134 108 3MB
English Pages 111 Year 2018
Solution Manual Table of Contents Chapter 2 Electromagnetic Principles of Switched Reluctance Machines ........................................... 4 Q2.1 Solution ........................................................................................................................................... 4 Q2.2 Solution ........................................................................................................................................... 4 Q2.3 Solution ........................................................................................................................................... 5 Q2.4 Solution ........................................................................................................................................... 6 Q2.5 Solution ........................................................................................................................................... 7 Q2.6 Solution ........................................................................................................................................... 8 Q2.7 Solution ........................................................................................................................................... 9 Chapter 3 Derivation of Pole Configuration in Switched Reluctance Machines ................................ 11 Q3.1 Solution ......................................................................................................................................... 11 Q3.2 Solution ......................................................................................................................................... 11 Q3.3 Solution ......................................................................................................................................... 13 Q3.4 Solution ......................................................................................................................................... 15 Q3.5 Solution ......................................................................................................................................... 17 Q3.6 Solution ......................................................................................................................................... 18 Q3.7 Solution ......................................................................................................................................... 19 Q3.8 Solution ......................................................................................................................................... 19 Chapter 4 Operational Principles and Modeling of Switched Reluctance Machines ......................... 20 Q4.1 Solution ......................................................................................................................................... 20 Q4.2 Solution ......................................................................................................................................... 21 Q4.3 Solution ......................................................................................................................................... 21 Q4.4 Solution ......................................................................................................................................... 22 Q4.5 Solution ......................................................................................................................................... 23 Q4.6 Solution ......................................................................................................................................... 23 Q4.7 Solution ......................................................................................................................................... 24 Q4.8 Solution ......................................................................................................................................... 26 Q4.9 Solution ......................................................................................................................................... 27 Q4.10 Solution ....................................................................................................................................... 28 Q4.11 Solution ....................................................................................................................................... 29 Q4.12 Solution ....................................................................................................................................... 30 Chapter 5 Switched Reluctance Machines in Generating Mode .......................................................... 32 Chapter 6 Materials Used in Switched Reluctance Machines .............................................................. 34 Q6.1 Solution ......................................................................................................................................... 34 Q6.2 Solution ......................................................................................................................................... 36 Chapter 7 Design Considerations for Switched Reluctance Machines ............................................... 37
1
Q7.1 Solution ......................................................................................................................................... 37 Q7.2 Solution ......................................................................................................................................... 37 Q7.3 Solution ......................................................................................................................................... 38 Q7.4 Solution ......................................................................................................................................... 38 Q7.5 Solution ......................................................................................................................................... 39 Chapter 8 Mechanical Construction of Switched Reluctance Machines ............................................ 42 Q8.1 Solution ......................................................................................................................................... 42 Q8.2 Solution ......................................................................................................................................... 42 Q8.3 Solution ......................................................................................................................................... 43 Q8.4 Solution ......................................................................................................................................... 43 Q8.5 Solution ......................................................................................................................................... 43 Chapter 9 Control of Switched Reluctance Machines ........................................................................... 45 Q9.1 Solution ......................................................................................................................................... 45 Q9.2 Solution ......................................................................................................................................... 45 Q9.3 Solution ......................................................................................................................................... 45 Q9.4 Solution ......................................................................................................................................... 46 Q9.5 Solution ......................................................................................................................................... 46 Q9.6 Solution ......................................................................................................................................... 46 Q9.7 Solution ......................................................................................................................................... 47 Q9.8 Solution ......................................................................................................................................... 47 Q9.9 Solution ......................................................................................................................................... 48 Q9.10 Solution ....................................................................................................................................... 48 Q9.11 Solution ....................................................................................................................................... 51 Chapter 10 Power Electronic Converter to Drive Switched Reluctance Machines ............................ 53 Q10.1 Solution ....................................................................................................................................... 53 Q10.2 Solution ....................................................................................................................................... 53 Q10.3 Solution ....................................................................................................................................... 53 Q10.4 Solution ....................................................................................................................................... 54 Q10.5 Solution ....................................................................................................................................... 54 Q10.6 Solution ....................................................................................................................................... 55 Q10.7 Solution ....................................................................................................................................... 55 Chapter 11 Position Sensorless Control of Switched Reluctance Machines ..................................... 56 Q11.1 Solution ....................................................................................................................................... 56 Q11.2 Solution ....................................................................................................................................... 56 Q11.3 Solution ....................................................................................................................................... 56 Q11.4 Solution ....................................................................................................................................... 57 Q11.5 Solution ....................................................................................................................................... 57 Q11.6 Solution ....................................................................................................................................... 57 Q11.7 Solution ....................................................................................................................................... 58 2
Chapter 12 Fundamentals of Vibrations and Acoustic Noise .............................................................. 59 Q12.1 Solution ....................................................................................................................................... 59 Q12.2 Solution ....................................................................................................................................... 61 Q12.3 Solution ....................................................................................................................................... 70 Q12.4 Solution ....................................................................................................................................... 73 Q12.5 Solution ....................................................................................................................................... 74 Q12.6 Solution ....................................................................................................................................... 77 Q12.7 Solution ....................................................................................................................................... 80 Chapter 13 Noise and Vibration in Switched Reluctance Machines .................................................... 85 Q13.1 Solution ....................................................................................................................................... 85 Q13.2 Solution ....................................................................................................................................... 89 Q13.3 Solution ....................................................................................................................................... 95 Q13.4 Solution ....................................................................................................................................... 96 Q13.5 Solution ....................................................................................................................................... 97 Chapter 14 Thermal Management of Switched Reluctance Machines .............................................. 105 Q14.1 Solution ..................................................................................................................................... 105 Q14.2 Solution ..................................................................................................................................... 105 Q14.3 solution ...................................................................................................................................... 105 Q14.4 solution ...................................................................................................................................... 106 Chapter 15 Axial Flux Switched Reluctance Machines ....................................................................... 107 Q15.1 Solution ..................................................................................................................................... 107 Q15.2 Solution ..................................................................................................................................... 107
3
Chapter 2 Electromagnetic Principles of Switched Reluctance Machines Q2.1 Solution
S: cross sectional area of the Current density conductor J q: charge of an electron ne:# of electrons per m3
Magnetic quantities Ampere’s Law
Current
iJ dS
N: # of turns
resistivity
: time between
collusion of free electrons Acceleration
External magnetic field strength 1/ℓc: length of the magnetic flux path
S
Drift velocity vd
Magneto-motive force F=Ni
me 2
Induced voltage ε
ae 1 Newton’s 1/me: mass of conductor an electron Law length q: charge of Induced electric Force induced on an electron field free electrons Coulomb’s E d F Law Electrical quantities
flux linkage λ=N· φ reluctance
magnetic force F=JxB
q ne
H
N
r 0 Ac
d dt
Magnetic flux φ
Faraday’s Law
permeability of ferromagnetic material: μ=μrμ0
lc
sB
da
da: infinitesimal area through the magnetic flux flows
Magnetic flux density B
Fig. 1. Block diagram for the principle equations of a magnetic system.
Q2.2 Solution For copper at room temperature: 𝑞 = 1.6 × 10−19 𝐶 𝑚𝑒 = 10−30 𝑘𝑔 𝜏 = 3 × 10−14 𝑠
𝐸=
𝑣⃗𝑑 =
𝜀 10 𝑉 = = 1 𝑉 ⁄𝑚 ℓ 10 𝑚
𝑞𝐸⃗⃗ 𝜏 = 5 × 10−3 𝑚/𝑠 𝑚𝑒
Without the electric field applied, the speed of the electrons was about 1 million meters per second in all directions due to thermal motion. When the electric field is present, the electrons now move 5 millimeters
4
per second. This speed is significantly slower than the speed of light. Therefore, the conductors act as a guide for the energy, but the electromagnetic energy is propagated in the dielectric material. Q2.3 Solution 20
(0,0)
(25,0)
(20,-5)
(5,-5)
12.25
(20,-14.75) 25 (20,-15.25)
(5,-25)
(25,-15.25)
(20,-25) y
(0,-30)
(25,-30)
x
Fig. 2. Dimensional parameters of a magnetic system with airgap
𝑙𝑐 = (ℎ − 𝑑1 ) + (𝑤 − 𝑑1 ) × 2 + (ℎ − 𝑑1 − 𝑙𝑔 ) 𝑙𝑐 = 25 + 20 × 2 + 12.25 × 2 = 89.5 𝑚𝑚 = 0.0895 𝑚 𝑙𝑔 = 0.5 𝑚𝑚 = 5 × 10−4 𝑚 𝐴𝑐 = (𝑑2 × 𝐿𝑠𝑡 ) = (5 × 10) = 50 𝑚𝑚2 = 5 × 10−5 𝑚2 𝜇𝑟 = 1000
𝑅𝑒𝑞 =
𝜇0 = 4𝜋 × 10−7
𝑙𝑔 𝑙𝑐 + = 7.9577 × 106 + 1.4244 × 106 = 9.3822 × 106 𝜇 0 𝐴𝑐 𝜇𝑟 𝜇0 𝐴𝑐
𝜑=
𝑁𝑖 10 × 20 = = 2.1317 × 10−5 𝑊𝑏 𝑅𝑒𝑞 9.3822 × 106
5
𝜆 = 𝑁𝜑 = 2.1317 × 10−4 𝑊𝑏 𝐻𝑐 = 𝑅𝑐 𝜑 = 30.3647 𝐴/𝑚 𝐻𝑔 = 𝑅𝑔 𝜑 = 169.6353 𝐴/𝑚
𝐵=
𝜑 = 0.4263 𝑇 𝐴𝑐
Q2.4 Solution Create variables in MATLAB using the data given in Table 2.1: [time]31x1
[flux_linkage]31x1
[voltage]31x1
resistance=0.2117
current=20
for i=2:length(time) voltage_calc_time(i)=resistance*current+(flux_linkage(i)-flux_linkage(i1))/(time(i)-time(i-1)); end plot(angle,voltage,'-k','LineWidth',2); hold on plot(angle,voltage_calc_time,'--r','LineWidth',2); xlim([0 max(angle)]);
The terminal voltage can also be calculated using the rotor position:
𝑣 = 𝑅𝑖 +
𝑑𝜆 𝑑𝜃 𝑑𝜆 𝑑𝜆 = 𝑅𝑖 + = 𝑅𝑖 + 𝜔 𝑑𝑡 𝑑𝑡 𝑑𝜃 𝑑𝜃
where 𝜔 is the rotational speed in rad/s. In Table 2.1, the flux linkage and rotor position vectors are given as [𝜆]𝑡×1 and [𝜃]𝑡×1 , respectively. Therefore, the terminal voltage can be calculated as
[𝑣]𝑡−1 × 1 = 𝑅𝑖 + 𝜔
𝜆(𝑡, 1) − 𝜆(𝑡 − 1,1) 𝜃(𝑡) − 𝜃(𝑡 − 1)
Create variable in MATLAB using the data given in Table 2.1: [angle]31x1
speed_rpm=1000
rps=rpm × (1/60)
deg/s=rps × 360
rad/s=deg/s × (π/180)
6
speed=speed_rpm*360*(pi/180)*(1/60) for i=2:length(angle) voltage_calc_pos(i)=resistance*current+((flux_linkage(i)-flux_linkage(i1))/(angle(i)*(pi/180)-angle(i-1)*(pi/180)))*speed; end plot(angle,voltage,'-k','LineWidth',2); hold on plot(angle,voltage_calc_pos,'+b','LineWidth',2); xlim([0 max(angle)]);
60
50
Voltage [V]
40
30
20 Voltage Voltage_calc_time Voltage_calc_pos
10
0 0
5
10
15
20
Mechanical angle [deg.]
Fig. 3. Terminal voltage versus rotor position.
Q2.5 Solution Create variables in MATLAB using the data given in Table 2.1: [angle]31x1
[voltage]31x1
rps=rpm × (1/60)
resistance=0.2117 deg/s=rps × 360
current=20
speed_rpm=1000
rad/s=deg/s × (π/180)
speed=speed_rpm*360*(pi/180)*(1/60); flux_linkage0=flux_linkage(1); for i=2:length(angle) sum=0; for j=2:i temp_voltage=voltage(j); temp_pos1=angle(j)*(pi/180); temp_pos2=angle(j-1)*(pi/180); temp=(1/speed)*(temp_voltage-resistance*current)*(temp_pos1temp_pos2); 7
sum=sum+temp; end flux_linkage_calc(i)=sum+flux_linkage0; end plot(angle,flux_linkage,'-k','LineWidth',2); hold on plot(angle,flux_linkage_calc,'--r','LineWidth',2) xlim([0 max(angle)]);
0.15 Flux_linkage
Flux linkage [Wb]
Flux_linkage_calc
0.1
0.05
0
0
5
10
15
20
Mechanical angle [deg.]
Fig. 4. Flux linkage versus rotor position.
Q2.6 Solution The figure below shows the electromagnetic torque from the FEA analysis and the torque derived from the flux linkage characteristics, which were calculated from the same FEA analysis. It can be observed that the torque profiles match well.
8
7 Torque Torque from flux linkage
6
Torque [Nm]
5
4
3
2
1
0
0
5
10 15 Mechanical angle [deg]
20
22.5
Fig. 5. Static torque versus rotor position.
Torque can be calculated in two different ways. Maxwell Stress Tensor method, which was used in question 6, calculates the torque from the tangential forces. Energy method, which was used in this example, calculates the torque from co-energy. Both methods are widely used in electromagnetic analysis. Q2.7 Solution The general torque expression in SRM was derived as:
Te =
∂Wc | ∂θ i=const
where Wc is the co-energy and θ is the rotor position. The magnetic stored energy was calculated for the linear case, for λ = Li: λ2 i 1 Wf = ∫ idλ = ∫ Lidi = Li2 2 λ1 0
where λ is the flux linkage.
9
In a magnetic system with no saturation, the magnetization curve should be a straight line. Therefore at any position:
Wf = Wc =
1 L(θ)i2 2
Therefore,
Te =
∂Wc ∂ 1 1 ∂L(θ) | = ( L(θ)i2 )| = i2 ∂θ i=const ∂θ 2 2 ∂θ i=const
10
Chapter 3 Derivation of Pole Configuration in Switched Reluctance Machines Q3.1 Solution If the stator pole pairs in an SRM share the same electrical angle at one rotor position, when the same current is applied to the coils of these stator poles, they generate the same torque on the rotor. This is accomplished by connecting the coils of these stator pole pairs in the same electrical circuit, which creates the phases. Q3.2 Solution Mechanical position of the rotor poles can be calculated using (3.2). 𝑇𝑝𝑟 =
360 , 𝜃 [𝑡] = 𝑇𝑝𝑟 (𝑡 − 1), 𝑁𝑟 𝑟
𝑡 = 1,2, … , 𝑁𝑟
Mechanical position of the stator poles can be calculated using (3.3) 𝑇𝑝𝑠 =
360 , 𝜃 [𝑡] = 𝑇𝑝𝑠 (𝑡 − 1), 𝑁𝑠 𝑠
𝑡 = 1,2, … , 𝑁𝑠
Electrical angle can be calculated using (3.5) 𝑁𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑚𝑜𝑑((𝑁𝑟𝑚𝑒𝑐ℎ − 𝑁𝑠𝑚𝑒𝑐ℎ ) 𝑁𝑟 + 1800 , 360).
a) 6/14 Tab. 1. Mechanical positions of stator and rotor poles, 6/14 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
25.7143
Ns2
60
Ns2
60
Ph2
Nr3
51.4286
Ns3
120
Ns3
300
Ph3
Nr4
77.1429
Ns4
180
Ns4
180
Ph1
Nr5
102.8571
Ns5
240
Ns5
60
Ph2
Nr6
128.5714
Ns6
300
Ns6
300
Ph3
Nr7
154.2857
Nr8
180
Nr9
205.7143
Nr10
231.4286
Nr11
257.1429
Nr12
282.8571
Nr13
308.5714
Nr14
334.2857
Ph1
11
b) 8/10 Tab. 2. Mechanical positions of stator and rotor poles, 8/10 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
36
Ns2
45
Ns2
90
Ph2
Nr3
72
Ns3
90
Ns3
0
Ph3
Nr4
108
Ns4
135
Ns4
270
Ph4
Nr5
144
Ns5
180
Ns5
180
Ph1
Nr6
180
Ns6
225
Ns6
90
Ph2
Nr7
216
Ns7
270
Ns7
0
Ph3
Nr8
252
Ns8
315
Ns8
270
Ph4
Nr9
288
Nr10
324
Ph1
c) 16/20 Tab. 3. Mechanical positions of stator and rotor poles, 16/20 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
18
Ns2
22.5
Ns2
90
Ph2
Nr3
36
Ns3
45
Ns3
0
Ph3
Nr4
54
Ns4
67.5
Ns4
270
Ph4
Nr5
72
Ns5
90
Ns5
180
Ph1
Nr6
90
Ns6
112.5
Ns6
90
Ph2
Nr7
108
Ns7
135
Ns7
0
Ph3
Nr8
126
Ns8
157.5
Ns8
270
Ph4
Nr9
144
Ns9
180
Ns9
180
Ph1
Nr10
162
Ns10
202.5
Ns10
90
Ph2
Nr11
180
Ns11
225
Ns11
0
Ph3
Nr12
198
Ns12
247.5
Ns12
270
Ph4
Nr13
216
Ns13
270
Ns13
180
Ph1
Nr14
234
Ns14
292.5
Ns14
90
Ph2
Nr15
252
Ns15
315
Ns15
0
Ph3
Nr16
270
Ns16
337.5
Ns16
270
Ph4
Nr17
288
Nr18
306
Nr19
324
Nr20
342
Ph1
d) 20/16 Tab. 4. Mechanical positions of stator and rotor poles, 20/16 SRM. Rotor
Mech.
Stator
Mech.
Stator
Elect.
Phases
12
Pole Nr1
Angle 0
Pole Ns1
Angle 0
Pole Ns1
Angle 180
Ph1
Nr2
22.5
Ns2
18
Ns2
252
Ph2
Nr3
45
Ns3
36
Ns3
324
Ph3
Nr4
67.5
Ns4
54
Ns4
36
Ph4
Nr5
90
Ns5
72
Ns5
108
Ph5
Nr6
112.5
Ns6
90
Ns6
180
Ph1
Nr7
135
Ns7
108
Ns7
252
Ph2
Nr8
157.5
Ns8
126
Ns8
324
Ph3
Nr9
180
Ns9
144
Ns9
36
Ph4
Nr10
202.5
Ns10
162
Ns10
108
Ph5
Nr11
225
Ns11
180
Ns11
180
Ph1
Nr12
247.5
Ns12
198
Ns12
252
Ph2
Nr13
270
Ns13
216
Ns13
324
Ph3
Nr14
292.5
Ns14
234
Ns14
36
Ph4
Nr15
315
Ns15
252
Ns15
108
Ph5
Nr16
337.5
Ns16
270
Ns16
180
Ph1
Ns17
288
Ns17
252
Ph2
Ns18
306
Ns18
324
Ph3
Ns19
324
Ns19
36
Ph4
Ns20
342
Ns20
108
Ph5
Q3.3 Solution a) 9/15 Tab. 5. Mechanical positions of stator and rotor poles, 9/15 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
24
Ns2
40
Ns2
300
Ph2
Nr3
48
Ns3
80
Ns3
60
Ph3
Nr4
72
Ns4
120
Ns4
180
Ph1
Nr5
96
Ns5
160
Ns5
300
Ph2
Nr6
120
Ns6
200
Ns6
60
Ph3
Nr7
144
Ns7
240
Ns7
180
Ph1
Nr8
168
Ns8
280
Ns8
300
Ph2
Nr9
192
Ns9
320
Ns9
60
Ph3
Nr10
216
Nr11
240
Nr12
264
Nr13
288
Nr14
312
Nr15
336
Ph1
b) 12/15 13
Tab. 6. Mechanical positions of stator and rotor poles, 12/15 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
24
Ns2
30
Ns2
90
Ph2
Nr3
48
Ns3
60
Ns3
0
Ph3
Nr4
72
Ns4
90
Ns4
270
Ph4
Nr5
96
Ns5
120
Ns5
180
Ph1
Nr6
120
Ns6
150
Ns6
90
Ph2
Nr7
144
Ns7
180
Ns7
0
Ph3
Nr8
168
Ns8
210
Ns8
270
Ph4
Nr9
192
Ns9
240
Ns9
180
Ph1
Nr10
216
Ns10
270
Ns10
90
Ph2
Nr11
240
Ns11
300
Ns11
0
Ph3
Nr12
264
Ns12
330
Ns12
270
Ph4
Nr13
288
Nr14
312
Nr15
336
Ph1
c) 15/12 Tab. 7. Mechanical positions of stator and rotor poles, 15/12 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
30
Ns2
24
Ns2
252
Ph2
Nr3
60
Ns3
48
Ns3
324
Ph3
Nr4
90
Ns4
72
Ns4
36
Ph4
Nr5
120
Ns5
96
Ns5
108
Ph5
Nr6
150
Ns6
120
Ns6
180
Ph1
Nr7
180
Ns7
144
Ns7
252
Ph2
Nr8
210
Ns8
168
Ns8
324
Ph3
Nr9
240
Ns9
192
Ns9
36
Ph4
Nr10
270
Ns10
216
Ns10
108
Ph5
Nr11
300
Ns11
240
Ns11
180
Ph1
Nr12
330
Ns12
264
Ns12
252
Ph2
Ns13
288
Ns13
324
Ph3
Ns14
312
Ns14
36
Ph4
Ns15
336
Ns15
108
Ph5
Ph1
14
In all of these configurations there is odd number of stator poles in each phase. These configurations cannot provide a balanced operation if non-coupled winding configuration is used. Mutually coupled winding configuration should be used. Q3.4 Solution a) 6/12 Tab. 8. Mechanical positions of stator and rotor poles, 6/12 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Nr2
30
Ns2
60
Ns2
180
Nr3
60
Ns3
120
Ns3
180
Nr4
90
Ns4
180
Ns4
180
Nr5
120
Ns5
240
Ns5
180
Nr6
150
Ns6
300
Ns6
180
Nr7
180
Nr8
210
Nr9
240
Nr10
270
Nr11
300
Nr12
330
All the stator poles are at 180 degree electrical. This is zero-torque equilibrium point in an SRM. No torque can be generated when any of the stator poles are excited. This is locked rotor condition.
b) 8/20 Tab. 9. Mechanical positions of stator and rotor poles, 8/20 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Nr2
18
Ns2
45
Ns2
0
Nr3
36
Ns3
90
Ns3
180
Nr4
54
Ns4
135
Ns4
0
Nr5
72
Ns5
180
Ns5
180
Nr6
90
Ns6
225
Ns6
0
Nr7
108
Ns7
270
Ns7
180
15
Nr8
126
Nr9
144
Nr10
162
Nr11
180
Nr12
198
Nr13
216
Nr14
234
Nr15
252
Nr16
270
Nr17
288
Nr18
306
Nr19
324
Nr20
342
Ns8
315
Ns8
0
All the stator poles are either at 180 or zero degree electrical. These are both zero-torque equilibrium points in an SRM. No torque can be generated when any of the stator poles are excited. This is locked rotor condition.
c) 8/7 Tab. 10. Mechanical positions of stator and rotor poles, 8/7 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Nr2
51.4286
Ns2
45
Ns2
225
Nr3
102.8571
Ns3
90
Ns3
270
Nr4
154.2857
Ns4
135
Ns4
315
Nr5
205.7143
Ns5
180
Ns5
0
Nr6
257.1429
Ns6
225
Ns6
45
Nr7
308.5714
Ns7
270
Ns7
90
Ns8
315
Ns8
135
All of the stator poles have different electrical angles. When excited, these poles generate different torques. The coils around these stator poles cannot be connected together to create a phase. Current going each coil has to be controlled individually. It will be very complicated and challenging to maintain balanced operation.
16
d) 12/10 Tab. 11. Mechanical positions of stator and rotor poles, 12/10 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
Phases
Nr2
36
Ns2
30
Ns2
240
Ph2
Nr3
72
Ns3
60
Ns3
300
Ph3
Nr4
108
Ns4
90
Ns4
0
Ph4
Nr5
144
Ns5
120
Ns5
60
Ph5
Nr6
180
Ns6
150
Ns6
120
Ph6
Nr7
216
Ns7
180
Ns7
180
Ph1
Nr8
252
Ns8
210
Ns8
240
Ph2
Nr9
288
Ns9
240
Ns9
300
Ph3
Nr10
324
Ns10
270
Ns10
0
Ph4
Ns11
300
Ns11
60
Ph5
Ns12
330
Ns12
120
Ph6
Ph1
In 12/10 SRM, for 3- and 4-phases, even though the number of stator poles per phase is an integer, the stator poles belonging to the same phase do not share the same electrical angle. This configuration can provide balanced operation with 6 phases.
Q3.5 Solution Tab. 12. Mechanical positions of stator and rotor poles, 18/24 SRM. Rotor Pole Nr1
Mech. Angle 0
Stator Pole Ns1
Mech. Angle 0
Stator Pole Ns1
Elect. Angle 180
3-phase
6-phase
9-phase
Ph1
Ph1
Ph1
Nr2
15
Ns2
20
Ns2
60
Ph2
Ph2
Ph2
Nr3
30
Ns3
40
Ns3
300
Ph3
Ph3
Ph3
Nr4
45
Ns4
60
Ns4
180
Ph1
Ph4
Ph4
Nr5
60
Ns5
80
Ns5
60
Ph2
Ph5
Ph5
Nr6
75
Ns6
100
Ns6
300
Ph3
Ph6
Ph6
Nr7
90
Ns7
120
Ns7
180
Ph1
Ph1
Ph7
Nr8
105
Ns8
140
Ns8
60
Ph2
Ph2
Ph8
Nr9
120
Ns9
160
Ns9
300
Ph3
Ph3
Ph9
Nr10
135
Ns10
180
Ns10
180
Ph1
Ph4
Ph1
Nr11
150
Ns11
200
Ns11
60
Ph2
Ph5
Ph2
Nr12
165
Ns12
220
Ns12
300
Ph3
Ph6
Ph3
Nr13
180
Ns13
240
Ns13
180
Ph1
Ph1
Ph4
Nr14
195
Ns14
260
Ns14
60
Ph2
Ph2
Ph5
17
Nr15
210
Ns15
280
Ns15
300
Ph3
Ph3
Ph6
Nr16
225
Ns16
300
Ns16
180
Ph1
Ph4
Ph7
Nr17
240
Ns17
320
Ns17
60
Ph2
Ph5
Ph8
Nr18
255
Ns18
340
Ns18
300
Ph3
Ph6
Ph9
Nr19
270
Nr20
285
Nr21
300
Nr22
315
Nr23
330
Nr24
345
An 18/24 SRM can be configured as a 3-, 6- or 9-phase machine. However, with 6- and 9-phases, it can be noticed that different phases share the same electrical angles. Therefore, 6- and 9-phase operation is similar to parallel operation of some of the phases and might be helpful in high power applications. Since the 18/24 SRM can be operated as a 3-phase machine with an even number of stator poles per phase, mutually-coupled winding configuration is not necessary for 6-phase operation even though stator poles per phase is an odd number.
Q3.6 Solution The number of rotor poles can be calculated using (3.9): 𝑁𝑟 =
𝑁𝑠 𝑚𝑜𝑑(𝑘, 𝑖) 𝑘 ∏ 𝑐𝑒𝑖𝑙( ) 𝑚 𝑖 𝑖
where the parameter 𝑖 represents the prime factors of number of phases. Configuration index, k varies from one to any arbitrary integer. The number of stator poles per phase is a positive integer. For 3-phases , 𝑖 = [3]; therefore, 𝑁𝑟1 =
𝑁𝑠1 𝑚𝑜𝑑(𝑘1 , 3) 𝑘 𝑐𝑒𝑖𝑙 ( ) 3 1 3
𝑁𝑟2 =
𝑁𝑠2 𝑚𝑜𝑑(𝑘2 , 2) 𝑘2 𝑐𝑒𝑖𝑙 ( ) 4 2
For 4-phase, 𝑖 = [2]; therefore,
Since we’re looking for a configuration which can run in 3- or 4-phases: 𝑁𝑟1 = 𝑁𝑟2 and 𝑁𝑠1 = 𝑁𝑠2
18
Hence, 𝑘1 𝑚𝑜𝑑(𝑘1 , 3) 𝑘2 𝑚𝑜𝑑(𝑘2 , 2) 𝑐𝑒𝑖𝑙 ( ) = 𝑐𝑒𝑖𝑙 ( ) 3 3 4 2 The result of the 𝑐𝑒𝑖𝑙 function is 1 for the working configurations and zero for non-working configurations. In order to maintain the equality, 𝑘1 should be an integer multiple of 3 and 𝑘2 should be an integer multiple of 4. In this case, the ceil functions will results in zero. This shows that there is no stator and rotor pole combination which can provide balanced operation when used as a 3-phase and 4-phase machine. Q3.7 Solution In SRMs, stator poles are used to generate the magnetic poles. Magnetic poles come in pairs to create the flux path. When there is odd number of stator poles per phase, an integer value for the pole pairs cannot be maintained. In this case, one of the magnetic poles cannot be generated and balanced operation might not be maintained. This is the reason why a mutually-coupled winding configuration is necessary in SRMs with odd number of stator poles per phase. With mutually coupled winding configuration, the flux paths are generated by utilizing the stator poles of other phases. With a mutually coupled coil configuration, the flux generated when one phase coil is energized now links to the coils of other phases. Therefore, unlike conventional SRMs with even number of stator poles per phase and noncoupled coil configuration, mutual inductance cannot be neglected. When modeling SRMs with odd number of stator poles per phase, flux linkage due to the current from other phases need to be taken into account. Q3.8 Solution In this chapter, many different SRM topologies have been presented. It can be noticed that various combinations of number of stator poles, number of rotor poles, and number of phases are available for SRMs. The selection of the SRM configuration depends on many parameters, including the desired torque-speed and torque ripple characteristics, mechanical tolerances, converter and controller requirements, switching frequency, precision of rotor position measurement, etc. Selecting the right configuration for the given application requires extensive analysis due to the nonlinear nature of SRM.
19
Chapter 4 Operational Principles and Modeling of Switched Reluctance Machines Q4.1 Solution Variables: currentArray [11 x 1]
elecAngleArray [120 x 1]
fluxLinkageMatrix [120 x 11]
voltageMatrix [120 x 11]
torqueMatrix [120 x 11]
MATLAB algorithm to plot the torque and voltage profiles: % The variables currentArray, elecAngleArray, torqueMatrix, voltageMatrix % must be available in the workspace. close all; clc; % plot the torque profile figure(1) for i = 1:length(currentArray) plot(elecAngleArray,torqueMatrix(:,i),'LineWidth',2); hold on; grid on; end xlim([min(elecAngleArray), max(elecAngleArray)]); xlabel('Electrical Angle [deg]'); ylabel('Torque [Nm]'); legend(num2str(currentArray)); % plot the voltage profile figure(2) for i = 1:length(currentArray) plot(elecAngleArray,voltageMatrix(:,i),'LineWidth',2); hold on; grid on; xlim([min(elecAngleArray), max(elecAngleArray)]); end xlim([min(elecAngleArray), max(elecAngleArray)]); xlabel('Electrical Angle [deg]'); ylabel('Voltage @1000RPM [V]'); legend(num2str(currentArray));
The torque and terminal voltage waveform of the 12/8 SRM are shown in Fig04-24. Both waveforms have similar shapes. Torque and voltage are positive between the unaligned and aligned positions (as the flux linkage increases with rotor position). They are both negative between aligned and unaligned positions (as the flux linkage decreases with rotor position). After a certain excitation current, the peak value of the terminal voltage does not change, while the torque keeps increasing. This is the effect of saturation.
20
Q4.2 Solution MATLAB algorithm to plot the flux linkage profiles: % Variables currentArray, elecAngleArray, and fluxLinkageMatrix must be % available in the workspace. close all; clc; % Plot the flux linkage profile as a function of rotor position. figure(1) for i = 1:length(currentArray) plot(elecAngleArray,fluxLinkageMatrix(:,i),'LineWidth',2); hold on; grid on; end xlim([min(elecAngleArray), max(elecAngleArray)]); xlabel('Electrical Angle [deg]'); ylabel('Flux Linkage [Wb]'); legend(num2str(currentArray)); % Plot the flux linkage as a function of current figure(2) aligned = find(elecAngleArray == 180);% half electrical cycle is enough elecAngleArray2 = elecAngleArray(1:aligned); k = 1; for i = 1:4:length(elecAngleArray2) % less angles for plotting purposes plot(currentArray,fluxLinkageMatrix(i,:),'LineWidth',2); hold on; grid on; legend1{k} = num2str(elecAngleArray2(i)); k = k + 1; end xlim([min(currentArray), max(currentArray)]); xlabel('Current [A]'); ylabel('Flux Linkage [Wb]'); legend(legend1,'Location','Best');
The flux linkage characteristics of the 12/8 SRM are shown in Fig04-25. From Fig04-25 (a), it can be seen that the flux linkage increases with rotor position until the aligned position at 180° electrical. After the aligned position, the flux linkage decreases with rotor position. From Fig04-25 (b), it can be seen that at the unaligned position (zero degree electrical), flux linkage increases linearly with current. At the aligned position, 180° electrical, the flux linkage profile has a similar shape as the magnetization characteristics of electrical steel. This is the effect of saturation. Q4.3 Solution The algorithm to invert the flux linkage look-up table: % Variables currentArray, elecAngleArray, and fluxLinkageMatrix must be % available in the workspace. 21
close all; clc; N_angles = length(elecAngleArray); N_fluxlink = N_angles; LUT_currentMatrix = zeros(N_angles,N_fluxlink); targetArray = linspace(min(fluxLinkageMatrix(:)),max(fluxLinkageMatrix(:)),N_fluxlink); current_max = max(currentArray); for i_angle = 1:N_angles fluxlink_row = fluxLinkageMatrix(i_angle,:); for i_fluxlink = 1:N_fluxlink TARGET = targetArray(i_fluxlink); if TARGET > max(fluxlink_row) LUT_currentMatrix(i_angle,i_fluxlink) = current_max; else LUT_currentMatrix(i_angle,i_fluxlink) = ... interp1(fluxlink_row, currentArray, TARGET); end end end % Plot flux linkage look-up table figure(1) mesh(currentArray,elecAngleArray,fluxLinkageMatrix); xlim([min(currentArray), max(currentArray)]); ylim([min(elecAngleArray), max(elecAngleArray)]); xlabel('Current [A]'); ylabel('Electrical Angle [deg]'); zlabel('Flux Linkage [Wb]'); % Plot current look-up table figure(2) mesh(targetArray,elecAngleArray,LUT_currentMatrix); xlim([min(targetArray), max(targetArray)]); ylim([min(elecAngleArray), max(elecAngleArray)]); xlabel('Flux Linkage [Wb]'); ylabel('Electrical Angle [deg]'); zlabel('Current [A]');
Q4.4 Solution When the motor runs at 1200 rpm: •
Every minute (60 seconds), the rotor makes 1200 revolutions
•
Every second, the rotor makes 1200/60 = 20 revolutions
•
Every second, the rotor rotates 20 x 360 = 7200 degrees
22
•
The rotor makes one revolution (360 degrees) in every 360/7200 = 0.05 seconds
•
In one second (simulation stop time), the rotor makes 1/0.05 = 20 revolutions
Q4.5 Solution If the simulation stop time is 1 second, the mechanical angle as a function of time will look like below. At 1200 rpm, the rotor makes 20 revolutions in one second. 400
Angle [mech. deg.]
350 300 250 200 150 100 50 0 0
0.1
0.2
0.3
0.4
0.5 Time [s]
0.6
0.7
0.8
0.9
1
Fig. 6. Mechanical angle versus time.
Q4.6 Solution The mechanical and electrical angles of a 12/8 SRM were shown in Fig03-07. Using (3.7) the electrical angle of each stator can be calculated as: 𝑁𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑚𝑜𝑑[𝑘𝑟𝑜𝑡 (𝑁𝑠𝑚𝑒𝑐ℎ − 𝑁𝑟𝑚𝑒𝑐ℎ )𝑁𝑟 + 180°, 360°] For the given rotor position, the electrical angle of each stator pole is the same for all the rotor poles. Therefore, we can use the mechanical angle of the first rotor pole to calculate electrical angle of each phase. As shown in Fig03-07, 𝑁𝑟𝑚𝑒𝑐ℎ = 0, 𝑁𝑠1𝑚𝑒𝑐ℎ = 0, 𝑁𝑠2𝑚𝑒𝑐ℎ = 30°, and 𝑁𝑠3𝑚𝑒𝑐ℎ = 60°. Using (3.7), 𝑁𝑠1𝑒𝑙𝑒𝑐𝑡 = 180°, 𝑁𝑠2𝑒𝑙𝑒𝑐𝑡 = 300°, and 𝑁𝑠3𝑒𝑙𝑒𝑐𝑡 = 60°. 𝑘𝑟𝑜𝑡 is -1 for counter clockwise rotation.
For the given rotor position, the electrical angle can be modeled using (4.33). 𝜃𝑒𝑙𝑒𝑐 = 𝑚𝑜𝑑 ((𝑁𝑟 𝜃𝑚𝑒𝑐ℎ + 180°) +
360 𝑘 , 360°) 𝑚 𝑝ℎ
At 𝜃𝑚𝑒𝑐ℎ = 0, the position of the rotor was shown in Fig03-07. Hence, 𝜃𝑒𝑙𝑒𝑐 derived using (4.33) will equal to the electrical angle of the stator poles calculated using (3.7): 23
𝑁𝑠1𝑒𝑙𝑒𝑐𝑡 = 𝑚𝑜𝑑 ((𝑁𝑟 𝜃𝑚𝑒𝑐ℎ0 + 180°) +
360 𝑘 , 360°) 𝑚 𝑝ℎ1
where 𝑁𝑟 = 8, 𝜃𝑚𝑒𝑐ℎ0 = 0, and 𝑚 = 3. Therefore, 𝑘𝑝ℎ1 = 0 for the first stator pole (hence Ph#1). Using 𝑁𝑠2𝑒𝑙𝑒𝑐𝑡 and 𝑁𝑠3𝑒𝑙𝑒𝑐𝑡 , 𝑘𝑝ℎ for the other phases can be calculated. The results is 𝑘𝑝ℎ = [0 1 2].
The figure below shows the electrical angles of each phase in one mechanical revolution. There are 24 electrical cycles in one revolution. This corresponds to the number of strokes, which was derived in (3.1): 𝑆 = 𝑚 𝑁𝑟 where 𝑁𝑟 is the number of rotor poles. 𝑚 is the number of phases, which is calculated as 𝑚 = 𝑁𝑠 ⁄#𝑝𝑜𝑙𝑒𝑠 where 𝑁𝑠 is the number of stator poles and #𝑝𝑜𝑙𝑒𝑠 is the number of poles and it equals to 4 in 12/8 SRM. rotor pos.
Ph#1 elect.angle
Ph#2 elect. angle
Ph#3 elect. angle
400
Angle [mech. deg.]
350 300 250 200 150 100 50 0
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
Time [s]
Fig. 7. Mechanical angles versus time, three phases.
Q4.7 Solution The figure below shows the current waveform. If the relationship between the flux linkage and current is modeled with a constant inductance, the phase model becomes a simple 𝑅𝐿 circuit. The 𝑅𝐿 circuit is represented by a first order ordinary differential equation. 𝑣𝑝ℎ = 𝑅𝑝ℎ 𝑖𝑝ℎ + 𝐿 𝐿
𝑑𝑖𝑝ℎ 𝑑𝑡
𝑑𝑖𝑝ℎ = 𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ 𝑑𝑡
24
𝑖
𝑡
𝑑𝑖𝑝ℎ 𝑑𝑡 ∫ =∫ 𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ 𝐿 0
0
𝑢 = 𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ ⇒ 𝑑𝑢 = −𝑅𝑝ℎ 𝑑𝑖𝑝ℎ ⇒ 𝑑𝑖𝑝ℎ = − 𝑡
𝑑𝑡 ∫ =∫ 𝐿 0
1 𝑑𝑢 𝑅𝑝ℎ −
1 𝑑𝑢 𝑅𝑝ℎ 𝑢
𝑡
1 1 𝑑𝑢 ∫ 𝑑𝑡 = − ∫ 𝐿 𝑅𝑝ℎ 𝑢 0
1 1 𝑡=− 𝑙𝑛|𝑢| 𝐿 𝑅𝑝ℎ 1 1 𝑖 𝑡=− 𝑙𝑛|𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ |0 𝐿 𝑅𝑝ℎ − −
𝑅𝑝ℎ 𝑡 = 𝑙𝑛|𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ | − 𝑙𝑛|𝑣𝑝ℎ | 𝐿
𝑅𝑝ℎ 𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ 𝑡 = 𝑙𝑛 | | 𝐿 𝑣𝑝ℎ
𝑣𝑝ℎ − 𝑅𝑝ℎ 𝑖𝑝ℎ = 𝑒 −(𝑅𝑝ℎ ⁄𝐿 )𝑡 𝑣𝑝ℎ 1−
𝑅𝑝ℎ 𝑖 = 𝑒 −(𝑅𝑝ℎ ⁄𝐿 )𝑡 𝑣𝑝ℎ 𝑝ℎ 𝑖𝑝ℎ (𝑡) =
𝑣𝑝ℎ (1 − 𝑒 −(𝑅𝑝ℎ ⁄𝐿)𝑡 ) 𝑅𝑝ℎ
The figure below shows the waveform of the current. It can be observed that the current rises and reaches to a steady-state value of 𝑣𝑝ℎ ⁄𝑅𝑝ℎ .
25
50 Vph/Rph
45 40
Current [A]
35 30 25 20 15 10 5 0
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
Time [s]
Fig. 8. Current versus time.
Q4.8 Solution Using (4.43), the counting number for the current sampling can be calculated as: 𝑇𝑠𝑎𝑚𝑝 𝑛𝑠𝑎𝑚𝑝 = 𝑟𝑜𝑢𝑛𝑑 ( ) 𝑇𝑠 If 𝑇𝑠 = 1 micro-second, and 𝑇𝑠𝑎𝑚𝑝 =
1 22𝑘𝐻𝑧
= 45.5 micro-seconds, then 𝑛𝑠𝑎𝑚𝑝 = 45. Fig. 9 shows the
sampled current at 1 kHz and 22 kHz. With a higher sampling frequency, the sampled current waveform is closer to the phase current. Therefore, we have a better knowledge of the phase current with a higher sampling frequency, which enables higher accuracy for the current control.
26
(a)
50 45
Current [A]
40 35 30 25 20 15 10
Phase current Sampled current 1 kHz
5 0
0
0.005
0.01
0.015
0.02
(b)
0.025 0.03 Time [s]
0.035
0.04
0.045
0.05
50 45
Current [A]
40 35 30 25 20 15 10
Phase current Sampled current 22 kHz
5 0
0
0.005
0.01
0.015
0.02
0.025 0.03 Time [s]
0.035
0.04
0.045
0.05
Fig. 9. Current versus time: (a) sampled current 1 kHz, (b) sampled current 22 kHz.
Q4.9 Solution The figures below show the phase excitation signals for 𝜃𝑂𝑁 = 30°, 𝜃𝑂𝐹𝐹 = 150° and 𝜃𝑂𝑁 = −20°, 𝜃𝑂𝐹𝐹 = 120°. In the first case, each phase conducts for 120° electrical, which equals the phase shift angle. Therefore, neglecting current decay after the turn off angle, none of the phases conduct at the same time. In the second case, phase conduction is larger than the phase shift angle. Therefore, phase excitation signals will force two phases to conduct at the same time.
27
Angle [mech. deg.]
(a)
Ph#1 elect.angle
Ph#3 elect. angle
300 200 100 0
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
(b)
Phase excitation signal
Ph#2 elect. angle
400
1 0.5 0
Fig. 10. θON = 30° / θOFF = 150°: (a) mechanical angles, (b) phase excitation signals.
Angle [mech. deg.]
(a)
Ph#1 elect.angle
Ph#3 elect. angle
400 300 200 100 0
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
(b) Phase excitation signal
Ph#2 elect. angle
1 0.5 0
Fig. 11. θON = -20° / θOFF = 120°: (a) mechanical angles, (b) phase excitation signals.
Q4.10 Solution The figure below shows the results with soft and hard switching. In soft switching, the switching signal changes between +1 and 0 during the conduction interval. This enables a slower rate of change of current and, hence, a lower switching frequency. In hard switching, the switching signal changes between +1 and 28
-1. This results in a higher rate of change of current and a higher switching frequency. In practical applications, soft switching is widely used during the phase conduction in conduction angle control.
(a)
Ph#2
Ph#1
Ph#3
Current [A]
6 4 2 0 0
0.005
0.01
0.015
0.02 0.025 Time [s]
0.03
0.035
0.04
0.045
0.05
0.005
0.01
0.015
0.02 0.025 Time [s]
0.03
0.035
0.04
0.045
0.05
0.005
0.01
0.015
0.02 0.025 Time [s]
0.03
0.035
0.04
0.045
0.05
0.005
0.01
0.015
0.02 0.025 Time [s]
0.03
0.035
0.04
0.045
0.05
Switching signal
(b)
Soft switching
1 0 -1 0
(c)
Current [A]
6 4 2 0 0
Switching signal
(d)
Hard switching
1 0 -1 0
Fig. 12. Soft switching versus hard switching: (a) current, soft switching, (b) switching signal, soft switching, (c) current, hard switching, and (d) switching signal, hard switching,.
Q4.11 Solution If we apply the current waveform calculated in the dynamic model to the FEA model and measure voltage across the phase windings, we would observe the modulated phase voltage in the dynamic model. The figure below shows the phase voltage from the dynamic model, phase voltage from FEA (when the current from the dynamic model is used), and the induced voltage from the look-up table. It can be observed that the phase voltage from FEA is similar to the phase voltage from the dynamic model.
29
Voltage [V]
(a)
Voltage [V]
Ph#3
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
0
0.002
0.004
0.006 Time [s]
0.008
0.01
0.012
(b) 500 0 -500 (c)
Voltage [V]
Ph#2
Ph#1 400 200 0 -200 -400
60 40 20 0
Fig. 13. Simulation results: (a) Phase voltage from the dynamic model (b) phase voltage from FEA (c) voltage calculated from the voltage look-up table in the dynamic model
In order to calculate the induced voltage, static terminal voltage profile is used in the look-up table. The static voltage waveform is the voltage that would be observed at the terminals of the phase winding if the rotor rotates one electrical cycle when constant current flows through the phase winding. Therefore, it can be used to visualize the voltage induced inside the motor. The induced voltage cannot be directly measured. If we measure the voltage across the phase winding during the operation of SRM, we would observe the modulated DC link voltage (phase voltage). In our case, the induced voltage is much lower than the DC-link voltage. Therefore, the DC link voltage is modulated to control the current.
Q4.12 Solution The figure below shows the phase voltage, induced voltage and current waveforms at 10000 RPM. It can be seen that induced voltage is much higher than the phase voltage. There are intervals where the phase voltage is positive, but the phase current still decays. At those instants, the induced voltage is higher than the phase voltage. Induced voltage cannot be directly measured from the phase terminals. However, it can be plotted by using the static terminal voltage profile as a look-up table.
30
Ph#2 induced volt.
Voltage [V]
(a)
Ph#1 induced volt.
Ph#3 induced volt.
400 200 0 Ph#3 phase volt.
-200 0
0.1
0.2
0.3
Ph#2 phase volt. 0.4
0.5
Ph#1 phase volt. 0.6
0.7
0.8
0.9
1
Time [ms] (b)
Current [A]
20
10
0 Ph#2
Ph#1 -10 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Ph#3 0.9
1
Time [ms]
Fig. 14. Simulation results, 10000 rpm: (a) voltage, (b) current.
31
Chapter 5 Switched Reluctance Machines in Generating Mode a) Separately excited DC machine needs a full bridge converter for four-quadrant operation. SRM can run in four quadrants with an asymmetric bridge converter. As shown in Fig05-08, the direction of armature current changes in motoring and generating modes in the separately excited DC machine. This is why a full bridge converter is needed for four-quadrant operation. In SRM, the phase current doesn’t change its direction in generating mode. Generating mode is achieved by exciting the phase in the negative slope of the flux linkage profile. If full bridge converter was used in SRM, the direction of phase current could be reversed. However, this wouldn’t be necessary, since the torque is independent of the direction of the phase current. b) This is one of the main differences between separately excited DC machine and switched reluctance machine. Even though the equivalent circuit models of these two machines are similar, SRM torque is independent of the direction of the phase current. Therefore, the phase current in SRM does not change its direction in generating mode. c) In the separately excited DC machine, the direction of rotation is reversed by changing the polarity of the armature voltage. Please notice from Fig05-08 that in backward motoring and generating, the polarity of Va is reversed. As it was explained in Fig05-03, the direction of rotation in SRM is reversed by changing the phase excitation sequence. d) In forward generating mode in Fig05-08, the armature current increases when S4 is on and D2 is conducting. In this case, the armature circuit is short circuited. Armature current rises by drawing power from the prime mover. When S4 is turned off, the armature current is supplied back to the source. This is similar to the soft switching mode in SRG which was explained in Fig05-05. Please note that due to the induced EMF Ea, separately excited DC machine do not need to draw current from the source for initial excitation. e) In forward motoring mode in the separate excited DC motor, when S 1 and S2 are on, the armature current increases. In asymmetric bridge converter in SRM, this mode is shown in Fig05-05 (c). When S1 is turned off, the armature current freewheels through S2 and D4. This is similar to the soft switching in SRM 32
as shown in Fig05-05 (d). If both S1 and S2 are turned off, the armature current is supplied back to the source through D1 and D2. This is similar to the hard switching mode in SRM as shown in Fig05-06 (d).
33
Chapter 6 Materials Used in Switched Reluctance Machines Q6.1 Solution (a) NO30 is a thin gauge steel (0.3mm) which is expected to have a smaller B-H curve then the much thicker M470-50A (0.5mm), as shown in Fig. 15.
2
M470-50A 1.8
N030
B [T]
1.6
1.4
1.2
1
0
5000
10000
15000
H [A/m]
Fig. 15. Magnetization characteristics of NO30-1600 and M470-50A, B-H curve at 50 Hz.
2
1.6
N030
B [T]
1.2 M470-50A 0.8
0.4
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Loss density [X10 4 W/m 3]
Fig. 16. Loss characteristics of NO30-1600 and M470-50A at 50 Hz.
34
(b) A thinner gauge lamination generally has lower eddy current losses, as shown in Fig. 16. For the given magnetic flux density, we would expect the thicker lamination to have a higher loss density than the thinner lamination. (c) As the frequency increases, both gauges increase in loss density for the same magnetic flux density, as shown in Fig. 17. However, the losses for NO30-1600 continue to be less than the losses for M47050A. For the highest frequencies, the shape of the curves has changed substantially from the low frequency case, causing loss to increase greatly with a small change in the magnetic flux density. A single polynomial would not fit these curves with good accuracy.
2
1.6
NO30-1600
50 Hz 400 Hz
M470-50A
2000 Hz 5000 Hz
B [T]
NO30-1600
NO30-1600
1.2 M470-50A M470-50A
NO30-1600
0.8 M470-50A NO30-1600 0.4
0
0
1
2
3
4
5
6
7
Loss density [X105 W/m 3]
Fig. 17. Loss characteristics of NO30-1600 and M470-50A at different frequencies.
(d) Electrical steel is carefully controlled both in alloying and production methods to produce the best magnetic properties. Even though NO30-1600 has a smaller magnetization curve than M470-50A, it is still much better than stainless steel and cast iron, as shown in Fig. 18.
35
1.8 M470-50A N030-1600
1.6
B [T]
Stainless Steel
1.4 Cast Iron
1.2
1
0
5000
10000
15000
H [A/m]
Fig. 18. Magnetization characteristics of NO30-1600, M470-50A, stainless steel and cast iron.
(e) For a high-torque density SRM, M470-50A would be a better choice, since its magnetization curve is larger. This material also achieves higher magnetic flux density, which would potentially increase the coenergy and, hence, torque. For the high-speed operation, NO30-1600 would be better, because the losses are lower at high frequencies. Q6.2 Solution Thermal class: Determines the rated temperature a type of wire can withstand for an extrapolated lifetime of 20,000 hours. It gives an indication of how hot a motor can get before the wire insulator begins to no longer guarantee integrity. Adhesion and flexibility: Used to determine how much mechanical stress the magnet wire can undergo. Given in diameter, a magnet wire should not be bent beyond this while winding to maintain good condition. Breakdown voltage: When the dielectric material temporarily loses its property of non-conductivity due to a high electric field, this is known as a dielectric breakdown. To avoid electrical discharges the breakdown voltage should not be approached or exceeded.
36
Chapter 7 Design Considerations for Switched Reluctance Machines Q7.1 Solution Hint: S f Ls N lamtlam , in which Sf is the stacking factor, Nlam is the number of lamination sheets, tlam is the thickness for lamination sheets, and Ls is the stator stack length. The answers are given in Tab. 13 Tab. 13. Number of sheets calculated. Lamination thickness [mm]
Number of sheets
0.3
~158
0.25
190
0.1
475
Q7.2 Solution The answers are given in Fig. 19
(a)
(b) Phase A
Phase A IN
IN
OUT 12
11
42 41
72 71
102
101
132
131
162
161
192
191
OUT
222
12
221
11
42 41
72 71
102
101
131
Phase B OUT
21
52 51
82 81
111
11 2 14 1
142
172
171
202
201
161
192
191
222
221
IN
OUT
232
231
22 21
52 51
82 81
112
111
Phase C
142
141
172
171
202
201
232
231
Phase C OUT
IN
IN 32
31
162
Phase B
IN
22
132
62 61
92 91
122 121
151
152 181
182 211
212 241
242
OUT 32
31
62 61
92 91
122 121
151
152 181
182 211
212
242
241
Fig. 19. Possible winding schemes for 24/16 SRM: (a) two parallel paths, and (b) four parallel paths.
37
Q7.3 Solution Since the coil has 4 turns and 5 strands and its slot fill factor is 0.5, for the same slot, the slot fill factor, ff, for any another combination of the number of turns per coil, Nturn, and number of strands, Nstr will follow the following formula:
N turn N str ff 45 0.5 Since, 1 N turn 12 , 1 N str 12 , and 0.4 ff 0.6 , the possible combinations of Nturn and Nstr are given in Tab. 14. Tab. 14. Possible combinations of number of turns and number of strands. Number of turns 1
2
3
4
5
6
7
8
9
10
11
12
0.4
0.45
0.5
0.55
0.6
1 2
Number of strands
3
0.45
4
0.4
5
0.5
6
0.45
7
0.525
8
0.4
9
0.45
10
0.5
11
0.55
12
0.6
0.5
0.525
0.6
0.6
0.6
0.6
Q7.4 Solution The feasible region can be seen in Fig. 20.
38
2 N
360 N
s
s
60
Stator pole arc angle, βs [mech. deg.]
r s
4 mN
720
mN
r
r s
r
2 N
r
360 N
r
50
40
s
2 mNr
360 mNr
30 r s
20
10
0
0
10
20
30 40 50 60 Rotor pole arc angle, βr [mech. deg.]
70
80
90
2
r s
Feasible region s
2 mN
4 mNr
r
N
s r
r
360 N
r
2 Nr
Fig. 20. The feasible region for selecting the stator and rotor pole arc angles for a three-phase 6/4 SRM.
Q7.5 Solution Tab. 15. The relationship between stator and rotor pole arc angles.
Geometry
m
Ns
Nr
r _ min s _ min [mech. deg.]
3-phase 6/4 SRM
3-phase 12/8 SRM
3-phase 18/12 SRM
3
3
3
6
12
18
4
8
12
30
15
10
Number of poles
Expression for βS r s
720 2 Nr Ns Ns Nr
r s
720 5 N r 3N s Ns Nr
r s
720 2 Nr Ns Ns Nr
r s
720 5 N r 3N s Ns Nr
r s
720 8 N r 5 N s Ns Nr
r s
720 11N r 7 N s Ns Nr
r s
720 2 Nr Ns Ns Nr
r s
720 5 N r 3N s Ns Nr
2
4
6
+ βr
39
3-phase 24/16 SRM
3
24
16
7.5
r s
720 8 N r 5 N s Ns Nr
r s
720 11N r 7 N s Ns Nr
r s
720 14 N r 9 N s Ns Nr
r s
720 17 N r 11N s Ns Nr
r s
720 2 Nr Ns Ns Nr
r s
720 5 N r 3N s Ns Nr
r s
720 8 N r 5 N s Ns Nr
r s
720 11N r 7 N s Ns Nr
r s
720 14 N r 9 N s Ns Nr
r s
720 17 N r 11N s Ns Nr
r s
720 20 N r 13N s Ns Nr
r s
720 23N r 15 N s Ns Nr
8
Fig. 21. Snapshot of MATLAB plot, relative position between rotor and stator, 3-phase 18/12 SRM, θ = 0°, βS = 10°, βr = 10°.
40
Fig. 22. Snapshot of MATLAB plot, relative position between rotor and stator, 3-phase 24/16 SRM, θ = 0°, βS = 7.5°, βr = 7.5°.
41
Chapter 8 Mechanical Construction of Switched Reluctance Machines Q8.1 Solution Switched reluctance machine has a simple construction with concentrated coils wound around salientpoles of the stator core. The rotor also has salient-pole construction without any source of excitation. This simplifies the rotor construction and reduces the manufacturing cost. Furthermore, as there is no risk for magnets flying off or winding damage on the rotor, high speed operation can be realized for SRM. In comparison, permanent magnet synchronous machine and brushless DC machine have magnets on the rotor, wound induction machine has winding on the rotor, DC brushed machine has winding, brushes, and slip rings on the rotor. These all somewhat reduce the machine reliability and bring in additional loss and cost. Q8.2 Solution Different insulation layers should be applied in SRM. Insulation layers are necessary to be applied around the copper conductor to enable the contact between the wires without causing any electrical short circuit. Magnet wires come with organic insulation applied around them. The insulating layers, so called enamels or films, are bonded on the copper or aluminum conductor. They are made up of different types of resins and define Thermal class of the magnet wire. In addition, winding-to-stator insulation is necessary in switched reluctance machines to prevent possible winding-to-ground short circuit faults. For prototype machines, slot liner and slot wedges are typically applied. These insulation materials are usually made of aramid or Mylar layered paper. For large volume production machines, injection molded plastic insulation are typically applied to form a structure that surrounds the stator lamination to prevent the contact between winding and lamination steel. Typical plastic injection molding materials for stator and rotor include polyamide (PA), i.e. Nylon PA 6, PA 66, polyethylene (PE), polybutylene terephthalate (PBT), etc. Glass fiber reinforced polyphenylene sulfide (PPS) such as PPS-GF30 and PPS-GF40 and polysulfone (PSU) can be used for harsh, high temperature, and contaminative environment, for instance, where the motor is in direct contact with transmission oil or engine coolant.
42
Q8.3 Solution Journal bearings comprises only bearing surface but no rolling elements. The design and construction of journal bearings are relatively simple. They offer the advantages including light weight, low cost for manufacturing, long life under normal load operation, low operation noise, less transmitted vibration, shock load tolerant capability, electrical isolation from rotor to ground, less electromagnetic interference, less sensitivity to contamination, less mounting accuracy requirement, ease of maintenance, good heat dissipation with lubrication, and good wear dust clearance with lubrication. Compared to journal bearings, rolling contact bearings have lower starting and running resistance, consume less amount of lubricant and are less prone to wear, thus requiring far less maintenance. However, rolling bearings are less capable to withstand shocks and high loads. They have higher possibility for failure to occur and hence are less reliable and typically have shorter life compared to journal bearings. Q8.4 Solution Any deviation of air gap distance caused by assembly eccentricity will have impact on machine output parameters, notably the vibration and noise caused by the unbalance radial force pull. Rotor balance is another critical aspect for rotor assembly. It is especially important for switched reluctance machines to ensure safety and normal operation as many of them are designed for high-speed applications. Unbalance rotors typically are resulted from mismatched rotor weight distribution. Improper manufacturing tolerances, material defects, unsymmetrical structures such as keys and key ways, and poor assembly can all lead to rotor unbalance. Rotor unbalance is a significant cause for noise and vibration. It is also likely to cause wear and stress on the bearings and other supporting components. Efficiency, reliability, and lifetime of the machine could be negatively affected. Besides, shaft misalignment could lead to significant machine noise and vibration issues and results in excessive loading and reduction in the life of the machine. It occurs when the centerline of the motor shaft does not align fully with the driven shaft. Q8.5 Solution Tab. 16. Specs for an SRM designed for an e-bike application. Part #
Name
Possible material or model
Possible connection with
(1)
Bearing A
Steel, deep groove ball bearing, 6203
End cap B
Transition fit
43
(2)
Shaft
(1), (4)
Sliding fit
(6)
Press fit
4340 Steel
(3)
Rotor lamination stack
Electrical steel
Rotor slot fillers
Glued
(4)
Bearing B
Steel, deep groove ball bearing, 6908
(5)
Close running fit
(5)
End cap A
6061 Aluminum
(3)
Bolts
(6)
Stator lamination stack
Electrical steel
(2)
Press fit
(7)
Winding
22 AWG magnet wire
(6)
Lace, pole shoe
44
Chapter 9 Control of Switched Reluctance Machines Q9.1 Solution // User defined inputs, these are constants define I_ref; //reference current define tol; // tolerance band, as a percentage or an absolute value define V_DC; i_upper = I_ref*(1+tol); i_lower = I_ref*(1-tol); V = V_DC; // dynamic control for k = 1:numOfSteps if i > i_upper, then V_phase = -V_DC; elseif i 1 C1 = (pull*omega_n*(zeta + sqrt(zeta^2 1)+speed))/2/omega_n/sqrt(zeta^2 - 1); C2 = (-pull*omega_n*(zeta - sqrt(zeta^2 - 1)speed))/2/omega_n/sqrt(zeta^2 - 1); x_t = C1*exp((-zeta + sqrt(zeta^2 - 1))*omega_n*t) + C2*exp((-zeta sqrt(zeta^2 - 1))*omega_n*t); end motion_surface = [motion_surface;x_t]; end %% Plotting figure (1) meshc (t, zeta_series, motion_surface) xlabel('Time [s]') ylabel ('Zeta') zlabel ('x(t) [m]') colorbar
The plot is given in Fig. 35. Please note that the view of the figure is rotated from the original view obtained using MATLAB. It can be seen that as zeta increases from 0 to 1, the displacement x(t) is damped faster over time.
69
0.2
0.2
0.15 0.1
x(t) [m]
0.1
0.05
0
0 -0.05
-0.1
-0.1
-0.2 0
1.2 1 0.1 Tim
0.8
-0.15 -0.2
0.6
e[ s]
0.4
0.2 0.2 0.3
0
ta Ze
Fig. 35. Response of damped spring-mass system with damping ratio over time
Q12.3 Solution 1)
The MATLAB script is as follows: %% Given parameters of the system pull = 0.2; % x(0) = 0.2 m speed = 0; % x_dot (0) = 0 m/s m = 1; % mass of the system k = 10*1000; % stiffness of the spring zeta_series = [0.01:0.1:1.2]; omega_ratio_series = [0.01:0.01:10]; phi_series = []; %% Calculation and plot for i = 1:length (zeta_series) zeta = zeta_series (i); phi = atand (2*zeta*omega_ratio_series./(1-omega_ratio_series.^2)); phi = phi .* (phi >= 0) + (phi + 180) .* (phi < 0); % convert [-90, 90] to [0, 180] h(i) = plot (omega_ratio_series,phi, 'DisplayName', sprintf('\\zeta = %0.2f', zeta)); phi_series = [phi_series; phi]; hold on end
70
legend (h) xlabel ('\omega_f/\omega_n') ylabel ('\phi (mech. deg.)') The plot is given in Fig. 36. As can be seen that the point (1, 90 mech. deg.) is a node for all curves. When ϛ is small, it can be observed that the phase angle rises slowly at first, and then grows sharply when ωf / ωn = 1. 180 160 140 ϛ = 0.01 ϛ = 0.11 ϛ = 0.21 ϛ = 0.31 ϛ = 0.41 ϛ = 0.51 ϛ = 0.61 ϛ = 0.71 ϛ = 0.81 ϛ = 0.91 ϛ = 1.01 ϛ = 1.11
ϕ [mech. deg.]
120 100 80 60 40 20 0 0
1
2
3
4
5
6
7
8
9
10
ωf / ωn
Fig. 36. Phase angle of steady state versus ratio of frequencies as the damping ratio varies.
2) The MATLAB script is as follows: %% Given parameters of the system pull = 0.2; % x(0) = 0.2 m speed = 0; % x_dot (0) = 0 m/s m = 1; % mass of the system k = 10*1000; % stiffness of the spring zeta_series = [0.01:0.1:1.2]; omega_ratio_series = [0.01:0.01:4]; MF_series = []; %% Calculation and plot for i = 1:length (zeta_series)
71
zeta = zeta_series (i); MF = 1./sqrt((1-omega_ratio_series.^2).^2 + (2*zeta*omega_ratio_series).^2); h(i) = plot (omega_ratio_series,MF, 'DisplayName', sprintf('\\zeta = %0.2f', zeta)); MF_series = [MF_series; MF]; hold on end legend (h) xlabel ('\omega_f/\omega_n') ylabel ('Magnification factor') axis([0 4 0 6])
The plot of magnification factor versus ratio of frequencies as the damping ratio varies is given in Fig. 37. It can be seen that when the worst case for resonance is when the damping ratio is zero. 6
ϛ = 0.01 ϛ = 0.11 ϛ = 0.21 ϛ = 0.31 ϛ = 0.41 ϛ = 0.51 ϛ = 0.61 ϛ = 0.71 ϛ = 0.81 ϛ = 0.91 ϛ = 1.01 ϛ = 1.11
Magnification factor
5
4
3
2
1
0 0
0.5
1
1.5
2 ω f / ωn
2.5
3
3.5
4
Fig. 37. Magnification factor versus ratio of frequencies as the damping ratio varies.
72
Q12.4 Solution The MATLAB script for plotting mode shapes of the beam with s-s constraint: clc; close all; clear all l = 1; s = [0:0.01:l]; n = 5; % Mode shape, axial order for i = 1:n deformation = sin(s/l*pi*i); figure (1) plot(s, deformation); hold on end xlabel ('Axial position [m]') ylabel ('Mode shape, unitless') ylim([-1.2 1.2])
The MATLAB script for plotting mode shapes of the beam with c-c constraint: %% clamped-clamped mode shape clc; close all; clear all l = 1; s = [0:0.01:l]; n = 5; % Mode shape, axial order beta_l = [4.730, 7.853, 10.996, 14.137, 17.278]; delta_n = [0.982502, 1.00078, 0.999966, 1, 1]; for i = 1:n beta_current = beta_l(i)/l; delta_current = delta_n(i); deformation = cosh(beta_current*s) - cos (beta_current*s) - delta_current * (sinh (beta_current*s) - sin (beta_current*s)); deformation_normalized = deformation/max(deformation); % Normalization figure (1) plot(s,deformation_normalized); hold on end xlabel ('Axial position [m]') ylabel ('Mode shape, unitless') ylim([-1.2 1.2])
73
Q12.5 Solution 1) The script is given as: figure (1) subplot (4,1,1) % plot (time_vector, f1_time_wave); hold on % plot (time_vector, f2_time_wave); hold on % plot (time_vector, f3_time_wave); hold on plot (time_vector, f_time_sum); xlim([0 1]) ylim([-40 40]) xlabel ('Spatial position [mech. deg.]') ylabel ('Radial force [N]') set(gca,'XTick',[0:0.2:1]) subplot (4,1,2) plot (time_vector, f1_time_wave) xlim([0 1]) ylim([-40 40]) xlabel ('Spatial position [mech. deg.]') ylabel ('Radial force [N]') set(gca,'XTick',[0:0.2:1]) subplot (4,1,3) plot (time_vector, f2_time_wave) xlim([0 1]) ylim([-40 40]) xlabel ('Spatial position [mech. deg.]') ylabel ('Radial force [N]') set(gca,'XTick',[0:0.2:1]) subplot (4,1,4) plot (time_vector, f3_time_wave) xlim([0 1]) ylim([-40 40]) xlabel ('Spatial position [mech. deg.]') ylabel ('Radial force [N]') set(gca,'XTick',[0:0.2:1])
The subplots are shown in Fig. 38.
74
Radial force [N]
(a) 40 0 -40 0
0.2
0.4 0.6 0.8 Spatial position [mech. deg.]
1
0.2
0.4 0.6 0.8 Spatial position [mech. deg.]
1
0.2
0.4 0.6 0.8 Spatial position [mech. deg.]
1
0.2
0.4 0.6 0.8 Spatial position [mech. deg.]
1
Radial force [N]
(b) 40 0 -40 0
Radial force [N]
(c) 40 0 -40 0
Radial force [N]
(d) 40 0 -40 0
Fig. 38. Waves over time: (a) f(t), (b) f1(t), (c) f2(t), and (d) f3(t).
2) The MATLAB script is given as: %% figure (2) subplot (2,1,1) stem([0:time_order_limit],[F_series(1)/2, F_series(2:time_order_limit+1)],'filled') xlabel ('Temporal order') ylabel ('Harmonic magnitude [N]') xlim([-0.5 time_order_limit]) subplot (2,1,2) stem([0:time_order_limit],Ang_series (1:time_order_limit+1))>0.01))
(1:time_order_limit+1).*(abs(Ang_series
xlabel ('Time order') ylabel ('Phase angle [mech. deg.]') xlim([-0.5 time_order_limit])
The plots are given in Fig. 39. The x-axis of the temporal order of this one-sided spectrum starts from 0.
75
(a)
Harmonic magnitude [N]
20 15 10 5 0
0
2
4
6
8 10 12 Time order
14
16
18
20
0
2
4
6
8 10 12 Time order
14
16
18
20
(b)
Phase angle [mech. deg.]
100 50 0 -50
Fig. 39. One-sided FFT decomposition of f(t): (a) harmonic amplitudes, and (b) phase angle.
3) The MATLAB script for two-sided FFT analysis is given: %% Two-sided spectrum Raw_fft = fft(f_time_sum)/time_num; Raw_fft_shifted = fftshift(Raw_fft); % DC component is shifted to the center of spectrum FFT_abs_shifted = abs(Raw_fft_shifted); FFT_abs_shifted(FFT_abs_shifted 0.01)*180/pi; % mech. deg.
3) The MATLAB script for polar plots is given: figure (1) subplot (2,2,1) polarplot(sp_vector,f_sp_sum); hold on % Please note that polarplot and rlim do not exist in older MATLAB. rlim([-100 100]) subplot (2,2,2) polarplot(sp_vector,f1_sp_wave); hold on rlim([-100 100]) subplot (2,2,3) polarplot(sp_vector,f2_sp_wave); hold on rlim([-100 100]) subplot (2,2,4) polarplot(sp_vector,f3_sp_wave); hold on rlim([-100 100])
The plots are given in Fig. 41.
78
(a)
f
C 0 f1
f 2
120
f 3
(b)
0
240
300
f 2
4 c o s 6
120
60
0
240
300 α [mech. deg.]
(d)
180
f3
8 c o s 1 8 3
120
60
0
240
2 0 c o s 3 3
180
α [mech. deg.]
(c)
120
60
180
f1
300 α [mech. deg.]
60
180
0
240
300 α [mech. deg.]
Fig. 41. Waves over circumference: (a) f(α), (b) f1(α), (c) f2(α), and (d) f3(α).
4) The MATLAB script for plotting amplitudes and phase angles for harmonic contents: figure (2) subplot (2,1,1) stem([0:sp_order_limit],[F_series(1)/2, F_series(2:sp_order_limit+1)],'filled') xlabel ('Spatial order') ylabel ('Harmonic magnitude [N]') xlim([-0.5 sp_order_limit]) subplot (2,1,2) stem([0:sp_order_limit],Ang_series (1:sp_order_limit+1).*(abs(Ang_series (1:sp_order_limit+1))>0.01)) xlabel ('Spatial order') ylabel ('Phase angle [mech. deg.]') 79
xlim([-0.5 sp_order_limit])
The results are plots, as shown in Fig. 42. In this one-side spectrum, all the three harmonics are shown. The magnitudes of all the three harmonics are exactly the same as their corresponding actual amplitudes.
Harmonic magnitude [N]
(a)
20 15 10 5 0
0
2
4
6
8 10 12 Spatial order
14
16
18
20
0
2
4
6
8 10 12 Spatial order
14
16
18
20
Phase angle [mech. deg.]
(b) 100 50 0 -50 -100
Fig. 42. FFT decomposition of f(α): (a) harmonic amplitudes, and (b) phase angle.
Q12.7 Solution 1) The MATLAB script is provided below: %% Initialization close all; clear all; clc time_order_1 = 3; % u sp_order_1 = 1; % v phase_angle_1 = 0; amplitude_1 = 20; time_order_2 = 7; % u sp_order_2 = 1; % v phase_angle_2 = 0; amplitude_2 = 5; time_order_3 = 3; % u sp_order_3 = 6; % v phase_angle_3 = 0; amplitude_3 = 2; time_order_4 = 7; % u sp_order_4 = 6; % v phase_angle_4 = 0;
80
amplitude_4 = 1; %% time_num = 1024; time_step = 1/time_num; % unit: s freq_mech = time_num/2^10; % 1 Hz time_vector = [0:time_step:time_step*(time_num-1)]; time_order_limit = 20; amplitude_matrix = [20 2; 5 1]; z_shift = 10; phase_matrix = [0 0; 0 0]; space_orders = [1, 6]; time_orders = [3,7]; space_num = 1024; space_order_limit = 20; sp_step = 2*pi/space_num; % unit: s sp_vector = [0:sp_step:sp_step*(space_num-1)]; % Generate temporal and spatial planes [sp_plane, time_plane] = meshgrid(sp_vector,time_vector); pl_wave_1 = amplitude_1*cos(2*pi*time_plane*freq_mech*time_order_1 + sp_plane*sp_order_1 + phase_angle_1); pl_wave_2 = amplitude_2*cos(2*pi*time_plane*freq_mech*time_order_2 + sp_plane*sp_order_2 + phase_angle_2); pl_wave_3 = amplitude_3*cos(2*pi*time_plane*freq_mech*time_order_3 + sp_plane*sp_order_3 + phase_angle_3); pl_wave_4 = amplitude_4*cos(2*pi*time_plane*freq_mech*time_order_4 + sp_plane*sp_order_4 + phase_angle_4); pl_wave_sum = pl_wave_1 + pl_wave_2 + pl_wave_3 + pl_wave_4 + z_shift;
2) The MATLAB script is provided below: %% Generate surfaces [xq,yq] = meshgrid(sp_vector (1:16:end), time_vector (1:16:end)); % reduce mesh density for plotting purposes figure (1) pl_wave_1_sparse = griddata(sp_vector,time_vector,pl_wave_1,xq,yq); meshc(xq/2/pi*360, yq, pl_wave_1_sparse) zlim([-50 50]); xlabel('Circumferential position, \alpha [mech. deg.]') ylabel('Time, t [s]') zlabel('f_1 (\alpha) [N]') set(gca,'XTick',[0:60:360]) figure (2) pl_wave_2_sparse = griddata(sp_vector,time_vector,pl_wave_2,xq,yq);
81
meshc(xq/2/pi*360, yq, pl_wave_2_sparse) zlim([-50 50]); xlabel('Circumferential position, \alpha [mech. deg.]') ylabel('Time, t [s]') zlabel('f_2 (\alpha) [N]') set(gca,'XTick',[0:60:360]) figure (3) pl_wave_3_sparse = griddata(sp_vector,time_vector,pl_wave_3,xq,yq); meshc(xq/2/pi*360, yq, pl_wave_3_sparse) zlim([-50 50]); xlabel('Circumferential position, \alpha [mech. deg.]') ylabel('Time, t [s]') zlabel('f_3 (\alpha) [N]') set(gca,'XTick',[0:60:360]) figure (4) pl_wave_4_sparse = griddata(sp_vector,time_vector,pl_wave_4,xq,yq); meshc(xq/2/pi*360, yq, pl_wave_4_sparse) zlim([-50 50]); xlabel('Circumferential position, \alpha [mech. deg.]') ylabel('Time, t [s]') zlabel('f_4 (\alpha) [N]') set(gca,'XTick',[0:60:360]) figure (5) surface_superp_sparse = pl_wave_1_sparse + pl_wave_2_sparse + pl_wave_3_sparse + pl_wave_4_sparse + z_shift; meshc(xq/2/pi*360, yq, surface_superp_sparse) zlim([-50 50]); xlabel('Circumferential position, \alpha [mech. deg.]') ylabel('Time, t [s]') zlabel('f (\alpha) [N]') set(gca,'XTick',[0:60:360])
3) The MATLAB script is given in the question. The value of 513 is the location for the DC component in the shifted matrix. This function can be accomplished using the following MATLAB script: FFT2_raw_abs = abs(FFT2_raw); DC = FFT2_raw_abs (1,1); [DC_row, DC_col] = find(FFT2_abs_shifted == DC); FFT2_abs_shifted_cut = FFT2_abs_shifted (DC_row-10:DC_row+10,DC_col10:DC_col+10);
FFT2_raw = fft2(pl_wave_sum)/space_num/time_num; FFT2_shifted = fftshift (FFT2_raw); FFT2_abs_shifted = abs(FFT2_shifted); FFT2_abs_shifted_cut = FFT2_abs_shifted (513-10:513+10,513-10:513+10); FFT2_abs_shifted_cut_flipud = flipud (FFT2_abs_shifted_cut); 82
FFT2_abs_shifted_cut_flipud(FFT2_abs_shifted_cut_flipud 0. The phase angles in the third quadrant are the opposites of the corresponding ones in the first quadrant.
Q8. Solution 1) The contours for the sum waves of the four cases can be seen in Fig. 43. It can be seen by changing the phase angles, the locations of the peaks for the contours are shifted. However, the amplitudes of the
(a)
(b)
0.8
0.8 Time, t [s]
Time, t [s]
sum waves stay the same.
0.6 0.4
0.4 0.2
0.2 0
0.6
0
120
240
0
360
0
(d)
0.8
0.8 Time, t [s]
Time, t [s]
(c)
0.6 0.4
240
360
0.6 0.4 0.2
0.2 0
120
α [mech. deg.]
α [mech. deg.]
0
120
240
α [mech. deg.]
360
0
0
120
240
360
α [mech. deg.]
Fig. 43. Contours of the sum waves: (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.
83
2) The MATLAB script is provided below: %% 2D FFT analysis FFT2_raw = fft2(pl_wave_sum)/space_num/time_num; FFT2_shifted = fftshift (FFT2_raw); FFT2_abs_shifted = abs(FFT2_shifted); FFT2_abs_shifted_cut = FFT2_abs_shifted (513-5:513+5,513-5:513+5); FFT2_abs_shifted_cut_flipud = flipud (FFT2_abs_shifted_cut); FFT2_abs_shifted_cut_flipud(FFT2_abs_shifted_cut_flipud 0.01)*180/pi; % mech. deg. phase_angle_matrix(phase_angle_matrix==0) = NaN; phase_angle_matrix(abs(phase_angle_matrix)