Table of contents : vehicle stability.pdf......Page 1 DKE682_FM.pdf......Page 2 Vehicle Stability......Page 3 PREFACE......Page 11 CONTENTS......Page 16 I. INTRODUCTION......Page 20 CONTENTS......Page 0 II. TAPERED WHEELSET ON RAILS......Page 23 III. THE DYNAMICS OF A SHOPPING CART......Page 29 A. INERTIAL COORDINATE SYSTEM......Page 31 B. BODY-FIXED COORDINATE SYSTEM......Page 37 I. INTRODUCTION......Page 40 II. INERTIAL FRAME DESCRIPTION......Page 41 III. BODY-FIXED COORDINATE FRAME DESCRIPTION......Page 43 B. GENERAL KINEMATIC CONSIDERATIONS......Page 46 IV. SPIN STABILIZATION OF SATELLITES......Page 49 V. BOND GRAPHS FOR RIGID BODY DYNAMICS......Page 53 I. INTRODUCTION......Page 59 II. STATIC AND DYNAMIC STABILITY......Page 60 III. EIGENVALUE CALCULATIONS AND THE ROUTH CRITERION......Page 64 A. MATHEMATICAL FORMS FOR VEHICLE DYNAMIC EQUATIONS......Page 66 B. COMPUTING EIGENVALUES......Page 71 C. ROUTH’S STABILITY CRITERION......Page 73 II. TIRE–ROAD INTERACTION......Page 78 III. LATERAL FORCES......Page 80 A. EFFECT OF NORMAL FORCE......Page 81 IV. LONGITUDINAL FORCES......Page 86 V. COMBINED LATERAL AND LONGITUDINAL FORCES......Page 88 I. INTRODUCTION......Page 94 II. SINGLE DEGREE-OF-FREEDOM MODEL......Page 95 A. USE OF LAGRANGE’S EQUATIONS......Page 99 B. ANALYSIS OF THE EQUATION OF MOTION......Page 102 III. TWO DEGREE-OF-FREEDOM MODEL......Page 104 A. CALCULATION OF THE SLIP ANGLE......Page 105 B. FORMULATION USING LAGRANGE’S EQUATIONS......Page 106 C. ANALYSIS OF THE EQUATIONS OF MOTION......Page 108 IV. A THIRD-ORDER MODEL......Page 110 A. A SIMPLE STABILITY CRITERION......Page 111 V. A MODEL INCLUDING ROTARY DAMPING......Page 112 A. A CRITICAL SPEED......Page 114 I. INTRODUCTION......Page 116 II. STABILITY AND DYNAMICS OF AN ELEMENTARY AUTOMOBILE MODEL......Page 117 III. STABILITY ANALYSIS USING INERTIAL COORDINATES......Page 118 A. STABILITY, CRITICAL SPEED, UNDERSTEER, AND OVERSTEER......Page 124 B. BODY-FIXED COORDINATE FORMULATION......Page 125 IV. TRANSFER FUNCTIONS FOR FRONT AND REAR WHEEL STEERING......Page 128 V. YAW RATE AND LATERAL ACCELERATION GAINS......Page 134 A. THE SPECIAL CASE OF THE NEUTRAL STEER VEHICLE......Page 135 VI. STEADY CORNERING......Page 136 A. DESCRIPTION OF STEADY TURNS......Page 137 B. SIGNIFICANCE OF THE UNDERSTEER COEFFICIENT......Page 140 VII. ACCELERATION AND YAW RATE GAINS......Page 143 VIII. DYNAMIC STABILITY IN A STEADY TURN......Page 150 A. ANALYSIS OF THE BASIC MOTION......Page 151 B. ANALYSIS OF THE PERTURBED MOTION......Page 152 C. RELATING STABILITY TO A CHANGE IN CURVATURE......Page 155 IX. LIMIT CORNERING......Page 157 A. STEADY CORNERING WITH LINEAR TIRE MODELS......Page 160 B. STEADY CORNERING WITH NONLINEAR TIRE MODELS......Page 161 I. INTRODUCTION......Page 165 II. STEERING CONTROL OF BANKING VEHICLES......Page 166 A. DEVELOPMENT OF THE MATHEMATICAL MODEL......Page 167 B. DERIVATION OF THE DYNAMIC EQUATIONS......Page 170 III. STEERING CONTROL OF LEAN ANGLE......Page 173 A. FRONT-WHEEL STEERING......Page 174 B. COUNTERSTEERING OR REVERSE ACTION......Page 176 C. REAR-WHEEL STEERING......Page 179 I. INTRODUCTION......Page 182 II. A VERTICAL AXIS CASTER......Page 183 III. AN INCLINED AXIS CASTER......Page 185 IV. A VERTICAL AXIS CASTER WITH PIVOT FLEXIBILITY......Page 189 A. INTRODUCTION OF A DAMPING MOMENT......Page 191 V. A VERTICAL AXIS CASTER WITH PIVOT FLEXIBILITY AND A FINITE CORNERING COEFFICIENT......Page 192 VI. A CASTER WITH DYNAMIC SIDE FORCE GENERATION......Page 193 A. THE FLEXIBLE SIDEWALL INTERPRETATION OF DYNAMIC FORCE GENERATION......Page 195 B. STABILITY ANALYSIS WITH DYNAMIC FORCE GENERATION......Page 198 I. INTRODUCTION......Page 200 II. A LITTLE AIRFOIL THEORY......Page 202 III. DERIVATION OF THE STATIC LONGITUDINAL STABILITY CRITERION FOR AIRCRAFT......Page 208 A. PARAMETER ESTIMATION......Page 216 IV. THE PHUGOID MODE......Page 218 V. DYNAMIC STABILITY CONSIDERATIONS—COMPARISON OF WHEELS AND WINGS......Page 221 A. AN ELEMENTARY DYNAMIC STABILITY ANALYSIS OF AN AIRPLANE......Page 225 VI. THE EFFECT OF ELEVATOR POSITION ON TRIM CONDITIONS......Page 228 I. INTRODUCTION......Page 233 II. MODELING A WHEELSET......Page 235 III. WHEEL–RAIL INTERACTION......Page 238 IV. CREEPAGE EQUATIONS......Page 239 VI. THE CHARACTERISTIC EQUATION......Page 242 VII. STABILITY ANALYSIS AND CRITICAL SPEED......Page 243 I. INTRODUCTION......Page 247 II. STABILITY AND CONTROL......Page 248 III. FROM ANTILOCK BRAKING SYSTEM TO VEHICLE DYNAMIC CONTROL......Page 251 IV. MODEL REFERENCE CONTROL......Page 254 V. ACTIVE STEERING SYSTEMS......Page 257 A. STABILITY AUGMENTATION USING FRONT, REAR, OR ALL-WHEEL STEERING......Page 260 B. FEEDBACK MODEL FOLLOWING ACTIVE STEERING CONTROL......Page 263 C. SLIDING MODE CONTROL......Page 265 D. ACTIVE STEERING APPLIED TO THE BICYCLE’’ MODEL OF AN AUTOMOBILE......Page 269 E. ACTIVE STEERING YAW RATE CONTROLLER......Page 270 VI. LIMITATIONS OF ACTIVE STABILITY ENHANCEMENT......Page 277 APPENDIX: BOND GRAPHS FOR VEHICLE DYNAMICS......Page 279 I. A BOND GRAPH FOR THE TWO DEGREE-OFFREEDOM TRAILER......Page 280 II. A BOND GRAPH FOR A SIMPLE CAR MODEL......Page 284 III. A BOND GRAPH FOR A SIMPLE AIRPLANE MODEL......Page 286 CHAPTER 1......Page 289 CHAPTER 2......Page 293 CHAPTER 3......Page 295 CHAPTER 4......Page 298 CHAPTER 5......Page 300 CHAPTER 6......Page 306 CHAPTER 7......Page 313 CHAPTER 8......Page 314 CHAPTER 9......Page 318 CHAPTER 10......Page 321 CHAPTER 11......Page 324 BIBLIOGRAPHY......Page 328