Table of contents : Preface Contents CHAPTER I General Commutative Rings 1. Rings, ideals, and modules 2. Prime ideals and primary ideals 3. Noetherian rings 4. Jacobson radicals 5. The definition of local rings 6. Rings of quotients 7. Prime divisors 8. Primary decomposition of ideals 9. The notions of height and altitude 10. Integral dependence 11. Valuation rings 12. Noetherian normal rings 13. Unique factorization rings 14. A normalization theorem CHAPTER II Completions 15. Formal power series ring 16. An ideal-adic topology 17. Completions 18. Exact tensor products 19. The theorem of transition CHAPTER III Multiplicities 20. Homogeneous rings 21. Lambda-Polynomials 22. Superficial elements 23. Multiplicities 24. System of parameters 25. Macaulay rings CHAPTER IV The Theory of Syzygies 26. Definition of syzygies 27. Change of Rings 28. Regular local rings 29. Syzygies of graded modules CHAPTER V Theory of Complete Local Rings and Its Application 30. Some properties of complete local rings 31. The structure theorem of complete local rings 32. Finiteness of derived normal rings 33. Derived normal rings of Noetherian integral domains 34. Chains of prime ideals CHAPTER VI Geometric Local Rings 35. Localities 36. Pseudo-geometric rings 37. Analytical normality 38. Some types of ring extensions 39. Separably generated extensions 40. Multiplicity of a local ring 41. Purity of branch loci 42. Tensor products CHAPTER VII Henselian Rings and Weierstrass Rings 43. Henselization 44. Hensel lemma 45. Convergent power series rings 46. Jacobian criterion of simple points 47. Analytic tensor product Appendix A1. Examples of bad Noetherian rings A2. Historical Note References TABLE OF NOTATION INDEX