Table of contents : Preface to the First Edition......Page 8 Preface to the Second Edition......Page 10 Contents......Page 12 Part I The Basic Equations......Page 20 1.1 Eulerian Description......Page 21 1.2 Lagrangian Description......Page 22 1.3 The Gravitational Field......Page 24 2.1 Hydrostatic Equilibrium......Page 26 2.2 The Role of Density and Simple Solutions......Page 27 2.3 Simple Estimates of Central Values Pc,Tc......Page 29 2.4 The Equation of Motion for Spherical Symmetry......Page 30 2.6 Hydrostatic Equilibrium in General Relativity......Page 32 2.7 The Piston Model......Page 34 3.1 Stars in Hydrostatic Equilibrium......Page 36 3.2 The Virial Theorem of the Piston Model......Page 38 3.3 The Kelvin–Helmholtz Timescale......Page 39 3.4 The Virial Theorem for Non-vanishing Surface Pressure......Page 40 4.1 Thermodynamic Relations......Page 41 4.2 The Perfect Gas and the Mean Molecular Weight......Page 44 4.3 Thermodynamic Quantities for the Perfect, Monatomic Gas......Page 46 4.4 Energy Conservation in Stars......Page 47 4.5 Global and Local Energy Conservation......Page 49 4.6 Timescales......Page 51 5.1.1 Basic Estimates......Page 53 5.1.2 Diffusion of Radiative Energy......Page 54 5.1.3 The Rosseland Mean for κν......Page 56 5.2 Conductive Transport of Energy......Page 58 5.3 The Thermal Adjustment Time of a Star......Page 59 5.4 Thermal Properties of the Piston Model......Page 61 6.1 Dynamical Instability......Page 63 6.2 Oscillation of a Displaced Element......Page 68 6.3 Vibrational Stability......Page 70 6.4 The Thermal Adjustment Time......Page 71 6.5 Secular Instability......Page 72 6.6 The Stability of the Piston Model......Page 74 Chapter7 Transport of Energy by Convection......Page 77 7.1 The Basic Picture......Page 78 7.2 Dimensionless Equations......Page 81 7.3 Limiting Cases, Solutions, Discussion......Page 82 7.4 Extensions of the Mixing-Length Theory......Page 86 8.1 Relative Mass Abundances......Page 88 8.2.1 Radiative Regions......Page 89 8.2.2 Diffusion......Page 91 8.2.3 Convective Regions......Page 95 Chapter9 Mass Loss......Page 97 Part II The Overall Problem......Page 100 10.1 The Full Set of Equations......Page 101 10.2 Timescales and Simplifications......Page 103 11.1 Central Conditions......Page 105 11.2 Surface Conditions......Page 107 11.3.1 Radiative Envelopes......Page 110 11.3.2 Convective Envelopes......Page 113 11.3.4 The T-r Stratification......Page 114 12.1 The Shooting Method......Page 116 12.2 The Henyey Method......Page 117 12.3 Treatment of the First- and Second-Order Time Derivatives......Page 124 12.4 Treatment of the Diffusion Equation......Page 126 12.5 Treatment of Mass Loss......Page 128 12.6 Existence and Uniqueness......Page 129 Part III Properties of Stellar Matter......Page 131 13.1 Radiation Pressure......Page 132 13.2 Thermodynamic Quantities......Page 133 14.1 The Boltzmann and Saha Formulae......Page 135 14.2 Ionization of Hydrogen......Page 138 14.3 Thermodynamical Quantities for a Pure Hydrogen Gas......Page 140 14.4 Hydrogen–Helium Mixtures......Page 141 14.5 The General Case......Page 143 14.6 Limitation of the Saha Formula......Page 145 15.1 Consequences of the Pauli Principle......Page 147 15.2 The Completely Degenerate Electron Gas......Page 148 15.3 Limiting Cases......Page 152 15.4 Partial Degeneracy of the Electron Gas......Page 153 16.1 The Ion Gas......Page 159 16.2 The Equation of State......Page 160 16.3 Thermodynamic Quantities......Page 162 16.4 Crystallization......Page 165 16.5 Neutronization......Page 166 16.6 Real Gas Effects......Page 167 17.1 Electron Scattering......Page 170 17.2 Absorption Due to Free–Free Transitions......Page 171 17.3 Bound–Free Transitions......Page 172 17.4 Bound–Bound Transitions......Page 173 17.5 The Negative Hydrogen Ion......Page 175 17.6 Conduction......Page 176 17.7 Molecular Opacities......Page 177 17.8 Opacity Tables......Page 179 18.1 Basic Considerations......Page 182 18.2 Nuclear Cross Sections......Page 186 18.3 Thermonuclear Reaction Rates......Page 189 18.4 Electron Shielding......Page 195 18.5 The Major Nuclear Burning Stages......Page 199 18.5.1 Hydrogen Burning......Page 200 18.5.2 Helium Burning......Page 204 18.5.3 Carbon Burning and Beyond......Page 206 18.6 Neutron-Capture Nucleosynthesis......Page 208 18.7 Neutrinos......Page 212 Part IV Simple Stellar Models......Page 217 19.1 Polytropic Relations......Page 218 19.2 Polytropic Stellar Models......Page 220 19.3 Properties of the Solutions......Page 221 19.4 Application to Stars......Page 223 19.5 Radiation Pressure and the Polytrope n = 3......Page 224 19.6 Polytropic Stellar Models with Fixed K......Page 225 19.7 Chandrasekhar's Limiting Mass......Page 226 19.8 Isothermal Spheres of an Ideal Gas......Page 227 19.9 Gravitational and Total Energy for Polytropes......Page 229 19.10 Supermassive Stars......Page 231 19.11 A Collapsing Polytrope......Page 232 20.1 Definitions and Basic Relations......Page 237 20.2.2 The Case α= δ= = 1,a = b = 0......Page 241 20.2.3 The Role of the Equation of State......Page 243 20.3 Homologous Contraction......Page 245 21.1 The U–V Plane......Page 247 21.2 Radiative Envelope Solutions......Page 250 21.3 Fitting of a Convective Core......Page 252 21.4 Fitting of an Isothermal Core......Page 254 22.1 Surface Values......Page 255 22.2 Interior Solutions......Page 258 22.3 Convective Regions......Page 262 22.4 Extreme Values of M......Page 264 22.5 The Eddington Luminosity......Page 265 23.1 The Helium Main Sequence......Page 267 23.2 The Carbon Main Sequence......Page 270 23.3 Generalized Main Sequences......Page 271 Chapter24 The Hayashi Line......Page 274 24.1 Luminosity of Fully Convective Models......Page 275 24.2 A Simple Description of the Hayashi Line......Page 276 24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region......Page 279 24.4 Numerical Results......Page 282 24.5 Limitations for Fully Convective Models......Page 284 25.1 General Remarks......Page 286 25.2.1 Dynamical Stability......Page 288 25.2.2 Inclusion of Non-adiabatic Effects......Page 289 25.3 Stellar Stability......Page 291 25.3.1 Perturbation Equations......Page 292 25.3.2 Dynamical Stability......Page 293 25.3.3 Non-adiabatic Effects......Page 295 25.3.4 The Gravothermal Specific Heat......Page 296 25.3.5 Secular Stability Behaviour of Nuclear Burning......Page 297 Part V Early Stellar Evolution......Page 300 26.1.1 An Infinite Homogeneous Medium......Page 301 26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium......Page 304 26.2 Instability in the Spherical Case......Page 305 26.3 Fragmentation......Page 309 27.1 Free-Fall Collapse of a Homogeneous Sphere......Page 312 27.2 Collapse onto a Condensed Object......Page 314 27.3 A Collapse Calculation......Page 315 27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core......Page 316 27.5 Core Collapse......Page 318 27.6 Evolution in the Hertzsprung–Russell Diagram......Page 321 28.1 Homologous Contraction of a Gaseous Sphere......Page 324 28.2 Approach to the Zero-Age Main Sequence......Page 327 29.1 Known Solar Data......Page 330 29.2 Choosing the Initial Model......Page 332 29.3 A Standard Solar Model......Page 334 29.4 Results of Helioseismology......Page 337 29.5 Solar Neutrinos......Page 339 30.1 Change in the Hydrogen Content......Page 343 30.2 Evolution in the Hertzsprung–Russell Diagram......Page 346 30.3 Timescales for Central Hydrogen Burning......Page 347 30.4 Complications Connected with Convection......Page 348 30.4.1 Convective Overshooting......Page 349 30.4.2 Semiconvection......Page 354 30.5 The Schönberg–Chandrasekhar Limit......Page 356 30.5.1 A Simple Approach: The Virial Theorem and Homology......Page 358 30.5.2 Integrations for Core and Envelope......Page 360 30.5.3 Complete Solutions for Stars with Isothermal Cores......Page 361 Part VI Post-Main-Sequence Evolution......Page 364 31.1 Crossing the Hertzsprung Gap......Page 365 31.2 Central Helium Burning......Page 369 31.3 The Cepheid Phase......Page 373 31.4 To Loop or Not to Loop …......Page 376 31.5 After Central Helium Burning......Page 382 32.1 Semiconvection......Page 383 32.2 Overshooting......Page 385 32.3 Mass Loss......Page 387 33.1 Post-Main-Sequence Evolution......Page 389 33.2 Shell-Source Homology......Page 390 33.3 Evolution Along the Red Giant Branch......Page 395 33.4 The Helium Flash......Page 399 33.5 Numerical Results for the Helium Flash......Page 400 33.6 Evolution After the Helium Flash......Page 405 33.7 Evolution from the Zero-Age Horizontal Branch......Page 408 Part VII Late Phases of Stellar Evolution......Page 413 34.1 Nuclear Shells on the Asymptotic Giant Branch......Page 414 34.2 Shell Sources and Their Stability......Page 416 34.3 Thermal Pulses of a Shell Source......Page 419 34.4 The Core-Mass-Luminosity Relation for Large Core Masses......Page 421 34.5 Nucleosynthesis on the AGB......Page 423 34.6 Mass Loss on the AGB......Page 427 34.7 A Sample AGB Evolution......Page 430 34.8 Super-AGB Stars......Page 433 34.9 Post-AGB Evolution......Page 435 35.1 Nuclear Cycles......Page 436 35.2 Evolution of the Central Region......Page 438 Chapter36 Final Explosions and Collapse......Page 446 36.1 The Evolution of the CO-Core......Page 447 36.2.1 The Carbon Flash......Page 451 36.2.2 Nuclear Statistical Equilibrium......Page 452 36.2.3 Hydrostatic and Convective Adjustment......Page 455 36.2.4 Combustion Fronts......Page 456 36.3 Collapse of Cores of Massive Stars......Page 458 36.3.1 Simple Collapse Solutions......Page 459 36.3.2 The Reflection of the Infall......Page 462 36.3.3 Effects of Neutrinos......Page 463 36.3.5 Pair-Creation Instability......Page 466 36.4 The Supernova-Gamma-Ray-Burst Connection......Page 468 Part VIII Compact Objects......Page 470 37.1 Chandrasekhar's Theory......Page 472 37.2 The Corrected Mechanical Structure......Page 476 37.2.1 Crystallization......Page 477 37.2.2 Pycnonuclear Reactions......Page 479 37.2.4 Nuclear Equilibrium......Page 480 37.3 Thermal Properties and Evolution of White Dwarfs......Page 484 38.1 Cold Matter Beyond Neutron Drip......Page 494 38.2 Models of Neutron Stars......Page 498 Chapter39 Black Holes......Page 506 Part IX Pulsating Stars......Page 514 40.1 The Eigenvalue Problem......Page 515 40.2 The Homogeneous Sphere......Page 519 40.3 Pulsating Polytropes......Page 521 41.1 Vibrational Instability of the Piston Model......Page 525 41.2 The Quasi-adiabatic Approximation......Page 527 41.3 The Energy Integral......Page 528 41.3.2 The Mechanism......Page 530 41.4 Stars Driven by the κ Mechanism: The Instability Strip......Page 531 41.5 Stars Driven by the Mechanism......Page 537 42.1 Perturbations of the Equilibrium Model......Page 538 42.2 Normal Modes and Dimensionless Variables......Page 540 42.3 The Eigenspectra......Page 543 42.4 Stars Showing Non-radial Oscillations......Page 547 Part X Stellar Rotation......Page 549 43.1 Uniformly Rotating Liquid Bodies......Page 550 43.2 The Roche Model......Page 553 43.3 Slowly Rotating Polytropes......Page 555 44.1 Conservative Rotation......Page 558 44.2 Von Zeipel's Theorem......Page 559 44.3 Meridional Circulation......Page 560 44.4 The Non-conservative Case......Page 562 44.5 The Eddington–Sweet Timescale......Page 563 44.6 Meridional Circulation in Inhomogeneous Stars......Page 566 45.1 Viscosity......Page 568 45.2 Dynamical Stability......Page 570 45.3 Secular Stability......Page 575 References......Page 579 Index......Page 587