281 111 2MB
English Pages 150 [157] Year 2009
The Neurobiology of Orthodontics
Margaritis Z. Pimenidis
The Neurobiology of Orthodontics Treatment of Malocclusion Through Neuroplasticity
Dr. Margaritis Z. Pimenidis Marathonos Street 22 152 33 Halandri, Athens Greece [email protected]
ISBN: 978-3-642-00395-0
e-ISBN: 978-3-642-00396-7
DOI: 10.1007/978-3-642-00396-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009926011 © Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
I dedicate this volume to my son Alexandros and his wife Sophia for their unfailing love, help, and support. I am grateful to Dr. Anthony A. Gianelly and to the late Dr. Melvin L. Moss of Boston University and Columbia University, respectively, two great teachers who have supported my orthodontic and oral biology education and who kindled my interest in this field. My sincere thanks go to my friends Dr. Eugene Eagles and Dr. Paul J. Batastini, as well as to Dr. Robert L. Vanarsdall who kindly reviewed the drafts.
Man and Memory
Memory itself was identified as a discrete mental faculty in ancient Greece. It could be cultivated and trained like other human skills to generate knowledge through learning. Aristotle (384–322 BC) summarized these mental activities thus: There is an innate faculty of discrimination in all men whereby we perceive sense objects. In some the sense-perception persists, while in others it does not. Where it does not, there is either no cognition at all outside the act of perception, or no cognition of those objects of which perception does not persist. Where sense-perception does persist, after the act of perception is over, the percipients can still retain the perception in the soul (mind). If this happens repeatedly, a distinction immediately arises between those men which derive a coherent impression from the persistence of sensation and those in which it does not persist. Thus sense-perception (aesthesis) gives rise to memory (mneme), as we hold; and repeated memories of the same thing give rise to experience (empeiria), because the memories, though numerically many, constitute a single experience. Accordingly, those that acquire the faculty of memory are more intelligent and are capable of learning than those which cannot remember. Experience in turn, is the starting point of art and science; art in the world of making and science in the world of facts. Thus, the faculty of art and science are neither innate as determinate and fully developed, nor derived from other developed faculties on a higher plane of knowledge; they arise from sense-perception and cognition [53]. Such in brief outline was the theory of Aristotle of the relationship between perception and cognition; and the theory in its essentials holds good today, as described in Chap. 4.
vii
Foreword
In the world of orthodontics, this book, focusing on the neurobiology of the orofacial structures and the interaction of the orofacial sensory input with the brain, is a unique and substantive departure from the usual “nuts and bolts” of contemporary orthodontics. It may both educate and excite the practitioner. The education is in the form of a synopsis of the most current information of brain function and research, highlighting the ability of sensory input to modulate and change brain activity. Special emphasis is placed on the orofacial sensory network. The excitement comes from opening new and creative pathways to examine the effects of orofacial sensory input in the development of malocclusions of the teeth and the effects of orthodontic treatment on the brain. This book is recommended reading for all orthodontists. Boston, MA
Anthony Gianelly
ix
Preface
According to the traditional orthodontic view the sensory and motor functions of the mouth are considered as phenomena coded in the DNA molecule of the neuron, and this coding acts as a template, a blueprint or a program, containing all the necessary information for normal oral behavior development, with the corollary that evident oral functional disorders, such as seen in certain malocclusions of the teeth are interpreted as DNA coding errors, as mistakes in some inborn or congenital programs [1, 206]. Contrary to this traditional teaching, however, we now know that sensory experiences can modify the structure and function of the brain or structures within it. In other words, the brain is structured by the senses, through patterned sensory input, along with the many different kinds of chemical molecules produced in the brain, such as neurotransmitters, growth factors, and trophic factors. These chemicals mediate the transmission of information and the changes in the brain, control the growth and survival of neurons, as well as the formation of appropriate neural circuits for the communication between the neurons and processing of information in the cerebral cortex. The changes in the brain, in turn, underlie sensation–perception, motor behavior, mentation, and memory of new learned experiences. The oral sensory experiences can influence these brain functions, through the disposition of the key chemical molecules, along with the generation of action potentials in the sensory axons innervating the oral sensory receptors, which convey the patterned information from the oral senses to the cerebral cortex for decoding and sensorimotor integration function, an obvious circumstance that is relevant to the development of normal oral motor behavior. Conversely, sensory deprivation of the cerebral cortex may affect learning of oral functions, such as speech and chewing, through the impairment of the brain’s respective mechanisms. The implications of these relatively new discoveries are profound. The life plan of a neuron is not in its genes. It is also experience-driven. Accordingly, the growth and function of the nervous system which forms the substrate of the oral sensorimotor functions is an epigenetic process, responding to environmental experiences. This means that the oral functions, such as speech, chewing, etc, do not progress from some innate functional oral abilities, but are new functions that need to be learned actively by the child through the sensory experiences. In fact Schanberg [73] demonstrated that environmental factors such as tactile stimulation can influence genes related to growth and development of the body, through endocrine factors. This is interesting because the first sensory input in life comes
xi
xii
Preface
from the sense of touch and pressure while still in womb. Infants and children are dependent on touch stimulation for normal growth and development and for building their brain. During the first year of life everything the baby picks up goes into the mouth and is learned through the mouth’s touching. In these perspectives the neuromuscular disorders associated with malocclusions of the teeth may be regarded as brain dysfunctions affecting the mouth’s functions. Orthodontic changes in the occlusion of teeth and of the maxillofacial skeleton may improve the abnormal oral functions through neuroplasticity, which in turn, may be incorporated into the rules that govern the structure and function of the oral sensory and motor maps in the postcentral gyrus and precentral gyrus of the cerebral cortex as the brain changes. This implies that orthodontic therapy can alter the sensorimotor behavior of the mouth, which is key to the soft and hard tissue anatomy of the mouth. This view is in contrast to the conventional orthodontic concepts, which attribute to orthodontic therapy changes a minor peripheral influence, confined mainly to dentoalveolar structures. This book may help to set the scene for future explorations in this field, which may help to elucidate the abnormal oral motor behavior in malocclusions of the teeth, delving into the underlying brain mechanisms. Our challenge is to discover how oral experience builds the structure and function of the brain. Athens, Greece
Margaritis Z. Pimenidis
Contents
1 Experience Changes the Brain .......................................................................... 1.1 Introduction .............................................................................................. 1.2 Oral Experience Strengthens Neuron Synapses....................................... 1.3 How Experience Strengthens Synapses ................................................... 1.4 Developmental Agents of the Brain......................................................... 1.5 Families of Developmental Agents of the Brain ..................................... 1.6 Trophic Functions of Neurons – Plasticity .............................................. 1.7 Oral-Cavity – Reservoir of Growth Factors............................................. 1.8 The Ever-Growing Brain .........................................................................
1 1 2 3 4 5 7 7 9
2 Functional and Dysfunctional Aspects of the Cerebral Cortex ..................... 2.1 Introduction .............................................................................................. 2.2 The Sensorimotor Cortex ......................................................................... 2.3 Oral Sensorimotor Integration ................................................................. 2.4 Sensory Integration Dysfunction ............................................................. 2.4.1 Dysfunction in the Proprioceptive System .................................. 2.4.2 Dysfunction in the Tactile System ............................................... 2.4.3 Dysfunction in the Vestibular System ......................................... 2.4.4 Possible Sensory Signs and Symptoms ....................................... 2.5 Oral Experience Changes the Brain ......................................................... 2.6 Role of Reticular Formation in Oral Sensorimotor Functions ................. 2.6.1 Descending Reticular Control...................................................... 2.6.2 Ascending Reticular Activating System ...................................... 2.6.3 Corticoreticular Control ............................................................... 2.6.4 Centrifugal Afferent Control and Central Inhibitory Mechanisms ................................................................
11 11 11 12 15 16 16 16 16 17 21 21 21 23
3 Sensory Deprivation of the Brain ..................................................................... 3.1 Introduction .............................................................................................. 3.2 Sensory Deprivation and Thumb-Sucking ............................................... 3.3 Sensory Deprivation and Malocclusions of the Teeth ............................. 3.4 Sensory Deprivation and Occlusal Interferences .....................................
25 25 26 28 31
23
xiii
xiv
Contents
3.5 3.6 3.7
Sensory Deprivation and Emotions in the Deciduous and Mixed Dentition ................................................................................ Looking into Love and Depression: The Deep Limbic System............... Sensory Adaptation ..................................................................................
34 36 36
4 Looking into the “Black Box” ........................................................................... 4.1 Introduction .............................................................................................. 4.2 Decoding the Brain Changes ................................................................... 4.3 Looking into Conscious Brain – the Prefrontal Cortex ........................... 4.4 Programming the Oral Senses for Learning............................................. 4.5 Oral Learning and Memory of Experiences............................................. 4.6 Looking into Memory – the Temporal Lobes .......................................... 4.7 Conscious Cognitive Aspects of Oral Motor Behavior ........................... 4.8 Perception Regulates Oral Motor Behavior ............................................. 4.9 Excitable Media: An Alternative Approach to Brain Structure and Cognition ...........................................................................................
59
5 Language and Speech ........................................................................................ 5.1 Introduction .............................................................................................. 5.2 Language and Speech Development ........................................................
63 63 63
Mastication in Man ............................................................................................ 6.1 The Central Pattern Generator ................................................................. 6.2 The Trigeminal Stretch Reflex................................................................. 6.3 Isometric Contraction of Jaw-Closing Muscles ....................................... 6.4 The Unloaded Reflex ............................................................................... 6.5 Voluntary Control of Masticatory Muscles .............................................. 6.6 The Closed-Loop Theory of Motor Control ............................................ 6.7 The Open-Loop Theory of Motor Control ............................................... 6.8 Orthodontic Implication of Motor Control Theories ............................... 6.9 Multicontrol Levels of Coordinated Chewing Movements ..................... 6.10 Central Sites Eliciting Mastication .......................................................... 6.11 Tonic Stretch Reflex and Postural Position ............................................. 6.12 Control of Tonic Stretch Reflex ............................................................... 6.13 Cerebral Cortex Control of Voluntary Movements .................................. 6.14 Cerebellar Control of Voluntary Movements ........................................... 6.15 Conscious Sensation of the Muscle Spindle ............................................ 6.16 The Subconscious Nature of Complex Movements ................................ 6.17 Masticatory Plasticity ..............................................................................
69 69 70 71 73 73 74 75 76 76 77 77 78 79 80 81 82 83
7 Occlusion and Mastication ................................................................................ 7.1 Introduction .............................................................................................. 7.2 The Chewing Cycle ................................................................................. 7.3 Directional Sensitivity of the Teeth Guides Normal Occlusion............... 7.4 Functional Malocclusion..........................................................................
85 85 86 87 87
6
39 39 39 45 46 47 51 51 54
Contents
7.5 7.6 7.7
xv
Functional Malocclusion Affects the Central Pattern Generator ............. Factors Affecting the Maturation of the Central Pattern Generator ........ Form and Function ...................................................................................
88 89 89
8 Applied Neurophysiological Concepts in Orthodontics.................................. 8.1 Introduction .............................................................................................. 8.2 Oral Perceptual–Motor Dysfunction in Children..................................... 8.3 The Scheme of the Mouth ........................................................................ 8.4 Oral Sensory and Motor Somatotopic Coincidence ................................ 8.5 Agnosia of Teeth ...................................................................................... 8.6 Oral Apraxia ............................................................................................ 8.7 Enhancing Oral Perception: Pacini Receptors ......................................... 8.8 Enhancing Oral Perception: Muscle Spindles and Tactile Receptors ...... 8.9 Enhancing Oral Perception: Centrifugal Influences ................................ 8.10 Affecting Oral Perception and Learning .................................................. 8.11 Affecting Oral Perception: Emotional Influences.................................... 8.12 Proprioception of Muscles of Facial Expression ..................................... 8.13 Neurophysiological Similarities of Tactile Oral–facial and Skin Receptors .................................................................................. 8.14 Periodontal Tactile Receptors .................................................................. 8.15 Directional Sensitivity of Periodontal Receptors..................................... 8.16 Periodontal Receptors Regulate Tongue Posture. A Hypothesis ............. 8.17 Heightened Perception of Tongue Position.............................................. 8.18 Mechanosensation in Bone ...................................................................... 8.19 Equilibrium Theory of Tooth Position Reexamined ................................ 8.20 Orthodontic Forces Regulate Alveolar Bone Remodeling Through Mechanosensation in Bone ....................................................... 8.21 Forward Posturing of Tongue Tuned to Respiratory Rhythm: A Hypothesis............................................................................................ 8.22 Tongue Thrust Activity ............................................................................ 8.23 Motor Units in the Trigeminal System .................................................... 8.24 Classification of Motor Units .................................................................. 8.25 Activation of Motor Units in Muscle-Fiber Types .................................. 8.26 Plasticity of Muscles ................................................................................ 8.27 Fiber Type in Masticatory Muscles.......................................................... 8.28 Hypertrophy of Masticatory Muscles ...................................................... 8.29 Atrophy of Masticatory Muscles ............................................................. 8.30 The Hyperactive Child in Orthodontic Practice....................................... 8.31 Functional Jaw Orthopedic Appliances ...................................................
93 93 93 95 97 97 98 100 100 101 101 102 103 104 106 108 109 109 110 111
9 Clinical Brain Function ..................................................................................... 9.1 Introduction .............................................................................................. 9.2 Optimizing the Conscious Mind: The Prefrontal Cortex ......................... 9.3 Shifting Attention: The Cingulate Gyrus ................................................. 9.4 Optimizing Limbic System Function .......................................................
125 125 126 126 127
112 113 114 116 117 117 118 118 119 120 121 122
xvi
Contents
9.5 9.6
Optimizing Memory: The Temporal Lobes ............................................. Looking into Anxiety and Fine Motor Coordination: The Basal Ganglia .................................................................................... Optimizing Neurotransmitter Deficiency: Nutritional Intervention ........
128
10 Orthodontic Avenues to Neuroplasticity .......................................................... 10.1 Introduction .............................................................................................. 10.2 Principal Components of Brain Function: The Neuron ........................... 10.3 Bioenergetics............................................................................................ 10.4 Functional Brain Imaging in Orthodontics .............................................. 10.5 The Perceptual–Motor System of the Mouth ........................................... 10.6 Changes in Occlusion of the Teeth Change the Brain ............................. 10.7 Functional MRI Study of Malocclusions of the Teeth .............................
131 131 132 132 133 134 135 135
11 Summary .............................................................................................................
137
References .................................................................................................................
139
Index ..........................................................................................................................
149
9.7
129 129
Experience Changes the Brain
1
1.1 Introduction The brain is the seat of feelings and behavior. Your brain creates your world—a radical statementaboutordinarythinking.Itisyourbrainthatperceivesandexperiences.Everything beginsandendsinthebrain.Howourbrainworksdeterminestheveryqualityofourlives. Ourbrainpatternshelpuswithourbehavior,motorskills,workandbeingsuccessfulinour day-to-daylives.Whenbehaviorbecomesabnormal,however,oftenthereissomethingthe matterwiththepatternsinthebody’scomputer—thebrain. Unfortunately,therearemanydentalprofessionalswholacksophisticatedinformation onhowthebrainactuallyworks.Theybelievetheoralbehavioroftheirpatientsisprimarilytheresultofenvironmentalstressorconditioning,anddonotconsiderthepossibility thatitmaybebasedonabnormalbrainphysiology.Ibelieveweneedtounderstandtherole ofbrainphysiologyalongwithotherfactorssuchasstressorconditioningbeforewecan designsuccessfuloralorthodonticreconstructiontreatmentsforpeople. Theprevailingconceptinorthodonticpracticeholdsthatthesensoryandmotorfunctions orbehaviorofthemouth,whichisintimatelyrelatedwiththedevelopmentoftheoral–facial structures, is controlled by the brain and, therefore, cannot be inluenced by therapeutic measures[1,206].Thisconceptisnotalimsyone.Itisbasedonacentury-olddogmathat mammalian neurons do not divide after development, and they are preprogrammed to developnormally.Thatis,eachinfantneuroncontainsalltheinformationnecessarytolive, develop,andbewell.Inotherwords,theentireplan,theblueprintforaneuron’slife,isin itsgenes.Thebrainisacomplexbutastatic,immutable,hard-wiredswitchboardthatcannot bechanged[2].Accordingly,thedogmathatthenervoussystemisstatichaspreventeda meaningfulanalysisoftheinterplaybetweenneuromuscularactivityandskeletalmorphogenesis,throughwhichanunderstandingoftheetiologyofmalocclusionsoftheteethcould emerge. Recently,however,twonewdiscoverieshaverevolutionizedourviews.Theseare:the structuralchangesofsynapsesbytheiringexperienceofneurons,andthediscoveryof growthfactorsinthebrain.Thesearediscussednext.
M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_1, © Springer Verlag Berlin Heidelberg 2009
1
2
1
Experience Changes the Brain
1.2 Oral Experience Strengthens Neuron Synapses Neuronsarebraincellsthatareinvolvedincommunicationofinformation.Thestrengthof informationprocessingperformedbyaneuralcircuitdependsonthenumberofsynapses betweenneurons[3].Foryearsscientistsimaginedthattheelectricalimpulsesandthechemical signals (neurotransmitters) that neurons use to communicate with each other, do not changethestructureofthesynapses.Theythoughtthatasynapsesimplytransmitstheaction potentialsignalpassively,likeatelephone,withoutitselfchanging[2]. Hebb[16]irstproposedthatsynapticknobsmightbereorganizedwithlearning.Since thentherehavebeenhundredsofstudiesexaminingbraintissueforsynapticreorganization followinglearningorfollowingcomparablephysiologicalstimulationthatmightresemble learning-relatedevents. Afteryearsofexperimentalstudies,however,researchershavediscoveredthattheneuronsynapsesdoindeedchangewiththeiringexperienceofneurons.Forexample,ithas beenfoundthatincreasedelectricalstimulationfortensecondsofhippocampalmemory neuronsresultsindramaticstrengtheningofsynapticcommunicationandincreasedneuron responsivenesstoneurotransmittersignalmolecules(increaseinthenumberofreceptors projecting through the surface membrane of neurons to which the neurotransmitter is attached),thatpersistsforaboutsixhoursafterstimulationhasstopped.Thesechangesin thememoryneuronsalterbrainfunction.Speciicallythechangesinthememoryneuronsof thehippocampusaccelerateinformationprocessingthroughstrengtheningofthesynapses oftheneuralpathway[17].Inanotherexperimentratsweretaughttonavigatethrougha complicatedmazewhiletheelectricalactivityofthehippocampalmemoryneurons,especiallycriticalforspacialmemory,wasmonitored.Astheratslearnedtonavigatethemaze successfully,thehippocampalneuronsiredwithacharacteristicuniquepatternwhichwas associatedwithlearningoftheparticulartask[59]. Manystudieshaveprovidedevidencesthatchemicalandstructuralmodiicationsofdendritespinesynapsesunderliemuchoftheplasticchangesinthebraininresponsetolearning anexperience[3–5].Morphologicalchangesofthedendritespinearekeytoitsplasticity followingprocessingofinformation[3,6,7].Electricalstimulationofneuronsleadstothe formation of new dendrite spines [3, 8, 9]. In this regard, dynamic changes of the actin cytoskeletonofthespinehavebeenimplicatedintheformationofnewspines[3,10,11]. Theactincytoskeletonofthedendritespineplaysacentralroleinsynapseformationand maintenance[3,12].Processingofnewinformationinneuronscausesremodelingofactin cytoskeletonproteinandmodiiessynapsestability,whichmayleadtoformationofnew synapses[13–15]. Thus,wenowknowthatsynapticchangeclearlyoccurswithlearning.Synapsesarenot unchanging hard-wired connections between neurons as previously assumed. Synapses continuallystrengthen,weaken,grow,andshrinkthroughoutthelifeofthenervoussystem inresponsetoexperience.Anumberofnewstudieshavefurtheraddressedthequestion whetherthesekindsoflearning-relatedplasticchangesarepermanent,andtheconsensusis thattheyarenot.Thequestionthatarisesthenishowlearning-relatedinformationispermanentlystored[2,15].SeveralideashaveemergedthatarediscussednextinChap.4.
1.3
How Experience Strengthens Synapses
3
Synapticcontactstakeplaceindendritespineswhicharesmallsac-likeorganellesprojectingfromthedendritictrunk.Dendriticspinesaremoreabundantinhighlyarborized cells,suchaspyramidalneurons.Thenumberofexcitatoryinputscanbelinearlycorrelated withthenumberofspinespresentinthedendrite.Dendriticspinescontainribosomes andcytoskeletalstructures,includingactinandtubulinproteins.Thedynamicsofcytoskeletalstructuresiscentraltoourcontentionthatinformationcanbeprocessedanddelivered tothesynapticfunctionbychangesinthecytoskeletalstructuresofneurons[3].
1.3 How Experience Strengthens Synapses Toigureouthowneuronalconnectionschange,wehavetoknowsomethingaboutthe mechanismsofaction.Aneuroncommunicateswithanotherneuronbysendingachemicalsignalacrossthesynapse.Depolarizationoftheterminalaxonbytheactionpotential causes the release of a chemical substance (neurotransmitter) in small multimolecular “packets”fromthenerveterminalintotheintercellularspace.Theneurotransmitterdiffusestothenextneuron,usuallyseparatedbyagap(synapticcleft)about20–30nmdeep, andthereitbindswiththereceptorprojectedfromthemembraneofthepostsynapticneuron. This binding leads to permeability changes in the membrane of the postsynaptic neuron. Depending on the chemical structure of the neurotransmitter and the chemical nature of the receptor substances (sites), the induced permeability change of the membraneleadstoeitherexcitation,i.e.,itleadstoinitiationofanactionpotential,orinhibition,preventingordepressingtheabilityofaneurontodischarge.Onmostneuronsthere are both inhibitory and excitatory synapses, the balance of their inluence determining whetheraneuronwillorwillnotgenerateanactionpotentialorwhetheritsfrequencyof dischargewillincreaseordecrease. Interestingly, the basic mechanisms for excitation and inhibition are similar. In both typesofchemicalsynapses,transmittersubstanceissecretedbynerveterminals,andin eachthetransmitterincreasesthepermeabilityofthepostsynapticmembraneforselected ionsonly.Atexcitatorysynapsesthetransmitterincreasesthepermeabilitytocertaincations(Na+andK+)whosemovementinsidethecellwillreducethemembranepotentialand causecurrentlowwhichsetsupimpulsepropagation.Atinhibitorysynapsesthetransmitterincreasespermeabilityforsmallions(K+andCl−)whichkeepsthemembranepotential belowthresholdandtherebypreventsimpulsepropagation. Whetheraneuronwillcauseexcitationorinhibitioninthenextneuroninlinecannot alwaysbeattributedtothechemistryofthetransmitteralone.Differencesintheproperties ofthereceptormaybeequallyimportant.Forexample,themotornerveterminalsatskeletal musclessecreteacetylcholinewhichcombineswithspeciicreceptorsatthemotorendplate.ThisleadstoasimultaneouslowofNa+andK+ionsacrossthemembraneinthe end-plate,causingadepolarizationandconductedimpulses,whichinturnleadtoanactivationofthecontractilemechanisminthemuscle.Intheheartthesameneurotransmitter, acetylcholine,liberatedbythenerveendingsofthevagusnerve,causesanincreaseinthe permeabilityforK+alone,leadingtoinhibition.
4
1
Experience Changes the Brain
Synapticstrengtheningrequirestheparticipationofbothneuronsformingthesynapse. Both the signal-sending presynaptic neuron and the signal-receiving postsynaptic neuron havetoiresimultaneouslyinordertoresultinastrongersynapse.Ifthepresynapticneuron dischargesandsendsanelectricalpotentialsignal,butthereceivingneurondoesnotrespond, strengtheningofthesynapsedoesnotoccur.Orifthepostsynapticneurondischargesin theabsenceofpresynapticneuroniring,thesynapsesbetweenthetwoneuronsarenot strengthened[2,16].Synapsesdonotstrengthenwilly-nillybecausescatteredneuronsire. Informationmustactuallybetransferredfromsendingtoreceivingneurontoensurestrengtheningofthesynapses.Thisrequirementimpliesthattheneuralcircuitmustbefunctionally activetoresultinsynapticstrengthening[17,18]. Hebb[16]suggestedthatthemoreasynapseisused,thestrongerandmoreeficientat transferringinformationitbecomes.Useinturnisdrivenbyexperience.Thus,thesame synapsemayundergogradedweakeningorstrengtheningaccordingtoitsuse,thetypeof stimulationandtheavailabilityofkeychemicalmolecules,suchasneurotransmitters[2]. TheresultsofexperimentsbyBlissandLomo[17]suggestthatexperiencesstrengthen synapsesofonlythespeciicpathwaysprocessingtheexperience;experiencesdonotaffect synapsesthatarenotactivatedbytheactionpotentials.Thusspeciicityisbuiltintothe process.Oralexperiencesusespeciiccircuitsandsynapses,therebystrengtheningthose verysynapsesandpathways,resultinginheightenedinputandprocessingofinformationin thecerebralcortex[3]. Hebb[16]speculatedthatlearningandmemoryofexperiencesoccursatthesynapses. Heproposedthatlearningconsistedofstrengtheningofsynapsesofapathway.Strengthened synapsesbindtheneuronstogetherinto“ensembles.”Ifindividualneuronsrepresentdifferentfeaturesofascene,forexample,theensemblerecreatesanimageofthesceneinits entirety,likethepiecesofapuzzle,resultinginlearning.
1.4 Developmental Agents of the Brain Theotherrevolutionarydiscoveryisthatgrowthfactorswhichnormallyresideinthebody, arealsopresentinthebrain[19,20,30].Thegrowthfactorsarecriticalbrainsignalsthat strengthentheneuronconnections,thesynapses,enhancingthenthetransmissionofelectrical impulses in the brain [21, 22]. Brain growth factors convert experience into strengthened neuronalsynapsesthatmediatelearningandmemory[2,30].Entirefamiliesofgrowthfactor molecules,includingnervegrowthfactor(NGF),epidermalgrowthfactor(EGF),ibroblast growthfactor(FGF)andbrain-derivedneurotrophicfactor(BDNF),havebeenfoundtobe producedinthebrain,anddifferentpopulationsofbrainneuronshavebeenfoundtodepend onacertaingrowthfactorforgrowthandsurvival[23,24,30].Theimplicationsareprofound. Thebraincannolongerbeconsideredastaticimmutable,hard-wiredstructure,butisavast reservoirofgrowthfactorsthatdirectgrowth,survival,andlexibilityofneurons[19,20]. For example, the presence of NGF in the environment of cholinergic brain neurons (whichreleaseacetylcholine)causesdivisionofneuronsandactivationofsurvivalgenes, whichensureneuronsurvival.NGFdeprivationinhibitsneuronaldivisionandactivates
1.5
Families of Developmental Agents of the Brain
5
suicidegenes,whichcauseneurondeath[25].Similarly,addingNGFtocultured“Alzheimer neurons”hasbeenshowntoextendthelifeofneuronsthatnormallydieinpatientswith Alzheimer’sdisease[26,27]. In addition, it has been suggested that BDNF in the brain governs everything from visiontothoughttoconsciousness,sensation,andmovementofmuscles.BDNFfactorhas alsobeenfoundtosupportsurvivalofcholinergicneuronsthatdegenerateinAlzheimer’s disease,thedopamineneuronsthatdegenerateinParkinson’sdiseaseandthespinalmotor neuronsthatdieinLouGehring’sdisease.BDNFismostabundantinakeymemorycenter,thehippocampus[30].Accordingly,ithasbeensuggestedthatthebrainneuronsare programmedforbothsurvivalandsuicide.Externalchemicalsignalsdeterminewhether thesurvivalprogramorthesuicideprogramofneuronisturnedon[28,29]. Themostimportantinding,however,isthatNGFappearstocausegrowthofnerve ibers,whichsubsequentlyinnervatetheirtargets.Forexample,duringdevelopmentbefore anynerveshavesentiberstotargetcells,eachindividualtargetreleasesNGFlikearadio transmittersendingforthwavesinalldirections.Inresponse,distantsphericalnervecells extendibersthatgrowtowardsregionsofever-higherconcentrationsofNGF,untilthe targetcellisreached.Oncethenerveiberhasreachedandhasinnervatedthetarget,itis assuredofobtainingtheNGFhormoneandsurviving.ThentheNGF,whichissynthesized bythetarget,istakenupbytheinnervatingnerveterminalandtransportedbackthrough thenerveprocesstothenervecellbody.Thisprocessiscalledretrogradetransportbecause itgoesfromthenerveterminaltothecellbodyintheoppositedirectiontotheactionpotential.WhentheNGFarrivesinthecellbodyviatheretrogradetransportbiologicalactions areinitiated,namelydivisionofneurons,survivalofneurons,andformationofibersand operationalcircuitsinthetargets.Thus,theneuronswhoseiberssucceedinreachingthe targetliveasaresultofcontactingasourceofNGF.Thismechanismispartofmorphogeneticcelldeath,whichoccursduringdevelopmentandgeneratesthesensoryandmotor mapsinthesomatosensorycortex[2,204].
1.5 Families of Developmental Agents of the Brain Experienceaccessestheneuronsthroughdevelopmentalagents,whichcanbedividedinto threefamilies[2]: 1. Neurotransmitters, for instance glutamate, acetylcholine, norepinephrine (noradrenaline), dopamine, serotonin etc., are chemical signals produced by the neurons that convey the action potential from one neuron to another across the synaptic gap [2]. Neurotransmitters also bind to surface membrane receptors of neurons and initiate intracellularbiochemicalchangesinneuronsthatunderliesensation,perception,learning,memory,motorcontrolofmusclesandmentation[15]. 2. Growthfactors,forinstanceNGF,alsoactaskeysthatitreceptorlocksonthesurface of neurons. These keys and locks initiate changes in the biochemistry and electrical propertiesofneuronsthatinvolvethenumber(divisionofneurons),sizeandshapeof
6
1
Experience Changes the Brain
neuron,thegrowthofnerveibers,theformationofsynapsesandthestrengtheningof synapses[31,32]. 3. Trophic factors support neuronal survival and alter the excitability of neurons by increasingthenumberofelectricallyconducting(ion)channelsinthenerves.Also,the trophicfactorsincreasetheresponsivenessofneuronstoneurotransmittersignalmoleculesbyincreasingthenumberofreceptorsprojectingthroughthesurfacemembrane ofneurons,towhichtheneurotransmitterisattached. Allthesethreefamiliesofmoleculescauseneurongrowth.Wearethereforepromptedto focusonmoleculesandneuronsasunitsofinformationprocessing[2]. Thesubmicroscopicworldofmoleculespossessesreasoningpower,orcomputational power,thatisthousandsoftimesgreaterthanattheneuronallevel.Forexample,asingle enzymemoleculeperformsonemillionchemicalreactionspersecond.Incontrast,whole neuronsconveyimpulsesinthousandthsofasecond.Thus,theenzymewins.Itconductsits activitiesathousandtimesfasterthantheneuron[2].Ateveryleveloforganization,from moleculetoneurontoneuralsystemtonetworksofsystems,theprocessofgrowthdistinguishes the brain. This means that extant molecules are modiied, new molecules form, moleculesaggregatetocreatenewcellstructuresandneuronsnewconnections.Theseare onlyafewoftheprocessesthebrainusestoincorporatechange.Destructive,orregressive, growtheventsareequallyimportant.Removalofmolecules,remodelingofcellstructures, weakeningofneuronalconnectionsandevencelldeatharealsousedbythebraintoencode information.Growth,then,isastrategyuniquetolife,enablingustolearnnewexperiences, remember,think,feelandbehuman[2]. Thiscapacityforchangeisbuiltintothebrainatmultiplelevels,andisalsotermed “plasticity.”Plasticityisinnate;itobeystherulesofbiology.Butindividualplasticprocessescanbeactivatedbytheenvironment.Plasticgrowthmechanismsdrawonneurotransmitter, growth factor and trophic factor molecules. Neurons use neurotransmitter and trophicfactorcommunicationtoaccomplisharemarkablefeat:theconversionofmomentaryenvironmentaleventsintoneuronalchangeslastingmonthstoyears.Thisishowit works.Briefexperiencesgenerateactionpotentialsinsensoryneuronsthatreleaseneurotransmittersignals.Theneurotransmitterjumpsthesynapticgaptoelectricallystimulate thenextneuroninline.Theneurotransmitteractivatesgenesinthepostsynapticneuron that make trophic factor, and this factor strengthens the synaptic connection. Synaptic strengtheningcanthenlastforweeks,atleast.Thus,plasticityallowsbriefexperiencesto createleetingelectricalimpulses;impulsesreleasechemicalmolecules,chemicalmoleculeselicitgrowth,growthstoresinformation.Inthisview,experienceitselfregulatesthe growth of the nervous system and the ability of neurons to communicate between one anotherthroughthestrengtheningofsynapses[2]. Growthmechanismsallowthebraintocapturetime.Briefexperienceschangethestructureofsynapses,andthechangespersistovertime,creatingmemories.Memorymechanisms are built into the rules governing brain architecture. Changes in the environment translateintochangesinthebrain.Plasticityallowsustoembodytime.Wearenotdoomed toliveinaneternalpresent;wearebeingswithahistory.Andawarenessofhistory,made possiblebymemory,permitslearning.Whenlearningandmemoryfail,weconfrontbafling andfrighteningdiseases.Forexample,brainneuronsthatformmemoriesdieinpatientswith Alzheimer’sdiseasedestroyingthepatient’sbrain,mind,andhumanity[2,33].
1.7
Oral-Cavity – Reservoir of Growth Factors
7
1.6 Trophic Functions of Neurons – Plasticity Thetermtrophicfunctionsofneuronsreferstotheinluencesthatneuronsexertonthe structurestheyinnervate.Althoughtrophicinluencesaremediatedthroughsynapticconnections,theiractionisnotnecessarilyrelatedtoelectricalactivityatthesynapse.Inother words,inadditiontotransmittingneuralinformation,synapsestransmitchemicalinluencestothetissuestheyinnervate.Indeedthereisevidencethatthechemicalinluences appeartobetransmittedinbothdirections,i.e.,fromthecellbodytothenerveterminal andback.Speciically,Hendry[204]demonstratedthatradioactiveNGFinjectedintothe targettissueistakenupbytheinnervatingnerveterminalandtransportedbackthroughthe nerveprocesstothecellbodywherebiologicalactionsareinitiated.Notethatelectrical impulsesarepropagatedintheforwarddirection,fromthecellbodytotargetterminals, while NGF travels by retrograde transport in the opposite direction. These processes (neurotrophicinluences)couldindeedserveaseffectiveregulatorsintheembryological development of the nervous system. The trophic substances could provide the types of chemoafinitiesnecessaryforthedevelopmentofhighlyspeciicconnections.Forexample,ithasbeenpostulatedthattrophicsubstancestravelingfrommotorneurontomuscle andreleasedbythenerveterminalcoulddeterminethesizeofthechemosensitiveareaof themusclemembrane,aswellasthecontractilepropertiesofthemuscle[203]. Theneurotrophicinluencesstronglysupportthenotionthattheseprocessesareessential forthedevelopmentofappropriateconnectionsinembryogenesis,andforthemaintenance andregulationoftheseconnectionsinlaterlifeaswell.Iftheneuralconnectionsarelargely speciiedgenetically,howdofunctionalmodiicationsoccurinthebrain?Theenvironment continuallyproducesmodiicationsinthebehavioroforganismsthroughlearning.Thestudy of learning begins with the fact that a variety of neuronal networks undergo persistent changeswhichareanalogoustoinformationstorage.Thus,plasticityofneuronsexpresses theunityofourinternalandexternalworlds,theunityoforganismandenvironment,the unityofnatureandnurture.Inthiscontext,thePrometheaninsightthattheenvironment regulatesthebrainwhichregulatestheenvironmentisemancipating.Itprovidesthetherapeutickeystofreeusfromthedevastatingdisordersofmind.Genes,molecules,cells,systemsandbrainregionsinteractwiththeenvironmenttogeneratecognition,consciousness, motorcontrolandemotions,asdescribedinChap.4.
1.7 Oral-Cavity – Reservoir of Growth Factors A number of brain-derived growth factor molecules are also produced in the salivary glandsparticipatingatleastinglandulardevelopment[201]andtheirsecretionintheoral cavityisincreasedwithmastication[200].Speciically,Levi-Montalcini[205]discovered ahormoneinthemousesalivaryglandsthatinducesinvitrogrowthofthesensoryand sympatheticneurons.ThehormonewastermedNGFbecauseitpromptedneuronstogrow insizeandnumber,andtosendoutlongibers.Theseareibersthatneuronsusetocontact
8
1
Experience Changes the Brain
oneother.Theseibersdevelopspecializedcontactstoformsynapses.Synapsestransmit information from one neuron to another, which underlies information for learning and memory.Thus,theNGFofsalivaryglandsmightbeapotentiallinkbetweenoralexperienceandthebrain. Levi-MontalcinitreatedliveratsandmicewithNGFandsawsimilareffects.AgainNGF treatmentincreasedthesizeandnumberofneuronslyingoutsidethebrain.Italsocauseda stunningincreaseinthenumberofnerveibersintargetorgansoftheneurons,suchasthe heartandiris.NGFappearedtobeincreasingtheconnectionofnervesandtheirtargetsin livinganimals. SinceNGFhassuchdramaticactionsintheanimalbody,itwasnaturalforLevi-Montalcini toaskwhatisthereactionofthebodytoNGFdeprivation.SheadministeredanNGFantiserumwhichcouldneutralizeanyNGFpresentintheanimals’bodyandpreventactionson neurons.Theresultswereagaindramatic.TheNGF-neutralizingantiserumcausedthedeath ofmanyneuronsandessentiallydestroyedalltheiberconnectionsoftheneuronswiththeir targetorgans.TheNGFantiserumexperimentssuggestthatNGFisinfactnormallypresent inthebody,producedatleastinthesalivaryglands,andthatitspresenceisnecessaryfor neuronsurvival.Themostimportantinding,however,wasthatNGFappearstocausenerve ibergrowthandconnectionofnerveswiththeirtargets. EGFisanotherdevelopmentalagentofthebrain,aswellasoftheepithelialtissuesof thebody.Itisasmallproteinfoundinthesubmandibularandparotidglandsfromwhich secretionintheoralcavityisincreasedwithmastication[200].Duringmasticationafferent inputs carry sensory information mainly from the periodontal mechanoreceptors to the masticatorymuscles,aswellassensorysignalsfromtaste-activatedchemoreceptorsinthe tastebuds,tothesalivarynucleiinthemedulla.Theefferentarmofthesemasticatoryand gustatory stimuli is the autonomic nervous supply of the salivary glands. The classical neurotransmittersreleasedfromtheperipheralpostganglionicparasympatheticandsympatheticnerveendingsareacetylcholineandnoradrenaline(norepinephrine),respectively. Thesemoleculesbindtospeciicreceptorsprojectingfromthemembraneofthesalivary glandcellsandalteritspermeabilitytoions,therebyinitiatingbiologicalactionsinsidethe cell,whichdeterminetherateoflowandthecompositionofsalivaintheoralcavity,in responsetooralsensoryexperiencesgeneratedbythemasticatorymovements. Anothergrowthfactor,whichwasoriginallyfoundintheperipheraltissuesofthebody andsubsequentlyinthebrain,andwhichactsasadevelopmentalagentofneurons,isFGF. Itisalsoapotentregulatorofwoundhealingandisfoundinsaliva[200].FGFstimulates thegrowthofibroblastcellsofconnectivetissuetosecretetropocollagenmoleculeswhich bycondensationformthecollagenousibers,andthusparticipatesinsalivaryglanddevelopment[201]. Accordingly,itishypothesizedthattheFGFmightalsocontrolcollagenformationin the oral cavity and the masticatory muscles. The connective tissue derives from neural crestcellsintheirstbranchialarchintowhichthemyoblastcellsmigrate.ThismaysuggestthatFGFisactivelyinvolvedinoralmorphogenesis.Asimilarhypothesisisthatof Copenhaver [202] who suggested the existence of a “regional factor” in the stomodeal ectoderm,whichinluencestheinvaginationofthemouthandtheformationoftheoral cavity.ItispossiblethenthatFGFand/orEGFparticipateinoralmorphogenesisthrough aninductioninteractionphenomenon.KallmanandGrobstein[201]foundthatduringthe
1.8 The Ever-Growing Brain
9
inductioninteractionoforalepitheliumwiththemesenchyme,collagendepositionatthe surfaceofepitheliumisimportantforsalivaryglanddevelopment. Inthiscontext,itcanbespeculatedthattheembryonicoralregionisareservoirofvarious growthfactormoleculesproducedbytargetcellsthatensurethegrowthanddevelopmentof tissuesandorgansofthemouth,whichinturnexertagrowthmodifyingeffectonthenervous system which innervates them (nerve modulation). For example, Weiss [203] suggestedthattheparotidglandwillimpartitsspeciicitytotheautonomicnerveibertowhich itisattached.Similarly,themotornervesofmusclesandthesensorynervesaremodulated bytheirrespectiveend-organs. IthasbeensuggestedthattheamountofNGFproducedbythetargetbraincellscontrols targetsize.Targetsizeinturncontrolshowmanynervesgrowintothetarget,howmany nervesaremodulatedthroughretrogradetransport,andhowmanyneuralpathwaysand hencelinesofcommunicationareformedbetweenthemouthandbraininordertoconform withnormaloralbehavior[2,204].Inotherwords,howtheblueprintforinformationinput andprocessinginthebrainisorganized,linkingtheoralexperience/activitywiththemotor controlofthemasticatorymusclesthroughthesensorimotorintegrationfunctionsofthe cerebralcortex.Inaddition,thepresenceofgrowthfactorsintheoralcavitywithmorphogeneticinluencesmayalsosuggestthatoralmorphogenesisisanepigeneticeventandthe growthfactorsarecentraltothisdevelopment.
1.8 The Ever-Growing Brain Surprisingrelationshipsamonggrowthfactors,connectivitybetweenneurons,neuralcommunicationandbrainfunction,aswellasoraldevelopmentarenowemerging.Growthfactorsarecriticalbrainsignalsthatregulatesurvivalordeathofneurons[2,34].Growthfactors arechemicalsignalsthatstrengthentheneuralconnections(synapses)lyingattheheartof brainfunction.Braingrowthfactorsconvertoralexperienceintostrengthenedneuronalsynapsesthatmediatecommunicationbetweenneuronsandaccelerateinformationprocessing inthecerebralcortexthatunderliessensation,perception,learning,memory,motoractivity, andmentation[2,15].However,themostoutstandingrecentsurpriseinneuroscienceisthat contrarytotraditionalteaching,growthofthebrainisnotgovernedbyinternalprograms. Growthisalsoexperience-driven.Anadultbraincanmakenewneuronsthroughexperience. Asobservedinmice,newneuronsinthememory-enhancinghippocampusespeciallybloom whenmicetaketotherunningwheel[23].Thus,theelixirforthebrain,whichappearstobe thebestnaturalcardiovasculartherapyofall,isexercise[35]. Theimplicationsareprofound.Thebrainisagrowingever-changinglexiblestructure that generates our plastic minds in response to experiences which generate the action potentialsinthenerves,whichinturntriggerstheneuronstoproducechemicalsignalmolecules.Inprinciplethisimpliesthatsincetheneuralimpulsesandchemicalsignalmoleculesareresponsivetoexperience,thedistinctionbetweennatureandnurturebreaksdown. Aneuronisnotenslavedbyitsgenes.Thereisnotenoughinformationineachneuron’s genes to direct development in the brain. Additional instructions come from the world
10
1
Experience Changes the Brain
outsidetheneuronasgrowthandsurvivalsignalmolecules[23,24].Contrarytowhatwas believedbefore,thebrainneuronsarerenewableresources.Newbrainneuronscanindeed beproducedintheadultbrainthroughavastreservoirofgrowthfactormolecules[2]. Black[2]givesthefollowinglisttogainperspectiveofneurosciencediscoveriesthat haverevolutionizedourapproachestobrainfunctionsanddiseases.
• Specific populations of neurons in the brain control specific behaviors and discrete mentalfunctions.
• Thebrainishometomyriadgrowthandsurvivalchemicalfactorsthatgovernthelife andfunctionofspeciiccellpopulations.
• Identiied,clonedgenescontrolselectedmentalabilitiesandbehaviors. • Speciicenvironmentalstimuli,whetherphysical,verbal,orsituational,activatespeciic braingenes,expressingplasticity.
• Contrarytotraditionaldogmathatthebrainneuronsdonotdivide,newneuronscan actuallybeproducedintheadultbrainfrom“stemcells.”Thismeansthatthebrainmay beabletoreplaceitsowndegeneratingneurons. • Anenrichedenvironmentandphysicalactivityincreaseproliferationofbraincells. • Genesforpainsignalsandreceptorshavebeencloned.Thus,withanemergingunderstandingofthephysicalbasisofpain,wearenowabletoeliminatemajorformsofpain. Wearerapidlyapproachingatimewhenwecanbanishpainitself.
These discoveries comprise a blueprint for developing new treatments for formerly hopelessneurologicaldiseases,suchasAlzheimer’s,Huntington’s,Parkinson’s,andLou Gehring’sdiseases.Inaddition,growthfactorsandinhibitoryfactorshavebeendiscovered inthespinalcord,andparalyzedratsmayrecoverthroughregrowthofspinalnerves. All these discoveries though exciting and revolutionary, involve abstractions that lie beyond visualization. Neuroscience, however, provides the solution of this problem. Functionalmagneticresonanceimaging(fMRI)andpositronemissiontomography(PET) canpicturethebrainsystemsunderlyingspeciicthoughts,learningandmemoryofexperiences,nerve-musclediseases,emotionsetc.Wecanalsoseebraindysfunctioninoralneuromusculardisordersassociatedwithmalocclusionsoftheteeth,asdiscussedinChap.10.
Functional and Dysfunctional Aspects of the Cerebral Cortex
2
2.1 Introduction Diagnosisoforalmotordisordersisaprofessionalskill.Mostorthodontistsandotherspecialist dentistsarefamiliarwiththemanytypesoforalmotorbehaviorsandtheirdysfunctions,such asnormalchewing,speech,improperbites,malocclusionsoftheteeth,andoral–facialimbalances,buthaveperhapsnotthoughttoomuchabouttheunderlyingprocessesormechanisms thatregulatethesebehaviorsandwhichmayeventuallyprovidepractitionerswitharationale forcorrectingdysfunction.Thus,specialinterestisfocusedontheinformation–input–processing functionofthebrainthatisnecessaryforgivingaconsciousexperienceandhowitmaybe relatedtooralmotorbehaviorsthatunderliethestructureofthemouth. Inthiscontext,thebasicgoalsoforalpractitionersaretodiscoverthepatient’smotor problem, understand the potential causes of the problem, the ways the central nervous systemregulatesmotorbehavior,andtorecommendappropriatetreatment.Toaccomplish thesegoalsthediagnosticianmusthaveabasicknowledgeofnormalanddisorderedoral motorbehavior.Sincethecliniciansmustmediatebetweenthepatientandthedysfunction whenprovidingcorrectiveexperienceitisimportantthattheycanconceptualizethenature oforalmotorbehavior. Theinformationprocessingapproachtomotorcontrolandlearningprovidesaconceptual frameworkinwhichtostudyandunderstandoralmotorbehavior,forinstanceduringchewingandswallowing,withinthecontrolofamouthsystemwithever-changingbehavior.
2.2 The Sensorimotor Cortex Thesomestheticcortexorneocortex(excludingthelimbiccortex)integratesinformation receivedfromthereceptorsthroughoutthebody,includingthemouth.Thesomestheticcortex(postcentralgyrus,Brodmann’sareas1,2,and3)isorganizedvertically.Columnsof neurons(module),fromonetoseveralneurons,areorientedverticallytothecorticalsurface. Manyverticalcylindersofneuronsconstitutethisarea.Thecolumnofneuronsormodulein M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_2, © Springer Verlag Berlin Heidelberg 2009
11
12
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
thesomestheticcortexofthepostcentralgyrusisthebasicneuroncircuitthatinitselemental formcomprisesinputchannels(afferentibers),complexneuronalinteractionsinthemodule,andoutputchannels.Theoutputchannelsarelargelytheaxonsofthepyramidalcellsof themotorcortexoftheprecentralgyrus,whichdirectlyorindirectlythroughthepyramidal andextrapyramidaltracks,respectively,innervatethealphamotorneuronsofskeletalmuscles, including the trigeminal system. The postcentral gyrus, however, also has a role in motoractivity,sincetheelectricalstimulationofthegyrusmayelicitmovementattimes. Similarly,theprecentralgyrusisalsoa“primarysensorycortex”becauseitalsoreceives inputfromtheventralposteriorthalamicnucleusasdoesthepostcentralgyrus[36]. Thecerebralcortexisalsoorganizedintosixlayersorlaminaeofcells,arrangedparallelto thesurfaceofthebrain,eachofwhichcontainsdifferentcelltypesthatplaydifferentroles. Beginning at the cortical surface the layers are: (1) the plexiform layer or molecular layer, (2)theexternalgranularlayerorlayerofsmallpyramidalcells,(3)thelayerofmediumsizedandlargepyramidalcellsorexternalpyramidallayer,(4)theinternalgranularlayer orlayerofsmallstellateandpyramidalcells,(5)theinnerordeeplayeroflargepyramidal cells,and(6)thespindlecelllayerorlayersoffusiformcellsormultiformlayer[36]. PyramidalcellsoflayerIIIprojecttoothercorticalregions(corticocorticalconnections), whereaspyramidalcellsoflayerVprojecttosubcorticalstructuresconveyingmotorcommandstomuscles.LayerVpyramidalcellsarethelargest.LayerIIIpyramidalcellsaregenerallysmaller.Nonpyramidallocalcircuitcells,whichdonotprojectoutoftheimmediate corticalarea,aresmallerandmorenumerousthanpyramidalcells.Someoftheselocalcircuit cellscanbeexcitatorylocalrelays,andothersmediatelocalinhibition.Onetypeoflocalcircuitcell,thehorizontalcell,interconnectscellsacrossthemoduleandisgenerallyinhibitory. Minicolumnsandmodulesareorganizedaroundthelargepyramidalcells.Themanyexcitatorylocalcircuitcellsrelayinformationupanddowntheverticalcolumn.Inthismanner,the largedendritetreeofpyramidalcellsreceivesmanyinputsvialocalcircuitcells[15]. Pyramidalcellsreceivemanyoftheirinputsontodendritespines.Spinesareappendages of dendrites that increase their surface area, and compartmentalize the molecular machineryrelevanttoreceivinginputs.Asthecorticalhierarchyincreases,pyramidalcells receivemoreinputs.Forexample,pyramidalcellsintheprefrontalcortexhave23times morespines(andinputs)thanthepyramidalcellsintheprimaryvisualcortex[15].
2.3 Oral Sensorimotor Integration Oralsensoryintegrationisachild’sabilitytofeel,understand,andorganizesensoryinformationfromhis/hermouth.Sensationslowintothebrainthroughoralexperiences,andthe brainlocates,sorts,andorderssensorystimuliintosensations.Whenthestimulilowina well-organizedorintegratedmanner(patternedinput)thebraincanusethosesensorydata tointegratefunctionsunderlyingsensation,perception,learning,memory,motorcontrolof musclesandmentation.Theconnectionbetweenthecapacityofanindividualtointegrate sensory dataand thechild’ssocialand emotional development should not be underestimated.Howachildintegratesinformationthroughthesensorysystemprovidesabasisof
2.3
Oral Sensorimotor Integration
13
thechild’soralandbodyreality.Whenthelowofsensorystimuliisdisorganized,lifecan belikearushhourtraficjam.Itissensoryintegrationthatattemptsto“putitalltogether” andthathelpsusmakesenseofwhoweareandunderstandtheworldaround[78,92]. Theintegrationoforalsensoryandmotorfunctionsorbehaviordependsonthedevelopmentofrelexcircuitsconnectingthesenseorgansthroughthecentralnervoussystemto muscles.Thesensorimotorintegrationfunctionofthemouthcanthenbeanalyzedinterms ofthreebasicfunctions: 1. Aninputtransducerfunction.Thisincludesallthesophisticatedsensoryreceptorsand theirinnervatingsensoryneurons,whichareendowedwithspeciicity,thatistosayare abletotransformdeinitekindsofexternalstimuliintocomplexelectricalandchemical phenomena,dependingonthenatureandstrengthofthestimulus,andconveypatterned actionpotentials(codedinformation)fromthesensestothesomestheticcortex. 2. A control function carried through the central processing unit, the cerebral cortex, namely the postcentral and precentral gyri, which represent the primary somesthetic andmotorcortex.Thecapacitytodistinguishonesensoryexperiencefromanotherin thecortexisknownasdiscrimination.Speciically,thecorticalneuronsmustbecapable ofdecodingthefrequencyoftheactionpotentialofeachnervetransmittedtothebrain in order to interpret the sensory messages of the receptors, and to store in memory informationofthelearnedparticularsensorimotorrelexexperience. 3. An output transducer function. The human brain processes information in countless ways,mostofwhicharepoorlyunderstood,ifatall.When,however,thereisstimulation oftheoralmotorareasinthecortex,movementofthemandibleandtonguemayresult asaresultofactivationoftrigeminalandhypoglossalmotornuclei,respectively[92]. Bydeinitionthesethreebasicfunctionswithrelationshipsamongthemformasystem, theoralsensorimotorintegrationsystem.Thereisnodirectlinkbetweentheoralinputand outputinthesystem.Thismeansthattheoralsensorimotorintegrationrelexfunctionis anopenloop.Themotoroutput,however,hasaninluenceonthesensoryinput.Thatisthe movementsofthemouthstimulatethesensoryreceptorinputthatguidesoralfunction. Thus,themouth’ssensoryexperiencesaregeneratedprincipallybyitsownactions,andits actionsareresponsivetoitssensoryexperiences[43,65].Thismeansthattheoralsensory systemisfunctionallyintegratedwiththeoralmusculature. Similarlythereceptorsoftheskinoftheoral–facialregionarefunctionallyintegrated withtheunderlyingmusclesoffacialexpression.Thecontractionofmusclesstimulates thereceptorsthroughdeformationoftheskin[78,93].Granit[44]suggestedthatadjacent portionsofthestimulatedskinmaybeinhibitorytomuscleaction.Thisfunctionmaybe locallyregulatedwithoutreachingconsciousstatesinthecortex.Thus,theskinhasalso established“localsigns”forrelexaction,andnotonlyforconsciousperception.Thismay implythatincertaincircumstancesthemovementsofthemouthmaybeinitiatedlocally withoutreachingperceptioninthecerebralcortex.Inthisview,theoralmucosa,likethe skin,maybeabletodeliverbothgeneralandlocalizedmessages.Thegeneralpieceof informationmaybebasedonverylargereceptiveields,inwhichtheafferentibersoverlap.Thelocalizedmessagesmaybebasedonsmallerreceptiveieldsdowntopunctiform, which are innervated by a single afferent iber and from which a certain type of relex
14
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
responsecouldbeelicited.Thecentralnervoussystemmaycorrespondinglybeorganized to take care of large receptive ields, reaching the conscious level, and others of small receptiveieldsforlocalfunctionatthebrainstemlevel[44]. Thestrengthofinformationprocessingperformedbyacorticalcircuitdependsonthe numberofinterneuronalconnectionsorsynapses.Morphologicallyspeaking,atypicalneuronpresentsthreefunctionaldomains.Thesearethecellbodyor“soma”containingthe nucleusandallmajorcytoplasmicorganelles,asingleaxon,whichextendsawayfromthe somaandhascable-likeproperties,andavariablenumberofdendrites,varyinginshapeand complexity,whichemanateandramifyfromthesoma.Theaxonalterminalregion,which connectsviasynapsestootherneurons,displaysawiderangeofmorphologicalspecializationsdependingonthetargetarea[3]. Turningmorphologyintoafunctionalevent,thesomaofneuronsandthedendritictree arethemajordomainsofreceptive(synaptic)inputs.Thusboththedendriticarborization andtheaxonalramiicationsconferahighlevelofsubcellularspeciicityinthelocalization of particular synaptic contacts on a given neuron. The extent to which a neuron may be interconnectedlargelydependsonthethree-dimensionalspreadingofthedendritictree[3]. Dendritesaretheprincipalelementresponsiblebothforsynapticintegrationandforthe changesinsynapticstrengthsthattakeplaceasafunctionofneuronalactivity[46,47]. Whiledendritesaretheprincipalsitesforexcitatorysynapticinput,littleisknownabout theirfunction.Theactivitypatternsinherenttothedendritictree-likestructures,suchasin integrationofsynapticinputs,arelikelybasedonthewidediversityofshapesandsizesof thedendriticarborizations[48].Thesizeandcomplexityofdendritictreesincreaseduring development[49],whichhasbeen,inturn,associatedwiththeabilityoftheneuralsystem toorganizeandprocessinformation,suchaswhenanimalsarerearedinacomplexsensory environment[50].Thus,dendriticsizeandbranchingpatternsareimportantfeaturesof normalbraindevelopmentandfunction. Mostsynapses,eitherexcitatoryorinhibitory,terminateondendrites,soithaslongbeen assumedthatdendritessomehowintegratethenumerousinputstoproducesingleelectrical outputs[3].Itisincreasinglyclearthatthemorphologicalfunctionalpropertiesofdendrites arecentraltotheirintegrativefunction[51,52].Branchinginthiscontextisessentialtothe increasinglycomplexabilityoftheneurontorespondtodevelopmentalcomplexity[48]. Thedendriticcytoskeletonplaysacentralroleintheprocessoframiication,ilopodiaformation, and more specialized neuronal activity such as long-term potentiation circuit dynamics,includingmemoryformation,andtheresponsetopathologicalconditions[3]. Synaptic contacts take place in dendritic spines, which are small sac-like organelles projectingfromthedendritictrunk.Dendriticspinesaremoreabundantinhighlyarborized cellssuchaspyramidalneuronsandscarcerinsmallerdendritictreeinterneuronswithfew interconnections.Thenumberofexcitatoryinputscanbelinearlycorrelatedwiththenumberofspinespresentinthedendrite[3].Howinformationisprocessedinadendriticspine, isstillamatterofcurrentstudy[6].Dendriticspinescontainribosomesandcytoskeletal structures,includingactin,anda-andb-tubulinprotein.Asinotherpartsoftheneuronal structure,cytoskeletalcomponentsarehighlyrelevantinthestructureandfunctionofthe neuron.Theaxonalhillockcontainslarge“parallel”bundlesofmicrotubules.Axonsare also located with other cytoskeletal structures, such as neuroilaments, which are more abundant in axons than in dendrites. The axon hillock is the region where the action
2.4
Sensory Integration Dysfunction
15
potentialisgenerated.Thedynamicsincytoskeletalstructuresarecentraltoourcontention thatinformationcanbeprocessedand“delivered”tothesynapticfunctionbychangesin thecytoskeletalstructures[3]. TherecentlyadvancednewlearningandmemorymodelofPenroseandHameroff[113] suggeststhatinformationprocessingandstorageofmemoryoccursinthemicrotubulesand microtubule-associatedproteinsofthesubsynapticzoneofdendrites,whichgivesrisetothe spine.Microtubulesinthesubsynapticzonearecapableofstoringimportantinformation concerningwherespineswereoriginallylocated,andofusingthatinformationtodetermine wheresynapseswillreappearfollowinglearningorenrichedexperiences[39–41]. Theprimaryreceptiveareaofthecortexintegratesthemorecomplexaspectsoftouch, deepsensibility,pain,andtemperature.Theseperceptionsincludetheappreciationofthe locationandpositionofabodypart(proprioception),thelocalizationofthesourceofpain, temperature,andtactilestimuli,aswellasthecomparisonofthesesensedmodalitieswith thoseformerlyexperiencedthroughmemory[36].Ablationofthepostcentralgyrusisfollowed by loss of the iner and more subtle aspects of sensory awareness. For example, whenanobjectishandledwiththeeyesclosed,thesubjectcanfeelitbutcannotappreciate itstexture,estimateitsweightortemperature.Dificultyisalsoexperiencedinappreciatingthepositionofthebodyorbodypartsinspace[36]. Thesenseoftasteisclaimedtobelocatedatthebaseoftheprecentralandpostcentral gyri,slightlyrostraltotheprimarysomestheticcortexorinthecorteximmediatelyadjoiningtheinsulaarea[42]. Insum,asweviewthedevelopmentandfunctionofthematuremouthwearemore awarethatthemouthisessentiallyaninformation-processingsystem,inwhichthehigher facultiesofthebrain,namelylearning,memory,motorcontrolofmusclesandreasoning, arechielyconcernedwiththechoicesinvolvedingettingfood,andthedevelopmentofthe computationalactivitiesofmastication,speech,taste,etc,throughlearningandmemoryof theoralsensorimotorintegrationfunctionofthecerebralcortex.Anyanimalwouldstarve todeathiftheeffectoffoodwaslimitedtoitsactiononthesurfaceofthemouth.Thus,the enormoussigniicanceoffeedingacquiredbyexperienceandlearningbecomesevident.
2.4 Sensory Integration Dysfunction Allthebasicivesensorysystemsneedtobeworkingsimultaneouslyandcooperatively foracquisitionandperformanceofhigherskills.Infact,ifanyonesystemdoesnotwork properlyeitherbyitselforinconjunctionwiththeothers,asensorydysfunctionofsome kindmayresult.Thedegreeofsensorydysfunction,whetheritmanifestsasmerelya “sensoryissue”ormild,moderate,orseveresensorydysfunction,ishighlydependenton whichsensesand/orsensorysystemsareimpairedandtowhatextent.Again,thesensory systemsactuallyoperateinconjunctionandcooperationwithoneanother,sotheresultant behaviororsensationisprobablytheoutcomeofaccessingmorethanonesystem[79]. Oftenachildwithsensoryintegrationdysfunctionwillbecategorizedasimmatureand possiblespoilt.Thenewsocial,cognitive,andmotordemandsoftheschoolsettingoften
16
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
createevenmoreconfusion,anxiety,andchaosforthechildwhohassensoryintegration dysfunction[79].Now,letusexploresomeofthesystemsthatmayindicatesensoryintegrationdysfunction.
2.4.1 Dysfunction in the Proprioceptive System Thisreferstoanineficiencyintheproprioceptivesystemthatmaycauseachildtohave dificultiesbothatschoolandathome.Sincetheproprioceptivesystemgivesfeedback frommusclesandjoints,itsupportsholdingapenorapencilcorrectly,stayingproperly seatedinachair,andlearningtouseaknife,forkandspooncorrectly.Thissystemalso supportslearningtowalk,openingandclosingajaroradoor,usingplaygroundequipment,andchewing[79].
2.4.2 Dysfunction in the Tactile System Adysfunctioninthetactilesystemmaymanifestinavarietyofways.Achildmaybe actively defensive and not want to be touched, bumped, or hugged, or to touch certain texturesorwearcertaintypesofclothes.Anatypicaltactilesystemmayalsocauseachild tocravecertaintactilesensationsandexperiences,suchasneverbeingabletokeeptheir hands to themselves, constantly touching and feeling the people and/or things around them. In other words, the tactile system greatly inluences relationships, fashion sense (clothingchoice),andschoolperformance[79].
2.4.3 Dysfunction in the Vestibular System Aproblemorineficiencyinthevestibularsystemmaycausedificultywithbalance,coordinationandmotorplanning.Thismaymanifestinthechildasclumsinessanduncoordinatedinemotoractivities,suchaseating,drinking,usingwritingutensilsetc.Thevestibular systemwillplayakeyroleintheabilityofthechildtoparticipatesuccessfullyinsport,in thegymclassorontheplayground,andinvariousactivitiesatschoolandathome[79].
2.4.4 Possible Sensory Signs and Symptoms Letusnowexploreawiderangeofbehaviorsandsymptomsthatmayindicatesomelevel ofsensorydysfunction.Thislistisnotmeanttobeusedfordiagnosticpurposes,butrather tocreateawarenessofsomeofthesensorydificultiesachildmayexperienceoverthe courseofdevelopmentandforwhichspecialisthelpmightbeneeded.
2.5
Oral Experience Changes the Brain
17
• Youngchildrenmaybeoverlysensitivetotouch.Touchisinterpretedasanociceptive
stimulusandthereforeworkingintheirmouthisverydifficult.Forthesamereason thesechildrendislikebathing,brushingtheirteethandotherself-careactivities.These childrenmaybeoversensitivetopain. • Youngchildrenmaybeunderactivetotouch.Thesechildrenexhibitoralhyperactivity byconstantlyeatingorchewing.Thesechildrenmaybe“chewers”—theychewshirts, blankets,toys,toothpasteetc. • Childrenwhodonottoleratethetasteofcertainfoods,andthereforevomitorgageasily, andalwayshavethesamelunch;i.e.,theyareverypickyeaters.Thissuggestsgustatory sensorydysfunction. • Childrenwhodonot knowwhen their mouthis fulland sostuff their mealinto the mouth.Thisbehaviorsuggestsproprioceptive,tactilesensorydysfunction. Traditionally,sensoryintegrationhasbeentheexclusiverealmoftheoccupational therapist.Nowthisisstartingtochangeand,althoughitisstilltheoccupationaltherapist whowilldomuchoftheformal,standardizedtestingforsensorydysfunction,otherspecialistsarebeginningtorecognizesensoryintegrationdysfunction,includingorthodontists, makereferralsforfurtherevaluations,andincorporatea“sensoryapproach.”
2.5 Oral Experience Changes the Brain Aftercenturiesofdebateaboutbodyandsoulandthenatureofman,wenowunderstand thatthebrain’sarchitecturegivesrisetomind,emotions,andpersonality.Thetragedyof Alzheimer’sdiseaseanddementia,whichareaccompaniedbypersonalityfragmentation, bearundeniablewitnessthatthebrainisthebasisofmind.Neuroscientistswidelyaccept thatcognitionandconsciousnessarecorrelatedwiththephysiologicalbehaviorofthematerialbrain,andthatthematterthatcomprisesbraingivesrisetoitsfunctions,inparticular highercognitionandconsciousness,throughintegrationwiththeenvironment[33]. Sensorysystems,suchasthemouth,transmitsensoryinformationtothebrainthrough thesensorypathways.Anoralsensorypathwaybeginsinasensoryorgan,usuallymakes synapticcontactinthethalamus,andthenrelaystolayerIVoftheprimarysomesthetic cortexthroughaseriesofcorticocorticalcircuits.Changeinthebrainbeginswhenthe newexperienceactivatestheoralsensorypathwayconveyinginformationtothebrain. Theserecordsareestablishedthroughgrowthchangesinthepathwaysandinthecerebral cortex[15]. The initial response of the cortex to a peripheral stimulus is the evoked potential. Immediatelyafterwardsthereisachangeinthefrequencyofiringinthemodule,resulting inthesignalbecomingmoresharplydeinedbyeliminationthroughinhibitionofallthe weakerexcitatorystimuli.Asaconsequencethestimuluscanbemorepreciselylocated andevaluatedbythecortex.Infactinhibitionthatsharpenstheneuronalsignaloccursat eachrelaystationinthepathway.Eachrelaystationalsogivestheopportunitytomodify thecodingofthemessagestransmittedfromthereceptororgans[37].
18
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
Neuronsinthepathwaygenerallycommunicatewitheachotherusingchemicalmessagescalledneurotransmitters.Glutamateisthemainexcitatoryneurotransmitter,which transmitssensoryinformationalongthesensorypathwaysthroughoutthecentralnervous system.Glutamateisproducedinthesignal-transmittingpresynapticneuronbyproteins relatedtosynthesizing,packingandreleasingtheneurotransmitterfromthepresynaptic nerveterminal.Glutamatetraversesthesynapticgapandaltersthemembranepotentialof thesignal-receivingpostsynapticneuron.Ifthesignalisstrongenough,orifitisaccompaniedbysuficientadditionalinput,thereceivingneuronwillgenerateanactionpotential thatwillreachanotherneuroninline.Thus,thesequenceofeventsrepeatsitself[15]. Glutamatemediatesexcitatorysensoryinputtothecerebralcortexwheremanyofthese presynaptic terminals contact dendrite spines by binding to NMDA, AMPA, or kainate receptorslocatedonthesurfacemembraneofthespines.Forexample,glutamatebindsto the NMDA receptor within few milliseconds, altering the ion conductance across the membrane.Electricallychargedcalciumions(Ca2+)entertheneuronandstimulatecalciumactivatedproteinsinsidethecell.Theactivatedproteinsinitiatepolymerizationanddepolymerizationcyclesleadingtobreakdownandthenrebuildingofthemicrotubuleprotein, tubulin,aswellasofmicrotubule-associatedprotein2.Thesechangesoccurinthesubsynapticzoneofdendriteslyingbeneaththespinewhichgivesrisetothespine[15].Thus, NMDAreceptorsmediatebreakdownandthenrebuildingofglutamatesynapticsiteson thespinesinresponsetoinformationinput,forinstance,oforalexperience.Inthisview, oralsensoryinformationchangestheconformationalstateofneuroncytoskeletalproteins, i.e.,changesthebrainthroughlearningandmemoryofnewexperiences.Evidencesuggeststhatmemoryishard-wiredindendriticcytoskeletalstructures[54–56].Accordingly, theNMDAreceptoriskeytobrainneuroplasticity[33]. Similarly,glutamatebindstoAMPAreceptorsandopenssodium(Na+)channelsacross themembrane.Sodiumenterstheneuron,increasingthesodiumconcentrationinsidethe cell.Thisislikelytoinitiatepolymerizationoftubulin,thebuildingproteinblockofmicrotubules.Ifthesodiumconcentrationbecomestoohigh,however,tubulindepolymerization willoccur[15]. Thus,brieforalsensoryexperiences,forinstancethetasteofasubstanceortheexploration of an object in the mouth, generate leeting electrical impulses in the neurons that innervate the stimulated receptors. The impulses make the transmitting neurons release molecularsignalkeysthatselectivelyinteractwithspeciicreceptorlocksonthesurface of the target neurons, eliciting biochemical changes and biological responses in targets underlyingsensation–perception,learning–memory,andmotoractivitydependingonthe stimulus[15,38,58]. Thesignalfromtastemayalsoreachthroughlocalcorticalcircuitsthehippocampus memorycenterandexcitelargespecializedgroupsofneuronstherethatireinacharacteristic synchronized pattern that represents memory of learned experience [17, 57]. The memorymechanismsarethenbuiltintotherulesgoverningthearchitectureofthecerebral cortex,inotherwordsarebuiltaschangesinbrainstructure[38,58].Subsequently,the hippocampussendsatracttohypothalamusthatregulatestheconsumatoryactionpattern oftheindividual. Similarly,whenwechewfoodorgumtheoralinformationisintegratedinthesensorimotor cortex. The motor cortex then sends action potentials down to the alpha motor
2.5
Oral Experience Changes the Brain
19
neurons of the trigeminal nuclei, through the pyramidal and extrapyramidal pathways, which in turn make the masticatory muscles contract. The transmitting neuron releases neurotransmitter signal, acetylcholine, at the relay station, which stimulates electrically thereceivingneuron.Acetylcholinebindstospeciicreceptorsofthereceivingneuronand strengthensthesynapse.Inthisway,thestrengtheningofsynapsesthroughthesignalmoleculesallowstheneuronstoholdelectricalconversationsforenoughtimetoevoke,for instance,amusclecontractionoratasteexperience[2]. Thus,molecularsignals(glutamate,acetylcholine,dopamine,etc–hundredsofthem) governthefunctionofthebrainandmind,andincreasetheabilityofneuronstocommunicatewitheachotherthroughthestrengtheningofsynapses.Notsurprisinglythenbrain signalsandreceptorsplayacriticalroleinavarietyofdysfunctionsanddiseasesandtreatment procedures. Signal derangement results in a wide variety of neuropsychiatric diseasesincludingdepression,dementia,andParkinson’sandAlzheimer’sdiseases[2]. Fascinating experiments have provided insights into how experience induces brain changes.Forexample,ratsweretaughttonavigatethroughacomplicatedmaze,whilethe electricalactivityoftheirhippocampalmemoryneuronswasmonitored.Astheratslearned tonavigatethemazesuccessfully,theneuronsiredwithacharacteristic(unique)synchronizedpatternthatrepresentedmemoryofthelearnedtask[59]. Inanotherexperiment,maze-learningratswerestressedwithamildelectricshockto the tail. A control group received no electric shock. The group that received the shock stressorlearnedfasterandretainedtheknowledgelongerthanthecontrolgroup.Moreover, inthestressedratsneuronalconnectionswerestrengthenedmoreeficientlythaninthe controlgroup[60,61].Accordingly,ithasbeensuggestedthatsomedegreeofstressmay promotesomeformsoflearning,throughalertnessandattentionofbrainstatesthatfoster synapsestrengtheningandlearning.Inthisview,neurosciencemayprovidenewstrategies forlearningandteachinginschool.Memoryabilitiesaresubjecttochangeandhenceand alittlestressmaysharpenmemorythroughstrengthenedsynapses[2]. Hebb[16]suggestedthatsynapsesinthebrainarestrengthenedinaccordancewithhow oftentheyareused(stimulated),enhancingthentheinputandtheprocessingofinformation,whichinturncontributestotherichnessofsensoryexperiences.Hebbspeculatedthat strengthenedsynapsesbindtheneuronstogetherinto“ensembles.”Ifindividualneurons representdifferentfeaturesofascene,forexample,theensemblerecreatesanimageofthe sceneinitsentirety,likethepiecesofapuzzle.Inthisview,strengthenedsynapsesmay associateforinstance,visual,auditory,emotionalandconceptualfeaturesofamemory thatareencodedinthecomponentneurons. Inaddition,experimentalstudiesbyBlissandLomo[17]suggestedthatexperiences strengthensynapsesofonlythespeciicpathwaysprocessinganexperience.Experiences donotaffectsynapsesthatarenotactivatedbytheactionpotential.Speciicityisthenbuilt intotheprocessoftransmittinginformation;theinformationistransmittedthroughactivated(speciic)pathways.Accordingly,learningandmemoryarealsospeciicprocesses, sincetheyusespeciicpathways. Thus,thecommunicativeconnectionbetweenneurons,thesynapse,anditsstrengtheningbyelectricalimpulsesandchemicalsignalmoleculesthroughuse,iscriticalinregulatingoralinformationinputandmotoroutput.Ifthesynapsesintheactivatedpathwaysare strong more information is relayed and processed in the cortex, resulting in learning,
20
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
memory,perception,andmotorcontrolofmuscles.Ontheotherhand,ifthesynapsesare weak,lessinformationiscommunicated[2]. Neurophysiologicalstudiesindicatethatthesensorynervesarenothighidelityrecordersoftheperipheralstimulus,becausetheyaccentuatecertainstimulusfeaturesandneglect others.Inaddition,thecentralnervoussystem,whichdoestheprocessingoftheinformation,isnevercompletelytrustworthy,allowingdistortionsofqualityandmeasures.Because ofthisthereisgeneralagreementthatsensationisanabstraction,notareplication,ofthe real world. The more speciic is the sensory stimulus perceived by the brain, the more speciicisthemotorpattern[62]. Whilethecentralnervoussystemneedscontinuousstimulationofallsensorymodalitiesduringchildhoodtomaintainthestrengthofsynapsesinordertoincreasetheinputand processingofinformation,whichisthekeytosensation,perceptionlearning,memoryand motorcontrolofthemouth,onthecontraryidlenessofthemouthdecreasesthestrengthof synapsesandinactivatesthesensorypathwaystothebrain.Hence,verylittleinformation isenteringthebrainandthecerebralcortexissufferingfromsensorydeprivation[63]. Undertheseconditionsthecortexwillreducetheinputtothemotorcortexcontrollingthe motionofthemouthandthevoluntarymasticatorymovements,leadingtooraldysfunctionandtodelayedmaturationoforalfunctions[64]. Theneuraleventspertainingtothenormalorabnormalfunctionofthemouthareregisteredinthecerebralcortexatallstagesofthedevelopmentofthemouth.Thisabilityofthe brainforself-regulationofitsstructureandfunction,accordingtooralsensoryinformationprocessingandlearning–memorycapacity,iscalledplasticityofthebrain,andisrelected point-to-pointintheanatomicalrepresentationofthemouthinthesensoryandmotormaps ofthecerebralcortex.Thecerebralmapsarecontinuallymodulatedbythevarioussensorimotorfunctionsofthemouthrelectingexperience-drivenchangesinthebrain[43,65]. Thus,thenormaloralsensorimotorfunctions,suchasspeech,chewing,swallowing,taste, etc,willbeseriouslydisturbedwithoutnormalsensationandperceptionoforalstructures, withoutnormaljawandtonguemovements,andwithoutadequatesecretoryactivityofthe salivaryglands[66]. Inthisview,masticationoffoodmightbeanimportantmotoractivity,contributingto signiicant sensory input and to structural and functional development of the brain. Similarly,anydentalororthodonticprocedurethatrestrictsthemovementsofthemouth foralongtimemayaffectthenormalsensoryinputandtheintegrationofsensorimotor functionsinthecortex. Kawamura[66]suggestedthatbothlifeexperienceandemotioncontributetoindividual variationinoralsensorimotorfunctionsandinparticulartothemasticatoryfunction.Bosma[67] suggestedthattheinfantorganizesandgovernsitssensorimotorworldofexperienceinrelationtoitsowncurrentneedsandpurposes.Indoingsotheinfantisgeneratingitsownneurologicalfuture.Thisreactionoftheinfanttoexternalinluencesisnotapassiveone.Instead thechildisstrivingtowardtheouterworld,andthisisaninstinctiveinvoluntaryphenomenon.Whenthisstrivingissatisied,i.e.,whenitcauses,forinstance,amovement,themovementisarelexinthefullsenseoftheterm.Thereisnodoubtthatcompletedependenceon thisinstinctivestrivingisresponsiblefortheextrememobilityofinfantsandchildren,which constantlypassfromexerciseofonenervetothatofanother.Itisthenthismobilitythat ensuresthenormaldevelopmentofthesenseorgans,includingtheoralsenses,resultingin
2.6
Role of Reticular Formation in Oral Sensorimotor Functions
21
organizedmotorbehavior.Thus,theirstconditionformaintainingthestructuralandfunctionalintegrityofnervesandmusclesisadequateexerciseoftheseorgans[68].
2.6 Role of Reticular Formation in Oral Sensorimotor Functions Thereticularformationisbelievedtoregulateorcontrolthesensoryinputtothebrain.The feedbackinformationsuppliedbetweenthesensoryinputandmotoroutputmustbeofthe rightamountiftheoperationofthesensorimotorfunctionofthemouthistoberegulated foroptimumresults.Toomuchfeedbackorcentralmodiicationofthesensoryinputmay meansensoryoverloadforthebrain,whichcanbecatastrophicleadingtowildoscillation inoralmotorbehavior.Conversely,reducedsensoryinputmaymeansensorydeprivation ofthebrain,againderangingoralmotorbehavior.Thussensoryoverload,sensorydeprivationandthecentraldispositionoftheindividualmayreducethearousalreactionofthe cerebralcortexforattention,awarenessandlearning,leadingtounconsciousreductionof interactionoftheindividual’smouthwiththeexternalenvironmentthroughchangesinthe reticularformationandtheascendingreticularactivatingsystem(ARAS)[63,64]. Therearefourmajorneurophysiologicalmechanismsdealingwiththeorganizationand functioningofthecentralnervoussystem,allrelatedtoreticularformation;thesearediscussedinthefollowingsections.
2.6.1 Descending Reticular Control Thedescendingreticularcontrolmechanismhasbeenimplicatedinthefacilitationandinhibitoryrolesofthereticularformation.Speciically,thereticularformationatthemidbrainlevel hasbeenfoundtomaintainafacilitatoryoraugmentinginluenceonmotorrelexes.However, themorecaudalportionofthereticularformationintheponsandmedullahasbeenfoundto haveaninhibitoryrole,keepingmotoractivityundercontrol[64].
2.6.2 Ascending Reticular Activating System ThereticularformationandtheARASarebothnecessaryforarousalofthebrainforattention,perceptionandconsciouslearning.WithoutthecollaborationoftheARAStheoral sensorymessagescannotbeprojectedfromthereticularformationtothecortexandhence, theycannotbeelaboratedanddecoded,resultinginnodiscriminationofthesenses.Thus, thestateofexcitationandadjustmentoradaptationlevelofthereticularformationasit monitorsbothincomingsensoryandoutgoingmotormessages,aswellastheadaptation oftheARAS,becomepartoftheprocessofarousalofthebrain,forlearningabilityand habitformation[63,64].
22
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
ThesechangesofthereticularformationandoftheARASdependupontheebbandlow ofactivityintheafferentandefferentsystems.ThestrategiclocationoftheARASatthe crossroadsofthesensoryinputandmotoroutputsystemsofthecranialnerves,includingthe trigeminal input and output pathways, permits the ARAS to sample and monitor all such activities.Indoingsoitbecomesadjustedtocertainlevelsofactivityanditsownresponseis projectedtothecerebralcortextoexploitaspectsofitsinformation-processingcapabilities, such as perception, learning, memory, motor planning, etc. The regulation of mature oral sensorimotorfunctionsderivefromthecerebralcortexthroughtheARAS.Thesensory-input/ processingfunctionofthecortexdeterminesthelevelofarousalofthebrainforattentionand awareness.Forexample,iftheARASisactivatedexperimentallybyelectricalstimulation, thecortexshiftsfromsleeptowakingintheencephalogram.Thus,theARASisinvolvedin the sleep and waking rhythm of the organism, which is controlled by the cerebral cortex throughtheneuralactivityofthesensory-input/information-processingfunction[63,64]. When the ebb and low of activity in the afferent and efferent systems is restricted, compensatoryadjustmentsaremadewithinlimitsinthereticularformationandtheARAS. Whenthisfails,forinstanceinsensoryoverloadorsensorydeprivation,thecorticalfactors arenotunderthecontroloftheARAS.Whenthishappenspersistently,perceptionisdisrupted,attentiongiveswaytodistractabilityandinteresttoboredom.Behavior,including oralmotorbehavior,becomesdisorganized.Thisseemstoberelectedineitherapervasive inhibitionofsensorystimulioramarkedfacilitationoforalrelexeswithexcessivemotor activityofahighlystereotypedtypeandnonadaptivenature,whichinturnmayleadtooral habitformation[64]. Inthisview,earlysensorydeprivationofthebrainorearlygrowthanddevelopmentin an impoverished environment, one with diminished heterogeneity and a reduced set of opportunitiesformanipulationanddiscrimination,notonlyrobtheorganism–mouthofthe opportunityforconstructingsensorymodelsoftheenvironmentinordertodealeficiently withthem,butitalsopreventstheutilizationofsensorymodalitiestoextractandevaluate usefulinformationfromtheenvironment[69,70].Thismayresultinimpairmentofsensorimotorfunctionsthroughthedisruptionofcorticalspaceandtimequalityorganization (perceptual changes), as well as deterioration in learning ability in association with a declineinreasoning(cognitivechanges)[64].Thisdisorientationoforalmotorbehavioris oftenassociatedwithareductionintaste,pooradaptivecapacityoftheocclusionofthe teethandadeclineinfunctionofthemouth.Ingeneralirritabilityandrestlessnessofthe moutharecoupledwithanxiety[63,69]. Sensorydeprivationmayoccurexperimentallywithunvaryingsensorystimulationofthe cortexbyreducingboththeamplitudeandtherateofchangeofthestimulitoamonotonous level,atwhichthesensoryreceptorsadaptandstopiringresultinginsensorydeprivation ofthebrain,whichischaracterizedbydisruptionofthecapacitytolearnoreventothink [71, 72]. This breakdown of the sensory–perceptual–motor and learning–memory references,bywhichtheorganism–mouthguidesitscorrectionstrategiesinperceiving,becomingcognizant,reactingandmanipulatingtheenvironment[69],andguidestheontogenetic developmentofthebody[73],maymakeitincreasinglydificultinearlypostnataldevelopmentfortheoralsensorimotorfunctionstostructureanormalanatomicalmouth[43,65]. Speciically,sincenormalperceptiondependspartlyonnormalmotoractivity[16],and normalmotoractivitygeneratesnormalpatternedsensoryinput[58],resultinginnormal
2.6
Role of Reticular Formation in Oral Sensorimotor Functions
23
developmentofthebrain[33],thenitislikelythattheearlydeviationofthemouthfrom thenormalsensory-inputperceptualfunctionofthecortexwillaffectthebrainstructure anditscognitivestate.Thesechangesinturnwillberelectedintheneurologicaldevelopment of the mouth. In this view, Bosma [43, 65] suggested that the developing central nervoussystemguidesthedevelopmentoftheanatomicalmouthandthepositionofthe teeth.Conversely,themouthisdevelopmentallyinscribedatallstagesuponthematuring brainandtheneuralnetworksofthebrainaremodulatedbytheoralsensoryexperiences.
2.6.3 Corticoreticular Control Itisestablishedfunctionallythatthereareinterconnectionsbetweenthecortexandthereticularformation.Thismeansthatarousalandalertingofthebrainarenotsolelydependent uponperipheralsensoryinlux,butmayequallywellbeproducedbycorticalactivity[64]. Inthisview,imaginationofpastorpresentstimulihasthepotentialtoexcitethereticular formationandtheARAS,whichinturnproducesasuitablestateofactivityinthecortex. ThecorticalfactorsnownotunderthecontrolofARASmayplayamoreprominentrole. Theeffecttendstobefacilitationofstimuli,whichwillfavorcorticalrestlesshyperactivity [15,64].Recently,ithasbeenshownthatthemotorcortexisactivatedasifsensoryinput hadoccurredinanticipationofamotoractivity[74].Thisshowsthatweexperiencesensoryfeedbackbeforethesensoryinputoccurs[15].
2.6.4 Centrifugal Afferent Control and Central Inhibitory Mechanisms Accordingtomostneurologiststhecentrifugalinluencesservethepurposeofmakingthe receptorsorpathwaysmorecapableofsendinginformationorofpreventingthenormaldelugeofsensoryimpulsesfromreachingthehighercentralnervoussystemlevels.Inthisview, thecentrifugalafferentcontrolsystemcanreducethesensoryinputifthemotorresponse output becomes excessive. The descending ibers from the cortex terminate in excitatory synapseswithinterneurons,whichinturnactthroughpresynapticorpostsynapticinhibition ontheneuronsoftheascendingaffectedpathways.Theeffectofcentrifugalafferentcontrol isgenerallyinhibitory.Itisexertedatthesynapticrelays,aswellasatthereceptorsthemselves,tendingtosuppresstheamountofinformationtransmittedtothecortex[64].Under centrifugalafferentcontrolthereisamarkedreductioninthetotalmassofthesensoryinput, whilethe“useful”or“signiicant”informationispreservedorevenenhanced.Thus,selectivity orilteringisanimportantconsequenceoftheseinhibitorymechanisms.Itisofinterestthat thecentrifugalcontrolmechanismsarelearnedwithearlysensoryexperience[64]. The importance of inhibitory relex mechanisms in the normal motor maturation, is seenintheearlypostnatalperiod.Forexample,ifonegivesatwo-year-oldchildapencil, itholdsittightly.Itispartoftheeducationalprogramoftheschooltoweakenandinhibit thegrasprelex,sothatthechildwillbeabletoholdthepencilandwritewithit.Thusthe majorportionoftheeducationthathumanbeingsreceiveduringthepreschoolyears,in
24
2 Functional and Dysfunctional Aspects of the Cerebral Cortex
schoolandinlaterlife,consistsinthedevelopmentofinhibitorynerveibersandinhibitionmechanismsinordertoovercomerelexes.Anew-bornchildcrieswhenitishungry. Itmustgetusedtoeatingatmealtimes.Thus,oneoftheirstthingsachildlearnsisto suppresstherelextocrywhenhungerpangsappear.Thenachildistaughttoinhibitthe bladderandintestinalrelexes,andtoletthemfunctiononlyatcertaintimes.Thisisthe beginningoftrainingforlife,andthisishowitcontinuesforten,twenty,thirtyyearsunder theconstantmotto“developinhibitoryibers,”sothattrainingmaybesaidtobealmost equivalenttothepossessionofinhibitorymechanisms,andtheabilitytocontroloraland bodyrelexes,drivesandanimalinstinctsinsocialbehaviorbymeansofthem[37,75]. Childhoodisgenerallycharacterizedbyextremelyextensiverelexmovementsarisingin response to relatively weak (from the adult point of view) external sensory stimulation. Gradually,however,duringdevelopmentoneortwogroupsofmusclesseparatefromthe massofothermusclesandthemovementsbecomemorelimited.Havingbecomemorelimited,themovementsacquireadeinitecharacter.Itisinthislimitingprocessthattheinhibitorymechanismstakepart[37].Forexample,thenormalcoordinationofthecontractionof themusclegroupsinvolvedinmasticationanddeglutitionrequirecentralinhibitionofthe neuronsofthetrigeminalnucleiwhenthedeglutitionfunctionisinitiated,andconversely centralinhibitionoftheglossopharyngealmotorneurons,whichinnervatethepharyngeal musclesofdeglutition,whenthemasticatorymusclegroupisactivated[76]. Thus,byexertingpresynapticandpostsynapticinhibition,thecerebralcortexisableto blockthesynapsesinthesensorypathwaysandhence,givetheopportunityforaninhibitoryactiontooccur,thatsharpenstheneuralsignalsbyeliminatingtheweakerandirrelevantexcitatorystimuli.Asaconsequence,thestimulicanbemorepreciselylocatedand evaluatedbythebrain[37]. Infact,atactilestimulus,forinstance,notonlyproducesasensationbutatthesame timeproducesaninhibitionofthesurroundingcutaneousormucosalarea[44].Thus,the conceptmaintainedintelephoneengineering—thatwehaveasimpleinputandoutput— doesnotholdinthesensorysystems,sinceeverystimulusorinputproducesdeinitelytwo phenomena.Thereisausualoutputasfoundintelephonesystems,butthereisalsoan inhibitioninthesurroundingareaofthestimulusproducedbytheoutput[77]. Inthisview,thebrainmakesasimpliicationbyblockingcertainexcitatoryinputsin order to protect the masticatory apparatus from the many relexes that would normally arisefromallstructureshadbeenstimulatedseparatelyduringmastication.Thiscomplex interactionofexcitatoryandinhibitoryinluencesupontheoraltissuescanlimittheforces developedduringchewing.Forexample,whencrushingofafoodbolusisdesired,aprotective mechanism involving a cortical loop may be called into play and periodontally induceinhibitionofjaw-closingmotoneurons,whichoutweighstheexcitatoryinluence, resultingincessationofjaw-closingmuscleactivityduringamasticatorycycle[78]. Itisalsointerestingtonotethatwhenweareveryintenselyoccupied,forinstancein carryingoutsomeactionorinexperiencingorinthinkingoutsomeaction,thecerebral cortexcanblockthesynapsesinordertoprotectitselffrombeingbotheredbystimulithat canbeneglected.Accordingly,intheheatofcombat,severeinjuriescanbeignoredbythe individualbysuppressionofthepainpathwaytothebrain.Thus,wecanaccountofafferentanesthesia,ofhypnosisoryogaoracupuncturebythecerebralcortexinhibitingthe sensorypathways[37].
Sensory Deprivation of the Brain
3
3.1 Introduction Thetermsensorydeprivationcarriestheimplicationthatthetissuesofthecentralnervous systemcanexperienceapeculiarkindofneedorappetitearisingoutofdeprivationofsensorystimulationofthebrain,whichiscomparabletotheneedofdehydratedtissuesforwater. Thetermimpliesthatthebrainmusthaveacertainminimalpatternedcontinuousinlowof sensoryexperience,andthatwheneverthesensoryinputdropsbelowacriticallevelforsome time,ahungerarisesinthebrainformorestimulation,inordertoinluenceand/ormaintain thearousalreactionofthebrainforattention,awareness,andlearning,sincethedeafferented brainisthesleepingbrain[71]. SomesimpleexperimentalworkbasedonthisassumptionwasdonebyLevy[80]on oralstimulationinchickensandhumans.Theimplicationwasthatiftheoralstimulation dropped below a certain level, the infant or chick developed a persistent hangover of excessiveneedformoreoralstimulation. Theexistingevidencenowsuggeststhatsensorysystems,likethemouth,beingparticularlysensitivetostimulidischargemorefrequentlywhenthereisvariationinthesensory stimuli,ratherthanwhenthereisnot[71,81,82].Thisisbecausethefrequencyofaction potentials in the sensory nerves diminishes during continuous stimulation by the same stimulusofthesameintensity(monotonousstimulation),leadingtoadaptationofthesensoryreceptorstothestimuluswhichstopiring[44].Thus,thecapacityofastimulusto evokeandmaintainarousalofthebrainforattention,awarenessandlearningislostwhen thesamestimulusofthesameintensityisrepeatedly(monotonously)presentedforsome time[71,81]. Kubie[71]experimentallyproducedadaptationofsensoryreceptors(touch,temperature, pressure, proprioceptor) by reducing the sensory low to a monotonous level, that is by reducingtheamplitudeandtherateofchangeofstimulustolevelsatwhichadaptationof receptorsoccurredandtheystoppediringtheirnerves.Hethensuggestedthattheeffectivenessofastimulusisnotrelatedtothevolumeoftheinputorthedirectionofchange,butto itsamplitudeandrateofchange. Freedmanetal.[82]furtherexpandedthetermsensorydeprivationtocovertwodifferentsituations:(1)thatinwhichanattemptismadetoreducetheabsolutelevelofsensory
M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_3, © Springer Verlag Berlin Heidelberg 2009
25
26
3
Sensory Deprivation of the Brain
inputtoaminimum,called“deprivation,”and(2)thatinwhichanattemptismadetoeliminateorderandmeaningfromthesensoryinput,called“notpatterned”input. Theprocessofincorporatingorderedrelationshipsintoapersonalperceptualschemeis oneofextractingusefulinformationfromthewelterof“noisy”sensationswithwhichthe organismorthemouthisconstantlybombarded.Theworldoftheinfantisabuzzingconfusion,becausehehasnotyetlearnedwhichoftheincomingstimuliaremeaningfulandwhich arenot.Iftheinfant’soralsensorycuesaretoacquiremeaningandbeincorporatedintothe schemeofthemouth,theymustberegular,notchangingcapriciouslyoradventitiously[82]. Inaddition,Freedmanetal.[82]suggestedthattheperceptionofenvironmentalrelationshipsisintermodalaswellasintramodal,implyingthatperceptualschematafordifferentsensemodalitiesarecloselytiedtogetherandmaythemselvesbeusedtoreafirmone another.Forexample,weseeacupofcoffee,thenreachoutourhandtopickitup.Success inreachingandtouchingthecupprovideskinestheticandtactileconirmationofthevisually“measured”positionanddistanceofthecup. Anumberofinvestigatorshavespeculatedabouttheneurologicaleffectsproducedby sensory deprivation. Heron [81] suggested that sensory deprivation seems to involve a general disorganization of brain function, similar to that produced by anoxia, by large braintumors,orbyadministrationofcertaindrugs. Hebb[16]consideredtheeffectsofmonotonoussensorystimulationonlearnedbehaviorandsuggestedthatthisconditionproducesdisruptionofthecapacityofthebraintolearn oreventothink.Hepointedouttheneedforpatternedsensorystimulationofthebrain,and hestressedthatintheabsenceofvariedstimulationthefunctionofthebrainbecomesless eficient,resultinginawidevarietyofbehavioral,motor,perceptual,andcognitivechanges as well as habit formation produced on the basis of the reduced sensory input (sensory deprivationofbrain),throughthedysfunctionoftheascendingreticularactivatingsystem (ARAS).Heconcludedbystatingthatonlypatterned(ordered,meaningful)sensorystimuli ofvaryingintensityseemtomaintainthestrengthofthesynapses,thusenhancingtheprocessingofinformation,whichcontributestotherichnessofsensoryexperience. Thismeansthatthesamesynapsemayundergogradedweakeningorstrengtheningaccordingtothetypeofstimulus(monotonousstimulusvs.variedandorderedstimulus),whichin turndeterminesthereleaseofchemicalsignalmolecules(neurotransmitters,growthfactors) strengtheningsynapsesandactivelyinvolvedinthedevelopingofneuralinputcircuits[2]. Theneuralactivitieswhichariseinthebrainthroughthestrengtheningofsynapsesand ofthepatternedsensoryinputinturnunderliesensation,perception,learning,andmemory ofexperiences,aswellasmotorcontrolofmuscles,anditisthesementalactivitiesthat deinethenatureofbrainchanges,throughthenormalstimulationofthesenses,including thoseofthemouth[15,58].
3.2 Sensory Deprivation and Thumb-Sucking Thumb-andinger-suckinghabitsappeartoberelativelyprevalentininfancyandchildhood,andthereappearstobesomerelationshipbetweenthehabitsandthedevelopment orexacerbationofmalocclusions.Ingeneral,however,thereisagreementthatthesehabits
3.2
Sensory Deprivation and Thumb-Sucking
27
areunlikelytoresultinpermanentdamagetothedentition,particularlyiftheyareabandonedbytheageoffourtoiveyears.Ifthechildpersistsbeyondthisperiodinthumb-or inger-sucking,itisfeltthatthelikelihoodofharmfuleffectsisincreased,althoughthe extenttowhichtheyareincreasedisnotfullyknown[83]. Thus,analternativeconsiderationisrequirediftheeffectofthumb-suckingontheocclusionoftheteethoronoralmotorbehavioristobeunderstood.Anumberofwritershave suggestedthatthehereditycomponentofmalocclusionseemstobemoreimportantforthe developmentoflatermalocclusionsthandoesthehabitofpersistentsuckingitself[83,84]. The potential inluence, however, of oral habits, for instance thumb-sucking, on the etiologyofmalocclusionsoftheteethinearlychildhood,mighthavetobereconsidered fromthepointofviewthatthehabitmayimposeconditionsofsensorydeprivationofthe cerebralcortex,affectingthenormalsensorimotorintegrationfunction,whichinturnmay resultinabnormalneuromuscularfunctionofthemouth. Speciically,anumberofresearchershaveprovidedevidencethatthesensorysystems, including the mouth, being particularly sensitive to stimuli discharge more frequently whenthereisvariationinthesensorystimuli,ratherthanwhenthereisnot[71,81,82]. Thisisbecausethefrequencyofactionpotentialsinthesensorynervesthatinnervatethe receptors diminishes during continuous stimulation by the same stimulus of the same intensity(monotonousstimulation)leadingtoadaptation(fatigue)ofthesensoryreceptorsofthemouth,whichstopiring[44].Thus,verylittlesensoryinformationistransmittedtothebrain,resultinginsensorydeprivationofthesomestheticcortex[71,82].These corticalchangesmayinturnpreventthemassivesynchronousdepolarizationofthemembraneofcorticalneurons(neuronsdonotireinsynchrony),whichisaprerequisitefor thegenerationoftheconsciouselectromagneticield,thephysicalsubstrateofconscious motorcontrolofmuscles,resultinginmotordysfunctionofthetrigeminalsystem[85] (seeSect.4.8). Inthisview,therepetitivemonotonousstimulationoftheoralsensesthroughthumbsucking(thesamestimulusofthesameintensityiscontinuallyrepeatedforalongtime) mayinduceadaptation(fatigue)anddeclineofthesensibilityofreceptorsofthemouth, whicheventuallystopiring,deprivingthecortexofthenormalsensoryinput,resultingin impairmentoflearningability,perception,andmotorcontrolofmuscles[16,82]. Thefactthatastrongcorrelationexistsbetweenthumb-suckingandtheclassIIdivision 1malocclusionoftheteeth,inwhichthemandibleisabnormallyheldbythemusclesina retrudedocclusalposition[1],mayberelatedtooraldisabilityoflearningmotorfunctions asaconsequenceofsensorydeprivation,inducedbythethumb-sucking. SensorydeprivationofthebrainresultsthroughtheaffectedfunctionoftheARASof thereticularformation.ThenormalfunctionoftheARASisnecessaryforarousalofthe brain for attention, awareness, and conscious learning. Without the collaboration of theARAStheoralsensoryinformationcannotbeprojectedfromthereticularformationto thecortex.Thisresultsinnodiscriminationoftheoralsensesandhence,sensorydeprivation. Normal regulation of oral sensorimotor functions derive from the cerebral cortex throughtheARAS.WhentheARASisaffectedbythemonotonousstimulationoftheoral sensesthroughthehabitactivity,perceptionisdisruptedandattentiongiveswaytodistractability. Behavior, including oral behavior becomes disorganized. This seems to be relectedineitherapervasiveinhibitionofsensorystimulioramarkedfacilitationoforal relexeswithexcessivemotoractivityofhighlystereotypedtypeandofnoadaptivenature,
28
3
Sensory Deprivation of the Brain
whichinturn,mayleadtohabitformation[64].Thusthumb-suckingmayinducesensory deprivationandconverselyoralsensorydeprivationmayinducethehabitactivitythrough theaffectedARAS. Thefactthatmanychildrensucktheiringersinordertoreducementalstressinorder tosleepmaysuggestthatthesechildrenseekisolationfromtheenvironment,andthatthe thumb-suckingactivityhelpstowardsthereductionoftheinputofexternalstimulitotheir brain.Inotherwordsthesechildrenareexperiencinga“functionaldeafferentation”ofthe cortex,whichisthesubstrateofthesleepingbrain[71,86]. Thus,thehabitofthumb-suckingmayemphasizewhatKubie[71]andHeron[81]have suggested,thatthecapacityofastimulustoevokeandmaintainarousalofthebrainfor attention,awareness,learning,perception,andmotorcontrolofmuscles,islostwhenthe stimulusismonotonously(notpatternedinput–withoutorderandmeaningforthecortex) presentedforsometime.Withthebreakdownoftheperception(internalframeofreferenceoftheexternalworld)itbecomesincreasingdificultforthebraintostructurethe normalphysiologyandanatomyofthemouth[82].
3.3 Sensory Deprivation and Malocclusions of the Teeth Theconcurrentlydevelopingbrainandmouthareliabletoseveralpatternsofabnormality andimpairment.Speciically,understandingoforalsensationandperceptionhasbeensubstantiallyadvancedbystudiesofanomalousandneurologicallyimpairedsubjects[43,65]. Inthefollowingparagraphsadisruptionofthecentralrepresentationoftheteethandof oralmotorfunctionsisdescribedinacaseofmalocclusionoftheteeth. Speciically,anabnormalperceptionoftheincisorteethassociatedwithabnormaloral motorbehavior,suchastonguethrustandpoorlycoordinatedmasticatorymovements,was diagnosedina21-year-oldmalepatientwithsevereclassIIIanterioropenbitemalocclusion oftheteeth.Thepatientwasnotawareofthepresenceoftheincisorteethinhismouthwithouttheuseofvision,i.e.,hehadthefeelingthattheincisorteethweremissing[87].However, aftertheorthodonticclosureoftheopenbiteandtheestablishmentofnormalocclusionof teeth,thepatientbecomeconsciousofthepresenceofthefullcomplementofteethinhis mouth(Figs.3.1–3.3). Accordingly,itwaspostulatedthattheimpairmentofperceptionoftheteethmayindicate thatintheopenbitethesensoryinput,stemmingatleastfromtheperiodontalmechanoreceptorsoftheincisorteeth,wasreducedresultinginsensorydeprivationofthesomesthetic cortex,wheretheoralsensorysystemispoint-to-pointrepresentedandperceived.Thisview, isconsistentwiththestudiesofMorimotoandKawamura[88]whofoundthatsubjectswith anormalocclusalrelationshipoftheirincisorteethcoulddiscriminatea0.2-mmdifference inthesizeofwiresheldbetweentheteeth,whilesubjectswithmaloccludedincisorteeth neededadifferenceofmorethan0.4-mminwiresizeinordertodiscriminatethem.They concludedthatperiodontalreceptorshavereducedsensibilityinmalopposedteeth. Similarly,thestudiesofTeuberetal.[89]andHaber[90]suggestthatchangesinperceptual function may happen in limited areas of the somesthetic cortex whose sensory
3.3
Sensory Deprivation and Malocclusions of the Teeth
29
a1
a2
a3
b1
b2
b3
c1
c2
c3
d1
d2
Fig. 3.1 Intraoralphotographs.(a1–a3)Pretreatment.(b1–b3)Afterayearofactivetreatment,upperand lowerMEAW(multiloopedge-wisearchwires)wereplacedand3/16-inch,6-ozverticalandclassIII elasticswereapplied.(c1–c3),(d1,d2,)Posttreatment.Theactivetreatmentdurationwas32months
a
b
c
Fig. 3.2 Cephalometric radiographs. (a) Pretreatment. (b) Posttreatment. (c) Pre-/posttreatment superimposition
30
a
3
Sensory Deprivation of the Brain
b
Fig. 3.3 Pantomographs.(a)Pretreatment.(b)Justbeforeapplianceremoval
inputhasbeenreducedasaresultofsensoryorperceptualisolationduetolossofalimb. Theamputationofalimbaffectstheregulatoryfunctionofsensoryinputexertedbythe ARASinthecortex,resultinginimpairmentoflimbperception. However,analternativehypothesisconcerningimpairmentofconsciousnessofthepresenceoftheincisorteethinopenbitemalocclusionbasedoncurrentstudiesonconsciousness andmotorcontrolmaybethefollowing.McFadden[85]suggestedthatconsciousawarenessorperceptionisaproductofthebrain’selectromagneticield.Perceptioncorrelates withthesynchronousiringofcorticalneurons,thusgeneratingtheconsciouselectromagneticield,whichinitiatesconsciouslearningofmotoractivities.Inthisview,thereduced sensoryinputoftheperiodontalreceptorsoftheincisorteethmayhaveresultedinlocalized sensorydeprivationofthecerebralcortexandhenceinatleastlocalizedsensoryintegration dysfunction.Thisinturnpreventedthemassivedepolarizationandsynchronousiringof corticalneuronsrequiredforthegenerationoftheconsciouselectromagneticield,resulting inimpairmentofperceptionandmotorbehaviorofthemouth,especiallyoftheskilledcoordinatedmovementsofchewing. However,theclosureoftheopenbiteandtheestablishmentofnormalocclusionofthe teeth,throughtheorthodontictreatment,resultedinthenormalsensibilityoftheperiodontalmechanoreceptorsoftheincisorteethandtheirregularinputprocessingofinformation inthecortex,followedbyanormalsensoryintegrationfunction,akeytonormalsensation, perception, learning, memory, and motor control of muscles. Thus, the normal cortical sensorimotor integration function resulted in the perception of oral structures, as the patient’sawarenessofthepresenceofthefullcomplementofteethinthemouthclearly suggests.Theconsciousperceptionoftheoralstructureswasassociatedwiththegenerationoftheelectromagneticieldinthebrain,whichinitiatedtherelearningofthemotor functionsofthemouthandtheimprovementinoralneuromuscularfunction. Inneurologicalterms,thechangesinoralsensationandperceptionofthemouthfollowingthereconstructionoftheocclusionofteethbytheorthodontictherapy,couldhypotheticallyhavebeeneffectedthroughthebrain’sneuroplasticity.Neuroplasticityimplieschemical andstructuralmodiicationsindendriticspinesinresponsetolearningofnewexperiences [3–5].Morphologicalchangesinthedendriticspinearekeytoitsplasticityandprocessing [6,7].Conversely,electricalstimulationleadingtolong-termpotentiation(LTP),leadsto synaptogenesis,i.e.,alterationinthenumberofspinesbytheformationofnewones[8,41].
3.4
Sensory Deprivation and Occlusal Interferences
31
Spinesondendritesareconsideredasthemajorsitesofpresynapticexcitatoryinputsofthe brain[3,15]. Thus,theorthodonticproceduresmighthavestimulatedtheoralmechanosensorysystemssothatafferentnervescarryingactionpotentialsfromperiodontalperiosteum,muscles,tendons,oralmucosa,receptors,etc,convergedtothedendriticspinesofthecortical neurons, where they were pooled and integrated in the microtubules of the subsynaptic zone lying beneath the spinous synapses. The subsynaptic zone of dendrites gives rise tospinesanditisthephysicalsubstrateofmemorystorageofnewlearnedexperiences [15,38].Theresultingnewfrequenciesofmuscleinformationcontractionpatternschanged theoralmotorbehavior[85].Bonereorganizationinturn,was“tuned”tothenewfrequencies of muscles through bone mechanosensation and intraosseous production of electric ieldstravelinginbonecellsconnectedbygapjunctions(electricalsynapses)[91]. Inaddition,theawarenessofthepresenceofthefullcomplementofteethinthepatient’s mouthsuggeststhattheperceptualschemeoftheteethhasbeeninscribedinmemory.Bliss andLomo[17]discoveredthatinthehippocampusmemorycentertherearespecialneuronal circuits serving long-term memory (LTP), and that brief experiences can induce memorystoragelastingforalongtimeafterthestimulushasbeenstopped. Insum,the“orthodonticstimulus”hasinducedlearningofnewsensory-perceptualand motorfunctionsofthemouththroughthetransformationsofthecorrespondingsensoryperceptual,motorandmemoryareasofthebrain.Thismightimplythattheorthodontic stimulushasactivatedspeciicbraingenesexpressingplasticity.Thismightinturnimply thattherulesthatgovernthestructureandfunctionofsensoryandmotormapsinthecortexcanbedecodedbytheorthodonticstimulus,suggestingthattheformationofcortical mapsisexperience-driven. Thisinsightisemancipating,becausemostmolecularbiologistswerecertainthatenvironmentalfactors,suchastactileandpressureexperiencescouldnotaffectgenefunction [69,73].Schanberg[73],however,locatedagrowthgenethatisresponsiblefortherelationshipbetweentouchstimulationandgrowth.Schanbergfoundthattouchdeprivationof rat pups by their mothers resulted in growth deprivation through endocrine hormone effects.Hethensuggestedthatthebraincanregulategrowthgenesthroughsensory(touch) processesaffectingtheproductionofgrowthhormone.Similarly,Moss[91]suggestedthat mechanotransduction of stimuli and computational bone biology offers an explanatory chainextendingfromtheepigeneticeventofmusclecontractionhierarchicallydownward totheregulationofthebonecellgenome.
3.4 Sensory Deprivation and Occlusal Interferences Thepresenceofirregularitiesoftheteethwithprematurecontactsduringclosure,haslong been considered to be a key factor in oral neuromuscular dysfunction, irrespective of whetheritisassumedtooperatebycentralinitiationofrelexhyperactivityorbycausing localhyperactivityofmusclesatthebrainstemlevel[95].However,althoughmanypatients
32
3
Sensory Deprivation of the Brain
withthisdysfunctiondopossessadefectiveocclusion,sotoodoasimilarproportionofthe populationwithoutthisdysfunction[96].Thismeansthatthereisnotadirectcauseand effectrelationshipbetweenocclusionpatternanddysfunction[95]. Inthefollowingparagraphsanattemptismadetorelateocclusalinterferencesorprematuredentalcontactsandtheassociatedneuromusculardysfunction,tosensorydeprivationof thecerebralcortex.Sensorydeprivationcausesbreakdownoftherelativebalancebetween the function of the ARAS and of cortical activity. Consequently, the individual becomes morealert,andthisstageofthebraintendstofacilitatetheirrelevantstimuli,resultingin hyperactivityofmuscles[64]. Recentneurophysiologicalstudiesofforcesappliedtothecrownofteeth(toothloadsare essentialfortheinemotorcontrolofthejawmusclesduringmastication)haveindicated thattheperiodontalmechanoreceptorsaredirectionallysensitivetotoothloading.Forexample,thereceptorsoftheincisorteethandpremolarsaremostsensitive(dischargevigorously) toforcesappliedhorizontallytotheircrowns.Thismeansthatforcesofthesamemagnitude appliedinotherdirectionsdonotevokeasgreataresponseasthehorizontalforces.This impliesthatfewerreceptorsrespondinnon-horizontalforces,providingambiguousinformationtothecentralnervoussystemabouttheamplitudeoftheforce[97,98]. Inaddition,otherneurophysiologicalstudieshaveindicatedthattheperiodontalmechanoreceptorssignalonlyrelativelysmallforcesandsaturatewhenlargerforcesareapplied totheteeth,resultinginnousefulinformationtothebrainastotheirmagnitude.Thus,the sustainedforcelevelbelowwhichthemechanoreceptorssignalisabout1N(correspondingto98gweight)fortheanteriorteethandabout3–4Nfortheposteriorteeth[99]. Accordingly,whenaforceof,forinstance,1Nisappliedtoananteriortooth,thetooth moves slightly in the socket. Clinically, this sometimes is observed as fremitus which inducesstressandstrainintheperiodontalligament.Adepolarizingreceptorpotentialand anactionpotentialaregeneratedinthereceptorsandinthenerveterminals,respectively. Theoutputthenfromanindividualperiodontalmechanoreceptordependsontheeffectiveness of the fremitus in producing strain in the periodontal receptors, as well as of the directionalsensitivityofthereceptorstogenerateavigorousactionpotentialinthenerve terminals[93]. Thusalargenumberofmechanicalfactorsdeterminetheeffectivenessofthemovementofatoothproducingstrainintheperiodontalligamentandstimulationofreceptors. Thesefactorsincludethesizeoftheforce,thesizeandshapeofthetooth,thepointofrotation(fulcrum)ofthetooth,thepointofapplicationoftheforce,andthepresenceofadjacentteethwithproximalcontacts.Theeffectofthesefactorsonthereceptordependson thepreciselocationofthereceptorsabouttheroot,thereceptors’orientationwithrespect to the surrounding collagen ibers under tension, and the viscoelastic properties of the periodontalligament[93].Asaconsequenceofthesefactorseachreceptorisoptimally stimulatedbyforcesappliedindirectionsthatmosteffectivelystrainthereceptors(directionalsensitivity)[93]. Itisalsonotedthatinthenormaldentitionthereceptiveieldoftheperiodontalmechanoreceptorsextendsbeyondasingletoothtoadjacentteeththroughtheinterdentalcontact andthetranseptalcollagenibers,resultinginamultitoothreceptiveieldresponse[100]. Thereceptiveield,however,mightbeevengreaterconsideringthefactthatthebonecells (excepttheosteoclasts)areconnectedbygapjunctionsthusforminglargecellularnetworks
3.4
Sensory Deprivation and Occlusal Interferences
33
(syncytium), so that the electric ields generated by the physical loading of the alveolar boneare“tunneling”throughthegapjunctionsintotheentirebonecellularnetwork[91]. Inmalocclusionsoftheteeth,however,onlythe“highspots”areincontactduringclosure. Theproximalcontactsarelost,becausetheteethinvolvedintheprematurecontactsare hypererupted.Consequently,themultitoothreceptiveieldresponsemightbeconsiderably reduced,resultinginverylittlesensoryinputtothebrain. Also,theremightbeanadditionalreasoncontributingtothereductioninthesensory input,asfollows.Theforceexertedonahypereruptedtoothduringchewingorclosureofthe teethmightbehigherthanthelevelofloadingthereceptorscantolerate.Forinstance,ifthe forcethatisappliedonahighspotintheanteriorsegmentofthedentitionishigherthan1N, thenitsperiodontalreceptorssaturateandprovidenousefulinformationtothebrain[99]. Accordingly,thecerebralcortexmayexperiencelocalizedsensorydeprivation,considering the large innervation and receptive ield of the anterior teeth, resulting in neuromuscular dysfunction. Itisinterestingthatthehypereruptedteethactasdangeroushighspotsinthesensorimotor system of the mouth. The ARAS is implicated in alerting the brain to the potential danger[64].Thismeansthatthecentralnervoussystemgearedtoightorlight,mayactivatetheprotectivesystem,whileatthesametimeinhibitingthediscriminativesystemon whichtheintegrationfunctionofthecortexisbased.Intheprotectivesystemthetactile stimuliofthemouthareinterpretedasnociceptivestimuli.Thetactilesystemisprepared tocopewiththeightorlightsituation.Theothersenses,whichformthediscriminative systemplaynowalesserroleandtheirinputisinhibited[101].Thismayresultinsensory deprivationofthecortexandsensorimotordysfunctionofthemouth(seeSect.8.30). Thefearofbitingonahighspotproducesadrenaline,whichenhancesreadinessfor ightorlight,butalsolowersthethresholdoftactilereceptors(increaseinsensitivity), thusenhancingtheirroleintheprotectivesystemagainstthediscriminativesystem.Onthe otherhand,theemotionalinvolvementcomplicatesfurtherthefunctionofthereceptors,as discussedbelow,leadingtosensorydeprivation. However,thereisanotherreasonwhytheprematuredentalcontactsmightcausesensory deprivation.Inthisview,theunvaryingfrequencyofthestimulushastobeconsidered.The samestimulusofthesameintensityiscontinually(monotonously)repeatedontheteeth with premature contact leading to adaptation (fatigue) of periodontal mechanoreceptors. Thereceptorsstopiringandthecerebralcortexsufferssensorydeprivation(seeSect.3.7). TheARAScanadjustitsfunctiontothereductioninsensoryinputwithinlimits[64](see Sect.2.6). However,ifintothealreadysensory-deprivedbrainbecauseoftheprematuredental contacts,isintroducedanadditionalderangementoftheARASandofcorticalactivity,for instance in the form of the habit of thumb-sucking (thumb-sucking is very common in youngchildren,andisstronglycorrelatedwithclassIIdivision1malocclusionofteeth [1]),thensensoryoverloadmayoccurinthebrain.Sensoryoverloadisanabnormalconditionthatdevelopsthroughintensemultisensoryexperiences(touch,pressure,proprioception,etc)comingfromthesamesource,inthisinstance,fromthemouth.Thesestimulidue totheirunvaryingfrequency,intensityandcomplexityareunwelcometothebrain,resultinginsensorydeprivation,followedbydeicitsinsensation,perception,learning,memory, andmotorcontrol[63,64].
34
3
Sensory Deprivation of the Brain
Accordingly, since perception, learning, and memory are correlated neural activities [15,69]andrelatedtoemotionaldevelopment[63],itisnotunlikelythatthedegreeofperceptualdeicitinsensoryoverloadwillalsohaveanemotionaleffectinchildren,forinstance anxiety,whichveryoftenisassociatedwiththumb-sucking.Anxietyormentalstressmay inturnaggravatethesensorydeprivationofthebrain,asdiscussedbelow.Finally,inpeople withmalocclusionsoftheteeththesensibilityoftheteethisreducedandtheyhaveapoor abilitytodiscriminatestimulibetweentheteeth.Thismeansthatnormalocclusionofthe teethisnecessarytomaintainthecompletenormalperiodontalsensibility[88]. Insum,theocclusalinterferencesorprematurecontactsofmalocclusionsoftheteeth, asfactorscausingneuromusculardysfunction,mayhavetobereinterpretedthroughthe sensorydeprivationmechanism,whichaffectsthenormalsensoryinputandthusthesensorimotorintegrationfunctionofthecerebralcortex.Thereducedoralsensoryinputaffects theregulatoryfunctionoftheARASuponthecortex,especiallywhenthecentralderangementisalertingtheprotectivemechanismsofthebrain,whilethediscriminativesystemis suppressed. The central insults prevent any adaptational effort of the oral sensorimotor system,resultingincompletedisorganizationoforalmotorbehavior. Whensensorydeprivationoccursintheperiodofearlypostnatalgrowthanddevelopment,thelearningofskilledoralmovements,suchaschewing,byindividualcentraldesign maynotoccur,resultinginuncoordinatedmuscularpatterns[102].Insteadtheprimary, unlearned,stereotypedpatternsofmovementsmaystillbepresentinyoungchildren,suggestingcorticalcognitiveandmotordysfunction[102]. Inthiscontext,earlymalocclusionsoftheteethassociatedwithsensorydeprivationmay leadtomanyformsofneuromusculardysfunctionandabnormalbonegrowth.Forexample, Moss[91]suggestedthatmechanosensoryprocessesoperateinbone,whichiselectrically active.Boneis“tuned”totheprecisefrequenciesofskeletalmuscleactivity,andhasmorphogeneticinluences.Inthisview,centralconsciouselectromagneticinformationoutput tomusclesmayregulatethecontractionfrequencyofmuscles[85],whichinturnmayinluenceboneorganization.Thus,normalorabnormalcorticalpyramidalmotorneuronoutput mayinluencenormalorabnormalneuromuscularpatternsandbonegrowth.Normalneuromuscularpatternsrequireanintactoralafferentnerveinputfunction,whichisasigniicantmorphogeneticfactorinthedevelopmentoftheoralregion[43].
3.5 Sensory Deprivation and Emotions in the Deciduous and Mixed Dentition Thereductioninsensoryinputinthecerebralcortex,throughdecreasedorunvaryingfrequencysensoryinput,mayleadtochangesinemotion,andemotionalchangesmayleadto alterationinthefunctionofsensoryreceptorsandperception,throughhypothalamicand limbic system mechanisms. In this view, the sensory, parasympathetic and sympathetic branchesofthenervoussystemarerelated[63,64]. The interaction of the sensory deprivation of the cortex with the autonomic nervous systemmayberelevanttotheemotionsofchildrenduringtheirpreschooleducation.Inthis
3.5
Sensory Deprivation and Emotions in the Deciduous and Mixed Dentition
35
periodwearelearningmostofourexperiencesandhence,sensorydeprivationofthebrain is critical to learning ability [15]. Education at this age, however, means limitation and thereforeitisaperiodofemotionalloadingandpsychicnarrowing[79].Thechildrenmay sufferfrommentaldistress,whichmayleadtochangesinreceptorfunction,followedby sensorydeprivationofthebrainandoralsensorimotordysfunction[63].Theimpairment ofthemobilityofthemouthmayinturnrestrictfurtherthestimulationoforalreceptors andhenceaggravatethesensorydeprivation,inaccordancewiththeprinciplethatnormal oralmotionsgeneratemostofthesensoryinput[43]. In addition, most mentally stressed children may develop severe nocturnal bruxism and/orthumb-sucking[83].Thumb-suckingmayleadtosensorydeprivation,asalready discussed.Bruxismisviewedasacentraldisorderinvolvingexcessiveactivationofthe “centralpatterngenerator”or“chewingcenter”[78]. Lindsley [64] suggested that when the arousal of the cerebral cortex is diminished throughthemechanismsaffectedbythesensorydeprivation,theARAS,thelearningand perceptual abilities of the cortex are impaired. This breakdown of the relative balance betweenthefunctionoftheARASandcorticalactivityisbelievedtobeassociatedwith someofthemotorbehaviorchangesseeninsensorydeprivation,includingtheformation of habits. In other words the individual becomes more alert, which is characterized by hyperactivity, because the cortical factors are not under the regulatory inluence of the ARAS.Thus,Lindsleyprovidesawayofunderstandingthehyperactivityofmusclesin bruxismandinthumb-suckingthroughthesensorydeprivationofthecortex. Ontheotherhand,ithasbeensuggestedthattheabrasionofdeciduousteethduring bruxism helps the mandible shift from a retrognathic position during the period of the deciduousdentitiontoananteriornormaldevelopmentalpositionwhenthemixeddentitionispresent[94].Itcanbeargued,however,thatduringtheabrasionperiodofteeththe child is actively involved in bruxism and/or thumb-sucking, which are associated with emotionalloading.Thesenervoussystemderangements,however,havebeenimplicated, asalreadydiscussed,inthesensorydeprivationofthecortexandsensoryintegrationdysfunction,whicharefollowedbyabnormaloralneuromuscularfunction.Thus,impairment ofnormalfunctionofthemusclesmaypreventtheprotrusivemovementofthemandible duringthesubsequentgrowthanddevelopmentperiodofthemouthandinsteadmaylead toabnormalretrognathicgrowthofthemandible,resultinginthefamiliarclassIIdivision 1malocclusionoftheteeth.AsimilarassumptionwasmadebyMoyers[1]whosuggested thattheemotionalstatusofyoungchildrenmayrelexlyguidethemandibleinanabnormal occlusalposition,whichinturn,mayleadtoanabnormalgrowthpattern. Childrenmayalsoexperienceemotionaldisturbancesandsensorydeprivationduring eruptionoftheirstpermanentmolarteethwiththeirdistinctcuspsystem.Childrenthen experienceocclusalinterferencesandthechewingandspeechfunctionshavetoadaptto theserigidstructureslimitingthefreedomofmandibularmovements[94].Atthesame timechildrenareexposedtoanincreasedsocialnarrowing.Theyaregoingtoschooland havetochangefromalifeofstanding,jumping,runningtoalifeofsitting.Thus,childrenmayagainsuffermentaldistresswhichmayleadtochangesinreceptorsandsensory deprivation which in turn may affect the function of the deep limbic system as discussedbelow.
36
3
Sensory Deprivation of the Brain
3.6 Looking into Love and Depression: The Deep Limbic System Everytimechildrenhaveanangrythought,anunkindthought,asadthought,oracranky thought,theirbrainreleaseschemicalsthatmaketheirbodyfeelbadandactivatethedeep limbicsystem.Whenchildrenareangrytheirmusclesbecometense,theirheartsbeatfaster, theirhandsstarttosweat,andtheymayevenbegintofeelalittledizzy.Theirbodyreactsto everynegativethoughttheyhave.Anegativethoughtislikepollutiontothebrainandbody. Whenchildrenarehappy,theirmusclesrelax,theirheartsbeatmoreslowly,theybreath moreslowlyandtheirbodyreactstogoodthoughts.Ofsigniicantimportanceisthebonding between children and parents. Children need actual physical time with their parents (limbicbonding).Resnicketal.[150]havereportedthatteenagerswhofeltlovedandconnectedtotheirparentshaveasigniicantlylowerincidenceofpregnancy,druguse,violence andsuicide. Theclassictermlimbicsystemincorporatesthecingulategyrusanddeeptemporallobes. Theterm“deeplimbicsystem”includesthethalamicstructuresandhypothalamus,along with the surrounding structures [199]. Emotional disturbances of children may involve abnormalityofthefunctionofthedeeplimbicsystem,especiallyofthehypothalamus.The deeplimbicsystemaffectsmotivation,peoplesometimesdevelopan“Idon’tcare”attitude aboutlifeandwork;theydon’thavetheenergytocare.Children,becausetheyfeelhopeless abouttheoutcome,mayhavelittlewill-powertofollowthroughwithtasks.Sincethesleep andappetitecentersareinthedeeplimbicsystem,disruptionoffunctioncanleadtochanges, whichmaymeananinclinationtowardtoomuchortwolittleofeither.Forexample,intypicaldepressiveepisodeschildrenmaylosetheirappetiteandhavetroublesleepingdespite beingchronicallytired,andyetinatypicaldepressiontheywillsleepandeatexcessively.In addition, bonding and limbic system problems go hand in hand. For example, the most fundamental bond in the human universe is the mother–infant bond. Hormonal changes afterchildbirthcancauselimbicoremotionalproblemsinthemother.Theyarecalledthe “babyblues”whentheyaremild,andpostpartumdepressionorpsychosiswhentheyare severe.Themothermayemotionallywithdrawfromthebaby,preventingthebabyfrom developingnormally[199]. Lack of bonding and depression is known to be caused by a deicit of certain neurotransmitters,especiallynorepinephrine(noradrenaline)andserotonin.Thisdeicitcan cause increased metabolism or inlammation in the deep limbic system, which in turn causesmanyoftheproblemsassociatedwithdepression[199].
3.7 Sensory Adaptation Oneofthemostimportantgeneralizationsthatcanbemadeaboutthephysiologyofthesense organsisadaptation.Ineffectadaptationinthecontextofsensationreferstothefactthata prolongedanduniformsensorystimuluseventuallyceasestoinitiateanerveimpulse(action
3.7
Sensory Adaptation
37
potential);inotherwords,asenseorganceasestorespondtoaprolongedstimulusofuniform intensity.Adaptationisaphenomenonthatremindsusthatsenseorganscanrespondonlyto environmentalchangeofstate.Thussomeonewhogoesintoaroomcontainingabowlof rosesmaysmellthematirst,butthenbecomeawareofthem.Oncethisprocessofsensory adaptationhasoccurred,noeffectofattentioncancallthesmelltomind.Itisapopularfallacythatchewinggumregainsitslavorifremovedfromthemouth.Whatisregainedisnot thelavorbuttheabilitytotastethelavorassensoryadaptationwearsoff[142]. Asenseorganisespeciallyadaptedtorespondtoonekindofenvironmentalchangeof stateratherthananother.Forexample,totemperature,tolight,topain,sound,posture(as disclosedbymuscleandjointreceptors),toorientationinspaceandangularacceleration (both the work of the ear, an equilibratory as well as an acoustic organ). Furthermore, accordingtotheJohannesMüller’sLawofSpeciicIrritability,orLawofSpeciicNervous Energy,themodalityofsensationwhetheroflight,sound,pain,orpostureisdeterminednot by the sense organs, which after all can only generate nerve impulses, but by the nerve itself,orratherbyitscentralconnectionsandintegration.Stimulationoftheauditorynerve producessensationsofsound,andoftheopticnervesensationsoflight,bywhatevermeans thenervesarestimulated.Muchelseinsensationiscentrallygoverned.Thusdifferentcorticalreceptorsprovidetheperceptionofalinethatisverticalandonethatistilted[142].
Looking into the “Black Box”
4
4.1 Introduction Ithasbeentraditionaltovieworalmotorbehaviorintermsofa“blackbox”atermadapted fromthephysicalsciencestodesignateareasofasysteminwhichitisnotknownexactly whatistakingplace.Thisviewdescribesinputandoutputwithlittleattentionpaidtowhat goesoninsidethebrain.Theblackboxapproachoforalmotorbehaviorhandlesinternal processesbysimplyignoringthem.Thebrainthatregulatestheoralsensorimotorbehavior,suchasspeech,chewing,swallowing,secretionofsalivaryglands,etc,istraditionally viewed as an impenetrable black box receiving inputs (stimuli) and emitting outputs (responses)withlittleattentionpaidtowhatgoesinsidethebrain.Withoutinformation abouttheinterveningcentralmechanismsmostearlyoralmotorbehaviorresearchcontributedlittletowardtheunderstandingofnormalanddysfunctionalmotorbehavior. I contend that oral motor behaviors (chewing, speech) are different from the motor behaviorsperformedinotherbodysegments(walking,writing)indailylife,andorthodonticshasmuchtogainbyexaminingthecurrentstateoftheartinthemotorcontroland learningarea.Inthischapteranattemptismadetoexplorethemostrecentneurophysiologicalresearchonthebrain’smechanismsthatarekeystosensation,perception,learning, memory,andmotorbehaviorfunctions.
4.2 Decoding the Brain Changes Agrowingnumberofresearchersarenowfocusingtheirattentiononthebiophysicsofthe cytoskeletonofneurons,inordertounderstanditsroleintheneurophysiologyofsensation andperception.Amongthereasonstolookbeyondtheclassicalmodelsofneurophysiology ofperception,isthefactthatsingle-celledorganisms,suchastheparameciumcaudatum, havenoneuronsorsynapses,butstillexhibitanapparentawarenessofandresponsiveness totheirenvironment.Thus,therudimentsofsensationandperceptionliesomeplaceother thanthecomplexinteractionsbetweenneuronsandtheirsynapses,althoughthelatterare M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_4, © Springer Verlag Berlin Heidelberg 2009
39
40
4 Looking into the “Black Box”
certaintocontributetoheighteningofsensoryinputandprocessingofinformation,through theirstrengthening[33].Hebb[16]suggestedthatthebrainstrengthenstheneuronsynapses accordingtohowoftentheyareused(stimulated)throughexperiences,resultinginheightening ofsensoryinputandprocessinginthecortex,whichinturnunderliessensation,perception, learning,memory,andmotorcontrol. Thecurrentlymostacceptedviewisthattheprocessingofinformationfromthesenses occursatthelevelofthemicrotubuleswithintheinternalcytoskeletalilamentousproteins of the neuron, that include microtubules, actin, and intermediate ilaments. In many respectsmicrotubulesareconsideredthecontrolcenter,whichdeterminestheshape,structure,growth,andfunctionoftheneuron[15,33,38]. Themicrotubulesarecylindricalpolymerscomposedoftubulindimers(proteinbuilding blocks)withplusandminuselectricalends(dipole).Bothtubulinendsundergopolymerization– depolymerizationcyclesduringinformationprocessing.Tubulinproteinisfoundmainlyin thecytoplasmofeukaryoticcellsanditisespeciallyenrichedinthebraintissue[15]. Microtubulesaremoststableandhavebeenhypothesizedtobecentralincellularinformationprocessing.Whenevercellularorganizationandintelligencearerequired,microtubulesarepresentandinvolved.Forexample,thereisaccumulatedevidencethatmicrotubules arecomputationallyrelevanttoneurocognition[56,103,104].Woolf[15]demonstratedthat microtubulesandmicrotubule-associatedprotein-2(MAP2)areproteolyzedwithlearning, asexempliiedinhippocampalneuronsofratswithcontextualfearconditioning.Similarly, Cronly-DillonandPerry[105]haveshownthatneuronsofthevisualcortexproducemassive amountsoftubulinduringthecriticalperiod(fromthedaytheeyesopentopostnatalday35). Thecriticalperiodisthetimeduringwhichsynaptogenesisandvisuallearningoccursat highestrates.Thus,tubulinproteinisimplicatedindevelopmentalcognitiveprocesses. Speciically,thePenroseandHameroff[113]modelofinformationprocessingsuggests thatinformationstorage,representingstructuralandchemicalmodiicationsofmicrotubules, occurs in the subsynaptic zone lying beneath the spinous synapses of dendrites, whereinmicrotubulesdeterminesynapticpropertiesofspinesbasedonprevioussynaptic activitystoredasmemory.Thesechangesformthephysicalbasisoflong-termmemory storageinthemicrotubulesofthesubsynapticzone.Themorphologicalchangesindendritespines,aswellastheformationofnewspinesandsynapses,arekeytostructuraland chemicalneuroplasticitythatoccursinthemicrotubulesofthesubsynapticzoneofdendrites,followinglearningofexperiences[4–7].Themicrotubulechangesfollowinglearning and memory, also form the cornerstone of the neural correlate of perception or consciousness.Thisimpliesthattheconsequenceofchangesinthemicrotubulesofthe subsynaptic zone, following learning and memory of a new experience, will ensure (induce)theemergenceofasimilardynamicchangeintheperceptualstateofthebrain dependinguponthestimulus,throughthe“Hebbianneuronalassemblies”[38].Inother words,Hebb[16]postulatedthatfunctionalunitscorrespondingtoparticularmentalstates, forinstanceperceptionorconsciousnessmightbeformed.Thefunctionalunitsareconsideredasnetworksorassembliesofmanythousandsofneuronsthatcanbeignitedbyparticularinputs,andireinsynchrony,andremainactive(iring)forhundredsofmilliseconds, following which another related assembly ignites, then another, and so on in a phase sequence.Hebbsuggestedthatiftheactivityofaneuralassemblyrepresentingaspeciic setofcontentexceedstheactivityofallotherassembliesinsometypeofcompetition,it
4.2
Decoding the Brain Changes
41
meetsthecostofenteringintoperceptionorconsciousness.Inotherwords,theparticular neuronassemblybecomesconscious[38]. Severalinvestigatorshavehypothesizedthatconsciousnessislocatedinahorizontal layer of interconnected cortical neurons sandwiched between ascending (bottom-up) inputsfromthethalamusandbasalforebrain,anddescending(top-down)executivefunctionsfromtheprefrontalcortex[38].Bottom-upinputsconveysensoryinformationfor generalarousalthroughthereticularformation,aswellasemotionalcontextfrombasal forebrain inputs [106, 107]. Top-down inluences include executive functions. Acting together,bottom-upandtop-downactivationsselectaneuralassembly—aspeciicsubset of cortical–cortical projections—for attention and consciousness [38]. Thus, consciousnessistheoutputofaprocessthatcomparesavailableincoming(bottom-up)information againstanticipatoryexecutive(top-down)schemata[38,108]. Itisnotedthatthebasalforebrainneuronsreceivesensory(input)collateralbranches fromaxonsenroutetothecerebralcortex.Inthismannerthebasalforebrainneuronsobtain ageneralideaoftheoverallpatternofincominginputsandthenbasetheiroutputsonthose assessments.Thebasalforebrainneuronsuseneurotransmittersacetylcholineandmonoamines(norepinephrine,serotonin,anddopamine)[15].Thecholinergic(acetylcholine)neurons contribute to selective attention, whereas the neurons producing norepinephrine, serotoninordopaminecontributetogeneralarousalofthebrainorvigilance.Cholinergic neuronsfromthebasalforebrainareabletocontributetoselectiveattentiontoaparticular sensorystimulus,toamemory,ortoacomplexamalgamofbothstimulusandmemory, becausetheyinnervatediscreteareasofthecortexofasinglemodalitymeasuring1–2mm2. Incontrast,themonoamineneuronsinnervatethecortexlessrestrictively,i.e.,asinglenoradrenergic(norepinephrine)ibermayprovideinputstomanydifferenttypesofcortex[15]. Takingintoconsiderationthatattentionisadeliberateactionrelatedtoaconsciousstate ofmind,cholinergicandmonoaminergicinputsdiffuselydistributedtocorticalmodulesor totheentirecortex,willsampletheoverallpatternofinputenroutetothecortex.These inputsarenecessary but not suficient for attention and arousal. Activation by the neurotransmittersglutamate,acetylcholineandmonoamines,aswellasthebiophysicalstate ofthemicrotubulenetwork(becausemicrotubulescanpolymerizeanddepolymerize,they cansearchforandactivateparticularsubsynapticsites)arenecessaryforfullconscious awareness.Consequently,thephysicalsensationofattentionandperceptionorconsciousnessarenotassociatedwithsynapticactivityperse.Insteadthesesensationsareassociated withthebiophysicalstateofmicrotubulesthatregulatespolymerization–depolymerization cyclesoftheirbuildingproteintubulin[15]. Thus,thebrainisstructuredasaconsequenceoftheinformationstimulus.Thistakes theformofneuraleventsinspaceandtimethatcorrespondtothespatiotemporalrelationshipsimplicitinthestimulus.Areasofthebrainareexcitedandotherssuppressed[58]. Accordingly,thelearning–memoryabilitiesofthebrain,aswellas,thephysicalsensation ofperceptionorconsciousnessare“products”ofsensoryinput–informationprocessingof thebrain,dependingonthetransformationsimposeduponthecytoskeletonofneurons,as aconsequenceofthetransformationsembodiedbythestimulusinthesenses[58]. Theneurotransmitterglutamatemediatesthesensoryinputtothecerebralcortex,where manyoftheexcitatorypresynapticterminalssynapsewiththedendritespines[15].The numberofspinesandsynapsesaremoreabundantinhighlyarborizedneurons,suchas
42
4 Looking into the “Black Box”
pyramidalneurons,suggestinganaugmentedexcitatoryinputonthepyramidalneurons, whichinturnmaymediatemotorbehavior[3,15]. GlutamatebindstoAMPA,NMDAandkainate,receptorslocatedonthemembraneof spines,andopenssodium(Na+)orcalcium(Ca2+)ionchannelsdependingonthereceptor, sothatNa+orCa2+entersthecellandpenetratesthesubsynapticzone.Theionicinlux activatesproteinswhichinitiatepolymerization–depolymerizationcyclesoftubulinproteinofmicrotubules,resultinginchangesintheconformationalstateoftubulin,whichis criticalforeffectivetransportofproteinsalongmicrotubulestosynapsesfortheirstrengtheninginconveyingtheinformationinput[15].Thus,tubulinprotein,thebuildingprotein ofmicrotubulesinthesubsynapticzoneofdendrites,hasaclearinvolvementincognitive processes,whichsuggeststhatlearningexperiencealtersthebasicstructureofthecytoskeletonofneurons.Informationofthelearnedexperienceisthenstoredinmicrotubulesas memory,whichmightormightnotreachperceptionorconsciousness[15,38,109,110]. InthisregardAlzheimer’sdisease,whichisaccompaniedbydeicitsinintellect,memory andconsciousness,hasbeenlinkedtomicrotubuledegradation[111]. Ithasbeentheorizedthattheinteriorregionsofthemicrotubulesplaytheroleofelectromagneticcavities.Theinteractionofthesecavitieswiththetubulinbindingproteincan leadtotheemergenceofquantumeffects,whichplayabiologicallyrelevantroleinthe informationprocessing,storageandretrievaldonebytheneurons[38]. Inthiscontext,theinteriormilieuofmicrotubuleshasbeenlinkedtoacagedquantum bit(qubit).Conventionalcomputersrepresentdigitalinformationasbinarybitsofeither 1or0.Quantumcomputerscanrepresentquantuminformationassuperpositionsofboth 1 and 0 known as qubits, and are capable of quantum computation. The conformation statesofindividualtubulinsplaytheroleofbitsincomputers.Theconformationstatesof tubulinproteinthenareconsideredtheessentialinput–outputfunctionoftheneuron[33]. Accordingly,alargenumberofauthorshaveprovidedvariousargumentsformicrotubules beingpivotaltoconsciousness.Inparticular,becausetheymaywellformthecentralnervous systemofthecell,sincemicrotubulesdopropagatesignalsincells.Ithasthusbeensuggested thatifoneassumesthatthephenomenonofconsciousnessdependsoncellularprocesses,then naturehasprovidedthenecessarystructures(microtubules)tooperateasthebasicsubstrateof quantumcomputation,providedthereareindeedquantumeffectsinconsciousness[33].Bohm andHiley[112]proposedthatthewavefunctioninthequantumsuperpositions(particles/ systemsexistinginmultiplestatesorlocationssimultaneously,governedbyaquantumwave function)containsactiveinformationthatguidesthemovementofparticlesalongthemicrotubules,andthatconsciousnessisassociatedwiththismovementandactiveinformation.The quantumsuperimpositionstateinthemicrotubulesisconsideredtocollapseatthesupramolecularlevelduetointeractionwiththeclassicalenvironmentortheconsciousobserver[38]. Inthisview,thecurrentlymostacceptedtheoryofconsciousness,thePenrose-Hameroff “Orch-OR”model[38,113]suggeststhatourbrainsarequantummechanicalintheirprocessingofinformationandthattheprocessofhumanconsciousnesscannotbesimulated classically.Theythenproposedthatconsciousnessisasequenceofquantumcomputations of information in the microtubules within brain neurons, shielded from decoherence to reachthethresholdforobjectivereduction(“OR”).Thequantumcomputationsare“orchestrated” (hence, “Orch-OR”) by neural/synaptic inputs and extend throughout cortex by tunnelingthroughwindow-likegapjunctionsbetweenneurons.Consciousnessemergesin
4.2
Decoding the Brain Changes
43
dendritesofcorticalneuronsinterconnectedbygapjunctions(electricalsynapses)forming agiantneuronor“hyperneuron,”inwhichallneuronsireinsynchrony(simultaneously). Gapjunctionsorelectricalsynapsesoccurbetweenneuraldendrites,betweenaxonsand axons,betweenneuronsandglia,betweenglia,andbetweenaxonsanddendrites—bypassing chemicalsynapses[114,115].Ions,nutrientsandstrandsofDNAorRNApassthroughthe opengaps,sogapjunction-connectedneuronshavebothcontinuousmembranesurfacesand cytoplasm,andtheneuronsareelectricallycoupled,depolarizesynchronouslyandbehave likeonegiantneuron(hyperneuron)[116]. Chemicalsynapsesandaxonalactionpotentialsconveyinputsto,andoutputsfrom,conscious processes elaborated in hyperneurons. The experiential action potential from the peripheralreceptorsreachesthecorticaldendritesandalterstheconformationstateoftubulin proteinofmicrotubules.Thetubulinsubunitsofmicrotubulesarethefundamentalunitsof information.Computationsarethencarriedoutbythetubulinsubunitswhichspreadallover thecortexthroughthegapjunctionsgeneratingtheconsciousstateofthebrain[38,113]. Ithasbeensuggestedthatpreconsciousexperienceorthoughtexistsintermsofmultiple quantumstates,andtheconsciousexperienceisrealizedwhenoneofthemanypossible statesprevails.Thismeansthattheconsciousmentaleventscanbeassumedtocorrespond toquantumcollapsesofsuperpositionstatesatthelevelofmacroscopicbrainactivity[38]. The perspective that could be advanced is that the oral senses are “online” with the brain,sotheirinformationinputandprocessingisinvolvedinlearningandmemorystorageabilities,atthesametimealsogivingrisetoaconsciousexperienceintheformof perceptionorconsciousness.Thismayoccurwhenacriticallevelofcomplexityandinteractionisreachedbetweencorticalneuronsconnectedbygapjunctions.Inotherwords,if theactivityofafunctionalunit(hyperneuron)correspondingtoaparticularmentalstate exceedsallotherfunctionalunitsinsometypeofcompetition,itmeetsthecostofentering perception.Hence,perceptionchoosesreality,whilemostothermentalactivities,includingmotoractivityarenormallynonconsciousactivities[38]. Gapjunctionnetworks(hyperneurons),whichmaytransmitthroughthegapjunction quantum states from neuron to neuron individual proteins or strands of DNA or RNA molecules,havebeenshowntobewidelyprevalentinthebrainandtomediatesynchronousiringofneuronsinvariousfrequenciesoftheelectroencephalogram(EEG).Among these the so-called gamma coherent 40-Hz neuronal activity correlates best with consciousness[117–119].Clinicalsignsofpainawareness,pupillarysize,heartrate,blood pressure,lacrimation,diaphoresis,mucussecretion,EEGpowerspectrum/40Hz,etc,are usedtoindicateadequateanesthesiaandlackofconsciousness.Whileconsciousnessis erasedduringgeneralanesthesia,nonconsciousbrainEEGandevokedpotentialscontinue, althoughtheyarereduced[38]. Theconclusionseemtobethattheinformationprocessinginthebrainandtheresulting structuralandchemicalchangesofthebraincandescribethecontentsoftheblackbox. Thebrainis“online”withthemouthcontinuallyreceivingandprocessingmessagesfrom thesenses.Theinformationinputreachesthemicrotubulesofthesubsynapticzoneofthe dendrites,thatgiverisetospines,andinducestransformationsoftheproteintubulin.The resultingchangesinthebraincanbeseenasformingacontinuum,i.e.,aseriesofcomplex correlatedmentalactivities,dependinguponthestimulus,whichunderliessomaticsensationperception, attention and awareness (arousal of the brain), and learning and memory
44
4 Looking into the “Black Box”
(cognitivefunctions),aswellasmotoroutputmodelstomusclesthroughthepyramidal andextrapyramidaltracts[15,38,58]. Duringgrowthanddevelopmentgapjunctionslinkcorticalpyramidalneuronsintofunctional units (hyperneurons) emitting outputs to the motor nuclei of the trigeminal nerve, resultinginoralsensorimotorfunctions,suchasspeechandchewing.Asinglepyramidal neuronhasnumerousgapjunctionconnections,ofwhichonlysomeareopenatanyone time,withrapidopeningsandclosingsregulatedbythemicrotubulesthroughtheirinformation-processingtransformations[120].Thissuggeststhatgapjunctionsareasdynamicand mutableasthosecraftedbychemicalsynapses[121].Thuswithineachcerebralhemisphere thereisnoapparentlimittotheextentofgapjunctionnetworks,whichmayformalarge continuousneuronsyncytiumthatcouldevenextendtobothhemispheres[122,123]. Inthisview,thalamocorticalneuronsgeneratingsynchronousalphaandthetacortical activityintheEEG,arelinkedtogapjunctionsinthethalamus[123],sothatthalamocorticalprojections(ortrans-corpuscallosumpathways)couldjointhetwocerebralhemispheres in hyperneurons to account for the bilateral synchronous contraction of the masticatory muscles[38].Accordingly,abnormalcouplingofthecerebralhemispheresinhyperneurons mightunderliethedissociationoftheleftandrightmasticatorymuscleactivityintheunilateralposteriorcross-bitemalocclusionoftheteeth[124,125],suggestingthatthedissociationofbilateralactivityofthemasticatorymusclesintheunilateralposteriorcross-bite malocclusionoftheteethisduetoabnormalbrainfunction. Inthiscontext,thediagnosisofsensorimotordysfunctionofmalocclusionsoftheteeth associatedwithoralfacialimbalancesthroughtheinformation-processingapproachisa fardifferentskillfromtheclassicalapproach.Thisisbecauseitenablestheorthodontistto view the patient as an active processor of information and hence mediate between the patientandthedysfunctionbyinducingbrainneuroplasticitythroughtheorthodonticcorrective experience. This implies that neuroplasticity of the brain is responsible for the changesinmotorbehaviorseeninmalocclusionsoftheteethfollowingorthodontictreatment.Indeed,neuroscientistswidelyacceptthatcognitionandperceptionarecorrelated withthephysiologicalfunctionofthebrain[33,85]. Unlikethetraditionalorthodonticdiagnosticapproach,whichviewsonlytheperipheral behavioralproductsofthecentralnervoussystem,theapplicationoftheinformation-processing modeltooralsensorimotorbehaviorfocusesaspecialinterestontheneuraleventsthatare necessary for giving an oral conscious experience and how it may regulate oral motor behavior.Thus,theinformation-processingapproachstressesacompletenewconceptualizationoforalfunctionsthroughthedescriptionofthepreciseneuraleventsinthebrainthat underlie these functions, which eventually will provide practitioners with a rationale for correctingdysfunctionofthemouth.Forexample,employmentoftheinformation-processingapproachallowsthepractitionertocomparethewaysinwhichdifferentaspectsoforal behaviorarestructuredinmemory,sothatcommonpropertiescanbediscussed.Also,the practitioner who understands the processes that underlie motor behavior is aware of the patient’sprobablecognitivestrategiesinsituationsofdiscomfortordysfunctionandmay contributetodiagnosethesourceofperceptual-motordeicits.Finally,itisobviousthatif orthodonticsanddentalmedicinearetoadvance,thereneedstobeabetterunderstandingof theexecutivecentersofthebrain,suchastheprefrontalcortex,whoseoutputintheformof consciousactionfocusesonbehaviorincludingtheoral–facialregion.
4.3
Looking into Conscious Brain – the Prefrontal Cortex
45
4.3 Looking into Conscious Brain – the Prefrontal Cortex Theprefrontalcortexseekscontinuoussensorystimulationtomaintainarousalforattention andawareness.Arousalofthebrainguidesourthoughtsandbehaviorthroughstrengtheningofsynapsesresultinginenhancedcommunicationandprocessingofinformationwhich inturninducestheconsciousstateofmindandthecontrolofmuscles.Consciousactions and/or consciousness are key to successful life. We need to have clearly deined goals. Whenweknowwhatwewant,wearemorelikelytochangeourbehaviorandtheprefrontal cortexfunctiontogetit[199]. Theprefrontalcortexisthemostevolvedpartofthebrain.Itoccupiesthefrontthirdof thebrain,underneaththeforehead.Itisoftendividedintothreesections:thedorsallateral gyrus,theinferiororbitalgyrus,andthecingulategyrus.Thedorsallateralgyrusandthe inferiororbitalgyrusareoftentermedtheexecutivecontrolcenterofthebraindealingwith outputintheformofactionwhichisinvolvedintheactiverolesofdecisionmakingand “workingmemory”inaspace–timerepresentationofour“senseoffuture”andofourwill orintent.Overall,theprefrontalcortexisthepartofthebrainthatwatches,supervises, guides,directs,andfocusesthebehavior.Theprefrontalcortexalsohelpstosolveproblemsandseeaheadofasituationonthebasisofexperience.Thisisalsothepartofthe brainthathelpsinlearningfrommistakes.Peoplewhohavetroublelearningfromexperiencetendtohavepoorprefrontalcortexfunction.Theytendtomakerepetitivemistakes. Theiractionsthenarebasednotonexperience,butratheronthemoment,andontheir immediatewantsandneeds. The prefrontal cortex (especially the dorsolateral prefrontal cortex) is also involved withsustainingattentionspan.Ithelpsfocusonimportantinformation,whileilteringout lesssigniicantthoughtsandsensations.Attentionspanisrequiredforshort-termmemory andlearning.Theprefrontalcortexactuallysendssignalstothelimbicsystemandsensory areasofthebrainwhenyouneedtofocus,anddecreasesthedistractinginputfromother brainareas[199]. Peoplewithattentiondeicitdisorder(ADD)haveneurologicaldysfunctionintheprefrontalcortexcharacterizedbyashortattentionspan,whichisthehallmarkofthisdisorder. PeoplewithADDhavetroublesustainingattentionandeffortoveraprolongedperiodof time.Distractability,dificultyinlearningfrompasterrors,hyperactivity,etc,aresomeof theproblemsofADD.ChildrenwithADDhavelongstandingproblemspayingattentionin school,andtoregularroutineeverydaymatters.Whentheytrytoconcentratetheactivity oftheirprefrontalcortexdecreases,ratherthanincreases,asinnormalbehavior.Whenthe prefrontalcortexisunderactive(neurotransmitterabnormalitiesmaydecreaseprefrontal cortexactivity),asinADD,toomanysensorystimulibombardthebrainandthecerebral cortexissufferingofsensoryoverloadleadingtosensorydeprivation(seeChap.3). Clinicalneuroimagingstudiesoftheprefrontalcortex,usingforexamplesinglephoton emissioncomputedtomography(SPECT)whichmeasurescerebralbloodlowandmetabolicactivitypatterns,ofteninvolvetwoscans,oneinarestingstateandasecondduringa concentrationtask.Inevaluatingbrainfunction,itisimportanttolookataworkingbrain. Whenthenormalbrainischallengedbyaconcentrationtask,suchasmathematicalproblems
46
4 Looking into the “Black Box”
orsortingcards,theprefrontalcortexactivityincreases.Incertainbrainconditions,suchas ADDandschizophrenia,prefrontalcortexactivitydecreasesinresponsetoanintellectual challenge. Integration between the ascending (bottom-up) sensory information from the thalamusandthedescending(top-down)executivefunctionoftheprefrontalcortex[106,107] maybeaffectedbyneurotransmitterabnormalities[199].Ontheotherhand,experimental stimulationoftheorbitalgyrusisknowntoinducerhythmicopeningandclosingmovements ofthejawresemblingmasticatorymovements[197].Itisthenhypothesizedthatoralneuromuscular dysfunction during chewing includes prefrontal cortex dysfunction through neurotransmitterabnormalitiesaffectingthebottom-upandtop-downsensorimotorintegration function.
4.4 Programming the Oral Senses for Learning Theeffectivenessofanenvironmentalstimulusforprocessinginformationinthecerebral cortexisnotgovernedbythevolumeofthesensoryinputorthedirectionofchange,but bytheamplitudeandtherateofchangeofthestimulus[71].Thesensoryreceptorsrespond totheperceptualenvironmentbyincorporatingorderedandvariableenvironmentalstimuli intoapersonalperceptualscheme.Theprocessconsistsofextractingusefulinformation from the welter of “noisy” sensations with which the organism or mouth is constantly bombarded[69].Theabsenceoforder(meaningful)orvariationinthestimulitendsto degrade the cortical perceptual mechanisms [82]. Perception is always selective and is alwaystestingthesensorymodalitiesthatareessentialforthemaintenanceofthescheme ofthemouth.Withbreakdownofthisinternalframeofreferenceitbecomesincreasingly dificultandinfactimpossibletostructuretheenvironment,andtoimposeconstancyand stabilityoftheperceivednaturalworld.Asaresult,contoursluctuate,ambiguousigures alternaterapidly,andsimplegeometricigureschangeinsizeandshape[82]. Thenewborninfant,however,hasnotyetlearnedwhichoftheincomingenvironmental stimuliaremeaningfulforsurvivalandwell-beingandwhicharenot[82].Theenvironmentsendsinformationsignalsintheformofconceptsoruniversals(touseAristotelian language). If the oral senses are to acquire meaning and become incorporated into the perceptualschemeofthemouth,theymustdevelopmodelsofprogrammingallowingthe sensestomatchtothesigniicanceofeventsthatoccurintheenvironment,throughlearningprocedures[69]. Inthisview,theperceptualorganizationdevelopmentoftheorganismormouthconsistsofthecapacitytoutilizethesensestoextractinformationfromtheenvironmentin ordertobuildthebrain.Withoutsuchpriorlearningofmodelsoftheenvironment,the centrifugalcontrolofafferentsourcesiswithoutaprogram,withoutabasisforpredicting thatcertaineventsaremorelikelythanothersorprecludeothers(inhibition),andhaveno basisforselectivitytowardstimuli[69]. Thepredictionofthebrainthatcertaineventsaremorelikelytooccurthanothersisbased uponseveralconsiderationsaboutthenatureofperceptualdevelopment.Thewidelyaccepted viewisthatcontinuedcontactwitharichsensoryenvironmentpermitsthedevelopmentof
4.5
Oral Learning and Memory of Experiences
47
differentiationofspheresofactivityofsensorymodalities,ofeventswithinmodalities[69]. Early sensory deprivation, prevents such differentiation, and prevents the development of selectivegatingandconstructionofmodelsoftheenvironment.Italsopreventsthedevelopmentofeficientstrategiesinmotorbehavior,sincetheappropriateresponseshavenotbeing learned.Behaviordevelopmentdependsoncognitivegrowth,whichconsistsoflearninghow tohandlethetransformationsthathappeninthebrain,followinginformationinput[15,102].
4.5 Oral Learning and Memory of Experiences Thebrainchangeswheneverananimallearnsanewbehavior,anditisassumedthatthe change in the brain is responsible for the change in behavior [15]. Once a change has occurred,however,itbecomesimportanttoidentifytheneuralsubstratethatisresponsible fortherecentlyacquiredadaptivebehavior. Thetraditionalviewisthatthesynapseistheonlycomputationallyrelevantapparatusin theneuron,i.e.,learningoccursinthesynapsesbetweentheneurons,andtheinformation isstoredthereasmemory[16].InthisviewHebb[16]irstproposedthatsynapsesmightbe reorganized (strengthened) with learning and memory. Hebb suggested that the more a synapseisused,thestrongerandmoreeficientattransferringinformationitbecomes.This enhancesneuroncommunicationandinformationinput,whichresultsinlearningorenrichmentofexperiences.Useinturnisdrivenbyexperience.Ourexperiencesusespeciiccircuitsandsynapses,therebystrengtheningthoseverysynapses. Subsequentlytherehavebeenhundredsofstudiesexaminingbraintissueforsynaptic reorganizationfollowinglearningorfollowingcomparablephysiologicalstimulationthat mightresemblelearningofneuralevents.Forexample,BlissandLomo[17]performed experiments in rabbits. They stimulated with a strong repetitive stimulus or tetanus the bundleofnerveibersenteringthehippocampus,amemorycenterofthebrain.Theibers ofthebundleformsynapticconnectionswithaspecialgroupoftargetneuronsinsidethe hippocampus.BlissandLomorecordedtheelectricalresponsesfromthetargetneurons and observed that the shock stimulation magniied signiicantly the electrical responses fromthetargetneurons,comparedtonormalresponsestoalowfrequencystimulus.In neurophysiologicaltermsthetargetresponseswerepotentiatedbythetestshockstimulus. Bliss and Lomo concluded that increased stimulation for seconds results in dramatic strengtheningofsynapticcommunication,neuronresponsiveness,andspeedofresponse thatpersistsforsixhoursaftertheincreasedstimulationhasstopped. Thus,abriefelectricalexperiencelastingsomesecondsonthepresynapticiberscaused long-lastingresponsesinthehippocampalmemoryneurons.Theincreasedstimulationof theneuronalpathwayenteringthehippocampusresultedingreatersynapticstrength,which heightenedthefunctionofthepathwayintransferringinformation,aswellasaccelerated the information processing in the hippocampal neurons, which stored memory of the learnedexperience.Theincorporatedmemoryinthehippocampalneuronsallowedthemto respondforhoursafterthestimulushadstopped.Inthisdynamicview,thememorychanges donotconsistsimplyofstorageofinformation.Memoryincorporatedbyexperienceinto
48
4 Looking into the “Black Box”
the brain alters brain function. Speciically, Bliss and Lomo [17] discovered that in the hippocampustherearespecialneuronalcircuitsservingmemory,whichcanshowlongterm potentiation (LTP). This means that the specialized neurons have the capacity to respondtobriefexperiencesandretainthroughtheirmemorytheiringpatternforlong timeafterthestimulushasstopped[2,17]. Whileoralexperienceincreasesthestrengthofsynapses,resultinginheighteningthelow andprocessingofinformationinthebrain,onthecontraryidlenessofthemouthdecreases thestrengthofsynapsesandimpairslearningandmemoryability.Accordingly,theLTPhas itsmirrorimage,long-termdepression(LTD)oforalneuralactivity[2].Thismeansthatthe synapsesmayundergogradedstrengtheningorweakeningdependingontheiruse(exercise). Thebraincontinuallymonitorsexperiencesanduseofsynapsesandadjustsaccordinglytheir strength in conveying action potentials. The brain emerges as an ever-growing changing structurethatbuildsitsstructureandfunctionthroughlearningofexperiences[2]. InordertoinduceLTP,airingintensitythresholdmustbereachedinthehippocampus memoryneurons.Thiscanbedonebystimulatingasingleinputneuraliberwithastrong stimulus,ormanyinputiberswithalowerintensitystimulus.Thisimpliesthatweakinputs frommanysensorymodalities,convergingonthesameneuroncanbeboundtogetherinthe memoryneuronsandinduceLTP[2].Forexample,weakstimulationofthetasteibersand weakstimulationofthevisualiberscarryingarepresentationofanapplecouldassociate thetasteandthesightoftheappleinmemorythroughLTPofhippocampusneurons. Themoleculethatsensesthatthecommunicatingtasteandvisualneuronsareiring simultaneouslyistheneurotransmitterglutamate,whichisresponsibleforrelayingsensory information throughout the entire central nervous system [15]. Glutamate is an excitatoryaminoacidreleasedintothesynapseinresponsetoanactionpotentialofthe transmittingneuron.Glutamatestimulateselectricallythesignalreceivingpostsynaptic neuron.Glutamateexcitesthepostsynapticneuronbybindingtospecialreceptorsonits surfacemembrane.ThereceptoriscalledNMDA(N-methyl-d-aspartate).NMDAreceptorisspecializedforinducingLTPandstorageofmemoryinthesynapsesthroughtheir strengthening[2].Experimentaldata,however,donotconsistentlyindicatethatchanges in synapses following learning are stable. Thus, a new paradigm may be needed to replacethelong-heldnotionofHebb’s[16]viewthatinformationstorageoccursinthe synapses. ThewidelyacceptednewlearningandmemorymodeladvancedbyPenroseandHameroff [113]suggeststhatinformationstorageasmemoryoccursinmicrotubulesofthesubsynapticzoneofdendritesthatgivesrisetodendritespinesandsynapses.Inthisview,microtubulesandMAPshaveaclearinvolvementinlearningandmemorystorageofexperiences. Microtubulesinthesubsynapticzonearecapableofstoringimportantmemoryinformation concerningwherespineswereoriginallylocatedinthedendrites,andtousethatinformation todeterminewhichspinoussynapseswillpersistorreappearintheeventofdynamicretractionfollowinglearninganewexperience[15,33,38]. According to the new learning–memory model the binding of glutamate to NMDA receptorsonthesurfaceofthesignal-receivingpostsynapticneuronwillopencalcium channelspermittingtheelectricallychargedcalciumion(Ca2+)toentertheneuron.Once insidethecell,Ca2+actsasasignalthatstimulatesanumberofcalcium-activatedproteins,whichwouldfavorbreakdownandthenrebuildingofglutamatesynapticsiteson
4.5
Oral Learning and Memory of Experiences
49
dendritespinesthroughpolymerizationanddepolymerizationcyclesofmicrotubulesin thesubsynapticzone.HenceNMDAreceptoriskeytoneuroplasticity[15]. Speciically,thePenroseandHamerofflearningandmemorymodelsuggeststhatconformationalchangesintubulin(thebuildingproteinofmicrotubules)occurwhenthesensory inputreachesthedendritesandispropagatedalongthelengthofmicrotubulecytoskeleton. Thismeansthatthesensoryinformationaltersthebasiccytoskeletalstructureofdendrites andasaconsequencealtersanyelectromagneticieldsgeneratedinsidethemicrotubulesas aresultofalterationoftransportedproteinsalongthem.Microtubulestheninthesubsynapticzoneofdendritesaregoodcandidatesforpermanentlyencodingmemory,ratherthanthe synapses[15,33,38,113]. Thesubsynapticzoneofdendritesgivesrisetospines,andmanyresearchershavefound experimentally that changes in the size and shape of the spines play a role in encoding memorywhichiskeytoneuroplasticityfollowinglearningofnewexperiences[39–41]. Thus,spinesandtheirsynapsesarenotpermanentstructures.Spinesaregenerallythought tobeinaconstantstateoflux,andthisisregulatedbyvariousneurotransmitterreceptors. Glutamate receptors play a prominent role. High concentration of glutamate produce retractionofdendritespines.Theretractedspines,however,mightreappearoftenintheir originallocation[15]. Microtubulesoftheneuroncytoskeleton,however,mightalsobethesiteofperception and/orconsciousness,whichformourrealityoftheworld[113].Ourrealityisbasically ourmemory.Webelievethatourexistenceissocontinuous,soseamless,butinrealityit isonlyhalfasecondlong.Everythingthathappenedasecondbeforeismemory,andthe nextsecond—whatwebelievewillhappen—isalsomemory.Thus,thepresentisabridge betweenthememoryofthepastandthememoryofthefuture[35]. ThespecializedNMDAreceptorsontheneuronsurfacemembranethatbindwithglutamatetransmittingsensoryinformation,aswellasthemicrotubules,arekeysinthebreakdownandrebuildingofthesubsynapticzoneofdendrites,thesiteoflearning,memory, andconsciousness[15,38]. Duringgrowthanddevelopmenttheprecisionofneurontoneuronconnectionisthought to depend on iring patterns. Neurons that ire together are wired together [2]. NMDA receptorsappeartoparticipateintheformationofchemicalsynapsesduringdevelopment, as well as in the strengthening of synapses in the adult [2]. Chemical synapses using NMDAreceptorsarecriticaltoperceptionandconsciousnessbecausetheyareinvolvedin developmentalplasticityandlearning[126,127].ThereisafamilyofNMDAreceptorsin whicheachmemberismadeupofslightlydifferentmolecularbuildingblocks.Thedifferentmolecularstructures,however,changethetimingofactivationofthereceptorbythe glutamate,i.e.,differentfamilymembershavedifferentmemories.Thus,afterglutamate binding,theNMDAreceptorremembersanddetectscoincidentpresynapticandpostsynapticneuroniringoverashort-orlong-termmemory[2].Asaresultthespecialneural circuitsinthehippocampusservingmemorycanbepotentiatedforashortorlongtimein responsetolearninganexperience,andretainthroughmemorytheiringpatternofneuronsforshortorlongtimeaftertheexperiencestimulushasstopped[2]. These temporal memory characteristics of NMDA receptors allow different family memberstoservedifferentlearningandmemoryfunctionsduringgrowthanddevelopment. Thus, in very general terms the developing embryonic brain is characterized by
50
4 Looking into the “Black Box”
NMDA receptors with long memories. With maturity, receptors switch to shorter time sensitivityofmemory[2].Thelong-lastingsensitivityofneuronsoftheembryonicbrain duetobindingofglutamatetoNMDAreceptorswithlong-termsensitivitymightbethe background of the qualitative differences in the oral sensory experiences manifested in childhoodbetweenprematureandterminfants.Forexample,Bosma[128]suggestedthat thechildwhohadbeenprematureisexcessivelysensitivetostimulationoftheoralmucosa, andislessablethanthetermchildtomakeanadequaterelexadjustmenttooralstimuli. This residual aberration of oral sensorimotor control following prematurity may be appropriatetotheconceptsofneurologicalmaturationasaprocessofselectivediminution ofsensoryinputstothebrainbyacquisitionofinhibitorynerveibersandinhibitorycontrol mechanisms.Accordingly,thechildwhohadbeenprematuremayshowanexcessiveand inordinateoralreactiontoexperiencestimuli,duetolackofcentralinhibitorymechanisms thatinhibitoralrelexesandregulatethesensorimotorreactionandhencethelearningability ofmouth[128]. Woolf[15]suggestedthatincreasedtransportofproteinNMDAreceptorinmicrotubulesofdendritesiscriticaltolearningandplasticity.Black[2]speculatedthattheswitch fromlongtoshortNMDAmemoryreceptorsmightexplainwhycriticalperiodsoflearningoccurduringdevelopment.Forexample,visualdeprivationduringarestrictedperiod inearlyinfancyresultsinpermanentblindness.Languagelearningalsoisoptimalduring theirstsixyearsoflifeanddecreasesradicallythereafter[102]. Sessle [129] suggested that mastication can be viewed as a learned motor behavior. Whatisthecriticalperiodforlearningthechewingbehavior?Itcouldbehypothesized that the critical period for learning to coordinate the movements of the mouth during chewingissimilartothatoflanguagelearning.Bishop[130]suggestedthatthemasticatorymusclesduringspeechandchewingusethesamemotorunitsinthesetwoverydifferenttypesofmotoractivity.Thefrequencyofdischarge,however,ofthemotorunits duringspeechisfarfasterthancaneverbeinitiatedduringthevoluntaryactivityofchewingandswallowing.Accordingly,Goldberg[131]speculatedthatindependentmotorprogramsmightexistforthechewingandlanguagefunctions,associatedwithindependent feedback,suchthattheybothgoonatthesametime.Thus,thecriticalperiodsoflearning tospeakandtochewmightbesimilar.Actually,duringtheirstyeartheaveragechild learns and pronounces its irst word “Mama” [132]. At about the same time the child switchesitsfeedingpattern,fromliquidandsemisolidfoodtosolidfood,andithasenough teethtobeginmastication. Learning,however,requiresattention.Attentionisadeliberateactionwherebyonedirects consciousactionstoaparticularsensorystimulus,toamemory,ortoacomplexamalgamof stimulusandmemory.Takingintoconsiderationthatthechild’smindisinaconstantstateof lux(possiblybecausedendritespinesareinaconstantstateofluxregulatedbyvariousneurotransmitterreceptors),thesensoryinputsoftendonotreachperceptionorconsciousness [15].Consciousnessandmemory,however,areinterrelatedpsychologicalphenomena[15]. Thismeansthataconsciousobservationisbydeinitionanobservationthatisstoredinmemory[133].Thus,inordertomakepragmaticuseofinformationstoredinmemory,thatinformation must be brought to consciousness. Psychologists refer to this process as memory retrieval[15].Memoryretrievalmightbedificultinchildrenduetotheconstantstateoflux oftheirmind.Accordinglylearningproceduresinchildrenmightrequireincreasedattention.
4.6
Looking into Memory – the Temporal Lobes
51
Insum,thecognitiveapproachtomotorbehaviorstressesacompleteconceptualization ofbehaviorthroughtheroleofinformationprocessingandattentioninlearningofsensorimotoractivities.Thisawarenessincreasesthecapacityofthepractitionertodiagnose andtreatoralmotordeicitsthroughconsciousreinforcementofmotorfunctionlearning proceduresassociatedwithmemorystorage.
4.6 Looking into Memory – the Temporal Lobes Fortoomanyyearsthetemporallobeshavelargelygoneunnoticedinhumanpsychology. Theyarerarelydiscussedinpsychiatriccircles,andfewneurologistshavebeenconcerned withtherichcontributiontheymaketowhoweareandhowweexperiencelife.Untilclinicalneuroscientistswereabletomapactivityinthetemporallobes,theirfunctionremained mysterious.Manyprofessionalsbasicallythoughtofthemasarm-restsforthebrain.The brainimagingworkclearlyshowsthatthetemporallobesplayanintegralpartinmemory, emotionalstability,learning,andsocialization.Themostprecioustreasureswehaveinlife aretheimageswehaveinthememorybanksofourbrains.Thesumofthesestoredexperiencesisresponsibleforoursenseofpersonalidentityandoursenseofconnectednessto thosearoundus[199]. Onthedominantsideofthebrain(thelefthemisphereformostpeople),thetemporal lobeisintimatelyinvolvedwithunderstandingandprocessinglanguage,intermediate-and long-termmemory,complexmemories,theretrievaloflanguageorwords,emotionalstability,andvisualandauditoryprocessing. Thenondominanttemporallobe(usuallytheright)isinvolvedwithrecognizingfamiliarfacesandfacialexpressions,beingabletoaccuratelyperceivevoicetonesandintonationsandgivethemappropriatemeaning,hearingrhythms,appreciatingmusic,andvisual learning.Thetemporallobeshavebeencalledthe“interpretivecortex”astheyinterpret whatwehearandintegrateitwithstoredmemoriestogivemeaningtotheincominginformation[199].
4.7 Conscious Cognitive Aspects of Oral Motor Behavior Inearlypostnatalgrowthanddevelopmentperiod,duringwhichtheinfantlearnsthefunctions of biting and chewing, which substitute the inborn suckling behavior, it is interesting to examinethementaleventsthatprecedeoralmotorbehaviorandneedtobelearnedirst. Oneattemptstounderstandatirstthesalientfeaturesofsomatosensoryinputthatthe mouthprovides,aswellasthevisual,auditoryandtouchinputthatthemotherprovides during feeding of the infant. Thus, complex neuronal assemblies in the somatosensory, visual,andauditorycorticesrespondtothesestimuli,throughtransformationsofmicrotubulesandstorageofmemoryinthesubsynapticzoneofdendrites[15,38].
52
4 Looking into the “Black Box”
Theperspectiveadvancedisthataspeciicingerprintdeinedbyaparticularelectromagneticstateofamicrotubulearraypotentiallycorrespondstoauniqueunitofcognition, forinstanceabasicvisualparameter,asound,thefrequencyofatactilestimulus,etc[38]. Theselearningeffects,however,donotexplainhowthesimpleperceptionofasensory modalityofthemouthcontributestotherealizationandlearningofcomplexmotortasks, suchaschewing,throughmultisensoryinputs. Accordingly,ithasbeensuggestedthatcrossmodalityinluencesmightoccurthrough feedbackconnectionsfrommultisensorycortices[15].Forexample,arecentfunctional magneticresonanceimaging(fMRI)studyhasidentiiedaregionofthebrainwhichis activatedspeciicallybyacombinedvisual-auditorytask[134].Inanotherstudyneurons inthesecondaryauditorycortextunedtoprecisefrequenciesofsoundalsorespondedto somatosensoryinput[135].Similarly,ithasbeenfoundthatvisualstimulienhancetactile acuitythroughmodulationofresponsesintheprimaryandsecondarysomatosensorycortices[136].Thus,crossmodal inluences, which appear instantly and disappear rapidly, mayoccurduringearlydevelopmentintheprimaryandsecondarysensorycortices,and servemultisensorytasks[15].Ithasbeensuggestedthatmostcognitivetasksweperform have multisensory components [15]. Accordingly, the crossmodal regions of the brain withmultisensoryconnectionsmightbeinvolvedinlearning.Forexample,ifmemoryas suggestedisstoredinthemicrotubules,andifthemicrotubulesarealsothesiteofperceptionorconsciousness,thenitisasimplecasetorelatememoryandconsciousness[137]. Ontheotherhand,Libet[138]suggestedthataprolongedcorticalactivityof500msis necessarytoproduceaconsciousexperience.Thismaymeanthatduringthehalf-second timeofcorticalactivity,anumberofunconsciouscorrelatedneuraleventshavetooccurin microtubulesbeforeconsciousprocessesareestablished.Inotherwords,consciousexperienceisanexperiencewhichisstoredinmemory[133].Commentingonthis,Gray[139] pointedoutthat,forinstance,inavisualieldweareconsciousonlyofvisualentity(gestalt), not of visual components (e.g., shape, color, motion, etc.). Hameroff [38] proposed that each visual component is processed in separate brain areas and at different times. The cumulativeeffect,however,isintegratedintoauniiedvisualgestaltwiththegrowthofa hyperneuron,implyingthattheneuronsofallvisualcomponentsareconnectedwithgap junctionsformingagiantneuronorhyperneuron. Inaddition,PenroseandHameroff[113]suggestedthatunconsciousprocessescapable ofbecomingconsciousutilizequantuminformation.Thismeanssuperpositionsofboth iringandnot-iringneuronsasquantumbits(qubits)inthemicrotubules.Qubitsaremanifestedasswitchesthatutilizesuperpositionsatvariousquantumstates.Inmicrotubules, whichbehavelikequantumcomputers,occursthetransitionfromnonconscious(superpositionquantuminformation)toconscious(classical)informationthroughdecoherenceor objectivereduction.Decoherenceisthedisruptionofquantumsuperpositionstatesdueto energy or information interaction with the classical environment, or observation by the consciousobserverinthespace–timegeometry. Accordingly,onemightassumethatconscious(voluntary)chewingisamultisensorytask thatmightalsoincludecrossmodalinputinformation,leadingtotheemergenceofanumber ofunconsciouscorrelatedmentalactivities,whichunderlietransformationsofseparatebrain areas.Whentheactivityofneuronscorrespondingtotransformationsofseparatebrain(correlated)areasreachesthe“threshold”forsynchronousiring,gapjunctionsappearbetween
4.7
Conscious Cognitive Aspects of Oral Motor Behavior
53
theneuronsanduniteallthecorrelatedcomponentsintoagiantneuronorhyperneuronfor synchronous iring activity, corresponding to conscious identiication of the cumulative effect(gestalt)ofthecorrelatedmentalactivities,whichinturnareexperiencedbytheindividualassensorimotorabilities,suchasbiting,chewing,occlusalrelationshipsoftheteeth, ortonguemovementwithintheschemeoftheoralcavity,etc. However,sincethebrainofyoungchildrenisinaconstantstateoflux,havingthus dificultyinconcentrationandattention(seeSect.4.5),anumberofchildrenmayhave dificultyinlearningthematureoralsensorimotoractivitieswhichrequireincreasedattentionandawareness,becausethesensoryinputdoesnotresultincorrelatedmentalactivities and/orthecorrelatedmentalactivitiesdonotreachconsciousstatesthroughsynchronous iringinhyperneurons. Thebiochemicalcorrelatesofneuronsinchangingbehavioraresometimesascribedto “stress.” In so far as a natural or experimental situation requires a new response to be learned,astressisinonesenseexperienced.Anewstatemustreplacetheoldstateofequilibriuminthebrain.Thisisastressinthesamesensethatdistortionofboneconstitutesa stressthatleadstostructuralremodeling—asaresultoftheremodelingthedistortionofthe bone is minimized. Thus, both in brain and bone the stress is a localized distortion. Biochemicalcorrelatesofsuchastressareaproperpartofthelearningprocess[140].In thisview,informationinputtothebrainthatreachesperceptionorconsciousnessmightbe consideredasa“stress”becauseitcallsforlearningofnewassociationsofbehaviorthrough structuralandfunctionaltransformationsofthebrain,i.e.,theconsciousbrainisthelearningbrain.Thismayimplythattheconsciouschildmightbereluctanttolearnprocessesthat areexperiencedasstress. Watson[140]alsosuggestedthatexperiencegainedatcertaincriticalstagesofdevelopmentofthebrainhasapersistinginluenceuponmotorbehavior.Thisisbecauseearly learningofexperienceisregisterinthebrain.Ifcertainexperiencesarenotgainedwithin the early growth and development period, but later, the facilitation of normal behavior fails,orelseafargreaterintensityanddurationofstimulationisneededtoproduceamuch smallereffect.Thisimpliesthatoptionsfordeterminingcertainpatternsofbehaviordonot remainopenindeinitely,eventhoughthesepatternsmaynotemergeuntilalaterstagein the growth and development period. There is evident similarity between this and the dependenceofproperdevelopmentofthevisualcortexuponearlyexperience.Forexample,neuronsofthevisualcortexproducemassiveamountsoftubulin(thebuildingprotein ofmicrotubules)duringcriticalperiods(fromthedaytheeyesopentopostnatalday35). Thecriticalperiodisthetimeduringwhichsynaptogenesisandvisuallearningoccursat thehighestrates[105]. Bythesametoken,wemayassumethatthereisacriticalperiodduringwhichtheinfantileinnatesucklingbehaviorhastobereplacedbythenormalbitingandchewingfunctions throughconsciouslearning.Thissubstitutionmaynotbefacilitatedbythesensory(experiential)inputatlaterstagesofdevelopmentandthustheoralsensorimotorfunctionmay not reach the mature pattern possible through hyperneuron formation. Instead the oral behaviorremainsinfantileandstereotypedandisthepatternweencounterincertainmalocclusionsoftheteeth. Anothercategoryoforalsensorimotorimmaturityistheinluenceofcompletedeprivationofsensoryexperienceofonemodalityupontheabilityofthechildtodiscriminate.If
54
4 Looking into the “Black Box”
thesensorydeprivationoccursthroughoutacriticalperiodofdevelopment,theimpairment ofdiscriminationisirreversibleorpartiallyreversibleonlyifacarefultrainingprogramis used[140]. Aswecometounderstandhowthebraindoesordoesnotincorporateinformationthat arisesintheoralsensesresultinginconsciouslearning,wemaybeabletogivesomecoherent account of the localized cognitive cortical dysfunction in relation to oral sensorimotor dysfunctionsweencounterinthemalocclusionsoftheteeth.Thechangesinthebrainfollowingnormalinformationinputorthroughsensorydeprivationofthebrainareresponsible for the development of normal or abnormal motor behavior, respectively, during growthanddevelopmentandthereafter[15].Similarbrainchangescouldbeinducedduring orthodontictherapy(seeChap.10). Childrendonotreactpassivelytoorthodonticprocedures.Instead,theyareorshouldbe consciousprocessorsofinformationinput,activelyoperatingtotransformtheinputintocorticalneuralactivityunderlyinglearningofnewpatternsofmotorcontrolofmuscles[141]. Gibson[141]andotherperceptionpsychologistshaveemphasizedthatweshouldthinkof theactofperception(andofthelearningprocess)asdynamic,notstatic.Thereisaconstantstreamofstimuli,muchliketheconstantstreamofwatermovingasasolitonina canal,inwhichtheessentialgeometricandtemporalrelationsarepreservedasanaspect ofneuralactivity.Forexample,ifweimaginethesituationofachildwhoistooyoungto recognizethe“datastream”ofatriangle,thesamesetoftransformationsisimposedupon thevisualcortexasinthecaseofanolderchildwhoisabletorecognizethetriangle.The brainchangesitscognitivestatedependinguponthestimulus.Intheyoungchildwhodoes notrecognizethetriangle,thereisnoorderedrelationshipamongthe“datastream”visual stimuli,andthustheymaybemovingthroughthesolitonrandomlywithrespecttoone another,soanyrelationshipsthatmaybeformedquicklybecomeunstable.However,solitonsortravelingwavesolutionsdependuponsymmetriesorinvariancewithinthemedium anditsboundaryconditions.Itistheorderthatisimplicitinthestimulus,thesymmetries orinvariancethatfacilitatestheemergenceoftravelingwavesolutions.Inthesetheonly stable dynamics that are possible are those that unite the stimulus in terms of its own implicitspatiotemporalinvariance.Inthisaspect,thesolitonisanidealcandidatetoform thebasisofcognition[58]. Accordingly, paraphrasing Mountcastle [62], it could be said that the more speciic (patterned)isthesensoryinput,themoreconsciouslearningstatescanbereachedbythe corticalneurons,andthenthemorespeciicwillbethemotoroutputpatterns.Thisspeciicity betweentheinformation-consciousmindandmotorbehaviorisdiscussednext.
4.8 Perception Regulates Oral Motor Behavior Brainsofcourseareinvolvedinmanyactivitiesbuttheyshareacommontheme:informationprocessing.Theconsciousbrainprocessesavastamountofinformationconcerning theinteractionbetweenthebodyanditsenvironmentthroughacomplexnetworkofchemical signalingneuralpathways[85].
4.8
Perception Regulates Oral Motor Behavior
55
Butbrainsarenotalwaysconscious.Thebrainremainsveryactiveinthestatewecall unconsciousness,andevenwhenweareconscious,weareonlyawareofaverysmalltrickle outofthevastquantityofinformationlowingthroughthebrain.Thereisclearlyatendency for the more primitive activities—those we share with lower animals—to be performed unconsciously and the more specialist higher level motor activities, such as reading and writing(languageusegenerally),tobeaccompaniedbyconsciousnessbecausetheyrequire theuniquecomputationalabilitiesoftheconsciousmindtobelearned.Itisalsointriguing that the obligate conscious activities include memorizing information and learning, but recallofmemorizedinformation(suchasthemotoractionsrequiredtoperformalearned task)doesnotrequireconsciousness.Thus,anytheoryofperceptionorconsciousnessmust clearlydelineatetheoperationaldifferencebetweenconsciousandunconsciousmind[85]. Thereisaconsiderablebodyofopinionthatassertsthatconsciousnesshasnoimpact on the way the brain works. In other words consciousness is an epiphenomenon of the brain’sactivity.Ifthisisthecasethenconsciousnessmakesnodifferencetotheworld;it generatesnofacts.Inotherwordsthereisnoscientiicbasistodealwith.Itisnotasubject for scientiic theories [85]. But consciousness does of course generate phenomena. It impactsupontheworld,itisapropertyoflivingbrains.Brainactivitymaybeconscious orunconscious.Theconsciousmindappearstobeserial.Learningrequiresconsciousness, butrecalldoesnot.Consciousnesscorrelateswithsynchronousiringofneuronsandwith thegammafrequencyoftheencephalogram[15,113]. Speciically,McFadden[85]introducedtheconsciouselectromagneticield(CEMI)theory which suggests that consciousness is a product of the brain’s electromagnetic ield. McFaddenproposesthatthesourceofthequantumeffectsinthebrainwouldnotbemicrotubules,butinteractionsbetweenthebrain’selectromagneticenergyieldandthevoltage-gated ionchannelsinthemembraneoftheneuron.Theionchannelsinthemembraneareinvolved in information processing. The opening of membrane ion channels depends on quanta of electromagneticenergythatmustbeabsorbedbythesurroundingneuronieldtoopenasingle voltage-gatedionchannel,whichwillinitiateiring(actionpotential)oftheneuron. Asalreadydiscussed,inthePenroseandHameroff“Orch-OR”[113]modelofinformationprocessing,thesynchronousneuroniringinconsciousnessisacorrelateofattention andawarenesswhichareconsideredaspreconsciousnessstatesofthebrainelicitedbyfast transmissionofneuralsignalsinthehyperneuronthroughgapjunctionsbetweentheneurons.Thesynchronousiringofneuronsinthehyperneuroncreatesconsciousness.Onthe contrary,McFadden[85]suggeststhatelectromagneticenergyieldsmaybeinvolvedin mediatingandmaintainingiringsynchronyofneuronsandtherebypotentiallyprovidea substrateforbindingtheneuronstogetherformingaconsciousstate. Infact,theCEMItheory[85]proposesthatwhenaneuronofthebrainreceivesasignal from a peripheral sensory neuron, synaptic neurotransmitters stimulate ion pumps that causepostsynapticneuronmembranestobecomenegativelypolarized,dependingofthe typeofsignalreceived.Ifthemembranepotentialfallsbelow−40mV,theneuronires. Themassivemembranedepolarizationofneuronwillalsogenerateaconsciouselectromagnetic energy ield perturbation that traveling at the speed of light can integrate the diverseinformation(computationalactivity)heldindistributedneurons.Thelayer(laminar)organizationoftheneuronsoftheneocortexandhippocampuswithparallelarraysof neuronswilltendtoamplifylocalelectromagneticenergyields.Thus,theelectromagnetic
56
4 Looking into the “Black Box”
ieldacrossaneuralmembranewillbetheproductofaieldgeneratedbythemembrane dynamics(ionpumps)ofiringneuron,butalsobytheieldsgeneratedbytherestingstates andiringofalltheotherneuronsinthevicinity. Thevoltageoftheelectromagneticenergyieldacrossthemembraneoftheiringneuronwillbequiteweak.However,inabusybrain,throughattentionandawareness,itis likelythatmanyneuronswillbeinthatstate,sotheelectromagneticenergyieldthatthe brain’s activity generates will inevitably inluence neural dynamics, resulting in a consciouselectromagneticenergyield,whichisthephysicalsubstrateofperceptionand/or consciousness[85]. Inthisview,informationprocessing(decoding)withineachneuronispooledandintegratedtoformauniiedelectromagneticinformationieldofconsciouspercepts.Inother words,ifindividualneuronsrepresentfeaturesofascene,orofanobject(color,shape, movement,etc),theconsciousidentiicationbindstogetherthedifferentfeaturesandcreatesanimageoftheensemble,likethepiecesofapuzzle,throughthesynchronousiring oftheneuronsinvolvedinthedifferentfeaturesofthescene[85]. Adistinctivecharacteristicofthebrain’sconsciouselectromagneticieldintegratedin neurons, is that perception corresponds to only that component of the electromagnetic informationieldthatinitiatesmotoractions.Inotherwords,perceptionmovesthemusclesandistherebycapableofcommunicatingitsstatetotheoutsideworld[85].Thesite ofactionoftheconsciouselectromagneticieldismostlikelythepyramidalneuronsofthe cerebralcortex,whichinordertoinduceperceptionshouldbebusy,i.e.,tobeinvolvedin a number of correlated perception mental activities, such as, attention, and awareness, characterizedbysynchronousiringofneurons.Thus,insendingconsciouselectromagneticinformationtomusclesthroughthepyramidalneurons,thebrainexertsconscious controlwithprofoundfunctionalconsequencesonmotorbehavior[85]. Anexampleofsynchronousiringofneuronsassociatedwithattentionandawareness isthefollowing.KreiterandSinger[143]havedemonstratedthatneuronsofthevisual cortexinmonkeybrainthatrespondedtotwoindependentimagesofabaronascreenired asynchronously when the bars were moving in different directions. The same neurons, however,iredinsynchronywhenthebarsmovedtogether.Theawarenessofthemonkey thatthebarsrepresentedtwoaspectsofthesameobject,wasencodedinthesamevisual cortexbythesynchronousiringofneurons.Thus,awarenessandattentioncorrelateswith perceptionnotwithapatternofneuroniring,butwithsynchronyofiringneurons.Ithas beensuggestedthatthesynchronousiringlinksdistantneuronsinvolvedinregistering differentaspects(color,shape,movementetc)ofthesamevisualperceptionsandthereby bindstogetherfeaturesofasensorystimulus[144]. Ithasbeenknownforlongtimethatconcentrationuponamentaltaskcanleadtoactivity inmusclesnotinvolvedinitsperformance.Theterm“stress”ormentalstresshasbeenapplied andstressfulphysicaltasksinvariousformshavebeenshowntoresultinmuscleactivity (measuredbymeansofEMGtechniques)inmanymusclesofthebody[95].Forexample, Perryetal.[145]demonstratedstress-producedhyperactivityinthemasseterandtemporalis musclesindentalstudentsduringastressfulinterview.Alsothesameinvestigatorsreported thattoothclenchingoccurredduringastressfulinterview.Similarly,Yemm[146]usingatask requiring mental and physical coordination, demonstrated several characteristics of the responseofthemasseterandtemporalismusclesplacedunderstress.Ithasbeensuggested
4.8
Perception Regulates Oral Motor Behavior
57
thatthemuscleresponseisaresultofageneralizedactivationofthegammamotorsystem fromhighercentersinvolvingprimarilythejaw-closingmuscles. Accordingtotheelectromagneticield[85]theory,however,thementalstressmightbe regardedasaparticularbrainactivityassociatedwithconsciouselectromagneticinformation,whichinstructsthejaw-closingmusclestocontract.Forthesamereasonallverbal thoughtisaccompaniedbysubvocalizations(i.e.,motorcortexactivityaccompaniedby appropriatebutnormallyundetectablevocaltractactivity)[147]. Inthiscontext,perceptionmaybeaneuropsychicstateofreadinessformental(attention, awareness,learning,andmemory),aswellasofphysical(motor)activity.Thisinturnmay bethereasonthatconsciousmotoractivitiesarealwaysaccompaniedwithattention,awareness,andcognition[15].Theviewthatperceptionisaneuropsychicstateofreadinessfor mentalandphysicalactivitiesissupportedbyHameroff[38]whosuggestedthatperception isinvolvedinthecontrolofactions,selfawareness,feelings,choices,phenomenalexperience,amodeloftheworld.Similarly,McFadden’s[85]CEMItheoryviewsconsciouswill ashavingadeterministicinluenceonmotoractions.Thismeansthatperceptionorconsciousnessplaysacausalroleindeterminingourconsciousmotorfunctions—something likemindaffectingmatter.McFaddensuggeststhatwearenotsimplyautomatonsthathappentobeawareofouractions.Incontrast,perceptionprovidesaphysicallyactiverolefor “will”indrivingourconsciousactions. Accordingly,theCEMIieldtheoryproposesthatanyvoluntarymotoractivityofthe bodywillrequiretheinluenceoftheconsciouselectromagneticinformationieldinputin ordertobelearned.Theconsciousmindwillthenpushthemotorneuronstoshifttowards somedesiredmotoractivity[85].Forexample,inordertolearnthechewingact,theelectromagneticieldwillinitiallyberequiredtoprovidethatinecontrolofcoordinatedmotor activitynecessarytoperformtheskilledactionofmastication.Thestrengtheningofsynapses by frequent stimulation of masticatory motor neurons through frequent use of the chewingactionwillcontributetoaugmentationofthesensoryinputandprocessingfollowed byaugmentationoftheconsciouselectromagneticieldofthemotorcortex.Afterrepeated augmentationofsensoryinputprocessingfunction,themovementsofthemasticatorymusclesduringeatingwillbecomeincreasinglyindependentoftheconsciouselectromagnetic ieldinluences.Themotoractivityofmasticationhasbeen“learned”andthereaftermaybe performedunconsciouslywithoutconsciousCEMIieldinluenceontheneuralnetworks involved.Hence,achildwillbeabletochewwithoutconsciousinput[85]. After the chewing function has been learned the CEMI ield, in the absence of any consciousmotoroutputtothemasticatoryneurons,isinvolvedinstrengtheningthesynapsesinthe“masticatorypathways”inorderto“hard-wire”neuronsandtherebylaydown long-term memories of the learned masticatory function. This is because the conscious CEMI ield is a continuum of values (information) extended in space and time and its activityisrequiredtostorememoryofthelearnedmotortasks.Accordinglyrecallofthe memorizedchewingactionmaybeunconscious[85]. Thevoluntarycontractionofindividualmasticatorymusclesislargelyafunctionofthe corticobulbartract,whiletheextrapyramidaltractcomposedofallpathwaysdescending fromthecortex(exceptthepyramidalsystem),includingthebasalganglia,subthalamus, cerebellumandbrainstem,isanactivatorandcoordinatorofposturaladjustmentsandof automatic (unconscious) movements of skeletal muscles, including the masticatory
58
4 Looking into the “Black Box”
muscles[36].Thus,intermsoftheCEMItheory,thelearninginchildhoodoftheprecise anddexterousmovementsinvolvedinchewingrequirethefunctionofthedirectcorticobulbarmotorsystem,whichissubstitutedafterlearninghasbeencompletedbytheindirect automatic(unconscious)extrapyramidaltract.Thisview,issupportedbystudiesinhumans suggestingthatintheadultcerebralcortexthemasticatorymovementsarenotlocatedin theprecentralandpostcentralgyri,asaremostothermovementsofthemouth[66].There areveryfewifanysimilarstudiesinchildrenduringthelearningmasticatoryperiod.Itis possible, however, that the masticatory function is represented in the cortex during the voluntarylearningoftheact,andafterwardswhenchewingbecomesanautomaticunconsciousfunctiontherepresentationsinkstothesubcorticalstructures. Perceptionpsychologistshaveemphasizedthatconsciouslearningofmotorbehavioris alwaysaselectiveprocess,whichisalwaystestingthesensorymodalities.Onehastothink intermsofadynamicmentalactivityrequiringmuchattentionandawarenessoftheindividual.Duringtheattentivelearningstateofthecerebralcortex,theindividualstrivesor seekscontinuallytoindvariablestimuli(differentstimuliofdifferentintensity),aswell asorderedenvironmentalstimuli(symmetriesorinvarianceimplicitinthestimulus)that arevitaltoprogramitssensesandmaintainarousalofthecortexforattentionandawareness,throughtheappropriateinputfromthesenses.Thecortexinturnwillaccomplishthe learningcontributingthustothephysiologicaleficiencyandstabilityofmotorbehavior [82,141].Theabsenceofvariationandorderintheenvironmentalstimulitendstodegrade thecorticalperceptualorganizationandlearningability,resultinginimpairmentofmotor behavior[82]. Theprocessofincorporatingvariableandorderedenvironmentalstimuliintothesenses (seeSect.4.4),representingapersonalperceptualschemeoftheworld,isalsoimportant forgrowthanddevelopmentofthebody.Forexample,Schanberg[73]recentlysuggested thatratpupsdeprivedoftouchstimulationbytheirmotherexperienceasigniicantdecline ingrowthhormoneandornithinedecarboxylase(ODC),whichispartofproteinsynthesis. Schanberglocatedagrowthgenethatisresponsibleforthisrelationshipbetweentouch stimulationandgrowth.Speciically,heidentiiedamessengergene(CFOS),andhefound thatmaternaltouchdeprivationsigniicantlyreducesthismessenger.Schanbergconcluded that“thebrain(reactingtoenvironment)canstickitslongarmdownrightintothemiddle ofacellandregulateagene.” Similarly,Moss[91]consideringtheimplicationsofmechanosensationonbonegrowth andremodeling,suggestedthatmechanosensorysystemsoperateinboneorganizationand growth.Speciically,Mosssuggestedthatbonecells(exceptosteoclasts)areextensively interconnectedbygapjunctions(electricalsynapses)formingalargeconnectedcellular network(syncytium).Bonecellsareelectricallyactive.Bonecellsarestimulatedbythe contraction of muscles which tends to deform bone (strain) and can initiate membrane actionpotentialscapableoftransmissionintheentirebonecellularnetworkthroughthe gapjunctions.Inaveryrealsensebonetissueis“hard-wired.”Skeletalmusclecontraction is a typical mechanotransduction process, having morphogenic effects on bone through intraosseous production of electric ields tunneling in the entire bone cellular network throughinterconnectedgapjunctions(electricalsynapses).Subsequentlytheionicsignal informationiscomputedintheinterconnectedcellularnetworkofthebone(probablyin themicrotubulesofosteoblasts)sothatorganizationaladaptiveresponsesoftheboneare
4.9
Excitable Media: An Alternative Approach to Brain Structure and Cognition
59
correlated (tuned) to precise frequencies of muscle contraction. Moss concluded that mechanotransductionandcomputationalbonebiologyoffersanexplanatorychainextending from the epigenetic event of muscle contraction, downward to the bone cell genes. Thus,itappearsthattheinformationprocessingoftheoralexperienceinthebrainislinked withaseriesofcomplexresearchablementalprocesses,suchasconsciouslearningand memoryofmotorresponsestomuscles[85]whichinturnareinvolvedinboneorganization[91]andgrowthanddevelopmentprocesses[73]. Insum,ourspecialinterestinthedevelopmentofmasticatoryfunctionisfocusedonthe neuraleventsofattentionandawareness,whicharenecessaryforgivingconsciousperceptionoforalexperiences.Consciousperceptionemergesinthepyramidalmotorneurons connectedbygapjunctionsforminghyperneurons,inwhichthecomponentneuronsirein synchrony[38,113].Hyperneuronsoftheleftandrightcerebralhemispheresconnectedby thecorpuscallosumpathwaysaccountforthebilateralsynchronouscontractionofmasticatorymuscles[38]. Alternatively conscious perception emerges through the conscious electromagnetic ield generated in the pyramidal motor neurons, which provides speciic instructions to individualmasticatorymuscleshowtocontract[85].Itishypothesizedthattheconscious electromagneticieldinturnprogramsthecyclicaspectsofchewingmovementscontrolled bythe“centralpatterngenerator”or“chewingcenter.”Thechewingcenterislocatedin thereticularformationofthemidbrainatthecross-roadsofthesensoryinputandmotor output systems of the cranial nerves [76]. The ascending reticular activating system (ARAS)regulatestheebbandlowofactivityintheafferentandefferentsystemsofthe reticularformationandexploitsaspectsoftheinformationprocessingcapabilitiesofthe cerebralcortex,suchasforinstanceperception,learning,memory,andmotorcontrolof muscles[64].TheARASmaybeinvolvedintheprogrammingofthechewingcenterby associatingthesensoryandmotorfeaturesencodedinthememoryofthecomponentneurons,throughtheinluenceoftheconsciouselectromagneticield. Thismodelofthedevelopmentofthechewingfunctionstressestheimportanceof patternsofconsciousexperienceinthedevelopmentofcoordinatedmasticatorymovements by individual central design, through learning and memory. This view is best exempliiedbythesuggestionofBosma[43]thattheoralinnatestereotypefunctions ofanewbornchild,suchasthesucklefunction,changepostnatallyonlybytheaddition ofawarenessandvolition.Theconsciouselectromagneticieldmayactivelybeinvolved inthischange.
4.9 Excitable Media: An Alternative Approach to Brain Structure and Cognition Davia[58]advancedthehypothesisthatthebrainisnotanordinaryexcitablemediumin whicheachpartofthemediumisisolatedandthenconnectedtootherpartsofthemedium withthedevelopmentofexcitableibers(nerves).Thestructureofneuronsandoftheentire braincanbeunderstoodasaself-organizingexcitablemedium,structuredbythesenses.In thisviewtravelingwavesorsolitonsareassociatedwithself-perpetuatingcyclesofcatalyzed
60
4 Looking into the “Black Box”
reactions,resultinginconformationalchangeofaprotein(changeofshape),forinstanceof theproteintubulinofmicrotubules,througha“quantumtunneling”mechanism.Thisisfacilitatedbyavibrationalmodeoftheproteinintheformofasolitonortravelingwavethrough theexcitablemedium.Localizednonlineartravelingwaves,ofwhichsolitonsareanexample,areknowntorepresentaneficientwayoftransferringenergyinbiologicalprocessesat different scales (microscopic or macroscopic). The phenomenon of traveling waves is expressed as movement of molecules of a protein, which acting as an enzyme (catalyst) acceleratesthereactionbetweenchemicalreagentsbytransferringenergyfromoneplaceof theproteintoanother,henceachievingtransitiontoamorefavorablethermodynamicstate. Theindividualmoleculesofproteinbecomeunitedinacontinuouscoherenttravelingwave, whichisaquantumuniiedstateofstructure/energy. Theexcitablemediumisasubstratewithenergyassociatedwithit.Oncetheenergyof thesubstratehasbeendepletedasaconsequenceofametabolicprocess(orautocatalytic reaction),thereisasystemtoreplenishtheenergyrequired.Forsolitonwaveformation theremustbesymmetryorinvarianceinthestructureofthemediumandboundaryconditions.Forexample,microtubuleshavearegulardepthandwidthformingatube,likea canal, which is structured by the senses. That symmetry in structure then translates to excitableareasinthebrainwiththeemergenceoftravelingwaves.Thus,thespatiotemporalevolutionofsolitonicwavesortravelingwavesoftheexcitablemediumovercomethe structural constraint of the medium by providing paths for energy dissipation via the invarianceorsymmetriesthatareimplicitinthestructureofmedium[58]. Theactionpotentialofnervesisanotherexampleofaself-perpetuatingautocatalytic cyclethatexhibitssoliton-likebehavior[207].Similarly,therelationshipbetweensolitonsortravelingwavesandstructuralregularityisalsoevidentinthedynamicinteraction betweenmicroilaments,myosinandactininmusclecontraction.Energyisreleasedfrom themuscleiberasaresultoftheactionoftravelingwaves.Themyosinmoleculeactsas acatalystproteinemployingthesamemechanismastheenzyme,thesoliton,toachieve thetransitionofenergysuchthatthemyosinmoleculesslideandrebindwiththeactin moleculeandthusdecreasetheoveralllengthofthesarcomereduringcontraction[208]. Anysmalldefectinthemuscleiberrepresentsadiscontinuitythatcannotbeintegrated intotheoveralltravelingwavefunction.Suchadefectgivesrisetoirregularmusclecontractionrhythms.Similarly,thebeatingoftheheartisassociatedwithatravelingwaveof excitationthatmovesthroughthesetissues.Thetravelingwaveisacontinuousphenomenon.Thedefectintheheartmusclerepresentsadiscontinuitythatcannotbe“integrated” intotheoveralltravelingwavesolution,resultingincardiacarrhythmia.Incardiacarrest anelectricshocktotheheartmayberequiredtoinitiateagainthebeatingoftheheart according to its own internal dynamics, i.e., by the traveling waves through the heart tissues[58]. Thethemeofexcitablemediaandtravelingwavesalsoplaysanimportantroleinthe auditorysystem.Thebasilarmembraneisanexcitablemedium.Itsmotionconsequenton asoundstimulusisatravelingwave[209].Thebasilarmembraneisnotapassive“receiver” ofsoundstimuli.Itsfrequencyresponsesarehighlynonlinearanditssensitivityisincreased byactivefeedbackprocesses[210].Specializedhairbundleshavetheeffectofalteringthe dynamicresponseofthebasilarmembranethusalteringitssensitivitytoparticularfrequenciesofstimulus.Thedynamicfeedbackmechanismsassociatedwiththebasilarmembrane
4.9
Excitable Media: An Alternative Approach to Brain Structure and Cognition
61
notonlyrespondtoastimulusbutalso“anticipate”it[211].Thisinteractionofthebasilar membranewiththesoundstimulusformsthebasisofthedevelopmentoflanguageand speechwhichisdiscussedinthenextchapter. Insum,intheprevioussectionsofthischapterithasbeensuggestedthatsuccessfuloral behaviorisnecessarilycorrelatedwithrobustneuralstatesofthebrainthatunderliesensation,cognition,andmotorcontrolofmuscles.Perceivingthebrainasanexcitablemedium mayofferfurtherinsightintobrainfunctionespeciallyhowdifferentmusclefunctionsare coordinated.Davia[58]suggestedthatwhenwespeakwecoordinatethemovementsof lips,tongue,andtheshapeofthemouthwiththesoundsthatwehear.Thissynchronyis achievedasaconsequenceoftravelingwavesunitingtheneuralactivityindifferentparts of the medium (brain). This hypothesis may also be applied to the coordination of the masticatorymusclesduringchewingasfollows. Bishop[130]suggestedthatthemasticatorymusclesduringspeechandchewinguse the same motor units in these two very different types of motor activity. However, the frequency of discharge of motor units during speech is far faster than in chewing. Commenting on this, Goldberg [131] suggested that there is no question that there are independentmotorprogramsforspeechandchewingactivitiesassociatedwithindependentfeedback.Recentneurophysiologicalstudieshavesuggestedthatskeletalmusclesare excitablemedia.The myosin molecule acts as a catalyst protein and employs the same mechanismastheenzyme,thesolitonortravelingwave,toachievethetransitionofenergy enabling the myosin molecules to slide and rebind with the actin molecules and thus decreasetheoveralllengthofthesarcomereduringmusclecontraction[208]. Accordingly,itcouldbespeculatedthatthepairedmasticatorymusclesareexcitable media,eachpairforminganindependentsensory–motorprogramassociated(correlated) withindependentneuralstates(transformations)ofthebrain.Theneuralstatesareinturn interconnectedwithtravelingwavesunitingtheneuralactivitiesinthedifferentpartsofthe excitablemedium(brain),thusprovidingtemporalsynchronyintheirdischargeandcoordinationofthefrequencyoutputtothemasticatorymuscles.Thalamocorticalprojections (ortrans-corpuscallosumpathways)couldcouplethetwocerebralhemispheresinhyperneuronstoaccountforthebilateralsynchronouscontractionofthemasticatorymuscles[38] (seeSect.4.2). Thecontractionofmuscleisassociatedwithatravelingwaveofexcitationthatmoves throughthetissues.Thetravelingwaveisacontinuousphenomenon.Asmalldefectin the excitable medium (muscle) represents a discontinuity that cannot be “integrated” intotheoveralltravelingwavefunction.Theconsequenceofsuchdefectsistogiverise toirregularmusclecontractionrhythms[58]thatweoftenencounterinmalocclusionsof theteeth. The coordinated brain output to the masticatory muscles may further be connected throughtravelingwaveswiththeneuralactivityofthebasilarmembrane,whichisalsoan excitablemedium.Itsmotionrespondingatthefrequencyofasoundstimulusisatraveling wave[209].Thus,wecouldcoordinatethemasticatorymovementswiththesoundswe hearwhenwechew.Similarly,whenwespeak,wecoordinatethemovementofourlipsand tongueandtheshapeofourmouthswiththesoundswehear.Davia[58]suggestedthatthis synchronyisachievedasaconsequenceoftravelingwavesunitingtheneuralactivityin differentpartsofthebrain.
Language and Speech
5
5.1 Introduction Linesofevidenceindicatethattherearenoinnatelanguagerepresentationsinthecortex,and thatregionsofthecerebralcortexthatnormallysupportlanguagecansupportotherfunctions. Ontheotherhandhigh-densityevent-relatedpotential(HD-ERP)studiesininfantshavesuggestedthatsomeregionsofthecortex,suchasthelefttemporallobe,maybeparticularly eficientatprocessingspeechinputfromtheirstfewmonthsoflife.Theseindingshave sometimesbeencharacterizedasevidenceof“innatelanguageneuralmodule,”buttheyare also consistent with a more probabilistic epigenetic view of language function [102]. Accordingly,theviewthatholdsisthatspeechandlanguagearelearnedsensorimotorfunctions.Thismeansthatthechilddoesnotprogressfromcrying,tobabbling,totalkingwithout help.Thechildmustbetaughttotalk,andtheparentsarethechild’sirstteachers[132,214]. Speechisampliiedandilteredinthemouththatprovidesaresonatingcavitythathelps shapethesoundforspeechorsong.Almostanyinterventionthatadentist,orthodontistor prosthodontist undertakes in the oral cavity of the patient can have varying degrees of temporaryorpermanenteffectsonoralproprioceptiveperceptionandoralmotorcontrol, andthereforespeechproduction.Mostpeople,however,adaptsurprisinglywelltostructuralmodiicationsoftheiroralcavity. Ontheotherhand,patientsmayseekhelpfromtheirorthodontistinordertoimprove theirspeech,ifthespeechproblemisrelatedtodentitionorocclusionoftheteeth.Abasic understandingofhowlanguageandspeechdevelopmentisaccomplishedmightbeuseful topractitionersworkinginthemouth.
5.2 Language and Speech Development Afewmonthsafterbirththeinfantisengagedinconsiderableamountoforalactivity.For example,fromtheageof5monthseverythingtheinfantpicksupistakenintothemouth. Thismouthandhandexperiencecanprovidestimulationtoallsenseswithwhichthebaby M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_5, © Springer Verlag Berlin Heidelberg 2009
63
64
5
Language and Speech
introduceshimselftotheworld.Themouthandhandsensoryexperience(mouthing)persists untilthebabyisreallyadeptwithhishands[70].At6monthstheoralcavityhasgrown considerablyandthetonguenolongerillsthewholemouth.Thelarynxstartstosinkdown intheneckandthevelumorsoftpalatenowcanbeelevatedtoclosethevelopharyngeal sphincter,whichregulatesthenasalityofthespeechsound[148]. Speechisgeneratedintheoral-pharyngealcavity,whichilterstheroughsoundsignal producedinthevocalcords.Inmostpeopletheairisampliiedandilteredinthemouth thatprovidesaresonatingcavitythathelpsshapethesoundforspeechorsong.Forthese soundsthevelummustbeelevatedtoclosethevelopharyngealsphinctersothatnoair goesthroughthenose[148].Thus,thelowpositionofthelarynxinthehumanneck,the control of the velopharyngeal sphincter mechanism, and most important the preprogrammedbraintodeveloplanguageifthereislinguisticinputintheenvironment,arethe mainspecialfeaturesthatpredisposeforspeechproduction[102,148]. The central functions of language comprise the cognitive functions and the motor aspectsofvocalization.Thecognitivefunctionsinvolvetheprocessingoflinguisticinput in Wernicke’s cortical area of the temporal lobe of the left cerebral hemisphere, which comprisesthecenterofsemanticmeaningofwordsortheunspokenwordfunctioncenter. Theabilitytoproducespokenwords(linguisticarticulationcenter)islocatedinthepremotorareaofthesamehemisphere,speciicallyintheareas44and45oftheinferiorfrontal gyrusknownasBroca’sarea.IsolatedlesionsofBroca’sarearesultinmotoraphasia,demonstratedasmotorapraxia,inotherwords,lossofarticulatespeechbutwithoutdemonstrableparalysisofmusclesassociatedwithspeech[36]. Atbirththecerebralcortexisan“unwritten”page.Theeyesandoccipitallobesarenot yetdeveloped.Theeyesareopenbuttheinfantcannotsee,hear,smell,ortouch.Thus,the child’ssphereofsensationsislimitedatthisearlyage.Theseactsrequiretheactivityof deinitegroupsofmuscles,whichcannotbecontrolledbythenewbornchild.Forexample, toseeanobjectitisessentialthattheopticalaxisofbotheyesconvergeontheobject.This canonlybeeffectedwiththehelpofthemuscles,whichturntheeyesinalldirections.The newbornchildcannotdothis.Itslookisalwaysuncertain,i.e.,itisnotixedondeinite objects.Afteroneortwomonthsthechildlearnstoperformthesemovementsthroughthe sensationsthatimparttothecerebralcortexthemusculovisualrelexassociation.Atthe sametimetheneuronsoftheoptictractsarereadytotransmittheimpulsesfromtheretina totheoccipitallobessothattheinfantcanseethemother[68]. Similarly,alongtimepassesbeforetheinfantlearnstohearsoundsandwords(listen). Thisprelisteningstageofdevelopmentisexpressedasbeginningtobabble.Inotherwords, theinfantisbabbling,withcoordinatedmovementsofthelipsandmandible,producing simplerepetitiveconsonant-vowelsequencesounds(mamama…bababa)withoutmeaning. Up to this stage a baby’s vocalizations are largely unrelated to its race or hearing [148].Butsoonthefactorofimitationoflearnedsoundsappears,throughmemorydevelopment,usuallybetweensixandtenmonthsofage[68]. Inthelisteningstageofspeechdevelopmentthebrainisinanattentivestateduring whichlearningoccurs[15].Adecisiveroleisplayedbythechild’sdesiretoimitatethe articulationofsoundsandtheircombinationintowords,actingonitseardrum.Theprocess ofarticulationofsoundsconsistsofassociationofsensationscausedbythecontractionof muscles participating in speech with auditory sensations induced by the sounds of the
5.2
Language and Speech Development
65
individual’sownspeech(babbling).Theseactsarerelexesarisinginthebrain,through memorystimulation,andendinmuscularmovements.Theserelexsensationsareacquired bylearningthroughfrequentrepetition,andtheirreproductionrequiresmemory[15,68]. Theactofauditoryattentionorlisteningissimilartothedescribedconvergenceofthe opticalaxesontheobjectforclearvision.Listeningismanifestlyconinedtothisexternal actwhenseparatesimplesoundsareperceived.Inthevocabularyofachildthereisnota singlewordthatithasnotbeenacquiredbylearning. Theprocessofarticulatingsoundsisactuallythesameinthechildandintheparrot.But whatisthedifferenceintheirfacultyofspeech?Whiletheparrotlearnstopronounceonly afewphrasesintenyears,thechildlearnsthousands.Theparrotpronouncesthewordsin apurelymechanicalway,whereasthespeechofachild,evenataveryearlyage,bears,so tospeakanintelligentcharacter[68]. Thus,theimitationsbythechildofwhatithearsgiverisetoauditorysensations,aswell assensationsofthemusclesparticipatinginspeech(musclesofthechest,larynx,tongue, lips,cheeks,etc).Theexerciseofthesesensations,throughfrequentrepetitionbecomes increasinglydeiniteinthechild’sconsciousness[68].Theexercisemakesthepreviously uncoordinatedmusclesofspeechassumedeinitepatterns,sothatthebabyisabletoarticulatewithmeaningpartsofthewordshehasheard,suchas“g”fordog[148]. Thefacultyoflisteningtowords,however,isbutoneoftheconditionsnecessaryfor articulatingsounds.Inotherwords,theauditorysensationsdonotsuficeforclearperceptionofwords.Fullperceptionofwordsrequiresintelligence,whichisacquiredmainlyby the association of auditory sensations with visual and tactile ones. The more diverse the formsofthisassociation,themorepronouncedistheintelligenceofspeech[68].Thus,when achildhearsasound,therelexesofthestimulatedauditorynerveincludetheturningofthe faceinthedirectionofthesound,andthemovementofthemuscleswhichturntheeyeball inthesamedirection.Theirstmovementistheactoflistening.Thesecondmovementleads tovisualsensation.Itisthesetwosuccessiverelexesacquiredbylearningthatconstitutethe elementaryformofvisual–auditoryassociation.Forexample,arecentfunctionalmagnetic resonanceimaging(fMRI)studyfoundaregionofthebrainactivatedspeciicallyforthe cross-modalitycomponentofacombinedvisual–auditorytask[134]. Inaddition,itiswellknownthatvisualsensationsareeasilyassociatedwithtouch(tactileandpressure)sensations,thatresultinthenotionofformandtextureofobjects.For example, Taylor-Clarke et al. [136] suggested that visual stimuli enhance tactile acuity throughmodulationofresponsesintheprimaryandsecondarysomatosensorycortex.Thus, whenanobjectispresentedbeforetheeyes,thehandisbroughtintomotionandwhenit encounterstheexternalobjectcallsforthtactileandpressuresensations.Furthercrossmodal linksoccurinselectiveattentiondirectedtowardvisual–auditory-touchstimuli[152]. Inthisview,letusnowsupposethattheobjectgraspedbythechildisabell.Inthiscase along with the muscular–tactile–visual sensations caused by grasping the bell, a fourth relex,thesoundrelexisaddedtothethreepreviousones.Ifthisprocessisrepeatedmany times, the child begins to recognize the bell both by its appearance and by its sound. Subsequently,whenasaresultoflearning,therelexesfromtheeartothetongue(speech muscle)takedeiniteforms,andthechildbeginstocallthebell“ding-ding.”Thus,the sequenceofsuccessiverelexes,throughthevisual–auditory–touchandmuscularsensationsleadtoaperfectnotionoftheexternalobject[68].
66
5
Language and Speech
Weshallnowconsiderthemosaicpictureofthemotherplacedbeforetheeyesofthe child.Thelattercanseetheentirepictureatonce.Butwhentheopticalaxesofthechild’s eyesaredirectedtooneparticularpoint,forinstance,tothemother’snose,thelatterisseen bestofall,themouthandtheeyeslessso,andthefeet,thefarthestremovedfromthenose, leastofall.Thusitispossibletoseesimultaneouslythewholeandthepart. Hebb[16]suggestedthatthebrainstrengthensitssynapsesaccordingtohowoftenthey arestimulated.Thisenhancescommunicationandinformationprocessing,resultinginlearningandmemoryofexperience.Accordingly,asaresultofrepeatedlyseeingthemother,a visualmemorycenterdevelopsintheinfantnearthevisualcenter,wherethevisualsensationsderivedfrommotherareregisteredasmemoriesoflearnedability[15].Nowthechild recognizesthemotherwhensheapproachesandsmiles.Assoonasthemothernoticesthat thechildrecognizesher,sheintroducesherselfsaying“mama.”Thisistheirststimulation forlanguagedevelopment.Subsequently,themothershowsthechildhowtoshapeitsmouth andtoexpeltheairduringthepronunciationofthewordMama.Thechildimitatesher[75]. Atthisearlyage,however,wordsaresimply“soundobjects”nodifferentinprincipleto visual objects. The child learns to recognize the sound objects in the same way that he learnstorecognizevisualobjects,throughlearningandmemory[58].Thereissuficient implicitorderinthefrequencyofstimulifromsoundandvisualobjects[58]fortherepeated stimulationoftheauditoryandvisualreceptivesurfaces,facilitatingtheemergenceofan electromagneticwave,whichtunnels(travels)throughgapjunctionsconnectingtheauditoryandvisualneuronsintoagiantneuron(hyperneuron)makingthemireinsynchrony. The hyperneuron essentially unites the functions of auditory and visual neurons into a continuouscognitiveprocesscomprisinganintegrationofvisualandauditorysensations [38].Thisisarelexinthefullsense,composedofsensorystimulation–corticalintegration andmovementofspeechmuscles[68]. ThroughthisrelexarisesthelanguagecenterofWernicke,inwhichthestimulusimage fortheexcitationoftheneuronsofBroca’scenterisprepared.Thechildisnowinthestage ofinner,unspokenwordformation.Asaresultofthechild’srepeatedeffortstoexpressthe word formed within itself, connecting ibers arise and an area of the intonation center (Broca)isformedwithinthemotorcortexforthecombinedactivationoftheoralandlaryngealmuscles.Thechildwhohasrecentlylearnedtorecognizethemother,nowuponseeing herislearningtoactivatethevocalmusclesthroughtheBrocacenterandsay“Mama.”The stimulus,whichthemotherprovidestravelsbywayofthecentersofvision,recognition, wordmemoryandwordformation,andmuscleinnervation[36].Thusarisesspeechbythe acousticsensations,whicharecloselyassociatedwiththemuscularsensationsarisinginthe musclesthatparticipateinspeech,namelythemusclesofthechest,throat,andespecially thetongueandlips[148]. Theunioninthehyperneuronoftheauditoryandvisualsensations,representingindividually different cognitive states of the brain, forms the basis of conceptual cognitive states.Conceptualitythen,isimplicitintherelationshipbetweentheuseoflanguageinthe contextofrecognizableobjectsoreventstowhichtheuserefers[58]. Itisnotedthattheunionofvisualandauditorycognitivestatesintooneconceptualcognitivestateisrealizedthroughfrequentrepetitionofthesamevisualandauditorystimulus. Thismeansthatthecapacitytoreproducesensationsisbasedonmemorystorage[15,35]. Subsequently, it seems that there is a similarity between the integration of individual
5.2
Language and Speech Development
67
sensations (cognitive states) and the formation of conditioned relexes. The latter also dependuponmemorystoragethroughstimulationoftheinvolvedsensesbythesamestimulusinthesamedirection[68].Thus,itappearsthattheformationofcognitivestatesofthe brainandofconditionedrelexesarebasicallyverysimilaroridenticalmentalevents.This meansthatbothrequiretheparticipationofthehighestsensoryandmotorcentersinthe cerebralcortexfortheirlearningandlong-termmemory,throughfrequentrepetitionofthe relex. Theanalysisoflanguageandspeechdevelopmentclearlyindicatesthatmaturationof thebrainthroughthesenses(experiences)isofprimeimportance.Maturationisrelatedto intelligence,whichincludeslanguageunderstanding,reasoning,perception,problemsolvingandlearningability[149].Earlylearningofintricatemovementsofthelips,tongueand cheeks,andintheircomplexcoordinationwithswallowingandbreathingrhythms,resultinginamobilemouth,isofprimeimportanceforthedevelopmentofspeech[148]. Speciically,whenwespeakwecoordinatethemovementsofthelips,tongueandthe shapeofthemouthwiththesoundswehear.Ithasbeensuggestedthatthissynchronyis achievedasaconsequenceoftravelingwavesorsolitonsunitingtheneuralactivityindifferentpartsofthebrain.Atthemolecularlevel,solitonsarequantumcoherentstructures— auniiedstateofenergy/matter.Biologicalprocessesrepresentauniquesynthesisbetween energyandstructuresuchthatthereisnodiscontinuitybetweenthem.Solitonsortraveling waves are involved in muscle contraction, protein folding, DNA “zipping” and “unzipping,”actionpotentialsofnervesand,crucially,inthebrainitself.Ithasbeensuggestedthat thebrainisanexcitablemedium,whichisstructuredbythesenses,andthatcognition(and allmentalprocesses)correlateswiththespatiotemporalevolutionoftravelingwavesinthe brain[58]. Thehigherlevelsofcognition,suchaslanguage,canbeunderstoodasanessentially inductive process, involving a succession of steps (neural events) that mediate implicit relationshipsbetweenestablishedcognitiveprocesses.Oncethelowerlevelsofcognition havebeenestablished,theimplicitrelationshipsbetweenthesestatesofneurocognition maybecomeexplicitathigherlevelsofcognition,suchaslanguage,conceptuality,etc, whichunderliebiologicalstructures,forinstancetheWernickeareaofinnerspeech,that combinemetabolism–functionandstructure–energy[58]. Thisview,thatthehighercognitivestatesofthebraindevelopthroughmaturationof successivelevelsofcognition,eachlevelbeingcharacterizedbystructuralandfunctional transformationsofthecerebralcortex[58],couldalsobeappliedtotheperipheralsensory receptors,sincethecerebralcortexisregardedashavingbeenbuiltbytheneuralactivity ofthecerebralterminalsofsensoryreceptors[35].Thesensoryreceptorsofanewborn childmightundergosuccessivestagesofmaturationthroughlearningofexperience,which mightbecorrelatedwiththedevelopmentofsuccessivelevels(states)ofcognitionofthe brain.Insupportofthisviewmaybethatatthepresenttimeonlyafewaspectsofthe codesemployedbythenervoussystemtotransmitinformationhavebeenidentiiedand evaluated.Forexample,itisknownthateachsensorymodalitystimulusisacompositeof severalcomponents.Eachofthecomponentsevokesseveralcodes,whicharetransmitted totheprocessingcenters[36]. Insum,itispointedoutthatlanguageandspeechdevelopmentisstructuredasaconsequenceofauditory,visual,tactile,andmusclespindlestimuli[214]andtheircrossmodal
68
5
Language and Speech
interaction [15, 38]. The corresponding chemical and structural changes of the brain, dependingonthestimulus,comprisesuccessivecognitivechangesorstatesofthebrain, eachstatemediatingthestateimmediatelyabove[58].Theabilitiestoacquirelanguageand speechcorrespondtohighestlevelsofconsciouscognitionandmotorcontrol,respectively. Thereareseveraltheoriesastohowconsciouscognitionmightarise.Themostaccepted theory of consciousness or perception is that of Penrose and Hameroff [38, 113]. The authorssuggestthatmultisensoryexperiencesareintegratedandreacha“threshold”for perceptionorconsciousnessinthehyperneuron.Thehyperneuronisagiantneuroncomprisingneuronsfrommanyareasofthecerebralcortexconnectedbygap-junctions(electricalsynapses),inwhichthecomponentneuronsireinsynchrony.McFadden[85],however, suggeststhatthemassivedischargeofcorticalneuronsthroughtheinputofmultisensory experiencesmightgenerateaconsciouselectromagneticieldinthebrain,whichinitiates consciousmovementsoftheskeletalmuscles,includingspeechmuscles.
Mastication in Man
6
6.1 The Central Pattern Generator Currentauthorsviewmasticationasacyclicalmovement,likebreathingorwalking.The basicrhythmofcyclicalmovementsisdrivenbyaprogramthatishard-wiredinthe“central patterngenerator”whichislocatedinthereticularformationofthemidbrainatasitestrategicallyplacednearthetrigeminalnucleiandthenucleireticularispontisoralisandcaudalis [78,172,219].Thecentralpatterngeneratorisprobablyprogrammedbytheconsciouselectromagneticieldgeneratedbythesynchronousiringofcorticalneurons(seeSect.4.8). Likevoluntarymovements,cyclicalmovementsarenormallyine-tunedbysensorysignalsfromthemasticatorymusclesandoralreceptorsactingthroughtheactionofrelexes. Thereisverygoodexperimentalevidencethatcyclicalmasticatorymovementsareneither purelyvoluntarynorpurelyrelex.Masticationmanifestsitselfasapatternedcycleofmuscle contractions, which in turn produce the characteristic three-dimensional envelope of jawmovement,coordinatedtongueandcheekmovement,andcompressiveandshearing forcesbetweentheteethtocomminutethefoodbolusmakingtheactofchewingaswe knowit[78,172]. It should be emphasized, however, that the central pattern generator is principally a timingmechanismforcreatingrhythmicitycouplingthemovementofthejawandtongue. Assuchitdoesnotproducemasticationorchewinginthetruesense,inwhichthedevelopmentofspeciicpathsofmovement,thealteredtimingsequences,andtheinterocclusal forcesarecharacteristicadditionstorhythmicityperse[78,218].Duringnormalrhythmicalchewingmovementsallthejaw-closingmusclesonbothsidesareactivatedataboutthe sametimethroughthecouplingofthehyperneuronsintheleftandrighthemispheres(see Sect.4.2).Duringtheopeningmovementonlythejaw-openingmusclesareactive.When chewingoccursontherightsideofthemouththeactivityoftheleftmasseterduringthe chewingstrokeislessthantheactivityintherightmasseter[78]. Insum,theimportantcomponentsofthecentralpatterngeneratorincludethemotor cortex,whichactivatesthepremotorneurons,whichinturnactivatethetrigeminalmotor nucleus,whichcausetherhythmicalchewingmovements.Therhythmicalchewingmovementsgeneratesensorysignalsthroughactivationoftheoralsensoryreceptorstheinputof whichactivatesthepremotorneuronsfollowingthesensorimotorintegrationfunctionin M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_6, © Springer Verlag Berlin Heidelberg 2009
69
70
6 Mastication in Man
thesomestheticcerebralcortex.Thus,theactivityofthecentralpatterngeneratorcanbe triggeredbothfromthecortexandfromsensorysignalsfromthemasticatorysystem.Itis noted,however,thatfeedbacksignalsfromthemasticatoryapparatusarenotnecessaryfor continuedactivityofthecentralpatterngenerator.Inotherwordsthechewingcentercan continuetosendoutitssignalstothemotornervesofthemusclesevenwhentherhythmicalchewingmovementsofthemusclesarepharmacologicallyprevented[78,218]. Forexample,inthisparticularexperiment,rabbitswerenotonlygivenageneralanestheticbutwerealsoparalyzedwithacurare-likedrugthatblockedtheneuromusculartransmissionofactionpotentialstothemasticatorymuscleswithout,however,interferingwith theactionpotentialsthattraveledoutfromthebrainalongthemotornerves.Thecurare-like drugstoppedtheactionpotentialsfromactivatingthechewingmuscles.Hence,thedrug prevented the jaw from moving in the normal rhythmical masticatory pattern when the animal’sbrainwasstimulated.Itwasconcludedthatthecentralpatterngeneratordoesnot dependonsensoryfeedbacktocontinuetherhythmicalchewingmovements[78,219]. Thecentralpatterngenerator,however,isunablebyitselftoadjustthemuscleforce requiredtobreakdownfoodwhosetexturemaybeunpredictableandchangesfromone chewingstroketoanother.Forthisreasonthemasticatorysystemispowerfullymodulated byrelexes,whichautomaticallyine-tunethecentrallygeneratedmasticatorymovements inordertocontroltheforceofthemusclecontraction.Themostimportantoftheserelexes isthestretchrelexandtherelexesemanatingfromtheperiodontalmechanoreceptors, whicharedescribedbelowandinChap.8,respectively.Itisinterestingtonotethatrelexes emanatingfromthemechanoreceptorsoftheskinmayalsomodulatemasticatorymuscle function.Forexample,recordingsfromdifferentnervesinnervatingthemechanoreceptors oftheskinoftheface,lipsandoralmucosastimulatedbyvoluntarymovementsofthejaw throughdeformationofthetissueshaveindicatedthattherearetactilereceptorsactivated onlybyjaw-closingmovements,suggestingthatproprioceptivesignalsfromthefaceand mouthmayspeciicallycontroltheopeningandclosingrhythmofthemouthduringchewing[23,78].Thereaderisremindedthatthejaw-openingmusclesaswellasthefacial muscleshavenomusclespindlesandtheirfunctionmaybesubstitutedbythemechanoreceptorsofthefaceandoralmucosa(seeSect.8.12). Itisalsointerestingtonotethatanumberofauthorshavesuggestedthatthefunctionof masticationdoesnotgraduallydevelopfromthesucklingfunction,althoughthephasicalternation of cyclical masticatory movements are reminiscent of the cyclic function of the act of suckling.Rather,thedevelopmentofthematurepatternsofbitingandchewingappearasnew learnedfunctionsthatmaybetriggeredbyeruptionoftheteeth,relectingcoincidentmaturation inoralsensoryexperienceandintheprogressionsofencephalization[1,65](seeChap.10).
6.2 The Trigeminal Stretch Reflex Thestretchrelexinthetrigeminalsystemfunctionstoadjusttheforceexertedbythejawclosingmusclestocompensateforchangingresistancetoclosingthatoccursduringchewing.Italsoplaysaroleinmaintainingthepostureofthejawinthe“restposition”during vigorous head movements, for instance during running. The stretch relex, like other
6.3
Isometric Contraction of Jaw-Closing Muscles
71
somaticrelexesinthebody,consistsofasensoryreceptor,anafferentorsensorypathway, anintegratingcenterinthecentralnervoussystem,wherethesensoryneuronssynapse withthemotorneurons,andanoutputpathwayconsistingoftheaxonchannelsofpyramidalmotorneurons,whichinnervatethemasticatorymusclesthroughthemotornucleiof thetrigeminalnerve.Thereceptorsforthestretchrelexesaremusclespindles,whichare locatedinthemusclesinparallelwiththemuscleibers.Thejaw-closingmuscles,butnot thejaw-openingmuscles,arerichlyendowedwithmusclespindles[78,217]. Thesensorynervesthatcarrythesignalfromthemusclespindlestothebrainarethelargestmyelinatednerveibersfoundanywhereinthebody,theso-calledgroupIaafferentneurons.ThetrigeminalIaafferentspassintothebrainstemviaananatomicallyuniquepath. Althoughtheyaresensoryibers,theyenterthebraininthesamenervetrunkasthemotor nervesthatareleavingthebrain,ratherthanwithothersensoryneuronsasisthecaseinthe spinalcord.Theircellbodiesliewithinthebrain,inthemesencephalictrigeminalnucleus, whichinturnsendsiberstothetrigeminalmotornucleiwheretheyformexcitatorysynapses withthealphamotorneuronsthatinnervatethejaw-closingmuscles[78,217]. Becauseboththenerveibersthatcarrytheactionpotentialsfromthemusclespindles tothemesencephalicnucleusofbrainstem,andtheibersthatbringactionpotentialsfrom thebrainstembackouttothemasticatorymusclesarelargeandmyelinated,theyconduct actionpotentialsatveryhighvelocities(about50ms−1).Also,becausethedistancesover which action potentials must travel in this relex are quite short (about 90 mm in each direction),thestretchrelexoccursveryquickly(about7–8ms).Thespeedofthestretch relexresponseenablesthemusclestoreactextremelyquicklytothechangesintheresistance of the food being chewed. The chin-tap relex is used by neurologists to test the normalfunctionofthesensoryandmotornervesinthetrigeminalsystem[78]. Duringanynormalskeletalmusclecontraction,thebrainalsosendssignalsalongthe gammamotorneurons,whichinnervatetheendsofthemusclespindlescausingthemto contracttoo,throughtheirownactin-myosincontractilesystem.Thecontractionofboth endsofthespindlestretchesandhenceactivatesthemiddlepartofthespindle,wherethe sensoryreceptor(theprimaryorannulospiralending)islocated,causingactionpotential signalstobesentalongthelargemyelinatedIasensoryiberstothemesencephalicnucleus ofthetrigeminalnerve.Thentheactionpotentialsreachthejaw-closingmusclescausing themtocontract(totwitch),throughthemotornucleiofthetrigeminalnerve[78,217]. Itshouldbenotedthatthemusclespindlesalsohave“secondary”sensoryendings,which areanatomicallydifferentfromtheprimaryendings.Theprimaryendingsaresensitiveto changesinmusclelengthandarerapidlyadaptingreceptors.Thesecondaryendingsgivea conscioussignalrelatedtomusclelengthand,therefore,areslowlyadaptingreceptors[78].
6.3 Isometric Contraction of Jaw-Closing Muscles Theisometrictensiondevelopedbyamuscleduringmaximalvoluntaryeffortcorresponds closelytothatproducedbytetanicstimulationofitsmotornerve.Therefore,activityofthe elevatorjawmusclesduringmaximalvoluntaryclenchofteethmayindicatetheirmaximal strength[125].
72
6 Mastication in Man
The strength of voluntary contraction is increased both by an increase in the rate of individualmotorunitdischargesandalsobyrecruitmentofmoremotorunits.Sinceeach actionpotentialrepresentsactivationofamotorunit,acorrelationcanbeexpectedbetween muscleforceanditspatternofelectricalactivity[125].Inordertounderstandhowisometric contraction controls biting force, consider what happens when you bite down onto brittlefoodsuchasarawcarrot. Thebrainsendssignalsalongthealphatrigeminalmotoneuronstothejaw-closingmuscles.Thiscausesthemuscletocontractandhence,toshortenandmovethelowerteeth towardsthefood.Atthesametime,thebrainisalsosendingsignalsalongthegammamotor nervesinnervatingthemusclespindlesinthejaw-closingmuscles.Thesecausebothends of the spindle to contract, so that each spindle shortens at the same rate as the skeletal muscleibers,keepingthespindleundersteadytension.Whentheteethtouchthefood,the resistance to closing movement suddenly increases and the muscles stop shortening. However,themuscleibersarestillactivelycontracting,althoughtheyarepreventedfrom shortening.Thecontractionofthemusclesnowbecomesisometric,meaningthattheyare contractingunderconstantlength.When,however,theresistanceofthefoodduringchewing increases,thegammamotorneuronsofthebraincontinuetosendsignalsthatfurthershorten thespindleandhencefurtherstretchtheelasticcenterwherethesensoryreceptorlies.This increasestheactivationofthereceptorwhichsendsactionpotentialstothemesencephalic nucleus,whichinturnareprojectedtothetrigeminalmotornucleuscausingthejaw-closing musclestocontractmorestrongly,resultinginanadditionalbitingforceonthefood. Allthishappensinasmallfractionofasecondandautomatically,inotherwordswithoutanyconsciousintervention.Thus,theresistanceofthefoodbeingchewedinformsthe brain through the muscle spindle receptors of the masticatory muscles that the food is tough,andthebrainrapidlylearnsaboutthetextureoffoodandautomaticallyresetsthe relexresponseaccordingly[78,219]. Numerous studies have demonstrated a rectilinear relationship between electrical and mechanical activity during isometric contraction. This implies that the electrical and mechanicalactivityrecordedduringmaximalclenchingoftheteetharealternativemeasures of the strength of the jaw-closing muscles. However, the question of whether the maximalbiteforceinfactrepresentsthemaximalstrengthofthejaw-closingmuscles(i.e., the output derived from the motor units available working at their maximal rate of discharge)mayberaised[125].RasmussenandMoller[185]testedthemaximalclenchingof the teeth in the intercuspal position by determining the electrical activity in the anterior temporalandmassetermuscles,andfoundthatthemaximalbiteforcedoesnotrepresentthe maximalstrengthofthesemuscles.Theythensuggestedthatthereexistsforeachindividual amaximallevelofattainablemuscularstrength.Belowthisleveltheactualstrengthvaries withthedegreeofphysicalactivity.Theeffectoftrainingonisometricenduranceandmaximalvoluntarycontractionsupportsthissuggestion.Isometricenduranceisrelatedtoiber typecompositionbothbeforeandaftertraining,buttheeffectoftrainingisnot.Therefore trainingdoesnotleveloutdifferencesbetweenindividualswithrespecttoendurance. Functionaldisordersofthechewingapparatusarecharacterizedbytendernessandpain ofthemusclesofmastication.Theenduranceandstrengthofthemasticatorymusclesmay determinesusceptibilitytotendernessandpain.Forexample,nonfunctionalactivitiessuch asbruxism(clenchingandgrindingoftheteeth)mayberesponsiblefortendernessand
6.5 Voluntary Control of Masticatory Muscles
73
paininthemusclesofmastication.Indeedthecomparisonofthestrengthofthetemporal andmassetermusclesbetweensubjectswithandwithoutsuchsymptomshasshownthat patientswithfunctionaldisordersofthemasticatorymuscleshavesigniicantlylowervaluesofmaximalbiteforcecomparedtonormalsubjects.Theaffectedandunaffectedsides donotdifferinpatientswithunilaterallocalizationofthedisorder.Reductionofsignsand symptomsduetotreatmentisfollowedbyanincreaseinmaximalbiteforce[125].
6.4 The Unloaded Reflex Adramaticexampleofbitingonaveryhardbrittleobject,forinstanceanutshell,isthe unloadedrelex.Inthisinstance,thebrainissendingeverincreasingsignalstothetrigeminalalphamotorneuronsthatinnervatethejaw-closingmuscles,aswellastothecontractile part of the muscle spindles through the gamma motor ibers, resulting in harder contractionofmuscles.Whenthenutshellcrackstheresistanceofthejaw-closingmuscles suddenlyfallstoalowlevelordisappearsaltogether.Atthispoint,thejaw-closingmusclesarestillactiveandcontractinghard,andthereisthepotentialfortheteethtocausea lotofdamagetooralstructures.However,thisdoesnothappen. First,becausewhenthenutshellcracksthejawbeginstocloseasthemuscles,now unresisted, begin to shorten at high speed. This shortening of the jaw-closing muscles removesthetensionfromthemiddleofthespindleandhence,theprimarysensoryreceptorstopssendingactionpotentialsthroughtheIaafferentstothetrigeminalmesencephalic nucleus,andthemusclesaredeactivated.Thisistheunloadedrelex,whichprotectsthe oralstructuresfromdamage.Thesecondreasonis,thatwhenthejaw-closingmusclesbite onthenutshelltheyaremakingpowerfulisometriccontractions.Thisactivatesthejawopeningmuscles.Then,whenthenutshellcracksandthejawbeginstocloseunresisted, thetensioninthetonicallyactivejaw-openingmuscleskeepsthemandiblefromspringing toofarupwards[78].
6.5 Voluntary Control of Masticatory Muscles Themainfocusofthediscussionsofarhasbeenonthecontrolofthemasticatorymusclesby thecentralpatterngeneratorthroughcentralmotorcommands,andbythevariousperipheral relexesthatine-tunetheoutputofthecentralpatterngenerator.Themasticatorymuscles, however,likemostotherskeletalmusclesarealsosubjecttohighlyprecisevoluntarycontrol, following patterned oral experiential sensory input to the cerebral cortex [85, 189]. This impliesthattheneuraldevelopmentofthemouthisconcomitantwiththeprocessofmaturationofthedecodingofinformationandlearningmechanismsinthecerebralcortex[43,67]. In the voluntary movement plan the output of the motor cortex bypasses the central pattern generator to reach directly the trigeminal motor neurons, which send action
74
6 Mastication in Man
potentialsignalstothemasticatorymuscles.Thenvoluntarymasticatorymovementsand forcescanbegeneratedwithoutinvokingrhythmicity.Thisisessentiallytheprocessthat controlsotherskeletalmusclesaswell,withanimportantdifference.Whileitiscommon tomove,forinstance,oneingerononehand,themasticatorymusclesofbothsidesare activatedsimultaneouslyduringalmosteveryvoluntaryjawmovementthroughcoupling oftheleftandrighthyperneurons(seeSect.4.2).Wecanvoluntarilystartchewingmovementsofthemouth,yetinmostcircumstancesofnormalmasticationaconsciousorvoluntaryeffortisnotrequiredtomaintainthemasticatoryactivity[76].
6.6 The Closed-Loop Theory of Motor Control Aprevailingprobleminmotorcoordinationishowthemotorsystemsareorganizedand regulated. In this context, there are two antithetical mechanisms that adjust the muscle forcerequiredduringchewing.Oneoftheforemostviews,anduntilrecentlythefavored position,isthatperipheralreceptorsarenecessaryandsuficientformotorcontrolthrough learning.This“closed-loop”theoryproposesthatsensoryfeedback,errordetectionand error correction are necessary requirements for movement regulation. The motor commandthatspeciiestheresponsetobegeneratedisexecuted.Feedbackthroughthemuscle spindleandjointreceptorschecksfordiscrepanciesbetweentheoutputspeciiedandthe movement actually produced (error detection). The errors are evaluated and the central nervous system attempts to minimize the size of the error (error correction). Typically, slowermovementsequences,forinstanceslowmovementsinvolvedinspeechlearningto pronouncewordsaswellasothersounds,areunderclosed-loopcontrol[186]. The closed-loop control theory also suggests that feedback augmentation i.e., an increaseintheamountofthesensoryinput,willleadtoanincreaseinmotorperformance. Inotherwords,themotortaskisperformedmoreaccuratelythanwithoutsensoryaugmentation. Such increased sensory input occurs during the period of early mixed dentition whentherootsofthepermanentincisorteethareincompletelydeveloped,assuggestedby Greenberger[45],whofoundthatthetactilethresholdforyoungincisorsislowerthanthe threshold for incisors with completely formed roots. These indings would support the contentionthatocclusalfeedbackinthemixeddentitionplaysamoreimportantrolein mandibularmovementsbecauseofthelessfavorablecrown/rootratioofincisorteeth.In thisview,earlytreatmentofcertainmalocclusionsoftheteeth,forinstanceoftheanterior crossbiteofteeth,maygivemorefavorableresultsthanatlaterages. Theearlysensitivityoftheincisorteethwiththeaugmentedsensoryinput,however, doesnotseemtobecompatibletotheclinicalobservationthatmostyoungchildrenwhen askedtoclosetheteethbringthelowerincisorsintoanedgetoedgerelationshipwiththe upperincisors,orevenintoananteriorcrossbiteposition,suggestingthatyoungchildren, despitetheaugmentedincisorfeedback,areunabletousetheincisorreferencetoguide theirmandibleaccuratelyintotheintercuspalposition.Thismayimplythatthesensory inputfromtheanteriorteethdoesnotcontributesubstantiallytoguidingtheocclusionof
6.7 The Open-Loop Theory of Motor Control
75
theteeth,atleastinthemixeddentitionperiod,sincetheoralbehaviorofmostchildrenis clumsy,asthespecialistclinicalobservationclearlysuggests.Speciically,intheperiodof mixed dentition the mandibular movements are slow and exploratory, and the chewing movementsareuncoordinated,suggestinglearningproceduresinprogress. Accordingly,ithasbeensuggestedthatahumanisnotbornwithcorrelatedinformationofmuscularactivityinskilledchewingmovementsafteraparticularefferentpattern issentdownstream.Onthecontrarymultiplelevelsofcognitionmustgraduallybuildup throughmultisensoryoral,visual,andvestibularexperiences,aswellasthroughtheaugmentedocclusalfeedbackoftheearlydentition(seeChaps.4and5).Ifthisviewiscorrectwemaythenexpectslowlearningprocedureslastinguntilthepermanentdentitionis completedthroughthegradualmaturationofthefunctionsofthecerebralcortex.During thisperiodoneshouldnot,however,excludethepossibilitythatthegreatersensibilityof theincisorteethinthemixeddentitionmaybecomeapredisposingfactorforanabnormalrelationshipoftheteeth,asforinstance,intheanteriorcrossbite,throughanabnormal habitual closure of the incisor teeth coupled with or without a favorable skeletal pattern. Ithastobenotedalsothat,sincethematurationoftheskilledchewingmovementsisa longprocess,itisconceivabletoagreewiththesuggestionofmanyearlyinvestigatorsthat inearlypostnatalagethebehaviorofthemusclesisundertheinluenceoftheprimary innatemotorpatterns,whichhavenotyetbeenoverriddenbythesecondarymotorpatterns learnedbyindividualdesign[187].
6.7 The Open-Loop Theory of Motor Control Theclosed-loopmotorcontroltheoryhasbeenchallengedonthegroundsthatthemotor acts are centrally regulated and may occur in the absence of feedback. The open-loop theoryproposesthatinformationfromperipheralsourcesentersthehighercentersofthe centralnervoussystemwhereitisprocessedandtransformedintoinformationnecessary forpatternedmovement.Thehighercentersdictatethecharacteristicsofthedesiredmovement,forexampletheexactmotorcommandsforeachmusclegroupandtheirexacttemporalsequence.Intheopen-loopview,theefferentcommand(motorprogram)isallthatis necessarytocontrolcoordinatedmovement.Theimplicationisthatperipheralfeedbackis unnecessaryfortheregulationofmovement.Typicallyfastmovements,forinstancethe skilledmovementofchewingorspeaking,areunderopen-loopcontrol[186]. However,theclosed-loopmechanismismoreaccuratebutslower;itrequiresmoretime tofunctionthantheopen-looppredictivemechanismofthecentralnervoussystem.The central pattern generator is programmed at least for slow and fast chewing in different subjects.Duringslowchewingtheopen-loopcontrolmechanismpredictsthemuscleforce requiredduringachewingcycle.Thismechanism,however,explainsonlyabout15%of theforceadjustmenttothetoughnessofabolusoffood,whilethefeedbackclosed-loop explainsmost(85%)oftheforceaccommodation[78].
76
6 Mastication in Man
6.8 Orthodontic Implication of Motor Control Theories Therearesubstantialamountsofevidenceforboththeclosed-loopandopen-loopmechanisms.Rapidadjustmentstosteady-stateoralfunctionsoccurasaresultofpreadjustments ofthedescendingmultimotorcommands.Thisview,whichsupportstheopen-loopcontrol, suggeststheexistenceofsomeinternalmonitorofthemotorcommandforrapiderrorcorrection,independentofsensoryfeedback.Ontheotherhand,compensatoryresponsesto unanticipatedresponsesrequiretheuseofafferentfeedback.Thus,theroleoftheoralsensoryfeedbackliesinitsabilitytoeffectivelymodifythemotoroutputthrougherrordetection and correction, and hence it is used in the restoration and relearning of movements [186].Forthisreasonwhenanindividualisengagedinatherapeuticprocedure,namelyan orthodontictherapyforamalocclusionoftheteethassociatedwithmotordysfunction,the movementofthejawaftercorrectionoftheocclusionoftheteethisslow,therebypermitting ongoingfeedbackcontrol,enhancingerrordetection.Onceerrorshavebeendetectedthe output (motor) plan can be modiied in an attempt to correct the errors and achieve the desiredmovement.Oncesuchexerciseshaveledtomasteryofpropermovementthemotor controlmayberelegatedtoautomaticcontroloropen-loopcontrolofmovement.Theeverchangingmovementswithintheoralstructuresrequirethatthecentralprocessesconstantly beinformedoftheactionsofeachoralstructure.Thismaybeaccomplishedby“ongoing” closed-loopcontrolormaybeafunctionofthemotorcommanditself. Inthiscontext,inearlyagemalocclusionsoftheteethwithprematurecontacts,inan ever-changing occlusal pattern, the movements of the mandible are slow because they dependuponadequatesensoryfeedbackforerrordetectionandcorrectionofmovements.In suchcircumstancestheorthodontictherapyhelpstocorrecttheocclusalpatternandhence allow the normal maturation of skilled oral functions of biting, chewing, and speaking, involvingcentrallycoordinatedmusclefunction.Thus,earlyorthodontictreatmentmaybe essentialinordertorestoretheactualpatternofneuralinnervationthatunderliesthelearningoforalcoordinatedchewingmovements.
6.9 Multicontrol Levels of Coordinated Chewing Movements Theprogrammingofcoordinatedmovementsmaynotbeintermsofindividualmuscles,as classicallybelieved.Thisisbecauseanymodelofsuchhierarchicalorganizationofmotor control,inwhichanexecutivecenterspeciiestheactionplansforselectedmuscles,would beextremelycumbersomeconsideringthelargenumberofdegreesoffreedomavailable, forinstance,forthemandible.Theproblemisexaggeratedevenmorebythevariabilityof theinnervationpatternofmusclesandjoints[186]. Analternativetothehierarchicalmodelisthe“heterarchy”inwhich,thereismorethan onecenterforcontrolofcoordinatedmotoractivity.Thesevariouscenterscanactindependently, in other words they are autonomous subsystems which rely not on coordinated movementsbutoncoordinatedstructures,generallyreferredtoasagroupofmuscles,often
6.11 Tonic Stretch Reflex and Postural Position
77
spanningseveraljoints,whichactasaunit,andallowmultilevelresponseorganization.In thistypeofcontrolsystemeachgroupofmusclessolvesalimitedaspectofthedegreesof freedomproblemwithoutdirectspeciicationfromthebrain.Suchmulticontrollevelsof the oral structures are most evident in speech production, in which the different output parametersinvolvedinthegenerationofspeecharenotprogrammedatthesamelevelin thecentralnervoussystem[186].
6.10 Central Sites Eliciting Mastication Thecyclicchewingmovementsofthejawandtonguecanbeelicitedbyelectricalstimulation ofthebasalganglia,corticobulbartracts,andpartsofthelimbicsystem,butareonlyultimatelydependentupontheintegrityofthebrainstemreticularformation.Thisimpliesthat muchoftheinformationformasticationisgeneratedinsuprabulbarareas,whicharefunneled tothetrigeminalmotorneuronsthroughthecentralpatterngenerator[76,172]. Theroleofthecerebralcortex,however,fortheinitiationofchewingmovementsofthe jawisuncertain.Experimentalstudiesinhumansubjectshaveindicatedthatmasticatory movementsarenotlocatedinthesensorimotorcortexintheprecentralandpostcentralgyri ofthecerebralcortex,asarethenonmasticatorymovementsofthemandible,butseemto haveaseparaterepresentation[66].Thismayimplythatthecyclicchewingmovements arenotperceivedinthecerebralcortexasarethevoluntarychewingmovements.Thismay also be the reason that we bite the tongue or cheek accidentally during chewing if our attentionisdistracted. Theroleofthecerebralcortexinmasticationisbutslowlybeingexplored.Ithasbeen proposedthatthecerebralcortexisinvolvedininitiatingthejaw-openingmuscles,elaborating,integratingandperhapsengrammingperipheralsensoryinformation,regulatingthe generatingofinterocclusalforceandtheintimatelinkingofthiskindofactivitywiththat ofthecentralpatterngeneratorofthebrainstem.Inaddition,ithasbeensuggestedthat maturationalandlearningprocessesmayinvolvecorticalactivity[172]. Theunclearroleofavarietyofothercentralsitesuponthegenerationandregulationof themasticatorycycleisalimitingfactorinourunderstandingoftheactofchewing.For example,Dellow[188]hasreferredtosatietyandfeedingcentersintheventromedialand lateralhypothalamus,respectively,aslinkstothelimbicsystemandmesencephalicstructures.Hehasalsopointedoutthattheamygdala,septum,hippocampus,ventraltegmentum andcentralgreymatterareallinvolvedinthecontrolofmastication.
6.11 Tonic Stretch Reflex and Postural Position Thetermtonicisusedtoindicatethatthestretchrelexiscontinuouslyactive,asonewould anticipateforasysteminvolvedinlimbposturalmusclecontraction.Anadequatestimulus forthetonicstretchrelexmaybelookeduponastheorganism’soppositiontogravitational
78
6 Mastication in Man
pull.Inopposinggravitycertainmusclesaremaintainedinastretchedstateandatrelatively constant elongations. These natural muscular stretches result in deformation and hence activation of the muscle spindle primary endings. These sensory receptors send actionpotentialsalongthegroupIasensorynervestotheirsynapseswhichexcite(depolarize)thealphamotoneuronswhichinnervatethemusclescausingthemtocontract[214]. Ithasbeenarguedthatthetonicstretchrelexoperatescontinuouslyatalowlevelinthe masticatorymusclestokeepthemandibleinitsso-called“restposition”(orposturalposition)relativetothemaxillaevenwhentheheadisstationary.Thisisanimportantissue becausetherestpositionisareferencepositioninorthodonticsandprosthodontics.Despite theattractivenessofthisnotion,recentresearchhasshownthattheverticalpositionofthe mandible is maintained passively in its postural position by the elastic forces from the perioralsofttissues(whichincludesthoseinthemuscles).Itisactuallymoreaccurateto calltheseforces“viscoelastic,”astheviscosityoftheperioralsofttissuesdampensdown thespringinessthatwouldresultfrompurelyelasticrecoil.Thesepassiveforcesaresuficienttomaintainthemandibleinornearitsrestpositionevenwhentheheadmovesupand downduringwaking,butbystretchrelexeswhentheheadismovingmorevigorouslyup anddownduringrunningandjumping[78].
6.12 Control of Tonic Stretch Reflex Voluntarymovementsarethoughttobeorganizedandinitiatedinmotorareasofthecerebralcortex.Themotorcortex,likethecerebellum,exertsadetailedcontrolfunctionover thespindlefusimotorsystemaswellasthealphamotorsystem.Thus,themotoroutput emanatingfromthecerebralcortexiscodistributedbetweenthealphaandgammamotor systemsinsuchamannerthatfusimotoractivitycooperatesfunctionallywithalphaactivity.Withrespecttoalphaandgammacooperationincorticallyinitiatedandsustainedvoluntarymovement,twodivergenttheorieshavebeendeveloped. The“follow-uplengthservotheory”suggeststhatvoluntarymovementisinitiatedindirectly via the fusimotor system. Speciically, the theory suggests that the motor output descendingfromthecerebralcortexinitiallyactivatesthegammamotorsystem,which controls the amount of spindle intrafusal iber shortening and therefore the change in lengthoftheextrafusalmuscleibers.(Itisnotedthatfusimotoriberactivityhasbeen showntobeequivalenttoacertainlengthchangeinthewholemuscle.)Giventhisequivalency,byappropriatelygradingthecentraldrivetofusimotor(gamma)neurons,themotor cortex can control the amount of spindle intrafusal iber shortening and therefore the changeinlengthoftheextrafusalmuscleibers.Thedesiredmovementthenisrepresented inthegammaneuronpopulationasademandforaspeciiclengthchange.Thedischarge ofthespindleprimaryendingsproducedbytheintrafusalibershorteningthenrelexly drives, through the monosynaptic arc, the alpha motoneurons and extrafusal ibers to developsuficienttensiontosatisfythelengthdemandofmuscleibers.Thus,thetensiongeneratingalphasystemfollowsthelengthdemandimpresseduponitbytheinitialfusimotor neurondischarge[214].
6.13
Cerebral Cortex Control of Voluntary Movements
79
In this view the tonic stretch relex in maintaining a static or postural limb position describesaservosystem.Inessenceaservosystemisanautomaticclosed-loopcomparisonsystem,inwhichthedesiredpositionofalimborthecommandmovementofanobject iscomparedwithitsactualpositionormovement,andactionisautomaticallytakentocorrectanydifferencebetweenthedesiredandactualstates.Thestretchrelexactstomaintain aproperbalancebetweeninputfromthespindleandalphamotoroutputsothatthecontractileforcedevelopedinmusclejustcounterbalancesthepullofgravityonthelimb.In maintainingaixedposture,however,transientmuscularimbalancestendtodeviatethe limbfromthedesiredposition.Anylengthchangeinthemusclesparticipatinginmaintainingtheposturewillbedetectedbythespindlesaserrorintheservoloop.Thedifferenceinthefrequencyofiringoftheprimaryendingwhenthemuscleisatthedesired lengthandwhenithasbeenstretchedcomprisestheerrorsignal,whichispassedmonosynaptically to the alpha motoneurons resulting in contraction (shortening) of the same muscle.Themusclewillcontinuetoshortenundertheactionofthestretchrelexuntilitis againreturnedtoitsequilibrium,ornulllength.Thus,theclosed-loopcontrolcycleprovidesanegativefeedbackwhereinthemuscularcontraction(monitoredaslength)opposes theunwantedlengthchange[214,215].
6.13 Cerebral Cortex Control of Voluntary Movements In voluntary movements the spindle primary ending responds not only to a maintained stretch(tonicrelex)whichopposesthegravitationalpull,butalsototherateatwhichthe musclelengtheningtakesplace.Sofar,nothinghasbeensaidregardingtheregulationin thestretchsystemwhenarhythmicrapidlyalternatingpullandrelease(i.e.,asinusoidal stretch)isbeingappliedcontinuouslytoamuscle.Servosystemsinherentlysufferfrom transmissiondelaysaroundtheircontrolloops,mostnotablythoseinvolvedintransmitting impulsestoandfromthecentralnervoussystemandinthetimerequiredformuscleto developfullcontractiletensionfollowingthearrivalofmotorimpulsesatthemyoneural junctions.Thus,thereareseveralobjectionstotheconceptthatthefusimotorsystemcould initiatevoluntarymovementsonafollow-uplengthservobasis. Accordingly,ithasbeensuggestedthatvoluntarymovementscanbeinitiatedviathose ibers descending directly from the cortex that monosynaptically activate the alpha motoneurons.Thisimpliesthatcorticalcontrolloopsareofmajorimportanceinskilled voluntarymovements.Thecorticalmotorcontrolisofcourseconsistentwiththegeneral processofencephalizationofmovementinhumansaswellaswiththeexperimentalobservationsderivedfromprimateresearch.Inthecaseofhandmovements,instructionsissued fromthecerebralmotorcortexareapplieddirectlytothealphamotorneuronsystemvia themonosynapticcorticomotoneuronalprojection(pyramidalpathway)resultinginmuscularcontraction.Inturn,sensoryinformationfrommusclespindlesreachingthecerebral cortex concerning discrepancies between intended and actual muscular displacement resultsindischargeofspeciiccorticalmotorcells.Thisdischargeisthentransferredback tothealphamotoneuronswithmaximalspeed,againviathepyramidalsystem.
80
6 Mastication in Man
Thus,bothintheinitiationandmaintenanceofvoluntarymovement,corticalcontrol loopsaredominant.Inthisscheme,thefunctionofcorticalregulationofthefusimotor spindlesystem(efferent)istomaintainthelowofspindleinformationbacktothemotor cortexandcerebellum,aswellastoothercentralmotorstructures.Thisisachievedby corticalcoactivationofthefusimotorneurons,subservingspindlesinthesamemusclesto whichthealphacommandisissued.Whilethefusimotorsystemthusdoesnotappeartobe involvedintheinitiationofvoluntarymovement,itdoesappeartoprovidethenecessary backgroundforthespindleafferentregulationofsuchmovement.Inotherwords,cortical controloverthefusimotorsystemfunctionstomaintainthelowofspindleinformationto, inparticular,themotorcortex,byensuringthatthespindlesdonotstopdischargingwhen themusclecontracts[212,213]. Insum,anymuscularmovementisanexpressionoftheintegratedactionofthealpha andgammamotorsystems.Thegammainnervationofthespindleplacesthedischargeof spindleafferentendingsundertheregulatoryinluenceofthecentralnervoussystem.The gammacontrolisindependentofthealphacontrol.Thegammacontroliscapableofselectivelyregulatingthevelocityandlengthresponsesofthespindleafferentendingsaswell as controlling their response sensitivity. Functional cooperation between the two motor systems is a precondition for smooth, eficient motor performance. The motor centers involvedintheinitiation,integration,andmaintenanceofmuscularactivitymust,therefore,havesomemeansforcontrollingtheactivityofbothsystemssimultaneously.Such parallelregulationisaccomplishedinlargepartbythetwosuprasegmentalmotorstructures,thecerebellumandthecerebralcortex[214].
6.14 Cerebellar Control of Voluntary Movements Thatthecerebellumisintimatelyinvolvedintheintegrationofmotoractsisclearfromthe strikingalterationsinpostureandinskilledvoluntarymovementscharacteristicofintentional ataxia,dysmetriaandincoordinationfollowingcerebellarlesions,anditspathways[213]. Thecerebellarcortexreceivesinputspertainingtomusclelengthandtensionaswellas tojointposition.Inadditionthereisalargeinputfromcutaneousreceptorstothecerebellum.Thesameareasofcerebellarcortexareinturn,reciprocallyconnectedtothecerebral motorcortexsothatnotonlydoesthelatterreceiveinformationaboutcerebellaractivitybut, equallysigniicantly,thecerebellumisinformedaboutpresent,andperhapsensuing,motor commandsbeingissuedfromthecerebralmotorcortexconcerningmotorbehavior[213]. Inaddition,evidenceindicatesthatthecerebellumislargelyresponsibleformaintaining theorganizationofthealpha–gammalinkagethatensurestheintegratedactionofthetwo motorsystems.Functionalcooperationbetweenthealphaandgammasystemsisdestroyed bycerebellarlesions.Suchinjurytypicallyisassociatedwithseveredepressioninthelevel offusimotor(efferent)outputduetotheeliminationofindirectcerebellarfacilitationofthe fusimotorsystem.Intheabsenceofcerebellarfusimotorfacilitation,thestretchrelexis depressed,andthemusclesbecomelaccidorhypotonic,offeringvirtuallynoresistanceto stretch.Incontrast,lesionsinothercentralstructuresresultinanabnormallyhighlevelof
6.15
Conscious Sensation of the Muscle Spindle
81
fusimotoroutputleadingtohypertonicstretchrelexes.Injurytothebasalganglia,tospeciic areasofthecerebralmotorcortex,ortocertainofthepathwaysdescendingfromthemotor cortex,allleadtosuchhypertonicstretchrelexes.Lesionsatthelattertwositestypically produceaspasticsyndromecharacterizedbyhypertonicityintheantigravitymuscles,or physiologicalextensors;basalganglialesionsgenerallyareassociatedwithParkinsonian rigidityinwhichthemuscularhypertonicityandexaggeratedstretchrelexesarepresentin lexorandextensormusclesalike[214]. Thatthelimbmusclespindleisindeedafocalstructureinthecerebellarregulationof normalmotorbehaviorisevidencedbythefactthatrecoveryfromthegrossmotordeicienciesconsequentuponcerebellarlesionsiscorrelatedwithareturnofmusclespindle responses,especiallyofgammamotoractivity.Withtherecoveryoffusimotorbias,alpha activity can again be directed by spindle input, and the temporal relationships between musclelengthchangesandalphamotoroutputreapproximated[212,213]. Incontrast,lingualspindleprimaryafferentsapparentlydonotprojecttothesomatotopically organized cerebellar cortex as indicated by studies with recording electrodes in the monkey.Theindingthatthespindleafferentibersofthetonguemusclesdonothaveacerebellarrepresentationindicatesthatthelingualspindleprojectionisdifferentiallyorganized relativetothelimbspindleprojectionintermsofitscentralterminationsites.Thus,aside fromrelexivecontrol,tonguemovementappearstodependmostintimatelyonthehighest motorcontrolcenterinthebrain,thecerebralcortex.Thisconclusionisconsistentwiththe progressiveencephalizationofthosemovementssubjecttoincreasingdegreesofvoluntary control,andindicatesthattheprocessinvolvesnotonlyanincreasingextentofcorticalcontrolbutalsotheestablishmentofqualitativelyuniquecontrolcircuitry.Oneisthenledtothe furtherconclusionthatmovementencephalizationisobservablenotonlyinascendingthe phylogeneticscalebutalsowithindifferentmuscularsystemsofasinglespecies[214].
6.15 Conscious Sensation of the Muscle Spindle Untilrecentlyitwasconsideredthattheexistenceofacorticalprojectionforagivenafferent system constitutes evidence that the system participates in conscious sensation and discrimination.Thisnotionisnolongerentirelyvalid.Theargumentthatcertainauthors havepresentedisthatthemusclespindleisnotinvolvedtoanysigniicantdegreeinthe arousalofsensationsofpositionandmovementinthecerebralcortex,thisfunctionbeing subservedbythecapsularandpericapsularendorganssituatedinandaroundthejoints. Accordinglyithasbeensuggestedthattheprimaryfunctionofthemusclespindleisinthe automatic, or unconscious, regulation of postural relexes as well as in phasic stretch relexessuchasthetendonjerkrelex[214,216]. Theideathatlimbspindlesarenotresponsibleforevokingsensationsofpositionand movementraisesthequestionofhowwearetoclassifyspindlerelativetojointreceptors. The spindle, of course, is traditionally categorized as a proprioceptive end organ along with the capsular and pericapsular receptors; yet limb spindles do not contribute to the arousalofaproprioceptivesensationwhich,asclassicallydeined,isposition–movement
82
6 Mastication in Man
sensibility.Historically,position–movementsensibilityhasbeendescribedunderavariety ofterms,themorefavoredbeingproprioceptionandkinesthesia.Thesetermsshouldthen deinecapsularinputsofjoints,whilethespindlefunctiondeinesprimarilytheunconscious(spindle)regulationoflimbmovement[214]. Theseparationofafferentinputintoaconscious–unconsciousdichotomy,however,tends tocompartmentalizeourthinkingratherthancallattentiontothefactthatthecerebralcortex functions as an integrated sensorimotor unit. It is extremely important to realize that all afferentinformationarisinginresponsetoorassociatedwithmovementisutilizedbythe voluntarymotorsysteminitsintegrationandcontrolofmuscularcontraction.Intheprimate, thisistrueforspindle,capsularandcutaneousinput,aswellasforvisualinputinthecaseof theextremitiesandforauditoryinputinthecaseofthespeechmusculature.Itisequally importanttorealizethatthequestionofwhetherthissensoryinformationalsoimpingeson perceptionorconsciousnessisanentirelydifferentmatter.Thismeansthatactivityincertain ascendingneuralpathwaysengagesaspeciicsetofcorticalneurons(neuralassembly)into synchronousiringexceedingallotherneuralassemblyactivitiesinsometypeofcompetition, which in turn meets the cost of entering into perception or consciousness. In other wordstheparticularneuronassemblybecomesconscious[38](seeSect.4.2). Thisisasomewhatbroaderinterpretationinthatitdoesnotbasemovementorganization exclusivelyontheafferentsystemsandcorticalregionsengagedinconsciousperception butalsoincludesthoseinputs,ascendingrelays,andcorticalregionsnotinvolvedinperceptionperse.Thisideaavoidstheimplicationthatallmovementorganizationisaconsciously directedprocessand,therefore,maytakeadvantageofmoreinputmodalities,especially spindleinput,whichapparentlydoesnotimpingesonperceptionorconsciousness[214].
6.16 The Subconscious Nature of Complex Movements Inthevoluntaryactofmasticationthecorticalmechanismsareconcernedwiththeinitiationandhaltingofmasticatorymovements,asactuallyoccursforallvoluntarymovements ofthebody.However,thecorticallyinitiatedmovementsofthemusclesofthebodyare crudeandirregularifthereisdamagetosomeotherregionofthebrain,especiallythecerebellum. For example, subjects with a cerebellar lesion complain that while the movements,forinstance,oftheirlefthandonthenormalcerebellarside,aredonesubconsciously, theyhavetothinkouteachmovementoftheirrightarmonthesideofthelesion[37].Thus, normallymostcomplexmovementsofthebodyarecarriedoutsubconsciouslywithconsummateskill.Themoresubconsciousweareoftheactualmusclecontractionsconcerned incomplexmusclemovements,forinstanceagolfstroke,thebetteritis,andthesamewith tennis,skiing,skating,oranyotherskill.Inalltheseperformanceswedonothaveany appreciationofthecomplexityofmusclecontractionsandjointmovements.Allthatweare consciousofisageneralcommand,suchas“placeingeronnose”or“writeasignature” andthewholeperformancelowsautomaticallyfromthat.Thecerebellumisconcernedin allthisenormouslycomplexorganizationandcontrolofskeletalmusclemovements,and perhapsofthemasticatorymovementstoo.Throughoutlife,particularly,intheearlyyears,
6.17
Masticatory Plasticity
83
weareengagedinanincessantteachingprogramforthecerebelluminordertocarryout theskilledmovementsrequiredforallofaremarkablerangeoftasks[37]. Thefunctionofthetrigeminalsensoryandmotorsystemsareveryanalogoustothose ofthehand.Forexample,thecontrolmechanismsfortheprecisemanipulationofsmall objectswiththeteethappearanalogoustothoseusedforprecisionmanipulationofsmall objectsbythethumbandingers.Thisisrelectedinthesimilarityofthetactileacuityand tactilesensitivityoftheoralandhandtissues(seeChap.8).Theinformationcontainedin theresponsesofthemechanoreceptorsintheperiodontalligamenttriggerthereleaseofa centralcommandthatisusedformotorcontrol.Allthatweareconsciousofisageneral command“chew:andthewholeperformancegoesautomaticallyfromthat”[78,93].
6.17 Masticatory Plasticity Themasticatorysystemdescribedsofarcouldhardlybedescribedasarigidlystructured mechanismforcomminutingfood.Itsbehaviorislexibleenoughtoaccommodatearange ofexternal(peripheral)andinternal(centralnervoussystem)perturbationswhetherthese be transient or permanent; and the observations of a particular pattern adopted by any subjectpresumablyrelectsthesumofallsuchinluences.Itisthisfactthatmakesinterpretationsodificult. Eventsinluencingtheinalformofthechewingcyclepresumablyfallintotwobroad categories:thosebenigninluenceswhichoccurnaturallyorfortuitouslyinthecourseof time,andlessnaturaloneswhicharelaterinjectedbyfateorbysomedesign.Theformer presumablyoccurcontinuouslythroughoutlife,aremultiple,andarecriticaltothematuration and functional development of the adult masticatory apparatus. The latter, we may assume,modifyoriginalbehaviorpatternsforavariableperioddependingupontheseverity oftheeffect. Experimentsdesignedtomeasurealterationsinmasticatorybehaviorpersearefew. Longitudinalstudies,especiallyofmasticationinthegrowingchildarevirtuallynonexistent. This is particularly unfortunate, because it is here that profound learning changes occurthroughthedeciduous,mixedandpermanentdentitions.Eruptionofteethisasigniicantfactorcausingmarkedadaptationalchangesinthepatternsofmusclecontraction. Coupledtothisisthedevelopingchild’sincreasingcapacityforcoordinatedmotormovements.Clearlyweneedtoobserveearlyattemptsatmasticationinthetruesense,andthe changeswhichoccurasvariousteethemerge,establishfunctionalcontactandwhenthey arereplaced. In behavioral experiments involving the adult masticatory apparatus, emphasis has mostlybeenplaceduponperturbationsofthesystem,wherespeciicinterventionshave beenmadeinordertoobservethebehavioralresponsetothem.Themostpopularexperiments here have been to alter the occlusion for short periods by creating interferences whichimpedeitsnormalfunction.Collectivelytheresultshavebeenequivocal,because differenttechniqueshavebeenusedtostudydifferentvariables.Theindingscanbesummarizedasdemonstratingthatwheninterferencesarepresent,muscleresponses(especially
84
6 Mastication in Man
the peaks) occur earlier prior to intercuspation, associated with alteration in jaw movements,althoughnotinawhollypredictableway[172]. Ethicalconsiderationsprecludelong-termexperimentsofmasticatorybehavior.Yeteven thealternative(whichisethical)ofmeasuringthebehaviorresponsefollowingconventional treatmenthasrarelybeenadopted.Giventheknownstatisticalcorrelationofskeletaland dentalmorphologywithmasticatorymusclefunction[178–181],itissurprisingtoindno systematicstudyoffunctionalmasticationbeforeandafterorthodontictherapy,orthognathic surgeryorfull-mouthreconstruction.ThiswealthofclinicalmaterialislikeaPandora’sbox waitingtobeopened.Ofparticularinterestwouldbethenatureofbrainchangesfollowing suchmarkedalterationsoftheocclusalandskeletalpatternoftheoral–facialregion.One maypredictthatorthodontictherapywouldforceconstraintsuponthemasticatorysystem throughchangesinthebrainorstructureswithinit(seeSect.3.3,Chap.4).
Occlusion and Mastication
7
7.1 Introduction Thepatternofocclusionofteethishighlyvariableinthehuman,andinorthodonticsthere isanincreasingtendencytoattributeanabnormalpatternofmasticatorymovementsaswell ashyperactivityofthejaw-closingmusclestomalocclusionoftheteeth.Forexample,ithas beensuggestedthatinnormalocclusionoftheteethchewingmovementsaresimpleand wellcoordinated,andtheperiodontalmechanoreceptorsprovideinformationrelexlytothe trigeminalmotorneuronstodeterminethemuscleforceandjawmovementsrequiredin eachmasticatorycycle[78,93,171].Onthecontrary,subjectswithmalocclusionofthe teethmayhaveanirregular,complicatedpatternofchewingmovementsduetodisruption ofthefunctionofthe“centralpatterngenerator”(CPG)whichregulatestherhythmofthe cyclic masticatory movements [78, 93]. There is now convincing evidence that speciic patterns of malocclusion of the teeth can alter the symmetrical bilateral function of the masticatorymuscles.Forinstance,whileinnormalocclusiontheamplitudesoftheresponses recordedfromtheleftandrightmasticatorymusclesareverysimilar,insubjectswithunilateralposteriorcrossbitemalocclusionoftheteeththereisasymmetrybetweentheleftand rightmasticatorymuscles,suggestingabnormalityofthebilateralchewingfunction[125], whichmaybeduetoabnormalcouplingofhyperneuronsoftheleftandrightcerebralhemispheres(seeSect.4.2). Theamplitudeofanactionpotentialisdeterminedbythenumberofmotorneuronswhich areactivatedbythestimulus.Ifthestimulusisconstant,thentheincreaseintheactionpotential that is recorded in the muscles of the unilateral posterior crossbite side, suggests an increaseinthenumberoffacilitatoryimpulsestothetrigeminalmotorneuronnucleiofthe crossbite side, thereby increasing the number of motor neurons required in the response [125]. This increased excitability of muscles of the crossbite side may come from many sources.Forexample,themusclespindlesmaysignaltothebrainthatthejaw-closingmuscles ononesideoftheheadareaslightlylonger,sincethemandibleisdisplacedfromthemidlineofthefacetowardsthecrossbiteside[125].Inthemasticatorysystemtheproprioception ofthemandible(thesenseofpositioninspaceofthemandiblerelativetothemaxilla)arises primarilyfromthemusclespindlesinthejaw-closingmuscles,aswellasfromothermechanoreceptorsinandaroundthemouth.Musclespindlereceptorsareexquisitelysensitiveto M. Z. Pimenidis, The Neurobiology of Orthodontics, DOI: 10.1007/978-3-642-00396-7_7, © Springer Verlag Berlin Heidelberg 2009
85
86
7 Occlusion and Mastication
stretch,andhenceareabletosignalthelengthofthejaw-closingmusclesand,byinference, theverticalpositionofthemandiblerelativetothemaxilla[78]. Thephenomenonofuncoordinatedmasticatorymovementsinmalocclusionsofteeth hasbeenattributedtothepresenceofocclusalinterferenceorprematurecontactsofthe teeth,whichmodifytheactivityofmusclesthroughthereceptorsofthemuscles,skin,and oral mucosa, as well as of periodontal receptors (see Chap. 8). When interferences are present,muscleresponses(especiallythepeaks)occurearlierpriortointercuspationofthe teeth,presumablythroughanincreaseintheexcitabilityatleastoftheperiodontalrelexes [172].Whenthereisdisplacementofthemandibleduringocclusionoftheteeth,themuscleactivityonthedisplacedsideisaltered,asforinstanceintheunilateralposteriorcrossbitemalocclusion[124,125]. Occlusalmorphologyplayssomepartindeterminingtheprecisepatternofmovement in chewing, and therefore will determine the demands upon the different muscles, and uponmotorunitswithinthemuscles.Withastableocclusionintheintercuspalposition,it isreasonabletoconsiderthattheaveragework-loadofindividualmotorunitsmayremain constantoveraperiod[78,98,173]. Thepresenceofocclusalirregularitiesandprematurecontacts,however,hasoftenbeen consideredtobeakeyfactorinthedysfunctionofthemandibularmusclesofbothsidesas awhole,andofindividualmotorunits.Suchcircumstancesmayreasonablyberegardedas producinglocaland/orcentralhyperactivityofmusclesassociatedwithabnormalmovements.Althoughthereisnodirectcauseandeffectrelationshipbetweendysfunctionanda defective occlusal pattern, it is reasonable to consider the possibility that the occlusal changeinitiatesthefunctionaldificulty,causingredistributionofmuscleactivity,which resultsindamagetothemuscles.Ontheotherhand,thereisevidencewhichsuggestthat painfuljawmuscledysfunctionoccursinspasm,implyingexcessivecontinuouscontraction,whichislikelytobeassociatedwithemotionalstatesofanxiety[173]. However,theneuromusculardysfunctionassociatedwithocclusalinterferencesorprematuredentalcontactsmayberelatedtosensorydeprivationofthecerebralcortexthrough theaffectedascendingreticularactivatingsystem(ARAS),whichregulatesthesensory inputtothecortex.Thisbreakdownofthecentralreferenceofarousalofthebrainfor attentionandawareness(apreconsciousstateofthebrain,whichcorrelateswiththeemergenceofthe“consciouselectromagneticield”instructingthemuscleshowtocontract), bywhichtheorganism–mouthguidesitscorrectionstrategiesinperceiving,cognizing, reacting, and manipulating the environment, may make it increasingly dificult for the cerebral cortex to discriminate sensory inputs and to emit motor responses to muscles (seeSects.3.4,4.8).
7.2 The Chewing Cycle Chewingisacyclicalactivityofthejaw-openingandjaw-closingmusclesoccurringatarate determinedbytheCPG.InchewingtheCPGprogramsfourphasesofthemasticatorycycle. Theirstphaseisthepreparatoryphase,whichbeginswiththeopeningofthemouth,through activationofthejaw-openingmuscles,inordertoreceivefood.Thesecondphaseisthefood
7.4
Functional Malocclusion
87
contactphase,whichoccursbyswitchingofftheactivityofthejaw-openingmusclesand activatingthejaw-closingmusclestoproducetheinitialclosingmovement.Itisinthisphase ofthecyclethattheperiodontalrelexesmayassistingraspingthefoodinthecorrectpositionbetweentheteeth,readytobebittenthrough.Thethirdphaseisthefoodcrushingphase, inwhichtheoutputfromtheCPGtothejaw-closingmusclesforcestheteeththroughthe foodbolus,producingthechewingstrokes.Inthelastphaseofthechewingcycle,thetooth contactphase,activationofthejaw-closingmusclescontinuesastheopposingteethcome intocontact,andwhiletheyslideintotheintercuspalpositionfortheinalmovementgrindingthefoodintoapaste.Arelexemanatingfromtheperiodontalmechanoreceptorsinitiates andcontrolsthisinalgrindingmovementinthemasticatorycycle[78].
7.3 Directional Sensitivity of the Teeth Guides Normal Occlusion Ithasbeensuggestedthattheperiodontalreceptorsaredirectionallysensitiveandmodulate theactivityofthejaw-closingmusclestoensurethattheinalgrindingphaseofthechewing cycleoccursinthecorrectdirection,i.e.,fromtheworkingsidetowardstheintercuspal position.Theperiodontalmechanoreceptorsactivatedbycontactoftheteeth,signaltothe brainthatthecorrectpatternofcontactoftheopposingteethhasoccurredbeforethegrindingmovementisrelexlyinitiated.Inotherwords,ifthecuspsoftheupperteethdonot meettheocclusalsurfacesofthelowerteethinthecorrectrelationship,thegrindingmovementisnotinitiated.Thissuggeststhatthecentralnervoussystemissuesmotorcommands tothejaw-closingmuscles,throughtheCPG,inproportiontothetotalperiodontalafferent dischargeevokedbythenumberofteethincontact[78,93].Attheendofthegrinding movementthemandibleisstabilizedintotheintercuspalpositionbeingunderbothmechanicaltooth-guidedcontrolfromtheanteriorteeth,andneuromuscularcontrolmediatedby periodontalinput.Attheendofthegrindingmovementthemandibleslidesintotheintercuspal position. The CPG then switches off the activity of the jaw-closing muscles and reactivatesthejaw-openingmusclestomoveintothenextchewingcycle[78]. Inthisview,inanormalocclusionthe“muscleposition,”meaningtheoptimummuscularfunctionwhichguidesthemandibletocloseintheintercuspalpositionwithoutsliding in an eccentric position because of premature contacts, coincides with the “tooth position,”whichisthepositionofmaximumintercuspationoftheteeth,areferencepositionfornormalocclusionoftheteethfromwhichthecoordinatedmasticatoryactivitycan beinitiatedbyactivationoftheCPG[173].
7.4 Functional Malocclusion Onthecontrary,inafunctionalmalocclusionoftheteeth,duringclosuretheirstcontact isunstable,andthemandibleslidesintoaneccentricocclusalposition.Thisindicatesthe presenceofabnormaltoothcontact(dentalinterference),meaningtheabsenceofastable
88
7 Occlusion and Mastication
occlusal reference position, which modiies muscle function. Accordingly, the “muscle position”andthe“toothposition”donotcoincide,resultinginnoactivationoftheCPG. Insuchcircumstancesthemasticatoryactivityisnotcoordinated,beingundervoluntary control,bypassingtheCPG. Thefollowingexampleillustratesmorespeciicallythechangesthatoccurinafunctionalmalocclusioninwhichthelowerirstmolarshaveovererupted.Inthisinstance,the anteriordisplacementofthemandibleduringclosureoftheteethmaybeinducedbythe overerupted molars acting as dental interference present in the central relation [174]. Accordingly,sinceinnormalocclusionthepreferreddirectionalsensitivityoftheperiodontalmechanoreceptorsofthelowerirstmolarteethisinadistal-lingualloadingdirection [97,98],andgiventhatintheabovedescribedfunctionalmalocclusiontheslidingofthe mandibleisinananteriordirectionfollowingclosureoftheteeth,thelowerirstmolarsare likelytoexperiencemesiallydirectedforces,thatisadirectionoppositetothatinwhichthe periodontalmechanoreceptorsoftheseteetharemostsensitivetodischarge.Itfollowsthat the periodontal mechanoreceptors of the anteriorly displaced mandible will not encode informationduringchewing,resultinginalteredmasticatoryactivity. Infact,ithasbeenreportedthatanteriordisplacementofthemandibleduetodental interferenceintheregionofthelowerirstmolarteethreducesthechewingeficiencyin the posterior part of the dentition, resulting in further overeruption of the molar teeth, which in turn causes more anterior displacement of the mandible followed by further reductioninthechewingeficiency.Theviciouscyclecontinuesinthismannerleadingto thedevelopmentofamalocclusionoftheteethcharacterizedbyaprognathicmandible coupledwithmasticatoryinsuficiency[174].
7.5 Functional Malocclusion Affects the Central Pattern Generator Inafunctionalmalocclusionwithaslideofthemandibleclosinginaneccentricposition inreferencetothemid-lineoftheupperdentition,ithasnotbeenshowndeinitelywhich receptorsareresponsibleforthedeviationofthemandible.Ithasbeensuggestedthatproprioceptioninthelimbsariseslargelyfrommusclespindles[93].Itisthenlikelyasalready suggestedthatintheeccentricocclusion,themusclespindlesaresignalingtothebrainthat thejaw-closingmusclesononesideoftheheadareaslightlylongerthanontheotherside. Thisimpliesthatthefunctionsoftheleftandrightmasticatorymusclesarenotsymmetrical.Theasymmetricfunctionofmusclesassociatedwitheccentricocclusionoftheteeth maysuggestthatduringthelastphaseofthechewingcycle,theuppercuspsontheleftand rightsidedonotcontactsymmetricallytheocclusalsurfacesofthelowerteethandhence thegrindingmovement,attheendofwhichthemandibleisstabilizedintheintercuspal position,isnotinitiated.Theeliminationofthelastphaseofthemasticatorycycleindicatesdisruptionofthecyclicalchewingprocess.ThismayimplythatthedentalinterferencehasaffectedthechewingrhythmoftheCPG,possiblythroughsensorydeprivationof thecerebralcortex.
7.7
Form and Function
89
7.6 Factors Affecting the Maturation of the Central Pattern Generator The view that the occlusal interferences or premature contacts affecting the functional programoftheCPGthroughsensorydeprivationofthecortex(seeSect.3.4)maybemore relevantinearlyageduringeruptionoftheteethandtheirgradualreplacementbythepermanentteeth,sinceinyoungchildrentheprotectivenervoussystempredominatesoverthe discriminativesystem.Inotherwords,inchildhoodthetactilestimuliareinterpretedbythe brainasnociceptivestimuli(seeSect.8.30).Ontheotherhand,severalauthorshavesuggested that the eruption of the teeth accelerates the maturation of the chewing function [1,67,78].Withtheeruptionoftheteeththemasticatorymovementsbecomelessrelexive andmoreundervoluntarycontrol,relectingmaturationofthecorticalmechanisms,which accordinglyprogramtheCPGforcyclicalcoordinatedmovements.Duringthesemovementstheforceofmuscularcontractionisine-tunedbytheperiodontalmechanoreceptors, aswellasbythemusclespindlesofthejaw-closingmuscles[78,93]. If,however,duringdevelopmentofthedentitiondentalinterferencesappearandthe mandibleisguidedand/orinavoidingtheinterferenceoccludesinaneccentricposition, forinstanceinunilateralposteriorcrossbite,then,asdescribedabove,themusclesonthe twosidesoftheheadareunbalanced,andtheeccentricocclusionoftheteethdisruptsthe functionoftheCPG.ThesechangesinthefunctionoftheCPGmaybetheresultofimpairmentordelayedlearningofconsciousmasticatoryfunctioninthecortexcausedbythe sensorydeprivationthroughthedentalinterference.
7.7 Form and Function Thechewingbehaviorvariesverymuchinthehuman.Itvariesintermsoftheshapeofthe chewingcycle,itssequence,theactionofindividualmuscles,theirtemporalrelationships to each other and to jaw displacement, and the size and nature of the forces produced betweentheteeth.Theirstmajoreffectonvariationinthechewingcycleistheanatomical substrate.Peoplediffergreatlyintheircraniofacialmorphology.Thus,frombothabiologicalandaclinicalpointofview,orthodontistsandotherdentistshavebeeninterestedinthe interactionsbetweenthemuscleactivityrelativetochangesinocclusalandjawrelationships.Somecorrelationsobservedbetweenthemorphologicalcharacteristicsofthefacial skeletonandthefunctionofthemasticatorysystemarereviewed. Interest from a functional aspect regarding the form of the facial skeleton is directed mainlytotheshapeandsizeoftheupperandlowerjawsandtheverticalandsagittaljaw relationships.Lindegard[178]andBjörk[179]paidgreatattentiontoindividualvariations intheshapeofthemandibleinradiographiccephalometricstudiesofcraniofacialmorphology.Theyfoundthatamandibularshapecharacterizedbyaprominentupwardbendofthe mandibularbaseandasmallgonialangleisseenunusuallyinindividualswiththefollowing
90
7 Occlusion and Mastication
features:asmallinclinationofthemandibleinrelationtotheanteriorcranialbaseandthe nasalplane(thelowerborderofthemandibleisnearlyparalleltotheanteriorcranialbase andnasalplane),alowerocclusalplanemoreorlessparalleltothelowerborderlineofthe mandible,asmallanteriorfaceheightinrelationtotheposteriorfaceheightandatendency tomandibularprognathism,inotherwordsasquarefacialtype.Incontrast,amandibular shapecharacterizedbyadownwardbendofthemandibularbaseandalargegonialangleis usuallyassociatedwiththefollowingfeatures:alargeinclinationofthemandibleinrelation totheanteriorcranialbaseandnasalplane,amarkedinclinationofthelowerocclusalplane to the mandibular base line, a large anterior face height in relation to the posterior face height,andmandibularretrognathism. InastudyofthepatternofcraniofacialassociationsbySolow[180],itwasfoundthatthe heightofthealveolarridgesoftheanteriorteethiscorrelatedpositivelywiththeinclination ofthemandiblerelativetothenasalplaneandtheanteriorcranialbase.Thisassociationwas interpretedasrelectingthedentoalveolarcompensatoryadaptationtothejawrelationship duringgrowth.Thetypeofocclusion,ontheotherhand,hasbeenfoundtodisplaygreat variabilityamongfacialtypes.Sassouni[181]reportedthataskeletaldeepbiteisusually seeninsubjectswithasmallgonialangleandasquarefacialtype,whileaskeletalopenbite isusuallyseeninsubjectswithalargegonialangleandaretrognathicfacialtype. Therelationshipbetweencraniofacialmorphologyandmasticatorymuscleactivityhas receivedmuchattention.Studiesinhumansarefew.Moller[182]inanextensiveelectromyographicinvestigationinyoungadults,relatedtheactivityofthemasticatorymusclesto facialmorphology.Hefoundthatstrongactivityofthemasseterandoftheanteriortemporal musclesinmaximalclenchisassociatedwithasmallinclinationofthemandibletotheanteriorcranialbase,amarkedmandibularbaseupwardbend,asmallgonialangleandmandibularprognathism,inotherwords,withthesquarefacialtypediscussedabove.Conversely,in subjectswitharetrognathicfacialtype,thetemporalandmasseteractivitywasfoundtobe lessmarked.Similarcorrelationshavebeenobservedbyotherinvestigators.Further,anelectromyographicstudybyAhlgren[183]showedthatasigniicantnegativecorrelationexists betweenmasseteractivityduringchewingandthesizeofthegonialangle. Inaddition,Moller[125]foundthatinsubjectswithunilateralposteriorcrossbitemalocclusionoftheteeth,themandibleisdisplacedtowardsthesideofthecrossbite.Reference pointsandlinesusedtoassessfacialmorphologyonposteroanteriorcephalometricradiographsare(a)themid-pointofthelowerdentalarchinrelationtothatoftheupperandthe facialmid-line(p