Table of contents : Front Cover......Page 1 ROCK MASS CLASSIFICATION: A Practical Approach in Civil Engineering......Page 4 Copyright Page......Page 5 CONTENTS......Page 9 PREFACE......Page 7 1.1 The Classification......Page 16 1.3 Management of Uncertainties......Page 17 1.4 Present Day Practice......Page 18 1.5 Scope of the Book......Page 19 2.2 Treatment for Tunnels......Page 20 2.3 Treatment for Dam Foundations......Page 22 3.2 Homogeneity and Inhomogeneity......Page 25 3.4 Class l and II Rocks......Page 27 3.5 Uniaxial Compression......Page 28 3.7 Classification on the Basis of Slake Durability Index......Page 30 4.2 Direct Method......Page 32 4.3 Indirect Methods......Page 33 4.4 Weighted Joint Density......Page 35 5.3 Rock Load Factor......Page 40 5.4 Modified Terzaghi's Theory for Tunnels and Caverns......Page 46 6.2 Collection of Field Data......Page 49 6.3 Estimation of Rock Mass Rating (RMR)......Page 53 6.4 Applications of RMR......Page 54 6.6 Precautions......Page 59 7.1 Introduction......Page 62 7.2 The Tunnelling Conditions......Page 63 7.3 Empirical Approach......Page 65 7.4 Theoretical / Analytical Approach......Page 74 7.5 Effect of Thickness of Weak Band on Squeezing Ground Condition......Page 75 8.1 The Q-System......Page 77 8.3 Updating of the Q-system......Page 84 8.4 Collection of Field Data......Page 85 8.6 Estimation of Support Pressure......Page 87 8.7 Unsupported Span......Page 95 8.8 Design of Supports......Page 96 8.9 New Austrian Tunnelling Method (NATM)......Page 99 8.10 Norwegian Method of Tunnelling (NMT)......Page 101 8.11 Other Applications of the Q - System......Page 102 9.1 Introduction......Page 107 9.2 Inter-relation Between Q and RMR......Page 108 9.4 Prediction of Support Pressure......Page 111 9.5 Effect of Tunnel Size on Support Pressure......Page 114 9.6 Correlations for Estimating Tunnel Closure......Page 116 9.7 Effect of Tunnel Depth on Support Pressure and Closure in Tunnels......Page 117 9.8 Approach for Obtaining Ground Reaction Curve (GRC)......Page 118 9.9 Coefficient of Volumetric Expansion of Failed Rock Mass......Page 120 10.2 Selection of Parameters used in RMi......Page 123 10.3 Calibration of RMi from Known Rock Mass Strength Data......Page 124 10.4 Scale Effect......Page 126 10.5 Examples (Palmstrom, 1995)......Page 130 10.6 Applications of RMi......Page 131 10.8 Limitations of RMi......Page 132 11.1 Introduction......Page 135 11.3 Classification of Management Conditions for Rate of Tunnelling......Page 136 11.4 Combined Effect of Ground and Management Conditions on Rate of Tunnelling......Page 141 12.1 Support Pressure......Page 143 12.2 Wall Support in Caverns......Page 144 12.3 Roof Support in Caverns......Page 146 12.6 Rock Reinforcement Near Intersections......Page 148 12.8 Precautions......Page 149 13.2 Effect of Intermediate Principal Stress on Tangential Stress at Failure in Tunnels......Page 151 13.3 Uniaxial Compressive Strength of Rock Mass......Page 154 13.4 Reason for Strength Enhancement in Tunnels and A Suggested New Failure Theory......Page 156 13.6 Tensile Strength Across Discontinuous Joints......Page 158 13.7 Dynamic Strength of Rock Mass......Page 159 13.8 Residual Strength Parameters......Page 161 14.2 Joint Wall Roughness Coefficient (JRC)......Page 163 14.3 Joint Wall Compressive Strength (JCS)......Page 165 14.5 Angle of Internal Friction......Page 169 14.6 Shear Strength of Joints......Page 170 15.2 Non-Linear Failure Envelopes for Rock Masses......Page 173 15.4 Back Analysis of Distressed Slopes......Page 177 16.4 Circular (Rotational) Failure......Page 179 16.5 Toppling Failure (Topples)......Page 181 16.6 Ravelling Slopes (Falls)......Page 182 16.8 Landslide Classification System......Page 184 17.1 The Slope Mass Rating (SMR)......Page 186 17.3 Support Measures......Page 190 17.4 Modified SMR Approach......Page 191 17.5 Case Study of Stability Analysis Using Modified SMR Approach......Page 193 18.1 Introduction......Page 199 18.2 Landslide Hazard Zonation Maps - The Methodology......Page 200 18.3 A Case History......Page 205 18.4 Proposition for Tea Gardens......Page 214 19.2 Classification for Net Safe Bearing Pressure......Page 215 19.3 Allowable Bearing Pressure......Page 216 19.4 Coefficient of Elastic Uniform Compression for Machine Foundations......Page 220 20.2 Assessing the Rippability......Page 222 20.3 Rock Mass Classification According to Ease of Ripping......Page 223 20.4 Empirical Methods in Blasting......Page 225 21.1 Drillability and Affecting Parameters......Page 228 21.2 Classification for Drilling Condition......Page 230 21.3 Other Approaches......Page 232 22.2 Permeability of Various Rock Types......Page 234 22.3 Permeability for Classifying Rock Masses......Page 235 22.5 Determination of Permeability......Page 236 22.6 Grouting......Page 237 23.1 Gouge......Page 245 23.2 Influence of Gouge Material......Page 246 23.3 Shear Strength of Filled Discontinuities (Silty to Clayey Gouge)......Page 249 23.4 Dynamic Strength......Page 250 24.3 Uniaxial Compressive Strength (UCS)......Page 252 24.5 Strength Criterion......Page 253 24.7 Half-Tunnels......Page 254 25.1 Geological Strength Index (GSI)......Page 257 25.2 Modified Strength Criterion......Page 258 25.3 Mohr-Coulomb Strength Parameters......Page 260 25.5 Selection of Rock Parameters for Intact Schistose......Page 262 26.2 Critical Parameters......Page 265 26.3 Parameter Intensity and Dominance......Page 266 26.4 Classification of Rock Mass......Page 268 26.5 Example for Studying Parameter Dominance in Underground Excavation for a Coal Mine with Flat Roof......Page 269 26.7 Application in Entropy Management......Page 271 27.2 Classification of Geological Conditions and Stress Regimes......Page 273 27.3 Variation of Insitu Stresses with Depth......Page 275 Author Index......Page 278 Subject Index......Page 280