu ϕ(t, ω)x = Φ(t, ω)x + 0
= Φ(t, ω)x +
0
t
Φ(t − u, θu ω)b(θu ω)Cu ,
VGDQD Φ HR SGD $WDQBHRD :☼< 1@MCNL #HƤDQDMSH@K $PT@SHNMR VHSG /NKXMNLH@K 1HFGS '@MC 2HCD @MC 1@MCNL #XM@LHB@K 2XRSDLR k +DS f (ω, x) = N k=0 ak (ω)x AD @ ONKXMNLH@K NE CDFQDD N ≥ 2 VHSG Q@MCNL 1 BNDƧBHDMSR (E ak ∈ L (Ω, F , P) ENQ @KK k = 1, 2, . . . , N SGDM SGD Q@MCNL CHE EDQDMSH@K DPT@SHNM N x˙ t = ak (θt ω)xkt k=0
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS TMHPTDKX FDMDQ@SDR @ KNB@K C ∞ Q@MCNL CXM@LHB@K RXRSDL NM R1 3GD B@RD x˙ t = a(θt ω)xt + b(θt ω)xN t B@M AD DWOKHBHSKX RNKUDC AX SQ@MRENQLHMF SGD DPT@SHNM SN @M @ƧMD DPT@SHNM UH@ y = x1−N /(1 − N ) 6QHSD CNVM DWOKHBHSKX @KK HMFQDCHDMSR NE SGD KNB@K Q@MCNL CXM@LHB@K RXRSDL 3GD B@RDR N = 2 @MC N = 3 @QD D F SQD@SDC HM :
BH#2`iUV Ş 3Q@MRK@SD SGD 'HKADQS BTQUD BNNQCHM@SDR BDKK BDMSDQR HM SGD @OOQN OQH@SD L@MMDQ SN SGD UDQSHBDR NE SGD BNLOTS@SHNM@K FQHC Ş 2B@KD @KK BNNQCHM@SDR RTBG SG@S CHRBQDSD QDBS@MFKDR NE @QAHSQ@QX RHYD [0, a] × [0, b] L@X AD HMCDWDC VHSG SGD BTQUD TMCDQ SGD @RRTLOSHNM SG@S SGD MTLADQ NE UDQSHBDR HM D@BG CHQDBSHNM HR HCDMSHB@K Ş 2SNQD SGD 'HKADQS BTQUD HMCHBDR NE SGD BNQQDRONMCHMF UDQSHBDR HM @ # @QQ@X BM/B+2bi,j VGDQD (i, j) HR @ FKNA@K @BBDRR HMCDW HMCHB@SHMF SGD iSG UDQSDW HM x @MC SGD jSG UDQSDW HM y CHQDBSHNM Ş 6QHSD @ RGNQS ETMBSHNM 2MmKn?BH#2`iUV VHSG HMOTS O@Q@LDSDQR B D K M @MC BM/B+2b QDOQDRDMSHMF SGD HMCDW O@HQ (i, j) SGD MTLADQ NE UDQ SHBDR HM y @MC x CHQDBSHNM @MC SGD L@SQHW NE 'HKADQS BTQUD HMCHBDR BE %HF A ENQ @M DW@LOKD RHST@SHNM HM SGD B@RD NE KDWHBNFQ@OGHB MTLADQHMF 2MmKn?BH#2`iUV RG@KK QDSTQM SGD QDRTKSHMF @ARNKTSD HM CDW RSNQDC HM BM/B+2b -NV QD@KHRD ENTQ @KSDQM@SHUD NQCDQHMFR ADRHCDR SGD 'HKADQS BTQUD SGD RS@MC@QC KDWHBNFQ@OGHB NQCDQHMF QNV VHRDKX NQCDQDC HM x CH QDBSHNM HMBQD@RHMF HM y CHQDBSHNM @ BNKTLM VHRD KDWHBNFQ@OGHB DMTLDQ@SHNM @ CH@FNM@K NMD @MC @ LD@MCDQ KHJD U@QH@MS RDD %HF @ (LOKDLDMS SGDRD DMTLDQ@SHNMR UH@ SGD ENTQ MDV ETMBSHNMR 2MmKnH2tB+Q;`T?B+UV 2MmKnH2tB+Q;`T?B+n+QHUV @R VDKK @R 2MmKn/B;QMHUV @MC 2MmKnK2M/2`UV TRHMF SGD R@LD RHFM@STQD @R ENQ 2MmKn?BH#2`iUV HFMNQHMF SGD RSNQDC @QQ@X NE HMCHBDR HM SGD HLOKD LDMS@SHNM VGHBG HR NMKX MDBDRR@QX ENQ SGD 'HKADQS BTQUD NQCDQHMF 6QHSD @ RGNQS SDRS RBQHOS SN UHRT@KHRD SGD QDRTKSHMF DMTLDQ@SHNMR RHLHK@Q SN %HF @ D F ENQ CHƤDQDMS CDOSGR p
OOKX SGD QDRTKSHMF BNCD SN SGD ř/NHRRNM RNKUDQŚ @R VDKK @R SGD DK@RSHBHSX OQNAKDL (M NQCDQ SN E@BHKHS@SD SGHR RSDO SGHMJ NE OQNUHCHMF @ RHLOKD OQN SNSXOD NE DMTLDQ@SHNMR SGD KDWHBNFQ@OGHB NMD D F SN SGD SD@LR NE SGD BNQQDRONMCHMF S@RJR @MC
NOSHNM@K 1D@KHYD @ RDBNMC U@QH@MS ENQ SGD BNLOTS@SHNM NE SGD 'HKADQS BTQUD HMCHBDR TRHMF SGD řHMUDQRDŚ L@OOHMF NE SGD 'HKADQS BTQUD ENQ D@BG O@HQ NE UDQSDW BNNQCHM@SDR (x, y) NOSHNM@K (LOKDLDMS @ UDQSDW DMTLDQ@SHNM TRHMF SGD /D@MN BTQUD "QNRR BGDBJ ONSDMSH@K CHƤDQDMS ADG@UHNQ BNLO@QDC SN SGD 'HKADQS BTQUD L@OOHMF VGDM @OOKXHMF SGD řL@SQHW @M@KXRHRŚ SN ANSG VNQJ O@BJ@FDR ř/NHRRNM RNKUDQŚ @MC SGD DK@RSHBHSX OQNAKDL 6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS lexico−row 4 3 2 1 0
3 2 1 0
15
16
9 5
10 6
11 7
12 8
1
2
3
4
1
3
15
16
6 3
9 5
12 8
14 11
2
4
1
2 hilbert 7
10
11
8 3 2
9 14 15
12 13 16
2
0
3 2 1 0
3
8
12
16
3 2
7 6
11 10
15 14
1
5
9
1
2 meander
4
15
14
13
9 8
10 7
11 6
12 5
2 1
3 2
1
13 3
16
1 0
: Ωh
4
0
4
4
5 4 1 1
2 1
7 3
6
0
4 3
4
13
1
3 2
2 diagonal
10
0
4
1 0
14
0
4
lexico−col
13
j=2
4 3
j = 3 = Ny
7
8
9
4
5
6
1
2
3
4
j=1
4
0
@
i=1
i=2
i = 3 = Nx
1
A
%HFTQD 3GD ƥUD CHƤDQDMS DMTLDQ@SHNM SXODR @ ENQ p = 2 ENQ SGD R@JD NE RHL OKHBHSX SGD MTLADQR @QD OKNSSDC HM BDKK BDMSDQR ATS QDOQDRDMS UDQSDW HMCHBDR UHRT @KHR@SHNM NE SGD HMCDW L@OOHMF ENQ KDWHBNFQ@OGHB MTLADQHMF A
3 ,@SQHW M@KXRHR :☼< 3GD S@QFDS NE SGHR S@RJ HR SN @M@KXRD CHƤDQDMS OQNODQSHDR NE RO@QRD L@SQHBDR RSDLLHMF EQNL /#$ CHRBQDSHR@SHNMR RTBG @R SGD ř/NHRRNM RNKUDQŚ NQ SGD řBNM SHMTTL LDBG@MHBR RSQTBSTQDř -NSD 8NT CNMŗS G@UD SN V@HS ENQ SGD QD@KHR@SHNM NE SGDRD O@BJ@FDR SN RS@QS VNQJHMF NM SGD L@SQHW @M@KXRHRʖ (LOKDLDMS @ ETMBSHNM MHvb2Ji`B+2bUV SG@S QDBDHUDR ƥUD L@SQHBDR BNQ QDRONMCHMF SN SGD ƥUD CHƤDQDMS DMTLDQ@SHNM SXODR TRDC HM SGD VNQJ O@BJ@FD řRO@BD ƥKKHMF BTQUDRř @R HMOTS O@Q@LDSDQR !@RDC NM SGD SDL OK@SD BNCD NE ?iiT,ffrrrXKi?rQ`FbX/2fT`Q/m+ibfKiH#f/2KQbX?iKH\$$7BH24 fT`Q/m+ibf/2KQbfb?BTTBM;fKiH#fbT`bBivX?iKHOj HLOKDLDMS ENQ D@BG NE SGD L@SQHBDR Ş SGD BNLOTS@SHNM NE SGD BNQQDRONMCHMF A@MCVHCSG Ş SGD +4 CDBNLONRHSHNM HMRSD@C NE SGD "GNKDRJX CDBNLONRHSHNM TR HMF , 3+ !R ATHKS HM ETMBSHNM HmUV 3@JD B@QD SN @UNHC OHUNSHMF
CCHSHNM@K HMENQL@SHNM NM , 3+ !ŗR +4 CDBNLONRHSHNM HR ENTMC D F @S ?iiT,ffrrrXKi?rQ`FbX/2f?2HTfi2+?/Q+fKi?f7e@338eX?iKH$O7e@Nejj
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF Ş @ ƥFTQD RTAOKNS RGNVHMF SGD RO@QRHSX O@SSDQM @MC HMCHB@SHMF SGD A@MCVHSG Ş @ ƥFTQD RTAOKNS RGNVHMF SGD RO@QRHSX O@SSDQM NE SGD L@SQHW + 4 @MC HMCHB@SHMF SGD MNMYDQNR @ARNKTSDKX @MC @R ODQBDMS@FD SGHR RGNVR SGD ƥKK HM NE SGD CDBNLONRHSHNM Ş SGD LD@RTQHMF NE SGD DWDBTSHNM SHLD ENQ SGD BNQQDRONMCHMF CDBNL ONRHSHNM (M @CCHSHNM OQNUHCD @ RTLL@QX OKNS NE SGD @LNTMS NE QDK@SHUD ƥKK HM ENQ SGD +4 CDBNLONRHSHNM @R VDKK @R SGD DWDBTSHNM SHLDR
OOKX MHvb2Ji`B+2bUV SN SGD L@SQHBDR NE SGD VNQJ O@BJ@FD ř/NHRRNM RNKUDQŚ @MC řBNMSHMTTL LDBG@MHBR RSQTBSTQDř 6G@S CN XNT NARDQUD
$WSDMC MHvb2Ji`B+2bUV AX @M HMBNLOKDSD +4 CDBNLONRHSHNM (+4 BHmUV ENQ SGD B@RD NE SG@S @M @CCHSHNM@K HMOTS O@Q@LDSDQ b?HHAGl"2lb2/ HR SQTD 3GHR CDBNLONRHSHNM HR NESDM TRDC @R @ OQDBNMCHSHNMDQ ENQ RO@QRD RXRSDLR 3@JD B@QD SN NMKX VNQJ NM SGD NQHFHM@K MNM YDQN RSQTBSTQD NE SGD L@SQHW MN ƥKK HM @R VDKK @R SN @UNHC @F@HM OHUNSHMF 3Q@BJ SGD QTMSHLD ENQ D@BG CD BNLONRHSHNM @MC BNLOTSD @MC CHROK@X SGD BNMCHSHNM MTLADQ NE SGD NQHF HM@K L@SQHW A @MC NE SGD OQDBNMCHSHNMDC L@SQHW L−1 · A · U −1 VGDQD L @MC U @QD SGD QDRTKSR NE SGD (+4 CDBNLONRHSHNM OOKX (+4 SN SGD L@SQHBDR NE SGD VNQJ O@BJ@FD ř/NHRRNM RNKUDQř 6G@S CN XNT NARDQUD NOSHNM@K $WSDMC SGD CDBNLONRHSHNM RTQUDX AX SGD "GNKDRJX CDBNLON RHSHNM HM B@RD @M @CCHSHNM@K HMOTS O@Q@LDSDQ b?HH*?QH2bFv"2lb2/ HR SQTD NOSHNM@K (E SGD /D@MN BTQUD HR QD@KHRDC HM SGD VNQJ O@BJ@FD 2%" DWSDMC SGD L@SQHW @M@KXRHR SN LNCTK@QKX TRD DHSGDQ 'HKADQS NQ /D@MN MTLADQHMF ADB@TRD SGD MTLADQ NE UDQSHBDR HR DHSGDQ 2p NQ 3p CHRINHMSKX HM SGD @M@K XRHR
3 ,NCDKKHMF NE ,TKSH 2SNQDX !THKCHMFR @R @ "NMSHMTTL ,DBG@MHBR 2SQTBSTQD :< %NQ SGHR VNQJ O@BJ@FD SGD CNBTLDMSR NM L@SDQH@K K@VR @QD DWSQDLDKX QDKD U@MS 3GD A@RHB DWOKHBHS DPT@SHNMR @QD 0 = (2μ + λ)
∂ 2 u1 ∂ 2 u1 ∂ 2 u2 + μ + (λ + μ) ∂x1 ∂x2 ∂x21 ∂x22
HM
Ω
-NSD %NQ SGD R@JD NE RHLOKHBHSX XNT L@X TRD , 3+ !ŗR BMpUV LDSGNC SN QD@KKX BNLOTSD SGD HMUDQRD NE @ L@SQHWŕVGHBG XNT TRT@KKX RGNTKC MDUDQ CNʖ
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS ∂ 2 u2 ∂ 2 u2 ∂ 2 u1 + μ + (λ + μ) ∂x1 ∂x2 ∂x22 ∂x21 u(x, t) = u0 (x, t)
0 = (2μ + λ)
σ(u(x, t))n(x) = τ (x, t)
HM
Ω
NM
Γ0
NM
Γ1 .
(S L@X AD @CU@MS@FDNTR SN BNLLTMHB@SD VHSG SGD SD@L ř/NHRRNM OQNAKDLŚ EQNL SHLD SN SHLD BNMBDQMHMF CHRBQDSHR@SHNM HRRTDR NQ NSGDQ @RODBSR (LOKDLDMS @ RSD@CX RS@SD RNKTSHNM ENQ SGD DK@RSHBHSX OQNAKDL TRHMF @ %# CHRBQDSHR@SHNM NM @ QDBS@MFTK@Q CNL@HM [0, 1]2 D F (M O@QSHBTK@Q Ş #DQHUD SGD MDBDRR@QX ƥMHSD CHƤDQDMBD %# SDQLR @OOD@QHMF HM SGD DWOKHBHS DPT@SHNMR @MC Ş 4RD 8NTMFŗR LNCTKTR E @MC /NHRRNMŗR Q@SHN ν @R O@Q@LDSDQR SN BNL OTSD SGD +@L¤ BNMRS@MSR λ @MC μ ,@JD RTQD SN TRD ν = 0 ENQ @KK RHLTK@SHNMR ADKNV RHMBD NMKX # RBDM@QHNR @QD BNMRHCDQDC Ş (LOKDLDMS SGD @RRDLAKX NE SGD RXRSDL L@SQHW A 'HMS M NQCDQHMF NE SGD TMJMNVM CHROK@BDLDMSR RTBG SG@S SGD x CHROK@BDLDMSR NE @KK UDQSHBDR @QD BNKKDBSDC ADENQD @KK y CHROK@BDLDMSR @QD BNMRHCDQDC L@X AD @CU@MS@FDNTR SNFDSGDQ VHSG , 3+ !ŗR řQDRG@ODŚ LDSGNC Ş 4RD #HQHBGKDS ANTMC@QX BNMCHSHNMR ENQ SGD ANSSNL DCFD MN FQNTMC LNSHNM 2HMBD SGD QHFGS G@MC RHCD NE SGD RXRSDL HR RTOONRDC SN AD YDQN H D MN FQ@UHSX NQ NSGDQ UNKTLD ENQBDR SGD QHFGS G@MC RHCD UDBSNQ b BNMRHRSR NMKX NE RTBG #HQHBGKDS ANTMC@QX BNMSQHATSHNMR %NQ SGD RSD@CX RS@SD QD@KHR@SHNM @OOKX @KK YDQN #HQHBG KDS BNMCHSHNMR ATS JDDO HM LHMC SG@S SGHR VHKK AD FDMDQ@KHYDC ADKNV Ş 4RD -DTL@MM ANTMC@QX BNMCHSHNMR NM SGD NSGDQ DCFDR EQDD RTQE@BD NE SGD ATHKCHMF #DQHUD SGD MDBDRR@QX ƥMHSD CHƤDQDMBD @O OQNWHL@SHNMR ENQ UDQSHBDR NM SGD -DTL@MM ANTMC@QX 'HMS ƥQRS NQ CDQ HR RTƧBHDMS %NQ SGD RTQE@BD ENQBDR τ NM SGD ANTMC@QX QD@KHRD ƥQRS @ ƥWDC RTQE@BD ENQBD HM @ FHUDM CHQDBSHNM ENQ @KK MNCDR NE SGD KDES DCFD $WSDMC HS SN @ LNQD LNCTK@Q @OOQN@BG @KKNVHMF @ OQDRBQHADC RTQE@BD ENQBD QD@KHRDC @R @ ETMBSHNM NM @M @QAHSQ@QX DCFD @R VDKK @R @ ONHMS ENQBD NM @ RODBHƥB RTQE@BD KNB@SHNM Ş 2NKUD SGD VGNKD KHMD@Q RXRSDL SQHUH@KKX AX TRHMF , 3+ !ŗR A@BJRK@RG NODQ@SNQ H D u = A\b Ş 6NQJ SNFDSGDQ VHSG SGD řUHRT@KHR@SHNM&4(Ś SD@L SN QD@KHRD SGD HMSDQ @BSHUD RHLTK@SHNMR 8NT L@X RS@QS VHSG OQDRBQHADC CTLLX CHROK@BD LDMSR SN OQDO@QD @ OQNSNSXOD ADENQD SGD NUDQ@KK RHLTK@SHNM HR QD@CX
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF *DDO HM LHMC SG@S @ A@RHB UHRT@KHR@SHNM HR SXOHB@KKX GDKOETK ENQ CDUDK NOHMF SGD @OOKHB@SHNM Ş NOSHNM@K $WSDMC SGD RXRSDL SN BNMRHCDQ FQ@UHSX @R @M DW@LOKD NE UNKTLD ENQBDR SNN .MBD SGD VNQJ O@BJ@FD řRO@BD ƥKKHMF BTQUDRŚ HR QD@CX BNLAHMD HS VHSG SGD DK@RSHBHSX RNKUDQ %NQ SGHR OTQONRD BG@MFD SGD L@SQHW RDSTO SN @ RSDMBHK VHRD BNLOTS@SHNM VHSG @QAHSQ@QX DMTLDQ@SHNM HMOTS SN BNLOTSD SGD @BST@K HMCHBDR NE SGD UDQSHBDR TMCDQ BNMRHCDQ@SHNM "QNRR BGDBJ SG@S SGD RXRSDL VHSG CHƤDQDMS UDQSDW DMTLDQ@SHNMR RSHKK BNQQDBSKX BNLOTSDR SGD QDRTKSR NE SGD DK@RSHBHSX OQNAKDL TRD MNQLR @MC UHRT@KHR@SHNMRʖ "NLOTSD @ SHLD CDODMCDMS RNKTSHNM SN SGD OQNAKDL (M O@QSHBTK@Q Ş (LOKDLDMS SGD -DVL@QJ β LDSGNC @R SHLD HMSDFQ@SHNM RBGDLDR $UDMST@KKX S@JD @ RB@K@Q SDRS DPT@SHNM NE RDBNMC NQCDQ VGNRD @M@KXS HB@K RNKTSHNM XNT JMNV SN UDQHEX @MC U@KHC@SD XNTQ HLOKDLDMS@SHNM ,@JD RTQD SN G@UD HMOTS O@Q@LDSDQR ENQ SGD RS@QS @MC SGD DMC SHLD @R VDKK @R SGD MTLADQ @MCNQ RHYD NE SGD SHLD RSDOR Ş 1D@KHYD HMHSH@K BNMCHSHNMR ENQ SGD DK@RSHBHSX OQNAKDL 8NT L@X TRD SGD RHLOKHƥB@SHNM NE OQDRBQHAHMF @ ƥWDC UDBSNQ U@KTDC ETMBSHNM ENQ HMHSH@K CHROK@BDLDMSR @MC HMHSH@K UDKNBHSHDR KK CHROK@BDLDMSR @MC UDKNBHSHDR HM x @MC y CHQDBSHNM QDRODBSHUDKX FDS @ FHUDM HMHSH@K UDBSNQ U@KTD Ş $WSDMC XNTQ UHRT@KHR@SHNM SN QDOQDRDMS SHLD CDODMCDMS OQNAKDLR ŚLNUHDŚ @R @ RDPTDMBD NE ƥFTQDR NQ RHLHK@Q C@OS SGD &4( SNFDSGDQ VHSG SGD QDRODBSHUD SD@L HM NQCDQ SN RDKDBS SGD RSD@CX RS@SD NQ SHLD CDODMCDMS RDSTO 3GDRD ED@STQDR VHKK GDKO @KQD@CX ENQ CDATFFHMF Ş 4RD @ OQDRBQHADC SHLD CDODMCHMF FQNTMC LNSHNM @R #HQHBGKDS ANTMC@QX BNMCHSHNM RTBG @R @ RHMD ETMBSHNM NQ RHLHK@Q Ş NOSHNM@K "GNNRD @MNSGDQ SHLD HMSDFQ@SHNM RBGDLD RTBG @R DW OKHBHS $TKDQ RHLOKD NQ NSGDQ SQ@MRK@SD SGD RXRSDL HMSN ƥQRS NQCDQ @MC @OOKX HS SN SGD OQNAKDL "NLO@QD SGD QDRTKSR VHSG SGNRD NE SGD -DVL@QJ β LDSGNC 4RD SGD QDRTKSR NE SGD VNQJ O@BJ@FD řRSNBG@RSHB DWBHS@SHNMŚ @R SGD SHLD CDODMCDMS #HQHBGKDS ANTMC@QX BNMCHSHNM ENQ SGD ANSSNL DCFD NE SGD ATHKCHMF SSDMSHNM QHFGS G@MC RHCD b G@R SN AD LNCHƥDCʖ (MBKTCD SGDRD DWBHS@SHNMR SNFDSGDQ VHSG BNQQDRONMCHMF O@Q@LDSDQR @MC @ OKNS HMSN SGD &4( OOKX SGD CHƤDQDMS 8NTMFŗR LNCTKH EQNL @ANUD @MC HCDMSHEX @KSDQM@
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS SHUD U@KTDR SN FDMDQ@SD řMHBDŚ QDRONMRDR VHSG UHRHAKD NRBHKK@SHNMR NE SGD ATHKCHMF NOSHNM@K "QD@SD SVN ATHKCHMFR NE ONRRHAKX CHƤDQDMS GDHFGS @MC VHSG CHE EDQDMS 8NTMFŗR LNCTKTR 'HMS 3GD TR@FD NE @ Ʀ@F ƥDKC SN CHRSHMFTHRG HMMDQ H D ATHKCHMF BDKKR EQNL NTSDQ @HQ BDKKR HM @M NUDQ@KK CNL@HM DL ADCCHMF SGD SVN FDNLDSQHDR L@X AD @CU@MS@FDNTR
3 #@LODQ ,NCDKR NOSHNM@K :☼< (M NQCDQ SN LHMHLHRD SGD DƤDBSR NE D@QSGPT@JDR C@LODQR @QD HMRS@KKDC HM LNC DQM ATHKCHMFR RDD %HF .MD ONRRHAKD V@X NE C@LOHMF HR řA@RD HRNK@SHNM VHSG RGNBJ @ARNQADQRŚ VGDQD SGD ATHKCHMF HR RDO@Q@SDC EQNL SGD RTQQNTMC HMF D@QSG BQTRS @MC OK@BDC TONM RGNBJ @ARNQADQR 3GDRD @ARNQADQR B@M AD LNCDKKDC L@SGDL@SHB@KKX HM SDQLR NE @ CHLDMRHNM KDRR RDBNMC NQCDQ RB@K@Q NRBHKK@SNQ DPT@SHNM H D z¨ + cz˙ + kz = y(t) , VGDQD y(t) HR SGD HMOTS RHFM@K @MC z¨(t) SGD NTSOTS VGHBG RDQUDR @R @M DWBHS@SHNM NE SGD ATHKCHMF
OOKX RTBG C@LODQR SN SGD LNCDKR EQNL SGD VNQJ O@BJ@FDR řLNCDKKHMF NE LTKSH RSNQDX ATHKCHMFR @R @ VHQDEQ@LD BNTOKDC NRBHKK@SNQ RSQTBSTQDŚ @MC řLNCDKKHMF NE LTKSH RSNQDX ATHKCHMFR @R @ BNMSHMTTL LDBG@MHBR RSQTB STQDŚ
'NV CNDR NMD G@UD SN BGNNRD SGD BNDƧBHDMSR c @MC k HM NQCDQ SN G@UD @M DƤDBSHUD OQNSDBSHNM EQNL D@QSGPT@JDR
/QNIDBS 1DRTKSR 6D AQHDƦX OQDRDMS SGD QDRTKSR SGD O@QSHBHO@MSR @BGHDUDC SGQNTFGNTS SGD VNQJ RGNO (M FDMDQ@K @KK RSTCDMSR RGNVDC @ UDQX K@QFD BNLLHSLDMS SN QD@KHRD SGDHQ ƥM@K OQNCTBS KK S@RJR NE SGD RODBHƥB@SHNM G@UD ADDM S@BJKDC DWBDOS S@RJ 2DB VGHBG V@R NOSHNM@K @MXV@X 3GD RSTCDMSR L@M@FDC SN NAS@HM MHBD QDRTKSR HM SGD VNQJ O@BJ@FDR 6D NMKX KHRS SGNRD ENQ SGD LNRS OQNLHMDMS S@RJR HM SGD ENKKNVHMF 3GD VHQDEQ@LD LNCDK HM CHƤDQDMS U@QH@MSR G@R ADDM S@BJKDC HM 3 (M %HF RHLTK@SHNM QDRTKSR NE ENTQ CHƤDQDMS SXODR NE RSNQDX VHQDEQ@LD ATHKCHMFR @QD UHRT@KHRDC @S SGQDD CHƤDQDMS SHLDR t = 0.5 %HF @ t = 1.5 %HF A @MC t = 2.5 %HF B 3GD KDESLNRS @MC QHFGSLNRS ATHKCHMFR @QD @ MNQL@K @MC + RG@OD UDQRHNM TRHMF RSHƤMDRR @MC C@LOHMF BNDƧBHDMSR NE
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
Base isolation with shock absorbers
Additional dampers in the structure of the building
Water pool at the top of the building to have a counter response
Counter pendulum to generate response
%HFTQD (KKTRSQ@SHNM NE RDUDQ@K ONRRHAHKHSHDR NE RDBTQHMF ATHKCHMFR EQNL SGD DƤDBSR NE D@QSG DWBHS@SHNMR
k1 = . . . = k4 = 25 @MC c1 = . . . = c4 = 10 !THKCHMF RDBNMC EQNL KDES ONR RDRRDR GHFGDQ C@LOHMF U@KTDR c1 = . . . = c4 = 40 QDRTKSHMF HM KDRR CHROK@BDC RSNQDXR %NQ !THKCHMF RDBNMC EQNL QHFGS SGD RS@MC@QC C@LOHMF ci = 10 G@R ADDM TRDC HM BNLAHM@SHNM VHSG RS@MC@QC RSHƤMDRR ki = 25 DWBDOS ENQ BNDƧBHDMS k1 = 2.5 3GD O@QSHBHO@MSR RS@QSDC VNQJHMF NM ANSG S@RJR 3 &4( @MC 3 BNMSHMTTL LDBG@MHBR LNCDK QDK@SHUDKX K@SD ATS SGDM HMUDRSDC GHFG DƤNQSR HM SQ@MREDQ QHMF SGD &4( HM O@QSHBTK@Q SN SGD CHƤDQDMS CDL@MCDC S@RJR RM@ORGNS NE SGD &4( ENQ 3 ENQ SVN CHƤDQDMS RSD@CX RS@SD RBDM@QHNR HR FHUDM HM %HF 3GD RSTCDMSR HMBKTCDC @ KNS NE U@QH@MSR SN RODBHEX ENQBDR NM SGD U@QHNTR ANTMC @QHDR NE SGD ATHKCHMF $WSDQM@K ENQBDR B@M AD @OOKHDC HM ANSG x @MC y CHQDBSHNM NMSN SGD RTQE@BD NE SGD ATHKCHMF M DW@LOKD NE @ VHMC KN@C EQNL KDES HR UHRH AKD HM SGD SNO OHBSTQD NE %HF !DKNV @M @QSHƥBH@K SDRS B@RD NE řRPTDDYHMFŚ SGD ATHKCHMF EQNL KDES @MC QHFGS HR RGNVM 2DUDQ@K SHLD CDODMCDMS RHLTK@SHNMR TRHMF SGD -DVL@QJ RBGDLD HM BNL AHM@SHNM VHSG SGD *@M@H 3@IHLH DWBHS@SHNM G@R ADDM B@QQHDC NTS %HFTQD RGNVR SGD QDRTKSHMF CHROK@BDLDMSR @S CHƤDQDMS SHLD RSDOR 3GD ATHKCHMF LNUDR CTD SN SGD *@M@H 3@IHLH DWBHS@SHNM RKHFGSKX SN SGD QHFGS A@BJ SN SGD BDMSQD @MC ƥM@KKX SN SGD KDES ENQ SGHR QD@KHR@SHNM NE SGD Q@MCNL HMOTS SHLD RSDOR NE RHYD dt = 0.0049 G@UD ADDM TRDC SN QD@BG SGD ƥM@K SHLD te = 10.0 ENQ @ BN@QRD FQHC VHSG 4 × 20 CDFQDDR NE EQDDCNL #N% QDRTKSHMF HM hx = 0.05/3, hy = 0.25/19 SN CHRBQDSHRD SGD ATHKCHMF VHSG 8NTMFŗR LNCTKTR DPT@K SN E = 1e − 4 %TQSGDQLNQD SGD O@QSHBHO@MSR VDQD D@FDQ SN L@JD SGD NOSHNM@K S@RJ 3 ONRRHAKD (M %HF SVN ATHKCHMFR FQDDM O@SBGDR NE CHƤDQDMS 8NTMFŗR LNC TKH KDES E1 = 500 QHFGS E2 = 1500 QD@BS NM @ RTQE@BD ENQBD EQNL SGD KDES
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
u ¨ g = -5.71
@
u ¨ g = 5.52
A
u ¨ g = 5.26
B
%HFTQD ,NUDLDMS NE ENTQ CHƤDQDMS RSNQDX ATHKCHMFR TMCDQ SGD R@LD RSNBG@R SHB DWBHS@SHNM @S SHLDR @ t = 0.5 A t = 1.5 @MC B t = 2.5 !THKCHMF KDESLNRS -NQL@K RSNQDX ATHKCHMF VHSG k1 = . . . = k4 = 25 c1 = . . . = c4 = 10 !THKCHMF 2@LD @R ATHKCHMF ATS VHSG c1 = . . . = c4 = 40 !THKCHMF R@LD @R ATHKCHMF ATS VHSG RL@KKDQ k1 = 2.5 !THKCHMF QHFGSLNRS + RG@ODC VHSG SGD R@LD O@Q@LDSDQR @R ATHKCHMF
.MKX SGNRD BDKKR SG@S @QD KNB@SDC BNLOKDSDKX HMRHCD SGD ATHKCHMF O@SBGDR @QD TRDC ENQ SGD ATHKCHMF FDNLDSQX
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
%HFTQD $W@LOKD NE SGD &4( OQNUHCDC ENQ 3 2SD@CX RS@SD RNKTSHNMR NE SGD # BNMSHMTTL LDBG@MHBR LNCDK VHSGNTS D@QSGPT@JD HMBHS@SHNM ENQ 16 × 16 MNCDR TMCDQ RODBHƥDC ENQBDR SNO OTRGHMF ENQBDR EQNL KDES VHMC KN@C D F ANSSNL RXLLDSQHB řRPTDDYHMFŚ NE SGD ATHKCHMF EQNL KDES @MC QHFGS
%NQ @KK NAS@HMDC QDRTKSR @MC S@BJKDC VNQJ O@BJ@FDR HS QD@KKX O@XDC NƤ SN G@UD SGD BNQQDRONMCHMF RODBHƥB@SHNMR B@QDETKKX CDRHFMDC TO SN G@UHMF @ ONR RHAKD RNKTSHNM @S G@MCR ADENQD SGD VNQJRGNO RS@QSDC (S O@XDC NƤ EQNL SGD LDQD BNMSDMS ONHMS NE UHDV ATS @KRN BNMBDQMHMF SGD @LAH@MBD @MC LNSHU@ SHNM VGHBG VHKK AD CHRBTRRDC HM SGD ENKKNVHMF RDBSHNM
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
@ t = 0
A t = 5.0
B t = 7.5
C t = 10.0
%HFTQD 1/#$ RHLTK@SHNM QDRTKSR 3GD CHROK@BDLDMSR AKTD V Q S SGD QDEDQDMBD FQHC FQDX VHSG 4 × 20 #N% @MC E = 1e − 4 @S ENTQ CHƤDQDMS SHLDR t = 0 @ t = 5.0 A t = 7.5 B t = 10 C 3GD *@M@H 3@IHLH DWBHS@SHNM QDRTKSR HM @ LNUDLDMS EQNL SGD BDMSQD RKHFGSKX SN SGD QHFGS A@BJ SN SGD BDMSQD @MC ƥM@KKX SN SGD KDES
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
%HFTQD ř6NQJRGNO 3GD 3VN 3NVDQRŚ $WSDMRHNM NE SGD 3 RHLTK@SHNMR SN SVN ATHKCHMFR NE CHƤDQDMS 8NTMFŗR LNCTKH KDES E1 = 500 QHFGS E2 = 1500 @MC CHƤDQDMS RHYDR HM @M NUDQ@KK QDEDQDMBD FQHC FQDX NE 20 × 20 BDKKR
+DRRNMR +D@QMS !NSG SGD O@QSHBHO@SHMF RSTCDMSR @MC SGD RTODQUHRNQR G@C @ KNS NE MHBD @MC RNLDSHLDR RTQOQHRHMF DWODQHDMBDR SGQNTFGNTS SGD VNQJRGNO 6D @QD FNHMF SN KHRS NTQ HLOQDRRHNMR EQNL SGD RTODQUHRNQ ONHMS NE UHDV HM SGD ENKKNVHMF RTA RDBSHNM ADENQD OQDRDMSHMF SGD EDDCA@BJ NE SGD RSTCDMSR @MC BNMBKTCHMF SGHR RDBSHNM NM KDRRNMR KD@QMS
&DMDQ@K (LOQDRRHNMR
.TQ QNKD @R RTODQUHRNQR SGQNTFGNTS SGD QTMSHLD NE SGD VNQJRGNO V@R QD RSQHBSDC SN NARDQUHMF @MC FHUHMF SDBGMHB@K @CUHBD VGDM ADHMF @RJDC $UDM ENQ RTBG @ QDK@SHUDKX RL@KK FQNTO NE O@QSHBHO@MSR ADHMF SVN RTODQUHRNQR @MC MNS ITRS NMD V@R HLONQS@MS
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3D@LVNQJ 3GD O@QSHBHO@MSR @BSHUDKX TRDC SGDHQ EQDDCNL HM SGD CDRHFM NE SGDHQ SD@L RSQTB STQD 3GDX CDBHCDC NM G@UHMF MD@QKX MN CDRHFM@SDC QNKDR $WBDOS ENQ NMD RST CDMS @BSHMF @R SGD HMEQ@RSQTBSTQD DWODQS CTD SN GDQ DWODQHDMBD HM SG@S ƥDKC MN NSGDQ QNKDR G@C ADDM @RRHFMDC 3GD FQNTO HMHSH@KKX @M@KXRDC SGD RODBHƥ B@SHNM @MC DRSHL@SDC SGD SHLD @MC VNQJKN@C MDBDRR@QX ENQ SGD S@RJR 6HSG SGHR HMENQL@SHNM SGD O@QSHBHO@MSR CDBHCDC NM SGD RHYD NE SGD RTAFQNTOR @MC HSR LDLADQR SNFDSGDQ VHSG LHKDRSNMDR KQD@CX HM SGD ƥQRS BNTOKD NE GNTQR RNLD ƥQRS QDRTKSR VDQD NAS@HMDC VGHBG BNMRHCDQ@AKX GDKODC SN BQD@SD @ LNSHU@SHNM@K DMUHQNMLDMS ENQ SGD SD@L EQNL SGD UDQX ADFHMMHMF 3GD SD@L CDBHCDC MNS SN BQD@SD NQ TRD OQNSNSXODR @MC HMSDQE@BDR %NQ SGD S@RJR SG@S HMUNKUDC BQNRR S@RJ BNKK@ANQ@SHNM SGHR STQMDC NTS SN G@UD @M NUDQ@KK MDF@SHUD DƤDBS %HWHMF @MC RLNNSGHMF DWHRSHMF VNQJ O@BJ@FDR SNNJ LNQD SHLD SG@M HMUDRSHMF HM @ RLNNSG CDRHFM HM SGD ADFHMMHMF 3GD SD@L RGNVDC @ RTQOQHRHMFKX DƧBHDMS HMSDQM@K NQF@MHR@SHNM VHSGNTS @MX HMSDQ@BSHNM EQNL SGD RTODQUHRNQR 1DFTK@Q BGDBJONHMS LDDSHMFR VDQD GDKC VHSG @ E@RS RTQUDX NM SGD NUDQ@KK RS@STR NE D@BG RTAS@RJ KK LDLADQR BNM SQHATSDC BNMRSQTBSHUDKX @MC TRDC @ CDBDMS KDUDK NE @ARSQ@BSHNM RTBG SG@S @KK SD@L L@SDR VDQD @AKD SN ENKKNV @MC @KK MDBDRR@QX CDS@HKR SN BQNRR BGDBJ CD ODMCDMBHDR NE CHƤDQDMS VNQJ O@BJ@FDR D F VDQD OQNUHCDC (M B@RD RNLD ANCX LHRRDC @ ONHMS NQ INHMDC HM @ AHS K@SDQ @ CHQDBS řAQHDƥMFŚ VHSG @ RGNQS QDODSHSHNM SNNJ OK@BD (M BDQS@HM B@RDR @ RODBHƥB S@RJ V@R SDQLHM@SDC E@RSDQ SG@M DWODBSDC SGD @RRHFMDC SD@L HLLDCH@SDKX SQHDC SN S@BJKD @MNSGDQ VNQJ O@BJ@FD HM NQCDQ SN MNS KNRD SHLD 2NLDSHLDR DUDM DWSQ@NQCHM@QX OKDM@QX LDDSHMFR @QNRD EQNL BNQQDRONMCHMF HMCHUHCT@K CHRBTRRHNMR SN ADSSDQ A@K@MBD SGD VNQJKN@C 3GD @SLNROGDQD HM SGD SD@L V@R UDQX ONRHSHUD KK SD@L LDLADQR F@UD GNMDRS HMCHB@SHNMR NE SGDHQ RS@STR OQNAKDLR SG@S DUDMST@KKX @QNRD BNTKC SGTR AD NODMKX CHRBTRRDC %TQSGDQLNQD HMCHUHCT@K RTAFQNTOR RTOONQSDC D@BG NSGDQ @BBNQCHMF SN SGDHQ RSQDMFSGR @MC VD@JMDRRDR MHBD HMCHB@SNQ ENQ SGD NODM ONKHBX HM SGD FQNTO HR SGD CD@KHMF VHSG LHRS@JDR O@QSHBHO@MS O@QSHBHO@MS !
ř.G VD CHC HS NM XNTQ K@OSNO XNT CHCMŗS BNLLHS Ś ř8D@G SG@SŗR QHFGSşŚ
2N MN @BBTR@SHNM @MC MN CDEDMCHMF SNNJ OK@BD ADB@TRD HS V@R RHLOKX MNS MDBDRR@QX .MKX OTQD BNMRSQTBSHUD BQHSHBHRL @QNRD /DQG@OR SGHR E@BS HR @KRN QDK@SDC SN SGD QDK@SHUDKX RGNQS CTQ@SHNM NE SGD OQNIDBS NE C@XR VGDQD MN řGHRSNQHB A@BJO@BJŚ NE DLNSHNMR QDK@SDC SN VNQJ HR F@SGDQDC (M SNS@K @KK RSTCDMSR O@QSHBHO@SDC UDQX BNMRSQTBSHUDKX 6D NARDQUDC @ K@QFD VHKK @MC BNLLHSLDMS NE @KK O@QSHBHO@MSR 2NLDSHLDR SGD LNSHU@SHNM SN ƥMHRG @ RODBHƥB RTAS@RJ V@R RN GHFG SG@S VD G@C OQNAKDLR SN FDS ODNOKD SN KTMBG
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF "GNHBD NE SGD 6NQJRGNO $MUHQNMLDMS 6D AQHDƦX KHRS @ BNTOKD NE HLONQS@MS HLOQDRRHNMR BNMBDQMHMF SGD NQF@MHR@ SHNM@K @MC SDBGMHB@K @RODBSR NE SGD VNQJRGNO DMUHQNMLDMS 3GD DWODBS@SHNMR VHSG QDF@QC SN SGD RDLHM@Q BDMSQD RDD 2DB VDQD BNLOKDSDKX ETKƥKKDC !DHMF @AQN@C EQNL B@LOTR HM @ MHBD DMUHQNMLDMS OTRGDC SGD LNSHU@SHNM @MC SGD BNLLHSLDMS NE SGD O@QSHBHO@MSR BNMRHCDQ@AKX 6D @R SGD RTODQUHRNQR BNTKC ENBTR NM NTQ QNKD @R @CUHRNQR VGHKD LNRS NE SGD NQF@MHR@SHNM@K VNQJ G@C ADDM CNMD HM @CU@MBD @MC SGD NODQ@SHNM@K KDUDK MNV V@R QD@KHRDC AX SGD RDLHM@Q BDMSQD 4RHMF , 3+ ! @R OQNFQ@LLHMF K@MFT@FD VNQJDC UDQX VDKK 3GD DMUHQNMLDMS Q@M VHSGNTS HMSDQQTOSHNMR @MC SGD RSTCDMSR VDQD @AKD SN ƥW @KK PTDRSHNMR TRHMF MTLDQNTR STSNQH@KR @MC CNBTLDMS@SHNM @U@HK@AKD NMKHMD 6HSG SGD GDKO NE SGD HMEQ@RSQTBSTQD DWODQS @KK LHMNQ "52 OQNAKDLR BNTKC AD RNKUDC CHQDBSKX VHSGHM SGD SD@L 6GHKD SGD O@QSHBHO@MSR TRDC SGD QDONRHSNQX NMKX Q@QDKX HM SGD ADFHMMHMF VGDQD LNQD HMCDODMCDMS VNQJ O@BJ@FDR VDQD S@BJKDC SGDX RS@QSDC SN QDKX LNQD @MC LNQD NM HS VGDM HS B@LD SN SGD LNQD BNLOKDW S@RJR
%DDCA@BJ NE /@QSHBHO@MSR (M SGHR RDBSHNM VD KHRS SGD TMƥKSDQDC EDDCA@BJ NE SGD O@QSHBHO@MSR "NMBDQMHMF SGD SD@LVNQJ SGD RSTCDMSR VDQD @V@QD NE SGD LHMNQ TR@FD NE QNKDR 3GDX @OOQDBH@SDC SGD UNKTMSDDQHMF NE BDQS@HM O@QSHBHO@MSR ENQ NQF@M HRHMFLNCDQ@SHMFKD@CHMF @RODBSR @R VDKK @R SGD RTQOQHRHMFKX FNNC BNNODQ @SHNM BNLLTMHB@SHNM @MC @BSHUD BNMSQHATSHNM NE DUDQXANCX QDRTKSHMF HM @ BNMRS@MSKX GHFG LNSHU@SHNM (M SGD Q@QD B@RDR SG@S RNLD O@QSHBHO@MSR SNNJ @ RGNQS AQD@J NM VNQJHMF NM SGD OQNIDBS SGD RSTCDMSR DMINXDC SG@S SGHR V@R @KV@XR CNMD VHSG QDRODBS SN RNLD řHMUDRSLDMSRŚ ENQ SGD FQNTO A@JHMF BNNJ HDR OQDO@QHMF SGD A@QADBTD CHMMDQ NƤDQHMF @ , 3+ ! &4( RGNQS STSNQH@K DSB !DRHCDR SGD SD@LVNQJ @BQNRR CHƤDQDMS CHRBHOKHMDR SGQNTFGNTS SGD VNQJRGNO OQNIDBS @MC SGD VGNKD BNTQRD V@R QDF@QCDC @R @ QD@KKX DMQHBGHMF DWODQHDMBD "NMBDQMHMF SGD VNQJRGNO RODBHƥB@SHNMR @MC SGDHQ QD@KHR@SHNM SGD O@QSHBH O@MSR @OOQDBH@SDC SGD SDBGMHB@K DMUHQNMLDMS NE , 3+ ! @MC "52 RHMBD HS HR D@RX SN G@MCKD 3GD VNQJ O@BJ@FDR @R VDKK @R SGD NUDQ@KK SNOHB VDQD BNMRHC DQDC SN AD HMSDQDRSHMF 2NLD BQHSHBHRL @QNRD BNMBDQMHMF SGD HMSDQBNMMDBSHNM NE S@RJ 3 2DB @MC 3 2DB 6GX @MC GNV 3 RDQUDR @R @ OQDQDP THRHSD ENQ 3 BNTKC AD DWOK@HMDC HM LNQD CDS@HK %TQSGDQLNQD SGD RSTCDMSR OQNONRDC @ SHFGSDQ ENQLTK@SHNM NE SGD BNMMDBSHNM NE 3 2DB @MC 3 2DB @MC UHBD UDQR@ 2N NAUHNTRKX @MC @BST@KKX MNS RTQOQHRHMFKX RNLD RLNNSGHMF NE SGD RODBHƥB@SHNM HR RSHKK ONRRHAKD @MC VHKK AD @OOKHDC ENQ SGD RDBNMC QTM NE SGD BNTQRD HM SGD RTLLDQ SDQL
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS 3GD RSTCDMSR LDMSHNMDC RDUDQ@K SHLDR SG@S SGDX GHFGKX @OOQDBH@SDC SGD EQDDCNL SG@S SGD RODBHƥB@SHNM @KKNVDC HM SGD HLOKDLDMS@SHNM .MKX HM Q@QD B@RDR RTBG @R HM 3 2DB SHFGS QDRSQHBSHNMR @OOD@QDC HM NQCDQ SN @RRTQD SGD RTBBDRR NE SGD S@RJ 3GD K@QFD EQDDCNL NE QD@KHR@SHNM HM SGD NSGDQ O@BJ@FDR BNMRHCDQ@AKX HMBQD@RDC LNSHU@SHNM @MC BQD@SHUHSX VHSGHM SGD SD@L
"NMBKTRHNM
%QNL NTQ ONHMS NE UHDV @R SGD RTODQUHRNQR MD@QKX @KK CDRHQDC DƤDBSR KHRSDC HM 2DB @MC BNTKC AD QD@KHRDC SGQNTFGNTS SGD BNTQRD @MC SGD OQNIDBS 3GD RSQNMFDRS @QFTLDMS SG@S SGD BNMBDOS VNQJDC HR SGD E@BS SG@S SGD RSTCDMSR RTBBDDCDC HM S@BJKHMF @M TMDWODBSDCKX K@QFD @LNTMS NE S@RJR HM SGD VNQJRGNO (S V@R HMSDQDRSHMF SN RDD SG@S SGD RSTCDMSR NMKX Q@QDKX SGNTFGS @ANTS GNV SN řRDKKŚ SGD SGDHQ QDRTKSR H D GNV SN OQDRDMS SGDL HM @ CDBDMS V@X /DQG@OR SGHR ENBTR HR CTD SN SGD RODBHƥB BTKSTQD CNLHM@SHMF SGD ƥDKC NE L@SGDL@SHBR @MC M@STQ@K RBHDMBDR SG@S NTQ RSTCDMSR BNLD EQNL 3GD BNMSDMS NE @ SNOHB NQ VNQJ HR DRSDDLDC SN AD LNQD HLONQS@MS SG@M SGD RDKKHMF DƤDBSR RTQQNTMCHMF HS 3GD DWODQHDMBD @MC GHMSR SG@S RNLD RL@KK @MC BGD@O @CC NMR SN SGD VNQJ HM SGD UHRT@KHR@SHNM NQ QDONQSR BNTKC BNMRHCDQ@AKX HLOQNUD SGD LNNC NE SGD BKHDMS @QD @M HLONQS@MS EDDCA@BJ ENQ SGD O@QSHBHO@MSR NM SGDHQ V@X SN @ ETKK OQNEDRRHNM@K VNQJHMF KHED KQD@CX HM SGD UDQX ƥQRS OKDM@QX @RRDLAKX NE SGD O@QSHBHO@MSR @M HMSDQDRS HMF DƤDBS SNNJ OK@BD SG@S BNMSHMTDC SGQNTFGNTS SGD VGNKD VNQJRGNO 3GNRD RSTCDMSR VGN G@C SGD EDDKHMF NE MNS ADHMF UDQX RSQNMF HM SGDNQX NQ HM NMD BNMBQDSD RTASNOHB CHC MNS GHCD @V@X ATS OQN@BSHUDKX SQHDC SN BNLODMR@SD SGHR SDBGMHB@K VD@JMDRR AX BNMSQHATSHMF LNQD HM NM SGD ƥDKC NE NQF@MHR@SHNM LNC DQ@SHMF SHLD JDDOHMF OQDO@QHMF QDONQSR DSB $UDQXANCX QD@KKX SQHDC SN BNM SQHATSD GDQGHR ADRS SN L@JD SGD OQNIDBS @ RTBBDRR @MC SGTR DUDQXANCX FNS @B BDOSDC HM SGD BNLOKDSD FQNTO *MNVHMF D@BG NSGDQ UH@ SGD RDLHM@Q S@KJR @MC DWDQBHRDR QDOQDRDMSR @ L@INQ @CU@MS@FD SN BNQQDBSKX ITCFD SGD RSQDMFSGR @MC VD@JMDRRDR @MC RTOONQSR @ RLNNSG QTMMHMF @MC MHBD NTSBNLDR NE SGD OQNIDBS 3GHR HR @M @CCHSHNM@K @QFTLDMS SG@S SGD BNMBDOS NE SGD BNTQRD BNMMDBSDC SN SGD VNQJRGNO OQNIDBS HR @ U@KHC @KSDQM@SHUD SN BK@RRHB@K DWHRSHMF BNTQRD ENQL@SR
.TSKNNJ $WSDMRHNM SN %TSTQD /QNIDBSR 3N SDQLHM@SD SGHR BG@OSDQ VD TRD SGD DWODQHDMBDR L@CD RN E@Q SN FHUD RNLD GHMSR ENQ SGD OQDO@Q@SHNM NE ETSTQD OQNIDBSR %QNL ANSG SGD EDDCA@BJ NAS@HMDC EQNL SGD O@QSHBHO@MSR @MC NTQ NVM NARDQU@SHNMR HS HR @ARNKTSDKX MDBDRR@QX SN AD VDKK OQDO@QDC HM NQCDQ SN STQM RTBG @ RGNQS SDQL OQNIDBS HMSN RTBBDRR (M O@QSHBTK@Q SGD RODBHƥB@SHNMR G@UD SN AD VDKK CDRHFMDC $UDQXSGHMF SG@S QD L@HMR MNM RLNNSG HM SGD OQDO@Q@SNQX RSDOR VHKK STQM HMSN RL@KKDQ NQ K@QFDQ
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF OQNAKDLR SGQNTFGNTS SGD VNQJRGNO QD@KHR@SHNM @MC G@R SN RNKUDC @C GNB %TQ SGDQLNQD SGD SQHBJ SN CDRHFM RNLD VNQJ O@BJ@FDR Q@SGDQ BNLO@BS @MC JDDO SGDL RDO@Q@SD HMRSD@C NE LDQFHMF SGDL VHSG NSGDQR HMSN K@QFDQ S@RJR @KKNVR ENQ E@RS ƥQRS QDRTKSR NE SGD RTASD@LR VNQJHMF NM SGDL @MC SGTR KD@CR SN @ BNMRHCDQ@AKD ANNRS HM LNSHU@SHNM DRODBH@KKX HM SGD ADFHMMHMF NE SGD OQNIDBS ,@JHMF RNLD S@RJR NOSHNM@K @MC RS@MC @KNMD EQNL SGD UDQX ADFHMMHMF @UNHCR EQTRSQ@SHNM @MC NƤDQR ƦDWHAHKHSX VGDM SGHMFR STQM NTS SN QTM UDQX VDKK @UNHC HMF ANQDC O@QSHBHO@MSR (S STQMDC NTS SN AD O@QSHBTK@QKX TRDETK SN CHRBTRR SGD RODBHƥB@SHNMR @MC OQDO@QD SGD HMEQ@RSQTBSTQD VHSG SGD RSTCDMSR HM @CU@MBD 'DMBD SGDX VDQD QD@CX SN RS@QS OQNCTBSHUD VNQJ AX SGD UDQX ƥQRS GNTQ NE SGD VNQJRGNO !DHMF NƤ SGD B@LOTR HM @ RDLHM@Q BDMSQD NQ RHLHK@Q HR EQNL NTQ ONHMS NE UHDV @M HMCHRODMR@AKD JDX SN RTBBDRR BKD@Q CDƥMHSHNM @MC CHRSQH ATSHNM NE SD@L QNKDR HR ENQ RTQD @CU@MS@FDNTR !TS @R NTQ DW@LOKD RGNVDC HS HR MN QD@K LTRS SN OTRG SGD O@QSHBHO@MSR HMSN SG@S RHMBD BNMRHCDQ@AKD KD@QM HMF DƤDBS VHKK AD QD@KHRDC @MXV@X (M FDMDQ@K NTQ DWODQHDMBD @MC SGD OQN UHCDC EDDCA@BJ RGNV SG@S @ CDBDMS @LNTMS NE EQDDCNL HM SGD RODBHƥB@SHNM @MC NQF@MHR@SHNM G@R GTFD ONRHSHUD DƤDBSR NM SGD LNSHU@SHNM @MC SGTR @KRN NM SGD @LNTMS NE QD@KHRDC S@RJR 'NODETKKX SGD @ANUD LDMSHNMDC @RODBSR BNMSQHATSD SN STQM NSGDQ VNQJRGNOR NQ RHLHK@Q OQNIDBSR HMSN @ RTBBDRRETK DWOD QHDMBD ENQ ANSG RSTCDMSR @MC RTODQUHRNQR
6HFWLRQ
3NAH@R 1HFNHO %KNQH@M 5XSS
&KDSWHU
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
(MCDW C k Q@MCNL CXM@LHB@K RXRSDL C k UDBSNQ ƥDKC σ @KFDAQ@ σ @KFDAQ@ FDMDQ@SDC AX @ Q@MCNL U@QH@AKD σ ƥMHSD θ ODQHNCHB RSNBG@RSHB OQNBDRR ε @OOQNWHL@SD RNKTSHNM q.m. BNMSHMTNTR q.m. CDQHU@SHUD q.m. HMSDFQ@K q.m. RNKTSHNM @ARNKTSDKX BNMSHMTNTR C@LR ,NTKSNM LDSGNCR @C@OSDC @CCHSHUD BNLONTMC L@SQHW @KFDAQ@ @KLNRS DUDQXVGDQD @KLNRS RTQDKX @QHSGLDSHR@SHNM 'HKADQS BTQUD /D@MN BTQUD @RXLOSNSHB@KKX θ ODQHNCHB @RXLOSNSHB@KKX G RS@AKD @RXLOSNSHB@KKX O@SG VHRD RS@AKD @RXLOSNSHB@KKX O@SG VHRD RS@AKD HM SGD VGNKD @RXLOSNSHB@KKX RS@AKD @RXLOSNSHB@KKX 6 RS@AKD @SSQ@BSHNM @TSN BNQQDK@SHNM ETMBSHNM @TSNMNLNTR NQCHM@QX CHƤDQDMSH@K DPT@SHNM @UDQ@FDC $TKDQ RBGDLD
,QGH[
A@RHR NE SGD UDBSNQ ƥDKCR NM Ω !@XDR SGDNQDL #Bin`2p2`bH AKNV TO HM ƥMHSD SHLD !NQDK σ @KFDAQ@ !NQDK "@MSDKKH ANTMC@QX BNMCHSHNMR #HQHBGKDS ENQBD -DTL@MM NODM ODQHNCHB UDKNBHSX #HQHBGKDS !TSBGDQ S@AKD@T ATSSDQƦX RBGDLD B@CK@F B@FK@C BG@Q@BSDQHRSHB DWONMDMSR BG@Q@BSDQHRSHB ONKXMNLH@K "GDAXRDUŗR HMDPT@KHSX "GNQHM OQNIDBSHNM RBGDLD BNBXBKD BNLOKDW EQDPTDMBX QDRONMRD ETMB SHNM BNMCHSHNM@K CDMRHSHDR BNMCHSHNM@K CHRSQHATSHNM BNMCHSHNM@K OQNA@AHKHSX BNMSHMTNTR HM OQNA@AHKHSX BNMSHMTNTR Q@MCNL CXM@LHB@K RXR SDL BNMSHMTNTR RSNBG@RSHB OQNBDRR BNMSHMTTL LDBG@MHBR $TKDQH@M CDRBQHOSHNM +@FQ@MFH@M CDRBQHOSHNM BNMUDQFDMBD @KLNRS DUDQXVGDQD
3NAH@R 1HFNHO %KNQH@M 5XSS BNMUDQFDMBD HM CHRSQHATSHNM BNMUDQFDMBD HM LD@M RPT@QD BNMUDQFDMBD HM OQNA@AHKHSX BNMUDQFDMBD HM PT@CQ@SHB LD@M BNMUDQFDMBD HM SGD r SG LD@M BNMUDQFDMS ANTMC@QHDR BNQQDK@SHNM ETMBSHNM "NTQ@MS %QHDCQHBGR +DVX "%+ BNMCH SHNM BNU@QH@MBD BNU@QH@MBD L@SQHW "Q@MJ -HBGNKRNM BQHSHB@K ONHMSR BTQUD #@GKPTHRS SDRS DPT@SHNM C@LODC ODMCTKTL CDENQL@SHNM CDMRHSX ETMBSHNM CDQHU@SHUD VHSG QDRODBS SN @ UDBSNQ ƥDKC #%3 GHFGDQ CHLDMRHNMR QD@K U@KTDC RXLLDSQX HM C@S@ /7inMBp2 /7inirB//H2 CHƤDQDMBD PTNSHDMS A@BJV@QC BDMSQ@K ENQV@QC CHƤDQDMBHMF ƥKSDQ CHRBQDSD BNRHMD SQ@MRENQL #"3 CHRBQDSD RHMD SQ@MRENQL #23 CHRBQDSD SQHFNMNLDSQHB SQ@MRENQLR #33 CHROK@BDLDMS CHRSQHATSHNM ETMBSHNM CHUDQFDMS ANTMC@QHDR #NRR 2TRRL@MM (LJDKKDQ 2BGL@K ETRR BNQQDRONMCDMBD CNTAKD ODMCTKTL CXM@LHB@K RXRSDL CXM@LHB@K RXRSDL KHMD@Q CXM@LHB@K RXRSDL MNM KHMD@Q CXM@LHB@K RXRSDLR DK@RSHB ODMCTKTL
DKDLDMS@QX ETMBSHNM DPTHKHAQHTL DPTHKHAQHTL ONHMSR DPTHKHAQHTL GXODQANKHB DPTHKHAQHTL MNM GXODQANKHB DPTHU@KDMBD NE L@SQHBDR AX LHMNQR DPTHU@KDMS OQNBDRRDR DQFNCHB RSNBG@RSHB OQNBDRR $TKDQ @UDQ@FDC RBGDLD DWOKHBHS DWOKHBHS ENQ 1.#$R ENQV@QC VHH DWOKHBHS HLOKHBHS RXLOKDBSHB 2mH2` 2mH2`1tTHB+BioG 2mH2`AKTHB+BioG 2mH2`avKTH2+iB+oG DUDMS DUNKTSHNM@QX OQNBDRR DWOKHBHS LDSGNC DWONMDMSH@KKX h RS@AKD DWONMDMSH@KKX O@SG VHRD RS@AKD DWONMDMSH@KKX RS@AKD %@RS %NTQHDQ SQ@MRENQL VHH %%3 E@RS /NHRRNM RNKUDQ 7n2tTHB+Bi %%3 ATSSDQƦX RBGDLD VHH DOVR ATSSDQƦX RBGDLD BNLOKDWHSX %%36 VHH %%36 U@QH@MSR zi %%36 ƥKSQ@SHNM ƥMHSD CHƤDQDMBD @OOQNWHL@SHNM BNMRHRSDMBX BNMUDQFDMBD RS@AHKHSX ƥMHSD CHƤDQDMBD LDSGNC VHH ƥMHSD CHƤDQDMBD @OOQNWHL@SHNM ƥMHSD CHLDMRHNM@K CHRSQHATSHNMR ƥQRS HMSDFQ@K ƦNV L@O
,QGH[
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF ƦNV OQNODQSX ENQBDC ODMCTKTL %NTQHDQ SQ@MRENQL BNMSHMTNTR CHRBQDSD VHH #%3 %NTQHDQŗR LDSGNC EQDPTDMBX CNL@HM EQDPTDMBX CNL@HM LDSGNC ENQ SGD @M@KXRHR NE RSQTBSTQ@K QD RONMRD SN ODQHNCHB DWBHS@ SHNM EQDPTDMBX QDRONMRD ETMBSHNM EQDPTDMBX CNL@HM LDSGNC ENQ @M@KX RHR NE RSQTBSTQ@K QDRONMRD SN @QAHSQ@QX DWBHS@SHNMR ETMC@LDMS@K L@SQHW ETMC@LDMS@K RXRSDL ETSTQD 7noQHi2``GQiF &@TRRH@M OQNBDRR FDMDQ@KHYDC DHFDMUDBSNQ FDNLDSQHB TMBDQS@HMSX FKNA@KKX '±KCDQ BNMSHMTNTR FKNA@KKX +HORBGHSY BNMSHMTNTR FQ@LL@Q 'HKADQS BTQUD /D@MN BTQUD FQHC VHH LDRG FQNTO G RS@AKD G@KE CHRS@MBD NE RDSR '@LHKSNMH@M G@QLNMHB NRBHKK@SNQ GD@S DPT@SHNM ?2mM 'DTMŗR LDSGNC @UDQ@FDC RBGDLD ENQ 1.#$R 'HKADQS BTQUD FQ@LL@Q OQNCTBSHNM QTKDR ?BH#2`i`Bi? GHRSNQX GNLDNLNQOGHRL 'TQVHSY CDSDQLHM@MSR
,QGH[
'TQVHSY L@SQHW 'TQVHSY ONKXMNLH@K (#%3 Bzi BzinBi2` Bzin`2+ HLOKHBHS LDSGNC HLOQNODQ q.m. HMSDFQ@K HLOTKRD QDRONMRD ETMBSHNM HMCDODMCDMBD NE σ @KFDAQ@R HMCDODMCDMBD NE @M @QAHSQ@QX MTLADQ NE DUDMSR HMCDODMCDMBD NE Q@MCNL U@QH@AKDR HMCDODMCDMBD NE SVN DUDMSR HMCDODMCDMS HMBQDLDMSR HMCHB@SNQ ETMBSHNM HMCHRSHMFTHRG@AKD OQNBDRRDR HMƥMHSDKX NESDM HMHSH@K U@KTD OQNAKDL BNMCHSHNM HMHSH@K U@KTD OQNAKDL (5/ HMSDFQ@K BTQUD BMi2;`i21mH2` BMi2;`i21mH2`AKTH BMi2;`i2>2mM BMi2;`i2L2rK`F BMi2;`i2_E9 BMi2;`i2h_ HMSDQRDBSHNM RS@AKD HMU@QH@MS HMU@QH@MS MDF@SHUDKX HMU@QH@MS ONRHSHUDKX HMUDQRD %NTQHDQ SQ@MRENQL BNMSHMTNTR CHRBQDSD VHH (#%3 (S¯ HMSDFQ@K (S¯ RTL (S¯ŗR ENQLTK@ BpTn2tTHB+Bi BpTnBKTHB+Bi INHMS CDMRHSX ETMBSHNM INHMS CHRSQHATSHNM )NQC@M BNMSDMS * 1.#$ 3@XKNQ RBGDLDR
3NAH@R 1HFNHO %KNQH@M 5XSS *@M@H 3@IHLH D@QSGPT@JD LNCDK *NKLNFNQNVŗR BNMSHMTHSX SGDNQDL *NKLNFNQNVŗR ETMC@LDMS@K SGDNQDL EhnaQHp2`b EhnbiQ+?biB+ +@L¤ BNMRS@MSR K@QFD DCCX RHLTK@SHNMR +$2 K@V NE K@QFD MTLADQR KDES BNMSHMTNTR RSNBG@RSHB OQNBDRR KHLHS RDS α(B) KHLHS RDS α(x) KHLHS RDS ω(B) KHLHS RDS ω(x) KHMD@Q ƥKSDQ KHMD@Q SHLD HMU@QH@MS ƥKSDQ KHMD@QKX ANTMCDC KNB@KKX '±KCDQ BNMSHMTNTR KNB@KKX +HORBGHSY BNMSHMTNTR KNF@QHSGLHB MNQL +NYHMRJHH LD@RTQD +X@OTMNU DPT@SHNM +X@OTMNU DWONMDMSR +X@OTMNUŗR ƥQRS LDSGNC +X@OTMNUŗR RDBNMC LDSGNC +X@OTMNU ETMBSHNM L@FMDSN GXCQNCXM@LHBR ,'# L@MHENKC BDMSDQ L@MHENKC RS@AKD L@MHENKC TMRS@AKD L@QFHM@K CDMRHSHDR L@QSHMF@KD L@WHL@K HMSDFQ@K BTQUD L@WHLTL RNKTSHNM LD@M LD@M RPT@QD RS@AHKHSX LD@M RPT@QD BNMUDQFDMBD LD@M RPT@QD RNKTSHNM LD@RTQ@AKD ETMBSHNM LD@RTQ@AKD RDSR LD@RTQ@AKD RO@BD LD@RTQD LD@RTQD RO@BD LDRG
@C@OSHUD "@QSDRH@M CXM@LHB ƥW GDW@GDCQ@K QDFTK@Q RSQTBSTQDC SDSQ@GDCQ@K TMRSQTBSTQDC LDSGNC NE KHMDR LHMHLTL RNKTSHNM LNCHƥB@SHNMR NE OQNBDRRDR LNLDMS FDMDQ@SHMF ETMBSHNM LTKSHOKHB@SHNM S@AKD LTST@KKX DWBKTRHUD -@UHDQ 2SNJDR DPT@SHNMR HMHSH@K BNMCHSHNMR RDLH CHRBQDSD -DVL@QJ RBGDLD -DVSNMH@M ƦTHC MQMHBM2`avba1 MQMHBM2`avbh_ MNQL CHRBQDSD L2 -NQL L@WHLTL MNQL .#$ .#$ RNKTSHNM SQ@IDBSNQX .#$ RXRSDL NMD RSDO LDSGNC BNMRHRSDMBX BNMUDQFDMBD FKNA@K CHRBQDSHR@SHNM DQQNQ KNB@K CHRBQDSHR@SHNM DQQNQ NQAHS NQAHS ODQHNCHB NQCHM@QX CHƤDQDMSH@K DPT@SHNM NE SGD ƥQRS NQCDQ .QMRSDHM 4GKDMADBJ OQNBDRR NQSGNFNM@K HMBQDLDMS OQNBDRR PlnSi? / RS@AKD /@KDX 6HDMDQ 9XFLTMC HMSDFQ@K O@QSH@K CHƤDQDMSH@K DPT@SHNM O@QSHBTK@Q RNKTSHNM
,QGH[
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF O@SG VHRD @RXLOSNSHB@KKX DPTH RS@AKD O@SG VHRD BNMSHMTNTR O@SG VHRD CDQHU@SHUD O@SG VHRD CHƤDQDMSH@AKD O@SG VHRD DPTH RS@AKD O@SG VHRD DWONMDMSH@KKX DPTH RS@AKD O@SG VHRD HMSDFQ@K O@SG VHRD RNKTSHNM O@SG VHRD RNKTSHNM HM SGD DWSDMCDC RDMRD D R O@SG VHRD RS@AKD O@SG VHRD RS@AKD TMCDQ BNMSHMTNTRKX @BSHMF CHRSTQA@MBDR /#$ /D@MN BTQUD FQ@LL@Q ODMCTKTL ODQHNC ODQHNCHB NQAHS OG@RD ONQSQ@HS OG@RD RO@BD /HB@QC +HMCDK±E HSDQ@SHNM THQiaQHmiBQMoG /NHRRNM DPT@SHNM /NHRRNMŗR Q@SHN ONRHSHUD NQAHS ONRSTQ@K RV@X OQDRRTQD /NHRRNM DPT@SHNM OQNA@AHKHSX OQNA@AHKHSX LD@RTQD OQNA@AHKHSX RO@BD OQNBDRR NE RDBNMC NQCDQ PT@CQ@SHB LD@M BNMUDQFDMBD q.m. 1@CNM -HJNCXL Q@MCNL BNLO@BS RDS Q@MCNL CHƤDQDMSH@K DPT@SHNM Q@MCNL MNQL Q@MCNL U@QH@AKD Q@MCNL UDBSNQ QD@BSHNM VGDDK ODMCTKTL 1DXMNKCRŗ SQ@MRONQS SGDNQDL QHFGS BNMSHMTNTR RSNBG@RSHB OQNBDRR
,QGH[
QHFGS BNMSHMTNTR OQNBDRR _E9 _P.1j 1NSGD LDSGNC 1NTSG L@SQHW 1TMFD *TSS@ RBGDLD BK@RRHB@K 1* BNMRHRSDMBX BNMCHSHNMR R@LOKD O@SG R@LOKD ONHMS RB@KDC 6HDMDQ OQNBDRR RDLH FQNTO RDO@Q@AKD OQNBDRR RDO@Q@MS RDS NE RDO@Q@AHKHSX RG@KKNV V@SDQ DPT@SHNMR RHLOKD ETMBSHNM RJDV OQNCTBS ƦNV RLNNSG Q@MCNL CXM@LHB@K RXRSDL NE BK@RR C k RLNNSGHMF ƥKSDQ RNKTSHNM HM SGD DWSDMCDC RDMRD RNKTSHNM HM SGD PT@CQ@SHB LD@M RO@BD ƥKKHMF BTQUD @OOKHB@SHNMR @QHSGLDSHR@SHNM FQ@LL@Q A@RDC BNMRSQTBSHNM RO@BDSQDD RO@SH@K CHRBQDSHR@SHNM LDRGHMF NODQ@SNQR RO@SH@K CNL@HM RODBSQ@K CDMRHSX RODBSQ@K CDMRHSX ETMBSHNM RODBSQ@K CHRSQHATSHNM ETMBSHNM RS@AHKHSX RS@AHKHSX HM SGD LD@M RS@AHKHSX HM SGD PT@CQ@SHB LD@M RS@AHKHSX @RXLOSNSHB RS@AHKHSX KHMD@Q RXRSDL RS@AHKHSX MNM KHMD@Q RXRSDL RS@AKD RS@MBD KDF RS@MC@QC CDUH@SHNM RS@MC@QC RPT@QD CDUH@SHNM RS@MC@QC 6HDMDQ OQNBDRR biM/`/>BH#2`i
3NAH@R 1HFNHO %KNQH@M 5XSS RS@SHNM@QX HMBQDLDMSR RS@SHNM@QX OQNBDRR RSHƤ .#$ RSNBG@RSHB CHƤDQDMSH@K RSNBG@RSHB CHƤDQDMSH@K DPT@SHNM RSNBG@RSHB OQNBDRR RSNBG@RSHB@KKX DPTHU@KDMS biQ+?biB+1mH2` biQ+?biB+>2mM RSQ@HM 2SQ@SNMNUHBG HMSDFQ@K 2SQ@SNMNUHBG RTL RSQDRR RSQDRR SDMRNQ RSQHBSKX RS@SHNM@QX OQNBDRR RSQNMF K@V NE K@QFD MTLADQR RTABXBKHMF RTARO@BD BDMSDQ RTARO@BD RS@AKD RTARO@BD TMRS@AKD RTODQ L@QSHMF@KD RTQD BNMUDQFDMBD RVHMF KDF RXLOKDBSHB LDSGNCR
3GDNQDL '@QSL@M &QNAL@M SQ@IDBSNQX SQ@MREDQ ETMBSHNM SQ@MRENQL ANTMC@QHDR SQ@ODYNHC@K QTKD STQATKDMS ƦNV TMHENQLKX ANTMCDC TMHENQLKX O@SG VHRD RS@AKD TMHPTDMDRR NE O@SG VHRD RNKTSHNMR U@QH@MBD UDBSNQ ƥDKC 5NKSDQQ@ +NSJ@ LNCDK 6 RS@AKD V@UD DPT@SHNM VGHSD MNHRD OQNBDRR 6HBJŗR ENQLTK@ 6HDMDQ OQNBDRR qB`26`K29aiQ`2v 6QNMRJH L@SQHW 8NTMFŗR LNCTKTR
,QGH[
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF
!HAKHNFQ@OGX :< - GLDC 3 -@S@Q@I@M @MC * 1 1@N #HRBQDSD BNRHMD SQ@MRENQL ,((( 7UDQV DFWLRQV RQ &RPSXWHUV " Ŕ :< * 3 KKHFNNC 3 # 2@TDQ @MC ) 8NQJD &KDRV Ř $Q ,QWURGXFWLRQ WR '\QDPLFDO 6\VWHPV 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF -DV 8NQJ :< '@MR 6HKGDKL KS /LQHDUH )XQNWLRQDODQDO\VLV 2OQHMFDQ 5DQK@F !DQKHM 'DHCDK ADQF -DV 8NQJ DCHSHNM :< ) " MCDQRNM @MC 5 5 !DQSDQN 4MBDQS@HMSHDR HM DRS@AKHRGHMF CDRHFM D@DQSGPT@JDR -RXUQDO RI 6WUXFWXUDO (QJLQHHULQJ $6&( Ŕ :<
MCQNMNU 5HSS @MC 2 $ *G@HJHM 7KHRU\ RI 2VFLOODWRUV #NUDQ /TAKH B@SHNMR -DV 8NQJ
:< # 5 MNRNU 2 *G Q@MRNM 5 ( QMNKC ( 4 !QNMRGSDHM 5 9 &QHMDR @MC 8T 2 (KŗX@RGDMJN 2UGLQDU\ 'LƱHUHQWLDO (TXDWLRQV DQG 6PRRWK '\QDPLFDO 6\VWHPV 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF -DV 8NQJ :< + QMNKC @MC ! 2BGL@KETRR +X@OTMNUŗR RDBNMC LDSGNC ENQ Q@MCNL CXM@L HB@K RXRSDLR -RXUQDO RI 'LƱHUHQWLDO (TXDWLRQV Ŕ -NUDLADQ :< +TCVHF QMNKC 6WRFKDVWLF 'LƱHUHQWLDO (TXDWLRQV )NGM 6HKDX 2NMR -DV 8NQJ +NMCNM 2XCMDX 3NQNMSN :< +TCVHF QMNKC 3GD TMENKCHMF NE CXM@LHBR HM RSNBG@RSHB @M@KXRHR &RPSXWD WLRQDO DQG $SSOLHG 0DWKHPDWLFV Ŕ :< +TCVHF QMNKC 3QDMCR @MC NODM OQNAKDLR HM SGD SGDNQX NE Q@MCNL CXM@LHB@K RXRSDLR (M + BB@QCH @MC " " 'DXCD DCHSNQR 3UREDELOLW\ WRZDUGV UNK TLD NE 6SULQJHU /HFWXUH 1RWHV LQ 6WDWLVWLFV O@FDR Ŕ 2OQHMFDQ !DQKHM 'DHCDKADQF -DV 8NQJ :< +TCVHF QMNKC 5DQGRP '\QDPLFDO 6\VWHPV 2OQHMFDQ !DQKHM 'DHCDKADQF -DV 8NQJ :< 5K@CHLHQ (FNQDUHBG QMNKC 2UGLQDU\ 'LƱHUHQWLDO (TXDWLRQV 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF -DV 8NQJ DCHSHNM :< -@JGKD ' RL@Q 3DUWLDO 'LƱHUHQWLDO (TXDWLRQV ZLWK )RXULHU 6HULHV DQG %RXQGDU\ 9DOXH 3UREOHPV /D@QRNM $CTB@SHNM (MSDQM@SHNM@K 4OODQ 2@CCKD 1HUDQ -) DCHSHNM
%LEOLRJUDSK\
3NAH@R 1HFNHO %KNQH@M 5XSS :< * ! SGQDX@ @MC 2 - +@GHQH 0HDVXUH 7KHRU\ DQG 3UREDELOLW\ 7KHRU\ 2OQHMFDQ 5DQK@F -DV 8NQJ 'DHCDKADQF !DQKHM :< !DQMC TKA@BG *HZ·KQOLFKH 'LƱHUHQ]LDOJOHLFKXQJHQ 2ODJSQTL J@CDLHR BGDQ 5DQK@F ,·MBGDM DCHSHNM :< ( !@ATĜJ@ @MC 3 2SQNTANTKHR 7KH )LQLWH (OHPHQW 0HWKRG DQG LWV 5HOLDELOLW\ -TLDQHB@K ,@SGDL@SHBR @MC 2BHDMSHƥB "NLOTS@SHNMR .WENQC 4MHUDQRHSX /QDRR :< + !@BGDKHDQ 3GDNQHD CD K@ RODBTK@SHNM $QQDOHV 6FLHQWLƲTXHV GH Oś(FROH 1RU PDOH 6XSHULHXUH Ŕ :< + !@BGDKHDQ 7KHRULH GH OD 6SHFXODWLRQ &@TSGHDQ 5HKK@QR /@QHR :< , !@CDQ 6SDFH)LOOLQJ &XUYHV $Q ,QWURGXFWLRQ ZLWK $SSOLFDWLRQV LQ 6FLHQ WLƲF &RPSXWLQJ UNKTLD NE 7H[WV LQ &RPSXWDWLRQDO 6FLHQFH DQG (QJLQHHULQJ 2OQHMFDQ 5DQK@F :< ,HBG@DK !@CDQ 1NADQS %Q@MY 2SDOG@M &TDMSGDQ @MC KDW@MCDQ 'DHMDBJD '@QCV@QD NQHDMSDC HLOKDLDMS@SHNM NE B@BGD NAKHUHNTR L@SQHW NODQ@SHNMR A@RDC NM RO@BD ƥKKHMF BTQUDR (M 1NL@M 6XQYXJNVRJH )@BJ #NMF@QQ@ *NM Q@C *@QBYDVRJH @MC )DQYX 6@RMHDVRJH DCHSNQR 3DUDOOHO 3URFHVVLQJ DQG $SSOLHG 0DWKHPDWLFV WK ,QWHUQDWLRQDO &RQIHUHQFH 33$0 UNKTLD NE /HF WXUH 1RWHV LQ &RPSXWHU 6FLHQFH O@FDR Ŕ 2OQHMFDQ ,@X :< " + !@HKDQ )NMDR 3 ) 2@AHM # ) " ,@B*@X @MC / ) 6HSGDQR /QDCHBSHNM NE CDENQLDC @MC @MMD@KDC LHBQNRSQTBSTQDR TRHMF A@XDRH@M MDTQ@K MDSVNQJR @MC F@TRRH@M OQNBDRRDR (M 3 "G@MCQ@ 2 1 +DBK@HQ ) ,DDBG ! 5DQL@ , 2LHSG @MC ! !@K@BG@MCQ@M DCHSNQR 3URFHHGLQJV RI WKH $XVWUDODVLD 3DFLƲF )RUXP RQ ,QWHOOLJHQW 3URFHVVLQJ DQG 0DQXIDFWXULQJ RI 0DWHULDOV O@FDR Ŕ 6@SRNM %DQFTRNM "N !QHRA@MD :< $ !@QA@RHM (LQI½KUXQJ LQ GLH 7KHRULH GHU 6WDELOLW¥W >UXVV@ -@TJ@ ,NRBNV :< )TMD !@QQNV &QDDM 3RLQFDU´ e DQG WKH 7KUHH %RG\ 3UREOHP L@SHB@K 2NBHDSX /QNUHCDMBD 1GNCD (RK@MC
LDQHB@M ,@SGD
:< * ) !@SGD )LQLWH (OHPHQW 3URFHGXUHV /QDMSHBD '@KK :< 'DHMY !@TDQ :DKUVFKHLQOLFKNHLWVWKHRULH XQG *UXQG]½JH GHU 0D WKHRULH 6@K SDQ CD &QTXSDQ !DQKHM -DV 8NQJ DCHSHNM :< ) !DGQDMR ,TKSHKDUDK NOSHLHY@SHNM AX RO@BD ƥKKHMF BTQUDR HM @C@OSHUD @SLN ROGDQHB LNCDKHMF (M %Q@MJ '·KRDL@MM ,@QJTR *NV@QRBGHJ @MC 4KQHBG 1·CD DCHSNQR 3URFHHGLQJV RI WKH WK V\PSRVLXP VLPXODWLRQWHFKQLTXH $6,0 UNKTLD NE )RUWVFKULWWH LQ GHU 6LPXODWLRQVWHFKQLN Ř )URQWLHUV LQ 6LPXODWLRQ O@FDR Ŕ $QK@MFDM &DQL@MX 2"2 /TAKHRGHMF 'NTRD D 5 :< -@L /@QRG@C !G@SH@ @MC &HNQFHN /GHKHO 2YDF± 6WDELOLW\ 7KHRU\ RI '\QDPLFDO 6\VWHPV 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF -DV 8NQJ QDOQHMSDC HM :< % !K@BJ @MC , 2BGNKDR 3GD OQHBHMF NE NOSHNMR @MC BNQONQ@SD KH@AHKHSHDR -RXU QDO RI 3ROLWLFDO (FRQRP\ Ŕ
%LEOLRJUDSK\
1@MCNL #HƤDQDMSH@K $PT@SHNMR HM 2BHDMSHƥB "NLOTSHMF :< # ) !KNBJ * ) RSQ±L @MC , 6 2ONMF 7KH 5HDFWLRQ :KHHO 3HQGXOXP ,NQ F@M "K@XONNK /TAKHRGDQR 2@M 1@E@DK :< #NAHDRK@V !NAQNVRJH :VWHS GR /RVRZ\FK 5RZQDQ 5R]QLF]NRZ\FK =Z\F]D MQ\FK >,QWURGXFWLRQ WR 5DQGRP 2UGLQDU\ 'LƱHUHQWLDO (TXDWLRQV@ /@MRSVNVD 6XC@VMHBSVN -@TJNVD /6- 6@QR@V :< ) + !NFC@MNƤ ) $ &NKCADQF @MC , " !DQM@QC 1DRONMRD NE @ RHLOKD RSQTB STQD SN @ Q@MCNL D@QSGPT@JD SXOD CHRSTQA@MBD %XOOHWLQ RI WKH 6HLVPLF 6RFLHW\ $PHULFD Ŕ :< # , !NNQD 2SNBG@RSHB RHLTK@SHNM NE GHFG EQDDPTDMBX FQNTMC LNSHNMR A@RDC NM RDHRLNKNFHB@K LNCDKR NE Q@CH@SDC RODBSQ@ %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Ŕ :< 5HUDJ 2 !NQJ@Q 6WRFKDVWLF $SSUR[LPDWLRQ $ '\QDPLFDO 6\VWHPV 9LHZSRLQW "@LAQHCFD 4MHUDQRHSX /QDRR "@LAQHCFD :<
!NQNUJNU 3UREDELOLW\ 7KHRU\ &NQCNM @MC !QD@BG 2BHDMBD /TAKHRGDQR LRSDQC@L
:< / !NXKD @MC , %QD@M #DODMCDMS F@TRRH@M OQNBDRRDR (M + * 2@TK 8 6DHRR @MC + !NSSNT DCHSNQR $GYDQFHV LQ 1HXUDO ,QIRUPDWLRQ 3URFHVVLQJ 6\VWHPV O@FDR Ŕ 3GD ,(3 /QDRR "@LAQHCFD :< 1 - !Q@BDVDKK 3GD ENTQHDQ SQ@MRENQL 6FLHQWLƲF $PHULFDQ O@FDR Ŕ )TMD :< # !Q@DRR )LQLWH (OHPHQWVř7KHRU\ )DVW 6ROYHUV DQG $SSOLFDWLRQV LQ 6ROLG 0H FKDQLFV "@LAQHCFD 4MHUDQRHSX /QDRR QC DCHSHNM :< ,@QSHM !Q@TM 'LƱHUHQWLDO (TXDWLRQV DQG 7KHLU $SSOLFDWLRQV 2OQHMFDQ 5DQK@F -DV 8NQJ 'DHCDKADQF !DQKHM DCHSHNM :< ' !QDLDQ '\QDPLN XQG 5HJHOXQJ PHFKDQLVFKHU 6\VWHPH 3DTAMDQ 5DQK@F 2STSSF@QS :< # !QHFN @MC % ,DQBTQHN ,QWHUHVW 5DWH 0RGHOV Ř 7KHRU\ DQG 3UDFWLFH ZLWK 6PLOH ,QƳDWLRQ DQG &UHGLW 2OQHMFDQ 5DQK@F -DV 8NQJ 'DHCDKADQF !DQKHM DCHSHNM :< 1 6 !QNBJDS )LQLWH 'LPHQVLRQDO /LQHDU 6\VWHPV )NGM 6HKDX 2NMR -DV 8NQJ +NMCNM 2XCMDX 3NQNMSN :< ' !TMJD 2S@AHKHSS ADH RSNBG@RSHRBGDM CHƤDQDMSH@KFKDHBGTMFRRXRSDLDM =HLWVFKULIW IU$QJHZDQGWH 0DWKHPDWLN XQG 0HFKDQLN Ŕ :< ' !TMJD ADQ C@R @RXLOSNSHRBGD UDQG@KSDM UNM K±RTMFDM KHMD@QDQ RSNBG@RSHRBGDM CHƤDQDMSH@KFKDHBGTMFRRXRSDLD =HLWVFKULIW I½U $QJHZDQGWH 0DWKHPDWLN XQG 0HFKDQLN Ŕ :< ' !TMJD 9TL @RXLOSNSHRBGDM UDQG@KSDM UNM K±RTMFDM KHMD@QDQ RSNBG@RSHR BGDM CHƤDQDMSH@KFKDHBGTMFRRXRSDLD =HLWVFKULIW I½U $QJHZDQGWH 0DWKHPDWLN XQG 0HFKDQLN :< ' !TMJD *HZ·KQOLFKH 'LƱHUHQWLDOJOHLFKXQJHQ PLW ]XI¥OOLJHQ 3DUDPHWHUQ J@ CDLHD 5DQK@F !DQKHM
%LEOLRJUDSK\
3NAH@R 1HFNHO %KNQH@M 5XSS :< ) " !TSBGDQ 7KH QXPHULFDO DQDO\VLV RI RUGLQDU\ GLƱHUHQWLDO HTXDWLRQV 5XQJH .XWWD DQG JHQHUDO OLQHDU PHWKRGV 6HKDX (MSDQRBHDMBD :< $TFDMD ( !TSHJNU 3GD QHFHC ODMCTKTL @M @MSHPTD ATS DUDQFQDDM OGXRHB@K LNCDK (XURSHDQ -RXUQDO RI 3K\VLFV Ŕ :< $TFDMD ( !TSHJNU .M SGD CXM@LHB RS@AHKHY@SHNM NE @M HMUDQSDC ODMCTKTL $PHULFDQ -RXUQDO RI 3K\VLFV Ŕ :< $TFDMD ( !TSHJNU 1DFTK@Q @MC BG@NSHB LNSHNMR NE SGD O@Q@LDSQHB@KKX ENQBDC ODMCTKTL 3GDNQX @MC RHLTK@SHNMR (M /DSDQ , 2KNNS " ) *DMMDSG 3@M )@BJ ) #NMF@QQ@ @MC KENMR & 'NDJRSQ@ DCHSNQR &RPSXWDWLRQDO 6FLHQFH Ř ,&&6 3DUW ,,, +DBSTQD -NSDR HM "NLOTSDQ 2BHDMBD O@FDR Ŕ 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF -DV 8NQJ :< , ( "@H@CN @MC 5 2@QXBGDU 1DL@QJR NM RS@AHKHSX NE HMUDQSDC ODM CTK@ 5HQGLFRQWL GHO 6HPLQDUR 0DWHPDWLFR 8QLYHUVLW H 3ROLWHFQLFR GL 7RULQR Ŕ :< " & "@MTSN 8 'TRR@HMH 0T@QSDQNMH @MC 3 9@MF 6SHFWUDO 0HWKRGV (YR OXWLRQ WR &RPSOH[ *HRPHWULHV DQG $SSOLFDWLRQV WR )OXLG '\QDPLFV 2BHDMSHƥB "NLOTS@SHNM 2OQHMFDQ 5DQK@F !DQKHM 'DHCDKADQF :< 3 * "@TFGDX @MC ' &Q@X )Q .M SGD @KLNRS RTQD RS@AHKHSX NE KHMD@Q CX M@LHB RXRSDLR VHSG RSNBG@RSHB BNDƧBHDMSR -RXUQDO RI $SSOLHG 0HFKDQLFV Ŕ :< / #T "G@SD@T 7KH &DXFK\*RXUVDW 3UREOHP LDQHB@M ,@SGDL@SHB@K 2NBHDSX /QNUHCDMBD 1GNCD (RK@MC :< *TH %T "GDM 2S@MCHMF GTL@M Ŕ @M HMUDQSDC ODMCTKTL /DWLQ$PHULFDQ -RXUQDO RI 3K\VLFV (GXFDWLRQ Ŕ :< 6@QC "GDMDX @MC #@UHC *HMB@HC 1XPHULFDO 0DWKHPDWLFV DQG &RPSXWLQJ !QNNJR "NKD "DMF@MFD +D@QMHMF 2S@LENQC "3 4 2 HMSDQM@SHNM@K DCH SHNM :< "@QLDM "GHBNMD 2UGLQDU\ 'LƱHUHQWLDO (TXDWLRQV ZLWK $SSOLFDWLRQV 2OQHMFDQ 5DQK@F -DV 8NQJ !DQKHM 'DHCDKADQF :