Uranium Enrichment and Nuclear Weapon Proliferation
0850662192, 9780850662191
293
102
137KB
English
Pages 296
[321]
Year 1983
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Title page......Page 3
Preface......Page 5
Contents......Page 7
List of figures and tables......Page 10
Introduction......Page 15
Notes on conventions......Page 18
Part One......Page 19
I. Isotopes......Page 21
Table 1.1. Critical masses of uranium for varying degrees of enrichment......Page 25
III. Isotope separation......Page 26
IV. Basic principles of enrichment......Page 29
Figure 1.1.The stable isotopes......Page 22
Table 1.2 Uranium enrichment techniques, according to physical principles and mechanisms used......Page 28
I. Introduction......Page 32
II. The origins of uranium enrichment......Page 33
III. Comparison of techniques......Page 37
IV. Incentives and rnotivations......Page 47
V. Summary......Page 59
Figure 2.1. K-25 gaseous diffusion plant under construction at Oak Ridge, Tennessee, in 1943......Page 35
Figure 2.2. A view of the modern gaseous diffusion facility (10 800 t SWUIyr) at Tricastin, France......Page 36
Figure 2.3. The South African enrichment plant at Valindaba......Page 40
Table 2.1. Important enrichment technique property ratings according to their contribution to proliferation sensitivity......Page 39
Table 2.2. Technological thresholds to proliferation......Page 46
Table 2.4. 1970 projections of nuclear growth (in GW(e))......Page 51
Table 2.5. A survey of the enrichment situation in terms of thresholds to proliferation through diversion......Page 54
Table 2.6b. Possible motivations of relatively high threshold countries......Page 58
I. Introduction......Page 61
II. Technical control mechanisms: safeguards......Page 62
III. Institutiorzal control mechanisms......Page 74
Figure 3.1. An aerial view of the uranium enrichment plant of British Nuclear Fuels Limited at the Capenhurst Works, near Chester......Page 80
Figure 3.2. The Urenco facility at Almelo, the Netherlands......Page 85
Table 3.1. Status of implementation of non-proliferation conditions in existing multinational arrangements......Page 90
I. Introduction......Page 101
II. Conclusions......Page 104
III. Recommendations......Page 108
Part Two......Page 113
I. Introduction......Page 115
II. Separation elements......Page 116
Figure 5.2. The value function......Page 120
IV. Cascades......Page 124
V. Reflux......Page 137
VI. Properties of uranium metal and UF_6......Page 138
Figure 5.1. An enrichment element......Page 117
Figure 5.3. Model enrichment facilities......Page 121
Figure 5.5. A symmetric cascade [2c]......Page 125
Figure 5.6. Two ideal cascades......Page 128
Figure 5.7. A cask of UF_6......Page 129
Figure 5.8(a) and (b). Square cascades......Page 133
Figure 5.9. A squared-off cascade......Page 134
Figure 5.10. A sample of UF_6......Page 139
Figure 5.11. A UF_6 molecule......Page 141
Table 5.1. Cascade characteristics......Page 135
I. Introduction......Page 142
II. Gaseous diffusion......Page 143
III. The gas centrifuge......Page 150
IV. Aerodynamic separation methods......Page 158
V. Chemical-exchange methods......Page 168
VI. Laser isotope separation......Page 180
VII. Electromagnetic and plasma processes......Page 195
VIII. Miscellaneous methods......Page 208
IX. Summary......Page 212
Figure 6.2. A sintered nickel barrier......Page 145
Figure 6.3. Gaseous diffusion stages......Page 148
Figure 6.4. Rotor of an axial flow compressor......Page 149
Figure 6.5. A modern gas centrifuge......Page 153
Figure 6.6. Two centrifuge cascades......Page 157
Figure 6.7. A separation nozzle......Page 159
Figure 6.8. A separation nozzle element......Page 160
Figure 6.9. An asymmetric cascade......Page 162
Figure 6.10. A prototype jet nozzle......Page 163
Figure 6.11. Advanced separation nozzle......Page 165
Figure 6.12. A vortex tube......Page 166
Figure 6.13. A prototype Helikon module......Page 167
Figure 6.14. A countercurrent column......Page 172
Figure 6.15. An ion-exchange module......Page 173
Figure 6.16. A molecule of dibenzo-18-crown-6......Page 176
Figure 6.17 A chemex unit......Page 178
Figure 6.18. An AVLIS module......Page 183
Figure 6.19. Three-step laser ionization......Page 184
Figure 6.20. An AVLIS enrichment stage......Page 186
Figure 6.21. An MLIS stage......Page 190
Figure 6.22. Two molecular dissociation processes......Page 191
Figure 6.23. Motion of charged particles in crossed electric and magnetic fields......Page 197
Figure 6.24. An early two-beam calutron......Page 199
Figure 6.25. Schematic illustration of the plasma separation process based on ion cyclotron resonance......Page 202
Figure 6.26. Illustration of ion cyclotron resonance......Page 203
Figure 6.27. Model of a superconducting solenoid......Page 204
Figure 6.28. Schematic diagram of one type of plasma centrifuge......Page 206
Figure 6.29. Rotating plasma device with curved magnetic field lines......Page 207
Table 6.1 Typical maximum peripheral speeds of thin-walled cylinders [ZOb]......Page 154
Table 6.2. Properties of a hypothetical centrifuge......Page 155
Table 6.3. Summary of enrichment process characteristics......Page 210
Part Three......Page 215
I. Early US initiatives......Page 217
II. The end of monopoly......Page 222
III. Recent US initiatives......Page 229
IV. Recent international efforts......Page 231
V. Concluding note......Page 234
Figure 7.1. The Brazilian enrichment facility at Resende......Page 227
I. Introduction......Page 235
Figure 8.1. The gaseous diffusion plant at Portsmouth, Ohio, USA......Page 236
Figure 8.3. Helikon separation units at Valindaba......Page 254
IV. Substantial enrichment needs or uranium resources......Page 262
V. Concluding remarks......Page 266
Figure 8.2. The Japanese centrifuge plant at Ningyo Pass......Page 250
Table 8.1. Current ownership of shares in Eurodif......Page 239
Table 8.2. The world enrichment picture......Page 252
Table 8.3. The projected world enrichment picture......Page 261
Appendix 8A. Nuclear power growth 1980-1990......Page 268
Table 8A.2b. Nuclear power growth, 1980-1990, on a year-by-year basis in the centrally planned economy countries. Comparison i^f SIPRI estimates and INFCE estimates [l381 (capacity in GW(e))......Page 272
Table 8A.1a. Nuclear power growth in the world outside the centrally planned economies area (WOCA) on a country-by-country basis (capacity in MW(e))......Page 270
Table 8A.2a. Nuclear power growth, 1980-1990, on a year-by-year basis in the world outside the centrally planned economies area (WOCA). Comparison of SIPRI estimates with INFCE estimates [l381 (capacity in GW(e))......Page 271
Appendix 8B. Demand for and supply of enrichment services......Page 273
Figure 8B.1. Projected enrichment market 1980-1990......Page 276
Table 8B.2. Demand for enrichment services (in tons SWU) per GW(e) rated capacity for three types of nuclear generating facility......Page 278
Table 8B.3. Demand for enrichment services in the world outside the centrally planned economies (Yugoslavia is included) on a country-by-country basis (in t SWU/yr)......Page 279
Table 8B.4. Uranium enrichment capacity available for the world outside the centrally planned economies area (103 t SWU/yr)......Page 280
Table 8B.5. Uranium enrichment production capacity available for the world outside the centrally planned economies area (103 t SWU/yr)......Page 281
Table 8B.6. Contracted enrichment services by non-US utilities with the four major suppliers (t SWU)......Page 282
Table 8B.7. Supply and demand of enrichment services in the world outside the centrally planned economies (though Yugoslavia is included) in the 1980s (in 103 t swu)......Page 284
References to Part One......Page 285
References to Part Two......Page 293
References to Part Three......Page 303
B......Page 313
E......Page 314
I......Page 315
L......Page 316
P......Page 317
U......Page 318
V......Page 319
Z......Page 320