127 64 6MB
English Pages 204 Year 2016
Annals of Mathematics Studies Number 78
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES BY
G. D. MOSTOW
PRINCETON UNIVERSITY PRESS AND UNIVERSITY OF TOKYO PRESS PRINCETON NEW JERSEY 1973
Copyright © 1973 by Princeton University Press ALL RIGHTS RESERVED
L C C : 73-13003 ISB N : 0-691-08136-0
Published in Japan exclusively by University of Tokyo Press; In other parts of the world by Princeton University Press
Printed in the United States of America by Princeton University Press, Princeton, New Jersey
Library of Congress Cataloging in Publication data will be found on the last printed page of this book
Contents
§1.
Introduction ..............................................................................................
3
§2.
A lg e b ra ic P r e lim in a r i e s .........................................................................
10
§3.
T h e Geom etry of
P re lim in a rie s ...................................................
20
§4.
A Metric D efin itio n of the M axim al B o u n d a r y ..................................
31
§5.
P o la r P a rts
..............................................................................................
35
§6.
A B a s ic Inequality .................................................................................
44
§7.
Geometry o f N eigh b o rin g F la t s ............................................................
52
§8.
D en sity P ro p e rtie s of D isc re te Subgroups
......................................
62
§9.
P s e u d o -Iso m e trie s
.................................................................................
66
P s e u d o -Iso m e trie s of Simply C on nected S p ace s with N e g a t iv e C u r v a t u r e ...................................................................................
71
§10.
§11. §12.
X:
P o la r R e g u la r E lem ents in C o-C o m p act
F ......................................
76
P s e u d o -Iso m e tric In varian ce of Sem i-Sim ple and U nipotent E lem en ts .................................................................................
80
§13.
T h e B a s ic A pproxim ation
§14.
T h e Map
§15.
T h e B oundary Map
§16.
T it s Geom etry ............................................................................................. 120
§17.
R -R an k G reater than O n e ..........................................................................125
§18.
R ed u ctio n to Sim ple G roups
§19.
S p a c e s of R -R a n k 1 .................................................................................. 134
§20.
T h e Boundary S e m i-M e tric ........................................................................142
§21.
Q u a si-C o n fo rm al M appin gs O ver K and A b s o lu te Continuity on A lm ost A ll R -C ir c le s .................................... 156
§22.
T h e E ffe c t o f E rgo d icity ..........................................................................169
§23.
R -R an k 1 R igid ity P ro o f C on clu ded .................................................... 180
§24.
C on clu d in g R e m a r k s .................................................................................. 187
0
.................... ................................................
96
.............................................................................................. 103 ........................................................................... 107
................................................................... 128
B ib lio g r a p h y .......................................................................................................... 193
v
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
S T R O N G R IG ID IT Y O F L O C A L L Y S Y M M E T R IC S P A C E S G. D. M o sto w 1
§1. Introduction
T h e phenomenon of strong rigid ity that w e e s ta b lis h is the fo llo w in g : Let point
p
Y
be a lo c a lly sym m etric Riem annian s p a c e ; that is , given any
in
Y,
som e b a ll in through
p
Y
the symmetry map o f center
p,
w ith tangent vector
ture at each point of
Y
com pact and connected.
THEO RE M A.
: exp ty -» exp-ty
w here y
t -> exp ty
at
p.
is n o n -p o sitive.
is an isom etry on
d enotes the g e o d e s ic
A ssu m e that the s e c t io n a l c u rv a A ssu m e moreover that
Y
is
We prove (c f. Theorem 2 4 .1 0
The fundamental group
n ^ (Y )
determ ines
Y
uniquely up
to an isom etry and a c h o ic e of norm alizing constants, provid ed that Y has no c lo s e d one or two dim ensiona l g e o d e s ic s u b sp a c e s which are direct factors locally.
T h e norm alizin g co n stan ts referred to in our theorem in v o lv e s ch an gin g the metric o f
Y
changed for a ll let
X
in such a w ay that the symmetry maps p e Y.
Y.
sym m etric R iem annian s p a c e , that is the symmetry map
group
G
X
onto
X.
remain un
T h e con stan ts a r is e in a c a n o n ic a l fash io n .
denote the sim p ly connected c o v e rin g s p a c e o f
isom etry of
o^
T h e s e t o f sym m etries
of iso m etries w hich act tran sitiv ely on
a
[a ^ ; p e X } X,
T h en
X
is a
is an g lo b a l gen erate a
and the connected
Supported in part by the National Science Foundation Grant G P 33893X.
3
For
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
4
component of w here
1 of the group
G Q is its center and
G
is a d irect product
{ G 1, G 2 , . . . , G n S is the s et of a ll its non-
a b e lia n normal, sim p le, an aly tic su bgro u p s. product decom position of
G °,
X = X q x X j x ... x X n , where space
G ° = G QxG^^ x ... x G n
C orresp o n d in g to th is direct
there is a direct product d ecom position of X^
is an-.orbit of
G -,
i = o, . .. ,n .
X Q is a E u c lid e a n s p a c e and thus, by h y p oth esis on
to a point.
N o w each
stant factor
c 1 for
X-
h as a unique
i= l,2 ,...,n .
norm alizing co nstants.
red u ces
G --in varian t metric up to a co n
Thfese facto rs
In the c a s e that
Y,
The
G°
c 1, . . . ^ 11 are the
is sim p le, they reduce to a
s in g le m u ltiplicative constant. Our theorem can be reform ulated a s a s s e rtin g the strong rigid ity o f d is c re te subgro up s of sem i-sim p le groups. group
r
K
^ (Y ) = T,
the
of co v erin g transform ations c o n s is t s of iso m etries and can be
regarded as a subgroup of w here
F o r if w e set
G °;
w e have
Y = T\X.
is a maxim al com pact subgroup o f
subgroup of
G”
if and only if
G /T
G.
M oreover,
We c a ll
is com pact.
T
X = G /K
a “ co-com pact
T h u s, our Theorem is
eq u iv alen t to
T H E O R E M A'.
Let
G
be a s e m i-sim p le analytic group having no center
and no com pact normal subgroup other than (1 ). G.
c o -co m p a ct subgroup of by
r,
provid ed
Then the pair
P S L (2 , R )
Let
(G ,F )
V
be a d iscre te
is uniquely determ ined
is not a direct factor of
G
which is c lo s e d
modulo r . That is, g iv e n two such pair 0 : r -* r '
and (G ', T ' )
there e x is ts an analytic isomorphism
the restriction of 6 P S L (2 , R )
(G ,T )
to
T,
such that V G^
and an isomorphism
0 : G -> G ' such that 6 is
provid ed there is no factor is a c lo s e d subgroup of
G-
isom orphic to
G.
T h e re ason for the p ro v iso is w e ll-k n o w n from uniform ization theory. Set
G = P S L (2 ,R ).
X = \z e C ; Im z > Oi
T h en
G
o perates on the upper h a lf-p la n e
v ia z
^J_b cz + d
§1. INTRODUCTION
5
and it p re s e rv e s the metric given by Riem ann s u rfa c e
ds2 = — z- . G iv en a com pact (Im z ) 2 o f gen us greater than one, then its sim ply connected
Y
c o v erin g s p a c e is a n a ly tic a lly e q u iv a le n t to id en tified w ith a subgroup
T
of
G;
X.
c le a r ly
T
be a n a ly tic a lly eq u iv a le n t; that is under an autom orphism o f
G.
and
V
may be
is d is c re te and co-com pact.
It is w e ll-k n o w n that two com pact R iem ann s u rfa c e s sam e gen us have isom orphic fundam ental groups
77^ ( Y )
T h ere fo re
T
and
Y
and
Y ' o f the
Y ' but need not
Y ' are not in gen e ra l co n ju ga te
T h u s stron g rigid ity fa ils for
P S L (2 ,R ).
H o w ev er, it is the only factor c a u s in g the fa ilu re of stron g rigid ity for any s em i-sim p le a n a ly tic group — or e q u iv a le n tly , for a lo c a lly sym m etric space. T h e ch ron ology of rigid ity b e g in s with the theorem of A . S e lb e rg ([1 6 ]) that a d is c re te co-com p act subgro up
T
of
S L (n , R )
cannot b e continu
o u sly deform ed e x c e p t triv ia lly , that is , by inner autom orphism s of S L (n , R ),
if
elem en ts in
n > 2; T
S e lb e r g ’s proof rested on sh o w in g that the trace of
are p reserved under d eform ations o f T .
ap p lie d to the other c l a s s i c a l groups o f rank greater than
S e lb e r g ’s method 1.
A t about the
sam e time, E . C a la b i and E . V e s e n t in i proved the rigid ity of com plex structure under in fin itesim al deform ations o f com pact quotients o f bounded sym m etric dom ains ([3 b ]), and later C a la b i proved the metric a n a lo gu e for com pact h y p erb o lic n -sp a c e forms for
n > 2
([3 a ]).
Th ereup on A . W eil
([2 1 ]) g e n e ra liz e d S e lb e r g ’s and C a l a b i ’s re su lts to sem i-sim p le groups h av in g no com pact or 3 dim en sion al sim p le fac to rs. the rigid ity o f
T
cohom ology group
in
G
W e il’s proof d ed u ces
under d eform ations from the v a n ish in g of the
H 1^ , G )
w here
G
is the L i e a lg e b r a o f
as a T -m o d u le under the ad joint represen tation . su b gro u p s, w hich are la ttic e s (that is ,
T
G
regarded
In the c a s e o f arithmetic
is d is c re te in
G
and
G/r
h as fin ite H aar m easu re) but not ge n e ra lly co-com pact, the rigid ity under deform ations w a s proved in dependen tly by A . B o re l (u n p u b lis h e d ) in the c a s e of Q -s im p le groups o f Q -rank at le a s t tw o, and H. G arland (in the s p lit c a s e ), and by M. S. R aghunathan in the rem aining Q -rank one c a s e s , a g a in by s h o w in g that
H 1( F , G ) = 0.
6
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
T h e phenomenon of strong rigid ity for arbitrary la ttic e s firs t turned up in 1965 in my search for a geom etric exp lan atio n of d eform ation-rigidity. T h e point of v ie w adopted here can be e x p la in e d in terms of the counterexam ple cited abo ve.
When w e regard the fundam ental groups o f
two com plete Riem ann s u rfa c e s fin ite volum e a s su bgro u p s h a lf plan e
X,
and
and
l\
Y ' of the sam e genus
p
and of
of the isometry group of the upper
they are isom orphic transform ation groups; that is , there is
a diffeom orphism of phism
T
Y
Y
onto
Y ' and its lift p ro vid es a T -s p a c e isom or
0 : X -> X ' such that for a ll
y eV
and
x e X,
0 ( y x ) = 0 (y ) 0 ( x ) w here
is giv en by the isom orphism of 77^ ( Y )
0 \T -> V '
transform ation grou ps, what d is tin g u is h e s On
X
they are in d istin g u is h a b le .
boundary of morphism
0
X,
T
But on
is co n ju ga te to
is smooth at
V ' in
X Q or not.
T
from
T '?
to
T h e an sw er is:
X U X Q, w here G
As
X Q is the
acc ord in g a s the T -s p a c e
M oreover this re su lt is true w ith
out e x c ep tio n s for any s em i-sim p le an aly tic group h avin g no com pact normal sub gro u p s,
(c f. [1 2 f]; a ls o [1 2 i] for a more d e ta ile d a c c o u n t.)
In v ie w of the known deform ation-rigidity theorem s, it w a s natural to co n jecture that the h y p oth eses of e x is te n c e of boundary va lu e s and sm ooth ness at the boundary are su p erflu o u s for a ll symmetric s p a c e s of n eg ativ e curvature h avin g no tw o -dim en sio n al fac to rs.
T h is con jecture
w a s confirm ed in [1 2 g ] for the c a s e of two d iffeom orphic com pact s p a c e s o f constant n e g a tiv e curvature of dim ension e x c e e d in g two.
T h e proof
re lied h e a v ily on an a ly tic to o ls — not s u rp risin g ly in v ie w o f the an a ly tic nature o f the problem .
F o rtu n a tely , the theory of q u asi-co n fo rm al m appings
in 3 -s p a c e w a s at hand; upon g e n e ra liz in g the theory to n -sp a c e , one could be certain that the map
0
took on continuous boundary v a lu e s
w hich w ere alm ost every w h ere d iffe re n tia b le . of r
U t iliz in g the ergo dic action
at infinity, I could prove that the boundary map
M obius transform ation if
n > 2.
w a s actu a lly a
§1. INTRODUCTION
7
T h e re le v a n c e o f the u s u a l theory of q uasi-co n fo rm al m appings is unfortunately lim ited to s p a c e s o f constant curvature only.
F o r the c a s e
o f arbitrary sym m etric s p a c e s , it w a s n e c e s sa ry to find an en tirely d iffe r ent method to e s t a b lis h that
4> ta k es on boundary v a lu e s .
T h e method adopted here r e lie s on the key notion o f a p s e u d o -is o m e try, w hich is d efin ed as fo llo w s : Let
k > 1 and
c a lle d a
(k, b )
b > 0.
A map
X ' betw een metric s p a c e s is
p seu d o-iso m etry if
(1 )
d (0 ( x ), 0 ( y ) ) < k d (x , y ) ,
(2 )
d (0 ( x ), 0 ( y ) ) > k- 1 d (x , y ) , X A map
such that
cf> : X
d (x ,y )> b ,
w here
x, y 6 X for a ll
d
in
den o tes d is ta n c e .
X ' is c a lle d a p seud o-iso m etry if it is a
isom etry for som e
x ,y
(k, b )
p se u d o-
(k, b).
Our proof of stron g rigid ity c o n s is t s of four main ste p s. (i)
Let
Y
and
Y ' b e as in Theorem A , let
sim ply connected c o v e rin g s p a c e s , and let there is a T -s p a c e p seu d o-iso m etry (ii) (iii)
T h e F - s p a c e p seu d o-iso m etry T h e map
X
and
X ' denote their
771( Y ) = T = 7r1( Y ') .
cf> : X -> X ' (cf> need not be in je c tiv e ). cf> h as continuous boundary v a lu e s 0 Q.
in d u ces an in cid en ce p re se rv in g isom orphism o f the
“ T it s geom etry’ ’ of
G
onto the T it s geometry o f
g e o d e s ic s u b s p a c e s o f d im ension greater than
1,
G'.
If
X
h as fla t
then the G e n e ra liz e d
Fundam ental Theorem o f P r o je c t iv e Geom etry sh o w s that by an an a ly tic isom orphism o f (iv )
If
X
X = H n^ ,
T hen
G
to
is induced
G'.
has no flat g e o d e s ic s u b s p a c e o f dim ension e x c e e d in g h y p erbo lic k n -sp a c e over the d iv is io n a lg e b ra
(q u atern io n s) or
0
(C a y le y num bers), w here
1, then
K = R, C, H
k = d im ^K .
In this c a s e the u s u a l theory o f q uasi-co n fo rm al m appings d o e s not w ork for
C,
H,
and
0
a s it d o e s for
R.
H o w ever, w e introduce the
notion o f a K -q u a si-co n fo rm s I mapping over a d iv is io n algebra
K,
w hich
STRONG RIGIDITY OF LO C ALLY SYMMETRIC SPACES
8
amounts to the u su a l theory if
K = R.
We then g e n e ra liz e som e a s p e c ts
of the u s u a l q uasi-co n fo rm al m apping theory to obtain the a b s o lu te co n tinuity of the boundary map 21).
0 Q alo n g alm ost a ll “ R - c ir c le s ’ 1 (c f. Section
A g a in , as in the c a s e o f
the ergo dicity of T
us to prove that the boundary map to
g
at infinity a llo w s
0 Q is induced by an isom orphism o f
G
:
T h e proof presented here is an im plem entation o f the program that w a s first form ulated in 1965 and announced in [1 2 f ]. o f our strategy for the c a s e o f no R -rank
T h e s u c c e s s fu l executio n
1 fa c to rs w a s announced at the
International C o n g re s s o f 1970 (c f. [1 2 j]). D u rin g that intervenin g period, stron g rigid ity had been proved for c e r tain arithm etic (non co -com p act) su bgro u p s on the one hand in 1967 by B a s s -M iln o r-S e rre (c f. [1 ]) and on the other by M. S. R aghunathan [1 4 ], u s in g a lg e b ra ic and arithm etic methods. A ls o , G. A. M argu lis h as announced re su lts statin g that for R-rank > 1, every non co-com p act irred u c ible lattice is nearly arithmetic (c f. [1 0 ]) and in 1971 M argu lis announced stron g rigid ity for such non co-com pact irre d u c ib le la ttic e s . It is appropriate to mention prior p artial re su lts on the extent to w hich r
determ ines
G.
In 1967 H. F u rs te n b e rg stu died this q uestio n from a
p ro b a b ilis tic point of v ie w and w a s led to in terestin g q u estio n s about the P o is s o n boundary (c f. [6 b ]); his method y ie ld e d that a lattice in (n > 3 )
co uld not be a lattice in
that if
G/r
S O (l,n ).
S L (n , R )
In 1962 J. W olf pointed out
is com pact, the rank o f the symmetric s p a c e a s s o c ia t e d to
w a s determ ined by
T
G
(c f. [2 2 ]).
A lth o u gh w e have stated Theorem A ' for co-com pact la ttic e s only, our method a p p lie s for most part to arbitrary la ttic e s . co -c o m p actn ess of T isom etry
0 :X
X'.
Indeed w e require the
only to a s s u re the e x is te n c e o f a T -s p a c e p se u d o In th ose c a s e s such a s la ttic e s in R -rank one groups
or arithm etic la ttic e s w here information is a v a ila b le about the cu sp s of a fundam ental domain for
V
a T -s p a c e p seud o-isom etry
in 0.
X,
it is p o s s ib le to prove the e x iste n c e o f
Indeed the e x iste n c e of such a
0
has
9
§1. INTRODUCTION
been recen tly proved by G o p a l P r a s a d for the c a s e of R -rank one s p a c e s ; this e s t a b lis h e s strong rigid ity for non-com pact la ttic e s in the R-rank one c a s e s other than
P S L (2 ,R )
T h u s com bin ing our re su lts w ith M a rg u lis ’ and P r a s a d ’s , one can w eak en the h y p o th esis of co -c o m p actn ess o f r
b e a la ttic e in
G .”
T
in Theorem A
to:
“ Let
T h at is to s a y , strong rigid ity h o ld s for arbitrary
la ttice s in c e n te rle s s a n a ly tic s em i-sim p le groups without com pact facto rs apart from the aforem entioned exce p tio n . In Theorem A this amounts to a ssu m in g m erely that m easure rather than
Y
Y
has fin ite
is com pact.
In c o n c lu s io n , som e s e c tio n s of our proof h ave independent in terest. T h e theory of p se u d o -is o m e trie s w hich p la y s such a cen tral role in our method may b e u s e fu l in other con texts (c f. S e ction s 9, 10, 12). theory of q u asi-co n fo rm al m appings over the d iv is io n a lg e b ra C, H,
or
0 )
The
K (K = R ,
w h ich in terven es im p licitly in S ection s 20, 21 d e s e rv e s
further attention.
§2.
2.1.
We denote by
A lg e b ra ic P re lim in a rie s
M(n, R )
the s e t of a ll
by
G L (n ,R )
the group of in vertible
of
G L (n , R )
is c a lle d alg ebra ic if
G L (n , R )
of
P j,
n x n re al m atrices.
n x n G
where each
c o e ffic ie n ts w ith re a l c o e ffic ie n ts .
re a l m atrices.
We denote
A subgroup
G
is the set o f common ze ro e s in P-
is a polynom ial in the matrix
A n elem ent of
G L (n ,R )
is c a lle d
s e m i-sim p le if its minimal polynom ial h as no repeated facto rs — or e q u iv a len tly , if it can be d ia g o n a liz e d over the com p lex numbers. is c a lle d unipotent if
(u —l ) n = 0 ;
Jordan normal form for elem ents of there are elem ents
s
and
s
is se m i-sim p le ,
u
is unipotent.
s
and
u
un iquely.
u
in
One c a lls
A n elem ent u
i.e ., a ll its e ig e n v a lu e s are G L (n , R )
G L (n ,R )
s
G iv e n
s a tis fy in g :
The
g e G L (n , R ),
g = su,
su = u s ,
M oreover, th ese cond itions determ ine and
Jordan com ponents re sp e c tiv e ly .
im p lies:
1.
u the s em i-sim p le and unipotent
A ny elem ent commuting with
g
com
mutes with its Jordan com ponents. Let
s
be a sem i-sim p le elem ent in
in g the e ig e n s p a c e s of sim p le elem ents e ig e n v a lu e s o f
k
s
and
p
in
G L (n , R ) 1,
s.
F o r any
commutes with
g e G L (n , R )
sem i-sim p le component of If
G
exp t lo g u g.
If
g
w e denote by
g = po l g,
t e R,
s = kp, kp = pk, the
and
p
p.
pol g
p
are p o s itiv e .
un iquely, and any elem ent
We c a ll
p
the polar part of
the p olar part of the Jordan
g.
(c f. [4 ]) and
for a ll
k
k and
is an a lg e b ra ic group, and
com ponents of
s a tis fy in g :
the e ig e n v a lu e s of
M oreover, th ese co n d itio n s determ ine s
T hen by su ita b ly p air
over the com plex num bers, one can find sem i
k h ave modulus
commuting w ith
G L (n , R ).
g e G,
pol g
where
u
then
G
contains the Jordan
(c f. [1 2 a ]), a s w e ll as
u* =
is the unipotent Jordan component of
then for any re al number
10
t,
g^ = exp t lo g g
is a w e ll
§2. ALGEBRAIC PRELIMINARIES
11
d efin ed s em i-sim p le elem ent w ith p o s itiv e e ig e n v a lu e s in b e lo n g s to ev ery a lg e b r a ic group co n tain in g
for a ll
is isom orphic to If
V
fy in g
g eA Rs
A
of
G L (n , R )
is c a lle d a polar subgroup.
for som e
and
A ut V
such that
A n y polar subgroup
s.
is a fin ite d im en sio n al vecto r s p a c e over
H o m ^ (V , V )
and
g.
A n a r c w is e connected a b e lia n subgro up g = pol g
G L (n , R )
with
M(n, R )
and
R,
then upon id en ti
G L (n , R )
v ia a ch o ice
o f b a s e , one can d e fin e a lg e b r a ic su bgro u p s and p o la r su bgro u p s of in an unam biguous w ay.
C le a rly any p o lar subgroup of
in d ia g o n a l form v ia a s u ita b le c h o ic e o f b a s e in 2.2.
Let
G
a lg e b ra o f
b e a L i e subgroup o f
G,
and w e id en tify
G
G L ( n , R ). with
Aut V
We denote by G
the L ie
{Y ; Y e M (n ,R ), exp R Y C G l;
G
adjoin t rep resentation is given by
A d g ( Y ) = g Y g - 1 , w here
A
can b e put
V.
that is , w ith the tangent s p a c e to
Let
A ut V
at the identity elem ent
b e a polar subgroup of the L i e subgroup
G.
1.
The
g e G , Y e G.
T h en
Ad A
can
b e d ia g o n a liz e d and therefore
G = ^
w here eac h
a
Ga
is an a n a ly tic homomorphism of
group o f p o s itiv e re a l numbers and s e t of a space of
A
Ga in
su ch that
Gq ^ 0
is s t a b le under G.
(d ire c t)
If a
eac h elem ent in
and
Gq
/3
A
G a = { Y e G; A d g ( Y ) = a ( g ) Y|.
are c a lle d R -ro o ts o f Ad Z (A )
into the m u ltip lic ative
where
are roots, then
Z (A )
G
on
A.
The
Each su b
d enotes the c e n tra liz e r
[G a ,G^g] C Ga ^g.
M oreover,
is nilpotent if a £ 1.
T h e m axim al p o lar su bgro u p s of
G
are c o n ju ga te v ia inner automor
phism s [1 2 d ]. 2.3.
Let
G
be an an a ly tic subgro up o f
nected L i e subgroup. G
G L (n , R );
A s su m e m oreover that
G
that is ,
is a co n
is s e m i-s im p le ; that is ,
h as no norm al a n a ly tic a b e lia n subgroup other than
its own commutator su bgro u p , each elem ent o f
G
G
(1 ).
S ince
G
is
has determinant one.
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
12
Let
A
be a m axim al polar subgroup of
o f a n a ly tic homomorphisms of p o s itiv e re a l numbers. m ultiplication in
T h en
A
into
y
G,
T h e R -ro o ts of
G
on
A
x
denote the group
R + , the m u ltip lic ativ e group of
is an a b e lia n vecto r group.
a d d itiv e ly , w e have
y
and let
W riting the
(a + / 3 )(a ) = a (a )(3 (a )
for
a e A.
s a tis fy alm ost a ll o f the w ell-k n o w n proper
tie s o f root sy stem s on C artan s u b a lg e b r a s of com plex sem i-sim p le L i e a lg e b ra s .
N am ely
(i)
If a
is an R -root, then
(ii)
If a, i3, a+/3
(iii)
T h ere is a s u b s e t of lin e a rly independent R -roots
ctj, . . . , a f
is an R-root.
are R -ro o ts, then
that any root h as the form subset
—a
± X- n-
[G a >G^g] ^ 0.
with
n-
such
n o n -n egative in tegers.
A
with this property is c a lle d a fundamental s y ste m of
R -ro o ts. (i v )
Let
N (A )
denote the norm alizer o f
the c e n tra liz e r o f
A
in
G.
T h en
A
in
N (A )/ Z (A )
G
and let
Z (A )
denote
o perates (v ia inner auto
m orphism s) sim p ly -tra n s itiv e ly on the s e t of fundam ental sy stem s of R -ro o ts. (v )
T h e R -ro o ts se p a ra te the p oints o f A sem i-sim p le a n a ly tic group
A.
Thus
A « R r.
is the to p o lo g ic a lly connected com* ponent o f the identity o f the s m a lle s t a lg e b ra ic group G in G L (n , R ) containing
G.
T h e re fo re for any
G
g e G,
ta in s the one param eter groups
( pol g)*
unipotent Jordan component o f
g.
polar subgroup of DEFINITION.
G
and
the sem i-sim p le group and
u*
In p articu lar,
G
(t e R ) w here u
con is the
pol g lie s in a m axim al
u e G.
A n elem ent
g
in
G
is c a lle d polar regular if
dim Z ( pol g ) < dim Z ( pol h) for a ll Let g
g
w here
Z (h )
be an elem ent of
denotes the cen tra lize r of G
with
is polar re gu lar, and R -s in g u la r if Let
G.
h e G,
A
g = pol g. g
h
in
We c a ll
g
G. R -re g u la r if
is not p o lar regular.
b e a m axim al p o lar subgroup of the se m i-sim p le a n a ly tic group
Inasm uch a s a ll the m axim al polar subgroup s are co n ju ga te in
G,
A
§2. ALGEBRAIC PRELIMINARIES
con tain s R -re g u la r elem en ts.
Indeed an elem ent
and only if a ( a ) = 1 for som e R -root of
y.
A n elem ent
g e A
w here
a
13
a 0
a £ ^B.
if a ( a ) > 1 for a ll
a e ^B;
A.
F o r any R -root
a (^ B ) = 0
a
we
if a ( a ) = 1 for
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
14
The subspace
Ga ,
ia ; a ( " * B ) > Oj,
is a L i e s u b a lg e b r a o f n ilp o -
tent elem en ts s ta b le under inner automorphisms from U (^ B )
denote the co rresp o n d in g an a ly tic group.
Z (B )
T h en
(c f. 2.3).
U (^ B )
is a group
o f unipotent elem ents and is in fact unipotent, it is co n ju ga te in to a group o f trian gular m atrices.
Let
G L (n , R )
Set
P (^ B ) = Z (^ B ) U (^ B ) T hen
P (^ B )
is a group,
N (U ( ^ B ) ) = N ( P ( ^ B ) ) , From
U (^ B )
w here
P ( ^ B ) = N (P (^ B ))
T h e unipotent group for any chamber
is normal in
N(
)
it fo llo w s that U (^ A )
P (* B )
^Bj
P ( ^ B 2)
and
and
P (^ B ) = (
is c lo s e d in
)
in
G.
G.
is a maximal unipotent subgro up o f
G
and m oreover a ll m axim al unipotent su bgro u p s o f
are co n ju ga te v ia an inner automorphism o f If
P (* * B )
denotes the norm alizer o f
"*B 2
G [1 2 d].
are cham bers or cham ber w a lls , then
if and only if
**B2
is a fa c e of
^ B j.
c a lle d the parabolic subgroup a s s o c ia t e d to p a ra b o lic subgroup if and only if
^B
co n ju ga cy of a ll the cham bers in
G,
G
P ( ->P(n, is a bianalytic homeomorphism. For any g f G, the positive definite symmetric element g^g lies in 1_
G and hence by 2.3, (g*g)2 e G H P(n,R). It follows at once that that (i) G = (Gfl P(n, R)) • (G D 0(n, R)) this decomposition being a direct product topologically. Since G is closed in GL(n, R), (ii) G fl 0(n, R) is a compact subgroup of G. Moreover (cf. [12b]) (iii) Any compact subgroup of G is conjugate via an inner automorphism to a subgroup of G fl 0(n, R). In fact properties (i), (ii), and (iii) are valid for any self-adjoint group which is of finite index in an algebraic group. Thus if SC GG (1 0(n, 0(n, R) R) or S C G H P(n, R), then lZ(S) = Z(S) and Z(S) = (Z(S) n P(n> R)) • (Z(S) fl 0(n, R)) We consider two special cases of this observation. Set K = G H 0(n, R). Let A be a maximal abelian subgroup of P(n, R). By definition, Z(A) fl P(n, R) = A and therefore by (i) (iv) Z(A) = (Z(A) n K) • A . This implies that A is a maximal polar subgroup of G. As a second case, let s be a semi-simple element of G and let k • p = s be its polar decomposition with p = pol s. We wish to show that Z(s) is conjugate to a self-adjoint group. By 2.2, p is conjugate to an element of A. Without loss of generality we can assume that p f G D P(n, R). Hence lZ(p) = Z(p) andZ(p) Z(p)== (Z(p) fl P(n, R) • • (Z(p) fl 0(n, R)). Since k lies in a compactsubgroup subgroupofof Z(p),we we cancan assume after conjugation by an element of Z(p) that k e Z(p) fl 0(n, R),
STRONG RIGIDITY OF LO C ALLY SYMMETRIC SPACES
16
by (i i i ) .
Thus
Z ( s ) = Z (k ) H Z ( p ) = ^ ( s ) .
T h u s w e s e e that
Z (s )
oper
ates sem i-sim p le ( “ re d u c tiv e ly ” ) on the un derlying vector s p a c e for any sem i-sim p le elem ent
s
of the s em i-sim p le group
G.
Such a group is
c a lle d red u ctive and its L ie a lg e b ra is e a s ily s e e n to be the direct sum of its center and a sem i-sim p le id eal. From the argum ents u sed above one d ed u ces e a s ily (v )
A ny elem ents o f
by an elem ent of 2.7.
Let
A,
that are co n ju ga te in
be a s abo ve.
F o r any R-root
a e A, Xa e Ga .
get
G = K + P (^ B )
is ,
G = K P (^ B )
Thus
and
G/P( ^B )
co ntaining G L (n , C ) Let
G/P
is com pact.
in
A.
T h at
Since a ll cham bers in
G
is com pact for any p a ra b o lic subgroup P .
G '/ P '
k:
An a lg e b r a ic subgroup
is a com plete variety.
P ' of
G ' is
In this context, the
are taken w ith co o rd in ates in an a lg e b r a ic a lly c lo s e d fie ld k.
In our situatio n , let
G ' b e the s m a lle s t a lg e b r a ic group in
containing the sem i-sim p le a n a ly tic subgroup
P ' denote the s m a lle s t a lg e b r a ic subgroup in
P ( ^ B ).
Xfl — *XQ e K, w e
T h e notion of p a ra b o lic subgroup can be d efin ed for a lg e b ra ic
p a ra b o lic if and only if G
\
Inasm uch as
e
G ' over an arbitrary fie ld
points o f
on the m axim al polar
for any cham ber or cham ber w a ll
are co n ju ga te, w e s e e that
groups
a
=a(a)Xa
a " 1 tXa a = a(a )
R E M A R K 1.
are co n ju gate
w e have
a Xfl a -1
for a ll
G
G fl 0 (n , R ).
G, A, K
subgroup
G fl P (n , R )
T h en
P ' is a p a ra b o lic subgroup o f
G '.
G C G L (n , R ).
G L (n , C ) T h e group
co ntaining P'
is n e c e s
s a rily connected and
P ( ^ B ) = P ^ * Thus P ' is connected in the Z a r is k i K K topology but not n e c e s s a rily in the E u c lid e a n to p o lo gy . O ne can c h a ra c te riz e a p a ra b o lic subgroup of such that
G ' / P ' is com pact.
G
a s a Z a r is k i-c lo s e d subgroup
P
of
G
17
§2. ALGEBRAIC PRELIMINARIES
2.8.
Let
G
subgroup o f
be a s e m i-sim p le a n a ly tic group, let G,
let
^A
be a cham ber in
Bruhat d eco m p o sition of
G
G = U ( ^ B ) N (A ) P ( ^ B ) 2.9.
Let
§
zero and let
A,
A
be a m axim al polar
and let
U = U (^ A ).
a s s e rt s G = U N ( A ) U . A s
for any cham ber w a ll
^B
The
a c o n seq u en ce
in
A.
b e a sem i-sim p le L i e a lg e b ra o ver a fie ld o f c h a ra c te ristic n b e an elem ent of
J a c o b so n -M o ro zo v lemma s a y s : that
§ §
such that
ad n
is nilpotent.
co n tain s elem ents
h and
r -i [h, n _ ] = —2 n _ , [n, n_J =
[h, n] = 2n,
The
n_
su ch
h.
A s a d ire ct c o n s e q u e n c e , any (n o n -a b e lia n ) redu ctive a n a ly tic group in G L (n , R )
w h ich co n tain s a unipotent elem ent
u(u ^ 1)
d im en sion al a n a ly tic group with L i e a lg e b r a gen erators ab o v e and w ith
F o r any sym m etric matrix
have
T r X Y = —T r Y X = 0.
1,
H en ce
and a fo rtio ri the L i e a lg e b ra of G H P (n , R )
at
1.
sem i-sim p le a n a ly tic group. the orthogonal complement to Set
E = G fl S(n, R).
and skew -sym m etric matrix S(n, R ),
2
G H 0 (n , R )
Y
we P (n , R )
with re sp ect to
Tr XY,
is orthogonal to the tangent
T h is is true for any representation o f the T h u s one can c h a racterize K
w ith re sp ect to
G
G fl S(n, R )
as
T r ad X ad Y .
x -> *x- 1
of
G L (n , R )
and in du ces on it an automorphism
sta o
such that g y *g
of
and for any
G L (n , R )
and therefore in du ces a c a n o n ic a l action of space
.
denote the p ro je ctive s p a c e of lin e s through the origin of the
lin ear s p a c e
[S ].
Since n ° fi Let
on
X
f°r
is a morphism o f the G -s p a c e
X
denote the to p o lo g ic a l c lo su re of
the
is lin ea r in
y
on the p ro je c tiv e g, x 6 G ,
we se e
into the
G L (n , R )-
° f i (X )
in
[S ].
is a com pact G -s p a c e , the Satake p -com p a ctifica tion
of
X
X
[1 5 ].
Satake h as shown that
dim ension le s s than
dim X.
X
tt
is a fin ite union of G -o rb its, each of
Am ong th ese G -o rb its, there is a unique
com pact G -orb it; w e denote this orbit by
X Q. T h e orbit
e q u a lly w e ll ch a racterized a s the G -orbit in isotropy subgroup o f a point in
X
X Q may b e
of lo w e st dim ension. T h e
X Q is a p a ra b o lic subgroup of
Satake p -co m p actific atio n d epends on the represen tation (fo r ex am p le, if the “ high est R -w e ig h t ,J o f
then the isotropy subgroup o f a point in group.
w e s e e that
y e S(n, R ),
S(n, R )
G L (n , R )
jx (g x K ) = p (g ) / i(x K ) V ( g )
T h en
p
X =
We have
n (x K ) = p (x ) V ( x ) Let
V
Set
T h en one can s e le c t a b a s e in
P (G ) = (p (G ) fl P (n , R ) ) • p (K ) Let
G,
G.
p
p.
G.
The
F o r s u ita b le
lie s in sid e a cham ber)
X Q is a minimal p a ra b o lic s u b
F o r su ch a co m p actification w e c a ll
X Q the Fu rsten berg maximal
§2. ALGEBRAIC PRELIMINARIES
19
boundary (c f. A P o is s o n form ula fo r sem i-sim p le groups [ 6 ]. ) m axim al boundary,
XQ = G/P( ^ A )
for some cham ber
T h u s for the
**A.
We s h a ll g iv e in Section 4 b e lo w an a ltern ativ e d efin itio n of terms of the m etric p ro perties of
X.
X Q in
§3.
Let
G
sentation .
The Geom etry o f
X:
b e a sem i-sim p le an a ly tic group h avin g a fa ith fu l matrix repre Let
K
b e a m aximal com pact subgroup of
One can d e fin e a metric on
X
invariant under
C h o o s e a faith fu l matrix represen tation and
P re lim in a rie s
p (K ) = G f"l 0 ( n , R ) .
T hen imbed
p
X
G
G.
Set
in the fo llo w in g w ay.
(c f. 2 .6 ) such that in
X = G /K .
P (n , R )
*p (G ) = p (G )
v ia the map
p.:
/ i(x K ) = p (x ) lp (x ) for
x e G. On the s p a c e
P (n , R ),
the metric
( t ) 2 ■ Ti w here
p (t)
is a d iffe re n tia b le path in
the c a n o n ic a l
G L (n , R )
the induced metric on R E M A R K 1. X
If
G
action
X
P (n ,R )
y -> g y *g.
■ is c le a r ly invariant under
Since
f i ( g x K ) = p(g)/x (x K )*p (g ),
is G -in varian t.
is a sim p le an a ly tic group, any G -in varian t metric on
is unique up to a constant factor.
an a ly tic subgro up s of G|/K fl G -.
p>2
G,
then
If
G ^, . . . , G g
X = X 1x ...x X g
are the sim p le normal
(d ire c t)
T h e most gen eral G -in v arian t metric on
X
where
X- =
is the d irect
product metric and is therefore unique up to m ultiplication by a constant c-
in eac h factor Let
Z =
subgroup o f
fl G
X^,
i= l,...,s .
g g K g - 1 , ig e G i. and
G/Z
T h en
Z
is the maximum normal com pact
operates fa ith fu lly on
X.
T h e group
G /Z
has
no com pact normal subgroup and therefore, a s one may d edu ce e a s ily , h as no center.
C o n v e rs e ly , a s e m i-sim p le an aly tic group h avin g no com pact
direct facto rs and no center has no com pact normal subgro up other than (1 ) and thus operates fa ith fu lly on
X.
20
§3. THE GEOMETRY OF X: PRELIMINARIES
R E M A R K 2.
Let
r
denote the c a n o n ic a l map o f
group of iso m etries of r (G )
X
F o r eac h point 1 for
Y
and h as e ig e n -
are the e ig e n v a lu e s of
dg
on
P (n , R )
together
A e R.
T h e fo re go in g lemma h as an in terestin g interpretation. the metric
Y,
If w e d efin e
by the form ula
( | f )2 - T , (log p)2 then
dg < d,
Indeed
w here
d
denotes the
d g (p , q ) = |log p — lo g q|,
d efin ed on the lin e a r s p a c e Tr UV.
for any
S(n, R )
invariant metric on
p, q e P (n , R )
exp t Y ,
w here
P (n ,R ).
|Y|
is
by the E u c lid e a n inner product
Inasm uch a s one d im en sio n al s u b s p a c e s o f
in the E u c lid e a n m etric, and s in c e group
G L (n , R )
dg = d
S(n, R )
are g e o d e s ic s
alo n g the one param eter s u b
w e co n clu d e that the one param eter subgroup
p*
is the
unique g e o d e s ic jo in in g the identity elem ent to
p.
any two points there p a s s e s a unique g e o d e s ic .
M oreover, the a n g le s at
the identity matrix with re sp ect to both
d
L E M M A 3.3.
If
a, b, c
dg
and
C
c o in c id e .
a re the s id e s o f a g e o d e s ic triangle, then
c 2 > a 2 + b 2 — 2ab co s with equality if
T h e re fo re betw een
,
is at the identity, if and only if the triangle
the orbit o f an abelian subgroup of
P (n , R ).
lies in
STRONG RIGIDITY OF LO C ALLY SYMMETRIC SPACES
24
P ro o f.
P u t the vertex
B y Lem m a 3.2, the the
d
d istan ce.
3.4.
emma
a, b, c
dg
at the identity v ia an isom etry from
G L (n , R ).
d is ta n c e for the o p p o site s id e d oes not e x c e e d
T h e in eq uality now fo llo w s from the law of c o s in e s for
E u c lid e a n s p a c e .
L
C
T h e eq u a lity cond ition re su lts from Lem m a 3.2.
(i)
A, B, C
Let
be the v e r tic e s of a g e o d e s ic triangle and
the lengths of the corresponding s id es.
Then
180°
90°,
(i)
a, b, c.
lies
a > c s in A
.
b < c cos A
.
then
C o n sid e r a E u c lid e a n trian gle
A 1 Bj
Cj
w ith s id e s of length
B y Lem m a 3.3
2
cos
T h erefo re
£C^
^A
+ ^ C ^ ^ A j
+ ^B
> £C.
2
b
1
2
I ab
S im ilarly
~ c
< cos * C .
~
^A 1 > ^A
and
+ ^ B t + £ C X < 180°.
£ B 1> ^ B .
H ence
T h e e q u a lity condition
fo llo w s from Lem m a 3.3. (ii)
T h e firs t a s s e rtio n comes, from p la c in g the vertex
and com paring the R iem annian length of the s id e s dg-len gth .
BC
A
at the identity
with the
T h e seco n d a sse rtio n o f ( i i ) fo llo w s from
c 2 c o s 2 A = c 2 — c 2 s in 2 A > a 2 + b 2 — c 2 s in 2 A > b 2 . A s u b s e t of
P (n , R )
is c a lle d a g e o d e s ic su b sp a c e if it contains for
every p air o f d istin ct p oints through
px
and
any pair of points
p2
px
and
p2
(w ith re sp ect to the
P 1?P 2
w e denote by
the unique g e o d e s ic line p a s s in g G L (n , R ) [p 1, p 2l
invariant m etric). F o r
the unique c lo s e d
§3. THE GEOMETRY OF X: PRELIMINARIES
g e o d e s ic lin e segm ent from
p 1 to
p2 .
A su bset
c a lle d co n ve x if for every pair of points [p l t p 2 ^ ^ e s
P j,P 2
T h e to p o lo g ic a l c lo s u re in
C
of
*n C ,
25
P (n , R )
is
the segm ent
P (n , R )
of a convex set
is c le a r ly convex. We c o n sid er now the im bedding o f where
G
P (n , R )
o f the s p a c e
is a s e m i-sim p le a n a ly tic lin ea r group and
K
X = G /K
a m axim al com
pact subgroup: fi(x K ) = p (x ) V ( x ) w here
p ( G ) = ^ p (G ).
p^ e jLi(X),
The image
w e h ave
p^ = g^ ^g*
d e s ic segm ent from w here
Y R ) ^ p (G ). for a l l
g x ex p s Y tg 1 -
for a l l
w ith
p2
is a g e o d e s ic s u b s p a c e .
n( X)
s e R.
H ence
( g x exp s/2 Y ) * (g x exp s/2 Y ) 6 p .(X )
contains the g e o d e s ic lin e p a s s in g through
p^
and
p2 . More g e n e ra lly , (3 .4 .1 )
if
G
is an analytic group such that G = ( G f l P ( n ,R )) • (G fl 0 ( n , R ) )
then
G fl P (n , R )
F o r any s u b s e t number
v,
S
is a g e o d e s ic s u b sp a c e of P (n ,R ).
o f a metric s p a c e and for any n o n -n ega tive real
w e denote b y
tance le s s than
LE M M A 3.5.
v
Let
of
C
T y (S )
the s u b s e t of points ly in g w ithin a d is
S.
be a co n ve x s u b s e t o f P (n , R ).
Then
T y( C )
is
co n ve x .
P ro o f. that
C
Sin ce
T y ( C ) = T y (C ),
is c lo s e d .
Let
w e can assu m e without l o s s of gen erality
p^ e T y ( C ) (i = 1,2).
p act, there e x is t s a point
q^eC
w ith
S in ce
C H T y (p p
is com
d(p^, C ) = d(p^, q^) (i = 1, 2).
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
26
C h o o s e a point
p0 e [p 1? p2]
d (p 0 , U i > q 2] ) =
with or
Pq
su ch that
supp
d ( p ^ q ! , q 2] ) ^ p * t p i , p 2] l
>
taken a s an endpoint if the supremum is attained at either
p 2 . C h o o s e a point
q 0 f [ q 1, q 2]
su ch that
px
d (p Q, q Q) = d (p Q, [ q x , q2]) .
We c o n sid er three c a s e s C a s e 1.
pQ is an endpoint.
H ere
v > d (p 0 , [ q x , q 2] ) > d ( p , [ q 1 ; q 2] )
for a ll
p t [ p j , p 2]
C a s e 2.
s o that
pQ is not an endpoint and q Q is an endpoint of
d e fin ite n e s s , su p p o se p0
in the trian gle
P2Po^O - ^ If
[ p j , p 2] C T v ( [ q 1, q 2]).
qQ = q ^
p1 pQ q x
then
w e can s u p p o se
q Q,
O th erw ise by s e le c tin g a point
b V Lem m a 3.3 -
Set
^ p 0q q 0
contrad icting
We now c o n sid e r the q u ad rila teral 90°.
by Lem m a 3.3 and thus
T h is is im p o ssib le , by c h o ic e of
w e w o u ld get an obtuse an g le for
at le a s t
H en ce
pQ. T h u s
q x ^ q 2>
£ p 0q Qq2 > 90°.
d (P 0 >q ) < d (P (y
q0
the a n g le at
cannot b e obtu se by Lem m a 3.3.
d (p 2 , q x) > d (p Q, q j )
d(p 2 ^ cli >q 2^) = d ( P o ^ q r q 2])-
near
d (p Q, q x) > d (p x , q 1),
For
'
q 1 = q2 ,
We claim
S ince
[ q 1, q 2].
P2PoqQq2
q e [ q j , q 2]
and therefore
d (p 0 , q 0) = d (p Q, [ q x ,q 2l). with a n g le s at
c = d (q Q, p 2), 0 = £ p 2qoq 2 , 0 ' = * P 2qoPo*
Lem m a 3.4 (i i ), and noting that w e get
p2
as
A p p ly in g
0 + 0 ' > ^ p 0q 0q2 ,
d (p 0 , q0) < c c o s O ' = c sin (90 — 0 ' )
9 0 °
for
i = 1 ,2 ,
by the argument abo ve b a s e d on Lem m a 3.3. A ls o
^ p 1pQq 0 + ^ P 2Poclo = 1^0°,
at le a s t 90°. rila te ra l ab o v e
so that one of th e se tw o a n g le s is
A s su m e for d e fin ite n e s s that
p2pQq 0q 2
has a n g le s at
d (p 0 , q Q) < d (p 2 , q2)
^ p 2p0q Q > 90°.
pQ and
T hen the q u ad
qQ at le a s t 90°.
T h e re fo re , as
and w e get the sam e contradiction.
Thus
C a s e 3 d oe s not occur. Since only C a s e 1 o ccu rs, Lem m a 3.5 is proved. REMARK. point
Let
F
p e P (n , R )
b e a g e o d e s ic s u b s p a c e o f the s p a c e w e denote by
7r(p)
a point in
F
P (n , R ).
F o r any
(w h ic h is c lo s e d ) such
that d (p ,7 7 (p )) = d (p , F ) . T h en the g e o d e s ic segm en t g e o d e s ic s in
F
through
[ p , 77 (p )]
n (p),
forms a right an g le at
by Lem m a 3.3.
n {p )
with a ll
It fo llo w s from the fact
that the sum o f the a n g le s in a g e o d e s ic trian gle is at most 180° that the point
77(p)
is unique.
p ro jectio n o f
P (n , R )
the q u ad rila teral therefore
f
zatio n of and
b
in
F o r any points
p^
the orthogonal
and
^ a s f ight a n g le s at
L
p2 ^ (p j)
in
P (n ,R ) and
7r(p2 );
be a g e o d e s ic lin e in the R iem annian s p a c e P (n , R )
be a re a l va lu e d function on L R
by arc length. and
t
in
L.
T h e function
Let f
s -* p (s )
b e a param etri-
is c a lle d c o n v e x if for a ll
a
[0 , 1 ],
f ( p ( ( l ~ t ) a + t b ) ) < ( 1 - t ) f ( p (a )) + t f ( p (b ) )
L E M M A 3.6.
P ro o f.
F.
^ ( p j ) ^ (9 2 ^ 2
Let
(3 .6 .1 )
Then
onto
7 7 : P (n , R ) -> F
d (p x , p 2) > d (7r(p 1 ) , 7r(p2)).
DEFINITION. and let
We c a ll the map
Let
p -» d ( p , C )
L
he a g e o d e s ic line and C
is a c o n ve x function on
a c o n v e x s e t in
L.
We lo s e no gen erality in a ssu m in g that
C
is c lo se d .
P (n , R ).
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
28
G iv en any point
p
that
d (p , q ) = d (p , C ) .
and
q2 e C
w ith
in
P (n ,R ),
and
3.5, the c lo s e d b a ll of center fore co n tain s the segm ent for a ll
the segm ent
[p ,q ]
d (p, q x) = d (p , q 2) = d (p , C ). p
and ra d iu s
[ q 1 , q 2].
q e [ q 1, q 2].
s e le c t
qi e C
with eq u a lity at
(3 .6 .1 ) is v e rifie d for for
d (p , C ) .
q
to
p.
p
in
P (n , R ),
is co n vex and there
in the interior o f
[ q 1, q 2l
[q ^ q ^ ,
[q , q x]
d (p , q x) > d (p , q )
C = [ q 1, q 2l. p = p2 ,
For
or
by Lem m a
It
d (p ,C )
q (p )
is a d iffe re n tia b le fu n c
(n am ely, co n sid er it s e p a ra te ly on the
three connected com ponents o f the complement of w here
d (p , q ) =
C = [q 1, q 2l.
It is e a s y to v erify that
tion on the com plem ent o f
q1 € C
d (p ^ C ) = d (p i? q ^ ( i = 1, 2).
p = p1 and
d ( p , [ q 1, q 2l )
such
is unique.
s o that
T h u s w e assum e that
F o r eac h point [q 1, q 2]
q
T hen
s u ffic e s to prove Lem m a 3.6 for the c a s e d (p , [ q 1 , q 2l )
d (p , q x)
S e le c tin g
for d e fin ite n e s s .
p- £ L ,
C
B y Lemma
It fo llo w s therefore that
T h is contradiction im p lies that G iv en
in
forms an a n g le o f at le a s t 90° with either
“ say 3.3.
q
F o r su p p o se o th erw ise, then there w o u ld be
q 1 £ q2
d ( p , [ q 1, q 2l )
there is a unique point
U 7r“ 1(q 2),
is the orthogonal projection onto the g e o d e s ic lin e co ntaining
n
[ q ! , q 2]). Let
s
p (b ) = p 2 , if
p (s ) and
be a param etrization o f the lin e s et
f ( s Q) £ 0,w e h ave
q(p(so)))|s0 and q (p ), if
(3 .6 .2 )
w ith
p (a ) = p x
and
f ( s ) = d (p (s ), q ( p ( s ) )
w here
^ (s q ) =
and
^ d (p (s ),
= Jg d (p (s o ), q (p (s )))| s Q* From the d efin itio n o f
T h u s if
for a l l
s,
and hence
f ( s ) ^ 0,
f '(s ) = 0 (s )
T h en
f ' ( s Q) = ^ ( S q ) + f 2( s Q)
d (p ( s 0), q (p (s Q) ) ) < d (p (s Q), q ( p ( s ) ) )
f ( s 0) / 0.
w here
f ( s ) = d (p (s ), [ q t , q 2]).
L
is the an g le
f x( s ) = sin ( 0 ( s ) -
90 ) = - c o s 0 (s )
q ( p ( s ) ) p (s ) p2 .
f ' ( s ) = sin (9(s) • £
T h erefo re
f 2( s Q) = 0
§3. THE GEOMETRY OF X: PRELIMINARIES
C o n sid e r now the q u a d rila te ra l a n g le s at
q ( p ( s Q) )
and
q (p (s Q) ) p (s Q) p (s Q + A s ) q ( p ( s Q + A s ) ) .
q (p (s Q+ A s ))
are at le a s t
Lem m a 3.3 one co u ld find nearer points to
[^1 >^2^ ^ an q (s o ) and q ( s 0 + A s ). the q u ad rila teral d o e s not e x c e e d A s ) > 0
for a ll s and thus
f
is
a co n vex function. C a s e 2. f
L D [ q x , q 2]
is not empty.
v a n is h e s at a s in g le v a lu e
[sq ,
oo]
w ith
c re a s in g on on
R.
If
f ( s Q) = 0. [ —'oo, S q],
Since
and
f
f(s ) > 0
a s in g le point,
is co n vex on [ —, s Q]
for a ll
s,
f
m onotonically in c re a sin g on
L fl [ q 1, q 2]
and the co n v ex ity of
s Q,
T h en if it c o n s is t s of
is m onotonically d e [ s q ,< »]
and co n vex
con tain s more than one point, then
f
and
[ q 1, q 2l C L
is clear.
T h e proof o f Lem m a 3.6 is now com plete.
L E M M A 3.7.
L
L C T y(F )
such that p e L.
Let
be a g e o d e s ic line and F /or som e fin ite
v.
M o re o ve r, for any d is tin ct points
a n g les of quadrilateral
p j ^ ( p j ) 7r(p2) p2
the orthogonal p rojection onto
P roof.
Let
f ( s ) = d (p (s ), F )
bounded co n v ex function on
Then
a g e o d e s ic s u b sp a c e d (p , F ) = d (L , F )
p ^ and p2
It fo llo w s at once that
fo llo w s by Lem m a 3.3 from the fa c t that
is
f
T h en
f
is a
is constant.
T h e seco n d a s s e rtio n
d (p .,7 r(p .)) = d (p -, F ) = d (L , 7r(p-)),
i = 1 ,2 ;
or alte rn a tiv e ly , it fo llo w s from (3 .6 .2 ).
Re
.
Inasm uch a s Lem m as 3.3 through 3.7 are v a lid for any g e o d e s ic
subspace of X
tt
F.
a s in the proof of Lem m a 3.6. R.
the four
are right a n g le s , where
From this the firs t a s s e rtio n o f the Lem m a fo llo w s .
m a r k
L,
in
for all
P (n , R ),
they are v a lid for the symmetric R iem annian s p a c e
a s s o c ia t e d to a s e m i-s im p le an alytic group.
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
30
DEFINITION.
A g e o d e s ic s u b s p a c e
F
of
P (n ,R )
is c a lle d flat if and
only if the sum of the three a n g le s of every g e o d e s ic trian gle in Let
ABC
sum 180°.
A
Then the triangle lie s in a flat su bsp a ce.
then giv en by
expsY
Y
and
and
Z
P (n , R )
containing
L e t now
ABCD
exp t Z
commute.
{e x p s Y + t Z , s , t f R i of
A
with
T h e s id e s Y
and
Z
AB in
and
AC
S(n, R ).
are
By
It fo llo w s at once that the s u b s e t
is isom etric to A ,B ,C ;
T o s e e th is, w e
is the identity m atrix, for w e can
into the identity by an isometry.
Lem m a 3.3,
is 180°.
be a non-degenerate g e o d e s ic trian gle w h o se a n g le s have
lo s e no gen erality in assu m in g that move
F
R2.
H en ce it is a fla t s u b s p a c e
w e c a ll such a s u b s p a c e a flat 2-plane.
be a q u a d rila teral the sum o f w h o se a n g le s is 360°.
Upon draw ing the d ia g o n a l
AC,
w e get two g e o d e s ic tria n g le s e a c h of
w h o se an g le sums is not le s s than 180°.
It fo llo w s that eac h an g le sum
is 180° by Lem m a 3.4 (i ), and that moreover £ B AC T h erefo re
ABC
and
ACD
+ £ C AD
= £B AD
lie in fla t two d im en sion al g e o d e s ic s u b s p a c e s .
Furtherm ore upon d ra w in g the d ia g o n a l in a fla t tw o -d im en sio n al plan e.
From
BD,
w e can in fer that
BAD
^CBAC + £ C A D = £ B A D ,
co n clud e that the three 2 -p la n e s co in cid e. 2-plane.
.
Thus
ABCD
lie s
we
lie s in a fla t
§4.
Let
G
A M etric D e fin itio n o f the Maximal Boundary
be a sem i-sim p le an aly tic group having a faith fu l matrix repre
sentation , let
K
b e a m axim al com pact subgroup, and s e t
Xj^ denote the point of
X
fix e d by
find a faith fu l represen tatio n and
p (K ) = p (G ) fl 0 (n , R ). G
metric on
is G -in varian t.
w ith
of
G
T h e map
im bedding of X
p
K.
X = G /K .
Let
A s pointed out in 2.11, w e can into
G L (n , R )
s o that
f i : xK -» p (x ) *p (x )
onto a g e o d e s ic s u b s p a c e of
P (n , R )
p (G ) = *p (G )
then y ie ld s an and the induced
It is conven ien t som etim es to id en tify
X
/x(X).
A g e o d e s ic s u b s p a c e
F
of
X
is c a lle d flat if and only if the sum of
the three a n g le s o f every g e o d e s ic trian gle in REMARK.
A lthough
X
F
is
180°.
admits more than one G -in varian t metric (c f.
Rem ark 1 o f Section 3), the notion of flat is the sam e for a ll G -in varian t m etrics. T h e fla t s u b s p a c e s through
x^
are p re c is e ly the o rbits of
ab e lia n a n a ly tic su bgro u p s contained in p _ 1 ( P ( n , R ) fl p (G )); s u b s p a c e s through
gx^
subgro up s
w here
gA g-1
p - 1 (P (n , R ) fl p (G )).
are therefore the orbits of A
gx^
Inasm uch a s the maxim al p o lar su bgro u p s of
X.
G
p (G )
permutes
From 2.6 ( v ) w e co n
perm utes tra n s itiv e ly a ll the m axim al fla t s u b s p a c e s o f
p a s s in g through the point D EFIN ITIO N.
the flat
under the p olar
are co n ju ga te under an inner autom orphism , w e co n clud e that
K
under
is a p olar subgroup contained in
tran sitiv ely a ll the m axim al fla t s u b s p a c e s of c lu d e that
x^
T h e rank of
x^. X
is the dimension of a maximal fl at s u b
s pace.
31
X
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
32
Since
A x ^ = AK /K = A /A D K = A
for any p olar subgroup o f p ( G ),
w e s e e that rank X = T R -ran k G . M oreover any p olar subgroup operates fre e ly in with
p (p p € P (n , R ) fl p (G )
If rank
X = r,
im p lies
X.
p p 2p = P P 2P
Indeed
p xpK = p2pK
and hen ce
p x = P2 -
w e c a ll a maxim al fla t g e o d e s ic s u b s p a c e an r-flat. A
g e o d e s ic lin e is c a lle d regular if it lie s in only one r-flat; it is c a lle d singular if it is not regu lar.
Since the orbit of
subgroup o f p (G ) fl P ( n , R )
is an r-fla t of
lin e through
1
is s in g u la r in
/z(X)
1 under a maxim al polar
^t(X),
w e s e e that a g e o d e s ic
if and only if it is the orbit of an
T R -s in g u la r p olar subgro up o f p (G ) H P ( n , R ) . A ssu m e now that p = identity; identify Let
F
group o f
b e an r-fla t through
G fl P (n , R )
g e o d e s ic s in
F
such that
through
R -s in g u la r elem ents in ponent of
F — Sx^.
DEFINITION.
Let
Xj^
A.
T h en F
x^.
Let
F — XS
A
A x^ = F.
is the s et
Let
^F
with be the m axim al polar s u b
Then the union o f s in g u la r
Sx^
w here
S
is the set of
be a to p o lo g ic a lly connected com
^F =
be an r-fla t in
w here
^A
Let
x f X.
X.
union o f s in g u la r g e o d e s ic ra y s through component o f
X
x.
is a cham ber in Let
XS
A.
denote the
A to p o lo g ic a lly connected
is c a lle d a chamber o f origin
x.
T h e to p o lo g ic a l
c lo su re o f a cham ber is c a lle d a c lo s e d cham ber. From the fo re go in g, it is c le a r that every cham ber o f origin the form
g^Ax^
w here
is a cham ber in
G H P (n , R ).
and the la s t sen ten ce of (2 .2 ), a ll the cham bers in ju gate under
K.
cham bers in
X.
DEFINITION. w here NOTATIO N.
T h erefo re
G
is a w a ll o f the cham ber
the Hausdorff d istance betw een
B y (2 .6 )
has (v )
G U P (n , R ) are co n
o perates tran sitiv ely on the s e t o f a ll
A chamber w a ll of a cham ber
F o r any s u b s e t s
gx^
A
^A
in
G.
B
in
X
and A
h d (A , B ) = inf iv
d ( q ^ F )
qt
^F
q.
Sim ilarly
d (p , ^ F
q)
> d (q , " * F 0)
for a ll
qf
"*F. H en ce
h d ( * F 0 , * F ) = sup !d (p 0, ^ F ) , d ( ^ F 0 ,p)S < d (p 0 , p )
by ap ply in g the ab o v e co n vexity argument to the function stricted to
^F.
q -> d (p Qq )
re
§5.
We continue Section 4.
P o la r P a rts
G, K,
the notation
Let
and
X
F be a flat s u b s p a c e o f
cham ber w a ll in
F,
le t
E
X.
and the assu m ptions made Let
^F
b e a g e o d e s ic s u b s p a c e .
Ge
G -« p
L E M M A 5.1. Gp
gE = E
is a sem i-group and
for a ll
Gp
r = rank X.
Let
g e Gp
F
Let
and
map
F -> po l F
.
G *«p C G p .
be a flat su b sp a c e of
Gp
tains the polar part of e v e ry elem en t o f F.
Set
Thus
is a subgroup.
has a unique maximal polar subgroup, d enoted
tra n sitively on
be a cham ber or
= igeG; gECES
G < «p = I g e G ; g ^ F C ^ F i
One s e e s e a s ily that
in
M o re o ve r, if F
is an
pol F ,
X.
Then
which c o n -
and which operates sim ply
r-flat, then
G p = N (po/ F ). The
of the s e t of all r-fla ts to the s e t of a ll maximal polar
subgroups is b ije c tiv e .
Pro o f. G
Let
Xj^ b e the point of
is tran sitiv e on
F = Bxj£
w here
X,
B
infer
w e have
k B k ""1 = B
B
is tra n sitiv e on B
Gf .
Gp,
C le a rly
is
kBK C BK .
by (2 .6 ) (i).
it fo llo w s that N ( B ) fl K C G p .
Gp B
F,
xj^ e F .
B
w e get G p
Then
Gp.
by
= (G p fl K )B
kBk-1 C BK .
is normal in
Since
G fl P (n , R )
sim p ly tran sitiv e on
T h e re fo re ,
Thus
the m axim al polar su bgro u p s o f phism of
K = G fl 0 (n , R ).
no gen erality is lost in assu m in g
B fl K = (1), w e s e e that
k € G p fl K,
s ta b iliz e d by
is a p o lar subgroup con tain in g in
Lem m a 3.4 (i). Since s in c e
X
F.
For
any
From this w e Inasm uch a s
are co n ju ga te via an inner automor
is the unique m axim al p o lar subgroup of
Thus
G p = ( N ( B ) fl K )B .
35
STRONG RIGIDITY OF LO C ALLY SYMMETRIC SPACES
36
T h e fla t s u b s p a c e subgroup of
G.
N (p o l F )
F
if
F
In that c a s e ,
N ( B ) = ( N ( B ) fl K )B
F
and
F^
H ence
Gp
elem ents in
is a m axim al polar
by (2 .6 ).
are r-fla ts s t a b iliz e d by
operates tra n sitiv e ly on the r -fla ts , w e have
G.
B
Thus
Gp =
p ol F .
Since
is an r-flat.
Su ppose now that G
is an r-flat if and only if
= G^p = g G p g - 1 .
Gp
pol F C Grp .
,
w e s e e that
Since
pol F
1 pol F 1 and therefore G p = N (p o l F ) ,
Since
F^ = g F
pol F x
for som e
B y h y p o th esis
is a m axim al p olar su bgro u p , w e get
pol F = g pol F g
w e get
g e Gp
p
q
and
;
in
is the s e t of a l l p olar
pol F 1 = g pol F g - 1 .
-l
g
that is ,
F x = g F = F.
pol F =
g f N (p o l F ) . Thus
Since
F -> pol F
is
a b ije c t iv e map. REMARK.
Let
and
be d istin ct points of
be the co rrespo n d in g sym m etries o f through
p
and
q.
w hich tra n s la te s N am ely, if
X.
Let
L
It is e a s y to v erify that
p
to a point
q = gp,
then
q
and
and let
is the midpoint o f
d (K , p K ) . x €X z eZ It now fo llo w s that
d (K , p K ) = in f„ d (x , g x ), i xe XS
with the infimum
2 attained if and only if
g
is s e m i-s im p le .
C le a rly
d (K , p K )2 = T r ( l o g p2) .
Lemm a 5.3 is now proved. Let
E
metry of
be a g e o d e s ic s u b s p a c e of
X
w ith re sp e c t to
G ' = Op G U G
(c f. 2.10).
p
X.
s t a b iliz e s
Inasm uch a s
pol E
lin e s
L
Gp
denote the subgroup gen erated by
in
E.
It is not hard to s e e that
gen erated by a ll its p o lar su bgro u p s, In p articu lar, F in a lly if
E,
G^
(c f. Rem ark 2 o f Section 3 ), w e s e e that Let
T h en for any
G
and
pol E C G p . Gp
s e lf-a d jo in t group and
p 6 E,
that is
the sym
e Gp,
is gen erated by
w here
ic ^ ; p 6 E|
o perates tra n s itiv e ly on pol L
pol E
E.
for a l l g e o d e s ic
is the subgroup of
Gp
(c f. Rem ark fo llo w in g Lem m a 5 .1 .)
A ls o , if
E C F,
then
pol E C p ol F .
are s e lf-a d jo in t groups, then the group
pol E
is a
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
42
pol E = ( pol E :fl P (n , R ) ) • (p o l E fl 0 (n , R ) ) (5 .4 .1 ) Ge
DEFINITION.
Let
n P ( n, R ))
= (p o l E
E
and F
a parallel translate of
F
• (G e
n 0 (n , R ) )
.
be g e o d e s ic s u b s p a c e s in
if and only if
E = gF
with
X.
We c a ll
E
g e Z (p o l F ).
T h is d efin itio n is an exten sio n of the defin ition for flat s u b s p a c e s giv en above.
L E M M A 5.4. S
Then
F
Let
S
and
is a parallel translate of a su b sp a c e of
S are
r-flats, then
P ro o f.
Let
tt :
X -> F
and
S.
q
g e o d e s ic s u b s p a c e tt( p )
in
into
S,
p.
T h en
w e find that
g e Z (p o l 77(S)).
F
If, m oreover,
denote the orthogonal p ro jection onto T h e function
lin e by Lem m a 3.6 and is bounded on p
F.
S C T V(F ).
with
and
F = S.
be a g e o d e s ic line in
any points
X
be g e o d e s ic su b sp a c es of
on
L,
E.
Let
g
sends
tt(S )
p -» d ( p , F ) L.
into
q.
p7r(p) 7r(q)q
Since
is a g e o d e s ic s u b s p a c e ,
L
is co n vex on every
denote the elem ent in n (q )
Let
T h erefo re it is constant.
the q u ad rila teral g
F.
L
For
lie s in a flat
pol E and
q
g77(S) = S,
se n d in g are arbitrary and
T h is p ro ves the first a s s e rtio n s .
T h e seco n d a ssertio n fo llo w s at once from the o bservatio n that Z (p o l F )
k e ep s
F
in variant if
F
is an r-flat sin c e
N (p o l F ) = G p
by
Lem m a 5.1.
L E M M A 5.5. pol F
Let
E
and
F
be g e o d e s ic s u b sp a c es with
commuting ele m e n t-w is e .
union of a ll g e o d e s ic lin es in
E
Let
x e E fl F ,
and let
perpendicular to
F
at
pol E
and
D
denote the
x.
Then
D
is
a g e o d e s ic su b sp a ce.
Proof.
Let
X
and
the L i e a lg e b ra o f
Y
be in the L i e a lg e b ra o f
p ol F .
T h en
pol E
and let
Z
be in
0 = T r [X Y ] Z + T r X [Z Y ] = T r [X Y ] Z ;
§5. POLAR PARTS
that is ,
Z
is orthogonal to the commutator s u b a lg e b ra of
lo s s o f gen erality w e may assu m e that group fix ed by
43
G fl 0 (n , R ).
T h is im p lies that
adjoint groups and that the s u b s e t of is a s u b a lg e b r a
H.
Let
It is e a s y to s e e that fo llo w s by (3 .4 ) that
H D
H
G
pol E
pol E
pol E.
Without
is s e lf-a d jo in t and and
pol F
x
are s e l f -
which is orthogonal to
pol F
denote the a n a ly tic group with L i e a lg e b ra
is a s e lf-a d jo in t an a ly tic group and is a g e o d e s ic s u b s p a c e .
is
H x Q = D.
K. It
§6.
L E M M A 6.1. a (t)
A
Let
A B a s ic In eq u ality
be a differentiable path in
en tia ble path in
P (n ,R )
be an abelian analytic subgroup in
P (n ,R ).
A
with
a (0 ) = 1.
Let
y (t )
and let
be a d iffer
Set 2 Y (t ) = lo g y (t) H = 2 a (0 ) p (t ) = a (t ) y (t) a (t ) .
t = 0,
Then at
T r (p - 1 p )2 = T r ((c o s h ad Y ) ( H ) + (s in h ad Y )/ a d Y ) ( 2 Y ) ) 2 .
P ro o f.
D iffe re n tia tin g
p (t),
w e get
p = ay a + ay a + ay a . At
t= 0,
w e have
P
_ i_ 2
p (0 ) = y (0 )
- 2 PP
and thus at
t = 0,
_ i_ L _L _L 2 -2 2 - 2 = y ay + y yy
L 2 - 2 + y a y
= ( e ad Y + e “ ad Y ) ( a ) + r2 y ( w Y ) w here
r y ( Y ) = (e x p — Y / 2 ) (e x p Y ) ( e x p — Y / 2 ).
((s in h ad Y )/ a d Y ) ( 2 Y ) . Since
B y Lem m a 3.1,
( - -1. - l \2 1 p )2= T r \jp 2 p p 2 ) ,
T r (p
the lemma is now evident.
44
r2y ( 2 Y ) =
§6. A BASIC INEQUALITY
L E M M A 6.2.
G
Let
n : X -» F
and let
p e X,
K
let
F
K.
Let
X
denote the orthogonal projection of G
denote the s ta b iliz e r in
Y
denote
b e a flat s u b sp a c e of
of the point
77(p),
denote the orthogonal com plem ent in the L i e algebra of algebra of
X
be a s e m i-s im p le analytic linear group, let
the a s s o c ia te d sym m etric Riem annian sp a ce, let X,
45
denote the unique elem en t in
?
G
onto
F.
Let ?
and let
to the L i e s u b
such that
exp Y ( tt( p ) ) = p . j : ? -> X / \ denote the ca n on ica l map of
Let
fP onto the tangent s p a c e
L to
X
at 7r(p).
S et
f(t ) = (t co sh t/sinh t )2 .
IC 1 >
P roo f.
We can assu m e that
(c f. 2.6).
S in ce
G
|jf(a d Y ) j
G
Then for any tangent v e c to r
7rp (C)|
.
is a s e lf-a d jo in t su bgro u p o f
o perates tra n sitiv e ly on
X
G L (n , R )
and both s id e s of the in
eq u a lity a b o v e are invariant under iso m e trie s, no g en erality is lo s t in assu m in g
K = G fl 0 (n , R ).
a su bset of
P (n , R )
T h en
v ia the map
fied w ith the identity matrix, subgroup
A = pol F ,
w ith the map through
1
a y a -> a
in
with A^
/x : gK -* g *g.
2
w here
orthogonal to C
A. to
p (0 ) = p, p (0 ) = C .
a e A
T h ereb y
n : X -> F
and
y e A
B y d efin itio n o f X
We id entify 7r(p)
X
with
is id en ti
is id en tified w ith the a b e lia n a n a ly tic
and the p ro jection
G iv e n a tangent v ecto r p (t)
F
9 = S (n , R ) H G.
at
p,
X
b eco m es id en tified ,
Y,
the union of g e o d e s ic s w e h ave e x p Y * l * e x p Y =
w e s e le c t a d iffe re n t ia b le path
T h e re is a unique d iffe re n tia b le path
y (t)
such that p (t ) = a (t ) y (t) a (t ) .
D e fin e set
Y (t )
by the re latio n
Y = Y (0 ), H = 7T (C ) .
exp 2 Y (t ) = y (t )
T hen
w ith
H = a 2(0 ) = 2 a (0 ),
Y ( t ) e S (n ,R ), and
and
|C|2 = T r (p _ 1 p )2 .
A p p ly in g Lem m a 6.1, w e get
C|2 = T r ((c o s h ad Y ) ( H ) + ((s in h ad Y )/ a d Y ) ( 2 Y ) ) 2
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
46
(a d Y ) 2
T h e lin ear map Tr XY
(c f. Section 3). (a d Y ) 2
v ectors for v a lu e s .
Set
s t a b iliz e s Let
and is s e lf-a d jo in t w ith re sp e c t to
9
r/j, ...,ry
be an orthonormal s e t of e ig e n
v?, ..., v 2
denote the co rrespo n d in g e ig e n -
and let
c^ = cosh v i? s- = sinh v^/v-,i = 1,
m,
and
2Y = S ™ B i V Then |C |2 = T r ( £ / Ci ,m =
2
( c i A i + Si B i}
'
R earran ge the in d ic e s s o that
Set
Ai Bi > 0
i = 1, . . . , h
Ai Bi < 0
i = h+1 , . . m .
ei = ci A i + sj
s j -1 ( e — c- A - )
ici2
w i = c^/si (i = 1
,
m) .
T h en
=
and thus
> < 1= ? Af + ^
’ ^S 1 V i *
1
2 h”+ l
m
—
s in c e
and
^
A^ B^ = 2 T r H Y = 0.
W riting
1 sri A-Cej-CiA.)
\m
- 2 T
Ai B i = - 2 V h +l
h+l
w e get >h
„
^
|c|2 > S . c f A ^ s f B ?
+
t
S
^ *
S ^ 1
V
« i
Af * X " ^ h +1
b t i ( 2 . r , < = i * ? - 2 > r , " i A 1* e ? )
+1 T 'c i A ?
4
*
1
- 2c r S
A c e r 's , . ? )
s--c,(A ? -2 c-' ^ A ^ c ^ e ? ) '
§6. A BASIC INEQUALITY
1
_
inasm uch a s
s^c^
ic i2 ^
C le a rly
£
i
1jf(a d Y ) j
_
1
_
> c^
> c-
wi Ai
2
ark
1.
1 tt (C )l =
s^ > 1 and
2
c^ > 1.
9
C on se qu en tly
”1 w i A ? • 1
T h erefo re
* 1 -..
"*?
|jf(ad Y ) j - 1 77-p (C)|
In c a s e the s t a b iliz e r of a point
w e can com pose the maps s in c e
sin c e
” w i 2 n+1
> Re m
r\
47
-i-*
9
Xq
q
in
X
is
G H 0 (n ,R ),
and w e s e e that
° j ( Y ) = 2Y
exp Y ( q ) = exp Y • /x(q) • exp Y .
1_ R E M A R K 2. t,
f(t )
Inasm uch a s
f(t ) = (t c o sh t/sinh t) 2
is a pow er s e r ie s in
jf(a d Y ) j - 1
t2 .
S ince
(ad Y ) 2
is thus a w e ll d efin ed endomorphism of
e x p r e s s ib le in terms o f the curvature tensor s in c e [ [ Y 1# Y 2L Y 3] com pare (ad Y ) 2 Let
]C|
for any elem ents and
177p (C )| ,
Y 1( Y 2 , Y 3
9.
in
s ta b le , the map
9
^ (p )*
Indeed it is
R ( Y X, Y 2 , Y ^ ) = H o w ev er, in order to
it is convenient to co n sid er
ad Y
rather than
and to re state Lem m a 6.2 in a s lig h tly different w ay. M (n ,R )
and
S(n, R )
denote re sp e c tiv e ly the set o f a ll real
m atrices and a ll sym m etric re a l the inner product ad Y
is an even function of
keeps
nxn
m atrices.
< U , V > = T r U *V.
is s e lf-a d jo in t on
M(n, R )
On
M (n ,R )
We re c a ll that for any
(c f. Section 3).
nxn
w e introduce Y 2
n wi Ai i= l
[Y , 77^] = Vj 7?j, Wj = |v^ c o s h
(s in h V j)
2 j - 1(^p(C))=
Ai ^i -
Assum e
G
r/1 , ...,77 9 b e an n c o n sis t in g of e ig e n v e c t o rs for ad Y . Then
and
orthonormal b a s e in M(n, R )
and
Let
1 1 ( i = l , . . . , n 2),
and
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
48
T h is fo llo w s im m ediately from Lemma 6.2.
Proof.
F o r any tangent vector have denoted by
|C|
by the em bedding
C
to the symmetric Riem annian s p a c e
the length of
pi o f
X
into
C
X,
we
under the invariant metric induced
P (n , R ).
F o r any re a l
w e s et
nxn
matrix
Y,
1_ IIY|| = (T r Y l Y ) 2 .
F o r any
Y e 9,
w e h ave
/ ^ (jC Y )) = 2Y
and thus
||2Y|| = jj( Y ) j =
d (e x p Y K , K ) = d (p , n ( p )) .
L E M M A 6.3.
tt, p, Y ,
Let
G
s e m i-s im p le group Set
H = 77p (C ).
C
and
is s elf-a d jo in t in G L (n , R )
T h e n , identifying
1 i£ i
> ( 2 n)
B y Lem ma 6.2 b is ,
H
r
4
h
~
|j Y II2
|C | 2 > ^
w i A ?,
w here
[Y , r/-] = v- 17^ (i = 1, — , n2).
( s i n h v ^ - 1 ! and
77^ ..., 77 2 is orthonormal, w e h ave A s is w ell-k n o w n ,
Tr Z = 0
the e ig e n v a lu e s o f the elem ent
K = G fl 0 (n , R ).
/ijCH),
with
y
and
A s s u m e that the
LllYll ' I!h I!_
IHi
Proof.
be as in Lemma 6.2.
||H||2 =
for a ll Y.
Since
A i 7^
H =
and
A?.
Z e G.
T hen ^
w i = |vi co sh v i
Let
...,A .n denote
A- = T r Y = 0
and
T r (ad Y ) 2 = X ( A j - X -)2 = 2 n V X? = 2 n T r Y 2 "i,j= l ^ i= l
n2 T h erefo re ,
||Y||2 = (2n ) _ 1 T r (ad Y ) 2 = (2n ) _ 1
1 |VjJ/((2n ) 2 |1Y||) (i = 1, ..., n2).
|C | 2 > X
s in c e
v?.
Set
Uj =
i= l
wi A i
>
u 2 < u^ < 1.
S
Inasm uch a s
w ^ > | v -| ,
w e have
|vi | A i = (2 n ) 2 | | Y | | ^ U i A? > (2 n ) 2 ||Y|| ^
H en ce
|C |2 > (2 n )
2 ||Y||_ 1
v2 A 2 .
But
u? A?
49
§6. A BASIC INEQUALITY n2
l|[Y,H]||2 = I £
v.A il?i||2 = 2 vi Ai- Thus I C |2 > (2 n )
2 H Y i r 1 ||[ Y , H ] ||2
|H| = ||^t1 (H)|| = ||H||.
B y d efin itio n ,
C on se q u en tly
1
X
i^l >_ (2n) 4
JL
IY ||2
1Y It ' IIH ||
H
It is o f c o u rse d e s ira b le to free Lem m a 6.3 o f the h y p oth esis that K = G H 0 (n , R ). F o r any
A c c o rd in g ly , w e introduce the fo llo w in g notation.
g
ancf 2
1 d (p, 77(p)) = ||Y||
2 "
W. A j
1
= (2 n )
v2 .
H'
> (2 n ) IHi
L E M M A 6.4.
Let
X
iY iig
be a s im p ly -c o n n ec te d symmetric Riemannian s p a c e
pact or v ecto r normal subgroups).
77: X -» F T
Let
t
n m ig
r and of ne gative curvature ( i . e . , its isometry group has no c o m
of rank
let
Moreover
F
Let
be an X
de note the orthogonal projection of
be an
i-flat in onto
F.
X
and let
Let
x-dimensional s u b s p a c e of the tangent s p a c e to
denote the restriction of 77p
T.
to
p e X X
at
ancf p.
Then
_L det
t
< c d (p , F )
where
c
Proof.
N o gen erality is lo st in assu m in g
2
is a constant depending only on the s p a c e
and that the s ta b iliz e r o f 77(p) T h e map
r
is
of the e llip s o id .
is s e lf-a d jo in t in
G L (n , R )
G H 0 (n , R ).
takes the unit b a ll in
up to a constant d epending only on
G
X.
r,
T
into an e llip s o id and
det r
is ,
the product o f the p rin cip al a x e s
Since
n
is a p rojection , the lo n g e st a x is o f the e lli p
so id has length at most
1.
On the other hand, the shortest p rin cip al a x is
§6. A BASIC INEQUALITY
51
must be no lon ger than the length of a radius of the e llip s o id a lo n g some regular g e o d e s ic is s u in g from the center of the e llip s o id . We may assu m e that In the c a s e
det r ^ 0,
d(p , 7T(p) ) = d (p, F ) 6.2.
det r ^ 0,
set
w here
o th e rw ise there is nothing to prove.
C = r _ 1 (H ).
We have
exp Y • 7r(p ) = p
and
Y
|C| = 1,
and
is c h o sen as in Lem m a
B y Lem m a 6.3
1
1
T h erefo re
1_ 2
-1
1
1 |H| < ( 8 n) 4 c (H ) d ( p , F )
2 , where
c (H ) - 1 = in f {||[Y/||Y||, H/||H||]||; Y f (p o l F ) 1 n f \ Inasm uch a s in
||2Y|| =
?
H
lie s a lo n g a re gu lar g e o d e s ic of
lie s in the L ie a lg e b ra of
th is, Lem m a 6.4 fo llo w s at once.
pol F .
F,
.
the c e n tra liz e r of H
C on se qu en tly ,
c (H ) < oo.
From
§7. Geometry of Neighboring Flats
In this section we shall determine the intersection of an r-flat F with a tubular neighborhood TV(FQ) of an r-flat F Q. The principal result (Theorem 7.8) states that the intersection is approximately an intersection of half-spaces with singular faces. We continue the notation and assumptions of Section 4. Let F be a flat subspace of X. In Section 5 we have defined pol F as the unique maximal polar subgroup of the stabilizer Gp. Suppose now S denotes either a geodesic ray, or a chamber wall or a chamber in X, and let F denote the unique minimal flat subspace of X containing S. Clearly the stabilizer of S lies in Gp, and we may define pol S as the stabilizer of S in pol F. Let
denote the intersection of all chambers
and chamber walls containing S. Then pol S C pol hd(pkS, pS) > hd(kS, S ) -
hd(pS, S)
h d (p S ,S )
= 00 , u n le s s
kS = S,
(c f. proof o f Lem m a 4.1).
k e G g C Z (p o / S) = Z (p o / ^ S ) C P (S ). tion ( i i ) fo llo w s from the fact that
L E M M A 7 .2 . and only if (ii)
(i)
L Q = gL
Let
lim a - 1 g a = 1 for a -> 00 be rays in
X.
Then
be chamber walls in
g e G
su ch that
g L j = L Q,
mal com pact subgroup of the origin of
^F.
Set
g e U (S ).
h d (L 0 , L ) < o o
X.
"*F *
B y (2 .7 )
L Q w h o se origin is
g " * F * = "*F q ,
with
X.
K
s in c e
h d (L Q, L ) < 00.
G
operates
T h erefo re there is a ray
G = K P (L j)
w e take
g = kp
h d ( ^ S Q, ^ S ) < 00
be a c lo s e d cham ber s im ila rly related to
such that
G;
Then
w here
K
L1
k e K
and
p e P O ^ ).
Then
h d (k L 1 #L ) < h d (k L 1 , k PL 1) + hd(kPL l f L ) < h d (L x , p L j ) + h d (L 0 , L ) < 00 .
in
is any m axi
to be the isotropy subgro up of
h d ( L j , p L j ) < 00 by Lem m a 7.1. Su ppose now that
if
g e P (^ S ).
= g M S with
T h en there is a
A sse r
g e P (L ).
^S
L Q and let
im p lies
Lem m a 7.1 ( i ) now fo llo w s .
tra n s itiv e ly on the set o f cham bers o f ^F
kS = S
L e t ^ F q be a c lo s e d cham ber co ntaining
the o rigin o f L.
L
and
with
^ S Q and
if and only if
Proof.
L0
Let
But
T hen
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
54
It fo llo w s at once that
kLx = L
H o w ev er, both
and
L
( v i i ) of ( 2 . 3 ) if
k a k -1 = b
of a p olar subgroup, then L1 = L
and
b e lo n g to the sam e c lo s e d cham ber and by with a = b
k e Z ( p o l L ).
k 6 Z (p ol L ) C P (L ).
a
and
and
Thus
H ence
tion ( i ) of Lem m a 7.2.
s in c e both are rays w ith the sam e origin.
b
in the sam e c lo s e d cham ber
k
lo g
n - 1 T r ( a - 1 v _ a ) * (a - 1 v _ a )
> - l o g n + lo g ^
( v j C j j A r 1^
.
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
60
Inasm uch a s
v__ ^ 1,
there is a fundam ental root a
t]ie L i e a lg e b ra of
pol
su ch that
root s p a c e o f
that is ,
a ( a ) = lo g
—a ;
v_
w hich is p o s itiv e on
h as a non-zero com ponent in the w *th c ij ^ 0.
Thus
d (a _ 1 v _ a p , p ) > ( —lo g n + lo g c 2j ) + 2 a ( a ) .
d (a _ 1 v _ a p , F ) > - 2
B y Lem m a 7.6,
2 d (a _ 1 v _ a p , p ) .
lo g n + (4 n )
P u t
ting together the in e q u a litie s a b o v e , w e get
d (g F , a p ) = d (F , a - 1 v _ a q ) > d (F , a - 1 v _ a p ) — 2r > c d (a _ 1 v _ a p, p) — c > 2c a (a ) _
w here
c = (4 n )
ap e T y ( g F )
c"
1_ 2,
c " = c ' + c (lo g n — lo g c 2j).
c ' = 2r + 2 lo g n,
im p lies
2 x a (a ) — c " < v;
im p lies a s s e rtio n ( i ) of Lem m a 7.7. is the la rg e s t w a ll of
that is ,
Let
w hich lie s in
R =
a ( a ) < (2 c ) _ 1 (v + c " ) - T h is fl ( g F f l ^ F ).
gF fl
Thus
F.
C le a rly R
B y a p p ly in g a s s e rtio n
( i ) of Lem m a 7.7 rep eated ly , w e find a seq u en ce o f cham ber w a lls S Q, S 1 , . . . , S n w ith
SQ = ^ S , S i
H T y ( g F ) C T v (S p
v > 0,
a w a ll o f for som e
of in c lu s io n s , w e find for any p o s itiv e
S-__ 1 , S n = R ,
and for eac h
v- (i = 1 , . . . , n).
From this chain
v
n T v ( g F ) C T t(R )
for som e finite
T H E O R E M 7.8. s > d (x , F q ).
t.
T h is p ro ves a s s e rtio n (ii ).
Let
F
and
F0
be
t
X,
let
xeF
Then
F0 nx F C W where
r-flats in
is a number depending on
n F C T t( F 0 n x F > F Q, F , x
and
s.
and let
§7. GEOMETRY OF NEIGHBORING FLATS
B y ( i i ) of Lem m a 7.5,
Proof. Let
b e a cham ber or cham ber w a ll in
elem ent of
G
and only if
g f P (^ S )G p .
su ch that
for som e fin ite the in
F Q H x F C T g ( F 0) fl F
^S, F
t
if
g F = F Q.
F
for
o f o rigin
s > d (x , F
x.
B y Lem m a 7.5 (i ) ,
B y Lem m a 7.7, / F Q fl
61
F.
Let
g
q ).
be an
C F Q flx F
if
^ S H T S( F Q) C T t( F Q H x F )
Inasm uch a s
F
is the union o f a ll
and there are only a finite number o f cham bers and cham ber w a lls
of o rigin
x,
w e s e e that there is a fin ite
t su ch that
F fl T g ( F 0)
c Tt(F0nx F). L E M M A 7.9. and let
F
Let
and
T y(F ) D F q
X
be a symmetric s p a c e of constant n e g a tiv e curvature,
F Q be g e o d e s i c lin es in
has length at most
X
2 v / (l — (c o s h d0) - 1 ),
and d
is a su it ably normalized invariant metric.
Proof.
We adopt the notation o f Lem m a 6.2.
pro jection of
X
on
F.
d (F , F Q) > 0.
with
Let
C
onto
T h en for any tangent vector
exp Y ( 77(p ) ) =
F^^y
and
Y
C
to
w here
is orthogonal to
Fq H
F n^
for any
Y e F j (p ).
at
p,
is the pro-
with
p. In a s p a c e o f constant curvature, w e have
and T r (c o s h ad Y ( H ) ) 2 = T y (c o s h 2 a ( Y ) ) ( H ) 2
w here
(ad Y ) 2 (H ) = a ( Y ) 2 H.
N o w in the metric o f
ad joint represen tatio n , o f the group T r (ad Y ) 2 = (dim G / G p ) a ( Y ) 2 .
G
X
in duced from the
o f iso m etries o f
X
d ( p , 77(p ) ) 2 =
T h u s m ultiplyin g the d is ta n c e by
(dim G / G p ) - 1 , w e get an in variant m etric with
|a(Y)| = d (p • ^ (p )) = d (p , F )
and th erefore
Let
of
T V( F )
|C|/|H| > co sh d (p , F ) > co sh d Q.
n F0
and let
t d enote the length o f
s < 2v + t < 2v + s / c o s h d Q.
s
denote the length
n ( T y ( F ) n F 0).
H en ce
s < 2 v / ( l - (c o s h d 0) _ 1 ) .
Then
§8.
D en sity P ro p e rtie s o f D is c re te Subgroups
L E M M A 8.1 (S e lb e rg ).
G
Let
be a locally compact group and let
V
be
a dis crete subgroup. (i)
If
G /r
where ( i i ) If
is compact, then for all Z (y )
G/r
y eT ,
Z (y ) / Z ( y ) H T
is compact,
de note s the centralizer of y . g e G
has finite measure, then for any
hood
U
1
u gnu
n r ^ 0.
of
G,
in
and for any neighb or-
there is a p o s it iv e integer
n
such that
Since the proof is very short, w e present it. (i)
Let
T h en
y £r.
k
C o n sid e r the map
is continuous.
k_ 1 ( k ( 0 )
k (r ) C T,
S ince
is c lo s e d ; that is ,
k : G -» G
T Z (y )
(ii)
k (T )
T\G
k (g ) = g y g - 1 .
is c lo s e d and acc ord in gly ,
is c lo se d in
is a c lo s e d su b se t of the com pact s p a c e Z ( y ) / Z ( y ) PI r
given by
G.
T h erefo re
and is com pact.
find two d istin ct p o s itiv e in tege rs u- 1
H en ce
is com pact.
Since left tran slation is a m easu re-p reservin g map of
H en ce
T \ r Z (y )
g^—
H F / 0.
k and
I
such that
A p p ly in g this remark to
G/F,
w e can
g ^ U T fl g ^ U T ^ 0 . U H U-1 ,
asse rtio n
( i i ) fo llo w s .
L E M M A 8.2. group G
G.
Let
Let
re s p e c t iv e ly .
V
A
be a maximal polar subgroup of the s e m i-s im p le
and Let
W
denote neighborhoods of the identity in A
c > 1 and s et
A q = \a e A ; a ( a ) > c Then there is a neighborhood ae
and
U
for all p o s it iv e of the identity in
A c
62
R -roots G
a\ .
such that for any
63
§8. DENSITY PROPERTIES OF DISCRETE SUBGROUPS
U a U C W[M a V ] g [x ]
where
gxg- 1
denotes
and M
is the maximum com pact subgroup of
Z ( A ).
T h is re su lt is proved in my paper “ On in tersection s of C artan s u b groups with d is c re te s u b g ro u p s / 7 Indian Journal of M athem atics, V o l. 34 (1970), 203-214. Let
r
b e a d is c re te subgroup of the sem i-sim p le group
denote the sym m etric s p a c e a s s o c ia t e d to be an r-fla t in
X.
D E F IN IT IO N.
F
L E M M A 8.3.
Let
is r-c o m p a c t if and only if
V
X
and
Th en the s e t of V - c o m p a c t
Let
Proof.
group of Then
of
1
Gp,
g e Ac
Let d > 1.
F
V
in
A = pol F .
for som e
G
such that
and
d > 1.
Lem m a 5.2 (i i i ) .
We h ave proved: in
y
X
wF
A
1 in
is com pact.
G /T
is compact. r-fla ts of
be the maximum
1
such that
in
G.
A QV C A ^
A.
A.
w ith
S e lec t a neighborhood
U
F in a lly , by S e lb e r g ’s Lem m a,
B y Lem m a 8.2,
is p olar regular. Z (y )
X.
polar s u b
be a p olar re gu lar elem ent in
A
F
y e w[M A ^ ]
y e w X (A )w “ 1 e
C le a rly ,
operates tra n s itiv e ly on
as Z (y )/ Z (y ) n F
with
is com pact and
wF
by
Z (y ) = G w p ,
is T -com p act.
G iv en any neighborhood
W o f the identity in
there is a T -com pact r-fla t o f the form
wF
G
and
with
T h u s, Lem m a 8.3 is proved.
REMARK. group
F
g
y e V H U A CU .
Inasm uch
r\TF
X
Let
and som e ordering of the R -ro o ts on
Furtherm ore,
it fo llo w s at once that
any r-flat
Let
U A CU C W [M A CV ].
H en ce
w G p w ""1 = G w p .
w e W.
c > 1
and let
W be a neighborhood of
w e can find an elem ent w €W
in X,
Let
r = rank X.
r-flats is d e n se in the s e t of all
b e an r-fla t i.e .,
and let
be as a b o v e . A s s u m e that
b e a neighborhood of
Let
G
G.
G
Lem m a 8.3 is v a lid for d is c re te su bgro u p s such that
G/T
h as fin ite m easure.
V
o f a sem i-sim p le
T o s e e th is, one needs an
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
64
Z ( y ) / Z ( y ) fl F
adequate condition for
to b e com pact.
Such a condition
h as b e e n given by R aghunathan. R aghunathan d e fin e s an elem ent
g 1and
with
s is t s en tirely of R -h y p er-regu lar elem ents.
Ub^U
y e w [M b ^ V ]
w ith
U
b e a n eigh bo r ; t
bJv
S e lec t a neighborhood
a e A Q, U a U C W [M a V ].
y eV
V
for some w e W.
j > 0. H en ce
co n U
of
B y S e lb e r g ’s Lem m a, Since
y
U b^U C
is R -h y p er-regu lar.
Since an R -h y p er-regu lar elem ent is p olar regu lar (c f. [1 3 ], Rem ark 1.2; note that their “ R -r e g u la r ” is our “ p olar re g u la r” ) and s in c e
Z ( y ) / Z ( y ) fl r
is com pact, our proof a p p lie s to the c a s e that
fin ite m easure.
G /r
has
T h u s, modulo the proof of R agh un ath an ’s criterion (w h ich
is proved in [1 3 ]), w e h ave proved
LEMMA 8.3'.
Let
V
X
and
be as a b o v e .
A s s u m e that
G / T has
finite
measure.
Then the s e t of T -c o m p a c t x-flats is de nse in the s e t of all
r-flats of
X.
LEMMA 8.4 (Mautner).
Let
G
be a s em i -s i m p l e analytic group having no
compact normal subgroup of p o s it iv e dim en sio n, and let group of polar regular elem ent s in G normal subgroup of
G/r
has finite
(i)
A
(ii)
TxA
G ).
Let
G -invariant
V
operates ergod ica ll y on is d e n se in
G
be a s e m i
(w h ic h is contained in no proper
be a c l o s e d subgroup of
measure.
A
Then
G/r.
for almost all
x e G.
G
such that
§8. DENSITY PROPERTIES OF DISCRETE SUBGROUPS
A s s e rtio n ( i ) w a s proved by Mautner for p olar su bgro u p s A s s e rtio n ( i i ) fo llo w s im m ediately from (i ) .
L E M M A 8.5.
G
Let
A
in [1 1 ].
D e t a ils may b e found in [1 2 g ].
be a s e m i -s i m p l e analytic group having no compact P
normal subgroup of p o s it iv e dimension, and let
be a parabolic subgroup.
F be a c l o s e d subgroup such that G/r has finite G-invariant mea
Let sure.
Then
Proof.
T P = G.
N o g en erality is lo st in assu m in g that
subgroup.
Let
r u ^A -1
is d en se in
^A
b e a cham ber such that G
for alm ost a ll
find s e q u e n c e s o f elem ents
l y n S in
y n u - 1 a ” 1 -> g
1 as
wn
65
1
Set
as
n
and
and
n -» °c.
is a minimal p a ra b o lic
P = P ( ^A) in
G.
(c f. (2 .4 )).
G iv en
l a n S in
g e G,
^A
w e can
such that
T h u s y n = w n g a fl ufl
N = U ( "*A _ 1 ),
with
the unipotent subgro up gen erated by the root ^A.
T h en
u n = v n pn
with
vn e N
and
Thus y P = w g a v P = w g (a „ v a ~ 1 ) P /n n to n n n bVn n n /
We h av e
H ence
oo.
s p a c e s of the n eg ativ e roots on pn e P .
T
u
P
an vn a” 1
1 as
n -> °o.
H en ce
yn P
gP
as
.
n -> .
T h e re
fore ~ T P = G.
L E M M A 8.6 (B o r e l).
Let
G b e a s em i -s i m p l e linear analytic group having
no compact normal subgroup of p o s it iv e dimension, and let subgroup such that Z a r i s k i-d e n s e in
G/r
has finite
G -invariant
measure.
V Then
be a c l o s e d V
is
G.
T h is lemma is proved by B o re l in [2 a ] and, g e n e ra liz e s a re su lt first proved by S e lb e r g (c f. [1 6 ]) in the c a s e given in [ 12 f ] .
G = S L (n , R ).
A nother proof is
§9.
Let map.
X
Let
and k
P seu d o-isom etries
X ' be metric s p a c e s and let 0 : X -> X ' be a continuous
and
b
be p o s itiv e numbers.
DEFIN ITIO N.
0
is a
(k ,b )
pseu do-isom etry if and only if
(9 .1 .1 )
d (0 (x ), 0 ( y ) ) < k d ( x , y ) ,
for a ll
x ,y
in
X
and ( 9 . 1. 2 )
d ( 0 ( x ) , 0 ( y ) ) > k_ 1 d (x , y ) ,
T h e map 0
if
d (x , y ) > b .
is c a lle d a pseu do-isom etry if it is a
isom etry for som e
(k, b ).
If, for exam ple,
X
(k, b ) p se u d o -
is com pact and
fie s a L ip s c h it z condition with constant
k,
isom etry w here
T hu s the condition that
b
is the diam eter of
X.
then 0
a pseud o-isom etry is not much of a restriction u n le s s Let
0 : X -> X / be a
(k, b )
tubular neighborhood o f radius (9 .1 .1 )'
is a
s a t i s
X
p seud o-iso m etry , and let r,
(k, b )
p se u d o be
is non-com pact. S C X.
F o r any
w e get from (9 .1 .1 )
0 ( T r(S )) C T k f 0 ( S ) .
From (9 .1 .2 ) w e get (9 .1 .2 )'
0 - 1 ( T r( 0 ( S ) ) C T r,(S ), r ' =
A continuous map
sup (kr, b ) .
cf> : X -» X ' s a tis fy in g only (9 .1 .2 ) is c a lle d
(k, b )-
inc ompres s ible. We s h a ll require the fo llo w in g w ell-k n o w n fact from the theory of fib e r bu n dles.
66
§9.
PSEUD O-ISOME TRIES
LEMMA 9.1.
Let
the group
operates f r e e l y ; that is
V
X
X ' be contrac tible topolo gic al s p a c e s on which
and
g = 1 . A s s u m e that
u nles s p lex es.
67
V \X
gx / x
x e X
for any
g eT
and
and F \ X ' are finite s im p licial c o m
T -s p a c e morphism 0 : X -> X ' suc/i
Then there is a
d uced map 0 : T \ X -> F \ X '
is simplicial.
M oreo ver
£/?e in-
cf> is a homotopy
eq uivalenc e.
P r o o f may be found in [1 7 ]. T h e next lemma is cen tral for our method.
LEMMA 9.2.
Let
G
G ' be s e m i -s i m p l e analytic groups, let
and
K ' be maximal compact subg roups in X = G/K,
X '= G '/K '.
such that
G /r
and
Let
V
G
K
and
and G ' r e s p e c t iv e ly , and s e t
and T ' be torsion-free dis cre te subgroups
G ' / T ' are compact.
Then there is a p s e u d o -i some try
0 : T -» T ' be an isomorphism.
Let
: X -> X ' such that
0 ( y x ) = d(y)(x) for all
y eV
and
x e X;
that is,
0
is a V - s p a c e morphism and a p s e u d o -
isometry.
O b s e rv e first that
Proof.
the s t a b iliz e r o f a point fore
T H Gx
have
x
o p e rates freely on in
X,
then
is d is c re te and com pact.
T n G x = (1 )
fre e ly on
T
s in c e
T
Gx
F o r if
Gx
is co n ju gate to
Since
is to rsio n -free.
X.
T fl G x
K
F \X
is homeomorphic to
is thus fin ite, w e
Sim ilarly,
T ' o perates
is a d iffe re n tia b le m anifold and is com pact s in c e it T \G/K .
fin ite s im p lic ia l com plex.
T h e re fo re , it can be trian gulated and is
S im ilarly
T 'X X ' is a fin ite s im p lic ia l com plex.
O ne can now ap ply Lem m a 9.1 and ch o o se a F - s p a c e morphism It rem ains to sh o w that 0
T h en
0
and th ere
X'.
The space
Let
d enotes
cf> : X -> X'.
is a p seud o-isom etry.
0 : T \ X -» T 'X X ' denote the induced map o f is a s im p lic ia l map by our ch o ice.
T\X
We regard
F \X
to
T 'X X '. a s a metric
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
68
s p a c e with metric induced from
X.
Sim ilarly for
c i a l map of a fin ite s im p lic ia l com plex,
Inasm uch a s
X
cf> s a t is fie s a L ip s c h it z condition
k1 : d (0 (x ),0 (y ))
s Q.
inf id (x ', y x ') ; x ' e X'| =
is a g e o d e s ic line s t a b le under
w e are u sin g that every elem ent of
V '.
T '\ X '
is
C o n se q u en tly ,
y ' when w e identify the inf jd (x ', y V ) ; y ' e T ', y V
1,
From this (9 .2 .1 ) fo llo w s .
A s a direct c o n seq u en ce of (9 .2 .1 ), of radius le s s than N e x t w e a sse rt: ( 9 .2 .2 )
s Q.
that is ,
tt'
is in je c tiv e
on
any b a ll in
X'
r'. Let
B ' be a c l o s e d ball in diam 0 _ 1 ( B y)
b,
w e have for a l l
S e Cg,
H n+ 1 ( R n , 2b,
A s s u m e that
and 0 ( B 2^ ) C B 'r^ .
Then
is n > m.
(k, b )
dim X = m Let
and
cl e X,
s e t B f=
in co m p ressib le on
If moreover
n < m,
then
n = m and o . From this it fo llo w s at on ce that
d0*
ddry
n i + dT^°We h av e
f ( s 0) = c t — d (x ( s ) , g x ( s 0) ) + -^ 4 — d ( x ( s Q), g x ( s » ,
s0
s0
f ' ( s ) = s in ( 0 ^ — 90) + sin ( $ 2 — 90) = —c o s
— co s 02
H en ce d 6>
ddn
and thus
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
82
f ' ( s 0) = 0 , w e have
A t a point w here
thus
( d0l
^ ( s 0) = s ^n
d0 2 \ + “3 ^ 7
maximum v a lu e.o n the segm ent f(s ) < a
for a ll
x (s )
betw een
c o s 6^ = —co s
-
T h erefo re
[x y ] x
that is
f(s )
must a c h ie v e its
at one o f the endpoints.
and
y
0 ^ + 6 2 =^
T h a t is ,
[x , y ] C I(g , a).
and thus
T h is
p ro v es (i). (ii)
B y d efin itio n
x (s )
a s ab o v e.
1(g) = I(g ; |g[).
x, gx, gy, y
is
y b e in
f '( s ) = 0
1(g).
for a ll
s
D e fin e and thus
360°.
H en ce the four points lie in a fla t
by (3 .8 ), and a s a matter o f fa c t form a p arallelo gram .
g e o d e s ic lin e p a s s in g through fore lie s in in
and
P ° i n ts- In particu lar, the sum o f the four a n g le s o f the
q u a d rila teral at F
x
From ( i ) it fo llo w s that
^1 + ^2 = 77
space
Let
1(g).
1(g)
by (5 .3 .3 ).
x
and
gx
is s ta b le under
S im ilarly, the line through
H en ce the join of th ese two lin e s lie s in
g e o d e s ic lin e p a s s in g through
x
and
y
lie s in
y
1(g). 1(g).
g
The
and th ere
and
gy
lie s
In p articu lar, the Thus
1(g)
is a
g e o d e s ic su b s p a c e . (iii)
If
g
is sem i-sim p le and
gate to an elem ent o f assu m e that
c o in c id e s w ith If
g
G H 0 (n , R ).
g e G fl 0 (n, R ).
Z (g ) H G H P (n ,R )
and
fore fo r any
and
g
is c o n ju
Without lo s s of gen erality w e can
T h en the orbit of the identity under g
and th is in turn
gy
x
|g| / 0,
then for any
and
is a p a ra lle l tran slate o f the lin e
and by (5 .3 .3 )
gx
x ,y
in
both are s ta b le under
1(g),
pol g.
w e have
T h ere
x e 1(g ), K g) C Z (p o l g )x
M oreover
pol g = 0
1(g ).
is s e m i-sim p le and
y
then
is c le a rly the fix e d point s e t of
s een that the line through through
|g| =-0 ,
Z (p o l g )x
.
is a g e o d e s ic s u b s p a c e of
X
for
x e 1(g).
We can ap ply the sam e argument o f the fo re g o in g p aragraph to the operation o f
g(p o l g ) ~ 1
on the g e o d e s ic s u b s p a c e
Z (p ol g )x
clu d e that
Kg) = z (pol g)x n z (g (pol g)- 1 )x = Z(g)x .
to con
§12.
PSEUDO-ISOMETRIC INVARIANCE
T h e “ only i f ” part of ( i v ) fo llo w s from (ii i).
83
T h e “ i f ” part fo llo w s
from (5 .3 .2 ).
LEMMA 12.2. k = gp - 1 .
Let
g
be a s e m i -s i m p l e elem ent in
G.
Set
p = pol g
and
Th en
n i(k ).
(i)
i( g ) = i(p )
(ii)
There is a p o s it iv e constant
e
such that for all
x 6 X,
d (x , 1( g ) ) < e (d (x , I ( p ) ) + d (x , I (k )) < 2 e d (x , 1( g ) )
Proof. We
s e le c t
x Q e 1(g).
.
T h en by Lem m a 12.1 ( i i i )
K g ) = Z ( g ) x 0 , I(p ) = Z ( p ) x 0 , I(k ) = Z ( k ) x Q .
Since
p = pol g,
w e h ave
Z ( g ) = Z ( p ) fl Z ( k )
K g) = Kp)
n i(k )
by (2 .6 ).
C o n se q u en tly ,
.
Let
0 denote the a n g le (in the G -in v a ria n t m etric) betw een
I(p )
and
I(k ),
that i s , the minimum a n g le betw een a g e o d e s ic lin e in
I(p )
orthogo
1(g )
nal to
at
x Q and a g e o d e s ic lin e in
We can assu m e Let
x€X,
0 > 0 and let
I(k )
orthogonal to 1( g ) at
x Q.
in p ro vin g (ii ). x Q e 1(g)
be s e le c te d so that
Introducing g e o d e s ic co o rd in a tes in
X
at
x Q,
d (x , x Q) = d (x , 1(g)).
w e s e e that in the
(E u c lid e a n ) g e o d e s ic co o rd in a tes d g (x , 1( g ) ) = d g (x , I ( p ) ) c s c O' = d g (x , I ( k ) ) c s c Q " w here I(k ).
0 '
and
C le a rly
c o in c id e .
0 "
are the a n g le s formed by
6 ' + 0 " > 0,
H en ce
the ray
x Qx
with I(p ) and
s in c e E u c lid e a n and Riem annian a n g le s
sup {O', 0" \ > 0 / 2
d (x , 1( g ) ) = d (x , x Q) -
and thus by Lem m a 3.2 ds (x , x Q) = ds (x, 1( g ) )
< (d g (x , I (p )) + d g (x , I ( k ) ) c s c 0 / 2 < e (d (x , I (p )) + d (x , I (k ))
at
xQ
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
84
w ith
e = c s c 6/2.
at once from
1(g) C I (p )
LEMMA 12.3.
and
1(g) C I(k ).
Then there is a function I(g ,a )C
Proof.
Let
group o f
c such that for a ll a,
T c ( a ) (I(s )) .
t denote a s em i-sim p le elem ent in the s m a lle s t a lg e b r a ic
G L (n , R )
group co n tain in g Let
T h e right h a lf fo llo w s
g e G and let s denote the s e m i -s i m p l e Jordan c o m
Let
g.
ponent of
T h is p ro ves the left h a lf o f (ii ).
Z (s )^
co ntaining s,
g.
T hen
and th erefore
t
lie s in the s m a lle s t a lg e b r a ic
Z ( s ) C Z (t ).
denote the cen tra lize r o f
s
in
C o n se q u en tly G L (n , C ),
I(t) 3 I (s ).
and s et
C =
! z g z - 1 i w here
z
va rie s over the connected component o f the identity
of
C
is an irred u c ib le a lg e b r a ic variety.
Z (s )^ .
Then
the s e m i-sim p le Jordan component o f ea c h
g ' e C.
to any a lg e b r a ic group co n tain in g an elem ent Set s
and
p = pol s
R e p la c in g
Let set
k = sp-1 .
g
X
w ith a s u b s e t of
g ' e C.
p = pol g ' for a ll
1 e I(s )
s in c e
n : X -> I ( s )
orthogonal to
g e C ; hence C.
in the u s u a l w a y (c f. (2 .1 1 )).
is tran sitiv e on
Y
F o r any elem ent p o s itiv e re a l number
X onto
I(s )
c o n s is t s o f the one param eter su bgro u p s in
Furtherm ore,
f e G, a,
assum
X.
denote the orthogonal p ro jection o f
T h en
I (s ).
G
com ponent o f the identity in
set
pact and bounded s u b s e t of g jj
P (n , R )
is
t b e lo n g s
by a c o n ju ga te if n e c e s sa ry , no gen erality is lo s t in
Y = 77 1 (1 ).
L et
T hen
T h erefo re
s
k b e lo n g to any a lg e b r a ic group co n tain in g an elem ent o f
We identify
ing that
and
C le a rly
X = ZY
w here
Z
1
d (f) = d ( l , f) = Tr (lo g f *"f) 2
C Q = i g 'e C ; d ( g ') < a|. C
lie s in
T h en
C Q for som e fin ite
denote the co m p lex -v alu ed function on
and sim ila rly d efin e the function
c o e ffic ie n t of
t-
by
and for any Ca
is com
a.
G L (n , C ) x C
by gij(h> gO = (i, j )
X
is the connected
Z (s ). set
and
h g 'h
d efin ed
§12.
t i j(h , g O = (i, j )
for a l l on
h e G L (n , C ).
G L (n , C )
1 < k < j, Cn
For each
c o e ffic ie n t o f
(i, j)
with
h t h -1
j < £ < nJ b e c a u s e
gen erated
n—j +1
standard b a s e vecto rs if
by Igy?; 1 < k < j, j < ^ < nj.
g k£ ^
t-
p o s itiv e in teger
h g h- 1
d o e s.
b e lo n g s to the ra d ic a l o f
J
- k < j ’j -
b e lo n g s to the ra d ic a l o f the id e a l
G L (n , C )
that is
^
^
Aj
•
and therefore there is a
q such that
tjq = ^
w here e a c h
t-
Set
- k < h
tj = ^
tj
the s e t of z e ro s o f
of every w h ere re gu lar ration al function on
gj = 2
T h en
i < j
k e ep s invariant the s u b s p a c e of
B y the Plilbert N u lls t e lle n s a t z th erefore, A.
1
h th
co n tain s the s e t o f common z e ro s of the fu n ction s
spanned by the la s t
the id e a l
85
PSEUDO-ISOMETRIC INVARIANCE
ay? g j^ (1 < k < j, j < £ < n)
a^j? is an every w h ere re g u la r ra tio n a l function on
G L (n ,C )x C .
Set C j(a ) = supi |ak£(h, g ')| ; h 6 0 (n , R ), g ' 6 C a , 1 < k < j, j < I < n!
T hen
Cj(a)
0
A s su m e for d e fin ite n e s s that
= d (x , 1) sin 0
< d (x , I (p )),
T h erefo re , for any
x e Y
d ( x , g 'x ) > c x + c 2 d ( x S , p x S ) ,
and
and thus
0 „ > 0 / 2. p — d (x , I (p )) >
g' e C a
by (1 2 .3 .5 )
> c x + c 2 c 4 d ( x S , I ( p ) ) 2,
by (1 2 .3 .6 0
1_ > c t + m—1 sin 0
c 2 c 4 d (x , I(p ) ) 2
by ( 12 . 3 . 7 ') 1_
> c 1 + m- 1 c 2 c 4 s in 2 0 / 2 d (x , I ( s ) ) 2
w here c
c2, c4
are p o s itiv e constants d ep e n d in g on
a ls o d epend s on
a.
From (1 2 .3 .8 ) w e in fer for a ll
1_ (1 2 .3 .9 )
a,
d (x , g 'x ) > c 5 (a ) d (x , I ( s ) ) 2
and the constant g 'e C Q
STRONG RIGIDITY OF LOCALLY SYMMETRIC SPACES
90
for a ll
x £Y
such that
d (x , I ( s ) )
p o s itiv e constant d epen d in g on We h av e seen z e Z
is s u ffic ie n tly la rg e w here
z e Z
X can be e x p re s s e d a s
> d ( l , g 1) w here
g' = z ~ 1 g z ,
e s d is ta n c e s . a > d ( g ')
z
•x
with
and x c Y ,
d (z x , g z x ) = d (x , z —1 g z x ) >
(1 2 .3 .1 0 )
is a
a.
that any point in
and x e Y . F o r any
c 5( a )
d(/7(x ), g ' 77( x ) )
=
d (g ')
77: X ^ I ( s )
s in c e the orthogonal projection
From (1 2 .3 .1 0 ) w e infer that if
a > d (z x , g z x ),
d im in ish
then
and 1_
( 12 . 3 . 11 )
Since
d (z x , g z x ) > c 5 ( a ) d (x , I ( s ) ) 2 .
I(s )
is s ta b le under eac h
and co n seq u en tly for a ll
z e Z,
d (x ,g x )< a .
c ( a ) = (a / c 5 ( a ) ) 2 .
Set
d (z x , I ( s ) ) = d (x , I ( s ) )
x e X
d (x , I ( s ) ) 2
d ((e x p th )u (exp — th)x, x ) — |s| w here 91 e n.
|s| = d (s x , x). H en ce
Now
(e x p th )u (exp — th) = exp n (t)
d ((e x p n (t)x , x ) -> oo as
d oes not b e lo n g
to
I(g , a )
T b (I (g , a ) ) C K g, a + 2 b )
for
t -» oo
and c o n seq u en tly
a < d ((e x p n (t))x , x ) — |s|.
for any p o s itiv e
d ((e x p — th)x, I(g , a )) ->
a
and b,
com es from c o n s id e rin g b a lls around as
t
(e x p th)x
oo
n (t) = > (e x p — th)x
Inasm uch as
it fo llo w s
as t ->
OO
From this the firs t a s s e rtio n o f the lemma fo llo w s .
(ex p — th )u (ex p th) -> 1
where
that
.
T h e seco n d a s s e rtio n
and u s in g the fac t that
oo.
We can now g iv e a criterion for se m i-sim p lic ity and unipotence o f e le ments o f
G
that is p reserved by p se u d o -iso m etric F-m orph ism s o f
P R O P O S I T I O N 12.5. X
G
be a s em i -s i m p l e analytic linear group, let
b e the a s s o c ia t e d symmetric space, let
d (x , g x ) < a}. (i)
Let
g
g e G
is s e m i -s i m p l e if and only if for ev ery
( i i ) A s s u m e that G a > 0,
for e v e r y
Let
I
I C T c (I (g , a ) ) I(g , a ),
for
and let
I(g , a ) = {x e X;
Then a, I(g , a )
Hausdorff dis tance of a g e o d e s i c s u b s p a c e of
Proof.
X.
has no center. I(g , a )
Then
g
X;
is unipotent if and only if
contains s om e arbitrarily large balls of
be a g e o d e s ic s u b s p a c e such that and
lie s within finite
I(g , a ) C T C(I )
d (x , g x ) = d (g x , g • g x ).
for som e finite H en ce
h d (I(g , a ), I) < oo. c.
C le a rly
g n I(g , a ) = I(g , a )
X.
T hen
g I(g , a ) = for every
n,
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
92
and
g nI C T c ( g n I(g , a ) C T c (I(g , a )).
B y Lem m a 5.4,
tran slate of a g e o d e s ic s u b s p a c e o f
I,
late of
Thus
w here
I
— for d im ension re a so n s.
and hence g l = hi
hi = g l C T 2 c (I )
for a ll
h e Z (p o / I)
x e I.
Z (p o / I).
C o n se q u en tly ,
I
with
and
I
h e Z ( p o l I), gen erated by the In p articu lar,
g l = hi
and
x e I,
B y Lem m a 5.4,
h- 1 g h- 1 g 6
p a ra lle l to it s e lf and therefore
g = h • h - 1 g e ( pol I).
contains a point
Z (p o / I)
Gj
so that
We can assum e without lo s s o f gen erality that group and that
is a p a ra lle l tran s
It fo llo w s that for a ll
d (x , h - 1 g x ) < d (x , g x ) + d (g x , h _1 g x ) < a + 4c. m oves each g e o d e s ic line in
is a p a ra lle l
g nI C T c (I(g , a )) C T 2 c (I).
We have
and w e can s e le c t
d (x , h x ) = d (I, h i) < 2c
Gj
gl
pol I d enotes the subgroup o f the s t a b iliz e r
p olar subgroup s of G j.
gl
G
x Q fix e d under
is a s e lf-a d jo in t
G fl 0 (n , R ).
Then
are s e lf-a d jo in t groups and w e have by (5 .4 .1 ) I = (p o l i n P ( n , R ) ) • ( G j f l 0 (n , R )) pol I = (p o l i n P ( n , R ) ) • (p o l i n 0 ( n , R ) ) .
Set
Z
= Z ( p o l I).
Since
Z ( p o l I)
is s e lf-a d jo in t, w e have
Z = ( Z n P ( n, R ) ) • ( Z n 0 (n, R ) ) . F o r any Since
p e pol Iand
zfZn O (n ,R )
I= pol I x Q, w e s e e that
fix e d each point in T h e orbit
la te s of
C le a rly I, and
z e Z.T h e
Z
convex
co n vex s et s in c e g
Z n 0 ( n , R ) C G j,
p x Q.
in fact Z n 0 (n , R )
Z x Q is a g e o d e s ic s u b s p a c e by (3 .4 .1 ) and pol I
5.5 that the g e o d e s ic lin e s in D.
zpxQ= pzxQ=
I.
mutes elem en tw ise with
space
w e have
D
s in c e
pol Z x Q C Z .
Z x Q orthogonal to
pol Z x Q com
It fo llo w s by Lem m a I
form a g e o d e s ic s u b
is a s et o f re p resen ta tiv e s for the p a ra lle l tran s
operates on hull o f
D
v ia
y
z ( p o l I)y n D for
i g nI; n = 0, ±1, ...j
g nI C T 2 c ( I )
for e a c h
n.
g
in
D,
a bounded
T h erefo re in its action on
keeps in variant a c lo s e d bounded co n vex set.
B rouw er fix e d point theorem ) that
in terse cts D
y e
D,
It fo llo w s (from the
k e ep s fix e d a point in
D
under the
§12.
PSEUDO-ISOMETRIC INVARIANCE
ab o v e action; that is , c a n o n ic a l action. z l;
i.e .,
( n , R ) ).
g
93
s t a b iliz e s a p a ra lle l tran slate of z e Z
T h e re fo re there is an elem ent
z-^ gze G jH z .
We h ave
From the e x p re s s io n for
G j,
I
under the
su ch that
g z l =■
G j fl Z = (G j f l Z f l P (n , R ) ) (G j H Z f l w e s e e that each elem ent in
G j n Z fl P (n , R ) commutes w ith each elem ent in G j fl Z fl 0 (n , R ). Gj H Z
seq u en tly , every elem ent in
Con
is sem i-sim p le and in p articu lar,
g
is sem i-sim p le. We have thus proved:
If
I(g , a )
o f a g e o d e s ic s u b s p a c e , then
g
lie s w ithin fin ite H a u sd o rff d is ta n c e
is sem i-sim p le.
T h e c o n v e rse fo llo w s
im m ediately from Lem m a 12.3 w hich im p lies that g
h d (I(g , a ), 1 (g)) < oo if
is a s em i-sim p le elem ent. If
g
is a unipotent elem ent, then its sem i-sim p le part is the identity
elem ent and therefore
I(g , a )
co n tain s arbitrarily large b a l ls in
Lem m a 12.4.
T h is p roves the “ only i f ” a s s e rtio n of ( i i ).
s u p p o s e that
I(g , a )
co n tain s arbitrarily large b a lls of
the s em i-sim p le part of T c (I(s )) that
s
for som e fin ite is cen tral in
g.
G.
It fo llo w s at once
X.
B y our h y p o th e sis on
I ( s ) = X.
by
C o n v e rs e ly ,
T h en arbitrarily large b a lls of
c.
X
Let X
s
denote
lie within
T h is im p lies
G , s = 1;
that is ,
g
is
unipotent.
P R O P O S I T I O N 12.6. groups, let
F
and
Let
T'
G
and
G ' be s e m i-s im p le analytic linear
be subgroups of
G
and
G',
and let
de note the symmetric Riemannian s p a c e s a s s o c ia t e d to s p e c t i v e ly . (£>': X '-> X
Let
0
be an isomorphism, let
and
and
X'
G ' re -
cf> : X -> X ' and
be p s eu d o -i s o m e tr ie s equivariant with r e s p e c t to 0
r e s p e c t iv e ly . (i)
0 : T -> V '
G
X
and
1
Then
sends s em i -s i m p l e elem ents to s e m i -s i m p l e elem ents and v i c e -
vers a (ii)
if
G ' has no center, then
el em ents.
0
s en d s unipotent el ements to unipotent
94
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
Let
Proof.
g / e
be an elem ent in
p ositio n into sem i-sim p le part and let are
s
T,
let
g = su
and unipotent part
s ' u ' be the Jordan d ecom position of g'.
(k, b )
be its Jordan decom u,
set
g '= 0 (g ),
A ssu m e that 0
and
cfV
and
0'
p se u d o -iso m etries.
We b e g in with the sim ple o b se rv a tio n s that T c (I(g , a )) C I(g , a + 2 c) 0 ( I ( g , a ) ) C Kg', ka) for any
c
and
are s u rje c tiv e .
a.
B y Lem m a 10. V, dim
It fo llo w s that for
X = dim X ' and both
0
a > b,
n,
w e co n clu d e
m = n.
dim I ( s ) > dim I ( s ') .
Sin ce
it is su rje c tiv e by Lem m a 10.1'.
C T c (0 (I (g )),
s in c e
iJj : I ( s ) -> I ( s ')
C o n se q u en tly ,
X and
0
F ' is
X,
A
let
0
w hich
~ 1 re
denote
Then there is a unique
Y '-c o m p a c t, and A ' is the
A
F
in
G
and s e t
is a m axim al p olar subgroup o f F,
and
G
is the norm alizer of Gp
A
is sem i-sim p le.
B y 2.1,
je x p t lo g u; t e R i
A = pol F .
G,
A in
operates G.
F o r let
b e the Jordan product d ecom position w ith
unipotent.
containing
r-flat in
A ' = 0 (A ).
and s e t
We claim that every elem ent in
u
F in a lly , let
0 : X -> X ' and
Y -c o m p a c t
denote the s ta b iliz e r of
sim ply tra n sitiv e ly on
and
G ' re sp e c tiv e ly such
in T'.
T h en by Lem m a 5.1,
and let
and
is s u rje c tiv e by Lem m a 10. V.
X ' stable under A ',
sta bilize r of
Let
F
Let
the sta bilizer of
Proof.
G
G '/ T ' have fin ite m easure. A ssu m e there e x is t maps
denote the
G', K', X ' be a sim ilar triple.
p se u d o -iso m e trie s eq u ivarian t with re sp ect to
s p e c tiv e ly .
x-flat
Let
T ' be d isc re te subgro up s o f
isom orphism . are
G /K .
X
s
g e Gp
sem i-sim p le
lie s in any a lg e b r a ic group
and therefore lie s in the connected component of the identity A
is a m axim al polar subgroup of
that the c e n tra liz e r of
A
u e Z (A ).
Z (A ) = M x A
B y (2.6. iv ),
G,
w e get by (2 .3 .iv )
is of finite index in the norm alizer of (d ire c t) with
96
M com pact.
A . H ence It fo llo w s
§13. THE BASIC APPROXIMATION
at once that every elem ent o f Thus
g = s
Since
Z (A )
and every elem ent is
A fl Z ( A )
97
is sem i-sim p le and in p articu lar Gp
u = 1.
is sem i-sim p le.
is of fin ite in dex in
A
and
is fin ite , w e can A 1 C Z (A )
s e le c t a subgroup of
Aj
of fin ite in dex in
A j H M = (1 ).
T h en
Aj
is an a b e lia n subgroup s in c e it in je c ts into the
a b e lia n group
M \ Z (A ).
B y h y p o th esis
r\rF A
= A\F
F
and
is F -co m p ac t. A j\ A
A X\ F
-
M A1 H A\M
M \ M A 1 = M A j n A,
TNFF
is com pact.
A ^ F
w e have
M A X\ M A
w e get
fl A \ A
S ince
Since
and hence
.
Aj = M H A j\ A 1 = M X M A ^
rank A j = dim A = R -rank G = r. sen d s s em i-sim p le elem ents of
0
and
From
is com pact.
F = M \M A
=
T ' and v ic e -v e r s a .
R -ran k G = R -rank G'. elem ents of
F,
is com pact.
B y P ro p o s itio n 12.6, sim p le elem ents o f
H en ce
such that
fin ite w e get that
operates sim ply tra n sitiv e on
T h erefo re
A
A fl M
Thus
0 (A j)
F
to sem i
T h erefo re , by Lem m a (1 1 .3 .iii)',
is an a b e lia n subgroup o f sem i-sim p le
T ' of rank e q u a l to R -ran k G ' and thus co n tain s an
R -h y p erreg u lar elem ent
y'
of
G'.
B y R ag h u n ath an ’s criterion
Z ( y ' ) fl T ' is com pact.
M oreover, the elem ent
Z ( y ') /
y ' is p o la r-re g u la r s in c e
any R -h y p erreg u lar is p o lar-re gu lar. B y Lem m a 5.2 ( i i ) , 5.2 (i i i ) ,
Z (y ')
Z (y ') H r ' \ F '
y'
s t a b iliz e s a unique r-flat
s t a b iliz e s
F ' and acts tra n sitiv e ly on
is a quotient of
F ' is a r - c o m p a c t r-flat of Let
Tp/
Z (y ') H r ' \ Z ( y ' )
A,
r.
T p'
0 (A j)
r,
w e s e e that
is of finite in dex in
A,
F'
w e s e e that
group of fin ite index of rank of rank
F '.
X'.
B y Lem m a
H en ce
and is com pact; that is ,
X'.
denote the s t a b iliz e r o f
resu lt proved a b o v e for
F ' in
Since
in Tp/
^ (A j)
F'
A p p ly in g to
Fp/
the
co n tain s an a b e lia n s u b is an a b e lia n subgroup of
is o f fin ite index in
s o a ls o is the subgroup
n
Tp/. g
Since 1.
Aj
Thus
geA without lo s s o f gen erality w e may assu m e that A j 0 (A j )
is normal in
0 (A ).
F o r any
g ' e d (& ),
is normal in
A
and
0 ( A 1) g ' F ' = g '0 ( A 1) F ' = g 'F ';
98
STRONG RIGIDITY OF LO CALLY SYMMETRIC SPACES
that is ,
s t a b iliz e s the r-flat
unique r-flat, w e get
g 'F '.
g ' F ' = F ' for a ll
Since
00^)
s t a b iliz e s a
g e 0 (A ).
Thus
# (A ) C T p / .
A p p ly in g the sam e re su lt to
0 ~ l , we
get
REMARK.
G /T
G '/ T ' are com pact, there is no
In the c a s e that
and
0- 1 ( T 'p ') C A .
Thus
(9(A)^ T p ^ .
need ab o v e to em ploy R agh un ath an ’s criterion, s in c e in this c a s e , a ll the elem ents of
F
and
L E M M A 13.2. the unique
F
Let
r-flat in
r-flat
be a T -c o m p a c t
F
b
r-flat in F 0 (F p ).
F ' s ta b i liz e d by k and
depending only on r -compa ct
are sem i-sim p le (c f. Section 11).
V'
and let
F'
denote
Then there is a constant v
but not on the particular c h o i c e of the
such that h d ( 0 ( F ) , F /) < v .
Let
tt
onto
F
Proof. of
X
y 6Tp
and
: X -> F
and
and o f
x e X,
X ' -» F ' denote the orthogonal p ro jection s
X ' onto
and
We claim first that
tt':
F '.
We note that
n ' ( y ' x ) = y ' n ' ( x ) for a ll n'(cf) ( F ) ) = F'.
F
onto
F '.
and
y 'e T
for a ll x e X'.
We can d edu ce this from the re su lts
o f Section 12, u sin g Lemma 12.3 to sh o w that of
n (y x ) = y n (x )
tt'
° 0
is a p seud o-isom etry
In ste ad , ho w ever, w e p resent here a sim p le to p o lo g ic a l
argument. Let
A
b e a free a b e lia n subgroup of finite index
denote the restriction of A -b u n d le map of
F
duced map of A \ F in
X
to
tt'
° cf) Set
F '.
to A '\ F '.
to
A ' = 0 (A )
is com pact, the subgroup A fl G x
is a p rin cip al
space,
F
A -b u n d le .
is a u n iv e rsa l
if/
may be
and let
is fin ite for
H en ce
A
Sim ilarly
and let
F
i[i
regarded a s a
a ll
of any point x e X
operates fre e ly on
Furtherm ore, sin c e
A -b u n d le .
Tp,
denote the in
Since the s t a b iliz e r G x
contains only the identity elem ent. F
F . T hen
in
x
and thus F
and
is a co n tractible
F ' is a u n iv e rsa l
A '-
bun dle.
A s is w ell-k n o w n from the elem entary theory o f u n iv e rsa l b u n d les,
the map
if/^ : A \ F -> A r\ F r is a homotopy e q u iv a le n c e .
A\F
is an r-dim en sio n al torus,
ifj^
Inasm uch as
in du ces an isom orphism o f the
§13. THE BASIC APPROXIMATION
hom ology group
H r( A \ F )
onto
H r( A ' \ F ' ) -
99
Inasm uch as
A ' \ F ' is a
com pact m anifold, any top d im en sio n al c y c le has the entire s p a c e a s its support. tt' ( 0
(f » =
f
H en ce
t/ ^ (A \ F ) = A '\ F '.
A '\ F '
i/r(F) = F ' and
:
N e x t w e claim that b > 0.
C o n se q u e n tly
Let
77(T|3( 0 ~ 1( F r) ) = F .
: A \ X -> A ' \ X ' ,
be the m aps induced by
0,
We can assu m e
77A : A \ X ^ A \ F , and
n,
and
tt^
k > 1 and \ A " \ X '-> A ' \ F '
We can assu m e, upon re p la c in g
n\
A
by a subgroup of fin ite in dex if n e c e s s a ry that the c a n o n ic a l p ro je ction s
of
X
onto
radius
2b
b a lls in Let
X
F ' onto
of radiu s
b/k,
p