314 75 28MB
English Pages 630 [656] Year 1977
SQUID Superconducting Quantum Interference Devices and their Applications
SQUID Superconducting Quantum Interference Devices and their Applications Proceedings of the International Conference on Superconducting Quantum Devices Berlin (West), October 5-8,1976 Editors H.D.Hahlbohm • H.Lubbig
W G DE
Walter de Gruyter • Berlin • New York 1977
Editors H. D. Hahlbohm H. Lübbig Institut Berlin der Physikalisch-Technischen Bundesanstalt, 1000 Berlin (West), Germany
CIP-Kurztitelaufnahme der Deutschen Bibliothek SQUID: superconducting quantum interference devices and their applications; proceedings of the Internat. Conference on Superconducting Quantum Devices Berlin (West), October 5 - 8 , 1976/ed. H.-D. Hahlbohm; H. Lübbig. - 1. Aufl. - Berlin, New York: de Gruyter, 1977. ISBN 3-11-006878-8 NE: Hahlbohm, Hans-Dieter [Hrsg.]; International Conference on Superconducting Quantum Devices
Library of Congress Cataloging in Publication Data International Conference on Superconducting Quantum Devices, 1st, Berlin, 1976 SQUID, superconducting quantum interference devices and their applications. Includes bibliographical references and indexes. 1. Superconducting quantum interference devices - Congresses. I. Hahlbohm, H. D., 1930 II. Liibbig, H., 1932 - III. Title. TK7872.S8157 1976 621,39 77-5409 ISBN 3-11-006878-8
©Copyright 1977 by Walter de Gruyter & Co. Berlin 30. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced in any form - by photoprint, microfilm, or any other means - nor transmitted nor translated into a machine language without written permission from the publisher. Printing: Karl Gerike, Berlin. - Binding: Liideritz & Bauer, Buchgewerbe GmbH, Berlin. Printed in Germany.
PREFACE
I n form of the proceedings of a first international devoted to Superconducting Quantum Interference
conference
Devices
(SQUID's), in this volume extended papers are published concerning specialized topics of fundamentals and applications of weak
superconductivity.
B e i n g the basis, the Josephson effect of phase-coherence
in
weakly connected superconductors brought insight into superconductivity in the presence of fields, and simultaneously, became starting point for revolutionary progress in a great number of technical applications, metrology and computer techniques for instance. The output accumulated in more than one decade suggested to attempt a n international interchange
bet-
w e e n scientists working in this area. The aim was to summarize the development, to give a survey over the present state, w i t h respect to results as well as w i t h respect to problems, and to estimate future aspects. This aim could be achieved only partially, since it soon became clear that it would be impossible to cover within four days the whole area of what may be called SQUID fundamentals and applications. Thus important applications as medical
and
geophysical ones could not be included. Fourtyseven papers were presented at this meeting. The delegates represented thirteen countries including Austria, CSSR, Denmark, Finland, France, Great Britain, Italy, Japan, The Netherlands, Sweden, Switzerland, United States of America and Germany. Together with the contributed papers nine invited lectures demonstrated the h i g h level of weaK-superconductivity research. However, it becomes clear as well that theory and application in several branches are just at the beginning.
VI Hence it might be expected that the next years will be characterized by further intensive research activities. The conference has b e e n inspired by the European Physical Society. The edition of the proceedings is a good occasion to acknowledge once more the generous support of the conference by the President of the Deutscher Bundestag, the B e r l i n Senate, the President of the Physikalisch-Technische
Bundesanstalt,
the Deutsche Physikalische Gesellschaft e.V., Fachausschuß Tiefe Temperaturen and the Siemens AG. Furthermore, we are indebted to the De Gruyter Publishing Company for its valuable cooperation in preparing these p r o ceedings. Berlin, February 1977
H.-D. Hahlbohm H. Lübbig
CONTENTS
THEORY OF SUPERCONDUCTING PHASE COUPLING Theory of phase coherence in SQUID'S. H. Lubbig
1
Investigation of the validity of generalizations of the adiabatic Josephson equation for a local junction by asymptotic expansions.
W.A. Schlup
29
A self-consistent model of the Josephson junction. H. Ohta
35
Order parameter relaxation and Josephson effects in superconducting weak links.
A. Baratoff, L. Kramer....
51
JUNCTION FABRICATION TECHNIQUES Junction fabrication techniques.
T. Van Duzer...
63
Preparation of variable thickness microbridges using electron beam lithography and ion etching. R.D. Sandell, G.J. Dolan, J.E. Lukens
93
REAL JUNCTION PROPERTIES Properties of real junctions.
J.E. Mercereau.
Some properties of long superconducting threads V v „ formed in monocrystallme silicon. S. Benacka, " * L. Bezakova, S. Gazi , J. Palaj.....
101
133
AC Josephson effect in long superconducting threads "
v
in static magnetic field. S. Benacka, S. TakScs, v * , L. Bezakova, S. Gazi......
147
VIII Voltage current characteristics of superconducting to normal metal point contacts in an rf-field. U. Kaiser-Dieckhoff
165
Measurement of the cos
term in Josephson tunneling.
M.R. Halse, J.C. Taunton...............................
171
Effects in high critical current density Josephson tunnel junctions.
J. Niemeyer, V. Kose................
179
Supercurrent interference patterns in a tunneling junction structure.
E.P. Balsamo, G. Paternö,
A. Barone, M. Russo, R. Vaglio
193
Anomalous thermoelectric effects in point contact tunnel junctions.
N.K. Welker, F.D. Bedard
199
LOW FREQUENCY APPLICATIONS Current performance of superconducting quantum interference devices. J. Clarke.
213
A variable temperature high sensitivity SQUID magnetometer.
J.A. Good.
225
Flux creep of superconductors measured with a SQUID system.
W. Ludwig, H. Gessinger.......................
239
A magnetic excited state in oxy haemoglobin A detected with an rf-SQUID-magnetometer.
H.E. Hoenig,
K. Gersonde............................................
249
High temperature application of SQUID voltmeter. M. Konishi, T. Fujita, T. Ohtsuka......................
255
Use of persistent supercurrents in SQUID current stabilisers and their application to a resistivity measurement on niobium and a portable voltage standard. J.C. Gallop............................................ The use of resistive SQUIDs for calorimetry.
2C7
IX Possible cryocoolers for SQUID magnetometers. J.E. Zimmerman, R. Radebaugh, J.D, Siegwarth....
287
On limiting magnetic field sensitivity of superconducting quantum interferometer with two Josephson junctions.
S.I. Bondarenko.................... .
• «
297
An integrated thin film gradiometer based on a dc SQUID. G.B. Donaldson, M.B. Ketchen, J. Clarke, W. Goubau.....
303
A cryodevice for induction monitoring of dc electron or ion beams with nano-ampere resolution. K. Grohmann, D. Hechtfischer, J. Jakschik..............
311
A SQUID comperator bridge for low-tc-cryoresistor measurements.
D. Andreone, E. Arri, G. Boella,
G.C. Marullo, ¿.P. Balsamc, U. Michi. ........
......
317
HIGH FREQUENCY APPLICATIONS Superconducting devices for millimeter and submillimeter wavelengths.
P.L. Richards............................
323
A closed loop broadband microwave operated SQUID. Ho Rogalla, C. Heiden...
...........................
339
A numerical treatment of the lumped model of an rf biased SQUID by means of a hybrid computer.
S.N. Erne,
H. Luther..............................................
349
Rf power measurements using quantum interference in superconductors.
D.B. Sullivan, N.V. Frederick,
R.T. Adair.............................................
355
An analysis of the low inductance ac-SQUID operated as a dc-magnetometer in a mixing mode.
O.H. Soerensen.
365
High frequency properties of stable Nb-Nb oxide-Pb Josephson tunnel junctions.
T.F. Finnegan, J. Wilson,
J. Toots...............................................
381
X NOISE Noise limitations of rf SQUIDs.
R.A. Buhrman
395
Optimum response and damping of Josephson junctions. C.D. Andriesse
433
COMMUNICATION SYSTEMS SQUID magnetometers for submarine communications at extremely low frequencies.
J.R. Davis, M. Nisenoff....
439
SIGNAL PROCESSING Complete linear equivalent circuit for the SQUID. G.J. Ehnholm. ......
......
485
Two junction SQUID using a sampling technique. P. Gutmann
501
Rf SQUID in the non hysteretic mode: the phase modulation of the tank voltage.
S.N. Ernê.
511
COMPUTER ELEMENTS SQUIDs as computer elements.
P. Wolf
519
Switching between two different vortex modes in Josephson junctions.
S. Hasuo, T, Imamura, K. Dazai...
541
Switching dynamics of Josephson junction logic circuits. H.W. Chan, B.T. Ulrich, T. Van Duzer
555
Superconducting neuromime: a Josephson junction model neuron.
B.T. Ulrich..............
567
Dynamics of flux transitions in the SQUID for the hysteretic case.
S.N. Ernê, H. Liibbig...
579
XI SUMMARY AND CONCLUSIONS Summary and conclusions.
J. Clarke
587
Subject Index
595
Author Index
605
LIST OF PARTICIPANTS Adde, R.
Institut d'Electronique Fondamentale, Università Paris-Sud, Bat. 220, 91405 Orsay, France
Albrecht, H.
2. Physikalisches Institut, Technische Hochschule Aachen, Templergraben 56, 5100 Aachen 1, Germany
Andreone, D„
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso Massimo D'Azeglio 42,
Andriesse, C.
10125 Torino, Italy
Kapteyn Astronomical
Institute,
University of Groningen, Space Research, P.O. Box 800, Groningen, The Netherlands Arri, E.
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso Massimo D'Azeglio 42,
Arons, R.R.
10125 Torino, Italy
Institut für Festkörperforschung, Kernforschungsanlage Jülich, Postfach 365, 5170 Jülich, Germany
Balsamo, P.E.
Comitato Nazionale per l'Energia Nucleare, Laboratori Nazionali di Frascati, C.P.N. 70, 00044 Frascati, Roma, Italy
Bannink, G„
Twente University of Technology, Lintveldebrink 262, Enschede, The Netherlands
Baratoff, A.
IBM Research Laboratory Zürich, Säumerstraße 4, 8803 Rüschlikon, Swi tzerland
XIII Barone, A.
Laboratorio di Cibernetica del CNR, Via Toiano 2, 80072 Arco Felice (Napoli), Italy
Berchier, J.-L.
University of Geneve, Institut de Physique, DPMC, 32 Bd. d'Yvoy, CH 1211 Geneve 4, Switzerland
Berlincourt, T.G.
Office of Naval Research, Physical Sciences Division, 800 N Quincy St. Arlington, Virginia 22217, USA
Beyer, J.
Department of Electrical and Computer Engineering, University of WisconsinMadison, Madison 53706, USA
Brandt, R,
Office of Naval Research, 1030 East Green Street, Pasadena, California 91106, USA
Buchholz, Fol.
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 3300 Braunschweig, Germany
Buhrman, R.A.
School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, New York 14853, USA
Carelli, P.
Laboratorio di Elettronica dello Stato Solido del CNR, Via Cineto Romano 42, 00156 Roma, Italy
Clarke, J.
Department of Physics, University of California, Berkeley, California 94720, USA
Colegrove, F.D.
Texas Instruments Inc., Mail Station 266, P.O. Box 6015, Dallas, Texas 75222, USA
XIV Crum, D.B.
S.H.E. c/o Klaus Schäfer GmbH, Postfach 488, 6078 Neu-Isenburg, Germany S.H.E. Corporation, 4174 Sorrento Valley Blvd., San Diego, California 92121, USA
Daalmans, G.M.
Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, Lorentzweg 1, Delft, The Netherlands
Davis, R.J.
U.S. Naval Research Lab., Code 5460, Washington D.C. 20375, USA
Daunt, J.G.
Cryogenics Center, Stevens Institute of Technology, Hoboken, N.J. 07030, USA
Donaldson, G.B.
Department of Applied Physics, John Anderson Building, University of Strathclyde, Glasgow G4 ONG, Great Britain
Dousselin, G.
I.N.S.A., Department de Physique, 20, Av. des Buttes de Coesmes, 35031 Rennes-Cedex, France
Dünajski, Z.
Technische Hogeschool Twente, Campuslaan 36, Enschede, The Netherlands
Durcansky, G.
Institut für Festkörperforschung, Kernforschungsanlage Jülich, Postfach 365, 5170 Jülich, Germany
Duret, D.
Institut d'Electronique Fondamentale, Université Paris-Sud, Bat. 220, 91405 Orsay, France
Ehnholm, G.J.
Helsinki University of Technology, Department of Technical Physics, SF-02150 Otaniemi, Finland
XV Ernfe, S . N .
Physikalisch-Technische
Bundesanstalt,
Institut Berlin, Abbestraße 1 0 0 0 B e r l i n 10, Pinnegan,
T„F„
Institut for B a s i c Standards,
Natio-
n a l B u r e a u of S t a n d a r d s , R o o m
A-247,
Bldg„ Fujita,
T.
2-12,
Germany
220, W a s h i n g t o n D.C. 20234,
D e p a r t m e n t of P h y s i c s , T o h o k u sity, K a t a h i r a Sendai, 980,
Gallop,
J.
National
Univer-
Japan
Physical Laboratory,
Queens
Road, Teddington, Middlesex TW11 Great Geisler,
R.
USA
OLW,
Britain
I n s t i t u t für G e o p h y s i k u . Technische Universität Mendelssohnstr.
Meteorologie
Braunschweig,
la, 3 3 0 0
Braunschweig,
Germany Giovannini,
B.
U n i v e r s i t y of G e n e v e , D e p a r t m e n t Physics,
32, B o u l e v a r d
CH-1211 Geneve Good , J.A.
4,
L o n d o n W3 Greidanus,
F.J.A.M.
K.
231 The
7QS, Great
Kamerlingh Onnes Nieuwsteeg
Grohmann,
Switzerland
Cryogenic Consultants Ltd., store Building,
Laboratorium, The
Physikalisch-Technische
F.
Physikalisches
Netherlands
Bundesanstalt,
Institut Berlin, Abbestraße
Gross,
Metro-
Vale,
Britain
18, L e i d e n ,
1 0 0 0 B e r l i n 10,
2-12,
Germany Institut,
Graz, Universitätsplatz
Universität 5, 8 0 1 0
Austria G u d r e t , P„
IBM Research L a b o r a t o r y Säumerstraße Swi t z e r l a n d
of
d'Yvoy,
4, 8 8 0 3
Zürich,
Rüschlikon,
Graz,
XVI Gundlach, K.
Max-Planck-Institut für Physik und Astrophysik, Föhringer Ring 6, 8000 München 40, Germany
Gutmann, P.
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 3300 Braunschweig, Germany
Hahlbohm, H.-D.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin
Hahn, D.
10, Germany
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Halse, H.R.
Physics Department, University of Kent, Giles Lane, Canterbury, Kent CTL 7NR, Great Britain
Hansen, J.
2. Physikalisches Institut, Universität Köln, Universitätsstraße 14, 5000 Köln 41, Germany
Hasuo, S.
Advanced Technology Lab., Fujitsu Lab» Ltd., Nakahara-ku, 1015 Kamikodanaka, Kawasaki 211, Japan
Hechtfischer, D.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Heiden, C.
Institut für Angewandte Physik, Universität Giessen, Heinrich-EuffRing 15, 6300 Giessen, Germany
Hillenbrand, B.
Research Laboratories of Siemens AG, FL MET 11, G. Scharowsky Str. 2, 8520 Erlangen, Germany
Hoenig, H.E.
Physikalisches Institut, Universität Frankfurt, Robert-Mayer-Str. 2-4, 6000 Frankfurt/M., Germany
XVII Hoffmann, A.
Physikalisch-Technische Bundes ans t.al t Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
¿•"ablonski, H.
Fa. Klaus Schäfer GmbH., Postfach 488 6078 Neu-Isenburg, Germany
Jakschik, J.
Physikalisch-Technische
Bundesanstalt
Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany Jutzi, W.
Institut für elektronische der Informatik,
Grundlagen
Universität.Karlsruhe
7500 Karlsruhe, Germany Kadlec, J.
Max-Planck-Institut für Physik und Astrophysik, Föhringer Ring 6, 8000 München 40, Germany
Kaiser-Dieckhoff, U.
Physikalisches Institut, Universität Würzburg, Röntgenring 8, 8700 Würzburg, Germany
Kessel, Wo
Physikalisch-Technische
Bundesanstalt
Bundesallee 100, 3300 Braunschweig, Germany Kirschman, R.K.
Jet Propulsion Lab., California Insti tute of Technology, 4800 Oak Grove Drive, Pasadena, California
91103,
USA Klein, K.D.
Physikalisch-Technische
Bundesanstalt
Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany Klipping, G.
Fritz-Haber-Institut der Max-Planck.Gesell schaf t, Faradayweg 4-6, 1000 Berlin 33, Germany
Kose, V.
Phys ik ali sch-Techni s che Bundes ans talt Bundesallee 100, 3300 Braunschweig, Germany
XVIII Kurkijärvi, J.
Helsinki University of Technology, Low Temperature Laboratory, SF-02150 Otaniemi, Finland
Kurti, N.
Clarendon Laboratory, University of Oxford, Parks Road,Oxford 0X1 3PJ, Great Britain
Kusayanagi, E.
Department of Electronics, Kyushu University, Fukuoka, Japan
Leppin, H.P.
2. Physikalisches Institut, Universität Köln, Zülpicher Straße 77, 5000 Köln 41, Germany
Levinsen, M.T.
H» C„ 0rsted Institute, Physics Laboratory I, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen 0, Denmark
Lindelof, P.E,
H.C. 0rsted Institute, Physics Laboratory I, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen 0, Denmark
Lindsay, N.M.
Cryogenic Consultants Ltd., Metrostore Building, 231 The Vale, London W3 7QS, Great Britain
Locatelli, M.
Centre d'Etudes Nucléaires de Grenoble Service des Basses Temperatures 85X, Av. des Martyrs, 38041 Grenoble-Cedex, France
Lübbig, H.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Lüders, K.
Institut für Atom- und Festkörperphysik, Freie Universität Berlin, Königin-Luise-Str„ 28, 1000 Berlin 33, Germany
XIX Ludwig, W.
Max-Planck-Institut für Metallforschung, Institut für Physik, Büsenauer Str. 171, 7000 Stuttgart 80, Germany
Lukens, J.E»
Department of Physics, State University of New York, Stony Brook, New York 11794, USA
Lundgren, L.
Solid State Division, Institute of Technology, Box 534, 75121 Uppsala, Sweden
Luther, H.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Malassis, R.
C.N.A.M., 292 Rue Saint Martin, Paris III, France
Matisoo, J.
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights/N.Y. 10598, USA
Mercereau, J.E,
California Institute of Technology, Low Temperature Physics, mail code 63-37, Pasadena, California 91125, USA
Meredith, D.F.
Physics Department, University of Lancaster, Lancaster LAI 4YW, Great Britain
Meyer, J.-D.
I. Physikalisches Institut, Universität Göttingen, Bunsenstraße 9, 3400 Göttingen, Germany
Modena, I.
Laboratorio di Elettronica dello Stato Solido del CNR, Via Cineto Romano 42, 00156 Roma, Italy
XX Mooij, J.E.
Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, Lorentzweg 1, Delft, The Netherlands
Niemeyer, J.
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 3300 Braunschweig, Germany
Nisenoff, M.
U.S. Naval Research Laboratory, Cryogenic and Superconductivity Branch, Code 6435, Washington D.C. 20375, USA
Ohta, H.
The Institute of Physical and Chemical Research, Hirosawa
2-1, Wako-shi,
Saitama, 351, Japan Orr, P.D.A.
University of Cambridge, 21 St. Regis Chesterton Road, Cambridge CB4 IB4, Great Britain
Pace, S„
Istituto di Fisica, University of Salerno, Via Vernieri 42, 84100 Salerno, Italy
Pals, J.A.
Philips Research Laboratories, Eindhoven, The Netherlands
Park, J» Go
The Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ, Great Britain
Pascal, Do
Institut d'Electronigue Fondamentale, Universi té Paris-Sud, Bat. 220, 91405 Orsay, France
Paterno, G.
Comitato Nazionale per L'Energia Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Roma, Italy
XXI Pegrum, C.M.
Department of Applied Physics, John Anderson Building, University of Strathclyde, Glasgow G4 ONG, Great Britain
Pierre, J.
Centre d'Etudes Nucleaires de Grenoble, Service des Basses Temperatures 85X, Av. des Martyrs, 38041 GrenobleCedex, France
Ramin, H.
Institut für Fernmeldetechnik, Technische Universität Berlin, Einsteinufer 29, 1000 Berlin 10, Germany
Ricci, F,
Richards, P.L,
Istituto di Fisica "G. Marconi", Università Degli Studi di Roma, Piazzale Delle Scienze No. 5, Roma 00100, Italy Department of Physics, University of California, Berkeley, California 94720, USA
Rogalla, H.
Institut für Angewandte Physik, Universität Münster, Roxeler Str.7072, 4400 Münster/Wstf., Germany
Romani, Go
Istituto di Fisica "G. Marconi", Università Degli Studi di Roma, Piazzale Delle Scienze No. 5, Roma 00100, Italy
Russo, M.
Laboratorio di Cibernetica del CNR, Via Toiano 2, 80072 Arco Felice, (Napoli), Italy
Sandel1, R.D,
Department of Physics, State University of New York, Stony Brook, New York 11794, USA
XXII Sanitas,
Bureau National de Metrologique, 21 Rue Casimir Perier, 75007 Paris, France
Sauerbrey, G.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Saur, E.
Institut für Angewandte Physik, Universität Giessen, Leihgesterner Weg 106, 6300 Giessen, Germany
Sauzade, M.
Institut d'Electronique Fondamentale, Université Paris-Sud, Bat. 220, 91405 Orsay, France
Soerensen, O.H.
Technical University of Denmark, Physical Laboratory I, 2800 Lyngby, Denmark
Suhr, H.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Sullivan, D.B.
Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302, USA
Swithenby, S.J.
University of Oxford, Department of Physics, Clarendon Laboratory, Oxford 0X1 3PU, Great Britain
Schäfer, G.
Fa. Leybold-Heraeus GmbH. u. Co. KG, Bonner Str. 504, 5000 Köln 51, Germany
Schlup, W.
IBM Research Laboratory Zürich, Säumerstraße 4, 8803 Rüschlikon, Switzerland
XXIII Schultz, G.
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 5300 Bonn 1, Germany
Schultz-DuBois, E.O.
Institut für Angewandte Physik, Universität Kiel, 2300 Kiel, Germany
Schuster, G.
Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestraße 2-12, 1000 Berlin 10, Germany
Schwarz, W.
Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 3640, 7500 Karlsruhe, Germany
Takàcs, S„
Slovak Academy of Science, Institute of Electrical Engineering, Dubravska Cesta, Bratislava 80932, CSSR
Tidecks, R.
I. Physikalisches Institut, Universität Göttingen, Bunsenstraße 9, 3 400 Göttingen, Germany
Ulrich, B.T„
Physics Department, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands
Vaglio, R.
Istituto di Fisica, Università di Salerno, Via Vernieri 42, 84100 Salerno, Italy
Van Duzer, T.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
Van Haeringen, W.
Philips Research Laboratories, Eindhoven, The Netherlands
Van Maaren, H.H.
Philips Research Laboratories, Eindhoven, The Netherlands
XXIV Walker, E 0 A 0
Physics Department, University of Lancaster, Lancaster LAI 4YW, Great Britain
Walter-Peters, M.
Afdeling der Technische Natuurkunde, Technische Hogeschool Twente, Postbus 217, Enschede, The Netherlands
Welker, N.
Laboratories for Physical Sciences, 4928 College Av., College Park, Maryland 20740, USA
Wolf, P.
IBM Research Laboratory Zürich, Säumerstraße 4, 8803 Rüschlikon, Switzerland
Zenatti, D.
Centre d'Etudes Nucleaires de Grenoble, B.P. No. 85, 38041 GrenobleCedex, France
Zimmerman, J„E„
Cryogenics Division, National Bureau of Standards, Boulder, Colorado 80302, USA
THEORY OF SUPERCONDUCTING PHASE COUPLING
THEORY OP PHASE COHERENCE IN SQUID'S
H. Liibbig Physikalisch-Technische Bundesanstalt, Institut B e r l i n , Abbestr. 2-12, D-IOOO B e r l i n 10, Germany 1
INTRODUCTION
Superconducting microstructures, capable for carrying phase gradients in the presence of currents and fields, as well as electromagnetic circuits, based essentially upon the non-linearity of their current phase characteristic have now been studied over a range of fifteen years. A large number of geometrical different weak link configurations, spreading the range from tunnel contacts w i t h discontinuous gap structure to thin film microbridges
connecting
two superconductors in a continuous way, have b e e n developed, evolving a multifarious picture of phase coherence effects. F o r tunnel junctions, the original analysis of
B.D. J0SEPHS0N
and its version due to N.R. WERTHAMER provide an unified thorough description of the constitutive current-phase
rela-
tionship, including the complete dynamical response. I n microbridges the situation is more complicated. U p to now the appearance of phase gradients in various thin film structures is well understood only under static conditions. A dynamic description of phase coherence effects in microbridges has come into focus only in the last years, but no unified theory is available. O n the side of the electromagnetic circuits, the SQUID configuration, in particular, is characterized by the direct relation between the phase difference,
, which is enclosed in the twofold connected
2 topology containing the weak link. As a consequence, the electromagnetic behaviour of the SQUID, i.e. the exchange of flux between the SQUID and the surrounding circuit, is determined essentially by the current-phase relationship of the weak link. Thus, the dynamics of flux transition, being reversible or irreversible, involves both the response of the weak link and the dispersion due to the macroscopic circuit elements. A SQUID response theory, restricted to frequencies small in comparison with the characteristic energy-gap frequency, has been developed in recent years, a detailed thorough description of the SQUID dynamics, however, is not available at present. As an introduction, this paper is concerned to the theory of phase coherence in tunnel junctions with isolating barriers and in thin film microbridges. By reason of simplicity, the links are treated in the one-dimensional limit by assuming the transvers dimensions to be smaller than twice the coherence length and the penetration depth. Through the whole article, the superconductors are assumed to be in thermal equilibrium. In a final section an approach is reported to treat the low frequency behaviour of an rf-SQUID as an example for a circuit analysis. 2
TUNNELING STRUCTURE
Several microscopic concepts of the theory of electron-tunneling through thin isolating barriers separating two bulk superconductors have been developed using different mathematical methods; e.g. pertubation theory [1,2 J, GREEN'S function method [3J, GINZBURG-LANDAU theory, [4J. Concerning the pertubation method, the system is described by an effective Hamiltonian, [5>6j, H = H1 + H2+ H t + y U
•
(1)
The Hamiltonians H^ and H^ are defined to describe the characteristics of the unperturbed system consisting of the two seperated superconductors 1 and 2. Bringing the two superconductors into interaction, their wave functions
3 become overlapping within the isolating barrier constituting a connection between electron states on both sides of the barrier. An effective Hamiltonian H T is introduced to describe this interaction. The properties of the contact structure are included in the matrix elements of H,p. The linked superconductors are assumed to be in thermal equilibrium. One may think of H^, H^ as BCS Hamiltonians for the case of weak-coupling superconductors. The case of strong-coupling superconductors has been investigated in r e f{7>8]. The influence of the external circuit in this model is taken into account by means of the voltage V applied across the junction leading to the chemical potential^, equ.(l). Under physical conditions the junction is subject to an impressed current. Consequently, the voltage arising across the contact controlls the balance of the different additive terms involved in the expression of the tunneling current. Therefore, it seems intuitively consequent, to visualize the physical meaning of the distinguishable contributions of the total current by means of describing their interdependence due to their voltage dependence. 2.1 TIME-INDEPENDENT VOLTAGE In the case that a time-independent voltage V Q is assumed the resulting tunneling current I shows periodic behaviour with respect to the time I(t)
=
I
Cf(t)
=
-
K t )
31 e< (
W
M
SWt T(pit) + I ( Vc e T ) CCS ( f i t ) + I (Vor)
3Z