334 116 1MB
English Pages [48] Year 1962
T h is d is s e r t a t io n h a s b e en m ic r o f ilm e d e x a c tly a s re c e iv e d
63-1267
BERK SO N , A s tr id J ., 1 9 3 6 ON A M ITSU R 'S C O M PL E X AND R E ST R IC T E D L IE A LG EBRA S. N o r th w e s te r n U n iv e rs ity , P h .D ., 1962 M a th e m a tic s
University Microfilms, Inc., Ann Arbor, Michigan
N O RTH W ESTER N UNIVERSITY
ON A M ITSU R 'S C O M PL E X AND R E ST R IC T E D L IE A LG EBRA S
A D ISSERTA TIO N SU B M IT TE D TO THE G RA DUA TE SCHOOL IN P A R T IA L F U L F IL L M E N T O F TH E REQ U IR EM EN TS f o r the d e g re e
DOCTOR O F PH ILO SO PH Y F ie ld of M a th e m a tic s
by A s tr id J . B e rk s o n
E v a n s to n . Illin o is J u n e 1962
A C K N O W LED G EM EN TS
W ith g r a titu d e an d p l e a s u r e , I w is h to a c k n o w le d g e m y d e b t to P r o f e s s o r A. R o s e n b e rg f o r h is e n c o u ra g e m e n t, g u id a n c e , a n d a s s i s t a n c e in th e w r itin g of th is d i s s e r t a t io n .
T A B L E O F C O N TE N T S
S e c tio n
I.
IL
III.
IV .
V.
V I.
Page
In tro d u c tio n .
1
N o ta tio n s .
3
T h e f i r s t c o h o m o lo g y g ro u p .
5
S p lit r e g u l a r e x te n s io n s .
7
A ll c o h o m o lo g y g ro u p s b u t on e a r e a e r o .
25
A c l a s s of F r o b e n iu s a lg e b r a s .
33
F o o tn o te s .
42
B ib lio g ra p h y .
43
1
SE C T IO N I .
IN TRO D U CTIO N
G iv en a c o m m u ta tiv e r in g C a n d a c o m m u ta tiv e C - a lg e b r a A , A m its u r in tro d u c e d a c o m p le x w h ich w ill be d e s c r ib e d in S e c tio n I I . W e w ill d e n o te th e co h o m o lo g y g ro u p s of th is c o m p le x by H ^ A ). In S e c tio n I I I w e p ro v e th a t if C i s a f ie ld , th e n f o r a n y C a lg e b r a A , H*(A) = 0. [ 1, T h e o re m
6
It w a s show n in [ 9 , T h e o re m 1, p. 3 3 0 ]
and
. 1, p. 9 9 ] t h a t if C i s a f ie ld a n d A is a fin ite n o r m a l
s e p a r a b le e x te n s io n fie ld w ith G a lo is g ro u p G , th e n H ^ A ) i s is o m o r p h ic to H ^ G , A - 1 0 j ),
th e n ** 1 co h o m o lo g y g ro u p of th e G a lo is g ro u p of
A o v e r C w ith c o e f f ic ie n ts in th e m u ltip lic a tiv e g ro u p A - i.0 J .
Sec
tio n 111 th u s g iv e s a g e n e r a lis a tio n of H i l b e r t 's T h e o re m 90. If F i s a s e p a r a b le fie ld e x te n s io n o f C , th e g ro u p s ^ ( F ) h av e b e en d e s c r i b e d in [ 9 ] • H o w ev e r, in th e in s e p a r a b le c a s e no g e n e r a l r e s u l t s on H ^ F ) w e r e know n. O u r m a in r e s u l t s d e a l w ith th a t c a s e . L e t C be a n im p e r f e c t fie ld o f c h a r a c t e r i s t i c p a n d F a fin ite p u r e ly in s e p a r a b le e x te n s io n fie ld of e x p o n e n t o n e.
H o c h sc h ild ( 7 ]
in tro d u c e d th e n o tio n of a r e g u l a r r e s t r i c t e d L ie a lg e b r a e x te n s io n o f F by T , C.
w h e re
T is th e r e s t r i c t e d L ie a lg e b r a of d e r iv a tio n s o f F o v e r
H e a ls o sh o w ed th a t th e g ro u p of r e g u l a r r e s t r i c t e d L ie a lg e b r a
e x te n s io n s of F
by
T is e q u iv a le n t to th e B r a u e r g ro u p of F
over C.
In [ 9 ] R o s e n b e rg a n d Z e lin s k y in tro d u c e d f o r e a c h A m its u r 2 - c o c y c le t of F
a r e g u l a r r e s t r i c t e d e x te n s io n o f F
by T , d e n o te d by 0 ( t ) ,
_ 2 an d show ed th a t u n d e r th e c o r r e s p o n d e n c e in d u c e d by t - • ■ 0 ( t} , H (F )
i s is o m o rp h ic to th e g ro u p of e x te n s io n s in tro d u c e d by H o c h sc h ild . In S e c tio n IV w e d e fin e r e g u la r r e s t r i c t e d L ie a lg e b r a e x te n s io n s of M by T w h e re M i s a n a b e lia n r e s t r i c t e d L ie a lg e b r a s a tis f y in g so m e a d d i tio n a l h y p o th e s e s . W e a ls o d e fin e fo r e a c h n a re s trid jb d L ie a lg e b r a Kn w h ich s e r v e s as a n M .
W e th e n show th a t f o r c e r t a i n c l a s s e s of k e r n e l s ,
in c lu d in g the K ° f o r n > 2 , a n y r e g u la r r e s t r i c t e d L ie a lg e b r a e x te n s io n o f th e k e r n e ls by T m u s t s p lit. th a t of th e
0
In S e c tio n V , by a d e fin itio n s i m i l a r to
( t ) , w e d e fin e fo r e a c h n - c o c y c le t of th e A m its u r c o m
p le x , a r e s t r i c t e d L ie a lg e b r a e x te n s io n
0n(O° f
Kn by
T. T h is e x
te n s io n is r e g u la r in th e s e n s e o f S e c tio n IV an d h a s th e p r o p e r ty th a t if Q n( t ) s p lits th e n t m u s t be a c o b o u n d a ry . S e c tio n IV to p ro v e th a t f o r F
T h en w e u s e th e r e s u l t s of
a s above an d n > 2 , h V )
=
0
.
F in a lly , in S e c tio n VI, w e show th a t the r e s t r i c t e d u n iv e r s a l a s s o c ia tiv e a lg e b r a o f a fin ite r e s t r i c t e d L ie a lg e b r a is a F ro b e n iu a a lg e b r a .
3
SE C T IO N I I .
NOTATIONS
L e t A be a c o m m u ta tiv e C - a lg e b r a w ith u n it, w h e re C is a fie ld . L e t An = A m . . . C m o r p h is m s
e
W
A,
(n f a c to r s ) .
C ^ : A*1-*- An + l
We d e fin e C - a lg e b r a m o n o -
by L
£ . ( a . • . . . e a ) = a , • . . . e a . . e l e a . « . . . e a fo r i = l , . . . . n+ 1 . i n 1 i- 1 i n A s u su al we le t A a lg e b r a An .
n*
be th e m u ltip lic a tiv e g ro u p of u n its o f the
We d efin e
A : An* .n-f 1 * An A -*■ A by A J x ) = C x (x) c 2 (x " l ) . . . ^
(x * 1)
n + 1
C le a r ly A^ i s a h o m o m o rp h is m a n d i t w a s show n in [ 1. T h e o re m 5 .1 . p . 93] by A m its u r th a t th e se q u e n c e of g ro u p s an d h o m o m o rp h ism s (A
, A ) n
f o rm a c o m p le x , i. e.
A A =1. n+ 1 n
We s h a ll c a l l th is th e
A m its u r c o m p le x o v e r A a n d d e n o te i t by Q(A ). The co h o m o lo g y g ro u p K er(A 0 +1
) / 'lm ( A ) n
w ill be d e n o te d by H ^ A ). F o r th e s ig n ific a n c e o f
th e s e g ro u p s se e [ I ]
and
[ 9 ].
We s h a ll h av e u s e f o r a v a r ia n t of Q(A). L e t £ n * An— A ° + * b e g iv en by
^ n * Ll~ ZZ +
-
^n+1 *
It i s c l e a r th a t £
is a n a d d itiv e h o m o m o rp h is m . It w a s p ro v e d in [ 9 .
n
L e m m a 4 . 1, p. 347] th a t th e se q u e n c e (An , & ) of a d d itiv e g ro u p s a n d h o m o m o rp h is m s is e x a c t.
T h is is e a s i l y se e n :
L e t X be a C - l in e a r m ap of A o n to C s u c h th a t *f (1) = 1. T h en d e fin e
s
s
e a ) = n
(a , • . . . n ' 1
‘ An-* A n * by '
n
[ ( t.) a , t ... 1
2
• a
n
and
s. =
0
0
.
s . . f . . . = t .s f o r i ^ 1, a n d • i s th e id e n tity n tl x+i x n n+i i n+ 1 .,. m a p , th e n s . . C, + C ,s = ■ . , £ , + (-1) r n+ 1 ° n d n -l n n+ 1 1 i» 2 ' ' n+ 1 x S in ce
+
4^l+ l (-1) €m* i= 1 I n
= th e id e n tity m a p , so th a t a
n
is a c o n tr a c tin g
h o m o to p y . S ince th e o p e r a to r £ th o u g h t of a s
1• £
a n e x a c t f u n c to r ,
. n- x
= £
2
^
fo r the c o m p le x
- ... A •_ A w
i t fo llo w s th a t th e se q u e n c e
+ £ n+j
can be
a n d s in c e • _ is Wi
(An , £ ) n
i s e x a c t a ls o .
SE C T IO N I I I .
THE F IR S T COHOMOLOGY GROUP
L e t A be a c o m m u ta tiv e C * a lg e b ra w ith u n it. W e s h a ll show th a t H*(A) « 0.
To b e g in w ith w e p ro v e
L e m m a 3 .1 x * 0
L e t V a n d Wbe v e c to r s p a c e s o v e r th e fie ld C .
ia a n e le m e n t of V X
=
V. • 1
T h en if
V/, we have
w.
i
1
w h e re th e v^ a n d w. a r e l in e a r l y in d e p e n d e n t in V a n d W r e s p e c tiv e ly (c f. [ 2, $
E x e r c is e
1
6
] ).
P ro o f.
F r o m th e d e fin itio n of V W w e know th a t e v e r y e le m e n t n o f V s r W c a n be w r itte n a s -ZT f • g , w ith f. in V an d g. in W. We V i~ l 1 1 1 1 d e fin e s ® ra n k of x , a s th e s m a ll e s t p o s itiv e in te g e r s u c h th a t x is th e s u m of s
te n s o r p ro d u c ts f • g.
S uppose th e v
r
a T hen if x h a s r a n k a f x =ZZ v. e w, . i= l * i
w e re lin e a r ly d e p e n d e n t.
*
i^ r
c . v. i
i
T h e n w e c o u ld w rite
w ith c . in C. i
B u t th is w ould m a k e x = ■£— i* r
v. e (w . + c. w ) of r a n k l e s s i ' i i r
th a n
s , con*
tr a d ic tin g th e d e fin itio n of s.
S im ila r ly , th e w ^ 's m u s t be lin e a r ly
in d ep e n d en t. T h e o re m 1 w ith u n it.
L e t C be a fie ld a n d le t A b e any c o m m u ta tiv e C * a lg e b ra T h en
P ro o f. x * ZT v^ •
H*(A) » 0.
L et
x be a c o c y c le of r a n k s in A
2*
. We m a y th e n w r ite
w ith th e v^, w^ e le m e n ts of A a n d th e s e ta f v^ j
l in e a r ly in d e p e n d e n t o v e r C .
and £
S ince x i s a c o c y c le w e h av e ^ ( x ) ■ 1 , o r
* (
8
1
*
8
• v. • w .) ( £ v. e w. e X J J
1
) b ZZ v, • 1
1
• w,
w h ic h c a n be w r itte n a s (3 . 1)
a {f2> • e 2 - ^ ‘f t e ^ f f j ) • If D * 'f ( e j) *
+
'f ( « i e 1 ) P '
1
(«,) • e ,
+ f xf 2 [ e ^ e j
a p p ly in g (4 .8 ) w ith f 2 » 1 and e 2 a m in M w e fin d
(f^D) m « f j . D (m ). A lso (4. 8 ) w ith f j = 1 an d f 2 « f „ e 2 = m in M y ie ld s O (fm ) = D(f) • m + f . D (m ). T h u s M is a r e g u la r T -m o d u le u n d e r th e n a tu r a l a c tio n of T on M. It is w o rth notin g th a t (4. 6 ) m u s t be a s s u m e d if (4. 7) is to be v a lid fo r e^ in M.
10
C o n v e rs e ly , if M is a r e g u l a r T -m o d u le w h ic h is a n a b e lia n r e s t r i c t e d L ie a lg e b r a su c h th a t (4 .6 ) is v a lid , we s h a ll c o n s id e r r e g u l a r r e s t r i c t e d e x te n s io n s of M by T w h ic h in d u c e th e g iv en r e g u la r T -m o d u le s t r u c tu r e a n d p -m a p on M. A s u s u a l w e s h a ll sa y th a t a r e g u l a r e x te n s io n E s p lits if t h e r e is a n F - l i n e a r r e s t r i c t e d L ie a lg e b ra h o m o m o rp h is m Y" o f T to E su c h th a t
th e id e n tity on T.
It is th e m a in p u rp o s e of th is
s e c tio n to show th a t f o r a la r g e c l a s s of r e g u la r T -m o d u le s , a ll r e g u la r r e s t r i c t e d e x te n s io n s s p lit. T h e o re m 2 .
L e t F be a fin ite p u re ly in s e p a r a b le e x te n s io n fie ld of C
o f ex p o n en t 1 an d l e t T be th e r e s t r i c t e d L ie a lg e b r a of d e riv a tio n s of F over C.
L e t M be a r e g u la r T -m o d u le w h ich is a s tro n g ly a b e lia n r e
s t r i c t e d L ie a lg e b ra i. e. 0 -* M ^
s 0 » [ M, Mj .
L et
E —T —0
be a r e g u la r r e s t r i c t e d e x te n s io n of M by T w h ich in d u c e s th e giv en T > m odule s t r u c tu r e on M .
T hen th e e x te n sio n s p lits a s a r e g u la r r e s tr ic te d
e x ie n si on. B e fo re p ro v in g T h e o re m 2, we r e c a l l th a t the g e n e r a to r s a o f F ij in A m a y be c h o s e n in su c h a w ay th a t w ith 0 - i - p - 1 a r e a C -b a s is of F (cf. e .g . [ 3, P r o p o s itio n 1, p. 190] ).
L e t TQ be th e r e
s t r i c t e d L ie a lg e b r a sp a n n e d o v e r C by th e d e r iv a tio n s p
(a ) ■ S
i 1 y
g iv en by
ij
It is e a s ily v e r if ie d th a t [ D ., D^] > 0
an d
D.P = 0
[ 3 , p. 192, (6 )] so
th a t Tq is i t s e l f a s tro n g ly a b e lia n r e s t r i c t e d L ie a lg e b r a .
T hen th e f i r s t p a r t of the p ro o f of T h e o re m 2 c o n s is ts of L em m a 4. j
G iven
T f a n d the e x te n s io n 0 —*-M -*■ E
?
• T —0
a s in T h e o re m 2, th e r e is a C - lin e a r r e s t r i c t e d L ie a lg e b r a is o m o rp h is m o f Tq in to E w h ich i s in v e r s e to V \ P ro o f.
If
[ Tq ! C ] « 1 th en we c o n s tr u c t a n is o m o rp h is m of
T Q in to E q a Vf ’ 1 ) ] ‘ Cp 0 ( D 2 , , [ e 2 * ^ 0 ( D l >1 ] s
is a h om om orphism and
[«£» p^(D^) ] * 0.
°
“lttC®
P 0
H e n c e [ p ^ ( D ^ ) , e 3] a 0.
14 R e p e a tin g th is p r o c e d u r e w ill f in a lly y ie ld a n e le m e n t e w ith Y (e^) = D ^,
e^ =
T h en d e fin in g Y q = p ^
0
,
an d
[ p ^ D ^ ) , e^] =
on V Q a n d
f o r i= l,
0
2
n
of E n 0
............. n - 1 .
Y q (Dft) = ®n g iv e s th e d e s i r e d
m a p , p ro v in g L e m m a 4. 1. P r o o f o f T h e o r e m 2,
G iven
0 -»
M -► E
y -*
T -♦ 0 , l e t
^
b e th e r e s t r i c t e d L ie a lg e b r a m a p f r o m T ^ to E q a s g iv e n by L e m m a 4. 1. S in ce the
c o n s titu te a le ft F - b a s i s o f T [ 3 , P r o p o s itio n 2, p, 191] •
w e m a y d e fin e
T -* E
Dj in Tp an d a d d itiv ity .
by
'f'{i D^) = f * Y q (D^)
T h is Y
f o r f in F
an d
c l e a r l y F - l i n e a r , an d if w e c a n show
th a t i t is a r e s t r i c t e d L ie a lg e b r a h o m o m o rp h is m , th e n i t i s th e r e q u ir e d s p littin g m ap .
B u t by r e p e a te d a p p lic a tio n s o f (4. 1), ( 4 .2 ) , ( 4 .7 ) an d
( 4 .8 ) w e have f o r
I t ( t Di ).y ,(g D j )]-
S in c e i i . a d d itiv e . (4. 9 ) e x te n d , to s u m s a n d w e s e e th a t L ie a lg e b r a h o m o m o rp h is m .
Y la
a
15
(4. 10) % i D .)P) n f i (f D i)p ‘ l C 2 t x - ' | . . .
n + 1 0
n+1D £ ♦------------
£ 2 (x
( x ' 1) \ ---
)
* C n + l> ~ i r ~
H en ce in th e n o ta tio n of S ectio n I I ,
"+ l D £ n . i ( x t l ) + • • • + ---------- i s i t . —
^ n+ l (x
*
b* ,4 - l l »
23 C o m bin ing the la u t two fo r m u la e .
t 2n+3 ,2 n . ^ n + i'* * 1 » _ D“ * ‘ J . .. , 2n - l . " . , 2n
2n+3_.A
2
n+ 2
*
>
1
**
2n +2 t
x 2n - l
S ince w (D ) is in F , fo r
3
^ i + 1 *W
=
3 —
e l
by
'
r
/ "
°
c
Dt
2n + 2\
/
P (D) =
^
2
n+ 2
3
( - f i r )
-
a K2n+2.
(
) • I
^ 2 n - 1
2 ” * 1
We s h a ll show th a t
-
w (D )
( j '+ P ) •
.
2 n , {w (D )» 1 n )
i > 2,
^
2
■ • * - ')
We saw in S e c tio n I I th a t the c o m p le x ( F n , • i
.
*
T h e n $ 2n+Z *W
* l2U *‘
D* \ » '
1
t 2n » l
/
' O 2n +2 V.
3_ ^
I
_ "
•
n
* l2 n H ence
■ ) is e x a c t.
T h ere -
m w
m1
_ q ( we
2“
is in
I m ( £ 2 n + l)
1
T —E
is a n F - U n e a r r e s t r i c t e d
L ie a lg e b r a h o m o m o rp h ism . F i r s t l e t u s no te th a t by [9» L e m m a 4 . 4 , p. 349] , fo r and
D, D* in
T,
t in F n *
24
( 4 . 14 ) " s !i_
.
( J £ i;p
+
v
*
(
^ e ± .j
C o m b in in g (4. 12) an d (4. 14) y ie ld s
(4 .1 5 )
p([D ,D '])P (DP) - p (D)P -
- > W
2
n+ 2 D p (D ') 2 n + 2
2
and
D P’ *p (D) o - w(DP) + w ( o f 4
1
w (D)
- ^ ( D P> .
T h en ( f + p) ( [ D . D*] ) “ [W D ), y 'd f t ] by (4 .1 5 ).
n+ 2 D '(3(D )
B ut
+ 2n+2Dp (D*) -
2
n+ 2 D 'p (D)
[ ( f + P ) D , (Y#+ P ) D , J = [ ? ( D ) .Y ( D ') ] + [ f ( D ) ,P (D #) ]
+ [ P ( D ) . ^ ( D ') ] + [ p ( D ) , P (D ‘) ] « [ r ( D ) i y '( D ,) ] + 2 n+ 2 D p (D )- 2 ll+ 2 t f p P ) s in c e P (D) is in So
K2 n + 2 and [ e , k ] *
Y *(e)(k) .
(V^+ P) i s a L ie a lg e b r a h o m o m o rp h is m .
(Y '+P) (DP> b ^ (D P) + P (D P) =f { D ) P + P(D )P + B ut
2
n+ 2 D P
[ (Y'+PHD)] P = y ( D ) P + p (D )P + 2n+2DPml ( p(D) ) T h e re fo re
Y' and
p
r e g u l a r e x te n s io n .
P(D) by (4 . 15). by (4. 5)
(Y ^p) i s a r e s t r i c t e d L ie a lg e b r a h o m o m o rp h ism . S in ce
a r e b o th F - l i n e a r , so is t h e ir s u m .
so th a t Y ( f + P) =
" 1
Y/= id e n tity on T .
F in a lly p (T ) e K e r ( Y )
T h en th e e x te n s io n s p lits a s a
25
SEC TIO N V
A L L COHOMOLOGY GRO UPS BU T ONE A R E Z E R O
In th is s e c tio n w e s h a ll show th a t a ll co h o m o lo g y g ro u p s b u t th e se c o n d of A m its u r ’s c o m p le x f o r F , a fin ite p u r e ly in s e p a r a b le ex ten * s io n fie ld of ex p o n en t o n e , a r e z e r o . “ + lDA x
_ ,"Dx . £ n \ ------- ~ J to r an y
We have by (4 .1 3 ) th a t n x
in F
n*
,
Thus fo r
x
«d x S n(" 1*x"~"^ “
a c o c y c le ,
n by th e e x a c tn e s s of th e c o m p le x (F , £ *• D in T , w e have
and each a coset
V (D j t)
m o d u lo
a
.
K®
L et
" 1
n ^ —- — t
is in
Im ( £
.) , n» l
We s h a ll d e fin e fo r e a c h c o c y c le t in of
F
n*
tor
n*
T hus th e r e is
F n "* su c h th a t
( F n " 2) B K e r < / n - 1 )
a lg e b r a e x te n s io n
T h 6 n ' afialn
) , fo r e a c h c o c y c le t in F
K e r ^ ^ j ) in
S £
°*
j(V (D ,t) ) n > 2.
a r e s t r i c t e d L ie
Kn * by T,
We se t 0 w h e re
n - 1 ( t ) * ^ n " l D + L (q ) | q in
f “ ’ 1J
,
II* 1 ~ D and L(q) a r e d e fin e d a s in S e ctio n IV. W ith th is d e fin itio n
i t is c l e a r th a t
L e m m a 5. 1
0
V ( B , t)
. (t)c w n- 1 If
t
in
Horn
F ,
_ , j # p n~c
n > 2 ,
( F *1 \
Fn V
is a n A m its u r c o c y c le , th e n
, ( t ) is a r e g u la r r e s t r i c t e d L ie a lg e b r a e x te n s io n of K n- 1
n
1
by T .
3
26
P ro o f. *
[ n “ *D + L ( q ),
a * 1 D , + L ( q ') J
[ n ‘ l D, n ’ l D '] + L < n ‘ 1 D (q ') - n " l D ' ) .
But S n -1
£ a £,< *> • • •
Th*n £1 V‘>* C, €»•*D+i C,"'1**» s
Jn ^ n j th e n a a • • •a
is c o m p le te ly s e ttle d .
1
le a s t in d e x su c h th a t j Deg
and
1
A s su m e now th a t th e le m m a is t r u e fo r a Deg a
a^n
so
n
i
a ,• i
^JEL —:
a p = 1
= It
a
j'
n
n
anda
= aJ
=* k - 1,
b y th e f i r s t in d u c tio n
i s th e s a m e a s i ts e x p o n e n t in
is p - 1
th en
D eg a^ a
J*
—
k -1
36 by th e f i r s t in d u c tio n h y p o th e s is . th e n
j' a tz k
Deg
le t
a. a
D eg
a
J'
J
— I -2-— c_ a . X
3
if
k
in d u c tio n h y p o th e s is . Deg a ^ a ^
k -1 + 1
Deg a^ a ^ ^ k + 1 .
L et
T h en if th e
P ro o f.
x
3
a^
• • • a^ I
D eg * } £ s - 1
)
6
c_ a*) I I
+1 in a
J
by th e
se c o n d
i s p -1 ,
a ^ a^£- k+1 if th e e x p o n en t o f
if
a^ in a ^
th e e x p o n en t of a^ in a ^ i s p - 1 , c o m
. 1. r 7T
a , , th e p ro d u c t of ‘j
r f a c t o r s a* in a n *J
T hen D eg x - r ,
T h is i s obv io u s if r
a n d c o n s id e r
1
th e e x p o n e n t of a ^ in a ^ is n o t p - 1,
H ence Deg k
( ^ 7
e x p o n e n t of
k , an d if
1
a rb itra ry o rd e r.
Deg
1
p le tin g th e r o o f of L e m m a .2
J
ex p o n en t of a ^ i n a ^ is n o t p - 1 .
c . a 1) ^
J
3
a
e x p o n en t of a ^ in a ^ is p - 1 .
th e
i s < p -1 a n d Deg a ^ a ^
6
I a ), D eg £
th e
if
6
Now
a 1, k)
w h e re D eg a} i— / k - 1
Deg a
i s < p -1
We h av e th a t
n m a x (D eg a # ( X
S in ce a < $ t
j*
a g a in by th e f i r s t in d u c tio n h y p o th e s is .
m a x (D eg 2 Z c . a l i e
C o r o lla r y
If th e ex p o n en t of a ^ in a
3
1. Now
s
A s s u m e th e le m m a is tr u e f o r r < a a^
• • • a^ 2
by th e in d u c tio n h y p o th e s is .'
c^ a *
3
s
i
T h en
w h e re
a,
. & 1
. . . a . = a. le ll
2
L em m a
.3
6
(£Z c . a *) h a s d e g re e ^ s by L e m m a i
L e t S be th e s u b s p a c e of L sp a n n e d by the a*
D eg a*< n ( p - l ) .
L e t x = a.
a.
X1
n lp -1 ) o f the a 's . r i
...
a. ln < p -l)
l 2
D~ 1 a, ” ... I n
T hen x -
n« J
a
6
. 1.
w ith
be a p ro d u c t of
m od S if e a c h a. i
o c c u r s e x a c tly p - 1 t im e s in x , w h ile x » 0 m o d S o th e r w is e . P ro o f.
We u s e in d u c tio n on th e n u m b e r of tr a n s p o s itio n s r e q u i r e d to
t r a n s f o r m th e o r d e r e d s e t (a. , • •• , a . ) in to th e o r d e r e d s e t ll Xn ( p - 1 ) ................................ ) » «ch th a t 31 n (p -1 )
j
^ j *
. . k+i
If no tr a n s p o s itio n s a r e r e q u ir e d an d e a c h a ^ a p p e a r s p - 1 t im e s th e n by d e fin itio n a. . . . a , = a, ll n (p -1 ) I
p-
1
pa r
... n
1
_ p- 1 = a. ...a i n
p-
1
. , (m od S) .
If no tr a n s p o s itio n s a r e r e q u i r e d , an d if q is th e g r e a t e s t in d e x s u c h th a t a
q
a p p e a r s m o r e th a n p - 1 t im e s , a n d a
q
a p p e a rs
p + t tim e s ,
th en x = a. • • * a . = a. • • • a ‘l ‘M p -O ‘l q
t
. a
• a q
p- 1
. . . a.
q
• n (p -1)
t
L e t th e n u m b e r of f a c t o r s up
to an d in c lu d in g a ^ be u a n d th e re m a in in g
n u m b er fro m a
be v.
to a .
q L em m a
6
. 1 we
T h u s u + v = n ( p - l)
.
Now
ln(p-l) h a v e , s in c e a ^ * * • • a. is an q ln ( p - l )
a*,
by
D eg a
• a p * • . . a. - D en a p " * . . . a . “ q ln (p -D q V
27 c .
T hus a q
. a p“ * . . . a. = q l n ( p - l) I
a* w ith Deg a * v
= v - 1 . o - 1.
H en ce
1
x Is a l i n e a r c o m b in a tio n of t e r m s e a c h of w h ic h h a s u + v - l a n ( p - l ) - l f a c to r s a . .
T hen x l i e 3 In
S by C o r o lla r y
6
.2 .
J Now a s s u m e th a t L e m m a tio n s
6
. 3 is t r u e if l e s s th a n k t r a n s p o s i
a r e r e q u i r e d to t r a n s f o r m the o r d e r e d s e t
(a , ll
a.
a. ) to (a l n (p - l)
L e t sr. =■ (a . , a . ). ls l o+l
) su c h th a t j. *= J. . w(p” l)
T hen
x s a . . . . a. a, a, a , . . . a, I Xs - l a+1 s s+ 2 n (p -l) + a. • • • a. [ a . * a. ] a, ... II s-1 a ls+ l a+ 2 Since
a, n (p - l)
k -1 tr a n s p o s itio n s a r e r e q u ir e d f o r th e s e t
(a, • • • • . a ,
’ *{ s-1
1
'
*••*» a .
s+1
s
s+2
) * a (p -l)
th e n by th e in d u c tio n a s s u m p tio n ,
r p- 1 ... )a l V
1
,,ai
. - 1
i a i . +a1. * 1 . &i . «a /
S ince by C o r o lla r y